gimple.h (gimple_call_set_fn): Move inline function.
[gcc.git] / gcc / gimple.c
1 /* Gimple IR support functions.
2
3 Copyright (C) 2007-2015 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "target.h"
27 #include "alias.h"
28 #include "symtab.h"
29 #include "tree.h"
30 #include "fold-const.h"
31 #include "calls.h"
32 #include "stmt.h"
33 #include "stor-layout.h"
34 #include "hard-reg-set.h"
35 #include "predict.h"
36 #include "function.h"
37 #include "dominance.h"
38 #include "cfg.h"
39 #include "basic-block.h"
40 #include "tree-ssa-alias.h"
41 #include "internal-fn.h"
42 #include "tree-eh.h"
43 #include "gimple-expr.h"
44 #include "gimple.h"
45 #include "gimple-iterator.h"
46 #include "gimple-walk.h"
47 #include "gimple.h"
48 #include "gimplify.h"
49 #include "diagnostic.h"
50 #include "value-prof.h"
51 #include "flags.h"
52 #include "alias.h"
53 #include "demangle.h"
54 #include "langhooks.h"
55 #include "bitmap.h"
56 #include "stringpool.h"
57 #include "tree-ssanames.h"
58 #include "lto-streamer.h"
59 #include "cgraph.h"
60 #include "gimple-ssa.h"
61
62
63 /* All the tuples have their operand vector (if present) at the very bottom
64 of the structure. Therefore, the offset required to find the
65 operands vector the size of the structure minus the size of the 1
66 element tree array at the end (see gimple_ops). */
67 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
68 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
69 EXPORTED_CONST size_t gimple_ops_offset_[] = {
70 #include "gsstruct.def"
71 };
72 #undef DEFGSSTRUCT
73
74 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof (struct STRUCT),
75 static const size_t gsstruct_code_size[] = {
76 #include "gsstruct.def"
77 };
78 #undef DEFGSSTRUCT
79
80 #define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
81 const char *const gimple_code_name[] = {
82 #include "gimple.def"
83 };
84 #undef DEFGSCODE
85
86 #define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
87 EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
88 #include "gimple.def"
89 };
90 #undef DEFGSCODE
91
92 /* Gimple stats. */
93
94 int gimple_alloc_counts[(int) gimple_alloc_kind_all];
95 int gimple_alloc_sizes[(int) gimple_alloc_kind_all];
96
97 /* Keep in sync with gimple.h:enum gimple_alloc_kind. */
98 static const char * const gimple_alloc_kind_names[] = {
99 "assignments",
100 "phi nodes",
101 "conditionals",
102 "everything else"
103 };
104
105 /* Gimple tuple constructors.
106 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
107 be passed a NULL to start with an empty sequence. */
108
109 /* Set the code for statement G to CODE. */
110
111 static inline void
112 gimple_set_code (gimple g, enum gimple_code code)
113 {
114 g->code = code;
115 }
116
117 /* Return the number of bytes needed to hold a GIMPLE statement with
118 code CODE. */
119
120 static inline size_t
121 gimple_size (enum gimple_code code)
122 {
123 return gsstruct_code_size[gss_for_code (code)];
124 }
125
126 /* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
127 operands. */
128
129 gimple
130 gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
131 {
132 size_t size;
133 gimple stmt;
134
135 size = gimple_size (code);
136 if (num_ops > 0)
137 size += sizeof (tree) * (num_ops - 1);
138
139 if (GATHER_STATISTICS)
140 {
141 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
142 gimple_alloc_counts[(int) kind]++;
143 gimple_alloc_sizes[(int) kind] += size;
144 }
145
146 stmt = ggc_alloc_cleared_gimple_statement_stat (size PASS_MEM_STAT);
147 gimple_set_code (stmt, code);
148 gimple_set_num_ops (stmt, num_ops);
149
150 /* Do not call gimple_set_modified here as it has other side
151 effects and this tuple is still not completely built. */
152 stmt->modified = 1;
153 gimple_init_singleton (stmt);
154
155 return stmt;
156 }
157
158 /* Set SUBCODE to be the code of the expression computed by statement G. */
159
160 static inline void
161 gimple_set_subcode (gimple g, unsigned subcode)
162 {
163 /* We only have 16 bits for the RHS code. Assert that we are not
164 overflowing it. */
165 gcc_assert (subcode < (1 << 16));
166 g->subcode = subcode;
167 }
168
169
170
171 /* Build a tuple with operands. CODE is the statement to build (which
172 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the subcode
173 for the new tuple. NUM_OPS is the number of operands to allocate. */
174
175 #define gimple_build_with_ops(c, s, n) \
176 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
177
178 static gimple
179 gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
180 unsigned num_ops MEM_STAT_DECL)
181 {
182 gimple s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT);
183 gimple_set_subcode (s, subcode);
184
185 return s;
186 }
187
188
189 /* Build a GIMPLE_RETURN statement returning RETVAL. */
190
191 greturn *
192 gimple_build_return (tree retval)
193 {
194 greturn *s
195 = as_a <greturn *> (gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK,
196 2));
197 if (retval)
198 gimple_return_set_retval (s, retval);
199 return s;
200 }
201
202 /* Set FNDECL to be the function called by call statement GS. */
203
204 void
205 gimple_call_set_fndecl (gimple gs, tree decl)
206 {
207 GIMPLE_CHECK (gs, GIMPLE_CALL);
208 gcc_gimple_checking_assert (!gimple_call_internal_p (gs));
209 gimple_set_op (gs, 1, build_fold_addr_expr_loc (gimple_location (gs), decl));
210 }
211
212 /* Reset alias information on call S. */
213
214 void
215 gimple_call_reset_alias_info (gcall *s)
216 {
217 if (gimple_call_flags (s) & ECF_CONST)
218 memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
219 else
220 pt_solution_reset (gimple_call_use_set (s));
221 if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
222 memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
223 else
224 pt_solution_reset (gimple_call_clobber_set (s));
225 }
226
227 /* Helper for gimple_build_call, gimple_build_call_valist,
228 gimple_build_call_vec and gimple_build_call_from_tree. Build the basic
229 components of a GIMPLE_CALL statement to function FN with NARGS
230 arguments. */
231
232 static inline gcall *
233 gimple_build_call_1 (tree fn, unsigned nargs)
234 {
235 gcall *s
236 = as_a <gcall *> (gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK,
237 nargs + 3));
238 if (TREE_CODE (fn) == FUNCTION_DECL)
239 fn = build_fold_addr_expr (fn);
240 gimple_set_op (s, 1, fn);
241 gimple_call_set_fntype (s, TREE_TYPE (TREE_TYPE (fn)));
242 gimple_call_reset_alias_info (s);
243 return s;
244 }
245
246
247 /* Build a GIMPLE_CALL statement to function FN with the arguments
248 specified in vector ARGS. */
249
250 gcall *
251 gimple_build_call_vec (tree fn, vec<tree> args)
252 {
253 unsigned i;
254 unsigned nargs = args.length ();
255 gcall *call = gimple_build_call_1 (fn, nargs);
256
257 for (i = 0; i < nargs; i++)
258 gimple_call_set_arg (call, i, args[i]);
259
260 return call;
261 }
262
263
264 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
265 arguments. The ... are the arguments. */
266
267 gcall *
268 gimple_build_call (tree fn, unsigned nargs, ...)
269 {
270 va_list ap;
271 gcall *call;
272 unsigned i;
273
274 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
275
276 call = gimple_build_call_1 (fn, nargs);
277
278 va_start (ap, nargs);
279 for (i = 0; i < nargs; i++)
280 gimple_call_set_arg (call, i, va_arg (ap, tree));
281 va_end (ap);
282
283 return call;
284 }
285
286
287 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
288 arguments. AP contains the arguments. */
289
290 gcall *
291 gimple_build_call_valist (tree fn, unsigned nargs, va_list ap)
292 {
293 gcall *call;
294 unsigned i;
295
296 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
297
298 call = gimple_build_call_1 (fn, nargs);
299
300 for (i = 0; i < nargs; i++)
301 gimple_call_set_arg (call, i, va_arg (ap, tree));
302
303 return call;
304 }
305
306
307 /* Helper for gimple_build_call_internal and gimple_build_call_internal_vec.
308 Build the basic components of a GIMPLE_CALL statement to internal
309 function FN with NARGS arguments. */
310
311 static inline gcall *
312 gimple_build_call_internal_1 (enum internal_fn fn, unsigned nargs)
313 {
314 gcall *s
315 = as_a <gcall *> (gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK,
316 nargs + 3));
317 s->subcode |= GF_CALL_INTERNAL;
318 gimple_call_set_internal_fn (s, fn);
319 gimple_call_reset_alias_info (s);
320 return s;
321 }
322
323
324 /* Build a GIMPLE_CALL statement to internal function FN. NARGS is
325 the number of arguments. The ... are the arguments. */
326
327 gcall *
328 gimple_build_call_internal (enum internal_fn fn, unsigned nargs, ...)
329 {
330 va_list ap;
331 gcall *call;
332 unsigned i;
333
334 call = gimple_build_call_internal_1 (fn, nargs);
335 va_start (ap, nargs);
336 for (i = 0; i < nargs; i++)
337 gimple_call_set_arg (call, i, va_arg (ap, tree));
338 va_end (ap);
339
340 return call;
341 }
342
343
344 /* Build a GIMPLE_CALL statement to internal function FN with the arguments
345 specified in vector ARGS. */
346
347 gcall *
348 gimple_build_call_internal_vec (enum internal_fn fn, vec<tree> args)
349 {
350 unsigned i, nargs;
351 gcall *call;
352
353 nargs = args.length ();
354 call = gimple_build_call_internal_1 (fn, nargs);
355 for (i = 0; i < nargs; i++)
356 gimple_call_set_arg (call, i, args[i]);
357
358 return call;
359 }
360
361
362 /* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
363 assumed to be in GIMPLE form already. Minimal checking is done of
364 this fact. */
365
366 gcall *
367 gimple_build_call_from_tree (tree t)
368 {
369 unsigned i, nargs;
370 gcall *call;
371 tree fndecl = get_callee_fndecl (t);
372
373 gcc_assert (TREE_CODE (t) == CALL_EXPR);
374
375 nargs = call_expr_nargs (t);
376 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
377
378 for (i = 0; i < nargs; i++)
379 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
380
381 gimple_set_block (call, TREE_BLOCK (t));
382
383 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
384 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
385 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
386 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
387 if (fndecl
388 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
389 && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA
390 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN))
391 gimple_call_set_alloca_for_var (call, CALL_ALLOCA_FOR_VAR_P (t));
392 else
393 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
394 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
395 gimple_call_set_nothrow (call, TREE_NOTHROW (t));
396 gimple_set_no_warning (call, TREE_NO_WARNING (t));
397 gimple_call_set_with_bounds (call, CALL_WITH_BOUNDS_P (t));
398
399 return call;
400 }
401
402
403 /* Build a GIMPLE_ASSIGN statement.
404
405 LHS of the assignment.
406 RHS of the assignment which can be unary or binary. */
407
408 gassign *
409 gimple_build_assign (tree lhs, tree rhs MEM_STAT_DECL)
410 {
411 enum tree_code subcode;
412 tree op1, op2, op3;
413
414 extract_ops_from_tree_1 (rhs, &subcode, &op1, &op2, &op3);
415 return gimple_build_assign (lhs, subcode, op1, op2, op3 PASS_MEM_STAT);
416 }
417
418
419 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
420 OP1, OP2 and OP3. */
421
422 static inline gassign *
423 gimple_build_assign_1 (tree lhs, enum tree_code subcode, tree op1,
424 tree op2, tree op3 MEM_STAT_DECL)
425 {
426 unsigned num_ops;
427 gassign *p;
428
429 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
430 code). */
431 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
432
433 p = as_a <gassign *> (
434 gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
435 PASS_MEM_STAT));
436 gimple_assign_set_lhs (p, lhs);
437 gimple_assign_set_rhs1 (p, op1);
438 if (op2)
439 {
440 gcc_assert (num_ops > 2);
441 gimple_assign_set_rhs2 (p, op2);
442 }
443
444 if (op3)
445 {
446 gcc_assert (num_ops > 3);
447 gimple_assign_set_rhs3 (p, op3);
448 }
449
450 return p;
451 }
452
453 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
454 OP1, OP2 and OP3. */
455
456 gassign *
457 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1,
458 tree op2, tree op3 MEM_STAT_DECL)
459 {
460 return gimple_build_assign_1 (lhs, subcode, op1, op2, op3 PASS_MEM_STAT);
461 }
462
463 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
464 OP1 and OP2. */
465
466 gassign *
467 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1,
468 tree op2 MEM_STAT_DECL)
469 {
470 return gimple_build_assign_1 (lhs, subcode, op1, op2, NULL_TREE
471 PASS_MEM_STAT);
472 }
473
474 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operand OP1. */
475
476 gassign *
477 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1 MEM_STAT_DECL)
478 {
479 return gimple_build_assign_1 (lhs, subcode, op1, NULL_TREE, NULL_TREE
480 PASS_MEM_STAT);
481 }
482
483
484 /* Build a GIMPLE_COND statement.
485
486 PRED is the condition used to compare LHS and the RHS.
487 T_LABEL is the label to jump to if the condition is true.
488 F_LABEL is the label to jump to otherwise. */
489
490 gcond *
491 gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
492 tree t_label, tree f_label)
493 {
494 gcond *p;
495
496 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
497 p = as_a <gcond *> (gimple_build_with_ops (GIMPLE_COND, pred_code, 4));
498 gimple_cond_set_lhs (p, lhs);
499 gimple_cond_set_rhs (p, rhs);
500 gimple_cond_set_true_label (p, t_label);
501 gimple_cond_set_false_label (p, f_label);
502 return p;
503 }
504
505 /* Build a GIMPLE_COND statement from the conditional expression tree
506 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
507
508 gcond *
509 gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
510 {
511 enum tree_code code;
512 tree lhs, rhs;
513
514 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
515 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
516 }
517
518 /* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
519 boolean expression tree COND. */
520
521 void
522 gimple_cond_set_condition_from_tree (gcond *stmt, tree cond)
523 {
524 enum tree_code code;
525 tree lhs, rhs;
526
527 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
528 gimple_cond_set_condition (stmt, code, lhs, rhs);
529 }
530
531 /* Build a GIMPLE_LABEL statement for LABEL. */
532
533 glabel *
534 gimple_build_label (tree label)
535 {
536 glabel *p
537 = as_a <glabel *> (gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1));
538 gimple_label_set_label (p, label);
539 return p;
540 }
541
542 /* Build a GIMPLE_GOTO statement to label DEST. */
543
544 ggoto *
545 gimple_build_goto (tree dest)
546 {
547 ggoto *p
548 = as_a <ggoto *> (gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1));
549 gimple_goto_set_dest (p, dest);
550 return p;
551 }
552
553
554 /* Build a GIMPLE_NOP statement. */
555
556 gimple
557 gimple_build_nop (void)
558 {
559 return gimple_alloc (GIMPLE_NOP, 0);
560 }
561
562
563 /* Build a GIMPLE_BIND statement.
564 VARS are the variables in BODY.
565 BLOCK is the containing block. */
566
567 gbind *
568 gimple_build_bind (tree vars, gimple_seq body, tree block)
569 {
570 gbind *p = as_a <gbind *> (gimple_alloc (GIMPLE_BIND, 0));
571 gimple_bind_set_vars (p, vars);
572 if (body)
573 gimple_bind_set_body (p, body);
574 if (block)
575 gimple_bind_set_block (p, block);
576 return p;
577 }
578
579 /* Helper function to set the simple fields of a asm stmt.
580
581 STRING is a pointer to a string that is the asm blocks assembly code.
582 NINPUT is the number of register inputs.
583 NOUTPUT is the number of register outputs.
584 NCLOBBERS is the number of clobbered registers.
585 */
586
587 static inline gasm *
588 gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
589 unsigned nclobbers, unsigned nlabels)
590 {
591 gasm *p;
592 int size = strlen (string);
593
594 /* ASMs with labels cannot have outputs. This should have been
595 enforced by the front end. */
596 gcc_assert (nlabels == 0 || noutputs == 0);
597
598 p = as_a <gasm *> (
599 gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
600 ninputs + noutputs + nclobbers + nlabels));
601
602 p->ni = ninputs;
603 p->no = noutputs;
604 p->nc = nclobbers;
605 p->nl = nlabels;
606 p->string = ggc_alloc_string (string, size);
607
608 if (GATHER_STATISTICS)
609 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
610
611 return p;
612 }
613
614 /* Build a GIMPLE_ASM statement.
615
616 STRING is the assembly code.
617 NINPUT is the number of register inputs.
618 NOUTPUT is the number of register outputs.
619 NCLOBBERS is the number of clobbered registers.
620 INPUTS is a vector of the input register parameters.
621 OUTPUTS is a vector of the output register parameters.
622 CLOBBERS is a vector of the clobbered register parameters.
623 LABELS is a vector of destination labels. */
624
625 gasm *
626 gimple_build_asm_vec (const char *string, vec<tree, va_gc> *inputs,
627 vec<tree, va_gc> *outputs, vec<tree, va_gc> *clobbers,
628 vec<tree, va_gc> *labels)
629 {
630 gasm *p;
631 unsigned i;
632
633 p = gimple_build_asm_1 (string,
634 vec_safe_length (inputs),
635 vec_safe_length (outputs),
636 vec_safe_length (clobbers),
637 vec_safe_length (labels));
638
639 for (i = 0; i < vec_safe_length (inputs); i++)
640 gimple_asm_set_input_op (p, i, (*inputs)[i]);
641
642 for (i = 0; i < vec_safe_length (outputs); i++)
643 gimple_asm_set_output_op (p, i, (*outputs)[i]);
644
645 for (i = 0; i < vec_safe_length (clobbers); i++)
646 gimple_asm_set_clobber_op (p, i, (*clobbers)[i]);
647
648 for (i = 0; i < vec_safe_length (labels); i++)
649 gimple_asm_set_label_op (p, i, (*labels)[i]);
650
651 return p;
652 }
653
654 /* Build a GIMPLE_CATCH statement.
655
656 TYPES are the catch types.
657 HANDLER is the exception handler. */
658
659 gcatch *
660 gimple_build_catch (tree types, gimple_seq handler)
661 {
662 gcatch *p = as_a <gcatch *> (gimple_alloc (GIMPLE_CATCH, 0));
663 gimple_catch_set_types (p, types);
664 if (handler)
665 gimple_catch_set_handler (p, handler);
666
667 return p;
668 }
669
670 /* Build a GIMPLE_EH_FILTER statement.
671
672 TYPES are the filter's types.
673 FAILURE is the filter's failure action. */
674
675 geh_filter *
676 gimple_build_eh_filter (tree types, gimple_seq failure)
677 {
678 geh_filter *p = as_a <geh_filter *> (gimple_alloc (GIMPLE_EH_FILTER, 0));
679 gimple_eh_filter_set_types (p, types);
680 if (failure)
681 gimple_eh_filter_set_failure (p, failure);
682
683 return p;
684 }
685
686 /* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
687
688 geh_mnt *
689 gimple_build_eh_must_not_throw (tree decl)
690 {
691 geh_mnt *p = as_a <geh_mnt *> (gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0));
692
693 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
694 gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
695 gimple_eh_must_not_throw_set_fndecl (p, decl);
696
697 return p;
698 }
699
700 /* Build a GIMPLE_EH_ELSE statement. */
701
702 geh_else *
703 gimple_build_eh_else (gimple_seq n_body, gimple_seq e_body)
704 {
705 geh_else *p = as_a <geh_else *> (gimple_alloc (GIMPLE_EH_ELSE, 0));
706 gimple_eh_else_set_n_body (p, n_body);
707 gimple_eh_else_set_e_body (p, e_body);
708 return p;
709 }
710
711 /* Build a GIMPLE_TRY statement.
712
713 EVAL is the expression to evaluate.
714 CLEANUP is the cleanup expression.
715 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
716 whether this is a try/catch or a try/finally respectively. */
717
718 gtry *
719 gimple_build_try (gimple_seq eval, gimple_seq cleanup,
720 enum gimple_try_flags kind)
721 {
722 gtry *p;
723
724 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
725 p = as_a <gtry *> (gimple_alloc (GIMPLE_TRY, 0));
726 gimple_set_subcode (p, kind);
727 if (eval)
728 gimple_try_set_eval (p, eval);
729 if (cleanup)
730 gimple_try_set_cleanup (p, cleanup);
731
732 return p;
733 }
734
735 /* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
736
737 CLEANUP is the cleanup expression. */
738
739 gimple
740 gimple_build_wce (gimple_seq cleanup)
741 {
742 gimple p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
743 if (cleanup)
744 gimple_wce_set_cleanup (p, cleanup);
745
746 return p;
747 }
748
749
750 /* Build a GIMPLE_RESX statement. */
751
752 gresx *
753 gimple_build_resx (int region)
754 {
755 gresx *p
756 = as_a <gresx *> (gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0));
757 p->region = region;
758 return p;
759 }
760
761
762 /* The helper for constructing a gimple switch statement.
763 INDEX is the switch's index.
764 NLABELS is the number of labels in the switch excluding the default.
765 DEFAULT_LABEL is the default label for the switch statement. */
766
767 gswitch *
768 gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
769 {
770 /* nlabels + 1 default label + 1 index. */
771 gcc_checking_assert (default_label);
772 gswitch *p = as_a <gswitch *> (gimple_build_with_ops (GIMPLE_SWITCH,
773 ERROR_MARK,
774 1 + 1 + nlabels));
775 gimple_switch_set_index (p, index);
776 gimple_switch_set_default_label (p, default_label);
777 return p;
778 }
779
780 /* Build a GIMPLE_SWITCH statement.
781
782 INDEX is the switch's index.
783 DEFAULT_LABEL is the default label
784 ARGS is a vector of labels excluding the default. */
785
786 gswitch *
787 gimple_build_switch (tree index, tree default_label, vec<tree> args)
788 {
789 unsigned i, nlabels = args.length ();
790
791 gswitch *p = gimple_build_switch_nlabels (nlabels, index, default_label);
792
793 /* Copy the labels from the vector to the switch statement. */
794 for (i = 0; i < nlabels; i++)
795 gimple_switch_set_label (p, i + 1, args[i]);
796
797 return p;
798 }
799
800 /* Build a GIMPLE_EH_DISPATCH statement. */
801
802 geh_dispatch *
803 gimple_build_eh_dispatch (int region)
804 {
805 geh_dispatch *p
806 = as_a <geh_dispatch *> (
807 gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0));
808 p->region = region;
809 return p;
810 }
811
812 /* Build a new GIMPLE_DEBUG_BIND statement.
813
814 VAR is bound to VALUE; block and location are taken from STMT. */
815
816 gdebug *
817 gimple_build_debug_bind_stat (tree var, tree value, gimple stmt MEM_STAT_DECL)
818 {
819 gdebug *p
820 = as_a <gdebug *> (gimple_build_with_ops_stat (GIMPLE_DEBUG,
821 (unsigned)GIMPLE_DEBUG_BIND, 2
822 PASS_MEM_STAT));
823 gimple_debug_bind_set_var (p, var);
824 gimple_debug_bind_set_value (p, value);
825 if (stmt)
826 gimple_set_location (p, gimple_location (stmt));
827
828 return p;
829 }
830
831
832 /* Build a new GIMPLE_DEBUG_SOURCE_BIND statement.
833
834 VAR is bound to VALUE; block and location are taken from STMT. */
835
836 gdebug *
837 gimple_build_debug_source_bind_stat (tree var, tree value,
838 gimple stmt MEM_STAT_DECL)
839 {
840 gdebug *p
841 = as_a <gdebug *> (
842 gimple_build_with_ops_stat (GIMPLE_DEBUG,
843 (unsigned)GIMPLE_DEBUG_SOURCE_BIND, 2
844 PASS_MEM_STAT));
845
846 gimple_debug_source_bind_set_var (p, var);
847 gimple_debug_source_bind_set_value (p, value);
848 if (stmt)
849 gimple_set_location (p, gimple_location (stmt));
850
851 return p;
852 }
853
854
855 /* Build a GIMPLE_OMP_CRITICAL statement.
856
857 BODY is the sequence of statements for which only one thread can execute.
858 NAME is optional identifier for this critical block. */
859
860 gomp_critical *
861 gimple_build_omp_critical (gimple_seq body, tree name)
862 {
863 gomp_critical *p
864 = as_a <gomp_critical *> (gimple_alloc (GIMPLE_OMP_CRITICAL, 0));
865 gimple_omp_critical_set_name (p, name);
866 if (body)
867 gimple_omp_set_body (p, body);
868
869 return p;
870 }
871
872 /* Build a GIMPLE_OMP_FOR statement.
873
874 BODY is sequence of statements inside the for loop.
875 KIND is the `for' variant.
876 CLAUSES, are any of the construct's clauses.
877 COLLAPSE is the collapse count.
878 PRE_BODY is the sequence of statements that are loop invariant. */
879
880 gomp_for *
881 gimple_build_omp_for (gimple_seq body, int kind, tree clauses, size_t collapse,
882 gimple_seq pre_body)
883 {
884 gomp_for *p = as_a <gomp_for *> (gimple_alloc (GIMPLE_OMP_FOR, 0));
885 if (body)
886 gimple_omp_set_body (p, body);
887 gimple_omp_for_set_clauses (p, clauses);
888 gimple_omp_for_set_kind (p, kind);
889 p->collapse = collapse;
890 p->iter = ggc_cleared_vec_alloc<gimple_omp_for_iter> (collapse);
891
892 if (pre_body)
893 gimple_omp_for_set_pre_body (p, pre_body);
894
895 return p;
896 }
897
898
899 /* Build a GIMPLE_OMP_PARALLEL statement.
900
901 BODY is sequence of statements which are executed in parallel.
902 CLAUSES, are the OMP parallel construct's clauses.
903 CHILD_FN is the function created for the parallel threads to execute.
904 DATA_ARG are the shared data argument(s). */
905
906 gomp_parallel *
907 gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
908 tree data_arg)
909 {
910 gomp_parallel *p
911 = as_a <gomp_parallel *> (gimple_alloc (GIMPLE_OMP_PARALLEL, 0));
912 if (body)
913 gimple_omp_set_body (p, body);
914 gimple_omp_parallel_set_clauses (p, clauses);
915 gimple_omp_parallel_set_child_fn (p, child_fn);
916 gimple_omp_parallel_set_data_arg (p, data_arg);
917
918 return p;
919 }
920
921
922 /* Build a GIMPLE_OMP_TASK statement.
923
924 BODY is sequence of statements which are executed by the explicit task.
925 CLAUSES, are the OMP parallel construct's clauses.
926 CHILD_FN is the function created for the parallel threads to execute.
927 DATA_ARG are the shared data argument(s).
928 COPY_FN is the optional function for firstprivate initialization.
929 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
930
931 gomp_task *
932 gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
933 tree data_arg, tree copy_fn, tree arg_size,
934 tree arg_align)
935 {
936 gomp_task *p = as_a <gomp_task *> (gimple_alloc (GIMPLE_OMP_TASK, 0));
937 if (body)
938 gimple_omp_set_body (p, body);
939 gimple_omp_task_set_clauses (p, clauses);
940 gimple_omp_task_set_child_fn (p, child_fn);
941 gimple_omp_task_set_data_arg (p, data_arg);
942 gimple_omp_task_set_copy_fn (p, copy_fn);
943 gimple_omp_task_set_arg_size (p, arg_size);
944 gimple_omp_task_set_arg_align (p, arg_align);
945
946 return p;
947 }
948
949
950 /* Build a GIMPLE_OMP_SECTION statement for a sections statement.
951
952 BODY is the sequence of statements in the section. */
953
954 gimple
955 gimple_build_omp_section (gimple_seq body)
956 {
957 gimple p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
958 if (body)
959 gimple_omp_set_body (p, body);
960
961 return p;
962 }
963
964
965 /* Build a GIMPLE_OMP_MASTER statement.
966
967 BODY is the sequence of statements to be executed by just the master. */
968
969 gimple
970 gimple_build_omp_master (gimple_seq body)
971 {
972 gimple p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
973 if (body)
974 gimple_omp_set_body (p, body);
975
976 return p;
977 }
978
979
980 /* Build a GIMPLE_OMP_TASKGROUP statement.
981
982 BODY is the sequence of statements to be executed by the taskgroup
983 construct. */
984
985 gimple
986 gimple_build_omp_taskgroup (gimple_seq body)
987 {
988 gimple p = gimple_alloc (GIMPLE_OMP_TASKGROUP, 0);
989 if (body)
990 gimple_omp_set_body (p, body);
991
992 return p;
993 }
994
995
996 /* Build a GIMPLE_OMP_CONTINUE statement.
997
998 CONTROL_DEF is the definition of the control variable.
999 CONTROL_USE is the use of the control variable. */
1000
1001 gomp_continue *
1002 gimple_build_omp_continue (tree control_def, tree control_use)
1003 {
1004 gomp_continue *p
1005 = as_a <gomp_continue *> (gimple_alloc (GIMPLE_OMP_CONTINUE, 0));
1006 gimple_omp_continue_set_control_def (p, control_def);
1007 gimple_omp_continue_set_control_use (p, control_use);
1008 return p;
1009 }
1010
1011 /* Build a GIMPLE_OMP_ORDERED statement.
1012
1013 BODY is the sequence of statements inside a loop that will executed in
1014 sequence. */
1015
1016 gimple
1017 gimple_build_omp_ordered (gimple_seq body)
1018 {
1019 gimple p = gimple_alloc (GIMPLE_OMP_ORDERED, 0);
1020 if (body)
1021 gimple_omp_set_body (p, body);
1022
1023 return p;
1024 }
1025
1026
1027 /* Build a GIMPLE_OMP_RETURN statement.
1028 WAIT_P is true if this is a non-waiting return. */
1029
1030 gimple
1031 gimple_build_omp_return (bool wait_p)
1032 {
1033 gimple p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
1034 if (wait_p)
1035 gimple_omp_return_set_nowait (p);
1036
1037 return p;
1038 }
1039
1040
1041 /* Build a GIMPLE_OMP_SECTIONS statement.
1042
1043 BODY is a sequence of section statements.
1044 CLAUSES are any of the OMP sections contsruct's clauses: private,
1045 firstprivate, lastprivate, reduction, and nowait. */
1046
1047 gomp_sections *
1048 gimple_build_omp_sections (gimple_seq body, tree clauses)
1049 {
1050 gomp_sections *p
1051 = as_a <gomp_sections *> (gimple_alloc (GIMPLE_OMP_SECTIONS, 0));
1052 if (body)
1053 gimple_omp_set_body (p, body);
1054 gimple_omp_sections_set_clauses (p, clauses);
1055
1056 return p;
1057 }
1058
1059
1060 /* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
1061
1062 gimple
1063 gimple_build_omp_sections_switch (void)
1064 {
1065 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
1066 }
1067
1068
1069 /* Build a GIMPLE_OMP_SINGLE statement.
1070
1071 BODY is the sequence of statements that will be executed once.
1072 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1073 copyprivate, nowait. */
1074
1075 gomp_single *
1076 gimple_build_omp_single (gimple_seq body, tree clauses)
1077 {
1078 gomp_single *p
1079 = as_a <gomp_single *> (gimple_alloc (GIMPLE_OMP_SINGLE, 0));
1080 if (body)
1081 gimple_omp_set_body (p, body);
1082 gimple_omp_single_set_clauses (p, clauses);
1083
1084 return p;
1085 }
1086
1087
1088 /* Build a GIMPLE_OMP_TARGET statement.
1089
1090 BODY is the sequence of statements that will be executed.
1091 KIND is the kind of the region.
1092 CLAUSES are any of the construct's clauses. */
1093
1094 gomp_target *
1095 gimple_build_omp_target (gimple_seq body, int kind, tree clauses)
1096 {
1097 gomp_target *p
1098 = as_a <gomp_target *> (gimple_alloc (GIMPLE_OMP_TARGET, 0));
1099 if (body)
1100 gimple_omp_set_body (p, body);
1101 gimple_omp_target_set_clauses (p, clauses);
1102 gimple_omp_target_set_kind (p, kind);
1103
1104 return p;
1105 }
1106
1107
1108 /* Build a GIMPLE_OMP_TEAMS statement.
1109
1110 BODY is the sequence of statements that will be executed.
1111 CLAUSES are any of the OMP teams construct's clauses. */
1112
1113 gomp_teams *
1114 gimple_build_omp_teams (gimple_seq body, tree clauses)
1115 {
1116 gomp_teams *p = as_a <gomp_teams *> (gimple_alloc (GIMPLE_OMP_TEAMS, 0));
1117 if (body)
1118 gimple_omp_set_body (p, body);
1119 gimple_omp_teams_set_clauses (p, clauses);
1120
1121 return p;
1122 }
1123
1124
1125 /* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
1126
1127 gomp_atomic_load *
1128 gimple_build_omp_atomic_load (tree lhs, tree rhs)
1129 {
1130 gomp_atomic_load *p
1131 = as_a <gomp_atomic_load *> (gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0));
1132 gimple_omp_atomic_load_set_lhs (p, lhs);
1133 gimple_omp_atomic_load_set_rhs (p, rhs);
1134 return p;
1135 }
1136
1137 /* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1138
1139 VAL is the value we are storing. */
1140
1141 gomp_atomic_store *
1142 gimple_build_omp_atomic_store (tree val)
1143 {
1144 gomp_atomic_store *p
1145 = as_a <gomp_atomic_store *> (gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0));
1146 gimple_omp_atomic_store_set_val (p, val);
1147 return p;
1148 }
1149
1150 /* Build a GIMPLE_TRANSACTION statement. */
1151
1152 gtransaction *
1153 gimple_build_transaction (gimple_seq body, tree label)
1154 {
1155 gtransaction *p
1156 = as_a <gtransaction *> (gimple_alloc (GIMPLE_TRANSACTION, 0));
1157 gimple_transaction_set_body (p, body);
1158 gimple_transaction_set_label (p, label);
1159 return p;
1160 }
1161
1162 /* Build a GIMPLE_PREDICT statement. PREDICT is one of the predictors from
1163 predict.def, OUTCOME is NOT_TAKEN or TAKEN. */
1164
1165 gimple
1166 gimple_build_predict (enum br_predictor predictor, enum prediction outcome)
1167 {
1168 gimple p = gimple_alloc (GIMPLE_PREDICT, 0);
1169 /* Ensure all the predictors fit into the lower bits of the subcode. */
1170 gcc_assert ((int) END_PREDICTORS <= GF_PREDICT_TAKEN);
1171 gimple_predict_set_predictor (p, predictor);
1172 gimple_predict_set_outcome (p, outcome);
1173 return p;
1174 }
1175
1176 #if defined ENABLE_GIMPLE_CHECKING
1177 /* Complain of a gimple type mismatch and die. */
1178
1179 void
1180 gimple_check_failed (const_gimple gs, const char *file, int line,
1181 const char *function, enum gimple_code code,
1182 enum tree_code subcode)
1183 {
1184 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1185 gimple_code_name[code],
1186 get_tree_code_name (subcode),
1187 gimple_code_name[gimple_code (gs)],
1188 gs->subcode > 0
1189 ? get_tree_code_name ((enum tree_code) gs->subcode)
1190 : "",
1191 function, trim_filename (file), line);
1192 }
1193 #endif /* ENABLE_GIMPLE_CHECKING */
1194
1195
1196 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1197 *SEQ_P is NULL, a new sequence is allocated. */
1198
1199 void
1200 gimple_seq_add_stmt (gimple_seq *seq_p, gimple gs)
1201 {
1202 gimple_stmt_iterator si;
1203 if (gs == NULL)
1204 return;
1205
1206 si = gsi_last (*seq_p);
1207 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1208 }
1209
1210 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1211 *SEQ_P is NULL, a new sequence is allocated. This function is
1212 similar to gimple_seq_add_stmt, but does not scan the operands.
1213 During gimplification, we need to manipulate statement sequences
1214 before the def/use vectors have been constructed. */
1215
1216 void
1217 gimple_seq_add_stmt_without_update (gimple_seq *seq_p, gimple gs)
1218 {
1219 gimple_stmt_iterator si;
1220
1221 if (gs == NULL)
1222 return;
1223
1224 si = gsi_last (*seq_p);
1225 gsi_insert_after_without_update (&si, gs, GSI_NEW_STMT);
1226 }
1227
1228 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1229 NULL, a new sequence is allocated. */
1230
1231 void
1232 gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1233 {
1234 gimple_stmt_iterator si;
1235 if (src == NULL)
1236 return;
1237
1238 si = gsi_last (*dst_p);
1239 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1240 }
1241
1242 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1243 NULL, a new sequence is allocated. This function is
1244 similar to gimple_seq_add_seq, but does not scan the operands. */
1245
1246 void
1247 gimple_seq_add_seq_without_update (gimple_seq *dst_p, gimple_seq src)
1248 {
1249 gimple_stmt_iterator si;
1250 if (src == NULL)
1251 return;
1252
1253 si = gsi_last (*dst_p);
1254 gsi_insert_seq_after_without_update (&si, src, GSI_NEW_STMT);
1255 }
1256
1257 /* Determine whether to assign a location to the statement GS. */
1258
1259 static bool
1260 should_carry_location_p (gimple gs)
1261 {
1262 /* Don't emit a line note for a label. We particularly don't want to
1263 emit one for the break label, since it doesn't actually correspond
1264 to the beginning of the loop/switch. */
1265 if (gimple_code (gs) == GIMPLE_LABEL)
1266 return false;
1267
1268 return true;
1269 }
1270
1271 /* Set the location for gimple statement GS to LOCATION. */
1272
1273 static void
1274 annotate_one_with_location (gimple gs, location_t location)
1275 {
1276 if (!gimple_has_location (gs)
1277 && !gimple_do_not_emit_location_p (gs)
1278 && should_carry_location_p (gs))
1279 gimple_set_location (gs, location);
1280 }
1281
1282 /* Set LOCATION for all the statements after iterator GSI in sequence
1283 SEQ. If GSI is pointing to the end of the sequence, start with the
1284 first statement in SEQ. */
1285
1286 void
1287 annotate_all_with_location_after (gimple_seq seq, gimple_stmt_iterator gsi,
1288 location_t location)
1289 {
1290 if (gsi_end_p (gsi))
1291 gsi = gsi_start (seq);
1292 else
1293 gsi_next (&gsi);
1294
1295 for (; !gsi_end_p (gsi); gsi_next (&gsi))
1296 annotate_one_with_location (gsi_stmt (gsi), location);
1297 }
1298
1299 /* Set the location for all the statements in a sequence STMT_P to LOCATION. */
1300
1301 void
1302 annotate_all_with_location (gimple_seq stmt_p, location_t location)
1303 {
1304 gimple_stmt_iterator i;
1305
1306 if (gimple_seq_empty_p (stmt_p))
1307 return;
1308
1309 for (i = gsi_start (stmt_p); !gsi_end_p (i); gsi_next (&i))
1310 {
1311 gimple gs = gsi_stmt (i);
1312 annotate_one_with_location (gs, location);
1313 }
1314 }
1315
1316 /* Helper function of empty_body_p. Return true if STMT is an empty
1317 statement. */
1318
1319 static bool
1320 empty_stmt_p (gimple stmt)
1321 {
1322 if (gimple_code (stmt) == GIMPLE_NOP)
1323 return true;
1324 if (gbind *bind_stmt = dyn_cast <gbind *> (stmt))
1325 return empty_body_p (gimple_bind_body (bind_stmt));
1326 return false;
1327 }
1328
1329
1330 /* Return true if BODY contains nothing but empty statements. */
1331
1332 bool
1333 empty_body_p (gimple_seq body)
1334 {
1335 gimple_stmt_iterator i;
1336
1337 if (gimple_seq_empty_p (body))
1338 return true;
1339 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
1340 if (!empty_stmt_p (gsi_stmt (i))
1341 && !is_gimple_debug (gsi_stmt (i)))
1342 return false;
1343
1344 return true;
1345 }
1346
1347
1348 /* Perform a deep copy of sequence SRC and return the result. */
1349
1350 gimple_seq
1351 gimple_seq_copy (gimple_seq src)
1352 {
1353 gimple_stmt_iterator gsi;
1354 gimple_seq new_seq = NULL;
1355 gimple stmt;
1356
1357 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1358 {
1359 stmt = gimple_copy (gsi_stmt (gsi));
1360 gimple_seq_add_stmt (&new_seq, stmt);
1361 }
1362
1363 return new_seq;
1364 }
1365
1366
1367
1368 /* Return true if calls C1 and C2 are known to go to the same function. */
1369
1370 bool
1371 gimple_call_same_target_p (const_gimple c1, const_gimple c2)
1372 {
1373 if (gimple_call_internal_p (c1))
1374 return (gimple_call_internal_p (c2)
1375 && gimple_call_internal_fn (c1) == gimple_call_internal_fn (c2));
1376 else
1377 return (gimple_call_fn (c1) == gimple_call_fn (c2)
1378 || (gimple_call_fndecl (c1)
1379 && gimple_call_fndecl (c1) == gimple_call_fndecl (c2)));
1380 }
1381
1382 /* Detect flags from a GIMPLE_CALL. This is just like
1383 call_expr_flags, but for gimple tuples. */
1384
1385 int
1386 gimple_call_flags (const_gimple stmt)
1387 {
1388 int flags;
1389 tree decl = gimple_call_fndecl (stmt);
1390
1391 if (decl)
1392 flags = flags_from_decl_or_type (decl);
1393 else if (gimple_call_internal_p (stmt))
1394 flags = internal_fn_flags (gimple_call_internal_fn (stmt));
1395 else
1396 flags = flags_from_decl_or_type (gimple_call_fntype (stmt));
1397
1398 if (stmt->subcode & GF_CALL_NOTHROW)
1399 flags |= ECF_NOTHROW;
1400
1401 return flags;
1402 }
1403
1404 /* Return the "fn spec" string for call STMT. */
1405
1406 static const_tree
1407 gimple_call_fnspec (const gcall *stmt)
1408 {
1409 tree type, attr;
1410
1411 if (gimple_call_internal_p (stmt))
1412 return internal_fn_fnspec (gimple_call_internal_fn (stmt));
1413
1414 type = gimple_call_fntype (stmt);
1415 if (!type)
1416 return NULL_TREE;
1417
1418 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1419 if (!attr)
1420 return NULL_TREE;
1421
1422 return TREE_VALUE (TREE_VALUE (attr));
1423 }
1424
1425 /* Detects argument flags for argument number ARG on call STMT. */
1426
1427 int
1428 gimple_call_arg_flags (const gcall *stmt, unsigned arg)
1429 {
1430 const_tree attr = gimple_call_fnspec (stmt);
1431
1432 if (!attr || 1 + arg >= (unsigned) TREE_STRING_LENGTH (attr))
1433 return 0;
1434
1435 switch (TREE_STRING_POINTER (attr)[1 + arg])
1436 {
1437 case 'x':
1438 case 'X':
1439 return EAF_UNUSED;
1440
1441 case 'R':
1442 return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE;
1443
1444 case 'r':
1445 return EAF_NOCLOBBER | EAF_NOESCAPE;
1446
1447 case 'W':
1448 return EAF_DIRECT | EAF_NOESCAPE;
1449
1450 case 'w':
1451 return EAF_NOESCAPE;
1452
1453 case '.':
1454 default:
1455 return 0;
1456 }
1457 }
1458
1459 /* Detects return flags for the call STMT. */
1460
1461 int
1462 gimple_call_return_flags (const gcall *stmt)
1463 {
1464 const_tree attr;
1465
1466 if (gimple_call_flags (stmt) & ECF_MALLOC)
1467 return ERF_NOALIAS;
1468
1469 attr = gimple_call_fnspec (stmt);
1470 if (!attr || TREE_STRING_LENGTH (attr) < 1)
1471 return 0;
1472
1473 switch (TREE_STRING_POINTER (attr)[0])
1474 {
1475 case '1':
1476 case '2':
1477 case '3':
1478 case '4':
1479 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
1480
1481 case 'm':
1482 return ERF_NOALIAS;
1483
1484 case '.':
1485 default:
1486 return 0;
1487 }
1488 }
1489
1490
1491 /* Return true if GS is a copy assignment. */
1492
1493 bool
1494 gimple_assign_copy_p (gimple gs)
1495 {
1496 return (gimple_assign_single_p (gs)
1497 && is_gimple_val (gimple_op (gs, 1)));
1498 }
1499
1500
1501 /* Return true if GS is a SSA_NAME copy assignment. */
1502
1503 bool
1504 gimple_assign_ssa_name_copy_p (gimple gs)
1505 {
1506 return (gimple_assign_single_p (gs)
1507 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1508 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1509 }
1510
1511
1512 /* Return true if GS is an assignment with a unary RHS, but the
1513 operator has no effect on the assigned value. The logic is adapted
1514 from STRIP_NOPS. This predicate is intended to be used in tuplifying
1515 instances in which STRIP_NOPS was previously applied to the RHS of
1516 an assignment.
1517
1518 NOTE: In the use cases that led to the creation of this function
1519 and of gimple_assign_single_p, it is typical to test for either
1520 condition and to proceed in the same manner. In each case, the
1521 assigned value is represented by the single RHS operand of the
1522 assignment. I suspect there may be cases where gimple_assign_copy_p,
1523 gimple_assign_single_p, or equivalent logic is used where a similar
1524 treatment of unary NOPs is appropriate. */
1525
1526 bool
1527 gimple_assign_unary_nop_p (gimple gs)
1528 {
1529 return (is_gimple_assign (gs)
1530 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
1531 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
1532 && gimple_assign_rhs1 (gs) != error_mark_node
1533 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
1534 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
1535 }
1536
1537 /* Set BB to be the basic block holding G. */
1538
1539 void
1540 gimple_set_bb (gimple stmt, basic_block bb)
1541 {
1542 stmt->bb = bb;
1543
1544 if (gimple_code (stmt) != GIMPLE_LABEL)
1545 return;
1546
1547 /* If the statement is a label, add the label to block-to-labels map
1548 so that we can speed up edge creation for GIMPLE_GOTOs. */
1549 if (cfun->cfg)
1550 {
1551 tree t;
1552 int uid;
1553
1554 t = gimple_label_label (as_a <glabel *> (stmt));
1555 uid = LABEL_DECL_UID (t);
1556 if (uid == -1)
1557 {
1558 unsigned old_len =
1559 vec_safe_length (label_to_block_map_for_fn (cfun));
1560 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
1561 if (old_len <= (unsigned) uid)
1562 {
1563 unsigned new_len = 3 * uid / 2 + 1;
1564
1565 vec_safe_grow_cleared (label_to_block_map_for_fn (cfun),
1566 new_len);
1567 }
1568 }
1569
1570 (*label_to_block_map_for_fn (cfun))[uid] = bb;
1571 }
1572 }
1573
1574
1575 /* Modify the RHS of the assignment pointed-to by GSI using the
1576 operands in the expression tree EXPR.
1577
1578 NOTE: The statement pointed-to by GSI may be reallocated if it
1579 did not have enough operand slots.
1580
1581 This function is useful to convert an existing tree expression into
1582 the flat representation used for the RHS of a GIMPLE assignment.
1583 It will reallocate memory as needed to expand or shrink the number
1584 of operand slots needed to represent EXPR.
1585
1586 NOTE: If you find yourself building a tree and then calling this
1587 function, you are most certainly doing it the slow way. It is much
1588 better to build a new assignment or to use the function
1589 gimple_assign_set_rhs_with_ops, which does not require an
1590 expression tree to be built. */
1591
1592 void
1593 gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
1594 {
1595 enum tree_code subcode;
1596 tree op1, op2, op3;
1597
1598 extract_ops_from_tree_1 (expr, &subcode, &op1, &op2, &op3);
1599 gimple_assign_set_rhs_with_ops (gsi, subcode, op1, op2, op3);
1600 }
1601
1602
1603 /* Set the RHS of assignment statement pointed-to by GSI to CODE with
1604 operands OP1, OP2 and OP3.
1605
1606 NOTE: The statement pointed-to by GSI may be reallocated if it
1607 did not have enough operand slots. */
1608
1609 void
1610 gimple_assign_set_rhs_with_ops (gimple_stmt_iterator *gsi, enum tree_code code,
1611 tree op1, tree op2, tree op3)
1612 {
1613 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
1614 gimple stmt = gsi_stmt (*gsi);
1615
1616 /* If the new CODE needs more operands, allocate a new statement. */
1617 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
1618 {
1619 tree lhs = gimple_assign_lhs (stmt);
1620 gimple new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
1621 memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
1622 gimple_init_singleton (new_stmt);
1623 gsi_replace (gsi, new_stmt, true);
1624 stmt = new_stmt;
1625
1626 /* The LHS needs to be reset as this also changes the SSA name
1627 on the LHS. */
1628 gimple_assign_set_lhs (stmt, lhs);
1629 }
1630
1631 gimple_set_num_ops (stmt, new_rhs_ops + 1);
1632 gimple_set_subcode (stmt, code);
1633 gimple_assign_set_rhs1 (stmt, op1);
1634 if (new_rhs_ops > 1)
1635 gimple_assign_set_rhs2 (stmt, op2);
1636 if (new_rhs_ops > 2)
1637 gimple_assign_set_rhs3 (stmt, op3);
1638 }
1639
1640
1641 /* Return the LHS of a statement that performs an assignment,
1642 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
1643 for a call to a function that returns no value, or for a
1644 statement other than an assignment or a call. */
1645
1646 tree
1647 gimple_get_lhs (const_gimple stmt)
1648 {
1649 enum gimple_code code = gimple_code (stmt);
1650
1651 if (code == GIMPLE_ASSIGN)
1652 return gimple_assign_lhs (stmt);
1653 else if (code == GIMPLE_CALL)
1654 return gimple_call_lhs (stmt);
1655 else
1656 return NULL_TREE;
1657 }
1658
1659
1660 /* Set the LHS of a statement that performs an assignment,
1661 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
1662
1663 void
1664 gimple_set_lhs (gimple stmt, tree lhs)
1665 {
1666 enum gimple_code code = gimple_code (stmt);
1667
1668 if (code == GIMPLE_ASSIGN)
1669 gimple_assign_set_lhs (stmt, lhs);
1670 else if (code == GIMPLE_CALL)
1671 gimple_call_set_lhs (stmt, lhs);
1672 else
1673 gcc_unreachable ();
1674 }
1675
1676
1677 /* Return a deep copy of statement STMT. All the operands from STMT
1678 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
1679 and VUSE operand arrays are set to empty in the new copy. The new
1680 copy isn't part of any sequence. */
1681
1682 gimple
1683 gimple_copy (gimple stmt)
1684 {
1685 enum gimple_code code = gimple_code (stmt);
1686 unsigned num_ops = gimple_num_ops (stmt);
1687 gimple copy = gimple_alloc (code, num_ops);
1688 unsigned i;
1689
1690 /* Shallow copy all the fields from STMT. */
1691 memcpy (copy, stmt, gimple_size (code));
1692 gimple_init_singleton (copy);
1693
1694 /* If STMT has sub-statements, deep-copy them as well. */
1695 if (gimple_has_substatements (stmt))
1696 {
1697 gimple_seq new_seq;
1698 tree t;
1699
1700 switch (gimple_code (stmt))
1701 {
1702 case GIMPLE_BIND:
1703 {
1704 gbind *bind_stmt = as_a <gbind *> (stmt);
1705 gbind *bind_copy = as_a <gbind *> (copy);
1706 new_seq = gimple_seq_copy (gimple_bind_body (bind_stmt));
1707 gimple_bind_set_body (bind_copy, new_seq);
1708 gimple_bind_set_vars (bind_copy,
1709 unshare_expr (gimple_bind_vars (bind_stmt)));
1710 gimple_bind_set_block (bind_copy, gimple_bind_block (bind_stmt));
1711 }
1712 break;
1713
1714 case GIMPLE_CATCH:
1715 {
1716 gcatch *catch_stmt = as_a <gcatch *> (stmt);
1717 gcatch *catch_copy = as_a <gcatch *> (copy);
1718 new_seq = gimple_seq_copy (gimple_catch_handler (catch_stmt));
1719 gimple_catch_set_handler (catch_copy, new_seq);
1720 t = unshare_expr (gimple_catch_types (catch_stmt));
1721 gimple_catch_set_types (catch_copy, t);
1722 }
1723 break;
1724
1725 case GIMPLE_EH_FILTER:
1726 {
1727 geh_filter *eh_filter_stmt = as_a <geh_filter *> (stmt);
1728 geh_filter *eh_filter_copy = as_a <geh_filter *> (copy);
1729 new_seq
1730 = gimple_seq_copy (gimple_eh_filter_failure (eh_filter_stmt));
1731 gimple_eh_filter_set_failure (eh_filter_copy, new_seq);
1732 t = unshare_expr (gimple_eh_filter_types (eh_filter_stmt));
1733 gimple_eh_filter_set_types (eh_filter_copy, t);
1734 }
1735 break;
1736
1737 case GIMPLE_EH_ELSE:
1738 {
1739 geh_else *eh_else_stmt = as_a <geh_else *> (stmt);
1740 geh_else *eh_else_copy = as_a <geh_else *> (copy);
1741 new_seq = gimple_seq_copy (gimple_eh_else_n_body (eh_else_stmt));
1742 gimple_eh_else_set_n_body (eh_else_copy, new_seq);
1743 new_seq = gimple_seq_copy (gimple_eh_else_e_body (eh_else_stmt));
1744 gimple_eh_else_set_e_body (eh_else_copy, new_seq);
1745 }
1746 break;
1747
1748 case GIMPLE_TRY:
1749 {
1750 gtry *try_stmt = as_a <gtry *> (stmt);
1751 gtry *try_copy = as_a <gtry *> (copy);
1752 new_seq = gimple_seq_copy (gimple_try_eval (try_stmt));
1753 gimple_try_set_eval (try_copy, new_seq);
1754 new_seq = gimple_seq_copy (gimple_try_cleanup (try_stmt));
1755 gimple_try_set_cleanup (try_copy, new_seq);
1756 }
1757 break;
1758
1759 case GIMPLE_OMP_FOR:
1760 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
1761 gimple_omp_for_set_pre_body (copy, new_seq);
1762 t = unshare_expr (gimple_omp_for_clauses (stmt));
1763 gimple_omp_for_set_clauses (copy, t);
1764 {
1765 gomp_for *omp_for_copy = as_a <gomp_for *> (copy);
1766 omp_for_copy->iter = ggc_vec_alloc<gimple_omp_for_iter>
1767 ( gimple_omp_for_collapse (stmt));
1768 }
1769 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1770 {
1771 gimple_omp_for_set_cond (copy, i,
1772 gimple_omp_for_cond (stmt, i));
1773 gimple_omp_for_set_index (copy, i,
1774 gimple_omp_for_index (stmt, i));
1775 t = unshare_expr (gimple_omp_for_initial (stmt, i));
1776 gimple_omp_for_set_initial (copy, i, t);
1777 t = unshare_expr (gimple_omp_for_final (stmt, i));
1778 gimple_omp_for_set_final (copy, i, t);
1779 t = unshare_expr (gimple_omp_for_incr (stmt, i));
1780 gimple_omp_for_set_incr (copy, i, t);
1781 }
1782 goto copy_omp_body;
1783
1784 case GIMPLE_OMP_PARALLEL:
1785 {
1786 gomp_parallel *omp_par_stmt = as_a <gomp_parallel *> (stmt);
1787 gomp_parallel *omp_par_copy = as_a <gomp_parallel *> (copy);
1788 t = unshare_expr (gimple_omp_parallel_clauses (omp_par_stmt));
1789 gimple_omp_parallel_set_clauses (omp_par_copy, t);
1790 t = unshare_expr (gimple_omp_parallel_child_fn (omp_par_stmt));
1791 gimple_omp_parallel_set_child_fn (omp_par_copy, t);
1792 t = unshare_expr (gimple_omp_parallel_data_arg (omp_par_stmt));
1793 gimple_omp_parallel_set_data_arg (omp_par_copy, t);
1794 }
1795 goto copy_omp_body;
1796
1797 case GIMPLE_OMP_TASK:
1798 t = unshare_expr (gimple_omp_task_clauses (stmt));
1799 gimple_omp_task_set_clauses (copy, t);
1800 t = unshare_expr (gimple_omp_task_child_fn (stmt));
1801 gimple_omp_task_set_child_fn (copy, t);
1802 t = unshare_expr (gimple_omp_task_data_arg (stmt));
1803 gimple_omp_task_set_data_arg (copy, t);
1804 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
1805 gimple_omp_task_set_copy_fn (copy, t);
1806 t = unshare_expr (gimple_omp_task_arg_size (stmt));
1807 gimple_omp_task_set_arg_size (copy, t);
1808 t = unshare_expr (gimple_omp_task_arg_align (stmt));
1809 gimple_omp_task_set_arg_align (copy, t);
1810 goto copy_omp_body;
1811
1812 case GIMPLE_OMP_CRITICAL:
1813 t = unshare_expr (gimple_omp_critical_name (
1814 as_a <gomp_critical *> (stmt)));
1815 gimple_omp_critical_set_name (as_a <gomp_critical *> (copy), t);
1816 goto copy_omp_body;
1817
1818 case GIMPLE_OMP_SECTIONS:
1819 t = unshare_expr (gimple_omp_sections_clauses (stmt));
1820 gimple_omp_sections_set_clauses (copy, t);
1821 t = unshare_expr (gimple_omp_sections_control (stmt));
1822 gimple_omp_sections_set_control (copy, t);
1823 /* FALLTHRU */
1824
1825 case GIMPLE_OMP_SINGLE:
1826 case GIMPLE_OMP_TARGET:
1827 case GIMPLE_OMP_TEAMS:
1828 case GIMPLE_OMP_SECTION:
1829 case GIMPLE_OMP_MASTER:
1830 case GIMPLE_OMP_TASKGROUP:
1831 case GIMPLE_OMP_ORDERED:
1832 copy_omp_body:
1833 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
1834 gimple_omp_set_body (copy, new_seq);
1835 break;
1836
1837 case GIMPLE_TRANSACTION:
1838 new_seq = gimple_seq_copy (gimple_transaction_body (
1839 as_a <gtransaction *> (stmt)));
1840 gimple_transaction_set_body (as_a <gtransaction *> (copy),
1841 new_seq);
1842 break;
1843
1844 case GIMPLE_WITH_CLEANUP_EXPR:
1845 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
1846 gimple_wce_set_cleanup (copy, new_seq);
1847 break;
1848
1849 default:
1850 gcc_unreachable ();
1851 }
1852 }
1853
1854 /* Make copy of operands. */
1855 for (i = 0; i < num_ops; i++)
1856 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
1857
1858 if (gimple_has_mem_ops (stmt))
1859 {
1860 gimple_set_vdef (copy, gimple_vdef (stmt));
1861 gimple_set_vuse (copy, gimple_vuse (stmt));
1862 }
1863
1864 /* Clear out SSA operand vectors on COPY. */
1865 if (gimple_has_ops (stmt))
1866 {
1867 gimple_set_use_ops (copy, NULL);
1868
1869 /* SSA operands need to be updated. */
1870 gimple_set_modified (copy, true);
1871 }
1872
1873 return copy;
1874 }
1875
1876
1877 /* Return true if statement S has side-effects. We consider a
1878 statement to have side effects if:
1879
1880 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
1881 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
1882
1883 bool
1884 gimple_has_side_effects (const_gimple s)
1885 {
1886 if (is_gimple_debug (s))
1887 return false;
1888
1889 /* We don't have to scan the arguments to check for
1890 volatile arguments, though, at present, we still
1891 do a scan to check for TREE_SIDE_EFFECTS. */
1892 if (gimple_has_volatile_ops (s))
1893 return true;
1894
1895 if (gimple_code (s) == GIMPLE_ASM
1896 && gimple_asm_volatile_p (as_a <const gasm *> (s)))
1897 return true;
1898
1899 if (is_gimple_call (s))
1900 {
1901 int flags = gimple_call_flags (s);
1902
1903 /* An infinite loop is considered a side effect. */
1904 if (!(flags & (ECF_CONST | ECF_PURE))
1905 || (flags & ECF_LOOPING_CONST_OR_PURE))
1906 return true;
1907
1908 return false;
1909 }
1910
1911 return false;
1912 }
1913
1914 /* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
1915 Return true if S can trap. When INCLUDE_MEM is true, check whether
1916 the memory operations could trap. When INCLUDE_STORES is true and
1917 S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked. */
1918
1919 bool
1920 gimple_could_trap_p_1 (gimple s, bool include_mem, bool include_stores)
1921 {
1922 tree t, div = NULL_TREE;
1923 enum tree_code op;
1924
1925 if (include_mem)
1926 {
1927 unsigned i, start = (is_gimple_assign (s) && !include_stores) ? 1 : 0;
1928
1929 for (i = start; i < gimple_num_ops (s); i++)
1930 if (tree_could_trap_p (gimple_op (s, i)))
1931 return true;
1932 }
1933
1934 switch (gimple_code (s))
1935 {
1936 case GIMPLE_ASM:
1937 return gimple_asm_volatile_p (as_a <gasm *> (s));
1938
1939 case GIMPLE_CALL:
1940 t = gimple_call_fndecl (s);
1941 /* Assume that calls to weak functions may trap. */
1942 if (!t || !DECL_P (t) || DECL_WEAK (t))
1943 return true;
1944 return false;
1945
1946 case GIMPLE_ASSIGN:
1947 t = gimple_expr_type (s);
1948 op = gimple_assign_rhs_code (s);
1949 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
1950 div = gimple_assign_rhs2 (s);
1951 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
1952 (INTEGRAL_TYPE_P (t)
1953 && TYPE_OVERFLOW_TRAPS (t)),
1954 div));
1955
1956 default:
1957 break;
1958 }
1959
1960 return false;
1961 }
1962
1963 /* Return true if statement S can trap. */
1964
1965 bool
1966 gimple_could_trap_p (gimple s)
1967 {
1968 return gimple_could_trap_p_1 (s, true, true);
1969 }
1970
1971 /* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
1972
1973 bool
1974 gimple_assign_rhs_could_trap_p (gimple s)
1975 {
1976 gcc_assert (is_gimple_assign (s));
1977 return gimple_could_trap_p_1 (s, true, false);
1978 }
1979
1980
1981 /* Print debugging information for gimple stmts generated. */
1982
1983 void
1984 dump_gimple_statistics (void)
1985 {
1986 int i, total_tuples = 0, total_bytes = 0;
1987
1988 if (! GATHER_STATISTICS)
1989 {
1990 fprintf (stderr, "No gimple statistics\n");
1991 return;
1992 }
1993
1994 fprintf (stderr, "\nGIMPLE statements\n");
1995 fprintf (stderr, "Kind Stmts Bytes\n");
1996 fprintf (stderr, "---------------------------------------\n");
1997 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
1998 {
1999 fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i],
2000 gimple_alloc_counts[i], gimple_alloc_sizes[i]);
2001 total_tuples += gimple_alloc_counts[i];
2002 total_bytes += gimple_alloc_sizes[i];
2003 }
2004 fprintf (stderr, "---------------------------------------\n");
2005 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes);
2006 fprintf (stderr, "---------------------------------------\n");
2007 }
2008
2009
2010 /* Return the number of operands needed on the RHS of a GIMPLE
2011 assignment for an expression with tree code CODE. */
2012
2013 unsigned
2014 get_gimple_rhs_num_ops (enum tree_code code)
2015 {
2016 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
2017
2018 if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
2019 return 1;
2020 else if (rhs_class == GIMPLE_BINARY_RHS)
2021 return 2;
2022 else if (rhs_class == GIMPLE_TERNARY_RHS)
2023 return 3;
2024 else
2025 gcc_unreachable ();
2026 }
2027
2028 #define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
2029 (unsigned char) \
2030 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
2031 : ((TYPE) == tcc_binary \
2032 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
2033 : ((TYPE) == tcc_constant \
2034 || (TYPE) == tcc_declaration \
2035 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
2036 : ((SYM) == TRUTH_AND_EXPR \
2037 || (SYM) == TRUTH_OR_EXPR \
2038 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
2039 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
2040 : ((SYM) == COND_EXPR \
2041 || (SYM) == WIDEN_MULT_PLUS_EXPR \
2042 || (SYM) == WIDEN_MULT_MINUS_EXPR \
2043 || (SYM) == DOT_PROD_EXPR \
2044 || (SYM) == SAD_EXPR \
2045 || (SYM) == REALIGN_LOAD_EXPR \
2046 || (SYM) == VEC_COND_EXPR \
2047 || (SYM) == VEC_PERM_EXPR \
2048 || (SYM) == FMA_EXPR) ? GIMPLE_TERNARY_RHS \
2049 : ((SYM) == CONSTRUCTOR \
2050 || (SYM) == OBJ_TYPE_REF \
2051 || (SYM) == ASSERT_EXPR \
2052 || (SYM) == ADDR_EXPR \
2053 || (SYM) == WITH_SIZE_EXPR \
2054 || (SYM) == SSA_NAME) ? GIMPLE_SINGLE_RHS \
2055 : GIMPLE_INVALID_RHS),
2056 #define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
2057
2058 const unsigned char gimple_rhs_class_table[] = {
2059 #include "all-tree.def"
2060 };
2061
2062 #undef DEFTREECODE
2063 #undef END_OF_BASE_TREE_CODES
2064
2065 /* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
2066 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
2067 we failed to create one. */
2068
2069 tree
2070 canonicalize_cond_expr_cond (tree t)
2071 {
2072 /* Strip conversions around boolean operations. */
2073 if (CONVERT_EXPR_P (t)
2074 && (truth_value_p (TREE_CODE (TREE_OPERAND (t, 0)))
2075 || TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0)))
2076 == BOOLEAN_TYPE))
2077 t = TREE_OPERAND (t, 0);
2078
2079 /* For !x use x == 0. */
2080 if (TREE_CODE (t) == TRUTH_NOT_EXPR)
2081 {
2082 tree top0 = TREE_OPERAND (t, 0);
2083 t = build2 (EQ_EXPR, TREE_TYPE (t),
2084 top0, build_int_cst (TREE_TYPE (top0), 0));
2085 }
2086 /* For cmp ? 1 : 0 use cmp. */
2087 else if (TREE_CODE (t) == COND_EXPR
2088 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
2089 && integer_onep (TREE_OPERAND (t, 1))
2090 && integer_zerop (TREE_OPERAND (t, 2)))
2091 {
2092 tree top0 = TREE_OPERAND (t, 0);
2093 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
2094 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
2095 }
2096 /* For x ^ y use x != y. */
2097 else if (TREE_CODE (t) == BIT_XOR_EXPR)
2098 t = build2 (NE_EXPR, TREE_TYPE (t),
2099 TREE_OPERAND (t, 0), TREE_OPERAND (t, 1));
2100
2101 if (is_gimple_condexpr (t))
2102 return t;
2103
2104 return NULL_TREE;
2105 }
2106
2107 /* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
2108 the positions marked by the set ARGS_TO_SKIP. */
2109
2110 gcall *
2111 gimple_call_copy_skip_args (gcall *stmt, bitmap args_to_skip)
2112 {
2113 int i;
2114 int nargs = gimple_call_num_args (stmt);
2115 auto_vec<tree> vargs (nargs);
2116 gcall *new_stmt;
2117
2118 for (i = 0; i < nargs; i++)
2119 if (!bitmap_bit_p (args_to_skip, i))
2120 vargs.quick_push (gimple_call_arg (stmt, i));
2121
2122 if (gimple_call_internal_p (stmt))
2123 new_stmt = gimple_build_call_internal_vec (gimple_call_internal_fn (stmt),
2124 vargs);
2125 else
2126 new_stmt = gimple_build_call_vec (gimple_call_fn (stmt), vargs);
2127
2128 if (gimple_call_lhs (stmt))
2129 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
2130
2131 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
2132 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
2133
2134 if (gimple_has_location (stmt))
2135 gimple_set_location (new_stmt, gimple_location (stmt));
2136 gimple_call_copy_flags (new_stmt, stmt);
2137 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
2138
2139 gimple_set_modified (new_stmt, true);
2140
2141 return new_stmt;
2142 }
2143
2144
2145
2146 /* Return true if the field decls F1 and F2 are at the same offset.
2147
2148 This is intended to be used on GIMPLE types only. */
2149
2150 bool
2151 gimple_compare_field_offset (tree f1, tree f2)
2152 {
2153 if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
2154 {
2155 tree offset1 = DECL_FIELD_OFFSET (f1);
2156 tree offset2 = DECL_FIELD_OFFSET (f2);
2157 return ((offset1 == offset2
2158 /* Once gimplification is done, self-referential offsets are
2159 instantiated as operand #2 of the COMPONENT_REF built for
2160 each access and reset. Therefore, they are not relevant
2161 anymore and fields are interchangeable provided that they
2162 represent the same access. */
2163 || (TREE_CODE (offset1) == PLACEHOLDER_EXPR
2164 && TREE_CODE (offset2) == PLACEHOLDER_EXPR
2165 && (DECL_SIZE (f1) == DECL_SIZE (f2)
2166 || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
2167 && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
2168 || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0))
2169 && DECL_ALIGN (f1) == DECL_ALIGN (f2))
2170 || operand_equal_p (offset1, offset2, 0))
2171 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
2172 DECL_FIELD_BIT_OFFSET (f2)));
2173 }
2174
2175 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
2176 should be, so handle differing ones specially by decomposing
2177 the offset into a byte and bit offset manually. */
2178 if (tree_fits_shwi_p (DECL_FIELD_OFFSET (f1))
2179 && tree_fits_shwi_p (DECL_FIELD_OFFSET (f2)))
2180 {
2181 unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
2182 unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
2183 bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
2184 byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
2185 + bit_offset1 / BITS_PER_UNIT);
2186 bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
2187 byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
2188 + bit_offset2 / BITS_PER_UNIT);
2189 if (byte_offset1 != byte_offset2)
2190 return false;
2191 return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
2192 }
2193
2194 return false;
2195 }
2196
2197
2198 /* Return a type the same as TYPE except unsigned or
2199 signed according to UNSIGNEDP. */
2200
2201 static tree
2202 gimple_signed_or_unsigned_type (bool unsignedp, tree type)
2203 {
2204 tree type1;
2205 int i;
2206
2207 type1 = TYPE_MAIN_VARIANT (type);
2208 if (type1 == signed_char_type_node
2209 || type1 == char_type_node
2210 || type1 == unsigned_char_type_node)
2211 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2212 if (type1 == integer_type_node || type1 == unsigned_type_node)
2213 return unsignedp ? unsigned_type_node : integer_type_node;
2214 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
2215 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2216 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
2217 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2218 if (type1 == long_long_integer_type_node
2219 || type1 == long_long_unsigned_type_node)
2220 return unsignedp
2221 ? long_long_unsigned_type_node
2222 : long_long_integer_type_node;
2223
2224 for (i = 0; i < NUM_INT_N_ENTS; i ++)
2225 if (int_n_enabled_p[i]
2226 && (type1 == int_n_trees[i].unsigned_type
2227 || type1 == int_n_trees[i].signed_type))
2228 return unsignedp
2229 ? int_n_trees[i].unsigned_type
2230 : int_n_trees[i].signed_type;
2231
2232 #if HOST_BITS_PER_WIDE_INT >= 64
2233 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
2234 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2235 #endif
2236 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
2237 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2238 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
2239 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2240 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
2241 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2242 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
2243 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2244
2245 #define GIMPLE_FIXED_TYPES(NAME) \
2246 if (type1 == short_ ## NAME ## _type_node \
2247 || type1 == unsigned_short_ ## NAME ## _type_node) \
2248 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
2249 : short_ ## NAME ## _type_node; \
2250 if (type1 == NAME ## _type_node \
2251 || type1 == unsigned_ ## NAME ## _type_node) \
2252 return unsignedp ? unsigned_ ## NAME ## _type_node \
2253 : NAME ## _type_node; \
2254 if (type1 == long_ ## NAME ## _type_node \
2255 || type1 == unsigned_long_ ## NAME ## _type_node) \
2256 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
2257 : long_ ## NAME ## _type_node; \
2258 if (type1 == long_long_ ## NAME ## _type_node \
2259 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
2260 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
2261 : long_long_ ## NAME ## _type_node;
2262
2263 #define GIMPLE_FIXED_MODE_TYPES(NAME) \
2264 if (type1 == NAME ## _type_node \
2265 || type1 == u ## NAME ## _type_node) \
2266 return unsignedp ? u ## NAME ## _type_node \
2267 : NAME ## _type_node;
2268
2269 #define GIMPLE_FIXED_TYPES_SAT(NAME) \
2270 if (type1 == sat_ ## short_ ## NAME ## _type_node \
2271 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
2272 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
2273 : sat_ ## short_ ## NAME ## _type_node; \
2274 if (type1 == sat_ ## NAME ## _type_node \
2275 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
2276 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
2277 : sat_ ## NAME ## _type_node; \
2278 if (type1 == sat_ ## long_ ## NAME ## _type_node \
2279 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
2280 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
2281 : sat_ ## long_ ## NAME ## _type_node; \
2282 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
2283 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
2284 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
2285 : sat_ ## long_long_ ## NAME ## _type_node;
2286
2287 #define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
2288 if (type1 == sat_ ## NAME ## _type_node \
2289 || type1 == sat_ ## u ## NAME ## _type_node) \
2290 return unsignedp ? sat_ ## u ## NAME ## _type_node \
2291 : sat_ ## NAME ## _type_node;
2292
2293 GIMPLE_FIXED_TYPES (fract);
2294 GIMPLE_FIXED_TYPES_SAT (fract);
2295 GIMPLE_FIXED_TYPES (accum);
2296 GIMPLE_FIXED_TYPES_SAT (accum);
2297
2298 GIMPLE_FIXED_MODE_TYPES (qq);
2299 GIMPLE_FIXED_MODE_TYPES (hq);
2300 GIMPLE_FIXED_MODE_TYPES (sq);
2301 GIMPLE_FIXED_MODE_TYPES (dq);
2302 GIMPLE_FIXED_MODE_TYPES (tq);
2303 GIMPLE_FIXED_MODE_TYPES_SAT (qq);
2304 GIMPLE_FIXED_MODE_TYPES_SAT (hq);
2305 GIMPLE_FIXED_MODE_TYPES_SAT (sq);
2306 GIMPLE_FIXED_MODE_TYPES_SAT (dq);
2307 GIMPLE_FIXED_MODE_TYPES_SAT (tq);
2308 GIMPLE_FIXED_MODE_TYPES (ha);
2309 GIMPLE_FIXED_MODE_TYPES (sa);
2310 GIMPLE_FIXED_MODE_TYPES (da);
2311 GIMPLE_FIXED_MODE_TYPES (ta);
2312 GIMPLE_FIXED_MODE_TYPES_SAT (ha);
2313 GIMPLE_FIXED_MODE_TYPES_SAT (sa);
2314 GIMPLE_FIXED_MODE_TYPES_SAT (da);
2315 GIMPLE_FIXED_MODE_TYPES_SAT (ta);
2316
2317 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
2318 the precision; they have precision set to match their range, but
2319 may use a wider mode to match an ABI. If we change modes, we may
2320 wind up with bad conversions. For INTEGER_TYPEs in C, must check
2321 the precision as well, so as to yield correct results for
2322 bit-field types. C++ does not have these separate bit-field
2323 types, and producing a signed or unsigned variant of an
2324 ENUMERAL_TYPE may cause other problems as well. */
2325 if (!INTEGRAL_TYPE_P (type)
2326 || TYPE_UNSIGNED (type) == unsignedp)
2327 return type;
2328
2329 #define TYPE_OK(node) \
2330 (TYPE_MODE (type) == TYPE_MODE (node) \
2331 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
2332 if (TYPE_OK (signed_char_type_node))
2333 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2334 if (TYPE_OK (integer_type_node))
2335 return unsignedp ? unsigned_type_node : integer_type_node;
2336 if (TYPE_OK (short_integer_type_node))
2337 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2338 if (TYPE_OK (long_integer_type_node))
2339 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2340 if (TYPE_OK (long_long_integer_type_node))
2341 return (unsignedp
2342 ? long_long_unsigned_type_node
2343 : long_long_integer_type_node);
2344
2345 for (i = 0; i < NUM_INT_N_ENTS; i ++)
2346 if (int_n_enabled_p[i]
2347 && TYPE_MODE (type) == int_n_data[i].m
2348 && TYPE_PRECISION (type) == int_n_data[i].bitsize)
2349 return unsignedp
2350 ? int_n_trees[i].unsigned_type
2351 : int_n_trees[i].signed_type;
2352
2353 #if HOST_BITS_PER_WIDE_INT >= 64
2354 if (TYPE_OK (intTI_type_node))
2355 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2356 #endif
2357 if (TYPE_OK (intDI_type_node))
2358 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2359 if (TYPE_OK (intSI_type_node))
2360 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2361 if (TYPE_OK (intHI_type_node))
2362 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2363 if (TYPE_OK (intQI_type_node))
2364 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2365
2366 #undef GIMPLE_FIXED_TYPES
2367 #undef GIMPLE_FIXED_MODE_TYPES
2368 #undef GIMPLE_FIXED_TYPES_SAT
2369 #undef GIMPLE_FIXED_MODE_TYPES_SAT
2370 #undef TYPE_OK
2371
2372 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
2373 }
2374
2375
2376 /* Return an unsigned type the same as TYPE in other respects. */
2377
2378 tree
2379 gimple_unsigned_type (tree type)
2380 {
2381 return gimple_signed_or_unsigned_type (true, type);
2382 }
2383
2384
2385 /* Return a signed type the same as TYPE in other respects. */
2386
2387 tree
2388 gimple_signed_type (tree type)
2389 {
2390 return gimple_signed_or_unsigned_type (false, type);
2391 }
2392
2393
2394 /* Return the typed-based alias set for T, which may be an expression
2395 or a type. Return -1 if we don't do anything special. */
2396
2397 alias_set_type
2398 gimple_get_alias_set (tree t)
2399 {
2400 tree u;
2401
2402 /* Permit type-punning when accessing a union, provided the access
2403 is directly through the union. For example, this code does not
2404 permit taking the address of a union member and then storing
2405 through it. Even the type-punning allowed here is a GCC
2406 extension, albeit a common and useful one; the C standard says
2407 that such accesses have implementation-defined behavior. */
2408 for (u = t;
2409 TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
2410 u = TREE_OPERAND (u, 0))
2411 if (TREE_CODE (u) == COMPONENT_REF
2412 && TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
2413 return 0;
2414
2415 /* That's all the expressions we handle specially. */
2416 if (!TYPE_P (t))
2417 return -1;
2418
2419 /* For convenience, follow the C standard when dealing with
2420 character types. Any object may be accessed via an lvalue that
2421 has character type. */
2422 if (t == char_type_node
2423 || t == signed_char_type_node
2424 || t == unsigned_char_type_node)
2425 return 0;
2426
2427 /* Allow aliasing between signed and unsigned variants of the same
2428 type. We treat the signed variant as canonical. */
2429 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
2430 {
2431 tree t1 = gimple_signed_type (t);
2432
2433 /* t1 == t can happen for boolean nodes which are always unsigned. */
2434 if (t1 != t)
2435 return get_alias_set (t1);
2436 }
2437
2438 return -1;
2439 }
2440
2441
2442 /* Helper for gimple_ior_addresses_taken_1. */
2443
2444 static bool
2445 gimple_ior_addresses_taken_1 (gimple, tree addr, tree, void *data)
2446 {
2447 bitmap addresses_taken = (bitmap)data;
2448 addr = get_base_address (addr);
2449 if (addr
2450 && DECL_P (addr))
2451 {
2452 bitmap_set_bit (addresses_taken, DECL_UID (addr));
2453 return true;
2454 }
2455 return false;
2456 }
2457
2458 /* Set the bit for the uid of all decls that have their address taken
2459 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
2460 were any in this stmt. */
2461
2462 bool
2463 gimple_ior_addresses_taken (bitmap addresses_taken, gimple stmt)
2464 {
2465 return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
2466 gimple_ior_addresses_taken_1);
2467 }
2468
2469
2470 /* Return true if TYPE1 and TYPE2 are compatible enough for builtin
2471 processing. */
2472
2473 static bool
2474 validate_type (tree type1, tree type2)
2475 {
2476 if (INTEGRAL_TYPE_P (type1)
2477 && INTEGRAL_TYPE_P (type2))
2478 ;
2479 else if (POINTER_TYPE_P (type1)
2480 && POINTER_TYPE_P (type2))
2481 ;
2482 else if (TREE_CODE (type1)
2483 != TREE_CODE (type2))
2484 return false;
2485 return true;
2486 }
2487
2488 /* Return true when STMTs arguments and return value match those of FNDECL,
2489 a decl of a builtin function. */
2490
2491 bool
2492 gimple_builtin_call_types_compatible_p (const_gimple stmt, tree fndecl)
2493 {
2494 gcc_checking_assert (DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN);
2495
2496 tree ret = gimple_call_lhs (stmt);
2497 if (ret
2498 && !validate_type (TREE_TYPE (ret), TREE_TYPE (TREE_TYPE (fndecl))))
2499 return false;
2500
2501 tree targs = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
2502 unsigned nargs = gimple_call_num_args (stmt);
2503 for (unsigned i = 0; i < nargs; ++i)
2504 {
2505 /* Variadic args follow. */
2506 if (!targs)
2507 return true;
2508 tree arg = gimple_call_arg (stmt, i);
2509 if (!validate_type (TREE_TYPE (arg), TREE_VALUE (targs)))
2510 return false;
2511 targs = TREE_CHAIN (targs);
2512 }
2513 if (targs && !VOID_TYPE_P (TREE_VALUE (targs)))
2514 return false;
2515 return true;
2516 }
2517
2518 /* Return true when STMT is builtins call. */
2519
2520 bool
2521 gimple_call_builtin_p (const_gimple stmt)
2522 {
2523 tree fndecl;
2524 if (is_gimple_call (stmt)
2525 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2526 && DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN)
2527 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2528 return false;
2529 }
2530
2531 /* Return true when STMT is builtins call to CLASS. */
2532
2533 bool
2534 gimple_call_builtin_p (const_gimple stmt, enum built_in_class klass)
2535 {
2536 tree fndecl;
2537 if (is_gimple_call (stmt)
2538 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2539 && DECL_BUILT_IN_CLASS (fndecl) == klass)
2540 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2541 return false;
2542 }
2543
2544 /* Return true when STMT is builtins call to CODE of CLASS. */
2545
2546 bool
2547 gimple_call_builtin_p (const_gimple stmt, enum built_in_function code)
2548 {
2549 tree fndecl;
2550 if (is_gimple_call (stmt)
2551 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2552 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
2553 && DECL_FUNCTION_CODE (fndecl) == code)
2554 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2555 return false;
2556 }
2557
2558 /* Return true if STMT clobbers memory. STMT is required to be a
2559 GIMPLE_ASM. */
2560
2561 bool
2562 gimple_asm_clobbers_memory_p (const gasm *stmt)
2563 {
2564 unsigned i;
2565
2566 for (i = 0; i < gimple_asm_nclobbers (stmt); i++)
2567 {
2568 tree op = gimple_asm_clobber_op (stmt, i);
2569 if (strcmp (TREE_STRING_POINTER (TREE_VALUE (op)), "memory") == 0)
2570 return true;
2571 }
2572
2573 return false;
2574 }
2575
2576 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
2577
2578 void
2579 dump_decl_set (FILE *file, bitmap set)
2580 {
2581 if (set)
2582 {
2583 bitmap_iterator bi;
2584 unsigned i;
2585
2586 fprintf (file, "{ ");
2587
2588 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2589 {
2590 fprintf (file, "D.%u", i);
2591 fprintf (file, " ");
2592 }
2593
2594 fprintf (file, "}");
2595 }
2596 else
2597 fprintf (file, "NIL");
2598 }
2599
2600 /* Return true when CALL is a call stmt that definitely doesn't
2601 free any memory or makes it unavailable otherwise. */
2602 bool
2603 nonfreeing_call_p (gimple call)
2604 {
2605 if (gimple_call_builtin_p (call, BUILT_IN_NORMAL)
2606 && gimple_call_flags (call) & ECF_LEAF)
2607 switch (DECL_FUNCTION_CODE (gimple_call_fndecl (call)))
2608 {
2609 /* Just in case these become ECF_LEAF in the future. */
2610 case BUILT_IN_FREE:
2611 case BUILT_IN_TM_FREE:
2612 case BUILT_IN_REALLOC:
2613 case BUILT_IN_STACK_RESTORE:
2614 return false;
2615 default:
2616 return true;
2617 }
2618 else if (gimple_call_internal_p (call))
2619 switch (gimple_call_internal_fn (call))
2620 {
2621 case IFN_ABNORMAL_DISPATCHER:
2622 return true;
2623 default:
2624 if (gimple_call_flags (call) & ECF_LEAF)
2625 return true;
2626 return false;
2627 }
2628
2629 tree fndecl = gimple_call_fndecl (call);
2630 if (!fndecl)
2631 return false;
2632 struct cgraph_node *n = cgraph_node::get (fndecl);
2633 if (!n)
2634 return false;
2635 enum availability availability;
2636 n = n->function_symbol (&availability);
2637 if (!n || availability <= AVAIL_INTERPOSABLE)
2638 return false;
2639 return n->nonfreeing_fn;
2640 }
2641
2642 /* Callback for walk_stmt_load_store_ops.
2643
2644 Return TRUE if OP will dereference the tree stored in DATA, FALSE
2645 otherwise.
2646
2647 This routine only makes a superficial check for a dereference. Thus
2648 it must only be used if it is safe to return a false negative. */
2649 static bool
2650 check_loadstore (gimple, tree op, tree, void *data)
2651 {
2652 if ((TREE_CODE (op) == MEM_REF || TREE_CODE (op) == TARGET_MEM_REF)
2653 && operand_equal_p (TREE_OPERAND (op, 0), (tree)data, 0))
2654 return true;
2655 return false;
2656 }
2657
2658 /* If OP can be inferred to be non-NULL after STMT executes, return true.
2659
2660 DEREFERENCE is TRUE if we can use a pointer dereference to infer a
2661 non-NULL range, FALSE otherwise.
2662
2663 ATTRIBUTE is TRUE if we can use attributes to infer a non-NULL range
2664 for function arguments and return values. FALSE otherwise. */
2665
2666 bool
2667 infer_nonnull_range (gimple stmt, tree op, bool dereference, bool attribute)
2668 {
2669 /* We can only assume that a pointer dereference will yield
2670 non-NULL if -fdelete-null-pointer-checks is enabled. */
2671 if (!flag_delete_null_pointer_checks
2672 || !POINTER_TYPE_P (TREE_TYPE (op))
2673 || gimple_code (stmt) == GIMPLE_ASM)
2674 return false;
2675
2676 if (dereference
2677 && walk_stmt_load_store_ops (stmt, (void *)op,
2678 check_loadstore, check_loadstore))
2679 return true;
2680
2681 if (attribute
2682 && is_gimple_call (stmt) && !gimple_call_internal_p (stmt))
2683 {
2684 tree fntype = gimple_call_fntype (stmt);
2685 tree attrs = TYPE_ATTRIBUTES (fntype);
2686 for (; attrs; attrs = TREE_CHAIN (attrs))
2687 {
2688 attrs = lookup_attribute ("nonnull", attrs);
2689
2690 /* If "nonnull" wasn't specified, we know nothing about
2691 the argument. */
2692 if (attrs == NULL_TREE)
2693 return false;
2694
2695 /* If "nonnull" applies to all the arguments, then ARG
2696 is non-null if it's in the argument list. */
2697 if (TREE_VALUE (attrs) == NULL_TREE)
2698 {
2699 for (unsigned int i = 0; i < gimple_call_num_args (stmt); i++)
2700 {
2701 if (POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (stmt, i)))
2702 && operand_equal_p (op, gimple_call_arg (stmt, i), 0))
2703 return true;
2704 }
2705 return false;
2706 }
2707
2708 /* Now see if op appears in the nonnull list. */
2709 for (tree t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
2710 {
2711 int idx = TREE_INT_CST_LOW (TREE_VALUE (t)) - 1;
2712 tree arg = gimple_call_arg (stmt, idx);
2713 if (operand_equal_p (op, arg, 0))
2714 return true;
2715 }
2716 }
2717 }
2718
2719 /* If this function is marked as returning non-null, then we can
2720 infer OP is non-null if it is used in the return statement. */
2721 if (attribute)
2722 if (greturn *return_stmt = dyn_cast <greturn *> (stmt))
2723 if (gimple_return_retval (return_stmt)
2724 && operand_equal_p (gimple_return_retval (return_stmt), op, 0)
2725 && lookup_attribute ("returns_nonnull",
2726 TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))))
2727 return true;
2728
2729 return false;
2730 }
2731
2732 /* Compare two case labels. Because the front end should already have
2733 made sure that case ranges do not overlap, it is enough to only compare
2734 the CASE_LOW values of each case label. */
2735
2736 static int
2737 compare_case_labels (const void *p1, const void *p2)
2738 {
2739 const_tree const case1 = *(const_tree const*)p1;
2740 const_tree const case2 = *(const_tree const*)p2;
2741
2742 /* The 'default' case label always goes first. */
2743 if (!CASE_LOW (case1))
2744 return -1;
2745 else if (!CASE_LOW (case2))
2746 return 1;
2747 else
2748 return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
2749 }
2750
2751 /* Sort the case labels in LABEL_VEC in place in ascending order. */
2752
2753 void
2754 sort_case_labels (vec<tree> label_vec)
2755 {
2756 label_vec.qsort (compare_case_labels);
2757 }
2758 \f
2759 /* Prepare a vector of case labels to be used in a GIMPLE_SWITCH statement.
2760
2761 LABELS is a vector that contains all case labels to look at.
2762
2763 INDEX_TYPE is the type of the switch index expression. Case labels
2764 in LABELS are discarded if their values are not in the value range
2765 covered by INDEX_TYPE. The remaining case label values are folded
2766 to INDEX_TYPE.
2767
2768 If a default case exists in LABELS, it is removed from LABELS and
2769 returned in DEFAULT_CASEP. If no default case exists, but the
2770 case labels already cover the whole range of INDEX_TYPE, a default
2771 case is returned pointing to one of the existing case labels.
2772 Otherwise DEFAULT_CASEP is set to NULL_TREE.
2773
2774 DEFAULT_CASEP may be NULL, in which case the above comment doesn't
2775 apply and no action is taken regardless of whether a default case is
2776 found or not. */
2777
2778 void
2779 preprocess_case_label_vec_for_gimple (vec<tree> labels,
2780 tree index_type,
2781 tree *default_casep)
2782 {
2783 tree min_value, max_value;
2784 tree default_case = NULL_TREE;
2785 size_t i, len;
2786
2787 i = 0;
2788 min_value = TYPE_MIN_VALUE (index_type);
2789 max_value = TYPE_MAX_VALUE (index_type);
2790 while (i < labels.length ())
2791 {
2792 tree elt = labels[i];
2793 tree low = CASE_LOW (elt);
2794 tree high = CASE_HIGH (elt);
2795 bool remove_element = FALSE;
2796
2797 if (low)
2798 {
2799 gcc_checking_assert (TREE_CODE (low) == INTEGER_CST);
2800 gcc_checking_assert (!high || TREE_CODE (high) == INTEGER_CST);
2801
2802 /* This is a non-default case label, i.e. it has a value.
2803
2804 See if the case label is reachable within the range of
2805 the index type. Remove out-of-range case values. Turn
2806 case ranges into a canonical form (high > low strictly)
2807 and convert the case label values to the index type.
2808
2809 NB: The type of gimple_switch_index() may be the promoted
2810 type, but the case labels retain the original type. */
2811
2812 if (high)
2813 {
2814 /* This is a case range. Discard empty ranges.
2815 If the bounds or the range are equal, turn this
2816 into a simple (one-value) case. */
2817 int cmp = tree_int_cst_compare (high, low);
2818 if (cmp < 0)
2819 remove_element = TRUE;
2820 else if (cmp == 0)
2821 high = NULL_TREE;
2822 }
2823
2824 if (! high)
2825 {
2826 /* If the simple case value is unreachable, ignore it. */
2827 if ((TREE_CODE (min_value) == INTEGER_CST
2828 && tree_int_cst_compare (low, min_value) < 0)
2829 || (TREE_CODE (max_value) == INTEGER_CST
2830 && tree_int_cst_compare (low, max_value) > 0))
2831 remove_element = TRUE;
2832 else
2833 low = fold_convert (index_type, low);
2834 }
2835 else
2836 {
2837 /* If the entire case range is unreachable, ignore it. */
2838 if ((TREE_CODE (min_value) == INTEGER_CST
2839 && tree_int_cst_compare (high, min_value) < 0)
2840 || (TREE_CODE (max_value) == INTEGER_CST
2841 && tree_int_cst_compare (low, max_value) > 0))
2842 remove_element = TRUE;
2843 else
2844 {
2845 /* If the lower bound is less than the index type's
2846 minimum value, truncate the range bounds. */
2847 if (TREE_CODE (min_value) == INTEGER_CST
2848 && tree_int_cst_compare (low, min_value) < 0)
2849 low = min_value;
2850 low = fold_convert (index_type, low);
2851
2852 /* If the upper bound is greater than the index type's
2853 maximum value, truncate the range bounds. */
2854 if (TREE_CODE (max_value) == INTEGER_CST
2855 && tree_int_cst_compare (high, max_value) > 0)
2856 high = max_value;
2857 high = fold_convert (index_type, high);
2858
2859 /* We may have folded a case range to a one-value case. */
2860 if (tree_int_cst_equal (low, high))
2861 high = NULL_TREE;
2862 }
2863 }
2864
2865 CASE_LOW (elt) = low;
2866 CASE_HIGH (elt) = high;
2867 }
2868 else
2869 {
2870 gcc_assert (!default_case);
2871 default_case = elt;
2872 /* The default case must be passed separately to the
2873 gimple_build_switch routine. But if DEFAULT_CASEP
2874 is NULL, we do not remove the default case (it would
2875 be completely lost). */
2876 if (default_casep)
2877 remove_element = TRUE;
2878 }
2879
2880 if (remove_element)
2881 labels.ordered_remove (i);
2882 else
2883 i++;
2884 }
2885 len = i;
2886
2887 if (!labels.is_empty ())
2888 sort_case_labels (labels);
2889
2890 if (default_casep && !default_case)
2891 {
2892 /* If the switch has no default label, add one, so that we jump
2893 around the switch body. If the labels already cover the whole
2894 range of the switch index_type, add the default label pointing
2895 to one of the existing labels. */
2896 if (len
2897 && TYPE_MIN_VALUE (index_type)
2898 && TYPE_MAX_VALUE (index_type)
2899 && tree_int_cst_equal (CASE_LOW (labels[0]),
2900 TYPE_MIN_VALUE (index_type)))
2901 {
2902 tree low, high = CASE_HIGH (labels[len - 1]);
2903 if (!high)
2904 high = CASE_LOW (labels[len - 1]);
2905 if (tree_int_cst_equal (high, TYPE_MAX_VALUE (index_type)))
2906 {
2907 for (i = 1; i < len; i++)
2908 {
2909 high = CASE_LOW (labels[i]);
2910 low = CASE_HIGH (labels[i - 1]);
2911 if (!low)
2912 low = CASE_LOW (labels[i - 1]);
2913 if (wi::add (low, 1) != high)
2914 break;
2915 }
2916 if (i == len)
2917 {
2918 tree label = CASE_LABEL (labels[0]);
2919 default_case = build_case_label (NULL_TREE, NULL_TREE,
2920 label);
2921 }
2922 }
2923 }
2924 }
2925
2926 if (default_casep)
2927 *default_casep = default_case;
2928 }
2929
2930 /* Set the location of all statements in SEQ to LOC. */
2931
2932 void
2933 gimple_seq_set_location (gimple_seq seq, location_t loc)
2934 {
2935 for (gimple_stmt_iterator i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
2936 gimple_set_location (gsi_stmt (i), loc);
2937 }
2938
2939 /* Release SSA_NAMEs in SEQ as well as the GIMPLE statements. */
2940
2941 void
2942 gimple_seq_discard (gimple_seq seq)
2943 {
2944 gimple_stmt_iterator gsi;
2945
2946 for (gsi = gsi_start (seq); !gsi_end_p (gsi); )
2947 {
2948 gimple stmt = gsi_stmt (gsi);
2949 gsi_remove (&gsi, true);
2950 release_defs (stmt);
2951 ggc_free (stmt);
2952 }
2953 }
2954
2955 /* See if STMT now calls function that takes no parameters and if so, drop
2956 call arguments. This is used when devirtualization machinery redirects
2957 to __builtiln_unreacahble or __cxa_pure_virutal. */
2958
2959 void
2960 maybe_remove_unused_call_args (struct function *fn, gimple stmt)
2961 {
2962 tree decl = gimple_call_fndecl (stmt);
2963 if (TYPE_ARG_TYPES (TREE_TYPE (decl))
2964 && TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl))) == void_type_node
2965 && gimple_call_num_args (stmt))
2966 {
2967 gimple_set_num_ops (stmt, 3);
2968 update_stmt_fn (fn, stmt);
2969 }
2970 }