Rename vshuffle/vec_shuffle to vec_perm.
[gcc.git] / gcc / gimple.c
1 /* Gimple IR support functions.
2
3 Copyright 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "target.h"
27 #include "tree.h"
28 #include "ggc.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "gimple.h"
32 #include "diagnostic.h"
33 #include "tree-flow.h"
34 #include "value-prof.h"
35 #include "flags.h"
36 #include "alias.h"
37 #include "demangle.h"
38 #include "langhooks.h"
39
40 /* Global type table. FIXME lto, it should be possible to re-use some
41 of the type hashing routines in tree.c (type_hash_canon, type_hash_lookup,
42 etc), but those assume that types were built with the various
43 build_*_type routines which is not the case with the streamer. */
44 static GTY((if_marked ("ggc_marked_p"), param_is (union tree_node)))
45 htab_t gimple_types;
46 static GTY((if_marked ("ggc_marked_p"), param_is (union tree_node)))
47 htab_t gimple_canonical_types;
48 static GTY((if_marked ("tree_int_map_marked_p"), param_is (struct tree_int_map)))
49 htab_t type_hash_cache;
50 static GTY((if_marked ("tree_int_map_marked_p"), param_is (struct tree_int_map)))
51 htab_t canonical_type_hash_cache;
52
53 /* All the tuples have their operand vector (if present) at the very bottom
54 of the structure. Therefore, the offset required to find the
55 operands vector the size of the structure minus the size of the 1
56 element tree array at the end (see gimple_ops). */
57 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
58 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
59 EXPORTED_CONST size_t gimple_ops_offset_[] = {
60 #include "gsstruct.def"
61 };
62 #undef DEFGSSTRUCT
63
64 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof(struct STRUCT),
65 static const size_t gsstruct_code_size[] = {
66 #include "gsstruct.def"
67 };
68 #undef DEFGSSTRUCT
69
70 #define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
71 const char *const gimple_code_name[] = {
72 #include "gimple.def"
73 };
74 #undef DEFGSCODE
75
76 #define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
77 EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
78 #include "gimple.def"
79 };
80 #undef DEFGSCODE
81
82 #ifdef GATHER_STATISTICS
83 /* Gimple stats. */
84
85 int gimple_alloc_counts[(int) gimple_alloc_kind_all];
86 int gimple_alloc_sizes[(int) gimple_alloc_kind_all];
87
88 /* Keep in sync with gimple.h:enum gimple_alloc_kind. */
89 static const char * const gimple_alloc_kind_names[] = {
90 "assignments",
91 "phi nodes",
92 "conditionals",
93 "sequences",
94 "everything else"
95 };
96
97 #endif /* GATHER_STATISTICS */
98
99 /* A cache of gimple_seq objects. Sequences are created and destroyed
100 fairly often during gimplification. */
101 static GTY ((deletable)) struct gimple_seq_d *gimple_seq_cache;
102
103 /* Private API manipulation functions shared only with some
104 other files. */
105 extern void gimple_set_stored_syms (gimple, bitmap, bitmap_obstack *);
106 extern void gimple_set_loaded_syms (gimple, bitmap, bitmap_obstack *);
107
108 /* Gimple tuple constructors.
109 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
110 be passed a NULL to start with an empty sequence. */
111
112 /* Set the code for statement G to CODE. */
113
114 static inline void
115 gimple_set_code (gimple g, enum gimple_code code)
116 {
117 g->gsbase.code = code;
118 }
119
120 /* Return the number of bytes needed to hold a GIMPLE statement with
121 code CODE. */
122
123 static inline size_t
124 gimple_size (enum gimple_code code)
125 {
126 return gsstruct_code_size[gss_for_code (code)];
127 }
128
129 /* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
130 operands. */
131
132 gimple
133 gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
134 {
135 size_t size;
136 gimple stmt;
137
138 size = gimple_size (code);
139 if (num_ops > 0)
140 size += sizeof (tree) * (num_ops - 1);
141
142 #ifdef GATHER_STATISTICS
143 {
144 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
145 gimple_alloc_counts[(int) kind]++;
146 gimple_alloc_sizes[(int) kind] += size;
147 }
148 #endif
149
150 stmt = ggc_alloc_cleared_gimple_statement_d_stat (size PASS_MEM_STAT);
151 gimple_set_code (stmt, code);
152 gimple_set_num_ops (stmt, num_ops);
153
154 /* Do not call gimple_set_modified here as it has other side
155 effects and this tuple is still not completely built. */
156 stmt->gsbase.modified = 1;
157
158 return stmt;
159 }
160
161 /* Set SUBCODE to be the code of the expression computed by statement G. */
162
163 static inline void
164 gimple_set_subcode (gimple g, unsigned subcode)
165 {
166 /* We only have 16 bits for the RHS code. Assert that we are not
167 overflowing it. */
168 gcc_assert (subcode < (1 << 16));
169 g->gsbase.subcode = subcode;
170 }
171
172
173
174 /* Build a tuple with operands. CODE is the statement to build (which
175 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the sub-code
176 for the new tuple. NUM_OPS is the number of operands to allocate. */
177
178 #define gimple_build_with_ops(c, s, n) \
179 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
180
181 static gimple
182 gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
183 unsigned num_ops MEM_STAT_DECL)
184 {
185 gimple s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT);
186 gimple_set_subcode (s, subcode);
187
188 return s;
189 }
190
191
192 /* Build a GIMPLE_RETURN statement returning RETVAL. */
193
194 gimple
195 gimple_build_return (tree retval)
196 {
197 gimple s = gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK, 1);
198 if (retval)
199 gimple_return_set_retval (s, retval);
200 return s;
201 }
202
203 /* Reset alias information on call S. */
204
205 void
206 gimple_call_reset_alias_info (gimple s)
207 {
208 if (gimple_call_flags (s) & ECF_CONST)
209 memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
210 else
211 pt_solution_reset (gimple_call_use_set (s));
212 if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
213 memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
214 else
215 pt_solution_reset (gimple_call_clobber_set (s));
216 }
217
218 /* Helper for gimple_build_call, gimple_build_call_valist,
219 gimple_build_call_vec and gimple_build_call_from_tree. Build the basic
220 components of a GIMPLE_CALL statement to function FN with NARGS
221 arguments. */
222
223 static inline gimple
224 gimple_build_call_1 (tree fn, unsigned nargs)
225 {
226 gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3);
227 if (TREE_CODE (fn) == FUNCTION_DECL)
228 fn = build_fold_addr_expr (fn);
229 gimple_set_op (s, 1, fn);
230 gimple_call_set_fntype (s, TREE_TYPE (TREE_TYPE (fn)));
231 gimple_call_reset_alias_info (s);
232 return s;
233 }
234
235
236 /* Build a GIMPLE_CALL statement to function FN with the arguments
237 specified in vector ARGS. */
238
239 gimple
240 gimple_build_call_vec (tree fn, VEC(tree, heap) *args)
241 {
242 unsigned i;
243 unsigned nargs = VEC_length (tree, args);
244 gimple call = gimple_build_call_1 (fn, nargs);
245
246 for (i = 0; i < nargs; i++)
247 gimple_call_set_arg (call, i, VEC_index (tree, args, i));
248
249 return call;
250 }
251
252
253 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
254 arguments. The ... are the arguments. */
255
256 gimple
257 gimple_build_call (tree fn, unsigned nargs, ...)
258 {
259 va_list ap;
260 gimple call;
261 unsigned i;
262
263 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
264
265 call = gimple_build_call_1 (fn, nargs);
266
267 va_start (ap, nargs);
268 for (i = 0; i < nargs; i++)
269 gimple_call_set_arg (call, i, va_arg (ap, tree));
270 va_end (ap);
271
272 return call;
273 }
274
275
276 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
277 arguments. AP contains the arguments. */
278
279 gimple
280 gimple_build_call_valist (tree fn, unsigned nargs, va_list ap)
281 {
282 gimple call;
283 unsigned i;
284
285 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
286
287 call = gimple_build_call_1 (fn, nargs);
288
289 for (i = 0; i < nargs; i++)
290 gimple_call_set_arg (call, i, va_arg (ap, tree));
291
292 return call;
293 }
294
295
296 /* Helper for gimple_build_call_internal and gimple_build_call_internal_vec.
297 Build the basic components of a GIMPLE_CALL statement to internal
298 function FN with NARGS arguments. */
299
300 static inline gimple
301 gimple_build_call_internal_1 (enum internal_fn fn, unsigned nargs)
302 {
303 gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3);
304 s->gsbase.subcode |= GF_CALL_INTERNAL;
305 gimple_call_set_internal_fn (s, fn);
306 gimple_call_reset_alias_info (s);
307 return s;
308 }
309
310
311 /* Build a GIMPLE_CALL statement to internal function FN. NARGS is
312 the number of arguments. The ... are the arguments. */
313
314 gimple
315 gimple_build_call_internal (enum internal_fn fn, unsigned nargs, ...)
316 {
317 va_list ap;
318 gimple call;
319 unsigned i;
320
321 call = gimple_build_call_internal_1 (fn, nargs);
322 va_start (ap, nargs);
323 for (i = 0; i < nargs; i++)
324 gimple_call_set_arg (call, i, va_arg (ap, tree));
325 va_end (ap);
326
327 return call;
328 }
329
330
331 /* Build a GIMPLE_CALL statement to internal function FN with the arguments
332 specified in vector ARGS. */
333
334 gimple
335 gimple_build_call_internal_vec (enum internal_fn fn, VEC(tree, heap) *args)
336 {
337 unsigned i, nargs;
338 gimple call;
339
340 nargs = VEC_length (tree, args);
341 call = gimple_build_call_internal_1 (fn, nargs);
342 for (i = 0; i < nargs; i++)
343 gimple_call_set_arg (call, i, VEC_index (tree, args, i));
344
345 return call;
346 }
347
348
349 /* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
350 assumed to be in GIMPLE form already. Minimal checking is done of
351 this fact. */
352
353 gimple
354 gimple_build_call_from_tree (tree t)
355 {
356 unsigned i, nargs;
357 gimple call;
358 tree fndecl = get_callee_fndecl (t);
359
360 gcc_assert (TREE_CODE (t) == CALL_EXPR);
361
362 nargs = call_expr_nargs (t);
363 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
364
365 for (i = 0; i < nargs; i++)
366 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
367
368 gimple_set_block (call, TREE_BLOCK (t));
369
370 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
371 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
372 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
373 gimple_call_set_cannot_inline (call, CALL_CANNOT_INLINE_P (t));
374 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
375 if (fndecl
376 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
377 && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA
378 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN))
379 gimple_call_set_alloca_for_var (call, CALL_ALLOCA_FOR_VAR_P (t));
380 else
381 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
382 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
383 gimple_call_set_nothrow (call, TREE_NOTHROW (t));
384 gimple_set_no_warning (call, TREE_NO_WARNING (t));
385
386 return call;
387 }
388
389
390 /* Extract the operands and code for expression EXPR into *SUBCODE_P,
391 *OP1_P, *OP2_P and *OP3_P respectively. */
392
393 void
394 extract_ops_from_tree_1 (tree expr, enum tree_code *subcode_p, tree *op1_p,
395 tree *op2_p, tree *op3_p)
396 {
397 enum gimple_rhs_class grhs_class;
398
399 *subcode_p = TREE_CODE (expr);
400 grhs_class = get_gimple_rhs_class (*subcode_p);
401
402 if (grhs_class == GIMPLE_TERNARY_RHS)
403 {
404 *op1_p = TREE_OPERAND (expr, 0);
405 *op2_p = TREE_OPERAND (expr, 1);
406 *op3_p = TREE_OPERAND (expr, 2);
407 }
408 else if (grhs_class == GIMPLE_BINARY_RHS)
409 {
410 *op1_p = TREE_OPERAND (expr, 0);
411 *op2_p = TREE_OPERAND (expr, 1);
412 *op3_p = NULL_TREE;
413 }
414 else if (grhs_class == GIMPLE_UNARY_RHS)
415 {
416 *op1_p = TREE_OPERAND (expr, 0);
417 *op2_p = NULL_TREE;
418 *op3_p = NULL_TREE;
419 }
420 else if (grhs_class == GIMPLE_SINGLE_RHS)
421 {
422 *op1_p = expr;
423 *op2_p = NULL_TREE;
424 *op3_p = NULL_TREE;
425 }
426 else
427 gcc_unreachable ();
428 }
429
430
431 /* Build a GIMPLE_ASSIGN statement.
432
433 LHS of the assignment.
434 RHS of the assignment which can be unary or binary. */
435
436 gimple
437 gimple_build_assign_stat (tree lhs, tree rhs MEM_STAT_DECL)
438 {
439 enum tree_code subcode;
440 tree op1, op2, op3;
441
442 extract_ops_from_tree_1 (rhs, &subcode, &op1, &op2, &op3);
443 return gimple_build_assign_with_ops_stat (subcode, lhs, op1, op2, op3
444 PASS_MEM_STAT);
445 }
446
447
448 /* Build a GIMPLE_ASSIGN statement with sub-code SUBCODE and operands
449 OP1 and OP2. If OP2 is NULL then SUBCODE must be of class
450 GIMPLE_UNARY_RHS or GIMPLE_SINGLE_RHS. */
451
452 gimple
453 gimple_build_assign_with_ops_stat (enum tree_code subcode, tree lhs, tree op1,
454 tree op2, tree op3 MEM_STAT_DECL)
455 {
456 unsigned num_ops;
457 gimple p;
458
459 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
460 code). */
461 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
462
463 p = gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
464 PASS_MEM_STAT);
465 gimple_assign_set_lhs (p, lhs);
466 gimple_assign_set_rhs1 (p, op1);
467 if (op2)
468 {
469 gcc_assert (num_ops > 2);
470 gimple_assign_set_rhs2 (p, op2);
471 }
472
473 if (op3)
474 {
475 gcc_assert (num_ops > 3);
476 gimple_assign_set_rhs3 (p, op3);
477 }
478
479 return p;
480 }
481
482
483 /* Build a new GIMPLE_ASSIGN tuple and append it to the end of *SEQ_P.
484
485 DST/SRC are the destination and source respectively. You can pass
486 ungimplified trees in DST or SRC, in which case they will be
487 converted to a gimple operand if necessary.
488
489 This function returns the newly created GIMPLE_ASSIGN tuple. */
490
491 gimple
492 gimplify_assign (tree dst, tree src, gimple_seq *seq_p)
493 {
494 tree t = build2 (MODIFY_EXPR, TREE_TYPE (dst), dst, src);
495 gimplify_and_add (t, seq_p);
496 ggc_free (t);
497 return gimple_seq_last_stmt (*seq_p);
498 }
499
500
501 /* Build a GIMPLE_COND statement.
502
503 PRED is the condition used to compare LHS and the RHS.
504 T_LABEL is the label to jump to if the condition is true.
505 F_LABEL is the label to jump to otherwise. */
506
507 gimple
508 gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
509 tree t_label, tree f_label)
510 {
511 gimple p;
512
513 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
514 p = gimple_build_with_ops (GIMPLE_COND, pred_code, 4);
515 gimple_cond_set_lhs (p, lhs);
516 gimple_cond_set_rhs (p, rhs);
517 gimple_cond_set_true_label (p, t_label);
518 gimple_cond_set_false_label (p, f_label);
519 return p;
520 }
521
522
523 /* Extract operands for a GIMPLE_COND statement out of COND_EXPR tree COND. */
524
525 void
526 gimple_cond_get_ops_from_tree (tree cond, enum tree_code *code_p,
527 tree *lhs_p, tree *rhs_p)
528 {
529 gcc_assert (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison
530 || TREE_CODE (cond) == TRUTH_NOT_EXPR
531 || is_gimple_min_invariant (cond)
532 || SSA_VAR_P (cond));
533
534 extract_ops_from_tree (cond, code_p, lhs_p, rhs_p);
535
536 /* Canonicalize conditionals of the form 'if (!VAL)'. */
537 if (*code_p == TRUTH_NOT_EXPR)
538 {
539 *code_p = EQ_EXPR;
540 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
541 *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
542 }
543 /* Canonicalize conditionals of the form 'if (VAL)' */
544 else if (TREE_CODE_CLASS (*code_p) != tcc_comparison)
545 {
546 *code_p = NE_EXPR;
547 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
548 *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
549 }
550 }
551
552
553 /* Build a GIMPLE_COND statement from the conditional expression tree
554 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
555
556 gimple
557 gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
558 {
559 enum tree_code code;
560 tree lhs, rhs;
561
562 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
563 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
564 }
565
566 /* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
567 boolean expression tree COND. */
568
569 void
570 gimple_cond_set_condition_from_tree (gimple stmt, tree cond)
571 {
572 enum tree_code code;
573 tree lhs, rhs;
574
575 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
576 gimple_cond_set_condition (stmt, code, lhs, rhs);
577 }
578
579 /* Build a GIMPLE_LABEL statement for LABEL. */
580
581 gimple
582 gimple_build_label (tree label)
583 {
584 gimple p = gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1);
585 gimple_label_set_label (p, label);
586 return p;
587 }
588
589 /* Build a GIMPLE_GOTO statement to label DEST. */
590
591 gimple
592 gimple_build_goto (tree dest)
593 {
594 gimple p = gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1);
595 gimple_goto_set_dest (p, dest);
596 return p;
597 }
598
599
600 /* Build a GIMPLE_NOP statement. */
601
602 gimple
603 gimple_build_nop (void)
604 {
605 return gimple_alloc (GIMPLE_NOP, 0);
606 }
607
608
609 /* Build a GIMPLE_BIND statement.
610 VARS are the variables in BODY.
611 BLOCK is the containing block. */
612
613 gimple
614 gimple_build_bind (tree vars, gimple_seq body, tree block)
615 {
616 gimple p = gimple_alloc (GIMPLE_BIND, 0);
617 gimple_bind_set_vars (p, vars);
618 if (body)
619 gimple_bind_set_body (p, body);
620 if (block)
621 gimple_bind_set_block (p, block);
622 return p;
623 }
624
625 /* Helper function to set the simple fields of a asm stmt.
626
627 STRING is a pointer to a string that is the asm blocks assembly code.
628 NINPUT is the number of register inputs.
629 NOUTPUT is the number of register outputs.
630 NCLOBBERS is the number of clobbered registers.
631 */
632
633 static inline gimple
634 gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
635 unsigned nclobbers, unsigned nlabels)
636 {
637 gimple p;
638 int size = strlen (string);
639
640 /* ASMs with labels cannot have outputs. This should have been
641 enforced by the front end. */
642 gcc_assert (nlabels == 0 || noutputs == 0);
643
644 p = gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
645 ninputs + noutputs + nclobbers + nlabels);
646
647 p->gimple_asm.ni = ninputs;
648 p->gimple_asm.no = noutputs;
649 p->gimple_asm.nc = nclobbers;
650 p->gimple_asm.nl = nlabels;
651 p->gimple_asm.string = ggc_alloc_string (string, size);
652
653 #ifdef GATHER_STATISTICS
654 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
655 #endif
656
657 return p;
658 }
659
660 /* Build a GIMPLE_ASM statement.
661
662 STRING is the assembly code.
663 NINPUT is the number of register inputs.
664 NOUTPUT is the number of register outputs.
665 NCLOBBERS is the number of clobbered registers.
666 INPUTS is a vector of the input register parameters.
667 OUTPUTS is a vector of the output register parameters.
668 CLOBBERS is a vector of the clobbered register parameters.
669 LABELS is a vector of destination labels. */
670
671 gimple
672 gimple_build_asm_vec (const char *string, VEC(tree,gc)* inputs,
673 VEC(tree,gc)* outputs, VEC(tree,gc)* clobbers,
674 VEC(tree,gc)* labels)
675 {
676 gimple p;
677 unsigned i;
678
679 p = gimple_build_asm_1 (string,
680 VEC_length (tree, inputs),
681 VEC_length (tree, outputs),
682 VEC_length (tree, clobbers),
683 VEC_length (tree, labels));
684
685 for (i = 0; i < VEC_length (tree, inputs); i++)
686 gimple_asm_set_input_op (p, i, VEC_index (tree, inputs, i));
687
688 for (i = 0; i < VEC_length (tree, outputs); i++)
689 gimple_asm_set_output_op (p, i, VEC_index (tree, outputs, i));
690
691 for (i = 0; i < VEC_length (tree, clobbers); i++)
692 gimple_asm_set_clobber_op (p, i, VEC_index (tree, clobbers, i));
693
694 for (i = 0; i < VEC_length (tree, labels); i++)
695 gimple_asm_set_label_op (p, i, VEC_index (tree, labels, i));
696
697 return p;
698 }
699
700 /* Build a GIMPLE_CATCH statement.
701
702 TYPES are the catch types.
703 HANDLER is the exception handler. */
704
705 gimple
706 gimple_build_catch (tree types, gimple_seq handler)
707 {
708 gimple p = gimple_alloc (GIMPLE_CATCH, 0);
709 gimple_catch_set_types (p, types);
710 if (handler)
711 gimple_catch_set_handler (p, handler);
712
713 return p;
714 }
715
716 /* Build a GIMPLE_EH_FILTER statement.
717
718 TYPES are the filter's types.
719 FAILURE is the filter's failure action. */
720
721 gimple
722 gimple_build_eh_filter (tree types, gimple_seq failure)
723 {
724 gimple p = gimple_alloc (GIMPLE_EH_FILTER, 0);
725 gimple_eh_filter_set_types (p, types);
726 if (failure)
727 gimple_eh_filter_set_failure (p, failure);
728
729 return p;
730 }
731
732 /* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
733
734 gimple
735 gimple_build_eh_must_not_throw (tree decl)
736 {
737 gimple p = gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0);
738
739 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
740 gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
741 gimple_eh_must_not_throw_set_fndecl (p, decl);
742
743 return p;
744 }
745
746 /* Build a GIMPLE_TRY statement.
747
748 EVAL is the expression to evaluate.
749 CLEANUP is the cleanup expression.
750 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
751 whether this is a try/catch or a try/finally respectively. */
752
753 gimple
754 gimple_build_try (gimple_seq eval, gimple_seq cleanup,
755 enum gimple_try_flags kind)
756 {
757 gimple p;
758
759 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
760 p = gimple_alloc (GIMPLE_TRY, 0);
761 gimple_set_subcode (p, kind);
762 if (eval)
763 gimple_try_set_eval (p, eval);
764 if (cleanup)
765 gimple_try_set_cleanup (p, cleanup);
766
767 return p;
768 }
769
770 /* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
771
772 CLEANUP is the cleanup expression. */
773
774 gimple
775 gimple_build_wce (gimple_seq cleanup)
776 {
777 gimple p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
778 if (cleanup)
779 gimple_wce_set_cleanup (p, cleanup);
780
781 return p;
782 }
783
784
785 /* Build a GIMPLE_RESX statement. */
786
787 gimple
788 gimple_build_resx (int region)
789 {
790 gimple p = gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0);
791 p->gimple_eh_ctrl.region = region;
792 return p;
793 }
794
795
796 /* The helper for constructing a gimple switch statement.
797 INDEX is the switch's index.
798 NLABELS is the number of labels in the switch excluding the default.
799 DEFAULT_LABEL is the default label for the switch statement. */
800
801 gimple
802 gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
803 {
804 /* nlabels + 1 default label + 1 index. */
805 gimple p = gimple_build_with_ops (GIMPLE_SWITCH, ERROR_MARK,
806 1 + (default_label != NULL) + nlabels);
807 gimple_switch_set_index (p, index);
808 if (default_label)
809 gimple_switch_set_default_label (p, default_label);
810 return p;
811 }
812
813
814 /* Build a GIMPLE_SWITCH statement.
815
816 INDEX is the switch's index.
817 NLABELS is the number of labels in the switch excluding the DEFAULT_LABEL.
818 ... are the labels excluding the default. */
819
820 gimple
821 gimple_build_switch (unsigned nlabels, tree index, tree default_label, ...)
822 {
823 va_list al;
824 unsigned i, offset;
825 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
826
827 /* Store the rest of the labels. */
828 va_start (al, default_label);
829 offset = (default_label != NULL);
830 for (i = 0; i < nlabels; i++)
831 gimple_switch_set_label (p, i + offset, va_arg (al, tree));
832 va_end (al);
833
834 return p;
835 }
836
837
838 /* Build a GIMPLE_SWITCH statement.
839
840 INDEX is the switch's index.
841 DEFAULT_LABEL is the default label
842 ARGS is a vector of labels excluding the default. */
843
844 gimple
845 gimple_build_switch_vec (tree index, tree default_label, VEC(tree, heap) *args)
846 {
847 unsigned i, offset, nlabels = VEC_length (tree, args);
848 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
849
850 /* Copy the labels from the vector to the switch statement. */
851 offset = (default_label != NULL);
852 for (i = 0; i < nlabels; i++)
853 gimple_switch_set_label (p, i + offset, VEC_index (tree, args, i));
854
855 return p;
856 }
857
858 /* Build a GIMPLE_EH_DISPATCH statement. */
859
860 gimple
861 gimple_build_eh_dispatch (int region)
862 {
863 gimple p = gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0);
864 p->gimple_eh_ctrl.region = region;
865 return p;
866 }
867
868 /* Build a new GIMPLE_DEBUG_BIND statement.
869
870 VAR is bound to VALUE; block and location are taken from STMT. */
871
872 gimple
873 gimple_build_debug_bind_stat (tree var, tree value, gimple stmt MEM_STAT_DECL)
874 {
875 gimple p = gimple_build_with_ops_stat (GIMPLE_DEBUG,
876 (unsigned)GIMPLE_DEBUG_BIND, 2
877 PASS_MEM_STAT);
878
879 gimple_debug_bind_set_var (p, var);
880 gimple_debug_bind_set_value (p, value);
881 if (stmt)
882 {
883 gimple_set_block (p, gimple_block (stmt));
884 gimple_set_location (p, gimple_location (stmt));
885 }
886
887 return p;
888 }
889
890
891 /* Build a new GIMPLE_DEBUG_SOURCE_BIND statement.
892
893 VAR is bound to VALUE; block and location are taken from STMT. */
894
895 gimple
896 gimple_build_debug_source_bind_stat (tree var, tree value,
897 gimple stmt MEM_STAT_DECL)
898 {
899 gimple p = gimple_build_with_ops_stat (GIMPLE_DEBUG,
900 (unsigned)GIMPLE_DEBUG_SOURCE_BIND, 2
901 PASS_MEM_STAT);
902
903 gimple_debug_source_bind_set_var (p, var);
904 gimple_debug_source_bind_set_value (p, value);
905 if (stmt)
906 {
907 gimple_set_block (p, gimple_block (stmt));
908 gimple_set_location (p, gimple_location (stmt));
909 }
910
911 return p;
912 }
913
914
915 /* Build a GIMPLE_OMP_CRITICAL statement.
916
917 BODY is the sequence of statements for which only one thread can execute.
918 NAME is optional identifier for this critical block. */
919
920 gimple
921 gimple_build_omp_critical (gimple_seq body, tree name)
922 {
923 gimple p = gimple_alloc (GIMPLE_OMP_CRITICAL, 0);
924 gimple_omp_critical_set_name (p, name);
925 if (body)
926 gimple_omp_set_body (p, body);
927
928 return p;
929 }
930
931 /* Build a GIMPLE_OMP_FOR statement.
932
933 BODY is sequence of statements inside the for loop.
934 CLAUSES, are any of the OMP loop construct's clauses: private, firstprivate,
935 lastprivate, reductions, ordered, schedule, and nowait.
936 COLLAPSE is the collapse count.
937 PRE_BODY is the sequence of statements that are loop invariant. */
938
939 gimple
940 gimple_build_omp_for (gimple_seq body, tree clauses, size_t collapse,
941 gimple_seq pre_body)
942 {
943 gimple p = gimple_alloc (GIMPLE_OMP_FOR, 0);
944 if (body)
945 gimple_omp_set_body (p, body);
946 gimple_omp_for_set_clauses (p, clauses);
947 p->gimple_omp_for.collapse = collapse;
948 p->gimple_omp_for.iter
949 = ggc_alloc_cleared_vec_gimple_omp_for_iter (collapse);
950 if (pre_body)
951 gimple_omp_for_set_pre_body (p, pre_body);
952
953 return p;
954 }
955
956
957 /* Build a GIMPLE_OMP_PARALLEL statement.
958
959 BODY is sequence of statements which are executed in parallel.
960 CLAUSES, are the OMP parallel construct's clauses.
961 CHILD_FN is the function created for the parallel threads to execute.
962 DATA_ARG are the shared data argument(s). */
963
964 gimple
965 gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
966 tree data_arg)
967 {
968 gimple p = gimple_alloc (GIMPLE_OMP_PARALLEL, 0);
969 if (body)
970 gimple_omp_set_body (p, body);
971 gimple_omp_parallel_set_clauses (p, clauses);
972 gimple_omp_parallel_set_child_fn (p, child_fn);
973 gimple_omp_parallel_set_data_arg (p, data_arg);
974
975 return p;
976 }
977
978
979 /* Build a GIMPLE_OMP_TASK statement.
980
981 BODY is sequence of statements which are executed by the explicit task.
982 CLAUSES, are the OMP parallel construct's clauses.
983 CHILD_FN is the function created for the parallel threads to execute.
984 DATA_ARG are the shared data argument(s).
985 COPY_FN is the optional function for firstprivate initialization.
986 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
987
988 gimple
989 gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
990 tree data_arg, tree copy_fn, tree arg_size,
991 tree arg_align)
992 {
993 gimple p = gimple_alloc (GIMPLE_OMP_TASK, 0);
994 if (body)
995 gimple_omp_set_body (p, body);
996 gimple_omp_task_set_clauses (p, clauses);
997 gimple_omp_task_set_child_fn (p, child_fn);
998 gimple_omp_task_set_data_arg (p, data_arg);
999 gimple_omp_task_set_copy_fn (p, copy_fn);
1000 gimple_omp_task_set_arg_size (p, arg_size);
1001 gimple_omp_task_set_arg_align (p, arg_align);
1002
1003 return p;
1004 }
1005
1006
1007 /* Build a GIMPLE_OMP_SECTION statement for a sections statement.
1008
1009 BODY is the sequence of statements in the section. */
1010
1011 gimple
1012 gimple_build_omp_section (gimple_seq body)
1013 {
1014 gimple p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
1015 if (body)
1016 gimple_omp_set_body (p, body);
1017
1018 return p;
1019 }
1020
1021
1022 /* Build a GIMPLE_OMP_MASTER statement.
1023
1024 BODY is the sequence of statements to be executed by just the master. */
1025
1026 gimple
1027 gimple_build_omp_master (gimple_seq body)
1028 {
1029 gimple p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
1030 if (body)
1031 gimple_omp_set_body (p, body);
1032
1033 return p;
1034 }
1035
1036
1037 /* Build a GIMPLE_OMP_CONTINUE statement.
1038
1039 CONTROL_DEF is the definition of the control variable.
1040 CONTROL_USE is the use of the control variable. */
1041
1042 gimple
1043 gimple_build_omp_continue (tree control_def, tree control_use)
1044 {
1045 gimple p = gimple_alloc (GIMPLE_OMP_CONTINUE, 0);
1046 gimple_omp_continue_set_control_def (p, control_def);
1047 gimple_omp_continue_set_control_use (p, control_use);
1048 return p;
1049 }
1050
1051 /* Build a GIMPLE_OMP_ORDERED statement.
1052
1053 BODY is the sequence of statements inside a loop that will executed in
1054 sequence. */
1055
1056 gimple
1057 gimple_build_omp_ordered (gimple_seq body)
1058 {
1059 gimple p = gimple_alloc (GIMPLE_OMP_ORDERED, 0);
1060 if (body)
1061 gimple_omp_set_body (p, body);
1062
1063 return p;
1064 }
1065
1066
1067 /* Build a GIMPLE_OMP_RETURN statement.
1068 WAIT_P is true if this is a non-waiting return. */
1069
1070 gimple
1071 gimple_build_omp_return (bool wait_p)
1072 {
1073 gimple p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
1074 if (wait_p)
1075 gimple_omp_return_set_nowait (p);
1076
1077 return p;
1078 }
1079
1080
1081 /* Build a GIMPLE_OMP_SECTIONS statement.
1082
1083 BODY is a sequence of section statements.
1084 CLAUSES are any of the OMP sections contsruct's clauses: private,
1085 firstprivate, lastprivate, reduction, and nowait. */
1086
1087 gimple
1088 gimple_build_omp_sections (gimple_seq body, tree clauses)
1089 {
1090 gimple p = gimple_alloc (GIMPLE_OMP_SECTIONS, 0);
1091 if (body)
1092 gimple_omp_set_body (p, body);
1093 gimple_omp_sections_set_clauses (p, clauses);
1094
1095 return p;
1096 }
1097
1098
1099 /* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
1100
1101 gimple
1102 gimple_build_omp_sections_switch (void)
1103 {
1104 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
1105 }
1106
1107
1108 /* Build a GIMPLE_OMP_SINGLE statement.
1109
1110 BODY is the sequence of statements that will be executed once.
1111 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1112 copyprivate, nowait. */
1113
1114 gimple
1115 gimple_build_omp_single (gimple_seq body, tree clauses)
1116 {
1117 gimple p = gimple_alloc (GIMPLE_OMP_SINGLE, 0);
1118 if (body)
1119 gimple_omp_set_body (p, body);
1120 gimple_omp_single_set_clauses (p, clauses);
1121
1122 return p;
1123 }
1124
1125
1126 /* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
1127
1128 gimple
1129 gimple_build_omp_atomic_load (tree lhs, tree rhs)
1130 {
1131 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0);
1132 gimple_omp_atomic_load_set_lhs (p, lhs);
1133 gimple_omp_atomic_load_set_rhs (p, rhs);
1134 return p;
1135 }
1136
1137 /* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1138
1139 VAL is the value we are storing. */
1140
1141 gimple
1142 gimple_build_omp_atomic_store (tree val)
1143 {
1144 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0);
1145 gimple_omp_atomic_store_set_val (p, val);
1146 return p;
1147 }
1148
1149 /* Build a GIMPLE_PREDICT statement. PREDICT is one of the predictors from
1150 predict.def, OUTCOME is NOT_TAKEN or TAKEN. */
1151
1152 gimple
1153 gimple_build_predict (enum br_predictor predictor, enum prediction outcome)
1154 {
1155 gimple p = gimple_alloc (GIMPLE_PREDICT, 0);
1156 /* Ensure all the predictors fit into the lower bits of the subcode. */
1157 gcc_assert ((int) END_PREDICTORS <= GF_PREDICT_TAKEN);
1158 gimple_predict_set_predictor (p, predictor);
1159 gimple_predict_set_outcome (p, outcome);
1160 return p;
1161 }
1162
1163 #if defined ENABLE_GIMPLE_CHECKING
1164 /* Complain of a gimple type mismatch and die. */
1165
1166 void
1167 gimple_check_failed (const_gimple gs, const char *file, int line,
1168 const char *function, enum gimple_code code,
1169 enum tree_code subcode)
1170 {
1171 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1172 gimple_code_name[code],
1173 tree_code_name[subcode],
1174 gimple_code_name[gimple_code (gs)],
1175 gs->gsbase.subcode > 0
1176 ? tree_code_name[gs->gsbase.subcode]
1177 : "",
1178 function, trim_filename (file), line);
1179 }
1180 #endif /* ENABLE_GIMPLE_CHECKING */
1181
1182
1183 /* Allocate a new GIMPLE sequence in GC memory and return it. If
1184 there are free sequences in GIMPLE_SEQ_CACHE return one of those
1185 instead. */
1186
1187 gimple_seq
1188 gimple_seq_alloc (void)
1189 {
1190 gimple_seq seq = gimple_seq_cache;
1191 if (seq)
1192 {
1193 gimple_seq_cache = gimple_seq_cache->next_free;
1194 gcc_assert (gimple_seq_cache != seq);
1195 memset (seq, 0, sizeof (*seq));
1196 }
1197 else
1198 {
1199 seq = ggc_alloc_cleared_gimple_seq_d ();
1200 #ifdef GATHER_STATISTICS
1201 gimple_alloc_counts[(int) gimple_alloc_kind_seq]++;
1202 gimple_alloc_sizes[(int) gimple_alloc_kind_seq] += sizeof (*seq);
1203 #endif
1204 }
1205
1206 return seq;
1207 }
1208
1209 /* Return SEQ to the free pool of GIMPLE sequences. */
1210
1211 void
1212 gimple_seq_free (gimple_seq seq)
1213 {
1214 if (seq == NULL)
1215 return;
1216
1217 gcc_assert (gimple_seq_first (seq) == NULL);
1218 gcc_assert (gimple_seq_last (seq) == NULL);
1219
1220 /* If this triggers, it's a sign that the same list is being freed
1221 twice. */
1222 gcc_assert (seq != gimple_seq_cache || gimple_seq_cache == NULL);
1223
1224 /* Add SEQ to the pool of free sequences. */
1225 seq->next_free = gimple_seq_cache;
1226 gimple_seq_cache = seq;
1227 }
1228
1229
1230 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1231 *SEQ_P is NULL, a new sequence is allocated. */
1232
1233 void
1234 gimple_seq_add_stmt (gimple_seq *seq_p, gimple gs)
1235 {
1236 gimple_stmt_iterator si;
1237
1238 if (gs == NULL)
1239 return;
1240
1241 if (*seq_p == NULL)
1242 *seq_p = gimple_seq_alloc ();
1243
1244 si = gsi_last (*seq_p);
1245 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1246 }
1247
1248
1249 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1250 NULL, a new sequence is allocated. */
1251
1252 void
1253 gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1254 {
1255 gimple_stmt_iterator si;
1256
1257 if (src == NULL)
1258 return;
1259
1260 if (*dst_p == NULL)
1261 *dst_p = gimple_seq_alloc ();
1262
1263 si = gsi_last (*dst_p);
1264 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1265 }
1266
1267
1268 /* Helper function of empty_body_p. Return true if STMT is an empty
1269 statement. */
1270
1271 static bool
1272 empty_stmt_p (gimple stmt)
1273 {
1274 if (gimple_code (stmt) == GIMPLE_NOP)
1275 return true;
1276 if (gimple_code (stmt) == GIMPLE_BIND)
1277 return empty_body_p (gimple_bind_body (stmt));
1278 return false;
1279 }
1280
1281
1282 /* Return true if BODY contains nothing but empty statements. */
1283
1284 bool
1285 empty_body_p (gimple_seq body)
1286 {
1287 gimple_stmt_iterator i;
1288
1289 if (gimple_seq_empty_p (body))
1290 return true;
1291 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
1292 if (!empty_stmt_p (gsi_stmt (i))
1293 && !is_gimple_debug (gsi_stmt (i)))
1294 return false;
1295
1296 return true;
1297 }
1298
1299
1300 /* Perform a deep copy of sequence SRC and return the result. */
1301
1302 gimple_seq
1303 gimple_seq_copy (gimple_seq src)
1304 {
1305 gimple_stmt_iterator gsi;
1306 gimple_seq new_seq = gimple_seq_alloc ();
1307 gimple stmt;
1308
1309 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1310 {
1311 stmt = gimple_copy (gsi_stmt (gsi));
1312 gimple_seq_add_stmt (&new_seq, stmt);
1313 }
1314
1315 return new_seq;
1316 }
1317
1318
1319 /* Walk all the statements in the sequence SEQ calling walk_gimple_stmt
1320 on each one. WI is as in walk_gimple_stmt.
1321
1322 If walk_gimple_stmt returns non-NULL, the walk is stopped, the
1323 value is stored in WI->CALLBACK_RESULT and the statement that
1324 produced the value is returned.
1325
1326 Otherwise, all the statements are walked and NULL returned. */
1327
1328 gimple
1329 walk_gimple_seq (gimple_seq seq, walk_stmt_fn callback_stmt,
1330 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1331 {
1332 gimple_stmt_iterator gsi;
1333
1334 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
1335 {
1336 tree ret = walk_gimple_stmt (&gsi, callback_stmt, callback_op, wi);
1337 if (ret)
1338 {
1339 /* If CALLBACK_STMT or CALLBACK_OP return a value, WI must exist
1340 to hold it. */
1341 gcc_assert (wi);
1342 wi->callback_result = ret;
1343 return gsi_stmt (gsi);
1344 }
1345 }
1346
1347 if (wi)
1348 wi->callback_result = NULL_TREE;
1349
1350 return NULL;
1351 }
1352
1353
1354 /* Helper function for walk_gimple_stmt. Walk operands of a GIMPLE_ASM. */
1355
1356 static tree
1357 walk_gimple_asm (gimple stmt, walk_tree_fn callback_op,
1358 struct walk_stmt_info *wi)
1359 {
1360 tree ret, op;
1361 unsigned noutputs;
1362 const char **oconstraints;
1363 unsigned i, n;
1364 const char *constraint;
1365 bool allows_mem, allows_reg, is_inout;
1366
1367 noutputs = gimple_asm_noutputs (stmt);
1368 oconstraints = (const char **) alloca ((noutputs) * sizeof (const char *));
1369
1370 if (wi)
1371 wi->is_lhs = true;
1372
1373 for (i = 0; i < noutputs; i++)
1374 {
1375 op = gimple_asm_output_op (stmt, i);
1376 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1377 oconstraints[i] = constraint;
1378 parse_output_constraint (&constraint, i, 0, 0, &allows_mem, &allows_reg,
1379 &is_inout);
1380 if (wi)
1381 wi->val_only = (allows_reg || !allows_mem);
1382 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1383 if (ret)
1384 return ret;
1385 }
1386
1387 n = gimple_asm_ninputs (stmt);
1388 for (i = 0; i < n; i++)
1389 {
1390 op = gimple_asm_input_op (stmt, i);
1391 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1392 parse_input_constraint (&constraint, 0, 0, noutputs, 0,
1393 oconstraints, &allows_mem, &allows_reg);
1394 if (wi)
1395 {
1396 wi->val_only = (allows_reg || !allows_mem);
1397 /* Although input "m" is not really a LHS, we need a lvalue. */
1398 wi->is_lhs = !wi->val_only;
1399 }
1400 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1401 if (ret)
1402 return ret;
1403 }
1404
1405 if (wi)
1406 {
1407 wi->is_lhs = false;
1408 wi->val_only = true;
1409 }
1410
1411 n = gimple_asm_nlabels (stmt);
1412 for (i = 0; i < n; i++)
1413 {
1414 op = gimple_asm_label_op (stmt, i);
1415 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1416 if (ret)
1417 return ret;
1418 }
1419
1420 return NULL_TREE;
1421 }
1422
1423
1424 /* Helper function of WALK_GIMPLE_STMT. Walk every tree operand in
1425 STMT. CALLBACK_OP and WI are as in WALK_GIMPLE_STMT.
1426
1427 CALLBACK_OP is called on each operand of STMT via walk_tree.
1428 Additional parameters to walk_tree must be stored in WI. For each operand
1429 OP, walk_tree is called as:
1430
1431 walk_tree (&OP, CALLBACK_OP, WI, WI->PSET)
1432
1433 If CALLBACK_OP returns non-NULL for an operand, the remaining
1434 operands are not scanned.
1435
1436 The return value is that returned by the last call to walk_tree, or
1437 NULL_TREE if no CALLBACK_OP is specified. */
1438
1439 tree
1440 walk_gimple_op (gimple stmt, walk_tree_fn callback_op,
1441 struct walk_stmt_info *wi)
1442 {
1443 struct pointer_set_t *pset = (wi) ? wi->pset : NULL;
1444 unsigned i;
1445 tree ret = NULL_TREE;
1446
1447 switch (gimple_code (stmt))
1448 {
1449 case GIMPLE_ASSIGN:
1450 /* Walk the RHS operands. If the LHS is of a non-renamable type or
1451 is a register variable, we may use a COMPONENT_REF on the RHS. */
1452 if (wi)
1453 {
1454 tree lhs = gimple_assign_lhs (stmt);
1455 wi->val_only
1456 = (is_gimple_reg_type (TREE_TYPE (lhs)) && !is_gimple_reg (lhs))
1457 || !gimple_assign_single_p (stmt);
1458 }
1459
1460 for (i = 1; i < gimple_num_ops (stmt); i++)
1461 {
1462 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi,
1463 pset);
1464 if (ret)
1465 return ret;
1466 }
1467
1468 /* Walk the LHS. If the RHS is appropriate for a memory, we
1469 may use a COMPONENT_REF on the LHS. */
1470 if (wi)
1471 {
1472 /* If the RHS has more than 1 operand, it is not appropriate
1473 for the memory. */
1474 wi->val_only = !is_gimple_mem_rhs (gimple_assign_rhs1 (stmt))
1475 || !gimple_assign_single_p (stmt);
1476 wi->is_lhs = true;
1477 }
1478
1479 ret = walk_tree (gimple_op_ptr (stmt, 0), callback_op, wi, pset);
1480 if (ret)
1481 return ret;
1482
1483 if (wi)
1484 {
1485 wi->val_only = true;
1486 wi->is_lhs = false;
1487 }
1488 break;
1489
1490 case GIMPLE_CALL:
1491 if (wi)
1492 {
1493 wi->is_lhs = false;
1494 wi->val_only = true;
1495 }
1496
1497 ret = walk_tree (gimple_call_chain_ptr (stmt), callback_op, wi, pset);
1498 if (ret)
1499 return ret;
1500
1501 ret = walk_tree (gimple_call_fn_ptr (stmt), callback_op, wi, pset);
1502 if (ret)
1503 return ret;
1504
1505 for (i = 0; i < gimple_call_num_args (stmt); i++)
1506 {
1507 if (wi)
1508 wi->val_only
1509 = is_gimple_reg_type (TREE_TYPE (gimple_call_arg (stmt, i)));
1510 ret = walk_tree (gimple_call_arg_ptr (stmt, i), callback_op, wi,
1511 pset);
1512 if (ret)
1513 return ret;
1514 }
1515
1516 if (gimple_call_lhs (stmt))
1517 {
1518 if (wi)
1519 {
1520 wi->is_lhs = true;
1521 wi->val_only
1522 = is_gimple_reg_type (TREE_TYPE (gimple_call_lhs (stmt)));
1523 }
1524
1525 ret = walk_tree (gimple_call_lhs_ptr (stmt), callback_op, wi, pset);
1526 if (ret)
1527 return ret;
1528 }
1529
1530 if (wi)
1531 {
1532 wi->is_lhs = false;
1533 wi->val_only = true;
1534 }
1535 break;
1536
1537 case GIMPLE_CATCH:
1538 ret = walk_tree (gimple_catch_types_ptr (stmt), callback_op, wi,
1539 pset);
1540 if (ret)
1541 return ret;
1542 break;
1543
1544 case GIMPLE_EH_FILTER:
1545 ret = walk_tree (gimple_eh_filter_types_ptr (stmt), callback_op, wi,
1546 pset);
1547 if (ret)
1548 return ret;
1549 break;
1550
1551 case GIMPLE_ASM:
1552 ret = walk_gimple_asm (stmt, callback_op, wi);
1553 if (ret)
1554 return ret;
1555 break;
1556
1557 case GIMPLE_OMP_CONTINUE:
1558 ret = walk_tree (gimple_omp_continue_control_def_ptr (stmt),
1559 callback_op, wi, pset);
1560 if (ret)
1561 return ret;
1562
1563 ret = walk_tree (gimple_omp_continue_control_use_ptr (stmt),
1564 callback_op, wi, pset);
1565 if (ret)
1566 return ret;
1567 break;
1568
1569 case GIMPLE_OMP_CRITICAL:
1570 ret = walk_tree (gimple_omp_critical_name_ptr (stmt), callback_op, wi,
1571 pset);
1572 if (ret)
1573 return ret;
1574 break;
1575
1576 case GIMPLE_OMP_FOR:
1577 ret = walk_tree (gimple_omp_for_clauses_ptr (stmt), callback_op, wi,
1578 pset);
1579 if (ret)
1580 return ret;
1581 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1582 {
1583 ret = walk_tree (gimple_omp_for_index_ptr (stmt, i), callback_op,
1584 wi, pset);
1585 if (ret)
1586 return ret;
1587 ret = walk_tree (gimple_omp_for_initial_ptr (stmt, i), callback_op,
1588 wi, pset);
1589 if (ret)
1590 return ret;
1591 ret = walk_tree (gimple_omp_for_final_ptr (stmt, i), callback_op,
1592 wi, pset);
1593 if (ret)
1594 return ret;
1595 ret = walk_tree (gimple_omp_for_incr_ptr (stmt, i), callback_op,
1596 wi, pset);
1597 }
1598 if (ret)
1599 return ret;
1600 break;
1601
1602 case GIMPLE_OMP_PARALLEL:
1603 ret = walk_tree (gimple_omp_parallel_clauses_ptr (stmt), callback_op,
1604 wi, pset);
1605 if (ret)
1606 return ret;
1607 ret = walk_tree (gimple_omp_parallel_child_fn_ptr (stmt), callback_op,
1608 wi, pset);
1609 if (ret)
1610 return ret;
1611 ret = walk_tree (gimple_omp_parallel_data_arg_ptr (stmt), callback_op,
1612 wi, pset);
1613 if (ret)
1614 return ret;
1615 break;
1616
1617 case GIMPLE_OMP_TASK:
1618 ret = walk_tree (gimple_omp_task_clauses_ptr (stmt), callback_op,
1619 wi, pset);
1620 if (ret)
1621 return ret;
1622 ret = walk_tree (gimple_omp_task_child_fn_ptr (stmt), callback_op,
1623 wi, pset);
1624 if (ret)
1625 return ret;
1626 ret = walk_tree (gimple_omp_task_data_arg_ptr (stmt), callback_op,
1627 wi, pset);
1628 if (ret)
1629 return ret;
1630 ret = walk_tree (gimple_omp_task_copy_fn_ptr (stmt), callback_op,
1631 wi, pset);
1632 if (ret)
1633 return ret;
1634 ret = walk_tree (gimple_omp_task_arg_size_ptr (stmt), callback_op,
1635 wi, pset);
1636 if (ret)
1637 return ret;
1638 ret = walk_tree (gimple_omp_task_arg_align_ptr (stmt), callback_op,
1639 wi, pset);
1640 if (ret)
1641 return ret;
1642 break;
1643
1644 case GIMPLE_OMP_SECTIONS:
1645 ret = walk_tree (gimple_omp_sections_clauses_ptr (stmt), callback_op,
1646 wi, pset);
1647 if (ret)
1648 return ret;
1649
1650 ret = walk_tree (gimple_omp_sections_control_ptr (stmt), callback_op,
1651 wi, pset);
1652 if (ret)
1653 return ret;
1654
1655 break;
1656
1657 case GIMPLE_OMP_SINGLE:
1658 ret = walk_tree (gimple_omp_single_clauses_ptr (stmt), callback_op, wi,
1659 pset);
1660 if (ret)
1661 return ret;
1662 break;
1663
1664 case GIMPLE_OMP_ATOMIC_LOAD:
1665 ret = walk_tree (gimple_omp_atomic_load_lhs_ptr (stmt), callback_op, wi,
1666 pset);
1667 if (ret)
1668 return ret;
1669
1670 ret = walk_tree (gimple_omp_atomic_load_rhs_ptr (stmt), callback_op, wi,
1671 pset);
1672 if (ret)
1673 return ret;
1674 break;
1675
1676 case GIMPLE_OMP_ATOMIC_STORE:
1677 ret = walk_tree (gimple_omp_atomic_store_val_ptr (stmt), callback_op,
1678 wi, pset);
1679 if (ret)
1680 return ret;
1681 break;
1682
1683 /* Tuples that do not have operands. */
1684 case GIMPLE_NOP:
1685 case GIMPLE_RESX:
1686 case GIMPLE_OMP_RETURN:
1687 case GIMPLE_PREDICT:
1688 break;
1689
1690 default:
1691 {
1692 enum gimple_statement_structure_enum gss;
1693 gss = gimple_statement_structure (stmt);
1694 if (gss == GSS_WITH_OPS || gss == GSS_WITH_MEM_OPS)
1695 for (i = 0; i < gimple_num_ops (stmt); i++)
1696 {
1697 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi, pset);
1698 if (ret)
1699 return ret;
1700 }
1701 }
1702 break;
1703 }
1704
1705 return NULL_TREE;
1706 }
1707
1708
1709 /* Walk the current statement in GSI (optionally using traversal state
1710 stored in WI). If WI is NULL, no state is kept during traversal.
1711 The callback CALLBACK_STMT is called. If CALLBACK_STMT indicates
1712 that it has handled all the operands of the statement, its return
1713 value is returned. Otherwise, the return value from CALLBACK_STMT
1714 is discarded and its operands are scanned.
1715
1716 If CALLBACK_STMT is NULL or it didn't handle the operands,
1717 CALLBACK_OP is called on each operand of the statement via
1718 walk_gimple_op. If walk_gimple_op returns non-NULL for any
1719 operand, the remaining operands are not scanned. In this case, the
1720 return value from CALLBACK_OP is returned.
1721
1722 In any other case, NULL_TREE is returned. */
1723
1724 tree
1725 walk_gimple_stmt (gimple_stmt_iterator *gsi, walk_stmt_fn callback_stmt,
1726 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1727 {
1728 gimple ret;
1729 tree tree_ret;
1730 gimple stmt = gsi_stmt (*gsi);
1731
1732 if (wi)
1733 wi->gsi = *gsi;
1734
1735 if (wi && wi->want_locations && gimple_has_location (stmt))
1736 input_location = gimple_location (stmt);
1737
1738 ret = NULL;
1739
1740 /* Invoke the statement callback. Return if the callback handled
1741 all of STMT operands by itself. */
1742 if (callback_stmt)
1743 {
1744 bool handled_ops = false;
1745 tree_ret = callback_stmt (gsi, &handled_ops, wi);
1746 if (handled_ops)
1747 return tree_ret;
1748
1749 /* If CALLBACK_STMT did not handle operands, it should not have
1750 a value to return. */
1751 gcc_assert (tree_ret == NULL);
1752
1753 /* Re-read stmt in case the callback changed it. */
1754 stmt = gsi_stmt (*gsi);
1755 }
1756
1757 /* If CALLBACK_OP is defined, invoke it on every operand of STMT. */
1758 if (callback_op)
1759 {
1760 tree_ret = walk_gimple_op (stmt, callback_op, wi);
1761 if (tree_ret)
1762 return tree_ret;
1763 }
1764
1765 /* If STMT can have statements inside (e.g. GIMPLE_BIND), walk them. */
1766 switch (gimple_code (stmt))
1767 {
1768 case GIMPLE_BIND:
1769 ret = walk_gimple_seq (gimple_bind_body (stmt), callback_stmt,
1770 callback_op, wi);
1771 if (ret)
1772 return wi->callback_result;
1773 break;
1774
1775 case GIMPLE_CATCH:
1776 ret = walk_gimple_seq (gimple_catch_handler (stmt), callback_stmt,
1777 callback_op, wi);
1778 if (ret)
1779 return wi->callback_result;
1780 break;
1781
1782 case GIMPLE_EH_FILTER:
1783 ret = walk_gimple_seq (gimple_eh_filter_failure (stmt), callback_stmt,
1784 callback_op, wi);
1785 if (ret)
1786 return wi->callback_result;
1787 break;
1788
1789 case GIMPLE_TRY:
1790 ret = walk_gimple_seq (gimple_try_eval (stmt), callback_stmt, callback_op,
1791 wi);
1792 if (ret)
1793 return wi->callback_result;
1794
1795 ret = walk_gimple_seq (gimple_try_cleanup (stmt), callback_stmt,
1796 callback_op, wi);
1797 if (ret)
1798 return wi->callback_result;
1799 break;
1800
1801 case GIMPLE_OMP_FOR:
1802 ret = walk_gimple_seq (gimple_omp_for_pre_body (stmt), callback_stmt,
1803 callback_op, wi);
1804 if (ret)
1805 return wi->callback_result;
1806
1807 /* FALL THROUGH. */
1808 case GIMPLE_OMP_CRITICAL:
1809 case GIMPLE_OMP_MASTER:
1810 case GIMPLE_OMP_ORDERED:
1811 case GIMPLE_OMP_SECTION:
1812 case GIMPLE_OMP_PARALLEL:
1813 case GIMPLE_OMP_TASK:
1814 case GIMPLE_OMP_SECTIONS:
1815 case GIMPLE_OMP_SINGLE:
1816 ret = walk_gimple_seq (gimple_omp_body (stmt), callback_stmt, callback_op,
1817 wi);
1818 if (ret)
1819 return wi->callback_result;
1820 break;
1821
1822 case GIMPLE_WITH_CLEANUP_EXPR:
1823 ret = walk_gimple_seq (gimple_wce_cleanup (stmt), callback_stmt,
1824 callback_op, wi);
1825 if (ret)
1826 return wi->callback_result;
1827 break;
1828
1829 default:
1830 gcc_assert (!gimple_has_substatements (stmt));
1831 break;
1832 }
1833
1834 return NULL;
1835 }
1836
1837
1838 /* Set sequence SEQ to be the GIMPLE body for function FN. */
1839
1840 void
1841 gimple_set_body (tree fndecl, gimple_seq seq)
1842 {
1843 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1844 if (fn == NULL)
1845 {
1846 /* If FNDECL still does not have a function structure associated
1847 with it, then it does not make sense for it to receive a
1848 GIMPLE body. */
1849 gcc_assert (seq == NULL);
1850 }
1851 else
1852 fn->gimple_body = seq;
1853 }
1854
1855
1856 /* Return the body of GIMPLE statements for function FN. After the
1857 CFG pass, the function body doesn't exist anymore because it has
1858 been split up into basic blocks. In this case, it returns
1859 NULL. */
1860
1861 gimple_seq
1862 gimple_body (tree fndecl)
1863 {
1864 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1865 return fn ? fn->gimple_body : NULL;
1866 }
1867
1868 /* Return true when FNDECL has Gimple body either in unlowered
1869 or CFG form. */
1870 bool
1871 gimple_has_body_p (tree fndecl)
1872 {
1873 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1874 return (gimple_body (fndecl) || (fn && fn->cfg));
1875 }
1876
1877 /* Return true if calls C1 and C2 are known to go to the same function. */
1878
1879 bool
1880 gimple_call_same_target_p (const_gimple c1, const_gimple c2)
1881 {
1882 if (gimple_call_internal_p (c1))
1883 return (gimple_call_internal_p (c2)
1884 && gimple_call_internal_fn (c1) == gimple_call_internal_fn (c2));
1885 else
1886 return (gimple_call_fn (c1) == gimple_call_fn (c2)
1887 || (gimple_call_fndecl (c1)
1888 && gimple_call_fndecl (c1) == gimple_call_fndecl (c2)));
1889 }
1890
1891 /* Detect flags from a GIMPLE_CALL. This is just like
1892 call_expr_flags, but for gimple tuples. */
1893
1894 int
1895 gimple_call_flags (const_gimple stmt)
1896 {
1897 int flags;
1898 tree decl = gimple_call_fndecl (stmt);
1899
1900 if (decl)
1901 flags = flags_from_decl_or_type (decl);
1902 else if (gimple_call_internal_p (stmt))
1903 flags = internal_fn_flags (gimple_call_internal_fn (stmt));
1904 else
1905 flags = flags_from_decl_or_type (gimple_call_fntype (stmt));
1906
1907 if (stmt->gsbase.subcode & GF_CALL_NOTHROW)
1908 flags |= ECF_NOTHROW;
1909
1910 return flags;
1911 }
1912
1913 /* Return the "fn spec" string for call STMT. */
1914
1915 static tree
1916 gimple_call_fnspec (const_gimple stmt)
1917 {
1918 tree type, attr;
1919
1920 type = gimple_call_fntype (stmt);
1921 if (!type)
1922 return NULL_TREE;
1923
1924 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1925 if (!attr)
1926 return NULL_TREE;
1927
1928 return TREE_VALUE (TREE_VALUE (attr));
1929 }
1930
1931 /* Detects argument flags for argument number ARG on call STMT. */
1932
1933 int
1934 gimple_call_arg_flags (const_gimple stmt, unsigned arg)
1935 {
1936 tree attr = gimple_call_fnspec (stmt);
1937
1938 if (!attr || 1 + arg >= (unsigned) TREE_STRING_LENGTH (attr))
1939 return 0;
1940
1941 switch (TREE_STRING_POINTER (attr)[1 + arg])
1942 {
1943 case 'x':
1944 case 'X':
1945 return EAF_UNUSED;
1946
1947 case 'R':
1948 return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE;
1949
1950 case 'r':
1951 return EAF_NOCLOBBER | EAF_NOESCAPE;
1952
1953 case 'W':
1954 return EAF_DIRECT | EAF_NOESCAPE;
1955
1956 case 'w':
1957 return EAF_NOESCAPE;
1958
1959 case '.':
1960 default:
1961 return 0;
1962 }
1963 }
1964
1965 /* Detects return flags for the call STMT. */
1966
1967 int
1968 gimple_call_return_flags (const_gimple stmt)
1969 {
1970 tree attr;
1971
1972 if (gimple_call_flags (stmt) & ECF_MALLOC)
1973 return ERF_NOALIAS;
1974
1975 attr = gimple_call_fnspec (stmt);
1976 if (!attr || TREE_STRING_LENGTH (attr) < 1)
1977 return 0;
1978
1979 switch (TREE_STRING_POINTER (attr)[0])
1980 {
1981 case '1':
1982 case '2':
1983 case '3':
1984 case '4':
1985 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
1986
1987 case 'm':
1988 return ERF_NOALIAS;
1989
1990 case '.':
1991 default:
1992 return 0;
1993 }
1994 }
1995
1996
1997 /* Return true if GS is a copy assignment. */
1998
1999 bool
2000 gimple_assign_copy_p (gimple gs)
2001 {
2002 return (gimple_assign_single_p (gs)
2003 && is_gimple_val (gimple_op (gs, 1)));
2004 }
2005
2006
2007 /* Return true if GS is a SSA_NAME copy assignment. */
2008
2009 bool
2010 gimple_assign_ssa_name_copy_p (gimple gs)
2011 {
2012 return (gimple_assign_single_p (gs)
2013 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
2014 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
2015 }
2016
2017
2018 /* Return true if GS is an assignment with a unary RHS, but the
2019 operator has no effect on the assigned value. The logic is adapted
2020 from STRIP_NOPS. This predicate is intended to be used in tuplifying
2021 instances in which STRIP_NOPS was previously applied to the RHS of
2022 an assignment.
2023
2024 NOTE: In the use cases that led to the creation of this function
2025 and of gimple_assign_single_p, it is typical to test for either
2026 condition and to proceed in the same manner. In each case, the
2027 assigned value is represented by the single RHS operand of the
2028 assignment. I suspect there may be cases where gimple_assign_copy_p,
2029 gimple_assign_single_p, or equivalent logic is used where a similar
2030 treatment of unary NOPs is appropriate. */
2031
2032 bool
2033 gimple_assign_unary_nop_p (gimple gs)
2034 {
2035 return (is_gimple_assign (gs)
2036 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
2037 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
2038 && gimple_assign_rhs1 (gs) != error_mark_node
2039 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
2040 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
2041 }
2042
2043 /* Set BB to be the basic block holding G. */
2044
2045 void
2046 gimple_set_bb (gimple stmt, basic_block bb)
2047 {
2048 stmt->gsbase.bb = bb;
2049
2050 /* If the statement is a label, add the label to block-to-labels map
2051 so that we can speed up edge creation for GIMPLE_GOTOs. */
2052 if (cfun->cfg && gimple_code (stmt) == GIMPLE_LABEL)
2053 {
2054 tree t;
2055 int uid;
2056
2057 t = gimple_label_label (stmt);
2058 uid = LABEL_DECL_UID (t);
2059 if (uid == -1)
2060 {
2061 unsigned old_len = VEC_length (basic_block, label_to_block_map);
2062 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
2063 if (old_len <= (unsigned) uid)
2064 {
2065 unsigned new_len = 3 * uid / 2 + 1;
2066
2067 VEC_safe_grow_cleared (basic_block, gc, label_to_block_map,
2068 new_len);
2069 }
2070 }
2071
2072 VEC_replace (basic_block, label_to_block_map, uid, bb);
2073 }
2074 }
2075
2076
2077 /* Modify the RHS of the assignment pointed-to by GSI using the
2078 operands in the expression tree EXPR.
2079
2080 NOTE: The statement pointed-to by GSI may be reallocated if it
2081 did not have enough operand slots.
2082
2083 This function is useful to convert an existing tree expression into
2084 the flat representation used for the RHS of a GIMPLE assignment.
2085 It will reallocate memory as needed to expand or shrink the number
2086 of operand slots needed to represent EXPR.
2087
2088 NOTE: If you find yourself building a tree and then calling this
2089 function, you are most certainly doing it the slow way. It is much
2090 better to build a new assignment or to use the function
2091 gimple_assign_set_rhs_with_ops, which does not require an
2092 expression tree to be built. */
2093
2094 void
2095 gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
2096 {
2097 enum tree_code subcode;
2098 tree op1, op2, op3;
2099
2100 extract_ops_from_tree_1 (expr, &subcode, &op1, &op2, &op3);
2101 gimple_assign_set_rhs_with_ops_1 (gsi, subcode, op1, op2, op3);
2102 }
2103
2104
2105 /* Set the RHS of assignment statement pointed-to by GSI to CODE with
2106 operands OP1, OP2 and OP3.
2107
2108 NOTE: The statement pointed-to by GSI may be reallocated if it
2109 did not have enough operand slots. */
2110
2111 void
2112 gimple_assign_set_rhs_with_ops_1 (gimple_stmt_iterator *gsi, enum tree_code code,
2113 tree op1, tree op2, tree op3)
2114 {
2115 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
2116 gimple stmt = gsi_stmt (*gsi);
2117
2118 /* If the new CODE needs more operands, allocate a new statement. */
2119 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
2120 {
2121 tree lhs = gimple_assign_lhs (stmt);
2122 gimple new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
2123 memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
2124 gsi_replace (gsi, new_stmt, true);
2125 stmt = new_stmt;
2126
2127 /* The LHS needs to be reset as this also changes the SSA name
2128 on the LHS. */
2129 gimple_assign_set_lhs (stmt, lhs);
2130 }
2131
2132 gimple_set_num_ops (stmt, new_rhs_ops + 1);
2133 gimple_set_subcode (stmt, code);
2134 gimple_assign_set_rhs1 (stmt, op1);
2135 if (new_rhs_ops > 1)
2136 gimple_assign_set_rhs2 (stmt, op2);
2137 if (new_rhs_ops > 2)
2138 gimple_assign_set_rhs3 (stmt, op3);
2139 }
2140
2141
2142 /* Return the LHS of a statement that performs an assignment,
2143 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
2144 for a call to a function that returns no value, or for a
2145 statement other than an assignment or a call. */
2146
2147 tree
2148 gimple_get_lhs (const_gimple stmt)
2149 {
2150 enum gimple_code code = gimple_code (stmt);
2151
2152 if (code == GIMPLE_ASSIGN)
2153 return gimple_assign_lhs (stmt);
2154 else if (code == GIMPLE_CALL)
2155 return gimple_call_lhs (stmt);
2156 else
2157 return NULL_TREE;
2158 }
2159
2160
2161 /* Set the LHS of a statement that performs an assignment,
2162 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2163
2164 void
2165 gimple_set_lhs (gimple stmt, tree lhs)
2166 {
2167 enum gimple_code code = gimple_code (stmt);
2168
2169 if (code == GIMPLE_ASSIGN)
2170 gimple_assign_set_lhs (stmt, lhs);
2171 else if (code == GIMPLE_CALL)
2172 gimple_call_set_lhs (stmt, lhs);
2173 else
2174 gcc_unreachable();
2175 }
2176
2177 /* Replace the LHS of STMT, an assignment, either a GIMPLE_ASSIGN or a
2178 GIMPLE_CALL, with NLHS, in preparation for modifying the RHS to an
2179 expression with a different value.
2180
2181 This will update any annotations (say debug bind stmts) referring
2182 to the original LHS, so that they use the RHS instead. This is
2183 done even if NLHS and LHS are the same, for it is understood that
2184 the RHS will be modified afterwards, and NLHS will not be assigned
2185 an equivalent value.
2186
2187 Adjusting any non-annotation uses of the LHS, if needed, is a
2188 responsibility of the caller.
2189
2190 The effect of this call should be pretty much the same as that of
2191 inserting a copy of STMT before STMT, and then removing the
2192 original stmt, at which time gsi_remove() would have update
2193 annotations, but using this function saves all the inserting,
2194 copying and removing. */
2195
2196 void
2197 gimple_replace_lhs (gimple stmt, tree nlhs)
2198 {
2199 if (MAY_HAVE_DEBUG_STMTS)
2200 {
2201 tree lhs = gimple_get_lhs (stmt);
2202
2203 gcc_assert (SSA_NAME_DEF_STMT (lhs) == stmt);
2204
2205 insert_debug_temp_for_var_def (NULL, lhs);
2206 }
2207
2208 gimple_set_lhs (stmt, nlhs);
2209 }
2210
2211 /* Return a deep copy of statement STMT. All the operands from STMT
2212 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
2213 and VUSE operand arrays are set to empty in the new copy. */
2214
2215 gimple
2216 gimple_copy (gimple stmt)
2217 {
2218 enum gimple_code code = gimple_code (stmt);
2219 unsigned num_ops = gimple_num_ops (stmt);
2220 gimple copy = gimple_alloc (code, num_ops);
2221 unsigned i;
2222
2223 /* Shallow copy all the fields from STMT. */
2224 memcpy (copy, stmt, gimple_size (code));
2225
2226 /* If STMT has sub-statements, deep-copy them as well. */
2227 if (gimple_has_substatements (stmt))
2228 {
2229 gimple_seq new_seq;
2230 tree t;
2231
2232 switch (gimple_code (stmt))
2233 {
2234 case GIMPLE_BIND:
2235 new_seq = gimple_seq_copy (gimple_bind_body (stmt));
2236 gimple_bind_set_body (copy, new_seq);
2237 gimple_bind_set_vars (copy, unshare_expr (gimple_bind_vars (stmt)));
2238 gimple_bind_set_block (copy, gimple_bind_block (stmt));
2239 break;
2240
2241 case GIMPLE_CATCH:
2242 new_seq = gimple_seq_copy (gimple_catch_handler (stmt));
2243 gimple_catch_set_handler (copy, new_seq);
2244 t = unshare_expr (gimple_catch_types (stmt));
2245 gimple_catch_set_types (copy, t);
2246 break;
2247
2248 case GIMPLE_EH_FILTER:
2249 new_seq = gimple_seq_copy (gimple_eh_filter_failure (stmt));
2250 gimple_eh_filter_set_failure (copy, new_seq);
2251 t = unshare_expr (gimple_eh_filter_types (stmt));
2252 gimple_eh_filter_set_types (copy, t);
2253 break;
2254
2255 case GIMPLE_TRY:
2256 new_seq = gimple_seq_copy (gimple_try_eval (stmt));
2257 gimple_try_set_eval (copy, new_seq);
2258 new_seq = gimple_seq_copy (gimple_try_cleanup (stmt));
2259 gimple_try_set_cleanup (copy, new_seq);
2260 break;
2261
2262 case GIMPLE_OMP_FOR:
2263 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
2264 gimple_omp_for_set_pre_body (copy, new_seq);
2265 t = unshare_expr (gimple_omp_for_clauses (stmt));
2266 gimple_omp_for_set_clauses (copy, t);
2267 copy->gimple_omp_for.iter
2268 = ggc_alloc_vec_gimple_omp_for_iter
2269 (gimple_omp_for_collapse (stmt));
2270 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
2271 {
2272 gimple_omp_for_set_cond (copy, i,
2273 gimple_omp_for_cond (stmt, i));
2274 gimple_omp_for_set_index (copy, i,
2275 gimple_omp_for_index (stmt, i));
2276 t = unshare_expr (gimple_omp_for_initial (stmt, i));
2277 gimple_omp_for_set_initial (copy, i, t);
2278 t = unshare_expr (gimple_omp_for_final (stmt, i));
2279 gimple_omp_for_set_final (copy, i, t);
2280 t = unshare_expr (gimple_omp_for_incr (stmt, i));
2281 gimple_omp_for_set_incr (copy, i, t);
2282 }
2283 goto copy_omp_body;
2284
2285 case GIMPLE_OMP_PARALLEL:
2286 t = unshare_expr (gimple_omp_parallel_clauses (stmt));
2287 gimple_omp_parallel_set_clauses (copy, t);
2288 t = unshare_expr (gimple_omp_parallel_child_fn (stmt));
2289 gimple_omp_parallel_set_child_fn (copy, t);
2290 t = unshare_expr (gimple_omp_parallel_data_arg (stmt));
2291 gimple_omp_parallel_set_data_arg (copy, t);
2292 goto copy_omp_body;
2293
2294 case GIMPLE_OMP_TASK:
2295 t = unshare_expr (gimple_omp_task_clauses (stmt));
2296 gimple_omp_task_set_clauses (copy, t);
2297 t = unshare_expr (gimple_omp_task_child_fn (stmt));
2298 gimple_omp_task_set_child_fn (copy, t);
2299 t = unshare_expr (gimple_omp_task_data_arg (stmt));
2300 gimple_omp_task_set_data_arg (copy, t);
2301 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
2302 gimple_omp_task_set_copy_fn (copy, t);
2303 t = unshare_expr (gimple_omp_task_arg_size (stmt));
2304 gimple_omp_task_set_arg_size (copy, t);
2305 t = unshare_expr (gimple_omp_task_arg_align (stmt));
2306 gimple_omp_task_set_arg_align (copy, t);
2307 goto copy_omp_body;
2308
2309 case GIMPLE_OMP_CRITICAL:
2310 t = unshare_expr (gimple_omp_critical_name (stmt));
2311 gimple_omp_critical_set_name (copy, t);
2312 goto copy_omp_body;
2313
2314 case GIMPLE_OMP_SECTIONS:
2315 t = unshare_expr (gimple_omp_sections_clauses (stmt));
2316 gimple_omp_sections_set_clauses (copy, t);
2317 t = unshare_expr (gimple_omp_sections_control (stmt));
2318 gimple_omp_sections_set_control (copy, t);
2319 /* FALLTHRU */
2320
2321 case GIMPLE_OMP_SINGLE:
2322 case GIMPLE_OMP_SECTION:
2323 case GIMPLE_OMP_MASTER:
2324 case GIMPLE_OMP_ORDERED:
2325 copy_omp_body:
2326 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
2327 gimple_omp_set_body (copy, new_seq);
2328 break;
2329
2330 case GIMPLE_WITH_CLEANUP_EXPR:
2331 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
2332 gimple_wce_set_cleanup (copy, new_seq);
2333 break;
2334
2335 default:
2336 gcc_unreachable ();
2337 }
2338 }
2339
2340 /* Make copy of operands. */
2341 if (num_ops > 0)
2342 {
2343 for (i = 0; i < num_ops; i++)
2344 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
2345
2346 /* Clear out SSA operand vectors on COPY. */
2347 if (gimple_has_ops (stmt))
2348 {
2349 gimple_set_def_ops (copy, NULL);
2350 gimple_set_use_ops (copy, NULL);
2351 }
2352
2353 if (gimple_has_mem_ops (stmt))
2354 {
2355 gimple_set_vdef (copy, gimple_vdef (stmt));
2356 gimple_set_vuse (copy, gimple_vuse (stmt));
2357 }
2358
2359 /* SSA operands need to be updated. */
2360 gimple_set_modified (copy, true);
2361 }
2362
2363 return copy;
2364 }
2365
2366
2367 /* Set the MODIFIED flag to MODIFIEDP, iff the gimple statement G has
2368 a MODIFIED field. */
2369
2370 void
2371 gimple_set_modified (gimple s, bool modifiedp)
2372 {
2373 if (gimple_has_ops (s))
2374 s->gsbase.modified = (unsigned) modifiedp;
2375 }
2376
2377
2378 /* Return true if statement S has side-effects. We consider a
2379 statement to have side effects if:
2380
2381 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
2382 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
2383
2384 bool
2385 gimple_has_side_effects (const_gimple s)
2386 {
2387 unsigned i;
2388
2389 if (is_gimple_debug (s))
2390 return false;
2391
2392 /* We don't have to scan the arguments to check for
2393 volatile arguments, though, at present, we still
2394 do a scan to check for TREE_SIDE_EFFECTS. */
2395 if (gimple_has_volatile_ops (s))
2396 return true;
2397
2398 if (gimple_code (s) == GIMPLE_ASM
2399 && gimple_asm_volatile_p (s))
2400 return true;
2401
2402 if (is_gimple_call (s))
2403 {
2404 unsigned nargs = gimple_call_num_args (s);
2405 tree fn;
2406
2407 if (!(gimple_call_flags (s) & (ECF_CONST | ECF_PURE)))
2408 return true;
2409 else if (gimple_call_flags (s) & ECF_LOOPING_CONST_OR_PURE)
2410 /* An infinite loop is considered a side effect. */
2411 return true;
2412
2413 if (gimple_call_lhs (s)
2414 && TREE_SIDE_EFFECTS (gimple_call_lhs (s)))
2415 {
2416 gcc_checking_assert (gimple_has_volatile_ops (s));
2417 return true;
2418 }
2419
2420 fn = gimple_call_fn (s);
2421 if (fn && TREE_SIDE_EFFECTS (fn))
2422 return true;
2423
2424 for (i = 0; i < nargs; i++)
2425 if (TREE_SIDE_EFFECTS (gimple_call_arg (s, i)))
2426 {
2427 gcc_checking_assert (gimple_has_volatile_ops (s));
2428 return true;
2429 }
2430
2431 return false;
2432 }
2433 else
2434 {
2435 for (i = 0; i < gimple_num_ops (s); i++)
2436 {
2437 tree op = gimple_op (s, i);
2438 if (op && TREE_SIDE_EFFECTS (op))
2439 {
2440 gcc_checking_assert (gimple_has_volatile_ops (s));
2441 return true;
2442 }
2443 }
2444 }
2445
2446 return false;
2447 }
2448
2449 /* Return true if the RHS of statement S has side effects.
2450 We may use it to determine if it is admissable to replace
2451 an assignment or call with a copy of a previously-computed
2452 value. In such cases, side-effects due to the LHS are
2453 preserved. */
2454
2455 bool
2456 gimple_rhs_has_side_effects (const_gimple s)
2457 {
2458 unsigned i;
2459
2460 if (is_gimple_call (s))
2461 {
2462 unsigned nargs = gimple_call_num_args (s);
2463 tree fn;
2464
2465 if (!(gimple_call_flags (s) & (ECF_CONST | ECF_PURE)))
2466 return true;
2467
2468 /* We cannot use gimple_has_volatile_ops here,
2469 because we must ignore a volatile LHS. */
2470 fn = gimple_call_fn (s);
2471 if (fn && (TREE_SIDE_EFFECTS (fn) || TREE_THIS_VOLATILE (fn)))
2472 {
2473 gcc_assert (gimple_has_volatile_ops (s));
2474 return true;
2475 }
2476
2477 for (i = 0; i < nargs; i++)
2478 if (TREE_SIDE_EFFECTS (gimple_call_arg (s, i))
2479 || TREE_THIS_VOLATILE (gimple_call_arg (s, i)))
2480 return true;
2481
2482 return false;
2483 }
2484 else if (is_gimple_assign (s))
2485 {
2486 /* Skip the first operand, the LHS. */
2487 for (i = 1; i < gimple_num_ops (s); i++)
2488 if (TREE_SIDE_EFFECTS (gimple_op (s, i))
2489 || TREE_THIS_VOLATILE (gimple_op (s, i)))
2490 {
2491 gcc_assert (gimple_has_volatile_ops (s));
2492 return true;
2493 }
2494 }
2495 else if (is_gimple_debug (s))
2496 return false;
2497 else
2498 {
2499 /* For statements without an LHS, examine all arguments. */
2500 for (i = 0; i < gimple_num_ops (s); i++)
2501 if (TREE_SIDE_EFFECTS (gimple_op (s, i))
2502 || TREE_THIS_VOLATILE (gimple_op (s, i)))
2503 {
2504 gcc_assert (gimple_has_volatile_ops (s));
2505 return true;
2506 }
2507 }
2508
2509 return false;
2510 }
2511
2512 /* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
2513 Return true if S can trap. When INCLUDE_MEM is true, check whether
2514 the memory operations could trap. When INCLUDE_STORES is true and
2515 S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked. */
2516
2517 bool
2518 gimple_could_trap_p_1 (gimple s, bool include_mem, bool include_stores)
2519 {
2520 tree t, div = NULL_TREE;
2521 enum tree_code op;
2522
2523 if (include_mem)
2524 {
2525 unsigned i, start = (is_gimple_assign (s) && !include_stores) ? 1 : 0;
2526
2527 for (i = start; i < gimple_num_ops (s); i++)
2528 if (tree_could_trap_p (gimple_op (s, i)))
2529 return true;
2530 }
2531
2532 switch (gimple_code (s))
2533 {
2534 case GIMPLE_ASM:
2535 return gimple_asm_volatile_p (s);
2536
2537 case GIMPLE_CALL:
2538 t = gimple_call_fndecl (s);
2539 /* Assume that calls to weak functions may trap. */
2540 if (!t || !DECL_P (t) || DECL_WEAK (t))
2541 return true;
2542 return false;
2543
2544 case GIMPLE_ASSIGN:
2545 t = gimple_expr_type (s);
2546 op = gimple_assign_rhs_code (s);
2547 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
2548 div = gimple_assign_rhs2 (s);
2549 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
2550 (INTEGRAL_TYPE_P (t)
2551 && TYPE_OVERFLOW_TRAPS (t)),
2552 div));
2553
2554 default:
2555 break;
2556 }
2557
2558 return false;
2559 }
2560
2561 /* Return true if statement S can trap. */
2562
2563 bool
2564 gimple_could_trap_p (gimple s)
2565 {
2566 return gimple_could_trap_p_1 (s, true, true);
2567 }
2568
2569 /* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
2570
2571 bool
2572 gimple_assign_rhs_could_trap_p (gimple s)
2573 {
2574 gcc_assert (is_gimple_assign (s));
2575 return gimple_could_trap_p_1 (s, true, false);
2576 }
2577
2578
2579 /* Print debugging information for gimple stmts generated. */
2580
2581 void
2582 dump_gimple_statistics (void)
2583 {
2584 #ifdef GATHER_STATISTICS
2585 int i, total_tuples = 0, total_bytes = 0;
2586
2587 fprintf (stderr, "\nGIMPLE statements\n");
2588 fprintf (stderr, "Kind Stmts Bytes\n");
2589 fprintf (stderr, "---------------------------------------\n");
2590 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
2591 {
2592 fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i],
2593 gimple_alloc_counts[i], gimple_alloc_sizes[i]);
2594 total_tuples += gimple_alloc_counts[i];
2595 total_bytes += gimple_alloc_sizes[i];
2596 }
2597 fprintf (stderr, "---------------------------------------\n");
2598 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes);
2599 fprintf (stderr, "---------------------------------------\n");
2600 #else
2601 fprintf (stderr, "No gimple statistics\n");
2602 #endif
2603 }
2604
2605
2606 /* Return the number of operands needed on the RHS of a GIMPLE
2607 assignment for an expression with tree code CODE. */
2608
2609 unsigned
2610 get_gimple_rhs_num_ops (enum tree_code code)
2611 {
2612 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
2613
2614 if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
2615 return 1;
2616 else if (rhs_class == GIMPLE_BINARY_RHS)
2617 return 2;
2618 else if (rhs_class == GIMPLE_TERNARY_RHS)
2619 return 3;
2620 else
2621 gcc_unreachable ();
2622 }
2623
2624 #define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
2625 (unsigned char) \
2626 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
2627 : ((TYPE) == tcc_binary \
2628 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
2629 : ((TYPE) == tcc_constant \
2630 || (TYPE) == tcc_declaration \
2631 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
2632 : ((SYM) == TRUTH_AND_EXPR \
2633 || (SYM) == TRUTH_OR_EXPR \
2634 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
2635 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
2636 : ((SYM) == COND_EXPR \
2637 || (SYM) == WIDEN_MULT_PLUS_EXPR \
2638 || (SYM) == WIDEN_MULT_MINUS_EXPR \
2639 || (SYM) == DOT_PROD_EXPR \
2640 || (SYM) == REALIGN_LOAD_EXPR \
2641 || (SYM) == VEC_COND_EXPR \
2642 || (SYM) == VEC_PERM_EXPR \
2643 || (SYM) == FMA_EXPR) ? GIMPLE_TERNARY_RHS \
2644 : ((SYM) == CONSTRUCTOR \
2645 || (SYM) == OBJ_TYPE_REF \
2646 || (SYM) == ASSERT_EXPR \
2647 || (SYM) == ADDR_EXPR \
2648 || (SYM) == WITH_SIZE_EXPR \
2649 || (SYM) == SSA_NAME) ? GIMPLE_SINGLE_RHS \
2650 : GIMPLE_INVALID_RHS),
2651 #define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
2652
2653 const unsigned char gimple_rhs_class_table[] = {
2654 #include "all-tree.def"
2655 };
2656
2657 #undef DEFTREECODE
2658 #undef END_OF_BASE_TREE_CODES
2659
2660 /* For the definitive definition of GIMPLE, see doc/tree-ssa.texi. */
2661
2662 /* Validation of GIMPLE expressions. */
2663
2664 /* Returns true iff T is a valid RHS for an assignment to a renamed
2665 user -- or front-end generated artificial -- variable. */
2666
2667 bool
2668 is_gimple_reg_rhs (tree t)
2669 {
2670 return get_gimple_rhs_class (TREE_CODE (t)) != GIMPLE_INVALID_RHS;
2671 }
2672
2673 /* Returns true iff T is a valid RHS for an assignment to an un-renamed
2674 LHS, or for a call argument. */
2675
2676 bool
2677 is_gimple_mem_rhs (tree t)
2678 {
2679 /* If we're dealing with a renamable type, either source or dest must be
2680 a renamed variable. */
2681 if (is_gimple_reg_type (TREE_TYPE (t)))
2682 return is_gimple_val (t);
2683 else
2684 return is_gimple_val (t) || is_gimple_lvalue (t);
2685 }
2686
2687 /* Return true if T is a valid LHS for a GIMPLE assignment expression. */
2688
2689 bool
2690 is_gimple_lvalue (tree t)
2691 {
2692 return (is_gimple_addressable (t)
2693 || TREE_CODE (t) == WITH_SIZE_EXPR
2694 /* These are complex lvalues, but don't have addresses, so they
2695 go here. */
2696 || TREE_CODE (t) == BIT_FIELD_REF);
2697 }
2698
2699 /* Return true if T is a GIMPLE condition. */
2700
2701 bool
2702 is_gimple_condexpr (tree t)
2703 {
2704 return (is_gimple_val (t) || (COMPARISON_CLASS_P (t)
2705 && !tree_could_throw_p (t)
2706 && is_gimple_val (TREE_OPERAND (t, 0))
2707 && is_gimple_val (TREE_OPERAND (t, 1))));
2708 }
2709
2710 /* Return true if T is something whose address can be taken. */
2711
2712 bool
2713 is_gimple_addressable (tree t)
2714 {
2715 return (is_gimple_id (t) || handled_component_p (t)
2716 || TREE_CODE (t) == MEM_REF);
2717 }
2718
2719 /* Return true if T is a valid gimple constant. */
2720
2721 bool
2722 is_gimple_constant (const_tree t)
2723 {
2724 switch (TREE_CODE (t))
2725 {
2726 case INTEGER_CST:
2727 case REAL_CST:
2728 case FIXED_CST:
2729 case STRING_CST:
2730 case COMPLEX_CST:
2731 case VECTOR_CST:
2732 return true;
2733
2734 /* Vector constant constructors are gimple invariant. */
2735 case CONSTRUCTOR:
2736 if (TREE_TYPE (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2737 return TREE_CONSTANT (t);
2738 else
2739 return false;
2740
2741 default:
2742 return false;
2743 }
2744 }
2745
2746 /* Return true if T is a gimple address. */
2747
2748 bool
2749 is_gimple_address (const_tree t)
2750 {
2751 tree op;
2752
2753 if (TREE_CODE (t) != ADDR_EXPR)
2754 return false;
2755
2756 op = TREE_OPERAND (t, 0);
2757 while (handled_component_p (op))
2758 {
2759 if ((TREE_CODE (op) == ARRAY_REF
2760 || TREE_CODE (op) == ARRAY_RANGE_REF)
2761 && !is_gimple_val (TREE_OPERAND (op, 1)))
2762 return false;
2763
2764 op = TREE_OPERAND (op, 0);
2765 }
2766
2767 if (CONSTANT_CLASS_P (op) || TREE_CODE (op) == MEM_REF)
2768 return true;
2769
2770 switch (TREE_CODE (op))
2771 {
2772 case PARM_DECL:
2773 case RESULT_DECL:
2774 case LABEL_DECL:
2775 case FUNCTION_DECL:
2776 case VAR_DECL:
2777 case CONST_DECL:
2778 return true;
2779
2780 default:
2781 return false;
2782 }
2783 }
2784
2785 /* Strip out all handled components that produce invariant
2786 offsets. */
2787
2788 static const_tree
2789 strip_invariant_refs (const_tree op)
2790 {
2791 while (handled_component_p (op))
2792 {
2793 switch (TREE_CODE (op))
2794 {
2795 case ARRAY_REF:
2796 case ARRAY_RANGE_REF:
2797 if (!is_gimple_constant (TREE_OPERAND (op, 1))
2798 || TREE_OPERAND (op, 2) != NULL_TREE
2799 || TREE_OPERAND (op, 3) != NULL_TREE)
2800 return NULL;
2801 break;
2802
2803 case COMPONENT_REF:
2804 if (TREE_OPERAND (op, 2) != NULL_TREE)
2805 return NULL;
2806 break;
2807
2808 default:;
2809 }
2810 op = TREE_OPERAND (op, 0);
2811 }
2812
2813 return op;
2814 }
2815
2816 /* Return true if T is a gimple invariant address. */
2817
2818 bool
2819 is_gimple_invariant_address (const_tree t)
2820 {
2821 const_tree op;
2822
2823 if (TREE_CODE (t) != ADDR_EXPR)
2824 return false;
2825
2826 op = strip_invariant_refs (TREE_OPERAND (t, 0));
2827 if (!op)
2828 return false;
2829
2830 if (TREE_CODE (op) == MEM_REF)
2831 {
2832 const_tree op0 = TREE_OPERAND (op, 0);
2833 return (TREE_CODE (op0) == ADDR_EXPR
2834 && (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))
2835 || decl_address_invariant_p (TREE_OPERAND (op0, 0))));
2836 }
2837
2838 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
2839 }
2840
2841 /* Return true if T is a gimple invariant address at IPA level
2842 (so addresses of variables on stack are not allowed). */
2843
2844 bool
2845 is_gimple_ip_invariant_address (const_tree t)
2846 {
2847 const_tree op;
2848
2849 if (TREE_CODE (t) != ADDR_EXPR)
2850 return false;
2851
2852 op = strip_invariant_refs (TREE_OPERAND (t, 0));
2853
2854 return op && (CONSTANT_CLASS_P (op) || decl_address_ip_invariant_p (op));
2855 }
2856
2857 /* Return true if T is a GIMPLE minimal invariant. It's a restricted
2858 form of function invariant. */
2859
2860 bool
2861 is_gimple_min_invariant (const_tree t)
2862 {
2863 if (TREE_CODE (t) == ADDR_EXPR)
2864 return is_gimple_invariant_address (t);
2865
2866 return is_gimple_constant (t);
2867 }
2868
2869 /* Return true if T is a GIMPLE interprocedural invariant. It's a restricted
2870 form of gimple minimal invariant. */
2871
2872 bool
2873 is_gimple_ip_invariant (const_tree t)
2874 {
2875 if (TREE_CODE (t) == ADDR_EXPR)
2876 return is_gimple_ip_invariant_address (t);
2877
2878 return is_gimple_constant (t);
2879 }
2880
2881 /* Return true if T looks like a valid GIMPLE statement. */
2882
2883 bool
2884 is_gimple_stmt (tree t)
2885 {
2886 const enum tree_code code = TREE_CODE (t);
2887
2888 switch (code)
2889 {
2890 case NOP_EXPR:
2891 /* The only valid NOP_EXPR is the empty statement. */
2892 return IS_EMPTY_STMT (t);
2893
2894 case BIND_EXPR:
2895 case COND_EXPR:
2896 /* These are only valid if they're void. */
2897 return TREE_TYPE (t) == NULL || VOID_TYPE_P (TREE_TYPE (t));
2898
2899 case SWITCH_EXPR:
2900 case GOTO_EXPR:
2901 case RETURN_EXPR:
2902 case LABEL_EXPR:
2903 case CASE_LABEL_EXPR:
2904 case TRY_CATCH_EXPR:
2905 case TRY_FINALLY_EXPR:
2906 case EH_FILTER_EXPR:
2907 case CATCH_EXPR:
2908 case ASM_EXPR:
2909 case STATEMENT_LIST:
2910 case OMP_PARALLEL:
2911 case OMP_FOR:
2912 case OMP_SECTIONS:
2913 case OMP_SECTION:
2914 case OMP_SINGLE:
2915 case OMP_MASTER:
2916 case OMP_ORDERED:
2917 case OMP_CRITICAL:
2918 case OMP_TASK:
2919 /* These are always void. */
2920 return true;
2921
2922 case CALL_EXPR:
2923 case MODIFY_EXPR:
2924 case PREDICT_EXPR:
2925 /* These are valid regardless of their type. */
2926 return true;
2927
2928 default:
2929 return false;
2930 }
2931 }
2932
2933 /* Return true if T is a variable. */
2934
2935 bool
2936 is_gimple_variable (tree t)
2937 {
2938 return (TREE_CODE (t) == VAR_DECL
2939 || TREE_CODE (t) == PARM_DECL
2940 || TREE_CODE (t) == RESULT_DECL
2941 || TREE_CODE (t) == SSA_NAME);
2942 }
2943
2944 /* Return true if T is a GIMPLE identifier (something with an address). */
2945
2946 bool
2947 is_gimple_id (tree t)
2948 {
2949 return (is_gimple_variable (t)
2950 || TREE_CODE (t) == FUNCTION_DECL
2951 || TREE_CODE (t) == LABEL_DECL
2952 || TREE_CODE (t) == CONST_DECL
2953 /* Allow string constants, since they are addressable. */
2954 || TREE_CODE (t) == STRING_CST);
2955 }
2956
2957 /* Return true if TYPE is a suitable type for a scalar register variable. */
2958
2959 bool
2960 is_gimple_reg_type (tree type)
2961 {
2962 return !AGGREGATE_TYPE_P (type);
2963 }
2964
2965 /* Return true if T is a non-aggregate register variable. */
2966
2967 bool
2968 is_gimple_reg (tree t)
2969 {
2970 if (TREE_CODE (t) == SSA_NAME)
2971 t = SSA_NAME_VAR (t);
2972
2973 if (!is_gimple_variable (t))
2974 return false;
2975
2976 if (!is_gimple_reg_type (TREE_TYPE (t)))
2977 return false;
2978
2979 /* A volatile decl is not acceptable because we can't reuse it as
2980 needed. We need to copy it into a temp first. */
2981 if (TREE_THIS_VOLATILE (t))
2982 return false;
2983
2984 /* We define "registers" as things that can be renamed as needed,
2985 which with our infrastructure does not apply to memory. */
2986 if (needs_to_live_in_memory (t))
2987 return false;
2988
2989 /* Hard register variables are an interesting case. For those that
2990 are call-clobbered, we don't know where all the calls are, since
2991 we don't (want to) take into account which operations will turn
2992 into libcalls at the rtl level. For those that are call-saved,
2993 we don't currently model the fact that calls may in fact change
2994 global hard registers, nor do we examine ASM_CLOBBERS at the tree
2995 level, and so miss variable changes that might imply. All around,
2996 it seems safest to not do too much optimization with these at the
2997 tree level at all. We'll have to rely on the rtl optimizers to
2998 clean this up, as there we've got all the appropriate bits exposed. */
2999 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
3000 return false;
3001
3002 /* Complex and vector values must have been put into SSA-like form.
3003 That is, no assignments to the individual components. */
3004 if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE
3005 || TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
3006 return DECL_GIMPLE_REG_P (t);
3007
3008 return true;
3009 }
3010
3011
3012 /* Return true if T is a GIMPLE variable whose address is not needed. */
3013
3014 bool
3015 is_gimple_non_addressable (tree t)
3016 {
3017 if (TREE_CODE (t) == SSA_NAME)
3018 t = SSA_NAME_VAR (t);
3019
3020 return (is_gimple_variable (t) && ! needs_to_live_in_memory (t));
3021 }
3022
3023 /* Return true if T is a GIMPLE rvalue, i.e. an identifier or a constant. */
3024
3025 bool
3026 is_gimple_val (tree t)
3027 {
3028 /* Make loads from volatiles and memory vars explicit. */
3029 if (is_gimple_variable (t)
3030 && is_gimple_reg_type (TREE_TYPE (t))
3031 && !is_gimple_reg (t))
3032 return false;
3033
3034 return (is_gimple_variable (t) || is_gimple_min_invariant (t));
3035 }
3036
3037 /* Similarly, but accept hard registers as inputs to asm statements. */
3038
3039 bool
3040 is_gimple_asm_val (tree t)
3041 {
3042 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
3043 return true;
3044
3045 return is_gimple_val (t);
3046 }
3047
3048 /* Return true if T is a GIMPLE minimal lvalue. */
3049
3050 bool
3051 is_gimple_min_lval (tree t)
3052 {
3053 if (!(t = CONST_CAST_TREE (strip_invariant_refs (t))))
3054 return false;
3055 return (is_gimple_id (t) || TREE_CODE (t) == MEM_REF);
3056 }
3057
3058 /* Return true if T is a valid function operand of a CALL_EXPR. */
3059
3060 bool
3061 is_gimple_call_addr (tree t)
3062 {
3063 return (TREE_CODE (t) == OBJ_TYPE_REF || is_gimple_val (t));
3064 }
3065
3066 /* Return true if T is a valid address operand of a MEM_REF. */
3067
3068 bool
3069 is_gimple_mem_ref_addr (tree t)
3070 {
3071 return (is_gimple_reg (t)
3072 || TREE_CODE (t) == INTEGER_CST
3073 || (TREE_CODE (t) == ADDR_EXPR
3074 && (CONSTANT_CLASS_P (TREE_OPERAND (t, 0))
3075 || decl_address_invariant_p (TREE_OPERAND (t, 0)))));
3076 }
3077
3078 /* If T makes a function call, return the corresponding CALL_EXPR operand.
3079 Otherwise, return NULL_TREE. */
3080
3081 tree
3082 get_call_expr_in (tree t)
3083 {
3084 if (TREE_CODE (t) == MODIFY_EXPR)
3085 t = TREE_OPERAND (t, 1);
3086 if (TREE_CODE (t) == WITH_SIZE_EXPR)
3087 t = TREE_OPERAND (t, 0);
3088 if (TREE_CODE (t) == CALL_EXPR)
3089 return t;
3090 return NULL_TREE;
3091 }
3092
3093
3094 /* Given a memory reference expression T, return its base address.
3095 The base address of a memory reference expression is the main
3096 object being referenced. For instance, the base address for
3097 'array[i].fld[j]' is 'array'. You can think of this as stripping
3098 away the offset part from a memory address.
3099
3100 This function calls handled_component_p to strip away all the inner
3101 parts of the memory reference until it reaches the base object. */
3102
3103 tree
3104 get_base_address (tree t)
3105 {
3106 while (handled_component_p (t))
3107 t = TREE_OPERAND (t, 0);
3108
3109 if ((TREE_CODE (t) == MEM_REF
3110 || TREE_CODE (t) == TARGET_MEM_REF)
3111 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
3112 t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
3113
3114 if (TREE_CODE (t) == SSA_NAME
3115 || DECL_P (t)
3116 || TREE_CODE (t) == STRING_CST
3117 || TREE_CODE (t) == CONSTRUCTOR
3118 || INDIRECT_REF_P (t)
3119 || TREE_CODE (t) == MEM_REF
3120 || TREE_CODE (t) == TARGET_MEM_REF)
3121 return t;
3122 else
3123 return NULL_TREE;
3124 }
3125
3126 void
3127 recalculate_side_effects (tree t)
3128 {
3129 enum tree_code code = TREE_CODE (t);
3130 int len = TREE_OPERAND_LENGTH (t);
3131 int i;
3132
3133 switch (TREE_CODE_CLASS (code))
3134 {
3135 case tcc_expression:
3136 switch (code)
3137 {
3138 case INIT_EXPR:
3139 case MODIFY_EXPR:
3140 case VA_ARG_EXPR:
3141 case PREDECREMENT_EXPR:
3142 case PREINCREMENT_EXPR:
3143 case POSTDECREMENT_EXPR:
3144 case POSTINCREMENT_EXPR:
3145 /* All of these have side-effects, no matter what their
3146 operands are. */
3147 return;
3148
3149 default:
3150 break;
3151 }
3152 /* Fall through. */
3153
3154 case tcc_comparison: /* a comparison expression */
3155 case tcc_unary: /* a unary arithmetic expression */
3156 case tcc_binary: /* a binary arithmetic expression */
3157 case tcc_reference: /* a reference */
3158 case tcc_vl_exp: /* a function call */
3159 TREE_SIDE_EFFECTS (t) = TREE_THIS_VOLATILE (t);
3160 for (i = 0; i < len; ++i)
3161 {
3162 tree op = TREE_OPERAND (t, i);
3163 if (op && TREE_SIDE_EFFECTS (op))
3164 TREE_SIDE_EFFECTS (t) = 1;
3165 }
3166 break;
3167
3168 case tcc_constant:
3169 /* No side-effects. */
3170 return;
3171
3172 default:
3173 gcc_unreachable ();
3174 }
3175 }
3176
3177 /* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
3178 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
3179 we failed to create one. */
3180
3181 tree
3182 canonicalize_cond_expr_cond (tree t)
3183 {
3184 /* Strip conversions around boolean operations. */
3185 if (CONVERT_EXPR_P (t)
3186 && (truth_value_p (TREE_CODE (TREE_OPERAND (t, 0)))
3187 || TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0)))
3188 == BOOLEAN_TYPE))
3189 t = TREE_OPERAND (t, 0);
3190
3191 /* For !x use x == 0. */
3192 if (TREE_CODE (t) == TRUTH_NOT_EXPR)
3193 {
3194 tree top0 = TREE_OPERAND (t, 0);
3195 t = build2 (EQ_EXPR, TREE_TYPE (t),
3196 top0, build_int_cst (TREE_TYPE (top0), 0));
3197 }
3198 /* For cmp ? 1 : 0 use cmp. */
3199 else if (TREE_CODE (t) == COND_EXPR
3200 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
3201 && integer_onep (TREE_OPERAND (t, 1))
3202 && integer_zerop (TREE_OPERAND (t, 2)))
3203 {
3204 tree top0 = TREE_OPERAND (t, 0);
3205 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
3206 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
3207 }
3208
3209 if (is_gimple_condexpr (t))
3210 return t;
3211
3212 return NULL_TREE;
3213 }
3214
3215 /* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
3216 the positions marked by the set ARGS_TO_SKIP. */
3217
3218 gimple
3219 gimple_call_copy_skip_args (gimple stmt, bitmap args_to_skip)
3220 {
3221 int i;
3222 int nargs = gimple_call_num_args (stmt);
3223 VEC(tree, heap) *vargs = VEC_alloc (tree, heap, nargs);
3224 gimple new_stmt;
3225
3226 for (i = 0; i < nargs; i++)
3227 if (!bitmap_bit_p (args_to_skip, i))
3228 VEC_quick_push (tree, vargs, gimple_call_arg (stmt, i));
3229
3230 if (gimple_call_internal_p (stmt))
3231 new_stmt = gimple_build_call_internal_vec (gimple_call_internal_fn (stmt),
3232 vargs);
3233 else
3234 new_stmt = gimple_build_call_vec (gimple_call_fn (stmt), vargs);
3235 VEC_free (tree, heap, vargs);
3236 if (gimple_call_lhs (stmt))
3237 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
3238
3239 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
3240 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
3241
3242 gimple_set_block (new_stmt, gimple_block (stmt));
3243 if (gimple_has_location (stmt))
3244 gimple_set_location (new_stmt, gimple_location (stmt));
3245 gimple_call_copy_flags (new_stmt, stmt);
3246 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
3247
3248 gimple_set_modified (new_stmt, true);
3249
3250 return new_stmt;
3251 }
3252
3253
3254 enum gtc_mode { GTC_MERGE = 0, GTC_DIAG = 1 };
3255
3256 static hashval_t gimple_type_hash (const void *);
3257
3258 /* Structure used to maintain a cache of some type pairs compared by
3259 gimple_types_compatible_p when comparing aggregate types. There are
3260 three possible values for SAME_P:
3261
3262 -2: The pair (T1, T2) has just been inserted in the table.
3263 0: T1 and T2 are different types.
3264 1: T1 and T2 are the same type.
3265
3266 The two elements in the SAME_P array are indexed by the comparison
3267 mode gtc_mode. */
3268
3269 struct type_pair_d
3270 {
3271 unsigned int uid1;
3272 unsigned int uid2;
3273 signed char same_p[2];
3274 };
3275 typedef struct type_pair_d *type_pair_t;
3276 DEF_VEC_P(type_pair_t);
3277 DEF_VEC_ALLOC_P(type_pair_t,heap);
3278
3279 #define GIMPLE_TYPE_PAIR_SIZE 16381
3280 struct type_pair_d *type_pair_cache;
3281
3282
3283 /* Lookup the pair of types T1 and T2 in *VISITED_P. Insert a new
3284 entry if none existed. */
3285
3286 static inline type_pair_t
3287 lookup_type_pair (tree t1, tree t2)
3288 {
3289 unsigned int index;
3290 unsigned int uid1, uid2;
3291
3292 if (type_pair_cache == NULL)
3293 type_pair_cache = XCNEWVEC (struct type_pair_d, GIMPLE_TYPE_PAIR_SIZE);
3294
3295 if (TYPE_UID (t1) < TYPE_UID (t2))
3296 {
3297 uid1 = TYPE_UID (t1);
3298 uid2 = TYPE_UID (t2);
3299 }
3300 else
3301 {
3302 uid1 = TYPE_UID (t2);
3303 uid2 = TYPE_UID (t1);
3304 }
3305 gcc_checking_assert (uid1 != uid2);
3306
3307 /* iterative_hash_hashval_t imply an function calls.
3308 We know that UIDS are in limited range. */
3309 index = ((((unsigned HOST_WIDE_INT)uid1 << HOST_BITS_PER_WIDE_INT / 2) + uid2)
3310 % GIMPLE_TYPE_PAIR_SIZE);
3311 if (type_pair_cache [index].uid1 == uid1
3312 && type_pair_cache [index].uid2 == uid2)
3313 return &type_pair_cache[index];
3314
3315 type_pair_cache [index].uid1 = uid1;
3316 type_pair_cache [index].uid2 = uid2;
3317 type_pair_cache [index].same_p[0] = -2;
3318 type_pair_cache [index].same_p[1] = -2;
3319
3320 return &type_pair_cache[index];
3321 }
3322
3323 /* Per pointer state for the SCC finding. The on_sccstack flag
3324 is not strictly required, it is true when there is no hash value
3325 recorded for the type and false otherwise. But querying that
3326 is slower. */
3327
3328 struct sccs
3329 {
3330 unsigned int dfsnum;
3331 unsigned int low;
3332 bool on_sccstack;
3333 union {
3334 hashval_t hash;
3335 signed char same_p;
3336 } u;
3337 };
3338
3339 static unsigned int next_dfs_num;
3340 static unsigned int gtc_next_dfs_num;
3341
3342
3343 /* GIMPLE type merging cache. A direct-mapped cache based on TYPE_UID. */
3344
3345 typedef struct GTY(()) gimple_type_leader_entry_s {
3346 tree type;
3347 tree leader;
3348 } gimple_type_leader_entry;
3349
3350 #define GIMPLE_TYPE_LEADER_SIZE 16381
3351 static GTY((deletable, length("GIMPLE_TYPE_LEADER_SIZE")))
3352 gimple_type_leader_entry *gimple_type_leader;
3353
3354 /* Lookup an existing leader for T and return it or NULL_TREE, if
3355 there is none in the cache. */
3356
3357 static inline tree
3358 gimple_lookup_type_leader (tree t)
3359 {
3360 gimple_type_leader_entry *leader;
3361
3362 if (!gimple_type_leader)
3363 return NULL_TREE;
3364
3365 leader = &gimple_type_leader[TYPE_UID (t) % GIMPLE_TYPE_LEADER_SIZE];
3366 if (leader->type != t)
3367 return NULL_TREE;
3368
3369 return leader->leader;
3370 }
3371
3372 /* Return true if T1 and T2 have the same name. If FOR_COMPLETION_P is
3373 true then if any type has no name return false, otherwise return
3374 true if both types have no names. */
3375
3376 static bool
3377 compare_type_names_p (tree t1, tree t2)
3378 {
3379 tree name1 = TYPE_NAME (t1);
3380 tree name2 = TYPE_NAME (t2);
3381
3382 if (name1 && TREE_CODE (name1) == TYPE_DECL)
3383 name1 = DECL_NAME (name1);
3384 gcc_checking_assert (!name1 || TREE_CODE (name1) == IDENTIFIER_NODE);
3385
3386 if (name2 && TREE_CODE (name2) == TYPE_DECL)
3387 name2 = DECL_NAME (name2);
3388 gcc_checking_assert (!name2 || TREE_CODE (name2) == IDENTIFIER_NODE);
3389
3390 /* Identifiers can be compared with pointer equality rather
3391 than a string comparison. */
3392 if (name1 == name2)
3393 return true;
3394
3395 return false;
3396 }
3397
3398 /* Return true if the field decls F1 and F2 are at the same offset.
3399
3400 This is intended to be used on GIMPLE types only. */
3401
3402 bool
3403 gimple_compare_field_offset (tree f1, tree f2)
3404 {
3405 if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
3406 {
3407 tree offset1 = DECL_FIELD_OFFSET (f1);
3408 tree offset2 = DECL_FIELD_OFFSET (f2);
3409 return ((offset1 == offset2
3410 /* Once gimplification is done, self-referential offsets are
3411 instantiated as operand #2 of the COMPONENT_REF built for
3412 each access and reset. Therefore, they are not relevant
3413 anymore and fields are interchangeable provided that they
3414 represent the same access. */
3415 || (TREE_CODE (offset1) == PLACEHOLDER_EXPR
3416 && TREE_CODE (offset2) == PLACEHOLDER_EXPR
3417 && (DECL_SIZE (f1) == DECL_SIZE (f2)
3418 || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
3419 && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
3420 || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0))
3421 && DECL_ALIGN (f1) == DECL_ALIGN (f2))
3422 || operand_equal_p (offset1, offset2, 0))
3423 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
3424 DECL_FIELD_BIT_OFFSET (f2)));
3425 }
3426
3427 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
3428 should be, so handle differing ones specially by decomposing
3429 the offset into a byte and bit offset manually. */
3430 if (host_integerp (DECL_FIELD_OFFSET (f1), 0)
3431 && host_integerp (DECL_FIELD_OFFSET (f2), 0))
3432 {
3433 unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
3434 unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
3435 bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
3436 byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
3437 + bit_offset1 / BITS_PER_UNIT);
3438 bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
3439 byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
3440 + bit_offset2 / BITS_PER_UNIT);
3441 if (byte_offset1 != byte_offset2)
3442 return false;
3443 return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
3444 }
3445
3446 return false;
3447 }
3448
3449 static bool
3450 gimple_types_compatible_p_1 (tree, tree, type_pair_t,
3451 VEC(type_pair_t, heap) **,
3452 struct pointer_map_t *, struct obstack *);
3453
3454 /* DFS visit the edge from the callers type pair with state *STATE to
3455 the pair T1, T2 while operating in FOR_MERGING_P mode.
3456 Update the merging status if it is not part of the SCC containing the
3457 callers pair and return it.
3458 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3459
3460 static bool
3461 gtc_visit (tree t1, tree t2,
3462 struct sccs *state,
3463 VEC(type_pair_t, heap) **sccstack,
3464 struct pointer_map_t *sccstate,
3465 struct obstack *sccstate_obstack)
3466 {
3467 struct sccs *cstate = NULL;
3468 type_pair_t p;
3469 void **slot;
3470 tree leader1, leader2;
3471
3472 /* Check first for the obvious case of pointer identity. */
3473 if (t1 == t2)
3474 return true;
3475
3476 /* Check that we have two types to compare. */
3477 if (t1 == NULL_TREE || t2 == NULL_TREE)
3478 return false;
3479
3480 /* Can't be the same type if the types don't have the same code. */
3481 if (TREE_CODE (t1) != TREE_CODE (t2))
3482 return false;
3483
3484 /* Can't be the same type if they have different CV qualifiers. */
3485 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
3486 return false;
3487
3488 if (TREE_ADDRESSABLE (t1) != TREE_ADDRESSABLE (t2))
3489 return false;
3490
3491 /* Void types and nullptr types are always the same. */
3492 if (TREE_CODE (t1) == VOID_TYPE
3493 || TREE_CODE (t1) == NULLPTR_TYPE)
3494 return true;
3495
3496 /* Can't be the same type if they have different alignment or mode. */
3497 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3498 || TYPE_MODE (t1) != TYPE_MODE (t2))
3499 return false;
3500
3501 /* Do some simple checks before doing three hashtable queries. */
3502 if (INTEGRAL_TYPE_P (t1)
3503 || SCALAR_FLOAT_TYPE_P (t1)
3504 || FIXED_POINT_TYPE_P (t1)
3505 || TREE_CODE (t1) == VECTOR_TYPE
3506 || TREE_CODE (t1) == COMPLEX_TYPE
3507 || TREE_CODE (t1) == OFFSET_TYPE
3508 || POINTER_TYPE_P (t1))
3509 {
3510 /* Can't be the same type if they have different sign or precision. */
3511 if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
3512 || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
3513 return false;
3514
3515 if (TREE_CODE (t1) == INTEGER_TYPE
3516 && (TYPE_IS_SIZETYPE (t1) != TYPE_IS_SIZETYPE (t2)
3517 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)))
3518 return false;
3519
3520 /* That's all we need to check for float and fixed-point types. */
3521 if (SCALAR_FLOAT_TYPE_P (t1)
3522 || FIXED_POINT_TYPE_P (t1))
3523 return true;
3524
3525 /* For other types fall thru to more complex checks. */
3526 }
3527
3528 /* If the types have been previously registered and found equal
3529 they still are. */
3530 leader1 = gimple_lookup_type_leader (t1);
3531 leader2 = gimple_lookup_type_leader (t2);
3532 if (leader1 == t2
3533 || t1 == leader2
3534 || (leader1 && leader1 == leader2))
3535 return true;
3536
3537 /* If the hash values of t1 and t2 are different the types can't
3538 possibly be the same. This helps keeping the type-pair hashtable
3539 small, only tracking comparisons for hash collisions. */
3540 if (gimple_type_hash (t1) != gimple_type_hash (t2))
3541 return false;
3542
3543 /* Allocate a new cache entry for this comparison. */
3544 p = lookup_type_pair (t1, t2);
3545 if (p->same_p[GTC_MERGE] == 0 || p->same_p[GTC_MERGE] == 1)
3546 {
3547 /* We have already decided whether T1 and T2 are the
3548 same, return the cached result. */
3549 return p->same_p[GTC_MERGE] == 1;
3550 }
3551
3552 if ((slot = pointer_map_contains (sccstate, p)) != NULL)
3553 cstate = (struct sccs *)*slot;
3554 /* Not yet visited. DFS recurse. */
3555 if (!cstate)
3556 {
3557 gimple_types_compatible_p_1 (t1, t2, p,
3558 sccstack, sccstate, sccstate_obstack);
3559 cstate = (struct sccs *)* pointer_map_contains (sccstate, p);
3560 state->low = MIN (state->low, cstate->low);
3561 }
3562 /* If the type is still on the SCC stack adjust the parents low. */
3563 if (cstate->dfsnum < state->dfsnum
3564 && cstate->on_sccstack)
3565 state->low = MIN (cstate->dfsnum, state->low);
3566
3567 /* Return the current lattice value. We start with an equality
3568 assumption so types part of a SCC will be optimistically
3569 treated equal unless proven otherwise. */
3570 return cstate->u.same_p;
3571 }
3572
3573 /* Worker for gimple_types_compatible.
3574 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3575
3576 static bool
3577 gimple_types_compatible_p_1 (tree t1, tree t2, type_pair_t p,
3578 VEC(type_pair_t, heap) **sccstack,
3579 struct pointer_map_t *sccstate,
3580 struct obstack *sccstate_obstack)
3581 {
3582 struct sccs *state;
3583
3584 gcc_assert (p->same_p[GTC_MERGE] == -2);
3585
3586 state = XOBNEW (sccstate_obstack, struct sccs);
3587 *pointer_map_insert (sccstate, p) = state;
3588
3589 VEC_safe_push (type_pair_t, heap, *sccstack, p);
3590 state->dfsnum = gtc_next_dfs_num++;
3591 state->low = state->dfsnum;
3592 state->on_sccstack = true;
3593 /* Start with an equality assumption. As we DFS recurse into child
3594 SCCs this assumption may get revisited. */
3595 state->u.same_p = 1;
3596
3597 /* The struct tags shall compare equal. */
3598 if (!compare_type_names_p (t1, t2))
3599 goto different_types;
3600
3601 /* If their attributes are not the same they can't be the same type. */
3602 if (!attribute_list_equal (TYPE_ATTRIBUTES (t1), TYPE_ATTRIBUTES (t2)))
3603 goto different_types;
3604
3605 /* Do type-specific comparisons. */
3606 switch (TREE_CODE (t1))
3607 {
3608 case VECTOR_TYPE:
3609 case COMPLEX_TYPE:
3610 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2),
3611 state, sccstack, sccstate, sccstate_obstack))
3612 goto different_types;
3613 goto same_types;
3614
3615 case ARRAY_TYPE:
3616 /* Array types are the same if the element types are the same and
3617 the number of elements are the same. */
3618 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2),
3619 state, sccstack, sccstate, sccstate_obstack)
3620 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
3621 || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
3622 goto different_types;
3623 else
3624 {
3625 tree i1 = TYPE_DOMAIN (t1);
3626 tree i2 = TYPE_DOMAIN (t2);
3627
3628 /* For an incomplete external array, the type domain can be
3629 NULL_TREE. Check this condition also. */
3630 if (i1 == NULL_TREE && i2 == NULL_TREE)
3631 goto same_types;
3632 else if (i1 == NULL_TREE || i2 == NULL_TREE)
3633 goto different_types;
3634 /* If for a complete array type the possibly gimplified sizes
3635 are different the types are different. */
3636 else if (((TYPE_SIZE (i1) != NULL) ^ (TYPE_SIZE (i2) != NULL))
3637 || (TYPE_SIZE (i1)
3638 && TYPE_SIZE (i2)
3639 && !operand_equal_p (TYPE_SIZE (i1), TYPE_SIZE (i2), 0)))
3640 goto different_types;
3641 else
3642 {
3643 tree min1 = TYPE_MIN_VALUE (i1);
3644 tree min2 = TYPE_MIN_VALUE (i2);
3645 tree max1 = TYPE_MAX_VALUE (i1);
3646 tree max2 = TYPE_MAX_VALUE (i2);
3647
3648 /* The minimum/maximum values have to be the same. */
3649 if ((min1 == min2
3650 || (min1 && min2
3651 && ((TREE_CODE (min1) == PLACEHOLDER_EXPR
3652 && TREE_CODE (min2) == PLACEHOLDER_EXPR)
3653 || operand_equal_p (min1, min2, 0))))
3654 && (max1 == max2
3655 || (max1 && max2
3656 && ((TREE_CODE (max1) == PLACEHOLDER_EXPR
3657 && TREE_CODE (max2) == PLACEHOLDER_EXPR)
3658 || operand_equal_p (max1, max2, 0)))))
3659 goto same_types;
3660 else
3661 goto different_types;
3662 }
3663 }
3664
3665 case METHOD_TYPE:
3666 /* Method types should belong to the same class. */
3667 if (!gtc_visit (TYPE_METHOD_BASETYPE (t1), TYPE_METHOD_BASETYPE (t2),
3668 state, sccstack, sccstate, sccstate_obstack))
3669 goto different_types;
3670
3671 /* Fallthru */
3672
3673 case FUNCTION_TYPE:
3674 /* Function types are the same if the return type and arguments types
3675 are the same. */
3676 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2),
3677 state, sccstack, sccstate, sccstate_obstack))
3678 goto different_types;
3679
3680 if (!comp_type_attributes (t1, t2))
3681 goto different_types;
3682
3683 if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
3684 goto same_types;
3685 else
3686 {
3687 tree parms1, parms2;
3688
3689 for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
3690 parms1 && parms2;
3691 parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
3692 {
3693 if (!gtc_visit (TREE_VALUE (parms1), TREE_VALUE (parms2),
3694 state, sccstack, sccstate, sccstate_obstack))
3695 goto different_types;
3696 }
3697
3698 if (parms1 || parms2)
3699 goto different_types;
3700
3701 goto same_types;
3702 }
3703
3704 case OFFSET_TYPE:
3705 {
3706 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2),
3707 state, sccstack, sccstate, sccstate_obstack)
3708 || !gtc_visit (TYPE_OFFSET_BASETYPE (t1),
3709 TYPE_OFFSET_BASETYPE (t2),
3710 state, sccstack, sccstate, sccstate_obstack))
3711 goto different_types;
3712
3713 goto same_types;
3714 }
3715
3716 case POINTER_TYPE:
3717 case REFERENCE_TYPE:
3718 {
3719 /* If the two pointers have different ref-all attributes,
3720 they can't be the same type. */
3721 if (TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
3722 goto different_types;
3723
3724 /* Otherwise, pointer and reference types are the same if the
3725 pointed-to types are the same. */
3726 if (gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2),
3727 state, sccstack, sccstate, sccstate_obstack))
3728 goto same_types;
3729
3730 goto different_types;
3731 }
3732
3733 case INTEGER_TYPE:
3734 case BOOLEAN_TYPE:
3735 {
3736 tree min1 = TYPE_MIN_VALUE (t1);
3737 tree max1 = TYPE_MAX_VALUE (t1);
3738 tree min2 = TYPE_MIN_VALUE (t2);
3739 tree max2 = TYPE_MAX_VALUE (t2);
3740 bool min_equal_p = false;
3741 bool max_equal_p = false;
3742
3743 /* If either type has a minimum value, the other type must
3744 have the same. */
3745 if (min1 == NULL_TREE && min2 == NULL_TREE)
3746 min_equal_p = true;
3747 else if (min1 && min2 && operand_equal_p (min1, min2, 0))
3748 min_equal_p = true;
3749
3750 /* Likewise, if either type has a maximum value, the other
3751 type must have the same. */
3752 if (max1 == NULL_TREE && max2 == NULL_TREE)
3753 max_equal_p = true;
3754 else if (max1 && max2 && operand_equal_p (max1, max2, 0))
3755 max_equal_p = true;
3756
3757 if (!min_equal_p || !max_equal_p)
3758 goto different_types;
3759
3760 goto same_types;
3761 }
3762
3763 case ENUMERAL_TYPE:
3764 {
3765 /* FIXME lto, we cannot check bounds on enumeral types because
3766 different front ends will produce different values.
3767 In C, enumeral types are integers, while in C++ each element
3768 will have its own symbolic value. We should decide how enums
3769 are to be represented in GIMPLE and have each front end lower
3770 to that. */
3771 tree v1, v2;
3772
3773 /* For enumeral types, all the values must be the same. */
3774 if (TYPE_VALUES (t1) == TYPE_VALUES (t2))
3775 goto same_types;
3776
3777 for (v1 = TYPE_VALUES (t1), v2 = TYPE_VALUES (t2);
3778 v1 && v2;
3779 v1 = TREE_CHAIN (v1), v2 = TREE_CHAIN (v2))
3780 {
3781 tree c1 = TREE_VALUE (v1);
3782 tree c2 = TREE_VALUE (v2);
3783
3784 if (TREE_CODE (c1) == CONST_DECL)
3785 c1 = DECL_INITIAL (c1);
3786
3787 if (TREE_CODE (c2) == CONST_DECL)
3788 c2 = DECL_INITIAL (c2);
3789
3790 if (tree_int_cst_equal (c1, c2) != 1)
3791 goto different_types;
3792
3793 if (TREE_PURPOSE (v1) != TREE_PURPOSE (v2))
3794 goto different_types;
3795 }
3796
3797 /* If one enumeration has more values than the other, they
3798 are not the same. */
3799 if (v1 || v2)
3800 goto different_types;
3801
3802 goto same_types;
3803 }
3804
3805 case RECORD_TYPE:
3806 case UNION_TYPE:
3807 case QUAL_UNION_TYPE:
3808 {
3809 tree f1, f2;
3810
3811 /* For aggregate types, all the fields must be the same. */
3812 for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
3813 f1 && f2;
3814 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
3815 {
3816 /* Different field kinds are not compatible. */
3817 if (TREE_CODE (f1) != TREE_CODE (f2))
3818 goto different_types;
3819 /* Field decls must have the same name and offset. */
3820 if (TREE_CODE (f1) == FIELD_DECL
3821 && (DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
3822 || !gimple_compare_field_offset (f1, f2)))
3823 goto different_types;
3824 /* All entities should have the same name and type. */
3825 if (DECL_NAME (f1) != DECL_NAME (f2)
3826 || !gtc_visit (TREE_TYPE (f1), TREE_TYPE (f2),
3827 state, sccstack, sccstate, sccstate_obstack))
3828 goto different_types;
3829 }
3830
3831 /* If one aggregate has more fields than the other, they
3832 are not the same. */
3833 if (f1 || f2)
3834 goto different_types;
3835
3836 goto same_types;
3837 }
3838
3839 default:
3840 gcc_unreachable ();
3841 }
3842
3843 /* Common exit path for types that are not compatible. */
3844 different_types:
3845 state->u.same_p = 0;
3846 goto pop;
3847
3848 /* Common exit path for types that are compatible. */
3849 same_types:
3850 gcc_assert (state->u.same_p == 1);
3851
3852 pop:
3853 if (state->low == state->dfsnum)
3854 {
3855 type_pair_t x;
3856
3857 /* Pop off the SCC and set its cache values to the final
3858 comparison result. */
3859 do
3860 {
3861 struct sccs *cstate;
3862 x = VEC_pop (type_pair_t, *sccstack);
3863 cstate = (struct sccs *)*pointer_map_contains (sccstate, x);
3864 cstate->on_sccstack = false;
3865 x->same_p[GTC_MERGE] = state->u.same_p;
3866 }
3867 while (x != p);
3868 }
3869
3870 return state->u.same_p;
3871 }
3872
3873 /* Return true iff T1 and T2 are structurally identical. When
3874 FOR_MERGING_P is true the an incomplete type and a complete type
3875 are considered different, otherwise they are considered compatible. */
3876
3877 static bool
3878 gimple_types_compatible_p (tree t1, tree t2)
3879 {
3880 VEC(type_pair_t, heap) *sccstack = NULL;
3881 struct pointer_map_t *sccstate;
3882 struct obstack sccstate_obstack;
3883 type_pair_t p = NULL;
3884 bool res;
3885 tree leader1, leader2;
3886
3887 /* Before starting to set up the SCC machinery handle simple cases. */
3888
3889 /* Check first for the obvious case of pointer identity. */
3890 if (t1 == t2)
3891 return true;
3892
3893 /* Check that we have two types to compare. */
3894 if (t1 == NULL_TREE || t2 == NULL_TREE)
3895 return false;
3896
3897 /* Can't be the same type if the types don't have the same code. */
3898 if (TREE_CODE (t1) != TREE_CODE (t2))
3899 return false;
3900
3901 /* Can't be the same type if they have different CV qualifiers. */
3902 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
3903 return false;
3904
3905 if (TREE_ADDRESSABLE (t1) != TREE_ADDRESSABLE (t2))
3906 return false;
3907
3908 /* Void types and nullptr types are always the same. */
3909 if (TREE_CODE (t1) == VOID_TYPE
3910 || TREE_CODE (t1) == NULLPTR_TYPE)
3911 return true;
3912
3913 /* Can't be the same type if they have different alignment or mode. */
3914 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3915 || TYPE_MODE (t1) != TYPE_MODE (t2))
3916 return false;
3917
3918 /* Do some simple checks before doing three hashtable queries. */
3919 if (INTEGRAL_TYPE_P (t1)
3920 || SCALAR_FLOAT_TYPE_P (t1)
3921 || FIXED_POINT_TYPE_P (t1)
3922 || TREE_CODE (t1) == VECTOR_TYPE
3923 || TREE_CODE (t1) == COMPLEX_TYPE
3924 || TREE_CODE (t1) == OFFSET_TYPE
3925 || POINTER_TYPE_P (t1))
3926 {
3927 /* Can't be the same type if they have different sign or precision. */
3928 if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
3929 || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
3930 return false;
3931
3932 if (TREE_CODE (t1) == INTEGER_TYPE
3933 && (TYPE_IS_SIZETYPE (t1) != TYPE_IS_SIZETYPE (t2)
3934 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)))
3935 return false;
3936
3937 /* That's all we need to check for float and fixed-point types. */
3938 if (SCALAR_FLOAT_TYPE_P (t1)
3939 || FIXED_POINT_TYPE_P (t1))
3940 return true;
3941
3942 /* For other types fall thru to more complex checks. */
3943 }
3944
3945 /* If the types have been previously registered and found equal
3946 they still are. */
3947 leader1 = gimple_lookup_type_leader (t1);
3948 leader2 = gimple_lookup_type_leader (t2);
3949 if (leader1 == t2
3950 || t1 == leader2
3951 || (leader1 && leader1 == leader2))
3952 return true;
3953
3954 /* If the hash values of t1 and t2 are different the types can't
3955 possibly be the same. This helps keeping the type-pair hashtable
3956 small, only tracking comparisons for hash collisions. */
3957 if (gimple_type_hash (t1) != gimple_type_hash (t2))
3958 return false;
3959
3960 /* If we've visited this type pair before (in the case of aggregates
3961 with self-referential types), and we made a decision, return it. */
3962 p = lookup_type_pair (t1, t2);
3963 if (p->same_p[GTC_MERGE] == 0 || p->same_p[GTC_MERGE] == 1)
3964 {
3965 /* We have already decided whether T1 and T2 are the
3966 same, return the cached result. */
3967 return p->same_p[GTC_MERGE] == 1;
3968 }
3969
3970 /* Now set up the SCC machinery for the comparison. */
3971 gtc_next_dfs_num = 1;
3972 sccstate = pointer_map_create ();
3973 gcc_obstack_init (&sccstate_obstack);
3974 res = gimple_types_compatible_p_1 (t1, t2, p,
3975 &sccstack, sccstate, &sccstate_obstack);
3976 VEC_free (type_pair_t, heap, sccstack);
3977 pointer_map_destroy (sccstate);
3978 obstack_free (&sccstate_obstack, NULL);
3979
3980 return res;
3981 }
3982
3983
3984 static hashval_t
3985 iterative_hash_gimple_type (tree, hashval_t, VEC(tree, heap) **,
3986 struct pointer_map_t *, struct obstack *);
3987
3988 /* DFS visit the edge from the callers type with state *STATE to T.
3989 Update the callers type hash V with the hash for T if it is not part
3990 of the SCC containing the callers type and return it.
3991 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3992
3993 static hashval_t
3994 visit (tree t, struct sccs *state, hashval_t v,
3995 VEC (tree, heap) **sccstack,
3996 struct pointer_map_t *sccstate,
3997 struct obstack *sccstate_obstack)
3998 {
3999 struct sccs *cstate = NULL;
4000 struct tree_int_map m;
4001 void **slot;
4002
4003 /* If there is a hash value recorded for this type then it can't
4004 possibly be part of our parent SCC. Simply mix in its hash. */
4005 m.base.from = t;
4006 if ((slot = htab_find_slot (type_hash_cache, &m, NO_INSERT))
4007 && *slot)
4008 return iterative_hash_hashval_t (((struct tree_int_map *) *slot)->to, v);
4009
4010 if ((slot = pointer_map_contains (sccstate, t)) != NULL)
4011 cstate = (struct sccs *)*slot;
4012 if (!cstate)
4013 {
4014 hashval_t tem;
4015 /* Not yet visited. DFS recurse. */
4016 tem = iterative_hash_gimple_type (t, v,
4017 sccstack, sccstate, sccstate_obstack);
4018 if (!cstate)
4019 cstate = (struct sccs *)* pointer_map_contains (sccstate, t);
4020 state->low = MIN (state->low, cstate->low);
4021 /* If the type is no longer on the SCC stack and thus is not part
4022 of the parents SCC mix in its hash value. Otherwise we will
4023 ignore the type for hashing purposes and return the unaltered
4024 hash value. */
4025 if (!cstate->on_sccstack)
4026 return tem;
4027 }
4028 if (cstate->dfsnum < state->dfsnum
4029 && cstate->on_sccstack)
4030 state->low = MIN (cstate->dfsnum, state->low);
4031
4032 /* We are part of our parents SCC, skip this type during hashing
4033 and return the unaltered hash value. */
4034 return v;
4035 }
4036
4037 /* Hash NAME with the previous hash value V and return it. */
4038
4039 static hashval_t
4040 iterative_hash_name (tree name, hashval_t v)
4041 {
4042 if (!name)
4043 return v;
4044 if (TREE_CODE (name) == TYPE_DECL)
4045 name = DECL_NAME (name);
4046 if (!name)
4047 return v;
4048 gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
4049 return iterative_hash_object (IDENTIFIER_HASH_VALUE (name), v);
4050 }
4051
4052 /* A type, hashvalue pair for sorting SCC members. */
4053
4054 struct type_hash_pair {
4055 tree type;
4056 hashval_t hash;
4057 };
4058
4059 /* Compare two type, hashvalue pairs. */
4060
4061 static int
4062 type_hash_pair_compare (const void *p1_, const void *p2_)
4063 {
4064 const struct type_hash_pair *p1 = (const struct type_hash_pair *) p1_;
4065 const struct type_hash_pair *p2 = (const struct type_hash_pair *) p2_;
4066 if (p1->hash < p2->hash)
4067 return -1;
4068 else if (p1->hash > p2->hash)
4069 return 1;
4070 return 0;
4071 }
4072
4073 /* Returning a hash value for gimple type TYPE combined with VAL.
4074 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done.
4075
4076 To hash a type we end up hashing in types that are reachable.
4077 Through pointers we can end up with cycles which messes up the
4078 required property that we need to compute the same hash value
4079 for structurally equivalent types. To avoid this we have to
4080 hash all types in a cycle (the SCC) in a commutative way. The
4081 easiest way is to not mix in the hashes of the SCC members at
4082 all. To make this work we have to delay setting the hash
4083 values of the SCC until it is complete. */
4084
4085 static hashval_t
4086 iterative_hash_gimple_type (tree type, hashval_t val,
4087 VEC(tree, heap) **sccstack,
4088 struct pointer_map_t *sccstate,
4089 struct obstack *sccstate_obstack)
4090 {
4091 hashval_t v;
4092 void **slot;
4093 struct sccs *state;
4094
4095 /* Not visited during this DFS walk. */
4096 gcc_checking_assert (!pointer_map_contains (sccstate, type));
4097 state = XOBNEW (sccstate_obstack, struct sccs);
4098 *pointer_map_insert (sccstate, type) = state;
4099
4100 VEC_safe_push (tree, heap, *sccstack, type);
4101 state->dfsnum = next_dfs_num++;
4102 state->low = state->dfsnum;
4103 state->on_sccstack = true;
4104
4105 /* Combine a few common features of types so that types are grouped into
4106 smaller sets; when searching for existing matching types to merge,
4107 only existing types having the same features as the new type will be
4108 checked. */
4109 v = iterative_hash_name (TYPE_NAME (type), 0);
4110 v = iterative_hash_hashval_t (TREE_CODE (type), v);
4111 v = iterative_hash_hashval_t (TYPE_QUALS (type), v);
4112 v = iterative_hash_hashval_t (TREE_ADDRESSABLE (type), v);
4113
4114 /* Do not hash the types size as this will cause differences in
4115 hash values for the complete vs. the incomplete type variant. */
4116
4117 /* Incorporate common features of numerical types. */
4118 if (INTEGRAL_TYPE_P (type)
4119 || SCALAR_FLOAT_TYPE_P (type)
4120 || FIXED_POINT_TYPE_P (type))
4121 {
4122 v = iterative_hash_hashval_t (TYPE_PRECISION (type), v);
4123 v = iterative_hash_hashval_t (TYPE_MODE (type), v);
4124 v = iterative_hash_hashval_t (TYPE_UNSIGNED (type), v);
4125 }
4126
4127 /* For pointer and reference types, fold in information about the type
4128 pointed to. */
4129 if (POINTER_TYPE_P (type))
4130 v = visit (TREE_TYPE (type), state, v,
4131 sccstack, sccstate, sccstate_obstack);
4132
4133 /* For integer types hash the types min/max values and the string flag. */
4134 if (TREE_CODE (type) == INTEGER_TYPE)
4135 {
4136 /* OMP lowering can introduce error_mark_node in place of
4137 random local decls in types. */
4138 if (TYPE_MIN_VALUE (type) != error_mark_node)
4139 v = iterative_hash_expr (TYPE_MIN_VALUE (type), v);
4140 if (TYPE_MAX_VALUE (type) != error_mark_node)
4141 v = iterative_hash_expr (TYPE_MAX_VALUE (type), v);
4142 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
4143 }
4144
4145 /* For array types hash their domain and the string flag. */
4146 if (TREE_CODE (type) == ARRAY_TYPE
4147 && TYPE_DOMAIN (type))
4148 {
4149 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
4150 v = visit (TYPE_DOMAIN (type), state, v,
4151 sccstack, sccstate, sccstate_obstack);
4152 }
4153
4154 /* Recurse for aggregates with a single element type. */
4155 if (TREE_CODE (type) == ARRAY_TYPE
4156 || TREE_CODE (type) == COMPLEX_TYPE
4157 || TREE_CODE (type) == VECTOR_TYPE)
4158 v = visit (TREE_TYPE (type), state, v,
4159 sccstack, sccstate, sccstate_obstack);
4160
4161 /* Incorporate function return and argument types. */
4162 if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE)
4163 {
4164 unsigned na;
4165 tree p;
4166
4167 /* For method types also incorporate their parent class. */
4168 if (TREE_CODE (type) == METHOD_TYPE)
4169 v = visit (TYPE_METHOD_BASETYPE (type), state, v,
4170 sccstack, sccstate, sccstate_obstack);
4171
4172 /* Check result and argument types. */
4173 v = visit (TREE_TYPE (type), state, v,
4174 sccstack, sccstate, sccstate_obstack);
4175 for (p = TYPE_ARG_TYPES (type), na = 0; p; p = TREE_CHAIN (p))
4176 {
4177 v = visit (TREE_VALUE (p), state, v,
4178 sccstack, sccstate, sccstate_obstack);
4179 na++;
4180 }
4181
4182 v = iterative_hash_hashval_t (na, v);
4183 }
4184
4185 if (TREE_CODE (type) == RECORD_TYPE
4186 || TREE_CODE (type) == UNION_TYPE
4187 || TREE_CODE (type) == QUAL_UNION_TYPE)
4188 {
4189 unsigned nf;
4190 tree f;
4191
4192 for (f = TYPE_FIELDS (type), nf = 0; f; f = TREE_CHAIN (f))
4193 {
4194 v = iterative_hash_name (DECL_NAME (f), v);
4195 v = visit (TREE_TYPE (f), state, v,
4196 sccstack, sccstate, sccstate_obstack);
4197 nf++;
4198 }
4199
4200 v = iterative_hash_hashval_t (nf, v);
4201 }
4202
4203 /* Record hash for us. */
4204 state->u.hash = v;
4205
4206 /* See if we found an SCC. */
4207 if (state->low == state->dfsnum)
4208 {
4209 tree x;
4210 struct tree_int_map *m;
4211
4212 /* Pop off the SCC and set its hash values. */
4213 x = VEC_pop (tree, *sccstack);
4214 /* Optimize SCC size one. */
4215 if (x == type)
4216 {
4217 state->on_sccstack = false;
4218 m = ggc_alloc_cleared_tree_int_map ();
4219 m->base.from = x;
4220 m->to = v;
4221 slot = htab_find_slot (type_hash_cache, m, INSERT);
4222 gcc_assert (!*slot);
4223 *slot = (void *) m;
4224 }
4225 else
4226 {
4227 struct sccs *cstate;
4228 unsigned first, i, size, j;
4229 struct type_hash_pair *pairs;
4230 /* Pop off the SCC and build an array of type, hash pairs. */
4231 first = VEC_length (tree, *sccstack) - 1;
4232 while (VEC_index (tree, *sccstack, first) != type)
4233 --first;
4234 size = VEC_length (tree, *sccstack) - first + 1;
4235 pairs = XALLOCAVEC (struct type_hash_pair, size);
4236 i = 0;
4237 cstate = (struct sccs *)*pointer_map_contains (sccstate, x);
4238 cstate->on_sccstack = false;
4239 pairs[i].type = x;
4240 pairs[i].hash = cstate->u.hash;
4241 do
4242 {
4243 x = VEC_pop (tree, *sccstack);
4244 cstate = (struct sccs *)*pointer_map_contains (sccstate, x);
4245 cstate->on_sccstack = false;
4246 ++i;
4247 pairs[i].type = x;
4248 pairs[i].hash = cstate->u.hash;
4249 }
4250 while (x != type);
4251 gcc_assert (i + 1 == size);
4252 /* Sort the arrays of type, hash pairs so that when we mix in
4253 all members of the SCC the hash value becomes independent on
4254 the order we visited the SCC. Disregard hashes equal to
4255 the hash of the type we mix into because we cannot guarantee
4256 a stable sort for those across different TUs. */
4257 qsort (pairs, size, sizeof (struct type_hash_pair),
4258 type_hash_pair_compare);
4259 for (i = 0; i < size; ++i)
4260 {
4261 hashval_t hash;
4262 m = ggc_alloc_cleared_tree_int_map ();
4263 m->base.from = pairs[i].type;
4264 hash = pairs[i].hash;
4265 /* Skip same hashes. */
4266 for (j = i + 1; j < size && pairs[j].hash == pairs[i].hash; ++j)
4267 ;
4268 for (; j < size; ++j)
4269 hash = iterative_hash_hashval_t (pairs[j].hash, hash);
4270 for (j = 0; pairs[j].hash != pairs[i].hash; ++j)
4271 hash = iterative_hash_hashval_t (pairs[j].hash, hash);
4272 m->to = hash;
4273 if (pairs[i].type == type)
4274 v = hash;
4275 slot = htab_find_slot (type_hash_cache, m, INSERT);
4276 gcc_assert (!*slot);
4277 *slot = (void *) m;
4278 }
4279 }
4280 }
4281
4282 return iterative_hash_hashval_t (v, val);
4283 }
4284
4285
4286 /* Returns a hash value for P (assumed to be a type). The hash value
4287 is computed using some distinguishing features of the type. Note
4288 that we cannot use pointer hashing here as we may be dealing with
4289 two distinct instances of the same type.
4290
4291 This function should produce the same hash value for two compatible
4292 types according to gimple_types_compatible_p. */
4293
4294 static hashval_t
4295 gimple_type_hash (const void *p)
4296 {
4297 const_tree t = (const_tree) p;
4298 VEC(tree, heap) *sccstack = NULL;
4299 struct pointer_map_t *sccstate;
4300 struct obstack sccstate_obstack;
4301 hashval_t val;
4302 void **slot;
4303 struct tree_int_map m;
4304
4305 if (type_hash_cache == NULL)
4306 type_hash_cache = htab_create_ggc (512, tree_int_map_hash,
4307 tree_int_map_eq, NULL);
4308
4309 m.base.from = CONST_CAST_TREE (t);
4310 if ((slot = htab_find_slot (type_hash_cache, &m, NO_INSERT))
4311 && *slot)
4312 return iterative_hash_hashval_t (((struct tree_int_map *) *slot)->to, 0);
4313
4314 /* Perform a DFS walk and pre-hash all reachable types. */
4315 next_dfs_num = 1;
4316 sccstate = pointer_map_create ();
4317 gcc_obstack_init (&sccstate_obstack);
4318 val = iterative_hash_gimple_type (CONST_CAST_TREE (t), 0,
4319 &sccstack, sccstate, &sccstate_obstack);
4320 VEC_free (tree, heap, sccstack);
4321 pointer_map_destroy (sccstate);
4322 obstack_free (&sccstate_obstack, NULL);
4323
4324 return val;
4325 }
4326
4327 /* Returning a hash value for gimple type TYPE combined with VAL.
4328
4329 The hash value returned is equal for types considered compatible
4330 by gimple_canonical_types_compatible_p. */
4331
4332 static hashval_t
4333 iterative_hash_canonical_type (tree type, hashval_t val)
4334 {
4335 hashval_t v;
4336 void **slot;
4337 struct tree_int_map *mp, m;
4338
4339 m.base.from = type;
4340 if ((slot = htab_find_slot (canonical_type_hash_cache, &m, INSERT))
4341 && *slot)
4342 return iterative_hash_hashval_t (((struct tree_int_map *) *slot)->to, val);
4343
4344 /* Combine a few common features of types so that types are grouped into
4345 smaller sets; when searching for existing matching types to merge,
4346 only existing types having the same features as the new type will be
4347 checked. */
4348 v = iterative_hash_hashval_t (TREE_CODE (type), 0);
4349 v = iterative_hash_hashval_t (TREE_ADDRESSABLE (type), v);
4350 v = iterative_hash_hashval_t (TYPE_ALIGN (type), v);
4351 v = iterative_hash_hashval_t (TYPE_MODE (type), v);
4352
4353 /* Incorporate common features of numerical types. */
4354 if (INTEGRAL_TYPE_P (type)
4355 || SCALAR_FLOAT_TYPE_P (type)
4356 || FIXED_POINT_TYPE_P (type)
4357 || TREE_CODE (type) == VECTOR_TYPE
4358 || TREE_CODE (type) == COMPLEX_TYPE
4359 || TREE_CODE (type) == OFFSET_TYPE
4360 || POINTER_TYPE_P (type))
4361 {
4362 v = iterative_hash_hashval_t (TYPE_PRECISION (type), v);
4363 v = iterative_hash_hashval_t (TYPE_UNSIGNED (type), v);
4364 }
4365
4366 /* For pointer and reference types, fold in information about the type
4367 pointed to but do not recurse to the pointed-to type. */
4368 if (POINTER_TYPE_P (type))
4369 {
4370 v = iterative_hash_hashval_t (TYPE_REF_CAN_ALIAS_ALL (type), v);
4371 v = iterative_hash_hashval_t (TYPE_ADDR_SPACE (TREE_TYPE (type)), v);
4372 v = iterative_hash_hashval_t (TYPE_RESTRICT (type), v);
4373 v = iterative_hash_hashval_t (TREE_CODE (TREE_TYPE (type)), v);
4374 }
4375
4376 /* For integer types hash the types min/max values and the string flag. */
4377 if (TREE_CODE (type) == INTEGER_TYPE)
4378 {
4379 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
4380 v = iterative_hash_hashval_t (TYPE_IS_SIZETYPE (type), v);
4381 }
4382
4383 /* For array types hash their domain and the string flag. */
4384 if (TREE_CODE (type) == ARRAY_TYPE
4385 && TYPE_DOMAIN (type))
4386 {
4387 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
4388 v = iterative_hash_canonical_type (TYPE_DOMAIN (type), v);
4389 }
4390
4391 /* Recurse for aggregates with a single element type. */
4392 if (TREE_CODE (type) == ARRAY_TYPE
4393 || TREE_CODE (type) == COMPLEX_TYPE
4394 || TREE_CODE (type) == VECTOR_TYPE)
4395 v = iterative_hash_canonical_type (TREE_TYPE (type), v);
4396
4397 /* Incorporate function return and argument types. */
4398 if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE)
4399 {
4400 unsigned na;
4401 tree p;
4402
4403 /* For method types also incorporate their parent class. */
4404 if (TREE_CODE (type) == METHOD_TYPE)
4405 v = iterative_hash_canonical_type (TYPE_METHOD_BASETYPE (type), v);
4406
4407 v = iterative_hash_canonical_type (TREE_TYPE (type), v);
4408
4409 for (p = TYPE_ARG_TYPES (type), na = 0; p; p = TREE_CHAIN (p))
4410 {
4411 v = iterative_hash_canonical_type (TREE_VALUE (p), v);
4412 na++;
4413 }
4414
4415 v = iterative_hash_hashval_t (na, v);
4416 }
4417
4418 if (TREE_CODE (type) == RECORD_TYPE
4419 || TREE_CODE (type) == UNION_TYPE
4420 || TREE_CODE (type) == QUAL_UNION_TYPE)
4421 {
4422 unsigned nf;
4423 tree f;
4424
4425 for (f = TYPE_FIELDS (type), nf = 0; f; f = TREE_CHAIN (f))
4426 if (TREE_CODE (f) == FIELD_DECL)
4427 {
4428 v = iterative_hash_canonical_type (TREE_TYPE (f), v);
4429 nf++;
4430 }
4431
4432 v = iterative_hash_hashval_t (nf, v);
4433 }
4434
4435 /* Cache the just computed hash value. */
4436 mp = ggc_alloc_cleared_tree_int_map ();
4437 mp->base.from = type;
4438 mp->to = v;
4439 *slot = (void *) mp;
4440
4441 return iterative_hash_hashval_t (v, val);
4442 }
4443
4444 static hashval_t
4445 gimple_canonical_type_hash (const void *p)
4446 {
4447 if (canonical_type_hash_cache == NULL)
4448 canonical_type_hash_cache = htab_create_ggc (512, tree_int_map_hash,
4449 tree_int_map_eq, NULL);
4450
4451 return iterative_hash_canonical_type (CONST_CAST_TREE ((const_tree) p), 0);
4452 }
4453
4454
4455 /* Returns nonzero if P1 and P2 are equal. */
4456
4457 static int
4458 gimple_type_eq (const void *p1, const void *p2)
4459 {
4460 const_tree t1 = (const_tree) p1;
4461 const_tree t2 = (const_tree) p2;
4462 return gimple_types_compatible_p (CONST_CAST_TREE (t1),
4463 CONST_CAST_TREE (t2));
4464 }
4465
4466
4467 /* Worker for gimple_register_type.
4468 Register type T in the global type table gimple_types.
4469 When REGISTERING_MV is false first recurse for the main variant of T. */
4470
4471 static tree
4472 gimple_register_type_1 (tree t, bool registering_mv)
4473 {
4474 void **slot;
4475 gimple_type_leader_entry *leader;
4476
4477 /* If we registered this type before return the cached result. */
4478 leader = &gimple_type_leader[TYPE_UID (t) % GIMPLE_TYPE_LEADER_SIZE];
4479 if (leader->type == t)
4480 return leader->leader;
4481
4482 /* Always register the main variant first. This is important so we
4483 pick up the non-typedef variants as canonical, otherwise we'll end
4484 up taking typedef ids for structure tags during comparison.
4485 It also makes sure that main variants will be merged to main variants.
4486 As we are operating on a possibly partially fixed up type graph
4487 do not bother to recurse more than once, otherwise we may end up
4488 walking in circles.
4489 If we are registering a main variant it will either remain its
4490 own main variant or it will be merged to something else in which
4491 case we do not care for the main variant leader. */
4492 if (!registering_mv
4493 && TYPE_MAIN_VARIANT (t) != t)
4494 gimple_register_type_1 (TYPE_MAIN_VARIANT (t), true);
4495
4496 /* See if we already have an equivalent type registered. */
4497 slot = htab_find_slot (gimple_types, t, INSERT);
4498 if (*slot
4499 && *(tree *)slot != t)
4500 {
4501 tree new_type = (tree) *((tree *) slot);
4502 leader->type = t;
4503 leader->leader = new_type;
4504 return new_type;
4505 }
4506
4507 /* If not, insert it to the cache and the hash. */
4508 leader->type = t;
4509 leader->leader = t;
4510 *slot = (void *) t;
4511 return t;
4512 }
4513
4514 /* Register type T in the global type table gimple_types.
4515 If another type T', compatible with T, already existed in
4516 gimple_types then return T', otherwise return T. This is used by
4517 LTO to merge identical types read from different TUs. */
4518
4519 tree
4520 gimple_register_type (tree t)
4521 {
4522 gcc_assert (TYPE_P (t));
4523
4524 if (!gimple_type_leader)
4525 gimple_type_leader = ggc_alloc_cleared_vec_gimple_type_leader_entry_s
4526 (GIMPLE_TYPE_LEADER_SIZE);
4527
4528 if (gimple_types == NULL)
4529 gimple_types = htab_create_ggc (16381, gimple_type_hash, gimple_type_eq, 0);
4530
4531 return gimple_register_type_1 (t, false);
4532 }
4533
4534 /* The TYPE_CANONICAL merging machinery. It should closely resemble
4535 the middle-end types_compatible_p function. It needs to avoid
4536 claiming types are different for types that should be treated
4537 the same with respect to TBAA. Canonical types are also used
4538 for IL consistency checks via the useless_type_conversion_p
4539 predicate which does not handle all type kinds itself but falls
4540 back to pointer-comparison of TYPE_CANONICAL for aggregates
4541 for example. */
4542
4543 /* Return true iff T1 and T2 are structurally identical for what
4544 TBAA is concerned. */
4545
4546 static bool
4547 gimple_canonical_types_compatible_p (tree t1, tree t2)
4548 {
4549 /* Before starting to set up the SCC machinery handle simple cases. */
4550
4551 /* Check first for the obvious case of pointer identity. */
4552 if (t1 == t2)
4553 return true;
4554
4555 /* Check that we have two types to compare. */
4556 if (t1 == NULL_TREE || t2 == NULL_TREE)
4557 return false;
4558
4559 /* If the types have been previously registered and found equal
4560 they still are. */
4561 if (TYPE_CANONICAL (t1)
4562 && TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2))
4563 return true;
4564
4565 /* Can't be the same type if the types don't have the same code. */
4566 if (TREE_CODE (t1) != TREE_CODE (t2))
4567 return false;
4568
4569 if (TREE_ADDRESSABLE (t1) != TREE_ADDRESSABLE (t2))
4570 return false;
4571
4572 /* Qualifiers do not matter for canonical type comparison purposes. */
4573
4574 /* Void types and nullptr types are always the same. */
4575 if (TREE_CODE (t1) == VOID_TYPE
4576 || TREE_CODE (t1) == NULLPTR_TYPE)
4577 return true;
4578
4579 /* Can't be the same type if they have different alignment, or mode. */
4580 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
4581 || TYPE_MODE (t1) != TYPE_MODE (t2))
4582 return false;
4583
4584 /* Non-aggregate types can be handled cheaply. */
4585 if (INTEGRAL_TYPE_P (t1)
4586 || SCALAR_FLOAT_TYPE_P (t1)
4587 || FIXED_POINT_TYPE_P (t1)
4588 || TREE_CODE (t1) == VECTOR_TYPE
4589 || TREE_CODE (t1) == COMPLEX_TYPE
4590 || TREE_CODE (t1) == OFFSET_TYPE
4591 || POINTER_TYPE_P (t1))
4592 {
4593 /* Can't be the same type if they have different sign or precision. */
4594 if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
4595 || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
4596 return false;
4597
4598 if (TREE_CODE (t1) == INTEGER_TYPE
4599 && (TYPE_IS_SIZETYPE (t1) != TYPE_IS_SIZETYPE (t2)
4600 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)))
4601 return false;
4602
4603 /* For canonical type comparisons we do not want to build SCCs
4604 so we cannot compare pointed-to types. But we can, for now,
4605 require the same pointed-to type kind and match what
4606 useless_type_conversion_p would do. */
4607 if (POINTER_TYPE_P (t1))
4608 {
4609 /* If the two pointers have different ref-all attributes,
4610 they can't be the same type. */
4611 if (TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
4612 return false;
4613
4614 if (TYPE_ADDR_SPACE (TREE_TYPE (t1))
4615 != TYPE_ADDR_SPACE (TREE_TYPE (t2)))
4616 return false;
4617
4618 if (TYPE_RESTRICT (t1) != TYPE_RESTRICT (t2))
4619 return false;
4620
4621 if (TREE_CODE (TREE_TYPE (t1)) != TREE_CODE (TREE_TYPE (t2)))
4622 return false;
4623 }
4624
4625 /* Tail-recurse to components. */
4626 if (TREE_CODE (t1) == VECTOR_TYPE
4627 || TREE_CODE (t1) == COMPLEX_TYPE)
4628 return gimple_canonical_types_compatible_p (TREE_TYPE (t1),
4629 TREE_TYPE (t2));
4630
4631 return true;
4632 }
4633
4634 /* If their attributes are not the same they can't be the same type. */
4635 if (!attribute_list_equal (TYPE_ATTRIBUTES (t1), TYPE_ATTRIBUTES (t2)))
4636 return false;
4637
4638 /* Do type-specific comparisons. */
4639 switch (TREE_CODE (t1))
4640 {
4641 case ARRAY_TYPE:
4642 /* Array types are the same if the element types are the same and
4643 the number of elements are the same. */
4644 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2))
4645 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
4646 || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
4647 return false;
4648 else
4649 {
4650 tree i1 = TYPE_DOMAIN (t1);
4651 tree i2 = TYPE_DOMAIN (t2);
4652
4653 /* For an incomplete external array, the type domain can be
4654 NULL_TREE. Check this condition also. */
4655 if (i1 == NULL_TREE && i2 == NULL_TREE)
4656 return true;
4657 else if (i1 == NULL_TREE || i2 == NULL_TREE)
4658 return false;
4659 /* If for a complete array type the possibly gimplified sizes
4660 are different the types are different. */
4661 else if (((TYPE_SIZE (i1) != NULL) ^ (TYPE_SIZE (i2) != NULL))
4662 || (TYPE_SIZE (i1)
4663 && TYPE_SIZE (i2)
4664 && !operand_equal_p (TYPE_SIZE (i1), TYPE_SIZE (i2), 0)))
4665 return false;
4666 else
4667 {
4668 tree min1 = TYPE_MIN_VALUE (i1);
4669 tree min2 = TYPE_MIN_VALUE (i2);
4670 tree max1 = TYPE_MAX_VALUE (i1);
4671 tree max2 = TYPE_MAX_VALUE (i2);
4672
4673 /* The minimum/maximum values have to be the same. */
4674 if ((min1 == min2
4675 || (min1 && min2
4676 && ((TREE_CODE (min1) == PLACEHOLDER_EXPR
4677 && TREE_CODE (min2) == PLACEHOLDER_EXPR)
4678 || operand_equal_p (min1, min2, 0))))
4679 && (max1 == max2
4680 || (max1 && max2
4681 && ((TREE_CODE (max1) == PLACEHOLDER_EXPR
4682 && TREE_CODE (max2) == PLACEHOLDER_EXPR)
4683 || operand_equal_p (max1, max2, 0)))))
4684 return true;
4685 else
4686 return false;
4687 }
4688 }
4689
4690 case METHOD_TYPE:
4691 /* Method types should belong to the same class. */
4692 if (!gimple_canonical_types_compatible_p
4693 (TYPE_METHOD_BASETYPE (t1), TYPE_METHOD_BASETYPE (t2)))
4694 return false;
4695
4696 /* Fallthru */
4697
4698 case FUNCTION_TYPE:
4699 /* Function types are the same if the return type and arguments types
4700 are the same. */
4701 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2)))
4702 return false;
4703
4704 if (!comp_type_attributes (t1, t2))
4705 return false;
4706
4707 if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
4708 return true;
4709 else
4710 {
4711 tree parms1, parms2;
4712
4713 for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
4714 parms1 && parms2;
4715 parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
4716 {
4717 if (!gimple_canonical_types_compatible_p
4718 (TREE_VALUE (parms1), TREE_VALUE (parms2)))
4719 return false;
4720 }
4721
4722 if (parms1 || parms2)
4723 return false;
4724
4725 return true;
4726 }
4727
4728 case RECORD_TYPE:
4729 case UNION_TYPE:
4730 case QUAL_UNION_TYPE:
4731 {
4732 tree f1, f2;
4733
4734 /* For aggregate types, all the fields must be the same. */
4735 for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
4736 f1 && f2;
4737 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
4738 {
4739 /* Skip non-fields. */
4740 while (f1 && TREE_CODE (f1) != FIELD_DECL)
4741 f1 = TREE_CHAIN (f1);
4742 while (f2 && TREE_CODE (f2) != FIELD_DECL)
4743 f2 = TREE_CHAIN (f2);
4744 if (!f1 || !f2)
4745 break;
4746 /* The fields must have the same name, offset and type. */
4747 if (DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
4748 || !gimple_compare_field_offset (f1, f2)
4749 || !gimple_canonical_types_compatible_p
4750 (TREE_TYPE (f1), TREE_TYPE (f2)))
4751 return false;
4752 }
4753
4754 /* If one aggregate has more fields than the other, they
4755 are not the same. */
4756 if (f1 || f2)
4757 return false;
4758
4759 return true;
4760 }
4761
4762 default:
4763 gcc_unreachable ();
4764 }
4765 }
4766
4767
4768 /* Returns nonzero if P1 and P2 are equal. */
4769
4770 static int
4771 gimple_canonical_type_eq (const void *p1, const void *p2)
4772 {
4773 const_tree t1 = (const_tree) p1;
4774 const_tree t2 = (const_tree) p2;
4775 return gimple_canonical_types_compatible_p (CONST_CAST_TREE (t1),
4776 CONST_CAST_TREE (t2));
4777 }
4778
4779 /* Register type T in the global type table gimple_types.
4780 If another type T', compatible with T, already existed in
4781 gimple_types then return T', otherwise return T. This is used by
4782 LTO to merge identical types read from different TUs.
4783
4784 ??? This merging does not exactly match how the tree.c middle-end
4785 functions will assign TYPE_CANONICAL when new types are created
4786 during optimization (which at least happens for pointer and array
4787 types). */
4788
4789 tree
4790 gimple_register_canonical_type (tree t)
4791 {
4792 void **slot;
4793
4794 gcc_assert (TYPE_P (t));
4795
4796 if (TYPE_CANONICAL (t))
4797 return TYPE_CANONICAL (t);
4798
4799 if (gimple_canonical_types == NULL)
4800 gimple_canonical_types = htab_create_ggc (16381, gimple_canonical_type_hash,
4801 gimple_canonical_type_eq, 0);
4802
4803 slot = htab_find_slot (gimple_canonical_types, t, INSERT);
4804 if (*slot
4805 && *(tree *)slot != t)
4806 {
4807 tree new_type = (tree) *((tree *) slot);
4808
4809 TYPE_CANONICAL (t) = new_type;
4810 t = new_type;
4811 }
4812 else
4813 {
4814 TYPE_CANONICAL (t) = t;
4815 *slot = (void *) t;
4816 }
4817
4818 return t;
4819 }
4820
4821
4822 /* Show statistics on references to the global type table gimple_types. */
4823
4824 void
4825 print_gimple_types_stats (void)
4826 {
4827 if (gimple_types)
4828 fprintf (stderr, "GIMPLE type table: size %ld, %ld elements, "
4829 "%ld searches, %ld collisions (ratio: %f)\n",
4830 (long) htab_size (gimple_types),
4831 (long) htab_elements (gimple_types),
4832 (long) gimple_types->searches,
4833 (long) gimple_types->collisions,
4834 htab_collisions (gimple_types));
4835 else
4836 fprintf (stderr, "GIMPLE type table is empty\n");
4837 if (type_hash_cache)
4838 fprintf (stderr, "GIMPLE type hash table: size %ld, %ld elements, "
4839 "%ld searches, %ld collisions (ratio: %f)\n",
4840 (long) htab_size (type_hash_cache),
4841 (long) htab_elements (type_hash_cache),
4842 (long) type_hash_cache->searches,
4843 (long) type_hash_cache->collisions,
4844 htab_collisions (type_hash_cache));
4845 else
4846 fprintf (stderr, "GIMPLE type hash table is empty\n");
4847 if (gimple_canonical_types)
4848 fprintf (stderr, "GIMPLE canonical type table: size %ld, %ld elements, "
4849 "%ld searches, %ld collisions (ratio: %f)\n",
4850 (long) htab_size (gimple_canonical_types),
4851 (long) htab_elements (gimple_canonical_types),
4852 (long) gimple_canonical_types->searches,
4853 (long) gimple_canonical_types->collisions,
4854 htab_collisions (gimple_canonical_types));
4855 else
4856 fprintf (stderr, "GIMPLE canonical type table is empty\n");
4857 if (canonical_type_hash_cache)
4858 fprintf (stderr, "GIMPLE canonical type hash table: size %ld, %ld elements, "
4859 "%ld searches, %ld collisions (ratio: %f)\n",
4860 (long) htab_size (canonical_type_hash_cache),
4861 (long) htab_elements (canonical_type_hash_cache),
4862 (long) canonical_type_hash_cache->searches,
4863 (long) canonical_type_hash_cache->collisions,
4864 htab_collisions (canonical_type_hash_cache));
4865 else
4866 fprintf (stderr, "GIMPLE canonical type hash table is empty\n");
4867 }
4868
4869 /* Free the gimple type hashtables used for LTO type merging. */
4870
4871 void
4872 free_gimple_type_tables (void)
4873 {
4874 /* Last chance to print stats for the tables. */
4875 if (flag_lto_report)
4876 print_gimple_types_stats ();
4877
4878 if (gimple_types)
4879 {
4880 htab_delete (gimple_types);
4881 gimple_types = NULL;
4882 }
4883 if (gimple_canonical_types)
4884 {
4885 htab_delete (gimple_canonical_types);
4886 gimple_canonical_types = NULL;
4887 }
4888 if (type_hash_cache)
4889 {
4890 htab_delete (type_hash_cache);
4891 type_hash_cache = NULL;
4892 }
4893 if (canonical_type_hash_cache)
4894 {
4895 htab_delete (canonical_type_hash_cache);
4896 canonical_type_hash_cache = NULL;
4897 }
4898 if (type_pair_cache)
4899 {
4900 free (type_pair_cache);
4901 type_pair_cache = NULL;
4902 }
4903 gimple_type_leader = NULL;
4904 }
4905
4906
4907 /* Return a type the same as TYPE except unsigned or
4908 signed according to UNSIGNEDP. */
4909
4910 static tree
4911 gimple_signed_or_unsigned_type (bool unsignedp, tree type)
4912 {
4913 tree type1;
4914
4915 type1 = TYPE_MAIN_VARIANT (type);
4916 if (type1 == signed_char_type_node
4917 || type1 == char_type_node
4918 || type1 == unsigned_char_type_node)
4919 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
4920 if (type1 == integer_type_node || type1 == unsigned_type_node)
4921 return unsignedp ? unsigned_type_node : integer_type_node;
4922 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
4923 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
4924 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
4925 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
4926 if (type1 == long_long_integer_type_node
4927 || type1 == long_long_unsigned_type_node)
4928 return unsignedp
4929 ? long_long_unsigned_type_node
4930 : long_long_integer_type_node;
4931 if (int128_integer_type_node && (type1 == int128_integer_type_node || type1 == int128_unsigned_type_node))
4932 return unsignedp
4933 ? int128_unsigned_type_node
4934 : int128_integer_type_node;
4935 #if HOST_BITS_PER_WIDE_INT >= 64
4936 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
4937 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
4938 #endif
4939 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
4940 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
4941 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
4942 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
4943 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
4944 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
4945 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
4946 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
4947
4948 #define GIMPLE_FIXED_TYPES(NAME) \
4949 if (type1 == short_ ## NAME ## _type_node \
4950 || type1 == unsigned_short_ ## NAME ## _type_node) \
4951 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
4952 : short_ ## NAME ## _type_node; \
4953 if (type1 == NAME ## _type_node \
4954 || type1 == unsigned_ ## NAME ## _type_node) \
4955 return unsignedp ? unsigned_ ## NAME ## _type_node \
4956 : NAME ## _type_node; \
4957 if (type1 == long_ ## NAME ## _type_node \
4958 || type1 == unsigned_long_ ## NAME ## _type_node) \
4959 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
4960 : long_ ## NAME ## _type_node; \
4961 if (type1 == long_long_ ## NAME ## _type_node \
4962 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
4963 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
4964 : long_long_ ## NAME ## _type_node;
4965
4966 #define GIMPLE_FIXED_MODE_TYPES(NAME) \
4967 if (type1 == NAME ## _type_node \
4968 || type1 == u ## NAME ## _type_node) \
4969 return unsignedp ? u ## NAME ## _type_node \
4970 : NAME ## _type_node;
4971
4972 #define GIMPLE_FIXED_TYPES_SAT(NAME) \
4973 if (type1 == sat_ ## short_ ## NAME ## _type_node \
4974 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
4975 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
4976 : sat_ ## short_ ## NAME ## _type_node; \
4977 if (type1 == sat_ ## NAME ## _type_node \
4978 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
4979 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
4980 : sat_ ## NAME ## _type_node; \
4981 if (type1 == sat_ ## long_ ## NAME ## _type_node \
4982 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
4983 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
4984 : sat_ ## long_ ## NAME ## _type_node; \
4985 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
4986 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
4987 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
4988 : sat_ ## long_long_ ## NAME ## _type_node;
4989
4990 #define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
4991 if (type1 == sat_ ## NAME ## _type_node \
4992 || type1 == sat_ ## u ## NAME ## _type_node) \
4993 return unsignedp ? sat_ ## u ## NAME ## _type_node \
4994 : sat_ ## NAME ## _type_node;
4995
4996 GIMPLE_FIXED_TYPES (fract);
4997 GIMPLE_FIXED_TYPES_SAT (fract);
4998 GIMPLE_FIXED_TYPES (accum);
4999 GIMPLE_FIXED_TYPES_SAT (accum);
5000
5001 GIMPLE_FIXED_MODE_TYPES (qq);
5002 GIMPLE_FIXED_MODE_TYPES (hq);
5003 GIMPLE_FIXED_MODE_TYPES (sq);
5004 GIMPLE_FIXED_MODE_TYPES (dq);
5005 GIMPLE_FIXED_MODE_TYPES (tq);
5006 GIMPLE_FIXED_MODE_TYPES_SAT (qq);
5007 GIMPLE_FIXED_MODE_TYPES_SAT (hq);
5008 GIMPLE_FIXED_MODE_TYPES_SAT (sq);
5009 GIMPLE_FIXED_MODE_TYPES_SAT (dq);
5010 GIMPLE_FIXED_MODE_TYPES_SAT (tq);
5011 GIMPLE_FIXED_MODE_TYPES (ha);
5012 GIMPLE_FIXED_MODE_TYPES (sa);
5013 GIMPLE_FIXED_MODE_TYPES (da);
5014 GIMPLE_FIXED_MODE_TYPES (ta);
5015 GIMPLE_FIXED_MODE_TYPES_SAT (ha);
5016 GIMPLE_FIXED_MODE_TYPES_SAT (sa);
5017 GIMPLE_FIXED_MODE_TYPES_SAT (da);
5018 GIMPLE_FIXED_MODE_TYPES_SAT (ta);
5019
5020 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
5021 the precision; they have precision set to match their range, but
5022 may use a wider mode to match an ABI. If we change modes, we may
5023 wind up with bad conversions. For INTEGER_TYPEs in C, must check
5024 the precision as well, so as to yield correct results for
5025 bit-field types. C++ does not have these separate bit-field
5026 types, and producing a signed or unsigned variant of an
5027 ENUMERAL_TYPE may cause other problems as well. */
5028 if (!INTEGRAL_TYPE_P (type)
5029 || TYPE_UNSIGNED (type) == unsignedp)
5030 return type;
5031
5032 #define TYPE_OK(node) \
5033 (TYPE_MODE (type) == TYPE_MODE (node) \
5034 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
5035 if (TYPE_OK (signed_char_type_node))
5036 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
5037 if (TYPE_OK (integer_type_node))
5038 return unsignedp ? unsigned_type_node : integer_type_node;
5039 if (TYPE_OK (short_integer_type_node))
5040 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
5041 if (TYPE_OK (long_integer_type_node))
5042 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
5043 if (TYPE_OK (long_long_integer_type_node))
5044 return (unsignedp
5045 ? long_long_unsigned_type_node
5046 : long_long_integer_type_node);
5047 if (int128_integer_type_node && TYPE_OK (int128_integer_type_node))
5048 return (unsignedp
5049 ? int128_unsigned_type_node
5050 : int128_integer_type_node);
5051
5052 #if HOST_BITS_PER_WIDE_INT >= 64
5053 if (TYPE_OK (intTI_type_node))
5054 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
5055 #endif
5056 if (TYPE_OK (intDI_type_node))
5057 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
5058 if (TYPE_OK (intSI_type_node))
5059 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
5060 if (TYPE_OK (intHI_type_node))
5061 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
5062 if (TYPE_OK (intQI_type_node))
5063 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
5064
5065 #undef GIMPLE_FIXED_TYPES
5066 #undef GIMPLE_FIXED_MODE_TYPES
5067 #undef GIMPLE_FIXED_TYPES_SAT
5068 #undef GIMPLE_FIXED_MODE_TYPES_SAT
5069 #undef TYPE_OK
5070
5071 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
5072 }
5073
5074
5075 /* Return an unsigned type the same as TYPE in other respects. */
5076
5077 tree
5078 gimple_unsigned_type (tree type)
5079 {
5080 return gimple_signed_or_unsigned_type (true, type);
5081 }
5082
5083
5084 /* Return a signed type the same as TYPE in other respects. */
5085
5086 tree
5087 gimple_signed_type (tree type)
5088 {
5089 return gimple_signed_or_unsigned_type (false, type);
5090 }
5091
5092
5093 /* Return the typed-based alias set for T, which may be an expression
5094 or a type. Return -1 if we don't do anything special. */
5095
5096 alias_set_type
5097 gimple_get_alias_set (tree t)
5098 {
5099 tree u;
5100
5101 /* Permit type-punning when accessing a union, provided the access
5102 is directly through the union. For example, this code does not
5103 permit taking the address of a union member and then storing
5104 through it. Even the type-punning allowed here is a GCC
5105 extension, albeit a common and useful one; the C standard says
5106 that such accesses have implementation-defined behavior. */
5107 for (u = t;
5108 TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
5109 u = TREE_OPERAND (u, 0))
5110 if (TREE_CODE (u) == COMPONENT_REF
5111 && TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
5112 return 0;
5113
5114 /* That's all the expressions we handle specially. */
5115 if (!TYPE_P (t))
5116 return -1;
5117
5118 /* For convenience, follow the C standard when dealing with
5119 character types. Any object may be accessed via an lvalue that
5120 has character type. */
5121 if (t == char_type_node
5122 || t == signed_char_type_node
5123 || t == unsigned_char_type_node)
5124 return 0;
5125
5126 /* Allow aliasing between signed and unsigned variants of the same
5127 type. We treat the signed variant as canonical. */
5128 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
5129 {
5130 tree t1 = gimple_signed_type (t);
5131
5132 /* t1 == t can happen for boolean nodes which are always unsigned. */
5133 if (t1 != t)
5134 return get_alias_set (t1);
5135 }
5136
5137 return -1;
5138 }
5139
5140
5141 /* Data structure used to count the number of dereferences to PTR
5142 inside an expression. */
5143 struct count_ptr_d
5144 {
5145 tree ptr;
5146 unsigned num_stores;
5147 unsigned num_loads;
5148 };
5149
5150 /* Helper for count_uses_and_derefs. Called by walk_tree to look for
5151 (ALIGN/MISALIGNED_)INDIRECT_REF nodes for the pointer passed in DATA. */
5152
5153 static tree
5154 count_ptr_derefs (tree *tp, int *walk_subtrees, void *data)
5155 {
5156 struct walk_stmt_info *wi_p = (struct walk_stmt_info *) data;
5157 struct count_ptr_d *count_p = (struct count_ptr_d *) wi_p->info;
5158
5159 /* Do not walk inside ADDR_EXPR nodes. In the expression &ptr->fld,
5160 pointer 'ptr' is *not* dereferenced, it is simply used to compute
5161 the address of 'fld' as 'ptr + offsetof(fld)'. */
5162 if (TREE_CODE (*tp) == ADDR_EXPR)
5163 {
5164 *walk_subtrees = 0;
5165 return NULL_TREE;
5166 }
5167
5168 if (TREE_CODE (*tp) == MEM_REF && TREE_OPERAND (*tp, 0) == count_p->ptr)
5169 {
5170 if (wi_p->is_lhs)
5171 count_p->num_stores++;
5172 else
5173 count_p->num_loads++;
5174 }
5175
5176 return NULL_TREE;
5177 }
5178
5179 /* Count the number of direct and indirect uses for pointer PTR in
5180 statement STMT. The number of direct uses is stored in
5181 *NUM_USES_P. Indirect references are counted separately depending
5182 on whether they are store or load operations. The counts are
5183 stored in *NUM_STORES_P and *NUM_LOADS_P. */
5184
5185 void
5186 count_uses_and_derefs (tree ptr, gimple stmt, unsigned *num_uses_p,
5187 unsigned *num_loads_p, unsigned *num_stores_p)
5188 {
5189 ssa_op_iter i;
5190 tree use;
5191
5192 *num_uses_p = 0;
5193 *num_loads_p = 0;
5194 *num_stores_p = 0;
5195
5196 /* Find out the total number of uses of PTR in STMT. */
5197 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
5198 if (use == ptr)
5199 (*num_uses_p)++;
5200
5201 /* Now count the number of indirect references to PTR. This is
5202 truly awful, but we don't have much choice. There are no parent
5203 pointers inside INDIRECT_REFs, so an expression like
5204 '*x_1 = foo (x_1, *x_1)' needs to be traversed piece by piece to
5205 find all the indirect and direct uses of x_1 inside. The only
5206 shortcut we can take is the fact that GIMPLE only allows
5207 INDIRECT_REFs inside the expressions below. */
5208 if (is_gimple_assign (stmt)
5209 || gimple_code (stmt) == GIMPLE_RETURN
5210 || gimple_code (stmt) == GIMPLE_ASM
5211 || is_gimple_call (stmt))
5212 {
5213 struct walk_stmt_info wi;
5214 struct count_ptr_d count;
5215
5216 count.ptr = ptr;
5217 count.num_stores = 0;
5218 count.num_loads = 0;
5219
5220 memset (&wi, 0, sizeof (wi));
5221 wi.info = &count;
5222 walk_gimple_op (stmt, count_ptr_derefs, &wi);
5223
5224 *num_stores_p = count.num_stores;
5225 *num_loads_p = count.num_loads;
5226 }
5227
5228 gcc_assert (*num_uses_p >= *num_loads_p + *num_stores_p);
5229 }
5230
5231 /* From a tree operand OP return the base of a load or store operation
5232 or NULL_TREE if OP is not a load or a store. */
5233
5234 static tree
5235 get_base_loadstore (tree op)
5236 {
5237 while (handled_component_p (op))
5238 op = TREE_OPERAND (op, 0);
5239 if (DECL_P (op)
5240 || INDIRECT_REF_P (op)
5241 || TREE_CODE (op) == MEM_REF
5242 || TREE_CODE (op) == TARGET_MEM_REF)
5243 return op;
5244 return NULL_TREE;
5245 }
5246
5247 /* For the statement STMT call the callbacks VISIT_LOAD, VISIT_STORE and
5248 VISIT_ADDR if non-NULL on loads, store and address-taken operands
5249 passing the STMT, the base of the operand and DATA to it. The base
5250 will be either a decl, an indirect reference (including TARGET_MEM_REF)
5251 or the argument of an address expression.
5252 Returns the results of these callbacks or'ed. */
5253
5254 bool
5255 walk_stmt_load_store_addr_ops (gimple stmt, void *data,
5256 bool (*visit_load)(gimple, tree, void *),
5257 bool (*visit_store)(gimple, tree, void *),
5258 bool (*visit_addr)(gimple, tree, void *))
5259 {
5260 bool ret = false;
5261 unsigned i;
5262 if (gimple_assign_single_p (stmt))
5263 {
5264 tree lhs, rhs;
5265 if (visit_store)
5266 {
5267 lhs = get_base_loadstore (gimple_assign_lhs (stmt));
5268 if (lhs)
5269 ret |= visit_store (stmt, lhs, data);
5270 }
5271 rhs = gimple_assign_rhs1 (stmt);
5272 while (handled_component_p (rhs))
5273 rhs = TREE_OPERAND (rhs, 0);
5274 if (visit_addr)
5275 {
5276 if (TREE_CODE (rhs) == ADDR_EXPR)
5277 ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data);
5278 else if (TREE_CODE (rhs) == TARGET_MEM_REF
5279 && TREE_CODE (TMR_BASE (rhs)) == ADDR_EXPR)
5280 ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (rhs), 0), data);
5281 else if (TREE_CODE (rhs) == OBJ_TYPE_REF
5282 && TREE_CODE (OBJ_TYPE_REF_OBJECT (rhs)) == ADDR_EXPR)
5283 ret |= visit_addr (stmt, TREE_OPERAND (OBJ_TYPE_REF_OBJECT (rhs),
5284 0), data);
5285 else if (TREE_CODE (rhs) == CONSTRUCTOR)
5286 {
5287 unsigned int ix;
5288 tree val;
5289
5290 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (rhs), ix, val)
5291 if (TREE_CODE (val) == ADDR_EXPR)
5292 ret |= visit_addr (stmt, TREE_OPERAND (val, 0), data);
5293 else if (TREE_CODE (val) == OBJ_TYPE_REF
5294 && TREE_CODE (OBJ_TYPE_REF_OBJECT (val)) == ADDR_EXPR)
5295 ret |= visit_addr (stmt,
5296 TREE_OPERAND (OBJ_TYPE_REF_OBJECT (val),
5297 0), data);
5298 }
5299 lhs = gimple_assign_lhs (stmt);
5300 if (TREE_CODE (lhs) == TARGET_MEM_REF
5301 && TREE_CODE (TMR_BASE (lhs)) == ADDR_EXPR)
5302 ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (lhs), 0), data);
5303 }
5304 if (visit_load)
5305 {
5306 rhs = get_base_loadstore (rhs);
5307 if (rhs)
5308 ret |= visit_load (stmt, rhs, data);
5309 }
5310 }
5311 else if (visit_addr
5312 && (is_gimple_assign (stmt)
5313 || gimple_code (stmt) == GIMPLE_COND))
5314 {
5315 for (i = 0; i < gimple_num_ops (stmt); ++i)
5316 if (gimple_op (stmt, i)
5317 && TREE_CODE (gimple_op (stmt, i)) == ADDR_EXPR)
5318 ret |= visit_addr (stmt, TREE_OPERAND (gimple_op (stmt, i), 0), data);
5319 }
5320 else if (is_gimple_call (stmt))
5321 {
5322 if (visit_store)
5323 {
5324 tree lhs = gimple_call_lhs (stmt);
5325 if (lhs)
5326 {
5327 lhs = get_base_loadstore (lhs);
5328 if (lhs)
5329 ret |= visit_store (stmt, lhs, data);
5330 }
5331 }
5332 if (visit_load || visit_addr)
5333 for (i = 0; i < gimple_call_num_args (stmt); ++i)
5334 {
5335 tree rhs = gimple_call_arg (stmt, i);
5336 if (visit_addr
5337 && TREE_CODE (rhs) == ADDR_EXPR)
5338 ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data);
5339 else if (visit_load)
5340 {
5341 rhs = get_base_loadstore (rhs);
5342 if (rhs)
5343 ret |= visit_load (stmt, rhs, data);
5344 }
5345 }
5346 if (visit_addr
5347 && gimple_call_chain (stmt)
5348 && TREE_CODE (gimple_call_chain (stmt)) == ADDR_EXPR)
5349 ret |= visit_addr (stmt, TREE_OPERAND (gimple_call_chain (stmt), 0),
5350 data);
5351 if (visit_addr
5352 && gimple_call_return_slot_opt_p (stmt)
5353 && gimple_call_lhs (stmt) != NULL_TREE
5354 && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt))))
5355 ret |= visit_addr (stmt, gimple_call_lhs (stmt), data);
5356 }
5357 else if (gimple_code (stmt) == GIMPLE_ASM)
5358 {
5359 unsigned noutputs;
5360 const char *constraint;
5361 const char **oconstraints;
5362 bool allows_mem, allows_reg, is_inout;
5363 noutputs = gimple_asm_noutputs (stmt);
5364 oconstraints = XALLOCAVEC (const char *, noutputs);
5365 if (visit_store || visit_addr)
5366 for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
5367 {
5368 tree link = gimple_asm_output_op (stmt, i);
5369 tree op = get_base_loadstore (TREE_VALUE (link));
5370 if (op && visit_store)
5371 ret |= visit_store (stmt, op, data);
5372 if (visit_addr)
5373 {
5374 constraint = TREE_STRING_POINTER
5375 (TREE_VALUE (TREE_PURPOSE (link)));
5376 oconstraints[i] = constraint;
5377 parse_output_constraint (&constraint, i, 0, 0, &allows_mem,
5378 &allows_reg, &is_inout);
5379 if (op && !allows_reg && allows_mem)
5380 ret |= visit_addr (stmt, op, data);
5381 }
5382 }
5383 if (visit_load || visit_addr)
5384 for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
5385 {
5386 tree link = gimple_asm_input_op (stmt, i);
5387 tree op = TREE_VALUE (link);
5388 if (visit_addr
5389 && TREE_CODE (op) == ADDR_EXPR)
5390 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
5391 else if (visit_load || visit_addr)
5392 {
5393 op = get_base_loadstore (op);
5394 if (op)
5395 {
5396 if (visit_load)
5397 ret |= visit_load (stmt, op, data);
5398 if (visit_addr)
5399 {
5400 constraint = TREE_STRING_POINTER
5401 (TREE_VALUE (TREE_PURPOSE (link)));
5402 parse_input_constraint (&constraint, 0, 0, noutputs,
5403 0, oconstraints,
5404 &allows_mem, &allows_reg);
5405 if (!allows_reg && allows_mem)
5406 ret |= visit_addr (stmt, op, data);
5407 }
5408 }
5409 }
5410 }
5411 }
5412 else if (gimple_code (stmt) == GIMPLE_RETURN)
5413 {
5414 tree op = gimple_return_retval (stmt);
5415 if (op)
5416 {
5417 if (visit_addr
5418 && TREE_CODE (op) == ADDR_EXPR)
5419 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
5420 else if (visit_load)
5421 {
5422 op = get_base_loadstore (op);
5423 if (op)
5424 ret |= visit_load (stmt, op, data);
5425 }
5426 }
5427 }
5428 else if (visit_addr
5429 && gimple_code (stmt) == GIMPLE_PHI)
5430 {
5431 for (i = 0; i < gimple_phi_num_args (stmt); ++i)
5432 {
5433 tree op = PHI_ARG_DEF (stmt, i);
5434 if (TREE_CODE (op) == ADDR_EXPR)
5435 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
5436 }
5437 }
5438
5439 return ret;
5440 }
5441
5442 /* Like walk_stmt_load_store_addr_ops but with NULL visit_addr. IPA-CP
5443 should make a faster clone for this case. */
5444
5445 bool
5446 walk_stmt_load_store_ops (gimple stmt, void *data,
5447 bool (*visit_load)(gimple, tree, void *),
5448 bool (*visit_store)(gimple, tree, void *))
5449 {
5450 return walk_stmt_load_store_addr_ops (stmt, data,
5451 visit_load, visit_store, NULL);
5452 }
5453
5454 /* Helper for gimple_ior_addresses_taken_1. */
5455
5456 static bool
5457 gimple_ior_addresses_taken_1 (gimple stmt ATTRIBUTE_UNUSED,
5458 tree addr, void *data)
5459 {
5460 bitmap addresses_taken = (bitmap)data;
5461 addr = get_base_address (addr);
5462 if (addr
5463 && DECL_P (addr))
5464 {
5465 bitmap_set_bit (addresses_taken, DECL_UID (addr));
5466 return true;
5467 }
5468 return false;
5469 }
5470
5471 /* Set the bit for the uid of all decls that have their address taken
5472 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
5473 were any in this stmt. */
5474
5475 bool
5476 gimple_ior_addresses_taken (bitmap addresses_taken, gimple stmt)
5477 {
5478 return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
5479 gimple_ior_addresses_taken_1);
5480 }
5481
5482
5483 /* Return a printable name for symbol DECL. */
5484
5485 const char *
5486 gimple_decl_printable_name (tree decl, int verbosity)
5487 {
5488 if (!DECL_NAME (decl))
5489 return NULL;
5490
5491 if (DECL_ASSEMBLER_NAME_SET_P (decl))
5492 {
5493 const char *str, *mangled_str;
5494 int dmgl_opts = DMGL_NO_OPTS;
5495
5496 if (verbosity >= 2)
5497 {
5498 dmgl_opts = DMGL_VERBOSE
5499 | DMGL_ANSI
5500 | DMGL_GNU_V3
5501 | DMGL_RET_POSTFIX;
5502 if (TREE_CODE (decl) == FUNCTION_DECL)
5503 dmgl_opts |= DMGL_PARAMS;
5504 }
5505
5506 mangled_str = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
5507 str = cplus_demangle_v3 (mangled_str, dmgl_opts);
5508 return (str) ? str : mangled_str;
5509 }
5510
5511 return IDENTIFIER_POINTER (DECL_NAME (decl));
5512 }
5513
5514 /* Return true when STMT is builtins call to CODE. */
5515
5516 bool
5517 gimple_call_builtin_p (gimple stmt, enum built_in_function code)
5518 {
5519 tree fndecl;
5520 return (is_gimple_call (stmt)
5521 && (fndecl = gimple_call_fndecl (stmt)) != NULL
5522 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
5523 && DECL_FUNCTION_CODE (fndecl) == code);
5524 }
5525
5526 /* Return true if STMT clobbers memory. STMT is required to be a
5527 GIMPLE_ASM. */
5528
5529 bool
5530 gimple_asm_clobbers_memory_p (const_gimple stmt)
5531 {
5532 unsigned i;
5533
5534 for (i = 0; i < gimple_asm_nclobbers (stmt); i++)
5535 {
5536 tree op = gimple_asm_clobber_op (stmt, i);
5537 if (strcmp (TREE_STRING_POINTER (TREE_VALUE (op)), "memory") == 0)
5538 return true;
5539 }
5540
5541 return false;
5542 }
5543 #include "gt-gimple.h"