gimple.c (gimple_types_compatible_p_1): Compare record and union type members properly.
[gcc.git] / gcc / gimple.c
1 /* Gimple IR support functions.
2
3 Copyright 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "target.h"
27 #include "tree.h"
28 #include "ggc.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "gimple.h"
32 #include "diagnostic.h"
33 #include "tree-flow.h"
34 #include "value-prof.h"
35 #include "flags.h"
36 #include "alias.h"
37 #include "demangle.h"
38 #include "langhooks.h"
39
40 /* Global type table. FIXME lto, it should be possible to re-use some
41 of the type hashing routines in tree.c (type_hash_canon, type_hash_lookup,
42 etc), but those assume that types were built with the various
43 build_*_type routines which is not the case with the streamer. */
44 static GTY((if_marked ("ggc_marked_p"), param_is (union tree_node)))
45 htab_t gimple_types;
46 static GTY((if_marked ("ggc_marked_p"), param_is (union tree_node)))
47 htab_t gimple_canonical_types;
48 static GTY((if_marked ("tree_int_map_marked_p"), param_is (struct tree_int_map)))
49 htab_t type_hash_cache;
50 static GTY((if_marked ("tree_int_map_marked_p"), param_is (struct tree_int_map)))
51 htab_t canonical_type_hash_cache;
52
53 /* All the tuples have their operand vector (if present) at the very bottom
54 of the structure. Therefore, the offset required to find the
55 operands vector the size of the structure minus the size of the 1
56 element tree array at the end (see gimple_ops). */
57 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
58 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
59 EXPORTED_CONST size_t gimple_ops_offset_[] = {
60 #include "gsstruct.def"
61 };
62 #undef DEFGSSTRUCT
63
64 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof(struct STRUCT),
65 static const size_t gsstruct_code_size[] = {
66 #include "gsstruct.def"
67 };
68 #undef DEFGSSTRUCT
69
70 #define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
71 const char *const gimple_code_name[] = {
72 #include "gimple.def"
73 };
74 #undef DEFGSCODE
75
76 #define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
77 EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
78 #include "gimple.def"
79 };
80 #undef DEFGSCODE
81
82 #ifdef GATHER_STATISTICS
83 /* Gimple stats. */
84
85 int gimple_alloc_counts[(int) gimple_alloc_kind_all];
86 int gimple_alloc_sizes[(int) gimple_alloc_kind_all];
87
88 /* Keep in sync with gimple.h:enum gimple_alloc_kind. */
89 static const char * const gimple_alloc_kind_names[] = {
90 "assignments",
91 "phi nodes",
92 "conditionals",
93 "sequences",
94 "everything else"
95 };
96
97 #endif /* GATHER_STATISTICS */
98
99 /* A cache of gimple_seq objects. Sequences are created and destroyed
100 fairly often during gimplification. */
101 static GTY ((deletable)) struct gimple_seq_d *gimple_seq_cache;
102
103 /* Private API manipulation functions shared only with some
104 other files. */
105 extern void gimple_set_stored_syms (gimple, bitmap, bitmap_obstack *);
106 extern void gimple_set_loaded_syms (gimple, bitmap, bitmap_obstack *);
107
108 /* Gimple tuple constructors.
109 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
110 be passed a NULL to start with an empty sequence. */
111
112 /* Set the code for statement G to CODE. */
113
114 static inline void
115 gimple_set_code (gimple g, enum gimple_code code)
116 {
117 g->gsbase.code = code;
118 }
119
120 /* Return the number of bytes needed to hold a GIMPLE statement with
121 code CODE. */
122
123 static inline size_t
124 gimple_size (enum gimple_code code)
125 {
126 return gsstruct_code_size[gss_for_code (code)];
127 }
128
129 /* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
130 operands. */
131
132 gimple
133 gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
134 {
135 size_t size;
136 gimple stmt;
137
138 size = gimple_size (code);
139 if (num_ops > 0)
140 size += sizeof (tree) * (num_ops - 1);
141
142 #ifdef GATHER_STATISTICS
143 {
144 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
145 gimple_alloc_counts[(int) kind]++;
146 gimple_alloc_sizes[(int) kind] += size;
147 }
148 #endif
149
150 stmt = ggc_alloc_cleared_gimple_statement_d_stat (size PASS_MEM_STAT);
151 gimple_set_code (stmt, code);
152 gimple_set_num_ops (stmt, num_ops);
153
154 /* Do not call gimple_set_modified here as it has other side
155 effects and this tuple is still not completely built. */
156 stmt->gsbase.modified = 1;
157
158 return stmt;
159 }
160
161 /* Set SUBCODE to be the code of the expression computed by statement G. */
162
163 static inline void
164 gimple_set_subcode (gimple g, unsigned subcode)
165 {
166 /* We only have 16 bits for the RHS code. Assert that we are not
167 overflowing it. */
168 gcc_assert (subcode < (1 << 16));
169 g->gsbase.subcode = subcode;
170 }
171
172
173
174 /* Build a tuple with operands. CODE is the statement to build (which
175 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the sub-code
176 for the new tuple. NUM_OPS is the number of operands to allocate. */
177
178 #define gimple_build_with_ops(c, s, n) \
179 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
180
181 static gimple
182 gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
183 unsigned num_ops MEM_STAT_DECL)
184 {
185 gimple s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT);
186 gimple_set_subcode (s, subcode);
187
188 return s;
189 }
190
191
192 /* Build a GIMPLE_RETURN statement returning RETVAL. */
193
194 gimple
195 gimple_build_return (tree retval)
196 {
197 gimple s = gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK, 1);
198 if (retval)
199 gimple_return_set_retval (s, retval);
200 return s;
201 }
202
203 /* Reset alias information on call S. */
204
205 void
206 gimple_call_reset_alias_info (gimple s)
207 {
208 if (gimple_call_flags (s) & ECF_CONST)
209 memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
210 else
211 pt_solution_reset (gimple_call_use_set (s));
212 if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
213 memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
214 else
215 pt_solution_reset (gimple_call_clobber_set (s));
216 }
217
218 /* Helper for gimple_build_call, gimple_build_call_vec and
219 gimple_build_call_from_tree. Build the basic components of a
220 GIMPLE_CALL statement to function FN with NARGS arguments. */
221
222 static inline gimple
223 gimple_build_call_1 (tree fn, unsigned nargs)
224 {
225 gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3);
226 if (TREE_CODE (fn) == FUNCTION_DECL)
227 fn = build_fold_addr_expr (fn);
228 gimple_set_op (s, 1, fn);
229 gimple_call_set_fntype (s, TREE_TYPE (TREE_TYPE (fn)));
230 gimple_call_reset_alias_info (s);
231 return s;
232 }
233
234
235 /* Build a GIMPLE_CALL statement to function FN with the arguments
236 specified in vector ARGS. */
237
238 gimple
239 gimple_build_call_vec (tree fn, VEC(tree, heap) *args)
240 {
241 unsigned i;
242 unsigned nargs = VEC_length (tree, args);
243 gimple call = gimple_build_call_1 (fn, nargs);
244
245 for (i = 0; i < nargs; i++)
246 gimple_call_set_arg (call, i, VEC_index (tree, args, i));
247
248 return call;
249 }
250
251
252 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
253 arguments. The ... are the arguments. */
254
255 gimple
256 gimple_build_call (tree fn, unsigned nargs, ...)
257 {
258 va_list ap;
259 gimple call;
260 unsigned i;
261
262 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
263
264 call = gimple_build_call_1 (fn, nargs);
265
266 va_start (ap, nargs);
267 for (i = 0; i < nargs; i++)
268 gimple_call_set_arg (call, i, va_arg (ap, tree));
269 va_end (ap);
270
271 return call;
272 }
273
274
275 /* Helper for gimple_build_call_internal and gimple_build_call_internal_vec.
276 Build the basic components of a GIMPLE_CALL statement to internal
277 function FN with NARGS arguments. */
278
279 static inline gimple
280 gimple_build_call_internal_1 (enum internal_fn fn, unsigned nargs)
281 {
282 gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3);
283 s->gsbase.subcode |= GF_CALL_INTERNAL;
284 gimple_call_set_internal_fn (s, fn);
285 gimple_call_reset_alias_info (s);
286 return s;
287 }
288
289
290 /* Build a GIMPLE_CALL statement to internal function FN. NARGS is
291 the number of arguments. The ... are the arguments. */
292
293 gimple
294 gimple_build_call_internal (enum internal_fn fn, unsigned nargs, ...)
295 {
296 va_list ap;
297 gimple call;
298 unsigned i;
299
300 call = gimple_build_call_internal_1 (fn, nargs);
301 va_start (ap, nargs);
302 for (i = 0; i < nargs; i++)
303 gimple_call_set_arg (call, i, va_arg (ap, tree));
304 va_end (ap);
305
306 return call;
307 }
308
309
310 /* Build a GIMPLE_CALL statement to internal function FN with the arguments
311 specified in vector ARGS. */
312
313 gimple
314 gimple_build_call_internal_vec (enum internal_fn fn, VEC(tree, heap) *args)
315 {
316 unsigned i, nargs;
317 gimple call;
318
319 nargs = VEC_length (tree, args);
320 call = gimple_build_call_internal_1 (fn, nargs);
321 for (i = 0; i < nargs; i++)
322 gimple_call_set_arg (call, i, VEC_index (tree, args, i));
323
324 return call;
325 }
326
327
328 /* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
329 assumed to be in GIMPLE form already. Minimal checking is done of
330 this fact. */
331
332 gimple
333 gimple_build_call_from_tree (tree t)
334 {
335 unsigned i, nargs;
336 gimple call;
337 tree fndecl = get_callee_fndecl (t);
338
339 gcc_assert (TREE_CODE (t) == CALL_EXPR);
340
341 nargs = call_expr_nargs (t);
342 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
343
344 for (i = 0; i < nargs; i++)
345 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
346
347 gimple_set_block (call, TREE_BLOCK (t));
348
349 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
350 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
351 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
352 gimple_call_set_cannot_inline (call, CALL_CANNOT_INLINE_P (t));
353 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
354 if (fndecl
355 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
356 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA)
357 gimple_call_set_alloca_for_var (call, CALL_ALLOCA_FOR_VAR_P (t));
358 else
359 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
360 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
361 gimple_call_set_nothrow (call, TREE_NOTHROW (t));
362 gimple_set_no_warning (call, TREE_NO_WARNING (t));
363
364 return call;
365 }
366
367
368 /* Extract the operands and code for expression EXPR into *SUBCODE_P,
369 *OP1_P, *OP2_P and *OP3_P respectively. */
370
371 void
372 extract_ops_from_tree_1 (tree expr, enum tree_code *subcode_p, tree *op1_p,
373 tree *op2_p, tree *op3_p)
374 {
375 enum gimple_rhs_class grhs_class;
376
377 *subcode_p = TREE_CODE (expr);
378 grhs_class = get_gimple_rhs_class (*subcode_p);
379
380 if (grhs_class == GIMPLE_TERNARY_RHS)
381 {
382 *op1_p = TREE_OPERAND (expr, 0);
383 *op2_p = TREE_OPERAND (expr, 1);
384 *op3_p = TREE_OPERAND (expr, 2);
385 }
386 else if (grhs_class == GIMPLE_BINARY_RHS)
387 {
388 *op1_p = TREE_OPERAND (expr, 0);
389 *op2_p = TREE_OPERAND (expr, 1);
390 *op3_p = NULL_TREE;
391 }
392 else if (grhs_class == GIMPLE_UNARY_RHS)
393 {
394 *op1_p = TREE_OPERAND (expr, 0);
395 *op2_p = NULL_TREE;
396 *op3_p = NULL_TREE;
397 }
398 else if (grhs_class == GIMPLE_SINGLE_RHS)
399 {
400 *op1_p = expr;
401 *op2_p = NULL_TREE;
402 *op3_p = NULL_TREE;
403 }
404 else
405 gcc_unreachable ();
406 }
407
408
409 /* Build a GIMPLE_ASSIGN statement.
410
411 LHS of the assignment.
412 RHS of the assignment which can be unary or binary. */
413
414 gimple
415 gimple_build_assign_stat (tree lhs, tree rhs MEM_STAT_DECL)
416 {
417 enum tree_code subcode;
418 tree op1, op2, op3;
419
420 extract_ops_from_tree_1 (rhs, &subcode, &op1, &op2, &op3);
421 return gimple_build_assign_with_ops_stat (subcode, lhs, op1, op2, op3
422 PASS_MEM_STAT);
423 }
424
425
426 /* Build a GIMPLE_ASSIGN statement with sub-code SUBCODE and operands
427 OP1 and OP2. If OP2 is NULL then SUBCODE must be of class
428 GIMPLE_UNARY_RHS or GIMPLE_SINGLE_RHS. */
429
430 gimple
431 gimple_build_assign_with_ops_stat (enum tree_code subcode, tree lhs, tree op1,
432 tree op2, tree op3 MEM_STAT_DECL)
433 {
434 unsigned num_ops;
435 gimple p;
436
437 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
438 code). */
439 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
440
441 p = gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
442 PASS_MEM_STAT);
443 gimple_assign_set_lhs (p, lhs);
444 gimple_assign_set_rhs1 (p, op1);
445 if (op2)
446 {
447 gcc_assert (num_ops > 2);
448 gimple_assign_set_rhs2 (p, op2);
449 }
450
451 if (op3)
452 {
453 gcc_assert (num_ops > 3);
454 gimple_assign_set_rhs3 (p, op3);
455 }
456
457 return p;
458 }
459
460
461 /* Build a new GIMPLE_ASSIGN tuple and append it to the end of *SEQ_P.
462
463 DST/SRC are the destination and source respectively. You can pass
464 ungimplified trees in DST or SRC, in which case they will be
465 converted to a gimple operand if necessary.
466
467 This function returns the newly created GIMPLE_ASSIGN tuple. */
468
469 gimple
470 gimplify_assign (tree dst, tree src, gimple_seq *seq_p)
471 {
472 tree t = build2 (MODIFY_EXPR, TREE_TYPE (dst), dst, src);
473 gimplify_and_add (t, seq_p);
474 ggc_free (t);
475 return gimple_seq_last_stmt (*seq_p);
476 }
477
478
479 /* Build a GIMPLE_COND statement.
480
481 PRED is the condition used to compare LHS and the RHS.
482 T_LABEL is the label to jump to if the condition is true.
483 F_LABEL is the label to jump to otherwise. */
484
485 gimple
486 gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
487 tree t_label, tree f_label)
488 {
489 gimple p;
490
491 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
492 p = gimple_build_with_ops (GIMPLE_COND, pred_code, 4);
493 gimple_cond_set_lhs (p, lhs);
494 gimple_cond_set_rhs (p, rhs);
495 gimple_cond_set_true_label (p, t_label);
496 gimple_cond_set_false_label (p, f_label);
497 return p;
498 }
499
500
501 /* Extract operands for a GIMPLE_COND statement out of COND_EXPR tree COND. */
502
503 void
504 gimple_cond_get_ops_from_tree (tree cond, enum tree_code *code_p,
505 tree *lhs_p, tree *rhs_p)
506 {
507 gcc_assert (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison
508 || TREE_CODE (cond) == TRUTH_NOT_EXPR
509 || is_gimple_min_invariant (cond)
510 || SSA_VAR_P (cond));
511
512 extract_ops_from_tree (cond, code_p, lhs_p, rhs_p);
513
514 /* Canonicalize conditionals of the form 'if (!VAL)'. */
515 if (*code_p == TRUTH_NOT_EXPR)
516 {
517 *code_p = EQ_EXPR;
518 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
519 *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
520 }
521 /* Canonicalize conditionals of the form 'if (VAL)' */
522 else if (TREE_CODE_CLASS (*code_p) != tcc_comparison)
523 {
524 *code_p = NE_EXPR;
525 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
526 *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
527 }
528 }
529
530
531 /* Build a GIMPLE_COND statement from the conditional expression tree
532 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
533
534 gimple
535 gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
536 {
537 enum tree_code code;
538 tree lhs, rhs;
539
540 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
541 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
542 }
543
544 /* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
545 boolean expression tree COND. */
546
547 void
548 gimple_cond_set_condition_from_tree (gimple stmt, tree cond)
549 {
550 enum tree_code code;
551 tree lhs, rhs;
552
553 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
554 gimple_cond_set_condition (stmt, code, lhs, rhs);
555 }
556
557 /* Build a GIMPLE_LABEL statement for LABEL. */
558
559 gimple
560 gimple_build_label (tree label)
561 {
562 gimple p = gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1);
563 gimple_label_set_label (p, label);
564 return p;
565 }
566
567 /* Build a GIMPLE_GOTO statement to label DEST. */
568
569 gimple
570 gimple_build_goto (tree dest)
571 {
572 gimple p = gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1);
573 gimple_goto_set_dest (p, dest);
574 return p;
575 }
576
577
578 /* Build a GIMPLE_NOP statement. */
579
580 gimple
581 gimple_build_nop (void)
582 {
583 return gimple_alloc (GIMPLE_NOP, 0);
584 }
585
586
587 /* Build a GIMPLE_BIND statement.
588 VARS are the variables in BODY.
589 BLOCK is the containing block. */
590
591 gimple
592 gimple_build_bind (tree vars, gimple_seq body, tree block)
593 {
594 gimple p = gimple_alloc (GIMPLE_BIND, 0);
595 gimple_bind_set_vars (p, vars);
596 if (body)
597 gimple_bind_set_body (p, body);
598 if (block)
599 gimple_bind_set_block (p, block);
600 return p;
601 }
602
603 /* Helper function to set the simple fields of a asm stmt.
604
605 STRING is a pointer to a string that is the asm blocks assembly code.
606 NINPUT is the number of register inputs.
607 NOUTPUT is the number of register outputs.
608 NCLOBBERS is the number of clobbered registers.
609 */
610
611 static inline gimple
612 gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
613 unsigned nclobbers, unsigned nlabels)
614 {
615 gimple p;
616 int size = strlen (string);
617
618 /* ASMs with labels cannot have outputs. This should have been
619 enforced by the front end. */
620 gcc_assert (nlabels == 0 || noutputs == 0);
621
622 p = gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
623 ninputs + noutputs + nclobbers + nlabels);
624
625 p->gimple_asm.ni = ninputs;
626 p->gimple_asm.no = noutputs;
627 p->gimple_asm.nc = nclobbers;
628 p->gimple_asm.nl = nlabels;
629 p->gimple_asm.string = ggc_alloc_string (string, size);
630
631 #ifdef GATHER_STATISTICS
632 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
633 #endif
634
635 return p;
636 }
637
638 /* Build a GIMPLE_ASM statement.
639
640 STRING is the assembly code.
641 NINPUT is the number of register inputs.
642 NOUTPUT is the number of register outputs.
643 NCLOBBERS is the number of clobbered registers.
644 INPUTS is a vector of the input register parameters.
645 OUTPUTS is a vector of the output register parameters.
646 CLOBBERS is a vector of the clobbered register parameters.
647 LABELS is a vector of destination labels. */
648
649 gimple
650 gimple_build_asm_vec (const char *string, VEC(tree,gc)* inputs,
651 VEC(tree,gc)* outputs, VEC(tree,gc)* clobbers,
652 VEC(tree,gc)* labels)
653 {
654 gimple p;
655 unsigned i;
656
657 p = gimple_build_asm_1 (string,
658 VEC_length (tree, inputs),
659 VEC_length (tree, outputs),
660 VEC_length (tree, clobbers),
661 VEC_length (tree, labels));
662
663 for (i = 0; i < VEC_length (tree, inputs); i++)
664 gimple_asm_set_input_op (p, i, VEC_index (tree, inputs, i));
665
666 for (i = 0; i < VEC_length (tree, outputs); i++)
667 gimple_asm_set_output_op (p, i, VEC_index (tree, outputs, i));
668
669 for (i = 0; i < VEC_length (tree, clobbers); i++)
670 gimple_asm_set_clobber_op (p, i, VEC_index (tree, clobbers, i));
671
672 for (i = 0; i < VEC_length (tree, labels); i++)
673 gimple_asm_set_label_op (p, i, VEC_index (tree, labels, i));
674
675 return p;
676 }
677
678 /* Build a GIMPLE_CATCH statement.
679
680 TYPES are the catch types.
681 HANDLER is the exception handler. */
682
683 gimple
684 gimple_build_catch (tree types, gimple_seq handler)
685 {
686 gimple p = gimple_alloc (GIMPLE_CATCH, 0);
687 gimple_catch_set_types (p, types);
688 if (handler)
689 gimple_catch_set_handler (p, handler);
690
691 return p;
692 }
693
694 /* Build a GIMPLE_EH_FILTER statement.
695
696 TYPES are the filter's types.
697 FAILURE is the filter's failure action. */
698
699 gimple
700 gimple_build_eh_filter (tree types, gimple_seq failure)
701 {
702 gimple p = gimple_alloc (GIMPLE_EH_FILTER, 0);
703 gimple_eh_filter_set_types (p, types);
704 if (failure)
705 gimple_eh_filter_set_failure (p, failure);
706
707 return p;
708 }
709
710 /* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
711
712 gimple
713 gimple_build_eh_must_not_throw (tree decl)
714 {
715 gimple p = gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0);
716
717 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
718 gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
719 gimple_eh_must_not_throw_set_fndecl (p, decl);
720
721 return p;
722 }
723
724 /* Build a GIMPLE_TRY statement.
725
726 EVAL is the expression to evaluate.
727 CLEANUP is the cleanup expression.
728 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
729 whether this is a try/catch or a try/finally respectively. */
730
731 gimple
732 gimple_build_try (gimple_seq eval, gimple_seq cleanup,
733 enum gimple_try_flags kind)
734 {
735 gimple p;
736
737 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
738 p = gimple_alloc (GIMPLE_TRY, 0);
739 gimple_set_subcode (p, kind);
740 if (eval)
741 gimple_try_set_eval (p, eval);
742 if (cleanup)
743 gimple_try_set_cleanup (p, cleanup);
744
745 return p;
746 }
747
748 /* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
749
750 CLEANUP is the cleanup expression. */
751
752 gimple
753 gimple_build_wce (gimple_seq cleanup)
754 {
755 gimple p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
756 if (cleanup)
757 gimple_wce_set_cleanup (p, cleanup);
758
759 return p;
760 }
761
762
763 /* Build a GIMPLE_RESX statement. */
764
765 gimple
766 gimple_build_resx (int region)
767 {
768 gimple p = gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0);
769 p->gimple_eh_ctrl.region = region;
770 return p;
771 }
772
773
774 /* The helper for constructing a gimple switch statement.
775 INDEX is the switch's index.
776 NLABELS is the number of labels in the switch excluding the default.
777 DEFAULT_LABEL is the default label for the switch statement. */
778
779 gimple
780 gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
781 {
782 /* nlabels + 1 default label + 1 index. */
783 gimple p = gimple_build_with_ops (GIMPLE_SWITCH, ERROR_MARK,
784 1 + (default_label != NULL) + nlabels);
785 gimple_switch_set_index (p, index);
786 if (default_label)
787 gimple_switch_set_default_label (p, default_label);
788 return p;
789 }
790
791
792 /* Build a GIMPLE_SWITCH statement.
793
794 INDEX is the switch's index.
795 NLABELS is the number of labels in the switch excluding the DEFAULT_LABEL.
796 ... are the labels excluding the default. */
797
798 gimple
799 gimple_build_switch (unsigned nlabels, tree index, tree default_label, ...)
800 {
801 va_list al;
802 unsigned i, offset;
803 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
804
805 /* Store the rest of the labels. */
806 va_start (al, default_label);
807 offset = (default_label != NULL);
808 for (i = 0; i < nlabels; i++)
809 gimple_switch_set_label (p, i + offset, va_arg (al, tree));
810 va_end (al);
811
812 return p;
813 }
814
815
816 /* Build a GIMPLE_SWITCH statement.
817
818 INDEX is the switch's index.
819 DEFAULT_LABEL is the default label
820 ARGS is a vector of labels excluding the default. */
821
822 gimple
823 gimple_build_switch_vec (tree index, tree default_label, VEC(tree, heap) *args)
824 {
825 unsigned i, offset, nlabels = VEC_length (tree, args);
826 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
827
828 /* Copy the labels from the vector to the switch statement. */
829 offset = (default_label != NULL);
830 for (i = 0; i < nlabels; i++)
831 gimple_switch_set_label (p, i + offset, VEC_index (tree, args, i));
832
833 return p;
834 }
835
836 /* Build a GIMPLE_EH_DISPATCH statement. */
837
838 gimple
839 gimple_build_eh_dispatch (int region)
840 {
841 gimple p = gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0);
842 p->gimple_eh_ctrl.region = region;
843 return p;
844 }
845
846 /* Build a new GIMPLE_DEBUG_BIND statement.
847
848 VAR is bound to VALUE; block and location are taken from STMT. */
849
850 gimple
851 gimple_build_debug_bind_stat (tree var, tree value, gimple stmt MEM_STAT_DECL)
852 {
853 gimple p = gimple_build_with_ops_stat (GIMPLE_DEBUG,
854 (unsigned)GIMPLE_DEBUG_BIND, 2
855 PASS_MEM_STAT);
856
857 gimple_debug_bind_set_var (p, var);
858 gimple_debug_bind_set_value (p, value);
859 if (stmt)
860 {
861 gimple_set_block (p, gimple_block (stmt));
862 gimple_set_location (p, gimple_location (stmt));
863 }
864
865 return p;
866 }
867
868
869 /* Build a GIMPLE_OMP_CRITICAL statement.
870
871 BODY is the sequence of statements for which only one thread can execute.
872 NAME is optional identifier for this critical block. */
873
874 gimple
875 gimple_build_omp_critical (gimple_seq body, tree name)
876 {
877 gimple p = gimple_alloc (GIMPLE_OMP_CRITICAL, 0);
878 gimple_omp_critical_set_name (p, name);
879 if (body)
880 gimple_omp_set_body (p, body);
881
882 return p;
883 }
884
885 /* Build a GIMPLE_OMP_FOR statement.
886
887 BODY is sequence of statements inside the for loop.
888 CLAUSES, are any of the OMP loop construct's clauses: private, firstprivate,
889 lastprivate, reductions, ordered, schedule, and nowait.
890 COLLAPSE is the collapse count.
891 PRE_BODY is the sequence of statements that are loop invariant. */
892
893 gimple
894 gimple_build_omp_for (gimple_seq body, tree clauses, size_t collapse,
895 gimple_seq pre_body)
896 {
897 gimple p = gimple_alloc (GIMPLE_OMP_FOR, 0);
898 if (body)
899 gimple_omp_set_body (p, body);
900 gimple_omp_for_set_clauses (p, clauses);
901 p->gimple_omp_for.collapse = collapse;
902 p->gimple_omp_for.iter
903 = ggc_alloc_cleared_vec_gimple_omp_for_iter (collapse);
904 if (pre_body)
905 gimple_omp_for_set_pre_body (p, pre_body);
906
907 return p;
908 }
909
910
911 /* Build a GIMPLE_OMP_PARALLEL statement.
912
913 BODY is sequence of statements which are executed in parallel.
914 CLAUSES, are the OMP parallel construct's clauses.
915 CHILD_FN is the function created for the parallel threads to execute.
916 DATA_ARG are the shared data argument(s). */
917
918 gimple
919 gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
920 tree data_arg)
921 {
922 gimple p = gimple_alloc (GIMPLE_OMP_PARALLEL, 0);
923 if (body)
924 gimple_omp_set_body (p, body);
925 gimple_omp_parallel_set_clauses (p, clauses);
926 gimple_omp_parallel_set_child_fn (p, child_fn);
927 gimple_omp_parallel_set_data_arg (p, data_arg);
928
929 return p;
930 }
931
932
933 /* Build a GIMPLE_OMP_TASK statement.
934
935 BODY is sequence of statements which are executed by the explicit task.
936 CLAUSES, are the OMP parallel construct's clauses.
937 CHILD_FN is the function created for the parallel threads to execute.
938 DATA_ARG are the shared data argument(s).
939 COPY_FN is the optional function for firstprivate initialization.
940 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
941
942 gimple
943 gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
944 tree data_arg, tree copy_fn, tree arg_size,
945 tree arg_align)
946 {
947 gimple p = gimple_alloc (GIMPLE_OMP_TASK, 0);
948 if (body)
949 gimple_omp_set_body (p, body);
950 gimple_omp_task_set_clauses (p, clauses);
951 gimple_omp_task_set_child_fn (p, child_fn);
952 gimple_omp_task_set_data_arg (p, data_arg);
953 gimple_omp_task_set_copy_fn (p, copy_fn);
954 gimple_omp_task_set_arg_size (p, arg_size);
955 gimple_omp_task_set_arg_align (p, arg_align);
956
957 return p;
958 }
959
960
961 /* Build a GIMPLE_OMP_SECTION statement for a sections statement.
962
963 BODY is the sequence of statements in the section. */
964
965 gimple
966 gimple_build_omp_section (gimple_seq body)
967 {
968 gimple p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
969 if (body)
970 gimple_omp_set_body (p, body);
971
972 return p;
973 }
974
975
976 /* Build a GIMPLE_OMP_MASTER statement.
977
978 BODY is the sequence of statements to be executed by just the master. */
979
980 gimple
981 gimple_build_omp_master (gimple_seq body)
982 {
983 gimple p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
984 if (body)
985 gimple_omp_set_body (p, body);
986
987 return p;
988 }
989
990
991 /* Build a GIMPLE_OMP_CONTINUE statement.
992
993 CONTROL_DEF is the definition of the control variable.
994 CONTROL_USE is the use of the control variable. */
995
996 gimple
997 gimple_build_omp_continue (tree control_def, tree control_use)
998 {
999 gimple p = gimple_alloc (GIMPLE_OMP_CONTINUE, 0);
1000 gimple_omp_continue_set_control_def (p, control_def);
1001 gimple_omp_continue_set_control_use (p, control_use);
1002 return p;
1003 }
1004
1005 /* Build a GIMPLE_OMP_ORDERED statement.
1006
1007 BODY is the sequence of statements inside a loop that will executed in
1008 sequence. */
1009
1010 gimple
1011 gimple_build_omp_ordered (gimple_seq body)
1012 {
1013 gimple p = gimple_alloc (GIMPLE_OMP_ORDERED, 0);
1014 if (body)
1015 gimple_omp_set_body (p, body);
1016
1017 return p;
1018 }
1019
1020
1021 /* Build a GIMPLE_OMP_RETURN statement.
1022 WAIT_P is true if this is a non-waiting return. */
1023
1024 gimple
1025 gimple_build_omp_return (bool wait_p)
1026 {
1027 gimple p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
1028 if (wait_p)
1029 gimple_omp_return_set_nowait (p);
1030
1031 return p;
1032 }
1033
1034
1035 /* Build a GIMPLE_OMP_SECTIONS statement.
1036
1037 BODY is a sequence of section statements.
1038 CLAUSES are any of the OMP sections contsruct's clauses: private,
1039 firstprivate, lastprivate, reduction, and nowait. */
1040
1041 gimple
1042 gimple_build_omp_sections (gimple_seq body, tree clauses)
1043 {
1044 gimple p = gimple_alloc (GIMPLE_OMP_SECTIONS, 0);
1045 if (body)
1046 gimple_omp_set_body (p, body);
1047 gimple_omp_sections_set_clauses (p, clauses);
1048
1049 return p;
1050 }
1051
1052
1053 /* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
1054
1055 gimple
1056 gimple_build_omp_sections_switch (void)
1057 {
1058 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
1059 }
1060
1061
1062 /* Build a GIMPLE_OMP_SINGLE statement.
1063
1064 BODY is the sequence of statements that will be executed once.
1065 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1066 copyprivate, nowait. */
1067
1068 gimple
1069 gimple_build_omp_single (gimple_seq body, tree clauses)
1070 {
1071 gimple p = gimple_alloc (GIMPLE_OMP_SINGLE, 0);
1072 if (body)
1073 gimple_omp_set_body (p, body);
1074 gimple_omp_single_set_clauses (p, clauses);
1075
1076 return p;
1077 }
1078
1079
1080 /* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
1081
1082 gimple
1083 gimple_build_omp_atomic_load (tree lhs, tree rhs)
1084 {
1085 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0);
1086 gimple_omp_atomic_load_set_lhs (p, lhs);
1087 gimple_omp_atomic_load_set_rhs (p, rhs);
1088 return p;
1089 }
1090
1091 /* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1092
1093 VAL is the value we are storing. */
1094
1095 gimple
1096 gimple_build_omp_atomic_store (tree val)
1097 {
1098 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0);
1099 gimple_omp_atomic_store_set_val (p, val);
1100 return p;
1101 }
1102
1103 /* Build a GIMPLE_PREDICT statement. PREDICT is one of the predictors from
1104 predict.def, OUTCOME is NOT_TAKEN or TAKEN. */
1105
1106 gimple
1107 gimple_build_predict (enum br_predictor predictor, enum prediction outcome)
1108 {
1109 gimple p = gimple_alloc (GIMPLE_PREDICT, 0);
1110 /* Ensure all the predictors fit into the lower bits of the subcode. */
1111 gcc_assert ((int) END_PREDICTORS <= GF_PREDICT_TAKEN);
1112 gimple_predict_set_predictor (p, predictor);
1113 gimple_predict_set_outcome (p, outcome);
1114 return p;
1115 }
1116
1117 #if defined ENABLE_GIMPLE_CHECKING
1118 /* Complain of a gimple type mismatch and die. */
1119
1120 void
1121 gimple_check_failed (const_gimple gs, const char *file, int line,
1122 const char *function, enum gimple_code code,
1123 enum tree_code subcode)
1124 {
1125 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1126 gimple_code_name[code],
1127 tree_code_name[subcode],
1128 gimple_code_name[gimple_code (gs)],
1129 gs->gsbase.subcode > 0
1130 ? tree_code_name[gs->gsbase.subcode]
1131 : "",
1132 function, trim_filename (file), line);
1133 }
1134 #endif /* ENABLE_GIMPLE_CHECKING */
1135
1136
1137 /* Allocate a new GIMPLE sequence in GC memory and return it. If
1138 there are free sequences in GIMPLE_SEQ_CACHE return one of those
1139 instead. */
1140
1141 gimple_seq
1142 gimple_seq_alloc (void)
1143 {
1144 gimple_seq seq = gimple_seq_cache;
1145 if (seq)
1146 {
1147 gimple_seq_cache = gimple_seq_cache->next_free;
1148 gcc_assert (gimple_seq_cache != seq);
1149 memset (seq, 0, sizeof (*seq));
1150 }
1151 else
1152 {
1153 seq = ggc_alloc_cleared_gimple_seq_d ();
1154 #ifdef GATHER_STATISTICS
1155 gimple_alloc_counts[(int) gimple_alloc_kind_seq]++;
1156 gimple_alloc_sizes[(int) gimple_alloc_kind_seq] += sizeof (*seq);
1157 #endif
1158 }
1159
1160 return seq;
1161 }
1162
1163 /* Return SEQ to the free pool of GIMPLE sequences. */
1164
1165 void
1166 gimple_seq_free (gimple_seq seq)
1167 {
1168 if (seq == NULL)
1169 return;
1170
1171 gcc_assert (gimple_seq_first (seq) == NULL);
1172 gcc_assert (gimple_seq_last (seq) == NULL);
1173
1174 /* If this triggers, it's a sign that the same list is being freed
1175 twice. */
1176 gcc_assert (seq != gimple_seq_cache || gimple_seq_cache == NULL);
1177
1178 /* Add SEQ to the pool of free sequences. */
1179 seq->next_free = gimple_seq_cache;
1180 gimple_seq_cache = seq;
1181 }
1182
1183
1184 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1185 *SEQ_P is NULL, a new sequence is allocated. */
1186
1187 void
1188 gimple_seq_add_stmt (gimple_seq *seq_p, gimple gs)
1189 {
1190 gimple_stmt_iterator si;
1191
1192 if (gs == NULL)
1193 return;
1194
1195 if (*seq_p == NULL)
1196 *seq_p = gimple_seq_alloc ();
1197
1198 si = gsi_last (*seq_p);
1199 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1200 }
1201
1202
1203 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1204 NULL, a new sequence is allocated. */
1205
1206 void
1207 gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1208 {
1209 gimple_stmt_iterator si;
1210
1211 if (src == NULL)
1212 return;
1213
1214 if (*dst_p == NULL)
1215 *dst_p = gimple_seq_alloc ();
1216
1217 si = gsi_last (*dst_p);
1218 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1219 }
1220
1221
1222 /* Helper function of empty_body_p. Return true if STMT is an empty
1223 statement. */
1224
1225 static bool
1226 empty_stmt_p (gimple stmt)
1227 {
1228 if (gimple_code (stmt) == GIMPLE_NOP)
1229 return true;
1230 if (gimple_code (stmt) == GIMPLE_BIND)
1231 return empty_body_p (gimple_bind_body (stmt));
1232 return false;
1233 }
1234
1235
1236 /* Return true if BODY contains nothing but empty statements. */
1237
1238 bool
1239 empty_body_p (gimple_seq body)
1240 {
1241 gimple_stmt_iterator i;
1242
1243 if (gimple_seq_empty_p (body))
1244 return true;
1245 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
1246 if (!empty_stmt_p (gsi_stmt (i))
1247 && !is_gimple_debug (gsi_stmt (i)))
1248 return false;
1249
1250 return true;
1251 }
1252
1253
1254 /* Perform a deep copy of sequence SRC and return the result. */
1255
1256 gimple_seq
1257 gimple_seq_copy (gimple_seq src)
1258 {
1259 gimple_stmt_iterator gsi;
1260 gimple_seq new_seq = gimple_seq_alloc ();
1261 gimple stmt;
1262
1263 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1264 {
1265 stmt = gimple_copy (gsi_stmt (gsi));
1266 gimple_seq_add_stmt (&new_seq, stmt);
1267 }
1268
1269 return new_seq;
1270 }
1271
1272
1273 /* Walk all the statements in the sequence SEQ calling walk_gimple_stmt
1274 on each one. WI is as in walk_gimple_stmt.
1275
1276 If walk_gimple_stmt returns non-NULL, the walk is stopped, the
1277 value is stored in WI->CALLBACK_RESULT and the statement that
1278 produced the value is returned.
1279
1280 Otherwise, all the statements are walked and NULL returned. */
1281
1282 gimple
1283 walk_gimple_seq (gimple_seq seq, walk_stmt_fn callback_stmt,
1284 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1285 {
1286 gimple_stmt_iterator gsi;
1287
1288 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
1289 {
1290 tree ret = walk_gimple_stmt (&gsi, callback_stmt, callback_op, wi);
1291 if (ret)
1292 {
1293 /* If CALLBACK_STMT or CALLBACK_OP return a value, WI must exist
1294 to hold it. */
1295 gcc_assert (wi);
1296 wi->callback_result = ret;
1297 return gsi_stmt (gsi);
1298 }
1299 }
1300
1301 if (wi)
1302 wi->callback_result = NULL_TREE;
1303
1304 return NULL;
1305 }
1306
1307
1308 /* Helper function for walk_gimple_stmt. Walk operands of a GIMPLE_ASM. */
1309
1310 static tree
1311 walk_gimple_asm (gimple stmt, walk_tree_fn callback_op,
1312 struct walk_stmt_info *wi)
1313 {
1314 tree ret, op;
1315 unsigned noutputs;
1316 const char **oconstraints;
1317 unsigned i, n;
1318 const char *constraint;
1319 bool allows_mem, allows_reg, is_inout;
1320
1321 noutputs = gimple_asm_noutputs (stmt);
1322 oconstraints = (const char **) alloca ((noutputs) * sizeof (const char *));
1323
1324 if (wi)
1325 wi->is_lhs = true;
1326
1327 for (i = 0; i < noutputs; i++)
1328 {
1329 op = gimple_asm_output_op (stmt, i);
1330 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1331 oconstraints[i] = constraint;
1332 parse_output_constraint (&constraint, i, 0, 0, &allows_mem, &allows_reg,
1333 &is_inout);
1334 if (wi)
1335 wi->val_only = (allows_reg || !allows_mem);
1336 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1337 if (ret)
1338 return ret;
1339 }
1340
1341 n = gimple_asm_ninputs (stmt);
1342 for (i = 0; i < n; i++)
1343 {
1344 op = gimple_asm_input_op (stmt, i);
1345 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1346 parse_input_constraint (&constraint, 0, 0, noutputs, 0,
1347 oconstraints, &allows_mem, &allows_reg);
1348 if (wi)
1349 {
1350 wi->val_only = (allows_reg || !allows_mem);
1351 /* Although input "m" is not really a LHS, we need a lvalue. */
1352 wi->is_lhs = !wi->val_only;
1353 }
1354 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1355 if (ret)
1356 return ret;
1357 }
1358
1359 if (wi)
1360 {
1361 wi->is_lhs = false;
1362 wi->val_only = true;
1363 }
1364
1365 n = gimple_asm_nlabels (stmt);
1366 for (i = 0; i < n; i++)
1367 {
1368 op = gimple_asm_label_op (stmt, i);
1369 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1370 if (ret)
1371 return ret;
1372 }
1373
1374 return NULL_TREE;
1375 }
1376
1377
1378 /* Helper function of WALK_GIMPLE_STMT. Walk every tree operand in
1379 STMT. CALLBACK_OP and WI are as in WALK_GIMPLE_STMT.
1380
1381 CALLBACK_OP is called on each operand of STMT via walk_tree.
1382 Additional parameters to walk_tree must be stored in WI. For each operand
1383 OP, walk_tree is called as:
1384
1385 walk_tree (&OP, CALLBACK_OP, WI, WI->PSET)
1386
1387 If CALLBACK_OP returns non-NULL for an operand, the remaining
1388 operands are not scanned.
1389
1390 The return value is that returned by the last call to walk_tree, or
1391 NULL_TREE if no CALLBACK_OP is specified. */
1392
1393 tree
1394 walk_gimple_op (gimple stmt, walk_tree_fn callback_op,
1395 struct walk_stmt_info *wi)
1396 {
1397 struct pointer_set_t *pset = (wi) ? wi->pset : NULL;
1398 unsigned i;
1399 tree ret = NULL_TREE;
1400
1401 switch (gimple_code (stmt))
1402 {
1403 case GIMPLE_ASSIGN:
1404 /* Walk the RHS operands. If the LHS is of a non-renamable type or
1405 is a register variable, we may use a COMPONENT_REF on the RHS. */
1406 if (wi)
1407 {
1408 tree lhs = gimple_assign_lhs (stmt);
1409 wi->val_only
1410 = (is_gimple_reg_type (TREE_TYPE (lhs)) && !is_gimple_reg (lhs))
1411 || !gimple_assign_single_p (stmt);
1412 }
1413
1414 for (i = 1; i < gimple_num_ops (stmt); i++)
1415 {
1416 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi,
1417 pset);
1418 if (ret)
1419 return ret;
1420 }
1421
1422 /* Walk the LHS. If the RHS is appropriate for a memory, we
1423 may use a COMPONENT_REF on the LHS. */
1424 if (wi)
1425 {
1426 /* If the RHS has more than 1 operand, it is not appropriate
1427 for the memory. */
1428 wi->val_only = !is_gimple_mem_rhs (gimple_assign_rhs1 (stmt))
1429 || !gimple_assign_single_p (stmt);
1430 wi->is_lhs = true;
1431 }
1432
1433 ret = walk_tree (gimple_op_ptr (stmt, 0), callback_op, wi, pset);
1434 if (ret)
1435 return ret;
1436
1437 if (wi)
1438 {
1439 wi->val_only = true;
1440 wi->is_lhs = false;
1441 }
1442 break;
1443
1444 case GIMPLE_CALL:
1445 if (wi)
1446 {
1447 wi->is_lhs = false;
1448 wi->val_only = true;
1449 }
1450
1451 ret = walk_tree (gimple_call_chain_ptr (stmt), callback_op, wi, pset);
1452 if (ret)
1453 return ret;
1454
1455 ret = walk_tree (gimple_call_fn_ptr (stmt), callback_op, wi, pset);
1456 if (ret)
1457 return ret;
1458
1459 for (i = 0; i < gimple_call_num_args (stmt); i++)
1460 {
1461 if (wi)
1462 wi->val_only
1463 = is_gimple_reg_type (TREE_TYPE (gimple_call_arg (stmt, i)));
1464 ret = walk_tree (gimple_call_arg_ptr (stmt, i), callback_op, wi,
1465 pset);
1466 if (ret)
1467 return ret;
1468 }
1469
1470 if (gimple_call_lhs (stmt))
1471 {
1472 if (wi)
1473 {
1474 wi->is_lhs = true;
1475 wi->val_only
1476 = is_gimple_reg_type (TREE_TYPE (gimple_call_lhs (stmt)));
1477 }
1478
1479 ret = walk_tree (gimple_call_lhs_ptr (stmt), callback_op, wi, pset);
1480 if (ret)
1481 return ret;
1482 }
1483
1484 if (wi)
1485 {
1486 wi->is_lhs = false;
1487 wi->val_only = true;
1488 }
1489 break;
1490
1491 case GIMPLE_CATCH:
1492 ret = walk_tree (gimple_catch_types_ptr (stmt), callback_op, wi,
1493 pset);
1494 if (ret)
1495 return ret;
1496 break;
1497
1498 case GIMPLE_EH_FILTER:
1499 ret = walk_tree (gimple_eh_filter_types_ptr (stmt), callback_op, wi,
1500 pset);
1501 if (ret)
1502 return ret;
1503 break;
1504
1505 case GIMPLE_ASM:
1506 ret = walk_gimple_asm (stmt, callback_op, wi);
1507 if (ret)
1508 return ret;
1509 break;
1510
1511 case GIMPLE_OMP_CONTINUE:
1512 ret = walk_tree (gimple_omp_continue_control_def_ptr (stmt),
1513 callback_op, wi, pset);
1514 if (ret)
1515 return ret;
1516
1517 ret = walk_tree (gimple_omp_continue_control_use_ptr (stmt),
1518 callback_op, wi, pset);
1519 if (ret)
1520 return ret;
1521 break;
1522
1523 case GIMPLE_OMP_CRITICAL:
1524 ret = walk_tree (gimple_omp_critical_name_ptr (stmt), callback_op, wi,
1525 pset);
1526 if (ret)
1527 return ret;
1528 break;
1529
1530 case GIMPLE_OMP_FOR:
1531 ret = walk_tree (gimple_omp_for_clauses_ptr (stmt), callback_op, wi,
1532 pset);
1533 if (ret)
1534 return ret;
1535 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1536 {
1537 ret = walk_tree (gimple_omp_for_index_ptr (stmt, i), callback_op,
1538 wi, pset);
1539 if (ret)
1540 return ret;
1541 ret = walk_tree (gimple_omp_for_initial_ptr (stmt, i), callback_op,
1542 wi, pset);
1543 if (ret)
1544 return ret;
1545 ret = walk_tree (gimple_omp_for_final_ptr (stmt, i), callback_op,
1546 wi, pset);
1547 if (ret)
1548 return ret;
1549 ret = walk_tree (gimple_omp_for_incr_ptr (stmt, i), callback_op,
1550 wi, pset);
1551 }
1552 if (ret)
1553 return ret;
1554 break;
1555
1556 case GIMPLE_OMP_PARALLEL:
1557 ret = walk_tree (gimple_omp_parallel_clauses_ptr (stmt), callback_op,
1558 wi, pset);
1559 if (ret)
1560 return ret;
1561 ret = walk_tree (gimple_omp_parallel_child_fn_ptr (stmt), callback_op,
1562 wi, pset);
1563 if (ret)
1564 return ret;
1565 ret = walk_tree (gimple_omp_parallel_data_arg_ptr (stmt), callback_op,
1566 wi, pset);
1567 if (ret)
1568 return ret;
1569 break;
1570
1571 case GIMPLE_OMP_TASK:
1572 ret = walk_tree (gimple_omp_task_clauses_ptr (stmt), callback_op,
1573 wi, pset);
1574 if (ret)
1575 return ret;
1576 ret = walk_tree (gimple_omp_task_child_fn_ptr (stmt), callback_op,
1577 wi, pset);
1578 if (ret)
1579 return ret;
1580 ret = walk_tree (gimple_omp_task_data_arg_ptr (stmt), callback_op,
1581 wi, pset);
1582 if (ret)
1583 return ret;
1584 ret = walk_tree (gimple_omp_task_copy_fn_ptr (stmt), callback_op,
1585 wi, pset);
1586 if (ret)
1587 return ret;
1588 ret = walk_tree (gimple_omp_task_arg_size_ptr (stmt), callback_op,
1589 wi, pset);
1590 if (ret)
1591 return ret;
1592 ret = walk_tree (gimple_omp_task_arg_align_ptr (stmt), callback_op,
1593 wi, pset);
1594 if (ret)
1595 return ret;
1596 break;
1597
1598 case GIMPLE_OMP_SECTIONS:
1599 ret = walk_tree (gimple_omp_sections_clauses_ptr (stmt), callback_op,
1600 wi, pset);
1601 if (ret)
1602 return ret;
1603
1604 ret = walk_tree (gimple_omp_sections_control_ptr (stmt), callback_op,
1605 wi, pset);
1606 if (ret)
1607 return ret;
1608
1609 break;
1610
1611 case GIMPLE_OMP_SINGLE:
1612 ret = walk_tree (gimple_omp_single_clauses_ptr (stmt), callback_op, wi,
1613 pset);
1614 if (ret)
1615 return ret;
1616 break;
1617
1618 case GIMPLE_OMP_ATOMIC_LOAD:
1619 ret = walk_tree (gimple_omp_atomic_load_lhs_ptr (stmt), callback_op, wi,
1620 pset);
1621 if (ret)
1622 return ret;
1623
1624 ret = walk_tree (gimple_omp_atomic_load_rhs_ptr (stmt), callback_op, wi,
1625 pset);
1626 if (ret)
1627 return ret;
1628 break;
1629
1630 case GIMPLE_OMP_ATOMIC_STORE:
1631 ret = walk_tree (gimple_omp_atomic_store_val_ptr (stmt), callback_op,
1632 wi, pset);
1633 if (ret)
1634 return ret;
1635 break;
1636
1637 /* Tuples that do not have operands. */
1638 case GIMPLE_NOP:
1639 case GIMPLE_RESX:
1640 case GIMPLE_OMP_RETURN:
1641 case GIMPLE_PREDICT:
1642 break;
1643
1644 default:
1645 {
1646 enum gimple_statement_structure_enum gss;
1647 gss = gimple_statement_structure (stmt);
1648 if (gss == GSS_WITH_OPS || gss == GSS_WITH_MEM_OPS)
1649 for (i = 0; i < gimple_num_ops (stmt); i++)
1650 {
1651 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi, pset);
1652 if (ret)
1653 return ret;
1654 }
1655 }
1656 break;
1657 }
1658
1659 return NULL_TREE;
1660 }
1661
1662
1663 /* Walk the current statement in GSI (optionally using traversal state
1664 stored in WI). If WI is NULL, no state is kept during traversal.
1665 The callback CALLBACK_STMT is called. If CALLBACK_STMT indicates
1666 that it has handled all the operands of the statement, its return
1667 value is returned. Otherwise, the return value from CALLBACK_STMT
1668 is discarded and its operands are scanned.
1669
1670 If CALLBACK_STMT is NULL or it didn't handle the operands,
1671 CALLBACK_OP is called on each operand of the statement via
1672 walk_gimple_op. If walk_gimple_op returns non-NULL for any
1673 operand, the remaining operands are not scanned. In this case, the
1674 return value from CALLBACK_OP is returned.
1675
1676 In any other case, NULL_TREE is returned. */
1677
1678 tree
1679 walk_gimple_stmt (gimple_stmt_iterator *gsi, walk_stmt_fn callback_stmt,
1680 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1681 {
1682 gimple ret;
1683 tree tree_ret;
1684 gimple stmt = gsi_stmt (*gsi);
1685
1686 if (wi)
1687 wi->gsi = *gsi;
1688
1689 if (wi && wi->want_locations && gimple_has_location (stmt))
1690 input_location = gimple_location (stmt);
1691
1692 ret = NULL;
1693
1694 /* Invoke the statement callback. Return if the callback handled
1695 all of STMT operands by itself. */
1696 if (callback_stmt)
1697 {
1698 bool handled_ops = false;
1699 tree_ret = callback_stmt (gsi, &handled_ops, wi);
1700 if (handled_ops)
1701 return tree_ret;
1702
1703 /* If CALLBACK_STMT did not handle operands, it should not have
1704 a value to return. */
1705 gcc_assert (tree_ret == NULL);
1706
1707 /* Re-read stmt in case the callback changed it. */
1708 stmt = gsi_stmt (*gsi);
1709 }
1710
1711 /* If CALLBACK_OP is defined, invoke it on every operand of STMT. */
1712 if (callback_op)
1713 {
1714 tree_ret = walk_gimple_op (stmt, callback_op, wi);
1715 if (tree_ret)
1716 return tree_ret;
1717 }
1718
1719 /* If STMT can have statements inside (e.g. GIMPLE_BIND), walk them. */
1720 switch (gimple_code (stmt))
1721 {
1722 case GIMPLE_BIND:
1723 ret = walk_gimple_seq (gimple_bind_body (stmt), callback_stmt,
1724 callback_op, wi);
1725 if (ret)
1726 return wi->callback_result;
1727 break;
1728
1729 case GIMPLE_CATCH:
1730 ret = walk_gimple_seq (gimple_catch_handler (stmt), callback_stmt,
1731 callback_op, wi);
1732 if (ret)
1733 return wi->callback_result;
1734 break;
1735
1736 case GIMPLE_EH_FILTER:
1737 ret = walk_gimple_seq (gimple_eh_filter_failure (stmt), callback_stmt,
1738 callback_op, wi);
1739 if (ret)
1740 return wi->callback_result;
1741 break;
1742
1743 case GIMPLE_TRY:
1744 ret = walk_gimple_seq (gimple_try_eval (stmt), callback_stmt, callback_op,
1745 wi);
1746 if (ret)
1747 return wi->callback_result;
1748
1749 ret = walk_gimple_seq (gimple_try_cleanup (stmt), callback_stmt,
1750 callback_op, wi);
1751 if (ret)
1752 return wi->callback_result;
1753 break;
1754
1755 case GIMPLE_OMP_FOR:
1756 ret = walk_gimple_seq (gimple_omp_for_pre_body (stmt), callback_stmt,
1757 callback_op, wi);
1758 if (ret)
1759 return wi->callback_result;
1760
1761 /* FALL THROUGH. */
1762 case GIMPLE_OMP_CRITICAL:
1763 case GIMPLE_OMP_MASTER:
1764 case GIMPLE_OMP_ORDERED:
1765 case GIMPLE_OMP_SECTION:
1766 case GIMPLE_OMP_PARALLEL:
1767 case GIMPLE_OMP_TASK:
1768 case GIMPLE_OMP_SECTIONS:
1769 case GIMPLE_OMP_SINGLE:
1770 ret = walk_gimple_seq (gimple_omp_body (stmt), callback_stmt, callback_op,
1771 wi);
1772 if (ret)
1773 return wi->callback_result;
1774 break;
1775
1776 case GIMPLE_WITH_CLEANUP_EXPR:
1777 ret = walk_gimple_seq (gimple_wce_cleanup (stmt), callback_stmt,
1778 callback_op, wi);
1779 if (ret)
1780 return wi->callback_result;
1781 break;
1782
1783 default:
1784 gcc_assert (!gimple_has_substatements (stmt));
1785 break;
1786 }
1787
1788 return NULL;
1789 }
1790
1791
1792 /* Set sequence SEQ to be the GIMPLE body for function FN. */
1793
1794 void
1795 gimple_set_body (tree fndecl, gimple_seq seq)
1796 {
1797 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1798 if (fn == NULL)
1799 {
1800 /* If FNDECL still does not have a function structure associated
1801 with it, then it does not make sense for it to receive a
1802 GIMPLE body. */
1803 gcc_assert (seq == NULL);
1804 }
1805 else
1806 fn->gimple_body = seq;
1807 }
1808
1809
1810 /* Return the body of GIMPLE statements for function FN. After the
1811 CFG pass, the function body doesn't exist anymore because it has
1812 been split up into basic blocks. In this case, it returns
1813 NULL. */
1814
1815 gimple_seq
1816 gimple_body (tree fndecl)
1817 {
1818 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1819 return fn ? fn->gimple_body : NULL;
1820 }
1821
1822 /* Return true when FNDECL has Gimple body either in unlowered
1823 or CFG form. */
1824 bool
1825 gimple_has_body_p (tree fndecl)
1826 {
1827 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1828 return (gimple_body (fndecl) || (fn && fn->cfg));
1829 }
1830
1831 /* Return true if calls C1 and C2 are known to go to the same function. */
1832
1833 bool
1834 gimple_call_same_target_p (const_gimple c1, const_gimple c2)
1835 {
1836 if (gimple_call_internal_p (c1))
1837 return (gimple_call_internal_p (c2)
1838 && gimple_call_internal_fn (c1) == gimple_call_internal_fn (c2));
1839 else
1840 return (gimple_call_fn (c1) == gimple_call_fn (c2)
1841 || (gimple_call_fndecl (c1)
1842 && gimple_call_fndecl (c1) == gimple_call_fndecl (c2)));
1843 }
1844
1845 /* Detect flags from a GIMPLE_CALL. This is just like
1846 call_expr_flags, but for gimple tuples. */
1847
1848 int
1849 gimple_call_flags (const_gimple stmt)
1850 {
1851 int flags;
1852 tree decl = gimple_call_fndecl (stmt);
1853
1854 if (decl)
1855 flags = flags_from_decl_or_type (decl);
1856 else if (gimple_call_internal_p (stmt))
1857 flags = internal_fn_flags (gimple_call_internal_fn (stmt));
1858 else
1859 flags = flags_from_decl_or_type (gimple_call_fntype (stmt));
1860
1861 if (stmt->gsbase.subcode & GF_CALL_NOTHROW)
1862 flags |= ECF_NOTHROW;
1863
1864 return flags;
1865 }
1866
1867 /* Return the "fn spec" string for call STMT. */
1868
1869 static tree
1870 gimple_call_fnspec (const_gimple stmt)
1871 {
1872 tree type, attr;
1873
1874 type = gimple_call_fntype (stmt);
1875 if (!type)
1876 return NULL_TREE;
1877
1878 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1879 if (!attr)
1880 return NULL_TREE;
1881
1882 return TREE_VALUE (TREE_VALUE (attr));
1883 }
1884
1885 /* Detects argument flags for argument number ARG on call STMT. */
1886
1887 int
1888 gimple_call_arg_flags (const_gimple stmt, unsigned arg)
1889 {
1890 tree attr = gimple_call_fnspec (stmt);
1891
1892 if (!attr || 1 + arg >= (unsigned) TREE_STRING_LENGTH (attr))
1893 return 0;
1894
1895 switch (TREE_STRING_POINTER (attr)[1 + arg])
1896 {
1897 case 'x':
1898 case 'X':
1899 return EAF_UNUSED;
1900
1901 case 'R':
1902 return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE;
1903
1904 case 'r':
1905 return EAF_NOCLOBBER | EAF_NOESCAPE;
1906
1907 case 'W':
1908 return EAF_DIRECT | EAF_NOESCAPE;
1909
1910 case 'w':
1911 return EAF_NOESCAPE;
1912
1913 case '.':
1914 default:
1915 return 0;
1916 }
1917 }
1918
1919 /* Detects return flags for the call STMT. */
1920
1921 int
1922 gimple_call_return_flags (const_gimple stmt)
1923 {
1924 tree attr;
1925
1926 if (gimple_call_flags (stmt) & ECF_MALLOC)
1927 return ERF_NOALIAS;
1928
1929 attr = gimple_call_fnspec (stmt);
1930 if (!attr || TREE_STRING_LENGTH (attr) < 1)
1931 return 0;
1932
1933 switch (TREE_STRING_POINTER (attr)[0])
1934 {
1935 case '1':
1936 case '2':
1937 case '3':
1938 case '4':
1939 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
1940
1941 case 'm':
1942 return ERF_NOALIAS;
1943
1944 case '.':
1945 default:
1946 return 0;
1947 }
1948 }
1949
1950
1951 /* Return true if GS is a copy assignment. */
1952
1953 bool
1954 gimple_assign_copy_p (gimple gs)
1955 {
1956 return (gimple_assign_single_p (gs)
1957 && is_gimple_val (gimple_op (gs, 1)));
1958 }
1959
1960
1961 /* Return true if GS is a SSA_NAME copy assignment. */
1962
1963 bool
1964 gimple_assign_ssa_name_copy_p (gimple gs)
1965 {
1966 return (gimple_assign_single_p (gs)
1967 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1968 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1969 }
1970
1971
1972 /* Return true if GS is an assignment with a unary RHS, but the
1973 operator has no effect on the assigned value. The logic is adapted
1974 from STRIP_NOPS. This predicate is intended to be used in tuplifying
1975 instances in which STRIP_NOPS was previously applied to the RHS of
1976 an assignment.
1977
1978 NOTE: In the use cases that led to the creation of this function
1979 and of gimple_assign_single_p, it is typical to test for either
1980 condition and to proceed in the same manner. In each case, the
1981 assigned value is represented by the single RHS operand of the
1982 assignment. I suspect there may be cases where gimple_assign_copy_p,
1983 gimple_assign_single_p, or equivalent logic is used where a similar
1984 treatment of unary NOPs is appropriate. */
1985
1986 bool
1987 gimple_assign_unary_nop_p (gimple gs)
1988 {
1989 return (is_gimple_assign (gs)
1990 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
1991 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
1992 && gimple_assign_rhs1 (gs) != error_mark_node
1993 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
1994 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
1995 }
1996
1997 /* Set BB to be the basic block holding G. */
1998
1999 void
2000 gimple_set_bb (gimple stmt, basic_block bb)
2001 {
2002 stmt->gsbase.bb = bb;
2003
2004 /* If the statement is a label, add the label to block-to-labels map
2005 so that we can speed up edge creation for GIMPLE_GOTOs. */
2006 if (cfun->cfg && gimple_code (stmt) == GIMPLE_LABEL)
2007 {
2008 tree t;
2009 int uid;
2010
2011 t = gimple_label_label (stmt);
2012 uid = LABEL_DECL_UID (t);
2013 if (uid == -1)
2014 {
2015 unsigned old_len = VEC_length (basic_block, label_to_block_map);
2016 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
2017 if (old_len <= (unsigned) uid)
2018 {
2019 unsigned new_len = 3 * uid / 2 + 1;
2020
2021 VEC_safe_grow_cleared (basic_block, gc, label_to_block_map,
2022 new_len);
2023 }
2024 }
2025
2026 VEC_replace (basic_block, label_to_block_map, uid, bb);
2027 }
2028 }
2029
2030
2031 /* Modify the RHS of the assignment pointed-to by GSI using the
2032 operands in the expression tree EXPR.
2033
2034 NOTE: The statement pointed-to by GSI may be reallocated if it
2035 did not have enough operand slots.
2036
2037 This function is useful to convert an existing tree expression into
2038 the flat representation used for the RHS of a GIMPLE assignment.
2039 It will reallocate memory as needed to expand or shrink the number
2040 of operand slots needed to represent EXPR.
2041
2042 NOTE: If you find yourself building a tree and then calling this
2043 function, you are most certainly doing it the slow way. It is much
2044 better to build a new assignment or to use the function
2045 gimple_assign_set_rhs_with_ops, which does not require an
2046 expression tree to be built. */
2047
2048 void
2049 gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
2050 {
2051 enum tree_code subcode;
2052 tree op1, op2, op3;
2053
2054 extract_ops_from_tree_1 (expr, &subcode, &op1, &op2, &op3);
2055 gimple_assign_set_rhs_with_ops_1 (gsi, subcode, op1, op2, op3);
2056 }
2057
2058
2059 /* Set the RHS of assignment statement pointed-to by GSI to CODE with
2060 operands OP1, OP2 and OP3.
2061
2062 NOTE: The statement pointed-to by GSI may be reallocated if it
2063 did not have enough operand slots. */
2064
2065 void
2066 gimple_assign_set_rhs_with_ops_1 (gimple_stmt_iterator *gsi, enum tree_code code,
2067 tree op1, tree op2, tree op3)
2068 {
2069 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
2070 gimple stmt = gsi_stmt (*gsi);
2071
2072 /* If the new CODE needs more operands, allocate a new statement. */
2073 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
2074 {
2075 tree lhs = gimple_assign_lhs (stmt);
2076 gimple new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
2077 memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
2078 gsi_replace (gsi, new_stmt, true);
2079 stmt = new_stmt;
2080
2081 /* The LHS needs to be reset as this also changes the SSA name
2082 on the LHS. */
2083 gimple_assign_set_lhs (stmt, lhs);
2084 }
2085
2086 gimple_set_num_ops (stmt, new_rhs_ops + 1);
2087 gimple_set_subcode (stmt, code);
2088 gimple_assign_set_rhs1 (stmt, op1);
2089 if (new_rhs_ops > 1)
2090 gimple_assign_set_rhs2 (stmt, op2);
2091 if (new_rhs_ops > 2)
2092 gimple_assign_set_rhs3 (stmt, op3);
2093 }
2094
2095
2096 /* Return the LHS of a statement that performs an assignment,
2097 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
2098 for a call to a function that returns no value, or for a
2099 statement other than an assignment or a call. */
2100
2101 tree
2102 gimple_get_lhs (const_gimple stmt)
2103 {
2104 enum gimple_code code = gimple_code (stmt);
2105
2106 if (code == GIMPLE_ASSIGN)
2107 return gimple_assign_lhs (stmt);
2108 else if (code == GIMPLE_CALL)
2109 return gimple_call_lhs (stmt);
2110 else
2111 return NULL_TREE;
2112 }
2113
2114
2115 /* Set the LHS of a statement that performs an assignment,
2116 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2117
2118 void
2119 gimple_set_lhs (gimple stmt, tree lhs)
2120 {
2121 enum gimple_code code = gimple_code (stmt);
2122
2123 if (code == GIMPLE_ASSIGN)
2124 gimple_assign_set_lhs (stmt, lhs);
2125 else if (code == GIMPLE_CALL)
2126 gimple_call_set_lhs (stmt, lhs);
2127 else
2128 gcc_unreachable();
2129 }
2130
2131 /* Replace the LHS of STMT, an assignment, either a GIMPLE_ASSIGN or a
2132 GIMPLE_CALL, with NLHS, in preparation for modifying the RHS to an
2133 expression with a different value.
2134
2135 This will update any annotations (say debug bind stmts) referring
2136 to the original LHS, so that they use the RHS instead. This is
2137 done even if NLHS and LHS are the same, for it is understood that
2138 the RHS will be modified afterwards, and NLHS will not be assigned
2139 an equivalent value.
2140
2141 Adjusting any non-annotation uses of the LHS, if needed, is a
2142 responsibility of the caller.
2143
2144 The effect of this call should be pretty much the same as that of
2145 inserting a copy of STMT before STMT, and then removing the
2146 original stmt, at which time gsi_remove() would have update
2147 annotations, but using this function saves all the inserting,
2148 copying and removing. */
2149
2150 void
2151 gimple_replace_lhs (gimple stmt, tree nlhs)
2152 {
2153 if (MAY_HAVE_DEBUG_STMTS)
2154 {
2155 tree lhs = gimple_get_lhs (stmt);
2156
2157 gcc_assert (SSA_NAME_DEF_STMT (lhs) == stmt);
2158
2159 insert_debug_temp_for_var_def (NULL, lhs);
2160 }
2161
2162 gimple_set_lhs (stmt, nlhs);
2163 }
2164
2165 /* Return a deep copy of statement STMT. All the operands from STMT
2166 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
2167 and VUSE operand arrays are set to empty in the new copy. */
2168
2169 gimple
2170 gimple_copy (gimple stmt)
2171 {
2172 enum gimple_code code = gimple_code (stmt);
2173 unsigned num_ops = gimple_num_ops (stmt);
2174 gimple copy = gimple_alloc (code, num_ops);
2175 unsigned i;
2176
2177 /* Shallow copy all the fields from STMT. */
2178 memcpy (copy, stmt, gimple_size (code));
2179
2180 /* If STMT has sub-statements, deep-copy them as well. */
2181 if (gimple_has_substatements (stmt))
2182 {
2183 gimple_seq new_seq;
2184 tree t;
2185
2186 switch (gimple_code (stmt))
2187 {
2188 case GIMPLE_BIND:
2189 new_seq = gimple_seq_copy (gimple_bind_body (stmt));
2190 gimple_bind_set_body (copy, new_seq);
2191 gimple_bind_set_vars (copy, unshare_expr (gimple_bind_vars (stmt)));
2192 gimple_bind_set_block (copy, gimple_bind_block (stmt));
2193 break;
2194
2195 case GIMPLE_CATCH:
2196 new_seq = gimple_seq_copy (gimple_catch_handler (stmt));
2197 gimple_catch_set_handler (copy, new_seq);
2198 t = unshare_expr (gimple_catch_types (stmt));
2199 gimple_catch_set_types (copy, t);
2200 break;
2201
2202 case GIMPLE_EH_FILTER:
2203 new_seq = gimple_seq_copy (gimple_eh_filter_failure (stmt));
2204 gimple_eh_filter_set_failure (copy, new_seq);
2205 t = unshare_expr (gimple_eh_filter_types (stmt));
2206 gimple_eh_filter_set_types (copy, t);
2207 break;
2208
2209 case GIMPLE_TRY:
2210 new_seq = gimple_seq_copy (gimple_try_eval (stmt));
2211 gimple_try_set_eval (copy, new_seq);
2212 new_seq = gimple_seq_copy (gimple_try_cleanup (stmt));
2213 gimple_try_set_cleanup (copy, new_seq);
2214 break;
2215
2216 case GIMPLE_OMP_FOR:
2217 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
2218 gimple_omp_for_set_pre_body (copy, new_seq);
2219 t = unshare_expr (gimple_omp_for_clauses (stmt));
2220 gimple_omp_for_set_clauses (copy, t);
2221 copy->gimple_omp_for.iter
2222 = ggc_alloc_vec_gimple_omp_for_iter
2223 (gimple_omp_for_collapse (stmt));
2224 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
2225 {
2226 gimple_omp_for_set_cond (copy, i,
2227 gimple_omp_for_cond (stmt, i));
2228 gimple_omp_for_set_index (copy, i,
2229 gimple_omp_for_index (stmt, i));
2230 t = unshare_expr (gimple_omp_for_initial (stmt, i));
2231 gimple_omp_for_set_initial (copy, i, t);
2232 t = unshare_expr (gimple_omp_for_final (stmt, i));
2233 gimple_omp_for_set_final (copy, i, t);
2234 t = unshare_expr (gimple_omp_for_incr (stmt, i));
2235 gimple_omp_for_set_incr (copy, i, t);
2236 }
2237 goto copy_omp_body;
2238
2239 case GIMPLE_OMP_PARALLEL:
2240 t = unshare_expr (gimple_omp_parallel_clauses (stmt));
2241 gimple_omp_parallel_set_clauses (copy, t);
2242 t = unshare_expr (gimple_omp_parallel_child_fn (stmt));
2243 gimple_omp_parallel_set_child_fn (copy, t);
2244 t = unshare_expr (gimple_omp_parallel_data_arg (stmt));
2245 gimple_omp_parallel_set_data_arg (copy, t);
2246 goto copy_omp_body;
2247
2248 case GIMPLE_OMP_TASK:
2249 t = unshare_expr (gimple_omp_task_clauses (stmt));
2250 gimple_omp_task_set_clauses (copy, t);
2251 t = unshare_expr (gimple_omp_task_child_fn (stmt));
2252 gimple_omp_task_set_child_fn (copy, t);
2253 t = unshare_expr (gimple_omp_task_data_arg (stmt));
2254 gimple_omp_task_set_data_arg (copy, t);
2255 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
2256 gimple_omp_task_set_copy_fn (copy, t);
2257 t = unshare_expr (gimple_omp_task_arg_size (stmt));
2258 gimple_omp_task_set_arg_size (copy, t);
2259 t = unshare_expr (gimple_omp_task_arg_align (stmt));
2260 gimple_omp_task_set_arg_align (copy, t);
2261 goto copy_omp_body;
2262
2263 case GIMPLE_OMP_CRITICAL:
2264 t = unshare_expr (gimple_omp_critical_name (stmt));
2265 gimple_omp_critical_set_name (copy, t);
2266 goto copy_omp_body;
2267
2268 case GIMPLE_OMP_SECTIONS:
2269 t = unshare_expr (gimple_omp_sections_clauses (stmt));
2270 gimple_omp_sections_set_clauses (copy, t);
2271 t = unshare_expr (gimple_omp_sections_control (stmt));
2272 gimple_omp_sections_set_control (copy, t);
2273 /* FALLTHRU */
2274
2275 case GIMPLE_OMP_SINGLE:
2276 case GIMPLE_OMP_SECTION:
2277 case GIMPLE_OMP_MASTER:
2278 case GIMPLE_OMP_ORDERED:
2279 copy_omp_body:
2280 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
2281 gimple_omp_set_body (copy, new_seq);
2282 break;
2283
2284 case GIMPLE_WITH_CLEANUP_EXPR:
2285 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
2286 gimple_wce_set_cleanup (copy, new_seq);
2287 break;
2288
2289 default:
2290 gcc_unreachable ();
2291 }
2292 }
2293
2294 /* Make copy of operands. */
2295 if (num_ops > 0)
2296 {
2297 for (i = 0; i < num_ops; i++)
2298 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
2299
2300 /* Clear out SSA operand vectors on COPY. */
2301 if (gimple_has_ops (stmt))
2302 {
2303 gimple_set_def_ops (copy, NULL);
2304 gimple_set_use_ops (copy, NULL);
2305 }
2306
2307 if (gimple_has_mem_ops (stmt))
2308 {
2309 gimple_set_vdef (copy, gimple_vdef (stmt));
2310 gimple_set_vuse (copy, gimple_vuse (stmt));
2311 }
2312
2313 /* SSA operands need to be updated. */
2314 gimple_set_modified (copy, true);
2315 }
2316
2317 return copy;
2318 }
2319
2320
2321 /* Set the MODIFIED flag to MODIFIEDP, iff the gimple statement G has
2322 a MODIFIED field. */
2323
2324 void
2325 gimple_set_modified (gimple s, bool modifiedp)
2326 {
2327 if (gimple_has_ops (s))
2328 s->gsbase.modified = (unsigned) modifiedp;
2329 }
2330
2331
2332 /* Return true if statement S has side-effects. We consider a
2333 statement to have side effects if:
2334
2335 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
2336 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
2337
2338 bool
2339 gimple_has_side_effects (const_gimple s)
2340 {
2341 unsigned i;
2342
2343 if (is_gimple_debug (s))
2344 return false;
2345
2346 /* We don't have to scan the arguments to check for
2347 volatile arguments, though, at present, we still
2348 do a scan to check for TREE_SIDE_EFFECTS. */
2349 if (gimple_has_volatile_ops (s))
2350 return true;
2351
2352 if (gimple_code (s) == GIMPLE_ASM
2353 && gimple_asm_volatile_p (s))
2354 return true;
2355
2356 if (is_gimple_call (s))
2357 {
2358 unsigned nargs = gimple_call_num_args (s);
2359 tree fn;
2360
2361 if (!(gimple_call_flags (s) & (ECF_CONST | ECF_PURE)))
2362 return true;
2363 else if (gimple_call_flags (s) & ECF_LOOPING_CONST_OR_PURE)
2364 /* An infinite loop is considered a side effect. */
2365 return true;
2366
2367 if (gimple_call_lhs (s)
2368 && TREE_SIDE_EFFECTS (gimple_call_lhs (s)))
2369 {
2370 gcc_checking_assert (gimple_has_volatile_ops (s));
2371 return true;
2372 }
2373
2374 fn = gimple_call_fn (s);
2375 if (fn && TREE_SIDE_EFFECTS (fn))
2376 return true;
2377
2378 for (i = 0; i < nargs; i++)
2379 if (TREE_SIDE_EFFECTS (gimple_call_arg (s, i)))
2380 {
2381 gcc_checking_assert (gimple_has_volatile_ops (s));
2382 return true;
2383 }
2384
2385 return false;
2386 }
2387 else
2388 {
2389 for (i = 0; i < gimple_num_ops (s); i++)
2390 {
2391 tree op = gimple_op (s, i);
2392 if (op && TREE_SIDE_EFFECTS (op))
2393 {
2394 gcc_checking_assert (gimple_has_volatile_ops (s));
2395 return true;
2396 }
2397 }
2398 }
2399
2400 return false;
2401 }
2402
2403 /* Return true if the RHS of statement S has side effects.
2404 We may use it to determine if it is admissable to replace
2405 an assignment or call with a copy of a previously-computed
2406 value. In such cases, side-effects due to the LHS are
2407 preserved. */
2408
2409 bool
2410 gimple_rhs_has_side_effects (const_gimple s)
2411 {
2412 unsigned i;
2413
2414 if (is_gimple_call (s))
2415 {
2416 unsigned nargs = gimple_call_num_args (s);
2417 tree fn;
2418
2419 if (!(gimple_call_flags (s) & (ECF_CONST | ECF_PURE)))
2420 return true;
2421
2422 /* We cannot use gimple_has_volatile_ops here,
2423 because we must ignore a volatile LHS. */
2424 fn = gimple_call_fn (s);
2425 if (fn && (TREE_SIDE_EFFECTS (fn) || TREE_THIS_VOLATILE (fn)))
2426 {
2427 gcc_assert (gimple_has_volatile_ops (s));
2428 return true;
2429 }
2430
2431 for (i = 0; i < nargs; i++)
2432 if (TREE_SIDE_EFFECTS (gimple_call_arg (s, i))
2433 || TREE_THIS_VOLATILE (gimple_call_arg (s, i)))
2434 return true;
2435
2436 return false;
2437 }
2438 else if (is_gimple_assign (s))
2439 {
2440 /* Skip the first operand, the LHS. */
2441 for (i = 1; i < gimple_num_ops (s); i++)
2442 if (TREE_SIDE_EFFECTS (gimple_op (s, i))
2443 || TREE_THIS_VOLATILE (gimple_op (s, i)))
2444 {
2445 gcc_assert (gimple_has_volatile_ops (s));
2446 return true;
2447 }
2448 }
2449 else if (is_gimple_debug (s))
2450 return false;
2451 else
2452 {
2453 /* For statements without an LHS, examine all arguments. */
2454 for (i = 0; i < gimple_num_ops (s); i++)
2455 if (TREE_SIDE_EFFECTS (gimple_op (s, i))
2456 || TREE_THIS_VOLATILE (gimple_op (s, i)))
2457 {
2458 gcc_assert (gimple_has_volatile_ops (s));
2459 return true;
2460 }
2461 }
2462
2463 return false;
2464 }
2465
2466 /* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
2467 Return true if S can trap. When INCLUDE_MEM is true, check whether
2468 the memory operations could trap. When INCLUDE_STORES is true and
2469 S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked. */
2470
2471 bool
2472 gimple_could_trap_p_1 (gimple s, bool include_mem, bool include_stores)
2473 {
2474 tree t, div = NULL_TREE;
2475 enum tree_code op;
2476
2477 if (include_mem)
2478 {
2479 unsigned i, start = (is_gimple_assign (s) && !include_stores) ? 1 : 0;
2480
2481 for (i = start; i < gimple_num_ops (s); i++)
2482 if (tree_could_trap_p (gimple_op (s, i)))
2483 return true;
2484 }
2485
2486 switch (gimple_code (s))
2487 {
2488 case GIMPLE_ASM:
2489 return gimple_asm_volatile_p (s);
2490
2491 case GIMPLE_CALL:
2492 t = gimple_call_fndecl (s);
2493 /* Assume that calls to weak functions may trap. */
2494 if (!t || !DECL_P (t) || DECL_WEAK (t))
2495 return true;
2496 return false;
2497
2498 case GIMPLE_ASSIGN:
2499 t = gimple_expr_type (s);
2500 op = gimple_assign_rhs_code (s);
2501 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
2502 div = gimple_assign_rhs2 (s);
2503 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
2504 (INTEGRAL_TYPE_P (t)
2505 && TYPE_OVERFLOW_TRAPS (t)),
2506 div));
2507
2508 default:
2509 break;
2510 }
2511
2512 return false;
2513 }
2514
2515 /* Return true if statement S can trap. */
2516
2517 bool
2518 gimple_could_trap_p (gimple s)
2519 {
2520 return gimple_could_trap_p_1 (s, true, true);
2521 }
2522
2523 /* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
2524
2525 bool
2526 gimple_assign_rhs_could_trap_p (gimple s)
2527 {
2528 gcc_assert (is_gimple_assign (s));
2529 return gimple_could_trap_p_1 (s, true, false);
2530 }
2531
2532
2533 /* Print debugging information for gimple stmts generated. */
2534
2535 void
2536 dump_gimple_statistics (void)
2537 {
2538 #ifdef GATHER_STATISTICS
2539 int i, total_tuples = 0, total_bytes = 0;
2540
2541 fprintf (stderr, "\nGIMPLE statements\n");
2542 fprintf (stderr, "Kind Stmts Bytes\n");
2543 fprintf (stderr, "---------------------------------------\n");
2544 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
2545 {
2546 fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i],
2547 gimple_alloc_counts[i], gimple_alloc_sizes[i]);
2548 total_tuples += gimple_alloc_counts[i];
2549 total_bytes += gimple_alloc_sizes[i];
2550 }
2551 fprintf (stderr, "---------------------------------------\n");
2552 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes);
2553 fprintf (stderr, "---------------------------------------\n");
2554 #else
2555 fprintf (stderr, "No gimple statistics\n");
2556 #endif
2557 }
2558
2559
2560 /* Return the number of operands needed on the RHS of a GIMPLE
2561 assignment for an expression with tree code CODE. */
2562
2563 unsigned
2564 get_gimple_rhs_num_ops (enum tree_code code)
2565 {
2566 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
2567
2568 if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
2569 return 1;
2570 else if (rhs_class == GIMPLE_BINARY_RHS)
2571 return 2;
2572 else if (rhs_class == GIMPLE_TERNARY_RHS)
2573 return 3;
2574 else
2575 gcc_unreachable ();
2576 }
2577
2578 #define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
2579 (unsigned char) \
2580 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
2581 : ((TYPE) == tcc_binary \
2582 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
2583 : ((TYPE) == tcc_constant \
2584 || (TYPE) == tcc_declaration \
2585 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
2586 : ((SYM) == TRUTH_AND_EXPR \
2587 || (SYM) == TRUTH_OR_EXPR \
2588 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
2589 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
2590 : ((SYM) == WIDEN_MULT_PLUS_EXPR \
2591 || (SYM) == WIDEN_MULT_MINUS_EXPR \
2592 || (SYM) == DOT_PROD_EXPR \
2593 || (SYM) == REALIGN_LOAD_EXPR \
2594 || (SYM) == FMA_EXPR) ? GIMPLE_TERNARY_RHS \
2595 : ((SYM) == COND_EXPR \
2596 || (SYM) == CONSTRUCTOR \
2597 || (SYM) == OBJ_TYPE_REF \
2598 || (SYM) == ASSERT_EXPR \
2599 || (SYM) == ADDR_EXPR \
2600 || (SYM) == WITH_SIZE_EXPR \
2601 || (SYM) == SSA_NAME \
2602 || (SYM) == VEC_COND_EXPR) ? GIMPLE_SINGLE_RHS \
2603 : GIMPLE_INVALID_RHS),
2604 #define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
2605
2606 const unsigned char gimple_rhs_class_table[] = {
2607 #include "all-tree.def"
2608 };
2609
2610 #undef DEFTREECODE
2611 #undef END_OF_BASE_TREE_CODES
2612
2613 /* For the definitive definition of GIMPLE, see doc/tree-ssa.texi. */
2614
2615 /* Validation of GIMPLE expressions. */
2616
2617 /* Returns true iff T is a valid RHS for an assignment to a renamed
2618 user -- or front-end generated artificial -- variable. */
2619
2620 bool
2621 is_gimple_reg_rhs (tree t)
2622 {
2623 return get_gimple_rhs_class (TREE_CODE (t)) != GIMPLE_INVALID_RHS;
2624 }
2625
2626 /* Returns true iff T is a valid RHS for an assignment to an un-renamed
2627 LHS, or for a call argument. */
2628
2629 bool
2630 is_gimple_mem_rhs (tree t)
2631 {
2632 /* If we're dealing with a renamable type, either source or dest must be
2633 a renamed variable. */
2634 if (is_gimple_reg_type (TREE_TYPE (t)))
2635 return is_gimple_val (t);
2636 else
2637 return is_gimple_val (t) || is_gimple_lvalue (t);
2638 }
2639
2640 /* Return true if T is a valid LHS for a GIMPLE assignment expression. */
2641
2642 bool
2643 is_gimple_lvalue (tree t)
2644 {
2645 return (is_gimple_addressable (t)
2646 || TREE_CODE (t) == WITH_SIZE_EXPR
2647 /* These are complex lvalues, but don't have addresses, so they
2648 go here. */
2649 || TREE_CODE (t) == BIT_FIELD_REF);
2650 }
2651
2652 /* Return true if T is a GIMPLE condition. */
2653
2654 bool
2655 is_gimple_condexpr (tree t)
2656 {
2657 return (is_gimple_val (t) || (COMPARISON_CLASS_P (t)
2658 && !tree_could_throw_p (t)
2659 && is_gimple_val (TREE_OPERAND (t, 0))
2660 && is_gimple_val (TREE_OPERAND (t, 1))));
2661 }
2662
2663 /* Return true if T is something whose address can be taken. */
2664
2665 bool
2666 is_gimple_addressable (tree t)
2667 {
2668 return (is_gimple_id (t) || handled_component_p (t)
2669 || TREE_CODE (t) == MEM_REF);
2670 }
2671
2672 /* Return true if T is a valid gimple constant. */
2673
2674 bool
2675 is_gimple_constant (const_tree t)
2676 {
2677 switch (TREE_CODE (t))
2678 {
2679 case INTEGER_CST:
2680 case REAL_CST:
2681 case FIXED_CST:
2682 case STRING_CST:
2683 case COMPLEX_CST:
2684 case VECTOR_CST:
2685 return true;
2686
2687 /* Vector constant constructors are gimple invariant. */
2688 case CONSTRUCTOR:
2689 if (TREE_TYPE (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2690 return TREE_CONSTANT (t);
2691 else
2692 return false;
2693
2694 default:
2695 return false;
2696 }
2697 }
2698
2699 /* Return true if T is a gimple address. */
2700
2701 bool
2702 is_gimple_address (const_tree t)
2703 {
2704 tree op;
2705
2706 if (TREE_CODE (t) != ADDR_EXPR)
2707 return false;
2708
2709 op = TREE_OPERAND (t, 0);
2710 while (handled_component_p (op))
2711 {
2712 if ((TREE_CODE (op) == ARRAY_REF
2713 || TREE_CODE (op) == ARRAY_RANGE_REF)
2714 && !is_gimple_val (TREE_OPERAND (op, 1)))
2715 return false;
2716
2717 op = TREE_OPERAND (op, 0);
2718 }
2719
2720 if (CONSTANT_CLASS_P (op) || TREE_CODE (op) == MEM_REF)
2721 return true;
2722
2723 switch (TREE_CODE (op))
2724 {
2725 case PARM_DECL:
2726 case RESULT_DECL:
2727 case LABEL_DECL:
2728 case FUNCTION_DECL:
2729 case VAR_DECL:
2730 case CONST_DECL:
2731 return true;
2732
2733 default:
2734 return false;
2735 }
2736 }
2737
2738 /* Strip out all handled components that produce invariant
2739 offsets. */
2740
2741 static const_tree
2742 strip_invariant_refs (const_tree op)
2743 {
2744 while (handled_component_p (op))
2745 {
2746 switch (TREE_CODE (op))
2747 {
2748 case ARRAY_REF:
2749 case ARRAY_RANGE_REF:
2750 if (!is_gimple_constant (TREE_OPERAND (op, 1))
2751 || TREE_OPERAND (op, 2) != NULL_TREE
2752 || TREE_OPERAND (op, 3) != NULL_TREE)
2753 return NULL;
2754 break;
2755
2756 case COMPONENT_REF:
2757 if (TREE_OPERAND (op, 2) != NULL_TREE)
2758 return NULL;
2759 break;
2760
2761 default:;
2762 }
2763 op = TREE_OPERAND (op, 0);
2764 }
2765
2766 return op;
2767 }
2768
2769 /* Return true if T is a gimple invariant address. */
2770
2771 bool
2772 is_gimple_invariant_address (const_tree t)
2773 {
2774 const_tree op;
2775
2776 if (TREE_CODE (t) != ADDR_EXPR)
2777 return false;
2778
2779 op = strip_invariant_refs (TREE_OPERAND (t, 0));
2780 if (!op)
2781 return false;
2782
2783 if (TREE_CODE (op) == MEM_REF)
2784 {
2785 const_tree op0 = TREE_OPERAND (op, 0);
2786 return (TREE_CODE (op0) == ADDR_EXPR
2787 && (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))
2788 || decl_address_invariant_p (TREE_OPERAND (op0, 0))));
2789 }
2790
2791 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
2792 }
2793
2794 /* Return true if T is a gimple invariant address at IPA level
2795 (so addresses of variables on stack are not allowed). */
2796
2797 bool
2798 is_gimple_ip_invariant_address (const_tree t)
2799 {
2800 const_tree op;
2801
2802 if (TREE_CODE (t) != ADDR_EXPR)
2803 return false;
2804
2805 op = strip_invariant_refs (TREE_OPERAND (t, 0));
2806
2807 return op && (CONSTANT_CLASS_P (op) || decl_address_ip_invariant_p (op));
2808 }
2809
2810 /* Return true if T is a GIMPLE minimal invariant. It's a restricted
2811 form of function invariant. */
2812
2813 bool
2814 is_gimple_min_invariant (const_tree t)
2815 {
2816 if (TREE_CODE (t) == ADDR_EXPR)
2817 return is_gimple_invariant_address (t);
2818
2819 return is_gimple_constant (t);
2820 }
2821
2822 /* Return true if T is a GIMPLE interprocedural invariant. It's a restricted
2823 form of gimple minimal invariant. */
2824
2825 bool
2826 is_gimple_ip_invariant (const_tree t)
2827 {
2828 if (TREE_CODE (t) == ADDR_EXPR)
2829 return is_gimple_ip_invariant_address (t);
2830
2831 return is_gimple_constant (t);
2832 }
2833
2834 /* Return true if T looks like a valid GIMPLE statement. */
2835
2836 bool
2837 is_gimple_stmt (tree t)
2838 {
2839 const enum tree_code code = TREE_CODE (t);
2840
2841 switch (code)
2842 {
2843 case NOP_EXPR:
2844 /* The only valid NOP_EXPR is the empty statement. */
2845 return IS_EMPTY_STMT (t);
2846
2847 case BIND_EXPR:
2848 case COND_EXPR:
2849 /* These are only valid if they're void. */
2850 return TREE_TYPE (t) == NULL || VOID_TYPE_P (TREE_TYPE (t));
2851
2852 case SWITCH_EXPR:
2853 case GOTO_EXPR:
2854 case RETURN_EXPR:
2855 case LABEL_EXPR:
2856 case CASE_LABEL_EXPR:
2857 case TRY_CATCH_EXPR:
2858 case TRY_FINALLY_EXPR:
2859 case EH_FILTER_EXPR:
2860 case CATCH_EXPR:
2861 case ASM_EXPR:
2862 case STATEMENT_LIST:
2863 case OMP_PARALLEL:
2864 case OMP_FOR:
2865 case OMP_SECTIONS:
2866 case OMP_SECTION:
2867 case OMP_SINGLE:
2868 case OMP_MASTER:
2869 case OMP_ORDERED:
2870 case OMP_CRITICAL:
2871 case OMP_TASK:
2872 /* These are always void. */
2873 return true;
2874
2875 case CALL_EXPR:
2876 case MODIFY_EXPR:
2877 case PREDICT_EXPR:
2878 /* These are valid regardless of their type. */
2879 return true;
2880
2881 default:
2882 return false;
2883 }
2884 }
2885
2886 /* Return true if T is a variable. */
2887
2888 bool
2889 is_gimple_variable (tree t)
2890 {
2891 return (TREE_CODE (t) == VAR_DECL
2892 || TREE_CODE (t) == PARM_DECL
2893 || TREE_CODE (t) == RESULT_DECL
2894 || TREE_CODE (t) == SSA_NAME);
2895 }
2896
2897 /* Return true if T is a GIMPLE identifier (something with an address). */
2898
2899 bool
2900 is_gimple_id (tree t)
2901 {
2902 return (is_gimple_variable (t)
2903 || TREE_CODE (t) == FUNCTION_DECL
2904 || TREE_CODE (t) == LABEL_DECL
2905 || TREE_CODE (t) == CONST_DECL
2906 /* Allow string constants, since they are addressable. */
2907 || TREE_CODE (t) == STRING_CST);
2908 }
2909
2910 /* Return true if TYPE is a suitable type for a scalar register variable. */
2911
2912 bool
2913 is_gimple_reg_type (tree type)
2914 {
2915 return !AGGREGATE_TYPE_P (type);
2916 }
2917
2918 /* Return true if T is a non-aggregate register variable. */
2919
2920 bool
2921 is_gimple_reg (tree t)
2922 {
2923 if (TREE_CODE (t) == SSA_NAME)
2924 t = SSA_NAME_VAR (t);
2925
2926 if (!is_gimple_variable (t))
2927 return false;
2928
2929 if (!is_gimple_reg_type (TREE_TYPE (t)))
2930 return false;
2931
2932 /* A volatile decl is not acceptable because we can't reuse it as
2933 needed. We need to copy it into a temp first. */
2934 if (TREE_THIS_VOLATILE (t))
2935 return false;
2936
2937 /* We define "registers" as things that can be renamed as needed,
2938 which with our infrastructure does not apply to memory. */
2939 if (needs_to_live_in_memory (t))
2940 return false;
2941
2942 /* Hard register variables are an interesting case. For those that
2943 are call-clobbered, we don't know where all the calls are, since
2944 we don't (want to) take into account which operations will turn
2945 into libcalls at the rtl level. For those that are call-saved,
2946 we don't currently model the fact that calls may in fact change
2947 global hard registers, nor do we examine ASM_CLOBBERS at the tree
2948 level, and so miss variable changes that might imply. All around,
2949 it seems safest to not do too much optimization with these at the
2950 tree level at all. We'll have to rely on the rtl optimizers to
2951 clean this up, as there we've got all the appropriate bits exposed. */
2952 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
2953 return false;
2954
2955 /* Complex and vector values must have been put into SSA-like form.
2956 That is, no assignments to the individual components. */
2957 if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE
2958 || TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2959 return DECL_GIMPLE_REG_P (t);
2960
2961 return true;
2962 }
2963
2964
2965 /* Return true if T is a GIMPLE variable whose address is not needed. */
2966
2967 bool
2968 is_gimple_non_addressable (tree t)
2969 {
2970 if (TREE_CODE (t) == SSA_NAME)
2971 t = SSA_NAME_VAR (t);
2972
2973 return (is_gimple_variable (t) && ! needs_to_live_in_memory (t));
2974 }
2975
2976 /* Return true if T is a GIMPLE rvalue, i.e. an identifier or a constant. */
2977
2978 bool
2979 is_gimple_val (tree t)
2980 {
2981 /* Make loads from volatiles and memory vars explicit. */
2982 if (is_gimple_variable (t)
2983 && is_gimple_reg_type (TREE_TYPE (t))
2984 && !is_gimple_reg (t))
2985 return false;
2986
2987 return (is_gimple_variable (t) || is_gimple_min_invariant (t));
2988 }
2989
2990 /* Similarly, but accept hard registers as inputs to asm statements. */
2991
2992 bool
2993 is_gimple_asm_val (tree t)
2994 {
2995 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
2996 return true;
2997
2998 return is_gimple_val (t);
2999 }
3000
3001 /* Return true if T is a GIMPLE minimal lvalue. */
3002
3003 bool
3004 is_gimple_min_lval (tree t)
3005 {
3006 if (!(t = CONST_CAST_TREE (strip_invariant_refs (t))))
3007 return false;
3008 return (is_gimple_id (t) || TREE_CODE (t) == MEM_REF);
3009 }
3010
3011 /* Return true if T is a valid function operand of a CALL_EXPR. */
3012
3013 bool
3014 is_gimple_call_addr (tree t)
3015 {
3016 return (TREE_CODE (t) == OBJ_TYPE_REF || is_gimple_val (t));
3017 }
3018
3019 /* Return true if T is a valid address operand of a MEM_REF. */
3020
3021 bool
3022 is_gimple_mem_ref_addr (tree t)
3023 {
3024 return (is_gimple_reg (t)
3025 || TREE_CODE (t) == INTEGER_CST
3026 || (TREE_CODE (t) == ADDR_EXPR
3027 && (CONSTANT_CLASS_P (TREE_OPERAND (t, 0))
3028 || decl_address_invariant_p (TREE_OPERAND (t, 0)))));
3029 }
3030
3031 /* If T makes a function call, return the corresponding CALL_EXPR operand.
3032 Otherwise, return NULL_TREE. */
3033
3034 tree
3035 get_call_expr_in (tree t)
3036 {
3037 if (TREE_CODE (t) == MODIFY_EXPR)
3038 t = TREE_OPERAND (t, 1);
3039 if (TREE_CODE (t) == WITH_SIZE_EXPR)
3040 t = TREE_OPERAND (t, 0);
3041 if (TREE_CODE (t) == CALL_EXPR)
3042 return t;
3043 return NULL_TREE;
3044 }
3045
3046
3047 /* Given a memory reference expression T, return its base address.
3048 The base address of a memory reference expression is the main
3049 object being referenced. For instance, the base address for
3050 'array[i].fld[j]' is 'array'. You can think of this as stripping
3051 away the offset part from a memory address.
3052
3053 This function calls handled_component_p to strip away all the inner
3054 parts of the memory reference until it reaches the base object. */
3055
3056 tree
3057 get_base_address (tree t)
3058 {
3059 while (handled_component_p (t))
3060 t = TREE_OPERAND (t, 0);
3061
3062 if ((TREE_CODE (t) == MEM_REF
3063 || TREE_CODE (t) == TARGET_MEM_REF)
3064 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
3065 t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
3066
3067 if (TREE_CODE (t) == SSA_NAME
3068 || DECL_P (t)
3069 || TREE_CODE (t) == STRING_CST
3070 || TREE_CODE (t) == CONSTRUCTOR
3071 || INDIRECT_REF_P (t)
3072 || TREE_CODE (t) == MEM_REF
3073 || TREE_CODE (t) == TARGET_MEM_REF)
3074 return t;
3075 else
3076 return NULL_TREE;
3077 }
3078
3079 void
3080 recalculate_side_effects (tree t)
3081 {
3082 enum tree_code code = TREE_CODE (t);
3083 int len = TREE_OPERAND_LENGTH (t);
3084 int i;
3085
3086 switch (TREE_CODE_CLASS (code))
3087 {
3088 case tcc_expression:
3089 switch (code)
3090 {
3091 case INIT_EXPR:
3092 case MODIFY_EXPR:
3093 case VA_ARG_EXPR:
3094 case PREDECREMENT_EXPR:
3095 case PREINCREMENT_EXPR:
3096 case POSTDECREMENT_EXPR:
3097 case POSTINCREMENT_EXPR:
3098 /* All of these have side-effects, no matter what their
3099 operands are. */
3100 return;
3101
3102 default:
3103 break;
3104 }
3105 /* Fall through. */
3106
3107 case tcc_comparison: /* a comparison expression */
3108 case tcc_unary: /* a unary arithmetic expression */
3109 case tcc_binary: /* a binary arithmetic expression */
3110 case tcc_reference: /* a reference */
3111 case tcc_vl_exp: /* a function call */
3112 TREE_SIDE_EFFECTS (t) = TREE_THIS_VOLATILE (t);
3113 for (i = 0; i < len; ++i)
3114 {
3115 tree op = TREE_OPERAND (t, i);
3116 if (op && TREE_SIDE_EFFECTS (op))
3117 TREE_SIDE_EFFECTS (t) = 1;
3118 }
3119 break;
3120
3121 case tcc_constant:
3122 /* No side-effects. */
3123 return;
3124
3125 default:
3126 gcc_unreachable ();
3127 }
3128 }
3129
3130 /* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
3131 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
3132 we failed to create one. */
3133
3134 tree
3135 canonicalize_cond_expr_cond (tree t)
3136 {
3137 /* Strip conversions around boolean operations. */
3138 if (CONVERT_EXPR_P (t)
3139 && truth_value_p (TREE_CODE (TREE_OPERAND (t, 0))))
3140 t = TREE_OPERAND (t, 0);
3141
3142 /* For (bool)x use x != 0. */
3143 if (CONVERT_EXPR_P (t)
3144 && TREE_CODE (TREE_TYPE (t)) == BOOLEAN_TYPE)
3145 {
3146 tree top0 = TREE_OPERAND (t, 0);
3147 t = build2 (NE_EXPR, TREE_TYPE (t),
3148 top0, build_int_cst (TREE_TYPE (top0), 0));
3149 }
3150 /* For !x use x == 0. */
3151 else if (TREE_CODE (t) == TRUTH_NOT_EXPR)
3152 {
3153 tree top0 = TREE_OPERAND (t, 0);
3154 t = build2 (EQ_EXPR, TREE_TYPE (t),
3155 top0, build_int_cst (TREE_TYPE (top0), 0));
3156 }
3157 /* For cmp ? 1 : 0 use cmp. */
3158 else if (TREE_CODE (t) == COND_EXPR
3159 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
3160 && integer_onep (TREE_OPERAND (t, 1))
3161 && integer_zerop (TREE_OPERAND (t, 2)))
3162 {
3163 tree top0 = TREE_OPERAND (t, 0);
3164 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
3165 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
3166 }
3167
3168 if (is_gimple_condexpr (t))
3169 return t;
3170
3171 return NULL_TREE;
3172 }
3173
3174 /* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
3175 the positions marked by the set ARGS_TO_SKIP. */
3176
3177 gimple
3178 gimple_call_copy_skip_args (gimple stmt, bitmap args_to_skip)
3179 {
3180 int i;
3181 int nargs = gimple_call_num_args (stmt);
3182 VEC(tree, heap) *vargs = VEC_alloc (tree, heap, nargs);
3183 gimple new_stmt;
3184
3185 for (i = 0; i < nargs; i++)
3186 if (!bitmap_bit_p (args_to_skip, i))
3187 VEC_quick_push (tree, vargs, gimple_call_arg (stmt, i));
3188
3189 if (gimple_call_internal_p (stmt))
3190 new_stmt = gimple_build_call_internal_vec (gimple_call_internal_fn (stmt),
3191 vargs);
3192 else
3193 new_stmt = gimple_build_call_vec (gimple_call_fn (stmt), vargs);
3194 VEC_free (tree, heap, vargs);
3195 if (gimple_call_lhs (stmt))
3196 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
3197
3198 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
3199 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
3200
3201 gimple_set_block (new_stmt, gimple_block (stmt));
3202 if (gimple_has_location (stmt))
3203 gimple_set_location (new_stmt, gimple_location (stmt));
3204 gimple_call_copy_flags (new_stmt, stmt);
3205 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
3206
3207 gimple_set_modified (new_stmt, true);
3208
3209 return new_stmt;
3210 }
3211
3212
3213 enum gtc_mode { GTC_MERGE = 0, GTC_DIAG = 1 };
3214
3215 static hashval_t gimple_type_hash (const void *);
3216
3217 /* Structure used to maintain a cache of some type pairs compared by
3218 gimple_types_compatible_p when comparing aggregate types. There are
3219 three possible values for SAME_P:
3220
3221 -2: The pair (T1, T2) has just been inserted in the table.
3222 0: T1 and T2 are different types.
3223 1: T1 and T2 are the same type.
3224
3225 The two elements in the SAME_P array are indexed by the comparison
3226 mode gtc_mode. */
3227
3228 struct type_pair_d
3229 {
3230 unsigned int uid1;
3231 unsigned int uid2;
3232 signed char same_p[2];
3233 };
3234 typedef struct type_pair_d *type_pair_t;
3235 DEF_VEC_P(type_pair_t);
3236 DEF_VEC_ALLOC_P(type_pair_t,heap);
3237
3238 #define GIMPLE_TYPE_PAIR_SIZE 16381
3239 struct type_pair_d *type_pair_cache;
3240
3241
3242 /* Lookup the pair of types T1 and T2 in *VISITED_P. Insert a new
3243 entry if none existed. */
3244
3245 static inline type_pair_t
3246 lookup_type_pair (tree t1, tree t2)
3247 {
3248 unsigned int index;
3249 unsigned int uid1, uid2;
3250
3251 if (type_pair_cache == NULL)
3252 type_pair_cache = XCNEWVEC (struct type_pair_d, GIMPLE_TYPE_PAIR_SIZE);
3253
3254 if (TYPE_UID (t1) < TYPE_UID (t2))
3255 {
3256 uid1 = TYPE_UID (t1);
3257 uid2 = TYPE_UID (t2);
3258 }
3259 else
3260 {
3261 uid1 = TYPE_UID (t2);
3262 uid2 = TYPE_UID (t1);
3263 }
3264 gcc_checking_assert (uid1 != uid2);
3265
3266 /* iterative_hash_hashval_t imply an function calls.
3267 We know that UIDS are in limited range. */
3268 index = ((((unsigned HOST_WIDE_INT)uid1 << HOST_BITS_PER_WIDE_INT / 2) + uid2)
3269 % GIMPLE_TYPE_PAIR_SIZE);
3270 if (type_pair_cache [index].uid1 == uid1
3271 && type_pair_cache [index].uid2 == uid2)
3272 return &type_pair_cache[index];
3273
3274 type_pair_cache [index].uid1 = uid1;
3275 type_pair_cache [index].uid2 = uid2;
3276 type_pair_cache [index].same_p[0] = -2;
3277 type_pair_cache [index].same_p[1] = -2;
3278
3279 return &type_pair_cache[index];
3280 }
3281
3282 /* Per pointer state for the SCC finding. The on_sccstack flag
3283 is not strictly required, it is true when there is no hash value
3284 recorded for the type and false otherwise. But querying that
3285 is slower. */
3286
3287 struct sccs
3288 {
3289 unsigned int dfsnum;
3290 unsigned int low;
3291 bool on_sccstack;
3292 union {
3293 hashval_t hash;
3294 signed char same_p;
3295 } u;
3296 };
3297
3298 static unsigned int next_dfs_num;
3299 static unsigned int gtc_next_dfs_num;
3300
3301
3302 /* GIMPLE type merging cache. A direct-mapped cache based on TYPE_UID. */
3303
3304 typedef struct GTY(()) gimple_type_leader_entry_s {
3305 tree type;
3306 tree leader;
3307 } gimple_type_leader_entry;
3308
3309 #define GIMPLE_TYPE_LEADER_SIZE 16381
3310 static GTY((deletable, length("GIMPLE_TYPE_LEADER_SIZE")))
3311 gimple_type_leader_entry *gimple_type_leader;
3312
3313 /* Lookup an existing leader for T and return it or NULL_TREE, if
3314 there is none in the cache. */
3315
3316 static inline tree
3317 gimple_lookup_type_leader (tree t)
3318 {
3319 gimple_type_leader_entry *leader;
3320
3321 if (!gimple_type_leader)
3322 return NULL_TREE;
3323
3324 leader = &gimple_type_leader[TYPE_UID (t) % GIMPLE_TYPE_LEADER_SIZE];
3325 if (leader->type != t)
3326 return NULL_TREE;
3327
3328 return leader->leader;
3329 }
3330
3331 /* Return true if T1 and T2 have the same name. If FOR_COMPLETION_P is
3332 true then if any type has no name return false, otherwise return
3333 true if both types have no names. */
3334
3335 static bool
3336 compare_type_names_p (tree t1, tree t2)
3337 {
3338 tree name1 = TYPE_NAME (t1);
3339 tree name2 = TYPE_NAME (t2);
3340
3341 if (name1 && TREE_CODE (name1) == TYPE_DECL)
3342 name1 = DECL_NAME (name1);
3343 gcc_checking_assert (!name1 || TREE_CODE (name1) == IDENTIFIER_NODE);
3344
3345 if (name2 && TREE_CODE (name2) == TYPE_DECL)
3346 name2 = DECL_NAME (name2);
3347 gcc_checking_assert (!name2 || TREE_CODE (name2) == IDENTIFIER_NODE);
3348
3349 /* Identifiers can be compared with pointer equality rather
3350 than a string comparison. */
3351 if (name1 == name2)
3352 return true;
3353
3354 return false;
3355 }
3356
3357 /* Return true if the field decls F1 and F2 are at the same offset.
3358
3359 This is intended to be used on GIMPLE types only. */
3360
3361 bool
3362 gimple_compare_field_offset (tree f1, tree f2)
3363 {
3364 if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
3365 {
3366 tree offset1 = DECL_FIELD_OFFSET (f1);
3367 tree offset2 = DECL_FIELD_OFFSET (f2);
3368 return ((offset1 == offset2
3369 /* Once gimplification is done, self-referential offsets are
3370 instantiated as operand #2 of the COMPONENT_REF built for
3371 each access and reset. Therefore, they are not relevant
3372 anymore and fields are interchangeable provided that they
3373 represent the same access. */
3374 || (TREE_CODE (offset1) == PLACEHOLDER_EXPR
3375 && TREE_CODE (offset2) == PLACEHOLDER_EXPR
3376 && (DECL_SIZE (f1) == DECL_SIZE (f2)
3377 || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
3378 && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
3379 || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0))
3380 && DECL_ALIGN (f1) == DECL_ALIGN (f2))
3381 || operand_equal_p (offset1, offset2, 0))
3382 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
3383 DECL_FIELD_BIT_OFFSET (f2)));
3384 }
3385
3386 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
3387 should be, so handle differing ones specially by decomposing
3388 the offset into a byte and bit offset manually. */
3389 if (host_integerp (DECL_FIELD_OFFSET (f1), 0)
3390 && host_integerp (DECL_FIELD_OFFSET (f2), 0))
3391 {
3392 unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
3393 unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
3394 bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
3395 byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
3396 + bit_offset1 / BITS_PER_UNIT);
3397 bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
3398 byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
3399 + bit_offset2 / BITS_PER_UNIT);
3400 if (byte_offset1 != byte_offset2)
3401 return false;
3402 return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
3403 }
3404
3405 return false;
3406 }
3407
3408 static bool
3409 gimple_types_compatible_p_1 (tree, tree, type_pair_t,
3410 VEC(type_pair_t, heap) **,
3411 struct pointer_map_t *, struct obstack *);
3412
3413 /* DFS visit the edge from the callers type pair with state *STATE to
3414 the pair T1, T2 while operating in FOR_MERGING_P mode.
3415 Update the merging status if it is not part of the SCC containing the
3416 callers pair and return it.
3417 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3418
3419 static bool
3420 gtc_visit (tree t1, tree t2,
3421 struct sccs *state,
3422 VEC(type_pair_t, heap) **sccstack,
3423 struct pointer_map_t *sccstate,
3424 struct obstack *sccstate_obstack)
3425 {
3426 struct sccs *cstate = NULL;
3427 type_pair_t p;
3428 void **slot;
3429 tree leader1, leader2;
3430
3431 /* Check first for the obvious case of pointer identity. */
3432 if (t1 == t2)
3433 return true;
3434
3435 /* Check that we have two types to compare. */
3436 if (t1 == NULL_TREE || t2 == NULL_TREE)
3437 return false;
3438
3439 /* Can't be the same type if the types don't have the same code. */
3440 if (TREE_CODE (t1) != TREE_CODE (t2))
3441 return false;
3442
3443 /* Can't be the same type if they have different CV qualifiers. */
3444 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
3445 return false;
3446
3447 if (TREE_ADDRESSABLE (t1) != TREE_ADDRESSABLE (t2))
3448 return false;
3449
3450 /* Void types and nullptr types are always the same. */
3451 if (TREE_CODE (t1) == VOID_TYPE
3452 || TREE_CODE (t1) == NULLPTR_TYPE)
3453 return true;
3454
3455 /* Can't be the same type if they have different alignment or mode. */
3456 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3457 || TYPE_MODE (t1) != TYPE_MODE (t2))
3458 return false;
3459
3460 /* Do some simple checks before doing three hashtable queries. */
3461 if (INTEGRAL_TYPE_P (t1)
3462 || SCALAR_FLOAT_TYPE_P (t1)
3463 || FIXED_POINT_TYPE_P (t1)
3464 || TREE_CODE (t1) == VECTOR_TYPE
3465 || TREE_CODE (t1) == COMPLEX_TYPE
3466 || TREE_CODE (t1) == OFFSET_TYPE
3467 || POINTER_TYPE_P (t1))
3468 {
3469 /* Can't be the same type if they have different sign or precision. */
3470 if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
3471 || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
3472 return false;
3473
3474 if (TREE_CODE (t1) == INTEGER_TYPE
3475 && (TYPE_IS_SIZETYPE (t1) != TYPE_IS_SIZETYPE (t2)
3476 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)))
3477 return false;
3478
3479 /* That's all we need to check for float and fixed-point types. */
3480 if (SCALAR_FLOAT_TYPE_P (t1)
3481 || FIXED_POINT_TYPE_P (t1))
3482 return true;
3483
3484 /* For other types fall thru to more complex checks. */
3485 }
3486
3487 /* If the types have been previously registered and found equal
3488 they still are. */
3489 leader1 = gimple_lookup_type_leader (t1);
3490 leader2 = gimple_lookup_type_leader (t2);
3491 if (leader1 == t2
3492 || t1 == leader2
3493 || (leader1 && leader1 == leader2))
3494 return true;
3495
3496 /* If the hash values of t1 and t2 are different the types can't
3497 possibly be the same. This helps keeping the type-pair hashtable
3498 small, only tracking comparisons for hash collisions. */
3499 if (gimple_type_hash (t1) != gimple_type_hash (t2))
3500 return false;
3501
3502 /* Allocate a new cache entry for this comparison. */
3503 p = lookup_type_pair (t1, t2);
3504 if (p->same_p[GTC_MERGE] == 0 || p->same_p[GTC_MERGE] == 1)
3505 {
3506 /* We have already decided whether T1 and T2 are the
3507 same, return the cached result. */
3508 return p->same_p[GTC_MERGE] == 1;
3509 }
3510
3511 if ((slot = pointer_map_contains (sccstate, p)) != NULL)
3512 cstate = (struct sccs *)*slot;
3513 /* Not yet visited. DFS recurse. */
3514 if (!cstate)
3515 {
3516 gimple_types_compatible_p_1 (t1, t2, p,
3517 sccstack, sccstate, sccstate_obstack);
3518 cstate = (struct sccs *)* pointer_map_contains (sccstate, p);
3519 state->low = MIN (state->low, cstate->low);
3520 }
3521 /* If the type is still on the SCC stack adjust the parents low. */
3522 if (cstate->dfsnum < state->dfsnum
3523 && cstate->on_sccstack)
3524 state->low = MIN (cstate->dfsnum, state->low);
3525
3526 /* Return the current lattice value. We start with an equality
3527 assumption so types part of a SCC will be optimistically
3528 treated equal unless proven otherwise. */
3529 return cstate->u.same_p;
3530 }
3531
3532 /* Worker for gimple_types_compatible.
3533 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3534
3535 static bool
3536 gimple_types_compatible_p_1 (tree t1, tree t2, type_pair_t p,
3537 VEC(type_pair_t, heap) **sccstack,
3538 struct pointer_map_t *sccstate,
3539 struct obstack *sccstate_obstack)
3540 {
3541 struct sccs *state;
3542
3543 gcc_assert (p->same_p[GTC_MERGE] == -2);
3544
3545 state = XOBNEW (sccstate_obstack, struct sccs);
3546 *pointer_map_insert (sccstate, p) = state;
3547
3548 VEC_safe_push (type_pair_t, heap, *sccstack, p);
3549 state->dfsnum = gtc_next_dfs_num++;
3550 state->low = state->dfsnum;
3551 state->on_sccstack = true;
3552 /* Start with an equality assumption. As we DFS recurse into child
3553 SCCs this assumption may get revisited. */
3554 state->u.same_p = 1;
3555
3556 /* The struct tags shall compare equal. */
3557 if (!compare_type_names_p (t1, t2))
3558 goto different_types;
3559
3560 /* If their attributes are not the same they can't be the same type. */
3561 if (!attribute_list_equal (TYPE_ATTRIBUTES (t1), TYPE_ATTRIBUTES (t2)))
3562 goto different_types;
3563
3564 /* Do type-specific comparisons. */
3565 switch (TREE_CODE (t1))
3566 {
3567 case VECTOR_TYPE:
3568 case COMPLEX_TYPE:
3569 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2),
3570 state, sccstack, sccstate, sccstate_obstack))
3571 goto different_types;
3572 goto same_types;
3573
3574 case ARRAY_TYPE:
3575 /* Array types are the same if the element types are the same and
3576 the number of elements are the same. */
3577 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2),
3578 state, sccstack, sccstate, sccstate_obstack)
3579 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
3580 || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
3581 goto different_types;
3582 else
3583 {
3584 tree i1 = TYPE_DOMAIN (t1);
3585 tree i2 = TYPE_DOMAIN (t2);
3586
3587 /* For an incomplete external array, the type domain can be
3588 NULL_TREE. Check this condition also. */
3589 if (i1 == NULL_TREE && i2 == NULL_TREE)
3590 goto same_types;
3591 else if (i1 == NULL_TREE || i2 == NULL_TREE)
3592 goto different_types;
3593 /* If for a complete array type the possibly gimplified sizes
3594 are different the types are different. */
3595 else if (((TYPE_SIZE (i1) != NULL) ^ (TYPE_SIZE (i2) != NULL))
3596 || (TYPE_SIZE (i1)
3597 && TYPE_SIZE (i2)
3598 && !operand_equal_p (TYPE_SIZE (i1), TYPE_SIZE (i2), 0)))
3599 goto different_types;
3600 else
3601 {
3602 tree min1 = TYPE_MIN_VALUE (i1);
3603 tree min2 = TYPE_MIN_VALUE (i2);
3604 tree max1 = TYPE_MAX_VALUE (i1);
3605 tree max2 = TYPE_MAX_VALUE (i2);
3606
3607 /* The minimum/maximum values have to be the same. */
3608 if ((min1 == min2
3609 || (min1 && min2
3610 && ((TREE_CODE (min1) == PLACEHOLDER_EXPR
3611 && TREE_CODE (min2) == PLACEHOLDER_EXPR)
3612 || operand_equal_p (min1, min2, 0))))
3613 && (max1 == max2
3614 || (max1 && max2
3615 && ((TREE_CODE (max1) == PLACEHOLDER_EXPR
3616 && TREE_CODE (max2) == PLACEHOLDER_EXPR)
3617 || operand_equal_p (max1, max2, 0)))))
3618 goto same_types;
3619 else
3620 goto different_types;
3621 }
3622 }
3623
3624 case METHOD_TYPE:
3625 /* Method types should belong to the same class. */
3626 if (!gtc_visit (TYPE_METHOD_BASETYPE (t1), TYPE_METHOD_BASETYPE (t2),
3627 state, sccstack, sccstate, sccstate_obstack))
3628 goto different_types;
3629
3630 /* Fallthru */
3631
3632 case FUNCTION_TYPE:
3633 /* Function types are the same if the return type and arguments types
3634 are the same. */
3635 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2),
3636 state, sccstack, sccstate, sccstate_obstack))
3637 goto different_types;
3638
3639 if (!comp_type_attributes (t1, t2))
3640 goto different_types;
3641
3642 if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
3643 goto same_types;
3644 else
3645 {
3646 tree parms1, parms2;
3647
3648 for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
3649 parms1 && parms2;
3650 parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
3651 {
3652 if (!gtc_visit (TREE_VALUE (parms1), TREE_VALUE (parms2),
3653 state, sccstack, sccstate, sccstate_obstack))
3654 goto different_types;
3655 }
3656
3657 if (parms1 || parms2)
3658 goto different_types;
3659
3660 goto same_types;
3661 }
3662
3663 case OFFSET_TYPE:
3664 {
3665 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2),
3666 state, sccstack, sccstate, sccstate_obstack)
3667 || !gtc_visit (TYPE_OFFSET_BASETYPE (t1),
3668 TYPE_OFFSET_BASETYPE (t2),
3669 state, sccstack, sccstate, sccstate_obstack))
3670 goto different_types;
3671
3672 goto same_types;
3673 }
3674
3675 case POINTER_TYPE:
3676 case REFERENCE_TYPE:
3677 {
3678 /* If the two pointers have different ref-all attributes,
3679 they can't be the same type. */
3680 if (TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
3681 goto different_types;
3682
3683 /* Otherwise, pointer and reference types are the same if the
3684 pointed-to types are the same. */
3685 if (gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2),
3686 state, sccstack, sccstate, sccstate_obstack))
3687 goto same_types;
3688
3689 goto different_types;
3690 }
3691
3692 case INTEGER_TYPE:
3693 case BOOLEAN_TYPE:
3694 {
3695 tree min1 = TYPE_MIN_VALUE (t1);
3696 tree max1 = TYPE_MAX_VALUE (t1);
3697 tree min2 = TYPE_MIN_VALUE (t2);
3698 tree max2 = TYPE_MAX_VALUE (t2);
3699 bool min_equal_p = false;
3700 bool max_equal_p = false;
3701
3702 /* If either type has a minimum value, the other type must
3703 have the same. */
3704 if (min1 == NULL_TREE && min2 == NULL_TREE)
3705 min_equal_p = true;
3706 else if (min1 && min2 && operand_equal_p (min1, min2, 0))
3707 min_equal_p = true;
3708
3709 /* Likewise, if either type has a maximum value, the other
3710 type must have the same. */
3711 if (max1 == NULL_TREE && max2 == NULL_TREE)
3712 max_equal_p = true;
3713 else if (max1 && max2 && operand_equal_p (max1, max2, 0))
3714 max_equal_p = true;
3715
3716 if (!min_equal_p || !max_equal_p)
3717 goto different_types;
3718
3719 goto same_types;
3720 }
3721
3722 case ENUMERAL_TYPE:
3723 {
3724 /* FIXME lto, we cannot check bounds on enumeral types because
3725 different front ends will produce different values.
3726 In C, enumeral types are integers, while in C++ each element
3727 will have its own symbolic value. We should decide how enums
3728 are to be represented in GIMPLE and have each front end lower
3729 to that. */
3730 tree v1, v2;
3731
3732 /* For enumeral types, all the values must be the same. */
3733 if (TYPE_VALUES (t1) == TYPE_VALUES (t2))
3734 goto same_types;
3735
3736 for (v1 = TYPE_VALUES (t1), v2 = TYPE_VALUES (t2);
3737 v1 && v2;
3738 v1 = TREE_CHAIN (v1), v2 = TREE_CHAIN (v2))
3739 {
3740 tree c1 = TREE_VALUE (v1);
3741 tree c2 = TREE_VALUE (v2);
3742
3743 if (TREE_CODE (c1) == CONST_DECL)
3744 c1 = DECL_INITIAL (c1);
3745
3746 if (TREE_CODE (c2) == CONST_DECL)
3747 c2 = DECL_INITIAL (c2);
3748
3749 if (tree_int_cst_equal (c1, c2) != 1)
3750 goto different_types;
3751
3752 if (TREE_PURPOSE (v1) != TREE_PURPOSE (v2))
3753 goto different_types;
3754 }
3755
3756 /* If one enumeration has more values than the other, they
3757 are not the same. */
3758 if (v1 || v2)
3759 goto different_types;
3760
3761 goto same_types;
3762 }
3763
3764 case RECORD_TYPE:
3765 case UNION_TYPE:
3766 case QUAL_UNION_TYPE:
3767 {
3768 tree f1, f2;
3769
3770 /* For aggregate types, all the fields must be the same. */
3771 for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
3772 f1 && f2;
3773 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
3774 {
3775 /* Different field kinds are not compatible. */
3776 if (TREE_CODE (f1) != TREE_CODE (f2))
3777 goto different_types;
3778 /* Field decls must have the same name and offset. */
3779 if (TREE_CODE (f1) == FIELD_DECL
3780 && (DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
3781 || !gimple_compare_field_offset (f1, f2)))
3782 goto different_types;
3783 /* All entities should have the same name and type. */
3784 if (DECL_NAME (f1) != DECL_NAME (f2)
3785 || !gtc_visit (TREE_TYPE (f1), TREE_TYPE (f2),
3786 state, sccstack, sccstate, sccstate_obstack))
3787 goto different_types;
3788 }
3789
3790 /* If one aggregate has more fields than the other, they
3791 are not the same. */
3792 if (f1 || f2)
3793 goto different_types;
3794
3795 goto same_types;
3796 }
3797
3798 default:
3799 gcc_unreachable ();
3800 }
3801
3802 /* Common exit path for types that are not compatible. */
3803 different_types:
3804 state->u.same_p = 0;
3805 goto pop;
3806
3807 /* Common exit path for types that are compatible. */
3808 same_types:
3809 gcc_assert (state->u.same_p == 1);
3810
3811 pop:
3812 if (state->low == state->dfsnum)
3813 {
3814 type_pair_t x;
3815
3816 /* Pop off the SCC and set its cache values to the final
3817 comparison result. */
3818 do
3819 {
3820 struct sccs *cstate;
3821 x = VEC_pop (type_pair_t, *sccstack);
3822 cstate = (struct sccs *)*pointer_map_contains (sccstate, x);
3823 cstate->on_sccstack = false;
3824 x->same_p[GTC_MERGE] = state->u.same_p;
3825 }
3826 while (x != p);
3827 }
3828
3829 return state->u.same_p;
3830 }
3831
3832 /* Return true iff T1 and T2 are structurally identical. When
3833 FOR_MERGING_P is true the an incomplete type and a complete type
3834 are considered different, otherwise they are considered compatible. */
3835
3836 static bool
3837 gimple_types_compatible_p (tree t1, tree t2)
3838 {
3839 VEC(type_pair_t, heap) *sccstack = NULL;
3840 struct pointer_map_t *sccstate;
3841 struct obstack sccstate_obstack;
3842 type_pair_t p = NULL;
3843 bool res;
3844 tree leader1, leader2;
3845
3846 /* Before starting to set up the SCC machinery handle simple cases. */
3847
3848 /* Check first for the obvious case of pointer identity. */
3849 if (t1 == t2)
3850 return true;
3851
3852 /* Check that we have two types to compare. */
3853 if (t1 == NULL_TREE || t2 == NULL_TREE)
3854 return false;
3855
3856 /* Can't be the same type if the types don't have the same code. */
3857 if (TREE_CODE (t1) != TREE_CODE (t2))
3858 return false;
3859
3860 /* Can't be the same type if they have different CV qualifiers. */
3861 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
3862 return false;
3863
3864 if (TREE_ADDRESSABLE (t1) != TREE_ADDRESSABLE (t2))
3865 return false;
3866
3867 /* Void types and nullptr types are always the same. */
3868 if (TREE_CODE (t1) == VOID_TYPE
3869 || TREE_CODE (t1) == NULLPTR_TYPE)
3870 return true;
3871
3872 /* Can't be the same type if they have different alignment or mode. */
3873 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3874 || TYPE_MODE (t1) != TYPE_MODE (t2))
3875 return false;
3876
3877 /* Do some simple checks before doing three hashtable queries. */
3878 if (INTEGRAL_TYPE_P (t1)
3879 || SCALAR_FLOAT_TYPE_P (t1)
3880 || FIXED_POINT_TYPE_P (t1)
3881 || TREE_CODE (t1) == VECTOR_TYPE
3882 || TREE_CODE (t1) == COMPLEX_TYPE
3883 || TREE_CODE (t1) == OFFSET_TYPE
3884 || POINTER_TYPE_P (t1))
3885 {
3886 /* Can't be the same type if they have different sign or precision. */
3887 if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
3888 || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
3889 return false;
3890
3891 if (TREE_CODE (t1) == INTEGER_TYPE
3892 && (TYPE_IS_SIZETYPE (t1) != TYPE_IS_SIZETYPE (t2)
3893 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)))
3894 return false;
3895
3896 /* That's all we need to check for float and fixed-point types. */
3897 if (SCALAR_FLOAT_TYPE_P (t1)
3898 || FIXED_POINT_TYPE_P (t1))
3899 return true;
3900
3901 /* For other types fall thru to more complex checks. */
3902 }
3903
3904 /* If the types have been previously registered and found equal
3905 they still are. */
3906 leader1 = gimple_lookup_type_leader (t1);
3907 leader2 = gimple_lookup_type_leader (t2);
3908 if (leader1 == t2
3909 || t1 == leader2
3910 || (leader1 && leader1 == leader2))
3911 return true;
3912
3913 /* If the hash values of t1 and t2 are different the types can't
3914 possibly be the same. This helps keeping the type-pair hashtable
3915 small, only tracking comparisons for hash collisions. */
3916 if (gimple_type_hash (t1) != gimple_type_hash (t2))
3917 return false;
3918
3919 /* If we've visited this type pair before (in the case of aggregates
3920 with self-referential types), and we made a decision, return it. */
3921 p = lookup_type_pair (t1, t2);
3922 if (p->same_p[GTC_MERGE] == 0 || p->same_p[GTC_MERGE] == 1)
3923 {
3924 /* We have already decided whether T1 and T2 are the
3925 same, return the cached result. */
3926 return p->same_p[GTC_MERGE] == 1;
3927 }
3928
3929 /* Now set up the SCC machinery for the comparison. */
3930 gtc_next_dfs_num = 1;
3931 sccstate = pointer_map_create ();
3932 gcc_obstack_init (&sccstate_obstack);
3933 res = gimple_types_compatible_p_1 (t1, t2, p,
3934 &sccstack, sccstate, &sccstate_obstack);
3935 VEC_free (type_pair_t, heap, sccstack);
3936 pointer_map_destroy (sccstate);
3937 obstack_free (&sccstate_obstack, NULL);
3938
3939 return res;
3940 }
3941
3942
3943 static hashval_t
3944 iterative_hash_gimple_type (tree, hashval_t, VEC(tree, heap) **,
3945 struct pointer_map_t *, struct obstack *);
3946
3947 /* DFS visit the edge from the callers type with state *STATE to T.
3948 Update the callers type hash V with the hash for T if it is not part
3949 of the SCC containing the callers type and return it.
3950 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3951
3952 static hashval_t
3953 visit (tree t, struct sccs *state, hashval_t v,
3954 VEC (tree, heap) **sccstack,
3955 struct pointer_map_t *sccstate,
3956 struct obstack *sccstate_obstack)
3957 {
3958 struct sccs *cstate = NULL;
3959 struct tree_int_map m;
3960 void **slot;
3961
3962 /* If there is a hash value recorded for this type then it can't
3963 possibly be part of our parent SCC. Simply mix in its hash. */
3964 m.base.from = t;
3965 if ((slot = htab_find_slot (type_hash_cache, &m, NO_INSERT))
3966 && *slot)
3967 return iterative_hash_hashval_t (((struct tree_int_map *) *slot)->to, v);
3968
3969 if ((slot = pointer_map_contains (sccstate, t)) != NULL)
3970 cstate = (struct sccs *)*slot;
3971 if (!cstate)
3972 {
3973 hashval_t tem;
3974 /* Not yet visited. DFS recurse. */
3975 tem = iterative_hash_gimple_type (t, v,
3976 sccstack, sccstate, sccstate_obstack);
3977 if (!cstate)
3978 cstate = (struct sccs *)* pointer_map_contains (sccstate, t);
3979 state->low = MIN (state->low, cstate->low);
3980 /* If the type is no longer on the SCC stack and thus is not part
3981 of the parents SCC mix in its hash value. Otherwise we will
3982 ignore the type for hashing purposes and return the unaltered
3983 hash value. */
3984 if (!cstate->on_sccstack)
3985 return tem;
3986 }
3987 if (cstate->dfsnum < state->dfsnum
3988 && cstate->on_sccstack)
3989 state->low = MIN (cstate->dfsnum, state->low);
3990
3991 /* We are part of our parents SCC, skip this type during hashing
3992 and return the unaltered hash value. */
3993 return v;
3994 }
3995
3996 /* Hash NAME with the previous hash value V and return it. */
3997
3998 static hashval_t
3999 iterative_hash_name (tree name, hashval_t v)
4000 {
4001 if (!name)
4002 return v;
4003 if (TREE_CODE (name) == TYPE_DECL)
4004 name = DECL_NAME (name);
4005 if (!name)
4006 return v;
4007 gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
4008 return iterative_hash_object (IDENTIFIER_HASH_VALUE (name), v);
4009 }
4010
4011 /* A type, hashvalue pair for sorting SCC members. */
4012
4013 struct type_hash_pair {
4014 tree type;
4015 hashval_t hash;
4016 };
4017
4018 /* Compare two type, hashvalue pairs. */
4019
4020 static int
4021 type_hash_pair_compare (const void *p1_, const void *p2_)
4022 {
4023 const struct type_hash_pair *p1 = (const struct type_hash_pair *) p1_;
4024 const struct type_hash_pair *p2 = (const struct type_hash_pair *) p2_;
4025 if (p1->hash < p2->hash)
4026 return -1;
4027 else if (p1->hash > p2->hash)
4028 return 1;
4029 return 0;
4030 }
4031
4032 /* Returning a hash value for gimple type TYPE combined with VAL.
4033 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done.
4034
4035 To hash a type we end up hashing in types that are reachable.
4036 Through pointers we can end up with cycles which messes up the
4037 required property that we need to compute the same hash value
4038 for structurally equivalent types. To avoid this we have to
4039 hash all types in a cycle (the SCC) in a commutative way. The
4040 easiest way is to not mix in the hashes of the SCC members at
4041 all. To make this work we have to delay setting the hash
4042 values of the SCC until it is complete. */
4043
4044 static hashval_t
4045 iterative_hash_gimple_type (tree type, hashval_t val,
4046 VEC(tree, heap) **sccstack,
4047 struct pointer_map_t *sccstate,
4048 struct obstack *sccstate_obstack)
4049 {
4050 hashval_t v;
4051 void **slot;
4052 struct sccs *state;
4053
4054 /* Not visited during this DFS walk. */
4055 gcc_checking_assert (!pointer_map_contains (sccstate, type));
4056 state = XOBNEW (sccstate_obstack, struct sccs);
4057 *pointer_map_insert (sccstate, type) = state;
4058
4059 VEC_safe_push (tree, heap, *sccstack, type);
4060 state->dfsnum = next_dfs_num++;
4061 state->low = state->dfsnum;
4062 state->on_sccstack = true;
4063
4064 /* Combine a few common features of types so that types are grouped into
4065 smaller sets; when searching for existing matching types to merge,
4066 only existing types having the same features as the new type will be
4067 checked. */
4068 v = iterative_hash_name (TYPE_NAME (type), 0);
4069 v = iterative_hash_hashval_t (TREE_CODE (type), v);
4070 v = iterative_hash_hashval_t (TYPE_QUALS (type), v);
4071 v = iterative_hash_hashval_t (TREE_ADDRESSABLE (type), v);
4072
4073 /* Do not hash the types size as this will cause differences in
4074 hash values for the complete vs. the incomplete type variant. */
4075
4076 /* Incorporate common features of numerical types. */
4077 if (INTEGRAL_TYPE_P (type)
4078 || SCALAR_FLOAT_TYPE_P (type)
4079 || FIXED_POINT_TYPE_P (type))
4080 {
4081 v = iterative_hash_hashval_t (TYPE_PRECISION (type), v);
4082 v = iterative_hash_hashval_t (TYPE_MODE (type), v);
4083 v = iterative_hash_hashval_t (TYPE_UNSIGNED (type), v);
4084 }
4085
4086 /* For pointer and reference types, fold in information about the type
4087 pointed to. */
4088 if (POINTER_TYPE_P (type))
4089 v = visit (TREE_TYPE (type), state, v,
4090 sccstack, sccstate, sccstate_obstack);
4091
4092 /* For integer types hash the types min/max values and the string flag. */
4093 if (TREE_CODE (type) == INTEGER_TYPE)
4094 {
4095 /* OMP lowering can introduce error_mark_node in place of
4096 random local decls in types. */
4097 if (TYPE_MIN_VALUE (type) != error_mark_node)
4098 v = iterative_hash_expr (TYPE_MIN_VALUE (type), v);
4099 if (TYPE_MAX_VALUE (type) != error_mark_node)
4100 v = iterative_hash_expr (TYPE_MAX_VALUE (type), v);
4101 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
4102 }
4103
4104 /* For array types hash their domain and the string flag. */
4105 if (TREE_CODE (type) == ARRAY_TYPE
4106 && TYPE_DOMAIN (type))
4107 {
4108 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
4109 v = visit (TYPE_DOMAIN (type), state, v,
4110 sccstack, sccstate, sccstate_obstack);
4111 }
4112
4113 /* Recurse for aggregates with a single element type. */
4114 if (TREE_CODE (type) == ARRAY_TYPE
4115 || TREE_CODE (type) == COMPLEX_TYPE
4116 || TREE_CODE (type) == VECTOR_TYPE)
4117 v = visit (TREE_TYPE (type), state, v,
4118 sccstack, sccstate, sccstate_obstack);
4119
4120 /* Incorporate function return and argument types. */
4121 if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE)
4122 {
4123 unsigned na;
4124 tree p;
4125
4126 /* For method types also incorporate their parent class. */
4127 if (TREE_CODE (type) == METHOD_TYPE)
4128 v = visit (TYPE_METHOD_BASETYPE (type), state, v,
4129 sccstack, sccstate, sccstate_obstack);
4130
4131 /* Check result and argument types. */
4132 v = visit (TREE_TYPE (type), state, v,
4133 sccstack, sccstate, sccstate_obstack);
4134 for (p = TYPE_ARG_TYPES (type), na = 0; p; p = TREE_CHAIN (p))
4135 {
4136 v = visit (TREE_VALUE (p), state, v,
4137 sccstack, sccstate, sccstate_obstack);
4138 na++;
4139 }
4140
4141 v = iterative_hash_hashval_t (na, v);
4142 }
4143
4144 if (TREE_CODE (type) == RECORD_TYPE
4145 || TREE_CODE (type) == UNION_TYPE
4146 || TREE_CODE (type) == QUAL_UNION_TYPE)
4147 {
4148 unsigned nf;
4149 tree f;
4150
4151 for (f = TYPE_FIELDS (type), nf = 0; f; f = TREE_CHAIN (f))
4152 {
4153 v = iterative_hash_name (DECL_NAME (f), v);
4154 v = visit (TREE_TYPE (f), state, v,
4155 sccstack, sccstate, sccstate_obstack);
4156 nf++;
4157 }
4158
4159 v = iterative_hash_hashval_t (nf, v);
4160 }
4161
4162 /* Record hash for us. */
4163 state->u.hash = v;
4164
4165 /* See if we found an SCC. */
4166 if (state->low == state->dfsnum)
4167 {
4168 tree x;
4169 struct tree_int_map *m;
4170
4171 /* Pop off the SCC and set its hash values. */
4172 x = VEC_pop (tree, *sccstack);
4173 /* Optimize SCC size one. */
4174 if (x == type)
4175 {
4176 state->on_sccstack = false;
4177 m = ggc_alloc_cleared_tree_int_map ();
4178 m->base.from = x;
4179 m->to = v;
4180 slot = htab_find_slot (type_hash_cache, m, INSERT);
4181 gcc_assert (!*slot);
4182 *slot = (void *) m;
4183 }
4184 else
4185 {
4186 struct sccs *cstate;
4187 unsigned first, i, size, j;
4188 struct type_hash_pair *pairs;
4189 /* Pop off the SCC and build an array of type, hash pairs. */
4190 first = VEC_length (tree, *sccstack) - 1;
4191 while (VEC_index (tree, *sccstack, first) != type)
4192 --first;
4193 size = VEC_length (tree, *sccstack) - first + 1;
4194 pairs = XALLOCAVEC (struct type_hash_pair, size);
4195 i = 0;
4196 cstate = (struct sccs *)*pointer_map_contains (sccstate, x);
4197 cstate->on_sccstack = false;
4198 pairs[i].type = x;
4199 pairs[i].hash = cstate->u.hash;
4200 do
4201 {
4202 x = VEC_pop (tree, *sccstack);
4203 cstate = (struct sccs *)*pointer_map_contains (sccstate, x);
4204 cstate->on_sccstack = false;
4205 ++i;
4206 pairs[i].type = x;
4207 pairs[i].hash = cstate->u.hash;
4208 }
4209 while (x != type);
4210 gcc_assert (i + 1 == size);
4211 /* Sort the arrays of type, hash pairs so that when we mix in
4212 all members of the SCC the hash value becomes independent on
4213 the order we visited the SCC. Disregard hashes equal to
4214 the hash of the type we mix into because we cannot guarantee
4215 a stable sort for those across different TUs. */
4216 qsort (pairs, size, sizeof (struct type_hash_pair),
4217 type_hash_pair_compare);
4218 for (i = 0; i < size; ++i)
4219 {
4220 hashval_t hash;
4221 m = ggc_alloc_cleared_tree_int_map ();
4222 m->base.from = pairs[i].type;
4223 hash = pairs[i].hash;
4224 /* Skip same hashes. */
4225 for (j = i + 1; j < size && pairs[j].hash == pairs[i].hash; ++j)
4226 ;
4227 for (; j < size; ++j)
4228 hash = iterative_hash_hashval_t (pairs[j].hash, hash);
4229 for (j = 0; pairs[j].hash != pairs[i].hash; ++j)
4230 hash = iterative_hash_hashval_t (pairs[j].hash, hash);
4231 m->to = hash;
4232 if (pairs[i].type == type)
4233 v = hash;
4234 slot = htab_find_slot (type_hash_cache, m, INSERT);
4235 gcc_assert (!*slot);
4236 *slot = (void *) m;
4237 }
4238 }
4239 }
4240
4241 return iterative_hash_hashval_t (v, val);
4242 }
4243
4244
4245 /* Returns a hash value for P (assumed to be a type). The hash value
4246 is computed using some distinguishing features of the type. Note
4247 that we cannot use pointer hashing here as we may be dealing with
4248 two distinct instances of the same type.
4249
4250 This function should produce the same hash value for two compatible
4251 types according to gimple_types_compatible_p. */
4252
4253 static hashval_t
4254 gimple_type_hash (const void *p)
4255 {
4256 const_tree t = (const_tree) p;
4257 VEC(tree, heap) *sccstack = NULL;
4258 struct pointer_map_t *sccstate;
4259 struct obstack sccstate_obstack;
4260 hashval_t val;
4261 void **slot;
4262 struct tree_int_map m;
4263
4264 if (type_hash_cache == NULL)
4265 type_hash_cache = htab_create_ggc (512, tree_int_map_hash,
4266 tree_int_map_eq, NULL);
4267
4268 m.base.from = CONST_CAST_TREE (t);
4269 if ((slot = htab_find_slot (type_hash_cache, &m, NO_INSERT))
4270 && *slot)
4271 return iterative_hash_hashval_t (((struct tree_int_map *) *slot)->to, 0);
4272
4273 /* Perform a DFS walk and pre-hash all reachable types. */
4274 next_dfs_num = 1;
4275 sccstate = pointer_map_create ();
4276 gcc_obstack_init (&sccstate_obstack);
4277 val = iterative_hash_gimple_type (CONST_CAST_TREE (t), 0,
4278 &sccstack, sccstate, &sccstate_obstack);
4279 VEC_free (tree, heap, sccstack);
4280 pointer_map_destroy (sccstate);
4281 obstack_free (&sccstate_obstack, NULL);
4282
4283 return val;
4284 }
4285
4286 /* Returning a hash value for gimple type TYPE combined with VAL.
4287
4288 The hash value returned is equal for types considered compatible
4289 by gimple_canonical_types_compatible_p. */
4290
4291 static hashval_t
4292 iterative_hash_canonical_type (tree type, hashval_t val)
4293 {
4294 hashval_t v;
4295 void **slot;
4296 struct tree_int_map *mp, m;
4297
4298 m.base.from = type;
4299 if ((slot = htab_find_slot (canonical_type_hash_cache, &m, INSERT))
4300 && *slot)
4301 return iterative_hash_hashval_t (((struct tree_int_map *) *slot)->to, val);
4302
4303 /* Combine a few common features of types so that types are grouped into
4304 smaller sets; when searching for existing matching types to merge,
4305 only existing types having the same features as the new type will be
4306 checked. */
4307 v = iterative_hash_hashval_t (TREE_CODE (type), 0);
4308 v = iterative_hash_hashval_t (TREE_ADDRESSABLE (type), v);
4309 v = iterative_hash_hashval_t (TYPE_ALIGN (type), v);
4310 v = iterative_hash_hashval_t (TYPE_MODE (type), v);
4311
4312 /* Incorporate common features of numerical types. */
4313 if (INTEGRAL_TYPE_P (type)
4314 || SCALAR_FLOAT_TYPE_P (type)
4315 || FIXED_POINT_TYPE_P (type)
4316 || TREE_CODE (type) == VECTOR_TYPE
4317 || TREE_CODE (type) == COMPLEX_TYPE
4318 || TREE_CODE (type) == OFFSET_TYPE
4319 || POINTER_TYPE_P (type))
4320 {
4321 v = iterative_hash_hashval_t (TYPE_PRECISION (type), v);
4322 v = iterative_hash_hashval_t (TYPE_UNSIGNED (type), v);
4323 }
4324
4325 /* For pointer and reference types, fold in information about the type
4326 pointed to but do not recurse to the pointed-to type. */
4327 if (POINTER_TYPE_P (type))
4328 {
4329 v = iterative_hash_hashval_t (TYPE_REF_CAN_ALIAS_ALL (type), v);
4330 v = iterative_hash_hashval_t (TYPE_ADDR_SPACE (TREE_TYPE (type)), v);
4331 v = iterative_hash_hashval_t (TYPE_RESTRICT (type), v);
4332 v = iterative_hash_hashval_t (TREE_CODE (TREE_TYPE (type)), v);
4333 }
4334
4335 /* For integer types hash the types min/max values and the string flag. */
4336 if (TREE_CODE (type) == INTEGER_TYPE)
4337 {
4338 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
4339 v = iterative_hash_hashval_t (TYPE_IS_SIZETYPE (type), v);
4340 }
4341
4342 /* For array types hash their domain and the string flag. */
4343 if (TREE_CODE (type) == ARRAY_TYPE
4344 && TYPE_DOMAIN (type))
4345 {
4346 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
4347 v = iterative_hash_canonical_type (TYPE_DOMAIN (type), v);
4348 }
4349
4350 /* Recurse for aggregates with a single element type. */
4351 if (TREE_CODE (type) == ARRAY_TYPE
4352 || TREE_CODE (type) == COMPLEX_TYPE
4353 || TREE_CODE (type) == VECTOR_TYPE)
4354 v = iterative_hash_canonical_type (TREE_TYPE (type), v);
4355
4356 /* Incorporate function return and argument types. */
4357 if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE)
4358 {
4359 unsigned na;
4360 tree p;
4361
4362 /* For method types also incorporate their parent class. */
4363 if (TREE_CODE (type) == METHOD_TYPE)
4364 v = iterative_hash_canonical_type (TYPE_METHOD_BASETYPE (type), v);
4365
4366 v = iterative_hash_canonical_type (TREE_TYPE (type), v);
4367
4368 for (p = TYPE_ARG_TYPES (type), na = 0; p; p = TREE_CHAIN (p))
4369 {
4370 v = iterative_hash_canonical_type (TREE_VALUE (p), v);
4371 na++;
4372 }
4373
4374 v = iterative_hash_hashval_t (na, v);
4375 }
4376
4377 if (TREE_CODE (type) == RECORD_TYPE
4378 || TREE_CODE (type) == UNION_TYPE
4379 || TREE_CODE (type) == QUAL_UNION_TYPE)
4380 {
4381 unsigned nf;
4382 tree f;
4383
4384 for (f = TYPE_FIELDS (type), nf = 0; f; f = TREE_CHAIN (f))
4385 if (TREE_CODE (f) == FIELD_DECL)
4386 {
4387 v = iterative_hash_canonical_type (TREE_TYPE (f), v);
4388 nf++;
4389 }
4390
4391 v = iterative_hash_hashval_t (nf, v);
4392 }
4393
4394 /* Cache the just computed hash value. */
4395 mp = ggc_alloc_cleared_tree_int_map ();
4396 mp->base.from = type;
4397 mp->to = v;
4398 *slot = (void *) mp;
4399
4400 return iterative_hash_hashval_t (v, val);
4401 }
4402
4403 static hashval_t
4404 gimple_canonical_type_hash (const void *p)
4405 {
4406 if (canonical_type_hash_cache == NULL)
4407 canonical_type_hash_cache = htab_create_ggc (512, tree_int_map_hash,
4408 tree_int_map_eq, NULL);
4409
4410 return iterative_hash_canonical_type (CONST_CAST_TREE ((const_tree) p), 0);
4411 }
4412
4413
4414 /* Returns nonzero if P1 and P2 are equal. */
4415
4416 static int
4417 gimple_type_eq (const void *p1, const void *p2)
4418 {
4419 const_tree t1 = (const_tree) p1;
4420 const_tree t2 = (const_tree) p2;
4421 return gimple_types_compatible_p (CONST_CAST_TREE (t1),
4422 CONST_CAST_TREE (t2));
4423 }
4424
4425
4426 /* Worker for gimple_register_type.
4427 Register type T in the global type table gimple_types.
4428 When REGISTERING_MV is false first recurse for the main variant of T. */
4429
4430 static tree
4431 gimple_register_type_1 (tree t, bool registering_mv)
4432 {
4433 void **slot;
4434 gimple_type_leader_entry *leader;
4435
4436 /* If we registered this type before return the cached result. */
4437 leader = &gimple_type_leader[TYPE_UID (t) % GIMPLE_TYPE_LEADER_SIZE];
4438 if (leader->type == t)
4439 return leader->leader;
4440
4441 /* Always register the main variant first. This is important so we
4442 pick up the non-typedef variants as canonical, otherwise we'll end
4443 up taking typedef ids for structure tags during comparison.
4444 It also makes sure that main variants will be merged to main variants.
4445 As we are operating on a possibly partially fixed up type graph
4446 do not bother to recurse more than once, otherwise we may end up
4447 walking in circles.
4448 If we are registering a main variant it will either remain its
4449 own main variant or it will be merged to something else in which
4450 case we do not care for the main variant leader. */
4451 if (!registering_mv
4452 && TYPE_MAIN_VARIANT (t) != t)
4453 gimple_register_type_1 (TYPE_MAIN_VARIANT (t), true);
4454
4455 /* See if we already have an equivalent type registered. */
4456 slot = htab_find_slot (gimple_types, t, INSERT);
4457 if (*slot
4458 && *(tree *)slot != t)
4459 {
4460 tree new_type = (tree) *((tree *) slot);
4461 leader->type = t;
4462 leader->leader = new_type;
4463 return new_type;
4464 }
4465
4466 /* If not, insert it to the cache and the hash. */
4467 leader->type = t;
4468 leader->leader = t;
4469 *slot = (void *) t;
4470 return t;
4471 }
4472
4473 /* Register type T in the global type table gimple_types.
4474 If another type T', compatible with T, already existed in
4475 gimple_types then return T', otherwise return T. This is used by
4476 LTO to merge identical types read from different TUs. */
4477
4478 tree
4479 gimple_register_type (tree t)
4480 {
4481 gcc_assert (TYPE_P (t));
4482
4483 if (!gimple_type_leader)
4484 gimple_type_leader = ggc_alloc_cleared_vec_gimple_type_leader_entry_s
4485 (GIMPLE_TYPE_LEADER_SIZE);
4486
4487 if (gimple_types == NULL)
4488 gimple_types = htab_create_ggc (16381, gimple_type_hash, gimple_type_eq, 0);
4489
4490 return gimple_register_type_1 (t, false);
4491 }
4492
4493 /* The TYPE_CANONICAL merging machinery. It should closely resemble
4494 the middle-end types_compatible_p function. It needs to avoid
4495 claiming types are different for types that should be treated
4496 the same with respect to TBAA. Canonical types are also used
4497 for IL consistency checks via the useless_type_conversion_p
4498 predicate which does not handle all type kinds itself but falls
4499 back to pointer-comparison of TYPE_CANONICAL for aggregates
4500 for example. */
4501
4502 /* Return true iff T1 and T2 are structurally identical for what
4503 TBAA is concerned. */
4504
4505 static bool
4506 gimple_canonical_types_compatible_p (tree t1, tree t2)
4507 {
4508 /* Before starting to set up the SCC machinery handle simple cases. */
4509
4510 /* Check first for the obvious case of pointer identity. */
4511 if (t1 == t2)
4512 return true;
4513
4514 /* Check that we have two types to compare. */
4515 if (t1 == NULL_TREE || t2 == NULL_TREE)
4516 return false;
4517
4518 /* If the types have been previously registered and found equal
4519 they still are. */
4520 if (TYPE_CANONICAL (t1)
4521 && TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2))
4522 return true;
4523
4524 /* Can't be the same type if the types don't have the same code. */
4525 if (TREE_CODE (t1) != TREE_CODE (t2))
4526 return false;
4527
4528 if (TREE_ADDRESSABLE (t1) != TREE_ADDRESSABLE (t2))
4529 return false;
4530
4531 /* Qualifiers do not matter for canonical type comparison purposes. */
4532
4533 /* Void types and nullptr types are always the same. */
4534 if (TREE_CODE (t1) == VOID_TYPE
4535 || TREE_CODE (t1) == NULLPTR_TYPE)
4536 return true;
4537
4538 /* Can't be the same type if they have different alignment, or mode. */
4539 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
4540 || TYPE_MODE (t1) != TYPE_MODE (t2))
4541 return false;
4542
4543 /* Non-aggregate types can be handled cheaply. */
4544 if (INTEGRAL_TYPE_P (t1)
4545 || SCALAR_FLOAT_TYPE_P (t1)
4546 || FIXED_POINT_TYPE_P (t1)
4547 || TREE_CODE (t1) == VECTOR_TYPE
4548 || TREE_CODE (t1) == COMPLEX_TYPE
4549 || TREE_CODE (t1) == OFFSET_TYPE
4550 || POINTER_TYPE_P (t1))
4551 {
4552 /* Can't be the same type if they have different sign or precision. */
4553 if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
4554 || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
4555 return false;
4556
4557 if (TREE_CODE (t1) == INTEGER_TYPE
4558 && (TYPE_IS_SIZETYPE (t1) != TYPE_IS_SIZETYPE (t2)
4559 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)))
4560 return false;
4561
4562 /* For canonical type comparisons we do not want to build SCCs
4563 so we cannot compare pointed-to types. But we can, for now,
4564 require the same pointed-to type kind and match what
4565 useless_type_conversion_p would do. */
4566 if (POINTER_TYPE_P (t1))
4567 {
4568 /* If the two pointers have different ref-all attributes,
4569 they can't be the same type. */
4570 if (TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
4571 return false;
4572
4573 if (TYPE_ADDR_SPACE (TREE_TYPE (t1))
4574 != TYPE_ADDR_SPACE (TREE_TYPE (t2)))
4575 return false;
4576
4577 if (TYPE_RESTRICT (t1) != TYPE_RESTRICT (t2))
4578 return false;
4579
4580 if (TREE_CODE (TREE_TYPE (t1)) != TREE_CODE (TREE_TYPE (t2)))
4581 return false;
4582 }
4583
4584 /* Tail-recurse to components. */
4585 if (TREE_CODE (t1) == VECTOR_TYPE
4586 || TREE_CODE (t1) == COMPLEX_TYPE)
4587 return gimple_canonical_types_compatible_p (TREE_TYPE (t1),
4588 TREE_TYPE (t2));
4589
4590 return true;
4591 }
4592
4593 /* If their attributes are not the same they can't be the same type. */
4594 if (!attribute_list_equal (TYPE_ATTRIBUTES (t1), TYPE_ATTRIBUTES (t2)))
4595 return false;
4596
4597 /* Do type-specific comparisons. */
4598 switch (TREE_CODE (t1))
4599 {
4600 case ARRAY_TYPE:
4601 /* Array types are the same if the element types are the same and
4602 the number of elements are the same. */
4603 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2))
4604 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
4605 || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
4606 return false;
4607 else
4608 {
4609 tree i1 = TYPE_DOMAIN (t1);
4610 tree i2 = TYPE_DOMAIN (t2);
4611
4612 /* For an incomplete external array, the type domain can be
4613 NULL_TREE. Check this condition also. */
4614 if (i1 == NULL_TREE && i2 == NULL_TREE)
4615 return true;
4616 else if (i1 == NULL_TREE || i2 == NULL_TREE)
4617 return false;
4618 /* If for a complete array type the possibly gimplified sizes
4619 are different the types are different. */
4620 else if (((TYPE_SIZE (i1) != NULL) ^ (TYPE_SIZE (i2) != NULL))
4621 || (TYPE_SIZE (i1)
4622 && TYPE_SIZE (i2)
4623 && !operand_equal_p (TYPE_SIZE (i1), TYPE_SIZE (i2), 0)))
4624 return false;
4625 else
4626 {
4627 tree min1 = TYPE_MIN_VALUE (i1);
4628 tree min2 = TYPE_MIN_VALUE (i2);
4629 tree max1 = TYPE_MAX_VALUE (i1);
4630 tree max2 = TYPE_MAX_VALUE (i2);
4631
4632 /* The minimum/maximum values have to be the same. */
4633 if ((min1 == min2
4634 || (min1 && min2
4635 && ((TREE_CODE (min1) == PLACEHOLDER_EXPR
4636 && TREE_CODE (min2) == PLACEHOLDER_EXPR)
4637 || operand_equal_p (min1, min2, 0))))
4638 && (max1 == max2
4639 || (max1 && max2
4640 && ((TREE_CODE (max1) == PLACEHOLDER_EXPR
4641 && TREE_CODE (max2) == PLACEHOLDER_EXPR)
4642 || operand_equal_p (max1, max2, 0)))))
4643 return true;
4644 else
4645 return false;
4646 }
4647 }
4648
4649 case METHOD_TYPE:
4650 /* Method types should belong to the same class. */
4651 if (!gimple_canonical_types_compatible_p
4652 (TYPE_METHOD_BASETYPE (t1), TYPE_METHOD_BASETYPE (t2)))
4653 return false;
4654
4655 /* Fallthru */
4656
4657 case FUNCTION_TYPE:
4658 /* Function types are the same if the return type and arguments types
4659 are the same. */
4660 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2)))
4661 return false;
4662
4663 if (!comp_type_attributes (t1, t2))
4664 return false;
4665
4666 if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
4667 return true;
4668 else
4669 {
4670 tree parms1, parms2;
4671
4672 for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
4673 parms1 && parms2;
4674 parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
4675 {
4676 if (!gimple_canonical_types_compatible_p
4677 (TREE_VALUE (parms1), TREE_VALUE (parms2)))
4678 return false;
4679 }
4680
4681 if (parms1 || parms2)
4682 return false;
4683
4684 return true;
4685 }
4686
4687 case RECORD_TYPE:
4688 case UNION_TYPE:
4689 case QUAL_UNION_TYPE:
4690 {
4691 tree f1, f2;
4692
4693 /* For aggregate types, all the fields must be the same. */
4694 for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
4695 f1 && f2;
4696 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
4697 {
4698 /* Skip non-fields. */
4699 while (f1 && TREE_CODE (f1) != FIELD_DECL)
4700 f1 = TREE_CHAIN (f1);
4701 while (f2 && TREE_CODE (f2) != FIELD_DECL)
4702 f2 = TREE_CHAIN (f2);
4703 if (!f1 || !f2)
4704 break;
4705 /* The fields must have the same name, offset and type. */
4706 if (DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
4707 || !gimple_compare_field_offset (f1, f2)
4708 || !gimple_canonical_types_compatible_p
4709 (TREE_TYPE (f1), TREE_TYPE (f2)))
4710 return false;
4711 }
4712
4713 /* If one aggregate has more fields than the other, they
4714 are not the same. */
4715 if (f1 || f2)
4716 return false;
4717
4718 return true;
4719 }
4720
4721 default:
4722 gcc_unreachable ();
4723 }
4724 }
4725
4726
4727 /* Returns nonzero if P1 and P2 are equal. */
4728
4729 static int
4730 gimple_canonical_type_eq (const void *p1, const void *p2)
4731 {
4732 const_tree t1 = (const_tree) p1;
4733 const_tree t2 = (const_tree) p2;
4734 return gimple_canonical_types_compatible_p (CONST_CAST_TREE (t1),
4735 CONST_CAST_TREE (t2));
4736 }
4737
4738 /* Register type T in the global type table gimple_types.
4739 If another type T', compatible with T, already existed in
4740 gimple_types then return T', otherwise return T. This is used by
4741 LTO to merge identical types read from different TUs.
4742
4743 ??? This merging does not exactly match how the tree.c middle-end
4744 functions will assign TYPE_CANONICAL when new types are created
4745 during optimization (which at least happens for pointer and array
4746 types). */
4747
4748 tree
4749 gimple_register_canonical_type (tree t)
4750 {
4751 void **slot;
4752 tree orig_t = t;
4753
4754 gcc_assert (TYPE_P (t));
4755
4756 if (TYPE_CANONICAL (t))
4757 return TYPE_CANONICAL (t);
4758
4759 /* Use the leader of our main variant for determining our canonical
4760 type. The main variant leader is a type that will always
4761 prevail. */
4762 t = gimple_register_type (TYPE_MAIN_VARIANT (t));
4763
4764 if (TYPE_CANONICAL (t))
4765 return TYPE_CANONICAL (t);
4766
4767 if (gimple_canonical_types == NULL)
4768 gimple_canonical_types = htab_create_ggc (16381, gimple_canonical_type_hash,
4769 gimple_canonical_type_eq, 0);
4770
4771 slot = htab_find_slot (gimple_canonical_types, t, INSERT);
4772 if (*slot
4773 && *(tree *)slot != t)
4774 {
4775 tree new_type = (tree) *((tree *) slot);
4776
4777 TYPE_CANONICAL (t) = new_type;
4778 t = new_type;
4779 }
4780 else
4781 {
4782 TYPE_CANONICAL (t) = t;
4783 *slot = (void *) t;
4784 }
4785
4786 /* Also cache the canonical type in the non-leaders. */
4787 TYPE_CANONICAL (orig_t) = t;
4788
4789 return t;
4790 }
4791
4792
4793 /* Show statistics on references to the global type table gimple_types. */
4794
4795 void
4796 print_gimple_types_stats (void)
4797 {
4798 if (gimple_types)
4799 fprintf (stderr, "GIMPLE type table: size %ld, %ld elements, "
4800 "%ld searches, %ld collisions (ratio: %f)\n",
4801 (long) htab_size (gimple_types),
4802 (long) htab_elements (gimple_types),
4803 (long) gimple_types->searches,
4804 (long) gimple_types->collisions,
4805 htab_collisions (gimple_types));
4806 else
4807 fprintf (stderr, "GIMPLE type table is empty\n");
4808 if (type_hash_cache)
4809 fprintf (stderr, "GIMPLE type hash table: size %ld, %ld elements, "
4810 "%ld searches, %ld collisions (ratio: %f)\n",
4811 (long) htab_size (type_hash_cache),
4812 (long) htab_elements (type_hash_cache),
4813 (long) type_hash_cache->searches,
4814 (long) type_hash_cache->collisions,
4815 htab_collisions (type_hash_cache));
4816 else
4817 fprintf (stderr, "GIMPLE type hash table is empty\n");
4818 if (gimple_canonical_types)
4819 fprintf (stderr, "GIMPLE canonical type table: size %ld, %ld elements, "
4820 "%ld searches, %ld collisions (ratio: %f)\n",
4821 (long) htab_size (gimple_canonical_types),
4822 (long) htab_elements (gimple_canonical_types),
4823 (long) gimple_canonical_types->searches,
4824 (long) gimple_canonical_types->collisions,
4825 htab_collisions (gimple_canonical_types));
4826 else
4827 fprintf (stderr, "GIMPLE canonical type table is empty\n");
4828 if (canonical_type_hash_cache)
4829 fprintf (stderr, "GIMPLE canonical type hash table: size %ld, %ld elements, "
4830 "%ld searches, %ld collisions (ratio: %f)\n",
4831 (long) htab_size (canonical_type_hash_cache),
4832 (long) htab_elements (canonical_type_hash_cache),
4833 (long) canonical_type_hash_cache->searches,
4834 (long) canonical_type_hash_cache->collisions,
4835 htab_collisions (canonical_type_hash_cache));
4836 else
4837 fprintf (stderr, "GIMPLE canonical type hash table is empty\n");
4838 }
4839
4840 /* Free the gimple type hashtables used for LTO type merging. */
4841
4842 void
4843 free_gimple_type_tables (void)
4844 {
4845 /* Last chance to print stats for the tables. */
4846 if (flag_lto_report)
4847 print_gimple_types_stats ();
4848
4849 if (gimple_types)
4850 {
4851 htab_delete (gimple_types);
4852 gimple_types = NULL;
4853 }
4854 if (gimple_canonical_types)
4855 {
4856 htab_delete (gimple_canonical_types);
4857 gimple_canonical_types = NULL;
4858 }
4859 if (type_hash_cache)
4860 {
4861 htab_delete (type_hash_cache);
4862 type_hash_cache = NULL;
4863 }
4864 if (canonical_type_hash_cache)
4865 {
4866 htab_delete (canonical_type_hash_cache);
4867 canonical_type_hash_cache = NULL;
4868 }
4869 if (type_pair_cache)
4870 {
4871 free (type_pair_cache);
4872 type_pair_cache = NULL;
4873 }
4874 gimple_type_leader = NULL;
4875 }
4876
4877
4878 /* Return a type the same as TYPE except unsigned or
4879 signed according to UNSIGNEDP. */
4880
4881 static tree
4882 gimple_signed_or_unsigned_type (bool unsignedp, tree type)
4883 {
4884 tree type1;
4885
4886 type1 = TYPE_MAIN_VARIANT (type);
4887 if (type1 == signed_char_type_node
4888 || type1 == char_type_node
4889 || type1 == unsigned_char_type_node)
4890 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
4891 if (type1 == integer_type_node || type1 == unsigned_type_node)
4892 return unsignedp ? unsigned_type_node : integer_type_node;
4893 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
4894 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
4895 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
4896 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
4897 if (type1 == long_long_integer_type_node
4898 || type1 == long_long_unsigned_type_node)
4899 return unsignedp
4900 ? long_long_unsigned_type_node
4901 : long_long_integer_type_node;
4902 if (int128_integer_type_node && (type1 == int128_integer_type_node || type1 == int128_unsigned_type_node))
4903 return unsignedp
4904 ? int128_unsigned_type_node
4905 : int128_integer_type_node;
4906 #if HOST_BITS_PER_WIDE_INT >= 64
4907 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
4908 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
4909 #endif
4910 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
4911 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
4912 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
4913 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
4914 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
4915 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
4916 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
4917 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
4918
4919 #define GIMPLE_FIXED_TYPES(NAME) \
4920 if (type1 == short_ ## NAME ## _type_node \
4921 || type1 == unsigned_short_ ## NAME ## _type_node) \
4922 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
4923 : short_ ## NAME ## _type_node; \
4924 if (type1 == NAME ## _type_node \
4925 || type1 == unsigned_ ## NAME ## _type_node) \
4926 return unsignedp ? unsigned_ ## NAME ## _type_node \
4927 : NAME ## _type_node; \
4928 if (type1 == long_ ## NAME ## _type_node \
4929 || type1 == unsigned_long_ ## NAME ## _type_node) \
4930 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
4931 : long_ ## NAME ## _type_node; \
4932 if (type1 == long_long_ ## NAME ## _type_node \
4933 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
4934 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
4935 : long_long_ ## NAME ## _type_node;
4936
4937 #define GIMPLE_FIXED_MODE_TYPES(NAME) \
4938 if (type1 == NAME ## _type_node \
4939 || type1 == u ## NAME ## _type_node) \
4940 return unsignedp ? u ## NAME ## _type_node \
4941 : NAME ## _type_node;
4942
4943 #define GIMPLE_FIXED_TYPES_SAT(NAME) \
4944 if (type1 == sat_ ## short_ ## NAME ## _type_node \
4945 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
4946 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
4947 : sat_ ## short_ ## NAME ## _type_node; \
4948 if (type1 == sat_ ## NAME ## _type_node \
4949 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
4950 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
4951 : sat_ ## NAME ## _type_node; \
4952 if (type1 == sat_ ## long_ ## NAME ## _type_node \
4953 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
4954 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
4955 : sat_ ## long_ ## NAME ## _type_node; \
4956 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
4957 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
4958 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
4959 : sat_ ## long_long_ ## NAME ## _type_node;
4960
4961 #define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
4962 if (type1 == sat_ ## NAME ## _type_node \
4963 || type1 == sat_ ## u ## NAME ## _type_node) \
4964 return unsignedp ? sat_ ## u ## NAME ## _type_node \
4965 : sat_ ## NAME ## _type_node;
4966
4967 GIMPLE_FIXED_TYPES (fract);
4968 GIMPLE_FIXED_TYPES_SAT (fract);
4969 GIMPLE_FIXED_TYPES (accum);
4970 GIMPLE_FIXED_TYPES_SAT (accum);
4971
4972 GIMPLE_FIXED_MODE_TYPES (qq);
4973 GIMPLE_FIXED_MODE_TYPES (hq);
4974 GIMPLE_FIXED_MODE_TYPES (sq);
4975 GIMPLE_FIXED_MODE_TYPES (dq);
4976 GIMPLE_FIXED_MODE_TYPES (tq);
4977 GIMPLE_FIXED_MODE_TYPES_SAT (qq);
4978 GIMPLE_FIXED_MODE_TYPES_SAT (hq);
4979 GIMPLE_FIXED_MODE_TYPES_SAT (sq);
4980 GIMPLE_FIXED_MODE_TYPES_SAT (dq);
4981 GIMPLE_FIXED_MODE_TYPES_SAT (tq);
4982 GIMPLE_FIXED_MODE_TYPES (ha);
4983 GIMPLE_FIXED_MODE_TYPES (sa);
4984 GIMPLE_FIXED_MODE_TYPES (da);
4985 GIMPLE_FIXED_MODE_TYPES (ta);
4986 GIMPLE_FIXED_MODE_TYPES_SAT (ha);
4987 GIMPLE_FIXED_MODE_TYPES_SAT (sa);
4988 GIMPLE_FIXED_MODE_TYPES_SAT (da);
4989 GIMPLE_FIXED_MODE_TYPES_SAT (ta);
4990
4991 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
4992 the precision; they have precision set to match their range, but
4993 may use a wider mode to match an ABI. If we change modes, we may
4994 wind up with bad conversions. For INTEGER_TYPEs in C, must check
4995 the precision as well, so as to yield correct results for
4996 bit-field types. C++ does not have these separate bit-field
4997 types, and producing a signed or unsigned variant of an
4998 ENUMERAL_TYPE may cause other problems as well. */
4999 if (!INTEGRAL_TYPE_P (type)
5000 || TYPE_UNSIGNED (type) == unsignedp)
5001 return type;
5002
5003 #define TYPE_OK(node) \
5004 (TYPE_MODE (type) == TYPE_MODE (node) \
5005 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
5006 if (TYPE_OK (signed_char_type_node))
5007 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
5008 if (TYPE_OK (integer_type_node))
5009 return unsignedp ? unsigned_type_node : integer_type_node;
5010 if (TYPE_OK (short_integer_type_node))
5011 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
5012 if (TYPE_OK (long_integer_type_node))
5013 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
5014 if (TYPE_OK (long_long_integer_type_node))
5015 return (unsignedp
5016 ? long_long_unsigned_type_node
5017 : long_long_integer_type_node);
5018 if (int128_integer_type_node && TYPE_OK (int128_integer_type_node))
5019 return (unsignedp
5020 ? int128_unsigned_type_node
5021 : int128_integer_type_node);
5022
5023 #if HOST_BITS_PER_WIDE_INT >= 64
5024 if (TYPE_OK (intTI_type_node))
5025 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
5026 #endif
5027 if (TYPE_OK (intDI_type_node))
5028 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
5029 if (TYPE_OK (intSI_type_node))
5030 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
5031 if (TYPE_OK (intHI_type_node))
5032 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
5033 if (TYPE_OK (intQI_type_node))
5034 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
5035
5036 #undef GIMPLE_FIXED_TYPES
5037 #undef GIMPLE_FIXED_MODE_TYPES
5038 #undef GIMPLE_FIXED_TYPES_SAT
5039 #undef GIMPLE_FIXED_MODE_TYPES_SAT
5040 #undef TYPE_OK
5041
5042 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
5043 }
5044
5045
5046 /* Return an unsigned type the same as TYPE in other respects. */
5047
5048 tree
5049 gimple_unsigned_type (tree type)
5050 {
5051 return gimple_signed_or_unsigned_type (true, type);
5052 }
5053
5054
5055 /* Return a signed type the same as TYPE in other respects. */
5056
5057 tree
5058 gimple_signed_type (tree type)
5059 {
5060 return gimple_signed_or_unsigned_type (false, type);
5061 }
5062
5063
5064 /* Return the typed-based alias set for T, which may be an expression
5065 or a type. Return -1 if we don't do anything special. */
5066
5067 alias_set_type
5068 gimple_get_alias_set (tree t)
5069 {
5070 tree u;
5071
5072 /* Permit type-punning when accessing a union, provided the access
5073 is directly through the union. For example, this code does not
5074 permit taking the address of a union member and then storing
5075 through it. Even the type-punning allowed here is a GCC
5076 extension, albeit a common and useful one; the C standard says
5077 that such accesses have implementation-defined behavior. */
5078 for (u = t;
5079 TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
5080 u = TREE_OPERAND (u, 0))
5081 if (TREE_CODE (u) == COMPONENT_REF
5082 && TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
5083 return 0;
5084
5085 /* That's all the expressions we handle specially. */
5086 if (!TYPE_P (t))
5087 return -1;
5088
5089 /* For convenience, follow the C standard when dealing with
5090 character types. Any object may be accessed via an lvalue that
5091 has character type. */
5092 if (t == char_type_node
5093 || t == signed_char_type_node
5094 || t == unsigned_char_type_node)
5095 return 0;
5096
5097 /* Allow aliasing between signed and unsigned variants of the same
5098 type. We treat the signed variant as canonical. */
5099 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
5100 {
5101 tree t1 = gimple_signed_type (t);
5102
5103 /* t1 == t can happen for boolean nodes which are always unsigned. */
5104 if (t1 != t)
5105 return get_alias_set (t1);
5106 }
5107
5108 return -1;
5109 }
5110
5111
5112 /* Data structure used to count the number of dereferences to PTR
5113 inside an expression. */
5114 struct count_ptr_d
5115 {
5116 tree ptr;
5117 unsigned num_stores;
5118 unsigned num_loads;
5119 };
5120
5121 /* Helper for count_uses_and_derefs. Called by walk_tree to look for
5122 (ALIGN/MISALIGNED_)INDIRECT_REF nodes for the pointer passed in DATA. */
5123
5124 static tree
5125 count_ptr_derefs (tree *tp, int *walk_subtrees, void *data)
5126 {
5127 struct walk_stmt_info *wi_p = (struct walk_stmt_info *) data;
5128 struct count_ptr_d *count_p = (struct count_ptr_d *) wi_p->info;
5129
5130 /* Do not walk inside ADDR_EXPR nodes. In the expression &ptr->fld,
5131 pointer 'ptr' is *not* dereferenced, it is simply used to compute
5132 the address of 'fld' as 'ptr + offsetof(fld)'. */
5133 if (TREE_CODE (*tp) == ADDR_EXPR)
5134 {
5135 *walk_subtrees = 0;
5136 return NULL_TREE;
5137 }
5138
5139 if (TREE_CODE (*tp) == MEM_REF && TREE_OPERAND (*tp, 0) == count_p->ptr)
5140 {
5141 if (wi_p->is_lhs)
5142 count_p->num_stores++;
5143 else
5144 count_p->num_loads++;
5145 }
5146
5147 return NULL_TREE;
5148 }
5149
5150 /* Count the number of direct and indirect uses for pointer PTR in
5151 statement STMT. The number of direct uses is stored in
5152 *NUM_USES_P. Indirect references are counted separately depending
5153 on whether they are store or load operations. The counts are
5154 stored in *NUM_STORES_P and *NUM_LOADS_P. */
5155
5156 void
5157 count_uses_and_derefs (tree ptr, gimple stmt, unsigned *num_uses_p,
5158 unsigned *num_loads_p, unsigned *num_stores_p)
5159 {
5160 ssa_op_iter i;
5161 tree use;
5162
5163 *num_uses_p = 0;
5164 *num_loads_p = 0;
5165 *num_stores_p = 0;
5166
5167 /* Find out the total number of uses of PTR in STMT. */
5168 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
5169 if (use == ptr)
5170 (*num_uses_p)++;
5171
5172 /* Now count the number of indirect references to PTR. This is
5173 truly awful, but we don't have much choice. There are no parent
5174 pointers inside INDIRECT_REFs, so an expression like
5175 '*x_1 = foo (x_1, *x_1)' needs to be traversed piece by piece to
5176 find all the indirect and direct uses of x_1 inside. The only
5177 shortcut we can take is the fact that GIMPLE only allows
5178 INDIRECT_REFs inside the expressions below. */
5179 if (is_gimple_assign (stmt)
5180 || gimple_code (stmt) == GIMPLE_RETURN
5181 || gimple_code (stmt) == GIMPLE_ASM
5182 || is_gimple_call (stmt))
5183 {
5184 struct walk_stmt_info wi;
5185 struct count_ptr_d count;
5186
5187 count.ptr = ptr;
5188 count.num_stores = 0;
5189 count.num_loads = 0;
5190
5191 memset (&wi, 0, sizeof (wi));
5192 wi.info = &count;
5193 walk_gimple_op (stmt, count_ptr_derefs, &wi);
5194
5195 *num_stores_p = count.num_stores;
5196 *num_loads_p = count.num_loads;
5197 }
5198
5199 gcc_assert (*num_uses_p >= *num_loads_p + *num_stores_p);
5200 }
5201
5202 /* From a tree operand OP return the base of a load or store operation
5203 or NULL_TREE if OP is not a load or a store. */
5204
5205 static tree
5206 get_base_loadstore (tree op)
5207 {
5208 while (handled_component_p (op))
5209 op = TREE_OPERAND (op, 0);
5210 if (DECL_P (op)
5211 || INDIRECT_REF_P (op)
5212 || TREE_CODE (op) == MEM_REF
5213 || TREE_CODE (op) == TARGET_MEM_REF)
5214 return op;
5215 return NULL_TREE;
5216 }
5217
5218 /* For the statement STMT call the callbacks VISIT_LOAD, VISIT_STORE and
5219 VISIT_ADDR if non-NULL on loads, store and address-taken operands
5220 passing the STMT, the base of the operand and DATA to it. The base
5221 will be either a decl, an indirect reference (including TARGET_MEM_REF)
5222 or the argument of an address expression.
5223 Returns the results of these callbacks or'ed. */
5224
5225 bool
5226 walk_stmt_load_store_addr_ops (gimple stmt, void *data,
5227 bool (*visit_load)(gimple, tree, void *),
5228 bool (*visit_store)(gimple, tree, void *),
5229 bool (*visit_addr)(gimple, tree, void *))
5230 {
5231 bool ret = false;
5232 unsigned i;
5233 if (gimple_assign_single_p (stmt))
5234 {
5235 tree lhs, rhs;
5236 if (visit_store)
5237 {
5238 lhs = get_base_loadstore (gimple_assign_lhs (stmt));
5239 if (lhs)
5240 ret |= visit_store (stmt, lhs, data);
5241 }
5242 rhs = gimple_assign_rhs1 (stmt);
5243 while (handled_component_p (rhs))
5244 rhs = TREE_OPERAND (rhs, 0);
5245 if (visit_addr)
5246 {
5247 if (TREE_CODE (rhs) == ADDR_EXPR)
5248 ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data);
5249 else if (TREE_CODE (rhs) == TARGET_MEM_REF
5250 && TREE_CODE (TMR_BASE (rhs)) == ADDR_EXPR)
5251 ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (rhs), 0), data);
5252 else if (TREE_CODE (rhs) == OBJ_TYPE_REF
5253 && TREE_CODE (OBJ_TYPE_REF_OBJECT (rhs)) == ADDR_EXPR)
5254 ret |= visit_addr (stmt, TREE_OPERAND (OBJ_TYPE_REF_OBJECT (rhs),
5255 0), data);
5256 lhs = gimple_assign_lhs (stmt);
5257 if (TREE_CODE (lhs) == TARGET_MEM_REF
5258 && TREE_CODE (TMR_BASE (lhs)) == ADDR_EXPR)
5259 ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (lhs), 0), data);
5260 }
5261 if (visit_load)
5262 {
5263 rhs = get_base_loadstore (rhs);
5264 if (rhs)
5265 ret |= visit_load (stmt, rhs, data);
5266 }
5267 }
5268 else if (visit_addr
5269 && (is_gimple_assign (stmt)
5270 || gimple_code (stmt) == GIMPLE_COND))
5271 {
5272 for (i = 0; i < gimple_num_ops (stmt); ++i)
5273 if (gimple_op (stmt, i)
5274 && TREE_CODE (gimple_op (stmt, i)) == ADDR_EXPR)
5275 ret |= visit_addr (stmt, TREE_OPERAND (gimple_op (stmt, i), 0), data);
5276 }
5277 else if (is_gimple_call (stmt))
5278 {
5279 if (visit_store)
5280 {
5281 tree lhs = gimple_call_lhs (stmt);
5282 if (lhs)
5283 {
5284 lhs = get_base_loadstore (lhs);
5285 if (lhs)
5286 ret |= visit_store (stmt, lhs, data);
5287 }
5288 }
5289 if (visit_load || visit_addr)
5290 for (i = 0; i < gimple_call_num_args (stmt); ++i)
5291 {
5292 tree rhs = gimple_call_arg (stmt, i);
5293 if (visit_addr
5294 && TREE_CODE (rhs) == ADDR_EXPR)
5295 ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data);
5296 else if (visit_load)
5297 {
5298 rhs = get_base_loadstore (rhs);
5299 if (rhs)
5300 ret |= visit_load (stmt, rhs, data);
5301 }
5302 }
5303 if (visit_addr
5304 && gimple_call_chain (stmt)
5305 && TREE_CODE (gimple_call_chain (stmt)) == ADDR_EXPR)
5306 ret |= visit_addr (stmt, TREE_OPERAND (gimple_call_chain (stmt), 0),
5307 data);
5308 if (visit_addr
5309 && gimple_call_return_slot_opt_p (stmt)
5310 && gimple_call_lhs (stmt) != NULL_TREE
5311 && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt))))
5312 ret |= visit_addr (stmt, gimple_call_lhs (stmt), data);
5313 }
5314 else if (gimple_code (stmt) == GIMPLE_ASM)
5315 {
5316 unsigned noutputs;
5317 const char *constraint;
5318 const char **oconstraints;
5319 bool allows_mem, allows_reg, is_inout;
5320 noutputs = gimple_asm_noutputs (stmt);
5321 oconstraints = XALLOCAVEC (const char *, noutputs);
5322 if (visit_store || visit_addr)
5323 for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
5324 {
5325 tree link = gimple_asm_output_op (stmt, i);
5326 tree op = get_base_loadstore (TREE_VALUE (link));
5327 if (op && visit_store)
5328 ret |= visit_store (stmt, op, data);
5329 if (visit_addr)
5330 {
5331 constraint = TREE_STRING_POINTER
5332 (TREE_VALUE (TREE_PURPOSE (link)));
5333 oconstraints[i] = constraint;
5334 parse_output_constraint (&constraint, i, 0, 0, &allows_mem,
5335 &allows_reg, &is_inout);
5336 if (op && !allows_reg && allows_mem)
5337 ret |= visit_addr (stmt, op, data);
5338 }
5339 }
5340 if (visit_load || visit_addr)
5341 for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
5342 {
5343 tree link = gimple_asm_input_op (stmt, i);
5344 tree op = TREE_VALUE (link);
5345 if (visit_addr
5346 && TREE_CODE (op) == ADDR_EXPR)
5347 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
5348 else if (visit_load || visit_addr)
5349 {
5350 op = get_base_loadstore (op);
5351 if (op)
5352 {
5353 if (visit_load)
5354 ret |= visit_load (stmt, op, data);
5355 if (visit_addr)
5356 {
5357 constraint = TREE_STRING_POINTER
5358 (TREE_VALUE (TREE_PURPOSE (link)));
5359 parse_input_constraint (&constraint, 0, 0, noutputs,
5360 0, oconstraints,
5361 &allows_mem, &allows_reg);
5362 if (!allows_reg && allows_mem)
5363 ret |= visit_addr (stmt, op, data);
5364 }
5365 }
5366 }
5367 }
5368 }
5369 else if (gimple_code (stmt) == GIMPLE_RETURN)
5370 {
5371 tree op = gimple_return_retval (stmt);
5372 if (op)
5373 {
5374 if (visit_addr
5375 && TREE_CODE (op) == ADDR_EXPR)
5376 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
5377 else if (visit_load)
5378 {
5379 op = get_base_loadstore (op);
5380 if (op)
5381 ret |= visit_load (stmt, op, data);
5382 }
5383 }
5384 }
5385 else if (visit_addr
5386 && gimple_code (stmt) == GIMPLE_PHI)
5387 {
5388 for (i = 0; i < gimple_phi_num_args (stmt); ++i)
5389 {
5390 tree op = PHI_ARG_DEF (stmt, i);
5391 if (TREE_CODE (op) == ADDR_EXPR)
5392 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
5393 }
5394 }
5395
5396 return ret;
5397 }
5398
5399 /* Like walk_stmt_load_store_addr_ops but with NULL visit_addr. IPA-CP
5400 should make a faster clone for this case. */
5401
5402 bool
5403 walk_stmt_load_store_ops (gimple stmt, void *data,
5404 bool (*visit_load)(gimple, tree, void *),
5405 bool (*visit_store)(gimple, tree, void *))
5406 {
5407 return walk_stmt_load_store_addr_ops (stmt, data,
5408 visit_load, visit_store, NULL);
5409 }
5410
5411 /* Helper for gimple_ior_addresses_taken_1. */
5412
5413 static bool
5414 gimple_ior_addresses_taken_1 (gimple stmt ATTRIBUTE_UNUSED,
5415 tree addr, void *data)
5416 {
5417 bitmap addresses_taken = (bitmap)data;
5418 addr = get_base_address (addr);
5419 if (addr
5420 && DECL_P (addr))
5421 {
5422 bitmap_set_bit (addresses_taken, DECL_UID (addr));
5423 return true;
5424 }
5425 return false;
5426 }
5427
5428 /* Set the bit for the uid of all decls that have their address taken
5429 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
5430 were any in this stmt. */
5431
5432 bool
5433 gimple_ior_addresses_taken (bitmap addresses_taken, gimple stmt)
5434 {
5435 return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
5436 gimple_ior_addresses_taken_1);
5437 }
5438
5439
5440 /* Return a printable name for symbol DECL. */
5441
5442 const char *
5443 gimple_decl_printable_name (tree decl, int verbosity)
5444 {
5445 if (!DECL_NAME (decl))
5446 return NULL;
5447
5448 if (DECL_ASSEMBLER_NAME_SET_P (decl))
5449 {
5450 const char *str, *mangled_str;
5451 int dmgl_opts = DMGL_NO_OPTS;
5452
5453 if (verbosity >= 2)
5454 {
5455 dmgl_opts = DMGL_VERBOSE
5456 | DMGL_ANSI
5457 | DMGL_GNU_V3
5458 | DMGL_RET_POSTFIX;
5459 if (TREE_CODE (decl) == FUNCTION_DECL)
5460 dmgl_opts |= DMGL_PARAMS;
5461 }
5462
5463 mangled_str = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
5464 str = cplus_demangle_v3 (mangled_str, dmgl_opts);
5465 return (str) ? str : mangled_str;
5466 }
5467
5468 return IDENTIFIER_POINTER (DECL_NAME (decl));
5469 }
5470
5471 /* Return true when STMT is builtins call to CODE. */
5472
5473 bool
5474 gimple_call_builtin_p (gimple stmt, enum built_in_function code)
5475 {
5476 tree fndecl;
5477 return (is_gimple_call (stmt)
5478 && (fndecl = gimple_call_fndecl (stmt)) != NULL
5479 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
5480 && DECL_FUNCTION_CODE (fndecl) == code);
5481 }
5482
5483 /* Return true if STMT clobbers memory. STMT is required to be a
5484 GIMPLE_ASM. */
5485
5486 bool
5487 gimple_asm_clobbers_memory_p (const_gimple stmt)
5488 {
5489 unsigned i;
5490
5491 for (i = 0; i < gimple_asm_nclobbers (stmt); i++)
5492 {
5493 tree op = gimple_asm_clobber_op (stmt, i);
5494 if (strcmp (TREE_STRING_POINTER (TREE_VALUE (op)), "memory") == 0)
5495 return true;
5496 }
5497
5498 return false;
5499 }
5500 #include "gt-gimple.h"