re PR libfortran/47894 (Documentation text for VERIFY intrinsic function is wrong.)
[gcc.git] / gcc / gimple.c
1 /* Gimple IR support functions.
2
3 Copyright 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "target.h"
27 #include "tree.h"
28 #include "ggc.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "gimple.h"
32 #include "diagnostic.h"
33 #include "tree-flow.h"
34 #include "value-prof.h"
35 #include "flags.h"
36 #include "alias.h"
37 #include "demangle.h"
38 #include "langhooks.h"
39
40 /* Global type table. FIXME lto, it should be possible to re-use some
41 of the type hashing routines in tree.c (type_hash_canon, type_hash_lookup,
42 etc), but those assume that types were built with the various
43 build_*_type routines which is not the case with the streamer. */
44 static GTY((if_marked ("ggc_marked_p"), param_is (union tree_node)))
45 htab_t gimple_types;
46 static GTY((if_marked ("ggc_marked_p"), param_is (union tree_node)))
47 htab_t gimple_canonical_types;
48 static GTY((if_marked ("tree_int_map_marked_p"), param_is (struct tree_int_map)))
49 htab_t type_hash_cache;
50 static GTY((if_marked ("tree_int_map_marked_p"), param_is (struct tree_int_map)))
51 htab_t canonical_type_hash_cache;
52
53 /* Global type comparison cache. This is by TYPE_UID for space efficiency
54 and thus cannot use and does not need GC. */
55 static htab_t gtc_visited;
56 static struct obstack gtc_ob;
57
58 /* All the tuples have their operand vector (if present) at the very bottom
59 of the structure. Therefore, the offset required to find the
60 operands vector the size of the structure minus the size of the 1
61 element tree array at the end (see gimple_ops). */
62 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
63 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
64 EXPORTED_CONST size_t gimple_ops_offset_[] = {
65 #include "gsstruct.def"
66 };
67 #undef DEFGSSTRUCT
68
69 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof(struct STRUCT),
70 static const size_t gsstruct_code_size[] = {
71 #include "gsstruct.def"
72 };
73 #undef DEFGSSTRUCT
74
75 #define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
76 const char *const gimple_code_name[] = {
77 #include "gimple.def"
78 };
79 #undef DEFGSCODE
80
81 #define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
82 EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
83 #include "gimple.def"
84 };
85 #undef DEFGSCODE
86
87 #ifdef GATHER_STATISTICS
88 /* Gimple stats. */
89
90 int gimple_alloc_counts[(int) gimple_alloc_kind_all];
91 int gimple_alloc_sizes[(int) gimple_alloc_kind_all];
92
93 /* Keep in sync with gimple.h:enum gimple_alloc_kind. */
94 static const char * const gimple_alloc_kind_names[] = {
95 "assignments",
96 "phi nodes",
97 "conditionals",
98 "sequences",
99 "everything else"
100 };
101
102 #endif /* GATHER_STATISTICS */
103
104 /* A cache of gimple_seq objects. Sequences are created and destroyed
105 fairly often during gimplification. */
106 static GTY ((deletable)) struct gimple_seq_d *gimple_seq_cache;
107
108 /* Private API manipulation functions shared only with some
109 other files. */
110 extern void gimple_set_stored_syms (gimple, bitmap, bitmap_obstack *);
111 extern void gimple_set_loaded_syms (gimple, bitmap, bitmap_obstack *);
112
113 /* Gimple tuple constructors.
114 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
115 be passed a NULL to start with an empty sequence. */
116
117 /* Set the code for statement G to CODE. */
118
119 static inline void
120 gimple_set_code (gimple g, enum gimple_code code)
121 {
122 g->gsbase.code = code;
123 }
124
125 /* Return the number of bytes needed to hold a GIMPLE statement with
126 code CODE. */
127
128 static inline size_t
129 gimple_size (enum gimple_code code)
130 {
131 return gsstruct_code_size[gss_for_code (code)];
132 }
133
134 /* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
135 operands. */
136
137 gimple
138 gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
139 {
140 size_t size;
141 gimple stmt;
142
143 size = gimple_size (code);
144 if (num_ops > 0)
145 size += sizeof (tree) * (num_ops - 1);
146
147 #ifdef GATHER_STATISTICS
148 {
149 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
150 gimple_alloc_counts[(int) kind]++;
151 gimple_alloc_sizes[(int) kind] += size;
152 }
153 #endif
154
155 stmt = ggc_alloc_cleared_gimple_statement_d_stat (size PASS_MEM_STAT);
156 gimple_set_code (stmt, code);
157 gimple_set_num_ops (stmt, num_ops);
158
159 /* Do not call gimple_set_modified here as it has other side
160 effects and this tuple is still not completely built. */
161 stmt->gsbase.modified = 1;
162
163 return stmt;
164 }
165
166 /* Set SUBCODE to be the code of the expression computed by statement G. */
167
168 static inline void
169 gimple_set_subcode (gimple g, unsigned subcode)
170 {
171 /* We only have 16 bits for the RHS code. Assert that we are not
172 overflowing it. */
173 gcc_assert (subcode < (1 << 16));
174 g->gsbase.subcode = subcode;
175 }
176
177
178
179 /* Build a tuple with operands. CODE is the statement to build (which
180 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the sub-code
181 for the new tuple. NUM_OPS is the number of operands to allocate. */
182
183 #define gimple_build_with_ops(c, s, n) \
184 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
185
186 static gimple
187 gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
188 unsigned num_ops MEM_STAT_DECL)
189 {
190 gimple s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT);
191 gimple_set_subcode (s, subcode);
192
193 return s;
194 }
195
196
197 /* Build a GIMPLE_RETURN statement returning RETVAL. */
198
199 gimple
200 gimple_build_return (tree retval)
201 {
202 gimple s = gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK, 1);
203 if (retval)
204 gimple_return_set_retval (s, retval);
205 return s;
206 }
207
208 /* Reset alias information on call S. */
209
210 void
211 gimple_call_reset_alias_info (gimple s)
212 {
213 if (gimple_call_flags (s) & ECF_CONST)
214 memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
215 else
216 pt_solution_reset (gimple_call_use_set (s));
217 if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
218 memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
219 else
220 pt_solution_reset (gimple_call_clobber_set (s));
221 }
222
223 /* Helper for gimple_build_call, gimple_build_call_vec and
224 gimple_build_call_from_tree. Build the basic components of a
225 GIMPLE_CALL statement to function FN with NARGS arguments. */
226
227 static inline gimple
228 gimple_build_call_1 (tree fn, unsigned nargs)
229 {
230 gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3);
231 if (TREE_CODE (fn) == FUNCTION_DECL)
232 fn = build_fold_addr_expr (fn);
233 gimple_set_op (s, 1, fn);
234 gimple_call_reset_alias_info (s);
235 return s;
236 }
237
238
239 /* Build a GIMPLE_CALL statement to function FN with the arguments
240 specified in vector ARGS. */
241
242 gimple
243 gimple_build_call_vec (tree fn, VEC(tree, heap) *args)
244 {
245 unsigned i;
246 unsigned nargs = VEC_length (tree, args);
247 gimple call = gimple_build_call_1 (fn, nargs);
248
249 for (i = 0; i < nargs; i++)
250 gimple_call_set_arg (call, i, VEC_index (tree, args, i));
251
252 return call;
253 }
254
255
256 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
257 arguments. The ... are the arguments. */
258
259 gimple
260 gimple_build_call (tree fn, unsigned nargs, ...)
261 {
262 va_list ap;
263 gimple call;
264 unsigned i;
265
266 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
267
268 call = gimple_build_call_1 (fn, nargs);
269
270 va_start (ap, nargs);
271 for (i = 0; i < nargs; i++)
272 gimple_call_set_arg (call, i, va_arg (ap, tree));
273 va_end (ap);
274
275 return call;
276 }
277
278
279 /* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
280 assumed to be in GIMPLE form already. Minimal checking is done of
281 this fact. */
282
283 gimple
284 gimple_build_call_from_tree (tree t)
285 {
286 unsigned i, nargs;
287 gimple call;
288 tree fndecl = get_callee_fndecl (t);
289
290 gcc_assert (TREE_CODE (t) == CALL_EXPR);
291
292 nargs = call_expr_nargs (t);
293 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
294
295 for (i = 0; i < nargs; i++)
296 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
297
298 gimple_set_block (call, TREE_BLOCK (t));
299
300 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
301 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
302 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
303 gimple_call_set_cannot_inline (call, CALL_CANNOT_INLINE_P (t));
304 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
305 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
306 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
307 gimple_call_set_nothrow (call, TREE_NOTHROW (t));
308 gimple_set_no_warning (call, TREE_NO_WARNING (t));
309
310 return call;
311 }
312
313
314 /* Extract the operands and code for expression EXPR into *SUBCODE_P,
315 *OP1_P, *OP2_P and *OP3_P respectively. */
316
317 void
318 extract_ops_from_tree_1 (tree expr, enum tree_code *subcode_p, tree *op1_p,
319 tree *op2_p, tree *op3_p)
320 {
321 enum gimple_rhs_class grhs_class;
322
323 *subcode_p = TREE_CODE (expr);
324 grhs_class = get_gimple_rhs_class (*subcode_p);
325
326 if (grhs_class == GIMPLE_TERNARY_RHS)
327 {
328 *op1_p = TREE_OPERAND (expr, 0);
329 *op2_p = TREE_OPERAND (expr, 1);
330 *op3_p = TREE_OPERAND (expr, 2);
331 }
332 else if (grhs_class == GIMPLE_BINARY_RHS)
333 {
334 *op1_p = TREE_OPERAND (expr, 0);
335 *op2_p = TREE_OPERAND (expr, 1);
336 *op3_p = NULL_TREE;
337 }
338 else if (grhs_class == GIMPLE_UNARY_RHS)
339 {
340 *op1_p = TREE_OPERAND (expr, 0);
341 *op2_p = NULL_TREE;
342 *op3_p = NULL_TREE;
343 }
344 else if (grhs_class == GIMPLE_SINGLE_RHS)
345 {
346 *op1_p = expr;
347 *op2_p = NULL_TREE;
348 *op3_p = NULL_TREE;
349 }
350 else
351 gcc_unreachable ();
352 }
353
354
355 /* Build a GIMPLE_ASSIGN statement.
356
357 LHS of the assignment.
358 RHS of the assignment which can be unary or binary. */
359
360 gimple
361 gimple_build_assign_stat (tree lhs, tree rhs MEM_STAT_DECL)
362 {
363 enum tree_code subcode;
364 tree op1, op2, op3;
365
366 extract_ops_from_tree_1 (rhs, &subcode, &op1, &op2, &op3);
367 return gimple_build_assign_with_ops_stat (subcode, lhs, op1, op2, op3
368 PASS_MEM_STAT);
369 }
370
371
372 /* Build a GIMPLE_ASSIGN statement with sub-code SUBCODE and operands
373 OP1 and OP2. If OP2 is NULL then SUBCODE must be of class
374 GIMPLE_UNARY_RHS or GIMPLE_SINGLE_RHS. */
375
376 gimple
377 gimple_build_assign_with_ops_stat (enum tree_code subcode, tree lhs, tree op1,
378 tree op2, tree op3 MEM_STAT_DECL)
379 {
380 unsigned num_ops;
381 gimple p;
382
383 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
384 code). */
385 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
386
387 p = gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
388 PASS_MEM_STAT);
389 gimple_assign_set_lhs (p, lhs);
390 gimple_assign_set_rhs1 (p, op1);
391 if (op2)
392 {
393 gcc_assert (num_ops > 2);
394 gimple_assign_set_rhs2 (p, op2);
395 }
396
397 if (op3)
398 {
399 gcc_assert (num_ops > 3);
400 gimple_assign_set_rhs3 (p, op3);
401 }
402
403 return p;
404 }
405
406
407 /* Build a new GIMPLE_ASSIGN tuple and append it to the end of *SEQ_P.
408
409 DST/SRC are the destination and source respectively. You can pass
410 ungimplified trees in DST or SRC, in which case they will be
411 converted to a gimple operand if necessary.
412
413 This function returns the newly created GIMPLE_ASSIGN tuple. */
414
415 gimple
416 gimplify_assign (tree dst, tree src, gimple_seq *seq_p)
417 {
418 tree t = build2 (MODIFY_EXPR, TREE_TYPE (dst), dst, src);
419 gimplify_and_add (t, seq_p);
420 ggc_free (t);
421 return gimple_seq_last_stmt (*seq_p);
422 }
423
424
425 /* Build a GIMPLE_COND statement.
426
427 PRED is the condition used to compare LHS and the RHS.
428 T_LABEL is the label to jump to if the condition is true.
429 F_LABEL is the label to jump to otherwise. */
430
431 gimple
432 gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
433 tree t_label, tree f_label)
434 {
435 gimple p;
436
437 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
438 p = gimple_build_with_ops (GIMPLE_COND, pred_code, 4);
439 gimple_cond_set_lhs (p, lhs);
440 gimple_cond_set_rhs (p, rhs);
441 gimple_cond_set_true_label (p, t_label);
442 gimple_cond_set_false_label (p, f_label);
443 return p;
444 }
445
446
447 /* Extract operands for a GIMPLE_COND statement out of COND_EXPR tree COND. */
448
449 void
450 gimple_cond_get_ops_from_tree (tree cond, enum tree_code *code_p,
451 tree *lhs_p, tree *rhs_p)
452 {
453 gcc_assert (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison
454 || TREE_CODE (cond) == TRUTH_NOT_EXPR
455 || is_gimple_min_invariant (cond)
456 || SSA_VAR_P (cond));
457
458 extract_ops_from_tree (cond, code_p, lhs_p, rhs_p);
459
460 /* Canonicalize conditionals of the form 'if (!VAL)'. */
461 if (*code_p == TRUTH_NOT_EXPR)
462 {
463 *code_p = EQ_EXPR;
464 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
465 *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
466 }
467 /* Canonicalize conditionals of the form 'if (VAL)' */
468 else if (TREE_CODE_CLASS (*code_p) != tcc_comparison)
469 {
470 *code_p = NE_EXPR;
471 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
472 *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
473 }
474 }
475
476
477 /* Build a GIMPLE_COND statement from the conditional expression tree
478 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
479
480 gimple
481 gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
482 {
483 enum tree_code code;
484 tree lhs, rhs;
485
486 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
487 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
488 }
489
490 /* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
491 boolean expression tree COND. */
492
493 void
494 gimple_cond_set_condition_from_tree (gimple stmt, tree cond)
495 {
496 enum tree_code code;
497 tree lhs, rhs;
498
499 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
500 gimple_cond_set_condition (stmt, code, lhs, rhs);
501 }
502
503 /* Build a GIMPLE_LABEL statement for LABEL. */
504
505 gimple
506 gimple_build_label (tree label)
507 {
508 gimple p = gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1);
509 gimple_label_set_label (p, label);
510 return p;
511 }
512
513 /* Build a GIMPLE_GOTO statement to label DEST. */
514
515 gimple
516 gimple_build_goto (tree dest)
517 {
518 gimple p = gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1);
519 gimple_goto_set_dest (p, dest);
520 return p;
521 }
522
523
524 /* Build a GIMPLE_NOP statement. */
525
526 gimple
527 gimple_build_nop (void)
528 {
529 return gimple_alloc (GIMPLE_NOP, 0);
530 }
531
532
533 /* Build a GIMPLE_BIND statement.
534 VARS are the variables in BODY.
535 BLOCK is the containing block. */
536
537 gimple
538 gimple_build_bind (tree vars, gimple_seq body, tree block)
539 {
540 gimple p = gimple_alloc (GIMPLE_BIND, 0);
541 gimple_bind_set_vars (p, vars);
542 if (body)
543 gimple_bind_set_body (p, body);
544 if (block)
545 gimple_bind_set_block (p, block);
546 return p;
547 }
548
549 /* Helper function to set the simple fields of a asm stmt.
550
551 STRING is a pointer to a string that is the asm blocks assembly code.
552 NINPUT is the number of register inputs.
553 NOUTPUT is the number of register outputs.
554 NCLOBBERS is the number of clobbered registers.
555 */
556
557 static inline gimple
558 gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
559 unsigned nclobbers, unsigned nlabels)
560 {
561 gimple p;
562 int size = strlen (string);
563
564 /* ASMs with labels cannot have outputs. This should have been
565 enforced by the front end. */
566 gcc_assert (nlabels == 0 || noutputs == 0);
567
568 p = gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
569 ninputs + noutputs + nclobbers + nlabels);
570
571 p->gimple_asm.ni = ninputs;
572 p->gimple_asm.no = noutputs;
573 p->gimple_asm.nc = nclobbers;
574 p->gimple_asm.nl = nlabels;
575 p->gimple_asm.string = ggc_alloc_string (string, size);
576
577 #ifdef GATHER_STATISTICS
578 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
579 #endif
580
581 return p;
582 }
583
584 /* Build a GIMPLE_ASM statement.
585
586 STRING is the assembly code.
587 NINPUT is the number of register inputs.
588 NOUTPUT is the number of register outputs.
589 NCLOBBERS is the number of clobbered registers.
590 INPUTS is a vector of the input register parameters.
591 OUTPUTS is a vector of the output register parameters.
592 CLOBBERS is a vector of the clobbered register parameters.
593 LABELS is a vector of destination labels. */
594
595 gimple
596 gimple_build_asm_vec (const char *string, VEC(tree,gc)* inputs,
597 VEC(tree,gc)* outputs, VEC(tree,gc)* clobbers,
598 VEC(tree,gc)* labels)
599 {
600 gimple p;
601 unsigned i;
602
603 p = gimple_build_asm_1 (string,
604 VEC_length (tree, inputs),
605 VEC_length (tree, outputs),
606 VEC_length (tree, clobbers),
607 VEC_length (tree, labels));
608
609 for (i = 0; i < VEC_length (tree, inputs); i++)
610 gimple_asm_set_input_op (p, i, VEC_index (tree, inputs, i));
611
612 for (i = 0; i < VEC_length (tree, outputs); i++)
613 gimple_asm_set_output_op (p, i, VEC_index (tree, outputs, i));
614
615 for (i = 0; i < VEC_length (tree, clobbers); i++)
616 gimple_asm_set_clobber_op (p, i, VEC_index (tree, clobbers, i));
617
618 for (i = 0; i < VEC_length (tree, labels); i++)
619 gimple_asm_set_label_op (p, i, VEC_index (tree, labels, i));
620
621 return p;
622 }
623
624 /* Build a GIMPLE_CATCH statement.
625
626 TYPES are the catch types.
627 HANDLER is the exception handler. */
628
629 gimple
630 gimple_build_catch (tree types, gimple_seq handler)
631 {
632 gimple p = gimple_alloc (GIMPLE_CATCH, 0);
633 gimple_catch_set_types (p, types);
634 if (handler)
635 gimple_catch_set_handler (p, handler);
636
637 return p;
638 }
639
640 /* Build a GIMPLE_EH_FILTER statement.
641
642 TYPES are the filter's types.
643 FAILURE is the filter's failure action. */
644
645 gimple
646 gimple_build_eh_filter (tree types, gimple_seq failure)
647 {
648 gimple p = gimple_alloc (GIMPLE_EH_FILTER, 0);
649 gimple_eh_filter_set_types (p, types);
650 if (failure)
651 gimple_eh_filter_set_failure (p, failure);
652
653 return p;
654 }
655
656 /* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
657
658 gimple
659 gimple_build_eh_must_not_throw (tree decl)
660 {
661 gimple p = gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0);
662
663 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
664 gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
665 gimple_eh_must_not_throw_set_fndecl (p, decl);
666
667 return p;
668 }
669
670 /* Build a GIMPLE_TRY statement.
671
672 EVAL is the expression to evaluate.
673 CLEANUP is the cleanup expression.
674 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
675 whether this is a try/catch or a try/finally respectively. */
676
677 gimple
678 gimple_build_try (gimple_seq eval, gimple_seq cleanup,
679 enum gimple_try_flags kind)
680 {
681 gimple p;
682
683 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
684 p = gimple_alloc (GIMPLE_TRY, 0);
685 gimple_set_subcode (p, kind);
686 if (eval)
687 gimple_try_set_eval (p, eval);
688 if (cleanup)
689 gimple_try_set_cleanup (p, cleanup);
690
691 return p;
692 }
693
694 /* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
695
696 CLEANUP is the cleanup expression. */
697
698 gimple
699 gimple_build_wce (gimple_seq cleanup)
700 {
701 gimple p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
702 if (cleanup)
703 gimple_wce_set_cleanup (p, cleanup);
704
705 return p;
706 }
707
708
709 /* Build a GIMPLE_RESX statement. */
710
711 gimple
712 gimple_build_resx (int region)
713 {
714 gimple p = gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0);
715 p->gimple_eh_ctrl.region = region;
716 return p;
717 }
718
719
720 /* The helper for constructing a gimple switch statement.
721 INDEX is the switch's index.
722 NLABELS is the number of labels in the switch excluding the default.
723 DEFAULT_LABEL is the default label for the switch statement. */
724
725 gimple
726 gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
727 {
728 /* nlabels + 1 default label + 1 index. */
729 gimple p = gimple_build_with_ops (GIMPLE_SWITCH, ERROR_MARK,
730 1 + (default_label != NULL) + nlabels);
731 gimple_switch_set_index (p, index);
732 if (default_label)
733 gimple_switch_set_default_label (p, default_label);
734 return p;
735 }
736
737
738 /* Build a GIMPLE_SWITCH statement.
739
740 INDEX is the switch's index.
741 NLABELS is the number of labels in the switch excluding the DEFAULT_LABEL.
742 ... are the labels excluding the default. */
743
744 gimple
745 gimple_build_switch (unsigned nlabels, tree index, tree default_label, ...)
746 {
747 va_list al;
748 unsigned i, offset;
749 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
750
751 /* Store the rest of the labels. */
752 va_start (al, default_label);
753 offset = (default_label != NULL);
754 for (i = 0; i < nlabels; i++)
755 gimple_switch_set_label (p, i + offset, va_arg (al, tree));
756 va_end (al);
757
758 return p;
759 }
760
761
762 /* Build a GIMPLE_SWITCH statement.
763
764 INDEX is the switch's index.
765 DEFAULT_LABEL is the default label
766 ARGS is a vector of labels excluding the default. */
767
768 gimple
769 gimple_build_switch_vec (tree index, tree default_label, VEC(tree, heap) *args)
770 {
771 unsigned i, offset, nlabels = VEC_length (tree, args);
772 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
773
774 /* Copy the labels from the vector to the switch statement. */
775 offset = (default_label != NULL);
776 for (i = 0; i < nlabels; i++)
777 gimple_switch_set_label (p, i + offset, VEC_index (tree, args, i));
778
779 return p;
780 }
781
782 /* Build a GIMPLE_EH_DISPATCH statement. */
783
784 gimple
785 gimple_build_eh_dispatch (int region)
786 {
787 gimple p = gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0);
788 p->gimple_eh_ctrl.region = region;
789 return p;
790 }
791
792 /* Build a new GIMPLE_DEBUG_BIND statement.
793
794 VAR is bound to VALUE; block and location are taken from STMT. */
795
796 gimple
797 gimple_build_debug_bind_stat (tree var, tree value, gimple stmt MEM_STAT_DECL)
798 {
799 gimple p = gimple_build_with_ops_stat (GIMPLE_DEBUG,
800 (unsigned)GIMPLE_DEBUG_BIND, 2
801 PASS_MEM_STAT);
802
803 gimple_debug_bind_set_var (p, var);
804 gimple_debug_bind_set_value (p, value);
805 if (stmt)
806 {
807 gimple_set_block (p, gimple_block (stmt));
808 gimple_set_location (p, gimple_location (stmt));
809 }
810
811 return p;
812 }
813
814
815 /* Build a GIMPLE_OMP_CRITICAL statement.
816
817 BODY is the sequence of statements for which only one thread can execute.
818 NAME is optional identifier for this critical block. */
819
820 gimple
821 gimple_build_omp_critical (gimple_seq body, tree name)
822 {
823 gimple p = gimple_alloc (GIMPLE_OMP_CRITICAL, 0);
824 gimple_omp_critical_set_name (p, name);
825 if (body)
826 gimple_omp_set_body (p, body);
827
828 return p;
829 }
830
831 /* Build a GIMPLE_OMP_FOR statement.
832
833 BODY is sequence of statements inside the for loop.
834 CLAUSES, are any of the OMP loop construct's clauses: private, firstprivate,
835 lastprivate, reductions, ordered, schedule, and nowait.
836 COLLAPSE is the collapse count.
837 PRE_BODY is the sequence of statements that are loop invariant. */
838
839 gimple
840 gimple_build_omp_for (gimple_seq body, tree clauses, size_t collapse,
841 gimple_seq pre_body)
842 {
843 gimple p = gimple_alloc (GIMPLE_OMP_FOR, 0);
844 if (body)
845 gimple_omp_set_body (p, body);
846 gimple_omp_for_set_clauses (p, clauses);
847 p->gimple_omp_for.collapse = collapse;
848 p->gimple_omp_for.iter
849 = ggc_alloc_cleared_vec_gimple_omp_for_iter (collapse);
850 if (pre_body)
851 gimple_omp_for_set_pre_body (p, pre_body);
852
853 return p;
854 }
855
856
857 /* Build a GIMPLE_OMP_PARALLEL statement.
858
859 BODY is sequence of statements which are executed in parallel.
860 CLAUSES, are the OMP parallel construct's clauses.
861 CHILD_FN is the function created for the parallel threads to execute.
862 DATA_ARG are the shared data argument(s). */
863
864 gimple
865 gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
866 tree data_arg)
867 {
868 gimple p = gimple_alloc (GIMPLE_OMP_PARALLEL, 0);
869 if (body)
870 gimple_omp_set_body (p, body);
871 gimple_omp_parallel_set_clauses (p, clauses);
872 gimple_omp_parallel_set_child_fn (p, child_fn);
873 gimple_omp_parallel_set_data_arg (p, data_arg);
874
875 return p;
876 }
877
878
879 /* Build a GIMPLE_OMP_TASK statement.
880
881 BODY is sequence of statements which are executed by the explicit task.
882 CLAUSES, are the OMP parallel construct's clauses.
883 CHILD_FN is the function created for the parallel threads to execute.
884 DATA_ARG are the shared data argument(s).
885 COPY_FN is the optional function for firstprivate initialization.
886 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
887
888 gimple
889 gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
890 tree data_arg, tree copy_fn, tree arg_size,
891 tree arg_align)
892 {
893 gimple p = gimple_alloc (GIMPLE_OMP_TASK, 0);
894 if (body)
895 gimple_omp_set_body (p, body);
896 gimple_omp_task_set_clauses (p, clauses);
897 gimple_omp_task_set_child_fn (p, child_fn);
898 gimple_omp_task_set_data_arg (p, data_arg);
899 gimple_omp_task_set_copy_fn (p, copy_fn);
900 gimple_omp_task_set_arg_size (p, arg_size);
901 gimple_omp_task_set_arg_align (p, arg_align);
902
903 return p;
904 }
905
906
907 /* Build a GIMPLE_OMP_SECTION statement for a sections statement.
908
909 BODY is the sequence of statements in the section. */
910
911 gimple
912 gimple_build_omp_section (gimple_seq body)
913 {
914 gimple p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
915 if (body)
916 gimple_omp_set_body (p, body);
917
918 return p;
919 }
920
921
922 /* Build a GIMPLE_OMP_MASTER statement.
923
924 BODY is the sequence of statements to be executed by just the master. */
925
926 gimple
927 gimple_build_omp_master (gimple_seq body)
928 {
929 gimple p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
930 if (body)
931 gimple_omp_set_body (p, body);
932
933 return p;
934 }
935
936
937 /* Build a GIMPLE_OMP_CONTINUE statement.
938
939 CONTROL_DEF is the definition of the control variable.
940 CONTROL_USE is the use of the control variable. */
941
942 gimple
943 gimple_build_omp_continue (tree control_def, tree control_use)
944 {
945 gimple p = gimple_alloc (GIMPLE_OMP_CONTINUE, 0);
946 gimple_omp_continue_set_control_def (p, control_def);
947 gimple_omp_continue_set_control_use (p, control_use);
948 return p;
949 }
950
951 /* Build a GIMPLE_OMP_ORDERED statement.
952
953 BODY is the sequence of statements inside a loop that will executed in
954 sequence. */
955
956 gimple
957 gimple_build_omp_ordered (gimple_seq body)
958 {
959 gimple p = gimple_alloc (GIMPLE_OMP_ORDERED, 0);
960 if (body)
961 gimple_omp_set_body (p, body);
962
963 return p;
964 }
965
966
967 /* Build a GIMPLE_OMP_RETURN statement.
968 WAIT_P is true if this is a non-waiting return. */
969
970 gimple
971 gimple_build_omp_return (bool wait_p)
972 {
973 gimple p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
974 if (wait_p)
975 gimple_omp_return_set_nowait (p);
976
977 return p;
978 }
979
980
981 /* Build a GIMPLE_OMP_SECTIONS statement.
982
983 BODY is a sequence of section statements.
984 CLAUSES are any of the OMP sections contsruct's clauses: private,
985 firstprivate, lastprivate, reduction, and nowait. */
986
987 gimple
988 gimple_build_omp_sections (gimple_seq body, tree clauses)
989 {
990 gimple p = gimple_alloc (GIMPLE_OMP_SECTIONS, 0);
991 if (body)
992 gimple_omp_set_body (p, body);
993 gimple_omp_sections_set_clauses (p, clauses);
994
995 return p;
996 }
997
998
999 /* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
1000
1001 gimple
1002 gimple_build_omp_sections_switch (void)
1003 {
1004 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
1005 }
1006
1007
1008 /* Build a GIMPLE_OMP_SINGLE statement.
1009
1010 BODY is the sequence of statements that will be executed once.
1011 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1012 copyprivate, nowait. */
1013
1014 gimple
1015 gimple_build_omp_single (gimple_seq body, tree clauses)
1016 {
1017 gimple p = gimple_alloc (GIMPLE_OMP_SINGLE, 0);
1018 if (body)
1019 gimple_omp_set_body (p, body);
1020 gimple_omp_single_set_clauses (p, clauses);
1021
1022 return p;
1023 }
1024
1025
1026 /* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
1027
1028 gimple
1029 gimple_build_omp_atomic_load (tree lhs, tree rhs)
1030 {
1031 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0);
1032 gimple_omp_atomic_load_set_lhs (p, lhs);
1033 gimple_omp_atomic_load_set_rhs (p, rhs);
1034 return p;
1035 }
1036
1037 /* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1038
1039 VAL is the value we are storing. */
1040
1041 gimple
1042 gimple_build_omp_atomic_store (tree val)
1043 {
1044 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0);
1045 gimple_omp_atomic_store_set_val (p, val);
1046 return p;
1047 }
1048
1049 /* Build a GIMPLE_PREDICT statement. PREDICT is one of the predictors from
1050 predict.def, OUTCOME is NOT_TAKEN or TAKEN. */
1051
1052 gimple
1053 gimple_build_predict (enum br_predictor predictor, enum prediction outcome)
1054 {
1055 gimple p = gimple_alloc (GIMPLE_PREDICT, 0);
1056 /* Ensure all the predictors fit into the lower bits of the subcode. */
1057 gcc_assert ((int) END_PREDICTORS <= GF_PREDICT_TAKEN);
1058 gimple_predict_set_predictor (p, predictor);
1059 gimple_predict_set_outcome (p, outcome);
1060 return p;
1061 }
1062
1063 #if defined ENABLE_GIMPLE_CHECKING
1064 /* Complain of a gimple type mismatch and die. */
1065
1066 void
1067 gimple_check_failed (const_gimple gs, const char *file, int line,
1068 const char *function, enum gimple_code code,
1069 enum tree_code subcode)
1070 {
1071 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1072 gimple_code_name[code],
1073 tree_code_name[subcode],
1074 gimple_code_name[gimple_code (gs)],
1075 gs->gsbase.subcode > 0
1076 ? tree_code_name[gs->gsbase.subcode]
1077 : "",
1078 function, trim_filename (file), line);
1079 }
1080 #endif /* ENABLE_GIMPLE_CHECKING */
1081
1082
1083 /* Allocate a new GIMPLE sequence in GC memory and return it. If
1084 there are free sequences in GIMPLE_SEQ_CACHE return one of those
1085 instead. */
1086
1087 gimple_seq
1088 gimple_seq_alloc (void)
1089 {
1090 gimple_seq seq = gimple_seq_cache;
1091 if (seq)
1092 {
1093 gimple_seq_cache = gimple_seq_cache->next_free;
1094 gcc_assert (gimple_seq_cache != seq);
1095 memset (seq, 0, sizeof (*seq));
1096 }
1097 else
1098 {
1099 seq = ggc_alloc_cleared_gimple_seq_d ();
1100 #ifdef GATHER_STATISTICS
1101 gimple_alloc_counts[(int) gimple_alloc_kind_seq]++;
1102 gimple_alloc_sizes[(int) gimple_alloc_kind_seq] += sizeof (*seq);
1103 #endif
1104 }
1105
1106 return seq;
1107 }
1108
1109 /* Return SEQ to the free pool of GIMPLE sequences. */
1110
1111 void
1112 gimple_seq_free (gimple_seq seq)
1113 {
1114 if (seq == NULL)
1115 return;
1116
1117 gcc_assert (gimple_seq_first (seq) == NULL);
1118 gcc_assert (gimple_seq_last (seq) == NULL);
1119
1120 /* If this triggers, it's a sign that the same list is being freed
1121 twice. */
1122 gcc_assert (seq != gimple_seq_cache || gimple_seq_cache == NULL);
1123
1124 /* Add SEQ to the pool of free sequences. */
1125 seq->next_free = gimple_seq_cache;
1126 gimple_seq_cache = seq;
1127 }
1128
1129
1130 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1131 *SEQ_P is NULL, a new sequence is allocated. */
1132
1133 void
1134 gimple_seq_add_stmt (gimple_seq *seq_p, gimple gs)
1135 {
1136 gimple_stmt_iterator si;
1137
1138 if (gs == NULL)
1139 return;
1140
1141 if (*seq_p == NULL)
1142 *seq_p = gimple_seq_alloc ();
1143
1144 si = gsi_last (*seq_p);
1145 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1146 }
1147
1148
1149 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1150 NULL, a new sequence is allocated. */
1151
1152 void
1153 gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1154 {
1155 gimple_stmt_iterator si;
1156
1157 if (src == NULL)
1158 return;
1159
1160 if (*dst_p == NULL)
1161 *dst_p = gimple_seq_alloc ();
1162
1163 si = gsi_last (*dst_p);
1164 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1165 }
1166
1167
1168 /* Helper function of empty_body_p. Return true if STMT is an empty
1169 statement. */
1170
1171 static bool
1172 empty_stmt_p (gimple stmt)
1173 {
1174 if (gimple_code (stmt) == GIMPLE_NOP)
1175 return true;
1176 if (gimple_code (stmt) == GIMPLE_BIND)
1177 return empty_body_p (gimple_bind_body (stmt));
1178 return false;
1179 }
1180
1181
1182 /* Return true if BODY contains nothing but empty statements. */
1183
1184 bool
1185 empty_body_p (gimple_seq body)
1186 {
1187 gimple_stmt_iterator i;
1188
1189 if (gimple_seq_empty_p (body))
1190 return true;
1191 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
1192 if (!empty_stmt_p (gsi_stmt (i))
1193 && !is_gimple_debug (gsi_stmt (i)))
1194 return false;
1195
1196 return true;
1197 }
1198
1199
1200 /* Perform a deep copy of sequence SRC and return the result. */
1201
1202 gimple_seq
1203 gimple_seq_copy (gimple_seq src)
1204 {
1205 gimple_stmt_iterator gsi;
1206 gimple_seq new_seq = gimple_seq_alloc ();
1207 gimple stmt;
1208
1209 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1210 {
1211 stmt = gimple_copy (gsi_stmt (gsi));
1212 gimple_seq_add_stmt (&new_seq, stmt);
1213 }
1214
1215 return new_seq;
1216 }
1217
1218
1219 /* Walk all the statements in the sequence SEQ calling walk_gimple_stmt
1220 on each one. WI is as in walk_gimple_stmt.
1221
1222 If walk_gimple_stmt returns non-NULL, the walk is stopped, the
1223 value is stored in WI->CALLBACK_RESULT and the statement that
1224 produced the value is returned.
1225
1226 Otherwise, all the statements are walked and NULL returned. */
1227
1228 gimple
1229 walk_gimple_seq (gimple_seq seq, walk_stmt_fn callback_stmt,
1230 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1231 {
1232 gimple_stmt_iterator gsi;
1233
1234 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
1235 {
1236 tree ret = walk_gimple_stmt (&gsi, callback_stmt, callback_op, wi);
1237 if (ret)
1238 {
1239 /* If CALLBACK_STMT or CALLBACK_OP return a value, WI must exist
1240 to hold it. */
1241 gcc_assert (wi);
1242 wi->callback_result = ret;
1243 return gsi_stmt (gsi);
1244 }
1245 }
1246
1247 if (wi)
1248 wi->callback_result = NULL_TREE;
1249
1250 return NULL;
1251 }
1252
1253
1254 /* Helper function for walk_gimple_stmt. Walk operands of a GIMPLE_ASM. */
1255
1256 static tree
1257 walk_gimple_asm (gimple stmt, walk_tree_fn callback_op,
1258 struct walk_stmt_info *wi)
1259 {
1260 tree ret, op;
1261 unsigned noutputs;
1262 const char **oconstraints;
1263 unsigned i, n;
1264 const char *constraint;
1265 bool allows_mem, allows_reg, is_inout;
1266
1267 noutputs = gimple_asm_noutputs (stmt);
1268 oconstraints = (const char **) alloca ((noutputs) * sizeof (const char *));
1269
1270 if (wi)
1271 wi->is_lhs = true;
1272
1273 for (i = 0; i < noutputs; i++)
1274 {
1275 op = gimple_asm_output_op (stmt, i);
1276 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1277 oconstraints[i] = constraint;
1278 parse_output_constraint (&constraint, i, 0, 0, &allows_mem, &allows_reg,
1279 &is_inout);
1280 if (wi)
1281 wi->val_only = (allows_reg || !allows_mem);
1282 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1283 if (ret)
1284 return ret;
1285 }
1286
1287 n = gimple_asm_ninputs (stmt);
1288 for (i = 0; i < n; i++)
1289 {
1290 op = gimple_asm_input_op (stmt, i);
1291 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1292 parse_input_constraint (&constraint, 0, 0, noutputs, 0,
1293 oconstraints, &allows_mem, &allows_reg);
1294 if (wi)
1295 {
1296 wi->val_only = (allows_reg || !allows_mem);
1297 /* Although input "m" is not really a LHS, we need a lvalue. */
1298 wi->is_lhs = !wi->val_only;
1299 }
1300 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1301 if (ret)
1302 return ret;
1303 }
1304
1305 if (wi)
1306 {
1307 wi->is_lhs = false;
1308 wi->val_only = true;
1309 }
1310
1311 n = gimple_asm_nlabels (stmt);
1312 for (i = 0; i < n; i++)
1313 {
1314 op = gimple_asm_label_op (stmt, i);
1315 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1316 if (ret)
1317 return ret;
1318 }
1319
1320 return NULL_TREE;
1321 }
1322
1323
1324 /* Helper function of WALK_GIMPLE_STMT. Walk every tree operand in
1325 STMT. CALLBACK_OP and WI are as in WALK_GIMPLE_STMT.
1326
1327 CALLBACK_OP is called on each operand of STMT via walk_tree.
1328 Additional parameters to walk_tree must be stored in WI. For each operand
1329 OP, walk_tree is called as:
1330
1331 walk_tree (&OP, CALLBACK_OP, WI, WI->PSET)
1332
1333 If CALLBACK_OP returns non-NULL for an operand, the remaining
1334 operands are not scanned.
1335
1336 The return value is that returned by the last call to walk_tree, or
1337 NULL_TREE if no CALLBACK_OP is specified. */
1338
1339 tree
1340 walk_gimple_op (gimple stmt, walk_tree_fn callback_op,
1341 struct walk_stmt_info *wi)
1342 {
1343 struct pointer_set_t *pset = (wi) ? wi->pset : NULL;
1344 unsigned i;
1345 tree ret = NULL_TREE;
1346
1347 switch (gimple_code (stmt))
1348 {
1349 case GIMPLE_ASSIGN:
1350 /* Walk the RHS operands. If the LHS is of a non-renamable type or
1351 is a register variable, we may use a COMPONENT_REF on the RHS. */
1352 if (wi)
1353 {
1354 tree lhs = gimple_assign_lhs (stmt);
1355 wi->val_only
1356 = (is_gimple_reg_type (TREE_TYPE (lhs)) && !is_gimple_reg (lhs))
1357 || !gimple_assign_single_p (stmt);
1358 }
1359
1360 for (i = 1; i < gimple_num_ops (stmt); i++)
1361 {
1362 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi,
1363 pset);
1364 if (ret)
1365 return ret;
1366 }
1367
1368 /* Walk the LHS. If the RHS is appropriate for a memory, we
1369 may use a COMPONENT_REF on the LHS. */
1370 if (wi)
1371 {
1372 /* If the RHS has more than 1 operand, it is not appropriate
1373 for the memory. */
1374 wi->val_only = !is_gimple_mem_rhs (gimple_assign_rhs1 (stmt))
1375 || !gimple_assign_single_p (stmt);
1376 wi->is_lhs = true;
1377 }
1378
1379 ret = walk_tree (gimple_op_ptr (stmt, 0), callback_op, wi, pset);
1380 if (ret)
1381 return ret;
1382
1383 if (wi)
1384 {
1385 wi->val_only = true;
1386 wi->is_lhs = false;
1387 }
1388 break;
1389
1390 case GIMPLE_CALL:
1391 if (wi)
1392 {
1393 wi->is_lhs = false;
1394 wi->val_only = true;
1395 }
1396
1397 ret = walk_tree (gimple_call_chain_ptr (stmt), callback_op, wi, pset);
1398 if (ret)
1399 return ret;
1400
1401 ret = walk_tree (gimple_call_fn_ptr (stmt), callback_op, wi, pset);
1402 if (ret)
1403 return ret;
1404
1405 for (i = 0; i < gimple_call_num_args (stmt); i++)
1406 {
1407 if (wi)
1408 wi->val_only = is_gimple_reg_type (gimple_call_arg (stmt, i));
1409 ret = walk_tree (gimple_call_arg_ptr (stmt, i), callback_op, wi,
1410 pset);
1411 if (ret)
1412 return ret;
1413 }
1414
1415 if (gimple_call_lhs (stmt))
1416 {
1417 if (wi)
1418 {
1419 wi->is_lhs = true;
1420 wi->val_only = is_gimple_reg_type (gimple_call_lhs (stmt));
1421 }
1422
1423 ret = walk_tree (gimple_call_lhs_ptr (stmt), callback_op, wi, pset);
1424 if (ret)
1425 return ret;
1426 }
1427
1428 if (wi)
1429 {
1430 wi->is_lhs = false;
1431 wi->val_only = true;
1432 }
1433 break;
1434
1435 case GIMPLE_CATCH:
1436 ret = walk_tree (gimple_catch_types_ptr (stmt), callback_op, wi,
1437 pset);
1438 if (ret)
1439 return ret;
1440 break;
1441
1442 case GIMPLE_EH_FILTER:
1443 ret = walk_tree (gimple_eh_filter_types_ptr (stmt), callback_op, wi,
1444 pset);
1445 if (ret)
1446 return ret;
1447 break;
1448
1449 case GIMPLE_ASM:
1450 ret = walk_gimple_asm (stmt, callback_op, wi);
1451 if (ret)
1452 return ret;
1453 break;
1454
1455 case GIMPLE_OMP_CONTINUE:
1456 ret = walk_tree (gimple_omp_continue_control_def_ptr (stmt),
1457 callback_op, wi, pset);
1458 if (ret)
1459 return ret;
1460
1461 ret = walk_tree (gimple_omp_continue_control_use_ptr (stmt),
1462 callback_op, wi, pset);
1463 if (ret)
1464 return ret;
1465 break;
1466
1467 case GIMPLE_OMP_CRITICAL:
1468 ret = walk_tree (gimple_omp_critical_name_ptr (stmt), callback_op, wi,
1469 pset);
1470 if (ret)
1471 return ret;
1472 break;
1473
1474 case GIMPLE_OMP_FOR:
1475 ret = walk_tree (gimple_omp_for_clauses_ptr (stmt), callback_op, wi,
1476 pset);
1477 if (ret)
1478 return ret;
1479 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1480 {
1481 ret = walk_tree (gimple_omp_for_index_ptr (stmt, i), callback_op,
1482 wi, pset);
1483 if (ret)
1484 return ret;
1485 ret = walk_tree (gimple_omp_for_initial_ptr (stmt, i), callback_op,
1486 wi, pset);
1487 if (ret)
1488 return ret;
1489 ret = walk_tree (gimple_omp_for_final_ptr (stmt, i), callback_op,
1490 wi, pset);
1491 if (ret)
1492 return ret;
1493 ret = walk_tree (gimple_omp_for_incr_ptr (stmt, i), callback_op,
1494 wi, pset);
1495 }
1496 if (ret)
1497 return ret;
1498 break;
1499
1500 case GIMPLE_OMP_PARALLEL:
1501 ret = walk_tree (gimple_omp_parallel_clauses_ptr (stmt), callback_op,
1502 wi, pset);
1503 if (ret)
1504 return ret;
1505 ret = walk_tree (gimple_omp_parallel_child_fn_ptr (stmt), callback_op,
1506 wi, pset);
1507 if (ret)
1508 return ret;
1509 ret = walk_tree (gimple_omp_parallel_data_arg_ptr (stmt), callback_op,
1510 wi, pset);
1511 if (ret)
1512 return ret;
1513 break;
1514
1515 case GIMPLE_OMP_TASK:
1516 ret = walk_tree (gimple_omp_task_clauses_ptr (stmt), callback_op,
1517 wi, pset);
1518 if (ret)
1519 return ret;
1520 ret = walk_tree (gimple_omp_task_child_fn_ptr (stmt), callback_op,
1521 wi, pset);
1522 if (ret)
1523 return ret;
1524 ret = walk_tree (gimple_omp_task_data_arg_ptr (stmt), callback_op,
1525 wi, pset);
1526 if (ret)
1527 return ret;
1528 ret = walk_tree (gimple_omp_task_copy_fn_ptr (stmt), callback_op,
1529 wi, pset);
1530 if (ret)
1531 return ret;
1532 ret = walk_tree (gimple_omp_task_arg_size_ptr (stmt), callback_op,
1533 wi, pset);
1534 if (ret)
1535 return ret;
1536 ret = walk_tree (gimple_omp_task_arg_align_ptr (stmt), callback_op,
1537 wi, pset);
1538 if (ret)
1539 return ret;
1540 break;
1541
1542 case GIMPLE_OMP_SECTIONS:
1543 ret = walk_tree (gimple_omp_sections_clauses_ptr (stmt), callback_op,
1544 wi, pset);
1545 if (ret)
1546 return ret;
1547
1548 ret = walk_tree (gimple_omp_sections_control_ptr (stmt), callback_op,
1549 wi, pset);
1550 if (ret)
1551 return ret;
1552
1553 break;
1554
1555 case GIMPLE_OMP_SINGLE:
1556 ret = walk_tree (gimple_omp_single_clauses_ptr (stmt), callback_op, wi,
1557 pset);
1558 if (ret)
1559 return ret;
1560 break;
1561
1562 case GIMPLE_OMP_ATOMIC_LOAD:
1563 ret = walk_tree (gimple_omp_atomic_load_lhs_ptr (stmt), callback_op, wi,
1564 pset);
1565 if (ret)
1566 return ret;
1567
1568 ret = walk_tree (gimple_omp_atomic_load_rhs_ptr (stmt), callback_op, wi,
1569 pset);
1570 if (ret)
1571 return ret;
1572 break;
1573
1574 case GIMPLE_OMP_ATOMIC_STORE:
1575 ret = walk_tree (gimple_omp_atomic_store_val_ptr (stmt), callback_op,
1576 wi, pset);
1577 if (ret)
1578 return ret;
1579 break;
1580
1581 /* Tuples that do not have operands. */
1582 case GIMPLE_NOP:
1583 case GIMPLE_RESX:
1584 case GIMPLE_OMP_RETURN:
1585 case GIMPLE_PREDICT:
1586 break;
1587
1588 default:
1589 {
1590 enum gimple_statement_structure_enum gss;
1591 gss = gimple_statement_structure (stmt);
1592 if (gss == GSS_WITH_OPS || gss == GSS_WITH_MEM_OPS)
1593 for (i = 0; i < gimple_num_ops (stmt); i++)
1594 {
1595 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi, pset);
1596 if (ret)
1597 return ret;
1598 }
1599 }
1600 break;
1601 }
1602
1603 return NULL_TREE;
1604 }
1605
1606
1607 /* Walk the current statement in GSI (optionally using traversal state
1608 stored in WI). If WI is NULL, no state is kept during traversal.
1609 The callback CALLBACK_STMT is called. If CALLBACK_STMT indicates
1610 that it has handled all the operands of the statement, its return
1611 value is returned. Otherwise, the return value from CALLBACK_STMT
1612 is discarded and its operands are scanned.
1613
1614 If CALLBACK_STMT is NULL or it didn't handle the operands,
1615 CALLBACK_OP is called on each operand of the statement via
1616 walk_gimple_op. If walk_gimple_op returns non-NULL for any
1617 operand, the remaining operands are not scanned. In this case, the
1618 return value from CALLBACK_OP is returned.
1619
1620 In any other case, NULL_TREE is returned. */
1621
1622 tree
1623 walk_gimple_stmt (gimple_stmt_iterator *gsi, walk_stmt_fn callback_stmt,
1624 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1625 {
1626 gimple ret;
1627 tree tree_ret;
1628 gimple stmt = gsi_stmt (*gsi);
1629
1630 if (wi)
1631 wi->gsi = *gsi;
1632
1633 if (wi && wi->want_locations && gimple_has_location (stmt))
1634 input_location = gimple_location (stmt);
1635
1636 ret = NULL;
1637
1638 /* Invoke the statement callback. Return if the callback handled
1639 all of STMT operands by itself. */
1640 if (callback_stmt)
1641 {
1642 bool handled_ops = false;
1643 tree_ret = callback_stmt (gsi, &handled_ops, wi);
1644 if (handled_ops)
1645 return tree_ret;
1646
1647 /* If CALLBACK_STMT did not handle operands, it should not have
1648 a value to return. */
1649 gcc_assert (tree_ret == NULL);
1650
1651 /* Re-read stmt in case the callback changed it. */
1652 stmt = gsi_stmt (*gsi);
1653 }
1654
1655 /* If CALLBACK_OP is defined, invoke it on every operand of STMT. */
1656 if (callback_op)
1657 {
1658 tree_ret = walk_gimple_op (stmt, callback_op, wi);
1659 if (tree_ret)
1660 return tree_ret;
1661 }
1662
1663 /* If STMT can have statements inside (e.g. GIMPLE_BIND), walk them. */
1664 switch (gimple_code (stmt))
1665 {
1666 case GIMPLE_BIND:
1667 ret = walk_gimple_seq (gimple_bind_body (stmt), callback_stmt,
1668 callback_op, wi);
1669 if (ret)
1670 return wi->callback_result;
1671 break;
1672
1673 case GIMPLE_CATCH:
1674 ret = walk_gimple_seq (gimple_catch_handler (stmt), callback_stmt,
1675 callback_op, wi);
1676 if (ret)
1677 return wi->callback_result;
1678 break;
1679
1680 case GIMPLE_EH_FILTER:
1681 ret = walk_gimple_seq (gimple_eh_filter_failure (stmt), callback_stmt,
1682 callback_op, wi);
1683 if (ret)
1684 return wi->callback_result;
1685 break;
1686
1687 case GIMPLE_TRY:
1688 ret = walk_gimple_seq (gimple_try_eval (stmt), callback_stmt, callback_op,
1689 wi);
1690 if (ret)
1691 return wi->callback_result;
1692
1693 ret = walk_gimple_seq (gimple_try_cleanup (stmt), callback_stmt,
1694 callback_op, wi);
1695 if (ret)
1696 return wi->callback_result;
1697 break;
1698
1699 case GIMPLE_OMP_FOR:
1700 ret = walk_gimple_seq (gimple_omp_for_pre_body (stmt), callback_stmt,
1701 callback_op, wi);
1702 if (ret)
1703 return wi->callback_result;
1704
1705 /* FALL THROUGH. */
1706 case GIMPLE_OMP_CRITICAL:
1707 case GIMPLE_OMP_MASTER:
1708 case GIMPLE_OMP_ORDERED:
1709 case GIMPLE_OMP_SECTION:
1710 case GIMPLE_OMP_PARALLEL:
1711 case GIMPLE_OMP_TASK:
1712 case GIMPLE_OMP_SECTIONS:
1713 case GIMPLE_OMP_SINGLE:
1714 ret = walk_gimple_seq (gimple_omp_body (stmt), callback_stmt, callback_op,
1715 wi);
1716 if (ret)
1717 return wi->callback_result;
1718 break;
1719
1720 case GIMPLE_WITH_CLEANUP_EXPR:
1721 ret = walk_gimple_seq (gimple_wce_cleanup (stmt), callback_stmt,
1722 callback_op, wi);
1723 if (ret)
1724 return wi->callback_result;
1725 break;
1726
1727 default:
1728 gcc_assert (!gimple_has_substatements (stmt));
1729 break;
1730 }
1731
1732 return NULL;
1733 }
1734
1735
1736 /* Set sequence SEQ to be the GIMPLE body for function FN. */
1737
1738 void
1739 gimple_set_body (tree fndecl, gimple_seq seq)
1740 {
1741 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1742 if (fn == NULL)
1743 {
1744 /* If FNDECL still does not have a function structure associated
1745 with it, then it does not make sense for it to receive a
1746 GIMPLE body. */
1747 gcc_assert (seq == NULL);
1748 }
1749 else
1750 fn->gimple_body = seq;
1751 }
1752
1753
1754 /* Return the body of GIMPLE statements for function FN. After the
1755 CFG pass, the function body doesn't exist anymore because it has
1756 been split up into basic blocks. In this case, it returns
1757 NULL. */
1758
1759 gimple_seq
1760 gimple_body (tree fndecl)
1761 {
1762 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1763 return fn ? fn->gimple_body : NULL;
1764 }
1765
1766 /* Return true when FNDECL has Gimple body either in unlowered
1767 or CFG form. */
1768 bool
1769 gimple_has_body_p (tree fndecl)
1770 {
1771 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1772 return (gimple_body (fndecl) || (fn && fn->cfg));
1773 }
1774
1775 /* Detect flags from a GIMPLE_CALL. This is just like
1776 call_expr_flags, but for gimple tuples. */
1777
1778 int
1779 gimple_call_flags (const_gimple stmt)
1780 {
1781 int flags;
1782 tree decl = gimple_call_fndecl (stmt);
1783 tree t;
1784
1785 if (decl)
1786 flags = flags_from_decl_or_type (decl);
1787 else
1788 {
1789 t = TREE_TYPE (gimple_call_fn (stmt));
1790 if (t && TREE_CODE (t) == POINTER_TYPE)
1791 flags = flags_from_decl_or_type (TREE_TYPE (t));
1792 else
1793 flags = 0;
1794 }
1795
1796 if (stmt->gsbase.subcode & GF_CALL_NOTHROW)
1797 flags |= ECF_NOTHROW;
1798
1799 return flags;
1800 }
1801
1802 /* Detects argument flags for argument number ARG on call STMT. */
1803
1804 int
1805 gimple_call_arg_flags (const_gimple stmt, unsigned arg)
1806 {
1807 tree type = TREE_TYPE (TREE_TYPE (gimple_call_fn (stmt)));
1808 tree attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1809 if (!attr)
1810 return 0;
1811
1812 attr = TREE_VALUE (TREE_VALUE (attr));
1813 if (1 + arg >= (unsigned) TREE_STRING_LENGTH (attr))
1814 return 0;
1815
1816 switch (TREE_STRING_POINTER (attr)[1 + arg])
1817 {
1818 case 'x':
1819 case 'X':
1820 return EAF_UNUSED;
1821
1822 case 'R':
1823 return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE;
1824
1825 case 'r':
1826 return EAF_NOCLOBBER | EAF_NOESCAPE;
1827
1828 case 'W':
1829 return EAF_DIRECT | EAF_NOESCAPE;
1830
1831 case 'w':
1832 return EAF_NOESCAPE;
1833
1834 case '.':
1835 default:
1836 return 0;
1837 }
1838 }
1839
1840 /* Detects return flags for the call STMT. */
1841
1842 int
1843 gimple_call_return_flags (const_gimple stmt)
1844 {
1845 tree type;
1846 tree attr = NULL_TREE;
1847
1848 if (gimple_call_flags (stmt) & ECF_MALLOC)
1849 return ERF_NOALIAS;
1850
1851 type = TREE_TYPE (TREE_TYPE (gimple_call_fn (stmt)));
1852 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1853 if (!attr)
1854 return 0;
1855
1856 attr = TREE_VALUE (TREE_VALUE (attr));
1857 if (TREE_STRING_LENGTH (attr) < 1)
1858 return 0;
1859
1860 switch (TREE_STRING_POINTER (attr)[0])
1861 {
1862 case '1':
1863 case '2':
1864 case '3':
1865 case '4':
1866 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
1867
1868 case 'm':
1869 return ERF_NOALIAS;
1870
1871 case '.':
1872 default:
1873 return 0;
1874 }
1875 }
1876
1877
1878 /* Return true if GS is a copy assignment. */
1879
1880 bool
1881 gimple_assign_copy_p (gimple gs)
1882 {
1883 return (gimple_assign_single_p (gs)
1884 && is_gimple_val (gimple_op (gs, 1)));
1885 }
1886
1887
1888 /* Return true if GS is a SSA_NAME copy assignment. */
1889
1890 bool
1891 gimple_assign_ssa_name_copy_p (gimple gs)
1892 {
1893 return (gimple_assign_single_p (gs)
1894 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1895 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1896 }
1897
1898
1899 /* Return true if GS is an assignment with a unary RHS, but the
1900 operator has no effect on the assigned value. The logic is adapted
1901 from STRIP_NOPS. This predicate is intended to be used in tuplifying
1902 instances in which STRIP_NOPS was previously applied to the RHS of
1903 an assignment.
1904
1905 NOTE: In the use cases that led to the creation of this function
1906 and of gimple_assign_single_p, it is typical to test for either
1907 condition and to proceed in the same manner. In each case, the
1908 assigned value is represented by the single RHS operand of the
1909 assignment. I suspect there may be cases where gimple_assign_copy_p,
1910 gimple_assign_single_p, or equivalent logic is used where a similar
1911 treatment of unary NOPs is appropriate. */
1912
1913 bool
1914 gimple_assign_unary_nop_p (gimple gs)
1915 {
1916 return (is_gimple_assign (gs)
1917 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
1918 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
1919 && gimple_assign_rhs1 (gs) != error_mark_node
1920 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
1921 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
1922 }
1923
1924 /* Set BB to be the basic block holding G. */
1925
1926 void
1927 gimple_set_bb (gimple stmt, basic_block bb)
1928 {
1929 stmt->gsbase.bb = bb;
1930
1931 /* If the statement is a label, add the label to block-to-labels map
1932 so that we can speed up edge creation for GIMPLE_GOTOs. */
1933 if (cfun->cfg && gimple_code (stmt) == GIMPLE_LABEL)
1934 {
1935 tree t;
1936 int uid;
1937
1938 t = gimple_label_label (stmt);
1939 uid = LABEL_DECL_UID (t);
1940 if (uid == -1)
1941 {
1942 unsigned old_len = VEC_length (basic_block, label_to_block_map);
1943 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
1944 if (old_len <= (unsigned) uid)
1945 {
1946 unsigned new_len = 3 * uid / 2 + 1;
1947
1948 VEC_safe_grow_cleared (basic_block, gc, label_to_block_map,
1949 new_len);
1950 }
1951 }
1952
1953 VEC_replace (basic_block, label_to_block_map, uid, bb);
1954 }
1955 }
1956
1957
1958 /* Modify the RHS of the assignment pointed-to by GSI using the
1959 operands in the expression tree EXPR.
1960
1961 NOTE: The statement pointed-to by GSI may be reallocated if it
1962 did not have enough operand slots.
1963
1964 This function is useful to convert an existing tree expression into
1965 the flat representation used for the RHS of a GIMPLE assignment.
1966 It will reallocate memory as needed to expand or shrink the number
1967 of operand slots needed to represent EXPR.
1968
1969 NOTE: If you find yourself building a tree and then calling this
1970 function, you are most certainly doing it the slow way. It is much
1971 better to build a new assignment or to use the function
1972 gimple_assign_set_rhs_with_ops, which does not require an
1973 expression tree to be built. */
1974
1975 void
1976 gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
1977 {
1978 enum tree_code subcode;
1979 tree op1, op2, op3;
1980
1981 extract_ops_from_tree_1 (expr, &subcode, &op1, &op2, &op3);
1982 gimple_assign_set_rhs_with_ops_1 (gsi, subcode, op1, op2, op3);
1983 }
1984
1985
1986 /* Set the RHS of assignment statement pointed-to by GSI to CODE with
1987 operands OP1, OP2 and OP3.
1988
1989 NOTE: The statement pointed-to by GSI may be reallocated if it
1990 did not have enough operand slots. */
1991
1992 void
1993 gimple_assign_set_rhs_with_ops_1 (gimple_stmt_iterator *gsi, enum tree_code code,
1994 tree op1, tree op2, tree op3)
1995 {
1996 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
1997 gimple stmt = gsi_stmt (*gsi);
1998
1999 /* If the new CODE needs more operands, allocate a new statement. */
2000 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
2001 {
2002 tree lhs = gimple_assign_lhs (stmt);
2003 gimple new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
2004 memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
2005 gsi_replace (gsi, new_stmt, true);
2006 stmt = new_stmt;
2007
2008 /* The LHS needs to be reset as this also changes the SSA name
2009 on the LHS. */
2010 gimple_assign_set_lhs (stmt, lhs);
2011 }
2012
2013 gimple_set_num_ops (stmt, new_rhs_ops + 1);
2014 gimple_set_subcode (stmt, code);
2015 gimple_assign_set_rhs1 (stmt, op1);
2016 if (new_rhs_ops > 1)
2017 gimple_assign_set_rhs2 (stmt, op2);
2018 if (new_rhs_ops > 2)
2019 gimple_assign_set_rhs3 (stmt, op3);
2020 }
2021
2022
2023 /* Return the LHS of a statement that performs an assignment,
2024 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
2025 for a call to a function that returns no value, or for a
2026 statement other than an assignment or a call. */
2027
2028 tree
2029 gimple_get_lhs (const_gimple stmt)
2030 {
2031 enum gimple_code code = gimple_code (stmt);
2032
2033 if (code == GIMPLE_ASSIGN)
2034 return gimple_assign_lhs (stmt);
2035 else if (code == GIMPLE_CALL)
2036 return gimple_call_lhs (stmt);
2037 else
2038 return NULL_TREE;
2039 }
2040
2041
2042 /* Set the LHS of a statement that performs an assignment,
2043 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2044
2045 void
2046 gimple_set_lhs (gimple stmt, tree lhs)
2047 {
2048 enum gimple_code code = gimple_code (stmt);
2049
2050 if (code == GIMPLE_ASSIGN)
2051 gimple_assign_set_lhs (stmt, lhs);
2052 else if (code == GIMPLE_CALL)
2053 gimple_call_set_lhs (stmt, lhs);
2054 else
2055 gcc_unreachable();
2056 }
2057
2058 /* Replace the LHS of STMT, an assignment, either a GIMPLE_ASSIGN or a
2059 GIMPLE_CALL, with NLHS, in preparation for modifying the RHS to an
2060 expression with a different value.
2061
2062 This will update any annotations (say debug bind stmts) referring
2063 to the original LHS, so that they use the RHS instead. This is
2064 done even if NLHS and LHS are the same, for it is understood that
2065 the RHS will be modified afterwards, and NLHS will not be assigned
2066 an equivalent value.
2067
2068 Adjusting any non-annotation uses of the LHS, if needed, is a
2069 responsibility of the caller.
2070
2071 The effect of this call should be pretty much the same as that of
2072 inserting a copy of STMT before STMT, and then removing the
2073 original stmt, at which time gsi_remove() would have update
2074 annotations, but using this function saves all the inserting,
2075 copying and removing. */
2076
2077 void
2078 gimple_replace_lhs (gimple stmt, tree nlhs)
2079 {
2080 if (MAY_HAVE_DEBUG_STMTS)
2081 {
2082 tree lhs = gimple_get_lhs (stmt);
2083
2084 gcc_assert (SSA_NAME_DEF_STMT (lhs) == stmt);
2085
2086 insert_debug_temp_for_var_def (NULL, lhs);
2087 }
2088
2089 gimple_set_lhs (stmt, nlhs);
2090 }
2091
2092 /* Return a deep copy of statement STMT. All the operands from STMT
2093 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
2094 and VUSE operand arrays are set to empty in the new copy. */
2095
2096 gimple
2097 gimple_copy (gimple stmt)
2098 {
2099 enum gimple_code code = gimple_code (stmt);
2100 unsigned num_ops = gimple_num_ops (stmt);
2101 gimple copy = gimple_alloc (code, num_ops);
2102 unsigned i;
2103
2104 /* Shallow copy all the fields from STMT. */
2105 memcpy (copy, stmt, gimple_size (code));
2106
2107 /* If STMT has sub-statements, deep-copy them as well. */
2108 if (gimple_has_substatements (stmt))
2109 {
2110 gimple_seq new_seq;
2111 tree t;
2112
2113 switch (gimple_code (stmt))
2114 {
2115 case GIMPLE_BIND:
2116 new_seq = gimple_seq_copy (gimple_bind_body (stmt));
2117 gimple_bind_set_body (copy, new_seq);
2118 gimple_bind_set_vars (copy, unshare_expr (gimple_bind_vars (stmt)));
2119 gimple_bind_set_block (copy, gimple_bind_block (stmt));
2120 break;
2121
2122 case GIMPLE_CATCH:
2123 new_seq = gimple_seq_copy (gimple_catch_handler (stmt));
2124 gimple_catch_set_handler (copy, new_seq);
2125 t = unshare_expr (gimple_catch_types (stmt));
2126 gimple_catch_set_types (copy, t);
2127 break;
2128
2129 case GIMPLE_EH_FILTER:
2130 new_seq = gimple_seq_copy (gimple_eh_filter_failure (stmt));
2131 gimple_eh_filter_set_failure (copy, new_seq);
2132 t = unshare_expr (gimple_eh_filter_types (stmt));
2133 gimple_eh_filter_set_types (copy, t);
2134 break;
2135
2136 case GIMPLE_TRY:
2137 new_seq = gimple_seq_copy (gimple_try_eval (stmt));
2138 gimple_try_set_eval (copy, new_seq);
2139 new_seq = gimple_seq_copy (gimple_try_cleanup (stmt));
2140 gimple_try_set_cleanup (copy, new_seq);
2141 break;
2142
2143 case GIMPLE_OMP_FOR:
2144 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
2145 gimple_omp_for_set_pre_body (copy, new_seq);
2146 t = unshare_expr (gimple_omp_for_clauses (stmt));
2147 gimple_omp_for_set_clauses (copy, t);
2148 copy->gimple_omp_for.iter
2149 = ggc_alloc_vec_gimple_omp_for_iter
2150 (gimple_omp_for_collapse (stmt));
2151 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
2152 {
2153 gimple_omp_for_set_cond (copy, i,
2154 gimple_omp_for_cond (stmt, i));
2155 gimple_omp_for_set_index (copy, i,
2156 gimple_omp_for_index (stmt, i));
2157 t = unshare_expr (gimple_omp_for_initial (stmt, i));
2158 gimple_omp_for_set_initial (copy, i, t);
2159 t = unshare_expr (gimple_omp_for_final (stmt, i));
2160 gimple_omp_for_set_final (copy, i, t);
2161 t = unshare_expr (gimple_omp_for_incr (stmt, i));
2162 gimple_omp_for_set_incr (copy, i, t);
2163 }
2164 goto copy_omp_body;
2165
2166 case GIMPLE_OMP_PARALLEL:
2167 t = unshare_expr (gimple_omp_parallel_clauses (stmt));
2168 gimple_omp_parallel_set_clauses (copy, t);
2169 t = unshare_expr (gimple_omp_parallel_child_fn (stmt));
2170 gimple_omp_parallel_set_child_fn (copy, t);
2171 t = unshare_expr (gimple_omp_parallel_data_arg (stmt));
2172 gimple_omp_parallel_set_data_arg (copy, t);
2173 goto copy_omp_body;
2174
2175 case GIMPLE_OMP_TASK:
2176 t = unshare_expr (gimple_omp_task_clauses (stmt));
2177 gimple_omp_task_set_clauses (copy, t);
2178 t = unshare_expr (gimple_omp_task_child_fn (stmt));
2179 gimple_omp_task_set_child_fn (copy, t);
2180 t = unshare_expr (gimple_omp_task_data_arg (stmt));
2181 gimple_omp_task_set_data_arg (copy, t);
2182 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
2183 gimple_omp_task_set_copy_fn (copy, t);
2184 t = unshare_expr (gimple_omp_task_arg_size (stmt));
2185 gimple_omp_task_set_arg_size (copy, t);
2186 t = unshare_expr (gimple_omp_task_arg_align (stmt));
2187 gimple_omp_task_set_arg_align (copy, t);
2188 goto copy_omp_body;
2189
2190 case GIMPLE_OMP_CRITICAL:
2191 t = unshare_expr (gimple_omp_critical_name (stmt));
2192 gimple_omp_critical_set_name (copy, t);
2193 goto copy_omp_body;
2194
2195 case GIMPLE_OMP_SECTIONS:
2196 t = unshare_expr (gimple_omp_sections_clauses (stmt));
2197 gimple_omp_sections_set_clauses (copy, t);
2198 t = unshare_expr (gimple_omp_sections_control (stmt));
2199 gimple_omp_sections_set_control (copy, t);
2200 /* FALLTHRU */
2201
2202 case GIMPLE_OMP_SINGLE:
2203 case GIMPLE_OMP_SECTION:
2204 case GIMPLE_OMP_MASTER:
2205 case GIMPLE_OMP_ORDERED:
2206 copy_omp_body:
2207 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
2208 gimple_omp_set_body (copy, new_seq);
2209 break;
2210
2211 case GIMPLE_WITH_CLEANUP_EXPR:
2212 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
2213 gimple_wce_set_cleanup (copy, new_seq);
2214 break;
2215
2216 default:
2217 gcc_unreachable ();
2218 }
2219 }
2220
2221 /* Make copy of operands. */
2222 if (num_ops > 0)
2223 {
2224 for (i = 0; i < num_ops; i++)
2225 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
2226
2227 /* Clear out SSA operand vectors on COPY. */
2228 if (gimple_has_ops (stmt))
2229 {
2230 gimple_set_def_ops (copy, NULL);
2231 gimple_set_use_ops (copy, NULL);
2232 }
2233
2234 if (gimple_has_mem_ops (stmt))
2235 {
2236 gimple_set_vdef (copy, gimple_vdef (stmt));
2237 gimple_set_vuse (copy, gimple_vuse (stmt));
2238 }
2239
2240 /* SSA operands need to be updated. */
2241 gimple_set_modified (copy, true);
2242 }
2243
2244 return copy;
2245 }
2246
2247
2248 /* Set the MODIFIED flag to MODIFIEDP, iff the gimple statement G has
2249 a MODIFIED field. */
2250
2251 void
2252 gimple_set_modified (gimple s, bool modifiedp)
2253 {
2254 if (gimple_has_ops (s))
2255 {
2256 s->gsbase.modified = (unsigned) modifiedp;
2257
2258 if (modifiedp
2259 && cfun->gimple_df
2260 && is_gimple_call (s)
2261 && gimple_call_noreturn_p (s))
2262 VEC_safe_push (gimple, gc, MODIFIED_NORETURN_CALLS (cfun), s);
2263 }
2264 }
2265
2266
2267 /* Return true if statement S has side-effects. We consider a
2268 statement to have side effects if:
2269
2270 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
2271 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
2272
2273 bool
2274 gimple_has_side_effects (const_gimple s)
2275 {
2276 unsigned i;
2277
2278 if (is_gimple_debug (s))
2279 return false;
2280
2281 /* We don't have to scan the arguments to check for
2282 volatile arguments, though, at present, we still
2283 do a scan to check for TREE_SIDE_EFFECTS. */
2284 if (gimple_has_volatile_ops (s))
2285 return true;
2286
2287 if (is_gimple_call (s))
2288 {
2289 unsigned nargs = gimple_call_num_args (s);
2290
2291 if (!(gimple_call_flags (s) & (ECF_CONST | ECF_PURE)))
2292 return true;
2293 else if (gimple_call_flags (s) & ECF_LOOPING_CONST_OR_PURE)
2294 /* An infinite loop is considered a side effect. */
2295 return true;
2296
2297 if (gimple_call_lhs (s)
2298 && TREE_SIDE_EFFECTS (gimple_call_lhs (s)))
2299 {
2300 gcc_assert (gimple_has_volatile_ops (s));
2301 return true;
2302 }
2303
2304 if (TREE_SIDE_EFFECTS (gimple_call_fn (s)))
2305 return true;
2306
2307 for (i = 0; i < nargs; i++)
2308 if (TREE_SIDE_EFFECTS (gimple_call_arg (s, i)))
2309 {
2310 gcc_assert (gimple_has_volatile_ops (s));
2311 return true;
2312 }
2313
2314 return false;
2315 }
2316 else
2317 {
2318 for (i = 0; i < gimple_num_ops (s); i++)
2319 if (TREE_SIDE_EFFECTS (gimple_op (s, i)))
2320 {
2321 gcc_assert (gimple_has_volatile_ops (s));
2322 return true;
2323 }
2324 }
2325
2326 return false;
2327 }
2328
2329 /* Return true if the RHS of statement S has side effects.
2330 We may use it to determine if it is admissable to replace
2331 an assignment or call with a copy of a previously-computed
2332 value. In such cases, side-effects due the the LHS are
2333 preserved. */
2334
2335 bool
2336 gimple_rhs_has_side_effects (const_gimple s)
2337 {
2338 unsigned i;
2339
2340 if (is_gimple_call (s))
2341 {
2342 unsigned nargs = gimple_call_num_args (s);
2343
2344 if (!(gimple_call_flags (s) & (ECF_CONST | ECF_PURE)))
2345 return true;
2346
2347 /* We cannot use gimple_has_volatile_ops here,
2348 because we must ignore a volatile LHS. */
2349 if (TREE_SIDE_EFFECTS (gimple_call_fn (s))
2350 || TREE_THIS_VOLATILE (gimple_call_fn (s)))
2351 {
2352 gcc_assert (gimple_has_volatile_ops (s));
2353 return true;
2354 }
2355
2356 for (i = 0; i < nargs; i++)
2357 if (TREE_SIDE_EFFECTS (gimple_call_arg (s, i))
2358 || TREE_THIS_VOLATILE (gimple_call_arg (s, i)))
2359 return true;
2360
2361 return false;
2362 }
2363 else if (is_gimple_assign (s))
2364 {
2365 /* Skip the first operand, the LHS. */
2366 for (i = 1; i < gimple_num_ops (s); i++)
2367 if (TREE_SIDE_EFFECTS (gimple_op (s, i))
2368 || TREE_THIS_VOLATILE (gimple_op (s, i)))
2369 {
2370 gcc_assert (gimple_has_volatile_ops (s));
2371 return true;
2372 }
2373 }
2374 else if (is_gimple_debug (s))
2375 return false;
2376 else
2377 {
2378 /* For statements without an LHS, examine all arguments. */
2379 for (i = 0; i < gimple_num_ops (s); i++)
2380 if (TREE_SIDE_EFFECTS (gimple_op (s, i))
2381 || TREE_THIS_VOLATILE (gimple_op (s, i)))
2382 {
2383 gcc_assert (gimple_has_volatile_ops (s));
2384 return true;
2385 }
2386 }
2387
2388 return false;
2389 }
2390
2391 /* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
2392 Return true if S can trap. When INCLUDE_MEM is true, check whether
2393 the memory operations could trap. When INCLUDE_STORES is true and
2394 S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked. */
2395
2396 bool
2397 gimple_could_trap_p_1 (gimple s, bool include_mem, bool include_stores)
2398 {
2399 tree t, div = NULL_TREE;
2400 enum tree_code op;
2401
2402 if (include_mem)
2403 {
2404 unsigned i, start = (is_gimple_assign (s) && !include_stores) ? 1 : 0;
2405
2406 for (i = start; i < gimple_num_ops (s); i++)
2407 if (tree_could_trap_p (gimple_op (s, i)))
2408 return true;
2409 }
2410
2411 switch (gimple_code (s))
2412 {
2413 case GIMPLE_ASM:
2414 return gimple_asm_volatile_p (s);
2415
2416 case GIMPLE_CALL:
2417 t = gimple_call_fndecl (s);
2418 /* Assume that calls to weak functions may trap. */
2419 if (!t || !DECL_P (t) || DECL_WEAK (t))
2420 return true;
2421 return false;
2422
2423 case GIMPLE_ASSIGN:
2424 t = gimple_expr_type (s);
2425 op = gimple_assign_rhs_code (s);
2426 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
2427 div = gimple_assign_rhs2 (s);
2428 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
2429 (INTEGRAL_TYPE_P (t)
2430 && TYPE_OVERFLOW_TRAPS (t)),
2431 div));
2432
2433 default:
2434 break;
2435 }
2436
2437 return false;
2438 }
2439
2440 /* Return true if statement S can trap. */
2441
2442 bool
2443 gimple_could_trap_p (gimple s)
2444 {
2445 return gimple_could_trap_p_1 (s, true, true);
2446 }
2447
2448 /* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
2449
2450 bool
2451 gimple_assign_rhs_could_trap_p (gimple s)
2452 {
2453 gcc_assert (is_gimple_assign (s));
2454 return gimple_could_trap_p_1 (s, true, false);
2455 }
2456
2457
2458 /* Print debugging information for gimple stmts generated. */
2459
2460 void
2461 dump_gimple_statistics (void)
2462 {
2463 #ifdef GATHER_STATISTICS
2464 int i, total_tuples = 0, total_bytes = 0;
2465
2466 fprintf (stderr, "\nGIMPLE statements\n");
2467 fprintf (stderr, "Kind Stmts Bytes\n");
2468 fprintf (stderr, "---------------------------------------\n");
2469 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
2470 {
2471 fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i],
2472 gimple_alloc_counts[i], gimple_alloc_sizes[i]);
2473 total_tuples += gimple_alloc_counts[i];
2474 total_bytes += gimple_alloc_sizes[i];
2475 }
2476 fprintf (stderr, "---------------------------------------\n");
2477 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes);
2478 fprintf (stderr, "---------------------------------------\n");
2479 #else
2480 fprintf (stderr, "No gimple statistics\n");
2481 #endif
2482 }
2483
2484
2485 /* Return the number of operands needed on the RHS of a GIMPLE
2486 assignment for an expression with tree code CODE. */
2487
2488 unsigned
2489 get_gimple_rhs_num_ops (enum tree_code code)
2490 {
2491 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
2492
2493 if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
2494 return 1;
2495 else if (rhs_class == GIMPLE_BINARY_RHS)
2496 return 2;
2497 else if (rhs_class == GIMPLE_TERNARY_RHS)
2498 return 3;
2499 else
2500 gcc_unreachable ();
2501 }
2502
2503 #define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
2504 (unsigned char) \
2505 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
2506 : ((TYPE) == tcc_binary \
2507 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
2508 : ((TYPE) == tcc_constant \
2509 || (TYPE) == tcc_declaration \
2510 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
2511 : ((SYM) == TRUTH_AND_EXPR \
2512 || (SYM) == TRUTH_OR_EXPR \
2513 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
2514 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
2515 : ((SYM) == WIDEN_MULT_PLUS_EXPR \
2516 || (SYM) == WIDEN_MULT_MINUS_EXPR \
2517 || (SYM) == FMA_EXPR) ? GIMPLE_TERNARY_RHS \
2518 : ((SYM) == COND_EXPR \
2519 || (SYM) == CONSTRUCTOR \
2520 || (SYM) == OBJ_TYPE_REF \
2521 || (SYM) == ASSERT_EXPR \
2522 || (SYM) == ADDR_EXPR \
2523 || (SYM) == WITH_SIZE_EXPR \
2524 || (SYM) == SSA_NAME \
2525 || (SYM) == POLYNOMIAL_CHREC \
2526 || (SYM) == DOT_PROD_EXPR \
2527 || (SYM) == VEC_COND_EXPR \
2528 || (SYM) == REALIGN_LOAD_EXPR) ? GIMPLE_SINGLE_RHS \
2529 : GIMPLE_INVALID_RHS),
2530 #define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
2531
2532 const unsigned char gimple_rhs_class_table[] = {
2533 #include "all-tree.def"
2534 };
2535
2536 #undef DEFTREECODE
2537 #undef END_OF_BASE_TREE_CODES
2538
2539 /* For the definitive definition of GIMPLE, see doc/tree-ssa.texi. */
2540
2541 /* Validation of GIMPLE expressions. */
2542
2543 /* Returns true iff T is a valid RHS for an assignment to a renamed
2544 user -- or front-end generated artificial -- variable. */
2545
2546 bool
2547 is_gimple_reg_rhs (tree t)
2548 {
2549 return get_gimple_rhs_class (TREE_CODE (t)) != GIMPLE_INVALID_RHS;
2550 }
2551
2552 /* Returns true iff T is a valid RHS for an assignment to an un-renamed
2553 LHS, or for a call argument. */
2554
2555 bool
2556 is_gimple_mem_rhs (tree t)
2557 {
2558 /* If we're dealing with a renamable type, either source or dest must be
2559 a renamed variable. */
2560 if (is_gimple_reg_type (TREE_TYPE (t)))
2561 return is_gimple_val (t);
2562 else
2563 return is_gimple_val (t) || is_gimple_lvalue (t);
2564 }
2565
2566 /* Return true if T is a valid LHS for a GIMPLE assignment expression. */
2567
2568 bool
2569 is_gimple_lvalue (tree t)
2570 {
2571 return (is_gimple_addressable (t)
2572 || TREE_CODE (t) == WITH_SIZE_EXPR
2573 /* These are complex lvalues, but don't have addresses, so they
2574 go here. */
2575 || TREE_CODE (t) == BIT_FIELD_REF);
2576 }
2577
2578 /* Return true if T is a GIMPLE condition. */
2579
2580 bool
2581 is_gimple_condexpr (tree t)
2582 {
2583 return (is_gimple_val (t) || (COMPARISON_CLASS_P (t)
2584 && !tree_could_trap_p (t)
2585 && is_gimple_val (TREE_OPERAND (t, 0))
2586 && is_gimple_val (TREE_OPERAND (t, 1))));
2587 }
2588
2589 /* Return true if T is something whose address can be taken. */
2590
2591 bool
2592 is_gimple_addressable (tree t)
2593 {
2594 return (is_gimple_id (t) || handled_component_p (t)
2595 || TREE_CODE (t) == MEM_REF);
2596 }
2597
2598 /* Return true if T is a valid gimple constant. */
2599
2600 bool
2601 is_gimple_constant (const_tree t)
2602 {
2603 switch (TREE_CODE (t))
2604 {
2605 case INTEGER_CST:
2606 case REAL_CST:
2607 case FIXED_CST:
2608 case STRING_CST:
2609 case COMPLEX_CST:
2610 case VECTOR_CST:
2611 return true;
2612
2613 /* Vector constant constructors are gimple invariant. */
2614 case CONSTRUCTOR:
2615 if (TREE_TYPE (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2616 return TREE_CONSTANT (t);
2617 else
2618 return false;
2619
2620 default:
2621 return false;
2622 }
2623 }
2624
2625 /* Return true if T is a gimple address. */
2626
2627 bool
2628 is_gimple_address (const_tree t)
2629 {
2630 tree op;
2631
2632 if (TREE_CODE (t) != ADDR_EXPR)
2633 return false;
2634
2635 op = TREE_OPERAND (t, 0);
2636 while (handled_component_p (op))
2637 {
2638 if ((TREE_CODE (op) == ARRAY_REF
2639 || TREE_CODE (op) == ARRAY_RANGE_REF)
2640 && !is_gimple_val (TREE_OPERAND (op, 1)))
2641 return false;
2642
2643 op = TREE_OPERAND (op, 0);
2644 }
2645
2646 if (CONSTANT_CLASS_P (op) || TREE_CODE (op) == MEM_REF)
2647 return true;
2648
2649 switch (TREE_CODE (op))
2650 {
2651 case PARM_DECL:
2652 case RESULT_DECL:
2653 case LABEL_DECL:
2654 case FUNCTION_DECL:
2655 case VAR_DECL:
2656 case CONST_DECL:
2657 return true;
2658
2659 default:
2660 return false;
2661 }
2662 }
2663
2664 /* Strip out all handled components that produce invariant
2665 offsets. */
2666
2667 static const_tree
2668 strip_invariant_refs (const_tree op)
2669 {
2670 while (handled_component_p (op))
2671 {
2672 switch (TREE_CODE (op))
2673 {
2674 case ARRAY_REF:
2675 case ARRAY_RANGE_REF:
2676 if (!is_gimple_constant (TREE_OPERAND (op, 1))
2677 || TREE_OPERAND (op, 2) != NULL_TREE
2678 || TREE_OPERAND (op, 3) != NULL_TREE)
2679 return NULL;
2680 break;
2681
2682 case COMPONENT_REF:
2683 if (TREE_OPERAND (op, 2) != NULL_TREE)
2684 return NULL;
2685 break;
2686
2687 default:;
2688 }
2689 op = TREE_OPERAND (op, 0);
2690 }
2691
2692 return op;
2693 }
2694
2695 /* Return true if T is a gimple invariant address. */
2696
2697 bool
2698 is_gimple_invariant_address (const_tree t)
2699 {
2700 const_tree op;
2701
2702 if (TREE_CODE (t) != ADDR_EXPR)
2703 return false;
2704
2705 op = strip_invariant_refs (TREE_OPERAND (t, 0));
2706 if (!op)
2707 return false;
2708
2709 if (TREE_CODE (op) == MEM_REF)
2710 {
2711 const_tree op0 = TREE_OPERAND (op, 0);
2712 return (TREE_CODE (op0) == ADDR_EXPR
2713 && (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))
2714 || decl_address_invariant_p (TREE_OPERAND (op0, 0))));
2715 }
2716
2717 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
2718 }
2719
2720 /* Return true if T is a gimple invariant address at IPA level
2721 (so addresses of variables on stack are not allowed). */
2722
2723 bool
2724 is_gimple_ip_invariant_address (const_tree t)
2725 {
2726 const_tree op;
2727
2728 if (TREE_CODE (t) != ADDR_EXPR)
2729 return false;
2730
2731 op = strip_invariant_refs (TREE_OPERAND (t, 0));
2732
2733 return op && (CONSTANT_CLASS_P (op) || decl_address_ip_invariant_p (op));
2734 }
2735
2736 /* Return true if T is a GIMPLE minimal invariant. It's a restricted
2737 form of function invariant. */
2738
2739 bool
2740 is_gimple_min_invariant (const_tree t)
2741 {
2742 if (TREE_CODE (t) == ADDR_EXPR)
2743 return is_gimple_invariant_address (t);
2744
2745 return is_gimple_constant (t);
2746 }
2747
2748 /* Return true if T is a GIMPLE interprocedural invariant. It's a restricted
2749 form of gimple minimal invariant. */
2750
2751 bool
2752 is_gimple_ip_invariant (const_tree t)
2753 {
2754 if (TREE_CODE (t) == ADDR_EXPR)
2755 return is_gimple_ip_invariant_address (t);
2756
2757 return is_gimple_constant (t);
2758 }
2759
2760 /* Return true if T looks like a valid GIMPLE statement. */
2761
2762 bool
2763 is_gimple_stmt (tree t)
2764 {
2765 const enum tree_code code = TREE_CODE (t);
2766
2767 switch (code)
2768 {
2769 case NOP_EXPR:
2770 /* The only valid NOP_EXPR is the empty statement. */
2771 return IS_EMPTY_STMT (t);
2772
2773 case BIND_EXPR:
2774 case COND_EXPR:
2775 /* These are only valid if they're void. */
2776 return TREE_TYPE (t) == NULL || VOID_TYPE_P (TREE_TYPE (t));
2777
2778 case SWITCH_EXPR:
2779 case GOTO_EXPR:
2780 case RETURN_EXPR:
2781 case LABEL_EXPR:
2782 case CASE_LABEL_EXPR:
2783 case TRY_CATCH_EXPR:
2784 case TRY_FINALLY_EXPR:
2785 case EH_FILTER_EXPR:
2786 case CATCH_EXPR:
2787 case ASM_EXPR:
2788 case STATEMENT_LIST:
2789 case OMP_PARALLEL:
2790 case OMP_FOR:
2791 case OMP_SECTIONS:
2792 case OMP_SECTION:
2793 case OMP_SINGLE:
2794 case OMP_MASTER:
2795 case OMP_ORDERED:
2796 case OMP_CRITICAL:
2797 case OMP_TASK:
2798 /* These are always void. */
2799 return true;
2800
2801 case CALL_EXPR:
2802 case MODIFY_EXPR:
2803 case PREDICT_EXPR:
2804 /* These are valid regardless of their type. */
2805 return true;
2806
2807 default:
2808 return false;
2809 }
2810 }
2811
2812 /* Return true if T is a variable. */
2813
2814 bool
2815 is_gimple_variable (tree t)
2816 {
2817 return (TREE_CODE (t) == VAR_DECL
2818 || TREE_CODE (t) == PARM_DECL
2819 || TREE_CODE (t) == RESULT_DECL
2820 || TREE_CODE (t) == SSA_NAME);
2821 }
2822
2823 /* Return true if T is a GIMPLE identifier (something with an address). */
2824
2825 bool
2826 is_gimple_id (tree t)
2827 {
2828 return (is_gimple_variable (t)
2829 || TREE_CODE (t) == FUNCTION_DECL
2830 || TREE_CODE (t) == LABEL_DECL
2831 || TREE_CODE (t) == CONST_DECL
2832 /* Allow string constants, since they are addressable. */
2833 || TREE_CODE (t) == STRING_CST);
2834 }
2835
2836 /* Return true if TYPE is a suitable type for a scalar register variable. */
2837
2838 bool
2839 is_gimple_reg_type (tree type)
2840 {
2841 return !AGGREGATE_TYPE_P (type);
2842 }
2843
2844 /* Return true if T is a non-aggregate register variable. */
2845
2846 bool
2847 is_gimple_reg (tree t)
2848 {
2849 if (TREE_CODE (t) == SSA_NAME)
2850 t = SSA_NAME_VAR (t);
2851
2852 if (!is_gimple_variable (t))
2853 return false;
2854
2855 if (!is_gimple_reg_type (TREE_TYPE (t)))
2856 return false;
2857
2858 /* A volatile decl is not acceptable because we can't reuse it as
2859 needed. We need to copy it into a temp first. */
2860 if (TREE_THIS_VOLATILE (t))
2861 return false;
2862
2863 /* We define "registers" as things that can be renamed as needed,
2864 which with our infrastructure does not apply to memory. */
2865 if (needs_to_live_in_memory (t))
2866 return false;
2867
2868 /* Hard register variables are an interesting case. For those that
2869 are call-clobbered, we don't know where all the calls are, since
2870 we don't (want to) take into account which operations will turn
2871 into libcalls at the rtl level. For those that are call-saved,
2872 we don't currently model the fact that calls may in fact change
2873 global hard registers, nor do we examine ASM_CLOBBERS at the tree
2874 level, and so miss variable changes that might imply. All around,
2875 it seems safest to not do too much optimization with these at the
2876 tree level at all. We'll have to rely on the rtl optimizers to
2877 clean this up, as there we've got all the appropriate bits exposed. */
2878 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
2879 return false;
2880
2881 /* Complex and vector values must have been put into SSA-like form.
2882 That is, no assignments to the individual components. */
2883 if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE
2884 || TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2885 return DECL_GIMPLE_REG_P (t);
2886
2887 return true;
2888 }
2889
2890
2891 /* Return true if T is a GIMPLE variable whose address is not needed. */
2892
2893 bool
2894 is_gimple_non_addressable (tree t)
2895 {
2896 if (TREE_CODE (t) == SSA_NAME)
2897 t = SSA_NAME_VAR (t);
2898
2899 return (is_gimple_variable (t) && ! needs_to_live_in_memory (t));
2900 }
2901
2902 /* Return true if T is a GIMPLE rvalue, i.e. an identifier or a constant. */
2903
2904 bool
2905 is_gimple_val (tree t)
2906 {
2907 /* Make loads from volatiles and memory vars explicit. */
2908 if (is_gimple_variable (t)
2909 && is_gimple_reg_type (TREE_TYPE (t))
2910 && !is_gimple_reg (t))
2911 return false;
2912
2913 return (is_gimple_variable (t) || is_gimple_min_invariant (t));
2914 }
2915
2916 /* Similarly, but accept hard registers as inputs to asm statements. */
2917
2918 bool
2919 is_gimple_asm_val (tree t)
2920 {
2921 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
2922 return true;
2923
2924 return is_gimple_val (t);
2925 }
2926
2927 /* Return true if T is a GIMPLE minimal lvalue. */
2928
2929 bool
2930 is_gimple_min_lval (tree t)
2931 {
2932 if (!(t = CONST_CAST_TREE (strip_invariant_refs (t))))
2933 return false;
2934 return (is_gimple_id (t) || TREE_CODE (t) == MEM_REF);
2935 }
2936
2937 /* Return true if T is a valid function operand of a CALL_EXPR. */
2938
2939 bool
2940 is_gimple_call_addr (tree t)
2941 {
2942 return (TREE_CODE (t) == OBJ_TYPE_REF || is_gimple_val (t));
2943 }
2944
2945 /* Return true if T is a valid address operand of a MEM_REF. */
2946
2947 bool
2948 is_gimple_mem_ref_addr (tree t)
2949 {
2950 return (is_gimple_reg (t)
2951 || TREE_CODE (t) == INTEGER_CST
2952 || (TREE_CODE (t) == ADDR_EXPR
2953 && (CONSTANT_CLASS_P (TREE_OPERAND (t, 0))
2954 || decl_address_invariant_p (TREE_OPERAND (t, 0)))));
2955 }
2956
2957 /* If T makes a function call, return the corresponding CALL_EXPR operand.
2958 Otherwise, return NULL_TREE. */
2959
2960 tree
2961 get_call_expr_in (tree t)
2962 {
2963 if (TREE_CODE (t) == MODIFY_EXPR)
2964 t = TREE_OPERAND (t, 1);
2965 if (TREE_CODE (t) == WITH_SIZE_EXPR)
2966 t = TREE_OPERAND (t, 0);
2967 if (TREE_CODE (t) == CALL_EXPR)
2968 return t;
2969 return NULL_TREE;
2970 }
2971
2972
2973 /* Given a memory reference expression T, return its base address.
2974 The base address of a memory reference expression is the main
2975 object being referenced. For instance, the base address for
2976 'array[i].fld[j]' is 'array'. You can think of this as stripping
2977 away the offset part from a memory address.
2978
2979 This function calls handled_component_p to strip away all the inner
2980 parts of the memory reference until it reaches the base object. */
2981
2982 tree
2983 get_base_address (tree t)
2984 {
2985 while (handled_component_p (t))
2986 t = TREE_OPERAND (t, 0);
2987
2988 if ((TREE_CODE (t) == MEM_REF
2989 || TREE_CODE (t) == TARGET_MEM_REF)
2990 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
2991 t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
2992
2993 if (TREE_CODE (t) == SSA_NAME
2994 || DECL_P (t)
2995 || TREE_CODE (t) == STRING_CST
2996 || TREE_CODE (t) == CONSTRUCTOR
2997 || INDIRECT_REF_P (t)
2998 || TREE_CODE (t) == MEM_REF
2999 || TREE_CODE (t) == TARGET_MEM_REF)
3000 return t;
3001 else
3002 return NULL_TREE;
3003 }
3004
3005 void
3006 recalculate_side_effects (tree t)
3007 {
3008 enum tree_code code = TREE_CODE (t);
3009 int len = TREE_OPERAND_LENGTH (t);
3010 int i;
3011
3012 switch (TREE_CODE_CLASS (code))
3013 {
3014 case tcc_expression:
3015 switch (code)
3016 {
3017 case INIT_EXPR:
3018 case MODIFY_EXPR:
3019 case VA_ARG_EXPR:
3020 case PREDECREMENT_EXPR:
3021 case PREINCREMENT_EXPR:
3022 case POSTDECREMENT_EXPR:
3023 case POSTINCREMENT_EXPR:
3024 /* All of these have side-effects, no matter what their
3025 operands are. */
3026 return;
3027
3028 default:
3029 break;
3030 }
3031 /* Fall through. */
3032
3033 case tcc_comparison: /* a comparison expression */
3034 case tcc_unary: /* a unary arithmetic expression */
3035 case tcc_binary: /* a binary arithmetic expression */
3036 case tcc_reference: /* a reference */
3037 case tcc_vl_exp: /* a function call */
3038 TREE_SIDE_EFFECTS (t) = TREE_THIS_VOLATILE (t);
3039 for (i = 0; i < len; ++i)
3040 {
3041 tree op = TREE_OPERAND (t, i);
3042 if (op && TREE_SIDE_EFFECTS (op))
3043 TREE_SIDE_EFFECTS (t) = 1;
3044 }
3045 break;
3046
3047 case tcc_constant:
3048 /* No side-effects. */
3049 return;
3050
3051 default:
3052 gcc_unreachable ();
3053 }
3054 }
3055
3056 /* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
3057 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
3058 we failed to create one. */
3059
3060 tree
3061 canonicalize_cond_expr_cond (tree t)
3062 {
3063 /* Strip conversions around boolean operations. */
3064 if (CONVERT_EXPR_P (t)
3065 && truth_value_p (TREE_CODE (TREE_OPERAND (t, 0))))
3066 t = TREE_OPERAND (t, 0);
3067
3068 /* For (bool)x use x != 0. */
3069 if (CONVERT_EXPR_P (t)
3070 && TREE_CODE (TREE_TYPE (t)) == BOOLEAN_TYPE)
3071 {
3072 tree top0 = TREE_OPERAND (t, 0);
3073 t = build2 (NE_EXPR, TREE_TYPE (t),
3074 top0, build_int_cst (TREE_TYPE (top0), 0));
3075 }
3076 /* For !x use x == 0. */
3077 else if (TREE_CODE (t) == TRUTH_NOT_EXPR)
3078 {
3079 tree top0 = TREE_OPERAND (t, 0);
3080 t = build2 (EQ_EXPR, TREE_TYPE (t),
3081 top0, build_int_cst (TREE_TYPE (top0), 0));
3082 }
3083 /* For cmp ? 1 : 0 use cmp. */
3084 else if (TREE_CODE (t) == COND_EXPR
3085 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
3086 && integer_onep (TREE_OPERAND (t, 1))
3087 && integer_zerop (TREE_OPERAND (t, 2)))
3088 {
3089 tree top0 = TREE_OPERAND (t, 0);
3090 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
3091 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
3092 }
3093
3094 if (is_gimple_condexpr (t))
3095 return t;
3096
3097 return NULL_TREE;
3098 }
3099
3100 /* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
3101 the positions marked by the set ARGS_TO_SKIP. */
3102
3103 gimple
3104 gimple_call_copy_skip_args (gimple stmt, bitmap args_to_skip)
3105 {
3106 int i;
3107 tree fn = gimple_call_fn (stmt);
3108 int nargs = gimple_call_num_args (stmt);
3109 VEC(tree, heap) *vargs = VEC_alloc (tree, heap, nargs);
3110 gimple new_stmt;
3111
3112 for (i = 0; i < nargs; i++)
3113 if (!bitmap_bit_p (args_to_skip, i))
3114 VEC_quick_push (tree, vargs, gimple_call_arg (stmt, i));
3115
3116 new_stmt = gimple_build_call_vec (fn, vargs);
3117 VEC_free (tree, heap, vargs);
3118 if (gimple_call_lhs (stmt))
3119 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
3120
3121 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
3122 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
3123
3124 gimple_set_block (new_stmt, gimple_block (stmt));
3125 if (gimple_has_location (stmt))
3126 gimple_set_location (new_stmt, gimple_location (stmt));
3127 gimple_call_copy_flags (new_stmt, stmt);
3128 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
3129
3130 gimple_set_modified (new_stmt, true);
3131
3132 return new_stmt;
3133 }
3134
3135
3136 static hashval_t gimple_type_hash_1 (const void *, enum gtc_mode);
3137
3138 /* Structure used to maintain a cache of some type pairs compared by
3139 gimple_types_compatible_p when comparing aggregate types. There are
3140 three possible values for SAME_P:
3141
3142 -2: The pair (T1, T2) has just been inserted in the table.
3143 0: T1 and T2 are different types.
3144 1: T1 and T2 are the same type.
3145
3146 The two elements in the SAME_P array are indexed by the comparison
3147 mode gtc_mode. */
3148
3149 struct type_pair_d
3150 {
3151 unsigned int uid1;
3152 unsigned int uid2;
3153 signed char same_p[2];
3154 };
3155 typedef struct type_pair_d *type_pair_t;
3156
3157 DEF_VEC_P(type_pair_t);
3158 DEF_VEC_ALLOC_P(type_pair_t,heap);
3159
3160 /* Return a hash value for the type pair pointed-to by P. */
3161
3162 static hashval_t
3163 type_pair_hash (const void *p)
3164 {
3165 const struct type_pair_d *pair = (const struct type_pair_d *) p;
3166 hashval_t val1 = pair->uid1;
3167 hashval_t val2 = pair->uid2;
3168 return (iterative_hash_hashval_t (val2, val1)
3169 ^ iterative_hash_hashval_t (val1, val2));
3170 }
3171
3172 /* Compare two type pairs pointed-to by P1 and P2. */
3173
3174 static int
3175 type_pair_eq (const void *p1, const void *p2)
3176 {
3177 const struct type_pair_d *pair1 = (const struct type_pair_d *) p1;
3178 const struct type_pair_d *pair2 = (const struct type_pair_d *) p2;
3179 return ((pair1->uid1 == pair2->uid1 && pair1->uid2 == pair2->uid2)
3180 || (pair1->uid1 == pair2->uid2 && pair1->uid2 == pair2->uid1));
3181 }
3182
3183 /* Lookup the pair of types T1 and T2 in *VISITED_P. Insert a new
3184 entry if none existed. */
3185
3186 static type_pair_t
3187 lookup_type_pair (tree t1, tree t2, htab_t *visited_p, struct obstack *ob_p)
3188 {
3189 struct type_pair_d pair;
3190 type_pair_t p;
3191 void **slot;
3192
3193 if (*visited_p == NULL)
3194 {
3195 *visited_p = htab_create (251, type_pair_hash, type_pair_eq, NULL);
3196 gcc_obstack_init (ob_p);
3197 }
3198
3199 pair.uid1 = TYPE_UID (t1);
3200 pair.uid2 = TYPE_UID (t2);
3201 slot = htab_find_slot (*visited_p, &pair, INSERT);
3202
3203 if (*slot)
3204 p = *((type_pair_t *) slot);
3205 else
3206 {
3207 p = XOBNEW (ob_p, struct type_pair_d);
3208 p->uid1 = TYPE_UID (t1);
3209 p->uid2 = TYPE_UID (t2);
3210 p->same_p[0] = -2;
3211 p->same_p[1] = -2;
3212 *slot = (void *) p;
3213 }
3214
3215 return p;
3216 }
3217
3218 /* Per pointer state for the SCC finding. The on_sccstack flag
3219 is not strictly required, it is true when there is no hash value
3220 recorded for the type and false otherwise. But querying that
3221 is slower. */
3222
3223 struct sccs
3224 {
3225 unsigned int dfsnum;
3226 unsigned int low;
3227 bool on_sccstack;
3228 union {
3229 hashval_t hash;
3230 signed char same_p;
3231 } u;
3232 };
3233
3234 static unsigned int next_dfs_num;
3235 static unsigned int gtc_next_dfs_num;
3236
3237
3238 /* GIMPLE type merging cache. A direct-mapped cache based on TYPE_UID. */
3239
3240 typedef struct GTY(()) gimple_type_leader_entry_s {
3241 tree type;
3242 tree leader;
3243 } gimple_type_leader_entry;
3244
3245 #define GIMPLE_TYPE_LEADER_SIZE 16381
3246 static GTY((length("GIMPLE_TYPE_LEADER_SIZE"))) gimple_type_leader_entry
3247 *gimple_type_leader;
3248
3249 /* Lookup an existing leader for T and return it or NULL_TREE, if
3250 there is none in the cache. */
3251
3252 static tree
3253 gimple_lookup_type_leader (tree t)
3254 {
3255 gimple_type_leader_entry *leader;
3256
3257 if (!gimple_type_leader)
3258 return NULL_TREE;
3259
3260 leader = &gimple_type_leader[TYPE_UID (t) % GIMPLE_TYPE_LEADER_SIZE];
3261 if (leader->type != t)
3262 return NULL_TREE;
3263
3264 return leader->leader;
3265 }
3266
3267 /* Return true if T1 and T2 have the same name. If FOR_COMPLETION_P is
3268 true then if any type has no name return false, otherwise return
3269 true if both types have no names. */
3270
3271 static bool
3272 compare_type_names_p (tree t1, tree t2, bool for_completion_p)
3273 {
3274 tree name1 = TYPE_NAME (t1);
3275 tree name2 = TYPE_NAME (t2);
3276
3277 /* Consider anonymous types all unique for completion. */
3278 if (for_completion_p
3279 && (!name1 || !name2))
3280 return false;
3281
3282 if (name1 && TREE_CODE (name1) == TYPE_DECL)
3283 {
3284 name1 = DECL_NAME (name1);
3285 if (for_completion_p
3286 && !name1)
3287 return false;
3288 }
3289 gcc_assert (!name1 || TREE_CODE (name1) == IDENTIFIER_NODE);
3290
3291 if (name2 && TREE_CODE (name2) == TYPE_DECL)
3292 {
3293 name2 = DECL_NAME (name2);
3294 if (for_completion_p
3295 && !name2)
3296 return false;
3297 }
3298 gcc_assert (!name2 || TREE_CODE (name2) == IDENTIFIER_NODE);
3299
3300 /* Identifiers can be compared with pointer equality rather
3301 than a string comparison. */
3302 if (name1 == name2)
3303 return true;
3304
3305 return false;
3306 }
3307
3308 /* Return true if the field decls F1 and F2 are at the same offset.
3309
3310 This is intended to be used on GIMPLE types only. In order to
3311 compare GENERIC types, use fields_compatible_p instead. */
3312
3313 bool
3314 gimple_compare_field_offset (tree f1, tree f2)
3315 {
3316 if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
3317 {
3318 tree offset1 = DECL_FIELD_OFFSET (f1);
3319 tree offset2 = DECL_FIELD_OFFSET (f2);
3320 return ((offset1 == offset2
3321 /* Once gimplification is done, self-referential offsets are
3322 instantiated as operand #2 of the COMPONENT_REF built for
3323 each access and reset. Therefore, they are not relevant
3324 anymore and fields are interchangeable provided that they
3325 represent the same access. */
3326 || (TREE_CODE (offset1) == PLACEHOLDER_EXPR
3327 && TREE_CODE (offset2) == PLACEHOLDER_EXPR
3328 && (DECL_SIZE (f1) == DECL_SIZE (f2)
3329 || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
3330 && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
3331 || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0))
3332 && DECL_ALIGN (f1) == DECL_ALIGN (f2))
3333 || operand_equal_p (offset1, offset2, 0))
3334 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
3335 DECL_FIELD_BIT_OFFSET (f2)));
3336 }
3337
3338 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
3339 should be, so handle differing ones specially by decomposing
3340 the offset into a byte and bit offset manually. */
3341 if (host_integerp (DECL_FIELD_OFFSET (f1), 0)
3342 && host_integerp (DECL_FIELD_OFFSET (f2), 0))
3343 {
3344 unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
3345 unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
3346 bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
3347 byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
3348 + bit_offset1 / BITS_PER_UNIT);
3349 bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
3350 byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
3351 + bit_offset2 / BITS_PER_UNIT);
3352 if (byte_offset1 != byte_offset2)
3353 return false;
3354 return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
3355 }
3356
3357 return false;
3358 }
3359
3360 /* If the type T1 and the type T2 are a complete and an incomplete
3361 variant of the same type return true. */
3362
3363 static bool
3364 gimple_compatible_complete_and_incomplete_subtype_p (tree t1, tree t2)
3365 {
3366 /* If one pointer points to an incomplete type variant of
3367 the other pointed-to type they are the same. */
3368 if (TREE_CODE (t1) == TREE_CODE (t2)
3369 && RECORD_OR_UNION_TYPE_P (t1)
3370 && (!COMPLETE_TYPE_P (t1)
3371 || !COMPLETE_TYPE_P (t2))
3372 && TYPE_QUALS (t1) == TYPE_QUALS (t2)
3373 && compare_type_names_p (TYPE_MAIN_VARIANT (t1),
3374 TYPE_MAIN_VARIANT (t2), true))
3375 return true;
3376 return false;
3377 }
3378
3379 static bool
3380 gimple_types_compatible_p_1 (tree, tree, enum gtc_mode, type_pair_t,
3381 VEC(type_pair_t, heap) **,
3382 struct pointer_map_t *, struct obstack *);
3383
3384 /* DFS visit the edge from the callers type pair with state *STATE to
3385 the pair T1, T2 while operating in FOR_MERGING_P mode.
3386 Update the merging status if it is not part of the SCC containing the
3387 callers pair and return it.
3388 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3389
3390 static bool
3391 gtc_visit (tree t1, tree t2, enum gtc_mode mode,
3392 struct sccs *state,
3393 VEC(type_pair_t, heap) **sccstack,
3394 struct pointer_map_t *sccstate,
3395 struct obstack *sccstate_obstack)
3396 {
3397 struct sccs *cstate = NULL;
3398 type_pair_t p;
3399 void **slot;
3400
3401 /* Check first for the obvious case of pointer identity. */
3402 if (t1 == t2)
3403 return true;
3404
3405 /* Check that we have two types to compare. */
3406 if (t1 == NULL_TREE || t2 == NULL_TREE)
3407 return false;
3408
3409 /* If the types have been previously registered and found equal
3410 they still are. */
3411 if (mode == GTC_MERGE)
3412 {
3413 tree leader1 = gimple_lookup_type_leader (t1);
3414 tree leader2 = gimple_lookup_type_leader (t2);
3415 if (leader1 == t2
3416 || t1 == leader2
3417 || (leader1 && leader1 == leader2))
3418 return true;
3419 }
3420 else if (mode == GTC_DIAG)
3421 {
3422 if (TYPE_CANONICAL (t1)
3423 && TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2))
3424 return true;
3425 }
3426
3427 /* Can't be the same type if the types don't have the same code. */
3428 if (TREE_CODE (t1) != TREE_CODE (t2))
3429 return false;
3430
3431 /* Can't be the same type if they have different CV qualifiers. */
3432 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
3433 return false;
3434
3435 /* Void types are always the same. */
3436 if (TREE_CODE (t1) == VOID_TYPE)
3437 return true;
3438
3439 /* Do some simple checks before doing three hashtable queries. */
3440 if (INTEGRAL_TYPE_P (t1)
3441 || SCALAR_FLOAT_TYPE_P (t1)
3442 || FIXED_POINT_TYPE_P (t1)
3443 || TREE_CODE (t1) == VECTOR_TYPE
3444 || TREE_CODE (t1) == COMPLEX_TYPE
3445 || TREE_CODE (t1) == OFFSET_TYPE)
3446 {
3447 /* Can't be the same type if they have different alignment,
3448 sign, precision or mode. */
3449 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3450 || TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
3451 || TYPE_MODE (t1) != TYPE_MODE (t2)
3452 || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
3453 return false;
3454
3455 if (TREE_CODE (t1) == INTEGER_TYPE
3456 && (TYPE_IS_SIZETYPE (t1) != TYPE_IS_SIZETYPE (t2)
3457 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)))
3458 return false;
3459
3460 /* That's all we need to check for float and fixed-point types. */
3461 if (SCALAR_FLOAT_TYPE_P (t1)
3462 || FIXED_POINT_TYPE_P (t1))
3463 return true;
3464
3465 /* For integral types fall thru to more complex checks. */
3466 }
3467
3468 else if (AGGREGATE_TYPE_P (t1) || POINTER_TYPE_P (t1))
3469 {
3470 /* Can't be the same type if they have different alignment or mode. */
3471 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3472 || TYPE_MODE (t1) != TYPE_MODE (t2))
3473 return false;
3474 }
3475
3476 /* If the hash values of t1 and t2 are different the types can't
3477 possibly be the same. This helps keeping the type-pair hashtable
3478 small, only tracking comparisons for hash collisions. */
3479 if (gimple_type_hash_1 (t1, mode) != gimple_type_hash_1 (t2, mode))
3480 return false;
3481
3482 /* Allocate a new cache entry for this comparison. */
3483 p = lookup_type_pair (t1, t2, &gtc_visited, &gtc_ob);
3484 if (p->same_p[mode] == 0 || p->same_p[mode] == 1)
3485 {
3486 /* We have already decided whether T1 and T2 are the
3487 same, return the cached result. */
3488 return p->same_p[mode] == 1;
3489 }
3490
3491 if ((slot = pointer_map_contains (sccstate, p)) != NULL)
3492 cstate = (struct sccs *)*slot;
3493 /* Not yet visited. DFS recurse. */
3494 if (!cstate)
3495 {
3496 gimple_types_compatible_p_1 (t1, t2, mode, p,
3497 sccstack, sccstate, sccstate_obstack);
3498 cstate = (struct sccs *)* pointer_map_contains (sccstate, p);
3499 state->low = MIN (state->low, cstate->low);
3500 }
3501 /* If the type is still on the SCC stack adjust the parents low. */
3502 if (cstate->dfsnum < state->dfsnum
3503 && cstate->on_sccstack)
3504 state->low = MIN (cstate->dfsnum, state->low);
3505
3506 /* Return the current lattice value. We start with an equality
3507 assumption so types part of a SCC will be optimistically
3508 treated equal unless proven otherwise. */
3509 return cstate->u.same_p;
3510 }
3511
3512 /* Worker for gimple_types_compatible.
3513 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3514
3515 static bool
3516 gimple_types_compatible_p_1 (tree t1, tree t2, enum gtc_mode mode,
3517 type_pair_t p,
3518 VEC(type_pair_t, heap) **sccstack,
3519 struct pointer_map_t *sccstate,
3520 struct obstack *sccstate_obstack)
3521 {
3522 struct sccs *state;
3523
3524 gcc_assert (p->same_p[mode] == -2);
3525
3526 state = XOBNEW (sccstate_obstack, struct sccs);
3527 *pointer_map_insert (sccstate, p) = state;
3528
3529 VEC_safe_push (type_pair_t, heap, *sccstack, p);
3530 state->dfsnum = gtc_next_dfs_num++;
3531 state->low = state->dfsnum;
3532 state->on_sccstack = true;
3533 /* Start with an equality assumption. As we DFS recurse into child
3534 SCCs this assumption may get revisited. */
3535 state->u.same_p = 1;
3536
3537 /* If their attributes are not the same they can't be the same type. */
3538 if (!attribute_list_equal (TYPE_ATTRIBUTES (t1), TYPE_ATTRIBUTES (t2)))
3539 goto different_types;
3540
3541 /* Do type-specific comparisons. */
3542 switch (TREE_CODE (t1))
3543 {
3544 case VECTOR_TYPE:
3545 case COMPLEX_TYPE:
3546 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode,
3547 state, sccstack, sccstate, sccstate_obstack))
3548 goto different_types;
3549 goto same_types;
3550
3551 case ARRAY_TYPE:
3552 /* Array types are the same if the element types are the same and
3553 the number of elements are the same. */
3554 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode,
3555 state, sccstack, sccstate, sccstate_obstack)
3556 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
3557 || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
3558 goto different_types;
3559 else
3560 {
3561 tree i1 = TYPE_DOMAIN (t1);
3562 tree i2 = TYPE_DOMAIN (t2);
3563
3564 /* For an incomplete external array, the type domain can be
3565 NULL_TREE. Check this condition also. */
3566 if (i1 == NULL_TREE && i2 == NULL_TREE)
3567 goto same_types;
3568 else if (i1 == NULL_TREE || i2 == NULL_TREE)
3569 goto different_types;
3570 /* If for a complete array type the possibly gimplified sizes
3571 are different the types are different. */
3572 else if (((TYPE_SIZE (i1) != NULL) ^ (TYPE_SIZE (i2) != NULL))
3573 || (TYPE_SIZE (i1)
3574 && TYPE_SIZE (i2)
3575 && !operand_equal_p (TYPE_SIZE (i1), TYPE_SIZE (i2), 0)))
3576 goto different_types;
3577 else
3578 {
3579 tree min1 = TYPE_MIN_VALUE (i1);
3580 tree min2 = TYPE_MIN_VALUE (i2);
3581 tree max1 = TYPE_MAX_VALUE (i1);
3582 tree max2 = TYPE_MAX_VALUE (i2);
3583
3584 /* The minimum/maximum values have to be the same. */
3585 if ((min1 == min2
3586 || (min1 && min2
3587 && ((TREE_CODE (min1) == PLACEHOLDER_EXPR
3588 && TREE_CODE (min2) == PLACEHOLDER_EXPR)
3589 || operand_equal_p (min1, min2, 0))))
3590 && (max1 == max2
3591 || (max1 && max2
3592 && ((TREE_CODE (max1) == PLACEHOLDER_EXPR
3593 && TREE_CODE (max2) == PLACEHOLDER_EXPR)
3594 || operand_equal_p (max1, max2, 0)))))
3595 goto same_types;
3596 else
3597 goto different_types;
3598 }
3599 }
3600
3601 case METHOD_TYPE:
3602 /* Method types should belong to the same class. */
3603 if (!gtc_visit (TYPE_METHOD_BASETYPE (t1), TYPE_METHOD_BASETYPE (t2),
3604 mode, state, sccstack, sccstate, sccstate_obstack))
3605 goto different_types;
3606
3607 /* Fallthru */
3608
3609 case FUNCTION_TYPE:
3610 /* Function types are the same if the return type and arguments types
3611 are the same. */
3612 if ((mode != GTC_DIAG
3613 || !gimple_compatible_complete_and_incomplete_subtype_p
3614 (TREE_TYPE (t1), TREE_TYPE (t2)))
3615 && !gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode,
3616 state, sccstack, sccstate, sccstate_obstack))
3617 goto different_types;
3618
3619 if (!targetm.comp_type_attributes (t1, t2))
3620 goto different_types;
3621
3622 if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
3623 goto same_types;
3624 else
3625 {
3626 tree parms1, parms2;
3627
3628 for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
3629 parms1 && parms2;
3630 parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
3631 {
3632 if ((mode == GTC_MERGE
3633 || !gimple_compatible_complete_and_incomplete_subtype_p
3634 (TREE_VALUE (parms1), TREE_VALUE (parms2)))
3635 && !gtc_visit (TREE_VALUE (parms1), TREE_VALUE (parms2), mode,
3636 state, sccstack, sccstate, sccstate_obstack))
3637 goto different_types;
3638 }
3639
3640 if (parms1 || parms2)
3641 goto different_types;
3642
3643 goto same_types;
3644 }
3645
3646 case OFFSET_TYPE:
3647 {
3648 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode,
3649 state, sccstack, sccstate, sccstate_obstack)
3650 || !gtc_visit (TYPE_OFFSET_BASETYPE (t1),
3651 TYPE_OFFSET_BASETYPE (t2), mode,
3652 state, sccstack, sccstate, sccstate_obstack))
3653 goto different_types;
3654
3655 goto same_types;
3656 }
3657
3658 case POINTER_TYPE:
3659 case REFERENCE_TYPE:
3660 {
3661 /* If the two pointers have different ref-all attributes,
3662 they can't be the same type. */
3663 if (TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
3664 goto different_types;
3665
3666 /* If one pointer points to an incomplete type variant of
3667 the other pointed-to type they are the same. */
3668 if (mode == GTC_DIAG
3669 && gimple_compatible_complete_and_incomplete_subtype_p
3670 (TREE_TYPE (t1), TREE_TYPE (t2)))
3671 goto same_types;
3672
3673 /* Otherwise, pointer and reference types are the same if the
3674 pointed-to types are the same. */
3675 if (gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode,
3676 state, sccstack, sccstate, sccstate_obstack))
3677 goto same_types;
3678
3679 goto different_types;
3680 }
3681
3682 case NULLPTR_TYPE:
3683 /* There is only one decltype(nullptr). */
3684 goto same_types;
3685
3686 case INTEGER_TYPE:
3687 case BOOLEAN_TYPE:
3688 {
3689 tree min1 = TYPE_MIN_VALUE (t1);
3690 tree max1 = TYPE_MAX_VALUE (t1);
3691 tree min2 = TYPE_MIN_VALUE (t2);
3692 tree max2 = TYPE_MAX_VALUE (t2);
3693 bool min_equal_p = false;
3694 bool max_equal_p = false;
3695
3696 /* If either type has a minimum value, the other type must
3697 have the same. */
3698 if (min1 == NULL_TREE && min2 == NULL_TREE)
3699 min_equal_p = true;
3700 else if (min1 && min2 && operand_equal_p (min1, min2, 0))
3701 min_equal_p = true;
3702
3703 /* Likewise, if either type has a maximum value, the other
3704 type must have the same. */
3705 if (max1 == NULL_TREE && max2 == NULL_TREE)
3706 max_equal_p = true;
3707 else if (max1 && max2 && operand_equal_p (max1, max2, 0))
3708 max_equal_p = true;
3709
3710 if (!min_equal_p || !max_equal_p)
3711 goto different_types;
3712
3713 goto same_types;
3714 }
3715
3716 case ENUMERAL_TYPE:
3717 {
3718 /* FIXME lto, we cannot check bounds on enumeral types because
3719 different front ends will produce different values.
3720 In C, enumeral types are integers, while in C++ each element
3721 will have its own symbolic value. We should decide how enums
3722 are to be represented in GIMPLE and have each front end lower
3723 to that. */
3724 tree v1, v2;
3725
3726 /* For enumeral types, all the values must be the same. */
3727 if (TYPE_VALUES (t1) == TYPE_VALUES (t2))
3728 goto same_types;
3729
3730 for (v1 = TYPE_VALUES (t1), v2 = TYPE_VALUES (t2);
3731 v1 && v2;
3732 v1 = TREE_CHAIN (v1), v2 = TREE_CHAIN (v2))
3733 {
3734 tree c1 = TREE_VALUE (v1);
3735 tree c2 = TREE_VALUE (v2);
3736
3737 if (TREE_CODE (c1) == CONST_DECL)
3738 c1 = DECL_INITIAL (c1);
3739
3740 if (TREE_CODE (c2) == CONST_DECL)
3741 c2 = DECL_INITIAL (c2);
3742
3743 if (tree_int_cst_equal (c1, c2) != 1)
3744 goto different_types;
3745 }
3746
3747 /* If one enumeration has more values than the other, they
3748 are not the same. */
3749 if (v1 || v2)
3750 goto different_types;
3751
3752 goto same_types;
3753 }
3754
3755 case RECORD_TYPE:
3756 case UNION_TYPE:
3757 case QUAL_UNION_TYPE:
3758 {
3759 tree f1, f2;
3760
3761 /* The struct tags shall compare equal. */
3762 if (mode == GTC_MERGE
3763 && !compare_type_names_p (TYPE_MAIN_VARIANT (t1),
3764 TYPE_MAIN_VARIANT (t2), false))
3765 goto different_types;
3766
3767 /* For aggregate types, all the fields must be the same. */
3768 for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
3769 f1 && f2;
3770 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
3771 {
3772 /* The fields must have the same name, offset and type. */
3773 if ((mode == GTC_MERGE
3774 && DECL_NAME (f1) != DECL_NAME (f2))
3775 || DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
3776 || !gimple_compare_field_offset (f1, f2)
3777 || !gtc_visit (TREE_TYPE (f1), TREE_TYPE (f2), mode,
3778 state, sccstack, sccstate, sccstate_obstack))
3779 goto different_types;
3780 }
3781
3782 /* If one aggregate has more fields than the other, they
3783 are not the same. */
3784 if (f1 || f2)
3785 goto different_types;
3786
3787 goto same_types;
3788 }
3789
3790 default:
3791 gcc_unreachable ();
3792 }
3793
3794 /* Common exit path for types that are not compatible. */
3795 different_types:
3796 state->u.same_p = 0;
3797 goto pop;
3798
3799 /* Common exit path for types that are compatible. */
3800 same_types:
3801 gcc_assert (state->u.same_p == 1);
3802
3803 pop:
3804 if (state->low == state->dfsnum)
3805 {
3806 type_pair_t x;
3807
3808 /* Pop off the SCC and set its cache values to the final
3809 comparison result. */
3810 do
3811 {
3812 struct sccs *cstate;
3813 x = VEC_pop (type_pair_t, *sccstack);
3814 cstate = (struct sccs *)*pointer_map_contains (sccstate, x);
3815 cstate->on_sccstack = false;
3816 x->same_p[mode] = state->u.same_p;
3817 }
3818 while (x != p);
3819 }
3820
3821 return state->u.same_p;
3822 }
3823
3824 /* Return true iff T1 and T2 are structurally identical. When
3825 FOR_MERGING_P is true the an incomplete type and a complete type
3826 are considered different, otherwise they are considered compatible. */
3827
3828 bool
3829 gimple_types_compatible_p (tree t1, tree t2, enum gtc_mode mode)
3830 {
3831 VEC(type_pair_t, heap) *sccstack = NULL;
3832 struct pointer_map_t *sccstate;
3833 struct obstack sccstate_obstack;
3834 type_pair_t p = NULL;
3835 bool res;
3836
3837 /* Before starting to set up the SCC machinery handle simple cases. */
3838
3839 /* Check first for the obvious case of pointer identity. */
3840 if (t1 == t2)
3841 return true;
3842
3843 /* Check that we have two types to compare. */
3844 if (t1 == NULL_TREE || t2 == NULL_TREE)
3845 return false;
3846
3847 /* If the types have been previously registered and found equal
3848 they still are. */
3849 if (mode == GTC_MERGE)
3850 {
3851 tree leader1 = gimple_lookup_type_leader (t1);
3852 tree leader2 = gimple_lookup_type_leader (t2);
3853 if (leader1 == t2
3854 || t1 == leader2
3855 || (leader1 && leader1 == leader2))
3856 return true;
3857 }
3858 else if (mode == GTC_DIAG)
3859 {
3860 if (TYPE_CANONICAL (t1)
3861 && TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2))
3862 return true;
3863 }
3864
3865 /* Can't be the same type if the types don't have the same code. */
3866 if (TREE_CODE (t1) != TREE_CODE (t2))
3867 return false;
3868
3869 /* Can't be the same type if they have different CV qualifiers. */
3870 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
3871 return false;
3872
3873 /* Void types are always the same. */
3874 if (TREE_CODE (t1) == VOID_TYPE)
3875 return true;
3876
3877 /* Do some simple checks before doing three hashtable queries. */
3878 if (INTEGRAL_TYPE_P (t1)
3879 || SCALAR_FLOAT_TYPE_P (t1)
3880 || FIXED_POINT_TYPE_P (t1)
3881 || TREE_CODE (t1) == VECTOR_TYPE
3882 || TREE_CODE (t1) == COMPLEX_TYPE
3883 || TREE_CODE (t1) == OFFSET_TYPE)
3884 {
3885 /* Can't be the same type if they have different alignment,
3886 sign, precision or mode. */
3887 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3888 || TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
3889 || TYPE_MODE (t1) != TYPE_MODE (t2)
3890 || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
3891 return false;
3892
3893 if (TREE_CODE (t1) == INTEGER_TYPE
3894 && (TYPE_IS_SIZETYPE (t1) != TYPE_IS_SIZETYPE (t2)
3895 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)))
3896 return false;
3897
3898 /* That's all we need to check for float and fixed-point types. */
3899 if (SCALAR_FLOAT_TYPE_P (t1)
3900 || FIXED_POINT_TYPE_P (t1))
3901 return true;
3902
3903 /* For integral types fall thru to more complex checks. */
3904 }
3905
3906 else if (AGGREGATE_TYPE_P (t1) || POINTER_TYPE_P (t1))
3907 {
3908 /* Can't be the same type if they have different alignment or mode. */
3909 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3910 || TYPE_MODE (t1) != TYPE_MODE (t2))
3911 return false;
3912 }
3913
3914 /* If the hash values of t1 and t2 are different the types can't
3915 possibly be the same. This helps keeping the type-pair hashtable
3916 small, only tracking comparisons for hash collisions. */
3917 if (gimple_type_hash_1 (t1, mode) != gimple_type_hash_1 (t2, mode))
3918 return false;
3919
3920 /* If we've visited this type pair before (in the case of aggregates
3921 with self-referential types), and we made a decision, return it. */
3922 p = lookup_type_pair (t1, t2, &gtc_visited, &gtc_ob);
3923 if (p->same_p[mode] == 0 || p->same_p[mode] == 1)
3924 {
3925 /* We have already decided whether T1 and T2 are the
3926 same, return the cached result. */
3927 return p->same_p[mode] == 1;
3928 }
3929
3930 /* Now set up the SCC machinery for the comparison. */
3931 gtc_next_dfs_num = 1;
3932 sccstate = pointer_map_create ();
3933 gcc_obstack_init (&sccstate_obstack);
3934 res = gimple_types_compatible_p_1 (t1, t2, mode, p,
3935 &sccstack, sccstate, &sccstate_obstack);
3936 VEC_free (type_pair_t, heap, sccstack);
3937 pointer_map_destroy (sccstate);
3938 obstack_free (&sccstate_obstack, NULL);
3939
3940 return res;
3941 }
3942
3943
3944 static hashval_t
3945 iterative_hash_gimple_type (tree, hashval_t, VEC(tree, heap) **,
3946 struct pointer_map_t *, struct obstack *,
3947 enum gtc_mode);
3948
3949 /* DFS visit the edge from the callers type with state *STATE to T.
3950 Update the callers type hash V with the hash for T if it is not part
3951 of the SCC containing the callers type and return it.
3952 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3953
3954 static hashval_t
3955 visit (tree t, struct sccs *state, hashval_t v,
3956 VEC (tree, heap) **sccstack,
3957 struct pointer_map_t *sccstate,
3958 struct obstack *sccstate_obstack, enum gtc_mode mode)
3959 {
3960 struct sccs *cstate = NULL;
3961 struct tree_int_map m;
3962 void **slot;
3963
3964 /* If there is a hash value recorded for this type then it can't
3965 possibly be part of our parent SCC. Simply mix in its hash. */
3966 m.base.from = t;
3967 if ((slot = htab_find_slot (mode == GTC_MERGE
3968 ? type_hash_cache : canonical_type_hash_cache,
3969 &m, NO_INSERT))
3970 && *slot)
3971 return iterative_hash_hashval_t (((struct tree_int_map *) *slot)->to, v);
3972
3973 if ((slot = pointer_map_contains (sccstate, t)) != NULL)
3974 cstate = (struct sccs *)*slot;
3975 if (!cstate)
3976 {
3977 hashval_t tem;
3978 /* Not yet visited. DFS recurse. */
3979 tem = iterative_hash_gimple_type (t, v,
3980 sccstack, sccstate, sccstate_obstack,
3981 mode);
3982 if (!cstate)
3983 cstate = (struct sccs *)* pointer_map_contains (sccstate, t);
3984 state->low = MIN (state->low, cstate->low);
3985 /* If the type is no longer on the SCC stack and thus is not part
3986 of the parents SCC mix in its hash value. Otherwise we will
3987 ignore the type for hashing purposes and return the unaltered
3988 hash value. */
3989 if (!cstate->on_sccstack)
3990 return tem;
3991 }
3992 if (cstate->dfsnum < state->dfsnum
3993 && cstate->on_sccstack)
3994 state->low = MIN (cstate->dfsnum, state->low);
3995
3996 /* We are part of our parents SCC, skip this type during hashing
3997 and return the unaltered hash value. */
3998 return v;
3999 }
4000
4001 /* Hash NAME with the previous hash value V and return it. */
4002
4003 static hashval_t
4004 iterative_hash_name (tree name, hashval_t v)
4005 {
4006 if (!name)
4007 return v;
4008 if (TREE_CODE (name) == TYPE_DECL)
4009 name = DECL_NAME (name);
4010 if (!name)
4011 return v;
4012 gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
4013 return iterative_hash_object (IDENTIFIER_HASH_VALUE (name), v);
4014 }
4015
4016 /* Returning a hash value for gimple type TYPE combined with VAL.
4017 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done.
4018
4019 To hash a type we end up hashing in types that are reachable.
4020 Through pointers we can end up with cycles which messes up the
4021 required property that we need to compute the same hash value
4022 for structurally equivalent types. To avoid this we have to
4023 hash all types in a cycle (the SCC) in a commutative way. The
4024 easiest way is to not mix in the hashes of the SCC members at
4025 all. To make this work we have to delay setting the hash
4026 values of the SCC until it is complete. */
4027
4028 static hashval_t
4029 iterative_hash_gimple_type (tree type, hashval_t val,
4030 VEC(tree, heap) **sccstack,
4031 struct pointer_map_t *sccstate,
4032 struct obstack *sccstate_obstack,
4033 enum gtc_mode mode)
4034 {
4035 hashval_t v;
4036 void **slot;
4037 struct sccs *state;
4038
4039 /* Not visited during this DFS walk. */
4040 gcc_checking_assert (!pointer_map_contains (sccstate, type));
4041 state = XOBNEW (sccstate_obstack, struct sccs);
4042 *pointer_map_insert (sccstate, type) = state;
4043
4044 VEC_safe_push (tree, heap, *sccstack, type);
4045 state->dfsnum = next_dfs_num++;
4046 state->low = state->dfsnum;
4047 state->on_sccstack = true;
4048
4049 /* Combine a few common features of types so that types are grouped into
4050 smaller sets; when searching for existing matching types to merge,
4051 only existing types having the same features as the new type will be
4052 checked. */
4053 v = iterative_hash_hashval_t (TREE_CODE (type), 0);
4054 v = iterative_hash_hashval_t (TYPE_QUALS (type), v);
4055 v = iterative_hash_hashval_t (TREE_ADDRESSABLE (type), v);
4056
4057 /* Do not hash the types size as this will cause differences in
4058 hash values for the complete vs. the incomplete type variant. */
4059
4060 /* Incorporate common features of numerical types. */
4061 if (INTEGRAL_TYPE_P (type)
4062 || SCALAR_FLOAT_TYPE_P (type)
4063 || FIXED_POINT_TYPE_P (type))
4064 {
4065 v = iterative_hash_hashval_t (TYPE_PRECISION (type), v);
4066 v = iterative_hash_hashval_t (TYPE_MODE (type), v);
4067 v = iterative_hash_hashval_t (TYPE_UNSIGNED (type), v);
4068 }
4069
4070 /* For pointer and reference types, fold in information about the type
4071 pointed to but do not recurse into possibly incomplete types to
4072 avoid hash differences for complete vs. incomplete types. */
4073 if (POINTER_TYPE_P (type))
4074 {
4075 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (type)))
4076 {
4077 v = iterative_hash_hashval_t (TREE_CODE (TREE_TYPE (type)), v);
4078 v = iterative_hash_name
4079 (TYPE_NAME (TYPE_MAIN_VARIANT (TREE_TYPE (type))), v);
4080 }
4081 else
4082 v = visit (TREE_TYPE (type), state, v,
4083 sccstack, sccstate, sccstate_obstack, mode);
4084 }
4085
4086 /* For integer types hash the types min/max values and the string flag. */
4087 if (TREE_CODE (type) == INTEGER_TYPE)
4088 {
4089 /* OMP lowering can introduce error_mark_node in place of
4090 random local decls in types. */
4091 if (TYPE_MIN_VALUE (type) != error_mark_node)
4092 v = iterative_hash_expr (TYPE_MIN_VALUE (type), v);
4093 if (TYPE_MAX_VALUE (type) != error_mark_node)
4094 v = iterative_hash_expr (TYPE_MAX_VALUE (type), v);
4095 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
4096 }
4097
4098 /* For array types hash their domain and the string flag. */
4099 if (TREE_CODE (type) == ARRAY_TYPE
4100 && TYPE_DOMAIN (type))
4101 {
4102 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
4103 v = visit (TYPE_DOMAIN (type), state, v,
4104 sccstack, sccstate, sccstate_obstack, mode);
4105 }
4106
4107 /* Recurse for aggregates with a single element type. */
4108 if (TREE_CODE (type) == ARRAY_TYPE
4109 || TREE_CODE (type) == COMPLEX_TYPE
4110 || TREE_CODE (type) == VECTOR_TYPE)
4111 v = visit (TREE_TYPE (type), state, v,
4112 sccstack, sccstate, sccstate_obstack, mode);
4113
4114 /* Incorporate function return and argument types. */
4115 if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE)
4116 {
4117 unsigned na;
4118 tree p;
4119
4120 /* For method types also incorporate their parent class. */
4121 if (TREE_CODE (type) == METHOD_TYPE)
4122 v = visit (TYPE_METHOD_BASETYPE (type), state, v,
4123 sccstack, sccstate, sccstate_obstack, mode);
4124
4125 /* For result types allow mismatch in completeness. */
4126 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (type)))
4127 {
4128 v = iterative_hash_hashval_t (TREE_CODE (TREE_TYPE (type)), v);
4129 v = iterative_hash_name
4130 (TYPE_NAME (TYPE_MAIN_VARIANT (TREE_TYPE (type))), v);
4131 }
4132 else
4133 v = visit (TREE_TYPE (type), state, v,
4134 sccstack, sccstate, sccstate_obstack, mode);
4135
4136 for (p = TYPE_ARG_TYPES (type), na = 0; p; p = TREE_CHAIN (p))
4137 {
4138 /* For argument types allow mismatch in completeness. */
4139 if (RECORD_OR_UNION_TYPE_P (TREE_VALUE (p)))
4140 {
4141 v = iterative_hash_hashval_t (TREE_CODE (TREE_VALUE (p)), v);
4142 v = iterative_hash_name
4143 (TYPE_NAME (TYPE_MAIN_VARIANT (TREE_VALUE (p))), v);
4144 }
4145 else
4146 v = visit (TREE_VALUE (p), state, v,
4147 sccstack, sccstate, sccstate_obstack, mode);
4148 na++;
4149 }
4150
4151 v = iterative_hash_hashval_t (na, v);
4152 }
4153
4154 if (TREE_CODE (type) == RECORD_TYPE
4155 || TREE_CODE (type) == UNION_TYPE
4156 || TREE_CODE (type) == QUAL_UNION_TYPE)
4157 {
4158 unsigned nf;
4159 tree f;
4160
4161 if (mode == GTC_MERGE)
4162 v = iterative_hash_name (TYPE_NAME (TYPE_MAIN_VARIANT (type)), v);
4163
4164 for (f = TYPE_FIELDS (type), nf = 0; f; f = TREE_CHAIN (f))
4165 {
4166 if (mode == GTC_MERGE)
4167 v = iterative_hash_name (DECL_NAME (f), v);
4168 v = visit (TREE_TYPE (f), state, v,
4169 sccstack, sccstate, sccstate_obstack, mode);
4170 nf++;
4171 }
4172
4173 v = iterative_hash_hashval_t (nf, v);
4174 }
4175
4176 /* Record hash for us. */
4177 state->u.hash = v;
4178
4179 /* See if we found an SCC. */
4180 if (state->low == state->dfsnum)
4181 {
4182 tree x;
4183
4184 /* Pop off the SCC and set its hash values. */
4185 do
4186 {
4187 struct sccs *cstate;
4188 struct tree_int_map *m = ggc_alloc_cleared_tree_int_map ();
4189 x = VEC_pop (tree, *sccstack);
4190 cstate = (struct sccs *)*pointer_map_contains (sccstate, x);
4191 cstate->on_sccstack = false;
4192 m->base.from = x;
4193 m->to = cstate->u.hash;
4194 slot = htab_find_slot (mode == GTC_MERGE
4195 ? type_hash_cache : canonical_type_hash_cache,
4196 m, INSERT);
4197 gcc_assert (!*slot);
4198 *slot = (void *) m;
4199 }
4200 while (x != type);
4201 }
4202
4203 return iterative_hash_hashval_t (v, val);
4204 }
4205
4206
4207 /* Returns a hash value for P (assumed to be a type). The hash value
4208 is computed using some distinguishing features of the type. Note
4209 that we cannot use pointer hashing here as we may be dealing with
4210 two distinct instances of the same type.
4211
4212 This function should produce the same hash value for two compatible
4213 types according to gimple_types_compatible_p. */
4214
4215 static hashval_t
4216 gimple_type_hash_1 (const void *p, enum gtc_mode mode)
4217 {
4218 const_tree t = (const_tree) p;
4219 VEC(tree, heap) *sccstack = NULL;
4220 struct pointer_map_t *sccstate;
4221 struct obstack sccstate_obstack;
4222 hashval_t val;
4223 void **slot;
4224 struct tree_int_map m;
4225
4226 if (mode == GTC_MERGE
4227 && type_hash_cache == NULL)
4228 type_hash_cache = htab_create_ggc (512, tree_int_map_hash,
4229 tree_int_map_eq, NULL);
4230 else if (mode == GTC_DIAG
4231 && canonical_type_hash_cache == NULL)
4232 canonical_type_hash_cache = htab_create_ggc (512, tree_int_map_hash,
4233 tree_int_map_eq, NULL);
4234
4235 m.base.from = CONST_CAST_TREE (t);
4236 if ((slot = htab_find_slot (mode == GTC_MERGE
4237 ? type_hash_cache : canonical_type_hash_cache,
4238 &m, NO_INSERT))
4239 && *slot)
4240 return iterative_hash_hashval_t (((struct tree_int_map *) *slot)->to, 0);
4241
4242 /* Perform a DFS walk and pre-hash all reachable types. */
4243 next_dfs_num = 1;
4244 sccstate = pointer_map_create ();
4245 gcc_obstack_init (&sccstate_obstack);
4246 val = iterative_hash_gimple_type (CONST_CAST_TREE (t), 0,
4247 &sccstack, sccstate, &sccstate_obstack,
4248 mode);
4249 VEC_free (tree, heap, sccstack);
4250 pointer_map_destroy (sccstate);
4251 obstack_free (&sccstate_obstack, NULL);
4252
4253 return val;
4254 }
4255
4256 static hashval_t
4257 gimple_type_hash (const void *p)
4258 {
4259 return gimple_type_hash_1 (p, GTC_MERGE);
4260 }
4261
4262 static hashval_t
4263 gimple_canonical_type_hash (const void *p)
4264 {
4265 return gimple_type_hash_1 (p, GTC_DIAG);
4266 }
4267
4268
4269 /* Returns nonzero if P1 and P2 are equal. */
4270
4271 static int
4272 gimple_type_eq (const void *p1, const void *p2)
4273 {
4274 const_tree t1 = (const_tree) p1;
4275 const_tree t2 = (const_tree) p2;
4276 return gimple_types_compatible_p (CONST_CAST_TREE (t1),
4277 CONST_CAST_TREE (t2), GTC_MERGE);
4278 }
4279
4280
4281 /* Register type T in the global type table gimple_types.
4282 If another type T', compatible with T, already existed in
4283 gimple_types then return T', otherwise return T. This is used by
4284 LTO to merge identical types read from different TUs. */
4285
4286 tree
4287 gimple_register_type (tree t)
4288 {
4289 void **slot;
4290 gimple_type_leader_entry *leader;
4291 tree mv_leader = NULL_TREE;
4292
4293 gcc_assert (TYPE_P (t));
4294
4295 if (!gimple_type_leader)
4296 gimple_type_leader = ggc_alloc_cleared_vec_gimple_type_leader_entry_s
4297 (GIMPLE_TYPE_LEADER_SIZE);
4298 /* If we registered this type before return the cached result. */
4299 leader = &gimple_type_leader[TYPE_UID (t) % GIMPLE_TYPE_LEADER_SIZE];
4300 if (leader->type == t)
4301 return leader->leader;
4302
4303 /* Always register the main variant first. This is important so we
4304 pick up the non-typedef variants as canonical, otherwise we'll end
4305 up taking typedef ids for structure tags during comparison. */
4306 if (TYPE_MAIN_VARIANT (t) != t)
4307 mv_leader = gimple_register_type (TYPE_MAIN_VARIANT (t));
4308
4309 if (gimple_types == NULL)
4310 gimple_types = htab_create_ggc (16381, gimple_type_hash, gimple_type_eq, 0);
4311
4312 slot = htab_find_slot (gimple_types, t, INSERT);
4313 if (*slot
4314 && *(tree *)slot != t)
4315 {
4316 tree new_type = (tree) *((tree *) slot);
4317
4318 /* Do not merge types with different addressability. */
4319 gcc_assert (TREE_ADDRESSABLE (t) == TREE_ADDRESSABLE (new_type));
4320
4321 /* If t is not its main variant then make t unreachable from its
4322 main variant list. Otherwise we'd queue up a lot of duplicates
4323 there. */
4324 if (t != TYPE_MAIN_VARIANT (t))
4325 {
4326 tree tem = TYPE_MAIN_VARIANT (t);
4327 while (tem && TYPE_NEXT_VARIANT (tem) != t)
4328 tem = TYPE_NEXT_VARIANT (tem);
4329 if (tem)
4330 TYPE_NEXT_VARIANT (tem) = TYPE_NEXT_VARIANT (t);
4331 TYPE_NEXT_VARIANT (t) = NULL_TREE;
4332 }
4333
4334 /* If we are a pointer then remove us from the pointer-to or
4335 reference-to chain. Otherwise we'd queue up a lot of duplicates
4336 there. */
4337 if (TREE_CODE (t) == POINTER_TYPE)
4338 {
4339 if (TYPE_POINTER_TO (TREE_TYPE (t)) == t)
4340 TYPE_POINTER_TO (TREE_TYPE (t)) = TYPE_NEXT_PTR_TO (t);
4341 else
4342 {
4343 tree tem = TYPE_POINTER_TO (TREE_TYPE (t));
4344 while (tem && TYPE_NEXT_PTR_TO (tem) != t)
4345 tem = TYPE_NEXT_PTR_TO (tem);
4346 if (tem)
4347 TYPE_NEXT_PTR_TO (tem) = TYPE_NEXT_PTR_TO (t);
4348 }
4349 TYPE_NEXT_PTR_TO (t) = NULL_TREE;
4350 }
4351 else if (TREE_CODE (t) == REFERENCE_TYPE)
4352 {
4353 if (TYPE_REFERENCE_TO (TREE_TYPE (t)) == t)
4354 TYPE_REFERENCE_TO (TREE_TYPE (t)) = TYPE_NEXT_REF_TO (t);
4355 else
4356 {
4357 tree tem = TYPE_REFERENCE_TO (TREE_TYPE (t));
4358 while (tem && TYPE_NEXT_REF_TO (tem) != t)
4359 tem = TYPE_NEXT_REF_TO (tem);
4360 if (tem)
4361 TYPE_NEXT_REF_TO (tem) = TYPE_NEXT_REF_TO (t);
4362 }
4363 TYPE_NEXT_REF_TO (t) = NULL_TREE;
4364 }
4365
4366 leader->type = t;
4367 leader->leader = new_type;
4368 t = new_type;
4369 }
4370 else
4371 {
4372 leader->type = t;
4373 leader->leader = t;
4374 /* We're the type leader. Make our TYPE_MAIN_VARIANT valid. */
4375 if (TYPE_MAIN_VARIANT (t) != t
4376 && TYPE_MAIN_VARIANT (t) != mv_leader)
4377 {
4378 /* Remove us from our main variant list as we are not the variant
4379 leader and the variant leader will change. */
4380 tree tem = TYPE_MAIN_VARIANT (t);
4381 while (tem && TYPE_NEXT_VARIANT (tem) != t)
4382 tem = TYPE_NEXT_VARIANT (tem);
4383 if (tem)
4384 TYPE_NEXT_VARIANT (tem) = TYPE_NEXT_VARIANT (t);
4385 TYPE_NEXT_VARIANT (t) = NULL_TREE;
4386 /* Adjust our main variant. Linking us into its variant list
4387 will happen at fixup time. */
4388 TYPE_MAIN_VARIANT (t) = mv_leader;
4389 }
4390 *slot = (void *) t;
4391 }
4392
4393 return t;
4394 }
4395
4396
4397 /* Returns nonzero if P1 and P2 are equal. */
4398
4399 static int
4400 gimple_canonical_type_eq (const void *p1, const void *p2)
4401 {
4402 const_tree t1 = (const_tree) p1;
4403 const_tree t2 = (const_tree) p2;
4404 return gimple_types_compatible_p (CONST_CAST_TREE (t1),
4405 CONST_CAST_TREE (t2), GTC_DIAG);
4406 }
4407
4408 /* Register type T in the global type table gimple_types.
4409 If another type T', compatible with T, already existed in
4410 gimple_types then return T', otherwise return T. This is used by
4411 LTO to merge identical types read from different TUs. */
4412
4413 tree
4414 gimple_register_canonical_type (tree t)
4415 {
4416 void **slot;
4417 tree orig_t = t;
4418
4419 gcc_assert (TYPE_P (t));
4420
4421 if (TYPE_CANONICAL (t))
4422 return TYPE_CANONICAL (t);
4423
4424 /* Always register the type itself first so that if it turns out
4425 to be the canonical type it will be the one we merge to as well. */
4426 t = gimple_register_type (t);
4427
4428 /* Always register the main variant first. This is important so we
4429 pick up the non-typedef variants as canonical, otherwise we'll end
4430 up taking typedef ids for structure tags during comparison. */
4431 if (TYPE_MAIN_VARIANT (t) != t)
4432 gimple_register_canonical_type (TYPE_MAIN_VARIANT (t));
4433
4434 if (gimple_canonical_types == NULL)
4435 gimple_canonical_types = htab_create_ggc (16381, gimple_canonical_type_hash,
4436 gimple_canonical_type_eq, 0);
4437
4438 slot = htab_find_slot (gimple_canonical_types, t, INSERT);
4439 if (*slot
4440 && *(tree *)slot != t)
4441 {
4442 tree new_type = (tree) *((tree *) slot);
4443
4444 TYPE_CANONICAL (t) = new_type;
4445 t = new_type;
4446 }
4447 else
4448 {
4449 TYPE_CANONICAL (t) = t;
4450 *slot = (void *) t;
4451 }
4452
4453 /* Also cache the canonical type in the non-leaders. */
4454 TYPE_CANONICAL (orig_t) = t;
4455
4456 return t;
4457 }
4458
4459
4460 /* Show statistics on references to the global type table gimple_types. */
4461
4462 void
4463 print_gimple_types_stats (void)
4464 {
4465 if (gimple_types)
4466 fprintf (stderr, "GIMPLE type table: size %ld, %ld elements, "
4467 "%ld searches, %ld collisions (ratio: %f)\n",
4468 (long) htab_size (gimple_types),
4469 (long) htab_elements (gimple_types),
4470 (long) gimple_types->searches,
4471 (long) gimple_types->collisions,
4472 htab_collisions (gimple_types));
4473 else
4474 fprintf (stderr, "GIMPLE type table is empty\n");
4475 if (type_hash_cache)
4476 fprintf (stderr, "GIMPLE type hash table: size %ld, %ld elements, "
4477 "%ld searches, %ld collisions (ratio: %f)\n",
4478 (long) htab_size (type_hash_cache),
4479 (long) htab_elements (type_hash_cache),
4480 (long) type_hash_cache->searches,
4481 (long) type_hash_cache->collisions,
4482 htab_collisions (type_hash_cache));
4483 else
4484 fprintf (stderr, "GIMPLE type hash table is empty\n");
4485 if (gimple_canonical_types)
4486 fprintf (stderr, "GIMPLE canonical type table: size %ld, %ld elements, "
4487 "%ld searches, %ld collisions (ratio: %f)\n",
4488 (long) htab_size (gimple_canonical_types),
4489 (long) htab_elements (gimple_canonical_types),
4490 (long) gimple_canonical_types->searches,
4491 (long) gimple_canonical_types->collisions,
4492 htab_collisions (gimple_canonical_types));
4493 else
4494 fprintf (stderr, "GIMPLE canonical type table is empty\n");
4495 if (canonical_type_hash_cache)
4496 fprintf (stderr, "GIMPLE canonical type hash table: size %ld, %ld elements, "
4497 "%ld searches, %ld collisions (ratio: %f)\n",
4498 (long) htab_size (canonical_type_hash_cache),
4499 (long) htab_elements (canonical_type_hash_cache),
4500 (long) canonical_type_hash_cache->searches,
4501 (long) canonical_type_hash_cache->collisions,
4502 htab_collisions (canonical_type_hash_cache));
4503 else
4504 fprintf (stderr, "GIMPLE canonical type hash table is empty\n");
4505 if (gtc_visited)
4506 fprintf (stderr, "GIMPLE type comparison table: size %ld, %ld "
4507 "elements, %ld searches, %ld collisions (ratio: %f)\n",
4508 (long) htab_size (gtc_visited),
4509 (long) htab_elements (gtc_visited),
4510 (long) gtc_visited->searches,
4511 (long) gtc_visited->collisions,
4512 htab_collisions (gtc_visited));
4513 else
4514 fprintf (stderr, "GIMPLE type comparison table is empty\n");
4515 }
4516
4517 /* Free the gimple type hashtables used for LTO type merging. */
4518
4519 void
4520 free_gimple_type_tables (void)
4521 {
4522 /* Last chance to print stats for the tables. */
4523 if (flag_lto_report)
4524 print_gimple_types_stats ();
4525
4526 if (gimple_types)
4527 {
4528 htab_delete (gimple_types);
4529 gimple_types = NULL;
4530 }
4531 if (gimple_canonical_types)
4532 {
4533 htab_delete (gimple_canonical_types);
4534 gimple_canonical_types = NULL;
4535 }
4536 if (type_hash_cache)
4537 {
4538 htab_delete (type_hash_cache);
4539 type_hash_cache = NULL;
4540 }
4541 if (canonical_type_hash_cache)
4542 {
4543 htab_delete (canonical_type_hash_cache);
4544 canonical_type_hash_cache = NULL;
4545 }
4546 if (gtc_visited)
4547 {
4548 htab_delete (gtc_visited);
4549 obstack_free (&gtc_ob, NULL);
4550 gtc_visited = NULL;
4551 }
4552 gimple_type_leader = NULL;
4553 }
4554
4555
4556 /* Return a type the same as TYPE except unsigned or
4557 signed according to UNSIGNEDP. */
4558
4559 static tree
4560 gimple_signed_or_unsigned_type (bool unsignedp, tree type)
4561 {
4562 tree type1;
4563
4564 type1 = TYPE_MAIN_VARIANT (type);
4565 if (type1 == signed_char_type_node
4566 || type1 == char_type_node
4567 || type1 == unsigned_char_type_node)
4568 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
4569 if (type1 == integer_type_node || type1 == unsigned_type_node)
4570 return unsignedp ? unsigned_type_node : integer_type_node;
4571 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
4572 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
4573 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
4574 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
4575 if (type1 == long_long_integer_type_node
4576 || type1 == long_long_unsigned_type_node)
4577 return unsignedp
4578 ? long_long_unsigned_type_node
4579 : long_long_integer_type_node;
4580 if (int128_integer_type_node && (type1 == int128_integer_type_node || type1 == int128_unsigned_type_node))
4581 return unsignedp
4582 ? int128_unsigned_type_node
4583 : int128_integer_type_node;
4584 #if HOST_BITS_PER_WIDE_INT >= 64
4585 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
4586 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
4587 #endif
4588 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
4589 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
4590 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
4591 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
4592 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
4593 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
4594 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
4595 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
4596
4597 #define GIMPLE_FIXED_TYPES(NAME) \
4598 if (type1 == short_ ## NAME ## _type_node \
4599 || type1 == unsigned_short_ ## NAME ## _type_node) \
4600 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
4601 : short_ ## NAME ## _type_node; \
4602 if (type1 == NAME ## _type_node \
4603 || type1 == unsigned_ ## NAME ## _type_node) \
4604 return unsignedp ? unsigned_ ## NAME ## _type_node \
4605 : NAME ## _type_node; \
4606 if (type1 == long_ ## NAME ## _type_node \
4607 || type1 == unsigned_long_ ## NAME ## _type_node) \
4608 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
4609 : long_ ## NAME ## _type_node; \
4610 if (type1 == long_long_ ## NAME ## _type_node \
4611 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
4612 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
4613 : long_long_ ## NAME ## _type_node;
4614
4615 #define GIMPLE_FIXED_MODE_TYPES(NAME) \
4616 if (type1 == NAME ## _type_node \
4617 || type1 == u ## NAME ## _type_node) \
4618 return unsignedp ? u ## NAME ## _type_node \
4619 : NAME ## _type_node;
4620
4621 #define GIMPLE_FIXED_TYPES_SAT(NAME) \
4622 if (type1 == sat_ ## short_ ## NAME ## _type_node \
4623 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
4624 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
4625 : sat_ ## short_ ## NAME ## _type_node; \
4626 if (type1 == sat_ ## NAME ## _type_node \
4627 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
4628 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
4629 : sat_ ## NAME ## _type_node; \
4630 if (type1 == sat_ ## long_ ## NAME ## _type_node \
4631 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
4632 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
4633 : sat_ ## long_ ## NAME ## _type_node; \
4634 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
4635 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
4636 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
4637 : sat_ ## long_long_ ## NAME ## _type_node;
4638
4639 #define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
4640 if (type1 == sat_ ## NAME ## _type_node \
4641 || type1 == sat_ ## u ## NAME ## _type_node) \
4642 return unsignedp ? sat_ ## u ## NAME ## _type_node \
4643 : sat_ ## NAME ## _type_node;
4644
4645 GIMPLE_FIXED_TYPES (fract);
4646 GIMPLE_FIXED_TYPES_SAT (fract);
4647 GIMPLE_FIXED_TYPES (accum);
4648 GIMPLE_FIXED_TYPES_SAT (accum);
4649
4650 GIMPLE_FIXED_MODE_TYPES (qq);
4651 GIMPLE_FIXED_MODE_TYPES (hq);
4652 GIMPLE_FIXED_MODE_TYPES (sq);
4653 GIMPLE_FIXED_MODE_TYPES (dq);
4654 GIMPLE_FIXED_MODE_TYPES (tq);
4655 GIMPLE_FIXED_MODE_TYPES_SAT (qq);
4656 GIMPLE_FIXED_MODE_TYPES_SAT (hq);
4657 GIMPLE_FIXED_MODE_TYPES_SAT (sq);
4658 GIMPLE_FIXED_MODE_TYPES_SAT (dq);
4659 GIMPLE_FIXED_MODE_TYPES_SAT (tq);
4660 GIMPLE_FIXED_MODE_TYPES (ha);
4661 GIMPLE_FIXED_MODE_TYPES (sa);
4662 GIMPLE_FIXED_MODE_TYPES (da);
4663 GIMPLE_FIXED_MODE_TYPES (ta);
4664 GIMPLE_FIXED_MODE_TYPES_SAT (ha);
4665 GIMPLE_FIXED_MODE_TYPES_SAT (sa);
4666 GIMPLE_FIXED_MODE_TYPES_SAT (da);
4667 GIMPLE_FIXED_MODE_TYPES_SAT (ta);
4668
4669 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
4670 the precision; they have precision set to match their range, but
4671 may use a wider mode to match an ABI. If we change modes, we may
4672 wind up with bad conversions. For INTEGER_TYPEs in C, must check
4673 the precision as well, so as to yield correct results for
4674 bit-field types. C++ does not have these separate bit-field
4675 types, and producing a signed or unsigned variant of an
4676 ENUMERAL_TYPE may cause other problems as well. */
4677 if (!INTEGRAL_TYPE_P (type)
4678 || TYPE_UNSIGNED (type) == unsignedp)
4679 return type;
4680
4681 #define TYPE_OK(node) \
4682 (TYPE_MODE (type) == TYPE_MODE (node) \
4683 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
4684 if (TYPE_OK (signed_char_type_node))
4685 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
4686 if (TYPE_OK (integer_type_node))
4687 return unsignedp ? unsigned_type_node : integer_type_node;
4688 if (TYPE_OK (short_integer_type_node))
4689 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
4690 if (TYPE_OK (long_integer_type_node))
4691 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
4692 if (TYPE_OK (long_long_integer_type_node))
4693 return (unsignedp
4694 ? long_long_unsigned_type_node
4695 : long_long_integer_type_node);
4696 if (int128_integer_type_node && TYPE_OK (int128_integer_type_node))
4697 return (unsignedp
4698 ? int128_unsigned_type_node
4699 : int128_integer_type_node);
4700
4701 #if HOST_BITS_PER_WIDE_INT >= 64
4702 if (TYPE_OK (intTI_type_node))
4703 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
4704 #endif
4705 if (TYPE_OK (intDI_type_node))
4706 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
4707 if (TYPE_OK (intSI_type_node))
4708 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
4709 if (TYPE_OK (intHI_type_node))
4710 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
4711 if (TYPE_OK (intQI_type_node))
4712 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
4713
4714 #undef GIMPLE_FIXED_TYPES
4715 #undef GIMPLE_FIXED_MODE_TYPES
4716 #undef GIMPLE_FIXED_TYPES_SAT
4717 #undef GIMPLE_FIXED_MODE_TYPES_SAT
4718 #undef TYPE_OK
4719
4720 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
4721 }
4722
4723
4724 /* Return an unsigned type the same as TYPE in other respects. */
4725
4726 tree
4727 gimple_unsigned_type (tree type)
4728 {
4729 return gimple_signed_or_unsigned_type (true, type);
4730 }
4731
4732
4733 /* Return a signed type the same as TYPE in other respects. */
4734
4735 tree
4736 gimple_signed_type (tree type)
4737 {
4738 return gimple_signed_or_unsigned_type (false, type);
4739 }
4740
4741
4742 /* Return the typed-based alias set for T, which may be an expression
4743 or a type. Return -1 if we don't do anything special. */
4744
4745 alias_set_type
4746 gimple_get_alias_set (tree t)
4747 {
4748 tree u;
4749
4750 /* Permit type-punning when accessing a union, provided the access
4751 is directly through the union. For example, this code does not
4752 permit taking the address of a union member and then storing
4753 through it. Even the type-punning allowed here is a GCC
4754 extension, albeit a common and useful one; the C standard says
4755 that such accesses have implementation-defined behavior. */
4756 for (u = t;
4757 TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
4758 u = TREE_OPERAND (u, 0))
4759 if (TREE_CODE (u) == COMPONENT_REF
4760 && TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
4761 return 0;
4762
4763 /* That's all the expressions we handle specially. */
4764 if (!TYPE_P (t))
4765 return -1;
4766
4767 /* For convenience, follow the C standard when dealing with
4768 character types. Any object may be accessed via an lvalue that
4769 has character type. */
4770 if (t == char_type_node
4771 || t == signed_char_type_node
4772 || t == unsigned_char_type_node)
4773 return 0;
4774
4775 /* Allow aliasing between signed and unsigned variants of the same
4776 type. We treat the signed variant as canonical. */
4777 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
4778 {
4779 tree t1 = gimple_signed_type (t);
4780
4781 /* t1 == t can happen for boolean nodes which are always unsigned. */
4782 if (t1 != t)
4783 return get_alias_set (t1);
4784 }
4785
4786 return -1;
4787 }
4788
4789
4790 /* Data structure used to count the number of dereferences to PTR
4791 inside an expression. */
4792 struct count_ptr_d
4793 {
4794 tree ptr;
4795 unsigned num_stores;
4796 unsigned num_loads;
4797 };
4798
4799 /* Helper for count_uses_and_derefs. Called by walk_tree to look for
4800 (ALIGN/MISALIGNED_)INDIRECT_REF nodes for the pointer passed in DATA. */
4801
4802 static tree
4803 count_ptr_derefs (tree *tp, int *walk_subtrees, void *data)
4804 {
4805 struct walk_stmt_info *wi_p = (struct walk_stmt_info *) data;
4806 struct count_ptr_d *count_p = (struct count_ptr_d *) wi_p->info;
4807
4808 /* Do not walk inside ADDR_EXPR nodes. In the expression &ptr->fld,
4809 pointer 'ptr' is *not* dereferenced, it is simply used to compute
4810 the address of 'fld' as 'ptr + offsetof(fld)'. */
4811 if (TREE_CODE (*tp) == ADDR_EXPR)
4812 {
4813 *walk_subtrees = 0;
4814 return NULL_TREE;
4815 }
4816
4817 if (TREE_CODE (*tp) == MEM_REF && TREE_OPERAND (*tp, 0) == count_p->ptr)
4818 {
4819 if (wi_p->is_lhs)
4820 count_p->num_stores++;
4821 else
4822 count_p->num_loads++;
4823 }
4824
4825 return NULL_TREE;
4826 }
4827
4828 /* Count the number of direct and indirect uses for pointer PTR in
4829 statement STMT. The number of direct uses is stored in
4830 *NUM_USES_P. Indirect references are counted separately depending
4831 on whether they are store or load operations. The counts are
4832 stored in *NUM_STORES_P and *NUM_LOADS_P. */
4833
4834 void
4835 count_uses_and_derefs (tree ptr, gimple stmt, unsigned *num_uses_p,
4836 unsigned *num_loads_p, unsigned *num_stores_p)
4837 {
4838 ssa_op_iter i;
4839 tree use;
4840
4841 *num_uses_p = 0;
4842 *num_loads_p = 0;
4843 *num_stores_p = 0;
4844
4845 /* Find out the total number of uses of PTR in STMT. */
4846 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
4847 if (use == ptr)
4848 (*num_uses_p)++;
4849
4850 /* Now count the number of indirect references to PTR. This is
4851 truly awful, but we don't have much choice. There are no parent
4852 pointers inside INDIRECT_REFs, so an expression like
4853 '*x_1 = foo (x_1, *x_1)' needs to be traversed piece by piece to
4854 find all the indirect and direct uses of x_1 inside. The only
4855 shortcut we can take is the fact that GIMPLE only allows
4856 INDIRECT_REFs inside the expressions below. */
4857 if (is_gimple_assign (stmt)
4858 || gimple_code (stmt) == GIMPLE_RETURN
4859 || gimple_code (stmt) == GIMPLE_ASM
4860 || is_gimple_call (stmt))
4861 {
4862 struct walk_stmt_info wi;
4863 struct count_ptr_d count;
4864
4865 count.ptr = ptr;
4866 count.num_stores = 0;
4867 count.num_loads = 0;
4868
4869 memset (&wi, 0, sizeof (wi));
4870 wi.info = &count;
4871 walk_gimple_op (stmt, count_ptr_derefs, &wi);
4872
4873 *num_stores_p = count.num_stores;
4874 *num_loads_p = count.num_loads;
4875 }
4876
4877 gcc_assert (*num_uses_p >= *num_loads_p + *num_stores_p);
4878 }
4879
4880 /* From a tree operand OP return the base of a load or store operation
4881 or NULL_TREE if OP is not a load or a store. */
4882
4883 static tree
4884 get_base_loadstore (tree op)
4885 {
4886 while (handled_component_p (op))
4887 op = TREE_OPERAND (op, 0);
4888 if (DECL_P (op)
4889 || INDIRECT_REF_P (op)
4890 || TREE_CODE (op) == MEM_REF
4891 || TREE_CODE (op) == TARGET_MEM_REF)
4892 return op;
4893 return NULL_TREE;
4894 }
4895
4896 /* For the statement STMT call the callbacks VISIT_LOAD, VISIT_STORE and
4897 VISIT_ADDR if non-NULL on loads, store and address-taken operands
4898 passing the STMT, the base of the operand and DATA to it. The base
4899 will be either a decl, an indirect reference (including TARGET_MEM_REF)
4900 or the argument of an address expression.
4901 Returns the results of these callbacks or'ed. */
4902
4903 bool
4904 walk_stmt_load_store_addr_ops (gimple stmt, void *data,
4905 bool (*visit_load)(gimple, tree, void *),
4906 bool (*visit_store)(gimple, tree, void *),
4907 bool (*visit_addr)(gimple, tree, void *))
4908 {
4909 bool ret = false;
4910 unsigned i;
4911 if (gimple_assign_single_p (stmt))
4912 {
4913 tree lhs, rhs;
4914 if (visit_store)
4915 {
4916 lhs = get_base_loadstore (gimple_assign_lhs (stmt));
4917 if (lhs)
4918 ret |= visit_store (stmt, lhs, data);
4919 }
4920 rhs = gimple_assign_rhs1 (stmt);
4921 while (handled_component_p (rhs))
4922 rhs = TREE_OPERAND (rhs, 0);
4923 if (visit_addr)
4924 {
4925 if (TREE_CODE (rhs) == ADDR_EXPR)
4926 ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data);
4927 else if (TREE_CODE (rhs) == TARGET_MEM_REF
4928 && TREE_CODE (TMR_BASE (rhs)) == ADDR_EXPR)
4929 ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (rhs), 0), data);
4930 else if (TREE_CODE (rhs) == OBJ_TYPE_REF
4931 && TREE_CODE (OBJ_TYPE_REF_OBJECT (rhs)) == ADDR_EXPR)
4932 ret |= visit_addr (stmt, TREE_OPERAND (OBJ_TYPE_REF_OBJECT (rhs),
4933 0), data);
4934 lhs = gimple_assign_lhs (stmt);
4935 if (TREE_CODE (lhs) == TARGET_MEM_REF
4936 && TREE_CODE (TMR_BASE (lhs)) == ADDR_EXPR)
4937 ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (lhs), 0), data);
4938 }
4939 if (visit_load)
4940 {
4941 rhs = get_base_loadstore (rhs);
4942 if (rhs)
4943 ret |= visit_load (stmt, rhs, data);
4944 }
4945 }
4946 else if (visit_addr
4947 && (is_gimple_assign (stmt)
4948 || gimple_code (stmt) == GIMPLE_COND))
4949 {
4950 for (i = 0; i < gimple_num_ops (stmt); ++i)
4951 if (gimple_op (stmt, i)
4952 && TREE_CODE (gimple_op (stmt, i)) == ADDR_EXPR)
4953 ret |= visit_addr (stmt, TREE_OPERAND (gimple_op (stmt, i), 0), data);
4954 }
4955 else if (is_gimple_call (stmt))
4956 {
4957 if (visit_store)
4958 {
4959 tree lhs = gimple_call_lhs (stmt);
4960 if (lhs)
4961 {
4962 lhs = get_base_loadstore (lhs);
4963 if (lhs)
4964 ret |= visit_store (stmt, lhs, data);
4965 }
4966 }
4967 if (visit_load || visit_addr)
4968 for (i = 0; i < gimple_call_num_args (stmt); ++i)
4969 {
4970 tree rhs = gimple_call_arg (stmt, i);
4971 if (visit_addr
4972 && TREE_CODE (rhs) == ADDR_EXPR)
4973 ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data);
4974 else if (visit_load)
4975 {
4976 rhs = get_base_loadstore (rhs);
4977 if (rhs)
4978 ret |= visit_load (stmt, rhs, data);
4979 }
4980 }
4981 if (visit_addr
4982 && gimple_call_chain (stmt)
4983 && TREE_CODE (gimple_call_chain (stmt)) == ADDR_EXPR)
4984 ret |= visit_addr (stmt, TREE_OPERAND (gimple_call_chain (stmt), 0),
4985 data);
4986 if (visit_addr
4987 && gimple_call_return_slot_opt_p (stmt)
4988 && gimple_call_lhs (stmt) != NULL_TREE
4989 && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt))))
4990 ret |= visit_addr (stmt, gimple_call_lhs (stmt), data);
4991 }
4992 else if (gimple_code (stmt) == GIMPLE_ASM)
4993 {
4994 unsigned noutputs;
4995 const char *constraint;
4996 const char **oconstraints;
4997 bool allows_mem, allows_reg, is_inout;
4998 noutputs = gimple_asm_noutputs (stmt);
4999 oconstraints = XALLOCAVEC (const char *, noutputs);
5000 if (visit_store || visit_addr)
5001 for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
5002 {
5003 tree link = gimple_asm_output_op (stmt, i);
5004 tree op = get_base_loadstore (TREE_VALUE (link));
5005 if (op && visit_store)
5006 ret |= visit_store (stmt, op, data);
5007 if (visit_addr)
5008 {
5009 constraint = TREE_STRING_POINTER
5010 (TREE_VALUE (TREE_PURPOSE (link)));
5011 oconstraints[i] = constraint;
5012 parse_output_constraint (&constraint, i, 0, 0, &allows_mem,
5013 &allows_reg, &is_inout);
5014 if (op && !allows_reg && allows_mem)
5015 ret |= visit_addr (stmt, op, data);
5016 }
5017 }
5018 if (visit_load || visit_addr)
5019 for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
5020 {
5021 tree link = gimple_asm_input_op (stmt, i);
5022 tree op = TREE_VALUE (link);
5023 if (visit_addr
5024 && TREE_CODE (op) == ADDR_EXPR)
5025 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
5026 else if (visit_load || visit_addr)
5027 {
5028 op = get_base_loadstore (op);
5029 if (op)
5030 {
5031 if (visit_load)
5032 ret |= visit_load (stmt, op, data);
5033 if (visit_addr)
5034 {
5035 constraint = TREE_STRING_POINTER
5036 (TREE_VALUE (TREE_PURPOSE (link)));
5037 parse_input_constraint (&constraint, 0, 0, noutputs,
5038 0, oconstraints,
5039 &allows_mem, &allows_reg);
5040 if (!allows_reg && allows_mem)
5041 ret |= visit_addr (stmt, op, data);
5042 }
5043 }
5044 }
5045 }
5046 }
5047 else if (gimple_code (stmt) == GIMPLE_RETURN)
5048 {
5049 tree op = gimple_return_retval (stmt);
5050 if (op)
5051 {
5052 if (visit_addr
5053 && TREE_CODE (op) == ADDR_EXPR)
5054 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
5055 else if (visit_load)
5056 {
5057 op = get_base_loadstore (op);
5058 if (op)
5059 ret |= visit_load (stmt, op, data);
5060 }
5061 }
5062 }
5063 else if (visit_addr
5064 && gimple_code (stmt) == GIMPLE_PHI)
5065 {
5066 for (i = 0; i < gimple_phi_num_args (stmt); ++i)
5067 {
5068 tree op = PHI_ARG_DEF (stmt, i);
5069 if (TREE_CODE (op) == ADDR_EXPR)
5070 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
5071 }
5072 }
5073
5074 return ret;
5075 }
5076
5077 /* Like walk_stmt_load_store_addr_ops but with NULL visit_addr. IPA-CP
5078 should make a faster clone for this case. */
5079
5080 bool
5081 walk_stmt_load_store_ops (gimple stmt, void *data,
5082 bool (*visit_load)(gimple, tree, void *),
5083 bool (*visit_store)(gimple, tree, void *))
5084 {
5085 return walk_stmt_load_store_addr_ops (stmt, data,
5086 visit_load, visit_store, NULL);
5087 }
5088
5089 /* Helper for gimple_ior_addresses_taken_1. */
5090
5091 static bool
5092 gimple_ior_addresses_taken_1 (gimple stmt ATTRIBUTE_UNUSED,
5093 tree addr, void *data)
5094 {
5095 bitmap addresses_taken = (bitmap)data;
5096 addr = get_base_address (addr);
5097 if (addr
5098 && DECL_P (addr))
5099 {
5100 bitmap_set_bit (addresses_taken, DECL_UID (addr));
5101 return true;
5102 }
5103 return false;
5104 }
5105
5106 /* Set the bit for the uid of all decls that have their address taken
5107 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
5108 were any in this stmt. */
5109
5110 bool
5111 gimple_ior_addresses_taken (bitmap addresses_taken, gimple stmt)
5112 {
5113 return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
5114 gimple_ior_addresses_taken_1);
5115 }
5116
5117
5118 /* Return a printable name for symbol DECL. */
5119
5120 const char *
5121 gimple_decl_printable_name (tree decl, int verbosity)
5122 {
5123 if (!DECL_NAME (decl))
5124 return NULL;
5125
5126 if (DECL_ASSEMBLER_NAME_SET_P (decl))
5127 {
5128 const char *str, *mangled_str;
5129 int dmgl_opts = DMGL_NO_OPTS;
5130
5131 if (verbosity >= 2)
5132 {
5133 dmgl_opts = DMGL_VERBOSE
5134 | DMGL_ANSI
5135 | DMGL_GNU_V3
5136 | DMGL_RET_POSTFIX;
5137 if (TREE_CODE (decl) == FUNCTION_DECL)
5138 dmgl_opts |= DMGL_PARAMS;
5139 }
5140
5141 mangled_str = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
5142 str = cplus_demangle_v3 (mangled_str, dmgl_opts);
5143 return (str) ? str : mangled_str;
5144 }
5145
5146 return IDENTIFIER_POINTER (DECL_NAME (decl));
5147 }
5148
5149 /* Return true when STMT is builtins call to CODE. */
5150
5151 bool
5152 gimple_call_builtin_p (gimple stmt, enum built_in_function code)
5153 {
5154 tree fndecl;
5155 return (is_gimple_call (stmt)
5156 && (fndecl = gimple_call_fndecl (stmt)) != NULL
5157 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
5158 && DECL_FUNCTION_CODE (fndecl) == code);
5159 }
5160
5161 #include "gt-gimple.h"