re PR lto/46648 (type mismatch in array reference; verify_stmts failed)
[gcc.git] / gcc / gimple.c
1 /* Gimple IR support functions.
2
3 Copyright 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "target.h"
27 #include "tree.h"
28 #include "ggc.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "gimple.h"
32 #include "toplev.h"
33 #include "diagnostic.h"
34 #include "tree-flow.h"
35 #include "value-prof.h"
36 #include "flags.h"
37 #include "alias.h"
38 #include "demangle.h"
39 #include "langhooks.h"
40
41 /* Global type table. FIXME lto, it should be possible to re-use some
42 of the type hashing routines in tree.c (type_hash_canon, type_hash_lookup,
43 etc), but those assume that types were built with the various
44 build_*_type routines which is not the case with the streamer. */
45 static GTY((if_marked ("ggc_marked_p"), param_is (union tree_node)))
46 htab_t gimple_types;
47 static GTY((if_marked ("ggc_marked_p"), param_is (union tree_node)))
48 htab_t gimple_canonical_types;
49 static GTY((if_marked ("tree_int_map_marked_p"), param_is (struct tree_int_map)))
50 htab_t type_hash_cache;
51
52 /* Global type comparison cache. This is by TYPE_UID for space efficiency
53 and thus cannot use and does not need GC. */
54 static htab_t gtc_visited;
55 static struct obstack gtc_ob;
56
57 /* All the tuples have their operand vector (if present) at the very bottom
58 of the structure. Therefore, the offset required to find the
59 operands vector the size of the structure minus the size of the 1
60 element tree array at the end (see gimple_ops). */
61 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
62 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
63 EXPORTED_CONST size_t gimple_ops_offset_[] = {
64 #include "gsstruct.def"
65 };
66 #undef DEFGSSTRUCT
67
68 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof(struct STRUCT),
69 static const size_t gsstruct_code_size[] = {
70 #include "gsstruct.def"
71 };
72 #undef DEFGSSTRUCT
73
74 #define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
75 const char *const gimple_code_name[] = {
76 #include "gimple.def"
77 };
78 #undef DEFGSCODE
79
80 #define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
81 EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
82 #include "gimple.def"
83 };
84 #undef DEFGSCODE
85
86 #ifdef GATHER_STATISTICS
87 /* Gimple stats. */
88
89 int gimple_alloc_counts[(int) gimple_alloc_kind_all];
90 int gimple_alloc_sizes[(int) gimple_alloc_kind_all];
91
92 /* Keep in sync with gimple.h:enum gimple_alloc_kind. */
93 static const char * const gimple_alloc_kind_names[] = {
94 "assignments",
95 "phi nodes",
96 "conditionals",
97 "sequences",
98 "everything else"
99 };
100
101 #endif /* GATHER_STATISTICS */
102
103 /* A cache of gimple_seq objects. Sequences are created and destroyed
104 fairly often during gimplification. */
105 static GTY ((deletable)) struct gimple_seq_d *gimple_seq_cache;
106
107 /* Private API manipulation functions shared only with some
108 other files. */
109 extern void gimple_set_stored_syms (gimple, bitmap, bitmap_obstack *);
110 extern void gimple_set_loaded_syms (gimple, bitmap, bitmap_obstack *);
111
112 /* Gimple tuple constructors.
113 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
114 be passed a NULL to start with an empty sequence. */
115
116 /* Set the code for statement G to CODE. */
117
118 static inline void
119 gimple_set_code (gimple g, enum gimple_code code)
120 {
121 g->gsbase.code = code;
122 }
123
124 /* Return the number of bytes needed to hold a GIMPLE statement with
125 code CODE. */
126
127 static inline size_t
128 gimple_size (enum gimple_code code)
129 {
130 return gsstruct_code_size[gss_for_code (code)];
131 }
132
133 /* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
134 operands. */
135
136 gimple
137 gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
138 {
139 size_t size;
140 gimple stmt;
141
142 size = gimple_size (code);
143 if (num_ops > 0)
144 size += sizeof (tree) * (num_ops - 1);
145
146 #ifdef GATHER_STATISTICS
147 {
148 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
149 gimple_alloc_counts[(int) kind]++;
150 gimple_alloc_sizes[(int) kind] += size;
151 }
152 #endif
153
154 stmt = ggc_alloc_cleared_gimple_statement_d_stat (size PASS_MEM_STAT);
155 gimple_set_code (stmt, code);
156 gimple_set_num_ops (stmt, num_ops);
157
158 /* Do not call gimple_set_modified here as it has other side
159 effects and this tuple is still not completely built. */
160 stmt->gsbase.modified = 1;
161
162 return stmt;
163 }
164
165 /* Set SUBCODE to be the code of the expression computed by statement G. */
166
167 static inline void
168 gimple_set_subcode (gimple g, unsigned subcode)
169 {
170 /* We only have 16 bits for the RHS code. Assert that we are not
171 overflowing it. */
172 gcc_assert (subcode < (1 << 16));
173 g->gsbase.subcode = subcode;
174 }
175
176
177
178 /* Build a tuple with operands. CODE is the statement to build (which
179 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the sub-code
180 for the new tuple. NUM_OPS is the number of operands to allocate. */
181
182 #define gimple_build_with_ops(c, s, n) \
183 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
184
185 static gimple
186 gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
187 unsigned num_ops MEM_STAT_DECL)
188 {
189 gimple s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT);
190 gimple_set_subcode (s, subcode);
191
192 return s;
193 }
194
195
196 /* Build a GIMPLE_RETURN statement returning RETVAL. */
197
198 gimple
199 gimple_build_return (tree retval)
200 {
201 gimple s = gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK, 1);
202 if (retval)
203 gimple_return_set_retval (s, retval);
204 return s;
205 }
206
207 /* Reset alias information on call S. */
208
209 void
210 gimple_call_reset_alias_info (gimple s)
211 {
212 if (gimple_call_flags (s) & ECF_CONST)
213 memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
214 else
215 pt_solution_reset (gimple_call_use_set (s));
216 if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
217 memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
218 else
219 pt_solution_reset (gimple_call_clobber_set (s));
220 }
221
222 /* Helper for gimple_build_call, gimple_build_call_vec and
223 gimple_build_call_from_tree. Build the basic components of a
224 GIMPLE_CALL statement to function FN with NARGS arguments. */
225
226 static inline gimple
227 gimple_build_call_1 (tree fn, unsigned nargs)
228 {
229 gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3);
230 if (TREE_CODE (fn) == FUNCTION_DECL)
231 fn = build_fold_addr_expr (fn);
232 gimple_set_op (s, 1, fn);
233 gimple_call_reset_alias_info (s);
234 return s;
235 }
236
237
238 /* Build a GIMPLE_CALL statement to function FN with the arguments
239 specified in vector ARGS. */
240
241 gimple
242 gimple_build_call_vec (tree fn, VEC(tree, heap) *args)
243 {
244 unsigned i;
245 unsigned nargs = VEC_length (tree, args);
246 gimple call = gimple_build_call_1 (fn, nargs);
247
248 for (i = 0; i < nargs; i++)
249 gimple_call_set_arg (call, i, VEC_index (tree, args, i));
250
251 return call;
252 }
253
254
255 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
256 arguments. The ... are the arguments. */
257
258 gimple
259 gimple_build_call (tree fn, unsigned nargs, ...)
260 {
261 va_list ap;
262 gimple call;
263 unsigned i;
264
265 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
266
267 call = gimple_build_call_1 (fn, nargs);
268
269 va_start (ap, nargs);
270 for (i = 0; i < nargs; i++)
271 gimple_call_set_arg (call, i, va_arg (ap, tree));
272 va_end (ap);
273
274 return call;
275 }
276
277
278 /* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
279 assumed to be in GIMPLE form already. Minimal checking is done of
280 this fact. */
281
282 gimple
283 gimple_build_call_from_tree (tree t)
284 {
285 unsigned i, nargs;
286 gimple call;
287 tree fndecl = get_callee_fndecl (t);
288
289 gcc_assert (TREE_CODE (t) == CALL_EXPR);
290
291 nargs = call_expr_nargs (t);
292 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
293
294 for (i = 0; i < nargs; i++)
295 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
296
297 gimple_set_block (call, TREE_BLOCK (t));
298
299 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
300 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
301 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
302 gimple_call_set_cannot_inline (call, CALL_CANNOT_INLINE_P (t));
303 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
304 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
305 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
306 gimple_call_set_nothrow (call, TREE_NOTHROW (t));
307 gimple_set_no_warning (call, TREE_NO_WARNING (t));
308
309 return call;
310 }
311
312
313 /* Extract the operands and code for expression EXPR into *SUBCODE_P,
314 *OP1_P, *OP2_P and *OP3_P respectively. */
315
316 void
317 extract_ops_from_tree_1 (tree expr, enum tree_code *subcode_p, tree *op1_p,
318 tree *op2_p, tree *op3_p)
319 {
320 enum gimple_rhs_class grhs_class;
321
322 *subcode_p = TREE_CODE (expr);
323 grhs_class = get_gimple_rhs_class (*subcode_p);
324
325 if (grhs_class == GIMPLE_TERNARY_RHS)
326 {
327 *op1_p = TREE_OPERAND (expr, 0);
328 *op2_p = TREE_OPERAND (expr, 1);
329 *op3_p = TREE_OPERAND (expr, 2);
330 }
331 else if (grhs_class == GIMPLE_BINARY_RHS)
332 {
333 *op1_p = TREE_OPERAND (expr, 0);
334 *op2_p = TREE_OPERAND (expr, 1);
335 *op3_p = NULL_TREE;
336 }
337 else if (grhs_class == GIMPLE_UNARY_RHS)
338 {
339 *op1_p = TREE_OPERAND (expr, 0);
340 *op2_p = NULL_TREE;
341 *op3_p = NULL_TREE;
342 }
343 else if (grhs_class == GIMPLE_SINGLE_RHS)
344 {
345 *op1_p = expr;
346 *op2_p = NULL_TREE;
347 *op3_p = NULL_TREE;
348 }
349 else
350 gcc_unreachable ();
351 }
352
353
354 /* Build a GIMPLE_ASSIGN statement.
355
356 LHS of the assignment.
357 RHS of the assignment which can be unary or binary. */
358
359 gimple
360 gimple_build_assign_stat (tree lhs, tree rhs MEM_STAT_DECL)
361 {
362 enum tree_code subcode;
363 tree op1, op2, op3;
364
365 extract_ops_from_tree_1 (rhs, &subcode, &op1, &op2, &op3);
366 return gimple_build_assign_with_ops_stat (subcode, lhs, op1, op2, op3
367 PASS_MEM_STAT);
368 }
369
370
371 /* Build a GIMPLE_ASSIGN statement with sub-code SUBCODE and operands
372 OP1 and OP2. If OP2 is NULL then SUBCODE must be of class
373 GIMPLE_UNARY_RHS or GIMPLE_SINGLE_RHS. */
374
375 gimple
376 gimple_build_assign_with_ops_stat (enum tree_code subcode, tree lhs, tree op1,
377 tree op2, tree op3 MEM_STAT_DECL)
378 {
379 unsigned num_ops;
380 gimple p;
381
382 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
383 code). */
384 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
385
386 p = gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
387 PASS_MEM_STAT);
388 gimple_assign_set_lhs (p, lhs);
389 gimple_assign_set_rhs1 (p, op1);
390 if (op2)
391 {
392 gcc_assert (num_ops > 2);
393 gimple_assign_set_rhs2 (p, op2);
394 }
395
396 if (op3)
397 {
398 gcc_assert (num_ops > 3);
399 gimple_assign_set_rhs3 (p, op3);
400 }
401
402 return p;
403 }
404
405
406 /* Build a new GIMPLE_ASSIGN tuple and append it to the end of *SEQ_P.
407
408 DST/SRC are the destination and source respectively. You can pass
409 ungimplified trees in DST or SRC, in which case they will be
410 converted to a gimple operand if necessary.
411
412 This function returns the newly created GIMPLE_ASSIGN tuple. */
413
414 gimple
415 gimplify_assign (tree dst, tree src, gimple_seq *seq_p)
416 {
417 tree t = build2 (MODIFY_EXPR, TREE_TYPE (dst), dst, src);
418 gimplify_and_add (t, seq_p);
419 ggc_free (t);
420 return gimple_seq_last_stmt (*seq_p);
421 }
422
423
424 /* Build a GIMPLE_COND statement.
425
426 PRED is the condition used to compare LHS and the RHS.
427 T_LABEL is the label to jump to if the condition is true.
428 F_LABEL is the label to jump to otherwise. */
429
430 gimple
431 gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
432 tree t_label, tree f_label)
433 {
434 gimple p;
435
436 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
437 p = gimple_build_with_ops (GIMPLE_COND, pred_code, 4);
438 gimple_cond_set_lhs (p, lhs);
439 gimple_cond_set_rhs (p, rhs);
440 gimple_cond_set_true_label (p, t_label);
441 gimple_cond_set_false_label (p, f_label);
442 return p;
443 }
444
445
446 /* Extract operands for a GIMPLE_COND statement out of COND_EXPR tree COND. */
447
448 void
449 gimple_cond_get_ops_from_tree (tree cond, enum tree_code *code_p,
450 tree *lhs_p, tree *rhs_p)
451 {
452 gcc_assert (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison
453 || TREE_CODE (cond) == TRUTH_NOT_EXPR
454 || is_gimple_min_invariant (cond)
455 || SSA_VAR_P (cond));
456
457 extract_ops_from_tree (cond, code_p, lhs_p, rhs_p);
458
459 /* Canonicalize conditionals of the form 'if (!VAL)'. */
460 if (*code_p == TRUTH_NOT_EXPR)
461 {
462 *code_p = EQ_EXPR;
463 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
464 *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
465 }
466 /* Canonicalize conditionals of the form 'if (VAL)' */
467 else if (TREE_CODE_CLASS (*code_p) != tcc_comparison)
468 {
469 *code_p = NE_EXPR;
470 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
471 *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
472 }
473 }
474
475
476 /* Build a GIMPLE_COND statement from the conditional expression tree
477 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
478
479 gimple
480 gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
481 {
482 enum tree_code code;
483 tree lhs, rhs;
484
485 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
486 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
487 }
488
489 /* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
490 boolean expression tree COND. */
491
492 void
493 gimple_cond_set_condition_from_tree (gimple stmt, tree cond)
494 {
495 enum tree_code code;
496 tree lhs, rhs;
497
498 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
499 gimple_cond_set_condition (stmt, code, lhs, rhs);
500 }
501
502 /* Build a GIMPLE_LABEL statement for LABEL. */
503
504 gimple
505 gimple_build_label (tree label)
506 {
507 gimple p = gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1);
508 gimple_label_set_label (p, label);
509 return p;
510 }
511
512 /* Build a GIMPLE_GOTO statement to label DEST. */
513
514 gimple
515 gimple_build_goto (tree dest)
516 {
517 gimple p = gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1);
518 gimple_goto_set_dest (p, dest);
519 return p;
520 }
521
522
523 /* Build a GIMPLE_NOP statement. */
524
525 gimple
526 gimple_build_nop (void)
527 {
528 return gimple_alloc (GIMPLE_NOP, 0);
529 }
530
531
532 /* Build a GIMPLE_BIND statement.
533 VARS are the variables in BODY.
534 BLOCK is the containing block. */
535
536 gimple
537 gimple_build_bind (tree vars, gimple_seq body, tree block)
538 {
539 gimple p = gimple_alloc (GIMPLE_BIND, 0);
540 gimple_bind_set_vars (p, vars);
541 if (body)
542 gimple_bind_set_body (p, body);
543 if (block)
544 gimple_bind_set_block (p, block);
545 return p;
546 }
547
548 /* Helper function to set the simple fields of a asm stmt.
549
550 STRING is a pointer to a string that is the asm blocks assembly code.
551 NINPUT is the number of register inputs.
552 NOUTPUT is the number of register outputs.
553 NCLOBBERS is the number of clobbered registers.
554 */
555
556 static inline gimple
557 gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
558 unsigned nclobbers, unsigned nlabels)
559 {
560 gimple p;
561 int size = strlen (string);
562
563 /* ASMs with labels cannot have outputs. This should have been
564 enforced by the front end. */
565 gcc_assert (nlabels == 0 || noutputs == 0);
566
567 p = gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
568 ninputs + noutputs + nclobbers + nlabels);
569
570 p->gimple_asm.ni = ninputs;
571 p->gimple_asm.no = noutputs;
572 p->gimple_asm.nc = nclobbers;
573 p->gimple_asm.nl = nlabels;
574 p->gimple_asm.string = ggc_alloc_string (string, size);
575
576 #ifdef GATHER_STATISTICS
577 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
578 #endif
579
580 return p;
581 }
582
583 /* Build a GIMPLE_ASM statement.
584
585 STRING is the assembly code.
586 NINPUT is the number of register inputs.
587 NOUTPUT is the number of register outputs.
588 NCLOBBERS is the number of clobbered registers.
589 INPUTS is a vector of the input register parameters.
590 OUTPUTS is a vector of the output register parameters.
591 CLOBBERS is a vector of the clobbered register parameters.
592 LABELS is a vector of destination labels. */
593
594 gimple
595 gimple_build_asm_vec (const char *string, VEC(tree,gc)* inputs,
596 VEC(tree,gc)* outputs, VEC(tree,gc)* clobbers,
597 VEC(tree,gc)* labels)
598 {
599 gimple p;
600 unsigned i;
601
602 p = gimple_build_asm_1 (string,
603 VEC_length (tree, inputs),
604 VEC_length (tree, outputs),
605 VEC_length (tree, clobbers),
606 VEC_length (tree, labels));
607
608 for (i = 0; i < VEC_length (tree, inputs); i++)
609 gimple_asm_set_input_op (p, i, VEC_index (tree, inputs, i));
610
611 for (i = 0; i < VEC_length (tree, outputs); i++)
612 gimple_asm_set_output_op (p, i, VEC_index (tree, outputs, i));
613
614 for (i = 0; i < VEC_length (tree, clobbers); i++)
615 gimple_asm_set_clobber_op (p, i, VEC_index (tree, clobbers, i));
616
617 for (i = 0; i < VEC_length (tree, labels); i++)
618 gimple_asm_set_label_op (p, i, VEC_index (tree, labels, i));
619
620 return p;
621 }
622
623 /* Build a GIMPLE_CATCH statement.
624
625 TYPES are the catch types.
626 HANDLER is the exception handler. */
627
628 gimple
629 gimple_build_catch (tree types, gimple_seq handler)
630 {
631 gimple p = gimple_alloc (GIMPLE_CATCH, 0);
632 gimple_catch_set_types (p, types);
633 if (handler)
634 gimple_catch_set_handler (p, handler);
635
636 return p;
637 }
638
639 /* Build a GIMPLE_EH_FILTER statement.
640
641 TYPES are the filter's types.
642 FAILURE is the filter's failure action. */
643
644 gimple
645 gimple_build_eh_filter (tree types, gimple_seq failure)
646 {
647 gimple p = gimple_alloc (GIMPLE_EH_FILTER, 0);
648 gimple_eh_filter_set_types (p, types);
649 if (failure)
650 gimple_eh_filter_set_failure (p, failure);
651
652 return p;
653 }
654
655 /* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
656
657 gimple
658 gimple_build_eh_must_not_throw (tree decl)
659 {
660 gimple p = gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0);
661
662 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
663 gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
664 gimple_eh_must_not_throw_set_fndecl (p, decl);
665
666 return p;
667 }
668
669 /* Build a GIMPLE_TRY statement.
670
671 EVAL is the expression to evaluate.
672 CLEANUP is the cleanup expression.
673 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
674 whether this is a try/catch or a try/finally respectively. */
675
676 gimple
677 gimple_build_try (gimple_seq eval, gimple_seq cleanup,
678 enum gimple_try_flags kind)
679 {
680 gimple p;
681
682 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
683 p = gimple_alloc (GIMPLE_TRY, 0);
684 gimple_set_subcode (p, kind);
685 if (eval)
686 gimple_try_set_eval (p, eval);
687 if (cleanup)
688 gimple_try_set_cleanup (p, cleanup);
689
690 return p;
691 }
692
693 /* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
694
695 CLEANUP is the cleanup expression. */
696
697 gimple
698 gimple_build_wce (gimple_seq cleanup)
699 {
700 gimple p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
701 if (cleanup)
702 gimple_wce_set_cleanup (p, cleanup);
703
704 return p;
705 }
706
707
708 /* Build a GIMPLE_RESX statement. */
709
710 gimple
711 gimple_build_resx (int region)
712 {
713 gimple p = gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0);
714 p->gimple_eh_ctrl.region = region;
715 return p;
716 }
717
718
719 /* The helper for constructing a gimple switch statement.
720 INDEX is the switch's index.
721 NLABELS is the number of labels in the switch excluding the default.
722 DEFAULT_LABEL is the default label for the switch statement. */
723
724 gimple
725 gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
726 {
727 /* nlabels + 1 default label + 1 index. */
728 gimple p = gimple_build_with_ops (GIMPLE_SWITCH, ERROR_MARK,
729 1 + (default_label != NULL) + nlabels);
730 gimple_switch_set_index (p, index);
731 if (default_label)
732 gimple_switch_set_default_label (p, default_label);
733 return p;
734 }
735
736
737 /* Build a GIMPLE_SWITCH statement.
738
739 INDEX is the switch's index.
740 NLABELS is the number of labels in the switch excluding the DEFAULT_LABEL.
741 ... are the labels excluding the default. */
742
743 gimple
744 gimple_build_switch (unsigned nlabels, tree index, tree default_label, ...)
745 {
746 va_list al;
747 unsigned i, offset;
748 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
749
750 /* Store the rest of the labels. */
751 va_start (al, default_label);
752 offset = (default_label != NULL);
753 for (i = 0; i < nlabels; i++)
754 gimple_switch_set_label (p, i + offset, va_arg (al, tree));
755 va_end (al);
756
757 return p;
758 }
759
760
761 /* Build a GIMPLE_SWITCH statement.
762
763 INDEX is the switch's index.
764 DEFAULT_LABEL is the default label
765 ARGS is a vector of labels excluding the default. */
766
767 gimple
768 gimple_build_switch_vec (tree index, tree default_label, VEC(tree, heap) *args)
769 {
770 unsigned i, offset, nlabels = VEC_length (tree, args);
771 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
772
773 /* Copy the labels from the vector to the switch statement. */
774 offset = (default_label != NULL);
775 for (i = 0; i < nlabels; i++)
776 gimple_switch_set_label (p, i + offset, VEC_index (tree, args, i));
777
778 return p;
779 }
780
781 /* Build a GIMPLE_EH_DISPATCH statement. */
782
783 gimple
784 gimple_build_eh_dispatch (int region)
785 {
786 gimple p = gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0);
787 p->gimple_eh_ctrl.region = region;
788 return p;
789 }
790
791 /* Build a new GIMPLE_DEBUG_BIND statement.
792
793 VAR is bound to VALUE; block and location are taken from STMT. */
794
795 gimple
796 gimple_build_debug_bind_stat (tree var, tree value, gimple stmt MEM_STAT_DECL)
797 {
798 gimple p = gimple_build_with_ops_stat (GIMPLE_DEBUG,
799 (unsigned)GIMPLE_DEBUG_BIND, 2
800 PASS_MEM_STAT);
801
802 gimple_debug_bind_set_var (p, var);
803 gimple_debug_bind_set_value (p, value);
804 if (stmt)
805 {
806 gimple_set_block (p, gimple_block (stmt));
807 gimple_set_location (p, gimple_location (stmt));
808 }
809
810 return p;
811 }
812
813
814 /* Build a GIMPLE_OMP_CRITICAL statement.
815
816 BODY is the sequence of statements for which only one thread can execute.
817 NAME is optional identifier for this critical block. */
818
819 gimple
820 gimple_build_omp_critical (gimple_seq body, tree name)
821 {
822 gimple p = gimple_alloc (GIMPLE_OMP_CRITICAL, 0);
823 gimple_omp_critical_set_name (p, name);
824 if (body)
825 gimple_omp_set_body (p, body);
826
827 return p;
828 }
829
830 /* Build a GIMPLE_OMP_FOR statement.
831
832 BODY is sequence of statements inside the for loop.
833 CLAUSES, are any of the OMP loop construct's clauses: private, firstprivate,
834 lastprivate, reductions, ordered, schedule, and nowait.
835 COLLAPSE is the collapse count.
836 PRE_BODY is the sequence of statements that are loop invariant. */
837
838 gimple
839 gimple_build_omp_for (gimple_seq body, tree clauses, size_t collapse,
840 gimple_seq pre_body)
841 {
842 gimple p = gimple_alloc (GIMPLE_OMP_FOR, 0);
843 if (body)
844 gimple_omp_set_body (p, body);
845 gimple_omp_for_set_clauses (p, clauses);
846 p->gimple_omp_for.collapse = collapse;
847 p->gimple_omp_for.iter
848 = ggc_alloc_cleared_vec_gimple_omp_for_iter (collapse);
849 if (pre_body)
850 gimple_omp_for_set_pre_body (p, pre_body);
851
852 return p;
853 }
854
855
856 /* Build a GIMPLE_OMP_PARALLEL statement.
857
858 BODY is sequence of statements which are executed in parallel.
859 CLAUSES, are the OMP parallel construct's clauses.
860 CHILD_FN is the function created for the parallel threads to execute.
861 DATA_ARG are the shared data argument(s). */
862
863 gimple
864 gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
865 tree data_arg)
866 {
867 gimple p = gimple_alloc (GIMPLE_OMP_PARALLEL, 0);
868 if (body)
869 gimple_omp_set_body (p, body);
870 gimple_omp_parallel_set_clauses (p, clauses);
871 gimple_omp_parallel_set_child_fn (p, child_fn);
872 gimple_omp_parallel_set_data_arg (p, data_arg);
873
874 return p;
875 }
876
877
878 /* Build a GIMPLE_OMP_TASK statement.
879
880 BODY is sequence of statements which are executed by the explicit task.
881 CLAUSES, are the OMP parallel construct's clauses.
882 CHILD_FN is the function created for the parallel threads to execute.
883 DATA_ARG are the shared data argument(s).
884 COPY_FN is the optional function for firstprivate initialization.
885 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
886
887 gimple
888 gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
889 tree data_arg, tree copy_fn, tree arg_size,
890 tree arg_align)
891 {
892 gimple p = gimple_alloc (GIMPLE_OMP_TASK, 0);
893 if (body)
894 gimple_omp_set_body (p, body);
895 gimple_omp_task_set_clauses (p, clauses);
896 gimple_omp_task_set_child_fn (p, child_fn);
897 gimple_omp_task_set_data_arg (p, data_arg);
898 gimple_omp_task_set_copy_fn (p, copy_fn);
899 gimple_omp_task_set_arg_size (p, arg_size);
900 gimple_omp_task_set_arg_align (p, arg_align);
901
902 return p;
903 }
904
905
906 /* Build a GIMPLE_OMP_SECTION statement for a sections statement.
907
908 BODY is the sequence of statements in the section. */
909
910 gimple
911 gimple_build_omp_section (gimple_seq body)
912 {
913 gimple p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
914 if (body)
915 gimple_omp_set_body (p, body);
916
917 return p;
918 }
919
920
921 /* Build a GIMPLE_OMP_MASTER statement.
922
923 BODY is the sequence of statements to be executed by just the master. */
924
925 gimple
926 gimple_build_omp_master (gimple_seq body)
927 {
928 gimple p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
929 if (body)
930 gimple_omp_set_body (p, body);
931
932 return p;
933 }
934
935
936 /* Build a GIMPLE_OMP_CONTINUE statement.
937
938 CONTROL_DEF is the definition of the control variable.
939 CONTROL_USE is the use of the control variable. */
940
941 gimple
942 gimple_build_omp_continue (tree control_def, tree control_use)
943 {
944 gimple p = gimple_alloc (GIMPLE_OMP_CONTINUE, 0);
945 gimple_omp_continue_set_control_def (p, control_def);
946 gimple_omp_continue_set_control_use (p, control_use);
947 return p;
948 }
949
950 /* Build a GIMPLE_OMP_ORDERED statement.
951
952 BODY is the sequence of statements inside a loop that will executed in
953 sequence. */
954
955 gimple
956 gimple_build_omp_ordered (gimple_seq body)
957 {
958 gimple p = gimple_alloc (GIMPLE_OMP_ORDERED, 0);
959 if (body)
960 gimple_omp_set_body (p, body);
961
962 return p;
963 }
964
965
966 /* Build a GIMPLE_OMP_RETURN statement.
967 WAIT_P is true if this is a non-waiting return. */
968
969 gimple
970 gimple_build_omp_return (bool wait_p)
971 {
972 gimple p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
973 if (wait_p)
974 gimple_omp_return_set_nowait (p);
975
976 return p;
977 }
978
979
980 /* Build a GIMPLE_OMP_SECTIONS statement.
981
982 BODY is a sequence of section statements.
983 CLAUSES are any of the OMP sections contsruct's clauses: private,
984 firstprivate, lastprivate, reduction, and nowait. */
985
986 gimple
987 gimple_build_omp_sections (gimple_seq body, tree clauses)
988 {
989 gimple p = gimple_alloc (GIMPLE_OMP_SECTIONS, 0);
990 if (body)
991 gimple_omp_set_body (p, body);
992 gimple_omp_sections_set_clauses (p, clauses);
993
994 return p;
995 }
996
997
998 /* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
999
1000 gimple
1001 gimple_build_omp_sections_switch (void)
1002 {
1003 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
1004 }
1005
1006
1007 /* Build a GIMPLE_OMP_SINGLE statement.
1008
1009 BODY is the sequence of statements that will be executed once.
1010 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1011 copyprivate, nowait. */
1012
1013 gimple
1014 gimple_build_omp_single (gimple_seq body, tree clauses)
1015 {
1016 gimple p = gimple_alloc (GIMPLE_OMP_SINGLE, 0);
1017 if (body)
1018 gimple_omp_set_body (p, body);
1019 gimple_omp_single_set_clauses (p, clauses);
1020
1021 return p;
1022 }
1023
1024
1025 /* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
1026
1027 gimple
1028 gimple_build_omp_atomic_load (tree lhs, tree rhs)
1029 {
1030 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0);
1031 gimple_omp_atomic_load_set_lhs (p, lhs);
1032 gimple_omp_atomic_load_set_rhs (p, rhs);
1033 return p;
1034 }
1035
1036 /* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1037
1038 VAL is the value we are storing. */
1039
1040 gimple
1041 gimple_build_omp_atomic_store (tree val)
1042 {
1043 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0);
1044 gimple_omp_atomic_store_set_val (p, val);
1045 return p;
1046 }
1047
1048 /* Build a GIMPLE_PREDICT statement. PREDICT is one of the predictors from
1049 predict.def, OUTCOME is NOT_TAKEN or TAKEN. */
1050
1051 gimple
1052 gimple_build_predict (enum br_predictor predictor, enum prediction outcome)
1053 {
1054 gimple p = gimple_alloc (GIMPLE_PREDICT, 0);
1055 /* Ensure all the predictors fit into the lower bits of the subcode. */
1056 gcc_assert ((int) END_PREDICTORS <= GF_PREDICT_TAKEN);
1057 gimple_predict_set_predictor (p, predictor);
1058 gimple_predict_set_outcome (p, outcome);
1059 return p;
1060 }
1061
1062 #if defined ENABLE_GIMPLE_CHECKING
1063 /* Complain of a gimple type mismatch and die. */
1064
1065 void
1066 gimple_check_failed (const_gimple gs, const char *file, int line,
1067 const char *function, enum gimple_code code,
1068 enum tree_code subcode)
1069 {
1070 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1071 gimple_code_name[code],
1072 tree_code_name[subcode],
1073 gimple_code_name[gimple_code (gs)],
1074 gs->gsbase.subcode > 0
1075 ? tree_code_name[gs->gsbase.subcode]
1076 : "",
1077 function, trim_filename (file), line);
1078 }
1079 #endif /* ENABLE_GIMPLE_CHECKING */
1080
1081
1082 /* Allocate a new GIMPLE sequence in GC memory and return it. If
1083 there are free sequences in GIMPLE_SEQ_CACHE return one of those
1084 instead. */
1085
1086 gimple_seq
1087 gimple_seq_alloc (void)
1088 {
1089 gimple_seq seq = gimple_seq_cache;
1090 if (seq)
1091 {
1092 gimple_seq_cache = gimple_seq_cache->next_free;
1093 gcc_assert (gimple_seq_cache != seq);
1094 memset (seq, 0, sizeof (*seq));
1095 }
1096 else
1097 {
1098 seq = ggc_alloc_cleared_gimple_seq_d ();
1099 #ifdef GATHER_STATISTICS
1100 gimple_alloc_counts[(int) gimple_alloc_kind_seq]++;
1101 gimple_alloc_sizes[(int) gimple_alloc_kind_seq] += sizeof (*seq);
1102 #endif
1103 }
1104
1105 return seq;
1106 }
1107
1108 /* Return SEQ to the free pool of GIMPLE sequences. */
1109
1110 void
1111 gimple_seq_free (gimple_seq seq)
1112 {
1113 if (seq == NULL)
1114 return;
1115
1116 gcc_assert (gimple_seq_first (seq) == NULL);
1117 gcc_assert (gimple_seq_last (seq) == NULL);
1118
1119 /* If this triggers, it's a sign that the same list is being freed
1120 twice. */
1121 gcc_assert (seq != gimple_seq_cache || gimple_seq_cache == NULL);
1122
1123 /* Add SEQ to the pool of free sequences. */
1124 seq->next_free = gimple_seq_cache;
1125 gimple_seq_cache = seq;
1126 }
1127
1128
1129 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1130 *SEQ_P is NULL, a new sequence is allocated. */
1131
1132 void
1133 gimple_seq_add_stmt (gimple_seq *seq_p, gimple gs)
1134 {
1135 gimple_stmt_iterator si;
1136
1137 if (gs == NULL)
1138 return;
1139
1140 if (*seq_p == NULL)
1141 *seq_p = gimple_seq_alloc ();
1142
1143 si = gsi_last (*seq_p);
1144 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1145 }
1146
1147
1148 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1149 NULL, a new sequence is allocated. */
1150
1151 void
1152 gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1153 {
1154 gimple_stmt_iterator si;
1155
1156 if (src == NULL)
1157 return;
1158
1159 if (*dst_p == NULL)
1160 *dst_p = gimple_seq_alloc ();
1161
1162 si = gsi_last (*dst_p);
1163 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1164 }
1165
1166
1167 /* Helper function of empty_body_p. Return true if STMT is an empty
1168 statement. */
1169
1170 static bool
1171 empty_stmt_p (gimple stmt)
1172 {
1173 if (gimple_code (stmt) == GIMPLE_NOP)
1174 return true;
1175 if (gimple_code (stmt) == GIMPLE_BIND)
1176 return empty_body_p (gimple_bind_body (stmt));
1177 return false;
1178 }
1179
1180
1181 /* Return true if BODY contains nothing but empty statements. */
1182
1183 bool
1184 empty_body_p (gimple_seq body)
1185 {
1186 gimple_stmt_iterator i;
1187
1188 if (gimple_seq_empty_p (body))
1189 return true;
1190 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
1191 if (!empty_stmt_p (gsi_stmt (i))
1192 && !is_gimple_debug (gsi_stmt (i)))
1193 return false;
1194
1195 return true;
1196 }
1197
1198
1199 /* Perform a deep copy of sequence SRC and return the result. */
1200
1201 gimple_seq
1202 gimple_seq_copy (gimple_seq src)
1203 {
1204 gimple_stmt_iterator gsi;
1205 gimple_seq new_seq = gimple_seq_alloc ();
1206 gimple stmt;
1207
1208 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1209 {
1210 stmt = gimple_copy (gsi_stmt (gsi));
1211 gimple_seq_add_stmt (&new_seq, stmt);
1212 }
1213
1214 return new_seq;
1215 }
1216
1217
1218 /* Walk all the statements in the sequence SEQ calling walk_gimple_stmt
1219 on each one. WI is as in walk_gimple_stmt.
1220
1221 If walk_gimple_stmt returns non-NULL, the walk is stopped, the
1222 value is stored in WI->CALLBACK_RESULT and the statement that
1223 produced the value is returned.
1224
1225 Otherwise, all the statements are walked and NULL returned. */
1226
1227 gimple
1228 walk_gimple_seq (gimple_seq seq, walk_stmt_fn callback_stmt,
1229 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1230 {
1231 gimple_stmt_iterator gsi;
1232
1233 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
1234 {
1235 tree ret = walk_gimple_stmt (&gsi, callback_stmt, callback_op, wi);
1236 if (ret)
1237 {
1238 /* If CALLBACK_STMT or CALLBACK_OP return a value, WI must exist
1239 to hold it. */
1240 gcc_assert (wi);
1241 wi->callback_result = ret;
1242 return gsi_stmt (gsi);
1243 }
1244 }
1245
1246 if (wi)
1247 wi->callback_result = NULL_TREE;
1248
1249 return NULL;
1250 }
1251
1252
1253 /* Helper function for walk_gimple_stmt. Walk operands of a GIMPLE_ASM. */
1254
1255 static tree
1256 walk_gimple_asm (gimple stmt, walk_tree_fn callback_op,
1257 struct walk_stmt_info *wi)
1258 {
1259 tree ret, op;
1260 unsigned noutputs;
1261 const char **oconstraints;
1262 unsigned i, n;
1263 const char *constraint;
1264 bool allows_mem, allows_reg, is_inout;
1265
1266 noutputs = gimple_asm_noutputs (stmt);
1267 oconstraints = (const char **) alloca ((noutputs) * sizeof (const char *));
1268
1269 if (wi)
1270 wi->is_lhs = true;
1271
1272 for (i = 0; i < noutputs; i++)
1273 {
1274 op = gimple_asm_output_op (stmt, i);
1275 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1276 oconstraints[i] = constraint;
1277 parse_output_constraint (&constraint, i, 0, 0, &allows_mem, &allows_reg,
1278 &is_inout);
1279 if (wi)
1280 wi->val_only = (allows_reg || !allows_mem);
1281 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1282 if (ret)
1283 return ret;
1284 }
1285
1286 n = gimple_asm_ninputs (stmt);
1287 for (i = 0; i < n; i++)
1288 {
1289 op = gimple_asm_input_op (stmt, i);
1290 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1291 parse_input_constraint (&constraint, 0, 0, noutputs, 0,
1292 oconstraints, &allows_mem, &allows_reg);
1293 if (wi)
1294 {
1295 wi->val_only = (allows_reg || !allows_mem);
1296 /* Although input "m" is not really a LHS, we need a lvalue. */
1297 wi->is_lhs = !wi->val_only;
1298 }
1299 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1300 if (ret)
1301 return ret;
1302 }
1303
1304 if (wi)
1305 {
1306 wi->is_lhs = false;
1307 wi->val_only = true;
1308 }
1309
1310 n = gimple_asm_nlabels (stmt);
1311 for (i = 0; i < n; i++)
1312 {
1313 op = gimple_asm_label_op (stmt, i);
1314 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1315 if (ret)
1316 return ret;
1317 }
1318
1319 return NULL_TREE;
1320 }
1321
1322
1323 /* Helper function of WALK_GIMPLE_STMT. Walk every tree operand in
1324 STMT. CALLBACK_OP and WI are as in WALK_GIMPLE_STMT.
1325
1326 CALLBACK_OP is called on each operand of STMT via walk_tree.
1327 Additional parameters to walk_tree must be stored in WI. For each operand
1328 OP, walk_tree is called as:
1329
1330 walk_tree (&OP, CALLBACK_OP, WI, WI->PSET)
1331
1332 If CALLBACK_OP returns non-NULL for an operand, the remaining
1333 operands are not scanned.
1334
1335 The return value is that returned by the last call to walk_tree, or
1336 NULL_TREE if no CALLBACK_OP is specified. */
1337
1338 tree
1339 walk_gimple_op (gimple stmt, walk_tree_fn callback_op,
1340 struct walk_stmt_info *wi)
1341 {
1342 struct pointer_set_t *pset = (wi) ? wi->pset : NULL;
1343 unsigned i;
1344 tree ret = NULL_TREE;
1345
1346 switch (gimple_code (stmt))
1347 {
1348 case GIMPLE_ASSIGN:
1349 /* Walk the RHS operands. If the LHS is of a non-renamable type or
1350 is a register variable, we may use a COMPONENT_REF on the RHS. */
1351 if (wi)
1352 {
1353 tree lhs = gimple_assign_lhs (stmt);
1354 wi->val_only
1355 = (is_gimple_reg_type (TREE_TYPE (lhs)) && !is_gimple_reg (lhs))
1356 || !gimple_assign_single_p (stmt);
1357 }
1358
1359 for (i = 1; i < gimple_num_ops (stmt); i++)
1360 {
1361 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi,
1362 pset);
1363 if (ret)
1364 return ret;
1365 }
1366
1367 /* Walk the LHS. If the RHS is appropriate for a memory, we
1368 may use a COMPONENT_REF on the LHS. */
1369 if (wi)
1370 {
1371 /* If the RHS has more than 1 operand, it is not appropriate
1372 for the memory. */
1373 wi->val_only = !is_gimple_mem_rhs (gimple_assign_rhs1 (stmt))
1374 || !gimple_assign_single_p (stmt);
1375 wi->is_lhs = true;
1376 }
1377
1378 ret = walk_tree (gimple_op_ptr (stmt, 0), callback_op, wi, pset);
1379 if (ret)
1380 return ret;
1381
1382 if (wi)
1383 {
1384 wi->val_only = true;
1385 wi->is_lhs = false;
1386 }
1387 break;
1388
1389 case GIMPLE_CALL:
1390 if (wi)
1391 {
1392 wi->is_lhs = false;
1393 wi->val_only = true;
1394 }
1395
1396 ret = walk_tree (gimple_call_chain_ptr (stmt), callback_op, wi, pset);
1397 if (ret)
1398 return ret;
1399
1400 ret = walk_tree (gimple_call_fn_ptr (stmt), callback_op, wi, pset);
1401 if (ret)
1402 return ret;
1403
1404 for (i = 0; i < gimple_call_num_args (stmt); i++)
1405 {
1406 if (wi)
1407 wi->val_only = is_gimple_reg_type (gimple_call_arg (stmt, i));
1408 ret = walk_tree (gimple_call_arg_ptr (stmt, i), callback_op, wi,
1409 pset);
1410 if (ret)
1411 return ret;
1412 }
1413
1414 if (gimple_call_lhs (stmt))
1415 {
1416 if (wi)
1417 {
1418 wi->is_lhs = true;
1419 wi->val_only = is_gimple_reg_type (gimple_call_lhs (stmt));
1420 }
1421
1422 ret = walk_tree (gimple_call_lhs_ptr (stmt), callback_op, wi, pset);
1423 if (ret)
1424 return ret;
1425 }
1426
1427 if (wi)
1428 {
1429 wi->is_lhs = false;
1430 wi->val_only = true;
1431 }
1432 break;
1433
1434 case GIMPLE_CATCH:
1435 ret = walk_tree (gimple_catch_types_ptr (stmt), callback_op, wi,
1436 pset);
1437 if (ret)
1438 return ret;
1439 break;
1440
1441 case GIMPLE_EH_FILTER:
1442 ret = walk_tree (gimple_eh_filter_types_ptr (stmt), callback_op, wi,
1443 pset);
1444 if (ret)
1445 return ret;
1446 break;
1447
1448 case GIMPLE_ASM:
1449 ret = walk_gimple_asm (stmt, callback_op, wi);
1450 if (ret)
1451 return ret;
1452 break;
1453
1454 case GIMPLE_OMP_CONTINUE:
1455 ret = walk_tree (gimple_omp_continue_control_def_ptr (stmt),
1456 callback_op, wi, pset);
1457 if (ret)
1458 return ret;
1459
1460 ret = walk_tree (gimple_omp_continue_control_use_ptr (stmt),
1461 callback_op, wi, pset);
1462 if (ret)
1463 return ret;
1464 break;
1465
1466 case GIMPLE_OMP_CRITICAL:
1467 ret = walk_tree (gimple_omp_critical_name_ptr (stmt), callback_op, wi,
1468 pset);
1469 if (ret)
1470 return ret;
1471 break;
1472
1473 case GIMPLE_OMP_FOR:
1474 ret = walk_tree (gimple_omp_for_clauses_ptr (stmt), callback_op, wi,
1475 pset);
1476 if (ret)
1477 return ret;
1478 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1479 {
1480 ret = walk_tree (gimple_omp_for_index_ptr (stmt, i), callback_op,
1481 wi, pset);
1482 if (ret)
1483 return ret;
1484 ret = walk_tree (gimple_omp_for_initial_ptr (stmt, i), callback_op,
1485 wi, pset);
1486 if (ret)
1487 return ret;
1488 ret = walk_tree (gimple_omp_for_final_ptr (stmt, i), callback_op,
1489 wi, pset);
1490 if (ret)
1491 return ret;
1492 ret = walk_tree (gimple_omp_for_incr_ptr (stmt, i), callback_op,
1493 wi, pset);
1494 }
1495 if (ret)
1496 return ret;
1497 break;
1498
1499 case GIMPLE_OMP_PARALLEL:
1500 ret = walk_tree (gimple_omp_parallel_clauses_ptr (stmt), callback_op,
1501 wi, pset);
1502 if (ret)
1503 return ret;
1504 ret = walk_tree (gimple_omp_parallel_child_fn_ptr (stmt), callback_op,
1505 wi, pset);
1506 if (ret)
1507 return ret;
1508 ret = walk_tree (gimple_omp_parallel_data_arg_ptr (stmt), callback_op,
1509 wi, pset);
1510 if (ret)
1511 return ret;
1512 break;
1513
1514 case GIMPLE_OMP_TASK:
1515 ret = walk_tree (gimple_omp_task_clauses_ptr (stmt), callback_op,
1516 wi, pset);
1517 if (ret)
1518 return ret;
1519 ret = walk_tree (gimple_omp_task_child_fn_ptr (stmt), callback_op,
1520 wi, pset);
1521 if (ret)
1522 return ret;
1523 ret = walk_tree (gimple_omp_task_data_arg_ptr (stmt), callback_op,
1524 wi, pset);
1525 if (ret)
1526 return ret;
1527 ret = walk_tree (gimple_omp_task_copy_fn_ptr (stmt), callback_op,
1528 wi, pset);
1529 if (ret)
1530 return ret;
1531 ret = walk_tree (gimple_omp_task_arg_size_ptr (stmt), callback_op,
1532 wi, pset);
1533 if (ret)
1534 return ret;
1535 ret = walk_tree (gimple_omp_task_arg_align_ptr (stmt), callback_op,
1536 wi, pset);
1537 if (ret)
1538 return ret;
1539 break;
1540
1541 case GIMPLE_OMP_SECTIONS:
1542 ret = walk_tree (gimple_omp_sections_clauses_ptr (stmt), callback_op,
1543 wi, pset);
1544 if (ret)
1545 return ret;
1546
1547 ret = walk_tree (gimple_omp_sections_control_ptr (stmt), callback_op,
1548 wi, pset);
1549 if (ret)
1550 return ret;
1551
1552 break;
1553
1554 case GIMPLE_OMP_SINGLE:
1555 ret = walk_tree (gimple_omp_single_clauses_ptr (stmt), callback_op, wi,
1556 pset);
1557 if (ret)
1558 return ret;
1559 break;
1560
1561 case GIMPLE_OMP_ATOMIC_LOAD:
1562 ret = walk_tree (gimple_omp_atomic_load_lhs_ptr (stmt), callback_op, wi,
1563 pset);
1564 if (ret)
1565 return ret;
1566
1567 ret = walk_tree (gimple_omp_atomic_load_rhs_ptr (stmt), callback_op, wi,
1568 pset);
1569 if (ret)
1570 return ret;
1571 break;
1572
1573 case GIMPLE_OMP_ATOMIC_STORE:
1574 ret = walk_tree (gimple_omp_atomic_store_val_ptr (stmt), callback_op,
1575 wi, pset);
1576 if (ret)
1577 return ret;
1578 break;
1579
1580 /* Tuples that do not have operands. */
1581 case GIMPLE_NOP:
1582 case GIMPLE_RESX:
1583 case GIMPLE_OMP_RETURN:
1584 case GIMPLE_PREDICT:
1585 break;
1586
1587 default:
1588 {
1589 enum gimple_statement_structure_enum gss;
1590 gss = gimple_statement_structure (stmt);
1591 if (gss == GSS_WITH_OPS || gss == GSS_WITH_MEM_OPS)
1592 for (i = 0; i < gimple_num_ops (stmt); i++)
1593 {
1594 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi, pset);
1595 if (ret)
1596 return ret;
1597 }
1598 }
1599 break;
1600 }
1601
1602 return NULL_TREE;
1603 }
1604
1605
1606 /* Walk the current statement in GSI (optionally using traversal state
1607 stored in WI). If WI is NULL, no state is kept during traversal.
1608 The callback CALLBACK_STMT is called. If CALLBACK_STMT indicates
1609 that it has handled all the operands of the statement, its return
1610 value is returned. Otherwise, the return value from CALLBACK_STMT
1611 is discarded and its operands are scanned.
1612
1613 If CALLBACK_STMT is NULL or it didn't handle the operands,
1614 CALLBACK_OP is called on each operand of the statement via
1615 walk_gimple_op. If walk_gimple_op returns non-NULL for any
1616 operand, the remaining operands are not scanned. In this case, the
1617 return value from CALLBACK_OP is returned.
1618
1619 In any other case, NULL_TREE is returned. */
1620
1621 tree
1622 walk_gimple_stmt (gimple_stmt_iterator *gsi, walk_stmt_fn callback_stmt,
1623 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1624 {
1625 gimple ret;
1626 tree tree_ret;
1627 gimple stmt = gsi_stmt (*gsi);
1628
1629 if (wi)
1630 wi->gsi = *gsi;
1631
1632 if (wi && wi->want_locations && gimple_has_location (stmt))
1633 input_location = gimple_location (stmt);
1634
1635 ret = NULL;
1636
1637 /* Invoke the statement callback. Return if the callback handled
1638 all of STMT operands by itself. */
1639 if (callback_stmt)
1640 {
1641 bool handled_ops = false;
1642 tree_ret = callback_stmt (gsi, &handled_ops, wi);
1643 if (handled_ops)
1644 return tree_ret;
1645
1646 /* If CALLBACK_STMT did not handle operands, it should not have
1647 a value to return. */
1648 gcc_assert (tree_ret == NULL);
1649
1650 /* Re-read stmt in case the callback changed it. */
1651 stmt = gsi_stmt (*gsi);
1652 }
1653
1654 /* If CALLBACK_OP is defined, invoke it on every operand of STMT. */
1655 if (callback_op)
1656 {
1657 tree_ret = walk_gimple_op (stmt, callback_op, wi);
1658 if (tree_ret)
1659 return tree_ret;
1660 }
1661
1662 /* If STMT can have statements inside (e.g. GIMPLE_BIND), walk them. */
1663 switch (gimple_code (stmt))
1664 {
1665 case GIMPLE_BIND:
1666 ret = walk_gimple_seq (gimple_bind_body (stmt), callback_stmt,
1667 callback_op, wi);
1668 if (ret)
1669 return wi->callback_result;
1670 break;
1671
1672 case GIMPLE_CATCH:
1673 ret = walk_gimple_seq (gimple_catch_handler (stmt), callback_stmt,
1674 callback_op, wi);
1675 if (ret)
1676 return wi->callback_result;
1677 break;
1678
1679 case GIMPLE_EH_FILTER:
1680 ret = walk_gimple_seq (gimple_eh_filter_failure (stmt), callback_stmt,
1681 callback_op, wi);
1682 if (ret)
1683 return wi->callback_result;
1684 break;
1685
1686 case GIMPLE_TRY:
1687 ret = walk_gimple_seq (gimple_try_eval (stmt), callback_stmt, callback_op,
1688 wi);
1689 if (ret)
1690 return wi->callback_result;
1691
1692 ret = walk_gimple_seq (gimple_try_cleanup (stmt), callback_stmt,
1693 callback_op, wi);
1694 if (ret)
1695 return wi->callback_result;
1696 break;
1697
1698 case GIMPLE_OMP_FOR:
1699 ret = walk_gimple_seq (gimple_omp_for_pre_body (stmt), callback_stmt,
1700 callback_op, wi);
1701 if (ret)
1702 return wi->callback_result;
1703
1704 /* FALL THROUGH. */
1705 case GIMPLE_OMP_CRITICAL:
1706 case GIMPLE_OMP_MASTER:
1707 case GIMPLE_OMP_ORDERED:
1708 case GIMPLE_OMP_SECTION:
1709 case GIMPLE_OMP_PARALLEL:
1710 case GIMPLE_OMP_TASK:
1711 case GIMPLE_OMP_SECTIONS:
1712 case GIMPLE_OMP_SINGLE:
1713 ret = walk_gimple_seq (gimple_omp_body (stmt), callback_stmt, callback_op,
1714 wi);
1715 if (ret)
1716 return wi->callback_result;
1717 break;
1718
1719 case GIMPLE_WITH_CLEANUP_EXPR:
1720 ret = walk_gimple_seq (gimple_wce_cleanup (stmt), callback_stmt,
1721 callback_op, wi);
1722 if (ret)
1723 return wi->callback_result;
1724 break;
1725
1726 default:
1727 gcc_assert (!gimple_has_substatements (stmt));
1728 break;
1729 }
1730
1731 return NULL;
1732 }
1733
1734
1735 /* Set sequence SEQ to be the GIMPLE body for function FN. */
1736
1737 void
1738 gimple_set_body (tree fndecl, gimple_seq seq)
1739 {
1740 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1741 if (fn == NULL)
1742 {
1743 /* If FNDECL still does not have a function structure associated
1744 with it, then it does not make sense for it to receive a
1745 GIMPLE body. */
1746 gcc_assert (seq == NULL);
1747 }
1748 else
1749 fn->gimple_body = seq;
1750 }
1751
1752
1753 /* Return the body of GIMPLE statements for function FN. After the
1754 CFG pass, the function body doesn't exist anymore because it has
1755 been split up into basic blocks. In this case, it returns
1756 NULL. */
1757
1758 gimple_seq
1759 gimple_body (tree fndecl)
1760 {
1761 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1762 return fn ? fn->gimple_body : NULL;
1763 }
1764
1765 /* Return true when FNDECL has Gimple body either in unlowered
1766 or CFG form. */
1767 bool
1768 gimple_has_body_p (tree fndecl)
1769 {
1770 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1771 return (gimple_body (fndecl) || (fn && fn->cfg));
1772 }
1773
1774 /* Detect flags from a GIMPLE_CALL. This is just like
1775 call_expr_flags, but for gimple tuples. */
1776
1777 int
1778 gimple_call_flags (const_gimple stmt)
1779 {
1780 int flags;
1781 tree decl = gimple_call_fndecl (stmt);
1782 tree t;
1783
1784 if (decl)
1785 flags = flags_from_decl_or_type (decl);
1786 else
1787 {
1788 t = TREE_TYPE (gimple_call_fn (stmt));
1789 if (t && TREE_CODE (t) == POINTER_TYPE)
1790 flags = flags_from_decl_or_type (TREE_TYPE (t));
1791 else
1792 flags = 0;
1793 }
1794
1795 if (stmt->gsbase.subcode & GF_CALL_NOTHROW)
1796 flags |= ECF_NOTHROW;
1797
1798 return flags;
1799 }
1800
1801 /* Detects argument flags for argument number ARG on call STMT. */
1802
1803 int
1804 gimple_call_arg_flags (const_gimple stmt, unsigned arg)
1805 {
1806 tree type = TREE_TYPE (TREE_TYPE (gimple_call_fn (stmt)));
1807 tree attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1808 if (!attr)
1809 return 0;
1810
1811 attr = TREE_VALUE (TREE_VALUE (attr));
1812 if (1 + arg >= (unsigned) TREE_STRING_LENGTH (attr))
1813 return 0;
1814
1815 switch (TREE_STRING_POINTER (attr)[1 + arg])
1816 {
1817 case 'x':
1818 case 'X':
1819 return EAF_UNUSED;
1820
1821 case 'R':
1822 return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE;
1823
1824 case 'r':
1825 return EAF_NOCLOBBER | EAF_NOESCAPE;
1826
1827 case 'W':
1828 return EAF_DIRECT | EAF_NOESCAPE;
1829
1830 case 'w':
1831 return EAF_NOESCAPE;
1832
1833 case '.':
1834 default:
1835 return 0;
1836 }
1837 }
1838
1839 /* Detects return flags for the call STMT. */
1840
1841 int
1842 gimple_call_return_flags (const_gimple stmt)
1843 {
1844 tree type;
1845 tree attr = NULL_TREE;
1846
1847 if (gimple_call_flags (stmt) & ECF_MALLOC)
1848 return ERF_NOALIAS;
1849
1850 type = TREE_TYPE (TREE_TYPE (gimple_call_fn (stmt)));
1851 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1852 if (!attr)
1853 return 0;
1854
1855 attr = TREE_VALUE (TREE_VALUE (attr));
1856 if (TREE_STRING_LENGTH (attr) < 1)
1857 return 0;
1858
1859 switch (TREE_STRING_POINTER (attr)[0])
1860 {
1861 case '1':
1862 case '2':
1863 case '3':
1864 case '4':
1865 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
1866
1867 case 'm':
1868 return ERF_NOALIAS;
1869
1870 case '.':
1871 default:
1872 return 0;
1873 }
1874 }
1875
1876 /* Return true if GS is a copy assignment. */
1877
1878 bool
1879 gimple_assign_copy_p (gimple gs)
1880 {
1881 return gimple_code (gs) == GIMPLE_ASSIGN
1882 && get_gimple_rhs_class (gimple_assign_rhs_code (gs))
1883 == GIMPLE_SINGLE_RHS
1884 && is_gimple_val (gimple_op (gs, 1));
1885 }
1886
1887
1888 /* Return true if GS is a SSA_NAME copy assignment. */
1889
1890 bool
1891 gimple_assign_ssa_name_copy_p (gimple gs)
1892 {
1893 return (gimple_code (gs) == GIMPLE_ASSIGN
1894 && (get_gimple_rhs_class (gimple_assign_rhs_code (gs))
1895 == GIMPLE_SINGLE_RHS)
1896 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1897 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1898 }
1899
1900
1901 /* Return true if GS is an assignment with a singleton RHS, i.e.,
1902 there is no operator associated with the assignment itself.
1903 Unlike gimple_assign_copy_p, this predicate returns true for
1904 any RHS operand, including those that perform an operation
1905 and do not have the semantics of a copy, such as COND_EXPR. */
1906
1907 bool
1908 gimple_assign_single_p (gimple gs)
1909 {
1910 return (gimple_code (gs) == GIMPLE_ASSIGN
1911 && get_gimple_rhs_class (gimple_assign_rhs_code (gs))
1912 == GIMPLE_SINGLE_RHS);
1913 }
1914
1915 /* Return true if GS is an assignment with a unary RHS, but the
1916 operator has no effect on the assigned value. The logic is adapted
1917 from STRIP_NOPS. This predicate is intended to be used in tuplifying
1918 instances in which STRIP_NOPS was previously applied to the RHS of
1919 an assignment.
1920
1921 NOTE: In the use cases that led to the creation of this function
1922 and of gimple_assign_single_p, it is typical to test for either
1923 condition and to proceed in the same manner. In each case, the
1924 assigned value is represented by the single RHS operand of the
1925 assignment. I suspect there may be cases where gimple_assign_copy_p,
1926 gimple_assign_single_p, or equivalent logic is used where a similar
1927 treatment of unary NOPs is appropriate. */
1928
1929 bool
1930 gimple_assign_unary_nop_p (gimple gs)
1931 {
1932 return (gimple_code (gs) == GIMPLE_ASSIGN
1933 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
1934 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
1935 && gimple_assign_rhs1 (gs) != error_mark_node
1936 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
1937 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
1938 }
1939
1940 /* Set BB to be the basic block holding G. */
1941
1942 void
1943 gimple_set_bb (gimple stmt, basic_block bb)
1944 {
1945 stmt->gsbase.bb = bb;
1946
1947 /* If the statement is a label, add the label to block-to-labels map
1948 so that we can speed up edge creation for GIMPLE_GOTOs. */
1949 if (cfun->cfg && gimple_code (stmt) == GIMPLE_LABEL)
1950 {
1951 tree t;
1952 int uid;
1953
1954 t = gimple_label_label (stmt);
1955 uid = LABEL_DECL_UID (t);
1956 if (uid == -1)
1957 {
1958 unsigned old_len = VEC_length (basic_block, label_to_block_map);
1959 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
1960 if (old_len <= (unsigned) uid)
1961 {
1962 unsigned new_len = 3 * uid / 2 + 1;
1963
1964 VEC_safe_grow_cleared (basic_block, gc, label_to_block_map,
1965 new_len);
1966 }
1967 }
1968
1969 VEC_replace (basic_block, label_to_block_map, uid, bb);
1970 }
1971 }
1972
1973
1974 /* Modify the RHS of the assignment pointed-to by GSI using the
1975 operands in the expression tree EXPR.
1976
1977 NOTE: The statement pointed-to by GSI may be reallocated if it
1978 did not have enough operand slots.
1979
1980 This function is useful to convert an existing tree expression into
1981 the flat representation used for the RHS of a GIMPLE assignment.
1982 It will reallocate memory as needed to expand or shrink the number
1983 of operand slots needed to represent EXPR.
1984
1985 NOTE: If you find yourself building a tree and then calling this
1986 function, you are most certainly doing it the slow way. It is much
1987 better to build a new assignment or to use the function
1988 gimple_assign_set_rhs_with_ops, which does not require an
1989 expression tree to be built. */
1990
1991 void
1992 gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
1993 {
1994 enum tree_code subcode;
1995 tree op1, op2, op3;
1996
1997 extract_ops_from_tree_1 (expr, &subcode, &op1, &op2, &op3);
1998 gimple_assign_set_rhs_with_ops_1 (gsi, subcode, op1, op2, op3);
1999 }
2000
2001
2002 /* Set the RHS of assignment statement pointed-to by GSI to CODE with
2003 operands OP1, OP2 and OP3.
2004
2005 NOTE: The statement pointed-to by GSI may be reallocated if it
2006 did not have enough operand slots. */
2007
2008 void
2009 gimple_assign_set_rhs_with_ops_1 (gimple_stmt_iterator *gsi, enum tree_code code,
2010 tree op1, tree op2, tree op3)
2011 {
2012 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
2013 gimple stmt = gsi_stmt (*gsi);
2014
2015 /* If the new CODE needs more operands, allocate a new statement. */
2016 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
2017 {
2018 tree lhs = gimple_assign_lhs (stmt);
2019 gimple new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
2020 memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
2021 gsi_replace (gsi, new_stmt, true);
2022 stmt = new_stmt;
2023
2024 /* The LHS needs to be reset as this also changes the SSA name
2025 on the LHS. */
2026 gimple_assign_set_lhs (stmt, lhs);
2027 }
2028
2029 gimple_set_num_ops (stmt, new_rhs_ops + 1);
2030 gimple_set_subcode (stmt, code);
2031 gimple_assign_set_rhs1 (stmt, op1);
2032 if (new_rhs_ops > 1)
2033 gimple_assign_set_rhs2 (stmt, op2);
2034 if (new_rhs_ops > 2)
2035 gimple_assign_set_rhs3 (stmt, op3);
2036 }
2037
2038
2039 /* Return the LHS of a statement that performs an assignment,
2040 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
2041 for a call to a function that returns no value, or for a
2042 statement other than an assignment or a call. */
2043
2044 tree
2045 gimple_get_lhs (const_gimple stmt)
2046 {
2047 enum gimple_code code = gimple_code (stmt);
2048
2049 if (code == GIMPLE_ASSIGN)
2050 return gimple_assign_lhs (stmt);
2051 else if (code == GIMPLE_CALL)
2052 return gimple_call_lhs (stmt);
2053 else
2054 return NULL_TREE;
2055 }
2056
2057
2058 /* Set the LHS of a statement that performs an assignment,
2059 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2060
2061 void
2062 gimple_set_lhs (gimple stmt, tree lhs)
2063 {
2064 enum gimple_code code = gimple_code (stmt);
2065
2066 if (code == GIMPLE_ASSIGN)
2067 gimple_assign_set_lhs (stmt, lhs);
2068 else if (code == GIMPLE_CALL)
2069 gimple_call_set_lhs (stmt, lhs);
2070 else
2071 gcc_unreachable();
2072 }
2073
2074 /* Replace the LHS of STMT, an assignment, either a GIMPLE_ASSIGN or a
2075 GIMPLE_CALL, with NLHS, in preparation for modifying the RHS to an
2076 expression with a different value.
2077
2078 This will update any annotations (say debug bind stmts) referring
2079 to the original LHS, so that they use the RHS instead. This is
2080 done even if NLHS and LHS are the same, for it is understood that
2081 the RHS will be modified afterwards, and NLHS will not be assigned
2082 an equivalent value.
2083
2084 Adjusting any non-annotation uses of the LHS, if needed, is a
2085 responsibility of the caller.
2086
2087 The effect of this call should be pretty much the same as that of
2088 inserting a copy of STMT before STMT, and then removing the
2089 original stmt, at which time gsi_remove() would have update
2090 annotations, but using this function saves all the inserting,
2091 copying and removing. */
2092
2093 void
2094 gimple_replace_lhs (gimple stmt, tree nlhs)
2095 {
2096 if (MAY_HAVE_DEBUG_STMTS)
2097 {
2098 tree lhs = gimple_get_lhs (stmt);
2099
2100 gcc_assert (SSA_NAME_DEF_STMT (lhs) == stmt);
2101
2102 insert_debug_temp_for_var_def (NULL, lhs);
2103 }
2104
2105 gimple_set_lhs (stmt, nlhs);
2106 }
2107
2108 /* Return a deep copy of statement STMT. All the operands from STMT
2109 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
2110 and VUSE operand arrays are set to empty in the new copy. */
2111
2112 gimple
2113 gimple_copy (gimple stmt)
2114 {
2115 enum gimple_code code = gimple_code (stmt);
2116 unsigned num_ops = gimple_num_ops (stmt);
2117 gimple copy = gimple_alloc (code, num_ops);
2118 unsigned i;
2119
2120 /* Shallow copy all the fields from STMT. */
2121 memcpy (copy, stmt, gimple_size (code));
2122
2123 /* If STMT has sub-statements, deep-copy them as well. */
2124 if (gimple_has_substatements (stmt))
2125 {
2126 gimple_seq new_seq;
2127 tree t;
2128
2129 switch (gimple_code (stmt))
2130 {
2131 case GIMPLE_BIND:
2132 new_seq = gimple_seq_copy (gimple_bind_body (stmt));
2133 gimple_bind_set_body (copy, new_seq);
2134 gimple_bind_set_vars (copy, unshare_expr (gimple_bind_vars (stmt)));
2135 gimple_bind_set_block (copy, gimple_bind_block (stmt));
2136 break;
2137
2138 case GIMPLE_CATCH:
2139 new_seq = gimple_seq_copy (gimple_catch_handler (stmt));
2140 gimple_catch_set_handler (copy, new_seq);
2141 t = unshare_expr (gimple_catch_types (stmt));
2142 gimple_catch_set_types (copy, t);
2143 break;
2144
2145 case GIMPLE_EH_FILTER:
2146 new_seq = gimple_seq_copy (gimple_eh_filter_failure (stmt));
2147 gimple_eh_filter_set_failure (copy, new_seq);
2148 t = unshare_expr (gimple_eh_filter_types (stmt));
2149 gimple_eh_filter_set_types (copy, t);
2150 break;
2151
2152 case GIMPLE_TRY:
2153 new_seq = gimple_seq_copy (gimple_try_eval (stmt));
2154 gimple_try_set_eval (copy, new_seq);
2155 new_seq = gimple_seq_copy (gimple_try_cleanup (stmt));
2156 gimple_try_set_cleanup (copy, new_seq);
2157 break;
2158
2159 case GIMPLE_OMP_FOR:
2160 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
2161 gimple_omp_for_set_pre_body (copy, new_seq);
2162 t = unshare_expr (gimple_omp_for_clauses (stmt));
2163 gimple_omp_for_set_clauses (copy, t);
2164 copy->gimple_omp_for.iter
2165 = ggc_alloc_vec_gimple_omp_for_iter
2166 (gimple_omp_for_collapse (stmt));
2167 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
2168 {
2169 gimple_omp_for_set_cond (copy, i,
2170 gimple_omp_for_cond (stmt, i));
2171 gimple_omp_for_set_index (copy, i,
2172 gimple_omp_for_index (stmt, i));
2173 t = unshare_expr (gimple_omp_for_initial (stmt, i));
2174 gimple_omp_for_set_initial (copy, i, t);
2175 t = unshare_expr (gimple_omp_for_final (stmt, i));
2176 gimple_omp_for_set_final (copy, i, t);
2177 t = unshare_expr (gimple_omp_for_incr (stmt, i));
2178 gimple_omp_for_set_incr (copy, i, t);
2179 }
2180 goto copy_omp_body;
2181
2182 case GIMPLE_OMP_PARALLEL:
2183 t = unshare_expr (gimple_omp_parallel_clauses (stmt));
2184 gimple_omp_parallel_set_clauses (copy, t);
2185 t = unshare_expr (gimple_omp_parallel_child_fn (stmt));
2186 gimple_omp_parallel_set_child_fn (copy, t);
2187 t = unshare_expr (gimple_omp_parallel_data_arg (stmt));
2188 gimple_omp_parallel_set_data_arg (copy, t);
2189 goto copy_omp_body;
2190
2191 case GIMPLE_OMP_TASK:
2192 t = unshare_expr (gimple_omp_task_clauses (stmt));
2193 gimple_omp_task_set_clauses (copy, t);
2194 t = unshare_expr (gimple_omp_task_child_fn (stmt));
2195 gimple_omp_task_set_child_fn (copy, t);
2196 t = unshare_expr (gimple_omp_task_data_arg (stmt));
2197 gimple_omp_task_set_data_arg (copy, t);
2198 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
2199 gimple_omp_task_set_copy_fn (copy, t);
2200 t = unshare_expr (gimple_omp_task_arg_size (stmt));
2201 gimple_omp_task_set_arg_size (copy, t);
2202 t = unshare_expr (gimple_omp_task_arg_align (stmt));
2203 gimple_omp_task_set_arg_align (copy, t);
2204 goto copy_omp_body;
2205
2206 case GIMPLE_OMP_CRITICAL:
2207 t = unshare_expr (gimple_omp_critical_name (stmt));
2208 gimple_omp_critical_set_name (copy, t);
2209 goto copy_omp_body;
2210
2211 case GIMPLE_OMP_SECTIONS:
2212 t = unshare_expr (gimple_omp_sections_clauses (stmt));
2213 gimple_omp_sections_set_clauses (copy, t);
2214 t = unshare_expr (gimple_omp_sections_control (stmt));
2215 gimple_omp_sections_set_control (copy, t);
2216 /* FALLTHRU */
2217
2218 case GIMPLE_OMP_SINGLE:
2219 case GIMPLE_OMP_SECTION:
2220 case GIMPLE_OMP_MASTER:
2221 case GIMPLE_OMP_ORDERED:
2222 copy_omp_body:
2223 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
2224 gimple_omp_set_body (copy, new_seq);
2225 break;
2226
2227 case GIMPLE_WITH_CLEANUP_EXPR:
2228 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
2229 gimple_wce_set_cleanup (copy, new_seq);
2230 break;
2231
2232 default:
2233 gcc_unreachable ();
2234 }
2235 }
2236
2237 /* Make copy of operands. */
2238 if (num_ops > 0)
2239 {
2240 for (i = 0; i < num_ops; i++)
2241 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
2242
2243 /* Clear out SSA operand vectors on COPY. */
2244 if (gimple_has_ops (stmt))
2245 {
2246 gimple_set_def_ops (copy, NULL);
2247 gimple_set_use_ops (copy, NULL);
2248 }
2249
2250 if (gimple_has_mem_ops (stmt))
2251 {
2252 gimple_set_vdef (copy, gimple_vdef (stmt));
2253 gimple_set_vuse (copy, gimple_vuse (stmt));
2254 }
2255
2256 /* SSA operands need to be updated. */
2257 gimple_set_modified (copy, true);
2258 }
2259
2260 return copy;
2261 }
2262
2263
2264 /* Set the MODIFIED flag to MODIFIEDP, iff the gimple statement G has
2265 a MODIFIED field. */
2266
2267 void
2268 gimple_set_modified (gimple s, bool modifiedp)
2269 {
2270 if (gimple_has_ops (s))
2271 {
2272 s->gsbase.modified = (unsigned) modifiedp;
2273
2274 if (modifiedp
2275 && cfun->gimple_df
2276 && is_gimple_call (s)
2277 && gimple_call_noreturn_p (s))
2278 VEC_safe_push (gimple, gc, MODIFIED_NORETURN_CALLS (cfun), s);
2279 }
2280 }
2281
2282
2283 /* Return true if statement S has side-effects. We consider a
2284 statement to have side effects if:
2285
2286 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
2287 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
2288
2289 bool
2290 gimple_has_side_effects (const_gimple s)
2291 {
2292 unsigned i;
2293
2294 if (is_gimple_debug (s))
2295 return false;
2296
2297 /* We don't have to scan the arguments to check for
2298 volatile arguments, though, at present, we still
2299 do a scan to check for TREE_SIDE_EFFECTS. */
2300 if (gimple_has_volatile_ops (s))
2301 return true;
2302
2303 if (is_gimple_call (s))
2304 {
2305 unsigned nargs = gimple_call_num_args (s);
2306
2307 if (!(gimple_call_flags (s) & (ECF_CONST | ECF_PURE)))
2308 return true;
2309 else if (gimple_call_flags (s) & ECF_LOOPING_CONST_OR_PURE)
2310 /* An infinite loop is considered a side effect. */
2311 return true;
2312
2313 if (gimple_call_lhs (s)
2314 && TREE_SIDE_EFFECTS (gimple_call_lhs (s)))
2315 {
2316 gcc_assert (gimple_has_volatile_ops (s));
2317 return true;
2318 }
2319
2320 if (TREE_SIDE_EFFECTS (gimple_call_fn (s)))
2321 return true;
2322
2323 for (i = 0; i < nargs; i++)
2324 if (TREE_SIDE_EFFECTS (gimple_call_arg (s, i)))
2325 {
2326 gcc_assert (gimple_has_volatile_ops (s));
2327 return true;
2328 }
2329
2330 return false;
2331 }
2332 else
2333 {
2334 for (i = 0; i < gimple_num_ops (s); i++)
2335 if (TREE_SIDE_EFFECTS (gimple_op (s, i)))
2336 {
2337 gcc_assert (gimple_has_volatile_ops (s));
2338 return true;
2339 }
2340 }
2341
2342 return false;
2343 }
2344
2345 /* Return true if the RHS of statement S has side effects.
2346 We may use it to determine if it is admissable to replace
2347 an assignment or call with a copy of a previously-computed
2348 value. In such cases, side-effects due the the LHS are
2349 preserved. */
2350
2351 bool
2352 gimple_rhs_has_side_effects (const_gimple s)
2353 {
2354 unsigned i;
2355
2356 if (is_gimple_call (s))
2357 {
2358 unsigned nargs = gimple_call_num_args (s);
2359
2360 if (!(gimple_call_flags (s) & (ECF_CONST | ECF_PURE)))
2361 return true;
2362
2363 /* We cannot use gimple_has_volatile_ops here,
2364 because we must ignore a volatile LHS. */
2365 if (TREE_SIDE_EFFECTS (gimple_call_fn (s))
2366 || TREE_THIS_VOLATILE (gimple_call_fn (s)))
2367 {
2368 gcc_assert (gimple_has_volatile_ops (s));
2369 return true;
2370 }
2371
2372 for (i = 0; i < nargs; i++)
2373 if (TREE_SIDE_EFFECTS (gimple_call_arg (s, i))
2374 || TREE_THIS_VOLATILE (gimple_call_arg (s, i)))
2375 return true;
2376
2377 return false;
2378 }
2379 else if (is_gimple_assign (s))
2380 {
2381 /* Skip the first operand, the LHS. */
2382 for (i = 1; i < gimple_num_ops (s); i++)
2383 if (TREE_SIDE_EFFECTS (gimple_op (s, i))
2384 || TREE_THIS_VOLATILE (gimple_op (s, i)))
2385 {
2386 gcc_assert (gimple_has_volatile_ops (s));
2387 return true;
2388 }
2389 }
2390 else if (is_gimple_debug (s))
2391 return false;
2392 else
2393 {
2394 /* For statements without an LHS, examine all arguments. */
2395 for (i = 0; i < gimple_num_ops (s); i++)
2396 if (TREE_SIDE_EFFECTS (gimple_op (s, i))
2397 || TREE_THIS_VOLATILE (gimple_op (s, i)))
2398 {
2399 gcc_assert (gimple_has_volatile_ops (s));
2400 return true;
2401 }
2402 }
2403
2404 return false;
2405 }
2406
2407 /* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
2408 Return true if S can trap. When INCLUDE_MEM is true, check whether
2409 the memory operations could trap. When INCLUDE_STORES is true and
2410 S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked. */
2411
2412 bool
2413 gimple_could_trap_p_1 (gimple s, bool include_mem, bool include_stores)
2414 {
2415 tree t, div = NULL_TREE;
2416 enum tree_code op;
2417
2418 if (include_mem)
2419 {
2420 unsigned i, start = (is_gimple_assign (s) && !include_stores) ? 1 : 0;
2421
2422 for (i = start; i < gimple_num_ops (s); i++)
2423 if (tree_could_trap_p (gimple_op (s, i)))
2424 return true;
2425 }
2426
2427 switch (gimple_code (s))
2428 {
2429 case GIMPLE_ASM:
2430 return gimple_asm_volatile_p (s);
2431
2432 case GIMPLE_CALL:
2433 t = gimple_call_fndecl (s);
2434 /* Assume that calls to weak functions may trap. */
2435 if (!t || !DECL_P (t) || DECL_WEAK (t))
2436 return true;
2437 return false;
2438
2439 case GIMPLE_ASSIGN:
2440 t = gimple_expr_type (s);
2441 op = gimple_assign_rhs_code (s);
2442 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
2443 div = gimple_assign_rhs2 (s);
2444 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
2445 (INTEGRAL_TYPE_P (t)
2446 && TYPE_OVERFLOW_TRAPS (t)),
2447 div));
2448
2449 default:
2450 break;
2451 }
2452
2453 return false;
2454 }
2455
2456 /* Return true if statement S can trap. */
2457
2458 bool
2459 gimple_could_trap_p (gimple s)
2460 {
2461 return gimple_could_trap_p_1 (s, true, true);
2462 }
2463
2464 /* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
2465
2466 bool
2467 gimple_assign_rhs_could_trap_p (gimple s)
2468 {
2469 gcc_assert (is_gimple_assign (s));
2470 return gimple_could_trap_p_1 (s, true, false);
2471 }
2472
2473
2474 /* Print debugging information for gimple stmts generated. */
2475
2476 void
2477 dump_gimple_statistics (void)
2478 {
2479 #ifdef GATHER_STATISTICS
2480 int i, total_tuples = 0, total_bytes = 0;
2481
2482 fprintf (stderr, "\nGIMPLE statements\n");
2483 fprintf (stderr, "Kind Stmts Bytes\n");
2484 fprintf (stderr, "---------------------------------------\n");
2485 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
2486 {
2487 fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i],
2488 gimple_alloc_counts[i], gimple_alloc_sizes[i]);
2489 total_tuples += gimple_alloc_counts[i];
2490 total_bytes += gimple_alloc_sizes[i];
2491 }
2492 fprintf (stderr, "---------------------------------------\n");
2493 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes);
2494 fprintf (stderr, "---------------------------------------\n");
2495 #else
2496 fprintf (stderr, "No gimple statistics\n");
2497 #endif
2498 }
2499
2500
2501 /* Return the number of operands needed on the RHS of a GIMPLE
2502 assignment for an expression with tree code CODE. */
2503
2504 unsigned
2505 get_gimple_rhs_num_ops (enum tree_code code)
2506 {
2507 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
2508
2509 if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
2510 return 1;
2511 else if (rhs_class == GIMPLE_BINARY_RHS)
2512 return 2;
2513 else if (rhs_class == GIMPLE_TERNARY_RHS)
2514 return 3;
2515 else
2516 gcc_unreachable ();
2517 }
2518
2519 #define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
2520 (unsigned char) \
2521 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
2522 : ((TYPE) == tcc_binary \
2523 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
2524 : ((TYPE) == tcc_constant \
2525 || (TYPE) == tcc_declaration \
2526 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
2527 : ((SYM) == TRUTH_AND_EXPR \
2528 || (SYM) == TRUTH_OR_EXPR \
2529 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
2530 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
2531 : ((SYM) == WIDEN_MULT_PLUS_EXPR \
2532 || (SYM) == WIDEN_MULT_MINUS_EXPR \
2533 || (SYM) == FMA_EXPR) ? GIMPLE_TERNARY_RHS \
2534 : ((SYM) == COND_EXPR \
2535 || (SYM) == CONSTRUCTOR \
2536 || (SYM) == OBJ_TYPE_REF \
2537 || (SYM) == ASSERT_EXPR \
2538 || (SYM) == ADDR_EXPR \
2539 || (SYM) == WITH_SIZE_EXPR \
2540 || (SYM) == SSA_NAME \
2541 || (SYM) == POLYNOMIAL_CHREC \
2542 || (SYM) == DOT_PROD_EXPR \
2543 || (SYM) == VEC_COND_EXPR \
2544 || (SYM) == REALIGN_LOAD_EXPR) ? GIMPLE_SINGLE_RHS \
2545 : GIMPLE_INVALID_RHS),
2546 #define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
2547
2548 const unsigned char gimple_rhs_class_table[] = {
2549 #include "all-tree.def"
2550 };
2551
2552 #undef DEFTREECODE
2553 #undef END_OF_BASE_TREE_CODES
2554
2555 /* For the definitive definition of GIMPLE, see doc/tree-ssa.texi. */
2556
2557 /* Validation of GIMPLE expressions. */
2558
2559 /* Returns true iff T is a valid RHS for an assignment to a renamed
2560 user -- or front-end generated artificial -- variable. */
2561
2562 bool
2563 is_gimple_reg_rhs (tree t)
2564 {
2565 return get_gimple_rhs_class (TREE_CODE (t)) != GIMPLE_INVALID_RHS;
2566 }
2567
2568 /* Returns true iff T is a valid RHS for an assignment to an un-renamed
2569 LHS, or for a call argument. */
2570
2571 bool
2572 is_gimple_mem_rhs (tree t)
2573 {
2574 /* If we're dealing with a renamable type, either source or dest must be
2575 a renamed variable. */
2576 if (is_gimple_reg_type (TREE_TYPE (t)))
2577 return is_gimple_val (t);
2578 else
2579 return is_gimple_val (t) || is_gimple_lvalue (t);
2580 }
2581
2582 /* Return true if T is a valid LHS for a GIMPLE assignment expression. */
2583
2584 bool
2585 is_gimple_lvalue (tree t)
2586 {
2587 return (is_gimple_addressable (t)
2588 || TREE_CODE (t) == WITH_SIZE_EXPR
2589 /* These are complex lvalues, but don't have addresses, so they
2590 go here. */
2591 || TREE_CODE (t) == BIT_FIELD_REF);
2592 }
2593
2594 /* Return true if T is a GIMPLE condition. */
2595
2596 bool
2597 is_gimple_condexpr (tree t)
2598 {
2599 return (is_gimple_val (t) || (COMPARISON_CLASS_P (t)
2600 && !tree_could_trap_p (t)
2601 && is_gimple_val (TREE_OPERAND (t, 0))
2602 && is_gimple_val (TREE_OPERAND (t, 1))));
2603 }
2604
2605 /* Return true if T is something whose address can be taken. */
2606
2607 bool
2608 is_gimple_addressable (tree t)
2609 {
2610 return (is_gimple_id (t) || handled_component_p (t)
2611 || TREE_CODE (t) == MEM_REF);
2612 }
2613
2614 /* Return true if T is a valid gimple constant. */
2615
2616 bool
2617 is_gimple_constant (const_tree t)
2618 {
2619 switch (TREE_CODE (t))
2620 {
2621 case INTEGER_CST:
2622 case REAL_CST:
2623 case FIXED_CST:
2624 case STRING_CST:
2625 case COMPLEX_CST:
2626 case VECTOR_CST:
2627 return true;
2628
2629 /* Vector constant constructors are gimple invariant. */
2630 case CONSTRUCTOR:
2631 if (TREE_TYPE (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2632 return TREE_CONSTANT (t);
2633 else
2634 return false;
2635
2636 default:
2637 return false;
2638 }
2639 }
2640
2641 /* Return true if T is a gimple address. */
2642
2643 bool
2644 is_gimple_address (const_tree t)
2645 {
2646 tree op;
2647
2648 if (TREE_CODE (t) != ADDR_EXPR)
2649 return false;
2650
2651 op = TREE_OPERAND (t, 0);
2652 while (handled_component_p (op))
2653 {
2654 if ((TREE_CODE (op) == ARRAY_REF
2655 || TREE_CODE (op) == ARRAY_RANGE_REF)
2656 && !is_gimple_val (TREE_OPERAND (op, 1)))
2657 return false;
2658
2659 op = TREE_OPERAND (op, 0);
2660 }
2661
2662 if (CONSTANT_CLASS_P (op) || TREE_CODE (op) == MEM_REF)
2663 return true;
2664
2665 switch (TREE_CODE (op))
2666 {
2667 case PARM_DECL:
2668 case RESULT_DECL:
2669 case LABEL_DECL:
2670 case FUNCTION_DECL:
2671 case VAR_DECL:
2672 case CONST_DECL:
2673 return true;
2674
2675 default:
2676 return false;
2677 }
2678 }
2679
2680 /* Strip out all handled components that produce invariant
2681 offsets. */
2682
2683 static const_tree
2684 strip_invariant_refs (const_tree op)
2685 {
2686 while (handled_component_p (op))
2687 {
2688 switch (TREE_CODE (op))
2689 {
2690 case ARRAY_REF:
2691 case ARRAY_RANGE_REF:
2692 if (!is_gimple_constant (TREE_OPERAND (op, 1))
2693 || TREE_OPERAND (op, 2) != NULL_TREE
2694 || TREE_OPERAND (op, 3) != NULL_TREE)
2695 return NULL;
2696 break;
2697
2698 case COMPONENT_REF:
2699 if (TREE_OPERAND (op, 2) != NULL_TREE)
2700 return NULL;
2701 break;
2702
2703 default:;
2704 }
2705 op = TREE_OPERAND (op, 0);
2706 }
2707
2708 return op;
2709 }
2710
2711 /* Return true if T is a gimple invariant address. */
2712
2713 bool
2714 is_gimple_invariant_address (const_tree t)
2715 {
2716 const_tree op;
2717
2718 if (TREE_CODE (t) != ADDR_EXPR)
2719 return false;
2720
2721 op = strip_invariant_refs (TREE_OPERAND (t, 0));
2722 if (!op)
2723 return false;
2724
2725 if (TREE_CODE (op) == MEM_REF)
2726 {
2727 const_tree op0 = TREE_OPERAND (op, 0);
2728 return (TREE_CODE (op0) == ADDR_EXPR
2729 && (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))
2730 || decl_address_invariant_p (TREE_OPERAND (op0, 0))));
2731 }
2732
2733 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
2734 }
2735
2736 /* Return true if T is a gimple invariant address at IPA level
2737 (so addresses of variables on stack are not allowed). */
2738
2739 bool
2740 is_gimple_ip_invariant_address (const_tree t)
2741 {
2742 const_tree op;
2743
2744 if (TREE_CODE (t) != ADDR_EXPR)
2745 return false;
2746
2747 op = strip_invariant_refs (TREE_OPERAND (t, 0));
2748
2749 return op && (CONSTANT_CLASS_P (op) || decl_address_ip_invariant_p (op));
2750 }
2751
2752 /* Return true if T is a GIMPLE minimal invariant. It's a restricted
2753 form of function invariant. */
2754
2755 bool
2756 is_gimple_min_invariant (const_tree t)
2757 {
2758 if (TREE_CODE (t) == ADDR_EXPR)
2759 return is_gimple_invariant_address (t);
2760
2761 return is_gimple_constant (t);
2762 }
2763
2764 /* Return true if T is a GIMPLE interprocedural invariant. It's a restricted
2765 form of gimple minimal invariant. */
2766
2767 bool
2768 is_gimple_ip_invariant (const_tree t)
2769 {
2770 if (TREE_CODE (t) == ADDR_EXPR)
2771 return is_gimple_ip_invariant_address (t);
2772
2773 return is_gimple_constant (t);
2774 }
2775
2776 /* Return true if T looks like a valid GIMPLE statement. */
2777
2778 bool
2779 is_gimple_stmt (tree t)
2780 {
2781 const enum tree_code code = TREE_CODE (t);
2782
2783 switch (code)
2784 {
2785 case NOP_EXPR:
2786 /* The only valid NOP_EXPR is the empty statement. */
2787 return IS_EMPTY_STMT (t);
2788
2789 case BIND_EXPR:
2790 case COND_EXPR:
2791 /* These are only valid if they're void. */
2792 return TREE_TYPE (t) == NULL || VOID_TYPE_P (TREE_TYPE (t));
2793
2794 case SWITCH_EXPR:
2795 case GOTO_EXPR:
2796 case RETURN_EXPR:
2797 case LABEL_EXPR:
2798 case CASE_LABEL_EXPR:
2799 case TRY_CATCH_EXPR:
2800 case TRY_FINALLY_EXPR:
2801 case EH_FILTER_EXPR:
2802 case CATCH_EXPR:
2803 case ASM_EXPR:
2804 case STATEMENT_LIST:
2805 case OMP_PARALLEL:
2806 case OMP_FOR:
2807 case OMP_SECTIONS:
2808 case OMP_SECTION:
2809 case OMP_SINGLE:
2810 case OMP_MASTER:
2811 case OMP_ORDERED:
2812 case OMP_CRITICAL:
2813 case OMP_TASK:
2814 /* These are always void. */
2815 return true;
2816
2817 case CALL_EXPR:
2818 case MODIFY_EXPR:
2819 case PREDICT_EXPR:
2820 /* These are valid regardless of their type. */
2821 return true;
2822
2823 default:
2824 return false;
2825 }
2826 }
2827
2828 /* Return true if T is a variable. */
2829
2830 bool
2831 is_gimple_variable (tree t)
2832 {
2833 return (TREE_CODE (t) == VAR_DECL
2834 || TREE_CODE (t) == PARM_DECL
2835 || TREE_CODE (t) == RESULT_DECL
2836 || TREE_CODE (t) == SSA_NAME);
2837 }
2838
2839 /* Return true if T is a GIMPLE identifier (something with an address). */
2840
2841 bool
2842 is_gimple_id (tree t)
2843 {
2844 return (is_gimple_variable (t)
2845 || TREE_CODE (t) == FUNCTION_DECL
2846 || TREE_CODE (t) == LABEL_DECL
2847 || TREE_CODE (t) == CONST_DECL
2848 /* Allow string constants, since they are addressable. */
2849 || TREE_CODE (t) == STRING_CST);
2850 }
2851
2852 /* Return true if TYPE is a suitable type for a scalar register variable. */
2853
2854 bool
2855 is_gimple_reg_type (tree type)
2856 {
2857 return !AGGREGATE_TYPE_P (type);
2858 }
2859
2860 /* Return true if T is a non-aggregate register variable. */
2861
2862 bool
2863 is_gimple_reg (tree t)
2864 {
2865 if (TREE_CODE (t) == SSA_NAME)
2866 t = SSA_NAME_VAR (t);
2867
2868 if (!is_gimple_variable (t))
2869 return false;
2870
2871 if (!is_gimple_reg_type (TREE_TYPE (t)))
2872 return false;
2873
2874 /* A volatile decl is not acceptable because we can't reuse it as
2875 needed. We need to copy it into a temp first. */
2876 if (TREE_THIS_VOLATILE (t))
2877 return false;
2878
2879 /* We define "registers" as things that can be renamed as needed,
2880 which with our infrastructure does not apply to memory. */
2881 if (needs_to_live_in_memory (t))
2882 return false;
2883
2884 /* Hard register variables are an interesting case. For those that
2885 are call-clobbered, we don't know where all the calls are, since
2886 we don't (want to) take into account which operations will turn
2887 into libcalls at the rtl level. For those that are call-saved,
2888 we don't currently model the fact that calls may in fact change
2889 global hard registers, nor do we examine ASM_CLOBBERS at the tree
2890 level, and so miss variable changes that might imply. All around,
2891 it seems safest to not do too much optimization with these at the
2892 tree level at all. We'll have to rely on the rtl optimizers to
2893 clean this up, as there we've got all the appropriate bits exposed. */
2894 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
2895 return false;
2896
2897 /* Complex and vector values must have been put into SSA-like form.
2898 That is, no assignments to the individual components. */
2899 if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE
2900 || TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2901 return DECL_GIMPLE_REG_P (t);
2902
2903 return true;
2904 }
2905
2906
2907 /* Return true if T is a GIMPLE variable whose address is not needed. */
2908
2909 bool
2910 is_gimple_non_addressable (tree t)
2911 {
2912 if (TREE_CODE (t) == SSA_NAME)
2913 t = SSA_NAME_VAR (t);
2914
2915 return (is_gimple_variable (t) && ! needs_to_live_in_memory (t));
2916 }
2917
2918 /* Return true if T is a GIMPLE rvalue, i.e. an identifier or a constant. */
2919
2920 bool
2921 is_gimple_val (tree t)
2922 {
2923 /* Make loads from volatiles and memory vars explicit. */
2924 if (is_gimple_variable (t)
2925 && is_gimple_reg_type (TREE_TYPE (t))
2926 && !is_gimple_reg (t))
2927 return false;
2928
2929 return (is_gimple_variable (t) || is_gimple_min_invariant (t));
2930 }
2931
2932 /* Similarly, but accept hard registers as inputs to asm statements. */
2933
2934 bool
2935 is_gimple_asm_val (tree t)
2936 {
2937 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
2938 return true;
2939
2940 return is_gimple_val (t);
2941 }
2942
2943 /* Return true if T is a GIMPLE minimal lvalue. */
2944
2945 bool
2946 is_gimple_min_lval (tree t)
2947 {
2948 if (!(t = CONST_CAST_TREE (strip_invariant_refs (t))))
2949 return false;
2950 return (is_gimple_id (t) || TREE_CODE (t) == MEM_REF);
2951 }
2952
2953 /* Return true if T is a typecast operation. */
2954
2955 bool
2956 is_gimple_cast (tree t)
2957 {
2958 return (CONVERT_EXPR_P (t)
2959 || TREE_CODE (t) == FIX_TRUNC_EXPR);
2960 }
2961
2962 /* Return true if T is a valid function operand of a CALL_EXPR. */
2963
2964 bool
2965 is_gimple_call_addr (tree t)
2966 {
2967 return (TREE_CODE (t) == OBJ_TYPE_REF || is_gimple_val (t));
2968 }
2969
2970 /* Return true if T is a valid address operand of a MEM_REF. */
2971
2972 bool
2973 is_gimple_mem_ref_addr (tree t)
2974 {
2975 return (is_gimple_reg (t)
2976 || TREE_CODE (t) == INTEGER_CST
2977 || (TREE_CODE (t) == ADDR_EXPR
2978 && (CONSTANT_CLASS_P (TREE_OPERAND (t, 0))
2979 || decl_address_invariant_p (TREE_OPERAND (t, 0)))));
2980 }
2981
2982 /* If T makes a function call, return the corresponding CALL_EXPR operand.
2983 Otherwise, return NULL_TREE. */
2984
2985 tree
2986 get_call_expr_in (tree t)
2987 {
2988 if (TREE_CODE (t) == MODIFY_EXPR)
2989 t = TREE_OPERAND (t, 1);
2990 if (TREE_CODE (t) == WITH_SIZE_EXPR)
2991 t = TREE_OPERAND (t, 0);
2992 if (TREE_CODE (t) == CALL_EXPR)
2993 return t;
2994 return NULL_TREE;
2995 }
2996
2997
2998 /* Given a memory reference expression T, return its base address.
2999 The base address of a memory reference expression is the main
3000 object being referenced. For instance, the base address for
3001 'array[i].fld[j]' is 'array'. You can think of this as stripping
3002 away the offset part from a memory address.
3003
3004 This function calls handled_component_p to strip away all the inner
3005 parts of the memory reference until it reaches the base object. */
3006
3007 tree
3008 get_base_address (tree t)
3009 {
3010 while (handled_component_p (t))
3011 t = TREE_OPERAND (t, 0);
3012
3013 if ((TREE_CODE (t) == MEM_REF
3014 || TREE_CODE (t) == TARGET_MEM_REF)
3015 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
3016 t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
3017
3018 if (TREE_CODE (t) == SSA_NAME
3019 || DECL_P (t)
3020 || TREE_CODE (t) == STRING_CST
3021 || TREE_CODE (t) == CONSTRUCTOR
3022 || INDIRECT_REF_P (t)
3023 || TREE_CODE (t) == MEM_REF
3024 || TREE_CODE (t) == TARGET_MEM_REF)
3025 return t;
3026 else
3027 return NULL_TREE;
3028 }
3029
3030 void
3031 recalculate_side_effects (tree t)
3032 {
3033 enum tree_code code = TREE_CODE (t);
3034 int len = TREE_OPERAND_LENGTH (t);
3035 int i;
3036
3037 switch (TREE_CODE_CLASS (code))
3038 {
3039 case tcc_expression:
3040 switch (code)
3041 {
3042 case INIT_EXPR:
3043 case MODIFY_EXPR:
3044 case VA_ARG_EXPR:
3045 case PREDECREMENT_EXPR:
3046 case PREINCREMENT_EXPR:
3047 case POSTDECREMENT_EXPR:
3048 case POSTINCREMENT_EXPR:
3049 /* All of these have side-effects, no matter what their
3050 operands are. */
3051 return;
3052
3053 default:
3054 break;
3055 }
3056 /* Fall through. */
3057
3058 case tcc_comparison: /* a comparison expression */
3059 case tcc_unary: /* a unary arithmetic expression */
3060 case tcc_binary: /* a binary arithmetic expression */
3061 case tcc_reference: /* a reference */
3062 case tcc_vl_exp: /* a function call */
3063 TREE_SIDE_EFFECTS (t) = TREE_THIS_VOLATILE (t);
3064 for (i = 0; i < len; ++i)
3065 {
3066 tree op = TREE_OPERAND (t, i);
3067 if (op && TREE_SIDE_EFFECTS (op))
3068 TREE_SIDE_EFFECTS (t) = 1;
3069 }
3070 break;
3071
3072 case tcc_constant:
3073 /* No side-effects. */
3074 return;
3075
3076 default:
3077 gcc_unreachable ();
3078 }
3079 }
3080
3081 /* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
3082 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
3083 we failed to create one. */
3084
3085 tree
3086 canonicalize_cond_expr_cond (tree t)
3087 {
3088 /* Strip conversions around boolean operations. */
3089 if (CONVERT_EXPR_P (t)
3090 && truth_value_p (TREE_CODE (TREE_OPERAND (t, 0))))
3091 t = TREE_OPERAND (t, 0);
3092
3093 /* For (bool)x use x != 0. */
3094 if (CONVERT_EXPR_P (t)
3095 && TREE_CODE (TREE_TYPE (t)) == BOOLEAN_TYPE)
3096 {
3097 tree top0 = TREE_OPERAND (t, 0);
3098 t = build2 (NE_EXPR, TREE_TYPE (t),
3099 top0, build_int_cst (TREE_TYPE (top0), 0));
3100 }
3101 /* For !x use x == 0. */
3102 else if (TREE_CODE (t) == TRUTH_NOT_EXPR)
3103 {
3104 tree top0 = TREE_OPERAND (t, 0);
3105 t = build2 (EQ_EXPR, TREE_TYPE (t),
3106 top0, build_int_cst (TREE_TYPE (top0), 0));
3107 }
3108 /* For cmp ? 1 : 0 use cmp. */
3109 else if (TREE_CODE (t) == COND_EXPR
3110 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
3111 && integer_onep (TREE_OPERAND (t, 1))
3112 && integer_zerop (TREE_OPERAND (t, 2)))
3113 {
3114 tree top0 = TREE_OPERAND (t, 0);
3115 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
3116 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
3117 }
3118
3119 if (is_gimple_condexpr (t))
3120 return t;
3121
3122 return NULL_TREE;
3123 }
3124
3125 /* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
3126 the positions marked by the set ARGS_TO_SKIP. */
3127
3128 gimple
3129 gimple_call_copy_skip_args (gimple stmt, bitmap args_to_skip)
3130 {
3131 int i;
3132 tree fn = gimple_call_fn (stmt);
3133 int nargs = gimple_call_num_args (stmt);
3134 VEC(tree, heap) *vargs = VEC_alloc (tree, heap, nargs);
3135 gimple new_stmt;
3136
3137 for (i = 0; i < nargs; i++)
3138 if (!bitmap_bit_p (args_to_skip, i))
3139 VEC_quick_push (tree, vargs, gimple_call_arg (stmt, i));
3140
3141 new_stmt = gimple_build_call_vec (fn, vargs);
3142 VEC_free (tree, heap, vargs);
3143 if (gimple_call_lhs (stmt))
3144 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
3145
3146 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
3147 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
3148
3149 gimple_set_block (new_stmt, gimple_block (stmt));
3150 if (gimple_has_location (stmt))
3151 gimple_set_location (new_stmt, gimple_location (stmt));
3152 gimple_call_copy_flags (new_stmt, stmt);
3153 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
3154
3155 gimple_set_modified (new_stmt, true);
3156
3157 return new_stmt;
3158 }
3159
3160
3161 static hashval_t gimple_type_hash (const void *);
3162
3163 /* Structure used to maintain a cache of some type pairs compared by
3164 gimple_types_compatible_p when comparing aggregate types. There are
3165 three possible values for SAME_P:
3166
3167 -2: The pair (T1, T2) has just been inserted in the table.
3168 0: T1 and T2 are different types.
3169 1: T1 and T2 are the same type.
3170
3171 The two elements in the SAME_P array are indexed by the comparison
3172 mode gtc_mode. */
3173
3174 struct type_pair_d
3175 {
3176 unsigned int uid1;
3177 unsigned int uid2;
3178 signed char same_p[2];
3179 };
3180 typedef struct type_pair_d *type_pair_t;
3181
3182 DEF_VEC_P(type_pair_t);
3183 DEF_VEC_ALLOC_P(type_pair_t,heap);
3184
3185 /* Return a hash value for the type pair pointed-to by P. */
3186
3187 static hashval_t
3188 type_pair_hash (const void *p)
3189 {
3190 const struct type_pair_d *pair = (const struct type_pair_d *) p;
3191 hashval_t val1 = pair->uid1;
3192 hashval_t val2 = pair->uid2;
3193 return (iterative_hash_hashval_t (val2, val1)
3194 ^ iterative_hash_hashval_t (val1, val2));
3195 }
3196
3197 /* Compare two type pairs pointed-to by P1 and P2. */
3198
3199 static int
3200 type_pair_eq (const void *p1, const void *p2)
3201 {
3202 const struct type_pair_d *pair1 = (const struct type_pair_d *) p1;
3203 const struct type_pair_d *pair2 = (const struct type_pair_d *) p2;
3204 return ((pair1->uid1 == pair2->uid1 && pair1->uid2 == pair2->uid2)
3205 || (pair1->uid1 == pair2->uid2 && pair1->uid2 == pair2->uid1));
3206 }
3207
3208 /* Lookup the pair of types T1 and T2 in *VISITED_P. Insert a new
3209 entry if none existed. */
3210
3211 static type_pair_t
3212 lookup_type_pair (tree t1, tree t2, htab_t *visited_p, struct obstack *ob_p)
3213 {
3214 struct type_pair_d pair;
3215 type_pair_t p;
3216 void **slot;
3217
3218 if (*visited_p == NULL)
3219 {
3220 *visited_p = htab_create (251, type_pair_hash, type_pair_eq, NULL);
3221 gcc_obstack_init (ob_p);
3222 }
3223
3224 pair.uid1 = TYPE_UID (t1);
3225 pair.uid2 = TYPE_UID (t2);
3226 slot = htab_find_slot (*visited_p, &pair, INSERT);
3227
3228 if (*slot)
3229 p = *((type_pair_t *) slot);
3230 else
3231 {
3232 p = XOBNEW (ob_p, struct type_pair_d);
3233 p->uid1 = TYPE_UID (t1);
3234 p->uid2 = TYPE_UID (t2);
3235 p->same_p[0] = -2;
3236 p->same_p[1] = -2;
3237 *slot = (void *) p;
3238 }
3239
3240 return p;
3241 }
3242
3243 /* Per pointer state for the SCC finding. The on_sccstack flag
3244 is not strictly required, it is true when there is no hash value
3245 recorded for the type and false otherwise. But querying that
3246 is slower. */
3247
3248 struct sccs
3249 {
3250 unsigned int dfsnum;
3251 unsigned int low;
3252 bool on_sccstack;
3253 union {
3254 hashval_t hash;
3255 signed char same_p;
3256 } u;
3257 };
3258
3259 static unsigned int next_dfs_num;
3260 static unsigned int gtc_next_dfs_num;
3261
3262
3263 /* GIMPLE type merging cache. A direct-mapped cache based on TYPE_UID. */
3264
3265 typedef struct GTY(()) gimple_type_leader_entry_s {
3266 tree type;
3267 tree leader;
3268 } gimple_type_leader_entry;
3269
3270 #define GIMPLE_TYPE_LEADER_SIZE 16381
3271 static GTY((length("GIMPLE_TYPE_LEADER_SIZE"))) gimple_type_leader_entry
3272 *gimple_type_leader;
3273
3274 /* Lookup an existing leader for T and return it or NULL_TREE, if
3275 there is none in the cache. */
3276
3277 static tree
3278 gimple_lookup_type_leader (tree t)
3279 {
3280 gimple_type_leader_entry *leader;
3281
3282 if (!gimple_type_leader)
3283 return NULL_TREE;
3284
3285 leader = &gimple_type_leader[TYPE_UID (t) % GIMPLE_TYPE_LEADER_SIZE];
3286 if (leader->type != t)
3287 return NULL_TREE;
3288
3289 return leader->leader;
3290 }
3291
3292 /* Return true if T1 and T2 have the same name. If FOR_COMPLETION_P is
3293 true then if any type has no name return false, otherwise return
3294 true if both types have no names. */
3295
3296 static bool
3297 compare_type_names_p (tree t1, tree t2, bool for_completion_p)
3298 {
3299 tree name1 = TYPE_NAME (t1);
3300 tree name2 = TYPE_NAME (t2);
3301
3302 /* Consider anonymous types all unique for completion. */
3303 if (for_completion_p
3304 && (!name1 || !name2))
3305 return false;
3306
3307 if (name1 && TREE_CODE (name1) == TYPE_DECL)
3308 {
3309 name1 = DECL_NAME (name1);
3310 if (for_completion_p
3311 && !name1)
3312 return false;
3313 }
3314 gcc_assert (!name1 || TREE_CODE (name1) == IDENTIFIER_NODE);
3315
3316 if (name2 && TREE_CODE (name2) == TYPE_DECL)
3317 {
3318 name2 = DECL_NAME (name2);
3319 if (for_completion_p
3320 && !name2)
3321 return false;
3322 }
3323 gcc_assert (!name2 || TREE_CODE (name2) == IDENTIFIER_NODE);
3324
3325 /* Identifiers can be compared with pointer equality rather
3326 than a string comparison. */
3327 if (name1 == name2)
3328 return true;
3329
3330 return false;
3331 }
3332
3333 /* Return true if the field decls F1 and F2 are at the same offset.
3334
3335 This is intended to be used on GIMPLE types only. In order to
3336 compare GENERIC types, use fields_compatible_p instead. */
3337
3338 bool
3339 gimple_compare_field_offset (tree f1, tree f2)
3340 {
3341 if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
3342 {
3343 tree offset1 = DECL_FIELD_OFFSET (f1);
3344 tree offset2 = DECL_FIELD_OFFSET (f2);
3345 return ((offset1 == offset2
3346 /* Once gimplification is done, self-referential offsets are
3347 instantiated as operand #2 of the COMPONENT_REF built for
3348 each access and reset. Therefore, they are not relevant
3349 anymore and fields are interchangeable provided that they
3350 represent the same access. */
3351 || (TREE_CODE (offset1) == PLACEHOLDER_EXPR
3352 && TREE_CODE (offset2) == PLACEHOLDER_EXPR
3353 && (DECL_SIZE (f1) == DECL_SIZE (f2)
3354 || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
3355 && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
3356 || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0))
3357 && DECL_ALIGN (f1) == DECL_ALIGN (f2))
3358 || operand_equal_p (offset1, offset2, 0))
3359 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
3360 DECL_FIELD_BIT_OFFSET (f2)));
3361 }
3362
3363 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
3364 should be, so handle differing ones specially by decomposing
3365 the offset into a byte and bit offset manually. */
3366 if (host_integerp (DECL_FIELD_OFFSET (f1), 0)
3367 && host_integerp (DECL_FIELD_OFFSET (f2), 0))
3368 {
3369 unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
3370 unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
3371 bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
3372 byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
3373 + bit_offset1 / BITS_PER_UNIT);
3374 bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
3375 byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
3376 + bit_offset2 / BITS_PER_UNIT);
3377 if (byte_offset1 != byte_offset2)
3378 return false;
3379 return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
3380 }
3381
3382 return false;
3383 }
3384
3385 /* If the type T1 and the type T2 are a complete and an incomplete
3386 variant of the same type return true. */
3387
3388 static bool
3389 gimple_compatible_complete_and_incomplete_subtype_p (tree t1, tree t2)
3390 {
3391 /* If one pointer points to an incomplete type variant of
3392 the other pointed-to type they are the same. */
3393 if (TREE_CODE (t1) == TREE_CODE (t2)
3394 && RECORD_OR_UNION_TYPE_P (t1)
3395 && (!COMPLETE_TYPE_P (t1)
3396 || !COMPLETE_TYPE_P (t2))
3397 && TYPE_QUALS (t1) == TYPE_QUALS (t2)
3398 && compare_type_names_p (TYPE_MAIN_VARIANT (t1),
3399 TYPE_MAIN_VARIANT (t2), true))
3400 return true;
3401 return false;
3402 }
3403
3404 static bool
3405 gimple_types_compatible_p_1 (tree, tree, enum gtc_mode, type_pair_t,
3406 VEC(type_pair_t, heap) **,
3407 struct pointer_map_t *, struct obstack *);
3408
3409 /* DFS visit the edge from the callers type pair with state *STATE to
3410 the pair T1, T2 while operating in FOR_MERGING_P mode.
3411 Update the merging status if it is not part of the SCC containing the
3412 callers pair and return it.
3413 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3414
3415 static bool
3416 gtc_visit (tree t1, tree t2, enum gtc_mode mode,
3417 struct sccs *state,
3418 VEC(type_pair_t, heap) **sccstack,
3419 struct pointer_map_t *sccstate,
3420 struct obstack *sccstate_obstack)
3421 {
3422 struct sccs *cstate = NULL;
3423 type_pair_t p;
3424 void **slot;
3425
3426 /* Check first for the obvious case of pointer identity. */
3427 if (t1 == t2)
3428 return true;
3429
3430 /* Check that we have two types to compare. */
3431 if (t1 == NULL_TREE || t2 == NULL_TREE)
3432 return false;
3433
3434 /* If the types have been previously registered and found equal
3435 they still are. */
3436 if (mode == GTC_MERGE)
3437 {
3438 tree leader1 = gimple_lookup_type_leader (t1);
3439 tree leader2 = gimple_lookup_type_leader (t2);
3440 if (leader1 == t2
3441 || t1 == leader2
3442 || (leader1 && leader1 == leader2))
3443 return true;
3444 }
3445 else if (mode == GTC_DIAG)
3446 {
3447 if (TYPE_CANONICAL (t1)
3448 && TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2))
3449 return true;
3450 }
3451
3452 /* Can't be the same type if the types don't have the same code. */
3453 if (TREE_CODE (t1) != TREE_CODE (t2))
3454 return false;
3455
3456 /* Can't be the same type if they have different CV qualifiers. */
3457 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
3458 return false;
3459
3460 /* Void types are always the same. */
3461 if (TREE_CODE (t1) == VOID_TYPE)
3462 return true;
3463
3464 /* Do some simple checks before doing three hashtable queries. */
3465 if (INTEGRAL_TYPE_P (t1)
3466 || SCALAR_FLOAT_TYPE_P (t1)
3467 || FIXED_POINT_TYPE_P (t1)
3468 || TREE_CODE (t1) == VECTOR_TYPE
3469 || TREE_CODE (t1) == COMPLEX_TYPE
3470 || TREE_CODE (t1) == OFFSET_TYPE)
3471 {
3472 /* Can't be the same type if they have different alignment,
3473 sign, precision or mode. */
3474 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3475 || TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
3476 || TYPE_MODE (t1) != TYPE_MODE (t2)
3477 || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
3478 return false;
3479
3480 if (TREE_CODE (t1) == INTEGER_TYPE
3481 && (TYPE_IS_SIZETYPE (t1) != TYPE_IS_SIZETYPE (t2)
3482 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)))
3483 return false;
3484
3485 /* That's all we need to check for float and fixed-point types. */
3486 if (SCALAR_FLOAT_TYPE_P (t1)
3487 || FIXED_POINT_TYPE_P (t1))
3488 return true;
3489
3490 /* For integral types fall thru to more complex checks. */
3491 }
3492
3493 else if (AGGREGATE_TYPE_P (t1) || POINTER_TYPE_P (t1))
3494 {
3495 /* Can't be the same type if they have different alignment or mode. */
3496 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3497 || TYPE_MODE (t1) != TYPE_MODE (t2))
3498 return false;
3499 }
3500
3501 /* If the hash values of t1 and t2 are different the types can't
3502 possibly be the same. This helps keeping the type-pair hashtable
3503 small, only tracking comparisons for hash collisions. */
3504 if (gimple_type_hash (t1) != gimple_type_hash (t2))
3505 return false;
3506
3507 /* Allocate a new cache entry for this comparison. */
3508 p = lookup_type_pair (t1, t2, &gtc_visited, &gtc_ob);
3509 if (p->same_p[mode] == 0 || p->same_p[mode] == 1)
3510 {
3511 /* We have already decided whether T1 and T2 are the
3512 same, return the cached result. */
3513 return p->same_p[mode] == 1;
3514 }
3515
3516 if ((slot = pointer_map_contains (sccstate, p)) != NULL)
3517 cstate = (struct sccs *)*slot;
3518 /* Not yet visited. DFS recurse. */
3519 if (!cstate)
3520 {
3521 gimple_types_compatible_p_1 (t1, t2, mode, p,
3522 sccstack, sccstate, sccstate_obstack);
3523 cstate = (struct sccs *)* pointer_map_contains (sccstate, p);
3524 state->low = MIN (state->low, cstate->low);
3525 }
3526 /* If the type is still on the SCC stack adjust the parents low. */
3527 if (cstate->dfsnum < state->dfsnum
3528 && cstate->on_sccstack)
3529 state->low = MIN (cstate->dfsnum, state->low);
3530
3531 /* Return the current lattice value. We start with an equality
3532 assumption so types part of a SCC will be optimistically
3533 treated equal unless proven otherwise. */
3534 return cstate->u.same_p;
3535 }
3536
3537 /* Worker for gimple_types_compatible.
3538 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3539
3540 static bool
3541 gimple_types_compatible_p_1 (tree t1, tree t2, enum gtc_mode mode,
3542 type_pair_t p,
3543 VEC(type_pair_t, heap) **sccstack,
3544 struct pointer_map_t *sccstate,
3545 struct obstack *sccstate_obstack)
3546 {
3547 struct sccs *state;
3548
3549 gcc_assert (p->same_p[mode] == -2);
3550
3551 state = XOBNEW (sccstate_obstack, struct sccs);
3552 *pointer_map_insert (sccstate, p) = state;
3553
3554 VEC_safe_push (type_pair_t, heap, *sccstack, p);
3555 state->dfsnum = gtc_next_dfs_num++;
3556 state->low = state->dfsnum;
3557 state->on_sccstack = true;
3558 /* Start with an equality assumption. As we DFS recurse into child
3559 SCCs this assumption may get revisited. */
3560 state->u.same_p = 1;
3561
3562 /* If their attributes are not the same they can't be the same type. */
3563 if (!attribute_list_equal (TYPE_ATTRIBUTES (t1), TYPE_ATTRIBUTES (t2)))
3564 goto different_types;
3565
3566 /* Do type-specific comparisons. */
3567 switch (TREE_CODE (t1))
3568 {
3569 case VECTOR_TYPE:
3570 case COMPLEX_TYPE:
3571 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode,
3572 state, sccstack, sccstate, sccstate_obstack))
3573 goto different_types;
3574 goto same_types;
3575
3576 case ARRAY_TYPE:
3577 /* Array types are the same if the element types are the same and
3578 the number of elements are the same. */
3579 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode,
3580 state, sccstack, sccstate, sccstate_obstack)
3581 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
3582 || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
3583 goto different_types;
3584 else
3585 {
3586 tree i1 = TYPE_DOMAIN (t1);
3587 tree i2 = TYPE_DOMAIN (t2);
3588
3589 /* For an incomplete external array, the type domain can be
3590 NULL_TREE. Check this condition also. */
3591 if (i1 == NULL_TREE && i2 == NULL_TREE)
3592 goto same_types;
3593 else if (i1 == NULL_TREE || i2 == NULL_TREE)
3594 goto different_types;
3595 /* If for a complete array type the possibly gimplified sizes
3596 are different the types are different. */
3597 else if (((TYPE_SIZE (i1) != NULL) ^ (TYPE_SIZE (i2) != NULL))
3598 || (TYPE_SIZE (i1)
3599 && TYPE_SIZE (i2)
3600 && !operand_equal_p (TYPE_SIZE (i1), TYPE_SIZE (i2), 0)))
3601 goto different_types;
3602 else
3603 {
3604 tree min1 = TYPE_MIN_VALUE (i1);
3605 tree min2 = TYPE_MIN_VALUE (i2);
3606 tree max1 = TYPE_MAX_VALUE (i1);
3607 tree max2 = TYPE_MAX_VALUE (i2);
3608
3609 /* The minimum/maximum values have to be the same. */
3610 if ((min1 == min2
3611 || (min1 && min2
3612 && ((TREE_CODE (min1) == PLACEHOLDER_EXPR
3613 && TREE_CODE (min2) == PLACEHOLDER_EXPR)
3614 || operand_equal_p (min1, min2, 0))))
3615 && (max1 == max2
3616 || (max1 && max2
3617 && ((TREE_CODE (max1) == PLACEHOLDER_EXPR
3618 && TREE_CODE (max2) == PLACEHOLDER_EXPR)
3619 || operand_equal_p (max1, max2, 0)))))
3620 goto same_types;
3621 else
3622 goto different_types;
3623 }
3624 }
3625
3626 case METHOD_TYPE:
3627 /* Method types should belong to the same class. */
3628 if (!gtc_visit (TYPE_METHOD_BASETYPE (t1), TYPE_METHOD_BASETYPE (t2),
3629 mode, state, sccstack, sccstate, sccstate_obstack))
3630 goto different_types;
3631
3632 /* Fallthru */
3633
3634 case FUNCTION_TYPE:
3635 /* Function types are the same if the return type and arguments types
3636 are the same. */
3637 if ((mode != GTC_DIAG
3638 || !gimple_compatible_complete_and_incomplete_subtype_p
3639 (TREE_TYPE (t1), TREE_TYPE (t2)))
3640 && !gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode,
3641 state, sccstack, sccstate, sccstate_obstack))
3642 goto different_types;
3643
3644 if (!targetm.comp_type_attributes (t1, t2))
3645 goto different_types;
3646
3647 if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
3648 goto same_types;
3649 else
3650 {
3651 tree parms1, parms2;
3652
3653 for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
3654 parms1 && parms2;
3655 parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
3656 {
3657 if ((mode == GTC_MERGE
3658 || !gimple_compatible_complete_and_incomplete_subtype_p
3659 (TREE_VALUE (parms1), TREE_VALUE (parms2)))
3660 && !gtc_visit (TREE_VALUE (parms1), TREE_VALUE (parms2), mode,
3661 state, sccstack, sccstate, sccstate_obstack))
3662 goto different_types;
3663 }
3664
3665 if (parms1 || parms2)
3666 goto different_types;
3667
3668 goto same_types;
3669 }
3670
3671 case OFFSET_TYPE:
3672 {
3673 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode,
3674 state, sccstack, sccstate, sccstate_obstack)
3675 || !gtc_visit (TYPE_OFFSET_BASETYPE (t1),
3676 TYPE_OFFSET_BASETYPE (t2), mode,
3677 state, sccstack, sccstate, sccstate_obstack))
3678 goto different_types;
3679
3680 goto same_types;
3681 }
3682
3683 case POINTER_TYPE:
3684 case REFERENCE_TYPE:
3685 {
3686 /* If the two pointers have different ref-all attributes,
3687 they can't be the same type. */
3688 if (TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
3689 goto different_types;
3690
3691 /* If one pointer points to an incomplete type variant of
3692 the other pointed-to type they are the same. */
3693 if (mode == GTC_DIAG
3694 && gimple_compatible_complete_and_incomplete_subtype_p
3695 (TREE_TYPE (t1), TREE_TYPE (t2)))
3696 goto same_types;
3697
3698 /* Otherwise, pointer and reference types are the same if the
3699 pointed-to types are the same. */
3700 if (gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode,
3701 state, sccstack, sccstate, sccstate_obstack))
3702 goto same_types;
3703
3704 goto different_types;
3705 }
3706
3707 case NULLPTR_TYPE:
3708 /* There is only one decltype(nullptr). */
3709 goto same_types;
3710
3711 case INTEGER_TYPE:
3712 case BOOLEAN_TYPE:
3713 {
3714 tree min1 = TYPE_MIN_VALUE (t1);
3715 tree max1 = TYPE_MAX_VALUE (t1);
3716 tree min2 = TYPE_MIN_VALUE (t2);
3717 tree max2 = TYPE_MAX_VALUE (t2);
3718 bool min_equal_p = false;
3719 bool max_equal_p = false;
3720
3721 /* If either type has a minimum value, the other type must
3722 have the same. */
3723 if (min1 == NULL_TREE && min2 == NULL_TREE)
3724 min_equal_p = true;
3725 else if (min1 && min2 && operand_equal_p (min1, min2, 0))
3726 min_equal_p = true;
3727
3728 /* Likewise, if either type has a maximum value, the other
3729 type must have the same. */
3730 if (max1 == NULL_TREE && max2 == NULL_TREE)
3731 max_equal_p = true;
3732 else if (max1 && max2 && operand_equal_p (max1, max2, 0))
3733 max_equal_p = true;
3734
3735 if (!min_equal_p || !max_equal_p)
3736 goto different_types;
3737
3738 goto same_types;
3739 }
3740
3741 case ENUMERAL_TYPE:
3742 {
3743 /* FIXME lto, we cannot check bounds on enumeral types because
3744 different front ends will produce different values.
3745 In C, enumeral types are integers, while in C++ each element
3746 will have its own symbolic value. We should decide how enums
3747 are to be represented in GIMPLE and have each front end lower
3748 to that. */
3749 tree v1, v2;
3750
3751 /* For enumeral types, all the values must be the same. */
3752 if (TYPE_VALUES (t1) == TYPE_VALUES (t2))
3753 goto same_types;
3754
3755 for (v1 = TYPE_VALUES (t1), v2 = TYPE_VALUES (t2);
3756 v1 && v2;
3757 v1 = TREE_CHAIN (v1), v2 = TREE_CHAIN (v2))
3758 {
3759 tree c1 = TREE_VALUE (v1);
3760 tree c2 = TREE_VALUE (v2);
3761
3762 if (TREE_CODE (c1) == CONST_DECL)
3763 c1 = DECL_INITIAL (c1);
3764
3765 if (TREE_CODE (c2) == CONST_DECL)
3766 c2 = DECL_INITIAL (c2);
3767
3768 if (tree_int_cst_equal (c1, c2) != 1)
3769 goto different_types;
3770 }
3771
3772 /* If one enumeration has more values than the other, they
3773 are not the same. */
3774 if (v1 || v2)
3775 goto different_types;
3776
3777 goto same_types;
3778 }
3779
3780 case RECORD_TYPE:
3781 case UNION_TYPE:
3782 case QUAL_UNION_TYPE:
3783 {
3784 tree f1, f2;
3785
3786 /* The struct tags shall compare equal. */
3787 if (!compare_type_names_p (TYPE_MAIN_VARIANT (t1),
3788 TYPE_MAIN_VARIANT (t2), false))
3789 goto different_types;
3790
3791 /* For aggregate types, all the fields must be the same. */
3792 for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
3793 f1 && f2;
3794 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
3795 {
3796 /* The fields must have the same name, offset and type. */
3797 if (DECL_NAME (f1) != DECL_NAME (f2)
3798 || DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
3799 || !gimple_compare_field_offset (f1, f2)
3800 || !gtc_visit (TREE_TYPE (f1), TREE_TYPE (f2), mode,
3801 state, sccstack, sccstate, sccstate_obstack))
3802 goto different_types;
3803 }
3804
3805 /* If one aggregate has more fields than the other, they
3806 are not the same. */
3807 if (f1 || f2)
3808 goto different_types;
3809
3810 goto same_types;
3811 }
3812
3813 default:
3814 gcc_unreachable ();
3815 }
3816
3817 /* Common exit path for types that are not compatible. */
3818 different_types:
3819 state->u.same_p = 0;
3820 goto pop;
3821
3822 /* Common exit path for types that are compatible. */
3823 same_types:
3824 gcc_assert (state->u.same_p == 1);
3825
3826 pop:
3827 if (state->low == state->dfsnum)
3828 {
3829 type_pair_t x;
3830
3831 /* Pop off the SCC and set its cache values to the final
3832 comparison result. */
3833 do
3834 {
3835 struct sccs *cstate;
3836 x = VEC_pop (type_pair_t, *sccstack);
3837 cstate = (struct sccs *)*pointer_map_contains (sccstate, x);
3838 cstate->on_sccstack = false;
3839 x->same_p[mode] = state->u.same_p;
3840 }
3841 while (x != p);
3842 }
3843
3844 return state->u.same_p;
3845 }
3846
3847 /* Return true iff T1 and T2 are structurally identical. When
3848 FOR_MERGING_P is true the an incomplete type and a complete type
3849 are considered different, otherwise they are considered compatible. */
3850
3851 bool
3852 gimple_types_compatible_p (tree t1, tree t2, enum gtc_mode mode)
3853 {
3854 VEC(type_pair_t, heap) *sccstack = NULL;
3855 struct pointer_map_t *sccstate;
3856 struct obstack sccstate_obstack;
3857 type_pair_t p = NULL;
3858 bool res;
3859
3860 /* Before starting to set up the SCC machinery handle simple cases. */
3861
3862 /* Check first for the obvious case of pointer identity. */
3863 if (t1 == t2)
3864 return true;
3865
3866 /* Check that we have two types to compare. */
3867 if (t1 == NULL_TREE || t2 == NULL_TREE)
3868 return false;
3869
3870 /* If the types have been previously registered and found equal
3871 they still are. */
3872 if (mode == GTC_MERGE)
3873 {
3874 tree leader1 = gimple_lookup_type_leader (t1);
3875 tree leader2 = gimple_lookup_type_leader (t2);
3876 if (leader1 == t2
3877 || t1 == leader2
3878 || (leader1 && leader1 == leader2))
3879 return true;
3880 }
3881 else if (mode == GTC_DIAG)
3882 {
3883 if (TYPE_CANONICAL (t1)
3884 && TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2))
3885 return true;
3886 }
3887
3888 /* Can't be the same type if the types don't have the same code. */
3889 if (TREE_CODE (t1) != TREE_CODE (t2))
3890 return false;
3891
3892 /* Can't be the same type if they have different CV qualifiers. */
3893 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
3894 return false;
3895
3896 /* Void types are always the same. */
3897 if (TREE_CODE (t1) == VOID_TYPE)
3898 return true;
3899
3900 /* Do some simple checks before doing three hashtable queries. */
3901 if (INTEGRAL_TYPE_P (t1)
3902 || SCALAR_FLOAT_TYPE_P (t1)
3903 || FIXED_POINT_TYPE_P (t1)
3904 || TREE_CODE (t1) == VECTOR_TYPE
3905 || TREE_CODE (t1) == COMPLEX_TYPE
3906 || TREE_CODE (t1) == OFFSET_TYPE)
3907 {
3908 /* Can't be the same type if they have different alignment,
3909 sign, precision or mode. */
3910 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3911 || TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
3912 || TYPE_MODE (t1) != TYPE_MODE (t2)
3913 || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
3914 return false;
3915
3916 if (TREE_CODE (t1) == INTEGER_TYPE
3917 && (TYPE_IS_SIZETYPE (t1) != TYPE_IS_SIZETYPE (t2)
3918 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)))
3919 return false;
3920
3921 /* That's all we need to check for float and fixed-point types. */
3922 if (SCALAR_FLOAT_TYPE_P (t1)
3923 || FIXED_POINT_TYPE_P (t1))
3924 return true;
3925
3926 /* For integral types fall thru to more complex checks. */
3927 }
3928
3929 else if (AGGREGATE_TYPE_P (t1) || POINTER_TYPE_P (t1))
3930 {
3931 /* Can't be the same type if they have different alignment or mode. */
3932 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3933 || TYPE_MODE (t1) != TYPE_MODE (t2))
3934 return false;
3935 }
3936
3937 /* If the hash values of t1 and t2 are different the types can't
3938 possibly be the same. This helps keeping the type-pair hashtable
3939 small, only tracking comparisons for hash collisions. */
3940 if (gimple_type_hash (t1) != gimple_type_hash (t2))
3941 return false;
3942
3943 /* If we've visited this type pair before (in the case of aggregates
3944 with self-referential types), and we made a decision, return it. */
3945 p = lookup_type_pair (t1, t2, &gtc_visited, &gtc_ob);
3946 if (p->same_p[mode] == 0 || p->same_p[mode] == 1)
3947 {
3948 /* We have already decided whether T1 and T2 are the
3949 same, return the cached result. */
3950 return p->same_p[mode] == 1;
3951 }
3952
3953 /* Now set up the SCC machinery for the comparison. */
3954 gtc_next_dfs_num = 1;
3955 sccstate = pointer_map_create ();
3956 gcc_obstack_init (&sccstate_obstack);
3957 res = gimple_types_compatible_p_1 (t1, t2, mode, p,
3958 &sccstack, sccstate, &sccstate_obstack);
3959 VEC_free (type_pair_t, heap, sccstack);
3960 pointer_map_destroy (sccstate);
3961 obstack_free (&sccstate_obstack, NULL);
3962
3963 return res;
3964 }
3965
3966
3967 static hashval_t
3968 iterative_hash_gimple_type (tree, hashval_t, VEC(tree, heap) **,
3969 struct pointer_map_t *, struct obstack *);
3970
3971 /* DFS visit the edge from the callers type with state *STATE to T.
3972 Update the callers type hash V with the hash for T if it is not part
3973 of the SCC containing the callers type and return it.
3974 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3975
3976 static hashval_t
3977 visit (tree t, struct sccs *state, hashval_t v,
3978 VEC (tree, heap) **sccstack,
3979 struct pointer_map_t *sccstate,
3980 struct obstack *sccstate_obstack)
3981 {
3982 struct sccs *cstate = NULL;
3983 struct tree_int_map m;
3984 void **slot;
3985
3986 /* If there is a hash value recorded for this type then it can't
3987 possibly be part of our parent SCC. Simply mix in its hash. */
3988 m.base.from = t;
3989 if ((slot = htab_find_slot (type_hash_cache, &m, NO_INSERT))
3990 && *slot)
3991 return iterative_hash_hashval_t (((struct tree_int_map *) *slot)->to, v);
3992
3993 if ((slot = pointer_map_contains (sccstate, t)) != NULL)
3994 cstate = (struct sccs *)*slot;
3995 if (!cstate)
3996 {
3997 hashval_t tem;
3998 /* Not yet visited. DFS recurse. */
3999 tem = iterative_hash_gimple_type (t, v,
4000 sccstack, sccstate, sccstate_obstack);
4001 if (!cstate)
4002 cstate = (struct sccs *)* pointer_map_contains (sccstate, t);
4003 state->low = MIN (state->low, cstate->low);
4004 /* If the type is no longer on the SCC stack and thus is not part
4005 of the parents SCC mix in its hash value. Otherwise we will
4006 ignore the type for hashing purposes and return the unaltered
4007 hash value. */
4008 if (!cstate->on_sccstack)
4009 return tem;
4010 }
4011 if (cstate->dfsnum < state->dfsnum
4012 && cstate->on_sccstack)
4013 state->low = MIN (cstate->dfsnum, state->low);
4014
4015 /* We are part of our parents SCC, skip this type during hashing
4016 and return the unaltered hash value. */
4017 return v;
4018 }
4019
4020 /* Hash NAME with the previous hash value V and return it. */
4021
4022 static hashval_t
4023 iterative_hash_name (tree name, hashval_t v)
4024 {
4025 if (!name)
4026 return v;
4027 if (TREE_CODE (name) == TYPE_DECL)
4028 name = DECL_NAME (name);
4029 if (!name)
4030 return v;
4031 gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
4032 return iterative_hash_object (IDENTIFIER_HASH_VALUE (name), v);
4033 }
4034
4035 /* Returning a hash value for gimple type TYPE combined with VAL.
4036 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done.
4037
4038 To hash a type we end up hashing in types that are reachable.
4039 Through pointers we can end up with cycles which messes up the
4040 required property that we need to compute the same hash value
4041 for structurally equivalent types. To avoid this we have to
4042 hash all types in a cycle (the SCC) in a commutative way. The
4043 easiest way is to not mix in the hashes of the SCC members at
4044 all. To make this work we have to delay setting the hash
4045 values of the SCC until it is complete. */
4046
4047 static hashval_t
4048 iterative_hash_gimple_type (tree type, hashval_t val,
4049 VEC(tree, heap) **sccstack,
4050 struct pointer_map_t *sccstate,
4051 struct obstack *sccstate_obstack)
4052 {
4053 hashval_t v;
4054 void **slot;
4055 struct sccs *state;
4056
4057 /* Not visited during this DFS walk. */
4058 gcc_checking_assert (!pointer_map_contains (sccstate, type));
4059 state = XOBNEW (sccstate_obstack, struct sccs);
4060 *pointer_map_insert (sccstate, type) = state;
4061
4062 VEC_safe_push (tree, heap, *sccstack, type);
4063 state->dfsnum = next_dfs_num++;
4064 state->low = state->dfsnum;
4065 state->on_sccstack = true;
4066
4067 /* Combine a few common features of types so that types are grouped into
4068 smaller sets; when searching for existing matching types to merge,
4069 only existing types having the same features as the new type will be
4070 checked. */
4071 v = iterative_hash_hashval_t (TREE_CODE (type), 0);
4072 v = iterative_hash_hashval_t (TYPE_QUALS (type), v);
4073 v = iterative_hash_hashval_t (TREE_ADDRESSABLE (type), v);
4074
4075 /* Do not hash the types size as this will cause differences in
4076 hash values for the complete vs. the incomplete type variant. */
4077
4078 /* Incorporate common features of numerical types. */
4079 if (INTEGRAL_TYPE_P (type)
4080 || SCALAR_FLOAT_TYPE_P (type)
4081 || FIXED_POINT_TYPE_P (type))
4082 {
4083 v = iterative_hash_hashval_t (TYPE_PRECISION (type), v);
4084 v = iterative_hash_hashval_t (TYPE_MODE (type), v);
4085 v = iterative_hash_hashval_t (TYPE_UNSIGNED (type), v);
4086 }
4087
4088 /* For pointer and reference types, fold in information about the type
4089 pointed to but do not recurse into possibly incomplete types to
4090 avoid hash differences for complete vs. incomplete types. */
4091 if (POINTER_TYPE_P (type))
4092 {
4093 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (type)))
4094 {
4095 v = iterative_hash_hashval_t (TREE_CODE (TREE_TYPE (type)), v);
4096 v = iterative_hash_name
4097 (TYPE_NAME (TYPE_MAIN_VARIANT (TREE_TYPE (type))), v);
4098 }
4099 else
4100 v = visit (TREE_TYPE (type), state, v,
4101 sccstack, sccstate, sccstate_obstack);
4102 }
4103
4104 /* For integer types hash the types min/max values and the string flag. */
4105 if (TREE_CODE (type) == INTEGER_TYPE)
4106 {
4107 /* OMP lowering can introduce error_mark_node in place of
4108 random local decls in types. */
4109 if (TYPE_MIN_VALUE (type) != error_mark_node)
4110 v = iterative_hash_expr (TYPE_MIN_VALUE (type), v);
4111 if (TYPE_MAX_VALUE (type) != error_mark_node)
4112 v = iterative_hash_expr (TYPE_MAX_VALUE (type), v);
4113 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
4114 }
4115
4116 /* For array types hash their domain and the string flag. */
4117 if (TREE_CODE (type) == ARRAY_TYPE
4118 && TYPE_DOMAIN (type))
4119 {
4120 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
4121 v = visit (TYPE_DOMAIN (type), state, v,
4122 sccstack, sccstate, sccstate_obstack);
4123 }
4124
4125 /* Recurse for aggregates with a single element type. */
4126 if (TREE_CODE (type) == ARRAY_TYPE
4127 || TREE_CODE (type) == COMPLEX_TYPE
4128 || TREE_CODE (type) == VECTOR_TYPE)
4129 v = visit (TREE_TYPE (type), state, v,
4130 sccstack, sccstate, sccstate_obstack);
4131
4132 /* Incorporate function return and argument types. */
4133 if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE)
4134 {
4135 unsigned na;
4136 tree p;
4137
4138 /* For method types also incorporate their parent class. */
4139 if (TREE_CODE (type) == METHOD_TYPE)
4140 v = visit (TYPE_METHOD_BASETYPE (type), state, v,
4141 sccstack, sccstate, sccstate_obstack);
4142
4143 /* For result types allow mismatch in completeness. */
4144 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (type)))
4145 {
4146 v = iterative_hash_hashval_t (TREE_CODE (TREE_TYPE (type)), v);
4147 v = iterative_hash_name
4148 (TYPE_NAME (TYPE_MAIN_VARIANT (TREE_TYPE (type))), v);
4149 }
4150 else
4151 v = visit (TREE_TYPE (type), state, v,
4152 sccstack, sccstate, sccstate_obstack);
4153
4154 for (p = TYPE_ARG_TYPES (type), na = 0; p; p = TREE_CHAIN (p))
4155 {
4156 /* For argument types allow mismatch in completeness. */
4157 if (RECORD_OR_UNION_TYPE_P (TREE_VALUE (p)))
4158 {
4159 v = iterative_hash_hashval_t (TREE_CODE (TREE_VALUE (p)), v);
4160 v = iterative_hash_name
4161 (TYPE_NAME (TYPE_MAIN_VARIANT (TREE_VALUE (p))), v);
4162 }
4163 else
4164 v = visit (TREE_VALUE (p), state, v,
4165 sccstack, sccstate, sccstate_obstack);
4166 na++;
4167 }
4168
4169 v = iterative_hash_hashval_t (na, v);
4170 }
4171
4172 if (TREE_CODE (type) == RECORD_TYPE
4173 || TREE_CODE (type) == UNION_TYPE
4174 || TREE_CODE (type) == QUAL_UNION_TYPE)
4175 {
4176 unsigned nf;
4177 tree f;
4178
4179 v = iterative_hash_name (TYPE_NAME (TYPE_MAIN_VARIANT (type)), v);
4180
4181 for (f = TYPE_FIELDS (type), nf = 0; f; f = TREE_CHAIN (f))
4182 {
4183 v = iterative_hash_name (DECL_NAME (f), v);
4184 v = visit (TREE_TYPE (f), state, v,
4185 sccstack, sccstate, sccstate_obstack);
4186 nf++;
4187 }
4188
4189 v = iterative_hash_hashval_t (nf, v);
4190 }
4191
4192 /* Record hash for us. */
4193 state->u.hash = v;
4194
4195 /* See if we found an SCC. */
4196 if (state->low == state->dfsnum)
4197 {
4198 tree x;
4199
4200 /* Pop off the SCC and set its hash values. */
4201 do
4202 {
4203 struct sccs *cstate;
4204 struct tree_int_map *m = ggc_alloc_cleared_tree_int_map ();
4205 x = VEC_pop (tree, *sccstack);
4206 cstate = (struct sccs *)*pointer_map_contains (sccstate, x);
4207 cstate->on_sccstack = false;
4208 m->base.from = x;
4209 m->to = cstate->u.hash;
4210 slot = htab_find_slot (type_hash_cache, m, INSERT);
4211 gcc_assert (!*slot);
4212 *slot = (void *) m;
4213 }
4214 while (x != type);
4215 }
4216
4217 return iterative_hash_hashval_t (v, val);
4218 }
4219
4220
4221 /* Returns a hash value for P (assumed to be a type). The hash value
4222 is computed using some distinguishing features of the type. Note
4223 that we cannot use pointer hashing here as we may be dealing with
4224 two distinct instances of the same type.
4225
4226 This function should produce the same hash value for two compatible
4227 types according to gimple_types_compatible_p. */
4228
4229 static hashval_t
4230 gimple_type_hash (const void *p)
4231 {
4232 const_tree t = (const_tree) p;
4233 VEC(tree, heap) *sccstack = NULL;
4234 struct pointer_map_t *sccstate;
4235 struct obstack sccstate_obstack;
4236 hashval_t val;
4237 void **slot;
4238 struct tree_int_map m;
4239
4240 if (type_hash_cache == NULL)
4241 type_hash_cache = htab_create_ggc (512, tree_int_map_hash,
4242 tree_int_map_eq, NULL);
4243
4244 m.base.from = CONST_CAST_TREE (t);
4245 if ((slot = htab_find_slot (type_hash_cache, &m, NO_INSERT))
4246 && *slot)
4247 return iterative_hash_hashval_t (((struct tree_int_map *) *slot)->to, 0);
4248
4249 /* Perform a DFS walk and pre-hash all reachable types. */
4250 next_dfs_num = 1;
4251 sccstate = pointer_map_create ();
4252 gcc_obstack_init (&sccstate_obstack);
4253 val = iterative_hash_gimple_type (CONST_CAST_TREE (t), 0,
4254 &sccstack, sccstate, &sccstate_obstack);
4255 VEC_free (tree, heap, sccstack);
4256 pointer_map_destroy (sccstate);
4257 obstack_free (&sccstate_obstack, NULL);
4258
4259 return val;
4260 }
4261
4262
4263 /* Returns nonzero if P1 and P2 are equal. */
4264
4265 static int
4266 gimple_type_eq (const void *p1, const void *p2)
4267 {
4268 const_tree t1 = (const_tree) p1;
4269 const_tree t2 = (const_tree) p2;
4270 return gimple_types_compatible_p (CONST_CAST_TREE (t1),
4271 CONST_CAST_TREE (t2), GTC_MERGE);
4272 }
4273
4274
4275 /* Register type T in the global type table gimple_types.
4276 If another type T', compatible with T, already existed in
4277 gimple_types then return T', otherwise return T. This is used by
4278 LTO to merge identical types read from different TUs. */
4279
4280 tree
4281 gimple_register_type (tree t)
4282 {
4283 void **slot;
4284 gimple_type_leader_entry *leader;
4285 tree mv_leader = NULL_TREE;
4286
4287 gcc_assert (TYPE_P (t));
4288
4289 if (!gimple_type_leader)
4290 gimple_type_leader = ggc_alloc_cleared_vec_gimple_type_leader_entry_s
4291 (GIMPLE_TYPE_LEADER_SIZE);
4292 /* If we registered this type before return the cached result. */
4293 leader = &gimple_type_leader[TYPE_UID (t) % GIMPLE_TYPE_LEADER_SIZE];
4294 if (leader->type == t)
4295 return leader->leader;
4296
4297 /* Always register the main variant first. This is important so we
4298 pick up the non-typedef variants as canonical, otherwise we'll end
4299 up taking typedef ids for structure tags during comparison. */
4300 if (TYPE_MAIN_VARIANT (t) != t)
4301 mv_leader = gimple_register_type (TYPE_MAIN_VARIANT (t));
4302
4303 if (gimple_types == NULL)
4304 gimple_types = htab_create_ggc (16381, gimple_type_hash, gimple_type_eq, 0);
4305
4306 slot = htab_find_slot (gimple_types, t, INSERT);
4307 if (*slot
4308 && *(tree *)slot != t)
4309 {
4310 tree new_type = (tree) *((tree *) slot);
4311
4312 /* Do not merge types with different addressability. */
4313 gcc_assert (TREE_ADDRESSABLE (t) == TREE_ADDRESSABLE (new_type));
4314
4315 /* If t is not its main variant then make t unreachable from its
4316 main variant list. Otherwise we'd queue up a lot of duplicates
4317 there. */
4318 if (t != TYPE_MAIN_VARIANT (t))
4319 {
4320 tree tem = TYPE_MAIN_VARIANT (t);
4321 while (tem && TYPE_NEXT_VARIANT (tem) != t)
4322 tem = TYPE_NEXT_VARIANT (tem);
4323 if (tem)
4324 TYPE_NEXT_VARIANT (tem) = TYPE_NEXT_VARIANT (t);
4325 TYPE_NEXT_VARIANT (t) = NULL_TREE;
4326 }
4327
4328 /* If we are a pointer then remove us from the pointer-to or
4329 reference-to chain. Otherwise we'd queue up a lot of duplicates
4330 there. */
4331 if (TREE_CODE (t) == POINTER_TYPE)
4332 {
4333 if (TYPE_POINTER_TO (TREE_TYPE (t)) == t)
4334 TYPE_POINTER_TO (TREE_TYPE (t)) = TYPE_NEXT_PTR_TO (t);
4335 else
4336 {
4337 tree tem = TYPE_POINTER_TO (TREE_TYPE (t));
4338 while (tem && TYPE_NEXT_PTR_TO (tem) != t)
4339 tem = TYPE_NEXT_PTR_TO (tem);
4340 if (tem)
4341 TYPE_NEXT_PTR_TO (tem) = TYPE_NEXT_PTR_TO (t);
4342 }
4343 TYPE_NEXT_PTR_TO (t) = NULL_TREE;
4344 }
4345 else if (TREE_CODE (t) == REFERENCE_TYPE)
4346 {
4347 if (TYPE_REFERENCE_TO (TREE_TYPE (t)) == t)
4348 TYPE_REFERENCE_TO (TREE_TYPE (t)) = TYPE_NEXT_REF_TO (t);
4349 else
4350 {
4351 tree tem = TYPE_REFERENCE_TO (TREE_TYPE (t));
4352 while (tem && TYPE_NEXT_REF_TO (tem) != t)
4353 tem = TYPE_NEXT_REF_TO (tem);
4354 if (tem)
4355 TYPE_NEXT_REF_TO (tem) = TYPE_NEXT_REF_TO (t);
4356 }
4357 TYPE_NEXT_REF_TO (t) = NULL_TREE;
4358 }
4359
4360 leader->type = t;
4361 leader->leader = new_type;
4362 t = new_type;
4363 }
4364 else
4365 {
4366 leader->type = t;
4367 leader->leader = t;
4368 /* We're the type leader. Make our TYPE_MAIN_VARIANT valid. */
4369 if (TYPE_MAIN_VARIANT (t) != t
4370 && TYPE_MAIN_VARIANT (t) != mv_leader)
4371 {
4372 /* Remove us from our main variant list as we are not the variant
4373 leader and the variant leader will change. */
4374 tree tem = TYPE_MAIN_VARIANT (t);
4375 while (tem && TYPE_NEXT_VARIANT (tem) != t)
4376 tem = TYPE_NEXT_VARIANT (tem);
4377 if (tem)
4378 TYPE_NEXT_VARIANT (tem) = TYPE_NEXT_VARIANT (t);
4379 TYPE_NEXT_VARIANT (t) = NULL_TREE;
4380 /* Adjust our main variant. Linking us into its variant list
4381 will happen at fixup time. */
4382 TYPE_MAIN_VARIANT (t) = mv_leader;
4383 }
4384 *slot = (void *) t;
4385 }
4386
4387 return t;
4388 }
4389
4390
4391 /* Returns nonzero if P1 and P2 are equal. */
4392
4393 static int
4394 gimple_canonical_type_eq (const void *p1, const void *p2)
4395 {
4396 const_tree t1 = (const_tree) p1;
4397 const_tree t2 = (const_tree) p2;
4398 return gimple_types_compatible_p (CONST_CAST_TREE (t1),
4399 CONST_CAST_TREE (t2), GTC_DIAG);
4400 }
4401
4402 /* Register type T in the global type table gimple_types.
4403 If another type T', compatible with T, already existed in
4404 gimple_types then return T', otherwise return T. This is used by
4405 LTO to merge identical types read from different TUs. */
4406
4407 tree
4408 gimple_register_canonical_type (tree t)
4409 {
4410 void **slot;
4411 tree orig_t = t;
4412
4413 gcc_assert (TYPE_P (t));
4414
4415 if (TYPE_CANONICAL (t))
4416 return TYPE_CANONICAL (t);
4417
4418 /* Always register the type itself first so that if it turns out
4419 to be the canonical type it will be the one we merge to as well. */
4420 t = gimple_register_type (t);
4421
4422 /* Always register the main variant first. This is important so we
4423 pick up the non-typedef variants as canonical, otherwise we'll end
4424 up taking typedef ids for structure tags during comparison. */
4425 if (TYPE_MAIN_VARIANT (t) != t)
4426 gimple_register_canonical_type (TYPE_MAIN_VARIANT (t));
4427
4428 if (gimple_canonical_types == NULL)
4429 gimple_canonical_types = htab_create_ggc (16381, gimple_type_hash,
4430 gimple_canonical_type_eq, 0);
4431
4432 slot = htab_find_slot (gimple_canonical_types, t, INSERT);
4433 if (*slot
4434 && *(tree *)slot != t)
4435 {
4436 tree new_type = (tree) *((tree *) slot);
4437
4438 TYPE_CANONICAL (t) = new_type;
4439 t = new_type;
4440 }
4441 else
4442 {
4443 TYPE_CANONICAL (t) = t;
4444 *slot = (void *) t;
4445 }
4446
4447 /* Also cache the canonical type in the non-leaders. */
4448 TYPE_CANONICAL (orig_t) = t;
4449
4450 return t;
4451 }
4452
4453
4454 /* Show statistics on references to the global type table gimple_types. */
4455
4456 void
4457 print_gimple_types_stats (void)
4458 {
4459 if (gimple_types)
4460 fprintf (stderr, "GIMPLE type table: size %ld, %ld elements, "
4461 "%ld searches, %ld collisions (ratio: %f)\n",
4462 (long) htab_size (gimple_types),
4463 (long) htab_elements (gimple_types),
4464 (long) gimple_types->searches,
4465 (long) gimple_types->collisions,
4466 htab_collisions (gimple_types));
4467 else
4468 fprintf (stderr, "GIMPLE type table is empty\n");
4469 if (gimple_canonical_types)
4470 fprintf (stderr, "GIMPLE canonical type table: size %ld, %ld elements, "
4471 "%ld searches, %ld collisions (ratio: %f)\n",
4472 (long) htab_size (gimple_canonical_types),
4473 (long) htab_elements (gimple_canonical_types),
4474 (long) gimple_canonical_types->searches,
4475 (long) gimple_canonical_types->collisions,
4476 htab_collisions (gimple_canonical_types));
4477 else
4478 fprintf (stderr, "GIMPLE canonical type table is empty\n");
4479 if (type_hash_cache)
4480 fprintf (stderr, "GIMPLE type hash table: size %ld, %ld elements, "
4481 "%ld searches, %ld collisions (ratio: %f)\n",
4482 (long) htab_size (type_hash_cache),
4483 (long) htab_elements (type_hash_cache),
4484 (long) type_hash_cache->searches,
4485 (long) type_hash_cache->collisions,
4486 htab_collisions (type_hash_cache));
4487 else
4488 fprintf (stderr, "GIMPLE type hash table is empty\n");
4489 if (gtc_visited)
4490 fprintf (stderr, "GIMPLE type comparison table: size %ld, %ld "
4491 "elements, %ld searches, %ld collisions (ratio: %f)\n",
4492 (long) htab_size (gtc_visited),
4493 (long) htab_elements (gtc_visited),
4494 (long) gtc_visited->searches,
4495 (long) gtc_visited->collisions,
4496 htab_collisions (gtc_visited));
4497 else
4498 fprintf (stderr, "GIMPLE type comparison table is empty\n");
4499 }
4500
4501 /* Free the gimple type hashtables used for LTO type merging. */
4502
4503 void
4504 free_gimple_type_tables (void)
4505 {
4506 /* Last chance to print stats for the tables. */
4507 if (flag_lto_report)
4508 print_gimple_types_stats ();
4509
4510 if (gimple_types)
4511 {
4512 htab_delete (gimple_types);
4513 gimple_types = NULL;
4514 }
4515 if (gimple_canonical_types)
4516 {
4517 htab_delete (gimple_canonical_types);
4518 gimple_canonical_types = NULL;
4519 }
4520 if (type_hash_cache)
4521 {
4522 htab_delete (type_hash_cache);
4523 type_hash_cache = NULL;
4524 }
4525 if (gtc_visited)
4526 {
4527 htab_delete (gtc_visited);
4528 obstack_free (&gtc_ob, NULL);
4529 gtc_visited = NULL;
4530 }
4531 gimple_type_leader = NULL;
4532 }
4533
4534
4535 /* Return a type the same as TYPE except unsigned or
4536 signed according to UNSIGNEDP. */
4537
4538 static tree
4539 gimple_signed_or_unsigned_type (bool unsignedp, tree type)
4540 {
4541 tree type1;
4542
4543 type1 = TYPE_MAIN_VARIANT (type);
4544 if (type1 == signed_char_type_node
4545 || type1 == char_type_node
4546 || type1 == unsigned_char_type_node)
4547 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
4548 if (type1 == integer_type_node || type1 == unsigned_type_node)
4549 return unsignedp ? unsigned_type_node : integer_type_node;
4550 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
4551 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
4552 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
4553 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
4554 if (type1 == long_long_integer_type_node
4555 || type1 == long_long_unsigned_type_node)
4556 return unsignedp
4557 ? long_long_unsigned_type_node
4558 : long_long_integer_type_node;
4559 if (int128_integer_type_node && (type1 == int128_integer_type_node || type1 == int128_unsigned_type_node))
4560 return unsignedp
4561 ? int128_unsigned_type_node
4562 : int128_integer_type_node;
4563 #if HOST_BITS_PER_WIDE_INT >= 64
4564 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
4565 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
4566 #endif
4567 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
4568 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
4569 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
4570 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
4571 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
4572 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
4573 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
4574 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
4575
4576 #define GIMPLE_FIXED_TYPES(NAME) \
4577 if (type1 == short_ ## NAME ## _type_node \
4578 || type1 == unsigned_short_ ## NAME ## _type_node) \
4579 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
4580 : short_ ## NAME ## _type_node; \
4581 if (type1 == NAME ## _type_node \
4582 || type1 == unsigned_ ## NAME ## _type_node) \
4583 return unsignedp ? unsigned_ ## NAME ## _type_node \
4584 : NAME ## _type_node; \
4585 if (type1 == long_ ## NAME ## _type_node \
4586 || type1 == unsigned_long_ ## NAME ## _type_node) \
4587 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
4588 : long_ ## NAME ## _type_node; \
4589 if (type1 == long_long_ ## NAME ## _type_node \
4590 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
4591 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
4592 : long_long_ ## NAME ## _type_node;
4593
4594 #define GIMPLE_FIXED_MODE_TYPES(NAME) \
4595 if (type1 == NAME ## _type_node \
4596 || type1 == u ## NAME ## _type_node) \
4597 return unsignedp ? u ## NAME ## _type_node \
4598 : NAME ## _type_node;
4599
4600 #define GIMPLE_FIXED_TYPES_SAT(NAME) \
4601 if (type1 == sat_ ## short_ ## NAME ## _type_node \
4602 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
4603 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
4604 : sat_ ## short_ ## NAME ## _type_node; \
4605 if (type1 == sat_ ## NAME ## _type_node \
4606 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
4607 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
4608 : sat_ ## NAME ## _type_node; \
4609 if (type1 == sat_ ## long_ ## NAME ## _type_node \
4610 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
4611 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
4612 : sat_ ## long_ ## NAME ## _type_node; \
4613 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
4614 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
4615 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
4616 : sat_ ## long_long_ ## NAME ## _type_node;
4617
4618 #define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
4619 if (type1 == sat_ ## NAME ## _type_node \
4620 || type1 == sat_ ## u ## NAME ## _type_node) \
4621 return unsignedp ? sat_ ## u ## NAME ## _type_node \
4622 : sat_ ## NAME ## _type_node;
4623
4624 GIMPLE_FIXED_TYPES (fract);
4625 GIMPLE_FIXED_TYPES_SAT (fract);
4626 GIMPLE_FIXED_TYPES (accum);
4627 GIMPLE_FIXED_TYPES_SAT (accum);
4628
4629 GIMPLE_FIXED_MODE_TYPES (qq);
4630 GIMPLE_FIXED_MODE_TYPES (hq);
4631 GIMPLE_FIXED_MODE_TYPES (sq);
4632 GIMPLE_FIXED_MODE_TYPES (dq);
4633 GIMPLE_FIXED_MODE_TYPES (tq);
4634 GIMPLE_FIXED_MODE_TYPES_SAT (qq);
4635 GIMPLE_FIXED_MODE_TYPES_SAT (hq);
4636 GIMPLE_FIXED_MODE_TYPES_SAT (sq);
4637 GIMPLE_FIXED_MODE_TYPES_SAT (dq);
4638 GIMPLE_FIXED_MODE_TYPES_SAT (tq);
4639 GIMPLE_FIXED_MODE_TYPES (ha);
4640 GIMPLE_FIXED_MODE_TYPES (sa);
4641 GIMPLE_FIXED_MODE_TYPES (da);
4642 GIMPLE_FIXED_MODE_TYPES (ta);
4643 GIMPLE_FIXED_MODE_TYPES_SAT (ha);
4644 GIMPLE_FIXED_MODE_TYPES_SAT (sa);
4645 GIMPLE_FIXED_MODE_TYPES_SAT (da);
4646 GIMPLE_FIXED_MODE_TYPES_SAT (ta);
4647
4648 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
4649 the precision; they have precision set to match their range, but
4650 may use a wider mode to match an ABI. If we change modes, we may
4651 wind up with bad conversions. For INTEGER_TYPEs in C, must check
4652 the precision as well, so as to yield correct results for
4653 bit-field types. C++ does not have these separate bit-field
4654 types, and producing a signed or unsigned variant of an
4655 ENUMERAL_TYPE may cause other problems as well. */
4656 if (!INTEGRAL_TYPE_P (type)
4657 || TYPE_UNSIGNED (type) == unsignedp)
4658 return type;
4659
4660 #define TYPE_OK(node) \
4661 (TYPE_MODE (type) == TYPE_MODE (node) \
4662 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
4663 if (TYPE_OK (signed_char_type_node))
4664 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
4665 if (TYPE_OK (integer_type_node))
4666 return unsignedp ? unsigned_type_node : integer_type_node;
4667 if (TYPE_OK (short_integer_type_node))
4668 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
4669 if (TYPE_OK (long_integer_type_node))
4670 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
4671 if (TYPE_OK (long_long_integer_type_node))
4672 return (unsignedp
4673 ? long_long_unsigned_type_node
4674 : long_long_integer_type_node);
4675 if (int128_integer_type_node && TYPE_OK (int128_integer_type_node))
4676 return (unsignedp
4677 ? int128_unsigned_type_node
4678 : int128_integer_type_node);
4679
4680 #if HOST_BITS_PER_WIDE_INT >= 64
4681 if (TYPE_OK (intTI_type_node))
4682 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
4683 #endif
4684 if (TYPE_OK (intDI_type_node))
4685 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
4686 if (TYPE_OK (intSI_type_node))
4687 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
4688 if (TYPE_OK (intHI_type_node))
4689 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
4690 if (TYPE_OK (intQI_type_node))
4691 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
4692
4693 #undef GIMPLE_FIXED_TYPES
4694 #undef GIMPLE_FIXED_MODE_TYPES
4695 #undef GIMPLE_FIXED_TYPES_SAT
4696 #undef GIMPLE_FIXED_MODE_TYPES_SAT
4697 #undef TYPE_OK
4698
4699 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
4700 }
4701
4702
4703 /* Return an unsigned type the same as TYPE in other respects. */
4704
4705 tree
4706 gimple_unsigned_type (tree type)
4707 {
4708 return gimple_signed_or_unsigned_type (true, type);
4709 }
4710
4711
4712 /* Return a signed type the same as TYPE in other respects. */
4713
4714 tree
4715 gimple_signed_type (tree type)
4716 {
4717 return gimple_signed_or_unsigned_type (false, type);
4718 }
4719
4720
4721 /* Return the typed-based alias set for T, which may be an expression
4722 or a type. Return -1 if we don't do anything special. */
4723
4724 alias_set_type
4725 gimple_get_alias_set (tree t)
4726 {
4727 tree u;
4728
4729 /* Permit type-punning when accessing a union, provided the access
4730 is directly through the union. For example, this code does not
4731 permit taking the address of a union member and then storing
4732 through it. Even the type-punning allowed here is a GCC
4733 extension, albeit a common and useful one; the C standard says
4734 that such accesses have implementation-defined behavior. */
4735 for (u = t;
4736 TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
4737 u = TREE_OPERAND (u, 0))
4738 if (TREE_CODE (u) == COMPONENT_REF
4739 && TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
4740 return 0;
4741
4742 /* That's all the expressions we handle specially. */
4743 if (!TYPE_P (t))
4744 return -1;
4745
4746 /* For convenience, follow the C standard when dealing with
4747 character types. Any object may be accessed via an lvalue that
4748 has character type. */
4749 if (t == char_type_node
4750 || t == signed_char_type_node
4751 || t == unsigned_char_type_node)
4752 return 0;
4753
4754 /* Allow aliasing between signed and unsigned variants of the same
4755 type. We treat the signed variant as canonical. */
4756 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
4757 {
4758 tree t1 = gimple_signed_type (t);
4759
4760 /* t1 == t can happen for boolean nodes which are always unsigned. */
4761 if (t1 != t)
4762 return get_alias_set (t1);
4763 }
4764
4765 return -1;
4766 }
4767
4768
4769 /* Data structure used to count the number of dereferences to PTR
4770 inside an expression. */
4771 struct count_ptr_d
4772 {
4773 tree ptr;
4774 unsigned num_stores;
4775 unsigned num_loads;
4776 };
4777
4778 /* Helper for count_uses_and_derefs. Called by walk_tree to look for
4779 (ALIGN/MISALIGNED_)INDIRECT_REF nodes for the pointer passed in DATA. */
4780
4781 static tree
4782 count_ptr_derefs (tree *tp, int *walk_subtrees, void *data)
4783 {
4784 struct walk_stmt_info *wi_p = (struct walk_stmt_info *) data;
4785 struct count_ptr_d *count_p = (struct count_ptr_d *) wi_p->info;
4786
4787 /* Do not walk inside ADDR_EXPR nodes. In the expression &ptr->fld,
4788 pointer 'ptr' is *not* dereferenced, it is simply used to compute
4789 the address of 'fld' as 'ptr + offsetof(fld)'. */
4790 if (TREE_CODE (*tp) == ADDR_EXPR)
4791 {
4792 *walk_subtrees = 0;
4793 return NULL_TREE;
4794 }
4795
4796 if (TREE_CODE (*tp) == MEM_REF && TREE_OPERAND (*tp, 0) == count_p->ptr)
4797 {
4798 if (wi_p->is_lhs)
4799 count_p->num_stores++;
4800 else
4801 count_p->num_loads++;
4802 }
4803
4804 return NULL_TREE;
4805 }
4806
4807 /* Count the number of direct and indirect uses for pointer PTR in
4808 statement STMT. The number of direct uses is stored in
4809 *NUM_USES_P. Indirect references are counted separately depending
4810 on whether they are store or load operations. The counts are
4811 stored in *NUM_STORES_P and *NUM_LOADS_P. */
4812
4813 void
4814 count_uses_and_derefs (tree ptr, gimple stmt, unsigned *num_uses_p,
4815 unsigned *num_loads_p, unsigned *num_stores_p)
4816 {
4817 ssa_op_iter i;
4818 tree use;
4819
4820 *num_uses_p = 0;
4821 *num_loads_p = 0;
4822 *num_stores_p = 0;
4823
4824 /* Find out the total number of uses of PTR in STMT. */
4825 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
4826 if (use == ptr)
4827 (*num_uses_p)++;
4828
4829 /* Now count the number of indirect references to PTR. This is
4830 truly awful, but we don't have much choice. There are no parent
4831 pointers inside INDIRECT_REFs, so an expression like
4832 '*x_1 = foo (x_1, *x_1)' needs to be traversed piece by piece to
4833 find all the indirect and direct uses of x_1 inside. The only
4834 shortcut we can take is the fact that GIMPLE only allows
4835 INDIRECT_REFs inside the expressions below. */
4836 if (is_gimple_assign (stmt)
4837 || gimple_code (stmt) == GIMPLE_RETURN
4838 || gimple_code (stmt) == GIMPLE_ASM
4839 || is_gimple_call (stmt))
4840 {
4841 struct walk_stmt_info wi;
4842 struct count_ptr_d count;
4843
4844 count.ptr = ptr;
4845 count.num_stores = 0;
4846 count.num_loads = 0;
4847
4848 memset (&wi, 0, sizeof (wi));
4849 wi.info = &count;
4850 walk_gimple_op (stmt, count_ptr_derefs, &wi);
4851
4852 *num_stores_p = count.num_stores;
4853 *num_loads_p = count.num_loads;
4854 }
4855
4856 gcc_assert (*num_uses_p >= *num_loads_p + *num_stores_p);
4857 }
4858
4859 /* From a tree operand OP return the base of a load or store operation
4860 or NULL_TREE if OP is not a load or a store. */
4861
4862 static tree
4863 get_base_loadstore (tree op)
4864 {
4865 while (handled_component_p (op))
4866 op = TREE_OPERAND (op, 0);
4867 if (DECL_P (op)
4868 || INDIRECT_REF_P (op)
4869 || TREE_CODE (op) == MEM_REF
4870 || TREE_CODE (op) == TARGET_MEM_REF)
4871 return op;
4872 return NULL_TREE;
4873 }
4874
4875 /* For the statement STMT call the callbacks VISIT_LOAD, VISIT_STORE and
4876 VISIT_ADDR if non-NULL on loads, store and address-taken operands
4877 passing the STMT, the base of the operand and DATA to it. The base
4878 will be either a decl, an indirect reference (including TARGET_MEM_REF)
4879 or the argument of an address expression.
4880 Returns the results of these callbacks or'ed. */
4881
4882 bool
4883 walk_stmt_load_store_addr_ops (gimple stmt, void *data,
4884 bool (*visit_load)(gimple, tree, void *),
4885 bool (*visit_store)(gimple, tree, void *),
4886 bool (*visit_addr)(gimple, tree, void *))
4887 {
4888 bool ret = false;
4889 unsigned i;
4890 if (gimple_assign_single_p (stmt))
4891 {
4892 tree lhs, rhs;
4893 if (visit_store)
4894 {
4895 lhs = get_base_loadstore (gimple_assign_lhs (stmt));
4896 if (lhs)
4897 ret |= visit_store (stmt, lhs, data);
4898 }
4899 rhs = gimple_assign_rhs1 (stmt);
4900 while (handled_component_p (rhs))
4901 rhs = TREE_OPERAND (rhs, 0);
4902 if (visit_addr)
4903 {
4904 if (TREE_CODE (rhs) == ADDR_EXPR)
4905 ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data);
4906 else if (TREE_CODE (rhs) == TARGET_MEM_REF
4907 && TREE_CODE (TMR_BASE (rhs)) == ADDR_EXPR)
4908 ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (rhs), 0), data);
4909 else if (TREE_CODE (rhs) == OBJ_TYPE_REF
4910 && TREE_CODE (OBJ_TYPE_REF_OBJECT (rhs)) == ADDR_EXPR)
4911 ret |= visit_addr (stmt, TREE_OPERAND (OBJ_TYPE_REF_OBJECT (rhs),
4912 0), data);
4913 lhs = gimple_assign_lhs (stmt);
4914 if (TREE_CODE (lhs) == TARGET_MEM_REF
4915 && TREE_CODE (TMR_BASE (lhs)) == ADDR_EXPR)
4916 ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (lhs), 0), data);
4917 }
4918 if (visit_load)
4919 {
4920 rhs = get_base_loadstore (rhs);
4921 if (rhs)
4922 ret |= visit_load (stmt, rhs, data);
4923 }
4924 }
4925 else if (visit_addr
4926 && (is_gimple_assign (stmt)
4927 || gimple_code (stmt) == GIMPLE_COND))
4928 {
4929 for (i = 0; i < gimple_num_ops (stmt); ++i)
4930 if (gimple_op (stmt, i)
4931 && TREE_CODE (gimple_op (stmt, i)) == ADDR_EXPR)
4932 ret |= visit_addr (stmt, TREE_OPERAND (gimple_op (stmt, i), 0), data);
4933 }
4934 else if (is_gimple_call (stmt))
4935 {
4936 if (visit_store)
4937 {
4938 tree lhs = gimple_call_lhs (stmt);
4939 if (lhs)
4940 {
4941 lhs = get_base_loadstore (lhs);
4942 if (lhs)
4943 ret |= visit_store (stmt, lhs, data);
4944 }
4945 }
4946 if (visit_load || visit_addr)
4947 for (i = 0; i < gimple_call_num_args (stmt); ++i)
4948 {
4949 tree rhs = gimple_call_arg (stmt, i);
4950 if (visit_addr
4951 && TREE_CODE (rhs) == ADDR_EXPR)
4952 ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data);
4953 else if (visit_load)
4954 {
4955 rhs = get_base_loadstore (rhs);
4956 if (rhs)
4957 ret |= visit_load (stmt, rhs, data);
4958 }
4959 }
4960 if (visit_addr
4961 && gimple_call_chain (stmt)
4962 && TREE_CODE (gimple_call_chain (stmt)) == ADDR_EXPR)
4963 ret |= visit_addr (stmt, TREE_OPERAND (gimple_call_chain (stmt), 0),
4964 data);
4965 if (visit_addr
4966 && gimple_call_return_slot_opt_p (stmt)
4967 && gimple_call_lhs (stmt) != NULL_TREE
4968 && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt))))
4969 ret |= visit_addr (stmt, gimple_call_lhs (stmt), data);
4970 }
4971 else if (gimple_code (stmt) == GIMPLE_ASM)
4972 {
4973 unsigned noutputs;
4974 const char *constraint;
4975 const char **oconstraints;
4976 bool allows_mem, allows_reg, is_inout;
4977 noutputs = gimple_asm_noutputs (stmt);
4978 oconstraints = XALLOCAVEC (const char *, noutputs);
4979 if (visit_store || visit_addr)
4980 for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
4981 {
4982 tree link = gimple_asm_output_op (stmt, i);
4983 tree op = get_base_loadstore (TREE_VALUE (link));
4984 if (op && visit_store)
4985 ret |= visit_store (stmt, op, data);
4986 if (visit_addr)
4987 {
4988 constraint = TREE_STRING_POINTER
4989 (TREE_VALUE (TREE_PURPOSE (link)));
4990 oconstraints[i] = constraint;
4991 parse_output_constraint (&constraint, i, 0, 0, &allows_mem,
4992 &allows_reg, &is_inout);
4993 if (op && !allows_reg && allows_mem)
4994 ret |= visit_addr (stmt, op, data);
4995 }
4996 }
4997 if (visit_load || visit_addr)
4998 for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
4999 {
5000 tree link = gimple_asm_input_op (stmt, i);
5001 tree op = TREE_VALUE (link);
5002 if (visit_addr
5003 && TREE_CODE (op) == ADDR_EXPR)
5004 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
5005 else if (visit_load || visit_addr)
5006 {
5007 op = get_base_loadstore (op);
5008 if (op)
5009 {
5010 if (visit_load)
5011 ret |= visit_load (stmt, op, data);
5012 if (visit_addr)
5013 {
5014 constraint = TREE_STRING_POINTER
5015 (TREE_VALUE (TREE_PURPOSE (link)));
5016 parse_input_constraint (&constraint, 0, 0, noutputs,
5017 0, oconstraints,
5018 &allows_mem, &allows_reg);
5019 if (!allows_reg && allows_mem)
5020 ret |= visit_addr (stmt, op, data);
5021 }
5022 }
5023 }
5024 }
5025 }
5026 else if (gimple_code (stmt) == GIMPLE_RETURN)
5027 {
5028 tree op = gimple_return_retval (stmt);
5029 if (op)
5030 {
5031 if (visit_addr
5032 && TREE_CODE (op) == ADDR_EXPR)
5033 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
5034 else if (visit_load)
5035 {
5036 op = get_base_loadstore (op);
5037 if (op)
5038 ret |= visit_load (stmt, op, data);
5039 }
5040 }
5041 }
5042 else if (visit_addr
5043 && gimple_code (stmt) == GIMPLE_PHI)
5044 {
5045 for (i = 0; i < gimple_phi_num_args (stmt); ++i)
5046 {
5047 tree op = PHI_ARG_DEF (stmt, i);
5048 if (TREE_CODE (op) == ADDR_EXPR)
5049 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
5050 }
5051 }
5052
5053 return ret;
5054 }
5055
5056 /* Like walk_stmt_load_store_addr_ops but with NULL visit_addr. IPA-CP
5057 should make a faster clone for this case. */
5058
5059 bool
5060 walk_stmt_load_store_ops (gimple stmt, void *data,
5061 bool (*visit_load)(gimple, tree, void *),
5062 bool (*visit_store)(gimple, tree, void *))
5063 {
5064 return walk_stmt_load_store_addr_ops (stmt, data,
5065 visit_load, visit_store, NULL);
5066 }
5067
5068 /* Helper for gimple_ior_addresses_taken_1. */
5069
5070 static bool
5071 gimple_ior_addresses_taken_1 (gimple stmt ATTRIBUTE_UNUSED,
5072 tree addr, void *data)
5073 {
5074 bitmap addresses_taken = (bitmap)data;
5075 addr = get_base_address (addr);
5076 if (addr
5077 && DECL_P (addr))
5078 {
5079 bitmap_set_bit (addresses_taken, DECL_UID (addr));
5080 return true;
5081 }
5082 return false;
5083 }
5084
5085 /* Set the bit for the uid of all decls that have their address taken
5086 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
5087 were any in this stmt. */
5088
5089 bool
5090 gimple_ior_addresses_taken (bitmap addresses_taken, gimple stmt)
5091 {
5092 return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
5093 gimple_ior_addresses_taken_1);
5094 }
5095
5096
5097 /* Return a printable name for symbol DECL. */
5098
5099 const char *
5100 gimple_decl_printable_name (tree decl, int verbosity)
5101 {
5102 if (!DECL_NAME (decl))
5103 return NULL;
5104
5105 if (DECL_ASSEMBLER_NAME_SET_P (decl))
5106 {
5107 const char *str, *mangled_str;
5108 int dmgl_opts = DMGL_NO_OPTS;
5109
5110 if (verbosity >= 2)
5111 {
5112 dmgl_opts = DMGL_VERBOSE
5113 | DMGL_ANSI
5114 | DMGL_GNU_V3
5115 | DMGL_RET_POSTFIX;
5116 if (TREE_CODE (decl) == FUNCTION_DECL)
5117 dmgl_opts |= DMGL_PARAMS;
5118 }
5119
5120 mangled_str = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
5121 str = cplus_demangle_v3 (mangled_str, dmgl_opts);
5122 return (str) ? str : mangled_str;
5123 }
5124
5125 return IDENTIFIER_POINTER (DECL_NAME (decl));
5126 }
5127
5128 /* Return true when STMT is builtins call to CODE. */
5129
5130 bool
5131 gimple_call_builtin_p (gimple stmt, enum built_in_function code)
5132 {
5133 tree fndecl;
5134 return (is_gimple_call (stmt)
5135 && (fndecl = gimple_call_fndecl (stmt)) != NULL
5136 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
5137 && DECL_FUNCTION_CODE (fndecl) == code);
5138 }
5139
5140 #include "gt-gimple.h"