Update copyright dates.
[gcc.git] / gcc / go / gccgo.texi
1 \input texinfo @c -*-texinfo-*-
2 @setfilename gccgo.info
3 @settitle The GNU Go Compiler
4
5 @c Merge the standard indexes into a single one.
6 @syncodeindex fn cp
7 @syncodeindex vr cp
8 @syncodeindex ky cp
9 @syncodeindex pg cp
10 @syncodeindex tp cp
11
12 @include gcc-common.texi
13
14 @c Copyright years for this manual.
15 @set copyrights-go 2010-2021
16
17 @copying
18 @c man begin COPYRIGHT
19 Copyright @copyright{} @value{copyrights-go} Free Software Foundation, Inc.
20
21 Permission is granted to copy, distribute and/or modify this document
22 under the terms of the GNU Free Documentation License, Version 1.3 or
23 any later version published by the Free Software Foundation; with no
24 Invariant Sections, the Front-Cover Texts being (a) (see below), and
25 with the Back-Cover Texts being (b) (see below).
26 A copy of the license is included in the
27 @c man end
28 section entitled ``GNU Free Documentation License''.
29 @ignore
30 @c man begin COPYRIGHT
31 man page gfdl(7).
32 @c man end
33 @end ignore
34
35 @c man begin COPYRIGHT
36
37 (a) The FSF's Front-Cover Text is:
38
39 A GNU Manual
40
41 (b) The FSF's Back-Cover Text is:
42
43 You have freedom to copy and modify this GNU Manual, like GNU
44 software. Copies published by the Free Software Foundation raise
45 funds for GNU development.
46 @c man end
47 @end copying
48
49 @ifinfo
50 @format
51 @dircategory Software development
52 @direntry
53 * Gccgo: (gccgo). A GCC-based compiler for the Go language
54 @end direntry
55 @end format
56
57 @insertcopying
58 @end ifinfo
59
60 @titlepage
61 @title The GNU Go Compiler
62 @versionsubtitle
63 @author Ian Lance Taylor
64
65 @page
66 @vskip 0pt plus 1filll
67 Published by the Free Software Foundation @*
68 51 Franklin Street, Fifth Floor@*
69 Boston, MA 02110-1301, USA@*
70 @sp 1
71 @insertcopying
72 @end titlepage
73 @contents
74 @page
75
76 @node Top
77 @top Introduction
78
79 This manual describes how to use @command{gccgo}, the GNU compiler for
80 the Go programming language. This manual is specifically about
81 @command{gccgo}. For more information about the Go programming
82 language in general, including language specifications and standard
83 package documentation, see @uref{http://golang.org/}.
84
85 @menu
86 * Copying:: The GNU General Public License.
87 * GNU Free Documentation License::
88 How you can share and copy this manual.
89 * Invoking gccgo:: How to run gccgo.
90 * Import and Export:: Importing and exporting package data.
91 * Compiler Directives:: Comments to control compilation.
92 * C Interoperability:: Calling C from Go and vice-versa.
93 * Index:: Index.
94 @end menu
95
96
97 @include gpl_v3.texi
98
99 @include fdl.texi
100
101
102 @node Invoking gccgo
103 @chapter Invoking gccgo
104
105 @c man title gccgo A GCC-based compiler for the Go language
106
107 @ignore
108 @c man begin SYNOPSIS gccgo
109 gccgo [@option{-c}|@option{-S}]
110 [@option{-g}] [@option{-pg}] [@option{-O}@var{level}]
111 [@option{-I}@var{dir}@dots{}] [@option{-L}@var{dir}@dots{}]
112 [@option{-o} @var{outfile}] @var{infile}@dots{}
113
114 Only the most useful options are listed here; see below for the
115 remainder.
116 @c man end
117 @c man begin SEEALSO
118 gpl(7), gfdl(7), fsf-funding(7), gcc(1)
119 and the Info entries for @file{gccgo} and @file{gcc}.
120 @c man end
121 @end ignore
122
123 @c man begin DESCRIPTION gccgo
124
125 The @command{gccgo} command is a frontend to @command{gcc} and
126 supports many of the same options. @xref{Option Summary, , Option
127 Summary, gcc, Using the GNU Compiler Collection (GCC)}. This manual
128 only documents the options specific to @command{gccgo}.
129
130 The @command{gccgo} command may be used to compile Go source code into
131 an object file, link a collection of object files together, or do both
132 in sequence.
133
134 Go source code is compiled as packages. A package consists of one or
135 more Go source files. All the files in a single package must be
136 compiled together, by passing all the files as arguments to
137 @command{gccgo}. A single invocation of @command{gccgo} may only
138 compile a single package.
139
140 One Go package may @code{import} a different Go package. The imported
141 package must have already been compiled; @command{gccgo} will read
142 the import data directly from the compiled package. When this package
143 is later linked, the compiled form of the package must be included in
144 the link command.
145
146 Go programs must generally be compiled with debugging information, and
147 @option{-g1} is the default as described below. Stripping a Go
148 program will generally cause it to misbehave or fail.
149
150 @c man end
151
152 @c man begin OPTIONS gccgo
153
154 @table @gcctabopt
155 @item -I@var{dir}
156 @cindex @option{-I}
157 Specify a directory to use when searching for an import package at
158 compile time.
159
160 @item -L@var{dir}
161 @cindex @option{-L}
162 When linking, specify a library search directory, as with
163 @command{gcc}.
164
165 @item -fgo-pkgpath=@var{string}
166 @cindex @option{-fgo-pkgpath}
167 Set the package path to use. This sets the value returned by the
168 PkgPath method of reflect.Type objects. It is also used for the names
169 of globally visible symbols. The argument to this option should
170 normally be the string that will be used to import this package after
171 it has been installed; in other words, a pathname within the
172 directories specified by the @option{-I} option.
173
174 @item -fgo-prefix=@var{string}
175 @cindex @option{-fgo-prefix}
176 An alternative to @option{-fgo-pkgpath}. The argument will be
177 combined with the package name from the source file to produce the
178 package path. If @option{-fgo-pkgpath} is used, @option{-fgo-prefix}
179 will be ignored.
180
181 Go permits a single program to include more than one package with the
182 same name in the @code{package} clause in the source file, though
183 obviously the two packages must be imported using different pathnames.
184 In order for this to work with @command{gccgo}, either
185 @option{-fgo-pkgpath} or @option{-fgo-prefix} must be specified when
186 compiling a package.
187
188 Using either @option{-fgo-pkgpath} or @option{-fgo-prefix} disables
189 the special treatment of the @code{main} package and permits that
190 package to be imported like any other.
191
192 @item -fgo-relative-import-path=@var{dir}
193 @cindex @option{-fgo-relative-import-path}
194 A relative import is an import that starts with @file{./} or
195 @file{../}. If this option is used, @command{gccgo} will use
196 @var{dir} as a prefix for the relative import when searching for it.
197
198 @item -frequire-return-statement
199 @itemx -fno-require-return-statement
200 @cindex @option{-frequire-return-statement}
201 @cindex @option{-fno-require-return-statement}
202 By default @command{gccgo} will warn about functions which have one or
203 more return parameters but lack an explicit @code{return} statement.
204 This warning may be disabled using
205 @option{-fno-require-return-statement}.
206
207 @item -fgo-check-divide-zero
208 @cindex @option{-fgo-check-divide-zero}
209 @cindex @option{-fno-go-check-divide-zero}
210 Add explicit checks for division by zero. In Go a division (or
211 modulos) by zero causes a panic. On Unix systems this is detected in
212 the runtime by catching the @code{SIGFPE} signal. Some processors,
213 such as PowerPC, do not generate a SIGFPE on division by zero. Some
214 runtimes do not generate a signal that can be caught. On those
215 systems, this option may be used. Or the checks may be removed via
216 @option{-fno-go-check-divide-zero}. This option is currently on by
217 default, but in the future may be off by default on systems that do
218 not require it.
219
220 @item -fgo-check-divide-overflow
221 @cindex @option{-fgo-check-divide-overflow}
222 @cindex @option{-fno-go-check-divide-overflow}
223 Add explicit checks for division overflow. For example, division
224 overflow occurs when computing @code{INT_MIN / -1}. In Go this should
225 be wrapped, to produce @code{INT_MIN}. Some processors, such as x86,
226 generate a trap on division overflow. On those systems, this option
227 may be used. Or the checks may be removed via
228 @option{-fno-go-check-divide-overflow}. This option is currently on
229 by default, but in the future may be off by default on systems that do
230 not require it.
231
232 @item -fno-go-optimize-allocs
233 @cindex @option{-fno-go-optimize-allocs}
234 Disable escape analysis, which tries to allocate objects on the stack
235 rather than the heap.
236
237 @item -fgo-debug-escape@var{n}
238 @cindex @option{-fgo-debug-escape}
239 Output escape analysis debugging information. Larger values of
240 @var{n} generate more information.
241
242 @item -fgo-debug-escape-hash=@var{n}
243 @cindex @option{-fgo-debug-escape-hash}
244 A hash value to debug escape analysis. @var{n} is a binary string.
245 This runs escape analysis only on functions whose names hash to values
246 that match the given suffix @var{n}. This can be used to binary
247 search across functions to uncover escape analysis bugs.
248
249 @item -fgo-debug-optimization
250 @cindex @option{-fgo-debug-optimization}
251 @cindex @option{-fno-go-debug-optimization}
252 Output optimization diagnostics.
253
254 @item -fgo-c-header=@var{file}
255 @cindex @option{-fgo-c-header}
256 Write top-level named Go struct definitions to @var{file} as C code.
257 This is used when compiling the runtime package.
258
259 @item -fgo-compiling-runtime
260 @cindex @option{-fgo-compiling-runtime}
261 Apply special rules for compiling the runtime package. Implicit
262 memory allocation is forbidden. Some additional compiler directives
263 are supported.
264
265 @item -g
266 @cindex @option{-g for gccgo}
267 This is the standard @command{gcc} option (@pxref{Debugging Options, ,
268 Debugging Options, gcc, Using the GNU Compiler Collection (GCC)}). It
269 is mentioned here because by default @command{gccgo} turns on
270 debugging information generation with the equivalent of the standard
271 option @option{-g1}. This is because Go programs require debugging
272 information to be available in order to get backtrace information. An
273 explicit @option{-g0} may be used to disable the generation of
274 debugging information, in which case certain standard library
275 functions, such as @code{runtime.Callers}, will not operate correctly.
276 @end table
277
278 @c man end
279
280 @node Import and Export
281 @chapter Import and Export
282
283 When @command{gccgo} compiles a package which exports anything, the
284 export information will be stored directly in the object file. When a
285 package is imported, @command{gccgo} must be able to find the file.
286
287 @cindex @file{.gox}
288 When Go code imports the package @file{@var{gopackage}}, @command{gccgo}
289 will look for the import data using the following filenames, using the
290 first one that it finds.
291
292 @table @file
293 @item @var{gopackage}.gox
294 @item lib@var{gopackage}.so
295 @item lib@var{gopackage}.a
296 @item @var{gopackage}.o
297 @end table
298
299 The compiler will search for these files in the directories named by
300 any @option{-I} options, in order in which the directories appear on
301 the command line. The compiler will then search several standard
302 system directories. Finally the compiler will search the current
303 directory (to search the current directory earlier, use @samp{-I.}).
304
305 The compiler will extract the export information directly from the
306 compiled object file. The file @file{@var{gopackage}.gox} will
307 typically contain nothing but export data. This can be generated from
308 @file{@var{gopackage}.o} via
309
310 @smallexample
311 objcopy -j .go_export @var{gopackage}.o @var{gopackage}.gox
312 @end smallexample
313
314 For example, it may be desirable to extract the export information
315 from several different packages into their independent
316 @file{@var{gopackage}.gox} files, and then to combine the different
317 package object files together into a single shared library or archive.
318
319 At link time you must explicitly tell @command{gccgo} which files to
320 link together into the executable, as is usual with @command{gcc}.
321 This is different from the behavior of other Go compilers.
322
323 @node Compiler Directives
324 @chapter Compiler Directives
325
326 The Go compiler supports a few compiler directives. A compiler
327 directive uses a @code{//} comment at the start of a line. There must
328 be no space between the @code{//} and the name of the directive.
329
330 @table @code
331 @item //line @var{file}:@var{line}
332 The @code{//line} directive specifies that the source line that
333 follows should be recorded as having come from the given file path and
334 line number. Successive lines are recorded using increasing line
335 numbers, until the next directive. This directive typically appears
336 in machine-generated code, so that compilers and debuggers will show
337 lines in the original input to the generator.
338
339 @item //extern @var{extern_name}
340 The @code{extern} directive sets the externally visible name of the
341 next function declaration. See @ref{Function Names}.
342
343 @item //go:compile @var{go_name} @var{extern_name}
344 The @code{go:compile} directives sets the externally visible name of a
345 function definition or declaration. See @ref{Function Names}.
346
347 @item //go:noescape
348 The @code{//go:noescape} directive specifies that the next declaration
349 in the file, which must be a func without a body (meaning that it has
350 an implementation not written in Go) does not allow any of the
351 pointers passed as arguments to escape into the heap or into the
352 values returned from the function. This information can be used during
353 the compiler's escape analysis of Go code calling the function.
354
355 @item //go:nosplit
356 The @code{//go:nosplit} directive specifies that the next function
357 declared in the file must not include a stack overflow check. This is
358 most commonly used by low-level runtime sources invoked at times when
359 it is unsafe for the calling goroutine to be preempted.
360
361 @item //go:noinline
362 The @code{//go:noinline} directive specifies that the next function
363 defined in the file may not be inlined.
364
365 @end table
366
367 @node C Interoperability
368 @chapter C Interoperability
369
370 When using @command{gccgo} there is limited interoperability with C,
371 or with C++ code compiled using @code{extern "C"}.
372
373 This information is provided largely for documentation purposes. For
374 ordinary use it is best to build programs with the go tool and then
375 use @code{import "C"}, as described at
376 @url{http://golang.org/cmd/cgo}.
377
378 @menu
379 * C Type Interoperability:: How C and Go types match up.
380 * Function Names:: How Go functions are named.
381 @end menu
382
383 @node C Type Interoperability
384 @section C Type Interoperability
385
386 Basic types map directly: an @code{int} in Go is an @code{int} in C,
387 etc. Go @code{byte} is equivalent to C @code{unsigned char}.
388 Pointers in Go are pointers in C. A Go @code{struct} is the same as C
389 @code{struct} with the same field names and types.
390
391 @cindex @code{string} in C
392 The Go @code{string} type is currently defined as a two-element
393 structure:
394
395 @smallexample
396 struct __go_string @{
397 const unsigned char *__data;
398 int __length;
399 @};
400 @end smallexample
401
402 You can't pass arrays between C and Go. However, a pointer to an
403 array in Go is equivalent to a C pointer to the equivalent of the
404 element type. For example, Go @code{*[10]int} is equivalent to C
405 @code{int*}, assuming that the C pointer does point to 10 elements.
406
407 @cindex @code{slice} in C
408 A slice in Go is a structure. The current definition is:
409
410 @smallexample
411 struct __go_slice @{
412 void *__values;
413 int __count;
414 int __capacity;
415 @};
416 @end smallexample
417
418 The type of a Go function with no receiver is equivalent to a C
419 function whose parameter types are equivalent. When a Go function
420 returns more than one value, the C function returns a struct. For
421 example, these functions have equivalent types:
422
423 @smallexample
424 func GoFunction(int) (int, float)
425 struct @{ int i; float f; @} CFunction(int)
426 @end smallexample
427
428 A pointer to a Go function is equivalent to a pointer to a C function
429 when the functions have equivalent types.
430
431 Go @code{interface}, @code{channel}, and @code{map} types have no
432 corresponding C type (@code{interface} is a two-element struct and
433 @code{channel} and @code{map} are pointers to structs in C, but the
434 structs are deliberately undocumented). C @code{enum} types
435 correspond to some integer type, but precisely which one is difficult
436 to predict in general; use a cast. C @code{union} types have no
437 corresponding Go type. C @code{struct} types containing bitfields
438 have no corresponding Go type. C++ @code{class} types have no
439 corresponding Go type.
440
441 Memory allocation is completely different between C and Go, as Go uses
442 garbage collection. The exact guidelines in this area are
443 undetermined, but it is likely that it will be permitted to pass a
444 pointer to allocated memory from C to Go. The responsibility of
445 eventually freeing the pointer will remain with C side, and of course
446 if the C side frees the pointer while the Go side still has a copy the
447 program will fail. When passing a pointer from Go to C, the Go
448 function must retain a visible copy of it in some Go variable.
449 Otherwise the Go garbage collector may delete the pointer while the C
450 function is still using it.
451
452 @node Function Names
453 @section Function Names
454
455 @cindex @code{extern}
456 @cindex external names
457 Go code can call C functions directly using the @code{//extern} or
458 @code{//go:linkname} compiler directives. An @code{//extern}
459 directive must be at the beginning of the line and must start with
460 @code{//extern}. This must be followed by a space and then the
461 external name of the function. The function declaration must be on
462 the line immediately after the comment. For example, here is how the
463 C function @code{open} can be declared in Go:
464
465 @smallexample
466 //extern open
467 func c_open(name *byte, mode int, perm int) int
468 @end smallexample
469
470 You can do the same thing using the @code{//go:linkname} compiler
471 directive. The @code{//go:linkname} directive must be at the start of
472 the line. It is followed by whitespace, the name of the Go function,
473 more whitespace, and the external name of the function. Unlike
474 @code{//extern}, @code{//go:linkname} does not need to appear
475 immediately adjacent to the function definition or declaration.
476
477 @smallexample
478 //go:linkname c_open open
479 func c_open(name *byte, mode int, perm int) int
480 @end smallexample
481
482 The C function naturally expects a nul terminated string, which in Go
483 is equivalent to a pointer to an array (not a slice!) of @code{byte}
484 with a terminating zero byte. So a sample call from Go would look
485 like (after importing the @code{os} package):
486
487 @smallexample
488 var name = [4]byte@{'f', 'o', 'o', 0@};
489 i := c_open(&name[0], os.O_RDONLY, 0);
490 @end smallexample
491
492 Note that this serves as an example only. To open a file in Go please
493 use Go's @code{os.Open} function instead.
494
495 The name of Go functions accessed from C is subject to change. At
496 present the name of a Go function that does not have a receiver is
497 @code{pkgpath.Functionname}. The @var{pkgpath} is set by the
498 @option{-fgo-pkgpath} option used when the package is compiled; if the
499 option is not used, the default is @code{go.@var{packagename}}. To
500 call the function from C you must set the name using the @command{gcc}
501 @code{__asm__} extension.
502
503 @smallexample
504 extern int go_function(int) __asm__ ("mypkgpath.Function");
505 @end smallexample
506
507 @node Index
508 @unnumbered Index
509
510 @printindex cp
511
512 @bye