re PR middle-end/45013 (Failed to build 483.xalancbmk in SPEC CPU 2006)
[gcc.git] / gcc / gimple.c
1 /* Gimple IR support functions.
2
3 Copyright 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "target.h"
27 #include "tree.h"
28 #include "ggc.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "gimple.h"
32 #include "toplev.h"
33 #include "diagnostic.h"
34 #include "tree-flow.h"
35 #include "value-prof.h"
36 #include "flags.h"
37 #include "alias.h"
38 #include "demangle.h"
39
40 /* Global type table. FIXME lto, it should be possible to re-use some
41 of the type hashing routines in tree.c (type_hash_canon, type_hash_lookup,
42 etc), but those assume that types were built with the various
43 build_*_type routines which is not the case with the streamer. */
44 static htab_t gimple_types;
45 static struct pointer_map_t *type_hash_cache;
46
47 /* Global type comparison cache. */
48 static htab_t gtc_visited;
49 static struct obstack gtc_ob;
50 static htab_t gtc_visited2;
51 static struct obstack gtc_ob2;
52
53 /* All the tuples have their operand vector (if present) at the very bottom
54 of the structure. Therefore, the offset required to find the
55 operands vector the size of the structure minus the size of the 1
56 element tree array at the end (see gimple_ops). */
57 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
58 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
59 EXPORTED_CONST size_t gimple_ops_offset_[] = {
60 #include "gsstruct.def"
61 };
62 #undef DEFGSSTRUCT
63
64 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof(struct STRUCT),
65 static const size_t gsstruct_code_size[] = {
66 #include "gsstruct.def"
67 };
68 #undef DEFGSSTRUCT
69
70 #define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
71 const char *const gimple_code_name[] = {
72 #include "gimple.def"
73 };
74 #undef DEFGSCODE
75
76 #define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
77 EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
78 #include "gimple.def"
79 };
80 #undef DEFGSCODE
81
82 #ifdef GATHER_STATISTICS
83 /* Gimple stats. */
84
85 int gimple_alloc_counts[(int) gimple_alloc_kind_all];
86 int gimple_alloc_sizes[(int) gimple_alloc_kind_all];
87
88 /* Keep in sync with gimple.h:enum gimple_alloc_kind. */
89 static const char * const gimple_alloc_kind_names[] = {
90 "assignments",
91 "phi nodes",
92 "conditionals",
93 "sequences",
94 "everything else"
95 };
96
97 #endif /* GATHER_STATISTICS */
98
99 /* A cache of gimple_seq objects. Sequences are created and destroyed
100 fairly often during gimplification. */
101 static GTY ((deletable)) struct gimple_seq_d *gimple_seq_cache;
102
103 /* Private API manipulation functions shared only with some
104 other files. */
105 extern void gimple_set_stored_syms (gimple, bitmap, bitmap_obstack *);
106 extern void gimple_set_loaded_syms (gimple, bitmap, bitmap_obstack *);
107
108 /* Gimple tuple constructors.
109 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
110 be passed a NULL to start with an empty sequence. */
111
112 /* Set the code for statement G to CODE. */
113
114 static inline void
115 gimple_set_code (gimple g, enum gimple_code code)
116 {
117 g->gsbase.code = code;
118 }
119
120 /* Return the number of bytes needed to hold a GIMPLE statement with
121 code CODE. */
122
123 static inline size_t
124 gimple_size (enum gimple_code code)
125 {
126 return gsstruct_code_size[gss_for_code (code)];
127 }
128
129 /* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
130 operands. */
131
132 gimple
133 gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
134 {
135 size_t size;
136 gimple stmt;
137
138 size = gimple_size (code);
139 if (num_ops > 0)
140 size += sizeof (tree) * (num_ops - 1);
141
142 #ifdef GATHER_STATISTICS
143 {
144 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
145 gimple_alloc_counts[(int) kind]++;
146 gimple_alloc_sizes[(int) kind] += size;
147 }
148 #endif
149
150 stmt = ggc_alloc_cleared_gimple_statement_d_stat (size PASS_MEM_STAT);
151 gimple_set_code (stmt, code);
152 gimple_set_num_ops (stmt, num_ops);
153
154 /* Do not call gimple_set_modified here as it has other side
155 effects and this tuple is still not completely built. */
156 stmt->gsbase.modified = 1;
157
158 return stmt;
159 }
160
161 /* Set SUBCODE to be the code of the expression computed by statement G. */
162
163 static inline void
164 gimple_set_subcode (gimple g, unsigned subcode)
165 {
166 /* We only have 16 bits for the RHS code. Assert that we are not
167 overflowing it. */
168 gcc_assert (subcode < (1 << 16));
169 g->gsbase.subcode = subcode;
170 }
171
172
173
174 /* Build a tuple with operands. CODE is the statement to build (which
175 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the sub-code
176 for the new tuple. NUM_OPS is the number of operands to allocate. */
177
178 #define gimple_build_with_ops(c, s, n) \
179 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
180
181 static gimple
182 gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
183 unsigned num_ops MEM_STAT_DECL)
184 {
185 gimple s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT);
186 gimple_set_subcode (s, subcode);
187
188 return s;
189 }
190
191
192 /* Build a GIMPLE_RETURN statement returning RETVAL. */
193
194 gimple
195 gimple_build_return (tree retval)
196 {
197 gimple s = gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK, 1);
198 if (retval)
199 gimple_return_set_retval (s, retval);
200 return s;
201 }
202
203 /* Reset alias information on call S. */
204
205 void
206 gimple_call_reset_alias_info (gimple s)
207 {
208 if (gimple_call_flags (s) & ECF_CONST)
209 memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
210 else
211 pt_solution_reset (gimple_call_use_set (s));
212 if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
213 memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
214 else
215 pt_solution_reset (gimple_call_clobber_set (s));
216 }
217
218 /* Helper for gimple_build_call, gimple_build_call_vec and
219 gimple_build_call_from_tree. Build the basic components of a
220 GIMPLE_CALL statement to function FN with NARGS arguments. */
221
222 static inline gimple
223 gimple_build_call_1 (tree fn, unsigned nargs)
224 {
225 gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3);
226 if (TREE_CODE (fn) == FUNCTION_DECL)
227 fn = build_fold_addr_expr (fn);
228 gimple_set_op (s, 1, fn);
229 gimple_call_reset_alias_info (s);
230 return s;
231 }
232
233
234 /* Build a GIMPLE_CALL statement to function FN with the arguments
235 specified in vector ARGS. */
236
237 gimple
238 gimple_build_call_vec (tree fn, VEC(tree, heap) *args)
239 {
240 unsigned i;
241 unsigned nargs = VEC_length (tree, args);
242 gimple call = gimple_build_call_1 (fn, nargs);
243
244 for (i = 0; i < nargs; i++)
245 gimple_call_set_arg (call, i, VEC_index (tree, args, i));
246
247 return call;
248 }
249
250
251 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
252 arguments. The ... are the arguments. */
253
254 gimple
255 gimple_build_call (tree fn, unsigned nargs, ...)
256 {
257 va_list ap;
258 gimple call;
259 unsigned i;
260
261 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
262
263 call = gimple_build_call_1 (fn, nargs);
264
265 va_start (ap, nargs);
266 for (i = 0; i < nargs; i++)
267 gimple_call_set_arg (call, i, va_arg (ap, tree));
268 va_end (ap);
269
270 return call;
271 }
272
273
274 /* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
275 assumed to be in GIMPLE form already. Minimal checking is done of
276 this fact. */
277
278 gimple
279 gimple_build_call_from_tree (tree t)
280 {
281 unsigned i, nargs;
282 gimple call;
283 tree fndecl = get_callee_fndecl (t);
284
285 gcc_assert (TREE_CODE (t) == CALL_EXPR);
286
287 nargs = call_expr_nargs (t);
288 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
289
290 for (i = 0; i < nargs; i++)
291 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
292
293 gimple_set_block (call, TREE_BLOCK (t));
294
295 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
296 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
297 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
298 gimple_call_set_cannot_inline (call, CALL_CANNOT_INLINE_P (t));
299 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
300 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
301 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
302 gimple_call_set_nothrow (call, TREE_NOTHROW (t));
303 gimple_set_no_warning (call, TREE_NO_WARNING (t));
304
305 return call;
306 }
307
308
309 /* Extract the operands and code for expression EXPR into *SUBCODE_P,
310 *OP1_P, *OP2_P and *OP3_P respectively. */
311
312 void
313 extract_ops_from_tree_1 (tree expr, enum tree_code *subcode_p, tree *op1_p,
314 tree *op2_p, tree *op3_p)
315 {
316 enum gimple_rhs_class grhs_class;
317
318 *subcode_p = TREE_CODE (expr);
319 grhs_class = get_gimple_rhs_class (*subcode_p);
320
321 if (grhs_class == GIMPLE_TERNARY_RHS)
322 {
323 *op1_p = TREE_OPERAND (expr, 0);
324 *op2_p = TREE_OPERAND (expr, 1);
325 *op3_p = TREE_OPERAND (expr, 2);
326 }
327 else if (grhs_class == GIMPLE_BINARY_RHS)
328 {
329 *op1_p = TREE_OPERAND (expr, 0);
330 *op2_p = TREE_OPERAND (expr, 1);
331 *op3_p = NULL_TREE;
332 }
333 else if (grhs_class == GIMPLE_UNARY_RHS)
334 {
335 *op1_p = TREE_OPERAND (expr, 0);
336 *op2_p = NULL_TREE;
337 *op3_p = NULL_TREE;
338 }
339 else if (grhs_class == GIMPLE_SINGLE_RHS)
340 {
341 *op1_p = expr;
342 *op2_p = NULL_TREE;
343 *op3_p = NULL_TREE;
344 }
345 else
346 gcc_unreachable ();
347 }
348
349
350 /* Build a GIMPLE_ASSIGN statement.
351
352 LHS of the assignment.
353 RHS of the assignment which can be unary or binary. */
354
355 gimple
356 gimple_build_assign_stat (tree lhs, tree rhs MEM_STAT_DECL)
357 {
358 enum tree_code subcode;
359 tree op1, op2, op3;
360
361 extract_ops_from_tree_1 (rhs, &subcode, &op1, &op2, &op3);
362 return gimple_build_assign_with_ops_stat (subcode, lhs, op1, op2, op3
363 PASS_MEM_STAT);
364 }
365
366
367 /* Build a GIMPLE_ASSIGN statement with sub-code SUBCODE and operands
368 OP1 and OP2. If OP2 is NULL then SUBCODE must be of class
369 GIMPLE_UNARY_RHS or GIMPLE_SINGLE_RHS. */
370
371 gimple
372 gimple_build_assign_with_ops_stat (enum tree_code subcode, tree lhs, tree op1,
373 tree op2, tree op3 MEM_STAT_DECL)
374 {
375 unsigned num_ops;
376 gimple p;
377
378 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
379 code). */
380 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
381
382 p = gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
383 PASS_MEM_STAT);
384 gimple_assign_set_lhs (p, lhs);
385 gimple_assign_set_rhs1 (p, op1);
386 if (op2)
387 {
388 gcc_assert (num_ops > 2);
389 gimple_assign_set_rhs2 (p, op2);
390 }
391
392 if (op3)
393 {
394 gcc_assert (num_ops > 3);
395 gimple_assign_set_rhs3 (p, op3);
396 }
397
398 return p;
399 }
400
401
402 /* Build a new GIMPLE_ASSIGN tuple and append it to the end of *SEQ_P.
403
404 DST/SRC are the destination and source respectively. You can pass
405 ungimplified trees in DST or SRC, in which case they will be
406 converted to a gimple operand if necessary.
407
408 This function returns the newly created GIMPLE_ASSIGN tuple. */
409
410 gimple
411 gimplify_assign (tree dst, tree src, gimple_seq *seq_p)
412 {
413 tree t = build2 (MODIFY_EXPR, TREE_TYPE (dst), dst, src);
414 gimplify_and_add (t, seq_p);
415 ggc_free (t);
416 return gimple_seq_last_stmt (*seq_p);
417 }
418
419
420 /* Build a GIMPLE_COND statement.
421
422 PRED is the condition used to compare LHS and the RHS.
423 T_LABEL is the label to jump to if the condition is true.
424 F_LABEL is the label to jump to otherwise. */
425
426 gimple
427 gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
428 tree t_label, tree f_label)
429 {
430 gimple p;
431
432 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
433 p = gimple_build_with_ops (GIMPLE_COND, pred_code, 4);
434 gimple_cond_set_lhs (p, lhs);
435 gimple_cond_set_rhs (p, rhs);
436 gimple_cond_set_true_label (p, t_label);
437 gimple_cond_set_false_label (p, f_label);
438 return p;
439 }
440
441
442 /* Extract operands for a GIMPLE_COND statement out of COND_EXPR tree COND. */
443
444 void
445 gimple_cond_get_ops_from_tree (tree cond, enum tree_code *code_p,
446 tree *lhs_p, tree *rhs_p)
447 {
448 location_t loc = EXPR_LOCATION (cond);
449 gcc_assert (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison
450 || TREE_CODE (cond) == TRUTH_NOT_EXPR
451 || is_gimple_min_invariant (cond)
452 || SSA_VAR_P (cond));
453
454 extract_ops_from_tree (cond, code_p, lhs_p, rhs_p);
455
456 /* Canonicalize conditionals of the form 'if (!VAL)'. */
457 if (*code_p == TRUTH_NOT_EXPR)
458 {
459 *code_p = EQ_EXPR;
460 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
461 *rhs_p = fold_convert_loc (loc, TREE_TYPE (*lhs_p), integer_zero_node);
462 }
463 /* Canonicalize conditionals of the form 'if (VAL)' */
464 else if (TREE_CODE_CLASS (*code_p) != tcc_comparison)
465 {
466 *code_p = NE_EXPR;
467 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
468 *rhs_p = fold_convert_loc (loc, TREE_TYPE (*lhs_p), integer_zero_node);
469 }
470 }
471
472
473 /* Build a GIMPLE_COND statement from the conditional expression tree
474 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
475
476 gimple
477 gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
478 {
479 enum tree_code code;
480 tree lhs, rhs;
481
482 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
483 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
484 }
485
486 /* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
487 boolean expression tree COND. */
488
489 void
490 gimple_cond_set_condition_from_tree (gimple stmt, tree cond)
491 {
492 enum tree_code code;
493 tree lhs, rhs;
494
495 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
496 gimple_cond_set_condition (stmt, code, lhs, rhs);
497 }
498
499 /* Build a GIMPLE_LABEL statement for LABEL. */
500
501 gimple
502 gimple_build_label (tree label)
503 {
504 gimple p = gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1);
505 gimple_label_set_label (p, label);
506 return p;
507 }
508
509 /* Build a GIMPLE_GOTO statement to label DEST. */
510
511 gimple
512 gimple_build_goto (tree dest)
513 {
514 gimple p = gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1);
515 gimple_goto_set_dest (p, dest);
516 return p;
517 }
518
519
520 /* Build a GIMPLE_NOP statement. */
521
522 gimple
523 gimple_build_nop (void)
524 {
525 return gimple_alloc (GIMPLE_NOP, 0);
526 }
527
528
529 /* Build a GIMPLE_BIND statement.
530 VARS are the variables in BODY.
531 BLOCK is the containing block. */
532
533 gimple
534 gimple_build_bind (tree vars, gimple_seq body, tree block)
535 {
536 gimple p = gimple_alloc (GIMPLE_BIND, 0);
537 gimple_bind_set_vars (p, vars);
538 if (body)
539 gimple_bind_set_body (p, body);
540 if (block)
541 gimple_bind_set_block (p, block);
542 return p;
543 }
544
545 /* Helper function to set the simple fields of a asm stmt.
546
547 STRING is a pointer to a string that is the asm blocks assembly code.
548 NINPUT is the number of register inputs.
549 NOUTPUT is the number of register outputs.
550 NCLOBBERS is the number of clobbered registers.
551 */
552
553 static inline gimple
554 gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
555 unsigned nclobbers, unsigned nlabels)
556 {
557 gimple p;
558 int size = strlen (string);
559
560 /* ASMs with labels cannot have outputs. This should have been
561 enforced by the front end. */
562 gcc_assert (nlabels == 0 || noutputs == 0);
563
564 p = gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
565 ninputs + noutputs + nclobbers + nlabels);
566
567 p->gimple_asm.ni = ninputs;
568 p->gimple_asm.no = noutputs;
569 p->gimple_asm.nc = nclobbers;
570 p->gimple_asm.nl = nlabels;
571 p->gimple_asm.string = ggc_alloc_string (string, size);
572
573 #ifdef GATHER_STATISTICS
574 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
575 #endif
576
577 return p;
578 }
579
580 /* Build a GIMPLE_ASM statement.
581
582 STRING is the assembly code.
583 NINPUT is the number of register inputs.
584 NOUTPUT is the number of register outputs.
585 NCLOBBERS is the number of clobbered registers.
586 INPUTS is a vector of the input register parameters.
587 OUTPUTS is a vector of the output register parameters.
588 CLOBBERS is a vector of the clobbered register parameters.
589 LABELS is a vector of destination labels. */
590
591 gimple
592 gimple_build_asm_vec (const char *string, VEC(tree,gc)* inputs,
593 VEC(tree,gc)* outputs, VEC(tree,gc)* clobbers,
594 VEC(tree,gc)* labels)
595 {
596 gimple p;
597 unsigned i;
598
599 p = gimple_build_asm_1 (string,
600 VEC_length (tree, inputs),
601 VEC_length (tree, outputs),
602 VEC_length (tree, clobbers),
603 VEC_length (tree, labels));
604
605 for (i = 0; i < VEC_length (tree, inputs); i++)
606 gimple_asm_set_input_op (p, i, VEC_index (tree, inputs, i));
607
608 for (i = 0; i < VEC_length (tree, outputs); i++)
609 gimple_asm_set_output_op (p, i, VEC_index (tree, outputs, i));
610
611 for (i = 0; i < VEC_length (tree, clobbers); i++)
612 gimple_asm_set_clobber_op (p, i, VEC_index (tree, clobbers, i));
613
614 for (i = 0; i < VEC_length (tree, labels); i++)
615 gimple_asm_set_label_op (p, i, VEC_index (tree, labels, i));
616
617 return p;
618 }
619
620 /* Build a GIMPLE_CATCH statement.
621
622 TYPES are the catch types.
623 HANDLER is the exception handler. */
624
625 gimple
626 gimple_build_catch (tree types, gimple_seq handler)
627 {
628 gimple p = gimple_alloc (GIMPLE_CATCH, 0);
629 gimple_catch_set_types (p, types);
630 if (handler)
631 gimple_catch_set_handler (p, handler);
632
633 return p;
634 }
635
636 /* Build a GIMPLE_EH_FILTER statement.
637
638 TYPES are the filter's types.
639 FAILURE is the filter's failure action. */
640
641 gimple
642 gimple_build_eh_filter (tree types, gimple_seq failure)
643 {
644 gimple p = gimple_alloc (GIMPLE_EH_FILTER, 0);
645 gimple_eh_filter_set_types (p, types);
646 if (failure)
647 gimple_eh_filter_set_failure (p, failure);
648
649 return p;
650 }
651
652 /* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
653
654 gimple
655 gimple_build_eh_must_not_throw (tree decl)
656 {
657 gimple p = gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0);
658
659 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
660 gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
661 gimple_eh_must_not_throw_set_fndecl (p, decl);
662
663 return p;
664 }
665
666 /* Build a GIMPLE_TRY statement.
667
668 EVAL is the expression to evaluate.
669 CLEANUP is the cleanup expression.
670 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
671 whether this is a try/catch or a try/finally respectively. */
672
673 gimple
674 gimple_build_try (gimple_seq eval, gimple_seq cleanup,
675 enum gimple_try_flags kind)
676 {
677 gimple p;
678
679 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
680 p = gimple_alloc (GIMPLE_TRY, 0);
681 gimple_set_subcode (p, kind);
682 if (eval)
683 gimple_try_set_eval (p, eval);
684 if (cleanup)
685 gimple_try_set_cleanup (p, cleanup);
686
687 return p;
688 }
689
690 /* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
691
692 CLEANUP is the cleanup expression. */
693
694 gimple
695 gimple_build_wce (gimple_seq cleanup)
696 {
697 gimple p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
698 if (cleanup)
699 gimple_wce_set_cleanup (p, cleanup);
700
701 return p;
702 }
703
704
705 /* Build a GIMPLE_RESX statement. */
706
707 gimple
708 gimple_build_resx (int region)
709 {
710 gimple p = gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0);
711 p->gimple_eh_ctrl.region = region;
712 return p;
713 }
714
715
716 /* The helper for constructing a gimple switch statement.
717 INDEX is the switch's index.
718 NLABELS is the number of labels in the switch excluding the default.
719 DEFAULT_LABEL is the default label for the switch statement. */
720
721 gimple
722 gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
723 {
724 /* nlabels + 1 default label + 1 index. */
725 gimple p = gimple_build_with_ops (GIMPLE_SWITCH, ERROR_MARK,
726 1 + (default_label != NULL) + nlabels);
727 gimple_switch_set_index (p, index);
728 if (default_label)
729 gimple_switch_set_default_label (p, default_label);
730 return p;
731 }
732
733
734 /* Build a GIMPLE_SWITCH statement.
735
736 INDEX is the switch's index.
737 NLABELS is the number of labels in the switch excluding the DEFAULT_LABEL.
738 ... are the labels excluding the default. */
739
740 gimple
741 gimple_build_switch (unsigned nlabels, tree index, tree default_label, ...)
742 {
743 va_list al;
744 unsigned i, offset;
745 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
746
747 /* Store the rest of the labels. */
748 va_start (al, default_label);
749 offset = (default_label != NULL);
750 for (i = 0; i < nlabels; i++)
751 gimple_switch_set_label (p, i + offset, va_arg (al, tree));
752 va_end (al);
753
754 return p;
755 }
756
757
758 /* Build a GIMPLE_SWITCH statement.
759
760 INDEX is the switch's index.
761 DEFAULT_LABEL is the default label
762 ARGS is a vector of labels excluding the default. */
763
764 gimple
765 gimple_build_switch_vec (tree index, tree default_label, VEC(tree, heap) *args)
766 {
767 unsigned i, offset, nlabels = VEC_length (tree, args);
768 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
769
770 /* Copy the labels from the vector to the switch statement. */
771 offset = (default_label != NULL);
772 for (i = 0; i < nlabels; i++)
773 gimple_switch_set_label (p, i + offset, VEC_index (tree, args, i));
774
775 return p;
776 }
777
778 /* Build a GIMPLE_EH_DISPATCH statement. */
779
780 gimple
781 gimple_build_eh_dispatch (int region)
782 {
783 gimple p = gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0);
784 p->gimple_eh_ctrl.region = region;
785 return p;
786 }
787
788 /* Build a new GIMPLE_DEBUG_BIND statement.
789
790 VAR is bound to VALUE; block and location are taken from STMT. */
791
792 gimple
793 gimple_build_debug_bind_stat (tree var, tree value, gimple stmt MEM_STAT_DECL)
794 {
795 gimple p = gimple_build_with_ops_stat (GIMPLE_DEBUG,
796 (unsigned)GIMPLE_DEBUG_BIND, 2
797 PASS_MEM_STAT);
798
799 gimple_debug_bind_set_var (p, var);
800 gimple_debug_bind_set_value (p, value);
801 if (stmt)
802 {
803 gimple_set_block (p, gimple_block (stmt));
804 gimple_set_location (p, gimple_location (stmt));
805 }
806
807 return p;
808 }
809
810
811 /* Build a GIMPLE_OMP_CRITICAL statement.
812
813 BODY is the sequence of statements for which only one thread can execute.
814 NAME is optional identifier for this critical block. */
815
816 gimple
817 gimple_build_omp_critical (gimple_seq body, tree name)
818 {
819 gimple p = gimple_alloc (GIMPLE_OMP_CRITICAL, 0);
820 gimple_omp_critical_set_name (p, name);
821 if (body)
822 gimple_omp_set_body (p, body);
823
824 return p;
825 }
826
827 /* Build a GIMPLE_OMP_FOR statement.
828
829 BODY is sequence of statements inside the for loop.
830 CLAUSES, are any of the OMP loop construct's clauses: private, firstprivate,
831 lastprivate, reductions, ordered, schedule, and nowait.
832 COLLAPSE is the collapse count.
833 PRE_BODY is the sequence of statements that are loop invariant. */
834
835 gimple
836 gimple_build_omp_for (gimple_seq body, tree clauses, size_t collapse,
837 gimple_seq pre_body)
838 {
839 gimple p = gimple_alloc (GIMPLE_OMP_FOR, 0);
840 if (body)
841 gimple_omp_set_body (p, body);
842 gimple_omp_for_set_clauses (p, clauses);
843 p->gimple_omp_for.collapse = collapse;
844 p->gimple_omp_for.iter
845 = ggc_alloc_cleared_vec_gimple_omp_for_iter (collapse);
846 if (pre_body)
847 gimple_omp_for_set_pre_body (p, pre_body);
848
849 return p;
850 }
851
852
853 /* Build a GIMPLE_OMP_PARALLEL statement.
854
855 BODY is sequence of statements which are executed in parallel.
856 CLAUSES, are the OMP parallel construct's clauses.
857 CHILD_FN is the function created for the parallel threads to execute.
858 DATA_ARG are the shared data argument(s). */
859
860 gimple
861 gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
862 tree data_arg)
863 {
864 gimple p = gimple_alloc (GIMPLE_OMP_PARALLEL, 0);
865 if (body)
866 gimple_omp_set_body (p, body);
867 gimple_omp_parallel_set_clauses (p, clauses);
868 gimple_omp_parallel_set_child_fn (p, child_fn);
869 gimple_omp_parallel_set_data_arg (p, data_arg);
870
871 return p;
872 }
873
874
875 /* Build a GIMPLE_OMP_TASK statement.
876
877 BODY is sequence of statements which are executed by the explicit task.
878 CLAUSES, are the OMP parallel construct's clauses.
879 CHILD_FN is the function created for the parallel threads to execute.
880 DATA_ARG are the shared data argument(s).
881 COPY_FN is the optional function for firstprivate initialization.
882 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
883
884 gimple
885 gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
886 tree data_arg, tree copy_fn, tree arg_size,
887 tree arg_align)
888 {
889 gimple p = gimple_alloc (GIMPLE_OMP_TASK, 0);
890 if (body)
891 gimple_omp_set_body (p, body);
892 gimple_omp_task_set_clauses (p, clauses);
893 gimple_omp_task_set_child_fn (p, child_fn);
894 gimple_omp_task_set_data_arg (p, data_arg);
895 gimple_omp_task_set_copy_fn (p, copy_fn);
896 gimple_omp_task_set_arg_size (p, arg_size);
897 gimple_omp_task_set_arg_align (p, arg_align);
898
899 return p;
900 }
901
902
903 /* Build a GIMPLE_OMP_SECTION statement for a sections statement.
904
905 BODY is the sequence of statements in the section. */
906
907 gimple
908 gimple_build_omp_section (gimple_seq body)
909 {
910 gimple p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
911 if (body)
912 gimple_omp_set_body (p, body);
913
914 return p;
915 }
916
917
918 /* Build a GIMPLE_OMP_MASTER statement.
919
920 BODY is the sequence of statements to be executed by just the master. */
921
922 gimple
923 gimple_build_omp_master (gimple_seq body)
924 {
925 gimple p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
926 if (body)
927 gimple_omp_set_body (p, body);
928
929 return p;
930 }
931
932
933 /* Build a GIMPLE_OMP_CONTINUE statement.
934
935 CONTROL_DEF is the definition of the control variable.
936 CONTROL_USE is the use of the control variable. */
937
938 gimple
939 gimple_build_omp_continue (tree control_def, tree control_use)
940 {
941 gimple p = gimple_alloc (GIMPLE_OMP_CONTINUE, 0);
942 gimple_omp_continue_set_control_def (p, control_def);
943 gimple_omp_continue_set_control_use (p, control_use);
944 return p;
945 }
946
947 /* Build a GIMPLE_OMP_ORDERED statement.
948
949 BODY is the sequence of statements inside a loop that will executed in
950 sequence. */
951
952 gimple
953 gimple_build_omp_ordered (gimple_seq body)
954 {
955 gimple p = gimple_alloc (GIMPLE_OMP_ORDERED, 0);
956 if (body)
957 gimple_omp_set_body (p, body);
958
959 return p;
960 }
961
962
963 /* Build a GIMPLE_OMP_RETURN statement.
964 WAIT_P is true if this is a non-waiting return. */
965
966 gimple
967 gimple_build_omp_return (bool wait_p)
968 {
969 gimple p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
970 if (wait_p)
971 gimple_omp_return_set_nowait (p);
972
973 return p;
974 }
975
976
977 /* Build a GIMPLE_OMP_SECTIONS statement.
978
979 BODY is a sequence of section statements.
980 CLAUSES are any of the OMP sections contsruct's clauses: private,
981 firstprivate, lastprivate, reduction, and nowait. */
982
983 gimple
984 gimple_build_omp_sections (gimple_seq body, tree clauses)
985 {
986 gimple p = gimple_alloc (GIMPLE_OMP_SECTIONS, 0);
987 if (body)
988 gimple_omp_set_body (p, body);
989 gimple_omp_sections_set_clauses (p, clauses);
990
991 return p;
992 }
993
994
995 /* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
996
997 gimple
998 gimple_build_omp_sections_switch (void)
999 {
1000 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
1001 }
1002
1003
1004 /* Build a GIMPLE_OMP_SINGLE statement.
1005
1006 BODY is the sequence of statements that will be executed once.
1007 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1008 copyprivate, nowait. */
1009
1010 gimple
1011 gimple_build_omp_single (gimple_seq body, tree clauses)
1012 {
1013 gimple p = gimple_alloc (GIMPLE_OMP_SINGLE, 0);
1014 if (body)
1015 gimple_omp_set_body (p, body);
1016 gimple_omp_single_set_clauses (p, clauses);
1017
1018 return p;
1019 }
1020
1021
1022 /* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
1023
1024 gimple
1025 gimple_build_omp_atomic_load (tree lhs, tree rhs)
1026 {
1027 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0);
1028 gimple_omp_atomic_load_set_lhs (p, lhs);
1029 gimple_omp_atomic_load_set_rhs (p, rhs);
1030 return p;
1031 }
1032
1033 /* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1034
1035 VAL is the value we are storing. */
1036
1037 gimple
1038 gimple_build_omp_atomic_store (tree val)
1039 {
1040 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0);
1041 gimple_omp_atomic_store_set_val (p, val);
1042 return p;
1043 }
1044
1045 /* Build a GIMPLE_PREDICT statement. PREDICT is one of the predictors from
1046 predict.def, OUTCOME is NOT_TAKEN or TAKEN. */
1047
1048 gimple
1049 gimple_build_predict (enum br_predictor predictor, enum prediction outcome)
1050 {
1051 gimple p = gimple_alloc (GIMPLE_PREDICT, 0);
1052 /* Ensure all the predictors fit into the lower bits of the subcode. */
1053 gcc_assert ((int) END_PREDICTORS <= GF_PREDICT_TAKEN);
1054 gimple_predict_set_predictor (p, predictor);
1055 gimple_predict_set_outcome (p, outcome);
1056 return p;
1057 }
1058
1059 #if defined ENABLE_GIMPLE_CHECKING
1060 /* Complain of a gimple type mismatch and die. */
1061
1062 void
1063 gimple_check_failed (const_gimple gs, const char *file, int line,
1064 const char *function, enum gimple_code code,
1065 enum tree_code subcode)
1066 {
1067 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1068 gimple_code_name[code],
1069 tree_code_name[subcode],
1070 gimple_code_name[gimple_code (gs)],
1071 gs->gsbase.subcode > 0
1072 ? tree_code_name[gs->gsbase.subcode]
1073 : "",
1074 function, trim_filename (file), line);
1075 }
1076 #endif /* ENABLE_GIMPLE_CHECKING */
1077
1078
1079 /* Allocate a new GIMPLE sequence in GC memory and return it. If
1080 there are free sequences in GIMPLE_SEQ_CACHE return one of those
1081 instead. */
1082
1083 gimple_seq
1084 gimple_seq_alloc (void)
1085 {
1086 gimple_seq seq = gimple_seq_cache;
1087 if (seq)
1088 {
1089 gimple_seq_cache = gimple_seq_cache->next_free;
1090 gcc_assert (gimple_seq_cache != seq);
1091 memset (seq, 0, sizeof (*seq));
1092 }
1093 else
1094 {
1095 seq = ggc_alloc_cleared_gimple_seq_d ();
1096 #ifdef GATHER_STATISTICS
1097 gimple_alloc_counts[(int) gimple_alloc_kind_seq]++;
1098 gimple_alloc_sizes[(int) gimple_alloc_kind_seq] += sizeof (*seq);
1099 #endif
1100 }
1101
1102 return seq;
1103 }
1104
1105 /* Return SEQ to the free pool of GIMPLE sequences. */
1106
1107 void
1108 gimple_seq_free (gimple_seq seq)
1109 {
1110 if (seq == NULL)
1111 return;
1112
1113 gcc_assert (gimple_seq_first (seq) == NULL);
1114 gcc_assert (gimple_seq_last (seq) == NULL);
1115
1116 /* If this triggers, it's a sign that the same list is being freed
1117 twice. */
1118 gcc_assert (seq != gimple_seq_cache || gimple_seq_cache == NULL);
1119
1120 /* Add SEQ to the pool of free sequences. */
1121 seq->next_free = gimple_seq_cache;
1122 gimple_seq_cache = seq;
1123 }
1124
1125
1126 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1127 *SEQ_P is NULL, a new sequence is allocated. */
1128
1129 void
1130 gimple_seq_add_stmt (gimple_seq *seq_p, gimple gs)
1131 {
1132 gimple_stmt_iterator si;
1133
1134 if (gs == NULL)
1135 return;
1136
1137 if (*seq_p == NULL)
1138 *seq_p = gimple_seq_alloc ();
1139
1140 si = gsi_last (*seq_p);
1141 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1142 }
1143
1144
1145 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1146 NULL, a new sequence is allocated. */
1147
1148 void
1149 gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1150 {
1151 gimple_stmt_iterator si;
1152
1153 if (src == NULL)
1154 return;
1155
1156 if (*dst_p == NULL)
1157 *dst_p = gimple_seq_alloc ();
1158
1159 si = gsi_last (*dst_p);
1160 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1161 }
1162
1163
1164 /* Helper function of empty_body_p. Return true if STMT is an empty
1165 statement. */
1166
1167 static bool
1168 empty_stmt_p (gimple stmt)
1169 {
1170 if (gimple_code (stmt) == GIMPLE_NOP)
1171 return true;
1172 if (gimple_code (stmt) == GIMPLE_BIND)
1173 return empty_body_p (gimple_bind_body (stmt));
1174 return false;
1175 }
1176
1177
1178 /* Return true if BODY contains nothing but empty statements. */
1179
1180 bool
1181 empty_body_p (gimple_seq body)
1182 {
1183 gimple_stmt_iterator i;
1184
1185 if (gimple_seq_empty_p (body))
1186 return true;
1187 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
1188 if (!empty_stmt_p (gsi_stmt (i))
1189 && !is_gimple_debug (gsi_stmt (i)))
1190 return false;
1191
1192 return true;
1193 }
1194
1195
1196 /* Perform a deep copy of sequence SRC and return the result. */
1197
1198 gimple_seq
1199 gimple_seq_copy (gimple_seq src)
1200 {
1201 gimple_stmt_iterator gsi;
1202 gimple_seq new_seq = gimple_seq_alloc ();
1203 gimple stmt;
1204
1205 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1206 {
1207 stmt = gimple_copy (gsi_stmt (gsi));
1208 gimple_seq_add_stmt (&new_seq, stmt);
1209 }
1210
1211 return new_seq;
1212 }
1213
1214
1215 /* Walk all the statements in the sequence SEQ calling walk_gimple_stmt
1216 on each one. WI is as in walk_gimple_stmt.
1217
1218 If walk_gimple_stmt returns non-NULL, the walk is stopped, the
1219 value is stored in WI->CALLBACK_RESULT and the statement that
1220 produced the value is returned.
1221
1222 Otherwise, all the statements are walked and NULL returned. */
1223
1224 gimple
1225 walk_gimple_seq (gimple_seq seq, walk_stmt_fn callback_stmt,
1226 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1227 {
1228 gimple_stmt_iterator gsi;
1229
1230 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
1231 {
1232 tree ret = walk_gimple_stmt (&gsi, callback_stmt, callback_op, wi);
1233 if (ret)
1234 {
1235 /* If CALLBACK_STMT or CALLBACK_OP return a value, WI must exist
1236 to hold it. */
1237 gcc_assert (wi);
1238 wi->callback_result = ret;
1239 return gsi_stmt (gsi);
1240 }
1241 }
1242
1243 if (wi)
1244 wi->callback_result = NULL_TREE;
1245
1246 return NULL;
1247 }
1248
1249
1250 /* Helper function for walk_gimple_stmt. Walk operands of a GIMPLE_ASM. */
1251
1252 static tree
1253 walk_gimple_asm (gimple stmt, walk_tree_fn callback_op,
1254 struct walk_stmt_info *wi)
1255 {
1256 tree ret, op;
1257 unsigned noutputs;
1258 const char **oconstraints;
1259 unsigned i, n;
1260 const char *constraint;
1261 bool allows_mem, allows_reg, is_inout;
1262
1263 noutputs = gimple_asm_noutputs (stmt);
1264 oconstraints = (const char **) alloca ((noutputs) * sizeof (const char *));
1265
1266 if (wi)
1267 wi->is_lhs = true;
1268
1269 for (i = 0; i < noutputs; i++)
1270 {
1271 op = gimple_asm_output_op (stmt, i);
1272 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1273 oconstraints[i] = constraint;
1274 parse_output_constraint (&constraint, i, 0, 0, &allows_mem, &allows_reg,
1275 &is_inout);
1276 if (wi)
1277 wi->val_only = (allows_reg || !allows_mem);
1278 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1279 if (ret)
1280 return ret;
1281 }
1282
1283 n = gimple_asm_ninputs (stmt);
1284 for (i = 0; i < n; i++)
1285 {
1286 op = gimple_asm_input_op (stmt, i);
1287 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1288 parse_input_constraint (&constraint, 0, 0, noutputs, 0,
1289 oconstraints, &allows_mem, &allows_reg);
1290 if (wi)
1291 {
1292 wi->val_only = (allows_reg || !allows_mem);
1293 /* Although input "m" is not really a LHS, we need a lvalue. */
1294 wi->is_lhs = !wi->val_only;
1295 }
1296 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1297 if (ret)
1298 return ret;
1299 }
1300
1301 if (wi)
1302 {
1303 wi->is_lhs = false;
1304 wi->val_only = true;
1305 }
1306
1307 n = gimple_asm_nlabels (stmt);
1308 for (i = 0; i < n; i++)
1309 {
1310 op = gimple_asm_label_op (stmt, i);
1311 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1312 if (ret)
1313 return ret;
1314 }
1315
1316 return NULL_TREE;
1317 }
1318
1319
1320 /* Helper function of WALK_GIMPLE_STMT. Walk every tree operand in
1321 STMT. CALLBACK_OP and WI are as in WALK_GIMPLE_STMT.
1322
1323 CALLBACK_OP is called on each operand of STMT via walk_tree.
1324 Additional parameters to walk_tree must be stored in WI. For each operand
1325 OP, walk_tree is called as:
1326
1327 walk_tree (&OP, CALLBACK_OP, WI, WI->PSET)
1328
1329 If CALLBACK_OP returns non-NULL for an operand, the remaining
1330 operands are not scanned.
1331
1332 The return value is that returned by the last call to walk_tree, or
1333 NULL_TREE if no CALLBACK_OP is specified. */
1334
1335 tree
1336 walk_gimple_op (gimple stmt, walk_tree_fn callback_op,
1337 struct walk_stmt_info *wi)
1338 {
1339 struct pointer_set_t *pset = (wi) ? wi->pset : NULL;
1340 unsigned i;
1341 tree ret = NULL_TREE;
1342
1343 switch (gimple_code (stmt))
1344 {
1345 case GIMPLE_ASSIGN:
1346 /* Walk the RHS operands. If the LHS is of a non-renamable type or
1347 is a register variable, we may use a COMPONENT_REF on the RHS. */
1348 if (wi)
1349 {
1350 tree lhs = gimple_assign_lhs (stmt);
1351 wi->val_only
1352 = (is_gimple_reg_type (TREE_TYPE (lhs)) && !is_gimple_reg (lhs))
1353 || !gimple_assign_single_p (stmt);
1354 }
1355
1356 for (i = 1; i < gimple_num_ops (stmt); i++)
1357 {
1358 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi,
1359 pset);
1360 if (ret)
1361 return ret;
1362 }
1363
1364 /* Walk the LHS. If the RHS is appropriate for a memory, we
1365 may use a COMPONENT_REF on the LHS. */
1366 if (wi)
1367 {
1368 /* If the RHS has more than 1 operand, it is not appropriate
1369 for the memory. */
1370 wi->val_only = !is_gimple_mem_rhs (gimple_assign_rhs1 (stmt))
1371 || !gimple_assign_single_p (stmt);
1372 wi->is_lhs = true;
1373 }
1374
1375 ret = walk_tree (gimple_op_ptr (stmt, 0), callback_op, wi, pset);
1376 if (ret)
1377 return ret;
1378
1379 if (wi)
1380 {
1381 wi->val_only = true;
1382 wi->is_lhs = false;
1383 }
1384 break;
1385
1386 case GIMPLE_CALL:
1387 if (wi)
1388 {
1389 wi->is_lhs = false;
1390 wi->val_only = true;
1391 }
1392
1393 ret = walk_tree (gimple_call_chain_ptr (stmt), callback_op, wi, pset);
1394 if (ret)
1395 return ret;
1396
1397 ret = walk_tree (gimple_call_fn_ptr (stmt), callback_op, wi, pset);
1398 if (ret)
1399 return ret;
1400
1401 for (i = 0; i < gimple_call_num_args (stmt); i++)
1402 {
1403 if (wi)
1404 wi->val_only = is_gimple_reg_type (gimple_call_arg (stmt, i));
1405 ret = walk_tree (gimple_call_arg_ptr (stmt, i), callback_op, wi,
1406 pset);
1407 if (ret)
1408 return ret;
1409 }
1410
1411 if (gimple_call_lhs (stmt))
1412 {
1413 if (wi)
1414 {
1415 wi->is_lhs = true;
1416 wi->val_only = is_gimple_reg_type (gimple_call_lhs (stmt));
1417 }
1418
1419 ret = walk_tree (gimple_call_lhs_ptr (stmt), callback_op, wi, pset);
1420 if (ret)
1421 return ret;
1422 }
1423
1424 if (wi)
1425 {
1426 wi->is_lhs = false;
1427 wi->val_only = true;
1428 }
1429 break;
1430
1431 case GIMPLE_CATCH:
1432 ret = walk_tree (gimple_catch_types_ptr (stmt), callback_op, wi,
1433 pset);
1434 if (ret)
1435 return ret;
1436 break;
1437
1438 case GIMPLE_EH_FILTER:
1439 ret = walk_tree (gimple_eh_filter_types_ptr (stmt), callback_op, wi,
1440 pset);
1441 if (ret)
1442 return ret;
1443 break;
1444
1445 case GIMPLE_ASM:
1446 ret = walk_gimple_asm (stmt, callback_op, wi);
1447 if (ret)
1448 return ret;
1449 break;
1450
1451 case GIMPLE_OMP_CONTINUE:
1452 ret = walk_tree (gimple_omp_continue_control_def_ptr (stmt),
1453 callback_op, wi, pset);
1454 if (ret)
1455 return ret;
1456
1457 ret = walk_tree (gimple_omp_continue_control_use_ptr (stmt),
1458 callback_op, wi, pset);
1459 if (ret)
1460 return ret;
1461 break;
1462
1463 case GIMPLE_OMP_CRITICAL:
1464 ret = walk_tree (gimple_omp_critical_name_ptr (stmt), callback_op, wi,
1465 pset);
1466 if (ret)
1467 return ret;
1468 break;
1469
1470 case GIMPLE_OMP_FOR:
1471 ret = walk_tree (gimple_omp_for_clauses_ptr (stmt), callback_op, wi,
1472 pset);
1473 if (ret)
1474 return ret;
1475 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1476 {
1477 ret = walk_tree (gimple_omp_for_index_ptr (stmt, i), callback_op,
1478 wi, pset);
1479 if (ret)
1480 return ret;
1481 ret = walk_tree (gimple_omp_for_initial_ptr (stmt, i), callback_op,
1482 wi, pset);
1483 if (ret)
1484 return ret;
1485 ret = walk_tree (gimple_omp_for_final_ptr (stmt, i), callback_op,
1486 wi, pset);
1487 if (ret)
1488 return ret;
1489 ret = walk_tree (gimple_omp_for_incr_ptr (stmt, i), callback_op,
1490 wi, pset);
1491 }
1492 if (ret)
1493 return ret;
1494 break;
1495
1496 case GIMPLE_OMP_PARALLEL:
1497 ret = walk_tree (gimple_omp_parallel_clauses_ptr (stmt), callback_op,
1498 wi, pset);
1499 if (ret)
1500 return ret;
1501 ret = walk_tree (gimple_omp_parallel_child_fn_ptr (stmt), callback_op,
1502 wi, pset);
1503 if (ret)
1504 return ret;
1505 ret = walk_tree (gimple_omp_parallel_data_arg_ptr (stmt), callback_op,
1506 wi, pset);
1507 if (ret)
1508 return ret;
1509 break;
1510
1511 case GIMPLE_OMP_TASK:
1512 ret = walk_tree (gimple_omp_task_clauses_ptr (stmt), callback_op,
1513 wi, pset);
1514 if (ret)
1515 return ret;
1516 ret = walk_tree (gimple_omp_task_child_fn_ptr (stmt), callback_op,
1517 wi, pset);
1518 if (ret)
1519 return ret;
1520 ret = walk_tree (gimple_omp_task_data_arg_ptr (stmt), callback_op,
1521 wi, pset);
1522 if (ret)
1523 return ret;
1524 ret = walk_tree (gimple_omp_task_copy_fn_ptr (stmt), callback_op,
1525 wi, pset);
1526 if (ret)
1527 return ret;
1528 ret = walk_tree (gimple_omp_task_arg_size_ptr (stmt), callback_op,
1529 wi, pset);
1530 if (ret)
1531 return ret;
1532 ret = walk_tree (gimple_omp_task_arg_align_ptr (stmt), callback_op,
1533 wi, pset);
1534 if (ret)
1535 return ret;
1536 break;
1537
1538 case GIMPLE_OMP_SECTIONS:
1539 ret = walk_tree (gimple_omp_sections_clauses_ptr (stmt), callback_op,
1540 wi, pset);
1541 if (ret)
1542 return ret;
1543
1544 ret = walk_tree (gimple_omp_sections_control_ptr (stmt), callback_op,
1545 wi, pset);
1546 if (ret)
1547 return ret;
1548
1549 break;
1550
1551 case GIMPLE_OMP_SINGLE:
1552 ret = walk_tree (gimple_omp_single_clauses_ptr (stmt), callback_op, wi,
1553 pset);
1554 if (ret)
1555 return ret;
1556 break;
1557
1558 case GIMPLE_OMP_ATOMIC_LOAD:
1559 ret = walk_tree (gimple_omp_atomic_load_lhs_ptr (stmt), callback_op, wi,
1560 pset);
1561 if (ret)
1562 return ret;
1563
1564 ret = walk_tree (gimple_omp_atomic_load_rhs_ptr (stmt), callback_op, wi,
1565 pset);
1566 if (ret)
1567 return ret;
1568 break;
1569
1570 case GIMPLE_OMP_ATOMIC_STORE:
1571 ret = walk_tree (gimple_omp_atomic_store_val_ptr (stmt), callback_op,
1572 wi, pset);
1573 if (ret)
1574 return ret;
1575 break;
1576
1577 /* Tuples that do not have operands. */
1578 case GIMPLE_NOP:
1579 case GIMPLE_RESX:
1580 case GIMPLE_OMP_RETURN:
1581 case GIMPLE_PREDICT:
1582 break;
1583
1584 default:
1585 {
1586 enum gimple_statement_structure_enum gss;
1587 gss = gimple_statement_structure (stmt);
1588 if (gss == GSS_WITH_OPS || gss == GSS_WITH_MEM_OPS)
1589 for (i = 0; i < gimple_num_ops (stmt); i++)
1590 {
1591 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi, pset);
1592 if (ret)
1593 return ret;
1594 }
1595 }
1596 break;
1597 }
1598
1599 return NULL_TREE;
1600 }
1601
1602
1603 /* Walk the current statement in GSI (optionally using traversal state
1604 stored in WI). If WI is NULL, no state is kept during traversal.
1605 The callback CALLBACK_STMT is called. If CALLBACK_STMT indicates
1606 that it has handled all the operands of the statement, its return
1607 value is returned. Otherwise, the return value from CALLBACK_STMT
1608 is discarded and its operands are scanned.
1609
1610 If CALLBACK_STMT is NULL or it didn't handle the operands,
1611 CALLBACK_OP is called on each operand of the statement via
1612 walk_gimple_op. If walk_gimple_op returns non-NULL for any
1613 operand, the remaining operands are not scanned. In this case, the
1614 return value from CALLBACK_OP is returned.
1615
1616 In any other case, NULL_TREE is returned. */
1617
1618 tree
1619 walk_gimple_stmt (gimple_stmt_iterator *gsi, walk_stmt_fn callback_stmt,
1620 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1621 {
1622 gimple ret;
1623 tree tree_ret;
1624 gimple stmt = gsi_stmt (*gsi);
1625
1626 if (wi)
1627 wi->gsi = *gsi;
1628
1629 if (wi && wi->want_locations && gimple_has_location (stmt))
1630 input_location = gimple_location (stmt);
1631
1632 ret = NULL;
1633
1634 /* Invoke the statement callback. Return if the callback handled
1635 all of STMT operands by itself. */
1636 if (callback_stmt)
1637 {
1638 bool handled_ops = false;
1639 tree_ret = callback_stmt (gsi, &handled_ops, wi);
1640 if (handled_ops)
1641 return tree_ret;
1642
1643 /* If CALLBACK_STMT did not handle operands, it should not have
1644 a value to return. */
1645 gcc_assert (tree_ret == NULL);
1646
1647 /* Re-read stmt in case the callback changed it. */
1648 stmt = gsi_stmt (*gsi);
1649 }
1650
1651 /* If CALLBACK_OP is defined, invoke it on every operand of STMT. */
1652 if (callback_op)
1653 {
1654 tree_ret = walk_gimple_op (stmt, callback_op, wi);
1655 if (tree_ret)
1656 return tree_ret;
1657 }
1658
1659 /* If STMT can have statements inside (e.g. GIMPLE_BIND), walk them. */
1660 switch (gimple_code (stmt))
1661 {
1662 case GIMPLE_BIND:
1663 ret = walk_gimple_seq (gimple_bind_body (stmt), callback_stmt,
1664 callback_op, wi);
1665 if (ret)
1666 return wi->callback_result;
1667 break;
1668
1669 case GIMPLE_CATCH:
1670 ret = walk_gimple_seq (gimple_catch_handler (stmt), callback_stmt,
1671 callback_op, wi);
1672 if (ret)
1673 return wi->callback_result;
1674 break;
1675
1676 case GIMPLE_EH_FILTER:
1677 ret = walk_gimple_seq (gimple_eh_filter_failure (stmt), callback_stmt,
1678 callback_op, wi);
1679 if (ret)
1680 return wi->callback_result;
1681 break;
1682
1683 case GIMPLE_TRY:
1684 ret = walk_gimple_seq (gimple_try_eval (stmt), callback_stmt, callback_op,
1685 wi);
1686 if (ret)
1687 return wi->callback_result;
1688
1689 ret = walk_gimple_seq (gimple_try_cleanup (stmt), callback_stmt,
1690 callback_op, wi);
1691 if (ret)
1692 return wi->callback_result;
1693 break;
1694
1695 case GIMPLE_OMP_FOR:
1696 ret = walk_gimple_seq (gimple_omp_for_pre_body (stmt), callback_stmt,
1697 callback_op, wi);
1698 if (ret)
1699 return wi->callback_result;
1700
1701 /* FALL THROUGH. */
1702 case GIMPLE_OMP_CRITICAL:
1703 case GIMPLE_OMP_MASTER:
1704 case GIMPLE_OMP_ORDERED:
1705 case GIMPLE_OMP_SECTION:
1706 case GIMPLE_OMP_PARALLEL:
1707 case GIMPLE_OMP_TASK:
1708 case GIMPLE_OMP_SECTIONS:
1709 case GIMPLE_OMP_SINGLE:
1710 ret = walk_gimple_seq (gimple_omp_body (stmt), callback_stmt, callback_op,
1711 wi);
1712 if (ret)
1713 return wi->callback_result;
1714 break;
1715
1716 case GIMPLE_WITH_CLEANUP_EXPR:
1717 ret = walk_gimple_seq (gimple_wce_cleanup (stmt), callback_stmt,
1718 callback_op, wi);
1719 if (ret)
1720 return wi->callback_result;
1721 break;
1722
1723 default:
1724 gcc_assert (!gimple_has_substatements (stmt));
1725 break;
1726 }
1727
1728 return NULL;
1729 }
1730
1731
1732 /* Set sequence SEQ to be the GIMPLE body for function FN. */
1733
1734 void
1735 gimple_set_body (tree fndecl, gimple_seq seq)
1736 {
1737 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1738 if (fn == NULL)
1739 {
1740 /* If FNDECL still does not have a function structure associated
1741 with it, then it does not make sense for it to receive a
1742 GIMPLE body. */
1743 gcc_assert (seq == NULL);
1744 }
1745 else
1746 fn->gimple_body = seq;
1747 }
1748
1749
1750 /* Return the body of GIMPLE statements for function FN. After the
1751 CFG pass, the function body doesn't exist anymore because it has
1752 been split up into basic blocks. In this case, it returns
1753 NULL. */
1754
1755 gimple_seq
1756 gimple_body (tree fndecl)
1757 {
1758 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1759 return fn ? fn->gimple_body : NULL;
1760 }
1761
1762 /* Return true when FNDECL has Gimple body either in unlowered
1763 or CFG form. */
1764 bool
1765 gimple_has_body_p (tree fndecl)
1766 {
1767 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1768 return (gimple_body (fndecl) || (fn && fn->cfg));
1769 }
1770
1771 /* Detect flags from a GIMPLE_CALL. This is just like
1772 call_expr_flags, but for gimple tuples. */
1773
1774 int
1775 gimple_call_flags (const_gimple stmt)
1776 {
1777 int flags;
1778 tree decl = gimple_call_fndecl (stmt);
1779 tree t;
1780
1781 if (decl)
1782 flags = flags_from_decl_or_type (decl);
1783 else
1784 {
1785 t = TREE_TYPE (gimple_call_fn (stmt));
1786 if (t && TREE_CODE (t) == POINTER_TYPE)
1787 flags = flags_from_decl_or_type (TREE_TYPE (t));
1788 else
1789 flags = 0;
1790 }
1791
1792 if (stmt->gsbase.subcode & GF_CALL_NOTHROW)
1793 flags |= ECF_NOTHROW;
1794
1795 return flags;
1796 }
1797
1798 /* Detects argument flags for argument number ARG on call STMT. */
1799
1800 int
1801 gimple_call_arg_flags (const_gimple stmt, unsigned arg)
1802 {
1803 tree type = TREE_TYPE (TREE_TYPE (gimple_call_fn (stmt)));
1804 tree attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1805 if (!attr)
1806 return 0;
1807
1808 attr = TREE_VALUE (TREE_VALUE (attr));
1809 if (1 + arg >= (unsigned) TREE_STRING_LENGTH (attr))
1810 return 0;
1811
1812 switch (TREE_STRING_POINTER (attr)[1 + arg])
1813 {
1814 case 'x':
1815 case 'X':
1816 return EAF_UNUSED;
1817
1818 case 'R':
1819 return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE;
1820
1821 case 'r':
1822 return EAF_NOCLOBBER | EAF_NOESCAPE;
1823
1824 case 'W':
1825 return EAF_DIRECT | EAF_NOESCAPE;
1826
1827 case 'w':
1828 return EAF_NOESCAPE;
1829
1830 case '.':
1831 default:
1832 return 0;
1833 }
1834 }
1835
1836 /* Detects return flags for the call STMT. */
1837
1838 int
1839 gimple_call_return_flags (const_gimple stmt)
1840 {
1841 tree type;
1842 tree attr = NULL_TREE;
1843
1844 if (gimple_call_flags (stmt) & ECF_MALLOC)
1845 return ERF_NOALIAS;
1846
1847 type = TREE_TYPE (TREE_TYPE (gimple_call_fn (stmt)));
1848 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1849 if (!attr)
1850 return 0;
1851
1852 attr = TREE_VALUE (TREE_VALUE (attr));
1853 if (TREE_STRING_LENGTH (attr) < 1)
1854 return 0;
1855
1856 switch (TREE_STRING_POINTER (attr)[0])
1857 {
1858 case '1':
1859 case '2':
1860 case '3':
1861 case '4':
1862 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
1863
1864 case 'm':
1865 return ERF_NOALIAS;
1866
1867 case '.':
1868 default:
1869 return 0;
1870 }
1871 }
1872
1873 /* Return true if GS is a copy assignment. */
1874
1875 bool
1876 gimple_assign_copy_p (gimple gs)
1877 {
1878 return gimple_code (gs) == GIMPLE_ASSIGN
1879 && get_gimple_rhs_class (gimple_assign_rhs_code (gs))
1880 == GIMPLE_SINGLE_RHS
1881 && is_gimple_val (gimple_op (gs, 1));
1882 }
1883
1884
1885 /* Return true if GS is a SSA_NAME copy assignment. */
1886
1887 bool
1888 gimple_assign_ssa_name_copy_p (gimple gs)
1889 {
1890 return (gimple_code (gs) == GIMPLE_ASSIGN
1891 && (get_gimple_rhs_class (gimple_assign_rhs_code (gs))
1892 == GIMPLE_SINGLE_RHS)
1893 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1894 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1895 }
1896
1897
1898 /* Return true if GS is an assignment with a singleton RHS, i.e.,
1899 there is no operator associated with the assignment itself.
1900 Unlike gimple_assign_copy_p, this predicate returns true for
1901 any RHS operand, including those that perform an operation
1902 and do not have the semantics of a copy, such as COND_EXPR. */
1903
1904 bool
1905 gimple_assign_single_p (gimple gs)
1906 {
1907 return (gimple_code (gs) == GIMPLE_ASSIGN
1908 && get_gimple_rhs_class (gimple_assign_rhs_code (gs))
1909 == GIMPLE_SINGLE_RHS);
1910 }
1911
1912 /* Return true if GS is an assignment with a unary RHS, but the
1913 operator has no effect on the assigned value. The logic is adapted
1914 from STRIP_NOPS. This predicate is intended to be used in tuplifying
1915 instances in which STRIP_NOPS was previously applied to the RHS of
1916 an assignment.
1917
1918 NOTE: In the use cases that led to the creation of this function
1919 and of gimple_assign_single_p, it is typical to test for either
1920 condition and to proceed in the same manner. In each case, the
1921 assigned value is represented by the single RHS operand of the
1922 assignment. I suspect there may be cases where gimple_assign_copy_p,
1923 gimple_assign_single_p, or equivalent logic is used where a similar
1924 treatment of unary NOPs is appropriate. */
1925
1926 bool
1927 gimple_assign_unary_nop_p (gimple gs)
1928 {
1929 return (gimple_code (gs) == GIMPLE_ASSIGN
1930 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
1931 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
1932 && gimple_assign_rhs1 (gs) != error_mark_node
1933 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
1934 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
1935 }
1936
1937 /* Set BB to be the basic block holding G. */
1938
1939 void
1940 gimple_set_bb (gimple stmt, basic_block bb)
1941 {
1942 stmt->gsbase.bb = bb;
1943
1944 /* If the statement is a label, add the label to block-to-labels map
1945 so that we can speed up edge creation for GIMPLE_GOTOs. */
1946 if (cfun->cfg && gimple_code (stmt) == GIMPLE_LABEL)
1947 {
1948 tree t;
1949 int uid;
1950
1951 t = gimple_label_label (stmt);
1952 uid = LABEL_DECL_UID (t);
1953 if (uid == -1)
1954 {
1955 unsigned old_len = VEC_length (basic_block, label_to_block_map);
1956 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
1957 if (old_len <= (unsigned) uid)
1958 {
1959 unsigned new_len = 3 * uid / 2 + 1;
1960
1961 VEC_safe_grow_cleared (basic_block, gc, label_to_block_map,
1962 new_len);
1963 }
1964 }
1965
1966 VEC_replace (basic_block, label_to_block_map, uid, bb);
1967 }
1968 }
1969
1970
1971 /* Modify the RHS of the assignment pointed-to by GSI using the
1972 operands in the expression tree EXPR.
1973
1974 NOTE: The statement pointed-to by GSI may be reallocated if it
1975 did not have enough operand slots.
1976
1977 This function is useful to convert an existing tree expression into
1978 the flat representation used for the RHS of a GIMPLE assignment.
1979 It will reallocate memory as needed to expand or shrink the number
1980 of operand slots needed to represent EXPR.
1981
1982 NOTE: If you find yourself building a tree and then calling this
1983 function, you are most certainly doing it the slow way. It is much
1984 better to build a new assignment or to use the function
1985 gimple_assign_set_rhs_with_ops, which does not require an
1986 expression tree to be built. */
1987
1988 void
1989 gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
1990 {
1991 enum tree_code subcode;
1992 tree op1, op2, op3;
1993
1994 extract_ops_from_tree_1 (expr, &subcode, &op1, &op2, &op3);
1995 gimple_assign_set_rhs_with_ops_1 (gsi, subcode, op1, op2, op3);
1996 }
1997
1998
1999 /* Set the RHS of assignment statement pointed-to by GSI to CODE with
2000 operands OP1, OP2 and OP3.
2001
2002 NOTE: The statement pointed-to by GSI may be reallocated if it
2003 did not have enough operand slots. */
2004
2005 void
2006 gimple_assign_set_rhs_with_ops_1 (gimple_stmt_iterator *gsi, enum tree_code code,
2007 tree op1, tree op2, tree op3)
2008 {
2009 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
2010 gimple stmt = gsi_stmt (*gsi);
2011
2012 /* If the new CODE needs more operands, allocate a new statement. */
2013 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
2014 {
2015 tree lhs = gimple_assign_lhs (stmt);
2016 gimple new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
2017 memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
2018 gsi_replace (gsi, new_stmt, true);
2019 stmt = new_stmt;
2020
2021 /* The LHS needs to be reset as this also changes the SSA name
2022 on the LHS. */
2023 gimple_assign_set_lhs (stmt, lhs);
2024 }
2025
2026 gimple_set_num_ops (stmt, new_rhs_ops + 1);
2027 gimple_set_subcode (stmt, code);
2028 gimple_assign_set_rhs1 (stmt, op1);
2029 if (new_rhs_ops > 1)
2030 gimple_assign_set_rhs2 (stmt, op2);
2031 if (new_rhs_ops > 2)
2032 gimple_assign_set_rhs3 (stmt, op3);
2033 }
2034
2035
2036 /* Return the LHS of a statement that performs an assignment,
2037 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
2038 for a call to a function that returns no value, or for a
2039 statement other than an assignment or a call. */
2040
2041 tree
2042 gimple_get_lhs (const_gimple stmt)
2043 {
2044 enum gimple_code code = gimple_code (stmt);
2045
2046 if (code == GIMPLE_ASSIGN)
2047 return gimple_assign_lhs (stmt);
2048 else if (code == GIMPLE_CALL)
2049 return gimple_call_lhs (stmt);
2050 else
2051 return NULL_TREE;
2052 }
2053
2054
2055 /* Set the LHS of a statement that performs an assignment,
2056 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2057
2058 void
2059 gimple_set_lhs (gimple stmt, tree lhs)
2060 {
2061 enum gimple_code code = gimple_code (stmt);
2062
2063 if (code == GIMPLE_ASSIGN)
2064 gimple_assign_set_lhs (stmt, lhs);
2065 else if (code == GIMPLE_CALL)
2066 gimple_call_set_lhs (stmt, lhs);
2067 else
2068 gcc_unreachable();
2069 }
2070
2071 /* Replace the LHS of STMT, an assignment, either a GIMPLE_ASSIGN or a
2072 GIMPLE_CALL, with NLHS, in preparation for modifying the RHS to an
2073 expression with a different value.
2074
2075 This will update any annotations (say debug bind stmts) referring
2076 to the original LHS, so that they use the RHS instead. This is
2077 done even if NLHS and LHS are the same, for it is understood that
2078 the RHS will be modified afterwards, and NLHS will not be assigned
2079 an equivalent value.
2080
2081 Adjusting any non-annotation uses of the LHS, if needed, is a
2082 responsibility of the caller.
2083
2084 The effect of this call should be pretty much the same as that of
2085 inserting a copy of STMT before STMT, and then removing the
2086 original stmt, at which time gsi_remove() would have update
2087 annotations, but using this function saves all the inserting,
2088 copying and removing. */
2089
2090 void
2091 gimple_replace_lhs (gimple stmt, tree nlhs)
2092 {
2093 if (MAY_HAVE_DEBUG_STMTS)
2094 {
2095 tree lhs = gimple_get_lhs (stmt);
2096
2097 gcc_assert (SSA_NAME_DEF_STMT (lhs) == stmt);
2098
2099 insert_debug_temp_for_var_def (NULL, lhs);
2100 }
2101
2102 gimple_set_lhs (stmt, nlhs);
2103 }
2104
2105 /* Return a deep copy of statement STMT. All the operands from STMT
2106 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
2107 and VUSE operand arrays are set to empty in the new copy. */
2108
2109 gimple
2110 gimple_copy (gimple stmt)
2111 {
2112 enum gimple_code code = gimple_code (stmt);
2113 unsigned num_ops = gimple_num_ops (stmt);
2114 gimple copy = gimple_alloc (code, num_ops);
2115 unsigned i;
2116
2117 /* Shallow copy all the fields from STMT. */
2118 memcpy (copy, stmt, gimple_size (code));
2119
2120 /* If STMT has sub-statements, deep-copy them as well. */
2121 if (gimple_has_substatements (stmt))
2122 {
2123 gimple_seq new_seq;
2124 tree t;
2125
2126 switch (gimple_code (stmt))
2127 {
2128 case GIMPLE_BIND:
2129 new_seq = gimple_seq_copy (gimple_bind_body (stmt));
2130 gimple_bind_set_body (copy, new_seq);
2131 gimple_bind_set_vars (copy, unshare_expr (gimple_bind_vars (stmt)));
2132 gimple_bind_set_block (copy, gimple_bind_block (stmt));
2133 break;
2134
2135 case GIMPLE_CATCH:
2136 new_seq = gimple_seq_copy (gimple_catch_handler (stmt));
2137 gimple_catch_set_handler (copy, new_seq);
2138 t = unshare_expr (gimple_catch_types (stmt));
2139 gimple_catch_set_types (copy, t);
2140 break;
2141
2142 case GIMPLE_EH_FILTER:
2143 new_seq = gimple_seq_copy (gimple_eh_filter_failure (stmt));
2144 gimple_eh_filter_set_failure (copy, new_seq);
2145 t = unshare_expr (gimple_eh_filter_types (stmt));
2146 gimple_eh_filter_set_types (copy, t);
2147 break;
2148
2149 case GIMPLE_TRY:
2150 new_seq = gimple_seq_copy (gimple_try_eval (stmt));
2151 gimple_try_set_eval (copy, new_seq);
2152 new_seq = gimple_seq_copy (gimple_try_cleanup (stmt));
2153 gimple_try_set_cleanup (copy, new_seq);
2154 break;
2155
2156 case GIMPLE_OMP_FOR:
2157 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
2158 gimple_omp_for_set_pre_body (copy, new_seq);
2159 t = unshare_expr (gimple_omp_for_clauses (stmt));
2160 gimple_omp_for_set_clauses (copy, t);
2161 copy->gimple_omp_for.iter
2162 = ggc_alloc_vec_gimple_omp_for_iter
2163 (gimple_omp_for_collapse (stmt));
2164 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
2165 {
2166 gimple_omp_for_set_cond (copy, i,
2167 gimple_omp_for_cond (stmt, i));
2168 gimple_omp_for_set_index (copy, i,
2169 gimple_omp_for_index (stmt, i));
2170 t = unshare_expr (gimple_omp_for_initial (stmt, i));
2171 gimple_omp_for_set_initial (copy, i, t);
2172 t = unshare_expr (gimple_omp_for_final (stmt, i));
2173 gimple_omp_for_set_final (copy, i, t);
2174 t = unshare_expr (gimple_omp_for_incr (stmt, i));
2175 gimple_omp_for_set_incr (copy, i, t);
2176 }
2177 goto copy_omp_body;
2178
2179 case GIMPLE_OMP_PARALLEL:
2180 t = unshare_expr (gimple_omp_parallel_clauses (stmt));
2181 gimple_omp_parallel_set_clauses (copy, t);
2182 t = unshare_expr (gimple_omp_parallel_child_fn (stmt));
2183 gimple_omp_parallel_set_child_fn (copy, t);
2184 t = unshare_expr (gimple_omp_parallel_data_arg (stmt));
2185 gimple_omp_parallel_set_data_arg (copy, t);
2186 goto copy_omp_body;
2187
2188 case GIMPLE_OMP_TASK:
2189 t = unshare_expr (gimple_omp_task_clauses (stmt));
2190 gimple_omp_task_set_clauses (copy, t);
2191 t = unshare_expr (gimple_omp_task_child_fn (stmt));
2192 gimple_omp_task_set_child_fn (copy, t);
2193 t = unshare_expr (gimple_omp_task_data_arg (stmt));
2194 gimple_omp_task_set_data_arg (copy, t);
2195 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
2196 gimple_omp_task_set_copy_fn (copy, t);
2197 t = unshare_expr (gimple_omp_task_arg_size (stmt));
2198 gimple_omp_task_set_arg_size (copy, t);
2199 t = unshare_expr (gimple_omp_task_arg_align (stmt));
2200 gimple_omp_task_set_arg_align (copy, t);
2201 goto copy_omp_body;
2202
2203 case GIMPLE_OMP_CRITICAL:
2204 t = unshare_expr (gimple_omp_critical_name (stmt));
2205 gimple_omp_critical_set_name (copy, t);
2206 goto copy_omp_body;
2207
2208 case GIMPLE_OMP_SECTIONS:
2209 t = unshare_expr (gimple_omp_sections_clauses (stmt));
2210 gimple_omp_sections_set_clauses (copy, t);
2211 t = unshare_expr (gimple_omp_sections_control (stmt));
2212 gimple_omp_sections_set_control (copy, t);
2213 /* FALLTHRU */
2214
2215 case GIMPLE_OMP_SINGLE:
2216 case GIMPLE_OMP_SECTION:
2217 case GIMPLE_OMP_MASTER:
2218 case GIMPLE_OMP_ORDERED:
2219 copy_omp_body:
2220 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
2221 gimple_omp_set_body (copy, new_seq);
2222 break;
2223
2224 case GIMPLE_WITH_CLEANUP_EXPR:
2225 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
2226 gimple_wce_set_cleanup (copy, new_seq);
2227 break;
2228
2229 default:
2230 gcc_unreachable ();
2231 }
2232 }
2233
2234 /* Make copy of operands. */
2235 if (num_ops > 0)
2236 {
2237 for (i = 0; i < num_ops; i++)
2238 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
2239
2240 /* Clear out SSA operand vectors on COPY. */
2241 if (gimple_has_ops (stmt))
2242 {
2243 gimple_set_def_ops (copy, NULL);
2244 gimple_set_use_ops (copy, NULL);
2245 }
2246
2247 if (gimple_has_mem_ops (stmt))
2248 {
2249 gimple_set_vdef (copy, gimple_vdef (stmt));
2250 gimple_set_vuse (copy, gimple_vuse (stmt));
2251 }
2252
2253 /* SSA operands need to be updated. */
2254 gimple_set_modified (copy, true);
2255 }
2256
2257 return copy;
2258 }
2259
2260
2261 /* Set the MODIFIED flag to MODIFIEDP, iff the gimple statement G has
2262 a MODIFIED field. */
2263
2264 void
2265 gimple_set_modified (gimple s, bool modifiedp)
2266 {
2267 if (gimple_has_ops (s))
2268 {
2269 s->gsbase.modified = (unsigned) modifiedp;
2270
2271 if (modifiedp
2272 && cfun->gimple_df
2273 && is_gimple_call (s)
2274 && gimple_call_noreturn_p (s))
2275 VEC_safe_push (gimple, gc, MODIFIED_NORETURN_CALLS (cfun), s);
2276 }
2277 }
2278
2279
2280 /* Return true if statement S has side-effects. We consider a
2281 statement to have side effects if:
2282
2283 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
2284 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
2285
2286 bool
2287 gimple_has_side_effects (const_gimple s)
2288 {
2289 unsigned i;
2290
2291 if (is_gimple_debug (s))
2292 return false;
2293
2294 /* We don't have to scan the arguments to check for
2295 volatile arguments, though, at present, we still
2296 do a scan to check for TREE_SIDE_EFFECTS. */
2297 if (gimple_has_volatile_ops (s))
2298 return true;
2299
2300 if (is_gimple_call (s))
2301 {
2302 unsigned nargs = gimple_call_num_args (s);
2303
2304 if (!(gimple_call_flags (s) & (ECF_CONST | ECF_PURE)))
2305 return true;
2306 else if (gimple_call_flags (s) & ECF_LOOPING_CONST_OR_PURE)
2307 /* An infinite loop is considered a side effect. */
2308 return true;
2309
2310 if (gimple_call_lhs (s)
2311 && TREE_SIDE_EFFECTS (gimple_call_lhs (s)))
2312 {
2313 gcc_assert (gimple_has_volatile_ops (s));
2314 return true;
2315 }
2316
2317 if (TREE_SIDE_EFFECTS (gimple_call_fn (s)))
2318 return true;
2319
2320 for (i = 0; i < nargs; i++)
2321 if (TREE_SIDE_EFFECTS (gimple_call_arg (s, i)))
2322 {
2323 gcc_assert (gimple_has_volatile_ops (s));
2324 return true;
2325 }
2326
2327 return false;
2328 }
2329 else
2330 {
2331 for (i = 0; i < gimple_num_ops (s); i++)
2332 if (TREE_SIDE_EFFECTS (gimple_op (s, i)))
2333 {
2334 gcc_assert (gimple_has_volatile_ops (s));
2335 return true;
2336 }
2337 }
2338
2339 return false;
2340 }
2341
2342 /* Return true if the RHS of statement S has side effects.
2343 We may use it to determine if it is admissable to replace
2344 an assignment or call with a copy of a previously-computed
2345 value. In such cases, side-effects due the the LHS are
2346 preserved. */
2347
2348 bool
2349 gimple_rhs_has_side_effects (const_gimple s)
2350 {
2351 unsigned i;
2352
2353 if (is_gimple_call (s))
2354 {
2355 unsigned nargs = gimple_call_num_args (s);
2356
2357 if (!(gimple_call_flags (s) & (ECF_CONST | ECF_PURE)))
2358 return true;
2359
2360 /* We cannot use gimple_has_volatile_ops here,
2361 because we must ignore a volatile LHS. */
2362 if (TREE_SIDE_EFFECTS (gimple_call_fn (s))
2363 || TREE_THIS_VOLATILE (gimple_call_fn (s)))
2364 {
2365 gcc_assert (gimple_has_volatile_ops (s));
2366 return true;
2367 }
2368
2369 for (i = 0; i < nargs; i++)
2370 if (TREE_SIDE_EFFECTS (gimple_call_arg (s, i))
2371 || TREE_THIS_VOLATILE (gimple_call_arg (s, i)))
2372 return true;
2373
2374 return false;
2375 }
2376 else if (is_gimple_assign (s))
2377 {
2378 /* Skip the first operand, the LHS. */
2379 for (i = 1; i < gimple_num_ops (s); i++)
2380 if (TREE_SIDE_EFFECTS (gimple_op (s, i))
2381 || TREE_THIS_VOLATILE (gimple_op (s, i)))
2382 {
2383 gcc_assert (gimple_has_volatile_ops (s));
2384 return true;
2385 }
2386 }
2387 else if (is_gimple_debug (s))
2388 return false;
2389 else
2390 {
2391 /* For statements without an LHS, examine all arguments. */
2392 for (i = 0; i < gimple_num_ops (s); i++)
2393 if (TREE_SIDE_EFFECTS (gimple_op (s, i))
2394 || TREE_THIS_VOLATILE (gimple_op (s, i)))
2395 {
2396 gcc_assert (gimple_has_volatile_ops (s));
2397 return true;
2398 }
2399 }
2400
2401 return false;
2402 }
2403
2404
2405 /* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
2406 Return true if S can trap. If INCLUDE_LHS is true and S is a
2407 GIMPLE_ASSIGN, the LHS of the assignment is also checked.
2408 Otherwise, only the RHS of the assignment is checked. */
2409
2410 static bool
2411 gimple_could_trap_p_1 (gimple s, bool include_lhs)
2412 {
2413 unsigned i, start;
2414 tree t, div = NULL_TREE;
2415 enum tree_code op;
2416
2417 start = (is_gimple_assign (s) && !include_lhs) ? 1 : 0;
2418
2419 for (i = start; i < gimple_num_ops (s); i++)
2420 if (tree_could_trap_p (gimple_op (s, i)))
2421 return true;
2422
2423 switch (gimple_code (s))
2424 {
2425 case GIMPLE_ASM:
2426 return gimple_asm_volatile_p (s);
2427
2428 case GIMPLE_CALL:
2429 t = gimple_call_fndecl (s);
2430 /* Assume that calls to weak functions may trap. */
2431 if (!t || !DECL_P (t) || DECL_WEAK (t))
2432 return true;
2433 return false;
2434
2435 case GIMPLE_ASSIGN:
2436 t = gimple_expr_type (s);
2437 op = gimple_assign_rhs_code (s);
2438 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
2439 div = gimple_assign_rhs2 (s);
2440 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
2441 (INTEGRAL_TYPE_P (t)
2442 && TYPE_OVERFLOW_TRAPS (t)),
2443 div));
2444
2445 default:
2446 break;
2447 }
2448
2449 return false;
2450
2451 }
2452
2453
2454 /* Return true if statement S can trap. */
2455
2456 bool
2457 gimple_could_trap_p (gimple s)
2458 {
2459 return gimple_could_trap_p_1 (s, true);
2460 }
2461
2462
2463 /* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
2464
2465 bool
2466 gimple_assign_rhs_could_trap_p (gimple s)
2467 {
2468 gcc_assert (is_gimple_assign (s));
2469 return gimple_could_trap_p_1 (s, false);
2470 }
2471
2472
2473 /* Print debugging information for gimple stmts generated. */
2474
2475 void
2476 dump_gimple_statistics (void)
2477 {
2478 #ifdef GATHER_STATISTICS
2479 int i, total_tuples = 0, total_bytes = 0;
2480
2481 fprintf (stderr, "\nGIMPLE statements\n");
2482 fprintf (stderr, "Kind Stmts Bytes\n");
2483 fprintf (stderr, "---------------------------------------\n");
2484 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
2485 {
2486 fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i],
2487 gimple_alloc_counts[i], gimple_alloc_sizes[i]);
2488 total_tuples += gimple_alloc_counts[i];
2489 total_bytes += gimple_alloc_sizes[i];
2490 }
2491 fprintf (stderr, "---------------------------------------\n");
2492 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes);
2493 fprintf (stderr, "---------------------------------------\n");
2494 #else
2495 fprintf (stderr, "No gimple statistics\n");
2496 #endif
2497 }
2498
2499
2500 /* Return the number of operands needed on the RHS of a GIMPLE
2501 assignment for an expression with tree code CODE. */
2502
2503 unsigned
2504 get_gimple_rhs_num_ops (enum tree_code code)
2505 {
2506 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
2507
2508 if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
2509 return 1;
2510 else if (rhs_class == GIMPLE_BINARY_RHS)
2511 return 2;
2512 else if (rhs_class == GIMPLE_TERNARY_RHS)
2513 return 3;
2514 else
2515 gcc_unreachable ();
2516 }
2517
2518 #define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
2519 (unsigned char) \
2520 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
2521 : ((TYPE) == tcc_binary \
2522 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
2523 : ((TYPE) == tcc_constant \
2524 || (TYPE) == tcc_declaration \
2525 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
2526 : ((SYM) == TRUTH_AND_EXPR \
2527 || (SYM) == TRUTH_OR_EXPR \
2528 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
2529 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
2530 : ((SYM) == WIDEN_MULT_PLUS_EXPR \
2531 || (SYM) == WIDEN_MULT_MINUS_EXPR) ? GIMPLE_TERNARY_RHS \
2532 : ((SYM) == COND_EXPR \
2533 || (SYM) == CONSTRUCTOR \
2534 || (SYM) == OBJ_TYPE_REF \
2535 || (SYM) == ASSERT_EXPR \
2536 || (SYM) == ADDR_EXPR \
2537 || (SYM) == WITH_SIZE_EXPR \
2538 || (SYM) == SSA_NAME \
2539 || (SYM) == POLYNOMIAL_CHREC \
2540 || (SYM) == DOT_PROD_EXPR \
2541 || (SYM) == VEC_COND_EXPR \
2542 || (SYM) == REALIGN_LOAD_EXPR) ? GIMPLE_SINGLE_RHS \
2543 : GIMPLE_INVALID_RHS),
2544 #define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
2545
2546 const unsigned char gimple_rhs_class_table[] = {
2547 #include "all-tree.def"
2548 };
2549
2550 #undef DEFTREECODE
2551 #undef END_OF_BASE_TREE_CODES
2552
2553 /* For the definitive definition of GIMPLE, see doc/tree-ssa.texi. */
2554
2555 /* Validation of GIMPLE expressions. */
2556
2557 /* Returns true iff T is a valid RHS for an assignment to a renamed
2558 user -- or front-end generated artificial -- variable. */
2559
2560 bool
2561 is_gimple_reg_rhs (tree t)
2562 {
2563 return get_gimple_rhs_class (TREE_CODE (t)) != GIMPLE_INVALID_RHS;
2564 }
2565
2566 /* Returns true iff T is a valid RHS for an assignment to an un-renamed
2567 LHS, or for a call argument. */
2568
2569 bool
2570 is_gimple_mem_rhs (tree t)
2571 {
2572 /* If we're dealing with a renamable type, either source or dest must be
2573 a renamed variable. */
2574 if (is_gimple_reg_type (TREE_TYPE (t)))
2575 return is_gimple_val (t);
2576 else
2577 return is_gimple_val (t) || is_gimple_lvalue (t);
2578 }
2579
2580 /* Return true if T is a valid LHS for a GIMPLE assignment expression. */
2581
2582 bool
2583 is_gimple_lvalue (tree t)
2584 {
2585 return (is_gimple_addressable (t)
2586 || TREE_CODE (t) == WITH_SIZE_EXPR
2587 /* These are complex lvalues, but don't have addresses, so they
2588 go here. */
2589 || TREE_CODE (t) == BIT_FIELD_REF);
2590 }
2591
2592 /* Return true if T is a GIMPLE condition. */
2593
2594 bool
2595 is_gimple_condexpr (tree t)
2596 {
2597 return (is_gimple_val (t) || (COMPARISON_CLASS_P (t)
2598 && !tree_could_trap_p (t)
2599 && is_gimple_val (TREE_OPERAND (t, 0))
2600 && is_gimple_val (TREE_OPERAND (t, 1))));
2601 }
2602
2603 /* Return true if T is something whose address can be taken. */
2604
2605 bool
2606 is_gimple_addressable (tree t)
2607 {
2608 return (is_gimple_id (t) || handled_component_p (t)
2609 || TREE_CODE (t) == MEM_REF);
2610 }
2611
2612 /* Return true if T is a valid gimple constant. */
2613
2614 bool
2615 is_gimple_constant (const_tree t)
2616 {
2617 switch (TREE_CODE (t))
2618 {
2619 case INTEGER_CST:
2620 case REAL_CST:
2621 case FIXED_CST:
2622 case STRING_CST:
2623 case COMPLEX_CST:
2624 case VECTOR_CST:
2625 return true;
2626
2627 /* Vector constant constructors are gimple invariant. */
2628 case CONSTRUCTOR:
2629 if (TREE_TYPE (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2630 return TREE_CONSTANT (t);
2631 else
2632 return false;
2633
2634 default:
2635 return false;
2636 }
2637 }
2638
2639 /* Return true if T is a gimple address. */
2640
2641 bool
2642 is_gimple_address (const_tree t)
2643 {
2644 tree op;
2645
2646 if (TREE_CODE (t) != ADDR_EXPR)
2647 return false;
2648
2649 op = TREE_OPERAND (t, 0);
2650 while (handled_component_p (op))
2651 {
2652 if ((TREE_CODE (op) == ARRAY_REF
2653 || TREE_CODE (op) == ARRAY_RANGE_REF)
2654 && !is_gimple_val (TREE_OPERAND (op, 1)))
2655 return false;
2656
2657 op = TREE_OPERAND (op, 0);
2658 }
2659
2660 if (CONSTANT_CLASS_P (op) || TREE_CODE (op) == MEM_REF)
2661 return true;
2662
2663 switch (TREE_CODE (op))
2664 {
2665 case PARM_DECL:
2666 case RESULT_DECL:
2667 case LABEL_DECL:
2668 case FUNCTION_DECL:
2669 case VAR_DECL:
2670 case CONST_DECL:
2671 return true;
2672
2673 default:
2674 return false;
2675 }
2676 }
2677
2678 /* Strip out all handled components that produce invariant
2679 offsets. */
2680
2681 static const_tree
2682 strip_invariant_refs (const_tree op)
2683 {
2684 while (handled_component_p (op))
2685 {
2686 switch (TREE_CODE (op))
2687 {
2688 case ARRAY_REF:
2689 case ARRAY_RANGE_REF:
2690 if (!is_gimple_constant (TREE_OPERAND (op, 1))
2691 || TREE_OPERAND (op, 2) != NULL_TREE
2692 || TREE_OPERAND (op, 3) != NULL_TREE)
2693 return NULL;
2694 break;
2695
2696 case COMPONENT_REF:
2697 if (TREE_OPERAND (op, 2) != NULL_TREE)
2698 return NULL;
2699 break;
2700
2701 default:;
2702 }
2703 op = TREE_OPERAND (op, 0);
2704 }
2705
2706 return op;
2707 }
2708
2709 /* Return true if T is a gimple invariant address. */
2710
2711 bool
2712 is_gimple_invariant_address (const_tree t)
2713 {
2714 const_tree op;
2715
2716 if (TREE_CODE (t) != ADDR_EXPR)
2717 return false;
2718
2719 op = strip_invariant_refs (TREE_OPERAND (t, 0));
2720 if (!op)
2721 return false;
2722
2723 if (TREE_CODE (op) == MEM_REF)
2724 {
2725 const_tree op0 = TREE_OPERAND (op, 0);
2726 return (TREE_CODE (op0) == ADDR_EXPR
2727 && (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))
2728 || decl_address_invariant_p (TREE_OPERAND (op0, 0))));
2729 }
2730
2731 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
2732 }
2733
2734 /* Return true if T is a gimple invariant address at IPA level
2735 (so addresses of variables on stack are not allowed). */
2736
2737 bool
2738 is_gimple_ip_invariant_address (const_tree t)
2739 {
2740 const_tree op;
2741
2742 if (TREE_CODE (t) != ADDR_EXPR)
2743 return false;
2744
2745 op = strip_invariant_refs (TREE_OPERAND (t, 0));
2746
2747 return op && (CONSTANT_CLASS_P (op) || decl_address_ip_invariant_p (op));
2748 }
2749
2750 /* Return true if T is a GIMPLE minimal invariant. It's a restricted
2751 form of function invariant. */
2752
2753 bool
2754 is_gimple_min_invariant (const_tree t)
2755 {
2756 if (TREE_CODE (t) == ADDR_EXPR)
2757 return is_gimple_invariant_address (t);
2758
2759 return is_gimple_constant (t);
2760 }
2761
2762 /* Return true if T is a GIMPLE interprocedural invariant. It's a restricted
2763 form of gimple minimal invariant. */
2764
2765 bool
2766 is_gimple_ip_invariant (const_tree t)
2767 {
2768 if (TREE_CODE (t) == ADDR_EXPR)
2769 return is_gimple_ip_invariant_address (t);
2770
2771 return is_gimple_constant (t);
2772 }
2773
2774 /* Return true if T looks like a valid GIMPLE statement. */
2775
2776 bool
2777 is_gimple_stmt (tree t)
2778 {
2779 const enum tree_code code = TREE_CODE (t);
2780
2781 switch (code)
2782 {
2783 case NOP_EXPR:
2784 /* The only valid NOP_EXPR is the empty statement. */
2785 return IS_EMPTY_STMT (t);
2786
2787 case BIND_EXPR:
2788 case COND_EXPR:
2789 /* These are only valid if they're void. */
2790 return TREE_TYPE (t) == NULL || VOID_TYPE_P (TREE_TYPE (t));
2791
2792 case SWITCH_EXPR:
2793 case GOTO_EXPR:
2794 case RETURN_EXPR:
2795 case LABEL_EXPR:
2796 case CASE_LABEL_EXPR:
2797 case TRY_CATCH_EXPR:
2798 case TRY_FINALLY_EXPR:
2799 case EH_FILTER_EXPR:
2800 case CATCH_EXPR:
2801 case ASM_EXPR:
2802 case STATEMENT_LIST:
2803 case OMP_PARALLEL:
2804 case OMP_FOR:
2805 case OMP_SECTIONS:
2806 case OMP_SECTION:
2807 case OMP_SINGLE:
2808 case OMP_MASTER:
2809 case OMP_ORDERED:
2810 case OMP_CRITICAL:
2811 case OMP_TASK:
2812 /* These are always void. */
2813 return true;
2814
2815 case CALL_EXPR:
2816 case MODIFY_EXPR:
2817 case PREDICT_EXPR:
2818 /* These are valid regardless of their type. */
2819 return true;
2820
2821 default:
2822 return false;
2823 }
2824 }
2825
2826 /* Return true if T is a variable. */
2827
2828 bool
2829 is_gimple_variable (tree t)
2830 {
2831 return (TREE_CODE (t) == VAR_DECL
2832 || TREE_CODE (t) == PARM_DECL
2833 || TREE_CODE (t) == RESULT_DECL
2834 || TREE_CODE (t) == SSA_NAME);
2835 }
2836
2837 /* Return true if T is a GIMPLE identifier (something with an address). */
2838
2839 bool
2840 is_gimple_id (tree t)
2841 {
2842 return (is_gimple_variable (t)
2843 || TREE_CODE (t) == FUNCTION_DECL
2844 || TREE_CODE (t) == LABEL_DECL
2845 || TREE_CODE (t) == CONST_DECL
2846 /* Allow string constants, since they are addressable. */
2847 || TREE_CODE (t) == STRING_CST);
2848 }
2849
2850 /* Return true if TYPE is a suitable type for a scalar register variable. */
2851
2852 bool
2853 is_gimple_reg_type (tree type)
2854 {
2855 return !AGGREGATE_TYPE_P (type);
2856 }
2857
2858 /* Return true if T is a non-aggregate register variable. */
2859
2860 bool
2861 is_gimple_reg (tree t)
2862 {
2863 if (TREE_CODE (t) == SSA_NAME)
2864 t = SSA_NAME_VAR (t);
2865
2866 if (!is_gimple_variable (t))
2867 return false;
2868
2869 if (!is_gimple_reg_type (TREE_TYPE (t)))
2870 return false;
2871
2872 /* A volatile decl is not acceptable because we can't reuse it as
2873 needed. We need to copy it into a temp first. */
2874 if (TREE_THIS_VOLATILE (t))
2875 return false;
2876
2877 /* We define "registers" as things that can be renamed as needed,
2878 which with our infrastructure does not apply to memory. */
2879 if (needs_to_live_in_memory (t))
2880 return false;
2881
2882 /* Hard register variables are an interesting case. For those that
2883 are call-clobbered, we don't know where all the calls are, since
2884 we don't (want to) take into account which operations will turn
2885 into libcalls at the rtl level. For those that are call-saved,
2886 we don't currently model the fact that calls may in fact change
2887 global hard registers, nor do we examine ASM_CLOBBERS at the tree
2888 level, and so miss variable changes that might imply. All around,
2889 it seems safest to not do too much optimization with these at the
2890 tree level at all. We'll have to rely on the rtl optimizers to
2891 clean this up, as there we've got all the appropriate bits exposed. */
2892 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
2893 return false;
2894
2895 /* Complex and vector values must have been put into SSA-like form.
2896 That is, no assignments to the individual components. */
2897 if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE
2898 || TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2899 return DECL_GIMPLE_REG_P (t);
2900
2901 return true;
2902 }
2903
2904
2905 /* Return true if T is a GIMPLE variable whose address is not needed. */
2906
2907 bool
2908 is_gimple_non_addressable (tree t)
2909 {
2910 if (TREE_CODE (t) == SSA_NAME)
2911 t = SSA_NAME_VAR (t);
2912
2913 return (is_gimple_variable (t) && ! needs_to_live_in_memory (t));
2914 }
2915
2916 /* Return true if T is a GIMPLE rvalue, i.e. an identifier or a constant. */
2917
2918 bool
2919 is_gimple_val (tree t)
2920 {
2921 /* Make loads from volatiles and memory vars explicit. */
2922 if (is_gimple_variable (t)
2923 && is_gimple_reg_type (TREE_TYPE (t))
2924 && !is_gimple_reg (t))
2925 return false;
2926
2927 return (is_gimple_variable (t) || is_gimple_min_invariant (t));
2928 }
2929
2930 /* Similarly, but accept hard registers as inputs to asm statements. */
2931
2932 bool
2933 is_gimple_asm_val (tree t)
2934 {
2935 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
2936 return true;
2937
2938 return is_gimple_val (t);
2939 }
2940
2941 /* Return true if T is a GIMPLE minimal lvalue. */
2942
2943 bool
2944 is_gimple_min_lval (tree t)
2945 {
2946 if (!(t = CONST_CAST_TREE (strip_invariant_refs (t))))
2947 return false;
2948 return (is_gimple_id (t) || TREE_CODE (t) == MEM_REF);
2949 }
2950
2951 /* Return true if T is a typecast operation. */
2952
2953 bool
2954 is_gimple_cast (tree t)
2955 {
2956 return (CONVERT_EXPR_P (t)
2957 || TREE_CODE (t) == FIX_TRUNC_EXPR);
2958 }
2959
2960 /* Return true if T is a valid function operand of a CALL_EXPR. */
2961
2962 bool
2963 is_gimple_call_addr (tree t)
2964 {
2965 return (TREE_CODE (t) == OBJ_TYPE_REF || is_gimple_val (t));
2966 }
2967
2968 /* Return true if T is a valid address operand of a MEM_REF. */
2969
2970 bool
2971 is_gimple_mem_ref_addr (tree t)
2972 {
2973 return (is_gimple_reg (t)
2974 || TREE_CODE (t) == INTEGER_CST
2975 || (TREE_CODE (t) == ADDR_EXPR
2976 && (CONSTANT_CLASS_P (TREE_OPERAND (t, 0))
2977 || decl_address_invariant_p (TREE_OPERAND (t, 0)))));
2978 }
2979
2980 /* If T makes a function call, return the corresponding CALL_EXPR operand.
2981 Otherwise, return NULL_TREE. */
2982
2983 tree
2984 get_call_expr_in (tree t)
2985 {
2986 if (TREE_CODE (t) == MODIFY_EXPR)
2987 t = TREE_OPERAND (t, 1);
2988 if (TREE_CODE (t) == WITH_SIZE_EXPR)
2989 t = TREE_OPERAND (t, 0);
2990 if (TREE_CODE (t) == CALL_EXPR)
2991 return t;
2992 return NULL_TREE;
2993 }
2994
2995
2996 /* Given a memory reference expression T, return its base address.
2997 The base address of a memory reference expression is the main
2998 object being referenced. For instance, the base address for
2999 'array[i].fld[j]' is 'array'. You can think of this as stripping
3000 away the offset part from a memory address.
3001
3002 This function calls handled_component_p to strip away all the inner
3003 parts of the memory reference until it reaches the base object. */
3004
3005 tree
3006 get_base_address (tree t)
3007 {
3008 while (handled_component_p (t))
3009 t = TREE_OPERAND (t, 0);
3010
3011 if (TREE_CODE (t) == MEM_REF
3012 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
3013 t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
3014
3015 if (SSA_VAR_P (t)
3016 || TREE_CODE (t) == STRING_CST
3017 || TREE_CODE (t) == CONSTRUCTOR
3018 || INDIRECT_REF_P (t)
3019 || TREE_CODE (t) == MEM_REF)
3020 return t;
3021 else
3022 return NULL_TREE;
3023 }
3024
3025 void
3026 recalculate_side_effects (tree t)
3027 {
3028 enum tree_code code = TREE_CODE (t);
3029 int len = TREE_OPERAND_LENGTH (t);
3030 int i;
3031
3032 switch (TREE_CODE_CLASS (code))
3033 {
3034 case tcc_expression:
3035 switch (code)
3036 {
3037 case INIT_EXPR:
3038 case MODIFY_EXPR:
3039 case VA_ARG_EXPR:
3040 case PREDECREMENT_EXPR:
3041 case PREINCREMENT_EXPR:
3042 case POSTDECREMENT_EXPR:
3043 case POSTINCREMENT_EXPR:
3044 /* All of these have side-effects, no matter what their
3045 operands are. */
3046 return;
3047
3048 default:
3049 break;
3050 }
3051 /* Fall through. */
3052
3053 case tcc_comparison: /* a comparison expression */
3054 case tcc_unary: /* a unary arithmetic expression */
3055 case tcc_binary: /* a binary arithmetic expression */
3056 case tcc_reference: /* a reference */
3057 case tcc_vl_exp: /* a function call */
3058 TREE_SIDE_EFFECTS (t) = TREE_THIS_VOLATILE (t);
3059 for (i = 0; i < len; ++i)
3060 {
3061 tree op = TREE_OPERAND (t, i);
3062 if (op && TREE_SIDE_EFFECTS (op))
3063 TREE_SIDE_EFFECTS (t) = 1;
3064 }
3065 break;
3066
3067 case tcc_constant:
3068 /* No side-effects. */
3069 return;
3070
3071 default:
3072 gcc_unreachable ();
3073 }
3074 }
3075
3076 /* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
3077 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
3078 we failed to create one. */
3079
3080 tree
3081 canonicalize_cond_expr_cond (tree t)
3082 {
3083 /* Strip conversions around boolean operations. */
3084 if (CONVERT_EXPR_P (t)
3085 && truth_value_p (TREE_CODE (TREE_OPERAND (t, 0))))
3086 t = TREE_OPERAND (t, 0);
3087
3088 /* For (bool)x use x != 0. */
3089 if (CONVERT_EXPR_P (t)
3090 && TREE_CODE (TREE_TYPE (t)) == BOOLEAN_TYPE)
3091 {
3092 tree top0 = TREE_OPERAND (t, 0);
3093 t = build2 (NE_EXPR, TREE_TYPE (t),
3094 top0, build_int_cst (TREE_TYPE (top0), 0));
3095 }
3096 /* For !x use x == 0. */
3097 else if (TREE_CODE (t) == TRUTH_NOT_EXPR)
3098 {
3099 tree top0 = TREE_OPERAND (t, 0);
3100 t = build2 (EQ_EXPR, TREE_TYPE (t),
3101 top0, build_int_cst (TREE_TYPE (top0), 0));
3102 }
3103 /* For cmp ? 1 : 0 use cmp. */
3104 else if (TREE_CODE (t) == COND_EXPR
3105 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
3106 && integer_onep (TREE_OPERAND (t, 1))
3107 && integer_zerop (TREE_OPERAND (t, 2)))
3108 {
3109 tree top0 = TREE_OPERAND (t, 0);
3110 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
3111 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
3112 }
3113
3114 if (is_gimple_condexpr (t))
3115 return t;
3116
3117 return NULL_TREE;
3118 }
3119
3120 /* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
3121 the positions marked by the set ARGS_TO_SKIP. */
3122
3123 gimple
3124 gimple_call_copy_skip_args (gimple stmt, bitmap args_to_skip)
3125 {
3126 int i;
3127 tree fn = gimple_call_fn (stmt);
3128 int nargs = gimple_call_num_args (stmt);
3129 VEC(tree, heap) *vargs = VEC_alloc (tree, heap, nargs);
3130 gimple new_stmt;
3131
3132 for (i = 0; i < nargs; i++)
3133 if (!bitmap_bit_p (args_to_skip, i))
3134 VEC_quick_push (tree, vargs, gimple_call_arg (stmt, i));
3135
3136 new_stmt = gimple_build_call_vec (fn, vargs);
3137 VEC_free (tree, heap, vargs);
3138 if (gimple_call_lhs (stmt))
3139 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
3140
3141 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
3142 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
3143
3144 gimple_set_block (new_stmt, gimple_block (stmt));
3145 if (gimple_has_location (stmt))
3146 gimple_set_location (new_stmt, gimple_location (stmt));
3147 gimple_call_copy_flags (new_stmt, stmt);
3148 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
3149
3150 gimple_set_modified (new_stmt, true);
3151
3152 return new_stmt;
3153 }
3154
3155
3156 static hashval_t gimple_type_hash (const void *);
3157
3158 /* Structure used to maintain a cache of some type pairs compared by
3159 gimple_types_compatible_p when comparing aggregate types. There are
3160 four possible values for SAME_P:
3161
3162 -2: The pair (T1, T2) has just been inserted in the table.
3163 -1: The pair (T1, T2) is currently being compared.
3164 0: T1 and T2 are different types.
3165 1: T1 and T2 are the same type.
3166
3167 This table is only used when comparing aggregate types to avoid
3168 infinite recursion due to self-referential types. */
3169 struct type_pair_d
3170 {
3171 unsigned int uid1;
3172 unsigned int uid2;
3173 int same_p;
3174 };
3175 typedef struct type_pair_d *type_pair_t;
3176
3177 /* Return a hash value for the type pair pointed-to by P. */
3178
3179 static hashval_t
3180 type_pair_hash (const void *p)
3181 {
3182 const struct type_pair_d *pair = (const struct type_pair_d *) p;
3183 hashval_t val1 = pair->uid1;
3184 hashval_t val2 = pair->uid2;
3185 return (iterative_hash_hashval_t (val2, val1)
3186 ^ iterative_hash_hashval_t (val1, val2));
3187 }
3188
3189 /* Compare two type pairs pointed-to by P1 and P2. */
3190
3191 static int
3192 type_pair_eq (const void *p1, const void *p2)
3193 {
3194 const struct type_pair_d *pair1 = (const struct type_pair_d *) p1;
3195 const struct type_pair_d *pair2 = (const struct type_pair_d *) p2;
3196 return ((pair1->uid1 == pair2->uid1 && pair1->uid2 == pair2->uid2)
3197 || (pair1->uid1 == pair2->uid2 && pair1->uid2 == pair2->uid1));
3198 }
3199
3200 /* Lookup the pair of types T1 and T2 in *VISITED_P. Insert a new
3201 entry if none existed. */
3202
3203 static type_pair_t
3204 lookup_type_pair (tree t1, tree t2, htab_t *visited_p, struct obstack *ob_p)
3205 {
3206 struct type_pair_d pair;
3207 type_pair_t p;
3208 void **slot;
3209
3210 if (*visited_p == NULL)
3211 {
3212 *visited_p = htab_create (251, type_pair_hash, type_pair_eq, NULL);
3213 gcc_obstack_init (ob_p);
3214 }
3215
3216 pair.uid1 = TYPE_UID (t1);
3217 pair.uid2 = TYPE_UID (t2);
3218 slot = htab_find_slot (*visited_p, &pair, INSERT);
3219
3220 if (*slot)
3221 p = *((type_pair_t *) slot);
3222 else
3223 {
3224 p = XOBNEW (ob_p, struct type_pair_d);
3225 p->uid1 = TYPE_UID (t1);
3226 p->uid2 = TYPE_UID (t2);
3227 p->same_p = -2;
3228 *slot = (void *) p;
3229 }
3230
3231 return p;
3232 }
3233
3234
3235 /* Return true if T1 and T2 have the same name. If FOR_COMPLETION_P is
3236 true then if any type has no name return false, otherwise return
3237 true if both types have no names. */
3238
3239 static bool
3240 compare_type_names_p (tree t1, tree t2, bool for_completion_p)
3241 {
3242 tree name1 = TYPE_NAME (t1);
3243 tree name2 = TYPE_NAME (t2);
3244
3245 /* Consider anonymous types all unique for completion. */
3246 if (for_completion_p
3247 && (!name1 || !name2))
3248 return false;
3249
3250 if (name1 && TREE_CODE (name1) == TYPE_DECL)
3251 {
3252 name1 = DECL_NAME (name1);
3253 if (for_completion_p
3254 && !name1)
3255 return false;
3256 }
3257 gcc_assert (!name1 || TREE_CODE (name1) == IDENTIFIER_NODE);
3258
3259 if (name2 && TREE_CODE (name2) == TYPE_DECL)
3260 {
3261 name2 = DECL_NAME (name2);
3262 if (for_completion_p
3263 && !name2)
3264 return false;
3265 }
3266 gcc_assert (!name2 || TREE_CODE (name2) == IDENTIFIER_NODE);
3267
3268 /* Identifiers can be compared with pointer equality rather
3269 than a string comparison. */
3270 if (name1 == name2)
3271 return true;
3272
3273 return false;
3274 }
3275
3276 /* Return true if the field decls F1 and F2 are at the same offset.
3277
3278 This is intended to be used on GIMPLE types only. In order to
3279 compare GENERIC types, use fields_compatible_p instead. */
3280
3281 bool
3282 gimple_compare_field_offset (tree f1, tree f2)
3283 {
3284 if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
3285 {
3286 tree offset1 = DECL_FIELD_OFFSET (f1);
3287 tree offset2 = DECL_FIELD_OFFSET (f2);
3288 return ((offset1 == offset2
3289 /* Once gimplification is done, self-referential offsets are
3290 instantiated as operand #2 of the COMPONENT_REF built for
3291 each access and reset. Therefore, they are not relevant
3292 anymore and fields are interchangeable provided that they
3293 represent the same access. */
3294 || (TREE_CODE (offset1) == PLACEHOLDER_EXPR
3295 && TREE_CODE (offset2) == PLACEHOLDER_EXPR
3296 && (DECL_SIZE (f1) == DECL_SIZE (f2)
3297 || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
3298 && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
3299 || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0))
3300 && DECL_ALIGN (f1) == DECL_ALIGN (f2))
3301 || operand_equal_p (offset1, offset2, 0))
3302 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
3303 DECL_FIELD_BIT_OFFSET (f2)));
3304 }
3305
3306 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
3307 should be, so handle differing ones specially by decomposing
3308 the offset into a byte and bit offset manually. */
3309 if (host_integerp (DECL_FIELD_OFFSET (f1), 0)
3310 && host_integerp (DECL_FIELD_OFFSET (f2), 0))
3311 {
3312 unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
3313 unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
3314 bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
3315 byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
3316 + bit_offset1 / BITS_PER_UNIT);
3317 bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
3318 byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
3319 + bit_offset2 / BITS_PER_UNIT);
3320 if (byte_offset1 != byte_offset2)
3321 return false;
3322 return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
3323 }
3324
3325 return false;
3326 }
3327
3328 /* If the type T1 and the type T2 are a complete and an incomplete
3329 variant of the same type return true. */
3330
3331 static bool
3332 gimple_compatible_complete_and_incomplete_subtype_p (tree t1, tree t2)
3333 {
3334 /* If one pointer points to an incomplete type variant of
3335 the other pointed-to type they are the same. */
3336 if (TREE_CODE (t1) == TREE_CODE (t2)
3337 && RECORD_OR_UNION_TYPE_P (t1)
3338 && (!COMPLETE_TYPE_P (t1)
3339 || !COMPLETE_TYPE_P (t2))
3340 && TYPE_QUALS (t1) == TYPE_QUALS (t2)
3341 && compare_type_names_p (TYPE_MAIN_VARIANT (t1),
3342 TYPE_MAIN_VARIANT (t2), true))
3343 return true;
3344 return false;
3345 }
3346
3347 /* Return 1 iff T1 and T2 are structurally identical.
3348 Otherwise, return 0. */
3349
3350 bool
3351 gimple_types_compatible_p (tree t1, tree t2, bool for_merging_p)
3352 {
3353 type_pair_t p = NULL;
3354
3355 /* Check first for the obvious case of pointer identity. */
3356 if (t1 == t2)
3357 return 1;
3358
3359 /* Check that we have two types to compare. */
3360 if (t1 == NULL_TREE || t2 == NULL_TREE)
3361 return 0;
3362
3363 /* If the types have been previously registered and found equal
3364 they still are. */
3365 if (TYPE_CANONICAL (t1)
3366 && TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2))
3367 return 1;
3368
3369 /* Can't be the same type if the types don't have the same code. */
3370 if (TREE_CODE (t1) != TREE_CODE (t2))
3371 return 0;
3372
3373 /* Can't be the same type if they have different CV qualifiers. */
3374 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
3375 return 0;
3376
3377 /* Void types are always the same. */
3378 if (TREE_CODE (t1) == VOID_TYPE)
3379 return 1;
3380
3381 /* Do some simple checks before doing three hashtable queries. */
3382 if (INTEGRAL_TYPE_P (t1)
3383 || SCALAR_FLOAT_TYPE_P (t1)
3384 || FIXED_POINT_TYPE_P (t1)
3385 || TREE_CODE (t1) == VECTOR_TYPE
3386 || TREE_CODE (t1) == COMPLEX_TYPE
3387 || TREE_CODE (t1) == OFFSET_TYPE)
3388 {
3389 /* Can't be the same type if they have different alignment,
3390 sign, precision or mode. */
3391 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3392 || TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
3393 || TYPE_MODE (t1) != TYPE_MODE (t2)
3394 || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
3395 return 0;
3396
3397 if (TREE_CODE (t1) == INTEGER_TYPE
3398 && (TYPE_IS_SIZETYPE (t1) != TYPE_IS_SIZETYPE (t2)
3399 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)))
3400 return 0;
3401
3402 /* That's all we need to check for float and fixed-point types. */
3403 if (SCALAR_FLOAT_TYPE_P (t1)
3404 || FIXED_POINT_TYPE_P (t1))
3405 return 1;
3406
3407 /* Perform cheap tail-recursion for vector and complex types. */
3408 if (TREE_CODE (t1) == VECTOR_TYPE
3409 || TREE_CODE (t1) == COMPLEX_TYPE)
3410 return gimple_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
3411 for_merging_p);
3412
3413 /* For integral types fall thru to more complex checks. */
3414 }
3415
3416 else if (AGGREGATE_TYPE_P (t1) || POINTER_TYPE_P (t1))
3417 {
3418 /* Can't be the same type if they have different alignment or mode. */
3419 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3420 || TYPE_MODE (t1) != TYPE_MODE (t2))
3421 return 0;
3422 }
3423
3424 /* If the hash values of t1 and t2 are different the types can't
3425 possibly be the same. This helps keeping the type-pair hashtable
3426 small, only tracking comparisons for hash collisions. */
3427 if (gimple_type_hash (t1) != gimple_type_hash (t2))
3428 return 0;
3429
3430 /* If we've visited this type pair before (in the case of aggregates
3431 with self-referential types), and we made a decision, return it. */
3432 p = lookup_type_pair (t1, t2,
3433 for_merging_p ? &gtc_visited : &gtc_visited2,
3434 for_merging_p ? &gtc_ob : &gtc_ob2);
3435 if (p->same_p == 0 || p->same_p == 1)
3436 {
3437 /* We have already decided whether T1 and T2 are the
3438 same, return the cached result. */
3439 return p->same_p == 1;
3440 }
3441 else if (p->same_p == -1)
3442 {
3443 /* We are currently comparing this pair of types, assume
3444 that they are the same and let the caller decide. */
3445 return 1;
3446 }
3447
3448 gcc_assert (p->same_p == -2);
3449
3450 /* Mark the (T1, T2) comparison in progress. */
3451 p->same_p = -1;
3452
3453 /* If their attributes are not the same they can't be the same type. */
3454 if (!attribute_list_equal (TYPE_ATTRIBUTES (t1), TYPE_ATTRIBUTES (t2)))
3455 goto different_types;
3456
3457 /* Do type-specific comparisons. */
3458 switch (TREE_CODE (t1))
3459 {
3460 case ARRAY_TYPE:
3461 /* Array types are the same if the element types are the same and
3462 the number of elements are the same. */
3463 if (!gimple_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
3464 for_merging_p)
3465 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
3466 || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
3467 goto different_types;
3468 else
3469 {
3470 tree i1 = TYPE_DOMAIN (t1);
3471 tree i2 = TYPE_DOMAIN (t2);
3472
3473 /* For an incomplete external array, the type domain can be
3474 NULL_TREE. Check this condition also. */
3475 if (i1 == NULL_TREE && i2 == NULL_TREE)
3476 goto same_types;
3477 else if (i1 == NULL_TREE || i2 == NULL_TREE)
3478 goto different_types;
3479 /* If for a complete array type the possibly gimplified sizes
3480 are different the types are different. */
3481 else if (((TYPE_SIZE (i1) != NULL) ^ (TYPE_SIZE (i2) != NULL))
3482 || (TYPE_SIZE (i1)
3483 && TYPE_SIZE (i2)
3484 && !operand_equal_p (TYPE_SIZE (i1), TYPE_SIZE (i2), 0)))
3485 goto different_types;
3486 else
3487 {
3488 tree min1 = TYPE_MIN_VALUE (i1);
3489 tree min2 = TYPE_MIN_VALUE (i2);
3490 tree max1 = TYPE_MAX_VALUE (i1);
3491 tree max2 = TYPE_MAX_VALUE (i2);
3492
3493 /* The minimum/maximum values have to be the same. */
3494 if ((min1 == min2
3495 || (min1 && min2
3496 && ((TREE_CODE (min1) == PLACEHOLDER_EXPR
3497 && TREE_CODE (min2) == PLACEHOLDER_EXPR)
3498 || operand_equal_p (min1, min2, 0))))
3499 && (max1 == max2
3500 || (max1 && max2
3501 && ((TREE_CODE (max1) == PLACEHOLDER_EXPR
3502 && TREE_CODE (max2) == PLACEHOLDER_EXPR)
3503 || operand_equal_p (max1, max2, 0)))))
3504 goto same_types;
3505 else
3506 goto different_types;
3507 }
3508 }
3509
3510 case METHOD_TYPE:
3511 /* Method types should belong to the same class. */
3512 if (!gimple_types_compatible_p (TYPE_METHOD_BASETYPE (t1),
3513 TYPE_METHOD_BASETYPE (t2), for_merging_p))
3514 goto different_types;
3515
3516 /* Fallthru */
3517
3518 case FUNCTION_TYPE:
3519 /* Function types are the same if the return type and arguments types
3520 are the same. */
3521 if ((for_merging_p
3522 || !gimple_compatible_complete_and_incomplete_subtype_p
3523 (TREE_TYPE (t1), TREE_TYPE (t2)))
3524 && !gimple_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
3525 for_merging_p))
3526 goto different_types;
3527
3528 if (!targetm.comp_type_attributes (t1, t2))
3529 goto different_types;
3530
3531 if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
3532 goto same_types;
3533 else
3534 {
3535 tree parms1, parms2;
3536
3537 for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
3538 parms1 && parms2;
3539 parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
3540 {
3541 if ((for_merging_p
3542 || !gimple_compatible_complete_and_incomplete_subtype_p
3543 (TREE_VALUE (parms1), TREE_VALUE (parms2)))
3544 && !gimple_types_compatible_p (TREE_VALUE (parms1),
3545 TREE_VALUE (parms2),
3546 for_merging_p))
3547 goto different_types;
3548 }
3549
3550 if (parms1 || parms2)
3551 goto different_types;
3552
3553 goto same_types;
3554 }
3555
3556 case OFFSET_TYPE:
3557 {
3558 if (!gimple_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
3559 for_merging_p)
3560 || !gimple_types_compatible_p (TYPE_OFFSET_BASETYPE (t1),
3561 TYPE_OFFSET_BASETYPE (t2),
3562 for_merging_p))
3563 goto different_types;
3564
3565 goto same_types;
3566 }
3567
3568 case POINTER_TYPE:
3569 case REFERENCE_TYPE:
3570 {
3571 /* If the two pointers have different ref-all attributes,
3572 they can't be the same type. */
3573 if (TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
3574 goto different_types;
3575
3576 /* If one pointer points to an incomplete type variant of
3577 the other pointed-to type they are the same. */
3578 if (!for_merging_p
3579 && gimple_compatible_complete_and_incomplete_subtype_p
3580 (TREE_TYPE (t1), TREE_TYPE (t2)))
3581 goto same_types;
3582
3583 /* Otherwise, pointer and reference types are the same if the
3584 pointed-to types are the same. */
3585 if (gimple_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
3586 for_merging_p))
3587 goto same_types;
3588
3589 goto different_types;
3590 }
3591
3592 case INTEGER_TYPE:
3593 case BOOLEAN_TYPE:
3594 {
3595 tree min1 = TYPE_MIN_VALUE (t1);
3596 tree max1 = TYPE_MAX_VALUE (t1);
3597 tree min2 = TYPE_MIN_VALUE (t2);
3598 tree max2 = TYPE_MAX_VALUE (t2);
3599 bool min_equal_p = false;
3600 bool max_equal_p = false;
3601
3602 /* If either type has a minimum value, the other type must
3603 have the same. */
3604 if (min1 == NULL_TREE && min2 == NULL_TREE)
3605 min_equal_p = true;
3606 else if (min1 && min2 && operand_equal_p (min1, min2, 0))
3607 min_equal_p = true;
3608
3609 /* Likewise, if either type has a maximum value, the other
3610 type must have the same. */
3611 if (max1 == NULL_TREE && max2 == NULL_TREE)
3612 max_equal_p = true;
3613 else if (max1 && max2 && operand_equal_p (max1, max2, 0))
3614 max_equal_p = true;
3615
3616 if (!min_equal_p || !max_equal_p)
3617 goto different_types;
3618
3619 goto same_types;
3620 }
3621
3622 case ENUMERAL_TYPE:
3623 {
3624 /* FIXME lto, we cannot check bounds on enumeral types because
3625 different front ends will produce different values.
3626 In C, enumeral types are integers, while in C++ each element
3627 will have its own symbolic value. We should decide how enums
3628 are to be represented in GIMPLE and have each front end lower
3629 to that. */
3630 tree v1, v2;
3631
3632 /* For enumeral types, all the values must be the same. */
3633 if (TYPE_VALUES (t1) == TYPE_VALUES (t2))
3634 goto same_types;
3635
3636 for (v1 = TYPE_VALUES (t1), v2 = TYPE_VALUES (t2);
3637 v1 && v2;
3638 v1 = TREE_CHAIN (v1), v2 = TREE_CHAIN (v2))
3639 {
3640 tree c1 = TREE_VALUE (v1);
3641 tree c2 = TREE_VALUE (v2);
3642
3643 if (TREE_CODE (c1) == CONST_DECL)
3644 c1 = DECL_INITIAL (c1);
3645
3646 if (TREE_CODE (c2) == CONST_DECL)
3647 c2 = DECL_INITIAL (c2);
3648
3649 if (tree_int_cst_equal (c1, c2) != 1)
3650 goto different_types;
3651 }
3652
3653 /* If one enumeration has more values than the other, they
3654 are not the same. */
3655 if (v1 || v2)
3656 goto different_types;
3657
3658 goto same_types;
3659 }
3660
3661 case RECORD_TYPE:
3662 case UNION_TYPE:
3663 case QUAL_UNION_TYPE:
3664 {
3665 tree f1, f2;
3666
3667 /* The struct tags shall compare equal. */
3668 if (!compare_type_names_p (TYPE_MAIN_VARIANT (t1),
3669 TYPE_MAIN_VARIANT (t2), false))
3670 goto different_types;
3671
3672 /* For aggregate types, all the fields must be the same. */
3673 for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
3674 f1 && f2;
3675 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
3676 {
3677 /* The fields must have the same name, offset and type. */
3678 if (DECL_NAME (f1) != DECL_NAME (f2)
3679 || DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
3680 || !gimple_compare_field_offset (f1, f2)
3681 || !gimple_types_compatible_p (TREE_TYPE (f1),
3682 TREE_TYPE (f2), for_merging_p))
3683 goto different_types;
3684 }
3685
3686 /* If one aggregate has more fields than the other, they
3687 are not the same. */
3688 if (f1 || f2)
3689 goto different_types;
3690
3691 goto same_types;
3692 }
3693
3694 default:
3695 gcc_unreachable ();
3696 }
3697
3698 /* Common exit path for types that are not compatible. */
3699 different_types:
3700 p->same_p = 0;
3701 return 0;
3702
3703 /* Common exit path for types that are compatible. */
3704 same_types:
3705 p->same_p = 1;
3706 return 1;
3707 }
3708
3709
3710
3711
3712 /* Per pointer state for the SCC finding. The on_sccstack flag
3713 is not strictly required, it is true when there is no hash value
3714 recorded for the type and false otherwise. But querying that
3715 is slower. */
3716
3717 struct sccs
3718 {
3719 unsigned int dfsnum;
3720 unsigned int low;
3721 bool on_sccstack;
3722 hashval_t hash;
3723 };
3724
3725 static unsigned int next_dfs_num;
3726
3727 static hashval_t
3728 iterative_hash_gimple_type (tree, hashval_t, VEC(tree, heap) **,
3729 struct pointer_map_t *, struct obstack *);
3730
3731 /* DFS visit the edge from the callers type with state *STATE to T.
3732 Update the callers type hash V with the hash for T if it is not part
3733 of the SCC containing the callers type and return it.
3734 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3735
3736 static hashval_t
3737 visit (tree t, struct sccs *state, hashval_t v,
3738 VEC (tree, heap) **sccstack,
3739 struct pointer_map_t *sccstate,
3740 struct obstack *sccstate_obstack)
3741 {
3742 struct sccs *cstate = NULL;
3743 void **slot;
3744
3745 /* If there is a hash value recorded for this type then it can't
3746 possibly be part of our parent SCC. Simply mix in its hash. */
3747 if ((slot = pointer_map_contains (type_hash_cache, t)))
3748 return iterative_hash_hashval_t ((hashval_t) (size_t) *slot, v);
3749
3750 if ((slot = pointer_map_contains (sccstate, t)) != NULL)
3751 cstate = (struct sccs *)*slot;
3752 if (!cstate)
3753 {
3754 hashval_t tem;
3755 /* Not yet visited. DFS recurse. */
3756 tem = iterative_hash_gimple_type (t, v,
3757 sccstack, sccstate, sccstate_obstack);
3758 if (!cstate)
3759 cstate = (struct sccs *)* pointer_map_contains (sccstate, t);
3760 state->low = MIN (state->low, cstate->low);
3761 /* If the type is no longer on the SCC stack and thus is not part
3762 of the parents SCC mix in its hash value. Otherwise we will
3763 ignore the type for hashing purposes and return the unaltered
3764 hash value. */
3765 if (!cstate->on_sccstack)
3766 return tem;
3767 }
3768 if (cstate->dfsnum < state->dfsnum
3769 && cstate->on_sccstack)
3770 state->low = MIN (cstate->dfsnum, state->low);
3771
3772 /* We are part of our parents SCC, skip this type during hashing
3773 and return the unaltered hash value. */
3774 return v;
3775 }
3776
3777 /* Hash NAME with the previous hash value V and return it. */
3778
3779 static hashval_t
3780 iterative_hash_name (tree name, hashval_t v)
3781 {
3782 if (!name)
3783 return v;
3784 if (TREE_CODE (name) == TYPE_DECL)
3785 name = DECL_NAME (name);
3786 if (!name)
3787 return v;
3788 gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
3789 return iterative_hash_object (IDENTIFIER_HASH_VALUE (name), v);
3790 }
3791
3792 /* Returning a hash value for gimple type TYPE combined with VAL.
3793 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done.
3794
3795 To hash a type we end up hashing in types that are reachable.
3796 Through pointers we can end up with cycles which messes up the
3797 required property that we need to compute the same hash value
3798 for structurally equivalent types. To avoid this we have to
3799 hash all types in a cycle (the SCC) in a commutative way. The
3800 easiest way is to not mix in the hashes of the SCC members at
3801 all. To make this work we have to delay setting the hash
3802 values of the SCC until it is complete. */
3803
3804 static hashval_t
3805 iterative_hash_gimple_type (tree type, hashval_t val,
3806 VEC(tree, heap) **sccstack,
3807 struct pointer_map_t *sccstate,
3808 struct obstack *sccstate_obstack)
3809 {
3810 hashval_t v;
3811 void **slot;
3812 struct sccs *state;
3813
3814 #ifdef ENABLE_CHECKING
3815 /* Not visited during this DFS walk nor during previous walks. */
3816 gcc_assert (!pointer_map_contains (type_hash_cache, type)
3817 && !pointer_map_contains (sccstate, type));
3818 #endif
3819 state = XOBNEW (sccstate_obstack, struct sccs);
3820 *pointer_map_insert (sccstate, type) = state;
3821
3822 VEC_safe_push (tree, heap, *sccstack, type);
3823 state->dfsnum = next_dfs_num++;
3824 state->low = state->dfsnum;
3825 state->on_sccstack = true;
3826
3827 /* Combine a few common features of types so that types are grouped into
3828 smaller sets; when searching for existing matching types to merge,
3829 only existing types having the same features as the new type will be
3830 checked. */
3831 v = iterative_hash_hashval_t (TREE_CODE (type), 0);
3832 v = iterative_hash_hashval_t (TYPE_QUALS (type), v);
3833 v = iterative_hash_hashval_t (TREE_ADDRESSABLE (type), v);
3834
3835 /* Do not hash the types size as this will cause differences in
3836 hash values for the complete vs. the incomplete type variant. */
3837
3838 /* Incorporate common features of numerical types. */
3839 if (INTEGRAL_TYPE_P (type)
3840 || SCALAR_FLOAT_TYPE_P (type)
3841 || FIXED_POINT_TYPE_P (type))
3842 {
3843 v = iterative_hash_hashval_t (TYPE_PRECISION (type), v);
3844 v = iterative_hash_hashval_t (TYPE_MODE (type), v);
3845 v = iterative_hash_hashval_t (TYPE_UNSIGNED (type), v);
3846 }
3847
3848 /* For pointer and reference types, fold in information about the type
3849 pointed to but do not recurse into possibly incomplete types to
3850 avoid hash differences for complete vs. incomplete types. */
3851 if (POINTER_TYPE_P (type))
3852 {
3853 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (type)))
3854 {
3855 v = iterative_hash_hashval_t (TREE_CODE (TREE_TYPE (type)), v);
3856 v = iterative_hash_name
3857 (TYPE_NAME (TYPE_MAIN_VARIANT (TREE_TYPE (type))), v);
3858 }
3859 else
3860 v = visit (TREE_TYPE (type), state, v,
3861 sccstack, sccstate, sccstate_obstack);
3862 }
3863
3864 /* For integer types hash the types min/max values and the string flag. */
3865 if (TREE_CODE (type) == INTEGER_TYPE)
3866 {
3867 /* OMP lowering can introduce error_mark_node in place of
3868 random local decls in types. */
3869 if (TYPE_MIN_VALUE (type) != error_mark_node)
3870 v = iterative_hash_expr (TYPE_MIN_VALUE (type), v);
3871 if (TYPE_MAX_VALUE (type) != error_mark_node)
3872 v = iterative_hash_expr (TYPE_MAX_VALUE (type), v);
3873 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
3874 }
3875
3876 /* For array types hash their domain and the string flag. */
3877 if (TREE_CODE (type) == ARRAY_TYPE
3878 && TYPE_DOMAIN (type))
3879 {
3880 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
3881 v = visit (TYPE_DOMAIN (type), state, v,
3882 sccstack, sccstate, sccstate_obstack);
3883 }
3884
3885 /* Recurse for aggregates with a single element type. */
3886 if (TREE_CODE (type) == ARRAY_TYPE
3887 || TREE_CODE (type) == COMPLEX_TYPE
3888 || TREE_CODE (type) == VECTOR_TYPE)
3889 v = visit (TREE_TYPE (type), state, v,
3890 sccstack, sccstate, sccstate_obstack);
3891
3892 /* Incorporate function return and argument types. */
3893 if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE)
3894 {
3895 unsigned na;
3896 tree p;
3897
3898 /* For method types also incorporate their parent class. */
3899 if (TREE_CODE (type) == METHOD_TYPE)
3900 v = visit (TYPE_METHOD_BASETYPE (type), state, v,
3901 sccstack, sccstate, sccstate_obstack);
3902
3903 /* For result types allow mismatch in completeness. */
3904 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (type)))
3905 {
3906 v = iterative_hash_hashval_t (TREE_CODE (TREE_TYPE (type)), v);
3907 v = iterative_hash_name
3908 (TYPE_NAME (TYPE_MAIN_VARIANT (TREE_TYPE (type))), v);
3909 }
3910 else
3911 v = visit (TREE_TYPE (type), state, v,
3912 sccstack, sccstate, sccstate_obstack);
3913
3914 for (p = TYPE_ARG_TYPES (type), na = 0; p; p = TREE_CHAIN (p))
3915 {
3916 /* For argument types allow mismatch in completeness. */
3917 if (RECORD_OR_UNION_TYPE_P (TREE_VALUE (p)))
3918 {
3919 v = iterative_hash_hashval_t (TREE_CODE (TREE_VALUE (p)), v);
3920 v = iterative_hash_name
3921 (TYPE_NAME (TYPE_MAIN_VARIANT (TREE_VALUE (p))), v);
3922 }
3923 else
3924 v = visit (TREE_VALUE (p), state, v,
3925 sccstack, sccstate, sccstate_obstack);
3926 na++;
3927 }
3928
3929 v = iterative_hash_hashval_t (na, v);
3930 }
3931
3932 if (TREE_CODE (type) == RECORD_TYPE
3933 || TREE_CODE (type) == UNION_TYPE
3934 || TREE_CODE (type) == QUAL_UNION_TYPE)
3935 {
3936 unsigned nf;
3937 tree f;
3938
3939 v = iterative_hash_name (TYPE_NAME (TYPE_MAIN_VARIANT (type)), v);
3940
3941 for (f = TYPE_FIELDS (type), nf = 0; f; f = TREE_CHAIN (f))
3942 {
3943 v = iterative_hash_name (DECL_NAME (f), v);
3944 v = visit (TREE_TYPE (f), state, v,
3945 sccstack, sccstate, sccstate_obstack);
3946 nf++;
3947 }
3948
3949 v = iterative_hash_hashval_t (nf, v);
3950 }
3951
3952 /* Record hash for us. */
3953 state->hash = v;
3954
3955 /* See if we found an SCC. */
3956 if (state->low == state->dfsnum)
3957 {
3958 tree x;
3959
3960 /* Pop off the SCC and set its hash values. */
3961 do
3962 {
3963 struct sccs *cstate;
3964 x = VEC_pop (tree, *sccstack);
3965 gcc_assert (!pointer_map_contains (type_hash_cache, x));
3966 cstate = (struct sccs *)*pointer_map_contains (sccstate, x);
3967 cstate->on_sccstack = false;
3968 slot = pointer_map_insert (type_hash_cache, x);
3969 *slot = (void *) (size_t) cstate->hash;
3970 }
3971 while (x != type);
3972 }
3973
3974 return iterative_hash_hashval_t (v, val);
3975 }
3976
3977
3978 /* Returns a hash value for P (assumed to be a type). The hash value
3979 is computed using some distinguishing features of the type. Note
3980 that we cannot use pointer hashing here as we may be dealing with
3981 two distinct instances of the same type.
3982
3983 This function should produce the same hash value for two compatible
3984 types according to gimple_types_compatible_p. */
3985
3986 static hashval_t
3987 gimple_type_hash (const void *p)
3988 {
3989 const_tree t = (const_tree) p;
3990 VEC(tree, heap) *sccstack = NULL;
3991 struct pointer_map_t *sccstate;
3992 struct obstack sccstate_obstack;
3993 hashval_t val;
3994 void **slot;
3995
3996 if (type_hash_cache == NULL)
3997 type_hash_cache = pointer_map_create ();
3998
3999 if ((slot = pointer_map_contains (type_hash_cache, p)) != NULL)
4000 return iterative_hash_hashval_t ((hashval_t) (size_t) *slot, 0);
4001
4002 /* Perform a DFS walk and pre-hash all reachable types. */
4003 next_dfs_num = 1;
4004 sccstate = pointer_map_create ();
4005 gcc_obstack_init (&sccstate_obstack);
4006 val = iterative_hash_gimple_type (CONST_CAST_TREE (t), 0,
4007 &sccstack, sccstate, &sccstate_obstack);
4008 VEC_free (tree, heap, sccstack);
4009 pointer_map_destroy (sccstate);
4010 obstack_free (&sccstate_obstack, NULL);
4011
4012 return val;
4013 }
4014
4015
4016 /* Returns nonzero if P1 and P2 are equal. */
4017
4018 static int
4019 gimple_type_eq (const void *p1, const void *p2)
4020 {
4021 const_tree t1 = (const_tree) p1;
4022 const_tree t2 = (const_tree) p2;
4023 return gimple_types_compatible_p (CONST_CAST_TREE (t1),
4024 CONST_CAST_TREE (t2), true);
4025 }
4026
4027
4028 /* Register type T in the global type table gimple_types.
4029 If another type T', compatible with T, already existed in
4030 gimple_types then return T', otherwise return T. This is used by
4031 LTO to merge identical types read from different TUs. */
4032
4033 tree
4034 gimple_register_type (tree t)
4035 {
4036 void **slot;
4037
4038 gcc_assert (TYPE_P (t));
4039
4040 /* In TYPE_CANONICAL we cache the result of gimple_register_type.
4041 It is initially set to NULL during LTO streaming. */
4042 if (TYPE_CANONICAL (t))
4043 return TYPE_CANONICAL (t);
4044
4045 /* Always register the main variant first. This is important so we
4046 pick up the non-typedef variants as canonical, otherwise we'll end
4047 up taking typedef ids for structure tags during comparison. */
4048 if (TYPE_MAIN_VARIANT (t) != t)
4049 gimple_register_type (TYPE_MAIN_VARIANT (t));
4050
4051 if (gimple_types == NULL)
4052 gimple_types = htab_create (16381, gimple_type_hash, gimple_type_eq, 0);
4053
4054 slot = htab_find_slot (gimple_types, t, INSERT);
4055 if (*slot
4056 && *(tree *)slot != t)
4057 {
4058 tree new_type = (tree) *((tree *) slot);
4059
4060 /* Do not merge types with different addressability. */
4061 gcc_assert (TREE_ADDRESSABLE (t) == TREE_ADDRESSABLE (new_type));
4062
4063 /* If t is not its main variant then make t unreachable from its
4064 main variant list. Otherwise we'd queue up a lot of duplicates
4065 there. */
4066 if (t != TYPE_MAIN_VARIANT (t))
4067 {
4068 tree tem = TYPE_MAIN_VARIANT (t);
4069 while (tem && TYPE_NEXT_VARIANT (tem) != t)
4070 tem = TYPE_NEXT_VARIANT (tem);
4071 if (tem)
4072 TYPE_NEXT_VARIANT (tem) = TYPE_NEXT_VARIANT (t);
4073 TYPE_NEXT_VARIANT (t) = NULL_TREE;
4074 }
4075
4076 /* If we are a pointer then remove us from the pointer-to or
4077 reference-to chain. Otherwise we'd queue up a lot of duplicates
4078 there. */
4079 if (TREE_CODE (t) == POINTER_TYPE)
4080 {
4081 if (TYPE_POINTER_TO (TREE_TYPE (t)) == t)
4082 TYPE_POINTER_TO (TREE_TYPE (t)) = TYPE_NEXT_PTR_TO (t);
4083 else
4084 {
4085 tree tem = TYPE_POINTER_TO (TREE_TYPE (t));
4086 while (tem && TYPE_NEXT_PTR_TO (tem) != t)
4087 tem = TYPE_NEXT_PTR_TO (tem);
4088 if (tem)
4089 TYPE_NEXT_PTR_TO (tem) = TYPE_NEXT_PTR_TO (t);
4090 }
4091 TYPE_NEXT_PTR_TO (t) = NULL_TREE;
4092 }
4093 else if (TREE_CODE (t) == REFERENCE_TYPE)
4094 {
4095 if (TYPE_REFERENCE_TO (TREE_TYPE (t)) == t)
4096 TYPE_REFERENCE_TO (TREE_TYPE (t)) = TYPE_NEXT_REF_TO (t);
4097 else
4098 {
4099 tree tem = TYPE_REFERENCE_TO (TREE_TYPE (t));
4100 while (tem && TYPE_NEXT_REF_TO (tem) != t)
4101 tem = TYPE_NEXT_REF_TO (tem);
4102 if (tem)
4103 TYPE_NEXT_REF_TO (tem) = TYPE_NEXT_REF_TO (t);
4104 }
4105 TYPE_NEXT_REF_TO (t) = NULL_TREE;
4106 }
4107
4108 TYPE_CANONICAL (t) = new_type;
4109 t = new_type;
4110 }
4111 else
4112 {
4113 TYPE_CANONICAL (t) = t;
4114 *slot = (void *) t;
4115 }
4116
4117 return t;
4118 }
4119
4120
4121 /* Show statistics on references to the global type table gimple_types. */
4122
4123 void
4124 print_gimple_types_stats (void)
4125 {
4126 if (gimple_types)
4127 fprintf (stderr, "GIMPLE type table: size %ld, %ld elements, "
4128 "%ld searches, %ld collisions (ratio: %f)\n",
4129 (long) htab_size (gimple_types),
4130 (long) htab_elements (gimple_types),
4131 (long) gimple_types->searches,
4132 (long) gimple_types->collisions,
4133 htab_collisions (gimple_types));
4134 else
4135 fprintf (stderr, "GIMPLE type table is empty\n");
4136 if (gtc_visited)
4137 fprintf (stderr, "GIMPLE type merging comparison table: size %ld, %ld "
4138 "elements, %ld searches, %ld collisions (ratio: %f)\n",
4139 (long) htab_size (gtc_visited),
4140 (long) htab_elements (gtc_visited),
4141 (long) gtc_visited->searches,
4142 (long) gtc_visited->collisions,
4143 htab_collisions (gtc_visited));
4144 else
4145 fprintf (stderr, "GIMPLE type merging comparison table is empty\n");
4146 if (gtc_visited2)
4147 fprintf (stderr, "GIMPLE type comparison table: size %ld, %ld "
4148 "elements, %ld searches, %ld collisions (ratio: %f)\n",
4149 (long) htab_size (gtc_visited2),
4150 (long) htab_elements (gtc_visited2),
4151 (long) gtc_visited2->searches,
4152 (long) gtc_visited2->collisions,
4153 htab_collisions (gtc_visited2));
4154 else
4155 fprintf (stderr, "GIMPLE type comparison table is empty\n");
4156 }
4157
4158 /* Free the gimple type hashtables used for LTO type merging. */
4159
4160 void
4161 free_gimple_type_tables (void)
4162 {
4163 /* Last chance to print stats for the tables. */
4164 if (flag_lto_report)
4165 print_gimple_types_stats ();
4166
4167 if (gimple_types)
4168 {
4169 htab_delete (gimple_types);
4170 gimple_types = NULL;
4171 }
4172 if (type_hash_cache)
4173 {
4174 pointer_map_destroy (type_hash_cache);
4175 type_hash_cache = NULL;
4176 }
4177 if (gtc_visited)
4178 {
4179 htab_delete (gtc_visited);
4180 obstack_free (&gtc_ob, NULL);
4181 gtc_visited = NULL;
4182 }
4183 if (gtc_visited2)
4184 {
4185 htab_delete (gtc_visited2);
4186 obstack_free (&gtc_ob2, NULL);
4187 gtc_visited2 = NULL;
4188 }
4189 }
4190
4191
4192 /* Return a type the same as TYPE except unsigned or
4193 signed according to UNSIGNEDP. */
4194
4195 static tree
4196 gimple_signed_or_unsigned_type (bool unsignedp, tree type)
4197 {
4198 tree type1;
4199
4200 type1 = TYPE_MAIN_VARIANT (type);
4201 if (type1 == signed_char_type_node
4202 || type1 == char_type_node
4203 || type1 == unsigned_char_type_node)
4204 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
4205 if (type1 == integer_type_node || type1 == unsigned_type_node)
4206 return unsignedp ? unsigned_type_node : integer_type_node;
4207 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
4208 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
4209 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
4210 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
4211 if (type1 == long_long_integer_type_node
4212 || type1 == long_long_unsigned_type_node)
4213 return unsignedp
4214 ? long_long_unsigned_type_node
4215 : long_long_integer_type_node;
4216 if (int128_integer_type_node && (type1 == int128_integer_type_node || type1 == int128_unsigned_type_node))
4217 return unsignedp
4218 ? int128_unsigned_type_node
4219 : int128_integer_type_node;
4220 #if HOST_BITS_PER_WIDE_INT >= 64
4221 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
4222 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
4223 #endif
4224 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
4225 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
4226 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
4227 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
4228 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
4229 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
4230 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
4231 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
4232
4233 #define GIMPLE_FIXED_TYPES(NAME) \
4234 if (type1 == short_ ## NAME ## _type_node \
4235 || type1 == unsigned_short_ ## NAME ## _type_node) \
4236 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
4237 : short_ ## NAME ## _type_node; \
4238 if (type1 == NAME ## _type_node \
4239 || type1 == unsigned_ ## NAME ## _type_node) \
4240 return unsignedp ? unsigned_ ## NAME ## _type_node \
4241 : NAME ## _type_node; \
4242 if (type1 == long_ ## NAME ## _type_node \
4243 || type1 == unsigned_long_ ## NAME ## _type_node) \
4244 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
4245 : long_ ## NAME ## _type_node; \
4246 if (type1 == long_long_ ## NAME ## _type_node \
4247 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
4248 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
4249 : long_long_ ## NAME ## _type_node;
4250
4251 #define GIMPLE_FIXED_MODE_TYPES(NAME) \
4252 if (type1 == NAME ## _type_node \
4253 || type1 == u ## NAME ## _type_node) \
4254 return unsignedp ? u ## NAME ## _type_node \
4255 : NAME ## _type_node;
4256
4257 #define GIMPLE_FIXED_TYPES_SAT(NAME) \
4258 if (type1 == sat_ ## short_ ## NAME ## _type_node \
4259 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
4260 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
4261 : sat_ ## short_ ## NAME ## _type_node; \
4262 if (type1 == sat_ ## NAME ## _type_node \
4263 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
4264 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
4265 : sat_ ## NAME ## _type_node; \
4266 if (type1 == sat_ ## long_ ## NAME ## _type_node \
4267 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
4268 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
4269 : sat_ ## long_ ## NAME ## _type_node; \
4270 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
4271 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
4272 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
4273 : sat_ ## long_long_ ## NAME ## _type_node;
4274
4275 #define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
4276 if (type1 == sat_ ## NAME ## _type_node \
4277 || type1 == sat_ ## u ## NAME ## _type_node) \
4278 return unsignedp ? sat_ ## u ## NAME ## _type_node \
4279 : sat_ ## NAME ## _type_node;
4280
4281 GIMPLE_FIXED_TYPES (fract);
4282 GIMPLE_FIXED_TYPES_SAT (fract);
4283 GIMPLE_FIXED_TYPES (accum);
4284 GIMPLE_FIXED_TYPES_SAT (accum);
4285
4286 GIMPLE_FIXED_MODE_TYPES (qq);
4287 GIMPLE_FIXED_MODE_TYPES (hq);
4288 GIMPLE_FIXED_MODE_TYPES (sq);
4289 GIMPLE_FIXED_MODE_TYPES (dq);
4290 GIMPLE_FIXED_MODE_TYPES (tq);
4291 GIMPLE_FIXED_MODE_TYPES_SAT (qq);
4292 GIMPLE_FIXED_MODE_TYPES_SAT (hq);
4293 GIMPLE_FIXED_MODE_TYPES_SAT (sq);
4294 GIMPLE_FIXED_MODE_TYPES_SAT (dq);
4295 GIMPLE_FIXED_MODE_TYPES_SAT (tq);
4296 GIMPLE_FIXED_MODE_TYPES (ha);
4297 GIMPLE_FIXED_MODE_TYPES (sa);
4298 GIMPLE_FIXED_MODE_TYPES (da);
4299 GIMPLE_FIXED_MODE_TYPES (ta);
4300 GIMPLE_FIXED_MODE_TYPES_SAT (ha);
4301 GIMPLE_FIXED_MODE_TYPES_SAT (sa);
4302 GIMPLE_FIXED_MODE_TYPES_SAT (da);
4303 GIMPLE_FIXED_MODE_TYPES_SAT (ta);
4304
4305 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
4306 the precision; they have precision set to match their range, but
4307 may use a wider mode to match an ABI. If we change modes, we may
4308 wind up with bad conversions. For INTEGER_TYPEs in C, must check
4309 the precision as well, so as to yield correct results for
4310 bit-field types. C++ does not have these separate bit-field
4311 types, and producing a signed or unsigned variant of an
4312 ENUMERAL_TYPE may cause other problems as well. */
4313 if (!INTEGRAL_TYPE_P (type)
4314 || TYPE_UNSIGNED (type) == unsignedp)
4315 return type;
4316
4317 #define TYPE_OK(node) \
4318 (TYPE_MODE (type) == TYPE_MODE (node) \
4319 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
4320 if (TYPE_OK (signed_char_type_node))
4321 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
4322 if (TYPE_OK (integer_type_node))
4323 return unsignedp ? unsigned_type_node : integer_type_node;
4324 if (TYPE_OK (short_integer_type_node))
4325 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
4326 if (TYPE_OK (long_integer_type_node))
4327 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
4328 if (TYPE_OK (long_long_integer_type_node))
4329 return (unsignedp
4330 ? long_long_unsigned_type_node
4331 : long_long_integer_type_node);
4332 if (int128_integer_type_node && TYPE_OK (int128_integer_type_node))
4333 return (unsignedp
4334 ? int128_unsigned_type_node
4335 : int128_integer_type_node);
4336
4337 #if HOST_BITS_PER_WIDE_INT >= 64
4338 if (TYPE_OK (intTI_type_node))
4339 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
4340 #endif
4341 if (TYPE_OK (intDI_type_node))
4342 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
4343 if (TYPE_OK (intSI_type_node))
4344 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
4345 if (TYPE_OK (intHI_type_node))
4346 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
4347 if (TYPE_OK (intQI_type_node))
4348 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
4349
4350 #undef GIMPLE_FIXED_TYPES
4351 #undef GIMPLE_FIXED_MODE_TYPES
4352 #undef GIMPLE_FIXED_TYPES_SAT
4353 #undef GIMPLE_FIXED_MODE_TYPES_SAT
4354 #undef TYPE_OK
4355
4356 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
4357 }
4358
4359
4360 /* Return an unsigned type the same as TYPE in other respects. */
4361
4362 tree
4363 gimple_unsigned_type (tree type)
4364 {
4365 return gimple_signed_or_unsigned_type (true, type);
4366 }
4367
4368
4369 /* Return a signed type the same as TYPE in other respects. */
4370
4371 tree
4372 gimple_signed_type (tree type)
4373 {
4374 return gimple_signed_or_unsigned_type (false, type);
4375 }
4376
4377
4378 /* Return the typed-based alias set for T, which may be an expression
4379 or a type. Return -1 if we don't do anything special. */
4380
4381 alias_set_type
4382 gimple_get_alias_set (tree t)
4383 {
4384 tree u;
4385
4386 /* Permit type-punning when accessing a union, provided the access
4387 is directly through the union. For example, this code does not
4388 permit taking the address of a union member and then storing
4389 through it. Even the type-punning allowed here is a GCC
4390 extension, albeit a common and useful one; the C standard says
4391 that such accesses have implementation-defined behavior. */
4392 for (u = t;
4393 TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
4394 u = TREE_OPERAND (u, 0))
4395 if (TREE_CODE (u) == COMPONENT_REF
4396 && TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
4397 return 0;
4398
4399 /* That's all the expressions we handle specially. */
4400 if (!TYPE_P (t))
4401 return -1;
4402
4403 /* For convenience, follow the C standard when dealing with
4404 character types. Any object may be accessed via an lvalue that
4405 has character type. */
4406 if (t == char_type_node
4407 || t == signed_char_type_node
4408 || t == unsigned_char_type_node)
4409 return 0;
4410
4411 /* Allow aliasing between signed and unsigned variants of the same
4412 type. We treat the signed variant as canonical. */
4413 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
4414 {
4415 tree t1 = gimple_signed_type (t);
4416
4417 /* t1 == t can happen for boolean nodes which are always unsigned. */
4418 if (t1 != t)
4419 return get_alias_set (t1);
4420 }
4421 else if (POINTER_TYPE_P (t))
4422 {
4423 /* From the common C and C++ langhook implementation:
4424
4425 Unfortunately, there is no canonical form of a pointer type.
4426 In particular, if we have `typedef int I', then `int *', and
4427 `I *' are different types. So, we have to pick a canonical
4428 representative. We do this below.
4429
4430 Technically, this approach is actually more conservative that
4431 it needs to be. In particular, `const int *' and `int *'
4432 should be in different alias sets, according to the C and C++
4433 standard, since their types are not the same, and so,
4434 technically, an `int **' and `const int **' cannot point at
4435 the same thing.
4436
4437 But, the standard is wrong. In particular, this code is
4438 legal C++:
4439
4440 int *ip;
4441 int **ipp = &ip;
4442 const int* const* cipp = ipp;
4443 And, it doesn't make sense for that to be legal unless you
4444 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
4445 the pointed-to types. This issue has been reported to the
4446 C++ committee. */
4447
4448 /* In addition to the above canonicalization issue with LTO
4449 we should also canonicalize `T (*)[]' to `T *' avoiding
4450 alias issues with pointer-to element types and pointer-to
4451 array types.
4452
4453 Likewise we need to deal with the situation of incomplete
4454 pointed-to types and make `*(struct X **)&a' and
4455 `*(struct X {} **)&a' alias. Otherwise we will have to
4456 guarantee that all pointer-to incomplete type variants
4457 will be replaced by pointer-to complete type variants if
4458 they are available.
4459
4460 With LTO the convenient situation of using `void *' to
4461 access and store any pointer type will also become
4462 more apparent (and `void *' is just another pointer-to
4463 incomplete type). Assigning alias-set zero to `void *'
4464 and all pointer-to incomplete types is a not appealing
4465 solution. Assigning an effective alias-set zero only
4466 affecting pointers might be - by recording proper subset
4467 relationships of all pointer alias-sets.
4468
4469 Pointer-to function types are another grey area which
4470 needs caution. Globbing them all into one alias-set
4471 or the above effective zero set would work. */
4472
4473 /* For now just assign the same alias-set to all pointers.
4474 That's simple and avoids all the above problems. */
4475 if (t != ptr_type_node)
4476 return get_alias_set (ptr_type_node);
4477 }
4478
4479 return -1;
4480 }
4481
4482
4483 /* Data structure used to count the number of dereferences to PTR
4484 inside an expression. */
4485 struct count_ptr_d
4486 {
4487 tree ptr;
4488 unsigned num_stores;
4489 unsigned num_loads;
4490 };
4491
4492 /* Helper for count_uses_and_derefs. Called by walk_tree to look for
4493 (ALIGN/MISALIGNED_)INDIRECT_REF nodes for the pointer passed in DATA. */
4494
4495 static tree
4496 count_ptr_derefs (tree *tp, int *walk_subtrees, void *data)
4497 {
4498 struct walk_stmt_info *wi_p = (struct walk_stmt_info *) data;
4499 struct count_ptr_d *count_p = (struct count_ptr_d *) wi_p->info;
4500
4501 /* Do not walk inside ADDR_EXPR nodes. In the expression &ptr->fld,
4502 pointer 'ptr' is *not* dereferenced, it is simply used to compute
4503 the address of 'fld' as 'ptr + offsetof(fld)'. */
4504 if (TREE_CODE (*tp) == ADDR_EXPR)
4505 {
4506 *walk_subtrees = 0;
4507 return NULL_TREE;
4508 }
4509
4510 if (TREE_CODE (*tp) == MEM_REF && TREE_OPERAND (*tp, 0) == count_p->ptr)
4511 {
4512 if (wi_p->is_lhs)
4513 count_p->num_stores++;
4514 else
4515 count_p->num_loads++;
4516 }
4517
4518 return NULL_TREE;
4519 }
4520
4521 /* Count the number of direct and indirect uses for pointer PTR in
4522 statement STMT. The number of direct uses is stored in
4523 *NUM_USES_P. Indirect references are counted separately depending
4524 on whether they are store or load operations. The counts are
4525 stored in *NUM_STORES_P and *NUM_LOADS_P. */
4526
4527 void
4528 count_uses_and_derefs (tree ptr, gimple stmt, unsigned *num_uses_p,
4529 unsigned *num_loads_p, unsigned *num_stores_p)
4530 {
4531 ssa_op_iter i;
4532 tree use;
4533
4534 *num_uses_p = 0;
4535 *num_loads_p = 0;
4536 *num_stores_p = 0;
4537
4538 /* Find out the total number of uses of PTR in STMT. */
4539 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
4540 if (use == ptr)
4541 (*num_uses_p)++;
4542
4543 /* Now count the number of indirect references to PTR. This is
4544 truly awful, but we don't have much choice. There are no parent
4545 pointers inside INDIRECT_REFs, so an expression like
4546 '*x_1 = foo (x_1, *x_1)' needs to be traversed piece by piece to
4547 find all the indirect and direct uses of x_1 inside. The only
4548 shortcut we can take is the fact that GIMPLE only allows
4549 INDIRECT_REFs inside the expressions below. */
4550 if (is_gimple_assign (stmt)
4551 || gimple_code (stmt) == GIMPLE_RETURN
4552 || gimple_code (stmt) == GIMPLE_ASM
4553 || is_gimple_call (stmt))
4554 {
4555 struct walk_stmt_info wi;
4556 struct count_ptr_d count;
4557
4558 count.ptr = ptr;
4559 count.num_stores = 0;
4560 count.num_loads = 0;
4561
4562 memset (&wi, 0, sizeof (wi));
4563 wi.info = &count;
4564 walk_gimple_op (stmt, count_ptr_derefs, &wi);
4565
4566 *num_stores_p = count.num_stores;
4567 *num_loads_p = count.num_loads;
4568 }
4569
4570 gcc_assert (*num_uses_p >= *num_loads_p + *num_stores_p);
4571 }
4572
4573 /* From a tree operand OP return the base of a load or store operation
4574 or NULL_TREE if OP is not a load or a store. */
4575
4576 static tree
4577 get_base_loadstore (tree op)
4578 {
4579 while (handled_component_p (op))
4580 op = TREE_OPERAND (op, 0);
4581 if (DECL_P (op)
4582 || INDIRECT_REF_P (op)
4583 || TREE_CODE (op) == MEM_REF
4584 || TREE_CODE (op) == TARGET_MEM_REF)
4585 return op;
4586 return NULL_TREE;
4587 }
4588
4589 /* For the statement STMT call the callbacks VISIT_LOAD, VISIT_STORE and
4590 VISIT_ADDR if non-NULL on loads, store and address-taken operands
4591 passing the STMT, the base of the operand and DATA to it. The base
4592 will be either a decl, an indirect reference (including TARGET_MEM_REF)
4593 or the argument of an address expression.
4594 Returns the results of these callbacks or'ed. */
4595
4596 bool
4597 walk_stmt_load_store_addr_ops (gimple stmt, void *data,
4598 bool (*visit_load)(gimple, tree, void *),
4599 bool (*visit_store)(gimple, tree, void *),
4600 bool (*visit_addr)(gimple, tree, void *))
4601 {
4602 bool ret = false;
4603 unsigned i;
4604 if (gimple_assign_single_p (stmt))
4605 {
4606 tree lhs, rhs;
4607 if (visit_store)
4608 {
4609 lhs = get_base_loadstore (gimple_assign_lhs (stmt));
4610 if (lhs)
4611 ret |= visit_store (stmt, lhs, data);
4612 }
4613 rhs = gimple_assign_rhs1 (stmt);
4614 while (handled_component_p (rhs))
4615 rhs = TREE_OPERAND (rhs, 0);
4616 if (visit_addr)
4617 {
4618 if (TREE_CODE (rhs) == ADDR_EXPR)
4619 ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data);
4620 else if (TREE_CODE (rhs) == TARGET_MEM_REF
4621 && TMR_BASE (rhs) != NULL_TREE
4622 && TREE_CODE (TMR_BASE (rhs)) == ADDR_EXPR)
4623 ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (rhs), 0), data);
4624 else if (TREE_CODE (rhs) == OBJ_TYPE_REF
4625 && TREE_CODE (OBJ_TYPE_REF_OBJECT (rhs)) == ADDR_EXPR)
4626 ret |= visit_addr (stmt, TREE_OPERAND (OBJ_TYPE_REF_OBJECT (rhs),
4627 0), data);
4628 lhs = gimple_assign_lhs (stmt);
4629 if (TREE_CODE (lhs) == TARGET_MEM_REF
4630 && TMR_BASE (lhs) != NULL_TREE
4631 && TREE_CODE (TMR_BASE (lhs)) == ADDR_EXPR)
4632 ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (lhs), 0), data);
4633 }
4634 if (visit_load)
4635 {
4636 rhs = get_base_loadstore (rhs);
4637 if (rhs)
4638 ret |= visit_load (stmt, rhs, data);
4639 }
4640 }
4641 else if (visit_addr
4642 && (is_gimple_assign (stmt)
4643 || gimple_code (stmt) == GIMPLE_COND))
4644 {
4645 for (i = 0; i < gimple_num_ops (stmt); ++i)
4646 if (gimple_op (stmt, i)
4647 && TREE_CODE (gimple_op (stmt, i)) == ADDR_EXPR)
4648 ret |= visit_addr (stmt, TREE_OPERAND (gimple_op (stmt, i), 0), data);
4649 }
4650 else if (is_gimple_call (stmt))
4651 {
4652 if (visit_store)
4653 {
4654 tree lhs = gimple_call_lhs (stmt);
4655 if (lhs)
4656 {
4657 lhs = get_base_loadstore (lhs);
4658 if (lhs)
4659 ret |= visit_store (stmt, lhs, data);
4660 }
4661 }
4662 if (visit_load || visit_addr)
4663 for (i = 0; i < gimple_call_num_args (stmt); ++i)
4664 {
4665 tree rhs = gimple_call_arg (stmt, i);
4666 if (visit_addr
4667 && TREE_CODE (rhs) == ADDR_EXPR)
4668 ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data);
4669 else if (visit_load)
4670 {
4671 rhs = get_base_loadstore (rhs);
4672 if (rhs)
4673 ret |= visit_load (stmt, rhs, data);
4674 }
4675 }
4676 if (visit_addr
4677 && gimple_call_chain (stmt)
4678 && TREE_CODE (gimple_call_chain (stmt)) == ADDR_EXPR)
4679 ret |= visit_addr (stmt, TREE_OPERAND (gimple_call_chain (stmt), 0),
4680 data);
4681 if (visit_addr
4682 && gimple_call_return_slot_opt_p (stmt)
4683 && gimple_call_lhs (stmt) != NULL_TREE
4684 && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt))))
4685 ret |= visit_addr (stmt, gimple_call_lhs (stmt), data);
4686 }
4687 else if (gimple_code (stmt) == GIMPLE_ASM)
4688 {
4689 unsigned noutputs;
4690 const char *constraint;
4691 const char **oconstraints;
4692 bool allows_mem, allows_reg, is_inout;
4693 noutputs = gimple_asm_noutputs (stmt);
4694 oconstraints = XALLOCAVEC (const char *, noutputs);
4695 if (visit_store || visit_addr)
4696 for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
4697 {
4698 tree link = gimple_asm_output_op (stmt, i);
4699 tree op = get_base_loadstore (TREE_VALUE (link));
4700 if (op && visit_store)
4701 ret |= visit_store (stmt, op, data);
4702 if (visit_addr)
4703 {
4704 constraint = TREE_STRING_POINTER
4705 (TREE_VALUE (TREE_PURPOSE (link)));
4706 oconstraints[i] = constraint;
4707 parse_output_constraint (&constraint, i, 0, 0, &allows_mem,
4708 &allows_reg, &is_inout);
4709 if (op && !allows_reg && allows_mem)
4710 ret |= visit_addr (stmt, op, data);
4711 }
4712 }
4713 if (visit_load || visit_addr)
4714 for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
4715 {
4716 tree link = gimple_asm_input_op (stmt, i);
4717 tree op = TREE_VALUE (link);
4718 if (visit_addr
4719 && TREE_CODE (op) == ADDR_EXPR)
4720 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
4721 else if (visit_load || visit_addr)
4722 {
4723 op = get_base_loadstore (op);
4724 if (op)
4725 {
4726 if (visit_load)
4727 ret |= visit_load (stmt, op, data);
4728 if (visit_addr)
4729 {
4730 constraint = TREE_STRING_POINTER
4731 (TREE_VALUE (TREE_PURPOSE (link)));
4732 parse_input_constraint (&constraint, 0, 0, noutputs,
4733 0, oconstraints,
4734 &allows_mem, &allows_reg);
4735 if (!allows_reg && allows_mem)
4736 ret |= visit_addr (stmt, op, data);
4737 }
4738 }
4739 }
4740 }
4741 }
4742 else if (gimple_code (stmt) == GIMPLE_RETURN)
4743 {
4744 tree op = gimple_return_retval (stmt);
4745 if (op)
4746 {
4747 if (visit_addr
4748 && TREE_CODE (op) == ADDR_EXPR)
4749 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
4750 else if (visit_load)
4751 {
4752 op = get_base_loadstore (op);
4753 if (op)
4754 ret |= visit_load (stmt, op, data);
4755 }
4756 }
4757 }
4758 else if (visit_addr
4759 && gimple_code (stmt) == GIMPLE_PHI)
4760 {
4761 for (i = 0; i < gimple_phi_num_args (stmt); ++i)
4762 {
4763 tree op = PHI_ARG_DEF (stmt, i);
4764 if (TREE_CODE (op) == ADDR_EXPR)
4765 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
4766 }
4767 }
4768
4769 return ret;
4770 }
4771
4772 /* Like walk_stmt_load_store_addr_ops but with NULL visit_addr. IPA-CP
4773 should make a faster clone for this case. */
4774
4775 bool
4776 walk_stmt_load_store_ops (gimple stmt, void *data,
4777 bool (*visit_load)(gimple, tree, void *),
4778 bool (*visit_store)(gimple, tree, void *))
4779 {
4780 return walk_stmt_load_store_addr_ops (stmt, data,
4781 visit_load, visit_store, NULL);
4782 }
4783
4784 /* Helper for gimple_ior_addresses_taken_1. */
4785
4786 static bool
4787 gimple_ior_addresses_taken_1 (gimple stmt ATTRIBUTE_UNUSED,
4788 tree addr, void *data)
4789 {
4790 bitmap addresses_taken = (bitmap)data;
4791 addr = get_base_address (addr);
4792 if (addr
4793 && DECL_P (addr))
4794 {
4795 bitmap_set_bit (addresses_taken, DECL_UID (addr));
4796 return true;
4797 }
4798 return false;
4799 }
4800
4801 /* Set the bit for the uid of all decls that have their address taken
4802 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
4803 were any in this stmt. */
4804
4805 bool
4806 gimple_ior_addresses_taken (bitmap addresses_taken, gimple stmt)
4807 {
4808 return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
4809 gimple_ior_addresses_taken_1);
4810 }
4811
4812
4813 /* Return a printable name for symbol DECL. */
4814
4815 const char *
4816 gimple_decl_printable_name (tree decl, int verbosity)
4817 {
4818 if (!DECL_NAME (decl))
4819 return NULL;
4820
4821 if (DECL_ASSEMBLER_NAME_SET_P (decl))
4822 {
4823 const char *str, *mangled_str;
4824 int dmgl_opts = DMGL_NO_OPTS;
4825
4826 if (verbosity >= 2)
4827 {
4828 dmgl_opts = DMGL_VERBOSE
4829 | DMGL_ANSI
4830 | DMGL_GNU_V3
4831 | DMGL_RET_POSTFIX;
4832 if (TREE_CODE (decl) == FUNCTION_DECL)
4833 dmgl_opts |= DMGL_PARAMS;
4834 }
4835
4836 mangled_str = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
4837 str = cplus_demangle_v3 (mangled_str, dmgl_opts);
4838 return (str) ? str : mangled_str;
4839 }
4840
4841 return IDENTIFIER_POINTER (DECL_NAME (decl));
4842 }
4843
4844 /* Return true when STMT is builtins call to CODE. */
4845
4846 bool
4847 gimple_call_builtin_p (gimple stmt, enum built_in_function code)
4848 {
4849 tree fndecl;
4850 return (is_gimple_call (stmt)
4851 && (fndecl = gimple_call_fndecl (stmt)) != NULL
4852 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
4853 && DECL_FUNCTION_CODE (fndecl) == code);
4854 }
4855
4856 #include "gt-gimple.h"