Update copyright dates.
[gcc.git] / gcc / gimple.c
1 /* Gimple IR support functions.
2
3 Copyright (C) 2007-2020 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "ssa.h"
29 #include "cgraph.h"
30 #include "diagnostic.h"
31 #include "alias.h"
32 #include "fold-const.h"
33 #include "calls.h"
34 #include "stor-layout.h"
35 #include "internal-fn.h"
36 #include "tree-eh.h"
37 #include "gimple-iterator.h"
38 #include "gimple-walk.h"
39 #include "gimplify.h"
40 #include "target.h"
41 #include "builtins.h"
42 #include "selftest.h"
43 #include "gimple-pretty-print.h"
44 #include "stringpool.h"
45 #include "attribs.h"
46 #include "asan.h"
47 #include "langhooks.h"
48 #include "attr-fnspec.h"
49 #include "ipa-modref-tree.h"
50 #include "ipa-modref.h"
51
52
53 /* All the tuples have their operand vector (if present) at the very bottom
54 of the structure. Therefore, the offset required to find the
55 operands vector the size of the structure minus the size of the 1
56 element tree array at the end (see gimple_ops). */
57 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
58 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
59 EXPORTED_CONST size_t gimple_ops_offset_[] = {
60 #include "gsstruct.def"
61 };
62 #undef DEFGSSTRUCT
63
64 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof (struct STRUCT),
65 static const size_t gsstruct_code_size[] = {
66 #include "gsstruct.def"
67 };
68 #undef DEFGSSTRUCT
69
70 #define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
71 const char *const gimple_code_name[] = {
72 #include "gimple.def"
73 };
74 #undef DEFGSCODE
75
76 #define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
77 EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
78 #include "gimple.def"
79 };
80 #undef DEFGSCODE
81
82 /* Gimple stats. */
83
84 uint64_t gimple_alloc_counts[(int) gimple_alloc_kind_all];
85 uint64_t gimple_alloc_sizes[(int) gimple_alloc_kind_all];
86
87 /* Keep in sync with gimple.h:enum gimple_alloc_kind. */
88 static const char * const gimple_alloc_kind_names[] = {
89 "assignments",
90 "phi nodes",
91 "conditionals",
92 "everything else"
93 };
94
95 /* Static gimple tuple members. */
96 const enum gimple_code gassign::code_;
97 const enum gimple_code gcall::code_;
98 const enum gimple_code gcond::code_;
99
100
101 /* Gimple tuple constructors.
102 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
103 be passed a NULL to start with an empty sequence. */
104
105 /* Set the code for statement G to CODE. */
106
107 static inline void
108 gimple_set_code (gimple *g, enum gimple_code code)
109 {
110 g->code = code;
111 }
112
113 /* Return the number of bytes needed to hold a GIMPLE statement with
114 code CODE. */
115
116 size_t
117 gimple_size (enum gimple_code code, unsigned num_ops)
118 {
119 size_t size = gsstruct_code_size[gss_for_code (code)];
120 if (num_ops > 0)
121 size += (sizeof (tree) * (num_ops - 1));
122 return size;
123 }
124
125 /* Initialize GIMPLE statement G with CODE and NUM_OPS. */
126
127 void
128 gimple_init (gimple *g, enum gimple_code code, unsigned num_ops)
129 {
130 gimple_set_code (g, code);
131 gimple_set_num_ops (g, num_ops);
132
133 /* Do not call gimple_set_modified here as it has other side
134 effects and this tuple is still not completely built. */
135 g->modified = 1;
136 gimple_init_singleton (g);
137 }
138
139 /* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
140 operands. */
141
142 gimple *
143 gimple_alloc (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
144 {
145 size_t size;
146 gimple *stmt;
147
148 size = gimple_size (code, num_ops);
149 if (GATHER_STATISTICS)
150 {
151 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
152 gimple_alloc_counts[(int) kind]++;
153 gimple_alloc_sizes[(int) kind] += size;
154 }
155
156 stmt = ggc_alloc_cleared_gimple_statement_stat (size PASS_MEM_STAT);
157 gimple_init (stmt, code, num_ops);
158 return stmt;
159 }
160
161 /* Set SUBCODE to be the code of the expression computed by statement G. */
162
163 static inline void
164 gimple_set_subcode (gimple *g, unsigned subcode)
165 {
166 /* We only have 16 bits for the RHS code. Assert that we are not
167 overflowing it. */
168 gcc_assert (subcode < (1 << 16));
169 g->subcode = subcode;
170 }
171
172
173
174 /* Build a tuple with operands. CODE is the statement to build (which
175 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the subcode
176 for the new tuple. NUM_OPS is the number of operands to allocate. */
177
178 #define gimple_build_with_ops(c, s, n) \
179 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
180
181 static gimple *
182 gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
183 unsigned num_ops MEM_STAT_DECL)
184 {
185 gimple *s = gimple_alloc (code, num_ops PASS_MEM_STAT);
186 gimple_set_subcode (s, subcode);
187
188 return s;
189 }
190
191
192 /* Build a GIMPLE_RETURN statement returning RETVAL. */
193
194 greturn *
195 gimple_build_return (tree retval)
196 {
197 greturn *s
198 = as_a <greturn *> (gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK,
199 2));
200 if (retval)
201 gimple_return_set_retval (s, retval);
202 return s;
203 }
204
205 /* Reset alias information on call S. */
206
207 void
208 gimple_call_reset_alias_info (gcall *s)
209 {
210 if (gimple_call_flags (s) & ECF_CONST)
211 memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
212 else
213 pt_solution_reset (gimple_call_use_set (s));
214 if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
215 memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
216 else
217 pt_solution_reset (gimple_call_clobber_set (s));
218 }
219
220 /* Helper for gimple_build_call, gimple_build_call_valist,
221 gimple_build_call_vec and gimple_build_call_from_tree. Build the basic
222 components of a GIMPLE_CALL statement to function FN with NARGS
223 arguments. */
224
225 static inline gcall *
226 gimple_build_call_1 (tree fn, unsigned nargs)
227 {
228 gcall *s
229 = as_a <gcall *> (gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK,
230 nargs + 3));
231 if (TREE_CODE (fn) == FUNCTION_DECL)
232 fn = build_fold_addr_expr (fn);
233 gimple_set_op (s, 1, fn);
234 gimple_call_set_fntype (s, TREE_TYPE (TREE_TYPE (fn)));
235 gimple_call_reset_alias_info (s);
236 return s;
237 }
238
239
240 /* Build a GIMPLE_CALL statement to function FN with the arguments
241 specified in vector ARGS. */
242
243 gcall *
244 gimple_build_call_vec (tree fn, vec<tree> args)
245 {
246 unsigned i;
247 unsigned nargs = args.length ();
248 gcall *call = gimple_build_call_1 (fn, nargs);
249
250 for (i = 0; i < nargs; i++)
251 gimple_call_set_arg (call, i, args[i]);
252
253 return call;
254 }
255
256
257 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
258 arguments. The ... are the arguments. */
259
260 gcall *
261 gimple_build_call (tree fn, unsigned nargs, ...)
262 {
263 va_list ap;
264 gcall *call;
265 unsigned i;
266
267 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
268
269 call = gimple_build_call_1 (fn, nargs);
270
271 va_start (ap, nargs);
272 for (i = 0; i < nargs; i++)
273 gimple_call_set_arg (call, i, va_arg (ap, tree));
274 va_end (ap);
275
276 return call;
277 }
278
279
280 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
281 arguments. AP contains the arguments. */
282
283 gcall *
284 gimple_build_call_valist (tree fn, unsigned nargs, va_list ap)
285 {
286 gcall *call;
287 unsigned i;
288
289 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
290
291 call = gimple_build_call_1 (fn, nargs);
292
293 for (i = 0; i < nargs; i++)
294 gimple_call_set_arg (call, i, va_arg (ap, tree));
295
296 return call;
297 }
298
299
300 /* Helper for gimple_build_call_internal and gimple_build_call_internal_vec.
301 Build the basic components of a GIMPLE_CALL statement to internal
302 function FN with NARGS arguments. */
303
304 static inline gcall *
305 gimple_build_call_internal_1 (enum internal_fn fn, unsigned nargs)
306 {
307 gcall *s
308 = as_a <gcall *> (gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK,
309 nargs + 3));
310 s->subcode |= GF_CALL_INTERNAL;
311 gimple_call_set_internal_fn (s, fn);
312 gimple_call_reset_alias_info (s);
313 return s;
314 }
315
316
317 /* Build a GIMPLE_CALL statement to internal function FN. NARGS is
318 the number of arguments. The ... are the arguments. */
319
320 gcall *
321 gimple_build_call_internal (enum internal_fn fn, unsigned nargs, ...)
322 {
323 va_list ap;
324 gcall *call;
325 unsigned i;
326
327 call = gimple_build_call_internal_1 (fn, nargs);
328 va_start (ap, nargs);
329 for (i = 0; i < nargs; i++)
330 gimple_call_set_arg (call, i, va_arg (ap, tree));
331 va_end (ap);
332
333 return call;
334 }
335
336
337 /* Build a GIMPLE_CALL statement to internal function FN with the arguments
338 specified in vector ARGS. */
339
340 gcall *
341 gimple_build_call_internal_vec (enum internal_fn fn, vec<tree> args)
342 {
343 unsigned i, nargs;
344 gcall *call;
345
346 nargs = args.length ();
347 call = gimple_build_call_internal_1 (fn, nargs);
348 for (i = 0; i < nargs; i++)
349 gimple_call_set_arg (call, i, args[i]);
350
351 return call;
352 }
353
354
355 /* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
356 assumed to be in GIMPLE form already. Minimal checking is done of
357 this fact. */
358
359 gcall *
360 gimple_build_call_from_tree (tree t, tree fnptrtype)
361 {
362 unsigned i, nargs;
363 gcall *call;
364
365 gcc_assert (TREE_CODE (t) == CALL_EXPR);
366
367 nargs = call_expr_nargs (t);
368
369 tree fndecl = NULL_TREE;
370 if (CALL_EXPR_FN (t) == NULL_TREE)
371 call = gimple_build_call_internal_1 (CALL_EXPR_IFN (t), nargs);
372 else
373 {
374 fndecl = get_callee_fndecl (t);
375 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
376 }
377
378 for (i = 0; i < nargs; i++)
379 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
380
381 gimple_set_block (call, TREE_BLOCK (t));
382 gimple_set_location (call, EXPR_LOCATION (t));
383
384 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
385 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
386 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
387 gimple_call_set_must_tail (call, CALL_EXPR_MUST_TAIL_CALL (t));
388 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
389 if (fndecl
390 && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL)
391 && ALLOCA_FUNCTION_CODE_P (DECL_FUNCTION_CODE (fndecl)))
392 gimple_call_set_alloca_for_var (call, CALL_ALLOCA_FOR_VAR_P (t));
393 else if (fndecl
394 && (DECL_IS_OPERATOR_NEW_P (fndecl)
395 || DECL_IS_OPERATOR_DELETE_P (fndecl)))
396 gimple_call_set_from_new_or_delete (call, CALL_FROM_NEW_OR_DELETE_P (t));
397 else
398 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
399 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
400 gimple_call_set_nothrow (call, TREE_NOTHROW (t));
401 gimple_call_set_by_descriptor (call, CALL_EXPR_BY_DESCRIPTOR (t));
402 gimple_set_no_warning (call, TREE_NO_WARNING (t));
403
404 if (fnptrtype)
405 {
406 gimple_call_set_fntype (call, TREE_TYPE (fnptrtype));
407
408 /* Check if it's an indirect CALL and the type has the
409 nocf_check attribute. In that case propagate the information
410 to the gimple CALL insn. */
411 if (!fndecl)
412 {
413 gcc_assert (POINTER_TYPE_P (fnptrtype));
414 tree fntype = TREE_TYPE (fnptrtype);
415
416 if (lookup_attribute ("nocf_check", TYPE_ATTRIBUTES (fntype)))
417 gimple_call_set_nocf_check (call, TRUE);
418 }
419 }
420
421 return call;
422 }
423
424
425 /* Build a GIMPLE_ASSIGN statement.
426
427 LHS of the assignment.
428 RHS of the assignment which can be unary or binary. */
429
430 gassign *
431 gimple_build_assign (tree lhs, tree rhs MEM_STAT_DECL)
432 {
433 enum tree_code subcode;
434 tree op1, op2, op3;
435
436 extract_ops_from_tree (rhs, &subcode, &op1, &op2, &op3);
437 return gimple_build_assign (lhs, subcode, op1, op2, op3 PASS_MEM_STAT);
438 }
439
440
441 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
442 OP1, OP2 and OP3. */
443
444 static inline gassign *
445 gimple_build_assign_1 (tree lhs, enum tree_code subcode, tree op1,
446 tree op2, tree op3 MEM_STAT_DECL)
447 {
448 unsigned num_ops;
449 gassign *p;
450
451 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
452 code). */
453 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
454
455 p = as_a <gassign *> (
456 gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
457 PASS_MEM_STAT));
458 gimple_assign_set_lhs (p, lhs);
459 gimple_assign_set_rhs1 (p, op1);
460 if (op2)
461 {
462 gcc_assert (num_ops > 2);
463 gimple_assign_set_rhs2 (p, op2);
464 }
465
466 if (op3)
467 {
468 gcc_assert (num_ops > 3);
469 gimple_assign_set_rhs3 (p, op3);
470 }
471
472 return p;
473 }
474
475 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
476 OP1, OP2 and OP3. */
477
478 gassign *
479 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1,
480 tree op2, tree op3 MEM_STAT_DECL)
481 {
482 return gimple_build_assign_1 (lhs, subcode, op1, op2, op3 PASS_MEM_STAT);
483 }
484
485 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
486 OP1 and OP2. */
487
488 gassign *
489 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1,
490 tree op2 MEM_STAT_DECL)
491 {
492 return gimple_build_assign_1 (lhs, subcode, op1, op2, NULL_TREE
493 PASS_MEM_STAT);
494 }
495
496 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operand OP1. */
497
498 gassign *
499 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1 MEM_STAT_DECL)
500 {
501 return gimple_build_assign_1 (lhs, subcode, op1, NULL_TREE, NULL_TREE
502 PASS_MEM_STAT);
503 }
504
505
506 /* Build a GIMPLE_COND statement.
507
508 PRED is the condition used to compare LHS and the RHS.
509 T_LABEL is the label to jump to if the condition is true.
510 F_LABEL is the label to jump to otherwise. */
511
512 gcond *
513 gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
514 tree t_label, tree f_label)
515 {
516 gcond *p;
517
518 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
519 p = as_a <gcond *> (gimple_build_with_ops (GIMPLE_COND, pred_code, 4));
520 gimple_cond_set_lhs (p, lhs);
521 gimple_cond_set_rhs (p, rhs);
522 gimple_cond_set_true_label (p, t_label);
523 gimple_cond_set_false_label (p, f_label);
524 return p;
525 }
526
527 /* Build a GIMPLE_COND statement from the conditional expression tree
528 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
529
530 gcond *
531 gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
532 {
533 enum tree_code code;
534 tree lhs, rhs;
535
536 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
537 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
538 }
539
540 /* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
541 boolean expression tree COND. */
542
543 void
544 gimple_cond_set_condition_from_tree (gcond *stmt, tree cond)
545 {
546 enum tree_code code;
547 tree lhs, rhs;
548
549 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
550 gimple_cond_set_condition (stmt, code, lhs, rhs);
551 }
552
553 /* Build a GIMPLE_LABEL statement for LABEL. */
554
555 glabel *
556 gimple_build_label (tree label)
557 {
558 glabel *p
559 = as_a <glabel *> (gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1));
560 gimple_label_set_label (p, label);
561 return p;
562 }
563
564 /* Build a GIMPLE_GOTO statement to label DEST. */
565
566 ggoto *
567 gimple_build_goto (tree dest)
568 {
569 ggoto *p
570 = as_a <ggoto *> (gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1));
571 gimple_goto_set_dest (p, dest);
572 return p;
573 }
574
575
576 /* Build a GIMPLE_NOP statement. */
577
578 gimple *
579 gimple_build_nop (void)
580 {
581 return gimple_alloc (GIMPLE_NOP, 0);
582 }
583
584
585 /* Build a GIMPLE_BIND statement.
586 VARS are the variables in BODY.
587 BLOCK is the containing block. */
588
589 gbind *
590 gimple_build_bind (tree vars, gimple_seq body, tree block)
591 {
592 gbind *p = as_a <gbind *> (gimple_alloc (GIMPLE_BIND, 0));
593 gimple_bind_set_vars (p, vars);
594 if (body)
595 gimple_bind_set_body (p, body);
596 if (block)
597 gimple_bind_set_block (p, block);
598 return p;
599 }
600
601 /* Helper function to set the simple fields of a asm stmt.
602
603 STRING is a pointer to a string that is the asm blocks assembly code.
604 NINPUT is the number of register inputs.
605 NOUTPUT is the number of register outputs.
606 NCLOBBERS is the number of clobbered registers.
607 */
608
609 static inline gasm *
610 gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
611 unsigned nclobbers, unsigned nlabels)
612 {
613 gasm *p;
614 int size = strlen (string);
615
616 p = as_a <gasm *> (
617 gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
618 ninputs + noutputs + nclobbers + nlabels));
619
620 p->ni = ninputs;
621 p->no = noutputs;
622 p->nc = nclobbers;
623 p->nl = nlabels;
624 p->string = ggc_alloc_string (string, size);
625
626 if (GATHER_STATISTICS)
627 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
628
629 return p;
630 }
631
632 /* Build a GIMPLE_ASM statement.
633
634 STRING is the assembly code.
635 NINPUT is the number of register inputs.
636 NOUTPUT is the number of register outputs.
637 NCLOBBERS is the number of clobbered registers.
638 INPUTS is a vector of the input register parameters.
639 OUTPUTS is a vector of the output register parameters.
640 CLOBBERS is a vector of the clobbered register parameters.
641 LABELS is a vector of destination labels. */
642
643 gasm *
644 gimple_build_asm_vec (const char *string, vec<tree, va_gc> *inputs,
645 vec<tree, va_gc> *outputs, vec<tree, va_gc> *clobbers,
646 vec<tree, va_gc> *labels)
647 {
648 gasm *p;
649 unsigned i;
650
651 p = gimple_build_asm_1 (string,
652 vec_safe_length (inputs),
653 vec_safe_length (outputs),
654 vec_safe_length (clobbers),
655 vec_safe_length (labels));
656
657 for (i = 0; i < vec_safe_length (inputs); i++)
658 gimple_asm_set_input_op (p, i, (*inputs)[i]);
659
660 for (i = 0; i < vec_safe_length (outputs); i++)
661 gimple_asm_set_output_op (p, i, (*outputs)[i]);
662
663 for (i = 0; i < vec_safe_length (clobbers); i++)
664 gimple_asm_set_clobber_op (p, i, (*clobbers)[i]);
665
666 for (i = 0; i < vec_safe_length (labels); i++)
667 gimple_asm_set_label_op (p, i, (*labels)[i]);
668
669 return p;
670 }
671
672 /* Build a GIMPLE_CATCH statement.
673
674 TYPES are the catch types.
675 HANDLER is the exception handler. */
676
677 gcatch *
678 gimple_build_catch (tree types, gimple_seq handler)
679 {
680 gcatch *p = as_a <gcatch *> (gimple_alloc (GIMPLE_CATCH, 0));
681 gimple_catch_set_types (p, types);
682 if (handler)
683 gimple_catch_set_handler (p, handler);
684
685 return p;
686 }
687
688 /* Build a GIMPLE_EH_FILTER statement.
689
690 TYPES are the filter's types.
691 FAILURE is the filter's failure action. */
692
693 geh_filter *
694 gimple_build_eh_filter (tree types, gimple_seq failure)
695 {
696 geh_filter *p = as_a <geh_filter *> (gimple_alloc (GIMPLE_EH_FILTER, 0));
697 gimple_eh_filter_set_types (p, types);
698 if (failure)
699 gimple_eh_filter_set_failure (p, failure);
700
701 return p;
702 }
703
704 /* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
705
706 geh_mnt *
707 gimple_build_eh_must_not_throw (tree decl)
708 {
709 geh_mnt *p = as_a <geh_mnt *> (gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0));
710
711 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
712 gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
713 gimple_eh_must_not_throw_set_fndecl (p, decl);
714
715 return p;
716 }
717
718 /* Build a GIMPLE_EH_ELSE statement. */
719
720 geh_else *
721 gimple_build_eh_else (gimple_seq n_body, gimple_seq e_body)
722 {
723 geh_else *p = as_a <geh_else *> (gimple_alloc (GIMPLE_EH_ELSE, 0));
724 gimple_eh_else_set_n_body (p, n_body);
725 gimple_eh_else_set_e_body (p, e_body);
726 return p;
727 }
728
729 /* Build a GIMPLE_TRY statement.
730
731 EVAL is the expression to evaluate.
732 CLEANUP is the cleanup expression.
733 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
734 whether this is a try/catch or a try/finally respectively. */
735
736 gtry *
737 gimple_build_try (gimple_seq eval, gimple_seq cleanup,
738 enum gimple_try_flags kind)
739 {
740 gtry *p;
741
742 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
743 p = as_a <gtry *> (gimple_alloc (GIMPLE_TRY, 0));
744 gimple_set_subcode (p, kind);
745 if (eval)
746 gimple_try_set_eval (p, eval);
747 if (cleanup)
748 gimple_try_set_cleanup (p, cleanup);
749
750 return p;
751 }
752
753 /* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
754
755 CLEANUP is the cleanup expression. */
756
757 gimple *
758 gimple_build_wce (gimple_seq cleanup)
759 {
760 gimple *p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
761 if (cleanup)
762 gimple_wce_set_cleanup (p, cleanup);
763
764 return p;
765 }
766
767
768 /* Build a GIMPLE_RESX statement. */
769
770 gresx *
771 gimple_build_resx (int region)
772 {
773 gresx *p
774 = as_a <gresx *> (gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0));
775 p->region = region;
776 return p;
777 }
778
779
780 /* The helper for constructing a gimple switch statement.
781 INDEX is the switch's index.
782 NLABELS is the number of labels in the switch excluding the default.
783 DEFAULT_LABEL is the default label for the switch statement. */
784
785 gswitch *
786 gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
787 {
788 /* nlabels + 1 default label + 1 index. */
789 gcc_checking_assert (default_label);
790 gswitch *p = as_a <gswitch *> (gimple_build_with_ops (GIMPLE_SWITCH,
791 ERROR_MARK,
792 1 + 1 + nlabels));
793 gimple_switch_set_index (p, index);
794 gimple_switch_set_default_label (p, default_label);
795 return p;
796 }
797
798 /* Build a GIMPLE_SWITCH statement.
799
800 INDEX is the switch's index.
801 DEFAULT_LABEL is the default label
802 ARGS is a vector of labels excluding the default. */
803
804 gswitch *
805 gimple_build_switch (tree index, tree default_label, vec<tree> args)
806 {
807 unsigned i, nlabels = args.length ();
808
809 gswitch *p = gimple_build_switch_nlabels (nlabels, index, default_label);
810
811 /* Copy the labels from the vector to the switch statement. */
812 for (i = 0; i < nlabels; i++)
813 gimple_switch_set_label (p, i + 1, args[i]);
814
815 return p;
816 }
817
818 /* Build a GIMPLE_EH_DISPATCH statement. */
819
820 geh_dispatch *
821 gimple_build_eh_dispatch (int region)
822 {
823 geh_dispatch *p
824 = as_a <geh_dispatch *> (
825 gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0));
826 p->region = region;
827 return p;
828 }
829
830 /* Build a new GIMPLE_DEBUG_BIND statement.
831
832 VAR is bound to VALUE; block and location are taken from STMT. */
833
834 gdebug *
835 gimple_build_debug_bind (tree var, tree value, gimple *stmt MEM_STAT_DECL)
836 {
837 gdebug *p
838 = as_a <gdebug *> (gimple_build_with_ops_stat (GIMPLE_DEBUG,
839 (unsigned)GIMPLE_DEBUG_BIND, 2
840 PASS_MEM_STAT));
841 gimple_debug_bind_set_var (p, var);
842 gimple_debug_bind_set_value (p, value);
843 if (stmt)
844 gimple_set_location (p, gimple_location (stmt));
845
846 return p;
847 }
848
849
850 /* Build a new GIMPLE_DEBUG_SOURCE_BIND statement.
851
852 VAR is bound to VALUE; block and location are taken from STMT. */
853
854 gdebug *
855 gimple_build_debug_source_bind (tree var, tree value,
856 gimple *stmt MEM_STAT_DECL)
857 {
858 gdebug *p
859 = as_a <gdebug *> (
860 gimple_build_with_ops_stat (GIMPLE_DEBUG,
861 (unsigned)GIMPLE_DEBUG_SOURCE_BIND, 2
862 PASS_MEM_STAT));
863
864 gimple_debug_source_bind_set_var (p, var);
865 gimple_debug_source_bind_set_value (p, value);
866 if (stmt)
867 gimple_set_location (p, gimple_location (stmt));
868
869 return p;
870 }
871
872
873 /* Build a new GIMPLE_DEBUG_BEGIN_STMT statement in BLOCK at
874 LOCATION. */
875
876 gdebug *
877 gimple_build_debug_begin_stmt (tree block, location_t location
878 MEM_STAT_DECL)
879 {
880 gdebug *p
881 = as_a <gdebug *> (
882 gimple_build_with_ops_stat (GIMPLE_DEBUG,
883 (unsigned)GIMPLE_DEBUG_BEGIN_STMT, 0
884 PASS_MEM_STAT));
885
886 gimple_set_location (p, location);
887 gimple_set_block (p, block);
888 cfun->debug_marker_count++;
889
890 return p;
891 }
892
893
894 /* Build a new GIMPLE_DEBUG_INLINE_ENTRY statement in BLOCK at
895 LOCATION. The BLOCK links to the inlined function. */
896
897 gdebug *
898 gimple_build_debug_inline_entry (tree block, location_t location
899 MEM_STAT_DECL)
900 {
901 gdebug *p
902 = as_a <gdebug *> (
903 gimple_build_with_ops_stat (GIMPLE_DEBUG,
904 (unsigned)GIMPLE_DEBUG_INLINE_ENTRY, 0
905 PASS_MEM_STAT));
906
907 gimple_set_location (p, location);
908 gimple_set_block (p, block);
909 cfun->debug_marker_count++;
910
911 return p;
912 }
913
914
915 /* Build a GIMPLE_OMP_CRITICAL statement.
916
917 BODY is the sequence of statements for which only one thread can execute.
918 NAME is optional identifier for this critical block.
919 CLAUSES are clauses for this critical block. */
920
921 gomp_critical *
922 gimple_build_omp_critical (gimple_seq body, tree name, tree clauses)
923 {
924 gomp_critical *p
925 = as_a <gomp_critical *> (gimple_alloc (GIMPLE_OMP_CRITICAL, 0));
926 gimple_omp_critical_set_name (p, name);
927 gimple_omp_critical_set_clauses (p, clauses);
928 if (body)
929 gimple_omp_set_body (p, body);
930
931 return p;
932 }
933
934 /* Build a GIMPLE_OMP_FOR statement.
935
936 BODY is sequence of statements inside the for loop.
937 KIND is the `for' variant.
938 CLAUSES are any of the construct's clauses.
939 COLLAPSE is the collapse count.
940 PRE_BODY is the sequence of statements that are loop invariant. */
941
942 gomp_for *
943 gimple_build_omp_for (gimple_seq body, int kind, tree clauses, size_t collapse,
944 gimple_seq pre_body)
945 {
946 gomp_for *p = as_a <gomp_for *> (gimple_alloc (GIMPLE_OMP_FOR, 0));
947 if (body)
948 gimple_omp_set_body (p, body);
949 gimple_omp_for_set_clauses (p, clauses);
950 gimple_omp_for_set_kind (p, kind);
951 p->collapse = collapse;
952 p->iter = ggc_cleared_vec_alloc<gimple_omp_for_iter> (collapse);
953
954 if (pre_body)
955 gimple_omp_for_set_pre_body (p, pre_body);
956
957 return p;
958 }
959
960
961 /* Build a GIMPLE_OMP_PARALLEL statement.
962
963 BODY is sequence of statements which are executed in parallel.
964 CLAUSES are the OMP parallel construct's clauses.
965 CHILD_FN is the function created for the parallel threads to execute.
966 DATA_ARG are the shared data argument(s). */
967
968 gomp_parallel *
969 gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
970 tree data_arg)
971 {
972 gomp_parallel *p
973 = as_a <gomp_parallel *> (gimple_alloc (GIMPLE_OMP_PARALLEL, 0));
974 if (body)
975 gimple_omp_set_body (p, body);
976 gimple_omp_parallel_set_clauses (p, clauses);
977 gimple_omp_parallel_set_child_fn (p, child_fn);
978 gimple_omp_parallel_set_data_arg (p, data_arg);
979
980 return p;
981 }
982
983
984 /* Build a GIMPLE_OMP_TASK statement.
985
986 BODY is sequence of statements which are executed by the explicit task.
987 CLAUSES are the OMP task construct's clauses.
988 CHILD_FN is the function created for the parallel threads to execute.
989 DATA_ARG are the shared data argument(s).
990 COPY_FN is the optional function for firstprivate initialization.
991 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
992
993 gomp_task *
994 gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
995 tree data_arg, tree copy_fn, tree arg_size,
996 tree arg_align)
997 {
998 gomp_task *p = as_a <gomp_task *> (gimple_alloc (GIMPLE_OMP_TASK, 0));
999 if (body)
1000 gimple_omp_set_body (p, body);
1001 gimple_omp_task_set_clauses (p, clauses);
1002 gimple_omp_task_set_child_fn (p, child_fn);
1003 gimple_omp_task_set_data_arg (p, data_arg);
1004 gimple_omp_task_set_copy_fn (p, copy_fn);
1005 gimple_omp_task_set_arg_size (p, arg_size);
1006 gimple_omp_task_set_arg_align (p, arg_align);
1007
1008 return p;
1009 }
1010
1011
1012 /* Build a GIMPLE_OMP_SECTION statement for a sections statement.
1013
1014 BODY is the sequence of statements in the section. */
1015
1016 gimple *
1017 gimple_build_omp_section (gimple_seq body)
1018 {
1019 gimple *p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
1020 if (body)
1021 gimple_omp_set_body (p, body);
1022
1023 return p;
1024 }
1025
1026
1027 /* Build a GIMPLE_OMP_MASTER statement.
1028
1029 BODY is the sequence of statements to be executed by just the master. */
1030
1031 gimple *
1032 gimple_build_omp_master (gimple_seq body)
1033 {
1034 gimple *p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
1035 if (body)
1036 gimple_omp_set_body (p, body);
1037
1038 return p;
1039 }
1040
1041 /* Build a GIMPLE_OMP_TASKGROUP statement.
1042
1043 BODY is the sequence of statements to be executed by the taskgroup
1044 construct.
1045 CLAUSES are any of the construct's clauses. */
1046
1047 gimple *
1048 gimple_build_omp_taskgroup (gimple_seq body, tree clauses)
1049 {
1050 gimple *p = gimple_alloc (GIMPLE_OMP_TASKGROUP, 0);
1051 gimple_omp_taskgroup_set_clauses (p, clauses);
1052 if (body)
1053 gimple_omp_set_body (p, body);
1054
1055 return p;
1056 }
1057
1058
1059 /* Build a GIMPLE_OMP_CONTINUE statement.
1060
1061 CONTROL_DEF is the definition of the control variable.
1062 CONTROL_USE is the use of the control variable. */
1063
1064 gomp_continue *
1065 gimple_build_omp_continue (tree control_def, tree control_use)
1066 {
1067 gomp_continue *p
1068 = as_a <gomp_continue *> (gimple_alloc (GIMPLE_OMP_CONTINUE, 0));
1069 gimple_omp_continue_set_control_def (p, control_def);
1070 gimple_omp_continue_set_control_use (p, control_use);
1071 return p;
1072 }
1073
1074 /* Build a GIMPLE_OMP_ORDERED statement.
1075
1076 BODY is the sequence of statements inside a loop that will executed in
1077 sequence.
1078 CLAUSES are clauses for this statement. */
1079
1080 gomp_ordered *
1081 gimple_build_omp_ordered (gimple_seq body, tree clauses)
1082 {
1083 gomp_ordered *p
1084 = as_a <gomp_ordered *> (gimple_alloc (GIMPLE_OMP_ORDERED, 0));
1085 gimple_omp_ordered_set_clauses (p, clauses);
1086 if (body)
1087 gimple_omp_set_body (p, body);
1088
1089 return p;
1090 }
1091
1092
1093 /* Build a GIMPLE_OMP_RETURN statement.
1094 WAIT_P is true if this is a non-waiting return. */
1095
1096 gimple *
1097 gimple_build_omp_return (bool wait_p)
1098 {
1099 gimple *p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
1100 if (wait_p)
1101 gimple_omp_return_set_nowait (p);
1102
1103 return p;
1104 }
1105
1106
1107 /* Build a GIMPLE_OMP_SCAN statement.
1108
1109 BODY is the sequence of statements to be executed by the scan
1110 construct.
1111 CLAUSES are any of the construct's clauses. */
1112
1113 gomp_scan *
1114 gimple_build_omp_scan (gimple_seq body, tree clauses)
1115 {
1116 gomp_scan *p
1117 = as_a <gomp_scan *> (gimple_alloc (GIMPLE_OMP_SCAN, 0));
1118 gimple_omp_scan_set_clauses (p, clauses);
1119 if (body)
1120 gimple_omp_set_body (p, body);
1121
1122 return p;
1123 }
1124
1125
1126 /* Build a GIMPLE_OMP_SECTIONS statement.
1127
1128 BODY is a sequence of section statements.
1129 CLAUSES are any of the OMP sections contsruct's clauses: private,
1130 firstprivate, lastprivate, reduction, and nowait. */
1131
1132 gomp_sections *
1133 gimple_build_omp_sections (gimple_seq body, tree clauses)
1134 {
1135 gomp_sections *p
1136 = as_a <gomp_sections *> (gimple_alloc (GIMPLE_OMP_SECTIONS, 0));
1137 if (body)
1138 gimple_omp_set_body (p, body);
1139 gimple_omp_sections_set_clauses (p, clauses);
1140
1141 return p;
1142 }
1143
1144
1145 /* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
1146
1147 gimple *
1148 gimple_build_omp_sections_switch (void)
1149 {
1150 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
1151 }
1152
1153
1154 /* Build a GIMPLE_OMP_SINGLE statement.
1155
1156 BODY is the sequence of statements that will be executed once.
1157 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1158 copyprivate, nowait. */
1159
1160 gomp_single *
1161 gimple_build_omp_single (gimple_seq body, tree clauses)
1162 {
1163 gomp_single *p
1164 = as_a <gomp_single *> (gimple_alloc (GIMPLE_OMP_SINGLE, 0));
1165 if (body)
1166 gimple_omp_set_body (p, body);
1167 gimple_omp_single_set_clauses (p, clauses);
1168
1169 return p;
1170 }
1171
1172
1173 /* Build a GIMPLE_OMP_TARGET statement.
1174
1175 BODY is the sequence of statements that will be executed.
1176 KIND is the kind of the region.
1177 CLAUSES are any of the construct's clauses. */
1178
1179 gomp_target *
1180 gimple_build_omp_target (gimple_seq body, int kind, tree clauses)
1181 {
1182 gomp_target *p
1183 = as_a <gomp_target *> (gimple_alloc (GIMPLE_OMP_TARGET, 0));
1184 if (body)
1185 gimple_omp_set_body (p, body);
1186 gimple_omp_target_set_clauses (p, clauses);
1187 gimple_omp_target_set_kind (p, kind);
1188
1189 return p;
1190 }
1191
1192
1193 /* Build a GIMPLE_OMP_TEAMS statement.
1194
1195 BODY is the sequence of statements that will be executed.
1196 CLAUSES are any of the OMP teams construct's clauses. */
1197
1198 gomp_teams *
1199 gimple_build_omp_teams (gimple_seq body, tree clauses)
1200 {
1201 gomp_teams *p = as_a <gomp_teams *> (gimple_alloc (GIMPLE_OMP_TEAMS, 0));
1202 if (body)
1203 gimple_omp_set_body (p, body);
1204 gimple_omp_teams_set_clauses (p, clauses);
1205
1206 return p;
1207 }
1208
1209
1210 /* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
1211
1212 gomp_atomic_load *
1213 gimple_build_omp_atomic_load (tree lhs, tree rhs, enum omp_memory_order mo)
1214 {
1215 gomp_atomic_load *p
1216 = as_a <gomp_atomic_load *> (gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0));
1217 gimple_omp_atomic_load_set_lhs (p, lhs);
1218 gimple_omp_atomic_load_set_rhs (p, rhs);
1219 gimple_omp_atomic_set_memory_order (p, mo);
1220 return p;
1221 }
1222
1223 /* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1224
1225 VAL is the value we are storing. */
1226
1227 gomp_atomic_store *
1228 gimple_build_omp_atomic_store (tree val, enum omp_memory_order mo)
1229 {
1230 gomp_atomic_store *p
1231 = as_a <gomp_atomic_store *> (gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0));
1232 gimple_omp_atomic_store_set_val (p, val);
1233 gimple_omp_atomic_set_memory_order (p, mo);
1234 return p;
1235 }
1236
1237 /* Build a GIMPLE_TRANSACTION statement. */
1238
1239 gtransaction *
1240 gimple_build_transaction (gimple_seq body)
1241 {
1242 gtransaction *p
1243 = as_a <gtransaction *> (gimple_alloc (GIMPLE_TRANSACTION, 0));
1244 gimple_transaction_set_body (p, body);
1245 gimple_transaction_set_label_norm (p, 0);
1246 gimple_transaction_set_label_uninst (p, 0);
1247 gimple_transaction_set_label_over (p, 0);
1248 return p;
1249 }
1250
1251 #if defined ENABLE_GIMPLE_CHECKING
1252 /* Complain of a gimple type mismatch and die. */
1253
1254 void
1255 gimple_check_failed (const gimple *gs, const char *file, int line,
1256 const char *function, enum gimple_code code,
1257 enum tree_code subcode)
1258 {
1259 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1260 gimple_code_name[code],
1261 get_tree_code_name (subcode),
1262 gimple_code_name[gimple_code (gs)],
1263 gs->subcode > 0
1264 ? get_tree_code_name ((enum tree_code) gs->subcode)
1265 : "",
1266 function, trim_filename (file), line);
1267 }
1268 #endif /* ENABLE_GIMPLE_CHECKING */
1269
1270
1271 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1272 *SEQ_P is NULL, a new sequence is allocated. */
1273
1274 void
1275 gimple_seq_add_stmt (gimple_seq *seq_p, gimple *gs)
1276 {
1277 gimple_stmt_iterator si;
1278 if (gs == NULL)
1279 return;
1280
1281 si = gsi_last (*seq_p);
1282 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1283 }
1284
1285 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1286 *SEQ_P is NULL, a new sequence is allocated. This function is
1287 similar to gimple_seq_add_stmt, but does not scan the operands.
1288 During gimplification, we need to manipulate statement sequences
1289 before the def/use vectors have been constructed. */
1290
1291 void
1292 gimple_seq_add_stmt_without_update (gimple_seq *seq_p, gimple *gs)
1293 {
1294 gimple_stmt_iterator si;
1295
1296 if (gs == NULL)
1297 return;
1298
1299 si = gsi_last (*seq_p);
1300 gsi_insert_after_without_update (&si, gs, GSI_NEW_STMT);
1301 }
1302
1303 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1304 NULL, a new sequence is allocated. */
1305
1306 void
1307 gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1308 {
1309 gimple_stmt_iterator si;
1310 if (src == NULL)
1311 return;
1312
1313 si = gsi_last (*dst_p);
1314 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1315 }
1316
1317 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1318 NULL, a new sequence is allocated. This function is
1319 similar to gimple_seq_add_seq, but does not scan the operands. */
1320
1321 void
1322 gimple_seq_add_seq_without_update (gimple_seq *dst_p, gimple_seq src)
1323 {
1324 gimple_stmt_iterator si;
1325 if (src == NULL)
1326 return;
1327
1328 si = gsi_last (*dst_p);
1329 gsi_insert_seq_after_without_update (&si, src, GSI_NEW_STMT);
1330 }
1331
1332 /* Determine whether to assign a location to the statement GS. */
1333
1334 static bool
1335 should_carry_location_p (gimple *gs)
1336 {
1337 /* Don't emit a line note for a label. We particularly don't want to
1338 emit one for the break label, since it doesn't actually correspond
1339 to the beginning of the loop/switch. */
1340 if (gimple_code (gs) == GIMPLE_LABEL)
1341 return false;
1342
1343 return true;
1344 }
1345
1346 /* Set the location for gimple statement GS to LOCATION. */
1347
1348 static void
1349 annotate_one_with_location (gimple *gs, location_t location)
1350 {
1351 if (!gimple_has_location (gs)
1352 && !gimple_do_not_emit_location_p (gs)
1353 && should_carry_location_p (gs))
1354 gimple_set_location (gs, location);
1355 }
1356
1357 /* Set LOCATION for all the statements after iterator GSI in sequence
1358 SEQ. If GSI is pointing to the end of the sequence, start with the
1359 first statement in SEQ. */
1360
1361 void
1362 annotate_all_with_location_after (gimple_seq seq, gimple_stmt_iterator gsi,
1363 location_t location)
1364 {
1365 if (gsi_end_p (gsi))
1366 gsi = gsi_start (seq);
1367 else
1368 gsi_next (&gsi);
1369
1370 for (; !gsi_end_p (gsi); gsi_next (&gsi))
1371 annotate_one_with_location (gsi_stmt (gsi), location);
1372 }
1373
1374 /* Set the location for all the statements in a sequence STMT_P to LOCATION. */
1375
1376 void
1377 annotate_all_with_location (gimple_seq stmt_p, location_t location)
1378 {
1379 gimple_stmt_iterator i;
1380
1381 if (gimple_seq_empty_p (stmt_p))
1382 return;
1383
1384 for (i = gsi_start (stmt_p); !gsi_end_p (i); gsi_next (&i))
1385 {
1386 gimple *gs = gsi_stmt (i);
1387 annotate_one_with_location (gs, location);
1388 }
1389 }
1390
1391 /* Helper function of empty_body_p. Return true if STMT is an empty
1392 statement. */
1393
1394 static bool
1395 empty_stmt_p (gimple *stmt)
1396 {
1397 if (gimple_code (stmt) == GIMPLE_NOP)
1398 return true;
1399 if (gbind *bind_stmt = dyn_cast <gbind *> (stmt))
1400 return empty_body_p (gimple_bind_body (bind_stmt));
1401 return false;
1402 }
1403
1404
1405 /* Return true if BODY contains nothing but empty statements. */
1406
1407 bool
1408 empty_body_p (gimple_seq body)
1409 {
1410 gimple_stmt_iterator i;
1411
1412 if (gimple_seq_empty_p (body))
1413 return true;
1414 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
1415 if (!empty_stmt_p (gsi_stmt (i))
1416 && !is_gimple_debug (gsi_stmt (i)))
1417 return false;
1418
1419 return true;
1420 }
1421
1422
1423 /* Perform a deep copy of sequence SRC and return the result. */
1424
1425 gimple_seq
1426 gimple_seq_copy (gimple_seq src)
1427 {
1428 gimple_stmt_iterator gsi;
1429 gimple_seq new_seq = NULL;
1430 gimple *stmt;
1431
1432 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1433 {
1434 stmt = gimple_copy (gsi_stmt (gsi));
1435 gimple_seq_add_stmt (&new_seq, stmt);
1436 }
1437
1438 return new_seq;
1439 }
1440
1441
1442
1443 /* Return true if calls C1 and C2 are known to go to the same function. */
1444
1445 bool
1446 gimple_call_same_target_p (const gimple *c1, const gimple *c2)
1447 {
1448 if (gimple_call_internal_p (c1))
1449 return (gimple_call_internal_p (c2)
1450 && gimple_call_internal_fn (c1) == gimple_call_internal_fn (c2)
1451 && (!gimple_call_internal_unique_p (as_a <const gcall *> (c1))
1452 || c1 == c2));
1453 else
1454 return (gimple_call_fn (c1) == gimple_call_fn (c2)
1455 || (gimple_call_fndecl (c1)
1456 && gimple_call_fndecl (c1) == gimple_call_fndecl (c2)));
1457 }
1458
1459 /* Detect flags from a GIMPLE_CALL. This is just like
1460 call_expr_flags, but for gimple tuples. */
1461
1462 int
1463 gimple_call_flags (const gimple *stmt)
1464 {
1465 int flags = 0;
1466
1467 if (gimple_call_internal_p (stmt))
1468 flags = internal_fn_flags (gimple_call_internal_fn (stmt));
1469 else
1470 {
1471 tree decl = gimple_call_fndecl (stmt);
1472 if (decl)
1473 flags = flags_from_decl_or_type (decl);
1474 flags |= flags_from_decl_or_type (gimple_call_fntype (stmt));
1475 }
1476
1477 if (stmt->subcode & GF_CALL_NOTHROW)
1478 flags |= ECF_NOTHROW;
1479
1480 if (stmt->subcode & GF_CALL_BY_DESCRIPTOR)
1481 flags |= ECF_BY_DESCRIPTOR;
1482
1483 return flags;
1484 }
1485
1486 /* Return the "fn spec" string for call STMT. */
1487
1488 attr_fnspec
1489 gimple_call_fnspec (const gcall *stmt)
1490 {
1491 tree type, attr;
1492
1493 if (gimple_call_internal_p (stmt))
1494 {
1495 const_tree spec = internal_fn_fnspec (gimple_call_internal_fn (stmt));
1496 if (spec)
1497 return spec;
1498 else
1499 return "";
1500 }
1501
1502 type = gimple_call_fntype (stmt);
1503 if (type)
1504 {
1505 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1506 if (attr)
1507 return TREE_VALUE (TREE_VALUE (attr));
1508 }
1509 if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
1510 return builtin_fnspec (gimple_call_fndecl (stmt));
1511 tree fndecl = gimple_call_fndecl (stmt);
1512 /* If the call is to a replaceable operator delete and results
1513 from a delete expression as opposed to a direct call to
1514 such operator, then we can treat it as free. */
1515 if (fndecl
1516 && DECL_IS_OPERATOR_DELETE_P (fndecl)
1517 && DECL_IS_REPLACEABLE_OPERATOR (fndecl)
1518 && gimple_call_from_new_or_delete (stmt))
1519 return ".co ";
1520 /* Similarly operator new can be treated as malloc. */
1521 if (fndecl
1522 && DECL_IS_REPLACEABLE_OPERATOR_NEW_P (fndecl)
1523 && gimple_call_from_new_or_delete (stmt))
1524 return "mC";
1525 return "";
1526 }
1527
1528 /* Detects argument flags for argument number ARG on call STMT. */
1529
1530 int
1531 gimple_call_arg_flags (const gcall *stmt, unsigned arg)
1532 {
1533 attr_fnspec fnspec = gimple_call_fnspec (stmt);
1534 int flags = 0;
1535
1536 if (fnspec.known_p ())
1537 {
1538 if (!fnspec.arg_specified_p (arg))
1539 ;
1540 else if (!fnspec.arg_used_p (arg))
1541 flags = EAF_UNUSED;
1542 else
1543 {
1544 if (fnspec.arg_direct_p (arg))
1545 flags |= EAF_DIRECT;
1546 if (fnspec.arg_noescape_p (arg))
1547 flags |= EAF_NOESCAPE | EAF_NODIRECTESCAPE;
1548 if (fnspec.arg_readonly_p (arg))
1549 flags |= EAF_NOCLOBBER;
1550 }
1551 }
1552 tree callee = gimple_call_fndecl (stmt);
1553 if (callee)
1554 {
1555 cgraph_node *node = cgraph_node::get (callee);
1556 modref_summary *summary = node ? get_modref_function_summary (node)
1557 : NULL;
1558
1559 if (summary && summary->arg_flags.length () > arg)
1560 {
1561 int modref_flags = summary->arg_flags[arg];
1562
1563 /* We have possibly optimized out load. Be conservative here. */
1564 if (!node->binds_to_current_def_p ())
1565 {
1566 if ((modref_flags & EAF_UNUSED) && !(flags & EAF_UNUSED))
1567 modref_flags &= ~EAF_UNUSED;
1568 if ((modref_flags & EAF_DIRECT) && !(flags & EAF_DIRECT))
1569 modref_flags &= ~EAF_DIRECT;
1570 }
1571 flags |= modref_flags;
1572 }
1573 }
1574 return flags;
1575 }
1576
1577 /* Detects return flags for the call STMT. */
1578
1579 int
1580 gimple_call_return_flags (const gcall *stmt)
1581 {
1582 if (gimple_call_flags (stmt) & ECF_MALLOC)
1583 return ERF_NOALIAS;
1584
1585 attr_fnspec fnspec = gimple_call_fnspec (stmt);
1586
1587 unsigned int arg_no;
1588 if (fnspec.returns_arg (&arg_no))
1589 return ERF_RETURNS_ARG | arg_no;
1590
1591 if (fnspec.returns_noalias_p ())
1592 return ERF_NOALIAS;
1593 return 0;
1594 }
1595
1596
1597 /* Return true if call STMT is known to return a non-zero result. */
1598
1599 bool
1600 gimple_call_nonnull_result_p (gcall *call)
1601 {
1602 tree fndecl = gimple_call_fndecl (call);
1603 if (!fndecl)
1604 return false;
1605 if (flag_delete_null_pointer_checks && !flag_check_new
1606 && DECL_IS_OPERATOR_NEW_P (fndecl)
1607 && !TREE_NOTHROW (fndecl))
1608 return true;
1609
1610 /* References are always non-NULL. */
1611 if (flag_delete_null_pointer_checks
1612 && TREE_CODE (TREE_TYPE (fndecl)) == REFERENCE_TYPE)
1613 return true;
1614
1615 if (flag_delete_null_pointer_checks
1616 && lookup_attribute ("returns_nonnull",
1617 TYPE_ATTRIBUTES (gimple_call_fntype (call))))
1618 return true;
1619 return gimple_alloca_call_p (call);
1620 }
1621
1622
1623 /* If CALL returns a non-null result in an argument, return that arg. */
1624
1625 tree
1626 gimple_call_nonnull_arg (gcall *call)
1627 {
1628 tree fndecl = gimple_call_fndecl (call);
1629 if (!fndecl)
1630 return NULL_TREE;
1631
1632 unsigned rf = gimple_call_return_flags (call);
1633 if (rf & ERF_RETURNS_ARG)
1634 {
1635 unsigned argnum = rf & ERF_RETURN_ARG_MASK;
1636 if (argnum < gimple_call_num_args (call))
1637 {
1638 tree arg = gimple_call_arg (call, argnum);
1639 if (SSA_VAR_P (arg)
1640 && infer_nonnull_range_by_attribute (call, arg))
1641 return arg;
1642 }
1643 }
1644 return NULL_TREE;
1645 }
1646
1647
1648 /* Return true if GS is a copy assignment. */
1649
1650 bool
1651 gimple_assign_copy_p (gimple *gs)
1652 {
1653 return (gimple_assign_single_p (gs)
1654 && is_gimple_val (gimple_op (gs, 1)));
1655 }
1656
1657
1658 /* Return true if GS is a SSA_NAME copy assignment. */
1659
1660 bool
1661 gimple_assign_ssa_name_copy_p (gimple *gs)
1662 {
1663 return (gimple_assign_single_p (gs)
1664 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1665 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1666 }
1667
1668
1669 /* Return true if GS is an assignment with a unary RHS, but the
1670 operator has no effect on the assigned value. The logic is adapted
1671 from STRIP_NOPS. This predicate is intended to be used in tuplifying
1672 instances in which STRIP_NOPS was previously applied to the RHS of
1673 an assignment.
1674
1675 NOTE: In the use cases that led to the creation of this function
1676 and of gimple_assign_single_p, it is typical to test for either
1677 condition and to proceed in the same manner. In each case, the
1678 assigned value is represented by the single RHS operand of the
1679 assignment. I suspect there may be cases where gimple_assign_copy_p,
1680 gimple_assign_single_p, or equivalent logic is used where a similar
1681 treatment of unary NOPs is appropriate. */
1682
1683 bool
1684 gimple_assign_unary_nop_p (gimple *gs)
1685 {
1686 return (is_gimple_assign (gs)
1687 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
1688 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
1689 && gimple_assign_rhs1 (gs) != error_mark_node
1690 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
1691 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
1692 }
1693
1694 /* Set BB to be the basic block holding G. */
1695
1696 void
1697 gimple_set_bb (gimple *stmt, basic_block bb)
1698 {
1699 stmt->bb = bb;
1700
1701 if (gimple_code (stmt) != GIMPLE_LABEL)
1702 return;
1703
1704 /* If the statement is a label, add the label to block-to-labels map
1705 so that we can speed up edge creation for GIMPLE_GOTOs. */
1706 if (cfun->cfg)
1707 {
1708 tree t;
1709 int uid;
1710
1711 t = gimple_label_label (as_a <glabel *> (stmt));
1712 uid = LABEL_DECL_UID (t);
1713 if (uid == -1)
1714 {
1715 unsigned old_len =
1716 vec_safe_length (label_to_block_map_for_fn (cfun));
1717 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
1718 if (old_len <= (unsigned) uid)
1719 vec_safe_grow_cleared (label_to_block_map_for_fn (cfun), uid + 1);
1720 }
1721
1722 (*label_to_block_map_for_fn (cfun))[uid] = bb;
1723 }
1724 }
1725
1726
1727 /* Modify the RHS of the assignment pointed-to by GSI using the
1728 operands in the expression tree EXPR.
1729
1730 NOTE: The statement pointed-to by GSI may be reallocated if it
1731 did not have enough operand slots.
1732
1733 This function is useful to convert an existing tree expression into
1734 the flat representation used for the RHS of a GIMPLE assignment.
1735 It will reallocate memory as needed to expand or shrink the number
1736 of operand slots needed to represent EXPR.
1737
1738 NOTE: If you find yourself building a tree and then calling this
1739 function, you are most certainly doing it the slow way. It is much
1740 better to build a new assignment or to use the function
1741 gimple_assign_set_rhs_with_ops, which does not require an
1742 expression tree to be built. */
1743
1744 void
1745 gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
1746 {
1747 enum tree_code subcode;
1748 tree op1, op2, op3;
1749
1750 extract_ops_from_tree (expr, &subcode, &op1, &op2, &op3);
1751 gimple_assign_set_rhs_with_ops (gsi, subcode, op1, op2, op3);
1752 }
1753
1754
1755 /* Set the RHS of assignment statement pointed-to by GSI to CODE with
1756 operands OP1, OP2 and OP3.
1757
1758 NOTE: The statement pointed-to by GSI may be reallocated if it
1759 did not have enough operand slots. */
1760
1761 void
1762 gimple_assign_set_rhs_with_ops (gimple_stmt_iterator *gsi, enum tree_code code,
1763 tree op1, tree op2, tree op3)
1764 {
1765 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
1766 gimple *stmt = gsi_stmt (*gsi);
1767 gimple *old_stmt = stmt;
1768
1769 /* If the new CODE needs more operands, allocate a new statement. */
1770 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
1771 {
1772 tree lhs = gimple_assign_lhs (old_stmt);
1773 stmt = gimple_alloc (gimple_code (old_stmt), new_rhs_ops + 1);
1774 memcpy (stmt, old_stmt, gimple_size (gimple_code (old_stmt)));
1775 gimple_init_singleton (stmt);
1776
1777 /* The LHS needs to be reset as this also changes the SSA name
1778 on the LHS. */
1779 gimple_assign_set_lhs (stmt, lhs);
1780 }
1781
1782 gimple_set_num_ops (stmt, new_rhs_ops + 1);
1783 gimple_set_subcode (stmt, code);
1784 gimple_assign_set_rhs1 (stmt, op1);
1785 if (new_rhs_ops > 1)
1786 gimple_assign_set_rhs2 (stmt, op2);
1787 if (new_rhs_ops > 2)
1788 gimple_assign_set_rhs3 (stmt, op3);
1789 if (stmt != old_stmt)
1790 gsi_replace (gsi, stmt, false);
1791 }
1792
1793
1794 /* Return the LHS of a statement that performs an assignment,
1795 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
1796 for a call to a function that returns no value, or for a
1797 statement other than an assignment or a call. */
1798
1799 tree
1800 gimple_get_lhs (const gimple *stmt)
1801 {
1802 enum gimple_code code = gimple_code (stmt);
1803
1804 if (code == GIMPLE_ASSIGN)
1805 return gimple_assign_lhs (stmt);
1806 else if (code == GIMPLE_CALL)
1807 return gimple_call_lhs (stmt);
1808 else if (code == GIMPLE_PHI)
1809 return gimple_phi_result (stmt);
1810 else
1811 return NULL_TREE;
1812 }
1813
1814
1815 /* Set the LHS of a statement that performs an assignment,
1816 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
1817
1818 void
1819 gimple_set_lhs (gimple *stmt, tree lhs)
1820 {
1821 enum gimple_code code = gimple_code (stmt);
1822
1823 if (code == GIMPLE_ASSIGN)
1824 gimple_assign_set_lhs (stmt, lhs);
1825 else if (code == GIMPLE_CALL)
1826 gimple_call_set_lhs (stmt, lhs);
1827 else
1828 gcc_unreachable ();
1829 }
1830
1831
1832 /* Return a deep copy of statement STMT. All the operands from STMT
1833 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
1834 and VUSE operand arrays are set to empty in the new copy. The new
1835 copy isn't part of any sequence. */
1836
1837 gimple *
1838 gimple_copy (gimple *stmt)
1839 {
1840 enum gimple_code code = gimple_code (stmt);
1841 unsigned num_ops = gimple_num_ops (stmt);
1842 gimple *copy = gimple_alloc (code, num_ops);
1843 unsigned i;
1844
1845 /* Shallow copy all the fields from STMT. */
1846 memcpy (copy, stmt, gimple_size (code));
1847 gimple_init_singleton (copy);
1848
1849 /* If STMT has sub-statements, deep-copy them as well. */
1850 if (gimple_has_substatements (stmt))
1851 {
1852 gimple_seq new_seq;
1853 tree t;
1854
1855 switch (gimple_code (stmt))
1856 {
1857 case GIMPLE_BIND:
1858 {
1859 gbind *bind_stmt = as_a <gbind *> (stmt);
1860 gbind *bind_copy = as_a <gbind *> (copy);
1861 new_seq = gimple_seq_copy (gimple_bind_body (bind_stmt));
1862 gimple_bind_set_body (bind_copy, new_seq);
1863 gimple_bind_set_vars (bind_copy,
1864 unshare_expr (gimple_bind_vars (bind_stmt)));
1865 gimple_bind_set_block (bind_copy, gimple_bind_block (bind_stmt));
1866 }
1867 break;
1868
1869 case GIMPLE_CATCH:
1870 {
1871 gcatch *catch_stmt = as_a <gcatch *> (stmt);
1872 gcatch *catch_copy = as_a <gcatch *> (copy);
1873 new_seq = gimple_seq_copy (gimple_catch_handler (catch_stmt));
1874 gimple_catch_set_handler (catch_copy, new_seq);
1875 t = unshare_expr (gimple_catch_types (catch_stmt));
1876 gimple_catch_set_types (catch_copy, t);
1877 }
1878 break;
1879
1880 case GIMPLE_EH_FILTER:
1881 {
1882 geh_filter *eh_filter_stmt = as_a <geh_filter *> (stmt);
1883 geh_filter *eh_filter_copy = as_a <geh_filter *> (copy);
1884 new_seq
1885 = gimple_seq_copy (gimple_eh_filter_failure (eh_filter_stmt));
1886 gimple_eh_filter_set_failure (eh_filter_copy, new_seq);
1887 t = unshare_expr (gimple_eh_filter_types (eh_filter_stmt));
1888 gimple_eh_filter_set_types (eh_filter_copy, t);
1889 }
1890 break;
1891
1892 case GIMPLE_EH_ELSE:
1893 {
1894 geh_else *eh_else_stmt = as_a <geh_else *> (stmt);
1895 geh_else *eh_else_copy = as_a <geh_else *> (copy);
1896 new_seq = gimple_seq_copy (gimple_eh_else_n_body (eh_else_stmt));
1897 gimple_eh_else_set_n_body (eh_else_copy, new_seq);
1898 new_seq = gimple_seq_copy (gimple_eh_else_e_body (eh_else_stmt));
1899 gimple_eh_else_set_e_body (eh_else_copy, new_seq);
1900 }
1901 break;
1902
1903 case GIMPLE_TRY:
1904 {
1905 gtry *try_stmt = as_a <gtry *> (stmt);
1906 gtry *try_copy = as_a <gtry *> (copy);
1907 new_seq = gimple_seq_copy (gimple_try_eval (try_stmt));
1908 gimple_try_set_eval (try_copy, new_seq);
1909 new_seq = gimple_seq_copy (gimple_try_cleanup (try_stmt));
1910 gimple_try_set_cleanup (try_copy, new_seq);
1911 }
1912 break;
1913
1914 case GIMPLE_OMP_FOR:
1915 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
1916 gimple_omp_for_set_pre_body (copy, new_seq);
1917 t = unshare_expr (gimple_omp_for_clauses (stmt));
1918 gimple_omp_for_set_clauses (copy, t);
1919 {
1920 gomp_for *omp_for_copy = as_a <gomp_for *> (copy);
1921 omp_for_copy->iter = ggc_vec_alloc<gimple_omp_for_iter>
1922 ( gimple_omp_for_collapse (stmt));
1923 }
1924 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1925 {
1926 gimple_omp_for_set_cond (copy, i,
1927 gimple_omp_for_cond (stmt, i));
1928 gimple_omp_for_set_index (copy, i,
1929 gimple_omp_for_index (stmt, i));
1930 t = unshare_expr (gimple_omp_for_initial (stmt, i));
1931 gimple_omp_for_set_initial (copy, i, t);
1932 t = unshare_expr (gimple_omp_for_final (stmt, i));
1933 gimple_omp_for_set_final (copy, i, t);
1934 t = unshare_expr (gimple_omp_for_incr (stmt, i));
1935 gimple_omp_for_set_incr (copy, i, t);
1936 }
1937 goto copy_omp_body;
1938
1939 case GIMPLE_OMP_PARALLEL:
1940 {
1941 gomp_parallel *omp_par_stmt = as_a <gomp_parallel *> (stmt);
1942 gomp_parallel *omp_par_copy = as_a <gomp_parallel *> (copy);
1943 t = unshare_expr (gimple_omp_parallel_clauses (omp_par_stmt));
1944 gimple_omp_parallel_set_clauses (omp_par_copy, t);
1945 t = unshare_expr (gimple_omp_parallel_child_fn (omp_par_stmt));
1946 gimple_omp_parallel_set_child_fn (omp_par_copy, t);
1947 t = unshare_expr (gimple_omp_parallel_data_arg (omp_par_stmt));
1948 gimple_omp_parallel_set_data_arg (omp_par_copy, t);
1949 }
1950 goto copy_omp_body;
1951
1952 case GIMPLE_OMP_TASK:
1953 t = unshare_expr (gimple_omp_task_clauses (stmt));
1954 gimple_omp_task_set_clauses (copy, t);
1955 t = unshare_expr (gimple_omp_task_child_fn (stmt));
1956 gimple_omp_task_set_child_fn (copy, t);
1957 t = unshare_expr (gimple_omp_task_data_arg (stmt));
1958 gimple_omp_task_set_data_arg (copy, t);
1959 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
1960 gimple_omp_task_set_copy_fn (copy, t);
1961 t = unshare_expr (gimple_omp_task_arg_size (stmt));
1962 gimple_omp_task_set_arg_size (copy, t);
1963 t = unshare_expr (gimple_omp_task_arg_align (stmt));
1964 gimple_omp_task_set_arg_align (copy, t);
1965 goto copy_omp_body;
1966
1967 case GIMPLE_OMP_CRITICAL:
1968 t = unshare_expr (gimple_omp_critical_name
1969 (as_a <gomp_critical *> (stmt)));
1970 gimple_omp_critical_set_name (as_a <gomp_critical *> (copy), t);
1971 t = unshare_expr (gimple_omp_critical_clauses
1972 (as_a <gomp_critical *> (stmt)));
1973 gimple_omp_critical_set_clauses (as_a <gomp_critical *> (copy), t);
1974 goto copy_omp_body;
1975
1976 case GIMPLE_OMP_ORDERED:
1977 t = unshare_expr (gimple_omp_ordered_clauses
1978 (as_a <gomp_ordered *> (stmt)));
1979 gimple_omp_ordered_set_clauses (as_a <gomp_ordered *> (copy), t);
1980 goto copy_omp_body;
1981
1982 case GIMPLE_OMP_SCAN:
1983 t = gimple_omp_scan_clauses (as_a <gomp_scan *> (stmt));
1984 t = unshare_expr (t);
1985 gimple_omp_scan_set_clauses (as_a <gomp_scan *> (copy), t);
1986 goto copy_omp_body;
1987
1988 case GIMPLE_OMP_TASKGROUP:
1989 t = unshare_expr (gimple_omp_taskgroup_clauses (stmt));
1990 gimple_omp_taskgroup_set_clauses (copy, t);
1991 goto copy_omp_body;
1992
1993 case GIMPLE_OMP_SECTIONS:
1994 t = unshare_expr (gimple_omp_sections_clauses (stmt));
1995 gimple_omp_sections_set_clauses (copy, t);
1996 t = unshare_expr (gimple_omp_sections_control (stmt));
1997 gimple_omp_sections_set_control (copy, t);
1998 goto copy_omp_body;
1999
2000 case GIMPLE_OMP_SINGLE:
2001 {
2002 gomp_single *omp_single_copy = as_a <gomp_single *> (copy);
2003 t = unshare_expr (gimple_omp_single_clauses (stmt));
2004 gimple_omp_single_set_clauses (omp_single_copy, t);
2005 }
2006 goto copy_omp_body;
2007
2008 case GIMPLE_OMP_TARGET:
2009 {
2010 gomp_target *omp_target_stmt = as_a <gomp_target *> (stmt);
2011 gomp_target *omp_target_copy = as_a <gomp_target *> (copy);
2012 t = unshare_expr (gimple_omp_target_clauses (omp_target_stmt));
2013 gimple_omp_target_set_clauses (omp_target_copy, t);
2014 t = unshare_expr (gimple_omp_target_data_arg (omp_target_stmt));
2015 gimple_omp_target_set_data_arg (omp_target_copy, t);
2016 }
2017 goto copy_omp_body;
2018
2019 case GIMPLE_OMP_TEAMS:
2020 {
2021 gomp_teams *omp_teams_copy = as_a <gomp_teams *> (copy);
2022 t = unshare_expr (gimple_omp_teams_clauses (stmt));
2023 gimple_omp_teams_set_clauses (omp_teams_copy, t);
2024 }
2025 /* FALLTHRU */
2026
2027 case GIMPLE_OMP_SECTION:
2028 case GIMPLE_OMP_MASTER:
2029 copy_omp_body:
2030 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
2031 gimple_omp_set_body (copy, new_seq);
2032 break;
2033
2034 case GIMPLE_TRANSACTION:
2035 new_seq = gimple_seq_copy (gimple_transaction_body (
2036 as_a <gtransaction *> (stmt)));
2037 gimple_transaction_set_body (as_a <gtransaction *> (copy),
2038 new_seq);
2039 break;
2040
2041 case GIMPLE_WITH_CLEANUP_EXPR:
2042 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
2043 gimple_wce_set_cleanup (copy, new_seq);
2044 break;
2045
2046 default:
2047 gcc_unreachable ();
2048 }
2049 }
2050
2051 /* Make copy of operands. */
2052 for (i = 0; i < num_ops; i++)
2053 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
2054
2055 if (gimple_has_mem_ops (stmt))
2056 {
2057 gimple_set_vdef (copy, gimple_vdef (stmt));
2058 gimple_set_vuse (copy, gimple_vuse (stmt));
2059 }
2060
2061 /* Clear out SSA operand vectors on COPY. */
2062 if (gimple_has_ops (stmt))
2063 {
2064 gimple_set_use_ops (copy, NULL);
2065
2066 /* SSA operands need to be updated. */
2067 gimple_set_modified (copy, true);
2068 }
2069
2070 if (gimple_debug_nonbind_marker_p (stmt))
2071 cfun->debug_marker_count++;
2072
2073 return copy;
2074 }
2075
2076 /* Move OLD_STMT's vuse and vdef operands to NEW_STMT, on the assumption
2077 that OLD_STMT is about to be removed. */
2078
2079 void
2080 gimple_move_vops (gimple *new_stmt, gimple *old_stmt)
2081 {
2082 tree vdef = gimple_vdef (old_stmt);
2083 gimple_set_vuse (new_stmt, gimple_vuse (old_stmt));
2084 gimple_set_vdef (new_stmt, vdef);
2085 if (vdef && TREE_CODE (vdef) == SSA_NAME)
2086 SSA_NAME_DEF_STMT (vdef) = new_stmt;
2087 }
2088
2089 /* Return true if statement S has side-effects. We consider a
2090 statement to have side effects if:
2091
2092 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
2093 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
2094
2095 bool
2096 gimple_has_side_effects (const gimple *s)
2097 {
2098 if (is_gimple_debug (s))
2099 return false;
2100
2101 /* We don't have to scan the arguments to check for
2102 volatile arguments, though, at present, we still
2103 do a scan to check for TREE_SIDE_EFFECTS. */
2104 if (gimple_has_volatile_ops (s))
2105 return true;
2106
2107 if (gimple_code (s) == GIMPLE_ASM
2108 && gimple_asm_volatile_p (as_a <const gasm *> (s)))
2109 return true;
2110
2111 if (is_gimple_call (s))
2112 {
2113 int flags = gimple_call_flags (s);
2114
2115 /* An infinite loop is considered a side effect. */
2116 if (!(flags & (ECF_CONST | ECF_PURE))
2117 || (flags & ECF_LOOPING_CONST_OR_PURE))
2118 return true;
2119
2120 return false;
2121 }
2122
2123 return false;
2124 }
2125
2126 /* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
2127 Return true if S can trap. When INCLUDE_MEM is true, check whether
2128 the memory operations could trap. When INCLUDE_STORES is true and
2129 S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked. */
2130
2131 bool
2132 gimple_could_trap_p_1 (gimple *s, bool include_mem, bool include_stores)
2133 {
2134 tree t, div = NULL_TREE;
2135 enum tree_code op;
2136
2137 if (include_mem)
2138 {
2139 unsigned i, start = (is_gimple_assign (s) && !include_stores) ? 1 : 0;
2140
2141 for (i = start; i < gimple_num_ops (s); i++)
2142 if (tree_could_trap_p (gimple_op (s, i)))
2143 return true;
2144 }
2145
2146 switch (gimple_code (s))
2147 {
2148 case GIMPLE_ASM:
2149 return gimple_asm_volatile_p (as_a <gasm *> (s));
2150
2151 case GIMPLE_CALL:
2152 t = gimple_call_fndecl (s);
2153 /* Assume that calls to weak functions may trap. */
2154 if (!t || !DECL_P (t) || DECL_WEAK (t))
2155 return true;
2156 return false;
2157
2158 case GIMPLE_ASSIGN:
2159 op = gimple_assign_rhs_code (s);
2160
2161 /* For COND_EXPR and VEC_COND_EXPR only the condition may trap. */
2162 if (op == COND_EXPR || op == VEC_COND_EXPR)
2163 return tree_could_trap_p (gimple_assign_rhs1 (s));
2164
2165 /* For comparisons we need to check rhs operand types instead of rhs type
2166 (which is BOOLEAN_TYPE). */
2167 if (TREE_CODE_CLASS (op) == tcc_comparison)
2168 t = TREE_TYPE (gimple_assign_rhs1 (s));
2169 else
2170 t = gimple_expr_type (s);
2171
2172 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
2173 div = gimple_assign_rhs2 (s);
2174
2175 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
2176 (INTEGRAL_TYPE_P (t)
2177 && TYPE_OVERFLOW_TRAPS (t)),
2178 div));
2179
2180 case GIMPLE_COND:
2181 t = TREE_TYPE (gimple_cond_lhs (s));
2182 return operation_could_trap_p (gimple_cond_code (s),
2183 FLOAT_TYPE_P (t), false, NULL_TREE);
2184
2185 default:
2186 break;
2187 }
2188
2189 return false;
2190 }
2191
2192 /* Return true if statement S can trap. */
2193
2194 bool
2195 gimple_could_trap_p (gimple *s)
2196 {
2197 return gimple_could_trap_p_1 (s, true, true);
2198 }
2199
2200 /* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
2201
2202 bool
2203 gimple_assign_rhs_could_trap_p (gimple *s)
2204 {
2205 gcc_assert (is_gimple_assign (s));
2206 return gimple_could_trap_p_1 (s, true, false);
2207 }
2208
2209
2210 /* Print debugging information for gimple stmts generated. */
2211
2212 void
2213 dump_gimple_statistics (void)
2214 {
2215 int i;
2216 uint64_t total_tuples = 0, total_bytes = 0;
2217
2218 if (! GATHER_STATISTICS)
2219 {
2220 fprintf (stderr, "No GIMPLE statistics\n");
2221 return;
2222 }
2223
2224 fprintf (stderr, "\nGIMPLE statements\n");
2225 fprintf (stderr, "Kind Stmts Bytes\n");
2226 fprintf (stderr, "---------------------------------------\n");
2227 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
2228 {
2229 fprintf (stderr, "%-20s %7" PRIu64 "%c %10" PRIu64 "%c\n",
2230 gimple_alloc_kind_names[i],
2231 SIZE_AMOUNT (gimple_alloc_counts[i]),
2232 SIZE_AMOUNT (gimple_alloc_sizes[i]));
2233 total_tuples += gimple_alloc_counts[i];
2234 total_bytes += gimple_alloc_sizes[i];
2235 }
2236 fprintf (stderr, "---------------------------------------\n");
2237 fprintf (stderr, "%-20s %7" PRIu64 "%c %10" PRIu64 "%c\n", "Total",
2238 SIZE_AMOUNT (total_tuples), SIZE_AMOUNT (total_bytes));
2239 fprintf (stderr, "---------------------------------------\n");
2240 }
2241
2242
2243 /* Return the number of operands needed on the RHS of a GIMPLE
2244 assignment for an expression with tree code CODE. */
2245
2246 unsigned
2247 get_gimple_rhs_num_ops (enum tree_code code)
2248 {
2249 switch (get_gimple_rhs_class (code))
2250 {
2251 case GIMPLE_UNARY_RHS:
2252 case GIMPLE_SINGLE_RHS:
2253 return 1;
2254 case GIMPLE_BINARY_RHS:
2255 return 2;
2256 case GIMPLE_TERNARY_RHS:
2257 return 3;
2258 default:
2259 gcc_unreachable ();
2260 }
2261 }
2262
2263 #define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
2264 (unsigned char) \
2265 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
2266 : ((TYPE) == tcc_binary \
2267 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
2268 : ((TYPE) == tcc_constant \
2269 || (TYPE) == tcc_declaration \
2270 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
2271 : ((SYM) == TRUTH_AND_EXPR \
2272 || (SYM) == TRUTH_OR_EXPR \
2273 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
2274 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
2275 : ((SYM) == COND_EXPR \
2276 || (SYM) == WIDEN_MULT_PLUS_EXPR \
2277 || (SYM) == WIDEN_MULT_MINUS_EXPR \
2278 || (SYM) == DOT_PROD_EXPR \
2279 || (SYM) == SAD_EXPR \
2280 || (SYM) == REALIGN_LOAD_EXPR \
2281 || (SYM) == VEC_COND_EXPR \
2282 || (SYM) == VEC_PERM_EXPR \
2283 || (SYM) == BIT_INSERT_EXPR) ? GIMPLE_TERNARY_RHS \
2284 : ((SYM) == CONSTRUCTOR \
2285 || (SYM) == OBJ_TYPE_REF \
2286 || (SYM) == ASSERT_EXPR \
2287 || (SYM) == ADDR_EXPR \
2288 || (SYM) == WITH_SIZE_EXPR \
2289 || (SYM) == SSA_NAME) ? GIMPLE_SINGLE_RHS \
2290 : GIMPLE_INVALID_RHS),
2291 #define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
2292
2293 const unsigned char gimple_rhs_class_table[] = {
2294 #include "all-tree.def"
2295 };
2296
2297 #undef DEFTREECODE
2298 #undef END_OF_BASE_TREE_CODES
2299
2300 /* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
2301 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
2302 we failed to create one. */
2303
2304 tree
2305 canonicalize_cond_expr_cond (tree t)
2306 {
2307 /* Strip conversions around boolean operations. */
2308 if (CONVERT_EXPR_P (t)
2309 && (truth_value_p (TREE_CODE (TREE_OPERAND (t, 0)))
2310 || TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0)))
2311 == BOOLEAN_TYPE))
2312 t = TREE_OPERAND (t, 0);
2313
2314 /* For !x use x == 0. */
2315 if (TREE_CODE (t) == TRUTH_NOT_EXPR)
2316 {
2317 tree top0 = TREE_OPERAND (t, 0);
2318 t = build2 (EQ_EXPR, TREE_TYPE (t),
2319 top0, build_int_cst (TREE_TYPE (top0), 0));
2320 }
2321 /* For cmp ? 1 : 0 use cmp. */
2322 else if (TREE_CODE (t) == COND_EXPR
2323 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
2324 && integer_onep (TREE_OPERAND (t, 1))
2325 && integer_zerop (TREE_OPERAND (t, 2)))
2326 {
2327 tree top0 = TREE_OPERAND (t, 0);
2328 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
2329 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
2330 }
2331 /* For x ^ y use x != y. */
2332 else if (TREE_CODE (t) == BIT_XOR_EXPR)
2333 t = build2 (NE_EXPR, TREE_TYPE (t),
2334 TREE_OPERAND (t, 0), TREE_OPERAND (t, 1));
2335
2336 if (is_gimple_condexpr (t))
2337 return t;
2338
2339 return NULL_TREE;
2340 }
2341
2342 /* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
2343 the positions marked by the set ARGS_TO_SKIP. */
2344
2345 gcall *
2346 gimple_call_copy_skip_args (gcall *stmt, bitmap args_to_skip)
2347 {
2348 int i;
2349 int nargs = gimple_call_num_args (stmt);
2350 auto_vec<tree> vargs (nargs);
2351 gcall *new_stmt;
2352
2353 for (i = 0; i < nargs; i++)
2354 if (!bitmap_bit_p (args_to_skip, i))
2355 vargs.quick_push (gimple_call_arg (stmt, i));
2356
2357 if (gimple_call_internal_p (stmt))
2358 new_stmt = gimple_build_call_internal_vec (gimple_call_internal_fn (stmt),
2359 vargs);
2360 else
2361 new_stmt = gimple_build_call_vec (gimple_call_fn (stmt), vargs);
2362
2363 if (gimple_call_lhs (stmt))
2364 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
2365
2366 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
2367 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
2368
2369 if (gimple_has_location (stmt))
2370 gimple_set_location (new_stmt, gimple_location (stmt));
2371 gimple_call_copy_flags (new_stmt, stmt);
2372 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
2373
2374 gimple_set_modified (new_stmt, true);
2375
2376 return new_stmt;
2377 }
2378
2379
2380
2381 /* Return true if the field decls F1 and F2 are at the same offset.
2382
2383 This is intended to be used on GIMPLE types only. */
2384
2385 bool
2386 gimple_compare_field_offset (tree f1, tree f2)
2387 {
2388 if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
2389 {
2390 tree offset1 = DECL_FIELD_OFFSET (f1);
2391 tree offset2 = DECL_FIELD_OFFSET (f2);
2392 return ((offset1 == offset2
2393 /* Once gimplification is done, self-referential offsets are
2394 instantiated as operand #2 of the COMPONENT_REF built for
2395 each access and reset. Therefore, they are not relevant
2396 anymore and fields are interchangeable provided that they
2397 represent the same access. */
2398 || (TREE_CODE (offset1) == PLACEHOLDER_EXPR
2399 && TREE_CODE (offset2) == PLACEHOLDER_EXPR
2400 && (DECL_SIZE (f1) == DECL_SIZE (f2)
2401 || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
2402 && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
2403 || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0))
2404 && DECL_ALIGN (f1) == DECL_ALIGN (f2))
2405 || operand_equal_p (offset1, offset2, 0))
2406 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
2407 DECL_FIELD_BIT_OFFSET (f2)));
2408 }
2409
2410 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
2411 should be, so handle differing ones specially by decomposing
2412 the offset into a byte and bit offset manually. */
2413 if (tree_fits_shwi_p (DECL_FIELD_OFFSET (f1))
2414 && tree_fits_shwi_p (DECL_FIELD_OFFSET (f2)))
2415 {
2416 unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
2417 unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
2418 bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
2419 byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
2420 + bit_offset1 / BITS_PER_UNIT);
2421 bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
2422 byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
2423 + bit_offset2 / BITS_PER_UNIT);
2424 if (byte_offset1 != byte_offset2)
2425 return false;
2426 return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
2427 }
2428
2429 return false;
2430 }
2431
2432
2433 /* Return a type the same as TYPE except unsigned or
2434 signed according to UNSIGNEDP. */
2435
2436 static tree
2437 gimple_signed_or_unsigned_type (bool unsignedp, tree type)
2438 {
2439 tree type1;
2440 int i;
2441
2442 type1 = TYPE_MAIN_VARIANT (type);
2443 if (type1 == signed_char_type_node
2444 || type1 == char_type_node
2445 || type1 == unsigned_char_type_node)
2446 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2447 if (type1 == integer_type_node || type1 == unsigned_type_node)
2448 return unsignedp ? unsigned_type_node : integer_type_node;
2449 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
2450 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2451 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
2452 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2453 if (type1 == long_long_integer_type_node
2454 || type1 == long_long_unsigned_type_node)
2455 return unsignedp
2456 ? long_long_unsigned_type_node
2457 : long_long_integer_type_node;
2458
2459 for (i = 0; i < NUM_INT_N_ENTS; i ++)
2460 if (int_n_enabled_p[i]
2461 && (type1 == int_n_trees[i].unsigned_type
2462 || type1 == int_n_trees[i].signed_type))
2463 return unsignedp
2464 ? int_n_trees[i].unsigned_type
2465 : int_n_trees[i].signed_type;
2466
2467 #if HOST_BITS_PER_WIDE_INT >= 64
2468 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
2469 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2470 #endif
2471 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
2472 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2473 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
2474 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2475 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
2476 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2477 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
2478 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2479
2480 #define GIMPLE_FIXED_TYPES(NAME) \
2481 if (type1 == short_ ## NAME ## _type_node \
2482 || type1 == unsigned_short_ ## NAME ## _type_node) \
2483 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
2484 : short_ ## NAME ## _type_node; \
2485 if (type1 == NAME ## _type_node \
2486 || type1 == unsigned_ ## NAME ## _type_node) \
2487 return unsignedp ? unsigned_ ## NAME ## _type_node \
2488 : NAME ## _type_node; \
2489 if (type1 == long_ ## NAME ## _type_node \
2490 || type1 == unsigned_long_ ## NAME ## _type_node) \
2491 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
2492 : long_ ## NAME ## _type_node; \
2493 if (type1 == long_long_ ## NAME ## _type_node \
2494 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
2495 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
2496 : long_long_ ## NAME ## _type_node;
2497
2498 #define GIMPLE_FIXED_MODE_TYPES(NAME) \
2499 if (type1 == NAME ## _type_node \
2500 || type1 == u ## NAME ## _type_node) \
2501 return unsignedp ? u ## NAME ## _type_node \
2502 : NAME ## _type_node;
2503
2504 #define GIMPLE_FIXED_TYPES_SAT(NAME) \
2505 if (type1 == sat_ ## short_ ## NAME ## _type_node \
2506 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
2507 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
2508 : sat_ ## short_ ## NAME ## _type_node; \
2509 if (type1 == sat_ ## NAME ## _type_node \
2510 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
2511 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
2512 : sat_ ## NAME ## _type_node; \
2513 if (type1 == sat_ ## long_ ## NAME ## _type_node \
2514 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
2515 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
2516 : sat_ ## long_ ## NAME ## _type_node; \
2517 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
2518 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
2519 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
2520 : sat_ ## long_long_ ## NAME ## _type_node;
2521
2522 #define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
2523 if (type1 == sat_ ## NAME ## _type_node \
2524 || type1 == sat_ ## u ## NAME ## _type_node) \
2525 return unsignedp ? sat_ ## u ## NAME ## _type_node \
2526 : sat_ ## NAME ## _type_node;
2527
2528 GIMPLE_FIXED_TYPES (fract);
2529 GIMPLE_FIXED_TYPES_SAT (fract);
2530 GIMPLE_FIXED_TYPES (accum);
2531 GIMPLE_FIXED_TYPES_SAT (accum);
2532
2533 GIMPLE_FIXED_MODE_TYPES (qq);
2534 GIMPLE_FIXED_MODE_TYPES (hq);
2535 GIMPLE_FIXED_MODE_TYPES (sq);
2536 GIMPLE_FIXED_MODE_TYPES (dq);
2537 GIMPLE_FIXED_MODE_TYPES (tq);
2538 GIMPLE_FIXED_MODE_TYPES_SAT (qq);
2539 GIMPLE_FIXED_MODE_TYPES_SAT (hq);
2540 GIMPLE_FIXED_MODE_TYPES_SAT (sq);
2541 GIMPLE_FIXED_MODE_TYPES_SAT (dq);
2542 GIMPLE_FIXED_MODE_TYPES_SAT (tq);
2543 GIMPLE_FIXED_MODE_TYPES (ha);
2544 GIMPLE_FIXED_MODE_TYPES (sa);
2545 GIMPLE_FIXED_MODE_TYPES (da);
2546 GIMPLE_FIXED_MODE_TYPES (ta);
2547 GIMPLE_FIXED_MODE_TYPES_SAT (ha);
2548 GIMPLE_FIXED_MODE_TYPES_SAT (sa);
2549 GIMPLE_FIXED_MODE_TYPES_SAT (da);
2550 GIMPLE_FIXED_MODE_TYPES_SAT (ta);
2551
2552 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
2553 the precision; they have precision set to match their range, but
2554 may use a wider mode to match an ABI. If we change modes, we may
2555 wind up with bad conversions. For INTEGER_TYPEs in C, must check
2556 the precision as well, so as to yield correct results for
2557 bit-field types. C++ does not have these separate bit-field
2558 types, and producing a signed or unsigned variant of an
2559 ENUMERAL_TYPE may cause other problems as well. */
2560 if (!INTEGRAL_TYPE_P (type)
2561 || TYPE_UNSIGNED (type) == unsignedp)
2562 return type;
2563
2564 #define TYPE_OK(node) \
2565 (TYPE_MODE (type) == TYPE_MODE (node) \
2566 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
2567 if (TYPE_OK (signed_char_type_node))
2568 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2569 if (TYPE_OK (integer_type_node))
2570 return unsignedp ? unsigned_type_node : integer_type_node;
2571 if (TYPE_OK (short_integer_type_node))
2572 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2573 if (TYPE_OK (long_integer_type_node))
2574 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2575 if (TYPE_OK (long_long_integer_type_node))
2576 return (unsignedp
2577 ? long_long_unsigned_type_node
2578 : long_long_integer_type_node);
2579
2580 for (i = 0; i < NUM_INT_N_ENTS; i ++)
2581 if (int_n_enabled_p[i]
2582 && TYPE_MODE (type) == int_n_data[i].m
2583 && TYPE_PRECISION (type) == int_n_data[i].bitsize)
2584 return unsignedp
2585 ? int_n_trees[i].unsigned_type
2586 : int_n_trees[i].signed_type;
2587
2588 #if HOST_BITS_PER_WIDE_INT >= 64
2589 if (TYPE_OK (intTI_type_node))
2590 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2591 #endif
2592 if (TYPE_OK (intDI_type_node))
2593 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2594 if (TYPE_OK (intSI_type_node))
2595 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2596 if (TYPE_OK (intHI_type_node))
2597 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2598 if (TYPE_OK (intQI_type_node))
2599 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2600
2601 #undef GIMPLE_FIXED_TYPES
2602 #undef GIMPLE_FIXED_MODE_TYPES
2603 #undef GIMPLE_FIXED_TYPES_SAT
2604 #undef GIMPLE_FIXED_MODE_TYPES_SAT
2605 #undef TYPE_OK
2606
2607 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
2608 }
2609
2610
2611 /* Return an unsigned type the same as TYPE in other respects. */
2612
2613 tree
2614 gimple_unsigned_type (tree type)
2615 {
2616 return gimple_signed_or_unsigned_type (true, type);
2617 }
2618
2619
2620 /* Return a signed type the same as TYPE in other respects. */
2621
2622 tree
2623 gimple_signed_type (tree type)
2624 {
2625 return gimple_signed_or_unsigned_type (false, type);
2626 }
2627
2628
2629 /* Return the typed-based alias set for T, which may be an expression
2630 or a type. Return -1 if we don't do anything special. */
2631
2632 alias_set_type
2633 gimple_get_alias_set (tree t)
2634 {
2635 /* That's all the expressions we handle specially. */
2636 if (!TYPE_P (t))
2637 return -1;
2638
2639 /* For convenience, follow the C standard when dealing with
2640 character types. Any object may be accessed via an lvalue that
2641 has character type. */
2642 if (t == char_type_node
2643 || t == signed_char_type_node
2644 || t == unsigned_char_type_node)
2645 return 0;
2646
2647 /* Allow aliasing between signed and unsigned variants of the same
2648 type. We treat the signed variant as canonical. */
2649 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
2650 {
2651 tree t1 = gimple_signed_type (t);
2652
2653 /* t1 == t can happen for boolean nodes which are always unsigned. */
2654 if (t1 != t)
2655 return get_alias_set (t1);
2656 }
2657
2658 /* Allow aliasing between enumeral types and the underlying
2659 integer type. This is required for C since those are
2660 compatible types. */
2661 else if (TREE_CODE (t) == ENUMERAL_TYPE)
2662 {
2663 tree t1 = lang_hooks.types.type_for_size (tree_to_uhwi (TYPE_SIZE (t)),
2664 false /* short-cut above */);
2665 return get_alias_set (t1);
2666 }
2667
2668 return -1;
2669 }
2670
2671
2672 /* Helper for gimple_ior_addresses_taken_1. */
2673
2674 static bool
2675 gimple_ior_addresses_taken_1 (gimple *, tree addr, tree, void *data)
2676 {
2677 bitmap addresses_taken = (bitmap)data;
2678 addr = get_base_address (addr);
2679 if (addr
2680 && DECL_P (addr))
2681 {
2682 bitmap_set_bit (addresses_taken, DECL_UID (addr));
2683 return true;
2684 }
2685 return false;
2686 }
2687
2688 /* Set the bit for the uid of all decls that have their address taken
2689 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
2690 were any in this stmt. */
2691
2692 bool
2693 gimple_ior_addresses_taken (bitmap addresses_taken, gimple *stmt)
2694 {
2695 return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
2696 gimple_ior_addresses_taken_1);
2697 }
2698
2699
2700 /* Return true when STMTs arguments and return value match those of FNDECL,
2701 a decl of a builtin function. */
2702
2703 bool
2704 gimple_builtin_call_types_compatible_p (const gimple *stmt, tree fndecl)
2705 {
2706 gcc_checking_assert (DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN);
2707
2708 tree ret = gimple_call_lhs (stmt);
2709 if (ret
2710 && !useless_type_conversion_p (TREE_TYPE (ret),
2711 TREE_TYPE (TREE_TYPE (fndecl))))
2712 return false;
2713
2714 tree targs = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
2715 unsigned nargs = gimple_call_num_args (stmt);
2716 for (unsigned i = 0; i < nargs; ++i)
2717 {
2718 /* Variadic args follow. */
2719 if (!targs)
2720 return true;
2721 tree arg = gimple_call_arg (stmt, i);
2722 tree type = TREE_VALUE (targs);
2723 if (!useless_type_conversion_p (type, TREE_TYPE (arg))
2724 /* char/short integral arguments are promoted to int
2725 by several frontends if targetm.calls.promote_prototypes
2726 is true. Allow such promotion too. */
2727 && !(INTEGRAL_TYPE_P (type)
2728 && TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)
2729 && targetm.calls.promote_prototypes (TREE_TYPE (fndecl))
2730 && useless_type_conversion_p (integer_type_node,
2731 TREE_TYPE (arg))))
2732 return false;
2733 targs = TREE_CHAIN (targs);
2734 }
2735 if (targs && !VOID_TYPE_P (TREE_VALUE (targs)))
2736 return false;
2737 return true;
2738 }
2739
2740 /* Return true when STMT is operator a replaceable delete call. */
2741
2742 bool
2743 gimple_call_operator_delete_p (const gcall *stmt)
2744 {
2745 tree fndecl;
2746
2747 if ((fndecl = gimple_call_fndecl (stmt)) != NULL_TREE)
2748 return DECL_IS_OPERATOR_DELETE_P (fndecl);
2749 return false;
2750 }
2751
2752 /* Return true when STMT is builtins call. */
2753
2754 bool
2755 gimple_call_builtin_p (const gimple *stmt)
2756 {
2757 tree fndecl;
2758 if (is_gimple_call (stmt)
2759 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2760 && DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN)
2761 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2762 return false;
2763 }
2764
2765 /* Return true when STMT is builtins call to CLASS. */
2766
2767 bool
2768 gimple_call_builtin_p (const gimple *stmt, enum built_in_class klass)
2769 {
2770 tree fndecl;
2771 if (is_gimple_call (stmt)
2772 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2773 && DECL_BUILT_IN_CLASS (fndecl) == klass)
2774 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2775 return false;
2776 }
2777
2778 /* Return true when STMT is builtins call to CODE of CLASS. */
2779
2780 bool
2781 gimple_call_builtin_p (const gimple *stmt, enum built_in_function code)
2782 {
2783 tree fndecl;
2784 if (is_gimple_call (stmt)
2785 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2786 && fndecl_built_in_p (fndecl, code))
2787 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2788 return false;
2789 }
2790
2791 /* If CALL is a call to a combined_fn (i.e. an internal function or
2792 a normal built-in function), return its code, otherwise return
2793 CFN_LAST. */
2794
2795 combined_fn
2796 gimple_call_combined_fn (const gimple *stmt)
2797 {
2798 if (const gcall *call = dyn_cast <const gcall *> (stmt))
2799 {
2800 if (gimple_call_internal_p (call))
2801 return as_combined_fn (gimple_call_internal_fn (call));
2802
2803 tree fndecl = gimple_call_fndecl (stmt);
2804 if (fndecl
2805 && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL)
2806 && gimple_builtin_call_types_compatible_p (stmt, fndecl))
2807 return as_combined_fn (DECL_FUNCTION_CODE (fndecl));
2808 }
2809 return CFN_LAST;
2810 }
2811
2812 /* Return true if STMT clobbers memory. STMT is required to be a
2813 GIMPLE_ASM. */
2814
2815 bool
2816 gimple_asm_clobbers_memory_p (const gasm *stmt)
2817 {
2818 unsigned i;
2819
2820 for (i = 0; i < gimple_asm_nclobbers (stmt); i++)
2821 {
2822 tree op = gimple_asm_clobber_op (stmt, i);
2823 if (strcmp (TREE_STRING_POINTER (TREE_VALUE (op)), "memory") == 0)
2824 return true;
2825 }
2826
2827 /* Non-empty basic ASM implicitly clobbers memory. */
2828 if (gimple_asm_input_p (stmt) && strlen (gimple_asm_string (stmt)) != 0)
2829 return true;
2830
2831 return false;
2832 }
2833
2834 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
2835
2836 void
2837 dump_decl_set (FILE *file, bitmap set)
2838 {
2839 if (set)
2840 {
2841 bitmap_iterator bi;
2842 unsigned i;
2843
2844 fprintf (file, "{ ");
2845
2846 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2847 {
2848 fprintf (file, "D.%u", i);
2849 fprintf (file, " ");
2850 }
2851
2852 fprintf (file, "}");
2853 }
2854 else
2855 fprintf (file, "NIL");
2856 }
2857
2858 /* Return true when CALL is a call stmt that definitely doesn't
2859 free any memory or makes it unavailable otherwise. */
2860 bool
2861 nonfreeing_call_p (gimple *call)
2862 {
2863 if (gimple_call_builtin_p (call, BUILT_IN_NORMAL)
2864 && gimple_call_flags (call) & ECF_LEAF)
2865 switch (DECL_FUNCTION_CODE (gimple_call_fndecl (call)))
2866 {
2867 /* Just in case these become ECF_LEAF in the future. */
2868 case BUILT_IN_FREE:
2869 case BUILT_IN_TM_FREE:
2870 case BUILT_IN_REALLOC:
2871 case BUILT_IN_STACK_RESTORE:
2872 return false;
2873 default:
2874 return true;
2875 }
2876 else if (gimple_call_internal_p (call))
2877 switch (gimple_call_internal_fn (call))
2878 {
2879 case IFN_ABNORMAL_DISPATCHER:
2880 return true;
2881 case IFN_ASAN_MARK:
2882 return tree_to_uhwi (gimple_call_arg (call, 0)) == ASAN_MARK_UNPOISON;
2883 default:
2884 if (gimple_call_flags (call) & ECF_LEAF)
2885 return true;
2886 return false;
2887 }
2888
2889 tree fndecl = gimple_call_fndecl (call);
2890 if (!fndecl)
2891 return false;
2892 struct cgraph_node *n = cgraph_node::get (fndecl);
2893 if (!n)
2894 return false;
2895 enum availability availability;
2896 n = n->function_symbol (&availability);
2897 if (!n || availability <= AVAIL_INTERPOSABLE)
2898 return false;
2899 return n->nonfreeing_fn;
2900 }
2901
2902 /* Return true when CALL is a call stmt that definitely need not
2903 be considered to be a memory barrier. */
2904 bool
2905 nonbarrier_call_p (gimple *call)
2906 {
2907 if (gimple_call_flags (call) & (ECF_PURE | ECF_CONST))
2908 return true;
2909 /* Should extend this to have a nonbarrier_fn flag, just as above in
2910 the nonfreeing case. */
2911 return false;
2912 }
2913
2914 /* Callback for walk_stmt_load_store_ops.
2915
2916 Return TRUE if OP will dereference the tree stored in DATA, FALSE
2917 otherwise.
2918
2919 This routine only makes a superficial check for a dereference. Thus
2920 it must only be used if it is safe to return a false negative. */
2921 static bool
2922 check_loadstore (gimple *, tree op, tree, void *data)
2923 {
2924 if (TREE_CODE (op) == MEM_REF || TREE_CODE (op) == TARGET_MEM_REF)
2925 {
2926 /* Some address spaces may legitimately dereference zero. */
2927 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (op));
2928 if (targetm.addr_space.zero_address_valid (as))
2929 return false;
2930
2931 return operand_equal_p (TREE_OPERAND (op, 0), (tree)data, 0);
2932 }
2933 return false;
2934 }
2935
2936
2937 /* Return true if OP can be inferred to be non-NULL after STMT executes,
2938 either by using a pointer dereference or attributes. */
2939 bool
2940 infer_nonnull_range (gimple *stmt, tree op)
2941 {
2942 return (infer_nonnull_range_by_dereference (stmt, op)
2943 || infer_nonnull_range_by_attribute (stmt, op));
2944 }
2945
2946 /* Return true if OP can be inferred to be non-NULL after STMT
2947 executes by using a pointer dereference. */
2948 bool
2949 infer_nonnull_range_by_dereference (gimple *stmt, tree op)
2950 {
2951 /* We can only assume that a pointer dereference will yield
2952 non-NULL if -fdelete-null-pointer-checks is enabled. */
2953 if (!flag_delete_null_pointer_checks
2954 || !POINTER_TYPE_P (TREE_TYPE (op))
2955 || gimple_code (stmt) == GIMPLE_ASM
2956 || gimple_clobber_p (stmt))
2957 return false;
2958
2959 if (walk_stmt_load_store_ops (stmt, (void *)op,
2960 check_loadstore, check_loadstore))
2961 return true;
2962
2963 return false;
2964 }
2965
2966 /* Return true if OP can be inferred to be a non-NULL after STMT
2967 executes by using attributes. */
2968 bool
2969 infer_nonnull_range_by_attribute (gimple *stmt, tree op)
2970 {
2971 /* We can only assume that a pointer dereference will yield
2972 non-NULL if -fdelete-null-pointer-checks is enabled. */
2973 if (!flag_delete_null_pointer_checks
2974 || !POINTER_TYPE_P (TREE_TYPE (op))
2975 || gimple_code (stmt) == GIMPLE_ASM)
2976 return false;
2977
2978 if (is_gimple_call (stmt) && !gimple_call_internal_p (stmt))
2979 {
2980 tree fntype = gimple_call_fntype (stmt);
2981 tree attrs = TYPE_ATTRIBUTES (fntype);
2982 for (; attrs; attrs = TREE_CHAIN (attrs))
2983 {
2984 attrs = lookup_attribute ("nonnull", attrs);
2985
2986 /* If "nonnull" wasn't specified, we know nothing about
2987 the argument. */
2988 if (attrs == NULL_TREE)
2989 return false;
2990
2991 /* If "nonnull" applies to all the arguments, then ARG
2992 is non-null if it's in the argument list. */
2993 if (TREE_VALUE (attrs) == NULL_TREE)
2994 {
2995 for (unsigned int i = 0; i < gimple_call_num_args (stmt); i++)
2996 {
2997 if (POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (stmt, i)))
2998 && operand_equal_p (op, gimple_call_arg (stmt, i), 0))
2999 return true;
3000 }
3001 return false;
3002 }
3003
3004 /* Now see if op appears in the nonnull list. */
3005 for (tree t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
3006 {
3007 unsigned int idx = TREE_INT_CST_LOW (TREE_VALUE (t)) - 1;
3008 if (idx < gimple_call_num_args (stmt))
3009 {
3010 tree arg = gimple_call_arg (stmt, idx);
3011 if (operand_equal_p (op, arg, 0))
3012 return true;
3013 }
3014 }
3015 }
3016 }
3017
3018 /* If this function is marked as returning non-null, then we can
3019 infer OP is non-null if it is used in the return statement. */
3020 if (greturn *return_stmt = dyn_cast <greturn *> (stmt))
3021 if (gimple_return_retval (return_stmt)
3022 && operand_equal_p (gimple_return_retval (return_stmt), op, 0)
3023 && lookup_attribute ("returns_nonnull",
3024 TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))))
3025 return true;
3026
3027 return false;
3028 }
3029
3030 /* Compare two case labels. Because the front end should already have
3031 made sure that case ranges do not overlap, it is enough to only compare
3032 the CASE_LOW values of each case label. */
3033
3034 static int
3035 compare_case_labels (const void *p1, const void *p2)
3036 {
3037 const_tree const case1 = *(const_tree const*)p1;
3038 const_tree const case2 = *(const_tree const*)p2;
3039
3040 /* The 'default' case label always goes first. */
3041 if (!CASE_LOW (case1))
3042 return -1;
3043 else if (!CASE_LOW (case2))
3044 return 1;
3045 else
3046 return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
3047 }
3048
3049 /* Sort the case labels in LABEL_VEC in place in ascending order. */
3050
3051 void
3052 sort_case_labels (vec<tree> label_vec)
3053 {
3054 label_vec.qsort (compare_case_labels);
3055 }
3056 \f
3057 /* Prepare a vector of case labels to be used in a GIMPLE_SWITCH statement.
3058
3059 LABELS is a vector that contains all case labels to look at.
3060
3061 INDEX_TYPE is the type of the switch index expression. Case labels
3062 in LABELS are discarded if their values are not in the value range
3063 covered by INDEX_TYPE. The remaining case label values are folded
3064 to INDEX_TYPE.
3065
3066 If a default case exists in LABELS, it is removed from LABELS and
3067 returned in DEFAULT_CASEP. If no default case exists, but the
3068 case labels already cover the whole range of INDEX_TYPE, a default
3069 case is returned pointing to one of the existing case labels.
3070 Otherwise DEFAULT_CASEP is set to NULL_TREE.
3071
3072 DEFAULT_CASEP may be NULL, in which case the above comment doesn't
3073 apply and no action is taken regardless of whether a default case is
3074 found or not. */
3075
3076 void
3077 preprocess_case_label_vec_for_gimple (vec<tree> labels,
3078 tree index_type,
3079 tree *default_casep)
3080 {
3081 tree min_value, max_value;
3082 tree default_case = NULL_TREE;
3083 size_t i, len;
3084
3085 i = 0;
3086 min_value = TYPE_MIN_VALUE (index_type);
3087 max_value = TYPE_MAX_VALUE (index_type);
3088 while (i < labels.length ())
3089 {
3090 tree elt = labels[i];
3091 tree low = CASE_LOW (elt);
3092 tree high = CASE_HIGH (elt);
3093 bool remove_element = FALSE;
3094
3095 if (low)
3096 {
3097 gcc_checking_assert (TREE_CODE (low) == INTEGER_CST);
3098 gcc_checking_assert (!high || TREE_CODE (high) == INTEGER_CST);
3099
3100 /* This is a non-default case label, i.e. it has a value.
3101
3102 See if the case label is reachable within the range of
3103 the index type. Remove out-of-range case values. Turn
3104 case ranges into a canonical form (high > low strictly)
3105 and convert the case label values to the index type.
3106
3107 NB: The type of gimple_switch_index() may be the promoted
3108 type, but the case labels retain the original type. */
3109
3110 if (high)
3111 {
3112 /* This is a case range. Discard empty ranges.
3113 If the bounds or the range are equal, turn this
3114 into a simple (one-value) case. */
3115 int cmp = tree_int_cst_compare (high, low);
3116 if (cmp < 0)
3117 remove_element = TRUE;
3118 else if (cmp == 0)
3119 high = NULL_TREE;
3120 }
3121
3122 if (! high)
3123 {
3124 /* If the simple case value is unreachable, ignore it. */
3125 if ((TREE_CODE (min_value) == INTEGER_CST
3126 && tree_int_cst_compare (low, min_value) < 0)
3127 || (TREE_CODE (max_value) == INTEGER_CST
3128 && tree_int_cst_compare (low, max_value) > 0))
3129 remove_element = TRUE;
3130 else
3131 low = fold_convert (index_type, low);
3132 }
3133 else
3134 {
3135 /* If the entire case range is unreachable, ignore it. */
3136 if ((TREE_CODE (min_value) == INTEGER_CST
3137 && tree_int_cst_compare (high, min_value) < 0)
3138 || (TREE_CODE (max_value) == INTEGER_CST
3139 && tree_int_cst_compare (low, max_value) > 0))
3140 remove_element = TRUE;
3141 else
3142 {
3143 /* If the lower bound is less than the index type's
3144 minimum value, truncate the range bounds. */
3145 if (TREE_CODE (min_value) == INTEGER_CST
3146 && tree_int_cst_compare (low, min_value) < 0)
3147 low = min_value;
3148 low = fold_convert (index_type, low);
3149
3150 /* If the upper bound is greater than the index type's
3151 maximum value, truncate the range bounds. */
3152 if (TREE_CODE (max_value) == INTEGER_CST
3153 && tree_int_cst_compare (high, max_value) > 0)
3154 high = max_value;
3155 high = fold_convert (index_type, high);
3156
3157 /* We may have folded a case range to a one-value case. */
3158 if (tree_int_cst_equal (low, high))
3159 high = NULL_TREE;
3160 }
3161 }
3162
3163 CASE_LOW (elt) = low;
3164 CASE_HIGH (elt) = high;
3165 }
3166 else
3167 {
3168 gcc_assert (!default_case);
3169 default_case = elt;
3170 /* The default case must be passed separately to the
3171 gimple_build_switch routine. But if DEFAULT_CASEP
3172 is NULL, we do not remove the default case (it would
3173 be completely lost). */
3174 if (default_casep)
3175 remove_element = TRUE;
3176 }
3177
3178 if (remove_element)
3179 labels.ordered_remove (i);
3180 else
3181 i++;
3182 }
3183 len = i;
3184
3185 if (!labels.is_empty ())
3186 sort_case_labels (labels);
3187
3188 if (default_casep && !default_case)
3189 {
3190 /* If the switch has no default label, add one, so that we jump
3191 around the switch body. If the labels already cover the whole
3192 range of the switch index_type, add the default label pointing
3193 to one of the existing labels. */
3194 if (len
3195 && TYPE_MIN_VALUE (index_type)
3196 && TYPE_MAX_VALUE (index_type)
3197 && tree_int_cst_equal (CASE_LOW (labels[0]),
3198 TYPE_MIN_VALUE (index_type)))
3199 {
3200 tree low, high = CASE_HIGH (labels[len - 1]);
3201 if (!high)
3202 high = CASE_LOW (labels[len - 1]);
3203 if (tree_int_cst_equal (high, TYPE_MAX_VALUE (index_type)))
3204 {
3205 tree widest_label = labels[0];
3206 for (i = 1; i < len; i++)
3207 {
3208 high = CASE_LOW (labels[i]);
3209 low = CASE_HIGH (labels[i - 1]);
3210 if (!low)
3211 low = CASE_LOW (labels[i - 1]);
3212
3213 if (CASE_HIGH (labels[i]) != NULL_TREE
3214 && (CASE_HIGH (widest_label) == NULL_TREE
3215 || (wi::gtu_p
3216 (wi::to_wide (CASE_HIGH (labels[i]))
3217 - wi::to_wide (CASE_LOW (labels[i])),
3218 wi::to_wide (CASE_HIGH (widest_label))
3219 - wi::to_wide (CASE_LOW (widest_label))))))
3220 widest_label = labels[i];
3221
3222 if (wi::to_wide (low) + 1 != wi::to_wide (high))
3223 break;
3224 }
3225 if (i == len)
3226 {
3227 /* Designate the label with the widest range to be the
3228 default label. */
3229 tree label = CASE_LABEL (widest_label);
3230 default_case = build_case_label (NULL_TREE, NULL_TREE,
3231 label);
3232 }
3233 }
3234 }
3235 }
3236
3237 if (default_casep)
3238 *default_casep = default_case;
3239 }
3240
3241 /* Set the location of all statements in SEQ to LOC. */
3242
3243 void
3244 gimple_seq_set_location (gimple_seq seq, location_t loc)
3245 {
3246 for (gimple_stmt_iterator i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
3247 gimple_set_location (gsi_stmt (i), loc);
3248 }
3249
3250 /* Release SSA_NAMEs in SEQ as well as the GIMPLE statements. */
3251
3252 void
3253 gimple_seq_discard (gimple_seq seq)
3254 {
3255 gimple_stmt_iterator gsi;
3256
3257 for (gsi = gsi_start (seq); !gsi_end_p (gsi); )
3258 {
3259 gimple *stmt = gsi_stmt (gsi);
3260 gsi_remove (&gsi, true);
3261 release_defs (stmt);
3262 ggc_free (stmt);
3263 }
3264 }
3265
3266 /* See if STMT now calls function that takes no parameters and if so, drop
3267 call arguments. This is used when devirtualization machinery redirects
3268 to __builtin_unreachable or __cxa_pure_virtual. */
3269
3270 void
3271 maybe_remove_unused_call_args (struct function *fn, gimple *stmt)
3272 {
3273 tree decl = gimple_call_fndecl (stmt);
3274 if (TYPE_ARG_TYPES (TREE_TYPE (decl))
3275 && TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl))) == void_type_node
3276 && gimple_call_num_args (stmt))
3277 {
3278 gimple_set_num_ops (stmt, 3);
3279 update_stmt_fn (fn, stmt);
3280 }
3281 }
3282
3283 /* Return false if STMT will likely expand to real function call. */
3284
3285 bool
3286 gimple_inexpensive_call_p (gcall *stmt)
3287 {
3288 if (gimple_call_internal_p (stmt))
3289 return true;
3290 tree decl = gimple_call_fndecl (stmt);
3291 if (decl && is_inexpensive_builtin (decl))
3292 return true;
3293 return false;
3294 }
3295
3296 /* Return a non-artificial location for STMT. If STMT does not have
3297 location information, get the location from EXPR. */
3298
3299 location_t
3300 gimple_or_expr_nonartificial_location (gimple *stmt, tree expr)
3301 {
3302 location_t loc = gimple_nonartificial_location (stmt);
3303 if (loc == UNKNOWN_LOCATION && EXPR_HAS_LOCATION (expr))
3304 loc = tree_nonartificial_location (expr);
3305 return expansion_point_location_if_in_system_header (loc);
3306 }
3307
3308
3309 #if CHECKING_P
3310
3311 namespace selftest {
3312
3313 /* Selftests for core gimple structures. */
3314
3315 /* Verify that STMT is pretty-printed as EXPECTED.
3316 Helper function for selftests. */
3317
3318 static void
3319 verify_gimple_pp (const char *expected, gimple *stmt)
3320 {
3321 pretty_printer pp;
3322 pp_gimple_stmt_1 (&pp, stmt, 0 /* spc */, TDF_NONE /* flags */);
3323 ASSERT_STREQ (expected, pp_formatted_text (&pp));
3324 }
3325
3326 /* Build a GIMPLE_ASSIGN equivalent to
3327 tmp = 5;
3328 and verify various properties of it. */
3329
3330 static void
3331 test_assign_single ()
3332 {
3333 tree type = integer_type_node;
3334 tree lhs = build_decl (UNKNOWN_LOCATION, VAR_DECL,
3335 get_identifier ("tmp"),
3336 type);
3337 tree rhs = build_int_cst (type, 5);
3338 gassign *stmt = gimple_build_assign (lhs, rhs);
3339 verify_gimple_pp ("tmp = 5;", stmt);
3340
3341 ASSERT_TRUE (is_gimple_assign (stmt));
3342 ASSERT_EQ (lhs, gimple_assign_lhs (stmt));
3343 ASSERT_EQ (lhs, gimple_get_lhs (stmt));
3344 ASSERT_EQ (rhs, gimple_assign_rhs1 (stmt));
3345 ASSERT_EQ (NULL, gimple_assign_rhs2 (stmt));
3346 ASSERT_EQ (NULL, gimple_assign_rhs3 (stmt));
3347 ASSERT_TRUE (gimple_assign_single_p (stmt));
3348 ASSERT_EQ (INTEGER_CST, gimple_assign_rhs_code (stmt));
3349 }
3350
3351 /* Build a GIMPLE_ASSIGN equivalent to
3352 tmp = a * b;
3353 and verify various properties of it. */
3354
3355 static void
3356 test_assign_binop ()
3357 {
3358 tree type = integer_type_node;
3359 tree lhs = build_decl (UNKNOWN_LOCATION, VAR_DECL,
3360 get_identifier ("tmp"),
3361 type);
3362 tree a = build_decl (UNKNOWN_LOCATION, VAR_DECL,
3363 get_identifier ("a"),
3364 type);
3365 tree b = build_decl (UNKNOWN_LOCATION, VAR_DECL,
3366 get_identifier ("b"),
3367 type);
3368 gassign *stmt = gimple_build_assign (lhs, MULT_EXPR, a, b);
3369 verify_gimple_pp ("tmp = a * b;", stmt);
3370
3371 ASSERT_TRUE (is_gimple_assign (stmt));
3372 ASSERT_EQ (lhs, gimple_assign_lhs (stmt));
3373 ASSERT_EQ (lhs, gimple_get_lhs (stmt));
3374 ASSERT_EQ (a, gimple_assign_rhs1 (stmt));
3375 ASSERT_EQ (b, gimple_assign_rhs2 (stmt));
3376 ASSERT_EQ (NULL, gimple_assign_rhs3 (stmt));
3377 ASSERT_FALSE (gimple_assign_single_p (stmt));
3378 ASSERT_EQ (MULT_EXPR, gimple_assign_rhs_code (stmt));
3379 }
3380
3381 /* Build a GIMPLE_NOP and verify various properties of it. */
3382
3383 static void
3384 test_nop_stmt ()
3385 {
3386 gimple *stmt = gimple_build_nop ();
3387 verify_gimple_pp ("GIMPLE_NOP", stmt);
3388 ASSERT_EQ (GIMPLE_NOP, gimple_code (stmt));
3389 ASSERT_EQ (NULL, gimple_get_lhs (stmt));
3390 ASSERT_FALSE (gimple_assign_single_p (stmt));
3391 }
3392
3393 /* Build a GIMPLE_RETURN equivalent to
3394 return 7;
3395 and verify various properties of it. */
3396
3397 static void
3398 test_return_stmt ()
3399 {
3400 tree type = integer_type_node;
3401 tree val = build_int_cst (type, 7);
3402 greturn *stmt = gimple_build_return (val);
3403 verify_gimple_pp ("return 7;", stmt);
3404
3405 ASSERT_EQ (GIMPLE_RETURN, gimple_code (stmt));
3406 ASSERT_EQ (NULL, gimple_get_lhs (stmt));
3407 ASSERT_EQ (val, gimple_return_retval (stmt));
3408 ASSERT_FALSE (gimple_assign_single_p (stmt));
3409 }
3410
3411 /* Build a GIMPLE_RETURN equivalent to
3412 return;
3413 and verify various properties of it. */
3414
3415 static void
3416 test_return_without_value ()
3417 {
3418 greturn *stmt = gimple_build_return (NULL);
3419 verify_gimple_pp ("return;", stmt);
3420
3421 ASSERT_EQ (GIMPLE_RETURN, gimple_code (stmt));
3422 ASSERT_EQ (NULL, gimple_get_lhs (stmt));
3423 ASSERT_EQ (NULL, gimple_return_retval (stmt));
3424 ASSERT_FALSE (gimple_assign_single_p (stmt));
3425 }
3426
3427 /* Run all of the selftests within this file. */
3428
3429 void
3430 gimple_c_tests ()
3431 {
3432 test_assign_single ();
3433 test_assign_binop ();
3434 test_nop_stmt ();
3435 test_return_stmt ();
3436 test_return_without_value ();
3437 }
3438
3439 } // namespace selftest
3440
3441
3442 #endif /* CHECKING_P */