New syntax for -fsanitize-recover.
[gcc.git] / gcc / gimple-ssa-strength-reduction.c
1 /* Straight-line strength reduction.
2 Copyright (C) 2012-2014 Free Software Foundation, Inc.
3 Contributed by Bill Schmidt, IBM <wschmidt@linux.ibm.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* There are many algorithms for performing strength reduction on
22 loops. This is not one of them. IVOPTS handles strength reduction
23 of induction variables just fine. This pass is intended to pick
24 up the crumbs it leaves behind, by considering opportunities for
25 strength reduction along dominator paths.
26
27 Strength reduction addresses explicit multiplies, and certain
28 multiplies implicit in addressing expressions. It would also be
29 possible to apply strength reduction to divisions and modulos,
30 but such opportunities are relatively uncommon.
31
32 Strength reduction is also currently restricted to integer operations.
33 If desired, it could be extended to floating-point operations under
34 control of something like -funsafe-math-optimizations. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tree.h"
40 #include "hash-map.h"
41 #include "hash-table.h"
42 #include "basic-block.h"
43 #include "tree-ssa-alias.h"
44 #include "internal-fn.h"
45 #include "gimple-expr.h"
46 #include "is-a.h"
47 #include "gimple.h"
48 #include "gimple-iterator.h"
49 #include "gimplify-me.h"
50 #include "stor-layout.h"
51 #include "expr.h"
52 #include "tree-pass.h"
53 #include "cfgloop.h"
54 #include "gimple-pretty-print.h"
55 #include "gimple-ssa.h"
56 #include "tree-cfg.h"
57 #include "tree-phinodes.h"
58 #include "ssa-iterators.h"
59 #include "stringpool.h"
60 #include "tree-ssanames.h"
61 #include "domwalk.h"
62 #include "expmed.h"
63 #include "params.h"
64 #include "tree-ssa-address.h"
65 #include "tree-affine.h"
66 #include "wide-int-print.h"
67 #include "builtins.h"
68 \f
69 /* Information about a strength reduction candidate. Each statement
70 in the candidate table represents an expression of one of the
71 following forms (the special case of CAND_REF will be described
72 later):
73
74 (CAND_MULT) S1: X = (B + i) * S
75 (CAND_ADD) S1: X = B + (i * S)
76
77 Here X and B are SSA names, i is an integer constant, and S is
78 either an SSA name or a constant. We call B the "base," i the
79 "index", and S the "stride."
80
81 Any statement S0 that dominates S1 and is of the form:
82
83 (CAND_MULT) S0: Y = (B + i') * S
84 (CAND_ADD) S0: Y = B + (i' * S)
85
86 is called a "basis" for S1. In both cases, S1 may be replaced by
87
88 S1': X = Y + (i - i') * S,
89
90 where (i - i') * S is folded to the extent possible.
91
92 All gimple statements are visited in dominator order, and each
93 statement that may contribute to one of the forms of S1 above is
94 given at least one entry in the candidate table. Such statements
95 include addition, pointer addition, subtraction, multiplication,
96 negation, copies, and nontrivial type casts. If a statement may
97 represent more than one expression of the forms of S1 above,
98 multiple "interpretations" are stored in the table and chained
99 together. Examples:
100
101 * An add of two SSA names may treat either operand as the base.
102 * A multiply of two SSA names, likewise.
103 * A copy or cast may be thought of as either a CAND_MULT with
104 i = 0 and S = 1, or as a CAND_ADD with i = 0 or S = 0.
105
106 Candidate records are allocated from an obstack. They are addressed
107 both from a hash table keyed on S1, and from a vector of candidate
108 pointers arranged in predominator order.
109
110 Opportunity note
111 ----------------
112 Currently we don't recognize:
113
114 S0: Y = (S * i') - B
115 S1: X = (S * i) - B
116
117 as a strength reduction opportunity, even though this S1 would
118 also be replaceable by the S1' above. This can be added if it
119 comes up in practice.
120
121 Strength reduction in addressing
122 --------------------------------
123 There is another kind of candidate known as CAND_REF. A CAND_REF
124 describes a statement containing a memory reference having
125 complex addressing that might benefit from strength reduction.
126 Specifically, we are interested in references for which
127 get_inner_reference returns a base address, offset, and bitpos as
128 follows:
129
130 base: MEM_REF (T1, C1)
131 offset: MULT_EXPR (PLUS_EXPR (T2, C2), C3)
132 bitpos: C4 * BITS_PER_UNIT
133
134 Here T1 and T2 are arbitrary trees, and C1, C2, C3, C4 are
135 arbitrary integer constants. Note that C2 may be zero, in which
136 case the offset will be MULT_EXPR (T2, C3).
137
138 When this pattern is recognized, the original memory reference
139 can be replaced with:
140
141 MEM_REF (POINTER_PLUS_EXPR (T1, MULT_EXPR (T2, C3)),
142 C1 + (C2 * C3) + C4)
143
144 which distributes the multiply to allow constant folding. When
145 two or more addressing expressions can be represented by MEM_REFs
146 of this form, differing only in the constants C1, C2, and C4,
147 making this substitution produces more efficient addressing during
148 the RTL phases. When there are not at least two expressions with
149 the same values of T1, T2, and C3, there is nothing to be gained
150 by the replacement.
151
152 Strength reduction of CAND_REFs uses the same infrastructure as
153 that used by CAND_MULTs and CAND_ADDs. We record T1 in the base (B)
154 field, MULT_EXPR (T2, C3) in the stride (S) field, and
155 C1 + (C2 * C3) + C4 in the index (i) field. A basis for a CAND_REF
156 is thus another CAND_REF with the same B and S values. When at
157 least two CAND_REFs are chained together using the basis relation,
158 each of them is replaced as above, resulting in improved code
159 generation for addressing.
160
161 Conditional candidates
162 ======================
163
164 Conditional candidates are best illustrated with an example.
165 Consider the code sequence:
166
167 (1) x_0 = ...;
168 (2) a_0 = x_0 * 5; MULT (B: x_0; i: 0; S: 5)
169 if (...)
170 (3) x_1 = x_0 + 1; ADD (B: x_0, i: 1; S: 1)
171 (4) x_2 = PHI <x_0, x_1>; PHI (B: x_0, i: 0, S: 1)
172 (5) x_3 = x_2 + 1; ADD (B: x_2, i: 1, S: 1)
173 (6) a_1 = x_3 * 5; MULT (B: x_2, i: 1; S: 5)
174
175 Here strength reduction is complicated by the uncertain value of x_2.
176 A legitimate transformation is:
177
178 (1) x_0 = ...;
179 (2) a_0 = x_0 * 5;
180 if (...)
181 {
182 (3) [x_1 = x_0 + 1;]
183 (3a) t_1 = a_0 + 5;
184 }
185 (4) [x_2 = PHI <x_0, x_1>;]
186 (4a) t_2 = PHI <a_0, t_1>;
187 (5) [x_3 = x_2 + 1;]
188 (6r) a_1 = t_2 + 5;
189
190 where the bracketed instructions may go dead.
191
192 To recognize this opportunity, we have to observe that statement (6)
193 has a "hidden basis" (2). The hidden basis is unlike a normal basis
194 in that the statement and the hidden basis have different base SSA
195 names (x_2 and x_0, respectively). The relationship is established
196 when a statement's base name (x_2) is defined by a phi statement (4),
197 each argument of which (x_0, x_1) has an identical "derived base name."
198 If the argument is defined by a candidate (as x_1 is by (3)) that is a
199 CAND_ADD having a stride of 1, the derived base name of the argument is
200 the base name of the candidate (x_0). Otherwise, the argument itself
201 is its derived base name (as is the case with argument x_0).
202
203 The hidden basis for statement (6) is the nearest dominating candidate
204 whose base name is the derived base name (x_0) of the feeding phi (4),
205 and whose stride is identical to that of the statement. We can then
206 create the new "phi basis" (4a) and feeding adds along incoming arcs (3a),
207 allowing the final replacement of (6) by the strength-reduced (6r).
208
209 To facilitate this, a new kind of candidate (CAND_PHI) is introduced.
210 A CAND_PHI is not a candidate for replacement, but is maintained in the
211 candidate table to ease discovery of hidden bases. Any phi statement
212 whose arguments share a common derived base name is entered into the
213 table with the derived base name, an (arbitrary) index of zero, and a
214 stride of 1. A statement with a hidden basis can then be detected by
215 simply looking up its feeding phi definition in the candidate table,
216 extracting the derived base name, and searching for a basis in the
217 usual manner after substituting the derived base name.
218
219 Note that the transformation is only valid when the original phi and
220 the statements that define the phi's arguments are all at the same
221 position in the loop hierarchy. */
222
223
224 /* Index into the candidate vector, offset by 1. VECs are zero-based,
225 while cand_idx's are one-based, with zero indicating null. */
226 typedef unsigned cand_idx;
227
228 /* The kind of candidate. */
229 enum cand_kind
230 {
231 CAND_MULT,
232 CAND_ADD,
233 CAND_REF,
234 CAND_PHI
235 };
236
237 struct slsr_cand_d
238 {
239 /* The candidate statement S1. */
240 gimple cand_stmt;
241
242 /* The base expression B: often an SSA name, but not always. */
243 tree base_expr;
244
245 /* The stride S. */
246 tree stride;
247
248 /* The index constant i. */
249 widest_int index;
250
251 /* The type of the candidate. This is normally the type of base_expr,
252 but casts may have occurred when combining feeding instructions.
253 A candidate can only be a basis for candidates of the same final type.
254 (For CAND_REFs, this is the type to be used for operand 1 of the
255 replacement MEM_REF.) */
256 tree cand_type;
257
258 /* The kind of candidate (CAND_MULT, etc.). */
259 enum cand_kind kind;
260
261 /* Index of this candidate in the candidate vector. */
262 cand_idx cand_num;
263
264 /* Index of the next candidate record for the same statement.
265 A statement may be useful in more than one way (e.g., due to
266 commutativity). So we can have multiple "interpretations"
267 of a statement. */
268 cand_idx next_interp;
269
270 /* Index of the basis statement S0, if any, in the candidate vector. */
271 cand_idx basis;
272
273 /* First candidate for which this candidate is a basis, if one exists. */
274 cand_idx dependent;
275
276 /* Next candidate having the same basis as this one. */
277 cand_idx sibling;
278
279 /* If this is a conditional candidate, the CAND_PHI candidate
280 that defines the base SSA name B. */
281 cand_idx def_phi;
282
283 /* Savings that can be expected from eliminating dead code if this
284 candidate is replaced. */
285 int dead_savings;
286 };
287
288 typedef struct slsr_cand_d slsr_cand, *slsr_cand_t;
289 typedef const struct slsr_cand_d *const_slsr_cand_t;
290
291 /* Pointers to candidates are chained together as part of a mapping
292 from base expressions to the candidates that use them. */
293
294 struct cand_chain_d
295 {
296 /* Base expression for the chain of candidates: often, but not
297 always, an SSA name. */
298 tree base_expr;
299
300 /* Pointer to a candidate. */
301 slsr_cand_t cand;
302
303 /* Chain pointer. */
304 struct cand_chain_d *next;
305
306 };
307
308 typedef struct cand_chain_d cand_chain, *cand_chain_t;
309 typedef const struct cand_chain_d *const_cand_chain_t;
310
311 /* Information about a unique "increment" associated with candidates
312 having an SSA name for a stride. An increment is the difference
313 between the index of the candidate and the index of its basis,
314 i.e., (i - i') as discussed in the module commentary.
315
316 When we are not going to generate address arithmetic we treat
317 increments that differ only in sign as the same, allowing sharing
318 of the cost of initializers. The absolute value of the increment
319 is stored in the incr_info. */
320
321 struct incr_info_d
322 {
323 /* The increment that relates a candidate to its basis. */
324 widest_int incr;
325
326 /* How many times the increment occurs in the candidate tree. */
327 unsigned count;
328
329 /* Cost of replacing candidates using this increment. Negative and
330 zero costs indicate replacement should be performed. */
331 int cost;
332
333 /* If this increment is profitable but is not -1, 0, or 1, it requires
334 an initializer T_0 = stride * incr to be found or introduced in the
335 nearest common dominator of all candidates. This field holds T_0
336 for subsequent use. */
337 tree initializer;
338
339 /* If the initializer was found to already exist, this is the block
340 where it was found. */
341 basic_block init_bb;
342 };
343
344 typedef struct incr_info_d incr_info, *incr_info_t;
345
346 /* Candidates are maintained in a vector. If candidate X dominates
347 candidate Y, then X appears before Y in the vector; but the
348 converse does not necessarily hold. */
349 static vec<slsr_cand_t> cand_vec;
350
351 enum cost_consts
352 {
353 COST_NEUTRAL = 0,
354 COST_INFINITE = 1000
355 };
356
357 enum stride_status
358 {
359 UNKNOWN_STRIDE = 0,
360 KNOWN_STRIDE = 1
361 };
362
363 enum phi_adjust_status
364 {
365 NOT_PHI_ADJUST = 0,
366 PHI_ADJUST = 1
367 };
368
369 enum count_phis_status
370 {
371 DONT_COUNT_PHIS = 0,
372 COUNT_PHIS = 1
373 };
374
375 /* Pointer map embodying a mapping from statements to candidates. */
376 static hash_map<gimple, slsr_cand_t> *stmt_cand_map;
377
378 /* Obstack for candidates. */
379 static struct obstack cand_obstack;
380
381 /* Obstack for candidate chains. */
382 static struct obstack chain_obstack;
383
384 /* An array INCR_VEC of incr_infos is used during analysis of related
385 candidates having an SSA name for a stride. INCR_VEC_LEN describes
386 its current length. MAX_INCR_VEC_LEN is used to avoid costly
387 pathological cases. */
388 static incr_info_t incr_vec;
389 static unsigned incr_vec_len;
390 const int MAX_INCR_VEC_LEN = 16;
391
392 /* For a chain of candidates with unknown stride, indicates whether or not
393 we must generate pointer arithmetic when replacing statements. */
394 static bool address_arithmetic_p;
395
396 /* Forward function declarations. */
397 static slsr_cand_t base_cand_from_table (tree);
398 static tree introduce_cast_before_cand (slsr_cand_t, tree, tree);
399 static bool legal_cast_p_1 (tree, tree);
400 \f
401 /* Produce a pointer to the IDX'th candidate in the candidate vector. */
402
403 static slsr_cand_t
404 lookup_cand (cand_idx idx)
405 {
406 return cand_vec[idx - 1];
407 }
408
409 /* Helper for hashing a candidate chain header. */
410
411 struct cand_chain_hasher : typed_noop_remove <cand_chain>
412 {
413 typedef cand_chain value_type;
414 typedef cand_chain compare_type;
415 static inline hashval_t hash (const value_type *);
416 static inline bool equal (const value_type *, const compare_type *);
417 };
418
419 inline hashval_t
420 cand_chain_hasher::hash (const value_type *p)
421 {
422 tree base_expr = p->base_expr;
423 return iterative_hash_expr (base_expr, 0);
424 }
425
426 inline bool
427 cand_chain_hasher::equal (const value_type *chain1, const compare_type *chain2)
428 {
429 return operand_equal_p (chain1->base_expr, chain2->base_expr, 0);
430 }
431
432 /* Hash table embodying a mapping from base exprs to chains of candidates. */
433 static hash_table<cand_chain_hasher> *base_cand_map;
434 \f
435 /* Pointer map used by tree_to_aff_combination_expand. */
436 static hash_map<tree, name_expansion *> *name_expansions;
437 /* Pointer map embodying a mapping from bases to alternative bases. */
438 static hash_map<tree, tree> *alt_base_map;
439
440 /* Given BASE, use the tree affine combiniation facilities to
441 find the underlying tree expression for BASE, with any
442 immediate offset excluded.
443
444 N.B. we should eliminate this backtracking with better forward
445 analysis in a future release. */
446
447 static tree
448 get_alternative_base (tree base)
449 {
450 tree *result = alt_base_map->get (base);
451
452 if (result == NULL)
453 {
454 tree expr;
455 aff_tree aff;
456
457 tree_to_aff_combination_expand (base, TREE_TYPE (base),
458 &aff, &name_expansions);
459 aff.offset = 0;
460 expr = aff_combination_to_tree (&aff);
461
462 gcc_assert (!alt_base_map->put (base, base == expr ? NULL : expr));
463
464 return expr == base ? NULL : expr;
465 }
466
467 return *result;
468 }
469
470 /* Look in the candidate table for a CAND_PHI that defines BASE and
471 return it if found; otherwise return NULL. */
472
473 static cand_idx
474 find_phi_def (tree base)
475 {
476 slsr_cand_t c;
477
478 if (TREE_CODE (base) != SSA_NAME)
479 return 0;
480
481 c = base_cand_from_table (base);
482
483 if (!c || c->kind != CAND_PHI)
484 return 0;
485
486 return c->cand_num;
487 }
488
489 /* Helper routine for find_basis_for_candidate. May be called twice:
490 once for the candidate's base expr, and optionally again either for
491 the candidate's phi definition or for a CAND_REF's alternative base
492 expression. */
493
494 static slsr_cand_t
495 find_basis_for_base_expr (slsr_cand_t c, tree base_expr)
496 {
497 cand_chain mapping_key;
498 cand_chain_t chain;
499 slsr_cand_t basis = NULL;
500
501 // Limit potential of N^2 behavior for long candidate chains.
502 int iters = 0;
503 int max_iters = PARAM_VALUE (PARAM_MAX_SLSR_CANDIDATE_SCAN);
504
505 mapping_key.base_expr = base_expr;
506 chain = base_cand_map->find (&mapping_key);
507
508 for (; chain && iters < max_iters; chain = chain->next, ++iters)
509 {
510 slsr_cand_t one_basis = chain->cand;
511
512 if (one_basis->kind != c->kind
513 || one_basis->cand_stmt == c->cand_stmt
514 || !operand_equal_p (one_basis->stride, c->stride, 0)
515 || !types_compatible_p (one_basis->cand_type, c->cand_type)
516 || !dominated_by_p (CDI_DOMINATORS,
517 gimple_bb (c->cand_stmt),
518 gimple_bb (one_basis->cand_stmt)))
519 continue;
520
521 if (!basis || basis->cand_num < one_basis->cand_num)
522 basis = one_basis;
523 }
524
525 return basis;
526 }
527
528 /* Use the base expr from candidate C to look for possible candidates
529 that can serve as a basis for C. Each potential basis must also
530 appear in a block that dominates the candidate statement and have
531 the same stride and type. If more than one possible basis exists,
532 the one with highest index in the vector is chosen; this will be
533 the most immediately dominating basis. */
534
535 static int
536 find_basis_for_candidate (slsr_cand_t c)
537 {
538 slsr_cand_t basis = find_basis_for_base_expr (c, c->base_expr);
539
540 /* If a candidate doesn't have a basis using its base expression,
541 it may have a basis hidden by one or more intervening phis. */
542 if (!basis && c->def_phi)
543 {
544 basic_block basis_bb, phi_bb;
545 slsr_cand_t phi_cand = lookup_cand (c->def_phi);
546 basis = find_basis_for_base_expr (c, phi_cand->base_expr);
547
548 if (basis)
549 {
550 /* A hidden basis must dominate the phi-definition of the
551 candidate's base name. */
552 phi_bb = gimple_bb (phi_cand->cand_stmt);
553 basis_bb = gimple_bb (basis->cand_stmt);
554
555 if (phi_bb == basis_bb
556 || !dominated_by_p (CDI_DOMINATORS, phi_bb, basis_bb))
557 {
558 basis = NULL;
559 c->basis = 0;
560 }
561
562 /* If we found a hidden basis, estimate additional dead-code
563 savings if the phi and its feeding statements can be removed. */
564 if (basis && has_single_use (gimple_phi_result (phi_cand->cand_stmt)))
565 c->dead_savings += phi_cand->dead_savings;
566 }
567 }
568
569 if (flag_expensive_optimizations && !basis && c->kind == CAND_REF)
570 {
571 tree alt_base_expr = get_alternative_base (c->base_expr);
572 if (alt_base_expr)
573 basis = find_basis_for_base_expr (c, alt_base_expr);
574 }
575
576 if (basis)
577 {
578 c->sibling = basis->dependent;
579 basis->dependent = c->cand_num;
580 return basis->cand_num;
581 }
582
583 return 0;
584 }
585
586 /* Record a mapping from BASE to C, indicating that C may potentially serve
587 as a basis using that base expression. BASE may be the same as
588 C->BASE_EXPR; alternatively BASE can be a different tree that share the
589 underlining expression of C->BASE_EXPR. */
590
591 static void
592 record_potential_basis (slsr_cand_t c, tree base)
593 {
594 cand_chain_t node;
595 cand_chain **slot;
596
597 gcc_assert (base);
598
599 node = (cand_chain_t) obstack_alloc (&chain_obstack, sizeof (cand_chain));
600 node->base_expr = base;
601 node->cand = c;
602 node->next = NULL;
603 slot = base_cand_map->find_slot (node, INSERT);
604
605 if (*slot)
606 {
607 cand_chain_t head = (cand_chain_t) (*slot);
608 node->next = head->next;
609 head->next = node;
610 }
611 else
612 *slot = node;
613 }
614
615 /* Allocate storage for a new candidate and initialize its fields.
616 Attempt to find a basis for the candidate.
617
618 For CAND_REF, an alternative base may also be recorded and used
619 to find a basis. This helps cases where the expression hidden
620 behind BASE (which is usually an SSA_NAME) has immediate offset,
621 e.g.
622
623 a2[i][j] = 1;
624 a2[i + 20][j] = 2; */
625
626 static slsr_cand_t
627 alloc_cand_and_find_basis (enum cand_kind kind, gimple gs, tree base,
628 const widest_int &index, tree stride, tree ctype,
629 unsigned savings)
630 {
631 slsr_cand_t c = (slsr_cand_t) obstack_alloc (&cand_obstack,
632 sizeof (slsr_cand));
633 c->cand_stmt = gs;
634 c->base_expr = base;
635 c->stride = stride;
636 c->index = index;
637 c->cand_type = ctype;
638 c->kind = kind;
639 c->cand_num = cand_vec.length () + 1;
640 c->next_interp = 0;
641 c->dependent = 0;
642 c->sibling = 0;
643 c->def_phi = kind == CAND_MULT ? find_phi_def (base) : 0;
644 c->dead_savings = savings;
645
646 cand_vec.safe_push (c);
647
648 if (kind == CAND_PHI)
649 c->basis = 0;
650 else
651 c->basis = find_basis_for_candidate (c);
652
653 record_potential_basis (c, base);
654 if (flag_expensive_optimizations && kind == CAND_REF)
655 {
656 tree alt_base = get_alternative_base (base);
657 if (alt_base)
658 record_potential_basis (c, alt_base);
659 }
660
661 return c;
662 }
663
664 /* Determine the target cost of statement GS when compiling according
665 to SPEED. */
666
667 static int
668 stmt_cost (gimple gs, bool speed)
669 {
670 tree lhs, rhs1, rhs2;
671 enum machine_mode lhs_mode;
672
673 gcc_assert (is_gimple_assign (gs));
674 lhs = gimple_assign_lhs (gs);
675 rhs1 = gimple_assign_rhs1 (gs);
676 lhs_mode = TYPE_MODE (TREE_TYPE (lhs));
677
678 switch (gimple_assign_rhs_code (gs))
679 {
680 case MULT_EXPR:
681 rhs2 = gimple_assign_rhs2 (gs);
682
683 if (tree_fits_shwi_p (rhs2))
684 return mult_by_coeff_cost (tree_to_shwi (rhs2), lhs_mode, speed);
685
686 gcc_assert (TREE_CODE (rhs1) != INTEGER_CST);
687 return mul_cost (speed, lhs_mode);
688
689 case PLUS_EXPR:
690 case POINTER_PLUS_EXPR:
691 case MINUS_EXPR:
692 return add_cost (speed, lhs_mode);
693
694 case NEGATE_EXPR:
695 return neg_cost (speed, lhs_mode);
696
697 case NOP_EXPR:
698 return convert_cost (lhs_mode, TYPE_MODE (TREE_TYPE (rhs1)), speed);
699
700 /* Note that we don't assign costs to copies that in most cases
701 will go away. */
702 default:
703 ;
704 }
705
706 gcc_unreachable ();
707 return 0;
708 }
709
710 /* Look up the defining statement for BASE_IN and return a pointer
711 to its candidate in the candidate table, if any; otherwise NULL.
712 Only CAND_ADD and CAND_MULT candidates are returned. */
713
714 static slsr_cand_t
715 base_cand_from_table (tree base_in)
716 {
717 slsr_cand_t *result;
718
719 gimple def = SSA_NAME_DEF_STMT (base_in);
720 if (!def)
721 return (slsr_cand_t) NULL;
722
723 result = stmt_cand_map->get (def);
724
725 if (result && (*result)->kind != CAND_REF)
726 return *result;
727
728 return (slsr_cand_t) NULL;
729 }
730
731 /* Add an entry to the statement-to-candidate mapping. */
732
733 static void
734 add_cand_for_stmt (gimple gs, slsr_cand_t c)
735 {
736 gcc_assert (!stmt_cand_map->put (gs, c));
737 }
738 \f
739 /* Given PHI which contains a phi statement, determine whether it
740 satisfies all the requirements of a phi candidate. If so, create
741 a candidate. Note that a CAND_PHI never has a basis itself, but
742 is used to help find a basis for subsequent candidates. */
743
744 static void
745 slsr_process_phi (gimple phi, bool speed)
746 {
747 unsigned i;
748 tree arg0_base = NULL_TREE, base_type;
749 slsr_cand_t c;
750 struct loop *cand_loop = gimple_bb (phi)->loop_father;
751 unsigned savings = 0;
752
753 /* A CAND_PHI requires each of its arguments to have the same
754 derived base name. (See the module header commentary for a
755 definition of derived base names.) Furthermore, all feeding
756 definitions must be in the same position in the loop hierarchy
757 as PHI. */
758
759 for (i = 0; i < gimple_phi_num_args (phi); i++)
760 {
761 slsr_cand_t arg_cand;
762 tree arg = gimple_phi_arg_def (phi, i);
763 tree derived_base_name = NULL_TREE;
764 gimple arg_stmt = NULL;
765 basic_block arg_bb = NULL;
766
767 if (TREE_CODE (arg) != SSA_NAME)
768 return;
769
770 arg_cand = base_cand_from_table (arg);
771
772 if (arg_cand)
773 {
774 while (arg_cand->kind != CAND_ADD && arg_cand->kind != CAND_PHI)
775 {
776 if (!arg_cand->next_interp)
777 return;
778
779 arg_cand = lookup_cand (arg_cand->next_interp);
780 }
781
782 if (!integer_onep (arg_cand->stride))
783 return;
784
785 derived_base_name = arg_cand->base_expr;
786 arg_stmt = arg_cand->cand_stmt;
787 arg_bb = gimple_bb (arg_stmt);
788
789 /* Gather potential dead code savings if the phi statement
790 can be removed later on. */
791 if (has_single_use (arg))
792 {
793 if (gimple_code (arg_stmt) == GIMPLE_PHI)
794 savings += arg_cand->dead_savings;
795 else
796 savings += stmt_cost (arg_stmt, speed);
797 }
798 }
799 else
800 {
801 derived_base_name = arg;
802
803 if (SSA_NAME_IS_DEFAULT_DEF (arg))
804 arg_bb = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
805 else
806 gimple_bb (SSA_NAME_DEF_STMT (arg));
807 }
808
809 if (!arg_bb || arg_bb->loop_father != cand_loop)
810 return;
811
812 if (i == 0)
813 arg0_base = derived_base_name;
814 else if (!operand_equal_p (derived_base_name, arg0_base, 0))
815 return;
816 }
817
818 /* Create the candidate. "alloc_cand_and_find_basis" is named
819 misleadingly for this case, as no basis will be sought for a
820 CAND_PHI. */
821 base_type = TREE_TYPE (arg0_base);
822
823 c = alloc_cand_and_find_basis (CAND_PHI, phi, arg0_base,
824 0, integer_one_node, base_type, savings);
825
826 /* Add the candidate to the statement-candidate mapping. */
827 add_cand_for_stmt (phi, c);
828 }
829
830 /* Given PBASE which is a pointer to tree, look up the defining
831 statement for it and check whether the candidate is in the
832 form of:
833
834 X = B + (1 * S), S is integer constant
835 X = B + (i * S), S is integer one
836
837 If so, set PBASE to the candidate's base_expr and return double
838 int (i * S).
839 Otherwise, just return double int zero. */
840
841 static widest_int
842 backtrace_base_for_ref (tree *pbase)
843 {
844 tree base_in = *pbase;
845 slsr_cand_t base_cand;
846
847 STRIP_NOPS (base_in);
848
849 /* Strip off widening conversion(s) to handle cases where
850 e.g. 'B' is widened from an 'int' in order to calculate
851 a 64-bit address. */
852 if (CONVERT_EXPR_P (base_in)
853 && legal_cast_p_1 (base_in, TREE_OPERAND (base_in, 0)))
854 base_in = get_unwidened (base_in, NULL_TREE);
855
856 if (TREE_CODE (base_in) != SSA_NAME)
857 return 0;
858
859 base_cand = base_cand_from_table (base_in);
860
861 while (base_cand && base_cand->kind != CAND_PHI)
862 {
863 if (base_cand->kind == CAND_ADD
864 && base_cand->index == 1
865 && TREE_CODE (base_cand->stride) == INTEGER_CST)
866 {
867 /* X = B + (1 * S), S is integer constant. */
868 *pbase = base_cand->base_expr;
869 return wi::to_widest (base_cand->stride);
870 }
871 else if (base_cand->kind == CAND_ADD
872 && TREE_CODE (base_cand->stride) == INTEGER_CST
873 && integer_onep (base_cand->stride))
874 {
875 /* X = B + (i * S), S is integer one. */
876 *pbase = base_cand->base_expr;
877 return base_cand->index;
878 }
879
880 if (base_cand->next_interp)
881 base_cand = lookup_cand (base_cand->next_interp);
882 else
883 base_cand = NULL;
884 }
885
886 return 0;
887 }
888
889 /* Look for the following pattern:
890
891 *PBASE: MEM_REF (T1, C1)
892
893 *POFFSET: MULT_EXPR (T2, C3) [C2 is zero]
894 or
895 MULT_EXPR (PLUS_EXPR (T2, C2), C3)
896 or
897 MULT_EXPR (MINUS_EXPR (T2, -C2), C3)
898
899 *PINDEX: C4 * BITS_PER_UNIT
900
901 If not present, leave the input values unchanged and return FALSE.
902 Otherwise, modify the input values as follows and return TRUE:
903
904 *PBASE: T1
905 *POFFSET: MULT_EXPR (T2, C3)
906 *PINDEX: C1 + (C2 * C3) + C4
907
908 When T2 is recorded by a CAND_ADD in the form of (T2' + C5), it
909 will be further restructured to:
910
911 *PBASE: T1
912 *POFFSET: MULT_EXPR (T2', C3)
913 *PINDEX: C1 + (C2 * C3) + C4 + (C5 * C3) */
914
915 static bool
916 restructure_reference (tree *pbase, tree *poffset, widest_int *pindex,
917 tree *ptype)
918 {
919 tree base = *pbase, offset = *poffset;
920 widest_int index = *pindex;
921 tree mult_op0, t1, t2, type;
922 widest_int c1, c2, c3, c4, c5;
923
924 if (!base
925 || !offset
926 || TREE_CODE (base) != MEM_REF
927 || TREE_CODE (offset) != MULT_EXPR
928 || TREE_CODE (TREE_OPERAND (offset, 1)) != INTEGER_CST
929 || wi::umod_floor (index, BITS_PER_UNIT) != 0)
930 return false;
931
932 t1 = TREE_OPERAND (base, 0);
933 c1 = widest_int::from (mem_ref_offset (base), SIGNED);
934 type = TREE_TYPE (TREE_OPERAND (base, 1));
935
936 mult_op0 = TREE_OPERAND (offset, 0);
937 c3 = wi::to_widest (TREE_OPERAND (offset, 1));
938
939 if (TREE_CODE (mult_op0) == PLUS_EXPR)
940
941 if (TREE_CODE (TREE_OPERAND (mult_op0, 1)) == INTEGER_CST)
942 {
943 t2 = TREE_OPERAND (mult_op0, 0);
944 c2 = wi::to_widest (TREE_OPERAND (mult_op0, 1));
945 }
946 else
947 return false;
948
949 else if (TREE_CODE (mult_op0) == MINUS_EXPR)
950
951 if (TREE_CODE (TREE_OPERAND (mult_op0, 1)) == INTEGER_CST)
952 {
953 t2 = TREE_OPERAND (mult_op0, 0);
954 c2 = -wi::to_widest (TREE_OPERAND (mult_op0, 1));
955 }
956 else
957 return false;
958
959 else
960 {
961 t2 = mult_op0;
962 c2 = 0;
963 }
964
965 c4 = wi::lrshift (index, LOG2_BITS_PER_UNIT);
966 c5 = backtrace_base_for_ref (&t2);
967
968 *pbase = t1;
969 *poffset = fold_build2 (MULT_EXPR, sizetype, fold_convert (sizetype, t2),
970 wide_int_to_tree (sizetype, c3));
971 *pindex = c1 + c2 * c3 + c4 + c5 * c3;
972 *ptype = type;
973
974 return true;
975 }
976
977 /* Given GS which contains a data reference, create a CAND_REF entry in
978 the candidate table and attempt to find a basis. */
979
980 static void
981 slsr_process_ref (gimple gs)
982 {
983 tree ref_expr, base, offset, type;
984 HOST_WIDE_INT bitsize, bitpos;
985 enum machine_mode mode;
986 int unsignedp, volatilep;
987 slsr_cand_t c;
988
989 if (gimple_vdef (gs))
990 ref_expr = gimple_assign_lhs (gs);
991 else
992 ref_expr = gimple_assign_rhs1 (gs);
993
994 if (!handled_component_p (ref_expr)
995 || TREE_CODE (ref_expr) == BIT_FIELD_REF
996 || (TREE_CODE (ref_expr) == COMPONENT_REF
997 && DECL_BIT_FIELD (TREE_OPERAND (ref_expr, 1))))
998 return;
999
1000 base = get_inner_reference (ref_expr, &bitsize, &bitpos, &offset, &mode,
1001 &unsignedp, &volatilep, false);
1002 widest_int index = bitpos;
1003
1004 if (!restructure_reference (&base, &offset, &index, &type))
1005 return;
1006
1007 c = alloc_cand_and_find_basis (CAND_REF, gs, base, index, offset,
1008 type, 0);
1009
1010 /* Add the candidate to the statement-candidate mapping. */
1011 add_cand_for_stmt (gs, c);
1012 }
1013
1014 /* Create a candidate entry for a statement GS, where GS multiplies
1015 two SSA names BASE_IN and STRIDE_IN. Propagate any known information
1016 about the two SSA names into the new candidate. Return the new
1017 candidate. */
1018
1019 static slsr_cand_t
1020 create_mul_ssa_cand (gimple gs, tree base_in, tree stride_in, bool speed)
1021 {
1022 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
1023 widest_int index;
1024 unsigned savings = 0;
1025 slsr_cand_t c;
1026 slsr_cand_t base_cand = base_cand_from_table (base_in);
1027
1028 /* Look at all interpretations of the base candidate, if necessary,
1029 to find information to propagate into this candidate. */
1030 while (base_cand && !base && base_cand->kind != CAND_PHI)
1031 {
1032
1033 if (base_cand->kind == CAND_MULT && integer_onep (base_cand->stride))
1034 {
1035 /* Y = (B + i') * 1
1036 X = Y * Z
1037 ================
1038 X = (B + i') * Z */
1039 base = base_cand->base_expr;
1040 index = base_cand->index;
1041 stride = stride_in;
1042 ctype = base_cand->cand_type;
1043 if (has_single_use (base_in))
1044 savings = (base_cand->dead_savings
1045 + stmt_cost (base_cand->cand_stmt, speed));
1046 }
1047 else if (base_cand->kind == CAND_ADD
1048 && TREE_CODE (base_cand->stride) == INTEGER_CST)
1049 {
1050 /* Y = B + (i' * S), S constant
1051 X = Y * Z
1052 ============================
1053 X = B + ((i' * S) * Z) */
1054 base = base_cand->base_expr;
1055 index = base_cand->index * wi::to_widest (base_cand->stride);
1056 stride = stride_in;
1057 ctype = base_cand->cand_type;
1058 if (has_single_use (base_in))
1059 savings = (base_cand->dead_savings
1060 + stmt_cost (base_cand->cand_stmt, speed));
1061 }
1062
1063 if (base_cand->next_interp)
1064 base_cand = lookup_cand (base_cand->next_interp);
1065 else
1066 base_cand = NULL;
1067 }
1068
1069 if (!base)
1070 {
1071 /* No interpretations had anything useful to propagate, so
1072 produce X = (Y + 0) * Z. */
1073 base = base_in;
1074 index = 0;
1075 stride = stride_in;
1076 ctype = TREE_TYPE (base_in);
1077 }
1078
1079 c = alloc_cand_and_find_basis (CAND_MULT, gs, base, index, stride,
1080 ctype, savings);
1081 return c;
1082 }
1083
1084 /* Create a candidate entry for a statement GS, where GS multiplies
1085 SSA name BASE_IN by constant STRIDE_IN. Propagate any known
1086 information about BASE_IN into the new candidate. Return the new
1087 candidate. */
1088
1089 static slsr_cand_t
1090 create_mul_imm_cand (gimple gs, tree base_in, tree stride_in, bool speed)
1091 {
1092 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
1093 widest_int index, temp;
1094 unsigned savings = 0;
1095 slsr_cand_t c;
1096 slsr_cand_t base_cand = base_cand_from_table (base_in);
1097
1098 /* Look at all interpretations of the base candidate, if necessary,
1099 to find information to propagate into this candidate. */
1100 while (base_cand && !base && base_cand->kind != CAND_PHI)
1101 {
1102 if (base_cand->kind == CAND_MULT
1103 && TREE_CODE (base_cand->stride) == INTEGER_CST)
1104 {
1105 /* Y = (B + i') * S, S constant
1106 X = Y * c
1107 ============================
1108 X = (B + i') * (S * c) */
1109 temp = wi::to_widest (base_cand->stride) * wi::to_widest (stride_in);
1110 if (wi::fits_to_tree_p (temp, TREE_TYPE (stride_in)))
1111 {
1112 base = base_cand->base_expr;
1113 index = base_cand->index;
1114 stride = wide_int_to_tree (TREE_TYPE (stride_in), temp);
1115 ctype = base_cand->cand_type;
1116 if (has_single_use (base_in))
1117 savings = (base_cand->dead_savings
1118 + stmt_cost (base_cand->cand_stmt, speed));
1119 }
1120 }
1121 else if (base_cand->kind == CAND_ADD && integer_onep (base_cand->stride))
1122 {
1123 /* Y = B + (i' * 1)
1124 X = Y * c
1125 ===========================
1126 X = (B + i') * c */
1127 base = base_cand->base_expr;
1128 index = base_cand->index;
1129 stride = stride_in;
1130 ctype = base_cand->cand_type;
1131 if (has_single_use (base_in))
1132 savings = (base_cand->dead_savings
1133 + stmt_cost (base_cand->cand_stmt, speed));
1134 }
1135 else if (base_cand->kind == CAND_ADD
1136 && base_cand->index == 1
1137 && TREE_CODE (base_cand->stride) == INTEGER_CST)
1138 {
1139 /* Y = B + (1 * S), S constant
1140 X = Y * c
1141 ===========================
1142 X = (B + S) * c */
1143 base = base_cand->base_expr;
1144 index = wi::to_widest (base_cand->stride);
1145 stride = stride_in;
1146 ctype = base_cand->cand_type;
1147 if (has_single_use (base_in))
1148 savings = (base_cand->dead_savings
1149 + stmt_cost (base_cand->cand_stmt, speed));
1150 }
1151
1152 if (base_cand->next_interp)
1153 base_cand = lookup_cand (base_cand->next_interp);
1154 else
1155 base_cand = NULL;
1156 }
1157
1158 if (!base)
1159 {
1160 /* No interpretations had anything useful to propagate, so
1161 produce X = (Y + 0) * c. */
1162 base = base_in;
1163 index = 0;
1164 stride = stride_in;
1165 ctype = TREE_TYPE (base_in);
1166 }
1167
1168 c = alloc_cand_and_find_basis (CAND_MULT, gs, base, index, stride,
1169 ctype, savings);
1170 return c;
1171 }
1172
1173 /* Given GS which is a multiply of scalar integers, make an appropriate
1174 entry in the candidate table. If this is a multiply of two SSA names,
1175 create two CAND_MULT interpretations and attempt to find a basis for
1176 each of them. Otherwise, create a single CAND_MULT and attempt to
1177 find a basis. */
1178
1179 static void
1180 slsr_process_mul (gimple gs, tree rhs1, tree rhs2, bool speed)
1181 {
1182 slsr_cand_t c, c2;
1183
1184 /* If this is a multiply of an SSA name with itself, it is highly
1185 unlikely that we will get a strength reduction opportunity, so
1186 don't record it as a candidate. This simplifies the logic for
1187 finding a basis, so if this is removed that must be considered. */
1188 if (rhs1 == rhs2)
1189 return;
1190
1191 if (TREE_CODE (rhs2) == SSA_NAME)
1192 {
1193 /* Record an interpretation of this statement in the candidate table
1194 assuming RHS1 is the base expression and RHS2 is the stride. */
1195 c = create_mul_ssa_cand (gs, rhs1, rhs2, speed);
1196
1197 /* Add the first interpretation to the statement-candidate mapping. */
1198 add_cand_for_stmt (gs, c);
1199
1200 /* Record another interpretation of this statement assuming RHS1
1201 is the stride and RHS2 is the base expression. */
1202 c2 = create_mul_ssa_cand (gs, rhs2, rhs1, speed);
1203 c->next_interp = c2->cand_num;
1204 }
1205 else
1206 {
1207 /* Record an interpretation for the multiply-immediate. */
1208 c = create_mul_imm_cand (gs, rhs1, rhs2, speed);
1209
1210 /* Add the interpretation to the statement-candidate mapping. */
1211 add_cand_for_stmt (gs, c);
1212 }
1213 }
1214
1215 /* Create a candidate entry for a statement GS, where GS adds two
1216 SSA names BASE_IN and ADDEND_IN if SUBTRACT_P is false, and
1217 subtracts ADDEND_IN from BASE_IN otherwise. Propagate any known
1218 information about the two SSA names into the new candidate.
1219 Return the new candidate. */
1220
1221 static slsr_cand_t
1222 create_add_ssa_cand (gimple gs, tree base_in, tree addend_in,
1223 bool subtract_p, bool speed)
1224 {
1225 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL;
1226 widest_int index;
1227 unsigned savings = 0;
1228 slsr_cand_t c;
1229 slsr_cand_t base_cand = base_cand_from_table (base_in);
1230 slsr_cand_t addend_cand = base_cand_from_table (addend_in);
1231
1232 /* The most useful transformation is a multiply-immediate feeding
1233 an add or subtract. Look for that first. */
1234 while (addend_cand && !base && addend_cand->kind != CAND_PHI)
1235 {
1236 if (addend_cand->kind == CAND_MULT
1237 && addend_cand->index == 0
1238 && TREE_CODE (addend_cand->stride) == INTEGER_CST)
1239 {
1240 /* Z = (B + 0) * S, S constant
1241 X = Y +/- Z
1242 ===========================
1243 X = Y + ((+/-1 * S) * B) */
1244 base = base_in;
1245 index = wi::to_widest (addend_cand->stride);
1246 if (subtract_p)
1247 index = -index;
1248 stride = addend_cand->base_expr;
1249 ctype = TREE_TYPE (base_in);
1250 if (has_single_use (addend_in))
1251 savings = (addend_cand->dead_savings
1252 + stmt_cost (addend_cand->cand_stmt, speed));
1253 }
1254
1255 if (addend_cand->next_interp)
1256 addend_cand = lookup_cand (addend_cand->next_interp);
1257 else
1258 addend_cand = NULL;
1259 }
1260
1261 while (base_cand && !base && base_cand->kind != CAND_PHI)
1262 {
1263 if (base_cand->kind == CAND_ADD
1264 && (base_cand->index == 0
1265 || operand_equal_p (base_cand->stride,
1266 integer_zero_node, 0)))
1267 {
1268 /* Y = B + (i' * S), i' * S = 0
1269 X = Y +/- Z
1270 ============================
1271 X = B + (+/-1 * Z) */
1272 base = base_cand->base_expr;
1273 index = subtract_p ? -1 : 1;
1274 stride = addend_in;
1275 ctype = base_cand->cand_type;
1276 if (has_single_use (base_in))
1277 savings = (base_cand->dead_savings
1278 + stmt_cost (base_cand->cand_stmt, speed));
1279 }
1280 else if (subtract_p)
1281 {
1282 slsr_cand_t subtrahend_cand = base_cand_from_table (addend_in);
1283
1284 while (subtrahend_cand && !base && subtrahend_cand->kind != CAND_PHI)
1285 {
1286 if (subtrahend_cand->kind == CAND_MULT
1287 && subtrahend_cand->index == 0
1288 && TREE_CODE (subtrahend_cand->stride) == INTEGER_CST)
1289 {
1290 /* Z = (B + 0) * S, S constant
1291 X = Y - Z
1292 ===========================
1293 Value: X = Y + ((-1 * S) * B) */
1294 base = base_in;
1295 index = wi::to_widest (subtrahend_cand->stride);
1296 index = -index;
1297 stride = subtrahend_cand->base_expr;
1298 ctype = TREE_TYPE (base_in);
1299 if (has_single_use (addend_in))
1300 savings = (subtrahend_cand->dead_savings
1301 + stmt_cost (subtrahend_cand->cand_stmt, speed));
1302 }
1303
1304 if (subtrahend_cand->next_interp)
1305 subtrahend_cand = lookup_cand (subtrahend_cand->next_interp);
1306 else
1307 subtrahend_cand = NULL;
1308 }
1309 }
1310
1311 if (base_cand->next_interp)
1312 base_cand = lookup_cand (base_cand->next_interp);
1313 else
1314 base_cand = NULL;
1315 }
1316
1317 if (!base)
1318 {
1319 /* No interpretations had anything useful to propagate, so
1320 produce X = Y + (1 * Z). */
1321 base = base_in;
1322 index = subtract_p ? -1 : 1;
1323 stride = addend_in;
1324 ctype = TREE_TYPE (base_in);
1325 }
1326
1327 c = alloc_cand_and_find_basis (CAND_ADD, gs, base, index, stride,
1328 ctype, savings);
1329 return c;
1330 }
1331
1332 /* Create a candidate entry for a statement GS, where GS adds SSA
1333 name BASE_IN to constant INDEX_IN. Propagate any known information
1334 about BASE_IN into the new candidate. Return the new candidate. */
1335
1336 static slsr_cand_t
1337 create_add_imm_cand (gimple gs, tree base_in, const widest_int &index_in,
1338 bool speed)
1339 {
1340 enum cand_kind kind = CAND_ADD;
1341 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
1342 widest_int index, multiple;
1343 unsigned savings = 0;
1344 slsr_cand_t c;
1345 slsr_cand_t base_cand = base_cand_from_table (base_in);
1346
1347 while (base_cand && !base && base_cand->kind != CAND_PHI)
1348 {
1349 signop sign = TYPE_SIGN (TREE_TYPE (base_cand->stride));
1350
1351 if (TREE_CODE (base_cand->stride) == INTEGER_CST
1352 && wi::multiple_of_p (index_in, wi::to_widest (base_cand->stride),
1353 sign, &multiple))
1354 {
1355 /* Y = (B + i') * S, S constant, c = kS for some integer k
1356 X = Y + c
1357 ============================
1358 X = (B + (i'+ k)) * S
1359 OR
1360 Y = B + (i' * S), S constant, c = kS for some integer k
1361 X = Y + c
1362 ============================
1363 X = (B + (i'+ k)) * S */
1364 kind = base_cand->kind;
1365 base = base_cand->base_expr;
1366 index = base_cand->index + multiple;
1367 stride = base_cand->stride;
1368 ctype = base_cand->cand_type;
1369 if (has_single_use (base_in))
1370 savings = (base_cand->dead_savings
1371 + stmt_cost (base_cand->cand_stmt, speed));
1372 }
1373
1374 if (base_cand->next_interp)
1375 base_cand = lookup_cand (base_cand->next_interp);
1376 else
1377 base_cand = NULL;
1378 }
1379
1380 if (!base)
1381 {
1382 /* No interpretations had anything useful to propagate, so
1383 produce X = Y + (c * 1). */
1384 kind = CAND_ADD;
1385 base = base_in;
1386 index = index_in;
1387 stride = integer_one_node;
1388 ctype = TREE_TYPE (base_in);
1389 }
1390
1391 c = alloc_cand_and_find_basis (kind, gs, base, index, stride,
1392 ctype, savings);
1393 return c;
1394 }
1395
1396 /* Given GS which is an add or subtract of scalar integers or pointers,
1397 make at least one appropriate entry in the candidate table. */
1398
1399 static void
1400 slsr_process_add (gimple gs, tree rhs1, tree rhs2, bool speed)
1401 {
1402 bool subtract_p = gimple_assign_rhs_code (gs) == MINUS_EXPR;
1403 slsr_cand_t c = NULL, c2;
1404
1405 if (TREE_CODE (rhs2) == SSA_NAME)
1406 {
1407 /* First record an interpretation assuming RHS1 is the base expression
1408 and RHS2 is the stride. But it doesn't make sense for the
1409 stride to be a pointer, so don't record a candidate in that case. */
1410 if (!POINTER_TYPE_P (TREE_TYPE (rhs2)))
1411 {
1412 c = create_add_ssa_cand (gs, rhs1, rhs2, subtract_p, speed);
1413
1414 /* Add the first interpretation to the statement-candidate
1415 mapping. */
1416 add_cand_for_stmt (gs, c);
1417 }
1418
1419 /* If the two RHS operands are identical, or this is a subtract,
1420 we're done. */
1421 if (operand_equal_p (rhs1, rhs2, 0) || subtract_p)
1422 return;
1423
1424 /* Otherwise, record another interpretation assuming RHS2 is the
1425 base expression and RHS1 is the stride, again provided that the
1426 stride is not a pointer. */
1427 if (!POINTER_TYPE_P (TREE_TYPE (rhs1)))
1428 {
1429 c2 = create_add_ssa_cand (gs, rhs2, rhs1, false, speed);
1430 if (c)
1431 c->next_interp = c2->cand_num;
1432 else
1433 add_cand_for_stmt (gs, c2);
1434 }
1435 }
1436 else
1437 {
1438 /* Record an interpretation for the add-immediate. */
1439 widest_int index = wi::to_widest (rhs2);
1440 if (subtract_p)
1441 index = -index;
1442
1443 c = create_add_imm_cand (gs, rhs1, index, speed);
1444
1445 /* Add the interpretation to the statement-candidate mapping. */
1446 add_cand_for_stmt (gs, c);
1447 }
1448 }
1449
1450 /* Given GS which is a negate of a scalar integer, make an appropriate
1451 entry in the candidate table. A negate is equivalent to a multiply
1452 by -1. */
1453
1454 static void
1455 slsr_process_neg (gimple gs, tree rhs1, bool speed)
1456 {
1457 /* Record a CAND_MULT interpretation for the multiply by -1. */
1458 slsr_cand_t c = create_mul_imm_cand (gs, rhs1, integer_minus_one_node, speed);
1459
1460 /* Add the interpretation to the statement-candidate mapping. */
1461 add_cand_for_stmt (gs, c);
1462 }
1463
1464 /* Help function for legal_cast_p, operating on two trees. Checks
1465 whether it's allowable to cast from RHS to LHS. See legal_cast_p
1466 for more details. */
1467
1468 static bool
1469 legal_cast_p_1 (tree lhs, tree rhs)
1470 {
1471 tree lhs_type, rhs_type;
1472 unsigned lhs_size, rhs_size;
1473 bool lhs_wraps, rhs_wraps;
1474
1475 lhs_type = TREE_TYPE (lhs);
1476 rhs_type = TREE_TYPE (rhs);
1477 lhs_size = TYPE_PRECISION (lhs_type);
1478 rhs_size = TYPE_PRECISION (rhs_type);
1479 lhs_wraps = TYPE_OVERFLOW_WRAPS (lhs_type);
1480 rhs_wraps = TYPE_OVERFLOW_WRAPS (rhs_type);
1481
1482 if (lhs_size < rhs_size
1483 || (rhs_wraps && !lhs_wraps)
1484 || (rhs_wraps && lhs_wraps && rhs_size != lhs_size))
1485 return false;
1486
1487 return true;
1488 }
1489
1490 /* Return TRUE if GS is a statement that defines an SSA name from
1491 a conversion and is legal for us to combine with an add and multiply
1492 in the candidate table. For example, suppose we have:
1493
1494 A = B + i;
1495 C = (type) A;
1496 D = C * S;
1497
1498 Without the type-cast, we would create a CAND_MULT for D with base B,
1499 index i, and stride S. We want to record this candidate only if it
1500 is equivalent to apply the type cast following the multiply:
1501
1502 A = B + i;
1503 E = A * S;
1504 D = (type) E;
1505
1506 We will record the type with the candidate for D. This allows us
1507 to use a similar previous candidate as a basis. If we have earlier seen
1508
1509 A' = B + i';
1510 C' = (type) A';
1511 D' = C' * S;
1512
1513 we can replace D with
1514
1515 D = D' + (i - i') * S;
1516
1517 But if moving the type-cast would change semantics, we mustn't do this.
1518
1519 This is legitimate for casts from a non-wrapping integral type to
1520 any integral type of the same or larger size. It is not legitimate
1521 to convert a wrapping type to a non-wrapping type, or to a wrapping
1522 type of a different size. I.e., with a wrapping type, we must
1523 assume that the addition B + i could wrap, in which case performing
1524 the multiply before or after one of the "illegal" type casts will
1525 have different semantics. */
1526
1527 static bool
1528 legal_cast_p (gimple gs, tree rhs)
1529 {
1530 if (!is_gimple_assign (gs)
1531 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs)))
1532 return false;
1533
1534 return legal_cast_p_1 (gimple_assign_lhs (gs), rhs);
1535 }
1536
1537 /* Given GS which is a cast to a scalar integer type, determine whether
1538 the cast is legal for strength reduction. If so, make at least one
1539 appropriate entry in the candidate table. */
1540
1541 static void
1542 slsr_process_cast (gimple gs, tree rhs1, bool speed)
1543 {
1544 tree lhs, ctype;
1545 slsr_cand_t base_cand, c, c2;
1546 unsigned savings = 0;
1547
1548 if (!legal_cast_p (gs, rhs1))
1549 return;
1550
1551 lhs = gimple_assign_lhs (gs);
1552 base_cand = base_cand_from_table (rhs1);
1553 ctype = TREE_TYPE (lhs);
1554
1555 if (base_cand && base_cand->kind != CAND_PHI)
1556 {
1557 while (base_cand)
1558 {
1559 /* Propagate all data from the base candidate except the type,
1560 which comes from the cast, and the base candidate's cast,
1561 which is no longer applicable. */
1562 if (has_single_use (rhs1))
1563 savings = (base_cand->dead_savings
1564 + stmt_cost (base_cand->cand_stmt, speed));
1565
1566 c = alloc_cand_and_find_basis (base_cand->kind, gs,
1567 base_cand->base_expr,
1568 base_cand->index, base_cand->stride,
1569 ctype, savings);
1570 if (base_cand->next_interp)
1571 base_cand = lookup_cand (base_cand->next_interp);
1572 else
1573 base_cand = NULL;
1574 }
1575 }
1576 else
1577 {
1578 /* If nothing is known about the RHS, create fresh CAND_ADD and
1579 CAND_MULT interpretations:
1580
1581 X = Y + (0 * 1)
1582 X = (Y + 0) * 1
1583
1584 The first of these is somewhat arbitrary, but the choice of
1585 1 for the stride simplifies the logic for propagating casts
1586 into their uses. */
1587 c = alloc_cand_and_find_basis (CAND_ADD, gs, rhs1,
1588 0, integer_one_node, ctype, 0);
1589 c2 = alloc_cand_and_find_basis (CAND_MULT, gs, rhs1,
1590 0, integer_one_node, ctype, 0);
1591 c->next_interp = c2->cand_num;
1592 }
1593
1594 /* Add the first (or only) interpretation to the statement-candidate
1595 mapping. */
1596 add_cand_for_stmt (gs, c);
1597 }
1598
1599 /* Given GS which is a copy of a scalar integer type, make at least one
1600 appropriate entry in the candidate table.
1601
1602 This interface is included for completeness, but is unnecessary
1603 if this pass immediately follows a pass that performs copy
1604 propagation, such as DOM. */
1605
1606 static void
1607 slsr_process_copy (gimple gs, tree rhs1, bool speed)
1608 {
1609 slsr_cand_t base_cand, c, c2;
1610 unsigned savings = 0;
1611
1612 base_cand = base_cand_from_table (rhs1);
1613
1614 if (base_cand && base_cand->kind != CAND_PHI)
1615 {
1616 while (base_cand)
1617 {
1618 /* Propagate all data from the base candidate. */
1619 if (has_single_use (rhs1))
1620 savings = (base_cand->dead_savings
1621 + stmt_cost (base_cand->cand_stmt, speed));
1622
1623 c = alloc_cand_and_find_basis (base_cand->kind, gs,
1624 base_cand->base_expr,
1625 base_cand->index, base_cand->stride,
1626 base_cand->cand_type, savings);
1627 if (base_cand->next_interp)
1628 base_cand = lookup_cand (base_cand->next_interp);
1629 else
1630 base_cand = NULL;
1631 }
1632 }
1633 else
1634 {
1635 /* If nothing is known about the RHS, create fresh CAND_ADD and
1636 CAND_MULT interpretations:
1637
1638 X = Y + (0 * 1)
1639 X = (Y + 0) * 1
1640
1641 The first of these is somewhat arbitrary, but the choice of
1642 1 for the stride simplifies the logic for propagating casts
1643 into their uses. */
1644 c = alloc_cand_and_find_basis (CAND_ADD, gs, rhs1,
1645 0, integer_one_node, TREE_TYPE (rhs1), 0);
1646 c2 = alloc_cand_and_find_basis (CAND_MULT, gs, rhs1,
1647 0, integer_one_node, TREE_TYPE (rhs1), 0);
1648 c->next_interp = c2->cand_num;
1649 }
1650
1651 /* Add the first (or only) interpretation to the statement-candidate
1652 mapping. */
1653 add_cand_for_stmt (gs, c);
1654 }
1655 \f
1656 class find_candidates_dom_walker : public dom_walker
1657 {
1658 public:
1659 find_candidates_dom_walker (cdi_direction direction)
1660 : dom_walker (direction) {}
1661 virtual void before_dom_children (basic_block);
1662 };
1663
1664 /* Find strength-reduction candidates in block BB. */
1665
1666 void
1667 find_candidates_dom_walker::before_dom_children (basic_block bb)
1668 {
1669 bool speed = optimize_bb_for_speed_p (bb);
1670 gimple_stmt_iterator gsi;
1671
1672 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1673 slsr_process_phi (gsi_stmt (gsi), speed);
1674
1675 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1676 {
1677 gimple gs = gsi_stmt (gsi);
1678
1679 if (gimple_vuse (gs) && gimple_assign_single_p (gs))
1680 slsr_process_ref (gs);
1681
1682 else if (is_gimple_assign (gs)
1683 && SCALAR_INT_MODE_P
1684 (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))))
1685 {
1686 tree rhs1 = NULL_TREE, rhs2 = NULL_TREE;
1687
1688 switch (gimple_assign_rhs_code (gs))
1689 {
1690 case MULT_EXPR:
1691 case PLUS_EXPR:
1692 rhs1 = gimple_assign_rhs1 (gs);
1693 rhs2 = gimple_assign_rhs2 (gs);
1694 /* Should never happen, but currently some buggy situations
1695 in earlier phases put constants in rhs1. */
1696 if (TREE_CODE (rhs1) != SSA_NAME)
1697 continue;
1698 break;
1699
1700 /* Possible future opportunity: rhs1 of a ptr+ can be
1701 an ADDR_EXPR. */
1702 case POINTER_PLUS_EXPR:
1703 case MINUS_EXPR:
1704 rhs2 = gimple_assign_rhs2 (gs);
1705 /* Fall-through. */
1706
1707 case NOP_EXPR:
1708 case MODIFY_EXPR:
1709 case NEGATE_EXPR:
1710 rhs1 = gimple_assign_rhs1 (gs);
1711 if (TREE_CODE (rhs1) != SSA_NAME)
1712 continue;
1713 break;
1714
1715 default:
1716 ;
1717 }
1718
1719 switch (gimple_assign_rhs_code (gs))
1720 {
1721 case MULT_EXPR:
1722 slsr_process_mul (gs, rhs1, rhs2, speed);
1723 break;
1724
1725 case PLUS_EXPR:
1726 case POINTER_PLUS_EXPR:
1727 case MINUS_EXPR:
1728 slsr_process_add (gs, rhs1, rhs2, speed);
1729 break;
1730
1731 case NEGATE_EXPR:
1732 slsr_process_neg (gs, rhs1, speed);
1733 break;
1734
1735 case NOP_EXPR:
1736 slsr_process_cast (gs, rhs1, speed);
1737 break;
1738
1739 case MODIFY_EXPR:
1740 slsr_process_copy (gs, rhs1, speed);
1741 break;
1742
1743 default:
1744 ;
1745 }
1746 }
1747 }
1748 }
1749 \f
1750 /* Dump a candidate for debug. */
1751
1752 static void
1753 dump_candidate (slsr_cand_t c)
1754 {
1755 fprintf (dump_file, "%3d [%d] ", c->cand_num,
1756 gimple_bb (c->cand_stmt)->index);
1757 print_gimple_stmt (dump_file, c->cand_stmt, 0, 0);
1758 switch (c->kind)
1759 {
1760 case CAND_MULT:
1761 fputs (" MULT : (", dump_file);
1762 print_generic_expr (dump_file, c->base_expr, 0);
1763 fputs (" + ", dump_file);
1764 print_decs (c->index, dump_file);
1765 fputs (") * ", dump_file);
1766 print_generic_expr (dump_file, c->stride, 0);
1767 fputs (" : ", dump_file);
1768 break;
1769 case CAND_ADD:
1770 fputs (" ADD : ", dump_file);
1771 print_generic_expr (dump_file, c->base_expr, 0);
1772 fputs (" + (", dump_file);
1773 print_decs (c->index, dump_file);
1774 fputs (" * ", dump_file);
1775 print_generic_expr (dump_file, c->stride, 0);
1776 fputs (") : ", dump_file);
1777 break;
1778 case CAND_REF:
1779 fputs (" REF : ", dump_file);
1780 print_generic_expr (dump_file, c->base_expr, 0);
1781 fputs (" + (", dump_file);
1782 print_generic_expr (dump_file, c->stride, 0);
1783 fputs (") + ", dump_file);
1784 print_decs (c->index, dump_file);
1785 fputs (" : ", dump_file);
1786 break;
1787 case CAND_PHI:
1788 fputs (" PHI : ", dump_file);
1789 print_generic_expr (dump_file, c->base_expr, 0);
1790 fputs (" + (unknown * ", dump_file);
1791 print_generic_expr (dump_file, c->stride, 0);
1792 fputs (") : ", dump_file);
1793 break;
1794 default:
1795 gcc_unreachable ();
1796 }
1797 print_generic_expr (dump_file, c->cand_type, 0);
1798 fprintf (dump_file, "\n basis: %d dependent: %d sibling: %d\n",
1799 c->basis, c->dependent, c->sibling);
1800 fprintf (dump_file, " next-interp: %d dead-savings: %d\n",
1801 c->next_interp, c->dead_savings);
1802 if (c->def_phi)
1803 fprintf (dump_file, " phi: %d\n", c->def_phi);
1804 fputs ("\n", dump_file);
1805 }
1806
1807 /* Dump the candidate vector for debug. */
1808
1809 static void
1810 dump_cand_vec (void)
1811 {
1812 unsigned i;
1813 slsr_cand_t c;
1814
1815 fprintf (dump_file, "\nStrength reduction candidate vector:\n\n");
1816
1817 FOR_EACH_VEC_ELT (cand_vec, i, c)
1818 dump_candidate (c);
1819 }
1820
1821 /* Callback used to dump the candidate chains hash table. */
1822
1823 int
1824 ssa_base_cand_dump_callback (cand_chain **slot, void *ignored ATTRIBUTE_UNUSED)
1825 {
1826 const_cand_chain_t chain = *slot;
1827 cand_chain_t p;
1828
1829 print_generic_expr (dump_file, chain->base_expr, 0);
1830 fprintf (dump_file, " -> %d", chain->cand->cand_num);
1831
1832 for (p = chain->next; p; p = p->next)
1833 fprintf (dump_file, " -> %d", p->cand->cand_num);
1834
1835 fputs ("\n", dump_file);
1836 return 1;
1837 }
1838
1839 /* Dump the candidate chains. */
1840
1841 static void
1842 dump_cand_chains (void)
1843 {
1844 fprintf (dump_file, "\nStrength reduction candidate chains:\n\n");
1845 base_cand_map->traverse_noresize <void *, ssa_base_cand_dump_callback>
1846 (NULL);
1847 fputs ("\n", dump_file);
1848 }
1849
1850 /* Dump the increment vector for debug. */
1851
1852 static void
1853 dump_incr_vec (void)
1854 {
1855 if (dump_file && (dump_flags & TDF_DETAILS))
1856 {
1857 unsigned i;
1858
1859 fprintf (dump_file, "\nIncrement vector:\n\n");
1860
1861 for (i = 0; i < incr_vec_len; i++)
1862 {
1863 fprintf (dump_file, "%3d increment: ", i);
1864 print_decs (incr_vec[i].incr, dump_file);
1865 fprintf (dump_file, "\n count: %d", incr_vec[i].count);
1866 fprintf (dump_file, "\n cost: %d", incr_vec[i].cost);
1867 fputs ("\n initializer: ", dump_file);
1868 print_generic_expr (dump_file, incr_vec[i].initializer, 0);
1869 fputs ("\n\n", dump_file);
1870 }
1871 }
1872 }
1873 \f
1874 /* Replace *EXPR in candidate C with an equivalent strength-reduced
1875 data reference. */
1876
1877 static void
1878 replace_ref (tree *expr, slsr_cand_t c)
1879 {
1880 tree add_expr, mem_ref, acc_type = TREE_TYPE (*expr);
1881 unsigned HOST_WIDE_INT misalign;
1882 unsigned align;
1883
1884 /* Ensure the memory reference carries the minimum alignment
1885 requirement for the data type. See PR58041. */
1886 get_object_alignment_1 (*expr, &align, &misalign);
1887 if (misalign != 0)
1888 align = (misalign & -misalign);
1889 if (align < TYPE_ALIGN (acc_type))
1890 acc_type = build_aligned_type (acc_type, align);
1891
1892 add_expr = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (c->base_expr),
1893 c->base_expr, c->stride);
1894 mem_ref = fold_build2 (MEM_REF, acc_type, add_expr,
1895 wide_int_to_tree (c->cand_type, c->index));
1896
1897 /* Gimplify the base addressing expression for the new MEM_REF tree. */
1898 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
1899 TREE_OPERAND (mem_ref, 0)
1900 = force_gimple_operand_gsi (&gsi, TREE_OPERAND (mem_ref, 0),
1901 /*simple_p=*/true, NULL,
1902 /*before=*/true, GSI_SAME_STMT);
1903 copy_ref_info (mem_ref, *expr);
1904 *expr = mem_ref;
1905 update_stmt (c->cand_stmt);
1906 }
1907
1908 /* Replace CAND_REF candidate C, each sibling of candidate C, and each
1909 dependent of candidate C with an equivalent strength-reduced data
1910 reference. */
1911
1912 static void
1913 replace_refs (slsr_cand_t c)
1914 {
1915 if (dump_file && (dump_flags & TDF_DETAILS))
1916 {
1917 fputs ("Replacing reference: ", dump_file);
1918 print_gimple_stmt (dump_file, c->cand_stmt, 0, 0);
1919 }
1920
1921 if (gimple_vdef (c->cand_stmt))
1922 {
1923 tree *lhs = gimple_assign_lhs_ptr (c->cand_stmt);
1924 replace_ref (lhs, c);
1925 }
1926 else
1927 {
1928 tree *rhs = gimple_assign_rhs1_ptr (c->cand_stmt);
1929 replace_ref (rhs, c);
1930 }
1931
1932 if (dump_file && (dump_flags & TDF_DETAILS))
1933 {
1934 fputs ("With: ", dump_file);
1935 print_gimple_stmt (dump_file, c->cand_stmt, 0, 0);
1936 fputs ("\n", dump_file);
1937 }
1938
1939 if (c->sibling)
1940 replace_refs (lookup_cand (c->sibling));
1941
1942 if (c->dependent)
1943 replace_refs (lookup_cand (c->dependent));
1944 }
1945
1946 /* Return TRUE if candidate C is dependent upon a PHI. */
1947
1948 static bool
1949 phi_dependent_cand_p (slsr_cand_t c)
1950 {
1951 /* A candidate is not necessarily dependent upon a PHI just because
1952 it has a phi definition for its base name. It may have a basis
1953 that relies upon the same phi definition, in which case the PHI
1954 is irrelevant to this candidate. */
1955 return (c->def_phi
1956 && c->basis
1957 && lookup_cand (c->basis)->def_phi != c->def_phi);
1958 }
1959
1960 /* Calculate the increment required for candidate C relative to
1961 its basis. */
1962
1963 static widest_int
1964 cand_increment (slsr_cand_t c)
1965 {
1966 slsr_cand_t basis;
1967
1968 /* If the candidate doesn't have a basis, just return its own
1969 index. This is useful in record_increments to help us find
1970 an existing initializer. Also, if the candidate's basis is
1971 hidden by a phi, then its own index will be the increment
1972 from the newly introduced phi basis. */
1973 if (!c->basis || phi_dependent_cand_p (c))
1974 return c->index;
1975
1976 basis = lookup_cand (c->basis);
1977 gcc_assert (operand_equal_p (c->base_expr, basis->base_expr, 0));
1978 return c->index - basis->index;
1979 }
1980
1981 /* Calculate the increment required for candidate C relative to
1982 its basis. If we aren't going to generate pointer arithmetic
1983 for this candidate, return the absolute value of that increment
1984 instead. */
1985
1986 static inline widest_int
1987 cand_abs_increment (slsr_cand_t c)
1988 {
1989 widest_int increment = cand_increment (c);
1990
1991 if (!address_arithmetic_p && wi::neg_p (increment))
1992 increment = -increment;
1993
1994 return increment;
1995 }
1996
1997 /* Return TRUE iff candidate C has already been replaced under
1998 another interpretation. */
1999
2000 static inline bool
2001 cand_already_replaced (slsr_cand_t c)
2002 {
2003 return (gimple_bb (c->cand_stmt) == 0);
2004 }
2005
2006 /* Common logic used by replace_unconditional_candidate and
2007 replace_conditional_candidate. */
2008
2009 static void
2010 replace_mult_candidate (slsr_cand_t c, tree basis_name, widest_int bump)
2011 {
2012 tree target_type = TREE_TYPE (gimple_assign_lhs (c->cand_stmt));
2013 enum tree_code cand_code = gimple_assign_rhs_code (c->cand_stmt);
2014
2015 /* It is highly unlikely, but possible, that the resulting
2016 bump doesn't fit in a HWI. Abandon the replacement
2017 in this case. This does not affect siblings or dependents
2018 of C. Restriction to signed HWI is conservative for unsigned
2019 types but allows for safe negation without twisted logic. */
2020 if (wi::fits_shwi_p (bump)
2021 && bump.to_shwi () != HOST_WIDE_INT_MIN
2022 /* It is not useful to replace casts, copies, or adds of
2023 an SSA name and a constant. */
2024 && cand_code != MODIFY_EXPR
2025 && cand_code != NOP_EXPR
2026 && cand_code != PLUS_EXPR
2027 && cand_code != POINTER_PLUS_EXPR
2028 && cand_code != MINUS_EXPR)
2029 {
2030 enum tree_code code = PLUS_EXPR;
2031 tree bump_tree;
2032 gimple stmt_to_print = NULL;
2033
2034 /* If the basis name and the candidate's LHS have incompatible
2035 types, introduce a cast. */
2036 if (!useless_type_conversion_p (target_type, TREE_TYPE (basis_name)))
2037 basis_name = introduce_cast_before_cand (c, target_type, basis_name);
2038 if (wi::neg_p (bump))
2039 {
2040 code = MINUS_EXPR;
2041 bump = -bump;
2042 }
2043
2044 bump_tree = wide_int_to_tree (target_type, bump);
2045
2046 if (dump_file && (dump_flags & TDF_DETAILS))
2047 {
2048 fputs ("Replacing: ", dump_file);
2049 print_gimple_stmt (dump_file, c->cand_stmt, 0, 0);
2050 }
2051
2052 if (bump == 0)
2053 {
2054 tree lhs = gimple_assign_lhs (c->cand_stmt);
2055 gimple copy_stmt = gimple_build_assign (lhs, basis_name);
2056 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
2057 gimple_set_location (copy_stmt, gimple_location (c->cand_stmt));
2058 gsi_replace (&gsi, copy_stmt, false);
2059 c->cand_stmt = copy_stmt;
2060 if (dump_file && (dump_flags & TDF_DETAILS))
2061 stmt_to_print = copy_stmt;
2062 }
2063 else
2064 {
2065 tree rhs1, rhs2;
2066 if (cand_code != NEGATE_EXPR) {
2067 rhs1 = gimple_assign_rhs1 (c->cand_stmt);
2068 rhs2 = gimple_assign_rhs2 (c->cand_stmt);
2069 }
2070 if (cand_code != NEGATE_EXPR
2071 && ((operand_equal_p (rhs1, basis_name, 0)
2072 && operand_equal_p (rhs2, bump_tree, 0))
2073 || (operand_equal_p (rhs1, bump_tree, 0)
2074 && operand_equal_p (rhs2, basis_name, 0))))
2075 {
2076 if (dump_file && (dump_flags & TDF_DETAILS))
2077 {
2078 fputs ("(duplicate, not actually replacing)", dump_file);
2079 stmt_to_print = c->cand_stmt;
2080 }
2081 }
2082 else
2083 {
2084 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
2085 gimple_assign_set_rhs_with_ops (&gsi, code,
2086 basis_name, bump_tree);
2087 update_stmt (gsi_stmt (gsi));
2088 c->cand_stmt = gsi_stmt (gsi);
2089 if (dump_file && (dump_flags & TDF_DETAILS))
2090 stmt_to_print = gsi_stmt (gsi);
2091 }
2092 }
2093
2094 if (dump_file && (dump_flags & TDF_DETAILS))
2095 {
2096 fputs ("With: ", dump_file);
2097 print_gimple_stmt (dump_file, stmt_to_print, 0, 0);
2098 fputs ("\n", dump_file);
2099 }
2100 }
2101 }
2102
2103 /* Replace candidate C with an add or subtract. Note that we only
2104 operate on CAND_MULTs with known strides, so we will never generate
2105 a POINTER_PLUS_EXPR. Each candidate X = (B + i) * S is replaced by
2106 X = Y + ((i - i') * S), as described in the module commentary. The
2107 folded value ((i - i') * S) is referred to here as the "bump." */
2108
2109 static void
2110 replace_unconditional_candidate (slsr_cand_t c)
2111 {
2112 slsr_cand_t basis;
2113
2114 if (cand_already_replaced (c))
2115 return;
2116
2117 basis = lookup_cand (c->basis);
2118 widest_int bump = cand_increment (c) * wi::to_widest (c->stride);
2119
2120 replace_mult_candidate (c, gimple_assign_lhs (basis->cand_stmt), bump);
2121 }
2122 \f
2123 /* Return the index in the increment vector of the given INCREMENT,
2124 or -1 if not found. The latter can occur if more than
2125 MAX_INCR_VEC_LEN increments have been found. */
2126
2127 static inline int
2128 incr_vec_index (const widest_int &increment)
2129 {
2130 unsigned i;
2131
2132 for (i = 0; i < incr_vec_len && increment != incr_vec[i].incr; i++)
2133 ;
2134
2135 if (i < incr_vec_len)
2136 return i;
2137 else
2138 return -1;
2139 }
2140
2141 /* Create a new statement along edge E to add BASIS_NAME to the product
2142 of INCREMENT and the stride of candidate C. Create and return a new
2143 SSA name from *VAR to be used as the LHS of the new statement.
2144 KNOWN_STRIDE is true iff C's stride is a constant. */
2145
2146 static tree
2147 create_add_on_incoming_edge (slsr_cand_t c, tree basis_name,
2148 widest_int increment, edge e, location_t loc,
2149 bool known_stride)
2150 {
2151 basic_block insert_bb;
2152 gimple_stmt_iterator gsi;
2153 tree lhs, basis_type;
2154 gimple new_stmt;
2155
2156 /* If the add candidate along this incoming edge has the same
2157 index as C's hidden basis, the hidden basis represents this
2158 edge correctly. */
2159 if (increment == 0)
2160 return basis_name;
2161
2162 basis_type = TREE_TYPE (basis_name);
2163 lhs = make_temp_ssa_name (basis_type, NULL, "slsr");
2164
2165 if (known_stride)
2166 {
2167 tree bump_tree;
2168 enum tree_code code = PLUS_EXPR;
2169 widest_int bump = increment * wi::to_widest (c->stride);
2170 if (wi::neg_p (bump))
2171 {
2172 code = MINUS_EXPR;
2173 bump = -bump;
2174 }
2175
2176 bump_tree = wide_int_to_tree (basis_type, bump);
2177 new_stmt = gimple_build_assign_with_ops (code, lhs, basis_name,
2178 bump_tree);
2179 }
2180 else
2181 {
2182 int i;
2183 bool negate_incr = (!address_arithmetic_p && wi::neg_p (increment));
2184 i = incr_vec_index (negate_incr ? -increment : increment);
2185 gcc_assert (i >= 0);
2186
2187 if (incr_vec[i].initializer)
2188 {
2189 enum tree_code code = negate_incr ? MINUS_EXPR : PLUS_EXPR;
2190 new_stmt = gimple_build_assign_with_ops (code, lhs, basis_name,
2191 incr_vec[i].initializer);
2192 }
2193 else if (increment == 1)
2194 new_stmt = gimple_build_assign_with_ops (PLUS_EXPR, lhs, basis_name,
2195 c->stride);
2196 else if (increment == -1)
2197 new_stmt = gimple_build_assign_with_ops (MINUS_EXPR, lhs, basis_name,
2198 c->stride);
2199 else
2200 gcc_unreachable ();
2201 }
2202
2203 insert_bb = single_succ_p (e->src) ? e->src : split_edge (e);
2204 gsi = gsi_last_bb (insert_bb);
2205
2206 if (!gsi_end_p (gsi) && is_ctrl_stmt (gsi_stmt (gsi)))
2207 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
2208 else
2209 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
2210
2211 gimple_set_location (new_stmt, loc);
2212
2213 if (dump_file && (dump_flags & TDF_DETAILS))
2214 {
2215 fprintf (dump_file, "Inserting in block %d: ", insert_bb->index);
2216 print_gimple_stmt (dump_file, new_stmt, 0, 0);
2217 }
2218
2219 return lhs;
2220 }
2221
2222 /* Given a candidate C with BASIS_NAME being the LHS of C's basis which
2223 is hidden by the phi node FROM_PHI, create a new phi node in the same
2224 block as FROM_PHI. The new phi is suitable for use as a basis by C,
2225 with its phi arguments representing conditional adjustments to the
2226 hidden basis along conditional incoming paths. Those adjustments are
2227 made by creating add statements (and sometimes recursively creating
2228 phis) along those incoming paths. LOC is the location to attach to
2229 the introduced statements. KNOWN_STRIDE is true iff C's stride is a
2230 constant. */
2231
2232 static tree
2233 create_phi_basis (slsr_cand_t c, gimple from_phi, tree basis_name,
2234 location_t loc, bool known_stride)
2235 {
2236 int i;
2237 tree name, phi_arg;
2238 gimple phi;
2239 vec<tree> phi_args;
2240 slsr_cand_t basis = lookup_cand (c->basis);
2241 int nargs = gimple_phi_num_args (from_phi);
2242 basic_block phi_bb = gimple_bb (from_phi);
2243 slsr_cand_t phi_cand = base_cand_from_table (gimple_phi_result (from_phi));
2244 phi_args.create (nargs);
2245
2246 /* Process each argument of the existing phi that represents
2247 conditionally-executed add candidates. */
2248 for (i = 0; i < nargs; i++)
2249 {
2250 edge e = (*phi_bb->preds)[i];
2251 tree arg = gimple_phi_arg_def (from_phi, i);
2252 tree feeding_def;
2253
2254 /* If the phi argument is the base name of the CAND_PHI, then
2255 this incoming arc should use the hidden basis. */
2256 if (operand_equal_p (arg, phi_cand->base_expr, 0))
2257 if (basis->index == 0)
2258 feeding_def = gimple_assign_lhs (basis->cand_stmt);
2259 else
2260 {
2261 widest_int incr = -basis->index;
2262 feeding_def = create_add_on_incoming_edge (c, basis_name, incr,
2263 e, loc, known_stride);
2264 }
2265 else
2266 {
2267 gimple arg_def = SSA_NAME_DEF_STMT (arg);
2268
2269 /* If there is another phi along this incoming edge, we must
2270 process it in the same fashion to ensure that all basis
2271 adjustments are made along its incoming edges. */
2272 if (gimple_code (arg_def) == GIMPLE_PHI)
2273 feeding_def = create_phi_basis (c, arg_def, basis_name,
2274 loc, known_stride);
2275 else
2276 {
2277 slsr_cand_t arg_cand = base_cand_from_table (arg);
2278 widest_int diff = arg_cand->index - basis->index;
2279 feeding_def = create_add_on_incoming_edge (c, basis_name, diff,
2280 e, loc, known_stride);
2281 }
2282 }
2283
2284 /* Because of recursion, we need to save the arguments in a vector
2285 so we can create the PHI statement all at once. Otherwise the
2286 storage for the half-created PHI can be reclaimed. */
2287 phi_args.safe_push (feeding_def);
2288 }
2289
2290 /* Create the new phi basis. */
2291 name = make_temp_ssa_name (TREE_TYPE (basis_name), NULL, "slsr");
2292 phi = create_phi_node (name, phi_bb);
2293 SSA_NAME_DEF_STMT (name) = phi;
2294
2295 FOR_EACH_VEC_ELT (phi_args, i, phi_arg)
2296 {
2297 edge e = (*phi_bb->preds)[i];
2298 add_phi_arg (phi, phi_arg, e, loc);
2299 }
2300
2301 update_stmt (phi);
2302
2303 if (dump_file && (dump_flags & TDF_DETAILS))
2304 {
2305 fputs ("Introducing new phi basis: ", dump_file);
2306 print_gimple_stmt (dump_file, phi, 0, 0);
2307 }
2308
2309 return name;
2310 }
2311
2312 /* Given a candidate C whose basis is hidden by at least one intervening
2313 phi, introduce a matching number of new phis to represent its basis
2314 adjusted by conditional increments along possible incoming paths. Then
2315 replace C as though it were an unconditional candidate, using the new
2316 basis. */
2317
2318 static void
2319 replace_conditional_candidate (slsr_cand_t c)
2320 {
2321 tree basis_name, name;
2322 slsr_cand_t basis;
2323 location_t loc;
2324
2325 /* Look up the LHS SSA name from C's basis. This will be the
2326 RHS1 of the adds we will introduce to create new phi arguments. */
2327 basis = lookup_cand (c->basis);
2328 basis_name = gimple_assign_lhs (basis->cand_stmt);
2329
2330 /* Create a new phi statement which will represent C's true basis
2331 after the transformation is complete. */
2332 loc = gimple_location (c->cand_stmt);
2333 name = create_phi_basis (c, lookup_cand (c->def_phi)->cand_stmt,
2334 basis_name, loc, KNOWN_STRIDE);
2335 /* Replace C with an add of the new basis phi and a constant. */
2336 widest_int bump = c->index * wi::to_widest (c->stride);
2337
2338 replace_mult_candidate (c, name, bump);
2339 }
2340
2341 /* Compute the expected costs of inserting basis adjustments for
2342 candidate C with phi-definition PHI. The cost of inserting
2343 one adjustment is given by ONE_ADD_COST. If PHI has arguments
2344 which are themselves phi results, recursively calculate costs
2345 for those phis as well. */
2346
2347 static int
2348 phi_add_costs (gimple phi, slsr_cand_t c, int one_add_cost)
2349 {
2350 unsigned i;
2351 int cost = 0;
2352 slsr_cand_t phi_cand = base_cand_from_table (gimple_phi_result (phi));
2353
2354 /* If we work our way back to a phi that isn't dominated by the hidden
2355 basis, this isn't a candidate for replacement. Indicate this by
2356 returning an unreasonably high cost. It's not easy to detect
2357 these situations when determining the basis, so we defer the
2358 decision until now. */
2359 basic_block phi_bb = gimple_bb (phi);
2360 slsr_cand_t basis = lookup_cand (c->basis);
2361 basic_block basis_bb = gimple_bb (basis->cand_stmt);
2362
2363 if (phi_bb == basis_bb || !dominated_by_p (CDI_DOMINATORS, phi_bb, basis_bb))
2364 return COST_INFINITE;
2365
2366 for (i = 0; i < gimple_phi_num_args (phi); i++)
2367 {
2368 tree arg = gimple_phi_arg_def (phi, i);
2369
2370 if (arg != phi_cand->base_expr)
2371 {
2372 gimple arg_def = SSA_NAME_DEF_STMT (arg);
2373
2374 if (gimple_code (arg_def) == GIMPLE_PHI)
2375 cost += phi_add_costs (arg_def, c, one_add_cost);
2376 else
2377 {
2378 slsr_cand_t arg_cand = base_cand_from_table (arg);
2379
2380 if (arg_cand->index != c->index)
2381 cost += one_add_cost;
2382 }
2383 }
2384 }
2385
2386 return cost;
2387 }
2388
2389 /* For candidate C, each sibling of candidate C, and each dependent of
2390 candidate C, determine whether the candidate is dependent upon a
2391 phi that hides its basis. If not, replace the candidate unconditionally.
2392 Otherwise, determine whether the cost of introducing compensation code
2393 for the candidate is offset by the gains from strength reduction. If
2394 so, replace the candidate and introduce the compensation code. */
2395
2396 static void
2397 replace_uncond_cands_and_profitable_phis (slsr_cand_t c)
2398 {
2399 if (phi_dependent_cand_p (c))
2400 {
2401 if (c->kind == CAND_MULT)
2402 {
2403 /* A candidate dependent upon a phi will replace a multiply by
2404 a constant with an add, and will insert at most one add for
2405 each phi argument. Add these costs with the potential dead-code
2406 savings to determine profitability. */
2407 bool speed = optimize_bb_for_speed_p (gimple_bb (c->cand_stmt));
2408 int mult_savings = stmt_cost (c->cand_stmt, speed);
2409 gimple phi = lookup_cand (c->def_phi)->cand_stmt;
2410 tree phi_result = gimple_phi_result (phi);
2411 int one_add_cost = add_cost (speed,
2412 TYPE_MODE (TREE_TYPE (phi_result)));
2413 int add_costs = one_add_cost + phi_add_costs (phi, c, one_add_cost);
2414 int cost = add_costs - mult_savings - c->dead_savings;
2415
2416 if (dump_file && (dump_flags & TDF_DETAILS))
2417 {
2418 fprintf (dump_file, " Conditional candidate %d:\n", c->cand_num);
2419 fprintf (dump_file, " add_costs = %d\n", add_costs);
2420 fprintf (dump_file, " mult_savings = %d\n", mult_savings);
2421 fprintf (dump_file, " dead_savings = %d\n", c->dead_savings);
2422 fprintf (dump_file, " cost = %d\n", cost);
2423 if (cost <= COST_NEUTRAL)
2424 fputs (" Replacing...\n", dump_file);
2425 else
2426 fputs (" Not replaced.\n", dump_file);
2427 }
2428
2429 if (cost <= COST_NEUTRAL)
2430 replace_conditional_candidate (c);
2431 }
2432 }
2433 else
2434 replace_unconditional_candidate (c);
2435
2436 if (c->sibling)
2437 replace_uncond_cands_and_profitable_phis (lookup_cand (c->sibling));
2438
2439 if (c->dependent)
2440 replace_uncond_cands_and_profitable_phis (lookup_cand (c->dependent));
2441 }
2442 \f
2443 /* Count the number of candidates in the tree rooted at C that have
2444 not already been replaced under other interpretations. */
2445
2446 static int
2447 count_candidates (slsr_cand_t c)
2448 {
2449 unsigned count = cand_already_replaced (c) ? 0 : 1;
2450
2451 if (c->sibling)
2452 count += count_candidates (lookup_cand (c->sibling));
2453
2454 if (c->dependent)
2455 count += count_candidates (lookup_cand (c->dependent));
2456
2457 return count;
2458 }
2459
2460 /* Increase the count of INCREMENT by one in the increment vector.
2461 INCREMENT is associated with candidate C. If INCREMENT is to be
2462 conditionally executed as part of a conditional candidate replacement,
2463 IS_PHI_ADJUST is true, otherwise false. If an initializer
2464 T_0 = stride * I is provided by a candidate that dominates all
2465 candidates with the same increment, also record T_0 for subsequent use. */
2466
2467 static void
2468 record_increment (slsr_cand_t c, widest_int increment, bool is_phi_adjust)
2469 {
2470 bool found = false;
2471 unsigned i;
2472
2473 /* Treat increments that differ only in sign as identical so as to
2474 share initializers, unless we are generating pointer arithmetic. */
2475 if (!address_arithmetic_p && wi::neg_p (increment))
2476 increment = -increment;
2477
2478 for (i = 0; i < incr_vec_len; i++)
2479 {
2480 if (incr_vec[i].incr == increment)
2481 {
2482 incr_vec[i].count++;
2483 found = true;
2484
2485 /* If we previously recorded an initializer that doesn't
2486 dominate this candidate, it's not going to be useful to
2487 us after all. */
2488 if (incr_vec[i].initializer
2489 && !dominated_by_p (CDI_DOMINATORS,
2490 gimple_bb (c->cand_stmt),
2491 incr_vec[i].init_bb))
2492 {
2493 incr_vec[i].initializer = NULL_TREE;
2494 incr_vec[i].init_bb = NULL;
2495 }
2496
2497 break;
2498 }
2499 }
2500
2501 if (!found && incr_vec_len < MAX_INCR_VEC_LEN - 1)
2502 {
2503 /* The first time we see an increment, create the entry for it.
2504 If this is the root candidate which doesn't have a basis, set
2505 the count to zero. We're only processing it so it can possibly
2506 provide an initializer for other candidates. */
2507 incr_vec[incr_vec_len].incr = increment;
2508 incr_vec[incr_vec_len].count = c->basis || is_phi_adjust ? 1 : 0;
2509 incr_vec[incr_vec_len].cost = COST_INFINITE;
2510
2511 /* Optimistically record the first occurrence of this increment
2512 as providing an initializer (if it does); we will revise this
2513 opinion later if it doesn't dominate all other occurrences.
2514 Exception: increments of -1, 0, 1 never need initializers;
2515 and phi adjustments don't ever provide initializers. */
2516 if (c->kind == CAND_ADD
2517 && !is_phi_adjust
2518 && c->index == increment
2519 && (wi::gts_p (increment, 1)
2520 || wi::lts_p (increment, -1))
2521 && (gimple_assign_rhs_code (c->cand_stmt) == PLUS_EXPR
2522 || gimple_assign_rhs_code (c->cand_stmt) == POINTER_PLUS_EXPR))
2523 {
2524 tree t0 = NULL_TREE;
2525 tree rhs1 = gimple_assign_rhs1 (c->cand_stmt);
2526 tree rhs2 = gimple_assign_rhs2 (c->cand_stmt);
2527 if (operand_equal_p (rhs1, c->base_expr, 0))
2528 t0 = rhs2;
2529 else if (operand_equal_p (rhs2, c->base_expr, 0))
2530 t0 = rhs1;
2531 if (t0
2532 && SSA_NAME_DEF_STMT (t0)
2533 && gimple_bb (SSA_NAME_DEF_STMT (t0)))
2534 {
2535 incr_vec[incr_vec_len].initializer = t0;
2536 incr_vec[incr_vec_len++].init_bb
2537 = gimple_bb (SSA_NAME_DEF_STMT (t0));
2538 }
2539 else
2540 {
2541 incr_vec[incr_vec_len].initializer = NULL_TREE;
2542 incr_vec[incr_vec_len++].init_bb = NULL;
2543 }
2544 }
2545 else
2546 {
2547 incr_vec[incr_vec_len].initializer = NULL_TREE;
2548 incr_vec[incr_vec_len++].init_bb = NULL;
2549 }
2550 }
2551 }
2552
2553 /* Given phi statement PHI that hides a candidate from its BASIS, find
2554 the increments along each incoming arc (recursively handling additional
2555 phis that may be present) and record them. These increments are the
2556 difference in index between the index-adjusting statements and the
2557 index of the basis. */
2558
2559 static void
2560 record_phi_increments (slsr_cand_t basis, gimple phi)
2561 {
2562 unsigned i;
2563 slsr_cand_t phi_cand = base_cand_from_table (gimple_phi_result (phi));
2564
2565 for (i = 0; i < gimple_phi_num_args (phi); i++)
2566 {
2567 tree arg = gimple_phi_arg_def (phi, i);
2568
2569 if (!operand_equal_p (arg, phi_cand->base_expr, 0))
2570 {
2571 gimple arg_def = SSA_NAME_DEF_STMT (arg);
2572
2573 if (gimple_code (arg_def) == GIMPLE_PHI)
2574 record_phi_increments (basis, arg_def);
2575 else
2576 {
2577 slsr_cand_t arg_cand = base_cand_from_table (arg);
2578 widest_int diff = arg_cand->index - basis->index;
2579 record_increment (arg_cand, diff, PHI_ADJUST);
2580 }
2581 }
2582 }
2583 }
2584
2585 /* Determine how many times each unique increment occurs in the set
2586 of candidates rooted at C's parent, recording the data in the
2587 increment vector. For each unique increment I, if an initializer
2588 T_0 = stride * I is provided by a candidate that dominates all
2589 candidates with the same increment, also record T_0 for subsequent
2590 use. */
2591
2592 static void
2593 record_increments (slsr_cand_t c)
2594 {
2595 if (!cand_already_replaced (c))
2596 {
2597 if (!phi_dependent_cand_p (c))
2598 record_increment (c, cand_increment (c), NOT_PHI_ADJUST);
2599 else
2600 {
2601 /* A candidate with a basis hidden by a phi will have one
2602 increment for its relationship to the index represented by
2603 the phi, and potentially additional increments along each
2604 incoming edge. For the root of the dependency tree (which
2605 has no basis), process just the initial index in case it has
2606 an initializer that can be used by subsequent candidates. */
2607 record_increment (c, c->index, NOT_PHI_ADJUST);
2608
2609 if (c->basis)
2610 record_phi_increments (lookup_cand (c->basis),
2611 lookup_cand (c->def_phi)->cand_stmt);
2612 }
2613 }
2614
2615 if (c->sibling)
2616 record_increments (lookup_cand (c->sibling));
2617
2618 if (c->dependent)
2619 record_increments (lookup_cand (c->dependent));
2620 }
2621
2622 /* Add up and return the costs of introducing add statements that
2623 require the increment INCR on behalf of candidate C and phi
2624 statement PHI. Accumulate into *SAVINGS the potential savings
2625 from removing existing statements that feed PHI and have no other
2626 uses. */
2627
2628 static int
2629 phi_incr_cost (slsr_cand_t c, const widest_int &incr, gimple phi, int *savings)
2630 {
2631 unsigned i;
2632 int cost = 0;
2633 slsr_cand_t basis = lookup_cand (c->basis);
2634 slsr_cand_t phi_cand = base_cand_from_table (gimple_phi_result (phi));
2635
2636 for (i = 0; i < gimple_phi_num_args (phi); i++)
2637 {
2638 tree arg = gimple_phi_arg_def (phi, i);
2639
2640 if (!operand_equal_p (arg, phi_cand->base_expr, 0))
2641 {
2642 gimple arg_def = SSA_NAME_DEF_STMT (arg);
2643
2644 if (gimple_code (arg_def) == GIMPLE_PHI)
2645 {
2646 int feeding_savings = 0;
2647 cost += phi_incr_cost (c, incr, arg_def, &feeding_savings);
2648 if (has_single_use (gimple_phi_result (arg_def)))
2649 *savings += feeding_savings;
2650 }
2651 else
2652 {
2653 slsr_cand_t arg_cand = base_cand_from_table (arg);
2654 widest_int diff = arg_cand->index - basis->index;
2655
2656 if (incr == diff)
2657 {
2658 tree basis_lhs = gimple_assign_lhs (basis->cand_stmt);
2659 tree lhs = gimple_assign_lhs (arg_cand->cand_stmt);
2660 cost += add_cost (true, TYPE_MODE (TREE_TYPE (basis_lhs)));
2661 if (has_single_use (lhs))
2662 *savings += stmt_cost (arg_cand->cand_stmt, true);
2663 }
2664 }
2665 }
2666 }
2667
2668 return cost;
2669 }
2670
2671 /* Return the first candidate in the tree rooted at C that has not
2672 already been replaced, favoring siblings over dependents. */
2673
2674 static slsr_cand_t
2675 unreplaced_cand_in_tree (slsr_cand_t c)
2676 {
2677 if (!cand_already_replaced (c))
2678 return c;
2679
2680 if (c->sibling)
2681 {
2682 slsr_cand_t sib = unreplaced_cand_in_tree (lookup_cand (c->sibling));
2683 if (sib)
2684 return sib;
2685 }
2686
2687 if (c->dependent)
2688 {
2689 slsr_cand_t dep = unreplaced_cand_in_tree (lookup_cand (c->dependent));
2690 if (dep)
2691 return dep;
2692 }
2693
2694 return NULL;
2695 }
2696
2697 /* Return TRUE if the candidates in the tree rooted at C should be
2698 optimized for speed, else FALSE. We estimate this based on the block
2699 containing the most dominant candidate in the tree that has not yet
2700 been replaced. */
2701
2702 static bool
2703 optimize_cands_for_speed_p (slsr_cand_t c)
2704 {
2705 slsr_cand_t c2 = unreplaced_cand_in_tree (c);
2706 gcc_assert (c2);
2707 return optimize_bb_for_speed_p (gimple_bb (c2->cand_stmt));
2708 }
2709
2710 /* Add COST_IN to the lowest cost of any dependent path starting at
2711 candidate C or any of its siblings, counting only candidates along
2712 such paths with increment INCR. Assume that replacing a candidate
2713 reduces cost by REPL_SAVINGS. Also account for savings from any
2714 statements that would go dead. If COUNT_PHIS is true, include
2715 costs of introducing feeding statements for conditional candidates. */
2716
2717 static int
2718 lowest_cost_path (int cost_in, int repl_savings, slsr_cand_t c,
2719 const widest_int &incr, bool count_phis)
2720 {
2721 int local_cost, sib_cost, savings = 0;
2722 widest_int cand_incr = cand_abs_increment (c);
2723
2724 if (cand_already_replaced (c))
2725 local_cost = cost_in;
2726 else if (incr == cand_incr)
2727 local_cost = cost_in - repl_savings - c->dead_savings;
2728 else
2729 local_cost = cost_in - c->dead_savings;
2730
2731 if (count_phis
2732 && phi_dependent_cand_p (c)
2733 && !cand_already_replaced (c))
2734 {
2735 gimple phi = lookup_cand (c->def_phi)->cand_stmt;
2736 local_cost += phi_incr_cost (c, incr, phi, &savings);
2737
2738 if (has_single_use (gimple_phi_result (phi)))
2739 local_cost -= savings;
2740 }
2741
2742 if (c->dependent)
2743 local_cost = lowest_cost_path (local_cost, repl_savings,
2744 lookup_cand (c->dependent), incr,
2745 count_phis);
2746
2747 if (c->sibling)
2748 {
2749 sib_cost = lowest_cost_path (cost_in, repl_savings,
2750 lookup_cand (c->sibling), incr,
2751 count_phis);
2752 local_cost = MIN (local_cost, sib_cost);
2753 }
2754
2755 return local_cost;
2756 }
2757
2758 /* Compute the total savings that would accrue from all replacements
2759 in the candidate tree rooted at C, counting only candidates with
2760 increment INCR. Assume that replacing a candidate reduces cost
2761 by REPL_SAVINGS. Also account for savings from statements that
2762 would go dead. */
2763
2764 static int
2765 total_savings (int repl_savings, slsr_cand_t c, const widest_int &incr,
2766 bool count_phis)
2767 {
2768 int savings = 0;
2769 widest_int cand_incr = cand_abs_increment (c);
2770
2771 if (incr == cand_incr && !cand_already_replaced (c))
2772 savings += repl_savings + c->dead_savings;
2773
2774 if (count_phis
2775 && phi_dependent_cand_p (c)
2776 && !cand_already_replaced (c))
2777 {
2778 int phi_savings = 0;
2779 gimple phi = lookup_cand (c->def_phi)->cand_stmt;
2780 savings -= phi_incr_cost (c, incr, phi, &phi_savings);
2781
2782 if (has_single_use (gimple_phi_result (phi)))
2783 savings += phi_savings;
2784 }
2785
2786 if (c->dependent)
2787 savings += total_savings (repl_savings, lookup_cand (c->dependent), incr,
2788 count_phis);
2789
2790 if (c->sibling)
2791 savings += total_savings (repl_savings, lookup_cand (c->sibling), incr,
2792 count_phis);
2793
2794 return savings;
2795 }
2796
2797 /* Use target-specific costs to determine and record which increments
2798 in the current candidate tree are profitable to replace, assuming
2799 MODE and SPEED. FIRST_DEP is the first dependent of the root of
2800 the candidate tree.
2801
2802 One slight limitation here is that we don't account for the possible
2803 introduction of casts in some cases. See replace_one_candidate for
2804 the cases where these are introduced. This should probably be cleaned
2805 up sometime. */
2806
2807 static void
2808 analyze_increments (slsr_cand_t first_dep, enum machine_mode mode, bool speed)
2809 {
2810 unsigned i;
2811
2812 for (i = 0; i < incr_vec_len; i++)
2813 {
2814 HOST_WIDE_INT incr = incr_vec[i].incr.to_shwi ();
2815
2816 /* If somehow this increment is bigger than a HWI, we won't
2817 be optimizing candidates that use it. And if the increment
2818 has a count of zero, nothing will be done with it. */
2819 if (!wi::fits_shwi_p (incr_vec[i].incr) || !incr_vec[i].count)
2820 incr_vec[i].cost = COST_INFINITE;
2821
2822 /* Increments of 0, 1, and -1 are always profitable to replace,
2823 because they always replace a multiply or add with an add or
2824 copy, and may cause one or more existing instructions to go
2825 dead. Exception: -1 can't be assumed to be profitable for
2826 pointer addition. */
2827 else if (incr == 0
2828 || incr == 1
2829 || (incr == -1
2830 && (gimple_assign_rhs_code (first_dep->cand_stmt)
2831 != POINTER_PLUS_EXPR)))
2832 incr_vec[i].cost = COST_NEUTRAL;
2833
2834 /* FORNOW: If we need to add an initializer, give up if a cast from
2835 the candidate's type to its stride's type can lose precision.
2836 This could eventually be handled better by expressly retaining the
2837 result of a cast to a wider type in the stride. Example:
2838
2839 short int _1;
2840 _2 = (int) _1;
2841 _3 = _2 * 10;
2842 _4 = x + _3; ADD: x + (10 * _1) : int
2843 _5 = _2 * 15;
2844 _6 = x + _3; ADD: x + (15 * _1) : int
2845
2846 Right now replacing _6 would cause insertion of an initializer
2847 of the form "short int T = _1 * 5;" followed by a cast to
2848 int, which could overflow incorrectly. Had we recorded _2 or
2849 (int)_1 as the stride, this wouldn't happen. However, doing
2850 this breaks other opportunities, so this will require some
2851 care. */
2852 else if (!incr_vec[i].initializer
2853 && TREE_CODE (first_dep->stride) != INTEGER_CST
2854 && !legal_cast_p_1 (first_dep->stride,
2855 gimple_assign_lhs (first_dep->cand_stmt)))
2856
2857 incr_vec[i].cost = COST_INFINITE;
2858
2859 /* If we need to add an initializer, make sure we don't introduce
2860 a multiply by a pointer type, which can happen in certain cast
2861 scenarios. FIXME: When cleaning up these cast issues, we can
2862 afford to introduce the multiply provided we cast out to an
2863 unsigned int of appropriate size. */
2864 else if (!incr_vec[i].initializer
2865 && TREE_CODE (first_dep->stride) != INTEGER_CST
2866 && POINTER_TYPE_P (TREE_TYPE (first_dep->stride)))
2867
2868 incr_vec[i].cost = COST_INFINITE;
2869
2870 /* For any other increment, if this is a multiply candidate, we
2871 must introduce a temporary T and initialize it with
2872 T_0 = stride * increment. When optimizing for speed, walk the
2873 candidate tree to calculate the best cost reduction along any
2874 path; if it offsets the fixed cost of inserting the initializer,
2875 replacing the increment is profitable. When optimizing for
2876 size, instead calculate the total cost reduction from replacing
2877 all candidates with this increment. */
2878 else if (first_dep->kind == CAND_MULT)
2879 {
2880 int cost = mult_by_coeff_cost (incr, mode, speed);
2881 int repl_savings = mul_cost (speed, mode) - add_cost (speed, mode);
2882 if (speed)
2883 cost = lowest_cost_path (cost, repl_savings, first_dep,
2884 incr_vec[i].incr, COUNT_PHIS);
2885 else
2886 cost -= total_savings (repl_savings, first_dep, incr_vec[i].incr,
2887 COUNT_PHIS);
2888
2889 incr_vec[i].cost = cost;
2890 }
2891
2892 /* If this is an add candidate, the initializer may already
2893 exist, so only calculate the cost of the initializer if it
2894 doesn't. We are replacing one add with another here, so the
2895 known replacement savings is zero. We will account for removal
2896 of dead instructions in lowest_cost_path or total_savings. */
2897 else
2898 {
2899 int cost = 0;
2900 if (!incr_vec[i].initializer)
2901 cost = mult_by_coeff_cost (incr, mode, speed);
2902
2903 if (speed)
2904 cost = lowest_cost_path (cost, 0, first_dep, incr_vec[i].incr,
2905 DONT_COUNT_PHIS);
2906 else
2907 cost -= total_savings (0, first_dep, incr_vec[i].incr,
2908 DONT_COUNT_PHIS);
2909
2910 incr_vec[i].cost = cost;
2911 }
2912 }
2913 }
2914
2915 /* Return the nearest common dominator of BB1 and BB2. If the blocks
2916 are identical, return the earlier of C1 and C2 in *WHERE. Otherwise,
2917 if the NCD matches BB1, return C1 in *WHERE; if the NCD matches BB2,
2918 return C2 in *WHERE; and if the NCD matches neither, return NULL in
2919 *WHERE. Note: It is possible for one of C1 and C2 to be NULL. */
2920
2921 static basic_block
2922 ncd_for_two_cands (basic_block bb1, basic_block bb2,
2923 slsr_cand_t c1, slsr_cand_t c2, slsr_cand_t *where)
2924 {
2925 basic_block ncd;
2926
2927 if (!bb1)
2928 {
2929 *where = c2;
2930 return bb2;
2931 }
2932
2933 if (!bb2)
2934 {
2935 *where = c1;
2936 return bb1;
2937 }
2938
2939 ncd = nearest_common_dominator (CDI_DOMINATORS, bb1, bb2);
2940
2941 /* If both candidates are in the same block, the earlier
2942 candidate wins. */
2943 if (bb1 == ncd && bb2 == ncd)
2944 {
2945 if (!c1 || (c2 && c2->cand_num < c1->cand_num))
2946 *where = c2;
2947 else
2948 *where = c1;
2949 }
2950
2951 /* Otherwise, if one of them produced a candidate in the
2952 dominator, that one wins. */
2953 else if (bb1 == ncd)
2954 *where = c1;
2955
2956 else if (bb2 == ncd)
2957 *where = c2;
2958
2959 /* If neither matches the dominator, neither wins. */
2960 else
2961 *where = NULL;
2962
2963 return ncd;
2964 }
2965
2966 /* Consider all candidates that feed PHI. Find the nearest common
2967 dominator of those candidates requiring the given increment INCR.
2968 Further find and return the nearest common dominator of this result
2969 with block NCD. If the returned block contains one or more of the
2970 candidates, return the earliest candidate in the block in *WHERE. */
2971
2972 static basic_block
2973 ncd_with_phi (slsr_cand_t c, const widest_int &incr, gimple phi,
2974 basic_block ncd, slsr_cand_t *where)
2975 {
2976 unsigned i;
2977 slsr_cand_t basis = lookup_cand (c->basis);
2978 slsr_cand_t phi_cand = base_cand_from_table (gimple_phi_result (phi));
2979
2980 for (i = 0; i < gimple_phi_num_args (phi); i++)
2981 {
2982 tree arg = gimple_phi_arg_def (phi, i);
2983
2984 if (!operand_equal_p (arg, phi_cand->base_expr, 0))
2985 {
2986 gimple arg_def = SSA_NAME_DEF_STMT (arg);
2987
2988 if (gimple_code (arg_def) == GIMPLE_PHI)
2989 ncd = ncd_with_phi (c, incr, arg_def, ncd, where);
2990 else
2991 {
2992 slsr_cand_t arg_cand = base_cand_from_table (arg);
2993 widest_int diff = arg_cand->index - basis->index;
2994 basic_block pred = gimple_phi_arg_edge (phi, i)->src;
2995
2996 if ((incr == diff) || (!address_arithmetic_p && incr == -diff))
2997 ncd = ncd_for_two_cands (ncd, pred, *where, NULL, where);
2998 }
2999 }
3000 }
3001
3002 return ncd;
3003 }
3004
3005 /* Consider the candidate C together with any candidates that feed
3006 C's phi dependence (if any). Find and return the nearest common
3007 dominator of those candidates requiring the given increment INCR.
3008 If the returned block contains one or more of the candidates,
3009 return the earliest candidate in the block in *WHERE. */
3010
3011 static basic_block
3012 ncd_of_cand_and_phis (slsr_cand_t c, const widest_int &incr, slsr_cand_t *where)
3013 {
3014 basic_block ncd = NULL;
3015
3016 if (cand_abs_increment (c) == incr)
3017 {
3018 ncd = gimple_bb (c->cand_stmt);
3019 *where = c;
3020 }
3021
3022 if (phi_dependent_cand_p (c))
3023 ncd = ncd_with_phi (c, incr, lookup_cand (c->def_phi)->cand_stmt,
3024 ncd, where);
3025
3026 return ncd;
3027 }
3028
3029 /* Consider all candidates in the tree rooted at C for which INCR
3030 represents the required increment of C relative to its basis.
3031 Find and return the basic block that most nearly dominates all
3032 such candidates. If the returned block contains one or more of
3033 the candidates, return the earliest candidate in the block in
3034 *WHERE. */
3035
3036 static basic_block
3037 nearest_common_dominator_for_cands (slsr_cand_t c, const widest_int &incr,
3038 slsr_cand_t *where)
3039 {
3040 basic_block sib_ncd = NULL, dep_ncd = NULL, this_ncd = NULL, ncd;
3041 slsr_cand_t sib_where = NULL, dep_where = NULL, this_where = NULL, new_where;
3042
3043 /* First find the NCD of all siblings and dependents. */
3044 if (c->sibling)
3045 sib_ncd = nearest_common_dominator_for_cands (lookup_cand (c->sibling),
3046 incr, &sib_where);
3047 if (c->dependent)
3048 dep_ncd = nearest_common_dominator_for_cands (lookup_cand (c->dependent),
3049 incr, &dep_where);
3050 if (!sib_ncd && !dep_ncd)
3051 {
3052 new_where = NULL;
3053 ncd = NULL;
3054 }
3055 else if (sib_ncd && !dep_ncd)
3056 {
3057 new_where = sib_where;
3058 ncd = sib_ncd;
3059 }
3060 else if (dep_ncd && !sib_ncd)
3061 {
3062 new_where = dep_where;
3063 ncd = dep_ncd;
3064 }
3065 else
3066 ncd = ncd_for_two_cands (sib_ncd, dep_ncd, sib_where,
3067 dep_where, &new_where);
3068
3069 /* If the candidate's increment doesn't match the one we're interested
3070 in (and nor do any increments for feeding defs of a phi-dependence),
3071 then the result depends only on siblings and dependents. */
3072 this_ncd = ncd_of_cand_and_phis (c, incr, &this_where);
3073
3074 if (!this_ncd || cand_already_replaced (c))
3075 {
3076 *where = new_where;
3077 return ncd;
3078 }
3079
3080 /* Otherwise, compare this candidate with the result from all siblings
3081 and dependents. */
3082 ncd = ncd_for_two_cands (ncd, this_ncd, new_where, this_where, where);
3083
3084 return ncd;
3085 }
3086
3087 /* Return TRUE if the increment indexed by INDEX is profitable to replace. */
3088
3089 static inline bool
3090 profitable_increment_p (unsigned index)
3091 {
3092 return (incr_vec[index].cost <= COST_NEUTRAL);
3093 }
3094
3095 /* For each profitable increment in the increment vector not equal to
3096 0 or 1 (or -1, for non-pointer arithmetic), find the nearest common
3097 dominator of all statements in the candidate chain rooted at C
3098 that require that increment, and insert an initializer
3099 T_0 = stride * increment at that location. Record T_0 with the
3100 increment record. */
3101
3102 static void
3103 insert_initializers (slsr_cand_t c)
3104 {
3105 unsigned i;
3106
3107 for (i = 0; i < incr_vec_len; i++)
3108 {
3109 basic_block bb;
3110 slsr_cand_t where = NULL;
3111 gimple init_stmt;
3112 tree stride_type, new_name, incr_tree;
3113 widest_int incr = incr_vec[i].incr;
3114
3115 if (!profitable_increment_p (i)
3116 || incr == 1
3117 || (incr == -1
3118 && gimple_assign_rhs_code (c->cand_stmt) != POINTER_PLUS_EXPR)
3119 || incr == 0)
3120 continue;
3121
3122 /* We may have already identified an existing initializer that
3123 will suffice. */
3124 if (incr_vec[i].initializer)
3125 {
3126 if (dump_file && (dump_flags & TDF_DETAILS))
3127 {
3128 fputs ("Using existing initializer: ", dump_file);
3129 print_gimple_stmt (dump_file,
3130 SSA_NAME_DEF_STMT (incr_vec[i].initializer),
3131 0, 0);
3132 }
3133 continue;
3134 }
3135
3136 /* Find the block that most closely dominates all candidates
3137 with this increment. If there is at least one candidate in
3138 that block, the earliest one will be returned in WHERE. */
3139 bb = nearest_common_dominator_for_cands (c, incr, &where);
3140
3141 /* Create a new SSA name to hold the initializer's value. */
3142 stride_type = TREE_TYPE (c->stride);
3143 new_name = make_temp_ssa_name (stride_type, NULL, "slsr");
3144 incr_vec[i].initializer = new_name;
3145
3146 /* Create the initializer and insert it in the latest possible
3147 dominating position. */
3148 incr_tree = wide_int_to_tree (stride_type, incr);
3149 init_stmt = gimple_build_assign_with_ops (MULT_EXPR, new_name,
3150 c->stride, incr_tree);
3151 if (where)
3152 {
3153 gimple_stmt_iterator gsi = gsi_for_stmt (where->cand_stmt);
3154 gsi_insert_before (&gsi, init_stmt, GSI_SAME_STMT);
3155 gimple_set_location (init_stmt, gimple_location (where->cand_stmt));
3156 }
3157 else
3158 {
3159 gimple_stmt_iterator gsi = gsi_last_bb (bb);
3160 gimple basis_stmt = lookup_cand (c->basis)->cand_stmt;
3161
3162 if (!gsi_end_p (gsi) && is_ctrl_stmt (gsi_stmt (gsi)))
3163 gsi_insert_before (&gsi, init_stmt, GSI_SAME_STMT);
3164 else
3165 gsi_insert_after (&gsi, init_stmt, GSI_SAME_STMT);
3166
3167 gimple_set_location (init_stmt, gimple_location (basis_stmt));
3168 }
3169
3170 if (dump_file && (dump_flags & TDF_DETAILS))
3171 {
3172 fputs ("Inserting initializer: ", dump_file);
3173 print_gimple_stmt (dump_file, init_stmt, 0, 0);
3174 }
3175 }
3176 }
3177
3178 /* Return TRUE iff all required increments for candidates feeding PHI
3179 are profitable to replace on behalf of candidate C. */
3180
3181 static bool
3182 all_phi_incrs_profitable (slsr_cand_t c, gimple phi)
3183 {
3184 unsigned i;
3185 slsr_cand_t basis = lookup_cand (c->basis);
3186 slsr_cand_t phi_cand = base_cand_from_table (gimple_phi_result (phi));
3187
3188 for (i = 0; i < gimple_phi_num_args (phi); i++)
3189 {
3190 tree arg = gimple_phi_arg_def (phi, i);
3191
3192 if (!operand_equal_p (arg, phi_cand->base_expr, 0))
3193 {
3194 gimple arg_def = SSA_NAME_DEF_STMT (arg);
3195
3196 if (gimple_code (arg_def) == GIMPLE_PHI)
3197 {
3198 if (!all_phi_incrs_profitable (c, arg_def))
3199 return false;
3200 }
3201 else
3202 {
3203 int j;
3204 slsr_cand_t arg_cand = base_cand_from_table (arg);
3205 widest_int increment = arg_cand->index - basis->index;
3206
3207 if (!address_arithmetic_p && wi::neg_p (increment))
3208 increment = -increment;
3209
3210 j = incr_vec_index (increment);
3211
3212 if (dump_file && (dump_flags & TDF_DETAILS))
3213 {
3214 fprintf (dump_file, " Conditional candidate %d, phi: ",
3215 c->cand_num);
3216 print_gimple_stmt (dump_file, phi, 0, 0);
3217 fputs (" increment: ", dump_file);
3218 print_decs (increment, dump_file);
3219 if (j < 0)
3220 fprintf (dump_file,
3221 "\n Not replaced; incr_vec overflow.\n");
3222 else {
3223 fprintf (dump_file, "\n cost: %d\n", incr_vec[j].cost);
3224 if (profitable_increment_p (j))
3225 fputs (" Replacing...\n", dump_file);
3226 else
3227 fputs (" Not replaced.\n", dump_file);
3228 }
3229 }
3230
3231 if (j < 0 || !profitable_increment_p (j))
3232 return false;
3233 }
3234 }
3235 }
3236
3237 return true;
3238 }
3239
3240 /* Create a NOP_EXPR that copies FROM_EXPR into a new SSA name of
3241 type TO_TYPE, and insert it in front of the statement represented
3242 by candidate C. Use *NEW_VAR to create the new SSA name. Return
3243 the new SSA name. */
3244
3245 static tree
3246 introduce_cast_before_cand (slsr_cand_t c, tree to_type, tree from_expr)
3247 {
3248 tree cast_lhs;
3249 gimple cast_stmt;
3250 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3251
3252 cast_lhs = make_temp_ssa_name (to_type, NULL, "slsr");
3253 cast_stmt = gimple_build_assign_with_ops (NOP_EXPR, cast_lhs,
3254 from_expr, NULL_TREE);
3255 gimple_set_location (cast_stmt, gimple_location (c->cand_stmt));
3256 gsi_insert_before (&gsi, cast_stmt, GSI_SAME_STMT);
3257
3258 if (dump_file && (dump_flags & TDF_DETAILS))
3259 {
3260 fputs (" Inserting: ", dump_file);
3261 print_gimple_stmt (dump_file, cast_stmt, 0, 0);
3262 }
3263
3264 return cast_lhs;
3265 }
3266
3267 /* Replace the RHS of the statement represented by candidate C with
3268 NEW_CODE, NEW_RHS1, and NEW_RHS2, provided that to do so doesn't
3269 leave C unchanged or just interchange its operands. The original
3270 operation and operands are in OLD_CODE, OLD_RHS1, and OLD_RHS2.
3271 If the replacement was made and we are doing a details dump,
3272 return the revised statement, else NULL. */
3273
3274 static gimple
3275 replace_rhs_if_not_dup (enum tree_code new_code, tree new_rhs1, tree new_rhs2,
3276 enum tree_code old_code, tree old_rhs1, tree old_rhs2,
3277 slsr_cand_t c)
3278 {
3279 if (new_code != old_code
3280 || ((!operand_equal_p (new_rhs1, old_rhs1, 0)
3281 || !operand_equal_p (new_rhs2, old_rhs2, 0))
3282 && (!operand_equal_p (new_rhs1, old_rhs2, 0)
3283 || !operand_equal_p (new_rhs2, old_rhs1, 0))))
3284 {
3285 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3286 gimple_assign_set_rhs_with_ops (&gsi, new_code, new_rhs1, new_rhs2);
3287 update_stmt (gsi_stmt (gsi));
3288 c->cand_stmt = gsi_stmt (gsi);
3289
3290 if (dump_file && (dump_flags & TDF_DETAILS))
3291 return gsi_stmt (gsi);
3292 }
3293
3294 else if (dump_file && (dump_flags & TDF_DETAILS))
3295 fputs (" (duplicate, not actually replacing)\n", dump_file);
3296
3297 return NULL;
3298 }
3299
3300 /* Strength-reduce the statement represented by candidate C by replacing
3301 it with an equivalent addition or subtraction. I is the index into
3302 the increment vector identifying C's increment. NEW_VAR is used to
3303 create a new SSA name if a cast needs to be introduced. BASIS_NAME
3304 is the rhs1 to use in creating the add/subtract. */
3305
3306 static void
3307 replace_one_candidate (slsr_cand_t c, unsigned i, tree basis_name)
3308 {
3309 gimple stmt_to_print = NULL;
3310 tree orig_rhs1, orig_rhs2;
3311 tree rhs2;
3312 enum tree_code orig_code, repl_code;
3313 widest_int cand_incr;
3314
3315 orig_code = gimple_assign_rhs_code (c->cand_stmt);
3316 orig_rhs1 = gimple_assign_rhs1 (c->cand_stmt);
3317 orig_rhs2 = gimple_assign_rhs2 (c->cand_stmt);
3318 cand_incr = cand_increment (c);
3319
3320 if (dump_file && (dump_flags & TDF_DETAILS))
3321 {
3322 fputs ("Replacing: ", dump_file);
3323 print_gimple_stmt (dump_file, c->cand_stmt, 0, 0);
3324 stmt_to_print = c->cand_stmt;
3325 }
3326
3327 if (address_arithmetic_p)
3328 repl_code = POINTER_PLUS_EXPR;
3329 else
3330 repl_code = PLUS_EXPR;
3331
3332 /* If the increment has an initializer T_0, replace the candidate
3333 statement with an add of the basis name and the initializer. */
3334 if (incr_vec[i].initializer)
3335 {
3336 tree init_type = TREE_TYPE (incr_vec[i].initializer);
3337 tree orig_type = TREE_TYPE (orig_rhs2);
3338
3339 if (types_compatible_p (orig_type, init_type))
3340 rhs2 = incr_vec[i].initializer;
3341 else
3342 rhs2 = introduce_cast_before_cand (c, orig_type,
3343 incr_vec[i].initializer);
3344
3345 if (incr_vec[i].incr != cand_incr)
3346 {
3347 gcc_assert (repl_code == PLUS_EXPR);
3348 repl_code = MINUS_EXPR;
3349 }
3350
3351 stmt_to_print = replace_rhs_if_not_dup (repl_code, basis_name, rhs2,
3352 orig_code, orig_rhs1, orig_rhs2,
3353 c);
3354 }
3355
3356 /* Otherwise, the increment is one of -1, 0, and 1. Replace
3357 with a subtract of the stride from the basis name, a copy
3358 from the basis name, or an add of the stride to the basis
3359 name, respectively. It may be necessary to introduce a
3360 cast (or reuse an existing cast). */
3361 else if (cand_incr == 1)
3362 {
3363 tree stride_type = TREE_TYPE (c->stride);
3364 tree orig_type = TREE_TYPE (orig_rhs2);
3365
3366 if (types_compatible_p (orig_type, stride_type))
3367 rhs2 = c->stride;
3368 else
3369 rhs2 = introduce_cast_before_cand (c, orig_type, c->stride);
3370
3371 stmt_to_print = replace_rhs_if_not_dup (repl_code, basis_name, rhs2,
3372 orig_code, orig_rhs1, orig_rhs2,
3373 c);
3374 }
3375
3376 else if (cand_incr == -1)
3377 {
3378 tree stride_type = TREE_TYPE (c->stride);
3379 tree orig_type = TREE_TYPE (orig_rhs2);
3380 gcc_assert (repl_code != POINTER_PLUS_EXPR);
3381
3382 if (types_compatible_p (orig_type, stride_type))
3383 rhs2 = c->stride;
3384 else
3385 rhs2 = introduce_cast_before_cand (c, orig_type, c->stride);
3386
3387 if (orig_code != MINUS_EXPR
3388 || !operand_equal_p (basis_name, orig_rhs1, 0)
3389 || !operand_equal_p (rhs2, orig_rhs2, 0))
3390 {
3391 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3392 gimple_assign_set_rhs_with_ops (&gsi, MINUS_EXPR, basis_name, rhs2);
3393 update_stmt (gsi_stmt (gsi));
3394 c->cand_stmt = gsi_stmt (gsi);
3395
3396 if (dump_file && (dump_flags & TDF_DETAILS))
3397 stmt_to_print = gsi_stmt (gsi);
3398 }
3399 else if (dump_file && (dump_flags & TDF_DETAILS))
3400 fputs (" (duplicate, not actually replacing)\n", dump_file);
3401 }
3402
3403 else if (cand_incr == 0)
3404 {
3405 tree lhs = gimple_assign_lhs (c->cand_stmt);
3406 tree lhs_type = TREE_TYPE (lhs);
3407 tree basis_type = TREE_TYPE (basis_name);
3408
3409 if (types_compatible_p (lhs_type, basis_type))
3410 {
3411 gimple copy_stmt = gimple_build_assign (lhs, basis_name);
3412 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3413 gimple_set_location (copy_stmt, gimple_location (c->cand_stmt));
3414 gsi_replace (&gsi, copy_stmt, false);
3415 c->cand_stmt = copy_stmt;
3416
3417 if (dump_file && (dump_flags & TDF_DETAILS))
3418 stmt_to_print = copy_stmt;
3419 }
3420 else
3421 {
3422 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3423 gimple cast_stmt = gimple_build_assign_with_ops (NOP_EXPR, lhs,
3424 basis_name,
3425 NULL_TREE);
3426 gimple_set_location (cast_stmt, gimple_location (c->cand_stmt));
3427 gsi_replace (&gsi, cast_stmt, false);
3428 c->cand_stmt = cast_stmt;
3429
3430 if (dump_file && (dump_flags & TDF_DETAILS))
3431 stmt_to_print = cast_stmt;
3432 }
3433 }
3434 else
3435 gcc_unreachable ();
3436
3437 if (dump_file && (dump_flags & TDF_DETAILS) && stmt_to_print)
3438 {
3439 fputs ("With: ", dump_file);
3440 print_gimple_stmt (dump_file, stmt_to_print, 0, 0);
3441 fputs ("\n", dump_file);
3442 }
3443 }
3444
3445 /* For each candidate in the tree rooted at C, replace it with
3446 an increment if such has been shown to be profitable. */
3447
3448 static void
3449 replace_profitable_candidates (slsr_cand_t c)
3450 {
3451 if (!cand_already_replaced (c))
3452 {
3453 widest_int increment = cand_abs_increment (c);
3454 enum tree_code orig_code = gimple_assign_rhs_code (c->cand_stmt);
3455 int i;
3456
3457 i = incr_vec_index (increment);
3458
3459 /* Only process profitable increments. Nothing useful can be done
3460 to a cast or copy. */
3461 if (i >= 0
3462 && profitable_increment_p (i)
3463 && orig_code != MODIFY_EXPR
3464 && orig_code != NOP_EXPR)
3465 {
3466 if (phi_dependent_cand_p (c))
3467 {
3468 gimple phi = lookup_cand (c->def_phi)->cand_stmt;
3469
3470 if (all_phi_incrs_profitable (c, phi))
3471 {
3472 /* Look up the LHS SSA name from C's basis. This will be
3473 the RHS1 of the adds we will introduce to create new
3474 phi arguments. */
3475 slsr_cand_t basis = lookup_cand (c->basis);
3476 tree basis_name = gimple_assign_lhs (basis->cand_stmt);
3477
3478 /* Create a new phi statement that will represent C's true
3479 basis after the transformation is complete. */
3480 location_t loc = gimple_location (c->cand_stmt);
3481 tree name = create_phi_basis (c, phi, basis_name,
3482 loc, UNKNOWN_STRIDE);
3483
3484 /* Replace C with an add of the new basis phi and the
3485 increment. */
3486 replace_one_candidate (c, i, name);
3487 }
3488 }
3489 else
3490 {
3491 slsr_cand_t basis = lookup_cand (c->basis);
3492 tree basis_name = gimple_assign_lhs (basis->cand_stmt);
3493 replace_one_candidate (c, i, basis_name);
3494 }
3495 }
3496 }
3497
3498 if (c->sibling)
3499 replace_profitable_candidates (lookup_cand (c->sibling));
3500
3501 if (c->dependent)
3502 replace_profitable_candidates (lookup_cand (c->dependent));
3503 }
3504 \f
3505 /* Analyze costs of related candidates in the candidate vector,
3506 and make beneficial replacements. */
3507
3508 static void
3509 analyze_candidates_and_replace (void)
3510 {
3511 unsigned i;
3512 slsr_cand_t c;
3513
3514 /* Each candidate that has a null basis and a non-null
3515 dependent is the root of a tree of related statements.
3516 Analyze each tree to determine a subset of those
3517 statements that can be replaced with maximum benefit. */
3518 FOR_EACH_VEC_ELT (cand_vec, i, c)
3519 {
3520 slsr_cand_t first_dep;
3521
3522 if (c->basis != 0 || c->dependent == 0)
3523 continue;
3524
3525 if (dump_file && (dump_flags & TDF_DETAILS))
3526 fprintf (dump_file, "\nProcessing dependency tree rooted at %d.\n",
3527 c->cand_num);
3528
3529 first_dep = lookup_cand (c->dependent);
3530
3531 /* If this is a chain of CAND_REFs, unconditionally replace
3532 each of them with a strength-reduced data reference. */
3533 if (c->kind == CAND_REF)
3534 replace_refs (c);
3535
3536 /* If the common stride of all related candidates is a known
3537 constant, each candidate without a phi-dependence can be
3538 profitably replaced. Each replaces a multiply by a single
3539 add, with the possibility that a feeding add also goes dead.
3540 A candidate with a phi-dependence is replaced only if the
3541 compensation code it requires is offset by the strength
3542 reduction savings. */
3543 else if (TREE_CODE (c->stride) == INTEGER_CST)
3544 replace_uncond_cands_and_profitable_phis (first_dep);
3545
3546 /* When the stride is an SSA name, it may still be profitable
3547 to replace some or all of the dependent candidates, depending
3548 on whether the introduced increments can be reused, or are
3549 less expensive to calculate than the replaced statements. */
3550 else
3551 {
3552 enum machine_mode mode;
3553 bool speed;
3554
3555 /* Determine whether we'll be generating pointer arithmetic
3556 when replacing candidates. */
3557 address_arithmetic_p = (c->kind == CAND_ADD
3558 && POINTER_TYPE_P (c->cand_type));
3559
3560 /* If all candidates have already been replaced under other
3561 interpretations, nothing remains to be done. */
3562 if (!count_candidates (c))
3563 continue;
3564
3565 /* Construct an array of increments for this candidate chain. */
3566 incr_vec = XNEWVEC (incr_info, MAX_INCR_VEC_LEN);
3567 incr_vec_len = 0;
3568 record_increments (c);
3569
3570 /* Determine which increments are profitable to replace. */
3571 mode = TYPE_MODE (TREE_TYPE (gimple_assign_lhs (c->cand_stmt)));
3572 speed = optimize_cands_for_speed_p (c);
3573 analyze_increments (first_dep, mode, speed);
3574
3575 /* Insert initializers of the form T_0 = stride * increment
3576 for use in profitable replacements. */
3577 insert_initializers (first_dep);
3578 dump_incr_vec ();
3579
3580 /* Perform the replacements. */
3581 replace_profitable_candidates (first_dep);
3582 free (incr_vec);
3583 }
3584 }
3585 }
3586
3587 namespace {
3588
3589 const pass_data pass_data_strength_reduction =
3590 {
3591 GIMPLE_PASS, /* type */
3592 "slsr", /* name */
3593 OPTGROUP_NONE, /* optinfo_flags */
3594 TV_GIMPLE_SLSR, /* tv_id */
3595 ( PROP_cfg | PROP_ssa ), /* properties_required */
3596 0, /* properties_provided */
3597 0, /* properties_destroyed */
3598 0, /* todo_flags_start */
3599 0, /* todo_flags_finish */
3600 };
3601
3602 class pass_strength_reduction : public gimple_opt_pass
3603 {
3604 public:
3605 pass_strength_reduction (gcc::context *ctxt)
3606 : gimple_opt_pass (pass_data_strength_reduction, ctxt)
3607 {}
3608
3609 /* opt_pass methods: */
3610 virtual bool gate (function *) { return flag_tree_slsr; }
3611 virtual unsigned int execute (function *);
3612
3613 }; // class pass_strength_reduction
3614
3615 unsigned
3616 pass_strength_reduction::execute (function *fun)
3617 {
3618 /* Create the obstack where candidates will reside. */
3619 gcc_obstack_init (&cand_obstack);
3620
3621 /* Allocate the candidate vector. */
3622 cand_vec.create (128);
3623
3624 /* Allocate the mapping from statements to candidate indices. */
3625 stmt_cand_map = new hash_map<gimple, slsr_cand_t>;
3626
3627 /* Create the obstack where candidate chains will reside. */
3628 gcc_obstack_init (&chain_obstack);
3629
3630 /* Allocate the mapping from base expressions to candidate chains. */
3631 base_cand_map = new hash_table<cand_chain_hasher> (500);
3632
3633 /* Allocate the mapping from bases to alternative bases. */
3634 alt_base_map = new hash_map<tree, tree>;
3635
3636 /* Initialize the loop optimizer. We need to detect flow across
3637 back edges, and this gives us dominator information as well. */
3638 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
3639
3640 /* Walk the CFG in predominator order looking for strength reduction
3641 candidates. */
3642 find_candidates_dom_walker (CDI_DOMINATORS)
3643 .walk (fun->cfg->x_entry_block_ptr);
3644
3645 if (dump_file && (dump_flags & TDF_DETAILS))
3646 {
3647 dump_cand_vec ();
3648 dump_cand_chains ();
3649 }
3650
3651 delete alt_base_map;
3652 free_affine_expand_cache (&name_expansions);
3653
3654 /* Analyze costs and make appropriate replacements. */
3655 analyze_candidates_and_replace ();
3656
3657 loop_optimizer_finalize ();
3658 delete base_cand_map;
3659 base_cand_map = NULL;
3660 obstack_free (&chain_obstack, NULL);
3661 delete stmt_cand_map;
3662 cand_vec.release ();
3663 obstack_free (&cand_obstack, NULL);
3664
3665 return 0;
3666 }
3667
3668 } // anon namespace
3669
3670 gimple_opt_pass *
3671 make_pass_strength_reduction (gcc::context *ctxt)
3672 {
3673 return new pass_strength_reduction (ctxt);
3674 }