lto-cgraph.c (get_alias_symbol): Remove weakref sanity check.
[gcc.git] / gcc / gimple.c
1 /* Gimple IR support functions.
2
3 Copyright (C) 2007-2013 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "target.h"
27 #include "tree.h"
28 #include "ggc.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "gimple.h"
32 #include "diagnostic.h"
33 #include "tree-flow.h"
34 #include "value-prof.h"
35 #include "flags.h"
36 #include "alias.h"
37 #include "demangle.h"
38 #include "langhooks.h"
39
40 /* Global canonical type table. */
41 static GTY((if_marked ("ggc_marked_p"), param_is (union tree_node)))
42 htab_t gimple_canonical_types;
43 static GTY((if_marked ("tree_int_map_marked_p"), param_is (struct tree_int_map)))
44 htab_t canonical_type_hash_cache;
45
46 /* All the tuples have their operand vector (if present) at the very bottom
47 of the structure. Therefore, the offset required to find the
48 operands vector the size of the structure minus the size of the 1
49 element tree array at the end (see gimple_ops). */
50 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
51 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
52 EXPORTED_CONST size_t gimple_ops_offset_[] = {
53 #include "gsstruct.def"
54 };
55 #undef DEFGSSTRUCT
56
57 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof(struct STRUCT),
58 static const size_t gsstruct_code_size[] = {
59 #include "gsstruct.def"
60 };
61 #undef DEFGSSTRUCT
62
63 #define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
64 const char *const gimple_code_name[] = {
65 #include "gimple.def"
66 };
67 #undef DEFGSCODE
68
69 #define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
70 EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
71 #include "gimple.def"
72 };
73 #undef DEFGSCODE
74
75 /* Gimple stats. */
76
77 int gimple_alloc_counts[(int) gimple_alloc_kind_all];
78 int gimple_alloc_sizes[(int) gimple_alloc_kind_all];
79
80 /* Keep in sync with gimple.h:enum gimple_alloc_kind. */
81 static const char * const gimple_alloc_kind_names[] = {
82 "assignments",
83 "phi nodes",
84 "conditionals",
85 "everything else"
86 };
87
88 /* Private API manipulation functions shared only with some
89 other files. */
90 extern void gimple_set_stored_syms (gimple, bitmap, bitmap_obstack *);
91 extern void gimple_set_loaded_syms (gimple, bitmap, bitmap_obstack *);
92
93 /* Gimple tuple constructors.
94 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
95 be passed a NULL to start with an empty sequence. */
96
97 /* Set the code for statement G to CODE. */
98
99 static inline void
100 gimple_set_code (gimple g, enum gimple_code code)
101 {
102 g->gsbase.code = code;
103 }
104
105 /* Return the number of bytes needed to hold a GIMPLE statement with
106 code CODE. */
107
108 static inline size_t
109 gimple_size (enum gimple_code code)
110 {
111 return gsstruct_code_size[gss_for_code (code)];
112 }
113
114 /* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
115 operands. */
116
117 gimple
118 gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
119 {
120 size_t size;
121 gimple stmt;
122
123 size = gimple_size (code);
124 if (num_ops > 0)
125 size += sizeof (tree) * (num_ops - 1);
126
127 if (GATHER_STATISTICS)
128 {
129 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
130 gimple_alloc_counts[(int) kind]++;
131 gimple_alloc_sizes[(int) kind] += size;
132 }
133
134 stmt = ggc_alloc_cleared_gimple_statement_d_stat (size PASS_MEM_STAT);
135 gimple_set_code (stmt, code);
136 gimple_set_num_ops (stmt, num_ops);
137
138 /* Do not call gimple_set_modified here as it has other side
139 effects and this tuple is still not completely built. */
140 stmt->gsbase.modified = 1;
141 gimple_init_singleton (stmt);
142
143 return stmt;
144 }
145
146 /* Set SUBCODE to be the code of the expression computed by statement G. */
147
148 static inline void
149 gimple_set_subcode (gimple g, unsigned subcode)
150 {
151 /* We only have 16 bits for the RHS code. Assert that we are not
152 overflowing it. */
153 gcc_assert (subcode < (1 << 16));
154 g->gsbase.subcode = subcode;
155 }
156
157
158
159 /* Build a tuple with operands. CODE is the statement to build (which
160 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the sub-code
161 for the new tuple. NUM_OPS is the number of operands to allocate. */
162
163 #define gimple_build_with_ops(c, s, n) \
164 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
165
166 static gimple
167 gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
168 unsigned num_ops MEM_STAT_DECL)
169 {
170 gimple s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT);
171 gimple_set_subcode (s, subcode);
172
173 return s;
174 }
175
176
177 /* Build a GIMPLE_RETURN statement returning RETVAL. */
178
179 gimple
180 gimple_build_return (tree retval)
181 {
182 gimple s = gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK, 1);
183 if (retval)
184 gimple_return_set_retval (s, retval);
185 return s;
186 }
187
188 /* Reset alias information on call S. */
189
190 void
191 gimple_call_reset_alias_info (gimple s)
192 {
193 if (gimple_call_flags (s) & ECF_CONST)
194 memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
195 else
196 pt_solution_reset (gimple_call_use_set (s));
197 if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
198 memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
199 else
200 pt_solution_reset (gimple_call_clobber_set (s));
201 }
202
203 /* Helper for gimple_build_call, gimple_build_call_valist,
204 gimple_build_call_vec and gimple_build_call_from_tree. Build the basic
205 components of a GIMPLE_CALL statement to function FN with NARGS
206 arguments. */
207
208 static inline gimple
209 gimple_build_call_1 (tree fn, unsigned nargs)
210 {
211 gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3);
212 if (TREE_CODE (fn) == FUNCTION_DECL)
213 fn = build_fold_addr_expr (fn);
214 gimple_set_op (s, 1, fn);
215 gimple_call_set_fntype (s, TREE_TYPE (TREE_TYPE (fn)));
216 gimple_call_reset_alias_info (s);
217 return s;
218 }
219
220
221 /* Build a GIMPLE_CALL statement to function FN with the arguments
222 specified in vector ARGS. */
223
224 gimple
225 gimple_build_call_vec (tree fn, vec<tree> args)
226 {
227 unsigned i;
228 unsigned nargs = args.length ();
229 gimple call = gimple_build_call_1 (fn, nargs);
230
231 for (i = 0; i < nargs; i++)
232 gimple_call_set_arg (call, i, args[i]);
233
234 return call;
235 }
236
237
238 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
239 arguments. The ... are the arguments. */
240
241 gimple
242 gimple_build_call (tree fn, unsigned nargs, ...)
243 {
244 va_list ap;
245 gimple call;
246 unsigned i;
247
248 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
249
250 call = gimple_build_call_1 (fn, nargs);
251
252 va_start (ap, nargs);
253 for (i = 0; i < nargs; i++)
254 gimple_call_set_arg (call, i, va_arg (ap, tree));
255 va_end (ap);
256
257 return call;
258 }
259
260
261 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
262 arguments. AP contains the arguments. */
263
264 gimple
265 gimple_build_call_valist (tree fn, unsigned nargs, va_list ap)
266 {
267 gimple call;
268 unsigned i;
269
270 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
271
272 call = gimple_build_call_1 (fn, nargs);
273
274 for (i = 0; i < nargs; i++)
275 gimple_call_set_arg (call, i, va_arg (ap, tree));
276
277 return call;
278 }
279
280
281 /* Helper for gimple_build_call_internal and gimple_build_call_internal_vec.
282 Build the basic components of a GIMPLE_CALL statement to internal
283 function FN with NARGS arguments. */
284
285 static inline gimple
286 gimple_build_call_internal_1 (enum internal_fn fn, unsigned nargs)
287 {
288 gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3);
289 s->gsbase.subcode |= GF_CALL_INTERNAL;
290 gimple_call_set_internal_fn (s, fn);
291 gimple_call_reset_alias_info (s);
292 return s;
293 }
294
295
296 /* Build a GIMPLE_CALL statement to internal function FN. NARGS is
297 the number of arguments. The ... are the arguments. */
298
299 gimple
300 gimple_build_call_internal (enum internal_fn fn, unsigned nargs, ...)
301 {
302 va_list ap;
303 gimple call;
304 unsigned i;
305
306 call = gimple_build_call_internal_1 (fn, nargs);
307 va_start (ap, nargs);
308 for (i = 0; i < nargs; i++)
309 gimple_call_set_arg (call, i, va_arg (ap, tree));
310 va_end (ap);
311
312 return call;
313 }
314
315
316 /* Build a GIMPLE_CALL statement to internal function FN with the arguments
317 specified in vector ARGS. */
318
319 gimple
320 gimple_build_call_internal_vec (enum internal_fn fn, vec<tree> args)
321 {
322 unsigned i, nargs;
323 gimple call;
324
325 nargs = args.length ();
326 call = gimple_build_call_internal_1 (fn, nargs);
327 for (i = 0; i < nargs; i++)
328 gimple_call_set_arg (call, i, args[i]);
329
330 return call;
331 }
332
333
334 /* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
335 assumed to be in GIMPLE form already. Minimal checking is done of
336 this fact. */
337
338 gimple
339 gimple_build_call_from_tree (tree t)
340 {
341 unsigned i, nargs;
342 gimple call;
343 tree fndecl = get_callee_fndecl (t);
344
345 gcc_assert (TREE_CODE (t) == CALL_EXPR);
346
347 nargs = call_expr_nargs (t);
348 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
349
350 for (i = 0; i < nargs; i++)
351 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
352
353 gimple_set_block (call, TREE_BLOCK (t));
354
355 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
356 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
357 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
358 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
359 if (fndecl
360 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
361 && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA
362 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN))
363 gimple_call_set_alloca_for_var (call, CALL_ALLOCA_FOR_VAR_P (t));
364 else
365 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
366 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
367 gimple_call_set_nothrow (call, TREE_NOTHROW (t));
368 gimple_set_no_warning (call, TREE_NO_WARNING (t));
369
370 return call;
371 }
372
373
374 /* Extract the operands and code for expression EXPR into *SUBCODE_P,
375 *OP1_P, *OP2_P and *OP3_P respectively. */
376
377 void
378 extract_ops_from_tree_1 (tree expr, enum tree_code *subcode_p, tree *op1_p,
379 tree *op2_p, tree *op3_p)
380 {
381 enum gimple_rhs_class grhs_class;
382
383 *subcode_p = TREE_CODE (expr);
384 grhs_class = get_gimple_rhs_class (*subcode_p);
385
386 if (grhs_class == GIMPLE_TERNARY_RHS)
387 {
388 *op1_p = TREE_OPERAND (expr, 0);
389 *op2_p = TREE_OPERAND (expr, 1);
390 *op3_p = TREE_OPERAND (expr, 2);
391 }
392 else if (grhs_class == GIMPLE_BINARY_RHS)
393 {
394 *op1_p = TREE_OPERAND (expr, 0);
395 *op2_p = TREE_OPERAND (expr, 1);
396 *op3_p = NULL_TREE;
397 }
398 else if (grhs_class == GIMPLE_UNARY_RHS)
399 {
400 *op1_p = TREE_OPERAND (expr, 0);
401 *op2_p = NULL_TREE;
402 *op3_p = NULL_TREE;
403 }
404 else if (grhs_class == GIMPLE_SINGLE_RHS)
405 {
406 *op1_p = expr;
407 *op2_p = NULL_TREE;
408 *op3_p = NULL_TREE;
409 }
410 else
411 gcc_unreachable ();
412 }
413
414
415 /* Build a GIMPLE_ASSIGN statement.
416
417 LHS of the assignment.
418 RHS of the assignment which can be unary or binary. */
419
420 gimple
421 gimple_build_assign_stat (tree lhs, tree rhs MEM_STAT_DECL)
422 {
423 enum tree_code subcode;
424 tree op1, op2, op3;
425
426 extract_ops_from_tree_1 (rhs, &subcode, &op1, &op2, &op3);
427 return gimple_build_assign_with_ops (subcode, lhs, op1, op2, op3
428 PASS_MEM_STAT);
429 }
430
431
432 /* Build a GIMPLE_ASSIGN statement with sub-code SUBCODE and operands
433 OP1 and OP2. If OP2 is NULL then SUBCODE must be of class
434 GIMPLE_UNARY_RHS or GIMPLE_SINGLE_RHS. */
435
436 gimple
437 gimple_build_assign_with_ops (enum tree_code subcode, tree lhs, tree op1,
438 tree op2, tree op3 MEM_STAT_DECL)
439 {
440 unsigned num_ops;
441 gimple p;
442
443 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
444 code). */
445 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
446
447 p = gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
448 PASS_MEM_STAT);
449 gimple_assign_set_lhs (p, lhs);
450 gimple_assign_set_rhs1 (p, op1);
451 if (op2)
452 {
453 gcc_assert (num_ops > 2);
454 gimple_assign_set_rhs2 (p, op2);
455 }
456
457 if (op3)
458 {
459 gcc_assert (num_ops > 3);
460 gimple_assign_set_rhs3 (p, op3);
461 }
462
463 return p;
464 }
465
466 gimple
467 gimple_build_assign_with_ops (enum tree_code subcode, tree lhs, tree op1,
468 tree op2 MEM_STAT_DECL)
469 {
470 return gimple_build_assign_with_ops (subcode, lhs, op1, op2, NULL_TREE
471 PASS_MEM_STAT);
472 }
473
474
475 /* Build a new GIMPLE_ASSIGN tuple and append it to the end of *SEQ_P.
476
477 DST/SRC are the destination and source respectively. You can pass
478 ungimplified trees in DST or SRC, in which case they will be
479 converted to a gimple operand if necessary.
480
481 This function returns the newly created GIMPLE_ASSIGN tuple. */
482
483 gimple
484 gimplify_assign (tree dst, tree src, gimple_seq *seq_p)
485 {
486 tree t = build2 (MODIFY_EXPR, TREE_TYPE (dst), dst, src);
487 gimplify_and_add (t, seq_p);
488 ggc_free (t);
489 return gimple_seq_last_stmt (*seq_p);
490 }
491
492
493 /* Build a GIMPLE_COND statement.
494
495 PRED is the condition used to compare LHS and the RHS.
496 T_LABEL is the label to jump to if the condition is true.
497 F_LABEL is the label to jump to otherwise. */
498
499 gimple
500 gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
501 tree t_label, tree f_label)
502 {
503 gimple p;
504
505 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
506 p = gimple_build_with_ops (GIMPLE_COND, pred_code, 4);
507 gimple_cond_set_lhs (p, lhs);
508 gimple_cond_set_rhs (p, rhs);
509 gimple_cond_set_true_label (p, t_label);
510 gimple_cond_set_false_label (p, f_label);
511 return p;
512 }
513
514
515 /* Extract operands for a GIMPLE_COND statement out of COND_EXPR tree COND. */
516
517 void
518 gimple_cond_get_ops_from_tree (tree cond, enum tree_code *code_p,
519 tree *lhs_p, tree *rhs_p)
520 {
521 gcc_assert (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison
522 || TREE_CODE (cond) == TRUTH_NOT_EXPR
523 || is_gimple_min_invariant (cond)
524 || SSA_VAR_P (cond));
525
526 extract_ops_from_tree (cond, code_p, lhs_p, rhs_p);
527
528 /* Canonicalize conditionals of the form 'if (!VAL)'. */
529 if (*code_p == TRUTH_NOT_EXPR)
530 {
531 *code_p = EQ_EXPR;
532 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
533 *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
534 }
535 /* Canonicalize conditionals of the form 'if (VAL)' */
536 else if (TREE_CODE_CLASS (*code_p) != tcc_comparison)
537 {
538 *code_p = NE_EXPR;
539 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
540 *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
541 }
542 }
543
544
545 /* Build a GIMPLE_COND statement from the conditional expression tree
546 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
547
548 gimple
549 gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
550 {
551 enum tree_code code;
552 tree lhs, rhs;
553
554 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
555 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
556 }
557
558 /* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
559 boolean expression tree COND. */
560
561 void
562 gimple_cond_set_condition_from_tree (gimple stmt, tree cond)
563 {
564 enum tree_code code;
565 tree lhs, rhs;
566
567 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
568 gimple_cond_set_condition (stmt, code, lhs, rhs);
569 }
570
571 /* Build a GIMPLE_LABEL statement for LABEL. */
572
573 gimple
574 gimple_build_label (tree label)
575 {
576 gimple p = gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1);
577 gimple_label_set_label (p, label);
578 return p;
579 }
580
581 /* Build a GIMPLE_GOTO statement to label DEST. */
582
583 gimple
584 gimple_build_goto (tree dest)
585 {
586 gimple p = gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1);
587 gimple_goto_set_dest (p, dest);
588 return p;
589 }
590
591
592 /* Build a GIMPLE_NOP statement. */
593
594 gimple
595 gimple_build_nop (void)
596 {
597 return gimple_alloc (GIMPLE_NOP, 0);
598 }
599
600
601 /* Build a GIMPLE_BIND statement.
602 VARS are the variables in BODY.
603 BLOCK is the containing block. */
604
605 gimple
606 gimple_build_bind (tree vars, gimple_seq body, tree block)
607 {
608 gimple p = gimple_alloc (GIMPLE_BIND, 0);
609 gimple_bind_set_vars (p, vars);
610 if (body)
611 gimple_bind_set_body (p, body);
612 if (block)
613 gimple_bind_set_block (p, block);
614 return p;
615 }
616
617 /* Helper function to set the simple fields of a asm stmt.
618
619 STRING is a pointer to a string that is the asm blocks assembly code.
620 NINPUT is the number of register inputs.
621 NOUTPUT is the number of register outputs.
622 NCLOBBERS is the number of clobbered registers.
623 */
624
625 static inline gimple
626 gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
627 unsigned nclobbers, unsigned nlabels)
628 {
629 gimple p;
630 int size = strlen (string);
631
632 /* ASMs with labels cannot have outputs. This should have been
633 enforced by the front end. */
634 gcc_assert (nlabels == 0 || noutputs == 0);
635
636 p = gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
637 ninputs + noutputs + nclobbers + nlabels);
638
639 p->gimple_asm.ni = ninputs;
640 p->gimple_asm.no = noutputs;
641 p->gimple_asm.nc = nclobbers;
642 p->gimple_asm.nl = nlabels;
643 p->gimple_asm.string = ggc_alloc_string (string, size);
644
645 if (GATHER_STATISTICS)
646 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
647
648 return p;
649 }
650
651 /* Build a GIMPLE_ASM statement.
652
653 STRING is the assembly code.
654 NINPUT is the number of register inputs.
655 NOUTPUT is the number of register outputs.
656 NCLOBBERS is the number of clobbered registers.
657 INPUTS is a vector of the input register parameters.
658 OUTPUTS is a vector of the output register parameters.
659 CLOBBERS is a vector of the clobbered register parameters.
660 LABELS is a vector of destination labels. */
661
662 gimple
663 gimple_build_asm_vec (const char *string, vec<tree, va_gc> *inputs,
664 vec<tree, va_gc> *outputs, vec<tree, va_gc> *clobbers,
665 vec<tree, va_gc> *labels)
666 {
667 gimple p;
668 unsigned i;
669
670 p = gimple_build_asm_1 (string,
671 vec_safe_length (inputs),
672 vec_safe_length (outputs),
673 vec_safe_length (clobbers),
674 vec_safe_length (labels));
675
676 for (i = 0; i < vec_safe_length (inputs); i++)
677 gimple_asm_set_input_op (p, i, (*inputs)[i]);
678
679 for (i = 0; i < vec_safe_length (outputs); i++)
680 gimple_asm_set_output_op (p, i, (*outputs)[i]);
681
682 for (i = 0; i < vec_safe_length (clobbers); i++)
683 gimple_asm_set_clobber_op (p, i, (*clobbers)[i]);
684
685 for (i = 0; i < vec_safe_length (labels); i++)
686 gimple_asm_set_label_op (p, i, (*labels)[i]);
687
688 return p;
689 }
690
691 /* Build a GIMPLE_CATCH statement.
692
693 TYPES are the catch types.
694 HANDLER is the exception handler. */
695
696 gimple
697 gimple_build_catch (tree types, gimple_seq handler)
698 {
699 gimple p = gimple_alloc (GIMPLE_CATCH, 0);
700 gimple_catch_set_types (p, types);
701 if (handler)
702 gimple_catch_set_handler (p, handler);
703
704 return p;
705 }
706
707 /* Build a GIMPLE_EH_FILTER statement.
708
709 TYPES are the filter's types.
710 FAILURE is the filter's failure action. */
711
712 gimple
713 gimple_build_eh_filter (tree types, gimple_seq failure)
714 {
715 gimple p = gimple_alloc (GIMPLE_EH_FILTER, 0);
716 gimple_eh_filter_set_types (p, types);
717 if (failure)
718 gimple_eh_filter_set_failure (p, failure);
719
720 return p;
721 }
722
723 /* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
724
725 gimple
726 gimple_build_eh_must_not_throw (tree decl)
727 {
728 gimple p = gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0);
729
730 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
731 gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
732 gimple_eh_must_not_throw_set_fndecl (p, decl);
733
734 return p;
735 }
736
737 /* Build a GIMPLE_EH_ELSE statement. */
738
739 gimple
740 gimple_build_eh_else (gimple_seq n_body, gimple_seq e_body)
741 {
742 gimple p = gimple_alloc (GIMPLE_EH_ELSE, 0);
743 gimple_eh_else_set_n_body (p, n_body);
744 gimple_eh_else_set_e_body (p, e_body);
745 return p;
746 }
747
748 /* Build a GIMPLE_TRY statement.
749
750 EVAL is the expression to evaluate.
751 CLEANUP is the cleanup expression.
752 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
753 whether this is a try/catch or a try/finally respectively. */
754
755 gimple
756 gimple_build_try (gimple_seq eval, gimple_seq cleanup,
757 enum gimple_try_flags kind)
758 {
759 gimple p;
760
761 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
762 p = gimple_alloc (GIMPLE_TRY, 0);
763 gimple_set_subcode (p, kind);
764 if (eval)
765 gimple_try_set_eval (p, eval);
766 if (cleanup)
767 gimple_try_set_cleanup (p, cleanup);
768
769 return p;
770 }
771
772 /* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
773
774 CLEANUP is the cleanup expression. */
775
776 gimple
777 gimple_build_wce (gimple_seq cleanup)
778 {
779 gimple p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
780 if (cleanup)
781 gimple_wce_set_cleanup (p, cleanup);
782
783 return p;
784 }
785
786
787 /* Build a GIMPLE_RESX statement. */
788
789 gimple
790 gimple_build_resx (int region)
791 {
792 gimple p = gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0);
793 p->gimple_eh_ctrl.region = region;
794 return p;
795 }
796
797
798 /* The helper for constructing a gimple switch statement.
799 INDEX is the switch's index.
800 NLABELS is the number of labels in the switch excluding the default.
801 DEFAULT_LABEL is the default label for the switch statement. */
802
803 gimple
804 gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
805 {
806 /* nlabels + 1 default label + 1 index. */
807 gcc_checking_assert (default_label);
808 gimple p = gimple_build_with_ops (GIMPLE_SWITCH, ERROR_MARK,
809 1 + 1 + nlabels);
810 gimple_switch_set_index (p, index);
811 gimple_switch_set_default_label (p, default_label);
812 return p;
813 }
814
815 /* Build a GIMPLE_SWITCH statement.
816
817 INDEX is the switch's index.
818 DEFAULT_LABEL is the default label
819 ARGS is a vector of labels excluding the default. */
820
821 gimple
822 gimple_build_switch (tree index, tree default_label, vec<tree> args)
823 {
824 unsigned i, nlabels = args.length ();
825
826 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
827
828 /* Copy the labels from the vector to the switch statement. */
829 for (i = 0; i < nlabels; i++)
830 gimple_switch_set_label (p, i + 1, args[i]);
831
832 return p;
833 }
834
835 /* Build a GIMPLE_EH_DISPATCH statement. */
836
837 gimple
838 gimple_build_eh_dispatch (int region)
839 {
840 gimple p = gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0);
841 p->gimple_eh_ctrl.region = region;
842 return p;
843 }
844
845 /* Build a new GIMPLE_DEBUG_BIND statement.
846
847 VAR is bound to VALUE; block and location are taken from STMT. */
848
849 gimple
850 gimple_build_debug_bind_stat (tree var, tree value, gimple stmt MEM_STAT_DECL)
851 {
852 gimple p = gimple_build_with_ops_stat (GIMPLE_DEBUG,
853 (unsigned)GIMPLE_DEBUG_BIND, 2
854 PASS_MEM_STAT);
855
856 gimple_debug_bind_set_var (p, var);
857 gimple_debug_bind_set_value (p, value);
858 if (stmt)
859 gimple_set_location (p, gimple_location (stmt));
860
861 return p;
862 }
863
864
865 /* Build a new GIMPLE_DEBUG_SOURCE_BIND statement.
866
867 VAR is bound to VALUE; block and location are taken from STMT. */
868
869 gimple
870 gimple_build_debug_source_bind_stat (tree var, tree value,
871 gimple stmt MEM_STAT_DECL)
872 {
873 gimple p = gimple_build_with_ops_stat (GIMPLE_DEBUG,
874 (unsigned)GIMPLE_DEBUG_SOURCE_BIND, 2
875 PASS_MEM_STAT);
876
877 gimple_debug_source_bind_set_var (p, var);
878 gimple_debug_source_bind_set_value (p, value);
879 if (stmt)
880 gimple_set_location (p, gimple_location (stmt));
881
882 return p;
883 }
884
885
886 /* Build a GIMPLE_OMP_CRITICAL statement.
887
888 BODY is the sequence of statements for which only one thread can execute.
889 NAME is optional identifier for this critical block. */
890
891 gimple
892 gimple_build_omp_critical (gimple_seq body, tree name)
893 {
894 gimple p = gimple_alloc (GIMPLE_OMP_CRITICAL, 0);
895 gimple_omp_critical_set_name (p, name);
896 if (body)
897 gimple_omp_set_body (p, body);
898
899 return p;
900 }
901
902 /* Build a GIMPLE_OMP_FOR statement.
903
904 BODY is sequence of statements inside the for loop.
905 CLAUSES, are any of the OMP loop construct's clauses: private, firstprivate,
906 lastprivate, reductions, ordered, schedule, and nowait.
907 COLLAPSE is the collapse count.
908 PRE_BODY is the sequence of statements that are loop invariant. */
909
910 gimple
911 gimple_build_omp_for (gimple_seq body, tree clauses, size_t collapse,
912 gimple_seq pre_body)
913 {
914 gimple p = gimple_alloc (GIMPLE_OMP_FOR, 0);
915 if (body)
916 gimple_omp_set_body (p, body);
917 gimple_omp_for_set_clauses (p, clauses);
918 p->gimple_omp_for.collapse = collapse;
919 p->gimple_omp_for.iter
920 = ggc_alloc_cleared_vec_gimple_omp_for_iter (collapse);
921 if (pre_body)
922 gimple_omp_for_set_pre_body (p, pre_body);
923
924 return p;
925 }
926
927
928 /* Build a GIMPLE_OMP_PARALLEL statement.
929
930 BODY is sequence of statements which are executed in parallel.
931 CLAUSES, are the OMP parallel construct's clauses.
932 CHILD_FN is the function created for the parallel threads to execute.
933 DATA_ARG are the shared data argument(s). */
934
935 gimple
936 gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
937 tree data_arg)
938 {
939 gimple p = gimple_alloc (GIMPLE_OMP_PARALLEL, 0);
940 if (body)
941 gimple_omp_set_body (p, body);
942 gimple_omp_parallel_set_clauses (p, clauses);
943 gimple_omp_parallel_set_child_fn (p, child_fn);
944 gimple_omp_parallel_set_data_arg (p, data_arg);
945
946 return p;
947 }
948
949
950 /* Build a GIMPLE_OMP_TASK statement.
951
952 BODY is sequence of statements which are executed by the explicit task.
953 CLAUSES, are the OMP parallel construct's clauses.
954 CHILD_FN is the function created for the parallel threads to execute.
955 DATA_ARG are the shared data argument(s).
956 COPY_FN is the optional function for firstprivate initialization.
957 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
958
959 gimple
960 gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
961 tree data_arg, tree copy_fn, tree arg_size,
962 tree arg_align)
963 {
964 gimple p = gimple_alloc (GIMPLE_OMP_TASK, 0);
965 if (body)
966 gimple_omp_set_body (p, body);
967 gimple_omp_task_set_clauses (p, clauses);
968 gimple_omp_task_set_child_fn (p, child_fn);
969 gimple_omp_task_set_data_arg (p, data_arg);
970 gimple_omp_task_set_copy_fn (p, copy_fn);
971 gimple_omp_task_set_arg_size (p, arg_size);
972 gimple_omp_task_set_arg_align (p, arg_align);
973
974 return p;
975 }
976
977
978 /* Build a GIMPLE_OMP_SECTION statement for a sections statement.
979
980 BODY is the sequence of statements in the section. */
981
982 gimple
983 gimple_build_omp_section (gimple_seq body)
984 {
985 gimple p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
986 if (body)
987 gimple_omp_set_body (p, body);
988
989 return p;
990 }
991
992
993 /* Build a GIMPLE_OMP_MASTER statement.
994
995 BODY is the sequence of statements to be executed by just the master. */
996
997 gimple
998 gimple_build_omp_master (gimple_seq body)
999 {
1000 gimple p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
1001 if (body)
1002 gimple_omp_set_body (p, body);
1003
1004 return p;
1005 }
1006
1007
1008 /* Build a GIMPLE_OMP_CONTINUE statement.
1009
1010 CONTROL_DEF is the definition of the control variable.
1011 CONTROL_USE is the use of the control variable. */
1012
1013 gimple
1014 gimple_build_omp_continue (tree control_def, tree control_use)
1015 {
1016 gimple p = gimple_alloc (GIMPLE_OMP_CONTINUE, 0);
1017 gimple_omp_continue_set_control_def (p, control_def);
1018 gimple_omp_continue_set_control_use (p, control_use);
1019 return p;
1020 }
1021
1022 /* Build a GIMPLE_OMP_ORDERED statement.
1023
1024 BODY is the sequence of statements inside a loop that will executed in
1025 sequence. */
1026
1027 gimple
1028 gimple_build_omp_ordered (gimple_seq body)
1029 {
1030 gimple p = gimple_alloc (GIMPLE_OMP_ORDERED, 0);
1031 if (body)
1032 gimple_omp_set_body (p, body);
1033
1034 return p;
1035 }
1036
1037
1038 /* Build a GIMPLE_OMP_RETURN statement.
1039 WAIT_P is true if this is a non-waiting return. */
1040
1041 gimple
1042 gimple_build_omp_return (bool wait_p)
1043 {
1044 gimple p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
1045 if (wait_p)
1046 gimple_omp_return_set_nowait (p);
1047
1048 return p;
1049 }
1050
1051
1052 /* Build a GIMPLE_OMP_SECTIONS statement.
1053
1054 BODY is a sequence of section statements.
1055 CLAUSES are any of the OMP sections contsruct's clauses: private,
1056 firstprivate, lastprivate, reduction, and nowait. */
1057
1058 gimple
1059 gimple_build_omp_sections (gimple_seq body, tree clauses)
1060 {
1061 gimple p = gimple_alloc (GIMPLE_OMP_SECTIONS, 0);
1062 if (body)
1063 gimple_omp_set_body (p, body);
1064 gimple_omp_sections_set_clauses (p, clauses);
1065
1066 return p;
1067 }
1068
1069
1070 /* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
1071
1072 gimple
1073 gimple_build_omp_sections_switch (void)
1074 {
1075 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
1076 }
1077
1078
1079 /* Build a GIMPLE_OMP_SINGLE statement.
1080
1081 BODY is the sequence of statements that will be executed once.
1082 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1083 copyprivate, nowait. */
1084
1085 gimple
1086 gimple_build_omp_single (gimple_seq body, tree clauses)
1087 {
1088 gimple p = gimple_alloc (GIMPLE_OMP_SINGLE, 0);
1089 if (body)
1090 gimple_omp_set_body (p, body);
1091 gimple_omp_single_set_clauses (p, clauses);
1092
1093 return p;
1094 }
1095
1096
1097 /* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
1098
1099 gimple
1100 gimple_build_omp_atomic_load (tree lhs, tree rhs)
1101 {
1102 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0);
1103 gimple_omp_atomic_load_set_lhs (p, lhs);
1104 gimple_omp_atomic_load_set_rhs (p, rhs);
1105 return p;
1106 }
1107
1108 /* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1109
1110 VAL is the value we are storing. */
1111
1112 gimple
1113 gimple_build_omp_atomic_store (tree val)
1114 {
1115 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0);
1116 gimple_omp_atomic_store_set_val (p, val);
1117 return p;
1118 }
1119
1120 /* Build a GIMPLE_TRANSACTION statement. */
1121
1122 gimple
1123 gimple_build_transaction (gimple_seq body, tree label)
1124 {
1125 gimple p = gimple_alloc (GIMPLE_TRANSACTION, 0);
1126 gimple_transaction_set_body (p, body);
1127 gimple_transaction_set_label (p, label);
1128 return p;
1129 }
1130
1131 /* Build a GIMPLE_PREDICT statement. PREDICT is one of the predictors from
1132 predict.def, OUTCOME is NOT_TAKEN or TAKEN. */
1133
1134 gimple
1135 gimple_build_predict (enum br_predictor predictor, enum prediction outcome)
1136 {
1137 gimple p = gimple_alloc (GIMPLE_PREDICT, 0);
1138 /* Ensure all the predictors fit into the lower bits of the subcode. */
1139 gcc_assert ((int) END_PREDICTORS <= GF_PREDICT_TAKEN);
1140 gimple_predict_set_predictor (p, predictor);
1141 gimple_predict_set_outcome (p, outcome);
1142 return p;
1143 }
1144
1145 #if defined ENABLE_GIMPLE_CHECKING
1146 /* Complain of a gimple type mismatch and die. */
1147
1148 void
1149 gimple_check_failed (const_gimple gs, const char *file, int line,
1150 const char *function, enum gimple_code code,
1151 enum tree_code subcode)
1152 {
1153 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1154 gimple_code_name[code],
1155 tree_code_name[subcode],
1156 gimple_code_name[gimple_code (gs)],
1157 gs->gsbase.subcode > 0
1158 ? tree_code_name[gs->gsbase.subcode]
1159 : "",
1160 function, trim_filename (file), line);
1161 }
1162 #endif /* ENABLE_GIMPLE_CHECKING */
1163
1164
1165 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1166 *SEQ_P is NULL, a new sequence is allocated. */
1167
1168 void
1169 gimple_seq_add_stmt (gimple_seq *seq_p, gimple gs)
1170 {
1171 gimple_stmt_iterator si;
1172 if (gs == NULL)
1173 return;
1174
1175 si = gsi_last (*seq_p);
1176 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1177 }
1178
1179
1180 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1181 NULL, a new sequence is allocated. */
1182
1183 void
1184 gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1185 {
1186 gimple_stmt_iterator si;
1187 if (src == NULL)
1188 return;
1189
1190 si = gsi_last (*dst_p);
1191 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1192 }
1193
1194
1195 /* Helper function of empty_body_p. Return true if STMT is an empty
1196 statement. */
1197
1198 static bool
1199 empty_stmt_p (gimple stmt)
1200 {
1201 if (gimple_code (stmt) == GIMPLE_NOP)
1202 return true;
1203 if (gimple_code (stmt) == GIMPLE_BIND)
1204 return empty_body_p (gimple_bind_body (stmt));
1205 return false;
1206 }
1207
1208
1209 /* Return true if BODY contains nothing but empty statements. */
1210
1211 bool
1212 empty_body_p (gimple_seq body)
1213 {
1214 gimple_stmt_iterator i;
1215
1216 if (gimple_seq_empty_p (body))
1217 return true;
1218 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
1219 if (!empty_stmt_p (gsi_stmt (i))
1220 && !is_gimple_debug (gsi_stmt (i)))
1221 return false;
1222
1223 return true;
1224 }
1225
1226
1227 /* Perform a deep copy of sequence SRC and return the result. */
1228
1229 gimple_seq
1230 gimple_seq_copy (gimple_seq src)
1231 {
1232 gimple_stmt_iterator gsi;
1233 gimple_seq new_seq = NULL;
1234 gimple stmt;
1235
1236 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1237 {
1238 stmt = gimple_copy (gsi_stmt (gsi));
1239 gimple_seq_add_stmt (&new_seq, stmt);
1240 }
1241
1242 return new_seq;
1243 }
1244
1245
1246 /* Walk all the statements in the sequence *PSEQ calling walk_gimple_stmt
1247 on each one. WI is as in walk_gimple_stmt.
1248
1249 If walk_gimple_stmt returns non-NULL, the walk is stopped, and the
1250 value is stored in WI->CALLBACK_RESULT. Also, the statement that
1251 produced the value is returned if this statement has not been
1252 removed by a callback (wi->removed_stmt). If the statement has
1253 been removed, NULL is returned.
1254
1255 Otherwise, all the statements are walked and NULL returned. */
1256
1257 gimple
1258 walk_gimple_seq_mod (gimple_seq *pseq, walk_stmt_fn callback_stmt,
1259 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1260 {
1261 gimple_stmt_iterator gsi;
1262
1263 for (gsi = gsi_start (*pseq); !gsi_end_p (gsi); )
1264 {
1265 tree ret = walk_gimple_stmt (&gsi, callback_stmt, callback_op, wi);
1266 if (ret)
1267 {
1268 /* If CALLBACK_STMT or CALLBACK_OP return a value, WI must exist
1269 to hold it. */
1270 gcc_assert (wi);
1271 wi->callback_result = ret;
1272
1273 return wi->removed_stmt ? NULL : gsi_stmt (gsi);
1274 }
1275
1276 if (!wi->removed_stmt)
1277 gsi_next (&gsi);
1278 }
1279
1280 if (wi)
1281 wi->callback_result = NULL_TREE;
1282
1283 return NULL;
1284 }
1285
1286
1287 /* Like walk_gimple_seq_mod, but ensure that the head of SEQ isn't
1288 changed by the callbacks. */
1289
1290 gimple
1291 walk_gimple_seq (gimple_seq seq, walk_stmt_fn callback_stmt,
1292 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1293 {
1294 gimple_seq seq2 = seq;
1295 gimple ret = walk_gimple_seq_mod (&seq2, callback_stmt, callback_op, wi);
1296 gcc_assert (seq2 == seq);
1297 return ret;
1298 }
1299
1300
1301 /* Helper function for walk_gimple_stmt. Walk operands of a GIMPLE_ASM. */
1302
1303 static tree
1304 walk_gimple_asm (gimple stmt, walk_tree_fn callback_op,
1305 struct walk_stmt_info *wi)
1306 {
1307 tree ret, op;
1308 unsigned noutputs;
1309 const char **oconstraints;
1310 unsigned i, n;
1311 const char *constraint;
1312 bool allows_mem, allows_reg, is_inout;
1313
1314 noutputs = gimple_asm_noutputs (stmt);
1315 oconstraints = (const char **) alloca ((noutputs) * sizeof (const char *));
1316
1317 if (wi)
1318 wi->is_lhs = true;
1319
1320 for (i = 0; i < noutputs; i++)
1321 {
1322 op = gimple_asm_output_op (stmt, i);
1323 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1324 oconstraints[i] = constraint;
1325 parse_output_constraint (&constraint, i, 0, 0, &allows_mem, &allows_reg,
1326 &is_inout);
1327 if (wi)
1328 wi->val_only = (allows_reg || !allows_mem);
1329 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1330 if (ret)
1331 return ret;
1332 }
1333
1334 n = gimple_asm_ninputs (stmt);
1335 for (i = 0; i < n; i++)
1336 {
1337 op = gimple_asm_input_op (stmt, i);
1338 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1339 parse_input_constraint (&constraint, 0, 0, noutputs, 0,
1340 oconstraints, &allows_mem, &allows_reg);
1341 if (wi)
1342 {
1343 wi->val_only = (allows_reg || !allows_mem);
1344 /* Although input "m" is not really a LHS, we need a lvalue. */
1345 wi->is_lhs = !wi->val_only;
1346 }
1347 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1348 if (ret)
1349 return ret;
1350 }
1351
1352 if (wi)
1353 {
1354 wi->is_lhs = false;
1355 wi->val_only = true;
1356 }
1357
1358 n = gimple_asm_nlabels (stmt);
1359 for (i = 0; i < n; i++)
1360 {
1361 op = gimple_asm_label_op (stmt, i);
1362 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1363 if (ret)
1364 return ret;
1365 }
1366
1367 return NULL_TREE;
1368 }
1369
1370
1371 /* Helper function of WALK_GIMPLE_STMT. Walk every tree operand in
1372 STMT. CALLBACK_OP and WI are as in WALK_GIMPLE_STMT.
1373
1374 CALLBACK_OP is called on each operand of STMT via walk_tree.
1375 Additional parameters to walk_tree must be stored in WI. For each operand
1376 OP, walk_tree is called as:
1377
1378 walk_tree (&OP, CALLBACK_OP, WI, WI->PSET)
1379
1380 If CALLBACK_OP returns non-NULL for an operand, the remaining
1381 operands are not scanned.
1382
1383 The return value is that returned by the last call to walk_tree, or
1384 NULL_TREE if no CALLBACK_OP is specified. */
1385
1386 tree
1387 walk_gimple_op (gimple stmt, walk_tree_fn callback_op,
1388 struct walk_stmt_info *wi)
1389 {
1390 struct pointer_set_t *pset = (wi) ? wi->pset : NULL;
1391 unsigned i;
1392 tree ret = NULL_TREE;
1393
1394 switch (gimple_code (stmt))
1395 {
1396 case GIMPLE_ASSIGN:
1397 /* Walk the RHS operands. If the LHS is of a non-renamable type or
1398 is a register variable, we may use a COMPONENT_REF on the RHS. */
1399 if (wi)
1400 {
1401 tree lhs = gimple_assign_lhs (stmt);
1402 wi->val_only
1403 = (is_gimple_reg_type (TREE_TYPE (lhs)) && !is_gimple_reg (lhs))
1404 || gimple_assign_rhs_class (stmt) != GIMPLE_SINGLE_RHS;
1405 }
1406
1407 for (i = 1; i < gimple_num_ops (stmt); i++)
1408 {
1409 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi,
1410 pset);
1411 if (ret)
1412 return ret;
1413 }
1414
1415 /* Walk the LHS. If the RHS is appropriate for a memory, we
1416 may use a COMPONENT_REF on the LHS. */
1417 if (wi)
1418 {
1419 /* If the RHS is of a non-renamable type or is a register variable,
1420 we may use a COMPONENT_REF on the LHS. */
1421 tree rhs1 = gimple_assign_rhs1 (stmt);
1422 wi->val_only
1423 = (is_gimple_reg_type (TREE_TYPE (rhs1)) && !is_gimple_reg (rhs1))
1424 || gimple_assign_rhs_class (stmt) != GIMPLE_SINGLE_RHS;
1425 wi->is_lhs = true;
1426 }
1427
1428 ret = walk_tree (gimple_op_ptr (stmt, 0), callback_op, wi, pset);
1429 if (ret)
1430 return ret;
1431
1432 if (wi)
1433 {
1434 wi->val_only = true;
1435 wi->is_lhs = false;
1436 }
1437 break;
1438
1439 case GIMPLE_CALL:
1440 if (wi)
1441 {
1442 wi->is_lhs = false;
1443 wi->val_only = true;
1444 }
1445
1446 ret = walk_tree (gimple_call_chain_ptr (stmt), callback_op, wi, pset);
1447 if (ret)
1448 return ret;
1449
1450 ret = walk_tree (gimple_call_fn_ptr (stmt), callback_op, wi, pset);
1451 if (ret)
1452 return ret;
1453
1454 for (i = 0; i < gimple_call_num_args (stmt); i++)
1455 {
1456 if (wi)
1457 wi->val_only
1458 = is_gimple_reg_type (TREE_TYPE (gimple_call_arg (stmt, i)));
1459 ret = walk_tree (gimple_call_arg_ptr (stmt, i), callback_op, wi,
1460 pset);
1461 if (ret)
1462 return ret;
1463 }
1464
1465 if (gimple_call_lhs (stmt))
1466 {
1467 if (wi)
1468 {
1469 wi->is_lhs = true;
1470 wi->val_only
1471 = is_gimple_reg_type (TREE_TYPE (gimple_call_lhs (stmt)));
1472 }
1473
1474 ret = walk_tree (gimple_call_lhs_ptr (stmt), callback_op, wi, pset);
1475 if (ret)
1476 return ret;
1477 }
1478
1479 if (wi)
1480 {
1481 wi->is_lhs = false;
1482 wi->val_only = true;
1483 }
1484 break;
1485
1486 case GIMPLE_CATCH:
1487 ret = walk_tree (gimple_catch_types_ptr (stmt), callback_op, wi,
1488 pset);
1489 if (ret)
1490 return ret;
1491 break;
1492
1493 case GIMPLE_EH_FILTER:
1494 ret = walk_tree (gimple_eh_filter_types_ptr (stmt), callback_op, wi,
1495 pset);
1496 if (ret)
1497 return ret;
1498 break;
1499
1500 case GIMPLE_ASM:
1501 ret = walk_gimple_asm (stmt, callback_op, wi);
1502 if (ret)
1503 return ret;
1504 break;
1505
1506 case GIMPLE_OMP_CONTINUE:
1507 ret = walk_tree (gimple_omp_continue_control_def_ptr (stmt),
1508 callback_op, wi, pset);
1509 if (ret)
1510 return ret;
1511
1512 ret = walk_tree (gimple_omp_continue_control_use_ptr (stmt),
1513 callback_op, wi, pset);
1514 if (ret)
1515 return ret;
1516 break;
1517
1518 case GIMPLE_OMP_CRITICAL:
1519 ret = walk_tree (gimple_omp_critical_name_ptr (stmt), callback_op, wi,
1520 pset);
1521 if (ret)
1522 return ret;
1523 break;
1524
1525 case GIMPLE_OMP_FOR:
1526 ret = walk_tree (gimple_omp_for_clauses_ptr (stmt), callback_op, wi,
1527 pset);
1528 if (ret)
1529 return ret;
1530 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1531 {
1532 ret = walk_tree (gimple_omp_for_index_ptr (stmt, i), callback_op,
1533 wi, pset);
1534 if (ret)
1535 return ret;
1536 ret = walk_tree (gimple_omp_for_initial_ptr (stmt, i), callback_op,
1537 wi, pset);
1538 if (ret)
1539 return ret;
1540 ret = walk_tree (gimple_omp_for_final_ptr (stmt, i), callback_op,
1541 wi, pset);
1542 if (ret)
1543 return ret;
1544 ret = walk_tree (gimple_omp_for_incr_ptr (stmt, i), callback_op,
1545 wi, pset);
1546 }
1547 if (ret)
1548 return ret;
1549 break;
1550
1551 case GIMPLE_OMP_PARALLEL:
1552 ret = walk_tree (gimple_omp_parallel_clauses_ptr (stmt), callback_op,
1553 wi, pset);
1554 if (ret)
1555 return ret;
1556 ret = walk_tree (gimple_omp_parallel_child_fn_ptr (stmt), callback_op,
1557 wi, pset);
1558 if (ret)
1559 return ret;
1560 ret = walk_tree (gimple_omp_parallel_data_arg_ptr (stmt), callback_op,
1561 wi, pset);
1562 if (ret)
1563 return ret;
1564 break;
1565
1566 case GIMPLE_OMP_TASK:
1567 ret = walk_tree (gimple_omp_task_clauses_ptr (stmt), callback_op,
1568 wi, pset);
1569 if (ret)
1570 return ret;
1571 ret = walk_tree (gimple_omp_task_child_fn_ptr (stmt), callback_op,
1572 wi, pset);
1573 if (ret)
1574 return ret;
1575 ret = walk_tree (gimple_omp_task_data_arg_ptr (stmt), callback_op,
1576 wi, pset);
1577 if (ret)
1578 return ret;
1579 ret = walk_tree (gimple_omp_task_copy_fn_ptr (stmt), callback_op,
1580 wi, pset);
1581 if (ret)
1582 return ret;
1583 ret = walk_tree (gimple_omp_task_arg_size_ptr (stmt), callback_op,
1584 wi, pset);
1585 if (ret)
1586 return ret;
1587 ret = walk_tree (gimple_omp_task_arg_align_ptr (stmt), callback_op,
1588 wi, pset);
1589 if (ret)
1590 return ret;
1591 break;
1592
1593 case GIMPLE_OMP_SECTIONS:
1594 ret = walk_tree (gimple_omp_sections_clauses_ptr (stmt), callback_op,
1595 wi, pset);
1596 if (ret)
1597 return ret;
1598
1599 ret = walk_tree (gimple_omp_sections_control_ptr (stmt), callback_op,
1600 wi, pset);
1601 if (ret)
1602 return ret;
1603
1604 break;
1605
1606 case GIMPLE_OMP_SINGLE:
1607 ret = walk_tree (gimple_omp_single_clauses_ptr (stmt), callback_op, wi,
1608 pset);
1609 if (ret)
1610 return ret;
1611 break;
1612
1613 case GIMPLE_OMP_ATOMIC_LOAD:
1614 ret = walk_tree (gimple_omp_atomic_load_lhs_ptr (stmt), callback_op, wi,
1615 pset);
1616 if (ret)
1617 return ret;
1618
1619 ret = walk_tree (gimple_omp_atomic_load_rhs_ptr (stmt), callback_op, wi,
1620 pset);
1621 if (ret)
1622 return ret;
1623 break;
1624
1625 case GIMPLE_OMP_ATOMIC_STORE:
1626 ret = walk_tree (gimple_omp_atomic_store_val_ptr (stmt), callback_op,
1627 wi, pset);
1628 if (ret)
1629 return ret;
1630 break;
1631
1632 case GIMPLE_TRANSACTION:
1633 ret = walk_tree (gimple_transaction_label_ptr (stmt), callback_op,
1634 wi, pset);
1635 if (ret)
1636 return ret;
1637 break;
1638
1639 /* Tuples that do not have operands. */
1640 case GIMPLE_NOP:
1641 case GIMPLE_RESX:
1642 case GIMPLE_OMP_RETURN:
1643 case GIMPLE_PREDICT:
1644 break;
1645
1646 default:
1647 {
1648 enum gimple_statement_structure_enum gss;
1649 gss = gimple_statement_structure (stmt);
1650 if (gss == GSS_WITH_OPS || gss == GSS_WITH_MEM_OPS)
1651 for (i = 0; i < gimple_num_ops (stmt); i++)
1652 {
1653 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi, pset);
1654 if (ret)
1655 return ret;
1656 }
1657 }
1658 break;
1659 }
1660
1661 return NULL_TREE;
1662 }
1663
1664
1665 /* Walk the current statement in GSI (optionally using traversal state
1666 stored in WI). If WI is NULL, no state is kept during traversal.
1667 The callback CALLBACK_STMT is called. If CALLBACK_STMT indicates
1668 that it has handled all the operands of the statement, its return
1669 value is returned. Otherwise, the return value from CALLBACK_STMT
1670 is discarded and its operands are scanned.
1671
1672 If CALLBACK_STMT is NULL or it didn't handle the operands,
1673 CALLBACK_OP is called on each operand of the statement via
1674 walk_gimple_op. If walk_gimple_op returns non-NULL for any
1675 operand, the remaining operands are not scanned. In this case, the
1676 return value from CALLBACK_OP is returned.
1677
1678 In any other case, NULL_TREE is returned. */
1679
1680 tree
1681 walk_gimple_stmt (gimple_stmt_iterator *gsi, walk_stmt_fn callback_stmt,
1682 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1683 {
1684 gimple ret;
1685 tree tree_ret;
1686 gimple stmt = gsi_stmt (*gsi);
1687
1688 if (wi)
1689 {
1690 wi->gsi = *gsi;
1691 wi->removed_stmt = false;
1692
1693 if (wi->want_locations && gimple_has_location (stmt))
1694 input_location = gimple_location (stmt);
1695 }
1696
1697 ret = NULL;
1698
1699 /* Invoke the statement callback. Return if the callback handled
1700 all of STMT operands by itself. */
1701 if (callback_stmt)
1702 {
1703 bool handled_ops = false;
1704 tree_ret = callback_stmt (gsi, &handled_ops, wi);
1705 if (handled_ops)
1706 return tree_ret;
1707
1708 /* If CALLBACK_STMT did not handle operands, it should not have
1709 a value to return. */
1710 gcc_assert (tree_ret == NULL);
1711
1712 if (wi && wi->removed_stmt)
1713 return NULL;
1714
1715 /* Re-read stmt in case the callback changed it. */
1716 stmt = gsi_stmt (*gsi);
1717 }
1718
1719 /* If CALLBACK_OP is defined, invoke it on every operand of STMT. */
1720 if (callback_op)
1721 {
1722 tree_ret = walk_gimple_op (stmt, callback_op, wi);
1723 if (tree_ret)
1724 return tree_ret;
1725 }
1726
1727 /* If STMT can have statements inside (e.g. GIMPLE_BIND), walk them. */
1728 switch (gimple_code (stmt))
1729 {
1730 case GIMPLE_BIND:
1731 ret = walk_gimple_seq_mod (gimple_bind_body_ptr (stmt), callback_stmt,
1732 callback_op, wi);
1733 if (ret)
1734 return wi->callback_result;
1735 break;
1736
1737 case GIMPLE_CATCH:
1738 ret = walk_gimple_seq_mod (gimple_catch_handler_ptr (stmt), callback_stmt,
1739 callback_op, wi);
1740 if (ret)
1741 return wi->callback_result;
1742 break;
1743
1744 case GIMPLE_EH_FILTER:
1745 ret = walk_gimple_seq_mod (gimple_eh_filter_failure_ptr (stmt), callback_stmt,
1746 callback_op, wi);
1747 if (ret)
1748 return wi->callback_result;
1749 break;
1750
1751 case GIMPLE_EH_ELSE:
1752 ret = walk_gimple_seq_mod (gimple_eh_else_n_body_ptr (stmt),
1753 callback_stmt, callback_op, wi);
1754 if (ret)
1755 return wi->callback_result;
1756 ret = walk_gimple_seq_mod (gimple_eh_else_e_body_ptr (stmt),
1757 callback_stmt, callback_op, wi);
1758 if (ret)
1759 return wi->callback_result;
1760 break;
1761
1762 case GIMPLE_TRY:
1763 ret = walk_gimple_seq_mod (gimple_try_eval_ptr (stmt), callback_stmt, callback_op,
1764 wi);
1765 if (ret)
1766 return wi->callback_result;
1767
1768 ret = walk_gimple_seq_mod (gimple_try_cleanup_ptr (stmt), callback_stmt,
1769 callback_op, wi);
1770 if (ret)
1771 return wi->callback_result;
1772 break;
1773
1774 case GIMPLE_OMP_FOR:
1775 ret = walk_gimple_seq_mod (gimple_omp_for_pre_body_ptr (stmt), callback_stmt,
1776 callback_op, wi);
1777 if (ret)
1778 return wi->callback_result;
1779
1780 /* FALL THROUGH. */
1781 case GIMPLE_OMP_CRITICAL:
1782 case GIMPLE_OMP_MASTER:
1783 case GIMPLE_OMP_ORDERED:
1784 case GIMPLE_OMP_SECTION:
1785 case GIMPLE_OMP_PARALLEL:
1786 case GIMPLE_OMP_TASK:
1787 case GIMPLE_OMP_SECTIONS:
1788 case GIMPLE_OMP_SINGLE:
1789 ret = walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), callback_stmt,
1790 callback_op, wi);
1791 if (ret)
1792 return wi->callback_result;
1793 break;
1794
1795 case GIMPLE_WITH_CLEANUP_EXPR:
1796 ret = walk_gimple_seq_mod (gimple_wce_cleanup_ptr (stmt), callback_stmt,
1797 callback_op, wi);
1798 if (ret)
1799 return wi->callback_result;
1800 break;
1801
1802 case GIMPLE_TRANSACTION:
1803 ret = walk_gimple_seq_mod (gimple_transaction_body_ptr (stmt),
1804 callback_stmt, callback_op, wi);
1805 if (ret)
1806 return wi->callback_result;
1807 break;
1808
1809 default:
1810 gcc_assert (!gimple_has_substatements (stmt));
1811 break;
1812 }
1813
1814 return NULL;
1815 }
1816
1817
1818 /* Set sequence SEQ to be the GIMPLE body for function FN. */
1819
1820 void
1821 gimple_set_body (tree fndecl, gimple_seq seq)
1822 {
1823 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1824 if (fn == NULL)
1825 {
1826 /* If FNDECL still does not have a function structure associated
1827 with it, then it does not make sense for it to receive a
1828 GIMPLE body. */
1829 gcc_assert (seq == NULL);
1830 }
1831 else
1832 fn->gimple_body = seq;
1833 }
1834
1835
1836 /* Return the body of GIMPLE statements for function FN. After the
1837 CFG pass, the function body doesn't exist anymore because it has
1838 been split up into basic blocks. In this case, it returns
1839 NULL. */
1840
1841 gimple_seq
1842 gimple_body (tree fndecl)
1843 {
1844 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1845 return fn ? fn->gimple_body : NULL;
1846 }
1847
1848 /* Return true when FNDECL has Gimple body either in unlowered
1849 or CFG form. */
1850 bool
1851 gimple_has_body_p (tree fndecl)
1852 {
1853 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1854 return (gimple_body (fndecl) || (fn && fn->cfg));
1855 }
1856
1857 /* Return true if calls C1 and C2 are known to go to the same function. */
1858
1859 bool
1860 gimple_call_same_target_p (const_gimple c1, const_gimple c2)
1861 {
1862 if (gimple_call_internal_p (c1))
1863 return (gimple_call_internal_p (c2)
1864 && gimple_call_internal_fn (c1) == gimple_call_internal_fn (c2));
1865 else
1866 return (gimple_call_fn (c1) == gimple_call_fn (c2)
1867 || (gimple_call_fndecl (c1)
1868 && gimple_call_fndecl (c1) == gimple_call_fndecl (c2)));
1869 }
1870
1871 /* Detect flags from a GIMPLE_CALL. This is just like
1872 call_expr_flags, but for gimple tuples. */
1873
1874 int
1875 gimple_call_flags (const_gimple stmt)
1876 {
1877 int flags;
1878 tree decl = gimple_call_fndecl (stmt);
1879
1880 if (decl)
1881 flags = flags_from_decl_or_type (decl);
1882 else if (gimple_call_internal_p (stmt))
1883 flags = internal_fn_flags (gimple_call_internal_fn (stmt));
1884 else
1885 flags = flags_from_decl_or_type (gimple_call_fntype (stmt));
1886
1887 if (stmt->gsbase.subcode & GF_CALL_NOTHROW)
1888 flags |= ECF_NOTHROW;
1889
1890 return flags;
1891 }
1892
1893 /* Return the "fn spec" string for call STMT. */
1894
1895 static tree
1896 gimple_call_fnspec (const_gimple stmt)
1897 {
1898 tree type, attr;
1899
1900 type = gimple_call_fntype (stmt);
1901 if (!type)
1902 return NULL_TREE;
1903
1904 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1905 if (!attr)
1906 return NULL_TREE;
1907
1908 return TREE_VALUE (TREE_VALUE (attr));
1909 }
1910
1911 /* Detects argument flags for argument number ARG on call STMT. */
1912
1913 int
1914 gimple_call_arg_flags (const_gimple stmt, unsigned arg)
1915 {
1916 tree attr = gimple_call_fnspec (stmt);
1917
1918 if (!attr || 1 + arg >= (unsigned) TREE_STRING_LENGTH (attr))
1919 return 0;
1920
1921 switch (TREE_STRING_POINTER (attr)[1 + arg])
1922 {
1923 case 'x':
1924 case 'X':
1925 return EAF_UNUSED;
1926
1927 case 'R':
1928 return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE;
1929
1930 case 'r':
1931 return EAF_NOCLOBBER | EAF_NOESCAPE;
1932
1933 case 'W':
1934 return EAF_DIRECT | EAF_NOESCAPE;
1935
1936 case 'w':
1937 return EAF_NOESCAPE;
1938
1939 case '.':
1940 default:
1941 return 0;
1942 }
1943 }
1944
1945 /* Detects return flags for the call STMT. */
1946
1947 int
1948 gimple_call_return_flags (const_gimple stmt)
1949 {
1950 tree attr;
1951
1952 if (gimple_call_flags (stmt) & ECF_MALLOC)
1953 return ERF_NOALIAS;
1954
1955 attr = gimple_call_fnspec (stmt);
1956 if (!attr || TREE_STRING_LENGTH (attr) < 1)
1957 return 0;
1958
1959 switch (TREE_STRING_POINTER (attr)[0])
1960 {
1961 case '1':
1962 case '2':
1963 case '3':
1964 case '4':
1965 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
1966
1967 case 'm':
1968 return ERF_NOALIAS;
1969
1970 case '.':
1971 default:
1972 return 0;
1973 }
1974 }
1975
1976
1977 /* Return true if GS is a copy assignment. */
1978
1979 bool
1980 gimple_assign_copy_p (gimple gs)
1981 {
1982 return (gimple_assign_single_p (gs)
1983 && is_gimple_val (gimple_op (gs, 1)));
1984 }
1985
1986
1987 /* Return true if GS is a SSA_NAME copy assignment. */
1988
1989 bool
1990 gimple_assign_ssa_name_copy_p (gimple gs)
1991 {
1992 return (gimple_assign_single_p (gs)
1993 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1994 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1995 }
1996
1997
1998 /* Return true if GS is an assignment with a unary RHS, but the
1999 operator has no effect on the assigned value. The logic is adapted
2000 from STRIP_NOPS. This predicate is intended to be used in tuplifying
2001 instances in which STRIP_NOPS was previously applied to the RHS of
2002 an assignment.
2003
2004 NOTE: In the use cases that led to the creation of this function
2005 and of gimple_assign_single_p, it is typical to test for either
2006 condition and to proceed in the same manner. In each case, the
2007 assigned value is represented by the single RHS operand of the
2008 assignment. I suspect there may be cases where gimple_assign_copy_p,
2009 gimple_assign_single_p, or equivalent logic is used where a similar
2010 treatment of unary NOPs is appropriate. */
2011
2012 bool
2013 gimple_assign_unary_nop_p (gimple gs)
2014 {
2015 return (is_gimple_assign (gs)
2016 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
2017 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
2018 && gimple_assign_rhs1 (gs) != error_mark_node
2019 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
2020 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
2021 }
2022
2023 /* Set BB to be the basic block holding G. */
2024
2025 void
2026 gimple_set_bb (gimple stmt, basic_block bb)
2027 {
2028 stmt->gsbase.bb = bb;
2029
2030 /* If the statement is a label, add the label to block-to-labels map
2031 so that we can speed up edge creation for GIMPLE_GOTOs. */
2032 if (cfun->cfg && gimple_code (stmt) == GIMPLE_LABEL)
2033 {
2034 tree t;
2035 int uid;
2036
2037 t = gimple_label_label (stmt);
2038 uid = LABEL_DECL_UID (t);
2039 if (uid == -1)
2040 {
2041 unsigned old_len = vec_safe_length (label_to_block_map);
2042 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
2043 if (old_len <= (unsigned) uid)
2044 {
2045 unsigned new_len = 3 * uid / 2 + 1;
2046
2047 vec_safe_grow_cleared (label_to_block_map, new_len);
2048 }
2049 }
2050
2051 (*label_to_block_map)[uid] = bb;
2052 }
2053 }
2054
2055
2056 /* Modify the RHS of the assignment pointed-to by GSI using the
2057 operands in the expression tree EXPR.
2058
2059 NOTE: The statement pointed-to by GSI may be reallocated if it
2060 did not have enough operand slots.
2061
2062 This function is useful to convert an existing tree expression into
2063 the flat representation used for the RHS of a GIMPLE assignment.
2064 It will reallocate memory as needed to expand or shrink the number
2065 of operand slots needed to represent EXPR.
2066
2067 NOTE: If you find yourself building a tree and then calling this
2068 function, you are most certainly doing it the slow way. It is much
2069 better to build a new assignment or to use the function
2070 gimple_assign_set_rhs_with_ops, which does not require an
2071 expression tree to be built. */
2072
2073 void
2074 gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
2075 {
2076 enum tree_code subcode;
2077 tree op1, op2, op3;
2078
2079 extract_ops_from_tree_1 (expr, &subcode, &op1, &op2, &op3);
2080 gimple_assign_set_rhs_with_ops_1 (gsi, subcode, op1, op2, op3);
2081 }
2082
2083
2084 /* Set the RHS of assignment statement pointed-to by GSI to CODE with
2085 operands OP1, OP2 and OP3.
2086
2087 NOTE: The statement pointed-to by GSI may be reallocated if it
2088 did not have enough operand slots. */
2089
2090 void
2091 gimple_assign_set_rhs_with_ops_1 (gimple_stmt_iterator *gsi, enum tree_code code,
2092 tree op1, tree op2, tree op3)
2093 {
2094 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
2095 gimple stmt = gsi_stmt (*gsi);
2096
2097 /* If the new CODE needs more operands, allocate a new statement. */
2098 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
2099 {
2100 tree lhs = gimple_assign_lhs (stmt);
2101 gimple new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
2102 memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
2103 gimple_init_singleton (new_stmt);
2104 gsi_replace (gsi, new_stmt, true);
2105 stmt = new_stmt;
2106
2107 /* The LHS needs to be reset as this also changes the SSA name
2108 on the LHS. */
2109 gimple_assign_set_lhs (stmt, lhs);
2110 }
2111
2112 gimple_set_num_ops (stmt, new_rhs_ops + 1);
2113 gimple_set_subcode (stmt, code);
2114 gimple_assign_set_rhs1 (stmt, op1);
2115 if (new_rhs_ops > 1)
2116 gimple_assign_set_rhs2 (stmt, op2);
2117 if (new_rhs_ops > 2)
2118 gimple_assign_set_rhs3 (stmt, op3);
2119 }
2120
2121
2122 /* Return the LHS of a statement that performs an assignment,
2123 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
2124 for a call to a function that returns no value, or for a
2125 statement other than an assignment or a call. */
2126
2127 tree
2128 gimple_get_lhs (const_gimple stmt)
2129 {
2130 enum gimple_code code = gimple_code (stmt);
2131
2132 if (code == GIMPLE_ASSIGN)
2133 return gimple_assign_lhs (stmt);
2134 else if (code == GIMPLE_CALL)
2135 return gimple_call_lhs (stmt);
2136 else
2137 return NULL_TREE;
2138 }
2139
2140
2141 /* Set the LHS of a statement that performs an assignment,
2142 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2143
2144 void
2145 gimple_set_lhs (gimple stmt, tree lhs)
2146 {
2147 enum gimple_code code = gimple_code (stmt);
2148
2149 if (code == GIMPLE_ASSIGN)
2150 gimple_assign_set_lhs (stmt, lhs);
2151 else if (code == GIMPLE_CALL)
2152 gimple_call_set_lhs (stmt, lhs);
2153 else
2154 gcc_unreachable();
2155 }
2156
2157 /* Replace the LHS of STMT, an assignment, either a GIMPLE_ASSIGN or a
2158 GIMPLE_CALL, with NLHS, in preparation for modifying the RHS to an
2159 expression with a different value.
2160
2161 This will update any annotations (say debug bind stmts) referring
2162 to the original LHS, so that they use the RHS instead. This is
2163 done even if NLHS and LHS are the same, for it is understood that
2164 the RHS will be modified afterwards, and NLHS will not be assigned
2165 an equivalent value.
2166
2167 Adjusting any non-annotation uses of the LHS, if needed, is a
2168 responsibility of the caller.
2169
2170 The effect of this call should be pretty much the same as that of
2171 inserting a copy of STMT before STMT, and then removing the
2172 original stmt, at which time gsi_remove() would have update
2173 annotations, but using this function saves all the inserting,
2174 copying and removing. */
2175
2176 void
2177 gimple_replace_lhs (gimple stmt, tree nlhs)
2178 {
2179 if (MAY_HAVE_DEBUG_STMTS)
2180 {
2181 tree lhs = gimple_get_lhs (stmt);
2182
2183 gcc_assert (SSA_NAME_DEF_STMT (lhs) == stmt);
2184
2185 insert_debug_temp_for_var_def (NULL, lhs);
2186 }
2187
2188 gimple_set_lhs (stmt, nlhs);
2189 }
2190
2191 /* Return a deep copy of statement STMT. All the operands from STMT
2192 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
2193 and VUSE operand arrays are set to empty in the new copy. The new
2194 copy isn't part of any sequence. */
2195
2196 gimple
2197 gimple_copy (gimple stmt)
2198 {
2199 enum gimple_code code = gimple_code (stmt);
2200 unsigned num_ops = gimple_num_ops (stmt);
2201 gimple copy = gimple_alloc (code, num_ops);
2202 unsigned i;
2203
2204 /* Shallow copy all the fields from STMT. */
2205 memcpy (copy, stmt, gimple_size (code));
2206 gimple_init_singleton (copy);
2207
2208 /* If STMT has sub-statements, deep-copy them as well. */
2209 if (gimple_has_substatements (stmt))
2210 {
2211 gimple_seq new_seq;
2212 tree t;
2213
2214 switch (gimple_code (stmt))
2215 {
2216 case GIMPLE_BIND:
2217 new_seq = gimple_seq_copy (gimple_bind_body (stmt));
2218 gimple_bind_set_body (copy, new_seq);
2219 gimple_bind_set_vars (copy, unshare_expr (gimple_bind_vars (stmt)));
2220 gimple_bind_set_block (copy, gimple_bind_block (stmt));
2221 break;
2222
2223 case GIMPLE_CATCH:
2224 new_seq = gimple_seq_copy (gimple_catch_handler (stmt));
2225 gimple_catch_set_handler (copy, new_seq);
2226 t = unshare_expr (gimple_catch_types (stmt));
2227 gimple_catch_set_types (copy, t);
2228 break;
2229
2230 case GIMPLE_EH_FILTER:
2231 new_seq = gimple_seq_copy (gimple_eh_filter_failure (stmt));
2232 gimple_eh_filter_set_failure (copy, new_seq);
2233 t = unshare_expr (gimple_eh_filter_types (stmt));
2234 gimple_eh_filter_set_types (copy, t);
2235 break;
2236
2237 case GIMPLE_EH_ELSE:
2238 new_seq = gimple_seq_copy (gimple_eh_else_n_body (stmt));
2239 gimple_eh_else_set_n_body (copy, new_seq);
2240 new_seq = gimple_seq_copy (gimple_eh_else_e_body (stmt));
2241 gimple_eh_else_set_e_body (copy, new_seq);
2242 break;
2243
2244 case GIMPLE_TRY:
2245 new_seq = gimple_seq_copy (gimple_try_eval (stmt));
2246 gimple_try_set_eval (copy, new_seq);
2247 new_seq = gimple_seq_copy (gimple_try_cleanup (stmt));
2248 gimple_try_set_cleanup (copy, new_seq);
2249 break;
2250
2251 case GIMPLE_OMP_FOR:
2252 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
2253 gimple_omp_for_set_pre_body (copy, new_seq);
2254 t = unshare_expr (gimple_omp_for_clauses (stmt));
2255 gimple_omp_for_set_clauses (copy, t);
2256 copy->gimple_omp_for.iter
2257 = ggc_alloc_vec_gimple_omp_for_iter
2258 (gimple_omp_for_collapse (stmt));
2259 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
2260 {
2261 gimple_omp_for_set_cond (copy, i,
2262 gimple_omp_for_cond (stmt, i));
2263 gimple_omp_for_set_index (copy, i,
2264 gimple_omp_for_index (stmt, i));
2265 t = unshare_expr (gimple_omp_for_initial (stmt, i));
2266 gimple_omp_for_set_initial (copy, i, t);
2267 t = unshare_expr (gimple_omp_for_final (stmt, i));
2268 gimple_omp_for_set_final (copy, i, t);
2269 t = unshare_expr (gimple_omp_for_incr (stmt, i));
2270 gimple_omp_for_set_incr (copy, i, t);
2271 }
2272 goto copy_omp_body;
2273
2274 case GIMPLE_OMP_PARALLEL:
2275 t = unshare_expr (gimple_omp_parallel_clauses (stmt));
2276 gimple_omp_parallel_set_clauses (copy, t);
2277 t = unshare_expr (gimple_omp_parallel_child_fn (stmt));
2278 gimple_omp_parallel_set_child_fn (copy, t);
2279 t = unshare_expr (gimple_omp_parallel_data_arg (stmt));
2280 gimple_omp_parallel_set_data_arg (copy, t);
2281 goto copy_omp_body;
2282
2283 case GIMPLE_OMP_TASK:
2284 t = unshare_expr (gimple_omp_task_clauses (stmt));
2285 gimple_omp_task_set_clauses (copy, t);
2286 t = unshare_expr (gimple_omp_task_child_fn (stmt));
2287 gimple_omp_task_set_child_fn (copy, t);
2288 t = unshare_expr (gimple_omp_task_data_arg (stmt));
2289 gimple_omp_task_set_data_arg (copy, t);
2290 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
2291 gimple_omp_task_set_copy_fn (copy, t);
2292 t = unshare_expr (gimple_omp_task_arg_size (stmt));
2293 gimple_omp_task_set_arg_size (copy, t);
2294 t = unshare_expr (gimple_omp_task_arg_align (stmt));
2295 gimple_omp_task_set_arg_align (copy, t);
2296 goto copy_omp_body;
2297
2298 case GIMPLE_OMP_CRITICAL:
2299 t = unshare_expr (gimple_omp_critical_name (stmt));
2300 gimple_omp_critical_set_name (copy, t);
2301 goto copy_omp_body;
2302
2303 case GIMPLE_OMP_SECTIONS:
2304 t = unshare_expr (gimple_omp_sections_clauses (stmt));
2305 gimple_omp_sections_set_clauses (copy, t);
2306 t = unshare_expr (gimple_omp_sections_control (stmt));
2307 gimple_omp_sections_set_control (copy, t);
2308 /* FALLTHRU */
2309
2310 case GIMPLE_OMP_SINGLE:
2311 case GIMPLE_OMP_SECTION:
2312 case GIMPLE_OMP_MASTER:
2313 case GIMPLE_OMP_ORDERED:
2314 copy_omp_body:
2315 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
2316 gimple_omp_set_body (copy, new_seq);
2317 break;
2318
2319 case GIMPLE_TRANSACTION:
2320 new_seq = gimple_seq_copy (gimple_transaction_body (stmt));
2321 gimple_transaction_set_body (copy, new_seq);
2322 break;
2323
2324 case GIMPLE_WITH_CLEANUP_EXPR:
2325 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
2326 gimple_wce_set_cleanup (copy, new_seq);
2327 break;
2328
2329 default:
2330 gcc_unreachable ();
2331 }
2332 }
2333
2334 /* Make copy of operands. */
2335 for (i = 0; i < num_ops; i++)
2336 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
2337
2338 if (gimple_has_mem_ops (stmt))
2339 {
2340 gimple_set_vdef (copy, gimple_vdef (stmt));
2341 gimple_set_vuse (copy, gimple_vuse (stmt));
2342 }
2343
2344 /* Clear out SSA operand vectors on COPY. */
2345 if (gimple_has_ops (stmt))
2346 {
2347 gimple_set_use_ops (copy, NULL);
2348
2349 /* SSA operands need to be updated. */
2350 gimple_set_modified (copy, true);
2351 }
2352
2353 return copy;
2354 }
2355
2356
2357 /* Return true if statement S has side-effects. We consider a
2358 statement to have side effects if:
2359
2360 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
2361 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
2362
2363 bool
2364 gimple_has_side_effects (const_gimple s)
2365 {
2366 if (is_gimple_debug (s))
2367 return false;
2368
2369 /* We don't have to scan the arguments to check for
2370 volatile arguments, though, at present, we still
2371 do a scan to check for TREE_SIDE_EFFECTS. */
2372 if (gimple_has_volatile_ops (s))
2373 return true;
2374
2375 if (gimple_code (s) == GIMPLE_ASM
2376 && gimple_asm_volatile_p (s))
2377 return true;
2378
2379 if (is_gimple_call (s))
2380 {
2381 int flags = gimple_call_flags (s);
2382
2383 /* An infinite loop is considered a side effect. */
2384 if (!(flags & (ECF_CONST | ECF_PURE))
2385 || (flags & ECF_LOOPING_CONST_OR_PURE))
2386 return true;
2387
2388 return false;
2389 }
2390
2391 return false;
2392 }
2393
2394 /* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
2395 Return true if S can trap. When INCLUDE_MEM is true, check whether
2396 the memory operations could trap. When INCLUDE_STORES is true and
2397 S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked. */
2398
2399 bool
2400 gimple_could_trap_p_1 (gimple s, bool include_mem, bool include_stores)
2401 {
2402 tree t, div = NULL_TREE;
2403 enum tree_code op;
2404
2405 if (include_mem)
2406 {
2407 unsigned i, start = (is_gimple_assign (s) && !include_stores) ? 1 : 0;
2408
2409 for (i = start; i < gimple_num_ops (s); i++)
2410 if (tree_could_trap_p (gimple_op (s, i)))
2411 return true;
2412 }
2413
2414 switch (gimple_code (s))
2415 {
2416 case GIMPLE_ASM:
2417 return gimple_asm_volatile_p (s);
2418
2419 case GIMPLE_CALL:
2420 t = gimple_call_fndecl (s);
2421 /* Assume that calls to weak functions may trap. */
2422 if (!t || !DECL_P (t) || DECL_WEAK (t))
2423 return true;
2424 return false;
2425
2426 case GIMPLE_ASSIGN:
2427 t = gimple_expr_type (s);
2428 op = gimple_assign_rhs_code (s);
2429 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
2430 div = gimple_assign_rhs2 (s);
2431 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
2432 (INTEGRAL_TYPE_P (t)
2433 && TYPE_OVERFLOW_TRAPS (t)),
2434 div));
2435
2436 default:
2437 break;
2438 }
2439
2440 return false;
2441 }
2442
2443 /* Return true if statement S can trap. */
2444
2445 bool
2446 gimple_could_trap_p (gimple s)
2447 {
2448 return gimple_could_trap_p_1 (s, true, true);
2449 }
2450
2451 /* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
2452
2453 bool
2454 gimple_assign_rhs_could_trap_p (gimple s)
2455 {
2456 gcc_assert (is_gimple_assign (s));
2457 return gimple_could_trap_p_1 (s, true, false);
2458 }
2459
2460
2461 /* Print debugging information for gimple stmts generated. */
2462
2463 void
2464 dump_gimple_statistics (void)
2465 {
2466 int i, total_tuples = 0, total_bytes = 0;
2467
2468 if (! GATHER_STATISTICS)
2469 {
2470 fprintf (stderr, "No gimple statistics\n");
2471 return;
2472 }
2473
2474 fprintf (stderr, "\nGIMPLE statements\n");
2475 fprintf (stderr, "Kind Stmts Bytes\n");
2476 fprintf (stderr, "---------------------------------------\n");
2477 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
2478 {
2479 fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i],
2480 gimple_alloc_counts[i], gimple_alloc_sizes[i]);
2481 total_tuples += gimple_alloc_counts[i];
2482 total_bytes += gimple_alloc_sizes[i];
2483 }
2484 fprintf (stderr, "---------------------------------------\n");
2485 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes);
2486 fprintf (stderr, "---------------------------------------\n");
2487 }
2488
2489
2490 /* Return the number of operands needed on the RHS of a GIMPLE
2491 assignment for an expression with tree code CODE. */
2492
2493 unsigned
2494 get_gimple_rhs_num_ops (enum tree_code code)
2495 {
2496 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
2497
2498 if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
2499 return 1;
2500 else if (rhs_class == GIMPLE_BINARY_RHS)
2501 return 2;
2502 else if (rhs_class == GIMPLE_TERNARY_RHS)
2503 return 3;
2504 else
2505 gcc_unreachable ();
2506 }
2507
2508 #define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
2509 (unsigned char) \
2510 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
2511 : ((TYPE) == tcc_binary \
2512 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
2513 : ((TYPE) == tcc_constant \
2514 || (TYPE) == tcc_declaration \
2515 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
2516 : ((SYM) == TRUTH_AND_EXPR \
2517 || (SYM) == TRUTH_OR_EXPR \
2518 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
2519 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
2520 : ((SYM) == COND_EXPR \
2521 || (SYM) == WIDEN_MULT_PLUS_EXPR \
2522 || (SYM) == WIDEN_MULT_MINUS_EXPR \
2523 || (SYM) == DOT_PROD_EXPR \
2524 || (SYM) == REALIGN_LOAD_EXPR \
2525 || (SYM) == VEC_COND_EXPR \
2526 || (SYM) == VEC_PERM_EXPR \
2527 || (SYM) == FMA_EXPR) ? GIMPLE_TERNARY_RHS \
2528 : ((SYM) == CONSTRUCTOR \
2529 || (SYM) == OBJ_TYPE_REF \
2530 || (SYM) == ASSERT_EXPR \
2531 || (SYM) == ADDR_EXPR \
2532 || (SYM) == WITH_SIZE_EXPR \
2533 || (SYM) == SSA_NAME) ? GIMPLE_SINGLE_RHS \
2534 : GIMPLE_INVALID_RHS),
2535 #define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
2536
2537 const unsigned char gimple_rhs_class_table[] = {
2538 #include "all-tree.def"
2539 };
2540
2541 #undef DEFTREECODE
2542 #undef END_OF_BASE_TREE_CODES
2543
2544 /* For the definitive definition of GIMPLE, see doc/tree-ssa.texi. */
2545
2546 /* Validation of GIMPLE expressions. */
2547
2548 /* Return true if T is a valid LHS for a GIMPLE assignment expression. */
2549
2550 bool
2551 is_gimple_lvalue (tree t)
2552 {
2553 return (is_gimple_addressable (t)
2554 || TREE_CODE (t) == WITH_SIZE_EXPR
2555 /* These are complex lvalues, but don't have addresses, so they
2556 go here. */
2557 || TREE_CODE (t) == BIT_FIELD_REF);
2558 }
2559
2560 /* Return true if T is a GIMPLE condition. */
2561
2562 bool
2563 is_gimple_condexpr (tree t)
2564 {
2565 return (is_gimple_val (t) || (COMPARISON_CLASS_P (t)
2566 && !tree_could_throw_p (t)
2567 && is_gimple_val (TREE_OPERAND (t, 0))
2568 && is_gimple_val (TREE_OPERAND (t, 1))));
2569 }
2570
2571 /* Return true if T is something whose address can be taken. */
2572
2573 bool
2574 is_gimple_addressable (tree t)
2575 {
2576 return (is_gimple_id (t) || handled_component_p (t)
2577 || TREE_CODE (t) == MEM_REF);
2578 }
2579
2580 /* Return true if T is a valid gimple constant. */
2581
2582 bool
2583 is_gimple_constant (const_tree t)
2584 {
2585 switch (TREE_CODE (t))
2586 {
2587 case INTEGER_CST:
2588 case REAL_CST:
2589 case FIXED_CST:
2590 case STRING_CST:
2591 case COMPLEX_CST:
2592 case VECTOR_CST:
2593 return true;
2594
2595 default:
2596 return false;
2597 }
2598 }
2599
2600 /* Return true if T is a gimple address. */
2601
2602 bool
2603 is_gimple_address (const_tree t)
2604 {
2605 tree op;
2606
2607 if (TREE_CODE (t) != ADDR_EXPR)
2608 return false;
2609
2610 op = TREE_OPERAND (t, 0);
2611 while (handled_component_p (op))
2612 {
2613 if ((TREE_CODE (op) == ARRAY_REF
2614 || TREE_CODE (op) == ARRAY_RANGE_REF)
2615 && !is_gimple_val (TREE_OPERAND (op, 1)))
2616 return false;
2617
2618 op = TREE_OPERAND (op, 0);
2619 }
2620
2621 if (CONSTANT_CLASS_P (op) || TREE_CODE (op) == MEM_REF)
2622 return true;
2623
2624 switch (TREE_CODE (op))
2625 {
2626 case PARM_DECL:
2627 case RESULT_DECL:
2628 case LABEL_DECL:
2629 case FUNCTION_DECL:
2630 case VAR_DECL:
2631 case CONST_DECL:
2632 return true;
2633
2634 default:
2635 return false;
2636 }
2637 }
2638
2639 /* Return true if T is a gimple invariant address. */
2640
2641 bool
2642 is_gimple_invariant_address (const_tree t)
2643 {
2644 const_tree op;
2645
2646 if (TREE_CODE (t) != ADDR_EXPR)
2647 return false;
2648
2649 op = strip_invariant_refs (TREE_OPERAND (t, 0));
2650 if (!op)
2651 return false;
2652
2653 if (TREE_CODE (op) == MEM_REF)
2654 {
2655 const_tree op0 = TREE_OPERAND (op, 0);
2656 return (TREE_CODE (op0) == ADDR_EXPR
2657 && (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))
2658 || decl_address_invariant_p (TREE_OPERAND (op0, 0))));
2659 }
2660
2661 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
2662 }
2663
2664 /* Return true if T is a gimple invariant address at IPA level
2665 (so addresses of variables on stack are not allowed). */
2666
2667 bool
2668 is_gimple_ip_invariant_address (const_tree t)
2669 {
2670 const_tree op;
2671
2672 if (TREE_CODE (t) != ADDR_EXPR)
2673 return false;
2674
2675 op = strip_invariant_refs (TREE_OPERAND (t, 0));
2676 if (!op)
2677 return false;
2678
2679 if (TREE_CODE (op) == MEM_REF)
2680 {
2681 const_tree op0 = TREE_OPERAND (op, 0);
2682 return (TREE_CODE (op0) == ADDR_EXPR
2683 && (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))
2684 || decl_address_ip_invariant_p (TREE_OPERAND (op0, 0))));
2685 }
2686
2687 return CONSTANT_CLASS_P (op) || decl_address_ip_invariant_p (op);
2688 }
2689
2690 /* Return true if T is a GIMPLE minimal invariant. It's a restricted
2691 form of function invariant. */
2692
2693 bool
2694 is_gimple_min_invariant (const_tree t)
2695 {
2696 if (TREE_CODE (t) == ADDR_EXPR)
2697 return is_gimple_invariant_address (t);
2698
2699 return is_gimple_constant (t);
2700 }
2701
2702 /* Return true if T is a GIMPLE interprocedural invariant. It's a restricted
2703 form of gimple minimal invariant. */
2704
2705 bool
2706 is_gimple_ip_invariant (const_tree t)
2707 {
2708 if (TREE_CODE (t) == ADDR_EXPR)
2709 return is_gimple_ip_invariant_address (t);
2710
2711 return is_gimple_constant (t);
2712 }
2713
2714 /* Return true if T is a variable. */
2715
2716 bool
2717 is_gimple_variable (tree t)
2718 {
2719 return (TREE_CODE (t) == VAR_DECL
2720 || TREE_CODE (t) == PARM_DECL
2721 || TREE_CODE (t) == RESULT_DECL
2722 || TREE_CODE (t) == SSA_NAME);
2723 }
2724
2725 /* Return true if T is a GIMPLE identifier (something with an address). */
2726
2727 bool
2728 is_gimple_id (tree t)
2729 {
2730 return (is_gimple_variable (t)
2731 || TREE_CODE (t) == FUNCTION_DECL
2732 || TREE_CODE (t) == LABEL_DECL
2733 || TREE_CODE (t) == CONST_DECL
2734 /* Allow string constants, since they are addressable. */
2735 || TREE_CODE (t) == STRING_CST);
2736 }
2737
2738 /* Return true if T is a non-aggregate register variable. */
2739
2740 bool
2741 is_gimple_reg (tree t)
2742 {
2743 if (virtual_operand_p (t))
2744 return false;
2745
2746 if (TREE_CODE (t) == SSA_NAME)
2747 return true;
2748
2749 if (!is_gimple_variable (t))
2750 return false;
2751
2752 if (!is_gimple_reg_type (TREE_TYPE (t)))
2753 return false;
2754
2755 /* A volatile decl is not acceptable because we can't reuse it as
2756 needed. We need to copy it into a temp first. */
2757 if (TREE_THIS_VOLATILE (t))
2758 return false;
2759
2760 /* We define "registers" as things that can be renamed as needed,
2761 which with our infrastructure does not apply to memory. */
2762 if (needs_to_live_in_memory (t))
2763 return false;
2764
2765 /* Hard register variables are an interesting case. For those that
2766 are call-clobbered, we don't know where all the calls are, since
2767 we don't (want to) take into account which operations will turn
2768 into libcalls at the rtl level. For those that are call-saved,
2769 we don't currently model the fact that calls may in fact change
2770 global hard registers, nor do we examine ASM_CLOBBERS at the tree
2771 level, and so miss variable changes that might imply. All around,
2772 it seems safest to not do too much optimization with these at the
2773 tree level at all. We'll have to rely on the rtl optimizers to
2774 clean this up, as there we've got all the appropriate bits exposed. */
2775 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
2776 return false;
2777
2778 /* Complex and vector values must have been put into SSA-like form.
2779 That is, no assignments to the individual components. */
2780 if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE
2781 || TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2782 return DECL_GIMPLE_REG_P (t);
2783
2784 return true;
2785 }
2786
2787
2788 /* Return true if T is a GIMPLE rvalue, i.e. an identifier or a constant. */
2789
2790 bool
2791 is_gimple_val (tree t)
2792 {
2793 /* Make loads from volatiles and memory vars explicit. */
2794 if (is_gimple_variable (t)
2795 && is_gimple_reg_type (TREE_TYPE (t))
2796 && !is_gimple_reg (t))
2797 return false;
2798
2799 return (is_gimple_variable (t) || is_gimple_min_invariant (t));
2800 }
2801
2802 /* Similarly, but accept hard registers as inputs to asm statements. */
2803
2804 bool
2805 is_gimple_asm_val (tree t)
2806 {
2807 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
2808 return true;
2809
2810 return is_gimple_val (t);
2811 }
2812
2813 /* Return true if T is a GIMPLE minimal lvalue. */
2814
2815 bool
2816 is_gimple_min_lval (tree t)
2817 {
2818 if (!(t = CONST_CAST_TREE (strip_invariant_refs (t))))
2819 return false;
2820 return (is_gimple_id (t) || TREE_CODE (t) == MEM_REF);
2821 }
2822
2823 /* Return true if T is a valid function operand of a CALL_EXPR. */
2824
2825 bool
2826 is_gimple_call_addr (tree t)
2827 {
2828 return (TREE_CODE (t) == OBJ_TYPE_REF || is_gimple_val (t));
2829 }
2830
2831 /* Return true if T is a valid address operand of a MEM_REF. */
2832
2833 bool
2834 is_gimple_mem_ref_addr (tree t)
2835 {
2836 return (is_gimple_reg (t)
2837 || TREE_CODE (t) == INTEGER_CST
2838 || (TREE_CODE (t) == ADDR_EXPR
2839 && (CONSTANT_CLASS_P (TREE_OPERAND (t, 0))
2840 || decl_address_invariant_p (TREE_OPERAND (t, 0)))));
2841 }
2842
2843
2844 /* Given a memory reference expression T, return its base address.
2845 The base address of a memory reference expression is the main
2846 object being referenced. For instance, the base address for
2847 'array[i].fld[j]' is 'array'. You can think of this as stripping
2848 away the offset part from a memory address.
2849
2850 This function calls handled_component_p to strip away all the inner
2851 parts of the memory reference until it reaches the base object. */
2852
2853 tree
2854 get_base_address (tree t)
2855 {
2856 while (handled_component_p (t))
2857 t = TREE_OPERAND (t, 0);
2858
2859 if ((TREE_CODE (t) == MEM_REF
2860 || TREE_CODE (t) == TARGET_MEM_REF)
2861 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
2862 t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
2863
2864 /* ??? Either the alias oracle or all callers need to properly deal
2865 with WITH_SIZE_EXPRs before we can look through those. */
2866 if (TREE_CODE (t) == WITH_SIZE_EXPR)
2867 return NULL_TREE;
2868
2869 return t;
2870 }
2871
2872 void
2873 recalculate_side_effects (tree t)
2874 {
2875 enum tree_code code = TREE_CODE (t);
2876 int len = TREE_OPERAND_LENGTH (t);
2877 int i;
2878
2879 switch (TREE_CODE_CLASS (code))
2880 {
2881 case tcc_expression:
2882 switch (code)
2883 {
2884 case INIT_EXPR:
2885 case MODIFY_EXPR:
2886 case VA_ARG_EXPR:
2887 case PREDECREMENT_EXPR:
2888 case PREINCREMENT_EXPR:
2889 case POSTDECREMENT_EXPR:
2890 case POSTINCREMENT_EXPR:
2891 /* All of these have side-effects, no matter what their
2892 operands are. */
2893 return;
2894
2895 default:
2896 break;
2897 }
2898 /* Fall through. */
2899
2900 case tcc_comparison: /* a comparison expression */
2901 case tcc_unary: /* a unary arithmetic expression */
2902 case tcc_binary: /* a binary arithmetic expression */
2903 case tcc_reference: /* a reference */
2904 case tcc_vl_exp: /* a function call */
2905 TREE_SIDE_EFFECTS (t) = TREE_THIS_VOLATILE (t);
2906 for (i = 0; i < len; ++i)
2907 {
2908 tree op = TREE_OPERAND (t, i);
2909 if (op && TREE_SIDE_EFFECTS (op))
2910 TREE_SIDE_EFFECTS (t) = 1;
2911 }
2912 break;
2913
2914 case tcc_constant:
2915 /* No side-effects. */
2916 return;
2917
2918 default:
2919 gcc_unreachable ();
2920 }
2921 }
2922
2923 /* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
2924 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
2925 we failed to create one. */
2926
2927 tree
2928 canonicalize_cond_expr_cond (tree t)
2929 {
2930 /* Strip conversions around boolean operations. */
2931 if (CONVERT_EXPR_P (t)
2932 && (truth_value_p (TREE_CODE (TREE_OPERAND (t, 0)))
2933 || TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0)))
2934 == BOOLEAN_TYPE))
2935 t = TREE_OPERAND (t, 0);
2936
2937 /* For !x use x == 0. */
2938 if (TREE_CODE (t) == TRUTH_NOT_EXPR)
2939 {
2940 tree top0 = TREE_OPERAND (t, 0);
2941 t = build2 (EQ_EXPR, TREE_TYPE (t),
2942 top0, build_int_cst (TREE_TYPE (top0), 0));
2943 }
2944 /* For cmp ? 1 : 0 use cmp. */
2945 else if (TREE_CODE (t) == COND_EXPR
2946 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
2947 && integer_onep (TREE_OPERAND (t, 1))
2948 && integer_zerop (TREE_OPERAND (t, 2)))
2949 {
2950 tree top0 = TREE_OPERAND (t, 0);
2951 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
2952 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
2953 }
2954 /* For x ^ y use x != y. */
2955 else if (TREE_CODE (t) == BIT_XOR_EXPR)
2956 t = build2 (NE_EXPR, TREE_TYPE (t),
2957 TREE_OPERAND (t, 0), TREE_OPERAND (t, 1));
2958
2959 if (is_gimple_condexpr (t))
2960 return t;
2961
2962 return NULL_TREE;
2963 }
2964
2965 /* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
2966 the positions marked by the set ARGS_TO_SKIP. */
2967
2968 gimple
2969 gimple_call_copy_skip_args (gimple stmt, bitmap args_to_skip)
2970 {
2971 int i;
2972 int nargs = gimple_call_num_args (stmt);
2973 vec<tree> vargs;
2974 vargs.create (nargs);
2975 gimple new_stmt;
2976
2977 for (i = 0; i < nargs; i++)
2978 if (!bitmap_bit_p (args_to_skip, i))
2979 vargs.quick_push (gimple_call_arg (stmt, i));
2980
2981 if (gimple_call_internal_p (stmt))
2982 new_stmt = gimple_build_call_internal_vec (gimple_call_internal_fn (stmt),
2983 vargs);
2984 else
2985 new_stmt = gimple_build_call_vec (gimple_call_fn (stmt), vargs);
2986 vargs.release ();
2987 if (gimple_call_lhs (stmt))
2988 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
2989
2990 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
2991 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
2992
2993 if (gimple_has_location (stmt))
2994 gimple_set_location (new_stmt, gimple_location (stmt));
2995 gimple_call_copy_flags (new_stmt, stmt);
2996 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
2997
2998 gimple_set_modified (new_stmt, true);
2999
3000 return new_stmt;
3001 }
3002
3003
3004
3005 /* Return true if the field decls F1 and F2 are at the same offset.
3006
3007 This is intended to be used on GIMPLE types only. */
3008
3009 bool
3010 gimple_compare_field_offset (tree f1, tree f2)
3011 {
3012 if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
3013 {
3014 tree offset1 = DECL_FIELD_OFFSET (f1);
3015 tree offset2 = DECL_FIELD_OFFSET (f2);
3016 return ((offset1 == offset2
3017 /* Once gimplification is done, self-referential offsets are
3018 instantiated as operand #2 of the COMPONENT_REF built for
3019 each access and reset. Therefore, they are not relevant
3020 anymore and fields are interchangeable provided that they
3021 represent the same access. */
3022 || (TREE_CODE (offset1) == PLACEHOLDER_EXPR
3023 && TREE_CODE (offset2) == PLACEHOLDER_EXPR
3024 && (DECL_SIZE (f1) == DECL_SIZE (f2)
3025 || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
3026 && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
3027 || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0))
3028 && DECL_ALIGN (f1) == DECL_ALIGN (f2))
3029 || operand_equal_p (offset1, offset2, 0))
3030 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
3031 DECL_FIELD_BIT_OFFSET (f2)));
3032 }
3033
3034 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
3035 should be, so handle differing ones specially by decomposing
3036 the offset into a byte and bit offset manually. */
3037 if (host_integerp (DECL_FIELD_OFFSET (f1), 0)
3038 && host_integerp (DECL_FIELD_OFFSET (f2), 0))
3039 {
3040 unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
3041 unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
3042 bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
3043 byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
3044 + bit_offset1 / BITS_PER_UNIT);
3045 bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
3046 byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
3047 + bit_offset2 / BITS_PER_UNIT);
3048 if (byte_offset1 != byte_offset2)
3049 return false;
3050 return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
3051 }
3052
3053 return false;
3054 }
3055
3056 /* Returning a hash value for gimple type TYPE combined with VAL.
3057
3058 The hash value returned is equal for types considered compatible
3059 by gimple_canonical_types_compatible_p. */
3060
3061 static hashval_t
3062 iterative_hash_canonical_type (tree type, hashval_t val)
3063 {
3064 hashval_t v;
3065 void **slot;
3066 struct tree_int_map *mp, m;
3067
3068 m.base.from = type;
3069 if ((slot = htab_find_slot (canonical_type_hash_cache, &m, INSERT))
3070 && *slot)
3071 return iterative_hash_hashval_t (((struct tree_int_map *) *slot)->to, val);
3072
3073 /* Combine a few common features of types so that types are grouped into
3074 smaller sets; when searching for existing matching types to merge,
3075 only existing types having the same features as the new type will be
3076 checked. */
3077 v = iterative_hash_hashval_t (TREE_CODE (type), 0);
3078 v = iterative_hash_hashval_t (TREE_ADDRESSABLE (type), v);
3079 v = iterative_hash_hashval_t (TYPE_ALIGN (type), v);
3080 v = iterative_hash_hashval_t (TYPE_MODE (type), v);
3081
3082 /* Incorporate common features of numerical types. */
3083 if (INTEGRAL_TYPE_P (type)
3084 || SCALAR_FLOAT_TYPE_P (type)
3085 || FIXED_POINT_TYPE_P (type)
3086 || TREE_CODE (type) == OFFSET_TYPE
3087 || POINTER_TYPE_P (type))
3088 {
3089 v = iterative_hash_hashval_t (TYPE_PRECISION (type), v);
3090 v = iterative_hash_hashval_t (TYPE_UNSIGNED (type), v);
3091 }
3092
3093 if (VECTOR_TYPE_P (type))
3094 {
3095 v = iterative_hash_hashval_t (TYPE_VECTOR_SUBPARTS (type), v);
3096 v = iterative_hash_hashval_t (TYPE_UNSIGNED (type), v);
3097 }
3098
3099 if (TREE_CODE (type) == COMPLEX_TYPE)
3100 v = iterative_hash_hashval_t (TYPE_UNSIGNED (type), v);
3101
3102 /* For pointer and reference types, fold in information about the type
3103 pointed to but do not recurse to the pointed-to type. */
3104 if (POINTER_TYPE_P (type))
3105 {
3106 v = iterative_hash_hashval_t (TYPE_REF_CAN_ALIAS_ALL (type), v);
3107 v = iterative_hash_hashval_t (TYPE_ADDR_SPACE (TREE_TYPE (type)), v);
3108 v = iterative_hash_hashval_t (TYPE_RESTRICT (type), v);
3109 v = iterative_hash_hashval_t (TREE_CODE (TREE_TYPE (type)), v);
3110 }
3111
3112 /* For integer types hash only the string flag. */
3113 if (TREE_CODE (type) == INTEGER_TYPE)
3114 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
3115
3116 /* For array types hash the domain bounds and the string flag. */
3117 if (TREE_CODE (type) == ARRAY_TYPE && TYPE_DOMAIN (type))
3118 {
3119 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
3120 /* OMP lowering can introduce error_mark_node in place of
3121 random local decls in types. */
3122 if (TYPE_MIN_VALUE (TYPE_DOMAIN (type)) != error_mark_node)
3123 v = iterative_hash_expr (TYPE_MIN_VALUE (TYPE_DOMAIN (type)), v);
3124 if (TYPE_MAX_VALUE (TYPE_DOMAIN (type)) != error_mark_node)
3125 v = iterative_hash_expr (TYPE_MAX_VALUE (TYPE_DOMAIN (type)), v);
3126 }
3127
3128 /* Recurse for aggregates with a single element type. */
3129 if (TREE_CODE (type) == ARRAY_TYPE
3130 || TREE_CODE (type) == COMPLEX_TYPE
3131 || TREE_CODE (type) == VECTOR_TYPE)
3132 v = iterative_hash_canonical_type (TREE_TYPE (type), v);
3133
3134 /* Incorporate function return and argument types. */
3135 if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE)
3136 {
3137 unsigned na;
3138 tree p;
3139
3140 /* For method types also incorporate their parent class. */
3141 if (TREE_CODE (type) == METHOD_TYPE)
3142 v = iterative_hash_canonical_type (TYPE_METHOD_BASETYPE (type), v);
3143
3144 v = iterative_hash_canonical_type (TREE_TYPE (type), v);
3145
3146 for (p = TYPE_ARG_TYPES (type), na = 0; p; p = TREE_CHAIN (p))
3147 {
3148 v = iterative_hash_canonical_type (TREE_VALUE (p), v);
3149 na++;
3150 }
3151
3152 v = iterative_hash_hashval_t (na, v);
3153 }
3154
3155 if (RECORD_OR_UNION_TYPE_P (type))
3156 {
3157 unsigned nf;
3158 tree f;
3159
3160 for (f = TYPE_FIELDS (type), nf = 0; f; f = TREE_CHAIN (f))
3161 if (TREE_CODE (f) == FIELD_DECL)
3162 {
3163 v = iterative_hash_canonical_type (TREE_TYPE (f), v);
3164 nf++;
3165 }
3166
3167 v = iterative_hash_hashval_t (nf, v);
3168 }
3169
3170 /* Cache the just computed hash value. */
3171 mp = ggc_alloc_cleared_tree_int_map ();
3172 mp->base.from = type;
3173 mp->to = v;
3174 *slot = (void *) mp;
3175
3176 return iterative_hash_hashval_t (v, val);
3177 }
3178
3179 static hashval_t
3180 gimple_canonical_type_hash (const void *p)
3181 {
3182 if (canonical_type_hash_cache == NULL)
3183 canonical_type_hash_cache = htab_create_ggc (512, tree_int_map_hash,
3184 tree_int_map_eq, NULL);
3185
3186 return iterative_hash_canonical_type (CONST_CAST_TREE ((const_tree) p), 0);
3187 }
3188
3189
3190
3191
3192 /* The TYPE_CANONICAL merging machinery. It should closely resemble
3193 the middle-end types_compatible_p function. It needs to avoid
3194 claiming types are different for types that should be treated
3195 the same with respect to TBAA. Canonical types are also used
3196 for IL consistency checks via the useless_type_conversion_p
3197 predicate which does not handle all type kinds itself but falls
3198 back to pointer-comparison of TYPE_CANONICAL for aggregates
3199 for example. */
3200
3201 /* Return true iff T1 and T2 are structurally identical for what
3202 TBAA is concerned. */
3203
3204 static bool
3205 gimple_canonical_types_compatible_p (tree t1, tree t2)
3206 {
3207 /* Before starting to set up the SCC machinery handle simple cases. */
3208
3209 /* Check first for the obvious case of pointer identity. */
3210 if (t1 == t2)
3211 return true;
3212
3213 /* Check that we have two types to compare. */
3214 if (t1 == NULL_TREE || t2 == NULL_TREE)
3215 return false;
3216
3217 /* If the types have been previously registered and found equal
3218 they still are. */
3219 if (TYPE_CANONICAL (t1)
3220 && TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2))
3221 return true;
3222
3223 /* Can't be the same type if the types don't have the same code. */
3224 if (TREE_CODE (t1) != TREE_CODE (t2))
3225 return false;
3226
3227 if (TREE_ADDRESSABLE (t1) != TREE_ADDRESSABLE (t2))
3228 return false;
3229
3230 /* Qualifiers do not matter for canonical type comparison purposes. */
3231
3232 /* Void types and nullptr types are always the same. */
3233 if (TREE_CODE (t1) == VOID_TYPE
3234 || TREE_CODE (t1) == NULLPTR_TYPE)
3235 return true;
3236
3237 /* Can't be the same type if they have different alignment, or mode. */
3238 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3239 || TYPE_MODE (t1) != TYPE_MODE (t2))
3240 return false;
3241
3242 /* Non-aggregate types can be handled cheaply. */
3243 if (INTEGRAL_TYPE_P (t1)
3244 || SCALAR_FLOAT_TYPE_P (t1)
3245 || FIXED_POINT_TYPE_P (t1)
3246 || TREE_CODE (t1) == VECTOR_TYPE
3247 || TREE_CODE (t1) == COMPLEX_TYPE
3248 || TREE_CODE (t1) == OFFSET_TYPE
3249 || POINTER_TYPE_P (t1))
3250 {
3251 /* Can't be the same type if they have different sign or precision. */
3252 if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
3253 || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
3254 return false;
3255
3256 if (TREE_CODE (t1) == INTEGER_TYPE
3257 && TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2))
3258 return false;
3259
3260 /* For canonical type comparisons we do not want to build SCCs
3261 so we cannot compare pointed-to types. But we can, for now,
3262 require the same pointed-to type kind and match what
3263 useless_type_conversion_p would do. */
3264 if (POINTER_TYPE_P (t1))
3265 {
3266 /* If the two pointers have different ref-all attributes,
3267 they can't be the same type. */
3268 if (TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
3269 return false;
3270
3271 if (TYPE_ADDR_SPACE (TREE_TYPE (t1))
3272 != TYPE_ADDR_SPACE (TREE_TYPE (t2)))
3273 return false;
3274
3275 if (TYPE_RESTRICT (t1) != TYPE_RESTRICT (t2))
3276 return false;
3277
3278 if (TREE_CODE (TREE_TYPE (t1)) != TREE_CODE (TREE_TYPE (t2)))
3279 return false;
3280 }
3281
3282 /* Tail-recurse to components. */
3283 if (TREE_CODE (t1) == VECTOR_TYPE
3284 || TREE_CODE (t1) == COMPLEX_TYPE)
3285 return gimple_canonical_types_compatible_p (TREE_TYPE (t1),
3286 TREE_TYPE (t2));
3287
3288 return true;
3289 }
3290
3291 /* Do type-specific comparisons. */
3292 switch (TREE_CODE (t1))
3293 {
3294 case ARRAY_TYPE:
3295 /* Array types are the same if the element types are the same and
3296 the number of elements are the same. */
3297 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2))
3298 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
3299 || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
3300 return false;
3301 else
3302 {
3303 tree i1 = TYPE_DOMAIN (t1);
3304 tree i2 = TYPE_DOMAIN (t2);
3305
3306 /* For an incomplete external array, the type domain can be
3307 NULL_TREE. Check this condition also. */
3308 if (i1 == NULL_TREE && i2 == NULL_TREE)
3309 return true;
3310 else if (i1 == NULL_TREE || i2 == NULL_TREE)
3311 return false;
3312 else
3313 {
3314 tree min1 = TYPE_MIN_VALUE (i1);
3315 tree min2 = TYPE_MIN_VALUE (i2);
3316 tree max1 = TYPE_MAX_VALUE (i1);
3317 tree max2 = TYPE_MAX_VALUE (i2);
3318
3319 /* The minimum/maximum values have to be the same. */
3320 if ((min1 == min2
3321 || (min1 && min2
3322 && ((TREE_CODE (min1) == PLACEHOLDER_EXPR
3323 && TREE_CODE (min2) == PLACEHOLDER_EXPR)
3324 || operand_equal_p (min1, min2, 0))))
3325 && (max1 == max2
3326 || (max1 && max2
3327 && ((TREE_CODE (max1) == PLACEHOLDER_EXPR
3328 && TREE_CODE (max2) == PLACEHOLDER_EXPR)
3329 || operand_equal_p (max1, max2, 0)))))
3330 return true;
3331 else
3332 return false;
3333 }
3334 }
3335
3336 case METHOD_TYPE:
3337 case FUNCTION_TYPE:
3338 /* Function types are the same if the return type and arguments types
3339 are the same. */
3340 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2)))
3341 return false;
3342
3343 if (!comp_type_attributes (t1, t2))
3344 return false;
3345
3346 if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
3347 return true;
3348 else
3349 {
3350 tree parms1, parms2;
3351
3352 for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
3353 parms1 && parms2;
3354 parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
3355 {
3356 if (!gimple_canonical_types_compatible_p
3357 (TREE_VALUE (parms1), TREE_VALUE (parms2)))
3358 return false;
3359 }
3360
3361 if (parms1 || parms2)
3362 return false;
3363
3364 return true;
3365 }
3366
3367 case RECORD_TYPE:
3368 case UNION_TYPE:
3369 case QUAL_UNION_TYPE:
3370 {
3371 tree f1, f2;
3372
3373 /* For aggregate types, all the fields must be the same. */
3374 for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
3375 f1 || f2;
3376 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
3377 {
3378 /* Skip non-fields. */
3379 while (f1 && TREE_CODE (f1) != FIELD_DECL)
3380 f1 = TREE_CHAIN (f1);
3381 while (f2 && TREE_CODE (f2) != FIELD_DECL)
3382 f2 = TREE_CHAIN (f2);
3383 if (!f1 || !f2)
3384 break;
3385 /* The fields must have the same name, offset and type. */
3386 if (DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
3387 || !gimple_compare_field_offset (f1, f2)
3388 || !gimple_canonical_types_compatible_p
3389 (TREE_TYPE (f1), TREE_TYPE (f2)))
3390 return false;
3391 }
3392
3393 /* If one aggregate has more fields than the other, they
3394 are not the same. */
3395 if (f1 || f2)
3396 return false;
3397
3398 return true;
3399 }
3400
3401 default:
3402 gcc_unreachable ();
3403 }
3404 }
3405
3406
3407 /* Returns nonzero if P1 and P2 are equal. */
3408
3409 static int
3410 gimple_canonical_type_eq (const void *p1, const void *p2)
3411 {
3412 const_tree t1 = (const_tree) p1;
3413 const_tree t2 = (const_tree) p2;
3414 return gimple_canonical_types_compatible_p (CONST_CAST_TREE (t1),
3415 CONST_CAST_TREE (t2));
3416 }
3417
3418 /* Register type T in the global type table gimple_types.
3419 If another type T', compatible with T, already existed in
3420 gimple_types then return T', otherwise return T. This is used by
3421 LTO to merge identical types read from different TUs.
3422
3423 ??? This merging does not exactly match how the tree.c middle-end
3424 functions will assign TYPE_CANONICAL when new types are created
3425 during optimization (which at least happens for pointer and array
3426 types). */
3427
3428 tree
3429 gimple_register_canonical_type (tree t)
3430 {
3431 void **slot;
3432
3433 gcc_assert (TYPE_P (t));
3434
3435 if (TYPE_CANONICAL (t))
3436 return TYPE_CANONICAL (t);
3437
3438 if (gimple_canonical_types == NULL)
3439 gimple_canonical_types = htab_create_ggc (16381, gimple_canonical_type_hash,
3440 gimple_canonical_type_eq, 0);
3441
3442 slot = htab_find_slot (gimple_canonical_types, t, INSERT);
3443 if (*slot
3444 && *(tree *)slot != t)
3445 {
3446 tree new_type = (tree) *((tree *) slot);
3447
3448 TYPE_CANONICAL (t) = new_type;
3449 t = new_type;
3450 }
3451 else
3452 {
3453 TYPE_CANONICAL (t) = t;
3454 *slot = (void *) t;
3455 }
3456
3457 return t;
3458 }
3459
3460
3461 /* Show statistics on references to the global type table gimple_types. */
3462
3463 void
3464 print_gimple_types_stats (const char *pfx)
3465 {
3466 if (gimple_canonical_types)
3467 fprintf (stderr, "[%s] GIMPLE canonical type table: size %ld, "
3468 "%ld elements, %ld searches, %ld collisions (ratio: %f)\n", pfx,
3469 (long) htab_size (gimple_canonical_types),
3470 (long) htab_elements (gimple_canonical_types),
3471 (long) gimple_canonical_types->searches,
3472 (long) gimple_canonical_types->collisions,
3473 htab_collisions (gimple_canonical_types));
3474 else
3475 fprintf (stderr, "[%s] GIMPLE canonical type table is empty\n", pfx);
3476 if (canonical_type_hash_cache)
3477 fprintf (stderr, "[%s] GIMPLE canonical type hash table: size %ld, "
3478 "%ld elements, %ld searches, %ld collisions (ratio: %f)\n", pfx,
3479 (long) htab_size (canonical_type_hash_cache),
3480 (long) htab_elements (canonical_type_hash_cache),
3481 (long) canonical_type_hash_cache->searches,
3482 (long) canonical_type_hash_cache->collisions,
3483 htab_collisions (canonical_type_hash_cache));
3484 else
3485 fprintf (stderr, "[%s] GIMPLE canonical type hash table is empty\n", pfx);
3486 }
3487
3488 /* Free the gimple type hashtables used for LTO type merging. */
3489
3490 void
3491 free_gimple_type_tables (void)
3492 {
3493 if (gimple_canonical_types)
3494 {
3495 htab_delete (gimple_canonical_types);
3496 gimple_canonical_types = NULL;
3497 }
3498 if (canonical_type_hash_cache)
3499 {
3500 htab_delete (canonical_type_hash_cache);
3501 canonical_type_hash_cache = NULL;
3502 }
3503 }
3504
3505
3506 /* Return a type the same as TYPE except unsigned or
3507 signed according to UNSIGNEDP. */
3508
3509 static tree
3510 gimple_signed_or_unsigned_type (bool unsignedp, tree type)
3511 {
3512 tree type1;
3513
3514 type1 = TYPE_MAIN_VARIANT (type);
3515 if (type1 == signed_char_type_node
3516 || type1 == char_type_node
3517 || type1 == unsigned_char_type_node)
3518 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
3519 if (type1 == integer_type_node || type1 == unsigned_type_node)
3520 return unsignedp ? unsigned_type_node : integer_type_node;
3521 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
3522 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
3523 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
3524 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
3525 if (type1 == long_long_integer_type_node
3526 || type1 == long_long_unsigned_type_node)
3527 return unsignedp
3528 ? long_long_unsigned_type_node
3529 : long_long_integer_type_node;
3530 if (int128_integer_type_node && (type1 == int128_integer_type_node || type1 == int128_unsigned_type_node))
3531 return unsignedp
3532 ? int128_unsigned_type_node
3533 : int128_integer_type_node;
3534 #if HOST_BITS_PER_WIDE_INT >= 64
3535 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
3536 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
3537 #endif
3538 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
3539 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
3540 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
3541 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
3542 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
3543 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
3544 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
3545 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
3546
3547 #define GIMPLE_FIXED_TYPES(NAME) \
3548 if (type1 == short_ ## NAME ## _type_node \
3549 || type1 == unsigned_short_ ## NAME ## _type_node) \
3550 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
3551 : short_ ## NAME ## _type_node; \
3552 if (type1 == NAME ## _type_node \
3553 || type1 == unsigned_ ## NAME ## _type_node) \
3554 return unsignedp ? unsigned_ ## NAME ## _type_node \
3555 : NAME ## _type_node; \
3556 if (type1 == long_ ## NAME ## _type_node \
3557 || type1 == unsigned_long_ ## NAME ## _type_node) \
3558 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
3559 : long_ ## NAME ## _type_node; \
3560 if (type1 == long_long_ ## NAME ## _type_node \
3561 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
3562 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
3563 : long_long_ ## NAME ## _type_node;
3564
3565 #define GIMPLE_FIXED_MODE_TYPES(NAME) \
3566 if (type1 == NAME ## _type_node \
3567 || type1 == u ## NAME ## _type_node) \
3568 return unsignedp ? u ## NAME ## _type_node \
3569 : NAME ## _type_node;
3570
3571 #define GIMPLE_FIXED_TYPES_SAT(NAME) \
3572 if (type1 == sat_ ## short_ ## NAME ## _type_node \
3573 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
3574 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
3575 : sat_ ## short_ ## NAME ## _type_node; \
3576 if (type1 == sat_ ## NAME ## _type_node \
3577 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
3578 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
3579 : sat_ ## NAME ## _type_node; \
3580 if (type1 == sat_ ## long_ ## NAME ## _type_node \
3581 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
3582 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
3583 : sat_ ## long_ ## NAME ## _type_node; \
3584 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
3585 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
3586 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
3587 : sat_ ## long_long_ ## NAME ## _type_node;
3588
3589 #define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
3590 if (type1 == sat_ ## NAME ## _type_node \
3591 || type1 == sat_ ## u ## NAME ## _type_node) \
3592 return unsignedp ? sat_ ## u ## NAME ## _type_node \
3593 : sat_ ## NAME ## _type_node;
3594
3595 GIMPLE_FIXED_TYPES (fract);
3596 GIMPLE_FIXED_TYPES_SAT (fract);
3597 GIMPLE_FIXED_TYPES (accum);
3598 GIMPLE_FIXED_TYPES_SAT (accum);
3599
3600 GIMPLE_FIXED_MODE_TYPES (qq);
3601 GIMPLE_FIXED_MODE_TYPES (hq);
3602 GIMPLE_FIXED_MODE_TYPES (sq);
3603 GIMPLE_FIXED_MODE_TYPES (dq);
3604 GIMPLE_FIXED_MODE_TYPES (tq);
3605 GIMPLE_FIXED_MODE_TYPES_SAT (qq);
3606 GIMPLE_FIXED_MODE_TYPES_SAT (hq);
3607 GIMPLE_FIXED_MODE_TYPES_SAT (sq);
3608 GIMPLE_FIXED_MODE_TYPES_SAT (dq);
3609 GIMPLE_FIXED_MODE_TYPES_SAT (tq);
3610 GIMPLE_FIXED_MODE_TYPES (ha);
3611 GIMPLE_FIXED_MODE_TYPES (sa);
3612 GIMPLE_FIXED_MODE_TYPES (da);
3613 GIMPLE_FIXED_MODE_TYPES (ta);
3614 GIMPLE_FIXED_MODE_TYPES_SAT (ha);
3615 GIMPLE_FIXED_MODE_TYPES_SAT (sa);
3616 GIMPLE_FIXED_MODE_TYPES_SAT (da);
3617 GIMPLE_FIXED_MODE_TYPES_SAT (ta);
3618
3619 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
3620 the precision; they have precision set to match their range, but
3621 may use a wider mode to match an ABI. If we change modes, we may
3622 wind up with bad conversions. For INTEGER_TYPEs in C, must check
3623 the precision as well, so as to yield correct results for
3624 bit-field types. C++ does not have these separate bit-field
3625 types, and producing a signed or unsigned variant of an
3626 ENUMERAL_TYPE may cause other problems as well. */
3627 if (!INTEGRAL_TYPE_P (type)
3628 || TYPE_UNSIGNED (type) == unsignedp)
3629 return type;
3630
3631 #define TYPE_OK(node) \
3632 (TYPE_MODE (type) == TYPE_MODE (node) \
3633 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
3634 if (TYPE_OK (signed_char_type_node))
3635 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
3636 if (TYPE_OK (integer_type_node))
3637 return unsignedp ? unsigned_type_node : integer_type_node;
3638 if (TYPE_OK (short_integer_type_node))
3639 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
3640 if (TYPE_OK (long_integer_type_node))
3641 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
3642 if (TYPE_OK (long_long_integer_type_node))
3643 return (unsignedp
3644 ? long_long_unsigned_type_node
3645 : long_long_integer_type_node);
3646 if (int128_integer_type_node && TYPE_OK (int128_integer_type_node))
3647 return (unsignedp
3648 ? int128_unsigned_type_node
3649 : int128_integer_type_node);
3650
3651 #if HOST_BITS_PER_WIDE_INT >= 64
3652 if (TYPE_OK (intTI_type_node))
3653 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
3654 #endif
3655 if (TYPE_OK (intDI_type_node))
3656 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
3657 if (TYPE_OK (intSI_type_node))
3658 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
3659 if (TYPE_OK (intHI_type_node))
3660 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
3661 if (TYPE_OK (intQI_type_node))
3662 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
3663
3664 #undef GIMPLE_FIXED_TYPES
3665 #undef GIMPLE_FIXED_MODE_TYPES
3666 #undef GIMPLE_FIXED_TYPES_SAT
3667 #undef GIMPLE_FIXED_MODE_TYPES_SAT
3668 #undef TYPE_OK
3669
3670 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
3671 }
3672
3673
3674 /* Return an unsigned type the same as TYPE in other respects. */
3675
3676 tree
3677 gimple_unsigned_type (tree type)
3678 {
3679 return gimple_signed_or_unsigned_type (true, type);
3680 }
3681
3682
3683 /* Return a signed type the same as TYPE in other respects. */
3684
3685 tree
3686 gimple_signed_type (tree type)
3687 {
3688 return gimple_signed_or_unsigned_type (false, type);
3689 }
3690
3691
3692 /* Return the typed-based alias set for T, which may be an expression
3693 or a type. Return -1 if we don't do anything special. */
3694
3695 alias_set_type
3696 gimple_get_alias_set (tree t)
3697 {
3698 tree u;
3699
3700 /* Permit type-punning when accessing a union, provided the access
3701 is directly through the union. For example, this code does not
3702 permit taking the address of a union member and then storing
3703 through it. Even the type-punning allowed here is a GCC
3704 extension, albeit a common and useful one; the C standard says
3705 that such accesses have implementation-defined behavior. */
3706 for (u = t;
3707 TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
3708 u = TREE_OPERAND (u, 0))
3709 if (TREE_CODE (u) == COMPONENT_REF
3710 && TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
3711 return 0;
3712
3713 /* That's all the expressions we handle specially. */
3714 if (!TYPE_P (t))
3715 return -1;
3716
3717 /* For convenience, follow the C standard when dealing with
3718 character types. Any object may be accessed via an lvalue that
3719 has character type. */
3720 if (t == char_type_node
3721 || t == signed_char_type_node
3722 || t == unsigned_char_type_node)
3723 return 0;
3724
3725 /* Allow aliasing between signed and unsigned variants of the same
3726 type. We treat the signed variant as canonical. */
3727 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
3728 {
3729 tree t1 = gimple_signed_type (t);
3730
3731 /* t1 == t can happen for boolean nodes which are always unsigned. */
3732 if (t1 != t)
3733 return get_alias_set (t1);
3734 }
3735
3736 return -1;
3737 }
3738
3739
3740 /* Data structure used to count the number of dereferences to PTR
3741 inside an expression. */
3742 struct count_ptr_d
3743 {
3744 tree ptr;
3745 unsigned num_stores;
3746 unsigned num_loads;
3747 };
3748
3749 /* Helper for count_uses_and_derefs. Called by walk_tree to look for
3750 (ALIGN/MISALIGNED_)INDIRECT_REF nodes for the pointer passed in DATA. */
3751
3752 static tree
3753 count_ptr_derefs (tree *tp, int *walk_subtrees, void *data)
3754 {
3755 struct walk_stmt_info *wi_p = (struct walk_stmt_info *) data;
3756 struct count_ptr_d *count_p = (struct count_ptr_d *) wi_p->info;
3757
3758 /* Do not walk inside ADDR_EXPR nodes. In the expression &ptr->fld,
3759 pointer 'ptr' is *not* dereferenced, it is simply used to compute
3760 the address of 'fld' as 'ptr + offsetof(fld)'. */
3761 if (TREE_CODE (*tp) == ADDR_EXPR)
3762 {
3763 *walk_subtrees = 0;
3764 return NULL_TREE;
3765 }
3766
3767 if (TREE_CODE (*tp) == MEM_REF && TREE_OPERAND (*tp, 0) == count_p->ptr)
3768 {
3769 if (wi_p->is_lhs)
3770 count_p->num_stores++;
3771 else
3772 count_p->num_loads++;
3773 }
3774
3775 return NULL_TREE;
3776 }
3777
3778 /* Count the number of direct and indirect uses for pointer PTR in
3779 statement STMT. The number of direct uses is stored in
3780 *NUM_USES_P. Indirect references are counted separately depending
3781 on whether they are store or load operations. The counts are
3782 stored in *NUM_STORES_P and *NUM_LOADS_P. */
3783
3784 void
3785 count_uses_and_derefs (tree ptr, gimple stmt, unsigned *num_uses_p,
3786 unsigned *num_loads_p, unsigned *num_stores_p)
3787 {
3788 ssa_op_iter i;
3789 tree use;
3790
3791 *num_uses_p = 0;
3792 *num_loads_p = 0;
3793 *num_stores_p = 0;
3794
3795 /* Find out the total number of uses of PTR in STMT. */
3796 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
3797 if (use == ptr)
3798 (*num_uses_p)++;
3799
3800 /* Now count the number of indirect references to PTR. This is
3801 truly awful, but we don't have much choice. There are no parent
3802 pointers inside INDIRECT_REFs, so an expression like
3803 '*x_1 = foo (x_1, *x_1)' needs to be traversed piece by piece to
3804 find all the indirect and direct uses of x_1 inside. The only
3805 shortcut we can take is the fact that GIMPLE only allows
3806 INDIRECT_REFs inside the expressions below. */
3807 if (is_gimple_assign (stmt)
3808 || gimple_code (stmt) == GIMPLE_RETURN
3809 || gimple_code (stmt) == GIMPLE_ASM
3810 || is_gimple_call (stmt))
3811 {
3812 struct walk_stmt_info wi;
3813 struct count_ptr_d count;
3814
3815 count.ptr = ptr;
3816 count.num_stores = 0;
3817 count.num_loads = 0;
3818
3819 memset (&wi, 0, sizeof (wi));
3820 wi.info = &count;
3821 walk_gimple_op (stmt, count_ptr_derefs, &wi);
3822
3823 *num_stores_p = count.num_stores;
3824 *num_loads_p = count.num_loads;
3825 }
3826
3827 gcc_assert (*num_uses_p >= *num_loads_p + *num_stores_p);
3828 }
3829
3830 /* From a tree operand OP return the base of a load or store operation
3831 or NULL_TREE if OP is not a load or a store. */
3832
3833 static tree
3834 get_base_loadstore (tree op)
3835 {
3836 while (handled_component_p (op))
3837 op = TREE_OPERAND (op, 0);
3838 if (DECL_P (op)
3839 || INDIRECT_REF_P (op)
3840 || TREE_CODE (op) == MEM_REF
3841 || TREE_CODE (op) == TARGET_MEM_REF)
3842 return op;
3843 return NULL_TREE;
3844 }
3845
3846 /* For the statement STMT call the callbacks VISIT_LOAD, VISIT_STORE and
3847 VISIT_ADDR if non-NULL on loads, store and address-taken operands
3848 passing the STMT, the base of the operand and DATA to it. The base
3849 will be either a decl, an indirect reference (including TARGET_MEM_REF)
3850 or the argument of an address expression.
3851 Returns the results of these callbacks or'ed. */
3852
3853 bool
3854 walk_stmt_load_store_addr_ops (gimple stmt, void *data,
3855 bool (*visit_load)(gimple, tree, void *),
3856 bool (*visit_store)(gimple, tree, void *),
3857 bool (*visit_addr)(gimple, tree, void *))
3858 {
3859 bool ret = false;
3860 unsigned i;
3861 if (gimple_assign_single_p (stmt))
3862 {
3863 tree lhs, rhs;
3864 if (visit_store)
3865 {
3866 lhs = get_base_loadstore (gimple_assign_lhs (stmt));
3867 if (lhs)
3868 ret |= visit_store (stmt, lhs, data);
3869 }
3870 rhs = gimple_assign_rhs1 (stmt);
3871 while (handled_component_p (rhs))
3872 rhs = TREE_OPERAND (rhs, 0);
3873 if (visit_addr)
3874 {
3875 if (TREE_CODE (rhs) == ADDR_EXPR)
3876 ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data);
3877 else if (TREE_CODE (rhs) == TARGET_MEM_REF
3878 && TREE_CODE (TMR_BASE (rhs)) == ADDR_EXPR)
3879 ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (rhs), 0), data);
3880 else if (TREE_CODE (rhs) == OBJ_TYPE_REF
3881 && TREE_CODE (OBJ_TYPE_REF_OBJECT (rhs)) == ADDR_EXPR)
3882 ret |= visit_addr (stmt, TREE_OPERAND (OBJ_TYPE_REF_OBJECT (rhs),
3883 0), data);
3884 else if (TREE_CODE (rhs) == CONSTRUCTOR)
3885 {
3886 unsigned int ix;
3887 tree val;
3888
3889 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (rhs), ix, val)
3890 if (TREE_CODE (val) == ADDR_EXPR)
3891 ret |= visit_addr (stmt, TREE_OPERAND (val, 0), data);
3892 else if (TREE_CODE (val) == OBJ_TYPE_REF
3893 && TREE_CODE (OBJ_TYPE_REF_OBJECT (val)) == ADDR_EXPR)
3894 ret |= visit_addr (stmt,
3895 TREE_OPERAND (OBJ_TYPE_REF_OBJECT (val),
3896 0), data);
3897 }
3898 lhs = gimple_assign_lhs (stmt);
3899 if (TREE_CODE (lhs) == TARGET_MEM_REF
3900 && TREE_CODE (TMR_BASE (lhs)) == ADDR_EXPR)
3901 ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (lhs), 0), data);
3902 }
3903 if (visit_load)
3904 {
3905 rhs = get_base_loadstore (rhs);
3906 if (rhs)
3907 ret |= visit_load (stmt, rhs, data);
3908 }
3909 }
3910 else if (visit_addr
3911 && (is_gimple_assign (stmt)
3912 || gimple_code (stmt) == GIMPLE_COND))
3913 {
3914 for (i = 0; i < gimple_num_ops (stmt); ++i)
3915 {
3916 tree op = gimple_op (stmt, i);
3917 if (op == NULL_TREE)
3918 ;
3919 else if (TREE_CODE (op) == ADDR_EXPR)
3920 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
3921 /* COND_EXPR and VCOND_EXPR rhs1 argument is a comparison
3922 tree with two operands. */
3923 else if (i == 1 && COMPARISON_CLASS_P (op))
3924 {
3925 if (TREE_CODE (TREE_OPERAND (op, 0)) == ADDR_EXPR)
3926 ret |= visit_addr (stmt, TREE_OPERAND (TREE_OPERAND (op, 0),
3927 0), data);
3928 if (TREE_CODE (TREE_OPERAND (op, 1)) == ADDR_EXPR)
3929 ret |= visit_addr (stmt, TREE_OPERAND (TREE_OPERAND (op, 1),
3930 0), data);
3931 }
3932 }
3933 }
3934 else if (is_gimple_call (stmt))
3935 {
3936 if (visit_store)
3937 {
3938 tree lhs = gimple_call_lhs (stmt);
3939 if (lhs)
3940 {
3941 lhs = get_base_loadstore (lhs);
3942 if (lhs)
3943 ret |= visit_store (stmt, lhs, data);
3944 }
3945 }
3946 if (visit_load || visit_addr)
3947 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3948 {
3949 tree rhs = gimple_call_arg (stmt, i);
3950 if (visit_addr
3951 && TREE_CODE (rhs) == ADDR_EXPR)
3952 ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data);
3953 else if (visit_load)
3954 {
3955 rhs = get_base_loadstore (rhs);
3956 if (rhs)
3957 ret |= visit_load (stmt, rhs, data);
3958 }
3959 }
3960 if (visit_addr
3961 && gimple_call_chain (stmt)
3962 && TREE_CODE (gimple_call_chain (stmt)) == ADDR_EXPR)
3963 ret |= visit_addr (stmt, TREE_OPERAND (gimple_call_chain (stmt), 0),
3964 data);
3965 if (visit_addr
3966 && gimple_call_return_slot_opt_p (stmt)
3967 && gimple_call_lhs (stmt) != NULL_TREE
3968 && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt))))
3969 ret |= visit_addr (stmt, gimple_call_lhs (stmt), data);
3970 }
3971 else if (gimple_code (stmt) == GIMPLE_ASM)
3972 {
3973 unsigned noutputs;
3974 const char *constraint;
3975 const char **oconstraints;
3976 bool allows_mem, allows_reg, is_inout;
3977 noutputs = gimple_asm_noutputs (stmt);
3978 oconstraints = XALLOCAVEC (const char *, noutputs);
3979 if (visit_store || visit_addr)
3980 for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
3981 {
3982 tree link = gimple_asm_output_op (stmt, i);
3983 tree op = get_base_loadstore (TREE_VALUE (link));
3984 if (op && visit_store)
3985 ret |= visit_store (stmt, op, data);
3986 if (visit_addr)
3987 {
3988 constraint = TREE_STRING_POINTER
3989 (TREE_VALUE (TREE_PURPOSE (link)));
3990 oconstraints[i] = constraint;
3991 parse_output_constraint (&constraint, i, 0, 0, &allows_mem,
3992 &allows_reg, &is_inout);
3993 if (op && !allows_reg && allows_mem)
3994 ret |= visit_addr (stmt, op, data);
3995 }
3996 }
3997 if (visit_load || visit_addr)
3998 for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
3999 {
4000 tree link = gimple_asm_input_op (stmt, i);
4001 tree op = TREE_VALUE (link);
4002 if (visit_addr
4003 && TREE_CODE (op) == ADDR_EXPR)
4004 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
4005 else if (visit_load || visit_addr)
4006 {
4007 op = get_base_loadstore (op);
4008 if (op)
4009 {
4010 if (visit_load)
4011 ret |= visit_load (stmt, op, data);
4012 if (visit_addr)
4013 {
4014 constraint = TREE_STRING_POINTER
4015 (TREE_VALUE (TREE_PURPOSE (link)));
4016 parse_input_constraint (&constraint, 0, 0, noutputs,
4017 0, oconstraints,
4018 &allows_mem, &allows_reg);
4019 if (!allows_reg && allows_mem)
4020 ret |= visit_addr (stmt, op, data);
4021 }
4022 }
4023 }
4024 }
4025 }
4026 else if (gimple_code (stmt) == GIMPLE_RETURN)
4027 {
4028 tree op = gimple_return_retval (stmt);
4029 if (op)
4030 {
4031 if (visit_addr
4032 && TREE_CODE (op) == ADDR_EXPR)
4033 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
4034 else if (visit_load)
4035 {
4036 op = get_base_loadstore (op);
4037 if (op)
4038 ret |= visit_load (stmt, op, data);
4039 }
4040 }
4041 }
4042 else if (visit_addr
4043 && gimple_code (stmt) == GIMPLE_PHI)
4044 {
4045 for (i = 0; i < gimple_phi_num_args (stmt); ++i)
4046 {
4047 tree op = PHI_ARG_DEF (stmt, i);
4048 if (TREE_CODE (op) == ADDR_EXPR)
4049 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
4050 }
4051 }
4052
4053 return ret;
4054 }
4055
4056 /* Like walk_stmt_load_store_addr_ops but with NULL visit_addr. IPA-CP
4057 should make a faster clone for this case. */
4058
4059 bool
4060 walk_stmt_load_store_ops (gimple stmt, void *data,
4061 bool (*visit_load)(gimple, tree, void *),
4062 bool (*visit_store)(gimple, tree, void *))
4063 {
4064 return walk_stmt_load_store_addr_ops (stmt, data,
4065 visit_load, visit_store, NULL);
4066 }
4067
4068 /* Helper for gimple_ior_addresses_taken_1. */
4069
4070 static bool
4071 gimple_ior_addresses_taken_1 (gimple stmt ATTRIBUTE_UNUSED,
4072 tree addr, void *data)
4073 {
4074 bitmap addresses_taken = (bitmap)data;
4075 addr = get_base_address (addr);
4076 if (addr
4077 && DECL_P (addr))
4078 {
4079 bitmap_set_bit (addresses_taken, DECL_UID (addr));
4080 return true;
4081 }
4082 return false;
4083 }
4084
4085 /* Set the bit for the uid of all decls that have their address taken
4086 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
4087 were any in this stmt. */
4088
4089 bool
4090 gimple_ior_addresses_taken (bitmap addresses_taken, gimple stmt)
4091 {
4092 return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
4093 gimple_ior_addresses_taken_1);
4094 }
4095
4096
4097 /* Return a printable name for symbol DECL. */
4098
4099 const char *
4100 gimple_decl_printable_name (tree decl, int verbosity)
4101 {
4102 if (!DECL_NAME (decl))
4103 return NULL;
4104
4105 if (DECL_ASSEMBLER_NAME_SET_P (decl))
4106 {
4107 const char *str, *mangled_str;
4108 int dmgl_opts = DMGL_NO_OPTS;
4109
4110 if (verbosity >= 2)
4111 {
4112 dmgl_opts = DMGL_VERBOSE
4113 | DMGL_ANSI
4114 | DMGL_GNU_V3
4115 | DMGL_RET_POSTFIX;
4116 if (TREE_CODE (decl) == FUNCTION_DECL)
4117 dmgl_opts |= DMGL_PARAMS;
4118 }
4119
4120 mangled_str = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
4121 str = cplus_demangle_v3 (mangled_str, dmgl_opts);
4122 return (str) ? str : mangled_str;
4123 }
4124
4125 return IDENTIFIER_POINTER (DECL_NAME (decl));
4126 }
4127
4128 /* Return TRUE iff stmt is a call to a built-in function. */
4129
4130 bool
4131 is_gimple_builtin_call (gimple stmt)
4132 {
4133 tree callee;
4134
4135 if (is_gimple_call (stmt)
4136 && (callee = gimple_call_fndecl (stmt))
4137 && is_builtin_fn (callee)
4138 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL)
4139 return true;
4140
4141 return false;
4142 }
4143
4144 /* Return true when STMTs arguments match those of FNDECL. */
4145
4146 static bool
4147 validate_call (gimple stmt, tree fndecl)
4148 {
4149 tree targs = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
4150 unsigned nargs = gimple_call_num_args (stmt);
4151 for (unsigned i = 0; i < nargs; ++i)
4152 {
4153 /* Variadic args follow. */
4154 if (!targs)
4155 return true;
4156 tree arg = gimple_call_arg (stmt, i);
4157 if (INTEGRAL_TYPE_P (TREE_TYPE (arg))
4158 && INTEGRAL_TYPE_P (TREE_VALUE (targs)))
4159 ;
4160 else if (POINTER_TYPE_P (TREE_TYPE (arg))
4161 && POINTER_TYPE_P (TREE_VALUE (targs)))
4162 ;
4163 else if (TREE_CODE (TREE_TYPE (arg))
4164 != TREE_CODE (TREE_VALUE (targs)))
4165 return false;
4166 targs = TREE_CHAIN (targs);
4167 }
4168 if (targs && !VOID_TYPE_P (TREE_VALUE (targs)))
4169 return false;
4170 return true;
4171 }
4172
4173 /* Return true when STMT is builtins call to CLASS. */
4174
4175 bool
4176 gimple_call_builtin_p (gimple stmt, enum built_in_class klass)
4177 {
4178 tree fndecl;
4179 if (is_gimple_call (stmt)
4180 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
4181 && DECL_BUILT_IN_CLASS (fndecl) == klass)
4182 return validate_call (stmt, fndecl);
4183 return false;
4184 }
4185
4186 /* Return true when STMT is builtins call to CODE of CLASS. */
4187
4188 bool
4189 gimple_call_builtin_p (gimple stmt, enum built_in_function code)
4190 {
4191 tree fndecl;
4192 if (is_gimple_call (stmt)
4193 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
4194 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
4195 && DECL_FUNCTION_CODE (fndecl) == code)
4196 return validate_call (stmt, fndecl);
4197 return false;
4198 }
4199
4200 /* Return true if STMT clobbers memory. STMT is required to be a
4201 GIMPLE_ASM. */
4202
4203 bool
4204 gimple_asm_clobbers_memory_p (const_gimple stmt)
4205 {
4206 unsigned i;
4207
4208 for (i = 0; i < gimple_asm_nclobbers (stmt); i++)
4209 {
4210 tree op = gimple_asm_clobber_op (stmt, i);
4211 if (strcmp (TREE_STRING_POINTER (TREE_VALUE (op)), "memory") == 0)
4212 return true;
4213 }
4214
4215 return false;
4216 }
4217
4218
4219 /* Create and return an unnamed temporary. MODE indicates whether
4220 this should be an SSA or NORMAL temporary. TYPE is the type to use
4221 for the new temporary. */
4222
4223 tree
4224 create_gimple_tmp (tree type, enum ssa_mode mode)
4225 {
4226 return (mode == M_SSA)
4227 ? make_ssa_name (type, NULL)
4228 : create_tmp_var (type, NULL);
4229 }
4230
4231
4232 /* Return the expression type to use based on the CODE and type of
4233 the given operand OP. If the expression CODE is a comparison,
4234 the returned type is boolean_type_node. Otherwise, it returns
4235 the type of OP. */
4236
4237 static tree
4238 get_expr_type (enum tree_code code, tree op)
4239 {
4240 return (TREE_CODE_CLASS (code) == tcc_comparison)
4241 ? boolean_type_node
4242 : TREE_TYPE (op);
4243 }
4244
4245
4246 /* Build a new gimple assignment. The LHS of the assignment is a new
4247 temporary whose type matches the given expression. MODE indicates
4248 whether the LHS should be an SSA or a normal temporary. CODE is
4249 the expression code for the RHS. OP1 is the first operand and VAL
4250 is an integer value to be used as the second operand. */
4251
4252 gimple
4253 build_assign (enum tree_code code, tree op1, int val, enum ssa_mode mode)
4254 {
4255 tree op2 = build_int_cst (TREE_TYPE (op1), val);
4256 tree lhs = create_gimple_tmp (get_expr_type (code, op1), mode);
4257 return gimple_build_assign_with_ops (code, lhs, op1, op2);
4258 }
4259
4260 gimple
4261 build_assign (enum tree_code code, gimple g, int val, enum ssa_mode mode)
4262 {
4263 return build_assign (code, gimple_assign_lhs (g), val, mode);
4264 }
4265
4266
4267 /* Build and return a new GIMPLE assignment. The new assignment will
4268 have the opcode CODE and operands OP1 and OP2. The type of the
4269 expression on the RHS is inferred to be the type of OP1.
4270
4271 The LHS of the statement will be an SSA name or a GIMPLE temporary
4272 in normal form depending on the type of builder invoking this
4273 function. */
4274
4275 gimple
4276 build_assign (enum tree_code code, tree op1, tree op2, enum ssa_mode mode)
4277 {
4278 tree lhs = create_gimple_tmp (get_expr_type (code, op1), mode);
4279 return gimple_build_assign_with_ops (code, lhs, op1, op2);
4280 }
4281
4282 gimple
4283 build_assign (enum tree_code code, gimple op1, tree op2, enum ssa_mode mode)
4284 {
4285 return build_assign (code, gimple_assign_lhs (op1), op2, mode);
4286 }
4287
4288 gimple
4289 build_assign (enum tree_code code, tree op1, gimple op2, enum ssa_mode mode)
4290 {
4291 return build_assign (code, op1, gimple_assign_lhs (op2), mode);
4292 }
4293
4294 gimple
4295 build_assign (enum tree_code code, gimple op1, gimple op2, enum ssa_mode mode)
4296 {
4297 return build_assign (code, gimple_assign_lhs (op1), gimple_assign_lhs (op2),
4298 mode);
4299 }
4300
4301
4302 /* Create and return a type cast assignment. This creates a NOP_EXPR
4303 that converts OP to TO_TYPE. */
4304
4305 gimple
4306 build_type_cast (tree to_type, tree op, enum ssa_mode mode)
4307 {
4308 tree lhs = create_gimple_tmp (to_type, mode);
4309 return gimple_build_assign_with_ops (NOP_EXPR, lhs, op, NULL_TREE);
4310 }
4311
4312 gimple
4313 build_type_cast (tree to_type, gimple op, enum ssa_mode mode)
4314 {
4315 return build_type_cast (to_type, gimple_assign_lhs (op), mode);
4316 }
4317
4318 #include "gt-gimple.h"