Merger of git branch "gimple-classes-v2-option-3"
[gcc.git] / gcc / gimple.c
1 /* Gimple IR support functions.
2
3 Copyright (C) 2007-2014 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "target.h"
27 #include "tree.h"
28 #include "calls.h"
29 #include "stmt.h"
30 #include "stor-layout.h"
31 #include "hard-reg-set.h"
32 #include "predict.h"
33 #include "vec.h"
34 #include "hashtab.h"
35 #include "hash-set.h"
36 #include "machmode.h"
37 #include "input.h"
38 #include "function.h"
39 #include "dominance.h"
40 #include "cfg.h"
41 #include "basic-block.h"
42 #include "tree-ssa-alias.h"
43 #include "internal-fn.h"
44 #include "tree-eh.h"
45 #include "gimple-expr.h"
46 #include "is-a.h"
47 #include "gimple.h"
48 #include "gimple-iterator.h"
49 #include "gimple-walk.h"
50 #include "gimple.h"
51 #include "gimplify.h"
52 #include "diagnostic.h"
53 #include "value-prof.h"
54 #include "flags.h"
55 #include "alias.h"
56 #include "demangle.h"
57 #include "langhooks.h"
58 #include "bitmap.h"
59 #include "stringpool.h"
60 #include "tree-ssanames.h"
61 #include "ipa-ref.h"
62 #include "lto-streamer.h"
63 #include "cgraph.h"
64
65
66 /* All the tuples have their operand vector (if present) at the very bottom
67 of the structure. Therefore, the offset required to find the
68 operands vector the size of the structure minus the size of the 1
69 element tree array at the end (see gimple_ops). */
70 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
71 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
72 EXPORTED_CONST size_t gimple_ops_offset_[] = {
73 #include "gsstruct.def"
74 };
75 #undef DEFGSSTRUCT
76
77 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof (struct STRUCT),
78 static const size_t gsstruct_code_size[] = {
79 #include "gsstruct.def"
80 };
81 #undef DEFGSSTRUCT
82
83 #define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
84 const char *const gimple_code_name[] = {
85 #include "gimple.def"
86 };
87 #undef DEFGSCODE
88
89 #define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
90 EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
91 #include "gimple.def"
92 };
93 #undef DEFGSCODE
94
95 /* Gimple stats. */
96
97 int gimple_alloc_counts[(int) gimple_alloc_kind_all];
98 int gimple_alloc_sizes[(int) gimple_alloc_kind_all];
99
100 /* Keep in sync with gimple.h:enum gimple_alloc_kind. */
101 static const char * const gimple_alloc_kind_names[] = {
102 "assignments",
103 "phi nodes",
104 "conditionals",
105 "everything else"
106 };
107
108 /* Gimple tuple constructors.
109 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
110 be passed a NULL to start with an empty sequence. */
111
112 /* Set the code for statement G to CODE. */
113
114 static inline void
115 gimple_set_code (gimple g, enum gimple_code code)
116 {
117 g->code = code;
118 }
119
120 /* Return the number of bytes needed to hold a GIMPLE statement with
121 code CODE. */
122
123 static inline size_t
124 gimple_size (enum gimple_code code)
125 {
126 return gsstruct_code_size[gss_for_code (code)];
127 }
128
129 /* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
130 operands. */
131
132 gimple
133 gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
134 {
135 size_t size;
136 gimple stmt;
137
138 size = gimple_size (code);
139 if (num_ops > 0)
140 size += sizeof (tree) * (num_ops - 1);
141
142 if (GATHER_STATISTICS)
143 {
144 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
145 gimple_alloc_counts[(int) kind]++;
146 gimple_alloc_sizes[(int) kind] += size;
147 }
148
149 stmt = ggc_alloc_cleared_gimple_statement_stat (size PASS_MEM_STAT);
150 gimple_set_code (stmt, code);
151 gimple_set_num_ops (stmt, num_ops);
152
153 /* Do not call gimple_set_modified here as it has other side
154 effects and this tuple is still not completely built. */
155 stmt->modified = 1;
156 gimple_init_singleton (stmt);
157
158 return stmt;
159 }
160
161 /* Set SUBCODE to be the code of the expression computed by statement G. */
162
163 static inline void
164 gimple_set_subcode (gimple g, unsigned subcode)
165 {
166 /* We only have 16 bits for the RHS code. Assert that we are not
167 overflowing it. */
168 gcc_assert (subcode < (1 << 16));
169 g->subcode = subcode;
170 }
171
172
173
174 /* Build a tuple with operands. CODE is the statement to build (which
175 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the subcode
176 for the new tuple. NUM_OPS is the number of operands to allocate. */
177
178 #define gimple_build_with_ops(c, s, n) \
179 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
180
181 static gimple
182 gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
183 unsigned num_ops MEM_STAT_DECL)
184 {
185 gimple s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT);
186 gimple_set_subcode (s, subcode);
187
188 return s;
189 }
190
191
192 /* Build a GIMPLE_RETURN statement returning RETVAL. */
193
194 greturn *
195 gimple_build_return (tree retval)
196 {
197 greturn *s
198 = as_a <greturn *> (gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK,
199 2));
200 if (retval)
201 gimple_return_set_retval (s, retval);
202 return s;
203 }
204
205 /* Reset alias information on call S. */
206
207 void
208 gimple_call_reset_alias_info (gcall *s)
209 {
210 if (gimple_call_flags (s) & ECF_CONST)
211 memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
212 else
213 pt_solution_reset (gimple_call_use_set (s));
214 if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
215 memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
216 else
217 pt_solution_reset (gimple_call_clobber_set (s));
218 }
219
220 /* Helper for gimple_build_call, gimple_build_call_valist,
221 gimple_build_call_vec and gimple_build_call_from_tree. Build the basic
222 components of a GIMPLE_CALL statement to function FN with NARGS
223 arguments. */
224
225 static inline gcall *
226 gimple_build_call_1 (tree fn, unsigned nargs)
227 {
228 gcall *s
229 = as_a <gcall *> (gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK,
230 nargs + 3));
231 if (TREE_CODE (fn) == FUNCTION_DECL)
232 fn = build_fold_addr_expr (fn);
233 gimple_set_op (s, 1, fn);
234 gimple_call_set_fntype (s, TREE_TYPE (TREE_TYPE (fn)));
235 gimple_call_reset_alias_info (s);
236 return s;
237 }
238
239
240 /* Build a GIMPLE_CALL statement to function FN with the arguments
241 specified in vector ARGS. */
242
243 gcall *
244 gimple_build_call_vec (tree fn, vec<tree> args)
245 {
246 unsigned i;
247 unsigned nargs = args.length ();
248 gcall *call = gimple_build_call_1 (fn, nargs);
249
250 for (i = 0; i < nargs; i++)
251 gimple_call_set_arg (call, i, args[i]);
252
253 return call;
254 }
255
256
257 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
258 arguments. The ... are the arguments. */
259
260 gcall *
261 gimple_build_call (tree fn, unsigned nargs, ...)
262 {
263 va_list ap;
264 gcall *call;
265 unsigned i;
266
267 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
268
269 call = gimple_build_call_1 (fn, nargs);
270
271 va_start (ap, nargs);
272 for (i = 0; i < nargs; i++)
273 gimple_call_set_arg (call, i, va_arg (ap, tree));
274 va_end (ap);
275
276 return call;
277 }
278
279
280 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
281 arguments. AP contains the arguments. */
282
283 gcall *
284 gimple_build_call_valist (tree fn, unsigned nargs, va_list ap)
285 {
286 gcall *call;
287 unsigned i;
288
289 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
290
291 call = gimple_build_call_1 (fn, nargs);
292
293 for (i = 0; i < nargs; i++)
294 gimple_call_set_arg (call, i, va_arg (ap, tree));
295
296 return call;
297 }
298
299
300 /* Helper for gimple_build_call_internal and gimple_build_call_internal_vec.
301 Build the basic components of a GIMPLE_CALL statement to internal
302 function FN with NARGS arguments. */
303
304 static inline gcall *
305 gimple_build_call_internal_1 (enum internal_fn fn, unsigned nargs)
306 {
307 gcall *s
308 = as_a <gcall *> (gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK,
309 nargs + 3));
310 s->subcode |= GF_CALL_INTERNAL;
311 gimple_call_set_internal_fn (s, fn);
312 gimple_call_reset_alias_info (s);
313 return s;
314 }
315
316
317 /* Build a GIMPLE_CALL statement to internal function FN. NARGS is
318 the number of arguments. The ... are the arguments. */
319
320 gcall *
321 gimple_build_call_internal (enum internal_fn fn, unsigned nargs, ...)
322 {
323 va_list ap;
324 gcall *call;
325 unsigned i;
326
327 call = gimple_build_call_internal_1 (fn, nargs);
328 va_start (ap, nargs);
329 for (i = 0; i < nargs; i++)
330 gimple_call_set_arg (call, i, va_arg (ap, tree));
331 va_end (ap);
332
333 return call;
334 }
335
336
337 /* Build a GIMPLE_CALL statement to internal function FN with the arguments
338 specified in vector ARGS. */
339
340 gcall *
341 gimple_build_call_internal_vec (enum internal_fn fn, vec<tree> args)
342 {
343 unsigned i, nargs;
344 gcall *call;
345
346 nargs = args.length ();
347 call = gimple_build_call_internal_1 (fn, nargs);
348 for (i = 0; i < nargs; i++)
349 gimple_call_set_arg (call, i, args[i]);
350
351 return call;
352 }
353
354
355 /* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
356 assumed to be in GIMPLE form already. Minimal checking is done of
357 this fact. */
358
359 gcall *
360 gimple_build_call_from_tree (tree t)
361 {
362 unsigned i, nargs;
363 gcall *call;
364 tree fndecl = get_callee_fndecl (t);
365
366 gcc_assert (TREE_CODE (t) == CALL_EXPR);
367
368 nargs = call_expr_nargs (t);
369 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
370
371 for (i = 0; i < nargs; i++)
372 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
373
374 gimple_set_block (call, TREE_BLOCK (t));
375
376 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
377 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
378 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
379 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
380 if (fndecl
381 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
382 && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA
383 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN))
384 gimple_call_set_alloca_for_var (call, CALL_ALLOCA_FOR_VAR_P (t));
385 else
386 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
387 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
388 gimple_call_set_nothrow (call, TREE_NOTHROW (t));
389 gimple_set_no_warning (call, TREE_NO_WARNING (t));
390 gimple_call_set_with_bounds (call, CALL_WITH_BOUNDS_P (t));
391
392 return call;
393 }
394
395
396 /* Build a GIMPLE_ASSIGN statement.
397
398 LHS of the assignment.
399 RHS of the assignment which can be unary or binary. */
400
401 gassign *
402 gimple_build_assign_stat (tree lhs, tree rhs MEM_STAT_DECL)
403 {
404 enum tree_code subcode;
405 tree op1, op2, op3;
406
407 extract_ops_from_tree_1 (rhs, &subcode, &op1, &op2, &op3);
408 return gimple_build_assign_with_ops (subcode, lhs, op1, op2, op3
409 PASS_MEM_STAT);
410 }
411
412
413 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
414 OP1 and OP2. If OP2 is NULL then SUBCODE must be of class
415 GIMPLE_UNARY_RHS or GIMPLE_SINGLE_RHS. */
416
417 gassign *
418 gimple_build_assign_with_ops (enum tree_code subcode, tree lhs, tree op1,
419 tree op2, tree op3 MEM_STAT_DECL)
420 {
421 unsigned num_ops;
422 gassign *p;
423
424 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
425 code). */
426 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
427
428 p = as_a <gassign *> (
429 gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
430 PASS_MEM_STAT));
431 gimple_assign_set_lhs (p, lhs);
432 gimple_assign_set_rhs1 (p, op1);
433 if (op2)
434 {
435 gcc_assert (num_ops > 2);
436 gimple_assign_set_rhs2 (p, op2);
437 }
438
439 if (op3)
440 {
441 gcc_assert (num_ops > 3);
442 gimple_assign_set_rhs3 (p, op3);
443 }
444
445 return p;
446 }
447
448 gassign *
449 gimple_build_assign_with_ops (enum tree_code subcode, tree lhs, tree op1,
450 tree op2 MEM_STAT_DECL)
451 {
452 return gimple_build_assign_with_ops (subcode, lhs, op1, op2, NULL_TREE
453 PASS_MEM_STAT);
454 }
455
456 gassign *
457 gimple_build_assign_with_ops (enum tree_code subcode, tree lhs, tree op1
458 MEM_STAT_DECL)
459 {
460 return gimple_build_assign_with_ops (subcode, lhs, op1, NULL_TREE, NULL_TREE
461 PASS_MEM_STAT);
462 }
463
464
465 /* Build a GIMPLE_COND statement.
466
467 PRED is the condition used to compare LHS and the RHS.
468 T_LABEL is the label to jump to if the condition is true.
469 F_LABEL is the label to jump to otherwise. */
470
471 gcond *
472 gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
473 tree t_label, tree f_label)
474 {
475 gcond *p;
476
477 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
478 p = as_a <gcond *> (gimple_build_with_ops (GIMPLE_COND, pred_code, 4));
479 gimple_cond_set_lhs (p, lhs);
480 gimple_cond_set_rhs (p, rhs);
481 gimple_cond_set_true_label (p, t_label);
482 gimple_cond_set_false_label (p, f_label);
483 return p;
484 }
485
486 /* Build a GIMPLE_COND statement from the conditional expression tree
487 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
488
489 gcond *
490 gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
491 {
492 enum tree_code code;
493 tree lhs, rhs;
494
495 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
496 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
497 }
498
499 /* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
500 boolean expression tree COND. */
501
502 void
503 gimple_cond_set_condition_from_tree (gcond *stmt, tree cond)
504 {
505 enum tree_code code;
506 tree lhs, rhs;
507
508 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
509 gimple_cond_set_condition (stmt, code, lhs, rhs);
510 }
511
512 /* Build a GIMPLE_LABEL statement for LABEL. */
513
514 glabel *
515 gimple_build_label (tree label)
516 {
517 glabel *p
518 = as_a <glabel *> (gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1));
519 gimple_label_set_label (p, label);
520 return p;
521 }
522
523 /* Build a GIMPLE_GOTO statement to label DEST. */
524
525 ggoto *
526 gimple_build_goto (tree dest)
527 {
528 ggoto *p
529 = as_a <ggoto *> (gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1));
530 gimple_goto_set_dest (p, dest);
531 return p;
532 }
533
534
535 /* Build a GIMPLE_NOP statement. */
536
537 gimple
538 gimple_build_nop (void)
539 {
540 return gimple_alloc (GIMPLE_NOP, 0);
541 }
542
543
544 /* Build a GIMPLE_BIND statement.
545 VARS are the variables in BODY.
546 BLOCK is the containing block. */
547
548 gbind *
549 gimple_build_bind (tree vars, gimple_seq body, tree block)
550 {
551 gbind *p = as_a <gbind *> (gimple_alloc (GIMPLE_BIND, 0));
552 gimple_bind_set_vars (p, vars);
553 if (body)
554 gimple_bind_set_body (p, body);
555 if (block)
556 gimple_bind_set_block (p, block);
557 return p;
558 }
559
560 /* Helper function to set the simple fields of a asm stmt.
561
562 STRING is a pointer to a string that is the asm blocks assembly code.
563 NINPUT is the number of register inputs.
564 NOUTPUT is the number of register outputs.
565 NCLOBBERS is the number of clobbered registers.
566 */
567
568 static inline gasm *
569 gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
570 unsigned nclobbers, unsigned nlabels)
571 {
572 gasm *p;
573 int size = strlen (string);
574
575 /* ASMs with labels cannot have outputs. This should have been
576 enforced by the front end. */
577 gcc_assert (nlabels == 0 || noutputs == 0);
578
579 p = as_a <gasm *> (
580 gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
581 ninputs + noutputs + nclobbers + nlabels));
582
583 p->ni = ninputs;
584 p->no = noutputs;
585 p->nc = nclobbers;
586 p->nl = nlabels;
587 p->string = ggc_alloc_string (string, size);
588
589 if (GATHER_STATISTICS)
590 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
591
592 return p;
593 }
594
595 /* Build a GIMPLE_ASM statement.
596
597 STRING is the assembly code.
598 NINPUT is the number of register inputs.
599 NOUTPUT is the number of register outputs.
600 NCLOBBERS is the number of clobbered registers.
601 INPUTS is a vector of the input register parameters.
602 OUTPUTS is a vector of the output register parameters.
603 CLOBBERS is a vector of the clobbered register parameters.
604 LABELS is a vector of destination labels. */
605
606 gasm *
607 gimple_build_asm_vec (const char *string, vec<tree, va_gc> *inputs,
608 vec<tree, va_gc> *outputs, vec<tree, va_gc> *clobbers,
609 vec<tree, va_gc> *labels)
610 {
611 gasm *p;
612 unsigned i;
613
614 p = gimple_build_asm_1 (string,
615 vec_safe_length (inputs),
616 vec_safe_length (outputs),
617 vec_safe_length (clobbers),
618 vec_safe_length (labels));
619
620 for (i = 0; i < vec_safe_length (inputs); i++)
621 gimple_asm_set_input_op (p, i, (*inputs)[i]);
622
623 for (i = 0; i < vec_safe_length (outputs); i++)
624 gimple_asm_set_output_op (p, i, (*outputs)[i]);
625
626 for (i = 0; i < vec_safe_length (clobbers); i++)
627 gimple_asm_set_clobber_op (p, i, (*clobbers)[i]);
628
629 for (i = 0; i < vec_safe_length (labels); i++)
630 gimple_asm_set_label_op (p, i, (*labels)[i]);
631
632 return p;
633 }
634
635 /* Build a GIMPLE_CATCH statement.
636
637 TYPES are the catch types.
638 HANDLER is the exception handler. */
639
640 gcatch *
641 gimple_build_catch (tree types, gimple_seq handler)
642 {
643 gcatch *p = as_a <gcatch *> (gimple_alloc (GIMPLE_CATCH, 0));
644 gimple_catch_set_types (p, types);
645 if (handler)
646 gimple_catch_set_handler (p, handler);
647
648 return p;
649 }
650
651 /* Build a GIMPLE_EH_FILTER statement.
652
653 TYPES are the filter's types.
654 FAILURE is the filter's failure action. */
655
656 geh_filter *
657 gimple_build_eh_filter (tree types, gimple_seq failure)
658 {
659 geh_filter *p = as_a <geh_filter *> (gimple_alloc (GIMPLE_EH_FILTER, 0));
660 gimple_eh_filter_set_types (p, types);
661 if (failure)
662 gimple_eh_filter_set_failure (p, failure);
663
664 return p;
665 }
666
667 /* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
668
669 geh_mnt *
670 gimple_build_eh_must_not_throw (tree decl)
671 {
672 geh_mnt *p = as_a <geh_mnt *> (gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0));
673
674 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
675 gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
676 gimple_eh_must_not_throw_set_fndecl (p, decl);
677
678 return p;
679 }
680
681 /* Build a GIMPLE_EH_ELSE statement. */
682
683 geh_else *
684 gimple_build_eh_else (gimple_seq n_body, gimple_seq e_body)
685 {
686 geh_else *p = as_a <geh_else *> (gimple_alloc (GIMPLE_EH_ELSE, 0));
687 gimple_eh_else_set_n_body (p, n_body);
688 gimple_eh_else_set_e_body (p, e_body);
689 return p;
690 }
691
692 /* Build a GIMPLE_TRY statement.
693
694 EVAL is the expression to evaluate.
695 CLEANUP is the cleanup expression.
696 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
697 whether this is a try/catch or a try/finally respectively. */
698
699 gtry *
700 gimple_build_try (gimple_seq eval, gimple_seq cleanup,
701 enum gimple_try_flags kind)
702 {
703 gtry *p;
704
705 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
706 p = as_a <gtry *> (gimple_alloc (GIMPLE_TRY, 0));
707 gimple_set_subcode (p, kind);
708 if (eval)
709 gimple_try_set_eval (p, eval);
710 if (cleanup)
711 gimple_try_set_cleanup (p, cleanup);
712
713 return p;
714 }
715
716 /* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
717
718 CLEANUP is the cleanup expression. */
719
720 gimple
721 gimple_build_wce (gimple_seq cleanup)
722 {
723 gimple p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
724 if (cleanup)
725 gimple_wce_set_cleanup (p, cleanup);
726
727 return p;
728 }
729
730
731 /* Build a GIMPLE_RESX statement. */
732
733 gresx *
734 gimple_build_resx (int region)
735 {
736 gresx *p
737 = as_a <gresx *> (gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0));
738 p->region = region;
739 return p;
740 }
741
742
743 /* The helper for constructing a gimple switch statement.
744 INDEX is the switch's index.
745 NLABELS is the number of labels in the switch excluding the default.
746 DEFAULT_LABEL is the default label for the switch statement. */
747
748 gswitch *
749 gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
750 {
751 /* nlabels + 1 default label + 1 index. */
752 gcc_checking_assert (default_label);
753 gswitch *p = as_a <gswitch *> (gimple_build_with_ops (GIMPLE_SWITCH,
754 ERROR_MARK,
755 1 + 1 + nlabels));
756 gimple_switch_set_index (p, index);
757 gimple_switch_set_default_label (p, default_label);
758 return p;
759 }
760
761 /* Build a GIMPLE_SWITCH statement.
762
763 INDEX is the switch's index.
764 DEFAULT_LABEL is the default label
765 ARGS is a vector of labels excluding the default. */
766
767 gswitch *
768 gimple_build_switch (tree index, tree default_label, vec<tree> args)
769 {
770 unsigned i, nlabels = args.length ();
771
772 gswitch *p = gimple_build_switch_nlabels (nlabels, index, default_label);
773
774 /* Copy the labels from the vector to the switch statement. */
775 for (i = 0; i < nlabels; i++)
776 gimple_switch_set_label (p, i + 1, args[i]);
777
778 return p;
779 }
780
781 /* Build a GIMPLE_EH_DISPATCH statement. */
782
783 geh_dispatch *
784 gimple_build_eh_dispatch (int region)
785 {
786 geh_dispatch *p
787 = as_a <geh_dispatch *> (
788 gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0));
789 p->region = region;
790 return p;
791 }
792
793 /* Build a new GIMPLE_DEBUG_BIND statement.
794
795 VAR is bound to VALUE; block and location are taken from STMT. */
796
797 gdebug *
798 gimple_build_debug_bind_stat (tree var, tree value, gimple stmt MEM_STAT_DECL)
799 {
800 gdebug *p
801 = as_a <gdebug *> (gimple_build_with_ops_stat (GIMPLE_DEBUG,
802 (unsigned)GIMPLE_DEBUG_BIND, 2
803 PASS_MEM_STAT));
804 gimple_debug_bind_set_var (p, var);
805 gimple_debug_bind_set_value (p, value);
806 if (stmt)
807 gimple_set_location (p, gimple_location (stmt));
808
809 return p;
810 }
811
812
813 /* Build a new GIMPLE_DEBUG_SOURCE_BIND statement.
814
815 VAR is bound to VALUE; block and location are taken from STMT. */
816
817 gdebug *
818 gimple_build_debug_source_bind_stat (tree var, tree value,
819 gimple stmt MEM_STAT_DECL)
820 {
821 gdebug *p
822 = as_a <gdebug *> (
823 gimple_build_with_ops_stat (GIMPLE_DEBUG,
824 (unsigned)GIMPLE_DEBUG_SOURCE_BIND, 2
825 PASS_MEM_STAT));
826
827 gimple_debug_source_bind_set_var (p, var);
828 gimple_debug_source_bind_set_value (p, value);
829 if (stmt)
830 gimple_set_location (p, gimple_location (stmt));
831
832 return p;
833 }
834
835
836 /* Build a GIMPLE_OMP_CRITICAL statement.
837
838 BODY is the sequence of statements for which only one thread can execute.
839 NAME is optional identifier for this critical block. */
840
841 gomp_critical *
842 gimple_build_omp_critical (gimple_seq body, tree name)
843 {
844 gomp_critical *p
845 = as_a <gomp_critical *> (gimple_alloc (GIMPLE_OMP_CRITICAL, 0));
846 gimple_omp_critical_set_name (p, name);
847 if (body)
848 gimple_omp_set_body (p, body);
849
850 return p;
851 }
852
853 /* Build a GIMPLE_OMP_FOR statement.
854
855 BODY is sequence of statements inside the for loop.
856 KIND is the `for' variant.
857 CLAUSES, are any of the OMP loop construct's clauses: private, firstprivate,
858 lastprivate, reductions, ordered, schedule, and nowait.
859 COLLAPSE is the collapse count.
860 PRE_BODY is the sequence of statements that are loop invariant. */
861
862 gomp_for *
863 gimple_build_omp_for (gimple_seq body, int kind, tree clauses, size_t collapse,
864 gimple_seq pre_body)
865 {
866 gomp_for *p = as_a <gomp_for *> (gimple_alloc (GIMPLE_OMP_FOR, 0));
867 if (body)
868 gimple_omp_set_body (p, body);
869 gimple_omp_for_set_clauses (p, clauses);
870 gimple_omp_for_set_kind (p, kind);
871 p->collapse = collapse;
872 p->iter = ggc_cleared_vec_alloc<gimple_omp_for_iter> (collapse);
873
874 if (pre_body)
875 gimple_omp_for_set_pre_body (p, pre_body);
876
877 return p;
878 }
879
880
881 /* Build a GIMPLE_OMP_PARALLEL statement.
882
883 BODY is sequence of statements which are executed in parallel.
884 CLAUSES, are the OMP parallel construct's clauses.
885 CHILD_FN is the function created for the parallel threads to execute.
886 DATA_ARG are the shared data argument(s). */
887
888 gomp_parallel *
889 gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
890 tree data_arg)
891 {
892 gomp_parallel *p
893 = as_a <gomp_parallel *> (gimple_alloc (GIMPLE_OMP_PARALLEL, 0));
894 if (body)
895 gimple_omp_set_body (p, body);
896 gimple_omp_parallel_set_clauses (p, clauses);
897 gimple_omp_parallel_set_child_fn (p, child_fn);
898 gimple_omp_parallel_set_data_arg (p, data_arg);
899
900 return p;
901 }
902
903
904 /* Build a GIMPLE_OMP_TASK statement.
905
906 BODY is sequence of statements which are executed by the explicit task.
907 CLAUSES, are the OMP parallel construct's clauses.
908 CHILD_FN is the function created for the parallel threads to execute.
909 DATA_ARG are the shared data argument(s).
910 COPY_FN is the optional function for firstprivate initialization.
911 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
912
913 gomp_task *
914 gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
915 tree data_arg, tree copy_fn, tree arg_size,
916 tree arg_align)
917 {
918 gomp_task *p = as_a <gomp_task *> (gimple_alloc (GIMPLE_OMP_TASK, 0));
919 if (body)
920 gimple_omp_set_body (p, body);
921 gimple_omp_task_set_clauses (p, clauses);
922 gimple_omp_task_set_child_fn (p, child_fn);
923 gimple_omp_task_set_data_arg (p, data_arg);
924 gimple_omp_task_set_copy_fn (p, copy_fn);
925 gimple_omp_task_set_arg_size (p, arg_size);
926 gimple_omp_task_set_arg_align (p, arg_align);
927
928 return p;
929 }
930
931
932 /* Build a GIMPLE_OMP_SECTION statement for a sections statement.
933
934 BODY is the sequence of statements in the section. */
935
936 gimple
937 gimple_build_omp_section (gimple_seq body)
938 {
939 gimple p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
940 if (body)
941 gimple_omp_set_body (p, body);
942
943 return p;
944 }
945
946
947 /* Build a GIMPLE_OMP_MASTER statement.
948
949 BODY is the sequence of statements to be executed by just the master. */
950
951 gimple
952 gimple_build_omp_master (gimple_seq body)
953 {
954 gimple p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
955 if (body)
956 gimple_omp_set_body (p, body);
957
958 return p;
959 }
960
961
962 /* Build a GIMPLE_OMP_TASKGROUP statement.
963
964 BODY is the sequence of statements to be executed by the taskgroup
965 construct. */
966
967 gimple
968 gimple_build_omp_taskgroup (gimple_seq body)
969 {
970 gimple p = gimple_alloc (GIMPLE_OMP_TASKGROUP, 0);
971 if (body)
972 gimple_omp_set_body (p, body);
973
974 return p;
975 }
976
977
978 /* Build a GIMPLE_OMP_CONTINUE statement.
979
980 CONTROL_DEF is the definition of the control variable.
981 CONTROL_USE is the use of the control variable. */
982
983 gomp_continue *
984 gimple_build_omp_continue (tree control_def, tree control_use)
985 {
986 gomp_continue *p
987 = as_a <gomp_continue *> (gimple_alloc (GIMPLE_OMP_CONTINUE, 0));
988 gimple_omp_continue_set_control_def (p, control_def);
989 gimple_omp_continue_set_control_use (p, control_use);
990 return p;
991 }
992
993 /* Build a GIMPLE_OMP_ORDERED statement.
994
995 BODY is the sequence of statements inside a loop that will executed in
996 sequence. */
997
998 gimple
999 gimple_build_omp_ordered (gimple_seq body)
1000 {
1001 gimple p = gimple_alloc (GIMPLE_OMP_ORDERED, 0);
1002 if (body)
1003 gimple_omp_set_body (p, body);
1004
1005 return p;
1006 }
1007
1008
1009 /* Build a GIMPLE_OMP_RETURN statement.
1010 WAIT_P is true if this is a non-waiting return. */
1011
1012 gimple
1013 gimple_build_omp_return (bool wait_p)
1014 {
1015 gimple p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
1016 if (wait_p)
1017 gimple_omp_return_set_nowait (p);
1018
1019 return p;
1020 }
1021
1022
1023 /* Build a GIMPLE_OMP_SECTIONS statement.
1024
1025 BODY is a sequence of section statements.
1026 CLAUSES are any of the OMP sections contsruct's clauses: private,
1027 firstprivate, lastprivate, reduction, and nowait. */
1028
1029 gomp_sections *
1030 gimple_build_omp_sections (gimple_seq body, tree clauses)
1031 {
1032 gomp_sections *p
1033 = as_a <gomp_sections *> (gimple_alloc (GIMPLE_OMP_SECTIONS, 0));
1034 if (body)
1035 gimple_omp_set_body (p, body);
1036 gimple_omp_sections_set_clauses (p, clauses);
1037
1038 return p;
1039 }
1040
1041
1042 /* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
1043
1044 gimple
1045 gimple_build_omp_sections_switch (void)
1046 {
1047 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
1048 }
1049
1050
1051 /* Build a GIMPLE_OMP_SINGLE statement.
1052
1053 BODY is the sequence of statements that will be executed once.
1054 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1055 copyprivate, nowait. */
1056
1057 gomp_single *
1058 gimple_build_omp_single (gimple_seq body, tree clauses)
1059 {
1060 gomp_single *p
1061 = as_a <gomp_single *> (gimple_alloc (GIMPLE_OMP_SINGLE, 0));
1062 if (body)
1063 gimple_omp_set_body (p, body);
1064 gimple_omp_single_set_clauses (p, clauses);
1065
1066 return p;
1067 }
1068
1069
1070 /* Build a GIMPLE_OMP_TARGET statement.
1071
1072 BODY is the sequence of statements that will be executed.
1073 CLAUSES are any of the OMP target construct's clauses. */
1074
1075 gomp_target *
1076 gimple_build_omp_target (gimple_seq body, int kind, tree clauses)
1077 {
1078 gomp_target *p
1079 = as_a <gomp_target *> (gimple_alloc (GIMPLE_OMP_TARGET, 0));
1080 if (body)
1081 gimple_omp_set_body (p, body);
1082 gimple_omp_target_set_clauses (p, clauses);
1083 gimple_omp_target_set_kind (p, kind);
1084
1085 return p;
1086 }
1087
1088
1089 /* Build a GIMPLE_OMP_TEAMS statement.
1090
1091 BODY is the sequence of statements that will be executed.
1092 CLAUSES are any of the OMP teams construct's clauses. */
1093
1094 gomp_teams *
1095 gimple_build_omp_teams (gimple_seq body, tree clauses)
1096 {
1097 gomp_teams *p = as_a <gomp_teams *> (gimple_alloc (GIMPLE_OMP_TEAMS, 0));
1098 if (body)
1099 gimple_omp_set_body (p, body);
1100 gimple_omp_teams_set_clauses (p, clauses);
1101
1102 return p;
1103 }
1104
1105
1106 /* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
1107
1108 gomp_atomic_load *
1109 gimple_build_omp_atomic_load (tree lhs, tree rhs)
1110 {
1111 gomp_atomic_load *p
1112 = as_a <gomp_atomic_load *> (gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0));
1113 gimple_omp_atomic_load_set_lhs (p, lhs);
1114 gimple_omp_atomic_load_set_rhs (p, rhs);
1115 return p;
1116 }
1117
1118 /* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1119
1120 VAL is the value we are storing. */
1121
1122 gomp_atomic_store *
1123 gimple_build_omp_atomic_store (tree val)
1124 {
1125 gomp_atomic_store *p
1126 = as_a <gomp_atomic_store *> (gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0));
1127 gimple_omp_atomic_store_set_val (p, val);
1128 return p;
1129 }
1130
1131 /* Build a GIMPLE_TRANSACTION statement. */
1132
1133 gtransaction *
1134 gimple_build_transaction (gimple_seq body, tree label)
1135 {
1136 gtransaction *p
1137 = as_a <gtransaction *> (gimple_alloc (GIMPLE_TRANSACTION, 0));
1138 gimple_transaction_set_body (p, body);
1139 gimple_transaction_set_label (p, label);
1140 return p;
1141 }
1142
1143 /* Build a GIMPLE_PREDICT statement. PREDICT is one of the predictors from
1144 predict.def, OUTCOME is NOT_TAKEN or TAKEN. */
1145
1146 gimple
1147 gimple_build_predict (enum br_predictor predictor, enum prediction outcome)
1148 {
1149 gimple p = gimple_alloc (GIMPLE_PREDICT, 0);
1150 /* Ensure all the predictors fit into the lower bits of the subcode. */
1151 gcc_assert ((int) END_PREDICTORS <= GF_PREDICT_TAKEN);
1152 gimple_predict_set_predictor (p, predictor);
1153 gimple_predict_set_outcome (p, outcome);
1154 return p;
1155 }
1156
1157 #if defined ENABLE_GIMPLE_CHECKING
1158 /* Complain of a gimple type mismatch and die. */
1159
1160 void
1161 gimple_check_failed (const_gimple gs, const char *file, int line,
1162 const char *function, enum gimple_code code,
1163 enum tree_code subcode)
1164 {
1165 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1166 gimple_code_name[code],
1167 get_tree_code_name (subcode),
1168 gimple_code_name[gimple_code (gs)],
1169 gs->subcode > 0
1170 ? get_tree_code_name ((enum tree_code) gs->subcode)
1171 : "",
1172 function, trim_filename (file), line);
1173 }
1174 #endif /* ENABLE_GIMPLE_CHECKING */
1175
1176
1177 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1178 *SEQ_P is NULL, a new sequence is allocated. */
1179
1180 void
1181 gimple_seq_add_stmt (gimple_seq *seq_p, gimple gs)
1182 {
1183 gimple_stmt_iterator si;
1184 if (gs == NULL)
1185 return;
1186
1187 si = gsi_last (*seq_p);
1188 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1189 }
1190
1191 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1192 *SEQ_P is NULL, a new sequence is allocated. This function is
1193 similar to gimple_seq_add_stmt, but does not scan the operands.
1194 During gimplification, we need to manipulate statement sequences
1195 before the def/use vectors have been constructed. */
1196
1197 void
1198 gimple_seq_add_stmt_without_update (gimple_seq *seq_p, gimple gs)
1199 {
1200 gimple_stmt_iterator si;
1201
1202 if (gs == NULL)
1203 return;
1204
1205 si = gsi_last (*seq_p);
1206 gsi_insert_after_without_update (&si, gs, GSI_NEW_STMT);
1207 }
1208
1209 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1210 NULL, a new sequence is allocated. */
1211
1212 void
1213 gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1214 {
1215 gimple_stmt_iterator si;
1216 if (src == NULL)
1217 return;
1218
1219 si = gsi_last (*dst_p);
1220 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1221 }
1222
1223 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1224 NULL, a new sequence is allocated. This function is
1225 similar to gimple_seq_add_seq, but does not scan the operands. */
1226
1227 void
1228 gimple_seq_add_seq_without_update (gimple_seq *dst_p, gimple_seq src)
1229 {
1230 gimple_stmt_iterator si;
1231 if (src == NULL)
1232 return;
1233
1234 si = gsi_last (*dst_p);
1235 gsi_insert_seq_after_without_update (&si, src, GSI_NEW_STMT);
1236 }
1237
1238 /* Determine whether to assign a location to the statement GS. */
1239
1240 static bool
1241 should_carry_location_p (gimple gs)
1242 {
1243 /* Don't emit a line note for a label. We particularly don't want to
1244 emit one for the break label, since it doesn't actually correspond
1245 to the beginning of the loop/switch. */
1246 if (gimple_code (gs) == GIMPLE_LABEL)
1247 return false;
1248
1249 return true;
1250 }
1251
1252 /* Set the location for gimple statement GS to LOCATION. */
1253
1254 static void
1255 annotate_one_with_location (gimple gs, location_t location)
1256 {
1257 if (!gimple_has_location (gs)
1258 && !gimple_do_not_emit_location_p (gs)
1259 && should_carry_location_p (gs))
1260 gimple_set_location (gs, location);
1261 }
1262
1263 /* Set LOCATION for all the statements after iterator GSI in sequence
1264 SEQ. If GSI is pointing to the end of the sequence, start with the
1265 first statement in SEQ. */
1266
1267 void
1268 annotate_all_with_location_after (gimple_seq seq, gimple_stmt_iterator gsi,
1269 location_t location)
1270 {
1271 if (gsi_end_p (gsi))
1272 gsi = gsi_start (seq);
1273 else
1274 gsi_next (&gsi);
1275
1276 for (; !gsi_end_p (gsi); gsi_next (&gsi))
1277 annotate_one_with_location (gsi_stmt (gsi), location);
1278 }
1279
1280 /* Set the location for all the statements in a sequence STMT_P to LOCATION. */
1281
1282 void
1283 annotate_all_with_location (gimple_seq stmt_p, location_t location)
1284 {
1285 gimple_stmt_iterator i;
1286
1287 if (gimple_seq_empty_p (stmt_p))
1288 return;
1289
1290 for (i = gsi_start (stmt_p); !gsi_end_p (i); gsi_next (&i))
1291 {
1292 gimple gs = gsi_stmt (i);
1293 annotate_one_with_location (gs, location);
1294 }
1295 }
1296
1297 /* Helper function of empty_body_p. Return true if STMT is an empty
1298 statement. */
1299
1300 static bool
1301 empty_stmt_p (gimple stmt)
1302 {
1303 if (gimple_code (stmt) == GIMPLE_NOP)
1304 return true;
1305 if (gbind *bind_stmt = dyn_cast <gbind *> (stmt))
1306 return empty_body_p (gimple_bind_body (bind_stmt));
1307 return false;
1308 }
1309
1310
1311 /* Return true if BODY contains nothing but empty statements. */
1312
1313 bool
1314 empty_body_p (gimple_seq body)
1315 {
1316 gimple_stmt_iterator i;
1317
1318 if (gimple_seq_empty_p (body))
1319 return true;
1320 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
1321 if (!empty_stmt_p (gsi_stmt (i))
1322 && !is_gimple_debug (gsi_stmt (i)))
1323 return false;
1324
1325 return true;
1326 }
1327
1328
1329 /* Perform a deep copy of sequence SRC and return the result. */
1330
1331 gimple_seq
1332 gimple_seq_copy (gimple_seq src)
1333 {
1334 gimple_stmt_iterator gsi;
1335 gimple_seq new_seq = NULL;
1336 gimple stmt;
1337
1338 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1339 {
1340 stmt = gimple_copy (gsi_stmt (gsi));
1341 gimple_seq_add_stmt (&new_seq, stmt);
1342 }
1343
1344 return new_seq;
1345 }
1346
1347
1348
1349 /* Return true if calls C1 and C2 are known to go to the same function. */
1350
1351 bool
1352 gimple_call_same_target_p (const_gimple c1, const_gimple c2)
1353 {
1354 if (gimple_call_internal_p (c1))
1355 return (gimple_call_internal_p (c2)
1356 && gimple_call_internal_fn (c1) == gimple_call_internal_fn (c2));
1357 else
1358 return (gimple_call_fn (c1) == gimple_call_fn (c2)
1359 || (gimple_call_fndecl (c1)
1360 && gimple_call_fndecl (c1) == gimple_call_fndecl (c2)));
1361 }
1362
1363 /* Detect flags from a GIMPLE_CALL. This is just like
1364 call_expr_flags, but for gimple tuples. */
1365
1366 int
1367 gimple_call_flags (const_gimple stmt)
1368 {
1369 int flags;
1370 tree decl = gimple_call_fndecl (stmt);
1371
1372 if (decl)
1373 flags = flags_from_decl_or_type (decl);
1374 else if (gimple_call_internal_p (stmt))
1375 flags = internal_fn_flags (gimple_call_internal_fn (stmt));
1376 else
1377 flags = flags_from_decl_or_type (gimple_call_fntype (stmt));
1378
1379 if (stmt->subcode & GF_CALL_NOTHROW)
1380 flags |= ECF_NOTHROW;
1381
1382 return flags;
1383 }
1384
1385 /* Return the "fn spec" string for call STMT. */
1386
1387 static const_tree
1388 gimple_call_fnspec (const gcall *stmt)
1389 {
1390 tree type, attr;
1391
1392 if (gimple_call_internal_p (stmt))
1393 return internal_fn_fnspec (gimple_call_internal_fn (stmt));
1394
1395 type = gimple_call_fntype (stmt);
1396 if (!type)
1397 return NULL_TREE;
1398
1399 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1400 if (!attr)
1401 return NULL_TREE;
1402
1403 return TREE_VALUE (TREE_VALUE (attr));
1404 }
1405
1406 /* Detects argument flags for argument number ARG on call STMT. */
1407
1408 int
1409 gimple_call_arg_flags (const gcall *stmt, unsigned arg)
1410 {
1411 const_tree attr = gimple_call_fnspec (stmt);
1412
1413 if (!attr || 1 + arg >= (unsigned) TREE_STRING_LENGTH (attr))
1414 return 0;
1415
1416 switch (TREE_STRING_POINTER (attr)[1 + arg])
1417 {
1418 case 'x':
1419 case 'X':
1420 return EAF_UNUSED;
1421
1422 case 'R':
1423 return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE;
1424
1425 case 'r':
1426 return EAF_NOCLOBBER | EAF_NOESCAPE;
1427
1428 case 'W':
1429 return EAF_DIRECT | EAF_NOESCAPE;
1430
1431 case 'w':
1432 return EAF_NOESCAPE;
1433
1434 case '.':
1435 default:
1436 return 0;
1437 }
1438 }
1439
1440 /* Detects return flags for the call STMT. */
1441
1442 int
1443 gimple_call_return_flags (const gcall *stmt)
1444 {
1445 const_tree attr;
1446
1447 if (gimple_call_flags (stmt) & ECF_MALLOC)
1448 return ERF_NOALIAS;
1449
1450 attr = gimple_call_fnspec (stmt);
1451 if (!attr || TREE_STRING_LENGTH (attr) < 1)
1452 return 0;
1453
1454 switch (TREE_STRING_POINTER (attr)[0])
1455 {
1456 case '1':
1457 case '2':
1458 case '3':
1459 case '4':
1460 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
1461
1462 case 'm':
1463 return ERF_NOALIAS;
1464
1465 case '.':
1466 default:
1467 return 0;
1468 }
1469 }
1470
1471
1472 /* Return true if GS is a copy assignment. */
1473
1474 bool
1475 gimple_assign_copy_p (gimple gs)
1476 {
1477 return (gimple_assign_single_p (gs)
1478 && is_gimple_val (gimple_op (gs, 1)));
1479 }
1480
1481
1482 /* Return true if GS is a SSA_NAME copy assignment. */
1483
1484 bool
1485 gimple_assign_ssa_name_copy_p (gimple gs)
1486 {
1487 return (gimple_assign_single_p (gs)
1488 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1489 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1490 }
1491
1492
1493 /* Return true if GS is an assignment with a unary RHS, but the
1494 operator has no effect on the assigned value. The logic is adapted
1495 from STRIP_NOPS. This predicate is intended to be used in tuplifying
1496 instances in which STRIP_NOPS was previously applied to the RHS of
1497 an assignment.
1498
1499 NOTE: In the use cases that led to the creation of this function
1500 and of gimple_assign_single_p, it is typical to test for either
1501 condition and to proceed in the same manner. In each case, the
1502 assigned value is represented by the single RHS operand of the
1503 assignment. I suspect there may be cases where gimple_assign_copy_p,
1504 gimple_assign_single_p, or equivalent logic is used where a similar
1505 treatment of unary NOPs is appropriate. */
1506
1507 bool
1508 gimple_assign_unary_nop_p (gimple gs)
1509 {
1510 return (is_gimple_assign (gs)
1511 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
1512 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
1513 && gimple_assign_rhs1 (gs) != error_mark_node
1514 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
1515 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
1516 }
1517
1518 /* Set BB to be the basic block holding G. */
1519
1520 void
1521 gimple_set_bb (gimple stmt, basic_block bb)
1522 {
1523 stmt->bb = bb;
1524
1525 if (gimple_code (stmt) != GIMPLE_LABEL)
1526 return;
1527
1528 /* If the statement is a label, add the label to block-to-labels map
1529 so that we can speed up edge creation for GIMPLE_GOTOs. */
1530 if (cfun->cfg)
1531 {
1532 tree t;
1533 int uid;
1534
1535 t = gimple_label_label (as_a <glabel *> (stmt));
1536 uid = LABEL_DECL_UID (t);
1537 if (uid == -1)
1538 {
1539 unsigned old_len =
1540 vec_safe_length (label_to_block_map_for_fn (cfun));
1541 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
1542 if (old_len <= (unsigned) uid)
1543 {
1544 unsigned new_len = 3 * uid / 2 + 1;
1545
1546 vec_safe_grow_cleared (label_to_block_map_for_fn (cfun),
1547 new_len);
1548 }
1549 }
1550
1551 (*label_to_block_map_for_fn (cfun))[uid] = bb;
1552 }
1553 }
1554
1555
1556 /* Modify the RHS of the assignment pointed-to by GSI using the
1557 operands in the expression tree EXPR.
1558
1559 NOTE: The statement pointed-to by GSI may be reallocated if it
1560 did not have enough operand slots.
1561
1562 This function is useful to convert an existing tree expression into
1563 the flat representation used for the RHS of a GIMPLE assignment.
1564 It will reallocate memory as needed to expand or shrink the number
1565 of operand slots needed to represent EXPR.
1566
1567 NOTE: If you find yourself building a tree and then calling this
1568 function, you are most certainly doing it the slow way. It is much
1569 better to build a new assignment or to use the function
1570 gimple_assign_set_rhs_with_ops, which does not require an
1571 expression tree to be built. */
1572
1573 void
1574 gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
1575 {
1576 enum tree_code subcode;
1577 tree op1, op2, op3;
1578
1579 extract_ops_from_tree_1 (expr, &subcode, &op1, &op2, &op3);
1580 gimple_assign_set_rhs_with_ops (gsi, subcode, op1, op2, op3);
1581 }
1582
1583
1584 /* Set the RHS of assignment statement pointed-to by GSI to CODE with
1585 operands OP1, OP2 and OP3.
1586
1587 NOTE: The statement pointed-to by GSI may be reallocated if it
1588 did not have enough operand slots. */
1589
1590 void
1591 gimple_assign_set_rhs_with_ops (gimple_stmt_iterator *gsi, enum tree_code code,
1592 tree op1, tree op2, tree op3)
1593 {
1594 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
1595 gimple stmt = gsi_stmt (*gsi);
1596
1597 /* If the new CODE needs more operands, allocate a new statement. */
1598 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
1599 {
1600 tree lhs = gimple_assign_lhs (stmt);
1601 gimple new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
1602 memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
1603 gimple_init_singleton (new_stmt);
1604 gsi_replace (gsi, new_stmt, true);
1605 stmt = new_stmt;
1606
1607 /* The LHS needs to be reset as this also changes the SSA name
1608 on the LHS. */
1609 gimple_assign_set_lhs (stmt, lhs);
1610 }
1611
1612 gimple_set_num_ops (stmt, new_rhs_ops + 1);
1613 gimple_set_subcode (stmt, code);
1614 gimple_assign_set_rhs1 (stmt, op1);
1615 if (new_rhs_ops > 1)
1616 gimple_assign_set_rhs2 (stmt, op2);
1617 if (new_rhs_ops > 2)
1618 gimple_assign_set_rhs3 (stmt, op3);
1619 }
1620
1621
1622 /* Return the LHS of a statement that performs an assignment,
1623 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
1624 for a call to a function that returns no value, or for a
1625 statement other than an assignment or a call. */
1626
1627 tree
1628 gimple_get_lhs (const_gimple stmt)
1629 {
1630 enum gimple_code code = gimple_code (stmt);
1631
1632 if (code == GIMPLE_ASSIGN)
1633 return gimple_assign_lhs (stmt);
1634 else if (code == GIMPLE_CALL)
1635 return gimple_call_lhs (stmt);
1636 else
1637 return NULL_TREE;
1638 }
1639
1640
1641 /* Set the LHS of a statement that performs an assignment,
1642 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
1643
1644 void
1645 gimple_set_lhs (gimple stmt, tree lhs)
1646 {
1647 enum gimple_code code = gimple_code (stmt);
1648
1649 if (code == GIMPLE_ASSIGN)
1650 gimple_assign_set_lhs (stmt, lhs);
1651 else if (code == GIMPLE_CALL)
1652 gimple_call_set_lhs (stmt, lhs);
1653 else
1654 gcc_unreachable ();
1655 }
1656
1657
1658 /* Return a deep copy of statement STMT. All the operands from STMT
1659 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
1660 and VUSE operand arrays are set to empty in the new copy. The new
1661 copy isn't part of any sequence. */
1662
1663 gimple
1664 gimple_copy (gimple stmt)
1665 {
1666 enum gimple_code code = gimple_code (stmt);
1667 unsigned num_ops = gimple_num_ops (stmt);
1668 gimple copy = gimple_alloc (code, num_ops);
1669 unsigned i;
1670
1671 /* Shallow copy all the fields from STMT. */
1672 memcpy (copy, stmt, gimple_size (code));
1673 gimple_init_singleton (copy);
1674
1675 /* If STMT has sub-statements, deep-copy them as well. */
1676 if (gimple_has_substatements (stmt))
1677 {
1678 gimple_seq new_seq;
1679 tree t;
1680
1681 switch (gimple_code (stmt))
1682 {
1683 case GIMPLE_BIND:
1684 {
1685 gbind *bind_stmt = as_a <gbind *> (stmt);
1686 gbind *bind_copy = as_a <gbind *> (copy);
1687 new_seq = gimple_seq_copy (gimple_bind_body (bind_stmt));
1688 gimple_bind_set_body (bind_copy, new_seq);
1689 gimple_bind_set_vars (bind_copy,
1690 unshare_expr (gimple_bind_vars (bind_stmt)));
1691 gimple_bind_set_block (bind_copy, gimple_bind_block (bind_stmt));
1692 }
1693 break;
1694
1695 case GIMPLE_CATCH:
1696 {
1697 gcatch *catch_stmt = as_a <gcatch *> (stmt);
1698 gcatch *catch_copy = as_a <gcatch *> (copy);
1699 new_seq = gimple_seq_copy (gimple_catch_handler (catch_stmt));
1700 gimple_catch_set_handler (catch_copy, new_seq);
1701 t = unshare_expr (gimple_catch_types (catch_stmt));
1702 gimple_catch_set_types (catch_copy, t);
1703 }
1704 break;
1705
1706 case GIMPLE_EH_FILTER:
1707 {
1708 geh_filter *eh_filter_stmt = as_a <geh_filter *> (stmt);
1709 geh_filter *eh_filter_copy = as_a <geh_filter *> (copy);
1710 new_seq
1711 = gimple_seq_copy (gimple_eh_filter_failure (eh_filter_stmt));
1712 gimple_eh_filter_set_failure (eh_filter_copy, new_seq);
1713 t = unshare_expr (gimple_eh_filter_types (eh_filter_stmt));
1714 gimple_eh_filter_set_types (eh_filter_copy, t);
1715 }
1716 break;
1717
1718 case GIMPLE_EH_ELSE:
1719 {
1720 geh_else *eh_else_stmt = as_a <geh_else *> (stmt);
1721 geh_else *eh_else_copy = as_a <geh_else *> (copy);
1722 new_seq = gimple_seq_copy (gimple_eh_else_n_body (eh_else_stmt));
1723 gimple_eh_else_set_n_body (eh_else_copy, new_seq);
1724 new_seq = gimple_seq_copy (gimple_eh_else_e_body (eh_else_stmt));
1725 gimple_eh_else_set_e_body (eh_else_copy, new_seq);
1726 }
1727 break;
1728
1729 case GIMPLE_TRY:
1730 {
1731 gtry *try_stmt = as_a <gtry *> (stmt);
1732 gtry *try_copy = as_a <gtry *> (copy);
1733 new_seq = gimple_seq_copy (gimple_try_eval (try_stmt));
1734 gimple_try_set_eval (try_copy, new_seq);
1735 new_seq = gimple_seq_copy (gimple_try_cleanup (try_stmt));
1736 gimple_try_set_cleanup (try_copy, new_seq);
1737 }
1738 break;
1739
1740 case GIMPLE_OMP_FOR:
1741 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
1742 gimple_omp_for_set_pre_body (copy, new_seq);
1743 t = unshare_expr (gimple_omp_for_clauses (stmt));
1744 gimple_omp_for_set_clauses (copy, t);
1745 {
1746 gomp_for *omp_for_copy = as_a <gomp_for *> (copy);
1747 omp_for_copy->iter = ggc_vec_alloc<gimple_omp_for_iter>
1748 ( gimple_omp_for_collapse (stmt));
1749 }
1750 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1751 {
1752 gimple_omp_for_set_cond (copy, i,
1753 gimple_omp_for_cond (stmt, i));
1754 gimple_omp_for_set_index (copy, i,
1755 gimple_omp_for_index (stmt, i));
1756 t = unshare_expr (gimple_omp_for_initial (stmt, i));
1757 gimple_omp_for_set_initial (copy, i, t);
1758 t = unshare_expr (gimple_omp_for_final (stmt, i));
1759 gimple_omp_for_set_final (copy, i, t);
1760 t = unshare_expr (gimple_omp_for_incr (stmt, i));
1761 gimple_omp_for_set_incr (copy, i, t);
1762 }
1763 goto copy_omp_body;
1764
1765 case GIMPLE_OMP_PARALLEL:
1766 {
1767 gomp_parallel *omp_par_stmt = as_a <gomp_parallel *> (stmt);
1768 gomp_parallel *omp_par_copy = as_a <gomp_parallel *> (copy);
1769 t = unshare_expr (gimple_omp_parallel_clauses (omp_par_stmt));
1770 gimple_omp_parallel_set_clauses (omp_par_copy, t);
1771 t = unshare_expr (gimple_omp_parallel_child_fn (omp_par_stmt));
1772 gimple_omp_parallel_set_child_fn (omp_par_copy, t);
1773 t = unshare_expr (gimple_omp_parallel_data_arg (omp_par_stmt));
1774 gimple_omp_parallel_set_data_arg (omp_par_copy, t);
1775 }
1776 goto copy_omp_body;
1777
1778 case GIMPLE_OMP_TASK:
1779 t = unshare_expr (gimple_omp_task_clauses (stmt));
1780 gimple_omp_task_set_clauses (copy, t);
1781 t = unshare_expr (gimple_omp_task_child_fn (stmt));
1782 gimple_omp_task_set_child_fn (copy, t);
1783 t = unshare_expr (gimple_omp_task_data_arg (stmt));
1784 gimple_omp_task_set_data_arg (copy, t);
1785 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
1786 gimple_omp_task_set_copy_fn (copy, t);
1787 t = unshare_expr (gimple_omp_task_arg_size (stmt));
1788 gimple_omp_task_set_arg_size (copy, t);
1789 t = unshare_expr (gimple_omp_task_arg_align (stmt));
1790 gimple_omp_task_set_arg_align (copy, t);
1791 goto copy_omp_body;
1792
1793 case GIMPLE_OMP_CRITICAL:
1794 t = unshare_expr (gimple_omp_critical_name (
1795 as_a <gomp_critical *> (stmt)));
1796 gimple_omp_critical_set_name (as_a <gomp_critical *> (copy), t);
1797 goto copy_omp_body;
1798
1799 case GIMPLE_OMP_SECTIONS:
1800 t = unshare_expr (gimple_omp_sections_clauses (stmt));
1801 gimple_omp_sections_set_clauses (copy, t);
1802 t = unshare_expr (gimple_omp_sections_control (stmt));
1803 gimple_omp_sections_set_control (copy, t);
1804 /* FALLTHRU */
1805
1806 case GIMPLE_OMP_SINGLE:
1807 case GIMPLE_OMP_TARGET:
1808 case GIMPLE_OMP_TEAMS:
1809 case GIMPLE_OMP_SECTION:
1810 case GIMPLE_OMP_MASTER:
1811 case GIMPLE_OMP_TASKGROUP:
1812 case GIMPLE_OMP_ORDERED:
1813 copy_omp_body:
1814 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
1815 gimple_omp_set_body (copy, new_seq);
1816 break;
1817
1818 case GIMPLE_TRANSACTION:
1819 new_seq = gimple_seq_copy (gimple_transaction_body (
1820 as_a <gtransaction *> (stmt)));
1821 gimple_transaction_set_body (as_a <gtransaction *> (copy),
1822 new_seq);
1823 break;
1824
1825 case GIMPLE_WITH_CLEANUP_EXPR:
1826 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
1827 gimple_wce_set_cleanup (copy, new_seq);
1828 break;
1829
1830 default:
1831 gcc_unreachable ();
1832 }
1833 }
1834
1835 /* Make copy of operands. */
1836 for (i = 0; i < num_ops; i++)
1837 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
1838
1839 if (gimple_has_mem_ops (stmt))
1840 {
1841 gimple_set_vdef (copy, gimple_vdef (stmt));
1842 gimple_set_vuse (copy, gimple_vuse (stmt));
1843 }
1844
1845 /* Clear out SSA operand vectors on COPY. */
1846 if (gimple_has_ops (stmt))
1847 {
1848 gimple_set_use_ops (copy, NULL);
1849
1850 /* SSA operands need to be updated. */
1851 gimple_set_modified (copy, true);
1852 }
1853
1854 return copy;
1855 }
1856
1857
1858 /* Return true if statement S has side-effects. We consider a
1859 statement to have side effects if:
1860
1861 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
1862 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
1863
1864 bool
1865 gimple_has_side_effects (const_gimple s)
1866 {
1867 if (is_gimple_debug (s))
1868 return false;
1869
1870 /* We don't have to scan the arguments to check for
1871 volatile arguments, though, at present, we still
1872 do a scan to check for TREE_SIDE_EFFECTS. */
1873 if (gimple_has_volatile_ops (s))
1874 return true;
1875
1876 if (gimple_code (s) == GIMPLE_ASM
1877 && gimple_asm_volatile_p (as_a <const gasm *> (s)))
1878 return true;
1879
1880 if (is_gimple_call (s))
1881 {
1882 int flags = gimple_call_flags (s);
1883
1884 /* An infinite loop is considered a side effect. */
1885 if (!(flags & (ECF_CONST | ECF_PURE))
1886 || (flags & ECF_LOOPING_CONST_OR_PURE))
1887 return true;
1888
1889 return false;
1890 }
1891
1892 return false;
1893 }
1894
1895 /* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
1896 Return true if S can trap. When INCLUDE_MEM is true, check whether
1897 the memory operations could trap. When INCLUDE_STORES is true and
1898 S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked. */
1899
1900 bool
1901 gimple_could_trap_p_1 (gimple s, bool include_mem, bool include_stores)
1902 {
1903 tree t, div = NULL_TREE;
1904 enum tree_code op;
1905
1906 if (include_mem)
1907 {
1908 unsigned i, start = (is_gimple_assign (s) && !include_stores) ? 1 : 0;
1909
1910 for (i = start; i < gimple_num_ops (s); i++)
1911 if (tree_could_trap_p (gimple_op (s, i)))
1912 return true;
1913 }
1914
1915 switch (gimple_code (s))
1916 {
1917 case GIMPLE_ASM:
1918 return gimple_asm_volatile_p (as_a <gasm *> (s));
1919
1920 case GIMPLE_CALL:
1921 t = gimple_call_fndecl (s);
1922 /* Assume that calls to weak functions may trap. */
1923 if (!t || !DECL_P (t) || DECL_WEAK (t))
1924 return true;
1925 return false;
1926
1927 case GIMPLE_ASSIGN:
1928 t = gimple_expr_type (s);
1929 op = gimple_assign_rhs_code (s);
1930 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
1931 div = gimple_assign_rhs2 (s);
1932 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
1933 (INTEGRAL_TYPE_P (t)
1934 && TYPE_OVERFLOW_TRAPS (t)),
1935 div));
1936
1937 default:
1938 break;
1939 }
1940
1941 return false;
1942 }
1943
1944 /* Return true if statement S can trap. */
1945
1946 bool
1947 gimple_could_trap_p (gimple s)
1948 {
1949 return gimple_could_trap_p_1 (s, true, true);
1950 }
1951
1952 /* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
1953
1954 bool
1955 gimple_assign_rhs_could_trap_p (gimple s)
1956 {
1957 gcc_assert (is_gimple_assign (s));
1958 return gimple_could_trap_p_1 (s, true, false);
1959 }
1960
1961
1962 /* Print debugging information for gimple stmts generated. */
1963
1964 void
1965 dump_gimple_statistics (void)
1966 {
1967 int i, total_tuples = 0, total_bytes = 0;
1968
1969 if (! GATHER_STATISTICS)
1970 {
1971 fprintf (stderr, "No gimple statistics\n");
1972 return;
1973 }
1974
1975 fprintf (stderr, "\nGIMPLE statements\n");
1976 fprintf (stderr, "Kind Stmts Bytes\n");
1977 fprintf (stderr, "---------------------------------------\n");
1978 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
1979 {
1980 fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i],
1981 gimple_alloc_counts[i], gimple_alloc_sizes[i]);
1982 total_tuples += gimple_alloc_counts[i];
1983 total_bytes += gimple_alloc_sizes[i];
1984 }
1985 fprintf (stderr, "---------------------------------------\n");
1986 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes);
1987 fprintf (stderr, "---------------------------------------\n");
1988 }
1989
1990
1991 /* Return the number of operands needed on the RHS of a GIMPLE
1992 assignment for an expression with tree code CODE. */
1993
1994 unsigned
1995 get_gimple_rhs_num_ops (enum tree_code code)
1996 {
1997 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
1998
1999 if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
2000 return 1;
2001 else if (rhs_class == GIMPLE_BINARY_RHS)
2002 return 2;
2003 else if (rhs_class == GIMPLE_TERNARY_RHS)
2004 return 3;
2005 else
2006 gcc_unreachable ();
2007 }
2008
2009 #define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
2010 (unsigned char) \
2011 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
2012 : ((TYPE) == tcc_binary \
2013 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
2014 : ((TYPE) == tcc_constant \
2015 || (TYPE) == tcc_declaration \
2016 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
2017 : ((SYM) == TRUTH_AND_EXPR \
2018 || (SYM) == TRUTH_OR_EXPR \
2019 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
2020 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
2021 : ((SYM) == COND_EXPR \
2022 || (SYM) == WIDEN_MULT_PLUS_EXPR \
2023 || (SYM) == WIDEN_MULT_MINUS_EXPR \
2024 || (SYM) == DOT_PROD_EXPR \
2025 || (SYM) == SAD_EXPR \
2026 || (SYM) == REALIGN_LOAD_EXPR \
2027 || (SYM) == VEC_COND_EXPR \
2028 || (SYM) == VEC_PERM_EXPR \
2029 || (SYM) == FMA_EXPR) ? GIMPLE_TERNARY_RHS \
2030 : ((SYM) == CONSTRUCTOR \
2031 || (SYM) == OBJ_TYPE_REF \
2032 || (SYM) == ASSERT_EXPR \
2033 || (SYM) == ADDR_EXPR \
2034 || (SYM) == WITH_SIZE_EXPR \
2035 || (SYM) == SSA_NAME) ? GIMPLE_SINGLE_RHS \
2036 : GIMPLE_INVALID_RHS),
2037 #define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
2038
2039 const unsigned char gimple_rhs_class_table[] = {
2040 #include "all-tree.def"
2041 };
2042
2043 #undef DEFTREECODE
2044 #undef END_OF_BASE_TREE_CODES
2045
2046 /* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
2047 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
2048 we failed to create one. */
2049
2050 tree
2051 canonicalize_cond_expr_cond (tree t)
2052 {
2053 /* Strip conversions around boolean operations. */
2054 if (CONVERT_EXPR_P (t)
2055 && (truth_value_p (TREE_CODE (TREE_OPERAND (t, 0)))
2056 || TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0)))
2057 == BOOLEAN_TYPE))
2058 t = TREE_OPERAND (t, 0);
2059
2060 /* For !x use x == 0. */
2061 if (TREE_CODE (t) == TRUTH_NOT_EXPR)
2062 {
2063 tree top0 = TREE_OPERAND (t, 0);
2064 t = build2 (EQ_EXPR, TREE_TYPE (t),
2065 top0, build_int_cst (TREE_TYPE (top0), 0));
2066 }
2067 /* For cmp ? 1 : 0 use cmp. */
2068 else if (TREE_CODE (t) == COND_EXPR
2069 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
2070 && integer_onep (TREE_OPERAND (t, 1))
2071 && integer_zerop (TREE_OPERAND (t, 2)))
2072 {
2073 tree top0 = TREE_OPERAND (t, 0);
2074 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
2075 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
2076 }
2077 /* For x ^ y use x != y. */
2078 else if (TREE_CODE (t) == BIT_XOR_EXPR)
2079 t = build2 (NE_EXPR, TREE_TYPE (t),
2080 TREE_OPERAND (t, 0), TREE_OPERAND (t, 1));
2081
2082 if (is_gimple_condexpr (t))
2083 return t;
2084
2085 return NULL_TREE;
2086 }
2087
2088 /* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
2089 the positions marked by the set ARGS_TO_SKIP. */
2090
2091 gcall *
2092 gimple_call_copy_skip_args (gcall *stmt, bitmap args_to_skip)
2093 {
2094 int i;
2095 int nargs = gimple_call_num_args (stmt);
2096 auto_vec<tree> vargs (nargs);
2097 gcall *new_stmt;
2098
2099 for (i = 0; i < nargs; i++)
2100 if (!bitmap_bit_p (args_to_skip, i))
2101 vargs.quick_push (gimple_call_arg (stmt, i));
2102
2103 if (gimple_call_internal_p (stmt))
2104 new_stmt = gimple_build_call_internal_vec (gimple_call_internal_fn (stmt),
2105 vargs);
2106 else
2107 new_stmt = gimple_build_call_vec (gimple_call_fn (stmt), vargs);
2108
2109 if (gimple_call_lhs (stmt))
2110 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
2111
2112 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
2113 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
2114
2115 if (gimple_has_location (stmt))
2116 gimple_set_location (new_stmt, gimple_location (stmt));
2117 gimple_call_copy_flags (new_stmt, stmt);
2118 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
2119
2120 gimple_set_modified (new_stmt, true);
2121
2122 return new_stmt;
2123 }
2124
2125
2126
2127 /* Return true if the field decls F1 and F2 are at the same offset.
2128
2129 This is intended to be used on GIMPLE types only. */
2130
2131 bool
2132 gimple_compare_field_offset (tree f1, tree f2)
2133 {
2134 if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
2135 {
2136 tree offset1 = DECL_FIELD_OFFSET (f1);
2137 tree offset2 = DECL_FIELD_OFFSET (f2);
2138 return ((offset1 == offset2
2139 /* Once gimplification is done, self-referential offsets are
2140 instantiated as operand #2 of the COMPONENT_REF built for
2141 each access and reset. Therefore, they are not relevant
2142 anymore and fields are interchangeable provided that they
2143 represent the same access. */
2144 || (TREE_CODE (offset1) == PLACEHOLDER_EXPR
2145 && TREE_CODE (offset2) == PLACEHOLDER_EXPR
2146 && (DECL_SIZE (f1) == DECL_SIZE (f2)
2147 || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
2148 && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
2149 || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0))
2150 && DECL_ALIGN (f1) == DECL_ALIGN (f2))
2151 || operand_equal_p (offset1, offset2, 0))
2152 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
2153 DECL_FIELD_BIT_OFFSET (f2)));
2154 }
2155
2156 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
2157 should be, so handle differing ones specially by decomposing
2158 the offset into a byte and bit offset manually. */
2159 if (tree_fits_shwi_p (DECL_FIELD_OFFSET (f1))
2160 && tree_fits_shwi_p (DECL_FIELD_OFFSET (f2)))
2161 {
2162 unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
2163 unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
2164 bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
2165 byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
2166 + bit_offset1 / BITS_PER_UNIT);
2167 bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
2168 byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
2169 + bit_offset2 / BITS_PER_UNIT);
2170 if (byte_offset1 != byte_offset2)
2171 return false;
2172 return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
2173 }
2174
2175 return false;
2176 }
2177
2178
2179 /* Return a type the same as TYPE except unsigned or
2180 signed according to UNSIGNEDP. */
2181
2182 static tree
2183 gimple_signed_or_unsigned_type (bool unsignedp, tree type)
2184 {
2185 tree type1;
2186 int i;
2187
2188 type1 = TYPE_MAIN_VARIANT (type);
2189 if (type1 == signed_char_type_node
2190 || type1 == char_type_node
2191 || type1 == unsigned_char_type_node)
2192 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2193 if (type1 == integer_type_node || type1 == unsigned_type_node)
2194 return unsignedp ? unsigned_type_node : integer_type_node;
2195 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
2196 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2197 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
2198 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2199 if (type1 == long_long_integer_type_node
2200 || type1 == long_long_unsigned_type_node)
2201 return unsignedp
2202 ? long_long_unsigned_type_node
2203 : long_long_integer_type_node;
2204
2205 for (i = 0; i < NUM_INT_N_ENTS; i ++)
2206 if (int_n_enabled_p[i]
2207 && (type1 == int_n_trees[i].unsigned_type
2208 || type1 == int_n_trees[i].signed_type))
2209 return unsignedp
2210 ? int_n_trees[i].unsigned_type
2211 : int_n_trees[i].signed_type;
2212
2213 #if HOST_BITS_PER_WIDE_INT >= 64
2214 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
2215 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2216 #endif
2217 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
2218 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2219 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
2220 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2221 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
2222 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2223 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
2224 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2225
2226 #define GIMPLE_FIXED_TYPES(NAME) \
2227 if (type1 == short_ ## NAME ## _type_node \
2228 || type1 == unsigned_short_ ## NAME ## _type_node) \
2229 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
2230 : short_ ## NAME ## _type_node; \
2231 if (type1 == NAME ## _type_node \
2232 || type1 == unsigned_ ## NAME ## _type_node) \
2233 return unsignedp ? unsigned_ ## NAME ## _type_node \
2234 : NAME ## _type_node; \
2235 if (type1 == long_ ## NAME ## _type_node \
2236 || type1 == unsigned_long_ ## NAME ## _type_node) \
2237 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
2238 : long_ ## NAME ## _type_node; \
2239 if (type1 == long_long_ ## NAME ## _type_node \
2240 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
2241 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
2242 : long_long_ ## NAME ## _type_node;
2243
2244 #define GIMPLE_FIXED_MODE_TYPES(NAME) \
2245 if (type1 == NAME ## _type_node \
2246 || type1 == u ## NAME ## _type_node) \
2247 return unsignedp ? u ## NAME ## _type_node \
2248 : NAME ## _type_node;
2249
2250 #define GIMPLE_FIXED_TYPES_SAT(NAME) \
2251 if (type1 == sat_ ## short_ ## NAME ## _type_node \
2252 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
2253 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
2254 : sat_ ## short_ ## NAME ## _type_node; \
2255 if (type1 == sat_ ## NAME ## _type_node \
2256 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
2257 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
2258 : sat_ ## NAME ## _type_node; \
2259 if (type1 == sat_ ## long_ ## NAME ## _type_node \
2260 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
2261 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
2262 : sat_ ## long_ ## NAME ## _type_node; \
2263 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
2264 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
2265 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
2266 : sat_ ## long_long_ ## NAME ## _type_node;
2267
2268 #define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
2269 if (type1 == sat_ ## NAME ## _type_node \
2270 || type1 == sat_ ## u ## NAME ## _type_node) \
2271 return unsignedp ? sat_ ## u ## NAME ## _type_node \
2272 : sat_ ## NAME ## _type_node;
2273
2274 GIMPLE_FIXED_TYPES (fract);
2275 GIMPLE_FIXED_TYPES_SAT (fract);
2276 GIMPLE_FIXED_TYPES (accum);
2277 GIMPLE_FIXED_TYPES_SAT (accum);
2278
2279 GIMPLE_FIXED_MODE_TYPES (qq);
2280 GIMPLE_FIXED_MODE_TYPES (hq);
2281 GIMPLE_FIXED_MODE_TYPES (sq);
2282 GIMPLE_FIXED_MODE_TYPES (dq);
2283 GIMPLE_FIXED_MODE_TYPES (tq);
2284 GIMPLE_FIXED_MODE_TYPES_SAT (qq);
2285 GIMPLE_FIXED_MODE_TYPES_SAT (hq);
2286 GIMPLE_FIXED_MODE_TYPES_SAT (sq);
2287 GIMPLE_FIXED_MODE_TYPES_SAT (dq);
2288 GIMPLE_FIXED_MODE_TYPES_SAT (tq);
2289 GIMPLE_FIXED_MODE_TYPES (ha);
2290 GIMPLE_FIXED_MODE_TYPES (sa);
2291 GIMPLE_FIXED_MODE_TYPES (da);
2292 GIMPLE_FIXED_MODE_TYPES (ta);
2293 GIMPLE_FIXED_MODE_TYPES_SAT (ha);
2294 GIMPLE_FIXED_MODE_TYPES_SAT (sa);
2295 GIMPLE_FIXED_MODE_TYPES_SAT (da);
2296 GIMPLE_FIXED_MODE_TYPES_SAT (ta);
2297
2298 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
2299 the precision; they have precision set to match their range, but
2300 may use a wider mode to match an ABI. If we change modes, we may
2301 wind up with bad conversions. For INTEGER_TYPEs in C, must check
2302 the precision as well, so as to yield correct results for
2303 bit-field types. C++ does not have these separate bit-field
2304 types, and producing a signed or unsigned variant of an
2305 ENUMERAL_TYPE may cause other problems as well. */
2306 if (!INTEGRAL_TYPE_P (type)
2307 || TYPE_UNSIGNED (type) == unsignedp)
2308 return type;
2309
2310 #define TYPE_OK(node) \
2311 (TYPE_MODE (type) == TYPE_MODE (node) \
2312 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
2313 if (TYPE_OK (signed_char_type_node))
2314 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2315 if (TYPE_OK (integer_type_node))
2316 return unsignedp ? unsigned_type_node : integer_type_node;
2317 if (TYPE_OK (short_integer_type_node))
2318 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2319 if (TYPE_OK (long_integer_type_node))
2320 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2321 if (TYPE_OK (long_long_integer_type_node))
2322 return (unsignedp
2323 ? long_long_unsigned_type_node
2324 : long_long_integer_type_node);
2325
2326 for (i = 0; i < NUM_INT_N_ENTS; i ++)
2327 if (int_n_enabled_p[i]
2328 && TYPE_MODE (type) == int_n_data[i].m
2329 && TYPE_PRECISION (type) == int_n_data[i].bitsize)
2330 return unsignedp
2331 ? int_n_trees[i].unsigned_type
2332 : int_n_trees[i].signed_type;
2333
2334 #if HOST_BITS_PER_WIDE_INT >= 64
2335 if (TYPE_OK (intTI_type_node))
2336 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2337 #endif
2338 if (TYPE_OK (intDI_type_node))
2339 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2340 if (TYPE_OK (intSI_type_node))
2341 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2342 if (TYPE_OK (intHI_type_node))
2343 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2344 if (TYPE_OK (intQI_type_node))
2345 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2346
2347 #undef GIMPLE_FIXED_TYPES
2348 #undef GIMPLE_FIXED_MODE_TYPES
2349 #undef GIMPLE_FIXED_TYPES_SAT
2350 #undef GIMPLE_FIXED_MODE_TYPES_SAT
2351 #undef TYPE_OK
2352
2353 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
2354 }
2355
2356
2357 /* Return an unsigned type the same as TYPE in other respects. */
2358
2359 tree
2360 gimple_unsigned_type (tree type)
2361 {
2362 return gimple_signed_or_unsigned_type (true, type);
2363 }
2364
2365
2366 /* Return a signed type the same as TYPE in other respects. */
2367
2368 tree
2369 gimple_signed_type (tree type)
2370 {
2371 return gimple_signed_or_unsigned_type (false, type);
2372 }
2373
2374
2375 /* Return the typed-based alias set for T, which may be an expression
2376 or a type. Return -1 if we don't do anything special. */
2377
2378 alias_set_type
2379 gimple_get_alias_set (tree t)
2380 {
2381 tree u;
2382
2383 /* Permit type-punning when accessing a union, provided the access
2384 is directly through the union. For example, this code does not
2385 permit taking the address of a union member and then storing
2386 through it. Even the type-punning allowed here is a GCC
2387 extension, albeit a common and useful one; the C standard says
2388 that such accesses have implementation-defined behavior. */
2389 for (u = t;
2390 TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
2391 u = TREE_OPERAND (u, 0))
2392 if (TREE_CODE (u) == COMPONENT_REF
2393 && TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
2394 return 0;
2395
2396 /* That's all the expressions we handle specially. */
2397 if (!TYPE_P (t))
2398 return -1;
2399
2400 /* For convenience, follow the C standard when dealing with
2401 character types. Any object may be accessed via an lvalue that
2402 has character type. */
2403 if (t == char_type_node
2404 || t == signed_char_type_node
2405 || t == unsigned_char_type_node)
2406 return 0;
2407
2408 /* Allow aliasing between signed and unsigned variants of the same
2409 type. We treat the signed variant as canonical. */
2410 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
2411 {
2412 tree t1 = gimple_signed_type (t);
2413
2414 /* t1 == t can happen for boolean nodes which are always unsigned. */
2415 if (t1 != t)
2416 return get_alias_set (t1);
2417 }
2418
2419 return -1;
2420 }
2421
2422
2423 /* Helper for gimple_ior_addresses_taken_1. */
2424
2425 static bool
2426 gimple_ior_addresses_taken_1 (gimple, tree addr, tree, void *data)
2427 {
2428 bitmap addresses_taken = (bitmap)data;
2429 addr = get_base_address (addr);
2430 if (addr
2431 && DECL_P (addr))
2432 {
2433 bitmap_set_bit (addresses_taken, DECL_UID (addr));
2434 return true;
2435 }
2436 return false;
2437 }
2438
2439 /* Set the bit for the uid of all decls that have their address taken
2440 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
2441 were any in this stmt. */
2442
2443 bool
2444 gimple_ior_addresses_taken (bitmap addresses_taken, gimple stmt)
2445 {
2446 return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
2447 gimple_ior_addresses_taken_1);
2448 }
2449
2450
2451 /* Return true if TYPE1 and TYPE2 are compatible enough for builtin
2452 processing. */
2453
2454 static bool
2455 validate_type (tree type1, tree type2)
2456 {
2457 if (INTEGRAL_TYPE_P (type1)
2458 && INTEGRAL_TYPE_P (type2))
2459 ;
2460 else if (POINTER_TYPE_P (type1)
2461 && POINTER_TYPE_P (type2))
2462 ;
2463 else if (TREE_CODE (type1)
2464 != TREE_CODE (type2))
2465 return false;
2466 return true;
2467 }
2468
2469 /* Return true when STMTs arguments and return value match those of FNDECL,
2470 a decl of a builtin function. */
2471
2472 bool
2473 gimple_builtin_call_types_compatible_p (const_gimple stmt, tree fndecl)
2474 {
2475 gcc_checking_assert (DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN);
2476
2477 tree ret = gimple_call_lhs (stmt);
2478 if (ret
2479 && !validate_type (TREE_TYPE (ret), TREE_TYPE (TREE_TYPE (fndecl))))
2480 return false;
2481
2482 tree targs = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
2483 unsigned nargs = gimple_call_num_args (stmt);
2484 for (unsigned i = 0; i < nargs; ++i)
2485 {
2486 /* Variadic args follow. */
2487 if (!targs)
2488 return true;
2489 tree arg = gimple_call_arg (stmt, i);
2490 if (!validate_type (TREE_TYPE (arg), TREE_VALUE (targs)))
2491 return false;
2492 targs = TREE_CHAIN (targs);
2493 }
2494 if (targs && !VOID_TYPE_P (TREE_VALUE (targs)))
2495 return false;
2496 return true;
2497 }
2498
2499 /* Return true when STMT is builtins call. */
2500
2501 bool
2502 gimple_call_builtin_p (const_gimple stmt)
2503 {
2504 tree fndecl;
2505 if (is_gimple_call (stmt)
2506 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2507 && DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN)
2508 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2509 return false;
2510 }
2511
2512 /* Return true when STMT is builtins call to CLASS. */
2513
2514 bool
2515 gimple_call_builtin_p (const_gimple stmt, enum built_in_class klass)
2516 {
2517 tree fndecl;
2518 if (is_gimple_call (stmt)
2519 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2520 && DECL_BUILT_IN_CLASS (fndecl) == klass)
2521 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2522 return false;
2523 }
2524
2525 /* Return true when STMT is builtins call to CODE of CLASS. */
2526
2527 bool
2528 gimple_call_builtin_p (const_gimple stmt, enum built_in_function code)
2529 {
2530 tree fndecl;
2531 if (is_gimple_call (stmt)
2532 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2533 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
2534 && DECL_FUNCTION_CODE (fndecl) == code)
2535 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2536 return false;
2537 }
2538
2539 /* Return true if STMT clobbers memory. STMT is required to be a
2540 GIMPLE_ASM. */
2541
2542 bool
2543 gimple_asm_clobbers_memory_p (const gasm *stmt)
2544 {
2545 unsigned i;
2546
2547 for (i = 0; i < gimple_asm_nclobbers (stmt); i++)
2548 {
2549 tree op = gimple_asm_clobber_op (stmt, i);
2550 if (strcmp (TREE_STRING_POINTER (TREE_VALUE (op)), "memory") == 0)
2551 return true;
2552 }
2553
2554 return false;
2555 }
2556
2557 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
2558
2559 void
2560 dump_decl_set (FILE *file, bitmap set)
2561 {
2562 if (set)
2563 {
2564 bitmap_iterator bi;
2565 unsigned i;
2566
2567 fprintf (file, "{ ");
2568
2569 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2570 {
2571 fprintf (file, "D.%u", i);
2572 fprintf (file, " ");
2573 }
2574
2575 fprintf (file, "}");
2576 }
2577 else
2578 fprintf (file, "NIL");
2579 }
2580
2581 /* Return true when CALL is a call stmt that definitely doesn't
2582 free any memory or makes it unavailable otherwise. */
2583 bool
2584 nonfreeing_call_p (gimple call)
2585 {
2586 if (gimple_call_builtin_p (call, BUILT_IN_NORMAL)
2587 && gimple_call_flags (call) & ECF_LEAF)
2588 switch (DECL_FUNCTION_CODE (gimple_call_fndecl (call)))
2589 {
2590 /* Just in case these become ECF_LEAF in the future. */
2591 case BUILT_IN_FREE:
2592 case BUILT_IN_TM_FREE:
2593 case BUILT_IN_REALLOC:
2594 case BUILT_IN_STACK_RESTORE:
2595 return false;
2596 default:
2597 return true;
2598 }
2599 else if (gimple_call_internal_p (call))
2600 switch (gimple_call_internal_fn (call))
2601 {
2602 case IFN_ABNORMAL_DISPATCHER:
2603 return true;
2604 default:
2605 if (gimple_call_flags (call) & ECF_LEAF)
2606 return true;
2607 return false;
2608 }
2609
2610 tree fndecl = gimple_call_fndecl (call);
2611 if (!fndecl)
2612 return false;
2613 struct cgraph_node *n = cgraph_node::get (fndecl);
2614 if (!n)
2615 return false;
2616 enum availability availability;
2617 n = n->function_symbol (&availability);
2618 if (!n || availability <= AVAIL_INTERPOSABLE)
2619 return false;
2620 return n->nonfreeing_fn;
2621 }
2622
2623 /* Callback for walk_stmt_load_store_ops.
2624
2625 Return TRUE if OP will dereference the tree stored in DATA, FALSE
2626 otherwise.
2627
2628 This routine only makes a superficial check for a dereference. Thus
2629 it must only be used if it is safe to return a false negative. */
2630 static bool
2631 check_loadstore (gimple, tree op, tree, void *data)
2632 {
2633 if ((TREE_CODE (op) == MEM_REF || TREE_CODE (op) == TARGET_MEM_REF)
2634 && operand_equal_p (TREE_OPERAND (op, 0), (tree)data, 0))
2635 return true;
2636 return false;
2637 }
2638
2639 /* If OP can be inferred to be non-NULL after STMT executes, return true.
2640
2641 DEREFERENCE is TRUE if we can use a pointer dereference to infer a
2642 non-NULL range, FALSE otherwise.
2643
2644 ATTRIBUTE is TRUE if we can use attributes to infer a non-NULL range
2645 for function arguments and return values. FALSE otherwise. */
2646
2647 bool
2648 infer_nonnull_range (gimple stmt, tree op, bool dereference, bool attribute)
2649 {
2650 /* We can only assume that a pointer dereference will yield
2651 non-NULL if -fdelete-null-pointer-checks is enabled. */
2652 if (!flag_delete_null_pointer_checks
2653 || !POINTER_TYPE_P (TREE_TYPE (op))
2654 || gimple_code (stmt) == GIMPLE_ASM)
2655 return false;
2656
2657 if (dereference
2658 && walk_stmt_load_store_ops (stmt, (void *)op,
2659 check_loadstore, check_loadstore))
2660 return true;
2661
2662 if (attribute
2663 && is_gimple_call (stmt) && !gimple_call_internal_p (stmt))
2664 {
2665 tree fntype = gimple_call_fntype (stmt);
2666 tree attrs = TYPE_ATTRIBUTES (fntype);
2667 for (; attrs; attrs = TREE_CHAIN (attrs))
2668 {
2669 attrs = lookup_attribute ("nonnull", attrs);
2670
2671 /* If "nonnull" wasn't specified, we know nothing about
2672 the argument. */
2673 if (attrs == NULL_TREE)
2674 return false;
2675
2676 /* If "nonnull" applies to all the arguments, then ARG
2677 is non-null if it's in the argument list. */
2678 if (TREE_VALUE (attrs) == NULL_TREE)
2679 {
2680 for (unsigned int i = 0; i < gimple_call_num_args (stmt); i++)
2681 {
2682 if (POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (stmt, i)))
2683 && operand_equal_p (op, gimple_call_arg (stmt, i), 0))
2684 return true;
2685 }
2686 return false;
2687 }
2688
2689 /* Now see if op appears in the nonnull list. */
2690 for (tree t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
2691 {
2692 int idx = TREE_INT_CST_LOW (TREE_VALUE (t)) - 1;
2693 tree arg = gimple_call_arg (stmt, idx);
2694 if (operand_equal_p (op, arg, 0))
2695 return true;
2696 }
2697 }
2698 }
2699
2700 /* If this function is marked as returning non-null, then we can
2701 infer OP is non-null if it is used in the return statement. */
2702 if (attribute)
2703 if (greturn *return_stmt = dyn_cast <greturn *> (stmt))
2704 if (gimple_return_retval (return_stmt)
2705 && operand_equal_p (gimple_return_retval (return_stmt), op, 0)
2706 && lookup_attribute ("returns_nonnull",
2707 TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))))
2708 return true;
2709
2710 return false;
2711 }
2712
2713 /* Compare two case labels. Because the front end should already have
2714 made sure that case ranges do not overlap, it is enough to only compare
2715 the CASE_LOW values of each case label. */
2716
2717 static int
2718 compare_case_labels (const void *p1, const void *p2)
2719 {
2720 const_tree const case1 = *(const_tree const*)p1;
2721 const_tree const case2 = *(const_tree const*)p2;
2722
2723 /* The 'default' case label always goes first. */
2724 if (!CASE_LOW (case1))
2725 return -1;
2726 else if (!CASE_LOW (case2))
2727 return 1;
2728 else
2729 return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
2730 }
2731
2732 /* Sort the case labels in LABEL_VEC in place in ascending order. */
2733
2734 void
2735 sort_case_labels (vec<tree> label_vec)
2736 {
2737 label_vec.qsort (compare_case_labels);
2738 }
2739 \f
2740 /* Prepare a vector of case labels to be used in a GIMPLE_SWITCH statement.
2741
2742 LABELS is a vector that contains all case labels to look at.
2743
2744 INDEX_TYPE is the type of the switch index expression. Case labels
2745 in LABELS are discarded if their values are not in the value range
2746 covered by INDEX_TYPE. The remaining case label values are folded
2747 to INDEX_TYPE.
2748
2749 If a default case exists in LABELS, it is removed from LABELS and
2750 returned in DEFAULT_CASEP. If no default case exists, but the
2751 case labels already cover the whole range of INDEX_TYPE, a default
2752 case is returned pointing to one of the existing case labels.
2753 Otherwise DEFAULT_CASEP is set to NULL_TREE.
2754
2755 DEFAULT_CASEP may be NULL, in which case the above comment doesn't
2756 apply and no action is taken regardless of whether a default case is
2757 found or not. */
2758
2759 void
2760 preprocess_case_label_vec_for_gimple (vec<tree> labels,
2761 tree index_type,
2762 tree *default_casep)
2763 {
2764 tree min_value, max_value;
2765 tree default_case = NULL_TREE;
2766 size_t i, len;
2767
2768 i = 0;
2769 min_value = TYPE_MIN_VALUE (index_type);
2770 max_value = TYPE_MAX_VALUE (index_type);
2771 while (i < labels.length ())
2772 {
2773 tree elt = labels[i];
2774 tree low = CASE_LOW (elt);
2775 tree high = CASE_HIGH (elt);
2776 bool remove_element = FALSE;
2777
2778 if (low)
2779 {
2780 gcc_checking_assert (TREE_CODE (low) == INTEGER_CST);
2781 gcc_checking_assert (!high || TREE_CODE (high) == INTEGER_CST);
2782
2783 /* This is a non-default case label, i.e. it has a value.
2784
2785 See if the case label is reachable within the range of
2786 the index type. Remove out-of-range case values. Turn
2787 case ranges into a canonical form (high > low strictly)
2788 and convert the case label values to the index type.
2789
2790 NB: The type of gimple_switch_index() may be the promoted
2791 type, but the case labels retain the original type. */
2792
2793 if (high)
2794 {
2795 /* This is a case range. Discard empty ranges.
2796 If the bounds or the range are equal, turn this
2797 into a simple (one-value) case. */
2798 int cmp = tree_int_cst_compare (high, low);
2799 if (cmp < 0)
2800 remove_element = TRUE;
2801 else if (cmp == 0)
2802 high = NULL_TREE;
2803 }
2804
2805 if (! high)
2806 {
2807 /* If the simple case value is unreachable, ignore it. */
2808 if ((TREE_CODE (min_value) == INTEGER_CST
2809 && tree_int_cst_compare (low, min_value) < 0)
2810 || (TREE_CODE (max_value) == INTEGER_CST
2811 && tree_int_cst_compare (low, max_value) > 0))
2812 remove_element = TRUE;
2813 else
2814 low = fold_convert (index_type, low);
2815 }
2816 else
2817 {
2818 /* If the entire case range is unreachable, ignore it. */
2819 if ((TREE_CODE (min_value) == INTEGER_CST
2820 && tree_int_cst_compare (high, min_value) < 0)
2821 || (TREE_CODE (max_value) == INTEGER_CST
2822 && tree_int_cst_compare (low, max_value) > 0))
2823 remove_element = TRUE;
2824 else
2825 {
2826 /* If the lower bound is less than the index type's
2827 minimum value, truncate the range bounds. */
2828 if (TREE_CODE (min_value) == INTEGER_CST
2829 && tree_int_cst_compare (low, min_value) < 0)
2830 low = min_value;
2831 low = fold_convert (index_type, low);
2832
2833 /* If the upper bound is greater than the index type's
2834 maximum value, truncate the range bounds. */
2835 if (TREE_CODE (max_value) == INTEGER_CST
2836 && tree_int_cst_compare (high, max_value) > 0)
2837 high = max_value;
2838 high = fold_convert (index_type, high);
2839
2840 /* We may have folded a case range to a one-value case. */
2841 if (tree_int_cst_equal (low, high))
2842 high = NULL_TREE;
2843 }
2844 }
2845
2846 CASE_LOW (elt) = low;
2847 CASE_HIGH (elt) = high;
2848 }
2849 else
2850 {
2851 gcc_assert (!default_case);
2852 default_case = elt;
2853 /* The default case must be passed separately to the
2854 gimple_build_switch routine. But if DEFAULT_CASEP
2855 is NULL, we do not remove the default case (it would
2856 be completely lost). */
2857 if (default_casep)
2858 remove_element = TRUE;
2859 }
2860
2861 if (remove_element)
2862 labels.ordered_remove (i);
2863 else
2864 i++;
2865 }
2866 len = i;
2867
2868 if (!labels.is_empty ())
2869 sort_case_labels (labels);
2870
2871 if (default_casep && !default_case)
2872 {
2873 /* If the switch has no default label, add one, so that we jump
2874 around the switch body. If the labels already cover the whole
2875 range of the switch index_type, add the default label pointing
2876 to one of the existing labels. */
2877 if (len
2878 && TYPE_MIN_VALUE (index_type)
2879 && TYPE_MAX_VALUE (index_type)
2880 && tree_int_cst_equal (CASE_LOW (labels[0]),
2881 TYPE_MIN_VALUE (index_type)))
2882 {
2883 tree low, high = CASE_HIGH (labels[len - 1]);
2884 if (!high)
2885 high = CASE_LOW (labels[len - 1]);
2886 if (tree_int_cst_equal (high, TYPE_MAX_VALUE (index_type)))
2887 {
2888 for (i = 1; i < len; i++)
2889 {
2890 high = CASE_LOW (labels[i]);
2891 low = CASE_HIGH (labels[i - 1]);
2892 if (!low)
2893 low = CASE_LOW (labels[i - 1]);
2894 if (wi::add (low, 1) != high)
2895 break;
2896 }
2897 if (i == len)
2898 {
2899 tree label = CASE_LABEL (labels[0]);
2900 default_case = build_case_label (NULL_TREE, NULL_TREE,
2901 label);
2902 }
2903 }
2904 }
2905 }
2906
2907 if (default_casep)
2908 *default_casep = default_case;
2909 }
2910
2911 /* Set the location of all statements in SEQ to LOC. */
2912
2913 void
2914 gimple_seq_set_location (gimple_seq seq, location_t loc)
2915 {
2916 for (gimple_stmt_iterator i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
2917 gimple_set_location (gsi_stmt (i), loc);
2918 }
2919
2920 /* Release SSA_NAMEs in SEQ as well as the GIMPLE statements. */
2921
2922 void
2923 gimple_seq_discard (gimple_seq seq)
2924 {
2925 gimple_stmt_iterator gsi;
2926
2927 for (gsi = gsi_start (seq); !gsi_end_p (gsi); )
2928 {
2929 gimple stmt = gsi_stmt (gsi);
2930 gsi_remove (&gsi, true);
2931 release_defs (stmt);
2932 ggc_free (stmt);
2933 }
2934 }