gimplify-be.h: New file.
[gcc.git] / gcc / gimple.c
1 /* Gimple IR support functions.
2
3 Copyright (C) 2007-2013 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "target.h"
27 #include "tree.h"
28 #include "ggc.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "gimple.h"
32 #include "gimple-iterator.h"
33 #include "gimple-walk.h"
34 #include "gimple.h"
35 #include "gimplify.h"
36 #include "diagnostic.h"
37 #include "value-prof.h"
38 #include "flags.h"
39 #include "alias.h"
40 #include "demangle.h"
41 #include "langhooks.h"
42 #include "bitmap.h"
43
44
45 /* All the tuples have their operand vector (if present) at the very bottom
46 of the structure. Therefore, the offset required to find the
47 operands vector the size of the structure minus the size of the 1
48 element tree array at the end (see gimple_ops). */
49 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
50 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
51 EXPORTED_CONST size_t gimple_ops_offset_[] = {
52 #include "gsstruct.def"
53 };
54 #undef DEFGSSTRUCT
55
56 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof (struct STRUCT),
57 static const size_t gsstruct_code_size[] = {
58 #include "gsstruct.def"
59 };
60 #undef DEFGSSTRUCT
61
62 #define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
63 const char *const gimple_code_name[] = {
64 #include "gimple.def"
65 };
66 #undef DEFGSCODE
67
68 #define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
69 EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
70 #include "gimple.def"
71 };
72 #undef DEFGSCODE
73
74 /* Gimple stats. */
75
76 int gimple_alloc_counts[(int) gimple_alloc_kind_all];
77 int gimple_alloc_sizes[(int) gimple_alloc_kind_all];
78
79 /* Keep in sync with gimple.h:enum gimple_alloc_kind. */
80 static const char * const gimple_alloc_kind_names[] = {
81 "assignments",
82 "phi nodes",
83 "conditionals",
84 "everything else"
85 };
86
87 /* Private API manipulation functions shared only with some
88 other files. */
89 extern void gimple_set_stored_syms (gimple, bitmap, bitmap_obstack *);
90 extern void gimple_set_loaded_syms (gimple, bitmap, bitmap_obstack *);
91
92 /* Gimple tuple constructors.
93 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
94 be passed a NULL to start with an empty sequence. */
95
96 /* Set the code for statement G to CODE. */
97
98 static inline void
99 gimple_set_code (gimple g, enum gimple_code code)
100 {
101 g->gsbase.code = code;
102 }
103
104 /* Return the number of bytes needed to hold a GIMPLE statement with
105 code CODE. */
106
107 static inline size_t
108 gimple_size (enum gimple_code code)
109 {
110 return gsstruct_code_size[gss_for_code (code)];
111 }
112
113 /* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
114 operands. */
115
116 gimple
117 gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
118 {
119 size_t size;
120 gimple stmt;
121
122 size = gimple_size (code);
123 if (num_ops > 0)
124 size += sizeof (tree) * (num_ops - 1);
125
126 if (GATHER_STATISTICS)
127 {
128 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
129 gimple_alloc_counts[(int) kind]++;
130 gimple_alloc_sizes[(int) kind] += size;
131 }
132
133 stmt = ggc_alloc_cleared_gimple_statement_d_stat (size PASS_MEM_STAT);
134 gimple_set_code (stmt, code);
135 gimple_set_num_ops (stmt, num_ops);
136
137 /* Do not call gimple_set_modified here as it has other side
138 effects and this tuple is still not completely built. */
139 stmt->gsbase.modified = 1;
140 gimple_init_singleton (stmt);
141
142 return stmt;
143 }
144
145 /* Set SUBCODE to be the code of the expression computed by statement G. */
146
147 static inline void
148 gimple_set_subcode (gimple g, unsigned subcode)
149 {
150 /* We only have 16 bits for the RHS code. Assert that we are not
151 overflowing it. */
152 gcc_assert (subcode < (1 << 16));
153 g->gsbase.subcode = subcode;
154 }
155
156
157
158 /* Build a tuple with operands. CODE is the statement to build (which
159 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the subcode
160 for the new tuple. NUM_OPS is the number of operands to allocate. */
161
162 #define gimple_build_with_ops(c, s, n) \
163 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
164
165 static gimple
166 gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
167 unsigned num_ops MEM_STAT_DECL)
168 {
169 gimple s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT);
170 gimple_set_subcode (s, subcode);
171
172 return s;
173 }
174
175
176 /* Build a GIMPLE_RETURN statement returning RETVAL. */
177
178 gimple
179 gimple_build_return (tree retval)
180 {
181 gimple s = gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK, 2);
182 if (retval)
183 gimple_return_set_retval (s, retval);
184 return s;
185 }
186
187 /* Reset alias information on call S. */
188
189 void
190 gimple_call_reset_alias_info (gimple s)
191 {
192 if (gimple_call_flags (s) & ECF_CONST)
193 memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
194 else
195 pt_solution_reset (gimple_call_use_set (s));
196 if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
197 memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
198 else
199 pt_solution_reset (gimple_call_clobber_set (s));
200 }
201
202 /* Helper for gimple_build_call, gimple_build_call_valist,
203 gimple_build_call_vec and gimple_build_call_from_tree. Build the basic
204 components of a GIMPLE_CALL statement to function FN with NARGS
205 arguments. */
206
207 static inline gimple
208 gimple_build_call_1 (tree fn, unsigned nargs)
209 {
210 gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3);
211 if (TREE_CODE (fn) == FUNCTION_DECL)
212 fn = build_fold_addr_expr (fn);
213 gimple_set_op (s, 1, fn);
214 gimple_call_set_fntype (s, TREE_TYPE (TREE_TYPE (fn)));
215 gimple_call_reset_alias_info (s);
216 return s;
217 }
218
219
220 /* Build a GIMPLE_CALL statement to function FN with the arguments
221 specified in vector ARGS. */
222
223 gimple
224 gimple_build_call_vec (tree fn, vec<tree> args)
225 {
226 unsigned i;
227 unsigned nargs = args.length ();
228 gimple call = gimple_build_call_1 (fn, nargs);
229
230 for (i = 0; i < nargs; i++)
231 gimple_call_set_arg (call, i, args[i]);
232
233 return call;
234 }
235
236
237 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
238 arguments. The ... are the arguments. */
239
240 gimple
241 gimple_build_call (tree fn, unsigned nargs, ...)
242 {
243 va_list ap;
244 gimple call;
245 unsigned i;
246
247 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
248
249 call = gimple_build_call_1 (fn, nargs);
250
251 va_start (ap, nargs);
252 for (i = 0; i < nargs; i++)
253 gimple_call_set_arg (call, i, va_arg (ap, tree));
254 va_end (ap);
255
256 return call;
257 }
258
259
260 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
261 arguments. AP contains the arguments. */
262
263 gimple
264 gimple_build_call_valist (tree fn, unsigned nargs, va_list ap)
265 {
266 gimple call;
267 unsigned i;
268
269 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
270
271 call = gimple_build_call_1 (fn, nargs);
272
273 for (i = 0; i < nargs; i++)
274 gimple_call_set_arg (call, i, va_arg (ap, tree));
275
276 return call;
277 }
278
279
280 /* Helper for gimple_build_call_internal and gimple_build_call_internal_vec.
281 Build the basic components of a GIMPLE_CALL statement to internal
282 function FN with NARGS arguments. */
283
284 static inline gimple
285 gimple_build_call_internal_1 (enum internal_fn fn, unsigned nargs)
286 {
287 gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3);
288 s->gsbase.subcode |= GF_CALL_INTERNAL;
289 gimple_call_set_internal_fn (s, fn);
290 gimple_call_reset_alias_info (s);
291 return s;
292 }
293
294
295 /* Build a GIMPLE_CALL statement to internal function FN. NARGS is
296 the number of arguments. The ... are the arguments. */
297
298 gimple
299 gimple_build_call_internal (enum internal_fn fn, unsigned nargs, ...)
300 {
301 va_list ap;
302 gimple call;
303 unsigned i;
304
305 call = gimple_build_call_internal_1 (fn, nargs);
306 va_start (ap, nargs);
307 for (i = 0; i < nargs; i++)
308 gimple_call_set_arg (call, i, va_arg (ap, tree));
309 va_end (ap);
310
311 return call;
312 }
313
314
315 /* Build a GIMPLE_CALL statement to internal function FN with the arguments
316 specified in vector ARGS. */
317
318 gimple
319 gimple_build_call_internal_vec (enum internal_fn fn, vec<tree> args)
320 {
321 unsigned i, nargs;
322 gimple call;
323
324 nargs = args.length ();
325 call = gimple_build_call_internal_1 (fn, nargs);
326 for (i = 0; i < nargs; i++)
327 gimple_call_set_arg (call, i, args[i]);
328
329 return call;
330 }
331
332
333 /* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
334 assumed to be in GIMPLE form already. Minimal checking is done of
335 this fact. */
336
337 gimple
338 gimple_build_call_from_tree (tree t)
339 {
340 unsigned i, nargs;
341 gimple call;
342 tree fndecl = get_callee_fndecl (t);
343
344 gcc_assert (TREE_CODE (t) == CALL_EXPR);
345
346 nargs = call_expr_nargs (t);
347 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
348
349 for (i = 0; i < nargs; i++)
350 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
351
352 gimple_set_block (call, TREE_BLOCK (t));
353
354 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
355 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
356 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
357 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
358 if (fndecl
359 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
360 && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA
361 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN))
362 gimple_call_set_alloca_for_var (call, CALL_ALLOCA_FOR_VAR_P (t));
363 else
364 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
365 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
366 gimple_call_set_nothrow (call, TREE_NOTHROW (t));
367 gimple_set_no_warning (call, TREE_NO_WARNING (t));
368
369 return call;
370 }
371
372
373 /* Return index of INDEX's non bound argument of the call. */
374
375 unsigned
376 gimple_call_get_nobnd_arg_index (const_gimple gs, unsigned index)
377 {
378 unsigned num_args = gimple_call_num_args (gs);
379 for (unsigned n = 0; n < num_args; n++)
380 {
381 if (POINTER_BOUNDS_P (gimple_call_arg (gs, n)))
382 continue;
383 else if (index)
384 index--;
385 else
386 return n;
387 }
388
389 gcc_unreachable ();
390 }
391
392
393 /* Build a GIMPLE_ASSIGN statement.
394
395 LHS of the assignment.
396 RHS of the assignment which can be unary or binary. */
397
398 gimple
399 gimple_build_assign_stat (tree lhs, tree rhs MEM_STAT_DECL)
400 {
401 enum tree_code subcode;
402 tree op1, op2, op3;
403
404 extract_ops_from_tree_1 (rhs, &subcode, &op1, &op2, &op3);
405 return gimple_build_assign_with_ops (subcode, lhs, op1, op2, op3
406 PASS_MEM_STAT);
407 }
408
409
410 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
411 OP1 and OP2. If OP2 is NULL then SUBCODE must be of class
412 GIMPLE_UNARY_RHS or GIMPLE_SINGLE_RHS. */
413
414 gimple
415 gimple_build_assign_with_ops (enum tree_code subcode, tree lhs, tree op1,
416 tree op2, tree op3 MEM_STAT_DECL)
417 {
418 unsigned num_ops;
419 gimple p;
420
421 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
422 code). */
423 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
424
425 p = gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
426 PASS_MEM_STAT);
427 gimple_assign_set_lhs (p, lhs);
428 gimple_assign_set_rhs1 (p, op1);
429 if (op2)
430 {
431 gcc_assert (num_ops > 2);
432 gimple_assign_set_rhs2 (p, op2);
433 }
434
435 if (op3)
436 {
437 gcc_assert (num_ops > 3);
438 gimple_assign_set_rhs3 (p, op3);
439 }
440
441 return p;
442 }
443
444 gimple
445 gimple_build_assign_with_ops (enum tree_code subcode, tree lhs, tree op1,
446 tree op2 MEM_STAT_DECL)
447 {
448 return gimple_build_assign_with_ops (subcode, lhs, op1, op2, NULL_TREE
449 PASS_MEM_STAT);
450 }
451
452
453 /* Build a GIMPLE_COND statement.
454
455 PRED is the condition used to compare LHS and the RHS.
456 T_LABEL is the label to jump to if the condition is true.
457 F_LABEL is the label to jump to otherwise. */
458
459 gimple
460 gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
461 tree t_label, tree f_label)
462 {
463 gimple p;
464
465 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
466 p = gimple_build_with_ops (GIMPLE_COND, pred_code, 4);
467 gimple_cond_set_lhs (p, lhs);
468 gimple_cond_set_rhs (p, rhs);
469 gimple_cond_set_true_label (p, t_label);
470 gimple_cond_set_false_label (p, f_label);
471 return p;
472 }
473
474 /* Build a GIMPLE_COND statement from the conditional expression tree
475 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
476
477 gimple
478 gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
479 {
480 enum tree_code code;
481 tree lhs, rhs;
482
483 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
484 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
485 }
486
487 /* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
488 boolean expression tree COND. */
489
490 void
491 gimple_cond_set_condition_from_tree (gimple stmt, tree cond)
492 {
493 enum tree_code code;
494 tree lhs, rhs;
495
496 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
497 gimple_cond_set_condition (stmt, code, lhs, rhs);
498 }
499
500 /* Build a GIMPLE_LABEL statement for LABEL. */
501
502 gimple
503 gimple_build_label (tree label)
504 {
505 gimple p = gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1);
506 gimple_label_set_label (p, label);
507 return p;
508 }
509
510 /* Build a GIMPLE_GOTO statement to label DEST. */
511
512 gimple
513 gimple_build_goto (tree dest)
514 {
515 gimple p = gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1);
516 gimple_goto_set_dest (p, dest);
517 return p;
518 }
519
520
521 /* Build a GIMPLE_NOP statement. */
522
523 gimple
524 gimple_build_nop (void)
525 {
526 return gimple_alloc (GIMPLE_NOP, 0);
527 }
528
529
530 /* Build a GIMPLE_BIND statement.
531 VARS are the variables in BODY.
532 BLOCK is the containing block. */
533
534 gimple
535 gimple_build_bind (tree vars, gimple_seq body, tree block)
536 {
537 gimple p = gimple_alloc (GIMPLE_BIND, 0);
538 gimple_bind_set_vars (p, vars);
539 if (body)
540 gimple_bind_set_body (p, body);
541 if (block)
542 gimple_bind_set_block (p, block);
543 return p;
544 }
545
546 /* Helper function to set the simple fields of a asm stmt.
547
548 STRING is a pointer to a string that is the asm blocks assembly code.
549 NINPUT is the number of register inputs.
550 NOUTPUT is the number of register outputs.
551 NCLOBBERS is the number of clobbered registers.
552 */
553
554 static inline gimple
555 gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
556 unsigned nclobbers, unsigned nlabels)
557 {
558 gimple p;
559 int size = strlen (string);
560
561 /* ASMs with labels cannot have outputs. This should have been
562 enforced by the front end. */
563 gcc_assert (nlabels == 0 || noutputs == 0);
564
565 p = gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
566 ninputs + noutputs + nclobbers + nlabels);
567
568 p->gimple_asm.ni = ninputs;
569 p->gimple_asm.no = noutputs;
570 p->gimple_asm.nc = nclobbers;
571 p->gimple_asm.nl = nlabels;
572 p->gimple_asm.string = ggc_alloc_string (string, size);
573
574 if (GATHER_STATISTICS)
575 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
576
577 return p;
578 }
579
580 /* Build a GIMPLE_ASM statement.
581
582 STRING is the assembly code.
583 NINPUT is the number of register inputs.
584 NOUTPUT is the number of register outputs.
585 NCLOBBERS is the number of clobbered registers.
586 INPUTS is a vector of the input register parameters.
587 OUTPUTS is a vector of the output register parameters.
588 CLOBBERS is a vector of the clobbered register parameters.
589 LABELS is a vector of destination labels. */
590
591 gimple
592 gimple_build_asm_vec (const char *string, vec<tree, va_gc> *inputs,
593 vec<tree, va_gc> *outputs, vec<tree, va_gc> *clobbers,
594 vec<tree, va_gc> *labels)
595 {
596 gimple p;
597 unsigned i;
598
599 p = gimple_build_asm_1 (string,
600 vec_safe_length (inputs),
601 vec_safe_length (outputs),
602 vec_safe_length (clobbers),
603 vec_safe_length (labels));
604
605 for (i = 0; i < vec_safe_length (inputs); i++)
606 gimple_asm_set_input_op (p, i, (*inputs)[i]);
607
608 for (i = 0; i < vec_safe_length (outputs); i++)
609 gimple_asm_set_output_op (p, i, (*outputs)[i]);
610
611 for (i = 0; i < vec_safe_length (clobbers); i++)
612 gimple_asm_set_clobber_op (p, i, (*clobbers)[i]);
613
614 for (i = 0; i < vec_safe_length (labels); i++)
615 gimple_asm_set_label_op (p, i, (*labels)[i]);
616
617 return p;
618 }
619
620 /* Build a GIMPLE_CATCH statement.
621
622 TYPES are the catch types.
623 HANDLER is the exception handler. */
624
625 gimple
626 gimple_build_catch (tree types, gimple_seq handler)
627 {
628 gimple p = gimple_alloc (GIMPLE_CATCH, 0);
629 gimple_catch_set_types (p, types);
630 if (handler)
631 gimple_catch_set_handler (p, handler);
632
633 return p;
634 }
635
636 /* Build a GIMPLE_EH_FILTER statement.
637
638 TYPES are the filter's types.
639 FAILURE is the filter's failure action. */
640
641 gimple
642 gimple_build_eh_filter (tree types, gimple_seq failure)
643 {
644 gimple p = gimple_alloc (GIMPLE_EH_FILTER, 0);
645 gimple_eh_filter_set_types (p, types);
646 if (failure)
647 gimple_eh_filter_set_failure (p, failure);
648
649 return p;
650 }
651
652 /* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
653
654 gimple
655 gimple_build_eh_must_not_throw (tree decl)
656 {
657 gimple p = gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0);
658
659 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
660 gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
661 gimple_eh_must_not_throw_set_fndecl (p, decl);
662
663 return p;
664 }
665
666 /* Build a GIMPLE_EH_ELSE statement. */
667
668 gimple
669 gimple_build_eh_else (gimple_seq n_body, gimple_seq e_body)
670 {
671 gimple p = gimple_alloc (GIMPLE_EH_ELSE, 0);
672 gimple_eh_else_set_n_body (p, n_body);
673 gimple_eh_else_set_e_body (p, e_body);
674 return p;
675 }
676
677 /* Build a GIMPLE_TRY statement.
678
679 EVAL is the expression to evaluate.
680 CLEANUP is the cleanup expression.
681 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
682 whether this is a try/catch or a try/finally respectively. */
683
684 gimple
685 gimple_build_try (gimple_seq eval, gimple_seq cleanup,
686 enum gimple_try_flags kind)
687 {
688 gimple p;
689
690 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
691 p = gimple_alloc (GIMPLE_TRY, 0);
692 gimple_set_subcode (p, kind);
693 if (eval)
694 gimple_try_set_eval (p, eval);
695 if (cleanup)
696 gimple_try_set_cleanup (p, cleanup);
697
698 return p;
699 }
700
701 /* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
702
703 CLEANUP is the cleanup expression. */
704
705 gimple
706 gimple_build_wce (gimple_seq cleanup)
707 {
708 gimple p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
709 if (cleanup)
710 gimple_wce_set_cleanup (p, cleanup);
711
712 return p;
713 }
714
715
716 /* Build a GIMPLE_RESX statement. */
717
718 gimple
719 gimple_build_resx (int region)
720 {
721 gimple p = gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0);
722 p->gimple_eh_ctrl.region = region;
723 return p;
724 }
725
726
727 /* The helper for constructing a gimple switch statement.
728 INDEX is the switch's index.
729 NLABELS is the number of labels in the switch excluding the default.
730 DEFAULT_LABEL is the default label for the switch statement. */
731
732 gimple
733 gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
734 {
735 /* nlabels + 1 default label + 1 index. */
736 gcc_checking_assert (default_label);
737 gimple p = gimple_build_with_ops (GIMPLE_SWITCH, ERROR_MARK,
738 1 + 1 + nlabels);
739 gimple_switch_set_index (p, index);
740 gimple_switch_set_default_label (p, default_label);
741 return p;
742 }
743
744 /* Build a GIMPLE_SWITCH statement.
745
746 INDEX is the switch's index.
747 DEFAULT_LABEL is the default label
748 ARGS is a vector of labels excluding the default. */
749
750 gimple
751 gimple_build_switch (tree index, tree default_label, vec<tree> args)
752 {
753 unsigned i, nlabels = args.length ();
754
755 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
756
757 /* Copy the labels from the vector to the switch statement. */
758 for (i = 0; i < nlabels; i++)
759 gimple_switch_set_label (p, i + 1, args[i]);
760
761 return p;
762 }
763
764 /* Build a GIMPLE_EH_DISPATCH statement. */
765
766 gimple
767 gimple_build_eh_dispatch (int region)
768 {
769 gimple p = gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0);
770 p->gimple_eh_ctrl.region = region;
771 return p;
772 }
773
774 /* Build a new GIMPLE_DEBUG_BIND statement.
775
776 VAR is bound to VALUE; block and location are taken from STMT. */
777
778 gimple
779 gimple_build_debug_bind_stat (tree var, tree value, gimple stmt MEM_STAT_DECL)
780 {
781 gimple p = gimple_build_with_ops_stat (GIMPLE_DEBUG,
782 (unsigned)GIMPLE_DEBUG_BIND, 2
783 PASS_MEM_STAT);
784
785 gimple_debug_bind_set_var (p, var);
786 gimple_debug_bind_set_value (p, value);
787 if (stmt)
788 gimple_set_location (p, gimple_location (stmt));
789
790 return p;
791 }
792
793
794 /* Build a new GIMPLE_DEBUG_SOURCE_BIND statement.
795
796 VAR is bound to VALUE; block and location are taken from STMT. */
797
798 gimple
799 gimple_build_debug_source_bind_stat (tree var, tree value,
800 gimple stmt MEM_STAT_DECL)
801 {
802 gimple p = gimple_build_with_ops_stat (GIMPLE_DEBUG,
803 (unsigned)GIMPLE_DEBUG_SOURCE_BIND, 2
804 PASS_MEM_STAT);
805
806 gimple_debug_source_bind_set_var (p, var);
807 gimple_debug_source_bind_set_value (p, value);
808 if (stmt)
809 gimple_set_location (p, gimple_location (stmt));
810
811 return p;
812 }
813
814
815 /* Build a GIMPLE_OMP_CRITICAL statement.
816
817 BODY is the sequence of statements for which only one thread can execute.
818 NAME is optional identifier for this critical block. */
819
820 gimple
821 gimple_build_omp_critical (gimple_seq body, tree name)
822 {
823 gimple p = gimple_alloc (GIMPLE_OMP_CRITICAL, 0);
824 gimple_omp_critical_set_name (p, name);
825 if (body)
826 gimple_omp_set_body (p, body);
827
828 return p;
829 }
830
831 /* Build a GIMPLE_OMP_FOR statement.
832
833 BODY is sequence of statements inside the for loop.
834 KIND is the `for' variant.
835 CLAUSES, are any of the OMP loop construct's clauses: private, firstprivate,
836 lastprivate, reductions, ordered, schedule, and nowait.
837 COLLAPSE is the collapse count.
838 PRE_BODY is the sequence of statements that are loop invariant. */
839
840 gimple
841 gimple_build_omp_for (gimple_seq body, int kind, tree clauses, size_t collapse,
842 gimple_seq pre_body)
843 {
844 gimple p = gimple_alloc (GIMPLE_OMP_FOR, 0);
845 if (body)
846 gimple_omp_set_body (p, body);
847 gimple_omp_for_set_clauses (p, clauses);
848 gimple_omp_for_set_kind (p, kind);
849 p->gimple_omp_for.collapse = collapse;
850 p->gimple_omp_for.iter
851 = ggc_alloc_cleared_vec_gimple_omp_for_iter (collapse);
852 if (pre_body)
853 gimple_omp_for_set_pre_body (p, pre_body);
854
855 return p;
856 }
857
858
859 /* Build a GIMPLE_OMP_PARALLEL statement.
860
861 BODY is sequence of statements which are executed in parallel.
862 CLAUSES, are the OMP parallel construct's clauses.
863 CHILD_FN is the function created for the parallel threads to execute.
864 DATA_ARG are the shared data argument(s). */
865
866 gimple
867 gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
868 tree data_arg)
869 {
870 gimple p = gimple_alloc (GIMPLE_OMP_PARALLEL, 0);
871 if (body)
872 gimple_omp_set_body (p, body);
873 gimple_omp_parallel_set_clauses (p, clauses);
874 gimple_omp_parallel_set_child_fn (p, child_fn);
875 gimple_omp_parallel_set_data_arg (p, data_arg);
876
877 return p;
878 }
879
880
881 /* Build a GIMPLE_OMP_TASK statement.
882
883 BODY is sequence of statements which are executed by the explicit task.
884 CLAUSES, are the OMP parallel construct's clauses.
885 CHILD_FN is the function created for the parallel threads to execute.
886 DATA_ARG are the shared data argument(s).
887 COPY_FN is the optional function for firstprivate initialization.
888 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
889
890 gimple
891 gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
892 tree data_arg, tree copy_fn, tree arg_size,
893 tree arg_align)
894 {
895 gimple p = gimple_alloc (GIMPLE_OMP_TASK, 0);
896 if (body)
897 gimple_omp_set_body (p, body);
898 gimple_omp_task_set_clauses (p, clauses);
899 gimple_omp_task_set_child_fn (p, child_fn);
900 gimple_omp_task_set_data_arg (p, data_arg);
901 gimple_omp_task_set_copy_fn (p, copy_fn);
902 gimple_omp_task_set_arg_size (p, arg_size);
903 gimple_omp_task_set_arg_align (p, arg_align);
904
905 return p;
906 }
907
908
909 /* Build a GIMPLE_OMP_SECTION statement for a sections statement.
910
911 BODY is the sequence of statements in the section. */
912
913 gimple
914 gimple_build_omp_section (gimple_seq body)
915 {
916 gimple p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
917 if (body)
918 gimple_omp_set_body (p, body);
919
920 return p;
921 }
922
923
924 /* Build a GIMPLE_OMP_MASTER statement.
925
926 BODY is the sequence of statements to be executed by just the master. */
927
928 gimple
929 gimple_build_omp_master (gimple_seq body)
930 {
931 gimple p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
932 if (body)
933 gimple_omp_set_body (p, body);
934
935 return p;
936 }
937
938
939 /* Build a GIMPLE_OMP_TASKGROUP statement.
940
941 BODY is the sequence of statements to be executed by the taskgroup
942 construct. */
943
944 gimple
945 gimple_build_omp_taskgroup (gimple_seq body)
946 {
947 gimple p = gimple_alloc (GIMPLE_OMP_TASKGROUP, 0);
948 if (body)
949 gimple_omp_set_body (p, body);
950
951 return p;
952 }
953
954
955 /* Build a GIMPLE_OMP_CONTINUE statement.
956
957 CONTROL_DEF is the definition of the control variable.
958 CONTROL_USE is the use of the control variable. */
959
960 gimple
961 gimple_build_omp_continue (tree control_def, tree control_use)
962 {
963 gimple p = gimple_alloc (GIMPLE_OMP_CONTINUE, 0);
964 gimple_omp_continue_set_control_def (p, control_def);
965 gimple_omp_continue_set_control_use (p, control_use);
966 return p;
967 }
968
969 /* Build a GIMPLE_OMP_ORDERED statement.
970
971 BODY is the sequence of statements inside a loop that will executed in
972 sequence. */
973
974 gimple
975 gimple_build_omp_ordered (gimple_seq body)
976 {
977 gimple p = gimple_alloc (GIMPLE_OMP_ORDERED, 0);
978 if (body)
979 gimple_omp_set_body (p, body);
980
981 return p;
982 }
983
984
985 /* Build a GIMPLE_OMP_RETURN statement.
986 WAIT_P is true if this is a non-waiting return. */
987
988 gimple
989 gimple_build_omp_return (bool wait_p)
990 {
991 gimple p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
992 if (wait_p)
993 gimple_omp_return_set_nowait (p);
994
995 return p;
996 }
997
998
999 /* Build a GIMPLE_OMP_SECTIONS statement.
1000
1001 BODY is a sequence of section statements.
1002 CLAUSES are any of the OMP sections contsruct's clauses: private,
1003 firstprivate, lastprivate, reduction, and nowait. */
1004
1005 gimple
1006 gimple_build_omp_sections (gimple_seq body, tree clauses)
1007 {
1008 gimple p = gimple_alloc (GIMPLE_OMP_SECTIONS, 0);
1009 if (body)
1010 gimple_omp_set_body (p, body);
1011 gimple_omp_sections_set_clauses (p, clauses);
1012
1013 return p;
1014 }
1015
1016
1017 /* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
1018
1019 gimple
1020 gimple_build_omp_sections_switch (void)
1021 {
1022 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
1023 }
1024
1025
1026 /* Build a GIMPLE_OMP_SINGLE statement.
1027
1028 BODY is the sequence of statements that will be executed once.
1029 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1030 copyprivate, nowait. */
1031
1032 gimple
1033 gimple_build_omp_single (gimple_seq body, tree clauses)
1034 {
1035 gimple p = gimple_alloc (GIMPLE_OMP_SINGLE, 0);
1036 if (body)
1037 gimple_omp_set_body (p, body);
1038 gimple_omp_single_set_clauses (p, clauses);
1039
1040 return p;
1041 }
1042
1043
1044 /* Build a GIMPLE_OMP_TARGET statement.
1045
1046 BODY is the sequence of statements that will be executed.
1047 CLAUSES are any of the OMP target construct's clauses. */
1048
1049 gimple
1050 gimple_build_omp_target (gimple_seq body, int kind, tree clauses)
1051 {
1052 gimple p = gimple_alloc (GIMPLE_OMP_TARGET, 0);
1053 if (body)
1054 gimple_omp_set_body (p, body);
1055 gimple_omp_target_set_clauses (p, clauses);
1056 gimple_omp_target_set_kind (p, kind);
1057
1058 return p;
1059 }
1060
1061
1062 /* Build a GIMPLE_OMP_TEAMS statement.
1063
1064 BODY is the sequence of statements that will be executed.
1065 CLAUSES are any of the OMP teams construct's clauses. */
1066
1067 gimple
1068 gimple_build_omp_teams (gimple_seq body, tree clauses)
1069 {
1070 gimple p = gimple_alloc (GIMPLE_OMP_TEAMS, 0);
1071 if (body)
1072 gimple_omp_set_body (p, body);
1073 gimple_omp_teams_set_clauses (p, clauses);
1074
1075 return p;
1076 }
1077
1078
1079 /* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
1080
1081 gimple
1082 gimple_build_omp_atomic_load (tree lhs, tree rhs)
1083 {
1084 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0);
1085 gimple_omp_atomic_load_set_lhs (p, lhs);
1086 gimple_omp_atomic_load_set_rhs (p, rhs);
1087 return p;
1088 }
1089
1090 /* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1091
1092 VAL is the value we are storing. */
1093
1094 gimple
1095 gimple_build_omp_atomic_store (tree val)
1096 {
1097 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0);
1098 gimple_omp_atomic_store_set_val (p, val);
1099 return p;
1100 }
1101
1102 /* Build a GIMPLE_TRANSACTION statement. */
1103
1104 gimple
1105 gimple_build_transaction (gimple_seq body, tree label)
1106 {
1107 gimple p = gimple_alloc (GIMPLE_TRANSACTION, 0);
1108 gimple_transaction_set_body (p, body);
1109 gimple_transaction_set_label (p, label);
1110 return p;
1111 }
1112
1113 /* Build a GIMPLE_PREDICT statement. PREDICT is one of the predictors from
1114 predict.def, OUTCOME is NOT_TAKEN or TAKEN. */
1115
1116 gimple
1117 gimple_build_predict (enum br_predictor predictor, enum prediction outcome)
1118 {
1119 gimple p = gimple_alloc (GIMPLE_PREDICT, 0);
1120 /* Ensure all the predictors fit into the lower bits of the subcode. */
1121 gcc_assert ((int) END_PREDICTORS <= GF_PREDICT_TAKEN);
1122 gimple_predict_set_predictor (p, predictor);
1123 gimple_predict_set_outcome (p, outcome);
1124 return p;
1125 }
1126
1127 #if defined ENABLE_GIMPLE_CHECKING
1128 /* Complain of a gimple type mismatch and die. */
1129
1130 void
1131 gimple_check_failed (const_gimple gs, const char *file, int line,
1132 const char *function, enum gimple_code code,
1133 enum tree_code subcode)
1134 {
1135 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1136 gimple_code_name[code],
1137 get_tree_code_name (subcode),
1138 gimple_code_name[gimple_code (gs)],
1139 gs->gsbase.subcode > 0
1140 ? get_tree_code_name ((enum tree_code) gs->gsbase.subcode)
1141 : "",
1142 function, trim_filename (file), line);
1143 }
1144 #endif /* ENABLE_GIMPLE_CHECKING */
1145
1146
1147 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1148 *SEQ_P is NULL, a new sequence is allocated. */
1149
1150 void
1151 gimple_seq_add_stmt (gimple_seq *seq_p, gimple gs)
1152 {
1153 gimple_stmt_iterator si;
1154 if (gs == NULL)
1155 return;
1156
1157 si = gsi_last (*seq_p);
1158 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1159 }
1160
1161 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1162 *SEQ_P is NULL, a new sequence is allocated. This function is
1163 similar to gimple_seq_add_stmt, but does not scan the operands.
1164 During gimplification, we need to manipulate statement sequences
1165 before the def/use vectors have been constructed. */
1166
1167 void
1168 gimple_seq_add_stmt_without_update (gimple_seq *seq_p, gimple gs)
1169 {
1170 gimple_stmt_iterator si;
1171
1172 if (gs == NULL)
1173 return;
1174
1175 si = gsi_last (*seq_p);
1176 gsi_insert_after_without_update (&si, gs, GSI_NEW_STMT);
1177 }
1178
1179 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1180 NULL, a new sequence is allocated. */
1181
1182 void
1183 gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1184 {
1185 gimple_stmt_iterator si;
1186 if (src == NULL)
1187 return;
1188
1189 si = gsi_last (*dst_p);
1190 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1191 }
1192
1193 /* Determine whether to assign a location to the statement GS. */
1194
1195 static bool
1196 should_carry_location_p (gimple gs)
1197 {
1198 /* Don't emit a line note for a label. We particularly don't want to
1199 emit one for the break label, since it doesn't actually correspond
1200 to the beginning of the loop/switch. */
1201 if (gimple_code (gs) == GIMPLE_LABEL)
1202 return false;
1203
1204 return true;
1205 }
1206
1207 /* Set the location for gimple statement GS to LOCATION. */
1208
1209 static void
1210 annotate_one_with_location (gimple gs, location_t location)
1211 {
1212 if (!gimple_has_location (gs)
1213 && !gimple_do_not_emit_location_p (gs)
1214 && should_carry_location_p (gs))
1215 gimple_set_location (gs, location);
1216 }
1217
1218 /* Set LOCATION for all the statements after iterator GSI in sequence
1219 SEQ. If GSI is pointing to the end of the sequence, start with the
1220 first statement in SEQ. */
1221
1222 void
1223 annotate_all_with_location_after (gimple_seq seq, gimple_stmt_iterator gsi,
1224 location_t location)
1225 {
1226 if (gsi_end_p (gsi))
1227 gsi = gsi_start (seq);
1228 else
1229 gsi_next (&gsi);
1230
1231 for (; !gsi_end_p (gsi); gsi_next (&gsi))
1232 annotate_one_with_location (gsi_stmt (gsi), location);
1233 }
1234
1235 /* Set the location for all the statements in a sequence STMT_P to LOCATION. */
1236
1237 void
1238 annotate_all_with_location (gimple_seq stmt_p, location_t location)
1239 {
1240 gimple_stmt_iterator i;
1241
1242 if (gimple_seq_empty_p (stmt_p))
1243 return;
1244
1245 for (i = gsi_start (stmt_p); !gsi_end_p (i); gsi_next (&i))
1246 {
1247 gimple gs = gsi_stmt (i);
1248 annotate_one_with_location (gs, location);
1249 }
1250 }
1251
1252 /* Helper function of empty_body_p. Return true if STMT is an empty
1253 statement. */
1254
1255 static bool
1256 empty_stmt_p (gimple stmt)
1257 {
1258 if (gimple_code (stmt) == GIMPLE_NOP)
1259 return true;
1260 if (gimple_code (stmt) == GIMPLE_BIND)
1261 return empty_body_p (gimple_bind_body (stmt));
1262 return false;
1263 }
1264
1265
1266 /* Return true if BODY contains nothing but empty statements. */
1267
1268 bool
1269 empty_body_p (gimple_seq body)
1270 {
1271 gimple_stmt_iterator i;
1272
1273 if (gimple_seq_empty_p (body))
1274 return true;
1275 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
1276 if (!empty_stmt_p (gsi_stmt (i))
1277 && !is_gimple_debug (gsi_stmt (i)))
1278 return false;
1279
1280 return true;
1281 }
1282
1283
1284 /* Perform a deep copy of sequence SRC and return the result. */
1285
1286 gimple_seq
1287 gimple_seq_copy (gimple_seq src)
1288 {
1289 gimple_stmt_iterator gsi;
1290 gimple_seq new_seq = NULL;
1291 gimple stmt;
1292
1293 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1294 {
1295 stmt = gimple_copy (gsi_stmt (gsi));
1296 gimple_seq_add_stmt (&new_seq, stmt);
1297 }
1298
1299 return new_seq;
1300 }
1301
1302
1303
1304 /* Return true if calls C1 and C2 are known to go to the same function. */
1305
1306 bool
1307 gimple_call_same_target_p (const_gimple c1, const_gimple c2)
1308 {
1309 if (gimple_call_internal_p (c1))
1310 return (gimple_call_internal_p (c2)
1311 && gimple_call_internal_fn (c1) == gimple_call_internal_fn (c2));
1312 else
1313 return (gimple_call_fn (c1) == gimple_call_fn (c2)
1314 || (gimple_call_fndecl (c1)
1315 && gimple_call_fndecl (c1) == gimple_call_fndecl (c2)));
1316 }
1317
1318 /* Detect flags from a GIMPLE_CALL. This is just like
1319 call_expr_flags, but for gimple tuples. */
1320
1321 int
1322 gimple_call_flags (const_gimple stmt)
1323 {
1324 int flags;
1325 tree decl = gimple_call_fndecl (stmt);
1326
1327 if (decl)
1328 flags = flags_from_decl_or_type (decl);
1329 else if (gimple_call_internal_p (stmt))
1330 flags = internal_fn_flags (gimple_call_internal_fn (stmt));
1331 else
1332 flags = flags_from_decl_or_type (gimple_call_fntype (stmt));
1333
1334 if (stmt->gsbase.subcode & GF_CALL_NOTHROW)
1335 flags |= ECF_NOTHROW;
1336
1337 return flags;
1338 }
1339
1340 /* Return the "fn spec" string for call STMT. */
1341
1342 static tree
1343 gimple_call_fnspec (const_gimple stmt)
1344 {
1345 tree type, attr;
1346
1347 type = gimple_call_fntype (stmt);
1348 if (!type)
1349 return NULL_TREE;
1350
1351 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1352 if (!attr)
1353 return NULL_TREE;
1354
1355 return TREE_VALUE (TREE_VALUE (attr));
1356 }
1357
1358 /* Detects argument flags for argument number ARG on call STMT. */
1359
1360 int
1361 gimple_call_arg_flags (const_gimple stmt, unsigned arg)
1362 {
1363 tree attr = gimple_call_fnspec (stmt);
1364
1365 if (!attr || 1 + arg >= (unsigned) TREE_STRING_LENGTH (attr))
1366 return 0;
1367
1368 switch (TREE_STRING_POINTER (attr)[1 + arg])
1369 {
1370 case 'x':
1371 case 'X':
1372 return EAF_UNUSED;
1373
1374 case 'R':
1375 return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE;
1376
1377 case 'r':
1378 return EAF_NOCLOBBER | EAF_NOESCAPE;
1379
1380 case 'W':
1381 return EAF_DIRECT | EAF_NOESCAPE;
1382
1383 case 'w':
1384 return EAF_NOESCAPE;
1385
1386 case '.':
1387 default:
1388 return 0;
1389 }
1390 }
1391
1392 /* Detects return flags for the call STMT. */
1393
1394 int
1395 gimple_call_return_flags (const_gimple stmt)
1396 {
1397 tree attr;
1398
1399 if (gimple_call_flags (stmt) & ECF_MALLOC)
1400 return ERF_NOALIAS;
1401
1402 attr = gimple_call_fnspec (stmt);
1403 if (!attr || TREE_STRING_LENGTH (attr) < 1)
1404 return 0;
1405
1406 switch (TREE_STRING_POINTER (attr)[0])
1407 {
1408 case '1':
1409 case '2':
1410 case '3':
1411 case '4':
1412 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
1413
1414 case 'm':
1415 return ERF_NOALIAS;
1416
1417 case '.':
1418 default:
1419 return 0;
1420 }
1421 }
1422
1423
1424 /* Return true if GS is a copy assignment. */
1425
1426 bool
1427 gimple_assign_copy_p (gimple gs)
1428 {
1429 return (gimple_assign_single_p (gs)
1430 && is_gimple_val (gimple_op (gs, 1)));
1431 }
1432
1433
1434 /* Return true if GS is a SSA_NAME copy assignment. */
1435
1436 bool
1437 gimple_assign_ssa_name_copy_p (gimple gs)
1438 {
1439 return (gimple_assign_single_p (gs)
1440 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1441 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1442 }
1443
1444
1445 /* Return true if GS is an assignment with a unary RHS, but the
1446 operator has no effect on the assigned value. The logic is adapted
1447 from STRIP_NOPS. This predicate is intended to be used in tuplifying
1448 instances in which STRIP_NOPS was previously applied to the RHS of
1449 an assignment.
1450
1451 NOTE: In the use cases that led to the creation of this function
1452 and of gimple_assign_single_p, it is typical to test for either
1453 condition and to proceed in the same manner. In each case, the
1454 assigned value is represented by the single RHS operand of the
1455 assignment. I suspect there may be cases where gimple_assign_copy_p,
1456 gimple_assign_single_p, or equivalent logic is used where a similar
1457 treatment of unary NOPs is appropriate. */
1458
1459 bool
1460 gimple_assign_unary_nop_p (gimple gs)
1461 {
1462 return (is_gimple_assign (gs)
1463 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
1464 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
1465 && gimple_assign_rhs1 (gs) != error_mark_node
1466 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
1467 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
1468 }
1469
1470 /* Set BB to be the basic block holding G. */
1471
1472 void
1473 gimple_set_bb (gimple stmt, basic_block bb)
1474 {
1475 stmt->gsbase.bb = bb;
1476
1477 /* If the statement is a label, add the label to block-to-labels map
1478 so that we can speed up edge creation for GIMPLE_GOTOs. */
1479 if (cfun->cfg && gimple_code (stmt) == GIMPLE_LABEL)
1480 {
1481 tree t;
1482 int uid;
1483
1484 t = gimple_label_label (stmt);
1485 uid = LABEL_DECL_UID (t);
1486 if (uid == -1)
1487 {
1488 unsigned old_len = vec_safe_length (label_to_block_map);
1489 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
1490 if (old_len <= (unsigned) uid)
1491 {
1492 unsigned new_len = 3 * uid / 2 + 1;
1493
1494 vec_safe_grow_cleared (label_to_block_map, new_len);
1495 }
1496 }
1497
1498 (*label_to_block_map)[uid] = bb;
1499 }
1500 }
1501
1502
1503 /* Modify the RHS of the assignment pointed-to by GSI using the
1504 operands in the expression tree EXPR.
1505
1506 NOTE: The statement pointed-to by GSI may be reallocated if it
1507 did not have enough operand slots.
1508
1509 This function is useful to convert an existing tree expression into
1510 the flat representation used for the RHS of a GIMPLE assignment.
1511 It will reallocate memory as needed to expand or shrink the number
1512 of operand slots needed to represent EXPR.
1513
1514 NOTE: If you find yourself building a tree and then calling this
1515 function, you are most certainly doing it the slow way. It is much
1516 better to build a new assignment or to use the function
1517 gimple_assign_set_rhs_with_ops, which does not require an
1518 expression tree to be built. */
1519
1520 void
1521 gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
1522 {
1523 enum tree_code subcode;
1524 tree op1, op2, op3;
1525
1526 extract_ops_from_tree_1 (expr, &subcode, &op1, &op2, &op3);
1527 gimple_assign_set_rhs_with_ops_1 (gsi, subcode, op1, op2, op3);
1528 }
1529
1530
1531 /* Set the RHS of assignment statement pointed-to by GSI to CODE with
1532 operands OP1, OP2 and OP3.
1533
1534 NOTE: The statement pointed-to by GSI may be reallocated if it
1535 did not have enough operand slots. */
1536
1537 void
1538 gimple_assign_set_rhs_with_ops_1 (gimple_stmt_iterator *gsi, enum tree_code code,
1539 tree op1, tree op2, tree op3)
1540 {
1541 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
1542 gimple stmt = gsi_stmt (*gsi);
1543
1544 /* If the new CODE needs more operands, allocate a new statement. */
1545 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
1546 {
1547 tree lhs = gimple_assign_lhs (stmt);
1548 gimple new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
1549 memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
1550 gimple_init_singleton (new_stmt);
1551 gsi_replace (gsi, new_stmt, true);
1552 stmt = new_stmt;
1553
1554 /* The LHS needs to be reset as this also changes the SSA name
1555 on the LHS. */
1556 gimple_assign_set_lhs (stmt, lhs);
1557 }
1558
1559 gimple_set_num_ops (stmt, new_rhs_ops + 1);
1560 gimple_set_subcode (stmt, code);
1561 gimple_assign_set_rhs1 (stmt, op1);
1562 if (new_rhs_ops > 1)
1563 gimple_assign_set_rhs2 (stmt, op2);
1564 if (new_rhs_ops > 2)
1565 gimple_assign_set_rhs3 (stmt, op3);
1566 }
1567
1568
1569 /* Return the LHS of a statement that performs an assignment,
1570 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
1571 for a call to a function that returns no value, or for a
1572 statement other than an assignment or a call. */
1573
1574 tree
1575 gimple_get_lhs (const_gimple stmt)
1576 {
1577 enum gimple_code code = gimple_code (stmt);
1578
1579 if (code == GIMPLE_ASSIGN)
1580 return gimple_assign_lhs (stmt);
1581 else if (code == GIMPLE_CALL)
1582 return gimple_call_lhs (stmt);
1583 else
1584 return NULL_TREE;
1585 }
1586
1587
1588 /* Set the LHS of a statement that performs an assignment,
1589 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
1590
1591 void
1592 gimple_set_lhs (gimple stmt, tree lhs)
1593 {
1594 enum gimple_code code = gimple_code (stmt);
1595
1596 if (code == GIMPLE_ASSIGN)
1597 gimple_assign_set_lhs (stmt, lhs);
1598 else if (code == GIMPLE_CALL)
1599 gimple_call_set_lhs (stmt, lhs);
1600 else
1601 gcc_unreachable ();
1602 }
1603
1604
1605 /* Return a deep copy of statement STMT. All the operands from STMT
1606 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
1607 and VUSE operand arrays are set to empty in the new copy. The new
1608 copy isn't part of any sequence. */
1609
1610 gimple
1611 gimple_copy (gimple stmt)
1612 {
1613 enum gimple_code code = gimple_code (stmt);
1614 unsigned num_ops = gimple_num_ops (stmt);
1615 gimple copy = gimple_alloc (code, num_ops);
1616 unsigned i;
1617
1618 /* Shallow copy all the fields from STMT. */
1619 memcpy (copy, stmt, gimple_size (code));
1620 gimple_init_singleton (copy);
1621
1622 /* If STMT has sub-statements, deep-copy them as well. */
1623 if (gimple_has_substatements (stmt))
1624 {
1625 gimple_seq new_seq;
1626 tree t;
1627
1628 switch (gimple_code (stmt))
1629 {
1630 case GIMPLE_BIND:
1631 new_seq = gimple_seq_copy (gimple_bind_body (stmt));
1632 gimple_bind_set_body (copy, new_seq);
1633 gimple_bind_set_vars (copy, unshare_expr (gimple_bind_vars (stmt)));
1634 gimple_bind_set_block (copy, gimple_bind_block (stmt));
1635 break;
1636
1637 case GIMPLE_CATCH:
1638 new_seq = gimple_seq_copy (gimple_catch_handler (stmt));
1639 gimple_catch_set_handler (copy, new_seq);
1640 t = unshare_expr (gimple_catch_types (stmt));
1641 gimple_catch_set_types (copy, t);
1642 break;
1643
1644 case GIMPLE_EH_FILTER:
1645 new_seq = gimple_seq_copy (gimple_eh_filter_failure (stmt));
1646 gimple_eh_filter_set_failure (copy, new_seq);
1647 t = unshare_expr (gimple_eh_filter_types (stmt));
1648 gimple_eh_filter_set_types (copy, t);
1649 break;
1650
1651 case GIMPLE_EH_ELSE:
1652 new_seq = gimple_seq_copy (gimple_eh_else_n_body (stmt));
1653 gimple_eh_else_set_n_body (copy, new_seq);
1654 new_seq = gimple_seq_copy (gimple_eh_else_e_body (stmt));
1655 gimple_eh_else_set_e_body (copy, new_seq);
1656 break;
1657
1658 case GIMPLE_TRY:
1659 new_seq = gimple_seq_copy (gimple_try_eval (stmt));
1660 gimple_try_set_eval (copy, new_seq);
1661 new_seq = gimple_seq_copy (gimple_try_cleanup (stmt));
1662 gimple_try_set_cleanup (copy, new_seq);
1663 break;
1664
1665 case GIMPLE_OMP_FOR:
1666 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
1667 gimple_omp_for_set_pre_body (copy, new_seq);
1668 t = unshare_expr (gimple_omp_for_clauses (stmt));
1669 gimple_omp_for_set_clauses (copy, t);
1670 copy->gimple_omp_for.iter
1671 = ggc_alloc_vec_gimple_omp_for_iter
1672 (gimple_omp_for_collapse (stmt));
1673 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1674 {
1675 gimple_omp_for_set_cond (copy, i,
1676 gimple_omp_for_cond (stmt, i));
1677 gimple_omp_for_set_index (copy, i,
1678 gimple_omp_for_index (stmt, i));
1679 t = unshare_expr (gimple_omp_for_initial (stmt, i));
1680 gimple_omp_for_set_initial (copy, i, t);
1681 t = unshare_expr (gimple_omp_for_final (stmt, i));
1682 gimple_omp_for_set_final (copy, i, t);
1683 t = unshare_expr (gimple_omp_for_incr (stmt, i));
1684 gimple_omp_for_set_incr (copy, i, t);
1685 }
1686 goto copy_omp_body;
1687
1688 case GIMPLE_OMP_PARALLEL:
1689 t = unshare_expr (gimple_omp_parallel_clauses (stmt));
1690 gimple_omp_parallel_set_clauses (copy, t);
1691 t = unshare_expr (gimple_omp_parallel_child_fn (stmt));
1692 gimple_omp_parallel_set_child_fn (copy, t);
1693 t = unshare_expr (gimple_omp_parallel_data_arg (stmt));
1694 gimple_omp_parallel_set_data_arg (copy, t);
1695 goto copy_omp_body;
1696
1697 case GIMPLE_OMP_TASK:
1698 t = unshare_expr (gimple_omp_task_clauses (stmt));
1699 gimple_omp_task_set_clauses (copy, t);
1700 t = unshare_expr (gimple_omp_task_child_fn (stmt));
1701 gimple_omp_task_set_child_fn (copy, t);
1702 t = unshare_expr (gimple_omp_task_data_arg (stmt));
1703 gimple_omp_task_set_data_arg (copy, t);
1704 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
1705 gimple_omp_task_set_copy_fn (copy, t);
1706 t = unshare_expr (gimple_omp_task_arg_size (stmt));
1707 gimple_omp_task_set_arg_size (copy, t);
1708 t = unshare_expr (gimple_omp_task_arg_align (stmt));
1709 gimple_omp_task_set_arg_align (copy, t);
1710 goto copy_omp_body;
1711
1712 case GIMPLE_OMP_CRITICAL:
1713 t = unshare_expr (gimple_omp_critical_name (stmt));
1714 gimple_omp_critical_set_name (copy, t);
1715 goto copy_omp_body;
1716
1717 case GIMPLE_OMP_SECTIONS:
1718 t = unshare_expr (gimple_omp_sections_clauses (stmt));
1719 gimple_omp_sections_set_clauses (copy, t);
1720 t = unshare_expr (gimple_omp_sections_control (stmt));
1721 gimple_omp_sections_set_control (copy, t);
1722 /* FALLTHRU */
1723
1724 case GIMPLE_OMP_SINGLE:
1725 case GIMPLE_OMP_TARGET:
1726 case GIMPLE_OMP_TEAMS:
1727 case GIMPLE_OMP_SECTION:
1728 case GIMPLE_OMP_MASTER:
1729 case GIMPLE_OMP_TASKGROUP:
1730 case GIMPLE_OMP_ORDERED:
1731 copy_omp_body:
1732 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
1733 gimple_omp_set_body (copy, new_seq);
1734 break;
1735
1736 case GIMPLE_TRANSACTION:
1737 new_seq = gimple_seq_copy (gimple_transaction_body (stmt));
1738 gimple_transaction_set_body (copy, new_seq);
1739 break;
1740
1741 case GIMPLE_WITH_CLEANUP_EXPR:
1742 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
1743 gimple_wce_set_cleanup (copy, new_seq);
1744 break;
1745
1746 default:
1747 gcc_unreachable ();
1748 }
1749 }
1750
1751 /* Make copy of operands. */
1752 for (i = 0; i < num_ops; i++)
1753 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
1754
1755 if (gimple_has_mem_ops (stmt))
1756 {
1757 gimple_set_vdef (copy, gimple_vdef (stmt));
1758 gimple_set_vuse (copy, gimple_vuse (stmt));
1759 }
1760
1761 /* Clear out SSA operand vectors on COPY. */
1762 if (gimple_has_ops (stmt))
1763 {
1764 gimple_set_use_ops (copy, NULL);
1765
1766 /* SSA operands need to be updated. */
1767 gimple_set_modified (copy, true);
1768 }
1769
1770 return copy;
1771 }
1772
1773
1774 /* Return true if statement S has side-effects. We consider a
1775 statement to have side effects if:
1776
1777 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
1778 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
1779
1780 bool
1781 gimple_has_side_effects (const_gimple s)
1782 {
1783 if (is_gimple_debug (s))
1784 return false;
1785
1786 /* We don't have to scan the arguments to check for
1787 volatile arguments, though, at present, we still
1788 do a scan to check for TREE_SIDE_EFFECTS. */
1789 if (gimple_has_volatile_ops (s))
1790 return true;
1791
1792 if (gimple_code (s) == GIMPLE_ASM
1793 && gimple_asm_volatile_p (s))
1794 return true;
1795
1796 if (is_gimple_call (s))
1797 {
1798 int flags = gimple_call_flags (s);
1799
1800 /* An infinite loop is considered a side effect. */
1801 if (!(flags & (ECF_CONST | ECF_PURE))
1802 || (flags & ECF_LOOPING_CONST_OR_PURE))
1803 return true;
1804
1805 return false;
1806 }
1807
1808 return false;
1809 }
1810
1811 /* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
1812 Return true if S can trap. When INCLUDE_MEM is true, check whether
1813 the memory operations could trap. When INCLUDE_STORES is true and
1814 S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked. */
1815
1816 bool
1817 gimple_could_trap_p_1 (gimple s, bool include_mem, bool include_stores)
1818 {
1819 tree t, div = NULL_TREE;
1820 enum tree_code op;
1821
1822 if (include_mem)
1823 {
1824 unsigned i, start = (is_gimple_assign (s) && !include_stores) ? 1 : 0;
1825
1826 for (i = start; i < gimple_num_ops (s); i++)
1827 if (tree_could_trap_p (gimple_op (s, i)))
1828 return true;
1829 }
1830
1831 switch (gimple_code (s))
1832 {
1833 case GIMPLE_ASM:
1834 return gimple_asm_volatile_p (s);
1835
1836 case GIMPLE_CALL:
1837 t = gimple_call_fndecl (s);
1838 /* Assume that calls to weak functions may trap. */
1839 if (!t || !DECL_P (t) || DECL_WEAK (t))
1840 return true;
1841 return false;
1842
1843 case GIMPLE_ASSIGN:
1844 t = gimple_expr_type (s);
1845 op = gimple_assign_rhs_code (s);
1846 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
1847 div = gimple_assign_rhs2 (s);
1848 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
1849 (INTEGRAL_TYPE_P (t)
1850 && TYPE_OVERFLOW_TRAPS (t)),
1851 div));
1852
1853 default:
1854 break;
1855 }
1856
1857 return false;
1858 }
1859
1860 /* Return true if statement S can trap. */
1861
1862 bool
1863 gimple_could_trap_p (gimple s)
1864 {
1865 return gimple_could_trap_p_1 (s, true, true);
1866 }
1867
1868 /* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
1869
1870 bool
1871 gimple_assign_rhs_could_trap_p (gimple s)
1872 {
1873 gcc_assert (is_gimple_assign (s));
1874 return gimple_could_trap_p_1 (s, true, false);
1875 }
1876
1877
1878 /* Print debugging information for gimple stmts generated. */
1879
1880 void
1881 dump_gimple_statistics (void)
1882 {
1883 int i, total_tuples = 0, total_bytes = 0;
1884
1885 if (! GATHER_STATISTICS)
1886 {
1887 fprintf (stderr, "No gimple statistics\n");
1888 return;
1889 }
1890
1891 fprintf (stderr, "\nGIMPLE statements\n");
1892 fprintf (stderr, "Kind Stmts Bytes\n");
1893 fprintf (stderr, "---------------------------------------\n");
1894 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
1895 {
1896 fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i],
1897 gimple_alloc_counts[i], gimple_alloc_sizes[i]);
1898 total_tuples += gimple_alloc_counts[i];
1899 total_bytes += gimple_alloc_sizes[i];
1900 }
1901 fprintf (stderr, "---------------------------------------\n");
1902 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes);
1903 fprintf (stderr, "---------------------------------------\n");
1904 }
1905
1906
1907 /* Return the number of operands needed on the RHS of a GIMPLE
1908 assignment for an expression with tree code CODE. */
1909
1910 unsigned
1911 get_gimple_rhs_num_ops (enum tree_code code)
1912 {
1913 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
1914
1915 if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
1916 return 1;
1917 else if (rhs_class == GIMPLE_BINARY_RHS)
1918 return 2;
1919 else if (rhs_class == GIMPLE_TERNARY_RHS)
1920 return 3;
1921 else
1922 gcc_unreachable ();
1923 }
1924
1925 #define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
1926 (unsigned char) \
1927 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
1928 : ((TYPE) == tcc_binary \
1929 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
1930 : ((TYPE) == tcc_constant \
1931 || (TYPE) == tcc_declaration \
1932 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
1933 : ((SYM) == TRUTH_AND_EXPR \
1934 || (SYM) == TRUTH_OR_EXPR \
1935 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
1936 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
1937 : ((SYM) == COND_EXPR \
1938 || (SYM) == WIDEN_MULT_PLUS_EXPR \
1939 || (SYM) == WIDEN_MULT_MINUS_EXPR \
1940 || (SYM) == DOT_PROD_EXPR \
1941 || (SYM) == REALIGN_LOAD_EXPR \
1942 || (SYM) == VEC_COND_EXPR \
1943 || (SYM) == VEC_PERM_EXPR \
1944 || (SYM) == FMA_EXPR) ? GIMPLE_TERNARY_RHS \
1945 : ((SYM) == CONSTRUCTOR \
1946 || (SYM) == OBJ_TYPE_REF \
1947 || (SYM) == ASSERT_EXPR \
1948 || (SYM) == ADDR_EXPR \
1949 || (SYM) == WITH_SIZE_EXPR \
1950 || (SYM) == SSA_NAME) ? GIMPLE_SINGLE_RHS \
1951 : GIMPLE_INVALID_RHS),
1952 #define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
1953
1954 const unsigned char gimple_rhs_class_table[] = {
1955 #include "all-tree.def"
1956 };
1957
1958 #undef DEFTREECODE
1959 #undef END_OF_BASE_TREE_CODES
1960
1961 /* Given a memory reference expression T, return its base address.
1962 The base address of a memory reference expression is the main
1963 object being referenced. For instance, the base address for
1964 'array[i].fld[j]' is 'array'. You can think of this as stripping
1965 away the offset part from a memory address.
1966
1967 This function calls handled_component_p to strip away all the inner
1968 parts of the memory reference until it reaches the base object. */
1969
1970 tree
1971 get_base_address (tree t)
1972 {
1973 while (handled_component_p (t))
1974 t = TREE_OPERAND (t, 0);
1975
1976 if ((TREE_CODE (t) == MEM_REF
1977 || TREE_CODE (t) == TARGET_MEM_REF)
1978 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
1979 t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
1980
1981 /* ??? Either the alias oracle or all callers need to properly deal
1982 with WITH_SIZE_EXPRs before we can look through those. */
1983 if (TREE_CODE (t) == WITH_SIZE_EXPR)
1984 return NULL_TREE;
1985
1986 return t;
1987 }
1988
1989 void
1990 recalculate_side_effects (tree t)
1991 {
1992 enum tree_code code = TREE_CODE (t);
1993 int len = TREE_OPERAND_LENGTH (t);
1994 int i;
1995
1996 switch (TREE_CODE_CLASS (code))
1997 {
1998 case tcc_expression:
1999 switch (code)
2000 {
2001 case INIT_EXPR:
2002 case MODIFY_EXPR:
2003 case VA_ARG_EXPR:
2004 case PREDECREMENT_EXPR:
2005 case PREINCREMENT_EXPR:
2006 case POSTDECREMENT_EXPR:
2007 case POSTINCREMENT_EXPR:
2008 /* All of these have side-effects, no matter what their
2009 operands are. */
2010 return;
2011
2012 default:
2013 break;
2014 }
2015 /* Fall through. */
2016
2017 case tcc_comparison: /* a comparison expression */
2018 case tcc_unary: /* a unary arithmetic expression */
2019 case tcc_binary: /* a binary arithmetic expression */
2020 case tcc_reference: /* a reference */
2021 case tcc_vl_exp: /* a function call */
2022 TREE_SIDE_EFFECTS (t) = TREE_THIS_VOLATILE (t);
2023 for (i = 0; i < len; ++i)
2024 {
2025 tree op = TREE_OPERAND (t, i);
2026 if (op && TREE_SIDE_EFFECTS (op))
2027 TREE_SIDE_EFFECTS (t) = 1;
2028 }
2029 break;
2030
2031 case tcc_constant:
2032 /* No side-effects. */
2033 return;
2034
2035 default:
2036 gcc_unreachable ();
2037 }
2038 }
2039
2040 /* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
2041 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
2042 we failed to create one. */
2043
2044 tree
2045 canonicalize_cond_expr_cond (tree t)
2046 {
2047 /* Strip conversions around boolean operations. */
2048 if (CONVERT_EXPR_P (t)
2049 && (truth_value_p (TREE_CODE (TREE_OPERAND (t, 0)))
2050 || TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0)))
2051 == BOOLEAN_TYPE))
2052 t = TREE_OPERAND (t, 0);
2053
2054 /* For !x use x == 0. */
2055 if (TREE_CODE (t) == TRUTH_NOT_EXPR)
2056 {
2057 tree top0 = TREE_OPERAND (t, 0);
2058 t = build2 (EQ_EXPR, TREE_TYPE (t),
2059 top0, build_int_cst (TREE_TYPE (top0), 0));
2060 }
2061 /* For cmp ? 1 : 0 use cmp. */
2062 else if (TREE_CODE (t) == COND_EXPR
2063 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
2064 && integer_onep (TREE_OPERAND (t, 1))
2065 && integer_zerop (TREE_OPERAND (t, 2)))
2066 {
2067 tree top0 = TREE_OPERAND (t, 0);
2068 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
2069 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
2070 }
2071 /* For x ^ y use x != y. */
2072 else if (TREE_CODE (t) == BIT_XOR_EXPR)
2073 t = build2 (NE_EXPR, TREE_TYPE (t),
2074 TREE_OPERAND (t, 0), TREE_OPERAND (t, 1));
2075
2076 if (is_gimple_condexpr (t))
2077 return t;
2078
2079 return NULL_TREE;
2080 }
2081
2082 /* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
2083 the positions marked by the set ARGS_TO_SKIP. */
2084
2085 gimple
2086 gimple_call_copy_skip_args (gimple stmt, bitmap args_to_skip)
2087 {
2088 int i;
2089 int nargs = gimple_call_num_args (stmt);
2090 vec<tree> vargs;
2091 vargs.create (nargs);
2092 gimple new_stmt;
2093
2094 for (i = 0; i < nargs; i++)
2095 if (!bitmap_bit_p (args_to_skip, i))
2096 vargs.quick_push (gimple_call_arg (stmt, i));
2097
2098 if (gimple_call_internal_p (stmt))
2099 new_stmt = gimple_build_call_internal_vec (gimple_call_internal_fn (stmt),
2100 vargs);
2101 else
2102 new_stmt = gimple_build_call_vec (gimple_call_fn (stmt), vargs);
2103 vargs.release ();
2104 if (gimple_call_lhs (stmt))
2105 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
2106
2107 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
2108 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
2109
2110 if (gimple_has_location (stmt))
2111 gimple_set_location (new_stmt, gimple_location (stmt));
2112 gimple_call_copy_flags (new_stmt, stmt);
2113 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
2114
2115 gimple_set_modified (new_stmt, true);
2116
2117 return new_stmt;
2118 }
2119
2120
2121
2122 /* Return true if the field decls F1 and F2 are at the same offset.
2123
2124 This is intended to be used on GIMPLE types only. */
2125
2126 bool
2127 gimple_compare_field_offset (tree f1, tree f2)
2128 {
2129 if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
2130 {
2131 tree offset1 = DECL_FIELD_OFFSET (f1);
2132 tree offset2 = DECL_FIELD_OFFSET (f2);
2133 return ((offset1 == offset2
2134 /* Once gimplification is done, self-referential offsets are
2135 instantiated as operand #2 of the COMPONENT_REF built for
2136 each access and reset. Therefore, they are not relevant
2137 anymore and fields are interchangeable provided that they
2138 represent the same access. */
2139 || (TREE_CODE (offset1) == PLACEHOLDER_EXPR
2140 && TREE_CODE (offset2) == PLACEHOLDER_EXPR
2141 && (DECL_SIZE (f1) == DECL_SIZE (f2)
2142 || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
2143 && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
2144 || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0))
2145 && DECL_ALIGN (f1) == DECL_ALIGN (f2))
2146 || operand_equal_p (offset1, offset2, 0))
2147 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
2148 DECL_FIELD_BIT_OFFSET (f2)));
2149 }
2150
2151 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
2152 should be, so handle differing ones specially by decomposing
2153 the offset into a byte and bit offset manually. */
2154 if (host_integerp (DECL_FIELD_OFFSET (f1), 0)
2155 && host_integerp (DECL_FIELD_OFFSET (f2), 0))
2156 {
2157 unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
2158 unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
2159 bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
2160 byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
2161 + bit_offset1 / BITS_PER_UNIT);
2162 bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
2163 byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
2164 + bit_offset2 / BITS_PER_UNIT);
2165 if (byte_offset1 != byte_offset2)
2166 return false;
2167 return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
2168 }
2169
2170 return false;
2171 }
2172
2173
2174 /* Return a type the same as TYPE except unsigned or
2175 signed according to UNSIGNEDP. */
2176
2177 static tree
2178 gimple_signed_or_unsigned_type (bool unsignedp, tree type)
2179 {
2180 tree type1;
2181
2182 type1 = TYPE_MAIN_VARIANT (type);
2183 if (type1 == signed_char_type_node
2184 || type1 == char_type_node
2185 || type1 == unsigned_char_type_node)
2186 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2187 if (type1 == integer_type_node || type1 == unsigned_type_node)
2188 return unsignedp ? unsigned_type_node : integer_type_node;
2189 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
2190 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2191 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
2192 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2193 if (type1 == long_long_integer_type_node
2194 || type1 == long_long_unsigned_type_node)
2195 return unsignedp
2196 ? long_long_unsigned_type_node
2197 : long_long_integer_type_node;
2198 if (int128_integer_type_node && (type1 == int128_integer_type_node || type1 == int128_unsigned_type_node))
2199 return unsignedp
2200 ? int128_unsigned_type_node
2201 : int128_integer_type_node;
2202 #if HOST_BITS_PER_WIDE_INT >= 64
2203 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
2204 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2205 #endif
2206 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
2207 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2208 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
2209 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2210 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
2211 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2212 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
2213 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2214
2215 #define GIMPLE_FIXED_TYPES(NAME) \
2216 if (type1 == short_ ## NAME ## _type_node \
2217 || type1 == unsigned_short_ ## NAME ## _type_node) \
2218 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
2219 : short_ ## NAME ## _type_node; \
2220 if (type1 == NAME ## _type_node \
2221 || type1 == unsigned_ ## NAME ## _type_node) \
2222 return unsignedp ? unsigned_ ## NAME ## _type_node \
2223 : NAME ## _type_node; \
2224 if (type1 == long_ ## NAME ## _type_node \
2225 || type1 == unsigned_long_ ## NAME ## _type_node) \
2226 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
2227 : long_ ## NAME ## _type_node; \
2228 if (type1 == long_long_ ## NAME ## _type_node \
2229 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
2230 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
2231 : long_long_ ## NAME ## _type_node;
2232
2233 #define GIMPLE_FIXED_MODE_TYPES(NAME) \
2234 if (type1 == NAME ## _type_node \
2235 || type1 == u ## NAME ## _type_node) \
2236 return unsignedp ? u ## NAME ## _type_node \
2237 : NAME ## _type_node;
2238
2239 #define GIMPLE_FIXED_TYPES_SAT(NAME) \
2240 if (type1 == sat_ ## short_ ## NAME ## _type_node \
2241 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
2242 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
2243 : sat_ ## short_ ## NAME ## _type_node; \
2244 if (type1 == sat_ ## NAME ## _type_node \
2245 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
2246 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
2247 : sat_ ## NAME ## _type_node; \
2248 if (type1 == sat_ ## long_ ## NAME ## _type_node \
2249 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
2250 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
2251 : sat_ ## long_ ## NAME ## _type_node; \
2252 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
2253 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
2254 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
2255 : sat_ ## long_long_ ## NAME ## _type_node;
2256
2257 #define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
2258 if (type1 == sat_ ## NAME ## _type_node \
2259 || type1 == sat_ ## u ## NAME ## _type_node) \
2260 return unsignedp ? sat_ ## u ## NAME ## _type_node \
2261 : sat_ ## NAME ## _type_node;
2262
2263 GIMPLE_FIXED_TYPES (fract);
2264 GIMPLE_FIXED_TYPES_SAT (fract);
2265 GIMPLE_FIXED_TYPES (accum);
2266 GIMPLE_FIXED_TYPES_SAT (accum);
2267
2268 GIMPLE_FIXED_MODE_TYPES (qq);
2269 GIMPLE_FIXED_MODE_TYPES (hq);
2270 GIMPLE_FIXED_MODE_TYPES (sq);
2271 GIMPLE_FIXED_MODE_TYPES (dq);
2272 GIMPLE_FIXED_MODE_TYPES (tq);
2273 GIMPLE_FIXED_MODE_TYPES_SAT (qq);
2274 GIMPLE_FIXED_MODE_TYPES_SAT (hq);
2275 GIMPLE_FIXED_MODE_TYPES_SAT (sq);
2276 GIMPLE_FIXED_MODE_TYPES_SAT (dq);
2277 GIMPLE_FIXED_MODE_TYPES_SAT (tq);
2278 GIMPLE_FIXED_MODE_TYPES (ha);
2279 GIMPLE_FIXED_MODE_TYPES (sa);
2280 GIMPLE_FIXED_MODE_TYPES (da);
2281 GIMPLE_FIXED_MODE_TYPES (ta);
2282 GIMPLE_FIXED_MODE_TYPES_SAT (ha);
2283 GIMPLE_FIXED_MODE_TYPES_SAT (sa);
2284 GIMPLE_FIXED_MODE_TYPES_SAT (da);
2285 GIMPLE_FIXED_MODE_TYPES_SAT (ta);
2286
2287 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
2288 the precision; they have precision set to match their range, but
2289 may use a wider mode to match an ABI. If we change modes, we may
2290 wind up with bad conversions. For INTEGER_TYPEs in C, must check
2291 the precision as well, so as to yield correct results for
2292 bit-field types. C++ does not have these separate bit-field
2293 types, and producing a signed or unsigned variant of an
2294 ENUMERAL_TYPE may cause other problems as well. */
2295 if (!INTEGRAL_TYPE_P (type)
2296 || TYPE_UNSIGNED (type) == unsignedp)
2297 return type;
2298
2299 #define TYPE_OK(node) \
2300 (TYPE_MODE (type) == TYPE_MODE (node) \
2301 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
2302 if (TYPE_OK (signed_char_type_node))
2303 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2304 if (TYPE_OK (integer_type_node))
2305 return unsignedp ? unsigned_type_node : integer_type_node;
2306 if (TYPE_OK (short_integer_type_node))
2307 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2308 if (TYPE_OK (long_integer_type_node))
2309 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2310 if (TYPE_OK (long_long_integer_type_node))
2311 return (unsignedp
2312 ? long_long_unsigned_type_node
2313 : long_long_integer_type_node);
2314 if (int128_integer_type_node && TYPE_OK (int128_integer_type_node))
2315 return (unsignedp
2316 ? int128_unsigned_type_node
2317 : int128_integer_type_node);
2318
2319 #if HOST_BITS_PER_WIDE_INT >= 64
2320 if (TYPE_OK (intTI_type_node))
2321 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2322 #endif
2323 if (TYPE_OK (intDI_type_node))
2324 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2325 if (TYPE_OK (intSI_type_node))
2326 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2327 if (TYPE_OK (intHI_type_node))
2328 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2329 if (TYPE_OK (intQI_type_node))
2330 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2331
2332 #undef GIMPLE_FIXED_TYPES
2333 #undef GIMPLE_FIXED_MODE_TYPES
2334 #undef GIMPLE_FIXED_TYPES_SAT
2335 #undef GIMPLE_FIXED_MODE_TYPES_SAT
2336 #undef TYPE_OK
2337
2338 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
2339 }
2340
2341
2342 /* Return an unsigned type the same as TYPE in other respects. */
2343
2344 tree
2345 gimple_unsigned_type (tree type)
2346 {
2347 return gimple_signed_or_unsigned_type (true, type);
2348 }
2349
2350
2351 /* Return a signed type the same as TYPE in other respects. */
2352
2353 tree
2354 gimple_signed_type (tree type)
2355 {
2356 return gimple_signed_or_unsigned_type (false, type);
2357 }
2358
2359
2360 /* Return the typed-based alias set for T, which may be an expression
2361 or a type. Return -1 if we don't do anything special. */
2362
2363 alias_set_type
2364 gimple_get_alias_set (tree t)
2365 {
2366 tree u;
2367
2368 /* Permit type-punning when accessing a union, provided the access
2369 is directly through the union. For example, this code does not
2370 permit taking the address of a union member and then storing
2371 through it. Even the type-punning allowed here is a GCC
2372 extension, albeit a common and useful one; the C standard says
2373 that such accesses have implementation-defined behavior. */
2374 for (u = t;
2375 TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
2376 u = TREE_OPERAND (u, 0))
2377 if (TREE_CODE (u) == COMPONENT_REF
2378 && TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
2379 return 0;
2380
2381 /* That's all the expressions we handle specially. */
2382 if (!TYPE_P (t))
2383 return -1;
2384
2385 /* For convenience, follow the C standard when dealing with
2386 character types. Any object may be accessed via an lvalue that
2387 has character type. */
2388 if (t == char_type_node
2389 || t == signed_char_type_node
2390 || t == unsigned_char_type_node)
2391 return 0;
2392
2393 /* Allow aliasing between signed and unsigned variants of the same
2394 type. We treat the signed variant as canonical. */
2395 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
2396 {
2397 tree t1 = gimple_signed_type (t);
2398
2399 /* t1 == t can happen for boolean nodes which are always unsigned. */
2400 if (t1 != t)
2401 return get_alias_set (t1);
2402 }
2403
2404 return -1;
2405 }
2406
2407
2408 /* Helper for gimple_ior_addresses_taken_1. */
2409
2410 static bool
2411 gimple_ior_addresses_taken_1 (gimple stmt ATTRIBUTE_UNUSED,
2412 tree addr, void *data)
2413 {
2414 bitmap addresses_taken = (bitmap)data;
2415 addr = get_base_address (addr);
2416 if (addr
2417 && DECL_P (addr))
2418 {
2419 bitmap_set_bit (addresses_taken, DECL_UID (addr));
2420 return true;
2421 }
2422 return false;
2423 }
2424
2425 /* Set the bit for the uid of all decls that have their address taken
2426 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
2427 were any in this stmt. */
2428
2429 bool
2430 gimple_ior_addresses_taken (bitmap addresses_taken, gimple stmt)
2431 {
2432 return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
2433 gimple_ior_addresses_taken_1);
2434 }
2435
2436
2437 /* Return TRUE iff stmt is a call to a built-in function. */
2438
2439 bool
2440 is_gimple_builtin_call (gimple stmt)
2441 {
2442 tree callee;
2443
2444 if (is_gimple_call (stmt)
2445 && (callee = gimple_call_fndecl (stmt))
2446 && is_builtin_fn (callee)
2447 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL)
2448 return true;
2449
2450 return false;
2451 }
2452
2453 /* Return true when STMTs arguments match those of FNDECL. */
2454
2455 static bool
2456 validate_call (gimple stmt, tree fndecl)
2457 {
2458 tree targs = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
2459 unsigned nargs = gimple_call_num_args (stmt);
2460 for (unsigned i = 0; i < nargs; ++i)
2461 {
2462 /* Variadic args follow. */
2463 if (!targs)
2464 return true;
2465 tree arg = gimple_call_arg (stmt, i);
2466 if (INTEGRAL_TYPE_P (TREE_TYPE (arg))
2467 && INTEGRAL_TYPE_P (TREE_VALUE (targs)))
2468 ;
2469 else if (POINTER_TYPE_P (TREE_TYPE (arg))
2470 && POINTER_TYPE_P (TREE_VALUE (targs)))
2471 ;
2472 else if (TREE_CODE (TREE_TYPE (arg))
2473 != TREE_CODE (TREE_VALUE (targs)))
2474 return false;
2475 targs = TREE_CHAIN (targs);
2476 }
2477 if (targs && !VOID_TYPE_P (TREE_VALUE (targs)))
2478 return false;
2479 return true;
2480 }
2481
2482 /* Return true when STMT is builtins call to CLASS. */
2483
2484 bool
2485 gimple_call_builtin_p (gimple stmt, enum built_in_class klass)
2486 {
2487 tree fndecl;
2488 if (is_gimple_call (stmt)
2489 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2490 && DECL_BUILT_IN_CLASS (fndecl) == klass)
2491 return validate_call (stmt, fndecl);
2492 return false;
2493 }
2494
2495 /* Return true when STMT is builtins call to CODE of CLASS. */
2496
2497 bool
2498 gimple_call_builtin_p (gimple stmt, enum built_in_function code)
2499 {
2500 tree fndecl;
2501 if (is_gimple_call (stmt)
2502 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2503 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
2504 && DECL_FUNCTION_CODE (fndecl) == code)
2505 return validate_call (stmt, fndecl);
2506 return false;
2507 }
2508
2509 /* Return true if STMT clobbers memory. STMT is required to be a
2510 GIMPLE_ASM. */
2511
2512 bool
2513 gimple_asm_clobbers_memory_p (const_gimple stmt)
2514 {
2515 unsigned i;
2516
2517 for (i = 0; i < gimple_asm_nclobbers (stmt); i++)
2518 {
2519 tree op = gimple_asm_clobber_op (stmt, i);
2520 if (strcmp (TREE_STRING_POINTER (TREE_VALUE (op)), "memory") == 0)
2521 return true;
2522 }
2523
2524 return false;
2525 }
2526
2527 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
2528
2529 void
2530 dump_decl_set (FILE *file, bitmap set)
2531 {
2532 if (set)
2533 {
2534 bitmap_iterator bi;
2535 unsigned i;
2536
2537 fprintf (file, "{ ");
2538
2539 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2540 {
2541 fprintf (file, "D.%u", i);
2542 fprintf (file, " ");
2543 }
2544
2545 fprintf (file, "}");
2546 }
2547 else
2548 fprintf (file, "NIL");
2549 }
2550
2551 /* Return true when CALL is a call stmt that definitely doesn't
2552 free any memory or makes it unavailable otherwise. */
2553 bool
2554 nonfreeing_call_p (gimple call)
2555 {
2556 if (gimple_call_builtin_p (call, BUILT_IN_NORMAL)
2557 && gimple_call_flags (call) & ECF_LEAF)
2558 switch (DECL_FUNCTION_CODE (gimple_call_fndecl (call)))
2559 {
2560 /* Just in case these become ECF_LEAF in the future. */
2561 case BUILT_IN_FREE:
2562 case BUILT_IN_TM_FREE:
2563 case BUILT_IN_REALLOC:
2564 case BUILT_IN_STACK_RESTORE:
2565 return false;
2566 default:
2567 return true;
2568 }
2569
2570 return false;
2571 }
2572
2573 /* Callback for walk_stmt_load_store_ops.
2574
2575 Return TRUE if OP will dereference the tree stored in DATA, FALSE
2576 otherwise.
2577
2578 This routine only makes a superficial check for a dereference. Thus
2579 it must only be used if it is safe to return a false negative. */
2580 static bool
2581 check_loadstore (gimple stmt ATTRIBUTE_UNUSED, tree op, void *data)
2582 {
2583 if ((TREE_CODE (op) == MEM_REF || TREE_CODE (op) == TARGET_MEM_REF)
2584 && operand_equal_p (TREE_OPERAND (op, 0), (tree)data, 0))
2585 return true;
2586 return false;
2587 }
2588
2589 /* If OP can be inferred to be non-zero after STMT executes, return true. */
2590
2591 bool
2592 infer_nonnull_range (gimple stmt, tree op)
2593 {
2594 /* We can only assume that a pointer dereference will yield
2595 non-NULL if -fdelete-null-pointer-checks is enabled. */
2596 if (!flag_delete_null_pointer_checks
2597 || !POINTER_TYPE_P (TREE_TYPE (op))
2598 || gimple_code (stmt) == GIMPLE_ASM)
2599 return false;
2600
2601 if (walk_stmt_load_store_ops (stmt, (void *)op,
2602 check_loadstore, check_loadstore))
2603 return true;
2604
2605 if (is_gimple_call (stmt) && !gimple_call_internal_p (stmt))
2606 {
2607 tree fntype = gimple_call_fntype (stmt);
2608 tree attrs = TYPE_ATTRIBUTES (fntype);
2609 for (; attrs; attrs = TREE_CHAIN (attrs))
2610 {
2611 attrs = lookup_attribute ("nonnull", attrs);
2612
2613 /* If "nonnull" wasn't specified, we know nothing about
2614 the argument. */
2615 if (attrs == NULL_TREE)
2616 return false;
2617
2618 /* If "nonnull" applies to all the arguments, then ARG
2619 is non-null if it's in the argument list. */
2620 if (TREE_VALUE (attrs) == NULL_TREE)
2621 {
2622 for (unsigned int i = 0; i < gimple_call_num_args (stmt); i++)
2623 {
2624 if (operand_equal_p (op, gimple_call_arg (stmt, i), 0)
2625 && POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (stmt, i))))
2626 return true;
2627 }
2628 return false;
2629 }
2630
2631 /* Now see if op appears in the nonnull list. */
2632 for (tree t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
2633 {
2634 int idx = TREE_INT_CST_LOW (TREE_VALUE (t)) - 1;
2635 tree arg = gimple_call_arg (stmt, idx);
2636 if (operand_equal_p (op, arg, 0))
2637 return true;
2638 }
2639 }
2640 }
2641
2642 /* If this function is marked as returning non-null, then we can
2643 infer OP is non-null if it is used in the return statement. */
2644 if (gimple_code (stmt) == GIMPLE_RETURN
2645 && gimple_return_retval (stmt)
2646 && operand_equal_p (gimple_return_retval (stmt), op, 0)
2647 && lookup_attribute ("returns_nonnull",
2648 TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))))
2649 return true;
2650
2651 return false;
2652 }
2653
2654 /* Compare two case labels. Because the front end should already have
2655 made sure that case ranges do not overlap, it is enough to only compare
2656 the CASE_LOW values of each case label. */
2657
2658 static int
2659 compare_case_labels (const void *p1, const void *p2)
2660 {
2661 const_tree const case1 = *(const_tree const*)p1;
2662 const_tree const case2 = *(const_tree const*)p2;
2663
2664 /* The 'default' case label always goes first. */
2665 if (!CASE_LOW (case1))
2666 return -1;
2667 else if (!CASE_LOW (case2))
2668 return 1;
2669 else
2670 return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
2671 }
2672
2673 /* Sort the case labels in LABEL_VEC in place in ascending order. */
2674
2675 void
2676 sort_case_labels (vec<tree> label_vec)
2677 {
2678 label_vec.qsort (compare_case_labels);
2679 }
2680 \f
2681 /* Prepare a vector of case labels to be used in a GIMPLE_SWITCH statement.
2682
2683 LABELS is a vector that contains all case labels to look at.
2684
2685 INDEX_TYPE is the type of the switch index expression. Case labels
2686 in LABELS are discarded if their values are not in the value range
2687 covered by INDEX_TYPE. The remaining case label values are folded
2688 to INDEX_TYPE.
2689
2690 If a default case exists in LABELS, it is removed from LABELS and
2691 returned in DEFAULT_CASEP. If no default case exists, but the
2692 case labels already cover the whole range of INDEX_TYPE, a default
2693 case is returned pointing to one of the existing case labels.
2694 Otherwise DEFAULT_CASEP is set to NULL_TREE.
2695
2696 DEFAULT_CASEP may be NULL, in which case the above comment doesn't
2697 apply and no action is taken regardless of whether a default case is
2698 found or not. */
2699
2700 void
2701 preprocess_case_label_vec_for_gimple (vec<tree> labels,
2702 tree index_type,
2703 tree *default_casep)
2704 {
2705 tree min_value, max_value;
2706 tree default_case = NULL_TREE;
2707 size_t i, len;
2708
2709 i = 0;
2710 min_value = TYPE_MIN_VALUE (index_type);
2711 max_value = TYPE_MAX_VALUE (index_type);
2712 while (i < labels.length ())
2713 {
2714 tree elt = labels[i];
2715 tree low = CASE_LOW (elt);
2716 tree high = CASE_HIGH (elt);
2717 bool remove_element = FALSE;
2718
2719 if (low)
2720 {
2721 gcc_checking_assert (TREE_CODE (low) == INTEGER_CST);
2722 gcc_checking_assert (!high || TREE_CODE (high) == INTEGER_CST);
2723
2724 /* This is a non-default case label, i.e. it has a value.
2725
2726 See if the case label is reachable within the range of
2727 the index type. Remove out-of-range case values. Turn
2728 case ranges into a canonical form (high > low strictly)
2729 and convert the case label values to the index type.
2730
2731 NB: The type of gimple_switch_index() may be the promoted
2732 type, but the case labels retain the original type. */
2733
2734 if (high)
2735 {
2736 /* This is a case range. Discard empty ranges.
2737 If the bounds or the range are equal, turn this
2738 into a simple (one-value) case. */
2739 int cmp = tree_int_cst_compare (high, low);
2740 if (cmp < 0)
2741 remove_element = TRUE;
2742 else if (cmp == 0)
2743 high = NULL_TREE;
2744 }
2745
2746 if (! high)
2747 {
2748 /* If the simple case value is unreachable, ignore it. */
2749 if ((TREE_CODE (min_value) == INTEGER_CST
2750 && tree_int_cst_compare (low, min_value) < 0)
2751 || (TREE_CODE (max_value) == INTEGER_CST
2752 && tree_int_cst_compare (low, max_value) > 0))
2753 remove_element = TRUE;
2754 else
2755 low = fold_convert (index_type, low);
2756 }
2757 else
2758 {
2759 /* If the entire case range is unreachable, ignore it. */
2760 if ((TREE_CODE (min_value) == INTEGER_CST
2761 && tree_int_cst_compare (high, min_value) < 0)
2762 || (TREE_CODE (max_value) == INTEGER_CST
2763 && tree_int_cst_compare (low, max_value) > 0))
2764 remove_element = TRUE;
2765 else
2766 {
2767 /* If the lower bound is less than the index type's
2768 minimum value, truncate the range bounds. */
2769 if (TREE_CODE (min_value) == INTEGER_CST
2770 && tree_int_cst_compare (low, min_value) < 0)
2771 low = min_value;
2772 low = fold_convert (index_type, low);
2773
2774 /* If the upper bound is greater than the index type's
2775 maximum value, truncate the range bounds. */
2776 if (TREE_CODE (max_value) == INTEGER_CST
2777 && tree_int_cst_compare (high, max_value) > 0)
2778 high = max_value;
2779 high = fold_convert (index_type, high);
2780
2781 /* We may have folded a case range to a one-value case. */
2782 if (tree_int_cst_equal (low, high))
2783 high = NULL_TREE;
2784 }
2785 }
2786
2787 CASE_LOW (elt) = low;
2788 CASE_HIGH (elt) = high;
2789 }
2790 else
2791 {
2792 gcc_assert (!default_case);
2793 default_case = elt;
2794 /* The default case must be passed separately to the
2795 gimple_build_switch routine. But if DEFAULT_CASEP
2796 is NULL, we do not remove the default case (it would
2797 be completely lost). */
2798 if (default_casep)
2799 remove_element = TRUE;
2800 }
2801
2802 if (remove_element)
2803 labels.ordered_remove (i);
2804 else
2805 i++;
2806 }
2807 len = i;
2808
2809 if (!labels.is_empty ())
2810 sort_case_labels (labels);
2811
2812 if (default_casep && !default_case)
2813 {
2814 /* If the switch has no default label, add one, so that we jump
2815 around the switch body. If the labels already cover the whole
2816 range of the switch index_type, add the default label pointing
2817 to one of the existing labels. */
2818 if (len
2819 && TYPE_MIN_VALUE (index_type)
2820 && TYPE_MAX_VALUE (index_type)
2821 && tree_int_cst_equal (CASE_LOW (labels[0]),
2822 TYPE_MIN_VALUE (index_type)))
2823 {
2824 tree low, high = CASE_HIGH (labels[len - 1]);
2825 if (!high)
2826 high = CASE_LOW (labels[len - 1]);
2827 if (tree_int_cst_equal (high, TYPE_MAX_VALUE (index_type)))
2828 {
2829 for (i = 1; i < len; i++)
2830 {
2831 high = CASE_LOW (labels[i]);
2832 low = CASE_HIGH (labels[i - 1]);
2833 if (!low)
2834 low = CASE_LOW (labels[i - 1]);
2835 if ((TREE_INT_CST_LOW (low) + 1
2836 != TREE_INT_CST_LOW (high))
2837 || (TREE_INT_CST_HIGH (low)
2838 + (TREE_INT_CST_LOW (high) == 0)
2839 != TREE_INT_CST_HIGH (high)))
2840 break;
2841 }
2842 if (i == len)
2843 {
2844 tree label = CASE_LABEL (labels[0]);
2845 default_case = build_case_label (NULL_TREE, NULL_TREE,
2846 label);
2847 }
2848 }
2849 }
2850 }
2851
2852 if (default_casep)
2853 *default_casep = default_case;
2854 }
2855
2856 /* Set the location of all statements in SEQ to LOC. */
2857
2858 void
2859 gimple_seq_set_location (gimple_seq seq, location_t loc)
2860 {
2861 for (gimple_stmt_iterator i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
2862 gimple_set_location (gsi_stmt (i), loc);
2863 }