gimple.c (gimple_assign_copy_p): Use gimple_assign_single_p.
[gcc.git] / gcc / gimple.c
1 /* Gimple IR support functions.
2
3 Copyright 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "target.h"
27 #include "tree.h"
28 #include "ggc.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "gimple.h"
32 #include "toplev.h"
33 #include "diagnostic.h"
34 #include "tree-flow.h"
35 #include "value-prof.h"
36 #include "flags.h"
37 #include "alias.h"
38 #include "demangle.h"
39 #include "langhooks.h"
40
41 /* Global type table. FIXME lto, it should be possible to re-use some
42 of the type hashing routines in tree.c (type_hash_canon, type_hash_lookup,
43 etc), but those assume that types were built with the various
44 build_*_type routines which is not the case with the streamer. */
45 static GTY((if_marked ("ggc_marked_p"), param_is (union tree_node)))
46 htab_t gimple_types;
47 static GTY((if_marked ("ggc_marked_p"), param_is (union tree_node)))
48 htab_t gimple_canonical_types;
49 static GTY((if_marked ("tree_int_map_marked_p"), param_is (struct tree_int_map)))
50 htab_t type_hash_cache;
51
52 /* Global type comparison cache. This is by TYPE_UID for space efficiency
53 and thus cannot use and does not need GC. */
54 static htab_t gtc_visited;
55 static struct obstack gtc_ob;
56
57 /* All the tuples have their operand vector (if present) at the very bottom
58 of the structure. Therefore, the offset required to find the
59 operands vector the size of the structure minus the size of the 1
60 element tree array at the end (see gimple_ops). */
61 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
62 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
63 EXPORTED_CONST size_t gimple_ops_offset_[] = {
64 #include "gsstruct.def"
65 };
66 #undef DEFGSSTRUCT
67
68 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof(struct STRUCT),
69 static const size_t gsstruct_code_size[] = {
70 #include "gsstruct.def"
71 };
72 #undef DEFGSSTRUCT
73
74 #define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
75 const char *const gimple_code_name[] = {
76 #include "gimple.def"
77 };
78 #undef DEFGSCODE
79
80 #define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
81 EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
82 #include "gimple.def"
83 };
84 #undef DEFGSCODE
85
86 #ifdef GATHER_STATISTICS
87 /* Gimple stats. */
88
89 int gimple_alloc_counts[(int) gimple_alloc_kind_all];
90 int gimple_alloc_sizes[(int) gimple_alloc_kind_all];
91
92 /* Keep in sync with gimple.h:enum gimple_alloc_kind. */
93 static const char * const gimple_alloc_kind_names[] = {
94 "assignments",
95 "phi nodes",
96 "conditionals",
97 "sequences",
98 "everything else"
99 };
100
101 #endif /* GATHER_STATISTICS */
102
103 /* A cache of gimple_seq objects. Sequences are created and destroyed
104 fairly often during gimplification. */
105 static GTY ((deletable)) struct gimple_seq_d *gimple_seq_cache;
106
107 /* Private API manipulation functions shared only with some
108 other files. */
109 extern void gimple_set_stored_syms (gimple, bitmap, bitmap_obstack *);
110 extern void gimple_set_loaded_syms (gimple, bitmap, bitmap_obstack *);
111
112 /* Gimple tuple constructors.
113 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
114 be passed a NULL to start with an empty sequence. */
115
116 /* Set the code for statement G to CODE. */
117
118 static inline void
119 gimple_set_code (gimple g, enum gimple_code code)
120 {
121 g->gsbase.code = code;
122 }
123
124 /* Return the number of bytes needed to hold a GIMPLE statement with
125 code CODE. */
126
127 static inline size_t
128 gimple_size (enum gimple_code code)
129 {
130 return gsstruct_code_size[gss_for_code (code)];
131 }
132
133 /* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
134 operands. */
135
136 gimple
137 gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
138 {
139 size_t size;
140 gimple stmt;
141
142 size = gimple_size (code);
143 if (num_ops > 0)
144 size += sizeof (tree) * (num_ops - 1);
145
146 #ifdef GATHER_STATISTICS
147 {
148 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
149 gimple_alloc_counts[(int) kind]++;
150 gimple_alloc_sizes[(int) kind] += size;
151 }
152 #endif
153
154 stmt = ggc_alloc_cleared_gimple_statement_d_stat (size PASS_MEM_STAT);
155 gimple_set_code (stmt, code);
156 gimple_set_num_ops (stmt, num_ops);
157
158 /* Do not call gimple_set_modified here as it has other side
159 effects and this tuple is still not completely built. */
160 stmt->gsbase.modified = 1;
161
162 return stmt;
163 }
164
165 /* Set SUBCODE to be the code of the expression computed by statement G. */
166
167 static inline void
168 gimple_set_subcode (gimple g, unsigned subcode)
169 {
170 /* We only have 16 bits for the RHS code. Assert that we are not
171 overflowing it. */
172 gcc_assert (subcode < (1 << 16));
173 g->gsbase.subcode = subcode;
174 }
175
176
177
178 /* Build a tuple with operands. CODE is the statement to build (which
179 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the sub-code
180 for the new tuple. NUM_OPS is the number of operands to allocate. */
181
182 #define gimple_build_with_ops(c, s, n) \
183 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
184
185 static gimple
186 gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
187 unsigned num_ops MEM_STAT_DECL)
188 {
189 gimple s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT);
190 gimple_set_subcode (s, subcode);
191
192 return s;
193 }
194
195
196 /* Build a GIMPLE_RETURN statement returning RETVAL. */
197
198 gimple
199 gimple_build_return (tree retval)
200 {
201 gimple s = gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK, 1);
202 if (retval)
203 gimple_return_set_retval (s, retval);
204 return s;
205 }
206
207 /* Reset alias information on call S. */
208
209 void
210 gimple_call_reset_alias_info (gimple s)
211 {
212 if (gimple_call_flags (s) & ECF_CONST)
213 memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
214 else
215 pt_solution_reset (gimple_call_use_set (s));
216 if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
217 memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
218 else
219 pt_solution_reset (gimple_call_clobber_set (s));
220 }
221
222 /* Helper for gimple_build_call, gimple_build_call_vec and
223 gimple_build_call_from_tree. Build the basic components of a
224 GIMPLE_CALL statement to function FN with NARGS arguments. */
225
226 static inline gimple
227 gimple_build_call_1 (tree fn, unsigned nargs)
228 {
229 gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3);
230 if (TREE_CODE (fn) == FUNCTION_DECL)
231 fn = build_fold_addr_expr (fn);
232 gimple_set_op (s, 1, fn);
233 gimple_call_reset_alias_info (s);
234 return s;
235 }
236
237
238 /* Build a GIMPLE_CALL statement to function FN with the arguments
239 specified in vector ARGS. */
240
241 gimple
242 gimple_build_call_vec (tree fn, VEC(tree, heap) *args)
243 {
244 unsigned i;
245 unsigned nargs = VEC_length (tree, args);
246 gimple call = gimple_build_call_1 (fn, nargs);
247
248 for (i = 0; i < nargs; i++)
249 gimple_call_set_arg (call, i, VEC_index (tree, args, i));
250
251 return call;
252 }
253
254
255 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
256 arguments. The ... are the arguments. */
257
258 gimple
259 gimple_build_call (tree fn, unsigned nargs, ...)
260 {
261 va_list ap;
262 gimple call;
263 unsigned i;
264
265 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
266
267 call = gimple_build_call_1 (fn, nargs);
268
269 va_start (ap, nargs);
270 for (i = 0; i < nargs; i++)
271 gimple_call_set_arg (call, i, va_arg (ap, tree));
272 va_end (ap);
273
274 return call;
275 }
276
277
278 /* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
279 assumed to be in GIMPLE form already. Minimal checking is done of
280 this fact. */
281
282 gimple
283 gimple_build_call_from_tree (tree t)
284 {
285 unsigned i, nargs;
286 gimple call;
287 tree fndecl = get_callee_fndecl (t);
288
289 gcc_assert (TREE_CODE (t) == CALL_EXPR);
290
291 nargs = call_expr_nargs (t);
292 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
293
294 for (i = 0; i < nargs; i++)
295 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
296
297 gimple_set_block (call, TREE_BLOCK (t));
298
299 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
300 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
301 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
302 gimple_call_set_cannot_inline (call, CALL_CANNOT_INLINE_P (t));
303 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
304 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
305 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
306 gimple_call_set_nothrow (call, TREE_NOTHROW (t));
307 gimple_set_no_warning (call, TREE_NO_WARNING (t));
308
309 return call;
310 }
311
312
313 /* Extract the operands and code for expression EXPR into *SUBCODE_P,
314 *OP1_P, *OP2_P and *OP3_P respectively. */
315
316 void
317 extract_ops_from_tree_1 (tree expr, enum tree_code *subcode_p, tree *op1_p,
318 tree *op2_p, tree *op3_p)
319 {
320 enum gimple_rhs_class grhs_class;
321
322 *subcode_p = TREE_CODE (expr);
323 grhs_class = get_gimple_rhs_class (*subcode_p);
324
325 if (grhs_class == GIMPLE_TERNARY_RHS)
326 {
327 *op1_p = TREE_OPERAND (expr, 0);
328 *op2_p = TREE_OPERAND (expr, 1);
329 *op3_p = TREE_OPERAND (expr, 2);
330 }
331 else if (grhs_class == GIMPLE_BINARY_RHS)
332 {
333 *op1_p = TREE_OPERAND (expr, 0);
334 *op2_p = TREE_OPERAND (expr, 1);
335 *op3_p = NULL_TREE;
336 }
337 else if (grhs_class == GIMPLE_UNARY_RHS)
338 {
339 *op1_p = TREE_OPERAND (expr, 0);
340 *op2_p = NULL_TREE;
341 *op3_p = NULL_TREE;
342 }
343 else if (grhs_class == GIMPLE_SINGLE_RHS)
344 {
345 *op1_p = expr;
346 *op2_p = NULL_TREE;
347 *op3_p = NULL_TREE;
348 }
349 else
350 gcc_unreachable ();
351 }
352
353
354 /* Build a GIMPLE_ASSIGN statement.
355
356 LHS of the assignment.
357 RHS of the assignment which can be unary or binary. */
358
359 gimple
360 gimple_build_assign_stat (tree lhs, tree rhs MEM_STAT_DECL)
361 {
362 enum tree_code subcode;
363 tree op1, op2, op3;
364
365 extract_ops_from_tree_1 (rhs, &subcode, &op1, &op2, &op3);
366 return gimple_build_assign_with_ops_stat (subcode, lhs, op1, op2, op3
367 PASS_MEM_STAT);
368 }
369
370
371 /* Build a GIMPLE_ASSIGN statement with sub-code SUBCODE and operands
372 OP1 and OP2. If OP2 is NULL then SUBCODE must be of class
373 GIMPLE_UNARY_RHS or GIMPLE_SINGLE_RHS. */
374
375 gimple
376 gimple_build_assign_with_ops_stat (enum tree_code subcode, tree lhs, tree op1,
377 tree op2, tree op3 MEM_STAT_DECL)
378 {
379 unsigned num_ops;
380 gimple p;
381
382 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
383 code). */
384 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
385
386 p = gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
387 PASS_MEM_STAT);
388 gimple_assign_set_lhs (p, lhs);
389 gimple_assign_set_rhs1 (p, op1);
390 if (op2)
391 {
392 gcc_assert (num_ops > 2);
393 gimple_assign_set_rhs2 (p, op2);
394 }
395
396 if (op3)
397 {
398 gcc_assert (num_ops > 3);
399 gimple_assign_set_rhs3 (p, op3);
400 }
401
402 return p;
403 }
404
405
406 /* Build a new GIMPLE_ASSIGN tuple and append it to the end of *SEQ_P.
407
408 DST/SRC are the destination and source respectively. You can pass
409 ungimplified trees in DST or SRC, in which case they will be
410 converted to a gimple operand if necessary.
411
412 This function returns the newly created GIMPLE_ASSIGN tuple. */
413
414 gimple
415 gimplify_assign (tree dst, tree src, gimple_seq *seq_p)
416 {
417 tree t = build2 (MODIFY_EXPR, TREE_TYPE (dst), dst, src);
418 gimplify_and_add (t, seq_p);
419 ggc_free (t);
420 return gimple_seq_last_stmt (*seq_p);
421 }
422
423
424 /* Build a GIMPLE_COND statement.
425
426 PRED is the condition used to compare LHS and the RHS.
427 T_LABEL is the label to jump to if the condition is true.
428 F_LABEL is the label to jump to otherwise. */
429
430 gimple
431 gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
432 tree t_label, tree f_label)
433 {
434 gimple p;
435
436 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
437 p = gimple_build_with_ops (GIMPLE_COND, pred_code, 4);
438 gimple_cond_set_lhs (p, lhs);
439 gimple_cond_set_rhs (p, rhs);
440 gimple_cond_set_true_label (p, t_label);
441 gimple_cond_set_false_label (p, f_label);
442 return p;
443 }
444
445
446 /* Extract operands for a GIMPLE_COND statement out of COND_EXPR tree COND. */
447
448 void
449 gimple_cond_get_ops_from_tree (tree cond, enum tree_code *code_p,
450 tree *lhs_p, tree *rhs_p)
451 {
452 gcc_assert (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison
453 || TREE_CODE (cond) == TRUTH_NOT_EXPR
454 || is_gimple_min_invariant (cond)
455 || SSA_VAR_P (cond));
456
457 extract_ops_from_tree (cond, code_p, lhs_p, rhs_p);
458
459 /* Canonicalize conditionals of the form 'if (!VAL)'. */
460 if (*code_p == TRUTH_NOT_EXPR)
461 {
462 *code_p = EQ_EXPR;
463 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
464 *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
465 }
466 /* Canonicalize conditionals of the form 'if (VAL)' */
467 else if (TREE_CODE_CLASS (*code_p) != tcc_comparison)
468 {
469 *code_p = NE_EXPR;
470 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
471 *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
472 }
473 }
474
475
476 /* Build a GIMPLE_COND statement from the conditional expression tree
477 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
478
479 gimple
480 gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
481 {
482 enum tree_code code;
483 tree lhs, rhs;
484
485 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
486 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
487 }
488
489 /* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
490 boolean expression tree COND. */
491
492 void
493 gimple_cond_set_condition_from_tree (gimple stmt, tree cond)
494 {
495 enum tree_code code;
496 tree lhs, rhs;
497
498 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
499 gimple_cond_set_condition (stmt, code, lhs, rhs);
500 }
501
502 /* Build a GIMPLE_LABEL statement for LABEL. */
503
504 gimple
505 gimple_build_label (tree label)
506 {
507 gimple p = gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1);
508 gimple_label_set_label (p, label);
509 return p;
510 }
511
512 /* Build a GIMPLE_GOTO statement to label DEST. */
513
514 gimple
515 gimple_build_goto (tree dest)
516 {
517 gimple p = gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1);
518 gimple_goto_set_dest (p, dest);
519 return p;
520 }
521
522
523 /* Build a GIMPLE_NOP statement. */
524
525 gimple
526 gimple_build_nop (void)
527 {
528 return gimple_alloc (GIMPLE_NOP, 0);
529 }
530
531
532 /* Build a GIMPLE_BIND statement.
533 VARS are the variables in BODY.
534 BLOCK is the containing block. */
535
536 gimple
537 gimple_build_bind (tree vars, gimple_seq body, tree block)
538 {
539 gimple p = gimple_alloc (GIMPLE_BIND, 0);
540 gimple_bind_set_vars (p, vars);
541 if (body)
542 gimple_bind_set_body (p, body);
543 if (block)
544 gimple_bind_set_block (p, block);
545 return p;
546 }
547
548 /* Helper function to set the simple fields of a asm stmt.
549
550 STRING is a pointer to a string that is the asm blocks assembly code.
551 NINPUT is the number of register inputs.
552 NOUTPUT is the number of register outputs.
553 NCLOBBERS is the number of clobbered registers.
554 */
555
556 static inline gimple
557 gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
558 unsigned nclobbers, unsigned nlabels)
559 {
560 gimple p;
561 int size = strlen (string);
562
563 /* ASMs with labels cannot have outputs. This should have been
564 enforced by the front end. */
565 gcc_assert (nlabels == 0 || noutputs == 0);
566
567 p = gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
568 ninputs + noutputs + nclobbers + nlabels);
569
570 p->gimple_asm.ni = ninputs;
571 p->gimple_asm.no = noutputs;
572 p->gimple_asm.nc = nclobbers;
573 p->gimple_asm.nl = nlabels;
574 p->gimple_asm.string = ggc_alloc_string (string, size);
575
576 #ifdef GATHER_STATISTICS
577 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
578 #endif
579
580 return p;
581 }
582
583 /* Build a GIMPLE_ASM statement.
584
585 STRING is the assembly code.
586 NINPUT is the number of register inputs.
587 NOUTPUT is the number of register outputs.
588 NCLOBBERS is the number of clobbered registers.
589 INPUTS is a vector of the input register parameters.
590 OUTPUTS is a vector of the output register parameters.
591 CLOBBERS is a vector of the clobbered register parameters.
592 LABELS is a vector of destination labels. */
593
594 gimple
595 gimple_build_asm_vec (const char *string, VEC(tree,gc)* inputs,
596 VEC(tree,gc)* outputs, VEC(tree,gc)* clobbers,
597 VEC(tree,gc)* labels)
598 {
599 gimple p;
600 unsigned i;
601
602 p = gimple_build_asm_1 (string,
603 VEC_length (tree, inputs),
604 VEC_length (tree, outputs),
605 VEC_length (tree, clobbers),
606 VEC_length (tree, labels));
607
608 for (i = 0; i < VEC_length (tree, inputs); i++)
609 gimple_asm_set_input_op (p, i, VEC_index (tree, inputs, i));
610
611 for (i = 0; i < VEC_length (tree, outputs); i++)
612 gimple_asm_set_output_op (p, i, VEC_index (tree, outputs, i));
613
614 for (i = 0; i < VEC_length (tree, clobbers); i++)
615 gimple_asm_set_clobber_op (p, i, VEC_index (tree, clobbers, i));
616
617 for (i = 0; i < VEC_length (tree, labels); i++)
618 gimple_asm_set_label_op (p, i, VEC_index (tree, labels, i));
619
620 return p;
621 }
622
623 /* Build a GIMPLE_CATCH statement.
624
625 TYPES are the catch types.
626 HANDLER is the exception handler. */
627
628 gimple
629 gimple_build_catch (tree types, gimple_seq handler)
630 {
631 gimple p = gimple_alloc (GIMPLE_CATCH, 0);
632 gimple_catch_set_types (p, types);
633 if (handler)
634 gimple_catch_set_handler (p, handler);
635
636 return p;
637 }
638
639 /* Build a GIMPLE_EH_FILTER statement.
640
641 TYPES are the filter's types.
642 FAILURE is the filter's failure action. */
643
644 gimple
645 gimple_build_eh_filter (tree types, gimple_seq failure)
646 {
647 gimple p = gimple_alloc (GIMPLE_EH_FILTER, 0);
648 gimple_eh_filter_set_types (p, types);
649 if (failure)
650 gimple_eh_filter_set_failure (p, failure);
651
652 return p;
653 }
654
655 /* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
656
657 gimple
658 gimple_build_eh_must_not_throw (tree decl)
659 {
660 gimple p = gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0);
661
662 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
663 gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
664 gimple_eh_must_not_throw_set_fndecl (p, decl);
665
666 return p;
667 }
668
669 /* Build a GIMPLE_TRY statement.
670
671 EVAL is the expression to evaluate.
672 CLEANUP is the cleanup expression.
673 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
674 whether this is a try/catch or a try/finally respectively. */
675
676 gimple
677 gimple_build_try (gimple_seq eval, gimple_seq cleanup,
678 enum gimple_try_flags kind)
679 {
680 gimple p;
681
682 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
683 p = gimple_alloc (GIMPLE_TRY, 0);
684 gimple_set_subcode (p, kind);
685 if (eval)
686 gimple_try_set_eval (p, eval);
687 if (cleanup)
688 gimple_try_set_cleanup (p, cleanup);
689
690 return p;
691 }
692
693 /* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
694
695 CLEANUP is the cleanup expression. */
696
697 gimple
698 gimple_build_wce (gimple_seq cleanup)
699 {
700 gimple p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
701 if (cleanup)
702 gimple_wce_set_cleanup (p, cleanup);
703
704 return p;
705 }
706
707
708 /* Build a GIMPLE_RESX statement. */
709
710 gimple
711 gimple_build_resx (int region)
712 {
713 gimple p = gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0);
714 p->gimple_eh_ctrl.region = region;
715 return p;
716 }
717
718
719 /* The helper for constructing a gimple switch statement.
720 INDEX is the switch's index.
721 NLABELS is the number of labels in the switch excluding the default.
722 DEFAULT_LABEL is the default label for the switch statement. */
723
724 gimple
725 gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
726 {
727 /* nlabels + 1 default label + 1 index. */
728 gimple p = gimple_build_with_ops (GIMPLE_SWITCH, ERROR_MARK,
729 1 + (default_label != NULL) + nlabels);
730 gimple_switch_set_index (p, index);
731 if (default_label)
732 gimple_switch_set_default_label (p, default_label);
733 return p;
734 }
735
736
737 /* Build a GIMPLE_SWITCH statement.
738
739 INDEX is the switch's index.
740 NLABELS is the number of labels in the switch excluding the DEFAULT_LABEL.
741 ... are the labels excluding the default. */
742
743 gimple
744 gimple_build_switch (unsigned nlabels, tree index, tree default_label, ...)
745 {
746 va_list al;
747 unsigned i, offset;
748 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
749
750 /* Store the rest of the labels. */
751 va_start (al, default_label);
752 offset = (default_label != NULL);
753 for (i = 0; i < nlabels; i++)
754 gimple_switch_set_label (p, i + offset, va_arg (al, tree));
755 va_end (al);
756
757 return p;
758 }
759
760
761 /* Build a GIMPLE_SWITCH statement.
762
763 INDEX is the switch's index.
764 DEFAULT_LABEL is the default label
765 ARGS is a vector of labels excluding the default. */
766
767 gimple
768 gimple_build_switch_vec (tree index, tree default_label, VEC(tree, heap) *args)
769 {
770 unsigned i, offset, nlabels = VEC_length (tree, args);
771 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
772
773 /* Copy the labels from the vector to the switch statement. */
774 offset = (default_label != NULL);
775 for (i = 0; i < nlabels; i++)
776 gimple_switch_set_label (p, i + offset, VEC_index (tree, args, i));
777
778 return p;
779 }
780
781 /* Build a GIMPLE_EH_DISPATCH statement. */
782
783 gimple
784 gimple_build_eh_dispatch (int region)
785 {
786 gimple p = gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0);
787 p->gimple_eh_ctrl.region = region;
788 return p;
789 }
790
791 /* Build a new GIMPLE_DEBUG_BIND statement.
792
793 VAR is bound to VALUE; block and location are taken from STMT. */
794
795 gimple
796 gimple_build_debug_bind_stat (tree var, tree value, gimple stmt MEM_STAT_DECL)
797 {
798 gimple p = gimple_build_with_ops_stat (GIMPLE_DEBUG,
799 (unsigned)GIMPLE_DEBUG_BIND, 2
800 PASS_MEM_STAT);
801
802 gimple_debug_bind_set_var (p, var);
803 gimple_debug_bind_set_value (p, value);
804 if (stmt)
805 {
806 gimple_set_block (p, gimple_block (stmt));
807 gimple_set_location (p, gimple_location (stmt));
808 }
809
810 return p;
811 }
812
813
814 /* Build a GIMPLE_OMP_CRITICAL statement.
815
816 BODY is the sequence of statements for which only one thread can execute.
817 NAME is optional identifier for this critical block. */
818
819 gimple
820 gimple_build_omp_critical (gimple_seq body, tree name)
821 {
822 gimple p = gimple_alloc (GIMPLE_OMP_CRITICAL, 0);
823 gimple_omp_critical_set_name (p, name);
824 if (body)
825 gimple_omp_set_body (p, body);
826
827 return p;
828 }
829
830 /* Build a GIMPLE_OMP_FOR statement.
831
832 BODY is sequence of statements inside the for loop.
833 CLAUSES, are any of the OMP loop construct's clauses: private, firstprivate,
834 lastprivate, reductions, ordered, schedule, and nowait.
835 COLLAPSE is the collapse count.
836 PRE_BODY is the sequence of statements that are loop invariant. */
837
838 gimple
839 gimple_build_omp_for (gimple_seq body, tree clauses, size_t collapse,
840 gimple_seq pre_body)
841 {
842 gimple p = gimple_alloc (GIMPLE_OMP_FOR, 0);
843 if (body)
844 gimple_omp_set_body (p, body);
845 gimple_omp_for_set_clauses (p, clauses);
846 p->gimple_omp_for.collapse = collapse;
847 p->gimple_omp_for.iter
848 = ggc_alloc_cleared_vec_gimple_omp_for_iter (collapse);
849 if (pre_body)
850 gimple_omp_for_set_pre_body (p, pre_body);
851
852 return p;
853 }
854
855
856 /* Build a GIMPLE_OMP_PARALLEL statement.
857
858 BODY is sequence of statements which are executed in parallel.
859 CLAUSES, are the OMP parallel construct's clauses.
860 CHILD_FN is the function created for the parallel threads to execute.
861 DATA_ARG are the shared data argument(s). */
862
863 gimple
864 gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
865 tree data_arg)
866 {
867 gimple p = gimple_alloc (GIMPLE_OMP_PARALLEL, 0);
868 if (body)
869 gimple_omp_set_body (p, body);
870 gimple_omp_parallel_set_clauses (p, clauses);
871 gimple_omp_parallel_set_child_fn (p, child_fn);
872 gimple_omp_parallel_set_data_arg (p, data_arg);
873
874 return p;
875 }
876
877
878 /* Build a GIMPLE_OMP_TASK statement.
879
880 BODY is sequence of statements which are executed by the explicit task.
881 CLAUSES, are the OMP parallel construct's clauses.
882 CHILD_FN is the function created for the parallel threads to execute.
883 DATA_ARG are the shared data argument(s).
884 COPY_FN is the optional function for firstprivate initialization.
885 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
886
887 gimple
888 gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
889 tree data_arg, tree copy_fn, tree arg_size,
890 tree arg_align)
891 {
892 gimple p = gimple_alloc (GIMPLE_OMP_TASK, 0);
893 if (body)
894 gimple_omp_set_body (p, body);
895 gimple_omp_task_set_clauses (p, clauses);
896 gimple_omp_task_set_child_fn (p, child_fn);
897 gimple_omp_task_set_data_arg (p, data_arg);
898 gimple_omp_task_set_copy_fn (p, copy_fn);
899 gimple_omp_task_set_arg_size (p, arg_size);
900 gimple_omp_task_set_arg_align (p, arg_align);
901
902 return p;
903 }
904
905
906 /* Build a GIMPLE_OMP_SECTION statement for a sections statement.
907
908 BODY is the sequence of statements in the section. */
909
910 gimple
911 gimple_build_omp_section (gimple_seq body)
912 {
913 gimple p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
914 if (body)
915 gimple_omp_set_body (p, body);
916
917 return p;
918 }
919
920
921 /* Build a GIMPLE_OMP_MASTER statement.
922
923 BODY is the sequence of statements to be executed by just the master. */
924
925 gimple
926 gimple_build_omp_master (gimple_seq body)
927 {
928 gimple p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
929 if (body)
930 gimple_omp_set_body (p, body);
931
932 return p;
933 }
934
935
936 /* Build a GIMPLE_OMP_CONTINUE statement.
937
938 CONTROL_DEF is the definition of the control variable.
939 CONTROL_USE is the use of the control variable. */
940
941 gimple
942 gimple_build_omp_continue (tree control_def, tree control_use)
943 {
944 gimple p = gimple_alloc (GIMPLE_OMP_CONTINUE, 0);
945 gimple_omp_continue_set_control_def (p, control_def);
946 gimple_omp_continue_set_control_use (p, control_use);
947 return p;
948 }
949
950 /* Build a GIMPLE_OMP_ORDERED statement.
951
952 BODY is the sequence of statements inside a loop that will executed in
953 sequence. */
954
955 gimple
956 gimple_build_omp_ordered (gimple_seq body)
957 {
958 gimple p = gimple_alloc (GIMPLE_OMP_ORDERED, 0);
959 if (body)
960 gimple_omp_set_body (p, body);
961
962 return p;
963 }
964
965
966 /* Build a GIMPLE_OMP_RETURN statement.
967 WAIT_P is true if this is a non-waiting return. */
968
969 gimple
970 gimple_build_omp_return (bool wait_p)
971 {
972 gimple p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
973 if (wait_p)
974 gimple_omp_return_set_nowait (p);
975
976 return p;
977 }
978
979
980 /* Build a GIMPLE_OMP_SECTIONS statement.
981
982 BODY is a sequence of section statements.
983 CLAUSES are any of the OMP sections contsruct's clauses: private,
984 firstprivate, lastprivate, reduction, and nowait. */
985
986 gimple
987 gimple_build_omp_sections (gimple_seq body, tree clauses)
988 {
989 gimple p = gimple_alloc (GIMPLE_OMP_SECTIONS, 0);
990 if (body)
991 gimple_omp_set_body (p, body);
992 gimple_omp_sections_set_clauses (p, clauses);
993
994 return p;
995 }
996
997
998 /* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
999
1000 gimple
1001 gimple_build_omp_sections_switch (void)
1002 {
1003 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
1004 }
1005
1006
1007 /* Build a GIMPLE_OMP_SINGLE statement.
1008
1009 BODY is the sequence of statements that will be executed once.
1010 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1011 copyprivate, nowait. */
1012
1013 gimple
1014 gimple_build_omp_single (gimple_seq body, tree clauses)
1015 {
1016 gimple p = gimple_alloc (GIMPLE_OMP_SINGLE, 0);
1017 if (body)
1018 gimple_omp_set_body (p, body);
1019 gimple_omp_single_set_clauses (p, clauses);
1020
1021 return p;
1022 }
1023
1024
1025 /* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
1026
1027 gimple
1028 gimple_build_omp_atomic_load (tree lhs, tree rhs)
1029 {
1030 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0);
1031 gimple_omp_atomic_load_set_lhs (p, lhs);
1032 gimple_omp_atomic_load_set_rhs (p, rhs);
1033 return p;
1034 }
1035
1036 /* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1037
1038 VAL is the value we are storing. */
1039
1040 gimple
1041 gimple_build_omp_atomic_store (tree val)
1042 {
1043 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0);
1044 gimple_omp_atomic_store_set_val (p, val);
1045 return p;
1046 }
1047
1048 /* Build a GIMPLE_PREDICT statement. PREDICT is one of the predictors from
1049 predict.def, OUTCOME is NOT_TAKEN or TAKEN. */
1050
1051 gimple
1052 gimple_build_predict (enum br_predictor predictor, enum prediction outcome)
1053 {
1054 gimple p = gimple_alloc (GIMPLE_PREDICT, 0);
1055 /* Ensure all the predictors fit into the lower bits of the subcode. */
1056 gcc_assert ((int) END_PREDICTORS <= GF_PREDICT_TAKEN);
1057 gimple_predict_set_predictor (p, predictor);
1058 gimple_predict_set_outcome (p, outcome);
1059 return p;
1060 }
1061
1062 #if defined ENABLE_GIMPLE_CHECKING
1063 /* Complain of a gimple type mismatch and die. */
1064
1065 void
1066 gimple_check_failed (const_gimple gs, const char *file, int line,
1067 const char *function, enum gimple_code code,
1068 enum tree_code subcode)
1069 {
1070 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1071 gimple_code_name[code],
1072 tree_code_name[subcode],
1073 gimple_code_name[gimple_code (gs)],
1074 gs->gsbase.subcode > 0
1075 ? tree_code_name[gs->gsbase.subcode]
1076 : "",
1077 function, trim_filename (file), line);
1078 }
1079 #endif /* ENABLE_GIMPLE_CHECKING */
1080
1081
1082 /* Allocate a new GIMPLE sequence in GC memory and return it. If
1083 there are free sequences in GIMPLE_SEQ_CACHE return one of those
1084 instead. */
1085
1086 gimple_seq
1087 gimple_seq_alloc (void)
1088 {
1089 gimple_seq seq = gimple_seq_cache;
1090 if (seq)
1091 {
1092 gimple_seq_cache = gimple_seq_cache->next_free;
1093 gcc_assert (gimple_seq_cache != seq);
1094 memset (seq, 0, sizeof (*seq));
1095 }
1096 else
1097 {
1098 seq = ggc_alloc_cleared_gimple_seq_d ();
1099 #ifdef GATHER_STATISTICS
1100 gimple_alloc_counts[(int) gimple_alloc_kind_seq]++;
1101 gimple_alloc_sizes[(int) gimple_alloc_kind_seq] += sizeof (*seq);
1102 #endif
1103 }
1104
1105 return seq;
1106 }
1107
1108 /* Return SEQ to the free pool of GIMPLE sequences. */
1109
1110 void
1111 gimple_seq_free (gimple_seq seq)
1112 {
1113 if (seq == NULL)
1114 return;
1115
1116 gcc_assert (gimple_seq_first (seq) == NULL);
1117 gcc_assert (gimple_seq_last (seq) == NULL);
1118
1119 /* If this triggers, it's a sign that the same list is being freed
1120 twice. */
1121 gcc_assert (seq != gimple_seq_cache || gimple_seq_cache == NULL);
1122
1123 /* Add SEQ to the pool of free sequences. */
1124 seq->next_free = gimple_seq_cache;
1125 gimple_seq_cache = seq;
1126 }
1127
1128
1129 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1130 *SEQ_P is NULL, a new sequence is allocated. */
1131
1132 void
1133 gimple_seq_add_stmt (gimple_seq *seq_p, gimple gs)
1134 {
1135 gimple_stmt_iterator si;
1136
1137 if (gs == NULL)
1138 return;
1139
1140 if (*seq_p == NULL)
1141 *seq_p = gimple_seq_alloc ();
1142
1143 si = gsi_last (*seq_p);
1144 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1145 }
1146
1147
1148 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1149 NULL, a new sequence is allocated. */
1150
1151 void
1152 gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1153 {
1154 gimple_stmt_iterator si;
1155
1156 if (src == NULL)
1157 return;
1158
1159 if (*dst_p == NULL)
1160 *dst_p = gimple_seq_alloc ();
1161
1162 si = gsi_last (*dst_p);
1163 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1164 }
1165
1166
1167 /* Helper function of empty_body_p. Return true if STMT is an empty
1168 statement. */
1169
1170 static bool
1171 empty_stmt_p (gimple stmt)
1172 {
1173 if (gimple_code (stmt) == GIMPLE_NOP)
1174 return true;
1175 if (gimple_code (stmt) == GIMPLE_BIND)
1176 return empty_body_p (gimple_bind_body (stmt));
1177 return false;
1178 }
1179
1180
1181 /* Return true if BODY contains nothing but empty statements. */
1182
1183 bool
1184 empty_body_p (gimple_seq body)
1185 {
1186 gimple_stmt_iterator i;
1187
1188 if (gimple_seq_empty_p (body))
1189 return true;
1190 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
1191 if (!empty_stmt_p (gsi_stmt (i))
1192 && !is_gimple_debug (gsi_stmt (i)))
1193 return false;
1194
1195 return true;
1196 }
1197
1198
1199 /* Perform a deep copy of sequence SRC and return the result. */
1200
1201 gimple_seq
1202 gimple_seq_copy (gimple_seq src)
1203 {
1204 gimple_stmt_iterator gsi;
1205 gimple_seq new_seq = gimple_seq_alloc ();
1206 gimple stmt;
1207
1208 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1209 {
1210 stmt = gimple_copy (gsi_stmt (gsi));
1211 gimple_seq_add_stmt (&new_seq, stmt);
1212 }
1213
1214 return new_seq;
1215 }
1216
1217
1218 /* Walk all the statements in the sequence SEQ calling walk_gimple_stmt
1219 on each one. WI is as in walk_gimple_stmt.
1220
1221 If walk_gimple_stmt returns non-NULL, the walk is stopped, the
1222 value is stored in WI->CALLBACK_RESULT and the statement that
1223 produced the value is returned.
1224
1225 Otherwise, all the statements are walked and NULL returned. */
1226
1227 gimple
1228 walk_gimple_seq (gimple_seq seq, walk_stmt_fn callback_stmt,
1229 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1230 {
1231 gimple_stmt_iterator gsi;
1232
1233 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
1234 {
1235 tree ret = walk_gimple_stmt (&gsi, callback_stmt, callback_op, wi);
1236 if (ret)
1237 {
1238 /* If CALLBACK_STMT or CALLBACK_OP return a value, WI must exist
1239 to hold it. */
1240 gcc_assert (wi);
1241 wi->callback_result = ret;
1242 return gsi_stmt (gsi);
1243 }
1244 }
1245
1246 if (wi)
1247 wi->callback_result = NULL_TREE;
1248
1249 return NULL;
1250 }
1251
1252
1253 /* Helper function for walk_gimple_stmt. Walk operands of a GIMPLE_ASM. */
1254
1255 static tree
1256 walk_gimple_asm (gimple stmt, walk_tree_fn callback_op,
1257 struct walk_stmt_info *wi)
1258 {
1259 tree ret, op;
1260 unsigned noutputs;
1261 const char **oconstraints;
1262 unsigned i, n;
1263 const char *constraint;
1264 bool allows_mem, allows_reg, is_inout;
1265
1266 noutputs = gimple_asm_noutputs (stmt);
1267 oconstraints = (const char **) alloca ((noutputs) * sizeof (const char *));
1268
1269 if (wi)
1270 wi->is_lhs = true;
1271
1272 for (i = 0; i < noutputs; i++)
1273 {
1274 op = gimple_asm_output_op (stmt, i);
1275 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1276 oconstraints[i] = constraint;
1277 parse_output_constraint (&constraint, i, 0, 0, &allows_mem, &allows_reg,
1278 &is_inout);
1279 if (wi)
1280 wi->val_only = (allows_reg || !allows_mem);
1281 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1282 if (ret)
1283 return ret;
1284 }
1285
1286 n = gimple_asm_ninputs (stmt);
1287 for (i = 0; i < n; i++)
1288 {
1289 op = gimple_asm_input_op (stmt, i);
1290 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1291 parse_input_constraint (&constraint, 0, 0, noutputs, 0,
1292 oconstraints, &allows_mem, &allows_reg);
1293 if (wi)
1294 {
1295 wi->val_only = (allows_reg || !allows_mem);
1296 /* Although input "m" is not really a LHS, we need a lvalue. */
1297 wi->is_lhs = !wi->val_only;
1298 }
1299 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1300 if (ret)
1301 return ret;
1302 }
1303
1304 if (wi)
1305 {
1306 wi->is_lhs = false;
1307 wi->val_only = true;
1308 }
1309
1310 n = gimple_asm_nlabels (stmt);
1311 for (i = 0; i < n; i++)
1312 {
1313 op = gimple_asm_label_op (stmt, i);
1314 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1315 if (ret)
1316 return ret;
1317 }
1318
1319 return NULL_TREE;
1320 }
1321
1322
1323 /* Helper function of WALK_GIMPLE_STMT. Walk every tree operand in
1324 STMT. CALLBACK_OP and WI are as in WALK_GIMPLE_STMT.
1325
1326 CALLBACK_OP is called on each operand of STMT via walk_tree.
1327 Additional parameters to walk_tree must be stored in WI. For each operand
1328 OP, walk_tree is called as:
1329
1330 walk_tree (&OP, CALLBACK_OP, WI, WI->PSET)
1331
1332 If CALLBACK_OP returns non-NULL for an operand, the remaining
1333 operands are not scanned.
1334
1335 The return value is that returned by the last call to walk_tree, or
1336 NULL_TREE if no CALLBACK_OP is specified. */
1337
1338 tree
1339 walk_gimple_op (gimple stmt, walk_tree_fn callback_op,
1340 struct walk_stmt_info *wi)
1341 {
1342 struct pointer_set_t *pset = (wi) ? wi->pset : NULL;
1343 unsigned i;
1344 tree ret = NULL_TREE;
1345
1346 switch (gimple_code (stmt))
1347 {
1348 case GIMPLE_ASSIGN:
1349 /* Walk the RHS operands. If the LHS is of a non-renamable type or
1350 is a register variable, we may use a COMPONENT_REF on the RHS. */
1351 if (wi)
1352 {
1353 tree lhs = gimple_assign_lhs (stmt);
1354 wi->val_only
1355 = (is_gimple_reg_type (TREE_TYPE (lhs)) && !is_gimple_reg (lhs))
1356 || !gimple_assign_single_p (stmt);
1357 }
1358
1359 for (i = 1; i < gimple_num_ops (stmt); i++)
1360 {
1361 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi,
1362 pset);
1363 if (ret)
1364 return ret;
1365 }
1366
1367 /* Walk the LHS. If the RHS is appropriate for a memory, we
1368 may use a COMPONENT_REF on the LHS. */
1369 if (wi)
1370 {
1371 /* If the RHS has more than 1 operand, it is not appropriate
1372 for the memory. */
1373 wi->val_only = !is_gimple_mem_rhs (gimple_assign_rhs1 (stmt))
1374 || !gimple_assign_single_p (stmt);
1375 wi->is_lhs = true;
1376 }
1377
1378 ret = walk_tree (gimple_op_ptr (stmt, 0), callback_op, wi, pset);
1379 if (ret)
1380 return ret;
1381
1382 if (wi)
1383 {
1384 wi->val_only = true;
1385 wi->is_lhs = false;
1386 }
1387 break;
1388
1389 case GIMPLE_CALL:
1390 if (wi)
1391 {
1392 wi->is_lhs = false;
1393 wi->val_only = true;
1394 }
1395
1396 ret = walk_tree (gimple_call_chain_ptr (stmt), callback_op, wi, pset);
1397 if (ret)
1398 return ret;
1399
1400 ret = walk_tree (gimple_call_fn_ptr (stmt), callback_op, wi, pset);
1401 if (ret)
1402 return ret;
1403
1404 for (i = 0; i < gimple_call_num_args (stmt); i++)
1405 {
1406 if (wi)
1407 wi->val_only = is_gimple_reg_type (gimple_call_arg (stmt, i));
1408 ret = walk_tree (gimple_call_arg_ptr (stmt, i), callback_op, wi,
1409 pset);
1410 if (ret)
1411 return ret;
1412 }
1413
1414 if (gimple_call_lhs (stmt))
1415 {
1416 if (wi)
1417 {
1418 wi->is_lhs = true;
1419 wi->val_only = is_gimple_reg_type (gimple_call_lhs (stmt));
1420 }
1421
1422 ret = walk_tree (gimple_call_lhs_ptr (stmt), callback_op, wi, pset);
1423 if (ret)
1424 return ret;
1425 }
1426
1427 if (wi)
1428 {
1429 wi->is_lhs = false;
1430 wi->val_only = true;
1431 }
1432 break;
1433
1434 case GIMPLE_CATCH:
1435 ret = walk_tree (gimple_catch_types_ptr (stmt), callback_op, wi,
1436 pset);
1437 if (ret)
1438 return ret;
1439 break;
1440
1441 case GIMPLE_EH_FILTER:
1442 ret = walk_tree (gimple_eh_filter_types_ptr (stmt), callback_op, wi,
1443 pset);
1444 if (ret)
1445 return ret;
1446 break;
1447
1448 case GIMPLE_ASM:
1449 ret = walk_gimple_asm (stmt, callback_op, wi);
1450 if (ret)
1451 return ret;
1452 break;
1453
1454 case GIMPLE_OMP_CONTINUE:
1455 ret = walk_tree (gimple_omp_continue_control_def_ptr (stmt),
1456 callback_op, wi, pset);
1457 if (ret)
1458 return ret;
1459
1460 ret = walk_tree (gimple_omp_continue_control_use_ptr (stmt),
1461 callback_op, wi, pset);
1462 if (ret)
1463 return ret;
1464 break;
1465
1466 case GIMPLE_OMP_CRITICAL:
1467 ret = walk_tree (gimple_omp_critical_name_ptr (stmt), callback_op, wi,
1468 pset);
1469 if (ret)
1470 return ret;
1471 break;
1472
1473 case GIMPLE_OMP_FOR:
1474 ret = walk_tree (gimple_omp_for_clauses_ptr (stmt), callback_op, wi,
1475 pset);
1476 if (ret)
1477 return ret;
1478 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1479 {
1480 ret = walk_tree (gimple_omp_for_index_ptr (stmt, i), callback_op,
1481 wi, pset);
1482 if (ret)
1483 return ret;
1484 ret = walk_tree (gimple_omp_for_initial_ptr (stmt, i), callback_op,
1485 wi, pset);
1486 if (ret)
1487 return ret;
1488 ret = walk_tree (gimple_omp_for_final_ptr (stmt, i), callback_op,
1489 wi, pset);
1490 if (ret)
1491 return ret;
1492 ret = walk_tree (gimple_omp_for_incr_ptr (stmt, i), callback_op,
1493 wi, pset);
1494 }
1495 if (ret)
1496 return ret;
1497 break;
1498
1499 case GIMPLE_OMP_PARALLEL:
1500 ret = walk_tree (gimple_omp_parallel_clauses_ptr (stmt), callback_op,
1501 wi, pset);
1502 if (ret)
1503 return ret;
1504 ret = walk_tree (gimple_omp_parallel_child_fn_ptr (stmt), callback_op,
1505 wi, pset);
1506 if (ret)
1507 return ret;
1508 ret = walk_tree (gimple_omp_parallel_data_arg_ptr (stmt), callback_op,
1509 wi, pset);
1510 if (ret)
1511 return ret;
1512 break;
1513
1514 case GIMPLE_OMP_TASK:
1515 ret = walk_tree (gimple_omp_task_clauses_ptr (stmt), callback_op,
1516 wi, pset);
1517 if (ret)
1518 return ret;
1519 ret = walk_tree (gimple_omp_task_child_fn_ptr (stmt), callback_op,
1520 wi, pset);
1521 if (ret)
1522 return ret;
1523 ret = walk_tree (gimple_omp_task_data_arg_ptr (stmt), callback_op,
1524 wi, pset);
1525 if (ret)
1526 return ret;
1527 ret = walk_tree (gimple_omp_task_copy_fn_ptr (stmt), callback_op,
1528 wi, pset);
1529 if (ret)
1530 return ret;
1531 ret = walk_tree (gimple_omp_task_arg_size_ptr (stmt), callback_op,
1532 wi, pset);
1533 if (ret)
1534 return ret;
1535 ret = walk_tree (gimple_omp_task_arg_align_ptr (stmt), callback_op,
1536 wi, pset);
1537 if (ret)
1538 return ret;
1539 break;
1540
1541 case GIMPLE_OMP_SECTIONS:
1542 ret = walk_tree (gimple_omp_sections_clauses_ptr (stmt), callback_op,
1543 wi, pset);
1544 if (ret)
1545 return ret;
1546
1547 ret = walk_tree (gimple_omp_sections_control_ptr (stmt), callback_op,
1548 wi, pset);
1549 if (ret)
1550 return ret;
1551
1552 break;
1553
1554 case GIMPLE_OMP_SINGLE:
1555 ret = walk_tree (gimple_omp_single_clauses_ptr (stmt), callback_op, wi,
1556 pset);
1557 if (ret)
1558 return ret;
1559 break;
1560
1561 case GIMPLE_OMP_ATOMIC_LOAD:
1562 ret = walk_tree (gimple_omp_atomic_load_lhs_ptr (stmt), callback_op, wi,
1563 pset);
1564 if (ret)
1565 return ret;
1566
1567 ret = walk_tree (gimple_omp_atomic_load_rhs_ptr (stmt), callback_op, wi,
1568 pset);
1569 if (ret)
1570 return ret;
1571 break;
1572
1573 case GIMPLE_OMP_ATOMIC_STORE:
1574 ret = walk_tree (gimple_omp_atomic_store_val_ptr (stmt), callback_op,
1575 wi, pset);
1576 if (ret)
1577 return ret;
1578 break;
1579
1580 /* Tuples that do not have operands. */
1581 case GIMPLE_NOP:
1582 case GIMPLE_RESX:
1583 case GIMPLE_OMP_RETURN:
1584 case GIMPLE_PREDICT:
1585 break;
1586
1587 default:
1588 {
1589 enum gimple_statement_structure_enum gss;
1590 gss = gimple_statement_structure (stmt);
1591 if (gss == GSS_WITH_OPS || gss == GSS_WITH_MEM_OPS)
1592 for (i = 0; i < gimple_num_ops (stmt); i++)
1593 {
1594 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi, pset);
1595 if (ret)
1596 return ret;
1597 }
1598 }
1599 break;
1600 }
1601
1602 return NULL_TREE;
1603 }
1604
1605
1606 /* Walk the current statement in GSI (optionally using traversal state
1607 stored in WI). If WI is NULL, no state is kept during traversal.
1608 The callback CALLBACK_STMT is called. If CALLBACK_STMT indicates
1609 that it has handled all the operands of the statement, its return
1610 value is returned. Otherwise, the return value from CALLBACK_STMT
1611 is discarded and its operands are scanned.
1612
1613 If CALLBACK_STMT is NULL or it didn't handle the operands,
1614 CALLBACK_OP is called on each operand of the statement via
1615 walk_gimple_op. If walk_gimple_op returns non-NULL for any
1616 operand, the remaining operands are not scanned. In this case, the
1617 return value from CALLBACK_OP is returned.
1618
1619 In any other case, NULL_TREE is returned. */
1620
1621 tree
1622 walk_gimple_stmt (gimple_stmt_iterator *gsi, walk_stmt_fn callback_stmt,
1623 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1624 {
1625 gimple ret;
1626 tree tree_ret;
1627 gimple stmt = gsi_stmt (*gsi);
1628
1629 if (wi)
1630 wi->gsi = *gsi;
1631
1632 if (wi && wi->want_locations && gimple_has_location (stmt))
1633 input_location = gimple_location (stmt);
1634
1635 ret = NULL;
1636
1637 /* Invoke the statement callback. Return if the callback handled
1638 all of STMT operands by itself. */
1639 if (callback_stmt)
1640 {
1641 bool handled_ops = false;
1642 tree_ret = callback_stmt (gsi, &handled_ops, wi);
1643 if (handled_ops)
1644 return tree_ret;
1645
1646 /* If CALLBACK_STMT did not handle operands, it should not have
1647 a value to return. */
1648 gcc_assert (tree_ret == NULL);
1649
1650 /* Re-read stmt in case the callback changed it. */
1651 stmt = gsi_stmt (*gsi);
1652 }
1653
1654 /* If CALLBACK_OP is defined, invoke it on every operand of STMT. */
1655 if (callback_op)
1656 {
1657 tree_ret = walk_gimple_op (stmt, callback_op, wi);
1658 if (tree_ret)
1659 return tree_ret;
1660 }
1661
1662 /* If STMT can have statements inside (e.g. GIMPLE_BIND), walk them. */
1663 switch (gimple_code (stmt))
1664 {
1665 case GIMPLE_BIND:
1666 ret = walk_gimple_seq (gimple_bind_body (stmt), callback_stmt,
1667 callback_op, wi);
1668 if (ret)
1669 return wi->callback_result;
1670 break;
1671
1672 case GIMPLE_CATCH:
1673 ret = walk_gimple_seq (gimple_catch_handler (stmt), callback_stmt,
1674 callback_op, wi);
1675 if (ret)
1676 return wi->callback_result;
1677 break;
1678
1679 case GIMPLE_EH_FILTER:
1680 ret = walk_gimple_seq (gimple_eh_filter_failure (stmt), callback_stmt,
1681 callback_op, wi);
1682 if (ret)
1683 return wi->callback_result;
1684 break;
1685
1686 case GIMPLE_TRY:
1687 ret = walk_gimple_seq (gimple_try_eval (stmt), callback_stmt, callback_op,
1688 wi);
1689 if (ret)
1690 return wi->callback_result;
1691
1692 ret = walk_gimple_seq (gimple_try_cleanup (stmt), callback_stmt,
1693 callback_op, wi);
1694 if (ret)
1695 return wi->callback_result;
1696 break;
1697
1698 case GIMPLE_OMP_FOR:
1699 ret = walk_gimple_seq (gimple_omp_for_pre_body (stmt), callback_stmt,
1700 callback_op, wi);
1701 if (ret)
1702 return wi->callback_result;
1703
1704 /* FALL THROUGH. */
1705 case GIMPLE_OMP_CRITICAL:
1706 case GIMPLE_OMP_MASTER:
1707 case GIMPLE_OMP_ORDERED:
1708 case GIMPLE_OMP_SECTION:
1709 case GIMPLE_OMP_PARALLEL:
1710 case GIMPLE_OMP_TASK:
1711 case GIMPLE_OMP_SECTIONS:
1712 case GIMPLE_OMP_SINGLE:
1713 ret = walk_gimple_seq (gimple_omp_body (stmt), callback_stmt, callback_op,
1714 wi);
1715 if (ret)
1716 return wi->callback_result;
1717 break;
1718
1719 case GIMPLE_WITH_CLEANUP_EXPR:
1720 ret = walk_gimple_seq (gimple_wce_cleanup (stmt), callback_stmt,
1721 callback_op, wi);
1722 if (ret)
1723 return wi->callback_result;
1724 break;
1725
1726 default:
1727 gcc_assert (!gimple_has_substatements (stmt));
1728 break;
1729 }
1730
1731 return NULL;
1732 }
1733
1734
1735 /* Set sequence SEQ to be the GIMPLE body for function FN. */
1736
1737 void
1738 gimple_set_body (tree fndecl, gimple_seq seq)
1739 {
1740 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1741 if (fn == NULL)
1742 {
1743 /* If FNDECL still does not have a function structure associated
1744 with it, then it does not make sense for it to receive a
1745 GIMPLE body. */
1746 gcc_assert (seq == NULL);
1747 }
1748 else
1749 fn->gimple_body = seq;
1750 }
1751
1752
1753 /* Return the body of GIMPLE statements for function FN. After the
1754 CFG pass, the function body doesn't exist anymore because it has
1755 been split up into basic blocks. In this case, it returns
1756 NULL. */
1757
1758 gimple_seq
1759 gimple_body (tree fndecl)
1760 {
1761 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1762 return fn ? fn->gimple_body : NULL;
1763 }
1764
1765 /* Return true when FNDECL has Gimple body either in unlowered
1766 or CFG form. */
1767 bool
1768 gimple_has_body_p (tree fndecl)
1769 {
1770 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1771 return (gimple_body (fndecl) || (fn && fn->cfg));
1772 }
1773
1774 /* Detect flags from a GIMPLE_CALL. This is just like
1775 call_expr_flags, but for gimple tuples. */
1776
1777 int
1778 gimple_call_flags (const_gimple stmt)
1779 {
1780 int flags;
1781 tree decl = gimple_call_fndecl (stmt);
1782 tree t;
1783
1784 if (decl)
1785 flags = flags_from_decl_or_type (decl);
1786 else
1787 {
1788 t = TREE_TYPE (gimple_call_fn (stmt));
1789 if (t && TREE_CODE (t) == POINTER_TYPE)
1790 flags = flags_from_decl_or_type (TREE_TYPE (t));
1791 else
1792 flags = 0;
1793 }
1794
1795 if (stmt->gsbase.subcode & GF_CALL_NOTHROW)
1796 flags |= ECF_NOTHROW;
1797
1798 return flags;
1799 }
1800
1801 /* Detects argument flags for argument number ARG on call STMT. */
1802
1803 int
1804 gimple_call_arg_flags (const_gimple stmt, unsigned arg)
1805 {
1806 tree type = TREE_TYPE (TREE_TYPE (gimple_call_fn (stmt)));
1807 tree attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1808 if (!attr)
1809 return 0;
1810
1811 attr = TREE_VALUE (TREE_VALUE (attr));
1812 if (1 + arg >= (unsigned) TREE_STRING_LENGTH (attr))
1813 return 0;
1814
1815 switch (TREE_STRING_POINTER (attr)[1 + arg])
1816 {
1817 case 'x':
1818 case 'X':
1819 return EAF_UNUSED;
1820
1821 case 'R':
1822 return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE;
1823
1824 case 'r':
1825 return EAF_NOCLOBBER | EAF_NOESCAPE;
1826
1827 case 'W':
1828 return EAF_DIRECT | EAF_NOESCAPE;
1829
1830 case 'w':
1831 return EAF_NOESCAPE;
1832
1833 case '.':
1834 default:
1835 return 0;
1836 }
1837 }
1838
1839 /* Detects return flags for the call STMT. */
1840
1841 int
1842 gimple_call_return_flags (const_gimple stmt)
1843 {
1844 tree type;
1845 tree attr = NULL_TREE;
1846
1847 if (gimple_call_flags (stmt) & ECF_MALLOC)
1848 return ERF_NOALIAS;
1849
1850 type = TREE_TYPE (TREE_TYPE (gimple_call_fn (stmt)));
1851 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1852 if (!attr)
1853 return 0;
1854
1855 attr = TREE_VALUE (TREE_VALUE (attr));
1856 if (TREE_STRING_LENGTH (attr) < 1)
1857 return 0;
1858
1859 switch (TREE_STRING_POINTER (attr)[0])
1860 {
1861 case '1':
1862 case '2':
1863 case '3':
1864 case '4':
1865 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
1866
1867 case 'm':
1868 return ERF_NOALIAS;
1869
1870 case '.':
1871 default:
1872 return 0;
1873 }
1874 }
1875
1876
1877 /* Return true if GS is a copy assignment. */
1878
1879 bool
1880 gimple_assign_copy_p (gimple gs)
1881 {
1882 return (gimple_assign_single_p (gs)
1883 && is_gimple_val (gimple_op (gs, 1)));
1884 }
1885
1886
1887 /* Return true if GS is a SSA_NAME copy assignment. */
1888
1889 bool
1890 gimple_assign_ssa_name_copy_p (gimple gs)
1891 {
1892 return (gimple_assign_single_p (gs)
1893 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1894 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1895 }
1896
1897
1898 /* Return true if GS is an assignment with a unary RHS, but the
1899 operator has no effect on the assigned value. The logic is adapted
1900 from STRIP_NOPS. This predicate is intended to be used in tuplifying
1901 instances in which STRIP_NOPS was previously applied to the RHS of
1902 an assignment.
1903
1904 NOTE: In the use cases that led to the creation of this function
1905 and of gimple_assign_single_p, it is typical to test for either
1906 condition and to proceed in the same manner. In each case, the
1907 assigned value is represented by the single RHS operand of the
1908 assignment. I suspect there may be cases where gimple_assign_copy_p,
1909 gimple_assign_single_p, or equivalent logic is used where a similar
1910 treatment of unary NOPs is appropriate. */
1911
1912 bool
1913 gimple_assign_unary_nop_p (gimple gs)
1914 {
1915 return (is_gimple_assign (gs)
1916 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
1917 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
1918 && gimple_assign_rhs1 (gs) != error_mark_node
1919 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
1920 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
1921 }
1922
1923 /* Set BB to be the basic block holding G. */
1924
1925 void
1926 gimple_set_bb (gimple stmt, basic_block bb)
1927 {
1928 stmt->gsbase.bb = bb;
1929
1930 /* If the statement is a label, add the label to block-to-labels map
1931 so that we can speed up edge creation for GIMPLE_GOTOs. */
1932 if (cfun->cfg && gimple_code (stmt) == GIMPLE_LABEL)
1933 {
1934 tree t;
1935 int uid;
1936
1937 t = gimple_label_label (stmt);
1938 uid = LABEL_DECL_UID (t);
1939 if (uid == -1)
1940 {
1941 unsigned old_len = VEC_length (basic_block, label_to_block_map);
1942 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
1943 if (old_len <= (unsigned) uid)
1944 {
1945 unsigned new_len = 3 * uid / 2 + 1;
1946
1947 VEC_safe_grow_cleared (basic_block, gc, label_to_block_map,
1948 new_len);
1949 }
1950 }
1951
1952 VEC_replace (basic_block, label_to_block_map, uid, bb);
1953 }
1954 }
1955
1956
1957 /* Modify the RHS of the assignment pointed-to by GSI using the
1958 operands in the expression tree EXPR.
1959
1960 NOTE: The statement pointed-to by GSI may be reallocated if it
1961 did not have enough operand slots.
1962
1963 This function is useful to convert an existing tree expression into
1964 the flat representation used for the RHS of a GIMPLE assignment.
1965 It will reallocate memory as needed to expand or shrink the number
1966 of operand slots needed to represent EXPR.
1967
1968 NOTE: If you find yourself building a tree and then calling this
1969 function, you are most certainly doing it the slow way. It is much
1970 better to build a new assignment or to use the function
1971 gimple_assign_set_rhs_with_ops, which does not require an
1972 expression tree to be built. */
1973
1974 void
1975 gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
1976 {
1977 enum tree_code subcode;
1978 tree op1, op2, op3;
1979
1980 extract_ops_from_tree_1 (expr, &subcode, &op1, &op2, &op3);
1981 gimple_assign_set_rhs_with_ops_1 (gsi, subcode, op1, op2, op3);
1982 }
1983
1984
1985 /* Set the RHS of assignment statement pointed-to by GSI to CODE with
1986 operands OP1, OP2 and OP3.
1987
1988 NOTE: The statement pointed-to by GSI may be reallocated if it
1989 did not have enough operand slots. */
1990
1991 void
1992 gimple_assign_set_rhs_with_ops_1 (gimple_stmt_iterator *gsi, enum tree_code code,
1993 tree op1, tree op2, tree op3)
1994 {
1995 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
1996 gimple stmt = gsi_stmt (*gsi);
1997
1998 /* If the new CODE needs more operands, allocate a new statement. */
1999 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
2000 {
2001 tree lhs = gimple_assign_lhs (stmt);
2002 gimple new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
2003 memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
2004 gsi_replace (gsi, new_stmt, true);
2005 stmt = new_stmt;
2006
2007 /* The LHS needs to be reset as this also changes the SSA name
2008 on the LHS. */
2009 gimple_assign_set_lhs (stmt, lhs);
2010 }
2011
2012 gimple_set_num_ops (stmt, new_rhs_ops + 1);
2013 gimple_set_subcode (stmt, code);
2014 gimple_assign_set_rhs1 (stmt, op1);
2015 if (new_rhs_ops > 1)
2016 gimple_assign_set_rhs2 (stmt, op2);
2017 if (new_rhs_ops > 2)
2018 gimple_assign_set_rhs3 (stmt, op3);
2019 }
2020
2021
2022 /* Return the LHS of a statement that performs an assignment,
2023 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
2024 for a call to a function that returns no value, or for a
2025 statement other than an assignment or a call. */
2026
2027 tree
2028 gimple_get_lhs (const_gimple stmt)
2029 {
2030 enum gimple_code code = gimple_code (stmt);
2031
2032 if (code == GIMPLE_ASSIGN)
2033 return gimple_assign_lhs (stmt);
2034 else if (code == GIMPLE_CALL)
2035 return gimple_call_lhs (stmt);
2036 else
2037 return NULL_TREE;
2038 }
2039
2040
2041 /* Set the LHS of a statement that performs an assignment,
2042 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2043
2044 void
2045 gimple_set_lhs (gimple stmt, tree lhs)
2046 {
2047 enum gimple_code code = gimple_code (stmt);
2048
2049 if (code == GIMPLE_ASSIGN)
2050 gimple_assign_set_lhs (stmt, lhs);
2051 else if (code == GIMPLE_CALL)
2052 gimple_call_set_lhs (stmt, lhs);
2053 else
2054 gcc_unreachable();
2055 }
2056
2057 /* Replace the LHS of STMT, an assignment, either a GIMPLE_ASSIGN or a
2058 GIMPLE_CALL, with NLHS, in preparation for modifying the RHS to an
2059 expression with a different value.
2060
2061 This will update any annotations (say debug bind stmts) referring
2062 to the original LHS, so that they use the RHS instead. This is
2063 done even if NLHS and LHS are the same, for it is understood that
2064 the RHS will be modified afterwards, and NLHS will not be assigned
2065 an equivalent value.
2066
2067 Adjusting any non-annotation uses of the LHS, if needed, is a
2068 responsibility of the caller.
2069
2070 The effect of this call should be pretty much the same as that of
2071 inserting a copy of STMT before STMT, and then removing the
2072 original stmt, at which time gsi_remove() would have update
2073 annotations, but using this function saves all the inserting,
2074 copying and removing. */
2075
2076 void
2077 gimple_replace_lhs (gimple stmt, tree nlhs)
2078 {
2079 if (MAY_HAVE_DEBUG_STMTS)
2080 {
2081 tree lhs = gimple_get_lhs (stmt);
2082
2083 gcc_assert (SSA_NAME_DEF_STMT (lhs) == stmt);
2084
2085 insert_debug_temp_for_var_def (NULL, lhs);
2086 }
2087
2088 gimple_set_lhs (stmt, nlhs);
2089 }
2090
2091 /* Return a deep copy of statement STMT. All the operands from STMT
2092 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
2093 and VUSE operand arrays are set to empty in the new copy. */
2094
2095 gimple
2096 gimple_copy (gimple stmt)
2097 {
2098 enum gimple_code code = gimple_code (stmt);
2099 unsigned num_ops = gimple_num_ops (stmt);
2100 gimple copy = gimple_alloc (code, num_ops);
2101 unsigned i;
2102
2103 /* Shallow copy all the fields from STMT. */
2104 memcpy (copy, stmt, gimple_size (code));
2105
2106 /* If STMT has sub-statements, deep-copy them as well. */
2107 if (gimple_has_substatements (stmt))
2108 {
2109 gimple_seq new_seq;
2110 tree t;
2111
2112 switch (gimple_code (stmt))
2113 {
2114 case GIMPLE_BIND:
2115 new_seq = gimple_seq_copy (gimple_bind_body (stmt));
2116 gimple_bind_set_body (copy, new_seq);
2117 gimple_bind_set_vars (copy, unshare_expr (gimple_bind_vars (stmt)));
2118 gimple_bind_set_block (copy, gimple_bind_block (stmt));
2119 break;
2120
2121 case GIMPLE_CATCH:
2122 new_seq = gimple_seq_copy (gimple_catch_handler (stmt));
2123 gimple_catch_set_handler (copy, new_seq);
2124 t = unshare_expr (gimple_catch_types (stmt));
2125 gimple_catch_set_types (copy, t);
2126 break;
2127
2128 case GIMPLE_EH_FILTER:
2129 new_seq = gimple_seq_copy (gimple_eh_filter_failure (stmt));
2130 gimple_eh_filter_set_failure (copy, new_seq);
2131 t = unshare_expr (gimple_eh_filter_types (stmt));
2132 gimple_eh_filter_set_types (copy, t);
2133 break;
2134
2135 case GIMPLE_TRY:
2136 new_seq = gimple_seq_copy (gimple_try_eval (stmt));
2137 gimple_try_set_eval (copy, new_seq);
2138 new_seq = gimple_seq_copy (gimple_try_cleanup (stmt));
2139 gimple_try_set_cleanup (copy, new_seq);
2140 break;
2141
2142 case GIMPLE_OMP_FOR:
2143 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
2144 gimple_omp_for_set_pre_body (copy, new_seq);
2145 t = unshare_expr (gimple_omp_for_clauses (stmt));
2146 gimple_omp_for_set_clauses (copy, t);
2147 copy->gimple_omp_for.iter
2148 = ggc_alloc_vec_gimple_omp_for_iter
2149 (gimple_omp_for_collapse (stmt));
2150 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
2151 {
2152 gimple_omp_for_set_cond (copy, i,
2153 gimple_omp_for_cond (stmt, i));
2154 gimple_omp_for_set_index (copy, i,
2155 gimple_omp_for_index (stmt, i));
2156 t = unshare_expr (gimple_omp_for_initial (stmt, i));
2157 gimple_omp_for_set_initial (copy, i, t);
2158 t = unshare_expr (gimple_omp_for_final (stmt, i));
2159 gimple_omp_for_set_final (copy, i, t);
2160 t = unshare_expr (gimple_omp_for_incr (stmt, i));
2161 gimple_omp_for_set_incr (copy, i, t);
2162 }
2163 goto copy_omp_body;
2164
2165 case GIMPLE_OMP_PARALLEL:
2166 t = unshare_expr (gimple_omp_parallel_clauses (stmt));
2167 gimple_omp_parallel_set_clauses (copy, t);
2168 t = unshare_expr (gimple_omp_parallel_child_fn (stmt));
2169 gimple_omp_parallel_set_child_fn (copy, t);
2170 t = unshare_expr (gimple_omp_parallel_data_arg (stmt));
2171 gimple_omp_parallel_set_data_arg (copy, t);
2172 goto copy_omp_body;
2173
2174 case GIMPLE_OMP_TASK:
2175 t = unshare_expr (gimple_omp_task_clauses (stmt));
2176 gimple_omp_task_set_clauses (copy, t);
2177 t = unshare_expr (gimple_omp_task_child_fn (stmt));
2178 gimple_omp_task_set_child_fn (copy, t);
2179 t = unshare_expr (gimple_omp_task_data_arg (stmt));
2180 gimple_omp_task_set_data_arg (copy, t);
2181 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
2182 gimple_omp_task_set_copy_fn (copy, t);
2183 t = unshare_expr (gimple_omp_task_arg_size (stmt));
2184 gimple_omp_task_set_arg_size (copy, t);
2185 t = unshare_expr (gimple_omp_task_arg_align (stmt));
2186 gimple_omp_task_set_arg_align (copy, t);
2187 goto copy_omp_body;
2188
2189 case GIMPLE_OMP_CRITICAL:
2190 t = unshare_expr (gimple_omp_critical_name (stmt));
2191 gimple_omp_critical_set_name (copy, t);
2192 goto copy_omp_body;
2193
2194 case GIMPLE_OMP_SECTIONS:
2195 t = unshare_expr (gimple_omp_sections_clauses (stmt));
2196 gimple_omp_sections_set_clauses (copy, t);
2197 t = unshare_expr (gimple_omp_sections_control (stmt));
2198 gimple_omp_sections_set_control (copy, t);
2199 /* FALLTHRU */
2200
2201 case GIMPLE_OMP_SINGLE:
2202 case GIMPLE_OMP_SECTION:
2203 case GIMPLE_OMP_MASTER:
2204 case GIMPLE_OMP_ORDERED:
2205 copy_omp_body:
2206 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
2207 gimple_omp_set_body (copy, new_seq);
2208 break;
2209
2210 case GIMPLE_WITH_CLEANUP_EXPR:
2211 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
2212 gimple_wce_set_cleanup (copy, new_seq);
2213 break;
2214
2215 default:
2216 gcc_unreachable ();
2217 }
2218 }
2219
2220 /* Make copy of operands. */
2221 if (num_ops > 0)
2222 {
2223 for (i = 0; i < num_ops; i++)
2224 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
2225
2226 /* Clear out SSA operand vectors on COPY. */
2227 if (gimple_has_ops (stmt))
2228 {
2229 gimple_set_def_ops (copy, NULL);
2230 gimple_set_use_ops (copy, NULL);
2231 }
2232
2233 if (gimple_has_mem_ops (stmt))
2234 {
2235 gimple_set_vdef (copy, gimple_vdef (stmt));
2236 gimple_set_vuse (copy, gimple_vuse (stmt));
2237 }
2238
2239 /* SSA operands need to be updated. */
2240 gimple_set_modified (copy, true);
2241 }
2242
2243 return copy;
2244 }
2245
2246
2247 /* Set the MODIFIED flag to MODIFIEDP, iff the gimple statement G has
2248 a MODIFIED field. */
2249
2250 void
2251 gimple_set_modified (gimple s, bool modifiedp)
2252 {
2253 if (gimple_has_ops (s))
2254 {
2255 s->gsbase.modified = (unsigned) modifiedp;
2256
2257 if (modifiedp
2258 && cfun->gimple_df
2259 && is_gimple_call (s)
2260 && gimple_call_noreturn_p (s))
2261 VEC_safe_push (gimple, gc, MODIFIED_NORETURN_CALLS (cfun), s);
2262 }
2263 }
2264
2265
2266 /* Return true if statement S has side-effects. We consider a
2267 statement to have side effects if:
2268
2269 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
2270 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
2271
2272 bool
2273 gimple_has_side_effects (const_gimple s)
2274 {
2275 unsigned i;
2276
2277 if (is_gimple_debug (s))
2278 return false;
2279
2280 /* We don't have to scan the arguments to check for
2281 volatile arguments, though, at present, we still
2282 do a scan to check for TREE_SIDE_EFFECTS. */
2283 if (gimple_has_volatile_ops (s))
2284 return true;
2285
2286 if (is_gimple_call (s))
2287 {
2288 unsigned nargs = gimple_call_num_args (s);
2289
2290 if (!(gimple_call_flags (s) & (ECF_CONST | ECF_PURE)))
2291 return true;
2292 else if (gimple_call_flags (s) & ECF_LOOPING_CONST_OR_PURE)
2293 /* An infinite loop is considered a side effect. */
2294 return true;
2295
2296 if (gimple_call_lhs (s)
2297 && TREE_SIDE_EFFECTS (gimple_call_lhs (s)))
2298 {
2299 gcc_assert (gimple_has_volatile_ops (s));
2300 return true;
2301 }
2302
2303 if (TREE_SIDE_EFFECTS (gimple_call_fn (s)))
2304 return true;
2305
2306 for (i = 0; i < nargs; i++)
2307 if (TREE_SIDE_EFFECTS (gimple_call_arg (s, i)))
2308 {
2309 gcc_assert (gimple_has_volatile_ops (s));
2310 return true;
2311 }
2312
2313 return false;
2314 }
2315 else
2316 {
2317 for (i = 0; i < gimple_num_ops (s); i++)
2318 if (TREE_SIDE_EFFECTS (gimple_op (s, i)))
2319 {
2320 gcc_assert (gimple_has_volatile_ops (s));
2321 return true;
2322 }
2323 }
2324
2325 return false;
2326 }
2327
2328 /* Return true if the RHS of statement S has side effects.
2329 We may use it to determine if it is admissable to replace
2330 an assignment or call with a copy of a previously-computed
2331 value. In such cases, side-effects due the the LHS are
2332 preserved. */
2333
2334 bool
2335 gimple_rhs_has_side_effects (const_gimple s)
2336 {
2337 unsigned i;
2338
2339 if (is_gimple_call (s))
2340 {
2341 unsigned nargs = gimple_call_num_args (s);
2342
2343 if (!(gimple_call_flags (s) & (ECF_CONST | ECF_PURE)))
2344 return true;
2345
2346 /* We cannot use gimple_has_volatile_ops here,
2347 because we must ignore a volatile LHS. */
2348 if (TREE_SIDE_EFFECTS (gimple_call_fn (s))
2349 || TREE_THIS_VOLATILE (gimple_call_fn (s)))
2350 {
2351 gcc_assert (gimple_has_volatile_ops (s));
2352 return true;
2353 }
2354
2355 for (i = 0; i < nargs; i++)
2356 if (TREE_SIDE_EFFECTS (gimple_call_arg (s, i))
2357 || TREE_THIS_VOLATILE (gimple_call_arg (s, i)))
2358 return true;
2359
2360 return false;
2361 }
2362 else if (is_gimple_assign (s))
2363 {
2364 /* Skip the first operand, the LHS. */
2365 for (i = 1; i < gimple_num_ops (s); i++)
2366 if (TREE_SIDE_EFFECTS (gimple_op (s, i))
2367 || TREE_THIS_VOLATILE (gimple_op (s, i)))
2368 {
2369 gcc_assert (gimple_has_volatile_ops (s));
2370 return true;
2371 }
2372 }
2373 else if (is_gimple_debug (s))
2374 return false;
2375 else
2376 {
2377 /* For statements without an LHS, examine all arguments. */
2378 for (i = 0; i < gimple_num_ops (s); i++)
2379 if (TREE_SIDE_EFFECTS (gimple_op (s, i))
2380 || TREE_THIS_VOLATILE (gimple_op (s, i)))
2381 {
2382 gcc_assert (gimple_has_volatile_ops (s));
2383 return true;
2384 }
2385 }
2386
2387 return false;
2388 }
2389
2390 /* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
2391 Return true if S can trap. When INCLUDE_MEM is true, check whether
2392 the memory operations could trap. When INCLUDE_STORES is true and
2393 S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked. */
2394
2395 bool
2396 gimple_could_trap_p_1 (gimple s, bool include_mem, bool include_stores)
2397 {
2398 tree t, div = NULL_TREE;
2399 enum tree_code op;
2400
2401 if (include_mem)
2402 {
2403 unsigned i, start = (is_gimple_assign (s) && !include_stores) ? 1 : 0;
2404
2405 for (i = start; i < gimple_num_ops (s); i++)
2406 if (tree_could_trap_p (gimple_op (s, i)))
2407 return true;
2408 }
2409
2410 switch (gimple_code (s))
2411 {
2412 case GIMPLE_ASM:
2413 return gimple_asm_volatile_p (s);
2414
2415 case GIMPLE_CALL:
2416 t = gimple_call_fndecl (s);
2417 /* Assume that calls to weak functions may trap. */
2418 if (!t || !DECL_P (t) || DECL_WEAK (t))
2419 return true;
2420 return false;
2421
2422 case GIMPLE_ASSIGN:
2423 t = gimple_expr_type (s);
2424 op = gimple_assign_rhs_code (s);
2425 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
2426 div = gimple_assign_rhs2 (s);
2427 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
2428 (INTEGRAL_TYPE_P (t)
2429 && TYPE_OVERFLOW_TRAPS (t)),
2430 div));
2431
2432 default:
2433 break;
2434 }
2435
2436 return false;
2437 }
2438
2439 /* Return true if statement S can trap. */
2440
2441 bool
2442 gimple_could_trap_p (gimple s)
2443 {
2444 return gimple_could_trap_p_1 (s, true, true);
2445 }
2446
2447 /* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
2448
2449 bool
2450 gimple_assign_rhs_could_trap_p (gimple s)
2451 {
2452 gcc_assert (is_gimple_assign (s));
2453 return gimple_could_trap_p_1 (s, true, false);
2454 }
2455
2456
2457 /* Print debugging information for gimple stmts generated. */
2458
2459 void
2460 dump_gimple_statistics (void)
2461 {
2462 #ifdef GATHER_STATISTICS
2463 int i, total_tuples = 0, total_bytes = 0;
2464
2465 fprintf (stderr, "\nGIMPLE statements\n");
2466 fprintf (stderr, "Kind Stmts Bytes\n");
2467 fprintf (stderr, "---------------------------------------\n");
2468 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
2469 {
2470 fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i],
2471 gimple_alloc_counts[i], gimple_alloc_sizes[i]);
2472 total_tuples += gimple_alloc_counts[i];
2473 total_bytes += gimple_alloc_sizes[i];
2474 }
2475 fprintf (stderr, "---------------------------------------\n");
2476 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes);
2477 fprintf (stderr, "---------------------------------------\n");
2478 #else
2479 fprintf (stderr, "No gimple statistics\n");
2480 #endif
2481 }
2482
2483
2484 /* Return the number of operands needed on the RHS of a GIMPLE
2485 assignment for an expression with tree code CODE. */
2486
2487 unsigned
2488 get_gimple_rhs_num_ops (enum tree_code code)
2489 {
2490 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
2491
2492 if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
2493 return 1;
2494 else if (rhs_class == GIMPLE_BINARY_RHS)
2495 return 2;
2496 else if (rhs_class == GIMPLE_TERNARY_RHS)
2497 return 3;
2498 else
2499 gcc_unreachable ();
2500 }
2501
2502 #define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
2503 (unsigned char) \
2504 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
2505 : ((TYPE) == tcc_binary \
2506 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
2507 : ((TYPE) == tcc_constant \
2508 || (TYPE) == tcc_declaration \
2509 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
2510 : ((SYM) == TRUTH_AND_EXPR \
2511 || (SYM) == TRUTH_OR_EXPR \
2512 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
2513 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
2514 : ((SYM) == WIDEN_MULT_PLUS_EXPR \
2515 || (SYM) == WIDEN_MULT_MINUS_EXPR \
2516 || (SYM) == FMA_EXPR) ? GIMPLE_TERNARY_RHS \
2517 : ((SYM) == COND_EXPR \
2518 || (SYM) == CONSTRUCTOR \
2519 || (SYM) == OBJ_TYPE_REF \
2520 || (SYM) == ASSERT_EXPR \
2521 || (SYM) == ADDR_EXPR \
2522 || (SYM) == WITH_SIZE_EXPR \
2523 || (SYM) == SSA_NAME \
2524 || (SYM) == POLYNOMIAL_CHREC \
2525 || (SYM) == DOT_PROD_EXPR \
2526 || (SYM) == VEC_COND_EXPR \
2527 || (SYM) == REALIGN_LOAD_EXPR) ? GIMPLE_SINGLE_RHS \
2528 : GIMPLE_INVALID_RHS),
2529 #define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
2530
2531 const unsigned char gimple_rhs_class_table[] = {
2532 #include "all-tree.def"
2533 };
2534
2535 #undef DEFTREECODE
2536 #undef END_OF_BASE_TREE_CODES
2537
2538 /* For the definitive definition of GIMPLE, see doc/tree-ssa.texi. */
2539
2540 /* Validation of GIMPLE expressions. */
2541
2542 /* Returns true iff T is a valid RHS for an assignment to a renamed
2543 user -- or front-end generated artificial -- variable. */
2544
2545 bool
2546 is_gimple_reg_rhs (tree t)
2547 {
2548 return get_gimple_rhs_class (TREE_CODE (t)) != GIMPLE_INVALID_RHS;
2549 }
2550
2551 /* Returns true iff T is a valid RHS for an assignment to an un-renamed
2552 LHS, or for a call argument. */
2553
2554 bool
2555 is_gimple_mem_rhs (tree t)
2556 {
2557 /* If we're dealing with a renamable type, either source or dest must be
2558 a renamed variable. */
2559 if (is_gimple_reg_type (TREE_TYPE (t)))
2560 return is_gimple_val (t);
2561 else
2562 return is_gimple_val (t) || is_gimple_lvalue (t);
2563 }
2564
2565 /* Return true if T is a valid LHS for a GIMPLE assignment expression. */
2566
2567 bool
2568 is_gimple_lvalue (tree t)
2569 {
2570 return (is_gimple_addressable (t)
2571 || TREE_CODE (t) == WITH_SIZE_EXPR
2572 /* These are complex lvalues, but don't have addresses, so they
2573 go here. */
2574 || TREE_CODE (t) == BIT_FIELD_REF);
2575 }
2576
2577 /* Return true if T is a GIMPLE condition. */
2578
2579 bool
2580 is_gimple_condexpr (tree t)
2581 {
2582 return (is_gimple_val (t) || (COMPARISON_CLASS_P (t)
2583 && !tree_could_trap_p (t)
2584 && is_gimple_val (TREE_OPERAND (t, 0))
2585 && is_gimple_val (TREE_OPERAND (t, 1))));
2586 }
2587
2588 /* Return true if T is something whose address can be taken. */
2589
2590 bool
2591 is_gimple_addressable (tree t)
2592 {
2593 return (is_gimple_id (t) || handled_component_p (t)
2594 || TREE_CODE (t) == MEM_REF);
2595 }
2596
2597 /* Return true if T is a valid gimple constant. */
2598
2599 bool
2600 is_gimple_constant (const_tree t)
2601 {
2602 switch (TREE_CODE (t))
2603 {
2604 case INTEGER_CST:
2605 case REAL_CST:
2606 case FIXED_CST:
2607 case STRING_CST:
2608 case COMPLEX_CST:
2609 case VECTOR_CST:
2610 return true;
2611
2612 /* Vector constant constructors are gimple invariant. */
2613 case CONSTRUCTOR:
2614 if (TREE_TYPE (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2615 return TREE_CONSTANT (t);
2616 else
2617 return false;
2618
2619 default:
2620 return false;
2621 }
2622 }
2623
2624 /* Return true if T is a gimple address. */
2625
2626 bool
2627 is_gimple_address (const_tree t)
2628 {
2629 tree op;
2630
2631 if (TREE_CODE (t) != ADDR_EXPR)
2632 return false;
2633
2634 op = TREE_OPERAND (t, 0);
2635 while (handled_component_p (op))
2636 {
2637 if ((TREE_CODE (op) == ARRAY_REF
2638 || TREE_CODE (op) == ARRAY_RANGE_REF)
2639 && !is_gimple_val (TREE_OPERAND (op, 1)))
2640 return false;
2641
2642 op = TREE_OPERAND (op, 0);
2643 }
2644
2645 if (CONSTANT_CLASS_P (op) || TREE_CODE (op) == MEM_REF)
2646 return true;
2647
2648 switch (TREE_CODE (op))
2649 {
2650 case PARM_DECL:
2651 case RESULT_DECL:
2652 case LABEL_DECL:
2653 case FUNCTION_DECL:
2654 case VAR_DECL:
2655 case CONST_DECL:
2656 return true;
2657
2658 default:
2659 return false;
2660 }
2661 }
2662
2663 /* Strip out all handled components that produce invariant
2664 offsets. */
2665
2666 static const_tree
2667 strip_invariant_refs (const_tree op)
2668 {
2669 while (handled_component_p (op))
2670 {
2671 switch (TREE_CODE (op))
2672 {
2673 case ARRAY_REF:
2674 case ARRAY_RANGE_REF:
2675 if (!is_gimple_constant (TREE_OPERAND (op, 1))
2676 || TREE_OPERAND (op, 2) != NULL_TREE
2677 || TREE_OPERAND (op, 3) != NULL_TREE)
2678 return NULL;
2679 break;
2680
2681 case COMPONENT_REF:
2682 if (TREE_OPERAND (op, 2) != NULL_TREE)
2683 return NULL;
2684 break;
2685
2686 default:;
2687 }
2688 op = TREE_OPERAND (op, 0);
2689 }
2690
2691 return op;
2692 }
2693
2694 /* Return true if T is a gimple invariant address. */
2695
2696 bool
2697 is_gimple_invariant_address (const_tree t)
2698 {
2699 const_tree op;
2700
2701 if (TREE_CODE (t) != ADDR_EXPR)
2702 return false;
2703
2704 op = strip_invariant_refs (TREE_OPERAND (t, 0));
2705 if (!op)
2706 return false;
2707
2708 if (TREE_CODE (op) == MEM_REF)
2709 {
2710 const_tree op0 = TREE_OPERAND (op, 0);
2711 return (TREE_CODE (op0) == ADDR_EXPR
2712 && (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))
2713 || decl_address_invariant_p (TREE_OPERAND (op0, 0))));
2714 }
2715
2716 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
2717 }
2718
2719 /* Return true if T is a gimple invariant address at IPA level
2720 (so addresses of variables on stack are not allowed). */
2721
2722 bool
2723 is_gimple_ip_invariant_address (const_tree t)
2724 {
2725 const_tree op;
2726
2727 if (TREE_CODE (t) != ADDR_EXPR)
2728 return false;
2729
2730 op = strip_invariant_refs (TREE_OPERAND (t, 0));
2731
2732 return op && (CONSTANT_CLASS_P (op) || decl_address_ip_invariant_p (op));
2733 }
2734
2735 /* Return true if T is a GIMPLE minimal invariant. It's a restricted
2736 form of function invariant. */
2737
2738 bool
2739 is_gimple_min_invariant (const_tree t)
2740 {
2741 if (TREE_CODE (t) == ADDR_EXPR)
2742 return is_gimple_invariant_address (t);
2743
2744 return is_gimple_constant (t);
2745 }
2746
2747 /* Return true if T is a GIMPLE interprocedural invariant. It's a restricted
2748 form of gimple minimal invariant. */
2749
2750 bool
2751 is_gimple_ip_invariant (const_tree t)
2752 {
2753 if (TREE_CODE (t) == ADDR_EXPR)
2754 return is_gimple_ip_invariant_address (t);
2755
2756 return is_gimple_constant (t);
2757 }
2758
2759 /* Return true if T looks like a valid GIMPLE statement. */
2760
2761 bool
2762 is_gimple_stmt (tree t)
2763 {
2764 const enum tree_code code = TREE_CODE (t);
2765
2766 switch (code)
2767 {
2768 case NOP_EXPR:
2769 /* The only valid NOP_EXPR is the empty statement. */
2770 return IS_EMPTY_STMT (t);
2771
2772 case BIND_EXPR:
2773 case COND_EXPR:
2774 /* These are only valid if they're void. */
2775 return TREE_TYPE (t) == NULL || VOID_TYPE_P (TREE_TYPE (t));
2776
2777 case SWITCH_EXPR:
2778 case GOTO_EXPR:
2779 case RETURN_EXPR:
2780 case LABEL_EXPR:
2781 case CASE_LABEL_EXPR:
2782 case TRY_CATCH_EXPR:
2783 case TRY_FINALLY_EXPR:
2784 case EH_FILTER_EXPR:
2785 case CATCH_EXPR:
2786 case ASM_EXPR:
2787 case STATEMENT_LIST:
2788 case OMP_PARALLEL:
2789 case OMP_FOR:
2790 case OMP_SECTIONS:
2791 case OMP_SECTION:
2792 case OMP_SINGLE:
2793 case OMP_MASTER:
2794 case OMP_ORDERED:
2795 case OMP_CRITICAL:
2796 case OMP_TASK:
2797 /* These are always void. */
2798 return true;
2799
2800 case CALL_EXPR:
2801 case MODIFY_EXPR:
2802 case PREDICT_EXPR:
2803 /* These are valid regardless of their type. */
2804 return true;
2805
2806 default:
2807 return false;
2808 }
2809 }
2810
2811 /* Return true if T is a variable. */
2812
2813 bool
2814 is_gimple_variable (tree t)
2815 {
2816 return (TREE_CODE (t) == VAR_DECL
2817 || TREE_CODE (t) == PARM_DECL
2818 || TREE_CODE (t) == RESULT_DECL
2819 || TREE_CODE (t) == SSA_NAME);
2820 }
2821
2822 /* Return true if T is a GIMPLE identifier (something with an address). */
2823
2824 bool
2825 is_gimple_id (tree t)
2826 {
2827 return (is_gimple_variable (t)
2828 || TREE_CODE (t) == FUNCTION_DECL
2829 || TREE_CODE (t) == LABEL_DECL
2830 || TREE_CODE (t) == CONST_DECL
2831 /* Allow string constants, since they are addressable. */
2832 || TREE_CODE (t) == STRING_CST);
2833 }
2834
2835 /* Return true if TYPE is a suitable type for a scalar register variable. */
2836
2837 bool
2838 is_gimple_reg_type (tree type)
2839 {
2840 return !AGGREGATE_TYPE_P (type);
2841 }
2842
2843 /* Return true if T is a non-aggregate register variable. */
2844
2845 bool
2846 is_gimple_reg (tree t)
2847 {
2848 if (TREE_CODE (t) == SSA_NAME)
2849 t = SSA_NAME_VAR (t);
2850
2851 if (!is_gimple_variable (t))
2852 return false;
2853
2854 if (!is_gimple_reg_type (TREE_TYPE (t)))
2855 return false;
2856
2857 /* A volatile decl is not acceptable because we can't reuse it as
2858 needed. We need to copy it into a temp first. */
2859 if (TREE_THIS_VOLATILE (t))
2860 return false;
2861
2862 /* We define "registers" as things that can be renamed as needed,
2863 which with our infrastructure does not apply to memory. */
2864 if (needs_to_live_in_memory (t))
2865 return false;
2866
2867 /* Hard register variables are an interesting case. For those that
2868 are call-clobbered, we don't know where all the calls are, since
2869 we don't (want to) take into account which operations will turn
2870 into libcalls at the rtl level. For those that are call-saved,
2871 we don't currently model the fact that calls may in fact change
2872 global hard registers, nor do we examine ASM_CLOBBERS at the tree
2873 level, and so miss variable changes that might imply. All around,
2874 it seems safest to not do too much optimization with these at the
2875 tree level at all. We'll have to rely on the rtl optimizers to
2876 clean this up, as there we've got all the appropriate bits exposed. */
2877 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
2878 return false;
2879
2880 /* Complex and vector values must have been put into SSA-like form.
2881 That is, no assignments to the individual components. */
2882 if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE
2883 || TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2884 return DECL_GIMPLE_REG_P (t);
2885
2886 return true;
2887 }
2888
2889
2890 /* Return true if T is a GIMPLE variable whose address is not needed. */
2891
2892 bool
2893 is_gimple_non_addressable (tree t)
2894 {
2895 if (TREE_CODE (t) == SSA_NAME)
2896 t = SSA_NAME_VAR (t);
2897
2898 return (is_gimple_variable (t) && ! needs_to_live_in_memory (t));
2899 }
2900
2901 /* Return true if T is a GIMPLE rvalue, i.e. an identifier or a constant. */
2902
2903 bool
2904 is_gimple_val (tree t)
2905 {
2906 /* Make loads from volatiles and memory vars explicit. */
2907 if (is_gimple_variable (t)
2908 && is_gimple_reg_type (TREE_TYPE (t))
2909 && !is_gimple_reg (t))
2910 return false;
2911
2912 return (is_gimple_variable (t) || is_gimple_min_invariant (t));
2913 }
2914
2915 /* Similarly, but accept hard registers as inputs to asm statements. */
2916
2917 bool
2918 is_gimple_asm_val (tree t)
2919 {
2920 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
2921 return true;
2922
2923 return is_gimple_val (t);
2924 }
2925
2926 /* Return true if T is a GIMPLE minimal lvalue. */
2927
2928 bool
2929 is_gimple_min_lval (tree t)
2930 {
2931 if (!(t = CONST_CAST_TREE (strip_invariant_refs (t))))
2932 return false;
2933 return (is_gimple_id (t) || TREE_CODE (t) == MEM_REF);
2934 }
2935
2936 /* Return true if T is a valid function operand of a CALL_EXPR. */
2937
2938 bool
2939 is_gimple_call_addr (tree t)
2940 {
2941 return (TREE_CODE (t) == OBJ_TYPE_REF || is_gimple_val (t));
2942 }
2943
2944 /* Return true if T is a valid address operand of a MEM_REF. */
2945
2946 bool
2947 is_gimple_mem_ref_addr (tree t)
2948 {
2949 return (is_gimple_reg (t)
2950 || TREE_CODE (t) == INTEGER_CST
2951 || (TREE_CODE (t) == ADDR_EXPR
2952 && (CONSTANT_CLASS_P (TREE_OPERAND (t, 0))
2953 || decl_address_invariant_p (TREE_OPERAND (t, 0)))));
2954 }
2955
2956 /* If T makes a function call, return the corresponding CALL_EXPR operand.
2957 Otherwise, return NULL_TREE. */
2958
2959 tree
2960 get_call_expr_in (tree t)
2961 {
2962 if (TREE_CODE (t) == MODIFY_EXPR)
2963 t = TREE_OPERAND (t, 1);
2964 if (TREE_CODE (t) == WITH_SIZE_EXPR)
2965 t = TREE_OPERAND (t, 0);
2966 if (TREE_CODE (t) == CALL_EXPR)
2967 return t;
2968 return NULL_TREE;
2969 }
2970
2971
2972 /* Given a memory reference expression T, return its base address.
2973 The base address of a memory reference expression is the main
2974 object being referenced. For instance, the base address for
2975 'array[i].fld[j]' is 'array'. You can think of this as stripping
2976 away the offset part from a memory address.
2977
2978 This function calls handled_component_p to strip away all the inner
2979 parts of the memory reference until it reaches the base object. */
2980
2981 tree
2982 get_base_address (tree t)
2983 {
2984 while (handled_component_p (t))
2985 t = TREE_OPERAND (t, 0);
2986
2987 if ((TREE_CODE (t) == MEM_REF
2988 || TREE_CODE (t) == TARGET_MEM_REF)
2989 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
2990 t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
2991
2992 if (TREE_CODE (t) == SSA_NAME
2993 || DECL_P (t)
2994 || TREE_CODE (t) == STRING_CST
2995 || TREE_CODE (t) == CONSTRUCTOR
2996 || INDIRECT_REF_P (t)
2997 || TREE_CODE (t) == MEM_REF
2998 || TREE_CODE (t) == TARGET_MEM_REF)
2999 return t;
3000 else
3001 return NULL_TREE;
3002 }
3003
3004 void
3005 recalculate_side_effects (tree t)
3006 {
3007 enum tree_code code = TREE_CODE (t);
3008 int len = TREE_OPERAND_LENGTH (t);
3009 int i;
3010
3011 switch (TREE_CODE_CLASS (code))
3012 {
3013 case tcc_expression:
3014 switch (code)
3015 {
3016 case INIT_EXPR:
3017 case MODIFY_EXPR:
3018 case VA_ARG_EXPR:
3019 case PREDECREMENT_EXPR:
3020 case PREINCREMENT_EXPR:
3021 case POSTDECREMENT_EXPR:
3022 case POSTINCREMENT_EXPR:
3023 /* All of these have side-effects, no matter what their
3024 operands are. */
3025 return;
3026
3027 default:
3028 break;
3029 }
3030 /* Fall through. */
3031
3032 case tcc_comparison: /* a comparison expression */
3033 case tcc_unary: /* a unary arithmetic expression */
3034 case tcc_binary: /* a binary arithmetic expression */
3035 case tcc_reference: /* a reference */
3036 case tcc_vl_exp: /* a function call */
3037 TREE_SIDE_EFFECTS (t) = TREE_THIS_VOLATILE (t);
3038 for (i = 0; i < len; ++i)
3039 {
3040 tree op = TREE_OPERAND (t, i);
3041 if (op && TREE_SIDE_EFFECTS (op))
3042 TREE_SIDE_EFFECTS (t) = 1;
3043 }
3044 break;
3045
3046 case tcc_constant:
3047 /* No side-effects. */
3048 return;
3049
3050 default:
3051 gcc_unreachable ();
3052 }
3053 }
3054
3055 /* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
3056 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
3057 we failed to create one. */
3058
3059 tree
3060 canonicalize_cond_expr_cond (tree t)
3061 {
3062 /* Strip conversions around boolean operations. */
3063 if (CONVERT_EXPR_P (t)
3064 && truth_value_p (TREE_CODE (TREE_OPERAND (t, 0))))
3065 t = TREE_OPERAND (t, 0);
3066
3067 /* For (bool)x use x != 0. */
3068 if (CONVERT_EXPR_P (t)
3069 && TREE_CODE (TREE_TYPE (t)) == BOOLEAN_TYPE)
3070 {
3071 tree top0 = TREE_OPERAND (t, 0);
3072 t = build2 (NE_EXPR, TREE_TYPE (t),
3073 top0, build_int_cst (TREE_TYPE (top0), 0));
3074 }
3075 /* For !x use x == 0. */
3076 else if (TREE_CODE (t) == TRUTH_NOT_EXPR)
3077 {
3078 tree top0 = TREE_OPERAND (t, 0);
3079 t = build2 (EQ_EXPR, TREE_TYPE (t),
3080 top0, build_int_cst (TREE_TYPE (top0), 0));
3081 }
3082 /* For cmp ? 1 : 0 use cmp. */
3083 else if (TREE_CODE (t) == COND_EXPR
3084 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
3085 && integer_onep (TREE_OPERAND (t, 1))
3086 && integer_zerop (TREE_OPERAND (t, 2)))
3087 {
3088 tree top0 = TREE_OPERAND (t, 0);
3089 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
3090 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
3091 }
3092
3093 if (is_gimple_condexpr (t))
3094 return t;
3095
3096 return NULL_TREE;
3097 }
3098
3099 /* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
3100 the positions marked by the set ARGS_TO_SKIP. */
3101
3102 gimple
3103 gimple_call_copy_skip_args (gimple stmt, bitmap args_to_skip)
3104 {
3105 int i;
3106 tree fn = gimple_call_fn (stmt);
3107 int nargs = gimple_call_num_args (stmt);
3108 VEC(tree, heap) *vargs = VEC_alloc (tree, heap, nargs);
3109 gimple new_stmt;
3110
3111 for (i = 0; i < nargs; i++)
3112 if (!bitmap_bit_p (args_to_skip, i))
3113 VEC_quick_push (tree, vargs, gimple_call_arg (stmt, i));
3114
3115 new_stmt = gimple_build_call_vec (fn, vargs);
3116 VEC_free (tree, heap, vargs);
3117 if (gimple_call_lhs (stmt))
3118 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
3119
3120 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
3121 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
3122
3123 gimple_set_block (new_stmt, gimple_block (stmt));
3124 if (gimple_has_location (stmt))
3125 gimple_set_location (new_stmt, gimple_location (stmt));
3126 gimple_call_copy_flags (new_stmt, stmt);
3127 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
3128
3129 gimple_set_modified (new_stmt, true);
3130
3131 return new_stmt;
3132 }
3133
3134
3135 static hashval_t gimple_type_hash (const void *);
3136
3137 /* Structure used to maintain a cache of some type pairs compared by
3138 gimple_types_compatible_p when comparing aggregate types. There are
3139 three possible values for SAME_P:
3140
3141 -2: The pair (T1, T2) has just been inserted in the table.
3142 0: T1 and T2 are different types.
3143 1: T1 and T2 are the same type.
3144
3145 The two elements in the SAME_P array are indexed by the comparison
3146 mode gtc_mode. */
3147
3148 struct type_pair_d
3149 {
3150 unsigned int uid1;
3151 unsigned int uid2;
3152 signed char same_p[2];
3153 };
3154 typedef struct type_pair_d *type_pair_t;
3155
3156 DEF_VEC_P(type_pair_t);
3157 DEF_VEC_ALLOC_P(type_pair_t,heap);
3158
3159 /* Return a hash value for the type pair pointed-to by P. */
3160
3161 static hashval_t
3162 type_pair_hash (const void *p)
3163 {
3164 const struct type_pair_d *pair = (const struct type_pair_d *) p;
3165 hashval_t val1 = pair->uid1;
3166 hashval_t val2 = pair->uid2;
3167 return (iterative_hash_hashval_t (val2, val1)
3168 ^ iterative_hash_hashval_t (val1, val2));
3169 }
3170
3171 /* Compare two type pairs pointed-to by P1 and P2. */
3172
3173 static int
3174 type_pair_eq (const void *p1, const void *p2)
3175 {
3176 const struct type_pair_d *pair1 = (const struct type_pair_d *) p1;
3177 const struct type_pair_d *pair2 = (const struct type_pair_d *) p2;
3178 return ((pair1->uid1 == pair2->uid1 && pair1->uid2 == pair2->uid2)
3179 || (pair1->uid1 == pair2->uid2 && pair1->uid2 == pair2->uid1));
3180 }
3181
3182 /* Lookup the pair of types T1 and T2 in *VISITED_P. Insert a new
3183 entry if none existed. */
3184
3185 static type_pair_t
3186 lookup_type_pair (tree t1, tree t2, htab_t *visited_p, struct obstack *ob_p)
3187 {
3188 struct type_pair_d pair;
3189 type_pair_t p;
3190 void **slot;
3191
3192 if (*visited_p == NULL)
3193 {
3194 *visited_p = htab_create (251, type_pair_hash, type_pair_eq, NULL);
3195 gcc_obstack_init (ob_p);
3196 }
3197
3198 pair.uid1 = TYPE_UID (t1);
3199 pair.uid2 = TYPE_UID (t2);
3200 slot = htab_find_slot (*visited_p, &pair, INSERT);
3201
3202 if (*slot)
3203 p = *((type_pair_t *) slot);
3204 else
3205 {
3206 p = XOBNEW (ob_p, struct type_pair_d);
3207 p->uid1 = TYPE_UID (t1);
3208 p->uid2 = TYPE_UID (t2);
3209 p->same_p[0] = -2;
3210 p->same_p[1] = -2;
3211 *slot = (void *) p;
3212 }
3213
3214 return p;
3215 }
3216
3217 /* Per pointer state for the SCC finding. The on_sccstack flag
3218 is not strictly required, it is true when there is no hash value
3219 recorded for the type and false otherwise. But querying that
3220 is slower. */
3221
3222 struct sccs
3223 {
3224 unsigned int dfsnum;
3225 unsigned int low;
3226 bool on_sccstack;
3227 union {
3228 hashval_t hash;
3229 signed char same_p;
3230 } u;
3231 };
3232
3233 static unsigned int next_dfs_num;
3234 static unsigned int gtc_next_dfs_num;
3235
3236
3237 /* GIMPLE type merging cache. A direct-mapped cache based on TYPE_UID. */
3238
3239 typedef struct GTY(()) gimple_type_leader_entry_s {
3240 tree type;
3241 tree leader;
3242 } gimple_type_leader_entry;
3243
3244 #define GIMPLE_TYPE_LEADER_SIZE 16381
3245 static GTY((length("GIMPLE_TYPE_LEADER_SIZE"))) gimple_type_leader_entry
3246 *gimple_type_leader;
3247
3248 /* Lookup an existing leader for T and return it or NULL_TREE, if
3249 there is none in the cache. */
3250
3251 static tree
3252 gimple_lookup_type_leader (tree t)
3253 {
3254 gimple_type_leader_entry *leader;
3255
3256 if (!gimple_type_leader)
3257 return NULL_TREE;
3258
3259 leader = &gimple_type_leader[TYPE_UID (t) % GIMPLE_TYPE_LEADER_SIZE];
3260 if (leader->type != t)
3261 return NULL_TREE;
3262
3263 return leader->leader;
3264 }
3265
3266 /* Return true if T1 and T2 have the same name. If FOR_COMPLETION_P is
3267 true then if any type has no name return false, otherwise return
3268 true if both types have no names. */
3269
3270 static bool
3271 compare_type_names_p (tree t1, tree t2, bool for_completion_p)
3272 {
3273 tree name1 = TYPE_NAME (t1);
3274 tree name2 = TYPE_NAME (t2);
3275
3276 /* Consider anonymous types all unique for completion. */
3277 if (for_completion_p
3278 && (!name1 || !name2))
3279 return false;
3280
3281 if (name1 && TREE_CODE (name1) == TYPE_DECL)
3282 {
3283 name1 = DECL_NAME (name1);
3284 if (for_completion_p
3285 && !name1)
3286 return false;
3287 }
3288 gcc_assert (!name1 || TREE_CODE (name1) == IDENTIFIER_NODE);
3289
3290 if (name2 && TREE_CODE (name2) == TYPE_DECL)
3291 {
3292 name2 = DECL_NAME (name2);
3293 if (for_completion_p
3294 && !name2)
3295 return false;
3296 }
3297 gcc_assert (!name2 || TREE_CODE (name2) == IDENTIFIER_NODE);
3298
3299 /* Identifiers can be compared with pointer equality rather
3300 than a string comparison. */
3301 if (name1 == name2)
3302 return true;
3303
3304 return false;
3305 }
3306
3307 /* Return true if the field decls F1 and F2 are at the same offset.
3308
3309 This is intended to be used on GIMPLE types only. In order to
3310 compare GENERIC types, use fields_compatible_p instead. */
3311
3312 bool
3313 gimple_compare_field_offset (tree f1, tree f2)
3314 {
3315 if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
3316 {
3317 tree offset1 = DECL_FIELD_OFFSET (f1);
3318 tree offset2 = DECL_FIELD_OFFSET (f2);
3319 return ((offset1 == offset2
3320 /* Once gimplification is done, self-referential offsets are
3321 instantiated as operand #2 of the COMPONENT_REF built for
3322 each access and reset. Therefore, they are not relevant
3323 anymore and fields are interchangeable provided that they
3324 represent the same access. */
3325 || (TREE_CODE (offset1) == PLACEHOLDER_EXPR
3326 && TREE_CODE (offset2) == PLACEHOLDER_EXPR
3327 && (DECL_SIZE (f1) == DECL_SIZE (f2)
3328 || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
3329 && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
3330 || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0))
3331 && DECL_ALIGN (f1) == DECL_ALIGN (f2))
3332 || operand_equal_p (offset1, offset2, 0))
3333 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
3334 DECL_FIELD_BIT_OFFSET (f2)));
3335 }
3336
3337 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
3338 should be, so handle differing ones specially by decomposing
3339 the offset into a byte and bit offset manually. */
3340 if (host_integerp (DECL_FIELD_OFFSET (f1), 0)
3341 && host_integerp (DECL_FIELD_OFFSET (f2), 0))
3342 {
3343 unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
3344 unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
3345 bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
3346 byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
3347 + bit_offset1 / BITS_PER_UNIT);
3348 bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
3349 byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
3350 + bit_offset2 / BITS_PER_UNIT);
3351 if (byte_offset1 != byte_offset2)
3352 return false;
3353 return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
3354 }
3355
3356 return false;
3357 }
3358
3359 /* If the type T1 and the type T2 are a complete and an incomplete
3360 variant of the same type return true. */
3361
3362 static bool
3363 gimple_compatible_complete_and_incomplete_subtype_p (tree t1, tree t2)
3364 {
3365 /* If one pointer points to an incomplete type variant of
3366 the other pointed-to type they are the same. */
3367 if (TREE_CODE (t1) == TREE_CODE (t2)
3368 && RECORD_OR_UNION_TYPE_P (t1)
3369 && (!COMPLETE_TYPE_P (t1)
3370 || !COMPLETE_TYPE_P (t2))
3371 && TYPE_QUALS (t1) == TYPE_QUALS (t2)
3372 && compare_type_names_p (TYPE_MAIN_VARIANT (t1),
3373 TYPE_MAIN_VARIANT (t2), true))
3374 return true;
3375 return false;
3376 }
3377
3378 static bool
3379 gimple_types_compatible_p_1 (tree, tree, enum gtc_mode, type_pair_t,
3380 VEC(type_pair_t, heap) **,
3381 struct pointer_map_t *, struct obstack *);
3382
3383 /* DFS visit the edge from the callers type pair with state *STATE to
3384 the pair T1, T2 while operating in FOR_MERGING_P mode.
3385 Update the merging status if it is not part of the SCC containing the
3386 callers pair and return it.
3387 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3388
3389 static bool
3390 gtc_visit (tree t1, tree t2, enum gtc_mode mode,
3391 struct sccs *state,
3392 VEC(type_pair_t, heap) **sccstack,
3393 struct pointer_map_t *sccstate,
3394 struct obstack *sccstate_obstack)
3395 {
3396 struct sccs *cstate = NULL;
3397 type_pair_t p;
3398 void **slot;
3399
3400 /* Check first for the obvious case of pointer identity. */
3401 if (t1 == t2)
3402 return true;
3403
3404 /* Check that we have two types to compare. */
3405 if (t1 == NULL_TREE || t2 == NULL_TREE)
3406 return false;
3407
3408 /* If the types have been previously registered and found equal
3409 they still are. */
3410 if (mode == GTC_MERGE)
3411 {
3412 tree leader1 = gimple_lookup_type_leader (t1);
3413 tree leader2 = gimple_lookup_type_leader (t2);
3414 if (leader1 == t2
3415 || t1 == leader2
3416 || (leader1 && leader1 == leader2))
3417 return true;
3418 }
3419 else if (mode == GTC_DIAG)
3420 {
3421 if (TYPE_CANONICAL (t1)
3422 && TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2))
3423 return true;
3424 }
3425
3426 /* Can't be the same type if the types don't have the same code. */
3427 if (TREE_CODE (t1) != TREE_CODE (t2))
3428 return false;
3429
3430 /* Can't be the same type if they have different CV qualifiers. */
3431 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
3432 return false;
3433
3434 /* Void types are always the same. */
3435 if (TREE_CODE (t1) == VOID_TYPE)
3436 return true;
3437
3438 /* Do some simple checks before doing three hashtable queries. */
3439 if (INTEGRAL_TYPE_P (t1)
3440 || SCALAR_FLOAT_TYPE_P (t1)
3441 || FIXED_POINT_TYPE_P (t1)
3442 || TREE_CODE (t1) == VECTOR_TYPE
3443 || TREE_CODE (t1) == COMPLEX_TYPE
3444 || TREE_CODE (t1) == OFFSET_TYPE)
3445 {
3446 /* Can't be the same type if they have different alignment,
3447 sign, precision or mode. */
3448 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3449 || TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
3450 || TYPE_MODE (t1) != TYPE_MODE (t2)
3451 || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
3452 return false;
3453
3454 if (TREE_CODE (t1) == INTEGER_TYPE
3455 && (TYPE_IS_SIZETYPE (t1) != TYPE_IS_SIZETYPE (t2)
3456 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)))
3457 return false;
3458
3459 /* That's all we need to check for float and fixed-point types. */
3460 if (SCALAR_FLOAT_TYPE_P (t1)
3461 || FIXED_POINT_TYPE_P (t1))
3462 return true;
3463
3464 /* For integral types fall thru to more complex checks. */
3465 }
3466
3467 else if (AGGREGATE_TYPE_P (t1) || POINTER_TYPE_P (t1))
3468 {
3469 /* Can't be the same type if they have different alignment or mode. */
3470 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3471 || TYPE_MODE (t1) != TYPE_MODE (t2))
3472 return false;
3473 }
3474
3475 /* If the hash values of t1 and t2 are different the types can't
3476 possibly be the same. This helps keeping the type-pair hashtable
3477 small, only tracking comparisons for hash collisions. */
3478 if (gimple_type_hash (t1) != gimple_type_hash (t2))
3479 return false;
3480
3481 /* Allocate a new cache entry for this comparison. */
3482 p = lookup_type_pair (t1, t2, &gtc_visited, &gtc_ob);
3483 if (p->same_p[mode] == 0 || p->same_p[mode] == 1)
3484 {
3485 /* We have already decided whether T1 and T2 are the
3486 same, return the cached result. */
3487 return p->same_p[mode] == 1;
3488 }
3489
3490 if ((slot = pointer_map_contains (sccstate, p)) != NULL)
3491 cstate = (struct sccs *)*slot;
3492 /* Not yet visited. DFS recurse. */
3493 if (!cstate)
3494 {
3495 gimple_types_compatible_p_1 (t1, t2, mode, p,
3496 sccstack, sccstate, sccstate_obstack);
3497 cstate = (struct sccs *)* pointer_map_contains (sccstate, p);
3498 state->low = MIN (state->low, cstate->low);
3499 }
3500 /* If the type is still on the SCC stack adjust the parents low. */
3501 if (cstate->dfsnum < state->dfsnum
3502 && cstate->on_sccstack)
3503 state->low = MIN (cstate->dfsnum, state->low);
3504
3505 /* Return the current lattice value. We start with an equality
3506 assumption so types part of a SCC will be optimistically
3507 treated equal unless proven otherwise. */
3508 return cstate->u.same_p;
3509 }
3510
3511 /* Worker for gimple_types_compatible.
3512 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3513
3514 static bool
3515 gimple_types_compatible_p_1 (tree t1, tree t2, enum gtc_mode mode,
3516 type_pair_t p,
3517 VEC(type_pair_t, heap) **sccstack,
3518 struct pointer_map_t *sccstate,
3519 struct obstack *sccstate_obstack)
3520 {
3521 struct sccs *state;
3522
3523 gcc_assert (p->same_p[mode] == -2);
3524
3525 state = XOBNEW (sccstate_obstack, struct sccs);
3526 *pointer_map_insert (sccstate, p) = state;
3527
3528 VEC_safe_push (type_pair_t, heap, *sccstack, p);
3529 state->dfsnum = gtc_next_dfs_num++;
3530 state->low = state->dfsnum;
3531 state->on_sccstack = true;
3532 /* Start with an equality assumption. As we DFS recurse into child
3533 SCCs this assumption may get revisited. */
3534 state->u.same_p = 1;
3535
3536 /* If their attributes are not the same they can't be the same type. */
3537 if (!attribute_list_equal (TYPE_ATTRIBUTES (t1), TYPE_ATTRIBUTES (t2)))
3538 goto different_types;
3539
3540 /* Do type-specific comparisons. */
3541 switch (TREE_CODE (t1))
3542 {
3543 case VECTOR_TYPE:
3544 case COMPLEX_TYPE:
3545 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode,
3546 state, sccstack, sccstate, sccstate_obstack))
3547 goto different_types;
3548 goto same_types;
3549
3550 case ARRAY_TYPE:
3551 /* Array types are the same if the element types are the same and
3552 the number of elements are the same. */
3553 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode,
3554 state, sccstack, sccstate, sccstate_obstack)
3555 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
3556 || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
3557 goto different_types;
3558 else
3559 {
3560 tree i1 = TYPE_DOMAIN (t1);
3561 tree i2 = TYPE_DOMAIN (t2);
3562
3563 /* For an incomplete external array, the type domain can be
3564 NULL_TREE. Check this condition also. */
3565 if (i1 == NULL_TREE && i2 == NULL_TREE)
3566 goto same_types;
3567 else if (i1 == NULL_TREE || i2 == NULL_TREE)
3568 goto different_types;
3569 /* If for a complete array type the possibly gimplified sizes
3570 are different the types are different. */
3571 else if (((TYPE_SIZE (i1) != NULL) ^ (TYPE_SIZE (i2) != NULL))
3572 || (TYPE_SIZE (i1)
3573 && TYPE_SIZE (i2)
3574 && !operand_equal_p (TYPE_SIZE (i1), TYPE_SIZE (i2), 0)))
3575 goto different_types;
3576 else
3577 {
3578 tree min1 = TYPE_MIN_VALUE (i1);
3579 tree min2 = TYPE_MIN_VALUE (i2);
3580 tree max1 = TYPE_MAX_VALUE (i1);
3581 tree max2 = TYPE_MAX_VALUE (i2);
3582
3583 /* The minimum/maximum values have to be the same. */
3584 if ((min1 == min2
3585 || (min1 && min2
3586 && ((TREE_CODE (min1) == PLACEHOLDER_EXPR
3587 && TREE_CODE (min2) == PLACEHOLDER_EXPR)
3588 || operand_equal_p (min1, min2, 0))))
3589 && (max1 == max2
3590 || (max1 && max2
3591 && ((TREE_CODE (max1) == PLACEHOLDER_EXPR
3592 && TREE_CODE (max2) == PLACEHOLDER_EXPR)
3593 || operand_equal_p (max1, max2, 0)))))
3594 goto same_types;
3595 else
3596 goto different_types;
3597 }
3598 }
3599
3600 case METHOD_TYPE:
3601 /* Method types should belong to the same class. */
3602 if (!gtc_visit (TYPE_METHOD_BASETYPE (t1), TYPE_METHOD_BASETYPE (t2),
3603 mode, state, sccstack, sccstate, sccstate_obstack))
3604 goto different_types;
3605
3606 /* Fallthru */
3607
3608 case FUNCTION_TYPE:
3609 /* Function types are the same if the return type and arguments types
3610 are the same. */
3611 if ((mode != GTC_DIAG
3612 || !gimple_compatible_complete_and_incomplete_subtype_p
3613 (TREE_TYPE (t1), TREE_TYPE (t2)))
3614 && !gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode,
3615 state, sccstack, sccstate, sccstate_obstack))
3616 goto different_types;
3617
3618 if (!targetm.comp_type_attributes (t1, t2))
3619 goto different_types;
3620
3621 if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
3622 goto same_types;
3623 else
3624 {
3625 tree parms1, parms2;
3626
3627 for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
3628 parms1 && parms2;
3629 parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
3630 {
3631 if ((mode == GTC_MERGE
3632 || !gimple_compatible_complete_and_incomplete_subtype_p
3633 (TREE_VALUE (parms1), TREE_VALUE (parms2)))
3634 && !gtc_visit (TREE_VALUE (parms1), TREE_VALUE (parms2), mode,
3635 state, sccstack, sccstate, sccstate_obstack))
3636 goto different_types;
3637 }
3638
3639 if (parms1 || parms2)
3640 goto different_types;
3641
3642 goto same_types;
3643 }
3644
3645 case OFFSET_TYPE:
3646 {
3647 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode,
3648 state, sccstack, sccstate, sccstate_obstack)
3649 || !gtc_visit (TYPE_OFFSET_BASETYPE (t1),
3650 TYPE_OFFSET_BASETYPE (t2), mode,
3651 state, sccstack, sccstate, sccstate_obstack))
3652 goto different_types;
3653
3654 goto same_types;
3655 }
3656
3657 case POINTER_TYPE:
3658 case REFERENCE_TYPE:
3659 {
3660 /* If the two pointers have different ref-all attributes,
3661 they can't be the same type. */
3662 if (TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
3663 goto different_types;
3664
3665 /* If one pointer points to an incomplete type variant of
3666 the other pointed-to type they are the same. */
3667 if (mode == GTC_DIAG
3668 && gimple_compatible_complete_and_incomplete_subtype_p
3669 (TREE_TYPE (t1), TREE_TYPE (t2)))
3670 goto same_types;
3671
3672 /* Otherwise, pointer and reference types are the same if the
3673 pointed-to types are the same. */
3674 if (gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode,
3675 state, sccstack, sccstate, sccstate_obstack))
3676 goto same_types;
3677
3678 goto different_types;
3679 }
3680
3681 case NULLPTR_TYPE:
3682 /* There is only one decltype(nullptr). */
3683 goto same_types;
3684
3685 case INTEGER_TYPE:
3686 case BOOLEAN_TYPE:
3687 {
3688 tree min1 = TYPE_MIN_VALUE (t1);
3689 tree max1 = TYPE_MAX_VALUE (t1);
3690 tree min2 = TYPE_MIN_VALUE (t2);
3691 tree max2 = TYPE_MAX_VALUE (t2);
3692 bool min_equal_p = false;
3693 bool max_equal_p = false;
3694
3695 /* If either type has a minimum value, the other type must
3696 have the same. */
3697 if (min1 == NULL_TREE && min2 == NULL_TREE)
3698 min_equal_p = true;
3699 else if (min1 && min2 && operand_equal_p (min1, min2, 0))
3700 min_equal_p = true;
3701
3702 /* Likewise, if either type has a maximum value, the other
3703 type must have the same. */
3704 if (max1 == NULL_TREE && max2 == NULL_TREE)
3705 max_equal_p = true;
3706 else if (max1 && max2 && operand_equal_p (max1, max2, 0))
3707 max_equal_p = true;
3708
3709 if (!min_equal_p || !max_equal_p)
3710 goto different_types;
3711
3712 goto same_types;
3713 }
3714
3715 case ENUMERAL_TYPE:
3716 {
3717 /* FIXME lto, we cannot check bounds on enumeral types because
3718 different front ends will produce different values.
3719 In C, enumeral types are integers, while in C++ each element
3720 will have its own symbolic value. We should decide how enums
3721 are to be represented in GIMPLE and have each front end lower
3722 to that. */
3723 tree v1, v2;
3724
3725 /* For enumeral types, all the values must be the same. */
3726 if (TYPE_VALUES (t1) == TYPE_VALUES (t2))
3727 goto same_types;
3728
3729 for (v1 = TYPE_VALUES (t1), v2 = TYPE_VALUES (t2);
3730 v1 && v2;
3731 v1 = TREE_CHAIN (v1), v2 = TREE_CHAIN (v2))
3732 {
3733 tree c1 = TREE_VALUE (v1);
3734 tree c2 = TREE_VALUE (v2);
3735
3736 if (TREE_CODE (c1) == CONST_DECL)
3737 c1 = DECL_INITIAL (c1);
3738
3739 if (TREE_CODE (c2) == CONST_DECL)
3740 c2 = DECL_INITIAL (c2);
3741
3742 if (tree_int_cst_equal (c1, c2) != 1)
3743 goto different_types;
3744 }
3745
3746 /* If one enumeration has more values than the other, they
3747 are not the same. */
3748 if (v1 || v2)
3749 goto different_types;
3750
3751 goto same_types;
3752 }
3753
3754 case RECORD_TYPE:
3755 case UNION_TYPE:
3756 case QUAL_UNION_TYPE:
3757 {
3758 tree f1, f2;
3759
3760 /* The struct tags shall compare equal. */
3761 if (!compare_type_names_p (TYPE_MAIN_VARIANT (t1),
3762 TYPE_MAIN_VARIANT (t2), false))
3763 goto different_types;
3764
3765 /* For aggregate types, all the fields must be the same. */
3766 for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
3767 f1 && f2;
3768 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
3769 {
3770 /* The fields must have the same name, offset and type. */
3771 if (DECL_NAME (f1) != DECL_NAME (f2)
3772 || DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
3773 || !gimple_compare_field_offset (f1, f2)
3774 || !gtc_visit (TREE_TYPE (f1), TREE_TYPE (f2), mode,
3775 state, sccstack, sccstate, sccstate_obstack))
3776 goto different_types;
3777 }
3778
3779 /* If one aggregate has more fields than the other, they
3780 are not the same. */
3781 if (f1 || f2)
3782 goto different_types;
3783
3784 goto same_types;
3785 }
3786
3787 default:
3788 gcc_unreachable ();
3789 }
3790
3791 /* Common exit path for types that are not compatible. */
3792 different_types:
3793 state->u.same_p = 0;
3794 goto pop;
3795
3796 /* Common exit path for types that are compatible. */
3797 same_types:
3798 gcc_assert (state->u.same_p == 1);
3799
3800 pop:
3801 if (state->low == state->dfsnum)
3802 {
3803 type_pair_t x;
3804
3805 /* Pop off the SCC and set its cache values to the final
3806 comparison result. */
3807 do
3808 {
3809 struct sccs *cstate;
3810 x = VEC_pop (type_pair_t, *sccstack);
3811 cstate = (struct sccs *)*pointer_map_contains (sccstate, x);
3812 cstate->on_sccstack = false;
3813 x->same_p[mode] = state->u.same_p;
3814 }
3815 while (x != p);
3816 }
3817
3818 return state->u.same_p;
3819 }
3820
3821 /* Return true iff T1 and T2 are structurally identical. When
3822 FOR_MERGING_P is true the an incomplete type and a complete type
3823 are considered different, otherwise they are considered compatible. */
3824
3825 bool
3826 gimple_types_compatible_p (tree t1, tree t2, enum gtc_mode mode)
3827 {
3828 VEC(type_pair_t, heap) *sccstack = NULL;
3829 struct pointer_map_t *sccstate;
3830 struct obstack sccstate_obstack;
3831 type_pair_t p = NULL;
3832 bool res;
3833
3834 /* Before starting to set up the SCC machinery handle simple cases. */
3835
3836 /* Check first for the obvious case of pointer identity. */
3837 if (t1 == t2)
3838 return true;
3839
3840 /* Check that we have two types to compare. */
3841 if (t1 == NULL_TREE || t2 == NULL_TREE)
3842 return false;
3843
3844 /* If the types have been previously registered and found equal
3845 they still are. */
3846 if (mode == GTC_MERGE)
3847 {
3848 tree leader1 = gimple_lookup_type_leader (t1);
3849 tree leader2 = gimple_lookup_type_leader (t2);
3850 if (leader1 == t2
3851 || t1 == leader2
3852 || (leader1 && leader1 == leader2))
3853 return true;
3854 }
3855 else if (mode == GTC_DIAG)
3856 {
3857 if (TYPE_CANONICAL (t1)
3858 && TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2))
3859 return true;
3860 }
3861
3862 /* Can't be the same type if the types don't have the same code. */
3863 if (TREE_CODE (t1) != TREE_CODE (t2))
3864 return false;
3865
3866 /* Can't be the same type if they have different CV qualifiers. */
3867 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
3868 return false;
3869
3870 /* Void types are always the same. */
3871 if (TREE_CODE (t1) == VOID_TYPE)
3872 return true;
3873
3874 /* Do some simple checks before doing three hashtable queries. */
3875 if (INTEGRAL_TYPE_P (t1)
3876 || SCALAR_FLOAT_TYPE_P (t1)
3877 || FIXED_POINT_TYPE_P (t1)
3878 || TREE_CODE (t1) == VECTOR_TYPE
3879 || TREE_CODE (t1) == COMPLEX_TYPE
3880 || TREE_CODE (t1) == OFFSET_TYPE)
3881 {
3882 /* Can't be the same type if they have different alignment,
3883 sign, precision or mode. */
3884 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3885 || TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
3886 || TYPE_MODE (t1) != TYPE_MODE (t2)
3887 || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
3888 return false;
3889
3890 if (TREE_CODE (t1) == INTEGER_TYPE
3891 && (TYPE_IS_SIZETYPE (t1) != TYPE_IS_SIZETYPE (t2)
3892 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)))
3893 return false;
3894
3895 /* That's all we need to check for float and fixed-point types. */
3896 if (SCALAR_FLOAT_TYPE_P (t1)
3897 || FIXED_POINT_TYPE_P (t1))
3898 return true;
3899
3900 /* For integral types fall thru to more complex checks. */
3901 }
3902
3903 else if (AGGREGATE_TYPE_P (t1) || POINTER_TYPE_P (t1))
3904 {
3905 /* Can't be the same type if they have different alignment or mode. */
3906 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3907 || TYPE_MODE (t1) != TYPE_MODE (t2))
3908 return false;
3909 }
3910
3911 /* If the hash values of t1 and t2 are different the types can't
3912 possibly be the same. This helps keeping the type-pair hashtable
3913 small, only tracking comparisons for hash collisions. */
3914 if (gimple_type_hash (t1) != gimple_type_hash (t2))
3915 return false;
3916
3917 /* If we've visited this type pair before (in the case of aggregates
3918 with self-referential types), and we made a decision, return it. */
3919 p = lookup_type_pair (t1, t2, &gtc_visited, &gtc_ob);
3920 if (p->same_p[mode] == 0 || p->same_p[mode] == 1)
3921 {
3922 /* We have already decided whether T1 and T2 are the
3923 same, return the cached result. */
3924 return p->same_p[mode] == 1;
3925 }
3926
3927 /* Now set up the SCC machinery for the comparison. */
3928 gtc_next_dfs_num = 1;
3929 sccstate = pointer_map_create ();
3930 gcc_obstack_init (&sccstate_obstack);
3931 res = gimple_types_compatible_p_1 (t1, t2, mode, p,
3932 &sccstack, sccstate, &sccstate_obstack);
3933 VEC_free (type_pair_t, heap, sccstack);
3934 pointer_map_destroy (sccstate);
3935 obstack_free (&sccstate_obstack, NULL);
3936
3937 return res;
3938 }
3939
3940
3941 static hashval_t
3942 iterative_hash_gimple_type (tree, hashval_t, VEC(tree, heap) **,
3943 struct pointer_map_t *, struct obstack *);
3944
3945 /* DFS visit the edge from the callers type with state *STATE to T.
3946 Update the callers type hash V with the hash for T if it is not part
3947 of the SCC containing the callers type and return it.
3948 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3949
3950 static hashval_t
3951 visit (tree t, struct sccs *state, hashval_t v,
3952 VEC (tree, heap) **sccstack,
3953 struct pointer_map_t *sccstate,
3954 struct obstack *sccstate_obstack)
3955 {
3956 struct sccs *cstate = NULL;
3957 struct tree_int_map m;
3958 void **slot;
3959
3960 /* If there is a hash value recorded for this type then it can't
3961 possibly be part of our parent SCC. Simply mix in its hash. */
3962 m.base.from = t;
3963 if ((slot = htab_find_slot (type_hash_cache, &m, NO_INSERT))
3964 && *slot)
3965 return iterative_hash_hashval_t (((struct tree_int_map *) *slot)->to, v);
3966
3967 if ((slot = pointer_map_contains (sccstate, t)) != NULL)
3968 cstate = (struct sccs *)*slot;
3969 if (!cstate)
3970 {
3971 hashval_t tem;
3972 /* Not yet visited. DFS recurse. */
3973 tem = iterative_hash_gimple_type (t, v,
3974 sccstack, sccstate, sccstate_obstack);
3975 if (!cstate)
3976 cstate = (struct sccs *)* pointer_map_contains (sccstate, t);
3977 state->low = MIN (state->low, cstate->low);
3978 /* If the type is no longer on the SCC stack and thus is not part
3979 of the parents SCC mix in its hash value. Otherwise we will
3980 ignore the type for hashing purposes and return the unaltered
3981 hash value. */
3982 if (!cstate->on_sccstack)
3983 return tem;
3984 }
3985 if (cstate->dfsnum < state->dfsnum
3986 && cstate->on_sccstack)
3987 state->low = MIN (cstate->dfsnum, state->low);
3988
3989 /* We are part of our parents SCC, skip this type during hashing
3990 and return the unaltered hash value. */
3991 return v;
3992 }
3993
3994 /* Hash NAME with the previous hash value V and return it. */
3995
3996 static hashval_t
3997 iterative_hash_name (tree name, hashval_t v)
3998 {
3999 if (!name)
4000 return v;
4001 if (TREE_CODE (name) == TYPE_DECL)
4002 name = DECL_NAME (name);
4003 if (!name)
4004 return v;
4005 gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
4006 return iterative_hash_object (IDENTIFIER_HASH_VALUE (name), v);
4007 }
4008
4009 /* Returning a hash value for gimple type TYPE combined with VAL.
4010 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done.
4011
4012 To hash a type we end up hashing in types that are reachable.
4013 Through pointers we can end up with cycles which messes up the
4014 required property that we need to compute the same hash value
4015 for structurally equivalent types. To avoid this we have to
4016 hash all types in a cycle (the SCC) in a commutative way. The
4017 easiest way is to not mix in the hashes of the SCC members at
4018 all. To make this work we have to delay setting the hash
4019 values of the SCC until it is complete. */
4020
4021 static hashval_t
4022 iterative_hash_gimple_type (tree type, hashval_t val,
4023 VEC(tree, heap) **sccstack,
4024 struct pointer_map_t *sccstate,
4025 struct obstack *sccstate_obstack)
4026 {
4027 hashval_t v;
4028 void **slot;
4029 struct sccs *state;
4030
4031 /* Not visited during this DFS walk. */
4032 gcc_checking_assert (!pointer_map_contains (sccstate, type));
4033 state = XOBNEW (sccstate_obstack, struct sccs);
4034 *pointer_map_insert (sccstate, type) = state;
4035
4036 VEC_safe_push (tree, heap, *sccstack, type);
4037 state->dfsnum = next_dfs_num++;
4038 state->low = state->dfsnum;
4039 state->on_sccstack = true;
4040
4041 /* Combine a few common features of types so that types are grouped into
4042 smaller sets; when searching for existing matching types to merge,
4043 only existing types having the same features as the new type will be
4044 checked. */
4045 v = iterative_hash_hashval_t (TREE_CODE (type), 0);
4046 v = iterative_hash_hashval_t (TYPE_QUALS (type), v);
4047 v = iterative_hash_hashval_t (TREE_ADDRESSABLE (type), v);
4048
4049 /* Do not hash the types size as this will cause differences in
4050 hash values for the complete vs. the incomplete type variant. */
4051
4052 /* Incorporate common features of numerical types. */
4053 if (INTEGRAL_TYPE_P (type)
4054 || SCALAR_FLOAT_TYPE_P (type)
4055 || FIXED_POINT_TYPE_P (type))
4056 {
4057 v = iterative_hash_hashval_t (TYPE_PRECISION (type), v);
4058 v = iterative_hash_hashval_t (TYPE_MODE (type), v);
4059 v = iterative_hash_hashval_t (TYPE_UNSIGNED (type), v);
4060 }
4061
4062 /* For pointer and reference types, fold in information about the type
4063 pointed to but do not recurse into possibly incomplete types to
4064 avoid hash differences for complete vs. incomplete types. */
4065 if (POINTER_TYPE_P (type))
4066 {
4067 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (type)))
4068 {
4069 v = iterative_hash_hashval_t (TREE_CODE (TREE_TYPE (type)), v);
4070 v = iterative_hash_name
4071 (TYPE_NAME (TYPE_MAIN_VARIANT (TREE_TYPE (type))), v);
4072 }
4073 else
4074 v = visit (TREE_TYPE (type), state, v,
4075 sccstack, sccstate, sccstate_obstack);
4076 }
4077
4078 /* For integer types hash the types min/max values and the string flag. */
4079 if (TREE_CODE (type) == INTEGER_TYPE)
4080 {
4081 /* OMP lowering can introduce error_mark_node in place of
4082 random local decls in types. */
4083 if (TYPE_MIN_VALUE (type) != error_mark_node)
4084 v = iterative_hash_expr (TYPE_MIN_VALUE (type), v);
4085 if (TYPE_MAX_VALUE (type) != error_mark_node)
4086 v = iterative_hash_expr (TYPE_MAX_VALUE (type), v);
4087 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
4088 }
4089
4090 /* For array types hash their domain and the string flag. */
4091 if (TREE_CODE (type) == ARRAY_TYPE
4092 && TYPE_DOMAIN (type))
4093 {
4094 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
4095 v = visit (TYPE_DOMAIN (type), state, v,
4096 sccstack, sccstate, sccstate_obstack);
4097 }
4098
4099 /* Recurse for aggregates with a single element type. */
4100 if (TREE_CODE (type) == ARRAY_TYPE
4101 || TREE_CODE (type) == COMPLEX_TYPE
4102 || TREE_CODE (type) == VECTOR_TYPE)
4103 v = visit (TREE_TYPE (type), state, v,
4104 sccstack, sccstate, sccstate_obstack);
4105
4106 /* Incorporate function return and argument types. */
4107 if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE)
4108 {
4109 unsigned na;
4110 tree p;
4111
4112 /* For method types also incorporate their parent class. */
4113 if (TREE_CODE (type) == METHOD_TYPE)
4114 v = visit (TYPE_METHOD_BASETYPE (type), state, v,
4115 sccstack, sccstate, sccstate_obstack);
4116
4117 /* For result types allow mismatch in completeness. */
4118 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (type)))
4119 {
4120 v = iterative_hash_hashval_t (TREE_CODE (TREE_TYPE (type)), v);
4121 v = iterative_hash_name
4122 (TYPE_NAME (TYPE_MAIN_VARIANT (TREE_TYPE (type))), v);
4123 }
4124 else
4125 v = visit (TREE_TYPE (type), state, v,
4126 sccstack, sccstate, sccstate_obstack);
4127
4128 for (p = TYPE_ARG_TYPES (type), na = 0; p; p = TREE_CHAIN (p))
4129 {
4130 /* For argument types allow mismatch in completeness. */
4131 if (RECORD_OR_UNION_TYPE_P (TREE_VALUE (p)))
4132 {
4133 v = iterative_hash_hashval_t (TREE_CODE (TREE_VALUE (p)), v);
4134 v = iterative_hash_name
4135 (TYPE_NAME (TYPE_MAIN_VARIANT (TREE_VALUE (p))), v);
4136 }
4137 else
4138 v = visit (TREE_VALUE (p), state, v,
4139 sccstack, sccstate, sccstate_obstack);
4140 na++;
4141 }
4142
4143 v = iterative_hash_hashval_t (na, v);
4144 }
4145
4146 if (TREE_CODE (type) == RECORD_TYPE
4147 || TREE_CODE (type) == UNION_TYPE
4148 || TREE_CODE (type) == QUAL_UNION_TYPE)
4149 {
4150 unsigned nf;
4151 tree f;
4152
4153 v = iterative_hash_name (TYPE_NAME (TYPE_MAIN_VARIANT (type)), v);
4154
4155 for (f = TYPE_FIELDS (type), nf = 0; f; f = TREE_CHAIN (f))
4156 {
4157 v = iterative_hash_name (DECL_NAME (f), v);
4158 v = visit (TREE_TYPE (f), state, v,
4159 sccstack, sccstate, sccstate_obstack);
4160 nf++;
4161 }
4162
4163 v = iterative_hash_hashval_t (nf, v);
4164 }
4165
4166 /* Record hash for us. */
4167 state->u.hash = v;
4168
4169 /* See if we found an SCC. */
4170 if (state->low == state->dfsnum)
4171 {
4172 tree x;
4173
4174 /* Pop off the SCC and set its hash values. */
4175 do
4176 {
4177 struct sccs *cstate;
4178 struct tree_int_map *m = ggc_alloc_cleared_tree_int_map ();
4179 x = VEC_pop (tree, *sccstack);
4180 cstate = (struct sccs *)*pointer_map_contains (sccstate, x);
4181 cstate->on_sccstack = false;
4182 m->base.from = x;
4183 m->to = cstate->u.hash;
4184 slot = htab_find_slot (type_hash_cache, m, INSERT);
4185 gcc_assert (!*slot);
4186 *slot = (void *) m;
4187 }
4188 while (x != type);
4189 }
4190
4191 return iterative_hash_hashval_t (v, val);
4192 }
4193
4194
4195 /* Returns a hash value for P (assumed to be a type). The hash value
4196 is computed using some distinguishing features of the type. Note
4197 that we cannot use pointer hashing here as we may be dealing with
4198 two distinct instances of the same type.
4199
4200 This function should produce the same hash value for two compatible
4201 types according to gimple_types_compatible_p. */
4202
4203 static hashval_t
4204 gimple_type_hash (const void *p)
4205 {
4206 const_tree t = (const_tree) p;
4207 VEC(tree, heap) *sccstack = NULL;
4208 struct pointer_map_t *sccstate;
4209 struct obstack sccstate_obstack;
4210 hashval_t val;
4211 void **slot;
4212 struct tree_int_map m;
4213
4214 if (type_hash_cache == NULL)
4215 type_hash_cache = htab_create_ggc (512, tree_int_map_hash,
4216 tree_int_map_eq, NULL);
4217
4218 m.base.from = CONST_CAST_TREE (t);
4219 if ((slot = htab_find_slot (type_hash_cache, &m, NO_INSERT))
4220 && *slot)
4221 return iterative_hash_hashval_t (((struct tree_int_map *) *slot)->to, 0);
4222
4223 /* Perform a DFS walk and pre-hash all reachable types. */
4224 next_dfs_num = 1;
4225 sccstate = pointer_map_create ();
4226 gcc_obstack_init (&sccstate_obstack);
4227 val = iterative_hash_gimple_type (CONST_CAST_TREE (t), 0,
4228 &sccstack, sccstate, &sccstate_obstack);
4229 VEC_free (tree, heap, sccstack);
4230 pointer_map_destroy (sccstate);
4231 obstack_free (&sccstate_obstack, NULL);
4232
4233 return val;
4234 }
4235
4236
4237 /* Returns nonzero if P1 and P2 are equal. */
4238
4239 static int
4240 gimple_type_eq (const void *p1, const void *p2)
4241 {
4242 const_tree t1 = (const_tree) p1;
4243 const_tree t2 = (const_tree) p2;
4244 return gimple_types_compatible_p (CONST_CAST_TREE (t1),
4245 CONST_CAST_TREE (t2), GTC_MERGE);
4246 }
4247
4248
4249 /* Register type T in the global type table gimple_types.
4250 If another type T', compatible with T, already existed in
4251 gimple_types then return T', otherwise return T. This is used by
4252 LTO to merge identical types read from different TUs. */
4253
4254 tree
4255 gimple_register_type (tree t)
4256 {
4257 void **slot;
4258 gimple_type_leader_entry *leader;
4259 tree mv_leader = NULL_TREE;
4260
4261 gcc_assert (TYPE_P (t));
4262
4263 if (!gimple_type_leader)
4264 gimple_type_leader = ggc_alloc_cleared_vec_gimple_type_leader_entry_s
4265 (GIMPLE_TYPE_LEADER_SIZE);
4266 /* If we registered this type before return the cached result. */
4267 leader = &gimple_type_leader[TYPE_UID (t) % GIMPLE_TYPE_LEADER_SIZE];
4268 if (leader->type == t)
4269 return leader->leader;
4270
4271 /* Always register the main variant first. This is important so we
4272 pick up the non-typedef variants as canonical, otherwise we'll end
4273 up taking typedef ids for structure tags during comparison. */
4274 if (TYPE_MAIN_VARIANT (t) != t)
4275 mv_leader = gimple_register_type (TYPE_MAIN_VARIANT (t));
4276
4277 if (gimple_types == NULL)
4278 gimple_types = htab_create_ggc (16381, gimple_type_hash, gimple_type_eq, 0);
4279
4280 slot = htab_find_slot (gimple_types, t, INSERT);
4281 if (*slot
4282 && *(tree *)slot != t)
4283 {
4284 tree new_type = (tree) *((tree *) slot);
4285
4286 /* Do not merge types with different addressability. */
4287 gcc_assert (TREE_ADDRESSABLE (t) == TREE_ADDRESSABLE (new_type));
4288
4289 /* If t is not its main variant then make t unreachable from its
4290 main variant list. Otherwise we'd queue up a lot of duplicates
4291 there. */
4292 if (t != TYPE_MAIN_VARIANT (t))
4293 {
4294 tree tem = TYPE_MAIN_VARIANT (t);
4295 while (tem && TYPE_NEXT_VARIANT (tem) != t)
4296 tem = TYPE_NEXT_VARIANT (tem);
4297 if (tem)
4298 TYPE_NEXT_VARIANT (tem) = TYPE_NEXT_VARIANT (t);
4299 TYPE_NEXT_VARIANT (t) = NULL_TREE;
4300 }
4301
4302 /* If we are a pointer then remove us from the pointer-to or
4303 reference-to chain. Otherwise we'd queue up a lot of duplicates
4304 there. */
4305 if (TREE_CODE (t) == POINTER_TYPE)
4306 {
4307 if (TYPE_POINTER_TO (TREE_TYPE (t)) == t)
4308 TYPE_POINTER_TO (TREE_TYPE (t)) = TYPE_NEXT_PTR_TO (t);
4309 else
4310 {
4311 tree tem = TYPE_POINTER_TO (TREE_TYPE (t));
4312 while (tem && TYPE_NEXT_PTR_TO (tem) != t)
4313 tem = TYPE_NEXT_PTR_TO (tem);
4314 if (tem)
4315 TYPE_NEXT_PTR_TO (tem) = TYPE_NEXT_PTR_TO (t);
4316 }
4317 TYPE_NEXT_PTR_TO (t) = NULL_TREE;
4318 }
4319 else if (TREE_CODE (t) == REFERENCE_TYPE)
4320 {
4321 if (TYPE_REFERENCE_TO (TREE_TYPE (t)) == t)
4322 TYPE_REFERENCE_TO (TREE_TYPE (t)) = TYPE_NEXT_REF_TO (t);
4323 else
4324 {
4325 tree tem = TYPE_REFERENCE_TO (TREE_TYPE (t));
4326 while (tem && TYPE_NEXT_REF_TO (tem) != t)
4327 tem = TYPE_NEXT_REF_TO (tem);
4328 if (tem)
4329 TYPE_NEXT_REF_TO (tem) = TYPE_NEXT_REF_TO (t);
4330 }
4331 TYPE_NEXT_REF_TO (t) = NULL_TREE;
4332 }
4333
4334 leader->type = t;
4335 leader->leader = new_type;
4336 t = new_type;
4337 }
4338 else
4339 {
4340 leader->type = t;
4341 leader->leader = t;
4342 /* We're the type leader. Make our TYPE_MAIN_VARIANT valid. */
4343 if (TYPE_MAIN_VARIANT (t) != t
4344 && TYPE_MAIN_VARIANT (t) != mv_leader)
4345 {
4346 /* Remove us from our main variant list as we are not the variant
4347 leader and the variant leader will change. */
4348 tree tem = TYPE_MAIN_VARIANT (t);
4349 while (tem && TYPE_NEXT_VARIANT (tem) != t)
4350 tem = TYPE_NEXT_VARIANT (tem);
4351 if (tem)
4352 TYPE_NEXT_VARIANT (tem) = TYPE_NEXT_VARIANT (t);
4353 TYPE_NEXT_VARIANT (t) = NULL_TREE;
4354 /* Adjust our main variant. Linking us into its variant list
4355 will happen at fixup time. */
4356 TYPE_MAIN_VARIANT (t) = mv_leader;
4357 }
4358 *slot = (void *) t;
4359 }
4360
4361 return t;
4362 }
4363
4364
4365 /* Returns nonzero if P1 and P2 are equal. */
4366
4367 static int
4368 gimple_canonical_type_eq (const void *p1, const void *p2)
4369 {
4370 const_tree t1 = (const_tree) p1;
4371 const_tree t2 = (const_tree) p2;
4372 return gimple_types_compatible_p (CONST_CAST_TREE (t1),
4373 CONST_CAST_TREE (t2), GTC_DIAG);
4374 }
4375
4376 /* Register type T in the global type table gimple_types.
4377 If another type T', compatible with T, already existed in
4378 gimple_types then return T', otherwise return T. This is used by
4379 LTO to merge identical types read from different TUs. */
4380
4381 tree
4382 gimple_register_canonical_type (tree t)
4383 {
4384 void **slot;
4385 tree orig_t = t;
4386
4387 gcc_assert (TYPE_P (t));
4388
4389 if (TYPE_CANONICAL (t))
4390 return TYPE_CANONICAL (t);
4391
4392 /* Always register the type itself first so that if it turns out
4393 to be the canonical type it will be the one we merge to as well. */
4394 t = gimple_register_type (t);
4395
4396 /* Always register the main variant first. This is important so we
4397 pick up the non-typedef variants as canonical, otherwise we'll end
4398 up taking typedef ids for structure tags during comparison. */
4399 if (TYPE_MAIN_VARIANT (t) != t)
4400 gimple_register_canonical_type (TYPE_MAIN_VARIANT (t));
4401
4402 if (gimple_canonical_types == NULL)
4403 gimple_canonical_types = htab_create_ggc (16381, gimple_type_hash,
4404 gimple_canonical_type_eq, 0);
4405
4406 slot = htab_find_slot (gimple_canonical_types, t, INSERT);
4407 if (*slot
4408 && *(tree *)slot != t)
4409 {
4410 tree new_type = (tree) *((tree *) slot);
4411
4412 TYPE_CANONICAL (t) = new_type;
4413 t = new_type;
4414 }
4415 else
4416 {
4417 TYPE_CANONICAL (t) = t;
4418 *slot = (void *) t;
4419 }
4420
4421 /* Also cache the canonical type in the non-leaders. */
4422 TYPE_CANONICAL (orig_t) = t;
4423
4424 return t;
4425 }
4426
4427
4428 /* Show statistics on references to the global type table gimple_types. */
4429
4430 void
4431 print_gimple_types_stats (void)
4432 {
4433 if (gimple_types)
4434 fprintf (stderr, "GIMPLE type table: size %ld, %ld elements, "
4435 "%ld searches, %ld collisions (ratio: %f)\n",
4436 (long) htab_size (gimple_types),
4437 (long) htab_elements (gimple_types),
4438 (long) gimple_types->searches,
4439 (long) gimple_types->collisions,
4440 htab_collisions (gimple_types));
4441 else
4442 fprintf (stderr, "GIMPLE type table is empty\n");
4443 if (gimple_canonical_types)
4444 fprintf (stderr, "GIMPLE canonical type table: size %ld, %ld elements, "
4445 "%ld searches, %ld collisions (ratio: %f)\n",
4446 (long) htab_size (gimple_canonical_types),
4447 (long) htab_elements (gimple_canonical_types),
4448 (long) gimple_canonical_types->searches,
4449 (long) gimple_canonical_types->collisions,
4450 htab_collisions (gimple_canonical_types));
4451 else
4452 fprintf (stderr, "GIMPLE canonical type table is empty\n");
4453 if (type_hash_cache)
4454 fprintf (stderr, "GIMPLE type hash table: size %ld, %ld elements, "
4455 "%ld searches, %ld collisions (ratio: %f)\n",
4456 (long) htab_size (type_hash_cache),
4457 (long) htab_elements (type_hash_cache),
4458 (long) type_hash_cache->searches,
4459 (long) type_hash_cache->collisions,
4460 htab_collisions (type_hash_cache));
4461 else
4462 fprintf (stderr, "GIMPLE type hash table is empty\n");
4463 if (gtc_visited)
4464 fprintf (stderr, "GIMPLE type comparison table: size %ld, %ld "
4465 "elements, %ld searches, %ld collisions (ratio: %f)\n",
4466 (long) htab_size (gtc_visited),
4467 (long) htab_elements (gtc_visited),
4468 (long) gtc_visited->searches,
4469 (long) gtc_visited->collisions,
4470 htab_collisions (gtc_visited));
4471 else
4472 fprintf (stderr, "GIMPLE type comparison table is empty\n");
4473 }
4474
4475 /* Free the gimple type hashtables used for LTO type merging. */
4476
4477 void
4478 free_gimple_type_tables (void)
4479 {
4480 /* Last chance to print stats for the tables. */
4481 if (flag_lto_report)
4482 print_gimple_types_stats ();
4483
4484 if (gimple_types)
4485 {
4486 htab_delete (gimple_types);
4487 gimple_types = NULL;
4488 }
4489 if (gimple_canonical_types)
4490 {
4491 htab_delete (gimple_canonical_types);
4492 gimple_canonical_types = NULL;
4493 }
4494 if (type_hash_cache)
4495 {
4496 htab_delete (type_hash_cache);
4497 type_hash_cache = NULL;
4498 }
4499 if (gtc_visited)
4500 {
4501 htab_delete (gtc_visited);
4502 obstack_free (&gtc_ob, NULL);
4503 gtc_visited = NULL;
4504 }
4505 gimple_type_leader = NULL;
4506 }
4507
4508
4509 /* Return a type the same as TYPE except unsigned or
4510 signed according to UNSIGNEDP. */
4511
4512 static tree
4513 gimple_signed_or_unsigned_type (bool unsignedp, tree type)
4514 {
4515 tree type1;
4516
4517 type1 = TYPE_MAIN_VARIANT (type);
4518 if (type1 == signed_char_type_node
4519 || type1 == char_type_node
4520 || type1 == unsigned_char_type_node)
4521 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
4522 if (type1 == integer_type_node || type1 == unsigned_type_node)
4523 return unsignedp ? unsigned_type_node : integer_type_node;
4524 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
4525 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
4526 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
4527 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
4528 if (type1 == long_long_integer_type_node
4529 || type1 == long_long_unsigned_type_node)
4530 return unsignedp
4531 ? long_long_unsigned_type_node
4532 : long_long_integer_type_node;
4533 if (int128_integer_type_node && (type1 == int128_integer_type_node || type1 == int128_unsigned_type_node))
4534 return unsignedp
4535 ? int128_unsigned_type_node
4536 : int128_integer_type_node;
4537 #if HOST_BITS_PER_WIDE_INT >= 64
4538 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
4539 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
4540 #endif
4541 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
4542 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
4543 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
4544 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
4545 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
4546 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
4547 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
4548 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
4549
4550 #define GIMPLE_FIXED_TYPES(NAME) \
4551 if (type1 == short_ ## NAME ## _type_node \
4552 || type1 == unsigned_short_ ## NAME ## _type_node) \
4553 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
4554 : short_ ## NAME ## _type_node; \
4555 if (type1 == NAME ## _type_node \
4556 || type1 == unsigned_ ## NAME ## _type_node) \
4557 return unsignedp ? unsigned_ ## NAME ## _type_node \
4558 : NAME ## _type_node; \
4559 if (type1 == long_ ## NAME ## _type_node \
4560 || type1 == unsigned_long_ ## NAME ## _type_node) \
4561 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
4562 : long_ ## NAME ## _type_node; \
4563 if (type1 == long_long_ ## NAME ## _type_node \
4564 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
4565 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
4566 : long_long_ ## NAME ## _type_node;
4567
4568 #define GIMPLE_FIXED_MODE_TYPES(NAME) \
4569 if (type1 == NAME ## _type_node \
4570 || type1 == u ## NAME ## _type_node) \
4571 return unsignedp ? u ## NAME ## _type_node \
4572 : NAME ## _type_node;
4573
4574 #define GIMPLE_FIXED_TYPES_SAT(NAME) \
4575 if (type1 == sat_ ## short_ ## NAME ## _type_node \
4576 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
4577 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
4578 : sat_ ## short_ ## NAME ## _type_node; \
4579 if (type1 == sat_ ## NAME ## _type_node \
4580 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
4581 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
4582 : sat_ ## NAME ## _type_node; \
4583 if (type1 == sat_ ## long_ ## NAME ## _type_node \
4584 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
4585 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
4586 : sat_ ## long_ ## NAME ## _type_node; \
4587 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
4588 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
4589 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
4590 : sat_ ## long_long_ ## NAME ## _type_node;
4591
4592 #define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
4593 if (type1 == sat_ ## NAME ## _type_node \
4594 || type1 == sat_ ## u ## NAME ## _type_node) \
4595 return unsignedp ? sat_ ## u ## NAME ## _type_node \
4596 : sat_ ## NAME ## _type_node;
4597
4598 GIMPLE_FIXED_TYPES (fract);
4599 GIMPLE_FIXED_TYPES_SAT (fract);
4600 GIMPLE_FIXED_TYPES (accum);
4601 GIMPLE_FIXED_TYPES_SAT (accum);
4602
4603 GIMPLE_FIXED_MODE_TYPES (qq);
4604 GIMPLE_FIXED_MODE_TYPES (hq);
4605 GIMPLE_FIXED_MODE_TYPES (sq);
4606 GIMPLE_FIXED_MODE_TYPES (dq);
4607 GIMPLE_FIXED_MODE_TYPES (tq);
4608 GIMPLE_FIXED_MODE_TYPES_SAT (qq);
4609 GIMPLE_FIXED_MODE_TYPES_SAT (hq);
4610 GIMPLE_FIXED_MODE_TYPES_SAT (sq);
4611 GIMPLE_FIXED_MODE_TYPES_SAT (dq);
4612 GIMPLE_FIXED_MODE_TYPES_SAT (tq);
4613 GIMPLE_FIXED_MODE_TYPES (ha);
4614 GIMPLE_FIXED_MODE_TYPES (sa);
4615 GIMPLE_FIXED_MODE_TYPES (da);
4616 GIMPLE_FIXED_MODE_TYPES (ta);
4617 GIMPLE_FIXED_MODE_TYPES_SAT (ha);
4618 GIMPLE_FIXED_MODE_TYPES_SAT (sa);
4619 GIMPLE_FIXED_MODE_TYPES_SAT (da);
4620 GIMPLE_FIXED_MODE_TYPES_SAT (ta);
4621
4622 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
4623 the precision; they have precision set to match their range, but
4624 may use a wider mode to match an ABI. If we change modes, we may
4625 wind up with bad conversions. For INTEGER_TYPEs in C, must check
4626 the precision as well, so as to yield correct results for
4627 bit-field types. C++ does not have these separate bit-field
4628 types, and producing a signed or unsigned variant of an
4629 ENUMERAL_TYPE may cause other problems as well. */
4630 if (!INTEGRAL_TYPE_P (type)
4631 || TYPE_UNSIGNED (type) == unsignedp)
4632 return type;
4633
4634 #define TYPE_OK(node) \
4635 (TYPE_MODE (type) == TYPE_MODE (node) \
4636 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
4637 if (TYPE_OK (signed_char_type_node))
4638 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
4639 if (TYPE_OK (integer_type_node))
4640 return unsignedp ? unsigned_type_node : integer_type_node;
4641 if (TYPE_OK (short_integer_type_node))
4642 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
4643 if (TYPE_OK (long_integer_type_node))
4644 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
4645 if (TYPE_OK (long_long_integer_type_node))
4646 return (unsignedp
4647 ? long_long_unsigned_type_node
4648 : long_long_integer_type_node);
4649 if (int128_integer_type_node && TYPE_OK (int128_integer_type_node))
4650 return (unsignedp
4651 ? int128_unsigned_type_node
4652 : int128_integer_type_node);
4653
4654 #if HOST_BITS_PER_WIDE_INT >= 64
4655 if (TYPE_OK (intTI_type_node))
4656 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
4657 #endif
4658 if (TYPE_OK (intDI_type_node))
4659 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
4660 if (TYPE_OK (intSI_type_node))
4661 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
4662 if (TYPE_OK (intHI_type_node))
4663 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
4664 if (TYPE_OK (intQI_type_node))
4665 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
4666
4667 #undef GIMPLE_FIXED_TYPES
4668 #undef GIMPLE_FIXED_MODE_TYPES
4669 #undef GIMPLE_FIXED_TYPES_SAT
4670 #undef GIMPLE_FIXED_MODE_TYPES_SAT
4671 #undef TYPE_OK
4672
4673 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
4674 }
4675
4676
4677 /* Return an unsigned type the same as TYPE in other respects. */
4678
4679 tree
4680 gimple_unsigned_type (tree type)
4681 {
4682 return gimple_signed_or_unsigned_type (true, type);
4683 }
4684
4685
4686 /* Return a signed type the same as TYPE in other respects. */
4687
4688 tree
4689 gimple_signed_type (tree type)
4690 {
4691 return gimple_signed_or_unsigned_type (false, type);
4692 }
4693
4694
4695 /* Return the typed-based alias set for T, which may be an expression
4696 or a type. Return -1 if we don't do anything special. */
4697
4698 alias_set_type
4699 gimple_get_alias_set (tree t)
4700 {
4701 tree u;
4702
4703 /* Permit type-punning when accessing a union, provided the access
4704 is directly through the union. For example, this code does not
4705 permit taking the address of a union member and then storing
4706 through it. Even the type-punning allowed here is a GCC
4707 extension, albeit a common and useful one; the C standard says
4708 that such accesses have implementation-defined behavior. */
4709 for (u = t;
4710 TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
4711 u = TREE_OPERAND (u, 0))
4712 if (TREE_CODE (u) == COMPONENT_REF
4713 && TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
4714 return 0;
4715
4716 /* That's all the expressions we handle specially. */
4717 if (!TYPE_P (t))
4718 return -1;
4719
4720 /* For convenience, follow the C standard when dealing with
4721 character types. Any object may be accessed via an lvalue that
4722 has character type. */
4723 if (t == char_type_node
4724 || t == signed_char_type_node
4725 || t == unsigned_char_type_node)
4726 return 0;
4727
4728 /* Allow aliasing between signed and unsigned variants of the same
4729 type. We treat the signed variant as canonical. */
4730 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
4731 {
4732 tree t1 = gimple_signed_type (t);
4733
4734 /* t1 == t can happen for boolean nodes which are always unsigned. */
4735 if (t1 != t)
4736 return get_alias_set (t1);
4737 }
4738
4739 return -1;
4740 }
4741
4742
4743 /* Data structure used to count the number of dereferences to PTR
4744 inside an expression. */
4745 struct count_ptr_d
4746 {
4747 tree ptr;
4748 unsigned num_stores;
4749 unsigned num_loads;
4750 };
4751
4752 /* Helper for count_uses_and_derefs. Called by walk_tree to look for
4753 (ALIGN/MISALIGNED_)INDIRECT_REF nodes for the pointer passed in DATA. */
4754
4755 static tree
4756 count_ptr_derefs (tree *tp, int *walk_subtrees, void *data)
4757 {
4758 struct walk_stmt_info *wi_p = (struct walk_stmt_info *) data;
4759 struct count_ptr_d *count_p = (struct count_ptr_d *) wi_p->info;
4760
4761 /* Do not walk inside ADDR_EXPR nodes. In the expression &ptr->fld,
4762 pointer 'ptr' is *not* dereferenced, it is simply used to compute
4763 the address of 'fld' as 'ptr + offsetof(fld)'. */
4764 if (TREE_CODE (*tp) == ADDR_EXPR)
4765 {
4766 *walk_subtrees = 0;
4767 return NULL_TREE;
4768 }
4769
4770 if (TREE_CODE (*tp) == MEM_REF && TREE_OPERAND (*tp, 0) == count_p->ptr)
4771 {
4772 if (wi_p->is_lhs)
4773 count_p->num_stores++;
4774 else
4775 count_p->num_loads++;
4776 }
4777
4778 return NULL_TREE;
4779 }
4780
4781 /* Count the number of direct and indirect uses for pointer PTR in
4782 statement STMT. The number of direct uses is stored in
4783 *NUM_USES_P. Indirect references are counted separately depending
4784 on whether they are store or load operations. The counts are
4785 stored in *NUM_STORES_P and *NUM_LOADS_P. */
4786
4787 void
4788 count_uses_and_derefs (tree ptr, gimple stmt, unsigned *num_uses_p,
4789 unsigned *num_loads_p, unsigned *num_stores_p)
4790 {
4791 ssa_op_iter i;
4792 tree use;
4793
4794 *num_uses_p = 0;
4795 *num_loads_p = 0;
4796 *num_stores_p = 0;
4797
4798 /* Find out the total number of uses of PTR in STMT. */
4799 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
4800 if (use == ptr)
4801 (*num_uses_p)++;
4802
4803 /* Now count the number of indirect references to PTR. This is
4804 truly awful, but we don't have much choice. There are no parent
4805 pointers inside INDIRECT_REFs, so an expression like
4806 '*x_1 = foo (x_1, *x_1)' needs to be traversed piece by piece to
4807 find all the indirect and direct uses of x_1 inside. The only
4808 shortcut we can take is the fact that GIMPLE only allows
4809 INDIRECT_REFs inside the expressions below. */
4810 if (is_gimple_assign (stmt)
4811 || gimple_code (stmt) == GIMPLE_RETURN
4812 || gimple_code (stmt) == GIMPLE_ASM
4813 || is_gimple_call (stmt))
4814 {
4815 struct walk_stmt_info wi;
4816 struct count_ptr_d count;
4817
4818 count.ptr = ptr;
4819 count.num_stores = 0;
4820 count.num_loads = 0;
4821
4822 memset (&wi, 0, sizeof (wi));
4823 wi.info = &count;
4824 walk_gimple_op (stmt, count_ptr_derefs, &wi);
4825
4826 *num_stores_p = count.num_stores;
4827 *num_loads_p = count.num_loads;
4828 }
4829
4830 gcc_assert (*num_uses_p >= *num_loads_p + *num_stores_p);
4831 }
4832
4833 /* From a tree operand OP return the base of a load or store operation
4834 or NULL_TREE if OP is not a load or a store. */
4835
4836 static tree
4837 get_base_loadstore (tree op)
4838 {
4839 while (handled_component_p (op))
4840 op = TREE_OPERAND (op, 0);
4841 if (DECL_P (op)
4842 || INDIRECT_REF_P (op)
4843 || TREE_CODE (op) == MEM_REF
4844 || TREE_CODE (op) == TARGET_MEM_REF)
4845 return op;
4846 return NULL_TREE;
4847 }
4848
4849 /* For the statement STMT call the callbacks VISIT_LOAD, VISIT_STORE and
4850 VISIT_ADDR if non-NULL on loads, store and address-taken operands
4851 passing the STMT, the base of the operand and DATA to it. The base
4852 will be either a decl, an indirect reference (including TARGET_MEM_REF)
4853 or the argument of an address expression.
4854 Returns the results of these callbacks or'ed. */
4855
4856 bool
4857 walk_stmt_load_store_addr_ops (gimple stmt, void *data,
4858 bool (*visit_load)(gimple, tree, void *),
4859 bool (*visit_store)(gimple, tree, void *),
4860 bool (*visit_addr)(gimple, tree, void *))
4861 {
4862 bool ret = false;
4863 unsigned i;
4864 if (gimple_assign_single_p (stmt))
4865 {
4866 tree lhs, rhs;
4867 if (visit_store)
4868 {
4869 lhs = get_base_loadstore (gimple_assign_lhs (stmt));
4870 if (lhs)
4871 ret |= visit_store (stmt, lhs, data);
4872 }
4873 rhs = gimple_assign_rhs1 (stmt);
4874 while (handled_component_p (rhs))
4875 rhs = TREE_OPERAND (rhs, 0);
4876 if (visit_addr)
4877 {
4878 if (TREE_CODE (rhs) == ADDR_EXPR)
4879 ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data);
4880 else if (TREE_CODE (rhs) == TARGET_MEM_REF
4881 && TREE_CODE (TMR_BASE (rhs)) == ADDR_EXPR)
4882 ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (rhs), 0), data);
4883 else if (TREE_CODE (rhs) == OBJ_TYPE_REF
4884 && TREE_CODE (OBJ_TYPE_REF_OBJECT (rhs)) == ADDR_EXPR)
4885 ret |= visit_addr (stmt, TREE_OPERAND (OBJ_TYPE_REF_OBJECT (rhs),
4886 0), data);
4887 lhs = gimple_assign_lhs (stmt);
4888 if (TREE_CODE (lhs) == TARGET_MEM_REF
4889 && TREE_CODE (TMR_BASE (lhs)) == ADDR_EXPR)
4890 ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (lhs), 0), data);
4891 }
4892 if (visit_load)
4893 {
4894 rhs = get_base_loadstore (rhs);
4895 if (rhs)
4896 ret |= visit_load (stmt, rhs, data);
4897 }
4898 }
4899 else if (visit_addr
4900 && (is_gimple_assign (stmt)
4901 || gimple_code (stmt) == GIMPLE_COND))
4902 {
4903 for (i = 0; i < gimple_num_ops (stmt); ++i)
4904 if (gimple_op (stmt, i)
4905 && TREE_CODE (gimple_op (stmt, i)) == ADDR_EXPR)
4906 ret |= visit_addr (stmt, TREE_OPERAND (gimple_op (stmt, i), 0), data);
4907 }
4908 else if (is_gimple_call (stmt))
4909 {
4910 if (visit_store)
4911 {
4912 tree lhs = gimple_call_lhs (stmt);
4913 if (lhs)
4914 {
4915 lhs = get_base_loadstore (lhs);
4916 if (lhs)
4917 ret |= visit_store (stmt, lhs, data);
4918 }
4919 }
4920 if (visit_load || visit_addr)
4921 for (i = 0; i < gimple_call_num_args (stmt); ++i)
4922 {
4923 tree rhs = gimple_call_arg (stmt, i);
4924 if (visit_addr
4925 && TREE_CODE (rhs) == ADDR_EXPR)
4926 ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data);
4927 else if (visit_load)
4928 {
4929 rhs = get_base_loadstore (rhs);
4930 if (rhs)
4931 ret |= visit_load (stmt, rhs, data);
4932 }
4933 }
4934 if (visit_addr
4935 && gimple_call_chain (stmt)
4936 && TREE_CODE (gimple_call_chain (stmt)) == ADDR_EXPR)
4937 ret |= visit_addr (stmt, TREE_OPERAND (gimple_call_chain (stmt), 0),
4938 data);
4939 if (visit_addr
4940 && gimple_call_return_slot_opt_p (stmt)
4941 && gimple_call_lhs (stmt) != NULL_TREE
4942 && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt))))
4943 ret |= visit_addr (stmt, gimple_call_lhs (stmt), data);
4944 }
4945 else if (gimple_code (stmt) == GIMPLE_ASM)
4946 {
4947 unsigned noutputs;
4948 const char *constraint;
4949 const char **oconstraints;
4950 bool allows_mem, allows_reg, is_inout;
4951 noutputs = gimple_asm_noutputs (stmt);
4952 oconstraints = XALLOCAVEC (const char *, noutputs);
4953 if (visit_store || visit_addr)
4954 for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
4955 {
4956 tree link = gimple_asm_output_op (stmt, i);
4957 tree op = get_base_loadstore (TREE_VALUE (link));
4958 if (op && visit_store)
4959 ret |= visit_store (stmt, op, data);
4960 if (visit_addr)
4961 {
4962 constraint = TREE_STRING_POINTER
4963 (TREE_VALUE (TREE_PURPOSE (link)));
4964 oconstraints[i] = constraint;
4965 parse_output_constraint (&constraint, i, 0, 0, &allows_mem,
4966 &allows_reg, &is_inout);
4967 if (op && !allows_reg && allows_mem)
4968 ret |= visit_addr (stmt, op, data);
4969 }
4970 }
4971 if (visit_load || visit_addr)
4972 for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
4973 {
4974 tree link = gimple_asm_input_op (stmt, i);
4975 tree op = TREE_VALUE (link);
4976 if (visit_addr
4977 && TREE_CODE (op) == ADDR_EXPR)
4978 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
4979 else if (visit_load || visit_addr)
4980 {
4981 op = get_base_loadstore (op);
4982 if (op)
4983 {
4984 if (visit_load)
4985 ret |= visit_load (stmt, op, data);
4986 if (visit_addr)
4987 {
4988 constraint = TREE_STRING_POINTER
4989 (TREE_VALUE (TREE_PURPOSE (link)));
4990 parse_input_constraint (&constraint, 0, 0, noutputs,
4991 0, oconstraints,
4992 &allows_mem, &allows_reg);
4993 if (!allows_reg && allows_mem)
4994 ret |= visit_addr (stmt, op, data);
4995 }
4996 }
4997 }
4998 }
4999 }
5000 else if (gimple_code (stmt) == GIMPLE_RETURN)
5001 {
5002 tree op = gimple_return_retval (stmt);
5003 if (op)
5004 {
5005 if (visit_addr
5006 && TREE_CODE (op) == ADDR_EXPR)
5007 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
5008 else if (visit_load)
5009 {
5010 op = get_base_loadstore (op);
5011 if (op)
5012 ret |= visit_load (stmt, op, data);
5013 }
5014 }
5015 }
5016 else if (visit_addr
5017 && gimple_code (stmt) == GIMPLE_PHI)
5018 {
5019 for (i = 0; i < gimple_phi_num_args (stmt); ++i)
5020 {
5021 tree op = PHI_ARG_DEF (stmt, i);
5022 if (TREE_CODE (op) == ADDR_EXPR)
5023 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
5024 }
5025 }
5026
5027 return ret;
5028 }
5029
5030 /* Like walk_stmt_load_store_addr_ops but with NULL visit_addr. IPA-CP
5031 should make a faster clone for this case. */
5032
5033 bool
5034 walk_stmt_load_store_ops (gimple stmt, void *data,
5035 bool (*visit_load)(gimple, tree, void *),
5036 bool (*visit_store)(gimple, tree, void *))
5037 {
5038 return walk_stmt_load_store_addr_ops (stmt, data,
5039 visit_load, visit_store, NULL);
5040 }
5041
5042 /* Helper for gimple_ior_addresses_taken_1. */
5043
5044 static bool
5045 gimple_ior_addresses_taken_1 (gimple stmt ATTRIBUTE_UNUSED,
5046 tree addr, void *data)
5047 {
5048 bitmap addresses_taken = (bitmap)data;
5049 addr = get_base_address (addr);
5050 if (addr
5051 && DECL_P (addr))
5052 {
5053 bitmap_set_bit (addresses_taken, DECL_UID (addr));
5054 return true;
5055 }
5056 return false;
5057 }
5058
5059 /* Set the bit for the uid of all decls that have their address taken
5060 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
5061 were any in this stmt. */
5062
5063 bool
5064 gimple_ior_addresses_taken (bitmap addresses_taken, gimple stmt)
5065 {
5066 return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
5067 gimple_ior_addresses_taken_1);
5068 }
5069
5070
5071 /* Return a printable name for symbol DECL. */
5072
5073 const char *
5074 gimple_decl_printable_name (tree decl, int verbosity)
5075 {
5076 if (!DECL_NAME (decl))
5077 return NULL;
5078
5079 if (DECL_ASSEMBLER_NAME_SET_P (decl))
5080 {
5081 const char *str, *mangled_str;
5082 int dmgl_opts = DMGL_NO_OPTS;
5083
5084 if (verbosity >= 2)
5085 {
5086 dmgl_opts = DMGL_VERBOSE
5087 | DMGL_ANSI
5088 | DMGL_GNU_V3
5089 | DMGL_RET_POSTFIX;
5090 if (TREE_CODE (decl) == FUNCTION_DECL)
5091 dmgl_opts |= DMGL_PARAMS;
5092 }
5093
5094 mangled_str = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
5095 str = cplus_demangle_v3 (mangled_str, dmgl_opts);
5096 return (str) ? str : mangled_str;
5097 }
5098
5099 return IDENTIFIER_POINTER (DECL_NAME (decl));
5100 }
5101
5102 /* Return true when STMT is builtins call to CODE. */
5103
5104 bool
5105 gimple_call_builtin_p (gimple stmt, enum built_in_function code)
5106 {
5107 tree fndecl;
5108 return (is_gimple_call (stmt)
5109 && (fndecl = gimple_call_fndecl (stmt)) != NULL
5110 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
5111 && DECL_FUNCTION_CODE (fndecl) == code);
5112 }
5113
5114 #include "gt-gimple.h"