diagnostic-core.h: Include bversion.h.
[gcc.git] / gcc / gimple.c
1 /* Gimple IR support functions.
2
3 Copyright 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "target.h"
27 #include "tree.h"
28 #include "ggc.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "gimple.h"
32 #include "diagnostic.h"
33 #include "tree-flow.h"
34 #include "value-prof.h"
35 #include "flags.h"
36 #include "alias.h"
37 #include "demangle.h"
38 #include "langhooks.h"
39
40 /* Global type table. FIXME lto, it should be possible to re-use some
41 of the type hashing routines in tree.c (type_hash_canon, type_hash_lookup,
42 etc), but those assume that types were built with the various
43 build_*_type routines which is not the case with the streamer. */
44 static GTY((if_marked ("ggc_marked_p"), param_is (union tree_node)))
45 htab_t gimple_types;
46 static GTY((if_marked ("ggc_marked_p"), param_is (union tree_node)))
47 htab_t gimple_canonical_types;
48 static GTY((if_marked ("tree_int_map_marked_p"), param_is (struct tree_int_map)))
49 htab_t type_hash_cache;
50
51 /* Global type comparison cache. This is by TYPE_UID for space efficiency
52 and thus cannot use and does not need GC. */
53 static htab_t gtc_visited;
54 static struct obstack gtc_ob;
55
56 /* All the tuples have their operand vector (if present) at the very bottom
57 of the structure. Therefore, the offset required to find the
58 operands vector the size of the structure minus the size of the 1
59 element tree array at the end (see gimple_ops). */
60 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
61 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
62 EXPORTED_CONST size_t gimple_ops_offset_[] = {
63 #include "gsstruct.def"
64 };
65 #undef DEFGSSTRUCT
66
67 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof(struct STRUCT),
68 static const size_t gsstruct_code_size[] = {
69 #include "gsstruct.def"
70 };
71 #undef DEFGSSTRUCT
72
73 #define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
74 const char *const gimple_code_name[] = {
75 #include "gimple.def"
76 };
77 #undef DEFGSCODE
78
79 #define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
80 EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
81 #include "gimple.def"
82 };
83 #undef DEFGSCODE
84
85 #ifdef GATHER_STATISTICS
86 /* Gimple stats. */
87
88 int gimple_alloc_counts[(int) gimple_alloc_kind_all];
89 int gimple_alloc_sizes[(int) gimple_alloc_kind_all];
90
91 /* Keep in sync with gimple.h:enum gimple_alloc_kind. */
92 static const char * const gimple_alloc_kind_names[] = {
93 "assignments",
94 "phi nodes",
95 "conditionals",
96 "sequences",
97 "everything else"
98 };
99
100 #endif /* GATHER_STATISTICS */
101
102 /* A cache of gimple_seq objects. Sequences are created and destroyed
103 fairly often during gimplification. */
104 static GTY ((deletable)) struct gimple_seq_d *gimple_seq_cache;
105
106 /* Private API manipulation functions shared only with some
107 other files. */
108 extern void gimple_set_stored_syms (gimple, bitmap, bitmap_obstack *);
109 extern void gimple_set_loaded_syms (gimple, bitmap, bitmap_obstack *);
110
111 /* Gimple tuple constructors.
112 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
113 be passed a NULL to start with an empty sequence. */
114
115 /* Set the code for statement G to CODE. */
116
117 static inline void
118 gimple_set_code (gimple g, enum gimple_code code)
119 {
120 g->gsbase.code = code;
121 }
122
123 /* Return the number of bytes needed to hold a GIMPLE statement with
124 code CODE. */
125
126 static inline size_t
127 gimple_size (enum gimple_code code)
128 {
129 return gsstruct_code_size[gss_for_code (code)];
130 }
131
132 /* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
133 operands. */
134
135 gimple
136 gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
137 {
138 size_t size;
139 gimple stmt;
140
141 size = gimple_size (code);
142 if (num_ops > 0)
143 size += sizeof (tree) * (num_ops - 1);
144
145 #ifdef GATHER_STATISTICS
146 {
147 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
148 gimple_alloc_counts[(int) kind]++;
149 gimple_alloc_sizes[(int) kind] += size;
150 }
151 #endif
152
153 stmt = ggc_alloc_cleared_gimple_statement_d_stat (size PASS_MEM_STAT);
154 gimple_set_code (stmt, code);
155 gimple_set_num_ops (stmt, num_ops);
156
157 /* Do not call gimple_set_modified here as it has other side
158 effects and this tuple is still not completely built. */
159 stmt->gsbase.modified = 1;
160
161 return stmt;
162 }
163
164 /* Set SUBCODE to be the code of the expression computed by statement G. */
165
166 static inline void
167 gimple_set_subcode (gimple g, unsigned subcode)
168 {
169 /* We only have 16 bits for the RHS code. Assert that we are not
170 overflowing it. */
171 gcc_assert (subcode < (1 << 16));
172 g->gsbase.subcode = subcode;
173 }
174
175
176
177 /* Build a tuple with operands. CODE is the statement to build (which
178 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the sub-code
179 for the new tuple. NUM_OPS is the number of operands to allocate. */
180
181 #define gimple_build_with_ops(c, s, n) \
182 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
183
184 static gimple
185 gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
186 unsigned num_ops MEM_STAT_DECL)
187 {
188 gimple s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT);
189 gimple_set_subcode (s, subcode);
190
191 return s;
192 }
193
194
195 /* Build a GIMPLE_RETURN statement returning RETVAL. */
196
197 gimple
198 gimple_build_return (tree retval)
199 {
200 gimple s = gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK, 1);
201 if (retval)
202 gimple_return_set_retval (s, retval);
203 return s;
204 }
205
206 /* Reset alias information on call S. */
207
208 void
209 gimple_call_reset_alias_info (gimple s)
210 {
211 if (gimple_call_flags (s) & ECF_CONST)
212 memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
213 else
214 pt_solution_reset (gimple_call_use_set (s));
215 if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
216 memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
217 else
218 pt_solution_reset (gimple_call_clobber_set (s));
219 }
220
221 /* Helper for gimple_build_call, gimple_build_call_vec and
222 gimple_build_call_from_tree. Build the basic components of a
223 GIMPLE_CALL statement to function FN with NARGS arguments. */
224
225 static inline gimple
226 gimple_build_call_1 (tree fn, unsigned nargs)
227 {
228 gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3);
229 if (TREE_CODE (fn) == FUNCTION_DECL)
230 fn = build_fold_addr_expr (fn);
231 gimple_set_op (s, 1, fn);
232 gimple_call_reset_alias_info (s);
233 return s;
234 }
235
236
237 /* Build a GIMPLE_CALL statement to function FN with the arguments
238 specified in vector ARGS. */
239
240 gimple
241 gimple_build_call_vec (tree fn, VEC(tree, heap) *args)
242 {
243 unsigned i;
244 unsigned nargs = VEC_length (tree, args);
245 gimple call = gimple_build_call_1 (fn, nargs);
246
247 for (i = 0; i < nargs; i++)
248 gimple_call_set_arg (call, i, VEC_index (tree, args, i));
249
250 return call;
251 }
252
253
254 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
255 arguments. The ... are the arguments. */
256
257 gimple
258 gimple_build_call (tree fn, unsigned nargs, ...)
259 {
260 va_list ap;
261 gimple call;
262 unsigned i;
263
264 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
265
266 call = gimple_build_call_1 (fn, nargs);
267
268 va_start (ap, nargs);
269 for (i = 0; i < nargs; i++)
270 gimple_call_set_arg (call, i, va_arg (ap, tree));
271 va_end (ap);
272
273 return call;
274 }
275
276
277 /* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
278 assumed to be in GIMPLE form already. Minimal checking is done of
279 this fact. */
280
281 gimple
282 gimple_build_call_from_tree (tree t)
283 {
284 unsigned i, nargs;
285 gimple call;
286 tree fndecl = get_callee_fndecl (t);
287
288 gcc_assert (TREE_CODE (t) == CALL_EXPR);
289
290 nargs = call_expr_nargs (t);
291 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
292
293 for (i = 0; i < nargs; i++)
294 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
295
296 gimple_set_block (call, TREE_BLOCK (t));
297
298 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
299 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
300 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
301 gimple_call_set_cannot_inline (call, CALL_CANNOT_INLINE_P (t));
302 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
303 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
304 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
305 gimple_call_set_nothrow (call, TREE_NOTHROW (t));
306 gimple_set_no_warning (call, TREE_NO_WARNING (t));
307
308 return call;
309 }
310
311
312 /* Extract the operands and code for expression EXPR into *SUBCODE_P,
313 *OP1_P, *OP2_P and *OP3_P respectively. */
314
315 void
316 extract_ops_from_tree_1 (tree expr, enum tree_code *subcode_p, tree *op1_p,
317 tree *op2_p, tree *op3_p)
318 {
319 enum gimple_rhs_class grhs_class;
320
321 *subcode_p = TREE_CODE (expr);
322 grhs_class = get_gimple_rhs_class (*subcode_p);
323
324 if (grhs_class == GIMPLE_TERNARY_RHS)
325 {
326 *op1_p = TREE_OPERAND (expr, 0);
327 *op2_p = TREE_OPERAND (expr, 1);
328 *op3_p = TREE_OPERAND (expr, 2);
329 }
330 else if (grhs_class == GIMPLE_BINARY_RHS)
331 {
332 *op1_p = TREE_OPERAND (expr, 0);
333 *op2_p = TREE_OPERAND (expr, 1);
334 *op3_p = NULL_TREE;
335 }
336 else if (grhs_class == GIMPLE_UNARY_RHS)
337 {
338 *op1_p = TREE_OPERAND (expr, 0);
339 *op2_p = NULL_TREE;
340 *op3_p = NULL_TREE;
341 }
342 else if (grhs_class == GIMPLE_SINGLE_RHS)
343 {
344 *op1_p = expr;
345 *op2_p = NULL_TREE;
346 *op3_p = NULL_TREE;
347 }
348 else
349 gcc_unreachable ();
350 }
351
352
353 /* Build a GIMPLE_ASSIGN statement.
354
355 LHS of the assignment.
356 RHS of the assignment which can be unary or binary. */
357
358 gimple
359 gimple_build_assign_stat (tree lhs, tree rhs MEM_STAT_DECL)
360 {
361 enum tree_code subcode;
362 tree op1, op2, op3;
363
364 extract_ops_from_tree_1 (rhs, &subcode, &op1, &op2, &op3);
365 return gimple_build_assign_with_ops_stat (subcode, lhs, op1, op2, op3
366 PASS_MEM_STAT);
367 }
368
369
370 /* Build a GIMPLE_ASSIGN statement with sub-code SUBCODE and operands
371 OP1 and OP2. If OP2 is NULL then SUBCODE must be of class
372 GIMPLE_UNARY_RHS or GIMPLE_SINGLE_RHS. */
373
374 gimple
375 gimple_build_assign_with_ops_stat (enum tree_code subcode, tree lhs, tree op1,
376 tree op2, tree op3 MEM_STAT_DECL)
377 {
378 unsigned num_ops;
379 gimple p;
380
381 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
382 code). */
383 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
384
385 p = gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
386 PASS_MEM_STAT);
387 gimple_assign_set_lhs (p, lhs);
388 gimple_assign_set_rhs1 (p, op1);
389 if (op2)
390 {
391 gcc_assert (num_ops > 2);
392 gimple_assign_set_rhs2 (p, op2);
393 }
394
395 if (op3)
396 {
397 gcc_assert (num_ops > 3);
398 gimple_assign_set_rhs3 (p, op3);
399 }
400
401 return p;
402 }
403
404
405 /* Build a new GIMPLE_ASSIGN tuple and append it to the end of *SEQ_P.
406
407 DST/SRC are the destination and source respectively. You can pass
408 ungimplified trees in DST or SRC, in which case they will be
409 converted to a gimple operand if necessary.
410
411 This function returns the newly created GIMPLE_ASSIGN tuple. */
412
413 gimple
414 gimplify_assign (tree dst, tree src, gimple_seq *seq_p)
415 {
416 tree t = build2 (MODIFY_EXPR, TREE_TYPE (dst), dst, src);
417 gimplify_and_add (t, seq_p);
418 ggc_free (t);
419 return gimple_seq_last_stmt (*seq_p);
420 }
421
422
423 /* Build a GIMPLE_COND statement.
424
425 PRED is the condition used to compare LHS and the RHS.
426 T_LABEL is the label to jump to if the condition is true.
427 F_LABEL is the label to jump to otherwise. */
428
429 gimple
430 gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
431 tree t_label, tree f_label)
432 {
433 gimple p;
434
435 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
436 p = gimple_build_with_ops (GIMPLE_COND, pred_code, 4);
437 gimple_cond_set_lhs (p, lhs);
438 gimple_cond_set_rhs (p, rhs);
439 gimple_cond_set_true_label (p, t_label);
440 gimple_cond_set_false_label (p, f_label);
441 return p;
442 }
443
444
445 /* Extract operands for a GIMPLE_COND statement out of COND_EXPR tree COND. */
446
447 void
448 gimple_cond_get_ops_from_tree (tree cond, enum tree_code *code_p,
449 tree *lhs_p, tree *rhs_p)
450 {
451 gcc_assert (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison
452 || TREE_CODE (cond) == TRUTH_NOT_EXPR
453 || is_gimple_min_invariant (cond)
454 || SSA_VAR_P (cond));
455
456 extract_ops_from_tree (cond, code_p, lhs_p, rhs_p);
457
458 /* Canonicalize conditionals of the form 'if (!VAL)'. */
459 if (*code_p == TRUTH_NOT_EXPR)
460 {
461 *code_p = EQ_EXPR;
462 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
463 *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
464 }
465 /* Canonicalize conditionals of the form 'if (VAL)' */
466 else if (TREE_CODE_CLASS (*code_p) != tcc_comparison)
467 {
468 *code_p = NE_EXPR;
469 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
470 *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
471 }
472 }
473
474
475 /* Build a GIMPLE_COND statement from the conditional expression tree
476 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
477
478 gimple
479 gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
480 {
481 enum tree_code code;
482 tree lhs, rhs;
483
484 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
485 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
486 }
487
488 /* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
489 boolean expression tree COND. */
490
491 void
492 gimple_cond_set_condition_from_tree (gimple stmt, tree cond)
493 {
494 enum tree_code code;
495 tree lhs, rhs;
496
497 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
498 gimple_cond_set_condition (stmt, code, lhs, rhs);
499 }
500
501 /* Build a GIMPLE_LABEL statement for LABEL. */
502
503 gimple
504 gimple_build_label (tree label)
505 {
506 gimple p = gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1);
507 gimple_label_set_label (p, label);
508 return p;
509 }
510
511 /* Build a GIMPLE_GOTO statement to label DEST. */
512
513 gimple
514 gimple_build_goto (tree dest)
515 {
516 gimple p = gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1);
517 gimple_goto_set_dest (p, dest);
518 return p;
519 }
520
521
522 /* Build a GIMPLE_NOP statement. */
523
524 gimple
525 gimple_build_nop (void)
526 {
527 return gimple_alloc (GIMPLE_NOP, 0);
528 }
529
530
531 /* Build a GIMPLE_BIND statement.
532 VARS are the variables in BODY.
533 BLOCK is the containing block. */
534
535 gimple
536 gimple_build_bind (tree vars, gimple_seq body, tree block)
537 {
538 gimple p = gimple_alloc (GIMPLE_BIND, 0);
539 gimple_bind_set_vars (p, vars);
540 if (body)
541 gimple_bind_set_body (p, body);
542 if (block)
543 gimple_bind_set_block (p, block);
544 return p;
545 }
546
547 /* Helper function to set the simple fields of a asm stmt.
548
549 STRING is a pointer to a string that is the asm blocks assembly code.
550 NINPUT is the number of register inputs.
551 NOUTPUT is the number of register outputs.
552 NCLOBBERS is the number of clobbered registers.
553 */
554
555 static inline gimple
556 gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
557 unsigned nclobbers, unsigned nlabels)
558 {
559 gimple p;
560 int size = strlen (string);
561
562 /* ASMs with labels cannot have outputs. This should have been
563 enforced by the front end. */
564 gcc_assert (nlabels == 0 || noutputs == 0);
565
566 p = gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
567 ninputs + noutputs + nclobbers + nlabels);
568
569 p->gimple_asm.ni = ninputs;
570 p->gimple_asm.no = noutputs;
571 p->gimple_asm.nc = nclobbers;
572 p->gimple_asm.nl = nlabels;
573 p->gimple_asm.string = ggc_alloc_string (string, size);
574
575 #ifdef GATHER_STATISTICS
576 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
577 #endif
578
579 return p;
580 }
581
582 /* Build a GIMPLE_ASM statement.
583
584 STRING is the assembly code.
585 NINPUT is the number of register inputs.
586 NOUTPUT is the number of register outputs.
587 NCLOBBERS is the number of clobbered registers.
588 INPUTS is a vector of the input register parameters.
589 OUTPUTS is a vector of the output register parameters.
590 CLOBBERS is a vector of the clobbered register parameters.
591 LABELS is a vector of destination labels. */
592
593 gimple
594 gimple_build_asm_vec (const char *string, VEC(tree,gc)* inputs,
595 VEC(tree,gc)* outputs, VEC(tree,gc)* clobbers,
596 VEC(tree,gc)* labels)
597 {
598 gimple p;
599 unsigned i;
600
601 p = gimple_build_asm_1 (string,
602 VEC_length (tree, inputs),
603 VEC_length (tree, outputs),
604 VEC_length (tree, clobbers),
605 VEC_length (tree, labels));
606
607 for (i = 0; i < VEC_length (tree, inputs); i++)
608 gimple_asm_set_input_op (p, i, VEC_index (tree, inputs, i));
609
610 for (i = 0; i < VEC_length (tree, outputs); i++)
611 gimple_asm_set_output_op (p, i, VEC_index (tree, outputs, i));
612
613 for (i = 0; i < VEC_length (tree, clobbers); i++)
614 gimple_asm_set_clobber_op (p, i, VEC_index (tree, clobbers, i));
615
616 for (i = 0; i < VEC_length (tree, labels); i++)
617 gimple_asm_set_label_op (p, i, VEC_index (tree, labels, i));
618
619 return p;
620 }
621
622 /* Build a GIMPLE_CATCH statement.
623
624 TYPES are the catch types.
625 HANDLER is the exception handler. */
626
627 gimple
628 gimple_build_catch (tree types, gimple_seq handler)
629 {
630 gimple p = gimple_alloc (GIMPLE_CATCH, 0);
631 gimple_catch_set_types (p, types);
632 if (handler)
633 gimple_catch_set_handler (p, handler);
634
635 return p;
636 }
637
638 /* Build a GIMPLE_EH_FILTER statement.
639
640 TYPES are the filter's types.
641 FAILURE is the filter's failure action. */
642
643 gimple
644 gimple_build_eh_filter (tree types, gimple_seq failure)
645 {
646 gimple p = gimple_alloc (GIMPLE_EH_FILTER, 0);
647 gimple_eh_filter_set_types (p, types);
648 if (failure)
649 gimple_eh_filter_set_failure (p, failure);
650
651 return p;
652 }
653
654 /* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
655
656 gimple
657 gimple_build_eh_must_not_throw (tree decl)
658 {
659 gimple p = gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0);
660
661 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
662 gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
663 gimple_eh_must_not_throw_set_fndecl (p, decl);
664
665 return p;
666 }
667
668 /* Build a GIMPLE_TRY statement.
669
670 EVAL is the expression to evaluate.
671 CLEANUP is the cleanup expression.
672 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
673 whether this is a try/catch or a try/finally respectively. */
674
675 gimple
676 gimple_build_try (gimple_seq eval, gimple_seq cleanup,
677 enum gimple_try_flags kind)
678 {
679 gimple p;
680
681 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
682 p = gimple_alloc (GIMPLE_TRY, 0);
683 gimple_set_subcode (p, kind);
684 if (eval)
685 gimple_try_set_eval (p, eval);
686 if (cleanup)
687 gimple_try_set_cleanup (p, cleanup);
688
689 return p;
690 }
691
692 /* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
693
694 CLEANUP is the cleanup expression. */
695
696 gimple
697 gimple_build_wce (gimple_seq cleanup)
698 {
699 gimple p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
700 if (cleanup)
701 gimple_wce_set_cleanup (p, cleanup);
702
703 return p;
704 }
705
706
707 /* Build a GIMPLE_RESX statement. */
708
709 gimple
710 gimple_build_resx (int region)
711 {
712 gimple p = gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0);
713 p->gimple_eh_ctrl.region = region;
714 return p;
715 }
716
717
718 /* The helper for constructing a gimple switch statement.
719 INDEX is the switch's index.
720 NLABELS is the number of labels in the switch excluding the default.
721 DEFAULT_LABEL is the default label for the switch statement. */
722
723 gimple
724 gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
725 {
726 /* nlabels + 1 default label + 1 index. */
727 gimple p = gimple_build_with_ops (GIMPLE_SWITCH, ERROR_MARK,
728 1 + (default_label != NULL) + nlabels);
729 gimple_switch_set_index (p, index);
730 if (default_label)
731 gimple_switch_set_default_label (p, default_label);
732 return p;
733 }
734
735
736 /* Build a GIMPLE_SWITCH statement.
737
738 INDEX is the switch's index.
739 NLABELS is the number of labels in the switch excluding the DEFAULT_LABEL.
740 ... are the labels excluding the default. */
741
742 gimple
743 gimple_build_switch (unsigned nlabels, tree index, tree default_label, ...)
744 {
745 va_list al;
746 unsigned i, offset;
747 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
748
749 /* Store the rest of the labels. */
750 va_start (al, default_label);
751 offset = (default_label != NULL);
752 for (i = 0; i < nlabels; i++)
753 gimple_switch_set_label (p, i + offset, va_arg (al, tree));
754 va_end (al);
755
756 return p;
757 }
758
759
760 /* Build a GIMPLE_SWITCH statement.
761
762 INDEX is the switch's index.
763 DEFAULT_LABEL is the default label
764 ARGS is a vector of labels excluding the default. */
765
766 gimple
767 gimple_build_switch_vec (tree index, tree default_label, VEC(tree, heap) *args)
768 {
769 unsigned i, offset, nlabels = VEC_length (tree, args);
770 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
771
772 /* Copy the labels from the vector to the switch statement. */
773 offset = (default_label != NULL);
774 for (i = 0; i < nlabels; i++)
775 gimple_switch_set_label (p, i + offset, VEC_index (tree, args, i));
776
777 return p;
778 }
779
780 /* Build a GIMPLE_EH_DISPATCH statement. */
781
782 gimple
783 gimple_build_eh_dispatch (int region)
784 {
785 gimple p = gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0);
786 p->gimple_eh_ctrl.region = region;
787 return p;
788 }
789
790 /* Build a new GIMPLE_DEBUG_BIND statement.
791
792 VAR is bound to VALUE; block and location are taken from STMT. */
793
794 gimple
795 gimple_build_debug_bind_stat (tree var, tree value, gimple stmt MEM_STAT_DECL)
796 {
797 gimple p = gimple_build_with_ops_stat (GIMPLE_DEBUG,
798 (unsigned)GIMPLE_DEBUG_BIND, 2
799 PASS_MEM_STAT);
800
801 gimple_debug_bind_set_var (p, var);
802 gimple_debug_bind_set_value (p, value);
803 if (stmt)
804 {
805 gimple_set_block (p, gimple_block (stmt));
806 gimple_set_location (p, gimple_location (stmt));
807 }
808
809 return p;
810 }
811
812
813 /* Build a GIMPLE_OMP_CRITICAL statement.
814
815 BODY is the sequence of statements for which only one thread can execute.
816 NAME is optional identifier for this critical block. */
817
818 gimple
819 gimple_build_omp_critical (gimple_seq body, tree name)
820 {
821 gimple p = gimple_alloc (GIMPLE_OMP_CRITICAL, 0);
822 gimple_omp_critical_set_name (p, name);
823 if (body)
824 gimple_omp_set_body (p, body);
825
826 return p;
827 }
828
829 /* Build a GIMPLE_OMP_FOR statement.
830
831 BODY is sequence of statements inside the for loop.
832 CLAUSES, are any of the OMP loop construct's clauses: private, firstprivate,
833 lastprivate, reductions, ordered, schedule, and nowait.
834 COLLAPSE is the collapse count.
835 PRE_BODY is the sequence of statements that are loop invariant. */
836
837 gimple
838 gimple_build_omp_for (gimple_seq body, tree clauses, size_t collapse,
839 gimple_seq pre_body)
840 {
841 gimple p = gimple_alloc (GIMPLE_OMP_FOR, 0);
842 if (body)
843 gimple_omp_set_body (p, body);
844 gimple_omp_for_set_clauses (p, clauses);
845 p->gimple_omp_for.collapse = collapse;
846 p->gimple_omp_for.iter
847 = ggc_alloc_cleared_vec_gimple_omp_for_iter (collapse);
848 if (pre_body)
849 gimple_omp_for_set_pre_body (p, pre_body);
850
851 return p;
852 }
853
854
855 /* Build a GIMPLE_OMP_PARALLEL statement.
856
857 BODY is sequence of statements which are executed in parallel.
858 CLAUSES, are the OMP parallel construct's clauses.
859 CHILD_FN is the function created for the parallel threads to execute.
860 DATA_ARG are the shared data argument(s). */
861
862 gimple
863 gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
864 tree data_arg)
865 {
866 gimple p = gimple_alloc (GIMPLE_OMP_PARALLEL, 0);
867 if (body)
868 gimple_omp_set_body (p, body);
869 gimple_omp_parallel_set_clauses (p, clauses);
870 gimple_omp_parallel_set_child_fn (p, child_fn);
871 gimple_omp_parallel_set_data_arg (p, data_arg);
872
873 return p;
874 }
875
876
877 /* Build a GIMPLE_OMP_TASK statement.
878
879 BODY is sequence of statements which are executed by the explicit task.
880 CLAUSES, are the OMP parallel construct's clauses.
881 CHILD_FN is the function created for the parallel threads to execute.
882 DATA_ARG are the shared data argument(s).
883 COPY_FN is the optional function for firstprivate initialization.
884 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
885
886 gimple
887 gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
888 tree data_arg, tree copy_fn, tree arg_size,
889 tree arg_align)
890 {
891 gimple p = gimple_alloc (GIMPLE_OMP_TASK, 0);
892 if (body)
893 gimple_omp_set_body (p, body);
894 gimple_omp_task_set_clauses (p, clauses);
895 gimple_omp_task_set_child_fn (p, child_fn);
896 gimple_omp_task_set_data_arg (p, data_arg);
897 gimple_omp_task_set_copy_fn (p, copy_fn);
898 gimple_omp_task_set_arg_size (p, arg_size);
899 gimple_omp_task_set_arg_align (p, arg_align);
900
901 return p;
902 }
903
904
905 /* Build a GIMPLE_OMP_SECTION statement for a sections statement.
906
907 BODY is the sequence of statements in the section. */
908
909 gimple
910 gimple_build_omp_section (gimple_seq body)
911 {
912 gimple p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
913 if (body)
914 gimple_omp_set_body (p, body);
915
916 return p;
917 }
918
919
920 /* Build a GIMPLE_OMP_MASTER statement.
921
922 BODY is the sequence of statements to be executed by just the master. */
923
924 gimple
925 gimple_build_omp_master (gimple_seq body)
926 {
927 gimple p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
928 if (body)
929 gimple_omp_set_body (p, body);
930
931 return p;
932 }
933
934
935 /* Build a GIMPLE_OMP_CONTINUE statement.
936
937 CONTROL_DEF is the definition of the control variable.
938 CONTROL_USE is the use of the control variable. */
939
940 gimple
941 gimple_build_omp_continue (tree control_def, tree control_use)
942 {
943 gimple p = gimple_alloc (GIMPLE_OMP_CONTINUE, 0);
944 gimple_omp_continue_set_control_def (p, control_def);
945 gimple_omp_continue_set_control_use (p, control_use);
946 return p;
947 }
948
949 /* Build a GIMPLE_OMP_ORDERED statement.
950
951 BODY is the sequence of statements inside a loop that will executed in
952 sequence. */
953
954 gimple
955 gimple_build_omp_ordered (gimple_seq body)
956 {
957 gimple p = gimple_alloc (GIMPLE_OMP_ORDERED, 0);
958 if (body)
959 gimple_omp_set_body (p, body);
960
961 return p;
962 }
963
964
965 /* Build a GIMPLE_OMP_RETURN statement.
966 WAIT_P is true if this is a non-waiting return. */
967
968 gimple
969 gimple_build_omp_return (bool wait_p)
970 {
971 gimple p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
972 if (wait_p)
973 gimple_omp_return_set_nowait (p);
974
975 return p;
976 }
977
978
979 /* Build a GIMPLE_OMP_SECTIONS statement.
980
981 BODY is a sequence of section statements.
982 CLAUSES are any of the OMP sections contsruct's clauses: private,
983 firstprivate, lastprivate, reduction, and nowait. */
984
985 gimple
986 gimple_build_omp_sections (gimple_seq body, tree clauses)
987 {
988 gimple p = gimple_alloc (GIMPLE_OMP_SECTIONS, 0);
989 if (body)
990 gimple_omp_set_body (p, body);
991 gimple_omp_sections_set_clauses (p, clauses);
992
993 return p;
994 }
995
996
997 /* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
998
999 gimple
1000 gimple_build_omp_sections_switch (void)
1001 {
1002 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
1003 }
1004
1005
1006 /* Build a GIMPLE_OMP_SINGLE statement.
1007
1008 BODY is the sequence of statements that will be executed once.
1009 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1010 copyprivate, nowait. */
1011
1012 gimple
1013 gimple_build_omp_single (gimple_seq body, tree clauses)
1014 {
1015 gimple p = gimple_alloc (GIMPLE_OMP_SINGLE, 0);
1016 if (body)
1017 gimple_omp_set_body (p, body);
1018 gimple_omp_single_set_clauses (p, clauses);
1019
1020 return p;
1021 }
1022
1023
1024 /* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
1025
1026 gimple
1027 gimple_build_omp_atomic_load (tree lhs, tree rhs)
1028 {
1029 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0);
1030 gimple_omp_atomic_load_set_lhs (p, lhs);
1031 gimple_omp_atomic_load_set_rhs (p, rhs);
1032 return p;
1033 }
1034
1035 /* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1036
1037 VAL is the value we are storing. */
1038
1039 gimple
1040 gimple_build_omp_atomic_store (tree val)
1041 {
1042 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0);
1043 gimple_omp_atomic_store_set_val (p, val);
1044 return p;
1045 }
1046
1047 /* Build a GIMPLE_PREDICT statement. PREDICT is one of the predictors from
1048 predict.def, OUTCOME is NOT_TAKEN or TAKEN. */
1049
1050 gimple
1051 gimple_build_predict (enum br_predictor predictor, enum prediction outcome)
1052 {
1053 gimple p = gimple_alloc (GIMPLE_PREDICT, 0);
1054 /* Ensure all the predictors fit into the lower bits of the subcode. */
1055 gcc_assert ((int) END_PREDICTORS <= GF_PREDICT_TAKEN);
1056 gimple_predict_set_predictor (p, predictor);
1057 gimple_predict_set_outcome (p, outcome);
1058 return p;
1059 }
1060
1061 #if defined ENABLE_GIMPLE_CHECKING
1062 /* Complain of a gimple type mismatch and die. */
1063
1064 void
1065 gimple_check_failed (const_gimple gs, const char *file, int line,
1066 const char *function, enum gimple_code code,
1067 enum tree_code subcode)
1068 {
1069 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1070 gimple_code_name[code],
1071 tree_code_name[subcode],
1072 gimple_code_name[gimple_code (gs)],
1073 gs->gsbase.subcode > 0
1074 ? tree_code_name[gs->gsbase.subcode]
1075 : "",
1076 function, trim_filename (file), line);
1077 }
1078 #endif /* ENABLE_GIMPLE_CHECKING */
1079
1080
1081 /* Allocate a new GIMPLE sequence in GC memory and return it. If
1082 there are free sequences in GIMPLE_SEQ_CACHE return one of those
1083 instead. */
1084
1085 gimple_seq
1086 gimple_seq_alloc (void)
1087 {
1088 gimple_seq seq = gimple_seq_cache;
1089 if (seq)
1090 {
1091 gimple_seq_cache = gimple_seq_cache->next_free;
1092 gcc_assert (gimple_seq_cache != seq);
1093 memset (seq, 0, sizeof (*seq));
1094 }
1095 else
1096 {
1097 seq = ggc_alloc_cleared_gimple_seq_d ();
1098 #ifdef GATHER_STATISTICS
1099 gimple_alloc_counts[(int) gimple_alloc_kind_seq]++;
1100 gimple_alloc_sizes[(int) gimple_alloc_kind_seq] += sizeof (*seq);
1101 #endif
1102 }
1103
1104 return seq;
1105 }
1106
1107 /* Return SEQ to the free pool of GIMPLE sequences. */
1108
1109 void
1110 gimple_seq_free (gimple_seq seq)
1111 {
1112 if (seq == NULL)
1113 return;
1114
1115 gcc_assert (gimple_seq_first (seq) == NULL);
1116 gcc_assert (gimple_seq_last (seq) == NULL);
1117
1118 /* If this triggers, it's a sign that the same list is being freed
1119 twice. */
1120 gcc_assert (seq != gimple_seq_cache || gimple_seq_cache == NULL);
1121
1122 /* Add SEQ to the pool of free sequences. */
1123 seq->next_free = gimple_seq_cache;
1124 gimple_seq_cache = seq;
1125 }
1126
1127
1128 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1129 *SEQ_P is NULL, a new sequence is allocated. */
1130
1131 void
1132 gimple_seq_add_stmt (gimple_seq *seq_p, gimple gs)
1133 {
1134 gimple_stmt_iterator si;
1135
1136 if (gs == NULL)
1137 return;
1138
1139 if (*seq_p == NULL)
1140 *seq_p = gimple_seq_alloc ();
1141
1142 si = gsi_last (*seq_p);
1143 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1144 }
1145
1146
1147 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1148 NULL, a new sequence is allocated. */
1149
1150 void
1151 gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1152 {
1153 gimple_stmt_iterator si;
1154
1155 if (src == NULL)
1156 return;
1157
1158 if (*dst_p == NULL)
1159 *dst_p = gimple_seq_alloc ();
1160
1161 si = gsi_last (*dst_p);
1162 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1163 }
1164
1165
1166 /* Helper function of empty_body_p. Return true if STMT is an empty
1167 statement. */
1168
1169 static bool
1170 empty_stmt_p (gimple stmt)
1171 {
1172 if (gimple_code (stmt) == GIMPLE_NOP)
1173 return true;
1174 if (gimple_code (stmt) == GIMPLE_BIND)
1175 return empty_body_p (gimple_bind_body (stmt));
1176 return false;
1177 }
1178
1179
1180 /* Return true if BODY contains nothing but empty statements. */
1181
1182 bool
1183 empty_body_p (gimple_seq body)
1184 {
1185 gimple_stmt_iterator i;
1186
1187 if (gimple_seq_empty_p (body))
1188 return true;
1189 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
1190 if (!empty_stmt_p (gsi_stmt (i))
1191 && !is_gimple_debug (gsi_stmt (i)))
1192 return false;
1193
1194 return true;
1195 }
1196
1197
1198 /* Perform a deep copy of sequence SRC and return the result. */
1199
1200 gimple_seq
1201 gimple_seq_copy (gimple_seq src)
1202 {
1203 gimple_stmt_iterator gsi;
1204 gimple_seq new_seq = gimple_seq_alloc ();
1205 gimple stmt;
1206
1207 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1208 {
1209 stmt = gimple_copy (gsi_stmt (gsi));
1210 gimple_seq_add_stmt (&new_seq, stmt);
1211 }
1212
1213 return new_seq;
1214 }
1215
1216
1217 /* Walk all the statements in the sequence SEQ calling walk_gimple_stmt
1218 on each one. WI is as in walk_gimple_stmt.
1219
1220 If walk_gimple_stmt returns non-NULL, the walk is stopped, the
1221 value is stored in WI->CALLBACK_RESULT and the statement that
1222 produced the value is returned.
1223
1224 Otherwise, all the statements are walked and NULL returned. */
1225
1226 gimple
1227 walk_gimple_seq (gimple_seq seq, walk_stmt_fn callback_stmt,
1228 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1229 {
1230 gimple_stmt_iterator gsi;
1231
1232 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
1233 {
1234 tree ret = walk_gimple_stmt (&gsi, callback_stmt, callback_op, wi);
1235 if (ret)
1236 {
1237 /* If CALLBACK_STMT or CALLBACK_OP return a value, WI must exist
1238 to hold it. */
1239 gcc_assert (wi);
1240 wi->callback_result = ret;
1241 return gsi_stmt (gsi);
1242 }
1243 }
1244
1245 if (wi)
1246 wi->callback_result = NULL_TREE;
1247
1248 return NULL;
1249 }
1250
1251
1252 /* Helper function for walk_gimple_stmt. Walk operands of a GIMPLE_ASM. */
1253
1254 static tree
1255 walk_gimple_asm (gimple stmt, walk_tree_fn callback_op,
1256 struct walk_stmt_info *wi)
1257 {
1258 tree ret, op;
1259 unsigned noutputs;
1260 const char **oconstraints;
1261 unsigned i, n;
1262 const char *constraint;
1263 bool allows_mem, allows_reg, is_inout;
1264
1265 noutputs = gimple_asm_noutputs (stmt);
1266 oconstraints = (const char **) alloca ((noutputs) * sizeof (const char *));
1267
1268 if (wi)
1269 wi->is_lhs = true;
1270
1271 for (i = 0; i < noutputs; i++)
1272 {
1273 op = gimple_asm_output_op (stmt, i);
1274 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1275 oconstraints[i] = constraint;
1276 parse_output_constraint (&constraint, i, 0, 0, &allows_mem, &allows_reg,
1277 &is_inout);
1278 if (wi)
1279 wi->val_only = (allows_reg || !allows_mem);
1280 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1281 if (ret)
1282 return ret;
1283 }
1284
1285 n = gimple_asm_ninputs (stmt);
1286 for (i = 0; i < n; i++)
1287 {
1288 op = gimple_asm_input_op (stmt, i);
1289 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1290 parse_input_constraint (&constraint, 0, 0, noutputs, 0,
1291 oconstraints, &allows_mem, &allows_reg);
1292 if (wi)
1293 {
1294 wi->val_only = (allows_reg || !allows_mem);
1295 /* Although input "m" is not really a LHS, we need a lvalue. */
1296 wi->is_lhs = !wi->val_only;
1297 }
1298 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1299 if (ret)
1300 return ret;
1301 }
1302
1303 if (wi)
1304 {
1305 wi->is_lhs = false;
1306 wi->val_only = true;
1307 }
1308
1309 n = gimple_asm_nlabels (stmt);
1310 for (i = 0; i < n; i++)
1311 {
1312 op = gimple_asm_label_op (stmt, i);
1313 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1314 if (ret)
1315 return ret;
1316 }
1317
1318 return NULL_TREE;
1319 }
1320
1321
1322 /* Helper function of WALK_GIMPLE_STMT. Walk every tree operand in
1323 STMT. CALLBACK_OP and WI are as in WALK_GIMPLE_STMT.
1324
1325 CALLBACK_OP is called on each operand of STMT via walk_tree.
1326 Additional parameters to walk_tree must be stored in WI. For each operand
1327 OP, walk_tree is called as:
1328
1329 walk_tree (&OP, CALLBACK_OP, WI, WI->PSET)
1330
1331 If CALLBACK_OP returns non-NULL for an operand, the remaining
1332 operands are not scanned.
1333
1334 The return value is that returned by the last call to walk_tree, or
1335 NULL_TREE if no CALLBACK_OP is specified. */
1336
1337 tree
1338 walk_gimple_op (gimple stmt, walk_tree_fn callback_op,
1339 struct walk_stmt_info *wi)
1340 {
1341 struct pointer_set_t *pset = (wi) ? wi->pset : NULL;
1342 unsigned i;
1343 tree ret = NULL_TREE;
1344
1345 switch (gimple_code (stmt))
1346 {
1347 case GIMPLE_ASSIGN:
1348 /* Walk the RHS operands. If the LHS is of a non-renamable type or
1349 is a register variable, we may use a COMPONENT_REF on the RHS. */
1350 if (wi)
1351 {
1352 tree lhs = gimple_assign_lhs (stmt);
1353 wi->val_only
1354 = (is_gimple_reg_type (TREE_TYPE (lhs)) && !is_gimple_reg (lhs))
1355 || !gimple_assign_single_p (stmt);
1356 }
1357
1358 for (i = 1; i < gimple_num_ops (stmt); i++)
1359 {
1360 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi,
1361 pset);
1362 if (ret)
1363 return ret;
1364 }
1365
1366 /* Walk the LHS. If the RHS is appropriate for a memory, we
1367 may use a COMPONENT_REF on the LHS. */
1368 if (wi)
1369 {
1370 /* If the RHS has more than 1 operand, it is not appropriate
1371 for the memory. */
1372 wi->val_only = !is_gimple_mem_rhs (gimple_assign_rhs1 (stmt))
1373 || !gimple_assign_single_p (stmt);
1374 wi->is_lhs = true;
1375 }
1376
1377 ret = walk_tree (gimple_op_ptr (stmt, 0), callback_op, wi, pset);
1378 if (ret)
1379 return ret;
1380
1381 if (wi)
1382 {
1383 wi->val_only = true;
1384 wi->is_lhs = false;
1385 }
1386 break;
1387
1388 case GIMPLE_CALL:
1389 if (wi)
1390 {
1391 wi->is_lhs = false;
1392 wi->val_only = true;
1393 }
1394
1395 ret = walk_tree (gimple_call_chain_ptr (stmt), callback_op, wi, pset);
1396 if (ret)
1397 return ret;
1398
1399 ret = walk_tree (gimple_call_fn_ptr (stmt), callback_op, wi, pset);
1400 if (ret)
1401 return ret;
1402
1403 for (i = 0; i < gimple_call_num_args (stmt); i++)
1404 {
1405 if (wi)
1406 wi->val_only = is_gimple_reg_type (gimple_call_arg (stmt, i));
1407 ret = walk_tree (gimple_call_arg_ptr (stmt, i), callback_op, wi,
1408 pset);
1409 if (ret)
1410 return ret;
1411 }
1412
1413 if (gimple_call_lhs (stmt))
1414 {
1415 if (wi)
1416 {
1417 wi->is_lhs = true;
1418 wi->val_only = is_gimple_reg_type (gimple_call_lhs (stmt));
1419 }
1420
1421 ret = walk_tree (gimple_call_lhs_ptr (stmt), callback_op, wi, pset);
1422 if (ret)
1423 return ret;
1424 }
1425
1426 if (wi)
1427 {
1428 wi->is_lhs = false;
1429 wi->val_only = true;
1430 }
1431 break;
1432
1433 case GIMPLE_CATCH:
1434 ret = walk_tree (gimple_catch_types_ptr (stmt), callback_op, wi,
1435 pset);
1436 if (ret)
1437 return ret;
1438 break;
1439
1440 case GIMPLE_EH_FILTER:
1441 ret = walk_tree (gimple_eh_filter_types_ptr (stmt), callback_op, wi,
1442 pset);
1443 if (ret)
1444 return ret;
1445 break;
1446
1447 case GIMPLE_ASM:
1448 ret = walk_gimple_asm (stmt, callback_op, wi);
1449 if (ret)
1450 return ret;
1451 break;
1452
1453 case GIMPLE_OMP_CONTINUE:
1454 ret = walk_tree (gimple_omp_continue_control_def_ptr (stmt),
1455 callback_op, wi, pset);
1456 if (ret)
1457 return ret;
1458
1459 ret = walk_tree (gimple_omp_continue_control_use_ptr (stmt),
1460 callback_op, wi, pset);
1461 if (ret)
1462 return ret;
1463 break;
1464
1465 case GIMPLE_OMP_CRITICAL:
1466 ret = walk_tree (gimple_omp_critical_name_ptr (stmt), callback_op, wi,
1467 pset);
1468 if (ret)
1469 return ret;
1470 break;
1471
1472 case GIMPLE_OMP_FOR:
1473 ret = walk_tree (gimple_omp_for_clauses_ptr (stmt), callback_op, wi,
1474 pset);
1475 if (ret)
1476 return ret;
1477 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1478 {
1479 ret = walk_tree (gimple_omp_for_index_ptr (stmt, i), callback_op,
1480 wi, pset);
1481 if (ret)
1482 return ret;
1483 ret = walk_tree (gimple_omp_for_initial_ptr (stmt, i), callback_op,
1484 wi, pset);
1485 if (ret)
1486 return ret;
1487 ret = walk_tree (gimple_omp_for_final_ptr (stmt, i), callback_op,
1488 wi, pset);
1489 if (ret)
1490 return ret;
1491 ret = walk_tree (gimple_omp_for_incr_ptr (stmt, i), callback_op,
1492 wi, pset);
1493 }
1494 if (ret)
1495 return ret;
1496 break;
1497
1498 case GIMPLE_OMP_PARALLEL:
1499 ret = walk_tree (gimple_omp_parallel_clauses_ptr (stmt), callback_op,
1500 wi, pset);
1501 if (ret)
1502 return ret;
1503 ret = walk_tree (gimple_omp_parallel_child_fn_ptr (stmt), callback_op,
1504 wi, pset);
1505 if (ret)
1506 return ret;
1507 ret = walk_tree (gimple_omp_parallel_data_arg_ptr (stmt), callback_op,
1508 wi, pset);
1509 if (ret)
1510 return ret;
1511 break;
1512
1513 case GIMPLE_OMP_TASK:
1514 ret = walk_tree (gimple_omp_task_clauses_ptr (stmt), callback_op,
1515 wi, pset);
1516 if (ret)
1517 return ret;
1518 ret = walk_tree (gimple_omp_task_child_fn_ptr (stmt), callback_op,
1519 wi, pset);
1520 if (ret)
1521 return ret;
1522 ret = walk_tree (gimple_omp_task_data_arg_ptr (stmt), callback_op,
1523 wi, pset);
1524 if (ret)
1525 return ret;
1526 ret = walk_tree (gimple_omp_task_copy_fn_ptr (stmt), callback_op,
1527 wi, pset);
1528 if (ret)
1529 return ret;
1530 ret = walk_tree (gimple_omp_task_arg_size_ptr (stmt), callback_op,
1531 wi, pset);
1532 if (ret)
1533 return ret;
1534 ret = walk_tree (gimple_omp_task_arg_align_ptr (stmt), callback_op,
1535 wi, pset);
1536 if (ret)
1537 return ret;
1538 break;
1539
1540 case GIMPLE_OMP_SECTIONS:
1541 ret = walk_tree (gimple_omp_sections_clauses_ptr (stmt), callback_op,
1542 wi, pset);
1543 if (ret)
1544 return ret;
1545
1546 ret = walk_tree (gimple_omp_sections_control_ptr (stmt), callback_op,
1547 wi, pset);
1548 if (ret)
1549 return ret;
1550
1551 break;
1552
1553 case GIMPLE_OMP_SINGLE:
1554 ret = walk_tree (gimple_omp_single_clauses_ptr (stmt), callback_op, wi,
1555 pset);
1556 if (ret)
1557 return ret;
1558 break;
1559
1560 case GIMPLE_OMP_ATOMIC_LOAD:
1561 ret = walk_tree (gimple_omp_atomic_load_lhs_ptr (stmt), callback_op, wi,
1562 pset);
1563 if (ret)
1564 return ret;
1565
1566 ret = walk_tree (gimple_omp_atomic_load_rhs_ptr (stmt), callback_op, wi,
1567 pset);
1568 if (ret)
1569 return ret;
1570 break;
1571
1572 case GIMPLE_OMP_ATOMIC_STORE:
1573 ret = walk_tree (gimple_omp_atomic_store_val_ptr (stmt), callback_op,
1574 wi, pset);
1575 if (ret)
1576 return ret;
1577 break;
1578
1579 /* Tuples that do not have operands. */
1580 case GIMPLE_NOP:
1581 case GIMPLE_RESX:
1582 case GIMPLE_OMP_RETURN:
1583 case GIMPLE_PREDICT:
1584 break;
1585
1586 default:
1587 {
1588 enum gimple_statement_structure_enum gss;
1589 gss = gimple_statement_structure (stmt);
1590 if (gss == GSS_WITH_OPS || gss == GSS_WITH_MEM_OPS)
1591 for (i = 0; i < gimple_num_ops (stmt); i++)
1592 {
1593 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi, pset);
1594 if (ret)
1595 return ret;
1596 }
1597 }
1598 break;
1599 }
1600
1601 return NULL_TREE;
1602 }
1603
1604
1605 /* Walk the current statement in GSI (optionally using traversal state
1606 stored in WI). If WI is NULL, no state is kept during traversal.
1607 The callback CALLBACK_STMT is called. If CALLBACK_STMT indicates
1608 that it has handled all the operands of the statement, its return
1609 value is returned. Otherwise, the return value from CALLBACK_STMT
1610 is discarded and its operands are scanned.
1611
1612 If CALLBACK_STMT is NULL or it didn't handle the operands,
1613 CALLBACK_OP is called on each operand of the statement via
1614 walk_gimple_op. If walk_gimple_op returns non-NULL for any
1615 operand, the remaining operands are not scanned. In this case, the
1616 return value from CALLBACK_OP is returned.
1617
1618 In any other case, NULL_TREE is returned. */
1619
1620 tree
1621 walk_gimple_stmt (gimple_stmt_iterator *gsi, walk_stmt_fn callback_stmt,
1622 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1623 {
1624 gimple ret;
1625 tree tree_ret;
1626 gimple stmt = gsi_stmt (*gsi);
1627
1628 if (wi)
1629 wi->gsi = *gsi;
1630
1631 if (wi && wi->want_locations && gimple_has_location (stmt))
1632 input_location = gimple_location (stmt);
1633
1634 ret = NULL;
1635
1636 /* Invoke the statement callback. Return if the callback handled
1637 all of STMT operands by itself. */
1638 if (callback_stmt)
1639 {
1640 bool handled_ops = false;
1641 tree_ret = callback_stmt (gsi, &handled_ops, wi);
1642 if (handled_ops)
1643 return tree_ret;
1644
1645 /* If CALLBACK_STMT did not handle operands, it should not have
1646 a value to return. */
1647 gcc_assert (tree_ret == NULL);
1648
1649 /* Re-read stmt in case the callback changed it. */
1650 stmt = gsi_stmt (*gsi);
1651 }
1652
1653 /* If CALLBACK_OP is defined, invoke it on every operand of STMT. */
1654 if (callback_op)
1655 {
1656 tree_ret = walk_gimple_op (stmt, callback_op, wi);
1657 if (tree_ret)
1658 return tree_ret;
1659 }
1660
1661 /* If STMT can have statements inside (e.g. GIMPLE_BIND), walk them. */
1662 switch (gimple_code (stmt))
1663 {
1664 case GIMPLE_BIND:
1665 ret = walk_gimple_seq (gimple_bind_body (stmt), callback_stmt,
1666 callback_op, wi);
1667 if (ret)
1668 return wi->callback_result;
1669 break;
1670
1671 case GIMPLE_CATCH:
1672 ret = walk_gimple_seq (gimple_catch_handler (stmt), callback_stmt,
1673 callback_op, wi);
1674 if (ret)
1675 return wi->callback_result;
1676 break;
1677
1678 case GIMPLE_EH_FILTER:
1679 ret = walk_gimple_seq (gimple_eh_filter_failure (stmt), callback_stmt,
1680 callback_op, wi);
1681 if (ret)
1682 return wi->callback_result;
1683 break;
1684
1685 case GIMPLE_TRY:
1686 ret = walk_gimple_seq (gimple_try_eval (stmt), callback_stmt, callback_op,
1687 wi);
1688 if (ret)
1689 return wi->callback_result;
1690
1691 ret = walk_gimple_seq (gimple_try_cleanup (stmt), callback_stmt,
1692 callback_op, wi);
1693 if (ret)
1694 return wi->callback_result;
1695 break;
1696
1697 case GIMPLE_OMP_FOR:
1698 ret = walk_gimple_seq (gimple_omp_for_pre_body (stmt), callback_stmt,
1699 callback_op, wi);
1700 if (ret)
1701 return wi->callback_result;
1702
1703 /* FALL THROUGH. */
1704 case GIMPLE_OMP_CRITICAL:
1705 case GIMPLE_OMP_MASTER:
1706 case GIMPLE_OMP_ORDERED:
1707 case GIMPLE_OMP_SECTION:
1708 case GIMPLE_OMP_PARALLEL:
1709 case GIMPLE_OMP_TASK:
1710 case GIMPLE_OMP_SECTIONS:
1711 case GIMPLE_OMP_SINGLE:
1712 ret = walk_gimple_seq (gimple_omp_body (stmt), callback_stmt, callback_op,
1713 wi);
1714 if (ret)
1715 return wi->callback_result;
1716 break;
1717
1718 case GIMPLE_WITH_CLEANUP_EXPR:
1719 ret = walk_gimple_seq (gimple_wce_cleanup (stmt), callback_stmt,
1720 callback_op, wi);
1721 if (ret)
1722 return wi->callback_result;
1723 break;
1724
1725 default:
1726 gcc_assert (!gimple_has_substatements (stmt));
1727 break;
1728 }
1729
1730 return NULL;
1731 }
1732
1733
1734 /* Set sequence SEQ to be the GIMPLE body for function FN. */
1735
1736 void
1737 gimple_set_body (tree fndecl, gimple_seq seq)
1738 {
1739 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1740 if (fn == NULL)
1741 {
1742 /* If FNDECL still does not have a function structure associated
1743 with it, then it does not make sense for it to receive a
1744 GIMPLE body. */
1745 gcc_assert (seq == NULL);
1746 }
1747 else
1748 fn->gimple_body = seq;
1749 }
1750
1751
1752 /* Return the body of GIMPLE statements for function FN. After the
1753 CFG pass, the function body doesn't exist anymore because it has
1754 been split up into basic blocks. In this case, it returns
1755 NULL. */
1756
1757 gimple_seq
1758 gimple_body (tree fndecl)
1759 {
1760 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1761 return fn ? fn->gimple_body : NULL;
1762 }
1763
1764 /* Return true when FNDECL has Gimple body either in unlowered
1765 or CFG form. */
1766 bool
1767 gimple_has_body_p (tree fndecl)
1768 {
1769 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1770 return (gimple_body (fndecl) || (fn && fn->cfg));
1771 }
1772
1773 /* Detect flags from a GIMPLE_CALL. This is just like
1774 call_expr_flags, but for gimple tuples. */
1775
1776 int
1777 gimple_call_flags (const_gimple stmt)
1778 {
1779 int flags;
1780 tree decl = gimple_call_fndecl (stmt);
1781 tree t;
1782
1783 if (decl)
1784 flags = flags_from_decl_or_type (decl);
1785 else
1786 {
1787 t = TREE_TYPE (gimple_call_fn (stmt));
1788 if (t && TREE_CODE (t) == POINTER_TYPE)
1789 flags = flags_from_decl_or_type (TREE_TYPE (t));
1790 else
1791 flags = 0;
1792 }
1793
1794 if (stmt->gsbase.subcode & GF_CALL_NOTHROW)
1795 flags |= ECF_NOTHROW;
1796
1797 return flags;
1798 }
1799
1800 /* Detects argument flags for argument number ARG on call STMT. */
1801
1802 int
1803 gimple_call_arg_flags (const_gimple stmt, unsigned arg)
1804 {
1805 tree type = TREE_TYPE (TREE_TYPE (gimple_call_fn (stmt)));
1806 tree attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1807 if (!attr)
1808 return 0;
1809
1810 attr = TREE_VALUE (TREE_VALUE (attr));
1811 if (1 + arg >= (unsigned) TREE_STRING_LENGTH (attr))
1812 return 0;
1813
1814 switch (TREE_STRING_POINTER (attr)[1 + arg])
1815 {
1816 case 'x':
1817 case 'X':
1818 return EAF_UNUSED;
1819
1820 case 'R':
1821 return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE;
1822
1823 case 'r':
1824 return EAF_NOCLOBBER | EAF_NOESCAPE;
1825
1826 case 'W':
1827 return EAF_DIRECT | EAF_NOESCAPE;
1828
1829 case 'w':
1830 return EAF_NOESCAPE;
1831
1832 case '.':
1833 default:
1834 return 0;
1835 }
1836 }
1837
1838 /* Detects return flags for the call STMT. */
1839
1840 int
1841 gimple_call_return_flags (const_gimple stmt)
1842 {
1843 tree type;
1844 tree attr = NULL_TREE;
1845
1846 if (gimple_call_flags (stmt) & ECF_MALLOC)
1847 return ERF_NOALIAS;
1848
1849 type = TREE_TYPE (TREE_TYPE (gimple_call_fn (stmt)));
1850 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1851 if (!attr)
1852 return 0;
1853
1854 attr = TREE_VALUE (TREE_VALUE (attr));
1855 if (TREE_STRING_LENGTH (attr) < 1)
1856 return 0;
1857
1858 switch (TREE_STRING_POINTER (attr)[0])
1859 {
1860 case '1':
1861 case '2':
1862 case '3':
1863 case '4':
1864 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
1865
1866 case 'm':
1867 return ERF_NOALIAS;
1868
1869 case '.':
1870 default:
1871 return 0;
1872 }
1873 }
1874
1875
1876 /* Return true if GS is a copy assignment. */
1877
1878 bool
1879 gimple_assign_copy_p (gimple gs)
1880 {
1881 return (gimple_assign_single_p (gs)
1882 && is_gimple_val (gimple_op (gs, 1)));
1883 }
1884
1885
1886 /* Return true if GS is a SSA_NAME copy assignment. */
1887
1888 bool
1889 gimple_assign_ssa_name_copy_p (gimple gs)
1890 {
1891 return (gimple_assign_single_p (gs)
1892 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1893 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1894 }
1895
1896
1897 /* Return true if GS is an assignment with a unary RHS, but the
1898 operator has no effect on the assigned value. The logic is adapted
1899 from STRIP_NOPS. This predicate is intended to be used in tuplifying
1900 instances in which STRIP_NOPS was previously applied to the RHS of
1901 an assignment.
1902
1903 NOTE: In the use cases that led to the creation of this function
1904 and of gimple_assign_single_p, it is typical to test for either
1905 condition and to proceed in the same manner. In each case, the
1906 assigned value is represented by the single RHS operand of the
1907 assignment. I suspect there may be cases where gimple_assign_copy_p,
1908 gimple_assign_single_p, or equivalent logic is used where a similar
1909 treatment of unary NOPs is appropriate. */
1910
1911 bool
1912 gimple_assign_unary_nop_p (gimple gs)
1913 {
1914 return (is_gimple_assign (gs)
1915 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
1916 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
1917 && gimple_assign_rhs1 (gs) != error_mark_node
1918 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
1919 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
1920 }
1921
1922 /* Set BB to be the basic block holding G. */
1923
1924 void
1925 gimple_set_bb (gimple stmt, basic_block bb)
1926 {
1927 stmt->gsbase.bb = bb;
1928
1929 /* If the statement is a label, add the label to block-to-labels map
1930 so that we can speed up edge creation for GIMPLE_GOTOs. */
1931 if (cfun->cfg && gimple_code (stmt) == GIMPLE_LABEL)
1932 {
1933 tree t;
1934 int uid;
1935
1936 t = gimple_label_label (stmt);
1937 uid = LABEL_DECL_UID (t);
1938 if (uid == -1)
1939 {
1940 unsigned old_len = VEC_length (basic_block, label_to_block_map);
1941 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
1942 if (old_len <= (unsigned) uid)
1943 {
1944 unsigned new_len = 3 * uid / 2 + 1;
1945
1946 VEC_safe_grow_cleared (basic_block, gc, label_to_block_map,
1947 new_len);
1948 }
1949 }
1950
1951 VEC_replace (basic_block, label_to_block_map, uid, bb);
1952 }
1953 }
1954
1955
1956 /* Modify the RHS of the assignment pointed-to by GSI using the
1957 operands in the expression tree EXPR.
1958
1959 NOTE: The statement pointed-to by GSI may be reallocated if it
1960 did not have enough operand slots.
1961
1962 This function is useful to convert an existing tree expression into
1963 the flat representation used for the RHS of a GIMPLE assignment.
1964 It will reallocate memory as needed to expand or shrink the number
1965 of operand slots needed to represent EXPR.
1966
1967 NOTE: If you find yourself building a tree and then calling this
1968 function, you are most certainly doing it the slow way. It is much
1969 better to build a new assignment or to use the function
1970 gimple_assign_set_rhs_with_ops, which does not require an
1971 expression tree to be built. */
1972
1973 void
1974 gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
1975 {
1976 enum tree_code subcode;
1977 tree op1, op2, op3;
1978
1979 extract_ops_from_tree_1 (expr, &subcode, &op1, &op2, &op3);
1980 gimple_assign_set_rhs_with_ops_1 (gsi, subcode, op1, op2, op3);
1981 }
1982
1983
1984 /* Set the RHS of assignment statement pointed-to by GSI to CODE with
1985 operands OP1, OP2 and OP3.
1986
1987 NOTE: The statement pointed-to by GSI may be reallocated if it
1988 did not have enough operand slots. */
1989
1990 void
1991 gimple_assign_set_rhs_with_ops_1 (gimple_stmt_iterator *gsi, enum tree_code code,
1992 tree op1, tree op2, tree op3)
1993 {
1994 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
1995 gimple stmt = gsi_stmt (*gsi);
1996
1997 /* If the new CODE needs more operands, allocate a new statement. */
1998 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
1999 {
2000 tree lhs = gimple_assign_lhs (stmt);
2001 gimple new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
2002 memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
2003 gsi_replace (gsi, new_stmt, true);
2004 stmt = new_stmt;
2005
2006 /* The LHS needs to be reset as this also changes the SSA name
2007 on the LHS. */
2008 gimple_assign_set_lhs (stmt, lhs);
2009 }
2010
2011 gimple_set_num_ops (stmt, new_rhs_ops + 1);
2012 gimple_set_subcode (stmt, code);
2013 gimple_assign_set_rhs1 (stmt, op1);
2014 if (new_rhs_ops > 1)
2015 gimple_assign_set_rhs2 (stmt, op2);
2016 if (new_rhs_ops > 2)
2017 gimple_assign_set_rhs3 (stmt, op3);
2018 }
2019
2020
2021 /* Return the LHS of a statement that performs an assignment,
2022 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
2023 for a call to a function that returns no value, or for a
2024 statement other than an assignment or a call. */
2025
2026 tree
2027 gimple_get_lhs (const_gimple stmt)
2028 {
2029 enum gimple_code code = gimple_code (stmt);
2030
2031 if (code == GIMPLE_ASSIGN)
2032 return gimple_assign_lhs (stmt);
2033 else if (code == GIMPLE_CALL)
2034 return gimple_call_lhs (stmt);
2035 else
2036 return NULL_TREE;
2037 }
2038
2039
2040 /* Set the LHS of a statement that performs an assignment,
2041 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2042
2043 void
2044 gimple_set_lhs (gimple stmt, tree lhs)
2045 {
2046 enum gimple_code code = gimple_code (stmt);
2047
2048 if (code == GIMPLE_ASSIGN)
2049 gimple_assign_set_lhs (stmt, lhs);
2050 else if (code == GIMPLE_CALL)
2051 gimple_call_set_lhs (stmt, lhs);
2052 else
2053 gcc_unreachable();
2054 }
2055
2056 /* Replace the LHS of STMT, an assignment, either a GIMPLE_ASSIGN or a
2057 GIMPLE_CALL, with NLHS, in preparation for modifying the RHS to an
2058 expression with a different value.
2059
2060 This will update any annotations (say debug bind stmts) referring
2061 to the original LHS, so that they use the RHS instead. This is
2062 done even if NLHS and LHS are the same, for it is understood that
2063 the RHS will be modified afterwards, and NLHS will not be assigned
2064 an equivalent value.
2065
2066 Adjusting any non-annotation uses of the LHS, if needed, is a
2067 responsibility of the caller.
2068
2069 The effect of this call should be pretty much the same as that of
2070 inserting a copy of STMT before STMT, and then removing the
2071 original stmt, at which time gsi_remove() would have update
2072 annotations, but using this function saves all the inserting,
2073 copying and removing. */
2074
2075 void
2076 gimple_replace_lhs (gimple stmt, tree nlhs)
2077 {
2078 if (MAY_HAVE_DEBUG_STMTS)
2079 {
2080 tree lhs = gimple_get_lhs (stmt);
2081
2082 gcc_assert (SSA_NAME_DEF_STMT (lhs) == stmt);
2083
2084 insert_debug_temp_for_var_def (NULL, lhs);
2085 }
2086
2087 gimple_set_lhs (stmt, nlhs);
2088 }
2089
2090 /* Return a deep copy of statement STMT. All the operands from STMT
2091 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
2092 and VUSE operand arrays are set to empty in the new copy. */
2093
2094 gimple
2095 gimple_copy (gimple stmt)
2096 {
2097 enum gimple_code code = gimple_code (stmt);
2098 unsigned num_ops = gimple_num_ops (stmt);
2099 gimple copy = gimple_alloc (code, num_ops);
2100 unsigned i;
2101
2102 /* Shallow copy all the fields from STMT. */
2103 memcpy (copy, stmt, gimple_size (code));
2104
2105 /* If STMT has sub-statements, deep-copy them as well. */
2106 if (gimple_has_substatements (stmt))
2107 {
2108 gimple_seq new_seq;
2109 tree t;
2110
2111 switch (gimple_code (stmt))
2112 {
2113 case GIMPLE_BIND:
2114 new_seq = gimple_seq_copy (gimple_bind_body (stmt));
2115 gimple_bind_set_body (copy, new_seq);
2116 gimple_bind_set_vars (copy, unshare_expr (gimple_bind_vars (stmt)));
2117 gimple_bind_set_block (copy, gimple_bind_block (stmt));
2118 break;
2119
2120 case GIMPLE_CATCH:
2121 new_seq = gimple_seq_copy (gimple_catch_handler (stmt));
2122 gimple_catch_set_handler (copy, new_seq);
2123 t = unshare_expr (gimple_catch_types (stmt));
2124 gimple_catch_set_types (copy, t);
2125 break;
2126
2127 case GIMPLE_EH_FILTER:
2128 new_seq = gimple_seq_copy (gimple_eh_filter_failure (stmt));
2129 gimple_eh_filter_set_failure (copy, new_seq);
2130 t = unshare_expr (gimple_eh_filter_types (stmt));
2131 gimple_eh_filter_set_types (copy, t);
2132 break;
2133
2134 case GIMPLE_TRY:
2135 new_seq = gimple_seq_copy (gimple_try_eval (stmt));
2136 gimple_try_set_eval (copy, new_seq);
2137 new_seq = gimple_seq_copy (gimple_try_cleanup (stmt));
2138 gimple_try_set_cleanup (copy, new_seq);
2139 break;
2140
2141 case GIMPLE_OMP_FOR:
2142 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
2143 gimple_omp_for_set_pre_body (copy, new_seq);
2144 t = unshare_expr (gimple_omp_for_clauses (stmt));
2145 gimple_omp_for_set_clauses (copy, t);
2146 copy->gimple_omp_for.iter
2147 = ggc_alloc_vec_gimple_omp_for_iter
2148 (gimple_omp_for_collapse (stmt));
2149 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
2150 {
2151 gimple_omp_for_set_cond (copy, i,
2152 gimple_omp_for_cond (stmt, i));
2153 gimple_omp_for_set_index (copy, i,
2154 gimple_omp_for_index (stmt, i));
2155 t = unshare_expr (gimple_omp_for_initial (stmt, i));
2156 gimple_omp_for_set_initial (copy, i, t);
2157 t = unshare_expr (gimple_omp_for_final (stmt, i));
2158 gimple_omp_for_set_final (copy, i, t);
2159 t = unshare_expr (gimple_omp_for_incr (stmt, i));
2160 gimple_omp_for_set_incr (copy, i, t);
2161 }
2162 goto copy_omp_body;
2163
2164 case GIMPLE_OMP_PARALLEL:
2165 t = unshare_expr (gimple_omp_parallel_clauses (stmt));
2166 gimple_omp_parallel_set_clauses (copy, t);
2167 t = unshare_expr (gimple_omp_parallel_child_fn (stmt));
2168 gimple_omp_parallel_set_child_fn (copy, t);
2169 t = unshare_expr (gimple_omp_parallel_data_arg (stmt));
2170 gimple_omp_parallel_set_data_arg (copy, t);
2171 goto copy_omp_body;
2172
2173 case GIMPLE_OMP_TASK:
2174 t = unshare_expr (gimple_omp_task_clauses (stmt));
2175 gimple_omp_task_set_clauses (copy, t);
2176 t = unshare_expr (gimple_omp_task_child_fn (stmt));
2177 gimple_omp_task_set_child_fn (copy, t);
2178 t = unshare_expr (gimple_omp_task_data_arg (stmt));
2179 gimple_omp_task_set_data_arg (copy, t);
2180 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
2181 gimple_omp_task_set_copy_fn (copy, t);
2182 t = unshare_expr (gimple_omp_task_arg_size (stmt));
2183 gimple_omp_task_set_arg_size (copy, t);
2184 t = unshare_expr (gimple_omp_task_arg_align (stmt));
2185 gimple_omp_task_set_arg_align (copy, t);
2186 goto copy_omp_body;
2187
2188 case GIMPLE_OMP_CRITICAL:
2189 t = unshare_expr (gimple_omp_critical_name (stmt));
2190 gimple_omp_critical_set_name (copy, t);
2191 goto copy_omp_body;
2192
2193 case GIMPLE_OMP_SECTIONS:
2194 t = unshare_expr (gimple_omp_sections_clauses (stmt));
2195 gimple_omp_sections_set_clauses (copy, t);
2196 t = unshare_expr (gimple_omp_sections_control (stmt));
2197 gimple_omp_sections_set_control (copy, t);
2198 /* FALLTHRU */
2199
2200 case GIMPLE_OMP_SINGLE:
2201 case GIMPLE_OMP_SECTION:
2202 case GIMPLE_OMP_MASTER:
2203 case GIMPLE_OMP_ORDERED:
2204 copy_omp_body:
2205 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
2206 gimple_omp_set_body (copy, new_seq);
2207 break;
2208
2209 case GIMPLE_WITH_CLEANUP_EXPR:
2210 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
2211 gimple_wce_set_cleanup (copy, new_seq);
2212 break;
2213
2214 default:
2215 gcc_unreachable ();
2216 }
2217 }
2218
2219 /* Make copy of operands. */
2220 if (num_ops > 0)
2221 {
2222 for (i = 0; i < num_ops; i++)
2223 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
2224
2225 /* Clear out SSA operand vectors on COPY. */
2226 if (gimple_has_ops (stmt))
2227 {
2228 gimple_set_def_ops (copy, NULL);
2229 gimple_set_use_ops (copy, NULL);
2230 }
2231
2232 if (gimple_has_mem_ops (stmt))
2233 {
2234 gimple_set_vdef (copy, gimple_vdef (stmt));
2235 gimple_set_vuse (copy, gimple_vuse (stmt));
2236 }
2237
2238 /* SSA operands need to be updated. */
2239 gimple_set_modified (copy, true);
2240 }
2241
2242 return copy;
2243 }
2244
2245
2246 /* Set the MODIFIED flag to MODIFIEDP, iff the gimple statement G has
2247 a MODIFIED field. */
2248
2249 void
2250 gimple_set_modified (gimple s, bool modifiedp)
2251 {
2252 if (gimple_has_ops (s))
2253 {
2254 s->gsbase.modified = (unsigned) modifiedp;
2255
2256 if (modifiedp
2257 && cfun->gimple_df
2258 && is_gimple_call (s)
2259 && gimple_call_noreturn_p (s))
2260 VEC_safe_push (gimple, gc, MODIFIED_NORETURN_CALLS (cfun), s);
2261 }
2262 }
2263
2264
2265 /* Return true if statement S has side-effects. We consider a
2266 statement to have side effects if:
2267
2268 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
2269 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
2270
2271 bool
2272 gimple_has_side_effects (const_gimple s)
2273 {
2274 unsigned i;
2275
2276 if (is_gimple_debug (s))
2277 return false;
2278
2279 /* We don't have to scan the arguments to check for
2280 volatile arguments, though, at present, we still
2281 do a scan to check for TREE_SIDE_EFFECTS. */
2282 if (gimple_has_volatile_ops (s))
2283 return true;
2284
2285 if (is_gimple_call (s))
2286 {
2287 unsigned nargs = gimple_call_num_args (s);
2288
2289 if (!(gimple_call_flags (s) & (ECF_CONST | ECF_PURE)))
2290 return true;
2291 else if (gimple_call_flags (s) & ECF_LOOPING_CONST_OR_PURE)
2292 /* An infinite loop is considered a side effect. */
2293 return true;
2294
2295 if (gimple_call_lhs (s)
2296 && TREE_SIDE_EFFECTS (gimple_call_lhs (s)))
2297 {
2298 gcc_assert (gimple_has_volatile_ops (s));
2299 return true;
2300 }
2301
2302 if (TREE_SIDE_EFFECTS (gimple_call_fn (s)))
2303 return true;
2304
2305 for (i = 0; i < nargs; i++)
2306 if (TREE_SIDE_EFFECTS (gimple_call_arg (s, i)))
2307 {
2308 gcc_assert (gimple_has_volatile_ops (s));
2309 return true;
2310 }
2311
2312 return false;
2313 }
2314 else
2315 {
2316 for (i = 0; i < gimple_num_ops (s); i++)
2317 if (TREE_SIDE_EFFECTS (gimple_op (s, i)))
2318 {
2319 gcc_assert (gimple_has_volatile_ops (s));
2320 return true;
2321 }
2322 }
2323
2324 return false;
2325 }
2326
2327 /* Return true if the RHS of statement S has side effects.
2328 We may use it to determine if it is admissable to replace
2329 an assignment or call with a copy of a previously-computed
2330 value. In such cases, side-effects due the the LHS are
2331 preserved. */
2332
2333 bool
2334 gimple_rhs_has_side_effects (const_gimple s)
2335 {
2336 unsigned i;
2337
2338 if (is_gimple_call (s))
2339 {
2340 unsigned nargs = gimple_call_num_args (s);
2341
2342 if (!(gimple_call_flags (s) & (ECF_CONST | ECF_PURE)))
2343 return true;
2344
2345 /* We cannot use gimple_has_volatile_ops here,
2346 because we must ignore a volatile LHS. */
2347 if (TREE_SIDE_EFFECTS (gimple_call_fn (s))
2348 || TREE_THIS_VOLATILE (gimple_call_fn (s)))
2349 {
2350 gcc_assert (gimple_has_volatile_ops (s));
2351 return true;
2352 }
2353
2354 for (i = 0; i < nargs; i++)
2355 if (TREE_SIDE_EFFECTS (gimple_call_arg (s, i))
2356 || TREE_THIS_VOLATILE (gimple_call_arg (s, i)))
2357 return true;
2358
2359 return false;
2360 }
2361 else if (is_gimple_assign (s))
2362 {
2363 /* Skip the first operand, the LHS. */
2364 for (i = 1; i < gimple_num_ops (s); i++)
2365 if (TREE_SIDE_EFFECTS (gimple_op (s, i))
2366 || TREE_THIS_VOLATILE (gimple_op (s, i)))
2367 {
2368 gcc_assert (gimple_has_volatile_ops (s));
2369 return true;
2370 }
2371 }
2372 else if (is_gimple_debug (s))
2373 return false;
2374 else
2375 {
2376 /* For statements without an LHS, examine all arguments. */
2377 for (i = 0; i < gimple_num_ops (s); i++)
2378 if (TREE_SIDE_EFFECTS (gimple_op (s, i))
2379 || TREE_THIS_VOLATILE (gimple_op (s, i)))
2380 {
2381 gcc_assert (gimple_has_volatile_ops (s));
2382 return true;
2383 }
2384 }
2385
2386 return false;
2387 }
2388
2389 /* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
2390 Return true if S can trap. When INCLUDE_MEM is true, check whether
2391 the memory operations could trap. When INCLUDE_STORES is true and
2392 S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked. */
2393
2394 bool
2395 gimple_could_trap_p_1 (gimple s, bool include_mem, bool include_stores)
2396 {
2397 tree t, div = NULL_TREE;
2398 enum tree_code op;
2399
2400 if (include_mem)
2401 {
2402 unsigned i, start = (is_gimple_assign (s) && !include_stores) ? 1 : 0;
2403
2404 for (i = start; i < gimple_num_ops (s); i++)
2405 if (tree_could_trap_p (gimple_op (s, i)))
2406 return true;
2407 }
2408
2409 switch (gimple_code (s))
2410 {
2411 case GIMPLE_ASM:
2412 return gimple_asm_volatile_p (s);
2413
2414 case GIMPLE_CALL:
2415 t = gimple_call_fndecl (s);
2416 /* Assume that calls to weak functions may trap. */
2417 if (!t || !DECL_P (t) || DECL_WEAK (t))
2418 return true;
2419 return false;
2420
2421 case GIMPLE_ASSIGN:
2422 t = gimple_expr_type (s);
2423 op = gimple_assign_rhs_code (s);
2424 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
2425 div = gimple_assign_rhs2 (s);
2426 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
2427 (INTEGRAL_TYPE_P (t)
2428 && TYPE_OVERFLOW_TRAPS (t)),
2429 div));
2430
2431 default:
2432 break;
2433 }
2434
2435 return false;
2436 }
2437
2438 /* Return true if statement S can trap. */
2439
2440 bool
2441 gimple_could_trap_p (gimple s)
2442 {
2443 return gimple_could_trap_p_1 (s, true, true);
2444 }
2445
2446 /* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
2447
2448 bool
2449 gimple_assign_rhs_could_trap_p (gimple s)
2450 {
2451 gcc_assert (is_gimple_assign (s));
2452 return gimple_could_trap_p_1 (s, true, false);
2453 }
2454
2455
2456 /* Print debugging information for gimple stmts generated. */
2457
2458 void
2459 dump_gimple_statistics (void)
2460 {
2461 #ifdef GATHER_STATISTICS
2462 int i, total_tuples = 0, total_bytes = 0;
2463
2464 fprintf (stderr, "\nGIMPLE statements\n");
2465 fprintf (stderr, "Kind Stmts Bytes\n");
2466 fprintf (stderr, "---------------------------------------\n");
2467 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
2468 {
2469 fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i],
2470 gimple_alloc_counts[i], gimple_alloc_sizes[i]);
2471 total_tuples += gimple_alloc_counts[i];
2472 total_bytes += gimple_alloc_sizes[i];
2473 }
2474 fprintf (stderr, "---------------------------------------\n");
2475 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes);
2476 fprintf (stderr, "---------------------------------------\n");
2477 #else
2478 fprintf (stderr, "No gimple statistics\n");
2479 #endif
2480 }
2481
2482
2483 /* Return the number of operands needed on the RHS of a GIMPLE
2484 assignment for an expression with tree code CODE. */
2485
2486 unsigned
2487 get_gimple_rhs_num_ops (enum tree_code code)
2488 {
2489 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
2490
2491 if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
2492 return 1;
2493 else if (rhs_class == GIMPLE_BINARY_RHS)
2494 return 2;
2495 else if (rhs_class == GIMPLE_TERNARY_RHS)
2496 return 3;
2497 else
2498 gcc_unreachable ();
2499 }
2500
2501 #define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
2502 (unsigned char) \
2503 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
2504 : ((TYPE) == tcc_binary \
2505 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
2506 : ((TYPE) == tcc_constant \
2507 || (TYPE) == tcc_declaration \
2508 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
2509 : ((SYM) == TRUTH_AND_EXPR \
2510 || (SYM) == TRUTH_OR_EXPR \
2511 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
2512 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
2513 : ((SYM) == WIDEN_MULT_PLUS_EXPR \
2514 || (SYM) == WIDEN_MULT_MINUS_EXPR \
2515 || (SYM) == FMA_EXPR) ? GIMPLE_TERNARY_RHS \
2516 : ((SYM) == COND_EXPR \
2517 || (SYM) == CONSTRUCTOR \
2518 || (SYM) == OBJ_TYPE_REF \
2519 || (SYM) == ASSERT_EXPR \
2520 || (SYM) == ADDR_EXPR \
2521 || (SYM) == WITH_SIZE_EXPR \
2522 || (SYM) == SSA_NAME \
2523 || (SYM) == POLYNOMIAL_CHREC \
2524 || (SYM) == DOT_PROD_EXPR \
2525 || (SYM) == VEC_COND_EXPR \
2526 || (SYM) == REALIGN_LOAD_EXPR) ? GIMPLE_SINGLE_RHS \
2527 : GIMPLE_INVALID_RHS),
2528 #define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
2529
2530 const unsigned char gimple_rhs_class_table[] = {
2531 #include "all-tree.def"
2532 };
2533
2534 #undef DEFTREECODE
2535 #undef END_OF_BASE_TREE_CODES
2536
2537 /* For the definitive definition of GIMPLE, see doc/tree-ssa.texi. */
2538
2539 /* Validation of GIMPLE expressions. */
2540
2541 /* Returns true iff T is a valid RHS for an assignment to a renamed
2542 user -- or front-end generated artificial -- variable. */
2543
2544 bool
2545 is_gimple_reg_rhs (tree t)
2546 {
2547 return get_gimple_rhs_class (TREE_CODE (t)) != GIMPLE_INVALID_RHS;
2548 }
2549
2550 /* Returns true iff T is a valid RHS for an assignment to an un-renamed
2551 LHS, or for a call argument. */
2552
2553 bool
2554 is_gimple_mem_rhs (tree t)
2555 {
2556 /* If we're dealing with a renamable type, either source or dest must be
2557 a renamed variable. */
2558 if (is_gimple_reg_type (TREE_TYPE (t)))
2559 return is_gimple_val (t);
2560 else
2561 return is_gimple_val (t) || is_gimple_lvalue (t);
2562 }
2563
2564 /* Return true if T is a valid LHS for a GIMPLE assignment expression. */
2565
2566 bool
2567 is_gimple_lvalue (tree t)
2568 {
2569 return (is_gimple_addressable (t)
2570 || TREE_CODE (t) == WITH_SIZE_EXPR
2571 /* These are complex lvalues, but don't have addresses, so they
2572 go here. */
2573 || TREE_CODE (t) == BIT_FIELD_REF);
2574 }
2575
2576 /* Return true if T is a GIMPLE condition. */
2577
2578 bool
2579 is_gimple_condexpr (tree t)
2580 {
2581 return (is_gimple_val (t) || (COMPARISON_CLASS_P (t)
2582 && !tree_could_trap_p (t)
2583 && is_gimple_val (TREE_OPERAND (t, 0))
2584 && is_gimple_val (TREE_OPERAND (t, 1))));
2585 }
2586
2587 /* Return true if T is something whose address can be taken. */
2588
2589 bool
2590 is_gimple_addressable (tree t)
2591 {
2592 return (is_gimple_id (t) || handled_component_p (t)
2593 || TREE_CODE (t) == MEM_REF);
2594 }
2595
2596 /* Return true if T is a valid gimple constant. */
2597
2598 bool
2599 is_gimple_constant (const_tree t)
2600 {
2601 switch (TREE_CODE (t))
2602 {
2603 case INTEGER_CST:
2604 case REAL_CST:
2605 case FIXED_CST:
2606 case STRING_CST:
2607 case COMPLEX_CST:
2608 case VECTOR_CST:
2609 return true;
2610
2611 /* Vector constant constructors are gimple invariant. */
2612 case CONSTRUCTOR:
2613 if (TREE_TYPE (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2614 return TREE_CONSTANT (t);
2615 else
2616 return false;
2617
2618 default:
2619 return false;
2620 }
2621 }
2622
2623 /* Return true if T is a gimple address. */
2624
2625 bool
2626 is_gimple_address (const_tree t)
2627 {
2628 tree op;
2629
2630 if (TREE_CODE (t) != ADDR_EXPR)
2631 return false;
2632
2633 op = TREE_OPERAND (t, 0);
2634 while (handled_component_p (op))
2635 {
2636 if ((TREE_CODE (op) == ARRAY_REF
2637 || TREE_CODE (op) == ARRAY_RANGE_REF)
2638 && !is_gimple_val (TREE_OPERAND (op, 1)))
2639 return false;
2640
2641 op = TREE_OPERAND (op, 0);
2642 }
2643
2644 if (CONSTANT_CLASS_P (op) || TREE_CODE (op) == MEM_REF)
2645 return true;
2646
2647 switch (TREE_CODE (op))
2648 {
2649 case PARM_DECL:
2650 case RESULT_DECL:
2651 case LABEL_DECL:
2652 case FUNCTION_DECL:
2653 case VAR_DECL:
2654 case CONST_DECL:
2655 return true;
2656
2657 default:
2658 return false;
2659 }
2660 }
2661
2662 /* Strip out all handled components that produce invariant
2663 offsets. */
2664
2665 static const_tree
2666 strip_invariant_refs (const_tree op)
2667 {
2668 while (handled_component_p (op))
2669 {
2670 switch (TREE_CODE (op))
2671 {
2672 case ARRAY_REF:
2673 case ARRAY_RANGE_REF:
2674 if (!is_gimple_constant (TREE_OPERAND (op, 1))
2675 || TREE_OPERAND (op, 2) != NULL_TREE
2676 || TREE_OPERAND (op, 3) != NULL_TREE)
2677 return NULL;
2678 break;
2679
2680 case COMPONENT_REF:
2681 if (TREE_OPERAND (op, 2) != NULL_TREE)
2682 return NULL;
2683 break;
2684
2685 default:;
2686 }
2687 op = TREE_OPERAND (op, 0);
2688 }
2689
2690 return op;
2691 }
2692
2693 /* Return true if T is a gimple invariant address. */
2694
2695 bool
2696 is_gimple_invariant_address (const_tree t)
2697 {
2698 const_tree op;
2699
2700 if (TREE_CODE (t) != ADDR_EXPR)
2701 return false;
2702
2703 op = strip_invariant_refs (TREE_OPERAND (t, 0));
2704 if (!op)
2705 return false;
2706
2707 if (TREE_CODE (op) == MEM_REF)
2708 {
2709 const_tree op0 = TREE_OPERAND (op, 0);
2710 return (TREE_CODE (op0) == ADDR_EXPR
2711 && (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))
2712 || decl_address_invariant_p (TREE_OPERAND (op0, 0))));
2713 }
2714
2715 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
2716 }
2717
2718 /* Return true if T is a gimple invariant address at IPA level
2719 (so addresses of variables on stack are not allowed). */
2720
2721 bool
2722 is_gimple_ip_invariant_address (const_tree t)
2723 {
2724 const_tree op;
2725
2726 if (TREE_CODE (t) != ADDR_EXPR)
2727 return false;
2728
2729 op = strip_invariant_refs (TREE_OPERAND (t, 0));
2730
2731 return op && (CONSTANT_CLASS_P (op) || decl_address_ip_invariant_p (op));
2732 }
2733
2734 /* Return true if T is a GIMPLE minimal invariant. It's a restricted
2735 form of function invariant. */
2736
2737 bool
2738 is_gimple_min_invariant (const_tree t)
2739 {
2740 if (TREE_CODE (t) == ADDR_EXPR)
2741 return is_gimple_invariant_address (t);
2742
2743 return is_gimple_constant (t);
2744 }
2745
2746 /* Return true if T is a GIMPLE interprocedural invariant. It's a restricted
2747 form of gimple minimal invariant. */
2748
2749 bool
2750 is_gimple_ip_invariant (const_tree t)
2751 {
2752 if (TREE_CODE (t) == ADDR_EXPR)
2753 return is_gimple_ip_invariant_address (t);
2754
2755 return is_gimple_constant (t);
2756 }
2757
2758 /* Return true if T looks like a valid GIMPLE statement. */
2759
2760 bool
2761 is_gimple_stmt (tree t)
2762 {
2763 const enum tree_code code = TREE_CODE (t);
2764
2765 switch (code)
2766 {
2767 case NOP_EXPR:
2768 /* The only valid NOP_EXPR is the empty statement. */
2769 return IS_EMPTY_STMT (t);
2770
2771 case BIND_EXPR:
2772 case COND_EXPR:
2773 /* These are only valid if they're void. */
2774 return TREE_TYPE (t) == NULL || VOID_TYPE_P (TREE_TYPE (t));
2775
2776 case SWITCH_EXPR:
2777 case GOTO_EXPR:
2778 case RETURN_EXPR:
2779 case LABEL_EXPR:
2780 case CASE_LABEL_EXPR:
2781 case TRY_CATCH_EXPR:
2782 case TRY_FINALLY_EXPR:
2783 case EH_FILTER_EXPR:
2784 case CATCH_EXPR:
2785 case ASM_EXPR:
2786 case STATEMENT_LIST:
2787 case OMP_PARALLEL:
2788 case OMP_FOR:
2789 case OMP_SECTIONS:
2790 case OMP_SECTION:
2791 case OMP_SINGLE:
2792 case OMP_MASTER:
2793 case OMP_ORDERED:
2794 case OMP_CRITICAL:
2795 case OMP_TASK:
2796 /* These are always void. */
2797 return true;
2798
2799 case CALL_EXPR:
2800 case MODIFY_EXPR:
2801 case PREDICT_EXPR:
2802 /* These are valid regardless of their type. */
2803 return true;
2804
2805 default:
2806 return false;
2807 }
2808 }
2809
2810 /* Return true if T is a variable. */
2811
2812 bool
2813 is_gimple_variable (tree t)
2814 {
2815 return (TREE_CODE (t) == VAR_DECL
2816 || TREE_CODE (t) == PARM_DECL
2817 || TREE_CODE (t) == RESULT_DECL
2818 || TREE_CODE (t) == SSA_NAME);
2819 }
2820
2821 /* Return true if T is a GIMPLE identifier (something with an address). */
2822
2823 bool
2824 is_gimple_id (tree t)
2825 {
2826 return (is_gimple_variable (t)
2827 || TREE_CODE (t) == FUNCTION_DECL
2828 || TREE_CODE (t) == LABEL_DECL
2829 || TREE_CODE (t) == CONST_DECL
2830 /* Allow string constants, since they are addressable. */
2831 || TREE_CODE (t) == STRING_CST);
2832 }
2833
2834 /* Return true if TYPE is a suitable type for a scalar register variable. */
2835
2836 bool
2837 is_gimple_reg_type (tree type)
2838 {
2839 return !AGGREGATE_TYPE_P (type);
2840 }
2841
2842 /* Return true if T is a non-aggregate register variable. */
2843
2844 bool
2845 is_gimple_reg (tree t)
2846 {
2847 if (TREE_CODE (t) == SSA_NAME)
2848 t = SSA_NAME_VAR (t);
2849
2850 if (!is_gimple_variable (t))
2851 return false;
2852
2853 if (!is_gimple_reg_type (TREE_TYPE (t)))
2854 return false;
2855
2856 /* A volatile decl is not acceptable because we can't reuse it as
2857 needed. We need to copy it into a temp first. */
2858 if (TREE_THIS_VOLATILE (t))
2859 return false;
2860
2861 /* We define "registers" as things that can be renamed as needed,
2862 which with our infrastructure does not apply to memory. */
2863 if (needs_to_live_in_memory (t))
2864 return false;
2865
2866 /* Hard register variables are an interesting case. For those that
2867 are call-clobbered, we don't know where all the calls are, since
2868 we don't (want to) take into account which operations will turn
2869 into libcalls at the rtl level. For those that are call-saved,
2870 we don't currently model the fact that calls may in fact change
2871 global hard registers, nor do we examine ASM_CLOBBERS at the tree
2872 level, and so miss variable changes that might imply. All around,
2873 it seems safest to not do too much optimization with these at the
2874 tree level at all. We'll have to rely on the rtl optimizers to
2875 clean this up, as there we've got all the appropriate bits exposed. */
2876 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
2877 return false;
2878
2879 /* Complex and vector values must have been put into SSA-like form.
2880 That is, no assignments to the individual components. */
2881 if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE
2882 || TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2883 return DECL_GIMPLE_REG_P (t);
2884
2885 return true;
2886 }
2887
2888
2889 /* Return true if T is a GIMPLE variable whose address is not needed. */
2890
2891 bool
2892 is_gimple_non_addressable (tree t)
2893 {
2894 if (TREE_CODE (t) == SSA_NAME)
2895 t = SSA_NAME_VAR (t);
2896
2897 return (is_gimple_variable (t) && ! needs_to_live_in_memory (t));
2898 }
2899
2900 /* Return true if T is a GIMPLE rvalue, i.e. an identifier or a constant. */
2901
2902 bool
2903 is_gimple_val (tree t)
2904 {
2905 /* Make loads from volatiles and memory vars explicit. */
2906 if (is_gimple_variable (t)
2907 && is_gimple_reg_type (TREE_TYPE (t))
2908 && !is_gimple_reg (t))
2909 return false;
2910
2911 return (is_gimple_variable (t) || is_gimple_min_invariant (t));
2912 }
2913
2914 /* Similarly, but accept hard registers as inputs to asm statements. */
2915
2916 bool
2917 is_gimple_asm_val (tree t)
2918 {
2919 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
2920 return true;
2921
2922 return is_gimple_val (t);
2923 }
2924
2925 /* Return true if T is a GIMPLE minimal lvalue. */
2926
2927 bool
2928 is_gimple_min_lval (tree t)
2929 {
2930 if (!(t = CONST_CAST_TREE (strip_invariant_refs (t))))
2931 return false;
2932 return (is_gimple_id (t) || TREE_CODE (t) == MEM_REF);
2933 }
2934
2935 /* Return true if T is a valid function operand of a CALL_EXPR. */
2936
2937 bool
2938 is_gimple_call_addr (tree t)
2939 {
2940 return (TREE_CODE (t) == OBJ_TYPE_REF || is_gimple_val (t));
2941 }
2942
2943 /* Return true if T is a valid address operand of a MEM_REF. */
2944
2945 bool
2946 is_gimple_mem_ref_addr (tree t)
2947 {
2948 return (is_gimple_reg (t)
2949 || TREE_CODE (t) == INTEGER_CST
2950 || (TREE_CODE (t) == ADDR_EXPR
2951 && (CONSTANT_CLASS_P (TREE_OPERAND (t, 0))
2952 || decl_address_invariant_p (TREE_OPERAND (t, 0)))));
2953 }
2954
2955 /* If T makes a function call, return the corresponding CALL_EXPR operand.
2956 Otherwise, return NULL_TREE. */
2957
2958 tree
2959 get_call_expr_in (tree t)
2960 {
2961 if (TREE_CODE (t) == MODIFY_EXPR)
2962 t = TREE_OPERAND (t, 1);
2963 if (TREE_CODE (t) == WITH_SIZE_EXPR)
2964 t = TREE_OPERAND (t, 0);
2965 if (TREE_CODE (t) == CALL_EXPR)
2966 return t;
2967 return NULL_TREE;
2968 }
2969
2970
2971 /* Given a memory reference expression T, return its base address.
2972 The base address of a memory reference expression is the main
2973 object being referenced. For instance, the base address for
2974 'array[i].fld[j]' is 'array'. You can think of this as stripping
2975 away the offset part from a memory address.
2976
2977 This function calls handled_component_p to strip away all the inner
2978 parts of the memory reference until it reaches the base object. */
2979
2980 tree
2981 get_base_address (tree t)
2982 {
2983 while (handled_component_p (t))
2984 t = TREE_OPERAND (t, 0);
2985
2986 if ((TREE_CODE (t) == MEM_REF
2987 || TREE_CODE (t) == TARGET_MEM_REF)
2988 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
2989 t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
2990
2991 if (TREE_CODE (t) == SSA_NAME
2992 || DECL_P (t)
2993 || TREE_CODE (t) == STRING_CST
2994 || TREE_CODE (t) == CONSTRUCTOR
2995 || INDIRECT_REF_P (t)
2996 || TREE_CODE (t) == MEM_REF
2997 || TREE_CODE (t) == TARGET_MEM_REF)
2998 return t;
2999 else
3000 return NULL_TREE;
3001 }
3002
3003 void
3004 recalculate_side_effects (tree t)
3005 {
3006 enum tree_code code = TREE_CODE (t);
3007 int len = TREE_OPERAND_LENGTH (t);
3008 int i;
3009
3010 switch (TREE_CODE_CLASS (code))
3011 {
3012 case tcc_expression:
3013 switch (code)
3014 {
3015 case INIT_EXPR:
3016 case MODIFY_EXPR:
3017 case VA_ARG_EXPR:
3018 case PREDECREMENT_EXPR:
3019 case PREINCREMENT_EXPR:
3020 case POSTDECREMENT_EXPR:
3021 case POSTINCREMENT_EXPR:
3022 /* All of these have side-effects, no matter what their
3023 operands are. */
3024 return;
3025
3026 default:
3027 break;
3028 }
3029 /* Fall through. */
3030
3031 case tcc_comparison: /* a comparison expression */
3032 case tcc_unary: /* a unary arithmetic expression */
3033 case tcc_binary: /* a binary arithmetic expression */
3034 case tcc_reference: /* a reference */
3035 case tcc_vl_exp: /* a function call */
3036 TREE_SIDE_EFFECTS (t) = TREE_THIS_VOLATILE (t);
3037 for (i = 0; i < len; ++i)
3038 {
3039 tree op = TREE_OPERAND (t, i);
3040 if (op && TREE_SIDE_EFFECTS (op))
3041 TREE_SIDE_EFFECTS (t) = 1;
3042 }
3043 break;
3044
3045 case tcc_constant:
3046 /* No side-effects. */
3047 return;
3048
3049 default:
3050 gcc_unreachable ();
3051 }
3052 }
3053
3054 /* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
3055 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
3056 we failed to create one. */
3057
3058 tree
3059 canonicalize_cond_expr_cond (tree t)
3060 {
3061 /* Strip conversions around boolean operations. */
3062 if (CONVERT_EXPR_P (t)
3063 && truth_value_p (TREE_CODE (TREE_OPERAND (t, 0))))
3064 t = TREE_OPERAND (t, 0);
3065
3066 /* For (bool)x use x != 0. */
3067 if (CONVERT_EXPR_P (t)
3068 && TREE_CODE (TREE_TYPE (t)) == BOOLEAN_TYPE)
3069 {
3070 tree top0 = TREE_OPERAND (t, 0);
3071 t = build2 (NE_EXPR, TREE_TYPE (t),
3072 top0, build_int_cst (TREE_TYPE (top0), 0));
3073 }
3074 /* For !x use x == 0. */
3075 else if (TREE_CODE (t) == TRUTH_NOT_EXPR)
3076 {
3077 tree top0 = TREE_OPERAND (t, 0);
3078 t = build2 (EQ_EXPR, TREE_TYPE (t),
3079 top0, build_int_cst (TREE_TYPE (top0), 0));
3080 }
3081 /* For cmp ? 1 : 0 use cmp. */
3082 else if (TREE_CODE (t) == COND_EXPR
3083 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
3084 && integer_onep (TREE_OPERAND (t, 1))
3085 && integer_zerop (TREE_OPERAND (t, 2)))
3086 {
3087 tree top0 = TREE_OPERAND (t, 0);
3088 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
3089 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
3090 }
3091
3092 if (is_gimple_condexpr (t))
3093 return t;
3094
3095 return NULL_TREE;
3096 }
3097
3098 /* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
3099 the positions marked by the set ARGS_TO_SKIP. */
3100
3101 gimple
3102 gimple_call_copy_skip_args (gimple stmt, bitmap args_to_skip)
3103 {
3104 int i;
3105 tree fn = gimple_call_fn (stmt);
3106 int nargs = gimple_call_num_args (stmt);
3107 VEC(tree, heap) *vargs = VEC_alloc (tree, heap, nargs);
3108 gimple new_stmt;
3109
3110 for (i = 0; i < nargs; i++)
3111 if (!bitmap_bit_p (args_to_skip, i))
3112 VEC_quick_push (tree, vargs, gimple_call_arg (stmt, i));
3113
3114 new_stmt = gimple_build_call_vec (fn, vargs);
3115 VEC_free (tree, heap, vargs);
3116 if (gimple_call_lhs (stmt))
3117 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
3118
3119 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
3120 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
3121
3122 gimple_set_block (new_stmt, gimple_block (stmt));
3123 if (gimple_has_location (stmt))
3124 gimple_set_location (new_stmt, gimple_location (stmt));
3125 gimple_call_copy_flags (new_stmt, stmt);
3126 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
3127
3128 gimple_set_modified (new_stmt, true);
3129
3130 return new_stmt;
3131 }
3132
3133
3134 static hashval_t gimple_type_hash (const void *);
3135
3136 /* Structure used to maintain a cache of some type pairs compared by
3137 gimple_types_compatible_p when comparing aggregate types. There are
3138 three possible values for SAME_P:
3139
3140 -2: The pair (T1, T2) has just been inserted in the table.
3141 0: T1 and T2 are different types.
3142 1: T1 and T2 are the same type.
3143
3144 The two elements in the SAME_P array are indexed by the comparison
3145 mode gtc_mode. */
3146
3147 struct type_pair_d
3148 {
3149 unsigned int uid1;
3150 unsigned int uid2;
3151 signed char same_p[2];
3152 };
3153 typedef struct type_pair_d *type_pair_t;
3154
3155 DEF_VEC_P(type_pair_t);
3156 DEF_VEC_ALLOC_P(type_pair_t,heap);
3157
3158 /* Return a hash value for the type pair pointed-to by P. */
3159
3160 static hashval_t
3161 type_pair_hash (const void *p)
3162 {
3163 const struct type_pair_d *pair = (const struct type_pair_d *) p;
3164 hashval_t val1 = pair->uid1;
3165 hashval_t val2 = pair->uid2;
3166 return (iterative_hash_hashval_t (val2, val1)
3167 ^ iterative_hash_hashval_t (val1, val2));
3168 }
3169
3170 /* Compare two type pairs pointed-to by P1 and P2. */
3171
3172 static int
3173 type_pair_eq (const void *p1, const void *p2)
3174 {
3175 const struct type_pair_d *pair1 = (const struct type_pair_d *) p1;
3176 const struct type_pair_d *pair2 = (const struct type_pair_d *) p2;
3177 return ((pair1->uid1 == pair2->uid1 && pair1->uid2 == pair2->uid2)
3178 || (pair1->uid1 == pair2->uid2 && pair1->uid2 == pair2->uid1));
3179 }
3180
3181 /* Lookup the pair of types T1 and T2 in *VISITED_P. Insert a new
3182 entry if none existed. */
3183
3184 static type_pair_t
3185 lookup_type_pair (tree t1, tree t2, htab_t *visited_p, struct obstack *ob_p)
3186 {
3187 struct type_pair_d pair;
3188 type_pair_t p;
3189 void **slot;
3190
3191 if (*visited_p == NULL)
3192 {
3193 *visited_p = htab_create (251, type_pair_hash, type_pair_eq, NULL);
3194 gcc_obstack_init (ob_p);
3195 }
3196
3197 pair.uid1 = TYPE_UID (t1);
3198 pair.uid2 = TYPE_UID (t2);
3199 slot = htab_find_slot (*visited_p, &pair, INSERT);
3200
3201 if (*slot)
3202 p = *((type_pair_t *) slot);
3203 else
3204 {
3205 p = XOBNEW (ob_p, struct type_pair_d);
3206 p->uid1 = TYPE_UID (t1);
3207 p->uid2 = TYPE_UID (t2);
3208 p->same_p[0] = -2;
3209 p->same_p[1] = -2;
3210 *slot = (void *) p;
3211 }
3212
3213 return p;
3214 }
3215
3216 /* Per pointer state for the SCC finding. The on_sccstack flag
3217 is not strictly required, it is true when there is no hash value
3218 recorded for the type and false otherwise. But querying that
3219 is slower. */
3220
3221 struct sccs
3222 {
3223 unsigned int dfsnum;
3224 unsigned int low;
3225 bool on_sccstack;
3226 union {
3227 hashval_t hash;
3228 signed char same_p;
3229 } u;
3230 };
3231
3232 static unsigned int next_dfs_num;
3233 static unsigned int gtc_next_dfs_num;
3234
3235
3236 /* GIMPLE type merging cache. A direct-mapped cache based on TYPE_UID. */
3237
3238 typedef struct GTY(()) gimple_type_leader_entry_s {
3239 tree type;
3240 tree leader;
3241 } gimple_type_leader_entry;
3242
3243 #define GIMPLE_TYPE_LEADER_SIZE 16381
3244 static GTY((length("GIMPLE_TYPE_LEADER_SIZE"))) gimple_type_leader_entry
3245 *gimple_type_leader;
3246
3247 /* Lookup an existing leader for T and return it or NULL_TREE, if
3248 there is none in the cache. */
3249
3250 static tree
3251 gimple_lookup_type_leader (tree t)
3252 {
3253 gimple_type_leader_entry *leader;
3254
3255 if (!gimple_type_leader)
3256 return NULL_TREE;
3257
3258 leader = &gimple_type_leader[TYPE_UID (t) % GIMPLE_TYPE_LEADER_SIZE];
3259 if (leader->type != t)
3260 return NULL_TREE;
3261
3262 return leader->leader;
3263 }
3264
3265 /* Return true if T1 and T2 have the same name. If FOR_COMPLETION_P is
3266 true then if any type has no name return false, otherwise return
3267 true if both types have no names. */
3268
3269 static bool
3270 compare_type_names_p (tree t1, tree t2, bool for_completion_p)
3271 {
3272 tree name1 = TYPE_NAME (t1);
3273 tree name2 = TYPE_NAME (t2);
3274
3275 /* Consider anonymous types all unique for completion. */
3276 if (for_completion_p
3277 && (!name1 || !name2))
3278 return false;
3279
3280 if (name1 && TREE_CODE (name1) == TYPE_DECL)
3281 {
3282 name1 = DECL_NAME (name1);
3283 if (for_completion_p
3284 && !name1)
3285 return false;
3286 }
3287 gcc_assert (!name1 || TREE_CODE (name1) == IDENTIFIER_NODE);
3288
3289 if (name2 && TREE_CODE (name2) == TYPE_DECL)
3290 {
3291 name2 = DECL_NAME (name2);
3292 if (for_completion_p
3293 && !name2)
3294 return false;
3295 }
3296 gcc_assert (!name2 || TREE_CODE (name2) == IDENTIFIER_NODE);
3297
3298 /* Identifiers can be compared with pointer equality rather
3299 than a string comparison. */
3300 if (name1 == name2)
3301 return true;
3302
3303 return false;
3304 }
3305
3306 /* Return true if the field decls F1 and F2 are at the same offset.
3307
3308 This is intended to be used on GIMPLE types only. In order to
3309 compare GENERIC types, use fields_compatible_p instead. */
3310
3311 bool
3312 gimple_compare_field_offset (tree f1, tree f2)
3313 {
3314 if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
3315 {
3316 tree offset1 = DECL_FIELD_OFFSET (f1);
3317 tree offset2 = DECL_FIELD_OFFSET (f2);
3318 return ((offset1 == offset2
3319 /* Once gimplification is done, self-referential offsets are
3320 instantiated as operand #2 of the COMPONENT_REF built for
3321 each access and reset. Therefore, they are not relevant
3322 anymore and fields are interchangeable provided that they
3323 represent the same access. */
3324 || (TREE_CODE (offset1) == PLACEHOLDER_EXPR
3325 && TREE_CODE (offset2) == PLACEHOLDER_EXPR
3326 && (DECL_SIZE (f1) == DECL_SIZE (f2)
3327 || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
3328 && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
3329 || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0))
3330 && DECL_ALIGN (f1) == DECL_ALIGN (f2))
3331 || operand_equal_p (offset1, offset2, 0))
3332 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
3333 DECL_FIELD_BIT_OFFSET (f2)));
3334 }
3335
3336 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
3337 should be, so handle differing ones specially by decomposing
3338 the offset into a byte and bit offset manually. */
3339 if (host_integerp (DECL_FIELD_OFFSET (f1), 0)
3340 && host_integerp (DECL_FIELD_OFFSET (f2), 0))
3341 {
3342 unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
3343 unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
3344 bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
3345 byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
3346 + bit_offset1 / BITS_PER_UNIT);
3347 bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
3348 byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
3349 + bit_offset2 / BITS_PER_UNIT);
3350 if (byte_offset1 != byte_offset2)
3351 return false;
3352 return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
3353 }
3354
3355 return false;
3356 }
3357
3358 /* If the type T1 and the type T2 are a complete and an incomplete
3359 variant of the same type return true. */
3360
3361 static bool
3362 gimple_compatible_complete_and_incomplete_subtype_p (tree t1, tree t2)
3363 {
3364 /* If one pointer points to an incomplete type variant of
3365 the other pointed-to type they are the same. */
3366 if (TREE_CODE (t1) == TREE_CODE (t2)
3367 && RECORD_OR_UNION_TYPE_P (t1)
3368 && (!COMPLETE_TYPE_P (t1)
3369 || !COMPLETE_TYPE_P (t2))
3370 && TYPE_QUALS (t1) == TYPE_QUALS (t2)
3371 && compare_type_names_p (TYPE_MAIN_VARIANT (t1),
3372 TYPE_MAIN_VARIANT (t2), true))
3373 return true;
3374 return false;
3375 }
3376
3377 static bool
3378 gimple_types_compatible_p_1 (tree, tree, enum gtc_mode, type_pair_t,
3379 VEC(type_pair_t, heap) **,
3380 struct pointer_map_t *, struct obstack *);
3381
3382 /* DFS visit the edge from the callers type pair with state *STATE to
3383 the pair T1, T2 while operating in FOR_MERGING_P mode.
3384 Update the merging status if it is not part of the SCC containing the
3385 callers pair and return it.
3386 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3387
3388 static bool
3389 gtc_visit (tree t1, tree t2, enum gtc_mode mode,
3390 struct sccs *state,
3391 VEC(type_pair_t, heap) **sccstack,
3392 struct pointer_map_t *sccstate,
3393 struct obstack *sccstate_obstack)
3394 {
3395 struct sccs *cstate = NULL;
3396 type_pair_t p;
3397 void **slot;
3398
3399 /* Check first for the obvious case of pointer identity. */
3400 if (t1 == t2)
3401 return true;
3402
3403 /* Check that we have two types to compare. */
3404 if (t1 == NULL_TREE || t2 == NULL_TREE)
3405 return false;
3406
3407 /* If the types have been previously registered and found equal
3408 they still are. */
3409 if (mode == GTC_MERGE)
3410 {
3411 tree leader1 = gimple_lookup_type_leader (t1);
3412 tree leader2 = gimple_lookup_type_leader (t2);
3413 if (leader1 == t2
3414 || t1 == leader2
3415 || (leader1 && leader1 == leader2))
3416 return true;
3417 }
3418 else if (mode == GTC_DIAG)
3419 {
3420 if (TYPE_CANONICAL (t1)
3421 && TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2))
3422 return true;
3423 }
3424
3425 /* Can't be the same type if the types don't have the same code. */
3426 if (TREE_CODE (t1) != TREE_CODE (t2))
3427 return false;
3428
3429 /* Can't be the same type if they have different CV qualifiers. */
3430 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
3431 return false;
3432
3433 /* Void types are always the same. */
3434 if (TREE_CODE (t1) == VOID_TYPE)
3435 return true;
3436
3437 /* Do some simple checks before doing three hashtable queries. */
3438 if (INTEGRAL_TYPE_P (t1)
3439 || SCALAR_FLOAT_TYPE_P (t1)
3440 || FIXED_POINT_TYPE_P (t1)
3441 || TREE_CODE (t1) == VECTOR_TYPE
3442 || TREE_CODE (t1) == COMPLEX_TYPE
3443 || TREE_CODE (t1) == OFFSET_TYPE)
3444 {
3445 /* Can't be the same type if they have different alignment,
3446 sign, precision or mode. */
3447 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3448 || TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
3449 || TYPE_MODE (t1) != TYPE_MODE (t2)
3450 || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
3451 return false;
3452
3453 if (TREE_CODE (t1) == INTEGER_TYPE
3454 && (TYPE_IS_SIZETYPE (t1) != TYPE_IS_SIZETYPE (t2)
3455 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)))
3456 return false;
3457
3458 /* That's all we need to check for float and fixed-point types. */
3459 if (SCALAR_FLOAT_TYPE_P (t1)
3460 || FIXED_POINT_TYPE_P (t1))
3461 return true;
3462
3463 /* For integral types fall thru to more complex checks. */
3464 }
3465
3466 else if (AGGREGATE_TYPE_P (t1) || POINTER_TYPE_P (t1))
3467 {
3468 /* Can't be the same type if they have different alignment or mode. */
3469 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3470 || TYPE_MODE (t1) != TYPE_MODE (t2))
3471 return false;
3472 }
3473
3474 /* If the hash values of t1 and t2 are different the types can't
3475 possibly be the same. This helps keeping the type-pair hashtable
3476 small, only tracking comparisons for hash collisions. */
3477 if (gimple_type_hash (t1) != gimple_type_hash (t2))
3478 return false;
3479
3480 /* Allocate a new cache entry for this comparison. */
3481 p = lookup_type_pair (t1, t2, &gtc_visited, &gtc_ob);
3482 if (p->same_p[mode] == 0 || p->same_p[mode] == 1)
3483 {
3484 /* We have already decided whether T1 and T2 are the
3485 same, return the cached result. */
3486 return p->same_p[mode] == 1;
3487 }
3488
3489 if ((slot = pointer_map_contains (sccstate, p)) != NULL)
3490 cstate = (struct sccs *)*slot;
3491 /* Not yet visited. DFS recurse. */
3492 if (!cstate)
3493 {
3494 gimple_types_compatible_p_1 (t1, t2, mode, p,
3495 sccstack, sccstate, sccstate_obstack);
3496 cstate = (struct sccs *)* pointer_map_contains (sccstate, p);
3497 state->low = MIN (state->low, cstate->low);
3498 }
3499 /* If the type is still on the SCC stack adjust the parents low. */
3500 if (cstate->dfsnum < state->dfsnum
3501 && cstate->on_sccstack)
3502 state->low = MIN (cstate->dfsnum, state->low);
3503
3504 /* Return the current lattice value. We start with an equality
3505 assumption so types part of a SCC will be optimistically
3506 treated equal unless proven otherwise. */
3507 return cstate->u.same_p;
3508 }
3509
3510 /* Worker for gimple_types_compatible.
3511 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3512
3513 static bool
3514 gimple_types_compatible_p_1 (tree t1, tree t2, enum gtc_mode mode,
3515 type_pair_t p,
3516 VEC(type_pair_t, heap) **sccstack,
3517 struct pointer_map_t *sccstate,
3518 struct obstack *sccstate_obstack)
3519 {
3520 struct sccs *state;
3521
3522 gcc_assert (p->same_p[mode] == -2);
3523
3524 state = XOBNEW (sccstate_obstack, struct sccs);
3525 *pointer_map_insert (sccstate, p) = state;
3526
3527 VEC_safe_push (type_pair_t, heap, *sccstack, p);
3528 state->dfsnum = gtc_next_dfs_num++;
3529 state->low = state->dfsnum;
3530 state->on_sccstack = true;
3531 /* Start with an equality assumption. As we DFS recurse into child
3532 SCCs this assumption may get revisited. */
3533 state->u.same_p = 1;
3534
3535 /* If their attributes are not the same they can't be the same type. */
3536 if (!attribute_list_equal (TYPE_ATTRIBUTES (t1), TYPE_ATTRIBUTES (t2)))
3537 goto different_types;
3538
3539 /* Do type-specific comparisons. */
3540 switch (TREE_CODE (t1))
3541 {
3542 case VECTOR_TYPE:
3543 case COMPLEX_TYPE:
3544 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode,
3545 state, sccstack, sccstate, sccstate_obstack))
3546 goto different_types;
3547 goto same_types;
3548
3549 case ARRAY_TYPE:
3550 /* Array types are the same if the element types are the same and
3551 the number of elements are the same. */
3552 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode,
3553 state, sccstack, sccstate, sccstate_obstack)
3554 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
3555 || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
3556 goto different_types;
3557 else
3558 {
3559 tree i1 = TYPE_DOMAIN (t1);
3560 tree i2 = TYPE_DOMAIN (t2);
3561
3562 /* For an incomplete external array, the type domain can be
3563 NULL_TREE. Check this condition also. */
3564 if (i1 == NULL_TREE && i2 == NULL_TREE)
3565 goto same_types;
3566 else if (i1 == NULL_TREE || i2 == NULL_TREE)
3567 goto different_types;
3568 /* If for a complete array type the possibly gimplified sizes
3569 are different the types are different. */
3570 else if (((TYPE_SIZE (i1) != NULL) ^ (TYPE_SIZE (i2) != NULL))
3571 || (TYPE_SIZE (i1)
3572 && TYPE_SIZE (i2)
3573 && !operand_equal_p (TYPE_SIZE (i1), TYPE_SIZE (i2), 0)))
3574 goto different_types;
3575 else
3576 {
3577 tree min1 = TYPE_MIN_VALUE (i1);
3578 tree min2 = TYPE_MIN_VALUE (i2);
3579 tree max1 = TYPE_MAX_VALUE (i1);
3580 tree max2 = TYPE_MAX_VALUE (i2);
3581
3582 /* The minimum/maximum values have to be the same. */
3583 if ((min1 == min2
3584 || (min1 && min2
3585 && ((TREE_CODE (min1) == PLACEHOLDER_EXPR
3586 && TREE_CODE (min2) == PLACEHOLDER_EXPR)
3587 || operand_equal_p (min1, min2, 0))))
3588 && (max1 == max2
3589 || (max1 && max2
3590 && ((TREE_CODE (max1) == PLACEHOLDER_EXPR
3591 && TREE_CODE (max2) == PLACEHOLDER_EXPR)
3592 || operand_equal_p (max1, max2, 0)))))
3593 goto same_types;
3594 else
3595 goto different_types;
3596 }
3597 }
3598
3599 case METHOD_TYPE:
3600 /* Method types should belong to the same class. */
3601 if (!gtc_visit (TYPE_METHOD_BASETYPE (t1), TYPE_METHOD_BASETYPE (t2),
3602 mode, state, sccstack, sccstate, sccstate_obstack))
3603 goto different_types;
3604
3605 /* Fallthru */
3606
3607 case FUNCTION_TYPE:
3608 /* Function types are the same if the return type and arguments types
3609 are the same. */
3610 if ((mode != GTC_DIAG
3611 || !gimple_compatible_complete_and_incomplete_subtype_p
3612 (TREE_TYPE (t1), TREE_TYPE (t2)))
3613 && !gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode,
3614 state, sccstack, sccstate, sccstate_obstack))
3615 goto different_types;
3616
3617 if (!targetm.comp_type_attributes (t1, t2))
3618 goto different_types;
3619
3620 if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
3621 goto same_types;
3622 else
3623 {
3624 tree parms1, parms2;
3625
3626 for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
3627 parms1 && parms2;
3628 parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
3629 {
3630 if ((mode == GTC_MERGE
3631 || !gimple_compatible_complete_and_incomplete_subtype_p
3632 (TREE_VALUE (parms1), TREE_VALUE (parms2)))
3633 && !gtc_visit (TREE_VALUE (parms1), TREE_VALUE (parms2), mode,
3634 state, sccstack, sccstate, sccstate_obstack))
3635 goto different_types;
3636 }
3637
3638 if (parms1 || parms2)
3639 goto different_types;
3640
3641 goto same_types;
3642 }
3643
3644 case OFFSET_TYPE:
3645 {
3646 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode,
3647 state, sccstack, sccstate, sccstate_obstack)
3648 || !gtc_visit (TYPE_OFFSET_BASETYPE (t1),
3649 TYPE_OFFSET_BASETYPE (t2), mode,
3650 state, sccstack, sccstate, sccstate_obstack))
3651 goto different_types;
3652
3653 goto same_types;
3654 }
3655
3656 case POINTER_TYPE:
3657 case REFERENCE_TYPE:
3658 {
3659 /* If the two pointers have different ref-all attributes,
3660 they can't be the same type. */
3661 if (TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
3662 goto different_types;
3663
3664 /* If one pointer points to an incomplete type variant of
3665 the other pointed-to type they are the same. */
3666 if (mode == GTC_DIAG
3667 && gimple_compatible_complete_and_incomplete_subtype_p
3668 (TREE_TYPE (t1), TREE_TYPE (t2)))
3669 goto same_types;
3670
3671 /* Otherwise, pointer and reference types are the same if the
3672 pointed-to types are the same. */
3673 if (gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode,
3674 state, sccstack, sccstate, sccstate_obstack))
3675 goto same_types;
3676
3677 goto different_types;
3678 }
3679
3680 case NULLPTR_TYPE:
3681 /* There is only one decltype(nullptr). */
3682 goto same_types;
3683
3684 case INTEGER_TYPE:
3685 case BOOLEAN_TYPE:
3686 {
3687 tree min1 = TYPE_MIN_VALUE (t1);
3688 tree max1 = TYPE_MAX_VALUE (t1);
3689 tree min2 = TYPE_MIN_VALUE (t2);
3690 tree max2 = TYPE_MAX_VALUE (t2);
3691 bool min_equal_p = false;
3692 bool max_equal_p = false;
3693
3694 /* If either type has a minimum value, the other type must
3695 have the same. */
3696 if (min1 == NULL_TREE && min2 == NULL_TREE)
3697 min_equal_p = true;
3698 else if (min1 && min2 && operand_equal_p (min1, min2, 0))
3699 min_equal_p = true;
3700
3701 /* Likewise, if either type has a maximum value, the other
3702 type must have the same. */
3703 if (max1 == NULL_TREE && max2 == NULL_TREE)
3704 max_equal_p = true;
3705 else if (max1 && max2 && operand_equal_p (max1, max2, 0))
3706 max_equal_p = true;
3707
3708 if (!min_equal_p || !max_equal_p)
3709 goto different_types;
3710
3711 goto same_types;
3712 }
3713
3714 case ENUMERAL_TYPE:
3715 {
3716 /* FIXME lto, we cannot check bounds on enumeral types because
3717 different front ends will produce different values.
3718 In C, enumeral types are integers, while in C++ each element
3719 will have its own symbolic value. We should decide how enums
3720 are to be represented in GIMPLE and have each front end lower
3721 to that. */
3722 tree v1, v2;
3723
3724 /* For enumeral types, all the values must be the same. */
3725 if (TYPE_VALUES (t1) == TYPE_VALUES (t2))
3726 goto same_types;
3727
3728 for (v1 = TYPE_VALUES (t1), v2 = TYPE_VALUES (t2);
3729 v1 && v2;
3730 v1 = TREE_CHAIN (v1), v2 = TREE_CHAIN (v2))
3731 {
3732 tree c1 = TREE_VALUE (v1);
3733 tree c2 = TREE_VALUE (v2);
3734
3735 if (TREE_CODE (c1) == CONST_DECL)
3736 c1 = DECL_INITIAL (c1);
3737
3738 if (TREE_CODE (c2) == CONST_DECL)
3739 c2 = DECL_INITIAL (c2);
3740
3741 if (tree_int_cst_equal (c1, c2) != 1)
3742 goto different_types;
3743 }
3744
3745 /* If one enumeration has more values than the other, they
3746 are not the same. */
3747 if (v1 || v2)
3748 goto different_types;
3749
3750 goto same_types;
3751 }
3752
3753 case RECORD_TYPE:
3754 case UNION_TYPE:
3755 case QUAL_UNION_TYPE:
3756 {
3757 tree f1, f2;
3758
3759 /* The struct tags shall compare equal. */
3760 if (!compare_type_names_p (TYPE_MAIN_VARIANT (t1),
3761 TYPE_MAIN_VARIANT (t2), false))
3762 goto different_types;
3763
3764 /* For aggregate types, all the fields must be the same. */
3765 for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
3766 f1 && f2;
3767 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
3768 {
3769 /* The fields must have the same name, offset and type. */
3770 if (DECL_NAME (f1) != DECL_NAME (f2)
3771 || DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
3772 || !gimple_compare_field_offset (f1, f2)
3773 || !gtc_visit (TREE_TYPE (f1), TREE_TYPE (f2), mode,
3774 state, sccstack, sccstate, sccstate_obstack))
3775 goto different_types;
3776 }
3777
3778 /* If one aggregate has more fields than the other, they
3779 are not the same. */
3780 if (f1 || f2)
3781 goto different_types;
3782
3783 goto same_types;
3784 }
3785
3786 default:
3787 gcc_unreachable ();
3788 }
3789
3790 /* Common exit path for types that are not compatible. */
3791 different_types:
3792 state->u.same_p = 0;
3793 goto pop;
3794
3795 /* Common exit path for types that are compatible. */
3796 same_types:
3797 gcc_assert (state->u.same_p == 1);
3798
3799 pop:
3800 if (state->low == state->dfsnum)
3801 {
3802 type_pair_t x;
3803
3804 /* Pop off the SCC and set its cache values to the final
3805 comparison result. */
3806 do
3807 {
3808 struct sccs *cstate;
3809 x = VEC_pop (type_pair_t, *sccstack);
3810 cstate = (struct sccs *)*pointer_map_contains (sccstate, x);
3811 cstate->on_sccstack = false;
3812 x->same_p[mode] = state->u.same_p;
3813 }
3814 while (x != p);
3815 }
3816
3817 return state->u.same_p;
3818 }
3819
3820 /* Return true iff T1 and T2 are structurally identical. When
3821 FOR_MERGING_P is true the an incomplete type and a complete type
3822 are considered different, otherwise they are considered compatible. */
3823
3824 bool
3825 gimple_types_compatible_p (tree t1, tree t2, enum gtc_mode mode)
3826 {
3827 VEC(type_pair_t, heap) *sccstack = NULL;
3828 struct pointer_map_t *sccstate;
3829 struct obstack sccstate_obstack;
3830 type_pair_t p = NULL;
3831 bool res;
3832
3833 /* Before starting to set up the SCC machinery handle simple cases. */
3834
3835 /* Check first for the obvious case of pointer identity. */
3836 if (t1 == t2)
3837 return true;
3838
3839 /* Check that we have two types to compare. */
3840 if (t1 == NULL_TREE || t2 == NULL_TREE)
3841 return false;
3842
3843 /* If the types have been previously registered and found equal
3844 they still are. */
3845 if (mode == GTC_MERGE)
3846 {
3847 tree leader1 = gimple_lookup_type_leader (t1);
3848 tree leader2 = gimple_lookup_type_leader (t2);
3849 if (leader1 == t2
3850 || t1 == leader2
3851 || (leader1 && leader1 == leader2))
3852 return true;
3853 }
3854 else if (mode == GTC_DIAG)
3855 {
3856 if (TYPE_CANONICAL (t1)
3857 && TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2))
3858 return true;
3859 }
3860
3861 /* Can't be the same type if the types don't have the same code. */
3862 if (TREE_CODE (t1) != TREE_CODE (t2))
3863 return false;
3864
3865 /* Can't be the same type if they have different CV qualifiers. */
3866 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
3867 return false;
3868
3869 /* Void types are always the same. */
3870 if (TREE_CODE (t1) == VOID_TYPE)
3871 return true;
3872
3873 /* Do some simple checks before doing three hashtable queries. */
3874 if (INTEGRAL_TYPE_P (t1)
3875 || SCALAR_FLOAT_TYPE_P (t1)
3876 || FIXED_POINT_TYPE_P (t1)
3877 || TREE_CODE (t1) == VECTOR_TYPE
3878 || TREE_CODE (t1) == COMPLEX_TYPE
3879 || TREE_CODE (t1) == OFFSET_TYPE)
3880 {
3881 /* Can't be the same type if they have different alignment,
3882 sign, precision or mode. */
3883 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3884 || TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
3885 || TYPE_MODE (t1) != TYPE_MODE (t2)
3886 || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
3887 return false;
3888
3889 if (TREE_CODE (t1) == INTEGER_TYPE
3890 && (TYPE_IS_SIZETYPE (t1) != TYPE_IS_SIZETYPE (t2)
3891 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)))
3892 return false;
3893
3894 /* That's all we need to check for float and fixed-point types. */
3895 if (SCALAR_FLOAT_TYPE_P (t1)
3896 || FIXED_POINT_TYPE_P (t1))
3897 return true;
3898
3899 /* For integral types fall thru to more complex checks. */
3900 }
3901
3902 else if (AGGREGATE_TYPE_P (t1) || POINTER_TYPE_P (t1))
3903 {
3904 /* Can't be the same type if they have different alignment or mode. */
3905 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3906 || TYPE_MODE (t1) != TYPE_MODE (t2))
3907 return false;
3908 }
3909
3910 /* If the hash values of t1 and t2 are different the types can't
3911 possibly be the same. This helps keeping the type-pair hashtable
3912 small, only tracking comparisons for hash collisions. */
3913 if (gimple_type_hash (t1) != gimple_type_hash (t2))
3914 return false;
3915
3916 /* If we've visited this type pair before (in the case of aggregates
3917 with self-referential types), and we made a decision, return it. */
3918 p = lookup_type_pair (t1, t2, &gtc_visited, &gtc_ob);
3919 if (p->same_p[mode] == 0 || p->same_p[mode] == 1)
3920 {
3921 /* We have already decided whether T1 and T2 are the
3922 same, return the cached result. */
3923 return p->same_p[mode] == 1;
3924 }
3925
3926 /* Now set up the SCC machinery for the comparison. */
3927 gtc_next_dfs_num = 1;
3928 sccstate = pointer_map_create ();
3929 gcc_obstack_init (&sccstate_obstack);
3930 res = gimple_types_compatible_p_1 (t1, t2, mode, p,
3931 &sccstack, sccstate, &sccstate_obstack);
3932 VEC_free (type_pair_t, heap, sccstack);
3933 pointer_map_destroy (sccstate);
3934 obstack_free (&sccstate_obstack, NULL);
3935
3936 return res;
3937 }
3938
3939
3940 static hashval_t
3941 iterative_hash_gimple_type (tree, hashval_t, VEC(tree, heap) **,
3942 struct pointer_map_t *, struct obstack *);
3943
3944 /* DFS visit the edge from the callers type with state *STATE to T.
3945 Update the callers type hash V with the hash for T if it is not part
3946 of the SCC containing the callers type and return it.
3947 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3948
3949 static hashval_t
3950 visit (tree t, struct sccs *state, hashval_t v,
3951 VEC (tree, heap) **sccstack,
3952 struct pointer_map_t *sccstate,
3953 struct obstack *sccstate_obstack)
3954 {
3955 struct sccs *cstate = NULL;
3956 struct tree_int_map m;
3957 void **slot;
3958
3959 /* If there is a hash value recorded for this type then it can't
3960 possibly be part of our parent SCC. Simply mix in its hash. */
3961 m.base.from = t;
3962 if ((slot = htab_find_slot (type_hash_cache, &m, NO_INSERT))
3963 && *slot)
3964 return iterative_hash_hashval_t (((struct tree_int_map *) *slot)->to, v);
3965
3966 if ((slot = pointer_map_contains (sccstate, t)) != NULL)
3967 cstate = (struct sccs *)*slot;
3968 if (!cstate)
3969 {
3970 hashval_t tem;
3971 /* Not yet visited. DFS recurse. */
3972 tem = iterative_hash_gimple_type (t, v,
3973 sccstack, sccstate, sccstate_obstack);
3974 if (!cstate)
3975 cstate = (struct sccs *)* pointer_map_contains (sccstate, t);
3976 state->low = MIN (state->low, cstate->low);
3977 /* If the type is no longer on the SCC stack and thus is not part
3978 of the parents SCC mix in its hash value. Otherwise we will
3979 ignore the type for hashing purposes and return the unaltered
3980 hash value. */
3981 if (!cstate->on_sccstack)
3982 return tem;
3983 }
3984 if (cstate->dfsnum < state->dfsnum
3985 && cstate->on_sccstack)
3986 state->low = MIN (cstate->dfsnum, state->low);
3987
3988 /* We are part of our parents SCC, skip this type during hashing
3989 and return the unaltered hash value. */
3990 return v;
3991 }
3992
3993 /* Hash NAME with the previous hash value V and return it. */
3994
3995 static hashval_t
3996 iterative_hash_name (tree name, hashval_t v)
3997 {
3998 if (!name)
3999 return v;
4000 if (TREE_CODE (name) == TYPE_DECL)
4001 name = DECL_NAME (name);
4002 if (!name)
4003 return v;
4004 gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
4005 return iterative_hash_object (IDENTIFIER_HASH_VALUE (name), v);
4006 }
4007
4008 /* Returning a hash value for gimple type TYPE combined with VAL.
4009 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done.
4010
4011 To hash a type we end up hashing in types that are reachable.
4012 Through pointers we can end up with cycles which messes up the
4013 required property that we need to compute the same hash value
4014 for structurally equivalent types. To avoid this we have to
4015 hash all types in a cycle (the SCC) in a commutative way. The
4016 easiest way is to not mix in the hashes of the SCC members at
4017 all. To make this work we have to delay setting the hash
4018 values of the SCC until it is complete. */
4019
4020 static hashval_t
4021 iterative_hash_gimple_type (tree type, hashval_t val,
4022 VEC(tree, heap) **sccstack,
4023 struct pointer_map_t *sccstate,
4024 struct obstack *sccstate_obstack)
4025 {
4026 hashval_t v;
4027 void **slot;
4028 struct sccs *state;
4029
4030 /* Not visited during this DFS walk. */
4031 gcc_checking_assert (!pointer_map_contains (sccstate, type));
4032 state = XOBNEW (sccstate_obstack, struct sccs);
4033 *pointer_map_insert (sccstate, type) = state;
4034
4035 VEC_safe_push (tree, heap, *sccstack, type);
4036 state->dfsnum = next_dfs_num++;
4037 state->low = state->dfsnum;
4038 state->on_sccstack = true;
4039
4040 /* Combine a few common features of types so that types are grouped into
4041 smaller sets; when searching for existing matching types to merge,
4042 only existing types having the same features as the new type will be
4043 checked. */
4044 v = iterative_hash_hashval_t (TREE_CODE (type), 0);
4045 v = iterative_hash_hashval_t (TYPE_QUALS (type), v);
4046 v = iterative_hash_hashval_t (TREE_ADDRESSABLE (type), v);
4047
4048 /* Do not hash the types size as this will cause differences in
4049 hash values for the complete vs. the incomplete type variant. */
4050
4051 /* Incorporate common features of numerical types. */
4052 if (INTEGRAL_TYPE_P (type)
4053 || SCALAR_FLOAT_TYPE_P (type)
4054 || FIXED_POINT_TYPE_P (type))
4055 {
4056 v = iterative_hash_hashval_t (TYPE_PRECISION (type), v);
4057 v = iterative_hash_hashval_t (TYPE_MODE (type), v);
4058 v = iterative_hash_hashval_t (TYPE_UNSIGNED (type), v);
4059 }
4060
4061 /* For pointer and reference types, fold in information about the type
4062 pointed to but do not recurse into possibly incomplete types to
4063 avoid hash differences for complete vs. incomplete types. */
4064 if (POINTER_TYPE_P (type))
4065 {
4066 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (type)))
4067 {
4068 v = iterative_hash_hashval_t (TREE_CODE (TREE_TYPE (type)), v);
4069 v = iterative_hash_name
4070 (TYPE_NAME (TYPE_MAIN_VARIANT (TREE_TYPE (type))), v);
4071 }
4072 else
4073 v = visit (TREE_TYPE (type), state, v,
4074 sccstack, sccstate, sccstate_obstack);
4075 }
4076
4077 /* For integer types hash the types min/max values and the string flag. */
4078 if (TREE_CODE (type) == INTEGER_TYPE)
4079 {
4080 /* OMP lowering can introduce error_mark_node in place of
4081 random local decls in types. */
4082 if (TYPE_MIN_VALUE (type) != error_mark_node)
4083 v = iterative_hash_expr (TYPE_MIN_VALUE (type), v);
4084 if (TYPE_MAX_VALUE (type) != error_mark_node)
4085 v = iterative_hash_expr (TYPE_MAX_VALUE (type), v);
4086 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
4087 }
4088
4089 /* For array types hash their domain and the string flag. */
4090 if (TREE_CODE (type) == ARRAY_TYPE
4091 && TYPE_DOMAIN (type))
4092 {
4093 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
4094 v = visit (TYPE_DOMAIN (type), state, v,
4095 sccstack, sccstate, sccstate_obstack);
4096 }
4097
4098 /* Recurse for aggregates with a single element type. */
4099 if (TREE_CODE (type) == ARRAY_TYPE
4100 || TREE_CODE (type) == COMPLEX_TYPE
4101 || TREE_CODE (type) == VECTOR_TYPE)
4102 v = visit (TREE_TYPE (type), state, v,
4103 sccstack, sccstate, sccstate_obstack);
4104
4105 /* Incorporate function return and argument types. */
4106 if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE)
4107 {
4108 unsigned na;
4109 tree p;
4110
4111 /* For method types also incorporate their parent class. */
4112 if (TREE_CODE (type) == METHOD_TYPE)
4113 v = visit (TYPE_METHOD_BASETYPE (type), state, v,
4114 sccstack, sccstate, sccstate_obstack);
4115
4116 /* For result types allow mismatch in completeness. */
4117 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (type)))
4118 {
4119 v = iterative_hash_hashval_t (TREE_CODE (TREE_TYPE (type)), v);
4120 v = iterative_hash_name
4121 (TYPE_NAME (TYPE_MAIN_VARIANT (TREE_TYPE (type))), v);
4122 }
4123 else
4124 v = visit (TREE_TYPE (type), state, v,
4125 sccstack, sccstate, sccstate_obstack);
4126
4127 for (p = TYPE_ARG_TYPES (type), na = 0; p; p = TREE_CHAIN (p))
4128 {
4129 /* For argument types allow mismatch in completeness. */
4130 if (RECORD_OR_UNION_TYPE_P (TREE_VALUE (p)))
4131 {
4132 v = iterative_hash_hashval_t (TREE_CODE (TREE_VALUE (p)), v);
4133 v = iterative_hash_name
4134 (TYPE_NAME (TYPE_MAIN_VARIANT (TREE_VALUE (p))), v);
4135 }
4136 else
4137 v = visit (TREE_VALUE (p), state, v,
4138 sccstack, sccstate, sccstate_obstack);
4139 na++;
4140 }
4141
4142 v = iterative_hash_hashval_t (na, v);
4143 }
4144
4145 if (TREE_CODE (type) == RECORD_TYPE
4146 || TREE_CODE (type) == UNION_TYPE
4147 || TREE_CODE (type) == QUAL_UNION_TYPE)
4148 {
4149 unsigned nf;
4150 tree f;
4151
4152 v = iterative_hash_name (TYPE_NAME (TYPE_MAIN_VARIANT (type)), v);
4153
4154 for (f = TYPE_FIELDS (type), nf = 0; f; f = TREE_CHAIN (f))
4155 {
4156 v = iterative_hash_name (DECL_NAME (f), v);
4157 v = visit (TREE_TYPE (f), state, v,
4158 sccstack, sccstate, sccstate_obstack);
4159 nf++;
4160 }
4161
4162 v = iterative_hash_hashval_t (nf, v);
4163 }
4164
4165 /* Record hash for us. */
4166 state->u.hash = v;
4167
4168 /* See if we found an SCC. */
4169 if (state->low == state->dfsnum)
4170 {
4171 tree x;
4172
4173 /* Pop off the SCC and set its hash values. */
4174 do
4175 {
4176 struct sccs *cstate;
4177 struct tree_int_map *m = ggc_alloc_cleared_tree_int_map ();
4178 x = VEC_pop (tree, *sccstack);
4179 cstate = (struct sccs *)*pointer_map_contains (sccstate, x);
4180 cstate->on_sccstack = false;
4181 m->base.from = x;
4182 m->to = cstate->u.hash;
4183 slot = htab_find_slot (type_hash_cache, m, INSERT);
4184 gcc_assert (!*slot);
4185 *slot = (void *) m;
4186 }
4187 while (x != type);
4188 }
4189
4190 return iterative_hash_hashval_t (v, val);
4191 }
4192
4193
4194 /* Returns a hash value for P (assumed to be a type). The hash value
4195 is computed using some distinguishing features of the type. Note
4196 that we cannot use pointer hashing here as we may be dealing with
4197 two distinct instances of the same type.
4198
4199 This function should produce the same hash value for two compatible
4200 types according to gimple_types_compatible_p. */
4201
4202 static hashval_t
4203 gimple_type_hash (const void *p)
4204 {
4205 const_tree t = (const_tree) p;
4206 VEC(tree, heap) *sccstack = NULL;
4207 struct pointer_map_t *sccstate;
4208 struct obstack sccstate_obstack;
4209 hashval_t val;
4210 void **slot;
4211 struct tree_int_map m;
4212
4213 if (type_hash_cache == NULL)
4214 type_hash_cache = htab_create_ggc (512, tree_int_map_hash,
4215 tree_int_map_eq, NULL);
4216
4217 m.base.from = CONST_CAST_TREE (t);
4218 if ((slot = htab_find_slot (type_hash_cache, &m, NO_INSERT))
4219 && *slot)
4220 return iterative_hash_hashval_t (((struct tree_int_map *) *slot)->to, 0);
4221
4222 /* Perform a DFS walk and pre-hash all reachable types. */
4223 next_dfs_num = 1;
4224 sccstate = pointer_map_create ();
4225 gcc_obstack_init (&sccstate_obstack);
4226 val = iterative_hash_gimple_type (CONST_CAST_TREE (t), 0,
4227 &sccstack, sccstate, &sccstate_obstack);
4228 VEC_free (tree, heap, sccstack);
4229 pointer_map_destroy (sccstate);
4230 obstack_free (&sccstate_obstack, NULL);
4231
4232 return val;
4233 }
4234
4235
4236 /* Returns nonzero if P1 and P2 are equal. */
4237
4238 static int
4239 gimple_type_eq (const void *p1, const void *p2)
4240 {
4241 const_tree t1 = (const_tree) p1;
4242 const_tree t2 = (const_tree) p2;
4243 return gimple_types_compatible_p (CONST_CAST_TREE (t1),
4244 CONST_CAST_TREE (t2), GTC_MERGE);
4245 }
4246
4247
4248 /* Register type T in the global type table gimple_types.
4249 If another type T', compatible with T, already existed in
4250 gimple_types then return T', otherwise return T. This is used by
4251 LTO to merge identical types read from different TUs. */
4252
4253 tree
4254 gimple_register_type (tree t)
4255 {
4256 void **slot;
4257 gimple_type_leader_entry *leader;
4258 tree mv_leader = NULL_TREE;
4259
4260 gcc_assert (TYPE_P (t));
4261
4262 if (!gimple_type_leader)
4263 gimple_type_leader = ggc_alloc_cleared_vec_gimple_type_leader_entry_s
4264 (GIMPLE_TYPE_LEADER_SIZE);
4265 /* If we registered this type before return the cached result. */
4266 leader = &gimple_type_leader[TYPE_UID (t) % GIMPLE_TYPE_LEADER_SIZE];
4267 if (leader->type == t)
4268 return leader->leader;
4269
4270 /* Always register the main variant first. This is important so we
4271 pick up the non-typedef variants as canonical, otherwise we'll end
4272 up taking typedef ids for structure tags during comparison. */
4273 if (TYPE_MAIN_VARIANT (t) != t)
4274 mv_leader = gimple_register_type (TYPE_MAIN_VARIANT (t));
4275
4276 if (gimple_types == NULL)
4277 gimple_types = htab_create_ggc (16381, gimple_type_hash, gimple_type_eq, 0);
4278
4279 slot = htab_find_slot (gimple_types, t, INSERT);
4280 if (*slot
4281 && *(tree *)slot != t)
4282 {
4283 tree new_type = (tree) *((tree *) slot);
4284
4285 /* Do not merge types with different addressability. */
4286 gcc_assert (TREE_ADDRESSABLE (t) == TREE_ADDRESSABLE (new_type));
4287
4288 /* If t is not its main variant then make t unreachable from its
4289 main variant list. Otherwise we'd queue up a lot of duplicates
4290 there. */
4291 if (t != TYPE_MAIN_VARIANT (t))
4292 {
4293 tree tem = TYPE_MAIN_VARIANT (t);
4294 while (tem && TYPE_NEXT_VARIANT (tem) != t)
4295 tem = TYPE_NEXT_VARIANT (tem);
4296 if (tem)
4297 TYPE_NEXT_VARIANT (tem) = TYPE_NEXT_VARIANT (t);
4298 TYPE_NEXT_VARIANT (t) = NULL_TREE;
4299 }
4300
4301 /* If we are a pointer then remove us from the pointer-to or
4302 reference-to chain. Otherwise we'd queue up a lot of duplicates
4303 there. */
4304 if (TREE_CODE (t) == POINTER_TYPE)
4305 {
4306 if (TYPE_POINTER_TO (TREE_TYPE (t)) == t)
4307 TYPE_POINTER_TO (TREE_TYPE (t)) = TYPE_NEXT_PTR_TO (t);
4308 else
4309 {
4310 tree tem = TYPE_POINTER_TO (TREE_TYPE (t));
4311 while (tem && TYPE_NEXT_PTR_TO (tem) != t)
4312 tem = TYPE_NEXT_PTR_TO (tem);
4313 if (tem)
4314 TYPE_NEXT_PTR_TO (tem) = TYPE_NEXT_PTR_TO (t);
4315 }
4316 TYPE_NEXT_PTR_TO (t) = NULL_TREE;
4317 }
4318 else if (TREE_CODE (t) == REFERENCE_TYPE)
4319 {
4320 if (TYPE_REFERENCE_TO (TREE_TYPE (t)) == t)
4321 TYPE_REFERENCE_TO (TREE_TYPE (t)) = TYPE_NEXT_REF_TO (t);
4322 else
4323 {
4324 tree tem = TYPE_REFERENCE_TO (TREE_TYPE (t));
4325 while (tem && TYPE_NEXT_REF_TO (tem) != t)
4326 tem = TYPE_NEXT_REF_TO (tem);
4327 if (tem)
4328 TYPE_NEXT_REF_TO (tem) = TYPE_NEXT_REF_TO (t);
4329 }
4330 TYPE_NEXT_REF_TO (t) = NULL_TREE;
4331 }
4332
4333 leader->type = t;
4334 leader->leader = new_type;
4335 t = new_type;
4336 }
4337 else
4338 {
4339 leader->type = t;
4340 leader->leader = t;
4341 /* We're the type leader. Make our TYPE_MAIN_VARIANT valid. */
4342 if (TYPE_MAIN_VARIANT (t) != t
4343 && TYPE_MAIN_VARIANT (t) != mv_leader)
4344 {
4345 /* Remove us from our main variant list as we are not the variant
4346 leader and the variant leader will change. */
4347 tree tem = TYPE_MAIN_VARIANT (t);
4348 while (tem && TYPE_NEXT_VARIANT (tem) != t)
4349 tem = TYPE_NEXT_VARIANT (tem);
4350 if (tem)
4351 TYPE_NEXT_VARIANT (tem) = TYPE_NEXT_VARIANT (t);
4352 TYPE_NEXT_VARIANT (t) = NULL_TREE;
4353 /* Adjust our main variant. Linking us into its variant list
4354 will happen at fixup time. */
4355 TYPE_MAIN_VARIANT (t) = mv_leader;
4356 }
4357 *slot = (void *) t;
4358 }
4359
4360 return t;
4361 }
4362
4363
4364 /* Returns nonzero if P1 and P2 are equal. */
4365
4366 static int
4367 gimple_canonical_type_eq (const void *p1, const void *p2)
4368 {
4369 const_tree t1 = (const_tree) p1;
4370 const_tree t2 = (const_tree) p2;
4371 return gimple_types_compatible_p (CONST_CAST_TREE (t1),
4372 CONST_CAST_TREE (t2), GTC_DIAG);
4373 }
4374
4375 /* Register type T in the global type table gimple_types.
4376 If another type T', compatible with T, already existed in
4377 gimple_types then return T', otherwise return T. This is used by
4378 LTO to merge identical types read from different TUs. */
4379
4380 tree
4381 gimple_register_canonical_type (tree t)
4382 {
4383 void **slot;
4384 tree orig_t = t;
4385
4386 gcc_assert (TYPE_P (t));
4387
4388 if (TYPE_CANONICAL (t))
4389 return TYPE_CANONICAL (t);
4390
4391 /* Always register the type itself first so that if it turns out
4392 to be the canonical type it will be the one we merge to as well. */
4393 t = gimple_register_type (t);
4394
4395 /* Always register the main variant first. This is important so we
4396 pick up the non-typedef variants as canonical, otherwise we'll end
4397 up taking typedef ids for structure tags during comparison. */
4398 if (TYPE_MAIN_VARIANT (t) != t)
4399 gimple_register_canonical_type (TYPE_MAIN_VARIANT (t));
4400
4401 if (gimple_canonical_types == NULL)
4402 gimple_canonical_types = htab_create_ggc (16381, gimple_type_hash,
4403 gimple_canonical_type_eq, 0);
4404
4405 slot = htab_find_slot (gimple_canonical_types, t, INSERT);
4406 if (*slot
4407 && *(tree *)slot != t)
4408 {
4409 tree new_type = (tree) *((tree *) slot);
4410
4411 TYPE_CANONICAL (t) = new_type;
4412 t = new_type;
4413 }
4414 else
4415 {
4416 TYPE_CANONICAL (t) = t;
4417 *slot = (void *) t;
4418 }
4419
4420 /* Also cache the canonical type in the non-leaders. */
4421 TYPE_CANONICAL (orig_t) = t;
4422
4423 return t;
4424 }
4425
4426
4427 /* Show statistics on references to the global type table gimple_types. */
4428
4429 void
4430 print_gimple_types_stats (void)
4431 {
4432 if (gimple_types)
4433 fprintf (stderr, "GIMPLE type table: size %ld, %ld elements, "
4434 "%ld searches, %ld collisions (ratio: %f)\n",
4435 (long) htab_size (gimple_types),
4436 (long) htab_elements (gimple_types),
4437 (long) gimple_types->searches,
4438 (long) gimple_types->collisions,
4439 htab_collisions (gimple_types));
4440 else
4441 fprintf (stderr, "GIMPLE type table is empty\n");
4442 if (gimple_canonical_types)
4443 fprintf (stderr, "GIMPLE canonical type table: size %ld, %ld elements, "
4444 "%ld searches, %ld collisions (ratio: %f)\n",
4445 (long) htab_size (gimple_canonical_types),
4446 (long) htab_elements (gimple_canonical_types),
4447 (long) gimple_canonical_types->searches,
4448 (long) gimple_canonical_types->collisions,
4449 htab_collisions (gimple_canonical_types));
4450 else
4451 fprintf (stderr, "GIMPLE canonical type table is empty\n");
4452 if (type_hash_cache)
4453 fprintf (stderr, "GIMPLE type hash table: size %ld, %ld elements, "
4454 "%ld searches, %ld collisions (ratio: %f)\n",
4455 (long) htab_size (type_hash_cache),
4456 (long) htab_elements (type_hash_cache),
4457 (long) type_hash_cache->searches,
4458 (long) type_hash_cache->collisions,
4459 htab_collisions (type_hash_cache));
4460 else
4461 fprintf (stderr, "GIMPLE type hash table is empty\n");
4462 if (gtc_visited)
4463 fprintf (stderr, "GIMPLE type comparison table: size %ld, %ld "
4464 "elements, %ld searches, %ld collisions (ratio: %f)\n",
4465 (long) htab_size (gtc_visited),
4466 (long) htab_elements (gtc_visited),
4467 (long) gtc_visited->searches,
4468 (long) gtc_visited->collisions,
4469 htab_collisions (gtc_visited));
4470 else
4471 fprintf (stderr, "GIMPLE type comparison table is empty\n");
4472 }
4473
4474 /* Free the gimple type hashtables used for LTO type merging. */
4475
4476 void
4477 free_gimple_type_tables (void)
4478 {
4479 /* Last chance to print stats for the tables. */
4480 if (flag_lto_report)
4481 print_gimple_types_stats ();
4482
4483 if (gimple_types)
4484 {
4485 htab_delete (gimple_types);
4486 gimple_types = NULL;
4487 }
4488 if (gimple_canonical_types)
4489 {
4490 htab_delete (gimple_canonical_types);
4491 gimple_canonical_types = NULL;
4492 }
4493 if (type_hash_cache)
4494 {
4495 htab_delete (type_hash_cache);
4496 type_hash_cache = NULL;
4497 }
4498 if (gtc_visited)
4499 {
4500 htab_delete (gtc_visited);
4501 obstack_free (&gtc_ob, NULL);
4502 gtc_visited = NULL;
4503 }
4504 gimple_type_leader = NULL;
4505 }
4506
4507
4508 /* Return a type the same as TYPE except unsigned or
4509 signed according to UNSIGNEDP. */
4510
4511 static tree
4512 gimple_signed_or_unsigned_type (bool unsignedp, tree type)
4513 {
4514 tree type1;
4515
4516 type1 = TYPE_MAIN_VARIANT (type);
4517 if (type1 == signed_char_type_node
4518 || type1 == char_type_node
4519 || type1 == unsigned_char_type_node)
4520 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
4521 if (type1 == integer_type_node || type1 == unsigned_type_node)
4522 return unsignedp ? unsigned_type_node : integer_type_node;
4523 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
4524 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
4525 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
4526 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
4527 if (type1 == long_long_integer_type_node
4528 || type1 == long_long_unsigned_type_node)
4529 return unsignedp
4530 ? long_long_unsigned_type_node
4531 : long_long_integer_type_node;
4532 if (int128_integer_type_node && (type1 == int128_integer_type_node || type1 == int128_unsigned_type_node))
4533 return unsignedp
4534 ? int128_unsigned_type_node
4535 : int128_integer_type_node;
4536 #if HOST_BITS_PER_WIDE_INT >= 64
4537 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
4538 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
4539 #endif
4540 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
4541 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
4542 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
4543 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
4544 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
4545 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
4546 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
4547 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
4548
4549 #define GIMPLE_FIXED_TYPES(NAME) \
4550 if (type1 == short_ ## NAME ## _type_node \
4551 || type1 == unsigned_short_ ## NAME ## _type_node) \
4552 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
4553 : short_ ## NAME ## _type_node; \
4554 if (type1 == NAME ## _type_node \
4555 || type1 == unsigned_ ## NAME ## _type_node) \
4556 return unsignedp ? unsigned_ ## NAME ## _type_node \
4557 : NAME ## _type_node; \
4558 if (type1 == long_ ## NAME ## _type_node \
4559 || type1 == unsigned_long_ ## NAME ## _type_node) \
4560 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
4561 : long_ ## NAME ## _type_node; \
4562 if (type1 == long_long_ ## NAME ## _type_node \
4563 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
4564 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
4565 : long_long_ ## NAME ## _type_node;
4566
4567 #define GIMPLE_FIXED_MODE_TYPES(NAME) \
4568 if (type1 == NAME ## _type_node \
4569 || type1 == u ## NAME ## _type_node) \
4570 return unsignedp ? u ## NAME ## _type_node \
4571 : NAME ## _type_node;
4572
4573 #define GIMPLE_FIXED_TYPES_SAT(NAME) \
4574 if (type1 == sat_ ## short_ ## NAME ## _type_node \
4575 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
4576 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
4577 : sat_ ## short_ ## NAME ## _type_node; \
4578 if (type1 == sat_ ## NAME ## _type_node \
4579 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
4580 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
4581 : sat_ ## NAME ## _type_node; \
4582 if (type1 == sat_ ## long_ ## NAME ## _type_node \
4583 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
4584 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
4585 : sat_ ## long_ ## NAME ## _type_node; \
4586 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
4587 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
4588 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
4589 : sat_ ## long_long_ ## NAME ## _type_node;
4590
4591 #define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
4592 if (type1 == sat_ ## NAME ## _type_node \
4593 || type1 == sat_ ## u ## NAME ## _type_node) \
4594 return unsignedp ? sat_ ## u ## NAME ## _type_node \
4595 : sat_ ## NAME ## _type_node;
4596
4597 GIMPLE_FIXED_TYPES (fract);
4598 GIMPLE_FIXED_TYPES_SAT (fract);
4599 GIMPLE_FIXED_TYPES (accum);
4600 GIMPLE_FIXED_TYPES_SAT (accum);
4601
4602 GIMPLE_FIXED_MODE_TYPES (qq);
4603 GIMPLE_FIXED_MODE_TYPES (hq);
4604 GIMPLE_FIXED_MODE_TYPES (sq);
4605 GIMPLE_FIXED_MODE_TYPES (dq);
4606 GIMPLE_FIXED_MODE_TYPES (tq);
4607 GIMPLE_FIXED_MODE_TYPES_SAT (qq);
4608 GIMPLE_FIXED_MODE_TYPES_SAT (hq);
4609 GIMPLE_FIXED_MODE_TYPES_SAT (sq);
4610 GIMPLE_FIXED_MODE_TYPES_SAT (dq);
4611 GIMPLE_FIXED_MODE_TYPES_SAT (tq);
4612 GIMPLE_FIXED_MODE_TYPES (ha);
4613 GIMPLE_FIXED_MODE_TYPES (sa);
4614 GIMPLE_FIXED_MODE_TYPES (da);
4615 GIMPLE_FIXED_MODE_TYPES (ta);
4616 GIMPLE_FIXED_MODE_TYPES_SAT (ha);
4617 GIMPLE_FIXED_MODE_TYPES_SAT (sa);
4618 GIMPLE_FIXED_MODE_TYPES_SAT (da);
4619 GIMPLE_FIXED_MODE_TYPES_SAT (ta);
4620
4621 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
4622 the precision; they have precision set to match their range, but
4623 may use a wider mode to match an ABI. If we change modes, we may
4624 wind up with bad conversions. For INTEGER_TYPEs in C, must check
4625 the precision as well, so as to yield correct results for
4626 bit-field types. C++ does not have these separate bit-field
4627 types, and producing a signed or unsigned variant of an
4628 ENUMERAL_TYPE may cause other problems as well. */
4629 if (!INTEGRAL_TYPE_P (type)
4630 || TYPE_UNSIGNED (type) == unsignedp)
4631 return type;
4632
4633 #define TYPE_OK(node) \
4634 (TYPE_MODE (type) == TYPE_MODE (node) \
4635 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
4636 if (TYPE_OK (signed_char_type_node))
4637 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
4638 if (TYPE_OK (integer_type_node))
4639 return unsignedp ? unsigned_type_node : integer_type_node;
4640 if (TYPE_OK (short_integer_type_node))
4641 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
4642 if (TYPE_OK (long_integer_type_node))
4643 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
4644 if (TYPE_OK (long_long_integer_type_node))
4645 return (unsignedp
4646 ? long_long_unsigned_type_node
4647 : long_long_integer_type_node);
4648 if (int128_integer_type_node && TYPE_OK (int128_integer_type_node))
4649 return (unsignedp
4650 ? int128_unsigned_type_node
4651 : int128_integer_type_node);
4652
4653 #if HOST_BITS_PER_WIDE_INT >= 64
4654 if (TYPE_OK (intTI_type_node))
4655 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
4656 #endif
4657 if (TYPE_OK (intDI_type_node))
4658 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
4659 if (TYPE_OK (intSI_type_node))
4660 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
4661 if (TYPE_OK (intHI_type_node))
4662 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
4663 if (TYPE_OK (intQI_type_node))
4664 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
4665
4666 #undef GIMPLE_FIXED_TYPES
4667 #undef GIMPLE_FIXED_MODE_TYPES
4668 #undef GIMPLE_FIXED_TYPES_SAT
4669 #undef GIMPLE_FIXED_MODE_TYPES_SAT
4670 #undef TYPE_OK
4671
4672 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
4673 }
4674
4675
4676 /* Return an unsigned type the same as TYPE in other respects. */
4677
4678 tree
4679 gimple_unsigned_type (tree type)
4680 {
4681 return gimple_signed_or_unsigned_type (true, type);
4682 }
4683
4684
4685 /* Return a signed type the same as TYPE in other respects. */
4686
4687 tree
4688 gimple_signed_type (tree type)
4689 {
4690 return gimple_signed_or_unsigned_type (false, type);
4691 }
4692
4693
4694 /* Return the typed-based alias set for T, which may be an expression
4695 or a type. Return -1 if we don't do anything special. */
4696
4697 alias_set_type
4698 gimple_get_alias_set (tree t)
4699 {
4700 tree u;
4701
4702 /* Permit type-punning when accessing a union, provided the access
4703 is directly through the union. For example, this code does not
4704 permit taking the address of a union member and then storing
4705 through it. Even the type-punning allowed here is a GCC
4706 extension, albeit a common and useful one; the C standard says
4707 that such accesses have implementation-defined behavior. */
4708 for (u = t;
4709 TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
4710 u = TREE_OPERAND (u, 0))
4711 if (TREE_CODE (u) == COMPONENT_REF
4712 && TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
4713 return 0;
4714
4715 /* That's all the expressions we handle specially. */
4716 if (!TYPE_P (t))
4717 return -1;
4718
4719 /* For convenience, follow the C standard when dealing with
4720 character types. Any object may be accessed via an lvalue that
4721 has character type. */
4722 if (t == char_type_node
4723 || t == signed_char_type_node
4724 || t == unsigned_char_type_node)
4725 return 0;
4726
4727 /* Allow aliasing between signed and unsigned variants of the same
4728 type. We treat the signed variant as canonical. */
4729 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
4730 {
4731 tree t1 = gimple_signed_type (t);
4732
4733 /* t1 == t can happen for boolean nodes which are always unsigned. */
4734 if (t1 != t)
4735 return get_alias_set (t1);
4736 }
4737
4738 return -1;
4739 }
4740
4741
4742 /* Data structure used to count the number of dereferences to PTR
4743 inside an expression. */
4744 struct count_ptr_d
4745 {
4746 tree ptr;
4747 unsigned num_stores;
4748 unsigned num_loads;
4749 };
4750
4751 /* Helper for count_uses_and_derefs. Called by walk_tree to look for
4752 (ALIGN/MISALIGNED_)INDIRECT_REF nodes for the pointer passed in DATA. */
4753
4754 static tree
4755 count_ptr_derefs (tree *tp, int *walk_subtrees, void *data)
4756 {
4757 struct walk_stmt_info *wi_p = (struct walk_stmt_info *) data;
4758 struct count_ptr_d *count_p = (struct count_ptr_d *) wi_p->info;
4759
4760 /* Do not walk inside ADDR_EXPR nodes. In the expression &ptr->fld,
4761 pointer 'ptr' is *not* dereferenced, it is simply used to compute
4762 the address of 'fld' as 'ptr + offsetof(fld)'. */
4763 if (TREE_CODE (*tp) == ADDR_EXPR)
4764 {
4765 *walk_subtrees = 0;
4766 return NULL_TREE;
4767 }
4768
4769 if (TREE_CODE (*tp) == MEM_REF && TREE_OPERAND (*tp, 0) == count_p->ptr)
4770 {
4771 if (wi_p->is_lhs)
4772 count_p->num_stores++;
4773 else
4774 count_p->num_loads++;
4775 }
4776
4777 return NULL_TREE;
4778 }
4779
4780 /* Count the number of direct and indirect uses for pointer PTR in
4781 statement STMT. The number of direct uses is stored in
4782 *NUM_USES_P. Indirect references are counted separately depending
4783 on whether they are store or load operations. The counts are
4784 stored in *NUM_STORES_P and *NUM_LOADS_P. */
4785
4786 void
4787 count_uses_and_derefs (tree ptr, gimple stmt, unsigned *num_uses_p,
4788 unsigned *num_loads_p, unsigned *num_stores_p)
4789 {
4790 ssa_op_iter i;
4791 tree use;
4792
4793 *num_uses_p = 0;
4794 *num_loads_p = 0;
4795 *num_stores_p = 0;
4796
4797 /* Find out the total number of uses of PTR in STMT. */
4798 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
4799 if (use == ptr)
4800 (*num_uses_p)++;
4801
4802 /* Now count the number of indirect references to PTR. This is
4803 truly awful, but we don't have much choice. There are no parent
4804 pointers inside INDIRECT_REFs, so an expression like
4805 '*x_1 = foo (x_1, *x_1)' needs to be traversed piece by piece to
4806 find all the indirect and direct uses of x_1 inside. The only
4807 shortcut we can take is the fact that GIMPLE only allows
4808 INDIRECT_REFs inside the expressions below. */
4809 if (is_gimple_assign (stmt)
4810 || gimple_code (stmt) == GIMPLE_RETURN
4811 || gimple_code (stmt) == GIMPLE_ASM
4812 || is_gimple_call (stmt))
4813 {
4814 struct walk_stmt_info wi;
4815 struct count_ptr_d count;
4816
4817 count.ptr = ptr;
4818 count.num_stores = 0;
4819 count.num_loads = 0;
4820
4821 memset (&wi, 0, sizeof (wi));
4822 wi.info = &count;
4823 walk_gimple_op (stmt, count_ptr_derefs, &wi);
4824
4825 *num_stores_p = count.num_stores;
4826 *num_loads_p = count.num_loads;
4827 }
4828
4829 gcc_assert (*num_uses_p >= *num_loads_p + *num_stores_p);
4830 }
4831
4832 /* From a tree operand OP return the base of a load or store operation
4833 or NULL_TREE if OP is not a load or a store. */
4834
4835 static tree
4836 get_base_loadstore (tree op)
4837 {
4838 while (handled_component_p (op))
4839 op = TREE_OPERAND (op, 0);
4840 if (DECL_P (op)
4841 || INDIRECT_REF_P (op)
4842 || TREE_CODE (op) == MEM_REF
4843 || TREE_CODE (op) == TARGET_MEM_REF)
4844 return op;
4845 return NULL_TREE;
4846 }
4847
4848 /* For the statement STMT call the callbacks VISIT_LOAD, VISIT_STORE and
4849 VISIT_ADDR if non-NULL on loads, store and address-taken operands
4850 passing the STMT, the base of the operand and DATA to it. The base
4851 will be either a decl, an indirect reference (including TARGET_MEM_REF)
4852 or the argument of an address expression.
4853 Returns the results of these callbacks or'ed. */
4854
4855 bool
4856 walk_stmt_load_store_addr_ops (gimple stmt, void *data,
4857 bool (*visit_load)(gimple, tree, void *),
4858 bool (*visit_store)(gimple, tree, void *),
4859 bool (*visit_addr)(gimple, tree, void *))
4860 {
4861 bool ret = false;
4862 unsigned i;
4863 if (gimple_assign_single_p (stmt))
4864 {
4865 tree lhs, rhs;
4866 if (visit_store)
4867 {
4868 lhs = get_base_loadstore (gimple_assign_lhs (stmt));
4869 if (lhs)
4870 ret |= visit_store (stmt, lhs, data);
4871 }
4872 rhs = gimple_assign_rhs1 (stmt);
4873 while (handled_component_p (rhs))
4874 rhs = TREE_OPERAND (rhs, 0);
4875 if (visit_addr)
4876 {
4877 if (TREE_CODE (rhs) == ADDR_EXPR)
4878 ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data);
4879 else if (TREE_CODE (rhs) == TARGET_MEM_REF
4880 && TREE_CODE (TMR_BASE (rhs)) == ADDR_EXPR)
4881 ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (rhs), 0), data);
4882 else if (TREE_CODE (rhs) == OBJ_TYPE_REF
4883 && TREE_CODE (OBJ_TYPE_REF_OBJECT (rhs)) == ADDR_EXPR)
4884 ret |= visit_addr (stmt, TREE_OPERAND (OBJ_TYPE_REF_OBJECT (rhs),
4885 0), data);
4886 lhs = gimple_assign_lhs (stmt);
4887 if (TREE_CODE (lhs) == TARGET_MEM_REF
4888 && TREE_CODE (TMR_BASE (lhs)) == ADDR_EXPR)
4889 ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (lhs), 0), data);
4890 }
4891 if (visit_load)
4892 {
4893 rhs = get_base_loadstore (rhs);
4894 if (rhs)
4895 ret |= visit_load (stmt, rhs, data);
4896 }
4897 }
4898 else if (visit_addr
4899 && (is_gimple_assign (stmt)
4900 || gimple_code (stmt) == GIMPLE_COND))
4901 {
4902 for (i = 0; i < gimple_num_ops (stmt); ++i)
4903 if (gimple_op (stmt, i)
4904 && TREE_CODE (gimple_op (stmt, i)) == ADDR_EXPR)
4905 ret |= visit_addr (stmt, TREE_OPERAND (gimple_op (stmt, i), 0), data);
4906 }
4907 else if (is_gimple_call (stmt))
4908 {
4909 if (visit_store)
4910 {
4911 tree lhs = gimple_call_lhs (stmt);
4912 if (lhs)
4913 {
4914 lhs = get_base_loadstore (lhs);
4915 if (lhs)
4916 ret |= visit_store (stmt, lhs, data);
4917 }
4918 }
4919 if (visit_load || visit_addr)
4920 for (i = 0; i < gimple_call_num_args (stmt); ++i)
4921 {
4922 tree rhs = gimple_call_arg (stmt, i);
4923 if (visit_addr
4924 && TREE_CODE (rhs) == ADDR_EXPR)
4925 ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data);
4926 else if (visit_load)
4927 {
4928 rhs = get_base_loadstore (rhs);
4929 if (rhs)
4930 ret |= visit_load (stmt, rhs, data);
4931 }
4932 }
4933 if (visit_addr
4934 && gimple_call_chain (stmt)
4935 && TREE_CODE (gimple_call_chain (stmt)) == ADDR_EXPR)
4936 ret |= visit_addr (stmt, TREE_OPERAND (gimple_call_chain (stmt), 0),
4937 data);
4938 if (visit_addr
4939 && gimple_call_return_slot_opt_p (stmt)
4940 && gimple_call_lhs (stmt) != NULL_TREE
4941 && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt))))
4942 ret |= visit_addr (stmt, gimple_call_lhs (stmt), data);
4943 }
4944 else if (gimple_code (stmt) == GIMPLE_ASM)
4945 {
4946 unsigned noutputs;
4947 const char *constraint;
4948 const char **oconstraints;
4949 bool allows_mem, allows_reg, is_inout;
4950 noutputs = gimple_asm_noutputs (stmt);
4951 oconstraints = XALLOCAVEC (const char *, noutputs);
4952 if (visit_store || visit_addr)
4953 for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
4954 {
4955 tree link = gimple_asm_output_op (stmt, i);
4956 tree op = get_base_loadstore (TREE_VALUE (link));
4957 if (op && visit_store)
4958 ret |= visit_store (stmt, op, data);
4959 if (visit_addr)
4960 {
4961 constraint = TREE_STRING_POINTER
4962 (TREE_VALUE (TREE_PURPOSE (link)));
4963 oconstraints[i] = constraint;
4964 parse_output_constraint (&constraint, i, 0, 0, &allows_mem,
4965 &allows_reg, &is_inout);
4966 if (op && !allows_reg && allows_mem)
4967 ret |= visit_addr (stmt, op, data);
4968 }
4969 }
4970 if (visit_load || visit_addr)
4971 for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
4972 {
4973 tree link = gimple_asm_input_op (stmt, i);
4974 tree op = TREE_VALUE (link);
4975 if (visit_addr
4976 && TREE_CODE (op) == ADDR_EXPR)
4977 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
4978 else if (visit_load || visit_addr)
4979 {
4980 op = get_base_loadstore (op);
4981 if (op)
4982 {
4983 if (visit_load)
4984 ret |= visit_load (stmt, op, data);
4985 if (visit_addr)
4986 {
4987 constraint = TREE_STRING_POINTER
4988 (TREE_VALUE (TREE_PURPOSE (link)));
4989 parse_input_constraint (&constraint, 0, 0, noutputs,
4990 0, oconstraints,
4991 &allows_mem, &allows_reg);
4992 if (!allows_reg && allows_mem)
4993 ret |= visit_addr (stmt, op, data);
4994 }
4995 }
4996 }
4997 }
4998 }
4999 else if (gimple_code (stmt) == GIMPLE_RETURN)
5000 {
5001 tree op = gimple_return_retval (stmt);
5002 if (op)
5003 {
5004 if (visit_addr
5005 && TREE_CODE (op) == ADDR_EXPR)
5006 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
5007 else if (visit_load)
5008 {
5009 op = get_base_loadstore (op);
5010 if (op)
5011 ret |= visit_load (stmt, op, data);
5012 }
5013 }
5014 }
5015 else if (visit_addr
5016 && gimple_code (stmt) == GIMPLE_PHI)
5017 {
5018 for (i = 0; i < gimple_phi_num_args (stmt); ++i)
5019 {
5020 tree op = PHI_ARG_DEF (stmt, i);
5021 if (TREE_CODE (op) == ADDR_EXPR)
5022 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
5023 }
5024 }
5025
5026 return ret;
5027 }
5028
5029 /* Like walk_stmt_load_store_addr_ops but with NULL visit_addr. IPA-CP
5030 should make a faster clone for this case. */
5031
5032 bool
5033 walk_stmt_load_store_ops (gimple stmt, void *data,
5034 bool (*visit_load)(gimple, tree, void *),
5035 bool (*visit_store)(gimple, tree, void *))
5036 {
5037 return walk_stmt_load_store_addr_ops (stmt, data,
5038 visit_load, visit_store, NULL);
5039 }
5040
5041 /* Helper for gimple_ior_addresses_taken_1. */
5042
5043 static bool
5044 gimple_ior_addresses_taken_1 (gimple stmt ATTRIBUTE_UNUSED,
5045 tree addr, void *data)
5046 {
5047 bitmap addresses_taken = (bitmap)data;
5048 addr = get_base_address (addr);
5049 if (addr
5050 && DECL_P (addr))
5051 {
5052 bitmap_set_bit (addresses_taken, DECL_UID (addr));
5053 return true;
5054 }
5055 return false;
5056 }
5057
5058 /* Set the bit for the uid of all decls that have their address taken
5059 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
5060 were any in this stmt. */
5061
5062 bool
5063 gimple_ior_addresses_taken (bitmap addresses_taken, gimple stmt)
5064 {
5065 return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
5066 gimple_ior_addresses_taken_1);
5067 }
5068
5069
5070 /* Return a printable name for symbol DECL. */
5071
5072 const char *
5073 gimple_decl_printable_name (tree decl, int verbosity)
5074 {
5075 if (!DECL_NAME (decl))
5076 return NULL;
5077
5078 if (DECL_ASSEMBLER_NAME_SET_P (decl))
5079 {
5080 const char *str, *mangled_str;
5081 int dmgl_opts = DMGL_NO_OPTS;
5082
5083 if (verbosity >= 2)
5084 {
5085 dmgl_opts = DMGL_VERBOSE
5086 | DMGL_ANSI
5087 | DMGL_GNU_V3
5088 | DMGL_RET_POSTFIX;
5089 if (TREE_CODE (decl) == FUNCTION_DECL)
5090 dmgl_opts |= DMGL_PARAMS;
5091 }
5092
5093 mangled_str = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
5094 str = cplus_demangle_v3 (mangled_str, dmgl_opts);
5095 return (str) ? str : mangled_str;
5096 }
5097
5098 return IDENTIFIER_POINTER (DECL_NAME (decl));
5099 }
5100
5101 /* Return true when STMT is builtins call to CODE. */
5102
5103 bool
5104 gimple_call_builtin_p (gimple stmt, enum built_in_function code)
5105 {
5106 tree fndecl;
5107 return (is_gimple_call (stmt)
5108 && (fndecl = gimple_call_fndecl (stmt)) != NULL
5109 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
5110 && DECL_FUNCTION_CODE (fndecl) == code);
5111 }
5112
5113 #include "gt-gimple.h"