Revert "replace several uses of the anon namespace with GCC_FINAL"
[gcc.git] / gcc / gimple-ssa-strength-reduction.c
1 /* Straight-line strength reduction.
2 Copyright (C) 2012-2015 Free Software Foundation, Inc.
3 Contributed by Bill Schmidt, IBM <wschmidt@linux.ibm.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* There are many algorithms for performing strength reduction on
22 loops. This is not one of them. IVOPTS handles strength reduction
23 of induction variables just fine. This pass is intended to pick
24 up the crumbs it leaves behind, by considering opportunities for
25 strength reduction along dominator paths.
26
27 Strength reduction addresses explicit multiplies, and certain
28 multiplies implicit in addressing expressions. It would also be
29 possible to apply strength reduction to divisions and modulos,
30 but such opportunities are relatively uncommon.
31
32 Strength reduction is also currently restricted to integer operations.
33 If desired, it could be extended to floating-point operations under
34 control of something like -funsafe-math-optimizations. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "alias.h"
40 #include "backend.h"
41 #include "cfghooks.h"
42 #include "tree.h"
43 #include "gimple.h"
44 #include "rtl.h"
45 #include "ssa.h"
46 #include "options.h"
47 #include "fold-const.h"
48 #include "internal-fn.h"
49 #include "gimple-iterator.h"
50 #include "gimplify-me.h"
51 #include "stor-layout.h"
52 #include "flags.h"
53 #include "insn-config.h"
54 #include "expmed.h"
55 #include "dojump.h"
56 #include "explow.h"
57 #include "calls.h"
58 #include "emit-rtl.h"
59 #include "varasm.h"
60 #include "stmt.h"
61 #include "expr.h"
62 #include "tree-pass.h"
63 #include "cfgloop.h"
64 #include "gimple-pretty-print.h"
65 #include "tree-cfg.h"
66 #include "domwalk.h"
67 #include "params.h"
68 #include "tree-ssa-address.h"
69 #include "tree-affine.h"
70 #include "wide-int-print.h"
71 #include "builtins.h"
72 \f
73 /* Information about a strength reduction candidate. Each statement
74 in the candidate table represents an expression of one of the
75 following forms (the special case of CAND_REF will be described
76 later):
77
78 (CAND_MULT) S1: X = (B + i) * S
79 (CAND_ADD) S1: X = B + (i * S)
80
81 Here X and B are SSA names, i is an integer constant, and S is
82 either an SSA name or a constant. We call B the "base," i the
83 "index", and S the "stride."
84
85 Any statement S0 that dominates S1 and is of the form:
86
87 (CAND_MULT) S0: Y = (B + i') * S
88 (CAND_ADD) S0: Y = B + (i' * S)
89
90 is called a "basis" for S1. In both cases, S1 may be replaced by
91
92 S1': X = Y + (i - i') * S,
93
94 where (i - i') * S is folded to the extent possible.
95
96 All gimple statements are visited in dominator order, and each
97 statement that may contribute to one of the forms of S1 above is
98 given at least one entry in the candidate table. Such statements
99 include addition, pointer addition, subtraction, multiplication,
100 negation, copies, and nontrivial type casts. If a statement may
101 represent more than one expression of the forms of S1 above,
102 multiple "interpretations" are stored in the table and chained
103 together. Examples:
104
105 * An add of two SSA names may treat either operand as the base.
106 * A multiply of two SSA names, likewise.
107 * A copy or cast may be thought of as either a CAND_MULT with
108 i = 0 and S = 1, or as a CAND_ADD with i = 0 or S = 0.
109
110 Candidate records are allocated from an obstack. They are addressed
111 both from a hash table keyed on S1, and from a vector of candidate
112 pointers arranged in predominator order.
113
114 Opportunity note
115 ----------------
116 Currently we don't recognize:
117
118 S0: Y = (S * i') - B
119 S1: X = (S * i) - B
120
121 as a strength reduction opportunity, even though this S1 would
122 also be replaceable by the S1' above. This can be added if it
123 comes up in practice.
124
125 Strength reduction in addressing
126 --------------------------------
127 There is another kind of candidate known as CAND_REF. A CAND_REF
128 describes a statement containing a memory reference having
129 complex addressing that might benefit from strength reduction.
130 Specifically, we are interested in references for which
131 get_inner_reference returns a base address, offset, and bitpos as
132 follows:
133
134 base: MEM_REF (T1, C1)
135 offset: MULT_EXPR (PLUS_EXPR (T2, C2), C3)
136 bitpos: C4 * BITS_PER_UNIT
137
138 Here T1 and T2 are arbitrary trees, and C1, C2, C3, C4 are
139 arbitrary integer constants. Note that C2 may be zero, in which
140 case the offset will be MULT_EXPR (T2, C3).
141
142 When this pattern is recognized, the original memory reference
143 can be replaced with:
144
145 MEM_REF (POINTER_PLUS_EXPR (T1, MULT_EXPR (T2, C3)),
146 C1 + (C2 * C3) + C4)
147
148 which distributes the multiply to allow constant folding. When
149 two or more addressing expressions can be represented by MEM_REFs
150 of this form, differing only in the constants C1, C2, and C4,
151 making this substitution produces more efficient addressing during
152 the RTL phases. When there are not at least two expressions with
153 the same values of T1, T2, and C3, there is nothing to be gained
154 by the replacement.
155
156 Strength reduction of CAND_REFs uses the same infrastructure as
157 that used by CAND_MULTs and CAND_ADDs. We record T1 in the base (B)
158 field, MULT_EXPR (T2, C3) in the stride (S) field, and
159 C1 + (C2 * C3) + C4 in the index (i) field. A basis for a CAND_REF
160 is thus another CAND_REF with the same B and S values. When at
161 least two CAND_REFs are chained together using the basis relation,
162 each of them is replaced as above, resulting in improved code
163 generation for addressing.
164
165 Conditional candidates
166 ======================
167
168 Conditional candidates are best illustrated with an example.
169 Consider the code sequence:
170
171 (1) x_0 = ...;
172 (2) a_0 = x_0 * 5; MULT (B: x_0; i: 0; S: 5)
173 if (...)
174 (3) x_1 = x_0 + 1; ADD (B: x_0, i: 1; S: 1)
175 (4) x_2 = PHI <x_0, x_1>; PHI (B: x_0, i: 0, S: 1)
176 (5) x_3 = x_2 + 1; ADD (B: x_2, i: 1, S: 1)
177 (6) a_1 = x_3 * 5; MULT (B: x_2, i: 1; S: 5)
178
179 Here strength reduction is complicated by the uncertain value of x_2.
180 A legitimate transformation is:
181
182 (1) x_0 = ...;
183 (2) a_0 = x_0 * 5;
184 if (...)
185 {
186 (3) [x_1 = x_0 + 1;]
187 (3a) t_1 = a_0 + 5;
188 }
189 (4) [x_2 = PHI <x_0, x_1>;]
190 (4a) t_2 = PHI <a_0, t_1>;
191 (5) [x_3 = x_2 + 1;]
192 (6r) a_1 = t_2 + 5;
193
194 where the bracketed instructions may go dead.
195
196 To recognize this opportunity, we have to observe that statement (6)
197 has a "hidden basis" (2). The hidden basis is unlike a normal basis
198 in that the statement and the hidden basis have different base SSA
199 names (x_2 and x_0, respectively). The relationship is established
200 when a statement's base name (x_2) is defined by a phi statement (4),
201 each argument of which (x_0, x_1) has an identical "derived base name."
202 If the argument is defined by a candidate (as x_1 is by (3)) that is a
203 CAND_ADD having a stride of 1, the derived base name of the argument is
204 the base name of the candidate (x_0). Otherwise, the argument itself
205 is its derived base name (as is the case with argument x_0).
206
207 The hidden basis for statement (6) is the nearest dominating candidate
208 whose base name is the derived base name (x_0) of the feeding phi (4),
209 and whose stride is identical to that of the statement. We can then
210 create the new "phi basis" (4a) and feeding adds along incoming arcs (3a),
211 allowing the final replacement of (6) by the strength-reduced (6r).
212
213 To facilitate this, a new kind of candidate (CAND_PHI) is introduced.
214 A CAND_PHI is not a candidate for replacement, but is maintained in the
215 candidate table to ease discovery of hidden bases. Any phi statement
216 whose arguments share a common derived base name is entered into the
217 table with the derived base name, an (arbitrary) index of zero, and a
218 stride of 1. A statement with a hidden basis can then be detected by
219 simply looking up its feeding phi definition in the candidate table,
220 extracting the derived base name, and searching for a basis in the
221 usual manner after substituting the derived base name.
222
223 Note that the transformation is only valid when the original phi and
224 the statements that define the phi's arguments are all at the same
225 position in the loop hierarchy. */
226
227
228 /* Index into the candidate vector, offset by 1. VECs are zero-based,
229 while cand_idx's are one-based, with zero indicating null. */
230 typedef unsigned cand_idx;
231
232 /* The kind of candidate. */
233 enum cand_kind
234 {
235 CAND_MULT,
236 CAND_ADD,
237 CAND_REF,
238 CAND_PHI
239 };
240
241 struct slsr_cand_d
242 {
243 /* The candidate statement S1. */
244 gimple cand_stmt;
245
246 /* The base expression B: often an SSA name, but not always. */
247 tree base_expr;
248
249 /* The stride S. */
250 tree stride;
251
252 /* The index constant i. */
253 widest_int index;
254
255 /* The type of the candidate. This is normally the type of base_expr,
256 but casts may have occurred when combining feeding instructions.
257 A candidate can only be a basis for candidates of the same final type.
258 (For CAND_REFs, this is the type to be used for operand 1 of the
259 replacement MEM_REF.) */
260 tree cand_type;
261
262 /* The kind of candidate (CAND_MULT, etc.). */
263 enum cand_kind kind;
264
265 /* Index of this candidate in the candidate vector. */
266 cand_idx cand_num;
267
268 /* Index of the next candidate record for the same statement.
269 A statement may be useful in more than one way (e.g., due to
270 commutativity). So we can have multiple "interpretations"
271 of a statement. */
272 cand_idx next_interp;
273
274 /* Index of the basis statement S0, if any, in the candidate vector. */
275 cand_idx basis;
276
277 /* First candidate for which this candidate is a basis, if one exists. */
278 cand_idx dependent;
279
280 /* Next candidate having the same basis as this one. */
281 cand_idx sibling;
282
283 /* If this is a conditional candidate, the CAND_PHI candidate
284 that defines the base SSA name B. */
285 cand_idx def_phi;
286
287 /* Savings that can be expected from eliminating dead code if this
288 candidate is replaced. */
289 int dead_savings;
290 };
291
292 typedef struct slsr_cand_d slsr_cand, *slsr_cand_t;
293 typedef const struct slsr_cand_d *const_slsr_cand_t;
294
295 /* Pointers to candidates are chained together as part of a mapping
296 from base expressions to the candidates that use them. */
297
298 struct cand_chain_d
299 {
300 /* Base expression for the chain of candidates: often, but not
301 always, an SSA name. */
302 tree base_expr;
303
304 /* Pointer to a candidate. */
305 slsr_cand_t cand;
306
307 /* Chain pointer. */
308 struct cand_chain_d *next;
309
310 };
311
312 typedef struct cand_chain_d cand_chain, *cand_chain_t;
313 typedef const struct cand_chain_d *const_cand_chain_t;
314
315 /* Information about a unique "increment" associated with candidates
316 having an SSA name for a stride. An increment is the difference
317 between the index of the candidate and the index of its basis,
318 i.e., (i - i') as discussed in the module commentary.
319
320 When we are not going to generate address arithmetic we treat
321 increments that differ only in sign as the same, allowing sharing
322 of the cost of initializers. The absolute value of the increment
323 is stored in the incr_info. */
324
325 struct incr_info_d
326 {
327 /* The increment that relates a candidate to its basis. */
328 widest_int incr;
329
330 /* How many times the increment occurs in the candidate tree. */
331 unsigned count;
332
333 /* Cost of replacing candidates using this increment. Negative and
334 zero costs indicate replacement should be performed. */
335 int cost;
336
337 /* If this increment is profitable but is not -1, 0, or 1, it requires
338 an initializer T_0 = stride * incr to be found or introduced in the
339 nearest common dominator of all candidates. This field holds T_0
340 for subsequent use. */
341 tree initializer;
342
343 /* If the initializer was found to already exist, this is the block
344 where it was found. */
345 basic_block init_bb;
346 };
347
348 typedef struct incr_info_d incr_info, *incr_info_t;
349
350 /* Candidates are maintained in a vector. If candidate X dominates
351 candidate Y, then X appears before Y in the vector; but the
352 converse does not necessarily hold. */
353 static vec<slsr_cand_t> cand_vec;
354
355 enum cost_consts
356 {
357 COST_NEUTRAL = 0,
358 COST_INFINITE = 1000
359 };
360
361 enum stride_status
362 {
363 UNKNOWN_STRIDE = 0,
364 KNOWN_STRIDE = 1
365 };
366
367 enum phi_adjust_status
368 {
369 NOT_PHI_ADJUST = 0,
370 PHI_ADJUST = 1
371 };
372
373 enum count_phis_status
374 {
375 DONT_COUNT_PHIS = 0,
376 COUNT_PHIS = 1
377 };
378
379 /* Pointer map embodying a mapping from statements to candidates. */
380 static hash_map<gimple, slsr_cand_t> *stmt_cand_map;
381
382 /* Obstack for candidates. */
383 static struct obstack cand_obstack;
384
385 /* Obstack for candidate chains. */
386 static struct obstack chain_obstack;
387
388 /* An array INCR_VEC of incr_infos is used during analysis of related
389 candidates having an SSA name for a stride. INCR_VEC_LEN describes
390 its current length. MAX_INCR_VEC_LEN is used to avoid costly
391 pathological cases. */
392 static incr_info_t incr_vec;
393 static unsigned incr_vec_len;
394 const int MAX_INCR_VEC_LEN = 16;
395
396 /* For a chain of candidates with unknown stride, indicates whether or not
397 we must generate pointer arithmetic when replacing statements. */
398 static bool address_arithmetic_p;
399
400 /* Forward function declarations. */
401 static slsr_cand_t base_cand_from_table (tree);
402 static tree introduce_cast_before_cand (slsr_cand_t, tree, tree);
403 static bool legal_cast_p_1 (tree, tree);
404 \f
405 /* Produce a pointer to the IDX'th candidate in the candidate vector. */
406
407 static slsr_cand_t
408 lookup_cand (cand_idx idx)
409 {
410 return cand_vec[idx - 1];
411 }
412
413 /* Helper for hashing a candidate chain header. */
414
415 struct cand_chain_hasher : nofree_ptr_hash <cand_chain>
416 {
417 static inline hashval_t hash (const cand_chain *);
418 static inline bool equal (const cand_chain *, const cand_chain *);
419 };
420
421 inline hashval_t
422 cand_chain_hasher::hash (const cand_chain *p)
423 {
424 tree base_expr = p->base_expr;
425 return iterative_hash_expr (base_expr, 0);
426 }
427
428 inline bool
429 cand_chain_hasher::equal (const cand_chain *chain1, const cand_chain *chain2)
430 {
431 return operand_equal_p (chain1->base_expr, chain2->base_expr, 0);
432 }
433
434 /* Hash table embodying a mapping from base exprs to chains of candidates. */
435 static hash_table<cand_chain_hasher> *base_cand_map;
436 \f
437 /* Pointer map used by tree_to_aff_combination_expand. */
438 static hash_map<tree, name_expansion *> *name_expansions;
439 /* Pointer map embodying a mapping from bases to alternative bases. */
440 static hash_map<tree, tree> *alt_base_map;
441
442 /* Given BASE, use the tree affine combiniation facilities to
443 find the underlying tree expression for BASE, with any
444 immediate offset excluded.
445
446 N.B. we should eliminate this backtracking with better forward
447 analysis in a future release. */
448
449 static tree
450 get_alternative_base (tree base)
451 {
452 tree *result = alt_base_map->get (base);
453
454 if (result == NULL)
455 {
456 tree expr;
457 aff_tree aff;
458
459 tree_to_aff_combination_expand (base, TREE_TYPE (base),
460 &aff, &name_expansions);
461 aff.offset = 0;
462 expr = aff_combination_to_tree (&aff);
463
464 gcc_assert (!alt_base_map->put (base, base == expr ? NULL : expr));
465
466 return expr == base ? NULL : expr;
467 }
468
469 return *result;
470 }
471
472 /* Look in the candidate table for a CAND_PHI that defines BASE and
473 return it if found; otherwise return NULL. */
474
475 static cand_idx
476 find_phi_def (tree base)
477 {
478 slsr_cand_t c;
479
480 if (TREE_CODE (base) != SSA_NAME)
481 return 0;
482
483 c = base_cand_from_table (base);
484
485 if (!c || c->kind != CAND_PHI)
486 return 0;
487
488 return c->cand_num;
489 }
490
491 /* Helper routine for find_basis_for_candidate. May be called twice:
492 once for the candidate's base expr, and optionally again either for
493 the candidate's phi definition or for a CAND_REF's alternative base
494 expression. */
495
496 static slsr_cand_t
497 find_basis_for_base_expr (slsr_cand_t c, tree base_expr)
498 {
499 cand_chain mapping_key;
500 cand_chain_t chain;
501 slsr_cand_t basis = NULL;
502
503 // Limit potential of N^2 behavior for long candidate chains.
504 int iters = 0;
505 int max_iters = PARAM_VALUE (PARAM_MAX_SLSR_CANDIDATE_SCAN);
506
507 mapping_key.base_expr = base_expr;
508 chain = base_cand_map->find (&mapping_key);
509
510 for (; chain && iters < max_iters; chain = chain->next, ++iters)
511 {
512 slsr_cand_t one_basis = chain->cand;
513
514 if (one_basis->kind != c->kind
515 || one_basis->cand_stmt == c->cand_stmt
516 || !operand_equal_p (one_basis->stride, c->stride, 0)
517 || !types_compatible_p (one_basis->cand_type, c->cand_type)
518 || !dominated_by_p (CDI_DOMINATORS,
519 gimple_bb (c->cand_stmt),
520 gimple_bb (one_basis->cand_stmt)))
521 continue;
522
523 if (!basis || basis->cand_num < one_basis->cand_num)
524 basis = one_basis;
525 }
526
527 return basis;
528 }
529
530 /* Use the base expr from candidate C to look for possible candidates
531 that can serve as a basis for C. Each potential basis must also
532 appear in a block that dominates the candidate statement and have
533 the same stride and type. If more than one possible basis exists,
534 the one with highest index in the vector is chosen; this will be
535 the most immediately dominating basis. */
536
537 static int
538 find_basis_for_candidate (slsr_cand_t c)
539 {
540 slsr_cand_t basis = find_basis_for_base_expr (c, c->base_expr);
541
542 /* If a candidate doesn't have a basis using its base expression,
543 it may have a basis hidden by one or more intervening phis. */
544 if (!basis && c->def_phi)
545 {
546 basic_block basis_bb, phi_bb;
547 slsr_cand_t phi_cand = lookup_cand (c->def_phi);
548 basis = find_basis_for_base_expr (c, phi_cand->base_expr);
549
550 if (basis)
551 {
552 /* A hidden basis must dominate the phi-definition of the
553 candidate's base name. */
554 phi_bb = gimple_bb (phi_cand->cand_stmt);
555 basis_bb = gimple_bb (basis->cand_stmt);
556
557 if (phi_bb == basis_bb
558 || !dominated_by_p (CDI_DOMINATORS, phi_bb, basis_bb))
559 {
560 basis = NULL;
561 c->basis = 0;
562 }
563
564 /* If we found a hidden basis, estimate additional dead-code
565 savings if the phi and its feeding statements can be removed. */
566 if (basis && has_single_use (gimple_phi_result (phi_cand->cand_stmt)))
567 c->dead_savings += phi_cand->dead_savings;
568 }
569 }
570
571 if (flag_expensive_optimizations && !basis && c->kind == CAND_REF)
572 {
573 tree alt_base_expr = get_alternative_base (c->base_expr);
574 if (alt_base_expr)
575 basis = find_basis_for_base_expr (c, alt_base_expr);
576 }
577
578 if (basis)
579 {
580 c->sibling = basis->dependent;
581 basis->dependent = c->cand_num;
582 return basis->cand_num;
583 }
584
585 return 0;
586 }
587
588 /* Record a mapping from BASE to C, indicating that C may potentially serve
589 as a basis using that base expression. BASE may be the same as
590 C->BASE_EXPR; alternatively BASE can be a different tree that share the
591 underlining expression of C->BASE_EXPR. */
592
593 static void
594 record_potential_basis (slsr_cand_t c, tree base)
595 {
596 cand_chain_t node;
597 cand_chain **slot;
598
599 gcc_assert (base);
600
601 node = (cand_chain_t) obstack_alloc (&chain_obstack, sizeof (cand_chain));
602 node->base_expr = base;
603 node->cand = c;
604 node->next = NULL;
605 slot = base_cand_map->find_slot (node, INSERT);
606
607 if (*slot)
608 {
609 cand_chain_t head = (cand_chain_t) (*slot);
610 node->next = head->next;
611 head->next = node;
612 }
613 else
614 *slot = node;
615 }
616
617 /* Allocate storage for a new candidate and initialize its fields.
618 Attempt to find a basis for the candidate.
619
620 For CAND_REF, an alternative base may also be recorded and used
621 to find a basis. This helps cases where the expression hidden
622 behind BASE (which is usually an SSA_NAME) has immediate offset,
623 e.g.
624
625 a2[i][j] = 1;
626 a2[i + 20][j] = 2; */
627
628 static slsr_cand_t
629 alloc_cand_and_find_basis (enum cand_kind kind, gimple gs, tree base,
630 const widest_int &index, tree stride, tree ctype,
631 unsigned savings)
632 {
633 slsr_cand_t c = (slsr_cand_t) obstack_alloc (&cand_obstack,
634 sizeof (slsr_cand));
635 c->cand_stmt = gs;
636 c->base_expr = base;
637 c->stride = stride;
638 c->index = index;
639 c->cand_type = ctype;
640 c->kind = kind;
641 c->cand_num = cand_vec.length () + 1;
642 c->next_interp = 0;
643 c->dependent = 0;
644 c->sibling = 0;
645 c->def_phi = kind == CAND_MULT ? find_phi_def (base) : 0;
646 c->dead_savings = savings;
647
648 cand_vec.safe_push (c);
649
650 if (kind == CAND_PHI)
651 c->basis = 0;
652 else
653 c->basis = find_basis_for_candidate (c);
654
655 record_potential_basis (c, base);
656 if (flag_expensive_optimizations && kind == CAND_REF)
657 {
658 tree alt_base = get_alternative_base (base);
659 if (alt_base)
660 record_potential_basis (c, alt_base);
661 }
662
663 return c;
664 }
665
666 /* Determine the target cost of statement GS when compiling according
667 to SPEED. */
668
669 static int
670 stmt_cost (gimple gs, bool speed)
671 {
672 tree lhs, rhs1, rhs2;
673 machine_mode lhs_mode;
674
675 gcc_assert (is_gimple_assign (gs));
676 lhs = gimple_assign_lhs (gs);
677 rhs1 = gimple_assign_rhs1 (gs);
678 lhs_mode = TYPE_MODE (TREE_TYPE (lhs));
679
680 switch (gimple_assign_rhs_code (gs))
681 {
682 case MULT_EXPR:
683 rhs2 = gimple_assign_rhs2 (gs);
684
685 if (tree_fits_shwi_p (rhs2))
686 return mult_by_coeff_cost (tree_to_shwi (rhs2), lhs_mode, speed);
687
688 gcc_assert (TREE_CODE (rhs1) != INTEGER_CST);
689 return mul_cost (speed, lhs_mode);
690
691 case PLUS_EXPR:
692 case POINTER_PLUS_EXPR:
693 case MINUS_EXPR:
694 return add_cost (speed, lhs_mode);
695
696 case NEGATE_EXPR:
697 return neg_cost (speed, lhs_mode);
698
699 CASE_CONVERT:
700 return convert_cost (lhs_mode, TYPE_MODE (TREE_TYPE (rhs1)), speed);
701
702 /* Note that we don't assign costs to copies that in most cases
703 will go away. */
704 default:
705 ;
706 }
707
708 gcc_unreachable ();
709 return 0;
710 }
711
712 /* Look up the defining statement for BASE_IN and return a pointer
713 to its candidate in the candidate table, if any; otherwise NULL.
714 Only CAND_ADD and CAND_MULT candidates are returned. */
715
716 static slsr_cand_t
717 base_cand_from_table (tree base_in)
718 {
719 slsr_cand_t *result;
720
721 gimple def = SSA_NAME_DEF_STMT (base_in);
722 if (!def)
723 return (slsr_cand_t) NULL;
724
725 result = stmt_cand_map->get (def);
726
727 if (result && (*result)->kind != CAND_REF)
728 return *result;
729
730 return (slsr_cand_t) NULL;
731 }
732
733 /* Add an entry to the statement-to-candidate mapping. */
734
735 static void
736 add_cand_for_stmt (gimple gs, slsr_cand_t c)
737 {
738 gcc_assert (!stmt_cand_map->put (gs, c));
739 }
740 \f
741 /* Given PHI which contains a phi statement, determine whether it
742 satisfies all the requirements of a phi candidate. If so, create
743 a candidate. Note that a CAND_PHI never has a basis itself, but
744 is used to help find a basis for subsequent candidates. */
745
746 static void
747 slsr_process_phi (gphi *phi, bool speed)
748 {
749 unsigned i;
750 tree arg0_base = NULL_TREE, base_type;
751 slsr_cand_t c;
752 struct loop *cand_loop = gimple_bb (phi)->loop_father;
753 unsigned savings = 0;
754
755 /* A CAND_PHI requires each of its arguments to have the same
756 derived base name. (See the module header commentary for a
757 definition of derived base names.) Furthermore, all feeding
758 definitions must be in the same position in the loop hierarchy
759 as PHI. */
760
761 for (i = 0; i < gimple_phi_num_args (phi); i++)
762 {
763 slsr_cand_t arg_cand;
764 tree arg = gimple_phi_arg_def (phi, i);
765 tree derived_base_name = NULL_TREE;
766 gimple arg_stmt = NULL;
767 basic_block arg_bb = NULL;
768
769 if (TREE_CODE (arg) != SSA_NAME)
770 return;
771
772 arg_cand = base_cand_from_table (arg);
773
774 if (arg_cand)
775 {
776 while (arg_cand->kind != CAND_ADD && arg_cand->kind != CAND_PHI)
777 {
778 if (!arg_cand->next_interp)
779 return;
780
781 arg_cand = lookup_cand (arg_cand->next_interp);
782 }
783
784 if (!integer_onep (arg_cand->stride))
785 return;
786
787 derived_base_name = arg_cand->base_expr;
788 arg_stmt = arg_cand->cand_stmt;
789 arg_bb = gimple_bb (arg_stmt);
790
791 /* Gather potential dead code savings if the phi statement
792 can be removed later on. */
793 if (has_single_use (arg))
794 {
795 if (gimple_code (arg_stmt) == GIMPLE_PHI)
796 savings += arg_cand->dead_savings;
797 else
798 savings += stmt_cost (arg_stmt, speed);
799 }
800 }
801 else
802 {
803 derived_base_name = arg;
804
805 if (SSA_NAME_IS_DEFAULT_DEF (arg))
806 arg_bb = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
807 else
808 gimple_bb (SSA_NAME_DEF_STMT (arg));
809 }
810
811 if (!arg_bb || arg_bb->loop_father != cand_loop)
812 return;
813
814 if (i == 0)
815 arg0_base = derived_base_name;
816 else if (!operand_equal_p (derived_base_name, arg0_base, 0))
817 return;
818 }
819
820 /* Create the candidate. "alloc_cand_and_find_basis" is named
821 misleadingly for this case, as no basis will be sought for a
822 CAND_PHI. */
823 base_type = TREE_TYPE (arg0_base);
824
825 c = alloc_cand_and_find_basis (CAND_PHI, phi, arg0_base,
826 0, integer_one_node, base_type, savings);
827
828 /* Add the candidate to the statement-candidate mapping. */
829 add_cand_for_stmt (phi, c);
830 }
831
832 /* Given PBASE which is a pointer to tree, look up the defining
833 statement for it and check whether the candidate is in the
834 form of:
835
836 X = B + (1 * S), S is integer constant
837 X = B + (i * S), S is integer one
838
839 If so, set PBASE to the candidate's base_expr and return double
840 int (i * S).
841 Otherwise, just return double int zero. */
842
843 static widest_int
844 backtrace_base_for_ref (tree *pbase)
845 {
846 tree base_in = *pbase;
847 slsr_cand_t base_cand;
848
849 STRIP_NOPS (base_in);
850
851 /* Strip off widening conversion(s) to handle cases where
852 e.g. 'B' is widened from an 'int' in order to calculate
853 a 64-bit address. */
854 if (CONVERT_EXPR_P (base_in)
855 && legal_cast_p_1 (base_in, TREE_OPERAND (base_in, 0)))
856 base_in = get_unwidened (base_in, NULL_TREE);
857
858 if (TREE_CODE (base_in) != SSA_NAME)
859 return 0;
860
861 base_cand = base_cand_from_table (base_in);
862
863 while (base_cand && base_cand->kind != CAND_PHI)
864 {
865 if (base_cand->kind == CAND_ADD
866 && base_cand->index == 1
867 && TREE_CODE (base_cand->stride) == INTEGER_CST)
868 {
869 /* X = B + (1 * S), S is integer constant. */
870 *pbase = base_cand->base_expr;
871 return wi::to_widest (base_cand->stride);
872 }
873 else if (base_cand->kind == CAND_ADD
874 && TREE_CODE (base_cand->stride) == INTEGER_CST
875 && integer_onep (base_cand->stride))
876 {
877 /* X = B + (i * S), S is integer one. */
878 *pbase = base_cand->base_expr;
879 return base_cand->index;
880 }
881
882 if (base_cand->next_interp)
883 base_cand = lookup_cand (base_cand->next_interp);
884 else
885 base_cand = NULL;
886 }
887
888 return 0;
889 }
890
891 /* Look for the following pattern:
892
893 *PBASE: MEM_REF (T1, C1)
894
895 *POFFSET: MULT_EXPR (T2, C3) [C2 is zero]
896 or
897 MULT_EXPR (PLUS_EXPR (T2, C2), C3)
898 or
899 MULT_EXPR (MINUS_EXPR (T2, -C2), C3)
900
901 *PINDEX: C4 * BITS_PER_UNIT
902
903 If not present, leave the input values unchanged and return FALSE.
904 Otherwise, modify the input values as follows and return TRUE:
905
906 *PBASE: T1
907 *POFFSET: MULT_EXPR (T2, C3)
908 *PINDEX: C1 + (C2 * C3) + C4
909
910 When T2 is recorded by a CAND_ADD in the form of (T2' + C5), it
911 will be further restructured to:
912
913 *PBASE: T1
914 *POFFSET: MULT_EXPR (T2', C3)
915 *PINDEX: C1 + (C2 * C3) + C4 + (C5 * C3) */
916
917 static bool
918 restructure_reference (tree *pbase, tree *poffset, widest_int *pindex,
919 tree *ptype)
920 {
921 tree base = *pbase, offset = *poffset;
922 widest_int index = *pindex;
923 tree mult_op0, t1, t2, type;
924 widest_int c1, c2, c3, c4, c5;
925
926 if (!base
927 || !offset
928 || TREE_CODE (base) != MEM_REF
929 || TREE_CODE (offset) != MULT_EXPR
930 || TREE_CODE (TREE_OPERAND (offset, 1)) != INTEGER_CST
931 || wi::umod_floor (index, BITS_PER_UNIT) != 0)
932 return false;
933
934 t1 = TREE_OPERAND (base, 0);
935 c1 = widest_int::from (mem_ref_offset (base), SIGNED);
936 type = TREE_TYPE (TREE_OPERAND (base, 1));
937
938 mult_op0 = TREE_OPERAND (offset, 0);
939 c3 = wi::to_widest (TREE_OPERAND (offset, 1));
940
941 if (TREE_CODE (mult_op0) == PLUS_EXPR)
942
943 if (TREE_CODE (TREE_OPERAND (mult_op0, 1)) == INTEGER_CST)
944 {
945 t2 = TREE_OPERAND (mult_op0, 0);
946 c2 = wi::to_widest (TREE_OPERAND (mult_op0, 1));
947 }
948 else
949 return false;
950
951 else if (TREE_CODE (mult_op0) == MINUS_EXPR)
952
953 if (TREE_CODE (TREE_OPERAND (mult_op0, 1)) == INTEGER_CST)
954 {
955 t2 = TREE_OPERAND (mult_op0, 0);
956 c2 = -wi::to_widest (TREE_OPERAND (mult_op0, 1));
957 }
958 else
959 return false;
960
961 else
962 {
963 t2 = mult_op0;
964 c2 = 0;
965 }
966
967 c4 = wi::lrshift (index, LOG2_BITS_PER_UNIT);
968 c5 = backtrace_base_for_ref (&t2);
969
970 *pbase = t1;
971 *poffset = fold_build2 (MULT_EXPR, sizetype, fold_convert (sizetype, t2),
972 wide_int_to_tree (sizetype, c3));
973 *pindex = c1 + c2 * c3 + c4 + c5 * c3;
974 *ptype = type;
975
976 return true;
977 }
978
979 /* Given GS which contains a data reference, create a CAND_REF entry in
980 the candidate table and attempt to find a basis. */
981
982 static void
983 slsr_process_ref (gimple gs)
984 {
985 tree ref_expr, base, offset, type;
986 HOST_WIDE_INT bitsize, bitpos;
987 machine_mode mode;
988 int unsignedp, volatilep;
989 slsr_cand_t c;
990
991 if (gimple_vdef (gs))
992 ref_expr = gimple_assign_lhs (gs);
993 else
994 ref_expr = gimple_assign_rhs1 (gs);
995
996 if (!handled_component_p (ref_expr)
997 || TREE_CODE (ref_expr) == BIT_FIELD_REF
998 || (TREE_CODE (ref_expr) == COMPONENT_REF
999 && DECL_BIT_FIELD (TREE_OPERAND (ref_expr, 1))))
1000 return;
1001
1002 base = get_inner_reference (ref_expr, &bitsize, &bitpos, &offset, &mode,
1003 &unsignedp, &volatilep, false);
1004 widest_int index = bitpos;
1005
1006 if (!restructure_reference (&base, &offset, &index, &type))
1007 return;
1008
1009 c = alloc_cand_and_find_basis (CAND_REF, gs, base, index, offset,
1010 type, 0);
1011
1012 /* Add the candidate to the statement-candidate mapping. */
1013 add_cand_for_stmt (gs, c);
1014 }
1015
1016 /* Create a candidate entry for a statement GS, where GS multiplies
1017 two SSA names BASE_IN and STRIDE_IN. Propagate any known information
1018 about the two SSA names into the new candidate. Return the new
1019 candidate. */
1020
1021 static slsr_cand_t
1022 create_mul_ssa_cand (gimple gs, tree base_in, tree stride_in, bool speed)
1023 {
1024 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
1025 widest_int index;
1026 unsigned savings = 0;
1027 slsr_cand_t c;
1028 slsr_cand_t base_cand = base_cand_from_table (base_in);
1029
1030 /* Look at all interpretations of the base candidate, if necessary,
1031 to find information to propagate into this candidate. */
1032 while (base_cand && !base && base_cand->kind != CAND_PHI)
1033 {
1034
1035 if (base_cand->kind == CAND_MULT && integer_onep (base_cand->stride))
1036 {
1037 /* Y = (B + i') * 1
1038 X = Y * Z
1039 ================
1040 X = (B + i') * Z */
1041 base = base_cand->base_expr;
1042 index = base_cand->index;
1043 stride = stride_in;
1044 ctype = base_cand->cand_type;
1045 if (has_single_use (base_in))
1046 savings = (base_cand->dead_savings
1047 + stmt_cost (base_cand->cand_stmt, speed));
1048 }
1049 else if (base_cand->kind == CAND_ADD
1050 && TREE_CODE (base_cand->stride) == INTEGER_CST)
1051 {
1052 /* Y = B + (i' * S), S constant
1053 X = Y * Z
1054 ============================
1055 X = B + ((i' * S) * Z) */
1056 base = base_cand->base_expr;
1057 index = base_cand->index * wi::to_widest (base_cand->stride);
1058 stride = stride_in;
1059 ctype = base_cand->cand_type;
1060 if (has_single_use (base_in))
1061 savings = (base_cand->dead_savings
1062 + stmt_cost (base_cand->cand_stmt, speed));
1063 }
1064
1065 if (base_cand->next_interp)
1066 base_cand = lookup_cand (base_cand->next_interp);
1067 else
1068 base_cand = NULL;
1069 }
1070
1071 if (!base)
1072 {
1073 /* No interpretations had anything useful to propagate, so
1074 produce X = (Y + 0) * Z. */
1075 base = base_in;
1076 index = 0;
1077 stride = stride_in;
1078 ctype = TREE_TYPE (base_in);
1079 }
1080
1081 c = alloc_cand_and_find_basis (CAND_MULT, gs, base, index, stride,
1082 ctype, savings);
1083 return c;
1084 }
1085
1086 /* Create a candidate entry for a statement GS, where GS multiplies
1087 SSA name BASE_IN by constant STRIDE_IN. Propagate any known
1088 information about BASE_IN into the new candidate. Return the new
1089 candidate. */
1090
1091 static slsr_cand_t
1092 create_mul_imm_cand (gimple gs, tree base_in, tree stride_in, bool speed)
1093 {
1094 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
1095 widest_int index, temp;
1096 unsigned savings = 0;
1097 slsr_cand_t c;
1098 slsr_cand_t base_cand = base_cand_from_table (base_in);
1099
1100 /* Look at all interpretations of the base candidate, if necessary,
1101 to find information to propagate into this candidate. */
1102 while (base_cand && !base && base_cand->kind != CAND_PHI)
1103 {
1104 if (base_cand->kind == CAND_MULT
1105 && TREE_CODE (base_cand->stride) == INTEGER_CST)
1106 {
1107 /* Y = (B + i') * S, S constant
1108 X = Y * c
1109 ============================
1110 X = (B + i') * (S * c) */
1111 temp = wi::to_widest (base_cand->stride) * wi::to_widest (stride_in);
1112 if (wi::fits_to_tree_p (temp, TREE_TYPE (stride_in)))
1113 {
1114 base = base_cand->base_expr;
1115 index = base_cand->index;
1116 stride = wide_int_to_tree (TREE_TYPE (stride_in), temp);
1117 ctype = base_cand->cand_type;
1118 if (has_single_use (base_in))
1119 savings = (base_cand->dead_savings
1120 + stmt_cost (base_cand->cand_stmt, speed));
1121 }
1122 }
1123 else if (base_cand->kind == CAND_ADD && integer_onep (base_cand->stride))
1124 {
1125 /* Y = B + (i' * 1)
1126 X = Y * c
1127 ===========================
1128 X = (B + i') * c */
1129 base = base_cand->base_expr;
1130 index = base_cand->index;
1131 stride = stride_in;
1132 ctype = base_cand->cand_type;
1133 if (has_single_use (base_in))
1134 savings = (base_cand->dead_savings
1135 + stmt_cost (base_cand->cand_stmt, speed));
1136 }
1137 else if (base_cand->kind == CAND_ADD
1138 && base_cand->index == 1
1139 && TREE_CODE (base_cand->stride) == INTEGER_CST)
1140 {
1141 /* Y = B + (1 * S), S constant
1142 X = Y * c
1143 ===========================
1144 X = (B + S) * c */
1145 base = base_cand->base_expr;
1146 index = wi::to_widest (base_cand->stride);
1147 stride = stride_in;
1148 ctype = base_cand->cand_type;
1149 if (has_single_use (base_in))
1150 savings = (base_cand->dead_savings
1151 + stmt_cost (base_cand->cand_stmt, speed));
1152 }
1153
1154 if (base_cand->next_interp)
1155 base_cand = lookup_cand (base_cand->next_interp);
1156 else
1157 base_cand = NULL;
1158 }
1159
1160 if (!base)
1161 {
1162 /* No interpretations had anything useful to propagate, so
1163 produce X = (Y + 0) * c. */
1164 base = base_in;
1165 index = 0;
1166 stride = stride_in;
1167 ctype = TREE_TYPE (base_in);
1168 }
1169
1170 c = alloc_cand_and_find_basis (CAND_MULT, gs, base, index, stride,
1171 ctype, savings);
1172 return c;
1173 }
1174
1175 /* Given GS which is a multiply of scalar integers, make an appropriate
1176 entry in the candidate table. If this is a multiply of two SSA names,
1177 create two CAND_MULT interpretations and attempt to find a basis for
1178 each of them. Otherwise, create a single CAND_MULT and attempt to
1179 find a basis. */
1180
1181 static void
1182 slsr_process_mul (gimple gs, tree rhs1, tree rhs2, bool speed)
1183 {
1184 slsr_cand_t c, c2;
1185
1186 /* If this is a multiply of an SSA name with itself, it is highly
1187 unlikely that we will get a strength reduction opportunity, so
1188 don't record it as a candidate. This simplifies the logic for
1189 finding a basis, so if this is removed that must be considered. */
1190 if (rhs1 == rhs2)
1191 return;
1192
1193 if (TREE_CODE (rhs2) == SSA_NAME)
1194 {
1195 /* Record an interpretation of this statement in the candidate table
1196 assuming RHS1 is the base expression and RHS2 is the stride. */
1197 c = create_mul_ssa_cand (gs, rhs1, rhs2, speed);
1198
1199 /* Add the first interpretation to the statement-candidate mapping. */
1200 add_cand_for_stmt (gs, c);
1201
1202 /* Record another interpretation of this statement assuming RHS1
1203 is the stride and RHS2 is the base expression. */
1204 c2 = create_mul_ssa_cand (gs, rhs2, rhs1, speed);
1205 c->next_interp = c2->cand_num;
1206 }
1207 else
1208 {
1209 /* Record an interpretation for the multiply-immediate. */
1210 c = create_mul_imm_cand (gs, rhs1, rhs2, speed);
1211
1212 /* Add the interpretation to the statement-candidate mapping. */
1213 add_cand_for_stmt (gs, c);
1214 }
1215 }
1216
1217 /* Create a candidate entry for a statement GS, where GS adds two
1218 SSA names BASE_IN and ADDEND_IN if SUBTRACT_P is false, and
1219 subtracts ADDEND_IN from BASE_IN otherwise. Propagate any known
1220 information about the two SSA names into the new candidate.
1221 Return the new candidate. */
1222
1223 static slsr_cand_t
1224 create_add_ssa_cand (gimple gs, tree base_in, tree addend_in,
1225 bool subtract_p, bool speed)
1226 {
1227 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL;
1228 widest_int index;
1229 unsigned savings = 0;
1230 slsr_cand_t c;
1231 slsr_cand_t base_cand = base_cand_from_table (base_in);
1232 slsr_cand_t addend_cand = base_cand_from_table (addend_in);
1233
1234 /* The most useful transformation is a multiply-immediate feeding
1235 an add or subtract. Look for that first. */
1236 while (addend_cand && !base && addend_cand->kind != CAND_PHI)
1237 {
1238 if (addend_cand->kind == CAND_MULT
1239 && addend_cand->index == 0
1240 && TREE_CODE (addend_cand->stride) == INTEGER_CST)
1241 {
1242 /* Z = (B + 0) * S, S constant
1243 X = Y +/- Z
1244 ===========================
1245 X = Y + ((+/-1 * S) * B) */
1246 base = base_in;
1247 index = wi::to_widest (addend_cand->stride);
1248 if (subtract_p)
1249 index = -index;
1250 stride = addend_cand->base_expr;
1251 ctype = TREE_TYPE (base_in);
1252 if (has_single_use (addend_in))
1253 savings = (addend_cand->dead_savings
1254 + stmt_cost (addend_cand->cand_stmt, speed));
1255 }
1256
1257 if (addend_cand->next_interp)
1258 addend_cand = lookup_cand (addend_cand->next_interp);
1259 else
1260 addend_cand = NULL;
1261 }
1262
1263 while (base_cand && !base && base_cand->kind != CAND_PHI)
1264 {
1265 if (base_cand->kind == CAND_ADD
1266 && (base_cand->index == 0
1267 || operand_equal_p (base_cand->stride,
1268 integer_zero_node, 0)))
1269 {
1270 /* Y = B + (i' * S), i' * S = 0
1271 X = Y +/- Z
1272 ============================
1273 X = B + (+/-1 * Z) */
1274 base = base_cand->base_expr;
1275 index = subtract_p ? -1 : 1;
1276 stride = addend_in;
1277 ctype = base_cand->cand_type;
1278 if (has_single_use (base_in))
1279 savings = (base_cand->dead_savings
1280 + stmt_cost (base_cand->cand_stmt, speed));
1281 }
1282 else if (subtract_p)
1283 {
1284 slsr_cand_t subtrahend_cand = base_cand_from_table (addend_in);
1285
1286 while (subtrahend_cand && !base && subtrahend_cand->kind != CAND_PHI)
1287 {
1288 if (subtrahend_cand->kind == CAND_MULT
1289 && subtrahend_cand->index == 0
1290 && TREE_CODE (subtrahend_cand->stride) == INTEGER_CST)
1291 {
1292 /* Z = (B + 0) * S, S constant
1293 X = Y - Z
1294 ===========================
1295 Value: X = Y + ((-1 * S) * B) */
1296 base = base_in;
1297 index = wi::to_widest (subtrahend_cand->stride);
1298 index = -index;
1299 stride = subtrahend_cand->base_expr;
1300 ctype = TREE_TYPE (base_in);
1301 if (has_single_use (addend_in))
1302 savings = (subtrahend_cand->dead_savings
1303 + stmt_cost (subtrahend_cand->cand_stmt, speed));
1304 }
1305
1306 if (subtrahend_cand->next_interp)
1307 subtrahend_cand = lookup_cand (subtrahend_cand->next_interp);
1308 else
1309 subtrahend_cand = NULL;
1310 }
1311 }
1312
1313 if (base_cand->next_interp)
1314 base_cand = lookup_cand (base_cand->next_interp);
1315 else
1316 base_cand = NULL;
1317 }
1318
1319 if (!base)
1320 {
1321 /* No interpretations had anything useful to propagate, so
1322 produce X = Y + (1 * Z). */
1323 base = base_in;
1324 index = subtract_p ? -1 : 1;
1325 stride = addend_in;
1326 ctype = TREE_TYPE (base_in);
1327 }
1328
1329 c = alloc_cand_and_find_basis (CAND_ADD, gs, base, index, stride,
1330 ctype, savings);
1331 return c;
1332 }
1333
1334 /* Create a candidate entry for a statement GS, where GS adds SSA
1335 name BASE_IN to constant INDEX_IN. Propagate any known information
1336 about BASE_IN into the new candidate. Return the new candidate. */
1337
1338 static slsr_cand_t
1339 create_add_imm_cand (gimple gs, tree base_in, const widest_int &index_in,
1340 bool speed)
1341 {
1342 enum cand_kind kind = CAND_ADD;
1343 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
1344 widest_int index, multiple;
1345 unsigned savings = 0;
1346 slsr_cand_t c;
1347 slsr_cand_t base_cand = base_cand_from_table (base_in);
1348
1349 while (base_cand && !base && base_cand->kind != CAND_PHI)
1350 {
1351 signop sign = TYPE_SIGN (TREE_TYPE (base_cand->stride));
1352
1353 if (TREE_CODE (base_cand->stride) == INTEGER_CST
1354 && wi::multiple_of_p (index_in, wi::to_widest (base_cand->stride),
1355 sign, &multiple))
1356 {
1357 /* Y = (B + i') * S, S constant, c = kS for some integer k
1358 X = Y + c
1359 ============================
1360 X = (B + (i'+ k)) * S
1361 OR
1362 Y = B + (i' * S), S constant, c = kS for some integer k
1363 X = Y + c
1364 ============================
1365 X = (B + (i'+ k)) * S */
1366 kind = base_cand->kind;
1367 base = base_cand->base_expr;
1368 index = base_cand->index + multiple;
1369 stride = base_cand->stride;
1370 ctype = base_cand->cand_type;
1371 if (has_single_use (base_in))
1372 savings = (base_cand->dead_savings
1373 + stmt_cost (base_cand->cand_stmt, speed));
1374 }
1375
1376 if (base_cand->next_interp)
1377 base_cand = lookup_cand (base_cand->next_interp);
1378 else
1379 base_cand = NULL;
1380 }
1381
1382 if (!base)
1383 {
1384 /* No interpretations had anything useful to propagate, so
1385 produce X = Y + (c * 1). */
1386 kind = CAND_ADD;
1387 base = base_in;
1388 index = index_in;
1389 stride = integer_one_node;
1390 ctype = TREE_TYPE (base_in);
1391 }
1392
1393 c = alloc_cand_and_find_basis (kind, gs, base, index, stride,
1394 ctype, savings);
1395 return c;
1396 }
1397
1398 /* Given GS which is an add or subtract of scalar integers or pointers,
1399 make at least one appropriate entry in the candidate table. */
1400
1401 static void
1402 slsr_process_add (gimple gs, tree rhs1, tree rhs2, bool speed)
1403 {
1404 bool subtract_p = gimple_assign_rhs_code (gs) == MINUS_EXPR;
1405 slsr_cand_t c = NULL, c2;
1406
1407 if (TREE_CODE (rhs2) == SSA_NAME)
1408 {
1409 /* First record an interpretation assuming RHS1 is the base expression
1410 and RHS2 is the stride. But it doesn't make sense for the
1411 stride to be a pointer, so don't record a candidate in that case. */
1412 if (!POINTER_TYPE_P (TREE_TYPE (rhs2)))
1413 {
1414 c = create_add_ssa_cand (gs, rhs1, rhs2, subtract_p, speed);
1415
1416 /* Add the first interpretation to the statement-candidate
1417 mapping. */
1418 add_cand_for_stmt (gs, c);
1419 }
1420
1421 /* If the two RHS operands are identical, or this is a subtract,
1422 we're done. */
1423 if (operand_equal_p (rhs1, rhs2, 0) || subtract_p)
1424 return;
1425
1426 /* Otherwise, record another interpretation assuming RHS2 is the
1427 base expression and RHS1 is the stride, again provided that the
1428 stride is not a pointer. */
1429 if (!POINTER_TYPE_P (TREE_TYPE (rhs1)))
1430 {
1431 c2 = create_add_ssa_cand (gs, rhs2, rhs1, false, speed);
1432 if (c)
1433 c->next_interp = c2->cand_num;
1434 else
1435 add_cand_for_stmt (gs, c2);
1436 }
1437 }
1438 else
1439 {
1440 /* Record an interpretation for the add-immediate. */
1441 widest_int index = wi::to_widest (rhs2);
1442 if (subtract_p)
1443 index = -index;
1444
1445 c = create_add_imm_cand (gs, rhs1, index, speed);
1446
1447 /* Add the interpretation to the statement-candidate mapping. */
1448 add_cand_for_stmt (gs, c);
1449 }
1450 }
1451
1452 /* Given GS which is a negate of a scalar integer, make an appropriate
1453 entry in the candidate table. A negate is equivalent to a multiply
1454 by -1. */
1455
1456 static void
1457 slsr_process_neg (gimple gs, tree rhs1, bool speed)
1458 {
1459 /* Record a CAND_MULT interpretation for the multiply by -1. */
1460 slsr_cand_t c = create_mul_imm_cand (gs, rhs1, integer_minus_one_node, speed);
1461
1462 /* Add the interpretation to the statement-candidate mapping. */
1463 add_cand_for_stmt (gs, c);
1464 }
1465
1466 /* Help function for legal_cast_p, operating on two trees. Checks
1467 whether it's allowable to cast from RHS to LHS. See legal_cast_p
1468 for more details. */
1469
1470 static bool
1471 legal_cast_p_1 (tree lhs, tree rhs)
1472 {
1473 tree lhs_type, rhs_type;
1474 unsigned lhs_size, rhs_size;
1475 bool lhs_wraps, rhs_wraps;
1476
1477 lhs_type = TREE_TYPE (lhs);
1478 rhs_type = TREE_TYPE (rhs);
1479 lhs_size = TYPE_PRECISION (lhs_type);
1480 rhs_size = TYPE_PRECISION (rhs_type);
1481 lhs_wraps = ANY_INTEGRAL_TYPE_P (lhs_type) && TYPE_OVERFLOW_WRAPS (lhs_type);
1482 rhs_wraps = ANY_INTEGRAL_TYPE_P (rhs_type) && TYPE_OVERFLOW_WRAPS (rhs_type);
1483
1484 if (lhs_size < rhs_size
1485 || (rhs_wraps && !lhs_wraps)
1486 || (rhs_wraps && lhs_wraps && rhs_size != lhs_size))
1487 return false;
1488
1489 return true;
1490 }
1491
1492 /* Return TRUE if GS is a statement that defines an SSA name from
1493 a conversion and is legal for us to combine with an add and multiply
1494 in the candidate table. For example, suppose we have:
1495
1496 A = B + i;
1497 C = (type) A;
1498 D = C * S;
1499
1500 Without the type-cast, we would create a CAND_MULT for D with base B,
1501 index i, and stride S. We want to record this candidate only if it
1502 is equivalent to apply the type cast following the multiply:
1503
1504 A = B + i;
1505 E = A * S;
1506 D = (type) E;
1507
1508 We will record the type with the candidate for D. This allows us
1509 to use a similar previous candidate as a basis. If we have earlier seen
1510
1511 A' = B + i';
1512 C' = (type) A';
1513 D' = C' * S;
1514
1515 we can replace D with
1516
1517 D = D' + (i - i') * S;
1518
1519 But if moving the type-cast would change semantics, we mustn't do this.
1520
1521 This is legitimate for casts from a non-wrapping integral type to
1522 any integral type of the same or larger size. It is not legitimate
1523 to convert a wrapping type to a non-wrapping type, or to a wrapping
1524 type of a different size. I.e., with a wrapping type, we must
1525 assume that the addition B + i could wrap, in which case performing
1526 the multiply before or after one of the "illegal" type casts will
1527 have different semantics. */
1528
1529 static bool
1530 legal_cast_p (gimple gs, tree rhs)
1531 {
1532 if (!is_gimple_assign (gs)
1533 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs)))
1534 return false;
1535
1536 return legal_cast_p_1 (gimple_assign_lhs (gs), rhs);
1537 }
1538
1539 /* Given GS which is a cast to a scalar integer type, determine whether
1540 the cast is legal for strength reduction. If so, make at least one
1541 appropriate entry in the candidate table. */
1542
1543 static void
1544 slsr_process_cast (gimple gs, tree rhs1, bool speed)
1545 {
1546 tree lhs, ctype;
1547 slsr_cand_t base_cand, c, c2;
1548 unsigned savings = 0;
1549
1550 if (!legal_cast_p (gs, rhs1))
1551 return;
1552
1553 lhs = gimple_assign_lhs (gs);
1554 base_cand = base_cand_from_table (rhs1);
1555 ctype = TREE_TYPE (lhs);
1556
1557 if (base_cand && base_cand->kind != CAND_PHI)
1558 {
1559 while (base_cand)
1560 {
1561 /* Propagate all data from the base candidate except the type,
1562 which comes from the cast, and the base candidate's cast,
1563 which is no longer applicable. */
1564 if (has_single_use (rhs1))
1565 savings = (base_cand->dead_savings
1566 + stmt_cost (base_cand->cand_stmt, speed));
1567
1568 c = alloc_cand_and_find_basis (base_cand->kind, gs,
1569 base_cand->base_expr,
1570 base_cand->index, base_cand->stride,
1571 ctype, savings);
1572 if (base_cand->next_interp)
1573 base_cand = lookup_cand (base_cand->next_interp);
1574 else
1575 base_cand = NULL;
1576 }
1577 }
1578 else
1579 {
1580 /* If nothing is known about the RHS, create fresh CAND_ADD and
1581 CAND_MULT interpretations:
1582
1583 X = Y + (0 * 1)
1584 X = (Y + 0) * 1
1585
1586 The first of these is somewhat arbitrary, but the choice of
1587 1 for the stride simplifies the logic for propagating casts
1588 into their uses. */
1589 c = alloc_cand_and_find_basis (CAND_ADD, gs, rhs1,
1590 0, integer_one_node, ctype, 0);
1591 c2 = alloc_cand_and_find_basis (CAND_MULT, gs, rhs1,
1592 0, integer_one_node, ctype, 0);
1593 c->next_interp = c2->cand_num;
1594 }
1595
1596 /* Add the first (or only) interpretation to the statement-candidate
1597 mapping. */
1598 add_cand_for_stmt (gs, c);
1599 }
1600
1601 /* Given GS which is a copy of a scalar integer type, make at least one
1602 appropriate entry in the candidate table.
1603
1604 This interface is included for completeness, but is unnecessary
1605 if this pass immediately follows a pass that performs copy
1606 propagation, such as DOM. */
1607
1608 static void
1609 slsr_process_copy (gimple gs, tree rhs1, bool speed)
1610 {
1611 slsr_cand_t base_cand, c, c2;
1612 unsigned savings = 0;
1613
1614 base_cand = base_cand_from_table (rhs1);
1615
1616 if (base_cand && base_cand->kind != CAND_PHI)
1617 {
1618 while (base_cand)
1619 {
1620 /* Propagate all data from the base candidate. */
1621 if (has_single_use (rhs1))
1622 savings = (base_cand->dead_savings
1623 + stmt_cost (base_cand->cand_stmt, speed));
1624
1625 c = alloc_cand_and_find_basis (base_cand->kind, gs,
1626 base_cand->base_expr,
1627 base_cand->index, base_cand->stride,
1628 base_cand->cand_type, savings);
1629 if (base_cand->next_interp)
1630 base_cand = lookup_cand (base_cand->next_interp);
1631 else
1632 base_cand = NULL;
1633 }
1634 }
1635 else
1636 {
1637 /* If nothing is known about the RHS, create fresh CAND_ADD and
1638 CAND_MULT interpretations:
1639
1640 X = Y + (0 * 1)
1641 X = (Y + 0) * 1
1642
1643 The first of these is somewhat arbitrary, but the choice of
1644 1 for the stride simplifies the logic for propagating casts
1645 into their uses. */
1646 c = alloc_cand_and_find_basis (CAND_ADD, gs, rhs1,
1647 0, integer_one_node, TREE_TYPE (rhs1), 0);
1648 c2 = alloc_cand_and_find_basis (CAND_MULT, gs, rhs1,
1649 0, integer_one_node, TREE_TYPE (rhs1), 0);
1650 c->next_interp = c2->cand_num;
1651 }
1652
1653 /* Add the first (or only) interpretation to the statement-candidate
1654 mapping. */
1655 add_cand_for_stmt (gs, c);
1656 }
1657 \f
1658 class find_candidates_dom_walker : public dom_walker
1659 {
1660 public:
1661 find_candidates_dom_walker (cdi_direction direction)
1662 : dom_walker (direction) {}
1663 virtual void before_dom_children (basic_block);
1664 };
1665
1666 /* Find strength-reduction candidates in block BB. */
1667
1668 void
1669 find_candidates_dom_walker::before_dom_children (basic_block bb)
1670 {
1671 bool speed = optimize_bb_for_speed_p (bb);
1672
1673 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
1674 gsi_next (&gsi))
1675 slsr_process_phi (gsi.phi (), speed);
1676
1677 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
1678 gsi_next (&gsi))
1679 {
1680 gimple gs = gsi_stmt (gsi);
1681
1682 if (gimple_vuse (gs) && gimple_assign_single_p (gs))
1683 slsr_process_ref (gs);
1684
1685 else if (is_gimple_assign (gs)
1686 && SCALAR_INT_MODE_P
1687 (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))))
1688 {
1689 tree rhs1 = NULL_TREE, rhs2 = NULL_TREE;
1690
1691 switch (gimple_assign_rhs_code (gs))
1692 {
1693 case MULT_EXPR:
1694 case PLUS_EXPR:
1695 rhs1 = gimple_assign_rhs1 (gs);
1696 rhs2 = gimple_assign_rhs2 (gs);
1697 /* Should never happen, but currently some buggy situations
1698 in earlier phases put constants in rhs1. */
1699 if (TREE_CODE (rhs1) != SSA_NAME)
1700 continue;
1701 break;
1702
1703 /* Possible future opportunity: rhs1 of a ptr+ can be
1704 an ADDR_EXPR. */
1705 case POINTER_PLUS_EXPR:
1706 case MINUS_EXPR:
1707 rhs2 = gimple_assign_rhs2 (gs);
1708 /* Fall-through. */
1709
1710 CASE_CONVERT:
1711 case MODIFY_EXPR:
1712 case NEGATE_EXPR:
1713 rhs1 = gimple_assign_rhs1 (gs);
1714 if (TREE_CODE (rhs1) != SSA_NAME)
1715 continue;
1716 break;
1717
1718 default:
1719 ;
1720 }
1721
1722 switch (gimple_assign_rhs_code (gs))
1723 {
1724 case MULT_EXPR:
1725 slsr_process_mul (gs, rhs1, rhs2, speed);
1726 break;
1727
1728 case PLUS_EXPR:
1729 case POINTER_PLUS_EXPR:
1730 case MINUS_EXPR:
1731 slsr_process_add (gs, rhs1, rhs2, speed);
1732 break;
1733
1734 case NEGATE_EXPR:
1735 slsr_process_neg (gs, rhs1, speed);
1736 break;
1737
1738 CASE_CONVERT:
1739 slsr_process_cast (gs, rhs1, speed);
1740 break;
1741
1742 case MODIFY_EXPR:
1743 slsr_process_copy (gs, rhs1, speed);
1744 break;
1745
1746 default:
1747 ;
1748 }
1749 }
1750 }
1751 }
1752 \f
1753 /* Dump a candidate for debug. */
1754
1755 static void
1756 dump_candidate (slsr_cand_t c)
1757 {
1758 fprintf (dump_file, "%3d [%d] ", c->cand_num,
1759 gimple_bb (c->cand_stmt)->index);
1760 print_gimple_stmt (dump_file, c->cand_stmt, 0, 0);
1761 switch (c->kind)
1762 {
1763 case CAND_MULT:
1764 fputs (" MULT : (", dump_file);
1765 print_generic_expr (dump_file, c->base_expr, 0);
1766 fputs (" + ", dump_file);
1767 print_decs (c->index, dump_file);
1768 fputs (") * ", dump_file);
1769 print_generic_expr (dump_file, c->stride, 0);
1770 fputs (" : ", dump_file);
1771 break;
1772 case CAND_ADD:
1773 fputs (" ADD : ", dump_file);
1774 print_generic_expr (dump_file, c->base_expr, 0);
1775 fputs (" + (", dump_file);
1776 print_decs (c->index, dump_file);
1777 fputs (" * ", dump_file);
1778 print_generic_expr (dump_file, c->stride, 0);
1779 fputs (") : ", dump_file);
1780 break;
1781 case CAND_REF:
1782 fputs (" REF : ", dump_file);
1783 print_generic_expr (dump_file, c->base_expr, 0);
1784 fputs (" + (", dump_file);
1785 print_generic_expr (dump_file, c->stride, 0);
1786 fputs (") + ", dump_file);
1787 print_decs (c->index, dump_file);
1788 fputs (" : ", dump_file);
1789 break;
1790 case CAND_PHI:
1791 fputs (" PHI : ", dump_file);
1792 print_generic_expr (dump_file, c->base_expr, 0);
1793 fputs (" + (unknown * ", dump_file);
1794 print_generic_expr (dump_file, c->stride, 0);
1795 fputs (") : ", dump_file);
1796 break;
1797 default:
1798 gcc_unreachable ();
1799 }
1800 print_generic_expr (dump_file, c->cand_type, 0);
1801 fprintf (dump_file, "\n basis: %d dependent: %d sibling: %d\n",
1802 c->basis, c->dependent, c->sibling);
1803 fprintf (dump_file, " next-interp: %d dead-savings: %d\n",
1804 c->next_interp, c->dead_savings);
1805 if (c->def_phi)
1806 fprintf (dump_file, " phi: %d\n", c->def_phi);
1807 fputs ("\n", dump_file);
1808 }
1809
1810 /* Dump the candidate vector for debug. */
1811
1812 static void
1813 dump_cand_vec (void)
1814 {
1815 unsigned i;
1816 slsr_cand_t c;
1817
1818 fprintf (dump_file, "\nStrength reduction candidate vector:\n\n");
1819
1820 FOR_EACH_VEC_ELT (cand_vec, i, c)
1821 dump_candidate (c);
1822 }
1823
1824 /* Callback used to dump the candidate chains hash table. */
1825
1826 int
1827 ssa_base_cand_dump_callback (cand_chain **slot, void *ignored ATTRIBUTE_UNUSED)
1828 {
1829 const_cand_chain_t chain = *slot;
1830 cand_chain_t p;
1831
1832 print_generic_expr (dump_file, chain->base_expr, 0);
1833 fprintf (dump_file, " -> %d", chain->cand->cand_num);
1834
1835 for (p = chain->next; p; p = p->next)
1836 fprintf (dump_file, " -> %d", p->cand->cand_num);
1837
1838 fputs ("\n", dump_file);
1839 return 1;
1840 }
1841
1842 /* Dump the candidate chains. */
1843
1844 static void
1845 dump_cand_chains (void)
1846 {
1847 fprintf (dump_file, "\nStrength reduction candidate chains:\n\n");
1848 base_cand_map->traverse_noresize <void *, ssa_base_cand_dump_callback>
1849 (NULL);
1850 fputs ("\n", dump_file);
1851 }
1852
1853 /* Dump the increment vector for debug. */
1854
1855 static void
1856 dump_incr_vec (void)
1857 {
1858 if (dump_file && (dump_flags & TDF_DETAILS))
1859 {
1860 unsigned i;
1861
1862 fprintf (dump_file, "\nIncrement vector:\n\n");
1863
1864 for (i = 0; i < incr_vec_len; i++)
1865 {
1866 fprintf (dump_file, "%3d increment: ", i);
1867 print_decs (incr_vec[i].incr, dump_file);
1868 fprintf (dump_file, "\n count: %d", incr_vec[i].count);
1869 fprintf (dump_file, "\n cost: %d", incr_vec[i].cost);
1870 fputs ("\n initializer: ", dump_file);
1871 print_generic_expr (dump_file, incr_vec[i].initializer, 0);
1872 fputs ("\n\n", dump_file);
1873 }
1874 }
1875 }
1876 \f
1877 /* Replace *EXPR in candidate C with an equivalent strength-reduced
1878 data reference. */
1879
1880 static void
1881 replace_ref (tree *expr, slsr_cand_t c)
1882 {
1883 tree add_expr, mem_ref, acc_type = TREE_TYPE (*expr);
1884 unsigned HOST_WIDE_INT misalign;
1885 unsigned align;
1886
1887 /* Ensure the memory reference carries the minimum alignment
1888 requirement for the data type. See PR58041. */
1889 get_object_alignment_1 (*expr, &align, &misalign);
1890 if (misalign != 0)
1891 align = (misalign & -misalign);
1892 if (align < TYPE_ALIGN (acc_type))
1893 acc_type = build_aligned_type (acc_type, align);
1894
1895 add_expr = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (c->base_expr),
1896 c->base_expr, c->stride);
1897 mem_ref = fold_build2 (MEM_REF, acc_type, add_expr,
1898 wide_int_to_tree (c->cand_type, c->index));
1899
1900 /* Gimplify the base addressing expression for the new MEM_REF tree. */
1901 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
1902 TREE_OPERAND (mem_ref, 0)
1903 = force_gimple_operand_gsi (&gsi, TREE_OPERAND (mem_ref, 0),
1904 /*simple_p=*/true, NULL,
1905 /*before=*/true, GSI_SAME_STMT);
1906 copy_ref_info (mem_ref, *expr);
1907 *expr = mem_ref;
1908 update_stmt (c->cand_stmt);
1909 }
1910
1911 /* Replace CAND_REF candidate C, each sibling of candidate C, and each
1912 dependent of candidate C with an equivalent strength-reduced data
1913 reference. */
1914
1915 static void
1916 replace_refs (slsr_cand_t c)
1917 {
1918 if (dump_file && (dump_flags & TDF_DETAILS))
1919 {
1920 fputs ("Replacing reference: ", dump_file);
1921 print_gimple_stmt (dump_file, c->cand_stmt, 0, 0);
1922 }
1923
1924 if (gimple_vdef (c->cand_stmt))
1925 {
1926 tree *lhs = gimple_assign_lhs_ptr (c->cand_stmt);
1927 replace_ref (lhs, c);
1928 }
1929 else
1930 {
1931 tree *rhs = gimple_assign_rhs1_ptr (c->cand_stmt);
1932 replace_ref (rhs, c);
1933 }
1934
1935 if (dump_file && (dump_flags & TDF_DETAILS))
1936 {
1937 fputs ("With: ", dump_file);
1938 print_gimple_stmt (dump_file, c->cand_stmt, 0, 0);
1939 fputs ("\n", dump_file);
1940 }
1941
1942 if (c->sibling)
1943 replace_refs (lookup_cand (c->sibling));
1944
1945 if (c->dependent)
1946 replace_refs (lookup_cand (c->dependent));
1947 }
1948
1949 /* Return TRUE if candidate C is dependent upon a PHI. */
1950
1951 static bool
1952 phi_dependent_cand_p (slsr_cand_t c)
1953 {
1954 /* A candidate is not necessarily dependent upon a PHI just because
1955 it has a phi definition for its base name. It may have a basis
1956 that relies upon the same phi definition, in which case the PHI
1957 is irrelevant to this candidate. */
1958 return (c->def_phi
1959 && c->basis
1960 && lookup_cand (c->basis)->def_phi != c->def_phi);
1961 }
1962
1963 /* Calculate the increment required for candidate C relative to
1964 its basis. */
1965
1966 static widest_int
1967 cand_increment (slsr_cand_t c)
1968 {
1969 slsr_cand_t basis;
1970
1971 /* If the candidate doesn't have a basis, just return its own
1972 index. This is useful in record_increments to help us find
1973 an existing initializer. Also, if the candidate's basis is
1974 hidden by a phi, then its own index will be the increment
1975 from the newly introduced phi basis. */
1976 if (!c->basis || phi_dependent_cand_p (c))
1977 return c->index;
1978
1979 basis = lookup_cand (c->basis);
1980 gcc_assert (operand_equal_p (c->base_expr, basis->base_expr, 0));
1981 return c->index - basis->index;
1982 }
1983
1984 /* Calculate the increment required for candidate C relative to
1985 its basis. If we aren't going to generate pointer arithmetic
1986 for this candidate, return the absolute value of that increment
1987 instead. */
1988
1989 static inline widest_int
1990 cand_abs_increment (slsr_cand_t c)
1991 {
1992 widest_int increment = cand_increment (c);
1993
1994 if (!address_arithmetic_p && wi::neg_p (increment))
1995 increment = -increment;
1996
1997 return increment;
1998 }
1999
2000 /* Return TRUE iff candidate C has already been replaced under
2001 another interpretation. */
2002
2003 static inline bool
2004 cand_already_replaced (slsr_cand_t c)
2005 {
2006 return (gimple_bb (c->cand_stmt) == 0);
2007 }
2008
2009 /* Common logic used by replace_unconditional_candidate and
2010 replace_conditional_candidate. */
2011
2012 static void
2013 replace_mult_candidate (slsr_cand_t c, tree basis_name, widest_int bump)
2014 {
2015 tree target_type = TREE_TYPE (gimple_assign_lhs (c->cand_stmt));
2016 enum tree_code cand_code = gimple_assign_rhs_code (c->cand_stmt);
2017
2018 /* It is highly unlikely, but possible, that the resulting
2019 bump doesn't fit in a HWI. Abandon the replacement
2020 in this case. This does not affect siblings or dependents
2021 of C. Restriction to signed HWI is conservative for unsigned
2022 types but allows for safe negation without twisted logic. */
2023 if (wi::fits_shwi_p (bump)
2024 && bump.to_shwi () != HOST_WIDE_INT_MIN
2025 /* It is not useful to replace casts, copies, or adds of
2026 an SSA name and a constant. */
2027 && cand_code != MODIFY_EXPR
2028 && !CONVERT_EXPR_CODE_P (cand_code)
2029 && cand_code != PLUS_EXPR
2030 && cand_code != POINTER_PLUS_EXPR
2031 && cand_code != MINUS_EXPR)
2032 {
2033 enum tree_code code = PLUS_EXPR;
2034 tree bump_tree;
2035 gimple stmt_to_print = NULL;
2036
2037 /* If the basis name and the candidate's LHS have incompatible
2038 types, introduce a cast. */
2039 if (!useless_type_conversion_p (target_type, TREE_TYPE (basis_name)))
2040 basis_name = introduce_cast_before_cand (c, target_type, basis_name);
2041 if (wi::neg_p (bump))
2042 {
2043 code = MINUS_EXPR;
2044 bump = -bump;
2045 }
2046
2047 bump_tree = wide_int_to_tree (target_type, bump);
2048
2049 if (dump_file && (dump_flags & TDF_DETAILS))
2050 {
2051 fputs ("Replacing: ", dump_file);
2052 print_gimple_stmt (dump_file, c->cand_stmt, 0, 0);
2053 }
2054
2055 if (bump == 0)
2056 {
2057 tree lhs = gimple_assign_lhs (c->cand_stmt);
2058 gassign *copy_stmt = gimple_build_assign (lhs, basis_name);
2059 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
2060 gimple_set_location (copy_stmt, gimple_location (c->cand_stmt));
2061 gsi_replace (&gsi, copy_stmt, false);
2062 c->cand_stmt = copy_stmt;
2063 if (dump_file && (dump_flags & TDF_DETAILS))
2064 stmt_to_print = copy_stmt;
2065 }
2066 else
2067 {
2068 tree rhs1, rhs2;
2069 if (cand_code != NEGATE_EXPR) {
2070 rhs1 = gimple_assign_rhs1 (c->cand_stmt);
2071 rhs2 = gimple_assign_rhs2 (c->cand_stmt);
2072 }
2073 if (cand_code != NEGATE_EXPR
2074 && ((operand_equal_p (rhs1, basis_name, 0)
2075 && operand_equal_p (rhs2, bump_tree, 0))
2076 || (operand_equal_p (rhs1, bump_tree, 0)
2077 && operand_equal_p (rhs2, basis_name, 0))))
2078 {
2079 if (dump_file && (dump_flags & TDF_DETAILS))
2080 {
2081 fputs ("(duplicate, not actually replacing)", dump_file);
2082 stmt_to_print = c->cand_stmt;
2083 }
2084 }
2085 else
2086 {
2087 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
2088 gimple_assign_set_rhs_with_ops (&gsi, code,
2089 basis_name, bump_tree);
2090 update_stmt (gsi_stmt (gsi));
2091 c->cand_stmt = gsi_stmt (gsi);
2092 if (dump_file && (dump_flags & TDF_DETAILS))
2093 stmt_to_print = gsi_stmt (gsi);
2094 }
2095 }
2096
2097 if (dump_file && (dump_flags & TDF_DETAILS))
2098 {
2099 fputs ("With: ", dump_file);
2100 print_gimple_stmt (dump_file, stmt_to_print, 0, 0);
2101 fputs ("\n", dump_file);
2102 }
2103 }
2104 }
2105
2106 /* Replace candidate C with an add or subtract. Note that we only
2107 operate on CAND_MULTs with known strides, so we will never generate
2108 a POINTER_PLUS_EXPR. Each candidate X = (B + i) * S is replaced by
2109 X = Y + ((i - i') * S), as described in the module commentary. The
2110 folded value ((i - i') * S) is referred to here as the "bump." */
2111
2112 static void
2113 replace_unconditional_candidate (slsr_cand_t c)
2114 {
2115 slsr_cand_t basis;
2116
2117 if (cand_already_replaced (c))
2118 return;
2119
2120 basis = lookup_cand (c->basis);
2121 widest_int bump = cand_increment (c) * wi::to_widest (c->stride);
2122
2123 replace_mult_candidate (c, gimple_assign_lhs (basis->cand_stmt), bump);
2124 }
2125 \f
2126 /* Return the index in the increment vector of the given INCREMENT,
2127 or -1 if not found. The latter can occur if more than
2128 MAX_INCR_VEC_LEN increments have been found. */
2129
2130 static inline int
2131 incr_vec_index (const widest_int &increment)
2132 {
2133 unsigned i;
2134
2135 for (i = 0; i < incr_vec_len && increment != incr_vec[i].incr; i++)
2136 ;
2137
2138 if (i < incr_vec_len)
2139 return i;
2140 else
2141 return -1;
2142 }
2143
2144 /* Create a new statement along edge E to add BASIS_NAME to the product
2145 of INCREMENT and the stride of candidate C. Create and return a new
2146 SSA name from *VAR to be used as the LHS of the new statement.
2147 KNOWN_STRIDE is true iff C's stride is a constant. */
2148
2149 static tree
2150 create_add_on_incoming_edge (slsr_cand_t c, tree basis_name,
2151 widest_int increment, edge e, location_t loc,
2152 bool known_stride)
2153 {
2154 basic_block insert_bb;
2155 gimple_stmt_iterator gsi;
2156 tree lhs, basis_type;
2157 gassign *new_stmt;
2158
2159 /* If the add candidate along this incoming edge has the same
2160 index as C's hidden basis, the hidden basis represents this
2161 edge correctly. */
2162 if (increment == 0)
2163 return basis_name;
2164
2165 basis_type = TREE_TYPE (basis_name);
2166 lhs = make_temp_ssa_name (basis_type, NULL, "slsr");
2167
2168 if (known_stride)
2169 {
2170 tree bump_tree;
2171 enum tree_code code = PLUS_EXPR;
2172 widest_int bump = increment * wi::to_widest (c->stride);
2173 if (wi::neg_p (bump))
2174 {
2175 code = MINUS_EXPR;
2176 bump = -bump;
2177 }
2178
2179 bump_tree = wide_int_to_tree (basis_type, bump);
2180 new_stmt = gimple_build_assign (lhs, code, basis_name, bump_tree);
2181 }
2182 else
2183 {
2184 int i;
2185 bool negate_incr = (!address_arithmetic_p && wi::neg_p (increment));
2186 i = incr_vec_index (negate_incr ? -increment : increment);
2187 gcc_assert (i >= 0);
2188
2189 if (incr_vec[i].initializer)
2190 {
2191 enum tree_code code = negate_incr ? MINUS_EXPR : PLUS_EXPR;
2192 new_stmt = gimple_build_assign (lhs, code, basis_name,
2193 incr_vec[i].initializer);
2194 }
2195 else if (increment == 1)
2196 new_stmt = gimple_build_assign (lhs, PLUS_EXPR, basis_name, c->stride);
2197 else if (increment == -1)
2198 new_stmt = gimple_build_assign (lhs, MINUS_EXPR, basis_name,
2199 c->stride);
2200 else
2201 gcc_unreachable ();
2202 }
2203
2204 insert_bb = single_succ_p (e->src) ? e->src : split_edge (e);
2205 gsi = gsi_last_bb (insert_bb);
2206
2207 if (!gsi_end_p (gsi) && is_ctrl_stmt (gsi_stmt (gsi)))
2208 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
2209 else
2210 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
2211
2212 gimple_set_location (new_stmt, loc);
2213
2214 if (dump_file && (dump_flags & TDF_DETAILS))
2215 {
2216 fprintf (dump_file, "Inserting in block %d: ", insert_bb->index);
2217 print_gimple_stmt (dump_file, new_stmt, 0, 0);
2218 }
2219
2220 return lhs;
2221 }
2222
2223 /* Given a candidate C with BASIS_NAME being the LHS of C's basis which
2224 is hidden by the phi node FROM_PHI, create a new phi node in the same
2225 block as FROM_PHI. The new phi is suitable for use as a basis by C,
2226 with its phi arguments representing conditional adjustments to the
2227 hidden basis along conditional incoming paths. Those adjustments are
2228 made by creating add statements (and sometimes recursively creating
2229 phis) along those incoming paths. LOC is the location to attach to
2230 the introduced statements. KNOWN_STRIDE is true iff C's stride is a
2231 constant. */
2232
2233 static tree
2234 create_phi_basis (slsr_cand_t c, gimple from_phi, tree basis_name,
2235 location_t loc, bool known_stride)
2236 {
2237 int i;
2238 tree name, phi_arg;
2239 gphi *phi;
2240 vec<tree> phi_args;
2241 slsr_cand_t basis = lookup_cand (c->basis);
2242 int nargs = gimple_phi_num_args (from_phi);
2243 basic_block phi_bb = gimple_bb (from_phi);
2244 slsr_cand_t phi_cand = base_cand_from_table (gimple_phi_result (from_phi));
2245 phi_args.create (nargs);
2246
2247 /* Process each argument of the existing phi that represents
2248 conditionally-executed add candidates. */
2249 for (i = 0; i < nargs; i++)
2250 {
2251 edge e = (*phi_bb->preds)[i];
2252 tree arg = gimple_phi_arg_def (from_phi, i);
2253 tree feeding_def;
2254
2255 /* If the phi argument is the base name of the CAND_PHI, then
2256 this incoming arc should use the hidden basis. */
2257 if (operand_equal_p (arg, phi_cand->base_expr, 0))
2258 if (basis->index == 0)
2259 feeding_def = gimple_assign_lhs (basis->cand_stmt);
2260 else
2261 {
2262 widest_int incr = -basis->index;
2263 feeding_def = create_add_on_incoming_edge (c, basis_name, incr,
2264 e, loc, known_stride);
2265 }
2266 else
2267 {
2268 gimple arg_def = SSA_NAME_DEF_STMT (arg);
2269
2270 /* If there is another phi along this incoming edge, we must
2271 process it in the same fashion to ensure that all basis
2272 adjustments are made along its incoming edges. */
2273 if (gimple_code (arg_def) == GIMPLE_PHI)
2274 feeding_def = create_phi_basis (c, arg_def, basis_name,
2275 loc, known_stride);
2276 else
2277 {
2278 slsr_cand_t arg_cand = base_cand_from_table (arg);
2279 widest_int diff = arg_cand->index - basis->index;
2280 feeding_def = create_add_on_incoming_edge (c, basis_name, diff,
2281 e, loc, known_stride);
2282 }
2283 }
2284
2285 /* Because of recursion, we need to save the arguments in a vector
2286 so we can create the PHI statement all at once. Otherwise the
2287 storage for the half-created PHI can be reclaimed. */
2288 phi_args.safe_push (feeding_def);
2289 }
2290
2291 /* Create the new phi basis. */
2292 name = make_temp_ssa_name (TREE_TYPE (basis_name), NULL, "slsr");
2293 phi = create_phi_node (name, phi_bb);
2294 SSA_NAME_DEF_STMT (name) = phi;
2295
2296 FOR_EACH_VEC_ELT (phi_args, i, phi_arg)
2297 {
2298 edge e = (*phi_bb->preds)[i];
2299 add_phi_arg (phi, phi_arg, e, loc);
2300 }
2301
2302 update_stmt (phi);
2303
2304 if (dump_file && (dump_flags & TDF_DETAILS))
2305 {
2306 fputs ("Introducing new phi basis: ", dump_file);
2307 print_gimple_stmt (dump_file, phi, 0, 0);
2308 }
2309
2310 return name;
2311 }
2312
2313 /* Given a candidate C whose basis is hidden by at least one intervening
2314 phi, introduce a matching number of new phis to represent its basis
2315 adjusted by conditional increments along possible incoming paths. Then
2316 replace C as though it were an unconditional candidate, using the new
2317 basis. */
2318
2319 static void
2320 replace_conditional_candidate (slsr_cand_t c)
2321 {
2322 tree basis_name, name;
2323 slsr_cand_t basis;
2324 location_t loc;
2325
2326 /* Look up the LHS SSA name from C's basis. This will be the
2327 RHS1 of the adds we will introduce to create new phi arguments. */
2328 basis = lookup_cand (c->basis);
2329 basis_name = gimple_assign_lhs (basis->cand_stmt);
2330
2331 /* Create a new phi statement which will represent C's true basis
2332 after the transformation is complete. */
2333 loc = gimple_location (c->cand_stmt);
2334 name = create_phi_basis (c, lookup_cand (c->def_phi)->cand_stmt,
2335 basis_name, loc, KNOWN_STRIDE);
2336 /* Replace C with an add of the new basis phi and a constant. */
2337 widest_int bump = c->index * wi::to_widest (c->stride);
2338
2339 replace_mult_candidate (c, name, bump);
2340 }
2341
2342 /* Compute the expected costs of inserting basis adjustments for
2343 candidate C with phi-definition PHI. The cost of inserting
2344 one adjustment is given by ONE_ADD_COST. If PHI has arguments
2345 which are themselves phi results, recursively calculate costs
2346 for those phis as well. */
2347
2348 static int
2349 phi_add_costs (gimple phi, slsr_cand_t c, int one_add_cost)
2350 {
2351 unsigned i;
2352 int cost = 0;
2353 slsr_cand_t phi_cand = base_cand_from_table (gimple_phi_result (phi));
2354
2355 /* If we work our way back to a phi that isn't dominated by the hidden
2356 basis, this isn't a candidate for replacement. Indicate this by
2357 returning an unreasonably high cost. It's not easy to detect
2358 these situations when determining the basis, so we defer the
2359 decision until now. */
2360 basic_block phi_bb = gimple_bb (phi);
2361 slsr_cand_t basis = lookup_cand (c->basis);
2362 basic_block basis_bb = gimple_bb (basis->cand_stmt);
2363
2364 if (phi_bb == basis_bb || !dominated_by_p (CDI_DOMINATORS, phi_bb, basis_bb))
2365 return COST_INFINITE;
2366
2367 for (i = 0; i < gimple_phi_num_args (phi); i++)
2368 {
2369 tree arg = gimple_phi_arg_def (phi, i);
2370
2371 if (arg != phi_cand->base_expr)
2372 {
2373 gimple arg_def = SSA_NAME_DEF_STMT (arg);
2374
2375 if (gimple_code (arg_def) == GIMPLE_PHI)
2376 cost += phi_add_costs (arg_def, c, one_add_cost);
2377 else
2378 {
2379 slsr_cand_t arg_cand = base_cand_from_table (arg);
2380
2381 if (arg_cand->index != c->index)
2382 cost += one_add_cost;
2383 }
2384 }
2385 }
2386
2387 return cost;
2388 }
2389
2390 /* For candidate C, each sibling of candidate C, and each dependent of
2391 candidate C, determine whether the candidate is dependent upon a
2392 phi that hides its basis. If not, replace the candidate unconditionally.
2393 Otherwise, determine whether the cost of introducing compensation code
2394 for the candidate is offset by the gains from strength reduction. If
2395 so, replace the candidate and introduce the compensation code. */
2396
2397 static void
2398 replace_uncond_cands_and_profitable_phis (slsr_cand_t c)
2399 {
2400 if (phi_dependent_cand_p (c))
2401 {
2402 if (c->kind == CAND_MULT)
2403 {
2404 /* A candidate dependent upon a phi will replace a multiply by
2405 a constant with an add, and will insert at most one add for
2406 each phi argument. Add these costs with the potential dead-code
2407 savings to determine profitability. */
2408 bool speed = optimize_bb_for_speed_p (gimple_bb (c->cand_stmt));
2409 int mult_savings = stmt_cost (c->cand_stmt, speed);
2410 gimple phi = lookup_cand (c->def_phi)->cand_stmt;
2411 tree phi_result = gimple_phi_result (phi);
2412 int one_add_cost = add_cost (speed,
2413 TYPE_MODE (TREE_TYPE (phi_result)));
2414 int add_costs = one_add_cost + phi_add_costs (phi, c, one_add_cost);
2415 int cost = add_costs - mult_savings - c->dead_savings;
2416
2417 if (dump_file && (dump_flags & TDF_DETAILS))
2418 {
2419 fprintf (dump_file, " Conditional candidate %d:\n", c->cand_num);
2420 fprintf (dump_file, " add_costs = %d\n", add_costs);
2421 fprintf (dump_file, " mult_savings = %d\n", mult_savings);
2422 fprintf (dump_file, " dead_savings = %d\n", c->dead_savings);
2423 fprintf (dump_file, " cost = %d\n", cost);
2424 if (cost <= COST_NEUTRAL)
2425 fputs (" Replacing...\n", dump_file);
2426 else
2427 fputs (" Not replaced.\n", dump_file);
2428 }
2429
2430 if (cost <= COST_NEUTRAL)
2431 replace_conditional_candidate (c);
2432 }
2433 }
2434 else
2435 replace_unconditional_candidate (c);
2436
2437 if (c->sibling)
2438 replace_uncond_cands_and_profitable_phis (lookup_cand (c->sibling));
2439
2440 if (c->dependent)
2441 replace_uncond_cands_and_profitable_phis (lookup_cand (c->dependent));
2442 }
2443 \f
2444 /* Count the number of candidates in the tree rooted at C that have
2445 not already been replaced under other interpretations. */
2446
2447 static int
2448 count_candidates (slsr_cand_t c)
2449 {
2450 unsigned count = cand_already_replaced (c) ? 0 : 1;
2451
2452 if (c->sibling)
2453 count += count_candidates (lookup_cand (c->sibling));
2454
2455 if (c->dependent)
2456 count += count_candidates (lookup_cand (c->dependent));
2457
2458 return count;
2459 }
2460
2461 /* Increase the count of INCREMENT by one in the increment vector.
2462 INCREMENT is associated with candidate C. If INCREMENT is to be
2463 conditionally executed as part of a conditional candidate replacement,
2464 IS_PHI_ADJUST is true, otherwise false. If an initializer
2465 T_0 = stride * I is provided by a candidate that dominates all
2466 candidates with the same increment, also record T_0 for subsequent use. */
2467
2468 static void
2469 record_increment (slsr_cand_t c, widest_int increment, bool is_phi_adjust)
2470 {
2471 bool found = false;
2472 unsigned i;
2473
2474 /* Treat increments that differ only in sign as identical so as to
2475 share initializers, unless we are generating pointer arithmetic. */
2476 if (!address_arithmetic_p && wi::neg_p (increment))
2477 increment = -increment;
2478
2479 for (i = 0; i < incr_vec_len; i++)
2480 {
2481 if (incr_vec[i].incr == increment)
2482 {
2483 incr_vec[i].count++;
2484 found = true;
2485
2486 /* If we previously recorded an initializer that doesn't
2487 dominate this candidate, it's not going to be useful to
2488 us after all. */
2489 if (incr_vec[i].initializer
2490 && !dominated_by_p (CDI_DOMINATORS,
2491 gimple_bb (c->cand_stmt),
2492 incr_vec[i].init_bb))
2493 {
2494 incr_vec[i].initializer = NULL_TREE;
2495 incr_vec[i].init_bb = NULL;
2496 }
2497
2498 break;
2499 }
2500 }
2501
2502 if (!found && incr_vec_len < MAX_INCR_VEC_LEN - 1)
2503 {
2504 /* The first time we see an increment, create the entry for it.
2505 If this is the root candidate which doesn't have a basis, set
2506 the count to zero. We're only processing it so it can possibly
2507 provide an initializer for other candidates. */
2508 incr_vec[incr_vec_len].incr = increment;
2509 incr_vec[incr_vec_len].count = c->basis || is_phi_adjust ? 1 : 0;
2510 incr_vec[incr_vec_len].cost = COST_INFINITE;
2511
2512 /* Optimistically record the first occurrence of this increment
2513 as providing an initializer (if it does); we will revise this
2514 opinion later if it doesn't dominate all other occurrences.
2515 Exception: increments of -1, 0, 1 never need initializers;
2516 and phi adjustments don't ever provide initializers. */
2517 if (c->kind == CAND_ADD
2518 && !is_phi_adjust
2519 && c->index == increment
2520 && (wi::gts_p (increment, 1)
2521 || wi::lts_p (increment, -1))
2522 && (gimple_assign_rhs_code (c->cand_stmt) == PLUS_EXPR
2523 || gimple_assign_rhs_code (c->cand_stmt) == POINTER_PLUS_EXPR))
2524 {
2525 tree t0 = NULL_TREE;
2526 tree rhs1 = gimple_assign_rhs1 (c->cand_stmt);
2527 tree rhs2 = gimple_assign_rhs2 (c->cand_stmt);
2528 if (operand_equal_p (rhs1, c->base_expr, 0))
2529 t0 = rhs2;
2530 else if (operand_equal_p (rhs2, c->base_expr, 0))
2531 t0 = rhs1;
2532 if (t0
2533 && SSA_NAME_DEF_STMT (t0)
2534 && gimple_bb (SSA_NAME_DEF_STMT (t0)))
2535 {
2536 incr_vec[incr_vec_len].initializer = t0;
2537 incr_vec[incr_vec_len++].init_bb
2538 = gimple_bb (SSA_NAME_DEF_STMT (t0));
2539 }
2540 else
2541 {
2542 incr_vec[incr_vec_len].initializer = NULL_TREE;
2543 incr_vec[incr_vec_len++].init_bb = NULL;
2544 }
2545 }
2546 else
2547 {
2548 incr_vec[incr_vec_len].initializer = NULL_TREE;
2549 incr_vec[incr_vec_len++].init_bb = NULL;
2550 }
2551 }
2552 }
2553
2554 /* Given phi statement PHI that hides a candidate from its BASIS, find
2555 the increments along each incoming arc (recursively handling additional
2556 phis that may be present) and record them. These increments are the
2557 difference in index between the index-adjusting statements and the
2558 index of the basis. */
2559
2560 static void
2561 record_phi_increments (slsr_cand_t basis, gimple phi)
2562 {
2563 unsigned i;
2564 slsr_cand_t phi_cand = base_cand_from_table (gimple_phi_result (phi));
2565
2566 for (i = 0; i < gimple_phi_num_args (phi); i++)
2567 {
2568 tree arg = gimple_phi_arg_def (phi, i);
2569
2570 if (!operand_equal_p (arg, phi_cand->base_expr, 0))
2571 {
2572 gimple arg_def = SSA_NAME_DEF_STMT (arg);
2573
2574 if (gimple_code (arg_def) == GIMPLE_PHI)
2575 record_phi_increments (basis, arg_def);
2576 else
2577 {
2578 slsr_cand_t arg_cand = base_cand_from_table (arg);
2579 widest_int diff = arg_cand->index - basis->index;
2580 record_increment (arg_cand, diff, PHI_ADJUST);
2581 }
2582 }
2583 }
2584 }
2585
2586 /* Determine how many times each unique increment occurs in the set
2587 of candidates rooted at C's parent, recording the data in the
2588 increment vector. For each unique increment I, if an initializer
2589 T_0 = stride * I is provided by a candidate that dominates all
2590 candidates with the same increment, also record T_0 for subsequent
2591 use. */
2592
2593 static void
2594 record_increments (slsr_cand_t c)
2595 {
2596 if (!cand_already_replaced (c))
2597 {
2598 if (!phi_dependent_cand_p (c))
2599 record_increment (c, cand_increment (c), NOT_PHI_ADJUST);
2600 else
2601 {
2602 /* A candidate with a basis hidden by a phi will have one
2603 increment for its relationship to the index represented by
2604 the phi, and potentially additional increments along each
2605 incoming edge. For the root of the dependency tree (which
2606 has no basis), process just the initial index in case it has
2607 an initializer that can be used by subsequent candidates. */
2608 record_increment (c, c->index, NOT_PHI_ADJUST);
2609
2610 if (c->basis)
2611 record_phi_increments (lookup_cand (c->basis),
2612 lookup_cand (c->def_phi)->cand_stmt);
2613 }
2614 }
2615
2616 if (c->sibling)
2617 record_increments (lookup_cand (c->sibling));
2618
2619 if (c->dependent)
2620 record_increments (lookup_cand (c->dependent));
2621 }
2622
2623 /* Add up and return the costs of introducing add statements that
2624 require the increment INCR on behalf of candidate C and phi
2625 statement PHI. Accumulate into *SAVINGS the potential savings
2626 from removing existing statements that feed PHI and have no other
2627 uses. */
2628
2629 static int
2630 phi_incr_cost (slsr_cand_t c, const widest_int &incr, gimple phi, int *savings)
2631 {
2632 unsigned i;
2633 int cost = 0;
2634 slsr_cand_t basis = lookup_cand (c->basis);
2635 slsr_cand_t phi_cand = base_cand_from_table (gimple_phi_result (phi));
2636
2637 for (i = 0; i < gimple_phi_num_args (phi); i++)
2638 {
2639 tree arg = gimple_phi_arg_def (phi, i);
2640
2641 if (!operand_equal_p (arg, phi_cand->base_expr, 0))
2642 {
2643 gimple arg_def = SSA_NAME_DEF_STMT (arg);
2644
2645 if (gimple_code (arg_def) == GIMPLE_PHI)
2646 {
2647 int feeding_savings = 0;
2648 cost += phi_incr_cost (c, incr, arg_def, &feeding_savings);
2649 if (has_single_use (gimple_phi_result (arg_def)))
2650 *savings += feeding_savings;
2651 }
2652 else
2653 {
2654 slsr_cand_t arg_cand = base_cand_from_table (arg);
2655 widest_int diff = arg_cand->index - basis->index;
2656
2657 if (incr == diff)
2658 {
2659 tree basis_lhs = gimple_assign_lhs (basis->cand_stmt);
2660 tree lhs = gimple_assign_lhs (arg_cand->cand_stmt);
2661 cost += add_cost (true, TYPE_MODE (TREE_TYPE (basis_lhs)));
2662 if (has_single_use (lhs))
2663 *savings += stmt_cost (arg_cand->cand_stmt, true);
2664 }
2665 }
2666 }
2667 }
2668
2669 return cost;
2670 }
2671
2672 /* Return the first candidate in the tree rooted at C that has not
2673 already been replaced, favoring siblings over dependents. */
2674
2675 static slsr_cand_t
2676 unreplaced_cand_in_tree (slsr_cand_t c)
2677 {
2678 if (!cand_already_replaced (c))
2679 return c;
2680
2681 if (c->sibling)
2682 {
2683 slsr_cand_t sib = unreplaced_cand_in_tree (lookup_cand (c->sibling));
2684 if (sib)
2685 return sib;
2686 }
2687
2688 if (c->dependent)
2689 {
2690 slsr_cand_t dep = unreplaced_cand_in_tree (lookup_cand (c->dependent));
2691 if (dep)
2692 return dep;
2693 }
2694
2695 return NULL;
2696 }
2697
2698 /* Return TRUE if the candidates in the tree rooted at C should be
2699 optimized for speed, else FALSE. We estimate this based on the block
2700 containing the most dominant candidate in the tree that has not yet
2701 been replaced. */
2702
2703 static bool
2704 optimize_cands_for_speed_p (slsr_cand_t c)
2705 {
2706 slsr_cand_t c2 = unreplaced_cand_in_tree (c);
2707 gcc_assert (c2);
2708 return optimize_bb_for_speed_p (gimple_bb (c2->cand_stmt));
2709 }
2710
2711 /* Add COST_IN to the lowest cost of any dependent path starting at
2712 candidate C or any of its siblings, counting only candidates along
2713 such paths with increment INCR. Assume that replacing a candidate
2714 reduces cost by REPL_SAVINGS. Also account for savings from any
2715 statements that would go dead. If COUNT_PHIS is true, include
2716 costs of introducing feeding statements for conditional candidates. */
2717
2718 static int
2719 lowest_cost_path (int cost_in, int repl_savings, slsr_cand_t c,
2720 const widest_int &incr, bool count_phis)
2721 {
2722 int local_cost, sib_cost, savings = 0;
2723 widest_int cand_incr = cand_abs_increment (c);
2724
2725 if (cand_already_replaced (c))
2726 local_cost = cost_in;
2727 else if (incr == cand_incr)
2728 local_cost = cost_in - repl_savings - c->dead_savings;
2729 else
2730 local_cost = cost_in - c->dead_savings;
2731
2732 if (count_phis
2733 && phi_dependent_cand_p (c)
2734 && !cand_already_replaced (c))
2735 {
2736 gimple phi = lookup_cand (c->def_phi)->cand_stmt;
2737 local_cost += phi_incr_cost (c, incr, phi, &savings);
2738
2739 if (has_single_use (gimple_phi_result (phi)))
2740 local_cost -= savings;
2741 }
2742
2743 if (c->dependent)
2744 local_cost = lowest_cost_path (local_cost, repl_savings,
2745 lookup_cand (c->dependent), incr,
2746 count_phis);
2747
2748 if (c->sibling)
2749 {
2750 sib_cost = lowest_cost_path (cost_in, repl_savings,
2751 lookup_cand (c->sibling), incr,
2752 count_phis);
2753 local_cost = MIN (local_cost, sib_cost);
2754 }
2755
2756 return local_cost;
2757 }
2758
2759 /* Compute the total savings that would accrue from all replacements
2760 in the candidate tree rooted at C, counting only candidates with
2761 increment INCR. Assume that replacing a candidate reduces cost
2762 by REPL_SAVINGS. Also account for savings from statements that
2763 would go dead. */
2764
2765 static int
2766 total_savings (int repl_savings, slsr_cand_t c, const widest_int &incr,
2767 bool count_phis)
2768 {
2769 int savings = 0;
2770 widest_int cand_incr = cand_abs_increment (c);
2771
2772 if (incr == cand_incr && !cand_already_replaced (c))
2773 savings += repl_savings + c->dead_savings;
2774
2775 if (count_phis
2776 && phi_dependent_cand_p (c)
2777 && !cand_already_replaced (c))
2778 {
2779 int phi_savings = 0;
2780 gimple phi = lookup_cand (c->def_phi)->cand_stmt;
2781 savings -= phi_incr_cost (c, incr, phi, &phi_savings);
2782
2783 if (has_single_use (gimple_phi_result (phi)))
2784 savings += phi_savings;
2785 }
2786
2787 if (c->dependent)
2788 savings += total_savings (repl_savings, lookup_cand (c->dependent), incr,
2789 count_phis);
2790
2791 if (c->sibling)
2792 savings += total_savings (repl_savings, lookup_cand (c->sibling), incr,
2793 count_phis);
2794
2795 return savings;
2796 }
2797
2798 /* Use target-specific costs to determine and record which increments
2799 in the current candidate tree are profitable to replace, assuming
2800 MODE and SPEED. FIRST_DEP is the first dependent of the root of
2801 the candidate tree.
2802
2803 One slight limitation here is that we don't account for the possible
2804 introduction of casts in some cases. See replace_one_candidate for
2805 the cases where these are introduced. This should probably be cleaned
2806 up sometime. */
2807
2808 static void
2809 analyze_increments (slsr_cand_t first_dep, machine_mode mode, bool speed)
2810 {
2811 unsigned i;
2812
2813 for (i = 0; i < incr_vec_len; i++)
2814 {
2815 HOST_WIDE_INT incr = incr_vec[i].incr.to_shwi ();
2816
2817 /* If somehow this increment is bigger than a HWI, we won't
2818 be optimizing candidates that use it. And if the increment
2819 has a count of zero, nothing will be done with it. */
2820 if (!wi::fits_shwi_p (incr_vec[i].incr) || !incr_vec[i].count)
2821 incr_vec[i].cost = COST_INFINITE;
2822
2823 /* Increments of 0, 1, and -1 are always profitable to replace,
2824 because they always replace a multiply or add with an add or
2825 copy, and may cause one or more existing instructions to go
2826 dead. Exception: -1 can't be assumed to be profitable for
2827 pointer addition. */
2828 else if (incr == 0
2829 || incr == 1
2830 || (incr == -1
2831 && (gimple_assign_rhs_code (first_dep->cand_stmt)
2832 != POINTER_PLUS_EXPR)))
2833 incr_vec[i].cost = COST_NEUTRAL;
2834
2835 /* FORNOW: If we need to add an initializer, give up if a cast from
2836 the candidate's type to its stride's type can lose precision.
2837 This could eventually be handled better by expressly retaining the
2838 result of a cast to a wider type in the stride. Example:
2839
2840 short int _1;
2841 _2 = (int) _1;
2842 _3 = _2 * 10;
2843 _4 = x + _3; ADD: x + (10 * _1) : int
2844 _5 = _2 * 15;
2845 _6 = x + _3; ADD: x + (15 * _1) : int
2846
2847 Right now replacing _6 would cause insertion of an initializer
2848 of the form "short int T = _1 * 5;" followed by a cast to
2849 int, which could overflow incorrectly. Had we recorded _2 or
2850 (int)_1 as the stride, this wouldn't happen. However, doing
2851 this breaks other opportunities, so this will require some
2852 care. */
2853 else if (!incr_vec[i].initializer
2854 && TREE_CODE (first_dep->stride) != INTEGER_CST
2855 && !legal_cast_p_1 (first_dep->stride,
2856 gimple_assign_lhs (first_dep->cand_stmt)))
2857
2858 incr_vec[i].cost = COST_INFINITE;
2859
2860 /* If we need to add an initializer, make sure we don't introduce
2861 a multiply by a pointer type, which can happen in certain cast
2862 scenarios. FIXME: When cleaning up these cast issues, we can
2863 afford to introduce the multiply provided we cast out to an
2864 unsigned int of appropriate size. */
2865 else if (!incr_vec[i].initializer
2866 && TREE_CODE (first_dep->stride) != INTEGER_CST
2867 && POINTER_TYPE_P (TREE_TYPE (first_dep->stride)))
2868
2869 incr_vec[i].cost = COST_INFINITE;
2870
2871 /* For any other increment, if this is a multiply candidate, we
2872 must introduce a temporary T and initialize it with
2873 T_0 = stride * increment. When optimizing for speed, walk the
2874 candidate tree to calculate the best cost reduction along any
2875 path; if it offsets the fixed cost of inserting the initializer,
2876 replacing the increment is profitable. When optimizing for
2877 size, instead calculate the total cost reduction from replacing
2878 all candidates with this increment. */
2879 else if (first_dep->kind == CAND_MULT)
2880 {
2881 int cost = mult_by_coeff_cost (incr, mode, speed);
2882 int repl_savings = mul_cost (speed, mode) - add_cost (speed, mode);
2883 if (speed)
2884 cost = lowest_cost_path (cost, repl_savings, first_dep,
2885 incr_vec[i].incr, COUNT_PHIS);
2886 else
2887 cost -= total_savings (repl_savings, first_dep, incr_vec[i].incr,
2888 COUNT_PHIS);
2889
2890 incr_vec[i].cost = cost;
2891 }
2892
2893 /* If this is an add candidate, the initializer may already
2894 exist, so only calculate the cost of the initializer if it
2895 doesn't. We are replacing one add with another here, so the
2896 known replacement savings is zero. We will account for removal
2897 of dead instructions in lowest_cost_path or total_savings. */
2898 else
2899 {
2900 int cost = 0;
2901 if (!incr_vec[i].initializer)
2902 cost = mult_by_coeff_cost (incr, mode, speed);
2903
2904 if (speed)
2905 cost = lowest_cost_path (cost, 0, first_dep, incr_vec[i].incr,
2906 DONT_COUNT_PHIS);
2907 else
2908 cost -= total_savings (0, first_dep, incr_vec[i].incr,
2909 DONT_COUNT_PHIS);
2910
2911 incr_vec[i].cost = cost;
2912 }
2913 }
2914 }
2915
2916 /* Return the nearest common dominator of BB1 and BB2. If the blocks
2917 are identical, return the earlier of C1 and C2 in *WHERE. Otherwise,
2918 if the NCD matches BB1, return C1 in *WHERE; if the NCD matches BB2,
2919 return C2 in *WHERE; and if the NCD matches neither, return NULL in
2920 *WHERE. Note: It is possible for one of C1 and C2 to be NULL. */
2921
2922 static basic_block
2923 ncd_for_two_cands (basic_block bb1, basic_block bb2,
2924 slsr_cand_t c1, slsr_cand_t c2, slsr_cand_t *where)
2925 {
2926 basic_block ncd;
2927
2928 if (!bb1)
2929 {
2930 *where = c2;
2931 return bb2;
2932 }
2933
2934 if (!bb2)
2935 {
2936 *where = c1;
2937 return bb1;
2938 }
2939
2940 ncd = nearest_common_dominator (CDI_DOMINATORS, bb1, bb2);
2941
2942 /* If both candidates are in the same block, the earlier
2943 candidate wins. */
2944 if (bb1 == ncd && bb2 == ncd)
2945 {
2946 if (!c1 || (c2 && c2->cand_num < c1->cand_num))
2947 *where = c2;
2948 else
2949 *where = c1;
2950 }
2951
2952 /* Otherwise, if one of them produced a candidate in the
2953 dominator, that one wins. */
2954 else if (bb1 == ncd)
2955 *where = c1;
2956
2957 else if (bb2 == ncd)
2958 *where = c2;
2959
2960 /* If neither matches the dominator, neither wins. */
2961 else
2962 *where = NULL;
2963
2964 return ncd;
2965 }
2966
2967 /* Consider all candidates that feed PHI. Find the nearest common
2968 dominator of those candidates requiring the given increment INCR.
2969 Further find and return the nearest common dominator of this result
2970 with block NCD. If the returned block contains one or more of the
2971 candidates, return the earliest candidate in the block in *WHERE. */
2972
2973 static basic_block
2974 ncd_with_phi (slsr_cand_t c, const widest_int &incr, gphi *phi,
2975 basic_block ncd, slsr_cand_t *where)
2976 {
2977 unsigned i;
2978 slsr_cand_t basis = lookup_cand (c->basis);
2979 slsr_cand_t phi_cand = base_cand_from_table (gimple_phi_result (phi));
2980
2981 for (i = 0; i < gimple_phi_num_args (phi); i++)
2982 {
2983 tree arg = gimple_phi_arg_def (phi, i);
2984
2985 if (!operand_equal_p (arg, phi_cand->base_expr, 0))
2986 {
2987 gimple arg_def = SSA_NAME_DEF_STMT (arg);
2988
2989 if (gimple_code (arg_def) == GIMPLE_PHI)
2990 ncd = ncd_with_phi (c, incr, as_a <gphi *> (arg_def), ncd,
2991 where);
2992 else
2993 {
2994 slsr_cand_t arg_cand = base_cand_from_table (arg);
2995 widest_int diff = arg_cand->index - basis->index;
2996 basic_block pred = gimple_phi_arg_edge (phi, i)->src;
2997
2998 if ((incr == diff) || (!address_arithmetic_p && incr == -diff))
2999 ncd = ncd_for_two_cands (ncd, pred, *where, NULL, where);
3000 }
3001 }
3002 }
3003
3004 return ncd;
3005 }
3006
3007 /* Consider the candidate C together with any candidates that feed
3008 C's phi dependence (if any). Find and return the nearest common
3009 dominator of those candidates requiring the given increment INCR.
3010 If the returned block contains one or more of the candidates,
3011 return the earliest candidate in the block in *WHERE. */
3012
3013 static basic_block
3014 ncd_of_cand_and_phis (slsr_cand_t c, const widest_int &incr, slsr_cand_t *where)
3015 {
3016 basic_block ncd = NULL;
3017
3018 if (cand_abs_increment (c) == incr)
3019 {
3020 ncd = gimple_bb (c->cand_stmt);
3021 *where = c;
3022 }
3023
3024 if (phi_dependent_cand_p (c))
3025 ncd = ncd_with_phi (c, incr,
3026 as_a <gphi *> (lookup_cand (c->def_phi)->cand_stmt),
3027 ncd, where);
3028
3029 return ncd;
3030 }
3031
3032 /* Consider all candidates in the tree rooted at C for which INCR
3033 represents the required increment of C relative to its basis.
3034 Find and return the basic block that most nearly dominates all
3035 such candidates. If the returned block contains one or more of
3036 the candidates, return the earliest candidate in the block in
3037 *WHERE. */
3038
3039 static basic_block
3040 nearest_common_dominator_for_cands (slsr_cand_t c, const widest_int &incr,
3041 slsr_cand_t *where)
3042 {
3043 basic_block sib_ncd = NULL, dep_ncd = NULL, this_ncd = NULL, ncd;
3044 slsr_cand_t sib_where = NULL, dep_where = NULL, this_where = NULL, new_where;
3045
3046 /* First find the NCD of all siblings and dependents. */
3047 if (c->sibling)
3048 sib_ncd = nearest_common_dominator_for_cands (lookup_cand (c->sibling),
3049 incr, &sib_where);
3050 if (c->dependent)
3051 dep_ncd = nearest_common_dominator_for_cands (lookup_cand (c->dependent),
3052 incr, &dep_where);
3053 if (!sib_ncd && !dep_ncd)
3054 {
3055 new_where = NULL;
3056 ncd = NULL;
3057 }
3058 else if (sib_ncd && !dep_ncd)
3059 {
3060 new_where = sib_where;
3061 ncd = sib_ncd;
3062 }
3063 else if (dep_ncd && !sib_ncd)
3064 {
3065 new_where = dep_where;
3066 ncd = dep_ncd;
3067 }
3068 else
3069 ncd = ncd_for_two_cands (sib_ncd, dep_ncd, sib_where,
3070 dep_where, &new_where);
3071
3072 /* If the candidate's increment doesn't match the one we're interested
3073 in (and nor do any increments for feeding defs of a phi-dependence),
3074 then the result depends only on siblings and dependents. */
3075 this_ncd = ncd_of_cand_and_phis (c, incr, &this_where);
3076
3077 if (!this_ncd || cand_already_replaced (c))
3078 {
3079 *where = new_where;
3080 return ncd;
3081 }
3082
3083 /* Otherwise, compare this candidate with the result from all siblings
3084 and dependents. */
3085 ncd = ncd_for_two_cands (ncd, this_ncd, new_where, this_where, where);
3086
3087 return ncd;
3088 }
3089
3090 /* Return TRUE if the increment indexed by INDEX is profitable to replace. */
3091
3092 static inline bool
3093 profitable_increment_p (unsigned index)
3094 {
3095 return (incr_vec[index].cost <= COST_NEUTRAL);
3096 }
3097
3098 /* For each profitable increment in the increment vector not equal to
3099 0 or 1 (or -1, for non-pointer arithmetic), find the nearest common
3100 dominator of all statements in the candidate chain rooted at C
3101 that require that increment, and insert an initializer
3102 T_0 = stride * increment at that location. Record T_0 with the
3103 increment record. */
3104
3105 static void
3106 insert_initializers (slsr_cand_t c)
3107 {
3108 unsigned i;
3109
3110 for (i = 0; i < incr_vec_len; i++)
3111 {
3112 basic_block bb;
3113 slsr_cand_t where = NULL;
3114 gassign *init_stmt;
3115 tree stride_type, new_name, incr_tree;
3116 widest_int incr = incr_vec[i].incr;
3117
3118 if (!profitable_increment_p (i)
3119 || incr == 1
3120 || (incr == -1
3121 && gimple_assign_rhs_code (c->cand_stmt) != POINTER_PLUS_EXPR)
3122 || incr == 0)
3123 continue;
3124
3125 /* We may have already identified an existing initializer that
3126 will suffice. */
3127 if (incr_vec[i].initializer)
3128 {
3129 if (dump_file && (dump_flags & TDF_DETAILS))
3130 {
3131 fputs ("Using existing initializer: ", dump_file);
3132 print_gimple_stmt (dump_file,
3133 SSA_NAME_DEF_STMT (incr_vec[i].initializer),
3134 0, 0);
3135 }
3136 continue;
3137 }
3138
3139 /* Find the block that most closely dominates all candidates
3140 with this increment. If there is at least one candidate in
3141 that block, the earliest one will be returned in WHERE. */
3142 bb = nearest_common_dominator_for_cands (c, incr, &where);
3143
3144 /* Create a new SSA name to hold the initializer's value. */
3145 stride_type = TREE_TYPE (c->stride);
3146 new_name = make_temp_ssa_name (stride_type, NULL, "slsr");
3147 incr_vec[i].initializer = new_name;
3148
3149 /* Create the initializer and insert it in the latest possible
3150 dominating position. */
3151 incr_tree = wide_int_to_tree (stride_type, incr);
3152 init_stmt = gimple_build_assign (new_name, MULT_EXPR,
3153 c->stride, incr_tree);
3154 if (where)
3155 {
3156 gimple_stmt_iterator gsi = gsi_for_stmt (where->cand_stmt);
3157 gsi_insert_before (&gsi, init_stmt, GSI_SAME_STMT);
3158 gimple_set_location (init_stmt, gimple_location (where->cand_stmt));
3159 }
3160 else
3161 {
3162 gimple_stmt_iterator gsi = gsi_last_bb (bb);
3163 gimple basis_stmt = lookup_cand (c->basis)->cand_stmt;
3164
3165 if (!gsi_end_p (gsi) && is_ctrl_stmt (gsi_stmt (gsi)))
3166 gsi_insert_before (&gsi, init_stmt, GSI_SAME_STMT);
3167 else
3168 gsi_insert_after (&gsi, init_stmt, GSI_SAME_STMT);
3169
3170 gimple_set_location (init_stmt, gimple_location (basis_stmt));
3171 }
3172
3173 if (dump_file && (dump_flags & TDF_DETAILS))
3174 {
3175 fputs ("Inserting initializer: ", dump_file);
3176 print_gimple_stmt (dump_file, init_stmt, 0, 0);
3177 }
3178 }
3179 }
3180
3181 /* Return TRUE iff all required increments for candidates feeding PHI
3182 are profitable to replace on behalf of candidate C. */
3183
3184 static bool
3185 all_phi_incrs_profitable (slsr_cand_t c, gimple phi)
3186 {
3187 unsigned i;
3188 slsr_cand_t basis = lookup_cand (c->basis);
3189 slsr_cand_t phi_cand = base_cand_from_table (gimple_phi_result (phi));
3190
3191 for (i = 0; i < gimple_phi_num_args (phi); i++)
3192 {
3193 tree arg = gimple_phi_arg_def (phi, i);
3194
3195 if (!operand_equal_p (arg, phi_cand->base_expr, 0))
3196 {
3197 gimple arg_def = SSA_NAME_DEF_STMT (arg);
3198
3199 if (gimple_code (arg_def) == GIMPLE_PHI)
3200 {
3201 if (!all_phi_incrs_profitable (c, arg_def))
3202 return false;
3203 }
3204 else
3205 {
3206 int j;
3207 slsr_cand_t arg_cand = base_cand_from_table (arg);
3208 widest_int increment = arg_cand->index - basis->index;
3209
3210 if (!address_arithmetic_p && wi::neg_p (increment))
3211 increment = -increment;
3212
3213 j = incr_vec_index (increment);
3214
3215 if (dump_file && (dump_flags & TDF_DETAILS))
3216 {
3217 fprintf (dump_file, " Conditional candidate %d, phi: ",
3218 c->cand_num);
3219 print_gimple_stmt (dump_file, phi, 0, 0);
3220 fputs (" increment: ", dump_file);
3221 print_decs (increment, dump_file);
3222 if (j < 0)
3223 fprintf (dump_file,
3224 "\n Not replaced; incr_vec overflow.\n");
3225 else {
3226 fprintf (dump_file, "\n cost: %d\n", incr_vec[j].cost);
3227 if (profitable_increment_p (j))
3228 fputs (" Replacing...\n", dump_file);
3229 else
3230 fputs (" Not replaced.\n", dump_file);
3231 }
3232 }
3233
3234 if (j < 0 || !profitable_increment_p (j))
3235 return false;
3236 }
3237 }
3238 }
3239
3240 return true;
3241 }
3242
3243 /* Create a NOP_EXPR that copies FROM_EXPR into a new SSA name of
3244 type TO_TYPE, and insert it in front of the statement represented
3245 by candidate C. Use *NEW_VAR to create the new SSA name. Return
3246 the new SSA name. */
3247
3248 static tree
3249 introduce_cast_before_cand (slsr_cand_t c, tree to_type, tree from_expr)
3250 {
3251 tree cast_lhs;
3252 gassign *cast_stmt;
3253 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3254
3255 cast_lhs = make_temp_ssa_name (to_type, NULL, "slsr");
3256 cast_stmt = gimple_build_assign (cast_lhs, NOP_EXPR, from_expr);
3257 gimple_set_location (cast_stmt, gimple_location (c->cand_stmt));
3258 gsi_insert_before (&gsi, cast_stmt, GSI_SAME_STMT);
3259
3260 if (dump_file && (dump_flags & TDF_DETAILS))
3261 {
3262 fputs (" Inserting: ", dump_file);
3263 print_gimple_stmt (dump_file, cast_stmt, 0, 0);
3264 }
3265
3266 return cast_lhs;
3267 }
3268
3269 /* Replace the RHS of the statement represented by candidate C with
3270 NEW_CODE, NEW_RHS1, and NEW_RHS2, provided that to do so doesn't
3271 leave C unchanged or just interchange its operands. The original
3272 operation and operands are in OLD_CODE, OLD_RHS1, and OLD_RHS2.
3273 If the replacement was made and we are doing a details dump,
3274 return the revised statement, else NULL. */
3275
3276 static gimple
3277 replace_rhs_if_not_dup (enum tree_code new_code, tree new_rhs1, tree new_rhs2,
3278 enum tree_code old_code, tree old_rhs1, tree old_rhs2,
3279 slsr_cand_t c)
3280 {
3281 if (new_code != old_code
3282 || ((!operand_equal_p (new_rhs1, old_rhs1, 0)
3283 || !operand_equal_p (new_rhs2, old_rhs2, 0))
3284 && (!operand_equal_p (new_rhs1, old_rhs2, 0)
3285 || !operand_equal_p (new_rhs2, old_rhs1, 0))))
3286 {
3287 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3288 gimple_assign_set_rhs_with_ops (&gsi, new_code, new_rhs1, new_rhs2);
3289 update_stmt (gsi_stmt (gsi));
3290 c->cand_stmt = gsi_stmt (gsi);
3291
3292 if (dump_file && (dump_flags & TDF_DETAILS))
3293 return gsi_stmt (gsi);
3294 }
3295
3296 else if (dump_file && (dump_flags & TDF_DETAILS))
3297 fputs (" (duplicate, not actually replacing)\n", dump_file);
3298
3299 return NULL;
3300 }
3301
3302 /* Strength-reduce the statement represented by candidate C by replacing
3303 it with an equivalent addition or subtraction. I is the index into
3304 the increment vector identifying C's increment. NEW_VAR is used to
3305 create a new SSA name if a cast needs to be introduced. BASIS_NAME
3306 is the rhs1 to use in creating the add/subtract. */
3307
3308 static void
3309 replace_one_candidate (slsr_cand_t c, unsigned i, tree basis_name)
3310 {
3311 gimple stmt_to_print = NULL;
3312 tree orig_rhs1, orig_rhs2;
3313 tree rhs2;
3314 enum tree_code orig_code, repl_code;
3315 widest_int cand_incr;
3316
3317 orig_code = gimple_assign_rhs_code (c->cand_stmt);
3318 orig_rhs1 = gimple_assign_rhs1 (c->cand_stmt);
3319 orig_rhs2 = gimple_assign_rhs2 (c->cand_stmt);
3320 cand_incr = cand_increment (c);
3321
3322 if (dump_file && (dump_flags & TDF_DETAILS))
3323 {
3324 fputs ("Replacing: ", dump_file);
3325 print_gimple_stmt (dump_file, c->cand_stmt, 0, 0);
3326 stmt_to_print = c->cand_stmt;
3327 }
3328
3329 if (address_arithmetic_p)
3330 repl_code = POINTER_PLUS_EXPR;
3331 else
3332 repl_code = PLUS_EXPR;
3333
3334 /* If the increment has an initializer T_0, replace the candidate
3335 statement with an add of the basis name and the initializer. */
3336 if (incr_vec[i].initializer)
3337 {
3338 tree init_type = TREE_TYPE (incr_vec[i].initializer);
3339 tree orig_type = TREE_TYPE (orig_rhs2);
3340
3341 if (types_compatible_p (orig_type, init_type))
3342 rhs2 = incr_vec[i].initializer;
3343 else
3344 rhs2 = introduce_cast_before_cand (c, orig_type,
3345 incr_vec[i].initializer);
3346
3347 if (incr_vec[i].incr != cand_incr)
3348 {
3349 gcc_assert (repl_code == PLUS_EXPR);
3350 repl_code = MINUS_EXPR;
3351 }
3352
3353 stmt_to_print = replace_rhs_if_not_dup (repl_code, basis_name, rhs2,
3354 orig_code, orig_rhs1, orig_rhs2,
3355 c);
3356 }
3357
3358 /* Otherwise, the increment is one of -1, 0, and 1. Replace
3359 with a subtract of the stride from the basis name, a copy
3360 from the basis name, or an add of the stride to the basis
3361 name, respectively. It may be necessary to introduce a
3362 cast (or reuse an existing cast). */
3363 else if (cand_incr == 1)
3364 {
3365 tree stride_type = TREE_TYPE (c->stride);
3366 tree orig_type = TREE_TYPE (orig_rhs2);
3367
3368 if (types_compatible_p (orig_type, stride_type))
3369 rhs2 = c->stride;
3370 else
3371 rhs2 = introduce_cast_before_cand (c, orig_type, c->stride);
3372
3373 stmt_to_print = replace_rhs_if_not_dup (repl_code, basis_name, rhs2,
3374 orig_code, orig_rhs1, orig_rhs2,
3375 c);
3376 }
3377
3378 else if (cand_incr == -1)
3379 {
3380 tree stride_type = TREE_TYPE (c->stride);
3381 tree orig_type = TREE_TYPE (orig_rhs2);
3382 gcc_assert (repl_code != POINTER_PLUS_EXPR);
3383
3384 if (types_compatible_p (orig_type, stride_type))
3385 rhs2 = c->stride;
3386 else
3387 rhs2 = introduce_cast_before_cand (c, orig_type, c->stride);
3388
3389 if (orig_code != MINUS_EXPR
3390 || !operand_equal_p (basis_name, orig_rhs1, 0)
3391 || !operand_equal_p (rhs2, orig_rhs2, 0))
3392 {
3393 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3394 gimple_assign_set_rhs_with_ops (&gsi, MINUS_EXPR, basis_name, rhs2);
3395 update_stmt (gsi_stmt (gsi));
3396 c->cand_stmt = gsi_stmt (gsi);
3397
3398 if (dump_file && (dump_flags & TDF_DETAILS))
3399 stmt_to_print = gsi_stmt (gsi);
3400 }
3401 else if (dump_file && (dump_flags & TDF_DETAILS))
3402 fputs (" (duplicate, not actually replacing)\n", dump_file);
3403 }
3404
3405 else if (cand_incr == 0)
3406 {
3407 tree lhs = gimple_assign_lhs (c->cand_stmt);
3408 tree lhs_type = TREE_TYPE (lhs);
3409 tree basis_type = TREE_TYPE (basis_name);
3410
3411 if (types_compatible_p (lhs_type, basis_type))
3412 {
3413 gassign *copy_stmt = gimple_build_assign (lhs, basis_name);
3414 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3415 gimple_set_location (copy_stmt, gimple_location (c->cand_stmt));
3416 gsi_replace (&gsi, copy_stmt, false);
3417 c->cand_stmt = copy_stmt;
3418
3419 if (dump_file && (dump_flags & TDF_DETAILS))
3420 stmt_to_print = copy_stmt;
3421 }
3422 else
3423 {
3424 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3425 gassign *cast_stmt = gimple_build_assign (lhs, NOP_EXPR, basis_name);
3426 gimple_set_location (cast_stmt, gimple_location (c->cand_stmt));
3427 gsi_replace (&gsi, cast_stmt, false);
3428 c->cand_stmt = cast_stmt;
3429
3430 if (dump_file && (dump_flags & TDF_DETAILS))
3431 stmt_to_print = cast_stmt;
3432 }
3433 }
3434 else
3435 gcc_unreachable ();
3436
3437 if (dump_file && (dump_flags & TDF_DETAILS) && stmt_to_print)
3438 {
3439 fputs ("With: ", dump_file);
3440 print_gimple_stmt (dump_file, stmt_to_print, 0, 0);
3441 fputs ("\n", dump_file);
3442 }
3443 }
3444
3445 /* For each candidate in the tree rooted at C, replace it with
3446 an increment if such has been shown to be profitable. */
3447
3448 static void
3449 replace_profitable_candidates (slsr_cand_t c)
3450 {
3451 if (!cand_already_replaced (c))
3452 {
3453 widest_int increment = cand_abs_increment (c);
3454 enum tree_code orig_code = gimple_assign_rhs_code (c->cand_stmt);
3455 int i;
3456
3457 i = incr_vec_index (increment);
3458
3459 /* Only process profitable increments. Nothing useful can be done
3460 to a cast or copy. */
3461 if (i >= 0
3462 && profitable_increment_p (i)
3463 && orig_code != MODIFY_EXPR
3464 && !CONVERT_EXPR_CODE_P (orig_code))
3465 {
3466 if (phi_dependent_cand_p (c))
3467 {
3468 gimple phi = lookup_cand (c->def_phi)->cand_stmt;
3469
3470 if (all_phi_incrs_profitable (c, phi))
3471 {
3472 /* Look up the LHS SSA name from C's basis. This will be
3473 the RHS1 of the adds we will introduce to create new
3474 phi arguments. */
3475 slsr_cand_t basis = lookup_cand (c->basis);
3476 tree basis_name = gimple_assign_lhs (basis->cand_stmt);
3477
3478 /* Create a new phi statement that will represent C's true
3479 basis after the transformation is complete. */
3480 location_t loc = gimple_location (c->cand_stmt);
3481 tree name = create_phi_basis (c, phi, basis_name,
3482 loc, UNKNOWN_STRIDE);
3483
3484 /* Replace C with an add of the new basis phi and the
3485 increment. */
3486 replace_one_candidate (c, i, name);
3487 }
3488 }
3489 else
3490 {
3491 slsr_cand_t basis = lookup_cand (c->basis);
3492 tree basis_name = gimple_assign_lhs (basis->cand_stmt);
3493 replace_one_candidate (c, i, basis_name);
3494 }
3495 }
3496 }
3497
3498 if (c->sibling)
3499 replace_profitable_candidates (lookup_cand (c->sibling));
3500
3501 if (c->dependent)
3502 replace_profitable_candidates (lookup_cand (c->dependent));
3503 }
3504 \f
3505 /* Analyze costs of related candidates in the candidate vector,
3506 and make beneficial replacements. */
3507
3508 static void
3509 analyze_candidates_and_replace (void)
3510 {
3511 unsigned i;
3512 slsr_cand_t c;
3513
3514 /* Each candidate that has a null basis and a non-null
3515 dependent is the root of a tree of related statements.
3516 Analyze each tree to determine a subset of those
3517 statements that can be replaced with maximum benefit. */
3518 FOR_EACH_VEC_ELT (cand_vec, i, c)
3519 {
3520 slsr_cand_t first_dep;
3521
3522 if (c->basis != 0 || c->dependent == 0)
3523 continue;
3524
3525 if (dump_file && (dump_flags & TDF_DETAILS))
3526 fprintf (dump_file, "\nProcessing dependency tree rooted at %d.\n",
3527 c->cand_num);
3528
3529 first_dep = lookup_cand (c->dependent);
3530
3531 /* If this is a chain of CAND_REFs, unconditionally replace
3532 each of them with a strength-reduced data reference. */
3533 if (c->kind == CAND_REF)
3534 replace_refs (c);
3535
3536 /* If the common stride of all related candidates is a known
3537 constant, each candidate without a phi-dependence can be
3538 profitably replaced. Each replaces a multiply by a single
3539 add, with the possibility that a feeding add also goes dead.
3540 A candidate with a phi-dependence is replaced only if the
3541 compensation code it requires is offset by the strength
3542 reduction savings. */
3543 else if (TREE_CODE (c->stride) == INTEGER_CST)
3544 replace_uncond_cands_and_profitable_phis (first_dep);
3545
3546 /* When the stride is an SSA name, it may still be profitable
3547 to replace some or all of the dependent candidates, depending
3548 on whether the introduced increments can be reused, or are
3549 less expensive to calculate than the replaced statements. */
3550 else
3551 {
3552 machine_mode mode;
3553 bool speed;
3554
3555 /* Determine whether we'll be generating pointer arithmetic
3556 when replacing candidates. */
3557 address_arithmetic_p = (c->kind == CAND_ADD
3558 && POINTER_TYPE_P (c->cand_type));
3559
3560 /* If all candidates have already been replaced under other
3561 interpretations, nothing remains to be done. */
3562 if (!count_candidates (c))
3563 continue;
3564
3565 /* Construct an array of increments for this candidate chain. */
3566 incr_vec = XNEWVEC (incr_info, MAX_INCR_VEC_LEN);
3567 incr_vec_len = 0;
3568 record_increments (c);
3569
3570 /* Determine which increments are profitable to replace. */
3571 mode = TYPE_MODE (TREE_TYPE (gimple_assign_lhs (c->cand_stmt)));
3572 speed = optimize_cands_for_speed_p (c);
3573 analyze_increments (first_dep, mode, speed);
3574
3575 /* Insert initializers of the form T_0 = stride * increment
3576 for use in profitable replacements. */
3577 insert_initializers (first_dep);
3578 dump_incr_vec ();
3579
3580 /* Perform the replacements. */
3581 replace_profitable_candidates (first_dep);
3582 free (incr_vec);
3583 }
3584 }
3585 }
3586
3587 namespace {
3588
3589 const pass_data pass_data_strength_reduction =
3590 {
3591 GIMPLE_PASS, /* type */
3592 "slsr", /* name */
3593 OPTGROUP_NONE, /* optinfo_flags */
3594 TV_GIMPLE_SLSR, /* tv_id */
3595 ( PROP_cfg | PROP_ssa ), /* properties_required */
3596 0, /* properties_provided */
3597 0, /* properties_destroyed */
3598 0, /* todo_flags_start */
3599 0, /* todo_flags_finish */
3600 };
3601
3602 class pass_strength_reduction : public gimple_opt_pass
3603 {
3604 public:
3605 pass_strength_reduction (gcc::context *ctxt)
3606 : gimple_opt_pass (pass_data_strength_reduction, ctxt)
3607 {}
3608
3609 /* opt_pass methods: */
3610 virtual bool gate (function *) { return flag_tree_slsr; }
3611 virtual unsigned int execute (function *);
3612
3613 }; // class pass_strength_reduction
3614
3615 unsigned
3616 pass_strength_reduction::execute (function *fun)
3617 {
3618 /* Create the obstack where candidates will reside. */
3619 gcc_obstack_init (&cand_obstack);
3620
3621 /* Allocate the candidate vector. */
3622 cand_vec.create (128);
3623
3624 /* Allocate the mapping from statements to candidate indices. */
3625 stmt_cand_map = new hash_map<gimple, slsr_cand_t>;
3626
3627 /* Create the obstack where candidate chains will reside. */
3628 gcc_obstack_init (&chain_obstack);
3629
3630 /* Allocate the mapping from base expressions to candidate chains. */
3631 base_cand_map = new hash_table<cand_chain_hasher> (500);
3632
3633 /* Allocate the mapping from bases to alternative bases. */
3634 alt_base_map = new hash_map<tree, tree>;
3635
3636 /* Initialize the loop optimizer. We need to detect flow across
3637 back edges, and this gives us dominator information as well. */
3638 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
3639
3640 /* Walk the CFG in predominator order looking for strength reduction
3641 candidates. */
3642 find_candidates_dom_walker (CDI_DOMINATORS)
3643 .walk (fun->cfg->x_entry_block_ptr);
3644
3645 if (dump_file && (dump_flags & TDF_DETAILS))
3646 {
3647 dump_cand_vec ();
3648 dump_cand_chains ();
3649 }
3650
3651 delete alt_base_map;
3652 free_affine_expand_cache (&name_expansions);
3653
3654 /* Analyze costs and make appropriate replacements. */
3655 analyze_candidates_and_replace ();
3656
3657 loop_optimizer_finalize ();
3658 delete base_cand_map;
3659 base_cand_map = NULL;
3660 obstack_free (&chain_obstack, NULL);
3661 delete stmt_cand_map;
3662 cand_vec.release ();
3663 obstack_free (&cand_obstack, NULL);
3664
3665 return 0;
3666 }
3667
3668 } // anon namespace
3669
3670 gimple_opt_pass *
3671 make_pass_strength_reduction (gcc::context *ctxt)
3672 {
3673 return new pass_strength_reduction (ctxt);
3674 }