basic-block.h (single_succ_edge): Use gcc_checking_assert.
[gcc.git] / gcc / gimple.c
1 /* Gimple IR support functions.
2
3 Copyright 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "target.h"
27 #include "tree.h"
28 #include "ggc.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "gimple.h"
32 #include "toplev.h"
33 #include "diagnostic.h"
34 #include "tree-flow.h"
35 #include "value-prof.h"
36 #include "flags.h"
37 #include "alias.h"
38 #include "demangle.h"
39 #include "langhooks.h"
40
41 /* Global type table. FIXME lto, it should be possible to re-use some
42 of the type hashing routines in tree.c (type_hash_canon, type_hash_lookup,
43 etc), but those assume that types were built with the various
44 build_*_type routines which is not the case with the streamer. */
45 static GTY((if_marked ("ggc_marked_p"), param_is (union tree_node)))
46 htab_t gimple_types;
47 static GTY((if_marked ("tree_int_map_marked_p"), param_is (struct tree_int_map)))
48 htab_t type_hash_cache;
49
50 /* Global type comparison cache. This is by TYPE_UID for space efficiency
51 and thus cannot use and does not need GC. */
52 static htab_t gtc_visited;
53 static struct obstack gtc_ob;
54
55 /* All the tuples have their operand vector (if present) at the very bottom
56 of the structure. Therefore, the offset required to find the
57 operands vector the size of the structure minus the size of the 1
58 element tree array at the end (see gimple_ops). */
59 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
60 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
61 EXPORTED_CONST size_t gimple_ops_offset_[] = {
62 #include "gsstruct.def"
63 };
64 #undef DEFGSSTRUCT
65
66 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof(struct STRUCT),
67 static const size_t gsstruct_code_size[] = {
68 #include "gsstruct.def"
69 };
70 #undef DEFGSSTRUCT
71
72 #define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
73 const char *const gimple_code_name[] = {
74 #include "gimple.def"
75 };
76 #undef DEFGSCODE
77
78 #define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
79 EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
80 #include "gimple.def"
81 };
82 #undef DEFGSCODE
83
84 #ifdef GATHER_STATISTICS
85 /* Gimple stats. */
86
87 int gimple_alloc_counts[(int) gimple_alloc_kind_all];
88 int gimple_alloc_sizes[(int) gimple_alloc_kind_all];
89
90 /* Keep in sync with gimple.h:enum gimple_alloc_kind. */
91 static const char * const gimple_alloc_kind_names[] = {
92 "assignments",
93 "phi nodes",
94 "conditionals",
95 "sequences",
96 "everything else"
97 };
98
99 #endif /* GATHER_STATISTICS */
100
101 /* A cache of gimple_seq objects. Sequences are created and destroyed
102 fairly often during gimplification. */
103 static GTY ((deletable)) struct gimple_seq_d *gimple_seq_cache;
104
105 /* Private API manipulation functions shared only with some
106 other files. */
107 extern void gimple_set_stored_syms (gimple, bitmap, bitmap_obstack *);
108 extern void gimple_set_loaded_syms (gimple, bitmap, bitmap_obstack *);
109
110 /* Gimple tuple constructors.
111 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
112 be passed a NULL to start with an empty sequence. */
113
114 /* Set the code for statement G to CODE. */
115
116 static inline void
117 gimple_set_code (gimple g, enum gimple_code code)
118 {
119 g->gsbase.code = code;
120 }
121
122 /* Return the number of bytes needed to hold a GIMPLE statement with
123 code CODE. */
124
125 static inline size_t
126 gimple_size (enum gimple_code code)
127 {
128 return gsstruct_code_size[gss_for_code (code)];
129 }
130
131 /* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
132 operands. */
133
134 gimple
135 gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
136 {
137 size_t size;
138 gimple stmt;
139
140 size = gimple_size (code);
141 if (num_ops > 0)
142 size += sizeof (tree) * (num_ops - 1);
143
144 #ifdef GATHER_STATISTICS
145 {
146 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
147 gimple_alloc_counts[(int) kind]++;
148 gimple_alloc_sizes[(int) kind] += size;
149 }
150 #endif
151
152 stmt = ggc_alloc_cleared_gimple_statement_d_stat (size PASS_MEM_STAT);
153 gimple_set_code (stmt, code);
154 gimple_set_num_ops (stmt, num_ops);
155
156 /* Do not call gimple_set_modified here as it has other side
157 effects and this tuple is still not completely built. */
158 stmt->gsbase.modified = 1;
159
160 return stmt;
161 }
162
163 /* Set SUBCODE to be the code of the expression computed by statement G. */
164
165 static inline void
166 gimple_set_subcode (gimple g, unsigned subcode)
167 {
168 /* We only have 16 bits for the RHS code. Assert that we are not
169 overflowing it. */
170 gcc_assert (subcode < (1 << 16));
171 g->gsbase.subcode = subcode;
172 }
173
174
175
176 /* Build a tuple with operands. CODE is the statement to build (which
177 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the sub-code
178 for the new tuple. NUM_OPS is the number of operands to allocate. */
179
180 #define gimple_build_with_ops(c, s, n) \
181 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
182
183 static gimple
184 gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
185 unsigned num_ops MEM_STAT_DECL)
186 {
187 gimple s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT);
188 gimple_set_subcode (s, subcode);
189
190 return s;
191 }
192
193
194 /* Build a GIMPLE_RETURN statement returning RETVAL. */
195
196 gimple
197 gimple_build_return (tree retval)
198 {
199 gimple s = gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK, 1);
200 if (retval)
201 gimple_return_set_retval (s, retval);
202 return s;
203 }
204
205 /* Reset alias information on call S. */
206
207 void
208 gimple_call_reset_alias_info (gimple s)
209 {
210 if (gimple_call_flags (s) & ECF_CONST)
211 memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
212 else
213 pt_solution_reset (gimple_call_use_set (s));
214 if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
215 memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
216 else
217 pt_solution_reset (gimple_call_clobber_set (s));
218 }
219
220 /* Helper for gimple_build_call, gimple_build_call_vec and
221 gimple_build_call_from_tree. Build the basic components of a
222 GIMPLE_CALL statement to function FN with NARGS arguments. */
223
224 static inline gimple
225 gimple_build_call_1 (tree fn, unsigned nargs)
226 {
227 gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3);
228 if (TREE_CODE (fn) == FUNCTION_DECL)
229 fn = build_fold_addr_expr (fn);
230 gimple_set_op (s, 1, fn);
231 gimple_call_reset_alias_info (s);
232 return s;
233 }
234
235
236 /* Build a GIMPLE_CALL statement to function FN with the arguments
237 specified in vector ARGS. */
238
239 gimple
240 gimple_build_call_vec (tree fn, VEC(tree, heap) *args)
241 {
242 unsigned i;
243 unsigned nargs = VEC_length (tree, args);
244 gimple call = gimple_build_call_1 (fn, nargs);
245
246 for (i = 0; i < nargs; i++)
247 gimple_call_set_arg (call, i, VEC_index (tree, args, i));
248
249 return call;
250 }
251
252
253 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
254 arguments. The ... are the arguments. */
255
256 gimple
257 gimple_build_call (tree fn, unsigned nargs, ...)
258 {
259 va_list ap;
260 gimple call;
261 unsigned i;
262
263 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
264
265 call = gimple_build_call_1 (fn, nargs);
266
267 va_start (ap, nargs);
268 for (i = 0; i < nargs; i++)
269 gimple_call_set_arg (call, i, va_arg (ap, tree));
270 va_end (ap);
271
272 return call;
273 }
274
275
276 /* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
277 assumed to be in GIMPLE form already. Minimal checking is done of
278 this fact. */
279
280 gimple
281 gimple_build_call_from_tree (tree t)
282 {
283 unsigned i, nargs;
284 gimple call;
285 tree fndecl = get_callee_fndecl (t);
286
287 gcc_assert (TREE_CODE (t) == CALL_EXPR);
288
289 nargs = call_expr_nargs (t);
290 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
291
292 for (i = 0; i < nargs; i++)
293 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
294
295 gimple_set_block (call, TREE_BLOCK (t));
296
297 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
298 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
299 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
300 gimple_call_set_cannot_inline (call, CALL_CANNOT_INLINE_P (t));
301 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
302 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
303 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
304 gimple_call_set_nothrow (call, TREE_NOTHROW (t));
305 gimple_set_no_warning (call, TREE_NO_WARNING (t));
306
307 return call;
308 }
309
310
311 /* Extract the operands and code for expression EXPR into *SUBCODE_P,
312 *OP1_P, *OP2_P and *OP3_P respectively. */
313
314 void
315 extract_ops_from_tree_1 (tree expr, enum tree_code *subcode_p, tree *op1_p,
316 tree *op2_p, tree *op3_p)
317 {
318 enum gimple_rhs_class grhs_class;
319
320 *subcode_p = TREE_CODE (expr);
321 grhs_class = get_gimple_rhs_class (*subcode_p);
322
323 if (grhs_class == GIMPLE_TERNARY_RHS)
324 {
325 *op1_p = TREE_OPERAND (expr, 0);
326 *op2_p = TREE_OPERAND (expr, 1);
327 *op3_p = TREE_OPERAND (expr, 2);
328 }
329 else if (grhs_class == GIMPLE_BINARY_RHS)
330 {
331 *op1_p = TREE_OPERAND (expr, 0);
332 *op2_p = TREE_OPERAND (expr, 1);
333 *op3_p = NULL_TREE;
334 }
335 else if (grhs_class == GIMPLE_UNARY_RHS)
336 {
337 *op1_p = TREE_OPERAND (expr, 0);
338 *op2_p = NULL_TREE;
339 *op3_p = NULL_TREE;
340 }
341 else if (grhs_class == GIMPLE_SINGLE_RHS)
342 {
343 *op1_p = expr;
344 *op2_p = NULL_TREE;
345 *op3_p = NULL_TREE;
346 }
347 else
348 gcc_unreachable ();
349 }
350
351
352 /* Build a GIMPLE_ASSIGN statement.
353
354 LHS of the assignment.
355 RHS of the assignment which can be unary or binary. */
356
357 gimple
358 gimple_build_assign_stat (tree lhs, tree rhs MEM_STAT_DECL)
359 {
360 enum tree_code subcode;
361 tree op1, op2, op3;
362
363 extract_ops_from_tree_1 (rhs, &subcode, &op1, &op2, &op3);
364 return gimple_build_assign_with_ops_stat (subcode, lhs, op1, op2, op3
365 PASS_MEM_STAT);
366 }
367
368
369 /* Build a GIMPLE_ASSIGN statement with sub-code SUBCODE and operands
370 OP1 and OP2. If OP2 is NULL then SUBCODE must be of class
371 GIMPLE_UNARY_RHS or GIMPLE_SINGLE_RHS. */
372
373 gimple
374 gimple_build_assign_with_ops_stat (enum tree_code subcode, tree lhs, tree op1,
375 tree op2, tree op3 MEM_STAT_DECL)
376 {
377 unsigned num_ops;
378 gimple p;
379
380 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
381 code). */
382 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
383
384 p = gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
385 PASS_MEM_STAT);
386 gimple_assign_set_lhs (p, lhs);
387 gimple_assign_set_rhs1 (p, op1);
388 if (op2)
389 {
390 gcc_assert (num_ops > 2);
391 gimple_assign_set_rhs2 (p, op2);
392 }
393
394 if (op3)
395 {
396 gcc_assert (num_ops > 3);
397 gimple_assign_set_rhs3 (p, op3);
398 }
399
400 return p;
401 }
402
403
404 /* Build a new GIMPLE_ASSIGN tuple and append it to the end of *SEQ_P.
405
406 DST/SRC are the destination and source respectively. You can pass
407 ungimplified trees in DST or SRC, in which case they will be
408 converted to a gimple operand if necessary.
409
410 This function returns the newly created GIMPLE_ASSIGN tuple. */
411
412 gimple
413 gimplify_assign (tree dst, tree src, gimple_seq *seq_p)
414 {
415 tree t = build2 (MODIFY_EXPR, TREE_TYPE (dst), dst, src);
416 gimplify_and_add (t, seq_p);
417 ggc_free (t);
418 return gimple_seq_last_stmt (*seq_p);
419 }
420
421
422 /* Build a GIMPLE_COND statement.
423
424 PRED is the condition used to compare LHS and the RHS.
425 T_LABEL is the label to jump to if the condition is true.
426 F_LABEL is the label to jump to otherwise. */
427
428 gimple
429 gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
430 tree t_label, tree f_label)
431 {
432 gimple p;
433
434 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
435 p = gimple_build_with_ops (GIMPLE_COND, pred_code, 4);
436 gimple_cond_set_lhs (p, lhs);
437 gimple_cond_set_rhs (p, rhs);
438 gimple_cond_set_true_label (p, t_label);
439 gimple_cond_set_false_label (p, f_label);
440 return p;
441 }
442
443
444 /* Extract operands for a GIMPLE_COND statement out of COND_EXPR tree COND. */
445
446 void
447 gimple_cond_get_ops_from_tree (tree cond, enum tree_code *code_p,
448 tree *lhs_p, tree *rhs_p)
449 {
450 location_t loc = EXPR_LOCATION (cond);
451 gcc_assert (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison
452 || TREE_CODE (cond) == TRUTH_NOT_EXPR
453 || is_gimple_min_invariant (cond)
454 || SSA_VAR_P (cond));
455
456 extract_ops_from_tree (cond, code_p, lhs_p, rhs_p);
457
458 /* Canonicalize conditionals of the form 'if (!VAL)'. */
459 if (*code_p == TRUTH_NOT_EXPR)
460 {
461 *code_p = EQ_EXPR;
462 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
463 *rhs_p = fold_convert_loc (loc, TREE_TYPE (*lhs_p), integer_zero_node);
464 }
465 /* Canonicalize conditionals of the form 'if (VAL)' */
466 else if (TREE_CODE_CLASS (*code_p) != tcc_comparison)
467 {
468 *code_p = NE_EXPR;
469 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
470 *rhs_p = fold_convert_loc (loc, TREE_TYPE (*lhs_p), integer_zero_node);
471 }
472 }
473
474
475 /* Build a GIMPLE_COND statement from the conditional expression tree
476 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
477
478 gimple
479 gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
480 {
481 enum tree_code code;
482 tree lhs, rhs;
483
484 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
485 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
486 }
487
488 /* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
489 boolean expression tree COND. */
490
491 void
492 gimple_cond_set_condition_from_tree (gimple stmt, tree cond)
493 {
494 enum tree_code code;
495 tree lhs, rhs;
496
497 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
498 gimple_cond_set_condition (stmt, code, lhs, rhs);
499 }
500
501 /* Build a GIMPLE_LABEL statement for LABEL. */
502
503 gimple
504 gimple_build_label (tree label)
505 {
506 gimple p = gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1);
507 gimple_label_set_label (p, label);
508 return p;
509 }
510
511 /* Build a GIMPLE_GOTO statement to label DEST. */
512
513 gimple
514 gimple_build_goto (tree dest)
515 {
516 gimple p = gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1);
517 gimple_goto_set_dest (p, dest);
518 return p;
519 }
520
521
522 /* Build a GIMPLE_NOP statement. */
523
524 gimple
525 gimple_build_nop (void)
526 {
527 return gimple_alloc (GIMPLE_NOP, 0);
528 }
529
530
531 /* Build a GIMPLE_BIND statement.
532 VARS are the variables in BODY.
533 BLOCK is the containing block. */
534
535 gimple
536 gimple_build_bind (tree vars, gimple_seq body, tree block)
537 {
538 gimple p = gimple_alloc (GIMPLE_BIND, 0);
539 gimple_bind_set_vars (p, vars);
540 if (body)
541 gimple_bind_set_body (p, body);
542 if (block)
543 gimple_bind_set_block (p, block);
544 return p;
545 }
546
547 /* Helper function to set the simple fields of a asm stmt.
548
549 STRING is a pointer to a string that is the asm blocks assembly code.
550 NINPUT is the number of register inputs.
551 NOUTPUT is the number of register outputs.
552 NCLOBBERS is the number of clobbered registers.
553 */
554
555 static inline gimple
556 gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
557 unsigned nclobbers, unsigned nlabels)
558 {
559 gimple p;
560 int size = strlen (string);
561
562 /* ASMs with labels cannot have outputs. This should have been
563 enforced by the front end. */
564 gcc_assert (nlabels == 0 || noutputs == 0);
565
566 p = gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
567 ninputs + noutputs + nclobbers + nlabels);
568
569 p->gimple_asm.ni = ninputs;
570 p->gimple_asm.no = noutputs;
571 p->gimple_asm.nc = nclobbers;
572 p->gimple_asm.nl = nlabels;
573 p->gimple_asm.string = ggc_alloc_string (string, size);
574
575 #ifdef GATHER_STATISTICS
576 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
577 #endif
578
579 return p;
580 }
581
582 /* Build a GIMPLE_ASM statement.
583
584 STRING is the assembly code.
585 NINPUT is the number of register inputs.
586 NOUTPUT is the number of register outputs.
587 NCLOBBERS is the number of clobbered registers.
588 INPUTS is a vector of the input register parameters.
589 OUTPUTS is a vector of the output register parameters.
590 CLOBBERS is a vector of the clobbered register parameters.
591 LABELS is a vector of destination labels. */
592
593 gimple
594 gimple_build_asm_vec (const char *string, VEC(tree,gc)* inputs,
595 VEC(tree,gc)* outputs, VEC(tree,gc)* clobbers,
596 VEC(tree,gc)* labels)
597 {
598 gimple p;
599 unsigned i;
600
601 p = gimple_build_asm_1 (string,
602 VEC_length (tree, inputs),
603 VEC_length (tree, outputs),
604 VEC_length (tree, clobbers),
605 VEC_length (tree, labels));
606
607 for (i = 0; i < VEC_length (tree, inputs); i++)
608 gimple_asm_set_input_op (p, i, VEC_index (tree, inputs, i));
609
610 for (i = 0; i < VEC_length (tree, outputs); i++)
611 gimple_asm_set_output_op (p, i, VEC_index (tree, outputs, i));
612
613 for (i = 0; i < VEC_length (tree, clobbers); i++)
614 gimple_asm_set_clobber_op (p, i, VEC_index (tree, clobbers, i));
615
616 for (i = 0; i < VEC_length (tree, labels); i++)
617 gimple_asm_set_label_op (p, i, VEC_index (tree, labels, i));
618
619 return p;
620 }
621
622 /* Build a GIMPLE_CATCH statement.
623
624 TYPES are the catch types.
625 HANDLER is the exception handler. */
626
627 gimple
628 gimple_build_catch (tree types, gimple_seq handler)
629 {
630 gimple p = gimple_alloc (GIMPLE_CATCH, 0);
631 gimple_catch_set_types (p, types);
632 if (handler)
633 gimple_catch_set_handler (p, handler);
634
635 return p;
636 }
637
638 /* Build a GIMPLE_EH_FILTER statement.
639
640 TYPES are the filter's types.
641 FAILURE is the filter's failure action. */
642
643 gimple
644 gimple_build_eh_filter (tree types, gimple_seq failure)
645 {
646 gimple p = gimple_alloc (GIMPLE_EH_FILTER, 0);
647 gimple_eh_filter_set_types (p, types);
648 if (failure)
649 gimple_eh_filter_set_failure (p, failure);
650
651 return p;
652 }
653
654 /* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
655
656 gimple
657 gimple_build_eh_must_not_throw (tree decl)
658 {
659 gimple p = gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0);
660
661 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
662 gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
663 gimple_eh_must_not_throw_set_fndecl (p, decl);
664
665 return p;
666 }
667
668 /* Build a GIMPLE_TRY statement.
669
670 EVAL is the expression to evaluate.
671 CLEANUP is the cleanup expression.
672 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
673 whether this is a try/catch or a try/finally respectively. */
674
675 gimple
676 gimple_build_try (gimple_seq eval, gimple_seq cleanup,
677 enum gimple_try_flags kind)
678 {
679 gimple p;
680
681 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
682 p = gimple_alloc (GIMPLE_TRY, 0);
683 gimple_set_subcode (p, kind);
684 if (eval)
685 gimple_try_set_eval (p, eval);
686 if (cleanup)
687 gimple_try_set_cleanup (p, cleanup);
688
689 return p;
690 }
691
692 /* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
693
694 CLEANUP is the cleanup expression. */
695
696 gimple
697 gimple_build_wce (gimple_seq cleanup)
698 {
699 gimple p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
700 if (cleanup)
701 gimple_wce_set_cleanup (p, cleanup);
702
703 return p;
704 }
705
706
707 /* Build a GIMPLE_RESX statement. */
708
709 gimple
710 gimple_build_resx (int region)
711 {
712 gimple p = gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0);
713 p->gimple_eh_ctrl.region = region;
714 return p;
715 }
716
717
718 /* The helper for constructing a gimple switch statement.
719 INDEX is the switch's index.
720 NLABELS is the number of labels in the switch excluding the default.
721 DEFAULT_LABEL is the default label for the switch statement. */
722
723 gimple
724 gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
725 {
726 /* nlabels + 1 default label + 1 index. */
727 gimple p = gimple_build_with_ops (GIMPLE_SWITCH, ERROR_MARK,
728 1 + (default_label != NULL) + nlabels);
729 gimple_switch_set_index (p, index);
730 if (default_label)
731 gimple_switch_set_default_label (p, default_label);
732 return p;
733 }
734
735
736 /* Build a GIMPLE_SWITCH statement.
737
738 INDEX is the switch's index.
739 NLABELS is the number of labels in the switch excluding the DEFAULT_LABEL.
740 ... are the labels excluding the default. */
741
742 gimple
743 gimple_build_switch (unsigned nlabels, tree index, tree default_label, ...)
744 {
745 va_list al;
746 unsigned i, offset;
747 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
748
749 /* Store the rest of the labels. */
750 va_start (al, default_label);
751 offset = (default_label != NULL);
752 for (i = 0; i < nlabels; i++)
753 gimple_switch_set_label (p, i + offset, va_arg (al, tree));
754 va_end (al);
755
756 return p;
757 }
758
759
760 /* Build a GIMPLE_SWITCH statement.
761
762 INDEX is the switch's index.
763 DEFAULT_LABEL is the default label
764 ARGS is a vector of labels excluding the default. */
765
766 gimple
767 gimple_build_switch_vec (tree index, tree default_label, VEC(tree, heap) *args)
768 {
769 unsigned i, offset, nlabels = VEC_length (tree, args);
770 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
771
772 /* Copy the labels from the vector to the switch statement. */
773 offset = (default_label != NULL);
774 for (i = 0; i < nlabels; i++)
775 gimple_switch_set_label (p, i + offset, VEC_index (tree, args, i));
776
777 return p;
778 }
779
780 /* Build a GIMPLE_EH_DISPATCH statement. */
781
782 gimple
783 gimple_build_eh_dispatch (int region)
784 {
785 gimple p = gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0);
786 p->gimple_eh_ctrl.region = region;
787 return p;
788 }
789
790 /* Build a new GIMPLE_DEBUG_BIND statement.
791
792 VAR is bound to VALUE; block and location are taken from STMT. */
793
794 gimple
795 gimple_build_debug_bind_stat (tree var, tree value, gimple stmt MEM_STAT_DECL)
796 {
797 gimple p = gimple_build_with_ops_stat (GIMPLE_DEBUG,
798 (unsigned)GIMPLE_DEBUG_BIND, 2
799 PASS_MEM_STAT);
800
801 gimple_debug_bind_set_var (p, var);
802 gimple_debug_bind_set_value (p, value);
803 if (stmt)
804 {
805 gimple_set_block (p, gimple_block (stmt));
806 gimple_set_location (p, gimple_location (stmt));
807 }
808
809 return p;
810 }
811
812
813 /* Build a GIMPLE_OMP_CRITICAL statement.
814
815 BODY is the sequence of statements for which only one thread can execute.
816 NAME is optional identifier for this critical block. */
817
818 gimple
819 gimple_build_omp_critical (gimple_seq body, tree name)
820 {
821 gimple p = gimple_alloc (GIMPLE_OMP_CRITICAL, 0);
822 gimple_omp_critical_set_name (p, name);
823 if (body)
824 gimple_omp_set_body (p, body);
825
826 return p;
827 }
828
829 /* Build a GIMPLE_OMP_FOR statement.
830
831 BODY is sequence of statements inside the for loop.
832 CLAUSES, are any of the OMP loop construct's clauses: private, firstprivate,
833 lastprivate, reductions, ordered, schedule, and nowait.
834 COLLAPSE is the collapse count.
835 PRE_BODY is the sequence of statements that are loop invariant. */
836
837 gimple
838 gimple_build_omp_for (gimple_seq body, tree clauses, size_t collapse,
839 gimple_seq pre_body)
840 {
841 gimple p = gimple_alloc (GIMPLE_OMP_FOR, 0);
842 if (body)
843 gimple_omp_set_body (p, body);
844 gimple_omp_for_set_clauses (p, clauses);
845 p->gimple_omp_for.collapse = collapse;
846 p->gimple_omp_for.iter
847 = ggc_alloc_cleared_vec_gimple_omp_for_iter (collapse);
848 if (pre_body)
849 gimple_omp_for_set_pre_body (p, pre_body);
850
851 return p;
852 }
853
854
855 /* Build a GIMPLE_OMP_PARALLEL statement.
856
857 BODY is sequence of statements which are executed in parallel.
858 CLAUSES, are the OMP parallel construct's clauses.
859 CHILD_FN is the function created for the parallel threads to execute.
860 DATA_ARG are the shared data argument(s). */
861
862 gimple
863 gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
864 tree data_arg)
865 {
866 gimple p = gimple_alloc (GIMPLE_OMP_PARALLEL, 0);
867 if (body)
868 gimple_omp_set_body (p, body);
869 gimple_omp_parallel_set_clauses (p, clauses);
870 gimple_omp_parallel_set_child_fn (p, child_fn);
871 gimple_omp_parallel_set_data_arg (p, data_arg);
872
873 return p;
874 }
875
876
877 /* Build a GIMPLE_OMP_TASK statement.
878
879 BODY is sequence of statements which are executed by the explicit task.
880 CLAUSES, are the OMP parallel construct's clauses.
881 CHILD_FN is the function created for the parallel threads to execute.
882 DATA_ARG are the shared data argument(s).
883 COPY_FN is the optional function for firstprivate initialization.
884 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
885
886 gimple
887 gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
888 tree data_arg, tree copy_fn, tree arg_size,
889 tree arg_align)
890 {
891 gimple p = gimple_alloc (GIMPLE_OMP_TASK, 0);
892 if (body)
893 gimple_omp_set_body (p, body);
894 gimple_omp_task_set_clauses (p, clauses);
895 gimple_omp_task_set_child_fn (p, child_fn);
896 gimple_omp_task_set_data_arg (p, data_arg);
897 gimple_omp_task_set_copy_fn (p, copy_fn);
898 gimple_omp_task_set_arg_size (p, arg_size);
899 gimple_omp_task_set_arg_align (p, arg_align);
900
901 return p;
902 }
903
904
905 /* Build a GIMPLE_OMP_SECTION statement for a sections statement.
906
907 BODY is the sequence of statements in the section. */
908
909 gimple
910 gimple_build_omp_section (gimple_seq body)
911 {
912 gimple p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
913 if (body)
914 gimple_omp_set_body (p, body);
915
916 return p;
917 }
918
919
920 /* Build a GIMPLE_OMP_MASTER statement.
921
922 BODY is the sequence of statements to be executed by just the master. */
923
924 gimple
925 gimple_build_omp_master (gimple_seq body)
926 {
927 gimple p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
928 if (body)
929 gimple_omp_set_body (p, body);
930
931 return p;
932 }
933
934
935 /* Build a GIMPLE_OMP_CONTINUE statement.
936
937 CONTROL_DEF is the definition of the control variable.
938 CONTROL_USE is the use of the control variable. */
939
940 gimple
941 gimple_build_omp_continue (tree control_def, tree control_use)
942 {
943 gimple p = gimple_alloc (GIMPLE_OMP_CONTINUE, 0);
944 gimple_omp_continue_set_control_def (p, control_def);
945 gimple_omp_continue_set_control_use (p, control_use);
946 return p;
947 }
948
949 /* Build a GIMPLE_OMP_ORDERED statement.
950
951 BODY is the sequence of statements inside a loop that will executed in
952 sequence. */
953
954 gimple
955 gimple_build_omp_ordered (gimple_seq body)
956 {
957 gimple p = gimple_alloc (GIMPLE_OMP_ORDERED, 0);
958 if (body)
959 gimple_omp_set_body (p, body);
960
961 return p;
962 }
963
964
965 /* Build a GIMPLE_OMP_RETURN statement.
966 WAIT_P is true if this is a non-waiting return. */
967
968 gimple
969 gimple_build_omp_return (bool wait_p)
970 {
971 gimple p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
972 if (wait_p)
973 gimple_omp_return_set_nowait (p);
974
975 return p;
976 }
977
978
979 /* Build a GIMPLE_OMP_SECTIONS statement.
980
981 BODY is a sequence of section statements.
982 CLAUSES are any of the OMP sections contsruct's clauses: private,
983 firstprivate, lastprivate, reduction, and nowait. */
984
985 gimple
986 gimple_build_omp_sections (gimple_seq body, tree clauses)
987 {
988 gimple p = gimple_alloc (GIMPLE_OMP_SECTIONS, 0);
989 if (body)
990 gimple_omp_set_body (p, body);
991 gimple_omp_sections_set_clauses (p, clauses);
992
993 return p;
994 }
995
996
997 /* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
998
999 gimple
1000 gimple_build_omp_sections_switch (void)
1001 {
1002 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
1003 }
1004
1005
1006 /* Build a GIMPLE_OMP_SINGLE statement.
1007
1008 BODY is the sequence of statements that will be executed once.
1009 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1010 copyprivate, nowait. */
1011
1012 gimple
1013 gimple_build_omp_single (gimple_seq body, tree clauses)
1014 {
1015 gimple p = gimple_alloc (GIMPLE_OMP_SINGLE, 0);
1016 if (body)
1017 gimple_omp_set_body (p, body);
1018 gimple_omp_single_set_clauses (p, clauses);
1019
1020 return p;
1021 }
1022
1023
1024 /* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
1025
1026 gimple
1027 gimple_build_omp_atomic_load (tree lhs, tree rhs)
1028 {
1029 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0);
1030 gimple_omp_atomic_load_set_lhs (p, lhs);
1031 gimple_omp_atomic_load_set_rhs (p, rhs);
1032 return p;
1033 }
1034
1035 /* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1036
1037 VAL is the value we are storing. */
1038
1039 gimple
1040 gimple_build_omp_atomic_store (tree val)
1041 {
1042 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0);
1043 gimple_omp_atomic_store_set_val (p, val);
1044 return p;
1045 }
1046
1047 /* Build a GIMPLE_PREDICT statement. PREDICT is one of the predictors from
1048 predict.def, OUTCOME is NOT_TAKEN or TAKEN. */
1049
1050 gimple
1051 gimple_build_predict (enum br_predictor predictor, enum prediction outcome)
1052 {
1053 gimple p = gimple_alloc (GIMPLE_PREDICT, 0);
1054 /* Ensure all the predictors fit into the lower bits of the subcode. */
1055 gcc_assert ((int) END_PREDICTORS <= GF_PREDICT_TAKEN);
1056 gimple_predict_set_predictor (p, predictor);
1057 gimple_predict_set_outcome (p, outcome);
1058 return p;
1059 }
1060
1061 #if defined ENABLE_GIMPLE_CHECKING
1062 /* Complain of a gimple type mismatch and die. */
1063
1064 void
1065 gimple_check_failed (const_gimple gs, const char *file, int line,
1066 const char *function, enum gimple_code code,
1067 enum tree_code subcode)
1068 {
1069 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1070 gimple_code_name[code],
1071 tree_code_name[subcode],
1072 gimple_code_name[gimple_code (gs)],
1073 gs->gsbase.subcode > 0
1074 ? tree_code_name[gs->gsbase.subcode]
1075 : "",
1076 function, trim_filename (file), line);
1077 }
1078 #endif /* ENABLE_GIMPLE_CHECKING */
1079
1080
1081 /* Allocate a new GIMPLE sequence in GC memory and return it. If
1082 there are free sequences in GIMPLE_SEQ_CACHE return one of those
1083 instead. */
1084
1085 gimple_seq
1086 gimple_seq_alloc (void)
1087 {
1088 gimple_seq seq = gimple_seq_cache;
1089 if (seq)
1090 {
1091 gimple_seq_cache = gimple_seq_cache->next_free;
1092 gcc_assert (gimple_seq_cache != seq);
1093 memset (seq, 0, sizeof (*seq));
1094 }
1095 else
1096 {
1097 seq = ggc_alloc_cleared_gimple_seq_d ();
1098 #ifdef GATHER_STATISTICS
1099 gimple_alloc_counts[(int) gimple_alloc_kind_seq]++;
1100 gimple_alloc_sizes[(int) gimple_alloc_kind_seq] += sizeof (*seq);
1101 #endif
1102 }
1103
1104 return seq;
1105 }
1106
1107 /* Return SEQ to the free pool of GIMPLE sequences. */
1108
1109 void
1110 gimple_seq_free (gimple_seq seq)
1111 {
1112 if (seq == NULL)
1113 return;
1114
1115 gcc_assert (gimple_seq_first (seq) == NULL);
1116 gcc_assert (gimple_seq_last (seq) == NULL);
1117
1118 /* If this triggers, it's a sign that the same list is being freed
1119 twice. */
1120 gcc_assert (seq != gimple_seq_cache || gimple_seq_cache == NULL);
1121
1122 /* Add SEQ to the pool of free sequences. */
1123 seq->next_free = gimple_seq_cache;
1124 gimple_seq_cache = seq;
1125 }
1126
1127
1128 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1129 *SEQ_P is NULL, a new sequence is allocated. */
1130
1131 void
1132 gimple_seq_add_stmt (gimple_seq *seq_p, gimple gs)
1133 {
1134 gimple_stmt_iterator si;
1135
1136 if (gs == NULL)
1137 return;
1138
1139 if (*seq_p == NULL)
1140 *seq_p = gimple_seq_alloc ();
1141
1142 si = gsi_last (*seq_p);
1143 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1144 }
1145
1146
1147 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1148 NULL, a new sequence is allocated. */
1149
1150 void
1151 gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1152 {
1153 gimple_stmt_iterator si;
1154
1155 if (src == NULL)
1156 return;
1157
1158 if (*dst_p == NULL)
1159 *dst_p = gimple_seq_alloc ();
1160
1161 si = gsi_last (*dst_p);
1162 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1163 }
1164
1165
1166 /* Helper function of empty_body_p. Return true if STMT is an empty
1167 statement. */
1168
1169 static bool
1170 empty_stmt_p (gimple stmt)
1171 {
1172 if (gimple_code (stmt) == GIMPLE_NOP)
1173 return true;
1174 if (gimple_code (stmt) == GIMPLE_BIND)
1175 return empty_body_p (gimple_bind_body (stmt));
1176 return false;
1177 }
1178
1179
1180 /* Return true if BODY contains nothing but empty statements. */
1181
1182 bool
1183 empty_body_p (gimple_seq body)
1184 {
1185 gimple_stmt_iterator i;
1186
1187 if (gimple_seq_empty_p (body))
1188 return true;
1189 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
1190 if (!empty_stmt_p (gsi_stmt (i))
1191 && !is_gimple_debug (gsi_stmt (i)))
1192 return false;
1193
1194 return true;
1195 }
1196
1197
1198 /* Perform a deep copy of sequence SRC and return the result. */
1199
1200 gimple_seq
1201 gimple_seq_copy (gimple_seq src)
1202 {
1203 gimple_stmt_iterator gsi;
1204 gimple_seq new_seq = gimple_seq_alloc ();
1205 gimple stmt;
1206
1207 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1208 {
1209 stmt = gimple_copy (gsi_stmt (gsi));
1210 gimple_seq_add_stmt (&new_seq, stmt);
1211 }
1212
1213 return new_seq;
1214 }
1215
1216
1217 /* Walk all the statements in the sequence SEQ calling walk_gimple_stmt
1218 on each one. WI is as in walk_gimple_stmt.
1219
1220 If walk_gimple_stmt returns non-NULL, the walk is stopped, the
1221 value is stored in WI->CALLBACK_RESULT and the statement that
1222 produced the value is returned.
1223
1224 Otherwise, all the statements are walked and NULL returned. */
1225
1226 gimple
1227 walk_gimple_seq (gimple_seq seq, walk_stmt_fn callback_stmt,
1228 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1229 {
1230 gimple_stmt_iterator gsi;
1231
1232 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
1233 {
1234 tree ret = walk_gimple_stmt (&gsi, callback_stmt, callback_op, wi);
1235 if (ret)
1236 {
1237 /* If CALLBACK_STMT or CALLBACK_OP return a value, WI must exist
1238 to hold it. */
1239 gcc_assert (wi);
1240 wi->callback_result = ret;
1241 return gsi_stmt (gsi);
1242 }
1243 }
1244
1245 if (wi)
1246 wi->callback_result = NULL_TREE;
1247
1248 return NULL;
1249 }
1250
1251
1252 /* Helper function for walk_gimple_stmt. Walk operands of a GIMPLE_ASM. */
1253
1254 static tree
1255 walk_gimple_asm (gimple stmt, walk_tree_fn callback_op,
1256 struct walk_stmt_info *wi)
1257 {
1258 tree ret, op;
1259 unsigned noutputs;
1260 const char **oconstraints;
1261 unsigned i, n;
1262 const char *constraint;
1263 bool allows_mem, allows_reg, is_inout;
1264
1265 noutputs = gimple_asm_noutputs (stmt);
1266 oconstraints = (const char **) alloca ((noutputs) * sizeof (const char *));
1267
1268 if (wi)
1269 wi->is_lhs = true;
1270
1271 for (i = 0; i < noutputs; i++)
1272 {
1273 op = gimple_asm_output_op (stmt, i);
1274 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1275 oconstraints[i] = constraint;
1276 parse_output_constraint (&constraint, i, 0, 0, &allows_mem, &allows_reg,
1277 &is_inout);
1278 if (wi)
1279 wi->val_only = (allows_reg || !allows_mem);
1280 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1281 if (ret)
1282 return ret;
1283 }
1284
1285 n = gimple_asm_ninputs (stmt);
1286 for (i = 0; i < n; i++)
1287 {
1288 op = gimple_asm_input_op (stmt, i);
1289 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1290 parse_input_constraint (&constraint, 0, 0, noutputs, 0,
1291 oconstraints, &allows_mem, &allows_reg);
1292 if (wi)
1293 {
1294 wi->val_only = (allows_reg || !allows_mem);
1295 /* Although input "m" is not really a LHS, we need a lvalue. */
1296 wi->is_lhs = !wi->val_only;
1297 }
1298 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1299 if (ret)
1300 return ret;
1301 }
1302
1303 if (wi)
1304 {
1305 wi->is_lhs = false;
1306 wi->val_only = true;
1307 }
1308
1309 n = gimple_asm_nlabels (stmt);
1310 for (i = 0; i < n; i++)
1311 {
1312 op = gimple_asm_label_op (stmt, i);
1313 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1314 if (ret)
1315 return ret;
1316 }
1317
1318 return NULL_TREE;
1319 }
1320
1321
1322 /* Helper function of WALK_GIMPLE_STMT. Walk every tree operand in
1323 STMT. CALLBACK_OP and WI are as in WALK_GIMPLE_STMT.
1324
1325 CALLBACK_OP is called on each operand of STMT via walk_tree.
1326 Additional parameters to walk_tree must be stored in WI. For each operand
1327 OP, walk_tree is called as:
1328
1329 walk_tree (&OP, CALLBACK_OP, WI, WI->PSET)
1330
1331 If CALLBACK_OP returns non-NULL for an operand, the remaining
1332 operands are not scanned.
1333
1334 The return value is that returned by the last call to walk_tree, or
1335 NULL_TREE if no CALLBACK_OP is specified. */
1336
1337 tree
1338 walk_gimple_op (gimple stmt, walk_tree_fn callback_op,
1339 struct walk_stmt_info *wi)
1340 {
1341 struct pointer_set_t *pset = (wi) ? wi->pset : NULL;
1342 unsigned i;
1343 tree ret = NULL_TREE;
1344
1345 switch (gimple_code (stmt))
1346 {
1347 case GIMPLE_ASSIGN:
1348 /* Walk the RHS operands. If the LHS is of a non-renamable type or
1349 is a register variable, we may use a COMPONENT_REF on the RHS. */
1350 if (wi)
1351 {
1352 tree lhs = gimple_assign_lhs (stmt);
1353 wi->val_only
1354 = (is_gimple_reg_type (TREE_TYPE (lhs)) && !is_gimple_reg (lhs))
1355 || !gimple_assign_single_p (stmt);
1356 }
1357
1358 for (i = 1; i < gimple_num_ops (stmt); i++)
1359 {
1360 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi,
1361 pset);
1362 if (ret)
1363 return ret;
1364 }
1365
1366 /* Walk the LHS. If the RHS is appropriate for a memory, we
1367 may use a COMPONENT_REF on the LHS. */
1368 if (wi)
1369 {
1370 /* If the RHS has more than 1 operand, it is not appropriate
1371 for the memory. */
1372 wi->val_only = !is_gimple_mem_rhs (gimple_assign_rhs1 (stmt))
1373 || !gimple_assign_single_p (stmt);
1374 wi->is_lhs = true;
1375 }
1376
1377 ret = walk_tree (gimple_op_ptr (stmt, 0), callback_op, wi, pset);
1378 if (ret)
1379 return ret;
1380
1381 if (wi)
1382 {
1383 wi->val_only = true;
1384 wi->is_lhs = false;
1385 }
1386 break;
1387
1388 case GIMPLE_CALL:
1389 if (wi)
1390 {
1391 wi->is_lhs = false;
1392 wi->val_only = true;
1393 }
1394
1395 ret = walk_tree (gimple_call_chain_ptr (stmt), callback_op, wi, pset);
1396 if (ret)
1397 return ret;
1398
1399 ret = walk_tree (gimple_call_fn_ptr (stmt), callback_op, wi, pset);
1400 if (ret)
1401 return ret;
1402
1403 for (i = 0; i < gimple_call_num_args (stmt); i++)
1404 {
1405 if (wi)
1406 wi->val_only = is_gimple_reg_type (gimple_call_arg (stmt, i));
1407 ret = walk_tree (gimple_call_arg_ptr (stmt, i), callback_op, wi,
1408 pset);
1409 if (ret)
1410 return ret;
1411 }
1412
1413 if (gimple_call_lhs (stmt))
1414 {
1415 if (wi)
1416 {
1417 wi->is_lhs = true;
1418 wi->val_only = is_gimple_reg_type (gimple_call_lhs (stmt));
1419 }
1420
1421 ret = walk_tree (gimple_call_lhs_ptr (stmt), callback_op, wi, pset);
1422 if (ret)
1423 return ret;
1424 }
1425
1426 if (wi)
1427 {
1428 wi->is_lhs = false;
1429 wi->val_only = true;
1430 }
1431 break;
1432
1433 case GIMPLE_CATCH:
1434 ret = walk_tree (gimple_catch_types_ptr (stmt), callback_op, wi,
1435 pset);
1436 if (ret)
1437 return ret;
1438 break;
1439
1440 case GIMPLE_EH_FILTER:
1441 ret = walk_tree (gimple_eh_filter_types_ptr (stmt), callback_op, wi,
1442 pset);
1443 if (ret)
1444 return ret;
1445 break;
1446
1447 case GIMPLE_ASM:
1448 ret = walk_gimple_asm (stmt, callback_op, wi);
1449 if (ret)
1450 return ret;
1451 break;
1452
1453 case GIMPLE_OMP_CONTINUE:
1454 ret = walk_tree (gimple_omp_continue_control_def_ptr (stmt),
1455 callback_op, wi, pset);
1456 if (ret)
1457 return ret;
1458
1459 ret = walk_tree (gimple_omp_continue_control_use_ptr (stmt),
1460 callback_op, wi, pset);
1461 if (ret)
1462 return ret;
1463 break;
1464
1465 case GIMPLE_OMP_CRITICAL:
1466 ret = walk_tree (gimple_omp_critical_name_ptr (stmt), callback_op, wi,
1467 pset);
1468 if (ret)
1469 return ret;
1470 break;
1471
1472 case GIMPLE_OMP_FOR:
1473 ret = walk_tree (gimple_omp_for_clauses_ptr (stmt), callback_op, wi,
1474 pset);
1475 if (ret)
1476 return ret;
1477 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1478 {
1479 ret = walk_tree (gimple_omp_for_index_ptr (stmt, i), callback_op,
1480 wi, pset);
1481 if (ret)
1482 return ret;
1483 ret = walk_tree (gimple_omp_for_initial_ptr (stmt, i), callback_op,
1484 wi, pset);
1485 if (ret)
1486 return ret;
1487 ret = walk_tree (gimple_omp_for_final_ptr (stmt, i), callback_op,
1488 wi, pset);
1489 if (ret)
1490 return ret;
1491 ret = walk_tree (gimple_omp_for_incr_ptr (stmt, i), callback_op,
1492 wi, pset);
1493 }
1494 if (ret)
1495 return ret;
1496 break;
1497
1498 case GIMPLE_OMP_PARALLEL:
1499 ret = walk_tree (gimple_omp_parallel_clauses_ptr (stmt), callback_op,
1500 wi, pset);
1501 if (ret)
1502 return ret;
1503 ret = walk_tree (gimple_omp_parallel_child_fn_ptr (stmt), callback_op,
1504 wi, pset);
1505 if (ret)
1506 return ret;
1507 ret = walk_tree (gimple_omp_parallel_data_arg_ptr (stmt), callback_op,
1508 wi, pset);
1509 if (ret)
1510 return ret;
1511 break;
1512
1513 case GIMPLE_OMP_TASK:
1514 ret = walk_tree (gimple_omp_task_clauses_ptr (stmt), callback_op,
1515 wi, pset);
1516 if (ret)
1517 return ret;
1518 ret = walk_tree (gimple_omp_task_child_fn_ptr (stmt), callback_op,
1519 wi, pset);
1520 if (ret)
1521 return ret;
1522 ret = walk_tree (gimple_omp_task_data_arg_ptr (stmt), callback_op,
1523 wi, pset);
1524 if (ret)
1525 return ret;
1526 ret = walk_tree (gimple_omp_task_copy_fn_ptr (stmt), callback_op,
1527 wi, pset);
1528 if (ret)
1529 return ret;
1530 ret = walk_tree (gimple_omp_task_arg_size_ptr (stmt), callback_op,
1531 wi, pset);
1532 if (ret)
1533 return ret;
1534 ret = walk_tree (gimple_omp_task_arg_align_ptr (stmt), callback_op,
1535 wi, pset);
1536 if (ret)
1537 return ret;
1538 break;
1539
1540 case GIMPLE_OMP_SECTIONS:
1541 ret = walk_tree (gimple_omp_sections_clauses_ptr (stmt), callback_op,
1542 wi, pset);
1543 if (ret)
1544 return ret;
1545
1546 ret = walk_tree (gimple_omp_sections_control_ptr (stmt), callback_op,
1547 wi, pset);
1548 if (ret)
1549 return ret;
1550
1551 break;
1552
1553 case GIMPLE_OMP_SINGLE:
1554 ret = walk_tree (gimple_omp_single_clauses_ptr (stmt), callback_op, wi,
1555 pset);
1556 if (ret)
1557 return ret;
1558 break;
1559
1560 case GIMPLE_OMP_ATOMIC_LOAD:
1561 ret = walk_tree (gimple_omp_atomic_load_lhs_ptr (stmt), callback_op, wi,
1562 pset);
1563 if (ret)
1564 return ret;
1565
1566 ret = walk_tree (gimple_omp_atomic_load_rhs_ptr (stmt), callback_op, wi,
1567 pset);
1568 if (ret)
1569 return ret;
1570 break;
1571
1572 case GIMPLE_OMP_ATOMIC_STORE:
1573 ret = walk_tree (gimple_omp_atomic_store_val_ptr (stmt), callback_op,
1574 wi, pset);
1575 if (ret)
1576 return ret;
1577 break;
1578
1579 /* Tuples that do not have operands. */
1580 case GIMPLE_NOP:
1581 case GIMPLE_RESX:
1582 case GIMPLE_OMP_RETURN:
1583 case GIMPLE_PREDICT:
1584 break;
1585
1586 default:
1587 {
1588 enum gimple_statement_structure_enum gss;
1589 gss = gimple_statement_structure (stmt);
1590 if (gss == GSS_WITH_OPS || gss == GSS_WITH_MEM_OPS)
1591 for (i = 0; i < gimple_num_ops (stmt); i++)
1592 {
1593 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi, pset);
1594 if (ret)
1595 return ret;
1596 }
1597 }
1598 break;
1599 }
1600
1601 return NULL_TREE;
1602 }
1603
1604
1605 /* Walk the current statement in GSI (optionally using traversal state
1606 stored in WI). If WI is NULL, no state is kept during traversal.
1607 The callback CALLBACK_STMT is called. If CALLBACK_STMT indicates
1608 that it has handled all the operands of the statement, its return
1609 value is returned. Otherwise, the return value from CALLBACK_STMT
1610 is discarded and its operands are scanned.
1611
1612 If CALLBACK_STMT is NULL or it didn't handle the operands,
1613 CALLBACK_OP is called on each operand of the statement via
1614 walk_gimple_op. If walk_gimple_op returns non-NULL for any
1615 operand, the remaining operands are not scanned. In this case, the
1616 return value from CALLBACK_OP is returned.
1617
1618 In any other case, NULL_TREE is returned. */
1619
1620 tree
1621 walk_gimple_stmt (gimple_stmt_iterator *gsi, walk_stmt_fn callback_stmt,
1622 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1623 {
1624 gimple ret;
1625 tree tree_ret;
1626 gimple stmt = gsi_stmt (*gsi);
1627
1628 if (wi)
1629 wi->gsi = *gsi;
1630
1631 if (wi && wi->want_locations && gimple_has_location (stmt))
1632 input_location = gimple_location (stmt);
1633
1634 ret = NULL;
1635
1636 /* Invoke the statement callback. Return if the callback handled
1637 all of STMT operands by itself. */
1638 if (callback_stmt)
1639 {
1640 bool handled_ops = false;
1641 tree_ret = callback_stmt (gsi, &handled_ops, wi);
1642 if (handled_ops)
1643 return tree_ret;
1644
1645 /* If CALLBACK_STMT did not handle operands, it should not have
1646 a value to return. */
1647 gcc_assert (tree_ret == NULL);
1648
1649 /* Re-read stmt in case the callback changed it. */
1650 stmt = gsi_stmt (*gsi);
1651 }
1652
1653 /* If CALLBACK_OP is defined, invoke it on every operand of STMT. */
1654 if (callback_op)
1655 {
1656 tree_ret = walk_gimple_op (stmt, callback_op, wi);
1657 if (tree_ret)
1658 return tree_ret;
1659 }
1660
1661 /* If STMT can have statements inside (e.g. GIMPLE_BIND), walk them. */
1662 switch (gimple_code (stmt))
1663 {
1664 case GIMPLE_BIND:
1665 ret = walk_gimple_seq (gimple_bind_body (stmt), callback_stmt,
1666 callback_op, wi);
1667 if (ret)
1668 return wi->callback_result;
1669 break;
1670
1671 case GIMPLE_CATCH:
1672 ret = walk_gimple_seq (gimple_catch_handler (stmt), callback_stmt,
1673 callback_op, wi);
1674 if (ret)
1675 return wi->callback_result;
1676 break;
1677
1678 case GIMPLE_EH_FILTER:
1679 ret = walk_gimple_seq (gimple_eh_filter_failure (stmt), callback_stmt,
1680 callback_op, wi);
1681 if (ret)
1682 return wi->callback_result;
1683 break;
1684
1685 case GIMPLE_TRY:
1686 ret = walk_gimple_seq (gimple_try_eval (stmt), callback_stmt, callback_op,
1687 wi);
1688 if (ret)
1689 return wi->callback_result;
1690
1691 ret = walk_gimple_seq (gimple_try_cleanup (stmt), callback_stmt,
1692 callback_op, wi);
1693 if (ret)
1694 return wi->callback_result;
1695 break;
1696
1697 case GIMPLE_OMP_FOR:
1698 ret = walk_gimple_seq (gimple_omp_for_pre_body (stmt), callback_stmt,
1699 callback_op, wi);
1700 if (ret)
1701 return wi->callback_result;
1702
1703 /* FALL THROUGH. */
1704 case GIMPLE_OMP_CRITICAL:
1705 case GIMPLE_OMP_MASTER:
1706 case GIMPLE_OMP_ORDERED:
1707 case GIMPLE_OMP_SECTION:
1708 case GIMPLE_OMP_PARALLEL:
1709 case GIMPLE_OMP_TASK:
1710 case GIMPLE_OMP_SECTIONS:
1711 case GIMPLE_OMP_SINGLE:
1712 ret = walk_gimple_seq (gimple_omp_body (stmt), callback_stmt, callback_op,
1713 wi);
1714 if (ret)
1715 return wi->callback_result;
1716 break;
1717
1718 case GIMPLE_WITH_CLEANUP_EXPR:
1719 ret = walk_gimple_seq (gimple_wce_cleanup (stmt), callback_stmt,
1720 callback_op, wi);
1721 if (ret)
1722 return wi->callback_result;
1723 break;
1724
1725 default:
1726 gcc_assert (!gimple_has_substatements (stmt));
1727 break;
1728 }
1729
1730 return NULL;
1731 }
1732
1733
1734 /* Set sequence SEQ to be the GIMPLE body for function FN. */
1735
1736 void
1737 gimple_set_body (tree fndecl, gimple_seq seq)
1738 {
1739 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1740 if (fn == NULL)
1741 {
1742 /* If FNDECL still does not have a function structure associated
1743 with it, then it does not make sense for it to receive a
1744 GIMPLE body. */
1745 gcc_assert (seq == NULL);
1746 }
1747 else
1748 fn->gimple_body = seq;
1749 }
1750
1751
1752 /* Return the body of GIMPLE statements for function FN. After the
1753 CFG pass, the function body doesn't exist anymore because it has
1754 been split up into basic blocks. In this case, it returns
1755 NULL. */
1756
1757 gimple_seq
1758 gimple_body (tree fndecl)
1759 {
1760 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1761 return fn ? fn->gimple_body : NULL;
1762 }
1763
1764 /* Return true when FNDECL has Gimple body either in unlowered
1765 or CFG form. */
1766 bool
1767 gimple_has_body_p (tree fndecl)
1768 {
1769 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1770 return (gimple_body (fndecl) || (fn && fn->cfg));
1771 }
1772
1773 /* Detect flags from a GIMPLE_CALL. This is just like
1774 call_expr_flags, but for gimple tuples. */
1775
1776 int
1777 gimple_call_flags (const_gimple stmt)
1778 {
1779 int flags;
1780 tree decl = gimple_call_fndecl (stmt);
1781 tree t;
1782
1783 if (decl)
1784 flags = flags_from_decl_or_type (decl);
1785 else
1786 {
1787 t = TREE_TYPE (gimple_call_fn (stmt));
1788 if (t && TREE_CODE (t) == POINTER_TYPE)
1789 flags = flags_from_decl_or_type (TREE_TYPE (t));
1790 else
1791 flags = 0;
1792 }
1793
1794 if (stmt->gsbase.subcode & GF_CALL_NOTHROW)
1795 flags |= ECF_NOTHROW;
1796
1797 return flags;
1798 }
1799
1800 /* Detects argument flags for argument number ARG on call STMT. */
1801
1802 int
1803 gimple_call_arg_flags (const_gimple stmt, unsigned arg)
1804 {
1805 tree type = TREE_TYPE (TREE_TYPE (gimple_call_fn (stmt)));
1806 tree attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1807 if (!attr)
1808 return 0;
1809
1810 attr = TREE_VALUE (TREE_VALUE (attr));
1811 if (1 + arg >= (unsigned) TREE_STRING_LENGTH (attr))
1812 return 0;
1813
1814 switch (TREE_STRING_POINTER (attr)[1 + arg])
1815 {
1816 case 'x':
1817 case 'X':
1818 return EAF_UNUSED;
1819
1820 case 'R':
1821 return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE;
1822
1823 case 'r':
1824 return EAF_NOCLOBBER | EAF_NOESCAPE;
1825
1826 case 'W':
1827 return EAF_DIRECT | EAF_NOESCAPE;
1828
1829 case 'w':
1830 return EAF_NOESCAPE;
1831
1832 case '.':
1833 default:
1834 return 0;
1835 }
1836 }
1837
1838 /* Detects return flags for the call STMT. */
1839
1840 int
1841 gimple_call_return_flags (const_gimple stmt)
1842 {
1843 tree type;
1844 tree attr = NULL_TREE;
1845
1846 if (gimple_call_flags (stmt) & ECF_MALLOC)
1847 return ERF_NOALIAS;
1848
1849 type = TREE_TYPE (TREE_TYPE (gimple_call_fn (stmt)));
1850 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1851 if (!attr)
1852 return 0;
1853
1854 attr = TREE_VALUE (TREE_VALUE (attr));
1855 if (TREE_STRING_LENGTH (attr) < 1)
1856 return 0;
1857
1858 switch (TREE_STRING_POINTER (attr)[0])
1859 {
1860 case '1':
1861 case '2':
1862 case '3':
1863 case '4':
1864 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
1865
1866 case 'm':
1867 return ERF_NOALIAS;
1868
1869 case '.':
1870 default:
1871 return 0;
1872 }
1873 }
1874
1875 /* Return true if GS is a copy assignment. */
1876
1877 bool
1878 gimple_assign_copy_p (gimple gs)
1879 {
1880 return gimple_code (gs) == GIMPLE_ASSIGN
1881 && get_gimple_rhs_class (gimple_assign_rhs_code (gs))
1882 == GIMPLE_SINGLE_RHS
1883 && is_gimple_val (gimple_op (gs, 1));
1884 }
1885
1886
1887 /* Return true if GS is a SSA_NAME copy assignment. */
1888
1889 bool
1890 gimple_assign_ssa_name_copy_p (gimple gs)
1891 {
1892 return (gimple_code (gs) == GIMPLE_ASSIGN
1893 && (get_gimple_rhs_class (gimple_assign_rhs_code (gs))
1894 == GIMPLE_SINGLE_RHS)
1895 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1896 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1897 }
1898
1899
1900 /* Return true if GS is an assignment with a singleton RHS, i.e.,
1901 there is no operator associated with the assignment itself.
1902 Unlike gimple_assign_copy_p, this predicate returns true for
1903 any RHS operand, including those that perform an operation
1904 and do not have the semantics of a copy, such as COND_EXPR. */
1905
1906 bool
1907 gimple_assign_single_p (gimple gs)
1908 {
1909 return (gimple_code (gs) == GIMPLE_ASSIGN
1910 && get_gimple_rhs_class (gimple_assign_rhs_code (gs))
1911 == GIMPLE_SINGLE_RHS);
1912 }
1913
1914 /* Return true if GS is an assignment with a unary RHS, but the
1915 operator has no effect on the assigned value. The logic is adapted
1916 from STRIP_NOPS. This predicate is intended to be used in tuplifying
1917 instances in which STRIP_NOPS was previously applied to the RHS of
1918 an assignment.
1919
1920 NOTE: In the use cases that led to the creation of this function
1921 and of gimple_assign_single_p, it is typical to test for either
1922 condition and to proceed in the same manner. In each case, the
1923 assigned value is represented by the single RHS operand of the
1924 assignment. I suspect there may be cases where gimple_assign_copy_p,
1925 gimple_assign_single_p, or equivalent logic is used where a similar
1926 treatment of unary NOPs is appropriate. */
1927
1928 bool
1929 gimple_assign_unary_nop_p (gimple gs)
1930 {
1931 return (gimple_code (gs) == GIMPLE_ASSIGN
1932 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
1933 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
1934 && gimple_assign_rhs1 (gs) != error_mark_node
1935 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
1936 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
1937 }
1938
1939 /* Set BB to be the basic block holding G. */
1940
1941 void
1942 gimple_set_bb (gimple stmt, basic_block bb)
1943 {
1944 stmt->gsbase.bb = bb;
1945
1946 /* If the statement is a label, add the label to block-to-labels map
1947 so that we can speed up edge creation for GIMPLE_GOTOs. */
1948 if (cfun->cfg && gimple_code (stmt) == GIMPLE_LABEL)
1949 {
1950 tree t;
1951 int uid;
1952
1953 t = gimple_label_label (stmt);
1954 uid = LABEL_DECL_UID (t);
1955 if (uid == -1)
1956 {
1957 unsigned old_len = VEC_length (basic_block, label_to_block_map);
1958 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
1959 if (old_len <= (unsigned) uid)
1960 {
1961 unsigned new_len = 3 * uid / 2 + 1;
1962
1963 VEC_safe_grow_cleared (basic_block, gc, label_to_block_map,
1964 new_len);
1965 }
1966 }
1967
1968 VEC_replace (basic_block, label_to_block_map, uid, bb);
1969 }
1970 }
1971
1972
1973 /* Modify the RHS of the assignment pointed-to by GSI using the
1974 operands in the expression tree EXPR.
1975
1976 NOTE: The statement pointed-to by GSI may be reallocated if it
1977 did not have enough operand slots.
1978
1979 This function is useful to convert an existing tree expression into
1980 the flat representation used for the RHS of a GIMPLE assignment.
1981 It will reallocate memory as needed to expand or shrink the number
1982 of operand slots needed to represent EXPR.
1983
1984 NOTE: If you find yourself building a tree and then calling this
1985 function, you are most certainly doing it the slow way. It is much
1986 better to build a new assignment or to use the function
1987 gimple_assign_set_rhs_with_ops, which does not require an
1988 expression tree to be built. */
1989
1990 void
1991 gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
1992 {
1993 enum tree_code subcode;
1994 tree op1, op2, op3;
1995
1996 extract_ops_from_tree_1 (expr, &subcode, &op1, &op2, &op3);
1997 gimple_assign_set_rhs_with_ops_1 (gsi, subcode, op1, op2, op3);
1998 }
1999
2000
2001 /* Set the RHS of assignment statement pointed-to by GSI to CODE with
2002 operands OP1, OP2 and OP3.
2003
2004 NOTE: The statement pointed-to by GSI may be reallocated if it
2005 did not have enough operand slots. */
2006
2007 void
2008 gimple_assign_set_rhs_with_ops_1 (gimple_stmt_iterator *gsi, enum tree_code code,
2009 tree op1, tree op2, tree op3)
2010 {
2011 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
2012 gimple stmt = gsi_stmt (*gsi);
2013
2014 /* If the new CODE needs more operands, allocate a new statement. */
2015 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
2016 {
2017 tree lhs = gimple_assign_lhs (stmt);
2018 gimple new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
2019 memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
2020 gsi_replace (gsi, new_stmt, true);
2021 stmt = new_stmt;
2022
2023 /* The LHS needs to be reset as this also changes the SSA name
2024 on the LHS. */
2025 gimple_assign_set_lhs (stmt, lhs);
2026 }
2027
2028 gimple_set_num_ops (stmt, new_rhs_ops + 1);
2029 gimple_set_subcode (stmt, code);
2030 gimple_assign_set_rhs1 (stmt, op1);
2031 if (new_rhs_ops > 1)
2032 gimple_assign_set_rhs2 (stmt, op2);
2033 if (new_rhs_ops > 2)
2034 gimple_assign_set_rhs3 (stmt, op3);
2035 }
2036
2037
2038 /* Return the LHS of a statement that performs an assignment,
2039 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
2040 for a call to a function that returns no value, or for a
2041 statement other than an assignment or a call. */
2042
2043 tree
2044 gimple_get_lhs (const_gimple stmt)
2045 {
2046 enum gimple_code code = gimple_code (stmt);
2047
2048 if (code == GIMPLE_ASSIGN)
2049 return gimple_assign_lhs (stmt);
2050 else if (code == GIMPLE_CALL)
2051 return gimple_call_lhs (stmt);
2052 else
2053 return NULL_TREE;
2054 }
2055
2056
2057 /* Set the LHS of a statement that performs an assignment,
2058 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2059
2060 void
2061 gimple_set_lhs (gimple stmt, tree lhs)
2062 {
2063 enum gimple_code code = gimple_code (stmt);
2064
2065 if (code == GIMPLE_ASSIGN)
2066 gimple_assign_set_lhs (stmt, lhs);
2067 else if (code == GIMPLE_CALL)
2068 gimple_call_set_lhs (stmt, lhs);
2069 else
2070 gcc_unreachable();
2071 }
2072
2073 /* Replace the LHS of STMT, an assignment, either a GIMPLE_ASSIGN or a
2074 GIMPLE_CALL, with NLHS, in preparation for modifying the RHS to an
2075 expression with a different value.
2076
2077 This will update any annotations (say debug bind stmts) referring
2078 to the original LHS, so that they use the RHS instead. This is
2079 done even if NLHS and LHS are the same, for it is understood that
2080 the RHS will be modified afterwards, and NLHS will not be assigned
2081 an equivalent value.
2082
2083 Adjusting any non-annotation uses of the LHS, if needed, is a
2084 responsibility of the caller.
2085
2086 The effect of this call should be pretty much the same as that of
2087 inserting a copy of STMT before STMT, and then removing the
2088 original stmt, at which time gsi_remove() would have update
2089 annotations, but using this function saves all the inserting,
2090 copying and removing. */
2091
2092 void
2093 gimple_replace_lhs (gimple stmt, tree nlhs)
2094 {
2095 if (MAY_HAVE_DEBUG_STMTS)
2096 {
2097 tree lhs = gimple_get_lhs (stmt);
2098
2099 gcc_assert (SSA_NAME_DEF_STMT (lhs) == stmt);
2100
2101 insert_debug_temp_for_var_def (NULL, lhs);
2102 }
2103
2104 gimple_set_lhs (stmt, nlhs);
2105 }
2106
2107 /* Return a deep copy of statement STMT. All the operands from STMT
2108 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
2109 and VUSE operand arrays are set to empty in the new copy. */
2110
2111 gimple
2112 gimple_copy (gimple stmt)
2113 {
2114 enum gimple_code code = gimple_code (stmt);
2115 unsigned num_ops = gimple_num_ops (stmt);
2116 gimple copy = gimple_alloc (code, num_ops);
2117 unsigned i;
2118
2119 /* Shallow copy all the fields from STMT. */
2120 memcpy (copy, stmt, gimple_size (code));
2121
2122 /* If STMT has sub-statements, deep-copy them as well. */
2123 if (gimple_has_substatements (stmt))
2124 {
2125 gimple_seq new_seq;
2126 tree t;
2127
2128 switch (gimple_code (stmt))
2129 {
2130 case GIMPLE_BIND:
2131 new_seq = gimple_seq_copy (gimple_bind_body (stmt));
2132 gimple_bind_set_body (copy, new_seq);
2133 gimple_bind_set_vars (copy, unshare_expr (gimple_bind_vars (stmt)));
2134 gimple_bind_set_block (copy, gimple_bind_block (stmt));
2135 break;
2136
2137 case GIMPLE_CATCH:
2138 new_seq = gimple_seq_copy (gimple_catch_handler (stmt));
2139 gimple_catch_set_handler (copy, new_seq);
2140 t = unshare_expr (gimple_catch_types (stmt));
2141 gimple_catch_set_types (copy, t);
2142 break;
2143
2144 case GIMPLE_EH_FILTER:
2145 new_seq = gimple_seq_copy (gimple_eh_filter_failure (stmt));
2146 gimple_eh_filter_set_failure (copy, new_seq);
2147 t = unshare_expr (gimple_eh_filter_types (stmt));
2148 gimple_eh_filter_set_types (copy, t);
2149 break;
2150
2151 case GIMPLE_TRY:
2152 new_seq = gimple_seq_copy (gimple_try_eval (stmt));
2153 gimple_try_set_eval (copy, new_seq);
2154 new_seq = gimple_seq_copy (gimple_try_cleanup (stmt));
2155 gimple_try_set_cleanup (copy, new_seq);
2156 break;
2157
2158 case GIMPLE_OMP_FOR:
2159 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
2160 gimple_omp_for_set_pre_body (copy, new_seq);
2161 t = unshare_expr (gimple_omp_for_clauses (stmt));
2162 gimple_omp_for_set_clauses (copy, t);
2163 copy->gimple_omp_for.iter
2164 = ggc_alloc_vec_gimple_omp_for_iter
2165 (gimple_omp_for_collapse (stmt));
2166 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
2167 {
2168 gimple_omp_for_set_cond (copy, i,
2169 gimple_omp_for_cond (stmt, i));
2170 gimple_omp_for_set_index (copy, i,
2171 gimple_omp_for_index (stmt, i));
2172 t = unshare_expr (gimple_omp_for_initial (stmt, i));
2173 gimple_omp_for_set_initial (copy, i, t);
2174 t = unshare_expr (gimple_omp_for_final (stmt, i));
2175 gimple_omp_for_set_final (copy, i, t);
2176 t = unshare_expr (gimple_omp_for_incr (stmt, i));
2177 gimple_omp_for_set_incr (copy, i, t);
2178 }
2179 goto copy_omp_body;
2180
2181 case GIMPLE_OMP_PARALLEL:
2182 t = unshare_expr (gimple_omp_parallel_clauses (stmt));
2183 gimple_omp_parallel_set_clauses (copy, t);
2184 t = unshare_expr (gimple_omp_parallel_child_fn (stmt));
2185 gimple_omp_parallel_set_child_fn (copy, t);
2186 t = unshare_expr (gimple_omp_parallel_data_arg (stmt));
2187 gimple_omp_parallel_set_data_arg (copy, t);
2188 goto copy_omp_body;
2189
2190 case GIMPLE_OMP_TASK:
2191 t = unshare_expr (gimple_omp_task_clauses (stmt));
2192 gimple_omp_task_set_clauses (copy, t);
2193 t = unshare_expr (gimple_omp_task_child_fn (stmt));
2194 gimple_omp_task_set_child_fn (copy, t);
2195 t = unshare_expr (gimple_omp_task_data_arg (stmt));
2196 gimple_omp_task_set_data_arg (copy, t);
2197 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
2198 gimple_omp_task_set_copy_fn (copy, t);
2199 t = unshare_expr (gimple_omp_task_arg_size (stmt));
2200 gimple_omp_task_set_arg_size (copy, t);
2201 t = unshare_expr (gimple_omp_task_arg_align (stmt));
2202 gimple_omp_task_set_arg_align (copy, t);
2203 goto copy_omp_body;
2204
2205 case GIMPLE_OMP_CRITICAL:
2206 t = unshare_expr (gimple_omp_critical_name (stmt));
2207 gimple_omp_critical_set_name (copy, t);
2208 goto copy_omp_body;
2209
2210 case GIMPLE_OMP_SECTIONS:
2211 t = unshare_expr (gimple_omp_sections_clauses (stmt));
2212 gimple_omp_sections_set_clauses (copy, t);
2213 t = unshare_expr (gimple_omp_sections_control (stmt));
2214 gimple_omp_sections_set_control (copy, t);
2215 /* FALLTHRU */
2216
2217 case GIMPLE_OMP_SINGLE:
2218 case GIMPLE_OMP_SECTION:
2219 case GIMPLE_OMP_MASTER:
2220 case GIMPLE_OMP_ORDERED:
2221 copy_omp_body:
2222 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
2223 gimple_omp_set_body (copy, new_seq);
2224 break;
2225
2226 case GIMPLE_WITH_CLEANUP_EXPR:
2227 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
2228 gimple_wce_set_cleanup (copy, new_seq);
2229 break;
2230
2231 default:
2232 gcc_unreachable ();
2233 }
2234 }
2235
2236 /* Make copy of operands. */
2237 if (num_ops > 0)
2238 {
2239 for (i = 0; i < num_ops; i++)
2240 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
2241
2242 /* Clear out SSA operand vectors on COPY. */
2243 if (gimple_has_ops (stmt))
2244 {
2245 gimple_set_def_ops (copy, NULL);
2246 gimple_set_use_ops (copy, NULL);
2247 }
2248
2249 if (gimple_has_mem_ops (stmt))
2250 {
2251 gimple_set_vdef (copy, gimple_vdef (stmt));
2252 gimple_set_vuse (copy, gimple_vuse (stmt));
2253 }
2254
2255 /* SSA operands need to be updated. */
2256 gimple_set_modified (copy, true);
2257 }
2258
2259 return copy;
2260 }
2261
2262
2263 /* Set the MODIFIED flag to MODIFIEDP, iff the gimple statement G has
2264 a MODIFIED field. */
2265
2266 void
2267 gimple_set_modified (gimple s, bool modifiedp)
2268 {
2269 if (gimple_has_ops (s))
2270 {
2271 s->gsbase.modified = (unsigned) modifiedp;
2272
2273 if (modifiedp
2274 && cfun->gimple_df
2275 && is_gimple_call (s)
2276 && gimple_call_noreturn_p (s))
2277 VEC_safe_push (gimple, gc, MODIFIED_NORETURN_CALLS (cfun), s);
2278 }
2279 }
2280
2281
2282 /* Return true if statement S has side-effects. We consider a
2283 statement to have side effects if:
2284
2285 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
2286 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
2287
2288 bool
2289 gimple_has_side_effects (const_gimple s)
2290 {
2291 unsigned i;
2292
2293 if (is_gimple_debug (s))
2294 return false;
2295
2296 /* We don't have to scan the arguments to check for
2297 volatile arguments, though, at present, we still
2298 do a scan to check for TREE_SIDE_EFFECTS. */
2299 if (gimple_has_volatile_ops (s))
2300 return true;
2301
2302 if (is_gimple_call (s))
2303 {
2304 unsigned nargs = gimple_call_num_args (s);
2305
2306 if (!(gimple_call_flags (s) & (ECF_CONST | ECF_PURE)))
2307 return true;
2308 else if (gimple_call_flags (s) & ECF_LOOPING_CONST_OR_PURE)
2309 /* An infinite loop is considered a side effect. */
2310 return true;
2311
2312 if (gimple_call_lhs (s)
2313 && TREE_SIDE_EFFECTS (gimple_call_lhs (s)))
2314 {
2315 gcc_assert (gimple_has_volatile_ops (s));
2316 return true;
2317 }
2318
2319 if (TREE_SIDE_EFFECTS (gimple_call_fn (s)))
2320 return true;
2321
2322 for (i = 0; i < nargs; i++)
2323 if (TREE_SIDE_EFFECTS (gimple_call_arg (s, i)))
2324 {
2325 gcc_assert (gimple_has_volatile_ops (s));
2326 return true;
2327 }
2328
2329 return false;
2330 }
2331 else
2332 {
2333 for (i = 0; i < gimple_num_ops (s); i++)
2334 if (TREE_SIDE_EFFECTS (gimple_op (s, i)))
2335 {
2336 gcc_assert (gimple_has_volatile_ops (s));
2337 return true;
2338 }
2339 }
2340
2341 return false;
2342 }
2343
2344 /* Return true if the RHS of statement S has side effects.
2345 We may use it to determine if it is admissable to replace
2346 an assignment or call with a copy of a previously-computed
2347 value. In such cases, side-effects due the the LHS are
2348 preserved. */
2349
2350 bool
2351 gimple_rhs_has_side_effects (const_gimple s)
2352 {
2353 unsigned i;
2354
2355 if (is_gimple_call (s))
2356 {
2357 unsigned nargs = gimple_call_num_args (s);
2358
2359 if (!(gimple_call_flags (s) & (ECF_CONST | ECF_PURE)))
2360 return true;
2361
2362 /* We cannot use gimple_has_volatile_ops here,
2363 because we must ignore a volatile LHS. */
2364 if (TREE_SIDE_EFFECTS (gimple_call_fn (s))
2365 || TREE_THIS_VOLATILE (gimple_call_fn (s)))
2366 {
2367 gcc_assert (gimple_has_volatile_ops (s));
2368 return true;
2369 }
2370
2371 for (i = 0; i < nargs; i++)
2372 if (TREE_SIDE_EFFECTS (gimple_call_arg (s, i))
2373 || TREE_THIS_VOLATILE (gimple_call_arg (s, i)))
2374 return true;
2375
2376 return false;
2377 }
2378 else if (is_gimple_assign (s))
2379 {
2380 /* Skip the first operand, the LHS. */
2381 for (i = 1; i < gimple_num_ops (s); i++)
2382 if (TREE_SIDE_EFFECTS (gimple_op (s, i))
2383 || TREE_THIS_VOLATILE (gimple_op (s, i)))
2384 {
2385 gcc_assert (gimple_has_volatile_ops (s));
2386 return true;
2387 }
2388 }
2389 else if (is_gimple_debug (s))
2390 return false;
2391 else
2392 {
2393 /* For statements without an LHS, examine all arguments. */
2394 for (i = 0; i < gimple_num_ops (s); i++)
2395 if (TREE_SIDE_EFFECTS (gimple_op (s, i))
2396 || TREE_THIS_VOLATILE (gimple_op (s, i)))
2397 {
2398 gcc_assert (gimple_has_volatile_ops (s));
2399 return true;
2400 }
2401 }
2402
2403 return false;
2404 }
2405
2406 /* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
2407 Return true if S can trap. When INCLUDE_MEM is true, check whether
2408 the memory operations could trap. When INCLUDE_STORES is true and
2409 S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked. */
2410
2411 bool
2412 gimple_could_trap_p_1 (gimple s, bool include_mem, bool include_stores)
2413 {
2414 tree t, div = NULL_TREE;
2415 enum tree_code op;
2416
2417 if (include_mem)
2418 {
2419 unsigned i, start = (is_gimple_assign (s) && !include_stores) ? 1 : 0;
2420
2421 for (i = start; i < gimple_num_ops (s); i++)
2422 if (tree_could_trap_p (gimple_op (s, i)))
2423 return true;
2424 }
2425
2426 switch (gimple_code (s))
2427 {
2428 case GIMPLE_ASM:
2429 return gimple_asm_volatile_p (s);
2430
2431 case GIMPLE_CALL:
2432 t = gimple_call_fndecl (s);
2433 /* Assume that calls to weak functions may trap. */
2434 if (!t || !DECL_P (t) || DECL_WEAK (t))
2435 return true;
2436 return false;
2437
2438 case GIMPLE_ASSIGN:
2439 t = gimple_expr_type (s);
2440 op = gimple_assign_rhs_code (s);
2441 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
2442 div = gimple_assign_rhs2 (s);
2443 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
2444 (INTEGRAL_TYPE_P (t)
2445 && TYPE_OVERFLOW_TRAPS (t)),
2446 div));
2447
2448 default:
2449 break;
2450 }
2451
2452 return false;
2453 }
2454
2455 /* Return true if statement S can trap. */
2456
2457 bool
2458 gimple_could_trap_p (gimple s)
2459 {
2460 return gimple_could_trap_p_1 (s, true, true);
2461 }
2462
2463 /* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
2464
2465 bool
2466 gimple_assign_rhs_could_trap_p (gimple s)
2467 {
2468 gcc_assert (is_gimple_assign (s));
2469 return gimple_could_trap_p_1 (s, true, false);
2470 }
2471
2472
2473 /* Print debugging information for gimple stmts generated. */
2474
2475 void
2476 dump_gimple_statistics (void)
2477 {
2478 #ifdef GATHER_STATISTICS
2479 int i, total_tuples = 0, total_bytes = 0;
2480
2481 fprintf (stderr, "\nGIMPLE statements\n");
2482 fprintf (stderr, "Kind Stmts Bytes\n");
2483 fprintf (stderr, "---------------------------------------\n");
2484 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
2485 {
2486 fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i],
2487 gimple_alloc_counts[i], gimple_alloc_sizes[i]);
2488 total_tuples += gimple_alloc_counts[i];
2489 total_bytes += gimple_alloc_sizes[i];
2490 }
2491 fprintf (stderr, "---------------------------------------\n");
2492 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes);
2493 fprintf (stderr, "---------------------------------------\n");
2494 #else
2495 fprintf (stderr, "No gimple statistics\n");
2496 #endif
2497 }
2498
2499
2500 /* Return the number of operands needed on the RHS of a GIMPLE
2501 assignment for an expression with tree code CODE. */
2502
2503 unsigned
2504 get_gimple_rhs_num_ops (enum tree_code code)
2505 {
2506 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
2507
2508 if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
2509 return 1;
2510 else if (rhs_class == GIMPLE_BINARY_RHS)
2511 return 2;
2512 else if (rhs_class == GIMPLE_TERNARY_RHS)
2513 return 3;
2514 else
2515 gcc_unreachable ();
2516 }
2517
2518 #define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
2519 (unsigned char) \
2520 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
2521 : ((TYPE) == tcc_binary \
2522 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
2523 : ((TYPE) == tcc_constant \
2524 || (TYPE) == tcc_declaration \
2525 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
2526 : ((SYM) == TRUTH_AND_EXPR \
2527 || (SYM) == TRUTH_OR_EXPR \
2528 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
2529 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
2530 : ((SYM) == WIDEN_MULT_PLUS_EXPR \
2531 || (SYM) == WIDEN_MULT_MINUS_EXPR) ? GIMPLE_TERNARY_RHS \
2532 : ((SYM) == COND_EXPR \
2533 || (SYM) == CONSTRUCTOR \
2534 || (SYM) == OBJ_TYPE_REF \
2535 || (SYM) == ASSERT_EXPR \
2536 || (SYM) == ADDR_EXPR \
2537 || (SYM) == WITH_SIZE_EXPR \
2538 || (SYM) == SSA_NAME \
2539 || (SYM) == POLYNOMIAL_CHREC \
2540 || (SYM) == DOT_PROD_EXPR \
2541 || (SYM) == VEC_COND_EXPR \
2542 || (SYM) == REALIGN_LOAD_EXPR) ? GIMPLE_SINGLE_RHS \
2543 : GIMPLE_INVALID_RHS),
2544 #define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
2545
2546 const unsigned char gimple_rhs_class_table[] = {
2547 #include "all-tree.def"
2548 };
2549
2550 #undef DEFTREECODE
2551 #undef END_OF_BASE_TREE_CODES
2552
2553 /* For the definitive definition of GIMPLE, see doc/tree-ssa.texi. */
2554
2555 /* Validation of GIMPLE expressions. */
2556
2557 /* Returns true iff T is a valid RHS for an assignment to a renamed
2558 user -- or front-end generated artificial -- variable. */
2559
2560 bool
2561 is_gimple_reg_rhs (tree t)
2562 {
2563 return get_gimple_rhs_class (TREE_CODE (t)) != GIMPLE_INVALID_RHS;
2564 }
2565
2566 /* Returns true iff T is a valid RHS for an assignment to an un-renamed
2567 LHS, or for a call argument. */
2568
2569 bool
2570 is_gimple_mem_rhs (tree t)
2571 {
2572 /* If we're dealing with a renamable type, either source or dest must be
2573 a renamed variable. */
2574 if (is_gimple_reg_type (TREE_TYPE (t)))
2575 return is_gimple_val (t);
2576 else
2577 return is_gimple_val (t) || is_gimple_lvalue (t);
2578 }
2579
2580 /* Return true if T is a valid LHS for a GIMPLE assignment expression. */
2581
2582 bool
2583 is_gimple_lvalue (tree t)
2584 {
2585 return (is_gimple_addressable (t)
2586 || TREE_CODE (t) == WITH_SIZE_EXPR
2587 /* These are complex lvalues, but don't have addresses, so they
2588 go here. */
2589 || TREE_CODE (t) == BIT_FIELD_REF);
2590 }
2591
2592 /* Return true if T is a GIMPLE condition. */
2593
2594 bool
2595 is_gimple_condexpr (tree t)
2596 {
2597 return (is_gimple_val (t) || (COMPARISON_CLASS_P (t)
2598 && !tree_could_trap_p (t)
2599 && is_gimple_val (TREE_OPERAND (t, 0))
2600 && is_gimple_val (TREE_OPERAND (t, 1))));
2601 }
2602
2603 /* Return true if T is something whose address can be taken. */
2604
2605 bool
2606 is_gimple_addressable (tree t)
2607 {
2608 return (is_gimple_id (t) || handled_component_p (t)
2609 || TREE_CODE (t) == MEM_REF);
2610 }
2611
2612 /* Return true if T is a valid gimple constant. */
2613
2614 bool
2615 is_gimple_constant (const_tree t)
2616 {
2617 switch (TREE_CODE (t))
2618 {
2619 case INTEGER_CST:
2620 case REAL_CST:
2621 case FIXED_CST:
2622 case STRING_CST:
2623 case COMPLEX_CST:
2624 case VECTOR_CST:
2625 return true;
2626
2627 /* Vector constant constructors are gimple invariant. */
2628 case CONSTRUCTOR:
2629 if (TREE_TYPE (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2630 return TREE_CONSTANT (t);
2631 else
2632 return false;
2633
2634 default:
2635 return false;
2636 }
2637 }
2638
2639 /* Return true if T is a gimple address. */
2640
2641 bool
2642 is_gimple_address (const_tree t)
2643 {
2644 tree op;
2645
2646 if (TREE_CODE (t) != ADDR_EXPR)
2647 return false;
2648
2649 op = TREE_OPERAND (t, 0);
2650 while (handled_component_p (op))
2651 {
2652 if ((TREE_CODE (op) == ARRAY_REF
2653 || TREE_CODE (op) == ARRAY_RANGE_REF)
2654 && !is_gimple_val (TREE_OPERAND (op, 1)))
2655 return false;
2656
2657 op = TREE_OPERAND (op, 0);
2658 }
2659
2660 if (CONSTANT_CLASS_P (op) || TREE_CODE (op) == MEM_REF)
2661 return true;
2662
2663 switch (TREE_CODE (op))
2664 {
2665 case PARM_DECL:
2666 case RESULT_DECL:
2667 case LABEL_DECL:
2668 case FUNCTION_DECL:
2669 case VAR_DECL:
2670 case CONST_DECL:
2671 return true;
2672
2673 default:
2674 return false;
2675 }
2676 }
2677
2678 /* Strip out all handled components that produce invariant
2679 offsets. */
2680
2681 static const_tree
2682 strip_invariant_refs (const_tree op)
2683 {
2684 while (handled_component_p (op))
2685 {
2686 switch (TREE_CODE (op))
2687 {
2688 case ARRAY_REF:
2689 case ARRAY_RANGE_REF:
2690 if (!is_gimple_constant (TREE_OPERAND (op, 1))
2691 || TREE_OPERAND (op, 2) != NULL_TREE
2692 || TREE_OPERAND (op, 3) != NULL_TREE)
2693 return NULL;
2694 break;
2695
2696 case COMPONENT_REF:
2697 if (TREE_OPERAND (op, 2) != NULL_TREE)
2698 return NULL;
2699 break;
2700
2701 default:;
2702 }
2703 op = TREE_OPERAND (op, 0);
2704 }
2705
2706 return op;
2707 }
2708
2709 /* Return true if T is a gimple invariant address. */
2710
2711 bool
2712 is_gimple_invariant_address (const_tree t)
2713 {
2714 const_tree op;
2715
2716 if (TREE_CODE (t) != ADDR_EXPR)
2717 return false;
2718
2719 op = strip_invariant_refs (TREE_OPERAND (t, 0));
2720 if (!op)
2721 return false;
2722
2723 if (TREE_CODE (op) == MEM_REF)
2724 {
2725 const_tree op0 = TREE_OPERAND (op, 0);
2726 return (TREE_CODE (op0) == ADDR_EXPR
2727 && (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))
2728 || decl_address_invariant_p (TREE_OPERAND (op0, 0))));
2729 }
2730
2731 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
2732 }
2733
2734 /* Return true if T is a gimple invariant address at IPA level
2735 (so addresses of variables on stack are not allowed). */
2736
2737 bool
2738 is_gimple_ip_invariant_address (const_tree t)
2739 {
2740 const_tree op;
2741
2742 if (TREE_CODE (t) != ADDR_EXPR)
2743 return false;
2744
2745 op = strip_invariant_refs (TREE_OPERAND (t, 0));
2746
2747 return op && (CONSTANT_CLASS_P (op) || decl_address_ip_invariant_p (op));
2748 }
2749
2750 /* Return true if T is a GIMPLE minimal invariant. It's a restricted
2751 form of function invariant. */
2752
2753 bool
2754 is_gimple_min_invariant (const_tree t)
2755 {
2756 if (TREE_CODE (t) == ADDR_EXPR)
2757 return is_gimple_invariant_address (t);
2758
2759 return is_gimple_constant (t);
2760 }
2761
2762 /* Return true if T is a GIMPLE interprocedural invariant. It's a restricted
2763 form of gimple minimal invariant. */
2764
2765 bool
2766 is_gimple_ip_invariant (const_tree t)
2767 {
2768 if (TREE_CODE (t) == ADDR_EXPR)
2769 return is_gimple_ip_invariant_address (t);
2770
2771 return is_gimple_constant (t);
2772 }
2773
2774 /* Return true if T looks like a valid GIMPLE statement. */
2775
2776 bool
2777 is_gimple_stmt (tree t)
2778 {
2779 const enum tree_code code = TREE_CODE (t);
2780
2781 switch (code)
2782 {
2783 case NOP_EXPR:
2784 /* The only valid NOP_EXPR is the empty statement. */
2785 return IS_EMPTY_STMT (t);
2786
2787 case BIND_EXPR:
2788 case COND_EXPR:
2789 /* These are only valid if they're void. */
2790 return TREE_TYPE (t) == NULL || VOID_TYPE_P (TREE_TYPE (t));
2791
2792 case SWITCH_EXPR:
2793 case GOTO_EXPR:
2794 case RETURN_EXPR:
2795 case LABEL_EXPR:
2796 case CASE_LABEL_EXPR:
2797 case TRY_CATCH_EXPR:
2798 case TRY_FINALLY_EXPR:
2799 case EH_FILTER_EXPR:
2800 case CATCH_EXPR:
2801 case ASM_EXPR:
2802 case STATEMENT_LIST:
2803 case OMP_PARALLEL:
2804 case OMP_FOR:
2805 case OMP_SECTIONS:
2806 case OMP_SECTION:
2807 case OMP_SINGLE:
2808 case OMP_MASTER:
2809 case OMP_ORDERED:
2810 case OMP_CRITICAL:
2811 case OMP_TASK:
2812 /* These are always void. */
2813 return true;
2814
2815 case CALL_EXPR:
2816 case MODIFY_EXPR:
2817 case PREDICT_EXPR:
2818 /* These are valid regardless of their type. */
2819 return true;
2820
2821 default:
2822 return false;
2823 }
2824 }
2825
2826 /* Return true if T is a variable. */
2827
2828 bool
2829 is_gimple_variable (tree t)
2830 {
2831 return (TREE_CODE (t) == VAR_DECL
2832 || TREE_CODE (t) == PARM_DECL
2833 || TREE_CODE (t) == RESULT_DECL
2834 || TREE_CODE (t) == SSA_NAME);
2835 }
2836
2837 /* Return true if T is a GIMPLE identifier (something with an address). */
2838
2839 bool
2840 is_gimple_id (tree t)
2841 {
2842 return (is_gimple_variable (t)
2843 || TREE_CODE (t) == FUNCTION_DECL
2844 || TREE_CODE (t) == LABEL_DECL
2845 || TREE_CODE (t) == CONST_DECL
2846 /* Allow string constants, since they are addressable. */
2847 || TREE_CODE (t) == STRING_CST);
2848 }
2849
2850 /* Return true if TYPE is a suitable type for a scalar register variable. */
2851
2852 bool
2853 is_gimple_reg_type (tree type)
2854 {
2855 return !AGGREGATE_TYPE_P (type);
2856 }
2857
2858 /* Return true if T is a non-aggregate register variable. */
2859
2860 bool
2861 is_gimple_reg (tree t)
2862 {
2863 if (TREE_CODE (t) == SSA_NAME)
2864 t = SSA_NAME_VAR (t);
2865
2866 if (!is_gimple_variable (t))
2867 return false;
2868
2869 if (!is_gimple_reg_type (TREE_TYPE (t)))
2870 return false;
2871
2872 /* A volatile decl is not acceptable because we can't reuse it as
2873 needed. We need to copy it into a temp first. */
2874 if (TREE_THIS_VOLATILE (t))
2875 return false;
2876
2877 /* We define "registers" as things that can be renamed as needed,
2878 which with our infrastructure does not apply to memory. */
2879 if (needs_to_live_in_memory (t))
2880 return false;
2881
2882 /* Hard register variables are an interesting case. For those that
2883 are call-clobbered, we don't know where all the calls are, since
2884 we don't (want to) take into account which operations will turn
2885 into libcalls at the rtl level. For those that are call-saved,
2886 we don't currently model the fact that calls may in fact change
2887 global hard registers, nor do we examine ASM_CLOBBERS at the tree
2888 level, and so miss variable changes that might imply. All around,
2889 it seems safest to not do too much optimization with these at the
2890 tree level at all. We'll have to rely on the rtl optimizers to
2891 clean this up, as there we've got all the appropriate bits exposed. */
2892 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
2893 return false;
2894
2895 /* Complex and vector values must have been put into SSA-like form.
2896 That is, no assignments to the individual components. */
2897 if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE
2898 || TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2899 return DECL_GIMPLE_REG_P (t);
2900
2901 return true;
2902 }
2903
2904
2905 /* Return true if T is a GIMPLE variable whose address is not needed. */
2906
2907 bool
2908 is_gimple_non_addressable (tree t)
2909 {
2910 if (TREE_CODE (t) == SSA_NAME)
2911 t = SSA_NAME_VAR (t);
2912
2913 return (is_gimple_variable (t) && ! needs_to_live_in_memory (t));
2914 }
2915
2916 /* Return true if T is a GIMPLE rvalue, i.e. an identifier or a constant. */
2917
2918 bool
2919 is_gimple_val (tree t)
2920 {
2921 /* Make loads from volatiles and memory vars explicit. */
2922 if (is_gimple_variable (t)
2923 && is_gimple_reg_type (TREE_TYPE (t))
2924 && !is_gimple_reg (t))
2925 return false;
2926
2927 return (is_gimple_variable (t) || is_gimple_min_invariant (t));
2928 }
2929
2930 /* Similarly, but accept hard registers as inputs to asm statements. */
2931
2932 bool
2933 is_gimple_asm_val (tree t)
2934 {
2935 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
2936 return true;
2937
2938 return is_gimple_val (t);
2939 }
2940
2941 /* Return true if T is a GIMPLE minimal lvalue. */
2942
2943 bool
2944 is_gimple_min_lval (tree t)
2945 {
2946 if (!(t = CONST_CAST_TREE (strip_invariant_refs (t))))
2947 return false;
2948 return (is_gimple_id (t) || TREE_CODE (t) == MEM_REF);
2949 }
2950
2951 /* Return true if T is a typecast operation. */
2952
2953 bool
2954 is_gimple_cast (tree t)
2955 {
2956 return (CONVERT_EXPR_P (t)
2957 || TREE_CODE (t) == FIX_TRUNC_EXPR);
2958 }
2959
2960 /* Return true if T is a valid function operand of a CALL_EXPR. */
2961
2962 bool
2963 is_gimple_call_addr (tree t)
2964 {
2965 return (TREE_CODE (t) == OBJ_TYPE_REF || is_gimple_val (t));
2966 }
2967
2968 /* Return true if T is a valid address operand of a MEM_REF. */
2969
2970 bool
2971 is_gimple_mem_ref_addr (tree t)
2972 {
2973 return (is_gimple_reg (t)
2974 || TREE_CODE (t) == INTEGER_CST
2975 || (TREE_CODE (t) == ADDR_EXPR
2976 && (CONSTANT_CLASS_P (TREE_OPERAND (t, 0))
2977 || decl_address_invariant_p (TREE_OPERAND (t, 0)))));
2978 }
2979
2980 /* If T makes a function call, return the corresponding CALL_EXPR operand.
2981 Otherwise, return NULL_TREE. */
2982
2983 tree
2984 get_call_expr_in (tree t)
2985 {
2986 if (TREE_CODE (t) == MODIFY_EXPR)
2987 t = TREE_OPERAND (t, 1);
2988 if (TREE_CODE (t) == WITH_SIZE_EXPR)
2989 t = TREE_OPERAND (t, 0);
2990 if (TREE_CODE (t) == CALL_EXPR)
2991 return t;
2992 return NULL_TREE;
2993 }
2994
2995
2996 /* Given a memory reference expression T, return its base address.
2997 The base address of a memory reference expression is the main
2998 object being referenced. For instance, the base address for
2999 'array[i].fld[j]' is 'array'. You can think of this as stripping
3000 away the offset part from a memory address.
3001
3002 This function calls handled_component_p to strip away all the inner
3003 parts of the memory reference until it reaches the base object. */
3004
3005 tree
3006 get_base_address (tree t)
3007 {
3008 while (handled_component_p (t))
3009 t = TREE_OPERAND (t, 0);
3010
3011 if ((TREE_CODE (t) == MEM_REF
3012 || TREE_CODE (t) == TARGET_MEM_REF)
3013 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
3014 t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
3015
3016 if (TREE_CODE (t) == SSA_NAME
3017 || DECL_P (t)
3018 || TREE_CODE (t) == STRING_CST
3019 || TREE_CODE (t) == CONSTRUCTOR
3020 || INDIRECT_REF_P (t)
3021 || TREE_CODE (t) == MEM_REF
3022 || TREE_CODE (t) == TARGET_MEM_REF)
3023 return t;
3024 else
3025 return NULL_TREE;
3026 }
3027
3028 void
3029 recalculate_side_effects (tree t)
3030 {
3031 enum tree_code code = TREE_CODE (t);
3032 int len = TREE_OPERAND_LENGTH (t);
3033 int i;
3034
3035 switch (TREE_CODE_CLASS (code))
3036 {
3037 case tcc_expression:
3038 switch (code)
3039 {
3040 case INIT_EXPR:
3041 case MODIFY_EXPR:
3042 case VA_ARG_EXPR:
3043 case PREDECREMENT_EXPR:
3044 case PREINCREMENT_EXPR:
3045 case POSTDECREMENT_EXPR:
3046 case POSTINCREMENT_EXPR:
3047 /* All of these have side-effects, no matter what their
3048 operands are. */
3049 return;
3050
3051 default:
3052 break;
3053 }
3054 /* Fall through. */
3055
3056 case tcc_comparison: /* a comparison expression */
3057 case tcc_unary: /* a unary arithmetic expression */
3058 case tcc_binary: /* a binary arithmetic expression */
3059 case tcc_reference: /* a reference */
3060 case tcc_vl_exp: /* a function call */
3061 TREE_SIDE_EFFECTS (t) = TREE_THIS_VOLATILE (t);
3062 for (i = 0; i < len; ++i)
3063 {
3064 tree op = TREE_OPERAND (t, i);
3065 if (op && TREE_SIDE_EFFECTS (op))
3066 TREE_SIDE_EFFECTS (t) = 1;
3067 }
3068 break;
3069
3070 case tcc_constant:
3071 /* No side-effects. */
3072 return;
3073
3074 default:
3075 gcc_unreachable ();
3076 }
3077 }
3078
3079 /* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
3080 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
3081 we failed to create one. */
3082
3083 tree
3084 canonicalize_cond_expr_cond (tree t)
3085 {
3086 /* Strip conversions around boolean operations. */
3087 if (CONVERT_EXPR_P (t)
3088 && truth_value_p (TREE_CODE (TREE_OPERAND (t, 0))))
3089 t = TREE_OPERAND (t, 0);
3090
3091 /* For (bool)x use x != 0. */
3092 if (CONVERT_EXPR_P (t)
3093 && TREE_CODE (TREE_TYPE (t)) == BOOLEAN_TYPE)
3094 {
3095 tree top0 = TREE_OPERAND (t, 0);
3096 t = build2 (NE_EXPR, TREE_TYPE (t),
3097 top0, build_int_cst (TREE_TYPE (top0), 0));
3098 }
3099 /* For !x use x == 0. */
3100 else if (TREE_CODE (t) == TRUTH_NOT_EXPR)
3101 {
3102 tree top0 = TREE_OPERAND (t, 0);
3103 t = build2 (EQ_EXPR, TREE_TYPE (t),
3104 top0, build_int_cst (TREE_TYPE (top0), 0));
3105 }
3106 /* For cmp ? 1 : 0 use cmp. */
3107 else if (TREE_CODE (t) == COND_EXPR
3108 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
3109 && integer_onep (TREE_OPERAND (t, 1))
3110 && integer_zerop (TREE_OPERAND (t, 2)))
3111 {
3112 tree top0 = TREE_OPERAND (t, 0);
3113 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
3114 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
3115 }
3116
3117 if (is_gimple_condexpr (t))
3118 return t;
3119
3120 return NULL_TREE;
3121 }
3122
3123 /* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
3124 the positions marked by the set ARGS_TO_SKIP. */
3125
3126 gimple
3127 gimple_call_copy_skip_args (gimple stmt, bitmap args_to_skip)
3128 {
3129 int i;
3130 tree fn = gimple_call_fn (stmt);
3131 int nargs = gimple_call_num_args (stmt);
3132 VEC(tree, heap) *vargs = VEC_alloc (tree, heap, nargs);
3133 gimple new_stmt;
3134
3135 for (i = 0; i < nargs; i++)
3136 if (!bitmap_bit_p (args_to_skip, i))
3137 VEC_quick_push (tree, vargs, gimple_call_arg (stmt, i));
3138
3139 new_stmt = gimple_build_call_vec (fn, vargs);
3140 VEC_free (tree, heap, vargs);
3141 if (gimple_call_lhs (stmt))
3142 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
3143
3144 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
3145 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
3146
3147 gimple_set_block (new_stmt, gimple_block (stmt));
3148 if (gimple_has_location (stmt))
3149 gimple_set_location (new_stmt, gimple_location (stmt));
3150 gimple_call_copy_flags (new_stmt, stmt);
3151 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
3152
3153 gimple_set_modified (new_stmt, true);
3154
3155 return new_stmt;
3156 }
3157
3158
3159 static hashval_t gimple_type_hash (const void *);
3160
3161 /* Structure used to maintain a cache of some type pairs compared by
3162 gimple_types_compatible_p when comparing aggregate types. There are
3163 three possible values for SAME_P:
3164
3165 -2: The pair (T1, T2) has just been inserted in the table.
3166 0: T1 and T2 are different types.
3167 1: T1 and T2 are the same type.
3168
3169 The two elements in the SAME_P array are indexed by the comparison
3170 mode gtc_mode. */
3171
3172 struct type_pair_d
3173 {
3174 unsigned int uid1;
3175 unsigned int uid2;
3176 signed char same_p[2];
3177 };
3178 typedef struct type_pair_d *type_pair_t;
3179
3180 DEF_VEC_P(type_pair_t);
3181 DEF_VEC_ALLOC_P(type_pair_t,heap);
3182
3183 /* Return a hash value for the type pair pointed-to by P. */
3184
3185 static hashval_t
3186 type_pair_hash (const void *p)
3187 {
3188 const struct type_pair_d *pair = (const struct type_pair_d *) p;
3189 hashval_t val1 = pair->uid1;
3190 hashval_t val2 = pair->uid2;
3191 return (iterative_hash_hashval_t (val2, val1)
3192 ^ iterative_hash_hashval_t (val1, val2));
3193 }
3194
3195 /* Compare two type pairs pointed-to by P1 and P2. */
3196
3197 static int
3198 type_pair_eq (const void *p1, const void *p2)
3199 {
3200 const struct type_pair_d *pair1 = (const struct type_pair_d *) p1;
3201 const struct type_pair_d *pair2 = (const struct type_pair_d *) p2;
3202 return ((pair1->uid1 == pair2->uid1 && pair1->uid2 == pair2->uid2)
3203 || (pair1->uid1 == pair2->uid2 && pair1->uid2 == pair2->uid1));
3204 }
3205
3206 /* Lookup the pair of types T1 and T2 in *VISITED_P. Insert a new
3207 entry if none existed. */
3208
3209 static type_pair_t
3210 lookup_type_pair (tree t1, tree t2, htab_t *visited_p, struct obstack *ob_p)
3211 {
3212 struct type_pair_d pair;
3213 type_pair_t p;
3214 void **slot;
3215
3216 if (*visited_p == NULL)
3217 {
3218 *visited_p = htab_create (251, type_pair_hash, type_pair_eq, NULL);
3219 gcc_obstack_init (ob_p);
3220 }
3221
3222 pair.uid1 = TYPE_UID (t1);
3223 pair.uid2 = TYPE_UID (t2);
3224 slot = htab_find_slot (*visited_p, &pair, INSERT);
3225
3226 if (*slot)
3227 p = *((type_pair_t *) slot);
3228 else
3229 {
3230 p = XOBNEW (ob_p, struct type_pair_d);
3231 p->uid1 = TYPE_UID (t1);
3232 p->uid2 = TYPE_UID (t2);
3233 p->same_p[0] = -2;
3234 p->same_p[1] = -2;
3235 *slot = (void *) p;
3236 }
3237
3238 return p;
3239 }
3240
3241 /* Per pointer state for the SCC finding. The on_sccstack flag
3242 is not strictly required, it is true when there is no hash value
3243 recorded for the type and false otherwise. But querying that
3244 is slower. */
3245
3246 struct sccs
3247 {
3248 unsigned int dfsnum;
3249 unsigned int low;
3250 bool on_sccstack;
3251 union {
3252 hashval_t hash;
3253 signed char same_p;
3254 } u;
3255 };
3256
3257 static unsigned int next_dfs_num;
3258 static unsigned int gtc_next_dfs_num;
3259
3260 /* Return true if T1 and T2 have the same name. If FOR_COMPLETION_P is
3261 true then if any type has no name return false, otherwise return
3262 true if both types have no names. */
3263
3264 static bool
3265 compare_type_names_p (tree t1, tree t2, bool for_completion_p)
3266 {
3267 tree name1 = TYPE_NAME (t1);
3268 tree name2 = TYPE_NAME (t2);
3269
3270 /* Consider anonymous types all unique for completion. */
3271 if (for_completion_p
3272 && (!name1 || !name2))
3273 return false;
3274
3275 if (name1 && TREE_CODE (name1) == TYPE_DECL)
3276 {
3277 name1 = DECL_NAME (name1);
3278 if (for_completion_p
3279 && !name1)
3280 return false;
3281 }
3282 gcc_assert (!name1 || TREE_CODE (name1) == IDENTIFIER_NODE);
3283
3284 if (name2 && TREE_CODE (name2) == TYPE_DECL)
3285 {
3286 name2 = DECL_NAME (name2);
3287 if (for_completion_p
3288 && !name2)
3289 return false;
3290 }
3291 gcc_assert (!name2 || TREE_CODE (name2) == IDENTIFIER_NODE);
3292
3293 /* Identifiers can be compared with pointer equality rather
3294 than a string comparison. */
3295 if (name1 == name2)
3296 return true;
3297
3298 return false;
3299 }
3300
3301 /* Return true if the field decls F1 and F2 are at the same offset.
3302
3303 This is intended to be used on GIMPLE types only. In order to
3304 compare GENERIC types, use fields_compatible_p instead. */
3305
3306 bool
3307 gimple_compare_field_offset (tree f1, tree f2)
3308 {
3309 if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
3310 {
3311 tree offset1 = DECL_FIELD_OFFSET (f1);
3312 tree offset2 = DECL_FIELD_OFFSET (f2);
3313 return ((offset1 == offset2
3314 /* Once gimplification is done, self-referential offsets are
3315 instantiated as operand #2 of the COMPONENT_REF built for
3316 each access and reset. Therefore, they are not relevant
3317 anymore and fields are interchangeable provided that they
3318 represent the same access. */
3319 || (TREE_CODE (offset1) == PLACEHOLDER_EXPR
3320 && TREE_CODE (offset2) == PLACEHOLDER_EXPR
3321 && (DECL_SIZE (f1) == DECL_SIZE (f2)
3322 || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
3323 && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
3324 || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0))
3325 && DECL_ALIGN (f1) == DECL_ALIGN (f2))
3326 || operand_equal_p (offset1, offset2, 0))
3327 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
3328 DECL_FIELD_BIT_OFFSET (f2)));
3329 }
3330
3331 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
3332 should be, so handle differing ones specially by decomposing
3333 the offset into a byte and bit offset manually. */
3334 if (host_integerp (DECL_FIELD_OFFSET (f1), 0)
3335 && host_integerp (DECL_FIELD_OFFSET (f2), 0))
3336 {
3337 unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
3338 unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
3339 bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
3340 byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
3341 + bit_offset1 / BITS_PER_UNIT);
3342 bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
3343 byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
3344 + bit_offset2 / BITS_PER_UNIT);
3345 if (byte_offset1 != byte_offset2)
3346 return false;
3347 return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
3348 }
3349
3350 return false;
3351 }
3352
3353 /* If the type T1 and the type T2 are a complete and an incomplete
3354 variant of the same type return true. */
3355
3356 static bool
3357 gimple_compatible_complete_and_incomplete_subtype_p (tree t1, tree t2)
3358 {
3359 /* If one pointer points to an incomplete type variant of
3360 the other pointed-to type they are the same. */
3361 if (TREE_CODE (t1) == TREE_CODE (t2)
3362 && RECORD_OR_UNION_TYPE_P (t1)
3363 && (!COMPLETE_TYPE_P (t1)
3364 || !COMPLETE_TYPE_P (t2))
3365 && TYPE_QUALS (t1) == TYPE_QUALS (t2)
3366 && compare_type_names_p (TYPE_MAIN_VARIANT (t1),
3367 TYPE_MAIN_VARIANT (t2), true))
3368 return true;
3369 return false;
3370 }
3371
3372 static bool
3373 gimple_types_compatible_p_1 (tree, tree, enum gtc_mode, type_pair_t,
3374 VEC(type_pair_t, heap) **,
3375 struct pointer_map_t *, struct obstack *);
3376
3377 /* DFS visit the edge from the callers type pair with state *STATE to
3378 the pair T1, T2 while operating in FOR_MERGING_P mode.
3379 Update the merging status if it is not part of the SCC containing the
3380 callers pair and return it.
3381 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3382
3383 static bool
3384 gtc_visit (tree t1, tree t2, enum gtc_mode mode,
3385 struct sccs *state,
3386 VEC(type_pair_t, heap) **sccstack,
3387 struct pointer_map_t *sccstate,
3388 struct obstack *sccstate_obstack)
3389 {
3390 struct sccs *cstate = NULL;
3391 type_pair_t p;
3392 void **slot;
3393
3394 /* Check first for the obvious case of pointer identity. */
3395 if (t1 == t2)
3396 return true;
3397
3398 /* Check that we have two types to compare. */
3399 if (t1 == NULL_TREE || t2 == NULL_TREE)
3400 return false;
3401
3402 /* If the types have been previously registered and found equal
3403 they still are. */
3404 if (TYPE_CANONICAL (t1)
3405 && TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2))
3406 return true;
3407
3408 /* Can't be the same type if the types don't have the same code. */
3409 if (TREE_CODE (t1) != TREE_CODE (t2))
3410 return false;
3411
3412 /* Can't be the same type if they have different CV qualifiers. */
3413 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
3414 return false;
3415
3416 /* Void types are always the same. */
3417 if (TREE_CODE (t1) == VOID_TYPE)
3418 return true;
3419
3420 /* Do some simple checks before doing three hashtable queries. */
3421 if (INTEGRAL_TYPE_P (t1)
3422 || SCALAR_FLOAT_TYPE_P (t1)
3423 || FIXED_POINT_TYPE_P (t1)
3424 || TREE_CODE (t1) == VECTOR_TYPE
3425 || TREE_CODE (t1) == COMPLEX_TYPE
3426 || TREE_CODE (t1) == OFFSET_TYPE)
3427 {
3428 /* Can't be the same type if they have different alignment,
3429 sign, precision or mode. */
3430 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3431 || TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
3432 || TYPE_MODE (t1) != TYPE_MODE (t2)
3433 || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
3434 return false;
3435
3436 if (TREE_CODE (t1) == INTEGER_TYPE
3437 && (TYPE_IS_SIZETYPE (t1) != TYPE_IS_SIZETYPE (t2)
3438 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)))
3439 return false;
3440
3441 /* That's all we need to check for float and fixed-point types. */
3442 if (SCALAR_FLOAT_TYPE_P (t1)
3443 || FIXED_POINT_TYPE_P (t1))
3444 return true;
3445
3446 /* For integral types fall thru to more complex checks. */
3447 }
3448
3449 else if (AGGREGATE_TYPE_P (t1) || POINTER_TYPE_P (t1))
3450 {
3451 /* Can't be the same type if they have different alignment or mode. */
3452 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3453 || TYPE_MODE (t1) != TYPE_MODE (t2))
3454 return false;
3455 }
3456
3457 /* If the hash values of t1 and t2 are different the types can't
3458 possibly be the same. This helps keeping the type-pair hashtable
3459 small, only tracking comparisons for hash collisions. */
3460 if (gimple_type_hash (t1) != gimple_type_hash (t2))
3461 return false;
3462
3463 /* Allocate a new cache entry for this comparison. */
3464 p = lookup_type_pair (t1, t2, &gtc_visited, &gtc_ob);
3465 if (p->same_p[mode] == 0 || p->same_p[mode] == 1)
3466 {
3467 /* We have already decided whether T1 and T2 are the
3468 same, return the cached result. */
3469 return p->same_p[mode] == 1;
3470 }
3471
3472 if ((slot = pointer_map_contains (sccstate, p)) != NULL)
3473 cstate = (struct sccs *)*slot;
3474 if (!cstate)
3475 {
3476 bool res;
3477 /* Not yet visited. DFS recurse. */
3478 res = gimple_types_compatible_p_1 (t1, t2, mode, p,
3479 sccstack, sccstate, sccstate_obstack);
3480 if (!cstate)
3481 cstate = (struct sccs *)* pointer_map_contains (sccstate, p);
3482 state->low = MIN (state->low, cstate->low);
3483 /* If the type is no longer on the SCC stack and thus is not part
3484 of the parents SCC, return its state. Otherwise we will
3485 ignore this pair and assume equality. */
3486 if (!cstate->on_sccstack)
3487 return res;
3488 }
3489 if (cstate->dfsnum < state->dfsnum
3490 && cstate->on_sccstack)
3491 state->low = MIN (cstate->dfsnum, state->low);
3492
3493 /* We are part of our parents SCC, skip this entry and return true. */
3494 return true;
3495 }
3496
3497 /* Worker for gimple_types_compatible.
3498 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3499
3500 static bool
3501 gimple_types_compatible_p_1 (tree t1, tree t2, enum gtc_mode mode,
3502 type_pair_t p,
3503 VEC(type_pair_t, heap) **sccstack,
3504 struct pointer_map_t *sccstate,
3505 struct obstack *sccstate_obstack)
3506 {
3507 struct sccs *state;
3508
3509 gcc_assert (p->same_p[mode] == -2);
3510
3511 state = XOBNEW (sccstate_obstack, struct sccs);
3512 *pointer_map_insert (sccstate, p) = state;
3513
3514 VEC_safe_push (type_pair_t, heap, *sccstack, p);
3515 state->dfsnum = gtc_next_dfs_num++;
3516 state->low = state->dfsnum;
3517 state->on_sccstack = true;
3518
3519 /* If their attributes are not the same they can't be the same type. */
3520 if (!attribute_list_equal (TYPE_ATTRIBUTES (t1), TYPE_ATTRIBUTES (t2)))
3521 goto different_types;
3522
3523 /* Do type-specific comparisons. */
3524 switch (TREE_CODE (t1))
3525 {
3526 case VECTOR_TYPE:
3527 case COMPLEX_TYPE:
3528 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode,
3529 state, sccstack, sccstate, sccstate_obstack))
3530 goto different_types;
3531 goto same_types;
3532
3533 case ARRAY_TYPE:
3534 /* Array types are the same if the element types are the same and
3535 the number of elements are the same. */
3536 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode,
3537 state, sccstack, sccstate, sccstate_obstack)
3538 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
3539 || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
3540 goto different_types;
3541 else
3542 {
3543 tree i1 = TYPE_DOMAIN (t1);
3544 tree i2 = TYPE_DOMAIN (t2);
3545
3546 /* For an incomplete external array, the type domain can be
3547 NULL_TREE. Check this condition also. */
3548 if (i1 == NULL_TREE && i2 == NULL_TREE)
3549 goto same_types;
3550 else if (i1 == NULL_TREE || i2 == NULL_TREE)
3551 goto different_types;
3552 /* If for a complete array type the possibly gimplified sizes
3553 are different the types are different. */
3554 else if (((TYPE_SIZE (i1) != NULL) ^ (TYPE_SIZE (i2) != NULL))
3555 || (TYPE_SIZE (i1)
3556 && TYPE_SIZE (i2)
3557 && !operand_equal_p (TYPE_SIZE (i1), TYPE_SIZE (i2), 0)))
3558 goto different_types;
3559 else
3560 {
3561 tree min1 = TYPE_MIN_VALUE (i1);
3562 tree min2 = TYPE_MIN_VALUE (i2);
3563 tree max1 = TYPE_MAX_VALUE (i1);
3564 tree max2 = TYPE_MAX_VALUE (i2);
3565
3566 /* The minimum/maximum values have to be the same. */
3567 if ((min1 == min2
3568 || (min1 && min2
3569 && ((TREE_CODE (min1) == PLACEHOLDER_EXPR
3570 && TREE_CODE (min2) == PLACEHOLDER_EXPR)
3571 || operand_equal_p (min1, min2, 0))))
3572 && (max1 == max2
3573 || (max1 && max2
3574 && ((TREE_CODE (max1) == PLACEHOLDER_EXPR
3575 && TREE_CODE (max2) == PLACEHOLDER_EXPR)
3576 || operand_equal_p (max1, max2, 0)))))
3577 goto same_types;
3578 else
3579 goto different_types;
3580 }
3581 }
3582
3583 case METHOD_TYPE:
3584 /* Method types should belong to the same class. */
3585 if (!gtc_visit (TYPE_METHOD_BASETYPE (t1), TYPE_METHOD_BASETYPE (t2),
3586 mode, state, sccstack, sccstate, sccstate_obstack))
3587 goto different_types;
3588
3589 /* Fallthru */
3590
3591 case FUNCTION_TYPE:
3592 /* Function types are the same if the return type and arguments types
3593 are the same. */
3594 if ((mode != GTC_DIAG
3595 || !gimple_compatible_complete_and_incomplete_subtype_p
3596 (TREE_TYPE (t1), TREE_TYPE (t2)))
3597 && !gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode,
3598 state, sccstack, sccstate, sccstate_obstack))
3599 goto different_types;
3600
3601 if (!targetm.comp_type_attributes (t1, t2))
3602 goto different_types;
3603
3604 if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
3605 goto same_types;
3606 else
3607 {
3608 tree parms1, parms2;
3609
3610 for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
3611 parms1 && parms2;
3612 parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
3613 {
3614 if ((mode == GTC_MERGE
3615 || !gimple_compatible_complete_and_incomplete_subtype_p
3616 (TREE_VALUE (parms1), TREE_VALUE (parms2)))
3617 && !gtc_visit (TREE_VALUE (parms1), TREE_VALUE (parms2), mode,
3618 state, sccstack, sccstate, sccstate_obstack))
3619 goto different_types;
3620 }
3621
3622 if (parms1 || parms2)
3623 goto different_types;
3624
3625 goto same_types;
3626 }
3627
3628 case OFFSET_TYPE:
3629 {
3630 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode,
3631 state, sccstack, sccstate, sccstate_obstack)
3632 || !gtc_visit (TYPE_OFFSET_BASETYPE (t1),
3633 TYPE_OFFSET_BASETYPE (t2), mode,
3634 state, sccstack, sccstate, sccstate_obstack))
3635 goto different_types;
3636
3637 goto same_types;
3638 }
3639
3640 case POINTER_TYPE:
3641 case REFERENCE_TYPE:
3642 {
3643 /* If the two pointers have different ref-all attributes,
3644 they can't be the same type. */
3645 if (TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
3646 goto different_types;
3647
3648 /* If one pointer points to an incomplete type variant of
3649 the other pointed-to type they are the same. */
3650 if (mode == GTC_DIAG
3651 && gimple_compatible_complete_and_incomplete_subtype_p
3652 (TREE_TYPE (t1), TREE_TYPE (t2)))
3653 goto same_types;
3654
3655 /* Otherwise, pointer and reference types are the same if the
3656 pointed-to types are the same. */
3657 if (gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode,
3658 state, sccstack, sccstate, sccstate_obstack))
3659 goto same_types;
3660
3661 goto different_types;
3662 }
3663
3664 case NULLPTR_TYPE:
3665 /* There is only one decltype(nullptr). */
3666 goto same_types;
3667
3668 case INTEGER_TYPE:
3669 case BOOLEAN_TYPE:
3670 {
3671 tree min1 = TYPE_MIN_VALUE (t1);
3672 tree max1 = TYPE_MAX_VALUE (t1);
3673 tree min2 = TYPE_MIN_VALUE (t2);
3674 tree max2 = TYPE_MAX_VALUE (t2);
3675 bool min_equal_p = false;
3676 bool max_equal_p = false;
3677
3678 /* If either type has a minimum value, the other type must
3679 have the same. */
3680 if (min1 == NULL_TREE && min2 == NULL_TREE)
3681 min_equal_p = true;
3682 else if (min1 && min2 && operand_equal_p (min1, min2, 0))
3683 min_equal_p = true;
3684
3685 /* Likewise, if either type has a maximum value, the other
3686 type must have the same. */
3687 if (max1 == NULL_TREE && max2 == NULL_TREE)
3688 max_equal_p = true;
3689 else if (max1 && max2 && operand_equal_p (max1, max2, 0))
3690 max_equal_p = true;
3691
3692 if (!min_equal_p || !max_equal_p)
3693 goto different_types;
3694
3695 goto same_types;
3696 }
3697
3698 case ENUMERAL_TYPE:
3699 {
3700 /* FIXME lto, we cannot check bounds on enumeral types because
3701 different front ends will produce different values.
3702 In C, enumeral types are integers, while in C++ each element
3703 will have its own symbolic value. We should decide how enums
3704 are to be represented in GIMPLE and have each front end lower
3705 to that. */
3706 tree v1, v2;
3707
3708 /* For enumeral types, all the values must be the same. */
3709 if (TYPE_VALUES (t1) == TYPE_VALUES (t2))
3710 goto same_types;
3711
3712 for (v1 = TYPE_VALUES (t1), v2 = TYPE_VALUES (t2);
3713 v1 && v2;
3714 v1 = TREE_CHAIN (v1), v2 = TREE_CHAIN (v2))
3715 {
3716 tree c1 = TREE_VALUE (v1);
3717 tree c2 = TREE_VALUE (v2);
3718
3719 if (TREE_CODE (c1) == CONST_DECL)
3720 c1 = DECL_INITIAL (c1);
3721
3722 if (TREE_CODE (c2) == CONST_DECL)
3723 c2 = DECL_INITIAL (c2);
3724
3725 if (tree_int_cst_equal (c1, c2) != 1)
3726 goto different_types;
3727 }
3728
3729 /* If one enumeration has more values than the other, they
3730 are not the same. */
3731 if (v1 || v2)
3732 goto different_types;
3733
3734 goto same_types;
3735 }
3736
3737 case RECORD_TYPE:
3738 case UNION_TYPE:
3739 case QUAL_UNION_TYPE:
3740 {
3741 tree f1, f2;
3742
3743 /* The struct tags shall compare equal. */
3744 if (!compare_type_names_p (TYPE_MAIN_VARIANT (t1),
3745 TYPE_MAIN_VARIANT (t2), false))
3746 goto different_types;
3747
3748 /* For aggregate types, all the fields must be the same. */
3749 for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
3750 f1 && f2;
3751 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
3752 {
3753 /* The fields must have the same name, offset and type. */
3754 if (DECL_NAME (f1) != DECL_NAME (f2)
3755 || DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
3756 || !gimple_compare_field_offset (f1, f2)
3757 || !gtc_visit (TREE_TYPE (f1), TREE_TYPE (f2), mode,
3758 state, sccstack, sccstate, sccstate_obstack))
3759 goto different_types;
3760 }
3761
3762 /* If one aggregate has more fields than the other, they
3763 are not the same. */
3764 if (f1 || f2)
3765 goto different_types;
3766
3767 goto same_types;
3768 }
3769
3770 default:
3771 gcc_unreachable ();
3772 }
3773
3774 /* Common exit path for types that are not compatible. */
3775 different_types:
3776 state->u.same_p = 0;
3777 goto pop;
3778
3779 /* Common exit path for types that are compatible. */
3780 same_types:
3781 state->u.same_p = 1;
3782 goto pop;
3783
3784 pop:
3785 if (state->low == state->dfsnum)
3786 {
3787 type_pair_t x;
3788
3789 /* Pop off the SCC and set its cache values. */
3790 do
3791 {
3792 struct sccs *cstate;
3793 x = VEC_pop (type_pair_t, *sccstack);
3794 cstate = (struct sccs *)*pointer_map_contains (sccstate, x);
3795 cstate->on_sccstack = false;
3796 x->same_p[mode] = cstate->u.same_p;
3797 }
3798 while (x != p);
3799 }
3800
3801 return state->u.same_p;
3802 }
3803
3804 /* Return true iff T1 and T2 are structurally identical. When
3805 FOR_MERGING_P is true the an incomplete type and a complete type
3806 are considered different, otherwise they are considered compatible. */
3807
3808 bool
3809 gimple_types_compatible_p (tree t1, tree t2, enum gtc_mode mode)
3810 {
3811 VEC(type_pair_t, heap) *sccstack = NULL;
3812 struct pointer_map_t *sccstate;
3813 struct obstack sccstate_obstack;
3814 type_pair_t p = NULL;
3815 bool res;
3816
3817 /* Before starting to set up the SCC machinery handle simple cases. */
3818
3819 /* Check first for the obvious case of pointer identity. */
3820 if (t1 == t2)
3821 return true;
3822
3823 /* Check that we have two types to compare. */
3824 if (t1 == NULL_TREE || t2 == NULL_TREE)
3825 return false;
3826
3827 /* If the types have been previously registered and found equal
3828 they still are. */
3829 if (TYPE_CANONICAL (t1)
3830 && TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2))
3831 return true;
3832
3833 /* Can't be the same type if the types don't have the same code. */
3834 if (TREE_CODE (t1) != TREE_CODE (t2))
3835 return false;
3836
3837 /* Can't be the same type if they have different CV qualifiers. */
3838 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
3839 return false;
3840
3841 /* Void types are always the same. */
3842 if (TREE_CODE (t1) == VOID_TYPE)
3843 return true;
3844
3845 /* Do some simple checks before doing three hashtable queries. */
3846 if (INTEGRAL_TYPE_P (t1)
3847 || SCALAR_FLOAT_TYPE_P (t1)
3848 || FIXED_POINT_TYPE_P (t1)
3849 || TREE_CODE (t1) == VECTOR_TYPE
3850 || TREE_CODE (t1) == COMPLEX_TYPE
3851 || TREE_CODE (t1) == OFFSET_TYPE)
3852 {
3853 /* Can't be the same type if they have different alignment,
3854 sign, precision or mode. */
3855 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3856 || TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
3857 || TYPE_MODE (t1) != TYPE_MODE (t2)
3858 || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
3859 return false;
3860
3861 if (TREE_CODE (t1) == INTEGER_TYPE
3862 && (TYPE_IS_SIZETYPE (t1) != TYPE_IS_SIZETYPE (t2)
3863 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)))
3864 return false;
3865
3866 /* That's all we need to check for float and fixed-point types. */
3867 if (SCALAR_FLOAT_TYPE_P (t1)
3868 || FIXED_POINT_TYPE_P (t1))
3869 return true;
3870
3871 /* For integral types fall thru to more complex checks. */
3872 }
3873
3874 else if (AGGREGATE_TYPE_P (t1) || POINTER_TYPE_P (t1))
3875 {
3876 /* Can't be the same type if they have different alignment or mode. */
3877 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3878 || TYPE_MODE (t1) != TYPE_MODE (t2))
3879 return false;
3880 }
3881
3882 /* If the hash values of t1 and t2 are different the types can't
3883 possibly be the same. This helps keeping the type-pair hashtable
3884 small, only tracking comparisons for hash collisions. */
3885 if (gimple_type_hash (t1) != gimple_type_hash (t2))
3886 return false;
3887
3888 /* If we've visited this type pair before (in the case of aggregates
3889 with self-referential types), and we made a decision, return it. */
3890 p = lookup_type_pair (t1, t2, &gtc_visited, &gtc_ob);
3891 if (p->same_p[mode] == 0 || p->same_p[mode] == 1)
3892 {
3893 /* We have already decided whether T1 and T2 are the
3894 same, return the cached result. */
3895 return p->same_p[mode] == 1;
3896 }
3897
3898 /* Now set up the SCC machinery for the comparison. */
3899 gtc_next_dfs_num = 1;
3900 sccstate = pointer_map_create ();
3901 gcc_obstack_init (&sccstate_obstack);
3902 res = gimple_types_compatible_p_1 (t1, t2, mode, p,
3903 &sccstack, sccstate, &sccstate_obstack);
3904 VEC_free (type_pair_t, heap, sccstack);
3905 pointer_map_destroy (sccstate);
3906 obstack_free (&sccstate_obstack, NULL);
3907
3908 return res;
3909 }
3910
3911
3912 static hashval_t
3913 iterative_hash_gimple_type (tree, hashval_t, VEC(tree, heap) **,
3914 struct pointer_map_t *, struct obstack *);
3915
3916 /* DFS visit the edge from the callers type with state *STATE to T.
3917 Update the callers type hash V with the hash for T if it is not part
3918 of the SCC containing the callers type and return it.
3919 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3920
3921 static hashval_t
3922 visit (tree t, struct sccs *state, hashval_t v,
3923 VEC (tree, heap) **sccstack,
3924 struct pointer_map_t *sccstate,
3925 struct obstack *sccstate_obstack)
3926 {
3927 struct sccs *cstate = NULL;
3928 struct tree_int_map m;
3929 void **slot;
3930
3931 /* If there is a hash value recorded for this type then it can't
3932 possibly be part of our parent SCC. Simply mix in its hash. */
3933 m.base.from = t;
3934 if ((slot = htab_find_slot (type_hash_cache, &m, NO_INSERT))
3935 && *slot)
3936 return iterative_hash_hashval_t (((struct tree_int_map *) *slot)->to, v);
3937
3938 if ((slot = pointer_map_contains (sccstate, t)) != NULL)
3939 cstate = (struct sccs *)*slot;
3940 if (!cstate)
3941 {
3942 hashval_t tem;
3943 /* Not yet visited. DFS recurse. */
3944 tem = iterative_hash_gimple_type (t, v,
3945 sccstack, sccstate, sccstate_obstack);
3946 if (!cstate)
3947 cstate = (struct sccs *)* pointer_map_contains (sccstate, t);
3948 state->low = MIN (state->low, cstate->low);
3949 /* If the type is no longer on the SCC stack and thus is not part
3950 of the parents SCC mix in its hash value. Otherwise we will
3951 ignore the type for hashing purposes and return the unaltered
3952 hash value. */
3953 if (!cstate->on_sccstack)
3954 return tem;
3955 }
3956 if (cstate->dfsnum < state->dfsnum
3957 && cstate->on_sccstack)
3958 state->low = MIN (cstate->dfsnum, state->low);
3959
3960 /* We are part of our parents SCC, skip this type during hashing
3961 and return the unaltered hash value. */
3962 return v;
3963 }
3964
3965 /* Hash NAME with the previous hash value V and return it. */
3966
3967 static hashval_t
3968 iterative_hash_name (tree name, hashval_t v)
3969 {
3970 if (!name)
3971 return v;
3972 if (TREE_CODE (name) == TYPE_DECL)
3973 name = DECL_NAME (name);
3974 if (!name)
3975 return v;
3976 gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
3977 return iterative_hash_object (IDENTIFIER_HASH_VALUE (name), v);
3978 }
3979
3980 /* Returning a hash value for gimple type TYPE combined with VAL.
3981 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done.
3982
3983 To hash a type we end up hashing in types that are reachable.
3984 Through pointers we can end up with cycles which messes up the
3985 required property that we need to compute the same hash value
3986 for structurally equivalent types. To avoid this we have to
3987 hash all types in a cycle (the SCC) in a commutative way. The
3988 easiest way is to not mix in the hashes of the SCC members at
3989 all. To make this work we have to delay setting the hash
3990 values of the SCC until it is complete. */
3991
3992 static hashval_t
3993 iterative_hash_gimple_type (tree type, hashval_t val,
3994 VEC(tree, heap) **sccstack,
3995 struct pointer_map_t *sccstate,
3996 struct obstack *sccstate_obstack)
3997 {
3998 hashval_t v;
3999 void **slot;
4000 struct sccs *state;
4001
4002 /* Not visited during this DFS walk. */
4003 gcc_checking_assert (!pointer_map_contains (sccstate, type));
4004 state = XOBNEW (sccstate_obstack, struct sccs);
4005 *pointer_map_insert (sccstate, type) = state;
4006
4007 VEC_safe_push (tree, heap, *sccstack, type);
4008 state->dfsnum = next_dfs_num++;
4009 state->low = state->dfsnum;
4010 state->on_sccstack = true;
4011
4012 /* Combine a few common features of types so that types are grouped into
4013 smaller sets; when searching for existing matching types to merge,
4014 only existing types having the same features as the new type will be
4015 checked. */
4016 v = iterative_hash_hashval_t (TREE_CODE (type), 0);
4017 v = iterative_hash_hashval_t (TYPE_QUALS (type), v);
4018 v = iterative_hash_hashval_t (TREE_ADDRESSABLE (type), v);
4019
4020 /* Do not hash the types size as this will cause differences in
4021 hash values for the complete vs. the incomplete type variant. */
4022
4023 /* Incorporate common features of numerical types. */
4024 if (INTEGRAL_TYPE_P (type)
4025 || SCALAR_FLOAT_TYPE_P (type)
4026 || FIXED_POINT_TYPE_P (type))
4027 {
4028 v = iterative_hash_hashval_t (TYPE_PRECISION (type), v);
4029 v = iterative_hash_hashval_t (TYPE_MODE (type), v);
4030 v = iterative_hash_hashval_t (TYPE_UNSIGNED (type), v);
4031 }
4032
4033 /* For pointer and reference types, fold in information about the type
4034 pointed to but do not recurse into possibly incomplete types to
4035 avoid hash differences for complete vs. incomplete types. */
4036 if (POINTER_TYPE_P (type))
4037 {
4038 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (type)))
4039 {
4040 v = iterative_hash_hashval_t (TREE_CODE (TREE_TYPE (type)), v);
4041 v = iterative_hash_name
4042 (TYPE_NAME (TYPE_MAIN_VARIANT (TREE_TYPE (type))), v);
4043 }
4044 else
4045 v = visit (TREE_TYPE (type), state, v,
4046 sccstack, sccstate, sccstate_obstack);
4047 }
4048
4049 /* For integer types hash the types min/max values and the string flag. */
4050 if (TREE_CODE (type) == INTEGER_TYPE)
4051 {
4052 /* OMP lowering can introduce error_mark_node in place of
4053 random local decls in types. */
4054 if (TYPE_MIN_VALUE (type) != error_mark_node)
4055 v = iterative_hash_expr (TYPE_MIN_VALUE (type), v);
4056 if (TYPE_MAX_VALUE (type) != error_mark_node)
4057 v = iterative_hash_expr (TYPE_MAX_VALUE (type), v);
4058 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
4059 }
4060
4061 /* For array types hash their domain and the string flag. */
4062 if (TREE_CODE (type) == ARRAY_TYPE
4063 && TYPE_DOMAIN (type))
4064 {
4065 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
4066 v = visit (TYPE_DOMAIN (type), state, v,
4067 sccstack, sccstate, sccstate_obstack);
4068 }
4069
4070 /* Recurse for aggregates with a single element type. */
4071 if (TREE_CODE (type) == ARRAY_TYPE
4072 || TREE_CODE (type) == COMPLEX_TYPE
4073 || TREE_CODE (type) == VECTOR_TYPE)
4074 v = visit (TREE_TYPE (type), state, v,
4075 sccstack, sccstate, sccstate_obstack);
4076
4077 /* Incorporate function return and argument types. */
4078 if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE)
4079 {
4080 unsigned na;
4081 tree p;
4082
4083 /* For method types also incorporate their parent class. */
4084 if (TREE_CODE (type) == METHOD_TYPE)
4085 v = visit (TYPE_METHOD_BASETYPE (type), state, v,
4086 sccstack, sccstate, sccstate_obstack);
4087
4088 /* For result types allow mismatch in completeness. */
4089 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (type)))
4090 {
4091 v = iterative_hash_hashval_t (TREE_CODE (TREE_TYPE (type)), v);
4092 v = iterative_hash_name
4093 (TYPE_NAME (TYPE_MAIN_VARIANT (TREE_TYPE (type))), v);
4094 }
4095 else
4096 v = visit (TREE_TYPE (type), state, v,
4097 sccstack, sccstate, sccstate_obstack);
4098
4099 for (p = TYPE_ARG_TYPES (type), na = 0; p; p = TREE_CHAIN (p))
4100 {
4101 /* For argument types allow mismatch in completeness. */
4102 if (RECORD_OR_UNION_TYPE_P (TREE_VALUE (p)))
4103 {
4104 v = iterative_hash_hashval_t (TREE_CODE (TREE_VALUE (p)), v);
4105 v = iterative_hash_name
4106 (TYPE_NAME (TYPE_MAIN_VARIANT (TREE_VALUE (p))), v);
4107 }
4108 else
4109 v = visit (TREE_VALUE (p), state, v,
4110 sccstack, sccstate, sccstate_obstack);
4111 na++;
4112 }
4113
4114 v = iterative_hash_hashval_t (na, v);
4115 }
4116
4117 if (TREE_CODE (type) == RECORD_TYPE
4118 || TREE_CODE (type) == UNION_TYPE
4119 || TREE_CODE (type) == QUAL_UNION_TYPE)
4120 {
4121 unsigned nf;
4122 tree f;
4123
4124 v = iterative_hash_name (TYPE_NAME (TYPE_MAIN_VARIANT (type)), v);
4125
4126 for (f = TYPE_FIELDS (type), nf = 0; f; f = TREE_CHAIN (f))
4127 {
4128 v = iterative_hash_name (DECL_NAME (f), v);
4129 v = visit (TREE_TYPE (f), state, v,
4130 sccstack, sccstate, sccstate_obstack);
4131 nf++;
4132 }
4133
4134 v = iterative_hash_hashval_t (nf, v);
4135 }
4136
4137 /* Record hash for us. */
4138 state->u.hash = v;
4139
4140 /* See if we found an SCC. */
4141 if (state->low == state->dfsnum)
4142 {
4143 tree x;
4144
4145 /* Pop off the SCC and set its hash values. */
4146 do
4147 {
4148 struct sccs *cstate;
4149 struct tree_int_map *m = ggc_alloc_cleared_tree_int_map ();
4150 x = VEC_pop (tree, *sccstack);
4151 cstate = (struct sccs *)*pointer_map_contains (sccstate, x);
4152 cstate->on_sccstack = false;
4153 m->base.from = x;
4154 m->to = cstate->u.hash;
4155 slot = htab_find_slot (type_hash_cache, m, INSERT);
4156 gcc_assert (!*slot);
4157 *slot = (void *) m;
4158 }
4159 while (x != type);
4160 }
4161
4162 return iterative_hash_hashval_t (v, val);
4163 }
4164
4165
4166 /* Returns a hash value for P (assumed to be a type). The hash value
4167 is computed using some distinguishing features of the type. Note
4168 that we cannot use pointer hashing here as we may be dealing with
4169 two distinct instances of the same type.
4170
4171 This function should produce the same hash value for two compatible
4172 types according to gimple_types_compatible_p. */
4173
4174 static hashval_t
4175 gimple_type_hash (const void *p)
4176 {
4177 const_tree t = (const_tree) p;
4178 VEC(tree, heap) *sccstack = NULL;
4179 struct pointer_map_t *sccstate;
4180 struct obstack sccstate_obstack;
4181 hashval_t val;
4182 void **slot;
4183 struct tree_int_map m;
4184
4185 if (type_hash_cache == NULL)
4186 type_hash_cache = htab_create_ggc (512, tree_int_map_hash,
4187 tree_int_map_eq, NULL);
4188
4189 m.base.from = CONST_CAST_TREE (t);
4190 if ((slot = htab_find_slot (type_hash_cache, &m, NO_INSERT))
4191 && *slot)
4192 return iterative_hash_hashval_t (((struct tree_int_map *) *slot)->to, 0);
4193
4194 /* Perform a DFS walk and pre-hash all reachable types. */
4195 next_dfs_num = 1;
4196 sccstate = pointer_map_create ();
4197 gcc_obstack_init (&sccstate_obstack);
4198 val = iterative_hash_gimple_type (CONST_CAST_TREE (t), 0,
4199 &sccstack, sccstate, &sccstate_obstack);
4200 VEC_free (tree, heap, sccstack);
4201 pointer_map_destroy (sccstate);
4202 obstack_free (&sccstate_obstack, NULL);
4203
4204 return val;
4205 }
4206
4207
4208 /* Returns nonzero if P1 and P2 are equal. */
4209
4210 static int
4211 gimple_type_eq (const void *p1, const void *p2)
4212 {
4213 const_tree t1 = (const_tree) p1;
4214 const_tree t2 = (const_tree) p2;
4215 return gimple_types_compatible_p (CONST_CAST_TREE (t1),
4216 CONST_CAST_TREE (t2), GTC_MERGE);
4217 }
4218
4219
4220 /* Register type T in the global type table gimple_types.
4221 If another type T', compatible with T, already existed in
4222 gimple_types then return T', otherwise return T. This is used by
4223 LTO to merge identical types read from different TUs. */
4224
4225 tree
4226 gimple_register_type (tree t)
4227 {
4228 void **slot;
4229
4230 gcc_assert (TYPE_P (t));
4231
4232 /* In TYPE_CANONICAL we cache the result of gimple_register_type.
4233 It is initially set to NULL during LTO streaming.
4234 But do not mess with TYPE_CANONICAL when not in WPA or link phase. */
4235 if (in_lto_p && TYPE_CANONICAL (t))
4236 return TYPE_CANONICAL (t);
4237
4238 /* Always register the main variant first. This is important so we
4239 pick up the non-typedef variants as canonical, otherwise we'll end
4240 up taking typedef ids for structure tags during comparison. */
4241 if (TYPE_MAIN_VARIANT (t) != t)
4242 gimple_register_type (TYPE_MAIN_VARIANT (t));
4243
4244 if (gimple_types == NULL)
4245 gimple_types = htab_create_ggc (16381, gimple_type_hash, gimple_type_eq, 0);
4246
4247 slot = htab_find_slot (gimple_types, t, INSERT);
4248 if (*slot
4249 && *(tree *)slot != t)
4250 {
4251 tree new_type = (tree) *((tree *) slot);
4252
4253 /* Do not merge types with different addressability. */
4254 gcc_assert (TREE_ADDRESSABLE (t) == TREE_ADDRESSABLE (new_type));
4255
4256 /* If t is not its main variant then make t unreachable from its
4257 main variant list. Otherwise we'd queue up a lot of duplicates
4258 there. */
4259 if (t != TYPE_MAIN_VARIANT (t))
4260 {
4261 tree tem = TYPE_MAIN_VARIANT (t);
4262 while (tem && TYPE_NEXT_VARIANT (tem) != t)
4263 tem = TYPE_NEXT_VARIANT (tem);
4264 if (tem)
4265 TYPE_NEXT_VARIANT (tem) = TYPE_NEXT_VARIANT (t);
4266 TYPE_NEXT_VARIANT (t) = NULL_TREE;
4267 }
4268
4269 /* If we are a pointer then remove us from the pointer-to or
4270 reference-to chain. Otherwise we'd queue up a lot of duplicates
4271 there. */
4272 if (TREE_CODE (t) == POINTER_TYPE)
4273 {
4274 if (TYPE_POINTER_TO (TREE_TYPE (t)) == t)
4275 TYPE_POINTER_TO (TREE_TYPE (t)) = TYPE_NEXT_PTR_TO (t);
4276 else
4277 {
4278 tree tem = TYPE_POINTER_TO (TREE_TYPE (t));
4279 while (tem && TYPE_NEXT_PTR_TO (tem) != t)
4280 tem = TYPE_NEXT_PTR_TO (tem);
4281 if (tem)
4282 TYPE_NEXT_PTR_TO (tem) = TYPE_NEXT_PTR_TO (t);
4283 }
4284 TYPE_NEXT_PTR_TO (t) = NULL_TREE;
4285 }
4286 else if (TREE_CODE (t) == REFERENCE_TYPE)
4287 {
4288 if (TYPE_REFERENCE_TO (TREE_TYPE (t)) == t)
4289 TYPE_REFERENCE_TO (TREE_TYPE (t)) = TYPE_NEXT_REF_TO (t);
4290 else
4291 {
4292 tree tem = TYPE_REFERENCE_TO (TREE_TYPE (t));
4293 while (tem && TYPE_NEXT_REF_TO (tem) != t)
4294 tem = TYPE_NEXT_REF_TO (tem);
4295 if (tem)
4296 TYPE_NEXT_REF_TO (tem) = TYPE_NEXT_REF_TO (t);
4297 }
4298 TYPE_NEXT_REF_TO (t) = NULL_TREE;
4299 }
4300
4301 if (in_lto_p)
4302 TYPE_CANONICAL (t) = new_type;
4303 t = new_type;
4304 }
4305 else
4306 {
4307 if (in_lto_p)
4308 TYPE_CANONICAL (t) = t;
4309 *slot = (void *) t;
4310 }
4311
4312 return t;
4313 }
4314
4315
4316 /* Show statistics on references to the global type table gimple_types. */
4317
4318 void
4319 print_gimple_types_stats (void)
4320 {
4321 if (gimple_types)
4322 fprintf (stderr, "GIMPLE type table: size %ld, %ld elements, "
4323 "%ld searches, %ld collisions (ratio: %f)\n",
4324 (long) htab_size (gimple_types),
4325 (long) htab_elements (gimple_types),
4326 (long) gimple_types->searches,
4327 (long) gimple_types->collisions,
4328 htab_collisions (gimple_types));
4329 else
4330 fprintf (stderr, "GIMPLE type table is empty\n");
4331 if (type_hash_cache)
4332 fprintf (stderr, "GIMPLE type hash table: size %ld, %ld elements, "
4333 "%ld searches, %ld collisions (ratio: %f)\n",
4334 (long) htab_size (type_hash_cache),
4335 (long) htab_elements (type_hash_cache),
4336 (long) type_hash_cache->searches,
4337 (long) type_hash_cache->collisions,
4338 htab_collisions (type_hash_cache));
4339 else
4340 fprintf (stderr, "GIMPLE type hash table is empty\n");
4341 if (gtc_visited)
4342 fprintf (stderr, "GIMPLE type comparison table: size %ld, %ld "
4343 "elements, %ld searches, %ld collisions (ratio: %f)\n",
4344 (long) htab_size (gtc_visited),
4345 (long) htab_elements (gtc_visited),
4346 (long) gtc_visited->searches,
4347 (long) gtc_visited->collisions,
4348 htab_collisions (gtc_visited));
4349 else
4350 fprintf (stderr, "GIMPLE type comparison table is empty\n");
4351 }
4352
4353 /* Free the gimple type hashtables used for LTO type merging. */
4354
4355 void
4356 free_gimple_type_tables (void)
4357 {
4358 /* Last chance to print stats for the tables. */
4359 if (flag_lto_report)
4360 print_gimple_types_stats ();
4361
4362 if (gimple_types)
4363 {
4364 htab_delete (gimple_types);
4365 gimple_types = NULL;
4366 }
4367 if (type_hash_cache)
4368 {
4369 htab_delete (type_hash_cache);
4370 type_hash_cache = NULL;
4371 }
4372 if (gtc_visited)
4373 {
4374 htab_delete (gtc_visited);
4375 obstack_free (&gtc_ob, NULL);
4376 gtc_visited = NULL;
4377 }
4378 }
4379
4380
4381 /* Return a type the same as TYPE except unsigned or
4382 signed according to UNSIGNEDP. */
4383
4384 static tree
4385 gimple_signed_or_unsigned_type (bool unsignedp, tree type)
4386 {
4387 tree type1;
4388
4389 type1 = TYPE_MAIN_VARIANT (type);
4390 if (type1 == signed_char_type_node
4391 || type1 == char_type_node
4392 || type1 == unsigned_char_type_node)
4393 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
4394 if (type1 == integer_type_node || type1 == unsigned_type_node)
4395 return unsignedp ? unsigned_type_node : integer_type_node;
4396 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
4397 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
4398 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
4399 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
4400 if (type1 == long_long_integer_type_node
4401 || type1 == long_long_unsigned_type_node)
4402 return unsignedp
4403 ? long_long_unsigned_type_node
4404 : long_long_integer_type_node;
4405 if (int128_integer_type_node && (type1 == int128_integer_type_node || type1 == int128_unsigned_type_node))
4406 return unsignedp
4407 ? int128_unsigned_type_node
4408 : int128_integer_type_node;
4409 #if HOST_BITS_PER_WIDE_INT >= 64
4410 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
4411 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
4412 #endif
4413 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
4414 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
4415 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
4416 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
4417 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
4418 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
4419 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
4420 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
4421
4422 #define GIMPLE_FIXED_TYPES(NAME) \
4423 if (type1 == short_ ## NAME ## _type_node \
4424 || type1 == unsigned_short_ ## NAME ## _type_node) \
4425 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
4426 : short_ ## NAME ## _type_node; \
4427 if (type1 == NAME ## _type_node \
4428 || type1 == unsigned_ ## NAME ## _type_node) \
4429 return unsignedp ? unsigned_ ## NAME ## _type_node \
4430 : NAME ## _type_node; \
4431 if (type1 == long_ ## NAME ## _type_node \
4432 || type1 == unsigned_long_ ## NAME ## _type_node) \
4433 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
4434 : long_ ## NAME ## _type_node; \
4435 if (type1 == long_long_ ## NAME ## _type_node \
4436 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
4437 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
4438 : long_long_ ## NAME ## _type_node;
4439
4440 #define GIMPLE_FIXED_MODE_TYPES(NAME) \
4441 if (type1 == NAME ## _type_node \
4442 || type1 == u ## NAME ## _type_node) \
4443 return unsignedp ? u ## NAME ## _type_node \
4444 : NAME ## _type_node;
4445
4446 #define GIMPLE_FIXED_TYPES_SAT(NAME) \
4447 if (type1 == sat_ ## short_ ## NAME ## _type_node \
4448 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
4449 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
4450 : sat_ ## short_ ## NAME ## _type_node; \
4451 if (type1 == sat_ ## NAME ## _type_node \
4452 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
4453 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
4454 : sat_ ## NAME ## _type_node; \
4455 if (type1 == sat_ ## long_ ## NAME ## _type_node \
4456 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
4457 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
4458 : sat_ ## long_ ## NAME ## _type_node; \
4459 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
4460 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
4461 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
4462 : sat_ ## long_long_ ## NAME ## _type_node;
4463
4464 #define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
4465 if (type1 == sat_ ## NAME ## _type_node \
4466 || type1 == sat_ ## u ## NAME ## _type_node) \
4467 return unsignedp ? sat_ ## u ## NAME ## _type_node \
4468 : sat_ ## NAME ## _type_node;
4469
4470 GIMPLE_FIXED_TYPES (fract);
4471 GIMPLE_FIXED_TYPES_SAT (fract);
4472 GIMPLE_FIXED_TYPES (accum);
4473 GIMPLE_FIXED_TYPES_SAT (accum);
4474
4475 GIMPLE_FIXED_MODE_TYPES (qq);
4476 GIMPLE_FIXED_MODE_TYPES (hq);
4477 GIMPLE_FIXED_MODE_TYPES (sq);
4478 GIMPLE_FIXED_MODE_TYPES (dq);
4479 GIMPLE_FIXED_MODE_TYPES (tq);
4480 GIMPLE_FIXED_MODE_TYPES_SAT (qq);
4481 GIMPLE_FIXED_MODE_TYPES_SAT (hq);
4482 GIMPLE_FIXED_MODE_TYPES_SAT (sq);
4483 GIMPLE_FIXED_MODE_TYPES_SAT (dq);
4484 GIMPLE_FIXED_MODE_TYPES_SAT (tq);
4485 GIMPLE_FIXED_MODE_TYPES (ha);
4486 GIMPLE_FIXED_MODE_TYPES (sa);
4487 GIMPLE_FIXED_MODE_TYPES (da);
4488 GIMPLE_FIXED_MODE_TYPES (ta);
4489 GIMPLE_FIXED_MODE_TYPES_SAT (ha);
4490 GIMPLE_FIXED_MODE_TYPES_SAT (sa);
4491 GIMPLE_FIXED_MODE_TYPES_SAT (da);
4492 GIMPLE_FIXED_MODE_TYPES_SAT (ta);
4493
4494 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
4495 the precision; they have precision set to match their range, but
4496 may use a wider mode to match an ABI. If we change modes, we may
4497 wind up with bad conversions. For INTEGER_TYPEs in C, must check
4498 the precision as well, so as to yield correct results for
4499 bit-field types. C++ does not have these separate bit-field
4500 types, and producing a signed or unsigned variant of an
4501 ENUMERAL_TYPE may cause other problems as well. */
4502 if (!INTEGRAL_TYPE_P (type)
4503 || TYPE_UNSIGNED (type) == unsignedp)
4504 return type;
4505
4506 #define TYPE_OK(node) \
4507 (TYPE_MODE (type) == TYPE_MODE (node) \
4508 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
4509 if (TYPE_OK (signed_char_type_node))
4510 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
4511 if (TYPE_OK (integer_type_node))
4512 return unsignedp ? unsigned_type_node : integer_type_node;
4513 if (TYPE_OK (short_integer_type_node))
4514 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
4515 if (TYPE_OK (long_integer_type_node))
4516 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
4517 if (TYPE_OK (long_long_integer_type_node))
4518 return (unsignedp
4519 ? long_long_unsigned_type_node
4520 : long_long_integer_type_node);
4521 if (int128_integer_type_node && TYPE_OK (int128_integer_type_node))
4522 return (unsignedp
4523 ? int128_unsigned_type_node
4524 : int128_integer_type_node);
4525
4526 #if HOST_BITS_PER_WIDE_INT >= 64
4527 if (TYPE_OK (intTI_type_node))
4528 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
4529 #endif
4530 if (TYPE_OK (intDI_type_node))
4531 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
4532 if (TYPE_OK (intSI_type_node))
4533 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
4534 if (TYPE_OK (intHI_type_node))
4535 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
4536 if (TYPE_OK (intQI_type_node))
4537 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
4538
4539 #undef GIMPLE_FIXED_TYPES
4540 #undef GIMPLE_FIXED_MODE_TYPES
4541 #undef GIMPLE_FIXED_TYPES_SAT
4542 #undef GIMPLE_FIXED_MODE_TYPES_SAT
4543 #undef TYPE_OK
4544
4545 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
4546 }
4547
4548
4549 /* Return an unsigned type the same as TYPE in other respects. */
4550
4551 tree
4552 gimple_unsigned_type (tree type)
4553 {
4554 return gimple_signed_or_unsigned_type (true, type);
4555 }
4556
4557
4558 /* Return a signed type the same as TYPE in other respects. */
4559
4560 tree
4561 gimple_signed_type (tree type)
4562 {
4563 return gimple_signed_or_unsigned_type (false, type);
4564 }
4565
4566
4567 /* Return the typed-based alias set for T, which may be an expression
4568 or a type. Return -1 if we don't do anything special. */
4569
4570 alias_set_type
4571 gimple_get_alias_set (tree t)
4572 {
4573 tree u;
4574
4575 /* Permit type-punning when accessing a union, provided the access
4576 is directly through the union. For example, this code does not
4577 permit taking the address of a union member and then storing
4578 through it. Even the type-punning allowed here is a GCC
4579 extension, albeit a common and useful one; the C standard says
4580 that such accesses have implementation-defined behavior. */
4581 for (u = t;
4582 TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
4583 u = TREE_OPERAND (u, 0))
4584 if (TREE_CODE (u) == COMPONENT_REF
4585 && TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
4586 return 0;
4587
4588 /* That's all the expressions we handle specially. */
4589 if (!TYPE_P (t))
4590 return -1;
4591
4592 /* For convenience, follow the C standard when dealing with
4593 character types. Any object may be accessed via an lvalue that
4594 has character type. */
4595 if (t == char_type_node
4596 || t == signed_char_type_node
4597 || t == unsigned_char_type_node)
4598 return 0;
4599
4600 /* Allow aliasing between signed and unsigned variants of the same
4601 type. We treat the signed variant as canonical. */
4602 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
4603 {
4604 tree t1 = gimple_signed_type (t);
4605
4606 /* t1 == t can happen for boolean nodes which are always unsigned. */
4607 if (t1 != t)
4608 return get_alias_set (t1);
4609 }
4610
4611 return -1;
4612 }
4613
4614
4615 /* Data structure used to count the number of dereferences to PTR
4616 inside an expression. */
4617 struct count_ptr_d
4618 {
4619 tree ptr;
4620 unsigned num_stores;
4621 unsigned num_loads;
4622 };
4623
4624 /* Helper for count_uses_and_derefs. Called by walk_tree to look for
4625 (ALIGN/MISALIGNED_)INDIRECT_REF nodes for the pointer passed in DATA. */
4626
4627 static tree
4628 count_ptr_derefs (tree *tp, int *walk_subtrees, void *data)
4629 {
4630 struct walk_stmt_info *wi_p = (struct walk_stmt_info *) data;
4631 struct count_ptr_d *count_p = (struct count_ptr_d *) wi_p->info;
4632
4633 /* Do not walk inside ADDR_EXPR nodes. In the expression &ptr->fld,
4634 pointer 'ptr' is *not* dereferenced, it is simply used to compute
4635 the address of 'fld' as 'ptr + offsetof(fld)'. */
4636 if (TREE_CODE (*tp) == ADDR_EXPR)
4637 {
4638 *walk_subtrees = 0;
4639 return NULL_TREE;
4640 }
4641
4642 if (TREE_CODE (*tp) == MEM_REF && TREE_OPERAND (*tp, 0) == count_p->ptr)
4643 {
4644 if (wi_p->is_lhs)
4645 count_p->num_stores++;
4646 else
4647 count_p->num_loads++;
4648 }
4649
4650 return NULL_TREE;
4651 }
4652
4653 /* Count the number of direct and indirect uses for pointer PTR in
4654 statement STMT. The number of direct uses is stored in
4655 *NUM_USES_P. Indirect references are counted separately depending
4656 on whether they are store or load operations. The counts are
4657 stored in *NUM_STORES_P and *NUM_LOADS_P. */
4658
4659 void
4660 count_uses_and_derefs (tree ptr, gimple stmt, unsigned *num_uses_p,
4661 unsigned *num_loads_p, unsigned *num_stores_p)
4662 {
4663 ssa_op_iter i;
4664 tree use;
4665
4666 *num_uses_p = 0;
4667 *num_loads_p = 0;
4668 *num_stores_p = 0;
4669
4670 /* Find out the total number of uses of PTR in STMT. */
4671 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
4672 if (use == ptr)
4673 (*num_uses_p)++;
4674
4675 /* Now count the number of indirect references to PTR. This is
4676 truly awful, but we don't have much choice. There are no parent
4677 pointers inside INDIRECT_REFs, so an expression like
4678 '*x_1 = foo (x_1, *x_1)' needs to be traversed piece by piece to
4679 find all the indirect and direct uses of x_1 inside. The only
4680 shortcut we can take is the fact that GIMPLE only allows
4681 INDIRECT_REFs inside the expressions below. */
4682 if (is_gimple_assign (stmt)
4683 || gimple_code (stmt) == GIMPLE_RETURN
4684 || gimple_code (stmt) == GIMPLE_ASM
4685 || is_gimple_call (stmt))
4686 {
4687 struct walk_stmt_info wi;
4688 struct count_ptr_d count;
4689
4690 count.ptr = ptr;
4691 count.num_stores = 0;
4692 count.num_loads = 0;
4693
4694 memset (&wi, 0, sizeof (wi));
4695 wi.info = &count;
4696 walk_gimple_op (stmt, count_ptr_derefs, &wi);
4697
4698 *num_stores_p = count.num_stores;
4699 *num_loads_p = count.num_loads;
4700 }
4701
4702 gcc_assert (*num_uses_p >= *num_loads_p + *num_stores_p);
4703 }
4704
4705 /* From a tree operand OP return the base of a load or store operation
4706 or NULL_TREE if OP is not a load or a store. */
4707
4708 static tree
4709 get_base_loadstore (tree op)
4710 {
4711 while (handled_component_p (op))
4712 op = TREE_OPERAND (op, 0);
4713 if (DECL_P (op)
4714 || INDIRECT_REF_P (op)
4715 || TREE_CODE (op) == MEM_REF
4716 || TREE_CODE (op) == TARGET_MEM_REF)
4717 return op;
4718 return NULL_TREE;
4719 }
4720
4721 /* For the statement STMT call the callbacks VISIT_LOAD, VISIT_STORE and
4722 VISIT_ADDR if non-NULL on loads, store and address-taken operands
4723 passing the STMT, the base of the operand and DATA to it. The base
4724 will be either a decl, an indirect reference (including TARGET_MEM_REF)
4725 or the argument of an address expression.
4726 Returns the results of these callbacks or'ed. */
4727
4728 bool
4729 walk_stmt_load_store_addr_ops (gimple stmt, void *data,
4730 bool (*visit_load)(gimple, tree, void *),
4731 bool (*visit_store)(gimple, tree, void *),
4732 bool (*visit_addr)(gimple, tree, void *))
4733 {
4734 bool ret = false;
4735 unsigned i;
4736 if (gimple_assign_single_p (stmt))
4737 {
4738 tree lhs, rhs;
4739 if (visit_store)
4740 {
4741 lhs = get_base_loadstore (gimple_assign_lhs (stmt));
4742 if (lhs)
4743 ret |= visit_store (stmt, lhs, data);
4744 }
4745 rhs = gimple_assign_rhs1 (stmt);
4746 while (handled_component_p (rhs))
4747 rhs = TREE_OPERAND (rhs, 0);
4748 if (visit_addr)
4749 {
4750 if (TREE_CODE (rhs) == ADDR_EXPR)
4751 ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data);
4752 else if (TREE_CODE (rhs) == TARGET_MEM_REF
4753 && TREE_CODE (TMR_BASE (rhs)) == ADDR_EXPR)
4754 ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (rhs), 0), data);
4755 else if (TREE_CODE (rhs) == OBJ_TYPE_REF
4756 && TREE_CODE (OBJ_TYPE_REF_OBJECT (rhs)) == ADDR_EXPR)
4757 ret |= visit_addr (stmt, TREE_OPERAND (OBJ_TYPE_REF_OBJECT (rhs),
4758 0), data);
4759 lhs = gimple_assign_lhs (stmt);
4760 if (TREE_CODE (lhs) == TARGET_MEM_REF
4761 && TREE_CODE (TMR_BASE (lhs)) == ADDR_EXPR)
4762 ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (lhs), 0), data);
4763 }
4764 if (visit_load)
4765 {
4766 rhs = get_base_loadstore (rhs);
4767 if (rhs)
4768 ret |= visit_load (stmt, rhs, data);
4769 }
4770 }
4771 else if (visit_addr
4772 && (is_gimple_assign (stmt)
4773 || gimple_code (stmt) == GIMPLE_COND))
4774 {
4775 for (i = 0; i < gimple_num_ops (stmt); ++i)
4776 if (gimple_op (stmt, i)
4777 && TREE_CODE (gimple_op (stmt, i)) == ADDR_EXPR)
4778 ret |= visit_addr (stmt, TREE_OPERAND (gimple_op (stmt, i), 0), data);
4779 }
4780 else if (is_gimple_call (stmt))
4781 {
4782 if (visit_store)
4783 {
4784 tree lhs = gimple_call_lhs (stmt);
4785 if (lhs)
4786 {
4787 lhs = get_base_loadstore (lhs);
4788 if (lhs)
4789 ret |= visit_store (stmt, lhs, data);
4790 }
4791 }
4792 if (visit_load || visit_addr)
4793 for (i = 0; i < gimple_call_num_args (stmt); ++i)
4794 {
4795 tree rhs = gimple_call_arg (stmt, i);
4796 if (visit_addr
4797 && TREE_CODE (rhs) == ADDR_EXPR)
4798 ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data);
4799 else if (visit_load)
4800 {
4801 rhs = get_base_loadstore (rhs);
4802 if (rhs)
4803 ret |= visit_load (stmt, rhs, data);
4804 }
4805 }
4806 if (visit_addr
4807 && gimple_call_chain (stmt)
4808 && TREE_CODE (gimple_call_chain (stmt)) == ADDR_EXPR)
4809 ret |= visit_addr (stmt, TREE_OPERAND (gimple_call_chain (stmt), 0),
4810 data);
4811 if (visit_addr
4812 && gimple_call_return_slot_opt_p (stmt)
4813 && gimple_call_lhs (stmt) != NULL_TREE
4814 && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt))))
4815 ret |= visit_addr (stmt, gimple_call_lhs (stmt), data);
4816 }
4817 else if (gimple_code (stmt) == GIMPLE_ASM)
4818 {
4819 unsigned noutputs;
4820 const char *constraint;
4821 const char **oconstraints;
4822 bool allows_mem, allows_reg, is_inout;
4823 noutputs = gimple_asm_noutputs (stmt);
4824 oconstraints = XALLOCAVEC (const char *, noutputs);
4825 if (visit_store || visit_addr)
4826 for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
4827 {
4828 tree link = gimple_asm_output_op (stmt, i);
4829 tree op = get_base_loadstore (TREE_VALUE (link));
4830 if (op && visit_store)
4831 ret |= visit_store (stmt, op, data);
4832 if (visit_addr)
4833 {
4834 constraint = TREE_STRING_POINTER
4835 (TREE_VALUE (TREE_PURPOSE (link)));
4836 oconstraints[i] = constraint;
4837 parse_output_constraint (&constraint, i, 0, 0, &allows_mem,
4838 &allows_reg, &is_inout);
4839 if (op && !allows_reg && allows_mem)
4840 ret |= visit_addr (stmt, op, data);
4841 }
4842 }
4843 if (visit_load || visit_addr)
4844 for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
4845 {
4846 tree link = gimple_asm_input_op (stmt, i);
4847 tree op = TREE_VALUE (link);
4848 if (visit_addr
4849 && TREE_CODE (op) == ADDR_EXPR)
4850 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
4851 else if (visit_load || visit_addr)
4852 {
4853 op = get_base_loadstore (op);
4854 if (op)
4855 {
4856 if (visit_load)
4857 ret |= visit_load (stmt, op, data);
4858 if (visit_addr)
4859 {
4860 constraint = TREE_STRING_POINTER
4861 (TREE_VALUE (TREE_PURPOSE (link)));
4862 parse_input_constraint (&constraint, 0, 0, noutputs,
4863 0, oconstraints,
4864 &allows_mem, &allows_reg);
4865 if (!allows_reg && allows_mem)
4866 ret |= visit_addr (stmt, op, data);
4867 }
4868 }
4869 }
4870 }
4871 }
4872 else if (gimple_code (stmt) == GIMPLE_RETURN)
4873 {
4874 tree op = gimple_return_retval (stmt);
4875 if (op)
4876 {
4877 if (visit_addr
4878 && TREE_CODE (op) == ADDR_EXPR)
4879 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
4880 else if (visit_load)
4881 {
4882 op = get_base_loadstore (op);
4883 if (op)
4884 ret |= visit_load (stmt, op, data);
4885 }
4886 }
4887 }
4888 else if (visit_addr
4889 && gimple_code (stmt) == GIMPLE_PHI)
4890 {
4891 for (i = 0; i < gimple_phi_num_args (stmt); ++i)
4892 {
4893 tree op = PHI_ARG_DEF (stmt, i);
4894 if (TREE_CODE (op) == ADDR_EXPR)
4895 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
4896 }
4897 }
4898
4899 return ret;
4900 }
4901
4902 /* Like walk_stmt_load_store_addr_ops but with NULL visit_addr. IPA-CP
4903 should make a faster clone for this case. */
4904
4905 bool
4906 walk_stmt_load_store_ops (gimple stmt, void *data,
4907 bool (*visit_load)(gimple, tree, void *),
4908 bool (*visit_store)(gimple, tree, void *))
4909 {
4910 return walk_stmt_load_store_addr_ops (stmt, data,
4911 visit_load, visit_store, NULL);
4912 }
4913
4914 /* Helper for gimple_ior_addresses_taken_1. */
4915
4916 static bool
4917 gimple_ior_addresses_taken_1 (gimple stmt ATTRIBUTE_UNUSED,
4918 tree addr, void *data)
4919 {
4920 bitmap addresses_taken = (bitmap)data;
4921 addr = get_base_address (addr);
4922 if (addr
4923 && DECL_P (addr))
4924 {
4925 bitmap_set_bit (addresses_taken, DECL_UID (addr));
4926 return true;
4927 }
4928 return false;
4929 }
4930
4931 /* Set the bit for the uid of all decls that have their address taken
4932 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
4933 were any in this stmt. */
4934
4935 bool
4936 gimple_ior_addresses_taken (bitmap addresses_taken, gimple stmt)
4937 {
4938 return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
4939 gimple_ior_addresses_taken_1);
4940 }
4941
4942
4943 /* Return a printable name for symbol DECL. */
4944
4945 const char *
4946 gimple_decl_printable_name (tree decl, int verbosity)
4947 {
4948 if (!DECL_NAME (decl))
4949 return NULL;
4950
4951 if (DECL_ASSEMBLER_NAME_SET_P (decl))
4952 {
4953 const char *str, *mangled_str;
4954 int dmgl_opts = DMGL_NO_OPTS;
4955
4956 if (verbosity >= 2)
4957 {
4958 dmgl_opts = DMGL_VERBOSE
4959 | DMGL_ANSI
4960 | DMGL_GNU_V3
4961 | DMGL_RET_POSTFIX;
4962 if (TREE_CODE (decl) == FUNCTION_DECL)
4963 dmgl_opts |= DMGL_PARAMS;
4964 }
4965
4966 mangled_str = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
4967 str = cplus_demangle_v3 (mangled_str, dmgl_opts);
4968 return (str) ? str : mangled_str;
4969 }
4970
4971 return IDENTIFIER_POINTER (DECL_NAME (decl));
4972 }
4973
4974 /* Return true when STMT is builtins call to CODE. */
4975
4976 bool
4977 gimple_call_builtin_p (gimple stmt, enum built_in_function code)
4978 {
4979 tree fndecl;
4980 return (is_gimple_call (stmt)
4981 && (fndecl = gimple_call_fndecl (stmt)) != NULL
4982 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
4983 && DECL_FUNCTION_CODE (fndecl) == code);
4984 }
4985
4986 #include "gt-gimple.h"