Remove a layer of indirection from hash_table
[gcc.git] / gcc / gimple.c
1 /* Gimple IR support functions.
2
3 Copyright (C) 2007-2014 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "target.h"
27 #include "tree.h"
28 #include "calls.h"
29 #include "stmt.h"
30 #include "stor-layout.h"
31 #include "hard-reg-set.h"
32 #include "basic-block.h"
33 #include "tree-ssa-alias.h"
34 #include "internal-fn.h"
35 #include "tree-eh.h"
36 #include "gimple-expr.h"
37 #include "is-a.h"
38 #include "gimple.h"
39 #include "gimple-iterator.h"
40 #include "gimple-walk.h"
41 #include "gimple.h"
42 #include "gimplify.h"
43 #include "diagnostic.h"
44 #include "value-prof.h"
45 #include "flags.h"
46 #include "alias.h"
47 #include "demangle.h"
48 #include "langhooks.h"
49 #include "bitmap.h"
50
51
52 /* All the tuples have their operand vector (if present) at the very bottom
53 of the structure. Therefore, the offset required to find the
54 operands vector the size of the structure minus the size of the 1
55 element tree array at the end (see gimple_ops). */
56 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
57 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
58 EXPORTED_CONST size_t gimple_ops_offset_[] = {
59 #include "gsstruct.def"
60 };
61 #undef DEFGSSTRUCT
62
63 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof (struct STRUCT),
64 static const size_t gsstruct_code_size[] = {
65 #include "gsstruct.def"
66 };
67 #undef DEFGSSTRUCT
68
69 #define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
70 const char *const gimple_code_name[] = {
71 #include "gimple.def"
72 };
73 #undef DEFGSCODE
74
75 #define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
76 EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
77 #include "gimple.def"
78 };
79 #undef DEFGSCODE
80
81 /* Gimple stats. */
82
83 int gimple_alloc_counts[(int) gimple_alloc_kind_all];
84 int gimple_alloc_sizes[(int) gimple_alloc_kind_all];
85
86 /* Keep in sync with gimple.h:enum gimple_alloc_kind. */
87 static const char * const gimple_alloc_kind_names[] = {
88 "assignments",
89 "phi nodes",
90 "conditionals",
91 "everything else"
92 };
93
94 /* Gimple tuple constructors.
95 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
96 be passed a NULL to start with an empty sequence. */
97
98 /* Set the code for statement G to CODE. */
99
100 static inline void
101 gimple_set_code (gimple g, enum gimple_code code)
102 {
103 g->code = code;
104 }
105
106 /* Return the number of bytes needed to hold a GIMPLE statement with
107 code CODE. */
108
109 static inline size_t
110 gimple_size (enum gimple_code code)
111 {
112 return gsstruct_code_size[gss_for_code (code)];
113 }
114
115 /* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
116 operands. */
117
118 gimple
119 gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
120 {
121 size_t size;
122 gimple stmt;
123
124 size = gimple_size (code);
125 if (num_ops > 0)
126 size += sizeof (tree) * (num_ops - 1);
127
128 if (GATHER_STATISTICS)
129 {
130 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
131 gimple_alloc_counts[(int) kind]++;
132 gimple_alloc_sizes[(int) kind] += size;
133 }
134
135 stmt = ggc_alloc_cleared_gimple_statement_stat (size PASS_MEM_STAT);
136 gimple_set_code (stmt, code);
137 gimple_set_num_ops (stmt, num_ops);
138
139 /* Do not call gimple_set_modified here as it has other side
140 effects and this tuple is still not completely built. */
141 stmt->modified = 1;
142 gimple_init_singleton (stmt);
143
144 return stmt;
145 }
146
147 /* Set SUBCODE to be the code of the expression computed by statement G. */
148
149 static inline void
150 gimple_set_subcode (gimple g, unsigned subcode)
151 {
152 /* We only have 16 bits for the RHS code. Assert that we are not
153 overflowing it. */
154 gcc_assert (subcode < (1 << 16));
155 g->subcode = subcode;
156 }
157
158
159
160 /* Build a tuple with operands. CODE is the statement to build (which
161 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the subcode
162 for the new tuple. NUM_OPS is the number of operands to allocate. */
163
164 #define gimple_build_with_ops(c, s, n) \
165 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
166
167 static gimple
168 gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
169 unsigned num_ops MEM_STAT_DECL)
170 {
171 gimple s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT);
172 gimple_set_subcode (s, subcode);
173
174 return s;
175 }
176
177
178 /* Build a GIMPLE_RETURN statement returning RETVAL. */
179
180 gimple
181 gimple_build_return (tree retval)
182 {
183 gimple s = gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK, 1);
184 if (retval)
185 gimple_return_set_retval (s, retval);
186 return s;
187 }
188
189 /* Reset alias information on call S. */
190
191 void
192 gimple_call_reset_alias_info (gimple s)
193 {
194 if (gimple_call_flags (s) & ECF_CONST)
195 memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
196 else
197 pt_solution_reset (gimple_call_use_set (s));
198 if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
199 memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
200 else
201 pt_solution_reset (gimple_call_clobber_set (s));
202 }
203
204 /* Helper for gimple_build_call, gimple_build_call_valist,
205 gimple_build_call_vec and gimple_build_call_from_tree. Build the basic
206 components of a GIMPLE_CALL statement to function FN with NARGS
207 arguments. */
208
209 static inline gimple
210 gimple_build_call_1 (tree fn, unsigned nargs)
211 {
212 gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3);
213 if (TREE_CODE (fn) == FUNCTION_DECL)
214 fn = build_fold_addr_expr (fn);
215 gimple_set_op (s, 1, fn);
216 gimple_call_set_fntype (s, TREE_TYPE (TREE_TYPE (fn)));
217 gimple_call_reset_alias_info (s);
218 return s;
219 }
220
221
222 /* Build a GIMPLE_CALL statement to function FN with the arguments
223 specified in vector ARGS. */
224
225 gimple
226 gimple_build_call_vec (tree fn, vec<tree> args)
227 {
228 unsigned i;
229 unsigned nargs = args.length ();
230 gimple call = gimple_build_call_1 (fn, nargs);
231
232 for (i = 0; i < nargs; i++)
233 gimple_call_set_arg (call, i, args[i]);
234
235 return call;
236 }
237
238
239 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
240 arguments. The ... are the arguments. */
241
242 gimple
243 gimple_build_call (tree fn, unsigned nargs, ...)
244 {
245 va_list ap;
246 gimple call;
247 unsigned i;
248
249 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
250
251 call = gimple_build_call_1 (fn, nargs);
252
253 va_start (ap, nargs);
254 for (i = 0; i < nargs; i++)
255 gimple_call_set_arg (call, i, va_arg (ap, tree));
256 va_end (ap);
257
258 return call;
259 }
260
261
262 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
263 arguments. AP contains the arguments. */
264
265 gimple
266 gimple_build_call_valist (tree fn, unsigned nargs, va_list ap)
267 {
268 gimple call;
269 unsigned i;
270
271 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
272
273 call = gimple_build_call_1 (fn, nargs);
274
275 for (i = 0; i < nargs; i++)
276 gimple_call_set_arg (call, i, va_arg (ap, tree));
277
278 return call;
279 }
280
281
282 /* Helper for gimple_build_call_internal and gimple_build_call_internal_vec.
283 Build the basic components of a GIMPLE_CALL statement to internal
284 function FN with NARGS arguments. */
285
286 static inline gimple
287 gimple_build_call_internal_1 (enum internal_fn fn, unsigned nargs)
288 {
289 gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3);
290 s->subcode |= GF_CALL_INTERNAL;
291 gimple_call_set_internal_fn (s, fn);
292 gimple_call_reset_alias_info (s);
293 return s;
294 }
295
296
297 /* Build a GIMPLE_CALL statement to internal function FN. NARGS is
298 the number of arguments. The ... are the arguments. */
299
300 gimple
301 gimple_build_call_internal (enum internal_fn fn, unsigned nargs, ...)
302 {
303 va_list ap;
304 gimple call;
305 unsigned i;
306
307 call = gimple_build_call_internal_1 (fn, nargs);
308 va_start (ap, nargs);
309 for (i = 0; i < nargs; i++)
310 gimple_call_set_arg (call, i, va_arg (ap, tree));
311 va_end (ap);
312
313 return call;
314 }
315
316
317 /* Build a GIMPLE_CALL statement to internal function FN with the arguments
318 specified in vector ARGS. */
319
320 gimple
321 gimple_build_call_internal_vec (enum internal_fn fn, vec<tree> args)
322 {
323 unsigned i, nargs;
324 gimple call;
325
326 nargs = args.length ();
327 call = gimple_build_call_internal_1 (fn, nargs);
328 for (i = 0; i < nargs; i++)
329 gimple_call_set_arg (call, i, args[i]);
330
331 return call;
332 }
333
334
335 /* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
336 assumed to be in GIMPLE form already. Minimal checking is done of
337 this fact. */
338
339 gimple
340 gimple_build_call_from_tree (tree t)
341 {
342 unsigned i, nargs;
343 gimple call;
344 tree fndecl = get_callee_fndecl (t);
345
346 gcc_assert (TREE_CODE (t) == CALL_EXPR);
347
348 nargs = call_expr_nargs (t);
349 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
350
351 for (i = 0; i < nargs; i++)
352 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
353
354 gimple_set_block (call, TREE_BLOCK (t));
355
356 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
357 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
358 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
359 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
360 if (fndecl
361 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
362 && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA
363 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN))
364 gimple_call_set_alloca_for_var (call, CALL_ALLOCA_FOR_VAR_P (t));
365 else
366 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
367 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
368 gimple_call_set_nothrow (call, TREE_NOTHROW (t));
369 gimple_set_no_warning (call, TREE_NO_WARNING (t));
370
371 return call;
372 }
373
374
375 /* Build a GIMPLE_ASSIGN statement.
376
377 LHS of the assignment.
378 RHS of the assignment which can be unary or binary. */
379
380 gimple
381 gimple_build_assign_stat (tree lhs, tree rhs MEM_STAT_DECL)
382 {
383 enum tree_code subcode;
384 tree op1, op2, op3;
385
386 extract_ops_from_tree_1 (rhs, &subcode, &op1, &op2, &op3);
387 return gimple_build_assign_with_ops (subcode, lhs, op1, op2, op3
388 PASS_MEM_STAT);
389 }
390
391
392 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
393 OP1 and OP2. If OP2 is NULL then SUBCODE must be of class
394 GIMPLE_UNARY_RHS or GIMPLE_SINGLE_RHS. */
395
396 gimple
397 gimple_build_assign_with_ops (enum tree_code subcode, tree lhs, tree op1,
398 tree op2, tree op3 MEM_STAT_DECL)
399 {
400 unsigned num_ops;
401 gimple p;
402
403 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
404 code). */
405 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
406
407 p = gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
408 PASS_MEM_STAT);
409 gimple_assign_set_lhs (p, lhs);
410 gimple_assign_set_rhs1 (p, op1);
411 if (op2)
412 {
413 gcc_assert (num_ops > 2);
414 gimple_assign_set_rhs2 (p, op2);
415 }
416
417 if (op3)
418 {
419 gcc_assert (num_ops > 3);
420 gimple_assign_set_rhs3 (p, op3);
421 }
422
423 return p;
424 }
425
426 gimple
427 gimple_build_assign_with_ops (enum tree_code subcode, tree lhs, tree op1,
428 tree op2 MEM_STAT_DECL)
429 {
430 return gimple_build_assign_with_ops (subcode, lhs, op1, op2, NULL_TREE
431 PASS_MEM_STAT);
432 }
433
434
435 /* Build a GIMPLE_COND statement.
436
437 PRED is the condition used to compare LHS and the RHS.
438 T_LABEL is the label to jump to if the condition is true.
439 F_LABEL is the label to jump to otherwise. */
440
441 gimple
442 gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
443 tree t_label, tree f_label)
444 {
445 gimple p;
446
447 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
448 p = gimple_build_with_ops (GIMPLE_COND, pred_code, 4);
449 gimple_cond_set_lhs (p, lhs);
450 gimple_cond_set_rhs (p, rhs);
451 gimple_cond_set_true_label (p, t_label);
452 gimple_cond_set_false_label (p, f_label);
453 return p;
454 }
455
456 /* Build a GIMPLE_COND statement from the conditional expression tree
457 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
458
459 gimple
460 gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
461 {
462 enum tree_code code;
463 tree lhs, rhs;
464
465 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
466 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
467 }
468
469 /* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
470 boolean expression tree COND. */
471
472 void
473 gimple_cond_set_condition_from_tree (gimple stmt, tree cond)
474 {
475 enum tree_code code;
476 tree lhs, rhs;
477
478 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
479 gimple_cond_set_condition (stmt, code, lhs, rhs);
480 }
481
482 /* Build a GIMPLE_LABEL statement for LABEL. */
483
484 gimple
485 gimple_build_label (tree label)
486 {
487 gimple p = gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1);
488 gimple_label_set_label (p, label);
489 return p;
490 }
491
492 /* Build a GIMPLE_GOTO statement to label DEST. */
493
494 gimple
495 gimple_build_goto (tree dest)
496 {
497 gimple p = gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1);
498 gimple_goto_set_dest (p, dest);
499 return p;
500 }
501
502
503 /* Build a GIMPLE_NOP statement. */
504
505 gimple
506 gimple_build_nop (void)
507 {
508 return gimple_alloc (GIMPLE_NOP, 0);
509 }
510
511
512 /* Build a GIMPLE_BIND statement.
513 VARS are the variables in BODY.
514 BLOCK is the containing block. */
515
516 gimple
517 gimple_build_bind (tree vars, gimple_seq body, tree block)
518 {
519 gimple p = gimple_alloc (GIMPLE_BIND, 0);
520 gimple_bind_set_vars (p, vars);
521 if (body)
522 gimple_bind_set_body (p, body);
523 if (block)
524 gimple_bind_set_block (p, block);
525 return p;
526 }
527
528 /* Helper function to set the simple fields of a asm stmt.
529
530 STRING is a pointer to a string that is the asm blocks assembly code.
531 NINPUT is the number of register inputs.
532 NOUTPUT is the number of register outputs.
533 NCLOBBERS is the number of clobbered registers.
534 */
535
536 static inline gimple
537 gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
538 unsigned nclobbers, unsigned nlabels)
539 {
540 gimple_statement_asm *p;
541 int size = strlen (string);
542
543 /* ASMs with labels cannot have outputs. This should have been
544 enforced by the front end. */
545 gcc_assert (nlabels == 0 || noutputs == 0);
546
547 p = as_a <gimple_statement_asm *> (
548 gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
549 ninputs + noutputs + nclobbers + nlabels));
550
551 p->ni = ninputs;
552 p->no = noutputs;
553 p->nc = nclobbers;
554 p->nl = nlabels;
555 p->string = ggc_alloc_string (string, size);
556
557 if (GATHER_STATISTICS)
558 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
559
560 return p;
561 }
562
563 /* Build a GIMPLE_ASM statement.
564
565 STRING is the assembly code.
566 NINPUT is the number of register inputs.
567 NOUTPUT is the number of register outputs.
568 NCLOBBERS is the number of clobbered registers.
569 INPUTS is a vector of the input register parameters.
570 OUTPUTS is a vector of the output register parameters.
571 CLOBBERS is a vector of the clobbered register parameters.
572 LABELS is a vector of destination labels. */
573
574 gimple
575 gimple_build_asm_vec (const char *string, vec<tree, va_gc> *inputs,
576 vec<tree, va_gc> *outputs, vec<tree, va_gc> *clobbers,
577 vec<tree, va_gc> *labels)
578 {
579 gimple p;
580 unsigned i;
581
582 p = gimple_build_asm_1 (string,
583 vec_safe_length (inputs),
584 vec_safe_length (outputs),
585 vec_safe_length (clobbers),
586 vec_safe_length (labels));
587
588 for (i = 0; i < vec_safe_length (inputs); i++)
589 gimple_asm_set_input_op (p, i, (*inputs)[i]);
590
591 for (i = 0; i < vec_safe_length (outputs); i++)
592 gimple_asm_set_output_op (p, i, (*outputs)[i]);
593
594 for (i = 0; i < vec_safe_length (clobbers); i++)
595 gimple_asm_set_clobber_op (p, i, (*clobbers)[i]);
596
597 for (i = 0; i < vec_safe_length (labels); i++)
598 gimple_asm_set_label_op (p, i, (*labels)[i]);
599
600 return p;
601 }
602
603 /* Build a GIMPLE_CATCH statement.
604
605 TYPES are the catch types.
606 HANDLER is the exception handler. */
607
608 gimple
609 gimple_build_catch (tree types, gimple_seq handler)
610 {
611 gimple p = gimple_alloc (GIMPLE_CATCH, 0);
612 gimple_catch_set_types (p, types);
613 if (handler)
614 gimple_catch_set_handler (p, handler);
615
616 return p;
617 }
618
619 /* Build a GIMPLE_EH_FILTER statement.
620
621 TYPES are the filter's types.
622 FAILURE is the filter's failure action. */
623
624 gimple
625 gimple_build_eh_filter (tree types, gimple_seq failure)
626 {
627 gimple p = gimple_alloc (GIMPLE_EH_FILTER, 0);
628 gimple_eh_filter_set_types (p, types);
629 if (failure)
630 gimple_eh_filter_set_failure (p, failure);
631
632 return p;
633 }
634
635 /* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
636
637 gimple
638 gimple_build_eh_must_not_throw (tree decl)
639 {
640 gimple p = gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0);
641
642 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
643 gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
644 gimple_eh_must_not_throw_set_fndecl (p, decl);
645
646 return p;
647 }
648
649 /* Build a GIMPLE_EH_ELSE statement. */
650
651 gimple
652 gimple_build_eh_else (gimple_seq n_body, gimple_seq e_body)
653 {
654 gimple p = gimple_alloc (GIMPLE_EH_ELSE, 0);
655 gimple_eh_else_set_n_body (p, n_body);
656 gimple_eh_else_set_e_body (p, e_body);
657 return p;
658 }
659
660 /* Build a GIMPLE_TRY statement.
661
662 EVAL is the expression to evaluate.
663 CLEANUP is the cleanup expression.
664 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
665 whether this is a try/catch or a try/finally respectively. */
666
667 gimple_statement_try *
668 gimple_build_try (gimple_seq eval, gimple_seq cleanup,
669 enum gimple_try_flags kind)
670 {
671 gimple_statement_try *p;
672
673 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
674 p = as_a <gimple_statement_try *> (gimple_alloc (GIMPLE_TRY, 0));
675 gimple_set_subcode (p, kind);
676 if (eval)
677 gimple_try_set_eval (p, eval);
678 if (cleanup)
679 gimple_try_set_cleanup (p, cleanup);
680
681 return p;
682 }
683
684 /* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
685
686 CLEANUP is the cleanup expression. */
687
688 gimple
689 gimple_build_wce (gimple_seq cleanup)
690 {
691 gimple p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
692 if (cleanup)
693 gimple_wce_set_cleanup (p, cleanup);
694
695 return p;
696 }
697
698
699 /* Build a GIMPLE_RESX statement. */
700
701 gimple
702 gimple_build_resx (int region)
703 {
704 gimple_statement_resx *p =
705 as_a <gimple_statement_resx *> (
706 gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0));
707 p->region = region;
708 return p;
709 }
710
711
712 /* The helper for constructing a gimple switch statement.
713 INDEX is the switch's index.
714 NLABELS is the number of labels in the switch excluding the default.
715 DEFAULT_LABEL is the default label for the switch statement. */
716
717 gimple
718 gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
719 {
720 /* nlabels + 1 default label + 1 index. */
721 gcc_checking_assert (default_label);
722 gimple p = gimple_build_with_ops (GIMPLE_SWITCH, ERROR_MARK,
723 1 + 1 + nlabels);
724 gimple_switch_set_index (p, index);
725 gimple_switch_set_default_label (p, default_label);
726 return p;
727 }
728
729 /* Build a GIMPLE_SWITCH statement.
730
731 INDEX is the switch's index.
732 DEFAULT_LABEL is the default label
733 ARGS is a vector of labels excluding the default. */
734
735 gimple
736 gimple_build_switch (tree index, tree default_label, vec<tree> args)
737 {
738 unsigned i, nlabels = args.length ();
739
740 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
741
742 /* Copy the labels from the vector to the switch statement. */
743 for (i = 0; i < nlabels; i++)
744 gimple_switch_set_label (p, i + 1, args[i]);
745
746 return p;
747 }
748
749 /* Build a GIMPLE_EH_DISPATCH statement. */
750
751 gimple
752 gimple_build_eh_dispatch (int region)
753 {
754 gimple_statement_eh_dispatch *p =
755 as_a <gimple_statement_eh_dispatch *> (
756 gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0));
757 p->region = region;
758 return p;
759 }
760
761 /* Build a new GIMPLE_DEBUG_BIND statement.
762
763 VAR is bound to VALUE; block and location are taken from STMT. */
764
765 gimple
766 gimple_build_debug_bind_stat (tree var, tree value, gimple stmt MEM_STAT_DECL)
767 {
768 gimple p = gimple_build_with_ops_stat (GIMPLE_DEBUG,
769 (unsigned)GIMPLE_DEBUG_BIND, 2
770 PASS_MEM_STAT);
771
772 gimple_debug_bind_set_var (p, var);
773 gimple_debug_bind_set_value (p, value);
774 if (stmt)
775 gimple_set_location (p, gimple_location (stmt));
776
777 return p;
778 }
779
780
781 /* Build a new GIMPLE_DEBUG_SOURCE_BIND statement.
782
783 VAR is bound to VALUE; block and location are taken from STMT. */
784
785 gimple
786 gimple_build_debug_source_bind_stat (tree var, tree value,
787 gimple stmt MEM_STAT_DECL)
788 {
789 gimple p = gimple_build_with_ops_stat (GIMPLE_DEBUG,
790 (unsigned)GIMPLE_DEBUG_SOURCE_BIND, 2
791 PASS_MEM_STAT);
792
793 gimple_debug_source_bind_set_var (p, var);
794 gimple_debug_source_bind_set_value (p, value);
795 if (stmt)
796 gimple_set_location (p, gimple_location (stmt));
797
798 return p;
799 }
800
801
802 /* Build a GIMPLE_OMP_CRITICAL statement.
803
804 BODY is the sequence of statements for which only one thread can execute.
805 NAME is optional identifier for this critical block. */
806
807 gimple
808 gimple_build_omp_critical (gimple_seq body, tree name)
809 {
810 gimple p = gimple_alloc (GIMPLE_OMP_CRITICAL, 0);
811 gimple_omp_critical_set_name (p, name);
812 if (body)
813 gimple_omp_set_body (p, body);
814
815 return p;
816 }
817
818 /* Build a GIMPLE_OMP_FOR statement.
819
820 BODY is sequence of statements inside the for loop.
821 KIND is the `for' variant.
822 CLAUSES, are any of the OMP loop construct's clauses: private, firstprivate,
823 lastprivate, reductions, ordered, schedule, and nowait.
824 COLLAPSE is the collapse count.
825 PRE_BODY is the sequence of statements that are loop invariant. */
826
827 gimple
828 gimple_build_omp_for (gimple_seq body, int kind, tree clauses, size_t collapse,
829 gimple_seq pre_body)
830 {
831 gimple_statement_omp_for *p =
832 as_a <gimple_statement_omp_for *> (gimple_alloc (GIMPLE_OMP_FOR, 0));
833 if (body)
834 gimple_omp_set_body (p, body);
835 gimple_omp_for_set_clauses (p, clauses);
836 gimple_omp_for_set_kind (p, kind);
837 p->collapse = collapse;
838 p->iter = ggc_cleared_vec_alloc<gimple_omp_for_iter> (collapse);
839
840 if (pre_body)
841 gimple_omp_for_set_pre_body (p, pre_body);
842
843 return p;
844 }
845
846
847 /* Build a GIMPLE_OMP_PARALLEL statement.
848
849 BODY is sequence of statements which are executed in parallel.
850 CLAUSES, are the OMP parallel construct's clauses.
851 CHILD_FN is the function created for the parallel threads to execute.
852 DATA_ARG are the shared data argument(s). */
853
854 gimple
855 gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
856 tree data_arg)
857 {
858 gimple p = gimple_alloc (GIMPLE_OMP_PARALLEL, 0);
859 if (body)
860 gimple_omp_set_body (p, body);
861 gimple_omp_parallel_set_clauses (p, clauses);
862 gimple_omp_parallel_set_child_fn (p, child_fn);
863 gimple_omp_parallel_set_data_arg (p, data_arg);
864
865 return p;
866 }
867
868
869 /* Build a GIMPLE_OMP_TASK statement.
870
871 BODY is sequence of statements which are executed by the explicit task.
872 CLAUSES, are the OMP parallel construct's clauses.
873 CHILD_FN is the function created for the parallel threads to execute.
874 DATA_ARG are the shared data argument(s).
875 COPY_FN is the optional function for firstprivate initialization.
876 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
877
878 gimple
879 gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
880 tree data_arg, tree copy_fn, tree arg_size,
881 tree arg_align)
882 {
883 gimple p = gimple_alloc (GIMPLE_OMP_TASK, 0);
884 if (body)
885 gimple_omp_set_body (p, body);
886 gimple_omp_task_set_clauses (p, clauses);
887 gimple_omp_task_set_child_fn (p, child_fn);
888 gimple_omp_task_set_data_arg (p, data_arg);
889 gimple_omp_task_set_copy_fn (p, copy_fn);
890 gimple_omp_task_set_arg_size (p, arg_size);
891 gimple_omp_task_set_arg_align (p, arg_align);
892
893 return p;
894 }
895
896
897 /* Build a GIMPLE_OMP_SECTION statement for a sections statement.
898
899 BODY is the sequence of statements in the section. */
900
901 gimple
902 gimple_build_omp_section (gimple_seq body)
903 {
904 gimple p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
905 if (body)
906 gimple_omp_set_body (p, body);
907
908 return p;
909 }
910
911
912 /* Build a GIMPLE_OMP_MASTER statement.
913
914 BODY is the sequence of statements to be executed by just the master. */
915
916 gimple
917 gimple_build_omp_master (gimple_seq body)
918 {
919 gimple p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
920 if (body)
921 gimple_omp_set_body (p, body);
922
923 return p;
924 }
925
926
927 /* Build a GIMPLE_OMP_TASKGROUP statement.
928
929 BODY is the sequence of statements to be executed by the taskgroup
930 construct. */
931
932 gimple
933 gimple_build_omp_taskgroup (gimple_seq body)
934 {
935 gimple p = gimple_alloc (GIMPLE_OMP_TASKGROUP, 0);
936 if (body)
937 gimple_omp_set_body (p, body);
938
939 return p;
940 }
941
942
943 /* Build a GIMPLE_OMP_CONTINUE statement.
944
945 CONTROL_DEF is the definition of the control variable.
946 CONTROL_USE is the use of the control variable. */
947
948 gimple
949 gimple_build_omp_continue (tree control_def, tree control_use)
950 {
951 gimple p = gimple_alloc (GIMPLE_OMP_CONTINUE, 0);
952 gimple_omp_continue_set_control_def (p, control_def);
953 gimple_omp_continue_set_control_use (p, control_use);
954 return p;
955 }
956
957 /* Build a GIMPLE_OMP_ORDERED statement.
958
959 BODY is the sequence of statements inside a loop that will executed in
960 sequence. */
961
962 gimple
963 gimple_build_omp_ordered (gimple_seq body)
964 {
965 gimple p = gimple_alloc (GIMPLE_OMP_ORDERED, 0);
966 if (body)
967 gimple_omp_set_body (p, body);
968
969 return p;
970 }
971
972
973 /* Build a GIMPLE_OMP_RETURN statement.
974 WAIT_P is true if this is a non-waiting return. */
975
976 gimple
977 gimple_build_omp_return (bool wait_p)
978 {
979 gimple p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
980 if (wait_p)
981 gimple_omp_return_set_nowait (p);
982
983 return p;
984 }
985
986
987 /* Build a GIMPLE_OMP_SECTIONS statement.
988
989 BODY is a sequence of section statements.
990 CLAUSES are any of the OMP sections contsruct's clauses: private,
991 firstprivate, lastprivate, reduction, and nowait. */
992
993 gimple
994 gimple_build_omp_sections (gimple_seq body, tree clauses)
995 {
996 gimple p = gimple_alloc (GIMPLE_OMP_SECTIONS, 0);
997 if (body)
998 gimple_omp_set_body (p, body);
999 gimple_omp_sections_set_clauses (p, clauses);
1000
1001 return p;
1002 }
1003
1004
1005 /* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
1006
1007 gimple
1008 gimple_build_omp_sections_switch (void)
1009 {
1010 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
1011 }
1012
1013
1014 /* Build a GIMPLE_OMP_SINGLE statement.
1015
1016 BODY is the sequence of statements that will be executed once.
1017 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1018 copyprivate, nowait. */
1019
1020 gimple
1021 gimple_build_omp_single (gimple_seq body, tree clauses)
1022 {
1023 gimple p = gimple_alloc (GIMPLE_OMP_SINGLE, 0);
1024 if (body)
1025 gimple_omp_set_body (p, body);
1026 gimple_omp_single_set_clauses (p, clauses);
1027
1028 return p;
1029 }
1030
1031
1032 /* Build a GIMPLE_OMP_TARGET statement.
1033
1034 BODY is the sequence of statements that will be executed.
1035 CLAUSES are any of the OMP target construct's clauses. */
1036
1037 gimple
1038 gimple_build_omp_target (gimple_seq body, int kind, tree clauses)
1039 {
1040 gimple p = gimple_alloc (GIMPLE_OMP_TARGET, 0);
1041 if (body)
1042 gimple_omp_set_body (p, body);
1043 gimple_omp_target_set_clauses (p, clauses);
1044 gimple_omp_target_set_kind (p, kind);
1045
1046 return p;
1047 }
1048
1049
1050 /* Build a GIMPLE_OMP_TEAMS statement.
1051
1052 BODY is the sequence of statements that will be executed.
1053 CLAUSES are any of the OMP teams construct's clauses. */
1054
1055 gimple
1056 gimple_build_omp_teams (gimple_seq body, tree clauses)
1057 {
1058 gimple p = gimple_alloc (GIMPLE_OMP_TEAMS, 0);
1059 if (body)
1060 gimple_omp_set_body (p, body);
1061 gimple_omp_teams_set_clauses (p, clauses);
1062
1063 return p;
1064 }
1065
1066
1067 /* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
1068
1069 gimple
1070 gimple_build_omp_atomic_load (tree lhs, tree rhs)
1071 {
1072 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0);
1073 gimple_omp_atomic_load_set_lhs (p, lhs);
1074 gimple_omp_atomic_load_set_rhs (p, rhs);
1075 return p;
1076 }
1077
1078 /* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1079
1080 VAL is the value we are storing. */
1081
1082 gimple
1083 gimple_build_omp_atomic_store (tree val)
1084 {
1085 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0);
1086 gimple_omp_atomic_store_set_val (p, val);
1087 return p;
1088 }
1089
1090 /* Build a GIMPLE_TRANSACTION statement. */
1091
1092 gimple
1093 gimple_build_transaction (gimple_seq body, tree label)
1094 {
1095 gimple p = gimple_alloc (GIMPLE_TRANSACTION, 0);
1096 gimple_transaction_set_body (p, body);
1097 gimple_transaction_set_label (p, label);
1098 return p;
1099 }
1100
1101 /* Build a GIMPLE_PREDICT statement. PREDICT is one of the predictors from
1102 predict.def, OUTCOME is NOT_TAKEN or TAKEN. */
1103
1104 gimple
1105 gimple_build_predict (enum br_predictor predictor, enum prediction outcome)
1106 {
1107 gimple p = gimple_alloc (GIMPLE_PREDICT, 0);
1108 /* Ensure all the predictors fit into the lower bits of the subcode. */
1109 gcc_assert ((int) END_PREDICTORS <= GF_PREDICT_TAKEN);
1110 gimple_predict_set_predictor (p, predictor);
1111 gimple_predict_set_outcome (p, outcome);
1112 return p;
1113 }
1114
1115 #if defined ENABLE_GIMPLE_CHECKING
1116 /* Complain of a gimple type mismatch and die. */
1117
1118 void
1119 gimple_check_failed (const_gimple gs, const char *file, int line,
1120 const char *function, enum gimple_code code,
1121 enum tree_code subcode)
1122 {
1123 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1124 gimple_code_name[code],
1125 get_tree_code_name (subcode),
1126 gimple_code_name[gimple_code (gs)],
1127 gs->subcode > 0
1128 ? get_tree_code_name ((enum tree_code) gs->subcode)
1129 : "",
1130 function, trim_filename (file), line);
1131 }
1132 #endif /* ENABLE_GIMPLE_CHECKING */
1133
1134
1135 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1136 *SEQ_P is NULL, a new sequence is allocated. */
1137
1138 void
1139 gimple_seq_add_stmt (gimple_seq *seq_p, gimple gs)
1140 {
1141 gimple_stmt_iterator si;
1142 if (gs == NULL)
1143 return;
1144
1145 si = gsi_last (*seq_p);
1146 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1147 }
1148
1149 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1150 *SEQ_P is NULL, a new sequence is allocated. This function is
1151 similar to gimple_seq_add_stmt, but does not scan the operands.
1152 During gimplification, we need to manipulate statement sequences
1153 before the def/use vectors have been constructed. */
1154
1155 void
1156 gimple_seq_add_stmt_without_update (gimple_seq *seq_p, gimple gs)
1157 {
1158 gimple_stmt_iterator si;
1159
1160 if (gs == NULL)
1161 return;
1162
1163 si = gsi_last (*seq_p);
1164 gsi_insert_after_without_update (&si, gs, GSI_NEW_STMT);
1165 }
1166
1167 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1168 NULL, a new sequence is allocated. */
1169
1170 void
1171 gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1172 {
1173 gimple_stmt_iterator si;
1174 if (src == NULL)
1175 return;
1176
1177 si = gsi_last (*dst_p);
1178 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1179 }
1180
1181 /* Determine whether to assign a location to the statement GS. */
1182
1183 static bool
1184 should_carry_location_p (gimple gs)
1185 {
1186 /* Don't emit a line note for a label. We particularly don't want to
1187 emit one for the break label, since it doesn't actually correspond
1188 to the beginning of the loop/switch. */
1189 if (gimple_code (gs) == GIMPLE_LABEL)
1190 return false;
1191
1192 return true;
1193 }
1194
1195 /* Set the location for gimple statement GS to LOCATION. */
1196
1197 static void
1198 annotate_one_with_location (gimple gs, location_t location)
1199 {
1200 if (!gimple_has_location (gs)
1201 && !gimple_do_not_emit_location_p (gs)
1202 && should_carry_location_p (gs))
1203 gimple_set_location (gs, location);
1204 }
1205
1206 /* Set LOCATION for all the statements after iterator GSI in sequence
1207 SEQ. If GSI is pointing to the end of the sequence, start with the
1208 first statement in SEQ. */
1209
1210 void
1211 annotate_all_with_location_after (gimple_seq seq, gimple_stmt_iterator gsi,
1212 location_t location)
1213 {
1214 if (gsi_end_p (gsi))
1215 gsi = gsi_start (seq);
1216 else
1217 gsi_next (&gsi);
1218
1219 for (; !gsi_end_p (gsi); gsi_next (&gsi))
1220 annotate_one_with_location (gsi_stmt (gsi), location);
1221 }
1222
1223 /* Set the location for all the statements in a sequence STMT_P to LOCATION. */
1224
1225 void
1226 annotate_all_with_location (gimple_seq stmt_p, location_t location)
1227 {
1228 gimple_stmt_iterator i;
1229
1230 if (gimple_seq_empty_p (stmt_p))
1231 return;
1232
1233 for (i = gsi_start (stmt_p); !gsi_end_p (i); gsi_next (&i))
1234 {
1235 gimple gs = gsi_stmt (i);
1236 annotate_one_with_location (gs, location);
1237 }
1238 }
1239
1240 /* Helper function of empty_body_p. Return true if STMT is an empty
1241 statement. */
1242
1243 static bool
1244 empty_stmt_p (gimple stmt)
1245 {
1246 if (gimple_code (stmt) == GIMPLE_NOP)
1247 return true;
1248 if (gimple_code (stmt) == GIMPLE_BIND)
1249 return empty_body_p (gimple_bind_body (stmt));
1250 return false;
1251 }
1252
1253
1254 /* Return true if BODY contains nothing but empty statements. */
1255
1256 bool
1257 empty_body_p (gimple_seq body)
1258 {
1259 gimple_stmt_iterator i;
1260
1261 if (gimple_seq_empty_p (body))
1262 return true;
1263 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
1264 if (!empty_stmt_p (gsi_stmt (i))
1265 && !is_gimple_debug (gsi_stmt (i)))
1266 return false;
1267
1268 return true;
1269 }
1270
1271
1272 /* Perform a deep copy of sequence SRC and return the result. */
1273
1274 gimple_seq
1275 gimple_seq_copy (gimple_seq src)
1276 {
1277 gimple_stmt_iterator gsi;
1278 gimple_seq new_seq = NULL;
1279 gimple stmt;
1280
1281 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1282 {
1283 stmt = gimple_copy (gsi_stmt (gsi));
1284 gimple_seq_add_stmt (&new_seq, stmt);
1285 }
1286
1287 return new_seq;
1288 }
1289
1290
1291
1292 /* Return true if calls C1 and C2 are known to go to the same function. */
1293
1294 bool
1295 gimple_call_same_target_p (const_gimple c1, const_gimple c2)
1296 {
1297 if (gimple_call_internal_p (c1))
1298 return (gimple_call_internal_p (c2)
1299 && gimple_call_internal_fn (c1) == gimple_call_internal_fn (c2));
1300 else
1301 return (gimple_call_fn (c1) == gimple_call_fn (c2)
1302 || (gimple_call_fndecl (c1)
1303 && gimple_call_fndecl (c1) == gimple_call_fndecl (c2)));
1304 }
1305
1306 /* Detect flags from a GIMPLE_CALL. This is just like
1307 call_expr_flags, but for gimple tuples. */
1308
1309 int
1310 gimple_call_flags (const_gimple stmt)
1311 {
1312 int flags;
1313 tree decl = gimple_call_fndecl (stmt);
1314
1315 if (decl)
1316 flags = flags_from_decl_or_type (decl);
1317 else if (gimple_call_internal_p (stmt))
1318 flags = internal_fn_flags (gimple_call_internal_fn (stmt));
1319 else
1320 flags = flags_from_decl_or_type (gimple_call_fntype (stmt));
1321
1322 if (stmt->subcode & GF_CALL_NOTHROW)
1323 flags |= ECF_NOTHROW;
1324
1325 return flags;
1326 }
1327
1328 /* Return the "fn spec" string for call STMT. */
1329
1330 static tree
1331 gimple_call_fnspec (const_gimple stmt)
1332 {
1333 tree type, attr;
1334
1335 type = gimple_call_fntype (stmt);
1336 if (!type)
1337 return NULL_TREE;
1338
1339 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1340 if (!attr)
1341 return NULL_TREE;
1342
1343 return TREE_VALUE (TREE_VALUE (attr));
1344 }
1345
1346 /* Detects argument flags for argument number ARG on call STMT. */
1347
1348 int
1349 gimple_call_arg_flags (const_gimple stmt, unsigned arg)
1350 {
1351 tree attr = gimple_call_fnspec (stmt);
1352
1353 if (!attr || 1 + arg >= (unsigned) TREE_STRING_LENGTH (attr))
1354 return 0;
1355
1356 switch (TREE_STRING_POINTER (attr)[1 + arg])
1357 {
1358 case 'x':
1359 case 'X':
1360 return EAF_UNUSED;
1361
1362 case 'R':
1363 return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE;
1364
1365 case 'r':
1366 return EAF_NOCLOBBER | EAF_NOESCAPE;
1367
1368 case 'W':
1369 return EAF_DIRECT | EAF_NOESCAPE;
1370
1371 case 'w':
1372 return EAF_NOESCAPE;
1373
1374 case '.':
1375 default:
1376 return 0;
1377 }
1378 }
1379
1380 /* Detects return flags for the call STMT. */
1381
1382 int
1383 gimple_call_return_flags (const_gimple stmt)
1384 {
1385 tree attr;
1386
1387 if (gimple_call_flags (stmt) & ECF_MALLOC)
1388 return ERF_NOALIAS;
1389
1390 attr = gimple_call_fnspec (stmt);
1391 if (!attr || TREE_STRING_LENGTH (attr) < 1)
1392 return 0;
1393
1394 switch (TREE_STRING_POINTER (attr)[0])
1395 {
1396 case '1':
1397 case '2':
1398 case '3':
1399 case '4':
1400 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
1401
1402 case 'm':
1403 return ERF_NOALIAS;
1404
1405 case '.':
1406 default:
1407 return 0;
1408 }
1409 }
1410
1411
1412 /* Return true if GS is a copy assignment. */
1413
1414 bool
1415 gimple_assign_copy_p (gimple gs)
1416 {
1417 return (gimple_assign_single_p (gs)
1418 && is_gimple_val (gimple_op (gs, 1)));
1419 }
1420
1421
1422 /* Return true if GS is a SSA_NAME copy assignment. */
1423
1424 bool
1425 gimple_assign_ssa_name_copy_p (gimple gs)
1426 {
1427 return (gimple_assign_single_p (gs)
1428 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1429 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1430 }
1431
1432
1433 /* Return true if GS is an assignment with a unary RHS, but the
1434 operator has no effect on the assigned value. The logic is adapted
1435 from STRIP_NOPS. This predicate is intended to be used in tuplifying
1436 instances in which STRIP_NOPS was previously applied to the RHS of
1437 an assignment.
1438
1439 NOTE: In the use cases that led to the creation of this function
1440 and of gimple_assign_single_p, it is typical to test for either
1441 condition and to proceed in the same manner. In each case, the
1442 assigned value is represented by the single RHS operand of the
1443 assignment. I suspect there may be cases where gimple_assign_copy_p,
1444 gimple_assign_single_p, or equivalent logic is used where a similar
1445 treatment of unary NOPs is appropriate. */
1446
1447 bool
1448 gimple_assign_unary_nop_p (gimple gs)
1449 {
1450 return (is_gimple_assign (gs)
1451 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
1452 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
1453 && gimple_assign_rhs1 (gs) != error_mark_node
1454 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
1455 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
1456 }
1457
1458 /* Set BB to be the basic block holding G. */
1459
1460 void
1461 gimple_set_bb (gimple stmt, basic_block bb)
1462 {
1463 stmt->bb = bb;
1464
1465 if (gimple_code (stmt) != GIMPLE_LABEL)
1466 return;
1467
1468 /* If the statement is a label, add the label to block-to-labels map
1469 so that we can speed up edge creation for GIMPLE_GOTOs. */
1470 if (cfun->cfg)
1471 {
1472 tree t;
1473 int uid;
1474
1475 t = gimple_label_label (stmt);
1476 uid = LABEL_DECL_UID (t);
1477 if (uid == -1)
1478 {
1479 unsigned old_len =
1480 vec_safe_length (label_to_block_map_for_fn (cfun));
1481 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
1482 if (old_len <= (unsigned) uid)
1483 {
1484 unsigned new_len = 3 * uid / 2 + 1;
1485
1486 vec_safe_grow_cleared (label_to_block_map_for_fn (cfun),
1487 new_len);
1488 }
1489 }
1490
1491 (*label_to_block_map_for_fn (cfun))[uid] = bb;
1492 }
1493 }
1494
1495
1496 /* Modify the RHS of the assignment pointed-to by GSI using the
1497 operands in the expression tree EXPR.
1498
1499 NOTE: The statement pointed-to by GSI may be reallocated if it
1500 did not have enough operand slots.
1501
1502 This function is useful to convert an existing tree expression into
1503 the flat representation used for the RHS of a GIMPLE assignment.
1504 It will reallocate memory as needed to expand or shrink the number
1505 of operand slots needed to represent EXPR.
1506
1507 NOTE: If you find yourself building a tree and then calling this
1508 function, you are most certainly doing it the slow way. It is much
1509 better to build a new assignment or to use the function
1510 gimple_assign_set_rhs_with_ops, which does not require an
1511 expression tree to be built. */
1512
1513 void
1514 gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
1515 {
1516 enum tree_code subcode;
1517 tree op1, op2, op3;
1518
1519 extract_ops_from_tree_1 (expr, &subcode, &op1, &op2, &op3);
1520 gimple_assign_set_rhs_with_ops_1 (gsi, subcode, op1, op2, op3);
1521 }
1522
1523
1524 /* Set the RHS of assignment statement pointed-to by GSI to CODE with
1525 operands OP1, OP2 and OP3.
1526
1527 NOTE: The statement pointed-to by GSI may be reallocated if it
1528 did not have enough operand slots. */
1529
1530 void
1531 gimple_assign_set_rhs_with_ops_1 (gimple_stmt_iterator *gsi, enum tree_code code,
1532 tree op1, tree op2, tree op3)
1533 {
1534 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
1535 gimple stmt = gsi_stmt (*gsi);
1536
1537 /* If the new CODE needs more operands, allocate a new statement. */
1538 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
1539 {
1540 tree lhs = gimple_assign_lhs (stmt);
1541 gimple new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
1542 memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
1543 gimple_init_singleton (new_stmt);
1544 gsi_replace (gsi, new_stmt, true);
1545 stmt = new_stmt;
1546
1547 /* The LHS needs to be reset as this also changes the SSA name
1548 on the LHS. */
1549 gimple_assign_set_lhs (stmt, lhs);
1550 }
1551
1552 gimple_set_num_ops (stmt, new_rhs_ops + 1);
1553 gimple_set_subcode (stmt, code);
1554 gimple_assign_set_rhs1 (stmt, op1);
1555 if (new_rhs_ops > 1)
1556 gimple_assign_set_rhs2 (stmt, op2);
1557 if (new_rhs_ops > 2)
1558 gimple_assign_set_rhs3 (stmt, op3);
1559 }
1560
1561
1562 /* Return the LHS of a statement that performs an assignment,
1563 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
1564 for a call to a function that returns no value, or for a
1565 statement other than an assignment or a call. */
1566
1567 tree
1568 gimple_get_lhs (const_gimple stmt)
1569 {
1570 enum gimple_code code = gimple_code (stmt);
1571
1572 if (code == GIMPLE_ASSIGN)
1573 return gimple_assign_lhs (stmt);
1574 else if (code == GIMPLE_CALL)
1575 return gimple_call_lhs (stmt);
1576 else
1577 return NULL_TREE;
1578 }
1579
1580
1581 /* Set the LHS of a statement that performs an assignment,
1582 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
1583
1584 void
1585 gimple_set_lhs (gimple stmt, tree lhs)
1586 {
1587 enum gimple_code code = gimple_code (stmt);
1588
1589 if (code == GIMPLE_ASSIGN)
1590 gimple_assign_set_lhs (stmt, lhs);
1591 else if (code == GIMPLE_CALL)
1592 gimple_call_set_lhs (stmt, lhs);
1593 else
1594 gcc_unreachable ();
1595 }
1596
1597
1598 /* Return a deep copy of statement STMT. All the operands from STMT
1599 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
1600 and VUSE operand arrays are set to empty in the new copy. The new
1601 copy isn't part of any sequence. */
1602
1603 gimple
1604 gimple_copy (gimple stmt)
1605 {
1606 enum gimple_code code = gimple_code (stmt);
1607 unsigned num_ops = gimple_num_ops (stmt);
1608 gimple copy = gimple_alloc (code, num_ops);
1609 unsigned i;
1610
1611 /* Shallow copy all the fields from STMT. */
1612 memcpy (copy, stmt, gimple_size (code));
1613 gimple_init_singleton (copy);
1614
1615 /* If STMT has sub-statements, deep-copy them as well. */
1616 if (gimple_has_substatements (stmt))
1617 {
1618 gimple_seq new_seq;
1619 tree t;
1620
1621 switch (gimple_code (stmt))
1622 {
1623 case GIMPLE_BIND:
1624 new_seq = gimple_seq_copy (gimple_bind_body (stmt));
1625 gimple_bind_set_body (copy, new_seq);
1626 gimple_bind_set_vars (copy, unshare_expr (gimple_bind_vars (stmt)));
1627 gimple_bind_set_block (copy, gimple_bind_block (stmt));
1628 break;
1629
1630 case GIMPLE_CATCH:
1631 new_seq = gimple_seq_copy (gimple_catch_handler (stmt));
1632 gimple_catch_set_handler (copy, new_seq);
1633 t = unshare_expr (gimple_catch_types (stmt));
1634 gimple_catch_set_types (copy, t);
1635 break;
1636
1637 case GIMPLE_EH_FILTER:
1638 new_seq = gimple_seq_copy (gimple_eh_filter_failure (stmt));
1639 gimple_eh_filter_set_failure (copy, new_seq);
1640 t = unshare_expr (gimple_eh_filter_types (stmt));
1641 gimple_eh_filter_set_types (copy, t);
1642 break;
1643
1644 case GIMPLE_EH_ELSE:
1645 new_seq = gimple_seq_copy (gimple_eh_else_n_body (stmt));
1646 gimple_eh_else_set_n_body (copy, new_seq);
1647 new_seq = gimple_seq_copy (gimple_eh_else_e_body (stmt));
1648 gimple_eh_else_set_e_body (copy, new_seq);
1649 break;
1650
1651 case GIMPLE_TRY:
1652 new_seq = gimple_seq_copy (gimple_try_eval (stmt));
1653 gimple_try_set_eval (copy, new_seq);
1654 new_seq = gimple_seq_copy (gimple_try_cleanup (stmt));
1655 gimple_try_set_cleanup (copy, new_seq);
1656 break;
1657
1658 case GIMPLE_OMP_FOR:
1659 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
1660 gimple_omp_for_set_pre_body (copy, new_seq);
1661 t = unshare_expr (gimple_omp_for_clauses (stmt));
1662 gimple_omp_for_set_clauses (copy, t);
1663 {
1664 gimple_statement_omp_for *omp_for_copy =
1665 as_a <gimple_statement_omp_for *> (copy);
1666 omp_for_copy->iter = ggc_vec_alloc<gimple_omp_for_iter>
1667 ( gimple_omp_for_collapse (stmt));
1668 }
1669 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1670 {
1671 gimple_omp_for_set_cond (copy, i,
1672 gimple_omp_for_cond (stmt, i));
1673 gimple_omp_for_set_index (copy, i,
1674 gimple_omp_for_index (stmt, i));
1675 t = unshare_expr (gimple_omp_for_initial (stmt, i));
1676 gimple_omp_for_set_initial (copy, i, t);
1677 t = unshare_expr (gimple_omp_for_final (stmt, i));
1678 gimple_omp_for_set_final (copy, i, t);
1679 t = unshare_expr (gimple_omp_for_incr (stmt, i));
1680 gimple_omp_for_set_incr (copy, i, t);
1681 }
1682 goto copy_omp_body;
1683
1684 case GIMPLE_OMP_PARALLEL:
1685 t = unshare_expr (gimple_omp_parallel_clauses (stmt));
1686 gimple_omp_parallel_set_clauses (copy, t);
1687 t = unshare_expr (gimple_omp_parallel_child_fn (stmt));
1688 gimple_omp_parallel_set_child_fn (copy, t);
1689 t = unshare_expr (gimple_omp_parallel_data_arg (stmt));
1690 gimple_omp_parallel_set_data_arg (copy, t);
1691 goto copy_omp_body;
1692
1693 case GIMPLE_OMP_TASK:
1694 t = unshare_expr (gimple_omp_task_clauses (stmt));
1695 gimple_omp_task_set_clauses (copy, t);
1696 t = unshare_expr (gimple_omp_task_child_fn (stmt));
1697 gimple_omp_task_set_child_fn (copy, t);
1698 t = unshare_expr (gimple_omp_task_data_arg (stmt));
1699 gimple_omp_task_set_data_arg (copy, t);
1700 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
1701 gimple_omp_task_set_copy_fn (copy, t);
1702 t = unshare_expr (gimple_omp_task_arg_size (stmt));
1703 gimple_omp_task_set_arg_size (copy, t);
1704 t = unshare_expr (gimple_omp_task_arg_align (stmt));
1705 gimple_omp_task_set_arg_align (copy, t);
1706 goto copy_omp_body;
1707
1708 case GIMPLE_OMP_CRITICAL:
1709 t = unshare_expr (gimple_omp_critical_name (stmt));
1710 gimple_omp_critical_set_name (copy, t);
1711 goto copy_omp_body;
1712
1713 case GIMPLE_OMP_SECTIONS:
1714 t = unshare_expr (gimple_omp_sections_clauses (stmt));
1715 gimple_omp_sections_set_clauses (copy, t);
1716 t = unshare_expr (gimple_omp_sections_control (stmt));
1717 gimple_omp_sections_set_control (copy, t);
1718 /* FALLTHRU */
1719
1720 case GIMPLE_OMP_SINGLE:
1721 case GIMPLE_OMP_TARGET:
1722 case GIMPLE_OMP_TEAMS:
1723 case GIMPLE_OMP_SECTION:
1724 case GIMPLE_OMP_MASTER:
1725 case GIMPLE_OMP_TASKGROUP:
1726 case GIMPLE_OMP_ORDERED:
1727 copy_omp_body:
1728 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
1729 gimple_omp_set_body (copy, new_seq);
1730 break;
1731
1732 case GIMPLE_TRANSACTION:
1733 new_seq = gimple_seq_copy (gimple_transaction_body (stmt));
1734 gimple_transaction_set_body (copy, new_seq);
1735 break;
1736
1737 case GIMPLE_WITH_CLEANUP_EXPR:
1738 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
1739 gimple_wce_set_cleanup (copy, new_seq);
1740 break;
1741
1742 default:
1743 gcc_unreachable ();
1744 }
1745 }
1746
1747 /* Make copy of operands. */
1748 for (i = 0; i < num_ops; i++)
1749 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
1750
1751 if (gimple_has_mem_ops (stmt))
1752 {
1753 gimple_set_vdef (copy, gimple_vdef (stmt));
1754 gimple_set_vuse (copy, gimple_vuse (stmt));
1755 }
1756
1757 /* Clear out SSA operand vectors on COPY. */
1758 if (gimple_has_ops (stmt))
1759 {
1760 gimple_set_use_ops (copy, NULL);
1761
1762 /* SSA operands need to be updated. */
1763 gimple_set_modified (copy, true);
1764 }
1765
1766 return copy;
1767 }
1768
1769
1770 /* Return true if statement S has side-effects. We consider a
1771 statement to have side effects if:
1772
1773 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
1774 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
1775
1776 bool
1777 gimple_has_side_effects (const_gimple s)
1778 {
1779 if (is_gimple_debug (s))
1780 return false;
1781
1782 /* We don't have to scan the arguments to check for
1783 volatile arguments, though, at present, we still
1784 do a scan to check for TREE_SIDE_EFFECTS. */
1785 if (gimple_has_volatile_ops (s))
1786 return true;
1787
1788 if (gimple_code (s) == GIMPLE_ASM
1789 && gimple_asm_volatile_p (s))
1790 return true;
1791
1792 if (is_gimple_call (s))
1793 {
1794 int flags = gimple_call_flags (s);
1795
1796 /* An infinite loop is considered a side effect. */
1797 if (!(flags & (ECF_CONST | ECF_PURE))
1798 || (flags & ECF_LOOPING_CONST_OR_PURE))
1799 return true;
1800
1801 return false;
1802 }
1803
1804 return false;
1805 }
1806
1807 /* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
1808 Return true if S can trap. When INCLUDE_MEM is true, check whether
1809 the memory operations could trap. When INCLUDE_STORES is true and
1810 S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked. */
1811
1812 bool
1813 gimple_could_trap_p_1 (gimple s, bool include_mem, bool include_stores)
1814 {
1815 tree t, div = NULL_TREE;
1816 enum tree_code op;
1817
1818 if (include_mem)
1819 {
1820 unsigned i, start = (is_gimple_assign (s) && !include_stores) ? 1 : 0;
1821
1822 for (i = start; i < gimple_num_ops (s); i++)
1823 if (tree_could_trap_p (gimple_op (s, i)))
1824 return true;
1825 }
1826
1827 switch (gimple_code (s))
1828 {
1829 case GIMPLE_ASM:
1830 return gimple_asm_volatile_p (s);
1831
1832 case GIMPLE_CALL:
1833 t = gimple_call_fndecl (s);
1834 /* Assume that calls to weak functions may trap. */
1835 if (!t || !DECL_P (t) || DECL_WEAK (t))
1836 return true;
1837 return false;
1838
1839 case GIMPLE_ASSIGN:
1840 t = gimple_expr_type (s);
1841 op = gimple_assign_rhs_code (s);
1842 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
1843 div = gimple_assign_rhs2 (s);
1844 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
1845 (INTEGRAL_TYPE_P (t)
1846 && TYPE_OVERFLOW_TRAPS (t)),
1847 div));
1848
1849 default:
1850 break;
1851 }
1852
1853 return false;
1854 }
1855
1856 /* Return true if statement S can trap. */
1857
1858 bool
1859 gimple_could_trap_p (gimple s)
1860 {
1861 return gimple_could_trap_p_1 (s, true, true);
1862 }
1863
1864 /* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
1865
1866 bool
1867 gimple_assign_rhs_could_trap_p (gimple s)
1868 {
1869 gcc_assert (is_gimple_assign (s));
1870 return gimple_could_trap_p_1 (s, true, false);
1871 }
1872
1873
1874 /* Print debugging information for gimple stmts generated. */
1875
1876 void
1877 dump_gimple_statistics (void)
1878 {
1879 int i, total_tuples = 0, total_bytes = 0;
1880
1881 if (! GATHER_STATISTICS)
1882 {
1883 fprintf (stderr, "No gimple statistics\n");
1884 return;
1885 }
1886
1887 fprintf (stderr, "\nGIMPLE statements\n");
1888 fprintf (stderr, "Kind Stmts Bytes\n");
1889 fprintf (stderr, "---------------------------------------\n");
1890 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
1891 {
1892 fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i],
1893 gimple_alloc_counts[i], gimple_alloc_sizes[i]);
1894 total_tuples += gimple_alloc_counts[i];
1895 total_bytes += gimple_alloc_sizes[i];
1896 }
1897 fprintf (stderr, "---------------------------------------\n");
1898 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes);
1899 fprintf (stderr, "---------------------------------------\n");
1900 }
1901
1902
1903 /* Return the number of operands needed on the RHS of a GIMPLE
1904 assignment for an expression with tree code CODE. */
1905
1906 unsigned
1907 get_gimple_rhs_num_ops (enum tree_code code)
1908 {
1909 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
1910
1911 if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
1912 return 1;
1913 else if (rhs_class == GIMPLE_BINARY_RHS)
1914 return 2;
1915 else if (rhs_class == GIMPLE_TERNARY_RHS)
1916 return 3;
1917 else
1918 gcc_unreachable ();
1919 }
1920
1921 #define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
1922 (unsigned char) \
1923 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
1924 : ((TYPE) == tcc_binary \
1925 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
1926 : ((TYPE) == tcc_constant \
1927 || (TYPE) == tcc_declaration \
1928 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
1929 : ((SYM) == TRUTH_AND_EXPR \
1930 || (SYM) == TRUTH_OR_EXPR \
1931 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
1932 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
1933 : ((SYM) == COND_EXPR \
1934 || (SYM) == WIDEN_MULT_PLUS_EXPR \
1935 || (SYM) == WIDEN_MULT_MINUS_EXPR \
1936 || (SYM) == DOT_PROD_EXPR \
1937 || (SYM) == REALIGN_LOAD_EXPR \
1938 || (SYM) == VEC_COND_EXPR \
1939 || (SYM) == VEC_PERM_EXPR \
1940 || (SYM) == FMA_EXPR) ? GIMPLE_TERNARY_RHS \
1941 : ((SYM) == CONSTRUCTOR \
1942 || (SYM) == OBJ_TYPE_REF \
1943 || (SYM) == ASSERT_EXPR \
1944 || (SYM) == ADDR_EXPR \
1945 || (SYM) == WITH_SIZE_EXPR \
1946 || (SYM) == SSA_NAME) ? GIMPLE_SINGLE_RHS \
1947 : GIMPLE_INVALID_RHS),
1948 #define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
1949
1950 const unsigned char gimple_rhs_class_table[] = {
1951 #include "all-tree.def"
1952 };
1953
1954 #undef DEFTREECODE
1955 #undef END_OF_BASE_TREE_CODES
1956
1957 /* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
1958 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
1959 we failed to create one. */
1960
1961 tree
1962 canonicalize_cond_expr_cond (tree t)
1963 {
1964 /* Strip conversions around boolean operations. */
1965 if (CONVERT_EXPR_P (t)
1966 && (truth_value_p (TREE_CODE (TREE_OPERAND (t, 0)))
1967 || TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0)))
1968 == BOOLEAN_TYPE))
1969 t = TREE_OPERAND (t, 0);
1970
1971 /* For !x use x == 0. */
1972 if (TREE_CODE (t) == TRUTH_NOT_EXPR)
1973 {
1974 tree top0 = TREE_OPERAND (t, 0);
1975 t = build2 (EQ_EXPR, TREE_TYPE (t),
1976 top0, build_int_cst (TREE_TYPE (top0), 0));
1977 }
1978 /* For cmp ? 1 : 0 use cmp. */
1979 else if (TREE_CODE (t) == COND_EXPR
1980 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
1981 && integer_onep (TREE_OPERAND (t, 1))
1982 && integer_zerop (TREE_OPERAND (t, 2)))
1983 {
1984 tree top0 = TREE_OPERAND (t, 0);
1985 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
1986 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
1987 }
1988 /* For x ^ y use x != y. */
1989 else if (TREE_CODE (t) == BIT_XOR_EXPR)
1990 t = build2 (NE_EXPR, TREE_TYPE (t),
1991 TREE_OPERAND (t, 0), TREE_OPERAND (t, 1));
1992
1993 if (is_gimple_condexpr (t))
1994 return t;
1995
1996 return NULL_TREE;
1997 }
1998
1999 /* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
2000 the positions marked by the set ARGS_TO_SKIP. */
2001
2002 gimple
2003 gimple_call_copy_skip_args (gimple stmt, bitmap args_to_skip)
2004 {
2005 int i;
2006 int nargs = gimple_call_num_args (stmt);
2007 auto_vec<tree> vargs (nargs);
2008 gimple new_stmt;
2009
2010 for (i = 0; i < nargs; i++)
2011 if (!bitmap_bit_p (args_to_skip, i))
2012 vargs.quick_push (gimple_call_arg (stmt, i));
2013
2014 if (gimple_call_internal_p (stmt))
2015 new_stmt = gimple_build_call_internal_vec (gimple_call_internal_fn (stmt),
2016 vargs);
2017 else
2018 new_stmt = gimple_build_call_vec (gimple_call_fn (stmt), vargs);
2019
2020 if (gimple_call_lhs (stmt))
2021 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
2022
2023 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
2024 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
2025
2026 if (gimple_has_location (stmt))
2027 gimple_set_location (new_stmt, gimple_location (stmt));
2028 gimple_call_copy_flags (new_stmt, stmt);
2029 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
2030
2031 gimple_set_modified (new_stmt, true);
2032
2033 return new_stmt;
2034 }
2035
2036
2037
2038 /* Return true if the field decls F1 and F2 are at the same offset.
2039
2040 This is intended to be used on GIMPLE types only. */
2041
2042 bool
2043 gimple_compare_field_offset (tree f1, tree f2)
2044 {
2045 if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
2046 {
2047 tree offset1 = DECL_FIELD_OFFSET (f1);
2048 tree offset2 = DECL_FIELD_OFFSET (f2);
2049 return ((offset1 == offset2
2050 /* Once gimplification is done, self-referential offsets are
2051 instantiated as operand #2 of the COMPONENT_REF built for
2052 each access and reset. Therefore, they are not relevant
2053 anymore and fields are interchangeable provided that they
2054 represent the same access. */
2055 || (TREE_CODE (offset1) == PLACEHOLDER_EXPR
2056 && TREE_CODE (offset2) == PLACEHOLDER_EXPR
2057 && (DECL_SIZE (f1) == DECL_SIZE (f2)
2058 || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
2059 && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
2060 || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0))
2061 && DECL_ALIGN (f1) == DECL_ALIGN (f2))
2062 || operand_equal_p (offset1, offset2, 0))
2063 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
2064 DECL_FIELD_BIT_OFFSET (f2)));
2065 }
2066
2067 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
2068 should be, so handle differing ones specially by decomposing
2069 the offset into a byte and bit offset manually. */
2070 if (tree_fits_shwi_p (DECL_FIELD_OFFSET (f1))
2071 && tree_fits_shwi_p (DECL_FIELD_OFFSET (f2)))
2072 {
2073 unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
2074 unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
2075 bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
2076 byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
2077 + bit_offset1 / BITS_PER_UNIT);
2078 bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
2079 byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
2080 + bit_offset2 / BITS_PER_UNIT);
2081 if (byte_offset1 != byte_offset2)
2082 return false;
2083 return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
2084 }
2085
2086 return false;
2087 }
2088
2089
2090 /* Return a type the same as TYPE except unsigned or
2091 signed according to UNSIGNEDP. */
2092
2093 static tree
2094 gimple_signed_or_unsigned_type (bool unsignedp, tree type)
2095 {
2096 tree type1;
2097
2098 type1 = TYPE_MAIN_VARIANT (type);
2099 if (type1 == signed_char_type_node
2100 || type1 == char_type_node
2101 || type1 == unsigned_char_type_node)
2102 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2103 if (type1 == integer_type_node || type1 == unsigned_type_node)
2104 return unsignedp ? unsigned_type_node : integer_type_node;
2105 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
2106 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2107 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
2108 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2109 if (type1 == long_long_integer_type_node
2110 || type1 == long_long_unsigned_type_node)
2111 return unsignedp
2112 ? long_long_unsigned_type_node
2113 : long_long_integer_type_node;
2114 if (int128_integer_type_node && (type1 == int128_integer_type_node || type1 == int128_unsigned_type_node))
2115 return unsignedp
2116 ? int128_unsigned_type_node
2117 : int128_integer_type_node;
2118 #if HOST_BITS_PER_WIDE_INT >= 64
2119 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
2120 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2121 #endif
2122 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
2123 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2124 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
2125 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2126 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
2127 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2128 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
2129 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2130
2131 #define GIMPLE_FIXED_TYPES(NAME) \
2132 if (type1 == short_ ## NAME ## _type_node \
2133 || type1 == unsigned_short_ ## NAME ## _type_node) \
2134 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
2135 : short_ ## NAME ## _type_node; \
2136 if (type1 == NAME ## _type_node \
2137 || type1 == unsigned_ ## NAME ## _type_node) \
2138 return unsignedp ? unsigned_ ## NAME ## _type_node \
2139 : NAME ## _type_node; \
2140 if (type1 == long_ ## NAME ## _type_node \
2141 || type1 == unsigned_long_ ## NAME ## _type_node) \
2142 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
2143 : long_ ## NAME ## _type_node; \
2144 if (type1 == long_long_ ## NAME ## _type_node \
2145 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
2146 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
2147 : long_long_ ## NAME ## _type_node;
2148
2149 #define GIMPLE_FIXED_MODE_TYPES(NAME) \
2150 if (type1 == NAME ## _type_node \
2151 || type1 == u ## NAME ## _type_node) \
2152 return unsignedp ? u ## NAME ## _type_node \
2153 : NAME ## _type_node;
2154
2155 #define GIMPLE_FIXED_TYPES_SAT(NAME) \
2156 if (type1 == sat_ ## short_ ## NAME ## _type_node \
2157 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
2158 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
2159 : sat_ ## short_ ## NAME ## _type_node; \
2160 if (type1 == sat_ ## NAME ## _type_node \
2161 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
2162 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
2163 : sat_ ## NAME ## _type_node; \
2164 if (type1 == sat_ ## long_ ## NAME ## _type_node \
2165 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
2166 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
2167 : sat_ ## long_ ## NAME ## _type_node; \
2168 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
2169 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
2170 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
2171 : sat_ ## long_long_ ## NAME ## _type_node;
2172
2173 #define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
2174 if (type1 == sat_ ## NAME ## _type_node \
2175 || type1 == sat_ ## u ## NAME ## _type_node) \
2176 return unsignedp ? sat_ ## u ## NAME ## _type_node \
2177 : sat_ ## NAME ## _type_node;
2178
2179 GIMPLE_FIXED_TYPES (fract);
2180 GIMPLE_FIXED_TYPES_SAT (fract);
2181 GIMPLE_FIXED_TYPES (accum);
2182 GIMPLE_FIXED_TYPES_SAT (accum);
2183
2184 GIMPLE_FIXED_MODE_TYPES (qq);
2185 GIMPLE_FIXED_MODE_TYPES (hq);
2186 GIMPLE_FIXED_MODE_TYPES (sq);
2187 GIMPLE_FIXED_MODE_TYPES (dq);
2188 GIMPLE_FIXED_MODE_TYPES (tq);
2189 GIMPLE_FIXED_MODE_TYPES_SAT (qq);
2190 GIMPLE_FIXED_MODE_TYPES_SAT (hq);
2191 GIMPLE_FIXED_MODE_TYPES_SAT (sq);
2192 GIMPLE_FIXED_MODE_TYPES_SAT (dq);
2193 GIMPLE_FIXED_MODE_TYPES_SAT (tq);
2194 GIMPLE_FIXED_MODE_TYPES (ha);
2195 GIMPLE_FIXED_MODE_TYPES (sa);
2196 GIMPLE_FIXED_MODE_TYPES (da);
2197 GIMPLE_FIXED_MODE_TYPES (ta);
2198 GIMPLE_FIXED_MODE_TYPES_SAT (ha);
2199 GIMPLE_FIXED_MODE_TYPES_SAT (sa);
2200 GIMPLE_FIXED_MODE_TYPES_SAT (da);
2201 GIMPLE_FIXED_MODE_TYPES_SAT (ta);
2202
2203 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
2204 the precision; they have precision set to match their range, but
2205 may use a wider mode to match an ABI. If we change modes, we may
2206 wind up with bad conversions. For INTEGER_TYPEs in C, must check
2207 the precision as well, so as to yield correct results for
2208 bit-field types. C++ does not have these separate bit-field
2209 types, and producing a signed or unsigned variant of an
2210 ENUMERAL_TYPE may cause other problems as well. */
2211 if (!INTEGRAL_TYPE_P (type)
2212 || TYPE_UNSIGNED (type) == unsignedp)
2213 return type;
2214
2215 #define TYPE_OK(node) \
2216 (TYPE_MODE (type) == TYPE_MODE (node) \
2217 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
2218 if (TYPE_OK (signed_char_type_node))
2219 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2220 if (TYPE_OK (integer_type_node))
2221 return unsignedp ? unsigned_type_node : integer_type_node;
2222 if (TYPE_OK (short_integer_type_node))
2223 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2224 if (TYPE_OK (long_integer_type_node))
2225 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2226 if (TYPE_OK (long_long_integer_type_node))
2227 return (unsignedp
2228 ? long_long_unsigned_type_node
2229 : long_long_integer_type_node);
2230 if (int128_integer_type_node && TYPE_OK (int128_integer_type_node))
2231 return (unsignedp
2232 ? int128_unsigned_type_node
2233 : int128_integer_type_node);
2234
2235 #if HOST_BITS_PER_WIDE_INT >= 64
2236 if (TYPE_OK (intTI_type_node))
2237 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2238 #endif
2239 if (TYPE_OK (intDI_type_node))
2240 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2241 if (TYPE_OK (intSI_type_node))
2242 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2243 if (TYPE_OK (intHI_type_node))
2244 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2245 if (TYPE_OK (intQI_type_node))
2246 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2247
2248 #undef GIMPLE_FIXED_TYPES
2249 #undef GIMPLE_FIXED_MODE_TYPES
2250 #undef GIMPLE_FIXED_TYPES_SAT
2251 #undef GIMPLE_FIXED_MODE_TYPES_SAT
2252 #undef TYPE_OK
2253
2254 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
2255 }
2256
2257
2258 /* Return an unsigned type the same as TYPE in other respects. */
2259
2260 tree
2261 gimple_unsigned_type (tree type)
2262 {
2263 return gimple_signed_or_unsigned_type (true, type);
2264 }
2265
2266
2267 /* Return a signed type the same as TYPE in other respects. */
2268
2269 tree
2270 gimple_signed_type (tree type)
2271 {
2272 return gimple_signed_or_unsigned_type (false, type);
2273 }
2274
2275
2276 /* Return the typed-based alias set for T, which may be an expression
2277 or a type. Return -1 if we don't do anything special. */
2278
2279 alias_set_type
2280 gimple_get_alias_set (tree t)
2281 {
2282 tree u;
2283
2284 /* Permit type-punning when accessing a union, provided the access
2285 is directly through the union. For example, this code does not
2286 permit taking the address of a union member and then storing
2287 through it. Even the type-punning allowed here is a GCC
2288 extension, albeit a common and useful one; the C standard says
2289 that such accesses have implementation-defined behavior. */
2290 for (u = t;
2291 TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
2292 u = TREE_OPERAND (u, 0))
2293 if (TREE_CODE (u) == COMPONENT_REF
2294 && TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
2295 return 0;
2296
2297 /* That's all the expressions we handle specially. */
2298 if (!TYPE_P (t))
2299 return -1;
2300
2301 /* For convenience, follow the C standard when dealing with
2302 character types. Any object may be accessed via an lvalue that
2303 has character type. */
2304 if (t == char_type_node
2305 || t == signed_char_type_node
2306 || t == unsigned_char_type_node)
2307 return 0;
2308
2309 /* Allow aliasing between signed and unsigned variants of the same
2310 type. We treat the signed variant as canonical. */
2311 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
2312 {
2313 tree t1 = gimple_signed_type (t);
2314
2315 /* t1 == t can happen for boolean nodes which are always unsigned. */
2316 if (t1 != t)
2317 return get_alias_set (t1);
2318 }
2319
2320 return -1;
2321 }
2322
2323
2324 /* Helper for gimple_ior_addresses_taken_1. */
2325
2326 static bool
2327 gimple_ior_addresses_taken_1 (gimple, tree addr, tree, void *data)
2328 {
2329 bitmap addresses_taken = (bitmap)data;
2330 addr = get_base_address (addr);
2331 if (addr
2332 && DECL_P (addr))
2333 {
2334 bitmap_set_bit (addresses_taken, DECL_UID (addr));
2335 return true;
2336 }
2337 return false;
2338 }
2339
2340 /* Set the bit for the uid of all decls that have their address taken
2341 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
2342 were any in this stmt. */
2343
2344 bool
2345 gimple_ior_addresses_taken (bitmap addresses_taken, gimple stmt)
2346 {
2347 return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
2348 gimple_ior_addresses_taken_1);
2349 }
2350
2351
2352 /* Return true if TYPE1 and TYPE2 are compatible enough for builtin
2353 processing. */
2354
2355 static bool
2356 validate_type (tree type1, tree type2)
2357 {
2358 if (INTEGRAL_TYPE_P (type1)
2359 && INTEGRAL_TYPE_P (type2))
2360 ;
2361 else if (POINTER_TYPE_P (type1)
2362 && POINTER_TYPE_P (type2))
2363 ;
2364 else if (TREE_CODE (type1)
2365 != TREE_CODE (type2))
2366 return false;
2367 return true;
2368 }
2369
2370 /* Return true when STMTs arguments and return value match those of FNDECL,
2371 a decl of a builtin function. */
2372
2373 bool
2374 gimple_builtin_call_types_compatible_p (const_gimple stmt, tree fndecl)
2375 {
2376 gcc_checking_assert (DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN);
2377
2378 tree ret = gimple_call_lhs (stmt);
2379 if (ret
2380 && !validate_type (TREE_TYPE (ret), TREE_TYPE (TREE_TYPE (fndecl))))
2381 return false;
2382
2383 tree targs = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
2384 unsigned nargs = gimple_call_num_args (stmt);
2385 for (unsigned i = 0; i < nargs; ++i)
2386 {
2387 /* Variadic args follow. */
2388 if (!targs)
2389 return true;
2390 tree arg = gimple_call_arg (stmt, i);
2391 if (!validate_type (TREE_TYPE (arg), TREE_VALUE (targs)))
2392 return false;
2393 targs = TREE_CHAIN (targs);
2394 }
2395 if (targs && !VOID_TYPE_P (TREE_VALUE (targs)))
2396 return false;
2397 return true;
2398 }
2399
2400 /* Return true when STMT is builtins call. */
2401
2402 bool
2403 gimple_call_builtin_p (const_gimple stmt)
2404 {
2405 tree fndecl;
2406 if (is_gimple_call (stmt)
2407 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2408 && DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN)
2409 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2410 return false;
2411 }
2412
2413 /* Return true when STMT is builtins call to CLASS. */
2414
2415 bool
2416 gimple_call_builtin_p (const_gimple stmt, enum built_in_class klass)
2417 {
2418 tree fndecl;
2419 if (is_gimple_call (stmt)
2420 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2421 && DECL_BUILT_IN_CLASS (fndecl) == klass)
2422 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2423 return false;
2424 }
2425
2426 /* Return true when STMT is builtins call to CODE of CLASS. */
2427
2428 bool
2429 gimple_call_builtin_p (const_gimple stmt, enum built_in_function code)
2430 {
2431 tree fndecl;
2432 if (is_gimple_call (stmt)
2433 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2434 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
2435 && DECL_FUNCTION_CODE (fndecl) == code)
2436 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2437 return false;
2438 }
2439
2440 /* Return true if STMT clobbers memory. STMT is required to be a
2441 GIMPLE_ASM. */
2442
2443 bool
2444 gimple_asm_clobbers_memory_p (const_gimple stmt)
2445 {
2446 unsigned i;
2447
2448 for (i = 0; i < gimple_asm_nclobbers (stmt); i++)
2449 {
2450 tree op = gimple_asm_clobber_op (stmt, i);
2451 if (strcmp (TREE_STRING_POINTER (TREE_VALUE (op)), "memory") == 0)
2452 return true;
2453 }
2454
2455 return false;
2456 }
2457
2458 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
2459
2460 void
2461 dump_decl_set (FILE *file, bitmap set)
2462 {
2463 if (set)
2464 {
2465 bitmap_iterator bi;
2466 unsigned i;
2467
2468 fprintf (file, "{ ");
2469
2470 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2471 {
2472 fprintf (file, "D.%u", i);
2473 fprintf (file, " ");
2474 }
2475
2476 fprintf (file, "}");
2477 }
2478 else
2479 fprintf (file, "NIL");
2480 }
2481
2482 /* Return true when CALL is a call stmt that definitely doesn't
2483 free any memory or makes it unavailable otherwise. */
2484 bool
2485 nonfreeing_call_p (gimple call)
2486 {
2487 if (gimple_call_builtin_p (call, BUILT_IN_NORMAL)
2488 && gimple_call_flags (call) & ECF_LEAF)
2489 switch (DECL_FUNCTION_CODE (gimple_call_fndecl (call)))
2490 {
2491 /* Just in case these become ECF_LEAF in the future. */
2492 case BUILT_IN_FREE:
2493 case BUILT_IN_TM_FREE:
2494 case BUILT_IN_REALLOC:
2495 case BUILT_IN_STACK_RESTORE:
2496 return false;
2497 default:
2498 return true;
2499 }
2500
2501 return false;
2502 }
2503
2504 /* Callback for walk_stmt_load_store_ops.
2505
2506 Return TRUE if OP will dereference the tree stored in DATA, FALSE
2507 otherwise.
2508
2509 This routine only makes a superficial check for a dereference. Thus
2510 it must only be used if it is safe to return a false negative. */
2511 static bool
2512 check_loadstore (gimple, tree op, tree, void *data)
2513 {
2514 if ((TREE_CODE (op) == MEM_REF || TREE_CODE (op) == TARGET_MEM_REF)
2515 && operand_equal_p (TREE_OPERAND (op, 0), (tree)data, 0))
2516 return true;
2517 return false;
2518 }
2519
2520 /* If OP can be inferred to be non-NULL after STMT executes, return true.
2521
2522 DEREFERENCE is TRUE if we can use a pointer dereference to infer a
2523 non-NULL range, FALSE otherwise.
2524
2525 ATTRIBUTE is TRUE if we can use attributes to infer a non-NULL range
2526 for function arguments and return values. FALSE otherwise. */
2527
2528 bool
2529 infer_nonnull_range (gimple stmt, tree op, bool dereference, bool attribute)
2530 {
2531 /* We can only assume that a pointer dereference will yield
2532 non-NULL if -fdelete-null-pointer-checks is enabled. */
2533 if (!flag_delete_null_pointer_checks
2534 || !POINTER_TYPE_P (TREE_TYPE (op))
2535 || gimple_code (stmt) == GIMPLE_ASM)
2536 return false;
2537
2538 if (dereference
2539 && walk_stmt_load_store_ops (stmt, (void *)op,
2540 check_loadstore, check_loadstore))
2541 return true;
2542
2543 if (attribute
2544 && is_gimple_call (stmt) && !gimple_call_internal_p (stmt))
2545 {
2546 tree fntype = gimple_call_fntype (stmt);
2547 tree attrs = TYPE_ATTRIBUTES (fntype);
2548 for (; attrs; attrs = TREE_CHAIN (attrs))
2549 {
2550 attrs = lookup_attribute ("nonnull", attrs);
2551
2552 /* If "nonnull" wasn't specified, we know nothing about
2553 the argument. */
2554 if (attrs == NULL_TREE)
2555 return false;
2556
2557 /* If "nonnull" applies to all the arguments, then ARG
2558 is non-null if it's in the argument list. */
2559 if (TREE_VALUE (attrs) == NULL_TREE)
2560 {
2561 for (unsigned int i = 0; i < gimple_call_num_args (stmt); i++)
2562 {
2563 if (POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (stmt, i)))
2564 && operand_equal_p (op, gimple_call_arg (stmt, i), 0))
2565 return true;
2566 }
2567 return false;
2568 }
2569
2570 /* Now see if op appears in the nonnull list. */
2571 for (tree t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
2572 {
2573 int idx = TREE_INT_CST_LOW (TREE_VALUE (t)) - 1;
2574 tree arg = gimple_call_arg (stmt, idx);
2575 if (operand_equal_p (op, arg, 0))
2576 return true;
2577 }
2578 }
2579 }
2580
2581 /* If this function is marked as returning non-null, then we can
2582 infer OP is non-null if it is used in the return statement. */
2583 if (attribute
2584 && gimple_code (stmt) == GIMPLE_RETURN
2585 && gimple_return_retval (stmt)
2586 && operand_equal_p (gimple_return_retval (stmt), op, 0)
2587 && lookup_attribute ("returns_nonnull",
2588 TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))))
2589 return true;
2590
2591 return false;
2592 }
2593
2594 /* Compare two case labels. Because the front end should already have
2595 made sure that case ranges do not overlap, it is enough to only compare
2596 the CASE_LOW values of each case label. */
2597
2598 static int
2599 compare_case_labels (const void *p1, const void *p2)
2600 {
2601 const_tree const case1 = *(const_tree const*)p1;
2602 const_tree const case2 = *(const_tree const*)p2;
2603
2604 /* The 'default' case label always goes first. */
2605 if (!CASE_LOW (case1))
2606 return -1;
2607 else if (!CASE_LOW (case2))
2608 return 1;
2609 else
2610 return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
2611 }
2612
2613 /* Sort the case labels in LABEL_VEC in place in ascending order. */
2614
2615 void
2616 sort_case_labels (vec<tree> label_vec)
2617 {
2618 label_vec.qsort (compare_case_labels);
2619 }
2620 \f
2621 /* Prepare a vector of case labels to be used in a GIMPLE_SWITCH statement.
2622
2623 LABELS is a vector that contains all case labels to look at.
2624
2625 INDEX_TYPE is the type of the switch index expression. Case labels
2626 in LABELS are discarded if their values are not in the value range
2627 covered by INDEX_TYPE. The remaining case label values are folded
2628 to INDEX_TYPE.
2629
2630 If a default case exists in LABELS, it is removed from LABELS and
2631 returned in DEFAULT_CASEP. If no default case exists, but the
2632 case labels already cover the whole range of INDEX_TYPE, a default
2633 case is returned pointing to one of the existing case labels.
2634 Otherwise DEFAULT_CASEP is set to NULL_TREE.
2635
2636 DEFAULT_CASEP may be NULL, in which case the above comment doesn't
2637 apply and no action is taken regardless of whether a default case is
2638 found or not. */
2639
2640 void
2641 preprocess_case_label_vec_for_gimple (vec<tree> labels,
2642 tree index_type,
2643 tree *default_casep)
2644 {
2645 tree min_value, max_value;
2646 tree default_case = NULL_TREE;
2647 size_t i, len;
2648
2649 i = 0;
2650 min_value = TYPE_MIN_VALUE (index_type);
2651 max_value = TYPE_MAX_VALUE (index_type);
2652 while (i < labels.length ())
2653 {
2654 tree elt = labels[i];
2655 tree low = CASE_LOW (elt);
2656 tree high = CASE_HIGH (elt);
2657 bool remove_element = FALSE;
2658
2659 if (low)
2660 {
2661 gcc_checking_assert (TREE_CODE (low) == INTEGER_CST);
2662 gcc_checking_assert (!high || TREE_CODE (high) == INTEGER_CST);
2663
2664 /* This is a non-default case label, i.e. it has a value.
2665
2666 See if the case label is reachable within the range of
2667 the index type. Remove out-of-range case values. Turn
2668 case ranges into a canonical form (high > low strictly)
2669 and convert the case label values to the index type.
2670
2671 NB: The type of gimple_switch_index() may be the promoted
2672 type, but the case labels retain the original type. */
2673
2674 if (high)
2675 {
2676 /* This is a case range. Discard empty ranges.
2677 If the bounds or the range are equal, turn this
2678 into a simple (one-value) case. */
2679 int cmp = tree_int_cst_compare (high, low);
2680 if (cmp < 0)
2681 remove_element = TRUE;
2682 else if (cmp == 0)
2683 high = NULL_TREE;
2684 }
2685
2686 if (! high)
2687 {
2688 /* If the simple case value is unreachable, ignore it. */
2689 if ((TREE_CODE (min_value) == INTEGER_CST
2690 && tree_int_cst_compare (low, min_value) < 0)
2691 || (TREE_CODE (max_value) == INTEGER_CST
2692 && tree_int_cst_compare (low, max_value) > 0))
2693 remove_element = TRUE;
2694 else
2695 low = fold_convert (index_type, low);
2696 }
2697 else
2698 {
2699 /* If the entire case range is unreachable, ignore it. */
2700 if ((TREE_CODE (min_value) == INTEGER_CST
2701 && tree_int_cst_compare (high, min_value) < 0)
2702 || (TREE_CODE (max_value) == INTEGER_CST
2703 && tree_int_cst_compare (low, max_value) > 0))
2704 remove_element = TRUE;
2705 else
2706 {
2707 /* If the lower bound is less than the index type's
2708 minimum value, truncate the range bounds. */
2709 if (TREE_CODE (min_value) == INTEGER_CST
2710 && tree_int_cst_compare (low, min_value) < 0)
2711 low = min_value;
2712 low = fold_convert (index_type, low);
2713
2714 /* If the upper bound is greater than the index type's
2715 maximum value, truncate the range bounds. */
2716 if (TREE_CODE (max_value) == INTEGER_CST
2717 && tree_int_cst_compare (high, max_value) > 0)
2718 high = max_value;
2719 high = fold_convert (index_type, high);
2720
2721 /* We may have folded a case range to a one-value case. */
2722 if (tree_int_cst_equal (low, high))
2723 high = NULL_TREE;
2724 }
2725 }
2726
2727 CASE_LOW (elt) = low;
2728 CASE_HIGH (elt) = high;
2729 }
2730 else
2731 {
2732 gcc_assert (!default_case);
2733 default_case = elt;
2734 /* The default case must be passed separately to the
2735 gimple_build_switch routine. But if DEFAULT_CASEP
2736 is NULL, we do not remove the default case (it would
2737 be completely lost). */
2738 if (default_casep)
2739 remove_element = TRUE;
2740 }
2741
2742 if (remove_element)
2743 labels.ordered_remove (i);
2744 else
2745 i++;
2746 }
2747 len = i;
2748
2749 if (!labels.is_empty ())
2750 sort_case_labels (labels);
2751
2752 if (default_casep && !default_case)
2753 {
2754 /* If the switch has no default label, add one, so that we jump
2755 around the switch body. If the labels already cover the whole
2756 range of the switch index_type, add the default label pointing
2757 to one of the existing labels. */
2758 if (len
2759 && TYPE_MIN_VALUE (index_type)
2760 && TYPE_MAX_VALUE (index_type)
2761 && tree_int_cst_equal (CASE_LOW (labels[0]),
2762 TYPE_MIN_VALUE (index_type)))
2763 {
2764 tree low, high = CASE_HIGH (labels[len - 1]);
2765 if (!high)
2766 high = CASE_LOW (labels[len - 1]);
2767 if (tree_int_cst_equal (high, TYPE_MAX_VALUE (index_type)))
2768 {
2769 for (i = 1; i < len; i++)
2770 {
2771 high = CASE_LOW (labels[i]);
2772 low = CASE_HIGH (labels[i - 1]);
2773 if (!low)
2774 low = CASE_LOW (labels[i - 1]);
2775 if (wi::add (low, 1) != high)
2776 break;
2777 }
2778 if (i == len)
2779 {
2780 tree label = CASE_LABEL (labels[0]);
2781 default_case = build_case_label (NULL_TREE, NULL_TREE,
2782 label);
2783 }
2784 }
2785 }
2786 }
2787
2788 if (default_casep)
2789 *default_casep = default_case;
2790 }
2791
2792 /* Set the location of all statements in SEQ to LOC. */
2793
2794 void
2795 gimple_seq_set_location (gimple_seq seq, location_t loc)
2796 {
2797 for (gimple_stmt_iterator i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
2798 gimple_set_location (gsi_stmt (i), loc);
2799 }