gimple.c (gimple_types_compatible_p_1): Use names of the type itself, not its main...
[gcc.git] / gcc / gimple.c
1 /* Gimple IR support functions.
2
3 Copyright 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "target.h"
27 #include "tree.h"
28 #include "ggc.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "gimple.h"
32 #include "diagnostic.h"
33 #include "tree-flow.h"
34 #include "value-prof.h"
35 #include "flags.h"
36 #include "alias.h"
37 #include "demangle.h"
38 #include "langhooks.h"
39
40 /* Global type table. FIXME lto, it should be possible to re-use some
41 of the type hashing routines in tree.c (type_hash_canon, type_hash_lookup,
42 etc), but those assume that types were built with the various
43 build_*_type routines which is not the case with the streamer. */
44 static GTY((if_marked ("ggc_marked_p"), param_is (union tree_node)))
45 htab_t gimple_types;
46 static GTY((if_marked ("ggc_marked_p"), param_is (union tree_node)))
47 htab_t gimple_canonical_types;
48 static GTY((if_marked ("tree_int_map_marked_p"), param_is (struct tree_int_map)))
49 htab_t type_hash_cache;
50 static GTY((if_marked ("tree_int_map_marked_p"), param_is (struct tree_int_map)))
51 htab_t canonical_type_hash_cache;
52
53 /* Global type comparison cache. This is by TYPE_UID for space efficiency
54 and thus cannot use and does not need GC. */
55 static htab_t gtc_visited;
56 static struct obstack gtc_ob;
57
58 /* All the tuples have their operand vector (if present) at the very bottom
59 of the structure. Therefore, the offset required to find the
60 operands vector the size of the structure minus the size of the 1
61 element tree array at the end (see gimple_ops). */
62 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
63 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
64 EXPORTED_CONST size_t gimple_ops_offset_[] = {
65 #include "gsstruct.def"
66 };
67 #undef DEFGSSTRUCT
68
69 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof(struct STRUCT),
70 static const size_t gsstruct_code_size[] = {
71 #include "gsstruct.def"
72 };
73 #undef DEFGSSTRUCT
74
75 #define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
76 const char *const gimple_code_name[] = {
77 #include "gimple.def"
78 };
79 #undef DEFGSCODE
80
81 #define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
82 EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
83 #include "gimple.def"
84 };
85 #undef DEFGSCODE
86
87 #ifdef GATHER_STATISTICS
88 /* Gimple stats. */
89
90 int gimple_alloc_counts[(int) gimple_alloc_kind_all];
91 int gimple_alloc_sizes[(int) gimple_alloc_kind_all];
92
93 /* Keep in sync with gimple.h:enum gimple_alloc_kind. */
94 static const char * const gimple_alloc_kind_names[] = {
95 "assignments",
96 "phi nodes",
97 "conditionals",
98 "sequences",
99 "everything else"
100 };
101
102 #endif /* GATHER_STATISTICS */
103
104 /* A cache of gimple_seq objects. Sequences are created and destroyed
105 fairly often during gimplification. */
106 static GTY ((deletable)) struct gimple_seq_d *gimple_seq_cache;
107
108 /* Private API manipulation functions shared only with some
109 other files. */
110 extern void gimple_set_stored_syms (gimple, bitmap, bitmap_obstack *);
111 extern void gimple_set_loaded_syms (gimple, bitmap, bitmap_obstack *);
112
113 /* Gimple tuple constructors.
114 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
115 be passed a NULL to start with an empty sequence. */
116
117 /* Set the code for statement G to CODE. */
118
119 static inline void
120 gimple_set_code (gimple g, enum gimple_code code)
121 {
122 g->gsbase.code = code;
123 }
124
125 /* Return the number of bytes needed to hold a GIMPLE statement with
126 code CODE. */
127
128 static inline size_t
129 gimple_size (enum gimple_code code)
130 {
131 return gsstruct_code_size[gss_for_code (code)];
132 }
133
134 /* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
135 operands. */
136
137 gimple
138 gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
139 {
140 size_t size;
141 gimple stmt;
142
143 size = gimple_size (code);
144 if (num_ops > 0)
145 size += sizeof (tree) * (num_ops - 1);
146
147 #ifdef GATHER_STATISTICS
148 {
149 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
150 gimple_alloc_counts[(int) kind]++;
151 gimple_alloc_sizes[(int) kind] += size;
152 }
153 #endif
154
155 stmt = ggc_alloc_cleared_gimple_statement_d_stat (size PASS_MEM_STAT);
156 gimple_set_code (stmt, code);
157 gimple_set_num_ops (stmt, num_ops);
158
159 /* Do not call gimple_set_modified here as it has other side
160 effects and this tuple is still not completely built. */
161 stmt->gsbase.modified = 1;
162
163 return stmt;
164 }
165
166 /* Set SUBCODE to be the code of the expression computed by statement G. */
167
168 static inline void
169 gimple_set_subcode (gimple g, unsigned subcode)
170 {
171 /* We only have 16 bits for the RHS code. Assert that we are not
172 overflowing it. */
173 gcc_assert (subcode < (1 << 16));
174 g->gsbase.subcode = subcode;
175 }
176
177
178
179 /* Build a tuple with operands. CODE is the statement to build (which
180 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the sub-code
181 for the new tuple. NUM_OPS is the number of operands to allocate. */
182
183 #define gimple_build_with_ops(c, s, n) \
184 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
185
186 static gimple
187 gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
188 unsigned num_ops MEM_STAT_DECL)
189 {
190 gimple s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT);
191 gimple_set_subcode (s, subcode);
192
193 return s;
194 }
195
196
197 /* Build a GIMPLE_RETURN statement returning RETVAL. */
198
199 gimple
200 gimple_build_return (tree retval)
201 {
202 gimple s = gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK, 1);
203 if (retval)
204 gimple_return_set_retval (s, retval);
205 return s;
206 }
207
208 /* Reset alias information on call S. */
209
210 void
211 gimple_call_reset_alias_info (gimple s)
212 {
213 if (gimple_call_flags (s) & ECF_CONST)
214 memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
215 else
216 pt_solution_reset (gimple_call_use_set (s));
217 if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
218 memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
219 else
220 pt_solution_reset (gimple_call_clobber_set (s));
221 }
222
223 /* Helper for gimple_build_call, gimple_build_call_vec and
224 gimple_build_call_from_tree. Build the basic components of a
225 GIMPLE_CALL statement to function FN with NARGS arguments. */
226
227 static inline gimple
228 gimple_build_call_1 (tree fn, unsigned nargs)
229 {
230 gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3);
231 if (TREE_CODE (fn) == FUNCTION_DECL)
232 fn = build_fold_addr_expr (fn);
233 gimple_set_op (s, 1, fn);
234 gimple_call_set_fntype (s, TREE_TYPE (TREE_TYPE (fn)));
235 gimple_call_reset_alias_info (s);
236 return s;
237 }
238
239
240 /* Build a GIMPLE_CALL statement to function FN with the arguments
241 specified in vector ARGS. */
242
243 gimple
244 gimple_build_call_vec (tree fn, VEC(tree, heap) *args)
245 {
246 unsigned i;
247 unsigned nargs = VEC_length (tree, args);
248 gimple call = gimple_build_call_1 (fn, nargs);
249
250 for (i = 0; i < nargs; i++)
251 gimple_call_set_arg (call, i, VEC_index (tree, args, i));
252
253 return call;
254 }
255
256
257 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
258 arguments. The ... are the arguments. */
259
260 gimple
261 gimple_build_call (tree fn, unsigned nargs, ...)
262 {
263 va_list ap;
264 gimple call;
265 unsigned i;
266
267 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
268
269 call = gimple_build_call_1 (fn, nargs);
270
271 va_start (ap, nargs);
272 for (i = 0; i < nargs; i++)
273 gimple_call_set_arg (call, i, va_arg (ap, tree));
274 va_end (ap);
275
276 return call;
277 }
278
279
280 /* Helper for gimple_build_call_internal and gimple_build_call_internal_vec.
281 Build the basic components of a GIMPLE_CALL statement to internal
282 function FN with NARGS arguments. */
283
284 static inline gimple
285 gimple_build_call_internal_1 (enum internal_fn fn, unsigned nargs)
286 {
287 gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3);
288 s->gsbase.subcode |= GF_CALL_INTERNAL;
289 gimple_call_set_internal_fn (s, fn);
290 gimple_call_reset_alias_info (s);
291 return s;
292 }
293
294
295 /* Build a GIMPLE_CALL statement to internal function FN. NARGS is
296 the number of arguments. The ... are the arguments. */
297
298 gimple
299 gimple_build_call_internal (enum internal_fn fn, unsigned nargs, ...)
300 {
301 va_list ap;
302 gimple call;
303 unsigned i;
304
305 call = gimple_build_call_internal_1 (fn, nargs);
306 va_start (ap, nargs);
307 for (i = 0; i < nargs; i++)
308 gimple_call_set_arg (call, i, va_arg (ap, tree));
309 va_end (ap);
310
311 return call;
312 }
313
314
315 /* Build a GIMPLE_CALL statement to internal function FN with the arguments
316 specified in vector ARGS. */
317
318 gimple
319 gimple_build_call_internal_vec (enum internal_fn fn, VEC(tree, heap) *args)
320 {
321 unsigned i, nargs;
322 gimple call;
323
324 nargs = VEC_length (tree, args);
325 call = gimple_build_call_internal_1 (fn, nargs);
326 for (i = 0; i < nargs; i++)
327 gimple_call_set_arg (call, i, VEC_index (tree, args, i));
328
329 return call;
330 }
331
332
333 /* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
334 assumed to be in GIMPLE form already. Minimal checking is done of
335 this fact. */
336
337 gimple
338 gimple_build_call_from_tree (tree t)
339 {
340 unsigned i, nargs;
341 gimple call;
342 tree fndecl = get_callee_fndecl (t);
343
344 gcc_assert (TREE_CODE (t) == CALL_EXPR);
345
346 nargs = call_expr_nargs (t);
347 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
348
349 for (i = 0; i < nargs; i++)
350 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
351
352 gimple_set_block (call, TREE_BLOCK (t));
353
354 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
355 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
356 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
357 gimple_call_set_cannot_inline (call, CALL_CANNOT_INLINE_P (t));
358 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
359 if (fndecl
360 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
361 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA)
362 gimple_call_set_alloca_for_var (call, CALL_ALLOCA_FOR_VAR_P (t));
363 else
364 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
365 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
366 gimple_call_set_nothrow (call, TREE_NOTHROW (t));
367 gimple_set_no_warning (call, TREE_NO_WARNING (t));
368
369 return call;
370 }
371
372
373 /* Extract the operands and code for expression EXPR into *SUBCODE_P,
374 *OP1_P, *OP2_P and *OP3_P respectively. */
375
376 void
377 extract_ops_from_tree_1 (tree expr, enum tree_code *subcode_p, tree *op1_p,
378 tree *op2_p, tree *op3_p)
379 {
380 enum gimple_rhs_class grhs_class;
381
382 *subcode_p = TREE_CODE (expr);
383 grhs_class = get_gimple_rhs_class (*subcode_p);
384
385 if (grhs_class == GIMPLE_TERNARY_RHS)
386 {
387 *op1_p = TREE_OPERAND (expr, 0);
388 *op2_p = TREE_OPERAND (expr, 1);
389 *op3_p = TREE_OPERAND (expr, 2);
390 }
391 else if (grhs_class == GIMPLE_BINARY_RHS)
392 {
393 *op1_p = TREE_OPERAND (expr, 0);
394 *op2_p = TREE_OPERAND (expr, 1);
395 *op3_p = NULL_TREE;
396 }
397 else if (grhs_class == GIMPLE_UNARY_RHS)
398 {
399 *op1_p = TREE_OPERAND (expr, 0);
400 *op2_p = NULL_TREE;
401 *op3_p = NULL_TREE;
402 }
403 else if (grhs_class == GIMPLE_SINGLE_RHS)
404 {
405 *op1_p = expr;
406 *op2_p = NULL_TREE;
407 *op3_p = NULL_TREE;
408 }
409 else
410 gcc_unreachable ();
411 }
412
413
414 /* Build a GIMPLE_ASSIGN statement.
415
416 LHS of the assignment.
417 RHS of the assignment which can be unary or binary. */
418
419 gimple
420 gimple_build_assign_stat (tree lhs, tree rhs MEM_STAT_DECL)
421 {
422 enum tree_code subcode;
423 tree op1, op2, op3;
424
425 extract_ops_from_tree_1 (rhs, &subcode, &op1, &op2, &op3);
426 return gimple_build_assign_with_ops_stat (subcode, lhs, op1, op2, op3
427 PASS_MEM_STAT);
428 }
429
430
431 /* Build a GIMPLE_ASSIGN statement with sub-code SUBCODE and operands
432 OP1 and OP2. If OP2 is NULL then SUBCODE must be of class
433 GIMPLE_UNARY_RHS or GIMPLE_SINGLE_RHS. */
434
435 gimple
436 gimple_build_assign_with_ops_stat (enum tree_code subcode, tree lhs, tree op1,
437 tree op2, tree op3 MEM_STAT_DECL)
438 {
439 unsigned num_ops;
440 gimple p;
441
442 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
443 code). */
444 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
445
446 p = gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
447 PASS_MEM_STAT);
448 gimple_assign_set_lhs (p, lhs);
449 gimple_assign_set_rhs1 (p, op1);
450 if (op2)
451 {
452 gcc_assert (num_ops > 2);
453 gimple_assign_set_rhs2 (p, op2);
454 }
455
456 if (op3)
457 {
458 gcc_assert (num_ops > 3);
459 gimple_assign_set_rhs3 (p, op3);
460 }
461
462 return p;
463 }
464
465
466 /* Build a new GIMPLE_ASSIGN tuple and append it to the end of *SEQ_P.
467
468 DST/SRC are the destination and source respectively. You can pass
469 ungimplified trees in DST or SRC, in which case they will be
470 converted to a gimple operand if necessary.
471
472 This function returns the newly created GIMPLE_ASSIGN tuple. */
473
474 gimple
475 gimplify_assign (tree dst, tree src, gimple_seq *seq_p)
476 {
477 tree t = build2 (MODIFY_EXPR, TREE_TYPE (dst), dst, src);
478 gimplify_and_add (t, seq_p);
479 ggc_free (t);
480 return gimple_seq_last_stmt (*seq_p);
481 }
482
483
484 /* Build a GIMPLE_COND statement.
485
486 PRED is the condition used to compare LHS and the RHS.
487 T_LABEL is the label to jump to if the condition is true.
488 F_LABEL is the label to jump to otherwise. */
489
490 gimple
491 gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
492 tree t_label, tree f_label)
493 {
494 gimple p;
495
496 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
497 p = gimple_build_with_ops (GIMPLE_COND, pred_code, 4);
498 gimple_cond_set_lhs (p, lhs);
499 gimple_cond_set_rhs (p, rhs);
500 gimple_cond_set_true_label (p, t_label);
501 gimple_cond_set_false_label (p, f_label);
502 return p;
503 }
504
505
506 /* Extract operands for a GIMPLE_COND statement out of COND_EXPR tree COND. */
507
508 void
509 gimple_cond_get_ops_from_tree (tree cond, enum tree_code *code_p,
510 tree *lhs_p, tree *rhs_p)
511 {
512 gcc_assert (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison
513 || TREE_CODE (cond) == TRUTH_NOT_EXPR
514 || is_gimple_min_invariant (cond)
515 || SSA_VAR_P (cond));
516
517 extract_ops_from_tree (cond, code_p, lhs_p, rhs_p);
518
519 /* Canonicalize conditionals of the form 'if (!VAL)'. */
520 if (*code_p == TRUTH_NOT_EXPR)
521 {
522 *code_p = EQ_EXPR;
523 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
524 *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
525 }
526 /* Canonicalize conditionals of the form 'if (VAL)' */
527 else if (TREE_CODE_CLASS (*code_p) != tcc_comparison)
528 {
529 *code_p = NE_EXPR;
530 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
531 *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
532 }
533 }
534
535
536 /* Build a GIMPLE_COND statement from the conditional expression tree
537 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
538
539 gimple
540 gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
541 {
542 enum tree_code code;
543 tree lhs, rhs;
544
545 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
546 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
547 }
548
549 /* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
550 boolean expression tree COND. */
551
552 void
553 gimple_cond_set_condition_from_tree (gimple stmt, tree cond)
554 {
555 enum tree_code code;
556 tree lhs, rhs;
557
558 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
559 gimple_cond_set_condition (stmt, code, lhs, rhs);
560 }
561
562 /* Build a GIMPLE_LABEL statement for LABEL. */
563
564 gimple
565 gimple_build_label (tree label)
566 {
567 gimple p = gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1);
568 gimple_label_set_label (p, label);
569 return p;
570 }
571
572 /* Build a GIMPLE_GOTO statement to label DEST. */
573
574 gimple
575 gimple_build_goto (tree dest)
576 {
577 gimple p = gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1);
578 gimple_goto_set_dest (p, dest);
579 return p;
580 }
581
582
583 /* Build a GIMPLE_NOP statement. */
584
585 gimple
586 gimple_build_nop (void)
587 {
588 return gimple_alloc (GIMPLE_NOP, 0);
589 }
590
591
592 /* Build a GIMPLE_BIND statement.
593 VARS are the variables in BODY.
594 BLOCK is the containing block. */
595
596 gimple
597 gimple_build_bind (tree vars, gimple_seq body, tree block)
598 {
599 gimple p = gimple_alloc (GIMPLE_BIND, 0);
600 gimple_bind_set_vars (p, vars);
601 if (body)
602 gimple_bind_set_body (p, body);
603 if (block)
604 gimple_bind_set_block (p, block);
605 return p;
606 }
607
608 /* Helper function to set the simple fields of a asm stmt.
609
610 STRING is a pointer to a string that is the asm blocks assembly code.
611 NINPUT is the number of register inputs.
612 NOUTPUT is the number of register outputs.
613 NCLOBBERS is the number of clobbered registers.
614 */
615
616 static inline gimple
617 gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
618 unsigned nclobbers, unsigned nlabels)
619 {
620 gimple p;
621 int size = strlen (string);
622
623 /* ASMs with labels cannot have outputs. This should have been
624 enforced by the front end. */
625 gcc_assert (nlabels == 0 || noutputs == 0);
626
627 p = gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
628 ninputs + noutputs + nclobbers + nlabels);
629
630 p->gimple_asm.ni = ninputs;
631 p->gimple_asm.no = noutputs;
632 p->gimple_asm.nc = nclobbers;
633 p->gimple_asm.nl = nlabels;
634 p->gimple_asm.string = ggc_alloc_string (string, size);
635
636 #ifdef GATHER_STATISTICS
637 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
638 #endif
639
640 return p;
641 }
642
643 /* Build a GIMPLE_ASM statement.
644
645 STRING is the assembly code.
646 NINPUT is the number of register inputs.
647 NOUTPUT is the number of register outputs.
648 NCLOBBERS is the number of clobbered registers.
649 INPUTS is a vector of the input register parameters.
650 OUTPUTS is a vector of the output register parameters.
651 CLOBBERS is a vector of the clobbered register parameters.
652 LABELS is a vector of destination labels. */
653
654 gimple
655 gimple_build_asm_vec (const char *string, VEC(tree,gc)* inputs,
656 VEC(tree,gc)* outputs, VEC(tree,gc)* clobbers,
657 VEC(tree,gc)* labels)
658 {
659 gimple p;
660 unsigned i;
661
662 p = gimple_build_asm_1 (string,
663 VEC_length (tree, inputs),
664 VEC_length (tree, outputs),
665 VEC_length (tree, clobbers),
666 VEC_length (tree, labels));
667
668 for (i = 0; i < VEC_length (tree, inputs); i++)
669 gimple_asm_set_input_op (p, i, VEC_index (tree, inputs, i));
670
671 for (i = 0; i < VEC_length (tree, outputs); i++)
672 gimple_asm_set_output_op (p, i, VEC_index (tree, outputs, i));
673
674 for (i = 0; i < VEC_length (tree, clobbers); i++)
675 gimple_asm_set_clobber_op (p, i, VEC_index (tree, clobbers, i));
676
677 for (i = 0; i < VEC_length (tree, labels); i++)
678 gimple_asm_set_label_op (p, i, VEC_index (tree, labels, i));
679
680 return p;
681 }
682
683 /* Build a GIMPLE_CATCH statement.
684
685 TYPES are the catch types.
686 HANDLER is the exception handler. */
687
688 gimple
689 gimple_build_catch (tree types, gimple_seq handler)
690 {
691 gimple p = gimple_alloc (GIMPLE_CATCH, 0);
692 gimple_catch_set_types (p, types);
693 if (handler)
694 gimple_catch_set_handler (p, handler);
695
696 return p;
697 }
698
699 /* Build a GIMPLE_EH_FILTER statement.
700
701 TYPES are the filter's types.
702 FAILURE is the filter's failure action. */
703
704 gimple
705 gimple_build_eh_filter (tree types, gimple_seq failure)
706 {
707 gimple p = gimple_alloc (GIMPLE_EH_FILTER, 0);
708 gimple_eh_filter_set_types (p, types);
709 if (failure)
710 gimple_eh_filter_set_failure (p, failure);
711
712 return p;
713 }
714
715 /* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
716
717 gimple
718 gimple_build_eh_must_not_throw (tree decl)
719 {
720 gimple p = gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0);
721
722 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
723 gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
724 gimple_eh_must_not_throw_set_fndecl (p, decl);
725
726 return p;
727 }
728
729 /* Build a GIMPLE_TRY statement.
730
731 EVAL is the expression to evaluate.
732 CLEANUP is the cleanup expression.
733 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
734 whether this is a try/catch or a try/finally respectively. */
735
736 gimple
737 gimple_build_try (gimple_seq eval, gimple_seq cleanup,
738 enum gimple_try_flags kind)
739 {
740 gimple p;
741
742 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
743 p = gimple_alloc (GIMPLE_TRY, 0);
744 gimple_set_subcode (p, kind);
745 if (eval)
746 gimple_try_set_eval (p, eval);
747 if (cleanup)
748 gimple_try_set_cleanup (p, cleanup);
749
750 return p;
751 }
752
753 /* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
754
755 CLEANUP is the cleanup expression. */
756
757 gimple
758 gimple_build_wce (gimple_seq cleanup)
759 {
760 gimple p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
761 if (cleanup)
762 gimple_wce_set_cleanup (p, cleanup);
763
764 return p;
765 }
766
767
768 /* Build a GIMPLE_RESX statement. */
769
770 gimple
771 gimple_build_resx (int region)
772 {
773 gimple p = gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0);
774 p->gimple_eh_ctrl.region = region;
775 return p;
776 }
777
778
779 /* The helper for constructing a gimple switch statement.
780 INDEX is the switch's index.
781 NLABELS is the number of labels in the switch excluding the default.
782 DEFAULT_LABEL is the default label for the switch statement. */
783
784 gimple
785 gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
786 {
787 /* nlabels + 1 default label + 1 index. */
788 gimple p = gimple_build_with_ops (GIMPLE_SWITCH, ERROR_MARK,
789 1 + (default_label != NULL) + nlabels);
790 gimple_switch_set_index (p, index);
791 if (default_label)
792 gimple_switch_set_default_label (p, default_label);
793 return p;
794 }
795
796
797 /* Build a GIMPLE_SWITCH statement.
798
799 INDEX is the switch's index.
800 NLABELS is the number of labels in the switch excluding the DEFAULT_LABEL.
801 ... are the labels excluding the default. */
802
803 gimple
804 gimple_build_switch (unsigned nlabels, tree index, tree default_label, ...)
805 {
806 va_list al;
807 unsigned i, offset;
808 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
809
810 /* Store the rest of the labels. */
811 va_start (al, default_label);
812 offset = (default_label != NULL);
813 for (i = 0; i < nlabels; i++)
814 gimple_switch_set_label (p, i + offset, va_arg (al, tree));
815 va_end (al);
816
817 return p;
818 }
819
820
821 /* Build a GIMPLE_SWITCH statement.
822
823 INDEX is the switch's index.
824 DEFAULT_LABEL is the default label
825 ARGS is a vector of labels excluding the default. */
826
827 gimple
828 gimple_build_switch_vec (tree index, tree default_label, VEC(tree, heap) *args)
829 {
830 unsigned i, offset, nlabels = VEC_length (tree, args);
831 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
832
833 /* Copy the labels from the vector to the switch statement. */
834 offset = (default_label != NULL);
835 for (i = 0; i < nlabels; i++)
836 gimple_switch_set_label (p, i + offset, VEC_index (tree, args, i));
837
838 return p;
839 }
840
841 /* Build a GIMPLE_EH_DISPATCH statement. */
842
843 gimple
844 gimple_build_eh_dispatch (int region)
845 {
846 gimple p = gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0);
847 p->gimple_eh_ctrl.region = region;
848 return p;
849 }
850
851 /* Build a new GIMPLE_DEBUG_BIND statement.
852
853 VAR is bound to VALUE; block and location are taken from STMT. */
854
855 gimple
856 gimple_build_debug_bind_stat (tree var, tree value, gimple stmt MEM_STAT_DECL)
857 {
858 gimple p = gimple_build_with_ops_stat (GIMPLE_DEBUG,
859 (unsigned)GIMPLE_DEBUG_BIND, 2
860 PASS_MEM_STAT);
861
862 gimple_debug_bind_set_var (p, var);
863 gimple_debug_bind_set_value (p, value);
864 if (stmt)
865 {
866 gimple_set_block (p, gimple_block (stmt));
867 gimple_set_location (p, gimple_location (stmt));
868 }
869
870 return p;
871 }
872
873
874 /* Build a GIMPLE_OMP_CRITICAL statement.
875
876 BODY is the sequence of statements for which only one thread can execute.
877 NAME is optional identifier for this critical block. */
878
879 gimple
880 gimple_build_omp_critical (gimple_seq body, tree name)
881 {
882 gimple p = gimple_alloc (GIMPLE_OMP_CRITICAL, 0);
883 gimple_omp_critical_set_name (p, name);
884 if (body)
885 gimple_omp_set_body (p, body);
886
887 return p;
888 }
889
890 /* Build a GIMPLE_OMP_FOR statement.
891
892 BODY is sequence of statements inside the for loop.
893 CLAUSES, are any of the OMP loop construct's clauses: private, firstprivate,
894 lastprivate, reductions, ordered, schedule, and nowait.
895 COLLAPSE is the collapse count.
896 PRE_BODY is the sequence of statements that are loop invariant. */
897
898 gimple
899 gimple_build_omp_for (gimple_seq body, tree clauses, size_t collapse,
900 gimple_seq pre_body)
901 {
902 gimple p = gimple_alloc (GIMPLE_OMP_FOR, 0);
903 if (body)
904 gimple_omp_set_body (p, body);
905 gimple_omp_for_set_clauses (p, clauses);
906 p->gimple_omp_for.collapse = collapse;
907 p->gimple_omp_for.iter
908 = ggc_alloc_cleared_vec_gimple_omp_for_iter (collapse);
909 if (pre_body)
910 gimple_omp_for_set_pre_body (p, pre_body);
911
912 return p;
913 }
914
915
916 /* Build a GIMPLE_OMP_PARALLEL statement.
917
918 BODY is sequence of statements which are executed in parallel.
919 CLAUSES, are the OMP parallel construct's clauses.
920 CHILD_FN is the function created for the parallel threads to execute.
921 DATA_ARG are the shared data argument(s). */
922
923 gimple
924 gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
925 tree data_arg)
926 {
927 gimple p = gimple_alloc (GIMPLE_OMP_PARALLEL, 0);
928 if (body)
929 gimple_omp_set_body (p, body);
930 gimple_omp_parallel_set_clauses (p, clauses);
931 gimple_omp_parallel_set_child_fn (p, child_fn);
932 gimple_omp_parallel_set_data_arg (p, data_arg);
933
934 return p;
935 }
936
937
938 /* Build a GIMPLE_OMP_TASK statement.
939
940 BODY is sequence of statements which are executed by the explicit task.
941 CLAUSES, are the OMP parallel construct's clauses.
942 CHILD_FN is the function created for the parallel threads to execute.
943 DATA_ARG are the shared data argument(s).
944 COPY_FN is the optional function for firstprivate initialization.
945 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
946
947 gimple
948 gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
949 tree data_arg, tree copy_fn, tree arg_size,
950 tree arg_align)
951 {
952 gimple p = gimple_alloc (GIMPLE_OMP_TASK, 0);
953 if (body)
954 gimple_omp_set_body (p, body);
955 gimple_omp_task_set_clauses (p, clauses);
956 gimple_omp_task_set_child_fn (p, child_fn);
957 gimple_omp_task_set_data_arg (p, data_arg);
958 gimple_omp_task_set_copy_fn (p, copy_fn);
959 gimple_omp_task_set_arg_size (p, arg_size);
960 gimple_omp_task_set_arg_align (p, arg_align);
961
962 return p;
963 }
964
965
966 /* Build a GIMPLE_OMP_SECTION statement for a sections statement.
967
968 BODY is the sequence of statements in the section. */
969
970 gimple
971 gimple_build_omp_section (gimple_seq body)
972 {
973 gimple p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
974 if (body)
975 gimple_omp_set_body (p, body);
976
977 return p;
978 }
979
980
981 /* Build a GIMPLE_OMP_MASTER statement.
982
983 BODY is the sequence of statements to be executed by just the master. */
984
985 gimple
986 gimple_build_omp_master (gimple_seq body)
987 {
988 gimple p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
989 if (body)
990 gimple_omp_set_body (p, body);
991
992 return p;
993 }
994
995
996 /* Build a GIMPLE_OMP_CONTINUE statement.
997
998 CONTROL_DEF is the definition of the control variable.
999 CONTROL_USE is the use of the control variable. */
1000
1001 gimple
1002 gimple_build_omp_continue (tree control_def, tree control_use)
1003 {
1004 gimple p = gimple_alloc (GIMPLE_OMP_CONTINUE, 0);
1005 gimple_omp_continue_set_control_def (p, control_def);
1006 gimple_omp_continue_set_control_use (p, control_use);
1007 return p;
1008 }
1009
1010 /* Build a GIMPLE_OMP_ORDERED statement.
1011
1012 BODY is the sequence of statements inside a loop that will executed in
1013 sequence. */
1014
1015 gimple
1016 gimple_build_omp_ordered (gimple_seq body)
1017 {
1018 gimple p = gimple_alloc (GIMPLE_OMP_ORDERED, 0);
1019 if (body)
1020 gimple_omp_set_body (p, body);
1021
1022 return p;
1023 }
1024
1025
1026 /* Build a GIMPLE_OMP_RETURN statement.
1027 WAIT_P is true if this is a non-waiting return. */
1028
1029 gimple
1030 gimple_build_omp_return (bool wait_p)
1031 {
1032 gimple p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
1033 if (wait_p)
1034 gimple_omp_return_set_nowait (p);
1035
1036 return p;
1037 }
1038
1039
1040 /* Build a GIMPLE_OMP_SECTIONS statement.
1041
1042 BODY is a sequence of section statements.
1043 CLAUSES are any of the OMP sections contsruct's clauses: private,
1044 firstprivate, lastprivate, reduction, and nowait. */
1045
1046 gimple
1047 gimple_build_omp_sections (gimple_seq body, tree clauses)
1048 {
1049 gimple p = gimple_alloc (GIMPLE_OMP_SECTIONS, 0);
1050 if (body)
1051 gimple_omp_set_body (p, body);
1052 gimple_omp_sections_set_clauses (p, clauses);
1053
1054 return p;
1055 }
1056
1057
1058 /* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
1059
1060 gimple
1061 gimple_build_omp_sections_switch (void)
1062 {
1063 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
1064 }
1065
1066
1067 /* Build a GIMPLE_OMP_SINGLE statement.
1068
1069 BODY is the sequence of statements that will be executed once.
1070 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1071 copyprivate, nowait. */
1072
1073 gimple
1074 gimple_build_omp_single (gimple_seq body, tree clauses)
1075 {
1076 gimple p = gimple_alloc (GIMPLE_OMP_SINGLE, 0);
1077 if (body)
1078 gimple_omp_set_body (p, body);
1079 gimple_omp_single_set_clauses (p, clauses);
1080
1081 return p;
1082 }
1083
1084
1085 /* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
1086
1087 gimple
1088 gimple_build_omp_atomic_load (tree lhs, tree rhs)
1089 {
1090 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0);
1091 gimple_omp_atomic_load_set_lhs (p, lhs);
1092 gimple_omp_atomic_load_set_rhs (p, rhs);
1093 return p;
1094 }
1095
1096 /* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1097
1098 VAL is the value we are storing. */
1099
1100 gimple
1101 gimple_build_omp_atomic_store (tree val)
1102 {
1103 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0);
1104 gimple_omp_atomic_store_set_val (p, val);
1105 return p;
1106 }
1107
1108 /* Build a GIMPLE_PREDICT statement. PREDICT is one of the predictors from
1109 predict.def, OUTCOME is NOT_TAKEN or TAKEN. */
1110
1111 gimple
1112 gimple_build_predict (enum br_predictor predictor, enum prediction outcome)
1113 {
1114 gimple p = gimple_alloc (GIMPLE_PREDICT, 0);
1115 /* Ensure all the predictors fit into the lower bits of the subcode. */
1116 gcc_assert ((int) END_PREDICTORS <= GF_PREDICT_TAKEN);
1117 gimple_predict_set_predictor (p, predictor);
1118 gimple_predict_set_outcome (p, outcome);
1119 return p;
1120 }
1121
1122 #if defined ENABLE_GIMPLE_CHECKING
1123 /* Complain of a gimple type mismatch and die. */
1124
1125 void
1126 gimple_check_failed (const_gimple gs, const char *file, int line,
1127 const char *function, enum gimple_code code,
1128 enum tree_code subcode)
1129 {
1130 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1131 gimple_code_name[code],
1132 tree_code_name[subcode],
1133 gimple_code_name[gimple_code (gs)],
1134 gs->gsbase.subcode > 0
1135 ? tree_code_name[gs->gsbase.subcode]
1136 : "",
1137 function, trim_filename (file), line);
1138 }
1139 #endif /* ENABLE_GIMPLE_CHECKING */
1140
1141
1142 /* Allocate a new GIMPLE sequence in GC memory and return it. If
1143 there are free sequences in GIMPLE_SEQ_CACHE return one of those
1144 instead. */
1145
1146 gimple_seq
1147 gimple_seq_alloc (void)
1148 {
1149 gimple_seq seq = gimple_seq_cache;
1150 if (seq)
1151 {
1152 gimple_seq_cache = gimple_seq_cache->next_free;
1153 gcc_assert (gimple_seq_cache != seq);
1154 memset (seq, 0, sizeof (*seq));
1155 }
1156 else
1157 {
1158 seq = ggc_alloc_cleared_gimple_seq_d ();
1159 #ifdef GATHER_STATISTICS
1160 gimple_alloc_counts[(int) gimple_alloc_kind_seq]++;
1161 gimple_alloc_sizes[(int) gimple_alloc_kind_seq] += sizeof (*seq);
1162 #endif
1163 }
1164
1165 return seq;
1166 }
1167
1168 /* Return SEQ to the free pool of GIMPLE sequences. */
1169
1170 void
1171 gimple_seq_free (gimple_seq seq)
1172 {
1173 if (seq == NULL)
1174 return;
1175
1176 gcc_assert (gimple_seq_first (seq) == NULL);
1177 gcc_assert (gimple_seq_last (seq) == NULL);
1178
1179 /* If this triggers, it's a sign that the same list is being freed
1180 twice. */
1181 gcc_assert (seq != gimple_seq_cache || gimple_seq_cache == NULL);
1182
1183 /* Add SEQ to the pool of free sequences. */
1184 seq->next_free = gimple_seq_cache;
1185 gimple_seq_cache = seq;
1186 }
1187
1188
1189 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1190 *SEQ_P is NULL, a new sequence is allocated. */
1191
1192 void
1193 gimple_seq_add_stmt (gimple_seq *seq_p, gimple gs)
1194 {
1195 gimple_stmt_iterator si;
1196
1197 if (gs == NULL)
1198 return;
1199
1200 if (*seq_p == NULL)
1201 *seq_p = gimple_seq_alloc ();
1202
1203 si = gsi_last (*seq_p);
1204 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1205 }
1206
1207
1208 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1209 NULL, a new sequence is allocated. */
1210
1211 void
1212 gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1213 {
1214 gimple_stmt_iterator si;
1215
1216 if (src == NULL)
1217 return;
1218
1219 if (*dst_p == NULL)
1220 *dst_p = gimple_seq_alloc ();
1221
1222 si = gsi_last (*dst_p);
1223 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1224 }
1225
1226
1227 /* Helper function of empty_body_p. Return true if STMT is an empty
1228 statement. */
1229
1230 static bool
1231 empty_stmt_p (gimple stmt)
1232 {
1233 if (gimple_code (stmt) == GIMPLE_NOP)
1234 return true;
1235 if (gimple_code (stmt) == GIMPLE_BIND)
1236 return empty_body_p (gimple_bind_body (stmt));
1237 return false;
1238 }
1239
1240
1241 /* Return true if BODY contains nothing but empty statements. */
1242
1243 bool
1244 empty_body_p (gimple_seq body)
1245 {
1246 gimple_stmt_iterator i;
1247
1248 if (gimple_seq_empty_p (body))
1249 return true;
1250 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
1251 if (!empty_stmt_p (gsi_stmt (i))
1252 && !is_gimple_debug (gsi_stmt (i)))
1253 return false;
1254
1255 return true;
1256 }
1257
1258
1259 /* Perform a deep copy of sequence SRC and return the result. */
1260
1261 gimple_seq
1262 gimple_seq_copy (gimple_seq src)
1263 {
1264 gimple_stmt_iterator gsi;
1265 gimple_seq new_seq = gimple_seq_alloc ();
1266 gimple stmt;
1267
1268 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1269 {
1270 stmt = gimple_copy (gsi_stmt (gsi));
1271 gimple_seq_add_stmt (&new_seq, stmt);
1272 }
1273
1274 return new_seq;
1275 }
1276
1277
1278 /* Walk all the statements in the sequence SEQ calling walk_gimple_stmt
1279 on each one. WI is as in walk_gimple_stmt.
1280
1281 If walk_gimple_stmt returns non-NULL, the walk is stopped, the
1282 value is stored in WI->CALLBACK_RESULT and the statement that
1283 produced the value is returned.
1284
1285 Otherwise, all the statements are walked and NULL returned. */
1286
1287 gimple
1288 walk_gimple_seq (gimple_seq seq, walk_stmt_fn callback_stmt,
1289 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1290 {
1291 gimple_stmt_iterator gsi;
1292
1293 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
1294 {
1295 tree ret = walk_gimple_stmt (&gsi, callback_stmt, callback_op, wi);
1296 if (ret)
1297 {
1298 /* If CALLBACK_STMT or CALLBACK_OP return a value, WI must exist
1299 to hold it. */
1300 gcc_assert (wi);
1301 wi->callback_result = ret;
1302 return gsi_stmt (gsi);
1303 }
1304 }
1305
1306 if (wi)
1307 wi->callback_result = NULL_TREE;
1308
1309 return NULL;
1310 }
1311
1312
1313 /* Helper function for walk_gimple_stmt. Walk operands of a GIMPLE_ASM. */
1314
1315 static tree
1316 walk_gimple_asm (gimple stmt, walk_tree_fn callback_op,
1317 struct walk_stmt_info *wi)
1318 {
1319 tree ret, op;
1320 unsigned noutputs;
1321 const char **oconstraints;
1322 unsigned i, n;
1323 const char *constraint;
1324 bool allows_mem, allows_reg, is_inout;
1325
1326 noutputs = gimple_asm_noutputs (stmt);
1327 oconstraints = (const char **) alloca ((noutputs) * sizeof (const char *));
1328
1329 if (wi)
1330 wi->is_lhs = true;
1331
1332 for (i = 0; i < noutputs; i++)
1333 {
1334 op = gimple_asm_output_op (stmt, i);
1335 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1336 oconstraints[i] = constraint;
1337 parse_output_constraint (&constraint, i, 0, 0, &allows_mem, &allows_reg,
1338 &is_inout);
1339 if (wi)
1340 wi->val_only = (allows_reg || !allows_mem);
1341 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1342 if (ret)
1343 return ret;
1344 }
1345
1346 n = gimple_asm_ninputs (stmt);
1347 for (i = 0; i < n; i++)
1348 {
1349 op = gimple_asm_input_op (stmt, i);
1350 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1351 parse_input_constraint (&constraint, 0, 0, noutputs, 0,
1352 oconstraints, &allows_mem, &allows_reg);
1353 if (wi)
1354 {
1355 wi->val_only = (allows_reg || !allows_mem);
1356 /* Although input "m" is not really a LHS, we need a lvalue. */
1357 wi->is_lhs = !wi->val_only;
1358 }
1359 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1360 if (ret)
1361 return ret;
1362 }
1363
1364 if (wi)
1365 {
1366 wi->is_lhs = false;
1367 wi->val_only = true;
1368 }
1369
1370 n = gimple_asm_nlabels (stmt);
1371 for (i = 0; i < n; i++)
1372 {
1373 op = gimple_asm_label_op (stmt, i);
1374 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1375 if (ret)
1376 return ret;
1377 }
1378
1379 return NULL_TREE;
1380 }
1381
1382
1383 /* Helper function of WALK_GIMPLE_STMT. Walk every tree operand in
1384 STMT. CALLBACK_OP and WI are as in WALK_GIMPLE_STMT.
1385
1386 CALLBACK_OP is called on each operand of STMT via walk_tree.
1387 Additional parameters to walk_tree must be stored in WI. For each operand
1388 OP, walk_tree is called as:
1389
1390 walk_tree (&OP, CALLBACK_OP, WI, WI->PSET)
1391
1392 If CALLBACK_OP returns non-NULL for an operand, the remaining
1393 operands are not scanned.
1394
1395 The return value is that returned by the last call to walk_tree, or
1396 NULL_TREE if no CALLBACK_OP is specified. */
1397
1398 tree
1399 walk_gimple_op (gimple stmt, walk_tree_fn callback_op,
1400 struct walk_stmt_info *wi)
1401 {
1402 struct pointer_set_t *pset = (wi) ? wi->pset : NULL;
1403 unsigned i;
1404 tree ret = NULL_TREE;
1405
1406 switch (gimple_code (stmt))
1407 {
1408 case GIMPLE_ASSIGN:
1409 /* Walk the RHS operands. If the LHS is of a non-renamable type or
1410 is a register variable, we may use a COMPONENT_REF on the RHS. */
1411 if (wi)
1412 {
1413 tree lhs = gimple_assign_lhs (stmt);
1414 wi->val_only
1415 = (is_gimple_reg_type (TREE_TYPE (lhs)) && !is_gimple_reg (lhs))
1416 || !gimple_assign_single_p (stmt);
1417 }
1418
1419 for (i = 1; i < gimple_num_ops (stmt); i++)
1420 {
1421 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi,
1422 pset);
1423 if (ret)
1424 return ret;
1425 }
1426
1427 /* Walk the LHS. If the RHS is appropriate for a memory, we
1428 may use a COMPONENT_REF on the LHS. */
1429 if (wi)
1430 {
1431 /* If the RHS has more than 1 operand, it is not appropriate
1432 for the memory. */
1433 wi->val_only = !is_gimple_mem_rhs (gimple_assign_rhs1 (stmt))
1434 || !gimple_assign_single_p (stmt);
1435 wi->is_lhs = true;
1436 }
1437
1438 ret = walk_tree (gimple_op_ptr (stmt, 0), callback_op, wi, pset);
1439 if (ret)
1440 return ret;
1441
1442 if (wi)
1443 {
1444 wi->val_only = true;
1445 wi->is_lhs = false;
1446 }
1447 break;
1448
1449 case GIMPLE_CALL:
1450 if (wi)
1451 {
1452 wi->is_lhs = false;
1453 wi->val_only = true;
1454 }
1455
1456 ret = walk_tree (gimple_call_chain_ptr (stmt), callback_op, wi, pset);
1457 if (ret)
1458 return ret;
1459
1460 ret = walk_tree (gimple_call_fn_ptr (stmt), callback_op, wi, pset);
1461 if (ret)
1462 return ret;
1463
1464 for (i = 0; i < gimple_call_num_args (stmt); i++)
1465 {
1466 if (wi)
1467 wi->val_only
1468 = is_gimple_reg_type (TREE_TYPE (gimple_call_arg (stmt, i)));
1469 ret = walk_tree (gimple_call_arg_ptr (stmt, i), callback_op, wi,
1470 pset);
1471 if (ret)
1472 return ret;
1473 }
1474
1475 if (gimple_call_lhs (stmt))
1476 {
1477 if (wi)
1478 {
1479 wi->is_lhs = true;
1480 wi->val_only
1481 = is_gimple_reg_type (TREE_TYPE (gimple_call_lhs (stmt)));
1482 }
1483
1484 ret = walk_tree (gimple_call_lhs_ptr (stmt), callback_op, wi, pset);
1485 if (ret)
1486 return ret;
1487 }
1488
1489 if (wi)
1490 {
1491 wi->is_lhs = false;
1492 wi->val_only = true;
1493 }
1494 break;
1495
1496 case GIMPLE_CATCH:
1497 ret = walk_tree (gimple_catch_types_ptr (stmt), callback_op, wi,
1498 pset);
1499 if (ret)
1500 return ret;
1501 break;
1502
1503 case GIMPLE_EH_FILTER:
1504 ret = walk_tree (gimple_eh_filter_types_ptr (stmt), callback_op, wi,
1505 pset);
1506 if (ret)
1507 return ret;
1508 break;
1509
1510 case GIMPLE_ASM:
1511 ret = walk_gimple_asm (stmt, callback_op, wi);
1512 if (ret)
1513 return ret;
1514 break;
1515
1516 case GIMPLE_OMP_CONTINUE:
1517 ret = walk_tree (gimple_omp_continue_control_def_ptr (stmt),
1518 callback_op, wi, pset);
1519 if (ret)
1520 return ret;
1521
1522 ret = walk_tree (gimple_omp_continue_control_use_ptr (stmt),
1523 callback_op, wi, pset);
1524 if (ret)
1525 return ret;
1526 break;
1527
1528 case GIMPLE_OMP_CRITICAL:
1529 ret = walk_tree (gimple_omp_critical_name_ptr (stmt), callback_op, wi,
1530 pset);
1531 if (ret)
1532 return ret;
1533 break;
1534
1535 case GIMPLE_OMP_FOR:
1536 ret = walk_tree (gimple_omp_for_clauses_ptr (stmt), callback_op, wi,
1537 pset);
1538 if (ret)
1539 return ret;
1540 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1541 {
1542 ret = walk_tree (gimple_omp_for_index_ptr (stmt, i), callback_op,
1543 wi, pset);
1544 if (ret)
1545 return ret;
1546 ret = walk_tree (gimple_omp_for_initial_ptr (stmt, i), callback_op,
1547 wi, pset);
1548 if (ret)
1549 return ret;
1550 ret = walk_tree (gimple_omp_for_final_ptr (stmt, i), callback_op,
1551 wi, pset);
1552 if (ret)
1553 return ret;
1554 ret = walk_tree (gimple_omp_for_incr_ptr (stmt, i), callback_op,
1555 wi, pset);
1556 }
1557 if (ret)
1558 return ret;
1559 break;
1560
1561 case GIMPLE_OMP_PARALLEL:
1562 ret = walk_tree (gimple_omp_parallel_clauses_ptr (stmt), callback_op,
1563 wi, pset);
1564 if (ret)
1565 return ret;
1566 ret = walk_tree (gimple_omp_parallel_child_fn_ptr (stmt), callback_op,
1567 wi, pset);
1568 if (ret)
1569 return ret;
1570 ret = walk_tree (gimple_omp_parallel_data_arg_ptr (stmt), callback_op,
1571 wi, pset);
1572 if (ret)
1573 return ret;
1574 break;
1575
1576 case GIMPLE_OMP_TASK:
1577 ret = walk_tree (gimple_omp_task_clauses_ptr (stmt), callback_op,
1578 wi, pset);
1579 if (ret)
1580 return ret;
1581 ret = walk_tree (gimple_omp_task_child_fn_ptr (stmt), callback_op,
1582 wi, pset);
1583 if (ret)
1584 return ret;
1585 ret = walk_tree (gimple_omp_task_data_arg_ptr (stmt), callback_op,
1586 wi, pset);
1587 if (ret)
1588 return ret;
1589 ret = walk_tree (gimple_omp_task_copy_fn_ptr (stmt), callback_op,
1590 wi, pset);
1591 if (ret)
1592 return ret;
1593 ret = walk_tree (gimple_omp_task_arg_size_ptr (stmt), callback_op,
1594 wi, pset);
1595 if (ret)
1596 return ret;
1597 ret = walk_tree (gimple_omp_task_arg_align_ptr (stmt), callback_op,
1598 wi, pset);
1599 if (ret)
1600 return ret;
1601 break;
1602
1603 case GIMPLE_OMP_SECTIONS:
1604 ret = walk_tree (gimple_omp_sections_clauses_ptr (stmt), callback_op,
1605 wi, pset);
1606 if (ret)
1607 return ret;
1608
1609 ret = walk_tree (gimple_omp_sections_control_ptr (stmt), callback_op,
1610 wi, pset);
1611 if (ret)
1612 return ret;
1613
1614 break;
1615
1616 case GIMPLE_OMP_SINGLE:
1617 ret = walk_tree (gimple_omp_single_clauses_ptr (stmt), callback_op, wi,
1618 pset);
1619 if (ret)
1620 return ret;
1621 break;
1622
1623 case GIMPLE_OMP_ATOMIC_LOAD:
1624 ret = walk_tree (gimple_omp_atomic_load_lhs_ptr (stmt), callback_op, wi,
1625 pset);
1626 if (ret)
1627 return ret;
1628
1629 ret = walk_tree (gimple_omp_atomic_load_rhs_ptr (stmt), callback_op, wi,
1630 pset);
1631 if (ret)
1632 return ret;
1633 break;
1634
1635 case GIMPLE_OMP_ATOMIC_STORE:
1636 ret = walk_tree (gimple_omp_atomic_store_val_ptr (stmt), callback_op,
1637 wi, pset);
1638 if (ret)
1639 return ret;
1640 break;
1641
1642 /* Tuples that do not have operands. */
1643 case GIMPLE_NOP:
1644 case GIMPLE_RESX:
1645 case GIMPLE_OMP_RETURN:
1646 case GIMPLE_PREDICT:
1647 break;
1648
1649 default:
1650 {
1651 enum gimple_statement_structure_enum gss;
1652 gss = gimple_statement_structure (stmt);
1653 if (gss == GSS_WITH_OPS || gss == GSS_WITH_MEM_OPS)
1654 for (i = 0; i < gimple_num_ops (stmt); i++)
1655 {
1656 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi, pset);
1657 if (ret)
1658 return ret;
1659 }
1660 }
1661 break;
1662 }
1663
1664 return NULL_TREE;
1665 }
1666
1667
1668 /* Walk the current statement in GSI (optionally using traversal state
1669 stored in WI). If WI is NULL, no state is kept during traversal.
1670 The callback CALLBACK_STMT is called. If CALLBACK_STMT indicates
1671 that it has handled all the operands of the statement, its return
1672 value is returned. Otherwise, the return value from CALLBACK_STMT
1673 is discarded and its operands are scanned.
1674
1675 If CALLBACK_STMT is NULL or it didn't handle the operands,
1676 CALLBACK_OP is called on each operand of the statement via
1677 walk_gimple_op. If walk_gimple_op returns non-NULL for any
1678 operand, the remaining operands are not scanned. In this case, the
1679 return value from CALLBACK_OP is returned.
1680
1681 In any other case, NULL_TREE is returned. */
1682
1683 tree
1684 walk_gimple_stmt (gimple_stmt_iterator *gsi, walk_stmt_fn callback_stmt,
1685 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1686 {
1687 gimple ret;
1688 tree tree_ret;
1689 gimple stmt = gsi_stmt (*gsi);
1690
1691 if (wi)
1692 wi->gsi = *gsi;
1693
1694 if (wi && wi->want_locations && gimple_has_location (stmt))
1695 input_location = gimple_location (stmt);
1696
1697 ret = NULL;
1698
1699 /* Invoke the statement callback. Return if the callback handled
1700 all of STMT operands by itself. */
1701 if (callback_stmt)
1702 {
1703 bool handled_ops = false;
1704 tree_ret = callback_stmt (gsi, &handled_ops, wi);
1705 if (handled_ops)
1706 return tree_ret;
1707
1708 /* If CALLBACK_STMT did not handle operands, it should not have
1709 a value to return. */
1710 gcc_assert (tree_ret == NULL);
1711
1712 /* Re-read stmt in case the callback changed it. */
1713 stmt = gsi_stmt (*gsi);
1714 }
1715
1716 /* If CALLBACK_OP is defined, invoke it on every operand of STMT. */
1717 if (callback_op)
1718 {
1719 tree_ret = walk_gimple_op (stmt, callback_op, wi);
1720 if (tree_ret)
1721 return tree_ret;
1722 }
1723
1724 /* If STMT can have statements inside (e.g. GIMPLE_BIND), walk them. */
1725 switch (gimple_code (stmt))
1726 {
1727 case GIMPLE_BIND:
1728 ret = walk_gimple_seq (gimple_bind_body (stmt), callback_stmt,
1729 callback_op, wi);
1730 if (ret)
1731 return wi->callback_result;
1732 break;
1733
1734 case GIMPLE_CATCH:
1735 ret = walk_gimple_seq (gimple_catch_handler (stmt), callback_stmt,
1736 callback_op, wi);
1737 if (ret)
1738 return wi->callback_result;
1739 break;
1740
1741 case GIMPLE_EH_FILTER:
1742 ret = walk_gimple_seq (gimple_eh_filter_failure (stmt), callback_stmt,
1743 callback_op, wi);
1744 if (ret)
1745 return wi->callback_result;
1746 break;
1747
1748 case GIMPLE_TRY:
1749 ret = walk_gimple_seq (gimple_try_eval (stmt), callback_stmt, callback_op,
1750 wi);
1751 if (ret)
1752 return wi->callback_result;
1753
1754 ret = walk_gimple_seq (gimple_try_cleanup (stmt), callback_stmt,
1755 callback_op, wi);
1756 if (ret)
1757 return wi->callback_result;
1758 break;
1759
1760 case GIMPLE_OMP_FOR:
1761 ret = walk_gimple_seq (gimple_omp_for_pre_body (stmt), callback_stmt,
1762 callback_op, wi);
1763 if (ret)
1764 return wi->callback_result;
1765
1766 /* FALL THROUGH. */
1767 case GIMPLE_OMP_CRITICAL:
1768 case GIMPLE_OMP_MASTER:
1769 case GIMPLE_OMP_ORDERED:
1770 case GIMPLE_OMP_SECTION:
1771 case GIMPLE_OMP_PARALLEL:
1772 case GIMPLE_OMP_TASK:
1773 case GIMPLE_OMP_SECTIONS:
1774 case GIMPLE_OMP_SINGLE:
1775 ret = walk_gimple_seq (gimple_omp_body (stmt), callback_stmt, callback_op,
1776 wi);
1777 if (ret)
1778 return wi->callback_result;
1779 break;
1780
1781 case GIMPLE_WITH_CLEANUP_EXPR:
1782 ret = walk_gimple_seq (gimple_wce_cleanup (stmt), callback_stmt,
1783 callback_op, wi);
1784 if (ret)
1785 return wi->callback_result;
1786 break;
1787
1788 default:
1789 gcc_assert (!gimple_has_substatements (stmt));
1790 break;
1791 }
1792
1793 return NULL;
1794 }
1795
1796
1797 /* Set sequence SEQ to be the GIMPLE body for function FN. */
1798
1799 void
1800 gimple_set_body (tree fndecl, gimple_seq seq)
1801 {
1802 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1803 if (fn == NULL)
1804 {
1805 /* If FNDECL still does not have a function structure associated
1806 with it, then it does not make sense for it to receive a
1807 GIMPLE body. */
1808 gcc_assert (seq == NULL);
1809 }
1810 else
1811 fn->gimple_body = seq;
1812 }
1813
1814
1815 /* Return the body of GIMPLE statements for function FN. After the
1816 CFG pass, the function body doesn't exist anymore because it has
1817 been split up into basic blocks. In this case, it returns
1818 NULL. */
1819
1820 gimple_seq
1821 gimple_body (tree fndecl)
1822 {
1823 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1824 return fn ? fn->gimple_body : NULL;
1825 }
1826
1827 /* Return true when FNDECL has Gimple body either in unlowered
1828 or CFG form. */
1829 bool
1830 gimple_has_body_p (tree fndecl)
1831 {
1832 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1833 return (gimple_body (fndecl) || (fn && fn->cfg));
1834 }
1835
1836 /* Return true if calls C1 and C2 are known to go to the same function. */
1837
1838 bool
1839 gimple_call_same_target_p (const_gimple c1, const_gimple c2)
1840 {
1841 if (gimple_call_internal_p (c1))
1842 return (gimple_call_internal_p (c2)
1843 && gimple_call_internal_fn (c1) == gimple_call_internal_fn (c2));
1844 else
1845 return (gimple_call_fn (c1) == gimple_call_fn (c2)
1846 || (gimple_call_fndecl (c1)
1847 && gimple_call_fndecl (c1) == gimple_call_fndecl (c2)));
1848 }
1849
1850 /* Detect flags from a GIMPLE_CALL. This is just like
1851 call_expr_flags, but for gimple tuples. */
1852
1853 int
1854 gimple_call_flags (const_gimple stmt)
1855 {
1856 int flags;
1857 tree decl = gimple_call_fndecl (stmt);
1858
1859 if (decl)
1860 flags = flags_from_decl_or_type (decl);
1861 else if (gimple_call_internal_p (stmt))
1862 flags = internal_fn_flags (gimple_call_internal_fn (stmt));
1863 else
1864 flags = flags_from_decl_or_type (gimple_call_fntype (stmt));
1865
1866 if (stmt->gsbase.subcode & GF_CALL_NOTHROW)
1867 flags |= ECF_NOTHROW;
1868
1869 return flags;
1870 }
1871
1872 /* Return the "fn spec" string for call STMT. */
1873
1874 static tree
1875 gimple_call_fnspec (const_gimple stmt)
1876 {
1877 tree type, attr;
1878
1879 type = gimple_call_fntype (stmt);
1880 if (!type)
1881 return NULL_TREE;
1882
1883 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1884 if (!attr)
1885 return NULL_TREE;
1886
1887 return TREE_VALUE (TREE_VALUE (attr));
1888 }
1889
1890 /* Detects argument flags for argument number ARG on call STMT. */
1891
1892 int
1893 gimple_call_arg_flags (const_gimple stmt, unsigned arg)
1894 {
1895 tree attr = gimple_call_fnspec (stmt);
1896
1897 if (!attr || 1 + arg >= (unsigned) TREE_STRING_LENGTH (attr))
1898 return 0;
1899
1900 switch (TREE_STRING_POINTER (attr)[1 + arg])
1901 {
1902 case 'x':
1903 case 'X':
1904 return EAF_UNUSED;
1905
1906 case 'R':
1907 return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE;
1908
1909 case 'r':
1910 return EAF_NOCLOBBER | EAF_NOESCAPE;
1911
1912 case 'W':
1913 return EAF_DIRECT | EAF_NOESCAPE;
1914
1915 case 'w':
1916 return EAF_NOESCAPE;
1917
1918 case '.':
1919 default:
1920 return 0;
1921 }
1922 }
1923
1924 /* Detects return flags for the call STMT. */
1925
1926 int
1927 gimple_call_return_flags (const_gimple stmt)
1928 {
1929 tree attr;
1930
1931 if (gimple_call_flags (stmt) & ECF_MALLOC)
1932 return ERF_NOALIAS;
1933
1934 attr = gimple_call_fnspec (stmt);
1935 if (!attr || TREE_STRING_LENGTH (attr) < 1)
1936 return 0;
1937
1938 switch (TREE_STRING_POINTER (attr)[0])
1939 {
1940 case '1':
1941 case '2':
1942 case '3':
1943 case '4':
1944 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
1945
1946 case 'm':
1947 return ERF_NOALIAS;
1948
1949 case '.':
1950 default:
1951 return 0;
1952 }
1953 }
1954
1955
1956 /* Return true if GS is a copy assignment. */
1957
1958 bool
1959 gimple_assign_copy_p (gimple gs)
1960 {
1961 return (gimple_assign_single_p (gs)
1962 && is_gimple_val (gimple_op (gs, 1)));
1963 }
1964
1965
1966 /* Return true if GS is a SSA_NAME copy assignment. */
1967
1968 bool
1969 gimple_assign_ssa_name_copy_p (gimple gs)
1970 {
1971 return (gimple_assign_single_p (gs)
1972 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1973 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1974 }
1975
1976
1977 /* Return true if GS is an assignment with a unary RHS, but the
1978 operator has no effect on the assigned value. The logic is adapted
1979 from STRIP_NOPS. This predicate is intended to be used in tuplifying
1980 instances in which STRIP_NOPS was previously applied to the RHS of
1981 an assignment.
1982
1983 NOTE: In the use cases that led to the creation of this function
1984 and of gimple_assign_single_p, it is typical to test for either
1985 condition and to proceed in the same manner. In each case, the
1986 assigned value is represented by the single RHS operand of the
1987 assignment. I suspect there may be cases where gimple_assign_copy_p,
1988 gimple_assign_single_p, or equivalent logic is used where a similar
1989 treatment of unary NOPs is appropriate. */
1990
1991 bool
1992 gimple_assign_unary_nop_p (gimple gs)
1993 {
1994 return (is_gimple_assign (gs)
1995 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
1996 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
1997 && gimple_assign_rhs1 (gs) != error_mark_node
1998 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
1999 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
2000 }
2001
2002 /* Set BB to be the basic block holding G. */
2003
2004 void
2005 gimple_set_bb (gimple stmt, basic_block bb)
2006 {
2007 stmt->gsbase.bb = bb;
2008
2009 /* If the statement is a label, add the label to block-to-labels map
2010 so that we can speed up edge creation for GIMPLE_GOTOs. */
2011 if (cfun->cfg && gimple_code (stmt) == GIMPLE_LABEL)
2012 {
2013 tree t;
2014 int uid;
2015
2016 t = gimple_label_label (stmt);
2017 uid = LABEL_DECL_UID (t);
2018 if (uid == -1)
2019 {
2020 unsigned old_len = VEC_length (basic_block, label_to_block_map);
2021 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
2022 if (old_len <= (unsigned) uid)
2023 {
2024 unsigned new_len = 3 * uid / 2 + 1;
2025
2026 VEC_safe_grow_cleared (basic_block, gc, label_to_block_map,
2027 new_len);
2028 }
2029 }
2030
2031 VEC_replace (basic_block, label_to_block_map, uid, bb);
2032 }
2033 }
2034
2035
2036 /* Modify the RHS of the assignment pointed-to by GSI using the
2037 operands in the expression tree EXPR.
2038
2039 NOTE: The statement pointed-to by GSI may be reallocated if it
2040 did not have enough operand slots.
2041
2042 This function is useful to convert an existing tree expression into
2043 the flat representation used for the RHS of a GIMPLE assignment.
2044 It will reallocate memory as needed to expand or shrink the number
2045 of operand slots needed to represent EXPR.
2046
2047 NOTE: If you find yourself building a tree and then calling this
2048 function, you are most certainly doing it the slow way. It is much
2049 better to build a new assignment or to use the function
2050 gimple_assign_set_rhs_with_ops, which does not require an
2051 expression tree to be built. */
2052
2053 void
2054 gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
2055 {
2056 enum tree_code subcode;
2057 tree op1, op2, op3;
2058
2059 extract_ops_from_tree_1 (expr, &subcode, &op1, &op2, &op3);
2060 gimple_assign_set_rhs_with_ops_1 (gsi, subcode, op1, op2, op3);
2061 }
2062
2063
2064 /* Set the RHS of assignment statement pointed-to by GSI to CODE with
2065 operands OP1, OP2 and OP3.
2066
2067 NOTE: The statement pointed-to by GSI may be reallocated if it
2068 did not have enough operand slots. */
2069
2070 void
2071 gimple_assign_set_rhs_with_ops_1 (gimple_stmt_iterator *gsi, enum tree_code code,
2072 tree op1, tree op2, tree op3)
2073 {
2074 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
2075 gimple stmt = gsi_stmt (*gsi);
2076
2077 /* If the new CODE needs more operands, allocate a new statement. */
2078 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
2079 {
2080 tree lhs = gimple_assign_lhs (stmt);
2081 gimple new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
2082 memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
2083 gsi_replace (gsi, new_stmt, true);
2084 stmt = new_stmt;
2085
2086 /* The LHS needs to be reset as this also changes the SSA name
2087 on the LHS. */
2088 gimple_assign_set_lhs (stmt, lhs);
2089 }
2090
2091 gimple_set_num_ops (stmt, new_rhs_ops + 1);
2092 gimple_set_subcode (stmt, code);
2093 gimple_assign_set_rhs1 (stmt, op1);
2094 if (new_rhs_ops > 1)
2095 gimple_assign_set_rhs2 (stmt, op2);
2096 if (new_rhs_ops > 2)
2097 gimple_assign_set_rhs3 (stmt, op3);
2098 }
2099
2100
2101 /* Return the LHS of a statement that performs an assignment,
2102 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
2103 for a call to a function that returns no value, or for a
2104 statement other than an assignment or a call. */
2105
2106 tree
2107 gimple_get_lhs (const_gimple stmt)
2108 {
2109 enum gimple_code code = gimple_code (stmt);
2110
2111 if (code == GIMPLE_ASSIGN)
2112 return gimple_assign_lhs (stmt);
2113 else if (code == GIMPLE_CALL)
2114 return gimple_call_lhs (stmt);
2115 else
2116 return NULL_TREE;
2117 }
2118
2119
2120 /* Set the LHS of a statement that performs an assignment,
2121 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2122
2123 void
2124 gimple_set_lhs (gimple stmt, tree lhs)
2125 {
2126 enum gimple_code code = gimple_code (stmt);
2127
2128 if (code == GIMPLE_ASSIGN)
2129 gimple_assign_set_lhs (stmt, lhs);
2130 else if (code == GIMPLE_CALL)
2131 gimple_call_set_lhs (stmt, lhs);
2132 else
2133 gcc_unreachable();
2134 }
2135
2136 /* Replace the LHS of STMT, an assignment, either a GIMPLE_ASSIGN or a
2137 GIMPLE_CALL, with NLHS, in preparation for modifying the RHS to an
2138 expression with a different value.
2139
2140 This will update any annotations (say debug bind stmts) referring
2141 to the original LHS, so that they use the RHS instead. This is
2142 done even if NLHS and LHS are the same, for it is understood that
2143 the RHS will be modified afterwards, and NLHS will not be assigned
2144 an equivalent value.
2145
2146 Adjusting any non-annotation uses of the LHS, if needed, is a
2147 responsibility of the caller.
2148
2149 The effect of this call should be pretty much the same as that of
2150 inserting a copy of STMT before STMT, and then removing the
2151 original stmt, at which time gsi_remove() would have update
2152 annotations, but using this function saves all the inserting,
2153 copying and removing. */
2154
2155 void
2156 gimple_replace_lhs (gimple stmt, tree nlhs)
2157 {
2158 if (MAY_HAVE_DEBUG_STMTS)
2159 {
2160 tree lhs = gimple_get_lhs (stmt);
2161
2162 gcc_assert (SSA_NAME_DEF_STMT (lhs) == stmt);
2163
2164 insert_debug_temp_for_var_def (NULL, lhs);
2165 }
2166
2167 gimple_set_lhs (stmt, nlhs);
2168 }
2169
2170 /* Return a deep copy of statement STMT. All the operands from STMT
2171 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
2172 and VUSE operand arrays are set to empty in the new copy. */
2173
2174 gimple
2175 gimple_copy (gimple stmt)
2176 {
2177 enum gimple_code code = gimple_code (stmt);
2178 unsigned num_ops = gimple_num_ops (stmt);
2179 gimple copy = gimple_alloc (code, num_ops);
2180 unsigned i;
2181
2182 /* Shallow copy all the fields from STMT. */
2183 memcpy (copy, stmt, gimple_size (code));
2184
2185 /* If STMT has sub-statements, deep-copy them as well. */
2186 if (gimple_has_substatements (stmt))
2187 {
2188 gimple_seq new_seq;
2189 tree t;
2190
2191 switch (gimple_code (stmt))
2192 {
2193 case GIMPLE_BIND:
2194 new_seq = gimple_seq_copy (gimple_bind_body (stmt));
2195 gimple_bind_set_body (copy, new_seq);
2196 gimple_bind_set_vars (copy, unshare_expr (gimple_bind_vars (stmt)));
2197 gimple_bind_set_block (copy, gimple_bind_block (stmt));
2198 break;
2199
2200 case GIMPLE_CATCH:
2201 new_seq = gimple_seq_copy (gimple_catch_handler (stmt));
2202 gimple_catch_set_handler (copy, new_seq);
2203 t = unshare_expr (gimple_catch_types (stmt));
2204 gimple_catch_set_types (copy, t);
2205 break;
2206
2207 case GIMPLE_EH_FILTER:
2208 new_seq = gimple_seq_copy (gimple_eh_filter_failure (stmt));
2209 gimple_eh_filter_set_failure (copy, new_seq);
2210 t = unshare_expr (gimple_eh_filter_types (stmt));
2211 gimple_eh_filter_set_types (copy, t);
2212 break;
2213
2214 case GIMPLE_TRY:
2215 new_seq = gimple_seq_copy (gimple_try_eval (stmt));
2216 gimple_try_set_eval (copy, new_seq);
2217 new_seq = gimple_seq_copy (gimple_try_cleanup (stmt));
2218 gimple_try_set_cleanup (copy, new_seq);
2219 break;
2220
2221 case GIMPLE_OMP_FOR:
2222 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
2223 gimple_omp_for_set_pre_body (copy, new_seq);
2224 t = unshare_expr (gimple_omp_for_clauses (stmt));
2225 gimple_omp_for_set_clauses (copy, t);
2226 copy->gimple_omp_for.iter
2227 = ggc_alloc_vec_gimple_omp_for_iter
2228 (gimple_omp_for_collapse (stmt));
2229 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
2230 {
2231 gimple_omp_for_set_cond (copy, i,
2232 gimple_omp_for_cond (stmt, i));
2233 gimple_omp_for_set_index (copy, i,
2234 gimple_omp_for_index (stmt, i));
2235 t = unshare_expr (gimple_omp_for_initial (stmt, i));
2236 gimple_omp_for_set_initial (copy, i, t);
2237 t = unshare_expr (gimple_omp_for_final (stmt, i));
2238 gimple_omp_for_set_final (copy, i, t);
2239 t = unshare_expr (gimple_omp_for_incr (stmt, i));
2240 gimple_omp_for_set_incr (copy, i, t);
2241 }
2242 goto copy_omp_body;
2243
2244 case GIMPLE_OMP_PARALLEL:
2245 t = unshare_expr (gimple_omp_parallel_clauses (stmt));
2246 gimple_omp_parallel_set_clauses (copy, t);
2247 t = unshare_expr (gimple_omp_parallel_child_fn (stmt));
2248 gimple_omp_parallel_set_child_fn (copy, t);
2249 t = unshare_expr (gimple_omp_parallel_data_arg (stmt));
2250 gimple_omp_parallel_set_data_arg (copy, t);
2251 goto copy_omp_body;
2252
2253 case GIMPLE_OMP_TASK:
2254 t = unshare_expr (gimple_omp_task_clauses (stmt));
2255 gimple_omp_task_set_clauses (copy, t);
2256 t = unshare_expr (gimple_omp_task_child_fn (stmt));
2257 gimple_omp_task_set_child_fn (copy, t);
2258 t = unshare_expr (gimple_omp_task_data_arg (stmt));
2259 gimple_omp_task_set_data_arg (copy, t);
2260 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
2261 gimple_omp_task_set_copy_fn (copy, t);
2262 t = unshare_expr (gimple_omp_task_arg_size (stmt));
2263 gimple_omp_task_set_arg_size (copy, t);
2264 t = unshare_expr (gimple_omp_task_arg_align (stmt));
2265 gimple_omp_task_set_arg_align (copy, t);
2266 goto copy_omp_body;
2267
2268 case GIMPLE_OMP_CRITICAL:
2269 t = unshare_expr (gimple_omp_critical_name (stmt));
2270 gimple_omp_critical_set_name (copy, t);
2271 goto copy_omp_body;
2272
2273 case GIMPLE_OMP_SECTIONS:
2274 t = unshare_expr (gimple_omp_sections_clauses (stmt));
2275 gimple_omp_sections_set_clauses (copy, t);
2276 t = unshare_expr (gimple_omp_sections_control (stmt));
2277 gimple_omp_sections_set_control (copy, t);
2278 /* FALLTHRU */
2279
2280 case GIMPLE_OMP_SINGLE:
2281 case GIMPLE_OMP_SECTION:
2282 case GIMPLE_OMP_MASTER:
2283 case GIMPLE_OMP_ORDERED:
2284 copy_omp_body:
2285 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
2286 gimple_omp_set_body (copy, new_seq);
2287 break;
2288
2289 case GIMPLE_WITH_CLEANUP_EXPR:
2290 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
2291 gimple_wce_set_cleanup (copy, new_seq);
2292 break;
2293
2294 default:
2295 gcc_unreachable ();
2296 }
2297 }
2298
2299 /* Make copy of operands. */
2300 if (num_ops > 0)
2301 {
2302 for (i = 0; i < num_ops; i++)
2303 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
2304
2305 /* Clear out SSA operand vectors on COPY. */
2306 if (gimple_has_ops (stmt))
2307 {
2308 gimple_set_def_ops (copy, NULL);
2309 gimple_set_use_ops (copy, NULL);
2310 }
2311
2312 if (gimple_has_mem_ops (stmt))
2313 {
2314 gimple_set_vdef (copy, gimple_vdef (stmt));
2315 gimple_set_vuse (copy, gimple_vuse (stmt));
2316 }
2317
2318 /* SSA operands need to be updated. */
2319 gimple_set_modified (copy, true);
2320 }
2321
2322 return copy;
2323 }
2324
2325
2326 /* Set the MODIFIED flag to MODIFIEDP, iff the gimple statement G has
2327 a MODIFIED field. */
2328
2329 void
2330 gimple_set_modified (gimple s, bool modifiedp)
2331 {
2332 if (gimple_has_ops (s))
2333 s->gsbase.modified = (unsigned) modifiedp;
2334 }
2335
2336
2337 /* Return true if statement S has side-effects. We consider a
2338 statement to have side effects if:
2339
2340 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
2341 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
2342
2343 bool
2344 gimple_has_side_effects (const_gimple s)
2345 {
2346 unsigned i;
2347
2348 if (is_gimple_debug (s))
2349 return false;
2350
2351 /* We don't have to scan the arguments to check for
2352 volatile arguments, though, at present, we still
2353 do a scan to check for TREE_SIDE_EFFECTS. */
2354 if (gimple_has_volatile_ops (s))
2355 return true;
2356
2357 if (is_gimple_call (s))
2358 {
2359 unsigned nargs = gimple_call_num_args (s);
2360 tree fn;
2361
2362 if (!(gimple_call_flags (s) & (ECF_CONST | ECF_PURE)))
2363 return true;
2364 else if (gimple_call_flags (s) & ECF_LOOPING_CONST_OR_PURE)
2365 /* An infinite loop is considered a side effect. */
2366 return true;
2367
2368 if (gimple_call_lhs (s)
2369 && TREE_SIDE_EFFECTS (gimple_call_lhs (s)))
2370 {
2371 gcc_assert (gimple_has_volatile_ops (s));
2372 return true;
2373 }
2374
2375 fn = gimple_call_fn (s);
2376 if (fn && TREE_SIDE_EFFECTS (fn))
2377 return true;
2378
2379 for (i = 0; i < nargs; i++)
2380 if (TREE_SIDE_EFFECTS (gimple_call_arg (s, i)))
2381 {
2382 gcc_assert (gimple_has_volatile_ops (s));
2383 return true;
2384 }
2385
2386 return false;
2387 }
2388 else
2389 {
2390 for (i = 0; i < gimple_num_ops (s); i++)
2391 if (TREE_SIDE_EFFECTS (gimple_op (s, i)))
2392 {
2393 gcc_assert (gimple_has_volatile_ops (s));
2394 return true;
2395 }
2396 }
2397
2398 return false;
2399 }
2400
2401 /* Return true if the RHS of statement S has side effects.
2402 We may use it to determine if it is admissable to replace
2403 an assignment or call with a copy of a previously-computed
2404 value. In such cases, side-effects due to the LHS are
2405 preserved. */
2406
2407 bool
2408 gimple_rhs_has_side_effects (const_gimple s)
2409 {
2410 unsigned i;
2411
2412 if (is_gimple_call (s))
2413 {
2414 unsigned nargs = gimple_call_num_args (s);
2415 tree fn;
2416
2417 if (!(gimple_call_flags (s) & (ECF_CONST | ECF_PURE)))
2418 return true;
2419
2420 /* We cannot use gimple_has_volatile_ops here,
2421 because we must ignore a volatile LHS. */
2422 fn = gimple_call_fn (s);
2423 if (fn && (TREE_SIDE_EFFECTS (fn) || TREE_THIS_VOLATILE (fn)))
2424 {
2425 gcc_assert (gimple_has_volatile_ops (s));
2426 return true;
2427 }
2428
2429 for (i = 0; i < nargs; i++)
2430 if (TREE_SIDE_EFFECTS (gimple_call_arg (s, i))
2431 || TREE_THIS_VOLATILE (gimple_call_arg (s, i)))
2432 return true;
2433
2434 return false;
2435 }
2436 else if (is_gimple_assign (s))
2437 {
2438 /* Skip the first operand, the LHS. */
2439 for (i = 1; i < gimple_num_ops (s); i++)
2440 if (TREE_SIDE_EFFECTS (gimple_op (s, i))
2441 || TREE_THIS_VOLATILE (gimple_op (s, i)))
2442 {
2443 gcc_assert (gimple_has_volatile_ops (s));
2444 return true;
2445 }
2446 }
2447 else if (is_gimple_debug (s))
2448 return false;
2449 else
2450 {
2451 /* For statements without an LHS, examine all arguments. */
2452 for (i = 0; i < gimple_num_ops (s); i++)
2453 if (TREE_SIDE_EFFECTS (gimple_op (s, i))
2454 || TREE_THIS_VOLATILE (gimple_op (s, i)))
2455 {
2456 gcc_assert (gimple_has_volatile_ops (s));
2457 return true;
2458 }
2459 }
2460
2461 return false;
2462 }
2463
2464 /* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
2465 Return true if S can trap. When INCLUDE_MEM is true, check whether
2466 the memory operations could trap. When INCLUDE_STORES is true and
2467 S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked. */
2468
2469 bool
2470 gimple_could_trap_p_1 (gimple s, bool include_mem, bool include_stores)
2471 {
2472 tree t, div = NULL_TREE;
2473 enum tree_code op;
2474
2475 if (include_mem)
2476 {
2477 unsigned i, start = (is_gimple_assign (s) && !include_stores) ? 1 : 0;
2478
2479 for (i = start; i < gimple_num_ops (s); i++)
2480 if (tree_could_trap_p (gimple_op (s, i)))
2481 return true;
2482 }
2483
2484 switch (gimple_code (s))
2485 {
2486 case GIMPLE_ASM:
2487 return gimple_asm_volatile_p (s);
2488
2489 case GIMPLE_CALL:
2490 t = gimple_call_fndecl (s);
2491 /* Assume that calls to weak functions may trap. */
2492 if (!t || !DECL_P (t) || DECL_WEAK (t))
2493 return true;
2494 return false;
2495
2496 case GIMPLE_ASSIGN:
2497 t = gimple_expr_type (s);
2498 op = gimple_assign_rhs_code (s);
2499 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
2500 div = gimple_assign_rhs2 (s);
2501 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
2502 (INTEGRAL_TYPE_P (t)
2503 && TYPE_OVERFLOW_TRAPS (t)),
2504 div));
2505
2506 default:
2507 break;
2508 }
2509
2510 return false;
2511 }
2512
2513 /* Return true if statement S can trap. */
2514
2515 bool
2516 gimple_could_trap_p (gimple s)
2517 {
2518 return gimple_could_trap_p_1 (s, true, true);
2519 }
2520
2521 /* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
2522
2523 bool
2524 gimple_assign_rhs_could_trap_p (gimple s)
2525 {
2526 gcc_assert (is_gimple_assign (s));
2527 return gimple_could_trap_p_1 (s, true, false);
2528 }
2529
2530
2531 /* Print debugging information for gimple stmts generated. */
2532
2533 void
2534 dump_gimple_statistics (void)
2535 {
2536 #ifdef GATHER_STATISTICS
2537 int i, total_tuples = 0, total_bytes = 0;
2538
2539 fprintf (stderr, "\nGIMPLE statements\n");
2540 fprintf (stderr, "Kind Stmts Bytes\n");
2541 fprintf (stderr, "---------------------------------------\n");
2542 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
2543 {
2544 fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i],
2545 gimple_alloc_counts[i], gimple_alloc_sizes[i]);
2546 total_tuples += gimple_alloc_counts[i];
2547 total_bytes += gimple_alloc_sizes[i];
2548 }
2549 fprintf (stderr, "---------------------------------------\n");
2550 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes);
2551 fprintf (stderr, "---------------------------------------\n");
2552 #else
2553 fprintf (stderr, "No gimple statistics\n");
2554 #endif
2555 }
2556
2557
2558 /* Return the number of operands needed on the RHS of a GIMPLE
2559 assignment for an expression with tree code CODE. */
2560
2561 unsigned
2562 get_gimple_rhs_num_ops (enum tree_code code)
2563 {
2564 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
2565
2566 if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
2567 return 1;
2568 else if (rhs_class == GIMPLE_BINARY_RHS)
2569 return 2;
2570 else if (rhs_class == GIMPLE_TERNARY_RHS)
2571 return 3;
2572 else
2573 gcc_unreachable ();
2574 }
2575
2576 #define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
2577 (unsigned char) \
2578 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
2579 : ((TYPE) == tcc_binary \
2580 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
2581 : ((TYPE) == tcc_constant \
2582 || (TYPE) == tcc_declaration \
2583 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
2584 : ((SYM) == TRUTH_AND_EXPR \
2585 || (SYM) == TRUTH_OR_EXPR \
2586 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
2587 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
2588 : ((SYM) == WIDEN_MULT_PLUS_EXPR \
2589 || (SYM) == WIDEN_MULT_MINUS_EXPR \
2590 || (SYM) == DOT_PROD_EXPR \
2591 || (SYM) == REALIGN_LOAD_EXPR \
2592 || (SYM) == FMA_EXPR) ? GIMPLE_TERNARY_RHS \
2593 : ((SYM) == COND_EXPR \
2594 || (SYM) == CONSTRUCTOR \
2595 || (SYM) == OBJ_TYPE_REF \
2596 || (SYM) == ASSERT_EXPR \
2597 || (SYM) == ADDR_EXPR \
2598 || (SYM) == WITH_SIZE_EXPR \
2599 || (SYM) == SSA_NAME \
2600 || (SYM) == VEC_COND_EXPR) ? GIMPLE_SINGLE_RHS \
2601 : GIMPLE_INVALID_RHS),
2602 #define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
2603
2604 const unsigned char gimple_rhs_class_table[] = {
2605 #include "all-tree.def"
2606 };
2607
2608 #undef DEFTREECODE
2609 #undef END_OF_BASE_TREE_CODES
2610
2611 /* For the definitive definition of GIMPLE, see doc/tree-ssa.texi. */
2612
2613 /* Validation of GIMPLE expressions. */
2614
2615 /* Returns true iff T is a valid RHS for an assignment to a renamed
2616 user -- or front-end generated artificial -- variable. */
2617
2618 bool
2619 is_gimple_reg_rhs (tree t)
2620 {
2621 return get_gimple_rhs_class (TREE_CODE (t)) != GIMPLE_INVALID_RHS;
2622 }
2623
2624 /* Returns true iff T is a valid RHS for an assignment to an un-renamed
2625 LHS, or for a call argument. */
2626
2627 bool
2628 is_gimple_mem_rhs (tree t)
2629 {
2630 /* If we're dealing with a renamable type, either source or dest must be
2631 a renamed variable. */
2632 if (is_gimple_reg_type (TREE_TYPE (t)))
2633 return is_gimple_val (t);
2634 else
2635 return is_gimple_val (t) || is_gimple_lvalue (t);
2636 }
2637
2638 /* Return true if T is a valid LHS for a GIMPLE assignment expression. */
2639
2640 bool
2641 is_gimple_lvalue (tree t)
2642 {
2643 return (is_gimple_addressable (t)
2644 || TREE_CODE (t) == WITH_SIZE_EXPR
2645 /* These are complex lvalues, but don't have addresses, so they
2646 go here. */
2647 || TREE_CODE (t) == BIT_FIELD_REF);
2648 }
2649
2650 /* Return true if T is a GIMPLE condition. */
2651
2652 bool
2653 is_gimple_condexpr (tree t)
2654 {
2655 return (is_gimple_val (t) || (COMPARISON_CLASS_P (t)
2656 && !tree_could_throw_p (t)
2657 && is_gimple_val (TREE_OPERAND (t, 0))
2658 && is_gimple_val (TREE_OPERAND (t, 1))));
2659 }
2660
2661 /* Return true if T is something whose address can be taken. */
2662
2663 bool
2664 is_gimple_addressable (tree t)
2665 {
2666 return (is_gimple_id (t) || handled_component_p (t)
2667 || TREE_CODE (t) == MEM_REF);
2668 }
2669
2670 /* Return true if T is a valid gimple constant. */
2671
2672 bool
2673 is_gimple_constant (const_tree t)
2674 {
2675 switch (TREE_CODE (t))
2676 {
2677 case INTEGER_CST:
2678 case REAL_CST:
2679 case FIXED_CST:
2680 case STRING_CST:
2681 case COMPLEX_CST:
2682 case VECTOR_CST:
2683 return true;
2684
2685 /* Vector constant constructors are gimple invariant. */
2686 case CONSTRUCTOR:
2687 if (TREE_TYPE (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2688 return TREE_CONSTANT (t);
2689 else
2690 return false;
2691
2692 default:
2693 return false;
2694 }
2695 }
2696
2697 /* Return true if T is a gimple address. */
2698
2699 bool
2700 is_gimple_address (const_tree t)
2701 {
2702 tree op;
2703
2704 if (TREE_CODE (t) != ADDR_EXPR)
2705 return false;
2706
2707 op = TREE_OPERAND (t, 0);
2708 while (handled_component_p (op))
2709 {
2710 if ((TREE_CODE (op) == ARRAY_REF
2711 || TREE_CODE (op) == ARRAY_RANGE_REF)
2712 && !is_gimple_val (TREE_OPERAND (op, 1)))
2713 return false;
2714
2715 op = TREE_OPERAND (op, 0);
2716 }
2717
2718 if (CONSTANT_CLASS_P (op) || TREE_CODE (op) == MEM_REF)
2719 return true;
2720
2721 switch (TREE_CODE (op))
2722 {
2723 case PARM_DECL:
2724 case RESULT_DECL:
2725 case LABEL_DECL:
2726 case FUNCTION_DECL:
2727 case VAR_DECL:
2728 case CONST_DECL:
2729 return true;
2730
2731 default:
2732 return false;
2733 }
2734 }
2735
2736 /* Strip out all handled components that produce invariant
2737 offsets. */
2738
2739 static const_tree
2740 strip_invariant_refs (const_tree op)
2741 {
2742 while (handled_component_p (op))
2743 {
2744 switch (TREE_CODE (op))
2745 {
2746 case ARRAY_REF:
2747 case ARRAY_RANGE_REF:
2748 if (!is_gimple_constant (TREE_OPERAND (op, 1))
2749 || TREE_OPERAND (op, 2) != NULL_TREE
2750 || TREE_OPERAND (op, 3) != NULL_TREE)
2751 return NULL;
2752 break;
2753
2754 case COMPONENT_REF:
2755 if (TREE_OPERAND (op, 2) != NULL_TREE)
2756 return NULL;
2757 break;
2758
2759 default:;
2760 }
2761 op = TREE_OPERAND (op, 0);
2762 }
2763
2764 return op;
2765 }
2766
2767 /* Return true if T is a gimple invariant address. */
2768
2769 bool
2770 is_gimple_invariant_address (const_tree t)
2771 {
2772 const_tree op;
2773
2774 if (TREE_CODE (t) != ADDR_EXPR)
2775 return false;
2776
2777 op = strip_invariant_refs (TREE_OPERAND (t, 0));
2778 if (!op)
2779 return false;
2780
2781 if (TREE_CODE (op) == MEM_REF)
2782 {
2783 const_tree op0 = TREE_OPERAND (op, 0);
2784 return (TREE_CODE (op0) == ADDR_EXPR
2785 && (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))
2786 || decl_address_invariant_p (TREE_OPERAND (op0, 0))));
2787 }
2788
2789 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
2790 }
2791
2792 /* Return true if T is a gimple invariant address at IPA level
2793 (so addresses of variables on stack are not allowed). */
2794
2795 bool
2796 is_gimple_ip_invariant_address (const_tree t)
2797 {
2798 const_tree op;
2799
2800 if (TREE_CODE (t) != ADDR_EXPR)
2801 return false;
2802
2803 op = strip_invariant_refs (TREE_OPERAND (t, 0));
2804
2805 return op && (CONSTANT_CLASS_P (op) || decl_address_ip_invariant_p (op));
2806 }
2807
2808 /* Return true if T is a GIMPLE minimal invariant. It's a restricted
2809 form of function invariant. */
2810
2811 bool
2812 is_gimple_min_invariant (const_tree t)
2813 {
2814 if (TREE_CODE (t) == ADDR_EXPR)
2815 return is_gimple_invariant_address (t);
2816
2817 return is_gimple_constant (t);
2818 }
2819
2820 /* Return true if T is a GIMPLE interprocedural invariant. It's a restricted
2821 form of gimple minimal invariant. */
2822
2823 bool
2824 is_gimple_ip_invariant (const_tree t)
2825 {
2826 if (TREE_CODE (t) == ADDR_EXPR)
2827 return is_gimple_ip_invariant_address (t);
2828
2829 return is_gimple_constant (t);
2830 }
2831
2832 /* Return true if T looks like a valid GIMPLE statement. */
2833
2834 bool
2835 is_gimple_stmt (tree t)
2836 {
2837 const enum tree_code code = TREE_CODE (t);
2838
2839 switch (code)
2840 {
2841 case NOP_EXPR:
2842 /* The only valid NOP_EXPR is the empty statement. */
2843 return IS_EMPTY_STMT (t);
2844
2845 case BIND_EXPR:
2846 case COND_EXPR:
2847 /* These are only valid if they're void. */
2848 return TREE_TYPE (t) == NULL || VOID_TYPE_P (TREE_TYPE (t));
2849
2850 case SWITCH_EXPR:
2851 case GOTO_EXPR:
2852 case RETURN_EXPR:
2853 case LABEL_EXPR:
2854 case CASE_LABEL_EXPR:
2855 case TRY_CATCH_EXPR:
2856 case TRY_FINALLY_EXPR:
2857 case EH_FILTER_EXPR:
2858 case CATCH_EXPR:
2859 case ASM_EXPR:
2860 case STATEMENT_LIST:
2861 case OMP_PARALLEL:
2862 case OMP_FOR:
2863 case OMP_SECTIONS:
2864 case OMP_SECTION:
2865 case OMP_SINGLE:
2866 case OMP_MASTER:
2867 case OMP_ORDERED:
2868 case OMP_CRITICAL:
2869 case OMP_TASK:
2870 /* These are always void. */
2871 return true;
2872
2873 case CALL_EXPR:
2874 case MODIFY_EXPR:
2875 case PREDICT_EXPR:
2876 /* These are valid regardless of their type. */
2877 return true;
2878
2879 default:
2880 return false;
2881 }
2882 }
2883
2884 /* Return true if T is a variable. */
2885
2886 bool
2887 is_gimple_variable (tree t)
2888 {
2889 return (TREE_CODE (t) == VAR_DECL
2890 || TREE_CODE (t) == PARM_DECL
2891 || TREE_CODE (t) == RESULT_DECL
2892 || TREE_CODE (t) == SSA_NAME);
2893 }
2894
2895 /* Return true if T is a GIMPLE identifier (something with an address). */
2896
2897 bool
2898 is_gimple_id (tree t)
2899 {
2900 return (is_gimple_variable (t)
2901 || TREE_CODE (t) == FUNCTION_DECL
2902 || TREE_CODE (t) == LABEL_DECL
2903 || TREE_CODE (t) == CONST_DECL
2904 /* Allow string constants, since they are addressable. */
2905 || TREE_CODE (t) == STRING_CST);
2906 }
2907
2908 /* Return true if TYPE is a suitable type for a scalar register variable. */
2909
2910 bool
2911 is_gimple_reg_type (tree type)
2912 {
2913 return !AGGREGATE_TYPE_P (type);
2914 }
2915
2916 /* Return true if T is a non-aggregate register variable. */
2917
2918 bool
2919 is_gimple_reg (tree t)
2920 {
2921 if (TREE_CODE (t) == SSA_NAME)
2922 t = SSA_NAME_VAR (t);
2923
2924 if (!is_gimple_variable (t))
2925 return false;
2926
2927 if (!is_gimple_reg_type (TREE_TYPE (t)))
2928 return false;
2929
2930 /* A volatile decl is not acceptable because we can't reuse it as
2931 needed. We need to copy it into a temp first. */
2932 if (TREE_THIS_VOLATILE (t))
2933 return false;
2934
2935 /* We define "registers" as things that can be renamed as needed,
2936 which with our infrastructure does not apply to memory. */
2937 if (needs_to_live_in_memory (t))
2938 return false;
2939
2940 /* Hard register variables are an interesting case. For those that
2941 are call-clobbered, we don't know where all the calls are, since
2942 we don't (want to) take into account which operations will turn
2943 into libcalls at the rtl level. For those that are call-saved,
2944 we don't currently model the fact that calls may in fact change
2945 global hard registers, nor do we examine ASM_CLOBBERS at the tree
2946 level, and so miss variable changes that might imply. All around,
2947 it seems safest to not do too much optimization with these at the
2948 tree level at all. We'll have to rely on the rtl optimizers to
2949 clean this up, as there we've got all the appropriate bits exposed. */
2950 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
2951 return false;
2952
2953 /* Complex and vector values must have been put into SSA-like form.
2954 That is, no assignments to the individual components. */
2955 if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE
2956 || TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2957 return DECL_GIMPLE_REG_P (t);
2958
2959 return true;
2960 }
2961
2962
2963 /* Return true if T is a GIMPLE variable whose address is not needed. */
2964
2965 bool
2966 is_gimple_non_addressable (tree t)
2967 {
2968 if (TREE_CODE (t) == SSA_NAME)
2969 t = SSA_NAME_VAR (t);
2970
2971 return (is_gimple_variable (t) && ! needs_to_live_in_memory (t));
2972 }
2973
2974 /* Return true if T is a GIMPLE rvalue, i.e. an identifier or a constant. */
2975
2976 bool
2977 is_gimple_val (tree t)
2978 {
2979 /* Make loads from volatiles and memory vars explicit. */
2980 if (is_gimple_variable (t)
2981 && is_gimple_reg_type (TREE_TYPE (t))
2982 && !is_gimple_reg (t))
2983 return false;
2984
2985 return (is_gimple_variable (t) || is_gimple_min_invariant (t));
2986 }
2987
2988 /* Similarly, but accept hard registers as inputs to asm statements. */
2989
2990 bool
2991 is_gimple_asm_val (tree t)
2992 {
2993 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
2994 return true;
2995
2996 return is_gimple_val (t);
2997 }
2998
2999 /* Return true if T is a GIMPLE minimal lvalue. */
3000
3001 bool
3002 is_gimple_min_lval (tree t)
3003 {
3004 if (!(t = CONST_CAST_TREE (strip_invariant_refs (t))))
3005 return false;
3006 return (is_gimple_id (t) || TREE_CODE (t) == MEM_REF);
3007 }
3008
3009 /* Return true if T is a valid function operand of a CALL_EXPR. */
3010
3011 bool
3012 is_gimple_call_addr (tree t)
3013 {
3014 return (TREE_CODE (t) == OBJ_TYPE_REF || is_gimple_val (t));
3015 }
3016
3017 /* Return true if T is a valid address operand of a MEM_REF. */
3018
3019 bool
3020 is_gimple_mem_ref_addr (tree t)
3021 {
3022 return (is_gimple_reg (t)
3023 || TREE_CODE (t) == INTEGER_CST
3024 || (TREE_CODE (t) == ADDR_EXPR
3025 && (CONSTANT_CLASS_P (TREE_OPERAND (t, 0))
3026 || decl_address_invariant_p (TREE_OPERAND (t, 0)))));
3027 }
3028
3029 /* If T makes a function call, return the corresponding CALL_EXPR operand.
3030 Otherwise, return NULL_TREE. */
3031
3032 tree
3033 get_call_expr_in (tree t)
3034 {
3035 if (TREE_CODE (t) == MODIFY_EXPR)
3036 t = TREE_OPERAND (t, 1);
3037 if (TREE_CODE (t) == WITH_SIZE_EXPR)
3038 t = TREE_OPERAND (t, 0);
3039 if (TREE_CODE (t) == CALL_EXPR)
3040 return t;
3041 return NULL_TREE;
3042 }
3043
3044
3045 /* Given a memory reference expression T, return its base address.
3046 The base address of a memory reference expression is the main
3047 object being referenced. For instance, the base address for
3048 'array[i].fld[j]' is 'array'. You can think of this as stripping
3049 away the offset part from a memory address.
3050
3051 This function calls handled_component_p to strip away all the inner
3052 parts of the memory reference until it reaches the base object. */
3053
3054 tree
3055 get_base_address (tree t)
3056 {
3057 while (handled_component_p (t))
3058 t = TREE_OPERAND (t, 0);
3059
3060 if ((TREE_CODE (t) == MEM_REF
3061 || TREE_CODE (t) == TARGET_MEM_REF)
3062 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
3063 t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
3064
3065 if (TREE_CODE (t) == SSA_NAME
3066 || DECL_P (t)
3067 || TREE_CODE (t) == STRING_CST
3068 || TREE_CODE (t) == CONSTRUCTOR
3069 || INDIRECT_REF_P (t)
3070 || TREE_CODE (t) == MEM_REF
3071 || TREE_CODE (t) == TARGET_MEM_REF)
3072 return t;
3073 else
3074 return NULL_TREE;
3075 }
3076
3077 void
3078 recalculate_side_effects (tree t)
3079 {
3080 enum tree_code code = TREE_CODE (t);
3081 int len = TREE_OPERAND_LENGTH (t);
3082 int i;
3083
3084 switch (TREE_CODE_CLASS (code))
3085 {
3086 case tcc_expression:
3087 switch (code)
3088 {
3089 case INIT_EXPR:
3090 case MODIFY_EXPR:
3091 case VA_ARG_EXPR:
3092 case PREDECREMENT_EXPR:
3093 case PREINCREMENT_EXPR:
3094 case POSTDECREMENT_EXPR:
3095 case POSTINCREMENT_EXPR:
3096 /* All of these have side-effects, no matter what their
3097 operands are. */
3098 return;
3099
3100 default:
3101 break;
3102 }
3103 /* Fall through. */
3104
3105 case tcc_comparison: /* a comparison expression */
3106 case tcc_unary: /* a unary arithmetic expression */
3107 case tcc_binary: /* a binary arithmetic expression */
3108 case tcc_reference: /* a reference */
3109 case tcc_vl_exp: /* a function call */
3110 TREE_SIDE_EFFECTS (t) = TREE_THIS_VOLATILE (t);
3111 for (i = 0; i < len; ++i)
3112 {
3113 tree op = TREE_OPERAND (t, i);
3114 if (op && TREE_SIDE_EFFECTS (op))
3115 TREE_SIDE_EFFECTS (t) = 1;
3116 }
3117 break;
3118
3119 case tcc_constant:
3120 /* No side-effects. */
3121 return;
3122
3123 default:
3124 gcc_unreachable ();
3125 }
3126 }
3127
3128 /* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
3129 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
3130 we failed to create one. */
3131
3132 tree
3133 canonicalize_cond_expr_cond (tree t)
3134 {
3135 /* Strip conversions around boolean operations. */
3136 if (CONVERT_EXPR_P (t)
3137 && truth_value_p (TREE_CODE (TREE_OPERAND (t, 0))))
3138 t = TREE_OPERAND (t, 0);
3139
3140 /* For (bool)x use x != 0. */
3141 if (CONVERT_EXPR_P (t)
3142 && TREE_CODE (TREE_TYPE (t)) == BOOLEAN_TYPE)
3143 {
3144 tree top0 = TREE_OPERAND (t, 0);
3145 t = build2 (NE_EXPR, TREE_TYPE (t),
3146 top0, build_int_cst (TREE_TYPE (top0), 0));
3147 }
3148 /* For !x use x == 0. */
3149 else if (TREE_CODE (t) == TRUTH_NOT_EXPR)
3150 {
3151 tree top0 = TREE_OPERAND (t, 0);
3152 t = build2 (EQ_EXPR, TREE_TYPE (t),
3153 top0, build_int_cst (TREE_TYPE (top0), 0));
3154 }
3155 /* For cmp ? 1 : 0 use cmp. */
3156 else if (TREE_CODE (t) == COND_EXPR
3157 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
3158 && integer_onep (TREE_OPERAND (t, 1))
3159 && integer_zerop (TREE_OPERAND (t, 2)))
3160 {
3161 tree top0 = TREE_OPERAND (t, 0);
3162 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
3163 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
3164 }
3165
3166 if (is_gimple_condexpr (t))
3167 return t;
3168
3169 return NULL_TREE;
3170 }
3171
3172 /* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
3173 the positions marked by the set ARGS_TO_SKIP. */
3174
3175 gimple
3176 gimple_call_copy_skip_args (gimple stmt, bitmap args_to_skip)
3177 {
3178 int i;
3179 int nargs = gimple_call_num_args (stmt);
3180 VEC(tree, heap) *vargs = VEC_alloc (tree, heap, nargs);
3181 gimple new_stmt;
3182
3183 for (i = 0; i < nargs; i++)
3184 if (!bitmap_bit_p (args_to_skip, i))
3185 VEC_quick_push (tree, vargs, gimple_call_arg (stmt, i));
3186
3187 if (gimple_call_internal_p (stmt))
3188 new_stmt = gimple_build_call_internal_vec (gimple_call_internal_fn (stmt),
3189 vargs);
3190 else
3191 new_stmt = gimple_build_call_vec (gimple_call_fn (stmt), vargs);
3192 VEC_free (tree, heap, vargs);
3193 if (gimple_call_lhs (stmt))
3194 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
3195
3196 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
3197 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
3198
3199 gimple_set_block (new_stmt, gimple_block (stmt));
3200 if (gimple_has_location (stmt))
3201 gimple_set_location (new_stmt, gimple_location (stmt));
3202 gimple_call_copy_flags (new_stmt, stmt);
3203 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
3204
3205 gimple_set_modified (new_stmt, true);
3206
3207 return new_stmt;
3208 }
3209
3210
3211 enum gtc_mode { GTC_MERGE = 0, GTC_DIAG = 1 };
3212
3213 static hashval_t gimple_type_hash (const void *);
3214
3215 /* Structure used to maintain a cache of some type pairs compared by
3216 gimple_types_compatible_p when comparing aggregate types. There are
3217 three possible values for SAME_P:
3218
3219 -2: The pair (T1, T2) has just been inserted in the table.
3220 0: T1 and T2 are different types.
3221 1: T1 and T2 are the same type.
3222
3223 The two elements in the SAME_P array are indexed by the comparison
3224 mode gtc_mode. */
3225
3226 struct type_pair_d
3227 {
3228 unsigned int uid1;
3229 unsigned int uid2;
3230 signed char same_p[2];
3231 };
3232 typedef struct type_pair_d *type_pair_t;
3233
3234 DEF_VEC_P(type_pair_t);
3235 DEF_VEC_ALLOC_P(type_pair_t,heap);
3236
3237 /* Return a hash value for the type pair pointed-to by P. */
3238
3239 static hashval_t
3240 type_pair_hash (const void *p)
3241 {
3242 const struct type_pair_d *pair = (const struct type_pair_d *) p;
3243 hashval_t val1 = pair->uid1;
3244 hashval_t val2 = pair->uid2;
3245 return iterative_hash_hashval_t (val1, val2);
3246 }
3247
3248 /* Compare two type pairs pointed-to by P1 and P2. */
3249
3250 static int
3251 type_pair_eq (const void *p1, const void *p2)
3252 {
3253 const struct type_pair_d *pair1 = (const struct type_pair_d *) p1;
3254 const struct type_pair_d *pair2 = (const struct type_pair_d *) p2;
3255 return (pair1->uid1 == pair2->uid1 && pair1->uid2 == pair2->uid2);
3256 }
3257
3258 /* Lookup the pair of types T1 and T2 in *VISITED_P. Insert a new
3259 entry if none existed. */
3260
3261 static type_pair_t
3262 lookup_type_pair (tree t1, tree t2, htab_t *visited_p, struct obstack *ob_p)
3263 {
3264 struct type_pair_d pair;
3265 type_pair_t p;
3266 void **slot;
3267
3268 if (*visited_p == NULL)
3269 {
3270 *visited_p = htab_create (251, type_pair_hash, type_pair_eq, NULL);
3271 gcc_obstack_init (ob_p);
3272 }
3273
3274 if (TYPE_UID (t1) < TYPE_UID (t2))
3275 {
3276 pair.uid1 = TYPE_UID (t1);
3277 pair.uid2 = TYPE_UID (t2);
3278 }
3279 else
3280 {
3281 pair.uid1 = TYPE_UID (t2);
3282 pair.uid2 = TYPE_UID (t1);
3283 }
3284 slot = htab_find_slot (*visited_p, &pair, INSERT);
3285
3286 if (*slot)
3287 p = *((type_pair_t *) slot);
3288 else
3289 {
3290 p = XOBNEW (ob_p, struct type_pair_d);
3291 p->uid1 = pair.uid1;
3292 p->uid2 = pair.uid2;
3293 p->same_p[0] = -2;
3294 p->same_p[1] = -2;
3295 *slot = (void *) p;
3296 }
3297
3298 return p;
3299 }
3300
3301 /* Per pointer state for the SCC finding. The on_sccstack flag
3302 is not strictly required, it is true when there is no hash value
3303 recorded for the type and false otherwise. But querying that
3304 is slower. */
3305
3306 struct sccs
3307 {
3308 unsigned int dfsnum;
3309 unsigned int low;
3310 bool on_sccstack;
3311 union {
3312 hashval_t hash;
3313 signed char same_p;
3314 } u;
3315 };
3316
3317 static unsigned int next_dfs_num;
3318 static unsigned int gtc_next_dfs_num;
3319
3320
3321 /* GIMPLE type merging cache. A direct-mapped cache based on TYPE_UID. */
3322
3323 typedef struct GTY(()) gimple_type_leader_entry_s {
3324 tree type;
3325 tree leader;
3326 } gimple_type_leader_entry;
3327
3328 #define GIMPLE_TYPE_LEADER_SIZE 16381
3329 static GTY((deletable, length("GIMPLE_TYPE_LEADER_SIZE")))
3330 gimple_type_leader_entry *gimple_type_leader;
3331
3332 /* Lookup an existing leader for T and return it or NULL_TREE, if
3333 there is none in the cache. */
3334
3335 static inline tree
3336 gimple_lookup_type_leader (tree t)
3337 {
3338 gimple_type_leader_entry *leader;
3339
3340 if (!gimple_type_leader)
3341 return NULL_TREE;
3342
3343 leader = &gimple_type_leader[TYPE_UID (t) % GIMPLE_TYPE_LEADER_SIZE];
3344 if (leader->type != t)
3345 return NULL_TREE;
3346
3347 return leader->leader;
3348 }
3349
3350 /* Return true if T1 and T2 have the same name. If FOR_COMPLETION_P is
3351 true then if any type has no name return false, otherwise return
3352 true if both types have no names. */
3353
3354 static bool
3355 compare_type_names_p (tree t1, tree t2, bool for_completion_p)
3356 {
3357 tree name1 = TYPE_NAME (t1);
3358 tree name2 = TYPE_NAME (t2);
3359
3360 /* Consider anonymous types all unique for completion. */
3361 if (for_completion_p
3362 && (!name1 || !name2))
3363 return false;
3364
3365 if (name1 && TREE_CODE (name1) == TYPE_DECL)
3366 {
3367 name1 = DECL_NAME (name1);
3368 if (for_completion_p
3369 && !name1)
3370 return false;
3371 }
3372 gcc_assert (!name1 || TREE_CODE (name1) == IDENTIFIER_NODE);
3373
3374 if (name2 && TREE_CODE (name2) == TYPE_DECL)
3375 {
3376 name2 = DECL_NAME (name2);
3377 if (for_completion_p
3378 && !name2)
3379 return false;
3380 }
3381 gcc_assert (!name2 || TREE_CODE (name2) == IDENTIFIER_NODE);
3382
3383 /* Identifiers can be compared with pointer equality rather
3384 than a string comparison. */
3385 if (name1 == name2)
3386 return true;
3387
3388 return false;
3389 }
3390
3391 /* Return true if the field decls F1 and F2 are at the same offset.
3392
3393 This is intended to be used on GIMPLE types only. */
3394
3395 bool
3396 gimple_compare_field_offset (tree f1, tree f2)
3397 {
3398 if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
3399 {
3400 tree offset1 = DECL_FIELD_OFFSET (f1);
3401 tree offset2 = DECL_FIELD_OFFSET (f2);
3402 return ((offset1 == offset2
3403 /* Once gimplification is done, self-referential offsets are
3404 instantiated as operand #2 of the COMPONENT_REF built for
3405 each access and reset. Therefore, they are not relevant
3406 anymore and fields are interchangeable provided that they
3407 represent the same access. */
3408 || (TREE_CODE (offset1) == PLACEHOLDER_EXPR
3409 && TREE_CODE (offset2) == PLACEHOLDER_EXPR
3410 && (DECL_SIZE (f1) == DECL_SIZE (f2)
3411 || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
3412 && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
3413 || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0))
3414 && DECL_ALIGN (f1) == DECL_ALIGN (f2))
3415 || operand_equal_p (offset1, offset2, 0))
3416 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
3417 DECL_FIELD_BIT_OFFSET (f2)));
3418 }
3419
3420 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
3421 should be, so handle differing ones specially by decomposing
3422 the offset into a byte and bit offset manually. */
3423 if (host_integerp (DECL_FIELD_OFFSET (f1), 0)
3424 && host_integerp (DECL_FIELD_OFFSET (f2), 0))
3425 {
3426 unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
3427 unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
3428 bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
3429 byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
3430 + bit_offset1 / BITS_PER_UNIT);
3431 bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
3432 byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
3433 + bit_offset2 / BITS_PER_UNIT);
3434 if (byte_offset1 != byte_offset2)
3435 return false;
3436 return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
3437 }
3438
3439 return false;
3440 }
3441
3442 /* If the type T1 and the type T2 are a complete and an incomplete
3443 variant of the same type return true. */
3444
3445 static bool
3446 gimple_compatible_complete_and_incomplete_subtype_p (tree t1, tree t2)
3447 {
3448 /* If one pointer points to an incomplete type variant of
3449 the other pointed-to type they are the same. */
3450 if (TREE_CODE (t1) == TREE_CODE (t2)
3451 && RECORD_OR_UNION_TYPE_P (t1)
3452 && (!COMPLETE_TYPE_P (t1)
3453 || !COMPLETE_TYPE_P (t2))
3454 && TYPE_QUALS (t1) == TYPE_QUALS (t2)
3455 && compare_type_names_p (TYPE_MAIN_VARIANT (t1),
3456 TYPE_MAIN_VARIANT (t2), true))
3457 return true;
3458 return false;
3459 }
3460
3461 static bool
3462 gimple_types_compatible_p_1 (tree, tree, type_pair_t,
3463 VEC(type_pair_t, heap) **,
3464 struct pointer_map_t *, struct obstack *);
3465
3466 /* DFS visit the edge from the callers type pair with state *STATE to
3467 the pair T1, T2 while operating in FOR_MERGING_P mode.
3468 Update the merging status if it is not part of the SCC containing the
3469 callers pair and return it.
3470 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3471
3472 static bool
3473 gtc_visit (tree t1, tree t2,
3474 struct sccs *state,
3475 VEC(type_pair_t, heap) **sccstack,
3476 struct pointer_map_t *sccstate,
3477 struct obstack *sccstate_obstack)
3478 {
3479 struct sccs *cstate = NULL;
3480 type_pair_t p;
3481 void **slot;
3482 tree leader1, leader2;
3483
3484 /* Check first for the obvious case of pointer identity. */
3485 if (t1 == t2)
3486 return true;
3487
3488 /* Check that we have two types to compare. */
3489 if (t1 == NULL_TREE || t2 == NULL_TREE)
3490 return false;
3491
3492 /* Can't be the same type if the types don't have the same code. */
3493 if (TREE_CODE (t1) != TREE_CODE (t2))
3494 return false;
3495
3496 /* Can't be the same type if they have different CV qualifiers. */
3497 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
3498 return false;
3499
3500 if (TREE_ADDRESSABLE (t1) != TREE_ADDRESSABLE (t2))
3501 return false;
3502
3503 /* Void types and nullptr types are always the same. */
3504 if (TREE_CODE (t1) == VOID_TYPE
3505 || TREE_CODE (t1) == NULLPTR_TYPE)
3506 return true;
3507
3508 /* Can't be the same type if they have different alignment or mode. */
3509 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3510 || TYPE_MODE (t1) != TYPE_MODE (t2))
3511 return false;
3512
3513 /* Do some simple checks before doing three hashtable queries. */
3514 if (INTEGRAL_TYPE_P (t1)
3515 || SCALAR_FLOAT_TYPE_P (t1)
3516 || FIXED_POINT_TYPE_P (t1)
3517 || TREE_CODE (t1) == VECTOR_TYPE
3518 || TREE_CODE (t1) == COMPLEX_TYPE
3519 || TREE_CODE (t1) == OFFSET_TYPE
3520 || POINTER_TYPE_P (t1))
3521 {
3522 /* Can't be the same type if they have different sign or precision. */
3523 if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
3524 || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
3525 return false;
3526
3527 if (TREE_CODE (t1) == INTEGER_TYPE
3528 && (TYPE_IS_SIZETYPE (t1) != TYPE_IS_SIZETYPE (t2)
3529 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)))
3530 return false;
3531
3532 /* That's all we need to check for float and fixed-point types. */
3533 if (SCALAR_FLOAT_TYPE_P (t1)
3534 || FIXED_POINT_TYPE_P (t1))
3535 return true;
3536
3537 /* For other types fall thru to more complex checks. */
3538 }
3539
3540 /* If the types have been previously registered and found equal
3541 they still are. */
3542 leader1 = gimple_lookup_type_leader (t1);
3543 leader2 = gimple_lookup_type_leader (t2);
3544 if (leader1 == t2
3545 || t1 == leader2
3546 || (leader1 && leader1 == leader2))
3547 return true;
3548
3549 /* If the hash values of t1 and t2 are different the types can't
3550 possibly be the same. This helps keeping the type-pair hashtable
3551 small, only tracking comparisons for hash collisions. */
3552 if (gimple_type_hash (t1) != gimple_type_hash (t2))
3553 return false;
3554
3555 /* Allocate a new cache entry for this comparison. */
3556 p = lookup_type_pair (t1, t2, &gtc_visited, &gtc_ob);
3557 if (p->same_p[GTC_MERGE] == 0 || p->same_p[GTC_MERGE] == 1)
3558 {
3559 /* We have already decided whether T1 and T2 are the
3560 same, return the cached result. */
3561 return p->same_p[GTC_MERGE] == 1;
3562 }
3563
3564 if ((slot = pointer_map_contains (sccstate, p)) != NULL)
3565 cstate = (struct sccs *)*slot;
3566 /* Not yet visited. DFS recurse. */
3567 if (!cstate)
3568 {
3569 gimple_types_compatible_p_1 (t1, t2, p,
3570 sccstack, sccstate, sccstate_obstack);
3571 cstate = (struct sccs *)* pointer_map_contains (sccstate, p);
3572 state->low = MIN (state->low, cstate->low);
3573 }
3574 /* If the type is still on the SCC stack adjust the parents low. */
3575 if (cstate->dfsnum < state->dfsnum
3576 && cstate->on_sccstack)
3577 state->low = MIN (cstate->dfsnum, state->low);
3578
3579 /* Return the current lattice value. We start with an equality
3580 assumption so types part of a SCC will be optimistically
3581 treated equal unless proven otherwise. */
3582 return cstate->u.same_p;
3583 }
3584
3585 /* Worker for gimple_types_compatible.
3586 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3587
3588 static bool
3589 gimple_types_compatible_p_1 (tree t1, tree t2, type_pair_t p,
3590 VEC(type_pair_t, heap) **sccstack,
3591 struct pointer_map_t *sccstate,
3592 struct obstack *sccstate_obstack)
3593 {
3594 struct sccs *state;
3595
3596 gcc_assert (p->same_p[GTC_MERGE] == -2);
3597
3598 state = XOBNEW (sccstate_obstack, struct sccs);
3599 *pointer_map_insert (sccstate, p) = state;
3600
3601 VEC_safe_push (type_pair_t, heap, *sccstack, p);
3602 state->dfsnum = gtc_next_dfs_num++;
3603 state->low = state->dfsnum;
3604 state->on_sccstack = true;
3605 /* Start with an equality assumption. As we DFS recurse into child
3606 SCCs this assumption may get revisited. */
3607 state->u.same_p = 1;
3608
3609 /* If their attributes are not the same they can't be the same type. */
3610 if (!attribute_list_equal (TYPE_ATTRIBUTES (t1), TYPE_ATTRIBUTES (t2)))
3611 goto different_types;
3612
3613 /* Do type-specific comparisons. */
3614 switch (TREE_CODE (t1))
3615 {
3616 case VECTOR_TYPE:
3617 case COMPLEX_TYPE:
3618 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2),
3619 state, sccstack, sccstate, sccstate_obstack))
3620 goto different_types;
3621 goto same_types;
3622
3623 case ARRAY_TYPE:
3624 /* Array types are the same if the element types are the same and
3625 the number of elements are the same. */
3626 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2),
3627 state, sccstack, sccstate, sccstate_obstack)
3628 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
3629 || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
3630 goto different_types;
3631 else
3632 {
3633 tree i1 = TYPE_DOMAIN (t1);
3634 tree i2 = TYPE_DOMAIN (t2);
3635
3636 /* For an incomplete external array, the type domain can be
3637 NULL_TREE. Check this condition also. */
3638 if (i1 == NULL_TREE && i2 == NULL_TREE)
3639 goto same_types;
3640 else if (i1 == NULL_TREE || i2 == NULL_TREE)
3641 goto different_types;
3642 /* If for a complete array type the possibly gimplified sizes
3643 are different the types are different. */
3644 else if (((TYPE_SIZE (i1) != NULL) ^ (TYPE_SIZE (i2) != NULL))
3645 || (TYPE_SIZE (i1)
3646 && TYPE_SIZE (i2)
3647 && !operand_equal_p (TYPE_SIZE (i1), TYPE_SIZE (i2), 0)))
3648 goto different_types;
3649 else
3650 {
3651 tree min1 = TYPE_MIN_VALUE (i1);
3652 tree min2 = TYPE_MIN_VALUE (i2);
3653 tree max1 = TYPE_MAX_VALUE (i1);
3654 tree max2 = TYPE_MAX_VALUE (i2);
3655
3656 /* The minimum/maximum values have to be the same. */
3657 if ((min1 == min2
3658 || (min1 && min2
3659 && ((TREE_CODE (min1) == PLACEHOLDER_EXPR
3660 && TREE_CODE (min2) == PLACEHOLDER_EXPR)
3661 || operand_equal_p (min1, min2, 0))))
3662 && (max1 == max2
3663 || (max1 && max2
3664 && ((TREE_CODE (max1) == PLACEHOLDER_EXPR
3665 && TREE_CODE (max2) == PLACEHOLDER_EXPR)
3666 || operand_equal_p (max1, max2, 0)))))
3667 goto same_types;
3668 else
3669 goto different_types;
3670 }
3671 }
3672
3673 case METHOD_TYPE:
3674 /* Method types should belong to the same class. */
3675 if (!gtc_visit (TYPE_METHOD_BASETYPE (t1), TYPE_METHOD_BASETYPE (t2),
3676 state, sccstack, sccstate, sccstate_obstack))
3677 goto different_types;
3678
3679 /* Fallthru */
3680
3681 case FUNCTION_TYPE:
3682 /* Function types are the same if the return type and arguments types
3683 are the same. */
3684 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2),
3685 state, sccstack, sccstate, sccstate_obstack))
3686 goto different_types;
3687
3688 if (!comp_type_attributes (t1, t2))
3689 goto different_types;
3690
3691 if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
3692 goto same_types;
3693 else
3694 {
3695 tree parms1, parms2;
3696
3697 for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
3698 parms1 && parms2;
3699 parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
3700 {
3701 if (!gtc_visit (TREE_VALUE (parms1), TREE_VALUE (parms2),
3702 state, sccstack, sccstate, sccstate_obstack))
3703 goto different_types;
3704 }
3705
3706 if (parms1 || parms2)
3707 goto different_types;
3708
3709 goto same_types;
3710 }
3711
3712 case OFFSET_TYPE:
3713 {
3714 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2),
3715 state, sccstack, sccstate, sccstate_obstack)
3716 || !gtc_visit (TYPE_OFFSET_BASETYPE (t1),
3717 TYPE_OFFSET_BASETYPE (t2),
3718 state, sccstack, sccstate, sccstate_obstack))
3719 goto different_types;
3720
3721 goto same_types;
3722 }
3723
3724 case POINTER_TYPE:
3725 case REFERENCE_TYPE:
3726 {
3727 /* If the two pointers have different ref-all attributes,
3728 they can't be the same type. */
3729 if (TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
3730 goto different_types;
3731
3732 /* Otherwise, pointer and reference types are the same if the
3733 pointed-to types are the same. */
3734 if (gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2),
3735 state, sccstack, sccstate, sccstate_obstack))
3736 goto same_types;
3737
3738 goto different_types;
3739 }
3740
3741 case INTEGER_TYPE:
3742 case BOOLEAN_TYPE:
3743 {
3744 tree min1 = TYPE_MIN_VALUE (t1);
3745 tree max1 = TYPE_MAX_VALUE (t1);
3746 tree min2 = TYPE_MIN_VALUE (t2);
3747 tree max2 = TYPE_MAX_VALUE (t2);
3748 bool min_equal_p = false;
3749 bool max_equal_p = false;
3750
3751 /* If either type has a minimum value, the other type must
3752 have the same. */
3753 if (min1 == NULL_TREE && min2 == NULL_TREE)
3754 min_equal_p = true;
3755 else if (min1 && min2 && operand_equal_p (min1, min2, 0))
3756 min_equal_p = true;
3757
3758 /* Likewise, if either type has a maximum value, the other
3759 type must have the same. */
3760 if (max1 == NULL_TREE && max2 == NULL_TREE)
3761 max_equal_p = true;
3762 else if (max1 && max2 && operand_equal_p (max1, max2, 0))
3763 max_equal_p = true;
3764
3765 if (!min_equal_p || !max_equal_p)
3766 goto different_types;
3767
3768 goto same_types;
3769 }
3770
3771 case ENUMERAL_TYPE:
3772 {
3773 /* FIXME lto, we cannot check bounds on enumeral types because
3774 different front ends will produce different values.
3775 In C, enumeral types are integers, while in C++ each element
3776 will have its own symbolic value. We should decide how enums
3777 are to be represented in GIMPLE and have each front end lower
3778 to that. */
3779 tree v1, v2;
3780
3781 /* For enumeral types, all the values must be the same. */
3782 if (TYPE_VALUES (t1) == TYPE_VALUES (t2))
3783 goto same_types;
3784
3785 for (v1 = TYPE_VALUES (t1), v2 = TYPE_VALUES (t2);
3786 v1 && v2;
3787 v1 = TREE_CHAIN (v1), v2 = TREE_CHAIN (v2))
3788 {
3789 tree c1 = TREE_VALUE (v1);
3790 tree c2 = TREE_VALUE (v2);
3791
3792 if (TREE_CODE (c1) == CONST_DECL)
3793 c1 = DECL_INITIAL (c1);
3794
3795 if (TREE_CODE (c2) == CONST_DECL)
3796 c2 = DECL_INITIAL (c2);
3797
3798 if (tree_int_cst_equal (c1, c2) != 1)
3799 goto different_types;
3800
3801 if (TREE_PURPOSE (v1) != TREE_PURPOSE (v2))
3802 goto different_types;
3803 }
3804
3805 /* If one enumeration has more values than the other, they
3806 are not the same. */
3807 if (v1 || v2)
3808 goto different_types;
3809
3810 goto same_types;
3811 }
3812
3813 case RECORD_TYPE:
3814 case UNION_TYPE:
3815 case QUAL_UNION_TYPE:
3816 {
3817 tree f1, f2;
3818
3819 /* The struct tags shall compare equal. */
3820 if (!compare_type_names_p (t1, t2, false))
3821 goto different_types;
3822
3823 /* For aggregate types, all the fields must be the same. */
3824 for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
3825 f1 && f2;
3826 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
3827 {
3828 /* The fields must have the same name, offset and type. */
3829 if (DECL_NAME (f1) != DECL_NAME (f2)
3830 || DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
3831 || !gimple_compare_field_offset (f1, f2)
3832 || !gtc_visit (TREE_TYPE (f1), TREE_TYPE (f2),
3833 state, sccstack, sccstate, sccstate_obstack))
3834 goto different_types;
3835 }
3836
3837 /* If one aggregate has more fields than the other, they
3838 are not the same. */
3839 if (f1 || f2)
3840 goto different_types;
3841
3842 goto same_types;
3843 }
3844
3845 default:
3846 gcc_unreachable ();
3847 }
3848
3849 /* Common exit path for types that are not compatible. */
3850 different_types:
3851 state->u.same_p = 0;
3852 goto pop;
3853
3854 /* Common exit path for types that are compatible. */
3855 same_types:
3856 gcc_assert (state->u.same_p == 1);
3857
3858 pop:
3859 if (state->low == state->dfsnum)
3860 {
3861 type_pair_t x;
3862
3863 /* Pop off the SCC and set its cache values to the final
3864 comparison result. */
3865 do
3866 {
3867 struct sccs *cstate;
3868 x = VEC_pop (type_pair_t, *sccstack);
3869 cstate = (struct sccs *)*pointer_map_contains (sccstate, x);
3870 cstate->on_sccstack = false;
3871 x->same_p[GTC_MERGE] = state->u.same_p;
3872 }
3873 while (x != p);
3874 }
3875
3876 return state->u.same_p;
3877 }
3878
3879 /* Return true iff T1 and T2 are structurally identical. When
3880 FOR_MERGING_P is true the an incomplete type and a complete type
3881 are considered different, otherwise they are considered compatible. */
3882
3883 static bool
3884 gimple_types_compatible_p (tree t1, tree t2)
3885 {
3886 VEC(type_pair_t, heap) *sccstack = NULL;
3887 struct pointer_map_t *sccstate;
3888 struct obstack sccstate_obstack;
3889 type_pair_t p = NULL;
3890 bool res;
3891 tree leader1, leader2;
3892
3893 /* Before starting to set up the SCC machinery handle simple cases. */
3894
3895 /* Check first for the obvious case of pointer identity. */
3896 if (t1 == t2)
3897 return true;
3898
3899 /* Check that we have two types to compare. */
3900 if (t1 == NULL_TREE || t2 == NULL_TREE)
3901 return false;
3902
3903 /* Can't be the same type if the types don't have the same code. */
3904 if (TREE_CODE (t1) != TREE_CODE (t2))
3905 return false;
3906
3907 /* Can't be the same type if they have different CV qualifiers. */
3908 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
3909 return false;
3910
3911 if (TREE_ADDRESSABLE (t1) != TREE_ADDRESSABLE (t2))
3912 return false;
3913
3914 /* Void types and nullptr types are always the same. */
3915 if (TREE_CODE (t1) == VOID_TYPE
3916 || TREE_CODE (t1) == NULLPTR_TYPE)
3917 return true;
3918
3919 /* Can't be the same type if they have different alignment or mode. */
3920 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3921 || TYPE_MODE (t1) != TYPE_MODE (t2))
3922 return false;
3923
3924 /* Do some simple checks before doing three hashtable queries. */
3925 if (INTEGRAL_TYPE_P (t1)
3926 || SCALAR_FLOAT_TYPE_P (t1)
3927 || FIXED_POINT_TYPE_P (t1)
3928 || TREE_CODE (t1) == VECTOR_TYPE
3929 || TREE_CODE (t1) == COMPLEX_TYPE
3930 || TREE_CODE (t1) == OFFSET_TYPE
3931 || POINTER_TYPE_P (t1))
3932 {
3933 /* Can't be the same type if they have different sign or precision. */
3934 if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
3935 || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
3936 return false;
3937
3938 if (TREE_CODE (t1) == INTEGER_TYPE
3939 && (TYPE_IS_SIZETYPE (t1) != TYPE_IS_SIZETYPE (t2)
3940 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)))
3941 return false;
3942
3943 /* That's all we need to check for float and fixed-point types. */
3944 if (SCALAR_FLOAT_TYPE_P (t1)
3945 || FIXED_POINT_TYPE_P (t1))
3946 return true;
3947
3948 /* For other types fall thru to more complex checks. */
3949 }
3950
3951 /* If the types have been previously registered and found equal
3952 they still are. */
3953 leader1 = gimple_lookup_type_leader (t1);
3954 leader2 = gimple_lookup_type_leader (t2);
3955 if (leader1 == t2
3956 || t1 == leader2
3957 || (leader1 && leader1 == leader2))
3958 return true;
3959
3960 /* If the hash values of t1 and t2 are different the types can't
3961 possibly be the same. This helps keeping the type-pair hashtable
3962 small, only tracking comparisons for hash collisions. */
3963 if (gimple_type_hash (t1) != gimple_type_hash (t2))
3964 return false;
3965
3966 /* If we've visited this type pair before (in the case of aggregates
3967 with self-referential types), and we made a decision, return it. */
3968 p = lookup_type_pair (t1, t2, &gtc_visited, &gtc_ob);
3969 if (p->same_p[GTC_MERGE] == 0 || p->same_p[GTC_MERGE] == 1)
3970 {
3971 /* We have already decided whether T1 and T2 are the
3972 same, return the cached result. */
3973 return p->same_p[GTC_MERGE] == 1;
3974 }
3975
3976 /* Now set up the SCC machinery for the comparison. */
3977 gtc_next_dfs_num = 1;
3978 sccstate = pointer_map_create ();
3979 gcc_obstack_init (&sccstate_obstack);
3980 res = gimple_types_compatible_p_1 (t1, t2, p,
3981 &sccstack, sccstate, &sccstate_obstack);
3982 VEC_free (type_pair_t, heap, sccstack);
3983 pointer_map_destroy (sccstate);
3984 obstack_free (&sccstate_obstack, NULL);
3985
3986 return res;
3987 }
3988
3989
3990 static hashval_t
3991 iterative_hash_gimple_type (tree, hashval_t, VEC(tree, heap) **,
3992 struct pointer_map_t *, struct obstack *);
3993
3994 /* DFS visit the edge from the callers type with state *STATE to T.
3995 Update the callers type hash V with the hash for T if it is not part
3996 of the SCC containing the callers type and return it.
3997 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3998
3999 static hashval_t
4000 visit (tree t, struct sccs *state, hashval_t v,
4001 VEC (tree, heap) **sccstack,
4002 struct pointer_map_t *sccstate,
4003 struct obstack *sccstate_obstack)
4004 {
4005 struct sccs *cstate = NULL;
4006 struct tree_int_map m;
4007 void **slot;
4008
4009 /* If there is a hash value recorded for this type then it can't
4010 possibly be part of our parent SCC. Simply mix in its hash. */
4011 m.base.from = t;
4012 if ((slot = htab_find_slot (type_hash_cache, &m, NO_INSERT))
4013 && *slot)
4014 return iterative_hash_hashval_t (((struct tree_int_map *) *slot)->to, v);
4015
4016 if ((slot = pointer_map_contains (sccstate, t)) != NULL)
4017 cstate = (struct sccs *)*slot;
4018 if (!cstate)
4019 {
4020 hashval_t tem;
4021 /* Not yet visited. DFS recurse. */
4022 tem = iterative_hash_gimple_type (t, v,
4023 sccstack, sccstate, sccstate_obstack);
4024 if (!cstate)
4025 cstate = (struct sccs *)* pointer_map_contains (sccstate, t);
4026 state->low = MIN (state->low, cstate->low);
4027 /* If the type is no longer on the SCC stack and thus is not part
4028 of the parents SCC mix in its hash value. Otherwise we will
4029 ignore the type for hashing purposes and return the unaltered
4030 hash value. */
4031 if (!cstate->on_sccstack)
4032 return tem;
4033 }
4034 if (cstate->dfsnum < state->dfsnum
4035 && cstate->on_sccstack)
4036 state->low = MIN (cstate->dfsnum, state->low);
4037
4038 /* We are part of our parents SCC, skip this type during hashing
4039 and return the unaltered hash value. */
4040 return v;
4041 }
4042
4043 /* Hash NAME with the previous hash value V and return it. */
4044
4045 static hashval_t
4046 iterative_hash_name (tree name, hashval_t v)
4047 {
4048 if (!name)
4049 return v;
4050 if (TREE_CODE (name) == TYPE_DECL)
4051 name = DECL_NAME (name);
4052 if (!name)
4053 return v;
4054 gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
4055 return iterative_hash_object (IDENTIFIER_HASH_VALUE (name), v);
4056 }
4057
4058 /* A type, hashvalue pair for sorting SCC members. */
4059
4060 struct type_hash_pair {
4061 tree type;
4062 hashval_t hash;
4063 };
4064
4065 /* Compare two type, hashvalue pairs. */
4066
4067 static int
4068 type_hash_pair_compare (const void *p1_, const void *p2_)
4069 {
4070 const struct type_hash_pair *p1 = (const struct type_hash_pair *) p1_;
4071 const struct type_hash_pair *p2 = (const struct type_hash_pair *) p2_;
4072 if (p1->hash == p2->hash)
4073 return TYPE_UID (p1->type) - TYPE_UID (p2->type);
4074 return p1->hash - p2->hash;
4075 }
4076
4077 /* Returning a hash value for gimple type TYPE combined with VAL.
4078 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done.
4079
4080 To hash a type we end up hashing in types that are reachable.
4081 Through pointers we can end up with cycles which messes up the
4082 required property that we need to compute the same hash value
4083 for structurally equivalent types. To avoid this we have to
4084 hash all types in a cycle (the SCC) in a commutative way. The
4085 easiest way is to not mix in the hashes of the SCC members at
4086 all. To make this work we have to delay setting the hash
4087 values of the SCC until it is complete. */
4088
4089 static hashval_t
4090 iterative_hash_gimple_type (tree type, hashval_t val,
4091 VEC(tree, heap) **sccstack,
4092 struct pointer_map_t *sccstate,
4093 struct obstack *sccstate_obstack)
4094 {
4095 hashval_t v;
4096 void **slot;
4097 struct sccs *state;
4098
4099 /* Not visited during this DFS walk. */
4100 gcc_checking_assert (!pointer_map_contains (sccstate, type));
4101 state = XOBNEW (sccstate_obstack, struct sccs);
4102 *pointer_map_insert (sccstate, type) = state;
4103
4104 VEC_safe_push (tree, heap, *sccstack, type);
4105 state->dfsnum = next_dfs_num++;
4106 state->low = state->dfsnum;
4107 state->on_sccstack = true;
4108
4109 /* Combine a few common features of types so that types are grouped into
4110 smaller sets; when searching for existing matching types to merge,
4111 only existing types having the same features as the new type will be
4112 checked. */
4113 v = iterative_hash_hashval_t (TREE_CODE (type), 0);
4114 v = iterative_hash_hashval_t (TYPE_QUALS (type), v);
4115 v = iterative_hash_hashval_t (TREE_ADDRESSABLE (type), v);
4116
4117 /* Do not hash the types size as this will cause differences in
4118 hash values for the complete vs. the incomplete type variant. */
4119
4120 /* Incorporate common features of numerical types. */
4121 if (INTEGRAL_TYPE_P (type)
4122 || SCALAR_FLOAT_TYPE_P (type)
4123 || FIXED_POINT_TYPE_P (type))
4124 {
4125 v = iterative_hash_hashval_t (TYPE_PRECISION (type), v);
4126 v = iterative_hash_hashval_t (TYPE_MODE (type), v);
4127 v = iterative_hash_hashval_t (TYPE_UNSIGNED (type), v);
4128 }
4129
4130 /* For pointer and reference types, fold in information about the type
4131 pointed to. */
4132 if (POINTER_TYPE_P (type))
4133 v = visit (TREE_TYPE (type), state, v,
4134 sccstack, sccstate, sccstate_obstack);
4135
4136 /* For integer types hash the types min/max values and the string flag. */
4137 if (TREE_CODE (type) == INTEGER_TYPE)
4138 {
4139 /* OMP lowering can introduce error_mark_node in place of
4140 random local decls in types. */
4141 if (TYPE_MIN_VALUE (type) != error_mark_node)
4142 v = iterative_hash_expr (TYPE_MIN_VALUE (type), v);
4143 if (TYPE_MAX_VALUE (type) != error_mark_node)
4144 v = iterative_hash_expr (TYPE_MAX_VALUE (type), v);
4145 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
4146 }
4147
4148 /* For array types hash their domain and the string flag. */
4149 if (TREE_CODE (type) == ARRAY_TYPE
4150 && TYPE_DOMAIN (type))
4151 {
4152 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
4153 v = visit (TYPE_DOMAIN (type), state, v,
4154 sccstack, sccstate, sccstate_obstack);
4155 }
4156
4157 /* Recurse for aggregates with a single element type. */
4158 if (TREE_CODE (type) == ARRAY_TYPE
4159 || TREE_CODE (type) == COMPLEX_TYPE
4160 || TREE_CODE (type) == VECTOR_TYPE)
4161 v = visit (TREE_TYPE (type), state, v,
4162 sccstack, sccstate, sccstate_obstack);
4163
4164 /* Incorporate function return and argument types. */
4165 if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE)
4166 {
4167 unsigned na;
4168 tree p;
4169
4170 /* For method types also incorporate their parent class. */
4171 if (TREE_CODE (type) == METHOD_TYPE)
4172 v = visit (TYPE_METHOD_BASETYPE (type), state, v,
4173 sccstack, sccstate, sccstate_obstack);
4174
4175 /* Check result and argument types. */
4176 v = visit (TREE_TYPE (type), state, v,
4177 sccstack, sccstate, sccstate_obstack);
4178 for (p = TYPE_ARG_TYPES (type), na = 0; p; p = TREE_CHAIN (p))
4179 {
4180 v = visit (TREE_VALUE (p), state, v,
4181 sccstack, sccstate, sccstate_obstack);
4182 na++;
4183 }
4184
4185 v = iterative_hash_hashval_t (na, v);
4186 }
4187
4188 if (TREE_CODE (type) == RECORD_TYPE
4189 || TREE_CODE (type) == UNION_TYPE
4190 || TREE_CODE (type) == QUAL_UNION_TYPE)
4191 {
4192 unsigned nf;
4193 tree f;
4194
4195 v = iterative_hash_name (TYPE_NAME (type), v);
4196
4197 for (f = TYPE_FIELDS (type), nf = 0; f; f = TREE_CHAIN (f))
4198 {
4199 v = iterative_hash_name (DECL_NAME (f), v);
4200 v = visit (TREE_TYPE (f), state, v,
4201 sccstack, sccstate, sccstate_obstack);
4202 nf++;
4203 }
4204
4205 v = iterative_hash_hashval_t (nf, v);
4206 }
4207
4208 /* Record hash for us. */
4209 state->u.hash = v;
4210
4211 /* See if we found an SCC. */
4212 if (state->low == state->dfsnum)
4213 {
4214 tree x;
4215 struct sccs *cstate;
4216 struct tree_int_map *m;
4217
4218 /* Pop off the SCC and set its hash values. */
4219 x = VEC_pop (tree, *sccstack);
4220 cstate = (struct sccs *)*pointer_map_contains (sccstate, x);
4221 cstate->on_sccstack = false;
4222 /* Optimize SCC size one. */
4223 if (x == type)
4224 {
4225 m = ggc_alloc_cleared_tree_int_map ();
4226 m->base.from = x;
4227 m->to = cstate->u.hash;
4228 slot = htab_find_slot (type_hash_cache, m, INSERT);
4229 gcc_assert (!*slot);
4230 *slot = (void *) m;
4231 }
4232 else
4233 {
4234 unsigned first, i, size, j;
4235 struct type_hash_pair *pairs;
4236 /* Pop off the SCC and build an array of type, hash pairs. */
4237 first = VEC_length (tree, *sccstack) - 1;
4238 while (VEC_index (tree, *sccstack, first) != type)
4239 --first;
4240 size = VEC_length (tree, *sccstack) - first + 1;
4241 pairs = XALLOCAVEC (struct type_hash_pair, size);
4242 i = 0;
4243 pairs[i].type = x;
4244 pairs[i].hash = cstate->u.hash;
4245 do
4246 {
4247 x = VEC_pop (tree, *sccstack);
4248 cstate = (struct sccs *)*pointer_map_contains (sccstate, x);
4249 cstate->on_sccstack = false;
4250 ++i;
4251 pairs[i].type = x;
4252 pairs[i].hash = cstate->u.hash;
4253 }
4254 while (x != type);
4255 gcc_assert (i + 1 == size);
4256 /* Sort the arrays of type, hash pairs so that when we mix in
4257 all members of the SCC the hash value becomes independent on
4258 the order we visited the SCC. Disregard hashes equal to
4259 the hash of the type we mix into because we cannot guarantee
4260 a stable sort for those across different TUs. */
4261 qsort (pairs, size, sizeof (struct type_hash_pair),
4262 type_hash_pair_compare);
4263 for (i = 0; i < size; ++i)
4264 {
4265 hashval_t hash;
4266 m = ggc_alloc_cleared_tree_int_map ();
4267 m->base.from = pairs[i].type;
4268 hash = pairs[i].hash;
4269 /* Skip same hashes. */
4270 for (j = i + 1; j < size && pairs[j].hash == pairs[i].hash; ++j)
4271 ;
4272 for (; j < size; ++j)
4273 hash = iterative_hash_hashval_t (pairs[j].hash, hash);
4274 for (j = 0; pairs[j].hash != pairs[i].hash; ++j)
4275 hash = iterative_hash_hashval_t (pairs[j].hash, hash);
4276 m->to = hash;
4277 slot = htab_find_slot (type_hash_cache, m, INSERT);
4278 gcc_assert (!*slot);
4279 *slot = (void *) m;
4280 }
4281 }
4282 }
4283
4284 return iterative_hash_hashval_t (v, val);
4285 }
4286
4287
4288 /* Returns a hash value for P (assumed to be a type). The hash value
4289 is computed using some distinguishing features of the type. Note
4290 that we cannot use pointer hashing here as we may be dealing with
4291 two distinct instances of the same type.
4292
4293 This function should produce the same hash value for two compatible
4294 types according to gimple_types_compatible_p. */
4295
4296 static hashval_t
4297 gimple_type_hash (const void *p)
4298 {
4299 const_tree t = (const_tree) p;
4300 VEC(tree, heap) *sccstack = NULL;
4301 struct pointer_map_t *sccstate;
4302 struct obstack sccstate_obstack;
4303 hashval_t val;
4304 void **slot;
4305 struct tree_int_map m;
4306
4307 if (type_hash_cache == NULL)
4308 type_hash_cache = htab_create_ggc (512, tree_int_map_hash,
4309 tree_int_map_eq, NULL);
4310
4311 m.base.from = CONST_CAST_TREE (t);
4312 if ((slot = htab_find_slot (type_hash_cache, &m, NO_INSERT))
4313 && *slot)
4314 return iterative_hash_hashval_t (((struct tree_int_map *) *slot)->to, 0);
4315
4316 /* Perform a DFS walk and pre-hash all reachable types. */
4317 next_dfs_num = 1;
4318 sccstate = pointer_map_create ();
4319 gcc_obstack_init (&sccstate_obstack);
4320 val = iterative_hash_gimple_type (CONST_CAST_TREE (t), 0,
4321 &sccstack, sccstate, &sccstate_obstack);
4322 VEC_free (tree, heap, sccstack);
4323 pointer_map_destroy (sccstate);
4324 obstack_free (&sccstate_obstack, NULL);
4325
4326 return val;
4327 }
4328
4329 /* Returning a hash value for gimple type TYPE combined with VAL.
4330
4331 The hash value returned is equal for types considered compatible
4332 by gimple_canonical_types_compatible_p. */
4333
4334 static hashval_t
4335 iterative_hash_canonical_type (tree type, hashval_t val)
4336 {
4337 hashval_t v;
4338 void **slot;
4339 struct tree_int_map *mp, m;
4340
4341 m.base.from = type;
4342 if ((slot = htab_find_slot (canonical_type_hash_cache, &m, INSERT))
4343 && *slot)
4344 return iterative_hash_hashval_t (((struct tree_int_map *) *slot)->to, val);
4345
4346 /* Combine a few common features of types so that types are grouped into
4347 smaller sets; when searching for existing matching types to merge,
4348 only existing types having the same features as the new type will be
4349 checked. */
4350 v = iterative_hash_hashval_t (TREE_CODE (type), 0);
4351 v = iterative_hash_hashval_t (TREE_ADDRESSABLE (type), v);
4352 v = iterative_hash_hashval_t (TYPE_ALIGN (type), v);
4353 v = iterative_hash_hashval_t (TYPE_MODE (type), v);
4354
4355 /* Incorporate common features of numerical types. */
4356 if (INTEGRAL_TYPE_P (type)
4357 || SCALAR_FLOAT_TYPE_P (type)
4358 || FIXED_POINT_TYPE_P (type)
4359 || TREE_CODE (type) == VECTOR_TYPE
4360 || TREE_CODE (type) == COMPLEX_TYPE
4361 || TREE_CODE (type) == OFFSET_TYPE
4362 || POINTER_TYPE_P (type))
4363 {
4364 v = iterative_hash_hashval_t (TYPE_PRECISION (type), v);
4365 v = iterative_hash_hashval_t (TYPE_UNSIGNED (type), v);
4366 }
4367
4368 /* For pointer and reference types, fold in information about the type
4369 pointed to but do not recurse to the pointed-to type. */
4370 if (POINTER_TYPE_P (type))
4371 {
4372 v = iterative_hash_hashval_t (TYPE_REF_CAN_ALIAS_ALL (type), v);
4373 v = iterative_hash_hashval_t (TYPE_ADDR_SPACE (TREE_TYPE (type)), v);
4374 v = iterative_hash_hashval_t (TYPE_RESTRICT (type), v);
4375 v = iterative_hash_hashval_t (TREE_CODE (TREE_TYPE (type)), v);
4376 }
4377
4378 /* For integer types hash the types min/max values and the string flag. */
4379 if (TREE_CODE (type) == INTEGER_TYPE)
4380 {
4381 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
4382 v = iterative_hash_hashval_t (TYPE_IS_SIZETYPE (type), v);
4383 }
4384
4385 /* For array types hash their domain and the string flag. */
4386 if (TREE_CODE (type) == ARRAY_TYPE
4387 && TYPE_DOMAIN (type))
4388 {
4389 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
4390 v = iterative_hash_canonical_type (TYPE_DOMAIN (type), v);
4391 }
4392
4393 /* Recurse for aggregates with a single element type. */
4394 if (TREE_CODE (type) == ARRAY_TYPE
4395 || TREE_CODE (type) == COMPLEX_TYPE
4396 || TREE_CODE (type) == VECTOR_TYPE)
4397 v = iterative_hash_canonical_type (TREE_TYPE (type), v);
4398
4399 /* Incorporate function return and argument types. */
4400 if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE)
4401 {
4402 unsigned na;
4403 tree p;
4404
4405 /* For method types also incorporate their parent class. */
4406 if (TREE_CODE (type) == METHOD_TYPE)
4407 v = iterative_hash_canonical_type (TYPE_METHOD_BASETYPE (type), v);
4408
4409 /* For result types allow mismatch in completeness. */
4410 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (type)))
4411 {
4412 v = iterative_hash_hashval_t (TREE_CODE (TREE_TYPE (type)), v);
4413 v = iterative_hash_name
4414 (TYPE_NAME (TYPE_MAIN_VARIANT (TREE_TYPE (type))), v);
4415 }
4416 else
4417 v = iterative_hash_canonical_type (TREE_TYPE (type), v);
4418
4419 for (p = TYPE_ARG_TYPES (type), na = 0; p; p = TREE_CHAIN (p))
4420 {
4421 /* For argument types allow mismatch in completeness. */
4422 if (RECORD_OR_UNION_TYPE_P (TREE_VALUE (p)))
4423 {
4424 v = iterative_hash_hashval_t (TREE_CODE (TREE_VALUE (p)), v);
4425 v = iterative_hash_name
4426 (TYPE_NAME (TYPE_MAIN_VARIANT (TREE_VALUE (p))), v);
4427 }
4428 else
4429 v = iterative_hash_canonical_type (TREE_VALUE (p), v);
4430 na++;
4431 }
4432
4433 v = iterative_hash_hashval_t (na, v);
4434 }
4435
4436 if (TREE_CODE (type) == RECORD_TYPE
4437 || TREE_CODE (type) == UNION_TYPE
4438 || TREE_CODE (type) == QUAL_UNION_TYPE)
4439 {
4440 unsigned nf;
4441 tree f;
4442
4443 for (f = TYPE_FIELDS (type), nf = 0; f; f = TREE_CHAIN (f))
4444 {
4445 v = iterative_hash_canonical_type (TREE_TYPE (f), v);
4446 nf++;
4447 }
4448
4449 v = iterative_hash_hashval_t (nf, v);
4450 }
4451
4452 /* Cache the just computed hash value. */
4453 mp = ggc_alloc_cleared_tree_int_map ();
4454 mp->base.from = type;
4455 mp->to = v;
4456 *slot = (void *) mp;
4457
4458 return iterative_hash_hashval_t (v, val);
4459 }
4460
4461 static hashval_t
4462 gimple_canonical_type_hash (const void *p)
4463 {
4464 if (canonical_type_hash_cache == NULL)
4465 canonical_type_hash_cache = htab_create_ggc (512, tree_int_map_hash,
4466 tree_int_map_eq, NULL);
4467
4468 return iterative_hash_canonical_type (CONST_CAST_TREE ((const_tree) p), 0);
4469 }
4470
4471
4472 /* Returns nonzero if P1 and P2 are equal. */
4473
4474 static int
4475 gimple_type_eq (const void *p1, const void *p2)
4476 {
4477 const_tree t1 = (const_tree) p1;
4478 const_tree t2 = (const_tree) p2;
4479 return gimple_types_compatible_p (CONST_CAST_TREE (t1),
4480 CONST_CAST_TREE (t2));
4481 }
4482
4483
4484 /* Register type T in the global type table gimple_types.
4485 If another type T', compatible with T, already existed in
4486 gimple_types then return T', otherwise return T. This is used by
4487 LTO to merge identical types read from different TUs. */
4488
4489 tree
4490 gimple_register_type (tree t)
4491 {
4492 void **slot;
4493 gimple_type_leader_entry *leader;
4494 tree mv_leader = NULL_TREE;
4495
4496 gcc_assert (TYPE_P (t));
4497
4498 if (!gimple_type_leader)
4499 gimple_type_leader = ggc_alloc_cleared_vec_gimple_type_leader_entry_s
4500 (GIMPLE_TYPE_LEADER_SIZE);
4501 /* If we registered this type before return the cached result. */
4502 leader = &gimple_type_leader[TYPE_UID (t) % GIMPLE_TYPE_LEADER_SIZE];
4503 if (leader->type == t)
4504 return leader->leader;
4505
4506 /* Always register the main variant first. This is important so we
4507 pick up the non-typedef variants as canonical, otherwise we'll end
4508 up taking typedef ids for structure tags during comparison. */
4509 if (TYPE_MAIN_VARIANT (t) != t)
4510 mv_leader = gimple_register_type (TYPE_MAIN_VARIANT (t));
4511
4512 if (gimple_types == NULL)
4513 gimple_types = htab_create_ggc (16381, gimple_type_hash, gimple_type_eq, 0);
4514
4515 slot = htab_find_slot (gimple_types, t, INSERT);
4516 if (*slot
4517 && *(tree *)slot != t)
4518 {
4519 tree new_type = (tree) *((tree *) slot);
4520
4521 /* Do not merge types with different addressability. */
4522 gcc_assert (TREE_ADDRESSABLE (t) == TREE_ADDRESSABLE (new_type));
4523
4524 /* If t is not its main variant then make t unreachable from its
4525 main variant list. Otherwise we'd queue up a lot of duplicates
4526 there. */
4527 if (t != TYPE_MAIN_VARIANT (t))
4528 {
4529 tree tem = TYPE_MAIN_VARIANT (t);
4530 while (tem && TYPE_NEXT_VARIANT (tem) != t)
4531 tem = TYPE_NEXT_VARIANT (tem);
4532 if (tem)
4533 TYPE_NEXT_VARIANT (tem) = TYPE_NEXT_VARIANT (t);
4534 TYPE_NEXT_VARIANT (t) = NULL_TREE;
4535 }
4536
4537 /* If we are a pointer then remove us from the pointer-to or
4538 reference-to chain. Otherwise we'd queue up a lot of duplicates
4539 there. */
4540 if (TREE_CODE (t) == POINTER_TYPE)
4541 {
4542 if (TYPE_POINTER_TO (TREE_TYPE (t)) == t)
4543 TYPE_POINTER_TO (TREE_TYPE (t)) = TYPE_NEXT_PTR_TO (t);
4544 else
4545 {
4546 tree tem = TYPE_POINTER_TO (TREE_TYPE (t));
4547 while (tem && TYPE_NEXT_PTR_TO (tem) != t)
4548 tem = TYPE_NEXT_PTR_TO (tem);
4549 if (tem)
4550 TYPE_NEXT_PTR_TO (tem) = TYPE_NEXT_PTR_TO (t);
4551 }
4552 TYPE_NEXT_PTR_TO (t) = NULL_TREE;
4553 }
4554 else if (TREE_CODE (t) == REFERENCE_TYPE)
4555 {
4556 if (TYPE_REFERENCE_TO (TREE_TYPE (t)) == t)
4557 TYPE_REFERENCE_TO (TREE_TYPE (t)) = TYPE_NEXT_REF_TO (t);
4558 else
4559 {
4560 tree tem = TYPE_REFERENCE_TO (TREE_TYPE (t));
4561 while (tem && TYPE_NEXT_REF_TO (tem) != t)
4562 tem = TYPE_NEXT_REF_TO (tem);
4563 if (tem)
4564 TYPE_NEXT_REF_TO (tem) = TYPE_NEXT_REF_TO (t);
4565 }
4566 TYPE_NEXT_REF_TO (t) = NULL_TREE;
4567 }
4568
4569 leader->type = t;
4570 leader->leader = new_type;
4571 t = new_type;
4572 }
4573 else
4574 {
4575 leader->type = t;
4576 leader->leader = t;
4577 /* We're the type leader. Make our TYPE_MAIN_VARIANT valid. */
4578 if (TYPE_MAIN_VARIANT (t) != t
4579 && TYPE_MAIN_VARIANT (t) != mv_leader)
4580 {
4581 /* Remove us from our main variant list as we are not the variant
4582 leader and the variant leader will change. */
4583 tree tem = TYPE_MAIN_VARIANT (t);
4584 while (tem && TYPE_NEXT_VARIANT (tem) != t)
4585 tem = TYPE_NEXT_VARIANT (tem);
4586 if (tem)
4587 TYPE_NEXT_VARIANT (tem) = TYPE_NEXT_VARIANT (t);
4588 TYPE_NEXT_VARIANT (t) = NULL_TREE;
4589 /* Adjust our main variant. Linking us into its variant list
4590 will happen at fixup time. */
4591 TYPE_MAIN_VARIANT (t) = mv_leader;
4592 }
4593 *slot = (void *) t;
4594 }
4595
4596 return t;
4597 }
4598
4599
4600 /* The TYPE_CANONICAL merging machinery. It should closely resemble
4601 the middle-end types_compatible_p function. It needs to avoid
4602 claiming types are different for types that should be treated
4603 the same with respect to TBAA. Canonical types are also used
4604 for IL consistency checks via the useless_type_conversion_p
4605 predicate which does not handle all type kinds itself but falls
4606 back to pointer-comparison of TYPE_CANONICAL for aggregates
4607 for example. */
4608
4609 /* Return true iff T1 and T2 are structurally identical for what
4610 TBAA is concerned. */
4611
4612 static bool
4613 gimple_canonical_types_compatible_p (tree t1, tree t2)
4614 {
4615 /* Before starting to set up the SCC machinery handle simple cases. */
4616
4617 /* Check first for the obvious case of pointer identity. */
4618 if (t1 == t2)
4619 return true;
4620
4621 /* Check that we have two types to compare. */
4622 if (t1 == NULL_TREE || t2 == NULL_TREE)
4623 return false;
4624
4625 /* If the types have been previously registered and found equal
4626 they still are. */
4627 if (TYPE_CANONICAL (t1)
4628 && TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2))
4629 return true;
4630
4631 /* Can't be the same type if the types don't have the same code. */
4632 if (TREE_CODE (t1) != TREE_CODE (t2))
4633 return false;
4634
4635 if (TREE_ADDRESSABLE (t1) != TREE_ADDRESSABLE (t2))
4636 return false;
4637
4638 /* Qualifiers do not matter for canonical type comparison purposes. */
4639
4640 /* Void types and nullptr types are always the same. */
4641 if (TREE_CODE (t1) == VOID_TYPE
4642 || TREE_CODE (t1) == NULLPTR_TYPE)
4643 return true;
4644
4645 /* Can't be the same type if they have different alignment, or mode. */
4646 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
4647 || TYPE_MODE (t1) != TYPE_MODE (t2))
4648 return false;
4649
4650 /* Non-aggregate types can be handled cheaply. */
4651 if (INTEGRAL_TYPE_P (t1)
4652 || SCALAR_FLOAT_TYPE_P (t1)
4653 || FIXED_POINT_TYPE_P (t1)
4654 || TREE_CODE (t1) == VECTOR_TYPE
4655 || TREE_CODE (t1) == COMPLEX_TYPE
4656 || TREE_CODE (t1) == OFFSET_TYPE
4657 || POINTER_TYPE_P (t1))
4658 {
4659 /* Can't be the same type if they have different sign or precision. */
4660 if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
4661 || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
4662 return false;
4663
4664 if (TREE_CODE (t1) == INTEGER_TYPE
4665 && (TYPE_IS_SIZETYPE (t1) != TYPE_IS_SIZETYPE (t2)
4666 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)))
4667 return false;
4668
4669 /* For canonical type comparisons we do not want to build SCCs
4670 so we cannot compare pointed-to types. But we can, for now,
4671 require the same pointed-to type kind and match what
4672 useless_type_conversion_p would do. */
4673 if (POINTER_TYPE_P (t1))
4674 {
4675 /* If the two pointers have different ref-all attributes,
4676 they can't be the same type. */
4677 if (TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
4678 return false;
4679
4680 if (TYPE_ADDR_SPACE (TREE_TYPE (t1))
4681 != TYPE_ADDR_SPACE (TREE_TYPE (t2)))
4682 return false;
4683
4684 if (TYPE_RESTRICT (t1) != TYPE_RESTRICT (t2))
4685 return false;
4686
4687 if (TREE_CODE (TREE_TYPE (t1)) != TREE_CODE (TREE_TYPE (t2)))
4688 return false;
4689 }
4690
4691 /* Tail-recurse to components. */
4692 if (TREE_CODE (t1) == VECTOR_TYPE
4693 || TREE_CODE (t1) == COMPLEX_TYPE)
4694 return gimple_canonical_types_compatible_p (TREE_TYPE (t1),
4695 TREE_TYPE (t2));
4696
4697 return true;
4698 }
4699
4700 /* If their attributes are not the same they can't be the same type. */
4701 if (!attribute_list_equal (TYPE_ATTRIBUTES (t1), TYPE_ATTRIBUTES (t2)))
4702 return false;
4703
4704 /* Do type-specific comparisons. */
4705 switch (TREE_CODE (t1))
4706 {
4707 case ARRAY_TYPE:
4708 /* Array types are the same if the element types are the same and
4709 the number of elements are the same. */
4710 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2))
4711 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
4712 || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
4713 return false;
4714 else
4715 {
4716 tree i1 = TYPE_DOMAIN (t1);
4717 tree i2 = TYPE_DOMAIN (t2);
4718
4719 /* For an incomplete external array, the type domain can be
4720 NULL_TREE. Check this condition also. */
4721 if (i1 == NULL_TREE && i2 == NULL_TREE)
4722 return true;
4723 else if (i1 == NULL_TREE || i2 == NULL_TREE)
4724 return false;
4725 /* If for a complete array type the possibly gimplified sizes
4726 are different the types are different. */
4727 else if (((TYPE_SIZE (i1) != NULL) ^ (TYPE_SIZE (i2) != NULL))
4728 || (TYPE_SIZE (i1)
4729 && TYPE_SIZE (i2)
4730 && !operand_equal_p (TYPE_SIZE (i1), TYPE_SIZE (i2), 0)))
4731 return false;
4732 else
4733 {
4734 tree min1 = TYPE_MIN_VALUE (i1);
4735 tree min2 = TYPE_MIN_VALUE (i2);
4736 tree max1 = TYPE_MAX_VALUE (i1);
4737 tree max2 = TYPE_MAX_VALUE (i2);
4738
4739 /* The minimum/maximum values have to be the same. */
4740 if ((min1 == min2
4741 || (min1 && min2
4742 && ((TREE_CODE (min1) == PLACEHOLDER_EXPR
4743 && TREE_CODE (min2) == PLACEHOLDER_EXPR)
4744 || operand_equal_p (min1, min2, 0))))
4745 && (max1 == max2
4746 || (max1 && max2
4747 && ((TREE_CODE (max1) == PLACEHOLDER_EXPR
4748 && TREE_CODE (max2) == PLACEHOLDER_EXPR)
4749 || operand_equal_p (max1, max2, 0)))))
4750 return true;
4751 else
4752 return false;
4753 }
4754 }
4755
4756 case METHOD_TYPE:
4757 /* Method types should belong to the same class. */
4758 if (!gimple_canonical_types_compatible_p
4759 (TYPE_METHOD_BASETYPE (t1), TYPE_METHOD_BASETYPE (t2)))
4760 return false;
4761
4762 /* Fallthru */
4763
4764 case FUNCTION_TYPE:
4765 /* Function types are the same if the return type and arguments types
4766 are the same. */
4767 if (!gimple_compatible_complete_and_incomplete_subtype_p
4768 (TREE_TYPE (t1), TREE_TYPE (t2))
4769 && !gimple_canonical_types_compatible_p
4770 (TREE_TYPE (t1), TREE_TYPE (t2)))
4771 return false;
4772
4773 if (!comp_type_attributes (t1, t2))
4774 return false;
4775
4776 if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
4777 return true;
4778 else
4779 {
4780 tree parms1, parms2;
4781
4782 for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
4783 parms1 && parms2;
4784 parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
4785 {
4786 if (!gimple_compatible_complete_and_incomplete_subtype_p
4787 (TREE_VALUE (parms1), TREE_VALUE (parms2))
4788 && !gimple_canonical_types_compatible_p
4789 (TREE_VALUE (parms1), TREE_VALUE (parms2)))
4790 return false;
4791 }
4792
4793 if (parms1 || parms2)
4794 return false;
4795
4796 return true;
4797 }
4798
4799 case RECORD_TYPE:
4800 case UNION_TYPE:
4801 case QUAL_UNION_TYPE:
4802 {
4803 tree f1, f2;
4804
4805 /* For aggregate types, all the fields must be the same. */
4806 for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
4807 f1 && f2;
4808 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
4809 {
4810 /* The fields must have the same name, offset and type. */
4811 if (DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
4812 || !gimple_compare_field_offset (f1, f2)
4813 || !gimple_canonical_types_compatible_p
4814 (TREE_TYPE (f1), TREE_TYPE (f2)))
4815 return false;
4816 }
4817
4818 /* If one aggregate has more fields than the other, they
4819 are not the same. */
4820 if (f1 || f2)
4821 return false;
4822
4823 return true;
4824 }
4825
4826 default:
4827 gcc_unreachable ();
4828 }
4829 }
4830
4831
4832 /* Returns nonzero if P1 and P2 are equal. */
4833
4834 static int
4835 gimple_canonical_type_eq (const void *p1, const void *p2)
4836 {
4837 const_tree t1 = (const_tree) p1;
4838 const_tree t2 = (const_tree) p2;
4839 return gimple_canonical_types_compatible_p (CONST_CAST_TREE (t1),
4840 CONST_CAST_TREE (t2));
4841 }
4842
4843 /* Register type T in the global type table gimple_types.
4844 If another type T', compatible with T, already existed in
4845 gimple_types then return T', otherwise return T. This is used by
4846 LTO to merge identical types read from different TUs. */
4847
4848 tree
4849 gimple_register_canonical_type (tree t)
4850 {
4851 void **slot;
4852 tree orig_t = t;
4853
4854 gcc_assert (TYPE_P (t));
4855
4856 if (TYPE_CANONICAL (t))
4857 return TYPE_CANONICAL (t);
4858
4859 /* Always register the type itself first so that if it turns out
4860 to be the canonical type it will be the one we merge to as well. */
4861 t = gimple_register_type (t);
4862
4863 if (TYPE_CANONICAL (t))
4864 return TYPE_CANONICAL (t);
4865
4866 /* Always register the main variant first. This is important so we
4867 pick up the non-typedef variants as canonical, otherwise we'll end
4868 up taking typedef ids for structure tags during comparison. */
4869 if (TYPE_MAIN_VARIANT (t) != t)
4870 gimple_register_canonical_type (TYPE_MAIN_VARIANT (t));
4871
4872 if (gimple_canonical_types == NULL)
4873 gimple_canonical_types = htab_create_ggc (16381, gimple_canonical_type_hash,
4874 gimple_canonical_type_eq, 0);
4875
4876 slot = htab_find_slot (gimple_canonical_types, t, INSERT);
4877 if (*slot
4878 && *(tree *)slot != t)
4879 {
4880 tree new_type = (tree) *((tree *) slot);
4881
4882 TYPE_CANONICAL (t) = new_type;
4883 t = new_type;
4884 }
4885 else
4886 {
4887 TYPE_CANONICAL (t) = t;
4888 *slot = (void *) t;
4889 }
4890
4891 /* Also cache the canonical type in the non-leaders. */
4892 TYPE_CANONICAL (orig_t) = t;
4893
4894 return t;
4895 }
4896
4897
4898 /* Show statistics on references to the global type table gimple_types. */
4899
4900 void
4901 print_gimple_types_stats (void)
4902 {
4903 if (gimple_types)
4904 fprintf (stderr, "GIMPLE type table: size %ld, %ld elements, "
4905 "%ld searches, %ld collisions (ratio: %f)\n",
4906 (long) htab_size (gimple_types),
4907 (long) htab_elements (gimple_types),
4908 (long) gimple_types->searches,
4909 (long) gimple_types->collisions,
4910 htab_collisions (gimple_types));
4911 else
4912 fprintf (stderr, "GIMPLE type table is empty\n");
4913 if (type_hash_cache)
4914 fprintf (stderr, "GIMPLE type hash table: size %ld, %ld elements, "
4915 "%ld searches, %ld collisions (ratio: %f)\n",
4916 (long) htab_size (type_hash_cache),
4917 (long) htab_elements (type_hash_cache),
4918 (long) type_hash_cache->searches,
4919 (long) type_hash_cache->collisions,
4920 htab_collisions (type_hash_cache));
4921 else
4922 fprintf (stderr, "GIMPLE type hash table is empty\n");
4923 if (gimple_canonical_types)
4924 fprintf (stderr, "GIMPLE canonical type table: size %ld, %ld elements, "
4925 "%ld searches, %ld collisions (ratio: %f)\n",
4926 (long) htab_size (gimple_canonical_types),
4927 (long) htab_elements (gimple_canonical_types),
4928 (long) gimple_canonical_types->searches,
4929 (long) gimple_canonical_types->collisions,
4930 htab_collisions (gimple_canonical_types));
4931 else
4932 fprintf (stderr, "GIMPLE canonical type table is empty\n");
4933 if (canonical_type_hash_cache)
4934 fprintf (stderr, "GIMPLE canonical type hash table: size %ld, %ld elements, "
4935 "%ld searches, %ld collisions (ratio: %f)\n",
4936 (long) htab_size (canonical_type_hash_cache),
4937 (long) htab_elements (canonical_type_hash_cache),
4938 (long) canonical_type_hash_cache->searches,
4939 (long) canonical_type_hash_cache->collisions,
4940 htab_collisions (canonical_type_hash_cache));
4941 else
4942 fprintf (stderr, "GIMPLE canonical type hash table is empty\n");
4943 if (gtc_visited)
4944 fprintf (stderr, "GIMPLE type comparison table: size %ld, %ld "
4945 "elements, %ld searches, %ld collisions (ratio: %f)\n",
4946 (long) htab_size (gtc_visited),
4947 (long) htab_elements (gtc_visited),
4948 (long) gtc_visited->searches,
4949 (long) gtc_visited->collisions,
4950 htab_collisions (gtc_visited));
4951 else
4952 fprintf (stderr, "GIMPLE type comparison table is empty\n");
4953 }
4954
4955 /* Free the gimple type hashtables used for LTO type merging. */
4956
4957 void
4958 free_gimple_type_tables (void)
4959 {
4960 /* Last chance to print stats for the tables. */
4961 if (flag_lto_report)
4962 print_gimple_types_stats ();
4963
4964 if (gimple_types)
4965 {
4966 htab_delete (gimple_types);
4967 gimple_types = NULL;
4968 }
4969 if (gimple_canonical_types)
4970 {
4971 htab_delete (gimple_canonical_types);
4972 gimple_canonical_types = NULL;
4973 }
4974 if (type_hash_cache)
4975 {
4976 htab_delete (type_hash_cache);
4977 type_hash_cache = NULL;
4978 }
4979 if (canonical_type_hash_cache)
4980 {
4981 htab_delete (canonical_type_hash_cache);
4982 canonical_type_hash_cache = NULL;
4983 }
4984 if (gtc_visited)
4985 {
4986 htab_delete (gtc_visited);
4987 obstack_free (&gtc_ob, NULL);
4988 gtc_visited = NULL;
4989 }
4990 gimple_type_leader = NULL;
4991 }
4992
4993
4994 /* Return a type the same as TYPE except unsigned or
4995 signed according to UNSIGNEDP. */
4996
4997 static tree
4998 gimple_signed_or_unsigned_type (bool unsignedp, tree type)
4999 {
5000 tree type1;
5001
5002 type1 = TYPE_MAIN_VARIANT (type);
5003 if (type1 == signed_char_type_node
5004 || type1 == char_type_node
5005 || type1 == unsigned_char_type_node)
5006 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
5007 if (type1 == integer_type_node || type1 == unsigned_type_node)
5008 return unsignedp ? unsigned_type_node : integer_type_node;
5009 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
5010 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
5011 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
5012 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
5013 if (type1 == long_long_integer_type_node
5014 || type1 == long_long_unsigned_type_node)
5015 return unsignedp
5016 ? long_long_unsigned_type_node
5017 : long_long_integer_type_node;
5018 if (int128_integer_type_node && (type1 == int128_integer_type_node || type1 == int128_unsigned_type_node))
5019 return unsignedp
5020 ? int128_unsigned_type_node
5021 : int128_integer_type_node;
5022 #if HOST_BITS_PER_WIDE_INT >= 64
5023 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
5024 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
5025 #endif
5026 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
5027 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
5028 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
5029 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
5030 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
5031 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
5032 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
5033 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
5034
5035 #define GIMPLE_FIXED_TYPES(NAME) \
5036 if (type1 == short_ ## NAME ## _type_node \
5037 || type1 == unsigned_short_ ## NAME ## _type_node) \
5038 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
5039 : short_ ## NAME ## _type_node; \
5040 if (type1 == NAME ## _type_node \
5041 || type1 == unsigned_ ## NAME ## _type_node) \
5042 return unsignedp ? unsigned_ ## NAME ## _type_node \
5043 : NAME ## _type_node; \
5044 if (type1 == long_ ## NAME ## _type_node \
5045 || type1 == unsigned_long_ ## NAME ## _type_node) \
5046 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
5047 : long_ ## NAME ## _type_node; \
5048 if (type1 == long_long_ ## NAME ## _type_node \
5049 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
5050 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
5051 : long_long_ ## NAME ## _type_node;
5052
5053 #define GIMPLE_FIXED_MODE_TYPES(NAME) \
5054 if (type1 == NAME ## _type_node \
5055 || type1 == u ## NAME ## _type_node) \
5056 return unsignedp ? u ## NAME ## _type_node \
5057 : NAME ## _type_node;
5058
5059 #define GIMPLE_FIXED_TYPES_SAT(NAME) \
5060 if (type1 == sat_ ## short_ ## NAME ## _type_node \
5061 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
5062 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
5063 : sat_ ## short_ ## NAME ## _type_node; \
5064 if (type1 == sat_ ## NAME ## _type_node \
5065 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
5066 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
5067 : sat_ ## NAME ## _type_node; \
5068 if (type1 == sat_ ## long_ ## NAME ## _type_node \
5069 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
5070 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
5071 : sat_ ## long_ ## NAME ## _type_node; \
5072 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
5073 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
5074 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
5075 : sat_ ## long_long_ ## NAME ## _type_node;
5076
5077 #define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
5078 if (type1 == sat_ ## NAME ## _type_node \
5079 || type1 == sat_ ## u ## NAME ## _type_node) \
5080 return unsignedp ? sat_ ## u ## NAME ## _type_node \
5081 : sat_ ## NAME ## _type_node;
5082
5083 GIMPLE_FIXED_TYPES (fract);
5084 GIMPLE_FIXED_TYPES_SAT (fract);
5085 GIMPLE_FIXED_TYPES (accum);
5086 GIMPLE_FIXED_TYPES_SAT (accum);
5087
5088 GIMPLE_FIXED_MODE_TYPES (qq);
5089 GIMPLE_FIXED_MODE_TYPES (hq);
5090 GIMPLE_FIXED_MODE_TYPES (sq);
5091 GIMPLE_FIXED_MODE_TYPES (dq);
5092 GIMPLE_FIXED_MODE_TYPES (tq);
5093 GIMPLE_FIXED_MODE_TYPES_SAT (qq);
5094 GIMPLE_FIXED_MODE_TYPES_SAT (hq);
5095 GIMPLE_FIXED_MODE_TYPES_SAT (sq);
5096 GIMPLE_FIXED_MODE_TYPES_SAT (dq);
5097 GIMPLE_FIXED_MODE_TYPES_SAT (tq);
5098 GIMPLE_FIXED_MODE_TYPES (ha);
5099 GIMPLE_FIXED_MODE_TYPES (sa);
5100 GIMPLE_FIXED_MODE_TYPES (da);
5101 GIMPLE_FIXED_MODE_TYPES (ta);
5102 GIMPLE_FIXED_MODE_TYPES_SAT (ha);
5103 GIMPLE_FIXED_MODE_TYPES_SAT (sa);
5104 GIMPLE_FIXED_MODE_TYPES_SAT (da);
5105 GIMPLE_FIXED_MODE_TYPES_SAT (ta);
5106
5107 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
5108 the precision; they have precision set to match their range, but
5109 may use a wider mode to match an ABI. If we change modes, we may
5110 wind up with bad conversions. For INTEGER_TYPEs in C, must check
5111 the precision as well, so as to yield correct results for
5112 bit-field types. C++ does not have these separate bit-field
5113 types, and producing a signed or unsigned variant of an
5114 ENUMERAL_TYPE may cause other problems as well. */
5115 if (!INTEGRAL_TYPE_P (type)
5116 || TYPE_UNSIGNED (type) == unsignedp)
5117 return type;
5118
5119 #define TYPE_OK(node) \
5120 (TYPE_MODE (type) == TYPE_MODE (node) \
5121 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
5122 if (TYPE_OK (signed_char_type_node))
5123 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
5124 if (TYPE_OK (integer_type_node))
5125 return unsignedp ? unsigned_type_node : integer_type_node;
5126 if (TYPE_OK (short_integer_type_node))
5127 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
5128 if (TYPE_OK (long_integer_type_node))
5129 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
5130 if (TYPE_OK (long_long_integer_type_node))
5131 return (unsignedp
5132 ? long_long_unsigned_type_node
5133 : long_long_integer_type_node);
5134 if (int128_integer_type_node && TYPE_OK (int128_integer_type_node))
5135 return (unsignedp
5136 ? int128_unsigned_type_node
5137 : int128_integer_type_node);
5138
5139 #if HOST_BITS_PER_WIDE_INT >= 64
5140 if (TYPE_OK (intTI_type_node))
5141 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
5142 #endif
5143 if (TYPE_OK (intDI_type_node))
5144 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
5145 if (TYPE_OK (intSI_type_node))
5146 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
5147 if (TYPE_OK (intHI_type_node))
5148 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
5149 if (TYPE_OK (intQI_type_node))
5150 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
5151
5152 #undef GIMPLE_FIXED_TYPES
5153 #undef GIMPLE_FIXED_MODE_TYPES
5154 #undef GIMPLE_FIXED_TYPES_SAT
5155 #undef GIMPLE_FIXED_MODE_TYPES_SAT
5156 #undef TYPE_OK
5157
5158 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
5159 }
5160
5161
5162 /* Return an unsigned type the same as TYPE in other respects. */
5163
5164 tree
5165 gimple_unsigned_type (tree type)
5166 {
5167 return gimple_signed_or_unsigned_type (true, type);
5168 }
5169
5170
5171 /* Return a signed type the same as TYPE in other respects. */
5172
5173 tree
5174 gimple_signed_type (tree type)
5175 {
5176 return gimple_signed_or_unsigned_type (false, type);
5177 }
5178
5179
5180 /* Return the typed-based alias set for T, which may be an expression
5181 or a type. Return -1 if we don't do anything special. */
5182
5183 alias_set_type
5184 gimple_get_alias_set (tree t)
5185 {
5186 tree u;
5187
5188 /* Permit type-punning when accessing a union, provided the access
5189 is directly through the union. For example, this code does not
5190 permit taking the address of a union member and then storing
5191 through it. Even the type-punning allowed here is a GCC
5192 extension, albeit a common and useful one; the C standard says
5193 that such accesses have implementation-defined behavior. */
5194 for (u = t;
5195 TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
5196 u = TREE_OPERAND (u, 0))
5197 if (TREE_CODE (u) == COMPONENT_REF
5198 && TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
5199 return 0;
5200
5201 /* That's all the expressions we handle specially. */
5202 if (!TYPE_P (t))
5203 return -1;
5204
5205 /* For convenience, follow the C standard when dealing with
5206 character types. Any object may be accessed via an lvalue that
5207 has character type. */
5208 if (t == char_type_node
5209 || t == signed_char_type_node
5210 || t == unsigned_char_type_node)
5211 return 0;
5212
5213 /* Allow aliasing between signed and unsigned variants of the same
5214 type. We treat the signed variant as canonical. */
5215 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
5216 {
5217 tree t1 = gimple_signed_type (t);
5218
5219 /* t1 == t can happen for boolean nodes which are always unsigned. */
5220 if (t1 != t)
5221 return get_alias_set (t1);
5222 }
5223
5224 return -1;
5225 }
5226
5227
5228 /* Data structure used to count the number of dereferences to PTR
5229 inside an expression. */
5230 struct count_ptr_d
5231 {
5232 tree ptr;
5233 unsigned num_stores;
5234 unsigned num_loads;
5235 };
5236
5237 /* Helper for count_uses_and_derefs. Called by walk_tree to look for
5238 (ALIGN/MISALIGNED_)INDIRECT_REF nodes for the pointer passed in DATA. */
5239
5240 static tree
5241 count_ptr_derefs (tree *tp, int *walk_subtrees, void *data)
5242 {
5243 struct walk_stmt_info *wi_p = (struct walk_stmt_info *) data;
5244 struct count_ptr_d *count_p = (struct count_ptr_d *) wi_p->info;
5245
5246 /* Do not walk inside ADDR_EXPR nodes. In the expression &ptr->fld,
5247 pointer 'ptr' is *not* dereferenced, it is simply used to compute
5248 the address of 'fld' as 'ptr + offsetof(fld)'. */
5249 if (TREE_CODE (*tp) == ADDR_EXPR)
5250 {
5251 *walk_subtrees = 0;
5252 return NULL_TREE;
5253 }
5254
5255 if (TREE_CODE (*tp) == MEM_REF && TREE_OPERAND (*tp, 0) == count_p->ptr)
5256 {
5257 if (wi_p->is_lhs)
5258 count_p->num_stores++;
5259 else
5260 count_p->num_loads++;
5261 }
5262
5263 return NULL_TREE;
5264 }
5265
5266 /* Count the number of direct and indirect uses for pointer PTR in
5267 statement STMT. The number of direct uses is stored in
5268 *NUM_USES_P. Indirect references are counted separately depending
5269 on whether they are store or load operations. The counts are
5270 stored in *NUM_STORES_P and *NUM_LOADS_P. */
5271
5272 void
5273 count_uses_and_derefs (tree ptr, gimple stmt, unsigned *num_uses_p,
5274 unsigned *num_loads_p, unsigned *num_stores_p)
5275 {
5276 ssa_op_iter i;
5277 tree use;
5278
5279 *num_uses_p = 0;
5280 *num_loads_p = 0;
5281 *num_stores_p = 0;
5282
5283 /* Find out the total number of uses of PTR in STMT. */
5284 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
5285 if (use == ptr)
5286 (*num_uses_p)++;
5287
5288 /* Now count the number of indirect references to PTR. This is
5289 truly awful, but we don't have much choice. There are no parent
5290 pointers inside INDIRECT_REFs, so an expression like
5291 '*x_1 = foo (x_1, *x_1)' needs to be traversed piece by piece to
5292 find all the indirect and direct uses of x_1 inside. The only
5293 shortcut we can take is the fact that GIMPLE only allows
5294 INDIRECT_REFs inside the expressions below. */
5295 if (is_gimple_assign (stmt)
5296 || gimple_code (stmt) == GIMPLE_RETURN
5297 || gimple_code (stmt) == GIMPLE_ASM
5298 || is_gimple_call (stmt))
5299 {
5300 struct walk_stmt_info wi;
5301 struct count_ptr_d count;
5302
5303 count.ptr = ptr;
5304 count.num_stores = 0;
5305 count.num_loads = 0;
5306
5307 memset (&wi, 0, sizeof (wi));
5308 wi.info = &count;
5309 walk_gimple_op (stmt, count_ptr_derefs, &wi);
5310
5311 *num_stores_p = count.num_stores;
5312 *num_loads_p = count.num_loads;
5313 }
5314
5315 gcc_assert (*num_uses_p >= *num_loads_p + *num_stores_p);
5316 }
5317
5318 /* From a tree operand OP return the base of a load or store operation
5319 or NULL_TREE if OP is not a load or a store. */
5320
5321 static tree
5322 get_base_loadstore (tree op)
5323 {
5324 while (handled_component_p (op))
5325 op = TREE_OPERAND (op, 0);
5326 if (DECL_P (op)
5327 || INDIRECT_REF_P (op)
5328 || TREE_CODE (op) == MEM_REF
5329 || TREE_CODE (op) == TARGET_MEM_REF)
5330 return op;
5331 return NULL_TREE;
5332 }
5333
5334 /* For the statement STMT call the callbacks VISIT_LOAD, VISIT_STORE and
5335 VISIT_ADDR if non-NULL on loads, store and address-taken operands
5336 passing the STMT, the base of the operand and DATA to it. The base
5337 will be either a decl, an indirect reference (including TARGET_MEM_REF)
5338 or the argument of an address expression.
5339 Returns the results of these callbacks or'ed. */
5340
5341 bool
5342 walk_stmt_load_store_addr_ops (gimple stmt, void *data,
5343 bool (*visit_load)(gimple, tree, void *),
5344 bool (*visit_store)(gimple, tree, void *),
5345 bool (*visit_addr)(gimple, tree, void *))
5346 {
5347 bool ret = false;
5348 unsigned i;
5349 if (gimple_assign_single_p (stmt))
5350 {
5351 tree lhs, rhs;
5352 if (visit_store)
5353 {
5354 lhs = get_base_loadstore (gimple_assign_lhs (stmt));
5355 if (lhs)
5356 ret |= visit_store (stmt, lhs, data);
5357 }
5358 rhs = gimple_assign_rhs1 (stmt);
5359 while (handled_component_p (rhs))
5360 rhs = TREE_OPERAND (rhs, 0);
5361 if (visit_addr)
5362 {
5363 if (TREE_CODE (rhs) == ADDR_EXPR)
5364 ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data);
5365 else if (TREE_CODE (rhs) == TARGET_MEM_REF
5366 && TREE_CODE (TMR_BASE (rhs)) == ADDR_EXPR)
5367 ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (rhs), 0), data);
5368 else if (TREE_CODE (rhs) == OBJ_TYPE_REF
5369 && TREE_CODE (OBJ_TYPE_REF_OBJECT (rhs)) == ADDR_EXPR)
5370 ret |= visit_addr (stmt, TREE_OPERAND (OBJ_TYPE_REF_OBJECT (rhs),
5371 0), data);
5372 lhs = gimple_assign_lhs (stmt);
5373 if (TREE_CODE (lhs) == TARGET_MEM_REF
5374 && TREE_CODE (TMR_BASE (lhs)) == ADDR_EXPR)
5375 ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (lhs), 0), data);
5376 }
5377 if (visit_load)
5378 {
5379 rhs = get_base_loadstore (rhs);
5380 if (rhs)
5381 ret |= visit_load (stmt, rhs, data);
5382 }
5383 }
5384 else if (visit_addr
5385 && (is_gimple_assign (stmt)
5386 || gimple_code (stmt) == GIMPLE_COND))
5387 {
5388 for (i = 0; i < gimple_num_ops (stmt); ++i)
5389 if (gimple_op (stmt, i)
5390 && TREE_CODE (gimple_op (stmt, i)) == ADDR_EXPR)
5391 ret |= visit_addr (stmt, TREE_OPERAND (gimple_op (stmt, i), 0), data);
5392 }
5393 else if (is_gimple_call (stmt))
5394 {
5395 if (visit_store)
5396 {
5397 tree lhs = gimple_call_lhs (stmt);
5398 if (lhs)
5399 {
5400 lhs = get_base_loadstore (lhs);
5401 if (lhs)
5402 ret |= visit_store (stmt, lhs, data);
5403 }
5404 }
5405 if (visit_load || visit_addr)
5406 for (i = 0; i < gimple_call_num_args (stmt); ++i)
5407 {
5408 tree rhs = gimple_call_arg (stmt, i);
5409 if (visit_addr
5410 && TREE_CODE (rhs) == ADDR_EXPR)
5411 ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data);
5412 else if (visit_load)
5413 {
5414 rhs = get_base_loadstore (rhs);
5415 if (rhs)
5416 ret |= visit_load (stmt, rhs, data);
5417 }
5418 }
5419 if (visit_addr
5420 && gimple_call_chain (stmt)
5421 && TREE_CODE (gimple_call_chain (stmt)) == ADDR_EXPR)
5422 ret |= visit_addr (stmt, TREE_OPERAND (gimple_call_chain (stmt), 0),
5423 data);
5424 if (visit_addr
5425 && gimple_call_return_slot_opt_p (stmt)
5426 && gimple_call_lhs (stmt) != NULL_TREE
5427 && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt))))
5428 ret |= visit_addr (stmt, gimple_call_lhs (stmt), data);
5429 }
5430 else if (gimple_code (stmt) == GIMPLE_ASM)
5431 {
5432 unsigned noutputs;
5433 const char *constraint;
5434 const char **oconstraints;
5435 bool allows_mem, allows_reg, is_inout;
5436 noutputs = gimple_asm_noutputs (stmt);
5437 oconstraints = XALLOCAVEC (const char *, noutputs);
5438 if (visit_store || visit_addr)
5439 for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
5440 {
5441 tree link = gimple_asm_output_op (stmt, i);
5442 tree op = get_base_loadstore (TREE_VALUE (link));
5443 if (op && visit_store)
5444 ret |= visit_store (stmt, op, data);
5445 if (visit_addr)
5446 {
5447 constraint = TREE_STRING_POINTER
5448 (TREE_VALUE (TREE_PURPOSE (link)));
5449 oconstraints[i] = constraint;
5450 parse_output_constraint (&constraint, i, 0, 0, &allows_mem,
5451 &allows_reg, &is_inout);
5452 if (op && !allows_reg && allows_mem)
5453 ret |= visit_addr (stmt, op, data);
5454 }
5455 }
5456 if (visit_load || visit_addr)
5457 for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
5458 {
5459 tree link = gimple_asm_input_op (stmt, i);
5460 tree op = TREE_VALUE (link);
5461 if (visit_addr
5462 && TREE_CODE (op) == ADDR_EXPR)
5463 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
5464 else if (visit_load || visit_addr)
5465 {
5466 op = get_base_loadstore (op);
5467 if (op)
5468 {
5469 if (visit_load)
5470 ret |= visit_load (stmt, op, data);
5471 if (visit_addr)
5472 {
5473 constraint = TREE_STRING_POINTER
5474 (TREE_VALUE (TREE_PURPOSE (link)));
5475 parse_input_constraint (&constraint, 0, 0, noutputs,
5476 0, oconstraints,
5477 &allows_mem, &allows_reg);
5478 if (!allows_reg && allows_mem)
5479 ret |= visit_addr (stmt, op, data);
5480 }
5481 }
5482 }
5483 }
5484 }
5485 else if (gimple_code (stmt) == GIMPLE_RETURN)
5486 {
5487 tree op = gimple_return_retval (stmt);
5488 if (op)
5489 {
5490 if (visit_addr
5491 && TREE_CODE (op) == ADDR_EXPR)
5492 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
5493 else if (visit_load)
5494 {
5495 op = get_base_loadstore (op);
5496 if (op)
5497 ret |= visit_load (stmt, op, data);
5498 }
5499 }
5500 }
5501 else if (visit_addr
5502 && gimple_code (stmt) == GIMPLE_PHI)
5503 {
5504 for (i = 0; i < gimple_phi_num_args (stmt); ++i)
5505 {
5506 tree op = PHI_ARG_DEF (stmt, i);
5507 if (TREE_CODE (op) == ADDR_EXPR)
5508 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
5509 }
5510 }
5511
5512 return ret;
5513 }
5514
5515 /* Like walk_stmt_load_store_addr_ops but with NULL visit_addr. IPA-CP
5516 should make a faster clone for this case. */
5517
5518 bool
5519 walk_stmt_load_store_ops (gimple stmt, void *data,
5520 bool (*visit_load)(gimple, tree, void *),
5521 bool (*visit_store)(gimple, tree, void *))
5522 {
5523 return walk_stmt_load_store_addr_ops (stmt, data,
5524 visit_load, visit_store, NULL);
5525 }
5526
5527 /* Helper for gimple_ior_addresses_taken_1. */
5528
5529 static bool
5530 gimple_ior_addresses_taken_1 (gimple stmt ATTRIBUTE_UNUSED,
5531 tree addr, void *data)
5532 {
5533 bitmap addresses_taken = (bitmap)data;
5534 addr = get_base_address (addr);
5535 if (addr
5536 && DECL_P (addr))
5537 {
5538 bitmap_set_bit (addresses_taken, DECL_UID (addr));
5539 return true;
5540 }
5541 return false;
5542 }
5543
5544 /* Set the bit for the uid of all decls that have their address taken
5545 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
5546 were any in this stmt. */
5547
5548 bool
5549 gimple_ior_addresses_taken (bitmap addresses_taken, gimple stmt)
5550 {
5551 return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
5552 gimple_ior_addresses_taken_1);
5553 }
5554
5555
5556 /* Return a printable name for symbol DECL. */
5557
5558 const char *
5559 gimple_decl_printable_name (tree decl, int verbosity)
5560 {
5561 if (!DECL_NAME (decl))
5562 return NULL;
5563
5564 if (DECL_ASSEMBLER_NAME_SET_P (decl))
5565 {
5566 const char *str, *mangled_str;
5567 int dmgl_opts = DMGL_NO_OPTS;
5568
5569 if (verbosity >= 2)
5570 {
5571 dmgl_opts = DMGL_VERBOSE
5572 | DMGL_ANSI
5573 | DMGL_GNU_V3
5574 | DMGL_RET_POSTFIX;
5575 if (TREE_CODE (decl) == FUNCTION_DECL)
5576 dmgl_opts |= DMGL_PARAMS;
5577 }
5578
5579 mangled_str = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
5580 str = cplus_demangle_v3 (mangled_str, dmgl_opts);
5581 return (str) ? str : mangled_str;
5582 }
5583
5584 return IDENTIFIER_POINTER (DECL_NAME (decl));
5585 }
5586
5587 /* Return true when STMT is builtins call to CODE. */
5588
5589 bool
5590 gimple_call_builtin_p (gimple stmt, enum built_in_function code)
5591 {
5592 tree fndecl;
5593 return (is_gimple_call (stmt)
5594 && (fndecl = gimple_call_fndecl (stmt)) != NULL
5595 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
5596 && DECL_FUNCTION_CODE (fndecl) == code);
5597 }
5598
5599 /* Return true if STMT clobbers memory. STMT is required to be a
5600 GIMPLE_ASM. */
5601
5602 bool
5603 gimple_asm_clobbers_memory_p (const_gimple stmt)
5604 {
5605 unsigned i;
5606
5607 for (i = 0; i < gimple_asm_nclobbers (stmt); i++)
5608 {
5609 tree op = gimple_asm_clobber_op (stmt, i);
5610 if (strcmp (TREE_STRING_POINTER (TREE_VALUE (op)), "memory") == 0)
5611 return true;
5612 }
5613
5614 return false;
5615 }
5616 #include "gt-gimple.h"