re PR target/69894 (dependency of gcc-plugin.h not installed on aarch64-linux-gnu)
[gcc.git] / gcc / gimple.c
1 /* Gimple IR support functions.
2
3 Copyright (C) 2007-2016 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "ssa.h"
29 #include "cgraph.h"
30 #include "diagnostic.h"
31 #include "alias.h"
32 #include "fold-const.h"
33 #include "calls.h"
34 #include "stor-layout.h"
35 #include "internal-fn.h"
36 #include "tree-eh.h"
37 #include "gimple-iterator.h"
38 #include "gimple-walk.h"
39 #include "gimplify.h"
40 #include "target.h"
41
42
43 /* All the tuples have their operand vector (if present) at the very bottom
44 of the structure. Therefore, the offset required to find the
45 operands vector the size of the structure minus the size of the 1
46 element tree array at the end (see gimple_ops). */
47 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
48 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
49 EXPORTED_CONST size_t gimple_ops_offset_[] = {
50 #include "gsstruct.def"
51 };
52 #undef DEFGSSTRUCT
53
54 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof (struct STRUCT),
55 static const size_t gsstruct_code_size[] = {
56 #include "gsstruct.def"
57 };
58 #undef DEFGSSTRUCT
59
60 #define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
61 const char *const gimple_code_name[] = {
62 #include "gimple.def"
63 };
64 #undef DEFGSCODE
65
66 #define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
67 EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
68 #include "gimple.def"
69 };
70 #undef DEFGSCODE
71
72 /* Gimple stats. */
73
74 int gimple_alloc_counts[(int) gimple_alloc_kind_all];
75 int gimple_alloc_sizes[(int) gimple_alloc_kind_all];
76
77 /* Keep in sync with gimple.h:enum gimple_alloc_kind. */
78 static const char * const gimple_alloc_kind_names[] = {
79 "assignments",
80 "phi nodes",
81 "conditionals",
82 "everything else"
83 };
84
85 /* Static gimple tuple members. */
86 const enum gimple_code gassign::code_;
87 const enum gimple_code gcall::code_;
88 const enum gimple_code gcond::code_;
89
90
91 /* Gimple tuple constructors.
92 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
93 be passed a NULL to start with an empty sequence. */
94
95 /* Set the code for statement G to CODE. */
96
97 static inline void
98 gimple_set_code (gimple *g, enum gimple_code code)
99 {
100 g->code = code;
101 }
102
103 /* Return the number of bytes needed to hold a GIMPLE statement with
104 code CODE. */
105
106 static inline size_t
107 gimple_size (enum gimple_code code)
108 {
109 return gsstruct_code_size[gss_for_code (code)];
110 }
111
112 /* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
113 operands. */
114
115 gimple *
116 gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
117 {
118 size_t size;
119 gimple *stmt;
120
121 size = gimple_size (code);
122 if (num_ops > 0)
123 size += sizeof (tree) * (num_ops - 1);
124
125 if (GATHER_STATISTICS)
126 {
127 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
128 gimple_alloc_counts[(int) kind]++;
129 gimple_alloc_sizes[(int) kind] += size;
130 }
131
132 stmt = ggc_alloc_cleared_gimple_statement_stat (size PASS_MEM_STAT);
133 gimple_set_code (stmt, code);
134 gimple_set_num_ops (stmt, num_ops);
135
136 /* Do not call gimple_set_modified here as it has other side
137 effects and this tuple is still not completely built. */
138 stmt->modified = 1;
139 gimple_init_singleton (stmt);
140
141 return stmt;
142 }
143
144 /* Set SUBCODE to be the code of the expression computed by statement G. */
145
146 static inline void
147 gimple_set_subcode (gimple *g, unsigned subcode)
148 {
149 /* We only have 16 bits for the RHS code. Assert that we are not
150 overflowing it. */
151 gcc_assert (subcode < (1 << 16));
152 g->subcode = subcode;
153 }
154
155
156
157 /* Build a tuple with operands. CODE is the statement to build (which
158 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the subcode
159 for the new tuple. NUM_OPS is the number of operands to allocate. */
160
161 #define gimple_build_with_ops(c, s, n) \
162 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
163
164 static gimple *
165 gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
166 unsigned num_ops MEM_STAT_DECL)
167 {
168 gimple *s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT);
169 gimple_set_subcode (s, subcode);
170
171 return s;
172 }
173
174
175 /* Build a GIMPLE_RETURN statement returning RETVAL. */
176
177 greturn *
178 gimple_build_return (tree retval)
179 {
180 greturn *s
181 = as_a <greturn *> (gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK,
182 2));
183 if (retval)
184 gimple_return_set_retval (s, retval);
185 return s;
186 }
187
188 /* Reset alias information on call S. */
189
190 void
191 gimple_call_reset_alias_info (gcall *s)
192 {
193 if (gimple_call_flags (s) & ECF_CONST)
194 memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
195 else
196 pt_solution_reset (gimple_call_use_set (s));
197 if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
198 memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
199 else
200 pt_solution_reset (gimple_call_clobber_set (s));
201 }
202
203 /* Helper for gimple_build_call, gimple_build_call_valist,
204 gimple_build_call_vec and gimple_build_call_from_tree. Build the basic
205 components of a GIMPLE_CALL statement to function FN with NARGS
206 arguments. */
207
208 static inline gcall *
209 gimple_build_call_1 (tree fn, unsigned nargs)
210 {
211 gcall *s
212 = as_a <gcall *> (gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK,
213 nargs + 3));
214 if (TREE_CODE (fn) == FUNCTION_DECL)
215 fn = build_fold_addr_expr (fn);
216 gimple_set_op (s, 1, fn);
217 gimple_call_set_fntype (s, TREE_TYPE (TREE_TYPE (fn)));
218 gimple_call_reset_alias_info (s);
219 return s;
220 }
221
222
223 /* Build a GIMPLE_CALL statement to function FN with the arguments
224 specified in vector ARGS. */
225
226 gcall *
227 gimple_build_call_vec (tree fn, vec<tree> args)
228 {
229 unsigned i;
230 unsigned nargs = args.length ();
231 gcall *call = gimple_build_call_1 (fn, nargs);
232
233 for (i = 0; i < nargs; i++)
234 gimple_call_set_arg (call, i, args[i]);
235
236 return call;
237 }
238
239
240 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
241 arguments. The ... are the arguments. */
242
243 gcall *
244 gimple_build_call (tree fn, unsigned nargs, ...)
245 {
246 va_list ap;
247 gcall *call;
248 unsigned i;
249
250 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
251
252 call = gimple_build_call_1 (fn, nargs);
253
254 va_start (ap, nargs);
255 for (i = 0; i < nargs; i++)
256 gimple_call_set_arg (call, i, va_arg (ap, tree));
257 va_end (ap);
258
259 return call;
260 }
261
262
263 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
264 arguments. AP contains the arguments. */
265
266 gcall *
267 gimple_build_call_valist (tree fn, unsigned nargs, va_list ap)
268 {
269 gcall *call;
270 unsigned i;
271
272 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
273
274 call = gimple_build_call_1 (fn, nargs);
275
276 for (i = 0; i < nargs; i++)
277 gimple_call_set_arg (call, i, va_arg (ap, tree));
278
279 return call;
280 }
281
282
283 /* Helper for gimple_build_call_internal and gimple_build_call_internal_vec.
284 Build the basic components of a GIMPLE_CALL statement to internal
285 function FN with NARGS arguments. */
286
287 static inline gcall *
288 gimple_build_call_internal_1 (enum internal_fn fn, unsigned nargs)
289 {
290 gcall *s
291 = as_a <gcall *> (gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK,
292 nargs + 3));
293 s->subcode |= GF_CALL_INTERNAL;
294 gimple_call_set_internal_fn (s, fn);
295 gimple_call_reset_alias_info (s);
296 return s;
297 }
298
299
300 /* Build a GIMPLE_CALL statement to internal function FN. NARGS is
301 the number of arguments. The ... are the arguments. */
302
303 gcall *
304 gimple_build_call_internal (enum internal_fn fn, unsigned nargs, ...)
305 {
306 va_list ap;
307 gcall *call;
308 unsigned i;
309
310 call = gimple_build_call_internal_1 (fn, nargs);
311 va_start (ap, nargs);
312 for (i = 0; i < nargs; i++)
313 gimple_call_set_arg (call, i, va_arg (ap, tree));
314 va_end (ap);
315
316 return call;
317 }
318
319
320 /* Build a GIMPLE_CALL statement to internal function FN with the arguments
321 specified in vector ARGS. */
322
323 gcall *
324 gimple_build_call_internal_vec (enum internal_fn fn, vec<tree> args)
325 {
326 unsigned i, nargs;
327 gcall *call;
328
329 nargs = args.length ();
330 call = gimple_build_call_internal_1 (fn, nargs);
331 for (i = 0; i < nargs; i++)
332 gimple_call_set_arg (call, i, args[i]);
333
334 return call;
335 }
336
337
338 /* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
339 assumed to be in GIMPLE form already. Minimal checking is done of
340 this fact. */
341
342 gcall *
343 gimple_build_call_from_tree (tree t)
344 {
345 unsigned i, nargs;
346 gcall *call;
347 tree fndecl = get_callee_fndecl (t);
348
349 gcc_assert (TREE_CODE (t) == CALL_EXPR);
350
351 nargs = call_expr_nargs (t);
352 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
353
354 for (i = 0; i < nargs; i++)
355 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
356
357 gimple_set_block (call, TREE_BLOCK (t));
358
359 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
360 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
361 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
362 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
363 if (fndecl
364 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
365 && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA
366 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN))
367 gimple_call_set_alloca_for_var (call, CALL_ALLOCA_FOR_VAR_P (t));
368 else
369 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
370 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
371 gimple_call_set_nothrow (call, TREE_NOTHROW (t));
372 gimple_set_no_warning (call, TREE_NO_WARNING (t));
373 gimple_call_set_with_bounds (call, CALL_WITH_BOUNDS_P (t));
374
375 return call;
376 }
377
378
379 /* Build a GIMPLE_ASSIGN statement.
380
381 LHS of the assignment.
382 RHS of the assignment which can be unary or binary. */
383
384 gassign *
385 gimple_build_assign (tree lhs, tree rhs MEM_STAT_DECL)
386 {
387 enum tree_code subcode;
388 tree op1, op2, op3;
389
390 extract_ops_from_tree_1 (rhs, &subcode, &op1, &op2, &op3);
391 return gimple_build_assign (lhs, subcode, op1, op2, op3 PASS_MEM_STAT);
392 }
393
394
395 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
396 OP1, OP2 and OP3. */
397
398 static inline gassign *
399 gimple_build_assign_1 (tree lhs, enum tree_code subcode, tree op1,
400 tree op2, tree op3 MEM_STAT_DECL)
401 {
402 unsigned num_ops;
403 gassign *p;
404
405 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
406 code). */
407 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
408
409 p = as_a <gassign *> (
410 gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
411 PASS_MEM_STAT));
412 gimple_assign_set_lhs (p, lhs);
413 gimple_assign_set_rhs1 (p, op1);
414 if (op2)
415 {
416 gcc_assert (num_ops > 2);
417 gimple_assign_set_rhs2 (p, op2);
418 }
419
420 if (op3)
421 {
422 gcc_assert (num_ops > 3);
423 gimple_assign_set_rhs3 (p, op3);
424 }
425
426 return p;
427 }
428
429 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
430 OP1, OP2 and OP3. */
431
432 gassign *
433 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1,
434 tree op2, tree op3 MEM_STAT_DECL)
435 {
436 return gimple_build_assign_1 (lhs, subcode, op1, op2, op3 PASS_MEM_STAT);
437 }
438
439 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
440 OP1 and OP2. */
441
442 gassign *
443 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1,
444 tree op2 MEM_STAT_DECL)
445 {
446 return gimple_build_assign_1 (lhs, subcode, op1, op2, NULL_TREE
447 PASS_MEM_STAT);
448 }
449
450 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operand OP1. */
451
452 gassign *
453 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1 MEM_STAT_DECL)
454 {
455 return gimple_build_assign_1 (lhs, subcode, op1, NULL_TREE, NULL_TREE
456 PASS_MEM_STAT);
457 }
458
459
460 /* Build a GIMPLE_COND statement.
461
462 PRED is the condition used to compare LHS and the RHS.
463 T_LABEL is the label to jump to if the condition is true.
464 F_LABEL is the label to jump to otherwise. */
465
466 gcond *
467 gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
468 tree t_label, tree f_label)
469 {
470 gcond *p;
471
472 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
473 p = as_a <gcond *> (gimple_build_with_ops (GIMPLE_COND, pred_code, 4));
474 gimple_cond_set_lhs (p, lhs);
475 gimple_cond_set_rhs (p, rhs);
476 gimple_cond_set_true_label (p, t_label);
477 gimple_cond_set_false_label (p, f_label);
478 return p;
479 }
480
481 /* Build a GIMPLE_COND statement from the conditional expression tree
482 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
483
484 gcond *
485 gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
486 {
487 enum tree_code code;
488 tree lhs, rhs;
489
490 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
491 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
492 }
493
494 /* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
495 boolean expression tree COND. */
496
497 void
498 gimple_cond_set_condition_from_tree (gcond *stmt, tree cond)
499 {
500 enum tree_code code;
501 tree lhs, rhs;
502
503 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
504 gimple_cond_set_condition (stmt, code, lhs, rhs);
505 }
506
507 /* Build a GIMPLE_LABEL statement for LABEL. */
508
509 glabel *
510 gimple_build_label (tree label)
511 {
512 glabel *p
513 = as_a <glabel *> (gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1));
514 gimple_label_set_label (p, label);
515 return p;
516 }
517
518 /* Build a GIMPLE_GOTO statement to label DEST. */
519
520 ggoto *
521 gimple_build_goto (tree dest)
522 {
523 ggoto *p
524 = as_a <ggoto *> (gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1));
525 gimple_goto_set_dest (p, dest);
526 return p;
527 }
528
529
530 /* Build a GIMPLE_NOP statement. */
531
532 gimple *
533 gimple_build_nop (void)
534 {
535 return gimple_alloc (GIMPLE_NOP, 0);
536 }
537
538
539 /* Build a GIMPLE_BIND statement.
540 VARS are the variables in BODY.
541 BLOCK is the containing block. */
542
543 gbind *
544 gimple_build_bind (tree vars, gimple_seq body, tree block)
545 {
546 gbind *p = as_a <gbind *> (gimple_alloc (GIMPLE_BIND, 0));
547 gimple_bind_set_vars (p, vars);
548 if (body)
549 gimple_bind_set_body (p, body);
550 if (block)
551 gimple_bind_set_block (p, block);
552 return p;
553 }
554
555 /* Helper function to set the simple fields of a asm stmt.
556
557 STRING is a pointer to a string that is the asm blocks assembly code.
558 NINPUT is the number of register inputs.
559 NOUTPUT is the number of register outputs.
560 NCLOBBERS is the number of clobbered registers.
561 */
562
563 static inline gasm *
564 gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
565 unsigned nclobbers, unsigned nlabels)
566 {
567 gasm *p;
568 int size = strlen (string);
569
570 /* ASMs with labels cannot have outputs. This should have been
571 enforced by the front end. */
572 gcc_assert (nlabels == 0 || noutputs == 0);
573
574 p = as_a <gasm *> (
575 gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
576 ninputs + noutputs + nclobbers + nlabels));
577
578 p->ni = ninputs;
579 p->no = noutputs;
580 p->nc = nclobbers;
581 p->nl = nlabels;
582 p->string = ggc_alloc_string (string, size);
583
584 if (GATHER_STATISTICS)
585 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
586
587 return p;
588 }
589
590 /* Build a GIMPLE_ASM statement.
591
592 STRING is the assembly code.
593 NINPUT is the number of register inputs.
594 NOUTPUT is the number of register outputs.
595 NCLOBBERS is the number of clobbered registers.
596 INPUTS is a vector of the input register parameters.
597 OUTPUTS is a vector of the output register parameters.
598 CLOBBERS is a vector of the clobbered register parameters.
599 LABELS is a vector of destination labels. */
600
601 gasm *
602 gimple_build_asm_vec (const char *string, vec<tree, va_gc> *inputs,
603 vec<tree, va_gc> *outputs, vec<tree, va_gc> *clobbers,
604 vec<tree, va_gc> *labels)
605 {
606 gasm *p;
607 unsigned i;
608
609 p = gimple_build_asm_1 (string,
610 vec_safe_length (inputs),
611 vec_safe_length (outputs),
612 vec_safe_length (clobbers),
613 vec_safe_length (labels));
614
615 for (i = 0; i < vec_safe_length (inputs); i++)
616 gimple_asm_set_input_op (p, i, (*inputs)[i]);
617
618 for (i = 0; i < vec_safe_length (outputs); i++)
619 gimple_asm_set_output_op (p, i, (*outputs)[i]);
620
621 for (i = 0; i < vec_safe_length (clobbers); i++)
622 gimple_asm_set_clobber_op (p, i, (*clobbers)[i]);
623
624 for (i = 0; i < vec_safe_length (labels); i++)
625 gimple_asm_set_label_op (p, i, (*labels)[i]);
626
627 return p;
628 }
629
630 /* Build a GIMPLE_CATCH statement.
631
632 TYPES are the catch types.
633 HANDLER is the exception handler. */
634
635 gcatch *
636 gimple_build_catch (tree types, gimple_seq handler)
637 {
638 gcatch *p = as_a <gcatch *> (gimple_alloc (GIMPLE_CATCH, 0));
639 gimple_catch_set_types (p, types);
640 if (handler)
641 gimple_catch_set_handler (p, handler);
642
643 return p;
644 }
645
646 /* Build a GIMPLE_EH_FILTER statement.
647
648 TYPES are the filter's types.
649 FAILURE is the filter's failure action. */
650
651 geh_filter *
652 gimple_build_eh_filter (tree types, gimple_seq failure)
653 {
654 geh_filter *p = as_a <geh_filter *> (gimple_alloc (GIMPLE_EH_FILTER, 0));
655 gimple_eh_filter_set_types (p, types);
656 if (failure)
657 gimple_eh_filter_set_failure (p, failure);
658
659 return p;
660 }
661
662 /* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
663
664 geh_mnt *
665 gimple_build_eh_must_not_throw (tree decl)
666 {
667 geh_mnt *p = as_a <geh_mnt *> (gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0));
668
669 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
670 gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
671 gimple_eh_must_not_throw_set_fndecl (p, decl);
672
673 return p;
674 }
675
676 /* Build a GIMPLE_EH_ELSE statement. */
677
678 geh_else *
679 gimple_build_eh_else (gimple_seq n_body, gimple_seq e_body)
680 {
681 geh_else *p = as_a <geh_else *> (gimple_alloc (GIMPLE_EH_ELSE, 0));
682 gimple_eh_else_set_n_body (p, n_body);
683 gimple_eh_else_set_e_body (p, e_body);
684 return p;
685 }
686
687 /* Build a GIMPLE_TRY statement.
688
689 EVAL is the expression to evaluate.
690 CLEANUP is the cleanup expression.
691 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
692 whether this is a try/catch or a try/finally respectively. */
693
694 gtry *
695 gimple_build_try (gimple_seq eval, gimple_seq cleanup,
696 enum gimple_try_flags kind)
697 {
698 gtry *p;
699
700 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
701 p = as_a <gtry *> (gimple_alloc (GIMPLE_TRY, 0));
702 gimple_set_subcode (p, kind);
703 if (eval)
704 gimple_try_set_eval (p, eval);
705 if (cleanup)
706 gimple_try_set_cleanup (p, cleanup);
707
708 return p;
709 }
710
711 /* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
712
713 CLEANUP is the cleanup expression. */
714
715 gimple *
716 gimple_build_wce (gimple_seq cleanup)
717 {
718 gimple *p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
719 if (cleanup)
720 gimple_wce_set_cleanup (p, cleanup);
721
722 return p;
723 }
724
725
726 /* Build a GIMPLE_RESX statement. */
727
728 gresx *
729 gimple_build_resx (int region)
730 {
731 gresx *p
732 = as_a <gresx *> (gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0));
733 p->region = region;
734 return p;
735 }
736
737
738 /* The helper for constructing a gimple switch statement.
739 INDEX is the switch's index.
740 NLABELS is the number of labels in the switch excluding the default.
741 DEFAULT_LABEL is the default label for the switch statement. */
742
743 gswitch *
744 gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
745 {
746 /* nlabels + 1 default label + 1 index. */
747 gcc_checking_assert (default_label);
748 gswitch *p = as_a <gswitch *> (gimple_build_with_ops (GIMPLE_SWITCH,
749 ERROR_MARK,
750 1 + 1 + nlabels));
751 gimple_switch_set_index (p, index);
752 gimple_switch_set_default_label (p, default_label);
753 return p;
754 }
755
756 /* Build a GIMPLE_SWITCH statement.
757
758 INDEX is the switch's index.
759 DEFAULT_LABEL is the default label
760 ARGS is a vector of labels excluding the default. */
761
762 gswitch *
763 gimple_build_switch (tree index, tree default_label, vec<tree> args)
764 {
765 unsigned i, nlabels = args.length ();
766
767 gswitch *p = gimple_build_switch_nlabels (nlabels, index, default_label);
768
769 /* Copy the labels from the vector to the switch statement. */
770 for (i = 0; i < nlabels; i++)
771 gimple_switch_set_label (p, i + 1, args[i]);
772
773 return p;
774 }
775
776 /* Build a GIMPLE_EH_DISPATCH statement. */
777
778 geh_dispatch *
779 gimple_build_eh_dispatch (int region)
780 {
781 geh_dispatch *p
782 = as_a <geh_dispatch *> (
783 gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0));
784 p->region = region;
785 return p;
786 }
787
788 /* Build a new GIMPLE_DEBUG_BIND statement.
789
790 VAR is bound to VALUE; block and location are taken from STMT. */
791
792 gdebug *
793 gimple_build_debug_bind_stat (tree var, tree value, gimple *stmt MEM_STAT_DECL)
794 {
795 gdebug *p
796 = as_a <gdebug *> (gimple_build_with_ops_stat (GIMPLE_DEBUG,
797 (unsigned)GIMPLE_DEBUG_BIND, 2
798 PASS_MEM_STAT));
799 gimple_debug_bind_set_var (p, var);
800 gimple_debug_bind_set_value (p, value);
801 if (stmt)
802 gimple_set_location (p, gimple_location (stmt));
803
804 return p;
805 }
806
807
808 /* Build a new GIMPLE_DEBUG_SOURCE_BIND statement.
809
810 VAR is bound to VALUE; block and location are taken from STMT. */
811
812 gdebug *
813 gimple_build_debug_source_bind_stat (tree var, tree value,
814 gimple *stmt MEM_STAT_DECL)
815 {
816 gdebug *p
817 = as_a <gdebug *> (
818 gimple_build_with_ops_stat (GIMPLE_DEBUG,
819 (unsigned)GIMPLE_DEBUG_SOURCE_BIND, 2
820 PASS_MEM_STAT));
821
822 gimple_debug_source_bind_set_var (p, var);
823 gimple_debug_source_bind_set_value (p, value);
824 if (stmt)
825 gimple_set_location (p, gimple_location (stmt));
826
827 return p;
828 }
829
830
831 /* Build a GIMPLE_OMP_CRITICAL statement.
832
833 BODY is the sequence of statements for which only one thread can execute.
834 NAME is optional identifier for this critical block.
835 CLAUSES are clauses for this critical block. */
836
837 gomp_critical *
838 gimple_build_omp_critical (gimple_seq body, tree name, tree clauses)
839 {
840 gomp_critical *p
841 = as_a <gomp_critical *> (gimple_alloc (GIMPLE_OMP_CRITICAL, 0));
842 gimple_omp_critical_set_name (p, name);
843 gimple_omp_critical_set_clauses (p, clauses);
844 if (body)
845 gimple_omp_set_body (p, body);
846
847 return p;
848 }
849
850 /* Build a GIMPLE_OMP_FOR statement.
851
852 BODY is sequence of statements inside the for loop.
853 KIND is the `for' variant.
854 CLAUSES, are any of the construct's clauses.
855 COLLAPSE is the collapse count.
856 PRE_BODY is the sequence of statements that are loop invariant. */
857
858 gomp_for *
859 gimple_build_omp_for (gimple_seq body, int kind, tree clauses, size_t collapse,
860 gimple_seq pre_body)
861 {
862 gomp_for *p = as_a <gomp_for *> (gimple_alloc (GIMPLE_OMP_FOR, 0));
863 if (body)
864 gimple_omp_set_body (p, body);
865 gimple_omp_for_set_clauses (p, clauses);
866 gimple_omp_for_set_kind (p, kind);
867 p->collapse = collapse;
868 p->iter = ggc_cleared_vec_alloc<gimple_omp_for_iter> (collapse);
869
870 if (pre_body)
871 gimple_omp_for_set_pre_body (p, pre_body);
872
873 return p;
874 }
875
876
877 /* Build a GIMPLE_OMP_PARALLEL statement.
878
879 BODY is sequence of statements which are executed in parallel.
880 CLAUSES, are the OMP parallel construct's clauses.
881 CHILD_FN is the function created for the parallel threads to execute.
882 DATA_ARG are the shared data argument(s). */
883
884 gomp_parallel *
885 gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
886 tree data_arg)
887 {
888 gomp_parallel *p
889 = as_a <gomp_parallel *> (gimple_alloc (GIMPLE_OMP_PARALLEL, 0));
890 if (body)
891 gimple_omp_set_body (p, body);
892 gimple_omp_parallel_set_clauses (p, clauses);
893 gimple_omp_parallel_set_child_fn (p, child_fn);
894 gimple_omp_parallel_set_data_arg (p, data_arg);
895
896 return p;
897 }
898
899
900 /* Build a GIMPLE_OMP_TASK statement.
901
902 BODY is sequence of statements which are executed by the explicit task.
903 CLAUSES, are the OMP parallel construct's clauses.
904 CHILD_FN is the function created for the parallel threads to execute.
905 DATA_ARG are the shared data argument(s).
906 COPY_FN is the optional function for firstprivate initialization.
907 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
908
909 gomp_task *
910 gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
911 tree data_arg, tree copy_fn, tree arg_size,
912 tree arg_align)
913 {
914 gomp_task *p = as_a <gomp_task *> (gimple_alloc (GIMPLE_OMP_TASK, 0));
915 if (body)
916 gimple_omp_set_body (p, body);
917 gimple_omp_task_set_clauses (p, clauses);
918 gimple_omp_task_set_child_fn (p, child_fn);
919 gimple_omp_task_set_data_arg (p, data_arg);
920 gimple_omp_task_set_copy_fn (p, copy_fn);
921 gimple_omp_task_set_arg_size (p, arg_size);
922 gimple_omp_task_set_arg_align (p, arg_align);
923
924 return p;
925 }
926
927
928 /* Build a GIMPLE_OMP_SECTION statement for a sections statement.
929
930 BODY is the sequence of statements in the section. */
931
932 gimple *
933 gimple_build_omp_section (gimple_seq body)
934 {
935 gimple *p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
936 if (body)
937 gimple_omp_set_body (p, body);
938
939 return p;
940 }
941
942
943 /* Build a GIMPLE_OMP_MASTER statement.
944
945 BODY is the sequence of statements to be executed by just the master. */
946
947 gimple *
948 gimple_build_omp_master (gimple_seq body)
949 {
950 gimple *p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
951 if (body)
952 gimple_omp_set_body (p, body);
953
954 return p;
955 }
956
957 /* Build a GIMPLE_OMP_GRID_BODY statement.
958
959 BODY is the sequence of statements to be executed by the kernel. */
960
961 gimple *
962 gimple_build_omp_grid_body (gimple_seq body)
963 {
964 gimple *p = gimple_alloc (GIMPLE_OMP_GRID_BODY, 0);
965 if (body)
966 gimple_omp_set_body (p, body);
967
968 return p;
969 }
970
971 /* Build a GIMPLE_OMP_TASKGROUP statement.
972
973 BODY is the sequence of statements to be executed by the taskgroup
974 construct. */
975
976 gimple *
977 gimple_build_omp_taskgroup (gimple_seq body)
978 {
979 gimple *p = gimple_alloc (GIMPLE_OMP_TASKGROUP, 0);
980 if (body)
981 gimple_omp_set_body (p, body);
982
983 return p;
984 }
985
986
987 /* Build a GIMPLE_OMP_CONTINUE statement.
988
989 CONTROL_DEF is the definition of the control variable.
990 CONTROL_USE is the use of the control variable. */
991
992 gomp_continue *
993 gimple_build_omp_continue (tree control_def, tree control_use)
994 {
995 gomp_continue *p
996 = as_a <gomp_continue *> (gimple_alloc (GIMPLE_OMP_CONTINUE, 0));
997 gimple_omp_continue_set_control_def (p, control_def);
998 gimple_omp_continue_set_control_use (p, control_use);
999 return p;
1000 }
1001
1002 /* Build a GIMPLE_OMP_ORDERED statement.
1003
1004 BODY is the sequence of statements inside a loop that will executed in
1005 sequence.
1006 CLAUSES are clauses for this statement. */
1007
1008 gomp_ordered *
1009 gimple_build_omp_ordered (gimple_seq body, tree clauses)
1010 {
1011 gomp_ordered *p
1012 = as_a <gomp_ordered *> (gimple_alloc (GIMPLE_OMP_ORDERED, 0));
1013 gimple_omp_ordered_set_clauses (p, clauses);
1014 if (body)
1015 gimple_omp_set_body (p, body);
1016
1017 return p;
1018 }
1019
1020
1021 /* Build a GIMPLE_OMP_RETURN statement.
1022 WAIT_P is true if this is a non-waiting return. */
1023
1024 gimple *
1025 gimple_build_omp_return (bool wait_p)
1026 {
1027 gimple *p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
1028 if (wait_p)
1029 gimple_omp_return_set_nowait (p);
1030
1031 return p;
1032 }
1033
1034
1035 /* Build a GIMPLE_OMP_SECTIONS statement.
1036
1037 BODY is a sequence of section statements.
1038 CLAUSES are any of the OMP sections contsruct's clauses: private,
1039 firstprivate, lastprivate, reduction, and nowait. */
1040
1041 gomp_sections *
1042 gimple_build_omp_sections (gimple_seq body, tree clauses)
1043 {
1044 gomp_sections *p
1045 = as_a <gomp_sections *> (gimple_alloc (GIMPLE_OMP_SECTIONS, 0));
1046 if (body)
1047 gimple_omp_set_body (p, body);
1048 gimple_omp_sections_set_clauses (p, clauses);
1049
1050 return p;
1051 }
1052
1053
1054 /* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
1055
1056 gimple *
1057 gimple_build_omp_sections_switch (void)
1058 {
1059 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
1060 }
1061
1062
1063 /* Build a GIMPLE_OMP_SINGLE statement.
1064
1065 BODY is the sequence of statements that will be executed once.
1066 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1067 copyprivate, nowait. */
1068
1069 gomp_single *
1070 gimple_build_omp_single (gimple_seq body, tree clauses)
1071 {
1072 gomp_single *p
1073 = as_a <gomp_single *> (gimple_alloc (GIMPLE_OMP_SINGLE, 0));
1074 if (body)
1075 gimple_omp_set_body (p, body);
1076 gimple_omp_single_set_clauses (p, clauses);
1077
1078 return p;
1079 }
1080
1081
1082 /* Build a GIMPLE_OMP_TARGET statement.
1083
1084 BODY is the sequence of statements that will be executed.
1085 KIND is the kind of the region.
1086 CLAUSES are any of the construct's clauses. */
1087
1088 gomp_target *
1089 gimple_build_omp_target (gimple_seq body, int kind, tree clauses)
1090 {
1091 gomp_target *p
1092 = as_a <gomp_target *> (gimple_alloc (GIMPLE_OMP_TARGET, 0));
1093 if (body)
1094 gimple_omp_set_body (p, body);
1095 gimple_omp_target_set_clauses (p, clauses);
1096 gimple_omp_target_set_kind (p, kind);
1097
1098 return p;
1099 }
1100
1101
1102 /* Build a GIMPLE_OMP_TEAMS statement.
1103
1104 BODY is the sequence of statements that will be executed.
1105 CLAUSES are any of the OMP teams construct's clauses. */
1106
1107 gomp_teams *
1108 gimple_build_omp_teams (gimple_seq body, tree clauses)
1109 {
1110 gomp_teams *p = as_a <gomp_teams *> (gimple_alloc (GIMPLE_OMP_TEAMS, 0));
1111 if (body)
1112 gimple_omp_set_body (p, body);
1113 gimple_omp_teams_set_clauses (p, clauses);
1114
1115 return p;
1116 }
1117
1118
1119 /* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
1120
1121 gomp_atomic_load *
1122 gimple_build_omp_atomic_load (tree lhs, tree rhs)
1123 {
1124 gomp_atomic_load *p
1125 = as_a <gomp_atomic_load *> (gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0));
1126 gimple_omp_atomic_load_set_lhs (p, lhs);
1127 gimple_omp_atomic_load_set_rhs (p, rhs);
1128 return p;
1129 }
1130
1131 /* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1132
1133 VAL is the value we are storing. */
1134
1135 gomp_atomic_store *
1136 gimple_build_omp_atomic_store (tree val)
1137 {
1138 gomp_atomic_store *p
1139 = as_a <gomp_atomic_store *> (gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0));
1140 gimple_omp_atomic_store_set_val (p, val);
1141 return p;
1142 }
1143
1144 /* Build a GIMPLE_TRANSACTION statement. */
1145
1146 gtransaction *
1147 gimple_build_transaction (gimple_seq body)
1148 {
1149 gtransaction *p
1150 = as_a <gtransaction *> (gimple_alloc (GIMPLE_TRANSACTION, 0));
1151 gimple_transaction_set_body (p, body);
1152 gimple_transaction_set_label_norm (p, 0);
1153 gimple_transaction_set_label_uninst (p, 0);
1154 gimple_transaction_set_label_over (p, 0);
1155 return p;
1156 }
1157
1158 #if defined ENABLE_GIMPLE_CHECKING
1159 /* Complain of a gimple type mismatch and die. */
1160
1161 void
1162 gimple_check_failed (const gimple *gs, const char *file, int line,
1163 const char *function, enum gimple_code code,
1164 enum tree_code subcode)
1165 {
1166 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1167 gimple_code_name[code],
1168 get_tree_code_name (subcode),
1169 gimple_code_name[gimple_code (gs)],
1170 gs->subcode > 0
1171 ? get_tree_code_name ((enum tree_code) gs->subcode)
1172 : "",
1173 function, trim_filename (file), line);
1174 }
1175 #endif /* ENABLE_GIMPLE_CHECKING */
1176
1177
1178 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1179 *SEQ_P is NULL, a new sequence is allocated. */
1180
1181 void
1182 gimple_seq_add_stmt (gimple_seq *seq_p, gimple *gs)
1183 {
1184 gimple_stmt_iterator si;
1185 if (gs == NULL)
1186 return;
1187
1188 si = gsi_last (*seq_p);
1189 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1190 }
1191
1192 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1193 *SEQ_P is NULL, a new sequence is allocated. This function is
1194 similar to gimple_seq_add_stmt, but does not scan the operands.
1195 During gimplification, we need to manipulate statement sequences
1196 before the def/use vectors have been constructed. */
1197
1198 void
1199 gimple_seq_add_stmt_without_update (gimple_seq *seq_p, gimple *gs)
1200 {
1201 gimple_stmt_iterator si;
1202
1203 if (gs == NULL)
1204 return;
1205
1206 si = gsi_last (*seq_p);
1207 gsi_insert_after_without_update (&si, gs, GSI_NEW_STMT);
1208 }
1209
1210 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1211 NULL, a new sequence is allocated. */
1212
1213 void
1214 gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1215 {
1216 gimple_stmt_iterator si;
1217 if (src == NULL)
1218 return;
1219
1220 si = gsi_last (*dst_p);
1221 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1222 }
1223
1224 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1225 NULL, a new sequence is allocated. This function is
1226 similar to gimple_seq_add_seq, but does not scan the operands. */
1227
1228 void
1229 gimple_seq_add_seq_without_update (gimple_seq *dst_p, gimple_seq src)
1230 {
1231 gimple_stmt_iterator si;
1232 if (src == NULL)
1233 return;
1234
1235 si = gsi_last (*dst_p);
1236 gsi_insert_seq_after_without_update (&si, src, GSI_NEW_STMT);
1237 }
1238
1239 /* Determine whether to assign a location to the statement GS. */
1240
1241 static bool
1242 should_carry_location_p (gimple *gs)
1243 {
1244 /* Don't emit a line note for a label. We particularly don't want to
1245 emit one for the break label, since it doesn't actually correspond
1246 to the beginning of the loop/switch. */
1247 if (gimple_code (gs) == GIMPLE_LABEL)
1248 return false;
1249
1250 return true;
1251 }
1252
1253 /* Set the location for gimple statement GS to LOCATION. */
1254
1255 static void
1256 annotate_one_with_location (gimple *gs, location_t location)
1257 {
1258 if (!gimple_has_location (gs)
1259 && !gimple_do_not_emit_location_p (gs)
1260 && should_carry_location_p (gs))
1261 gimple_set_location (gs, location);
1262 }
1263
1264 /* Set LOCATION for all the statements after iterator GSI in sequence
1265 SEQ. If GSI is pointing to the end of the sequence, start with the
1266 first statement in SEQ. */
1267
1268 void
1269 annotate_all_with_location_after (gimple_seq seq, gimple_stmt_iterator gsi,
1270 location_t location)
1271 {
1272 if (gsi_end_p (gsi))
1273 gsi = gsi_start (seq);
1274 else
1275 gsi_next (&gsi);
1276
1277 for (; !gsi_end_p (gsi); gsi_next (&gsi))
1278 annotate_one_with_location (gsi_stmt (gsi), location);
1279 }
1280
1281 /* Set the location for all the statements in a sequence STMT_P to LOCATION. */
1282
1283 void
1284 annotate_all_with_location (gimple_seq stmt_p, location_t location)
1285 {
1286 gimple_stmt_iterator i;
1287
1288 if (gimple_seq_empty_p (stmt_p))
1289 return;
1290
1291 for (i = gsi_start (stmt_p); !gsi_end_p (i); gsi_next (&i))
1292 {
1293 gimple *gs = gsi_stmt (i);
1294 annotate_one_with_location (gs, location);
1295 }
1296 }
1297
1298 /* Helper function of empty_body_p. Return true if STMT is an empty
1299 statement. */
1300
1301 static bool
1302 empty_stmt_p (gimple *stmt)
1303 {
1304 if (gimple_code (stmt) == GIMPLE_NOP)
1305 return true;
1306 if (gbind *bind_stmt = dyn_cast <gbind *> (stmt))
1307 return empty_body_p (gimple_bind_body (bind_stmt));
1308 return false;
1309 }
1310
1311
1312 /* Return true if BODY contains nothing but empty statements. */
1313
1314 bool
1315 empty_body_p (gimple_seq body)
1316 {
1317 gimple_stmt_iterator i;
1318
1319 if (gimple_seq_empty_p (body))
1320 return true;
1321 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
1322 if (!empty_stmt_p (gsi_stmt (i))
1323 && !is_gimple_debug (gsi_stmt (i)))
1324 return false;
1325
1326 return true;
1327 }
1328
1329
1330 /* Perform a deep copy of sequence SRC and return the result. */
1331
1332 gimple_seq
1333 gimple_seq_copy (gimple_seq src)
1334 {
1335 gimple_stmt_iterator gsi;
1336 gimple_seq new_seq = NULL;
1337 gimple *stmt;
1338
1339 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1340 {
1341 stmt = gimple_copy (gsi_stmt (gsi));
1342 gimple_seq_add_stmt (&new_seq, stmt);
1343 }
1344
1345 return new_seq;
1346 }
1347
1348
1349
1350 /* Return true if calls C1 and C2 are known to go to the same function. */
1351
1352 bool
1353 gimple_call_same_target_p (const gimple *c1, const gimple *c2)
1354 {
1355 if (gimple_call_internal_p (c1))
1356 return (gimple_call_internal_p (c2)
1357 && gimple_call_internal_fn (c1) == gimple_call_internal_fn (c2)
1358 && !gimple_call_internal_unique_p (as_a <const gcall *> (c1)));
1359 else
1360 return (gimple_call_fn (c1) == gimple_call_fn (c2)
1361 || (gimple_call_fndecl (c1)
1362 && gimple_call_fndecl (c1) == gimple_call_fndecl (c2)));
1363 }
1364
1365 /* Detect flags from a GIMPLE_CALL. This is just like
1366 call_expr_flags, but for gimple tuples. */
1367
1368 int
1369 gimple_call_flags (const gimple *stmt)
1370 {
1371 int flags;
1372 tree decl = gimple_call_fndecl (stmt);
1373
1374 if (decl)
1375 flags = flags_from_decl_or_type (decl);
1376 else if (gimple_call_internal_p (stmt))
1377 flags = internal_fn_flags (gimple_call_internal_fn (stmt));
1378 else
1379 flags = flags_from_decl_or_type (gimple_call_fntype (stmt));
1380
1381 if (stmt->subcode & GF_CALL_NOTHROW)
1382 flags |= ECF_NOTHROW;
1383
1384 return flags;
1385 }
1386
1387 /* Return the "fn spec" string for call STMT. */
1388
1389 static const_tree
1390 gimple_call_fnspec (const gcall *stmt)
1391 {
1392 tree type, attr;
1393
1394 if (gimple_call_internal_p (stmt))
1395 return internal_fn_fnspec (gimple_call_internal_fn (stmt));
1396
1397 type = gimple_call_fntype (stmt);
1398 if (!type)
1399 return NULL_TREE;
1400
1401 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1402 if (!attr)
1403 return NULL_TREE;
1404
1405 return TREE_VALUE (TREE_VALUE (attr));
1406 }
1407
1408 /* Detects argument flags for argument number ARG on call STMT. */
1409
1410 int
1411 gimple_call_arg_flags (const gcall *stmt, unsigned arg)
1412 {
1413 const_tree attr = gimple_call_fnspec (stmt);
1414
1415 if (!attr || 1 + arg >= (unsigned) TREE_STRING_LENGTH (attr))
1416 return 0;
1417
1418 switch (TREE_STRING_POINTER (attr)[1 + arg])
1419 {
1420 case 'x':
1421 case 'X':
1422 return EAF_UNUSED;
1423
1424 case 'R':
1425 return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE;
1426
1427 case 'r':
1428 return EAF_NOCLOBBER | EAF_NOESCAPE;
1429
1430 case 'W':
1431 return EAF_DIRECT | EAF_NOESCAPE;
1432
1433 case 'w':
1434 return EAF_NOESCAPE;
1435
1436 case '.':
1437 default:
1438 return 0;
1439 }
1440 }
1441
1442 /* Detects return flags for the call STMT. */
1443
1444 int
1445 gimple_call_return_flags (const gcall *stmt)
1446 {
1447 const_tree attr;
1448
1449 if (gimple_call_flags (stmt) & ECF_MALLOC)
1450 return ERF_NOALIAS;
1451
1452 attr = gimple_call_fnspec (stmt);
1453 if (!attr || TREE_STRING_LENGTH (attr) < 1)
1454 return 0;
1455
1456 switch (TREE_STRING_POINTER (attr)[0])
1457 {
1458 case '1':
1459 case '2':
1460 case '3':
1461 case '4':
1462 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
1463
1464 case 'm':
1465 return ERF_NOALIAS;
1466
1467 case '.':
1468 default:
1469 return 0;
1470 }
1471 }
1472
1473
1474 /* Return true if GS is a copy assignment. */
1475
1476 bool
1477 gimple_assign_copy_p (gimple *gs)
1478 {
1479 return (gimple_assign_single_p (gs)
1480 && is_gimple_val (gimple_op (gs, 1)));
1481 }
1482
1483
1484 /* Return true if GS is a SSA_NAME copy assignment. */
1485
1486 bool
1487 gimple_assign_ssa_name_copy_p (gimple *gs)
1488 {
1489 return (gimple_assign_single_p (gs)
1490 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1491 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1492 }
1493
1494
1495 /* Return true if GS is an assignment with a unary RHS, but the
1496 operator has no effect on the assigned value. The logic is adapted
1497 from STRIP_NOPS. This predicate is intended to be used in tuplifying
1498 instances in which STRIP_NOPS was previously applied to the RHS of
1499 an assignment.
1500
1501 NOTE: In the use cases that led to the creation of this function
1502 and of gimple_assign_single_p, it is typical to test for either
1503 condition and to proceed in the same manner. In each case, the
1504 assigned value is represented by the single RHS operand of the
1505 assignment. I suspect there may be cases where gimple_assign_copy_p,
1506 gimple_assign_single_p, or equivalent logic is used where a similar
1507 treatment of unary NOPs is appropriate. */
1508
1509 bool
1510 gimple_assign_unary_nop_p (gimple *gs)
1511 {
1512 return (is_gimple_assign (gs)
1513 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
1514 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
1515 && gimple_assign_rhs1 (gs) != error_mark_node
1516 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
1517 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
1518 }
1519
1520 /* Set BB to be the basic block holding G. */
1521
1522 void
1523 gimple_set_bb (gimple *stmt, basic_block bb)
1524 {
1525 stmt->bb = bb;
1526
1527 if (gimple_code (stmt) != GIMPLE_LABEL)
1528 return;
1529
1530 /* If the statement is a label, add the label to block-to-labels map
1531 so that we can speed up edge creation for GIMPLE_GOTOs. */
1532 if (cfun->cfg)
1533 {
1534 tree t;
1535 int uid;
1536
1537 t = gimple_label_label (as_a <glabel *> (stmt));
1538 uid = LABEL_DECL_UID (t);
1539 if (uid == -1)
1540 {
1541 unsigned old_len =
1542 vec_safe_length (label_to_block_map_for_fn (cfun));
1543 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
1544 if (old_len <= (unsigned) uid)
1545 {
1546 unsigned new_len = 3 * uid / 2 + 1;
1547
1548 vec_safe_grow_cleared (label_to_block_map_for_fn (cfun),
1549 new_len);
1550 }
1551 }
1552
1553 (*label_to_block_map_for_fn (cfun))[uid] = bb;
1554 }
1555 }
1556
1557
1558 /* Modify the RHS of the assignment pointed-to by GSI using the
1559 operands in the expression tree EXPR.
1560
1561 NOTE: The statement pointed-to by GSI may be reallocated if it
1562 did not have enough operand slots.
1563
1564 This function is useful to convert an existing tree expression into
1565 the flat representation used for the RHS of a GIMPLE assignment.
1566 It will reallocate memory as needed to expand or shrink the number
1567 of operand slots needed to represent EXPR.
1568
1569 NOTE: If you find yourself building a tree and then calling this
1570 function, you are most certainly doing it the slow way. It is much
1571 better to build a new assignment or to use the function
1572 gimple_assign_set_rhs_with_ops, which does not require an
1573 expression tree to be built. */
1574
1575 void
1576 gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
1577 {
1578 enum tree_code subcode;
1579 tree op1, op2, op3;
1580
1581 extract_ops_from_tree_1 (expr, &subcode, &op1, &op2, &op3);
1582 gimple_assign_set_rhs_with_ops (gsi, subcode, op1, op2, op3);
1583 }
1584
1585
1586 /* Set the RHS of assignment statement pointed-to by GSI to CODE with
1587 operands OP1, OP2 and OP3.
1588
1589 NOTE: The statement pointed-to by GSI may be reallocated if it
1590 did not have enough operand slots. */
1591
1592 void
1593 gimple_assign_set_rhs_with_ops (gimple_stmt_iterator *gsi, enum tree_code code,
1594 tree op1, tree op2, tree op3)
1595 {
1596 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
1597 gimple *stmt = gsi_stmt (*gsi);
1598
1599 /* If the new CODE needs more operands, allocate a new statement. */
1600 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
1601 {
1602 tree lhs = gimple_assign_lhs (stmt);
1603 gimple *new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
1604 memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
1605 gimple_init_singleton (new_stmt);
1606 gsi_replace (gsi, new_stmt, true);
1607 stmt = new_stmt;
1608
1609 /* The LHS needs to be reset as this also changes the SSA name
1610 on the LHS. */
1611 gimple_assign_set_lhs (stmt, lhs);
1612 }
1613
1614 gimple_set_num_ops (stmt, new_rhs_ops + 1);
1615 gimple_set_subcode (stmt, code);
1616 gimple_assign_set_rhs1 (stmt, op1);
1617 if (new_rhs_ops > 1)
1618 gimple_assign_set_rhs2 (stmt, op2);
1619 if (new_rhs_ops > 2)
1620 gimple_assign_set_rhs3 (stmt, op3);
1621 }
1622
1623
1624 /* Return the LHS of a statement that performs an assignment,
1625 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
1626 for a call to a function that returns no value, or for a
1627 statement other than an assignment or a call. */
1628
1629 tree
1630 gimple_get_lhs (const gimple *stmt)
1631 {
1632 enum gimple_code code = gimple_code (stmt);
1633
1634 if (code == GIMPLE_ASSIGN)
1635 return gimple_assign_lhs (stmt);
1636 else if (code == GIMPLE_CALL)
1637 return gimple_call_lhs (stmt);
1638 else
1639 return NULL_TREE;
1640 }
1641
1642
1643 /* Set the LHS of a statement that performs an assignment,
1644 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
1645
1646 void
1647 gimple_set_lhs (gimple *stmt, tree lhs)
1648 {
1649 enum gimple_code code = gimple_code (stmt);
1650
1651 if (code == GIMPLE_ASSIGN)
1652 gimple_assign_set_lhs (stmt, lhs);
1653 else if (code == GIMPLE_CALL)
1654 gimple_call_set_lhs (stmt, lhs);
1655 else
1656 gcc_unreachable ();
1657 }
1658
1659
1660 /* Return a deep copy of statement STMT. All the operands from STMT
1661 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
1662 and VUSE operand arrays are set to empty in the new copy. The new
1663 copy isn't part of any sequence. */
1664
1665 gimple *
1666 gimple_copy (gimple *stmt)
1667 {
1668 enum gimple_code code = gimple_code (stmt);
1669 unsigned num_ops = gimple_num_ops (stmt);
1670 gimple *copy = gimple_alloc (code, num_ops);
1671 unsigned i;
1672
1673 /* Shallow copy all the fields from STMT. */
1674 memcpy (copy, stmt, gimple_size (code));
1675 gimple_init_singleton (copy);
1676
1677 /* If STMT has sub-statements, deep-copy them as well. */
1678 if (gimple_has_substatements (stmt))
1679 {
1680 gimple_seq new_seq;
1681 tree t;
1682
1683 switch (gimple_code (stmt))
1684 {
1685 case GIMPLE_BIND:
1686 {
1687 gbind *bind_stmt = as_a <gbind *> (stmt);
1688 gbind *bind_copy = as_a <gbind *> (copy);
1689 new_seq = gimple_seq_copy (gimple_bind_body (bind_stmt));
1690 gimple_bind_set_body (bind_copy, new_seq);
1691 gimple_bind_set_vars (bind_copy,
1692 unshare_expr (gimple_bind_vars (bind_stmt)));
1693 gimple_bind_set_block (bind_copy, gimple_bind_block (bind_stmt));
1694 }
1695 break;
1696
1697 case GIMPLE_CATCH:
1698 {
1699 gcatch *catch_stmt = as_a <gcatch *> (stmt);
1700 gcatch *catch_copy = as_a <gcatch *> (copy);
1701 new_seq = gimple_seq_copy (gimple_catch_handler (catch_stmt));
1702 gimple_catch_set_handler (catch_copy, new_seq);
1703 t = unshare_expr (gimple_catch_types (catch_stmt));
1704 gimple_catch_set_types (catch_copy, t);
1705 }
1706 break;
1707
1708 case GIMPLE_EH_FILTER:
1709 {
1710 geh_filter *eh_filter_stmt = as_a <geh_filter *> (stmt);
1711 geh_filter *eh_filter_copy = as_a <geh_filter *> (copy);
1712 new_seq
1713 = gimple_seq_copy (gimple_eh_filter_failure (eh_filter_stmt));
1714 gimple_eh_filter_set_failure (eh_filter_copy, new_seq);
1715 t = unshare_expr (gimple_eh_filter_types (eh_filter_stmt));
1716 gimple_eh_filter_set_types (eh_filter_copy, t);
1717 }
1718 break;
1719
1720 case GIMPLE_EH_ELSE:
1721 {
1722 geh_else *eh_else_stmt = as_a <geh_else *> (stmt);
1723 geh_else *eh_else_copy = as_a <geh_else *> (copy);
1724 new_seq = gimple_seq_copy (gimple_eh_else_n_body (eh_else_stmt));
1725 gimple_eh_else_set_n_body (eh_else_copy, new_seq);
1726 new_seq = gimple_seq_copy (gimple_eh_else_e_body (eh_else_stmt));
1727 gimple_eh_else_set_e_body (eh_else_copy, new_seq);
1728 }
1729 break;
1730
1731 case GIMPLE_TRY:
1732 {
1733 gtry *try_stmt = as_a <gtry *> (stmt);
1734 gtry *try_copy = as_a <gtry *> (copy);
1735 new_seq = gimple_seq_copy (gimple_try_eval (try_stmt));
1736 gimple_try_set_eval (try_copy, new_seq);
1737 new_seq = gimple_seq_copy (gimple_try_cleanup (try_stmt));
1738 gimple_try_set_cleanup (try_copy, new_seq);
1739 }
1740 break;
1741
1742 case GIMPLE_OMP_FOR:
1743 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
1744 gimple_omp_for_set_pre_body (copy, new_seq);
1745 t = unshare_expr (gimple_omp_for_clauses (stmt));
1746 gimple_omp_for_set_clauses (copy, t);
1747 {
1748 gomp_for *omp_for_copy = as_a <gomp_for *> (copy);
1749 omp_for_copy->iter = ggc_vec_alloc<gimple_omp_for_iter>
1750 ( gimple_omp_for_collapse (stmt));
1751 }
1752 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1753 {
1754 gimple_omp_for_set_cond (copy, i,
1755 gimple_omp_for_cond (stmt, i));
1756 gimple_omp_for_set_index (copy, i,
1757 gimple_omp_for_index (stmt, i));
1758 t = unshare_expr (gimple_omp_for_initial (stmt, i));
1759 gimple_omp_for_set_initial (copy, i, t);
1760 t = unshare_expr (gimple_omp_for_final (stmt, i));
1761 gimple_omp_for_set_final (copy, i, t);
1762 t = unshare_expr (gimple_omp_for_incr (stmt, i));
1763 gimple_omp_for_set_incr (copy, i, t);
1764 }
1765 goto copy_omp_body;
1766
1767 case GIMPLE_OMP_PARALLEL:
1768 {
1769 gomp_parallel *omp_par_stmt = as_a <gomp_parallel *> (stmt);
1770 gomp_parallel *omp_par_copy = as_a <gomp_parallel *> (copy);
1771 t = unshare_expr (gimple_omp_parallel_clauses (omp_par_stmt));
1772 gimple_omp_parallel_set_clauses (omp_par_copy, t);
1773 t = unshare_expr (gimple_omp_parallel_child_fn (omp_par_stmt));
1774 gimple_omp_parallel_set_child_fn (omp_par_copy, t);
1775 t = unshare_expr (gimple_omp_parallel_data_arg (omp_par_stmt));
1776 gimple_omp_parallel_set_data_arg (omp_par_copy, t);
1777 }
1778 goto copy_omp_body;
1779
1780 case GIMPLE_OMP_TASK:
1781 t = unshare_expr (gimple_omp_task_clauses (stmt));
1782 gimple_omp_task_set_clauses (copy, t);
1783 t = unshare_expr (gimple_omp_task_child_fn (stmt));
1784 gimple_omp_task_set_child_fn (copy, t);
1785 t = unshare_expr (gimple_omp_task_data_arg (stmt));
1786 gimple_omp_task_set_data_arg (copy, t);
1787 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
1788 gimple_omp_task_set_copy_fn (copy, t);
1789 t = unshare_expr (gimple_omp_task_arg_size (stmt));
1790 gimple_omp_task_set_arg_size (copy, t);
1791 t = unshare_expr (gimple_omp_task_arg_align (stmt));
1792 gimple_omp_task_set_arg_align (copy, t);
1793 goto copy_omp_body;
1794
1795 case GIMPLE_OMP_CRITICAL:
1796 t = unshare_expr (gimple_omp_critical_name
1797 (as_a <gomp_critical *> (stmt)));
1798 gimple_omp_critical_set_name (as_a <gomp_critical *> (copy), t);
1799 t = unshare_expr (gimple_omp_critical_clauses
1800 (as_a <gomp_critical *> (stmt)));
1801 gimple_omp_critical_set_clauses (as_a <gomp_critical *> (copy), t);
1802 goto copy_omp_body;
1803
1804 case GIMPLE_OMP_ORDERED:
1805 t = unshare_expr (gimple_omp_ordered_clauses
1806 (as_a <gomp_ordered *> (stmt)));
1807 gimple_omp_ordered_set_clauses (as_a <gomp_ordered *> (copy), t);
1808 goto copy_omp_body;
1809
1810 case GIMPLE_OMP_SECTIONS:
1811 t = unshare_expr (gimple_omp_sections_clauses (stmt));
1812 gimple_omp_sections_set_clauses (copy, t);
1813 t = unshare_expr (gimple_omp_sections_control (stmt));
1814 gimple_omp_sections_set_control (copy, t);
1815 /* FALLTHRU */
1816
1817 case GIMPLE_OMP_SINGLE:
1818 case GIMPLE_OMP_TARGET:
1819 case GIMPLE_OMP_TEAMS:
1820 case GIMPLE_OMP_SECTION:
1821 case GIMPLE_OMP_MASTER:
1822 case GIMPLE_OMP_TASKGROUP:
1823 case GIMPLE_OMP_GRID_BODY:
1824 copy_omp_body:
1825 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
1826 gimple_omp_set_body (copy, new_seq);
1827 break;
1828
1829 case GIMPLE_TRANSACTION:
1830 new_seq = gimple_seq_copy (gimple_transaction_body (
1831 as_a <gtransaction *> (stmt)));
1832 gimple_transaction_set_body (as_a <gtransaction *> (copy),
1833 new_seq);
1834 break;
1835
1836 case GIMPLE_WITH_CLEANUP_EXPR:
1837 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
1838 gimple_wce_set_cleanup (copy, new_seq);
1839 break;
1840
1841 default:
1842 gcc_unreachable ();
1843 }
1844 }
1845
1846 /* Make copy of operands. */
1847 for (i = 0; i < num_ops; i++)
1848 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
1849
1850 if (gimple_has_mem_ops (stmt))
1851 {
1852 gimple_set_vdef (copy, gimple_vdef (stmt));
1853 gimple_set_vuse (copy, gimple_vuse (stmt));
1854 }
1855
1856 /* Clear out SSA operand vectors on COPY. */
1857 if (gimple_has_ops (stmt))
1858 {
1859 gimple_set_use_ops (copy, NULL);
1860
1861 /* SSA operands need to be updated. */
1862 gimple_set_modified (copy, true);
1863 }
1864
1865 return copy;
1866 }
1867
1868
1869 /* Return true if statement S has side-effects. We consider a
1870 statement to have side effects if:
1871
1872 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
1873 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
1874
1875 bool
1876 gimple_has_side_effects (const gimple *s)
1877 {
1878 if (is_gimple_debug (s))
1879 return false;
1880
1881 /* We don't have to scan the arguments to check for
1882 volatile arguments, though, at present, we still
1883 do a scan to check for TREE_SIDE_EFFECTS. */
1884 if (gimple_has_volatile_ops (s))
1885 return true;
1886
1887 if (gimple_code (s) == GIMPLE_ASM
1888 && gimple_asm_volatile_p (as_a <const gasm *> (s)))
1889 return true;
1890
1891 if (is_gimple_call (s))
1892 {
1893 int flags = gimple_call_flags (s);
1894
1895 /* An infinite loop is considered a side effect. */
1896 if (!(flags & (ECF_CONST | ECF_PURE))
1897 || (flags & ECF_LOOPING_CONST_OR_PURE))
1898 return true;
1899
1900 return false;
1901 }
1902
1903 return false;
1904 }
1905
1906 /* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
1907 Return true if S can trap. When INCLUDE_MEM is true, check whether
1908 the memory operations could trap. When INCLUDE_STORES is true and
1909 S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked. */
1910
1911 bool
1912 gimple_could_trap_p_1 (gimple *s, bool include_mem, bool include_stores)
1913 {
1914 tree t, div = NULL_TREE;
1915 enum tree_code op;
1916
1917 if (include_mem)
1918 {
1919 unsigned i, start = (is_gimple_assign (s) && !include_stores) ? 1 : 0;
1920
1921 for (i = start; i < gimple_num_ops (s); i++)
1922 if (tree_could_trap_p (gimple_op (s, i)))
1923 return true;
1924 }
1925
1926 switch (gimple_code (s))
1927 {
1928 case GIMPLE_ASM:
1929 return gimple_asm_volatile_p (as_a <gasm *> (s));
1930
1931 case GIMPLE_CALL:
1932 t = gimple_call_fndecl (s);
1933 /* Assume that calls to weak functions may trap. */
1934 if (!t || !DECL_P (t) || DECL_WEAK (t))
1935 return true;
1936 return false;
1937
1938 case GIMPLE_ASSIGN:
1939 t = gimple_expr_type (s);
1940 op = gimple_assign_rhs_code (s);
1941 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
1942 div = gimple_assign_rhs2 (s);
1943 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
1944 (INTEGRAL_TYPE_P (t)
1945 && TYPE_OVERFLOW_TRAPS (t)),
1946 div));
1947
1948 case GIMPLE_COND:
1949 t = TREE_TYPE (gimple_cond_lhs (s));
1950 return operation_could_trap_p (gimple_cond_code (s),
1951 FLOAT_TYPE_P (t), false, NULL_TREE);
1952
1953 default:
1954 break;
1955 }
1956
1957 return false;
1958 }
1959
1960 /* Return true if statement S can trap. */
1961
1962 bool
1963 gimple_could_trap_p (gimple *s)
1964 {
1965 return gimple_could_trap_p_1 (s, true, true);
1966 }
1967
1968 /* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
1969
1970 bool
1971 gimple_assign_rhs_could_trap_p (gimple *s)
1972 {
1973 gcc_assert (is_gimple_assign (s));
1974 return gimple_could_trap_p_1 (s, true, false);
1975 }
1976
1977
1978 /* Print debugging information for gimple stmts generated. */
1979
1980 void
1981 dump_gimple_statistics (void)
1982 {
1983 int i, total_tuples = 0, total_bytes = 0;
1984
1985 if (! GATHER_STATISTICS)
1986 {
1987 fprintf (stderr, "No gimple statistics\n");
1988 return;
1989 }
1990
1991 fprintf (stderr, "\nGIMPLE statements\n");
1992 fprintf (stderr, "Kind Stmts Bytes\n");
1993 fprintf (stderr, "---------------------------------------\n");
1994 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
1995 {
1996 fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i],
1997 gimple_alloc_counts[i], gimple_alloc_sizes[i]);
1998 total_tuples += gimple_alloc_counts[i];
1999 total_bytes += gimple_alloc_sizes[i];
2000 }
2001 fprintf (stderr, "---------------------------------------\n");
2002 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes);
2003 fprintf (stderr, "---------------------------------------\n");
2004 }
2005
2006
2007 /* Return the number of operands needed on the RHS of a GIMPLE
2008 assignment for an expression with tree code CODE. */
2009
2010 unsigned
2011 get_gimple_rhs_num_ops (enum tree_code code)
2012 {
2013 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
2014
2015 if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
2016 return 1;
2017 else if (rhs_class == GIMPLE_BINARY_RHS)
2018 return 2;
2019 else if (rhs_class == GIMPLE_TERNARY_RHS)
2020 return 3;
2021 else
2022 gcc_unreachable ();
2023 }
2024
2025 #define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
2026 (unsigned char) \
2027 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
2028 : ((TYPE) == tcc_binary \
2029 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
2030 : ((TYPE) == tcc_constant \
2031 || (TYPE) == tcc_declaration \
2032 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
2033 : ((SYM) == TRUTH_AND_EXPR \
2034 || (SYM) == TRUTH_OR_EXPR \
2035 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
2036 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
2037 : ((SYM) == COND_EXPR \
2038 || (SYM) == WIDEN_MULT_PLUS_EXPR \
2039 || (SYM) == WIDEN_MULT_MINUS_EXPR \
2040 || (SYM) == DOT_PROD_EXPR \
2041 || (SYM) == SAD_EXPR \
2042 || (SYM) == REALIGN_LOAD_EXPR \
2043 || (SYM) == VEC_COND_EXPR \
2044 || (SYM) == VEC_PERM_EXPR \
2045 || (SYM) == FMA_EXPR) ? GIMPLE_TERNARY_RHS \
2046 : ((SYM) == CONSTRUCTOR \
2047 || (SYM) == OBJ_TYPE_REF \
2048 || (SYM) == ASSERT_EXPR \
2049 || (SYM) == ADDR_EXPR \
2050 || (SYM) == WITH_SIZE_EXPR \
2051 || (SYM) == SSA_NAME) ? GIMPLE_SINGLE_RHS \
2052 : GIMPLE_INVALID_RHS),
2053 #define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
2054
2055 const unsigned char gimple_rhs_class_table[] = {
2056 #include "all-tree.def"
2057 };
2058
2059 #undef DEFTREECODE
2060 #undef END_OF_BASE_TREE_CODES
2061
2062 /* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
2063 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
2064 we failed to create one. */
2065
2066 tree
2067 canonicalize_cond_expr_cond (tree t)
2068 {
2069 /* Strip conversions around boolean operations. */
2070 if (CONVERT_EXPR_P (t)
2071 && (truth_value_p (TREE_CODE (TREE_OPERAND (t, 0)))
2072 || TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0)))
2073 == BOOLEAN_TYPE))
2074 t = TREE_OPERAND (t, 0);
2075
2076 /* For !x use x == 0. */
2077 if (TREE_CODE (t) == TRUTH_NOT_EXPR)
2078 {
2079 tree top0 = TREE_OPERAND (t, 0);
2080 t = build2 (EQ_EXPR, TREE_TYPE (t),
2081 top0, build_int_cst (TREE_TYPE (top0), 0));
2082 }
2083 /* For cmp ? 1 : 0 use cmp. */
2084 else if (TREE_CODE (t) == COND_EXPR
2085 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
2086 && integer_onep (TREE_OPERAND (t, 1))
2087 && integer_zerop (TREE_OPERAND (t, 2)))
2088 {
2089 tree top0 = TREE_OPERAND (t, 0);
2090 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
2091 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
2092 }
2093 /* For x ^ y use x != y. */
2094 else if (TREE_CODE (t) == BIT_XOR_EXPR)
2095 t = build2 (NE_EXPR, TREE_TYPE (t),
2096 TREE_OPERAND (t, 0), TREE_OPERAND (t, 1));
2097
2098 if (is_gimple_condexpr (t))
2099 return t;
2100
2101 return NULL_TREE;
2102 }
2103
2104 /* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
2105 the positions marked by the set ARGS_TO_SKIP. */
2106
2107 gcall *
2108 gimple_call_copy_skip_args (gcall *stmt, bitmap args_to_skip)
2109 {
2110 int i;
2111 int nargs = gimple_call_num_args (stmt);
2112 auto_vec<tree> vargs (nargs);
2113 gcall *new_stmt;
2114
2115 for (i = 0; i < nargs; i++)
2116 if (!bitmap_bit_p (args_to_skip, i))
2117 vargs.quick_push (gimple_call_arg (stmt, i));
2118
2119 if (gimple_call_internal_p (stmt))
2120 new_stmt = gimple_build_call_internal_vec (gimple_call_internal_fn (stmt),
2121 vargs);
2122 else
2123 new_stmt = gimple_build_call_vec (gimple_call_fn (stmt), vargs);
2124
2125 if (gimple_call_lhs (stmt))
2126 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
2127
2128 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
2129 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
2130
2131 if (gimple_has_location (stmt))
2132 gimple_set_location (new_stmt, gimple_location (stmt));
2133 gimple_call_copy_flags (new_stmt, stmt);
2134 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
2135
2136 gimple_set_modified (new_stmt, true);
2137
2138 return new_stmt;
2139 }
2140
2141
2142
2143 /* Return true if the field decls F1 and F2 are at the same offset.
2144
2145 This is intended to be used on GIMPLE types only. */
2146
2147 bool
2148 gimple_compare_field_offset (tree f1, tree f2)
2149 {
2150 if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
2151 {
2152 tree offset1 = DECL_FIELD_OFFSET (f1);
2153 tree offset2 = DECL_FIELD_OFFSET (f2);
2154 return ((offset1 == offset2
2155 /* Once gimplification is done, self-referential offsets are
2156 instantiated as operand #2 of the COMPONENT_REF built for
2157 each access and reset. Therefore, they are not relevant
2158 anymore and fields are interchangeable provided that they
2159 represent the same access. */
2160 || (TREE_CODE (offset1) == PLACEHOLDER_EXPR
2161 && TREE_CODE (offset2) == PLACEHOLDER_EXPR
2162 && (DECL_SIZE (f1) == DECL_SIZE (f2)
2163 || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
2164 && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
2165 || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0))
2166 && DECL_ALIGN (f1) == DECL_ALIGN (f2))
2167 || operand_equal_p (offset1, offset2, 0))
2168 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
2169 DECL_FIELD_BIT_OFFSET (f2)));
2170 }
2171
2172 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
2173 should be, so handle differing ones specially by decomposing
2174 the offset into a byte and bit offset manually. */
2175 if (tree_fits_shwi_p (DECL_FIELD_OFFSET (f1))
2176 && tree_fits_shwi_p (DECL_FIELD_OFFSET (f2)))
2177 {
2178 unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
2179 unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
2180 bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
2181 byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
2182 + bit_offset1 / BITS_PER_UNIT);
2183 bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
2184 byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
2185 + bit_offset2 / BITS_PER_UNIT);
2186 if (byte_offset1 != byte_offset2)
2187 return false;
2188 return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
2189 }
2190
2191 return false;
2192 }
2193
2194
2195 /* Return a type the same as TYPE except unsigned or
2196 signed according to UNSIGNEDP. */
2197
2198 static tree
2199 gimple_signed_or_unsigned_type (bool unsignedp, tree type)
2200 {
2201 tree type1;
2202 int i;
2203
2204 type1 = TYPE_MAIN_VARIANT (type);
2205 if (type1 == signed_char_type_node
2206 || type1 == char_type_node
2207 || type1 == unsigned_char_type_node)
2208 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2209 if (type1 == integer_type_node || type1 == unsigned_type_node)
2210 return unsignedp ? unsigned_type_node : integer_type_node;
2211 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
2212 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2213 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
2214 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2215 if (type1 == long_long_integer_type_node
2216 || type1 == long_long_unsigned_type_node)
2217 return unsignedp
2218 ? long_long_unsigned_type_node
2219 : long_long_integer_type_node;
2220
2221 for (i = 0; i < NUM_INT_N_ENTS; i ++)
2222 if (int_n_enabled_p[i]
2223 && (type1 == int_n_trees[i].unsigned_type
2224 || type1 == int_n_trees[i].signed_type))
2225 return unsignedp
2226 ? int_n_trees[i].unsigned_type
2227 : int_n_trees[i].signed_type;
2228
2229 #if HOST_BITS_PER_WIDE_INT >= 64
2230 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
2231 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2232 #endif
2233 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
2234 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2235 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
2236 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2237 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
2238 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2239 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
2240 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2241
2242 #define GIMPLE_FIXED_TYPES(NAME) \
2243 if (type1 == short_ ## NAME ## _type_node \
2244 || type1 == unsigned_short_ ## NAME ## _type_node) \
2245 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
2246 : short_ ## NAME ## _type_node; \
2247 if (type1 == NAME ## _type_node \
2248 || type1 == unsigned_ ## NAME ## _type_node) \
2249 return unsignedp ? unsigned_ ## NAME ## _type_node \
2250 : NAME ## _type_node; \
2251 if (type1 == long_ ## NAME ## _type_node \
2252 || type1 == unsigned_long_ ## NAME ## _type_node) \
2253 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
2254 : long_ ## NAME ## _type_node; \
2255 if (type1 == long_long_ ## NAME ## _type_node \
2256 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
2257 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
2258 : long_long_ ## NAME ## _type_node;
2259
2260 #define GIMPLE_FIXED_MODE_TYPES(NAME) \
2261 if (type1 == NAME ## _type_node \
2262 || type1 == u ## NAME ## _type_node) \
2263 return unsignedp ? u ## NAME ## _type_node \
2264 : NAME ## _type_node;
2265
2266 #define GIMPLE_FIXED_TYPES_SAT(NAME) \
2267 if (type1 == sat_ ## short_ ## NAME ## _type_node \
2268 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
2269 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
2270 : sat_ ## short_ ## NAME ## _type_node; \
2271 if (type1 == sat_ ## NAME ## _type_node \
2272 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
2273 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
2274 : sat_ ## NAME ## _type_node; \
2275 if (type1 == sat_ ## long_ ## NAME ## _type_node \
2276 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
2277 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
2278 : sat_ ## long_ ## NAME ## _type_node; \
2279 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
2280 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
2281 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
2282 : sat_ ## long_long_ ## NAME ## _type_node;
2283
2284 #define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
2285 if (type1 == sat_ ## NAME ## _type_node \
2286 || type1 == sat_ ## u ## NAME ## _type_node) \
2287 return unsignedp ? sat_ ## u ## NAME ## _type_node \
2288 : sat_ ## NAME ## _type_node;
2289
2290 GIMPLE_FIXED_TYPES (fract);
2291 GIMPLE_FIXED_TYPES_SAT (fract);
2292 GIMPLE_FIXED_TYPES (accum);
2293 GIMPLE_FIXED_TYPES_SAT (accum);
2294
2295 GIMPLE_FIXED_MODE_TYPES (qq);
2296 GIMPLE_FIXED_MODE_TYPES (hq);
2297 GIMPLE_FIXED_MODE_TYPES (sq);
2298 GIMPLE_FIXED_MODE_TYPES (dq);
2299 GIMPLE_FIXED_MODE_TYPES (tq);
2300 GIMPLE_FIXED_MODE_TYPES_SAT (qq);
2301 GIMPLE_FIXED_MODE_TYPES_SAT (hq);
2302 GIMPLE_FIXED_MODE_TYPES_SAT (sq);
2303 GIMPLE_FIXED_MODE_TYPES_SAT (dq);
2304 GIMPLE_FIXED_MODE_TYPES_SAT (tq);
2305 GIMPLE_FIXED_MODE_TYPES (ha);
2306 GIMPLE_FIXED_MODE_TYPES (sa);
2307 GIMPLE_FIXED_MODE_TYPES (da);
2308 GIMPLE_FIXED_MODE_TYPES (ta);
2309 GIMPLE_FIXED_MODE_TYPES_SAT (ha);
2310 GIMPLE_FIXED_MODE_TYPES_SAT (sa);
2311 GIMPLE_FIXED_MODE_TYPES_SAT (da);
2312 GIMPLE_FIXED_MODE_TYPES_SAT (ta);
2313
2314 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
2315 the precision; they have precision set to match their range, but
2316 may use a wider mode to match an ABI. If we change modes, we may
2317 wind up with bad conversions. For INTEGER_TYPEs in C, must check
2318 the precision as well, so as to yield correct results for
2319 bit-field types. C++ does not have these separate bit-field
2320 types, and producing a signed or unsigned variant of an
2321 ENUMERAL_TYPE may cause other problems as well. */
2322 if (!INTEGRAL_TYPE_P (type)
2323 || TYPE_UNSIGNED (type) == unsignedp)
2324 return type;
2325
2326 #define TYPE_OK(node) \
2327 (TYPE_MODE (type) == TYPE_MODE (node) \
2328 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
2329 if (TYPE_OK (signed_char_type_node))
2330 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2331 if (TYPE_OK (integer_type_node))
2332 return unsignedp ? unsigned_type_node : integer_type_node;
2333 if (TYPE_OK (short_integer_type_node))
2334 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2335 if (TYPE_OK (long_integer_type_node))
2336 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2337 if (TYPE_OK (long_long_integer_type_node))
2338 return (unsignedp
2339 ? long_long_unsigned_type_node
2340 : long_long_integer_type_node);
2341
2342 for (i = 0; i < NUM_INT_N_ENTS; i ++)
2343 if (int_n_enabled_p[i]
2344 && TYPE_MODE (type) == int_n_data[i].m
2345 && TYPE_PRECISION (type) == int_n_data[i].bitsize)
2346 return unsignedp
2347 ? int_n_trees[i].unsigned_type
2348 : int_n_trees[i].signed_type;
2349
2350 #if HOST_BITS_PER_WIDE_INT >= 64
2351 if (TYPE_OK (intTI_type_node))
2352 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2353 #endif
2354 if (TYPE_OK (intDI_type_node))
2355 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2356 if (TYPE_OK (intSI_type_node))
2357 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2358 if (TYPE_OK (intHI_type_node))
2359 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2360 if (TYPE_OK (intQI_type_node))
2361 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2362
2363 #undef GIMPLE_FIXED_TYPES
2364 #undef GIMPLE_FIXED_MODE_TYPES
2365 #undef GIMPLE_FIXED_TYPES_SAT
2366 #undef GIMPLE_FIXED_MODE_TYPES_SAT
2367 #undef TYPE_OK
2368
2369 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
2370 }
2371
2372
2373 /* Return an unsigned type the same as TYPE in other respects. */
2374
2375 tree
2376 gimple_unsigned_type (tree type)
2377 {
2378 return gimple_signed_or_unsigned_type (true, type);
2379 }
2380
2381
2382 /* Return a signed type the same as TYPE in other respects. */
2383
2384 tree
2385 gimple_signed_type (tree type)
2386 {
2387 return gimple_signed_or_unsigned_type (false, type);
2388 }
2389
2390
2391 /* Return the typed-based alias set for T, which may be an expression
2392 or a type. Return -1 if we don't do anything special. */
2393
2394 alias_set_type
2395 gimple_get_alias_set (tree t)
2396 {
2397 tree u;
2398
2399 /* Permit type-punning when accessing a union, provided the access
2400 is directly through the union. For example, this code does not
2401 permit taking the address of a union member and then storing
2402 through it. Even the type-punning allowed here is a GCC
2403 extension, albeit a common and useful one; the C standard says
2404 that such accesses have implementation-defined behavior. */
2405 for (u = t;
2406 TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
2407 u = TREE_OPERAND (u, 0))
2408 if (TREE_CODE (u) == COMPONENT_REF
2409 && TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
2410 return 0;
2411
2412 /* That's all the expressions we handle specially. */
2413 if (!TYPE_P (t))
2414 return -1;
2415
2416 /* For convenience, follow the C standard when dealing with
2417 character types. Any object may be accessed via an lvalue that
2418 has character type. */
2419 if (t == char_type_node
2420 || t == signed_char_type_node
2421 || t == unsigned_char_type_node)
2422 return 0;
2423
2424 /* Allow aliasing between signed and unsigned variants of the same
2425 type. We treat the signed variant as canonical. */
2426 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
2427 {
2428 tree t1 = gimple_signed_type (t);
2429
2430 /* t1 == t can happen for boolean nodes which are always unsigned. */
2431 if (t1 != t)
2432 return get_alias_set (t1);
2433 }
2434
2435 return -1;
2436 }
2437
2438
2439 /* Helper for gimple_ior_addresses_taken_1. */
2440
2441 static bool
2442 gimple_ior_addresses_taken_1 (gimple *, tree addr, tree, void *data)
2443 {
2444 bitmap addresses_taken = (bitmap)data;
2445 addr = get_base_address (addr);
2446 if (addr
2447 && DECL_P (addr))
2448 {
2449 bitmap_set_bit (addresses_taken, DECL_UID (addr));
2450 return true;
2451 }
2452 return false;
2453 }
2454
2455 /* Set the bit for the uid of all decls that have their address taken
2456 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
2457 were any in this stmt. */
2458
2459 bool
2460 gimple_ior_addresses_taken (bitmap addresses_taken, gimple *stmt)
2461 {
2462 return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
2463 gimple_ior_addresses_taken_1);
2464 }
2465
2466
2467 /* Return true when STMTs arguments and return value match those of FNDECL,
2468 a decl of a builtin function. */
2469
2470 bool
2471 gimple_builtin_call_types_compatible_p (const gimple *stmt, tree fndecl)
2472 {
2473 gcc_checking_assert (DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN);
2474
2475 tree ret = gimple_call_lhs (stmt);
2476 if (ret
2477 && !useless_type_conversion_p (TREE_TYPE (ret),
2478 TREE_TYPE (TREE_TYPE (fndecl))))
2479 return false;
2480
2481 tree targs = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
2482 unsigned nargs = gimple_call_num_args (stmt);
2483 for (unsigned i = 0; i < nargs; ++i)
2484 {
2485 /* Variadic args follow. */
2486 if (!targs)
2487 return true;
2488 tree arg = gimple_call_arg (stmt, i);
2489 if (!useless_type_conversion_p (TREE_VALUE (targs), TREE_TYPE (arg)))
2490 return false;
2491 targs = TREE_CHAIN (targs);
2492 }
2493 if (targs && !VOID_TYPE_P (TREE_VALUE (targs)))
2494 return false;
2495 return true;
2496 }
2497
2498 /* Return true when STMT is builtins call. */
2499
2500 bool
2501 gimple_call_builtin_p (const gimple *stmt)
2502 {
2503 tree fndecl;
2504 if (is_gimple_call (stmt)
2505 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2506 && DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN)
2507 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2508 return false;
2509 }
2510
2511 /* Return true when STMT is builtins call to CLASS. */
2512
2513 bool
2514 gimple_call_builtin_p (const gimple *stmt, enum built_in_class klass)
2515 {
2516 tree fndecl;
2517 if (is_gimple_call (stmt)
2518 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2519 && DECL_BUILT_IN_CLASS (fndecl) == klass)
2520 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2521 return false;
2522 }
2523
2524 /* Return true when STMT is builtins call to CODE of CLASS. */
2525
2526 bool
2527 gimple_call_builtin_p (const gimple *stmt, enum built_in_function code)
2528 {
2529 tree fndecl;
2530 if (is_gimple_call (stmt)
2531 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2532 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
2533 && DECL_FUNCTION_CODE (fndecl) == code)
2534 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2535 return false;
2536 }
2537
2538 /* If CALL is a call to a combined_fn (i.e. an internal function or
2539 a normal built-in function), return its code, otherwise return
2540 CFN_LAST. */
2541
2542 combined_fn
2543 gimple_call_combined_fn (const gimple *stmt)
2544 {
2545 if (const gcall *call = dyn_cast <const gcall *> (stmt))
2546 {
2547 if (gimple_call_internal_p (call))
2548 return as_combined_fn (gimple_call_internal_fn (call));
2549
2550 tree fndecl = gimple_call_fndecl (stmt);
2551 if (fndecl
2552 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
2553 && gimple_builtin_call_types_compatible_p (stmt, fndecl))
2554 return as_combined_fn (DECL_FUNCTION_CODE (fndecl));
2555 }
2556 return CFN_LAST;
2557 }
2558
2559 /* Return true if STMT clobbers memory. STMT is required to be a
2560 GIMPLE_ASM. */
2561
2562 bool
2563 gimple_asm_clobbers_memory_p (const gasm *stmt)
2564 {
2565 unsigned i;
2566
2567 for (i = 0; i < gimple_asm_nclobbers (stmt); i++)
2568 {
2569 tree op = gimple_asm_clobber_op (stmt, i);
2570 if (strcmp (TREE_STRING_POINTER (TREE_VALUE (op)), "memory") == 0)
2571 return true;
2572 }
2573
2574 return false;
2575 }
2576
2577 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
2578
2579 void
2580 dump_decl_set (FILE *file, bitmap set)
2581 {
2582 if (set)
2583 {
2584 bitmap_iterator bi;
2585 unsigned i;
2586
2587 fprintf (file, "{ ");
2588
2589 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2590 {
2591 fprintf (file, "D.%u", i);
2592 fprintf (file, " ");
2593 }
2594
2595 fprintf (file, "}");
2596 }
2597 else
2598 fprintf (file, "NIL");
2599 }
2600
2601 /* Return true when CALL is a call stmt that definitely doesn't
2602 free any memory or makes it unavailable otherwise. */
2603 bool
2604 nonfreeing_call_p (gimple *call)
2605 {
2606 if (gimple_call_builtin_p (call, BUILT_IN_NORMAL)
2607 && gimple_call_flags (call) & ECF_LEAF)
2608 switch (DECL_FUNCTION_CODE (gimple_call_fndecl (call)))
2609 {
2610 /* Just in case these become ECF_LEAF in the future. */
2611 case BUILT_IN_FREE:
2612 case BUILT_IN_TM_FREE:
2613 case BUILT_IN_REALLOC:
2614 case BUILT_IN_STACK_RESTORE:
2615 return false;
2616 default:
2617 return true;
2618 }
2619 else if (gimple_call_internal_p (call))
2620 switch (gimple_call_internal_fn (call))
2621 {
2622 case IFN_ABNORMAL_DISPATCHER:
2623 return true;
2624 default:
2625 if (gimple_call_flags (call) & ECF_LEAF)
2626 return true;
2627 return false;
2628 }
2629
2630 tree fndecl = gimple_call_fndecl (call);
2631 if (!fndecl)
2632 return false;
2633 struct cgraph_node *n = cgraph_node::get (fndecl);
2634 if (!n)
2635 return false;
2636 enum availability availability;
2637 n = n->function_symbol (&availability);
2638 if (!n || availability <= AVAIL_INTERPOSABLE)
2639 return false;
2640 return n->nonfreeing_fn;
2641 }
2642
2643 /* Return true when CALL is a call stmt that definitely need not
2644 be considered to be a memory barrier. */
2645 bool
2646 nonbarrier_call_p (gimple *call)
2647 {
2648 if (gimple_call_flags (call) & (ECF_PURE | ECF_CONST))
2649 return true;
2650 /* Should extend this to have a nonbarrier_fn flag, just as above in
2651 the nonfreeing case. */
2652 return false;
2653 }
2654
2655 /* Callback for walk_stmt_load_store_ops.
2656
2657 Return TRUE if OP will dereference the tree stored in DATA, FALSE
2658 otherwise.
2659
2660 This routine only makes a superficial check for a dereference. Thus
2661 it must only be used if it is safe to return a false negative. */
2662 static bool
2663 check_loadstore (gimple *, tree op, tree, void *data)
2664 {
2665 if (TREE_CODE (op) == MEM_REF || TREE_CODE (op) == TARGET_MEM_REF)
2666 {
2667 /* Some address spaces may legitimately dereference zero. */
2668 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (op));
2669 if (targetm.addr_space.zero_address_valid (as))
2670 return false;
2671
2672 return operand_equal_p (TREE_OPERAND (op, 0), (tree)data, 0);
2673 }
2674 return false;
2675 }
2676
2677
2678 /* Return true if OP can be inferred to be non-NULL after STMT executes,
2679 either by using a pointer dereference or attributes. */
2680 bool
2681 infer_nonnull_range (gimple *stmt, tree op)
2682 {
2683 return infer_nonnull_range_by_dereference (stmt, op)
2684 || infer_nonnull_range_by_attribute (stmt, op);
2685 }
2686
2687 /* Return true if OP can be inferred to be non-NULL after STMT
2688 executes by using a pointer dereference. */
2689 bool
2690 infer_nonnull_range_by_dereference (gimple *stmt, tree op)
2691 {
2692 /* We can only assume that a pointer dereference will yield
2693 non-NULL if -fdelete-null-pointer-checks is enabled. */
2694 if (!flag_delete_null_pointer_checks
2695 || !POINTER_TYPE_P (TREE_TYPE (op))
2696 || gimple_code (stmt) == GIMPLE_ASM)
2697 return false;
2698
2699 if (walk_stmt_load_store_ops (stmt, (void *)op,
2700 check_loadstore, check_loadstore))
2701 return true;
2702
2703 return false;
2704 }
2705
2706 /* Return true if OP can be inferred to be a non-NULL after STMT
2707 executes by using attributes. */
2708 bool
2709 infer_nonnull_range_by_attribute (gimple *stmt, tree op)
2710 {
2711 /* We can only assume that a pointer dereference will yield
2712 non-NULL if -fdelete-null-pointer-checks is enabled. */
2713 if (!flag_delete_null_pointer_checks
2714 || !POINTER_TYPE_P (TREE_TYPE (op))
2715 || gimple_code (stmt) == GIMPLE_ASM)
2716 return false;
2717
2718 if (is_gimple_call (stmt) && !gimple_call_internal_p (stmt))
2719 {
2720 tree fntype = gimple_call_fntype (stmt);
2721 tree attrs = TYPE_ATTRIBUTES (fntype);
2722 for (; attrs; attrs = TREE_CHAIN (attrs))
2723 {
2724 attrs = lookup_attribute ("nonnull", attrs);
2725
2726 /* If "nonnull" wasn't specified, we know nothing about
2727 the argument. */
2728 if (attrs == NULL_TREE)
2729 return false;
2730
2731 /* If "nonnull" applies to all the arguments, then ARG
2732 is non-null if it's in the argument list. */
2733 if (TREE_VALUE (attrs) == NULL_TREE)
2734 {
2735 for (unsigned int i = 0; i < gimple_call_num_args (stmt); i++)
2736 {
2737 if (POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (stmt, i)))
2738 && operand_equal_p (op, gimple_call_arg (stmt, i), 0))
2739 return true;
2740 }
2741 return false;
2742 }
2743
2744 /* Now see if op appears in the nonnull list. */
2745 for (tree t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
2746 {
2747 unsigned int idx = TREE_INT_CST_LOW (TREE_VALUE (t)) - 1;
2748 if (idx < gimple_call_num_args (stmt))
2749 {
2750 tree arg = gimple_call_arg (stmt, idx);
2751 if (operand_equal_p (op, arg, 0))
2752 return true;
2753 }
2754 }
2755 }
2756 }
2757
2758 /* If this function is marked as returning non-null, then we can
2759 infer OP is non-null if it is used in the return statement. */
2760 if (greturn *return_stmt = dyn_cast <greturn *> (stmt))
2761 if (gimple_return_retval (return_stmt)
2762 && operand_equal_p (gimple_return_retval (return_stmt), op, 0)
2763 && lookup_attribute ("returns_nonnull",
2764 TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))))
2765 return true;
2766
2767 return false;
2768 }
2769
2770 /* Compare two case labels. Because the front end should already have
2771 made sure that case ranges do not overlap, it is enough to only compare
2772 the CASE_LOW values of each case label. */
2773
2774 static int
2775 compare_case_labels (const void *p1, const void *p2)
2776 {
2777 const_tree const case1 = *(const_tree const*)p1;
2778 const_tree const case2 = *(const_tree const*)p2;
2779
2780 /* The 'default' case label always goes first. */
2781 if (!CASE_LOW (case1))
2782 return -1;
2783 else if (!CASE_LOW (case2))
2784 return 1;
2785 else
2786 return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
2787 }
2788
2789 /* Sort the case labels in LABEL_VEC in place in ascending order. */
2790
2791 void
2792 sort_case_labels (vec<tree> label_vec)
2793 {
2794 label_vec.qsort (compare_case_labels);
2795 }
2796 \f
2797 /* Prepare a vector of case labels to be used in a GIMPLE_SWITCH statement.
2798
2799 LABELS is a vector that contains all case labels to look at.
2800
2801 INDEX_TYPE is the type of the switch index expression. Case labels
2802 in LABELS are discarded if their values are not in the value range
2803 covered by INDEX_TYPE. The remaining case label values are folded
2804 to INDEX_TYPE.
2805
2806 If a default case exists in LABELS, it is removed from LABELS and
2807 returned in DEFAULT_CASEP. If no default case exists, but the
2808 case labels already cover the whole range of INDEX_TYPE, a default
2809 case is returned pointing to one of the existing case labels.
2810 Otherwise DEFAULT_CASEP is set to NULL_TREE.
2811
2812 DEFAULT_CASEP may be NULL, in which case the above comment doesn't
2813 apply and no action is taken regardless of whether a default case is
2814 found or not. */
2815
2816 void
2817 preprocess_case_label_vec_for_gimple (vec<tree> labels,
2818 tree index_type,
2819 tree *default_casep)
2820 {
2821 tree min_value, max_value;
2822 tree default_case = NULL_TREE;
2823 size_t i, len;
2824
2825 i = 0;
2826 min_value = TYPE_MIN_VALUE (index_type);
2827 max_value = TYPE_MAX_VALUE (index_type);
2828 while (i < labels.length ())
2829 {
2830 tree elt = labels[i];
2831 tree low = CASE_LOW (elt);
2832 tree high = CASE_HIGH (elt);
2833 bool remove_element = FALSE;
2834
2835 if (low)
2836 {
2837 gcc_checking_assert (TREE_CODE (low) == INTEGER_CST);
2838 gcc_checking_assert (!high || TREE_CODE (high) == INTEGER_CST);
2839
2840 /* This is a non-default case label, i.e. it has a value.
2841
2842 See if the case label is reachable within the range of
2843 the index type. Remove out-of-range case values. Turn
2844 case ranges into a canonical form (high > low strictly)
2845 and convert the case label values to the index type.
2846
2847 NB: The type of gimple_switch_index() may be the promoted
2848 type, but the case labels retain the original type. */
2849
2850 if (high)
2851 {
2852 /* This is a case range. Discard empty ranges.
2853 If the bounds or the range are equal, turn this
2854 into a simple (one-value) case. */
2855 int cmp = tree_int_cst_compare (high, low);
2856 if (cmp < 0)
2857 remove_element = TRUE;
2858 else if (cmp == 0)
2859 high = NULL_TREE;
2860 }
2861
2862 if (! high)
2863 {
2864 /* If the simple case value is unreachable, ignore it. */
2865 if ((TREE_CODE (min_value) == INTEGER_CST
2866 && tree_int_cst_compare (low, min_value) < 0)
2867 || (TREE_CODE (max_value) == INTEGER_CST
2868 && tree_int_cst_compare (low, max_value) > 0))
2869 remove_element = TRUE;
2870 else
2871 low = fold_convert (index_type, low);
2872 }
2873 else
2874 {
2875 /* If the entire case range is unreachable, ignore it. */
2876 if ((TREE_CODE (min_value) == INTEGER_CST
2877 && tree_int_cst_compare (high, min_value) < 0)
2878 || (TREE_CODE (max_value) == INTEGER_CST
2879 && tree_int_cst_compare (low, max_value) > 0))
2880 remove_element = TRUE;
2881 else
2882 {
2883 /* If the lower bound is less than the index type's
2884 minimum value, truncate the range bounds. */
2885 if (TREE_CODE (min_value) == INTEGER_CST
2886 && tree_int_cst_compare (low, min_value) < 0)
2887 low = min_value;
2888 low = fold_convert (index_type, low);
2889
2890 /* If the upper bound is greater than the index type's
2891 maximum value, truncate the range bounds. */
2892 if (TREE_CODE (max_value) == INTEGER_CST
2893 && tree_int_cst_compare (high, max_value) > 0)
2894 high = max_value;
2895 high = fold_convert (index_type, high);
2896
2897 /* We may have folded a case range to a one-value case. */
2898 if (tree_int_cst_equal (low, high))
2899 high = NULL_TREE;
2900 }
2901 }
2902
2903 CASE_LOW (elt) = low;
2904 CASE_HIGH (elt) = high;
2905 }
2906 else
2907 {
2908 gcc_assert (!default_case);
2909 default_case = elt;
2910 /* The default case must be passed separately to the
2911 gimple_build_switch routine. But if DEFAULT_CASEP
2912 is NULL, we do not remove the default case (it would
2913 be completely lost). */
2914 if (default_casep)
2915 remove_element = TRUE;
2916 }
2917
2918 if (remove_element)
2919 labels.ordered_remove (i);
2920 else
2921 i++;
2922 }
2923 len = i;
2924
2925 if (!labels.is_empty ())
2926 sort_case_labels (labels);
2927
2928 if (default_casep && !default_case)
2929 {
2930 /* If the switch has no default label, add one, so that we jump
2931 around the switch body. If the labels already cover the whole
2932 range of the switch index_type, add the default label pointing
2933 to one of the existing labels. */
2934 if (len
2935 && TYPE_MIN_VALUE (index_type)
2936 && TYPE_MAX_VALUE (index_type)
2937 && tree_int_cst_equal (CASE_LOW (labels[0]),
2938 TYPE_MIN_VALUE (index_type)))
2939 {
2940 tree low, high = CASE_HIGH (labels[len - 1]);
2941 if (!high)
2942 high = CASE_LOW (labels[len - 1]);
2943 if (tree_int_cst_equal (high, TYPE_MAX_VALUE (index_type)))
2944 {
2945 for (i = 1; i < len; i++)
2946 {
2947 high = CASE_LOW (labels[i]);
2948 low = CASE_HIGH (labels[i - 1]);
2949 if (!low)
2950 low = CASE_LOW (labels[i - 1]);
2951 if (wi::add (low, 1) != high)
2952 break;
2953 }
2954 if (i == len)
2955 {
2956 tree label = CASE_LABEL (labels[0]);
2957 default_case = build_case_label (NULL_TREE, NULL_TREE,
2958 label);
2959 }
2960 }
2961 }
2962 }
2963
2964 if (default_casep)
2965 *default_casep = default_case;
2966 }
2967
2968 /* Set the location of all statements in SEQ to LOC. */
2969
2970 void
2971 gimple_seq_set_location (gimple_seq seq, location_t loc)
2972 {
2973 for (gimple_stmt_iterator i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
2974 gimple_set_location (gsi_stmt (i), loc);
2975 }
2976
2977 /* Release SSA_NAMEs in SEQ as well as the GIMPLE statements. */
2978
2979 void
2980 gimple_seq_discard (gimple_seq seq)
2981 {
2982 gimple_stmt_iterator gsi;
2983
2984 for (gsi = gsi_start (seq); !gsi_end_p (gsi); )
2985 {
2986 gimple *stmt = gsi_stmt (gsi);
2987 gsi_remove (&gsi, true);
2988 release_defs (stmt);
2989 ggc_free (stmt);
2990 }
2991 }
2992
2993 /* See if STMT now calls function that takes no parameters and if so, drop
2994 call arguments. This is used when devirtualization machinery redirects
2995 to __builtiln_unreacahble or __cxa_pure_virutal. */
2996
2997 void
2998 maybe_remove_unused_call_args (struct function *fn, gimple *stmt)
2999 {
3000 tree decl = gimple_call_fndecl (stmt);
3001 if (TYPE_ARG_TYPES (TREE_TYPE (decl))
3002 && TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl))) == void_type_node
3003 && gimple_call_num_args (stmt))
3004 {
3005 gimple_set_num_ops (stmt, 3);
3006 update_stmt_fn (fn, stmt);
3007 }
3008 }