re PR tree-optimization/43833 (false warning: array subscript is above array bounds...
[gcc.git] / gcc / gimple.c
1 /* Gimple IR support functions.
2
3 Copyright 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "target.h"
27 #include "tree.h"
28 #include "ggc.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "gimple.h"
32 #include "toplev.h"
33 #include "diagnostic.h"
34 #include "tree-flow.h"
35 #include "value-prof.h"
36 #include "flags.h"
37 #include "alias.h"
38 #include "demangle.h"
39
40 /* Global type table. FIXME lto, it should be possible to re-use some
41 of the type hashing routines in tree.c (type_hash_canon, type_hash_lookup,
42 etc), but those assume that types were built with the various
43 build_*_type routines which is not the case with the streamer. */
44 static htab_t gimple_types;
45 static struct pointer_map_t *type_hash_cache;
46
47 /* Global type comparison cache. */
48 static htab_t gtc_visited;
49 static struct obstack gtc_ob;
50
51 /* All the tuples have their operand vector (if present) at the very bottom
52 of the structure. Therefore, the offset required to find the
53 operands vector the size of the structure minus the size of the 1
54 element tree array at the end (see gimple_ops). */
55 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
56 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
57 EXPORTED_CONST size_t gimple_ops_offset_[] = {
58 #include "gsstruct.def"
59 };
60 #undef DEFGSSTRUCT
61
62 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof(struct STRUCT),
63 static const size_t gsstruct_code_size[] = {
64 #include "gsstruct.def"
65 };
66 #undef DEFGSSTRUCT
67
68 #define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
69 const char *const gimple_code_name[] = {
70 #include "gimple.def"
71 };
72 #undef DEFGSCODE
73
74 #define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
75 EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
76 #include "gimple.def"
77 };
78 #undef DEFGSCODE
79
80 #ifdef GATHER_STATISTICS
81 /* Gimple stats. */
82
83 int gimple_alloc_counts[(int) gimple_alloc_kind_all];
84 int gimple_alloc_sizes[(int) gimple_alloc_kind_all];
85
86 /* Keep in sync with gimple.h:enum gimple_alloc_kind. */
87 static const char * const gimple_alloc_kind_names[] = {
88 "assignments",
89 "phi nodes",
90 "conditionals",
91 "sequences",
92 "everything else"
93 };
94
95 #endif /* GATHER_STATISTICS */
96
97 /* A cache of gimple_seq objects. Sequences are created and destroyed
98 fairly often during gimplification. */
99 static GTY ((deletable)) struct gimple_seq_d *gimple_seq_cache;
100
101 /* Private API manipulation functions shared only with some
102 other files. */
103 extern void gimple_set_stored_syms (gimple, bitmap, bitmap_obstack *);
104 extern void gimple_set_loaded_syms (gimple, bitmap, bitmap_obstack *);
105
106 /* Gimple tuple constructors.
107 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
108 be passed a NULL to start with an empty sequence. */
109
110 /* Set the code for statement G to CODE. */
111
112 static inline void
113 gimple_set_code (gimple g, enum gimple_code code)
114 {
115 g->gsbase.code = code;
116 }
117
118 /* Return the number of bytes needed to hold a GIMPLE statement with
119 code CODE. */
120
121 static inline size_t
122 gimple_size (enum gimple_code code)
123 {
124 return gsstruct_code_size[gss_for_code (code)];
125 }
126
127 /* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
128 operands. */
129
130 gimple
131 gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
132 {
133 size_t size;
134 gimple stmt;
135
136 size = gimple_size (code);
137 if (num_ops > 0)
138 size += sizeof (tree) * (num_ops - 1);
139
140 #ifdef GATHER_STATISTICS
141 {
142 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
143 gimple_alloc_counts[(int) kind]++;
144 gimple_alloc_sizes[(int) kind] += size;
145 }
146 #endif
147
148 stmt = (gimple) ggc_alloc_cleared_stat (size PASS_MEM_STAT);
149 gimple_set_code (stmt, code);
150 gimple_set_num_ops (stmt, num_ops);
151
152 /* Do not call gimple_set_modified here as it has other side
153 effects and this tuple is still not completely built. */
154 stmt->gsbase.modified = 1;
155
156 return stmt;
157 }
158
159 /* Set SUBCODE to be the code of the expression computed by statement G. */
160
161 static inline void
162 gimple_set_subcode (gimple g, unsigned subcode)
163 {
164 /* We only have 16 bits for the RHS code. Assert that we are not
165 overflowing it. */
166 gcc_assert (subcode < (1 << 16));
167 g->gsbase.subcode = subcode;
168 }
169
170
171
172 /* Build a tuple with operands. CODE is the statement to build (which
173 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the sub-code
174 for the new tuple. NUM_OPS is the number of operands to allocate. */
175
176 #define gimple_build_with_ops(c, s, n) \
177 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
178
179 static gimple
180 gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
181 unsigned num_ops MEM_STAT_DECL)
182 {
183 gimple s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT);
184 gimple_set_subcode (s, subcode);
185
186 return s;
187 }
188
189
190 /* Build a GIMPLE_RETURN statement returning RETVAL. */
191
192 gimple
193 gimple_build_return (tree retval)
194 {
195 gimple s = gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK, 1);
196 if (retval)
197 gimple_return_set_retval (s, retval);
198 return s;
199 }
200
201 /* Reset alias information on call S. */
202
203 void
204 gimple_call_reset_alias_info (gimple s)
205 {
206 if (gimple_call_flags (s) & ECF_CONST)
207 memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
208 else
209 pt_solution_reset (gimple_call_use_set (s));
210 if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
211 memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
212 else
213 pt_solution_reset (gimple_call_clobber_set (s));
214 }
215
216 /* Helper for gimple_build_call, gimple_build_call_vec and
217 gimple_build_call_from_tree. Build the basic components of a
218 GIMPLE_CALL statement to function FN with NARGS arguments. */
219
220 static inline gimple
221 gimple_build_call_1 (tree fn, unsigned nargs)
222 {
223 gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3);
224 if (TREE_CODE (fn) == FUNCTION_DECL)
225 fn = build_fold_addr_expr (fn);
226 gimple_set_op (s, 1, fn);
227 gimple_call_reset_alias_info (s);
228 return s;
229 }
230
231
232 /* Build a GIMPLE_CALL statement to function FN with the arguments
233 specified in vector ARGS. */
234
235 gimple
236 gimple_build_call_vec (tree fn, VEC(tree, heap) *args)
237 {
238 unsigned i;
239 unsigned nargs = VEC_length (tree, args);
240 gimple call = gimple_build_call_1 (fn, nargs);
241
242 for (i = 0; i < nargs; i++)
243 gimple_call_set_arg (call, i, VEC_index (tree, args, i));
244
245 return call;
246 }
247
248
249 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
250 arguments. The ... are the arguments. */
251
252 gimple
253 gimple_build_call (tree fn, unsigned nargs, ...)
254 {
255 va_list ap;
256 gimple call;
257 unsigned i;
258
259 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
260
261 call = gimple_build_call_1 (fn, nargs);
262
263 va_start (ap, nargs);
264 for (i = 0; i < nargs; i++)
265 gimple_call_set_arg (call, i, va_arg (ap, tree));
266 va_end (ap);
267
268 return call;
269 }
270
271
272 /* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
273 assumed to be in GIMPLE form already. Minimal checking is done of
274 this fact. */
275
276 gimple
277 gimple_build_call_from_tree (tree t)
278 {
279 unsigned i, nargs;
280 gimple call;
281 tree fndecl = get_callee_fndecl (t);
282
283 gcc_assert (TREE_CODE (t) == CALL_EXPR);
284
285 nargs = call_expr_nargs (t);
286 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
287
288 for (i = 0; i < nargs; i++)
289 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
290
291 gimple_set_block (call, TREE_BLOCK (t));
292
293 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
294 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
295 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
296 gimple_call_set_cannot_inline (call, CALL_CANNOT_INLINE_P (t));
297 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
298 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
299 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
300 gimple_set_no_warning (call, TREE_NO_WARNING (t));
301
302 return call;
303 }
304
305
306 /* Extract the operands and code for expression EXPR into *SUBCODE_P,
307 *OP1_P and *OP2_P respectively. */
308
309 void
310 extract_ops_from_tree (tree expr, enum tree_code *subcode_p, tree *op1_p,
311 tree *op2_p)
312 {
313 enum gimple_rhs_class grhs_class;
314
315 *subcode_p = TREE_CODE (expr);
316 grhs_class = get_gimple_rhs_class (*subcode_p);
317
318 if (grhs_class == GIMPLE_BINARY_RHS)
319 {
320 *op1_p = TREE_OPERAND (expr, 0);
321 *op2_p = TREE_OPERAND (expr, 1);
322 }
323 else if (grhs_class == GIMPLE_UNARY_RHS)
324 {
325 *op1_p = TREE_OPERAND (expr, 0);
326 *op2_p = NULL_TREE;
327 }
328 else if (grhs_class == GIMPLE_SINGLE_RHS)
329 {
330 *op1_p = expr;
331 *op2_p = NULL_TREE;
332 }
333 else
334 gcc_unreachable ();
335 }
336
337
338 /* Build a GIMPLE_ASSIGN statement.
339
340 LHS of the assignment.
341 RHS of the assignment which can be unary or binary. */
342
343 gimple
344 gimple_build_assign_stat (tree lhs, tree rhs MEM_STAT_DECL)
345 {
346 enum tree_code subcode;
347 tree op1, op2;
348
349 extract_ops_from_tree (rhs, &subcode, &op1, &op2);
350 return gimple_build_assign_with_ops_stat (subcode, lhs, op1, op2
351 PASS_MEM_STAT);
352 }
353
354
355 /* Build a GIMPLE_ASSIGN statement with sub-code SUBCODE and operands
356 OP1 and OP2. If OP2 is NULL then SUBCODE must be of class
357 GIMPLE_UNARY_RHS or GIMPLE_SINGLE_RHS. */
358
359 gimple
360 gimple_build_assign_with_ops_stat (enum tree_code subcode, tree lhs, tree op1,
361 tree op2 MEM_STAT_DECL)
362 {
363 unsigned num_ops;
364 gimple p;
365
366 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
367 code). */
368 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
369
370 p = gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
371 PASS_MEM_STAT);
372 gimple_assign_set_lhs (p, lhs);
373 gimple_assign_set_rhs1 (p, op1);
374 if (op2)
375 {
376 gcc_assert (num_ops > 2);
377 gimple_assign_set_rhs2 (p, op2);
378 }
379
380 return p;
381 }
382
383
384 /* Build a new GIMPLE_ASSIGN tuple and append it to the end of *SEQ_P.
385
386 DST/SRC are the destination and source respectively. You can pass
387 ungimplified trees in DST or SRC, in which case they will be
388 converted to a gimple operand if necessary.
389
390 This function returns the newly created GIMPLE_ASSIGN tuple. */
391
392 gimple
393 gimplify_assign (tree dst, tree src, gimple_seq *seq_p)
394 {
395 tree t = build2 (MODIFY_EXPR, TREE_TYPE (dst), dst, src);
396 gimplify_and_add (t, seq_p);
397 ggc_free (t);
398 return gimple_seq_last_stmt (*seq_p);
399 }
400
401
402 /* Build a GIMPLE_COND statement.
403
404 PRED is the condition used to compare LHS and the RHS.
405 T_LABEL is the label to jump to if the condition is true.
406 F_LABEL is the label to jump to otherwise. */
407
408 gimple
409 gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
410 tree t_label, tree f_label)
411 {
412 gimple p;
413
414 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
415 p = gimple_build_with_ops (GIMPLE_COND, pred_code, 4);
416 gimple_cond_set_lhs (p, lhs);
417 gimple_cond_set_rhs (p, rhs);
418 gimple_cond_set_true_label (p, t_label);
419 gimple_cond_set_false_label (p, f_label);
420 return p;
421 }
422
423
424 /* Extract operands for a GIMPLE_COND statement out of COND_EXPR tree COND. */
425
426 void
427 gimple_cond_get_ops_from_tree (tree cond, enum tree_code *code_p,
428 tree *lhs_p, tree *rhs_p)
429 {
430 location_t loc = EXPR_LOCATION (cond);
431 gcc_assert (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison
432 || TREE_CODE (cond) == TRUTH_NOT_EXPR
433 || is_gimple_min_invariant (cond)
434 || SSA_VAR_P (cond));
435
436 extract_ops_from_tree (cond, code_p, lhs_p, rhs_p);
437
438 /* Canonicalize conditionals of the form 'if (!VAL)'. */
439 if (*code_p == TRUTH_NOT_EXPR)
440 {
441 *code_p = EQ_EXPR;
442 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
443 *rhs_p = fold_convert_loc (loc, TREE_TYPE (*lhs_p), integer_zero_node);
444 }
445 /* Canonicalize conditionals of the form 'if (VAL)' */
446 else if (TREE_CODE_CLASS (*code_p) != tcc_comparison)
447 {
448 *code_p = NE_EXPR;
449 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
450 *rhs_p = fold_convert_loc (loc, TREE_TYPE (*lhs_p), integer_zero_node);
451 }
452 }
453
454
455 /* Build a GIMPLE_COND statement from the conditional expression tree
456 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
457
458 gimple
459 gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
460 {
461 enum tree_code code;
462 tree lhs, rhs;
463
464 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
465 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
466 }
467
468 /* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
469 boolean expression tree COND. */
470
471 void
472 gimple_cond_set_condition_from_tree (gimple stmt, tree cond)
473 {
474 enum tree_code code;
475 tree lhs, rhs;
476
477 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
478 gimple_cond_set_condition (stmt, code, lhs, rhs);
479 }
480
481 /* Build a GIMPLE_LABEL statement for LABEL. */
482
483 gimple
484 gimple_build_label (tree label)
485 {
486 gimple p = gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1);
487 gimple_label_set_label (p, label);
488 return p;
489 }
490
491 /* Build a GIMPLE_GOTO statement to label DEST. */
492
493 gimple
494 gimple_build_goto (tree dest)
495 {
496 gimple p = gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1);
497 gimple_goto_set_dest (p, dest);
498 return p;
499 }
500
501
502 /* Build a GIMPLE_NOP statement. */
503
504 gimple
505 gimple_build_nop (void)
506 {
507 return gimple_alloc (GIMPLE_NOP, 0);
508 }
509
510
511 /* Build a GIMPLE_BIND statement.
512 VARS are the variables in BODY.
513 BLOCK is the containing block. */
514
515 gimple
516 gimple_build_bind (tree vars, gimple_seq body, tree block)
517 {
518 gimple p = gimple_alloc (GIMPLE_BIND, 0);
519 gimple_bind_set_vars (p, vars);
520 if (body)
521 gimple_bind_set_body (p, body);
522 if (block)
523 gimple_bind_set_block (p, block);
524 return p;
525 }
526
527 /* Helper function to set the simple fields of a asm stmt.
528
529 STRING is a pointer to a string that is the asm blocks assembly code.
530 NINPUT is the number of register inputs.
531 NOUTPUT is the number of register outputs.
532 NCLOBBERS is the number of clobbered registers.
533 */
534
535 static inline gimple
536 gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
537 unsigned nclobbers, unsigned nlabels)
538 {
539 gimple p;
540 int size = strlen (string);
541
542 /* ASMs with labels cannot have outputs. This should have been
543 enforced by the front end. */
544 gcc_assert (nlabels == 0 || noutputs == 0);
545
546 p = gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
547 ninputs + noutputs + nclobbers + nlabels);
548
549 p->gimple_asm.ni = ninputs;
550 p->gimple_asm.no = noutputs;
551 p->gimple_asm.nc = nclobbers;
552 p->gimple_asm.nl = nlabels;
553 p->gimple_asm.string = ggc_alloc_string (string, size);
554
555 #ifdef GATHER_STATISTICS
556 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
557 #endif
558
559 return p;
560 }
561
562 /* Build a GIMPLE_ASM statement.
563
564 STRING is the assembly code.
565 NINPUT is the number of register inputs.
566 NOUTPUT is the number of register outputs.
567 NCLOBBERS is the number of clobbered registers.
568 INPUTS is a vector of the input register parameters.
569 OUTPUTS is a vector of the output register parameters.
570 CLOBBERS is a vector of the clobbered register parameters.
571 LABELS is a vector of destination labels. */
572
573 gimple
574 gimple_build_asm_vec (const char *string, VEC(tree,gc)* inputs,
575 VEC(tree,gc)* outputs, VEC(tree,gc)* clobbers,
576 VEC(tree,gc)* labels)
577 {
578 gimple p;
579 unsigned i;
580
581 p = gimple_build_asm_1 (string,
582 VEC_length (tree, inputs),
583 VEC_length (tree, outputs),
584 VEC_length (tree, clobbers),
585 VEC_length (tree, labels));
586
587 for (i = 0; i < VEC_length (tree, inputs); i++)
588 gimple_asm_set_input_op (p, i, VEC_index (tree, inputs, i));
589
590 for (i = 0; i < VEC_length (tree, outputs); i++)
591 gimple_asm_set_output_op (p, i, VEC_index (tree, outputs, i));
592
593 for (i = 0; i < VEC_length (tree, clobbers); i++)
594 gimple_asm_set_clobber_op (p, i, VEC_index (tree, clobbers, i));
595
596 for (i = 0; i < VEC_length (tree, labels); i++)
597 gimple_asm_set_label_op (p, i, VEC_index (tree, labels, i));
598
599 return p;
600 }
601
602 /* Build a GIMPLE_CATCH statement.
603
604 TYPES are the catch types.
605 HANDLER is the exception handler. */
606
607 gimple
608 gimple_build_catch (tree types, gimple_seq handler)
609 {
610 gimple p = gimple_alloc (GIMPLE_CATCH, 0);
611 gimple_catch_set_types (p, types);
612 if (handler)
613 gimple_catch_set_handler (p, handler);
614
615 return p;
616 }
617
618 /* Build a GIMPLE_EH_FILTER statement.
619
620 TYPES are the filter's types.
621 FAILURE is the filter's failure action. */
622
623 gimple
624 gimple_build_eh_filter (tree types, gimple_seq failure)
625 {
626 gimple p = gimple_alloc (GIMPLE_EH_FILTER, 0);
627 gimple_eh_filter_set_types (p, types);
628 if (failure)
629 gimple_eh_filter_set_failure (p, failure);
630
631 return p;
632 }
633
634 /* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
635
636 gimple
637 gimple_build_eh_must_not_throw (tree decl)
638 {
639 gimple p = gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 1);
640
641 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
642 gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
643 gimple_eh_must_not_throw_set_fndecl (p, decl);
644
645 return p;
646 }
647
648 /* Build a GIMPLE_TRY statement.
649
650 EVAL is the expression to evaluate.
651 CLEANUP is the cleanup expression.
652 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
653 whether this is a try/catch or a try/finally respectively. */
654
655 gimple
656 gimple_build_try (gimple_seq eval, gimple_seq cleanup,
657 enum gimple_try_flags kind)
658 {
659 gimple p;
660
661 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
662 p = gimple_alloc (GIMPLE_TRY, 0);
663 gimple_set_subcode (p, kind);
664 if (eval)
665 gimple_try_set_eval (p, eval);
666 if (cleanup)
667 gimple_try_set_cleanup (p, cleanup);
668
669 return p;
670 }
671
672 /* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
673
674 CLEANUP is the cleanup expression. */
675
676 gimple
677 gimple_build_wce (gimple_seq cleanup)
678 {
679 gimple p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
680 if (cleanup)
681 gimple_wce_set_cleanup (p, cleanup);
682
683 return p;
684 }
685
686
687 /* Build a GIMPLE_RESX statement. */
688
689 gimple
690 gimple_build_resx (int region)
691 {
692 gimple p = gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0);
693 p->gimple_eh_ctrl.region = region;
694 return p;
695 }
696
697
698 /* The helper for constructing a gimple switch statement.
699 INDEX is the switch's index.
700 NLABELS is the number of labels in the switch excluding the default.
701 DEFAULT_LABEL is the default label for the switch statement. */
702
703 gimple
704 gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
705 {
706 /* nlabels + 1 default label + 1 index. */
707 gimple p = gimple_build_with_ops (GIMPLE_SWITCH, ERROR_MARK,
708 1 + (default_label != NULL) + nlabels);
709 gimple_switch_set_index (p, index);
710 if (default_label)
711 gimple_switch_set_default_label (p, default_label);
712 return p;
713 }
714
715
716 /* Build a GIMPLE_SWITCH statement.
717
718 INDEX is the switch's index.
719 NLABELS is the number of labels in the switch excluding the DEFAULT_LABEL.
720 ... are the labels excluding the default. */
721
722 gimple
723 gimple_build_switch (unsigned nlabels, tree index, tree default_label, ...)
724 {
725 va_list al;
726 unsigned i, offset;
727 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
728
729 /* Store the rest of the labels. */
730 va_start (al, default_label);
731 offset = (default_label != NULL);
732 for (i = 0; i < nlabels; i++)
733 gimple_switch_set_label (p, i + offset, va_arg (al, tree));
734 va_end (al);
735
736 return p;
737 }
738
739
740 /* Build a GIMPLE_SWITCH statement.
741
742 INDEX is the switch's index.
743 DEFAULT_LABEL is the default label
744 ARGS is a vector of labels excluding the default. */
745
746 gimple
747 gimple_build_switch_vec (tree index, tree default_label, VEC(tree, heap) *args)
748 {
749 unsigned i, offset, nlabels = VEC_length (tree, args);
750 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
751
752 /* Copy the labels from the vector to the switch statement. */
753 offset = (default_label != NULL);
754 for (i = 0; i < nlabels; i++)
755 gimple_switch_set_label (p, i + offset, VEC_index (tree, args, i));
756
757 return p;
758 }
759
760 /* Build a GIMPLE_EH_DISPATCH statement. */
761
762 gimple
763 gimple_build_eh_dispatch (int region)
764 {
765 gimple p = gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0);
766 p->gimple_eh_ctrl.region = region;
767 return p;
768 }
769
770 /* Build a new GIMPLE_DEBUG_BIND statement.
771
772 VAR is bound to VALUE; block and location are taken from STMT. */
773
774 gimple
775 gimple_build_debug_bind_stat (tree var, tree value, gimple stmt MEM_STAT_DECL)
776 {
777 gimple p = gimple_build_with_ops_stat (GIMPLE_DEBUG,
778 (unsigned)GIMPLE_DEBUG_BIND, 2
779 PASS_MEM_STAT);
780
781 gimple_debug_bind_set_var (p, var);
782 gimple_debug_bind_set_value (p, value);
783 if (stmt)
784 {
785 gimple_set_block (p, gimple_block (stmt));
786 gimple_set_location (p, gimple_location (stmt));
787 }
788
789 return p;
790 }
791
792
793 /* Build a GIMPLE_OMP_CRITICAL statement.
794
795 BODY is the sequence of statements for which only one thread can execute.
796 NAME is optional identifier for this critical block. */
797
798 gimple
799 gimple_build_omp_critical (gimple_seq body, tree name)
800 {
801 gimple p = gimple_alloc (GIMPLE_OMP_CRITICAL, 0);
802 gimple_omp_critical_set_name (p, name);
803 if (body)
804 gimple_omp_set_body (p, body);
805
806 return p;
807 }
808
809 /* Build a GIMPLE_OMP_FOR statement.
810
811 BODY is sequence of statements inside the for loop.
812 CLAUSES, are any of the OMP loop construct's clauses: private, firstprivate,
813 lastprivate, reductions, ordered, schedule, and nowait.
814 COLLAPSE is the collapse count.
815 PRE_BODY is the sequence of statements that are loop invariant. */
816
817 gimple
818 gimple_build_omp_for (gimple_seq body, tree clauses, size_t collapse,
819 gimple_seq pre_body)
820 {
821 gimple p = gimple_alloc (GIMPLE_OMP_FOR, 0);
822 if (body)
823 gimple_omp_set_body (p, body);
824 gimple_omp_for_set_clauses (p, clauses);
825 p->gimple_omp_for.collapse = collapse;
826 p->gimple_omp_for.iter = GGC_CNEWVEC (struct gimple_omp_for_iter, collapse);
827 if (pre_body)
828 gimple_omp_for_set_pre_body (p, pre_body);
829
830 return p;
831 }
832
833
834 /* Build a GIMPLE_OMP_PARALLEL statement.
835
836 BODY is sequence of statements which are executed in parallel.
837 CLAUSES, are the OMP parallel construct's clauses.
838 CHILD_FN is the function created for the parallel threads to execute.
839 DATA_ARG are the shared data argument(s). */
840
841 gimple
842 gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
843 tree data_arg)
844 {
845 gimple p = gimple_alloc (GIMPLE_OMP_PARALLEL, 0);
846 if (body)
847 gimple_omp_set_body (p, body);
848 gimple_omp_parallel_set_clauses (p, clauses);
849 gimple_omp_parallel_set_child_fn (p, child_fn);
850 gimple_omp_parallel_set_data_arg (p, data_arg);
851
852 return p;
853 }
854
855
856 /* Build a GIMPLE_OMP_TASK statement.
857
858 BODY is sequence of statements which are executed by the explicit task.
859 CLAUSES, are the OMP parallel construct's clauses.
860 CHILD_FN is the function created for the parallel threads to execute.
861 DATA_ARG are the shared data argument(s).
862 COPY_FN is the optional function for firstprivate initialization.
863 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
864
865 gimple
866 gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
867 tree data_arg, tree copy_fn, tree arg_size,
868 tree arg_align)
869 {
870 gimple p = gimple_alloc (GIMPLE_OMP_TASK, 0);
871 if (body)
872 gimple_omp_set_body (p, body);
873 gimple_omp_task_set_clauses (p, clauses);
874 gimple_omp_task_set_child_fn (p, child_fn);
875 gimple_omp_task_set_data_arg (p, data_arg);
876 gimple_omp_task_set_copy_fn (p, copy_fn);
877 gimple_omp_task_set_arg_size (p, arg_size);
878 gimple_omp_task_set_arg_align (p, arg_align);
879
880 return p;
881 }
882
883
884 /* Build a GIMPLE_OMP_SECTION statement for a sections statement.
885
886 BODY is the sequence of statements in the section. */
887
888 gimple
889 gimple_build_omp_section (gimple_seq body)
890 {
891 gimple p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
892 if (body)
893 gimple_omp_set_body (p, body);
894
895 return p;
896 }
897
898
899 /* Build a GIMPLE_OMP_MASTER statement.
900
901 BODY is the sequence of statements to be executed by just the master. */
902
903 gimple
904 gimple_build_omp_master (gimple_seq body)
905 {
906 gimple p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
907 if (body)
908 gimple_omp_set_body (p, body);
909
910 return p;
911 }
912
913
914 /* Build a GIMPLE_OMP_CONTINUE statement.
915
916 CONTROL_DEF is the definition of the control variable.
917 CONTROL_USE is the use of the control variable. */
918
919 gimple
920 gimple_build_omp_continue (tree control_def, tree control_use)
921 {
922 gimple p = gimple_alloc (GIMPLE_OMP_CONTINUE, 0);
923 gimple_omp_continue_set_control_def (p, control_def);
924 gimple_omp_continue_set_control_use (p, control_use);
925 return p;
926 }
927
928 /* Build a GIMPLE_OMP_ORDERED statement.
929
930 BODY is the sequence of statements inside a loop that will executed in
931 sequence. */
932
933 gimple
934 gimple_build_omp_ordered (gimple_seq body)
935 {
936 gimple p = gimple_alloc (GIMPLE_OMP_ORDERED, 0);
937 if (body)
938 gimple_omp_set_body (p, body);
939
940 return p;
941 }
942
943
944 /* Build a GIMPLE_OMP_RETURN statement.
945 WAIT_P is true if this is a non-waiting return. */
946
947 gimple
948 gimple_build_omp_return (bool wait_p)
949 {
950 gimple p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
951 if (wait_p)
952 gimple_omp_return_set_nowait (p);
953
954 return p;
955 }
956
957
958 /* Build a GIMPLE_OMP_SECTIONS statement.
959
960 BODY is a sequence of section statements.
961 CLAUSES are any of the OMP sections contsruct's clauses: private,
962 firstprivate, lastprivate, reduction, and nowait. */
963
964 gimple
965 gimple_build_omp_sections (gimple_seq body, tree clauses)
966 {
967 gimple p = gimple_alloc (GIMPLE_OMP_SECTIONS, 0);
968 if (body)
969 gimple_omp_set_body (p, body);
970 gimple_omp_sections_set_clauses (p, clauses);
971
972 return p;
973 }
974
975
976 /* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
977
978 gimple
979 gimple_build_omp_sections_switch (void)
980 {
981 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
982 }
983
984
985 /* Build a GIMPLE_OMP_SINGLE statement.
986
987 BODY is the sequence of statements that will be executed once.
988 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
989 copyprivate, nowait. */
990
991 gimple
992 gimple_build_omp_single (gimple_seq body, tree clauses)
993 {
994 gimple p = gimple_alloc (GIMPLE_OMP_SINGLE, 0);
995 if (body)
996 gimple_omp_set_body (p, body);
997 gimple_omp_single_set_clauses (p, clauses);
998
999 return p;
1000 }
1001
1002
1003 /* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
1004
1005 gimple
1006 gimple_build_omp_atomic_load (tree lhs, tree rhs)
1007 {
1008 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0);
1009 gimple_omp_atomic_load_set_lhs (p, lhs);
1010 gimple_omp_atomic_load_set_rhs (p, rhs);
1011 return p;
1012 }
1013
1014 /* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1015
1016 VAL is the value we are storing. */
1017
1018 gimple
1019 gimple_build_omp_atomic_store (tree val)
1020 {
1021 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0);
1022 gimple_omp_atomic_store_set_val (p, val);
1023 return p;
1024 }
1025
1026 /* Build a GIMPLE_PREDICT statement. PREDICT is one of the predictors from
1027 predict.def, OUTCOME is NOT_TAKEN or TAKEN. */
1028
1029 gimple
1030 gimple_build_predict (enum br_predictor predictor, enum prediction outcome)
1031 {
1032 gimple p = gimple_alloc (GIMPLE_PREDICT, 0);
1033 /* Ensure all the predictors fit into the lower bits of the subcode. */
1034 gcc_assert ((int) END_PREDICTORS <= GF_PREDICT_TAKEN);
1035 gimple_predict_set_predictor (p, predictor);
1036 gimple_predict_set_outcome (p, outcome);
1037 return p;
1038 }
1039
1040 #if defined ENABLE_GIMPLE_CHECKING
1041 /* Complain of a gimple type mismatch and die. */
1042
1043 void
1044 gimple_check_failed (const_gimple gs, const char *file, int line,
1045 const char *function, enum gimple_code code,
1046 enum tree_code subcode)
1047 {
1048 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1049 gimple_code_name[code],
1050 tree_code_name[subcode],
1051 gimple_code_name[gimple_code (gs)],
1052 gs->gsbase.subcode > 0
1053 ? tree_code_name[gs->gsbase.subcode]
1054 : "",
1055 function, trim_filename (file), line);
1056 }
1057 #endif /* ENABLE_GIMPLE_CHECKING */
1058
1059
1060 /* Allocate a new GIMPLE sequence in GC memory and return it. If
1061 there are free sequences in GIMPLE_SEQ_CACHE return one of those
1062 instead. */
1063
1064 gimple_seq
1065 gimple_seq_alloc (void)
1066 {
1067 gimple_seq seq = gimple_seq_cache;
1068 if (seq)
1069 {
1070 gimple_seq_cache = gimple_seq_cache->next_free;
1071 gcc_assert (gimple_seq_cache != seq);
1072 memset (seq, 0, sizeof (*seq));
1073 }
1074 else
1075 {
1076 seq = (gimple_seq) ggc_alloc_cleared (sizeof (*seq));
1077 #ifdef GATHER_STATISTICS
1078 gimple_alloc_counts[(int) gimple_alloc_kind_seq]++;
1079 gimple_alloc_sizes[(int) gimple_alloc_kind_seq] += sizeof (*seq);
1080 #endif
1081 }
1082
1083 return seq;
1084 }
1085
1086 /* Return SEQ to the free pool of GIMPLE sequences. */
1087
1088 void
1089 gimple_seq_free (gimple_seq seq)
1090 {
1091 if (seq == NULL)
1092 return;
1093
1094 gcc_assert (gimple_seq_first (seq) == NULL);
1095 gcc_assert (gimple_seq_last (seq) == NULL);
1096
1097 /* If this triggers, it's a sign that the same list is being freed
1098 twice. */
1099 gcc_assert (seq != gimple_seq_cache || gimple_seq_cache == NULL);
1100
1101 /* Add SEQ to the pool of free sequences. */
1102 seq->next_free = gimple_seq_cache;
1103 gimple_seq_cache = seq;
1104 }
1105
1106
1107 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1108 *SEQ_P is NULL, a new sequence is allocated. */
1109
1110 void
1111 gimple_seq_add_stmt (gimple_seq *seq_p, gimple gs)
1112 {
1113 gimple_stmt_iterator si;
1114
1115 if (gs == NULL)
1116 return;
1117
1118 if (*seq_p == NULL)
1119 *seq_p = gimple_seq_alloc ();
1120
1121 si = gsi_last (*seq_p);
1122 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1123 }
1124
1125
1126 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1127 NULL, a new sequence is allocated. */
1128
1129 void
1130 gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1131 {
1132 gimple_stmt_iterator si;
1133
1134 if (src == NULL)
1135 return;
1136
1137 if (*dst_p == NULL)
1138 *dst_p = gimple_seq_alloc ();
1139
1140 si = gsi_last (*dst_p);
1141 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1142 }
1143
1144
1145 /* Helper function of empty_body_p. Return true if STMT is an empty
1146 statement. */
1147
1148 static bool
1149 empty_stmt_p (gimple stmt)
1150 {
1151 if (gimple_code (stmt) == GIMPLE_NOP)
1152 return true;
1153 if (gimple_code (stmt) == GIMPLE_BIND)
1154 return empty_body_p (gimple_bind_body (stmt));
1155 return false;
1156 }
1157
1158
1159 /* Return true if BODY contains nothing but empty statements. */
1160
1161 bool
1162 empty_body_p (gimple_seq body)
1163 {
1164 gimple_stmt_iterator i;
1165
1166 if (gimple_seq_empty_p (body))
1167 return true;
1168 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
1169 if (!empty_stmt_p (gsi_stmt (i))
1170 && !is_gimple_debug (gsi_stmt (i)))
1171 return false;
1172
1173 return true;
1174 }
1175
1176
1177 /* Perform a deep copy of sequence SRC and return the result. */
1178
1179 gimple_seq
1180 gimple_seq_copy (gimple_seq src)
1181 {
1182 gimple_stmt_iterator gsi;
1183 gimple_seq new_seq = gimple_seq_alloc ();
1184 gimple stmt;
1185
1186 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1187 {
1188 stmt = gimple_copy (gsi_stmt (gsi));
1189 gimple_seq_add_stmt (&new_seq, stmt);
1190 }
1191
1192 return new_seq;
1193 }
1194
1195
1196 /* Walk all the statements in the sequence SEQ calling walk_gimple_stmt
1197 on each one. WI is as in walk_gimple_stmt.
1198
1199 If walk_gimple_stmt returns non-NULL, the walk is stopped, the
1200 value is stored in WI->CALLBACK_RESULT and the statement that
1201 produced the value is returned.
1202
1203 Otherwise, all the statements are walked and NULL returned. */
1204
1205 gimple
1206 walk_gimple_seq (gimple_seq seq, walk_stmt_fn callback_stmt,
1207 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1208 {
1209 gimple_stmt_iterator gsi;
1210
1211 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
1212 {
1213 tree ret = walk_gimple_stmt (&gsi, callback_stmt, callback_op, wi);
1214 if (ret)
1215 {
1216 /* If CALLBACK_STMT or CALLBACK_OP return a value, WI must exist
1217 to hold it. */
1218 gcc_assert (wi);
1219 wi->callback_result = ret;
1220 return gsi_stmt (gsi);
1221 }
1222 }
1223
1224 if (wi)
1225 wi->callback_result = NULL_TREE;
1226
1227 return NULL;
1228 }
1229
1230
1231 /* Helper function for walk_gimple_stmt. Walk operands of a GIMPLE_ASM. */
1232
1233 static tree
1234 walk_gimple_asm (gimple stmt, walk_tree_fn callback_op,
1235 struct walk_stmt_info *wi)
1236 {
1237 tree ret, op;
1238 unsigned noutputs;
1239 const char **oconstraints;
1240 unsigned i, n;
1241 const char *constraint;
1242 bool allows_mem, allows_reg, is_inout;
1243
1244 noutputs = gimple_asm_noutputs (stmt);
1245 oconstraints = (const char **) alloca ((noutputs) * sizeof (const char *));
1246
1247 if (wi)
1248 wi->is_lhs = true;
1249
1250 for (i = 0; i < noutputs; i++)
1251 {
1252 op = gimple_asm_output_op (stmt, i);
1253 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1254 oconstraints[i] = constraint;
1255 parse_output_constraint (&constraint, i, 0, 0, &allows_mem, &allows_reg,
1256 &is_inout);
1257 if (wi)
1258 wi->val_only = (allows_reg || !allows_mem);
1259 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1260 if (ret)
1261 return ret;
1262 }
1263
1264 n = gimple_asm_ninputs (stmt);
1265 for (i = 0; i < n; i++)
1266 {
1267 op = gimple_asm_input_op (stmt, i);
1268 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1269 parse_input_constraint (&constraint, 0, 0, noutputs, 0,
1270 oconstraints, &allows_mem, &allows_reg);
1271 if (wi)
1272 {
1273 wi->val_only = (allows_reg || !allows_mem);
1274 /* Although input "m" is not really a LHS, we need a lvalue. */
1275 wi->is_lhs = !wi->val_only;
1276 }
1277 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1278 if (ret)
1279 return ret;
1280 }
1281
1282 if (wi)
1283 {
1284 wi->is_lhs = false;
1285 wi->val_only = true;
1286 }
1287
1288 n = gimple_asm_nlabels (stmt);
1289 for (i = 0; i < n; i++)
1290 {
1291 op = gimple_asm_label_op (stmt, i);
1292 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1293 if (ret)
1294 return ret;
1295 }
1296
1297 return NULL_TREE;
1298 }
1299
1300
1301 /* Helper function of WALK_GIMPLE_STMT. Walk every tree operand in
1302 STMT. CALLBACK_OP and WI are as in WALK_GIMPLE_STMT.
1303
1304 CALLBACK_OP is called on each operand of STMT via walk_tree.
1305 Additional parameters to walk_tree must be stored in WI. For each operand
1306 OP, walk_tree is called as:
1307
1308 walk_tree (&OP, CALLBACK_OP, WI, WI->PSET)
1309
1310 If CALLBACK_OP returns non-NULL for an operand, the remaining
1311 operands are not scanned.
1312
1313 The return value is that returned by the last call to walk_tree, or
1314 NULL_TREE if no CALLBACK_OP is specified. */
1315
1316 tree
1317 walk_gimple_op (gimple stmt, walk_tree_fn callback_op,
1318 struct walk_stmt_info *wi)
1319 {
1320 struct pointer_set_t *pset = (wi) ? wi->pset : NULL;
1321 unsigned i;
1322 tree ret = NULL_TREE;
1323
1324 switch (gimple_code (stmt))
1325 {
1326 case GIMPLE_ASSIGN:
1327 /* Walk the RHS operands. If the LHS is of a non-renamable type or
1328 is a register variable, we may use a COMPONENT_REF on the RHS. */
1329 if (wi)
1330 {
1331 tree lhs = gimple_assign_lhs (stmt);
1332 wi->val_only
1333 = (is_gimple_reg_type (TREE_TYPE (lhs)) && !is_gimple_reg (lhs))
1334 || !gimple_assign_single_p (stmt);
1335 }
1336
1337 for (i = 1; i < gimple_num_ops (stmt); i++)
1338 {
1339 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi,
1340 pset);
1341 if (ret)
1342 return ret;
1343 }
1344
1345 /* Walk the LHS. If the RHS is appropriate for a memory, we
1346 may use a COMPONENT_REF on the LHS. */
1347 if (wi)
1348 {
1349 /* If the RHS has more than 1 operand, it is not appropriate
1350 for the memory. */
1351 wi->val_only = !is_gimple_mem_rhs (gimple_assign_rhs1 (stmt))
1352 || !gimple_assign_single_p (stmt);
1353 wi->is_lhs = true;
1354 }
1355
1356 ret = walk_tree (gimple_op_ptr (stmt, 0), callback_op, wi, pset);
1357 if (ret)
1358 return ret;
1359
1360 if (wi)
1361 {
1362 wi->val_only = true;
1363 wi->is_lhs = false;
1364 }
1365 break;
1366
1367 case GIMPLE_CALL:
1368 if (wi)
1369 wi->is_lhs = false;
1370
1371 ret = walk_tree (gimple_call_chain_ptr (stmt), callback_op, wi, pset);
1372 if (ret)
1373 return ret;
1374
1375 ret = walk_tree (gimple_call_fn_ptr (stmt), callback_op, wi, pset);
1376 if (ret)
1377 return ret;
1378
1379 for (i = 0; i < gimple_call_num_args (stmt); i++)
1380 {
1381 ret = walk_tree (gimple_call_arg_ptr (stmt, i), callback_op, wi,
1382 pset);
1383 if (ret)
1384 return ret;
1385 }
1386
1387 if (wi)
1388 wi->is_lhs = true;
1389
1390 ret = walk_tree (gimple_call_lhs_ptr (stmt), callback_op, wi, pset);
1391 if (ret)
1392 return ret;
1393
1394 if (wi)
1395 wi->is_lhs = false;
1396 break;
1397
1398 case GIMPLE_CATCH:
1399 ret = walk_tree (gimple_catch_types_ptr (stmt), callback_op, wi,
1400 pset);
1401 if (ret)
1402 return ret;
1403 break;
1404
1405 case GIMPLE_EH_FILTER:
1406 ret = walk_tree (gimple_eh_filter_types_ptr (stmt), callback_op, wi,
1407 pset);
1408 if (ret)
1409 return ret;
1410 break;
1411
1412 case GIMPLE_ASM:
1413 ret = walk_gimple_asm (stmt, callback_op, wi);
1414 if (ret)
1415 return ret;
1416 break;
1417
1418 case GIMPLE_OMP_CONTINUE:
1419 ret = walk_tree (gimple_omp_continue_control_def_ptr (stmt),
1420 callback_op, wi, pset);
1421 if (ret)
1422 return ret;
1423
1424 ret = walk_tree (gimple_omp_continue_control_use_ptr (stmt),
1425 callback_op, wi, pset);
1426 if (ret)
1427 return ret;
1428 break;
1429
1430 case GIMPLE_OMP_CRITICAL:
1431 ret = walk_tree (gimple_omp_critical_name_ptr (stmt), callback_op, wi,
1432 pset);
1433 if (ret)
1434 return ret;
1435 break;
1436
1437 case GIMPLE_OMP_FOR:
1438 ret = walk_tree (gimple_omp_for_clauses_ptr (stmt), callback_op, wi,
1439 pset);
1440 if (ret)
1441 return ret;
1442 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1443 {
1444 ret = walk_tree (gimple_omp_for_index_ptr (stmt, i), callback_op,
1445 wi, pset);
1446 if (ret)
1447 return ret;
1448 ret = walk_tree (gimple_omp_for_initial_ptr (stmt, i), callback_op,
1449 wi, pset);
1450 if (ret)
1451 return ret;
1452 ret = walk_tree (gimple_omp_for_final_ptr (stmt, i), callback_op,
1453 wi, pset);
1454 if (ret)
1455 return ret;
1456 ret = walk_tree (gimple_omp_for_incr_ptr (stmt, i), callback_op,
1457 wi, pset);
1458 }
1459 if (ret)
1460 return ret;
1461 break;
1462
1463 case GIMPLE_OMP_PARALLEL:
1464 ret = walk_tree (gimple_omp_parallel_clauses_ptr (stmt), callback_op,
1465 wi, pset);
1466 if (ret)
1467 return ret;
1468 ret = walk_tree (gimple_omp_parallel_child_fn_ptr (stmt), callback_op,
1469 wi, pset);
1470 if (ret)
1471 return ret;
1472 ret = walk_tree (gimple_omp_parallel_data_arg_ptr (stmt), callback_op,
1473 wi, pset);
1474 if (ret)
1475 return ret;
1476 break;
1477
1478 case GIMPLE_OMP_TASK:
1479 ret = walk_tree (gimple_omp_task_clauses_ptr (stmt), callback_op,
1480 wi, pset);
1481 if (ret)
1482 return ret;
1483 ret = walk_tree (gimple_omp_task_child_fn_ptr (stmt), callback_op,
1484 wi, pset);
1485 if (ret)
1486 return ret;
1487 ret = walk_tree (gimple_omp_task_data_arg_ptr (stmt), callback_op,
1488 wi, pset);
1489 if (ret)
1490 return ret;
1491 ret = walk_tree (gimple_omp_task_copy_fn_ptr (stmt), callback_op,
1492 wi, pset);
1493 if (ret)
1494 return ret;
1495 ret = walk_tree (gimple_omp_task_arg_size_ptr (stmt), callback_op,
1496 wi, pset);
1497 if (ret)
1498 return ret;
1499 ret = walk_tree (gimple_omp_task_arg_align_ptr (stmt), callback_op,
1500 wi, pset);
1501 if (ret)
1502 return ret;
1503 break;
1504
1505 case GIMPLE_OMP_SECTIONS:
1506 ret = walk_tree (gimple_omp_sections_clauses_ptr (stmt), callback_op,
1507 wi, pset);
1508 if (ret)
1509 return ret;
1510
1511 ret = walk_tree (gimple_omp_sections_control_ptr (stmt), callback_op,
1512 wi, pset);
1513 if (ret)
1514 return ret;
1515
1516 break;
1517
1518 case GIMPLE_OMP_SINGLE:
1519 ret = walk_tree (gimple_omp_single_clauses_ptr (stmt), callback_op, wi,
1520 pset);
1521 if (ret)
1522 return ret;
1523 break;
1524
1525 case GIMPLE_OMP_ATOMIC_LOAD:
1526 ret = walk_tree (gimple_omp_atomic_load_lhs_ptr (stmt), callback_op, wi,
1527 pset);
1528 if (ret)
1529 return ret;
1530
1531 ret = walk_tree (gimple_omp_atomic_load_rhs_ptr (stmt), callback_op, wi,
1532 pset);
1533 if (ret)
1534 return ret;
1535 break;
1536
1537 case GIMPLE_OMP_ATOMIC_STORE:
1538 ret = walk_tree (gimple_omp_atomic_store_val_ptr (stmt), callback_op,
1539 wi, pset);
1540 if (ret)
1541 return ret;
1542 break;
1543
1544 /* Tuples that do not have operands. */
1545 case GIMPLE_NOP:
1546 case GIMPLE_RESX:
1547 case GIMPLE_OMP_RETURN:
1548 case GIMPLE_PREDICT:
1549 break;
1550
1551 default:
1552 {
1553 enum gimple_statement_structure_enum gss;
1554 gss = gimple_statement_structure (stmt);
1555 if (gss == GSS_WITH_OPS || gss == GSS_WITH_MEM_OPS)
1556 for (i = 0; i < gimple_num_ops (stmt); i++)
1557 {
1558 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi, pset);
1559 if (ret)
1560 return ret;
1561 }
1562 }
1563 break;
1564 }
1565
1566 return NULL_TREE;
1567 }
1568
1569
1570 /* Walk the current statement in GSI (optionally using traversal state
1571 stored in WI). If WI is NULL, no state is kept during traversal.
1572 The callback CALLBACK_STMT is called. If CALLBACK_STMT indicates
1573 that it has handled all the operands of the statement, its return
1574 value is returned. Otherwise, the return value from CALLBACK_STMT
1575 is discarded and its operands are scanned.
1576
1577 If CALLBACK_STMT is NULL or it didn't handle the operands,
1578 CALLBACK_OP is called on each operand of the statement via
1579 walk_gimple_op. If walk_gimple_op returns non-NULL for any
1580 operand, the remaining operands are not scanned. In this case, the
1581 return value from CALLBACK_OP is returned.
1582
1583 In any other case, NULL_TREE is returned. */
1584
1585 tree
1586 walk_gimple_stmt (gimple_stmt_iterator *gsi, walk_stmt_fn callback_stmt,
1587 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1588 {
1589 gimple ret;
1590 tree tree_ret;
1591 gimple stmt = gsi_stmt (*gsi);
1592
1593 if (wi)
1594 wi->gsi = *gsi;
1595
1596 if (wi && wi->want_locations && gimple_has_location (stmt))
1597 input_location = gimple_location (stmt);
1598
1599 ret = NULL;
1600
1601 /* Invoke the statement callback. Return if the callback handled
1602 all of STMT operands by itself. */
1603 if (callback_stmt)
1604 {
1605 bool handled_ops = false;
1606 tree_ret = callback_stmt (gsi, &handled_ops, wi);
1607 if (handled_ops)
1608 return tree_ret;
1609
1610 /* If CALLBACK_STMT did not handle operands, it should not have
1611 a value to return. */
1612 gcc_assert (tree_ret == NULL);
1613
1614 /* Re-read stmt in case the callback changed it. */
1615 stmt = gsi_stmt (*gsi);
1616 }
1617
1618 /* If CALLBACK_OP is defined, invoke it on every operand of STMT. */
1619 if (callback_op)
1620 {
1621 tree_ret = walk_gimple_op (stmt, callback_op, wi);
1622 if (tree_ret)
1623 return tree_ret;
1624 }
1625
1626 /* If STMT can have statements inside (e.g. GIMPLE_BIND), walk them. */
1627 switch (gimple_code (stmt))
1628 {
1629 case GIMPLE_BIND:
1630 ret = walk_gimple_seq (gimple_bind_body (stmt), callback_stmt,
1631 callback_op, wi);
1632 if (ret)
1633 return wi->callback_result;
1634 break;
1635
1636 case GIMPLE_CATCH:
1637 ret = walk_gimple_seq (gimple_catch_handler (stmt), callback_stmt,
1638 callback_op, wi);
1639 if (ret)
1640 return wi->callback_result;
1641 break;
1642
1643 case GIMPLE_EH_FILTER:
1644 ret = walk_gimple_seq (gimple_eh_filter_failure (stmt), callback_stmt,
1645 callback_op, wi);
1646 if (ret)
1647 return wi->callback_result;
1648 break;
1649
1650 case GIMPLE_TRY:
1651 ret = walk_gimple_seq (gimple_try_eval (stmt), callback_stmt, callback_op,
1652 wi);
1653 if (ret)
1654 return wi->callback_result;
1655
1656 ret = walk_gimple_seq (gimple_try_cleanup (stmt), callback_stmt,
1657 callback_op, wi);
1658 if (ret)
1659 return wi->callback_result;
1660 break;
1661
1662 case GIMPLE_OMP_FOR:
1663 ret = walk_gimple_seq (gimple_omp_for_pre_body (stmt), callback_stmt,
1664 callback_op, wi);
1665 if (ret)
1666 return wi->callback_result;
1667
1668 /* FALL THROUGH. */
1669 case GIMPLE_OMP_CRITICAL:
1670 case GIMPLE_OMP_MASTER:
1671 case GIMPLE_OMP_ORDERED:
1672 case GIMPLE_OMP_SECTION:
1673 case GIMPLE_OMP_PARALLEL:
1674 case GIMPLE_OMP_TASK:
1675 case GIMPLE_OMP_SECTIONS:
1676 case GIMPLE_OMP_SINGLE:
1677 ret = walk_gimple_seq (gimple_omp_body (stmt), callback_stmt, callback_op,
1678 wi);
1679 if (ret)
1680 return wi->callback_result;
1681 break;
1682
1683 case GIMPLE_WITH_CLEANUP_EXPR:
1684 ret = walk_gimple_seq (gimple_wce_cleanup (stmt), callback_stmt,
1685 callback_op, wi);
1686 if (ret)
1687 return wi->callback_result;
1688 break;
1689
1690 default:
1691 gcc_assert (!gimple_has_substatements (stmt));
1692 break;
1693 }
1694
1695 return NULL;
1696 }
1697
1698
1699 /* Set sequence SEQ to be the GIMPLE body for function FN. */
1700
1701 void
1702 gimple_set_body (tree fndecl, gimple_seq seq)
1703 {
1704 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1705 if (fn == NULL)
1706 {
1707 /* If FNDECL still does not have a function structure associated
1708 with it, then it does not make sense for it to receive a
1709 GIMPLE body. */
1710 gcc_assert (seq == NULL);
1711 }
1712 else
1713 fn->gimple_body = seq;
1714 }
1715
1716
1717 /* Return the body of GIMPLE statements for function FN. */
1718
1719 gimple_seq
1720 gimple_body (tree fndecl)
1721 {
1722 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1723 return fn ? fn->gimple_body : NULL;
1724 }
1725
1726 /* Return true when FNDECL has Gimple body either in unlowered
1727 or CFG form. */
1728 bool
1729 gimple_has_body_p (tree fndecl)
1730 {
1731 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1732 return (gimple_body (fndecl) || (fn && fn->cfg));
1733 }
1734
1735 /* Detect flags from a GIMPLE_CALL. This is just like
1736 call_expr_flags, but for gimple tuples. */
1737
1738 int
1739 gimple_call_flags (const_gimple stmt)
1740 {
1741 int flags;
1742 tree decl = gimple_call_fndecl (stmt);
1743 tree t;
1744
1745 if (decl)
1746 flags = flags_from_decl_or_type (decl);
1747 else
1748 {
1749 t = TREE_TYPE (gimple_call_fn (stmt));
1750 if (t && TREE_CODE (t) == POINTER_TYPE)
1751 flags = flags_from_decl_or_type (TREE_TYPE (t));
1752 else
1753 flags = 0;
1754 }
1755
1756 return flags;
1757 }
1758
1759
1760 /* Return true if GS is a copy assignment. */
1761
1762 bool
1763 gimple_assign_copy_p (gimple gs)
1764 {
1765 return gimple_code (gs) == GIMPLE_ASSIGN
1766 && get_gimple_rhs_class (gimple_assign_rhs_code (gs))
1767 == GIMPLE_SINGLE_RHS
1768 && is_gimple_val (gimple_op (gs, 1));
1769 }
1770
1771
1772 /* Return true if GS is a SSA_NAME copy assignment. */
1773
1774 bool
1775 gimple_assign_ssa_name_copy_p (gimple gs)
1776 {
1777 return (gimple_code (gs) == GIMPLE_ASSIGN
1778 && (get_gimple_rhs_class (gimple_assign_rhs_code (gs))
1779 == GIMPLE_SINGLE_RHS)
1780 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1781 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1782 }
1783
1784
1785 /* Return true if GS is an assignment with a singleton RHS, i.e.,
1786 there is no operator associated with the assignment itself.
1787 Unlike gimple_assign_copy_p, this predicate returns true for
1788 any RHS operand, including those that perform an operation
1789 and do not have the semantics of a copy, such as COND_EXPR. */
1790
1791 bool
1792 gimple_assign_single_p (gimple gs)
1793 {
1794 return (gimple_code (gs) == GIMPLE_ASSIGN
1795 && get_gimple_rhs_class (gimple_assign_rhs_code (gs))
1796 == GIMPLE_SINGLE_RHS);
1797 }
1798
1799 /* Return true if GS is an assignment with a unary RHS, but the
1800 operator has no effect on the assigned value. The logic is adapted
1801 from STRIP_NOPS. This predicate is intended to be used in tuplifying
1802 instances in which STRIP_NOPS was previously applied to the RHS of
1803 an assignment.
1804
1805 NOTE: In the use cases that led to the creation of this function
1806 and of gimple_assign_single_p, it is typical to test for either
1807 condition and to proceed in the same manner. In each case, the
1808 assigned value is represented by the single RHS operand of the
1809 assignment. I suspect there may be cases where gimple_assign_copy_p,
1810 gimple_assign_single_p, or equivalent logic is used where a similar
1811 treatment of unary NOPs is appropriate. */
1812
1813 bool
1814 gimple_assign_unary_nop_p (gimple gs)
1815 {
1816 return (gimple_code (gs) == GIMPLE_ASSIGN
1817 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
1818 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
1819 && gimple_assign_rhs1 (gs) != error_mark_node
1820 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
1821 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
1822 }
1823
1824 /* Set BB to be the basic block holding G. */
1825
1826 void
1827 gimple_set_bb (gimple stmt, basic_block bb)
1828 {
1829 stmt->gsbase.bb = bb;
1830
1831 /* If the statement is a label, add the label to block-to-labels map
1832 so that we can speed up edge creation for GIMPLE_GOTOs. */
1833 if (cfun->cfg && gimple_code (stmt) == GIMPLE_LABEL)
1834 {
1835 tree t;
1836 int uid;
1837
1838 t = gimple_label_label (stmt);
1839 uid = LABEL_DECL_UID (t);
1840 if (uid == -1)
1841 {
1842 unsigned old_len = VEC_length (basic_block, label_to_block_map);
1843 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
1844 if (old_len <= (unsigned) uid)
1845 {
1846 unsigned new_len = 3 * uid / 2 + 1;
1847
1848 VEC_safe_grow_cleared (basic_block, gc, label_to_block_map,
1849 new_len);
1850 }
1851 }
1852
1853 VEC_replace (basic_block, label_to_block_map, uid, bb);
1854 }
1855 }
1856
1857
1858 /* Modify the RHS of the assignment pointed-to by GSI using the
1859 operands in the expression tree EXPR.
1860
1861 NOTE: The statement pointed-to by GSI may be reallocated if it
1862 did not have enough operand slots.
1863
1864 This function is useful to convert an existing tree expression into
1865 the flat representation used for the RHS of a GIMPLE assignment.
1866 It will reallocate memory as needed to expand or shrink the number
1867 of operand slots needed to represent EXPR.
1868
1869 NOTE: If you find yourself building a tree and then calling this
1870 function, you are most certainly doing it the slow way. It is much
1871 better to build a new assignment or to use the function
1872 gimple_assign_set_rhs_with_ops, which does not require an
1873 expression tree to be built. */
1874
1875 void
1876 gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
1877 {
1878 enum tree_code subcode;
1879 tree op1, op2;
1880
1881 extract_ops_from_tree (expr, &subcode, &op1, &op2);
1882 gimple_assign_set_rhs_with_ops (gsi, subcode, op1, op2);
1883 }
1884
1885
1886 /* Set the RHS of assignment statement pointed-to by GSI to CODE with
1887 operands OP1 and OP2.
1888
1889 NOTE: The statement pointed-to by GSI may be reallocated if it
1890 did not have enough operand slots. */
1891
1892 void
1893 gimple_assign_set_rhs_with_ops (gimple_stmt_iterator *gsi, enum tree_code code,
1894 tree op1, tree op2)
1895 {
1896 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
1897 gimple stmt = gsi_stmt (*gsi);
1898
1899 /* If the new CODE needs more operands, allocate a new statement. */
1900 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
1901 {
1902 tree lhs = gimple_assign_lhs (stmt);
1903 gimple new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
1904 memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
1905 gsi_replace (gsi, new_stmt, true);
1906 stmt = new_stmt;
1907
1908 /* The LHS needs to be reset as this also changes the SSA name
1909 on the LHS. */
1910 gimple_assign_set_lhs (stmt, lhs);
1911 }
1912
1913 gimple_set_num_ops (stmt, new_rhs_ops + 1);
1914 gimple_set_subcode (stmt, code);
1915 gimple_assign_set_rhs1 (stmt, op1);
1916 if (new_rhs_ops > 1)
1917 gimple_assign_set_rhs2 (stmt, op2);
1918 }
1919
1920
1921 /* Return the LHS of a statement that performs an assignment,
1922 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
1923 for a call to a function that returns no value, or for a
1924 statement other than an assignment or a call. */
1925
1926 tree
1927 gimple_get_lhs (const_gimple stmt)
1928 {
1929 enum gimple_code code = gimple_code (stmt);
1930
1931 if (code == GIMPLE_ASSIGN)
1932 return gimple_assign_lhs (stmt);
1933 else if (code == GIMPLE_CALL)
1934 return gimple_call_lhs (stmt);
1935 else
1936 return NULL_TREE;
1937 }
1938
1939
1940 /* Set the LHS of a statement that performs an assignment,
1941 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
1942
1943 void
1944 gimple_set_lhs (gimple stmt, tree lhs)
1945 {
1946 enum gimple_code code = gimple_code (stmt);
1947
1948 if (code == GIMPLE_ASSIGN)
1949 gimple_assign_set_lhs (stmt, lhs);
1950 else if (code == GIMPLE_CALL)
1951 gimple_call_set_lhs (stmt, lhs);
1952 else
1953 gcc_unreachable();
1954 }
1955
1956 /* Replace the LHS of STMT, an assignment, either a GIMPLE_ASSIGN or a
1957 GIMPLE_CALL, with NLHS, in preparation for modifying the RHS to an
1958 expression with a different value.
1959
1960 This will update any annotations (say debug bind stmts) referring
1961 to the original LHS, so that they use the RHS instead. This is
1962 done even if NLHS and LHS are the same, for it is understood that
1963 the RHS will be modified afterwards, and NLHS will not be assigned
1964 an equivalent value.
1965
1966 Adjusting any non-annotation uses of the LHS, if needed, is a
1967 responsibility of the caller.
1968
1969 The effect of this call should be pretty much the same as that of
1970 inserting a copy of STMT before STMT, and then removing the
1971 original stmt, at which time gsi_remove() would have update
1972 annotations, but using this function saves all the inserting,
1973 copying and removing. */
1974
1975 void
1976 gimple_replace_lhs (gimple stmt, tree nlhs)
1977 {
1978 if (MAY_HAVE_DEBUG_STMTS)
1979 {
1980 tree lhs = gimple_get_lhs (stmt);
1981
1982 gcc_assert (SSA_NAME_DEF_STMT (lhs) == stmt);
1983
1984 insert_debug_temp_for_var_def (NULL, lhs);
1985 }
1986
1987 gimple_set_lhs (stmt, nlhs);
1988 }
1989
1990 /* Return a deep copy of statement STMT. All the operands from STMT
1991 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
1992 and VUSE operand arrays are set to empty in the new copy. */
1993
1994 gimple
1995 gimple_copy (gimple stmt)
1996 {
1997 enum gimple_code code = gimple_code (stmt);
1998 unsigned num_ops = gimple_num_ops (stmt);
1999 gimple copy = gimple_alloc (code, num_ops);
2000 unsigned i;
2001
2002 /* Shallow copy all the fields from STMT. */
2003 memcpy (copy, stmt, gimple_size (code));
2004
2005 /* If STMT has sub-statements, deep-copy them as well. */
2006 if (gimple_has_substatements (stmt))
2007 {
2008 gimple_seq new_seq;
2009 tree t;
2010
2011 switch (gimple_code (stmt))
2012 {
2013 case GIMPLE_BIND:
2014 new_seq = gimple_seq_copy (gimple_bind_body (stmt));
2015 gimple_bind_set_body (copy, new_seq);
2016 gimple_bind_set_vars (copy, unshare_expr (gimple_bind_vars (stmt)));
2017 gimple_bind_set_block (copy, gimple_bind_block (stmt));
2018 break;
2019
2020 case GIMPLE_CATCH:
2021 new_seq = gimple_seq_copy (gimple_catch_handler (stmt));
2022 gimple_catch_set_handler (copy, new_seq);
2023 t = unshare_expr (gimple_catch_types (stmt));
2024 gimple_catch_set_types (copy, t);
2025 break;
2026
2027 case GIMPLE_EH_FILTER:
2028 new_seq = gimple_seq_copy (gimple_eh_filter_failure (stmt));
2029 gimple_eh_filter_set_failure (copy, new_seq);
2030 t = unshare_expr (gimple_eh_filter_types (stmt));
2031 gimple_eh_filter_set_types (copy, t);
2032 break;
2033
2034 case GIMPLE_TRY:
2035 new_seq = gimple_seq_copy (gimple_try_eval (stmt));
2036 gimple_try_set_eval (copy, new_seq);
2037 new_seq = gimple_seq_copy (gimple_try_cleanup (stmt));
2038 gimple_try_set_cleanup (copy, new_seq);
2039 break;
2040
2041 case GIMPLE_OMP_FOR:
2042 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
2043 gimple_omp_for_set_pre_body (copy, new_seq);
2044 t = unshare_expr (gimple_omp_for_clauses (stmt));
2045 gimple_omp_for_set_clauses (copy, t);
2046 copy->gimple_omp_for.iter
2047 = GGC_NEWVEC (struct gimple_omp_for_iter,
2048 gimple_omp_for_collapse (stmt));
2049 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
2050 {
2051 gimple_omp_for_set_cond (copy, i,
2052 gimple_omp_for_cond (stmt, i));
2053 gimple_omp_for_set_index (copy, i,
2054 gimple_omp_for_index (stmt, i));
2055 t = unshare_expr (gimple_omp_for_initial (stmt, i));
2056 gimple_omp_for_set_initial (copy, i, t);
2057 t = unshare_expr (gimple_omp_for_final (stmt, i));
2058 gimple_omp_for_set_final (copy, i, t);
2059 t = unshare_expr (gimple_omp_for_incr (stmt, i));
2060 gimple_omp_for_set_incr (copy, i, t);
2061 }
2062 goto copy_omp_body;
2063
2064 case GIMPLE_OMP_PARALLEL:
2065 t = unshare_expr (gimple_omp_parallel_clauses (stmt));
2066 gimple_omp_parallel_set_clauses (copy, t);
2067 t = unshare_expr (gimple_omp_parallel_child_fn (stmt));
2068 gimple_omp_parallel_set_child_fn (copy, t);
2069 t = unshare_expr (gimple_omp_parallel_data_arg (stmt));
2070 gimple_omp_parallel_set_data_arg (copy, t);
2071 goto copy_omp_body;
2072
2073 case GIMPLE_OMP_TASK:
2074 t = unshare_expr (gimple_omp_task_clauses (stmt));
2075 gimple_omp_task_set_clauses (copy, t);
2076 t = unshare_expr (gimple_omp_task_child_fn (stmt));
2077 gimple_omp_task_set_child_fn (copy, t);
2078 t = unshare_expr (gimple_omp_task_data_arg (stmt));
2079 gimple_omp_task_set_data_arg (copy, t);
2080 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
2081 gimple_omp_task_set_copy_fn (copy, t);
2082 t = unshare_expr (gimple_omp_task_arg_size (stmt));
2083 gimple_omp_task_set_arg_size (copy, t);
2084 t = unshare_expr (gimple_omp_task_arg_align (stmt));
2085 gimple_omp_task_set_arg_align (copy, t);
2086 goto copy_omp_body;
2087
2088 case GIMPLE_OMP_CRITICAL:
2089 t = unshare_expr (gimple_omp_critical_name (stmt));
2090 gimple_omp_critical_set_name (copy, t);
2091 goto copy_omp_body;
2092
2093 case GIMPLE_OMP_SECTIONS:
2094 t = unshare_expr (gimple_omp_sections_clauses (stmt));
2095 gimple_omp_sections_set_clauses (copy, t);
2096 t = unshare_expr (gimple_omp_sections_control (stmt));
2097 gimple_omp_sections_set_control (copy, t);
2098 /* FALLTHRU */
2099
2100 case GIMPLE_OMP_SINGLE:
2101 case GIMPLE_OMP_SECTION:
2102 case GIMPLE_OMP_MASTER:
2103 case GIMPLE_OMP_ORDERED:
2104 copy_omp_body:
2105 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
2106 gimple_omp_set_body (copy, new_seq);
2107 break;
2108
2109 case GIMPLE_WITH_CLEANUP_EXPR:
2110 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
2111 gimple_wce_set_cleanup (copy, new_seq);
2112 break;
2113
2114 default:
2115 gcc_unreachable ();
2116 }
2117 }
2118
2119 /* Make copy of operands. */
2120 if (num_ops > 0)
2121 {
2122 for (i = 0; i < num_ops; i++)
2123 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
2124
2125 /* Clear out SSA operand vectors on COPY. */
2126 if (gimple_has_ops (stmt))
2127 {
2128 gimple_set_def_ops (copy, NULL);
2129 gimple_set_use_ops (copy, NULL);
2130 }
2131
2132 if (gimple_has_mem_ops (stmt))
2133 {
2134 gimple_set_vdef (copy, gimple_vdef (stmt));
2135 gimple_set_vuse (copy, gimple_vuse (stmt));
2136 }
2137
2138 /* SSA operands need to be updated. */
2139 gimple_set_modified (copy, true);
2140 }
2141
2142 return copy;
2143 }
2144
2145
2146 /* Set the MODIFIED flag to MODIFIEDP, iff the gimple statement G has
2147 a MODIFIED field. */
2148
2149 void
2150 gimple_set_modified (gimple s, bool modifiedp)
2151 {
2152 if (gimple_has_ops (s))
2153 {
2154 s->gsbase.modified = (unsigned) modifiedp;
2155
2156 if (modifiedp
2157 && cfun->gimple_df
2158 && is_gimple_call (s)
2159 && gimple_call_noreturn_p (s))
2160 VEC_safe_push (gimple, gc, MODIFIED_NORETURN_CALLS (cfun), s);
2161 }
2162 }
2163
2164
2165 /* Return true if statement S has side-effects. We consider a
2166 statement to have side effects if:
2167
2168 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
2169 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
2170
2171 bool
2172 gimple_has_side_effects (const_gimple s)
2173 {
2174 unsigned i;
2175
2176 if (is_gimple_debug (s))
2177 return false;
2178
2179 /* We don't have to scan the arguments to check for
2180 volatile arguments, though, at present, we still
2181 do a scan to check for TREE_SIDE_EFFECTS. */
2182 if (gimple_has_volatile_ops (s))
2183 return true;
2184
2185 if (is_gimple_call (s))
2186 {
2187 unsigned nargs = gimple_call_num_args (s);
2188
2189 if (!(gimple_call_flags (s) & (ECF_CONST | ECF_PURE)))
2190 return true;
2191 else if (gimple_call_flags (s) & ECF_LOOPING_CONST_OR_PURE)
2192 /* An infinite loop is considered a side effect. */
2193 return true;
2194
2195 if (gimple_call_lhs (s)
2196 && TREE_SIDE_EFFECTS (gimple_call_lhs (s)))
2197 {
2198 gcc_assert (gimple_has_volatile_ops (s));
2199 return true;
2200 }
2201
2202 if (TREE_SIDE_EFFECTS (gimple_call_fn (s)))
2203 return true;
2204
2205 for (i = 0; i < nargs; i++)
2206 if (TREE_SIDE_EFFECTS (gimple_call_arg (s, i)))
2207 {
2208 gcc_assert (gimple_has_volatile_ops (s));
2209 return true;
2210 }
2211
2212 return false;
2213 }
2214 else
2215 {
2216 for (i = 0; i < gimple_num_ops (s); i++)
2217 if (TREE_SIDE_EFFECTS (gimple_op (s, i)))
2218 {
2219 gcc_assert (gimple_has_volatile_ops (s));
2220 return true;
2221 }
2222 }
2223
2224 return false;
2225 }
2226
2227 /* Return true if the RHS of statement S has side effects.
2228 We may use it to determine if it is admissable to replace
2229 an assignment or call with a copy of a previously-computed
2230 value. In such cases, side-effects due the the LHS are
2231 preserved. */
2232
2233 bool
2234 gimple_rhs_has_side_effects (const_gimple s)
2235 {
2236 unsigned i;
2237
2238 if (is_gimple_call (s))
2239 {
2240 unsigned nargs = gimple_call_num_args (s);
2241
2242 if (!(gimple_call_flags (s) & (ECF_CONST | ECF_PURE)))
2243 return true;
2244
2245 /* We cannot use gimple_has_volatile_ops here,
2246 because we must ignore a volatile LHS. */
2247 if (TREE_SIDE_EFFECTS (gimple_call_fn (s))
2248 || TREE_THIS_VOLATILE (gimple_call_fn (s)))
2249 {
2250 gcc_assert (gimple_has_volatile_ops (s));
2251 return true;
2252 }
2253
2254 for (i = 0; i < nargs; i++)
2255 if (TREE_SIDE_EFFECTS (gimple_call_arg (s, i))
2256 || TREE_THIS_VOLATILE (gimple_call_arg (s, i)))
2257 return true;
2258
2259 return false;
2260 }
2261 else if (is_gimple_assign (s))
2262 {
2263 /* Skip the first operand, the LHS. */
2264 for (i = 1; i < gimple_num_ops (s); i++)
2265 if (TREE_SIDE_EFFECTS (gimple_op (s, i))
2266 || TREE_THIS_VOLATILE (gimple_op (s, i)))
2267 {
2268 gcc_assert (gimple_has_volatile_ops (s));
2269 return true;
2270 }
2271 }
2272 else if (is_gimple_debug (s))
2273 return false;
2274 else
2275 {
2276 /* For statements without an LHS, examine all arguments. */
2277 for (i = 0; i < gimple_num_ops (s); i++)
2278 if (TREE_SIDE_EFFECTS (gimple_op (s, i))
2279 || TREE_THIS_VOLATILE (gimple_op (s, i)))
2280 {
2281 gcc_assert (gimple_has_volatile_ops (s));
2282 return true;
2283 }
2284 }
2285
2286 return false;
2287 }
2288
2289
2290 /* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
2291 Return true if S can trap. If INCLUDE_LHS is true and S is a
2292 GIMPLE_ASSIGN, the LHS of the assignment is also checked.
2293 Otherwise, only the RHS of the assignment is checked. */
2294
2295 static bool
2296 gimple_could_trap_p_1 (gimple s, bool include_lhs)
2297 {
2298 unsigned i, start;
2299 tree t, div = NULL_TREE;
2300 enum tree_code op;
2301
2302 start = (is_gimple_assign (s) && !include_lhs) ? 1 : 0;
2303
2304 for (i = start; i < gimple_num_ops (s); i++)
2305 if (tree_could_trap_p (gimple_op (s, i)))
2306 return true;
2307
2308 switch (gimple_code (s))
2309 {
2310 case GIMPLE_ASM:
2311 return gimple_asm_volatile_p (s);
2312
2313 case GIMPLE_CALL:
2314 t = gimple_call_fndecl (s);
2315 /* Assume that calls to weak functions may trap. */
2316 if (!t || !DECL_P (t) || DECL_WEAK (t))
2317 return true;
2318 return false;
2319
2320 case GIMPLE_ASSIGN:
2321 t = gimple_expr_type (s);
2322 op = gimple_assign_rhs_code (s);
2323 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
2324 div = gimple_assign_rhs2 (s);
2325 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
2326 (INTEGRAL_TYPE_P (t)
2327 && TYPE_OVERFLOW_TRAPS (t)),
2328 div));
2329
2330 default:
2331 break;
2332 }
2333
2334 return false;
2335
2336 }
2337
2338
2339 /* Return true if statement S can trap. */
2340
2341 bool
2342 gimple_could_trap_p (gimple s)
2343 {
2344 return gimple_could_trap_p_1 (s, true);
2345 }
2346
2347
2348 /* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
2349
2350 bool
2351 gimple_assign_rhs_could_trap_p (gimple s)
2352 {
2353 gcc_assert (is_gimple_assign (s));
2354 return gimple_could_trap_p_1 (s, false);
2355 }
2356
2357
2358 /* Print debugging information for gimple stmts generated. */
2359
2360 void
2361 dump_gimple_statistics (void)
2362 {
2363 #ifdef GATHER_STATISTICS
2364 int i, total_tuples = 0, total_bytes = 0;
2365
2366 fprintf (stderr, "\nGIMPLE statements\n");
2367 fprintf (stderr, "Kind Stmts Bytes\n");
2368 fprintf (stderr, "---------------------------------------\n");
2369 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
2370 {
2371 fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i],
2372 gimple_alloc_counts[i], gimple_alloc_sizes[i]);
2373 total_tuples += gimple_alloc_counts[i];
2374 total_bytes += gimple_alloc_sizes[i];
2375 }
2376 fprintf (stderr, "---------------------------------------\n");
2377 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes);
2378 fprintf (stderr, "---------------------------------------\n");
2379 #else
2380 fprintf (stderr, "No gimple statistics\n");
2381 #endif
2382 }
2383
2384
2385 /* Return the number of operands needed on the RHS of a GIMPLE
2386 assignment for an expression with tree code CODE. */
2387
2388 unsigned
2389 get_gimple_rhs_num_ops (enum tree_code code)
2390 {
2391 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
2392
2393 if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
2394 return 1;
2395 else if (rhs_class == GIMPLE_BINARY_RHS)
2396 return 2;
2397 else
2398 gcc_unreachable ();
2399 }
2400
2401 #define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
2402 (unsigned char) \
2403 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
2404 : ((TYPE) == tcc_binary \
2405 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
2406 : ((TYPE) == tcc_constant \
2407 || (TYPE) == tcc_declaration \
2408 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
2409 : ((SYM) == TRUTH_AND_EXPR \
2410 || (SYM) == TRUTH_OR_EXPR \
2411 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
2412 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
2413 : ((SYM) == COND_EXPR \
2414 || (SYM) == CONSTRUCTOR \
2415 || (SYM) == OBJ_TYPE_REF \
2416 || (SYM) == ASSERT_EXPR \
2417 || (SYM) == ADDR_EXPR \
2418 || (SYM) == WITH_SIZE_EXPR \
2419 || (SYM) == SSA_NAME \
2420 || (SYM) == POLYNOMIAL_CHREC \
2421 || (SYM) == DOT_PROD_EXPR \
2422 || (SYM) == VEC_COND_EXPR \
2423 || (SYM) == REALIGN_LOAD_EXPR) ? GIMPLE_SINGLE_RHS \
2424 : GIMPLE_INVALID_RHS),
2425 #define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
2426
2427 const unsigned char gimple_rhs_class_table[] = {
2428 #include "all-tree.def"
2429 };
2430
2431 #undef DEFTREECODE
2432 #undef END_OF_BASE_TREE_CODES
2433
2434 /* For the definitive definition of GIMPLE, see doc/tree-ssa.texi. */
2435
2436 /* Validation of GIMPLE expressions. */
2437
2438 /* Return true if OP is an acceptable tree node to be used as a GIMPLE
2439 operand. */
2440
2441 bool
2442 is_gimple_operand (const_tree op)
2443 {
2444 return op && get_gimple_rhs_class (TREE_CODE (op)) == GIMPLE_SINGLE_RHS;
2445 }
2446
2447 /* Returns true iff T is a valid RHS for an assignment to a renamed
2448 user -- or front-end generated artificial -- variable. */
2449
2450 bool
2451 is_gimple_reg_rhs (tree t)
2452 {
2453 return get_gimple_rhs_class (TREE_CODE (t)) != GIMPLE_INVALID_RHS;
2454 }
2455
2456 /* Returns true iff T is a valid RHS for an assignment to an un-renamed
2457 LHS, or for a call argument. */
2458
2459 bool
2460 is_gimple_mem_rhs (tree t)
2461 {
2462 /* If we're dealing with a renamable type, either source or dest must be
2463 a renamed variable. */
2464 if (is_gimple_reg_type (TREE_TYPE (t)))
2465 return is_gimple_val (t);
2466 else
2467 return is_gimple_val (t) || is_gimple_lvalue (t);
2468 }
2469
2470 /* Return true if T is a valid LHS for a GIMPLE assignment expression. */
2471
2472 bool
2473 is_gimple_lvalue (tree t)
2474 {
2475 return (is_gimple_addressable (t)
2476 || TREE_CODE (t) == WITH_SIZE_EXPR
2477 /* These are complex lvalues, but don't have addresses, so they
2478 go here. */
2479 || TREE_CODE (t) == BIT_FIELD_REF);
2480 }
2481
2482 /* Return true if T is a GIMPLE condition. */
2483
2484 bool
2485 is_gimple_condexpr (tree t)
2486 {
2487 return (is_gimple_val (t) || (COMPARISON_CLASS_P (t)
2488 && !tree_could_trap_p (t)
2489 && is_gimple_val (TREE_OPERAND (t, 0))
2490 && is_gimple_val (TREE_OPERAND (t, 1))));
2491 }
2492
2493 /* Return true if T is something whose address can be taken. */
2494
2495 bool
2496 is_gimple_addressable (tree t)
2497 {
2498 return (is_gimple_id (t) || handled_component_p (t) || INDIRECT_REF_P (t));
2499 }
2500
2501 /* Return true if T is a valid gimple constant. */
2502
2503 bool
2504 is_gimple_constant (const_tree t)
2505 {
2506 switch (TREE_CODE (t))
2507 {
2508 case INTEGER_CST:
2509 case REAL_CST:
2510 case FIXED_CST:
2511 case STRING_CST:
2512 case COMPLEX_CST:
2513 case VECTOR_CST:
2514 return true;
2515
2516 /* Vector constant constructors are gimple invariant. */
2517 case CONSTRUCTOR:
2518 if (TREE_TYPE (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2519 return TREE_CONSTANT (t);
2520 else
2521 return false;
2522
2523 default:
2524 return false;
2525 }
2526 }
2527
2528 /* Return true if T is a gimple address. */
2529
2530 bool
2531 is_gimple_address (const_tree t)
2532 {
2533 tree op;
2534
2535 if (TREE_CODE (t) != ADDR_EXPR)
2536 return false;
2537
2538 op = TREE_OPERAND (t, 0);
2539 while (handled_component_p (op))
2540 {
2541 if ((TREE_CODE (op) == ARRAY_REF
2542 || TREE_CODE (op) == ARRAY_RANGE_REF)
2543 && !is_gimple_val (TREE_OPERAND (op, 1)))
2544 return false;
2545
2546 op = TREE_OPERAND (op, 0);
2547 }
2548
2549 if (CONSTANT_CLASS_P (op) || INDIRECT_REF_P (op))
2550 return true;
2551
2552 switch (TREE_CODE (op))
2553 {
2554 case PARM_DECL:
2555 case RESULT_DECL:
2556 case LABEL_DECL:
2557 case FUNCTION_DECL:
2558 case VAR_DECL:
2559 case CONST_DECL:
2560 return true;
2561
2562 default:
2563 return false;
2564 }
2565 }
2566
2567 /* Strip out all handled components that produce invariant
2568 offsets. */
2569
2570 static const_tree
2571 strip_invariant_refs (const_tree op)
2572 {
2573 while (handled_component_p (op))
2574 {
2575 switch (TREE_CODE (op))
2576 {
2577 case ARRAY_REF:
2578 case ARRAY_RANGE_REF:
2579 if (!is_gimple_constant (TREE_OPERAND (op, 1))
2580 || TREE_OPERAND (op, 2) != NULL_TREE
2581 || TREE_OPERAND (op, 3) != NULL_TREE)
2582 return NULL;
2583 break;
2584
2585 case COMPONENT_REF:
2586 if (TREE_OPERAND (op, 2) != NULL_TREE)
2587 return NULL;
2588 break;
2589
2590 default:;
2591 }
2592 op = TREE_OPERAND (op, 0);
2593 }
2594
2595 return op;
2596 }
2597
2598 /* Return true if T is a gimple invariant address. */
2599
2600 bool
2601 is_gimple_invariant_address (const_tree t)
2602 {
2603 const_tree op;
2604
2605 if (TREE_CODE (t) != ADDR_EXPR)
2606 return false;
2607
2608 op = strip_invariant_refs (TREE_OPERAND (t, 0));
2609
2610 return op && (CONSTANT_CLASS_P (op) || decl_address_invariant_p (op));
2611 }
2612
2613 /* Return true if T is a gimple invariant address at IPA level
2614 (so addresses of variables on stack are not allowed). */
2615
2616 bool
2617 is_gimple_ip_invariant_address (const_tree t)
2618 {
2619 const_tree op;
2620
2621 if (TREE_CODE (t) != ADDR_EXPR)
2622 return false;
2623
2624 op = strip_invariant_refs (TREE_OPERAND (t, 0));
2625
2626 return op && (CONSTANT_CLASS_P (op) || decl_address_ip_invariant_p (op));
2627 }
2628
2629 /* Return true if T is a GIMPLE minimal invariant. It's a restricted
2630 form of function invariant. */
2631
2632 bool
2633 is_gimple_min_invariant (const_tree t)
2634 {
2635 if (TREE_CODE (t) == ADDR_EXPR)
2636 return is_gimple_invariant_address (t);
2637
2638 return is_gimple_constant (t);
2639 }
2640
2641 /* Return true if T is a GIMPLE interprocedural invariant. It's a restricted
2642 form of gimple minimal invariant. */
2643
2644 bool
2645 is_gimple_ip_invariant (const_tree t)
2646 {
2647 if (TREE_CODE (t) == ADDR_EXPR)
2648 return is_gimple_ip_invariant_address (t);
2649
2650 return is_gimple_constant (t);
2651 }
2652
2653 /* Return true if T looks like a valid GIMPLE statement. */
2654
2655 bool
2656 is_gimple_stmt (tree t)
2657 {
2658 const enum tree_code code = TREE_CODE (t);
2659
2660 switch (code)
2661 {
2662 case NOP_EXPR:
2663 /* The only valid NOP_EXPR is the empty statement. */
2664 return IS_EMPTY_STMT (t);
2665
2666 case BIND_EXPR:
2667 case COND_EXPR:
2668 /* These are only valid if they're void. */
2669 return TREE_TYPE (t) == NULL || VOID_TYPE_P (TREE_TYPE (t));
2670
2671 case SWITCH_EXPR:
2672 case GOTO_EXPR:
2673 case RETURN_EXPR:
2674 case LABEL_EXPR:
2675 case CASE_LABEL_EXPR:
2676 case TRY_CATCH_EXPR:
2677 case TRY_FINALLY_EXPR:
2678 case EH_FILTER_EXPR:
2679 case CATCH_EXPR:
2680 case ASM_EXPR:
2681 case STATEMENT_LIST:
2682 case OMP_PARALLEL:
2683 case OMP_FOR:
2684 case OMP_SECTIONS:
2685 case OMP_SECTION:
2686 case OMP_SINGLE:
2687 case OMP_MASTER:
2688 case OMP_ORDERED:
2689 case OMP_CRITICAL:
2690 case OMP_TASK:
2691 /* These are always void. */
2692 return true;
2693
2694 case CALL_EXPR:
2695 case MODIFY_EXPR:
2696 case PREDICT_EXPR:
2697 /* These are valid regardless of their type. */
2698 return true;
2699
2700 default:
2701 return false;
2702 }
2703 }
2704
2705 /* Return true if T is a variable. */
2706
2707 bool
2708 is_gimple_variable (tree t)
2709 {
2710 return (TREE_CODE (t) == VAR_DECL
2711 || TREE_CODE (t) == PARM_DECL
2712 || TREE_CODE (t) == RESULT_DECL
2713 || TREE_CODE (t) == SSA_NAME);
2714 }
2715
2716 /* Return true if T is a GIMPLE identifier (something with an address). */
2717
2718 bool
2719 is_gimple_id (tree t)
2720 {
2721 return (is_gimple_variable (t)
2722 || TREE_CODE (t) == FUNCTION_DECL
2723 || TREE_CODE (t) == LABEL_DECL
2724 || TREE_CODE (t) == CONST_DECL
2725 /* Allow string constants, since they are addressable. */
2726 || TREE_CODE (t) == STRING_CST);
2727 }
2728
2729 /* Return true if TYPE is a suitable type for a scalar register variable. */
2730
2731 bool
2732 is_gimple_reg_type (tree type)
2733 {
2734 return !AGGREGATE_TYPE_P (type);
2735 }
2736
2737 /* Return true if T is a non-aggregate register variable. */
2738
2739 bool
2740 is_gimple_reg (tree t)
2741 {
2742 if (TREE_CODE (t) == SSA_NAME)
2743 t = SSA_NAME_VAR (t);
2744
2745 if (!is_gimple_variable (t))
2746 return false;
2747
2748 if (!is_gimple_reg_type (TREE_TYPE (t)))
2749 return false;
2750
2751 /* A volatile decl is not acceptable because we can't reuse it as
2752 needed. We need to copy it into a temp first. */
2753 if (TREE_THIS_VOLATILE (t))
2754 return false;
2755
2756 /* We define "registers" as things that can be renamed as needed,
2757 which with our infrastructure does not apply to memory. */
2758 if (needs_to_live_in_memory (t))
2759 return false;
2760
2761 /* Hard register variables are an interesting case. For those that
2762 are call-clobbered, we don't know where all the calls are, since
2763 we don't (want to) take into account which operations will turn
2764 into libcalls at the rtl level. For those that are call-saved,
2765 we don't currently model the fact that calls may in fact change
2766 global hard registers, nor do we examine ASM_CLOBBERS at the tree
2767 level, and so miss variable changes that might imply. All around,
2768 it seems safest to not do too much optimization with these at the
2769 tree level at all. We'll have to rely on the rtl optimizers to
2770 clean this up, as there we've got all the appropriate bits exposed. */
2771 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
2772 return false;
2773
2774 /* Complex and vector values must have been put into SSA-like form.
2775 That is, no assignments to the individual components. */
2776 if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE
2777 || TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2778 return DECL_GIMPLE_REG_P (t);
2779
2780 return true;
2781 }
2782
2783
2784 /* Return true if T is a GIMPLE variable whose address is not needed. */
2785
2786 bool
2787 is_gimple_non_addressable (tree t)
2788 {
2789 if (TREE_CODE (t) == SSA_NAME)
2790 t = SSA_NAME_VAR (t);
2791
2792 return (is_gimple_variable (t) && ! needs_to_live_in_memory (t));
2793 }
2794
2795 /* Return true if T is a GIMPLE rvalue, i.e. an identifier or a constant. */
2796
2797 bool
2798 is_gimple_val (tree t)
2799 {
2800 /* Make loads from volatiles and memory vars explicit. */
2801 if (is_gimple_variable (t)
2802 && is_gimple_reg_type (TREE_TYPE (t))
2803 && !is_gimple_reg (t))
2804 return false;
2805
2806 return (is_gimple_variable (t) || is_gimple_min_invariant (t));
2807 }
2808
2809 /* Similarly, but accept hard registers as inputs to asm statements. */
2810
2811 bool
2812 is_gimple_asm_val (tree t)
2813 {
2814 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
2815 return true;
2816
2817 return is_gimple_val (t);
2818 }
2819
2820 /* Return true if T is a GIMPLE minimal lvalue. */
2821
2822 bool
2823 is_gimple_min_lval (tree t)
2824 {
2825 if (!(t = CONST_CAST_TREE (strip_invariant_refs (t))))
2826 return false;
2827 return (is_gimple_id (t) || TREE_CODE (t) == INDIRECT_REF);
2828 }
2829
2830 /* Return true if T is a typecast operation. */
2831
2832 bool
2833 is_gimple_cast (tree t)
2834 {
2835 return (CONVERT_EXPR_P (t)
2836 || TREE_CODE (t) == FIX_TRUNC_EXPR);
2837 }
2838
2839 /* Return true if T is a valid function operand of a CALL_EXPR. */
2840
2841 bool
2842 is_gimple_call_addr (tree t)
2843 {
2844 return (TREE_CODE (t) == OBJ_TYPE_REF || is_gimple_val (t));
2845 }
2846
2847 /* If T makes a function call, return the corresponding CALL_EXPR operand.
2848 Otherwise, return NULL_TREE. */
2849
2850 tree
2851 get_call_expr_in (tree t)
2852 {
2853 if (TREE_CODE (t) == MODIFY_EXPR)
2854 t = TREE_OPERAND (t, 1);
2855 if (TREE_CODE (t) == WITH_SIZE_EXPR)
2856 t = TREE_OPERAND (t, 0);
2857 if (TREE_CODE (t) == CALL_EXPR)
2858 return t;
2859 return NULL_TREE;
2860 }
2861
2862
2863 /* Given a memory reference expression T, return its base address.
2864 The base address of a memory reference expression is the main
2865 object being referenced. For instance, the base address for
2866 'array[i].fld[j]' is 'array'. You can think of this as stripping
2867 away the offset part from a memory address.
2868
2869 This function calls handled_component_p to strip away all the inner
2870 parts of the memory reference until it reaches the base object. */
2871
2872 tree
2873 get_base_address (tree t)
2874 {
2875 while (handled_component_p (t))
2876 t = TREE_OPERAND (t, 0);
2877
2878 if (SSA_VAR_P (t)
2879 || TREE_CODE (t) == STRING_CST
2880 || TREE_CODE (t) == CONSTRUCTOR
2881 || INDIRECT_REF_P (t))
2882 return t;
2883 else
2884 return NULL_TREE;
2885 }
2886
2887 void
2888 recalculate_side_effects (tree t)
2889 {
2890 enum tree_code code = TREE_CODE (t);
2891 int len = TREE_OPERAND_LENGTH (t);
2892 int i;
2893
2894 switch (TREE_CODE_CLASS (code))
2895 {
2896 case tcc_expression:
2897 switch (code)
2898 {
2899 case INIT_EXPR:
2900 case MODIFY_EXPR:
2901 case VA_ARG_EXPR:
2902 case PREDECREMENT_EXPR:
2903 case PREINCREMENT_EXPR:
2904 case POSTDECREMENT_EXPR:
2905 case POSTINCREMENT_EXPR:
2906 /* All of these have side-effects, no matter what their
2907 operands are. */
2908 return;
2909
2910 default:
2911 break;
2912 }
2913 /* Fall through. */
2914
2915 case tcc_comparison: /* a comparison expression */
2916 case tcc_unary: /* a unary arithmetic expression */
2917 case tcc_binary: /* a binary arithmetic expression */
2918 case tcc_reference: /* a reference */
2919 case tcc_vl_exp: /* a function call */
2920 TREE_SIDE_EFFECTS (t) = TREE_THIS_VOLATILE (t);
2921 for (i = 0; i < len; ++i)
2922 {
2923 tree op = TREE_OPERAND (t, i);
2924 if (op && TREE_SIDE_EFFECTS (op))
2925 TREE_SIDE_EFFECTS (t) = 1;
2926 }
2927 break;
2928
2929 case tcc_constant:
2930 /* No side-effects. */
2931 return;
2932
2933 default:
2934 gcc_unreachable ();
2935 }
2936 }
2937
2938 /* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
2939 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
2940 we failed to create one. */
2941
2942 tree
2943 canonicalize_cond_expr_cond (tree t)
2944 {
2945 /* Strip conversions around boolean operations. */
2946 if (CONVERT_EXPR_P (t)
2947 && truth_value_p (TREE_CODE (TREE_OPERAND (t, 0))))
2948 t = TREE_OPERAND (t, 0);
2949
2950 /* For (bool)x use x != 0. */
2951 if (CONVERT_EXPR_P (t)
2952 && TREE_CODE (TREE_TYPE (t)) == BOOLEAN_TYPE)
2953 {
2954 tree top0 = TREE_OPERAND (t, 0);
2955 t = build2 (NE_EXPR, TREE_TYPE (t),
2956 top0, build_int_cst (TREE_TYPE (top0), 0));
2957 }
2958 /* For !x use x == 0. */
2959 else if (TREE_CODE (t) == TRUTH_NOT_EXPR)
2960 {
2961 tree top0 = TREE_OPERAND (t, 0);
2962 t = build2 (EQ_EXPR, TREE_TYPE (t),
2963 top0, build_int_cst (TREE_TYPE (top0), 0));
2964 }
2965 /* For cmp ? 1 : 0 use cmp. */
2966 else if (TREE_CODE (t) == COND_EXPR
2967 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
2968 && integer_onep (TREE_OPERAND (t, 1))
2969 && integer_zerop (TREE_OPERAND (t, 2)))
2970 {
2971 tree top0 = TREE_OPERAND (t, 0);
2972 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
2973 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
2974 }
2975
2976 if (is_gimple_condexpr (t))
2977 return t;
2978
2979 return NULL_TREE;
2980 }
2981
2982 /* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
2983 the positions marked by the set ARGS_TO_SKIP. */
2984
2985 gimple
2986 gimple_call_copy_skip_args (gimple stmt, bitmap args_to_skip)
2987 {
2988 int i;
2989 tree fn = gimple_call_fn (stmt);
2990 int nargs = gimple_call_num_args (stmt);
2991 VEC(tree, heap) *vargs = VEC_alloc (tree, heap, nargs);
2992 gimple new_stmt;
2993
2994 for (i = 0; i < nargs; i++)
2995 if (!bitmap_bit_p (args_to_skip, i))
2996 VEC_quick_push (tree, vargs, gimple_call_arg (stmt, i));
2997
2998 new_stmt = gimple_build_call_vec (fn, vargs);
2999 VEC_free (tree, heap, vargs);
3000 if (gimple_call_lhs (stmt))
3001 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
3002
3003 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
3004 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
3005
3006 gimple_set_block (new_stmt, gimple_block (stmt));
3007 if (gimple_has_location (stmt))
3008 gimple_set_location (new_stmt, gimple_location (stmt));
3009
3010 /* Carry all the flags to the new GIMPLE_CALL. */
3011 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
3012 gimple_call_set_tail (new_stmt, gimple_call_tail_p (stmt));
3013 gimple_call_set_cannot_inline (new_stmt, gimple_call_cannot_inline_p (stmt));
3014 gimple_call_set_return_slot_opt (new_stmt, gimple_call_return_slot_opt_p (stmt));
3015 gimple_call_set_from_thunk (new_stmt, gimple_call_from_thunk_p (stmt));
3016 gimple_call_set_va_arg_pack (new_stmt, gimple_call_va_arg_pack_p (stmt));
3017
3018 gimple_set_modified (new_stmt, true);
3019
3020 return new_stmt;
3021 }
3022
3023
3024 static hashval_t gimple_type_hash (const void *);
3025
3026 /* Structure used to maintain a cache of some type pairs compared by
3027 gimple_types_compatible_p when comparing aggregate types. There are
3028 four possible values for SAME_P:
3029
3030 -2: The pair (T1, T2) has just been inserted in the table.
3031 -1: The pair (T1, T2) is currently being compared.
3032 0: T1 and T2 are different types.
3033 1: T1 and T2 are the same type.
3034
3035 This table is only used when comparing aggregate types to avoid
3036 infinite recursion due to self-referential types. */
3037 struct type_pair_d
3038 {
3039 unsigned int uid1;
3040 unsigned int uid2;
3041 int same_p;
3042 };
3043 typedef struct type_pair_d *type_pair_t;
3044
3045 /* Return a hash value for the type pair pointed-to by P. */
3046
3047 static hashval_t
3048 type_pair_hash (const void *p)
3049 {
3050 const struct type_pair_d *pair = (const struct type_pair_d *) p;
3051 hashval_t val1 = pair->uid1;
3052 hashval_t val2 = pair->uid2;
3053 return (iterative_hash_hashval_t (val2, val1)
3054 ^ iterative_hash_hashval_t (val1, val2));
3055 }
3056
3057 /* Compare two type pairs pointed-to by P1 and P2. */
3058
3059 static int
3060 type_pair_eq (const void *p1, const void *p2)
3061 {
3062 const struct type_pair_d *pair1 = (const struct type_pair_d *) p1;
3063 const struct type_pair_d *pair2 = (const struct type_pair_d *) p2;
3064 return ((pair1->uid1 == pair2->uid1 && pair1->uid2 == pair2->uid2)
3065 || (pair1->uid1 == pair2->uid2 && pair1->uid2 == pair2->uid1));
3066 }
3067
3068 /* Lookup the pair of types T1 and T2 in *VISITED_P. Insert a new
3069 entry if none existed. */
3070
3071 static type_pair_t
3072 lookup_type_pair (tree t1, tree t2, htab_t *visited_p, struct obstack *ob_p)
3073 {
3074 struct type_pair_d pair;
3075 type_pair_t p;
3076 void **slot;
3077
3078 if (*visited_p == NULL)
3079 {
3080 *visited_p = htab_create (251, type_pair_hash, type_pair_eq, NULL);
3081 gcc_obstack_init (ob_p);
3082 }
3083
3084 pair.uid1 = TYPE_UID (t1);
3085 pair.uid2 = TYPE_UID (t2);
3086 slot = htab_find_slot (*visited_p, &pair, INSERT);
3087
3088 if (*slot)
3089 p = *((type_pair_t *) slot);
3090 else
3091 {
3092 p = XOBNEW (ob_p, struct type_pair_d);
3093 p->uid1 = TYPE_UID (t1);
3094 p->uid2 = TYPE_UID (t2);
3095 p->same_p = -2;
3096 *slot = (void *) p;
3097 }
3098
3099 return p;
3100 }
3101
3102
3103 /* Return true if T1 and T2 have the same name. If FOR_COMPLETION_P is
3104 true then if any type has no name return false, otherwise return
3105 true if both types have no names. */
3106
3107 static bool
3108 compare_type_names_p (tree t1, tree t2, bool for_completion_p)
3109 {
3110 tree name1 = TYPE_NAME (t1);
3111 tree name2 = TYPE_NAME (t2);
3112
3113 /* Consider anonymous types all unique for completion. */
3114 if (for_completion_p
3115 && (!name1 || !name2))
3116 return false;
3117
3118 if (name1 && TREE_CODE (name1) == TYPE_DECL)
3119 {
3120 name1 = DECL_NAME (name1);
3121 if (for_completion_p
3122 && !name1)
3123 return false;
3124 }
3125 gcc_assert (!name1 || TREE_CODE (name1) == IDENTIFIER_NODE);
3126
3127 if (name2 && TREE_CODE (name2) == TYPE_DECL)
3128 {
3129 name2 = DECL_NAME (name2);
3130 if (for_completion_p
3131 && !name2)
3132 return false;
3133 }
3134 gcc_assert (!name2 || TREE_CODE (name2) == IDENTIFIER_NODE);
3135
3136 /* Identifiers can be compared with pointer equality rather
3137 than a string comparison. */
3138 if (name1 == name2)
3139 return true;
3140
3141 return false;
3142 }
3143
3144 /* Return true if the field decls F1 and F2 are at the same offset. */
3145
3146 bool
3147 compare_field_offset (tree f1, tree f2)
3148 {
3149 if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
3150 return (operand_equal_p (DECL_FIELD_OFFSET (f1),
3151 DECL_FIELD_OFFSET (f2), 0)
3152 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
3153 DECL_FIELD_BIT_OFFSET (f2)));
3154
3155 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
3156 should be, so handle differing ones specially by decomposing
3157 the offset into a byte and bit offset manually. */
3158 if (host_integerp (DECL_FIELD_OFFSET (f1), 0)
3159 && host_integerp (DECL_FIELD_OFFSET (f2), 0))
3160 {
3161 unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
3162 unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
3163 bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
3164 byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
3165 + bit_offset1 / BITS_PER_UNIT);
3166 bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
3167 byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
3168 + bit_offset2 / BITS_PER_UNIT);
3169 if (byte_offset1 != byte_offset2)
3170 return false;
3171 return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
3172 }
3173
3174 return false;
3175 }
3176
3177 /* Return 1 iff T1 and T2 are structurally identical.
3178 Otherwise, return 0. */
3179
3180 static int
3181 gimple_types_compatible_p (tree t1, tree t2)
3182 {
3183 type_pair_t p = NULL;
3184
3185 /* Check first for the obvious case of pointer identity. */
3186 if (t1 == t2)
3187 return 1;
3188
3189 /* Check that we have two types to compare. */
3190 if (t1 == NULL_TREE || t2 == NULL_TREE)
3191 return 0;
3192
3193 /* Can't be the same type if the types don't have the same code. */
3194 if (TREE_CODE (t1) != TREE_CODE (t2))
3195 return 0;
3196
3197 /* Can't be the same type if they have different CV qualifiers. */
3198 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
3199 return 0;
3200
3201 /* Void types are always the same. */
3202 if (TREE_CODE (t1) == VOID_TYPE)
3203 return 1;
3204
3205 /* For numerical types do some simple checks before doing three
3206 hashtable queries. */
3207 if (INTEGRAL_TYPE_P (t1)
3208 || SCALAR_FLOAT_TYPE_P (t1)
3209 || FIXED_POINT_TYPE_P (t1)
3210 || TREE_CODE (t1) == VECTOR_TYPE
3211 || TREE_CODE (t1) == COMPLEX_TYPE
3212 || TREE_CODE (t1) == OFFSET_TYPE)
3213 {
3214 /* Can't be the same type if they have different alignment,
3215 sign, precision or mode. */
3216 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3217 || TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
3218 || TYPE_MODE (t1) != TYPE_MODE (t2)
3219 || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
3220 return 0;
3221
3222 if (TREE_CODE (t1) == INTEGER_TYPE
3223 && (TYPE_IS_SIZETYPE (t1) != TYPE_IS_SIZETYPE (t2)
3224 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)))
3225 return 0;
3226
3227 /* That's all we need to check for float and fixed-point types. */
3228 if (SCALAR_FLOAT_TYPE_P (t1)
3229 || FIXED_POINT_TYPE_P (t1))
3230 return 1;
3231
3232 /* Perform cheap tail-recursion for vector and complex types. */
3233 if (TREE_CODE (t1) == VECTOR_TYPE
3234 || TREE_CODE (t1) == COMPLEX_TYPE)
3235 return gimple_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2));
3236
3237 /* For integral types fall thru to more complex checks. */
3238 }
3239
3240 /* If the hash values of t1 and t2 are different the types can't
3241 possibly be the same. This helps keeping the type-pair hashtable
3242 small, only tracking comparisons for hash collisions. */
3243 if (gimple_type_hash (t1) != gimple_type_hash (t2))
3244 return 0;
3245
3246 /* If we've visited this type pair before (in the case of aggregates
3247 with self-referential types), and we made a decision, return it. */
3248 p = lookup_type_pair (t1, t2, &gtc_visited, &gtc_ob);
3249 if (p->same_p == 0 || p->same_p == 1)
3250 {
3251 /* We have already decided whether T1 and T2 are the
3252 same, return the cached result. */
3253 return p->same_p == 1;
3254 }
3255 else if (p->same_p == -1)
3256 {
3257 /* We are currently comparing this pair of types, assume
3258 that they are the same and let the caller decide. */
3259 return 1;
3260 }
3261
3262 gcc_assert (p->same_p == -2);
3263
3264 /* Mark the (T1, T2) comparison in progress. */
3265 p->same_p = -1;
3266
3267 /* If their attributes are not the same they can't be the same type. */
3268 if (!attribute_list_equal (TYPE_ATTRIBUTES (t1), TYPE_ATTRIBUTES (t2)))
3269 goto different_types;
3270
3271 /* Do type-specific comparisons. */
3272 switch (TREE_CODE (t1))
3273 {
3274 case ARRAY_TYPE:
3275 /* Array types are the same if the element types are the same and
3276 the number of elements are the same. */
3277 if (!gimple_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2))
3278 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
3279 || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
3280 goto different_types;
3281 else
3282 {
3283 tree i1 = TYPE_DOMAIN (t1);
3284 tree i2 = TYPE_DOMAIN (t2);
3285
3286 /* For an incomplete external array, the type domain can be
3287 NULL_TREE. Check this condition also. */
3288 if (i1 == NULL_TREE && i2 == NULL_TREE)
3289 goto same_types;
3290 else if (i1 == NULL_TREE || i2 == NULL_TREE)
3291 goto different_types;
3292 /* If for a complete array type the possibly gimplified sizes
3293 are different the types are different. */
3294 else if (((TYPE_SIZE (i1) != NULL) ^ (TYPE_SIZE (i2) != NULL))
3295 || (TYPE_SIZE (i1)
3296 && TYPE_SIZE (i2)
3297 && !operand_equal_p (TYPE_SIZE (i1), TYPE_SIZE (i2), 0)))
3298 goto different_types;
3299 else
3300 {
3301 tree min1 = TYPE_MIN_VALUE (i1);
3302 tree min2 = TYPE_MIN_VALUE (i2);
3303 tree max1 = TYPE_MAX_VALUE (i1);
3304 tree max2 = TYPE_MAX_VALUE (i2);
3305
3306 /* The minimum/maximum values have to be the same. */
3307 if ((min1 == min2
3308 || (min1 && min2 && operand_equal_p (min1, min2, 0)))
3309 && (max1 == max2
3310 || (max1 && max2 && operand_equal_p (max1, max2, 0))))
3311 goto same_types;
3312 else
3313 goto different_types;
3314 }
3315 }
3316
3317 case METHOD_TYPE:
3318 /* Method types should belong to the same class. */
3319 if (!gimple_types_compatible_p (TYPE_METHOD_BASETYPE (t1),
3320 TYPE_METHOD_BASETYPE (t2)))
3321 goto different_types;
3322
3323 /* Fallthru */
3324
3325 case FUNCTION_TYPE:
3326 /* Function types are the same if the return type and arguments types
3327 are the same. */
3328 if (!gimple_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2)))
3329 goto different_types;
3330 else
3331 {
3332 if (!targetm.comp_type_attributes (t1, t2))
3333 goto different_types;
3334
3335 if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
3336 goto same_types;
3337 else
3338 {
3339 tree parms1, parms2;
3340
3341 for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
3342 parms1 && parms2;
3343 parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
3344 {
3345 if (!gimple_types_compatible_p (TREE_VALUE (parms1),
3346 TREE_VALUE (parms2)))
3347 goto different_types;
3348 }
3349
3350 if (parms1 || parms2)
3351 goto different_types;
3352
3353 goto same_types;
3354 }
3355 }
3356
3357 case OFFSET_TYPE:
3358 {
3359 if (!gimple_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2))
3360 || !gimple_types_compatible_p (TYPE_OFFSET_BASETYPE (t1),
3361 TYPE_OFFSET_BASETYPE (t2)))
3362 goto different_types;
3363
3364 goto same_types;
3365 }
3366
3367 case POINTER_TYPE:
3368 case REFERENCE_TYPE:
3369 {
3370 /* If the two pointers have different ref-all attributes,
3371 they can't be the same type. */
3372 if (TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
3373 goto different_types;
3374
3375 /* If one pointer points to an incomplete type variant of
3376 the other pointed-to type they are the same. */
3377 if (TREE_CODE (TREE_TYPE (t1)) == TREE_CODE (TREE_TYPE (t2))
3378 && RECORD_OR_UNION_TYPE_P (TREE_TYPE (t1))
3379 && (!COMPLETE_TYPE_P (TREE_TYPE (t1))
3380 || !COMPLETE_TYPE_P (TREE_TYPE (t2)))
3381 && compare_type_names_p (TYPE_MAIN_VARIANT (TREE_TYPE (t1)),
3382 TYPE_MAIN_VARIANT (TREE_TYPE (t2)), true))
3383 {
3384 /* Replace the pointed-to incomplete type with the
3385 complete one. */
3386 if (COMPLETE_TYPE_P (TREE_TYPE (t2)))
3387 TREE_TYPE (t1) = TREE_TYPE (t2);
3388 else
3389 TREE_TYPE (t2) = TREE_TYPE (t1);
3390 goto same_types;
3391 }
3392
3393 /* Otherwise, pointer and reference types are the same if the
3394 pointed-to types are the same. */
3395 if (gimple_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2)))
3396 goto same_types;
3397
3398 goto different_types;
3399 }
3400
3401 case INTEGER_TYPE:
3402 case BOOLEAN_TYPE:
3403 {
3404 tree min1 = TYPE_MIN_VALUE (t1);
3405 tree max1 = TYPE_MAX_VALUE (t1);
3406 tree min2 = TYPE_MIN_VALUE (t2);
3407 tree max2 = TYPE_MAX_VALUE (t2);
3408 bool min_equal_p = false;
3409 bool max_equal_p = false;
3410
3411 /* If either type has a minimum value, the other type must
3412 have the same. */
3413 if (min1 == NULL_TREE && min2 == NULL_TREE)
3414 min_equal_p = true;
3415 else if (min1 && min2 && operand_equal_p (min1, min2, 0))
3416 min_equal_p = true;
3417
3418 /* Likewise, if either type has a maximum value, the other
3419 type must have the same. */
3420 if (max1 == NULL_TREE && max2 == NULL_TREE)
3421 max_equal_p = true;
3422 else if (max1 && max2 && operand_equal_p (max1, max2, 0))
3423 max_equal_p = true;
3424
3425 if (!min_equal_p || !max_equal_p)
3426 goto different_types;
3427
3428 goto same_types;
3429 }
3430
3431 case ENUMERAL_TYPE:
3432 {
3433 /* FIXME lto, we cannot check bounds on enumeral types because
3434 different front ends will produce different values.
3435 In C, enumeral types are integers, while in C++ each element
3436 will have its own symbolic value. We should decide how enums
3437 are to be represented in GIMPLE and have each front end lower
3438 to that. */
3439 tree v1, v2;
3440
3441 /* For enumeral types, all the values must be the same. */
3442 if (TYPE_VALUES (t1) == TYPE_VALUES (t2))
3443 goto same_types;
3444
3445 for (v1 = TYPE_VALUES (t1), v2 = TYPE_VALUES (t2);
3446 v1 && v2;
3447 v1 = TREE_CHAIN (v1), v2 = TREE_CHAIN (v2))
3448 {
3449 tree c1 = TREE_VALUE (v1);
3450 tree c2 = TREE_VALUE (v2);
3451
3452 if (TREE_CODE (c1) == CONST_DECL)
3453 c1 = DECL_INITIAL (c1);
3454
3455 if (TREE_CODE (c2) == CONST_DECL)
3456 c2 = DECL_INITIAL (c2);
3457
3458 if (tree_int_cst_equal (c1, c2) != 1)
3459 goto different_types;
3460 }
3461
3462 /* If one enumeration has more values than the other, they
3463 are not the same. */
3464 if (v1 || v2)
3465 goto different_types;
3466
3467 goto same_types;
3468 }
3469
3470 case RECORD_TYPE:
3471 case UNION_TYPE:
3472 case QUAL_UNION_TYPE:
3473 {
3474 tree f1, f2;
3475
3476 /* If one type requires structural equality checks and the
3477 other doesn't, do not merge the types. */
3478 if (TYPE_STRUCTURAL_EQUALITY_P (t1)
3479 != TYPE_STRUCTURAL_EQUALITY_P (t2))
3480 goto different_types;
3481
3482 /* The struct tags shall compare equal. */
3483 if (!compare_type_names_p (TYPE_MAIN_VARIANT (t1),
3484 TYPE_MAIN_VARIANT (t2), false))
3485 goto different_types;
3486
3487 /* For aggregate types, all the fields must be the same. */
3488 for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
3489 f1 && f2;
3490 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
3491 {
3492 /* The fields must have the same name, offset and type. */
3493 if (DECL_NAME (f1) != DECL_NAME (f2)
3494 || DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
3495 || !compare_field_offset (f1, f2)
3496 || !gimple_types_compatible_p (TREE_TYPE (f1),
3497 TREE_TYPE (f2)))
3498 goto different_types;
3499 }
3500
3501 /* If one aggregate has more fields than the other, they
3502 are not the same. */
3503 if (f1 || f2)
3504 goto different_types;
3505
3506 goto same_types;
3507 }
3508
3509 default:
3510 gcc_unreachable ();
3511 }
3512
3513 /* Common exit path for types that are not compatible. */
3514 different_types:
3515 p->same_p = 0;
3516 return 0;
3517
3518 /* Common exit path for types that are compatible. */
3519 same_types:
3520 p->same_p = 1;
3521 return 1;
3522 }
3523
3524
3525
3526
3527 /* Per pointer state for the SCC finding. The on_sccstack flag
3528 is not strictly required, it is true when there is no hash value
3529 recorded for the type and false otherwise. But querying that
3530 is slower. */
3531
3532 struct sccs
3533 {
3534 unsigned int dfsnum;
3535 unsigned int low;
3536 bool on_sccstack;
3537 hashval_t hash;
3538 };
3539
3540 static unsigned int next_dfs_num;
3541
3542 static hashval_t
3543 iterative_hash_gimple_type (tree, hashval_t, VEC(tree, heap) **,
3544 struct pointer_map_t *, struct obstack *);
3545
3546 /* DFS visit the edge from the callers type with state *STATE to T.
3547 Update the callers type hash V with the hash for T if it is not part
3548 of the SCC containing the callers type and return it.
3549 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3550
3551 static hashval_t
3552 visit (tree t, struct sccs *state, hashval_t v,
3553 VEC (tree, heap) **sccstack,
3554 struct pointer_map_t *sccstate,
3555 struct obstack *sccstate_obstack)
3556 {
3557 struct sccs *cstate = NULL;
3558 void **slot;
3559
3560 /* If there is a hash value recorded for this type then it can't
3561 possibly be part of our parent SCC. Simply mix in its hash. */
3562 if ((slot = pointer_map_contains (type_hash_cache, t)))
3563 return iterative_hash_hashval_t ((hashval_t) (size_t) *slot, v);
3564
3565 if ((slot = pointer_map_contains (sccstate, t)) != NULL)
3566 cstate = (struct sccs *)*slot;
3567 if (!cstate)
3568 {
3569 hashval_t tem;
3570 /* Not yet visited. DFS recurse. */
3571 tem = iterative_hash_gimple_type (t, v,
3572 sccstack, sccstate, sccstate_obstack);
3573 if (!cstate)
3574 cstate = (struct sccs *)* pointer_map_contains (sccstate, t);
3575 state->low = MIN (state->low, cstate->low);
3576 /* If the type is no longer on the SCC stack and thus is not part
3577 of the parents SCC mix in its hash value. Otherwise we will
3578 ignore the type for hashing purposes and return the unaltered
3579 hash value. */
3580 if (!cstate->on_sccstack)
3581 return tem;
3582 }
3583 if (cstate->dfsnum < state->dfsnum
3584 && cstate->on_sccstack)
3585 state->low = MIN (cstate->dfsnum, state->low);
3586
3587 /* We are part of our parents SCC, skip this type during hashing
3588 and return the unaltered hash value. */
3589 return v;
3590 }
3591
3592 /* Hash NAME with the previous hash value V and return it. */
3593
3594 static hashval_t
3595 iterative_hash_name (tree name, hashval_t v)
3596 {
3597 if (!name)
3598 return v;
3599 if (TREE_CODE (name) == TYPE_DECL)
3600 name = DECL_NAME (name);
3601 if (!name)
3602 return v;
3603 gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
3604 return iterative_hash_object (IDENTIFIER_HASH_VALUE (name), v);
3605 }
3606
3607 /* Returning a hash value for gimple type TYPE combined with VAL.
3608 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done.
3609
3610 To hash a type we end up hashing in types that are reachable.
3611 Through pointers we can end up with cycles which messes up the
3612 required property that we need to compute the same hash value
3613 for structurally equivalent types. To avoid this we have to
3614 hash all types in a cycle (the SCC) in a commutative way. The
3615 easiest way is to not mix in the hashes of the SCC members at
3616 all. To make this work we have to delay setting the hash
3617 values of the SCC until it is complete. */
3618
3619 static hashval_t
3620 iterative_hash_gimple_type (tree type, hashval_t val,
3621 VEC(tree, heap) **sccstack,
3622 struct pointer_map_t *sccstate,
3623 struct obstack *sccstate_obstack)
3624 {
3625 hashval_t v;
3626 void **slot;
3627 struct sccs *state;
3628
3629 #ifdef ENABLE_CHECKING
3630 /* Not visited during this DFS walk nor during previous walks. */
3631 gcc_assert (!pointer_map_contains (type_hash_cache, type)
3632 && !pointer_map_contains (sccstate, type));
3633 #endif
3634 state = XOBNEW (sccstate_obstack, struct sccs);
3635 *pointer_map_insert (sccstate, type) = state;
3636
3637 VEC_safe_push (tree, heap, *sccstack, type);
3638 state->dfsnum = next_dfs_num++;
3639 state->low = state->dfsnum;
3640 state->on_sccstack = true;
3641
3642 /* Combine a few common features of types so that types are grouped into
3643 smaller sets; when searching for existing matching types to merge,
3644 only existing types having the same features as the new type will be
3645 checked. */
3646 v = iterative_hash_hashval_t (TREE_CODE (type), 0);
3647 v = iterative_hash_hashval_t (TYPE_QUALS (type), v);
3648 v = iterative_hash_hashval_t (TREE_ADDRESSABLE (type), v);
3649
3650 /* Do not hash the types size as this will cause differences in
3651 hash values for the complete vs. the incomplete type variant. */
3652
3653 /* Incorporate common features of numerical types. */
3654 if (INTEGRAL_TYPE_P (type)
3655 || SCALAR_FLOAT_TYPE_P (type)
3656 || FIXED_POINT_TYPE_P (type))
3657 {
3658 v = iterative_hash_hashval_t (TYPE_PRECISION (type), v);
3659 v = iterative_hash_hashval_t (TYPE_MODE (type), v);
3660 v = iterative_hash_hashval_t (TYPE_UNSIGNED (type), v);
3661 }
3662
3663 /* For pointer and reference types, fold in information about the type
3664 pointed to but do not recurse into possibly incomplete types to
3665 avoid hash differences for complete vs. incomplete types. */
3666 if (POINTER_TYPE_P (type))
3667 {
3668 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (type)))
3669 {
3670 v = iterative_hash_hashval_t (TREE_CODE (TREE_TYPE (type)), v);
3671 v = iterative_hash_name
3672 (TYPE_NAME (TYPE_MAIN_VARIANT (TREE_TYPE (type))), v);
3673 }
3674 else
3675 v = visit (TREE_TYPE (type), state, v,
3676 sccstack, sccstate, sccstate_obstack);
3677 }
3678
3679 /* For integer types hash the types min/max values and the string flag. */
3680 if (TREE_CODE (type) == INTEGER_TYPE)
3681 {
3682 /* OMP lowering can introduce error_mark_node in place of
3683 random local decls in types. */
3684 if (TYPE_MIN_VALUE (type) != error_mark_node)
3685 v = iterative_hash_expr (TYPE_MIN_VALUE (type), v);
3686 if (TYPE_MAX_VALUE (type) != error_mark_node)
3687 v = iterative_hash_expr (TYPE_MAX_VALUE (type), v);
3688 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
3689 }
3690
3691 /* For array types hash their domain and the string flag. */
3692 if (TREE_CODE (type) == ARRAY_TYPE
3693 && TYPE_DOMAIN (type))
3694 {
3695 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
3696 v = visit (TYPE_DOMAIN (type), state, v,
3697 sccstack, sccstate, sccstate_obstack);
3698 }
3699
3700 /* Recurse for aggregates with a single element type. */
3701 if (TREE_CODE (type) == ARRAY_TYPE
3702 || TREE_CODE (type) == COMPLEX_TYPE
3703 || TREE_CODE (type) == VECTOR_TYPE)
3704 v = visit (TREE_TYPE (type), state, v,
3705 sccstack, sccstate, sccstate_obstack);
3706
3707 /* Incorporate function return and argument types. */
3708 if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE)
3709 {
3710 unsigned na;
3711 tree p;
3712
3713 /* For method types also incorporate their parent class. */
3714 if (TREE_CODE (type) == METHOD_TYPE)
3715 v = visit (TYPE_METHOD_BASETYPE (type), state, v,
3716 sccstack, sccstate, sccstate_obstack);
3717
3718 v = visit (TREE_TYPE (type), state, v,
3719 sccstack, sccstate, sccstate_obstack);
3720
3721 for (p = TYPE_ARG_TYPES (type), na = 0; p; p = TREE_CHAIN (p))
3722 {
3723 v = visit (TREE_VALUE (p), state, v,
3724 sccstack, sccstate, sccstate_obstack);
3725 na++;
3726 }
3727
3728 v = iterative_hash_hashval_t (na, v);
3729 }
3730
3731 if (TREE_CODE (type) == RECORD_TYPE
3732 || TREE_CODE (type) == UNION_TYPE
3733 || TREE_CODE (type) == QUAL_UNION_TYPE)
3734 {
3735 unsigned nf;
3736 tree f;
3737
3738 v = iterative_hash_name (TYPE_NAME (TYPE_MAIN_VARIANT (type)), v);
3739
3740 for (f = TYPE_FIELDS (type), nf = 0; f; f = TREE_CHAIN (f))
3741 {
3742 v = iterative_hash_name (DECL_NAME (f), v);
3743 v = visit (TREE_TYPE (f), state, v,
3744 sccstack, sccstate, sccstate_obstack);
3745 nf++;
3746 }
3747
3748 v = iterative_hash_hashval_t (nf, v);
3749 }
3750
3751 /* Record hash for us. */
3752 state->hash = v;
3753
3754 /* See if we found an SCC. */
3755 if (state->low == state->dfsnum)
3756 {
3757 tree x;
3758
3759 /* Pop off the SCC and set its hash values. */
3760 do
3761 {
3762 struct sccs *cstate;
3763 x = VEC_pop (tree, *sccstack);
3764 gcc_assert (!pointer_map_contains (type_hash_cache, x));
3765 cstate = (struct sccs *)*pointer_map_contains (sccstate, x);
3766 cstate->on_sccstack = false;
3767 slot = pointer_map_insert (type_hash_cache, x);
3768 *slot = (void *) (size_t) cstate->hash;
3769 }
3770 while (x != type);
3771 }
3772
3773 return iterative_hash_hashval_t (v, val);
3774 }
3775
3776
3777 /* Returns a hash value for P (assumed to be a type). The hash value
3778 is computed using some distinguishing features of the type. Note
3779 that we cannot use pointer hashing here as we may be dealing with
3780 two distinct instances of the same type.
3781
3782 This function should produce the same hash value for two compatible
3783 types according to gimple_types_compatible_p. */
3784
3785 static hashval_t
3786 gimple_type_hash (const void *p)
3787 {
3788 const_tree t = (const_tree) p;
3789 VEC(tree, heap) *sccstack = NULL;
3790 struct pointer_map_t *sccstate;
3791 struct obstack sccstate_obstack;
3792 hashval_t val;
3793 void **slot;
3794
3795 if (type_hash_cache == NULL)
3796 type_hash_cache = pointer_map_create ();
3797
3798 if ((slot = pointer_map_contains (type_hash_cache, p)) != NULL)
3799 return iterative_hash_hashval_t ((hashval_t) (size_t) *slot, 0);
3800
3801 /* Perform a DFS walk and pre-hash all reachable types. */
3802 next_dfs_num = 1;
3803 sccstate = pointer_map_create ();
3804 gcc_obstack_init (&sccstate_obstack);
3805 val = iterative_hash_gimple_type (CONST_CAST_TREE (t), 0,
3806 &sccstack, sccstate, &sccstate_obstack);
3807 VEC_free (tree, heap, sccstack);
3808 pointer_map_destroy (sccstate);
3809 obstack_free (&sccstate_obstack, NULL);
3810
3811 return val;
3812 }
3813
3814
3815 /* Returns nonzero if P1 and P2 are equal. */
3816
3817 static int
3818 gimple_type_eq (const void *p1, const void *p2)
3819 {
3820 const_tree t1 = (const_tree) p1;
3821 const_tree t2 = (const_tree) p2;
3822 return gimple_types_compatible_p (CONST_CAST_TREE (t1), CONST_CAST_TREE (t2));
3823 }
3824
3825
3826 /* Register type T in the global type table gimple_types.
3827 If another type T', compatible with T, already existed in
3828 gimple_types then return T', otherwise return T. This is used by
3829 LTO to merge identical types read from different TUs. */
3830
3831 tree
3832 gimple_register_type (tree t)
3833 {
3834 void **slot;
3835
3836 gcc_assert (TYPE_P (t));
3837
3838 /* Always register the main variant first. This is important so we
3839 pick up the non-typedef variants as canonical, otherwise we'll end
3840 up taking typedef ids for structure tags during comparison. */
3841 if (TYPE_MAIN_VARIANT (t) != t)
3842 gimple_register_type (TYPE_MAIN_VARIANT (t));
3843
3844 if (gimple_types == NULL)
3845 gimple_types = htab_create (16381, gimple_type_hash, gimple_type_eq, 0);
3846
3847 slot = htab_find_slot (gimple_types, t, INSERT);
3848 if (*slot
3849 && *(tree *)slot != t)
3850 {
3851 tree new_type = (tree) *((tree *) slot);
3852
3853 /* Do not merge types with different addressability. */
3854 gcc_assert (TREE_ADDRESSABLE (t) == TREE_ADDRESSABLE (new_type));
3855
3856 /* If t is not its main variant then make t unreachable from its
3857 main variant list. Otherwise we'd queue up a lot of duplicates
3858 there. */
3859 if (t != TYPE_MAIN_VARIANT (t))
3860 {
3861 tree tem = TYPE_MAIN_VARIANT (t);
3862 while (tem && TYPE_NEXT_VARIANT (tem) != t)
3863 tem = TYPE_NEXT_VARIANT (tem);
3864 if (tem)
3865 TYPE_NEXT_VARIANT (tem) = TYPE_NEXT_VARIANT (t);
3866 TYPE_NEXT_VARIANT (t) = NULL_TREE;
3867 }
3868
3869 /* If we are a pointer then remove us from the pointer-to or
3870 reference-to chain. Otherwise we'd queue up a lot of duplicates
3871 there. */
3872 if (TREE_CODE (t) == POINTER_TYPE)
3873 {
3874 if (TYPE_POINTER_TO (TREE_TYPE (t)) == t)
3875 TYPE_POINTER_TO (TREE_TYPE (t)) = TYPE_NEXT_PTR_TO (t);
3876 else
3877 {
3878 tree tem = TYPE_POINTER_TO (TREE_TYPE (t));
3879 while (tem && TYPE_NEXT_PTR_TO (tem) != t)
3880 tem = TYPE_NEXT_PTR_TO (tem);
3881 if (tem)
3882 TYPE_NEXT_PTR_TO (tem) = TYPE_NEXT_PTR_TO (t);
3883 }
3884 TYPE_NEXT_PTR_TO (t) = NULL_TREE;
3885 }
3886 else if (TREE_CODE (t) == REFERENCE_TYPE)
3887 {
3888 if (TYPE_REFERENCE_TO (TREE_TYPE (t)) == t)
3889 TYPE_REFERENCE_TO (TREE_TYPE (t)) = TYPE_NEXT_REF_TO (t);
3890 else
3891 {
3892 tree tem = TYPE_REFERENCE_TO (TREE_TYPE (t));
3893 while (tem && TYPE_NEXT_REF_TO (tem) != t)
3894 tem = TYPE_NEXT_REF_TO (tem);
3895 if (tem)
3896 TYPE_NEXT_REF_TO (tem) = TYPE_NEXT_REF_TO (t);
3897 }
3898 TYPE_NEXT_REF_TO (t) = NULL_TREE;
3899 }
3900
3901 t = new_type;
3902 }
3903 else
3904 *slot = (void *) t;
3905
3906 return t;
3907 }
3908
3909
3910 /* Show statistics on references to the global type table gimple_types. */
3911
3912 void
3913 print_gimple_types_stats (void)
3914 {
3915 if (gimple_types)
3916 fprintf (stderr, "GIMPLE type table: size %ld, %ld elements, "
3917 "%ld searches, %ld collisions (ratio: %f)\n",
3918 (long) htab_size (gimple_types),
3919 (long) htab_elements (gimple_types),
3920 (long) gimple_types->searches,
3921 (long) gimple_types->collisions,
3922 htab_collisions (gimple_types));
3923 else
3924 fprintf (stderr, "GIMPLE type table is empty\n");
3925 if (gtc_visited)
3926 fprintf (stderr, "GIMPLE type comparison table: size %ld, %ld "
3927 "elements, %ld searches, %ld collisions (ratio: %f)\n",
3928 (long) htab_size (gtc_visited),
3929 (long) htab_elements (gtc_visited),
3930 (long) gtc_visited->searches,
3931 (long) gtc_visited->collisions,
3932 htab_collisions (gtc_visited));
3933 else
3934 fprintf (stderr, "GIMPLE type comparison table is empty\n");
3935 }
3936
3937 /* Free the gimple type hashtables used for LTO type merging. */
3938
3939 void
3940 free_gimple_type_tables (void)
3941 {
3942 /* Last chance to print stats for the tables. */
3943 if (flag_lto_report)
3944 print_gimple_types_stats ();
3945
3946 if (gimple_types)
3947 {
3948 htab_delete (gimple_types);
3949 gimple_types = NULL;
3950 }
3951 if (type_hash_cache)
3952 {
3953 pointer_map_destroy (type_hash_cache);
3954 type_hash_cache = NULL;
3955 }
3956 if (gtc_visited)
3957 {
3958 htab_delete (gtc_visited);
3959 obstack_free (&gtc_ob, NULL);
3960 gtc_visited = NULL;
3961 }
3962 }
3963
3964
3965 /* Return a type the same as TYPE except unsigned or
3966 signed according to UNSIGNEDP. */
3967
3968 static tree
3969 gimple_signed_or_unsigned_type (bool unsignedp, tree type)
3970 {
3971 tree type1;
3972
3973 type1 = TYPE_MAIN_VARIANT (type);
3974 if (type1 == signed_char_type_node
3975 || type1 == char_type_node
3976 || type1 == unsigned_char_type_node)
3977 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
3978 if (type1 == integer_type_node || type1 == unsigned_type_node)
3979 return unsignedp ? unsigned_type_node : integer_type_node;
3980 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
3981 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
3982 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
3983 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
3984 if (type1 == long_long_integer_type_node
3985 || type1 == long_long_unsigned_type_node)
3986 return unsignedp
3987 ? long_long_unsigned_type_node
3988 : long_long_integer_type_node;
3989 #if HOST_BITS_PER_WIDE_INT >= 64
3990 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
3991 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
3992 #endif
3993 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
3994 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
3995 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
3996 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
3997 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
3998 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
3999 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
4000 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
4001
4002 #define GIMPLE_FIXED_TYPES(NAME) \
4003 if (type1 == short_ ## NAME ## _type_node \
4004 || type1 == unsigned_short_ ## NAME ## _type_node) \
4005 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
4006 : short_ ## NAME ## _type_node; \
4007 if (type1 == NAME ## _type_node \
4008 || type1 == unsigned_ ## NAME ## _type_node) \
4009 return unsignedp ? unsigned_ ## NAME ## _type_node \
4010 : NAME ## _type_node; \
4011 if (type1 == long_ ## NAME ## _type_node \
4012 || type1 == unsigned_long_ ## NAME ## _type_node) \
4013 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
4014 : long_ ## NAME ## _type_node; \
4015 if (type1 == long_long_ ## NAME ## _type_node \
4016 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
4017 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
4018 : long_long_ ## NAME ## _type_node;
4019
4020 #define GIMPLE_FIXED_MODE_TYPES(NAME) \
4021 if (type1 == NAME ## _type_node \
4022 || type1 == u ## NAME ## _type_node) \
4023 return unsignedp ? u ## NAME ## _type_node \
4024 : NAME ## _type_node;
4025
4026 #define GIMPLE_FIXED_TYPES_SAT(NAME) \
4027 if (type1 == sat_ ## short_ ## NAME ## _type_node \
4028 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
4029 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
4030 : sat_ ## short_ ## NAME ## _type_node; \
4031 if (type1 == sat_ ## NAME ## _type_node \
4032 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
4033 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
4034 : sat_ ## NAME ## _type_node; \
4035 if (type1 == sat_ ## long_ ## NAME ## _type_node \
4036 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
4037 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
4038 : sat_ ## long_ ## NAME ## _type_node; \
4039 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
4040 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
4041 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
4042 : sat_ ## long_long_ ## NAME ## _type_node;
4043
4044 #define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
4045 if (type1 == sat_ ## NAME ## _type_node \
4046 || type1 == sat_ ## u ## NAME ## _type_node) \
4047 return unsignedp ? sat_ ## u ## NAME ## _type_node \
4048 : sat_ ## NAME ## _type_node;
4049
4050 GIMPLE_FIXED_TYPES (fract);
4051 GIMPLE_FIXED_TYPES_SAT (fract);
4052 GIMPLE_FIXED_TYPES (accum);
4053 GIMPLE_FIXED_TYPES_SAT (accum);
4054
4055 GIMPLE_FIXED_MODE_TYPES (qq);
4056 GIMPLE_FIXED_MODE_TYPES (hq);
4057 GIMPLE_FIXED_MODE_TYPES (sq);
4058 GIMPLE_FIXED_MODE_TYPES (dq);
4059 GIMPLE_FIXED_MODE_TYPES (tq);
4060 GIMPLE_FIXED_MODE_TYPES_SAT (qq);
4061 GIMPLE_FIXED_MODE_TYPES_SAT (hq);
4062 GIMPLE_FIXED_MODE_TYPES_SAT (sq);
4063 GIMPLE_FIXED_MODE_TYPES_SAT (dq);
4064 GIMPLE_FIXED_MODE_TYPES_SAT (tq);
4065 GIMPLE_FIXED_MODE_TYPES (ha);
4066 GIMPLE_FIXED_MODE_TYPES (sa);
4067 GIMPLE_FIXED_MODE_TYPES (da);
4068 GIMPLE_FIXED_MODE_TYPES (ta);
4069 GIMPLE_FIXED_MODE_TYPES_SAT (ha);
4070 GIMPLE_FIXED_MODE_TYPES_SAT (sa);
4071 GIMPLE_FIXED_MODE_TYPES_SAT (da);
4072 GIMPLE_FIXED_MODE_TYPES_SAT (ta);
4073
4074 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
4075 the precision; they have precision set to match their range, but
4076 may use a wider mode to match an ABI. If we change modes, we may
4077 wind up with bad conversions. For INTEGER_TYPEs in C, must check
4078 the precision as well, so as to yield correct results for
4079 bit-field types. C++ does not have these separate bit-field
4080 types, and producing a signed or unsigned variant of an
4081 ENUMERAL_TYPE may cause other problems as well. */
4082 if (!INTEGRAL_TYPE_P (type)
4083 || TYPE_UNSIGNED (type) == unsignedp)
4084 return type;
4085
4086 #define TYPE_OK(node) \
4087 (TYPE_MODE (type) == TYPE_MODE (node) \
4088 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
4089 if (TYPE_OK (signed_char_type_node))
4090 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
4091 if (TYPE_OK (integer_type_node))
4092 return unsignedp ? unsigned_type_node : integer_type_node;
4093 if (TYPE_OK (short_integer_type_node))
4094 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
4095 if (TYPE_OK (long_integer_type_node))
4096 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
4097 if (TYPE_OK (long_long_integer_type_node))
4098 return (unsignedp
4099 ? long_long_unsigned_type_node
4100 : long_long_integer_type_node);
4101
4102 #if HOST_BITS_PER_WIDE_INT >= 64
4103 if (TYPE_OK (intTI_type_node))
4104 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
4105 #endif
4106 if (TYPE_OK (intDI_type_node))
4107 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
4108 if (TYPE_OK (intSI_type_node))
4109 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
4110 if (TYPE_OK (intHI_type_node))
4111 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
4112 if (TYPE_OK (intQI_type_node))
4113 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
4114
4115 #undef GIMPLE_FIXED_TYPES
4116 #undef GIMPLE_FIXED_MODE_TYPES
4117 #undef GIMPLE_FIXED_TYPES_SAT
4118 #undef GIMPLE_FIXED_MODE_TYPES_SAT
4119 #undef TYPE_OK
4120
4121 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
4122 }
4123
4124
4125 /* Return an unsigned type the same as TYPE in other respects. */
4126
4127 tree
4128 gimple_unsigned_type (tree type)
4129 {
4130 return gimple_signed_or_unsigned_type (true, type);
4131 }
4132
4133
4134 /* Return a signed type the same as TYPE in other respects. */
4135
4136 tree
4137 gimple_signed_type (tree type)
4138 {
4139 return gimple_signed_or_unsigned_type (false, type);
4140 }
4141
4142
4143 /* Return the typed-based alias set for T, which may be an expression
4144 or a type. Return -1 if we don't do anything special. */
4145
4146 alias_set_type
4147 gimple_get_alias_set (tree t)
4148 {
4149 tree u;
4150
4151 /* Permit type-punning when accessing a union, provided the access
4152 is directly through the union. For example, this code does not
4153 permit taking the address of a union member and then storing
4154 through it. Even the type-punning allowed here is a GCC
4155 extension, albeit a common and useful one; the C standard says
4156 that such accesses have implementation-defined behavior. */
4157 for (u = t;
4158 TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
4159 u = TREE_OPERAND (u, 0))
4160 if (TREE_CODE (u) == COMPONENT_REF
4161 && TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
4162 return 0;
4163
4164 /* That's all the expressions we handle specially. */
4165 if (!TYPE_P (t))
4166 return -1;
4167
4168 /* For convenience, follow the C standard when dealing with
4169 character types. Any object may be accessed via an lvalue that
4170 has character type. */
4171 if (t == char_type_node
4172 || t == signed_char_type_node
4173 || t == unsigned_char_type_node)
4174 return 0;
4175
4176 /* Allow aliasing between signed and unsigned variants of the same
4177 type. We treat the signed variant as canonical. */
4178 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
4179 {
4180 tree t1 = gimple_signed_type (t);
4181
4182 /* t1 == t can happen for boolean nodes which are always unsigned. */
4183 if (t1 != t)
4184 return get_alias_set (t1);
4185 }
4186 else if (POINTER_TYPE_P (t))
4187 {
4188 /* From the common C and C++ langhook implementation:
4189
4190 Unfortunately, there is no canonical form of a pointer type.
4191 In particular, if we have `typedef int I', then `int *', and
4192 `I *' are different types. So, we have to pick a canonical
4193 representative. We do this below.
4194
4195 Technically, this approach is actually more conservative that
4196 it needs to be. In particular, `const int *' and `int *'
4197 should be in different alias sets, according to the C and C++
4198 standard, since their types are not the same, and so,
4199 technically, an `int **' and `const int **' cannot point at
4200 the same thing.
4201
4202 But, the standard is wrong. In particular, this code is
4203 legal C++:
4204
4205 int *ip;
4206 int **ipp = &ip;
4207 const int* const* cipp = ipp;
4208 And, it doesn't make sense for that to be legal unless you
4209 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
4210 the pointed-to types. This issue has been reported to the
4211 C++ committee. */
4212
4213 /* In addition to the above canonicalization issue with LTO
4214 we should also canonicalize `T (*)[]' to `T *' avoiding
4215 alias issues with pointer-to element types and pointer-to
4216 array types.
4217
4218 Likewise we need to deal with the situation of incomplete
4219 pointed-to types and make `*(struct X **)&a' and
4220 `*(struct X {} **)&a' alias. Otherwise we will have to
4221 guarantee that all pointer-to incomplete type variants
4222 will be replaced by pointer-to complete type variants if
4223 they are available.
4224
4225 With LTO the convenient situation of using `void *' to
4226 access and store any pointer type will also become
4227 more apparent (and `void *' is just another pointer-to
4228 incomplete type). Assigning alias-set zero to `void *'
4229 and all pointer-to incomplete types is a not appealing
4230 solution. Assigning an effective alias-set zero only
4231 affecting pointers might be - by recording proper subset
4232 relationships of all pointer alias-sets.
4233
4234 Pointer-to function types are another grey area which
4235 needs caution. Globbing them all into one alias-set
4236 or the above effective zero set would work. */
4237
4238 /* For now just assign the same alias-set to all pointers.
4239 That's simple and avoids all the above problems. */
4240 if (t != ptr_type_node)
4241 return get_alias_set (ptr_type_node);
4242 }
4243
4244 return -1;
4245 }
4246
4247
4248 /* Data structure used to count the number of dereferences to PTR
4249 inside an expression. */
4250 struct count_ptr_d
4251 {
4252 tree ptr;
4253 unsigned num_stores;
4254 unsigned num_loads;
4255 };
4256
4257 /* Helper for count_uses_and_derefs. Called by walk_tree to look for
4258 (ALIGN/MISALIGNED_)INDIRECT_REF nodes for the pointer passed in DATA. */
4259
4260 static tree
4261 count_ptr_derefs (tree *tp, int *walk_subtrees, void *data)
4262 {
4263 struct walk_stmt_info *wi_p = (struct walk_stmt_info *) data;
4264 struct count_ptr_d *count_p = (struct count_ptr_d *) wi_p->info;
4265
4266 /* Do not walk inside ADDR_EXPR nodes. In the expression &ptr->fld,
4267 pointer 'ptr' is *not* dereferenced, it is simply used to compute
4268 the address of 'fld' as 'ptr + offsetof(fld)'. */
4269 if (TREE_CODE (*tp) == ADDR_EXPR)
4270 {
4271 *walk_subtrees = 0;
4272 return NULL_TREE;
4273 }
4274
4275 if (INDIRECT_REF_P (*tp) && TREE_OPERAND (*tp, 0) == count_p->ptr)
4276 {
4277 if (wi_p->is_lhs)
4278 count_p->num_stores++;
4279 else
4280 count_p->num_loads++;
4281 }
4282
4283 return NULL_TREE;
4284 }
4285
4286 /* Count the number of direct and indirect uses for pointer PTR in
4287 statement STMT. The number of direct uses is stored in
4288 *NUM_USES_P. Indirect references are counted separately depending
4289 on whether they are store or load operations. The counts are
4290 stored in *NUM_STORES_P and *NUM_LOADS_P. */
4291
4292 void
4293 count_uses_and_derefs (tree ptr, gimple stmt, unsigned *num_uses_p,
4294 unsigned *num_loads_p, unsigned *num_stores_p)
4295 {
4296 ssa_op_iter i;
4297 tree use;
4298
4299 *num_uses_p = 0;
4300 *num_loads_p = 0;
4301 *num_stores_p = 0;
4302
4303 /* Find out the total number of uses of PTR in STMT. */
4304 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
4305 if (use == ptr)
4306 (*num_uses_p)++;
4307
4308 /* Now count the number of indirect references to PTR. This is
4309 truly awful, but we don't have much choice. There are no parent
4310 pointers inside INDIRECT_REFs, so an expression like
4311 '*x_1 = foo (x_1, *x_1)' needs to be traversed piece by piece to
4312 find all the indirect and direct uses of x_1 inside. The only
4313 shortcut we can take is the fact that GIMPLE only allows
4314 INDIRECT_REFs inside the expressions below. */
4315 if (is_gimple_assign (stmt)
4316 || gimple_code (stmt) == GIMPLE_RETURN
4317 || gimple_code (stmt) == GIMPLE_ASM
4318 || is_gimple_call (stmt))
4319 {
4320 struct walk_stmt_info wi;
4321 struct count_ptr_d count;
4322
4323 count.ptr = ptr;
4324 count.num_stores = 0;
4325 count.num_loads = 0;
4326
4327 memset (&wi, 0, sizeof (wi));
4328 wi.info = &count;
4329 walk_gimple_op (stmt, count_ptr_derefs, &wi);
4330
4331 *num_stores_p = count.num_stores;
4332 *num_loads_p = count.num_loads;
4333 }
4334
4335 gcc_assert (*num_uses_p >= *num_loads_p + *num_stores_p);
4336 }
4337
4338 /* From a tree operand OP return the base of a load or store operation
4339 or NULL_TREE if OP is not a load or a store. */
4340
4341 static tree
4342 get_base_loadstore (tree op)
4343 {
4344 while (handled_component_p (op))
4345 op = TREE_OPERAND (op, 0);
4346 if (DECL_P (op)
4347 || INDIRECT_REF_P (op)
4348 || TREE_CODE (op) == TARGET_MEM_REF)
4349 return op;
4350 return NULL_TREE;
4351 }
4352
4353 /* For the statement STMT call the callbacks VISIT_LOAD, VISIT_STORE and
4354 VISIT_ADDR if non-NULL on loads, store and address-taken operands
4355 passing the STMT, the base of the operand and DATA to it. The base
4356 will be either a decl, an indirect reference (including TARGET_MEM_REF)
4357 or the argument of an address expression.
4358 Returns the results of these callbacks or'ed. */
4359
4360 bool
4361 walk_stmt_load_store_addr_ops (gimple stmt, void *data,
4362 bool (*visit_load)(gimple, tree, void *),
4363 bool (*visit_store)(gimple, tree, void *),
4364 bool (*visit_addr)(gimple, tree, void *))
4365 {
4366 bool ret = false;
4367 unsigned i;
4368 if (gimple_assign_single_p (stmt))
4369 {
4370 tree lhs, rhs;
4371 if (visit_store)
4372 {
4373 lhs = get_base_loadstore (gimple_assign_lhs (stmt));
4374 if (lhs)
4375 ret |= visit_store (stmt, lhs, data);
4376 }
4377 rhs = gimple_assign_rhs1 (stmt);
4378 while (handled_component_p (rhs))
4379 rhs = TREE_OPERAND (rhs, 0);
4380 if (visit_addr)
4381 {
4382 if (TREE_CODE (rhs) == ADDR_EXPR)
4383 ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data);
4384 else if (TREE_CODE (rhs) == TARGET_MEM_REF
4385 && TMR_BASE (rhs) != NULL_TREE
4386 && TREE_CODE (TMR_BASE (rhs)) == ADDR_EXPR)
4387 ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (rhs), 0), data);
4388 else if (TREE_CODE (rhs) == OBJ_TYPE_REF
4389 && TREE_CODE (OBJ_TYPE_REF_OBJECT (rhs)) == ADDR_EXPR)
4390 ret |= visit_addr (stmt, TREE_OPERAND (OBJ_TYPE_REF_OBJECT (rhs),
4391 0), data);
4392 lhs = gimple_assign_lhs (stmt);
4393 if (TREE_CODE (lhs) == TARGET_MEM_REF
4394 && TMR_BASE (lhs) != NULL_TREE
4395 && TREE_CODE (TMR_BASE (lhs)) == ADDR_EXPR)
4396 ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (lhs), 0), data);
4397 }
4398 if (visit_load)
4399 {
4400 rhs = get_base_loadstore (rhs);
4401 if (rhs)
4402 ret |= visit_load (stmt, rhs, data);
4403 }
4404 }
4405 else if (visit_addr
4406 && (is_gimple_assign (stmt)
4407 || gimple_code (stmt) == GIMPLE_COND))
4408 {
4409 for (i = 0; i < gimple_num_ops (stmt); ++i)
4410 if (gimple_op (stmt, i)
4411 && TREE_CODE (gimple_op (stmt, i)) == ADDR_EXPR)
4412 ret |= visit_addr (stmt, TREE_OPERAND (gimple_op (stmt, i), 0), data);
4413 }
4414 else if (is_gimple_call (stmt))
4415 {
4416 if (visit_store)
4417 {
4418 tree lhs = gimple_call_lhs (stmt);
4419 if (lhs)
4420 {
4421 lhs = get_base_loadstore (lhs);
4422 if (lhs)
4423 ret |= visit_store (stmt, lhs, data);
4424 }
4425 }
4426 if (visit_load || visit_addr)
4427 for (i = 0; i < gimple_call_num_args (stmt); ++i)
4428 {
4429 tree rhs = gimple_call_arg (stmt, i);
4430 if (visit_addr
4431 && TREE_CODE (rhs) == ADDR_EXPR)
4432 ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data);
4433 else if (visit_load)
4434 {
4435 rhs = get_base_loadstore (rhs);
4436 if (rhs)
4437 ret |= visit_load (stmt, rhs, data);
4438 }
4439 }
4440 if (visit_addr
4441 && gimple_call_chain (stmt)
4442 && TREE_CODE (gimple_call_chain (stmt)) == ADDR_EXPR)
4443 ret |= visit_addr (stmt, TREE_OPERAND (gimple_call_chain (stmt), 0),
4444 data);
4445 if (visit_addr
4446 && gimple_call_return_slot_opt_p (stmt)
4447 && gimple_call_lhs (stmt) != NULL_TREE
4448 && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt))))
4449 ret |= visit_addr (stmt, gimple_call_lhs (stmt), data);
4450 }
4451 else if (gimple_code (stmt) == GIMPLE_ASM)
4452 {
4453 unsigned noutputs;
4454 const char *constraint;
4455 const char **oconstraints;
4456 bool allows_mem, allows_reg, is_inout;
4457 noutputs = gimple_asm_noutputs (stmt);
4458 oconstraints = XALLOCAVEC (const char *, noutputs);
4459 if (visit_store || visit_addr)
4460 for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
4461 {
4462 tree link = gimple_asm_output_op (stmt, i);
4463 tree op = get_base_loadstore (TREE_VALUE (link));
4464 if (op && visit_store)
4465 ret |= visit_store (stmt, op, data);
4466 if (visit_addr)
4467 {
4468 constraint = TREE_STRING_POINTER
4469 (TREE_VALUE (TREE_PURPOSE (link)));
4470 oconstraints[i] = constraint;
4471 parse_output_constraint (&constraint, i, 0, 0, &allows_mem,
4472 &allows_reg, &is_inout);
4473 if (op && !allows_reg && allows_mem)
4474 ret |= visit_addr (stmt, op, data);
4475 }
4476 }
4477 if (visit_load || visit_addr)
4478 for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
4479 {
4480 tree link = gimple_asm_input_op (stmt, i);
4481 tree op = TREE_VALUE (link);
4482 if (visit_addr
4483 && TREE_CODE (op) == ADDR_EXPR)
4484 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
4485 else if (visit_load || visit_addr)
4486 {
4487 op = get_base_loadstore (op);
4488 if (op)
4489 {
4490 if (visit_load)
4491 ret |= visit_load (stmt, op, data);
4492 if (visit_addr)
4493 {
4494 constraint = TREE_STRING_POINTER
4495 (TREE_VALUE (TREE_PURPOSE (link)));
4496 parse_input_constraint (&constraint, 0, 0, noutputs,
4497 0, oconstraints,
4498 &allows_mem, &allows_reg);
4499 if (!allows_reg && allows_mem)
4500 ret |= visit_addr (stmt, op, data);
4501 }
4502 }
4503 }
4504 }
4505 }
4506 else if (gimple_code (stmt) == GIMPLE_RETURN)
4507 {
4508 tree op = gimple_return_retval (stmt);
4509 if (op)
4510 {
4511 if (visit_addr
4512 && TREE_CODE (op) == ADDR_EXPR)
4513 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
4514 else if (visit_load)
4515 {
4516 op = get_base_loadstore (op);
4517 if (op)
4518 ret |= visit_load (stmt, op, data);
4519 }
4520 }
4521 }
4522 else if (visit_addr
4523 && gimple_code (stmt) == GIMPLE_PHI)
4524 {
4525 for (i = 0; i < gimple_phi_num_args (stmt); ++i)
4526 {
4527 tree op = PHI_ARG_DEF (stmt, i);
4528 if (TREE_CODE (op) == ADDR_EXPR)
4529 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
4530 }
4531 }
4532
4533 return ret;
4534 }
4535
4536 /* Like walk_stmt_load_store_addr_ops but with NULL visit_addr. IPA-CP
4537 should make a faster clone for this case. */
4538
4539 bool
4540 walk_stmt_load_store_ops (gimple stmt, void *data,
4541 bool (*visit_load)(gimple, tree, void *),
4542 bool (*visit_store)(gimple, tree, void *))
4543 {
4544 return walk_stmt_load_store_addr_ops (stmt, data,
4545 visit_load, visit_store, NULL);
4546 }
4547
4548 /* Helper for gimple_ior_addresses_taken_1. */
4549
4550 static bool
4551 gimple_ior_addresses_taken_1 (gimple stmt ATTRIBUTE_UNUSED,
4552 tree addr, void *data)
4553 {
4554 bitmap addresses_taken = (bitmap)data;
4555 addr = get_base_address (addr);
4556 if (addr
4557 && DECL_P (addr))
4558 {
4559 bitmap_set_bit (addresses_taken, DECL_UID (addr));
4560 return true;
4561 }
4562 return false;
4563 }
4564
4565 /* Set the bit for the uid of all decls that have their address taken
4566 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
4567 were any in this stmt. */
4568
4569 bool
4570 gimple_ior_addresses_taken (bitmap addresses_taken, gimple stmt)
4571 {
4572 return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
4573 gimple_ior_addresses_taken_1);
4574 }
4575
4576
4577 /* Return a printable name for symbol DECL. */
4578
4579 const char *
4580 gimple_decl_printable_name (tree decl, int verbosity)
4581 {
4582 if (!DECL_NAME (decl))
4583 return NULL;
4584
4585 if (DECL_ASSEMBLER_NAME_SET_P (decl))
4586 {
4587 const char *str, *mangled_str;
4588 int dmgl_opts = DMGL_NO_OPTS;
4589
4590 if (verbosity >= 2)
4591 {
4592 dmgl_opts = DMGL_VERBOSE
4593 | DMGL_ANSI
4594 | DMGL_GNU_V3
4595 | DMGL_RET_POSTFIX;
4596 if (TREE_CODE (decl) == FUNCTION_DECL)
4597 dmgl_opts |= DMGL_PARAMS;
4598 }
4599
4600 mangled_str = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
4601 str = cplus_demangle_v3 (mangled_str, dmgl_opts);
4602 return (str) ? str : mangled_str;
4603 }
4604
4605 return IDENTIFIER_POINTER (DECL_NAME (decl));
4606 }
4607
4608
4609 /* Fold a OBJ_TYPE_REF expression to the address of a function.
4610 KNOWN_TYPE carries the true type of OBJ_TYPE_REF_OBJECT(REF). Adapted
4611 from cp_fold_obj_type_ref, but it tolerates types with no binfo
4612 data. */
4613
4614 tree
4615 gimple_fold_obj_type_ref (tree ref, tree known_type)
4616 {
4617 HOST_WIDE_INT index;
4618 HOST_WIDE_INT i;
4619 tree v;
4620 tree fndecl;
4621
4622 if (TYPE_BINFO (known_type) == NULL_TREE)
4623 return NULL_TREE;
4624
4625 v = BINFO_VIRTUALS (TYPE_BINFO (known_type));
4626 index = tree_low_cst (OBJ_TYPE_REF_TOKEN (ref), 1);
4627 i = 0;
4628 while (i != index)
4629 {
4630 i += (TARGET_VTABLE_USES_DESCRIPTORS
4631 ? TARGET_VTABLE_USES_DESCRIPTORS : 1);
4632 v = TREE_CHAIN (v);
4633 }
4634
4635 fndecl = TREE_VALUE (v);
4636
4637 #ifdef ENABLE_CHECKING
4638 gcc_assert (tree_int_cst_equal (OBJ_TYPE_REF_TOKEN (ref),
4639 DECL_VINDEX (fndecl)));
4640 #endif
4641
4642 cgraph_node (fndecl)->local.vtable_method = true;
4643
4644 return build_fold_addr_expr (fndecl);
4645 }
4646
4647 #include "gt-gimple.h"