Improve scheduler dumps of ready list
[gcc.git] / gcc / gimple.c
1 /* Gimple IR support functions.
2
3 Copyright (C) 2007-2014 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "target.h"
27 #include "tree.h"
28 #include "calls.h"
29 #include "stmt.h"
30 #include "stor-layout.h"
31 #include "hard-reg-set.h"
32 #include "basic-block.h"
33 #include "tree-ssa-alias.h"
34 #include "internal-fn.h"
35 #include "tree-eh.h"
36 #include "gimple-expr.h"
37 #include "is-a.h"
38 #include "gimple.h"
39 #include "gimple-iterator.h"
40 #include "gimple-walk.h"
41 #include "gimple.h"
42 #include "gimplify.h"
43 #include "diagnostic.h"
44 #include "value-prof.h"
45 #include "flags.h"
46 #include "alias.h"
47 #include "demangle.h"
48 #include "langhooks.h"
49 #include "bitmap.h"
50 #include "stringpool.h"
51 #include "tree-ssanames.h"
52
53
54 /* All the tuples have their operand vector (if present) at the very bottom
55 of the structure. Therefore, the offset required to find the
56 operands vector the size of the structure minus the size of the 1
57 element tree array at the end (see gimple_ops). */
58 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
59 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
60 EXPORTED_CONST size_t gimple_ops_offset_[] = {
61 #include "gsstruct.def"
62 };
63 #undef DEFGSSTRUCT
64
65 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof (struct STRUCT),
66 static const size_t gsstruct_code_size[] = {
67 #include "gsstruct.def"
68 };
69 #undef DEFGSSTRUCT
70
71 #define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
72 const char *const gimple_code_name[] = {
73 #include "gimple.def"
74 };
75 #undef DEFGSCODE
76
77 #define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
78 EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
79 #include "gimple.def"
80 };
81 #undef DEFGSCODE
82
83 /* Gimple stats. */
84
85 int gimple_alloc_counts[(int) gimple_alloc_kind_all];
86 int gimple_alloc_sizes[(int) gimple_alloc_kind_all];
87
88 /* Keep in sync with gimple.h:enum gimple_alloc_kind. */
89 static const char * const gimple_alloc_kind_names[] = {
90 "assignments",
91 "phi nodes",
92 "conditionals",
93 "everything else"
94 };
95
96 /* Gimple tuple constructors.
97 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
98 be passed a NULL to start with an empty sequence. */
99
100 /* Set the code for statement G to CODE. */
101
102 static inline void
103 gimple_set_code (gimple g, enum gimple_code code)
104 {
105 g->code = code;
106 }
107
108 /* Return the number of bytes needed to hold a GIMPLE statement with
109 code CODE. */
110
111 static inline size_t
112 gimple_size (enum gimple_code code)
113 {
114 return gsstruct_code_size[gss_for_code (code)];
115 }
116
117 /* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
118 operands. */
119
120 gimple
121 gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
122 {
123 size_t size;
124 gimple stmt;
125
126 size = gimple_size (code);
127 if (num_ops > 0)
128 size += sizeof (tree) * (num_ops - 1);
129
130 if (GATHER_STATISTICS)
131 {
132 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
133 gimple_alloc_counts[(int) kind]++;
134 gimple_alloc_sizes[(int) kind] += size;
135 }
136
137 stmt = ggc_alloc_cleared_gimple_statement_stat (size PASS_MEM_STAT);
138 gimple_set_code (stmt, code);
139 gimple_set_num_ops (stmt, num_ops);
140
141 /* Do not call gimple_set_modified here as it has other side
142 effects and this tuple is still not completely built. */
143 stmt->modified = 1;
144 gimple_init_singleton (stmt);
145
146 return stmt;
147 }
148
149 /* Set SUBCODE to be the code of the expression computed by statement G. */
150
151 static inline void
152 gimple_set_subcode (gimple g, unsigned subcode)
153 {
154 /* We only have 16 bits for the RHS code. Assert that we are not
155 overflowing it. */
156 gcc_assert (subcode < (1 << 16));
157 g->subcode = subcode;
158 }
159
160
161
162 /* Build a tuple with operands. CODE is the statement to build (which
163 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the subcode
164 for the new tuple. NUM_OPS is the number of operands to allocate. */
165
166 #define gimple_build_with_ops(c, s, n) \
167 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
168
169 static gimple
170 gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
171 unsigned num_ops MEM_STAT_DECL)
172 {
173 gimple s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT);
174 gimple_set_subcode (s, subcode);
175
176 return s;
177 }
178
179
180 /* Build a GIMPLE_RETURN statement returning RETVAL. */
181
182 gimple
183 gimple_build_return (tree retval)
184 {
185 gimple s = gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK, 1);
186 if (retval)
187 gimple_return_set_retval (s, retval);
188 return s;
189 }
190
191 /* Reset alias information on call S. */
192
193 void
194 gimple_call_reset_alias_info (gimple s)
195 {
196 if (gimple_call_flags (s) & ECF_CONST)
197 memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
198 else
199 pt_solution_reset (gimple_call_use_set (s));
200 if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
201 memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
202 else
203 pt_solution_reset (gimple_call_clobber_set (s));
204 }
205
206 /* Helper for gimple_build_call, gimple_build_call_valist,
207 gimple_build_call_vec and gimple_build_call_from_tree. Build the basic
208 components of a GIMPLE_CALL statement to function FN with NARGS
209 arguments. */
210
211 static inline gimple
212 gimple_build_call_1 (tree fn, unsigned nargs)
213 {
214 gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3);
215 if (TREE_CODE (fn) == FUNCTION_DECL)
216 fn = build_fold_addr_expr (fn);
217 gimple_set_op (s, 1, fn);
218 gimple_call_set_fntype (s, TREE_TYPE (TREE_TYPE (fn)));
219 gimple_call_reset_alias_info (s);
220 return s;
221 }
222
223
224 /* Build a GIMPLE_CALL statement to function FN with the arguments
225 specified in vector ARGS. */
226
227 gimple
228 gimple_build_call_vec (tree fn, vec<tree> args)
229 {
230 unsigned i;
231 unsigned nargs = args.length ();
232 gimple call = gimple_build_call_1 (fn, nargs);
233
234 for (i = 0; i < nargs; i++)
235 gimple_call_set_arg (call, i, args[i]);
236
237 return call;
238 }
239
240
241 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
242 arguments. The ... are the arguments. */
243
244 gimple
245 gimple_build_call (tree fn, unsigned nargs, ...)
246 {
247 va_list ap;
248 gimple call;
249 unsigned i;
250
251 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
252
253 call = gimple_build_call_1 (fn, nargs);
254
255 va_start (ap, nargs);
256 for (i = 0; i < nargs; i++)
257 gimple_call_set_arg (call, i, va_arg (ap, tree));
258 va_end (ap);
259
260 return call;
261 }
262
263
264 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
265 arguments. AP contains the arguments. */
266
267 gimple
268 gimple_build_call_valist (tree fn, unsigned nargs, va_list ap)
269 {
270 gimple call;
271 unsigned i;
272
273 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
274
275 call = gimple_build_call_1 (fn, nargs);
276
277 for (i = 0; i < nargs; i++)
278 gimple_call_set_arg (call, i, va_arg (ap, tree));
279
280 return call;
281 }
282
283
284 /* Helper for gimple_build_call_internal and gimple_build_call_internal_vec.
285 Build the basic components of a GIMPLE_CALL statement to internal
286 function FN with NARGS arguments. */
287
288 static inline gimple
289 gimple_build_call_internal_1 (enum internal_fn fn, unsigned nargs)
290 {
291 gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3);
292 s->subcode |= GF_CALL_INTERNAL;
293 gimple_call_set_internal_fn (s, fn);
294 gimple_call_reset_alias_info (s);
295 return s;
296 }
297
298
299 /* Build a GIMPLE_CALL statement to internal function FN. NARGS is
300 the number of arguments. The ... are the arguments. */
301
302 gimple
303 gimple_build_call_internal (enum internal_fn fn, unsigned nargs, ...)
304 {
305 va_list ap;
306 gimple call;
307 unsigned i;
308
309 call = gimple_build_call_internal_1 (fn, nargs);
310 va_start (ap, nargs);
311 for (i = 0; i < nargs; i++)
312 gimple_call_set_arg (call, i, va_arg (ap, tree));
313 va_end (ap);
314
315 return call;
316 }
317
318
319 /* Build a GIMPLE_CALL statement to internal function FN with the arguments
320 specified in vector ARGS. */
321
322 gimple
323 gimple_build_call_internal_vec (enum internal_fn fn, vec<tree> args)
324 {
325 unsigned i, nargs;
326 gimple call;
327
328 nargs = args.length ();
329 call = gimple_build_call_internal_1 (fn, nargs);
330 for (i = 0; i < nargs; i++)
331 gimple_call_set_arg (call, i, args[i]);
332
333 return call;
334 }
335
336
337 /* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
338 assumed to be in GIMPLE form already. Minimal checking is done of
339 this fact. */
340
341 gimple
342 gimple_build_call_from_tree (tree t)
343 {
344 unsigned i, nargs;
345 gimple call;
346 tree fndecl = get_callee_fndecl (t);
347
348 gcc_assert (TREE_CODE (t) == CALL_EXPR);
349
350 nargs = call_expr_nargs (t);
351 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
352
353 for (i = 0; i < nargs; i++)
354 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
355
356 gimple_set_block (call, TREE_BLOCK (t));
357
358 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
359 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
360 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
361 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
362 if (fndecl
363 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
364 && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA
365 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN))
366 gimple_call_set_alloca_for_var (call, CALL_ALLOCA_FOR_VAR_P (t));
367 else
368 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
369 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
370 gimple_call_set_nothrow (call, TREE_NOTHROW (t));
371 gimple_set_no_warning (call, TREE_NO_WARNING (t));
372
373 return call;
374 }
375
376
377 /* Build a GIMPLE_ASSIGN statement.
378
379 LHS of the assignment.
380 RHS of the assignment which can be unary or binary. */
381
382 gimple
383 gimple_build_assign_stat (tree lhs, tree rhs MEM_STAT_DECL)
384 {
385 enum tree_code subcode;
386 tree op1, op2, op3;
387
388 extract_ops_from_tree_1 (rhs, &subcode, &op1, &op2, &op3);
389 return gimple_build_assign_with_ops (subcode, lhs, op1, op2, op3
390 PASS_MEM_STAT);
391 }
392
393
394 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
395 OP1 and OP2. If OP2 is NULL then SUBCODE must be of class
396 GIMPLE_UNARY_RHS or GIMPLE_SINGLE_RHS. */
397
398 gimple
399 gimple_build_assign_with_ops (enum tree_code subcode, tree lhs, tree op1,
400 tree op2, tree op3 MEM_STAT_DECL)
401 {
402 unsigned num_ops;
403 gimple p;
404
405 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
406 code). */
407 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
408
409 p = gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
410 PASS_MEM_STAT);
411 gimple_assign_set_lhs (p, lhs);
412 gimple_assign_set_rhs1 (p, op1);
413 if (op2)
414 {
415 gcc_assert (num_ops > 2);
416 gimple_assign_set_rhs2 (p, op2);
417 }
418
419 if (op3)
420 {
421 gcc_assert (num_ops > 3);
422 gimple_assign_set_rhs3 (p, op3);
423 }
424
425 return p;
426 }
427
428 gimple
429 gimple_build_assign_with_ops (enum tree_code subcode, tree lhs, tree op1,
430 tree op2 MEM_STAT_DECL)
431 {
432 return gimple_build_assign_with_ops (subcode, lhs, op1, op2, NULL_TREE
433 PASS_MEM_STAT);
434 }
435
436
437 /* Build a GIMPLE_COND statement.
438
439 PRED is the condition used to compare LHS and the RHS.
440 T_LABEL is the label to jump to if the condition is true.
441 F_LABEL is the label to jump to otherwise. */
442
443 gimple
444 gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
445 tree t_label, tree f_label)
446 {
447 gimple p;
448
449 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
450 p = gimple_build_with_ops (GIMPLE_COND, pred_code, 4);
451 gimple_cond_set_lhs (p, lhs);
452 gimple_cond_set_rhs (p, rhs);
453 gimple_cond_set_true_label (p, t_label);
454 gimple_cond_set_false_label (p, f_label);
455 return p;
456 }
457
458 /* Build a GIMPLE_COND statement from the conditional expression tree
459 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
460
461 gimple
462 gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
463 {
464 enum tree_code code;
465 tree lhs, rhs;
466
467 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
468 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
469 }
470
471 /* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
472 boolean expression tree COND. */
473
474 void
475 gimple_cond_set_condition_from_tree (gimple stmt, tree cond)
476 {
477 enum tree_code code;
478 tree lhs, rhs;
479
480 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
481 gimple_cond_set_condition (stmt, code, lhs, rhs);
482 }
483
484 /* Build a GIMPLE_LABEL statement for LABEL. */
485
486 gimple
487 gimple_build_label (tree label)
488 {
489 gimple p = gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1);
490 gimple_label_set_label (p, label);
491 return p;
492 }
493
494 /* Build a GIMPLE_GOTO statement to label DEST. */
495
496 gimple
497 gimple_build_goto (tree dest)
498 {
499 gimple p = gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1);
500 gimple_goto_set_dest (p, dest);
501 return p;
502 }
503
504
505 /* Build a GIMPLE_NOP statement. */
506
507 gimple
508 gimple_build_nop (void)
509 {
510 return gimple_alloc (GIMPLE_NOP, 0);
511 }
512
513
514 /* Build a GIMPLE_BIND statement.
515 VARS are the variables in BODY.
516 BLOCK is the containing block. */
517
518 gimple
519 gimple_build_bind (tree vars, gimple_seq body, tree block)
520 {
521 gimple p = gimple_alloc (GIMPLE_BIND, 0);
522 gimple_bind_set_vars (p, vars);
523 if (body)
524 gimple_bind_set_body (p, body);
525 if (block)
526 gimple_bind_set_block (p, block);
527 return p;
528 }
529
530 /* Helper function to set the simple fields of a asm stmt.
531
532 STRING is a pointer to a string that is the asm blocks assembly code.
533 NINPUT is the number of register inputs.
534 NOUTPUT is the number of register outputs.
535 NCLOBBERS is the number of clobbered registers.
536 */
537
538 static inline gimple
539 gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
540 unsigned nclobbers, unsigned nlabels)
541 {
542 gimple_statement_asm *p;
543 int size = strlen (string);
544
545 /* ASMs with labels cannot have outputs. This should have been
546 enforced by the front end. */
547 gcc_assert (nlabels == 0 || noutputs == 0);
548
549 p = as_a <gimple_statement_asm *> (
550 gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
551 ninputs + noutputs + nclobbers + nlabels));
552
553 p->ni = ninputs;
554 p->no = noutputs;
555 p->nc = nclobbers;
556 p->nl = nlabels;
557 p->string = ggc_alloc_string (string, size);
558
559 if (GATHER_STATISTICS)
560 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
561
562 return p;
563 }
564
565 /* Build a GIMPLE_ASM statement.
566
567 STRING is the assembly code.
568 NINPUT is the number of register inputs.
569 NOUTPUT is the number of register outputs.
570 NCLOBBERS is the number of clobbered registers.
571 INPUTS is a vector of the input register parameters.
572 OUTPUTS is a vector of the output register parameters.
573 CLOBBERS is a vector of the clobbered register parameters.
574 LABELS is a vector of destination labels. */
575
576 gimple
577 gimple_build_asm_vec (const char *string, vec<tree, va_gc> *inputs,
578 vec<tree, va_gc> *outputs, vec<tree, va_gc> *clobbers,
579 vec<tree, va_gc> *labels)
580 {
581 gimple p;
582 unsigned i;
583
584 p = gimple_build_asm_1 (string,
585 vec_safe_length (inputs),
586 vec_safe_length (outputs),
587 vec_safe_length (clobbers),
588 vec_safe_length (labels));
589
590 for (i = 0; i < vec_safe_length (inputs); i++)
591 gimple_asm_set_input_op (p, i, (*inputs)[i]);
592
593 for (i = 0; i < vec_safe_length (outputs); i++)
594 gimple_asm_set_output_op (p, i, (*outputs)[i]);
595
596 for (i = 0; i < vec_safe_length (clobbers); i++)
597 gimple_asm_set_clobber_op (p, i, (*clobbers)[i]);
598
599 for (i = 0; i < vec_safe_length (labels); i++)
600 gimple_asm_set_label_op (p, i, (*labels)[i]);
601
602 return p;
603 }
604
605 /* Build a GIMPLE_CATCH statement.
606
607 TYPES are the catch types.
608 HANDLER is the exception handler. */
609
610 gimple
611 gimple_build_catch (tree types, gimple_seq handler)
612 {
613 gimple p = gimple_alloc (GIMPLE_CATCH, 0);
614 gimple_catch_set_types (p, types);
615 if (handler)
616 gimple_catch_set_handler (p, handler);
617
618 return p;
619 }
620
621 /* Build a GIMPLE_EH_FILTER statement.
622
623 TYPES are the filter's types.
624 FAILURE is the filter's failure action. */
625
626 gimple
627 gimple_build_eh_filter (tree types, gimple_seq failure)
628 {
629 gimple p = gimple_alloc (GIMPLE_EH_FILTER, 0);
630 gimple_eh_filter_set_types (p, types);
631 if (failure)
632 gimple_eh_filter_set_failure (p, failure);
633
634 return p;
635 }
636
637 /* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
638
639 gimple
640 gimple_build_eh_must_not_throw (tree decl)
641 {
642 gimple p = gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0);
643
644 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
645 gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
646 gimple_eh_must_not_throw_set_fndecl (p, decl);
647
648 return p;
649 }
650
651 /* Build a GIMPLE_EH_ELSE statement. */
652
653 gimple
654 gimple_build_eh_else (gimple_seq n_body, gimple_seq e_body)
655 {
656 gimple p = gimple_alloc (GIMPLE_EH_ELSE, 0);
657 gimple_eh_else_set_n_body (p, n_body);
658 gimple_eh_else_set_e_body (p, e_body);
659 return p;
660 }
661
662 /* Build a GIMPLE_TRY statement.
663
664 EVAL is the expression to evaluate.
665 CLEANUP is the cleanup expression.
666 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
667 whether this is a try/catch or a try/finally respectively. */
668
669 gimple_statement_try *
670 gimple_build_try (gimple_seq eval, gimple_seq cleanup,
671 enum gimple_try_flags kind)
672 {
673 gimple_statement_try *p;
674
675 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
676 p = as_a <gimple_statement_try *> (gimple_alloc (GIMPLE_TRY, 0));
677 gimple_set_subcode (p, kind);
678 if (eval)
679 gimple_try_set_eval (p, eval);
680 if (cleanup)
681 gimple_try_set_cleanup (p, cleanup);
682
683 return p;
684 }
685
686 /* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
687
688 CLEANUP is the cleanup expression. */
689
690 gimple
691 gimple_build_wce (gimple_seq cleanup)
692 {
693 gimple p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
694 if (cleanup)
695 gimple_wce_set_cleanup (p, cleanup);
696
697 return p;
698 }
699
700
701 /* Build a GIMPLE_RESX statement. */
702
703 gimple
704 gimple_build_resx (int region)
705 {
706 gimple_statement_resx *p =
707 as_a <gimple_statement_resx *> (
708 gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0));
709 p->region = region;
710 return p;
711 }
712
713
714 /* The helper for constructing a gimple switch statement.
715 INDEX is the switch's index.
716 NLABELS is the number of labels in the switch excluding the default.
717 DEFAULT_LABEL is the default label for the switch statement. */
718
719 gimple
720 gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
721 {
722 /* nlabels + 1 default label + 1 index. */
723 gcc_checking_assert (default_label);
724 gimple p = gimple_build_with_ops (GIMPLE_SWITCH, ERROR_MARK,
725 1 + 1 + nlabels);
726 gimple_switch_set_index (p, index);
727 gimple_switch_set_default_label (p, default_label);
728 return p;
729 }
730
731 /* Build a GIMPLE_SWITCH statement.
732
733 INDEX is the switch's index.
734 DEFAULT_LABEL is the default label
735 ARGS is a vector of labels excluding the default. */
736
737 gimple
738 gimple_build_switch (tree index, tree default_label, vec<tree> args)
739 {
740 unsigned i, nlabels = args.length ();
741
742 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
743
744 /* Copy the labels from the vector to the switch statement. */
745 for (i = 0; i < nlabels; i++)
746 gimple_switch_set_label (p, i + 1, args[i]);
747
748 return p;
749 }
750
751 /* Build a GIMPLE_EH_DISPATCH statement. */
752
753 gimple
754 gimple_build_eh_dispatch (int region)
755 {
756 gimple_statement_eh_dispatch *p =
757 as_a <gimple_statement_eh_dispatch *> (
758 gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0));
759 p->region = region;
760 return p;
761 }
762
763 /* Build a new GIMPLE_DEBUG_BIND statement.
764
765 VAR is bound to VALUE; block and location are taken from STMT. */
766
767 gimple
768 gimple_build_debug_bind_stat (tree var, tree value, gimple stmt MEM_STAT_DECL)
769 {
770 gimple p = gimple_build_with_ops_stat (GIMPLE_DEBUG,
771 (unsigned)GIMPLE_DEBUG_BIND, 2
772 PASS_MEM_STAT);
773
774 gimple_debug_bind_set_var (p, var);
775 gimple_debug_bind_set_value (p, value);
776 if (stmt)
777 gimple_set_location (p, gimple_location (stmt));
778
779 return p;
780 }
781
782
783 /* Build a new GIMPLE_DEBUG_SOURCE_BIND statement.
784
785 VAR is bound to VALUE; block and location are taken from STMT. */
786
787 gimple
788 gimple_build_debug_source_bind_stat (tree var, tree value,
789 gimple stmt MEM_STAT_DECL)
790 {
791 gimple p = gimple_build_with_ops_stat (GIMPLE_DEBUG,
792 (unsigned)GIMPLE_DEBUG_SOURCE_BIND, 2
793 PASS_MEM_STAT);
794
795 gimple_debug_source_bind_set_var (p, var);
796 gimple_debug_source_bind_set_value (p, value);
797 if (stmt)
798 gimple_set_location (p, gimple_location (stmt));
799
800 return p;
801 }
802
803
804 /* Build a GIMPLE_OMP_CRITICAL statement.
805
806 BODY is the sequence of statements for which only one thread can execute.
807 NAME is optional identifier for this critical block. */
808
809 gimple
810 gimple_build_omp_critical (gimple_seq body, tree name)
811 {
812 gimple p = gimple_alloc (GIMPLE_OMP_CRITICAL, 0);
813 gimple_omp_critical_set_name (p, name);
814 if (body)
815 gimple_omp_set_body (p, body);
816
817 return p;
818 }
819
820 /* Build a GIMPLE_OMP_FOR statement.
821
822 BODY is sequence of statements inside the for loop.
823 KIND is the `for' variant.
824 CLAUSES, are any of the OMP loop construct's clauses: private, firstprivate,
825 lastprivate, reductions, ordered, schedule, and nowait.
826 COLLAPSE is the collapse count.
827 PRE_BODY is the sequence of statements that are loop invariant. */
828
829 gimple
830 gimple_build_omp_for (gimple_seq body, int kind, tree clauses, size_t collapse,
831 gimple_seq pre_body)
832 {
833 gimple_statement_omp_for *p =
834 as_a <gimple_statement_omp_for *> (gimple_alloc (GIMPLE_OMP_FOR, 0));
835 if (body)
836 gimple_omp_set_body (p, body);
837 gimple_omp_for_set_clauses (p, clauses);
838 gimple_omp_for_set_kind (p, kind);
839 p->collapse = collapse;
840 p->iter = ggc_cleared_vec_alloc<gimple_omp_for_iter> (collapse);
841
842 if (pre_body)
843 gimple_omp_for_set_pre_body (p, pre_body);
844
845 return p;
846 }
847
848
849 /* Build a GIMPLE_OMP_PARALLEL statement.
850
851 BODY is sequence of statements which are executed in parallel.
852 CLAUSES, are the OMP parallel construct's clauses.
853 CHILD_FN is the function created for the parallel threads to execute.
854 DATA_ARG are the shared data argument(s). */
855
856 gimple
857 gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
858 tree data_arg)
859 {
860 gimple p = gimple_alloc (GIMPLE_OMP_PARALLEL, 0);
861 if (body)
862 gimple_omp_set_body (p, body);
863 gimple_omp_parallel_set_clauses (p, clauses);
864 gimple_omp_parallel_set_child_fn (p, child_fn);
865 gimple_omp_parallel_set_data_arg (p, data_arg);
866
867 return p;
868 }
869
870
871 /* Build a GIMPLE_OMP_TASK statement.
872
873 BODY is sequence of statements which are executed by the explicit task.
874 CLAUSES, are the OMP parallel construct's clauses.
875 CHILD_FN is the function created for the parallel threads to execute.
876 DATA_ARG are the shared data argument(s).
877 COPY_FN is the optional function for firstprivate initialization.
878 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
879
880 gimple
881 gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
882 tree data_arg, tree copy_fn, tree arg_size,
883 tree arg_align)
884 {
885 gimple p = gimple_alloc (GIMPLE_OMP_TASK, 0);
886 if (body)
887 gimple_omp_set_body (p, body);
888 gimple_omp_task_set_clauses (p, clauses);
889 gimple_omp_task_set_child_fn (p, child_fn);
890 gimple_omp_task_set_data_arg (p, data_arg);
891 gimple_omp_task_set_copy_fn (p, copy_fn);
892 gimple_omp_task_set_arg_size (p, arg_size);
893 gimple_omp_task_set_arg_align (p, arg_align);
894
895 return p;
896 }
897
898
899 /* Build a GIMPLE_OMP_SECTION statement for a sections statement.
900
901 BODY is the sequence of statements in the section. */
902
903 gimple
904 gimple_build_omp_section (gimple_seq body)
905 {
906 gimple p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
907 if (body)
908 gimple_omp_set_body (p, body);
909
910 return p;
911 }
912
913
914 /* Build a GIMPLE_OMP_MASTER statement.
915
916 BODY is the sequence of statements to be executed by just the master. */
917
918 gimple
919 gimple_build_omp_master (gimple_seq body)
920 {
921 gimple p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
922 if (body)
923 gimple_omp_set_body (p, body);
924
925 return p;
926 }
927
928
929 /* Build a GIMPLE_OMP_TASKGROUP statement.
930
931 BODY is the sequence of statements to be executed by the taskgroup
932 construct. */
933
934 gimple
935 gimple_build_omp_taskgroup (gimple_seq body)
936 {
937 gimple p = gimple_alloc (GIMPLE_OMP_TASKGROUP, 0);
938 if (body)
939 gimple_omp_set_body (p, body);
940
941 return p;
942 }
943
944
945 /* Build a GIMPLE_OMP_CONTINUE statement.
946
947 CONTROL_DEF is the definition of the control variable.
948 CONTROL_USE is the use of the control variable. */
949
950 gimple
951 gimple_build_omp_continue (tree control_def, tree control_use)
952 {
953 gimple p = gimple_alloc (GIMPLE_OMP_CONTINUE, 0);
954 gimple_omp_continue_set_control_def (p, control_def);
955 gimple_omp_continue_set_control_use (p, control_use);
956 return p;
957 }
958
959 /* Build a GIMPLE_OMP_ORDERED statement.
960
961 BODY is the sequence of statements inside a loop that will executed in
962 sequence. */
963
964 gimple
965 gimple_build_omp_ordered (gimple_seq body)
966 {
967 gimple p = gimple_alloc (GIMPLE_OMP_ORDERED, 0);
968 if (body)
969 gimple_omp_set_body (p, body);
970
971 return p;
972 }
973
974
975 /* Build a GIMPLE_OMP_RETURN statement.
976 WAIT_P is true if this is a non-waiting return. */
977
978 gimple
979 gimple_build_omp_return (bool wait_p)
980 {
981 gimple p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
982 if (wait_p)
983 gimple_omp_return_set_nowait (p);
984
985 return p;
986 }
987
988
989 /* Build a GIMPLE_OMP_SECTIONS statement.
990
991 BODY is a sequence of section statements.
992 CLAUSES are any of the OMP sections contsruct's clauses: private,
993 firstprivate, lastprivate, reduction, and nowait. */
994
995 gimple
996 gimple_build_omp_sections (gimple_seq body, tree clauses)
997 {
998 gimple p = gimple_alloc (GIMPLE_OMP_SECTIONS, 0);
999 if (body)
1000 gimple_omp_set_body (p, body);
1001 gimple_omp_sections_set_clauses (p, clauses);
1002
1003 return p;
1004 }
1005
1006
1007 /* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
1008
1009 gimple
1010 gimple_build_omp_sections_switch (void)
1011 {
1012 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
1013 }
1014
1015
1016 /* Build a GIMPLE_OMP_SINGLE statement.
1017
1018 BODY is the sequence of statements that will be executed once.
1019 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1020 copyprivate, nowait. */
1021
1022 gimple
1023 gimple_build_omp_single (gimple_seq body, tree clauses)
1024 {
1025 gimple p = gimple_alloc (GIMPLE_OMP_SINGLE, 0);
1026 if (body)
1027 gimple_omp_set_body (p, body);
1028 gimple_omp_single_set_clauses (p, clauses);
1029
1030 return p;
1031 }
1032
1033
1034 /* Build a GIMPLE_OMP_TARGET statement.
1035
1036 BODY is the sequence of statements that will be executed.
1037 CLAUSES are any of the OMP target construct's clauses. */
1038
1039 gimple
1040 gimple_build_omp_target (gimple_seq body, int kind, tree clauses)
1041 {
1042 gimple p = gimple_alloc (GIMPLE_OMP_TARGET, 0);
1043 if (body)
1044 gimple_omp_set_body (p, body);
1045 gimple_omp_target_set_clauses (p, clauses);
1046 gimple_omp_target_set_kind (p, kind);
1047
1048 return p;
1049 }
1050
1051
1052 /* Build a GIMPLE_OMP_TEAMS statement.
1053
1054 BODY is the sequence of statements that will be executed.
1055 CLAUSES are any of the OMP teams construct's clauses. */
1056
1057 gimple
1058 gimple_build_omp_teams (gimple_seq body, tree clauses)
1059 {
1060 gimple p = gimple_alloc (GIMPLE_OMP_TEAMS, 0);
1061 if (body)
1062 gimple_omp_set_body (p, body);
1063 gimple_omp_teams_set_clauses (p, clauses);
1064
1065 return p;
1066 }
1067
1068
1069 /* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
1070
1071 gimple
1072 gimple_build_omp_atomic_load (tree lhs, tree rhs)
1073 {
1074 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0);
1075 gimple_omp_atomic_load_set_lhs (p, lhs);
1076 gimple_omp_atomic_load_set_rhs (p, rhs);
1077 return p;
1078 }
1079
1080 /* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1081
1082 VAL is the value we are storing. */
1083
1084 gimple
1085 gimple_build_omp_atomic_store (tree val)
1086 {
1087 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0);
1088 gimple_omp_atomic_store_set_val (p, val);
1089 return p;
1090 }
1091
1092 /* Build a GIMPLE_TRANSACTION statement. */
1093
1094 gimple
1095 gimple_build_transaction (gimple_seq body, tree label)
1096 {
1097 gimple p = gimple_alloc (GIMPLE_TRANSACTION, 0);
1098 gimple_transaction_set_body (p, body);
1099 gimple_transaction_set_label (p, label);
1100 return p;
1101 }
1102
1103 /* Build a GIMPLE_PREDICT statement. PREDICT is one of the predictors from
1104 predict.def, OUTCOME is NOT_TAKEN or TAKEN. */
1105
1106 gimple
1107 gimple_build_predict (enum br_predictor predictor, enum prediction outcome)
1108 {
1109 gimple p = gimple_alloc (GIMPLE_PREDICT, 0);
1110 /* Ensure all the predictors fit into the lower bits of the subcode. */
1111 gcc_assert ((int) END_PREDICTORS <= GF_PREDICT_TAKEN);
1112 gimple_predict_set_predictor (p, predictor);
1113 gimple_predict_set_outcome (p, outcome);
1114 return p;
1115 }
1116
1117 #if defined ENABLE_GIMPLE_CHECKING
1118 /* Complain of a gimple type mismatch and die. */
1119
1120 void
1121 gimple_check_failed (const_gimple gs, const char *file, int line,
1122 const char *function, enum gimple_code code,
1123 enum tree_code subcode)
1124 {
1125 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1126 gimple_code_name[code],
1127 get_tree_code_name (subcode),
1128 gimple_code_name[gimple_code (gs)],
1129 gs->subcode > 0
1130 ? get_tree_code_name ((enum tree_code) gs->subcode)
1131 : "",
1132 function, trim_filename (file), line);
1133 }
1134 #endif /* ENABLE_GIMPLE_CHECKING */
1135
1136
1137 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1138 *SEQ_P is NULL, a new sequence is allocated. */
1139
1140 void
1141 gimple_seq_add_stmt (gimple_seq *seq_p, gimple gs)
1142 {
1143 gimple_stmt_iterator si;
1144 if (gs == NULL)
1145 return;
1146
1147 si = gsi_last (*seq_p);
1148 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1149 }
1150
1151 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1152 *SEQ_P is NULL, a new sequence is allocated. This function is
1153 similar to gimple_seq_add_stmt, but does not scan the operands.
1154 During gimplification, we need to manipulate statement sequences
1155 before the def/use vectors have been constructed. */
1156
1157 void
1158 gimple_seq_add_stmt_without_update (gimple_seq *seq_p, gimple gs)
1159 {
1160 gimple_stmt_iterator si;
1161
1162 if (gs == NULL)
1163 return;
1164
1165 si = gsi_last (*seq_p);
1166 gsi_insert_after_without_update (&si, gs, GSI_NEW_STMT);
1167 }
1168
1169 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1170 NULL, a new sequence is allocated. */
1171
1172 void
1173 gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1174 {
1175 gimple_stmt_iterator si;
1176 if (src == NULL)
1177 return;
1178
1179 si = gsi_last (*dst_p);
1180 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1181 }
1182
1183 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1184 NULL, a new sequence is allocated. This function is
1185 similar to gimple_seq_add_seq, but does not scan the operands. */
1186
1187 void
1188 gimple_seq_add_seq_without_update (gimple_seq *dst_p, gimple_seq src)
1189 {
1190 gimple_stmt_iterator si;
1191 if (src == NULL)
1192 return;
1193
1194 si = gsi_last (*dst_p);
1195 gsi_insert_seq_after_without_update (&si, src, GSI_NEW_STMT);
1196 }
1197
1198 /* Determine whether to assign a location to the statement GS. */
1199
1200 static bool
1201 should_carry_location_p (gimple gs)
1202 {
1203 /* Don't emit a line note for a label. We particularly don't want to
1204 emit one for the break label, since it doesn't actually correspond
1205 to the beginning of the loop/switch. */
1206 if (gimple_code (gs) == GIMPLE_LABEL)
1207 return false;
1208
1209 return true;
1210 }
1211
1212 /* Set the location for gimple statement GS to LOCATION. */
1213
1214 static void
1215 annotate_one_with_location (gimple gs, location_t location)
1216 {
1217 if (!gimple_has_location (gs)
1218 && !gimple_do_not_emit_location_p (gs)
1219 && should_carry_location_p (gs))
1220 gimple_set_location (gs, location);
1221 }
1222
1223 /* Set LOCATION for all the statements after iterator GSI in sequence
1224 SEQ. If GSI is pointing to the end of the sequence, start with the
1225 first statement in SEQ. */
1226
1227 void
1228 annotate_all_with_location_after (gimple_seq seq, gimple_stmt_iterator gsi,
1229 location_t location)
1230 {
1231 if (gsi_end_p (gsi))
1232 gsi = gsi_start (seq);
1233 else
1234 gsi_next (&gsi);
1235
1236 for (; !gsi_end_p (gsi); gsi_next (&gsi))
1237 annotate_one_with_location (gsi_stmt (gsi), location);
1238 }
1239
1240 /* Set the location for all the statements in a sequence STMT_P to LOCATION. */
1241
1242 void
1243 annotate_all_with_location (gimple_seq stmt_p, location_t location)
1244 {
1245 gimple_stmt_iterator i;
1246
1247 if (gimple_seq_empty_p (stmt_p))
1248 return;
1249
1250 for (i = gsi_start (stmt_p); !gsi_end_p (i); gsi_next (&i))
1251 {
1252 gimple gs = gsi_stmt (i);
1253 annotate_one_with_location (gs, location);
1254 }
1255 }
1256
1257 /* Helper function of empty_body_p. Return true if STMT is an empty
1258 statement. */
1259
1260 static bool
1261 empty_stmt_p (gimple stmt)
1262 {
1263 if (gimple_code (stmt) == GIMPLE_NOP)
1264 return true;
1265 if (gimple_code (stmt) == GIMPLE_BIND)
1266 return empty_body_p (gimple_bind_body (stmt));
1267 return false;
1268 }
1269
1270
1271 /* Return true if BODY contains nothing but empty statements. */
1272
1273 bool
1274 empty_body_p (gimple_seq body)
1275 {
1276 gimple_stmt_iterator i;
1277
1278 if (gimple_seq_empty_p (body))
1279 return true;
1280 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
1281 if (!empty_stmt_p (gsi_stmt (i))
1282 && !is_gimple_debug (gsi_stmt (i)))
1283 return false;
1284
1285 return true;
1286 }
1287
1288
1289 /* Perform a deep copy of sequence SRC and return the result. */
1290
1291 gimple_seq
1292 gimple_seq_copy (gimple_seq src)
1293 {
1294 gimple_stmt_iterator gsi;
1295 gimple_seq new_seq = NULL;
1296 gimple stmt;
1297
1298 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1299 {
1300 stmt = gimple_copy (gsi_stmt (gsi));
1301 gimple_seq_add_stmt (&new_seq, stmt);
1302 }
1303
1304 return new_seq;
1305 }
1306
1307
1308
1309 /* Return true if calls C1 and C2 are known to go to the same function. */
1310
1311 bool
1312 gimple_call_same_target_p (const_gimple c1, const_gimple c2)
1313 {
1314 if (gimple_call_internal_p (c1))
1315 return (gimple_call_internal_p (c2)
1316 && gimple_call_internal_fn (c1) == gimple_call_internal_fn (c2));
1317 else
1318 return (gimple_call_fn (c1) == gimple_call_fn (c2)
1319 || (gimple_call_fndecl (c1)
1320 && gimple_call_fndecl (c1) == gimple_call_fndecl (c2)));
1321 }
1322
1323 /* Detect flags from a GIMPLE_CALL. This is just like
1324 call_expr_flags, but for gimple tuples. */
1325
1326 int
1327 gimple_call_flags (const_gimple stmt)
1328 {
1329 int flags;
1330 tree decl = gimple_call_fndecl (stmt);
1331
1332 if (decl)
1333 flags = flags_from_decl_or_type (decl);
1334 else if (gimple_call_internal_p (stmt))
1335 flags = internal_fn_flags (gimple_call_internal_fn (stmt));
1336 else
1337 flags = flags_from_decl_or_type (gimple_call_fntype (stmt));
1338
1339 if (stmt->subcode & GF_CALL_NOTHROW)
1340 flags |= ECF_NOTHROW;
1341
1342 return flags;
1343 }
1344
1345 /* Return the "fn spec" string for call STMT. */
1346
1347 static const_tree
1348 gimple_call_fnspec (const_gimple stmt)
1349 {
1350 tree type, attr;
1351
1352 if (gimple_call_internal_p (stmt))
1353 return internal_fn_fnspec (gimple_call_internal_fn (stmt));
1354
1355 type = gimple_call_fntype (stmt);
1356 if (!type)
1357 return NULL_TREE;
1358
1359 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1360 if (!attr)
1361 return NULL_TREE;
1362
1363 return TREE_VALUE (TREE_VALUE (attr));
1364 }
1365
1366 /* Detects argument flags for argument number ARG on call STMT. */
1367
1368 int
1369 gimple_call_arg_flags (const_gimple stmt, unsigned arg)
1370 {
1371 const_tree attr = gimple_call_fnspec (stmt);
1372
1373 if (!attr || 1 + arg >= (unsigned) TREE_STRING_LENGTH (attr))
1374 return 0;
1375
1376 switch (TREE_STRING_POINTER (attr)[1 + arg])
1377 {
1378 case 'x':
1379 case 'X':
1380 return EAF_UNUSED;
1381
1382 case 'R':
1383 return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE;
1384
1385 case 'r':
1386 return EAF_NOCLOBBER | EAF_NOESCAPE;
1387
1388 case 'W':
1389 return EAF_DIRECT | EAF_NOESCAPE;
1390
1391 case 'w':
1392 return EAF_NOESCAPE;
1393
1394 case '.':
1395 default:
1396 return 0;
1397 }
1398 }
1399
1400 /* Detects return flags for the call STMT. */
1401
1402 int
1403 gimple_call_return_flags (const_gimple stmt)
1404 {
1405 const_tree attr;
1406
1407 if (gimple_call_flags (stmt) & ECF_MALLOC)
1408 return ERF_NOALIAS;
1409
1410 attr = gimple_call_fnspec (stmt);
1411 if (!attr || TREE_STRING_LENGTH (attr) < 1)
1412 return 0;
1413
1414 switch (TREE_STRING_POINTER (attr)[0])
1415 {
1416 case '1':
1417 case '2':
1418 case '3':
1419 case '4':
1420 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
1421
1422 case 'm':
1423 return ERF_NOALIAS;
1424
1425 case '.':
1426 default:
1427 return 0;
1428 }
1429 }
1430
1431
1432 /* Return true if GS is a copy assignment. */
1433
1434 bool
1435 gimple_assign_copy_p (gimple gs)
1436 {
1437 return (gimple_assign_single_p (gs)
1438 && is_gimple_val (gimple_op (gs, 1)));
1439 }
1440
1441
1442 /* Return true if GS is a SSA_NAME copy assignment. */
1443
1444 bool
1445 gimple_assign_ssa_name_copy_p (gimple gs)
1446 {
1447 return (gimple_assign_single_p (gs)
1448 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1449 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1450 }
1451
1452
1453 /* Return true if GS is an assignment with a unary RHS, but the
1454 operator has no effect on the assigned value. The logic is adapted
1455 from STRIP_NOPS. This predicate is intended to be used in tuplifying
1456 instances in which STRIP_NOPS was previously applied to the RHS of
1457 an assignment.
1458
1459 NOTE: In the use cases that led to the creation of this function
1460 and of gimple_assign_single_p, it is typical to test for either
1461 condition and to proceed in the same manner. In each case, the
1462 assigned value is represented by the single RHS operand of the
1463 assignment. I suspect there may be cases where gimple_assign_copy_p,
1464 gimple_assign_single_p, or equivalent logic is used where a similar
1465 treatment of unary NOPs is appropriate. */
1466
1467 bool
1468 gimple_assign_unary_nop_p (gimple gs)
1469 {
1470 return (is_gimple_assign (gs)
1471 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
1472 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
1473 && gimple_assign_rhs1 (gs) != error_mark_node
1474 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
1475 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
1476 }
1477
1478 /* Set BB to be the basic block holding G. */
1479
1480 void
1481 gimple_set_bb (gimple stmt, basic_block bb)
1482 {
1483 stmt->bb = bb;
1484
1485 if (gimple_code (stmt) != GIMPLE_LABEL)
1486 return;
1487
1488 /* If the statement is a label, add the label to block-to-labels map
1489 so that we can speed up edge creation for GIMPLE_GOTOs. */
1490 if (cfun->cfg)
1491 {
1492 tree t;
1493 int uid;
1494
1495 t = gimple_label_label (stmt);
1496 uid = LABEL_DECL_UID (t);
1497 if (uid == -1)
1498 {
1499 unsigned old_len =
1500 vec_safe_length (label_to_block_map_for_fn (cfun));
1501 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
1502 if (old_len <= (unsigned) uid)
1503 {
1504 unsigned new_len = 3 * uid / 2 + 1;
1505
1506 vec_safe_grow_cleared (label_to_block_map_for_fn (cfun),
1507 new_len);
1508 }
1509 }
1510
1511 (*label_to_block_map_for_fn (cfun))[uid] = bb;
1512 }
1513 }
1514
1515
1516 /* Modify the RHS of the assignment pointed-to by GSI using the
1517 operands in the expression tree EXPR.
1518
1519 NOTE: The statement pointed-to by GSI may be reallocated if it
1520 did not have enough operand slots.
1521
1522 This function is useful to convert an existing tree expression into
1523 the flat representation used for the RHS of a GIMPLE assignment.
1524 It will reallocate memory as needed to expand or shrink the number
1525 of operand slots needed to represent EXPR.
1526
1527 NOTE: If you find yourself building a tree and then calling this
1528 function, you are most certainly doing it the slow way. It is much
1529 better to build a new assignment or to use the function
1530 gimple_assign_set_rhs_with_ops, which does not require an
1531 expression tree to be built. */
1532
1533 void
1534 gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
1535 {
1536 enum tree_code subcode;
1537 tree op1, op2, op3;
1538
1539 extract_ops_from_tree_1 (expr, &subcode, &op1, &op2, &op3);
1540 gimple_assign_set_rhs_with_ops_1 (gsi, subcode, op1, op2, op3);
1541 }
1542
1543
1544 /* Set the RHS of assignment statement pointed-to by GSI to CODE with
1545 operands OP1, OP2 and OP3.
1546
1547 NOTE: The statement pointed-to by GSI may be reallocated if it
1548 did not have enough operand slots. */
1549
1550 void
1551 gimple_assign_set_rhs_with_ops_1 (gimple_stmt_iterator *gsi, enum tree_code code,
1552 tree op1, tree op2, tree op3)
1553 {
1554 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
1555 gimple stmt = gsi_stmt (*gsi);
1556
1557 /* If the new CODE needs more operands, allocate a new statement. */
1558 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
1559 {
1560 tree lhs = gimple_assign_lhs (stmt);
1561 gimple new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
1562 memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
1563 gimple_init_singleton (new_stmt);
1564 gsi_replace (gsi, new_stmt, true);
1565 stmt = new_stmt;
1566
1567 /* The LHS needs to be reset as this also changes the SSA name
1568 on the LHS. */
1569 gimple_assign_set_lhs (stmt, lhs);
1570 }
1571
1572 gimple_set_num_ops (stmt, new_rhs_ops + 1);
1573 gimple_set_subcode (stmt, code);
1574 gimple_assign_set_rhs1 (stmt, op1);
1575 if (new_rhs_ops > 1)
1576 gimple_assign_set_rhs2 (stmt, op2);
1577 if (new_rhs_ops > 2)
1578 gimple_assign_set_rhs3 (stmt, op3);
1579 }
1580
1581
1582 /* Return the LHS of a statement that performs an assignment,
1583 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
1584 for a call to a function that returns no value, or for a
1585 statement other than an assignment or a call. */
1586
1587 tree
1588 gimple_get_lhs (const_gimple stmt)
1589 {
1590 enum gimple_code code = gimple_code (stmt);
1591
1592 if (code == GIMPLE_ASSIGN)
1593 return gimple_assign_lhs (stmt);
1594 else if (code == GIMPLE_CALL)
1595 return gimple_call_lhs (stmt);
1596 else
1597 return NULL_TREE;
1598 }
1599
1600
1601 /* Set the LHS of a statement that performs an assignment,
1602 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
1603
1604 void
1605 gimple_set_lhs (gimple stmt, tree lhs)
1606 {
1607 enum gimple_code code = gimple_code (stmt);
1608
1609 if (code == GIMPLE_ASSIGN)
1610 gimple_assign_set_lhs (stmt, lhs);
1611 else if (code == GIMPLE_CALL)
1612 gimple_call_set_lhs (stmt, lhs);
1613 else
1614 gcc_unreachable ();
1615 }
1616
1617
1618 /* Return a deep copy of statement STMT. All the operands from STMT
1619 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
1620 and VUSE operand arrays are set to empty in the new copy. The new
1621 copy isn't part of any sequence. */
1622
1623 gimple
1624 gimple_copy (gimple stmt)
1625 {
1626 enum gimple_code code = gimple_code (stmt);
1627 unsigned num_ops = gimple_num_ops (stmt);
1628 gimple copy = gimple_alloc (code, num_ops);
1629 unsigned i;
1630
1631 /* Shallow copy all the fields from STMT. */
1632 memcpy (copy, stmt, gimple_size (code));
1633 gimple_init_singleton (copy);
1634
1635 /* If STMT has sub-statements, deep-copy them as well. */
1636 if (gimple_has_substatements (stmt))
1637 {
1638 gimple_seq new_seq;
1639 tree t;
1640
1641 switch (gimple_code (stmt))
1642 {
1643 case GIMPLE_BIND:
1644 new_seq = gimple_seq_copy (gimple_bind_body (stmt));
1645 gimple_bind_set_body (copy, new_seq);
1646 gimple_bind_set_vars (copy, unshare_expr (gimple_bind_vars (stmt)));
1647 gimple_bind_set_block (copy, gimple_bind_block (stmt));
1648 break;
1649
1650 case GIMPLE_CATCH:
1651 new_seq = gimple_seq_copy (gimple_catch_handler (stmt));
1652 gimple_catch_set_handler (copy, new_seq);
1653 t = unshare_expr (gimple_catch_types (stmt));
1654 gimple_catch_set_types (copy, t);
1655 break;
1656
1657 case GIMPLE_EH_FILTER:
1658 new_seq = gimple_seq_copy (gimple_eh_filter_failure (stmt));
1659 gimple_eh_filter_set_failure (copy, new_seq);
1660 t = unshare_expr (gimple_eh_filter_types (stmt));
1661 gimple_eh_filter_set_types (copy, t);
1662 break;
1663
1664 case GIMPLE_EH_ELSE:
1665 new_seq = gimple_seq_copy (gimple_eh_else_n_body (stmt));
1666 gimple_eh_else_set_n_body (copy, new_seq);
1667 new_seq = gimple_seq_copy (gimple_eh_else_e_body (stmt));
1668 gimple_eh_else_set_e_body (copy, new_seq);
1669 break;
1670
1671 case GIMPLE_TRY:
1672 new_seq = gimple_seq_copy (gimple_try_eval (stmt));
1673 gimple_try_set_eval (copy, new_seq);
1674 new_seq = gimple_seq_copy (gimple_try_cleanup (stmt));
1675 gimple_try_set_cleanup (copy, new_seq);
1676 break;
1677
1678 case GIMPLE_OMP_FOR:
1679 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
1680 gimple_omp_for_set_pre_body (copy, new_seq);
1681 t = unshare_expr (gimple_omp_for_clauses (stmt));
1682 gimple_omp_for_set_clauses (copy, t);
1683 {
1684 gimple_statement_omp_for *omp_for_copy =
1685 as_a <gimple_statement_omp_for *> (copy);
1686 omp_for_copy->iter = ggc_vec_alloc<gimple_omp_for_iter>
1687 ( gimple_omp_for_collapse (stmt));
1688 }
1689 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1690 {
1691 gimple_omp_for_set_cond (copy, i,
1692 gimple_omp_for_cond (stmt, i));
1693 gimple_omp_for_set_index (copy, i,
1694 gimple_omp_for_index (stmt, i));
1695 t = unshare_expr (gimple_omp_for_initial (stmt, i));
1696 gimple_omp_for_set_initial (copy, i, t);
1697 t = unshare_expr (gimple_omp_for_final (stmt, i));
1698 gimple_omp_for_set_final (copy, i, t);
1699 t = unshare_expr (gimple_omp_for_incr (stmt, i));
1700 gimple_omp_for_set_incr (copy, i, t);
1701 }
1702 goto copy_omp_body;
1703
1704 case GIMPLE_OMP_PARALLEL:
1705 t = unshare_expr (gimple_omp_parallel_clauses (stmt));
1706 gimple_omp_parallel_set_clauses (copy, t);
1707 t = unshare_expr (gimple_omp_parallel_child_fn (stmt));
1708 gimple_omp_parallel_set_child_fn (copy, t);
1709 t = unshare_expr (gimple_omp_parallel_data_arg (stmt));
1710 gimple_omp_parallel_set_data_arg (copy, t);
1711 goto copy_omp_body;
1712
1713 case GIMPLE_OMP_TASK:
1714 t = unshare_expr (gimple_omp_task_clauses (stmt));
1715 gimple_omp_task_set_clauses (copy, t);
1716 t = unshare_expr (gimple_omp_task_child_fn (stmt));
1717 gimple_omp_task_set_child_fn (copy, t);
1718 t = unshare_expr (gimple_omp_task_data_arg (stmt));
1719 gimple_omp_task_set_data_arg (copy, t);
1720 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
1721 gimple_omp_task_set_copy_fn (copy, t);
1722 t = unshare_expr (gimple_omp_task_arg_size (stmt));
1723 gimple_omp_task_set_arg_size (copy, t);
1724 t = unshare_expr (gimple_omp_task_arg_align (stmt));
1725 gimple_omp_task_set_arg_align (copy, t);
1726 goto copy_omp_body;
1727
1728 case GIMPLE_OMP_CRITICAL:
1729 t = unshare_expr (gimple_omp_critical_name (stmt));
1730 gimple_omp_critical_set_name (copy, t);
1731 goto copy_omp_body;
1732
1733 case GIMPLE_OMP_SECTIONS:
1734 t = unshare_expr (gimple_omp_sections_clauses (stmt));
1735 gimple_omp_sections_set_clauses (copy, t);
1736 t = unshare_expr (gimple_omp_sections_control (stmt));
1737 gimple_omp_sections_set_control (copy, t);
1738 /* FALLTHRU */
1739
1740 case GIMPLE_OMP_SINGLE:
1741 case GIMPLE_OMP_TARGET:
1742 case GIMPLE_OMP_TEAMS:
1743 case GIMPLE_OMP_SECTION:
1744 case GIMPLE_OMP_MASTER:
1745 case GIMPLE_OMP_TASKGROUP:
1746 case GIMPLE_OMP_ORDERED:
1747 copy_omp_body:
1748 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
1749 gimple_omp_set_body (copy, new_seq);
1750 break;
1751
1752 case GIMPLE_TRANSACTION:
1753 new_seq = gimple_seq_copy (gimple_transaction_body (stmt));
1754 gimple_transaction_set_body (copy, new_seq);
1755 break;
1756
1757 case GIMPLE_WITH_CLEANUP_EXPR:
1758 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
1759 gimple_wce_set_cleanup (copy, new_seq);
1760 break;
1761
1762 default:
1763 gcc_unreachable ();
1764 }
1765 }
1766
1767 /* Make copy of operands. */
1768 for (i = 0; i < num_ops; i++)
1769 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
1770
1771 if (gimple_has_mem_ops (stmt))
1772 {
1773 gimple_set_vdef (copy, gimple_vdef (stmt));
1774 gimple_set_vuse (copy, gimple_vuse (stmt));
1775 }
1776
1777 /* Clear out SSA operand vectors on COPY. */
1778 if (gimple_has_ops (stmt))
1779 {
1780 gimple_set_use_ops (copy, NULL);
1781
1782 /* SSA operands need to be updated. */
1783 gimple_set_modified (copy, true);
1784 }
1785
1786 return copy;
1787 }
1788
1789
1790 /* Return true if statement S has side-effects. We consider a
1791 statement to have side effects if:
1792
1793 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
1794 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
1795
1796 bool
1797 gimple_has_side_effects (const_gimple s)
1798 {
1799 if (is_gimple_debug (s))
1800 return false;
1801
1802 /* We don't have to scan the arguments to check for
1803 volatile arguments, though, at present, we still
1804 do a scan to check for TREE_SIDE_EFFECTS. */
1805 if (gimple_has_volatile_ops (s))
1806 return true;
1807
1808 if (gimple_code (s) == GIMPLE_ASM
1809 && gimple_asm_volatile_p (s))
1810 return true;
1811
1812 if (is_gimple_call (s))
1813 {
1814 int flags = gimple_call_flags (s);
1815
1816 /* An infinite loop is considered a side effect. */
1817 if (!(flags & (ECF_CONST | ECF_PURE))
1818 || (flags & ECF_LOOPING_CONST_OR_PURE))
1819 return true;
1820
1821 return false;
1822 }
1823
1824 return false;
1825 }
1826
1827 /* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
1828 Return true if S can trap. When INCLUDE_MEM is true, check whether
1829 the memory operations could trap. When INCLUDE_STORES is true and
1830 S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked. */
1831
1832 bool
1833 gimple_could_trap_p_1 (gimple s, bool include_mem, bool include_stores)
1834 {
1835 tree t, div = NULL_TREE;
1836 enum tree_code op;
1837
1838 if (include_mem)
1839 {
1840 unsigned i, start = (is_gimple_assign (s) && !include_stores) ? 1 : 0;
1841
1842 for (i = start; i < gimple_num_ops (s); i++)
1843 if (tree_could_trap_p (gimple_op (s, i)))
1844 return true;
1845 }
1846
1847 switch (gimple_code (s))
1848 {
1849 case GIMPLE_ASM:
1850 return gimple_asm_volatile_p (s);
1851
1852 case GIMPLE_CALL:
1853 t = gimple_call_fndecl (s);
1854 /* Assume that calls to weak functions may trap. */
1855 if (!t || !DECL_P (t) || DECL_WEAK (t))
1856 return true;
1857 return false;
1858
1859 case GIMPLE_ASSIGN:
1860 t = gimple_expr_type (s);
1861 op = gimple_assign_rhs_code (s);
1862 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
1863 div = gimple_assign_rhs2 (s);
1864 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
1865 (INTEGRAL_TYPE_P (t)
1866 && TYPE_OVERFLOW_TRAPS (t)),
1867 div));
1868
1869 default:
1870 break;
1871 }
1872
1873 return false;
1874 }
1875
1876 /* Return true if statement S can trap. */
1877
1878 bool
1879 gimple_could_trap_p (gimple s)
1880 {
1881 return gimple_could_trap_p_1 (s, true, true);
1882 }
1883
1884 /* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
1885
1886 bool
1887 gimple_assign_rhs_could_trap_p (gimple s)
1888 {
1889 gcc_assert (is_gimple_assign (s));
1890 return gimple_could_trap_p_1 (s, true, false);
1891 }
1892
1893
1894 /* Print debugging information for gimple stmts generated. */
1895
1896 void
1897 dump_gimple_statistics (void)
1898 {
1899 int i, total_tuples = 0, total_bytes = 0;
1900
1901 if (! GATHER_STATISTICS)
1902 {
1903 fprintf (stderr, "No gimple statistics\n");
1904 return;
1905 }
1906
1907 fprintf (stderr, "\nGIMPLE statements\n");
1908 fprintf (stderr, "Kind Stmts Bytes\n");
1909 fprintf (stderr, "---------------------------------------\n");
1910 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
1911 {
1912 fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i],
1913 gimple_alloc_counts[i], gimple_alloc_sizes[i]);
1914 total_tuples += gimple_alloc_counts[i];
1915 total_bytes += gimple_alloc_sizes[i];
1916 }
1917 fprintf (stderr, "---------------------------------------\n");
1918 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes);
1919 fprintf (stderr, "---------------------------------------\n");
1920 }
1921
1922
1923 /* Return the number of operands needed on the RHS of a GIMPLE
1924 assignment for an expression with tree code CODE. */
1925
1926 unsigned
1927 get_gimple_rhs_num_ops (enum tree_code code)
1928 {
1929 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
1930
1931 if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
1932 return 1;
1933 else if (rhs_class == GIMPLE_BINARY_RHS)
1934 return 2;
1935 else if (rhs_class == GIMPLE_TERNARY_RHS)
1936 return 3;
1937 else
1938 gcc_unreachable ();
1939 }
1940
1941 #define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
1942 (unsigned char) \
1943 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
1944 : ((TYPE) == tcc_binary \
1945 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
1946 : ((TYPE) == tcc_constant \
1947 || (TYPE) == tcc_declaration \
1948 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
1949 : ((SYM) == TRUTH_AND_EXPR \
1950 || (SYM) == TRUTH_OR_EXPR \
1951 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
1952 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
1953 : ((SYM) == COND_EXPR \
1954 || (SYM) == WIDEN_MULT_PLUS_EXPR \
1955 || (SYM) == WIDEN_MULT_MINUS_EXPR \
1956 || (SYM) == DOT_PROD_EXPR \
1957 || (SYM) == SAD_EXPR \
1958 || (SYM) == REALIGN_LOAD_EXPR \
1959 || (SYM) == VEC_COND_EXPR \
1960 || (SYM) == VEC_PERM_EXPR \
1961 || (SYM) == FMA_EXPR) ? GIMPLE_TERNARY_RHS \
1962 : ((SYM) == CONSTRUCTOR \
1963 || (SYM) == OBJ_TYPE_REF \
1964 || (SYM) == ASSERT_EXPR \
1965 || (SYM) == ADDR_EXPR \
1966 || (SYM) == WITH_SIZE_EXPR \
1967 || (SYM) == SSA_NAME) ? GIMPLE_SINGLE_RHS \
1968 : GIMPLE_INVALID_RHS),
1969 #define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
1970
1971 const unsigned char gimple_rhs_class_table[] = {
1972 #include "all-tree.def"
1973 };
1974
1975 #undef DEFTREECODE
1976 #undef END_OF_BASE_TREE_CODES
1977
1978 /* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
1979 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
1980 we failed to create one. */
1981
1982 tree
1983 canonicalize_cond_expr_cond (tree t)
1984 {
1985 /* Strip conversions around boolean operations. */
1986 if (CONVERT_EXPR_P (t)
1987 && (truth_value_p (TREE_CODE (TREE_OPERAND (t, 0)))
1988 || TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0)))
1989 == BOOLEAN_TYPE))
1990 t = TREE_OPERAND (t, 0);
1991
1992 /* For !x use x == 0. */
1993 if (TREE_CODE (t) == TRUTH_NOT_EXPR)
1994 {
1995 tree top0 = TREE_OPERAND (t, 0);
1996 t = build2 (EQ_EXPR, TREE_TYPE (t),
1997 top0, build_int_cst (TREE_TYPE (top0), 0));
1998 }
1999 /* For cmp ? 1 : 0 use cmp. */
2000 else if (TREE_CODE (t) == COND_EXPR
2001 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
2002 && integer_onep (TREE_OPERAND (t, 1))
2003 && integer_zerop (TREE_OPERAND (t, 2)))
2004 {
2005 tree top0 = TREE_OPERAND (t, 0);
2006 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
2007 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
2008 }
2009 /* For x ^ y use x != y. */
2010 else if (TREE_CODE (t) == BIT_XOR_EXPR)
2011 t = build2 (NE_EXPR, TREE_TYPE (t),
2012 TREE_OPERAND (t, 0), TREE_OPERAND (t, 1));
2013
2014 if (is_gimple_condexpr (t))
2015 return t;
2016
2017 return NULL_TREE;
2018 }
2019
2020 /* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
2021 the positions marked by the set ARGS_TO_SKIP. */
2022
2023 gimple
2024 gimple_call_copy_skip_args (gimple stmt, bitmap args_to_skip)
2025 {
2026 int i;
2027 int nargs = gimple_call_num_args (stmt);
2028 auto_vec<tree> vargs (nargs);
2029 gimple new_stmt;
2030
2031 for (i = 0; i < nargs; i++)
2032 if (!bitmap_bit_p (args_to_skip, i))
2033 vargs.quick_push (gimple_call_arg (stmt, i));
2034
2035 if (gimple_call_internal_p (stmt))
2036 new_stmt = gimple_build_call_internal_vec (gimple_call_internal_fn (stmt),
2037 vargs);
2038 else
2039 new_stmt = gimple_build_call_vec (gimple_call_fn (stmt), vargs);
2040
2041 if (gimple_call_lhs (stmt))
2042 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
2043
2044 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
2045 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
2046
2047 if (gimple_has_location (stmt))
2048 gimple_set_location (new_stmt, gimple_location (stmt));
2049 gimple_call_copy_flags (new_stmt, stmt);
2050 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
2051
2052 gimple_set_modified (new_stmt, true);
2053
2054 return new_stmt;
2055 }
2056
2057
2058
2059 /* Return true if the field decls F1 and F2 are at the same offset.
2060
2061 This is intended to be used on GIMPLE types only. */
2062
2063 bool
2064 gimple_compare_field_offset (tree f1, tree f2)
2065 {
2066 if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
2067 {
2068 tree offset1 = DECL_FIELD_OFFSET (f1);
2069 tree offset2 = DECL_FIELD_OFFSET (f2);
2070 return ((offset1 == offset2
2071 /* Once gimplification is done, self-referential offsets are
2072 instantiated as operand #2 of the COMPONENT_REF built for
2073 each access and reset. Therefore, they are not relevant
2074 anymore and fields are interchangeable provided that they
2075 represent the same access. */
2076 || (TREE_CODE (offset1) == PLACEHOLDER_EXPR
2077 && TREE_CODE (offset2) == PLACEHOLDER_EXPR
2078 && (DECL_SIZE (f1) == DECL_SIZE (f2)
2079 || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
2080 && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
2081 || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0))
2082 && DECL_ALIGN (f1) == DECL_ALIGN (f2))
2083 || operand_equal_p (offset1, offset2, 0))
2084 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
2085 DECL_FIELD_BIT_OFFSET (f2)));
2086 }
2087
2088 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
2089 should be, so handle differing ones specially by decomposing
2090 the offset into a byte and bit offset manually. */
2091 if (tree_fits_shwi_p (DECL_FIELD_OFFSET (f1))
2092 && tree_fits_shwi_p (DECL_FIELD_OFFSET (f2)))
2093 {
2094 unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
2095 unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
2096 bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
2097 byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
2098 + bit_offset1 / BITS_PER_UNIT);
2099 bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
2100 byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
2101 + bit_offset2 / BITS_PER_UNIT);
2102 if (byte_offset1 != byte_offset2)
2103 return false;
2104 return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
2105 }
2106
2107 return false;
2108 }
2109
2110
2111 /* Return a type the same as TYPE except unsigned or
2112 signed according to UNSIGNEDP. */
2113
2114 static tree
2115 gimple_signed_or_unsigned_type (bool unsignedp, tree type)
2116 {
2117 tree type1;
2118 int i;
2119
2120 type1 = TYPE_MAIN_VARIANT (type);
2121 if (type1 == signed_char_type_node
2122 || type1 == char_type_node
2123 || type1 == unsigned_char_type_node)
2124 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2125 if (type1 == integer_type_node || type1 == unsigned_type_node)
2126 return unsignedp ? unsigned_type_node : integer_type_node;
2127 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
2128 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2129 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
2130 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2131 if (type1 == long_long_integer_type_node
2132 || type1 == long_long_unsigned_type_node)
2133 return unsignedp
2134 ? long_long_unsigned_type_node
2135 : long_long_integer_type_node;
2136
2137 for (i = 0; i < NUM_INT_N_ENTS; i ++)
2138 if (int_n_enabled_p[i]
2139 && (type1 == int_n_trees[i].unsigned_type
2140 || type1 == int_n_trees[i].signed_type))
2141 return unsignedp
2142 ? int_n_trees[i].unsigned_type
2143 : int_n_trees[i].signed_type;
2144
2145 #if HOST_BITS_PER_WIDE_INT >= 64
2146 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
2147 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2148 #endif
2149 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
2150 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2151 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
2152 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2153 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
2154 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2155 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
2156 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2157
2158 #define GIMPLE_FIXED_TYPES(NAME) \
2159 if (type1 == short_ ## NAME ## _type_node \
2160 || type1 == unsigned_short_ ## NAME ## _type_node) \
2161 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
2162 : short_ ## NAME ## _type_node; \
2163 if (type1 == NAME ## _type_node \
2164 || type1 == unsigned_ ## NAME ## _type_node) \
2165 return unsignedp ? unsigned_ ## NAME ## _type_node \
2166 : NAME ## _type_node; \
2167 if (type1 == long_ ## NAME ## _type_node \
2168 || type1 == unsigned_long_ ## NAME ## _type_node) \
2169 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
2170 : long_ ## NAME ## _type_node; \
2171 if (type1 == long_long_ ## NAME ## _type_node \
2172 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
2173 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
2174 : long_long_ ## NAME ## _type_node;
2175
2176 #define GIMPLE_FIXED_MODE_TYPES(NAME) \
2177 if (type1 == NAME ## _type_node \
2178 || type1 == u ## NAME ## _type_node) \
2179 return unsignedp ? u ## NAME ## _type_node \
2180 : NAME ## _type_node;
2181
2182 #define GIMPLE_FIXED_TYPES_SAT(NAME) \
2183 if (type1 == sat_ ## short_ ## NAME ## _type_node \
2184 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
2185 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
2186 : sat_ ## short_ ## NAME ## _type_node; \
2187 if (type1 == sat_ ## NAME ## _type_node \
2188 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
2189 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
2190 : sat_ ## NAME ## _type_node; \
2191 if (type1 == sat_ ## long_ ## NAME ## _type_node \
2192 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
2193 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
2194 : sat_ ## long_ ## NAME ## _type_node; \
2195 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
2196 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
2197 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
2198 : sat_ ## long_long_ ## NAME ## _type_node;
2199
2200 #define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
2201 if (type1 == sat_ ## NAME ## _type_node \
2202 || type1 == sat_ ## u ## NAME ## _type_node) \
2203 return unsignedp ? sat_ ## u ## NAME ## _type_node \
2204 : sat_ ## NAME ## _type_node;
2205
2206 GIMPLE_FIXED_TYPES (fract);
2207 GIMPLE_FIXED_TYPES_SAT (fract);
2208 GIMPLE_FIXED_TYPES (accum);
2209 GIMPLE_FIXED_TYPES_SAT (accum);
2210
2211 GIMPLE_FIXED_MODE_TYPES (qq);
2212 GIMPLE_FIXED_MODE_TYPES (hq);
2213 GIMPLE_FIXED_MODE_TYPES (sq);
2214 GIMPLE_FIXED_MODE_TYPES (dq);
2215 GIMPLE_FIXED_MODE_TYPES (tq);
2216 GIMPLE_FIXED_MODE_TYPES_SAT (qq);
2217 GIMPLE_FIXED_MODE_TYPES_SAT (hq);
2218 GIMPLE_FIXED_MODE_TYPES_SAT (sq);
2219 GIMPLE_FIXED_MODE_TYPES_SAT (dq);
2220 GIMPLE_FIXED_MODE_TYPES_SAT (tq);
2221 GIMPLE_FIXED_MODE_TYPES (ha);
2222 GIMPLE_FIXED_MODE_TYPES (sa);
2223 GIMPLE_FIXED_MODE_TYPES (da);
2224 GIMPLE_FIXED_MODE_TYPES (ta);
2225 GIMPLE_FIXED_MODE_TYPES_SAT (ha);
2226 GIMPLE_FIXED_MODE_TYPES_SAT (sa);
2227 GIMPLE_FIXED_MODE_TYPES_SAT (da);
2228 GIMPLE_FIXED_MODE_TYPES_SAT (ta);
2229
2230 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
2231 the precision; they have precision set to match their range, but
2232 may use a wider mode to match an ABI. If we change modes, we may
2233 wind up with bad conversions. For INTEGER_TYPEs in C, must check
2234 the precision as well, so as to yield correct results for
2235 bit-field types. C++ does not have these separate bit-field
2236 types, and producing a signed or unsigned variant of an
2237 ENUMERAL_TYPE may cause other problems as well. */
2238 if (!INTEGRAL_TYPE_P (type)
2239 || TYPE_UNSIGNED (type) == unsignedp)
2240 return type;
2241
2242 #define TYPE_OK(node) \
2243 (TYPE_MODE (type) == TYPE_MODE (node) \
2244 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
2245 if (TYPE_OK (signed_char_type_node))
2246 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2247 if (TYPE_OK (integer_type_node))
2248 return unsignedp ? unsigned_type_node : integer_type_node;
2249 if (TYPE_OK (short_integer_type_node))
2250 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2251 if (TYPE_OK (long_integer_type_node))
2252 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2253 if (TYPE_OK (long_long_integer_type_node))
2254 return (unsignedp
2255 ? long_long_unsigned_type_node
2256 : long_long_integer_type_node);
2257
2258 for (i = 0; i < NUM_INT_N_ENTS; i ++)
2259 if (int_n_enabled_p[i]
2260 && TYPE_MODE (type) == int_n_data[i].m
2261 && TYPE_PRECISION (type) == int_n_data[i].bitsize)
2262 return unsignedp
2263 ? int_n_trees[i].unsigned_type
2264 : int_n_trees[i].signed_type;
2265
2266 #if HOST_BITS_PER_WIDE_INT >= 64
2267 if (TYPE_OK (intTI_type_node))
2268 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2269 #endif
2270 if (TYPE_OK (intDI_type_node))
2271 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2272 if (TYPE_OK (intSI_type_node))
2273 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2274 if (TYPE_OK (intHI_type_node))
2275 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2276 if (TYPE_OK (intQI_type_node))
2277 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2278
2279 #undef GIMPLE_FIXED_TYPES
2280 #undef GIMPLE_FIXED_MODE_TYPES
2281 #undef GIMPLE_FIXED_TYPES_SAT
2282 #undef GIMPLE_FIXED_MODE_TYPES_SAT
2283 #undef TYPE_OK
2284
2285 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
2286 }
2287
2288
2289 /* Return an unsigned type the same as TYPE in other respects. */
2290
2291 tree
2292 gimple_unsigned_type (tree type)
2293 {
2294 return gimple_signed_or_unsigned_type (true, type);
2295 }
2296
2297
2298 /* Return a signed type the same as TYPE in other respects. */
2299
2300 tree
2301 gimple_signed_type (tree type)
2302 {
2303 return gimple_signed_or_unsigned_type (false, type);
2304 }
2305
2306
2307 /* Return the typed-based alias set for T, which may be an expression
2308 or a type. Return -1 if we don't do anything special. */
2309
2310 alias_set_type
2311 gimple_get_alias_set (tree t)
2312 {
2313 tree u;
2314
2315 /* Permit type-punning when accessing a union, provided the access
2316 is directly through the union. For example, this code does not
2317 permit taking the address of a union member and then storing
2318 through it. Even the type-punning allowed here is a GCC
2319 extension, albeit a common and useful one; the C standard says
2320 that such accesses have implementation-defined behavior. */
2321 for (u = t;
2322 TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
2323 u = TREE_OPERAND (u, 0))
2324 if (TREE_CODE (u) == COMPONENT_REF
2325 && TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
2326 return 0;
2327
2328 /* That's all the expressions we handle specially. */
2329 if (!TYPE_P (t))
2330 return -1;
2331
2332 /* For convenience, follow the C standard when dealing with
2333 character types. Any object may be accessed via an lvalue that
2334 has character type. */
2335 if (t == char_type_node
2336 || t == signed_char_type_node
2337 || t == unsigned_char_type_node)
2338 return 0;
2339
2340 /* Allow aliasing between signed and unsigned variants of the same
2341 type. We treat the signed variant as canonical. */
2342 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
2343 {
2344 tree t1 = gimple_signed_type (t);
2345
2346 /* t1 == t can happen for boolean nodes which are always unsigned. */
2347 if (t1 != t)
2348 return get_alias_set (t1);
2349 }
2350
2351 return -1;
2352 }
2353
2354
2355 /* Helper for gimple_ior_addresses_taken_1. */
2356
2357 static bool
2358 gimple_ior_addresses_taken_1 (gimple, tree addr, tree, void *data)
2359 {
2360 bitmap addresses_taken = (bitmap)data;
2361 addr = get_base_address (addr);
2362 if (addr
2363 && DECL_P (addr))
2364 {
2365 bitmap_set_bit (addresses_taken, DECL_UID (addr));
2366 return true;
2367 }
2368 return false;
2369 }
2370
2371 /* Set the bit for the uid of all decls that have their address taken
2372 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
2373 were any in this stmt. */
2374
2375 bool
2376 gimple_ior_addresses_taken (bitmap addresses_taken, gimple stmt)
2377 {
2378 return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
2379 gimple_ior_addresses_taken_1);
2380 }
2381
2382
2383 /* Return true if TYPE1 and TYPE2 are compatible enough for builtin
2384 processing. */
2385
2386 static bool
2387 validate_type (tree type1, tree type2)
2388 {
2389 if (INTEGRAL_TYPE_P (type1)
2390 && INTEGRAL_TYPE_P (type2))
2391 ;
2392 else if (POINTER_TYPE_P (type1)
2393 && POINTER_TYPE_P (type2))
2394 ;
2395 else if (TREE_CODE (type1)
2396 != TREE_CODE (type2))
2397 return false;
2398 return true;
2399 }
2400
2401 /* Return true when STMTs arguments and return value match those of FNDECL,
2402 a decl of a builtin function. */
2403
2404 bool
2405 gimple_builtin_call_types_compatible_p (const_gimple stmt, tree fndecl)
2406 {
2407 gcc_checking_assert (DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN);
2408
2409 tree ret = gimple_call_lhs (stmt);
2410 if (ret
2411 && !validate_type (TREE_TYPE (ret), TREE_TYPE (TREE_TYPE (fndecl))))
2412 return false;
2413
2414 tree targs = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
2415 unsigned nargs = gimple_call_num_args (stmt);
2416 for (unsigned i = 0; i < nargs; ++i)
2417 {
2418 /* Variadic args follow. */
2419 if (!targs)
2420 return true;
2421 tree arg = gimple_call_arg (stmt, i);
2422 if (!validate_type (TREE_TYPE (arg), TREE_VALUE (targs)))
2423 return false;
2424 targs = TREE_CHAIN (targs);
2425 }
2426 if (targs && !VOID_TYPE_P (TREE_VALUE (targs)))
2427 return false;
2428 return true;
2429 }
2430
2431 /* Return true when STMT is builtins call. */
2432
2433 bool
2434 gimple_call_builtin_p (const_gimple stmt)
2435 {
2436 tree fndecl;
2437 if (is_gimple_call (stmt)
2438 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2439 && DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN)
2440 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2441 return false;
2442 }
2443
2444 /* Return true when STMT is builtins call to CLASS. */
2445
2446 bool
2447 gimple_call_builtin_p (const_gimple stmt, enum built_in_class klass)
2448 {
2449 tree fndecl;
2450 if (is_gimple_call (stmt)
2451 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2452 && DECL_BUILT_IN_CLASS (fndecl) == klass)
2453 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2454 return false;
2455 }
2456
2457 /* Return true when STMT is builtins call to CODE of CLASS. */
2458
2459 bool
2460 gimple_call_builtin_p (const_gimple stmt, enum built_in_function code)
2461 {
2462 tree fndecl;
2463 if (is_gimple_call (stmt)
2464 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2465 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
2466 && DECL_FUNCTION_CODE (fndecl) == code)
2467 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2468 return false;
2469 }
2470
2471 /* Return true if STMT clobbers memory. STMT is required to be a
2472 GIMPLE_ASM. */
2473
2474 bool
2475 gimple_asm_clobbers_memory_p (const_gimple stmt)
2476 {
2477 unsigned i;
2478
2479 for (i = 0; i < gimple_asm_nclobbers (stmt); i++)
2480 {
2481 tree op = gimple_asm_clobber_op (stmt, i);
2482 if (strcmp (TREE_STRING_POINTER (TREE_VALUE (op)), "memory") == 0)
2483 return true;
2484 }
2485
2486 return false;
2487 }
2488
2489 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
2490
2491 void
2492 dump_decl_set (FILE *file, bitmap set)
2493 {
2494 if (set)
2495 {
2496 bitmap_iterator bi;
2497 unsigned i;
2498
2499 fprintf (file, "{ ");
2500
2501 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2502 {
2503 fprintf (file, "D.%u", i);
2504 fprintf (file, " ");
2505 }
2506
2507 fprintf (file, "}");
2508 }
2509 else
2510 fprintf (file, "NIL");
2511 }
2512
2513 /* Return true when CALL is a call stmt that definitely doesn't
2514 free any memory or makes it unavailable otherwise. */
2515 bool
2516 nonfreeing_call_p (gimple call)
2517 {
2518 if (gimple_call_builtin_p (call, BUILT_IN_NORMAL)
2519 && gimple_call_flags (call) & ECF_LEAF)
2520 switch (DECL_FUNCTION_CODE (gimple_call_fndecl (call)))
2521 {
2522 /* Just in case these become ECF_LEAF in the future. */
2523 case BUILT_IN_FREE:
2524 case BUILT_IN_TM_FREE:
2525 case BUILT_IN_REALLOC:
2526 case BUILT_IN_STACK_RESTORE:
2527 return false;
2528 default:
2529 return true;
2530 }
2531
2532 return false;
2533 }
2534
2535 /* Callback for walk_stmt_load_store_ops.
2536
2537 Return TRUE if OP will dereference the tree stored in DATA, FALSE
2538 otherwise.
2539
2540 This routine only makes a superficial check for a dereference. Thus
2541 it must only be used if it is safe to return a false negative. */
2542 static bool
2543 check_loadstore (gimple, tree op, tree, void *data)
2544 {
2545 if ((TREE_CODE (op) == MEM_REF || TREE_CODE (op) == TARGET_MEM_REF)
2546 && operand_equal_p (TREE_OPERAND (op, 0), (tree)data, 0))
2547 return true;
2548 return false;
2549 }
2550
2551 /* If OP can be inferred to be non-NULL after STMT executes, return true.
2552
2553 DEREFERENCE is TRUE if we can use a pointer dereference to infer a
2554 non-NULL range, FALSE otherwise.
2555
2556 ATTRIBUTE is TRUE if we can use attributes to infer a non-NULL range
2557 for function arguments and return values. FALSE otherwise. */
2558
2559 bool
2560 infer_nonnull_range (gimple stmt, tree op, bool dereference, bool attribute)
2561 {
2562 /* We can only assume that a pointer dereference will yield
2563 non-NULL if -fdelete-null-pointer-checks is enabled. */
2564 if (!flag_delete_null_pointer_checks
2565 || !POINTER_TYPE_P (TREE_TYPE (op))
2566 || gimple_code (stmt) == GIMPLE_ASM)
2567 return false;
2568
2569 if (dereference
2570 && walk_stmt_load_store_ops (stmt, (void *)op,
2571 check_loadstore, check_loadstore))
2572 return true;
2573
2574 if (attribute
2575 && is_gimple_call (stmt) && !gimple_call_internal_p (stmt))
2576 {
2577 tree fntype = gimple_call_fntype (stmt);
2578 tree attrs = TYPE_ATTRIBUTES (fntype);
2579 for (; attrs; attrs = TREE_CHAIN (attrs))
2580 {
2581 attrs = lookup_attribute ("nonnull", attrs);
2582
2583 /* If "nonnull" wasn't specified, we know nothing about
2584 the argument. */
2585 if (attrs == NULL_TREE)
2586 return false;
2587
2588 /* If "nonnull" applies to all the arguments, then ARG
2589 is non-null if it's in the argument list. */
2590 if (TREE_VALUE (attrs) == NULL_TREE)
2591 {
2592 for (unsigned int i = 0; i < gimple_call_num_args (stmt); i++)
2593 {
2594 if (POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (stmt, i)))
2595 && operand_equal_p (op, gimple_call_arg (stmt, i), 0))
2596 return true;
2597 }
2598 return false;
2599 }
2600
2601 /* Now see if op appears in the nonnull list. */
2602 for (tree t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
2603 {
2604 int idx = TREE_INT_CST_LOW (TREE_VALUE (t)) - 1;
2605 tree arg = gimple_call_arg (stmt, idx);
2606 if (operand_equal_p (op, arg, 0))
2607 return true;
2608 }
2609 }
2610 }
2611
2612 /* If this function is marked as returning non-null, then we can
2613 infer OP is non-null if it is used in the return statement. */
2614 if (attribute
2615 && gimple_code (stmt) == GIMPLE_RETURN
2616 && gimple_return_retval (stmt)
2617 && operand_equal_p (gimple_return_retval (stmt), op, 0)
2618 && lookup_attribute ("returns_nonnull",
2619 TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))))
2620 return true;
2621
2622 return false;
2623 }
2624
2625 /* Compare two case labels. Because the front end should already have
2626 made sure that case ranges do not overlap, it is enough to only compare
2627 the CASE_LOW values of each case label. */
2628
2629 static int
2630 compare_case_labels (const void *p1, const void *p2)
2631 {
2632 const_tree const case1 = *(const_tree const*)p1;
2633 const_tree const case2 = *(const_tree const*)p2;
2634
2635 /* The 'default' case label always goes first. */
2636 if (!CASE_LOW (case1))
2637 return -1;
2638 else if (!CASE_LOW (case2))
2639 return 1;
2640 else
2641 return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
2642 }
2643
2644 /* Sort the case labels in LABEL_VEC in place in ascending order. */
2645
2646 void
2647 sort_case_labels (vec<tree> label_vec)
2648 {
2649 label_vec.qsort (compare_case_labels);
2650 }
2651 \f
2652 /* Prepare a vector of case labels to be used in a GIMPLE_SWITCH statement.
2653
2654 LABELS is a vector that contains all case labels to look at.
2655
2656 INDEX_TYPE is the type of the switch index expression. Case labels
2657 in LABELS are discarded if their values are not in the value range
2658 covered by INDEX_TYPE. The remaining case label values are folded
2659 to INDEX_TYPE.
2660
2661 If a default case exists in LABELS, it is removed from LABELS and
2662 returned in DEFAULT_CASEP. If no default case exists, but the
2663 case labels already cover the whole range of INDEX_TYPE, a default
2664 case is returned pointing to one of the existing case labels.
2665 Otherwise DEFAULT_CASEP is set to NULL_TREE.
2666
2667 DEFAULT_CASEP may be NULL, in which case the above comment doesn't
2668 apply and no action is taken regardless of whether a default case is
2669 found or not. */
2670
2671 void
2672 preprocess_case_label_vec_for_gimple (vec<tree> labels,
2673 tree index_type,
2674 tree *default_casep)
2675 {
2676 tree min_value, max_value;
2677 tree default_case = NULL_TREE;
2678 size_t i, len;
2679
2680 i = 0;
2681 min_value = TYPE_MIN_VALUE (index_type);
2682 max_value = TYPE_MAX_VALUE (index_type);
2683 while (i < labels.length ())
2684 {
2685 tree elt = labels[i];
2686 tree low = CASE_LOW (elt);
2687 tree high = CASE_HIGH (elt);
2688 bool remove_element = FALSE;
2689
2690 if (low)
2691 {
2692 gcc_checking_assert (TREE_CODE (low) == INTEGER_CST);
2693 gcc_checking_assert (!high || TREE_CODE (high) == INTEGER_CST);
2694
2695 /* This is a non-default case label, i.e. it has a value.
2696
2697 See if the case label is reachable within the range of
2698 the index type. Remove out-of-range case values. Turn
2699 case ranges into a canonical form (high > low strictly)
2700 and convert the case label values to the index type.
2701
2702 NB: The type of gimple_switch_index() may be the promoted
2703 type, but the case labels retain the original type. */
2704
2705 if (high)
2706 {
2707 /* This is a case range. Discard empty ranges.
2708 If the bounds or the range are equal, turn this
2709 into a simple (one-value) case. */
2710 int cmp = tree_int_cst_compare (high, low);
2711 if (cmp < 0)
2712 remove_element = TRUE;
2713 else if (cmp == 0)
2714 high = NULL_TREE;
2715 }
2716
2717 if (! high)
2718 {
2719 /* If the simple case value is unreachable, ignore it. */
2720 if ((TREE_CODE (min_value) == INTEGER_CST
2721 && tree_int_cst_compare (low, min_value) < 0)
2722 || (TREE_CODE (max_value) == INTEGER_CST
2723 && tree_int_cst_compare (low, max_value) > 0))
2724 remove_element = TRUE;
2725 else
2726 low = fold_convert (index_type, low);
2727 }
2728 else
2729 {
2730 /* If the entire case range is unreachable, ignore it. */
2731 if ((TREE_CODE (min_value) == INTEGER_CST
2732 && tree_int_cst_compare (high, min_value) < 0)
2733 || (TREE_CODE (max_value) == INTEGER_CST
2734 && tree_int_cst_compare (low, max_value) > 0))
2735 remove_element = TRUE;
2736 else
2737 {
2738 /* If the lower bound is less than the index type's
2739 minimum value, truncate the range bounds. */
2740 if (TREE_CODE (min_value) == INTEGER_CST
2741 && tree_int_cst_compare (low, min_value) < 0)
2742 low = min_value;
2743 low = fold_convert (index_type, low);
2744
2745 /* If the upper bound is greater than the index type's
2746 maximum value, truncate the range bounds. */
2747 if (TREE_CODE (max_value) == INTEGER_CST
2748 && tree_int_cst_compare (high, max_value) > 0)
2749 high = max_value;
2750 high = fold_convert (index_type, high);
2751
2752 /* We may have folded a case range to a one-value case. */
2753 if (tree_int_cst_equal (low, high))
2754 high = NULL_TREE;
2755 }
2756 }
2757
2758 CASE_LOW (elt) = low;
2759 CASE_HIGH (elt) = high;
2760 }
2761 else
2762 {
2763 gcc_assert (!default_case);
2764 default_case = elt;
2765 /* The default case must be passed separately to the
2766 gimple_build_switch routine. But if DEFAULT_CASEP
2767 is NULL, we do not remove the default case (it would
2768 be completely lost). */
2769 if (default_casep)
2770 remove_element = TRUE;
2771 }
2772
2773 if (remove_element)
2774 labels.ordered_remove (i);
2775 else
2776 i++;
2777 }
2778 len = i;
2779
2780 if (!labels.is_empty ())
2781 sort_case_labels (labels);
2782
2783 if (default_casep && !default_case)
2784 {
2785 /* If the switch has no default label, add one, so that we jump
2786 around the switch body. If the labels already cover the whole
2787 range of the switch index_type, add the default label pointing
2788 to one of the existing labels. */
2789 if (len
2790 && TYPE_MIN_VALUE (index_type)
2791 && TYPE_MAX_VALUE (index_type)
2792 && tree_int_cst_equal (CASE_LOW (labels[0]),
2793 TYPE_MIN_VALUE (index_type)))
2794 {
2795 tree low, high = CASE_HIGH (labels[len - 1]);
2796 if (!high)
2797 high = CASE_LOW (labels[len - 1]);
2798 if (tree_int_cst_equal (high, TYPE_MAX_VALUE (index_type)))
2799 {
2800 for (i = 1; i < len; i++)
2801 {
2802 high = CASE_LOW (labels[i]);
2803 low = CASE_HIGH (labels[i - 1]);
2804 if (!low)
2805 low = CASE_LOW (labels[i - 1]);
2806 if (wi::add (low, 1) != high)
2807 break;
2808 }
2809 if (i == len)
2810 {
2811 tree label = CASE_LABEL (labels[0]);
2812 default_case = build_case_label (NULL_TREE, NULL_TREE,
2813 label);
2814 }
2815 }
2816 }
2817 }
2818
2819 if (default_casep)
2820 *default_casep = default_case;
2821 }
2822
2823 /* Set the location of all statements in SEQ to LOC. */
2824
2825 void
2826 gimple_seq_set_location (gimple_seq seq, location_t loc)
2827 {
2828 for (gimple_stmt_iterator i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
2829 gimple_set_location (gsi_stmt (i), loc);
2830 }
2831
2832 /* Release SSA_NAMEs in SEQ as well as the GIMPLE statements. */
2833
2834 void
2835 gimple_seq_discard (gimple_seq seq)
2836 {
2837 gimple_stmt_iterator gsi;
2838
2839 for (gsi = gsi_start (seq); !gsi_end_p (gsi); )
2840 {
2841 gimple stmt = gsi_stmt (gsi);
2842 gsi_remove (&gsi, true);
2843 release_defs (stmt);
2844 ggc_free (stmt);
2845 }
2846 }