lto-cgraph.c (get_alias_symbol): Remove weakref sanity check.
[gcc.git] / gcc / gimple-ssa-strength-reduction.c
1 /* Straight-line strength reduction.
2 Copyright (C) 2012-2013 Free Software Foundation, Inc.
3 Contributed by Bill Schmidt, IBM <wschmidt@linux.ibm.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* There are many algorithms for performing strength reduction on
22 loops. This is not one of them. IVOPTS handles strength reduction
23 of induction variables just fine. This pass is intended to pick
24 up the crumbs it leaves behind, by considering opportunities for
25 strength reduction along dominator paths.
26
27 Strength reduction addresses explicit multiplies, and certain
28 multiplies implicit in addressing expressions. It would also be
29 possible to apply strength reduction to divisions and modulos,
30 but such opportunities are relatively uncommon.
31
32 Strength reduction is also currently restricted to integer operations.
33 If desired, it could be extended to floating-point operations under
34 control of something like -funsafe-math-optimizations. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tree.h"
40 #include "gimple.h"
41 #include "basic-block.h"
42 #include "tree-pass.h"
43 #include "cfgloop.h"
44 #include "gimple-pretty-print.h"
45 #include "tree-flow.h"
46 #include "domwalk.h"
47 #include "pointer-set.h"
48 #include "expmed.h"
49 #include "params.h"
50 #include "hash-table.h"
51 \f
52 /* Information about a strength reduction candidate. Each statement
53 in the candidate table represents an expression of one of the
54 following forms (the special case of CAND_REF will be described
55 later):
56
57 (CAND_MULT) S1: X = (B + i) * S
58 (CAND_ADD) S1: X = B + (i * S)
59
60 Here X and B are SSA names, i is an integer constant, and S is
61 either an SSA name or a constant. We call B the "base," i the
62 "index", and S the "stride."
63
64 Any statement S0 that dominates S1 and is of the form:
65
66 (CAND_MULT) S0: Y = (B + i') * S
67 (CAND_ADD) S0: Y = B + (i' * S)
68
69 is called a "basis" for S1. In both cases, S1 may be replaced by
70
71 S1': X = Y + (i - i') * S,
72
73 where (i - i') * S is folded to the extent possible.
74
75 All gimple statements are visited in dominator order, and each
76 statement that may contribute to one of the forms of S1 above is
77 given at least one entry in the candidate table. Such statements
78 include addition, pointer addition, subtraction, multiplication,
79 negation, copies, and nontrivial type casts. If a statement may
80 represent more than one expression of the forms of S1 above,
81 multiple "interpretations" are stored in the table and chained
82 together. Examples:
83
84 * An add of two SSA names may treat either operand as the base.
85 * A multiply of two SSA names, likewise.
86 * A copy or cast may be thought of as either a CAND_MULT with
87 i = 0 and S = 1, or as a CAND_ADD with i = 0 or S = 0.
88
89 Candidate records are allocated from an obstack. They are addressed
90 both from a hash table keyed on S1, and from a vector of candidate
91 pointers arranged in predominator order.
92
93 Opportunity note
94 ----------------
95 Currently we don't recognize:
96
97 S0: Y = (S * i') - B
98 S1: X = (S * i) - B
99
100 as a strength reduction opportunity, even though this S1 would
101 also be replaceable by the S1' above. This can be added if it
102 comes up in practice.
103
104 Strength reduction in addressing
105 --------------------------------
106 There is another kind of candidate known as CAND_REF. A CAND_REF
107 describes a statement containing a memory reference having
108 complex addressing that might benefit from strength reduction.
109 Specifically, we are interested in references for which
110 get_inner_reference returns a base address, offset, and bitpos as
111 follows:
112
113 base: MEM_REF (T1, C1)
114 offset: MULT_EXPR (PLUS_EXPR (T2, C2), C3)
115 bitpos: C4 * BITS_PER_UNIT
116
117 Here T1 and T2 are arbitrary trees, and C1, C2, C3, C4 are
118 arbitrary integer constants. Note that C2 may be zero, in which
119 case the offset will be MULT_EXPR (T2, C3).
120
121 When this pattern is recognized, the original memory reference
122 can be replaced with:
123
124 MEM_REF (POINTER_PLUS_EXPR (T1, MULT_EXPR (T2, C3)),
125 C1 + (C2 * C3) + C4)
126
127 which distributes the multiply to allow constant folding. When
128 two or more addressing expressions can be represented by MEM_REFs
129 of this form, differing only in the constants C1, C2, and C4,
130 making this substitution produces more efficient addressing during
131 the RTL phases. When there are not at least two expressions with
132 the same values of T1, T2, and C3, there is nothing to be gained
133 by the replacement.
134
135 Strength reduction of CAND_REFs uses the same infrastructure as
136 that used by CAND_MULTs and CAND_ADDs. We record T1 in the base (B)
137 field, MULT_EXPR (T2, C3) in the stride (S) field, and
138 C1 + (C2 * C3) + C4 in the index (i) field. A basis for a CAND_REF
139 is thus another CAND_REF with the same B and S values. When at
140 least two CAND_REFs are chained together using the basis relation,
141 each of them is replaced as above, resulting in improved code
142 generation for addressing.
143
144 Conditional candidates
145 ======================
146
147 Conditional candidates are best illustrated with an example.
148 Consider the code sequence:
149
150 (1) x_0 = ...;
151 (2) a_0 = x_0 * 5; MULT (B: x_0; i: 0; S: 5)
152 if (...)
153 (3) x_1 = x_0 + 1; ADD (B: x_0, i: 1; S: 1)
154 (4) x_2 = PHI <x_0, x_1>; PHI (B: x_0, i: 0, S: 1)
155 (5) x_3 = x_2 + 1; ADD (B: x_2, i: 1, S: 1)
156 (6) a_1 = x_3 * 5; MULT (B: x_2, i: 1; S: 5)
157
158 Here strength reduction is complicated by the uncertain value of x_2.
159 A legitimate transformation is:
160
161 (1) x_0 = ...;
162 (2) a_0 = x_0 * 5;
163 if (...)
164 {
165 (3) [x_1 = x_0 + 1;]
166 (3a) t_1 = a_0 + 5;
167 }
168 (4) [x_2 = PHI <x_0, x_1>;]
169 (4a) t_2 = PHI <a_0, t_1>;
170 (5) [x_3 = x_2 + 1;]
171 (6r) a_1 = t_2 + 5;
172
173 where the bracketed instructions may go dead.
174
175 To recognize this opportunity, we have to observe that statement (6)
176 has a "hidden basis" (2). The hidden basis is unlike a normal basis
177 in that the statement and the hidden basis have different base SSA
178 names (x_2 and x_0, respectively). The relationship is established
179 when a statement's base name (x_2) is defined by a phi statement (4),
180 each argument of which (x_0, x_1) has an identical "derived base name."
181 If the argument is defined by a candidate (as x_1 is by (3)) that is a
182 CAND_ADD having a stride of 1, the derived base name of the argument is
183 the base name of the candidate (x_0). Otherwise, the argument itself
184 is its derived base name (as is the case with argument x_0).
185
186 The hidden basis for statement (6) is the nearest dominating candidate
187 whose base name is the derived base name (x_0) of the feeding phi (4),
188 and whose stride is identical to that of the statement. We can then
189 create the new "phi basis" (4a) and feeding adds along incoming arcs (3a),
190 allowing the final replacement of (6) by the strength-reduced (6r).
191
192 To facilitate this, a new kind of candidate (CAND_PHI) is introduced.
193 A CAND_PHI is not a candidate for replacement, but is maintained in the
194 candidate table to ease discovery of hidden bases. Any phi statement
195 whose arguments share a common derived base name is entered into the
196 table with the derived base name, an (arbitrary) index of zero, and a
197 stride of 1. A statement with a hidden basis can then be detected by
198 simply looking up its feeding phi definition in the candidate table,
199 extracting the derived base name, and searching for a basis in the
200 usual manner after substituting the derived base name.
201
202 Note that the transformation is only valid when the original phi and
203 the statements that define the phi's arguments are all at the same
204 position in the loop hierarchy. */
205
206
207 /* Index into the candidate vector, offset by 1. VECs are zero-based,
208 while cand_idx's are one-based, with zero indicating null. */
209 typedef unsigned cand_idx;
210
211 /* The kind of candidate. */
212 enum cand_kind
213 {
214 CAND_MULT,
215 CAND_ADD,
216 CAND_REF,
217 CAND_PHI
218 };
219
220 struct slsr_cand_d
221 {
222 /* The candidate statement S1. */
223 gimple cand_stmt;
224
225 /* The base expression B: often an SSA name, but not always. */
226 tree base_expr;
227
228 /* The stride S. */
229 tree stride;
230
231 /* The index constant i. */
232 double_int index;
233
234 /* The type of the candidate. This is normally the type of base_expr,
235 but casts may have occurred when combining feeding instructions.
236 A candidate can only be a basis for candidates of the same final type.
237 (For CAND_REFs, this is the type to be used for operand 1 of the
238 replacement MEM_REF.) */
239 tree cand_type;
240
241 /* The kind of candidate (CAND_MULT, etc.). */
242 enum cand_kind kind;
243
244 /* Index of this candidate in the candidate vector. */
245 cand_idx cand_num;
246
247 /* Index of the next candidate record for the same statement.
248 A statement may be useful in more than one way (e.g., due to
249 commutativity). So we can have multiple "interpretations"
250 of a statement. */
251 cand_idx next_interp;
252
253 /* Index of the basis statement S0, if any, in the candidate vector. */
254 cand_idx basis;
255
256 /* First candidate for which this candidate is a basis, if one exists. */
257 cand_idx dependent;
258
259 /* Next candidate having the same basis as this one. */
260 cand_idx sibling;
261
262 /* If this is a conditional candidate, the CAND_PHI candidate
263 that defines the base SSA name B. */
264 cand_idx def_phi;
265
266 /* Savings that can be expected from eliminating dead code if this
267 candidate is replaced. */
268 int dead_savings;
269 };
270
271 typedef struct slsr_cand_d slsr_cand, *slsr_cand_t;
272 typedef const struct slsr_cand_d *const_slsr_cand_t;
273
274 /* Pointers to candidates are chained together as part of a mapping
275 from base expressions to the candidates that use them. */
276
277 struct cand_chain_d
278 {
279 /* Base expression for the chain of candidates: often, but not
280 always, an SSA name. */
281 tree base_expr;
282
283 /* Pointer to a candidate. */
284 slsr_cand_t cand;
285
286 /* Chain pointer. */
287 struct cand_chain_d *next;
288
289 };
290
291 typedef struct cand_chain_d cand_chain, *cand_chain_t;
292 typedef const struct cand_chain_d *const_cand_chain_t;
293
294 /* Information about a unique "increment" associated with candidates
295 having an SSA name for a stride. An increment is the difference
296 between the index of the candidate and the index of its basis,
297 i.e., (i - i') as discussed in the module commentary.
298
299 When we are not going to generate address arithmetic we treat
300 increments that differ only in sign as the same, allowing sharing
301 of the cost of initializers. The absolute value of the increment
302 is stored in the incr_info. */
303
304 struct incr_info_d
305 {
306 /* The increment that relates a candidate to its basis. */
307 double_int incr;
308
309 /* How many times the increment occurs in the candidate tree. */
310 unsigned count;
311
312 /* Cost of replacing candidates using this increment. Negative and
313 zero costs indicate replacement should be performed. */
314 int cost;
315
316 /* If this increment is profitable but is not -1, 0, or 1, it requires
317 an initializer T_0 = stride * incr to be found or introduced in the
318 nearest common dominator of all candidates. This field holds T_0
319 for subsequent use. */
320 tree initializer;
321
322 /* If the initializer was found to already exist, this is the block
323 where it was found. */
324 basic_block init_bb;
325 };
326
327 typedef struct incr_info_d incr_info, *incr_info_t;
328
329 /* Candidates are maintained in a vector. If candidate X dominates
330 candidate Y, then X appears before Y in the vector; but the
331 converse does not necessarily hold. */
332 static vec<slsr_cand_t> cand_vec;
333
334 enum cost_consts
335 {
336 COST_NEUTRAL = 0,
337 COST_INFINITE = 1000
338 };
339
340 enum stride_status
341 {
342 UNKNOWN_STRIDE = 0,
343 KNOWN_STRIDE = 1
344 };
345
346 enum phi_adjust_status
347 {
348 NOT_PHI_ADJUST = 0,
349 PHI_ADJUST = 1
350 };
351
352 enum count_phis_status
353 {
354 DONT_COUNT_PHIS = 0,
355 COUNT_PHIS = 1
356 };
357
358 /* Pointer map embodying a mapping from statements to candidates. */
359 static struct pointer_map_t *stmt_cand_map;
360
361 /* Obstack for candidates. */
362 static struct obstack cand_obstack;
363
364 /* Obstack for candidate chains. */
365 static struct obstack chain_obstack;
366
367 /* An array INCR_VEC of incr_infos is used during analysis of related
368 candidates having an SSA name for a stride. INCR_VEC_LEN describes
369 its current length. MAX_INCR_VEC_LEN is used to avoid costly
370 pathological cases. */
371 static incr_info_t incr_vec;
372 static unsigned incr_vec_len;
373 const int MAX_INCR_VEC_LEN = 16;
374
375 /* For a chain of candidates with unknown stride, indicates whether or not
376 we must generate pointer arithmetic when replacing statements. */
377 static bool address_arithmetic_p;
378
379 /* Forward function declarations. */
380 static slsr_cand_t base_cand_from_table (tree);
381 static tree introduce_cast_before_cand (slsr_cand_t, tree, tree);
382 \f
383 /* Produce a pointer to the IDX'th candidate in the candidate vector. */
384
385 static slsr_cand_t
386 lookup_cand (cand_idx idx)
387 {
388 return cand_vec[idx - 1];
389 }
390
391 /* Helper for hashing a candidate chain header. */
392
393 struct cand_chain_hasher : typed_noop_remove <cand_chain>
394 {
395 typedef cand_chain value_type;
396 typedef cand_chain compare_type;
397 static inline hashval_t hash (const value_type *);
398 static inline bool equal (const value_type *, const compare_type *);
399 };
400
401 inline hashval_t
402 cand_chain_hasher::hash (const value_type *p)
403 {
404 tree base_expr = p->base_expr;
405 return iterative_hash_expr (base_expr, 0);
406 }
407
408 inline bool
409 cand_chain_hasher::equal (const value_type *chain1, const compare_type *chain2)
410 {
411 return operand_equal_p (chain1->base_expr, chain2->base_expr, 0);
412 }
413
414 /* Hash table embodying a mapping from base exprs to chains of candidates. */
415 static hash_table <cand_chain_hasher> base_cand_map;
416 \f
417 /* Look in the candidate table for a CAND_PHI that defines BASE and
418 return it if found; otherwise return NULL. */
419
420 static cand_idx
421 find_phi_def (tree base)
422 {
423 slsr_cand_t c;
424
425 if (TREE_CODE (base) != SSA_NAME)
426 return 0;
427
428 c = base_cand_from_table (base);
429
430 if (!c || c->kind != CAND_PHI)
431 return 0;
432
433 return c->cand_num;
434 }
435
436 /* Helper routine for find_basis_for_candidate. May be called twice:
437 once for the candidate's base expr, and optionally again for the
438 candidate's phi definition. */
439
440 static slsr_cand_t
441 find_basis_for_base_expr (slsr_cand_t c, tree base_expr)
442 {
443 cand_chain mapping_key;
444 cand_chain_t chain;
445 slsr_cand_t basis = NULL;
446
447 // Limit potential of N^2 behavior for long candidate chains.
448 int iters = 0;
449 int max_iters = PARAM_VALUE (PARAM_MAX_SLSR_CANDIDATE_SCAN);
450
451 mapping_key.base_expr = base_expr;
452 chain = base_cand_map.find (&mapping_key);
453
454 for (; chain && iters < max_iters; chain = chain->next, ++iters)
455 {
456 slsr_cand_t one_basis = chain->cand;
457
458 if (one_basis->kind != c->kind
459 || one_basis->cand_stmt == c->cand_stmt
460 || !operand_equal_p (one_basis->stride, c->stride, 0)
461 || !types_compatible_p (one_basis->cand_type, c->cand_type)
462 || !dominated_by_p (CDI_DOMINATORS,
463 gimple_bb (c->cand_stmt),
464 gimple_bb (one_basis->cand_stmt)))
465 continue;
466
467 if (!basis || basis->cand_num < one_basis->cand_num)
468 basis = one_basis;
469 }
470
471 return basis;
472 }
473
474 /* Use the base expr from candidate C to look for possible candidates
475 that can serve as a basis for C. Each potential basis must also
476 appear in a block that dominates the candidate statement and have
477 the same stride and type. If more than one possible basis exists,
478 the one with highest index in the vector is chosen; this will be
479 the most immediately dominating basis. */
480
481 static int
482 find_basis_for_candidate (slsr_cand_t c)
483 {
484 slsr_cand_t basis = find_basis_for_base_expr (c, c->base_expr);
485
486 /* If a candidate doesn't have a basis using its base expression,
487 it may have a basis hidden by one or more intervening phis. */
488 if (!basis && c->def_phi)
489 {
490 basic_block basis_bb, phi_bb;
491 slsr_cand_t phi_cand = lookup_cand (c->def_phi);
492 basis = find_basis_for_base_expr (c, phi_cand->base_expr);
493
494 if (basis)
495 {
496 /* A hidden basis must dominate the phi-definition of the
497 candidate's base name. */
498 phi_bb = gimple_bb (phi_cand->cand_stmt);
499 basis_bb = gimple_bb (basis->cand_stmt);
500
501 if (phi_bb == basis_bb
502 || !dominated_by_p (CDI_DOMINATORS, phi_bb, basis_bb))
503 {
504 basis = NULL;
505 c->basis = 0;
506 }
507
508 /* If we found a hidden basis, estimate additional dead-code
509 savings if the phi and its feeding statements can be removed. */
510 if (basis && has_single_use (gimple_phi_result (phi_cand->cand_stmt)))
511 c->dead_savings += phi_cand->dead_savings;
512 }
513 }
514
515 if (basis)
516 {
517 c->sibling = basis->dependent;
518 basis->dependent = c->cand_num;
519 return basis->cand_num;
520 }
521
522 return 0;
523 }
524
525 /* Record a mapping from the base expression of C to C itself, indicating that
526 C may potentially serve as a basis using that base expression. */
527
528 static void
529 record_potential_basis (slsr_cand_t c)
530 {
531 cand_chain_t node;
532 cand_chain **slot;
533
534 node = (cand_chain_t) obstack_alloc (&chain_obstack, sizeof (cand_chain));
535 node->base_expr = c->base_expr;
536 node->cand = c;
537 node->next = NULL;
538 slot = base_cand_map.find_slot (node, INSERT);
539
540 if (*slot)
541 {
542 cand_chain_t head = (cand_chain_t) (*slot);
543 node->next = head->next;
544 head->next = node;
545 }
546 else
547 *slot = node;
548 }
549
550 /* Allocate storage for a new candidate and initialize its fields.
551 Attempt to find a basis for the candidate. */
552
553 static slsr_cand_t
554 alloc_cand_and_find_basis (enum cand_kind kind, gimple gs, tree base,
555 double_int index, tree stride, tree ctype,
556 unsigned savings)
557 {
558 slsr_cand_t c = (slsr_cand_t) obstack_alloc (&cand_obstack,
559 sizeof (slsr_cand));
560 c->cand_stmt = gs;
561 c->base_expr = base;
562 c->stride = stride;
563 c->index = index;
564 c->cand_type = ctype;
565 c->kind = kind;
566 c->cand_num = cand_vec.length () + 1;
567 c->next_interp = 0;
568 c->dependent = 0;
569 c->sibling = 0;
570 c->def_phi = kind == CAND_MULT ? find_phi_def (base) : 0;
571 c->dead_savings = savings;
572
573 cand_vec.safe_push (c);
574
575 if (kind == CAND_PHI)
576 c->basis = 0;
577 else
578 c->basis = find_basis_for_candidate (c);
579
580 record_potential_basis (c);
581
582 return c;
583 }
584
585 /* Determine the target cost of statement GS when compiling according
586 to SPEED. */
587
588 static int
589 stmt_cost (gimple gs, bool speed)
590 {
591 tree lhs, rhs1, rhs2;
592 enum machine_mode lhs_mode;
593
594 gcc_assert (is_gimple_assign (gs));
595 lhs = gimple_assign_lhs (gs);
596 rhs1 = gimple_assign_rhs1 (gs);
597 lhs_mode = TYPE_MODE (TREE_TYPE (lhs));
598
599 switch (gimple_assign_rhs_code (gs))
600 {
601 case MULT_EXPR:
602 rhs2 = gimple_assign_rhs2 (gs);
603
604 if (host_integerp (rhs2, 0))
605 return mult_by_coeff_cost (TREE_INT_CST_LOW (rhs2), lhs_mode, speed);
606
607 gcc_assert (TREE_CODE (rhs1) != INTEGER_CST);
608 return mul_cost (speed, lhs_mode);
609
610 case PLUS_EXPR:
611 case POINTER_PLUS_EXPR:
612 case MINUS_EXPR:
613 return add_cost (speed, lhs_mode);
614
615 case NEGATE_EXPR:
616 return neg_cost (speed, lhs_mode);
617
618 case NOP_EXPR:
619 return convert_cost (lhs_mode, TYPE_MODE (TREE_TYPE (rhs1)), speed);
620
621 /* Note that we don't assign costs to copies that in most cases
622 will go away. */
623 default:
624 ;
625 }
626
627 gcc_unreachable ();
628 return 0;
629 }
630
631 /* Look up the defining statement for BASE_IN and return a pointer
632 to its candidate in the candidate table, if any; otherwise NULL.
633 Only CAND_ADD and CAND_MULT candidates are returned. */
634
635 static slsr_cand_t
636 base_cand_from_table (tree base_in)
637 {
638 slsr_cand_t *result;
639
640 gimple def = SSA_NAME_DEF_STMT (base_in);
641 if (!def)
642 return (slsr_cand_t) NULL;
643
644 result = (slsr_cand_t *) pointer_map_contains (stmt_cand_map, def);
645
646 if (result && (*result)->kind != CAND_REF)
647 return *result;
648
649 return (slsr_cand_t) NULL;
650 }
651
652 /* Add an entry to the statement-to-candidate mapping. */
653
654 static void
655 add_cand_for_stmt (gimple gs, slsr_cand_t c)
656 {
657 void **slot = pointer_map_insert (stmt_cand_map, gs);
658 gcc_assert (!*slot);
659 *slot = c;
660 }
661 \f
662 /* Given PHI which contains a phi statement, determine whether it
663 satisfies all the requirements of a phi candidate. If so, create
664 a candidate. Note that a CAND_PHI never has a basis itself, but
665 is used to help find a basis for subsequent candidates. */
666
667 static void
668 slsr_process_phi (gimple phi, bool speed)
669 {
670 unsigned i;
671 tree arg0_base = NULL_TREE, base_type;
672 slsr_cand_t c;
673 struct loop *cand_loop = gimple_bb (phi)->loop_father;
674 unsigned savings = 0;
675
676 /* A CAND_PHI requires each of its arguments to have the same
677 derived base name. (See the module header commentary for a
678 definition of derived base names.) Furthermore, all feeding
679 definitions must be in the same position in the loop hierarchy
680 as PHI. */
681
682 for (i = 0; i < gimple_phi_num_args (phi); i++)
683 {
684 slsr_cand_t arg_cand;
685 tree arg = gimple_phi_arg_def (phi, i);
686 tree derived_base_name = NULL_TREE;
687 gimple arg_stmt = NULL;
688 basic_block arg_bb = NULL;
689
690 if (TREE_CODE (arg) != SSA_NAME)
691 return;
692
693 arg_cand = base_cand_from_table (arg);
694
695 if (arg_cand)
696 {
697 while (arg_cand->kind != CAND_ADD && arg_cand->kind != CAND_PHI)
698 {
699 if (!arg_cand->next_interp)
700 return;
701
702 arg_cand = lookup_cand (arg_cand->next_interp);
703 }
704
705 if (!integer_onep (arg_cand->stride))
706 return;
707
708 derived_base_name = arg_cand->base_expr;
709 arg_stmt = arg_cand->cand_stmt;
710 arg_bb = gimple_bb (arg_stmt);
711
712 /* Gather potential dead code savings if the phi statement
713 can be removed later on. */
714 if (has_single_use (arg))
715 {
716 if (gimple_code (arg_stmt) == GIMPLE_PHI)
717 savings += arg_cand->dead_savings;
718 else
719 savings += stmt_cost (arg_stmt, speed);
720 }
721 }
722 else
723 {
724 derived_base_name = arg;
725
726 if (SSA_NAME_IS_DEFAULT_DEF (arg))
727 arg_bb = single_succ (ENTRY_BLOCK_PTR);
728 else
729 gimple_bb (SSA_NAME_DEF_STMT (arg));
730 }
731
732 if (!arg_bb || arg_bb->loop_father != cand_loop)
733 return;
734
735 if (i == 0)
736 arg0_base = derived_base_name;
737 else if (!operand_equal_p (derived_base_name, arg0_base, 0))
738 return;
739 }
740
741 /* Create the candidate. "alloc_cand_and_find_basis" is named
742 misleadingly for this case, as no basis will be sought for a
743 CAND_PHI. */
744 base_type = TREE_TYPE (arg0_base);
745
746 c = alloc_cand_and_find_basis (CAND_PHI, phi, arg0_base, double_int_zero,
747 integer_one_node, base_type, savings);
748
749 /* Add the candidate to the statement-candidate mapping. */
750 add_cand_for_stmt (phi, c);
751 }
752
753 /* Look for the following pattern:
754
755 *PBASE: MEM_REF (T1, C1)
756
757 *POFFSET: MULT_EXPR (T2, C3) [C2 is zero]
758 or
759 MULT_EXPR (PLUS_EXPR (T2, C2), C3)
760 or
761 MULT_EXPR (MINUS_EXPR (T2, -C2), C3)
762
763 *PINDEX: C4 * BITS_PER_UNIT
764
765 If not present, leave the input values unchanged and return FALSE.
766 Otherwise, modify the input values as follows and return TRUE:
767
768 *PBASE: T1
769 *POFFSET: MULT_EXPR (T2, C3)
770 *PINDEX: C1 + (C2 * C3) + C4 */
771
772 static bool
773 restructure_reference (tree *pbase, tree *poffset, double_int *pindex,
774 tree *ptype)
775 {
776 tree base = *pbase, offset = *poffset;
777 double_int index = *pindex;
778 double_int bpu = double_int::from_uhwi (BITS_PER_UNIT);
779 tree mult_op0, mult_op1, t1, t2, type;
780 double_int c1, c2, c3, c4;
781
782 if (!base
783 || !offset
784 || TREE_CODE (base) != MEM_REF
785 || TREE_CODE (offset) != MULT_EXPR
786 || TREE_CODE (TREE_OPERAND (offset, 1)) != INTEGER_CST
787 || !index.umod (bpu, FLOOR_MOD_EXPR).is_zero ())
788 return false;
789
790 t1 = TREE_OPERAND (base, 0);
791 c1 = mem_ref_offset (base);
792 type = TREE_TYPE (TREE_OPERAND (base, 1));
793
794 mult_op0 = TREE_OPERAND (offset, 0);
795 mult_op1 = TREE_OPERAND (offset, 1);
796
797 c3 = tree_to_double_int (mult_op1);
798
799 if (TREE_CODE (mult_op0) == PLUS_EXPR)
800
801 if (TREE_CODE (TREE_OPERAND (mult_op0, 1)) == INTEGER_CST)
802 {
803 t2 = TREE_OPERAND (mult_op0, 0);
804 c2 = tree_to_double_int (TREE_OPERAND (mult_op0, 1));
805 }
806 else
807 return false;
808
809 else if (TREE_CODE (mult_op0) == MINUS_EXPR)
810
811 if (TREE_CODE (TREE_OPERAND (mult_op0, 1)) == INTEGER_CST)
812 {
813 t2 = TREE_OPERAND (mult_op0, 0);
814 c2 = -tree_to_double_int (TREE_OPERAND (mult_op0, 1));
815 }
816 else
817 return false;
818
819 else
820 {
821 t2 = mult_op0;
822 c2 = double_int_zero;
823 }
824
825 c4 = index.udiv (bpu, FLOOR_DIV_EXPR);
826
827 *pbase = t1;
828 *poffset = fold_build2 (MULT_EXPR, sizetype, t2,
829 double_int_to_tree (sizetype, c3));
830 *pindex = c1 + c2 * c3 + c4;
831 *ptype = type;
832
833 return true;
834 }
835
836 /* Given GS which contains a data reference, create a CAND_REF entry in
837 the candidate table and attempt to find a basis. */
838
839 static void
840 slsr_process_ref (gimple gs)
841 {
842 tree ref_expr, base, offset, type;
843 HOST_WIDE_INT bitsize, bitpos;
844 enum machine_mode mode;
845 int unsignedp, volatilep;
846 double_int index;
847 slsr_cand_t c;
848
849 if (gimple_vdef (gs))
850 ref_expr = gimple_assign_lhs (gs);
851 else
852 ref_expr = gimple_assign_rhs1 (gs);
853
854 if (!handled_component_p (ref_expr)
855 || TREE_CODE (ref_expr) == BIT_FIELD_REF
856 || (TREE_CODE (ref_expr) == COMPONENT_REF
857 && DECL_BIT_FIELD (TREE_OPERAND (ref_expr, 1))))
858 return;
859
860 base = get_inner_reference (ref_expr, &bitsize, &bitpos, &offset, &mode,
861 &unsignedp, &volatilep, false);
862 index = double_int::from_uhwi (bitpos);
863
864 if (!restructure_reference (&base, &offset, &index, &type))
865 return;
866
867 c = alloc_cand_and_find_basis (CAND_REF, gs, base, index, offset,
868 type, 0);
869
870 /* Add the candidate to the statement-candidate mapping. */
871 add_cand_for_stmt (gs, c);
872 }
873
874 /* Create a candidate entry for a statement GS, where GS multiplies
875 two SSA names BASE_IN and STRIDE_IN. Propagate any known information
876 about the two SSA names into the new candidate. Return the new
877 candidate. */
878
879 static slsr_cand_t
880 create_mul_ssa_cand (gimple gs, tree base_in, tree stride_in, bool speed)
881 {
882 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
883 double_int index;
884 unsigned savings = 0;
885 slsr_cand_t c;
886 slsr_cand_t base_cand = base_cand_from_table (base_in);
887
888 /* Look at all interpretations of the base candidate, if necessary,
889 to find information to propagate into this candidate. */
890 while (base_cand && !base && base_cand->kind != CAND_PHI)
891 {
892
893 if (base_cand->kind == CAND_MULT && integer_onep (base_cand->stride))
894 {
895 /* Y = (B + i') * 1
896 X = Y * Z
897 ================
898 X = (B + i') * Z */
899 base = base_cand->base_expr;
900 index = base_cand->index;
901 stride = stride_in;
902 ctype = base_cand->cand_type;
903 if (has_single_use (base_in))
904 savings = (base_cand->dead_savings
905 + stmt_cost (base_cand->cand_stmt, speed));
906 }
907 else if (base_cand->kind == CAND_ADD
908 && TREE_CODE (base_cand->stride) == INTEGER_CST)
909 {
910 /* Y = B + (i' * S), S constant
911 X = Y * Z
912 ============================
913 X = B + ((i' * S) * Z) */
914 base = base_cand->base_expr;
915 index = base_cand->index * tree_to_double_int (base_cand->stride);
916 stride = stride_in;
917 ctype = base_cand->cand_type;
918 if (has_single_use (base_in))
919 savings = (base_cand->dead_savings
920 + stmt_cost (base_cand->cand_stmt, speed));
921 }
922
923 if (base_cand->next_interp)
924 base_cand = lookup_cand (base_cand->next_interp);
925 else
926 base_cand = NULL;
927 }
928
929 if (!base)
930 {
931 /* No interpretations had anything useful to propagate, so
932 produce X = (Y + 0) * Z. */
933 base = base_in;
934 index = double_int_zero;
935 stride = stride_in;
936 ctype = TREE_TYPE (base_in);
937 }
938
939 c = alloc_cand_and_find_basis (CAND_MULT, gs, base, index, stride,
940 ctype, savings);
941 return c;
942 }
943
944 /* Create a candidate entry for a statement GS, where GS multiplies
945 SSA name BASE_IN by constant STRIDE_IN. Propagate any known
946 information about BASE_IN into the new candidate. Return the new
947 candidate. */
948
949 static slsr_cand_t
950 create_mul_imm_cand (gimple gs, tree base_in, tree stride_in, bool speed)
951 {
952 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
953 double_int index, temp;
954 unsigned savings = 0;
955 slsr_cand_t c;
956 slsr_cand_t base_cand = base_cand_from_table (base_in);
957
958 /* Look at all interpretations of the base candidate, if necessary,
959 to find information to propagate into this candidate. */
960 while (base_cand && !base && base_cand->kind != CAND_PHI)
961 {
962 if (base_cand->kind == CAND_MULT
963 && TREE_CODE (base_cand->stride) == INTEGER_CST)
964 {
965 /* Y = (B + i') * S, S constant
966 X = Y * c
967 ============================
968 X = (B + i') * (S * c) */
969 base = base_cand->base_expr;
970 index = base_cand->index;
971 temp = tree_to_double_int (base_cand->stride)
972 * tree_to_double_int (stride_in);
973 stride = double_int_to_tree (TREE_TYPE (stride_in), temp);
974 ctype = base_cand->cand_type;
975 if (has_single_use (base_in))
976 savings = (base_cand->dead_savings
977 + stmt_cost (base_cand->cand_stmt, speed));
978 }
979 else if (base_cand->kind == CAND_ADD && integer_onep (base_cand->stride))
980 {
981 /* Y = B + (i' * 1)
982 X = Y * c
983 ===========================
984 X = (B + i') * c */
985 base = base_cand->base_expr;
986 index = base_cand->index;
987 stride = stride_in;
988 ctype = base_cand->cand_type;
989 if (has_single_use (base_in))
990 savings = (base_cand->dead_savings
991 + stmt_cost (base_cand->cand_stmt, speed));
992 }
993 else if (base_cand->kind == CAND_ADD
994 && base_cand->index.is_one ()
995 && TREE_CODE (base_cand->stride) == INTEGER_CST)
996 {
997 /* Y = B + (1 * S), S constant
998 X = Y * c
999 ===========================
1000 X = (B + S) * c */
1001 base = base_cand->base_expr;
1002 index = tree_to_double_int (base_cand->stride);
1003 stride = stride_in;
1004 ctype = base_cand->cand_type;
1005 if (has_single_use (base_in))
1006 savings = (base_cand->dead_savings
1007 + stmt_cost (base_cand->cand_stmt, speed));
1008 }
1009
1010 if (base_cand->next_interp)
1011 base_cand = lookup_cand (base_cand->next_interp);
1012 else
1013 base_cand = NULL;
1014 }
1015
1016 if (!base)
1017 {
1018 /* No interpretations had anything useful to propagate, so
1019 produce X = (Y + 0) * c. */
1020 base = base_in;
1021 index = double_int_zero;
1022 stride = stride_in;
1023 ctype = TREE_TYPE (base_in);
1024 }
1025
1026 c = alloc_cand_and_find_basis (CAND_MULT, gs, base, index, stride,
1027 ctype, savings);
1028 return c;
1029 }
1030
1031 /* Given GS which is a multiply of scalar integers, make an appropriate
1032 entry in the candidate table. If this is a multiply of two SSA names,
1033 create two CAND_MULT interpretations and attempt to find a basis for
1034 each of them. Otherwise, create a single CAND_MULT and attempt to
1035 find a basis. */
1036
1037 static void
1038 slsr_process_mul (gimple gs, tree rhs1, tree rhs2, bool speed)
1039 {
1040 slsr_cand_t c, c2;
1041
1042 /* If this is a multiply of an SSA name with itself, it is highly
1043 unlikely that we will get a strength reduction opportunity, so
1044 don't record it as a candidate. This simplifies the logic for
1045 finding a basis, so if this is removed that must be considered. */
1046 if (rhs1 == rhs2)
1047 return;
1048
1049 if (TREE_CODE (rhs2) == SSA_NAME)
1050 {
1051 /* Record an interpretation of this statement in the candidate table
1052 assuming RHS1 is the base expression and RHS2 is the stride. */
1053 c = create_mul_ssa_cand (gs, rhs1, rhs2, speed);
1054
1055 /* Add the first interpretation to the statement-candidate mapping. */
1056 add_cand_for_stmt (gs, c);
1057
1058 /* Record another interpretation of this statement assuming RHS1
1059 is the stride and RHS2 is the base expression. */
1060 c2 = create_mul_ssa_cand (gs, rhs2, rhs1, speed);
1061 c->next_interp = c2->cand_num;
1062 }
1063 else
1064 {
1065 /* Record an interpretation for the multiply-immediate. */
1066 c = create_mul_imm_cand (gs, rhs1, rhs2, speed);
1067
1068 /* Add the interpretation to the statement-candidate mapping. */
1069 add_cand_for_stmt (gs, c);
1070 }
1071 }
1072
1073 /* Create a candidate entry for a statement GS, where GS adds two
1074 SSA names BASE_IN and ADDEND_IN if SUBTRACT_P is false, and
1075 subtracts ADDEND_IN from BASE_IN otherwise. Propagate any known
1076 information about the two SSA names into the new candidate.
1077 Return the new candidate. */
1078
1079 static slsr_cand_t
1080 create_add_ssa_cand (gimple gs, tree base_in, tree addend_in,
1081 bool subtract_p, bool speed)
1082 {
1083 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL;
1084 double_int index;
1085 unsigned savings = 0;
1086 slsr_cand_t c;
1087 slsr_cand_t base_cand = base_cand_from_table (base_in);
1088 slsr_cand_t addend_cand = base_cand_from_table (addend_in);
1089
1090 /* The most useful transformation is a multiply-immediate feeding
1091 an add or subtract. Look for that first. */
1092 while (addend_cand && !base && addend_cand->kind != CAND_PHI)
1093 {
1094 if (addend_cand->kind == CAND_MULT
1095 && addend_cand->index.is_zero ()
1096 && TREE_CODE (addend_cand->stride) == INTEGER_CST)
1097 {
1098 /* Z = (B + 0) * S, S constant
1099 X = Y +/- Z
1100 ===========================
1101 X = Y + ((+/-1 * S) * B) */
1102 base = base_in;
1103 index = tree_to_double_int (addend_cand->stride);
1104 if (subtract_p)
1105 index = -index;
1106 stride = addend_cand->base_expr;
1107 ctype = TREE_TYPE (base_in);
1108 if (has_single_use (addend_in))
1109 savings = (addend_cand->dead_savings
1110 + stmt_cost (addend_cand->cand_stmt, speed));
1111 }
1112
1113 if (addend_cand->next_interp)
1114 addend_cand = lookup_cand (addend_cand->next_interp);
1115 else
1116 addend_cand = NULL;
1117 }
1118
1119 while (base_cand && !base && base_cand->kind != CAND_PHI)
1120 {
1121 if (base_cand->kind == CAND_ADD
1122 && (base_cand->index.is_zero ()
1123 || operand_equal_p (base_cand->stride,
1124 integer_zero_node, 0)))
1125 {
1126 /* Y = B + (i' * S), i' * S = 0
1127 X = Y +/- Z
1128 ============================
1129 X = B + (+/-1 * Z) */
1130 base = base_cand->base_expr;
1131 index = subtract_p ? double_int_minus_one : double_int_one;
1132 stride = addend_in;
1133 ctype = base_cand->cand_type;
1134 if (has_single_use (base_in))
1135 savings = (base_cand->dead_savings
1136 + stmt_cost (base_cand->cand_stmt, speed));
1137 }
1138 else if (subtract_p)
1139 {
1140 slsr_cand_t subtrahend_cand = base_cand_from_table (addend_in);
1141
1142 while (subtrahend_cand && !base && subtrahend_cand->kind != CAND_PHI)
1143 {
1144 if (subtrahend_cand->kind == CAND_MULT
1145 && subtrahend_cand->index.is_zero ()
1146 && TREE_CODE (subtrahend_cand->stride) == INTEGER_CST)
1147 {
1148 /* Z = (B + 0) * S, S constant
1149 X = Y - Z
1150 ===========================
1151 Value: X = Y + ((-1 * S) * B) */
1152 base = base_in;
1153 index = tree_to_double_int (subtrahend_cand->stride);
1154 index = -index;
1155 stride = subtrahend_cand->base_expr;
1156 ctype = TREE_TYPE (base_in);
1157 if (has_single_use (addend_in))
1158 savings = (subtrahend_cand->dead_savings
1159 + stmt_cost (subtrahend_cand->cand_stmt, speed));
1160 }
1161
1162 if (subtrahend_cand->next_interp)
1163 subtrahend_cand = lookup_cand (subtrahend_cand->next_interp);
1164 else
1165 subtrahend_cand = NULL;
1166 }
1167 }
1168
1169 if (base_cand->next_interp)
1170 base_cand = lookup_cand (base_cand->next_interp);
1171 else
1172 base_cand = NULL;
1173 }
1174
1175 if (!base)
1176 {
1177 /* No interpretations had anything useful to propagate, so
1178 produce X = Y + (1 * Z). */
1179 base = base_in;
1180 index = subtract_p ? double_int_minus_one : double_int_one;
1181 stride = addend_in;
1182 ctype = TREE_TYPE (base_in);
1183 }
1184
1185 c = alloc_cand_and_find_basis (CAND_ADD, gs, base, index, stride,
1186 ctype, savings);
1187 return c;
1188 }
1189
1190 /* Create a candidate entry for a statement GS, where GS adds SSA
1191 name BASE_IN to constant INDEX_IN. Propagate any known information
1192 about BASE_IN into the new candidate. Return the new candidate. */
1193
1194 static slsr_cand_t
1195 create_add_imm_cand (gimple gs, tree base_in, double_int index_in, bool speed)
1196 {
1197 enum cand_kind kind = CAND_ADD;
1198 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
1199 double_int index, multiple;
1200 unsigned savings = 0;
1201 slsr_cand_t c;
1202 slsr_cand_t base_cand = base_cand_from_table (base_in);
1203
1204 while (base_cand && !base && base_cand->kind != CAND_PHI)
1205 {
1206 bool unsigned_p = TYPE_UNSIGNED (TREE_TYPE (base_cand->stride));
1207
1208 if (TREE_CODE (base_cand->stride) == INTEGER_CST
1209 && index_in.multiple_of (tree_to_double_int (base_cand->stride),
1210 unsigned_p, &multiple))
1211 {
1212 /* Y = (B + i') * S, S constant, c = kS for some integer k
1213 X = Y + c
1214 ============================
1215 X = (B + (i'+ k)) * S
1216 OR
1217 Y = B + (i' * S), S constant, c = kS for some integer k
1218 X = Y + c
1219 ============================
1220 X = (B + (i'+ k)) * S */
1221 kind = base_cand->kind;
1222 base = base_cand->base_expr;
1223 index = base_cand->index + multiple;
1224 stride = base_cand->stride;
1225 ctype = base_cand->cand_type;
1226 if (has_single_use (base_in))
1227 savings = (base_cand->dead_savings
1228 + stmt_cost (base_cand->cand_stmt, speed));
1229 }
1230
1231 if (base_cand->next_interp)
1232 base_cand = lookup_cand (base_cand->next_interp);
1233 else
1234 base_cand = NULL;
1235 }
1236
1237 if (!base)
1238 {
1239 /* No interpretations had anything useful to propagate, so
1240 produce X = Y + (c * 1). */
1241 kind = CAND_ADD;
1242 base = base_in;
1243 index = index_in;
1244 stride = integer_one_node;
1245 ctype = TREE_TYPE (base_in);
1246 }
1247
1248 c = alloc_cand_and_find_basis (kind, gs, base, index, stride,
1249 ctype, savings);
1250 return c;
1251 }
1252
1253 /* Given GS which is an add or subtract of scalar integers or pointers,
1254 make at least one appropriate entry in the candidate table. */
1255
1256 static void
1257 slsr_process_add (gimple gs, tree rhs1, tree rhs2, bool speed)
1258 {
1259 bool subtract_p = gimple_assign_rhs_code (gs) == MINUS_EXPR;
1260 slsr_cand_t c = NULL, c2;
1261
1262 if (TREE_CODE (rhs2) == SSA_NAME)
1263 {
1264 /* First record an interpretation assuming RHS1 is the base expression
1265 and RHS2 is the stride. But it doesn't make sense for the
1266 stride to be a pointer, so don't record a candidate in that case. */
1267 if (!POINTER_TYPE_P (TREE_TYPE (rhs2)))
1268 {
1269 c = create_add_ssa_cand (gs, rhs1, rhs2, subtract_p, speed);
1270
1271 /* Add the first interpretation to the statement-candidate
1272 mapping. */
1273 add_cand_for_stmt (gs, c);
1274 }
1275
1276 /* If the two RHS operands are identical, or this is a subtract,
1277 we're done. */
1278 if (operand_equal_p (rhs1, rhs2, 0) || subtract_p)
1279 return;
1280
1281 /* Otherwise, record another interpretation assuming RHS2 is the
1282 base expression and RHS1 is the stride, again provided that the
1283 stride is not a pointer. */
1284 if (!POINTER_TYPE_P (TREE_TYPE (rhs1)))
1285 {
1286 c2 = create_add_ssa_cand (gs, rhs2, rhs1, false, speed);
1287 if (c)
1288 c->next_interp = c2->cand_num;
1289 else
1290 add_cand_for_stmt (gs, c2);
1291 }
1292 }
1293 else
1294 {
1295 double_int index;
1296
1297 /* Record an interpretation for the add-immediate. */
1298 index = tree_to_double_int (rhs2);
1299 if (subtract_p)
1300 index = -index;
1301
1302 c = create_add_imm_cand (gs, rhs1, index, speed);
1303
1304 /* Add the interpretation to the statement-candidate mapping. */
1305 add_cand_for_stmt (gs, c);
1306 }
1307 }
1308
1309 /* Given GS which is a negate of a scalar integer, make an appropriate
1310 entry in the candidate table. A negate is equivalent to a multiply
1311 by -1. */
1312
1313 static void
1314 slsr_process_neg (gimple gs, tree rhs1, bool speed)
1315 {
1316 /* Record a CAND_MULT interpretation for the multiply by -1. */
1317 slsr_cand_t c = create_mul_imm_cand (gs, rhs1, integer_minus_one_node, speed);
1318
1319 /* Add the interpretation to the statement-candidate mapping. */
1320 add_cand_for_stmt (gs, c);
1321 }
1322
1323 /* Help function for legal_cast_p, operating on two trees. Checks
1324 whether it's allowable to cast from RHS to LHS. See legal_cast_p
1325 for more details. */
1326
1327 static bool
1328 legal_cast_p_1 (tree lhs, tree rhs)
1329 {
1330 tree lhs_type, rhs_type;
1331 unsigned lhs_size, rhs_size;
1332 bool lhs_wraps, rhs_wraps;
1333
1334 lhs_type = TREE_TYPE (lhs);
1335 rhs_type = TREE_TYPE (rhs);
1336 lhs_size = TYPE_PRECISION (lhs_type);
1337 rhs_size = TYPE_PRECISION (rhs_type);
1338 lhs_wraps = TYPE_OVERFLOW_WRAPS (lhs_type);
1339 rhs_wraps = TYPE_OVERFLOW_WRAPS (rhs_type);
1340
1341 if (lhs_size < rhs_size
1342 || (rhs_wraps && !lhs_wraps)
1343 || (rhs_wraps && lhs_wraps && rhs_size != lhs_size))
1344 return false;
1345
1346 return true;
1347 }
1348
1349 /* Return TRUE if GS is a statement that defines an SSA name from
1350 a conversion and is legal for us to combine with an add and multiply
1351 in the candidate table. For example, suppose we have:
1352
1353 A = B + i;
1354 C = (type) A;
1355 D = C * S;
1356
1357 Without the type-cast, we would create a CAND_MULT for D with base B,
1358 index i, and stride S. We want to record this candidate only if it
1359 is equivalent to apply the type cast following the multiply:
1360
1361 A = B + i;
1362 E = A * S;
1363 D = (type) E;
1364
1365 We will record the type with the candidate for D. This allows us
1366 to use a similar previous candidate as a basis. If we have earlier seen
1367
1368 A' = B + i';
1369 C' = (type) A';
1370 D' = C' * S;
1371
1372 we can replace D with
1373
1374 D = D' + (i - i') * S;
1375
1376 But if moving the type-cast would change semantics, we mustn't do this.
1377
1378 This is legitimate for casts from a non-wrapping integral type to
1379 any integral type of the same or larger size. It is not legitimate
1380 to convert a wrapping type to a non-wrapping type, or to a wrapping
1381 type of a different size. I.e., with a wrapping type, we must
1382 assume that the addition B + i could wrap, in which case performing
1383 the multiply before or after one of the "illegal" type casts will
1384 have different semantics. */
1385
1386 static bool
1387 legal_cast_p (gimple gs, tree rhs)
1388 {
1389 if (!is_gimple_assign (gs)
1390 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs)))
1391 return false;
1392
1393 return legal_cast_p_1 (gimple_assign_lhs (gs), rhs);
1394 }
1395
1396 /* Given GS which is a cast to a scalar integer type, determine whether
1397 the cast is legal for strength reduction. If so, make at least one
1398 appropriate entry in the candidate table. */
1399
1400 static void
1401 slsr_process_cast (gimple gs, tree rhs1, bool speed)
1402 {
1403 tree lhs, ctype;
1404 slsr_cand_t base_cand, c, c2;
1405 unsigned savings = 0;
1406
1407 if (!legal_cast_p (gs, rhs1))
1408 return;
1409
1410 lhs = gimple_assign_lhs (gs);
1411 base_cand = base_cand_from_table (rhs1);
1412 ctype = TREE_TYPE (lhs);
1413
1414 if (base_cand && base_cand->kind != CAND_PHI)
1415 {
1416 while (base_cand)
1417 {
1418 /* Propagate all data from the base candidate except the type,
1419 which comes from the cast, and the base candidate's cast,
1420 which is no longer applicable. */
1421 if (has_single_use (rhs1))
1422 savings = (base_cand->dead_savings
1423 + stmt_cost (base_cand->cand_stmt, speed));
1424
1425 c = alloc_cand_and_find_basis (base_cand->kind, gs,
1426 base_cand->base_expr,
1427 base_cand->index, base_cand->stride,
1428 ctype, savings);
1429 if (base_cand->next_interp)
1430 base_cand = lookup_cand (base_cand->next_interp);
1431 else
1432 base_cand = NULL;
1433 }
1434 }
1435 else
1436 {
1437 /* If nothing is known about the RHS, create fresh CAND_ADD and
1438 CAND_MULT interpretations:
1439
1440 X = Y + (0 * 1)
1441 X = (Y + 0) * 1
1442
1443 The first of these is somewhat arbitrary, but the choice of
1444 1 for the stride simplifies the logic for propagating casts
1445 into their uses. */
1446 c = alloc_cand_and_find_basis (CAND_ADD, gs, rhs1, double_int_zero,
1447 integer_one_node, ctype, 0);
1448 c2 = alloc_cand_and_find_basis (CAND_MULT, gs, rhs1, double_int_zero,
1449 integer_one_node, ctype, 0);
1450 c->next_interp = c2->cand_num;
1451 }
1452
1453 /* Add the first (or only) interpretation to the statement-candidate
1454 mapping. */
1455 add_cand_for_stmt (gs, c);
1456 }
1457
1458 /* Given GS which is a copy of a scalar integer type, make at least one
1459 appropriate entry in the candidate table.
1460
1461 This interface is included for completeness, but is unnecessary
1462 if this pass immediately follows a pass that performs copy
1463 propagation, such as DOM. */
1464
1465 static void
1466 slsr_process_copy (gimple gs, tree rhs1, bool speed)
1467 {
1468 slsr_cand_t base_cand, c, c2;
1469 unsigned savings = 0;
1470
1471 base_cand = base_cand_from_table (rhs1);
1472
1473 if (base_cand && base_cand->kind != CAND_PHI)
1474 {
1475 while (base_cand)
1476 {
1477 /* Propagate all data from the base candidate. */
1478 if (has_single_use (rhs1))
1479 savings = (base_cand->dead_savings
1480 + stmt_cost (base_cand->cand_stmt, speed));
1481
1482 c = alloc_cand_and_find_basis (base_cand->kind, gs,
1483 base_cand->base_expr,
1484 base_cand->index, base_cand->stride,
1485 base_cand->cand_type, savings);
1486 if (base_cand->next_interp)
1487 base_cand = lookup_cand (base_cand->next_interp);
1488 else
1489 base_cand = NULL;
1490 }
1491 }
1492 else
1493 {
1494 /* If nothing is known about the RHS, create fresh CAND_ADD and
1495 CAND_MULT interpretations:
1496
1497 X = Y + (0 * 1)
1498 X = (Y + 0) * 1
1499
1500 The first of these is somewhat arbitrary, but the choice of
1501 1 for the stride simplifies the logic for propagating casts
1502 into their uses. */
1503 c = alloc_cand_and_find_basis (CAND_ADD, gs, rhs1, double_int_zero,
1504 integer_one_node, TREE_TYPE (rhs1), 0);
1505 c2 = alloc_cand_and_find_basis (CAND_MULT, gs, rhs1, double_int_zero,
1506 integer_one_node, TREE_TYPE (rhs1), 0);
1507 c->next_interp = c2->cand_num;
1508 }
1509
1510 /* Add the first (or only) interpretation to the statement-candidate
1511 mapping. */
1512 add_cand_for_stmt (gs, c);
1513 }
1514 \f
1515 /* Find strength-reduction candidates in block BB. */
1516
1517 static void
1518 find_candidates_in_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1519 basic_block bb)
1520 {
1521 bool speed = optimize_bb_for_speed_p (bb);
1522 gimple_stmt_iterator gsi;
1523
1524 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1525 slsr_process_phi (gsi_stmt (gsi), speed);
1526
1527 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1528 {
1529 gimple gs = gsi_stmt (gsi);
1530
1531 if (gimple_vuse (gs) && gimple_assign_single_p (gs))
1532 slsr_process_ref (gs);
1533
1534 else if (is_gimple_assign (gs)
1535 && SCALAR_INT_MODE_P
1536 (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))))
1537 {
1538 tree rhs1 = NULL_TREE, rhs2 = NULL_TREE;
1539
1540 switch (gimple_assign_rhs_code (gs))
1541 {
1542 case MULT_EXPR:
1543 case PLUS_EXPR:
1544 rhs1 = gimple_assign_rhs1 (gs);
1545 rhs2 = gimple_assign_rhs2 (gs);
1546 /* Should never happen, but currently some buggy situations
1547 in earlier phases put constants in rhs1. */
1548 if (TREE_CODE (rhs1) != SSA_NAME)
1549 continue;
1550 break;
1551
1552 /* Possible future opportunity: rhs1 of a ptr+ can be
1553 an ADDR_EXPR. */
1554 case POINTER_PLUS_EXPR:
1555 case MINUS_EXPR:
1556 rhs2 = gimple_assign_rhs2 (gs);
1557 /* Fall-through. */
1558
1559 case NOP_EXPR:
1560 case MODIFY_EXPR:
1561 case NEGATE_EXPR:
1562 rhs1 = gimple_assign_rhs1 (gs);
1563 if (TREE_CODE (rhs1) != SSA_NAME)
1564 continue;
1565 break;
1566
1567 default:
1568 ;
1569 }
1570
1571 switch (gimple_assign_rhs_code (gs))
1572 {
1573 case MULT_EXPR:
1574 slsr_process_mul (gs, rhs1, rhs2, speed);
1575 break;
1576
1577 case PLUS_EXPR:
1578 case POINTER_PLUS_EXPR:
1579 case MINUS_EXPR:
1580 slsr_process_add (gs, rhs1, rhs2, speed);
1581 break;
1582
1583 case NEGATE_EXPR:
1584 slsr_process_neg (gs, rhs1, speed);
1585 break;
1586
1587 case NOP_EXPR:
1588 slsr_process_cast (gs, rhs1, speed);
1589 break;
1590
1591 case MODIFY_EXPR:
1592 slsr_process_copy (gs, rhs1, speed);
1593 break;
1594
1595 default:
1596 ;
1597 }
1598 }
1599 }
1600 }
1601 \f
1602 /* Dump a candidate for debug. */
1603
1604 static void
1605 dump_candidate (slsr_cand_t c)
1606 {
1607 fprintf (dump_file, "%3d [%d] ", c->cand_num,
1608 gimple_bb (c->cand_stmt)->index);
1609 print_gimple_stmt (dump_file, c->cand_stmt, 0, 0);
1610 switch (c->kind)
1611 {
1612 case CAND_MULT:
1613 fputs (" MULT : (", dump_file);
1614 print_generic_expr (dump_file, c->base_expr, 0);
1615 fputs (" + ", dump_file);
1616 dump_double_int (dump_file, c->index, false);
1617 fputs (") * ", dump_file);
1618 print_generic_expr (dump_file, c->stride, 0);
1619 fputs (" : ", dump_file);
1620 break;
1621 case CAND_ADD:
1622 fputs (" ADD : ", dump_file);
1623 print_generic_expr (dump_file, c->base_expr, 0);
1624 fputs (" + (", dump_file);
1625 dump_double_int (dump_file, c->index, false);
1626 fputs (" * ", dump_file);
1627 print_generic_expr (dump_file, c->stride, 0);
1628 fputs (") : ", dump_file);
1629 break;
1630 case CAND_REF:
1631 fputs (" REF : ", dump_file);
1632 print_generic_expr (dump_file, c->base_expr, 0);
1633 fputs (" + (", dump_file);
1634 print_generic_expr (dump_file, c->stride, 0);
1635 fputs (") + ", dump_file);
1636 dump_double_int (dump_file, c->index, false);
1637 fputs (" : ", dump_file);
1638 break;
1639 case CAND_PHI:
1640 fputs (" PHI : ", dump_file);
1641 print_generic_expr (dump_file, c->base_expr, 0);
1642 fputs (" + (unknown * ", dump_file);
1643 print_generic_expr (dump_file, c->stride, 0);
1644 fputs (") : ", dump_file);
1645 break;
1646 default:
1647 gcc_unreachable ();
1648 }
1649 print_generic_expr (dump_file, c->cand_type, 0);
1650 fprintf (dump_file, "\n basis: %d dependent: %d sibling: %d\n",
1651 c->basis, c->dependent, c->sibling);
1652 fprintf (dump_file, " next-interp: %d dead-savings: %d\n",
1653 c->next_interp, c->dead_savings);
1654 if (c->def_phi)
1655 fprintf (dump_file, " phi: %d\n", c->def_phi);
1656 fputs ("\n", dump_file);
1657 }
1658
1659 /* Dump the candidate vector for debug. */
1660
1661 static void
1662 dump_cand_vec (void)
1663 {
1664 unsigned i;
1665 slsr_cand_t c;
1666
1667 fprintf (dump_file, "\nStrength reduction candidate vector:\n\n");
1668
1669 FOR_EACH_VEC_ELT (cand_vec, i, c)
1670 dump_candidate (c);
1671 }
1672
1673 /* Callback used to dump the candidate chains hash table. */
1674
1675 int
1676 ssa_base_cand_dump_callback (cand_chain **slot, void *ignored ATTRIBUTE_UNUSED)
1677 {
1678 const_cand_chain_t chain = *slot;
1679 cand_chain_t p;
1680
1681 print_generic_expr (dump_file, chain->base_expr, 0);
1682 fprintf (dump_file, " -> %d", chain->cand->cand_num);
1683
1684 for (p = chain->next; p; p = p->next)
1685 fprintf (dump_file, " -> %d", p->cand->cand_num);
1686
1687 fputs ("\n", dump_file);
1688 return 1;
1689 }
1690
1691 /* Dump the candidate chains. */
1692
1693 static void
1694 dump_cand_chains (void)
1695 {
1696 fprintf (dump_file, "\nStrength reduction candidate chains:\n\n");
1697 base_cand_map.traverse_noresize <void *, ssa_base_cand_dump_callback> (NULL);
1698 fputs ("\n", dump_file);
1699 }
1700
1701 /* Dump the increment vector for debug. */
1702
1703 static void
1704 dump_incr_vec (void)
1705 {
1706 if (dump_file && (dump_flags & TDF_DETAILS))
1707 {
1708 unsigned i;
1709
1710 fprintf (dump_file, "\nIncrement vector:\n\n");
1711
1712 for (i = 0; i < incr_vec_len; i++)
1713 {
1714 fprintf (dump_file, "%3d increment: ", i);
1715 dump_double_int (dump_file, incr_vec[i].incr, false);
1716 fprintf (dump_file, "\n count: %d", incr_vec[i].count);
1717 fprintf (dump_file, "\n cost: %d", incr_vec[i].cost);
1718 fputs ("\n initializer: ", dump_file);
1719 print_generic_expr (dump_file, incr_vec[i].initializer, 0);
1720 fputs ("\n\n", dump_file);
1721 }
1722 }
1723 }
1724 \f
1725 /* Replace *EXPR in candidate C with an equivalent strength-reduced
1726 data reference. */
1727
1728 static void
1729 replace_ref (tree *expr, slsr_cand_t c)
1730 {
1731 tree add_expr = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (c->base_expr),
1732 c->base_expr, c->stride);
1733 tree mem_ref = fold_build2 (MEM_REF, TREE_TYPE (*expr), add_expr,
1734 double_int_to_tree (c->cand_type, c->index));
1735
1736 /* Gimplify the base addressing expression for the new MEM_REF tree. */
1737 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
1738 TREE_OPERAND (mem_ref, 0)
1739 = force_gimple_operand_gsi (&gsi, TREE_OPERAND (mem_ref, 0),
1740 /*simple_p=*/true, NULL,
1741 /*before=*/true, GSI_SAME_STMT);
1742 copy_ref_info (mem_ref, *expr);
1743 *expr = mem_ref;
1744 update_stmt (c->cand_stmt);
1745 }
1746
1747 /* Replace CAND_REF candidate C, each sibling of candidate C, and each
1748 dependent of candidate C with an equivalent strength-reduced data
1749 reference. */
1750
1751 static void
1752 replace_refs (slsr_cand_t c)
1753 {
1754 if (gimple_vdef (c->cand_stmt))
1755 {
1756 tree *lhs = gimple_assign_lhs_ptr (c->cand_stmt);
1757 replace_ref (lhs, c);
1758 }
1759 else
1760 {
1761 tree *rhs = gimple_assign_rhs1_ptr (c->cand_stmt);
1762 replace_ref (rhs, c);
1763 }
1764
1765 if (c->sibling)
1766 replace_refs (lookup_cand (c->sibling));
1767
1768 if (c->dependent)
1769 replace_refs (lookup_cand (c->dependent));
1770 }
1771
1772 /* Return TRUE if candidate C is dependent upon a PHI. */
1773
1774 static bool
1775 phi_dependent_cand_p (slsr_cand_t c)
1776 {
1777 /* A candidate is not necessarily dependent upon a PHI just because
1778 it has a phi definition for its base name. It may have a basis
1779 that relies upon the same phi definition, in which case the PHI
1780 is irrelevant to this candidate. */
1781 return (c->def_phi
1782 && c->basis
1783 && lookup_cand (c->basis)->def_phi != c->def_phi);
1784 }
1785
1786 /* Calculate the increment required for candidate C relative to
1787 its basis. */
1788
1789 static double_int
1790 cand_increment (slsr_cand_t c)
1791 {
1792 slsr_cand_t basis;
1793
1794 /* If the candidate doesn't have a basis, just return its own
1795 index. This is useful in record_increments to help us find
1796 an existing initializer. Also, if the candidate's basis is
1797 hidden by a phi, then its own index will be the increment
1798 from the newly introduced phi basis. */
1799 if (!c->basis || phi_dependent_cand_p (c))
1800 return c->index;
1801
1802 basis = lookup_cand (c->basis);
1803 gcc_assert (operand_equal_p (c->base_expr, basis->base_expr, 0));
1804 return c->index - basis->index;
1805 }
1806
1807 /* Calculate the increment required for candidate C relative to
1808 its basis. If we aren't going to generate pointer arithmetic
1809 for this candidate, return the absolute value of that increment
1810 instead. */
1811
1812 static inline double_int
1813 cand_abs_increment (slsr_cand_t c)
1814 {
1815 double_int increment = cand_increment (c);
1816
1817 if (!address_arithmetic_p && increment.is_negative ())
1818 increment = -increment;
1819
1820 return increment;
1821 }
1822
1823 /* Return TRUE iff candidate C has already been replaced under
1824 another interpretation. */
1825
1826 static inline bool
1827 cand_already_replaced (slsr_cand_t c)
1828 {
1829 return (gimple_bb (c->cand_stmt) == 0);
1830 }
1831
1832 /* Common logic used by replace_unconditional_candidate and
1833 replace_conditional_candidate. */
1834
1835 static void
1836 replace_mult_candidate (slsr_cand_t c, tree basis_name, double_int bump)
1837 {
1838 tree target_type = TREE_TYPE (gimple_assign_lhs (c->cand_stmt));
1839 enum tree_code cand_code = gimple_assign_rhs_code (c->cand_stmt);
1840
1841 /* It is highly unlikely, but possible, that the resulting
1842 bump doesn't fit in a HWI. Abandon the replacement
1843 in this case. This does not affect siblings or dependents
1844 of C. Restriction to signed HWI is conservative for unsigned
1845 types but allows for safe negation without twisted logic. */
1846 if (bump.fits_shwi ()
1847 && bump.to_shwi () != HOST_WIDE_INT_MIN
1848 /* It is not useful to replace casts, copies, or adds of
1849 an SSA name and a constant. */
1850 && cand_code != MODIFY_EXPR
1851 && cand_code != NOP_EXPR
1852 && cand_code != PLUS_EXPR
1853 && cand_code != POINTER_PLUS_EXPR
1854 && cand_code != MINUS_EXPR)
1855 {
1856 enum tree_code code = PLUS_EXPR;
1857 tree bump_tree;
1858 gimple stmt_to_print = NULL;
1859
1860 /* If the basis name and the candidate's LHS have incompatible
1861 types, introduce a cast. */
1862 if (!useless_type_conversion_p (target_type, TREE_TYPE (basis_name)))
1863 basis_name = introduce_cast_before_cand (c, target_type, basis_name);
1864 if (bump.is_negative ())
1865 {
1866 code = MINUS_EXPR;
1867 bump = -bump;
1868 }
1869
1870 bump_tree = double_int_to_tree (target_type, bump);
1871
1872 if (dump_file && (dump_flags & TDF_DETAILS))
1873 {
1874 fputs ("Replacing: ", dump_file);
1875 print_gimple_stmt (dump_file, c->cand_stmt, 0, 0);
1876 }
1877
1878 if (bump.is_zero ())
1879 {
1880 tree lhs = gimple_assign_lhs (c->cand_stmt);
1881 gimple copy_stmt = gimple_build_assign (lhs, basis_name);
1882 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
1883 gimple_set_location (copy_stmt, gimple_location (c->cand_stmt));
1884 gsi_replace (&gsi, copy_stmt, false);
1885 if (dump_file && (dump_flags & TDF_DETAILS))
1886 stmt_to_print = copy_stmt;
1887 }
1888 else
1889 {
1890 tree rhs1, rhs2;
1891 if (cand_code != NEGATE_EXPR) {
1892 rhs1 = gimple_assign_rhs1 (c->cand_stmt);
1893 rhs2 = gimple_assign_rhs2 (c->cand_stmt);
1894 }
1895 if (cand_code != NEGATE_EXPR
1896 && ((operand_equal_p (rhs1, basis_name, 0)
1897 && operand_equal_p (rhs2, bump_tree, 0))
1898 || (operand_equal_p (rhs1, bump_tree, 0)
1899 && operand_equal_p (rhs2, basis_name, 0))))
1900 {
1901 if (dump_file && (dump_flags & TDF_DETAILS))
1902 {
1903 fputs ("(duplicate, not actually replacing)", dump_file);
1904 stmt_to_print = c->cand_stmt;
1905 }
1906 }
1907 else
1908 {
1909 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
1910 gimple_assign_set_rhs_with_ops (&gsi, code,
1911 basis_name, bump_tree);
1912 update_stmt (gsi_stmt (gsi));
1913 if (dump_file && (dump_flags & TDF_DETAILS))
1914 stmt_to_print = gsi_stmt (gsi);
1915 }
1916 }
1917
1918 if (dump_file && (dump_flags & TDF_DETAILS))
1919 {
1920 fputs ("With: ", dump_file);
1921 print_gimple_stmt (dump_file, stmt_to_print, 0, 0);
1922 fputs ("\n", dump_file);
1923 }
1924 }
1925 }
1926
1927 /* Replace candidate C with an add or subtract. Note that we only
1928 operate on CAND_MULTs with known strides, so we will never generate
1929 a POINTER_PLUS_EXPR. Each candidate X = (B + i) * S is replaced by
1930 X = Y + ((i - i') * S), as described in the module commentary. The
1931 folded value ((i - i') * S) is referred to here as the "bump." */
1932
1933 static void
1934 replace_unconditional_candidate (slsr_cand_t c)
1935 {
1936 slsr_cand_t basis;
1937 double_int stride, bump;
1938
1939 if (cand_already_replaced (c))
1940 return;
1941
1942 basis = lookup_cand (c->basis);
1943 stride = tree_to_double_int (c->stride);
1944 bump = cand_increment (c) * stride;
1945
1946 replace_mult_candidate (c, gimple_assign_lhs (basis->cand_stmt), bump);
1947 }
1948 \f
1949 /* Return the index in the increment vector of the given INCREMENT,
1950 or -1 if not found. The latter can occur if more than
1951 MAX_INCR_VEC_LEN increments have been found. */
1952
1953 static inline int
1954 incr_vec_index (double_int increment)
1955 {
1956 unsigned i;
1957
1958 for (i = 0; i < incr_vec_len && increment != incr_vec[i].incr; i++)
1959 ;
1960
1961 if (i < incr_vec_len)
1962 return i;
1963 else
1964 return -1;
1965 }
1966
1967 /* Create a new statement along edge E to add BASIS_NAME to the product
1968 of INCREMENT and the stride of candidate C. Create and return a new
1969 SSA name from *VAR to be used as the LHS of the new statement.
1970 KNOWN_STRIDE is true iff C's stride is a constant. */
1971
1972 static tree
1973 create_add_on_incoming_edge (slsr_cand_t c, tree basis_name,
1974 double_int increment, edge e, location_t loc,
1975 bool known_stride)
1976 {
1977 basic_block insert_bb;
1978 gimple_stmt_iterator gsi;
1979 tree lhs, basis_type;
1980 gimple new_stmt;
1981
1982 /* If the add candidate along this incoming edge has the same
1983 index as C's hidden basis, the hidden basis represents this
1984 edge correctly. */
1985 if (increment.is_zero ())
1986 return basis_name;
1987
1988 basis_type = TREE_TYPE (basis_name);
1989 lhs = make_temp_ssa_name (basis_type, NULL, "slsr");
1990
1991 if (known_stride)
1992 {
1993 tree bump_tree;
1994 enum tree_code code = PLUS_EXPR;
1995 double_int bump = increment * tree_to_double_int (c->stride);
1996 if (bump.is_negative ())
1997 {
1998 code = MINUS_EXPR;
1999 bump = -bump;
2000 }
2001
2002 bump_tree = double_int_to_tree (basis_type, bump);
2003 new_stmt = gimple_build_assign_with_ops (code, lhs, basis_name,
2004 bump_tree);
2005 }
2006 else
2007 {
2008 int i;
2009 bool negate_incr = (!address_arithmetic_p && increment.is_negative ());
2010 i = incr_vec_index (negate_incr ? -increment : increment);
2011 gcc_assert (i >= 0);
2012
2013 if (incr_vec[i].initializer)
2014 {
2015 enum tree_code code = negate_incr ? MINUS_EXPR : PLUS_EXPR;
2016 new_stmt = gimple_build_assign_with_ops (code, lhs, basis_name,
2017 incr_vec[i].initializer);
2018 }
2019 else if (increment.is_one ())
2020 new_stmt = gimple_build_assign_with_ops (PLUS_EXPR, lhs, basis_name,
2021 c->stride);
2022 else if (increment.is_minus_one ())
2023 new_stmt = gimple_build_assign_with_ops (MINUS_EXPR, lhs, basis_name,
2024 c->stride);
2025 else
2026 gcc_unreachable ();
2027 }
2028
2029 insert_bb = single_succ_p (e->src) ? e->src : split_edge (e);
2030 gsi = gsi_last_bb (insert_bb);
2031
2032 if (!gsi_end_p (gsi) && is_ctrl_stmt (gsi_stmt (gsi)))
2033 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
2034 else
2035 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
2036
2037 gimple_set_location (new_stmt, loc);
2038
2039 if (dump_file && (dump_flags & TDF_DETAILS))
2040 {
2041 fprintf (dump_file, "Inserting in block %d: ", insert_bb->index);
2042 print_gimple_stmt (dump_file, new_stmt, 0, 0);
2043 }
2044
2045 return lhs;
2046 }
2047
2048 /* Given a candidate C with BASIS_NAME being the LHS of C's basis which
2049 is hidden by the phi node FROM_PHI, create a new phi node in the same
2050 block as FROM_PHI. The new phi is suitable for use as a basis by C,
2051 with its phi arguments representing conditional adjustments to the
2052 hidden basis along conditional incoming paths. Those adjustments are
2053 made by creating add statements (and sometimes recursively creating
2054 phis) along those incoming paths. LOC is the location to attach to
2055 the introduced statements. KNOWN_STRIDE is true iff C's stride is a
2056 constant. */
2057
2058 static tree
2059 create_phi_basis (slsr_cand_t c, gimple from_phi, tree basis_name,
2060 location_t loc, bool known_stride)
2061 {
2062 int i;
2063 tree name, phi_arg;
2064 gimple phi;
2065 vec<tree> phi_args;
2066 slsr_cand_t basis = lookup_cand (c->basis);
2067 int nargs = gimple_phi_num_args (from_phi);
2068 basic_block phi_bb = gimple_bb (from_phi);
2069 slsr_cand_t phi_cand = base_cand_from_table (gimple_phi_result (from_phi));
2070 phi_args.create (nargs);
2071
2072 /* Process each argument of the existing phi that represents
2073 conditionally-executed add candidates. */
2074 for (i = 0; i < nargs; i++)
2075 {
2076 edge e = (*phi_bb->preds)[i];
2077 tree arg = gimple_phi_arg_def (from_phi, i);
2078 tree feeding_def;
2079
2080 /* If the phi argument is the base name of the CAND_PHI, then
2081 this incoming arc should use the hidden basis. */
2082 if (operand_equal_p (arg, phi_cand->base_expr, 0))
2083 if (basis->index.is_zero ())
2084 feeding_def = gimple_assign_lhs (basis->cand_stmt);
2085 else
2086 {
2087 double_int incr = -basis->index;
2088 feeding_def = create_add_on_incoming_edge (c, basis_name, incr,
2089 e, loc, known_stride);
2090 }
2091 else
2092 {
2093 gimple arg_def = SSA_NAME_DEF_STMT (arg);
2094
2095 /* If there is another phi along this incoming edge, we must
2096 process it in the same fashion to ensure that all basis
2097 adjustments are made along its incoming edges. */
2098 if (gimple_code (arg_def) == GIMPLE_PHI)
2099 feeding_def = create_phi_basis (c, arg_def, basis_name,
2100 loc, known_stride);
2101 else
2102 {
2103 slsr_cand_t arg_cand = base_cand_from_table (arg);
2104 double_int diff = arg_cand->index - basis->index;
2105 feeding_def = create_add_on_incoming_edge (c, basis_name, diff,
2106 e, loc, known_stride);
2107 }
2108 }
2109
2110 /* Because of recursion, we need to save the arguments in a vector
2111 so we can create the PHI statement all at once. Otherwise the
2112 storage for the half-created PHI can be reclaimed. */
2113 phi_args.safe_push (feeding_def);
2114 }
2115
2116 /* Create the new phi basis. */
2117 name = make_temp_ssa_name (TREE_TYPE (basis_name), NULL, "slsr");
2118 phi = create_phi_node (name, phi_bb);
2119 SSA_NAME_DEF_STMT (name) = phi;
2120
2121 FOR_EACH_VEC_ELT (phi_args, i, phi_arg)
2122 {
2123 edge e = (*phi_bb->preds)[i];
2124 add_phi_arg (phi, phi_arg, e, loc);
2125 }
2126
2127 update_stmt (phi);
2128
2129 if (dump_file && (dump_flags & TDF_DETAILS))
2130 {
2131 fputs ("Introducing new phi basis: ", dump_file);
2132 print_gimple_stmt (dump_file, phi, 0, 0);
2133 }
2134
2135 return name;
2136 }
2137
2138 /* Given a candidate C whose basis is hidden by at least one intervening
2139 phi, introduce a matching number of new phis to represent its basis
2140 adjusted by conditional increments along possible incoming paths. Then
2141 replace C as though it were an unconditional candidate, using the new
2142 basis. */
2143
2144 static void
2145 replace_conditional_candidate (slsr_cand_t c)
2146 {
2147 tree basis_name, name;
2148 slsr_cand_t basis;
2149 location_t loc;
2150 double_int stride, bump;
2151
2152 /* Look up the LHS SSA name from C's basis. This will be the
2153 RHS1 of the adds we will introduce to create new phi arguments. */
2154 basis = lookup_cand (c->basis);
2155 basis_name = gimple_assign_lhs (basis->cand_stmt);
2156
2157 /* Create a new phi statement which will represent C's true basis
2158 after the transformation is complete. */
2159 loc = gimple_location (c->cand_stmt);
2160 name = create_phi_basis (c, lookup_cand (c->def_phi)->cand_stmt,
2161 basis_name, loc, KNOWN_STRIDE);
2162 /* Replace C with an add of the new basis phi and a constant. */
2163 stride = tree_to_double_int (c->stride);
2164 bump = c->index * stride;
2165
2166 replace_mult_candidate (c, name, bump);
2167 }
2168
2169 /* Compute the expected costs of inserting basis adjustments for
2170 candidate C with phi-definition PHI. The cost of inserting
2171 one adjustment is given by ONE_ADD_COST. If PHI has arguments
2172 which are themselves phi results, recursively calculate costs
2173 for those phis as well. */
2174
2175 static int
2176 phi_add_costs (gimple phi, slsr_cand_t c, int one_add_cost)
2177 {
2178 unsigned i;
2179 int cost = 0;
2180 slsr_cand_t phi_cand = base_cand_from_table (gimple_phi_result (phi));
2181
2182 for (i = 0; i < gimple_phi_num_args (phi); i++)
2183 {
2184 tree arg = gimple_phi_arg_def (phi, i);
2185
2186 if (arg != phi_cand->base_expr)
2187 {
2188 gimple arg_def = SSA_NAME_DEF_STMT (arg);
2189
2190 if (gimple_code (arg_def) == GIMPLE_PHI)
2191 cost += phi_add_costs (arg_def, c, one_add_cost);
2192 else
2193 {
2194 slsr_cand_t arg_cand = base_cand_from_table (arg);
2195
2196 if (arg_cand->index != c->index)
2197 cost += one_add_cost;
2198 }
2199 }
2200 }
2201
2202 return cost;
2203 }
2204
2205 /* For candidate C, each sibling of candidate C, and each dependent of
2206 candidate C, determine whether the candidate is dependent upon a
2207 phi that hides its basis. If not, replace the candidate unconditionally.
2208 Otherwise, determine whether the cost of introducing compensation code
2209 for the candidate is offset by the gains from strength reduction. If
2210 so, replace the candidate and introduce the compensation code. */
2211
2212 static void
2213 replace_uncond_cands_and_profitable_phis (slsr_cand_t c)
2214 {
2215 if (phi_dependent_cand_p (c))
2216 {
2217 if (c->kind == CAND_MULT)
2218 {
2219 /* A candidate dependent upon a phi will replace a multiply by
2220 a constant with an add, and will insert at most one add for
2221 each phi argument. Add these costs with the potential dead-code
2222 savings to determine profitability. */
2223 bool speed = optimize_bb_for_speed_p (gimple_bb (c->cand_stmt));
2224 int mult_savings = stmt_cost (c->cand_stmt, speed);
2225 gimple phi = lookup_cand (c->def_phi)->cand_stmt;
2226 tree phi_result = gimple_phi_result (phi);
2227 int one_add_cost = add_cost (speed,
2228 TYPE_MODE (TREE_TYPE (phi_result)));
2229 int add_costs = one_add_cost + phi_add_costs (phi, c, one_add_cost);
2230 int cost = add_costs - mult_savings - c->dead_savings;
2231
2232 if (dump_file && (dump_flags & TDF_DETAILS))
2233 {
2234 fprintf (dump_file, " Conditional candidate %d:\n", c->cand_num);
2235 fprintf (dump_file, " add_costs = %d\n", add_costs);
2236 fprintf (dump_file, " mult_savings = %d\n", mult_savings);
2237 fprintf (dump_file, " dead_savings = %d\n", c->dead_savings);
2238 fprintf (dump_file, " cost = %d\n", cost);
2239 if (cost <= COST_NEUTRAL)
2240 fputs (" Replacing...\n", dump_file);
2241 else
2242 fputs (" Not replaced.\n", dump_file);
2243 }
2244
2245 if (cost <= COST_NEUTRAL)
2246 replace_conditional_candidate (c);
2247 }
2248 }
2249 else
2250 replace_unconditional_candidate (c);
2251
2252 if (c->sibling)
2253 replace_uncond_cands_and_profitable_phis (lookup_cand (c->sibling));
2254
2255 if (c->dependent)
2256 replace_uncond_cands_and_profitable_phis (lookup_cand (c->dependent));
2257 }
2258 \f
2259 /* Count the number of candidates in the tree rooted at C that have
2260 not already been replaced under other interpretations. */
2261
2262 static int
2263 count_candidates (slsr_cand_t c)
2264 {
2265 unsigned count = cand_already_replaced (c) ? 0 : 1;
2266
2267 if (c->sibling)
2268 count += count_candidates (lookup_cand (c->sibling));
2269
2270 if (c->dependent)
2271 count += count_candidates (lookup_cand (c->dependent));
2272
2273 return count;
2274 }
2275
2276 /* Increase the count of INCREMENT by one in the increment vector.
2277 INCREMENT is associated with candidate C. If INCREMENT is to be
2278 conditionally executed as part of a conditional candidate replacement,
2279 IS_PHI_ADJUST is true, otherwise false. If an initializer
2280 T_0 = stride * I is provided by a candidate that dominates all
2281 candidates with the same increment, also record T_0 for subsequent use. */
2282
2283 static void
2284 record_increment (slsr_cand_t c, double_int increment, bool is_phi_adjust)
2285 {
2286 bool found = false;
2287 unsigned i;
2288
2289 /* Treat increments that differ only in sign as identical so as to
2290 share initializers, unless we are generating pointer arithmetic. */
2291 if (!address_arithmetic_p && increment.is_negative ())
2292 increment = -increment;
2293
2294 for (i = 0; i < incr_vec_len; i++)
2295 {
2296 if (incr_vec[i].incr == increment)
2297 {
2298 incr_vec[i].count++;
2299 found = true;
2300
2301 /* If we previously recorded an initializer that doesn't
2302 dominate this candidate, it's not going to be useful to
2303 us after all. */
2304 if (incr_vec[i].initializer
2305 && !dominated_by_p (CDI_DOMINATORS,
2306 gimple_bb (c->cand_stmt),
2307 incr_vec[i].init_bb))
2308 {
2309 incr_vec[i].initializer = NULL_TREE;
2310 incr_vec[i].init_bb = NULL;
2311 }
2312
2313 break;
2314 }
2315 }
2316
2317 if (!found && incr_vec_len < MAX_INCR_VEC_LEN - 1)
2318 {
2319 /* The first time we see an increment, create the entry for it.
2320 If this is the root candidate which doesn't have a basis, set
2321 the count to zero. We're only processing it so it can possibly
2322 provide an initializer for other candidates. */
2323 incr_vec[incr_vec_len].incr = increment;
2324 incr_vec[incr_vec_len].count = c->basis || is_phi_adjust ? 1 : 0;
2325 incr_vec[incr_vec_len].cost = COST_INFINITE;
2326
2327 /* Optimistically record the first occurrence of this increment
2328 as providing an initializer (if it does); we will revise this
2329 opinion later if it doesn't dominate all other occurrences.
2330 Exception: increments of -1, 0, 1 never need initializers;
2331 and phi adjustments don't ever provide initializers. */
2332 if (c->kind == CAND_ADD
2333 && !is_phi_adjust
2334 && c->index == increment
2335 && (increment.sgt (double_int_one)
2336 || increment.slt (double_int_minus_one))
2337 && (gimple_assign_rhs_code (c->cand_stmt) == PLUS_EXPR
2338 || gimple_assign_rhs_code (c->cand_stmt) == POINTER_PLUS_EXPR))
2339 {
2340 tree t0 = NULL_TREE;
2341 tree rhs1 = gimple_assign_rhs1 (c->cand_stmt);
2342 tree rhs2 = gimple_assign_rhs2 (c->cand_stmt);
2343 if (operand_equal_p (rhs1, c->base_expr, 0))
2344 t0 = rhs2;
2345 else if (operand_equal_p (rhs2, c->base_expr, 0))
2346 t0 = rhs1;
2347 if (t0
2348 && SSA_NAME_DEF_STMT (t0)
2349 && gimple_bb (SSA_NAME_DEF_STMT (t0)))
2350 {
2351 incr_vec[incr_vec_len].initializer = t0;
2352 incr_vec[incr_vec_len++].init_bb
2353 = gimple_bb (SSA_NAME_DEF_STMT (t0));
2354 }
2355 else
2356 {
2357 incr_vec[incr_vec_len].initializer = NULL_TREE;
2358 incr_vec[incr_vec_len++].init_bb = NULL;
2359 }
2360 }
2361 else
2362 {
2363 incr_vec[incr_vec_len].initializer = NULL_TREE;
2364 incr_vec[incr_vec_len++].init_bb = NULL;
2365 }
2366 }
2367 }
2368
2369 /* Given phi statement PHI that hides a candidate from its BASIS, find
2370 the increments along each incoming arc (recursively handling additional
2371 phis that may be present) and record them. These increments are the
2372 difference in index between the index-adjusting statements and the
2373 index of the basis. */
2374
2375 static void
2376 record_phi_increments (slsr_cand_t basis, gimple phi)
2377 {
2378 unsigned i;
2379 slsr_cand_t phi_cand = base_cand_from_table (gimple_phi_result (phi));
2380
2381 for (i = 0; i < gimple_phi_num_args (phi); i++)
2382 {
2383 tree arg = gimple_phi_arg_def (phi, i);
2384
2385 if (!operand_equal_p (arg, phi_cand->base_expr, 0))
2386 {
2387 gimple arg_def = SSA_NAME_DEF_STMT (arg);
2388
2389 if (gimple_code (arg_def) == GIMPLE_PHI)
2390 record_phi_increments (basis, arg_def);
2391 else
2392 {
2393 slsr_cand_t arg_cand = base_cand_from_table (arg);
2394 double_int diff = arg_cand->index - basis->index;
2395 record_increment (arg_cand, diff, PHI_ADJUST);
2396 }
2397 }
2398 }
2399 }
2400
2401 /* Determine how many times each unique increment occurs in the set
2402 of candidates rooted at C's parent, recording the data in the
2403 increment vector. For each unique increment I, if an initializer
2404 T_0 = stride * I is provided by a candidate that dominates all
2405 candidates with the same increment, also record T_0 for subsequent
2406 use. */
2407
2408 static void
2409 record_increments (slsr_cand_t c)
2410 {
2411 if (!cand_already_replaced (c))
2412 {
2413 if (!phi_dependent_cand_p (c))
2414 record_increment (c, cand_increment (c), NOT_PHI_ADJUST);
2415 else
2416 {
2417 /* A candidate with a basis hidden by a phi will have one
2418 increment for its relationship to the index represented by
2419 the phi, and potentially additional increments along each
2420 incoming edge. For the root of the dependency tree (which
2421 has no basis), process just the initial index in case it has
2422 an initializer that can be used by subsequent candidates. */
2423 record_increment (c, c->index, NOT_PHI_ADJUST);
2424
2425 if (c->basis)
2426 record_phi_increments (lookup_cand (c->basis),
2427 lookup_cand (c->def_phi)->cand_stmt);
2428 }
2429 }
2430
2431 if (c->sibling)
2432 record_increments (lookup_cand (c->sibling));
2433
2434 if (c->dependent)
2435 record_increments (lookup_cand (c->dependent));
2436 }
2437
2438 /* Add up and return the costs of introducing add statements that
2439 require the increment INCR on behalf of candidate C and phi
2440 statement PHI. Accumulate into *SAVINGS the potential savings
2441 from removing existing statements that feed PHI and have no other
2442 uses. */
2443
2444 static int
2445 phi_incr_cost (slsr_cand_t c, double_int incr, gimple phi, int *savings)
2446 {
2447 unsigned i;
2448 int cost = 0;
2449 slsr_cand_t basis = lookup_cand (c->basis);
2450 slsr_cand_t phi_cand = base_cand_from_table (gimple_phi_result (phi));
2451
2452 for (i = 0; i < gimple_phi_num_args (phi); i++)
2453 {
2454 tree arg = gimple_phi_arg_def (phi, i);
2455
2456 if (!operand_equal_p (arg, phi_cand->base_expr, 0))
2457 {
2458 gimple arg_def = SSA_NAME_DEF_STMT (arg);
2459
2460 if (gimple_code (arg_def) == GIMPLE_PHI)
2461 {
2462 int feeding_savings = 0;
2463 cost += phi_incr_cost (c, incr, arg_def, &feeding_savings);
2464 if (has_single_use (gimple_phi_result (arg_def)))
2465 *savings += feeding_savings;
2466 }
2467 else
2468 {
2469 slsr_cand_t arg_cand = base_cand_from_table (arg);
2470 double_int diff = arg_cand->index - basis->index;
2471
2472 if (incr == diff)
2473 {
2474 tree basis_lhs = gimple_assign_lhs (basis->cand_stmt);
2475 tree lhs = gimple_assign_lhs (arg_cand->cand_stmt);
2476 cost += add_cost (true, TYPE_MODE (TREE_TYPE (basis_lhs)));
2477 if (has_single_use (lhs))
2478 *savings += stmt_cost (arg_cand->cand_stmt, true);
2479 }
2480 }
2481 }
2482 }
2483
2484 return cost;
2485 }
2486
2487 /* Return the first candidate in the tree rooted at C that has not
2488 already been replaced, favoring siblings over dependents. */
2489
2490 static slsr_cand_t
2491 unreplaced_cand_in_tree (slsr_cand_t c)
2492 {
2493 if (!cand_already_replaced (c))
2494 return c;
2495
2496 if (c->sibling)
2497 {
2498 slsr_cand_t sib = unreplaced_cand_in_tree (lookup_cand (c->sibling));
2499 if (sib)
2500 return sib;
2501 }
2502
2503 if (c->dependent)
2504 {
2505 slsr_cand_t dep = unreplaced_cand_in_tree (lookup_cand (c->dependent));
2506 if (dep)
2507 return dep;
2508 }
2509
2510 return NULL;
2511 }
2512
2513 /* Return TRUE if the candidates in the tree rooted at C should be
2514 optimized for speed, else FALSE. We estimate this based on the block
2515 containing the most dominant candidate in the tree that has not yet
2516 been replaced. */
2517
2518 static bool
2519 optimize_cands_for_speed_p (slsr_cand_t c)
2520 {
2521 slsr_cand_t c2 = unreplaced_cand_in_tree (c);
2522 gcc_assert (c2);
2523 return optimize_bb_for_speed_p (gimple_bb (c2->cand_stmt));
2524 }
2525
2526 /* Add COST_IN to the lowest cost of any dependent path starting at
2527 candidate C or any of its siblings, counting only candidates along
2528 such paths with increment INCR. Assume that replacing a candidate
2529 reduces cost by REPL_SAVINGS. Also account for savings from any
2530 statements that would go dead. If COUNT_PHIS is true, include
2531 costs of introducing feeding statements for conditional candidates. */
2532
2533 static int
2534 lowest_cost_path (int cost_in, int repl_savings, slsr_cand_t c,
2535 double_int incr, bool count_phis)
2536 {
2537 int local_cost, sib_cost, savings = 0;
2538 double_int cand_incr = cand_abs_increment (c);
2539
2540 if (cand_already_replaced (c))
2541 local_cost = cost_in;
2542 else if (incr == cand_incr)
2543 local_cost = cost_in - repl_savings - c->dead_savings;
2544 else
2545 local_cost = cost_in - c->dead_savings;
2546
2547 if (count_phis
2548 && phi_dependent_cand_p (c)
2549 && !cand_already_replaced (c))
2550 {
2551 gimple phi = lookup_cand (c->def_phi)->cand_stmt;
2552 local_cost += phi_incr_cost (c, incr, phi, &savings);
2553
2554 if (has_single_use (gimple_phi_result (phi)))
2555 local_cost -= savings;
2556 }
2557
2558 if (c->dependent)
2559 local_cost = lowest_cost_path (local_cost, repl_savings,
2560 lookup_cand (c->dependent), incr,
2561 count_phis);
2562
2563 if (c->sibling)
2564 {
2565 sib_cost = lowest_cost_path (cost_in, repl_savings,
2566 lookup_cand (c->sibling), incr,
2567 count_phis);
2568 local_cost = MIN (local_cost, sib_cost);
2569 }
2570
2571 return local_cost;
2572 }
2573
2574 /* Compute the total savings that would accrue from all replacements
2575 in the candidate tree rooted at C, counting only candidates with
2576 increment INCR. Assume that replacing a candidate reduces cost
2577 by REPL_SAVINGS. Also account for savings from statements that
2578 would go dead. */
2579
2580 static int
2581 total_savings (int repl_savings, slsr_cand_t c, double_int incr,
2582 bool count_phis)
2583 {
2584 int savings = 0;
2585 double_int cand_incr = cand_abs_increment (c);
2586
2587 if (incr == cand_incr && !cand_already_replaced (c))
2588 savings += repl_savings + c->dead_savings;
2589
2590 if (count_phis
2591 && phi_dependent_cand_p (c)
2592 && !cand_already_replaced (c))
2593 {
2594 int phi_savings = 0;
2595 gimple phi = lookup_cand (c->def_phi)->cand_stmt;
2596 savings -= phi_incr_cost (c, incr, phi, &phi_savings);
2597
2598 if (has_single_use (gimple_phi_result (phi)))
2599 savings += phi_savings;
2600 }
2601
2602 if (c->dependent)
2603 savings += total_savings (repl_savings, lookup_cand (c->dependent), incr,
2604 count_phis);
2605
2606 if (c->sibling)
2607 savings += total_savings (repl_savings, lookup_cand (c->sibling), incr,
2608 count_phis);
2609
2610 return savings;
2611 }
2612
2613 /* Use target-specific costs to determine and record which increments
2614 in the current candidate tree are profitable to replace, assuming
2615 MODE and SPEED. FIRST_DEP is the first dependent of the root of
2616 the candidate tree.
2617
2618 One slight limitation here is that we don't account for the possible
2619 introduction of casts in some cases. See replace_one_candidate for
2620 the cases where these are introduced. This should probably be cleaned
2621 up sometime. */
2622
2623 static void
2624 analyze_increments (slsr_cand_t first_dep, enum machine_mode mode, bool speed)
2625 {
2626 unsigned i;
2627
2628 for (i = 0; i < incr_vec_len; i++)
2629 {
2630 HOST_WIDE_INT incr = incr_vec[i].incr.to_shwi ();
2631
2632 /* If somehow this increment is bigger than a HWI, we won't
2633 be optimizing candidates that use it. And if the increment
2634 has a count of zero, nothing will be done with it. */
2635 if (!incr_vec[i].incr.fits_shwi () || !incr_vec[i].count)
2636 incr_vec[i].cost = COST_INFINITE;
2637
2638 /* Increments of 0, 1, and -1 are always profitable to replace,
2639 because they always replace a multiply or add with an add or
2640 copy, and may cause one or more existing instructions to go
2641 dead. Exception: -1 can't be assumed to be profitable for
2642 pointer addition. */
2643 else if (incr == 0
2644 || incr == 1
2645 || (incr == -1
2646 && (gimple_assign_rhs_code (first_dep->cand_stmt)
2647 != POINTER_PLUS_EXPR)))
2648 incr_vec[i].cost = COST_NEUTRAL;
2649
2650 /* FORNOW: If we need to add an initializer, give up if a cast from
2651 the candidate's type to its stride's type can lose precision.
2652 This could eventually be handled better by expressly retaining the
2653 result of a cast to a wider type in the stride. Example:
2654
2655 short int _1;
2656 _2 = (int) _1;
2657 _3 = _2 * 10;
2658 _4 = x + _3; ADD: x + (10 * _1) : int
2659 _5 = _2 * 15;
2660 _6 = x + _3; ADD: x + (15 * _1) : int
2661
2662 Right now replacing _6 would cause insertion of an initializer
2663 of the form "short int T = _1 * 5;" followed by a cast to
2664 int, which could overflow incorrectly. Had we recorded _2 or
2665 (int)_1 as the stride, this wouldn't happen. However, doing
2666 this breaks other opportunities, so this will require some
2667 care. */
2668 else if (!incr_vec[i].initializer
2669 && TREE_CODE (first_dep->stride) != INTEGER_CST
2670 && !legal_cast_p_1 (first_dep->stride,
2671 gimple_assign_lhs (first_dep->cand_stmt)))
2672
2673 incr_vec[i].cost = COST_INFINITE;
2674
2675 /* If we need to add an initializer, make sure we don't introduce
2676 a multiply by a pointer type, which can happen in certain cast
2677 scenarios. FIXME: When cleaning up these cast issues, we can
2678 afford to introduce the multiply provided we cast out to an
2679 unsigned int of appropriate size. */
2680 else if (!incr_vec[i].initializer
2681 && TREE_CODE (first_dep->stride) != INTEGER_CST
2682 && POINTER_TYPE_P (TREE_TYPE (first_dep->stride)))
2683
2684 incr_vec[i].cost = COST_INFINITE;
2685
2686 /* For any other increment, if this is a multiply candidate, we
2687 must introduce a temporary T and initialize it with
2688 T_0 = stride * increment. When optimizing for speed, walk the
2689 candidate tree to calculate the best cost reduction along any
2690 path; if it offsets the fixed cost of inserting the initializer,
2691 replacing the increment is profitable. When optimizing for
2692 size, instead calculate the total cost reduction from replacing
2693 all candidates with this increment. */
2694 else if (first_dep->kind == CAND_MULT)
2695 {
2696 int cost = mult_by_coeff_cost (incr, mode, speed);
2697 int repl_savings = mul_cost (speed, mode) - add_cost (speed, mode);
2698 if (speed)
2699 cost = lowest_cost_path (cost, repl_savings, first_dep,
2700 incr_vec[i].incr, COUNT_PHIS);
2701 else
2702 cost -= total_savings (repl_savings, first_dep, incr_vec[i].incr,
2703 COUNT_PHIS);
2704
2705 incr_vec[i].cost = cost;
2706 }
2707
2708 /* If this is an add candidate, the initializer may already
2709 exist, so only calculate the cost of the initializer if it
2710 doesn't. We are replacing one add with another here, so the
2711 known replacement savings is zero. We will account for removal
2712 of dead instructions in lowest_cost_path or total_savings. */
2713 else
2714 {
2715 int cost = 0;
2716 if (!incr_vec[i].initializer)
2717 cost = mult_by_coeff_cost (incr, mode, speed);
2718
2719 if (speed)
2720 cost = lowest_cost_path (cost, 0, first_dep, incr_vec[i].incr,
2721 DONT_COUNT_PHIS);
2722 else
2723 cost -= total_savings (0, first_dep, incr_vec[i].incr,
2724 DONT_COUNT_PHIS);
2725
2726 incr_vec[i].cost = cost;
2727 }
2728 }
2729 }
2730
2731 /* Return the nearest common dominator of BB1 and BB2. If the blocks
2732 are identical, return the earlier of C1 and C2 in *WHERE. Otherwise,
2733 if the NCD matches BB1, return C1 in *WHERE; if the NCD matches BB2,
2734 return C2 in *WHERE; and if the NCD matches neither, return NULL in
2735 *WHERE. Note: It is possible for one of C1 and C2 to be NULL. */
2736
2737 static basic_block
2738 ncd_for_two_cands (basic_block bb1, basic_block bb2,
2739 slsr_cand_t c1, slsr_cand_t c2, slsr_cand_t *where)
2740 {
2741 basic_block ncd;
2742
2743 if (!bb1)
2744 {
2745 *where = c2;
2746 return bb2;
2747 }
2748
2749 if (!bb2)
2750 {
2751 *where = c1;
2752 return bb1;
2753 }
2754
2755 ncd = nearest_common_dominator (CDI_DOMINATORS, bb1, bb2);
2756
2757 /* If both candidates are in the same block, the earlier
2758 candidate wins. */
2759 if (bb1 == ncd && bb2 == ncd)
2760 {
2761 if (!c1 || (c2 && c2->cand_num < c1->cand_num))
2762 *where = c2;
2763 else
2764 *where = c1;
2765 }
2766
2767 /* Otherwise, if one of them produced a candidate in the
2768 dominator, that one wins. */
2769 else if (bb1 == ncd)
2770 *where = c1;
2771
2772 else if (bb2 == ncd)
2773 *where = c2;
2774
2775 /* If neither matches the dominator, neither wins. */
2776 else
2777 *where = NULL;
2778
2779 return ncd;
2780 }
2781
2782 /* Consider all candidates that feed PHI. Find the nearest common
2783 dominator of those candidates requiring the given increment INCR.
2784 Further find and return the nearest common dominator of this result
2785 with block NCD. If the returned block contains one or more of the
2786 candidates, return the earliest candidate in the block in *WHERE. */
2787
2788 static basic_block
2789 ncd_with_phi (slsr_cand_t c, double_int incr, gimple phi,
2790 basic_block ncd, slsr_cand_t *where)
2791 {
2792 unsigned i;
2793 slsr_cand_t basis = lookup_cand (c->basis);
2794 slsr_cand_t phi_cand = base_cand_from_table (gimple_phi_result (phi));
2795
2796 for (i = 0; i < gimple_phi_num_args (phi); i++)
2797 {
2798 tree arg = gimple_phi_arg_def (phi, i);
2799
2800 if (!operand_equal_p (arg, phi_cand->base_expr, 0))
2801 {
2802 gimple arg_def = SSA_NAME_DEF_STMT (arg);
2803
2804 if (gimple_code (arg_def) == GIMPLE_PHI)
2805 ncd = ncd_with_phi (c, incr, arg_def, ncd, where);
2806 else
2807 {
2808 slsr_cand_t arg_cand = base_cand_from_table (arg);
2809 double_int diff = arg_cand->index - basis->index;
2810
2811 if ((incr == diff) || (!address_arithmetic_p && incr == -diff))
2812 ncd = ncd_for_two_cands (ncd, gimple_bb (arg_cand->cand_stmt),
2813 *where, arg_cand, where);
2814 }
2815 }
2816 }
2817
2818 return ncd;
2819 }
2820
2821 /* Consider the candidate C together with any candidates that feed
2822 C's phi dependence (if any). Find and return the nearest common
2823 dominator of those candidates requiring the given increment INCR.
2824 If the returned block contains one or more of the candidates,
2825 return the earliest candidate in the block in *WHERE. */
2826
2827 static basic_block
2828 ncd_of_cand_and_phis (slsr_cand_t c, double_int incr, slsr_cand_t *where)
2829 {
2830 basic_block ncd = NULL;
2831
2832 if (cand_abs_increment (c) == incr)
2833 {
2834 ncd = gimple_bb (c->cand_stmt);
2835 *where = c;
2836 }
2837
2838 if (phi_dependent_cand_p (c))
2839 ncd = ncd_with_phi (c, incr, lookup_cand (c->def_phi)->cand_stmt,
2840 ncd, where);
2841
2842 return ncd;
2843 }
2844
2845 /* Consider all candidates in the tree rooted at C for which INCR
2846 represents the required increment of C relative to its basis.
2847 Find and return the basic block that most nearly dominates all
2848 such candidates. If the returned block contains one or more of
2849 the candidates, return the earliest candidate in the block in
2850 *WHERE. */
2851
2852 static basic_block
2853 nearest_common_dominator_for_cands (slsr_cand_t c, double_int incr,
2854 slsr_cand_t *where)
2855 {
2856 basic_block sib_ncd = NULL, dep_ncd = NULL, this_ncd = NULL, ncd;
2857 slsr_cand_t sib_where = NULL, dep_where = NULL, this_where = NULL, new_where;
2858
2859 /* First find the NCD of all siblings and dependents. */
2860 if (c->sibling)
2861 sib_ncd = nearest_common_dominator_for_cands (lookup_cand (c->sibling),
2862 incr, &sib_where);
2863 if (c->dependent)
2864 dep_ncd = nearest_common_dominator_for_cands (lookup_cand (c->dependent),
2865 incr, &dep_where);
2866 if (!sib_ncd && !dep_ncd)
2867 {
2868 new_where = NULL;
2869 ncd = NULL;
2870 }
2871 else if (sib_ncd && !dep_ncd)
2872 {
2873 new_where = sib_where;
2874 ncd = sib_ncd;
2875 }
2876 else if (dep_ncd && !sib_ncd)
2877 {
2878 new_where = dep_where;
2879 ncd = dep_ncd;
2880 }
2881 else
2882 ncd = ncd_for_two_cands (sib_ncd, dep_ncd, sib_where,
2883 dep_where, &new_where);
2884
2885 /* If the candidate's increment doesn't match the one we're interested
2886 in (and nor do any increments for feeding defs of a phi-dependence),
2887 then the result depends only on siblings and dependents. */
2888 this_ncd = ncd_of_cand_and_phis (c, incr, &this_where);
2889
2890 if (!this_ncd || cand_already_replaced (c))
2891 {
2892 *where = new_where;
2893 return ncd;
2894 }
2895
2896 /* Otherwise, compare this candidate with the result from all siblings
2897 and dependents. */
2898 ncd = ncd_for_two_cands (ncd, this_ncd, new_where, this_where, where);
2899
2900 return ncd;
2901 }
2902
2903 /* Return TRUE if the increment indexed by INDEX is profitable to replace. */
2904
2905 static inline bool
2906 profitable_increment_p (unsigned index)
2907 {
2908 return (incr_vec[index].cost <= COST_NEUTRAL);
2909 }
2910
2911 /* For each profitable increment in the increment vector not equal to
2912 0 or 1 (or -1, for non-pointer arithmetic), find the nearest common
2913 dominator of all statements in the candidate chain rooted at C
2914 that require that increment, and insert an initializer
2915 T_0 = stride * increment at that location. Record T_0 with the
2916 increment record. */
2917
2918 static void
2919 insert_initializers (slsr_cand_t c)
2920 {
2921 unsigned i;
2922
2923 for (i = 0; i < incr_vec_len; i++)
2924 {
2925 basic_block bb;
2926 slsr_cand_t where = NULL;
2927 gimple init_stmt;
2928 tree stride_type, new_name, incr_tree;
2929 double_int incr = incr_vec[i].incr;
2930
2931 if (!profitable_increment_p (i)
2932 || incr.is_one ()
2933 || (incr.is_minus_one ()
2934 && gimple_assign_rhs_code (c->cand_stmt) != POINTER_PLUS_EXPR)
2935 || incr.is_zero ())
2936 continue;
2937
2938 /* We may have already identified an existing initializer that
2939 will suffice. */
2940 if (incr_vec[i].initializer)
2941 {
2942 if (dump_file && (dump_flags & TDF_DETAILS))
2943 {
2944 fputs ("Using existing initializer: ", dump_file);
2945 print_gimple_stmt (dump_file,
2946 SSA_NAME_DEF_STMT (incr_vec[i].initializer),
2947 0, 0);
2948 }
2949 continue;
2950 }
2951
2952 /* Find the block that most closely dominates all candidates
2953 with this increment. If there is at least one candidate in
2954 that block, the earliest one will be returned in WHERE. */
2955 bb = nearest_common_dominator_for_cands (c, incr, &where);
2956
2957 /* Create a new SSA name to hold the initializer's value. */
2958 stride_type = TREE_TYPE (c->stride);
2959 new_name = make_temp_ssa_name (stride_type, NULL, "slsr");
2960 incr_vec[i].initializer = new_name;
2961
2962 /* Create the initializer and insert it in the latest possible
2963 dominating position. */
2964 incr_tree = double_int_to_tree (stride_type, incr);
2965 init_stmt = gimple_build_assign_with_ops (MULT_EXPR, new_name,
2966 c->stride, incr_tree);
2967 if (where)
2968 {
2969 gimple_stmt_iterator gsi = gsi_for_stmt (where->cand_stmt);
2970 gsi_insert_before (&gsi, init_stmt, GSI_SAME_STMT);
2971 gimple_set_location (init_stmt, gimple_location (where->cand_stmt));
2972 }
2973 else
2974 {
2975 gimple_stmt_iterator gsi = gsi_last_bb (bb);
2976 gimple basis_stmt = lookup_cand (c->basis)->cand_stmt;
2977
2978 if (!gsi_end_p (gsi) && is_ctrl_stmt (gsi_stmt (gsi)))
2979 gsi_insert_before (&gsi, init_stmt, GSI_SAME_STMT);
2980 else
2981 gsi_insert_after (&gsi, init_stmt, GSI_SAME_STMT);
2982
2983 gimple_set_location (init_stmt, gimple_location (basis_stmt));
2984 }
2985
2986 if (dump_file && (dump_flags & TDF_DETAILS))
2987 {
2988 fputs ("Inserting initializer: ", dump_file);
2989 print_gimple_stmt (dump_file, init_stmt, 0, 0);
2990 }
2991 }
2992 }
2993
2994 /* Return TRUE iff all required increments for candidates feeding PHI
2995 are profitable to replace on behalf of candidate C. */
2996
2997 static bool
2998 all_phi_incrs_profitable (slsr_cand_t c, gimple phi)
2999 {
3000 unsigned i;
3001 slsr_cand_t basis = lookup_cand (c->basis);
3002 slsr_cand_t phi_cand = base_cand_from_table (gimple_phi_result (phi));
3003
3004 for (i = 0; i < gimple_phi_num_args (phi); i++)
3005 {
3006 tree arg = gimple_phi_arg_def (phi, i);
3007
3008 if (!operand_equal_p (arg, phi_cand->base_expr, 0))
3009 {
3010 gimple arg_def = SSA_NAME_DEF_STMT (arg);
3011
3012 if (gimple_code (arg_def) == GIMPLE_PHI)
3013 {
3014 if (!all_phi_incrs_profitable (c, arg_def))
3015 return false;
3016 }
3017 else
3018 {
3019 int j;
3020 slsr_cand_t arg_cand = base_cand_from_table (arg);
3021 double_int increment = arg_cand->index - basis->index;
3022
3023 if (!address_arithmetic_p && increment.is_negative ())
3024 increment = -increment;
3025
3026 j = incr_vec_index (increment);
3027
3028 if (dump_file && (dump_flags & TDF_DETAILS))
3029 {
3030 fprintf (dump_file, " Conditional candidate %d, phi: ",
3031 c->cand_num);
3032 print_gimple_stmt (dump_file, phi, 0, 0);
3033 fputs (" increment: ", dump_file);
3034 dump_double_int (dump_file, increment, false);
3035 if (j < 0)
3036 fprintf (dump_file,
3037 "\n Not replaced; incr_vec overflow.\n");
3038 else {
3039 fprintf (dump_file, "\n cost: %d\n", incr_vec[j].cost);
3040 if (profitable_increment_p (j))
3041 fputs (" Replacing...\n", dump_file);
3042 else
3043 fputs (" Not replaced.\n", dump_file);
3044 }
3045 }
3046
3047 if (j < 0 || !profitable_increment_p (j))
3048 return false;
3049 }
3050 }
3051 }
3052
3053 return true;
3054 }
3055
3056 /* Create a NOP_EXPR that copies FROM_EXPR into a new SSA name of
3057 type TO_TYPE, and insert it in front of the statement represented
3058 by candidate C. Use *NEW_VAR to create the new SSA name. Return
3059 the new SSA name. */
3060
3061 static tree
3062 introduce_cast_before_cand (slsr_cand_t c, tree to_type, tree from_expr)
3063 {
3064 tree cast_lhs;
3065 gimple cast_stmt;
3066 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3067
3068 cast_lhs = make_temp_ssa_name (to_type, NULL, "slsr");
3069 cast_stmt = gimple_build_assign_with_ops (NOP_EXPR, cast_lhs,
3070 from_expr, NULL_TREE);
3071 gimple_set_location (cast_stmt, gimple_location (c->cand_stmt));
3072 gsi_insert_before (&gsi, cast_stmt, GSI_SAME_STMT);
3073
3074 if (dump_file && (dump_flags & TDF_DETAILS))
3075 {
3076 fputs (" Inserting: ", dump_file);
3077 print_gimple_stmt (dump_file, cast_stmt, 0, 0);
3078 }
3079
3080 return cast_lhs;
3081 }
3082
3083 /* Replace the RHS of the statement represented by candidate C with
3084 NEW_CODE, NEW_RHS1, and NEW_RHS2, provided that to do so doesn't
3085 leave C unchanged or just interchange its operands. The original
3086 operation and operands are in OLD_CODE, OLD_RHS1, and OLD_RHS2.
3087 If the replacement was made and we are doing a details dump,
3088 return the revised statement, else NULL. */
3089
3090 static gimple
3091 replace_rhs_if_not_dup (enum tree_code new_code, tree new_rhs1, tree new_rhs2,
3092 enum tree_code old_code, tree old_rhs1, tree old_rhs2,
3093 slsr_cand_t c)
3094 {
3095 if (new_code != old_code
3096 || ((!operand_equal_p (new_rhs1, old_rhs1, 0)
3097 || !operand_equal_p (new_rhs2, old_rhs2, 0))
3098 && (!operand_equal_p (new_rhs1, old_rhs2, 0)
3099 || !operand_equal_p (new_rhs2, old_rhs1, 0))))
3100 {
3101 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3102 gimple_assign_set_rhs_with_ops (&gsi, new_code, new_rhs1, new_rhs2);
3103 update_stmt (gsi_stmt (gsi));
3104
3105 if (dump_file && (dump_flags & TDF_DETAILS))
3106 return gsi_stmt (gsi);
3107 }
3108
3109 else if (dump_file && (dump_flags & TDF_DETAILS))
3110 fputs (" (duplicate, not actually replacing)\n", dump_file);
3111
3112 return NULL;
3113 }
3114
3115 /* Strength-reduce the statement represented by candidate C by replacing
3116 it with an equivalent addition or subtraction. I is the index into
3117 the increment vector identifying C's increment. NEW_VAR is used to
3118 create a new SSA name if a cast needs to be introduced. BASIS_NAME
3119 is the rhs1 to use in creating the add/subtract. */
3120
3121 static void
3122 replace_one_candidate (slsr_cand_t c, unsigned i, tree basis_name)
3123 {
3124 gimple stmt_to_print = NULL;
3125 tree orig_rhs1, orig_rhs2;
3126 tree rhs2;
3127 enum tree_code orig_code, repl_code;
3128 double_int cand_incr;
3129
3130 orig_code = gimple_assign_rhs_code (c->cand_stmt);
3131 orig_rhs1 = gimple_assign_rhs1 (c->cand_stmt);
3132 orig_rhs2 = gimple_assign_rhs2 (c->cand_stmt);
3133 cand_incr = cand_increment (c);
3134
3135 if (dump_file && (dump_flags & TDF_DETAILS))
3136 {
3137 fputs ("Replacing: ", dump_file);
3138 print_gimple_stmt (dump_file, c->cand_stmt, 0, 0);
3139 stmt_to_print = c->cand_stmt;
3140 }
3141
3142 if (address_arithmetic_p)
3143 repl_code = POINTER_PLUS_EXPR;
3144 else
3145 repl_code = PLUS_EXPR;
3146
3147 /* If the increment has an initializer T_0, replace the candidate
3148 statement with an add of the basis name and the initializer. */
3149 if (incr_vec[i].initializer)
3150 {
3151 tree init_type = TREE_TYPE (incr_vec[i].initializer);
3152 tree orig_type = TREE_TYPE (orig_rhs2);
3153
3154 if (types_compatible_p (orig_type, init_type))
3155 rhs2 = incr_vec[i].initializer;
3156 else
3157 rhs2 = introduce_cast_before_cand (c, orig_type,
3158 incr_vec[i].initializer);
3159
3160 if (incr_vec[i].incr != cand_incr)
3161 {
3162 gcc_assert (repl_code == PLUS_EXPR);
3163 repl_code = MINUS_EXPR;
3164 }
3165
3166 stmt_to_print = replace_rhs_if_not_dup (repl_code, basis_name, rhs2,
3167 orig_code, orig_rhs1, orig_rhs2,
3168 c);
3169 }
3170
3171 /* Otherwise, the increment is one of -1, 0, and 1. Replace
3172 with a subtract of the stride from the basis name, a copy
3173 from the basis name, or an add of the stride to the basis
3174 name, respectively. It may be necessary to introduce a
3175 cast (or reuse an existing cast). */
3176 else if (cand_incr.is_one ())
3177 {
3178 tree stride_type = TREE_TYPE (c->stride);
3179 tree orig_type = TREE_TYPE (orig_rhs2);
3180
3181 if (types_compatible_p (orig_type, stride_type))
3182 rhs2 = c->stride;
3183 else
3184 rhs2 = introduce_cast_before_cand (c, orig_type, c->stride);
3185
3186 stmt_to_print = replace_rhs_if_not_dup (repl_code, basis_name, rhs2,
3187 orig_code, orig_rhs1, orig_rhs2,
3188 c);
3189 }
3190
3191 else if (cand_incr.is_minus_one ())
3192 {
3193 tree stride_type = TREE_TYPE (c->stride);
3194 tree orig_type = TREE_TYPE (orig_rhs2);
3195 gcc_assert (repl_code != POINTER_PLUS_EXPR);
3196
3197 if (types_compatible_p (orig_type, stride_type))
3198 rhs2 = c->stride;
3199 else
3200 rhs2 = introduce_cast_before_cand (c, orig_type, c->stride);
3201
3202 if (orig_code != MINUS_EXPR
3203 || !operand_equal_p (basis_name, orig_rhs1, 0)
3204 || !operand_equal_p (rhs2, orig_rhs2, 0))
3205 {
3206 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3207 gimple_assign_set_rhs_with_ops (&gsi, MINUS_EXPR, basis_name, rhs2);
3208 update_stmt (gsi_stmt (gsi));
3209
3210 if (dump_file && (dump_flags & TDF_DETAILS))
3211 stmt_to_print = gsi_stmt (gsi);
3212 }
3213 else if (dump_file && (dump_flags & TDF_DETAILS))
3214 fputs (" (duplicate, not actually replacing)\n", dump_file);
3215 }
3216
3217 else if (cand_incr.is_zero ())
3218 {
3219 tree lhs = gimple_assign_lhs (c->cand_stmt);
3220 tree lhs_type = TREE_TYPE (lhs);
3221 tree basis_type = TREE_TYPE (basis_name);
3222
3223 if (types_compatible_p (lhs_type, basis_type))
3224 {
3225 gimple copy_stmt = gimple_build_assign (lhs, basis_name);
3226 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3227 gimple_set_location (copy_stmt, gimple_location (c->cand_stmt));
3228 gsi_replace (&gsi, copy_stmt, false);
3229
3230 if (dump_file && (dump_flags & TDF_DETAILS))
3231 stmt_to_print = copy_stmt;
3232 }
3233 else
3234 {
3235 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3236 gimple cast_stmt = gimple_build_assign_with_ops (NOP_EXPR, lhs,
3237 basis_name,
3238 NULL_TREE);
3239 gimple_set_location (cast_stmt, gimple_location (c->cand_stmt));
3240 gsi_replace (&gsi, cast_stmt, false);
3241
3242 if (dump_file && (dump_flags & TDF_DETAILS))
3243 stmt_to_print = cast_stmt;
3244 }
3245 }
3246 else
3247 gcc_unreachable ();
3248
3249 if (dump_file && (dump_flags & TDF_DETAILS) && stmt_to_print)
3250 {
3251 fputs ("With: ", dump_file);
3252 print_gimple_stmt (dump_file, stmt_to_print, 0, 0);
3253 fputs ("\n", dump_file);
3254 }
3255 }
3256
3257 /* For each candidate in the tree rooted at C, replace it with
3258 an increment if such has been shown to be profitable. */
3259
3260 static void
3261 replace_profitable_candidates (slsr_cand_t c)
3262 {
3263 if (!cand_already_replaced (c))
3264 {
3265 double_int increment = cand_abs_increment (c);
3266 enum tree_code orig_code = gimple_assign_rhs_code (c->cand_stmt);
3267 int i;
3268
3269 i = incr_vec_index (increment);
3270
3271 /* Only process profitable increments. Nothing useful can be done
3272 to a cast or copy. */
3273 if (i >= 0
3274 && profitable_increment_p (i)
3275 && orig_code != MODIFY_EXPR
3276 && orig_code != NOP_EXPR)
3277 {
3278 if (phi_dependent_cand_p (c))
3279 {
3280 gimple phi = lookup_cand (c->def_phi)->cand_stmt;
3281
3282 if (all_phi_incrs_profitable (c, phi))
3283 {
3284 /* Look up the LHS SSA name from C's basis. This will be
3285 the RHS1 of the adds we will introduce to create new
3286 phi arguments. */
3287 slsr_cand_t basis = lookup_cand (c->basis);
3288 tree basis_name = gimple_assign_lhs (basis->cand_stmt);
3289
3290 /* Create a new phi statement that will represent C's true
3291 basis after the transformation is complete. */
3292 location_t loc = gimple_location (c->cand_stmt);
3293 tree name = create_phi_basis (c, phi, basis_name,
3294 loc, UNKNOWN_STRIDE);
3295
3296 /* Replace C with an add of the new basis phi and the
3297 increment. */
3298 replace_one_candidate (c, i, name);
3299 }
3300 }
3301 else
3302 {
3303 slsr_cand_t basis = lookup_cand (c->basis);
3304 tree basis_name = gimple_assign_lhs (basis->cand_stmt);
3305 replace_one_candidate (c, i, basis_name);
3306 }
3307 }
3308 }
3309
3310 if (c->sibling)
3311 replace_profitable_candidates (lookup_cand (c->sibling));
3312
3313 if (c->dependent)
3314 replace_profitable_candidates (lookup_cand (c->dependent));
3315 }
3316 \f
3317 /* Analyze costs of related candidates in the candidate vector,
3318 and make beneficial replacements. */
3319
3320 static void
3321 analyze_candidates_and_replace (void)
3322 {
3323 unsigned i;
3324 slsr_cand_t c;
3325
3326 /* Each candidate that has a null basis and a non-null
3327 dependent is the root of a tree of related statements.
3328 Analyze each tree to determine a subset of those
3329 statements that can be replaced with maximum benefit. */
3330 FOR_EACH_VEC_ELT (cand_vec, i, c)
3331 {
3332 slsr_cand_t first_dep;
3333
3334 if (c->basis != 0 || c->dependent == 0)
3335 continue;
3336
3337 if (dump_file && (dump_flags & TDF_DETAILS))
3338 fprintf (dump_file, "\nProcessing dependency tree rooted at %d.\n",
3339 c->cand_num);
3340
3341 first_dep = lookup_cand (c->dependent);
3342
3343 /* If this is a chain of CAND_REFs, unconditionally replace
3344 each of them with a strength-reduced data reference. */
3345 if (c->kind == CAND_REF)
3346 replace_refs (c);
3347
3348 /* If the common stride of all related candidates is a known
3349 constant, each candidate without a phi-dependence can be
3350 profitably replaced. Each replaces a multiply by a single
3351 add, with the possibility that a feeding add also goes dead.
3352 A candidate with a phi-dependence is replaced only if the
3353 compensation code it requires is offset by the strength
3354 reduction savings. */
3355 else if (TREE_CODE (c->stride) == INTEGER_CST)
3356 replace_uncond_cands_and_profitable_phis (first_dep);
3357
3358 /* When the stride is an SSA name, it may still be profitable
3359 to replace some or all of the dependent candidates, depending
3360 on whether the introduced increments can be reused, or are
3361 less expensive to calculate than the replaced statements. */
3362 else
3363 {
3364 enum machine_mode mode;
3365 bool speed;
3366
3367 /* Determine whether we'll be generating pointer arithmetic
3368 when replacing candidates. */
3369 address_arithmetic_p = (c->kind == CAND_ADD
3370 && POINTER_TYPE_P (c->cand_type));
3371
3372 /* If all candidates have already been replaced under other
3373 interpretations, nothing remains to be done. */
3374 if (!count_candidates (c))
3375 continue;
3376
3377 /* Construct an array of increments for this candidate chain. */
3378 incr_vec = XNEWVEC (incr_info, MAX_INCR_VEC_LEN);
3379 incr_vec_len = 0;
3380 record_increments (c);
3381
3382 /* Determine which increments are profitable to replace. */
3383 mode = TYPE_MODE (TREE_TYPE (gimple_assign_lhs (c->cand_stmt)));
3384 speed = optimize_cands_for_speed_p (c);
3385 analyze_increments (first_dep, mode, speed);
3386
3387 /* Insert initializers of the form T_0 = stride * increment
3388 for use in profitable replacements. */
3389 insert_initializers (first_dep);
3390 dump_incr_vec ();
3391
3392 /* Perform the replacements. */
3393 replace_profitable_candidates (first_dep);
3394 free (incr_vec);
3395 }
3396 }
3397 }
3398
3399 static unsigned
3400 execute_strength_reduction (void)
3401 {
3402 struct dom_walk_data walk_data;
3403
3404 /* Create the obstack where candidates will reside. */
3405 gcc_obstack_init (&cand_obstack);
3406
3407 /* Allocate the candidate vector. */
3408 cand_vec.create (128);
3409
3410 /* Allocate the mapping from statements to candidate indices. */
3411 stmt_cand_map = pointer_map_create ();
3412
3413 /* Create the obstack where candidate chains will reside. */
3414 gcc_obstack_init (&chain_obstack);
3415
3416 /* Allocate the mapping from base expressions to candidate chains. */
3417 base_cand_map.create (500);
3418
3419 /* Initialize the loop optimizer. We need to detect flow across
3420 back edges, and this gives us dominator information as well. */
3421 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
3422
3423 /* Set up callbacks for the generic dominator tree walker. */
3424 walk_data.dom_direction = CDI_DOMINATORS;
3425 walk_data.initialize_block_local_data = NULL;
3426 walk_data.before_dom_children = find_candidates_in_block;
3427 walk_data.after_dom_children = NULL;
3428 walk_data.global_data = NULL;
3429 walk_data.block_local_data_size = 0;
3430 init_walk_dominator_tree (&walk_data);
3431
3432 /* Walk the CFG in predominator order looking for strength reduction
3433 candidates. */
3434 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
3435
3436 if (dump_file && (dump_flags & TDF_DETAILS))
3437 {
3438 dump_cand_vec ();
3439 dump_cand_chains ();
3440 }
3441
3442 /* Analyze costs and make appropriate replacements. */
3443 analyze_candidates_and_replace ();
3444
3445 /* Free resources. */
3446 fini_walk_dominator_tree (&walk_data);
3447 loop_optimizer_finalize ();
3448 base_cand_map.dispose ();
3449 obstack_free (&chain_obstack, NULL);
3450 pointer_map_destroy (stmt_cand_map);
3451 cand_vec.release ();
3452 obstack_free (&cand_obstack, NULL);
3453
3454 return 0;
3455 }
3456
3457 static bool
3458 gate_strength_reduction (void)
3459 {
3460 return flag_tree_slsr;
3461 }
3462
3463 struct gimple_opt_pass pass_strength_reduction =
3464 {
3465 {
3466 GIMPLE_PASS,
3467 "slsr", /* name */
3468 OPTGROUP_NONE, /* optinfo_flags */
3469 gate_strength_reduction, /* gate */
3470 execute_strength_reduction, /* execute */
3471 NULL, /* sub */
3472 NULL, /* next */
3473 0, /* static_pass_number */
3474 TV_GIMPLE_SLSR, /* tv_id */
3475 PROP_cfg | PROP_ssa, /* properties_required */
3476 0, /* properties_provided */
3477 0, /* properties_destroyed */
3478 0, /* todo_flags_start */
3479 TODO_verify_ssa /* todo_flags_finish */
3480 }
3481 };