i386: Use register_operand in AVX512 FMA with memory broadcast
[gcc.git] / gcc / gimple.c
1 /* Gimple IR support functions.
2
3 Copyright (C) 2007-2018 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "ssa.h"
29 #include "cgraph.h"
30 #include "diagnostic.h"
31 #include "alias.h"
32 #include "fold-const.h"
33 #include "calls.h"
34 #include "stor-layout.h"
35 #include "internal-fn.h"
36 #include "tree-eh.h"
37 #include "gimple-iterator.h"
38 #include "gimple-walk.h"
39 #include "gimplify.h"
40 #include "target.h"
41 #include "builtins.h"
42 #include "selftest.h"
43 #include "gimple-pretty-print.h"
44 #include "stringpool.h"
45 #include "attribs.h"
46 #include "asan.h"
47
48
49 /* All the tuples have their operand vector (if present) at the very bottom
50 of the structure. Therefore, the offset required to find the
51 operands vector the size of the structure minus the size of the 1
52 element tree array at the end (see gimple_ops). */
53 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
54 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
55 EXPORTED_CONST size_t gimple_ops_offset_[] = {
56 #include "gsstruct.def"
57 };
58 #undef DEFGSSTRUCT
59
60 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof (struct STRUCT),
61 static const size_t gsstruct_code_size[] = {
62 #include "gsstruct.def"
63 };
64 #undef DEFGSSTRUCT
65
66 #define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
67 const char *const gimple_code_name[] = {
68 #include "gimple.def"
69 };
70 #undef DEFGSCODE
71
72 #define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
73 EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
74 #include "gimple.def"
75 };
76 #undef DEFGSCODE
77
78 /* Gimple stats. */
79
80 uint64_t gimple_alloc_counts[(int) gimple_alloc_kind_all];
81 uint64_t gimple_alloc_sizes[(int) gimple_alloc_kind_all];
82
83 /* Keep in sync with gimple.h:enum gimple_alloc_kind. */
84 static const char * const gimple_alloc_kind_names[] = {
85 "assignments",
86 "phi nodes",
87 "conditionals",
88 "everything else"
89 };
90
91 /* Static gimple tuple members. */
92 const enum gimple_code gassign::code_;
93 const enum gimple_code gcall::code_;
94 const enum gimple_code gcond::code_;
95
96
97 /* Gimple tuple constructors.
98 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
99 be passed a NULL to start with an empty sequence. */
100
101 /* Set the code for statement G to CODE. */
102
103 static inline void
104 gimple_set_code (gimple *g, enum gimple_code code)
105 {
106 g->code = code;
107 }
108
109 /* Return the number of bytes needed to hold a GIMPLE statement with
110 code CODE. */
111
112 static inline size_t
113 gimple_size (enum gimple_code code)
114 {
115 return gsstruct_code_size[gss_for_code (code)];
116 }
117
118 /* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
119 operands. */
120
121 gimple *
122 gimple_alloc (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
123 {
124 size_t size;
125 gimple *stmt;
126
127 size = gimple_size (code);
128 if (num_ops > 0)
129 size += sizeof (tree) * (num_ops - 1);
130
131 if (GATHER_STATISTICS)
132 {
133 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
134 gimple_alloc_counts[(int) kind]++;
135 gimple_alloc_sizes[(int) kind] += size;
136 }
137
138 stmt = ggc_alloc_cleared_gimple_statement_stat (size PASS_MEM_STAT);
139 gimple_set_code (stmt, code);
140 gimple_set_num_ops (stmt, num_ops);
141
142 /* Do not call gimple_set_modified here as it has other side
143 effects and this tuple is still not completely built. */
144 stmt->modified = 1;
145 gimple_init_singleton (stmt);
146
147 return stmt;
148 }
149
150 /* Set SUBCODE to be the code of the expression computed by statement G. */
151
152 static inline void
153 gimple_set_subcode (gimple *g, unsigned subcode)
154 {
155 /* We only have 16 bits for the RHS code. Assert that we are not
156 overflowing it. */
157 gcc_assert (subcode < (1 << 16));
158 g->subcode = subcode;
159 }
160
161
162
163 /* Build a tuple with operands. CODE is the statement to build (which
164 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the subcode
165 for the new tuple. NUM_OPS is the number of operands to allocate. */
166
167 #define gimple_build_with_ops(c, s, n) \
168 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
169
170 static gimple *
171 gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
172 unsigned num_ops MEM_STAT_DECL)
173 {
174 gimple *s = gimple_alloc (code, num_ops PASS_MEM_STAT);
175 gimple_set_subcode (s, subcode);
176
177 return s;
178 }
179
180
181 /* Build a GIMPLE_RETURN statement returning RETVAL. */
182
183 greturn *
184 gimple_build_return (tree retval)
185 {
186 greturn *s
187 = as_a <greturn *> (gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK,
188 2));
189 if (retval)
190 gimple_return_set_retval (s, retval);
191 return s;
192 }
193
194 /* Reset alias information on call S. */
195
196 void
197 gimple_call_reset_alias_info (gcall *s)
198 {
199 if (gimple_call_flags (s) & ECF_CONST)
200 memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
201 else
202 pt_solution_reset (gimple_call_use_set (s));
203 if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
204 memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
205 else
206 pt_solution_reset (gimple_call_clobber_set (s));
207 }
208
209 /* Helper for gimple_build_call, gimple_build_call_valist,
210 gimple_build_call_vec and gimple_build_call_from_tree. Build the basic
211 components of a GIMPLE_CALL statement to function FN with NARGS
212 arguments. */
213
214 static inline gcall *
215 gimple_build_call_1 (tree fn, unsigned nargs)
216 {
217 gcall *s
218 = as_a <gcall *> (gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK,
219 nargs + 3));
220 if (TREE_CODE (fn) == FUNCTION_DECL)
221 fn = build_fold_addr_expr (fn);
222 gimple_set_op (s, 1, fn);
223 gimple_call_set_fntype (s, TREE_TYPE (TREE_TYPE (fn)));
224 gimple_call_reset_alias_info (s);
225 return s;
226 }
227
228
229 /* Build a GIMPLE_CALL statement to function FN with the arguments
230 specified in vector ARGS. */
231
232 gcall *
233 gimple_build_call_vec (tree fn, vec<tree> args)
234 {
235 unsigned i;
236 unsigned nargs = args.length ();
237 gcall *call = gimple_build_call_1 (fn, nargs);
238
239 for (i = 0; i < nargs; i++)
240 gimple_call_set_arg (call, i, args[i]);
241
242 return call;
243 }
244
245
246 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
247 arguments. The ... are the arguments. */
248
249 gcall *
250 gimple_build_call (tree fn, unsigned nargs, ...)
251 {
252 va_list ap;
253 gcall *call;
254 unsigned i;
255
256 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
257
258 call = gimple_build_call_1 (fn, nargs);
259
260 va_start (ap, nargs);
261 for (i = 0; i < nargs; i++)
262 gimple_call_set_arg (call, i, va_arg (ap, tree));
263 va_end (ap);
264
265 return call;
266 }
267
268
269 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
270 arguments. AP contains the arguments. */
271
272 gcall *
273 gimple_build_call_valist (tree fn, unsigned nargs, va_list ap)
274 {
275 gcall *call;
276 unsigned i;
277
278 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
279
280 call = gimple_build_call_1 (fn, nargs);
281
282 for (i = 0; i < nargs; i++)
283 gimple_call_set_arg (call, i, va_arg (ap, tree));
284
285 return call;
286 }
287
288
289 /* Helper for gimple_build_call_internal and gimple_build_call_internal_vec.
290 Build the basic components of a GIMPLE_CALL statement to internal
291 function FN with NARGS arguments. */
292
293 static inline gcall *
294 gimple_build_call_internal_1 (enum internal_fn fn, unsigned nargs)
295 {
296 gcall *s
297 = as_a <gcall *> (gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK,
298 nargs + 3));
299 s->subcode |= GF_CALL_INTERNAL;
300 gimple_call_set_internal_fn (s, fn);
301 gimple_call_reset_alias_info (s);
302 return s;
303 }
304
305
306 /* Build a GIMPLE_CALL statement to internal function FN. NARGS is
307 the number of arguments. The ... are the arguments. */
308
309 gcall *
310 gimple_build_call_internal (enum internal_fn fn, unsigned nargs, ...)
311 {
312 va_list ap;
313 gcall *call;
314 unsigned i;
315
316 call = gimple_build_call_internal_1 (fn, nargs);
317 va_start (ap, nargs);
318 for (i = 0; i < nargs; i++)
319 gimple_call_set_arg (call, i, va_arg (ap, tree));
320 va_end (ap);
321
322 return call;
323 }
324
325
326 /* Build a GIMPLE_CALL statement to internal function FN with the arguments
327 specified in vector ARGS. */
328
329 gcall *
330 gimple_build_call_internal_vec (enum internal_fn fn, vec<tree> args)
331 {
332 unsigned i, nargs;
333 gcall *call;
334
335 nargs = args.length ();
336 call = gimple_build_call_internal_1 (fn, nargs);
337 for (i = 0; i < nargs; i++)
338 gimple_call_set_arg (call, i, args[i]);
339
340 return call;
341 }
342
343
344 /* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
345 assumed to be in GIMPLE form already. Minimal checking is done of
346 this fact. */
347
348 gcall *
349 gimple_build_call_from_tree (tree t, tree fnptrtype)
350 {
351 unsigned i, nargs;
352 gcall *call;
353
354 gcc_assert (TREE_CODE (t) == CALL_EXPR);
355
356 nargs = call_expr_nargs (t);
357
358 tree fndecl = NULL_TREE;
359 if (CALL_EXPR_FN (t) == NULL_TREE)
360 call = gimple_build_call_internal_1 (CALL_EXPR_IFN (t), nargs);
361 else
362 {
363 fndecl = get_callee_fndecl (t);
364 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
365 }
366
367 for (i = 0; i < nargs; i++)
368 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
369
370 gimple_set_block (call, TREE_BLOCK (t));
371 gimple_set_location (call, EXPR_LOCATION (t));
372
373 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
374 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
375 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
376 gimple_call_set_must_tail (call, CALL_EXPR_MUST_TAIL_CALL (t));
377 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
378 if (fndecl
379 && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL)
380 && ALLOCA_FUNCTION_CODE_P (DECL_FUNCTION_CODE (fndecl)))
381 gimple_call_set_alloca_for_var (call, CALL_ALLOCA_FOR_VAR_P (t));
382 else
383 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
384 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
385 gimple_call_set_nothrow (call, TREE_NOTHROW (t));
386 gimple_call_set_by_descriptor (call, CALL_EXPR_BY_DESCRIPTOR (t));
387 gimple_set_no_warning (call, TREE_NO_WARNING (t));
388
389 if (fnptrtype)
390 {
391 gimple_call_set_fntype (call, TREE_TYPE (fnptrtype));
392
393 /* Check if it's an indirect CALL and the type has the
394 nocf_check attribute. In that case propagate the information
395 to the gimple CALL insn. */
396 if (!fndecl)
397 {
398 gcc_assert (POINTER_TYPE_P (fnptrtype));
399 tree fntype = TREE_TYPE (fnptrtype);
400
401 if (lookup_attribute ("nocf_check", TYPE_ATTRIBUTES (fntype)))
402 gimple_call_set_nocf_check (call, TRUE);
403 }
404 }
405
406 return call;
407 }
408
409
410 /* Build a GIMPLE_ASSIGN statement.
411
412 LHS of the assignment.
413 RHS of the assignment which can be unary or binary. */
414
415 gassign *
416 gimple_build_assign (tree lhs, tree rhs MEM_STAT_DECL)
417 {
418 enum tree_code subcode;
419 tree op1, op2, op3;
420
421 extract_ops_from_tree (rhs, &subcode, &op1, &op2, &op3);
422 return gimple_build_assign (lhs, subcode, op1, op2, op3 PASS_MEM_STAT);
423 }
424
425
426 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
427 OP1, OP2 and OP3. */
428
429 static inline gassign *
430 gimple_build_assign_1 (tree lhs, enum tree_code subcode, tree op1,
431 tree op2, tree op3 MEM_STAT_DECL)
432 {
433 unsigned num_ops;
434 gassign *p;
435
436 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
437 code). */
438 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
439
440 p = as_a <gassign *> (
441 gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
442 PASS_MEM_STAT));
443 gimple_assign_set_lhs (p, lhs);
444 gimple_assign_set_rhs1 (p, op1);
445 if (op2)
446 {
447 gcc_assert (num_ops > 2);
448 gimple_assign_set_rhs2 (p, op2);
449 }
450
451 if (op3)
452 {
453 gcc_assert (num_ops > 3);
454 gimple_assign_set_rhs3 (p, op3);
455 }
456
457 return p;
458 }
459
460 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
461 OP1, OP2 and OP3. */
462
463 gassign *
464 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1,
465 tree op2, tree op3 MEM_STAT_DECL)
466 {
467 return gimple_build_assign_1 (lhs, subcode, op1, op2, op3 PASS_MEM_STAT);
468 }
469
470 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
471 OP1 and OP2. */
472
473 gassign *
474 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1,
475 tree op2 MEM_STAT_DECL)
476 {
477 return gimple_build_assign_1 (lhs, subcode, op1, op2, NULL_TREE
478 PASS_MEM_STAT);
479 }
480
481 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operand OP1. */
482
483 gassign *
484 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1 MEM_STAT_DECL)
485 {
486 return gimple_build_assign_1 (lhs, subcode, op1, NULL_TREE, NULL_TREE
487 PASS_MEM_STAT);
488 }
489
490
491 /* Build a GIMPLE_COND statement.
492
493 PRED is the condition used to compare LHS and the RHS.
494 T_LABEL is the label to jump to if the condition is true.
495 F_LABEL is the label to jump to otherwise. */
496
497 gcond *
498 gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
499 tree t_label, tree f_label)
500 {
501 gcond *p;
502
503 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
504 p = as_a <gcond *> (gimple_build_with_ops (GIMPLE_COND, pred_code, 4));
505 gimple_cond_set_lhs (p, lhs);
506 gimple_cond_set_rhs (p, rhs);
507 gimple_cond_set_true_label (p, t_label);
508 gimple_cond_set_false_label (p, f_label);
509 return p;
510 }
511
512 /* Build a GIMPLE_COND statement from the conditional expression tree
513 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
514
515 gcond *
516 gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
517 {
518 enum tree_code code;
519 tree lhs, rhs;
520
521 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
522 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
523 }
524
525 /* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
526 boolean expression tree COND. */
527
528 void
529 gimple_cond_set_condition_from_tree (gcond *stmt, tree cond)
530 {
531 enum tree_code code;
532 tree lhs, rhs;
533
534 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
535 gimple_cond_set_condition (stmt, code, lhs, rhs);
536 }
537
538 /* Build a GIMPLE_LABEL statement for LABEL. */
539
540 glabel *
541 gimple_build_label (tree label)
542 {
543 glabel *p
544 = as_a <glabel *> (gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1));
545 gimple_label_set_label (p, label);
546 return p;
547 }
548
549 /* Build a GIMPLE_GOTO statement to label DEST. */
550
551 ggoto *
552 gimple_build_goto (tree dest)
553 {
554 ggoto *p
555 = as_a <ggoto *> (gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1));
556 gimple_goto_set_dest (p, dest);
557 return p;
558 }
559
560
561 /* Build a GIMPLE_NOP statement. */
562
563 gimple *
564 gimple_build_nop (void)
565 {
566 return gimple_alloc (GIMPLE_NOP, 0);
567 }
568
569
570 /* Build a GIMPLE_BIND statement.
571 VARS are the variables in BODY.
572 BLOCK is the containing block. */
573
574 gbind *
575 gimple_build_bind (tree vars, gimple_seq body, tree block)
576 {
577 gbind *p = as_a <gbind *> (gimple_alloc (GIMPLE_BIND, 0));
578 gimple_bind_set_vars (p, vars);
579 if (body)
580 gimple_bind_set_body (p, body);
581 if (block)
582 gimple_bind_set_block (p, block);
583 return p;
584 }
585
586 /* Helper function to set the simple fields of a asm stmt.
587
588 STRING is a pointer to a string that is the asm blocks assembly code.
589 NINPUT is the number of register inputs.
590 NOUTPUT is the number of register outputs.
591 NCLOBBERS is the number of clobbered registers.
592 */
593
594 static inline gasm *
595 gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
596 unsigned nclobbers, unsigned nlabels)
597 {
598 gasm *p;
599 int size = strlen (string);
600
601 /* ASMs with labels cannot have outputs. This should have been
602 enforced by the front end. */
603 gcc_assert (nlabels == 0 || noutputs == 0);
604
605 p = as_a <gasm *> (
606 gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
607 ninputs + noutputs + nclobbers + nlabels));
608
609 p->ni = ninputs;
610 p->no = noutputs;
611 p->nc = nclobbers;
612 p->nl = nlabels;
613 p->string = ggc_alloc_string (string, size);
614
615 if (GATHER_STATISTICS)
616 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
617
618 return p;
619 }
620
621 /* Build a GIMPLE_ASM statement.
622
623 STRING is the assembly code.
624 NINPUT is the number of register inputs.
625 NOUTPUT is the number of register outputs.
626 NCLOBBERS is the number of clobbered registers.
627 INPUTS is a vector of the input register parameters.
628 OUTPUTS is a vector of the output register parameters.
629 CLOBBERS is a vector of the clobbered register parameters.
630 LABELS is a vector of destination labels. */
631
632 gasm *
633 gimple_build_asm_vec (const char *string, vec<tree, va_gc> *inputs,
634 vec<tree, va_gc> *outputs, vec<tree, va_gc> *clobbers,
635 vec<tree, va_gc> *labels)
636 {
637 gasm *p;
638 unsigned i;
639
640 p = gimple_build_asm_1 (string,
641 vec_safe_length (inputs),
642 vec_safe_length (outputs),
643 vec_safe_length (clobbers),
644 vec_safe_length (labels));
645
646 for (i = 0; i < vec_safe_length (inputs); i++)
647 gimple_asm_set_input_op (p, i, (*inputs)[i]);
648
649 for (i = 0; i < vec_safe_length (outputs); i++)
650 gimple_asm_set_output_op (p, i, (*outputs)[i]);
651
652 for (i = 0; i < vec_safe_length (clobbers); i++)
653 gimple_asm_set_clobber_op (p, i, (*clobbers)[i]);
654
655 for (i = 0; i < vec_safe_length (labels); i++)
656 gimple_asm_set_label_op (p, i, (*labels)[i]);
657
658 return p;
659 }
660
661 /* Build a GIMPLE_CATCH statement.
662
663 TYPES are the catch types.
664 HANDLER is the exception handler. */
665
666 gcatch *
667 gimple_build_catch (tree types, gimple_seq handler)
668 {
669 gcatch *p = as_a <gcatch *> (gimple_alloc (GIMPLE_CATCH, 0));
670 gimple_catch_set_types (p, types);
671 if (handler)
672 gimple_catch_set_handler (p, handler);
673
674 return p;
675 }
676
677 /* Build a GIMPLE_EH_FILTER statement.
678
679 TYPES are the filter's types.
680 FAILURE is the filter's failure action. */
681
682 geh_filter *
683 gimple_build_eh_filter (tree types, gimple_seq failure)
684 {
685 geh_filter *p = as_a <geh_filter *> (gimple_alloc (GIMPLE_EH_FILTER, 0));
686 gimple_eh_filter_set_types (p, types);
687 if (failure)
688 gimple_eh_filter_set_failure (p, failure);
689
690 return p;
691 }
692
693 /* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
694
695 geh_mnt *
696 gimple_build_eh_must_not_throw (tree decl)
697 {
698 geh_mnt *p = as_a <geh_mnt *> (gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0));
699
700 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
701 gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
702 gimple_eh_must_not_throw_set_fndecl (p, decl);
703
704 return p;
705 }
706
707 /* Build a GIMPLE_EH_ELSE statement. */
708
709 geh_else *
710 gimple_build_eh_else (gimple_seq n_body, gimple_seq e_body)
711 {
712 geh_else *p = as_a <geh_else *> (gimple_alloc (GIMPLE_EH_ELSE, 0));
713 gimple_eh_else_set_n_body (p, n_body);
714 gimple_eh_else_set_e_body (p, e_body);
715 return p;
716 }
717
718 /* Build a GIMPLE_TRY statement.
719
720 EVAL is the expression to evaluate.
721 CLEANUP is the cleanup expression.
722 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
723 whether this is a try/catch or a try/finally respectively. */
724
725 gtry *
726 gimple_build_try (gimple_seq eval, gimple_seq cleanup,
727 enum gimple_try_flags kind)
728 {
729 gtry *p;
730
731 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
732 p = as_a <gtry *> (gimple_alloc (GIMPLE_TRY, 0));
733 gimple_set_subcode (p, kind);
734 if (eval)
735 gimple_try_set_eval (p, eval);
736 if (cleanup)
737 gimple_try_set_cleanup (p, cleanup);
738
739 return p;
740 }
741
742 /* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
743
744 CLEANUP is the cleanup expression. */
745
746 gimple *
747 gimple_build_wce (gimple_seq cleanup)
748 {
749 gimple *p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
750 if (cleanup)
751 gimple_wce_set_cleanup (p, cleanup);
752
753 return p;
754 }
755
756
757 /* Build a GIMPLE_RESX statement. */
758
759 gresx *
760 gimple_build_resx (int region)
761 {
762 gresx *p
763 = as_a <gresx *> (gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0));
764 p->region = region;
765 return p;
766 }
767
768
769 /* The helper for constructing a gimple switch statement.
770 INDEX is the switch's index.
771 NLABELS is the number of labels in the switch excluding the default.
772 DEFAULT_LABEL is the default label for the switch statement. */
773
774 gswitch *
775 gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
776 {
777 /* nlabels + 1 default label + 1 index. */
778 gcc_checking_assert (default_label);
779 gswitch *p = as_a <gswitch *> (gimple_build_with_ops (GIMPLE_SWITCH,
780 ERROR_MARK,
781 1 + 1 + nlabels));
782 gimple_switch_set_index (p, index);
783 gimple_switch_set_default_label (p, default_label);
784 return p;
785 }
786
787 /* Build a GIMPLE_SWITCH statement.
788
789 INDEX is the switch's index.
790 DEFAULT_LABEL is the default label
791 ARGS is a vector of labels excluding the default. */
792
793 gswitch *
794 gimple_build_switch (tree index, tree default_label, vec<tree> args)
795 {
796 unsigned i, nlabels = args.length ();
797
798 gswitch *p = gimple_build_switch_nlabels (nlabels, index, default_label);
799
800 /* Copy the labels from the vector to the switch statement. */
801 for (i = 0; i < nlabels; i++)
802 gimple_switch_set_label (p, i + 1, args[i]);
803
804 return p;
805 }
806
807 /* Build a GIMPLE_EH_DISPATCH statement. */
808
809 geh_dispatch *
810 gimple_build_eh_dispatch (int region)
811 {
812 geh_dispatch *p
813 = as_a <geh_dispatch *> (
814 gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0));
815 p->region = region;
816 return p;
817 }
818
819 /* Build a new GIMPLE_DEBUG_BIND statement.
820
821 VAR is bound to VALUE; block and location are taken from STMT. */
822
823 gdebug *
824 gimple_build_debug_bind (tree var, tree value, gimple *stmt MEM_STAT_DECL)
825 {
826 gdebug *p
827 = as_a <gdebug *> (gimple_build_with_ops_stat (GIMPLE_DEBUG,
828 (unsigned)GIMPLE_DEBUG_BIND, 2
829 PASS_MEM_STAT));
830 gimple_debug_bind_set_var (p, var);
831 gimple_debug_bind_set_value (p, value);
832 if (stmt)
833 gimple_set_location (p, gimple_location (stmt));
834
835 return p;
836 }
837
838
839 /* Build a new GIMPLE_DEBUG_SOURCE_BIND statement.
840
841 VAR is bound to VALUE; block and location are taken from STMT. */
842
843 gdebug *
844 gimple_build_debug_source_bind (tree var, tree value,
845 gimple *stmt MEM_STAT_DECL)
846 {
847 gdebug *p
848 = as_a <gdebug *> (
849 gimple_build_with_ops_stat (GIMPLE_DEBUG,
850 (unsigned)GIMPLE_DEBUG_SOURCE_BIND, 2
851 PASS_MEM_STAT));
852
853 gimple_debug_source_bind_set_var (p, var);
854 gimple_debug_source_bind_set_value (p, value);
855 if (stmt)
856 gimple_set_location (p, gimple_location (stmt));
857
858 return p;
859 }
860
861
862 /* Build a new GIMPLE_DEBUG_BEGIN_STMT statement in BLOCK at
863 LOCATION. */
864
865 gdebug *
866 gimple_build_debug_begin_stmt (tree block, location_t location
867 MEM_STAT_DECL)
868 {
869 gdebug *p
870 = as_a <gdebug *> (
871 gimple_build_with_ops_stat (GIMPLE_DEBUG,
872 (unsigned)GIMPLE_DEBUG_BEGIN_STMT, 0
873 PASS_MEM_STAT));
874
875 gimple_set_location (p, location);
876 gimple_set_block (p, block);
877 cfun->debug_marker_count++;
878
879 return p;
880 }
881
882
883 /* Build a new GIMPLE_DEBUG_INLINE_ENTRY statement in BLOCK at
884 LOCATION. The BLOCK links to the inlined function. */
885
886 gdebug *
887 gimple_build_debug_inline_entry (tree block, location_t location
888 MEM_STAT_DECL)
889 {
890 gdebug *p
891 = as_a <gdebug *> (
892 gimple_build_with_ops_stat (GIMPLE_DEBUG,
893 (unsigned)GIMPLE_DEBUG_INLINE_ENTRY, 0
894 PASS_MEM_STAT));
895
896 gimple_set_location (p, location);
897 gimple_set_block (p, block);
898 cfun->debug_marker_count++;
899
900 return p;
901 }
902
903
904 /* Build a GIMPLE_OMP_CRITICAL statement.
905
906 BODY is the sequence of statements for which only one thread can execute.
907 NAME is optional identifier for this critical block.
908 CLAUSES are clauses for this critical block. */
909
910 gomp_critical *
911 gimple_build_omp_critical (gimple_seq body, tree name, tree clauses)
912 {
913 gomp_critical *p
914 = as_a <gomp_critical *> (gimple_alloc (GIMPLE_OMP_CRITICAL, 0));
915 gimple_omp_critical_set_name (p, name);
916 gimple_omp_critical_set_clauses (p, clauses);
917 if (body)
918 gimple_omp_set_body (p, body);
919
920 return p;
921 }
922
923 /* Build a GIMPLE_OMP_FOR statement.
924
925 BODY is sequence of statements inside the for loop.
926 KIND is the `for' variant.
927 CLAUSES, are any of the construct's clauses.
928 COLLAPSE is the collapse count.
929 PRE_BODY is the sequence of statements that are loop invariant. */
930
931 gomp_for *
932 gimple_build_omp_for (gimple_seq body, int kind, tree clauses, size_t collapse,
933 gimple_seq pre_body)
934 {
935 gomp_for *p = as_a <gomp_for *> (gimple_alloc (GIMPLE_OMP_FOR, 0));
936 if (body)
937 gimple_omp_set_body (p, body);
938 gimple_omp_for_set_clauses (p, clauses);
939 gimple_omp_for_set_kind (p, kind);
940 p->collapse = collapse;
941 p->iter = ggc_cleared_vec_alloc<gimple_omp_for_iter> (collapse);
942
943 if (pre_body)
944 gimple_omp_for_set_pre_body (p, pre_body);
945
946 return p;
947 }
948
949
950 /* Build a GIMPLE_OMP_PARALLEL statement.
951
952 BODY is sequence of statements which are executed in parallel.
953 CLAUSES, are the OMP parallel construct's clauses.
954 CHILD_FN is the function created for the parallel threads to execute.
955 DATA_ARG are the shared data argument(s). */
956
957 gomp_parallel *
958 gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
959 tree data_arg)
960 {
961 gomp_parallel *p
962 = as_a <gomp_parallel *> (gimple_alloc (GIMPLE_OMP_PARALLEL, 0));
963 if (body)
964 gimple_omp_set_body (p, body);
965 gimple_omp_parallel_set_clauses (p, clauses);
966 gimple_omp_parallel_set_child_fn (p, child_fn);
967 gimple_omp_parallel_set_data_arg (p, data_arg);
968
969 return p;
970 }
971
972
973 /* Build a GIMPLE_OMP_TASK statement.
974
975 BODY is sequence of statements which are executed by the explicit task.
976 CLAUSES, are the OMP parallel construct's clauses.
977 CHILD_FN is the function created for the parallel threads to execute.
978 DATA_ARG are the shared data argument(s).
979 COPY_FN is the optional function for firstprivate initialization.
980 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
981
982 gomp_task *
983 gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
984 tree data_arg, tree copy_fn, tree arg_size,
985 tree arg_align)
986 {
987 gomp_task *p = as_a <gomp_task *> (gimple_alloc (GIMPLE_OMP_TASK, 0));
988 if (body)
989 gimple_omp_set_body (p, body);
990 gimple_omp_task_set_clauses (p, clauses);
991 gimple_omp_task_set_child_fn (p, child_fn);
992 gimple_omp_task_set_data_arg (p, data_arg);
993 gimple_omp_task_set_copy_fn (p, copy_fn);
994 gimple_omp_task_set_arg_size (p, arg_size);
995 gimple_omp_task_set_arg_align (p, arg_align);
996
997 return p;
998 }
999
1000
1001 /* Build a GIMPLE_OMP_SECTION statement for a sections statement.
1002
1003 BODY is the sequence of statements in the section. */
1004
1005 gimple *
1006 gimple_build_omp_section (gimple_seq body)
1007 {
1008 gimple *p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
1009 if (body)
1010 gimple_omp_set_body (p, body);
1011
1012 return p;
1013 }
1014
1015
1016 /* Build a GIMPLE_OMP_MASTER statement.
1017
1018 BODY is the sequence of statements to be executed by just the master. */
1019
1020 gimple *
1021 gimple_build_omp_master (gimple_seq body)
1022 {
1023 gimple *p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
1024 if (body)
1025 gimple_omp_set_body (p, body);
1026
1027 return p;
1028 }
1029
1030 /* Build a GIMPLE_OMP_GRID_BODY statement.
1031
1032 BODY is the sequence of statements to be executed by the kernel. */
1033
1034 gimple *
1035 gimple_build_omp_grid_body (gimple_seq body)
1036 {
1037 gimple *p = gimple_alloc (GIMPLE_OMP_GRID_BODY, 0);
1038 if (body)
1039 gimple_omp_set_body (p, body);
1040
1041 return p;
1042 }
1043
1044 /* Build a GIMPLE_OMP_TASKGROUP statement.
1045
1046 BODY is the sequence of statements to be executed by the taskgroup
1047 construct. */
1048
1049 gimple *
1050 gimple_build_omp_taskgroup (gimple_seq body)
1051 {
1052 gimple *p = gimple_alloc (GIMPLE_OMP_TASKGROUP, 0);
1053 if (body)
1054 gimple_omp_set_body (p, body);
1055
1056 return p;
1057 }
1058
1059
1060 /* Build a GIMPLE_OMP_CONTINUE statement.
1061
1062 CONTROL_DEF is the definition of the control variable.
1063 CONTROL_USE is the use of the control variable. */
1064
1065 gomp_continue *
1066 gimple_build_omp_continue (tree control_def, tree control_use)
1067 {
1068 gomp_continue *p
1069 = as_a <gomp_continue *> (gimple_alloc (GIMPLE_OMP_CONTINUE, 0));
1070 gimple_omp_continue_set_control_def (p, control_def);
1071 gimple_omp_continue_set_control_use (p, control_use);
1072 return p;
1073 }
1074
1075 /* Build a GIMPLE_OMP_ORDERED statement.
1076
1077 BODY is the sequence of statements inside a loop that will executed in
1078 sequence.
1079 CLAUSES are clauses for this statement. */
1080
1081 gomp_ordered *
1082 gimple_build_omp_ordered (gimple_seq body, tree clauses)
1083 {
1084 gomp_ordered *p
1085 = as_a <gomp_ordered *> (gimple_alloc (GIMPLE_OMP_ORDERED, 0));
1086 gimple_omp_ordered_set_clauses (p, clauses);
1087 if (body)
1088 gimple_omp_set_body (p, body);
1089
1090 return p;
1091 }
1092
1093
1094 /* Build a GIMPLE_OMP_RETURN statement.
1095 WAIT_P is true if this is a non-waiting return. */
1096
1097 gimple *
1098 gimple_build_omp_return (bool wait_p)
1099 {
1100 gimple *p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
1101 if (wait_p)
1102 gimple_omp_return_set_nowait (p);
1103
1104 return p;
1105 }
1106
1107
1108 /* Build a GIMPLE_OMP_SECTIONS statement.
1109
1110 BODY is a sequence of section statements.
1111 CLAUSES are any of the OMP sections contsruct's clauses: private,
1112 firstprivate, lastprivate, reduction, and nowait. */
1113
1114 gomp_sections *
1115 gimple_build_omp_sections (gimple_seq body, tree clauses)
1116 {
1117 gomp_sections *p
1118 = as_a <gomp_sections *> (gimple_alloc (GIMPLE_OMP_SECTIONS, 0));
1119 if (body)
1120 gimple_omp_set_body (p, body);
1121 gimple_omp_sections_set_clauses (p, clauses);
1122
1123 return p;
1124 }
1125
1126
1127 /* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
1128
1129 gimple *
1130 gimple_build_omp_sections_switch (void)
1131 {
1132 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
1133 }
1134
1135
1136 /* Build a GIMPLE_OMP_SINGLE statement.
1137
1138 BODY is the sequence of statements that will be executed once.
1139 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1140 copyprivate, nowait. */
1141
1142 gomp_single *
1143 gimple_build_omp_single (gimple_seq body, tree clauses)
1144 {
1145 gomp_single *p
1146 = as_a <gomp_single *> (gimple_alloc (GIMPLE_OMP_SINGLE, 0));
1147 if (body)
1148 gimple_omp_set_body (p, body);
1149 gimple_omp_single_set_clauses (p, clauses);
1150
1151 return p;
1152 }
1153
1154
1155 /* Build a GIMPLE_OMP_TARGET statement.
1156
1157 BODY is the sequence of statements that will be executed.
1158 KIND is the kind of the region.
1159 CLAUSES are any of the construct's clauses. */
1160
1161 gomp_target *
1162 gimple_build_omp_target (gimple_seq body, int kind, tree clauses)
1163 {
1164 gomp_target *p
1165 = as_a <gomp_target *> (gimple_alloc (GIMPLE_OMP_TARGET, 0));
1166 if (body)
1167 gimple_omp_set_body (p, body);
1168 gimple_omp_target_set_clauses (p, clauses);
1169 gimple_omp_target_set_kind (p, kind);
1170
1171 return p;
1172 }
1173
1174
1175 /* Build a GIMPLE_OMP_TEAMS statement.
1176
1177 BODY is the sequence of statements that will be executed.
1178 CLAUSES are any of the OMP teams construct's clauses. */
1179
1180 gomp_teams *
1181 gimple_build_omp_teams (gimple_seq body, tree clauses)
1182 {
1183 gomp_teams *p = as_a <gomp_teams *> (gimple_alloc (GIMPLE_OMP_TEAMS, 0));
1184 if (body)
1185 gimple_omp_set_body (p, body);
1186 gimple_omp_teams_set_clauses (p, clauses);
1187
1188 return p;
1189 }
1190
1191
1192 /* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
1193
1194 gomp_atomic_load *
1195 gimple_build_omp_atomic_load (tree lhs, tree rhs)
1196 {
1197 gomp_atomic_load *p
1198 = as_a <gomp_atomic_load *> (gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0));
1199 gimple_omp_atomic_load_set_lhs (p, lhs);
1200 gimple_omp_atomic_load_set_rhs (p, rhs);
1201 return p;
1202 }
1203
1204 /* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1205
1206 VAL is the value we are storing. */
1207
1208 gomp_atomic_store *
1209 gimple_build_omp_atomic_store (tree val)
1210 {
1211 gomp_atomic_store *p
1212 = as_a <gomp_atomic_store *> (gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0));
1213 gimple_omp_atomic_store_set_val (p, val);
1214 return p;
1215 }
1216
1217 /* Build a GIMPLE_TRANSACTION statement. */
1218
1219 gtransaction *
1220 gimple_build_transaction (gimple_seq body)
1221 {
1222 gtransaction *p
1223 = as_a <gtransaction *> (gimple_alloc (GIMPLE_TRANSACTION, 0));
1224 gimple_transaction_set_body (p, body);
1225 gimple_transaction_set_label_norm (p, 0);
1226 gimple_transaction_set_label_uninst (p, 0);
1227 gimple_transaction_set_label_over (p, 0);
1228 return p;
1229 }
1230
1231 #if defined ENABLE_GIMPLE_CHECKING
1232 /* Complain of a gimple type mismatch and die. */
1233
1234 void
1235 gimple_check_failed (const gimple *gs, const char *file, int line,
1236 const char *function, enum gimple_code code,
1237 enum tree_code subcode)
1238 {
1239 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1240 gimple_code_name[code],
1241 get_tree_code_name (subcode),
1242 gimple_code_name[gimple_code (gs)],
1243 gs->subcode > 0
1244 ? get_tree_code_name ((enum tree_code) gs->subcode)
1245 : "",
1246 function, trim_filename (file), line);
1247 }
1248 #endif /* ENABLE_GIMPLE_CHECKING */
1249
1250
1251 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1252 *SEQ_P is NULL, a new sequence is allocated. */
1253
1254 void
1255 gimple_seq_add_stmt (gimple_seq *seq_p, gimple *gs)
1256 {
1257 gimple_stmt_iterator si;
1258 if (gs == NULL)
1259 return;
1260
1261 si = gsi_last (*seq_p);
1262 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1263 }
1264
1265 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1266 *SEQ_P is NULL, a new sequence is allocated. This function is
1267 similar to gimple_seq_add_stmt, but does not scan the operands.
1268 During gimplification, we need to manipulate statement sequences
1269 before the def/use vectors have been constructed. */
1270
1271 void
1272 gimple_seq_add_stmt_without_update (gimple_seq *seq_p, gimple *gs)
1273 {
1274 gimple_stmt_iterator si;
1275
1276 if (gs == NULL)
1277 return;
1278
1279 si = gsi_last (*seq_p);
1280 gsi_insert_after_without_update (&si, gs, GSI_NEW_STMT);
1281 }
1282
1283 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1284 NULL, a new sequence is allocated. */
1285
1286 void
1287 gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1288 {
1289 gimple_stmt_iterator si;
1290 if (src == NULL)
1291 return;
1292
1293 si = gsi_last (*dst_p);
1294 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1295 }
1296
1297 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1298 NULL, a new sequence is allocated. This function is
1299 similar to gimple_seq_add_seq, but does not scan the operands. */
1300
1301 void
1302 gimple_seq_add_seq_without_update (gimple_seq *dst_p, gimple_seq src)
1303 {
1304 gimple_stmt_iterator si;
1305 if (src == NULL)
1306 return;
1307
1308 si = gsi_last (*dst_p);
1309 gsi_insert_seq_after_without_update (&si, src, GSI_NEW_STMT);
1310 }
1311
1312 /* Determine whether to assign a location to the statement GS. */
1313
1314 static bool
1315 should_carry_location_p (gimple *gs)
1316 {
1317 /* Don't emit a line note for a label. We particularly don't want to
1318 emit one for the break label, since it doesn't actually correspond
1319 to the beginning of the loop/switch. */
1320 if (gimple_code (gs) == GIMPLE_LABEL)
1321 return false;
1322
1323 return true;
1324 }
1325
1326 /* Set the location for gimple statement GS to LOCATION. */
1327
1328 static void
1329 annotate_one_with_location (gimple *gs, location_t location)
1330 {
1331 if (!gimple_has_location (gs)
1332 && !gimple_do_not_emit_location_p (gs)
1333 && should_carry_location_p (gs))
1334 gimple_set_location (gs, location);
1335 }
1336
1337 /* Set LOCATION for all the statements after iterator GSI in sequence
1338 SEQ. If GSI is pointing to the end of the sequence, start with the
1339 first statement in SEQ. */
1340
1341 void
1342 annotate_all_with_location_after (gimple_seq seq, gimple_stmt_iterator gsi,
1343 location_t location)
1344 {
1345 if (gsi_end_p (gsi))
1346 gsi = gsi_start (seq);
1347 else
1348 gsi_next (&gsi);
1349
1350 for (; !gsi_end_p (gsi); gsi_next (&gsi))
1351 annotate_one_with_location (gsi_stmt (gsi), location);
1352 }
1353
1354 /* Set the location for all the statements in a sequence STMT_P to LOCATION. */
1355
1356 void
1357 annotate_all_with_location (gimple_seq stmt_p, location_t location)
1358 {
1359 gimple_stmt_iterator i;
1360
1361 if (gimple_seq_empty_p (stmt_p))
1362 return;
1363
1364 for (i = gsi_start (stmt_p); !gsi_end_p (i); gsi_next (&i))
1365 {
1366 gimple *gs = gsi_stmt (i);
1367 annotate_one_with_location (gs, location);
1368 }
1369 }
1370
1371 /* Helper function of empty_body_p. Return true if STMT is an empty
1372 statement. */
1373
1374 static bool
1375 empty_stmt_p (gimple *stmt)
1376 {
1377 if (gimple_code (stmt) == GIMPLE_NOP)
1378 return true;
1379 if (gbind *bind_stmt = dyn_cast <gbind *> (stmt))
1380 return empty_body_p (gimple_bind_body (bind_stmt));
1381 return false;
1382 }
1383
1384
1385 /* Return true if BODY contains nothing but empty statements. */
1386
1387 bool
1388 empty_body_p (gimple_seq body)
1389 {
1390 gimple_stmt_iterator i;
1391
1392 if (gimple_seq_empty_p (body))
1393 return true;
1394 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
1395 if (!empty_stmt_p (gsi_stmt (i))
1396 && !is_gimple_debug (gsi_stmt (i)))
1397 return false;
1398
1399 return true;
1400 }
1401
1402
1403 /* Perform a deep copy of sequence SRC and return the result. */
1404
1405 gimple_seq
1406 gimple_seq_copy (gimple_seq src)
1407 {
1408 gimple_stmt_iterator gsi;
1409 gimple_seq new_seq = NULL;
1410 gimple *stmt;
1411
1412 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1413 {
1414 stmt = gimple_copy (gsi_stmt (gsi));
1415 gimple_seq_add_stmt (&new_seq, stmt);
1416 }
1417
1418 return new_seq;
1419 }
1420
1421
1422
1423 /* Return true if calls C1 and C2 are known to go to the same function. */
1424
1425 bool
1426 gimple_call_same_target_p (const gimple *c1, const gimple *c2)
1427 {
1428 if (gimple_call_internal_p (c1))
1429 return (gimple_call_internal_p (c2)
1430 && gimple_call_internal_fn (c1) == gimple_call_internal_fn (c2)
1431 && (!gimple_call_internal_unique_p (as_a <const gcall *> (c1))
1432 || c1 == c2));
1433 else
1434 return (gimple_call_fn (c1) == gimple_call_fn (c2)
1435 || (gimple_call_fndecl (c1)
1436 && gimple_call_fndecl (c1) == gimple_call_fndecl (c2)));
1437 }
1438
1439 /* Detect flags from a GIMPLE_CALL. This is just like
1440 call_expr_flags, but for gimple tuples. */
1441
1442 int
1443 gimple_call_flags (const gimple *stmt)
1444 {
1445 int flags;
1446 tree decl = gimple_call_fndecl (stmt);
1447
1448 if (decl)
1449 flags = flags_from_decl_or_type (decl);
1450 else if (gimple_call_internal_p (stmt))
1451 flags = internal_fn_flags (gimple_call_internal_fn (stmt));
1452 else
1453 flags = flags_from_decl_or_type (gimple_call_fntype (stmt));
1454
1455 if (stmt->subcode & GF_CALL_NOTHROW)
1456 flags |= ECF_NOTHROW;
1457
1458 if (stmt->subcode & GF_CALL_BY_DESCRIPTOR)
1459 flags |= ECF_BY_DESCRIPTOR;
1460
1461 return flags;
1462 }
1463
1464 /* Return the "fn spec" string for call STMT. */
1465
1466 static const_tree
1467 gimple_call_fnspec (const gcall *stmt)
1468 {
1469 tree type, attr;
1470
1471 if (gimple_call_internal_p (stmt))
1472 return internal_fn_fnspec (gimple_call_internal_fn (stmt));
1473
1474 type = gimple_call_fntype (stmt);
1475 if (!type)
1476 return NULL_TREE;
1477
1478 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1479 if (!attr)
1480 return NULL_TREE;
1481
1482 return TREE_VALUE (TREE_VALUE (attr));
1483 }
1484
1485 /* Detects argument flags for argument number ARG on call STMT. */
1486
1487 int
1488 gimple_call_arg_flags (const gcall *stmt, unsigned arg)
1489 {
1490 const_tree attr = gimple_call_fnspec (stmt);
1491
1492 if (!attr || 1 + arg >= (unsigned) TREE_STRING_LENGTH (attr))
1493 return 0;
1494
1495 switch (TREE_STRING_POINTER (attr)[1 + arg])
1496 {
1497 case 'x':
1498 case 'X':
1499 return EAF_UNUSED;
1500
1501 case 'R':
1502 return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE;
1503
1504 case 'r':
1505 return EAF_NOCLOBBER | EAF_NOESCAPE;
1506
1507 case 'W':
1508 return EAF_DIRECT | EAF_NOESCAPE;
1509
1510 case 'w':
1511 return EAF_NOESCAPE;
1512
1513 case '.':
1514 default:
1515 return 0;
1516 }
1517 }
1518
1519 /* Detects return flags for the call STMT. */
1520
1521 int
1522 gimple_call_return_flags (const gcall *stmt)
1523 {
1524 const_tree attr;
1525
1526 if (gimple_call_flags (stmt) & ECF_MALLOC)
1527 return ERF_NOALIAS;
1528
1529 attr = gimple_call_fnspec (stmt);
1530 if (!attr || TREE_STRING_LENGTH (attr) < 1)
1531 return 0;
1532
1533 switch (TREE_STRING_POINTER (attr)[0])
1534 {
1535 case '1':
1536 case '2':
1537 case '3':
1538 case '4':
1539 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
1540
1541 case 'm':
1542 return ERF_NOALIAS;
1543
1544 case '.':
1545 default:
1546 return 0;
1547 }
1548 }
1549
1550
1551 /* Return true if call STMT is known to return a non-zero result. */
1552
1553 bool
1554 gimple_call_nonnull_result_p (gcall *call)
1555 {
1556 tree fndecl = gimple_call_fndecl (call);
1557 if (!fndecl)
1558 return false;
1559 if (flag_delete_null_pointer_checks && !flag_check_new
1560 && DECL_IS_OPERATOR_NEW (fndecl)
1561 && !TREE_NOTHROW (fndecl))
1562 return true;
1563
1564 /* References are always non-NULL. */
1565 if (flag_delete_null_pointer_checks
1566 && TREE_CODE (TREE_TYPE (fndecl)) == REFERENCE_TYPE)
1567 return true;
1568
1569 if (flag_delete_null_pointer_checks
1570 && lookup_attribute ("returns_nonnull",
1571 TYPE_ATTRIBUTES (gimple_call_fntype (call))))
1572 return true;
1573 return gimple_alloca_call_p (call);
1574 }
1575
1576
1577 /* If CALL returns a non-null result in an argument, return that arg. */
1578
1579 tree
1580 gimple_call_nonnull_arg (gcall *call)
1581 {
1582 tree fndecl = gimple_call_fndecl (call);
1583 if (!fndecl)
1584 return NULL_TREE;
1585
1586 unsigned rf = gimple_call_return_flags (call);
1587 if (rf & ERF_RETURNS_ARG)
1588 {
1589 unsigned argnum = rf & ERF_RETURN_ARG_MASK;
1590 if (argnum < gimple_call_num_args (call))
1591 {
1592 tree arg = gimple_call_arg (call, argnum);
1593 if (SSA_VAR_P (arg)
1594 && infer_nonnull_range_by_attribute (call, arg))
1595 return arg;
1596 }
1597 }
1598 return NULL_TREE;
1599 }
1600
1601
1602 /* Return true if GS is a copy assignment. */
1603
1604 bool
1605 gimple_assign_copy_p (gimple *gs)
1606 {
1607 return (gimple_assign_single_p (gs)
1608 && is_gimple_val (gimple_op (gs, 1)));
1609 }
1610
1611
1612 /* Return true if GS is a SSA_NAME copy assignment. */
1613
1614 bool
1615 gimple_assign_ssa_name_copy_p (gimple *gs)
1616 {
1617 return (gimple_assign_single_p (gs)
1618 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1619 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1620 }
1621
1622
1623 /* Return true if GS is an assignment with a unary RHS, but the
1624 operator has no effect on the assigned value. The logic is adapted
1625 from STRIP_NOPS. This predicate is intended to be used in tuplifying
1626 instances in which STRIP_NOPS was previously applied to the RHS of
1627 an assignment.
1628
1629 NOTE: In the use cases that led to the creation of this function
1630 and of gimple_assign_single_p, it is typical to test for either
1631 condition and to proceed in the same manner. In each case, the
1632 assigned value is represented by the single RHS operand of the
1633 assignment. I suspect there may be cases where gimple_assign_copy_p,
1634 gimple_assign_single_p, or equivalent logic is used where a similar
1635 treatment of unary NOPs is appropriate. */
1636
1637 bool
1638 gimple_assign_unary_nop_p (gimple *gs)
1639 {
1640 return (is_gimple_assign (gs)
1641 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
1642 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
1643 && gimple_assign_rhs1 (gs) != error_mark_node
1644 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
1645 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
1646 }
1647
1648 /* Set BB to be the basic block holding G. */
1649
1650 void
1651 gimple_set_bb (gimple *stmt, basic_block bb)
1652 {
1653 stmt->bb = bb;
1654
1655 if (gimple_code (stmt) != GIMPLE_LABEL)
1656 return;
1657
1658 /* If the statement is a label, add the label to block-to-labels map
1659 so that we can speed up edge creation for GIMPLE_GOTOs. */
1660 if (cfun->cfg)
1661 {
1662 tree t;
1663 int uid;
1664
1665 t = gimple_label_label (as_a <glabel *> (stmt));
1666 uid = LABEL_DECL_UID (t);
1667 if (uid == -1)
1668 {
1669 unsigned old_len =
1670 vec_safe_length (label_to_block_map_for_fn (cfun));
1671 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
1672 if (old_len <= (unsigned) uid)
1673 {
1674 unsigned new_len = 3 * uid / 2 + 1;
1675
1676 vec_safe_grow_cleared (label_to_block_map_for_fn (cfun),
1677 new_len);
1678 }
1679 }
1680
1681 (*label_to_block_map_for_fn (cfun))[uid] = bb;
1682 }
1683 }
1684
1685
1686 /* Modify the RHS of the assignment pointed-to by GSI using the
1687 operands in the expression tree EXPR.
1688
1689 NOTE: The statement pointed-to by GSI may be reallocated if it
1690 did not have enough operand slots.
1691
1692 This function is useful to convert an existing tree expression into
1693 the flat representation used for the RHS of a GIMPLE assignment.
1694 It will reallocate memory as needed to expand or shrink the number
1695 of operand slots needed to represent EXPR.
1696
1697 NOTE: If you find yourself building a tree and then calling this
1698 function, you are most certainly doing it the slow way. It is much
1699 better to build a new assignment or to use the function
1700 gimple_assign_set_rhs_with_ops, which does not require an
1701 expression tree to be built. */
1702
1703 void
1704 gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
1705 {
1706 enum tree_code subcode;
1707 tree op1, op2, op3;
1708
1709 extract_ops_from_tree (expr, &subcode, &op1, &op2, &op3);
1710 gimple_assign_set_rhs_with_ops (gsi, subcode, op1, op2, op3);
1711 }
1712
1713
1714 /* Set the RHS of assignment statement pointed-to by GSI to CODE with
1715 operands OP1, OP2 and OP3.
1716
1717 NOTE: The statement pointed-to by GSI may be reallocated if it
1718 did not have enough operand slots. */
1719
1720 void
1721 gimple_assign_set_rhs_with_ops (gimple_stmt_iterator *gsi, enum tree_code code,
1722 tree op1, tree op2, tree op3)
1723 {
1724 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
1725 gimple *stmt = gsi_stmt (*gsi);
1726
1727 /* If the new CODE needs more operands, allocate a new statement. */
1728 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
1729 {
1730 tree lhs = gimple_assign_lhs (stmt);
1731 gimple *new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
1732 memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
1733 gimple_init_singleton (new_stmt);
1734 gsi_replace (gsi, new_stmt, false);
1735 stmt = new_stmt;
1736
1737 /* The LHS needs to be reset as this also changes the SSA name
1738 on the LHS. */
1739 gimple_assign_set_lhs (stmt, lhs);
1740 }
1741
1742 gimple_set_num_ops (stmt, new_rhs_ops + 1);
1743 gimple_set_subcode (stmt, code);
1744 gimple_assign_set_rhs1 (stmt, op1);
1745 if (new_rhs_ops > 1)
1746 gimple_assign_set_rhs2 (stmt, op2);
1747 if (new_rhs_ops > 2)
1748 gimple_assign_set_rhs3 (stmt, op3);
1749 }
1750
1751
1752 /* Return the LHS of a statement that performs an assignment,
1753 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
1754 for a call to a function that returns no value, or for a
1755 statement other than an assignment or a call. */
1756
1757 tree
1758 gimple_get_lhs (const gimple *stmt)
1759 {
1760 enum gimple_code code = gimple_code (stmt);
1761
1762 if (code == GIMPLE_ASSIGN)
1763 return gimple_assign_lhs (stmt);
1764 else if (code == GIMPLE_CALL)
1765 return gimple_call_lhs (stmt);
1766 else
1767 return NULL_TREE;
1768 }
1769
1770
1771 /* Set the LHS of a statement that performs an assignment,
1772 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
1773
1774 void
1775 gimple_set_lhs (gimple *stmt, tree lhs)
1776 {
1777 enum gimple_code code = gimple_code (stmt);
1778
1779 if (code == GIMPLE_ASSIGN)
1780 gimple_assign_set_lhs (stmt, lhs);
1781 else if (code == GIMPLE_CALL)
1782 gimple_call_set_lhs (stmt, lhs);
1783 else
1784 gcc_unreachable ();
1785 }
1786
1787
1788 /* Return a deep copy of statement STMT. All the operands from STMT
1789 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
1790 and VUSE operand arrays are set to empty in the new copy. The new
1791 copy isn't part of any sequence. */
1792
1793 gimple *
1794 gimple_copy (gimple *stmt)
1795 {
1796 enum gimple_code code = gimple_code (stmt);
1797 unsigned num_ops = gimple_num_ops (stmt);
1798 gimple *copy = gimple_alloc (code, num_ops);
1799 unsigned i;
1800
1801 /* Shallow copy all the fields from STMT. */
1802 memcpy (copy, stmt, gimple_size (code));
1803 gimple_init_singleton (copy);
1804
1805 /* If STMT has sub-statements, deep-copy them as well. */
1806 if (gimple_has_substatements (stmt))
1807 {
1808 gimple_seq new_seq;
1809 tree t;
1810
1811 switch (gimple_code (stmt))
1812 {
1813 case GIMPLE_BIND:
1814 {
1815 gbind *bind_stmt = as_a <gbind *> (stmt);
1816 gbind *bind_copy = as_a <gbind *> (copy);
1817 new_seq = gimple_seq_copy (gimple_bind_body (bind_stmt));
1818 gimple_bind_set_body (bind_copy, new_seq);
1819 gimple_bind_set_vars (bind_copy,
1820 unshare_expr (gimple_bind_vars (bind_stmt)));
1821 gimple_bind_set_block (bind_copy, gimple_bind_block (bind_stmt));
1822 }
1823 break;
1824
1825 case GIMPLE_CATCH:
1826 {
1827 gcatch *catch_stmt = as_a <gcatch *> (stmt);
1828 gcatch *catch_copy = as_a <gcatch *> (copy);
1829 new_seq = gimple_seq_copy (gimple_catch_handler (catch_stmt));
1830 gimple_catch_set_handler (catch_copy, new_seq);
1831 t = unshare_expr (gimple_catch_types (catch_stmt));
1832 gimple_catch_set_types (catch_copy, t);
1833 }
1834 break;
1835
1836 case GIMPLE_EH_FILTER:
1837 {
1838 geh_filter *eh_filter_stmt = as_a <geh_filter *> (stmt);
1839 geh_filter *eh_filter_copy = as_a <geh_filter *> (copy);
1840 new_seq
1841 = gimple_seq_copy (gimple_eh_filter_failure (eh_filter_stmt));
1842 gimple_eh_filter_set_failure (eh_filter_copy, new_seq);
1843 t = unshare_expr (gimple_eh_filter_types (eh_filter_stmt));
1844 gimple_eh_filter_set_types (eh_filter_copy, t);
1845 }
1846 break;
1847
1848 case GIMPLE_EH_ELSE:
1849 {
1850 geh_else *eh_else_stmt = as_a <geh_else *> (stmt);
1851 geh_else *eh_else_copy = as_a <geh_else *> (copy);
1852 new_seq = gimple_seq_copy (gimple_eh_else_n_body (eh_else_stmt));
1853 gimple_eh_else_set_n_body (eh_else_copy, new_seq);
1854 new_seq = gimple_seq_copy (gimple_eh_else_e_body (eh_else_stmt));
1855 gimple_eh_else_set_e_body (eh_else_copy, new_seq);
1856 }
1857 break;
1858
1859 case GIMPLE_TRY:
1860 {
1861 gtry *try_stmt = as_a <gtry *> (stmt);
1862 gtry *try_copy = as_a <gtry *> (copy);
1863 new_seq = gimple_seq_copy (gimple_try_eval (try_stmt));
1864 gimple_try_set_eval (try_copy, new_seq);
1865 new_seq = gimple_seq_copy (gimple_try_cleanup (try_stmt));
1866 gimple_try_set_cleanup (try_copy, new_seq);
1867 }
1868 break;
1869
1870 case GIMPLE_OMP_FOR:
1871 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
1872 gimple_omp_for_set_pre_body (copy, new_seq);
1873 t = unshare_expr (gimple_omp_for_clauses (stmt));
1874 gimple_omp_for_set_clauses (copy, t);
1875 {
1876 gomp_for *omp_for_copy = as_a <gomp_for *> (copy);
1877 omp_for_copy->iter = ggc_vec_alloc<gimple_omp_for_iter>
1878 ( gimple_omp_for_collapse (stmt));
1879 }
1880 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1881 {
1882 gimple_omp_for_set_cond (copy, i,
1883 gimple_omp_for_cond (stmt, i));
1884 gimple_omp_for_set_index (copy, i,
1885 gimple_omp_for_index (stmt, i));
1886 t = unshare_expr (gimple_omp_for_initial (stmt, i));
1887 gimple_omp_for_set_initial (copy, i, t);
1888 t = unshare_expr (gimple_omp_for_final (stmt, i));
1889 gimple_omp_for_set_final (copy, i, t);
1890 t = unshare_expr (gimple_omp_for_incr (stmt, i));
1891 gimple_omp_for_set_incr (copy, i, t);
1892 }
1893 goto copy_omp_body;
1894
1895 case GIMPLE_OMP_PARALLEL:
1896 {
1897 gomp_parallel *omp_par_stmt = as_a <gomp_parallel *> (stmt);
1898 gomp_parallel *omp_par_copy = as_a <gomp_parallel *> (copy);
1899 t = unshare_expr (gimple_omp_parallel_clauses (omp_par_stmt));
1900 gimple_omp_parallel_set_clauses (omp_par_copy, t);
1901 t = unshare_expr (gimple_omp_parallel_child_fn (omp_par_stmt));
1902 gimple_omp_parallel_set_child_fn (omp_par_copy, t);
1903 t = unshare_expr (gimple_omp_parallel_data_arg (omp_par_stmt));
1904 gimple_omp_parallel_set_data_arg (omp_par_copy, t);
1905 }
1906 goto copy_omp_body;
1907
1908 case GIMPLE_OMP_TASK:
1909 t = unshare_expr (gimple_omp_task_clauses (stmt));
1910 gimple_omp_task_set_clauses (copy, t);
1911 t = unshare_expr (gimple_omp_task_child_fn (stmt));
1912 gimple_omp_task_set_child_fn (copy, t);
1913 t = unshare_expr (gimple_omp_task_data_arg (stmt));
1914 gimple_omp_task_set_data_arg (copy, t);
1915 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
1916 gimple_omp_task_set_copy_fn (copy, t);
1917 t = unshare_expr (gimple_omp_task_arg_size (stmt));
1918 gimple_omp_task_set_arg_size (copy, t);
1919 t = unshare_expr (gimple_omp_task_arg_align (stmt));
1920 gimple_omp_task_set_arg_align (copy, t);
1921 goto copy_omp_body;
1922
1923 case GIMPLE_OMP_CRITICAL:
1924 t = unshare_expr (gimple_omp_critical_name
1925 (as_a <gomp_critical *> (stmt)));
1926 gimple_omp_critical_set_name (as_a <gomp_critical *> (copy), t);
1927 t = unshare_expr (gimple_omp_critical_clauses
1928 (as_a <gomp_critical *> (stmt)));
1929 gimple_omp_critical_set_clauses (as_a <gomp_critical *> (copy), t);
1930 goto copy_omp_body;
1931
1932 case GIMPLE_OMP_ORDERED:
1933 t = unshare_expr (gimple_omp_ordered_clauses
1934 (as_a <gomp_ordered *> (stmt)));
1935 gimple_omp_ordered_set_clauses (as_a <gomp_ordered *> (copy), t);
1936 goto copy_omp_body;
1937
1938 case GIMPLE_OMP_SECTIONS:
1939 t = unshare_expr (gimple_omp_sections_clauses (stmt));
1940 gimple_omp_sections_set_clauses (copy, t);
1941 t = unshare_expr (gimple_omp_sections_control (stmt));
1942 gimple_omp_sections_set_control (copy, t);
1943 goto copy_omp_body;
1944
1945 case GIMPLE_OMP_SINGLE:
1946 {
1947 gomp_single *omp_single_copy = as_a <gomp_single *> (copy);
1948 t = unshare_expr (gimple_omp_single_clauses (stmt));
1949 gimple_omp_single_set_clauses (omp_single_copy, t);
1950 }
1951 goto copy_omp_body;
1952
1953 case GIMPLE_OMP_TARGET:
1954 {
1955 gomp_target *omp_target_stmt = as_a <gomp_target *> (stmt);
1956 gomp_target *omp_target_copy = as_a <gomp_target *> (copy);
1957 t = unshare_expr (gimple_omp_target_clauses (omp_target_stmt));
1958 gimple_omp_target_set_clauses (omp_target_copy, t);
1959 t = unshare_expr (gimple_omp_target_data_arg (omp_target_stmt));
1960 gimple_omp_target_set_data_arg (omp_target_copy, t);
1961 }
1962 goto copy_omp_body;
1963
1964 case GIMPLE_OMP_TEAMS:
1965 {
1966 gomp_teams *omp_teams_copy = as_a <gomp_teams *> (copy);
1967 t = unshare_expr (gimple_omp_teams_clauses (stmt));
1968 gimple_omp_teams_set_clauses (omp_teams_copy, t);
1969 }
1970 /* FALLTHRU */
1971
1972 case GIMPLE_OMP_SECTION:
1973 case GIMPLE_OMP_MASTER:
1974 case GIMPLE_OMP_TASKGROUP:
1975 case GIMPLE_OMP_GRID_BODY:
1976 copy_omp_body:
1977 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
1978 gimple_omp_set_body (copy, new_seq);
1979 break;
1980
1981 case GIMPLE_TRANSACTION:
1982 new_seq = gimple_seq_copy (gimple_transaction_body (
1983 as_a <gtransaction *> (stmt)));
1984 gimple_transaction_set_body (as_a <gtransaction *> (copy),
1985 new_seq);
1986 break;
1987
1988 case GIMPLE_WITH_CLEANUP_EXPR:
1989 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
1990 gimple_wce_set_cleanup (copy, new_seq);
1991 break;
1992
1993 default:
1994 gcc_unreachable ();
1995 }
1996 }
1997
1998 /* Make copy of operands. */
1999 for (i = 0; i < num_ops; i++)
2000 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
2001
2002 if (gimple_has_mem_ops (stmt))
2003 {
2004 gimple_set_vdef (copy, gimple_vdef (stmt));
2005 gimple_set_vuse (copy, gimple_vuse (stmt));
2006 }
2007
2008 /* Clear out SSA operand vectors on COPY. */
2009 if (gimple_has_ops (stmt))
2010 {
2011 gimple_set_use_ops (copy, NULL);
2012
2013 /* SSA operands need to be updated. */
2014 gimple_set_modified (copy, true);
2015 }
2016
2017 if (gimple_debug_nonbind_marker_p (stmt))
2018 cfun->debug_marker_count++;
2019
2020 return copy;
2021 }
2022
2023
2024 /* Return true if statement S has side-effects. We consider a
2025 statement to have side effects if:
2026
2027 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
2028 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
2029
2030 bool
2031 gimple_has_side_effects (const gimple *s)
2032 {
2033 if (is_gimple_debug (s))
2034 return false;
2035
2036 /* We don't have to scan the arguments to check for
2037 volatile arguments, though, at present, we still
2038 do a scan to check for TREE_SIDE_EFFECTS. */
2039 if (gimple_has_volatile_ops (s))
2040 return true;
2041
2042 if (gimple_code (s) == GIMPLE_ASM
2043 && gimple_asm_volatile_p (as_a <const gasm *> (s)))
2044 return true;
2045
2046 if (is_gimple_call (s))
2047 {
2048 int flags = gimple_call_flags (s);
2049
2050 /* An infinite loop is considered a side effect. */
2051 if (!(flags & (ECF_CONST | ECF_PURE))
2052 || (flags & ECF_LOOPING_CONST_OR_PURE))
2053 return true;
2054
2055 return false;
2056 }
2057
2058 return false;
2059 }
2060
2061 /* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
2062 Return true if S can trap. When INCLUDE_MEM is true, check whether
2063 the memory operations could trap. When INCLUDE_STORES is true and
2064 S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked. */
2065
2066 bool
2067 gimple_could_trap_p_1 (gimple *s, bool include_mem, bool include_stores)
2068 {
2069 tree t, div = NULL_TREE;
2070 enum tree_code op;
2071
2072 if (include_mem)
2073 {
2074 unsigned i, start = (is_gimple_assign (s) && !include_stores) ? 1 : 0;
2075
2076 for (i = start; i < gimple_num_ops (s); i++)
2077 if (tree_could_trap_p (gimple_op (s, i)))
2078 return true;
2079 }
2080
2081 switch (gimple_code (s))
2082 {
2083 case GIMPLE_ASM:
2084 return gimple_asm_volatile_p (as_a <gasm *> (s));
2085
2086 case GIMPLE_CALL:
2087 t = gimple_call_fndecl (s);
2088 /* Assume that calls to weak functions may trap. */
2089 if (!t || !DECL_P (t) || DECL_WEAK (t))
2090 return true;
2091 return false;
2092
2093 case GIMPLE_ASSIGN:
2094 t = gimple_expr_type (s);
2095 op = gimple_assign_rhs_code (s);
2096 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
2097 div = gimple_assign_rhs2 (s);
2098 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
2099 (INTEGRAL_TYPE_P (t)
2100 && TYPE_OVERFLOW_TRAPS (t)),
2101 div));
2102
2103 case GIMPLE_COND:
2104 t = TREE_TYPE (gimple_cond_lhs (s));
2105 return operation_could_trap_p (gimple_cond_code (s),
2106 FLOAT_TYPE_P (t), false, NULL_TREE);
2107
2108 default:
2109 break;
2110 }
2111
2112 return false;
2113 }
2114
2115 /* Return true if statement S can trap. */
2116
2117 bool
2118 gimple_could_trap_p (gimple *s)
2119 {
2120 return gimple_could_trap_p_1 (s, true, true);
2121 }
2122
2123 /* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
2124
2125 bool
2126 gimple_assign_rhs_could_trap_p (gimple *s)
2127 {
2128 gcc_assert (is_gimple_assign (s));
2129 return gimple_could_trap_p_1 (s, true, false);
2130 }
2131
2132
2133 /* Print debugging information for gimple stmts generated. */
2134
2135 void
2136 dump_gimple_statistics (void)
2137 {
2138 int i;
2139 uint64_t total_tuples = 0, total_bytes = 0;
2140
2141 if (! GATHER_STATISTICS)
2142 {
2143 fprintf (stderr, "No GIMPLE statistics\n");
2144 return;
2145 }
2146
2147 fprintf (stderr, "\nGIMPLE statements\n");
2148 fprintf (stderr, "Kind Stmts Bytes\n");
2149 fprintf (stderr, "---------------------------------------\n");
2150 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
2151 {
2152 fprintf (stderr, "%-20s %7" PRIu64 " %10" PRIu64 "\n",
2153 gimple_alloc_kind_names[i], gimple_alloc_counts[i],
2154 gimple_alloc_sizes[i]);
2155 total_tuples += gimple_alloc_counts[i];
2156 total_bytes += gimple_alloc_sizes[i];
2157 }
2158 fprintf (stderr, "---------------------------------------\n");
2159 fprintf (stderr, "%-20s %7" PRIu64 " %10" PRIu64 "\n", "Total",
2160 total_tuples, total_bytes);
2161 fprintf (stderr, "---------------------------------------\n");
2162 }
2163
2164
2165 /* Return the number of operands needed on the RHS of a GIMPLE
2166 assignment for an expression with tree code CODE. */
2167
2168 unsigned
2169 get_gimple_rhs_num_ops (enum tree_code code)
2170 {
2171 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
2172
2173 if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
2174 return 1;
2175 else if (rhs_class == GIMPLE_BINARY_RHS)
2176 return 2;
2177 else if (rhs_class == GIMPLE_TERNARY_RHS)
2178 return 3;
2179 else
2180 gcc_unreachable ();
2181 }
2182
2183 #define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
2184 (unsigned char) \
2185 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
2186 : ((TYPE) == tcc_binary \
2187 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
2188 : ((TYPE) == tcc_constant \
2189 || (TYPE) == tcc_declaration \
2190 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
2191 : ((SYM) == TRUTH_AND_EXPR \
2192 || (SYM) == TRUTH_OR_EXPR \
2193 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
2194 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
2195 : ((SYM) == COND_EXPR \
2196 || (SYM) == WIDEN_MULT_PLUS_EXPR \
2197 || (SYM) == WIDEN_MULT_MINUS_EXPR \
2198 || (SYM) == DOT_PROD_EXPR \
2199 || (SYM) == SAD_EXPR \
2200 || (SYM) == REALIGN_LOAD_EXPR \
2201 || (SYM) == VEC_COND_EXPR \
2202 || (SYM) == VEC_PERM_EXPR \
2203 || (SYM) == BIT_INSERT_EXPR) ? GIMPLE_TERNARY_RHS \
2204 : ((SYM) == CONSTRUCTOR \
2205 || (SYM) == OBJ_TYPE_REF \
2206 || (SYM) == ASSERT_EXPR \
2207 || (SYM) == ADDR_EXPR \
2208 || (SYM) == WITH_SIZE_EXPR \
2209 || (SYM) == SSA_NAME) ? GIMPLE_SINGLE_RHS \
2210 : GIMPLE_INVALID_RHS),
2211 #define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
2212
2213 const unsigned char gimple_rhs_class_table[] = {
2214 #include "all-tree.def"
2215 };
2216
2217 #undef DEFTREECODE
2218 #undef END_OF_BASE_TREE_CODES
2219
2220 /* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
2221 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
2222 we failed to create one. */
2223
2224 tree
2225 canonicalize_cond_expr_cond (tree t)
2226 {
2227 /* Strip conversions around boolean operations. */
2228 if (CONVERT_EXPR_P (t)
2229 && (truth_value_p (TREE_CODE (TREE_OPERAND (t, 0)))
2230 || TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0)))
2231 == BOOLEAN_TYPE))
2232 t = TREE_OPERAND (t, 0);
2233
2234 /* For !x use x == 0. */
2235 if (TREE_CODE (t) == TRUTH_NOT_EXPR)
2236 {
2237 tree top0 = TREE_OPERAND (t, 0);
2238 t = build2 (EQ_EXPR, TREE_TYPE (t),
2239 top0, build_int_cst (TREE_TYPE (top0), 0));
2240 }
2241 /* For cmp ? 1 : 0 use cmp. */
2242 else if (TREE_CODE (t) == COND_EXPR
2243 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
2244 && integer_onep (TREE_OPERAND (t, 1))
2245 && integer_zerop (TREE_OPERAND (t, 2)))
2246 {
2247 tree top0 = TREE_OPERAND (t, 0);
2248 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
2249 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
2250 }
2251 /* For x ^ y use x != y. */
2252 else if (TREE_CODE (t) == BIT_XOR_EXPR)
2253 t = build2 (NE_EXPR, TREE_TYPE (t),
2254 TREE_OPERAND (t, 0), TREE_OPERAND (t, 1));
2255
2256 if (is_gimple_condexpr (t))
2257 return t;
2258
2259 return NULL_TREE;
2260 }
2261
2262 /* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
2263 the positions marked by the set ARGS_TO_SKIP. */
2264
2265 gcall *
2266 gimple_call_copy_skip_args (gcall *stmt, bitmap args_to_skip)
2267 {
2268 int i;
2269 int nargs = gimple_call_num_args (stmt);
2270 auto_vec<tree> vargs (nargs);
2271 gcall *new_stmt;
2272
2273 for (i = 0; i < nargs; i++)
2274 if (!bitmap_bit_p (args_to_skip, i))
2275 vargs.quick_push (gimple_call_arg (stmt, i));
2276
2277 if (gimple_call_internal_p (stmt))
2278 new_stmt = gimple_build_call_internal_vec (gimple_call_internal_fn (stmt),
2279 vargs);
2280 else
2281 new_stmt = gimple_build_call_vec (gimple_call_fn (stmt), vargs);
2282
2283 if (gimple_call_lhs (stmt))
2284 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
2285
2286 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
2287 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
2288
2289 if (gimple_has_location (stmt))
2290 gimple_set_location (new_stmt, gimple_location (stmt));
2291 gimple_call_copy_flags (new_stmt, stmt);
2292 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
2293
2294 gimple_set_modified (new_stmt, true);
2295
2296 return new_stmt;
2297 }
2298
2299
2300
2301 /* Return true if the field decls F1 and F2 are at the same offset.
2302
2303 This is intended to be used on GIMPLE types only. */
2304
2305 bool
2306 gimple_compare_field_offset (tree f1, tree f2)
2307 {
2308 if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
2309 {
2310 tree offset1 = DECL_FIELD_OFFSET (f1);
2311 tree offset2 = DECL_FIELD_OFFSET (f2);
2312 return ((offset1 == offset2
2313 /* Once gimplification is done, self-referential offsets are
2314 instantiated as operand #2 of the COMPONENT_REF built for
2315 each access and reset. Therefore, they are not relevant
2316 anymore and fields are interchangeable provided that they
2317 represent the same access. */
2318 || (TREE_CODE (offset1) == PLACEHOLDER_EXPR
2319 && TREE_CODE (offset2) == PLACEHOLDER_EXPR
2320 && (DECL_SIZE (f1) == DECL_SIZE (f2)
2321 || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
2322 && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
2323 || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0))
2324 && DECL_ALIGN (f1) == DECL_ALIGN (f2))
2325 || operand_equal_p (offset1, offset2, 0))
2326 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
2327 DECL_FIELD_BIT_OFFSET (f2)));
2328 }
2329
2330 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
2331 should be, so handle differing ones specially by decomposing
2332 the offset into a byte and bit offset manually. */
2333 if (tree_fits_shwi_p (DECL_FIELD_OFFSET (f1))
2334 && tree_fits_shwi_p (DECL_FIELD_OFFSET (f2)))
2335 {
2336 unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
2337 unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
2338 bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
2339 byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
2340 + bit_offset1 / BITS_PER_UNIT);
2341 bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
2342 byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
2343 + bit_offset2 / BITS_PER_UNIT);
2344 if (byte_offset1 != byte_offset2)
2345 return false;
2346 return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
2347 }
2348
2349 return false;
2350 }
2351
2352
2353 /* Return a type the same as TYPE except unsigned or
2354 signed according to UNSIGNEDP. */
2355
2356 static tree
2357 gimple_signed_or_unsigned_type (bool unsignedp, tree type)
2358 {
2359 tree type1;
2360 int i;
2361
2362 type1 = TYPE_MAIN_VARIANT (type);
2363 if (type1 == signed_char_type_node
2364 || type1 == char_type_node
2365 || type1 == unsigned_char_type_node)
2366 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2367 if (type1 == integer_type_node || type1 == unsigned_type_node)
2368 return unsignedp ? unsigned_type_node : integer_type_node;
2369 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
2370 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2371 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
2372 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2373 if (type1 == long_long_integer_type_node
2374 || type1 == long_long_unsigned_type_node)
2375 return unsignedp
2376 ? long_long_unsigned_type_node
2377 : long_long_integer_type_node;
2378
2379 for (i = 0; i < NUM_INT_N_ENTS; i ++)
2380 if (int_n_enabled_p[i]
2381 && (type1 == int_n_trees[i].unsigned_type
2382 || type1 == int_n_trees[i].signed_type))
2383 return unsignedp
2384 ? int_n_trees[i].unsigned_type
2385 : int_n_trees[i].signed_type;
2386
2387 #if HOST_BITS_PER_WIDE_INT >= 64
2388 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
2389 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2390 #endif
2391 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
2392 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2393 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
2394 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2395 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
2396 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2397 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
2398 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2399
2400 #define GIMPLE_FIXED_TYPES(NAME) \
2401 if (type1 == short_ ## NAME ## _type_node \
2402 || type1 == unsigned_short_ ## NAME ## _type_node) \
2403 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
2404 : short_ ## NAME ## _type_node; \
2405 if (type1 == NAME ## _type_node \
2406 || type1 == unsigned_ ## NAME ## _type_node) \
2407 return unsignedp ? unsigned_ ## NAME ## _type_node \
2408 : NAME ## _type_node; \
2409 if (type1 == long_ ## NAME ## _type_node \
2410 || type1 == unsigned_long_ ## NAME ## _type_node) \
2411 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
2412 : long_ ## NAME ## _type_node; \
2413 if (type1 == long_long_ ## NAME ## _type_node \
2414 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
2415 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
2416 : long_long_ ## NAME ## _type_node;
2417
2418 #define GIMPLE_FIXED_MODE_TYPES(NAME) \
2419 if (type1 == NAME ## _type_node \
2420 || type1 == u ## NAME ## _type_node) \
2421 return unsignedp ? u ## NAME ## _type_node \
2422 : NAME ## _type_node;
2423
2424 #define GIMPLE_FIXED_TYPES_SAT(NAME) \
2425 if (type1 == sat_ ## short_ ## NAME ## _type_node \
2426 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
2427 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
2428 : sat_ ## short_ ## NAME ## _type_node; \
2429 if (type1 == sat_ ## NAME ## _type_node \
2430 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
2431 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
2432 : sat_ ## NAME ## _type_node; \
2433 if (type1 == sat_ ## long_ ## NAME ## _type_node \
2434 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
2435 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
2436 : sat_ ## long_ ## NAME ## _type_node; \
2437 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
2438 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
2439 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
2440 : sat_ ## long_long_ ## NAME ## _type_node;
2441
2442 #define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
2443 if (type1 == sat_ ## NAME ## _type_node \
2444 || type1 == sat_ ## u ## NAME ## _type_node) \
2445 return unsignedp ? sat_ ## u ## NAME ## _type_node \
2446 : sat_ ## NAME ## _type_node;
2447
2448 GIMPLE_FIXED_TYPES (fract);
2449 GIMPLE_FIXED_TYPES_SAT (fract);
2450 GIMPLE_FIXED_TYPES (accum);
2451 GIMPLE_FIXED_TYPES_SAT (accum);
2452
2453 GIMPLE_FIXED_MODE_TYPES (qq);
2454 GIMPLE_FIXED_MODE_TYPES (hq);
2455 GIMPLE_FIXED_MODE_TYPES (sq);
2456 GIMPLE_FIXED_MODE_TYPES (dq);
2457 GIMPLE_FIXED_MODE_TYPES (tq);
2458 GIMPLE_FIXED_MODE_TYPES_SAT (qq);
2459 GIMPLE_FIXED_MODE_TYPES_SAT (hq);
2460 GIMPLE_FIXED_MODE_TYPES_SAT (sq);
2461 GIMPLE_FIXED_MODE_TYPES_SAT (dq);
2462 GIMPLE_FIXED_MODE_TYPES_SAT (tq);
2463 GIMPLE_FIXED_MODE_TYPES (ha);
2464 GIMPLE_FIXED_MODE_TYPES (sa);
2465 GIMPLE_FIXED_MODE_TYPES (da);
2466 GIMPLE_FIXED_MODE_TYPES (ta);
2467 GIMPLE_FIXED_MODE_TYPES_SAT (ha);
2468 GIMPLE_FIXED_MODE_TYPES_SAT (sa);
2469 GIMPLE_FIXED_MODE_TYPES_SAT (da);
2470 GIMPLE_FIXED_MODE_TYPES_SAT (ta);
2471
2472 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
2473 the precision; they have precision set to match their range, but
2474 may use a wider mode to match an ABI. If we change modes, we may
2475 wind up with bad conversions. For INTEGER_TYPEs in C, must check
2476 the precision as well, so as to yield correct results for
2477 bit-field types. C++ does not have these separate bit-field
2478 types, and producing a signed or unsigned variant of an
2479 ENUMERAL_TYPE may cause other problems as well. */
2480 if (!INTEGRAL_TYPE_P (type)
2481 || TYPE_UNSIGNED (type) == unsignedp)
2482 return type;
2483
2484 #define TYPE_OK(node) \
2485 (TYPE_MODE (type) == TYPE_MODE (node) \
2486 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
2487 if (TYPE_OK (signed_char_type_node))
2488 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2489 if (TYPE_OK (integer_type_node))
2490 return unsignedp ? unsigned_type_node : integer_type_node;
2491 if (TYPE_OK (short_integer_type_node))
2492 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2493 if (TYPE_OK (long_integer_type_node))
2494 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2495 if (TYPE_OK (long_long_integer_type_node))
2496 return (unsignedp
2497 ? long_long_unsigned_type_node
2498 : long_long_integer_type_node);
2499
2500 for (i = 0; i < NUM_INT_N_ENTS; i ++)
2501 if (int_n_enabled_p[i]
2502 && TYPE_MODE (type) == int_n_data[i].m
2503 && TYPE_PRECISION (type) == int_n_data[i].bitsize)
2504 return unsignedp
2505 ? int_n_trees[i].unsigned_type
2506 : int_n_trees[i].signed_type;
2507
2508 #if HOST_BITS_PER_WIDE_INT >= 64
2509 if (TYPE_OK (intTI_type_node))
2510 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2511 #endif
2512 if (TYPE_OK (intDI_type_node))
2513 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2514 if (TYPE_OK (intSI_type_node))
2515 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2516 if (TYPE_OK (intHI_type_node))
2517 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2518 if (TYPE_OK (intQI_type_node))
2519 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2520
2521 #undef GIMPLE_FIXED_TYPES
2522 #undef GIMPLE_FIXED_MODE_TYPES
2523 #undef GIMPLE_FIXED_TYPES_SAT
2524 #undef GIMPLE_FIXED_MODE_TYPES_SAT
2525 #undef TYPE_OK
2526
2527 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
2528 }
2529
2530
2531 /* Return an unsigned type the same as TYPE in other respects. */
2532
2533 tree
2534 gimple_unsigned_type (tree type)
2535 {
2536 return gimple_signed_or_unsigned_type (true, type);
2537 }
2538
2539
2540 /* Return a signed type the same as TYPE in other respects. */
2541
2542 tree
2543 gimple_signed_type (tree type)
2544 {
2545 return gimple_signed_or_unsigned_type (false, type);
2546 }
2547
2548
2549 /* Return the typed-based alias set for T, which may be an expression
2550 or a type. Return -1 if we don't do anything special. */
2551
2552 alias_set_type
2553 gimple_get_alias_set (tree t)
2554 {
2555 /* That's all the expressions we handle specially. */
2556 if (!TYPE_P (t))
2557 return -1;
2558
2559 /* For convenience, follow the C standard when dealing with
2560 character types. Any object may be accessed via an lvalue that
2561 has character type. */
2562 if (t == char_type_node
2563 || t == signed_char_type_node
2564 || t == unsigned_char_type_node)
2565 return 0;
2566
2567 /* Allow aliasing between signed and unsigned variants of the same
2568 type. We treat the signed variant as canonical. */
2569 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
2570 {
2571 tree t1 = gimple_signed_type (t);
2572
2573 /* t1 == t can happen for boolean nodes which are always unsigned. */
2574 if (t1 != t)
2575 return get_alias_set (t1);
2576 }
2577
2578 return -1;
2579 }
2580
2581
2582 /* Helper for gimple_ior_addresses_taken_1. */
2583
2584 static bool
2585 gimple_ior_addresses_taken_1 (gimple *, tree addr, tree, void *data)
2586 {
2587 bitmap addresses_taken = (bitmap)data;
2588 addr = get_base_address (addr);
2589 if (addr
2590 && DECL_P (addr))
2591 {
2592 bitmap_set_bit (addresses_taken, DECL_UID (addr));
2593 return true;
2594 }
2595 return false;
2596 }
2597
2598 /* Set the bit for the uid of all decls that have their address taken
2599 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
2600 were any in this stmt. */
2601
2602 bool
2603 gimple_ior_addresses_taken (bitmap addresses_taken, gimple *stmt)
2604 {
2605 return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
2606 gimple_ior_addresses_taken_1);
2607 }
2608
2609
2610 /* Return true when STMTs arguments and return value match those of FNDECL,
2611 a decl of a builtin function. */
2612
2613 bool
2614 gimple_builtin_call_types_compatible_p (const gimple *stmt, tree fndecl)
2615 {
2616 gcc_checking_assert (DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN);
2617
2618 tree ret = gimple_call_lhs (stmt);
2619 if (ret
2620 && !useless_type_conversion_p (TREE_TYPE (ret),
2621 TREE_TYPE (TREE_TYPE (fndecl))))
2622 return false;
2623
2624 tree targs = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
2625 unsigned nargs = gimple_call_num_args (stmt);
2626 for (unsigned i = 0; i < nargs; ++i)
2627 {
2628 /* Variadic args follow. */
2629 if (!targs)
2630 return true;
2631 tree arg = gimple_call_arg (stmt, i);
2632 tree type = TREE_VALUE (targs);
2633 if (!useless_type_conversion_p (type, TREE_TYPE (arg))
2634 /* char/short integral arguments are promoted to int
2635 by several frontends if targetm.calls.promote_prototypes
2636 is true. Allow such promotion too. */
2637 && !(INTEGRAL_TYPE_P (type)
2638 && TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)
2639 && targetm.calls.promote_prototypes (TREE_TYPE (fndecl))
2640 && useless_type_conversion_p (integer_type_node,
2641 TREE_TYPE (arg))))
2642 return false;
2643 targs = TREE_CHAIN (targs);
2644 }
2645 if (targs && !VOID_TYPE_P (TREE_VALUE (targs)))
2646 return false;
2647 return true;
2648 }
2649
2650 /* Return true when STMT is builtins call. */
2651
2652 bool
2653 gimple_call_builtin_p (const gimple *stmt)
2654 {
2655 tree fndecl;
2656 if (is_gimple_call (stmt)
2657 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2658 && DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN)
2659 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2660 return false;
2661 }
2662
2663 /* Return true when STMT is builtins call to CLASS. */
2664
2665 bool
2666 gimple_call_builtin_p (const gimple *stmt, enum built_in_class klass)
2667 {
2668 tree fndecl;
2669 if (is_gimple_call (stmt)
2670 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2671 && DECL_BUILT_IN_CLASS (fndecl) == klass)
2672 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2673 return false;
2674 }
2675
2676 /* Return true when STMT is builtins call to CODE of CLASS. */
2677
2678 bool
2679 gimple_call_builtin_p (const gimple *stmt, enum built_in_function code)
2680 {
2681 tree fndecl;
2682 if (is_gimple_call (stmt)
2683 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2684 && fndecl_built_in_p (fndecl, code))
2685 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2686 return false;
2687 }
2688
2689 /* If CALL is a call to a combined_fn (i.e. an internal function or
2690 a normal built-in function), return its code, otherwise return
2691 CFN_LAST. */
2692
2693 combined_fn
2694 gimple_call_combined_fn (const gimple *stmt)
2695 {
2696 if (const gcall *call = dyn_cast <const gcall *> (stmt))
2697 {
2698 if (gimple_call_internal_p (call))
2699 return as_combined_fn (gimple_call_internal_fn (call));
2700
2701 tree fndecl = gimple_call_fndecl (stmt);
2702 if (fndecl
2703 && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL)
2704 && gimple_builtin_call_types_compatible_p (stmt, fndecl))
2705 return as_combined_fn (DECL_FUNCTION_CODE (fndecl));
2706 }
2707 return CFN_LAST;
2708 }
2709
2710 /* Return true if STMT clobbers memory. STMT is required to be a
2711 GIMPLE_ASM. */
2712
2713 bool
2714 gimple_asm_clobbers_memory_p (const gasm *stmt)
2715 {
2716 unsigned i;
2717
2718 for (i = 0; i < gimple_asm_nclobbers (stmt); i++)
2719 {
2720 tree op = gimple_asm_clobber_op (stmt, i);
2721 if (strcmp (TREE_STRING_POINTER (TREE_VALUE (op)), "memory") == 0)
2722 return true;
2723 }
2724
2725 /* Non-empty basic ASM implicitly clobbers memory. */
2726 if (gimple_asm_input_p (stmt) && strlen (gimple_asm_string (stmt)) != 0)
2727 return true;
2728
2729 return false;
2730 }
2731
2732 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
2733
2734 void
2735 dump_decl_set (FILE *file, bitmap set)
2736 {
2737 if (set)
2738 {
2739 bitmap_iterator bi;
2740 unsigned i;
2741
2742 fprintf (file, "{ ");
2743
2744 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2745 {
2746 fprintf (file, "D.%u", i);
2747 fprintf (file, " ");
2748 }
2749
2750 fprintf (file, "}");
2751 }
2752 else
2753 fprintf (file, "NIL");
2754 }
2755
2756 /* Return true when CALL is a call stmt that definitely doesn't
2757 free any memory or makes it unavailable otherwise. */
2758 bool
2759 nonfreeing_call_p (gimple *call)
2760 {
2761 if (gimple_call_builtin_p (call, BUILT_IN_NORMAL)
2762 && gimple_call_flags (call) & ECF_LEAF)
2763 switch (DECL_FUNCTION_CODE (gimple_call_fndecl (call)))
2764 {
2765 /* Just in case these become ECF_LEAF in the future. */
2766 case BUILT_IN_FREE:
2767 case BUILT_IN_TM_FREE:
2768 case BUILT_IN_REALLOC:
2769 case BUILT_IN_STACK_RESTORE:
2770 return false;
2771 default:
2772 return true;
2773 }
2774 else if (gimple_call_internal_p (call))
2775 switch (gimple_call_internal_fn (call))
2776 {
2777 case IFN_ABNORMAL_DISPATCHER:
2778 return true;
2779 case IFN_ASAN_MARK:
2780 return tree_to_uhwi (gimple_call_arg (call, 0)) == ASAN_MARK_UNPOISON;
2781 default:
2782 if (gimple_call_flags (call) & ECF_LEAF)
2783 return true;
2784 return false;
2785 }
2786
2787 tree fndecl = gimple_call_fndecl (call);
2788 if (!fndecl)
2789 return false;
2790 struct cgraph_node *n = cgraph_node::get (fndecl);
2791 if (!n)
2792 return false;
2793 enum availability availability;
2794 n = n->function_symbol (&availability);
2795 if (!n || availability <= AVAIL_INTERPOSABLE)
2796 return false;
2797 return n->nonfreeing_fn;
2798 }
2799
2800 /* Return true when CALL is a call stmt that definitely need not
2801 be considered to be a memory barrier. */
2802 bool
2803 nonbarrier_call_p (gimple *call)
2804 {
2805 if (gimple_call_flags (call) & (ECF_PURE | ECF_CONST))
2806 return true;
2807 /* Should extend this to have a nonbarrier_fn flag, just as above in
2808 the nonfreeing case. */
2809 return false;
2810 }
2811
2812 /* Callback for walk_stmt_load_store_ops.
2813
2814 Return TRUE if OP will dereference the tree stored in DATA, FALSE
2815 otherwise.
2816
2817 This routine only makes a superficial check for a dereference. Thus
2818 it must only be used if it is safe to return a false negative. */
2819 static bool
2820 check_loadstore (gimple *, tree op, tree, void *data)
2821 {
2822 if (TREE_CODE (op) == MEM_REF || TREE_CODE (op) == TARGET_MEM_REF)
2823 {
2824 /* Some address spaces may legitimately dereference zero. */
2825 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (op));
2826 if (targetm.addr_space.zero_address_valid (as))
2827 return false;
2828
2829 return operand_equal_p (TREE_OPERAND (op, 0), (tree)data, 0);
2830 }
2831 return false;
2832 }
2833
2834
2835 /* Return true if OP can be inferred to be non-NULL after STMT executes,
2836 either by using a pointer dereference or attributes. */
2837 bool
2838 infer_nonnull_range (gimple *stmt, tree op)
2839 {
2840 return infer_nonnull_range_by_dereference (stmt, op)
2841 || infer_nonnull_range_by_attribute (stmt, op);
2842 }
2843
2844 /* Return true if OP can be inferred to be non-NULL after STMT
2845 executes by using a pointer dereference. */
2846 bool
2847 infer_nonnull_range_by_dereference (gimple *stmt, tree op)
2848 {
2849 /* We can only assume that a pointer dereference will yield
2850 non-NULL if -fdelete-null-pointer-checks is enabled. */
2851 if (!flag_delete_null_pointer_checks
2852 || !POINTER_TYPE_P (TREE_TYPE (op))
2853 || gimple_code (stmt) == GIMPLE_ASM)
2854 return false;
2855
2856 if (walk_stmt_load_store_ops (stmt, (void *)op,
2857 check_loadstore, check_loadstore))
2858 return true;
2859
2860 return false;
2861 }
2862
2863 /* Return true if OP can be inferred to be a non-NULL after STMT
2864 executes by using attributes. */
2865 bool
2866 infer_nonnull_range_by_attribute (gimple *stmt, tree op)
2867 {
2868 /* We can only assume that a pointer dereference will yield
2869 non-NULL if -fdelete-null-pointer-checks is enabled. */
2870 if (!flag_delete_null_pointer_checks
2871 || !POINTER_TYPE_P (TREE_TYPE (op))
2872 || gimple_code (stmt) == GIMPLE_ASM)
2873 return false;
2874
2875 if (is_gimple_call (stmt) && !gimple_call_internal_p (stmt))
2876 {
2877 tree fntype = gimple_call_fntype (stmt);
2878 tree attrs = TYPE_ATTRIBUTES (fntype);
2879 for (; attrs; attrs = TREE_CHAIN (attrs))
2880 {
2881 attrs = lookup_attribute ("nonnull", attrs);
2882
2883 /* If "nonnull" wasn't specified, we know nothing about
2884 the argument. */
2885 if (attrs == NULL_TREE)
2886 return false;
2887
2888 /* If "nonnull" applies to all the arguments, then ARG
2889 is non-null if it's in the argument list. */
2890 if (TREE_VALUE (attrs) == NULL_TREE)
2891 {
2892 for (unsigned int i = 0; i < gimple_call_num_args (stmt); i++)
2893 {
2894 if (POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (stmt, i)))
2895 && operand_equal_p (op, gimple_call_arg (stmt, i), 0))
2896 return true;
2897 }
2898 return false;
2899 }
2900
2901 /* Now see if op appears in the nonnull list. */
2902 for (tree t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
2903 {
2904 unsigned int idx = TREE_INT_CST_LOW (TREE_VALUE (t)) - 1;
2905 if (idx < gimple_call_num_args (stmt))
2906 {
2907 tree arg = gimple_call_arg (stmt, idx);
2908 if (operand_equal_p (op, arg, 0))
2909 return true;
2910 }
2911 }
2912 }
2913 }
2914
2915 /* If this function is marked as returning non-null, then we can
2916 infer OP is non-null if it is used in the return statement. */
2917 if (greturn *return_stmt = dyn_cast <greturn *> (stmt))
2918 if (gimple_return_retval (return_stmt)
2919 && operand_equal_p (gimple_return_retval (return_stmt), op, 0)
2920 && lookup_attribute ("returns_nonnull",
2921 TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))))
2922 return true;
2923
2924 return false;
2925 }
2926
2927 /* Compare two case labels. Because the front end should already have
2928 made sure that case ranges do not overlap, it is enough to only compare
2929 the CASE_LOW values of each case label. */
2930
2931 static int
2932 compare_case_labels (const void *p1, const void *p2)
2933 {
2934 const_tree const case1 = *(const_tree const*)p1;
2935 const_tree const case2 = *(const_tree const*)p2;
2936
2937 /* The 'default' case label always goes first. */
2938 if (!CASE_LOW (case1))
2939 return -1;
2940 else if (!CASE_LOW (case2))
2941 return 1;
2942 else
2943 return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
2944 }
2945
2946 /* Sort the case labels in LABEL_VEC in place in ascending order. */
2947
2948 void
2949 sort_case_labels (vec<tree> label_vec)
2950 {
2951 label_vec.qsort (compare_case_labels);
2952 }
2953 \f
2954 /* Prepare a vector of case labels to be used in a GIMPLE_SWITCH statement.
2955
2956 LABELS is a vector that contains all case labels to look at.
2957
2958 INDEX_TYPE is the type of the switch index expression. Case labels
2959 in LABELS are discarded if their values are not in the value range
2960 covered by INDEX_TYPE. The remaining case label values are folded
2961 to INDEX_TYPE.
2962
2963 If a default case exists in LABELS, it is removed from LABELS and
2964 returned in DEFAULT_CASEP. If no default case exists, but the
2965 case labels already cover the whole range of INDEX_TYPE, a default
2966 case is returned pointing to one of the existing case labels.
2967 Otherwise DEFAULT_CASEP is set to NULL_TREE.
2968
2969 DEFAULT_CASEP may be NULL, in which case the above comment doesn't
2970 apply and no action is taken regardless of whether a default case is
2971 found or not. */
2972
2973 void
2974 preprocess_case_label_vec_for_gimple (vec<tree> labels,
2975 tree index_type,
2976 tree *default_casep)
2977 {
2978 tree min_value, max_value;
2979 tree default_case = NULL_TREE;
2980 size_t i, len;
2981
2982 i = 0;
2983 min_value = TYPE_MIN_VALUE (index_type);
2984 max_value = TYPE_MAX_VALUE (index_type);
2985 while (i < labels.length ())
2986 {
2987 tree elt = labels[i];
2988 tree low = CASE_LOW (elt);
2989 tree high = CASE_HIGH (elt);
2990 bool remove_element = FALSE;
2991
2992 if (low)
2993 {
2994 gcc_checking_assert (TREE_CODE (low) == INTEGER_CST);
2995 gcc_checking_assert (!high || TREE_CODE (high) == INTEGER_CST);
2996
2997 /* This is a non-default case label, i.e. it has a value.
2998
2999 See if the case label is reachable within the range of
3000 the index type. Remove out-of-range case values. Turn
3001 case ranges into a canonical form (high > low strictly)
3002 and convert the case label values to the index type.
3003
3004 NB: The type of gimple_switch_index() may be the promoted
3005 type, but the case labels retain the original type. */
3006
3007 if (high)
3008 {
3009 /* This is a case range. Discard empty ranges.
3010 If the bounds or the range are equal, turn this
3011 into a simple (one-value) case. */
3012 int cmp = tree_int_cst_compare (high, low);
3013 if (cmp < 0)
3014 remove_element = TRUE;
3015 else if (cmp == 0)
3016 high = NULL_TREE;
3017 }
3018
3019 if (! high)
3020 {
3021 /* If the simple case value is unreachable, ignore it. */
3022 if ((TREE_CODE (min_value) == INTEGER_CST
3023 && tree_int_cst_compare (low, min_value) < 0)
3024 || (TREE_CODE (max_value) == INTEGER_CST
3025 && tree_int_cst_compare (low, max_value) > 0))
3026 remove_element = TRUE;
3027 else
3028 low = fold_convert (index_type, low);
3029 }
3030 else
3031 {
3032 /* If the entire case range is unreachable, ignore it. */
3033 if ((TREE_CODE (min_value) == INTEGER_CST
3034 && tree_int_cst_compare (high, min_value) < 0)
3035 || (TREE_CODE (max_value) == INTEGER_CST
3036 && tree_int_cst_compare (low, max_value) > 0))
3037 remove_element = TRUE;
3038 else
3039 {
3040 /* If the lower bound is less than the index type's
3041 minimum value, truncate the range bounds. */
3042 if (TREE_CODE (min_value) == INTEGER_CST
3043 && tree_int_cst_compare (low, min_value) < 0)
3044 low = min_value;
3045 low = fold_convert (index_type, low);
3046
3047 /* If the upper bound is greater than the index type's
3048 maximum value, truncate the range bounds. */
3049 if (TREE_CODE (max_value) == INTEGER_CST
3050 && tree_int_cst_compare (high, max_value) > 0)
3051 high = max_value;
3052 high = fold_convert (index_type, high);
3053
3054 /* We may have folded a case range to a one-value case. */
3055 if (tree_int_cst_equal (low, high))
3056 high = NULL_TREE;
3057 }
3058 }
3059
3060 CASE_LOW (elt) = low;
3061 CASE_HIGH (elt) = high;
3062 }
3063 else
3064 {
3065 gcc_assert (!default_case);
3066 default_case = elt;
3067 /* The default case must be passed separately to the
3068 gimple_build_switch routine. But if DEFAULT_CASEP
3069 is NULL, we do not remove the default case (it would
3070 be completely lost). */
3071 if (default_casep)
3072 remove_element = TRUE;
3073 }
3074
3075 if (remove_element)
3076 labels.ordered_remove (i);
3077 else
3078 i++;
3079 }
3080 len = i;
3081
3082 if (!labels.is_empty ())
3083 sort_case_labels (labels);
3084
3085 if (default_casep && !default_case)
3086 {
3087 /* If the switch has no default label, add one, so that we jump
3088 around the switch body. If the labels already cover the whole
3089 range of the switch index_type, add the default label pointing
3090 to one of the existing labels. */
3091 if (len
3092 && TYPE_MIN_VALUE (index_type)
3093 && TYPE_MAX_VALUE (index_type)
3094 && tree_int_cst_equal (CASE_LOW (labels[0]),
3095 TYPE_MIN_VALUE (index_type)))
3096 {
3097 tree low, high = CASE_HIGH (labels[len - 1]);
3098 if (!high)
3099 high = CASE_LOW (labels[len - 1]);
3100 if (tree_int_cst_equal (high, TYPE_MAX_VALUE (index_type)))
3101 {
3102 tree widest_label = labels[0];
3103 for (i = 1; i < len; i++)
3104 {
3105 high = CASE_LOW (labels[i]);
3106 low = CASE_HIGH (labels[i - 1]);
3107 if (!low)
3108 low = CASE_LOW (labels[i - 1]);
3109
3110 if (CASE_HIGH (labels[i]) != NULL_TREE
3111 && (CASE_HIGH (widest_label) == NULL_TREE
3112 || (wi::gtu_p
3113 (wi::to_wide (CASE_HIGH (labels[i]))
3114 - wi::to_wide (CASE_LOW (labels[i])),
3115 wi::to_wide (CASE_HIGH (widest_label))
3116 - wi::to_wide (CASE_LOW (widest_label))))))
3117 widest_label = labels[i];
3118
3119 if (wi::to_wide (low) + 1 != wi::to_wide (high))
3120 break;
3121 }
3122 if (i == len)
3123 {
3124 /* Designate the label with the widest range to be the
3125 default label. */
3126 tree label = CASE_LABEL (widest_label);
3127 default_case = build_case_label (NULL_TREE, NULL_TREE,
3128 label);
3129 }
3130 }
3131 }
3132 }
3133
3134 if (default_casep)
3135 *default_casep = default_case;
3136 }
3137
3138 /* Set the location of all statements in SEQ to LOC. */
3139
3140 void
3141 gimple_seq_set_location (gimple_seq seq, location_t loc)
3142 {
3143 for (gimple_stmt_iterator i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
3144 gimple_set_location (gsi_stmt (i), loc);
3145 }
3146
3147 /* Release SSA_NAMEs in SEQ as well as the GIMPLE statements. */
3148
3149 void
3150 gimple_seq_discard (gimple_seq seq)
3151 {
3152 gimple_stmt_iterator gsi;
3153
3154 for (gsi = gsi_start (seq); !gsi_end_p (gsi); )
3155 {
3156 gimple *stmt = gsi_stmt (gsi);
3157 gsi_remove (&gsi, true);
3158 release_defs (stmt);
3159 ggc_free (stmt);
3160 }
3161 }
3162
3163 /* See if STMT now calls function that takes no parameters and if so, drop
3164 call arguments. This is used when devirtualization machinery redirects
3165 to __builtin_unreachable or __cxa_pure_virtual. */
3166
3167 void
3168 maybe_remove_unused_call_args (struct function *fn, gimple *stmt)
3169 {
3170 tree decl = gimple_call_fndecl (stmt);
3171 if (TYPE_ARG_TYPES (TREE_TYPE (decl))
3172 && TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl))) == void_type_node
3173 && gimple_call_num_args (stmt))
3174 {
3175 gimple_set_num_ops (stmt, 3);
3176 update_stmt_fn (fn, stmt);
3177 }
3178 }
3179
3180 /* Return false if STMT will likely expand to real function call. */
3181
3182 bool
3183 gimple_inexpensive_call_p (gcall *stmt)
3184 {
3185 if (gimple_call_internal_p (stmt))
3186 return true;
3187 tree decl = gimple_call_fndecl (stmt);
3188 if (decl && is_inexpensive_builtin (decl))
3189 return true;
3190 return false;
3191 }
3192
3193 #if CHECKING_P
3194
3195 namespace selftest {
3196
3197 /* Selftests for core gimple structures. */
3198
3199 /* Verify that STMT is pretty-printed as EXPECTED.
3200 Helper function for selftests. */
3201
3202 static void
3203 verify_gimple_pp (const char *expected, gimple *stmt)
3204 {
3205 pretty_printer pp;
3206 pp_gimple_stmt_1 (&pp, stmt, 0 /* spc */, TDF_NONE /* flags */);
3207 ASSERT_STREQ (expected, pp_formatted_text (&pp));
3208 }
3209
3210 /* Build a GIMPLE_ASSIGN equivalent to
3211 tmp = 5;
3212 and verify various properties of it. */
3213
3214 static void
3215 test_assign_single ()
3216 {
3217 tree type = integer_type_node;
3218 tree lhs = build_decl (UNKNOWN_LOCATION, VAR_DECL,
3219 get_identifier ("tmp"),
3220 type);
3221 tree rhs = build_int_cst (type, 5);
3222 gassign *stmt = gimple_build_assign (lhs, rhs);
3223 verify_gimple_pp ("tmp = 5;", stmt);
3224
3225 ASSERT_TRUE (is_gimple_assign (stmt));
3226 ASSERT_EQ (lhs, gimple_assign_lhs (stmt));
3227 ASSERT_EQ (lhs, gimple_get_lhs (stmt));
3228 ASSERT_EQ (rhs, gimple_assign_rhs1 (stmt));
3229 ASSERT_EQ (NULL, gimple_assign_rhs2 (stmt));
3230 ASSERT_EQ (NULL, gimple_assign_rhs3 (stmt));
3231 ASSERT_TRUE (gimple_assign_single_p (stmt));
3232 ASSERT_EQ (INTEGER_CST, gimple_assign_rhs_code (stmt));
3233 }
3234
3235 /* Build a GIMPLE_ASSIGN equivalent to
3236 tmp = a * b;
3237 and verify various properties of it. */
3238
3239 static void
3240 test_assign_binop ()
3241 {
3242 tree type = integer_type_node;
3243 tree lhs = build_decl (UNKNOWN_LOCATION, VAR_DECL,
3244 get_identifier ("tmp"),
3245 type);
3246 tree a = build_decl (UNKNOWN_LOCATION, VAR_DECL,
3247 get_identifier ("a"),
3248 type);
3249 tree b = build_decl (UNKNOWN_LOCATION, VAR_DECL,
3250 get_identifier ("b"),
3251 type);
3252 gassign *stmt = gimple_build_assign (lhs, MULT_EXPR, a, b);
3253 verify_gimple_pp ("tmp = a * b;", stmt);
3254
3255 ASSERT_TRUE (is_gimple_assign (stmt));
3256 ASSERT_EQ (lhs, gimple_assign_lhs (stmt));
3257 ASSERT_EQ (lhs, gimple_get_lhs (stmt));
3258 ASSERT_EQ (a, gimple_assign_rhs1 (stmt));
3259 ASSERT_EQ (b, gimple_assign_rhs2 (stmt));
3260 ASSERT_EQ (NULL, gimple_assign_rhs3 (stmt));
3261 ASSERT_FALSE (gimple_assign_single_p (stmt));
3262 ASSERT_EQ (MULT_EXPR, gimple_assign_rhs_code (stmt));
3263 }
3264
3265 /* Build a GIMPLE_NOP and verify various properties of it. */
3266
3267 static void
3268 test_nop_stmt ()
3269 {
3270 gimple *stmt = gimple_build_nop ();
3271 verify_gimple_pp ("GIMPLE_NOP", stmt);
3272 ASSERT_EQ (GIMPLE_NOP, gimple_code (stmt));
3273 ASSERT_EQ (NULL, gimple_get_lhs (stmt));
3274 ASSERT_FALSE (gimple_assign_single_p (stmt));
3275 }
3276
3277 /* Build a GIMPLE_RETURN equivalent to
3278 return 7;
3279 and verify various properties of it. */
3280
3281 static void
3282 test_return_stmt ()
3283 {
3284 tree type = integer_type_node;
3285 tree val = build_int_cst (type, 7);
3286 greturn *stmt = gimple_build_return (val);
3287 verify_gimple_pp ("return 7;", stmt);
3288
3289 ASSERT_EQ (GIMPLE_RETURN, gimple_code (stmt));
3290 ASSERT_EQ (NULL, gimple_get_lhs (stmt));
3291 ASSERT_EQ (val, gimple_return_retval (stmt));
3292 ASSERT_FALSE (gimple_assign_single_p (stmt));
3293 }
3294
3295 /* Build a GIMPLE_RETURN equivalent to
3296 return;
3297 and verify various properties of it. */
3298
3299 static void
3300 test_return_without_value ()
3301 {
3302 greturn *stmt = gimple_build_return (NULL);
3303 verify_gimple_pp ("return;", stmt);
3304
3305 ASSERT_EQ (GIMPLE_RETURN, gimple_code (stmt));
3306 ASSERT_EQ (NULL, gimple_get_lhs (stmt));
3307 ASSERT_EQ (NULL, gimple_return_retval (stmt));
3308 ASSERT_FALSE (gimple_assign_single_p (stmt));
3309 }
3310
3311 /* Run all of the selftests within this file. */
3312
3313 void
3314 gimple_c_tests ()
3315 {
3316 test_assign_single ();
3317 test_assign_binop ();
3318 test_nop_stmt ();
3319 test_return_stmt ();
3320 test_return_without_value ();
3321 }
3322
3323 } // namespace selftest
3324
3325
3326 #endif /* CHECKING_P */