re PR ada/37139 (DEP prevents using Ada tasking)
[gcc.git] / gcc / gimple.c
1 /* Gimple IR support functions.
2
3 Copyright (C) 2007-2016 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "ssa.h"
29 #include "cgraph.h"
30 #include "diagnostic.h"
31 #include "alias.h"
32 #include "fold-const.h"
33 #include "calls.h"
34 #include "stor-layout.h"
35 #include "internal-fn.h"
36 #include "tree-eh.h"
37 #include "gimple-iterator.h"
38 #include "gimple-walk.h"
39 #include "gimplify.h"
40 #include "target.h"
41 #include "builtins.h"
42 #include "selftest.h"
43 #include "gimple-pretty-print.h"
44
45
46 /* All the tuples have their operand vector (if present) at the very bottom
47 of the structure. Therefore, the offset required to find the
48 operands vector the size of the structure minus the size of the 1
49 element tree array at the end (see gimple_ops). */
50 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
51 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
52 EXPORTED_CONST size_t gimple_ops_offset_[] = {
53 #include "gsstruct.def"
54 };
55 #undef DEFGSSTRUCT
56
57 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof (struct STRUCT),
58 static const size_t gsstruct_code_size[] = {
59 #include "gsstruct.def"
60 };
61 #undef DEFGSSTRUCT
62
63 #define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
64 const char *const gimple_code_name[] = {
65 #include "gimple.def"
66 };
67 #undef DEFGSCODE
68
69 #define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
70 EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
71 #include "gimple.def"
72 };
73 #undef DEFGSCODE
74
75 /* Gimple stats. */
76
77 int gimple_alloc_counts[(int) gimple_alloc_kind_all];
78 int gimple_alloc_sizes[(int) gimple_alloc_kind_all];
79
80 /* Keep in sync with gimple.h:enum gimple_alloc_kind. */
81 static const char * const gimple_alloc_kind_names[] = {
82 "assignments",
83 "phi nodes",
84 "conditionals",
85 "everything else"
86 };
87
88 /* Static gimple tuple members. */
89 const enum gimple_code gassign::code_;
90 const enum gimple_code gcall::code_;
91 const enum gimple_code gcond::code_;
92
93
94 /* Gimple tuple constructors.
95 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
96 be passed a NULL to start with an empty sequence. */
97
98 /* Set the code for statement G to CODE. */
99
100 static inline void
101 gimple_set_code (gimple *g, enum gimple_code code)
102 {
103 g->code = code;
104 }
105
106 /* Return the number of bytes needed to hold a GIMPLE statement with
107 code CODE. */
108
109 static inline size_t
110 gimple_size (enum gimple_code code)
111 {
112 return gsstruct_code_size[gss_for_code (code)];
113 }
114
115 /* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
116 operands. */
117
118 gimple *
119 gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
120 {
121 size_t size;
122 gimple *stmt;
123
124 size = gimple_size (code);
125 if (num_ops > 0)
126 size += sizeof (tree) * (num_ops - 1);
127
128 if (GATHER_STATISTICS)
129 {
130 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
131 gimple_alloc_counts[(int) kind]++;
132 gimple_alloc_sizes[(int) kind] += size;
133 }
134
135 stmt = ggc_alloc_cleared_gimple_statement_stat (size PASS_MEM_STAT);
136 gimple_set_code (stmt, code);
137 gimple_set_num_ops (stmt, num_ops);
138
139 /* Do not call gimple_set_modified here as it has other side
140 effects and this tuple is still not completely built. */
141 stmt->modified = 1;
142 gimple_init_singleton (stmt);
143
144 return stmt;
145 }
146
147 /* Set SUBCODE to be the code of the expression computed by statement G. */
148
149 static inline void
150 gimple_set_subcode (gimple *g, unsigned subcode)
151 {
152 /* We only have 16 bits for the RHS code. Assert that we are not
153 overflowing it. */
154 gcc_assert (subcode < (1 << 16));
155 g->subcode = subcode;
156 }
157
158
159
160 /* Build a tuple with operands. CODE is the statement to build (which
161 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the subcode
162 for the new tuple. NUM_OPS is the number of operands to allocate. */
163
164 #define gimple_build_with_ops(c, s, n) \
165 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
166
167 static gimple *
168 gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
169 unsigned num_ops MEM_STAT_DECL)
170 {
171 gimple *s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT);
172 gimple_set_subcode (s, subcode);
173
174 return s;
175 }
176
177
178 /* Build a GIMPLE_RETURN statement returning RETVAL. */
179
180 greturn *
181 gimple_build_return (tree retval)
182 {
183 greturn *s
184 = as_a <greturn *> (gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK,
185 2));
186 if (retval)
187 gimple_return_set_retval (s, retval);
188 return s;
189 }
190
191 /* Reset alias information on call S. */
192
193 void
194 gimple_call_reset_alias_info (gcall *s)
195 {
196 if (gimple_call_flags (s) & ECF_CONST)
197 memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
198 else
199 pt_solution_reset (gimple_call_use_set (s));
200 if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
201 memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
202 else
203 pt_solution_reset (gimple_call_clobber_set (s));
204 }
205
206 /* Helper for gimple_build_call, gimple_build_call_valist,
207 gimple_build_call_vec and gimple_build_call_from_tree. Build the basic
208 components of a GIMPLE_CALL statement to function FN with NARGS
209 arguments. */
210
211 static inline gcall *
212 gimple_build_call_1 (tree fn, unsigned nargs)
213 {
214 gcall *s
215 = as_a <gcall *> (gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK,
216 nargs + 3));
217 if (TREE_CODE (fn) == FUNCTION_DECL)
218 fn = build_fold_addr_expr (fn);
219 gimple_set_op (s, 1, fn);
220 gimple_call_set_fntype (s, TREE_TYPE (TREE_TYPE (fn)));
221 gimple_call_reset_alias_info (s);
222 return s;
223 }
224
225
226 /* Build a GIMPLE_CALL statement to function FN with the arguments
227 specified in vector ARGS. */
228
229 gcall *
230 gimple_build_call_vec (tree fn, vec<tree> args)
231 {
232 unsigned i;
233 unsigned nargs = args.length ();
234 gcall *call = gimple_build_call_1 (fn, nargs);
235
236 for (i = 0; i < nargs; i++)
237 gimple_call_set_arg (call, i, args[i]);
238
239 return call;
240 }
241
242
243 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
244 arguments. The ... are the arguments. */
245
246 gcall *
247 gimple_build_call (tree fn, unsigned nargs, ...)
248 {
249 va_list ap;
250 gcall *call;
251 unsigned i;
252
253 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
254
255 call = gimple_build_call_1 (fn, nargs);
256
257 va_start (ap, nargs);
258 for (i = 0; i < nargs; i++)
259 gimple_call_set_arg (call, i, va_arg (ap, tree));
260 va_end (ap);
261
262 return call;
263 }
264
265
266 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
267 arguments. AP contains the arguments. */
268
269 gcall *
270 gimple_build_call_valist (tree fn, unsigned nargs, va_list ap)
271 {
272 gcall *call;
273 unsigned i;
274
275 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
276
277 call = gimple_build_call_1 (fn, nargs);
278
279 for (i = 0; i < nargs; i++)
280 gimple_call_set_arg (call, i, va_arg (ap, tree));
281
282 return call;
283 }
284
285
286 /* Helper for gimple_build_call_internal and gimple_build_call_internal_vec.
287 Build the basic components of a GIMPLE_CALL statement to internal
288 function FN with NARGS arguments. */
289
290 static inline gcall *
291 gimple_build_call_internal_1 (enum internal_fn fn, unsigned nargs)
292 {
293 gcall *s
294 = as_a <gcall *> (gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK,
295 nargs + 3));
296 s->subcode |= GF_CALL_INTERNAL;
297 gimple_call_set_internal_fn (s, fn);
298 gimple_call_reset_alias_info (s);
299 return s;
300 }
301
302
303 /* Build a GIMPLE_CALL statement to internal function FN. NARGS is
304 the number of arguments. The ... are the arguments. */
305
306 gcall *
307 gimple_build_call_internal (enum internal_fn fn, unsigned nargs, ...)
308 {
309 va_list ap;
310 gcall *call;
311 unsigned i;
312
313 call = gimple_build_call_internal_1 (fn, nargs);
314 va_start (ap, nargs);
315 for (i = 0; i < nargs; i++)
316 gimple_call_set_arg (call, i, va_arg (ap, tree));
317 va_end (ap);
318
319 return call;
320 }
321
322
323 /* Build a GIMPLE_CALL statement to internal function FN with the arguments
324 specified in vector ARGS. */
325
326 gcall *
327 gimple_build_call_internal_vec (enum internal_fn fn, vec<tree> args)
328 {
329 unsigned i, nargs;
330 gcall *call;
331
332 nargs = args.length ();
333 call = gimple_build_call_internal_1 (fn, nargs);
334 for (i = 0; i < nargs; i++)
335 gimple_call_set_arg (call, i, args[i]);
336
337 return call;
338 }
339
340
341 /* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
342 assumed to be in GIMPLE form already. Minimal checking is done of
343 this fact. */
344
345 gcall *
346 gimple_build_call_from_tree (tree t)
347 {
348 unsigned i, nargs;
349 gcall *call;
350 tree fndecl = get_callee_fndecl (t);
351
352 gcc_assert (TREE_CODE (t) == CALL_EXPR);
353
354 nargs = call_expr_nargs (t);
355 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
356
357 for (i = 0; i < nargs; i++)
358 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
359
360 gimple_set_block (call, TREE_BLOCK (t));
361
362 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
363 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
364 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
365 gimple_call_set_must_tail (call, CALL_EXPR_MUST_TAIL_CALL (t));
366 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
367 if (fndecl
368 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
369 && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA
370 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN))
371 gimple_call_set_alloca_for_var (call, CALL_ALLOCA_FOR_VAR_P (t));
372 else
373 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
374 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
375 gimple_call_set_nothrow (call, TREE_NOTHROW (t));
376 gimple_call_set_by_descriptor (call, CALL_EXPR_BY_DESCRIPTOR (t));
377 gimple_set_no_warning (call, TREE_NO_WARNING (t));
378 gimple_call_set_with_bounds (call, CALL_WITH_BOUNDS_P (t));
379
380 return call;
381 }
382
383
384 /* Build a GIMPLE_ASSIGN statement.
385
386 LHS of the assignment.
387 RHS of the assignment which can be unary or binary. */
388
389 gassign *
390 gimple_build_assign (tree lhs, tree rhs MEM_STAT_DECL)
391 {
392 enum tree_code subcode;
393 tree op1, op2, op3;
394
395 extract_ops_from_tree (rhs, &subcode, &op1, &op2, &op3);
396 return gimple_build_assign (lhs, subcode, op1, op2, op3 PASS_MEM_STAT);
397 }
398
399
400 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
401 OP1, OP2 and OP3. */
402
403 static inline gassign *
404 gimple_build_assign_1 (tree lhs, enum tree_code subcode, tree op1,
405 tree op2, tree op3 MEM_STAT_DECL)
406 {
407 unsigned num_ops;
408 gassign *p;
409
410 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
411 code). */
412 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
413
414 p = as_a <gassign *> (
415 gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
416 PASS_MEM_STAT));
417 gimple_assign_set_lhs (p, lhs);
418 gimple_assign_set_rhs1 (p, op1);
419 if (op2)
420 {
421 gcc_assert (num_ops > 2);
422 gimple_assign_set_rhs2 (p, op2);
423 }
424
425 if (op3)
426 {
427 gcc_assert (num_ops > 3);
428 gimple_assign_set_rhs3 (p, op3);
429 }
430
431 return p;
432 }
433
434 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
435 OP1, OP2 and OP3. */
436
437 gassign *
438 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1,
439 tree op2, tree op3 MEM_STAT_DECL)
440 {
441 return gimple_build_assign_1 (lhs, subcode, op1, op2, op3 PASS_MEM_STAT);
442 }
443
444 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
445 OP1 and OP2. */
446
447 gassign *
448 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1,
449 tree op2 MEM_STAT_DECL)
450 {
451 return gimple_build_assign_1 (lhs, subcode, op1, op2, NULL_TREE
452 PASS_MEM_STAT);
453 }
454
455 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operand OP1. */
456
457 gassign *
458 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1 MEM_STAT_DECL)
459 {
460 return gimple_build_assign_1 (lhs, subcode, op1, NULL_TREE, NULL_TREE
461 PASS_MEM_STAT);
462 }
463
464
465 /* Build a GIMPLE_COND statement.
466
467 PRED is the condition used to compare LHS and the RHS.
468 T_LABEL is the label to jump to if the condition is true.
469 F_LABEL is the label to jump to otherwise. */
470
471 gcond *
472 gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
473 tree t_label, tree f_label)
474 {
475 gcond *p;
476
477 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
478 p = as_a <gcond *> (gimple_build_with_ops (GIMPLE_COND, pred_code, 4));
479 gimple_cond_set_lhs (p, lhs);
480 gimple_cond_set_rhs (p, rhs);
481 gimple_cond_set_true_label (p, t_label);
482 gimple_cond_set_false_label (p, f_label);
483 return p;
484 }
485
486 /* Build a GIMPLE_COND statement from the conditional expression tree
487 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
488
489 gcond *
490 gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
491 {
492 enum tree_code code;
493 tree lhs, rhs;
494
495 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
496 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
497 }
498
499 /* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
500 boolean expression tree COND. */
501
502 void
503 gimple_cond_set_condition_from_tree (gcond *stmt, tree cond)
504 {
505 enum tree_code code;
506 tree lhs, rhs;
507
508 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
509 gimple_cond_set_condition (stmt, code, lhs, rhs);
510 }
511
512 /* Build a GIMPLE_LABEL statement for LABEL. */
513
514 glabel *
515 gimple_build_label (tree label)
516 {
517 glabel *p
518 = as_a <glabel *> (gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1));
519 gimple_label_set_label (p, label);
520 return p;
521 }
522
523 /* Build a GIMPLE_GOTO statement to label DEST. */
524
525 ggoto *
526 gimple_build_goto (tree dest)
527 {
528 ggoto *p
529 = as_a <ggoto *> (gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1));
530 gimple_goto_set_dest (p, dest);
531 return p;
532 }
533
534
535 /* Build a GIMPLE_NOP statement. */
536
537 gimple *
538 gimple_build_nop (void)
539 {
540 return gimple_alloc (GIMPLE_NOP, 0);
541 }
542
543
544 /* Build a GIMPLE_BIND statement.
545 VARS are the variables in BODY.
546 BLOCK is the containing block. */
547
548 gbind *
549 gimple_build_bind (tree vars, gimple_seq body, tree block)
550 {
551 gbind *p = as_a <gbind *> (gimple_alloc (GIMPLE_BIND, 0));
552 gimple_bind_set_vars (p, vars);
553 if (body)
554 gimple_bind_set_body (p, body);
555 if (block)
556 gimple_bind_set_block (p, block);
557 return p;
558 }
559
560 /* Helper function to set the simple fields of a asm stmt.
561
562 STRING is a pointer to a string that is the asm blocks assembly code.
563 NINPUT is the number of register inputs.
564 NOUTPUT is the number of register outputs.
565 NCLOBBERS is the number of clobbered registers.
566 */
567
568 static inline gasm *
569 gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
570 unsigned nclobbers, unsigned nlabels)
571 {
572 gasm *p;
573 int size = strlen (string);
574
575 /* ASMs with labels cannot have outputs. This should have been
576 enforced by the front end. */
577 gcc_assert (nlabels == 0 || noutputs == 0);
578
579 p = as_a <gasm *> (
580 gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
581 ninputs + noutputs + nclobbers + nlabels));
582
583 p->ni = ninputs;
584 p->no = noutputs;
585 p->nc = nclobbers;
586 p->nl = nlabels;
587 p->string = ggc_alloc_string (string, size);
588
589 if (GATHER_STATISTICS)
590 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
591
592 return p;
593 }
594
595 /* Build a GIMPLE_ASM statement.
596
597 STRING is the assembly code.
598 NINPUT is the number of register inputs.
599 NOUTPUT is the number of register outputs.
600 NCLOBBERS is the number of clobbered registers.
601 INPUTS is a vector of the input register parameters.
602 OUTPUTS is a vector of the output register parameters.
603 CLOBBERS is a vector of the clobbered register parameters.
604 LABELS is a vector of destination labels. */
605
606 gasm *
607 gimple_build_asm_vec (const char *string, vec<tree, va_gc> *inputs,
608 vec<tree, va_gc> *outputs, vec<tree, va_gc> *clobbers,
609 vec<tree, va_gc> *labels)
610 {
611 gasm *p;
612 unsigned i;
613
614 p = gimple_build_asm_1 (string,
615 vec_safe_length (inputs),
616 vec_safe_length (outputs),
617 vec_safe_length (clobbers),
618 vec_safe_length (labels));
619
620 for (i = 0; i < vec_safe_length (inputs); i++)
621 gimple_asm_set_input_op (p, i, (*inputs)[i]);
622
623 for (i = 0; i < vec_safe_length (outputs); i++)
624 gimple_asm_set_output_op (p, i, (*outputs)[i]);
625
626 for (i = 0; i < vec_safe_length (clobbers); i++)
627 gimple_asm_set_clobber_op (p, i, (*clobbers)[i]);
628
629 for (i = 0; i < vec_safe_length (labels); i++)
630 gimple_asm_set_label_op (p, i, (*labels)[i]);
631
632 return p;
633 }
634
635 /* Build a GIMPLE_CATCH statement.
636
637 TYPES are the catch types.
638 HANDLER is the exception handler. */
639
640 gcatch *
641 gimple_build_catch (tree types, gimple_seq handler)
642 {
643 gcatch *p = as_a <gcatch *> (gimple_alloc (GIMPLE_CATCH, 0));
644 gimple_catch_set_types (p, types);
645 if (handler)
646 gimple_catch_set_handler (p, handler);
647
648 return p;
649 }
650
651 /* Build a GIMPLE_EH_FILTER statement.
652
653 TYPES are the filter's types.
654 FAILURE is the filter's failure action. */
655
656 geh_filter *
657 gimple_build_eh_filter (tree types, gimple_seq failure)
658 {
659 geh_filter *p = as_a <geh_filter *> (gimple_alloc (GIMPLE_EH_FILTER, 0));
660 gimple_eh_filter_set_types (p, types);
661 if (failure)
662 gimple_eh_filter_set_failure (p, failure);
663
664 return p;
665 }
666
667 /* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
668
669 geh_mnt *
670 gimple_build_eh_must_not_throw (tree decl)
671 {
672 geh_mnt *p = as_a <geh_mnt *> (gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0));
673
674 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
675 gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
676 gimple_eh_must_not_throw_set_fndecl (p, decl);
677
678 return p;
679 }
680
681 /* Build a GIMPLE_EH_ELSE statement. */
682
683 geh_else *
684 gimple_build_eh_else (gimple_seq n_body, gimple_seq e_body)
685 {
686 geh_else *p = as_a <geh_else *> (gimple_alloc (GIMPLE_EH_ELSE, 0));
687 gimple_eh_else_set_n_body (p, n_body);
688 gimple_eh_else_set_e_body (p, e_body);
689 return p;
690 }
691
692 /* Build a GIMPLE_TRY statement.
693
694 EVAL is the expression to evaluate.
695 CLEANUP is the cleanup expression.
696 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
697 whether this is a try/catch or a try/finally respectively. */
698
699 gtry *
700 gimple_build_try (gimple_seq eval, gimple_seq cleanup,
701 enum gimple_try_flags kind)
702 {
703 gtry *p;
704
705 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
706 p = as_a <gtry *> (gimple_alloc (GIMPLE_TRY, 0));
707 gimple_set_subcode (p, kind);
708 if (eval)
709 gimple_try_set_eval (p, eval);
710 if (cleanup)
711 gimple_try_set_cleanup (p, cleanup);
712
713 return p;
714 }
715
716 /* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
717
718 CLEANUP is the cleanup expression. */
719
720 gimple *
721 gimple_build_wce (gimple_seq cleanup)
722 {
723 gimple *p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
724 if (cleanup)
725 gimple_wce_set_cleanup (p, cleanup);
726
727 return p;
728 }
729
730
731 /* Build a GIMPLE_RESX statement. */
732
733 gresx *
734 gimple_build_resx (int region)
735 {
736 gresx *p
737 = as_a <gresx *> (gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0));
738 p->region = region;
739 return p;
740 }
741
742
743 /* The helper for constructing a gimple switch statement.
744 INDEX is the switch's index.
745 NLABELS is the number of labels in the switch excluding the default.
746 DEFAULT_LABEL is the default label for the switch statement. */
747
748 gswitch *
749 gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
750 {
751 /* nlabels + 1 default label + 1 index. */
752 gcc_checking_assert (default_label);
753 gswitch *p = as_a <gswitch *> (gimple_build_with_ops (GIMPLE_SWITCH,
754 ERROR_MARK,
755 1 + 1 + nlabels));
756 gimple_switch_set_index (p, index);
757 gimple_switch_set_default_label (p, default_label);
758 return p;
759 }
760
761 /* Build a GIMPLE_SWITCH statement.
762
763 INDEX is the switch's index.
764 DEFAULT_LABEL is the default label
765 ARGS is a vector of labels excluding the default. */
766
767 gswitch *
768 gimple_build_switch (tree index, tree default_label, vec<tree> args)
769 {
770 unsigned i, nlabels = args.length ();
771
772 gswitch *p = gimple_build_switch_nlabels (nlabels, index, default_label);
773
774 /* Copy the labels from the vector to the switch statement. */
775 for (i = 0; i < nlabels; i++)
776 gimple_switch_set_label (p, i + 1, args[i]);
777
778 return p;
779 }
780
781 /* Build a GIMPLE_EH_DISPATCH statement. */
782
783 geh_dispatch *
784 gimple_build_eh_dispatch (int region)
785 {
786 geh_dispatch *p
787 = as_a <geh_dispatch *> (
788 gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0));
789 p->region = region;
790 return p;
791 }
792
793 /* Build a new GIMPLE_DEBUG_BIND statement.
794
795 VAR is bound to VALUE; block and location are taken from STMT. */
796
797 gdebug *
798 gimple_build_debug_bind_stat (tree var, tree value, gimple *stmt MEM_STAT_DECL)
799 {
800 gdebug *p
801 = as_a <gdebug *> (gimple_build_with_ops_stat (GIMPLE_DEBUG,
802 (unsigned)GIMPLE_DEBUG_BIND, 2
803 PASS_MEM_STAT));
804 gimple_debug_bind_set_var (p, var);
805 gimple_debug_bind_set_value (p, value);
806 if (stmt)
807 gimple_set_location (p, gimple_location (stmt));
808
809 return p;
810 }
811
812
813 /* Build a new GIMPLE_DEBUG_SOURCE_BIND statement.
814
815 VAR is bound to VALUE; block and location are taken from STMT. */
816
817 gdebug *
818 gimple_build_debug_source_bind_stat (tree var, tree value,
819 gimple *stmt MEM_STAT_DECL)
820 {
821 gdebug *p
822 = as_a <gdebug *> (
823 gimple_build_with_ops_stat (GIMPLE_DEBUG,
824 (unsigned)GIMPLE_DEBUG_SOURCE_BIND, 2
825 PASS_MEM_STAT));
826
827 gimple_debug_source_bind_set_var (p, var);
828 gimple_debug_source_bind_set_value (p, value);
829 if (stmt)
830 gimple_set_location (p, gimple_location (stmt));
831
832 return p;
833 }
834
835
836 /* Build a GIMPLE_OMP_CRITICAL statement.
837
838 BODY is the sequence of statements for which only one thread can execute.
839 NAME is optional identifier for this critical block.
840 CLAUSES are clauses for this critical block. */
841
842 gomp_critical *
843 gimple_build_omp_critical (gimple_seq body, tree name, tree clauses)
844 {
845 gomp_critical *p
846 = as_a <gomp_critical *> (gimple_alloc (GIMPLE_OMP_CRITICAL, 0));
847 gimple_omp_critical_set_name (p, name);
848 gimple_omp_critical_set_clauses (p, clauses);
849 if (body)
850 gimple_omp_set_body (p, body);
851
852 return p;
853 }
854
855 /* Build a GIMPLE_OMP_FOR statement.
856
857 BODY is sequence of statements inside the for loop.
858 KIND is the `for' variant.
859 CLAUSES, are any of the construct's clauses.
860 COLLAPSE is the collapse count.
861 PRE_BODY is the sequence of statements that are loop invariant. */
862
863 gomp_for *
864 gimple_build_omp_for (gimple_seq body, int kind, tree clauses, size_t collapse,
865 gimple_seq pre_body)
866 {
867 gomp_for *p = as_a <gomp_for *> (gimple_alloc (GIMPLE_OMP_FOR, 0));
868 if (body)
869 gimple_omp_set_body (p, body);
870 gimple_omp_for_set_clauses (p, clauses);
871 gimple_omp_for_set_kind (p, kind);
872 p->collapse = collapse;
873 p->iter = ggc_cleared_vec_alloc<gimple_omp_for_iter> (collapse);
874
875 if (pre_body)
876 gimple_omp_for_set_pre_body (p, pre_body);
877
878 return p;
879 }
880
881
882 /* Build a GIMPLE_OMP_PARALLEL statement.
883
884 BODY is sequence of statements which are executed in parallel.
885 CLAUSES, are the OMP parallel construct's clauses.
886 CHILD_FN is the function created for the parallel threads to execute.
887 DATA_ARG are the shared data argument(s). */
888
889 gomp_parallel *
890 gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
891 tree data_arg)
892 {
893 gomp_parallel *p
894 = as_a <gomp_parallel *> (gimple_alloc (GIMPLE_OMP_PARALLEL, 0));
895 if (body)
896 gimple_omp_set_body (p, body);
897 gimple_omp_parallel_set_clauses (p, clauses);
898 gimple_omp_parallel_set_child_fn (p, child_fn);
899 gimple_omp_parallel_set_data_arg (p, data_arg);
900
901 return p;
902 }
903
904
905 /* Build a GIMPLE_OMP_TASK statement.
906
907 BODY is sequence of statements which are executed by the explicit task.
908 CLAUSES, are the OMP parallel construct's clauses.
909 CHILD_FN is the function created for the parallel threads to execute.
910 DATA_ARG are the shared data argument(s).
911 COPY_FN is the optional function for firstprivate initialization.
912 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
913
914 gomp_task *
915 gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
916 tree data_arg, tree copy_fn, tree arg_size,
917 tree arg_align)
918 {
919 gomp_task *p = as_a <gomp_task *> (gimple_alloc (GIMPLE_OMP_TASK, 0));
920 if (body)
921 gimple_omp_set_body (p, body);
922 gimple_omp_task_set_clauses (p, clauses);
923 gimple_omp_task_set_child_fn (p, child_fn);
924 gimple_omp_task_set_data_arg (p, data_arg);
925 gimple_omp_task_set_copy_fn (p, copy_fn);
926 gimple_omp_task_set_arg_size (p, arg_size);
927 gimple_omp_task_set_arg_align (p, arg_align);
928
929 return p;
930 }
931
932
933 /* Build a GIMPLE_OMP_SECTION statement for a sections statement.
934
935 BODY is the sequence of statements in the section. */
936
937 gimple *
938 gimple_build_omp_section (gimple_seq body)
939 {
940 gimple *p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
941 if (body)
942 gimple_omp_set_body (p, body);
943
944 return p;
945 }
946
947
948 /* Build a GIMPLE_OMP_MASTER statement.
949
950 BODY is the sequence of statements to be executed by just the master. */
951
952 gimple *
953 gimple_build_omp_master (gimple_seq body)
954 {
955 gimple *p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
956 if (body)
957 gimple_omp_set_body (p, body);
958
959 return p;
960 }
961
962 /* Build a GIMPLE_OMP_GRID_BODY statement.
963
964 BODY is the sequence of statements to be executed by the kernel. */
965
966 gimple *
967 gimple_build_omp_grid_body (gimple_seq body)
968 {
969 gimple *p = gimple_alloc (GIMPLE_OMP_GRID_BODY, 0);
970 if (body)
971 gimple_omp_set_body (p, body);
972
973 return p;
974 }
975
976 /* Build a GIMPLE_OMP_TASKGROUP statement.
977
978 BODY is the sequence of statements to be executed by the taskgroup
979 construct. */
980
981 gimple *
982 gimple_build_omp_taskgroup (gimple_seq body)
983 {
984 gimple *p = gimple_alloc (GIMPLE_OMP_TASKGROUP, 0);
985 if (body)
986 gimple_omp_set_body (p, body);
987
988 return p;
989 }
990
991
992 /* Build a GIMPLE_OMP_CONTINUE statement.
993
994 CONTROL_DEF is the definition of the control variable.
995 CONTROL_USE is the use of the control variable. */
996
997 gomp_continue *
998 gimple_build_omp_continue (tree control_def, tree control_use)
999 {
1000 gomp_continue *p
1001 = as_a <gomp_continue *> (gimple_alloc (GIMPLE_OMP_CONTINUE, 0));
1002 gimple_omp_continue_set_control_def (p, control_def);
1003 gimple_omp_continue_set_control_use (p, control_use);
1004 return p;
1005 }
1006
1007 /* Build a GIMPLE_OMP_ORDERED statement.
1008
1009 BODY is the sequence of statements inside a loop that will executed in
1010 sequence.
1011 CLAUSES are clauses for this statement. */
1012
1013 gomp_ordered *
1014 gimple_build_omp_ordered (gimple_seq body, tree clauses)
1015 {
1016 gomp_ordered *p
1017 = as_a <gomp_ordered *> (gimple_alloc (GIMPLE_OMP_ORDERED, 0));
1018 gimple_omp_ordered_set_clauses (p, clauses);
1019 if (body)
1020 gimple_omp_set_body (p, body);
1021
1022 return p;
1023 }
1024
1025
1026 /* Build a GIMPLE_OMP_RETURN statement.
1027 WAIT_P is true if this is a non-waiting return. */
1028
1029 gimple *
1030 gimple_build_omp_return (bool wait_p)
1031 {
1032 gimple *p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
1033 if (wait_p)
1034 gimple_omp_return_set_nowait (p);
1035
1036 return p;
1037 }
1038
1039
1040 /* Build a GIMPLE_OMP_SECTIONS statement.
1041
1042 BODY is a sequence of section statements.
1043 CLAUSES are any of the OMP sections contsruct's clauses: private,
1044 firstprivate, lastprivate, reduction, and nowait. */
1045
1046 gomp_sections *
1047 gimple_build_omp_sections (gimple_seq body, tree clauses)
1048 {
1049 gomp_sections *p
1050 = as_a <gomp_sections *> (gimple_alloc (GIMPLE_OMP_SECTIONS, 0));
1051 if (body)
1052 gimple_omp_set_body (p, body);
1053 gimple_omp_sections_set_clauses (p, clauses);
1054
1055 return p;
1056 }
1057
1058
1059 /* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
1060
1061 gimple *
1062 gimple_build_omp_sections_switch (void)
1063 {
1064 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
1065 }
1066
1067
1068 /* Build a GIMPLE_OMP_SINGLE statement.
1069
1070 BODY is the sequence of statements that will be executed once.
1071 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1072 copyprivate, nowait. */
1073
1074 gomp_single *
1075 gimple_build_omp_single (gimple_seq body, tree clauses)
1076 {
1077 gomp_single *p
1078 = as_a <gomp_single *> (gimple_alloc (GIMPLE_OMP_SINGLE, 0));
1079 if (body)
1080 gimple_omp_set_body (p, body);
1081 gimple_omp_single_set_clauses (p, clauses);
1082
1083 return p;
1084 }
1085
1086
1087 /* Build a GIMPLE_OMP_TARGET statement.
1088
1089 BODY is the sequence of statements that will be executed.
1090 KIND is the kind of the region.
1091 CLAUSES are any of the construct's clauses. */
1092
1093 gomp_target *
1094 gimple_build_omp_target (gimple_seq body, int kind, tree clauses)
1095 {
1096 gomp_target *p
1097 = as_a <gomp_target *> (gimple_alloc (GIMPLE_OMP_TARGET, 0));
1098 if (body)
1099 gimple_omp_set_body (p, body);
1100 gimple_omp_target_set_clauses (p, clauses);
1101 gimple_omp_target_set_kind (p, kind);
1102
1103 return p;
1104 }
1105
1106
1107 /* Build a GIMPLE_OMP_TEAMS statement.
1108
1109 BODY is the sequence of statements that will be executed.
1110 CLAUSES are any of the OMP teams construct's clauses. */
1111
1112 gomp_teams *
1113 gimple_build_omp_teams (gimple_seq body, tree clauses)
1114 {
1115 gomp_teams *p = as_a <gomp_teams *> (gimple_alloc (GIMPLE_OMP_TEAMS, 0));
1116 if (body)
1117 gimple_omp_set_body (p, body);
1118 gimple_omp_teams_set_clauses (p, clauses);
1119
1120 return p;
1121 }
1122
1123
1124 /* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
1125
1126 gomp_atomic_load *
1127 gimple_build_omp_atomic_load (tree lhs, tree rhs)
1128 {
1129 gomp_atomic_load *p
1130 = as_a <gomp_atomic_load *> (gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0));
1131 gimple_omp_atomic_load_set_lhs (p, lhs);
1132 gimple_omp_atomic_load_set_rhs (p, rhs);
1133 return p;
1134 }
1135
1136 /* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1137
1138 VAL is the value we are storing. */
1139
1140 gomp_atomic_store *
1141 gimple_build_omp_atomic_store (tree val)
1142 {
1143 gomp_atomic_store *p
1144 = as_a <gomp_atomic_store *> (gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0));
1145 gimple_omp_atomic_store_set_val (p, val);
1146 return p;
1147 }
1148
1149 /* Build a GIMPLE_TRANSACTION statement. */
1150
1151 gtransaction *
1152 gimple_build_transaction (gimple_seq body)
1153 {
1154 gtransaction *p
1155 = as_a <gtransaction *> (gimple_alloc (GIMPLE_TRANSACTION, 0));
1156 gimple_transaction_set_body (p, body);
1157 gimple_transaction_set_label_norm (p, 0);
1158 gimple_transaction_set_label_uninst (p, 0);
1159 gimple_transaction_set_label_over (p, 0);
1160 return p;
1161 }
1162
1163 #if defined ENABLE_GIMPLE_CHECKING
1164 /* Complain of a gimple type mismatch and die. */
1165
1166 void
1167 gimple_check_failed (const gimple *gs, const char *file, int line,
1168 const char *function, enum gimple_code code,
1169 enum tree_code subcode)
1170 {
1171 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1172 gimple_code_name[code],
1173 get_tree_code_name (subcode),
1174 gimple_code_name[gimple_code (gs)],
1175 gs->subcode > 0
1176 ? get_tree_code_name ((enum tree_code) gs->subcode)
1177 : "",
1178 function, trim_filename (file), line);
1179 }
1180 #endif /* ENABLE_GIMPLE_CHECKING */
1181
1182
1183 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1184 *SEQ_P is NULL, a new sequence is allocated. */
1185
1186 void
1187 gimple_seq_add_stmt (gimple_seq *seq_p, gimple *gs)
1188 {
1189 gimple_stmt_iterator si;
1190 if (gs == NULL)
1191 return;
1192
1193 si = gsi_last (*seq_p);
1194 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1195 }
1196
1197 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1198 *SEQ_P is NULL, a new sequence is allocated. This function is
1199 similar to gimple_seq_add_stmt, but does not scan the operands.
1200 During gimplification, we need to manipulate statement sequences
1201 before the def/use vectors have been constructed. */
1202
1203 void
1204 gimple_seq_add_stmt_without_update (gimple_seq *seq_p, gimple *gs)
1205 {
1206 gimple_stmt_iterator si;
1207
1208 if (gs == NULL)
1209 return;
1210
1211 si = gsi_last (*seq_p);
1212 gsi_insert_after_without_update (&si, gs, GSI_NEW_STMT);
1213 }
1214
1215 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1216 NULL, a new sequence is allocated. */
1217
1218 void
1219 gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1220 {
1221 gimple_stmt_iterator si;
1222 if (src == NULL)
1223 return;
1224
1225 si = gsi_last (*dst_p);
1226 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1227 }
1228
1229 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1230 NULL, a new sequence is allocated. This function is
1231 similar to gimple_seq_add_seq, but does not scan the operands. */
1232
1233 void
1234 gimple_seq_add_seq_without_update (gimple_seq *dst_p, gimple_seq src)
1235 {
1236 gimple_stmt_iterator si;
1237 if (src == NULL)
1238 return;
1239
1240 si = gsi_last (*dst_p);
1241 gsi_insert_seq_after_without_update (&si, src, GSI_NEW_STMT);
1242 }
1243
1244 /* Determine whether to assign a location to the statement GS. */
1245
1246 static bool
1247 should_carry_location_p (gimple *gs)
1248 {
1249 /* Don't emit a line note for a label. We particularly don't want to
1250 emit one for the break label, since it doesn't actually correspond
1251 to the beginning of the loop/switch. */
1252 if (gimple_code (gs) == GIMPLE_LABEL)
1253 return false;
1254
1255 return true;
1256 }
1257
1258 /* Set the location for gimple statement GS to LOCATION. */
1259
1260 static void
1261 annotate_one_with_location (gimple *gs, location_t location)
1262 {
1263 if (!gimple_has_location (gs)
1264 && !gimple_do_not_emit_location_p (gs)
1265 && should_carry_location_p (gs))
1266 gimple_set_location (gs, location);
1267 }
1268
1269 /* Set LOCATION for all the statements after iterator GSI in sequence
1270 SEQ. If GSI is pointing to the end of the sequence, start with the
1271 first statement in SEQ. */
1272
1273 void
1274 annotate_all_with_location_after (gimple_seq seq, gimple_stmt_iterator gsi,
1275 location_t location)
1276 {
1277 if (gsi_end_p (gsi))
1278 gsi = gsi_start (seq);
1279 else
1280 gsi_next (&gsi);
1281
1282 for (; !gsi_end_p (gsi); gsi_next (&gsi))
1283 annotate_one_with_location (gsi_stmt (gsi), location);
1284 }
1285
1286 /* Set the location for all the statements in a sequence STMT_P to LOCATION. */
1287
1288 void
1289 annotate_all_with_location (gimple_seq stmt_p, location_t location)
1290 {
1291 gimple_stmt_iterator i;
1292
1293 if (gimple_seq_empty_p (stmt_p))
1294 return;
1295
1296 for (i = gsi_start (stmt_p); !gsi_end_p (i); gsi_next (&i))
1297 {
1298 gimple *gs = gsi_stmt (i);
1299 annotate_one_with_location (gs, location);
1300 }
1301 }
1302
1303 /* Helper function of empty_body_p. Return true if STMT is an empty
1304 statement. */
1305
1306 static bool
1307 empty_stmt_p (gimple *stmt)
1308 {
1309 if (gimple_code (stmt) == GIMPLE_NOP)
1310 return true;
1311 if (gbind *bind_stmt = dyn_cast <gbind *> (stmt))
1312 return empty_body_p (gimple_bind_body (bind_stmt));
1313 return false;
1314 }
1315
1316
1317 /* Return true if BODY contains nothing but empty statements. */
1318
1319 bool
1320 empty_body_p (gimple_seq body)
1321 {
1322 gimple_stmt_iterator i;
1323
1324 if (gimple_seq_empty_p (body))
1325 return true;
1326 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
1327 if (!empty_stmt_p (gsi_stmt (i))
1328 && !is_gimple_debug (gsi_stmt (i)))
1329 return false;
1330
1331 return true;
1332 }
1333
1334
1335 /* Perform a deep copy of sequence SRC and return the result. */
1336
1337 gimple_seq
1338 gimple_seq_copy (gimple_seq src)
1339 {
1340 gimple_stmt_iterator gsi;
1341 gimple_seq new_seq = NULL;
1342 gimple *stmt;
1343
1344 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1345 {
1346 stmt = gimple_copy (gsi_stmt (gsi));
1347 gimple_seq_add_stmt (&new_seq, stmt);
1348 }
1349
1350 return new_seq;
1351 }
1352
1353
1354
1355 /* Return true if calls C1 and C2 are known to go to the same function. */
1356
1357 bool
1358 gimple_call_same_target_p (const gimple *c1, const gimple *c2)
1359 {
1360 if (gimple_call_internal_p (c1))
1361 return (gimple_call_internal_p (c2)
1362 && gimple_call_internal_fn (c1) == gimple_call_internal_fn (c2)
1363 && (!gimple_call_internal_unique_p (as_a <const gcall *> (c1))
1364 || c1 == c2));
1365 else
1366 return (gimple_call_fn (c1) == gimple_call_fn (c2)
1367 || (gimple_call_fndecl (c1)
1368 && gimple_call_fndecl (c1) == gimple_call_fndecl (c2)));
1369 }
1370
1371 /* Detect flags from a GIMPLE_CALL. This is just like
1372 call_expr_flags, but for gimple tuples. */
1373
1374 int
1375 gimple_call_flags (const gimple *stmt)
1376 {
1377 int flags;
1378 tree decl = gimple_call_fndecl (stmt);
1379
1380 if (decl)
1381 flags = flags_from_decl_or_type (decl);
1382 else if (gimple_call_internal_p (stmt))
1383 flags = internal_fn_flags (gimple_call_internal_fn (stmt));
1384 else
1385 flags = flags_from_decl_or_type (gimple_call_fntype (stmt));
1386
1387 if (stmt->subcode & GF_CALL_NOTHROW)
1388 flags |= ECF_NOTHROW;
1389
1390 if (stmt->subcode & GF_CALL_BY_DESCRIPTOR)
1391 flags |= ECF_BY_DESCRIPTOR;
1392
1393 return flags;
1394 }
1395
1396 /* Return the "fn spec" string for call STMT. */
1397
1398 static const_tree
1399 gimple_call_fnspec (const gcall *stmt)
1400 {
1401 tree type, attr;
1402
1403 if (gimple_call_internal_p (stmt))
1404 return internal_fn_fnspec (gimple_call_internal_fn (stmt));
1405
1406 type = gimple_call_fntype (stmt);
1407 if (!type)
1408 return NULL_TREE;
1409
1410 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1411 if (!attr)
1412 return NULL_TREE;
1413
1414 return TREE_VALUE (TREE_VALUE (attr));
1415 }
1416
1417 /* Detects argument flags for argument number ARG on call STMT. */
1418
1419 int
1420 gimple_call_arg_flags (const gcall *stmt, unsigned arg)
1421 {
1422 const_tree attr = gimple_call_fnspec (stmt);
1423
1424 if (!attr || 1 + arg >= (unsigned) TREE_STRING_LENGTH (attr))
1425 return 0;
1426
1427 switch (TREE_STRING_POINTER (attr)[1 + arg])
1428 {
1429 case 'x':
1430 case 'X':
1431 return EAF_UNUSED;
1432
1433 case 'R':
1434 return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE;
1435
1436 case 'r':
1437 return EAF_NOCLOBBER | EAF_NOESCAPE;
1438
1439 case 'W':
1440 return EAF_DIRECT | EAF_NOESCAPE;
1441
1442 case 'w':
1443 return EAF_NOESCAPE;
1444
1445 case '.':
1446 default:
1447 return 0;
1448 }
1449 }
1450
1451 /* Detects return flags for the call STMT. */
1452
1453 int
1454 gimple_call_return_flags (const gcall *stmt)
1455 {
1456 const_tree attr;
1457
1458 if (gimple_call_flags (stmt) & ECF_MALLOC)
1459 return ERF_NOALIAS;
1460
1461 attr = gimple_call_fnspec (stmt);
1462 if (!attr || TREE_STRING_LENGTH (attr) < 1)
1463 return 0;
1464
1465 switch (TREE_STRING_POINTER (attr)[0])
1466 {
1467 case '1':
1468 case '2':
1469 case '3':
1470 case '4':
1471 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
1472
1473 case 'm':
1474 return ERF_NOALIAS;
1475
1476 case '.':
1477 default:
1478 return 0;
1479 }
1480 }
1481
1482
1483 /* Return true if GS is a copy assignment. */
1484
1485 bool
1486 gimple_assign_copy_p (gimple *gs)
1487 {
1488 return (gimple_assign_single_p (gs)
1489 && is_gimple_val (gimple_op (gs, 1)));
1490 }
1491
1492
1493 /* Return true if GS is a SSA_NAME copy assignment. */
1494
1495 bool
1496 gimple_assign_ssa_name_copy_p (gimple *gs)
1497 {
1498 return (gimple_assign_single_p (gs)
1499 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1500 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1501 }
1502
1503
1504 /* Return true if GS is an assignment with a unary RHS, but the
1505 operator has no effect on the assigned value. The logic is adapted
1506 from STRIP_NOPS. This predicate is intended to be used in tuplifying
1507 instances in which STRIP_NOPS was previously applied to the RHS of
1508 an assignment.
1509
1510 NOTE: In the use cases that led to the creation of this function
1511 and of gimple_assign_single_p, it is typical to test for either
1512 condition and to proceed in the same manner. In each case, the
1513 assigned value is represented by the single RHS operand of the
1514 assignment. I suspect there may be cases where gimple_assign_copy_p,
1515 gimple_assign_single_p, or equivalent logic is used where a similar
1516 treatment of unary NOPs is appropriate. */
1517
1518 bool
1519 gimple_assign_unary_nop_p (gimple *gs)
1520 {
1521 return (is_gimple_assign (gs)
1522 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
1523 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
1524 && gimple_assign_rhs1 (gs) != error_mark_node
1525 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
1526 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
1527 }
1528
1529 /* Set BB to be the basic block holding G. */
1530
1531 void
1532 gimple_set_bb (gimple *stmt, basic_block bb)
1533 {
1534 stmt->bb = bb;
1535
1536 if (gimple_code (stmt) != GIMPLE_LABEL)
1537 return;
1538
1539 /* If the statement is a label, add the label to block-to-labels map
1540 so that we can speed up edge creation for GIMPLE_GOTOs. */
1541 if (cfun->cfg)
1542 {
1543 tree t;
1544 int uid;
1545
1546 t = gimple_label_label (as_a <glabel *> (stmt));
1547 uid = LABEL_DECL_UID (t);
1548 if (uid == -1)
1549 {
1550 unsigned old_len =
1551 vec_safe_length (label_to_block_map_for_fn (cfun));
1552 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
1553 if (old_len <= (unsigned) uid)
1554 {
1555 unsigned new_len = 3 * uid / 2 + 1;
1556
1557 vec_safe_grow_cleared (label_to_block_map_for_fn (cfun),
1558 new_len);
1559 }
1560 }
1561
1562 (*label_to_block_map_for_fn (cfun))[uid] = bb;
1563 }
1564 }
1565
1566
1567 /* Modify the RHS of the assignment pointed-to by GSI using the
1568 operands in the expression tree EXPR.
1569
1570 NOTE: The statement pointed-to by GSI may be reallocated if it
1571 did not have enough operand slots.
1572
1573 This function is useful to convert an existing tree expression into
1574 the flat representation used for the RHS of a GIMPLE assignment.
1575 It will reallocate memory as needed to expand or shrink the number
1576 of operand slots needed to represent EXPR.
1577
1578 NOTE: If you find yourself building a tree and then calling this
1579 function, you are most certainly doing it the slow way. It is much
1580 better to build a new assignment or to use the function
1581 gimple_assign_set_rhs_with_ops, which does not require an
1582 expression tree to be built. */
1583
1584 void
1585 gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
1586 {
1587 enum tree_code subcode;
1588 tree op1, op2, op3;
1589
1590 extract_ops_from_tree (expr, &subcode, &op1, &op2, &op3);
1591 gimple_assign_set_rhs_with_ops (gsi, subcode, op1, op2, op3);
1592 }
1593
1594
1595 /* Set the RHS of assignment statement pointed-to by GSI to CODE with
1596 operands OP1, OP2 and OP3.
1597
1598 NOTE: The statement pointed-to by GSI may be reallocated if it
1599 did not have enough operand slots. */
1600
1601 void
1602 gimple_assign_set_rhs_with_ops (gimple_stmt_iterator *gsi, enum tree_code code,
1603 tree op1, tree op2, tree op3)
1604 {
1605 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
1606 gimple *stmt = gsi_stmt (*gsi);
1607
1608 /* If the new CODE needs more operands, allocate a new statement. */
1609 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
1610 {
1611 tree lhs = gimple_assign_lhs (stmt);
1612 gimple *new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
1613 memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
1614 gimple_init_singleton (new_stmt);
1615 gsi_replace (gsi, new_stmt, true);
1616 stmt = new_stmt;
1617
1618 /* The LHS needs to be reset as this also changes the SSA name
1619 on the LHS. */
1620 gimple_assign_set_lhs (stmt, lhs);
1621 }
1622
1623 gimple_set_num_ops (stmt, new_rhs_ops + 1);
1624 gimple_set_subcode (stmt, code);
1625 gimple_assign_set_rhs1 (stmt, op1);
1626 if (new_rhs_ops > 1)
1627 gimple_assign_set_rhs2 (stmt, op2);
1628 if (new_rhs_ops > 2)
1629 gimple_assign_set_rhs3 (stmt, op3);
1630 }
1631
1632
1633 /* Return the LHS of a statement that performs an assignment,
1634 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
1635 for a call to a function that returns no value, or for a
1636 statement other than an assignment or a call. */
1637
1638 tree
1639 gimple_get_lhs (const gimple *stmt)
1640 {
1641 enum gimple_code code = gimple_code (stmt);
1642
1643 if (code == GIMPLE_ASSIGN)
1644 return gimple_assign_lhs (stmt);
1645 else if (code == GIMPLE_CALL)
1646 return gimple_call_lhs (stmt);
1647 else
1648 return NULL_TREE;
1649 }
1650
1651
1652 /* Set the LHS of a statement that performs an assignment,
1653 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
1654
1655 void
1656 gimple_set_lhs (gimple *stmt, tree lhs)
1657 {
1658 enum gimple_code code = gimple_code (stmt);
1659
1660 if (code == GIMPLE_ASSIGN)
1661 gimple_assign_set_lhs (stmt, lhs);
1662 else if (code == GIMPLE_CALL)
1663 gimple_call_set_lhs (stmt, lhs);
1664 else
1665 gcc_unreachable ();
1666 }
1667
1668
1669 /* Return a deep copy of statement STMT. All the operands from STMT
1670 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
1671 and VUSE operand arrays are set to empty in the new copy. The new
1672 copy isn't part of any sequence. */
1673
1674 gimple *
1675 gimple_copy (gimple *stmt)
1676 {
1677 enum gimple_code code = gimple_code (stmt);
1678 unsigned num_ops = gimple_num_ops (stmt);
1679 gimple *copy = gimple_alloc (code, num_ops);
1680 unsigned i;
1681
1682 /* Shallow copy all the fields from STMT. */
1683 memcpy (copy, stmt, gimple_size (code));
1684 gimple_init_singleton (copy);
1685
1686 /* If STMT has sub-statements, deep-copy them as well. */
1687 if (gimple_has_substatements (stmt))
1688 {
1689 gimple_seq new_seq;
1690 tree t;
1691
1692 switch (gimple_code (stmt))
1693 {
1694 case GIMPLE_BIND:
1695 {
1696 gbind *bind_stmt = as_a <gbind *> (stmt);
1697 gbind *bind_copy = as_a <gbind *> (copy);
1698 new_seq = gimple_seq_copy (gimple_bind_body (bind_stmt));
1699 gimple_bind_set_body (bind_copy, new_seq);
1700 gimple_bind_set_vars (bind_copy,
1701 unshare_expr (gimple_bind_vars (bind_stmt)));
1702 gimple_bind_set_block (bind_copy, gimple_bind_block (bind_stmt));
1703 }
1704 break;
1705
1706 case GIMPLE_CATCH:
1707 {
1708 gcatch *catch_stmt = as_a <gcatch *> (stmt);
1709 gcatch *catch_copy = as_a <gcatch *> (copy);
1710 new_seq = gimple_seq_copy (gimple_catch_handler (catch_stmt));
1711 gimple_catch_set_handler (catch_copy, new_seq);
1712 t = unshare_expr (gimple_catch_types (catch_stmt));
1713 gimple_catch_set_types (catch_copy, t);
1714 }
1715 break;
1716
1717 case GIMPLE_EH_FILTER:
1718 {
1719 geh_filter *eh_filter_stmt = as_a <geh_filter *> (stmt);
1720 geh_filter *eh_filter_copy = as_a <geh_filter *> (copy);
1721 new_seq
1722 = gimple_seq_copy (gimple_eh_filter_failure (eh_filter_stmt));
1723 gimple_eh_filter_set_failure (eh_filter_copy, new_seq);
1724 t = unshare_expr (gimple_eh_filter_types (eh_filter_stmt));
1725 gimple_eh_filter_set_types (eh_filter_copy, t);
1726 }
1727 break;
1728
1729 case GIMPLE_EH_ELSE:
1730 {
1731 geh_else *eh_else_stmt = as_a <geh_else *> (stmt);
1732 geh_else *eh_else_copy = as_a <geh_else *> (copy);
1733 new_seq = gimple_seq_copy (gimple_eh_else_n_body (eh_else_stmt));
1734 gimple_eh_else_set_n_body (eh_else_copy, new_seq);
1735 new_seq = gimple_seq_copy (gimple_eh_else_e_body (eh_else_stmt));
1736 gimple_eh_else_set_e_body (eh_else_copy, new_seq);
1737 }
1738 break;
1739
1740 case GIMPLE_TRY:
1741 {
1742 gtry *try_stmt = as_a <gtry *> (stmt);
1743 gtry *try_copy = as_a <gtry *> (copy);
1744 new_seq = gimple_seq_copy (gimple_try_eval (try_stmt));
1745 gimple_try_set_eval (try_copy, new_seq);
1746 new_seq = gimple_seq_copy (gimple_try_cleanup (try_stmt));
1747 gimple_try_set_cleanup (try_copy, new_seq);
1748 }
1749 break;
1750
1751 case GIMPLE_OMP_FOR:
1752 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
1753 gimple_omp_for_set_pre_body (copy, new_seq);
1754 t = unshare_expr (gimple_omp_for_clauses (stmt));
1755 gimple_omp_for_set_clauses (copy, t);
1756 {
1757 gomp_for *omp_for_copy = as_a <gomp_for *> (copy);
1758 omp_for_copy->iter = ggc_vec_alloc<gimple_omp_for_iter>
1759 ( gimple_omp_for_collapse (stmt));
1760 }
1761 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1762 {
1763 gimple_omp_for_set_cond (copy, i,
1764 gimple_omp_for_cond (stmt, i));
1765 gimple_omp_for_set_index (copy, i,
1766 gimple_omp_for_index (stmt, i));
1767 t = unshare_expr (gimple_omp_for_initial (stmt, i));
1768 gimple_omp_for_set_initial (copy, i, t);
1769 t = unshare_expr (gimple_omp_for_final (stmt, i));
1770 gimple_omp_for_set_final (copy, i, t);
1771 t = unshare_expr (gimple_omp_for_incr (stmt, i));
1772 gimple_omp_for_set_incr (copy, i, t);
1773 }
1774 goto copy_omp_body;
1775
1776 case GIMPLE_OMP_PARALLEL:
1777 {
1778 gomp_parallel *omp_par_stmt = as_a <gomp_parallel *> (stmt);
1779 gomp_parallel *omp_par_copy = as_a <gomp_parallel *> (copy);
1780 t = unshare_expr (gimple_omp_parallel_clauses (omp_par_stmt));
1781 gimple_omp_parallel_set_clauses (omp_par_copy, t);
1782 t = unshare_expr (gimple_omp_parallel_child_fn (omp_par_stmt));
1783 gimple_omp_parallel_set_child_fn (omp_par_copy, t);
1784 t = unshare_expr (gimple_omp_parallel_data_arg (omp_par_stmt));
1785 gimple_omp_parallel_set_data_arg (omp_par_copy, t);
1786 }
1787 goto copy_omp_body;
1788
1789 case GIMPLE_OMP_TASK:
1790 t = unshare_expr (gimple_omp_task_clauses (stmt));
1791 gimple_omp_task_set_clauses (copy, t);
1792 t = unshare_expr (gimple_omp_task_child_fn (stmt));
1793 gimple_omp_task_set_child_fn (copy, t);
1794 t = unshare_expr (gimple_omp_task_data_arg (stmt));
1795 gimple_omp_task_set_data_arg (copy, t);
1796 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
1797 gimple_omp_task_set_copy_fn (copy, t);
1798 t = unshare_expr (gimple_omp_task_arg_size (stmt));
1799 gimple_omp_task_set_arg_size (copy, t);
1800 t = unshare_expr (gimple_omp_task_arg_align (stmt));
1801 gimple_omp_task_set_arg_align (copy, t);
1802 goto copy_omp_body;
1803
1804 case GIMPLE_OMP_CRITICAL:
1805 t = unshare_expr (gimple_omp_critical_name
1806 (as_a <gomp_critical *> (stmt)));
1807 gimple_omp_critical_set_name (as_a <gomp_critical *> (copy), t);
1808 t = unshare_expr (gimple_omp_critical_clauses
1809 (as_a <gomp_critical *> (stmt)));
1810 gimple_omp_critical_set_clauses (as_a <gomp_critical *> (copy), t);
1811 goto copy_omp_body;
1812
1813 case GIMPLE_OMP_ORDERED:
1814 t = unshare_expr (gimple_omp_ordered_clauses
1815 (as_a <gomp_ordered *> (stmt)));
1816 gimple_omp_ordered_set_clauses (as_a <gomp_ordered *> (copy), t);
1817 goto copy_omp_body;
1818
1819 case GIMPLE_OMP_SECTIONS:
1820 t = unshare_expr (gimple_omp_sections_clauses (stmt));
1821 gimple_omp_sections_set_clauses (copy, t);
1822 t = unshare_expr (gimple_omp_sections_control (stmt));
1823 gimple_omp_sections_set_control (copy, t);
1824 /* FALLTHRU */
1825
1826 case GIMPLE_OMP_SINGLE:
1827 case GIMPLE_OMP_TARGET:
1828 case GIMPLE_OMP_TEAMS:
1829 case GIMPLE_OMP_SECTION:
1830 case GIMPLE_OMP_MASTER:
1831 case GIMPLE_OMP_TASKGROUP:
1832 case GIMPLE_OMP_GRID_BODY:
1833 copy_omp_body:
1834 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
1835 gimple_omp_set_body (copy, new_seq);
1836 break;
1837
1838 case GIMPLE_TRANSACTION:
1839 new_seq = gimple_seq_copy (gimple_transaction_body (
1840 as_a <gtransaction *> (stmt)));
1841 gimple_transaction_set_body (as_a <gtransaction *> (copy),
1842 new_seq);
1843 break;
1844
1845 case GIMPLE_WITH_CLEANUP_EXPR:
1846 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
1847 gimple_wce_set_cleanup (copy, new_seq);
1848 break;
1849
1850 default:
1851 gcc_unreachable ();
1852 }
1853 }
1854
1855 /* Make copy of operands. */
1856 for (i = 0; i < num_ops; i++)
1857 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
1858
1859 if (gimple_has_mem_ops (stmt))
1860 {
1861 gimple_set_vdef (copy, gimple_vdef (stmt));
1862 gimple_set_vuse (copy, gimple_vuse (stmt));
1863 }
1864
1865 /* Clear out SSA operand vectors on COPY. */
1866 if (gimple_has_ops (stmt))
1867 {
1868 gimple_set_use_ops (copy, NULL);
1869
1870 /* SSA operands need to be updated. */
1871 gimple_set_modified (copy, true);
1872 }
1873
1874 return copy;
1875 }
1876
1877
1878 /* Return true if statement S has side-effects. We consider a
1879 statement to have side effects if:
1880
1881 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
1882 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
1883
1884 bool
1885 gimple_has_side_effects (const gimple *s)
1886 {
1887 if (is_gimple_debug (s))
1888 return false;
1889
1890 /* We don't have to scan the arguments to check for
1891 volatile arguments, though, at present, we still
1892 do a scan to check for TREE_SIDE_EFFECTS. */
1893 if (gimple_has_volatile_ops (s))
1894 return true;
1895
1896 if (gimple_code (s) == GIMPLE_ASM
1897 && gimple_asm_volatile_p (as_a <const gasm *> (s)))
1898 return true;
1899
1900 if (is_gimple_call (s))
1901 {
1902 int flags = gimple_call_flags (s);
1903
1904 /* An infinite loop is considered a side effect. */
1905 if (!(flags & (ECF_CONST | ECF_PURE))
1906 || (flags & ECF_LOOPING_CONST_OR_PURE))
1907 return true;
1908
1909 return false;
1910 }
1911
1912 return false;
1913 }
1914
1915 /* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
1916 Return true if S can trap. When INCLUDE_MEM is true, check whether
1917 the memory operations could trap. When INCLUDE_STORES is true and
1918 S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked. */
1919
1920 bool
1921 gimple_could_trap_p_1 (gimple *s, bool include_mem, bool include_stores)
1922 {
1923 tree t, div = NULL_TREE;
1924 enum tree_code op;
1925
1926 if (include_mem)
1927 {
1928 unsigned i, start = (is_gimple_assign (s) && !include_stores) ? 1 : 0;
1929
1930 for (i = start; i < gimple_num_ops (s); i++)
1931 if (tree_could_trap_p (gimple_op (s, i)))
1932 return true;
1933 }
1934
1935 switch (gimple_code (s))
1936 {
1937 case GIMPLE_ASM:
1938 return gimple_asm_volatile_p (as_a <gasm *> (s));
1939
1940 case GIMPLE_CALL:
1941 t = gimple_call_fndecl (s);
1942 /* Assume that calls to weak functions may trap. */
1943 if (!t || !DECL_P (t) || DECL_WEAK (t))
1944 return true;
1945 return false;
1946
1947 case GIMPLE_ASSIGN:
1948 t = gimple_expr_type (s);
1949 op = gimple_assign_rhs_code (s);
1950 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
1951 div = gimple_assign_rhs2 (s);
1952 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
1953 (INTEGRAL_TYPE_P (t)
1954 && TYPE_OVERFLOW_TRAPS (t)),
1955 div));
1956
1957 case GIMPLE_COND:
1958 t = TREE_TYPE (gimple_cond_lhs (s));
1959 return operation_could_trap_p (gimple_cond_code (s),
1960 FLOAT_TYPE_P (t), false, NULL_TREE);
1961
1962 default:
1963 break;
1964 }
1965
1966 return false;
1967 }
1968
1969 /* Return true if statement S can trap. */
1970
1971 bool
1972 gimple_could_trap_p (gimple *s)
1973 {
1974 return gimple_could_trap_p_1 (s, true, true);
1975 }
1976
1977 /* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
1978
1979 bool
1980 gimple_assign_rhs_could_trap_p (gimple *s)
1981 {
1982 gcc_assert (is_gimple_assign (s));
1983 return gimple_could_trap_p_1 (s, true, false);
1984 }
1985
1986
1987 /* Print debugging information for gimple stmts generated. */
1988
1989 void
1990 dump_gimple_statistics (void)
1991 {
1992 int i, total_tuples = 0, total_bytes = 0;
1993
1994 if (! GATHER_STATISTICS)
1995 {
1996 fprintf (stderr, "No gimple statistics\n");
1997 return;
1998 }
1999
2000 fprintf (stderr, "\nGIMPLE statements\n");
2001 fprintf (stderr, "Kind Stmts Bytes\n");
2002 fprintf (stderr, "---------------------------------------\n");
2003 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
2004 {
2005 fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i],
2006 gimple_alloc_counts[i], gimple_alloc_sizes[i]);
2007 total_tuples += gimple_alloc_counts[i];
2008 total_bytes += gimple_alloc_sizes[i];
2009 }
2010 fprintf (stderr, "---------------------------------------\n");
2011 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes);
2012 fprintf (stderr, "---------------------------------------\n");
2013 }
2014
2015
2016 /* Return the number of operands needed on the RHS of a GIMPLE
2017 assignment for an expression with tree code CODE. */
2018
2019 unsigned
2020 get_gimple_rhs_num_ops (enum tree_code code)
2021 {
2022 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
2023
2024 if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
2025 return 1;
2026 else if (rhs_class == GIMPLE_BINARY_RHS)
2027 return 2;
2028 else if (rhs_class == GIMPLE_TERNARY_RHS)
2029 return 3;
2030 else
2031 gcc_unreachable ();
2032 }
2033
2034 #define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
2035 (unsigned char) \
2036 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
2037 : ((TYPE) == tcc_binary \
2038 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
2039 : ((TYPE) == tcc_constant \
2040 || (TYPE) == tcc_declaration \
2041 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
2042 : ((SYM) == TRUTH_AND_EXPR \
2043 || (SYM) == TRUTH_OR_EXPR \
2044 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
2045 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
2046 : ((SYM) == COND_EXPR \
2047 || (SYM) == WIDEN_MULT_PLUS_EXPR \
2048 || (SYM) == WIDEN_MULT_MINUS_EXPR \
2049 || (SYM) == DOT_PROD_EXPR \
2050 || (SYM) == SAD_EXPR \
2051 || (SYM) == REALIGN_LOAD_EXPR \
2052 || (SYM) == VEC_COND_EXPR \
2053 || (SYM) == VEC_PERM_EXPR \
2054 || (SYM) == BIT_INSERT_EXPR \
2055 || (SYM) == FMA_EXPR) ? GIMPLE_TERNARY_RHS \
2056 : ((SYM) == CONSTRUCTOR \
2057 || (SYM) == OBJ_TYPE_REF \
2058 || (SYM) == ASSERT_EXPR \
2059 || (SYM) == ADDR_EXPR \
2060 || (SYM) == WITH_SIZE_EXPR \
2061 || (SYM) == SSA_NAME) ? GIMPLE_SINGLE_RHS \
2062 : GIMPLE_INVALID_RHS),
2063 #define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
2064
2065 const unsigned char gimple_rhs_class_table[] = {
2066 #include "all-tree.def"
2067 };
2068
2069 #undef DEFTREECODE
2070 #undef END_OF_BASE_TREE_CODES
2071
2072 /* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
2073 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
2074 we failed to create one. */
2075
2076 tree
2077 canonicalize_cond_expr_cond (tree t)
2078 {
2079 /* Strip conversions around boolean operations. */
2080 if (CONVERT_EXPR_P (t)
2081 && (truth_value_p (TREE_CODE (TREE_OPERAND (t, 0)))
2082 || TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0)))
2083 == BOOLEAN_TYPE))
2084 t = TREE_OPERAND (t, 0);
2085
2086 /* For !x use x == 0. */
2087 if (TREE_CODE (t) == TRUTH_NOT_EXPR)
2088 {
2089 tree top0 = TREE_OPERAND (t, 0);
2090 t = build2 (EQ_EXPR, TREE_TYPE (t),
2091 top0, build_int_cst (TREE_TYPE (top0), 0));
2092 }
2093 /* For cmp ? 1 : 0 use cmp. */
2094 else if (TREE_CODE (t) == COND_EXPR
2095 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
2096 && integer_onep (TREE_OPERAND (t, 1))
2097 && integer_zerop (TREE_OPERAND (t, 2)))
2098 {
2099 tree top0 = TREE_OPERAND (t, 0);
2100 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
2101 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
2102 }
2103 /* For x ^ y use x != y. */
2104 else if (TREE_CODE (t) == BIT_XOR_EXPR)
2105 t = build2 (NE_EXPR, TREE_TYPE (t),
2106 TREE_OPERAND (t, 0), TREE_OPERAND (t, 1));
2107
2108 if (is_gimple_condexpr (t))
2109 return t;
2110
2111 return NULL_TREE;
2112 }
2113
2114 /* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
2115 the positions marked by the set ARGS_TO_SKIP. */
2116
2117 gcall *
2118 gimple_call_copy_skip_args (gcall *stmt, bitmap args_to_skip)
2119 {
2120 int i;
2121 int nargs = gimple_call_num_args (stmt);
2122 auto_vec<tree> vargs (nargs);
2123 gcall *new_stmt;
2124
2125 for (i = 0; i < nargs; i++)
2126 if (!bitmap_bit_p (args_to_skip, i))
2127 vargs.quick_push (gimple_call_arg (stmt, i));
2128
2129 if (gimple_call_internal_p (stmt))
2130 new_stmt = gimple_build_call_internal_vec (gimple_call_internal_fn (stmt),
2131 vargs);
2132 else
2133 new_stmt = gimple_build_call_vec (gimple_call_fn (stmt), vargs);
2134
2135 if (gimple_call_lhs (stmt))
2136 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
2137
2138 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
2139 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
2140
2141 if (gimple_has_location (stmt))
2142 gimple_set_location (new_stmt, gimple_location (stmt));
2143 gimple_call_copy_flags (new_stmt, stmt);
2144 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
2145
2146 gimple_set_modified (new_stmt, true);
2147
2148 return new_stmt;
2149 }
2150
2151
2152
2153 /* Return true if the field decls F1 and F2 are at the same offset.
2154
2155 This is intended to be used on GIMPLE types only. */
2156
2157 bool
2158 gimple_compare_field_offset (tree f1, tree f2)
2159 {
2160 if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
2161 {
2162 tree offset1 = DECL_FIELD_OFFSET (f1);
2163 tree offset2 = DECL_FIELD_OFFSET (f2);
2164 return ((offset1 == offset2
2165 /* Once gimplification is done, self-referential offsets are
2166 instantiated as operand #2 of the COMPONENT_REF built for
2167 each access and reset. Therefore, they are not relevant
2168 anymore and fields are interchangeable provided that they
2169 represent the same access. */
2170 || (TREE_CODE (offset1) == PLACEHOLDER_EXPR
2171 && TREE_CODE (offset2) == PLACEHOLDER_EXPR
2172 && (DECL_SIZE (f1) == DECL_SIZE (f2)
2173 || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
2174 && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
2175 || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0))
2176 && DECL_ALIGN (f1) == DECL_ALIGN (f2))
2177 || operand_equal_p (offset1, offset2, 0))
2178 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
2179 DECL_FIELD_BIT_OFFSET (f2)));
2180 }
2181
2182 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
2183 should be, so handle differing ones specially by decomposing
2184 the offset into a byte and bit offset manually. */
2185 if (tree_fits_shwi_p (DECL_FIELD_OFFSET (f1))
2186 && tree_fits_shwi_p (DECL_FIELD_OFFSET (f2)))
2187 {
2188 unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
2189 unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
2190 bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
2191 byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
2192 + bit_offset1 / BITS_PER_UNIT);
2193 bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
2194 byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
2195 + bit_offset2 / BITS_PER_UNIT);
2196 if (byte_offset1 != byte_offset2)
2197 return false;
2198 return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
2199 }
2200
2201 return false;
2202 }
2203
2204
2205 /* Return a type the same as TYPE except unsigned or
2206 signed according to UNSIGNEDP. */
2207
2208 static tree
2209 gimple_signed_or_unsigned_type (bool unsignedp, tree type)
2210 {
2211 tree type1;
2212 int i;
2213
2214 type1 = TYPE_MAIN_VARIANT (type);
2215 if (type1 == signed_char_type_node
2216 || type1 == char_type_node
2217 || type1 == unsigned_char_type_node)
2218 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2219 if (type1 == integer_type_node || type1 == unsigned_type_node)
2220 return unsignedp ? unsigned_type_node : integer_type_node;
2221 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
2222 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2223 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
2224 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2225 if (type1 == long_long_integer_type_node
2226 || type1 == long_long_unsigned_type_node)
2227 return unsignedp
2228 ? long_long_unsigned_type_node
2229 : long_long_integer_type_node;
2230
2231 for (i = 0; i < NUM_INT_N_ENTS; i ++)
2232 if (int_n_enabled_p[i]
2233 && (type1 == int_n_trees[i].unsigned_type
2234 || type1 == int_n_trees[i].signed_type))
2235 return unsignedp
2236 ? int_n_trees[i].unsigned_type
2237 : int_n_trees[i].signed_type;
2238
2239 #if HOST_BITS_PER_WIDE_INT >= 64
2240 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
2241 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2242 #endif
2243 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
2244 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2245 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
2246 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2247 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
2248 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2249 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
2250 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2251
2252 #define GIMPLE_FIXED_TYPES(NAME) \
2253 if (type1 == short_ ## NAME ## _type_node \
2254 || type1 == unsigned_short_ ## NAME ## _type_node) \
2255 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
2256 : short_ ## NAME ## _type_node; \
2257 if (type1 == NAME ## _type_node \
2258 || type1 == unsigned_ ## NAME ## _type_node) \
2259 return unsignedp ? unsigned_ ## NAME ## _type_node \
2260 : NAME ## _type_node; \
2261 if (type1 == long_ ## NAME ## _type_node \
2262 || type1 == unsigned_long_ ## NAME ## _type_node) \
2263 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
2264 : long_ ## NAME ## _type_node; \
2265 if (type1 == long_long_ ## NAME ## _type_node \
2266 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
2267 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
2268 : long_long_ ## NAME ## _type_node;
2269
2270 #define GIMPLE_FIXED_MODE_TYPES(NAME) \
2271 if (type1 == NAME ## _type_node \
2272 || type1 == u ## NAME ## _type_node) \
2273 return unsignedp ? u ## NAME ## _type_node \
2274 : NAME ## _type_node;
2275
2276 #define GIMPLE_FIXED_TYPES_SAT(NAME) \
2277 if (type1 == sat_ ## short_ ## NAME ## _type_node \
2278 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
2279 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
2280 : sat_ ## short_ ## NAME ## _type_node; \
2281 if (type1 == sat_ ## NAME ## _type_node \
2282 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
2283 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
2284 : sat_ ## NAME ## _type_node; \
2285 if (type1 == sat_ ## long_ ## NAME ## _type_node \
2286 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
2287 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
2288 : sat_ ## long_ ## NAME ## _type_node; \
2289 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
2290 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
2291 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
2292 : sat_ ## long_long_ ## NAME ## _type_node;
2293
2294 #define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
2295 if (type1 == sat_ ## NAME ## _type_node \
2296 || type1 == sat_ ## u ## NAME ## _type_node) \
2297 return unsignedp ? sat_ ## u ## NAME ## _type_node \
2298 : sat_ ## NAME ## _type_node;
2299
2300 GIMPLE_FIXED_TYPES (fract);
2301 GIMPLE_FIXED_TYPES_SAT (fract);
2302 GIMPLE_FIXED_TYPES (accum);
2303 GIMPLE_FIXED_TYPES_SAT (accum);
2304
2305 GIMPLE_FIXED_MODE_TYPES (qq);
2306 GIMPLE_FIXED_MODE_TYPES (hq);
2307 GIMPLE_FIXED_MODE_TYPES (sq);
2308 GIMPLE_FIXED_MODE_TYPES (dq);
2309 GIMPLE_FIXED_MODE_TYPES (tq);
2310 GIMPLE_FIXED_MODE_TYPES_SAT (qq);
2311 GIMPLE_FIXED_MODE_TYPES_SAT (hq);
2312 GIMPLE_FIXED_MODE_TYPES_SAT (sq);
2313 GIMPLE_FIXED_MODE_TYPES_SAT (dq);
2314 GIMPLE_FIXED_MODE_TYPES_SAT (tq);
2315 GIMPLE_FIXED_MODE_TYPES (ha);
2316 GIMPLE_FIXED_MODE_TYPES (sa);
2317 GIMPLE_FIXED_MODE_TYPES (da);
2318 GIMPLE_FIXED_MODE_TYPES (ta);
2319 GIMPLE_FIXED_MODE_TYPES_SAT (ha);
2320 GIMPLE_FIXED_MODE_TYPES_SAT (sa);
2321 GIMPLE_FIXED_MODE_TYPES_SAT (da);
2322 GIMPLE_FIXED_MODE_TYPES_SAT (ta);
2323
2324 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
2325 the precision; they have precision set to match their range, but
2326 may use a wider mode to match an ABI. If we change modes, we may
2327 wind up with bad conversions. For INTEGER_TYPEs in C, must check
2328 the precision as well, so as to yield correct results for
2329 bit-field types. C++ does not have these separate bit-field
2330 types, and producing a signed or unsigned variant of an
2331 ENUMERAL_TYPE may cause other problems as well. */
2332 if (!INTEGRAL_TYPE_P (type)
2333 || TYPE_UNSIGNED (type) == unsignedp)
2334 return type;
2335
2336 #define TYPE_OK(node) \
2337 (TYPE_MODE (type) == TYPE_MODE (node) \
2338 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
2339 if (TYPE_OK (signed_char_type_node))
2340 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2341 if (TYPE_OK (integer_type_node))
2342 return unsignedp ? unsigned_type_node : integer_type_node;
2343 if (TYPE_OK (short_integer_type_node))
2344 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2345 if (TYPE_OK (long_integer_type_node))
2346 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2347 if (TYPE_OK (long_long_integer_type_node))
2348 return (unsignedp
2349 ? long_long_unsigned_type_node
2350 : long_long_integer_type_node);
2351
2352 for (i = 0; i < NUM_INT_N_ENTS; i ++)
2353 if (int_n_enabled_p[i]
2354 && TYPE_MODE (type) == int_n_data[i].m
2355 && TYPE_PRECISION (type) == int_n_data[i].bitsize)
2356 return unsignedp
2357 ? int_n_trees[i].unsigned_type
2358 : int_n_trees[i].signed_type;
2359
2360 #if HOST_BITS_PER_WIDE_INT >= 64
2361 if (TYPE_OK (intTI_type_node))
2362 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2363 #endif
2364 if (TYPE_OK (intDI_type_node))
2365 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2366 if (TYPE_OK (intSI_type_node))
2367 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2368 if (TYPE_OK (intHI_type_node))
2369 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2370 if (TYPE_OK (intQI_type_node))
2371 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2372
2373 #undef GIMPLE_FIXED_TYPES
2374 #undef GIMPLE_FIXED_MODE_TYPES
2375 #undef GIMPLE_FIXED_TYPES_SAT
2376 #undef GIMPLE_FIXED_MODE_TYPES_SAT
2377 #undef TYPE_OK
2378
2379 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
2380 }
2381
2382
2383 /* Return an unsigned type the same as TYPE in other respects. */
2384
2385 tree
2386 gimple_unsigned_type (tree type)
2387 {
2388 return gimple_signed_or_unsigned_type (true, type);
2389 }
2390
2391
2392 /* Return a signed type the same as TYPE in other respects. */
2393
2394 tree
2395 gimple_signed_type (tree type)
2396 {
2397 return gimple_signed_or_unsigned_type (false, type);
2398 }
2399
2400
2401 /* Return the typed-based alias set for T, which may be an expression
2402 or a type. Return -1 if we don't do anything special. */
2403
2404 alias_set_type
2405 gimple_get_alias_set (tree t)
2406 {
2407 /* That's all the expressions we handle specially. */
2408 if (!TYPE_P (t))
2409 return -1;
2410
2411 /* For convenience, follow the C standard when dealing with
2412 character types. Any object may be accessed via an lvalue that
2413 has character type. */
2414 if (t == char_type_node
2415 || t == signed_char_type_node
2416 || t == unsigned_char_type_node)
2417 return 0;
2418
2419 /* Allow aliasing between signed and unsigned variants of the same
2420 type. We treat the signed variant as canonical. */
2421 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
2422 {
2423 tree t1 = gimple_signed_type (t);
2424
2425 /* t1 == t can happen for boolean nodes which are always unsigned. */
2426 if (t1 != t)
2427 return get_alias_set (t1);
2428 }
2429
2430 return -1;
2431 }
2432
2433
2434 /* Helper for gimple_ior_addresses_taken_1. */
2435
2436 static bool
2437 gimple_ior_addresses_taken_1 (gimple *, tree addr, tree, void *data)
2438 {
2439 bitmap addresses_taken = (bitmap)data;
2440 addr = get_base_address (addr);
2441 if (addr
2442 && DECL_P (addr))
2443 {
2444 bitmap_set_bit (addresses_taken, DECL_UID (addr));
2445 return true;
2446 }
2447 return false;
2448 }
2449
2450 /* Set the bit for the uid of all decls that have their address taken
2451 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
2452 were any in this stmt. */
2453
2454 bool
2455 gimple_ior_addresses_taken (bitmap addresses_taken, gimple *stmt)
2456 {
2457 return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
2458 gimple_ior_addresses_taken_1);
2459 }
2460
2461
2462 /* Return true when STMTs arguments and return value match those of FNDECL,
2463 a decl of a builtin function. */
2464
2465 bool
2466 gimple_builtin_call_types_compatible_p (const gimple *stmt, tree fndecl)
2467 {
2468 gcc_checking_assert (DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN);
2469
2470 tree ret = gimple_call_lhs (stmt);
2471 if (ret
2472 && !useless_type_conversion_p (TREE_TYPE (ret),
2473 TREE_TYPE (TREE_TYPE (fndecl))))
2474 return false;
2475
2476 tree targs = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
2477 unsigned nargs = gimple_call_num_args (stmt);
2478 for (unsigned i = 0; i < nargs; ++i)
2479 {
2480 /* Variadic args follow. */
2481 if (!targs)
2482 return true;
2483 tree arg = gimple_call_arg (stmt, i);
2484 tree type = TREE_VALUE (targs);
2485 if (!useless_type_conversion_p (type, TREE_TYPE (arg))
2486 /* char/short integral arguments are promoted to int
2487 by several frontends if targetm.calls.promote_prototypes
2488 is true. Allow such promotion too. */
2489 && !(INTEGRAL_TYPE_P (type)
2490 && TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)
2491 && targetm.calls.promote_prototypes (TREE_TYPE (fndecl))
2492 && useless_type_conversion_p (integer_type_node,
2493 TREE_TYPE (arg))))
2494 return false;
2495 targs = TREE_CHAIN (targs);
2496 }
2497 if (targs && !VOID_TYPE_P (TREE_VALUE (targs)))
2498 return false;
2499 return true;
2500 }
2501
2502 /* Return true when STMT is builtins call. */
2503
2504 bool
2505 gimple_call_builtin_p (const gimple *stmt)
2506 {
2507 tree fndecl;
2508 if (is_gimple_call (stmt)
2509 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2510 && DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN)
2511 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2512 return false;
2513 }
2514
2515 /* Return true when STMT is builtins call to CLASS. */
2516
2517 bool
2518 gimple_call_builtin_p (const gimple *stmt, enum built_in_class klass)
2519 {
2520 tree fndecl;
2521 if (is_gimple_call (stmt)
2522 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2523 && DECL_BUILT_IN_CLASS (fndecl) == klass)
2524 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2525 return false;
2526 }
2527
2528 /* Return true when STMT is builtins call to CODE of CLASS. */
2529
2530 bool
2531 gimple_call_builtin_p (const gimple *stmt, enum built_in_function code)
2532 {
2533 tree fndecl;
2534 if (is_gimple_call (stmt)
2535 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2536 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
2537 && DECL_FUNCTION_CODE (fndecl) == code)
2538 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2539 return false;
2540 }
2541
2542 /* If CALL is a call to a combined_fn (i.e. an internal function or
2543 a normal built-in function), return its code, otherwise return
2544 CFN_LAST. */
2545
2546 combined_fn
2547 gimple_call_combined_fn (const gimple *stmt)
2548 {
2549 if (const gcall *call = dyn_cast <const gcall *> (stmt))
2550 {
2551 if (gimple_call_internal_p (call))
2552 return as_combined_fn (gimple_call_internal_fn (call));
2553
2554 tree fndecl = gimple_call_fndecl (stmt);
2555 if (fndecl
2556 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
2557 && gimple_builtin_call_types_compatible_p (stmt, fndecl))
2558 return as_combined_fn (DECL_FUNCTION_CODE (fndecl));
2559 }
2560 return CFN_LAST;
2561 }
2562
2563 /* Return true if STMT clobbers memory. STMT is required to be a
2564 GIMPLE_ASM. */
2565
2566 bool
2567 gimple_asm_clobbers_memory_p (const gasm *stmt)
2568 {
2569 unsigned i;
2570
2571 for (i = 0; i < gimple_asm_nclobbers (stmt); i++)
2572 {
2573 tree op = gimple_asm_clobber_op (stmt, i);
2574 if (strcmp (TREE_STRING_POINTER (TREE_VALUE (op)), "memory") == 0)
2575 return true;
2576 }
2577
2578 /* Non-empty basic ASM implicitly clobbers memory. */
2579 if (gimple_asm_input_p (stmt) && strlen (gimple_asm_string (stmt)) != 0)
2580 return true;
2581
2582 return false;
2583 }
2584
2585 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
2586
2587 void
2588 dump_decl_set (FILE *file, bitmap set)
2589 {
2590 if (set)
2591 {
2592 bitmap_iterator bi;
2593 unsigned i;
2594
2595 fprintf (file, "{ ");
2596
2597 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2598 {
2599 fprintf (file, "D.%u", i);
2600 fprintf (file, " ");
2601 }
2602
2603 fprintf (file, "}");
2604 }
2605 else
2606 fprintf (file, "NIL");
2607 }
2608
2609 /* Return true when CALL is a call stmt that definitely doesn't
2610 free any memory or makes it unavailable otherwise. */
2611 bool
2612 nonfreeing_call_p (gimple *call)
2613 {
2614 if (gimple_call_builtin_p (call, BUILT_IN_NORMAL)
2615 && gimple_call_flags (call) & ECF_LEAF)
2616 switch (DECL_FUNCTION_CODE (gimple_call_fndecl (call)))
2617 {
2618 /* Just in case these become ECF_LEAF in the future. */
2619 case BUILT_IN_FREE:
2620 case BUILT_IN_TM_FREE:
2621 case BUILT_IN_REALLOC:
2622 case BUILT_IN_STACK_RESTORE:
2623 return false;
2624 default:
2625 return true;
2626 }
2627 else if (gimple_call_internal_p (call))
2628 switch (gimple_call_internal_fn (call))
2629 {
2630 case IFN_ABNORMAL_DISPATCHER:
2631 return true;
2632 default:
2633 if (gimple_call_flags (call) & ECF_LEAF)
2634 return true;
2635 return false;
2636 }
2637
2638 tree fndecl = gimple_call_fndecl (call);
2639 if (!fndecl)
2640 return false;
2641 struct cgraph_node *n = cgraph_node::get (fndecl);
2642 if (!n)
2643 return false;
2644 enum availability availability;
2645 n = n->function_symbol (&availability);
2646 if (!n || availability <= AVAIL_INTERPOSABLE)
2647 return false;
2648 return n->nonfreeing_fn;
2649 }
2650
2651 /* Return true when CALL is a call stmt that definitely need not
2652 be considered to be a memory barrier. */
2653 bool
2654 nonbarrier_call_p (gimple *call)
2655 {
2656 if (gimple_call_flags (call) & (ECF_PURE | ECF_CONST))
2657 return true;
2658 /* Should extend this to have a nonbarrier_fn flag, just as above in
2659 the nonfreeing case. */
2660 return false;
2661 }
2662
2663 /* Callback for walk_stmt_load_store_ops.
2664
2665 Return TRUE if OP will dereference the tree stored in DATA, FALSE
2666 otherwise.
2667
2668 This routine only makes a superficial check for a dereference. Thus
2669 it must only be used if it is safe to return a false negative. */
2670 static bool
2671 check_loadstore (gimple *, tree op, tree, void *data)
2672 {
2673 if (TREE_CODE (op) == MEM_REF || TREE_CODE (op) == TARGET_MEM_REF)
2674 {
2675 /* Some address spaces may legitimately dereference zero. */
2676 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (op));
2677 if (targetm.addr_space.zero_address_valid (as))
2678 return false;
2679
2680 return operand_equal_p (TREE_OPERAND (op, 0), (tree)data, 0);
2681 }
2682 return false;
2683 }
2684
2685
2686 /* Return true if OP can be inferred to be non-NULL after STMT executes,
2687 either by using a pointer dereference or attributes. */
2688 bool
2689 infer_nonnull_range (gimple *stmt, tree op)
2690 {
2691 return infer_nonnull_range_by_dereference (stmt, op)
2692 || infer_nonnull_range_by_attribute (stmt, op);
2693 }
2694
2695 /* Return true if OP can be inferred to be non-NULL after STMT
2696 executes by using a pointer dereference. */
2697 bool
2698 infer_nonnull_range_by_dereference (gimple *stmt, tree op)
2699 {
2700 /* We can only assume that a pointer dereference will yield
2701 non-NULL if -fdelete-null-pointer-checks is enabled. */
2702 if (!flag_delete_null_pointer_checks
2703 || !POINTER_TYPE_P (TREE_TYPE (op))
2704 || gimple_code (stmt) == GIMPLE_ASM)
2705 return false;
2706
2707 if (walk_stmt_load_store_ops (stmt, (void *)op,
2708 check_loadstore, check_loadstore))
2709 return true;
2710
2711 return false;
2712 }
2713
2714 /* Return true if OP can be inferred to be a non-NULL after STMT
2715 executes by using attributes. */
2716 bool
2717 infer_nonnull_range_by_attribute (gimple *stmt, tree op)
2718 {
2719 /* We can only assume that a pointer dereference will yield
2720 non-NULL if -fdelete-null-pointer-checks is enabled. */
2721 if (!flag_delete_null_pointer_checks
2722 || !POINTER_TYPE_P (TREE_TYPE (op))
2723 || gimple_code (stmt) == GIMPLE_ASM)
2724 return false;
2725
2726 if (is_gimple_call (stmt) && !gimple_call_internal_p (stmt))
2727 {
2728 tree fntype = gimple_call_fntype (stmt);
2729 tree attrs = TYPE_ATTRIBUTES (fntype);
2730 for (; attrs; attrs = TREE_CHAIN (attrs))
2731 {
2732 attrs = lookup_attribute ("nonnull", attrs);
2733
2734 /* If "nonnull" wasn't specified, we know nothing about
2735 the argument. */
2736 if (attrs == NULL_TREE)
2737 return false;
2738
2739 /* If "nonnull" applies to all the arguments, then ARG
2740 is non-null if it's in the argument list. */
2741 if (TREE_VALUE (attrs) == NULL_TREE)
2742 {
2743 for (unsigned int i = 0; i < gimple_call_num_args (stmt); i++)
2744 {
2745 if (POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (stmt, i)))
2746 && operand_equal_p (op, gimple_call_arg (stmt, i), 0))
2747 return true;
2748 }
2749 return false;
2750 }
2751
2752 /* Now see if op appears in the nonnull list. */
2753 for (tree t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
2754 {
2755 unsigned int idx = TREE_INT_CST_LOW (TREE_VALUE (t)) - 1;
2756 if (idx < gimple_call_num_args (stmt))
2757 {
2758 tree arg = gimple_call_arg (stmt, idx);
2759 if (operand_equal_p (op, arg, 0))
2760 return true;
2761 }
2762 }
2763 }
2764 }
2765
2766 /* If this function is marked as returning non-null, then we can
2767 infer OP is non-null if it is used in the return statement. */
2768 if (greturn *return_stmt = dyn_cast <greturn *> (stmt))
2769 if (gimple_return_retval (return_stmt)
2770 && operand_equal_p (gimple_return_retval (return_stmt), op, 0)
2771 && lookup_attribute ("returns_nonnull",
2772 TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))))
2773 return true;
2774
2775 return false;
2776 }
2777
2778 /* Compare two case labels. Because the front end should already have
2779 made sure that case ranges do not overlap, it is enough to only compare
2780 the CASE_LOW values of each case label. */
2781
2782 static int
2783 compare_case_labels (const void *p1, const void *p2)
2784 {
2785 const_tree const case1 = *(const_tree const*)p1;
2786 const_tree const case2 = *(const_tree const*)p2;
2787
2788 /* The 'default' case label always goes first. */
2789 if (!CASE_LOW (case1))
2790 return -1;
2791 else if (!CASE_LOW (case2))
2792 return 1;
2793 else
2794 return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
2795 }
2796
2797 /* Sort the case labels in LABEL_VEC in place in ascending order. */
2798
2799 void
2800 sort_case_labels (vec<tree> label_vec)
2801 {
2802 label_vec.qsort (compare_case_labels);
2803 }
2804 \f
2805 /* Prepare a vector of case labels to be used in a GIMPLE_SWITCH statement.
2806
2807 LABELS is a vector that contains all case labels to look at.
2808
2809 INDEX_TYPE is the type of the switch index expression. Case labels
2810 in LABELS are discarded if their values are not in the value range
2811 covered by INDEX_TYPE. The remaining case label values are folded
2812 to INDEX_TYPE.
2813
2814 If a default case exists in LABELS, it is removed from LABELS and
2815 returned in DEFAULT_CASEP. If no default case exists, but the
2816 case labels already cover the whole range of INDEX_TYPE, a default
2817 case is returned pointing to one of the existing case labels.
2818 Otherwise DEFAULT_CASEP is set to NULL_TREE.
2819
2820 DEFAULT_CASEP may be NULL, in which case the above comment doesn't
2821 apply and no action is taken regardless of whether a default case is
2822 found or not. */
2823
2824 void
2825 preprocess_case_label_vec_for_gimple (vec<tree> labels,
2826 tree index_type,
2827 tree *default_casep)
2828 {
2829 tree min_value, max_value;
2830 tree default_case = NULL_TREE;
2831 size_t i, len;
2832
2833 i = 0;
2834 min_value = TYPE_MIN_VALUE (index_type);
2835 max_value = TYPE_MAX_VALUE (index_type);
2836 while (i < labels.length ())
2837 {
2838 tree elt = labels[i];
2839 tree low = CASE_LOW (elt);
2840 tree high = CASE_HIGH (elt);
2841 bool remove_element = FALSE;
2842
2843 if (low)
2844 {
2845 gcc_checking_assert (TREE_CODE (low) == INTEGER_CST);
2846 gcc_checking_assert (!high || TREE_CODE (high) == INTEGER_CST);
2847
2848 /* This is a non-default case label, i.e. it has a value.
2849
2850 See if the case label is reachable within the range of
2851 the index type. Remove out-of-range case values. Turn
2852 case ranges into a canonical form (high > low strictly)
2853 and convert the case label values to the index type.
2854
2855 NB: The type of gimple_switch_index() may be the promoted
2856 type, but the case labels retain the original type. */
2857
2858 if (high)
2859 {
2860 /* This is a case range. Discard empty ranges.
2861 If the bounds or the range are equal, turn this
2862 into a simple (one-value) case. */
2863 int cmp = tree_int_cst_compare (high, low);
2864 if (cmp < 0)
2865 remove_element = TRUE;
2866 else if (cmp == 0)
2867 high = NULL_TREE;
2868 }
2869
2870 if (! high)
2871 {
2872 /* If the simple case value is unreachable, ignore it. */
2873 if ((TREE_CODE (min_value) == INTEGER_CST
2874 && tree_int_cst_compare (low, min_value) < 0)
2875 || (TREE_CODE (max_value) == INTEGER_CST
2876 && tree_int_cst_compare (low, max_value) > 0))
2877 remove_element = TRUE;
2878 else
2879 low = fold_convert (index_type, low);
2880 }
2881 else
2882 {
2883 /* If the entire case range is unreachable, ignore it. */
2884 if ((TREE_CODE (min_value) == INTEGER_CST
2885 && tree_int_cst_compare (high, min_value) < 0)
2886 || (TREE_CODE (max_value) == INTEGER_CST
2887 && tree_int_cst_compare (low, max_value) > 0))
2888 remove_element = TRUE;
2889 else
2890 {
2891 /* If the lower bound is less than the index type's
2892 minimum value, truncate the range bounds. */
2893 if (TREE_CODE (min_value) == INTEGER_CST
2894 && tree_int_cst_compare (low, min_value) < 0)
2895 low = min_value;
2896 low = fold_convert (index_type, low);
2897
2898 /* If the upper bound is greater than the index type's
2899 maximum value, truncate the range bounds. */
2900 if (TREE_CODE (max_value) == INTEGER_CST
2901 && tree_int_cst_compare (high, max_value) > 0)
2902 high = max_value;
2903 high = fold_convert (index_type, high);
2904
2905 /* We may have folded a case range to a one-value case. */
2906 if (tree_int_cst_equal (low, high))
2907 high = NULL_TREE;
2908 }
2909 }
2910
2911 CASE_LOW (elt) = low;
2912 CASE_HIGH (elt) = high;
2913 }
2914 else
2915 {
2916 gcc_assert (!default_case);
2917 default_case = elt;
2918 /* The default case must be passed separately to the
2919 gimple_build_switch routine. But if DEFAULT_CASEP
2920 is NULL, we do not remove the default case (it would
2921 be completely lost). */
2922 if (default_casep)
2923 remove_element = TRUE;
2924 }
2925
2926 if (remove_element)
2927 labels.ordered_remove (i);
2928 else
2929 i++;
2930 }
2931 len = i;
2932
2933 if (!labels.is_empty ())
2934 sort_case_labels (labels);
2935
2936 if (default_casep && !default_case)
2937 {
2938 /* If the switch has no default label, add one, so that we jump
2939 around the switch body. If the labels already cover the whole
2940 range of the switch index_type, add the default label pointing
2941 to one of the existing labels. */
2942 if (len
2943 && TYPE_MIN_VALUE (index_type)
2944 && TYPE_MAX_VALUE (index_type)
2945 && tree_int_cst_equal (CASE_LOW (labels[0]),
2946 TYPE_MIN_VALUE (index_type)))
2947 {
2948 tree low, high = CASE_HIGH (labels[len - 1]);
2949 if (!high)
2950 high = CASE_LOW (labels[len - 1]);
2951 if (tree_int_cst_equal (high, TYPE_MAX_VALUE (index_type)))
2952 {
2953 tree widest_label = labels[0];
2954 for (i = 1; i < len; i++)
2955 {
2956 high = CASE_LOW (labels[i]);
2957 low = CASE_HIGH (labels[i - 1]);
2958 if (!low)
2959 low = CASE_LOW (labels[i - 1]);
2960
2961 if (CASE_HIGH (labels[i]) != NULL_TREE
2962 && (CASE_HIGH (widest_label) == NULL_TREE
2963 || wi::gtu_p (wi::sub (CASE_HIGH (labels[i]),
2964 CASE_LOW (labels[i])),
2965 wi::sub (CASE_HIGH (widest_label),
2966 CASE_LOW (widest_label)))))
2967 widest_label = labels[i];
2968
2969 if (wi::add (low, 1) != high)
2970 break;
2971 }
2972 if (i == len)
2973 {
2974 /* Designate the label with the widest range to be the
2975 default label. */
2976 tree label = CASE_LABEL (widest_label);
2977 default_case = build_case_label (NULL_TREE, NULL_TREE,
2978 label);
2979 }
2980 }
2981 }
2982 }
2983
2984 if (default_casep)
2985 *default_casep = default_case;
2986 }
2987
2988 /* Set the location of all statements in SEQ to LOC. */
2989
2990 void
2991 gimple_seq_set_location (gimple_seq seq, location_t loc)
2992 {
2993 for (gimple_stmt_iterator i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
2994 gimple_set_location (gsi_stmt (i), loc);
2995 }
2996
2997 /* Release SSA_NAMEs in SEQ as well as the GIMPLE statements. */
2998
2999 void
3000 gimple_seq_discard (gimple_seq seq)
3001 {
3002 gimple_stmt_iterator gsi;
3003
3004 for (gsi = gsi_start (seq); !gsi_end_p (gsi); )
3005 {
3006 gimple *stmt = gsi_stmt (gsi);
3007 gsi_remove (&gsi, true);
3008 release_defs (stmt);
3009 ggc_free (stmt);
3010 }
3011 }
3012
3013 /* See if STMT now calls function that takes no parameters and if so, drop
3014 call arguments. This is used when devirtualization machinery redirects
3015 to __builtin_unreachable or __cxa_pure_virtual. */
3016
3017 void
3018 maybe_remove_unused_call_args (struct function *fn, gimple *stmt)
3019 {
3020 tree decl = gimple_call_fndecl (stmt);
3021 if (TYPE_ARG_TYPES (TREE_TYPE (decl))
3022 && TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl))) == void_type_node
3023 && gimple_call_num_args (stmt))
3024 {
3025 gimple_set_num_ops (stmt, 3);
3026 update_stmt_fn (fn, stmt);
3027 }
3028 }
3029
3030 /* Return false if STMT will likely expand to real function call. */
3031
3032 bool
3033 gimple_inexpensive_call_p (gcall *stmt)
3034 {
3035 if (gimple_call_internal_p (stmt))
3036 return true;
3037 tree decl = gimple_call_fndecl (stmt);
3038 if (decl && is_inexpensive_builtin (decl))
3039 return true;
3040 return false;
3041 }
3042
3043 #if CHECKING_P
3044
3045 namespace selftest {
3046
3047 /* Selftests for core gimple structures. */
3048
3049 /* Verify that STMT is pretty-printed as EXPECTED.
3050 Helper function for selftests. */
3051
3052 static void
3053 verify_gimple_pp (const char *expected, gimple *stmt)
3054 {
3055 pretty_printer pp;
3056 pp_gimple_stmt_1 (&pp, stmt, 0 /* spc */, 0 /* flags */);
3057 ASSERT_STREQ (expected, pp_formatted_text (&pp));
3058 }
3059
3060 /* Build a GIMPLE_ASSIGN equivalent to
3061 tmp = 5;
3062 and verify various properties of it. */
3063
3064 static void
3065 test_assign_single ()
3066 {
3067 tree type = integer_type_node;
3068 tree lhs = build_decl (UNKNOWN_LOCATION, VAR_DECL,
3069 get_identifier ("tmp"),
3070 type);
3071 tree rhs = build_int_cst (type, 5);
3072 gassign *stmt = gimple_build_assign (lhs, rhs);
3073 verify_gimple_pp ("tmp = 5;", stmt);
3074
3075 ASSERT_TRUE (is_gimple_assign (stmt));
3076 ASSERT_EQ (lhs, gimple_assign_lhs (stmt));
3077 ASSERT_EQ (lhs, gimple_get_lhs (stmt));
3078 ASSERT_EQ (rhs, gimple_assign_rhs1 (stmt));
3079 ASSERT_EQ (NULL, gimple_assign_rhs2 (stmt));
3080 ASSERT_EQ (NULL, gimple_assign_rhs3 (stmt));
3081 ASSERT_TRUE (gimple_assign_single_p (stmt));
3082 ASSERT_EQ (INTEGER_CST, gimple_assign_rhs_code (stmt));
3083 }
3084
3085 /* Build a GIMPLE_ASSIGN equivalent to
3086 tmp = a * b;
3087 and verify various properties of it. */
3088
3089 static void
3090 test_assign_binop ()
3091 {
3092 tree type = integer_type_node;
3093 tree lhs = build_decl (UNKNOWN_LOCATION, VAR_DECL,
3094 get_identifier ("tmp"),
3095 type);
3096 tree a = build_decl (UNKNOWN_LOCATION, VAR_DECL,
3097 get_identifier ("a"),
3098 type);
3099 tree b = build_decl (UNKNOWN_LOCATION, VAR_DECL,
3100 get_identifier ("b"),
3101 type);
3102 gassign *stmt = gimple_build_assign (lhs, MULT_EXPR, a, b);
3103 verify_gimple_pp ("tmp = a * b;", stmt);
3104
3105 ASSERT_TRUE (is_gimple_assign (stmt));
3106 ASSERT_EQ (lhs, gimple_assign_lhs (stmt));
3107 ASSERT_EQ (lhs, gimple_get_lhs (stmt));
3108 ASSERT_EQ (a, gimple_assign_rhs1 (stmt));
3109 ASSERT_EQ (b, gimple_assign_rhs2 (stmt));
3110 ASSERT_EQ (NULL, gimple_assign_rhs3 (stmt));
3111 ASSERT_FALSE (gimple_assign_single_p (stmt));
3112 ASSERT_EQ (MULT_EXPR, gimple_assign_rhs_code (stmt));
3113 }
3114
3115 /* Build a GIMPLE_NOP and verify various properties of it. */
3116
3117 static void
3118 test_nop_stmt ()
3119 {
3120 gimple *stmt = gimple_build_nop ();
3121 verify_gimple_pp ("GIMPLE_NOP", stmt);
3122 ASSERT_EQ (GIMPLE_NOP, gimple_code (stmt));
3123 ASSERT_EQ (NULL, gimple_get_lhs (stmt));
3124 ASSERT_FALSE (gimple_assign_single_p (stmt));
3125 }
3126
3127 /* Build a GIMPLE_RETURN equivalent to
3128 return 7;
3129 and verify various properties of it. */
3130
3131 static void
3132 test_return_stmt ()
3133 {
3134 tree type = integer_type_node;
3135 tree val = build_int_cst (type, 7);
3136 greturn *stmt = gimple_build_return (val);
3137 verify_gimple_pp ("return 7;", stmt);
3138
3139 ASSERT_EQ (GIMPLE_RETURN, gimple_code (stmt));
3140 ASSERT_EQ (NULL, gimple_get_lhs (stmt));
3141 ASSERT_EQ (val, gimple_return_retval (stmt));
3142 ASSERT_FALSE (gimple_assign_single_p (stmt));
3143 }
3144
3145 /* Build a GIMPLE_RETURN equivalent to
3146 return;
3147 and verify various properties of it. */
3148
3149 static void
3150 test_return_without_value ()
3151 {
3152 greturn *stmt = gimple_build_return (NULL);
3153 verify_gimple_pp ("return;", stmt);
3154
3155 ASSERT_EQ (GIMPLE_RETURN, gimple_code (stmt));
3156 ASSERT_EQ (NULL, gimple_get_lhs (stmt));
3157 ASSERT_EQ (NULL, gimple_return_retval (stmt));
3158 ASSERT_FALSE (gimple_assign_single_p (stmt));
3159 }
3160
3161 /* Run all of the selftests within this file. */
3162
3163 void
3164 gimple_c_tests ()
3165 {
3166 test_assign_single ();
3167 test_assign_binop ();
3168 test_nop_stmt ();
3169 test_return_stmt ();
3170 test_return_without_value ();
3171 }
3172
3173 } // namespace selftest
3174
3175
3176 #endif /* CHECKING_P */