Improve check for const initializer loop.
[gcc.git] / gcc / go / gofrontend / expressions.cc
1 // expressions.cc -- Go frontend expression handling.
2
3 // Copyright 2009 The Go Authors. All rights reserved.
4 // Use of this source code is governed by a BSD-style
5 // license that can be found in the LICENSE file.
6
7 #include "go-system.h"
8
9 #include <gmp.h>
10
11 #ifndef ENABLE_BUILD_WITH_CXX
12 extern "C"
13 {
14 #endif
15
16 #include "toplev.h"
17 #include "intl.h"
18 #include "tree.h"
19 #include "gimple.h"
20 #include "tree-iterator.h"
21 #include "convert.h"
22 #include "real.h"
23 #include "realmpfr.h"
24
25 #ifndef ENABLE_BUILD_WITH_CXX
26 }
27 #endif
28
29 #include "go-c.h"
30 #include "gogo.h"
31 #include "types.h"
32 #include "export.h"
33 #include "import.h"
34 #include "statements.h"
35 #include "lex.h"
36 #include "expressions.h"
37
38 // Class Expression.
39
40 Expression::Expression(Expression_classification classification,
41 source_location location)
42 : classification_(classification), location_(location)
43 {
44 }
45
46 Expression::~Expression()
47 {
48 }
49
50 // If this expression has a constant integer value, return it.
51
52 bool
53 Expression::integer_constant_value(bool iota_is_constant, mpz_t val,
54 Type** ptype) const
55 {
56 *ptype = NULL;
57 return this->do_integer_constant_value(iota_is_constant, val, ptype);
58 }
59
60 // If this expression has a constant floating point value, return it.
61
62 bool
63 Expression::float_constant_value(mpfr_t val, Type** ptype) const
64 {
65 *ptype = NULL;
66 if (this->do_float_constant_value(val, ptype))
67 return true;
68 mpz_t ival;
69 mpz_init(ival);
70 Type* t;
71 bool ret;
72 if (!this->do_integer_constant_value(false, ival, &t))
73 ret = false;
74 else
75 {
76 mpfr_set_z(val, ival, GMP_RNDN);
77 ret = true;
78 }
79 mpz_clear(ival);
80 return ret;
81 }
82
83 // If this expression has a constant complex value, return it.
84
85 bool
86 Expression::complex_constant_value(mpfr_t real, mpfr_t imag,
87 Type** ptype) const
88 {
89 *ptype = NULL;
90 if (this->do_complex_constant_value(real, imag, ptype))
91 return true;
92 Type *t;
93 if (this->float_constant_value(real, &t))
94 {
95 mpfr_set_ui(imag, 0, GMP_RNDN);
96 return true;
97 }
98 return false;
99 }
100
101 // Traverse the expressions.
102
103 int
104 Expression::traverse(Expression** pexpr, Traverse* traverse)
105 {
106 Expression* expr = *pexpr;
107 if ((traverse->traverse_mask() & Traverse::traverse_expressions) != 0)
108 {
109 int t = traverse->expression(pexpr);
110 if (t == TRAVERSE_EXIT)
111 return TRAVERSE_EXIT;
112 else if (t == TRAVERSE_SKIP_COMPONENTS)
113 return TRAVERSE_CONTINUE;
114 }
115 return expr->do_traverse(traverse);
116 }
117
118 // Traverse subexpressions of this expression.
119
120 int
121 Expression::traverse_subexpressions(Traverse* traverse)
122 {
123 return this->do_traverse(traverse);
124 }
125
126 // Default implementation for do_traverse for child classes.
127
128 int
129 Expression::do_traverse(Traverse*)
130 {
131 return TRAVERSE_CONTINUE;
132 }
133
134 // This virtual function is called by the parser if the value of this
135 // expression is being discarded. By default, we warn. Expressions
136 // with side effects override.
137
138 void
139 Expression::do_discarding_value()
140 {
141 this->warn_about_unused_value();
142 }
143
144 // This virtual function is called to export expressions. This will
145 // only be used by expressions which may be constant.
146
147 void
148 Expression::do_export(Export*) const
149 {
150 gcc_unreachable();
151 }
152
153 // Warn that the value of the expression is not used.
154
155 void
156 Expression::warn_about_unused_value()
157 {
158 warning_at(this->location(), OPT_Wunused_value, "value computed is not used");
159 }
160
161 // Note that this expression is an error. This is called by children
162 // when they discover an error.
163
164 void
165 Expression::set_is_error()
166 {
167 this->classification_ = EXPRESSION_ERROR;
168 }
169
170 // For children to call to report an error conveniently.
171
172 void
173 Expression::report_error(const char* msg)
174 {
175 error_at(this->location_, "%s", msg);
176 this->set_is_error();
177 }
178
179 // Set types of variables and constants. This is implemented by the
180 // child class.
181
182 void
183 Expression::determine_type(const Type_context* context)
184 {
185 this->do_determine_type(context);
186 }
187
188 // Set types when there is no context.
189
190 void
191 Expression::determine_type_no_context()
192 {
193 Type_context context;
194 this->do_determine_type(&context);
195 }
196
197 // Return a tree handling any conversions which must be done during
198 // assignment.
199
200 tree
201 Expression::convert_for_assignment(Translate_context* context, Type* lhs_type,
202 Type* rhs_type, tree rhs_tree,
203 source_location location)
204 {
205 if (lhs_type == rhs_type)
206 return rhs_tree;
207
208 if (lhs_type->is_error_type() || rhs_type->is_error_type())
209 return error_mark_node;
210
211 if (lhs_type->is_undefined() || rhs_type->is_undefined())
212 {
213 // Make sure we report the error.
214 lhs_type->base();
215 rhs_type->base();
216 return error_mark_node;
217 }
218
219 if (rhs_tree == error_mark_node || TREE_TYPE(rhs_tree) == error_mark_node)
220 return error_mark_node;
221
222 Gogo* gogo = context->gogo();
223
224 tree lhs_type_tree = lhs_type->get_tree(gogo);
225 if (lhs_type_tree == error_mark_node)
226 return error_mark_node;
227
228 if (lhs_type->interface_type() != NULL)
229 {
230 if (rhs_type->interface_type() == NULL)
231 return Expression::convert_type_to_interface(context, lhs_type,
232 rhs_type, rhs_tree,
233 location);
234 else
235 return Expression::convert_interface_to_interface(context, lhs_type,
236 rhs_type, rhs_tree,
237 false, location);
238 }
239 else if (rhs_type->interface_type() != NULL)
240 return Expression::convert_interface_to_type(context, lhs_type, rhs_type,
241 rhs_tree, location);
242 else if (lhs_type->is_open_array_type()
243 && rhs_type->is_nil_type())
244 {
245 // Assigning nil to an open array.
246 gcc_assert(TREE_CODE(lhs_type_tree) == RECORD_TYPE);
247
248 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
249
250 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
251 tree field = TYPE_FIELDS(lhs_type_tree);
252 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
253 "__values") == 0);
254 elt->index = field;
255 elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
256
257 elt = VEC_quick_push(constructor_elt, init, NULL);
258 field = DECL_CHAIN(field);
259 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
260 "__count") == 0);
261 elt->index = field;
262 elt->value = fold_convert(TREE_TYPE(field), integer_zero_node);
263
264 elt = VEC_quick_push(constructor_elt, init, NULL);
265 field = DECL_CHAIN(field);
266 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
267 "__capacity") == 0);
268 elt->index = field;
269 elt->value = fold_convert(TREE_TYPE(field), integer_zero_node);
270
271 tree val = build_constructor(lhs_type_tree, init);
272 TREE_CONSTANT(val) = 1;
273
274 return val;
275 }
276 else if (rhs_type->is_nil_type())
277 {
278 // The left hand side should be a pointer type at the tree
279 // level.
280 gcc_assert(POINTER_TYPE_P(lhs_type_tree));
281 return fold_convert(lhs_type_tree, null_pointer_node);
282 }
283 else if (lhs_type_tree == TREE_TYPE(rhs_tree))
284 {
285 // No conversion is needed.
286 return rhs_tree;
287 }
288 else if (POINTER_TYPE_P(lhs_type_tree)
289 || INTEGRAL_TYPE_P(lhs_type_tree)
290 || SCALAR_FLOAT_TYPE_P(lhs_type_tree)
291 || COMPLEX_FLOAT_TYPE_P(lhs_type_tree))
292 return fold_convert_loc(location, lhs_type_tree, rhs_tree);
293 else if (TREE_CODE(lhs_type_tree) == RECORD_TYPE
294 && TREE_CODE(TREE_TYPE(rhs_tree)) == RECORD_TYPE)
295 {
296 // This conversion must be permitted by Go, or we wouldn't have
297 // gotten here.
298 gcc_assert(int_size_in_bytes(lhs_type_tree)
299 == int_size_in_bytes(TREE_TYPE(rhs_tree)));
300 return fold_build1_loc(location, VIEW_CONVERT_EXPR, lhs_type_tree,
301 rhs_tree);
302 }
303 else
304 {
305 gcc_assert(useless_type_conversion_p(lhs_type_tree, TREE_TYPE(rhs_tree)));
306 return rhs_tree;
307 }
308 }
309
310 // Return a tree for a conversion from a non-interface type to an
311 // interface type.
312
313 tree
314 Expression::convert_type_to_interface(Translate_context* context,
315 Type* lhs_type, Type* rhs_type,
316 tree rhs_tree, source_location location)
317 {
318 Gogo* gogo = context->gogo();
319 Interface_type* lhs_interface_type = lhs_type->interface_type();
320 bool lhs_is_empty = lhs_interface_type->is_empty();
321
322 // Since RHS_TYPE is a static type, we can create the interface
323 // method table at compile time.
324
325 // When setting an interface to nil, we just set both fields to
326 // NULL.
327 if (rhs_type->is_nil_type())
328 return lhs_type->get_init_tree(gogo, false);
329
330 // This should have been checked already.
331 gcc_assert(lhs_interface_type->implements_interface(rhs_type, NULL));
332
333 tree lhs_type_tree = lhs_type->get_tree(gogo);
334 if (lhs_type_tree == error_mark_node)
335 return error_mark_node;
336
337 // An interface is a tuple. If LHS_TYPE is an empty interface type,
338 // then the first field is the type descriptor for RHS_TYPE.
339 // Otherwise it is the interface method table for RHS_TYPE.
340 tree first_field_value;
341 if (lhs_is_empty)
342 first_field_value = rhs_type->type_descriptor_pointer(gogo);
343 else
344 {
345 // Build the interface method table for this interface and this
346 // object type: a list of function pointers for each interface
347 // method.
348 Named_type* rhs_named_type = rhs_type->named_type();
349 bool is_pointer = false;
350 if (rhs_named_type == NULL)
351 {
352 rhs_named_type = rhs_type->deref()->named_type();
353 is_pointer = true;
354 }
355 tree method_table;
356 if (rhs_named_type == NULL)
357 method_table = null_pointer_node;
358 else
359 method_table =
360 rhs_named_type->interface_method_table(gogo, lhs_interface_type,
361 is_pointer);
362 first_field_value = fold_convert_loc(location, const_ptr_type_node,
363 method_table);
364 }
365
366 // Start building a constructor for the value we will return.
367
368 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
369
370 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
371 tree field = TYPE_FIELDS(lhs_type_tree);
372 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
373 (lhs_is_empty ? "__type_descriptor" : "__methods")) == 0);
374 elt->index = field;
375 elt->value = fold_convert_loc(location, TREE_TYPE(field), first_field_value);
376
377 elt = VEC_quick_push(constructor_elt, init, NULL);
378 field = DECL_CHAIN(field);
379 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
380 elt->index = field;
381
382 if (rhs_type->points_to() != NULL)
383 {
384 // We are assigning a pointer to the interface; the interface
385 // holds the pointer itself.
386 elt->value = rhs_tree;
387 return build_constructor(lhs_type_tree, init);
388 }
389
390 // We are assigning a non-pointer value to the interface; the
391 // interface gets a copy of the value in the heap.
392
393 tree object_size = TYPE_SIZE_UNIT(TREE_TYPE(rhs_tree));
394
395 tree space = gogo->allocate_memory(rhs_type, object_size, location);
396 space = fold_convert_loc(location, build_pointer_type(TREE_TYPE(rhs_tree)),
397 space);
398 space = save_expr(space);
399
400 tree ref = build_fold_indirect_ref_loc(location, space);
401 TREE_THIS_NOTRAP(ref) = 1;
402 tree set = fold_build2_loc(location, MODIFY_EXPR, void_type_node,
403 ref, rhs_tree);
404
405 elt->value = fold_convert_loc(location, TREE_TYPE(field), space);
406
407 return build2(COMPOUND_EXPR, lhs_type_tree, set,
408 build_constructor(lhs_type_tree, init));
409 }
410
411 // Return a tree for the type descriptor of RHS_TREE, which has
412 // interface type RHS_TYPE. If RHS_TREE is nil the result will be
413 // NULL.
414
415 tree
416 Expression::get_interface_type_descriptor(Translate_context*,
417 Type* rhs_type, tree rhs_tree,
418 source_location location)
419 {
420 tree rhs_type_tree = TREE_TYPE(rhs_tree);
421 gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
422 tree rhs_field = TYPE_FIELDS(rhs_type_tree);
423 tree v = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
424 NULL_TREE);
425 if (rhs_type->interface_type()->is_empty())
426 {
427 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)),
428 "__type_descriptor") == 0);
429 return v;
430 }
431
432 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__methods")
433 == 0);
434 gcc_assert(POINTER_TYPE_P(TREE_TYPE(v)));
435 v = save_expr(v);
436 tree v1 = build_fold_indirect_ref_loc(location, v);
437 gcc_assert(TREE_CODE(TREE_TYPE(v1)) == RECORD_TYPE);
438 tree f = TYPE_FIELDS(TREE_TYPE(v1));
439 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(f)), "__type_descriptor")
440 == 0);
441 v1 = build3(COMPONENT_REF, TREE_TYPE(f), v1, f, NULL_TREE);
442
443 tree eq = fold_build2_loc(location, EQ_EXPR, boolean_type_node, v,
444 fold_convert_loc(location, TREE_TYPE(v),
445 null_pointer_node));
446 tree n = fold_convert_loc(location, TREE_TYPE(v1), null_pointer_node);
447 return fold_build3_loc(location, COND_EXPR, TREE_TYPE(v1),
448 eq, n, v1);
449 }
450
451 // Return a tree for the conversion of an interface type to an
452 // interface type.
453
454 tree
455 Expression::convert_interface_to_interface(Translate_context* context,
456 Type *lhs_type, Type *rhs_type,
457 tree rhs_tree, bool for_type_guard,
458 source_location location)
459 {
460 Gogo* gogo = context->gogo();
461 Interface_type* lhs_interface_type = lhs_type->interface_type();
462 bool lhs_is_empty = lhs_interface_type->is_empty();
463
464 tree lhs_type_tree = lhs_type->get_tree(gogo);
465 if (lhs_type_tree == error_mark_node)
466 return error_mark_node;
467
468 // In the general case this requires runtime examination of the type
469 // method table to match it up with the interface methods.
470
471 // FIXME: If all of the methods in the right hand side interface
472 // also appear in the left hand side interface, then we don't need
473 // to do a runtime check, although we still need to build a new
474 // method table.
475
476 // Get the type descriptor for the right hand side. This will be
477 // NULL for a nil interface.
478
479 if (!DECL_P(rhs_tree))
480 rhs_tree = save_expr(rhs_tree);
481
482 tree rhs_type_descriptor =
483 Expression::get_interface_type_descriptor(context, rhs_type, rhs_tree,
484 location);
485
486 // The result is going to be a two element constructor.
487
488 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
489
490 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
491 tree field = TYPE_FIELDS(lhs_type_tree);
492 elt->index = field;
493
494 if (for_type_guard)
495 {
496 // A type assertion fails when converting a nil interface.
497 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
498 static tree assert_interface_decl;
499 tree call = Gogo::call_builtin(&assert_interface_decl,
500 location,
501 "__go_assert_interface",
502 2,
503 ptr_type_node,
504 TREE_TYPE(lhs_type_descriptor),
505 lhs_type_descriptor,
506 TREE_TYPE(rhs_type_descriptor),
507 rhs_type_descriptor);
508 if (call == error_mark_node)
509 return error_mark_node;
510 // This will panic if the interface conversion fails.
511 TREE_NOTHROW(assert_interface_decl) = 0;
512 elt->value = fold_convert_loc(location, TREE_TYPE(field), call);
513 }
514 else if (lhs_is_empty)
515 {
516 // A convertion to an empty interface always succeeds, and the
517 // first field is just the type descriptor of the object.
518 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
519 "__type_descriptor") == 0);
520 gcc_assert(TREE_TYPE(field) == TREE_TYPE(rhs_type_descriptor));
521 elt->value = rhs_type_descriptor;
522 }
523 else
524 {
525 // A conversion to a non-empty interface may fail, but unlike a
526 // type assertion converting nil will always succeed.
527 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods")
528 == 0);
529 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
530 static tree convert_interface_decl;
531 tree call = Gogo::call_builtin(&convert_interface_decl,
532 location,
533 "__go_convert_interface",
534 2,
535 ptr_type_node,
536 TREE_TYPE(lhs_type_descriptor),
537 lhs_type_descriptor,
538 TREE_TYPE(rhs_type_descriptor),
539 rhs_type_descriptor);
540 if (call == error_mark_node)
541 return error_mark_node;
542 // This will panic if the interface conversion fails.
543 TREE_NOTHROW(convert_interface_decl) = 0;
544 elt->value = fold_convert_loc(location, TREE_TYPE(field), call);
545 }
546
547 // The second field is simply the object pointer.
548
549 elt = VEC_quick_push(constructor_elt, init, NULL);
550 field = DECL_CHAIN(field);
551 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
552 elt->index = field;
553
554 tree rhs_type_tree = TREE_TYPE(rhs_tree);
555 gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
556 tree rhs_field = DECL_CHAIN(TYPE_FIELDS(rhs_type_tree));
557 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__object") == 0);
558 elt->value = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
559 NULL_TREE);
560
561 return build_constructor(lhs_type_tree, init);
562 }
563
564 // Return a tree for the conversion of an interface type to a
565 // non-interface type.
566
567 tree
568 Expression::convert_interface_to_type(Translate_context* context,
569 Type *lhs_type, Type* rhs_type,
570 tree rhs_tree, source_location location)
571 {
572 Gogo* gogo = context->gogo();
573 tree rhs_type_tree = TREE_TYPE(rhs_tree);
574
575 tree lhs_type_tree = lhs_type->get_tree(gogo);
576 if (lhs_type_tree == error_mark_node)
577 return error_mark_node;
578
579 // Call a function to check that the type is valid. The function
580 // will panic with an appropriate runtime type error if the type is
581 // not valid.
582
583 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
584
585 if (!DECL_P(rhs_tree))
586 rhs_tree = save_expr(rhs_tree);
587
588 tree rhs_type_descriptor =
589 Expression::get_interface_type_descriptor(context, rhs_type, rhs_tree,
590 location);
591
592 tree rhs_inter_descriptor = rhs_type->type_descriptor_pointer(gogo);
593
594 static tree check_interface_type_decl;
595 tree call = Gogo::call_builtin(&check_interface_type_decl,
596 location,
597 "__go_check_interface_type",
598 3,
599 void_type_node,
600 TREE_TYPE(lhs_type_descriptor),
601 lhs_type_descriptor,
602 TREE_TYPE(rhs_type_descriptor),
603 rhs_type_descriptor,
604 TREE_TYPE(rhs_inter_descriptor),
605 rhs_inter_descriptor);
606 if (call == error_mark_node)
607 return error_mark_node;
608 // This call will panic if the conversion is invalid.
609 TREE_NOTHROW(check_interface_type_decl) = 0;
610
611 // If the call succeeds, pull out the value.
612 gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
613 tree rhs_field = DECL_CHAIN(TYPE_FIELDS(rhs_type_tree));
614 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__object") == 0);
615 tree val = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
616 NULL_TREE);
617
618 // If the value is a pointer, then it is the value we want.
619 // Otherwise it points to the value.
620 if (lhs_type->points_to() == NULL)
621 {
622 val = fold_convert_loc(location, build_pointer_type(lhs_type_tree), val);
623 val = build_fold_indirect_ref_loc(location, val);
624 }
625
626 return build2(COMPOUND_EXPR, lhs_type_tree, call,
627 fold_convert_loc(location, lhs_type_tree, val));
628 }
629
630 // Convert an expression to a tree. This is implemented by the child
631 // class. Not that it is not in general safe to call this multiple
632 // times for a single expression, but that we don't catch such errors.
633
634 tree
635 Expression::get_tree(Translate_context* context)
636 {
637 // The child may have marked this expression as having an error.
638 if (this->classification_ == EXPRESSION_ERROR)
639 return error_mark_node;
640
641 return this->do_get_tree(context);
642 }
643
644 // Return a tree for VAL in TYPE.
645
646 tree
647 Expression::integer_constant_tree(mpz_t val, tree type)
648 {
649 if (type == error_mark_node)
650 return error_mark_node;
651 else if (TREE_CODE(type) == INTEGER_TYPE)
652 return double_int_to_tree(type,
653 mpz_get_double_int(type, val, true));
654 else if (TREE_CODE(type) == REAL_TYPE)
655 {
656 mpfr_t fval;
657 mpfr_init_set_z(fval, val, GMP_RNDN);
658 tree ret = Expression::float_constant_tree(fval, type);
659 mpfr_clear(fval);
660 return ret;
661 }
662 else if (TREE_CODE(type) == COMPLEX_TYPE)
663 {
664 mpfr_t fval;
665 mpfr_init_set_z(fval, val, GMP_RNDN);
666 tree real = Expression::float_constant_tree(fval, TREE_TYPE(type));
667 mpfr_clear(fval);
668 tree imag = build_real_from_int_cst(TREE_TYPE(type),
669 integer_zero_node);
670 return build_complex(type, real, imag);
671 }
672 else
673 gcc_unreachable();
674 }
675
676 // Return a tree for VAL in TYPE.
677
678 tree
679 Expression::float_constant_tree(mpfr_t val, tree type)
680 {
681 if (type == error_mark_node)
682 return error_mark_node;
683 else if (TREE_CODE(type) == INTEGER_TYPE)
684 {
685 mpz_t ival;
686 mpz_init(ival);
687 mpfr_get_z(ival, val, GMP_RNDN);
688 tree ret = Expression::integer_constant_tree(ival, type);
689 mpz_clear(ival);
690 return ret;
691 }
692 else if (TREE_CODE(type) == REAL_TYPE)
693 {
694 REAL_VALUE_TYPE r1;
695 real_from_mpfr(&r1, val, type, GMP_RNDN);
696 REAL_VALUE_TYPE r2;
697 real_convert(&r2, TYPE_MODE(type), &r1);
698 return build_real(type, r2);
699 }
700 else if (TREE_CODE(type) == COMPLEX_TYPE)
701 {
702 REAL_VALUE_TYPE r1;
703 real_from_mpfr(&r1, val, TREE_TYPE(type), GMP_RNDN);
704 REAL_VALUE_TYPE r2;
705 real_convert(&r2, TYPE_MODE(TREE_TYPE(type)), &r1);
706 tree imag = build_real_from_int_cst(TREE_TYPE(type),
707 integer_zero_node);
708 return build_complex(type, build_real(TREE_TYPE(type), r2), imag);
709 }
710 else
711 gcc_unreachable();
712 }
713
714 // Return a tree for REAL/IMAG in TYPE.
715
716 tree
717 Expression::complex_constant_tree(mpfr_t real, mpfr_t imag, tree type)
718 {
719 if (TREE_CODE(type) == COMPLEX_TYPE)
720 {
721 REAL_VALUE_TYPE r1;
722 real_from_mpfr(&r1, real, TREE_TYPE(type), GMP_RNDN);
723 REAL_VALUE_TYPE r2;
724 real_convert(&r2, TYPE_MODE(TREE_TYPE(type)), &r1);
725
726 REAL_VALUE_TYPE r3;
727 real_from_mpfr(&r3, imag, TREE_TYPE(type), GMP_RNDN);
728 REAL_VALUE_TYPE r4;
729 real_convert(&r4, TYPE_MODE(TREE_TYPE(type)), &r3);
730
731 return build_complex(type, build_real(TREE_TYPE(type), r2),
732 build_real(TREE_TYPE(type), r4));
733 }
734 else
735 gcc_unreachable();
736 }
737
738 // Return a tree which evaluates to true if VAL, of arbitrary integer
739 // type, is negative or is more than the maximum value of BOUND_TYPE.
740 // If SOFAR is not NULL, it is or'red into the result. The return
741 // value may be NULL if SOFAR is NULL.
742
743 tree
744 Expression::check_bounds(tree val, tree bound_type, tree sofar,
745 source_location loc)
746 {
747 tree val_type = TREE_TYPE(val);
748 tree ret = NULL_TREE;
749
750 if (!TYPE_UNSIGNED(val_type))
751 {
752 ret = fold_build2_loc(loc, LT_EXPR, boolean_type_node, val,
753 build_int_cst(val_type, 0));
754 if (ret == boolean_false_node)
755 ret = NULL_TREE;
756 }
757
758 if ((TYPE_UNSIGNED(val_type) && !TYPE_UNSIGNED(bound_type))
759 || TYPE_SIZE(val_type) > TYPE_SIZE(bound_type))
760 {
761 tree max = TYPE_MAX_VALUE(bound_type);
762 tree big = fold_build2_loc(loc, GT_EXPR, boolean_type_node, val,
763 fold_convert_loc(loc, val_type, max));
764 if (big == boolean_false_node)
765 ;
766 else if (ret == NULL_TREE)
767 ret = big;
768 else
769 ret = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
770 ret, big);
771 }
772
773 if (ret == NULL_TREE)
774 return sofar;
775 else if (sofar == NULL_TREE)
776 return ret;
777 else
778 return fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
779 sofar, ret);
780 }
781
782 // Error expressions. This are used to avoid cascading errors.
783
784 class Error_expression : public Expression
785 {
786 public:
787 Error_expression(source_location location)
788 : Expression(EXPRESSION_ERROR, location)
789 { }
790
791 protected:
792 bool
793 do_is_constant() const
794 { return true; }
795
796 bool
797 do_integer_constant_value(bool, mpz_t val, Type**) const
798 {
799 mpz_set_ui(val, 0);
800 return true;
801 }
802
803 bool
804 do_float_constant_value(mpfr_t val, Type**) const
805 {
806 mpfr_set_ui(val, 0, GMP_RNDN);
807 return true;
808 }
809
810 bool
811 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const
812 {
813 mpfr_set_ui(real, 0, GMP_RNDN);
814 mpfr_set_ui(imag, 0, GMP_RNDN);
815 return true;
816 }
817
818 void
819 do_discarding_value()
820 { }
821
822 Type*
823 do_type()
824 { return Type::make_error_type(); }
825
826 void
827 do_determine_type(const Type_context*)
828 { }
829
830 Expression*
831 do_copy()
832 { return this; }
833
834 bool
835 do_is_addressable() const
836 { return true; }
837
838 tree
839 do_get_tree(Translate_context*)
840 { return error_mark_node; }
841 };
842
843 Expression*
844 Expression::make_error(source_location location)
845 {
846 return new Error_expression(location);
847 }
848
849 // An expression which is really a type. This is used during parsing.
850 // It is an error if these survive after lowering.
851
852 class
853 Type_expression : public Expression
854 {
855 public:
856 Type_expression(Type* type, source_location location)
857 : Expression(EXPRESSION_TYPE, location),
858 type_(type)
859 { }
860
861 protected:
862 int
863 do_traverse(Traverse* traverse)
864 { return Type::traverse(this->type_, traverse); }
865
866 Type*
867 do_type()
868 { return this->type_; }
869
870 void
871 do_determine_type(const Type_context*)
872 { }
873
874 void
875 do_check_types(Gogo*)
876 { this->report_error(_("invalid use of type")); }
877
878 Expression*
879 do_copy()
880 { return this; }
881
882 tree
883 do_get_tree(Translate_context*)
884 { gcc_unreachable(); }
885
886 private:
887 // The type which we are representing as an expression.
888 Type* type_;
889 };
890
891 Expression*
892 Expression::make_type(Type* type, source_location location)
893 {
894 return new Type_expression(type, location);
895 }
896
897 // Class Parser_expression.
898
899 Type*
900 Parser_expression::do_type()
901 {
902 // We should never really ask for the type of a Parser_expression.
903 // However, it can happen, at least when we have an invalid const
904 // whose initializer refers to the const itself. In that case we
905 // may ask for the type when lowering the const itself.
906 gcc_assert(saw_errors());
907 return Type::make_error_type();
908 }
909
910 // Class Var_expression.
911
912 // Lower a variable expression. Here we just make sure that the
913 // initialization expression of the variable has been lowered. This
914 // ensures that we will be able to determine the type of the variable
915 // if necessary.
916
917 Expression*
918 Var_expression::do_lower(Gogo* gogo, Named_object* function, int)
919 {
920 if (this->variable_->is_variable())
921 {
922 Variable* var = this->variable_->var_value();
923 // This is either a local variable or a global variable. A
924 // reference to a variable which is local to an enclosing
925 // function will be a reference to a field in a closure.
926 if (var->is_global())
927 function = NULL;
928 var->lower_init_expression(gogo, function);
929 }
930 return this;
931 }
932
933 // Return the name of the variable.
934
935 const std::string&
936 Var_expression::name() const
937 {
938 return this->variable_->name();
939 }
940
941 // Return the type of a reference to a variable.
942
943 Type*
944 Var_expression::do_type()
945 {
946 if (this->variable_->is_variable())
947 return this->variable_->var_value()->type();
948 else if (this->variable_->is_result_variable())
949 return this->variable_->result_var_value()->type();
950 else
951 gcc_unreachable();
952 }
953
954 // Something takes the address of this variable. This means that we
955 // may want to move the variable onto the heap.
956
957 void
958 Var_expression::do_address_taken(bool escapes)
959 {
960 if (!escapes)
961 ;
962 else if (this->variable_->is_variable())
963 this->variable_->var_value()->set_address_taken();
964 else if (this->variable_->is_result_variable())
965 this->variable_->result_var_value()->set_address_taken();
966 else
967 gcc_unreachable();
968 }
969
970 // Get the tree for a reference to a variable.
971
972 tree
973 Var_expression::do_get_tree(Translate_context* context)
974 {
975 return this->variable_->get_tree(context->gogo(), context->function());
976 }
977
978 // Make a reference to a variable in an expression.
979
980 Expression*
981 Expression::make_var_reference(Named_object* var, source_location location)
982 {
983 if (var->is_sink())
984 return Expression::make_sink(location);
985
986 // FIXME: Creating a new object for each reference to a variable is
987 // wasteful.
988 return new Var_expression(var, location);
989 }
990
991 // Class Temporary_reference_expression.
992
993 // The type.
994
995 Type*
996 Temporary_reference_expression::do_type()
997 {
998 return this->statement_->type();
999 }
1000
1001 // Called if something takes the address of this temporary variable.
1002 // We never have to move temporary variables to the heap, but we do
1003 // need to know that they must live in the stack rather than in a
1004 // register.
1005
1006 void
1007 Temporary_reference_expression::do_address_taken(bool)
1008 {
1009 this->statement_->set_is_address_taken();
1010 }
1011
1012 // Get a tree referring to the variable.
1013
1014 tree
1015 Temporary_reference_expression::do_get_tree(Translate_context*)
1016 {
1017 return this->statement_->get_decl();
1018 }
1019
1020 // Make a reference to a temporary variable.
1021
1022 Expression*
1023 Expression::make_temporary_reference(Temporary_statement* statement,
1024 source_location location)
1025 {
1026 return new Temporary_reference_expression(statement, location);
1027 }
1028
1029 // A sink expression--a use of the blank identifier _.
1030
1031 class Sink_expression : public Expression
1032 {
1033 public:
1034 Sink_expression(source_location location)
1035 : Expression(EXPRESSION_SINK, location),
1036 type_(NULL), var_(NULL_TREE)
1037 { }
1038
1039 protected:
1040 void
1041 do_discarding_value()
1042 { }
1043
1044 Type*
1045 do_type();
1046
1047 void
1048 do_determine_type(const Type_context*);
1049
1050 Expression*
1051 do_copy()
1052 { return new Sink_expression(this->location()); }
1053
1054 tree
1055 do_get_tree(Translate_context*);
1056
1057 private:
1058 // The type of this sink variable.
1059 Type* type_;
1060 // The temporary variable we generate.
1061 tree var_;
1062 };
1063
1064 // Return the type of a sink expression.
1065
1066 Type*
1067 Sink_expression::do_type()
1068 {
1069 if (this->type_ == NULL)
1070 return Type::make_sink_type();
1071 return this->type_;
1072 }
1073
1074 // Determine the type of a sink expression.
1075
1076 void
1077 Sink_expression::do_determine_type(const Type_context* context)
1078 {
1079 if (context->type != NULL)
1080 this->type_ = context->type;
1081 }
1082
1083 // Return a temporary variable for a sink expression. This will
1084 // presumably be a write-only variable which the middle-end will drop.
1085
1086 tree
1087 Sink_expression::do_get_tree(Translate_context* context)
1088 {
1089 if (this->var_ == NULL_TREE)
1090 {
1091 gcc_assert(this->type_ != NULL && !this->type_->is_sink_type());
1092 this->var_ = create_tmp_var(this->type_->get_tree(context->gogo()),
1093 "blank");
1094 }
1095 return this->var_;
1096 }
1097
1098 // Make a sink expression.
1099
1100 Expression*
1101 Expression::make_sink(source_location location)
1102 {
1103 return new Sink_expression(location);
1104 }
1105
1106 // Class Func_expression.
1107
1108 // FIXME: Can a function expression appear in a constant expression?
1109 // The value is unchanging. Initializing a constant to the address of
1110 // a function seems like it could work, though there might be little
1111 // point to it.
1112
1113 // Return the name of the function.
1114
1115 const std::string&
1116 Func_expression::name() const
1117 {
1118 return this->function_->name();
1119 }
1120
1121 // Traversal.
1122
1123 int
1124 Func_expression::do_traverse(Traverse* traverse)
1125 {
1126 return (this->closure_ == NULL
1127 ? TRAVERSE_CONTINUE
1128 : Expression::traverse(&this->closure_, traverse));
1129 }
1130
1131 // Return the type of a function expression.
1132
1133 Type*
1134 Func_expression::do_type()
1135 {
1136 if (this->function_->is_function())
1137 return this->function_->func_value()->type();
1138 else if (this->function_->is_function_declaration())
1139 return this->function_->func_declaration_value()->type();
1140 else
1141 gcc_unreachable();
1142 }
1143
1144 // Get the tree for a function expression without evaluating the
1145 // closure.
1146
1147 tree
1148 Func_expression::get_tree_without_closure(Gogo* gogo)
1149 {
1150 Function_type* fntype;
1151 if (this->function_->is_function())
1152 fntype = this->function_->func_value()->type();
1153 else if (this->function_->is_function_declaration())
1154 fntype = this->function_->func_declaration_value()->type();
1155 else
1156 gcc_unreachable();
1157
1158 // Builtin functions are handled specially by Call_expression. We
1159 // can't take their address.
1160 if (fntype->is_builtin())
1161 {
1162 error_at(this->location(), "invalid use of special builtin function %qs",
1163 this->function_->name().c_str());
1164 return error_mark_node;
1165 }
1166
1167 Named_object* no = this->function_;
1168
1169 tree id = no->get_id(gogo);
1170 if (id == error_mark_node)
1171 return error_mark_node;
1172
1173 tree fndecl;
1174 if (no->is_function())
1175 fndecl = no->func_value()->get_or_make_decl(gogo, no, id);
1176 else if (no->is_function_declaration())
1177 fndecl = no->func_declaration_value()->get_or_make_decl(gogo, no, id);
1178 else
1179 gcc_unreachable();
1180
1181 if (fndecl == error_mark_node)
1182 return error_mark_node;
1183
1184 return build_fold_addr_expr_loc(this->location(), fndecl);
1185 }
1186
1187 // Get the tree for a function expression. This is used when we take
1188 // the address of a function rather than simply calling it. If the
1189 // function has a closure, we must use a trampoline.
1190
1191 tree
1192 Func_expression::do_get_tree(Translate_context* context)
1193 {
1194 Gogo* gogo = context->gogo();
1195
1196 tree fnaddr = this->get_tree_without_closure(gogo);
1197 if (fnaddr == error_mark_node)
1198 return error_mark_node;
1199
1200 gcc_assert(TREE_CODE(fnaddr) == ADDR_EXPR
1201 && TREE_CODE(TREE_OPERAND(fnaddr, 0)) == FUNCTION_DECL);
1202 TREE_ADDRESSABLE(TREE_OPERAND(fnaddr, 0)) = 1;
1203
1204 // For a normal non-nested function call, that is all we have to do.
1205 if (!this->function_->is_function()
1206 || this->function_->func_value()->enclosing() == NULL)
1207 {
1208 gcc_assert(this->closure_ == NULL);
1209 return fnaddr;
1210 }
1211
1212 // For a nested function call, we have to always allocate a
1213 // trampoline. If we don't always allocate, then closures will not
1214 // be reliably distinct.
1215 Expression* closure = this->closure_;
1216 tree closure_tree;
1217 if (closure == NULL)
1218 closure_tree = null_pointer_node;
1219 else
1220 {
1221 // Get the value of the closure. This will be a pointer to
1222 // space allocated on the heap.
1223 closure_tree = closure->get_tree(context);
1224 if (closure_tree == error_mark_node)
1225 return error_mark_node;
1226 gcc_assert(POINTER_TYPE_P(TREE_TYPE(closure_tree)));
1227 }
1228
1229 // Now we need to build some code on the heap. This code will load
1230 // the static chain pointer with the closure and then jump to the
1231 // body of the function. The normal gcc approach is to build the
1232 // code on the stack. Unfortunately we can not do that, as Go
1233 // permits us to return the function pointer.
1234
1235 return gogo->make_trampoline(fnaddr, closure_tree, this->location());
1236 }
1237
1238 // Make a reference to a function in an expression.
1239
1240 Expression*
1241 Expression::make_func_reference(Named_object* function, Expression* closure,
1242 source_location location)
1243 {
1244 return new Func_expression(function, closure, location);
1245 }
1246
1247 // Class Unknown_expression.
1248
1249 // Return the name of an unknown expression.
1250
1251 const std::string&
1252 Unknown_expression::name() const
1253 {
1254 return this->named_object_->name();
1255 }
1256
1257 // Lower a reference to an unknown name.
1258
1259 Expression*
1260 Unknown_expression::do_lower(Gogo*, Named_object*, int)
1261 {
1262 source_location location = this->location();
1263 Named_object* no = this->named_object_;
1264 Named_object* real;
1265 if (!no->is_unknown())
1266 real = no;
1267 else
1268 {
1269 real = no->unknown_value()->real_named_object();
1270 if (real == NULL)
1271 {
1272 if (this->is_composite_literal_key_)
1273 return this;
1274 error_at(location, "reference to undefined name %qs",
1275 this->named_object_->message_name().c_str());
1276 return Expression::make_error(location);
1277 }
1278 }
1279 switch (real->classification())
1280 {
1281 case Named_object::NAMED_OBJECT_CONST:
1282 return Expression::make_const_reference(real, location);
1283 case Named_object::NAMED_OBJECT_TYPE:
1284 return Expression::make_type(real->type_value(), location);
1285 case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
1286 if (this->is_composite_literal_key_)
1287 return this;
1288 error_at(location, "reference to undefined type %qs",
1289 real->message_name().c_str());
1290 return Expression::make_error(location);
1291 case Named_object::NAMED_OBJECT_VAR:
1292 return Expression::make_var_reference(real, location);
1293 case Named_object::NAMED_OBJECT_FUNC:
1294 case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
1295 return Expression::make_func_reference(real, NULL, location);
1296 case Named_object::NAMED_OBJECT_PACKAGE:
1297 if (this->is_composite_literal_key_)
1298 return this;
1299 error_at(location, "unexpected reference to package");
1300 return Expression::make_error(location);
1301 default:
1302 gcc_unreachable();
1303 }
1304 }
1305
1306 // Make a reference to an unknown name.
1307
1308 Expression*
1309 Expression::make_unknown_reference(Named_object* no, source_location location)
1310 {
1311 gcc_assert(no->resolve()->is_unknown());
1312 return new Unknown_expression(no, location);
1313 }
1314
1315 // A boolean expression.
1316
1317 class Boolean_expression : public Expression
1318 {
1319 public:
1320 Boolean_expression(bool val, source_location location)
1321 : Expression(EXPRESSION_BOOLEAN, location),
1322 val_(val), type_(NULL)
1323 { }
1324
1325 static Expression*
1326 do_import(Import*);
1327
1328 protected:
1329 bool
1330 do_is_constant() const
1331 { return true; }
1332
1333 Type*
1334 do_type();
1335
1336 void
1337 do_determine_type(const Type_context*);
1338
1339 Expression*
1340 do_copy()
1341 { return this; }
1342
1343 tree
1344 do_get_tree(Translate_context*)
1345 { return this->val_ ? boolean_true_node : boolean_false_node; }
1346
1347 void
1348 do_export(Export* exp) const
1349 { exp->write_c_string(this->val_ ? "true" : "false"); }
1350
1351 private:
1352 // The constant.
1353 bool val_;
1354 // The type as determined by context.
1355 Type* type_;
1356 };
1357
1358 // Get the type.
1359
1360 Type*
1361 Boolean_expression::do_type()
1362 {
1363 if (this->type_ == NULL)
1364 this->type_ = Type::make_boolean_type();
1365 return this->type_;
1366 }
1367
1368 // Set the type from the context.
1369
1370 void
1371 Boolean_expression::do_determine_type(const Type_context* context)
1372 {
1373 if (this->type_ != NULL && !this->type_->is_abstract())
1374 ;
1375 else if (context->type != NULL && context->type->is_boolean_type())
1376 this->type_ = context->type;
1377 else if (!context->may_be_abstract)
1378 this->type_ = Type::lookup_bool_type();
1379 }
1380
1381 // Import a boolean constant.
1382
1383 Expression*
1384 Boolean_expression::do_import(Import* imp)
1385 {
1386 if (imp->peek_char() == 't')
1387 {
1388 imp->require_c_string("true");
1389 return Expression::make_boolean(true, imp->location());
1390 }
1391 else
1392 {
1393 imp->require_c_string("false");
1394 return Expression::make_boolean(false, imp->location());
1395 }
1396 }
1397
1398 // Make a boolean expression.
1399
1400 Expression*
1401 Expression::make_boolean(bool val, source_location location)
1402 {
1403 return new Boolean_expression(val, location);
1404 }
1405
1406 // Class String_expression.
1407
1408 // Get the type.
1409
1410 Type*
1411 String_expression::do_type()
1412 {
1413 if (this->type_ == NULL)
1414 this->type_ = Type::make_string_type();
1415 return this->type_;
1416 }
1417
1418 // Set the type from the context.
1419
1420 void
1421 String_expression::do_determine_type(const Type_context* context)
1422 {
1423 if (this->type_ != NULL && !this->type_->is_abstract())
1424 ;
1425 else if (context->type != NULL && context->type->is_string_type())
1426 this->type_ = context->type;
1427 else if (!context->may_be_abstract)
1428 this->type_ = Type::lookup_string_type();
1429 }
1430
1431 // Build a string constant.
1432
1433 tree
1434 String_expression::do_get_tree(Translate_context* context)
1435 {
1436 return context->gogo()->go_string_constant_tree(this->val_);
1437 }
1438
1439 // Export a string expression.
1440
1441 void
1442 String_expression::do_export(Export* exp) const
1443 {
1444 std::string s;
1445 s.reserve(this->val_.length() * 4 + 2);
1446 s += '"';
1447 for (std::string::const_iterator p = this->val_.begin();
1448 p != this->val_.end();
1449 ++p)
1450 {
1451 if (*p == '\\' || *p == '"')
1452 {
1453 s += '\\';
1454 s += *p;
1455 }
1456 else if (*p >= 0x20 && *p < 0x7f)
1457 s += *p;
1458 else if (*p == '\n')
1459 s += "\\n";
1460 else if (*p == '\t')
1461 s += "\\t";
1462 else
1463 {
1464 s += "\\x";
1465 unsigned char c = *p;
1466 unsigned int dig = c >> 4;
1467 s += dig < 10 ? '0' + dig : 'A' + dig - 10;
1468 dig = c & 0xf;
1469 s += dig < 10 ? '0' + dig : 'A' + dig - 10;
1470 }
1471 }
1472 s += '"';
1473 exp->write_string(s);
1474 }
1475
1476 // Import a string expression.
1477
1478 Expression*
1479 String_expression::do_import(Import* imp)
1480 {
1481 imp->require_c_string("\"");
1482 std::string val;
1483 while (true)
1484 {
1485 int c = imp->get_char();
1486 if (c == '"' || c == -1)
1487 break;
1488 if (c != '\\')
1489 val += static_cast<char>(c);
1490 else
1491 {
1492 c = imp->get_char();
1493 if (c == '\\' || c == '"')
1494 val += static_cast<char>(c);
1495 else if (c == 'n')
1496 val += '\n';
1497 else if (c == 't')
1498 val += '\t';
1499 else if (c == 'x')
1500 {
1501 c = imp->get_char();
1502 unsigned int vh = c >= '0' && c <= '9' ? c - '0' : c - 'A' + 10;
1503 c = imp->get_char();
1504 unsigned int vl = c >= '0' && c <= '9' ? c - '0' : c - 'A' + 10;
1505 char v = (vh << 4) | vl;
1506 val += v;
1507 }
1508 else
1509 {
1510 error_at(imp->location(), "bad string constant");
1511 return Expression::make_error(imp->location());
1512 }
1513 }
1514 }
1515 return Expression::make_string(val, imp->location());
1516 }
1517
1518 // Make a string expression.
1519
1520 Expression*
1521 Expression::make_string(const std::string& val, source_location location)
1522 {
1523 return new String_expression(val, location);
1524 }
1525
1526 // Make an integer expression.
1527
1528 class Integer_expression : public Expression
1529 {
1530 public:
1531 Integer_expression(const mpz_t* val, Type* type, source_location location)
1532 : Expression(EXPRESSION_INTEGER, location),
1533 type_(type)
1534 { mpz_init_set(this->val_, *val); }
1535
1536 static Expression*
1537 do_import(Import*);
1538
1539 // Return whether VAL fits in the type.
1540 static bool
1541 check_constant(mpz_t val, Type*, source_location);
1542
1543 // Write VAL to export data.
1544 static void
1545 export_integer(Export* exp, const mpz_t val);
1546
1547 protected:
1548 bool
1549 do_is_constant() const
1550 { return true; }
1551
1552 bool
1553 do_integer_constant_value(bool, mpz_t val, Type** ptype) const;
1554
1555 Type*
1556 do_type();
1557
1558 void
1559 do_determine_type(const Type_context* context);
1560
1561 void
1562 do_check_types(Gogo*);
1563
1564 tree
1565 do_get_tree(Translate_context*);
1566
1567 Expression*
1568 do_copy()
1569 { return Expression::make_integer(&this->val_, this->type_,
1570 this->location()); }
1571
1572 void
1573 do_export(Export*) const;
1574
1575 private:
1576 // The integer value.
1577 mpz_t val_;
1578 // The type so far.
1579 Type* type_;
1580 };
1581
1582 // Return an integer constant value.
1583
1584 bool
1585 Integer_expression::do_integer_constant_value(bool, mpz_t val,
1586 Type** ptype) const
1587 {
1588 if (this->type_ != NULL)
1589 *ptype = this->type_;
1590 mpz_set(val, this->val_);
1591 return true;
1592 }
1593
1594 // Return the current type. If we haven't set the type yet, we return
1595 // an abstract integer type.
1596
1597 Type*
1598 Integer_expression::do_type()
1599 {
1600 if (this->type_ == NULL)
1601 this->type_ = Type::make_abstract_integer_type();
1602 return this->type_;
1603 }
1604
1605 // Set the type of the integer value. Here we may switch from an
1606 // abstract type to a real type.
1607
1608 void
1609 Integer_expression::do_determine_type(const Type_context* context)
1610 {
1611 if (this->type_ != NULL && !this->type_->is_abstract())
1612 ;
1613 else if (context->type != NULL
1614 && (context->type->integer_type() != NULL
1615 || context->type->float_type() != NULL
1616 || context->type->complex_type() != NULL))
1617 this->type_ = context->type;
1618 else if (!context->may_be_abstract)
1619 this->type_ = Type::lookup_integer_type("int");
1620 }
1621
1622 // Return true if the integer VAL fits in the range of the type TYPE.
1623 // Otherwise give an error and return false. TYPE may be NULL.
1624
1625 bool
1626 Integer_expression::check_constant(mpz_t val, Type* type,
1627 source_location location)
1628 {
1629 if (type == NULL)
1630 return true;
1631 Integer_type* itype = type->integer_type();
1632 if (itype == NULL || itype->is_abstract())
1633 return true;
1634
1635 int bits = mpz_sizeinbase(val, 2);
1636
1637 if (itype->is_unsigned())
1638 {
1639 // For an unsigned type we can only accept a nonnegative number,
1640 // and we must be able to represent at least BITS.
1641 if (mpz_sgn(val) >= 0
1642 && bits <= itype->bits())
1643 return true;
1644 }
1645 else
1646 {
1647 // For a signed type we need an extra bit to indicate the sign.
1648 // We have to handle the most negative integer specially.
1649 if (bits + 1 <= itype->bits()
1650 || (bits <= itype->bits()
1651 && mpz_sgn(val) < 0
1652 && (mpz_scan1(val, 0)
1653 == static_cast<unsigned long>(itype->bits() - 1))
1654 && mpz_scan0(val, itype->bits()) == ULONG_MAX))
1655 return true;
1656 }
1657
1658 error_at(location, "integer constant overflow");
1659 return false;
1660 }
1661
1662 // Check the type of an integer constant.
1663
1664 void
1665 Integer_expression::do_check_types(Gogo*)
1666 {
1667 if (this->type_ == NULL)
1668 return;
1669 if (!Integer_expression::check_constant(this->val_, this->type_,
1670 this->location()))
1671 this->set_is_error();
1672 }
1673
1674 // Get a tree for an integer constant.
1675
1676 tree
1677 Integer_expression::do_get_tree(Translate_context* context)
1678 {
1679 Gogo* gogo = context->gogo();
1680 tree type;
1681 if (this->type_ != NULL && !this->type_->is_abstract())
1682 type = this->type_->get_tree(gogo);
1683 else if (this->type_ != NULL && this->type_->float_type() != NULL)
1684 {
1685 // We are converting to an abstract floating point type.
1686 type = Type::lookup_float_type("float64")->get_tree(gogo);
1687 }
1688 else if (this->type_ != NULL && this->type_->complex_type() != NULL)
1689 {
1690 // We are converting to an abstract complex type.
1691 type = Type::lookup_complex_type("complex128")->get_tree(gogo);
1692 }
1693 else
1694 {
1695 // If we still have an abstract type here, then this is being
1696 // used in a constant expression which didn't get reduced for
1697 // some reason. Use a type which will fit the value. We use <,
1698 // not <=, because we need an extra bit for the sign bit.
1699 int bits = mpz_sizeinbase(this->val_, 2);
1700 if (bits < INT_TYPE_SIZE)
1701 type = Type::lookup_integer_type("int")->get_tree(gogo);
1702 else if (bits < 64)
1703 type = Type::lookup_integer_type("int64")->get_tree(gogo);
1704 else
1705 type = long_long_integer_type_node;
1706 }
1707 return Expression::integer_constant_tree(this->val_, type);
1708 }
1709
1710 // Write VAL to export data.
1711
1712 void
1713 Integer_expression::export_integer(Export* exp, const mpz_t val)
1714 {
1715 char* s = mpz_get_str(NULL, 10, val);
1716 exp->write_c_string(s);
1717 free(s);
1718 }
1719
1720 // Export an integer in a constant expression.
1721
1722 void
1723 Integer_expression::do_export(Export* exp) const
1724 {
1725 Integer_expression::export_integer(exp, this->val_);
1726 // A trailing space lets us reliably identify the end of the number.
1727 exp->write_c_string(" ");
1728 }
1729
1730 // Import an integer, floating point, or complex value. This handles
1731 // all these types because they all start with digits.
1732
1733 Expression*
1734 Integer_expression::do_import(Import* imp)
1735 {
1736 std::string num = imp->read_identifier();
1737 imp->require_c_string(" ");
1738 if (!num.empty() && num[num.length() - 1] == 'i')
1739 {
1740 mpfr_t real;
1741 size_t plus_pos = num.find('+', 1);
1742 size_t minus_pos = num.find('-', 1);
1743 size_t pos;
1744 if (plus_pos == std::string::npos)
1745 pos = minus_pos;
1746 else if (minus_pos == std::string::npos)
1747 pos = plus_pos;
1748 else
1749 {
1750 error_at(imp->location(), "bad number in import data: %qs",
1751 num.c_str());
1752 return Expression::make_error(imp->location());
1753 }
1754 if (pos == std::string::npos)
1755 mpfr_set_ui(real, 0, GMP_RNDN);
1756 else
1757 {
1758 std::string real_str = num.substr(0, pos);
1759 if (mpfr_init_set_str(real, real_str.c_str(), 10, GMP_RNDN) != 0)
1760 {
1761 error_at(imp->location(), "bad number in import data: %qs",
1762 real_str.c_str());
1763 return Expression::make_error(imp->location());
1764 }
1765 }
1766
1767 std::string imag_str;
1768 if (pos == std::string::npos)
1769 imag_str = num;
1770 else
1771 imag_str = num.substr(pos);
1772 imag_str = imag_str.substr(0, imag_str.size() - 1);
1773 mpfr_t imag;
1774 if (mpfr_init_set_str(imag, imag_str.c_str(), 10, GMP_RNDN) != 0)
1775 {
1776 error_at(imp->location(), "bad number in import data: %qs",
1777 imag_str.c_str());
1778 return Expression::make_error(imp->location());
1779 }
1780 Expression* ret = Expression::make_complex(&real, &imag, NULL,
1781 imp->location());
1782 mpfr_clear(real);
1783 mpfr_clear(imag);
1784 return ret;
1785 }
1786 else if (num.find('.') == std::string::npos
1787 && num.find('E') == std::string::npos)
1788 {
1789 mpz_t val;
1790 if (mpz_init_set_str(val, num.c_str(), 10) != 0)
1791 {
1792 error_at(imp->location(), "bad number in import data: %qs",
1793 num.c_str());
1794 return Expression::make_error(imp->location());
1795 }
1796 Expression* ret = Expression::make_integer(&val, NULL, imp->location());
1797 mpz_clear(val);
1798 return ret;
1799 }
1800 else
1801 {
1802 mpfr_t val;
1803 if (mpfr_init_set_str(val, num.c_str(), 10, GMP_RNDN) != 0)
1804 {
1805 error_at(imp->location(), "bad number in import data: %qs",
1806 num.c_str());
1807 return Expression::make_error(imp->location());
1808 }
1809 Expression* ret = Expression::make_float(&val, NULL, imp->location());
1810 mpfr_clear(val);
1811 return ret;
1812 }
1813 }
1814
1815 // Build a new integer value.
1816
1817 Expression*
1818 Expression::make_integer(const mpz_t* val, Type* type,
1819 source_location location)
1820 {
1821 return new Integer_expression(val, type, location);
1822 }
1823
1824 // Floats.
1825
1826 class Float_expression : public Expression
1827 {
1828 public:
1829 Float_expression(const mpfr_t* val, Type* type, source_location location)
1830 : Expression(EXPRESSION_FLOAT, location),
1831 type_(type)
1832 {
1833 mpfr_init_set(this->val_, *val, GMP_RNDN);
1834 }
1835
1836 // Constrain VAL to fit into TYPE.
1837 static void
1838 constrain_float(mpfr_t val, Type* type);
1839
1840 // Return whether VAL fits in the type.
1841 static bool
1842 check_constant(mpfr_t val, Type*, source_location);
1843
1844 // Write VAL to export data.
1845 static void
1846 export_float(Export* exp, const mpfr_t val);
1847
1848 protected:
1849 bool
1850 do_is_constant() const
1851 { return true; }
1852
1853 bool
1854 do_float_constant_value(mpfr_t val, Type**) const;
1855
1856 Type*
1857 do_type();
1858
1859 void
1860 do_determine_type(const Type_context*);
1861
1862 void
1863 do_check_types(Gogo*);
1864
1865 Expression*
1866 do_copy()
1867 { return Expression::make_float(&this->val_, this->type_,
1868 this->location()); }
1869
1870 tree
1871 do_get_tree(Translate_context*);
1872
1873 void
1874 do_export(Export*) const;
1875
1876 private:
1877 // The floating point value.
1878 mpfr_t val_;
1879 // The type so far.
1880 Type* type_;
1881 };
1882
1883 // Constrain VAL to fit into TYPE.
1884
1885 void
1886 Float_expression::constrain_float(mpfr_t val, Type* type)
1887 {
1888 Float_type* ftype = type->float_type();
1889 if (ftype != NULL && !ftype->is_abstract())
1890 {
1891 tree type_tree = ftype->type_tree();
1892 REAL_VALUE_TYPE rvt;
1893 real_from_mpfr(&rvt, val, type_tree, GMP_RNDN);
1894 real_convert(&rvt, TYPE_MODE(type_tree), &rvt);
1895 mpfr_from_real(val, &rvt, GMP_RNDN);
1896 }
1897 }
1898
1899 // Return a floating point constant value.
1900
1901 bool
1902 Float_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
1903 {
1904 if (this->type_ != NULL)
1905 *ptype = this->type_;
1906 mpfr_set(val, this->val_, GMP_RNDN);
1907 return true;
1908 }
1909
1910 // Return the current type. If we haven't set the type yet, we return
1911 // an abstract float type.
1912
1913 Type*
1914 Float_expression::do_type()
1915 {
1916 if (this->type_ == NULL)
1917 this->type_ = Type::make_abstract_float_type();
1918 return this->type_;
1919 }
1920
1921 // Set the type of the float value. Here we may switch from an
1922 // abstract type to a real type.
1923
1924 void
1925 Float_expression::do_determine_type(const Type_context* context)
1926 {
1927 if (this->type_ != NULL && !this->type_->is_abstract())
1928 ;
1929 else if (context->type != NULL
1930 && (context->type->integer_type() != NULL
1931 || context->type->float_type() != NULL
1932 || context->type->complex_type() != NULL))
1933 this->type_ = context->type;
1934 else if (!context->may_be_abstract)
1935 this->type_ = Type::lookup_float_type("float");
1936 }
1937
1938 // Return true if the floating point value VAL fits in the range of
1939 // the type TYPE. Otherwise give an error and return false. TYPE may
1940 // be NULL.
1941
1942 bool
1943 Float_expression::check_constant(mpfr_t val, Type* type,
1944 source_location location)
1945 {
1946 if (type == NULL)
1947 return true;
1948 Float_type* ftype = type->float_type();
1949 if (ftype == NULL || ftype->is_abstract())
1950 return true;
1951
1952 // A NaN or Infinity always fits in the range of the type.
1953 if (mpfr_nan_p(val) || mpfr_inf_p(val) || mpfr_zero_p(val))
1954 return true;
1955
1956 mp_exp_t exp = mpfr_get_exp(val);
1957 mp_exp_t max_exp;
1958 switch (ftype->bits())
1959 {
1960 case 32:
1961 max_exp = 128;
1962 break;
1963 case 64:
1964 max_exp = 1024;
1965 break;
1966 default:
1967 gcc_unreachable();
1968 }
1969 if (exp > max_exp)
1970 {
1971 error_at(location, "floating point constant overflow");
1972 return false;
1973 }
1974 return true;
1975 }
1976
1977 // Check the type of a float value.
1978
1979 void
1980 Float_expression::do_check_types(Gogo*)
1981 {
1982 if (this->type_ == NULL)
1983 return;
1984
1985 if (!Float_expression::check_constant(this->val_, this->type_,
1986 this->location()))
1987 this->set_is_error();
1988
1989 Integer_type* integer_type = this->type_->integer_type();
1990 if (integer_type != NULL)
1991 {
1992 if (!mpfr_integer_p(this->val_))
1993 this->report_error(_("floating point constant truncated to integer"));
1994 else
1995 {
1996 gcc_assert(!integer_type->is_abstract());
1997 mpz_t ival;
1998 mpz_init(ival);
1999 mpfr_get_z(ival, this->val_, GMP_RNDN);
2000 Integer_expression::check_constant(ival, integer_type,
2001 this->location());
2002 mpz_clear(ival);
2003 }
2004 }
2005 }
2006
2007 // Get a tree for a float constant.
2008
2009 tree
2010 Float_expression::do_get_tree(Translate_context* context)
2011 {
2012 Gogo* gogo = context->gogo();
2013 tree type;
2014 if (this->type_ != NULL && !this->type_->is_abstract())
2015 type = this->type_->get_tree(gogo);
2016 else if (this->type_ != NULL && this->type_->integer_type() != NULL)
2017 {
2018 // We have an abstract integer type. We just hope for the best.
2019 type = Type::lookup_integer_type("int")->get_tree(gogo);
2020 }
2021 else
2022 {
2023 // If we still have an abstract type here, then this is being
2024 // used in a constant expression which didn't get reduced. We
2025 // just use float64 and hope for the best.
2026 type = Type::lookup_float_type("float64")->get_tree(gogo);
2027 }
2028 return Expression::float_constant_tree(this->val_, type);
2029 }
2030
2031 // Write a floating point number to export data.
2032
2033 void
2034 Float_expression::export_float(Export *exp, const mpfr_t val)
2035 {
2036 mp_exp_t exponent;
2037 char* s = mpfr_get_str(NULL, &exponent, 10, 0, val, GMP_RNDN);
2038 if (*s == '-')
2039 exp->write_c_string("-");
2040 exp->write_c_string("0.");
2041 exp->write_c_string(*s == '-' ? s + 1 : s);
2042 mpfr_free_str(s);
2043 char buf[30];
2044 snprintf(buf, sizeof buf, "E%ld", exponent);
2045 exp->write_c_string(buf);
2046 }
2047
2048 // Export a floating point number in a constant expression.
2049
2050 void
2051 Float_expression::do_export(Export* exp) const
2052 {
2053 Float_expression::export_float(exp, this->val_);
2054 // A trailing space lets us reliably identify the end of the number.
2055 exp->write_c_string(" ");
2056 }
2057
2058 // Make a float expression.
2059
2060 Expression*
2061 Expression::make_float(const mpfr_t* val, Type* type, source_location location)
2062 {
2063 return new Float_expression(val, type, location);
2064 }
2065
2066 // Complex numbers.
2067
2068 class Complex_expression : public Expression
2069 {
2070 public:
2071 Complex_expression(const mpfr_t* real, const mpfr_t* imag, Type* type,
2072 source_location location)
2073 : Expression(EXPRESSION_COMPLEX, location),
2074 type_(type)
2075 {
2076 mpfr_init_set(this->real_, *real, GMP_RNDN);
2077 mpfr_init_set(this->imag_, *imag, GMP_RNDN);
2078 }
2079
2080 // Constrain REAL/IMAG to fit into TYPE.
2081 static void
2082 constrain_complex(mpfr_t real, mpfr_t imag, Type* type);
2083
2084 // Return whether REAL/IMAG fits in the type.
2085 static bool
2086 check_constant(mpfr_t real, mpfr_t imag, Type*, source_location);
2087
2088 // Write REAL/IMAG to export data.
2089 static void
2090 export_complex(Export* exp, const mpfr_t real, const mpfr_t val);
2091
2092 protected:
2093 bool
2094 do_is_constant() const
2095 { return true; }
2096
2097 bool
2098 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const;
2099
2100 Type*
2101 do_type();
2102
2103 void
2104 do_determine_type(const Type_context*);
2105
2106 void
2107 do_check_types(Gogo*);
2108
2109 Expression*
2110 do_copy()
2111 {
2112 return Expression::make_complex(&this->real_, &this->imag_, this->type_,
2113 this->location());
2114 }
2115
2116 tree
2117 do_get_tree(Translate_context*);
2118
2119 void
2120 do_export(Export*) const;
2121
2122 private:
2123 // The real part.
2124 mpfr_t real_;
2125 // The imaginary part;
2126 mpfr_t imag_;
2127 // The type if known.
2128 Type* type_;
2129 };
2130
2131 // Constrain REAL/IMAG to fit into TYPE.
2132
2133 void
2134 Complex_expression::constrain_complex(mpfr_t real, mpfr_t imag, Type* type)
2135 {
2136 Complex_type* ctype = type->complex_type();
2137 if (ctype != NULL && !ctype->is_abstract())
2138 {
2139 tree type_tree = ctype->type_tree();
2140
2141 REAL_VALUE_TYPE rvt;
2142 real_from_mpfr(&rvt, real, TREE_TYPE(type_tree), GMP_RNDN);
2143 real_convert(&rvt, TYPE_MODE(TREE_TYPE(type_tree)), &rvt);
2144 mpfr_from_real(real, &rvt, GMP_RNDN);
2145
2146 real_from_mpfr(&rvt, imag, TREE_TYPE(type_tree), GMP_RNDN);
2147 real_convert(&rvt, TYPE_MODE(TREE_TYPE(type_tree)), &rvt);
2148 mpfr_from_real(imag, &rvt, GMP_RNDN);
2149 }
2150 }
2151
2152 // Return a complex constant value.
2153
2154 bool
2155 Complex_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
2156 Type** ptype) const
2157 {
2158 if (this->type_ != NULL)
2159 *ptype = this->type_;
2160 mpfr_set(real, this->real_, GMP_RNDN);
2161 mpfr_set(imag, this->imag_, GMP_RNDN);
2162 return true;
2163 }
2164
2165 // Return the current type. If we haven't set the type yet, we return
2166 // an abstract complex type.
2167
2168 Type*
2169 Complex_expression::do_type()
2170 {
2171 if (this->type_ == NULL)
2172 this->type_ = Type::make_abstract_complex_type();
2173 return this->type_;
2174 }
2175
2176 // Set the type of the complex value. Here we may switch from an
2177 // abstract type to a real type.
2178
2179 void
2180 Complex_expression::do_determine_type(const Type_context* context)
2181 {
2182 if (this->type_ != NULL && !this->type_->is_abstract())
2183 ;
2184 else if (context->type != NULL
2185 && context->type->complex_type() != NULL)
2186 this->type_ = context->type;
2187 else if (!context->may_be_abstract)
2188 this->type_ = Type::lookup_complex_type("complex");
2189 }
2190
2191 // Return true if the complex value REAL/IMAG fits in the range of the
2192 // type TYPE. Otherwise give an error and return false. TYPE may be
2193 // NULL.
2194
2195 bool
2196 Complex_expression::check_constant(mpfr_t real, mpfr_t imag, Type* type,
2197 source_location location)
2198 {
2199 if (type == NULL)
2200 return true;
2201 Complex_type* ctype = type->complex_type();
2202 if (ctype == NULL || ctype->is_abstract())
2203 return true;
2204
2205 mp_exp_t max_exp;
2206 switch (ctype->bits())
2207 {
2208 case 64:
2209 max_exp = 128;
2210 break;
2211 case 128:
2212 max_exp = 1024;
2213 break;
2214 default:
2215 gcc_unreachable();
2216 }
2217
2218 // A NaN or Infinity always fits in the range of the type.
2219 if (!mpfr_nan_p(real) && !mpfr_inf_p(real) && !mpfr_zero_p(real))
2220 {
2221 if (mpfr_get_exp(real) > max_exp)
2222 {
2223 error_at(location, "complex real part constant overflow");
2224 return false;
2225 }
2226 }
2227
2228 if (!mpfr_nan_p(imag) && !mpfr_inf_p(imag) && !mpfr_zero_p(imag))
2229 {
2230 if (mpfr_get_exp(imag) > max_exp)
2231 {
2232 error_at(location, "complex imaginary part constant overflow");
2233 return false;
2234 }
2235 }
2236
2237 return true;
2238 }
2239
2240 // Check the type of a complex value.
2241
2242 void
2243 Complex_expression::do_check_types(Gogo*)
2244 {
2245 if (this->type_ == NULL)
2246 return;
2247
2248 if (!Complex_expression::check_constant(this->real_, this->imag_,
2249 this->type_, this->location()))
2250 this->set_is_error();
2251 }
2252
2253 // Get a tree for a complex constant.
2254
2255 tree
2256 Complex_expression::do_get_tree(Translate_context* context)
2257 {
2258 Gogo* gogo = context->gogo();
2259 tree type;
2260 if (this->type_ != NULL && !this->type_->is_abstract())
2261 type = this->type_->get_tree(gogo);
2262 else
2263 {
2264 // If we still have an abstract type here, this this is being
2265 // used in a constant expression which didn't get reduced. We
2266 // just use complex128 and hope for the best.
2267 type = Type::lookup_complex_type("complex128")->get_tree(gogo);
2268 }
2269 return Expression::complex_constant_tree(this->real_, this->imag_, type);
2270 }
2271
2272 // Write REAL/IMAG to export data.
2273
2274 void
2275 Complex_expression::export_complex(Export* exp, const mpfr_t real,
2276 const mpfr_t imag)
2277 {
2278 if (!mpfr_zero_p(real))
2279 {
2280 Float_expression::export_float(exp, real);
2281 if (mpfr_sgn(imag) > 0)
2282 exp->write_c_string("+");
2283 }
2284 Float_expression::export_float(exp, imag);
2285 exp->write_c_string("i");
2286 }
2287
2288 // Export a complex number in a constant expression.
2289
2290 void
2291 Complex_expression::do_export(Export* exp) const
2292 {
2293 Complex_expression::export_complex(exp, this->real_, this->imag_);
2294 // A trailing space lets us reliably identify the end of the number.
2295 exp->write_c_string(" ");
2296 }
2297
2298 // Make a complex expression.
2299
2300 Expression*
2301 Expression::make_complex(const mpfr_t* real, const mpfr_t* imag, Type* type,
2302 source_location location)
2303 {
2304 return new Complex_expression(real, imag, type, location);
2305 }
2306
2307 // Find a named object in an expression.
2308
2309 class Find_named_object : public Traverse
2310 {
2311 public:
2312 Find_named_object(Named_object* no)
2313 : Traverse(traverse_expressions),
2314 no_(no), found_(false)
2315 { }
2316
2317 // Whether we found the object.
2318 bool
2319 found() const
2320 { return this->found_; }
2321
2322 protected:
2323 int
2324 expression(Expression**);
2325
2326 private:
2327 // The object we are looking for.
2328 Named_object* no_;
2329 // Whether we found it.
2330 bool found_;
2331 };
2332
2333 // A reference to a const in an expression.
2334
2335 class Const_expression : public Expression
2336 {
2337 public:
2338 Const_expression(Named_object* constant, source_location location)
2339 : Expression(EXPRESSION_CONST_REFERENCE, location),
2340 constant_(constant), type_(NULL), seen_(false)
2341 { }
2342
2343 Named_object*
2344 named_object()
2345 { return this->constant_; }
2346
2347 const std::string&
2348 name() const
2349 { return this->constant_->name(); }
2350
2351 // Check that the initializer does not refer to the constant itself.
2352 void
2353 check_for_init_loop();
2354
2355 protected:
2356 Expression*
2357 do_lower(Gogo*, Named_object*, int);
2358
2359 bool
2360 do_is_constant() const
2361 { return true; }
2362
2363 bool
2364 do_integer_constant_value(bool, mpz_t val, Type**) const;
2365
2366 bool
2367 do_float_constant_value(mpfr_t val, Type**) const;
2368
2369 bool
2370 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const;
2371
2372 bool
2373 do_string_constant_value(std::string* val) const
2374 { return this->constant_->const_value()->expr()->string_constant_value(val); }
2375
2376 Type*
2377 do_type();
2378
2379 // The type of a const is set by the declaration, not the use.
2380 void
2381 do_determine_type(const Type_context*);
2382
2383 void
2384 do_check_types(Gogo*);
2385
2386 Expression*
2387 do_copy()
2388 { return this; }
2389
2390 tree
2391 do_get_tree(Translate_context* context);
2392
2393 // When exporting a reference to a const as part of a const
2394 // expression, we export the value. We ignore the fact that it has
2395 // a name.
2396 void
2397 do_export(Export* exp) const
2398 { this->constant_->const_value()->expr()->export_expression(exp); }
2399
2400 private:
2401 // The constant.
2402 Named_object* constant_;
2403 // The type of this reference. This is used if the constant has an
2404 // abstract type.
2405 Type* type_;
2406 // Used to prevent infinite recursion when a constant incorrectly
2407 // refers to itself.
2408 mutable bool seen_;
2409 };
2410
2411 // Lower a constant expression. This is where we convert the
2412 // predeclared constant iota into an integer value.
2413
2414 Expression*
2415 Const_expression::do_lower(Gogo* gogo, Named_object*, int iota_value)
2416 {
2417 if (this->constant_->const_value()->expr()->classification()
2418 == EXPRESSION_IOTA)
2419 {
2420 if (iota_value == -1)
2421 {
2422 error_at(this->location(),
2423 "iota is only defined in const declarations");
2424 iota_value = 0;
2425 }
2426 mpz_t val;
2427 mpz_init_set_ui(val, static_cast<unsigned long>(iota_value));
2428 Expression* ret = Expression::make_integer(&val, NULL,
2429 this->location());
2430 mpz_clear(val);
2431 return ret;
2432 }
2433
2434 // Make sure that the constant itself has been lowered.
2435 gogo->lower_constant(this->constant_);
2436
2437 return this;
2438 }
2439
2440 // Return an integer constant value.
2441
2442 bool
2443 Const_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
2444 Type** ptype) const
2445 {
2446 if (this->seen_)
2447 return false;
2448
2449 Type* ctype;
2450 if (this->type_ != NULL)
2451 ctype = this->type_;
2452 else
2453 ctype = this->constant_->const_value()->type();
2454 if (ctype != NULL && ctype->integer_type() == NULL)
2455 return false;
2456
2457 Expression* e = this->constant_->const_value()->expr();
2458
2459 this->seen_ = true;
2460
2461 Type* t;
2462 bool r = e->integer_constant_value(iota_is_constant, val, &t);
2463
2464 this->seen_ = false;
2465
2466 if (r
2467 && ctype != NULL
2468 && !Integer_expression::check_constant(val, ctype, this->location()))
2469 return false;
2470
2471 *ptype = ctype != NULL ? ctype : t;
2472 return r;
2473 }
2474
2475 // Return a floating point constant value.
2476
2477 bool
2478 Const_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
2479 {
2480 if (this->seen_)
2481 return false;
2482
2483 Type* ctype;
2484 if (this->type_ != NULL)
2485 ctype = this->type_;
2486 else
2487 ctype = this->constant_->const_value()->type();
2488 if (ctype != NULL && ctype->float_type() == NULL)
2489 return false;
2490
2491 this->seen_ = true;
2492
2493 Type* t;
2494 bool r = this->constant_->const_value()->expr()->float_constant_value(val,
2495 &t);
2496
2497 this->seen_ = false;
2498
2499 if (r && ctype != NULL)
2500 {
2501 if (!Float_expression::check_constant(val, ctype, this->location()))
2502 return false;
2503 Float_expression::constrain_float(val, ctype);
2504 }
2505 *ptype = ctype != NULL ? ctype : t;
2506 return r;
2507 }
2508
2509 // Return a complex constant value.
2510
2511 bool
2512 Const_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
2513 Type **ptype) const
2514 {
2515 if (this->seen_)
2516 return false;
2517
2518 Type* ctype;
2519 if (this->type_ != NULL)
2520 ctype = this->type_;
2521 else
2522 ctype = this->constant_->const_value()->type();
2523 if (ctype != NULL && ctype->complex_type() == NULL)
2524 return false;
2525
2526 this->seen_ = true;
2527
2528 Type *t;
2529 bool r = this->constant_->const_value()->expr()->complex_constant_value(real,
2530 imag,
2531 &t);
2532
2533 this->seen_ = false;
2534
2535 if (r && ctype != NULL)
2536 {
2537 if (!Complex_expression::check_constant(real, imag, ctype,
2538 this->location()))
2539 return false;
2540 Complex_expression::constrain_complex(real, imag, ctype);
2541 }
2542 *ptype = ctype != NULL ? ctype : t;
2543 return r;
2544 }
2545
2546 // Return the type of the const reference.
2547
2548 Type*
2549 Const_expression::do_type()
2550 {
2551 if (this->type_ != NULL)
2552 return this->type_;
2553
2554 Named_constant* nc = this->constant_->const_value();
2555
2556 if (this->seen_ || nc->lowering())
2557 {
2558 this->report_error(_("constant refers to itself"));
2559 this->type_ = Type::make_error_type();
2560 return this->type_;
2561 }
2562
2563 this->seen_ = true;
2564
2565 Type* ret = nc->type();
2566
2567 if (ret != NULL)
2568 {
2569 this->seen_ = false;
2570 return ret;
2571 }
2572
2573 // During parsing, a named constant may have a NULL type, but we
2574 // must not return a NULL type here.
2575 ret = nc->expr()->type();
2576
2577 this->seen_ = false;
2578
2579 return ret;
2580 }
2581
2582 // Set the type of the const reference.
2583
2584 void
2585 Const_expression::do_determine_type(const Type_context* context)
2586 {
2587 Type* ctype = this->constant_->const_value()->type();
2588 Type* cetype = (ctype != NULL
2589 ? ctype
2590 : this->constant_->const_value()->expr()->type());
2591 if (ctype != NULL && !ctype->is_abstract())
2592 ;
2593 else if (context->type != NULL
2594 && (context->type->integer_type() != NULL
2595 || context->type->float_type() != NULL
2596 || context->type->complex_type() != NULL)
2597 && (cetype->integer_type() != NULL
2598 || cetype->float_type() != NULL
2599 || cetype->complex_type() != NULL))
2600 this->type_ = context->type;
2601 else if (context->type != NULL
2602 && context->type->is_string_type()
2603 && cetype->is_string_type())
2604 this->type_ = context->type;
2605 else if (context->type != NULL
2606 && context->type->is_boolean_type()
2607 && cetype->is_boolean_type())
2608 this->type_ = context->type;
2609 else if (!context->may_be_abstract)
2610 {
2611 if (cetype->is_abstract())
2612 cetype = cetype->make_non_abstract_type();
2613 this->type_ = cetype;
2614 }
2615 }
2616
2617 // Check for a loop in which the initializer of a constant refers to
2618 // the constant itself.
2619
2620 void
2621 Const_expression::check_for_init_loop()
2622 {
2623 if (this->type_ != NULL && this->type_->is_error_type())
2624 return;
2625
2626 if (this->seen_)
2627 {
2628 this->report_error(_("constant refers to itself"));
2629 this->type_ = Type::make_error_type();
2630 return;
2631 }
2632
2633 Expression* init = this->constant_->const_value()->expr();
2634 Find_named_object find_named_object(this->constant_);
2635
2636 this->seen_ = true;
2637 Expression::traverse(&init, &find_named_object);
2638 this->seen_ = false;
2639
2640 if (find_named_object.found())
2641 {
2642 if (this->type_ == NULL || !this->type_->is_error_type())
2643 {
2644 this->report_error(_("constant refers to itself"));
2645 this->type_ = Type::make_error_type();
2646 }
2647 return;
2648 }
2649 }
2650
2651 // Check types of a const reference.
2652
2653 void
2654 Const_expression::do_check_types(Gogo*)
2655 {
2656 if (this->type_ != NULL && this->type_->is_error_type())
2657 return;
2658
2659 this->check_for_init_loop();
2660
2661 if (this->type_ == NULL || this->type_->is_abstract())
2662 return;
2663
2664 // Check for integer overflow.
2665 if (this->type_->integer_type() != NULL)
2666 {
2667 mpz_t ival;
2668 mpz_init(ival);
2669 Type* dummy;
2670 if (!this->integer_constant_value(true, ival, &dummy))
2671 {
2672 mpfr_t fval;
2673 mpfr_init(fval);
2674 Expression* cexpr = this->constant_->const_value()->expr();
2675 if (cexpr->float_constant_value(fval, &dummy))
2676 {
2677 if (!mpfr_integer_p(fval))
2678 this->report_error(_("floating point constant "
2679 "truncated to integer"));
2680 else
2681 {
2682 mpfr_get_z(ival, fval, GMP_RNDN);
2683 Integer_expression::check_constant(ival, this->type_,
2684 this->location());
2685 }
2686 }
2687 mpfr_clear(fval);
2688 }
2689 mpz_clear(ival);
2690 }
2691 }
2692
2693 // Return a tree for the const reference.
2694
2695 tree
2696 Const_expression::do_get_tree(Translate_context* context)
2697 {
2698 Gogo* gogo = context->gogo();
2699 tree type_tree;
2700 if (this->type_ == NULL)
2701 type_tree = NULL_TREE;
2702 else
2703 {
2704 type_tree = this->type_->get_tree(gogo);
2705 if (type_tree == error_mark_node)
2706 return error_mark_node;
2707 }
2708
2709 // If the type has been set for this expression, but the underlying
2710 // object is an abstract int or float, we try to get the abstract
2711 // value. Otherwise we may lose something in the conversion.
2712 if (this->type_ != NULL
2713 && (this->constant_->const_value()->type() == NULL
2714 || this->constant_->const_value()->type()->is_abstract()))
2715 {
2716 Expression* expr = this->constant_->const_value()->expr();
2717 mpz_t ival;
2718 mpz_init(ival);
2719 Type* t;
2720 if (expr->integer_constant_value(true, ival, &t))
2721 {
2722 tree ret = Expression::integer_constant_tree(ival, type_tree);
2723 mpz_clear(ival);
2724 return ret;
2725 }
2726 mpz_clear(ival);
2727
2728 mpfr_t fval;
2729 mpfr_init(fval);
2730 if (expr->float_constant_value(fval, &t))
2731 {
2732 tree ret = Expression::float_constant_tree(fval, type_tree);
2733 mpfr_clear(fval);
2734 return ret;
2735 }
2736
2737 mpfr_t imag;
2738 mpfr_init(imag);
2739 if (expr->complex_constant_value(fval, imag, &t))
2740 {
2741 tree ret = Expression::complex_constant_tree(fval, imag, type_tree);
2742 mpfr_clear(fval);
2743 mpfr_clear(imag);
2744 return ret;
2745 }
2746 mpfr_clear(imag);
2747 mpfr_clear(fval);
2748 }
2749
2750 tree const_tree = this->constant_->get_tree(gogo, context->function());
2751 if (this->type_ == NULL
2752 || const_tree == error_mark_node
2753 || TREE_TYPE(const_tree) == error_mark_node)
2754 return const_tree;
2755
2756 tree ret;
2757 if (TYPE_MAIN_VARIANT(type_tree) == TYPE_MAIN_VARIANT(TREE_TYPE(const_tree)))
2758 ret = fold_convert(type_tree, const_tree);
2759 else if (TREE_CODE(type_tree) == INTEGER_TYPE)
2760 ret = fold(convert_to_integer(type_tree, const_tree));
2761 else if (TREE_CODE(type_tree) == REAL_TYPE)
2762 ret = fold(convert_to_real(type_tree, const_tree));
2763 else if (TREE_CODE(type_tree) == COMPLEX_TYPE)
2764 ret = fold(convert_to_complex(type_tree, const_tree));
2765 else
2766 gcc_unreachable();
2767 return ret;
2768 }
2769
2770 // Make a reference to a constant in an expression.
2771
2772 Expression*
2773 Expression::make_const_reference(Named_object* constant,
2774 source_location location)
2775 {
2776 return new Const_expression(constant, location);
2777 }
2778
2779 // Find a named object in an expression.
2780
2781 int
2782 Find_named_object::expression(Expression** pexpr)
2783 {
2784 switch ((*pexpr)->classification())
2785 {
2786 case Expression::EXPRESSION_CONST_REFERENCE:
2787 {
2788 Const_expression* ce = static_cast<Const_expression*>(*pexpr);
2789 if (ce->named_object() == this->no_)
2790 break;
2791
2792 // We need to check a constant initializer explicitly, as
2793 // loops here will not be caught by the loop checking for
2794 // variable initializers.
2795 ce->check_for_init_loop();
2796
2797 return TRAVERSE_CONTINUE;
2798 }
2799
2800 case Expression::EXPRESSION_VAR_REFERENCE:
2801 if ((*pexpr)->var_expression()->named_object() == this->no_)
2802 break;
2803 return TRAVERSE_CONTINUE;
2804 case Expression::EXPRESSION_FUNC_REFERENCE:
2805 if ((*pexpr)->func_expression()->named_object() == this->no_)
2806 break;
2807 return TRAVERSE_CONTINUE;
2808 default:
2809 return TRAVERSE_CONTINUE;
2810 }
2811 this->found_ = true;
2812 return TRAVERSE_EXIT;
2813 }
2814
2815 // The nil value.
2816
2817 class Nil_expression : public Expression
2818 {
2819 public:
2820 Nil_expression(source_location location)
2821 : Expression(EXPRESSION_NIL, location)
2822 { }
2823
2824 static Expression*
2825 do_import(Import*);
2826
2827 protected:
2828 bool
2829 do_is_constant() const
2830 { return true; }
2831
2832 Type*
2833 do_type()
2834 { return Type::make_nil_type(); }
2835
2836 void
2837 do_determine_type(const Type_context*)
2838 { }
2839
2840 Expression*
2841 do_copy()
2842 { return this; }
2843
2844 tree
2845 do_get_tree(Translate_context*)
2846 { return null_pointer_node; }
2847
2848 void
2849 do_export(Export* exp) const
2850 { exp->write_c_string("nil"); }
2851 };
2852
2853 // Import a nil expression.
2854
2855 Expression*
2856 Nil_expression::do_import(Import* imp)
2857 {
2858 imp->require_c_string("nil");
2859 return Expression::make_nil(imp->location());
2860 }
2861
2862 // Make a nil expression.
2863
2864 Expression*
2865 Expression::make_nil(source_location location)
2866 {
2867 return new Nil_expression(location);
2868 }
2869
2870 // The value of the predeclared constant iota. This is little more
2871 // than a marker. This will be lowered to an integer in
2872 // Const_expression::do_lower, which is where we know the value that
2873 // it should have.
2874
2875 class Iota_expression : public Parser_expression
2876 {
2877 public:
2878 Iota_expression(source_location location)
2879 : Parser_expression(EXPRESSION_IOTA, location)
2880 { }
2881
2882 protected:
2883 Expression*
2884 do_lower(Gogo*, Named_object*, int)
2885 { gcc_unreachable(); }
2886
2887 // There should only ever be one of these.
2888 Expression*
2889 do_copy()
2890 { gcc_unreachable(); }
2891 };
2892
2893 // Make an iota expression. This is only called for one case: the
2894 // value of the predeclared constant iota.
2895
2896 Expression*
2897 Expression::make_iota()
2898 {
2899 static Iota_expression iota_expression(UNKNOWN_LOCATION);
2900 return &iota_expression;
2901 }
2902
2903 // A type conversion expression.
2904
2905 class Type_conversion_expression : public Expression
2906 {
2907 public:
2908 Type_conversion_expression(Type* type, Expression* expr,
2909 source_location location)
2910 : Expression(EXPRESSION_CONVERSION, location),
2911 type_(type), expr_(expr), may_convert_function_types_(false)
2912 { }
2913
2914 // Return the type to which we are converting.
2915 Type*
2916 type() const
2917 { return this->type_; }
2918
2919 // Return the expression which we are converting.
2920 Expression*
2921 expr() const
2922 { return this->expr_; }
2923
2924 // Permit converting from one function type to another. This is
2925 // used internally for method expressions.
2926 void
2927 set_may_convert_function_types()
2928 {
2929 this->may_convert_function_types_ = true;
2930 }
2931
2932 // Import a type conversion expression.
2933 static Expression*
2934 do_import(Import*);
2935
2936 protected:
2937 int
2938 do_traverse(Traverse* traverse);
2939
2940 Expression*
2941 do_lower(Gogo*, Named_object*, int);
2942
2943 bool
2944 do_is_constant() const
2945 { return this->expr_->is_constant(); }
2946
2947 bool
2948 do_integer_constant_value(bool, mpz_t, Type**) const;
2949
2950 bool
2951 do_float_constant_value(mpfr_t, Type**) const;
2952
2953 bool
2954 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
2955
2956 bool
2957 do_string_constant_value(std::string*) const;
2958
2959 Type*
2960 do_type()
2961 { return this->type_; }
2962
2963 void
2964 do_determine_type(const Type_context*)
2965 {
2966 Type_context subcontext(this->type_, false);
2967 this->expr_->determine_type(&subcontext);
2968 }
2969
2970 void
2971 do_check_types(Gogo*);
2972
2973 Expression*
2974 do_copy()
2975 {
2976 return new Type_conversion_expression(this->type_, this->expr_->copy(),
2977 this->location());
2978 }
2979
2980 tree
2981 do_get_tree(Translate_context* context);
2982
2983 void
2984 do_export(Export*) const;
2985
2986 private:
2987 // The type to convert to.
2988 Type* type_;
2989 // The expression to convert.
2990 Expression* expr_;
2991 // True if this is permitted to convert function types. This is
2992 // used internally for method expressions.
2993 bool may_convert_function_types_;
2994 };
2995
2996 // Traversal.
2997
2998 int
2999 Type_conversion_expression::do_traverse(Traverse* traverse)
3000 {
3001 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
3002 || Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
3003 return TRAVERSE_EXIT;
3004 return TRAVERSE_CONTINUE;
3005 }
3006
3007 // Convert to a constant at lowering time.
3008
3009 Expression*
3010 Type_conversion_expression::do_lower(Gogo*, Named_object*, int)
3011 {
3012 Type* type = this->type_;
3013 Expression* val = this->expr_;
3014 source_location location = this->location();
3015
3016 if (type->integer_type() != NULL)
3017 {
3018 mpz_t ival;
3019 mpz_init(ival);
3020 Type* dummy;
3021 if (val->integer_constant_value(false, ival, &dummy))
3022 {
3023 if (!Integer_expression::check_constant(ival, type, location))
3024 mpz_set_ui(ival, 0);
3025 Expression* ret = Expression::make_integer(&ival, type, location);
3026 mpz_clear(ival);
3027 return ret;
3028 }
3029
3030 mpfr_t fval;
3031 mpfr_init(fval);
3032 if (val->float_constant_value(fval, &dummy))
3033 {
3034 if (!mpfr_integer_p(fval))
3035 {
3036 error_at(location,
3037 "floating point constant truncated to integer");
3038 return Expression::make_error(location);
3039 }
3040 mpfr_get_z(ival, fval, GMP_RNDN);
3041 if (!Integer_expression::check_constant(ival, type, location))
3042 mpz_set_ui(ival, 0);
3043 Expression* ret = Expression::make_integer(&ival, type, location);
3044 mpfr_clear(fval);
3045 mpz_clear(ival);
3046 return ret;
3047 }
3048 mpfr_clear(fval);
3049 mpz_clear(ival);
3050 }
3051
3052 if (type->float_type() != NULL)
3053 {
3054 mpfr_t fval;
3055 mpfr_init(fval);
3056 Type* dummy;
3057 if (val->float_constant_value(fval, &dummy))
3058 {
3059 if (!Float_expression::check_constant(fval, type, location))
3060 mpfr_set_ui(fval, 0, GMP_RNDN);
3061 Float_expression::constrain_float(fval, type);
3062 Expression *ret = Expression::make_float(&fval, type, location);
3063 mpfr_clear(fval);
3064 return ret;
3065 }
3066 mpfr_clear(fval);
3067 }
3068
3069 if (type->complex_type() != NULL)
3070 {
3071 mpfr_t real;
3072 mpfr_t imag;
3073 mpfr_init(real);
3074 mpfr_init(imag);
3075 Type* dummy;
3076 if (val->complex_constant_value(real, imag, &dummy))
3077 {
3078 if (!Complex_expression::check_constant(real, imag, type, location))
3079 {
3080 mpfr_set_ui(real, 0, GMP_RNDN);
3081 mpfr_set_ui(imag, 0, GMP_RNDN);
3082 }
3083 Complex_expression::constrain_complex(real, imag, type);
3084 Expression* ret = Expression::make_complex(&real, &imag, type,
3085 location);
3086 mpfr_clear(real);
3087 mpfr_clear(imag);
3088 return ret;
3089 }
3090 mpfr_clear(real);
3091 mpfr_clear(imag);
3092 }
3093
3094 if (type->is_open_array_type() && type->named_type() == NULL)
3095 {
3096 Type* element_type = type->array_type()->element_type()->forwarded();
3097 bool is_byte = element_type == Type::lookup_integer_type("uint8");
3098 bool is_int = element_type == Type::lookup_integer_type("int");
3099 if (is_byte || is_int)
3100 {
3101 std::string s;
3102 if (val->string_constant_value(&s))
3103 {
3104 Expression_list* vals = new Expression_list();
3105 if (is_byte)
3106 {
3107 for (std::string::const_iterator p = s.begin();
3108 p != s.end();
3109 p++)
3110 {
3111 mpz_t val;
3112 mpz_init_set_ui(val, static_cast<unsigned char>(*p));
3113 Expression* v = Expression::make_integer(&val,
3114 element_type,
3115 location);
3116 vals->push_back(v);
3117 mpz_clear(val);
3118 }
3119 }
3120 else
3121 {
3122 const char *p = s.data();
3123 const char *pend = s.data() + s.length();
3124 while (p < pend)
3125 {
3126 unsigned int c;
3127 int adv = Lex::fetch_char(p, &c);
3128 if (adv == 0)
3129 {
3130 warning_at(this->location(), 0,
3131 "invalid UTF-8 encoding");
3132 adv = 1;
3133 }
3134 p += adv;
3135 mpz_t val;
3136 mpz_init_set_ui(val, c);
3137 Expression* v = Expression::make_integer(&val,
3138 element_type,
3139 location);
3140 vals->push_back(v);
3141 mpz_clear(val);
3142 }
3143 }
3144
3145 return Expression::make_slice_composite_literal(type, vals,
3146 location);
3147 }
3148 }
3149 }
3150
3151 return this;
3152 }
3153
3154 // Return the constant integer value if there is one.
3155
3156 bool
3157 Type_conversion_expression::do_integer_constant_value(bool iota_is_constant,
3158 mpz_t val,
3159 Type** ptype) const
3160 {
3161 if (this->type_->integer_type() == NULL)
3162 return false;
3163
3164 mpz_t ival;
3165 mpz_init(ival);
3166 Type* dummy;
3167 if (this->expr_->integer_constant_value(iota_is_constant, ival, &dummy))
3168 {
3169 if (!Integer_expression::check_constant(ival, this->type_,
3170 this->location()))
3171 {
3172 mpz_clear(ival);
3173 return false;
3174 }
3175 mpz_set(val, ival);
3176 mpz_clear(ival);
3177 *ptype = this->type_;
3178 return true;
3179 }
3180 mpz_clear(ival);
3181
3182 mpfr_t fval;
3183 mpfr_init(fval);
3184 if (this->expr_->float_constant_value(fval, &dummy))
3185 {
3186 mpfr_get_z(val, fval, GMP_RNDN);
3187 mpfr_clear(fval);
3188 if (!Integer_expression::check_constant(val, this->type_,
3189 this->location()))
3190 return false;
3191 *ptype = this->type_;
3192 return true;
3193 }
3194 mpfr_clear(fval);
3195
3196 return false;
3197 }
3198
3199 // Return the constant floating point value if there is one.
3200
3201 bool
3202 Type_conversion_expression::do_float_constant_value(mpfr_t val,
3203 Type** ptype) const
3204 {
3205 if (this->type_->float_type() == NULL)
3206 return false;
3207
3208 mpfr_t fval;
3209 mpfr_init(fval);
3210 Type* dummy;
3211 if (this->expr_->float_constant_value(fval, &dummy))
3212 {
3213 if (!Float_expression::check_constant(fval, this->type_,
3214 this->location()))
3215 {
3216 mpfr_clear(fval);
3217 return false;
3218 }
3219 mpfr_set(val, fval, GMP_RNDN);
3220 mpfr_clear(fval);
3221 Float_expression::constrain_float(val, this->type_);
3222 *ptype = this->type_;
3223 return true;
3224 }
3225 mpfr_clear(fval);
3226
3227 return false;
3228 }
3229
3230 // Return the constant complex value if there is one.
3231
3232 bool
3233 Type_conversion_expression::do_complex_constant_value(mpfr_t real,
3234 mpfr_t imag,
3235 Type **ptype) const
3236 {
3237 if (this->type_->complex_type() == NULL)
3238 return false;
3239
3240 mpfr_t rval;
3241 mpfr_t ival;
3242 mpfr_init(rval);
3243 mpfr_init(ival);
3244 Type* dummy;
3245 if (this->expr_->complex_constant_value(rval, ival, &dummy))
3246 {
3247 if (!Complex_expression::check_constant(rval, ival, this->type_,
3248 this->location()))
3249 {
3250 mpfr_clear(rval);
3251 mpfr_clear(ival);
3252 return false;
3253 }
3254 mpfr_set(real, rval, GMP_RNDN);
3255 mpfr_set(imag, ival, GMP_RNDN);
3256 mpfr_clear(rval);
3257 mpfr_clear(ival);
3258 Complex_expression::constrain_complex(real, imag, this->type_);
3259 *ptype = this->type_;
3260 return true;
3261 }
3262 mpfr_clear(rval);
3263 mpfr_clear(ival);
3264
3265 return false;
3266 }
3267
3268 // Return the constant string value if there is one.
3269
3270 bool
3271 Type_conversion_expression::do_string_constant_value(std::string* val) const
3272 {
3273 if (this->type_->is_string_type()
3274 && this->expr_->type()->integer_type() != NULL)
3275 {
3276 mpz_t ival;
3277 mpz_init(ival);
3278 Type* dummy;
3279 if (this->expr_->integer_constant_value(false, ival, &dummy))
3280 {
3281 unsigned long ulval = mpz_get_ui(ival);
3282 if (mpz_cmp_ui(ival, ulval) == 0)
3283 {
3284 Lex::append_char(ulval, true, val, this->location());
3285 mpz_clear(ival);
3286 return true;
3287 }
3288 }
3289 mpz_clear(ival);
3290 }
3291
3292 // FIXME: Could handle conversion from const []int here.
3293
3294 return false;
3295 }
3296
3297 // Check that types are convertible.
3298
3299 void
3300 Type_conversion_expression::do_check_types(Gogo*)
3301 {
3302 Type* type = this->type_;
3303 Type* expr_type = this->expr_->type();
3304 std::string reason;
3305
3306 if (type->is_error_type()
3307 || type->is_undefined()
3308 || expr_type->is_error_type()
3309 || expr_type->is_undefined())
3310 {
3311 // Make sure we emit an error for an undefined type.
3312 type->base();
3313 expr_type->base();
3314 this->set_is_error();
3315 return;
3316 }
3317
3318 if (this->may_convert_function_types_
3319 && type->function_type() != NULL
3320 && expr_type->function_type() != NULL)
3321 return;
3322
3323 if (Type::are_convertible(type, expr_type, &reason))
3324 return;
3325
3326 error_at(this->location(), "%s", reason.c_str());
3327 this->set_is_error();
3328 }
3329
3330 // Get a tree for a type conversion.
3331
3332 tree
3333 Type_conversion_expression::do_get_tree(Translate_context* context)
3334 {
3335 Gogo* gogo = context->gogo();
3336 tree type_tree = this->type_->get_tree(gogo);
3337 tree expr_tree = this->expr_->get_tree(context);
3338
3339 if (type_tree == error_mark_node
3340 || expr_tree == error_mark_node
3341 || TREE_TYPE(expr_tree) == error_mark_node)
3342 return error_mark_node;
3343
3344 if (TYPE_MAIN_VARIANT(type_tree) == TYPE_MAIN_VARIANT(TREE_TYPE(expr_tree)))
3345 return fold_convert(type_tree, expr_tree);
3346
3347 Type* type = this->type_;
3348 Type* expr_type = this->expr_->type();
3349 tree ret;
3350 if (type->interface_type() != NULL || expr_type->interface_type() != NULL)
3351 ret = Expression::convert_for_assignment(context, type, expr_type,
3352 expr_tree, this->location());
3353 else if (type->integer_type() != NULL)
3354 {
3355 if (expr_type->integer_type() != NULL
3356 || expr_type->float_type() != NULL
3357 || expr_type->is_unsafe_pointer_type())
3358 ret = fold(convert_to_integer(type_tree, expr_tree));
3359 else
3360 gcc_unreachable();
3361 }
3362 else if (type->float_type() != NULL)
3363 {
3364 if (expr_type->integer_type() != NULL
3365 || expr_type->float_type() != NULL)
3366 ret = fold(convert_to_real(type_tree, expr_tree));
3367 else
3368 gcc_unreachable();
3369 }
3370 else if (type->complex_type() != NULL)
3371 {
3372 if (expr_type->complex_type() != NULL)
3373 ret = fold(convert_to_complex(type_tree, expr_tree));
3374 else
3375 gcc_unreachable();
3376 }
3377 else if (type->is_string_type()
3378 && expr_type->integer_type() != NULL)
3379 {
3380 expr_tree = fold_convert(integer_type_node, expr_tree);
3381 if (host_integerp(expr_tree, 0))
3382 {
3383 HOST_WIDE_INT intval = tree_low_cst(expr_tree, 0);
3384 std::string s;
3385 Lex::append_char(intval, true, &s, this->location());
3386 Expression* se = Expression::make_string(s, this->location());
3387 return se->get_tree(context);
3388 }
3389
3390 static tree int_to_string_fndecl;
3391 ret = Gogo::call_builtin(&int_to_string_fndecl,
3392 this->location(),
3393 "__go_int_to_string",
3394 1,
3395 type_tree,
3396 integer_type_node,
3397 fold_convert(integer_type_node, expr_tree));
3398 }
3399 else if (type->is_string_type()
3400 && (expr_type->array_type() != NULL
3401 || (expr_type->points_to() != NULL
3402 && expr_type->points_to()->array_type() != NULL)))
3403 {
3404 Type* t = expr_type;
3405 if (t->points_to() != NULL)
3406 {
3407 t = t->points_to();
3408 expr_tree = build_fold_indirect_ref(expr_tree);
3409 }
3410 if (!DECL_P(expr_tree))
3411 expr_tree = save_expr(expr_tree);
3412 Array_type* a = t->array_type();
3413 Type* e = a->element_type()->forwarded();
3414 gcc_assert(e->integer_type() != NULL);
3415 tree valptr = fold_convert(const_ptr_type_node,
3416 a->value_pointer_tree(gogo, expr_tree));
3417 tree len = a->length_tree(gogo, expr_tree);
3418 len = fold_convert_loc(this->location(), size_type_node, len);
3419 if (e->integer_type()->is_unsigned()
3420 && e->integer_type()->bits() == 8)
3421 {
3422 static tree byte_array_to_string_fndecl;
3423 ret = Gogo::call_builtin(&byte_array_to_string_fndecl,
3424 this->location(),
3425 "__go_byte_array_to_string",
3426 2,
3427 type_tree,
3428 const_ptr_type_node,
3429 valptr,
3430 size_type_node,
3431 len);
3432 }
3433 else
3434 {
3435 gcc_assert(e == Type::lookup_integer_type("int"));
3436 static tree int_array_to_string_fndecl;
3437 ret = Gogo::call_builtin(&int_array_to_string_fndecl,
3438 this->location(),
3439 "__go_int_array_to_string",
3440 2,
3441 type_tree,
3442 const_ptr_type_node,
3443 valptr,
3444 size_type_node,
3445 len);
3446 }
3447 }
3448 else if (type->is_open_array_type() && expr_type->is_string_type())
3449 {
3450 Type* e = type->array_type()->element_type()->forwarded();
3451 gcc_assert(e->integer_type() != NULL);
3452 if (e->integer_type()->is_unsigned()
3453 && e->integer_type()->bits() == 8)
3454 {
3455 static tree string_to_byte_array_fndecl;
3456 ret = Gogo::call_builtin(&string_to_byte_array_fndecl,
3457 this->location(),
3458 "__go_string_to_byte_array",
3459 1,
3460 type_tree,
3461 TREE_TYPE(expr_tree),
3462 expr_tree);
3463 }
3464 else
3465 {
3466 gcc_assert(e == Type::lookup_integer_type("int"));
3467 static tree string_to_int_array_fndecl;
3468 ret = Gogo::call_builtin(&string_to_int_array_fndecl,
3469 this->location(),
3470 "__go_string_to_int_array",
3471 1,
3472 type_tree,
3473 TREE_TYPE(expr_tree),
3474 expr_tree);
3475 }
3476 }
3477 else if ((type->is_unsafe_pointer_type()
3478 && expr_type->points_to() != NULL)
3479 || (expr_type->is_unsafe_pointer_type()
3480 && type->points_to() != NULL))
3481 ret = fold_convert(type_tree, expr_tree);
3482 else if (type->is_unsafe_pointer_type()
3483 && expr_type->integer_type() != NULL)
3484 ret = convert_to_pointer(type_tree, expr_tree);
3485 else if (this->may_convert_function_types_
3486 && type->function_type() != NULL
3487 && expr_type->function_type() != NULL)
3488 ret = fold_convert_loc(this->location(), type_tree, expr_tree);
3489 else
3490 ret = Expression::convert_for_assignment(context, type, expr_type,
3491 expr_tree, this->location());
3492
3493 return ret;
3494 }
3495
3496 // Output a type conversion in a constant expression.
3497
3498 void
3499 Type_conversion_expression::do_export(Export* exp) const
3500 {
3501 exp->write_c_string("convert(");
3502 exp->write_type(this->type_);
3503 exp->write_c_string(", ");
3504 this->expr_->export_expression(exp);
3505 exp->write_c_string(")");
3506 }
3507
3508 // Import a type conversion or a struct construction.
3509
3510 Expression*
3511 Type_conversion_expression::do_import(Import* imp)
3512 {
3513 imp->require_c_string("convert(");
3514 Type* type = imp->read_type();
3515 imp->require_c_string(", ");
3516 Expression* val = Expression::import_expression(imp);
3517 imp->require_c_string(")");
3518 return Expression::make_cast(type, val, imp->location());
3519 }
3520
3521 // Make a type cast expression.
3522
3523 Expression*
3524 Expression::make_cast(Type* type, Expression* val, source_location location)
3525 {
3526 if (type->is_error_type() || val->is_error_expression())
3527 return Expression::make_error(location);
3528 return new Type_conversion_expression(type, val, location);
3529 }
3530
3531 // Unary expressions.
3532
3533 class Unary_expression : public Expression
3534 {
3535 public:
3536 Unary_expression(Operator op, Expression* expr, source_location location)
3537 : Expression(EXPRESSION_UNARY, location),
3538 op_(op), escapes_(true), expr_(expr)
3539 { }
3540
3541 // Return the operator.
3542 Operator
3543 op() const
3544 { return this->op_; }
3545
3546 // Return the operand.
3547 Expression*
3548 operand() const
3549 { return this->expr_; }
3550
3551 // Record that an address expression does not escape.
3552 void
3553 set_does_not_escape()
3554 {
3555 gcc_assert(this->op_ == OPERATOR_AND);
3556 this->escapes_ = false;
3557 }
3558
3559 // Apply unary opcode OP to UVAL, setting VAL. Return true if this
3560 // could be done, false if not.
3561 static bool
3562 eval_integer(Operator op, Type* utype, mpz_t uval, mpz_t val,
3563 source_location);
3564
3565 // Apply unary opcode OP to UVAL, setting VAL. Return true if this
3566 // could be done, false if not.
3567 static bool
3568 eval_float(Operator op, mpfr_t uval, mpfr_t val);
3569
3570 // Apply unary opcode OP to UREAL/UIMAG, setting REAL/IMAG. Return
3571 // true if this could be done, false if not.
3572 static bool
3573 eval_complex(Operator op, mpfr_t ureal, mpfr_t uimag, mpfr_t real,
3574 mpfr_t imag);
3575
3576 static Expression*
3577 do_import(Import*);
3578
3579 protected:
3580 int
3581 do_traverse(Traverse* traverse)
3582 { return Expression::traverse(&this->expr_, traverse); }
3583
3584 Expression*
3585 do_lower(Gogo*, Named_object*, int);
3586
3587 bool
3588 do_is_constant() const;
3589
3590 bool
3591 do_integer_constant_value(bool, mpz_t, Type**) const;
3592
3593 bool
3594 do_float_constant_value(mpfr_t, Type**) const;
3595
3596 bool
3597 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
3598
3599 Type*
3600 do_type();
3601
3602 void
3603 do_determine_type(const Type_context*);
3604
3605 void
3606 do_check_types(Gogo*);
3607
3608 Expression*
3609 do_copy()
3610 {
3611 return Expression::make_unary(this->op_, this->expr_->copy(),
3612 this->location());
3613 }
3614
3615 bool
3616 do_is_addressable() const
3617 { return this->op_ == OPERATOR_MULT; }
3618
3619 tree
3620 do_get_tree(Translate_context*);
3621
3622 void
3623 do_export(Export*) const;
3624
3625 private:
3626 // The unary operator to apply.
3627 Operator op_;
3628 // Normally true. False if this is an address expression which does
3629 // not escape the current function.
3630 bool escapes_;
3631 // The operand.
3632 Expression* expr_;
3633 };
3634
3635 // If we are taking the address of a composite literal, and the
3636 // contents are not constant, then we want to make a heap composite
3637 // instead.
3638
3639 Expression*
3640 Unary_expression::do_lower(Gogo*, Named_object*, int)
3641 {
3642 source_location loc = this->location();
3643 Operator op = this->op_;
3644 Expression* expr = this->expr_;
3645
3646 if (op == OPERATOR_MULT && expr->is_type_expression())
3647 return Expression::make_type(Type::make_pointer_type(expr->type()), loc);
3648
3649 // *&x simplifies to x. *(*T)(unsafe.Pointer)(&x) does not require
3650 // moving x to the heap. FIXME: Is it worth doing a real escape
3651 // analysis here? This case is found in math/unsafe.go and is
3652 // therefore worth special casing.
3653 if (op == OPERATOR_MULT)
3654 {
3655 Expression* e = expr;
3656 while (e->classification() == EXPRESSION_CONVERSION)
3657 {
3658 Type_conversion_expression* te
3659 = static_cast<Type_conversion_expression*>(e);
3660 e = te->expr();
3661 }
3662
3663 if (e->classification() == EXPRESSION_UNARY)
3664 {
3665 Unary_expression* ue = static_cast<Unary_expression*>(e);
3666 if (ue->op_ == OPERATOR_AND)
3667 {
3668 if (e == expr)
3669 {
3670 // *&x == x.
3671 return ue->expr_;
3672 }
3673 ue->set_does_not_escape();
3674 }
3675 }
3676 }
3677
3678 if (op == OPERATOR_PLUS || op == OPERATOR_MINUS
3679 || op == OPERATOR_NOT || op == OPERATOR_XOR)
3680 {
3681 Expression* ret = NULL;
3682
3683 mpz_t eval;
3684 mpz_init(eval);
3685 Type* etype;
3686 if (expr->integer_constant_value(false, eval, &etype))
3687 {
3688 mpz_t val;
3689 mpz_init(val);
3690 if (Unary_expression::eval_integer(op, etype, eval, val, loc))
3691 ret = Expression::make_integer(&val, etype, loc);
3692 mpz_clear(val);
3693 }
3694 mpz_clear(eval);
3695 if (ret != NULL)
3696 return ret;
3697
3698 if (op == OPERATOR_PLUS || op == OPERATOR_MINUS)
3699 {
3700 mpfr_t fval;
3701 mpfr_init(fval);
3702 Type* ftype;
3703 if (expr->float_constant_value(fval, &ftype))
3704 {
3705 mpfr_t val;
3706 mpfr_init(val);
3707 if (Unary_expression::eval_float(op, fval, val))
3708 ret = Expression::make_float(&val, ftype, loc);
3709 mpfr_clear(val);
3710 }
3711 if (ret != NULL)
3712 {
3713 mpfr_clear(fval);
3714 return ret;
3715 }
3716
3717 mpfr_t ival;
3718 mpfr_init(ival);
3719 if (expr->complex_constant_value(fval, ival, &ftype))
3720 {
3721 mpfr_t real;
3722 mpfr_t imag;
3723 mpfr_init(real);
3724 mpfr_init(imag);
3725 if (Unary_expression::eval_complex(op, fval, ival, real, imag))
3726 ret = Expression::make_complex(&real, &imag, ftype, loc);
3727 mpfr_clear(real);
3728 mpfr_clear(imag);
3729 }
3730 mpfr_clear(ival);
3731 mpfr_clear(fval);
3732 if (ret != NULL)
3733 return ret;
3734 }
3735 }
3736
3737 return this;
3738 }
3739
3740 // Return whether a unary expression is a constant.
3741
3742 bool
3743 Unary_expression::do_is_constant() const
3744 {
3745 if (this->op_ == OPERATOR_MULT)
3746 {
3747 // Indirecting through a pointer is only constant if the object
3748 // to which the expression points is constant, but we currently
3749 // have no way to determine that.
3750 return false;
3751 }
3752 else if (this->op_ == OPERATOR_AND)
3753 {
3754 // Taking the address of a variable is constant if it is a
3755 // global variable, not constant otherwise. In other cases
3756 // taking the address is probably not a constant.
3757 Var_expression* ve = this->expr_->var_expression();
3758 if (ve != NULL)
3759 {
3760 Named_object* no = ve->named_object();
3761 return no->is_variable() && no->var_value()->is_global();
3762 }
3763 return false;
3764 }
3765 else
3766 return this->expr_->is_constant();
3767 }
3768
3769 // Apply unary opcode OP to UVAL, setting VAL. UTYPE is the type of
3770 // UVAL, if known; it may be NULL. Return true if this could be done,
3771 // false if not.
3772
3773 bool
3774 Unary_expression::eval_integer(Operator op, Type* utype, mpz_t uval, mpz_t val,
3775 source_location location)
3776 {
3777 switch (op)
3778 {
3779 case OPERATOR_PLUS:
3780 mpz_set(val, uval);
3781 return true;
3782 case OPERATOR_MINUS:
3783 mpz_neg(val, uval);
3784 return Integer_expression::check_constant(val, utype, location);
3785 case OPERATOR_NOT:
3786 mpz_set_ui(val, mpz_cmp_si(uval, 0) == 0 ? 1 : 0);
3787 return true;
3788 case OPERATOR_XOR:
3789 if (utype == NULL
3790 || utype->integer_type() == NULL
3791 || utype->integer_type()->is_abstract())
3792 mpz_com(val, uval);
3793 else
3794 {
3795 // The number of HOST_WIDE_INTs that it takes to represent
3796 // UVAL.
3797 size_t count = ((mpz_sizeinbase(uval, 2)
3798 + HOST_BITS_PER_WIDE_INT
3799 - 1)
3800 / HOST_BITS_PER_WIDE_INT);
3801
3802 unsigned HOST_WIDE_INT* phwi = new unsigned HOST_WIDE_INT[count];
3803 memset(phwi, 0, count * sizeof(HOST_WIDE_INT));
3804
3805 size_t ecount;
3806 mpz_export(phwi, &ecount, -1, sizeof(HOST_WIDE_INT), 0, 0, uval);
3807 gcc_assert(ecount <= count);
3808
3809 // Trim down to the number of words required by the type.
3810 size_t obits = utype->integer_type()->bits();
3811 if (!utype->integer_type()->is_unsigned())
3812 ++obits;
3813 size_t ocount = ((obits + HOST_BITS_PER_WIDE_INT - 1)
3814 / HOST_BITS_PER_WIDE_INT);
3815 gcc_assert(ocount <= ocount);
3816
3817 for (size_t i = 0; i < ocount; ++i)
3818 phwi[i] = ~phwi[i];
3819
3820 size_t clearbits = ocount * HOST_BITS_PER_WIDE_INT - obits;
3821 if (clearbits != 0)
3822 phwi[ocount - 1] &= (((unsigned HOST_WIDE_INT) (HOST_WIDE_INT) -1)
3823 >> clearbits);
3824
3825 mpz_import(val, ocount, -1, sizeof(HOST_WIDE_INT), 0, 0, phwi);
3826
3827 delete[] phwi;
3828 }
3829 return Integer_expression::check_constant(val, utype, location);
3830 case OPERATOR_AND:
3831 case OPERATOR_MULT:
3832 return false;
3833 default:
3834 gcc_unreachable();
3835 }
3836 }
3837
3838 // Apply unary opcode OP to UVAL, setting VAL. Return true if this
3839 // could be done, false if not.
3840
3841 bool
3842 Unary_expression::eval_float(Operator op, mpfr_t uval, mpfr_t val)
3843 {
3844 switch (op)
3845 {
3846 case OPERATOR_PLUS:
3847 mpfr_set(val, uval, GMP_RNDN);
3848 return true;
3849 case OPERATOR_MINUS:
3850 mpfr_neg(val, uval, GMP_RNDN);
3851 return true;
3852 case OPERATOR_NOT:
3853 case OPERATOR_XOR:
3854 case OPERATOR_AND:
3855 case OPERATOR_MULT:
3856 return false;
3857 default:
3858 gcc_unreachable();
3859 }
3860 }
3861
3862 // Apply unary opcode OP to RVAL/IVAL, setting REAL/IMAG. Return true
3863 // if this could be done, false if not.
3864
3865 bool
3866 Unary_expression::eval_complex(Operator op, mpfr_t rval, mpfr_t ival,
3867 mpfr_t real, mpfr_t imag)
3868 {
3869 switch (op)
3870 {
3871 case OPERATOR_PLUS:
3872 mpfr_set(real, rval, GMP_RNDN);
3873 mpfr_set(imag, ival, GMP_RNDN);
3874 return true;
3875 case OPERATOR_MINUS:
3876 mpfr_neg(real, rval, GMP_RNDN);
3877 mpfr_neg(imag, ival, GMP_RNDN);
3878 return true;
3879 case OPERATOR_NOT:
3880 case OPERATOR_XOR:
3881 case OPERATOR_AND:
3882 case OPERATOR_MULT:
3883 return false;
3884 default:
3885 gcc_unreachable();
3886 }
3887 }
3888
3889 // Return the integral constant value of a unary expression, if it has one.
3890
3891 bool
3892 Unary_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
3893 Type** ptype) const
3894 {
3895 mpz_t uval;
3896 mpz_init(uval);
3897 bool ret;
3898 if (!this->expr_->integer_constant_value(iota_is_constant, uval, ptype))
3899 ret = false;
3900 else
3901 ret = Unary_expression::eval_integer(this->op_, *ptype, uval, val,
3902 this->location());
3903 mpz_clear(uval);
3904 return ret;
3905 }
3906
3907 // Return the floating point constant value of a unary expression, if
3908 // it has one.
3909
3910 bool
3911 Unary_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
3912 {
3913 mpfr_t uval;
3914 mpfr_init(uval);
3915 bool ret;
3916 if (!this->expr_->float_constant_value(uval, ptype))
3917 ret = false;
3918 else
3919 ret = Unary_expression::eval_float(this->op_, uval, val);
3920 mpfr_clear(uval);
3921 return ret;
3922 }
3923
3924 // Return the complex constant value of a unary expression, if it has
3925 // one.
3926
3927 bool
3928 Unary_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
3929 Type** ptype) const
3930 {
3931 mpfr_t rval;
3932 mpfr_t ival;
3933 mpfr_init(rval);
3934 mpfr_init(ival);
3935 bool ret;
3936 if (!this->expr_->complex_constant_value(rval, ival, ptype))
3937 ret = false;
3938 else
3939 ret = Unary_expression::eval_complex(this->op_, rval, ival, real, imag);
3940 mpfr_clear(rval);
3941 mpfr_clear(ival);
3942 return ret;
3943 }
3944
3945 // Return the type of a unary expression.
3946
3947 Type*
3948 Unary_expression::do_type()
3949 {
3950 switch (this->op_)
3951 {
3952 case OPERATOR_PLUS:
3953 case OPERATOR_MINUS:
3954 case OPERATOR_NOT:
3955 case OPERATOR_XOR:
3956 return this->expr_->type();
3957
3958 case OPERATOR_AND:
3959 return Type::make_pointer_type(this->expr_->type());
3960
3961 case OPERATOR_MULT:
3962 {
3963 Type* subtype = this->expr_->type();
3964 Type* points_to = subtype->points_to();
3965 if (points_to == NULL)
3966 return Type::make_error_type();
3967 return points_to;
3968 }
3969
3970 default:
3971 gcc_unreachable();
3972 }
3973 }
3974
3975 // Determine abstract types for a unary expression.
3976
3977 void
3978 Unary_expression::do_determine_type(const Type_context* context)
3979 {
3980 switch (this->op_)
3981 {
3982 case OPERATOR_PLUS:
3983 case OPERATOR_MINUS:
3984 case OPERATOR_NOT:
3985 case OPERATOR_XOR:
3986 this->expr_->determine_type(context);
3987 break;
3988
3989 case OPERATOR_AND:
3990 // Taking the address of something.
3991 {
3992 Type* subtype = (context->type == NULL
3993 ? NULL
3994 : context->type->points_to());
3995 Type_context subcontext(subtype, false);
3996 this->expr_->determine_type(&subcontext);
3997 }
3998 break;
3999
4000 case OPERATOR_MULT:
4001 // Indirecting through a pointer.
4002 {
4003 Type* subtype = (context->type == NULL
4004 ? NULL
4005 : Type::make_pointer_type(context->type));
4006 Type_context subcontext(subtype, false);
4007 this->expr_->determine_type(&subcontext);
4008 }
4009 break;
4010
4011 default:
4012 gcc_unreachable();
4013 }
4014 }
4015
4016 // Check types for a unary expression.
4017
4018 void
4019 Unary_expression::do_check_types(Gogo*)
4020 {
4021 Type* type = this->expr_->type();
4022 if (type->is_error_type())
4023 {
4024 this->set_is_error();
4025 return;
4026 }
4027
4028 switch (this->op_)
4029 {
4030 case OPERATOR_PLUS:
4031 case OPERATOR_MINUS:
4032 if (type->integer_type() == NULL
4033 && type->float_type() == NULL
4034 && type->complex_type() == NULL)
4035 this->report_error(_("expected numeric type"));
4036 break;
4037
4038 case OPERATOR_NOT:
4039 case OPERATOR_XOR:
4040 if (type->integer_type() == NULL
4041 && !type->is_boolean_type())
4042 this->report_error(_("expected integer or boolean type"));
4043 break;
4044
4045 case OPERATOR_AND:
4046 if (!this->expr_->is_addressable())
4047 this->report_error(_("invalid operand for unary %<&%>"));
4048 else
4049 this->expr_->address_taken(this->escapes_);
4050 break;
4051
4052 case OPERATOR_MULT:
4053 // Indirecting through a pointer.
4054 if (type->points_to() == NULL)
4055 this->report_error(_("expected pointer"));
4056 break;
4057
4058 default:
4059 gcc_unreachable();
4060 }
4061 }
4062
4063 // Get a tree for a unary expression.
4064
4065 tree
4066 Unary_expression::do_get_tree(Translate_context* context)
4067 {
4068 tree expr = this->expr_->get_tree(context);
4069 if (expr == error_mark_node)
4070 return error_mark_node;
4071
4072 source_location loc = this->location();
4073 switch (this->op_)
4074 {
4075 case OPERATOR_PLUS:
4076 return expr;
4077
4078 case OPERATOR_MINUS:
4079 {
4080 tree type = TREE_TYPE(expr);
4081 tree compute_type = excess_precision_type(type);
4082 if (compute_type != NULL_TREE)
4083 expr = ::convert(compute_type, expr);
4084 tree ret = fold_build1_loc(loc, NEGATE_EXPR,
4085 (compute_type != NULL_TREE
4086 ? compute_type
4087 : type),
4088 expr);
4089 if (compute_type != NULL_TREE)
4090 ret = ::convert(type, ret);
4091 return ret;
4092 }
4093
4094 case OPERATOR_NOT:
4095 if (TREE_CODE(TREE_TYPE(expr)) == BOOLEAN_TYPE)
4096 return fold_build1_loc(loc, TRUTH_NOT_EXPR, TREE_TYPE(expr), expr);
4097 else
4098 return fold_build2_loc(loc, NE_EXPR, boolean_type_node, expr,
4099 build_int_cst(TREE_TYPE(expr), 0));
4100
4101 case OPERATOR_XOR:
4102 return fold_build1_loc(loc, BIT_NOT_EXPR, TREE_TYPE(expr), expr);
4103
4104 case OPERATOR_AND:
4105 // We should not see a non-constant constructor here; cases
4106 // where we would see one should have been moved onto the heap
4107 // at parse time. Taking the address of a nonconstant
4108 // constructor will not do what the programmer expects.
4109 gcc_assert(TREE_CODE(expr) != CONSTRUCTOR || TREE_CONSTANT(expr));
4110 gcc_assert(TREE_CODE(expr) != ADDR_EXPR);
4111
4112 // Build a decl for a constant constructor.
4113 if (TREE_CODE(expr) == CONSTRUCTOR && TREE_CONSTANT(expr))
4114 {
4115 tree decl = build_decl(this->location(), VAR_DECL,
4116 create_tmp_var_name("C"), TREE_TYPE(expr));
4117 DECL_EXTERNAL(decl) = 0;
4118 TREE_PUBLIC(decl) = 0;
4119 TREE_READONLY(decl) = 1;
4120 TREE_CONSTANT(decl) = 1;
4121 TREE_STATIC(decl) = 1;
4122 TREE_ADDRESSABLE(decl) = 1;
4123 DECL_ARTIFICIAL(decl) = 1;
4124 DECL_INITIAL(decl) = expr;
4125 rest_of_decl_compilation(decl, 1, 0);
4126 expr = decl;
4127 }
4128
4129 return build_fold_addr_expr_loc(loc, expr);
4130
4131 case OPERATOR_MULT:
4132 {
4133 gcc_assert(POINTER_TYPE_P(TREE_TYPE(expr)));
4134
4135 // If we are dereferencing the pointer to a large struct, we
4136 // need to check for nil. We don't bother to check for small
4137 // structs because we expect the system to crash on a nil
4138 // pointer dereference.
4139 HOST_WIDE_INT s = int_size_in_bytes(TREE_TYPE(TREE_TYPE(expr)));
4140 if (s == -1 || s >= 4096)
4141 {
4142 if (!DECL_P(expr))
4143 expr = save_expr(expr);
4144 tree compare = fold_build2_loc(loc, EQ_EXPR, boolean_type_node,
4145 expr,
4146 fold_convert(TREE_TYPE(expr),
4147 null_pointer_node));
4148 tree crash = Gogo::runtime_error(RUNTIME_ERROR_NIL_DEREFERENCE,
4149 loc);
4150 expr = fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(expr),
4151 build3(COND_EXPR, void_type_node,
4152 compare, crash, NULL_TREE),
4153 expr);
4154 }
4155
4156 // If the type of EXPR is a recursive pointer type, then we
4157 // need to insert a cast before indirecting.
4158 if (TREE_TYPE(TREE_TYPE(expr)) == ptr_type_node)
4159 {
4160 Type* pt = this->expr_->type()->points_to();
4161 tree ind = pt->get_tree(context->gogo());
4162 expr = fold_convert_loc(loc, build_pointer_type(ind), expr);
4163 }
4164
4165 return build_fold_indirect_ref_loc(loc, expr);
4166 }
4167
4168 default:
4169 gcc_unreachable();
4170 }
4171 }
4172
4173 // Export a unary expression.
4174
4175 void
4176 Unary_expression::do_export(Export* exp) const
4177 {
4178 switch (this->op_)
4179 {
4180 case OPERATOR_PLUS:
4181 exp->write_c_string("+ ");
4182 break;
4183 case OPERATOR_MINUS:
4184 exp->write_c_string("- ");
4185 break;
4186 case OPERATOR_NOT:
4187 exp->write_c_string("! ");
4188 break;
4189 case OPERATOR_XOR:
4190 exp->write_c_string("^ ");
4191 break;
4192 case OPERATOR_AND:
4193 case OPERATOR_MULT:
4194 default:
4195 gcc_unreachable();
4196 }
4197 this->expr_->export_expression(exp);
4198 }
4199
4200 // Import a unary expression.
4201
4202 Expression*
4203 Unary_expression::do_import(Import* imp)
4204 {
4205 Operator op;
4206 switch (imp->get_char())
4207 {
4208 case '+':
4209 op = OPERATOR_PLUS;
4210 break;
4211 case '-':
4212 op = OPERATOR_MINUS;
4213 break;
4214 case '!':
4215 op = OPERATOR_NOT;
4216 break;
4217 case '^':
4218 op = OPERATOR_XOR;
4219 break;
4220 default:
4221 gcc_unreachable();
4222 }
4223 imp->require_c_string(" ");
4224 Expression* expr = Expression::import_expression(imp);
4225 return Expression::make_unary(op, expr, imp->location());
4226 }
4227
4228 // Make a unary expression.
4229
4230 Expression*
4231 Expression::make_unary(Operator op, Expression* expr, source_location location)
4232 {
4233 return new Unary_expression(op, expr, location);
4234 }
4235
4236 // If this is an indirection through a pointer, return the expression
4237 // being pointed through. Otherwise return this.
4238
4239 Expression*
4240 Expression::deref()
4241 {
4242 if (this->classification_ == EXPRESSION_UNARY)
4243 {
4244 Unary_expression* ue = static_cast<Unary_expression*>(this);
4245 if (ue->op() == OPERATOR_MULT)
4246 return ue->operand();
4247 }
4248 return this;
4249 }
4250
4251 // Class Binary_expression.
4252
4253 // Traversal.
4254
4255 int
4256 Binary_expression::do_traverse(Traverse* traverse)
4257 {
4258 int t = Expression::traverse(&this->left_, traverse);
4259 if (t == TRAVERSE_EXIT)
4260 return TRAVERSE_EXIT;
4261 return Expression::traverse(&this->right_, traverse);
4262 }
4263
4264 // Compare integer constants according to OP.
4265
4266 bool
4267 Binary_expression::compare_integer(Operator op, mpz_t left_val,
4268 mpz_t right_val)
4269 {
4270 int i = mpz_cmp(left_val, right_val);
4271 switch (op)
4272 {
4273 case OPERATOR_EQEQ:
4274 return i == 0;
4275 case OPERATOR_NOTEQ:
4276 return i != 0;
4277 case OPERATOR_LT:
4278 return i < 0;
4279 case OPERATOR_LE:
4280 return i <= 0;
4281 case OPERATOR_GT:
4282 return i > 0;
4283 case OPERATOR_GE:
4284 return i >= 0;
4285 default:
4286 gcc_unreachable();
4287 }
4288 }
4289
4290 // Compare floating point constants according to OP.
4291
4292 bool
4293 Binary_expression::compare_float(Operator op, Type* type, mpfr_t left_val,
4294 mpfr_t right_val)
4295 {
4296 int i;
4297 if (type == NULL)
4298 i = mpfr_cmp(left_val, right_val);
4299 else
4300 {
4301 mpfr_t lv;
4302 mpfr_init_set(lv, left_val, GMP_RNDN);
4303 mpfr_t rv;
4304 mpfr_init_set(rv, right_val, GMP_RNDN);
4305 Float_expression::constrain_float(lv, type);
4306 Float_expression::constrain_float(rv, type);
4307 i = mpfr_cmp(lv, rv);
4308 mpfr_clear(lv);
4309 mpfr_clear(rv);
4310 }
4311 switch (op)
4312 {
4313 case OPERATOR_EQEQ:
4314 return i == 0;
4315 case OPERATOR_NOTEQ:
4316 return i != 0;
4317 case OPERATOR_LT:
4318 return i < 0;
4319 case OPERATOR_LE:
4320 return i <= 0;
4321 case OPERATOR_GT:
4322 return i > 0;
4323 case OPERATOR_GE:
4324 return i >= 0;
4325 default:
4326 gcc_unreachable();
4327 }
4328 }
4329
4330 // Compare complex constants according to OP. Complex numbers may
4331 // only be compared for equality.
4332
4333 bool
4334 Binary_expression::compare_complex(Operator op, Type* type,
4335 mpfr_t left_real, mpfr_t left_imag,
4336 mpfr_t right_real, mpfr_t right_imag)
4337 {
4338 bool is_equal;
4339 if (type == NULL)
4340 is_equal = (mpfr_cmp(left_real, right_real) == 0
4341 && mpfr_cmp(left_imag, right_imag) == 0);
4342 else
4343 {
4344 mpfr_t lr;
4345 mpfr_t li;
4346 mpfr_init_set(lr, left_real, GMP_RNDN);
4347 mpfr_init_set(li, left_imag, GMP_RNDN);
4348 mpfr_t rr;
4349 mpfr_t ri;
4350 mpfr_init_set(rr, right_real, GMP_RNDN);
4351 mpfr_init_set(ri, right_imag, GMP_RNDN);
4352 Complex_expression::constrain_complex(lr, li, type);
4353 Complex_expression::constrain_complex(rr, ri, type);
4354 is_equal = mpfr_cmp(lr, rr) == 0 && mpfr_cmp(li, ri) == 0;
4355 mpfr_clear(lr);
4356 mpfr_clear(li);
4357 mpfr_clear(rr);
4358 mpfr_clear(ri);
4359 }
4360 switch (op)
4361 {
4362 case OPERATOR_EQEQ:
4363 return is_equal;
4364 case OPERATOR_NOTEQ:
4365 return !is_equal;
4366 default:
4367 gcc_unreachable();
4368 }
4369 }
4370
4371 // Apply binary opcode OP to LEFT_VAL and RIGHT_VAL, setting VAL.
4372 // LEFT_TYPE is the type of LEFT_VAL, RIGHT_TYPE is the type of
4373 // RIGHT_VAL; LEFT_TYPE and/or RIGHT_TYPE may be NULL. Return true if
4374 // this could be done, false if not.
4375
4376 bool
4377 Binary_expression::eval_integer(Operator op, Type* left_type, mpz_t left_val,
4378 Type* right_type, mpz_t right_val,
4379 source_location location, mpz_t val)
4380 {
4381 bool is_shift_op = false;
4382 switch (op)
4383 {
4384 case OPERATOR_OROR:
4385 case OPERATOR_ANDAND:
4386 case OPERATOR_EQEQ:
4387 case OPERATOR_NOTEQ:
4388 case OPERATOR_LT:
4389 case OPERATOR_LE:
4390 case OPERATOR_GT:
4391 case OPERATOR_GE:
4392 // These return boolean values. We should probably handle them
4393 // anyhow in case a type conversion is used on the result.
4394 return false;
4395 case OPERATOR_PLUS:
4396 mpz_add(val, left_val, right_val);
4397 break;
4398 case OPERATOR_MINUS:
4399 mpz_sub(val, left_val, right_val);
4400 break;
4401 case OPERATOR_OR:
4402 mpz_ior(val, left_val, right_val);
4403 break;
4404 case OPERATOR_XOR:
4405 mpz_xor(val, left_val, right_val);
4406 break;
4407 case OPERATOR_MULT:
4408 mpz_mul(val, left_val, right_val);
4409 break;
4410 case OPERATOR_DIV:
4411 if (mpz_sgn(right_val) != 0)
4412 mpz_tdiv_q(val, left_val, right_val);
4413 else
4414 {
4415 error_at(location, "division by zero");
4416 mpz_set_ui(val, 0);
4417 return true;
4418 }
4419 break;
4420 case OPERATOR_MOD:
4421 if (mpz_sgn(right_val) != 0)
4422 mpz_tdiv_r(val, left_val, right_val);
4423 else
4424 {
4425 error_at(location, "division by zero");
4426 mpz_set_ui(val, 0);
4427 return true;
4428 }
4429 break;
4430 case OPERATOR_LSHIFT:
4431 {
4432 unsigned long shift = mpz_get_ui(right_val);
4433 if (mpz_cmp_ui(right_val, shift) != 0)
4434 {
4435 error_at(location, "shift count overflow");
4436 mpz_set_ui(val, 0);
4437 return true;
4438 }
4439 mpz_mul_2exp(val, left_val, shift);
4440 is_shift_op = true;
4441 break;
4442 }
4443 break;
4444 case OPERATOR_RSHIFT:
4445 {
4446 unsigned long shift = mpz_get_ui(right_val);
4447 if (mpz_cmp_ui(right_val, shift) != 0)
4448 {
4449 error_at(location, "shift count overflow");
4450 mpz_set_ui(val, 0);
4451 return true;
4452 }
4453 if (mpz_cmp_ui(left_val, 0) >= 0)
4454 mpz_tdiv_q_2exp(val, left_val, shift);
4455 else
4456 mpz_fdiv_q_2exp(val, left_val, shift);
4457 is_shift_op = true;
4458 break;
4459 }
4460 break;
4461 case OPERATOR_AND:
4462 mpz_and(val, left_val, right_val);
4463 break;
4464 case OPERATOR_BITCLEAR:
4465 {
4466 mpz_t tval;
4467 mpz_init(tval);
4468 mpz_com(tval, right_val);
4469 mpz_and(val, left_val, tval);
4470 mpz_clear(tval);
4471 }
4472 break;
4473 default:
4474 gcc_unreachable();
4475 }
4476
4477 Type* type = left_type;
4478 if (!is_shift_op)
4479 {
4480 if (type == NULL)
4481 type = right_type;
4482 else if (type != right_type && right_type != NULL)
4483 {
4484 if (type->is_abstract())
4485 type = right_type;
4486 else if (!right_type->is_abstract())
4487 {
4488 // This look like a type error which should be diagnosed
4489 // elsewhere. Don't do anything here, to avoid an
4490 // unhelpful chain of error messages.
4491 return true;
4492 }
4493 }
4494 }
4495
4496 if (type != NULL && !type->is_abstract())
4497 {
4498 // We have to check the operands too, as we have implicitly
4499 // coerced them to TYPE.
4500 if ((type != left_type
4501 && !Integer_expression::check_constant(left_val, type, location))
4502 || (!is_shift_op
4503 && type != right_type
4504 && !Integer_expression::check_constant(right_val, type,
4505 location))
4506 || !Integer_expression::check_constant(val, type, location))
4507 mpz_set_ui(val, 0);
4508 }
4509
4510 return true;
4511 }
4512
4513 // Apply binary opcode OP to LEFT_VAL and RIGHT_VAL, setting VAL.
4514 // Return true if this could be done, false if not.
4515
4516 bool
4517 Binary_expression::eval_float(Operator op, Type* left_type, mpfr_t left_val,
4518 Type* right_type, mpfr_t right_val,
4519 mpfr_t val, source_location location)
4520 {
4521 switch (op)
4522 {
4523 case OPERATOR_OROR:
4524 case OPERATOR_ANDAND:
4525 case OPERATOR_EQEQ:
4526 case OPERATOR_NOTEQ:
4527 case OPERATOR_LT:
4528 case OPERATOR_LE:
4529 case OPERATOR_GT:
4530 case OPERATOR_GE:
4531 // These return boolean values. We should probably handle them
4532 // anyhow in case a type conversion is used on the result.
4533 return false;
4534 case OPERATOR_PLUS:
4535 mpfr_add(val, left_val, right_val, GMP_RNDN);
4536 break;
4537 case OPERATOR_MINUS:
4538 mpfr_sub(val, left_val, right_val, GMP_RNDN);
4539 break;
4540 case OPERATOR_OR:
4541 case OPERATOR_XOR:
4542 case OPERATOR_AND:
4543 case OPERATOR_BITCLEAR:
4544 return false;
4545 case OPERATOR_MULT:
4546 mpfr_mul(val, left_val, right_val, GMP_RNDN);
4547 break;
4548 case OPERATOR_DIV:
4549 if (mpfr_zero_p(right_val))
4550 error_at(location, "division by zero");
4551 mpfr_div(val, left_val, right_val, GMP_RNDN);
4552 break;
4553 case OPERATOR_MOD:
4554 return false;
4555 case OPERATOR_LSHIFT:
4556 case OPERATOR_RSHIFT:
4557 return false;
4558 default:
4559 gcc_unreachable();
4560 }
4561
4562 Type* type = left_type;
4563 if (type == NULL)
4564 type = right_type;
4565 else if (type != right_type && right_type != NULL)
4566 {
4567 if (type->is_abstract())
4568 type = right_type;
4569 else if (!right_type->is_abstract())
4570 {
4571 // This looks like a type error which should be diagnosed
4572 // elsewhere. Don't do anything here, to avoid an unhelpful
4573 // chain of error messages.
4574 return true;
4575 }
4576 }
4577
4578 if (type != NULL && !type->is_abstract())
4579 {
4580 if ((type != left_type
4581 && !Float_expression::check_constant(left_val, type, location))
4582 || (type != right_type
4583 && !Float_expression::check_constant(right_val, type,
4584 location))
4585 || !Float_expression::check_constant(val, type, location))
4586 mpfr_set_ui(val, 0, GMP_RNDN);
4587 }
4588
4589 return true;
4590 }
4591
4592 // Apply binary opcode OP to LEFT_REAL/LEFT_IMAG and
4593 // RIGHT_REAL/RIGHT_IMAG, setting REAL/IMAG. Return true if this
4594 // could be done, false if not.
4595
4596 bool
4597 Binary_expression::eval_complex(Operator op, Type* left_type,
4598 mpfr_t left_real, mpfr_t left_imag,
4599 Type *right_type,
4600 mpfr_t right_real, mpfr_t right_imag,
4601 mpfr_t real, mpfr_t imag,
4602 source_location location)
4603 {
4604 switch (op)
4605 {
4606 case OPERATOR_OROR:
4607 case OPERATOR_ANDAND:
4608 case OPERATOR_EQEQ:
4609 case OPERATOR_NOTEQ:
4610 case OPERATOR_LT:
4611 case OPERATOR_LE:
4612 case OPERATOR_GT:
4613 case OPERATOR_GE:
4614 // These return boolean values and must be handled differently.
4615 return false;
4616 case OPERATOR_PLUS:
4617 mpfr_add(real, left_real, right_real, GMP_RNDN);
4618 mpfr_add(imag, left_imag, right_imag, GMP_RNDN);
4619 break;
4620 case OPERATOR_MINUS:
4621 mpfr_sub(real, left_real, right_real, GMP_RNDN);
4622 mpfr_sub(imag, left_imag, right_imag, GMP_RNDN);
4623 break;
4624 case OPERATOR_OR:
4625 case OPERATOR_XOR:
4626 case OPERATOR_AND:
4627 case OPERATOR_BITCLEAR:
4628 return false;
4629 case OPERATOR_MULT:
4630 {
4631 // You might think that multiplying two complex numbers would
4632 // be simple, and you would be right, until you start to think
4633 // about getting the right answer for infinity. If one
4634 // operand here is infinity and the other is anything other
4635 // than zero or NaN, then we are going to wind up subtracting
4636 // two infinity values. That will give us a NaN, but the
4637 // correct answer is infinity.
4638
4639 mpfr_t lrrr;
4640 mpfr_init(lrrr);
4641 mpfr_mul(lrrr, left_real, right_real, GMP_RNDN);
4642
4643 mpfr_t lrri;
4644 mpfr_init(lrri);
4645 mpfr_mul(lrri, left_real, right_imag, GMP_RNDN);
4646
4647 mpfr_t lirr;
4648 mpfr_init(lirr);
4649 mpfr_mul(lirr, left_imag, right_real, GMP_RNDN);
4650
4651 mpfr_t liri;
4652 mpfr_init(liri);
4653 mpfr_mul(liri, left_imag, right_imag, GMP_RNDN);
4654
4655 mpfr_sub(real, lrrr, liri, GMP_RNDN);
4656 mpfr_add(imag, lrri, lirr, GMP_RNDN);
4657
4658 // If we get NaN on both sides, check whether it should really
4659 // be infinity. The rule is that if either side of the
4660 // complex number is infinity, then the whole value is
4661 // infinity, even if the other side is NaN. So the only case
4662 // we have to fix is the one in which both sides are NaN.
4663 if (mpfr_nan_p(real) && mpfr_nan_p(imag)
4664 && (!mpfr_nan_p(left_real) || !mpfr_nan_p(left_imag))
4665 && (!mpfr_nan_p(right_real) || !mpfr_nan_p(right_imag)))
4666 {
4667 bool is_infinity = false;
4668
4669 mpfr_t lr;
4670 mpfr_t li;
4671 mpfr_init_set(lr, left_real, GMP_RNDN);
4672 mpfr_init_set(li, left_imag, GMP_RNDN);
4673
4674 mpfr_t rr;
4675 mpfr_t ri;
4676 mpfr_init_set(rr, right_real, GMP_RNDN);
4677 mpfr_init_set(ri, right_imag, GMP_RNDN);
4678
4679 // If the left side is infinity, then the result is
4680 // infinity.
4681 if (mpfr_inf_p(lr) || mpfr_inf_p(li))
4682 {
4683 mpfr_set_ui(lr, mpfr_inf_p(lr) ? 1 : 0, GMP_RNDN);
4684 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
4685 mpfr_set_ui(li, mpfr_inf_p(li) ? 1 : 0, GMP_RNDN);
4686 mpfr_copysign(li, li, left_imag, GMP_RNDN);
4687 if (mpfr_nan_p(rr))
4688 {
4689 mpfr_set_ui(rr, 0, GMP_RNDN);
4690 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
4691 }
4692 if (mpfr_nan_p(ri))
4693 {
4694 mpfr_set_ui(ri, 0, GMP_RNDN);
4695 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
4696 }
4697 is_infinity = true;
4698 }
4699
4700 // If the right side is infinity, then the result is
4701 // infinity.
4702 if (mpfr_inf_p(rr) || mpfr_inf_p(ri))
4703 {
4704 mpfr_set_ui(rr, mpfr_inf_p(rr) ? 1 : 0, GMP_RNDN);
4705 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
4706 mpfr_set_ui(ri, mpfr_inf_p(ri) ? 1 : 0, GMP_RNDN);
4707 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
4708 if (mpfr_nan_p(lr))
4709 {
4710 mpfr_set_ui(lr, 0, GMP_RNDN);
4711 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
4712 }
4713 if (mpfr_nan_p(li))
4714 {
4715 mpfr_set_ui(li, 0, GMP_RNDN);
4716 mpfr_copysign(li, li, left_imag, GMP_RNDN);
4717 }
4718 is_infinity = true;
4719 }
4720
4721 // If we got an overflow in the intermediate computations,
4722 // then the result is infinity.
4723 if (!is_infinity
4724 && (mpfr_inf_p(lrrr) || mpfr_inf_p(lrri)
4725 || mpfr_inf_p(lirr) || mpfr_inf_p(liri)))
4726 {
4727 if (mpfr_nan_p(lr))
4728 {
4729 mpfr_set_ui(lr, 0, GMP_RNDN);
4730 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
4731 }
4732 if (mpfr_nan_p(li))
4733 {
4734 mpfr_set_ui(li, 0, GMP_RNDN);
4735 mpfr_copysign(li, li, left_imag, GMP_RNDN);
4736 }
4737 if (mpfr_nan_p(rr))
4738 {
4739 mpfr_set_ui(rr, 0, GMP_RNDN);
4740 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
4741 }
4742 if (mpfr_nan_p(ri))
4743 {
4744 mpfr_set_ui(ri, 0, GMP_RNDN);
4745 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
4746 }
4747 is_infinity = true;
4748 }
4749
4750 if (is_infinity)
4751 {
4752 mpfr_mul(lrrr, lr, rr, GMP_RNDN);
4753 mpfr_mul(lrri, lr, ri, GMP_RNDN);
4754 mpfr_mul(lirr, li, rr, GMP_RNDN);
4755 mpfr_mul(liri, li, ri, GMP_RNDN);
4756 mpfr_sub(real, lrrr, liri, GMP_RNDN);
4757 mpfr_add(imag, lrri, lirr, GMP_RNDN);
4758 mpfr_set_inf(real, mpfr_sgn(real));
4759 mpfr_set_inf(imag, mpfr_sgn(imag));
4760 }
4761
4762 mpfr_clear(lr);
4763 mpfr_clear(li);
4764 mpfr_clear(rr);
4765 mpfr_clear(ri);
4766 }
4767
4768 mpfr_clear(lrrr);
4769 mpfr_clear(lrri);
4770 mpfr_clear(lirr);
4771 mpfr_clear(liri);
4772 }
4773 break;
4774 case OPERATOR_DIV:
4775 {
4776 // For complex division we want to avoid having an
4777 // intermediate overflow turn the whole result in a NaN. We
4778 // scale the values to try to avoid this.
4779
4780 if (mpfr_zero_p(right_real) && mpfr_zero_p(right_imag))
4781 error_at(location, "division by zero");
4782
4783 mpfr_t rra;
4784 mpfr_t ria;
4785 mpfr_init(rra);
4786 mpfr_init(ria);
4787 mpfr_abs(rra, right_real, GMP_RNDN);
4788 mpfr_abs(ria, right_imag, GMP_RNDN);
4789 mpfr_t t;
4790 mpfr_init(t);
4791 mpfr_max(t, rra, ria, GMP_RNDN);
4792
4793 mpfr_t rr;
4794 mpfr_t ri;
4795 mpfr_init_set(rr, right_real, GMP_RNDN);
4796 mpfr_init_set(ri, right_imag, GMP_RNDN);
4797 long ilogbw = 0;
4798 if (!mpfr_inf_p(t) && !mpfr_nan_p(t) && !mpfr_zero_p(t))
4799 {
4800 ilogbw = mpfr_get_exp(t);
4801 mpfr_mul_2si(rr, rr, - ilogbw, GMP_RNDN);
4802 mpfr_mul_2si(ri, ri, - ilogbw, GMP_RNDN);
4803 }
4804
4805 mpfr_t denom;
4806 mpfr_init(denom);
4807 mpfr_mul(denom, rr, rr, GMP_RNDN);
4808 mpfr_mul(t, ri, ri, GMP_RNDN);
4809 mpfr_add(denom, denom, t, GMP_RNDN);
4810
4811 mpfr_mul(real, left_real, rr, GMP_RNDN);
4812 mpfr_mul(t, left_imag, ri, GMP_RNDN);
4813 mpfr_add(real, real, t, GMP_RNDN);
4814 mpfr_div(real, real, denom, GMP_RNDN);
4815 mpfr_mul_2si(real, real, - ilogbw, GMP_RNDN);
4816
4817 mpfr_mul(imag, left_imag, rr, GMP_RNDN);
4818 mpfr_mul(t, left_real, ri, GMP_RNDN);
4819 mpfr_sub(imag, imag, t, GMP_RNDN);
4820 mpfr_div(imag, imag, denom, GMP_RNDN);
4821 mpfr_mul_2si(imag, imag, - ilogbw, GMP_RNDN);
4822
4823 // If we wind up with NaN on both sides, check whether we
4824 // should really have infinity. The rule is that if either
4825 // side of the complex number is infinity, then the whole
4826 // value is infinity, even if the other side is NaN. So the
4827 // only case we have to fix is the one in which both sides are
4828 // NaN.
4829 if (mpfr_nan_p(real) && mpfr_nan_p(imag)
4830 && (!mpfr_nan_p(left_real) || !mpfr_nan_p(left_imag))
4831 && (!mpfr_nan_p(right_real) || !mpfr_nan_p(right_imag)))
4832 {
4833 if (mpfr_zero_p(denom))
4834 {
4835 mpfr_set_inf(real, mpfr_sgn(rr));
4836 mpfr_mul(real, real, left_real, GMP_RNDN);
4837 mpfr_set_inf(imag, mpfr_sgn(rr));
4838 mpfr_mul(imag, imag, left_imag, GMP_RNDN);
4839 }
4840 else if ((mpfr_inf_p(left_real) || mpfr_inf_p(left_imag))
4841 && mpfr_number_p(rr) && mpfr_number_p(ri))
4842 {
4843 mpfr_set_ui(t, mpfr_inf_p(left_real) ? 1 : 0, GMP_RNDN);
4844 mpfr_copysign(t, t, left_real, GMP_RNDN);
4845
4846 mpfr_t t2;
4847 mpfr_init_set_ui(t2, mpfr_inf_p(left_imag) ? 1 : 0, GMP_RNDN);
4848 mpfr_copysign(t2, t2, left_imag, GMP_RNDN);
4849
4850 mpfr_t t3;
4851 mpfr_init(t3);
4852 mpfr_mul(t3, t, rr, GMP_RNDN);
4853
4854 mpfr_t t4;
4855 mpfr_init(t4);
4856 mpfr_mul(t4, t2, ri, GMP_RNDN);
4857
4858 mpfr_add(t3, t3, t4, GMP_RNDN);
4859 mpfr_set_inf(real, mpfr_sgn(t3));
4860
4861 mpfr_mul(t3, t2, rr, GMP_RNDN);
4862 mpfr_mul(t4, t, ri, GMP_RNDN);
4863 mpfr_sub(t3, t3, t4, GMP_RNDN);
4864 mpfr_set_inf(imag, mpfr_sgn(t3));
4865
4866 mpfr_clear(t2);
4867 mpfr_clear(t3);
4868 mpfr_clear(t4);
4869 }
4870 else if ((mpfr_inf_p(right_real) || mpfr_inf_p(right_imag))
4871 && mpfr_number_p(left_real) && mpfr_number_p(left_imag))
4872 {
4873 mpfr_set_ui(t, mpfr_inf_p(rr) ? 1 : 0, GMP_RNDN);
4874 mpfr_copysign(t, t, rr, GMP_RNDN);
4875
4876 mpfr_t t2;
4877 mpfr_init_set_ui(t2, mpfr_inf_p(ri) ? 1 : 0, GMP_RNDN);
4878 mpfr_copysign(t2, t2, ri, GMP_RNDN);
4879
4880 mpfr_t t3;
4881 mpfr_init(t3);
4882 mpfr_mul(t3, left_real, t, GMP_RNDN);
4883
4884 mpfr_t t4;
4885 mpfr_init(t4);
4886 mpfr_mul(t4, left_imag, t2, GMP_RNDN);
4887
4888 mpfr_add(t3, t3, t4, GMP_RNDN);
4889 mpfr_set_ui(real, 0, GMP_RNDN);
4890 mpfr_mul(real, real, t3, GMP_RNDN);
4891
4892 mpfr_mul(t3, left_imag, t, GMP_RNDN);
4893 mpfr_mul(t4, left_real, t2, GMP_RNDN);
4894 mpfr_sub(t3, t3, t4, GMP_RNDN);
4895 mpfr_set_ui(imag, 0, GMP_RNDN);
4896 mpfr_mul(imag, imag, t3, GMP_RNDN);
4897
4898 mpfr_clear(t2);
4899 mpfr_clear(t3);
4900 mpfr_clear(t4);
4901 }
4902 }
4903
4904 mpfr_clear(denom);
4905 mpfr_clear(rr);
4906 mpfr_clear(ri);
4907 mpfr_clear(t);
4908 mpfr_clear(rra);
4909 mpfr_clear(ria);
4910 }
4911 break;
4912 case OPERATOR_MOD:
4913 return false;
4914 case OPERATOR_LSHIFT:
4915 case OPERATOR_RSHIFT:
4916 return false;
4917 default:
4918 gcc_unreachable();
4919 }
4920
4921 Type* type = left_type;
4922 if (type == NULL)
4923 type = right_type;
4924 else if (type != right_type && right_type != NULL)
4925 {
4926 if (type->is_abstract())
4927 type = right_type;
4928 else if (!right_type->is_abstract())
4929 {
4930 // This looks like a type error which should be diagnosed
4931 // elsewhere. Don't do anything here, to avoid an unhelpful
4932 // chain of error messages.
4933 return true;
4934 }
4935 }
4936
4937 if (type != NULL && !type->is_abstract())
4938 {
4939 if ((type != left_type
4940 && !Complex_expression::check_constant(left_real, left_imag,
4941 type, location))
4942 || (type != right_type
4943 && !Complex_expression::check_constant(right_real, right_imag,
4944 type, location))
4945 || !Complex_expression::check_constant(real, imag, type,
4946 location))
4947 {
4948 mpfr_set_ui(real, 0, GMP_RNDN);
4949 mpfr_set_ui(imag, 0, GMP_RNDN);
4950 }
4951 }
4952
4953 return true;
4954 }
4955
4956 // Lower a binary expression. We have to evaluate constant
4957 // expressions now, in order to implement Go's unlimited precision
4958 // constants.
4959
4960 Expression*
4961 Binary_expression::do_lower(Gogo*, Named_object*, int)
4962 {
4963 source_location location = this->location();
4964 Operator op = this->op_;
4965 Expression* left = this->left_;
4966 Expression* right = this->right_;
4967
4968 const bool is_comparison = (op == OPERATOR_EQEQ
4969 || op == OPERATOR_NOTEQ
4970 || op == OPERATOR_LT
4971 || op == OPERATOR_LE
4972 || op == OPERATOR_GT
4973 || op == OPERATOR_GE);
4974
4975 // Integer constant expressions.
4976 {
4977 mpz_t left_val;
4978 mpz_init(left_val);
4979 Type* left_type;
4980 mpz_t right_val;
4981 mpz_init(right_val);
4982 Type* right_type;
4983 if (left->integer_constant_value(false, left_val, &left_type)
4984 && right->integer_constant_value(false, right_val, &right_type))
4985 {
4986 Expression* ret = NULL;
4987 if (left_type != right_type
4988 && left_type != NULL
4989 && right_type != NULL
4990 && left_type->base() != right_type->base()
4991 && op != OPERATOR_LSHIFT
4992 && op != OPERATOR_RSHIFT)
4993 {
4994 // May be a type error--let it be diagnosed later.
4995 }
4996 else if (is_comparison)
4997 {
4998 bool b = Binary_expression::compare_integer(op, left_val,
4999 right_val);
5000 ret = Expression::make_cast(Type::lookup_bool_type(),
5001 Expression::make_boolean(b, location),
5002 location);
5003 }
5004 else
5005 {
5006 mpz_t val;
5007 mpz_init(val);
5008
5009 if (Binary_expression::eval_integer(op, left_type, left_val,
5010 right_type, right_val,
5011 location, val))
5012 {
5013 gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND);
5014 Type* type;
5015 if (op == OPERATOR_LSHIFT || op == OPERATOR_RSHIFT)
5016 type = left_type;
5017 else if (left_type == NULL)
5018 type = right_type;
5019 else if (right_type == NULL)
5020 type = left_type;
5021 else if (!left_type->is_abstract()
5022 && left_type->named_type() != NULL)
5023 type = left_type;
5024 else if (!right_type->is_abstract()
5025 && right_type->named_type() != NULL)
5026 type = right_type;
5027 else if (!left_type->is_abstract())
5028 type = left_type;
5029 else if (!right_type->is_abstract())
5030 type = right_type;
5031 else if (left_type->float_type() != NULL)
5032 type = left_type;
5033 else if (right_type->float_type() != NULL)
5034 type = right_type;
5035 else if (left_type->complex_type() != NULL)
5036 type = left_type;
5037 else if (right_type->complex_type() != NULL)
5038 type = right_type;
5039 else
5040 type = left_type;
5041 ret = Expression::make_integer(&val, type, location);
5042 }
5043
5044 mpz_clear(val);
5045 }
5046
5047 if (ret != NULL)
5048 {
5049 mpz_clear(right_val);
5050 mpz_clear(left_val);
5051 return ret;
5052 }
5053 }
5054 mpz_clear(right_val);
5055 mpz_clear(left_val);
5056 }
5057
5058 // Floating point constant expressions.
5059 {
5060 mpfr_t left_val;
5061 mpfr_init(left_val);
5062 Type* left_type;
5063 mpfr_t right_val;
5064 mpfr_init(right_val);
5065 Type* right_type;
5066 if (left->float_constant_value(left_val, &left_type)
5067 && right->float_constant_value(right_val, &right_type))
5068 {
5069 Expression* ret = NULL;
5070 if (left_type != right_type
5071 && left_type != NULL
5072 && right_type != NULL
5073 && left_type->base() != right_type->base()
5074 && op != OPERATOR_LSHIFT
5075 && op != OPERATOR_RSHIFT)
5076 {
5077 // May be a type error--let it be diagnosed later.
5078 }
5079 else if (is_comparison)
5080 {
5081 bool b = Binary_expression::compare_float(op,
5082 (left_type != NULL
5083 ? left_type
5084 : right_type),
5085 left_val, right_val);
5086 ret = Expression::make_boolean(b, location);
5087 }
5088 else
5089 {
5090 mpfr_t val;
5091 mpfr_init(val);
5092
5093 if (Binary_expression::eval_float(op, left_type, left_val,
5094 right_type, right_val, val,
5095 location))
5096 {
5097 gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND
5098 && op != OPERATOR_LSHIFT && op != OPERATOR_RSHIFT);
5099 Type* type;
5100 if (left_type == NULL)
5101 type = right_type;
5102 else if (right_type == NULL)
5103 type = left_type;
5104 else if (!left_type->is_abstract()
5105 && left_type->named_type() != NULL)
5106 type = left_type;
5107 else if (!right_type->is_abstract()
5108 && right_type->named_type() != NULL)
5109 type = right_type;
5110 else if (!left_type->is_abstract())
5111 type = left_type;
5112 else if (!right_type->is_abstract())
5113 type = right_type;
5114 else if (left_type->float_type() != NULL)
5115 type = left_type;
5116 else if (right_type->float_type() != NULL)
5117 type = right_type;
5118 else
5119 type = left_type;
5120 ret = Expression::make_float(&val, type, location);
5121 }
5122
5123 mpfr_clear(val);
5124 }
5125
5126 if (ret != NULL)
5127 {
5128 mpfr_clear(right_val);
5129 mpfr_clear(left_val);
5130 return ret;
5131 }
5132 }
5133 mpfr_clear(right_val);
5134 mpfr_clear(left_val);
5135 }
5136
5137 // Complex constant expressions.
5138 {
5139 mpfr_t left_real;
5140 mpfr_t left_imag;
5141 mpfr_init(left_real);
5142 mpfr_init(left_imag);
5143 Type* left_type;
5144
5145 mpfr_t right_real;
5146 mpfr_t right_imag;
5147 mpfr_init(right_real);
5148 mpfr_init(right_imag);
5149 Type* right_type;
5150
5151 if (left->complex_constant_value(left_real, left_imag, &left_type)
5152 && right->complex_constant_value(right_real, right_imag, &right_type))
5153 {
5154 Expression* ret = NULL;
5155 if (left_type != right_type
5156 && left_type != NULL
5157 && right_type != NULL
5158 && left_type->base() != right_type->base())
5159 {
5160 // May be a type error--let it be diagnosed later.
5161 }
5162 else if (is_comparison)
5163 {
5164 bool b = Binary_expression::compare_complex(op,
5165 (left_type != NULL
5166 ? left_type
5167 : right_type),
5168 left_real,
5169 left_imag,
5170 right_real,
5171 right_imag);
5172 ret = Expression::make_boolean(b, location);
5173 }
5174 else
5175 {
5176 mpfr_t real;
5177 mpfr_t imag;
5178 mpfr_init(real);
5179 mpfr_init(imag);
5180
5181 if (Binary_expression::eval_complex(op, left_type,
5182 left_real, left_imag,
5183 right_type,
5184 right_real, right_imag,
5185 real, imag,
5186 location))
5187 {
5188 gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND
5189 && op != OPERATOR_LSHIFT && op != OPERATOR_RSHIFT);
5190 Type* type;
5191 if (left_type == NULL)
5192 type = right_type;
5193 else if (right_type == NULL)
5194 type = left_type;
5195 else if (!left_type->is_abstract()
5196 && left_type->named_type() != NULL)
5197 type = left_type;
5198 else if (!right_type->is_abstract()
5199 && right_type->named_type() != NULL)
5200 type = right_type;
5201 else if (!left_type->is_abstract())
5202 type = left_type;
5203 else if (!right_type->is_abstract())
5204 type = right_type;
5205 else if (left_type->complex_type() != NULL)
5206 type = left_type;
5207 else if (right_type->complex_type() != NULL)
5208 type = right_type;
5209 else
5210 type = left_type;
5211 ret = Expression::make_complex(&real, &imag, type,
5212 location);
5213 }
5214 mpfr_clear(real);
5215 mpfr_clear(imag);
5216 }
5217
5218 if (ret != NULL)
5219 {
5220 mpfr_clear(left_real);
5221 mpfr_clear(left_imag);
5222 mpfr_clear(right_real);
5223 mpfr_clear(right_imag);
5224 return ret;
5225 }
5226 }
5227
5228 mpfr_clear(left_real);
5229 mpfr_clear(left_imag);
5230 mpfr_clear(right_real);
5231 mpfr_clear(right_imag);
5232 }
5233
5234 // String constant expressions.
5235 if (op == OPERATOR_PLUS
5236 && left->type()->is_string_type()
5237 && right->type()->is_string_type())
5238 {
5239 std::string left_string;
5240 std::string right_string;
5241 if (left->string_constant_value(&left_string)
5242 && right->string_constant_value(&right_string))
5243 return Expression::make_string(left_string + right_string, location);
5244 }
5245
5246 return this;
5247 }
5248
5249 // Return the integer constant value, if it has one.
5250
5251 bool
5252 Binary_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
5253 Type** ptype) const
5254 {
5255 mpz_t left_val;
5256 mpz_init(left_val);
5257 Type* left_type;
5258 if (!this->left_->integer_constant_value(iota_is_constant, left_val,
5259 &left_type))
5260 {
5261 mpz_clear(left_val);
5262 return false;
5263 }
5264
5265 mpz_t right_val;
5266 mpz_init(right_val);
5267 Type* right_type;
5268 if (!this->right_->integer_constant_value(iota_is_constant, right_val,
5269 &right_type))
5270 {
5271 mpz_clear(right_val);
5272 mpz_clear(left_val);
5273 return false;
5274 }
5275
5276 bool ret;
5277 if (left_type != right_type
5278 && left_type != NULL
5279 && right_type != NULL
5280 && left_type->base() != right_type->base()
5281 && this->op_ != OPERATOR_RSHIFT
5282 && this->op_ != OPERATOR_LSHIFT)
5283 ret = false;
5284 else
5285 ret = Binary_expression::eval_integer(this->op_, left_type, left_val,
5286 right_type, right_val,
5287 this->location(), val);
5288
5289 mpz_clear(right_val);
5290 mpz_clear(left_val);
5291
5292 if (ret)
5293 *ptype = left_type;
5294
5295 return ret;
5296 }
5297
5298 // Return the floating point constant value, if it has one.
5299
5300 bool
5301 Binary_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
5302 {
5303 mpfr_t left_val;
5304 mpfr_init(left_val);
5305 Type* left_type;
5306 if (!this->left_->float_constant_value(left_val, &left_type))
5307 {
5308 mpfr_clear(left_val);
5309 return false;
5310 }
5311
5312 mpfr_t right_val;
5313 mpfr_init(right_val);
5314 Type* right_type;
5315 if (!this->right_->float_constant_value(right_val, &right_type))
5316 {
5317 mpfr_clear(right_val);
5318 mpfr_clear(left_val);
5319 return false;
5320 }
5321
5322 bool ret;
5323 if (left_type != right_type
5324 && left_type != NULL
5325 && right_type != NULL
5326 && left_type->base() != right_type->base())
5327 ret = false;
5328 else
5329 ret = Binary_expression::eval_float(this->op_, left_type, left_val,
5330 right_type, right_val,
5331 val, this->location());
5332
5333 mpfr_clear(left_val);
5334 mpfr_clear(right_val);
5335
5336 if (ret)
5337 *ptype = left_type;
5338
5339 return ret;
5340 }
5341
5342 // Return the complex constant value, if it has one.
5343
5344 bool
5345 Binary_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
5346 Type** ptype) const
5347 {
5348 mpfr_t left_real;
5349 mpfr_t left_imag;
5350 mpfr_init(left_real);
5351 mpfr_init(left_imag);
5352 Type* left_type;
5353 if (!this->left_->complex_constant_value(left_real, left_imag, &left_type))
5354 {
5355 mpfr_clear(left_real);
5356 mpfr_clear(left_imag);
5357 return false;
5358 }
5359
5360 mpfr_t right_real;
5361 mpfr_t right_imag;
5362 mpfr_init(right_real);
5363 mpfr_init(right_imag);
5364 Type* right_type;
5365 if (!this->right_->complex_constant_value(right_real, right_imag,
5366 &right_type))
5367 {
5368 mpfr_clear(left_real);
5369 mpfr_clear(left_imag);
5370 mpfr_clear(right_real);
5371 mpfr_clear(right_imag);
5372 return false;
5373 }
5374
5375 bool ret;
5376 if (left_type != right_type
5377 && left_type != NULL
5378 && right_type != NULL
5379 && left_type->base() != right_type->base())
5380 ret = false;
5381 else
5382 ret = Binary_expression::eval_complex(this->op_, left_type,
5383 left_real, left_imag,
5384 right_type,
5385 right_real, right_imag,
5386 real, imag,
5387 this->location());
5388 mpfr_clear(left_real);
5389 mpfr_clear(left_imag);
5390 mpfr_clear(right_real);
5391 mpfr_clear(right_imag);
5392
5393 if (ret)
5394 *ptype = left_type;
5395
5396 return ret;
5397 }
5398
5399 // Note that the value is being discarded.
5400
5401 void
5402 Binary_expression::do_discarding_value()
5403 {
5404 if (this->op_ == OPERATOR_OROR || this->op_ == OPERATOR_ANDAND)
5405 this->right_->discarding_value();
5406 else
5407 this->warn_about_unused_value();
5408 }
5409
5410 // Get type.
5411
5412 Type*
5413 Binary_expression::do_type()
5414 {
5415 switch (this->op_)
5416 {
5417 case OPERATOR_OROR:
5418 case OPERATOR_ANDAND:
5419 case OPERATOR_EQEQ:
5420 case OPERATOR_NOTEQ:
5421 case OPERATOR_LT:
5422 case OPERATOR_LE:
5423 case OPERATOR_GT:
5424 case OPERATOR_GE:
5425 return Type::lookup_bool_type();
5426
5427 case OPERATOR_PLUS:
5428 case OPERATOR_MINUS:
5429 case OPERATOR_OR:
5430 case OPERATOR_XOR:
5431 case OPERATOR_MULT:
5432 case OPERATOR_DIV:
5433 case OPERATOR_MOD:
5434 case OPERATOR_AND:
5435 case OPERATOR_BITCLEAR:
5436 {
5437 Type* left_type = this->left_->type();
5438 Type* right_type = this->right_->type();
5439 if (left_type->is_error_type())
5440 return left_type;
5441 else if (right_type->is_error_type())
5442 return right_type;
5443 else if (!left_type->is_abstract() && left_type->named_type() != NULL)
5444 return left_type;
5445 else if (!right_type->is_abstract() && right_type->named_type() != NULL)
5446 return right_type;
5447 else if (!left_type->is_abstract())
5448 return left_type;
5449 else if (!right_type->is_abstract())
5450 return right_type;
5451 else if (left_type->complex_type() != NULL)
5452 return left_type;
5453 else if (right_type->complex_type() != NULL)
5454 return right_type;
5455 else if (left_type->float_type() != NULL)
5456 return left_type;
5457 else if (right_type->float_type() != NULL)
5458 return right_type;
5459 else
5460 return left_type;
5461 }
5462
5463 case OPERATOR_LSHIFT:
5464 case OPERATOR_RSHIFT:
5465 return this->left_->type();
5466
5467 default:
5468 gcc_unreachable();
5469 }
5470 }
5471
5472 // Set type for a binary expression.
5473
5474 void
5475 Binary_expression::do_determine_type(const Type_context* context)
5476 {
5477 Type* tleft = this->left_->type();
5478 Type* tright = this->right_->type();
5479
5480 // Both sides should have the same type, except for the shift
5481 // operations. For a comparison, we should ignore the incoming
5482 // type.
5483
5484 bool is_shift_op = (this->op_ == OPERATOR_LSHIFT
5485 || this->op_ == OPERATOR_RSHIFT);
5486
5487 bool is_comparison = (this->op_ == OPERATOR_EQEQ
5488 || this->op_ == OPERATOR_NOTEQ
5489 || this->op_ == OPERATOR_LT
5490 || this->op_ == OPERATOR_LE
5491 || this->op_ == OPERATOR_GT
5492 || this->op_ == OPERATOR_GE);
5493
5494 Type_context subcontext(*context);
5495
5496 if (is_comparison)
5497 {
5498 // In a comparison, the context does not determine the types of
5499 // the operands.
5500 subcontext.type = NULL;
5501 }
5502
5503 // Set the context for the left hand operand.
5504 if (is_shift_op)
5505 {
5506 // The right hand operand plays no role in determining the type
5507 // of the left hand operand. A shift of an abstract integer in
5508 // a string context gets special treatment, which may be a
5509 // language bug.
5510 if (subcontext.type != NULL
5511 && subcontext.type->is_string_type()
5512 && tleft->is_abstract())
5513 error_at(this->location(), "shift of non-integer operand");
5514 }
5515 else if (!tleft->is_abstract())
5516 subcontext.type = tleft;
5517 else if (!tright->is_abstract())
5518 subcontext.type = tright;
5519 else if (subcontext.type == NULL)
5520 {
5521 if ((tleft->integer_type() != NULL && tright->integer_type() != NULL)
5522 || (tleft->float_type() != NULL && tright->float_type() != NULL)
5523 || (tleft->complex_type() != NULL && tright->complex_type() != NULL))
5524 {
5525 // Both sides have an abstract integer, abstract float, or
5526 // abstract complex type. Just let CONTEXT determine
5527 // whether they may remain abstract or not.
5528 }
5529 else if (tleft->complex_type() != NULL)
5530 subcontext.type = tleft;
5531 else if (tright->complex_type() != NULL)
5532 subcontext.type = tright;
5533 else if (tleft->float_type() != NULL)
5534 subcontext.type = tleft;
5535 else if (tright->float_type() != NULL)
5536 subcontext.type = tright;
5537 else
5538 subcontext.type = tleft;
5539 }
5540
5541 this->left_->determine_type(&subcontext);
5542
5543 // The context for the right hand operand is the same as for the
5544 // left hand operand, except for a shift operator.
5545 if (is_shift_op)
5546 {
5547 subcontext.type = Type::lookup_integer_type("uint");
5548 subcontext.may_be_abstract = false;
5549 }
5550
5551 this->right_->determine_type(&subcontext);
5552 }
5553
5554 // Report an error if the binary operator OP does not support TYPE.
5555 // Return whether the operation is OK. This should not be used for
5556 // shift.
5557
5558 bool
5559 Binary_expression::check_operator_type(Operator op, Type* type,
5560 source_location location)
5561 {
5562 switch (op)
5563 {
5564 case OPERATOR_OROR:
5565 case OPERATOR_ANDAND:
5566 if (!type->is_boolean_type())
5567 {
5568 error_at(location, "expected boolean type");
5569 return false;
5570 }
5571 break;
5572
5573 case OPERATOR_EQEQ:
5574 case OPERATOR_NOTEQ:
5575 if (type->integer_type() == NULL
5576 && type->float_type() == NULL
5577 && type->complex_type() == NULL
5578 && !type->is_string_type()
5579 && type->points_to() == NULL
5580 && !type->is_nil_type()
5581 && !type->is_boolean_type()
5582 && type->interface_type() == NULL
5583 && (type->array_type() == NULL
5584 || type->array_type()->length() != NULL)
5585 && type->map_type() == NULL
5586 && type->channel_type() == NULL
5587 && type->function_type() == NULL)
5588 {
5589 error_at(location,
5590 ("expected integer, floating, complex, string, pointer, "
5591 "boolean, interface, slice, map, channel, "
5592 "or function type"));
5593 return false;
5594 }
5595 break;
5596
5597 case OPERATOR_LT:
5598 case OPERATOR_LE:
5599 case OPERATOR_GT:
5600 case OPERATOR_GE:
5601 if (type->integer_type() == NULL
5602 && type->float_type() == NULL
5603 && !type->is_string_type())
5604 {
5605 error_at(location, "expected integer, floating, or string type");
5606 return false;
5607 }
5608 break;
5609
5610 case OPERATOR_PLUS:
5611 case OPERATOR_PLUSEQ:
5612 if (type->integer_type() == NULL
5613 && type->float_type() == NULL
5614 && type->complex_type() == NULL
5615 && !type->is_string_type())
5616 {
5617 error_at(location,
5618 "expected integer, floating, complex, or string type");
5619 return false;
5620 }
5621 break;
5622
5623 case OPERATOR_MINUS:
5624 case OPERATOR_MINUSEQ:
5625 case OPERATOR_MULT:
5626 case OPERATOR_MULTEQ:
5627 case OPERATOR_DIV:
5628 case OPERATOR_DIVEQ:
5629 if (type->integer_type() == NULL
5630 && type->float_type() == NULL
5631 && type->complex_type() == NULL)
5632 {
5633 error_at(location, "expected integer, floating, or complex type");
5634 return false;
5635 }
5636 break;
5637
5638 case OPERATOR_MOD:
5639 case OPERATOR_MODEQ:
5640 case OPERATOR_OR:
5641 case OPERATOR_OREQ:
5642 case OPERATOR_AND:
5643 case OPERATOR_ANDEQ:
5644 case OPERATOR_XOR:
5645 case OPERATOR_XOREQ:
5646 case OPERATOR_BITCLEAR:
5647 case OPERATOR_BITCLEAREQ:
5648 if (type->integer_type() == NULL)
5649 {
5650 error_at(location, "expected integer type");
5651 return false;
5652 }
5653 break;
5654
5655 default:
5656 gcc_unreachable();
5657 }
5658
5659 return true;
5660 }
5661
5662 // Check types.
5663
5664 void
5665 Binary_expression::do_check_types(Gogo*)
5666 {
5667 Type* left_type = this->left_->type();
5668 Type* right_type = this->right_->type();
5669 if (left_type->is_error_type() || right_type->is_error_type())
5670 {
5671 this->set_is_error();
5672 return;
5673 }
5674
5675 if (this->op_ == OPERATOR_EQEQ
5676 || this->op_ == OPERATOR_NOTEQ
5677 || this->op_ == OPERATOR_LT
5678 || this->op_ == OPERATOR_LE
5679 || this->op_ == OPERATOR_GT
5680 || this->op_ == OPERATOR_GE)
5681 {
5682 if (!Type::are_assignable(left_type, right_type, NULL)
5683 && !Type::are_assignable(right_type, left_type, NULL))
5684 {
5685 this->report_error(_("incompatible types in binary expression"));
5686 return;
5687 }
5688 if (!Binary_expression::check_operator_type(this->op_, left_type,
5689 this->location())
5690 || !Binary_expression::check_operator_type(this->op_, right_type,
5691 this->location()))
5692 {
5693 this->set_is_error();
5694 return;
5695 }
5696 }
5697 else if (this->op_ != OPERATOR_LSHIFT && this->op_ != OPERATOR_RSHIFT)
5698 {
5699 if (!Type::are_compatible_for_binop(left_type, right_type))
5700 {
5701 this->report_error(_("incompatible types in binary expression"));
5702 return;
5703 }
5704 if (!Binary_expression::check_operator_type(this->op_, left_type,
5705 this->location()))
5706 {
5707 this->set_is_error();
5708 return;
5709 }
5710 }
5711 else
5712 {
5713 if (left_type->integer_type() == NULL)
5714 this->report_error(_("shift of non-integer operand"));
5715
5716 if (!right_type->is_abstract()
5717 && (right_type->integer_type() == NULL
5718 || !right_type->integer_type()->is_unsigned()))
5719 this->report_error(_("shift count not unsigned integer"));
5720 else
5721 {
5722 mpz_t val;
5723 mpz_init(val);
5724 Type* type;
5725 if (this->right_->integer_constant_value(true, val, &type))
5726 {
5727 if (mpz_sgn(val) < 0)
5728 this->report_error(_("negative shift count"));
5729 }
5730 mpz_clear(val);
5731 }
5732 }
5733 }
5734
5735 // Get a tree for a binary expression.
5736
5737 tree
5738 Binary_expression::do_get_tree(Translate_context* context)
5739 {
5740 tree left = this->left_->get_tree(context);
5741 tree right = this->right_->get_tree(context);
5742
5743 if (left == error_mark_node || right == error_mark_node)
5744 return error_mark_node;
5745
5746 enum tree_code code;
5747 bool use_left_type = true;
5748 bool is_shift_op = false;
5749 switch (this->op_)
5750 {
5751 case OPERATOR_EQEQ:
5752 case OPERATOR_NOTEQ:
5753 case OPERATOR_LT:
5754 case OPERATOR_LE:
5755 case OPERATOR_GT:
5756 case OPERATOR_GE:
5757 return Expression::comparison_tree(context, this->op_,
5758 this->left_->type(), left,
5759 this->right_->type(), right,
5760 this->location());
5761
5762 case OPERATOR_OROR:
5763 code = TRUTH_ORIF_EXPR;
5764 use_left_type = false;
5765 break;
5766 case OPERATOR_ANDAND:
5767 code = TRUTH_ANDIF_EXPR;
5768 use_left_type = false;
5769 break;
5770 case OPERATOR_PLUS:
5771 code = PLUS_EXPR;
5772 break;
5773 case OPERATOR_MINUS:
5774 code = MINUS_EXPR;
5775 break;
5776 case OPERATOR_OR:
5777 code = BIT_IOR_EXPR;
5778 break;
5779 case OPERATOR_XOR:
5780 code = BIT_XOR_EXPR;
5781 break;
5782 case OPERATOR_MULT:
5783 code = MULT_EXPR;
5784 break;
5785 case OPERATOR_DIV:
5786 {
5787 Type *t = this->left_->type();
5788 if (t->float_type() != NULL || t->complex_type() != NULL)
5789 code = RDIV_EXPR;
5790 else
5791 code = TRUNC_DIV_EXPR;
5792 }
5793 break;
5794 case OPERATOR_MOD:
5795 code = TRUNC_MOD_EXPR;
5796 break;
5797 case OPERATOR_LSHIFT:
5798 code = LSHIFT_EXPR;
5799 is_shift_op = true;
5800 break;
5801 case OPERATOR_RSHIFT:
5802 code = RSHIFT_EXPR;
5803 is_shift_op = true;
5804 break;
5805 case OPERATOR_AND:
5806 code = BIT_AND_EXPR;
5807 break;
5808 case OPERATOR_BITCLEAR:
5809 right = fold_build1(BIT_NOT_EXPR, TREE_TYPE(right), right);
5810 code = BIT_AND_EXPR;
5811 break;
5812 default:
5813 gcc_unreachable();
5814 }
5815
5816 tree type = use_left_type ? TREE_TYPE(left) : TREE_TYPE(right);
5817
5818 if (this->left_->type()->is_string_type())
5819 {
5820 gcc_assert(this->op_ == OPERATOR_PLUS);
5821 tree string_type = Type::make_string_type()->get_tree(context->gogo());
5822 static tree string_plus_decl;
5823 return Gogo::call_builtin(&string_plus_decl,
5824 this->location(),
5825 "__go_string_plus",
5826 2,
5827 string_type,
5828 string_type,
5829 left,
5830 string_type,
5831 right);
5832 }
5833
5834 tree compute_type = excess_precision_type(type);
5835 if (compute_type != NULL_TREE)
5836 {
5837 left = ::convert(compute_type, left);
5838 right = ::convert(compute_type, right);
5839 }
5840
5841 tree eval_saved = NULL_TREE;
5842 if (is_shift_op)
5843 {
5844 if (!DECL_P(left))
5845 left = save_expr(left);
5846 if (!DECL_P(right))
5847 right = save_expr(right);
5848 // Make sure the values are evaluated.
5849 eval_saved = fold_build2_loc(this->location(), COMPOUND_EXPR,
5850 void_type_node, left, right);
5851 }
5852
5853 tree ret = fold_build2_loc(this->location(),
5854 code,
5855 compute_type != NULL_TREE ? compute_type : type,
5856 left, right);
5857
5858 if (compute_type != NULL_TREE)
5859 ret = ::convert(type, ret);
5860
5861 // In Go, a shift larger than the size of the type is well-defined.
5862 // This is not true in GENERIC, so we need to insert a conditional.
5863 if (is_shift_op)
5864 {
5865 gcc_assert(INTEGRAL_TYPE_P(TREE_TYPE(left)));
5866 gcc_assert(this->left_->type()->integer_type() != NULL);
5867 int bits = TYPE_PRECISION(TREE_TYPE(left));
5868
5869 tree compare = fold_build2(LT_EXPR, boolean_type_node, right,
5870 build_int_cst_type(TREE_TYPE(right), bits));
5871
5872 tree overflow_result = fold_convert_loc(this->location(),
5873 TREE_TYPE(left),
5874 integer_zero_node);
5875 if (this->op_ == OPERATOR_RSHIFT
5876 && !this->left_->type()->integer_type()->is_unsigned())
5877 {
5878 tree neg = fold_build2_loc(this->location(), LT_EXPR,
5879 boolean_type_node, left,
5880 fold_convert_loc(this->location(),
5881 TREE_TYPE(left),
5882 integer_zero_node));
5883 tree neg_one = fold_build2_loc(this->location(),
5884 MINUS_EXPR, TREE_TYPE(left),
5885 fold_convert_loc(this->location(),
5886 TREE_TYPE(left),
5887 integer_zero_node),
5888 fold_convert_loc(this->location(),
5889 TREE_TYPE(left),
5890 integer_one_node));
5891 overflow_result = fold_build3_loc(this->location(), COND_EXPR,
5892 TREE_TYPE(left), neg, neg_one,
5893 overflow_result);
5894 }
5895
5896 ret = fold_build3_loc(this->location(), COND_EXPR, TREE_TYPE(left),
5897 compare, ret, overflow_result);
5898
5899 ret = fold_build2_loc(this->location(), COMPOUND_EXPR,
5900 TREE_TYPE(ret), eval_saved, ret);
5901 }
5902
5903 return ret;
5904 }
5905
5906 // Export a binary expression.
5907
5908 void
5909 Binary_expression::do_export(Export* exp) const
5910 {
5911 exp->write_c_string("(");
5912 this->left_->export_expression(exp);
5913 switch (this->op_)
5914 {
5915 case OPERATOR_OROR:
5916 exp->write_c_string(" || ");
5917 break;
5918 case OPERATOR_ANDAND:
5919 exp->write_c_string(" && ");
5920 break;
5921 case OPERATOR_EQEQ:
5922 exp->write_c_string(" == ");
5923 break;
5924 case OPERATOR_NOTEQ:
5925 exp->write_c_string(" != ");
5926 break;
5927 case OPERATOR_LT:
5928 exp->write_c_string(" < ");
5929 break;
5930 case OPERATOR_LE:
5931 exp->write_c_string(" <= ");
5932 break;
5933 case OPERATOR_GT:
5934 exp->write_c_string(" > ");
5935 break;
5936 case OPERATOR_GE:
5937 exp->write_c_string(" >= ");
5938 break;
5939 case OPERATOR_PLUS:
5940 exp->write_c_string(" + ");
5941 break;
5942 case OPERATOR_MINUS:
5943 exp->write_c_string(" - ");
5944 break;
5945 case OPERATOR_OR:
5946 exp->write_c_string(" | ");
5947 break;
5948 case OPERATOR_XOR:
5949 exp->write_c_string(" ^ ");
5950 break;
5951 case OPERATOR_MULT:
5952 exp->write_c_string(" * ");
5953 break;
5954 case OPERATOR_DIV:
5955 exp->write_c_string(" / ");
5956 break;
5957 case OPERATOR_MOD:
5958 exp->write_c_string(" % ");
5959 break;
5960 case OPERATOR_LSHIFT:
5961 exp->write_c_string(" << ");
5962 break;
5963 case OPERATOR_RSHIFT:
5964 exp->write_c_string(" >> ");
5965 break;
5966 case OPERATOR_AND:
5967 exp->write_c_string(" & ");
5968 break;
5969 case OPERATOR_BITCLEAR:
5970 exp->write_c_string(" &^ ");
5971 break;
5972 default:
5973 gcc_unreachable();
5974 }
5975 this->right_->export_expression(exp);
5976 exp->write_c_string(")");
5977 }
5978
5979 // Import a binary expression.
5980
5981 Expression*
5982 Binary_expression::do_import(Import* imp)
5983 {
5984 imp->require_c_string("(");
5985
5986 Expression* left = Expression::import_expression(imp);
5987
5988 Operator op;
5989 if (imp->match_c_string(" || "))
5990 {
5991 op = OPERATOR_OROR;
5992 imp->advance(4);
5993 }
5994 else if (imp->match_c_string(" && "))
5995 {
5996 op = OPERATOR_ANDAND;
5997 imp->advance(4);
5998 }
5999 else if (imp->match_c_string(" == "))
6000 {
6001 op = OPERATOR_EQEQ;
6002 imp->advance(4);
6003 }
6004 else if (imp->match_c_string(" != "))
6005 {
6006 op = OPERATOR_NOTEQ;
6007 imp->advance(4);
6008 }
6009 else if (imp->match_c_string(" < "))
6010 {
6011 op = OPERATOR_LT;
6012 imp->advance(3);
6013 }
6014 else if (imp->match_c_string(" <= "))
6015 {
6016 op = OPERATOR_LE;
6017 imp->advance(4);
6018 }
6019 else if (imp->match_c_string(" > "))
6020 {
6021 op = OPERATOR_GT;
6022 imp->advance(3);
6023 }
6024 else if (imp->match_c_string(" >= "))
6025 {
6026 op = OPERATOR_GE;
6027 imp->advance(4);
6028 }
6029 else if (imp->match_c_string(" + "))
6030 {
6031 op = OPERATOR_PLUS;
6032 imp->advance(3);
6033 }
6034 else if (imp->match_c_string(" - "))
6035 {
6036 op = OPERATOR_MINUS;
6037 imp->advance(3);
6038 }
6039 else if (imp->match_c_string(" | "))
6040 {
6041 op = OPERATOR_OR;
6042 imp->advance(3);
6043 }
6044 else if (imp->match_c_string(" ^ "))
6045 {
6046 op = OPERATOR_XOR;
6047 imp->advance(3);
6048 }
6049 else if (imp->match_c_string(" * "))
6050 {
6051 op = OPERATOR_MULT;
6052 imp->advance(3);
6053 }
6054 else if (imp->match_c_string(" / "))
6055 {
6056 op = OPERATOR_DIV;
6057 imp->advance(3);
6058 }
6059 else if (imp->match_c_string(" % "))
6060 {
6061 op = OPERATOR_MOD;
6062 imp->advance(3);
6063 }
6064 else if (imp->match_c_string(" << "))
6065 {
6066 op = OPERATOR_LSHIFT;
6067 imp->advance(4);
6068 }
6069 else if (imp->match_c_string(" >> "))
6070 {
6071 op = OPERATOR_RSHIFT;
6072 imp->advance(4);
6073 }
6074 else if (imp->match_c_string(" & "))
6075 {
6076 op = OPERATOR_AND;
6077 imp->advance(3);
6078 }
6079 else if (imp->match_c_string(" &^ "))
6080 {
6081 op = OPERATOR_BITCLEAR;
6082 imp->advance(4);
6083 }
6084 else
6085 {
6086 error_at(imp->location(), "unrecognized binary operator");
6087 return Expression::make_error(imp->location());
6088 }
6089
6090 Expression* right = Expression::import_expression(imp);
6091
6092 imp->require_c_string(")");
6093
6094 return Expression::make_binary(op, left, right, imp->location());
6095 }
6096
6097 // Make a binary expression.
6098
6099 Expression*
6100 Expression::make_binary(Operator op, Expression* left, Expression* right,
6101 source_location location)
6102 {
6103 return new Binary_expression(op, left, right, location);
6104 }
6105
6106 // Implement a comparison.
6107
6108 tree
6109 Expression::comparison_tree(Translate_context* context, Operator op,
6110 Type* left_type, tree left_tree,
6111 Type* right_type, tree right_tree,
6112 source_location location)
6113 {
6114 enum tree_code code;
6115 switch (op)
6116 {
6117 case OPERATOR_EQEQ:
6118 code = EQ_EXPR;
6119 break;
6120 case OPERATOR_NOTEQ:
6121 code = NE_EXPR;
6122 break;
6123 case OPERATOR_LT:
6124 code = LT_EXPR;
6125 break;
6126 case OPERATOR_LE:
6127 code = LE_EXPR;
6128 break;
6129 case OPERATOR_GT:
6130 code = GT_EXPR;
6131 break;
6132 case OPERATOR_GE:
6133 code = GE_EXPR;
6134 break;
6135 default:
6136 gcc_unreachable();
6137 }
6138
6139 if (left_type->is_string_type() && right_type->is_string_type())
6140 {
6141 tree string_type = Type::make_string_type()->get_tree(context->gogo());
6142 static tree string_compare_decl;
6143 left_tree = Gogo::call_builtin(&string_compare_decl,
6144 location,
6145 "__go_strcmp",
6146 2,
6147 integer_type_node,
6148 string_type,
6149 left_tree,
6150 string_type,
6151 right_tree);
6152 right_tree = build_int_cst_type(integer_type_node, 0);
6153 }
6154 else if ((left_type->interface_type() != NULL
6155 && right_type->interface_type() == NULL
6156 && !right_type->is_nil_type())
6157 || (left_type->interface_type() == NULL
6158 && !left_type->is_nil_type()
6159 && right_type->interface_type() != NULL))
6160 {
6161 // Comparing an interface value to a non-interface value.
6162 if (left_type->interface_type() == NULL)
6163 {
6164 std::swap(left_type, right_type);
6165 std::swap(left_tree, right_tree);
6166 }
6167
6168 // The right operand is not an interface. We need to take its
6169 // address if it is not a pointer.
6170 tree make_tmp;
6171 tree arg;
6172 if (right_type->points_to() != NULL)
6173 {
6174 make_tmp = NULL_TREE;
6175 arg = right_tree;
6176 }
6177 else if (TREE_ADDRESSABLE(TREE_TYPE(right_tree)) || DECL_P(right_tree))
6178 {
6179 make_tmp = NULL_TREE;
6180 arg = build_fold_addr_expr_loc(location, right_tree);
6181 if (DECL_P(right_tree))
6182 TREE_ADDRESSABLE(right_tree) = 1;
6183 }
6184 else
6185 {
6186 tree tmp = create_tmp_var(TREE_TYPE(right_tree),
6187 get_name(right_tree));
6188 DECL_IGNORED_P(tmp) = 0;
6189 DECL_INITIAL(tmp) = right_tree;
6190 TREE_ADDRESSABLE(tmp) = 1;
6191 make_tmp = build1(DECL_EXPR, void_type_node, tmp);
6192 SET_EXPR_LOCATION(make_tmp, location);
6193 arg = build_fold_addr_expr_loc(location, tmp);
6194 }
6195 arg = fold_convert_loc(location, ptr_type_node, arg);
6196
6197 tree descriptor = right_type->type_descriptor_pointer(context->gogo());
6198
6199 if (left_type->interface_type()->is_empty())
6200 {
6201 static tree empty_interface_value_compare_decl;
6202 left_tree = Gogo::call_builtin(&empty_interface_value_compare_decl,
6203 location,
6204 "__go_empty_interface_value_compare",
6205 3,
6206 integer_type_node,
6207 TREE_TYPE(left_tree),
6208 left_tree,
6209 TREE_TYPE(descriptor),
6210 descriptor,
6211 ptr_type_node,
6212 arg);
6213 if (left_tree == error_mark_node)
6214 return error_mark_node;
6215 // This can panic if the type is not comparable.
6216 TREE_NOTHROW(empty_interface_value_compare_decl) = 0;
6217 }
6218 else
6219 {
6220 static tree interface_value_compare_decl;
6221 left_tree = Gogo::call_builtin(&interface_value_compare_decl,
6222 location,
6223 "__go_interface_value_compare",
6224 3,
6225 integer_type_node,
6226 TREE_TYPE(left_tree),
6227 left_tree,
6228 TREE_TYPE(descriptor),
6229 descriptor,
6230 ptr_type_node,
6231 arg);
6232 if (left_tree == error_mark_node)
6233 return error_mark_node;
6234 // This can panic if the type is not comparable.
6235 TREE_NOTHROW(interface_value_compare_decl) = 0;
6236 }
6237 right_tree = build_int_cst_type(integer_type_node, 0);
6238
6239 if (make_tmp != NULL_TREE)
6240 left_tree = build2(COMPOUND_EXPR, TREE_TYPE(left_tree), make_tmp,
6241 left_tree);
6242 }
6243 else if (left_type->interface_type() != NULL
6244 && right_type->interface_type() != NULL)
6245 {
6246 if (left_type->interface_type()->is_empty())
6247 {
6248 gcc_assert(right_type->interface_type()->is_empty());
6249 static tree empty_interface_compare_decl;
6250 left_tree = Gogo::call_builtin(&empty_interface_compare_decl,
6251 location,
6252 "__go_empty_interface_compare",
6253 2,
6254 integer_type_node,
6255 TREE_TYPE(left_tree),
6256 left_tree,
6257 TREE_TYPE(right_tree),
6258 right_tree);
6259 if (left_tree == error_mark_node)
6260 return error_mark_node;
6261 // This can panic if the type is uncomparable.
6262 TREE_NOTHROW(empty_interface_compare_decl) = 0;
6263 }
6264 else
6265 {
6266 gcc_assert(!right_type->interface_type()->is_empty());
6267 static tree interface_compare_decl;
6268 left_tree = Gogo::call_builtin(&interface_compare_decl,
6269 location,
6270 "__go_interface_compare",
6271 2,
6272 integer_type_node,
6273 TREE_TYPE(left_tree),
6274 left_tree,
6275 TREE_TYPE(right_tree),
6276 right_tree);
6277 if (left_tree == error_mark_node)
6278 return error_mark_node;
6279 // This can panic if the type is uncomparable.
6280 TREE_NOTHROW(interface_compare_decl) = 0;
6281 }
6282 right_tree = build_int_cst_type(integer_type_node, 0);
6283 }
6284
6285 if (left_type->is_nil_type()
6286 && (op == OPERATOR_EQEQ || op == OPERATOR_NOTEQ))
6287 {
6288 std::swap(left_type, right_type);
6289 std::swap(left_tree, right_tree);
6290 }
6291
6292 if (right_type->is_nil_type())
6293 {
6294 if (left_type->array_type() != NULL
6295 && left_type->array_type()->length() == NULL)
6296 {
6297 Array_type* at = left_type->array_type();
6298 left_tree = at->value_pointer_tree(context->gogo(), left_tree);
6299 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
6300 }
6301 else if (left_type->interface_type() != NULL)
6302 {
6303 // An interface is nil if the first field is nil.
6304 tree left_type_tree = TREE_TYPE(left_tree);
6305 gcc_assert(TREE_CODE(left_type_tree) == RECORD_TYPE);
6306 tree field = TYPE_FIELDS(left_type_tree);
6307 left_tree = build3(COMPONENT_REF, TREE_TYPE(field), left_tree,
6308 field, NULL_TREE);
6309 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
6310 }
6311 else
6312 {
6313 gcc_assert(POINTER_TYPE_P(TREE_TYPE(left_tree)));
6314 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
6315 }
6316 }
6317
6318 if (left_tree == error_mark_node || right_tree == error_mark_node)
6319 return error_mark_node;
6320
6321 tree ret = fold_build2(code, boolean_type_node, left_tree, right_tree);
6322 if (CAN_HAVE_LOCATION_P(ret))
6323 SET_EXPR_LOCATION(ret, location);
6324 return ret;
6325 }
6326
6327 // Class Bound_method_expression.
6328
6329 // Traversal.
6330
6331 int
6332 Bound_method_expression::do_traverse(Traverse* traverse)
6333 {
6334 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT)
6335 return TRAVERSE_EXIT;
6336 return Expression::traverse(&this->method_, traverse);
6337 }
6338
6339 // Return the type of a bound method expression. The type of this
6340 // object is really the type of the method with no receiver. We
6341 // should be able to get away with just returning the type of the
6342 // method.
6343
6344 Type*
6345 Bound_method_expression::do_type()
6346 {
6347 return this->method_->type();
6348 }
6349
6350 // Determine the types of a method expression.
6351
6352 void
6353 Bound_method_expression::do_determine_type(const Type_context*)
6354 {
6355 this->method_->determine_type_no_context();
6356 Type* mtype = this->method_->type();
6357 Function_type* fntype = mtype == NULL ? NULL : mtype->function_type();
6358 if (fntype == NULL || !fntype->is_method())
6359 this->expr_->determine_type_no_context();
6360 else
6361 {
6362 Type_context subcontext(fntype->receiver()->type(), false);
6363 this->expr_->determine_type(&subcontext);
6364 }
6365 }
6366
6367 // Check the types of a method expression.
6368
6369 void
6370 Bound_method_expression::do_check_types(Gogo*)
6371 {
6372 Type* type = this->method_->type()->deref();
6373 if (type == NULL
6374 || type->function_type() == NULL
6375 || !type->function_type()->is_method())
6376 this->report_error(_("object is not a method"));
6377 else
6378 {
6379 Type* rtype = type->function_type()->receiver()->type()->deref();
6380 Type* etype = (this->expr_type_ != NULL
6381 ? this->expr_type_
6382 : this->expr_->type());
6383 etype = etype->deref();
6384 if (!Type::are_identical(rtype, etype, true, NULL))
6385 this->report_error(_("method type does not match object type"));
6386 }
6387 }
6388
6389 // Get the tree for a method expression. There is no standard tree
6390 // representation for this. The only places it may currently be used
6391 // are in a Call_expression or a Go_statement, which will take it
6392 // apart directly. So this has nothing to do at present.
6393
6394 tree
6395 Bound_method_expression::do_get_tree(Translate_context*)
6396 {
6397 gcc_unreachable();
6398 }
6399
6400 // Make a method expression.
6401
6402 Bound_method_expression*
6403 Expression::make_bound_method(Expression* expr, Expression* method,
6404 source_location location)
6405 {
6406 return new Bound_method_expression(expr, method, location);
6407 }
6408
6409 // Class Builtin_call_expression. This is used for a call to a
6410 // builtin function.
6411
6412 class Builtin_call_expression : public Call_expression
6413 {
6414 public:
6415 Builtin_call_expression(Gogo* gogo, Expression* fn, Expression_list* args,
6416 bool is_varargs, source_location location);
6417
6418 protected:
6419 // This overrides Call_expression::do_lower.
6420 Expression*
6421 do_lower(Gogo*, Named_object*, int);
6422
6423 bool
6424 do_is_constant() const;
6425
6426 bool
6427 do_integer_constant_value(bool, mpz_t, Type**) const;
6428
6429 bool
6430 do_float_constant_value(mpfr_t, Type**) const;
6431
6432 bool
6433 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
6434
6435 Type*
6436 do_type();
6437
6438 void
6439 do_determine_type(const Type_context*);
6440
6441 void
6442 do_check_types(Gogo*);
6443
6444 Expression*
6445 do_copy()
6446 {
6447 return new Builtin_call_expression(this->gogo_, this->fn()->copy(),
6448 this->args()->copy(),
6449 this->is_varargs(),
6450 this->location());
6451 }
6452
6453 tree
6454 do_get_tree(Translate_context*);
6455
6456 void
6457 do_export(Export*) const;
6458
6459 virtual bool
6460 do_is_recover_call() const;
6461
6462 virtual void
6463 do_set_recover_arg(Expression*);
6464
6465 private:
6466 // The builtin functions.
6467 enum Builtin_function_code
6468 {
6469 BUILTIN_INVALID,
6470
6471 // Predeclared builtin functions.
6472 BUILTIN_APPEND,
6473 BUILTIN_CAP,
6474 BUILTIN_CLOSE,
6475 BUILTIN_CLOSED,
6476 BUILTIN_CMPLX,
6477 BUILTIN_COPY,
6478 BUILTIN_IMAG,
6479 BUILTIN_LEN,
6480 BUILTIN_MAKE,
6481 BUILTIN_NEW,
6482 BUILTIN_PANIC,
6483 BUILTIN_PRINT,
6484 BUILTIN_PRINTLN,
6485 BUILTIN_REAL,
6486 BUILTIN_RECOVER,
6487
6488 // Builtin functions from the unsafe package.
6489 BUILTIN_ALIGNOF,
6490 BUILTIN_OFFSETOF,
6491 BUILTIN_SIZEOF
6492 };
6493
6494 Expression*
6495 one_arg() const;
6496
6497 bool
6498 check_one_arg();
6499
6500 static Type*
6501 real_imag_type(Type*);
6502
6503 static Type*
6504 cmplx_type(Type*);
6505
6506 // A pointer back to the general IR structure. This avoids a global
6507 // variable, or passing it around everywhere.
6508 Gogo* gogo_;
6509 // The builtin function being called.
6510 Builtin_function_code code_;
6511 // Used to stop endless loops when the length of an array uses len
6512 // or cap of the array itself.
6513 mutable bool seen_;
6514 };
6515
6516 Builtin_call_expression::Builtin_call_expression(Gogo* gogo,
6517 Expression* fn,
6518 Expression_list* args,
6519 bool is_varargs,
6520 source_location location)
6521 : Call_expression(fn, args, is_varargs, location),
6522 gogo_(gogo), code_(BUILTIN_INVALID), seen_(false)
6523 {
6524 Func_expression* fnexp = this->fn()->func_expression();
6525 gcc_assert(fnexp != NULL);
6526 const std::string& name(fnexp->named_object()->name());
6527 if (name == "append")
6528 this->code_ = BUILTIN_APPEND;
6529 else if (name == "cap")
6530 this->code_ = BUILTIN_CAP;
6531 else if (name == "close")
6532 this->code_ = BUILTIN_CLOSE;
6533 else if (name == "closed")
6534 this->code_ = BUILTIN_CLOSED;
6535 else if (name == "cmplx")
6536 this->code_ = BUILTIN_CMPLX;
6537 else if (name == "copy")
6538 this->code_ = BUILTIN_COPY;
6539 else if (name == "imag")
6540 this->code_ = BUILTIN_IMAG;
6541 else if (name == "len")
6542 this->code_ = BUILTIN_LEN;
6543 else if (name == "make")
6544 this->code_ = BUILTIN_MAKE;
6545 else if (name == "new")
6546 this->code_ = BUILTIN_NEW;
6547 else if (name == "panic")
6548 this->code_ = BUILTIN_PANIC;
6549 else if (name == "print")
6550 this->code_ = BUILTIN_PRINT;
6551 else if (name == "println")
6552 this->code_ = BUILTIN_PRINTLN;
6553 else if (name == "real")
6554 this->code_ = BUILTIN_REAL;
6555 else if (name == "recover")
6556 this->code_ = BUILTIN_RECOVER;
6557 else if (name == "Alignof")
6558 this->code_ = BUILTIN_ALIGNOF;
6559 else if (name == "Offsetof")
6560 this->code_ = BUILTIN_OFFSETOF;
6561 else if (name == "Sizeof")
6562 this->code_ = BUILTIN_SIZEOF;
6563 else
6564 gcc_unreachable();
6565 }
6566
6567 // Return whether this is a call to recover. This is a virtual
6568 // function called from the parent class.
6569
6570 bool
6571 Builtin_call_expression::do_is_recover_call() const
6572 {
6573 if (this->classification() == EXPRESSION_ERROR)
6574 return false;
6575 return this->code_ == BUILTIN_RECOVER;
6576 }
6577
6578 // Set the argument for a call to recover.
6579
6580 void
6581 Builtin_call_expression::do_set_recover_arg(Expression* arg)
6582 {
6583 const Expression_list* args = this->args();
6584 gcc_assert(args == NULL || args->empty());
6585 Expression_list* new_args = new Expression_list();
6586 new_args->push_back(arg);
6587 this->set_args(new_args);
6588 }
6589
6590 // A traversal class which looks for a call expression.
6591
6592 class Find_call_expression : public Traverse
6593 {
6594 public:
6595 Find_call_expression()
6596 : Traverse(traverse_expressions),
6597 found_(false)
6598 { }
6599
6600 int
6601 expression(Expression**);
6602
6603 bool
6604 found()
6605 { return this->found_; }
6606
6607 private:
6608 bool found_;
6609 };
6610
6611 int
6612 Find_call_expression::expression(Expression** pexpr)
6613 {
6614 if ((*pexpr)->call_expression() != NULL)
6615 {
6616 this->found_ = true;
6617 return TRAVERSE_EXIT;
6618 }
6619 return TRAVERSE_CONTINUE;
6620 }
6621
6622 // Lower a builtin call expression. This turns new and make into
6623 // specific expressions. We also convert to a constant if we can.
6624
6625 Expression*
6626 Builtin_call_expression::do_lower(Gogo* gogo, Named_object* function, int)
6627 {
6628 if (this->code_ == BUILTIN_NEW)
6629 {
6630 const Expression_list* args = this->args();
6631 if (args == NULL || args->size() < 1)
6632 this->report_error(_("not enough arguments"));
6633 else if (args->size() > 1)
6634 this->report_error(_("too many arguments"));
6635 else
6636 {
6637 Expression* arg = args->front();
6638 if (!arg->is_type_expression())
6639 {
6640 error_at(arg->location(), "expected type");
6641 this->set_is_error();
6642 }
6643 else
6644 return Expression::make_allocation(arg->type(), this->location());
6645 }
6646 }
6647 else if (this->code_ == BUILTIN_MAKE)
6648 {
6649 const Expression_list* args = this->args();
6650 if (args == NULL || args->size() < 1)
6651 this->report_error(_("not enough arguments"));
6652 else
6653 {
6654 Expression* arg = args->front();
6655 if (!arg->is_type_expression())
6656 {
6657 error_at(arg->location(), "expected type");
6658 this->set_is_error();
6659 }
6660 else
6661 {
6662 Expression_list* newargs;
6663 if (args->size() == 1)
6664 newargs = NULL;
6665 else
6666 {
6667 newargs = new Expression_list();
6668 Expression_list::const_iterator p = args->begin();
6669 ++p;
6670 for (; p != args->end(); ++p)
6671 newargs->push_back(*p);
6672 }
6673 return Expression::make_make(arg->type(), newargs,
6674 this->location());
6675 }
6676 }
6677 }
6678 else if (this->is_constant())
6679 {
6680 // We can only lower len and cap if there are no function calls
6681 // in the arguments. Otherwise we have to make the call.
6682 if (this->code_ == BUILTIN_LEN || this->code_ == BUILTIN_CAP)
6683 {
6684 Expression* arg = this->one_arg();
6685 if (!arg->is_constant())
6686 {
6687 Find_call_expression find_call;
6688 Expression::traverse(&arg, &find_call);
6689 if (find_call.found())
6690 return this;
6691 }
6692 }
6693
6694 mpz_t ival;
6695 mpz_init(ival);
6696 Type* type;
6697 if (this->integer_constant_value(true, ival, &type))
6698 {
6699 Expression* ret = Expression::make_integer(&ival, type,
6700 this->location());
6701 mpz_clear(ival);
6702 return ret;
6703 }
6704 mpz_clear(ival);
6705
6706 mpfr_t rval;
6707 mpfr_init(rval);
6708 if (this->float_constant_value(rval, &type))
6709 {
6710 Expression* ret = Expression::make_float(&rval, type,
6711 this->location());
6712 mpfr_clear(rval);
6713 return ret;
6714 }
6715
6716 mpfr_t imag;
6717 mpfr_init(imag);
6718 if (this->complex_constant_value(rval, imag, &type))
6719 {
6720 Expression* ret = Expression::make_complex(&rval, &imag, type,
6721 this->location());
6722 mpfr_clear(rval);
6723 mpfr_clear(imag);
6724 return ret;
6725 }
6726 mpfr_clear(rval);
6727 mpfr_clear(imag);
6728 }
6729 else if (this->code_ == BUILTIN_RECOVER)
6730 {
6731 if (function != NULL)
6732 function->func_value()->set_calls_recover();
6733 else
6734 {
6735 // Calling recover outside of a function always returns the
6736 // nil empty interface.
6737 Type* eface = Type::make_interface_type(NULL, this->location());
6738 return Expression::make_cast(eface,
6739 Expression::make_nil(this->location()),
6740 this->location());
6741 }
6742 }
6743 else if (this->code_ == BUILTIN_APPEND)
6744 {
6745 // Lower the varargs.
6746 const Expression_list* args = this->args();
6747 if (args == NULL || args->empty())
6748 return this;
6749 Type* slice_type = args->front()->type();
6750 if (!slice_type->is_open_array_type())
6751 {
6752 error_at(args->front()->location(), "argument 1 must be a slice");
6753 this->set_is_error();
6754 return this;
6755 }
6756 return this->lower_varargs(gogo, function, slice_type, 2);
6757 }
6758
6759 return this;
6760 }
6761
6762 // Return the type of the real or imag functions, given the type of
6763 // the argument. We need to map complex to float, complex64 to
6764 // float32, and complex128 to float64, so it has to be done by name.
6765 // This returns NULL if it can't figure out the type.
6766
6767 Type*
6768 Builtin_call_expression::real_imag_type(Type* arg_type)
6769 {
6770 if (arg_type == NULL || arg_type->is_abstract())
6771 return NULL;
6772 Named_type* nt = arg_type->named_type();
6773 if (nt == NULL)
6774 return NULL;
6775 while (nt->real_type()->named_type() != NULL)
6776 nt = nt->real_type()->named_type();
6777 if (nt->name() == "complex")
6778 return Type::lookup_float_type("float");
6779 else if (nt->name() == "complex64")
6780 return Type::lookup_float_type("float32");
6781 else if (nt->name() == "complex128")
6782 return Type::lookup_float_type("float64");
6783 else
6784 return NULL;
6785 }
6786
6787 // Return the type of the cmplx function, given the type of one of the
6788 // argments. Like real_imag_type, we have to map by name.
6789
6790 Type*
6791 Builtin_call_expression::cmplx_type(Type* arg_type)
6792 {
6793 if (arg_type == NULL || arg_type->is_abstract())
6794 return NULL;
6795 Named_type* nt = arg_type->named_type();
6796 if (nt == NULL)
6797 return NULL;
6798 while (nt->real_type()->named_type() != NULL)
6799 nt = nt->real_type()->named_type();
6800 if (nt->name() == "float")
6801 return Type::lookup_complex_type("complex");
6802 else if (nt->name() == "float32")
6803 return Type::lookup_complex_type("complex64");
6804 else if (nt->name() == "float64")
6805 return Type::lookup_complex_type("complex128");
6806 else
6807 return NULL;
6808 }
6809
6810 // Return a single argument, or NULL if there isn't one.
6811
6812 Expression*
6813 Builtin_call_expression::one_arg() const
6814 {
6815 const Expression_list* args = this->args();
6816 if (args->size() != 1)
6817 return NULL;
6818 return args->front();
6819 }
6820
6821 // Return whether this is constant: len of a string, or len or cap of
6822 // a fixed array, or unsafe.Sizeof, unsafe.Offsetof, unsafe.Alignof.
6823
6824 bool
6825 Builtin_call_expression::do_is_constant() const
6826 {
6827 switch (this->code_)
6828 {
6829 case BUILTIN_LEN:
6830 case BUILTIN_CAP:
6831 {
6832 if (this->seen_)
6833 return false;
6834
6835 Expression* arg = this->one_arg();
6836 if (arg == NULL)
6837 return false;
6838 Type* arg_type = arg->type();
6839
6840 if (arg_type->points_to() != NULL
6841 && arg_type->points_to()->array_type() != NULL
6842 && !arg_type->points_to()->is_open_array_type())
6843 arg_type = arg_type->points_to();
6844
6845 if (arg_type->array_type() != NULL
6846 && arg_type->array_type()->length() != NULL)
6847 return true;
6848
6849 if (this->code_ == BUILTIN_LEN && arg_type->is_string_type())
6850 {
6851 this->seen_ = true;
6852 bool ret = arg->is_constant();
6853 this->seen_ = false;
6854 return ret;
6855 }
6856 }
6857 break;
6858
6859 case BUILTIN_SIZEOF:
6860 case BUILTIN_ALIGNOF:
6861 return this->one_arg() != NULL;
6862
6863 case BUILTIN_OFFSETOF:
6864 {
6865 Expression* arg = this->one_arg();
6866 if (arg == NULL)
6867 return false;
6868 return arg->field_reference_expression() != NULL;
6869 }
6870
6871 case BUILTIN_CMPLX:
6872 {
6873 const Expression_list* args = this->args();
6874 if (args != NULL && args->size() == 2)
6875 return args->front()->is_constant() && args->back()->is_constant();
6876 }
6877 break;
6878
6879 case BUILTIN_REAL:
6880 case BUILTIN_IMAG:
6881 {
6882 Expression* arg = this->one_arg();
6883 return arg != NULL && arg->is_constant();
6884 }
6885
6886 default:
6887 break;
6888 }
6889
6890 return false;
6891 }
6892
6893 // Return an integer constant value if possible.
6894
6895 bool
6896 Builtin_call_expression::do_integer_constant_value(bool iota_is_constant,
6897 mpz_t val,
6898 Type** ptype) const
6899 {
6900 if (this->code_ == BUILTIN_LEN
6901 || this->code_ == BUILTIN_CAP)
6902 {
6903 Expression* arg = this->one_arg();
6904 if (arg == NULL)
6905 return false;
6906 Type* arg_type = arg->type();
6907
6908 if (this->code_ == BUILTIN_LEN && arg_type->is_string_type())
6909 {
6910 std::string sval;
6911 if (arg->string_constant_value(&sval))
6912 {
6913 mpz_set_ui(val, sval.length());
6914 *ptype = Type::lookup_integer_type("int");
6915 return true;
6916 }
6917 }
6918
6919 if (arg_type->points_to() != NULL
6920 && arg_type->points_to()->array_type() != NULL
6921 && !arg_type->points_to()->is_open_array_type())
6922 arg_type = arg_type->points_to();
6923
6924 if (arg_type->array_type() != NULL
6925 && arg_type->array_type()->length() != NULL)
6926 {
6927 if (this->seen_)
6928 return false;
6929 Expression* e = arg_type->array_type()->length();
6930 this->seen_ = true;
6931 bool r = e->integer_constant_value(iota_is_constant, val, ptype);
6932 this->seen_ = false;
6933 if (r)
6934 {
6935 *ptype = Type::lookup_integer_type("int");
6936 return true;
6937 }
6938 }
6939 }
6940 else if (this->code_ == BUILTIN_SIZEOF
6941 || this->code_ == BUILTIN_ALIGNOF)
6942 {
6943 Expression* arg = this->one_arg();
6944 if (arg == NULL)
6945 return false;
6946 Type* arg_type = arg->type();
6947 if (arg_type->is_error_type() || arg_type->is_undefined())
6948 return false;
6949 if (arg_type->is_abstract())
6950 return false;
6951 tree arg_type_tree = arg_type->get_tree(this->gogo_);
6952 unsigned long val_long;
6953 if (this->code_ == BUILTIN_SIZEOF)
6954 {
6955 tree type_size = TYPE_SIZE_UNIT(arg_type_tree);
6956 gcc_assert(TREE_CODE(type_size) == INTEGER_CST);
6957 if (TREE_INT_CST_HIGH(type_size) != 0)
6958 return false;
6959 unsigned HOST_WIDE_INT val_wide = TREE_INT_CST_LOW(type_size);
6960 val_long = static_cast<unsigned long>(val_wide);
6961 if (val_long != val_wide)
6962 return false;
6963 }
6964 else if (this->code_ == BUILTIN_ALIGNOF)
6965 {
6966 if (arg->field_reference_expression() == NULL)
6967 val_long = go_type_alignment(arg_type_tree);
6968 else
6969 {
6970 // Calling unsafe.Alignof(s.f) returns the alignment of
6971 // the type of f when it is used as a field in a struct.
6972 val_long = go_field_alignment(arg_type_tree);
6973 }
6974 }
6975 else
6976 gcc_unreachable();
6977 mpz_set_ui(val, val_long);
6978 *ptype = NULL;
6979 return true;
6980 }
6981 else if (this->code_ == BUILTIN_OFFSETOF)
6982 {
6983 Expression* arg = this->one_arg();
6984 if (arg == NULL)
6985 return false;
6986 Field_reference_expression* farg = arg->field_reference_expression();
6987 if (farg == NULL)
6988 return false;
6989 Expression* struct_expr = farg->expr();
6990 Type* st = struct_expr->type();
6991 if (st->struct_type() == NULL)
6992 return false;
6993 tree struct_tree = st->get_tree(this->gogo_);
6994 gcc_assert(TREE_CODE(struct_tree) == RECORD_TYPE);
6995 tree field = TYPE_FIELDS(struct_tree);
6996 for (unsigned int index = farg->field_index(); index > 0; --index)
6997 {
6998 field = DECL_CHAIN(field);
6999 gcc_assert(field != NULL_TREE);
7000 }
7001 HOST_WIDE_INT offset_wide = int_byte_position (field);
7002 if (offset_wide < 0)
7003 return false;
7004 unsigned long offset_long = static_cast<unsigned long>(offset_wide);
7005 if (offset_long != static_cast<unsigned HOST_WIDE_INT>(offset_wide))
7006 return false;
7007 mpz_set_ui(val, offset_long);
7008 return true;
7009 }
7010 return false;
7011 }
7012
7013 // Return a floating point constant value if possible.
7014
7015 bool
7016 Builtin_call_expression::do_float_constant_value(mpfr_t val,
7017 Type** ptype) const
7018 {
7019 if (this->code_ == BUILTIN_REAL || this->code_ == BUILTIN_IMAG)
7020 {
7021 Expression* arg = this->one_arg();
7022 if (arg == NULL)
7023 return false;
7024
7025 mpfr_t real;
7026 mpfr_t imag;
7027 mpfr_init(real);
7028 mpfr_init(imag);
7029
7030 bool ret = false;
7031 Type* type;
7032 if (arg->complex_constant_value(real, imag, &type))
7033 {
7034 if (this->code_ == BUILTIN_REAL)
7035 mpfr_set(val, real, GMP_RNDN);
7036 else
7037 mpfr_set(val, imag, GMP_RNDN);
7038 *ptype = Builtin_call_expression::real_imag_type(type);
7039 ret = true;
7040 }
7041
7042 mpfr_clear(real);
7043 mpfr_clear(imag);
7044 return ret;
7045 }
7046
7047 return false;
7048 }
7049
7050 // Return a complex constant value if possible.
7051
7052 bool
7053 Builtin_call_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
7054 Type** ptype) const
7055 {
7056 if (this->code_ == BUILTIN_CMPLX)
7057 {
7058 const Expression_list* args = this->args();
7059 if (args == NULL || args->size() != 2)
7060 return false;
7061
7062 mpfr_t r;
7063 mpfr_init(r);
7064 Type* rtype;
7065 if (!args->front()->float_constant_value(r, &rtype))
7066 {
7067 mpfr_clear(r);
7068 return false;
7069 }
7070
7071 mpfr_t i;
7072 mpfr_init(i);
7073
7074 bool ret = false;
7075 Type* itype;
7076 if (args->back()->float_constant_value(i, &itype)
7077 && Type::are_identical(rtype, itype, false, NULL))
7078 {
7079 mpfr_set(real, r, GMP_RNDN);
7080 mpfr_set(imag, i, GMP_RNDN);
7081 *ptype = Builtin_call_expression::cmplx_type(rtype);
7082 ret = true;
7083 }
7084
7085 mpfr_clear(r);
7086 mpfr_clear(i);
7087
7088 return ret;
7089 }
7090
7091 return false;
7092 }
7093
7094 // Return the type.
7095
7096 Type*
7097 Builtin_call_expression::do_type()
7098 {
7099 switch (this->code_)
7100 {
7101 case BUILTIN_INVALID:
7102 default:
7103 gcc_unreachable();
7104
7105 case BUILTIN_NEW:
7106 case BUILTIN_MAKE:
7107 {
7108 const Expression_list* args = this->args();
7109 if (args == NULL || args->empty())
7110 return Type::make_error_type();
7111 return Type::make_pointer_type(args->front()->type());
7112 }
7113
7114 case BUILTIN_CAP:
7115 case BUILTIN_COPY:
7116 case BUILTIN_LEN:
7117 case BUILTIN_ALIGNOF:
7118 case BUILTIN_OFFSETOF:
7119 case BUILTIN_SIZEOF:
7120 return Type::lookup_integer_type("int");
7121
7122 case BUILTIN_CLOSE:
7123 case BUILTIN_PANIC:
7124 case BUILTIN_PRINT:
7125 case BUILTIN_PRINTLN:
7126 return Type::make_void_type();
7127
7128 case BUILTIN_CLOSED:
7129 return Type::lookup_bool_type();
7130
7131 case BUILTIN_RECOVER:
7132 return Type::make_interface_type(NULL, BUILTINS_LOCATION);
7133
7134 case BUILTIN_APPEND:
7135 {
7136 const Expression_list* args = this->args();
7137 if (args == NULL || args->empty())
7138 return Type::make_error_type();
7139 return args->front()->type();
7140 }
7141
7142 case BUILTIN_REAL:
7143 case BUILTIN_IMAG:
7144 {
7145 Expression* arg = this->one_arg();
7146 if (arg == NULL)
7147 return Type::make_error_type();
7148 Type* t = arg->type();
7149 if (t->is_abstract())
7150 t = t->make_non_abstract_type();
7151 t = Builtin_call_expression::real_imag_type(t);
7152 if (t == NULL)
7153 t = Type::make_error_type();
7154 return t;
7155 }
7156
7157 case BUILTIN_CMPLX:
7158 {
7159 const Expression_list* args = this->args();
7160 if (args == NULL || args->size() != 2)
7161 return Type::make_error_type();
7162 Type* t = args->front()->type();
7163 if (t->is_abstract())
7164 {
7165 t = args->back()->type();
7166 if (t->is_abstract())
7167 t = t->make_non_abstract_type();
7168 }
7169 t = Builtin_call_expression::cmplx_type(t);
7170 if (t == NULL)
7171 t = Type::make_error_type();
7172 return t;
7173 }
7174 }
7175 }
7176
7177 // Determine the type.
7178
7179 void
7180 Builtin_call_expression::do_determine_type(const Type_context* context)
7181 {
7182 this->fn()->determine_type_no_context();
7183
7184 const Expression_list* args = this->args();
7185
7186 bool is_print;
7187 Type* arg_type = NULL;
7188 switch (this->code_)
7189 {
7190 case BUILTIN_PRINT:
7191 case BUILTIN_PRINTLN:
7192 // Do not force a large integer constant to "int".
7193 is_print = true;
7194 break;
7195
7196 case BUILTIN_REAL:
7197 case BUILTIN_IMAG:
7198 arg_type = Builtin_call_expression::cmplx_type(context->type);
7199 is_print = false;
7200 break;
7201
7202 case BUILTIN_CMPLX:
7203 {
7204 // For the cmplx function the type of one operand can
7205 // determine the type of the other, as in a binary expression.
7206 arg_type = Builtin_call_expression::real_imag_type(context->type);
7207 if (args != NULL && args->size() == 2)
7208 {
7209 Type* t1 = args->front()->type();
7210 Type* t2 = args->front()->type();
7211 if (!t1->is_abstract())
7212 arg_type = t1;
7213 else if (!t2->is_abstract())
7214 arg_type = t2;
7215 }
7216 is_print = false;
7217 }
7218 break;
7219
7220 default:
7221 is_print = false;
7222 break;
7223 }
7224
7225 if (args != NULL)
7226 {
7227 for (Expression_list::const_iterator pa = args->begin();
7228 pa != args->end();
7229 ++pa)
7230 {
7231 Type_context subcontext;
7232 subcontext.type = arg_type;
7233
7234 if (is_print)
7235 {
7236 // We want to print large constants, we so can't just
7237 // use the appropriate nonabstract type. Use uint64 for
7238 // an integer if we know it is nonnegative, otherwise
7239 // use int64 for a integer, otherwise use float64 for a
7240 // float or complex128 for a complex.
7241 Type* want_type = NULL;
7242 Type* atype = (*pa)->type();
7243 if (atype->is_abstract())
7244 {
7245 if (atype->integer_type() != NULL)
7246 {
7247 mpz_t val;
7248 mpz_init(val);
7249 Type* dummy;
7250 if (this->integer_constant_value(true, val, &dummy)
7251 && mpz_sgn(val) >= 0)
7252 want_type = Type::lookup_integer_type("uint64");
7253 else
7254 want_type = Type::lookup_integer_type("int64");
7255 mpz_clear(val);
7256 }
7257 else if (atype->float_type() != NULL)
7258 want_type = Type::lookup_float_type("float64");
7259 else if (atype->complex_type() != NULL)
7260 want_type = Type::lookup_complex_type("complex128");
7261 else if (atype->is_abstract_string_type())
7262 want_type = Type::lookup_string_type();
7263 else if (atype->is_abstract_boolean_type())
7264 want_type = Type::lookup_bool_type();
7265 else
7266 gcc_unreachable();
7267 subcontext.type = want_type;
7268 }
7269 }
7270
7271 (*pa)->determine_type(&subcontext);
7272 }
7273 }
7274 }
7275
7276 // If there is exactly one argument, return true. Otherwise give an
7277 // error message and return false.
7278
7279 bool
7280 Builtin_call_expression::check_one_arg()
7281 {
7282 const Expression_list* args = this->args();
7283 if (args == NULL || args->size() < 1)
7284 {
7285 this->report_error(_("not enough arguments"));
7286 return false;
7287 }
7288 else if (args->size() > 1)
7289 {
7290 this->report_error(_("too many arguments"));
7291 return false;
7292 }
7293 if (args->front()->is_error_expression()
7294 || args->front()->type()->is_error_type()
7295 || args->front()->type()->is_undefined())
7296 {
7297 this->set_is_error();
7298 return false;
7299 }
7300 return true;
7301 }
7302
7303 // Check argument types for a builtin function.
7304
7305 void
7306 Builtin_call_expression::do_check_types(Gogo*)
7307 {
7308 switch (this->code_)
7309 {
7310 case BUILTIN_INVALID:
7311 case BUILTIN_NEW:
7312 case BUILTIN_MAKE:
7313 return;
7314
7315 case BUILTIN_LEN:
7316 case BUILTIN_CAP:
7317 {
7318 // The single argument may be either a string or an array or a
7319 // map or a channel, or a pointer to a closed array.
7320 if (this->check_one_arg())
7321 {
7322 Type* arg_type = this->one_arg()->type();
7323 if (arg_type->points_to() != NULL
7324 && arg_type->points_to()->array_type() != NULL
7325 && !arg_type->points_to()->is_open_array_type())
7326 arg_type = arg_type->points_to();
7327 if (this->code_ == BUILTIN_CAP)
7328 {
7329 if (!arg_type->is_error_type()
7330 && arg_type->array_type() == NULL
7331 && arg_type->channel_type() == NULL)
7332 this->report_error(_("argument must be array or slice "
7333 "or channel"));
7334 }
7335 else
7336 {
7337 if (!arg_type->is_error_type()
7338 && !arg_type->is_string_type()
7339 && arg_type->array_type() == NULL
7340 && arg_type->map_type() == NULL
7341 && arg_type->channel_type() == NULL)
7342 this->report_error(_("argument must be string or "
7343 "array or slice or map or channel"));
7344 }
7345 }
7346 }
7347 break;
7348
7349 case BUILTIN_PRINT:
7350 case BUILTIN_PRINTLN:
7351 {
7352 const Expression_list* args = this->args();
7353 if (args == NULL)
7354 {
7355 if (this->code_ == BUILTIN_PRINT)
7356 warning_at(this->location(), 0,
7357 "no arguments for builtin function %<%s%>",
7358 (this->code_ == BUILTIN_PRINT
7359 ? "print"
7360 : "println"));
7361 }
7362 else
7363 {
7364 for (Expression_list::const_iterator p = args->begin();
7365 p != args->end();
7366 ++p)
7367 {
7368 Type* type = (*p)->type();
7369 if (type->is_error_type()
7370 || type->is_string_type()
7371 || type->integer_type() != NULL
7372 || type->float_type() != NULL
7373 || type->complex_type() != NULL
7374 || type->is_boolean_type()
7375 || type->points_to() != NULL
7376 || type->interface_type() != NULL
7377 || type->channel_type() != NULL
7378 || type->map_type() != NULL
7379 || type->function_type() != NULL
7380 || type->is_open_array_type())
7381 ;
7382 else
7383 this->report_error(_("unsupported argument type to "
7384 "builtin function"));
7385 }
7386 }
7387 }
7388 break;
7389
7390 case BUILTIN_CLOSE:
7391 case BUILTIN_CLOSED:
7392 if (this->check_one_arg())
7393 {
7394 if (this->one_arg()->type()->channel_type() == NULL)
7395 this->report_error(_("argument must be channel"));
7396 }
7397 break;
7398
7399 case BUILTIN_PANIC:
7400 case BUILTIN_SIZEOF:
7401 case BUILTIN_ALIGNOF:
7402 this->check_one_arg();
7403 break;
7404
7405 case BUILTIN_RECOVER:
7406 if (this->args() != NULL && !this->args()->empty())
7407 this->report_error(_("too many arguments"));
7408 break;
7409
7410 case BUILTIN_OFFSETOF:
7411 if (this->check_one_arg())
7412 {
7413 Expression* arg = this->one_arg();
7414 if (arg->field_reference_expression() == NULL)
7415 this->report_error(_("argument must be a field reference"));
7416 }
7417 break;
7418
7419 case BUILTIN_COPY:
7420 {
7421 const Expression_list* args = this->args();
7422 if (args == NULL || args->size() < 2)
7423 {
7424 this->report_error(_("not enough arguments"));
7425 break;
7426 }
7427 else if (args->size() > 2)
7428 {
7429 this->report_error(_("too many arguments"));
7430 break;
7431 }
7432 Type* arg1_type = args->front()->type();
7433 Type* arg2_type = args->back()->type();
7434 if (arg1_type->is_error_type() || arg2_type->is_error_type())
7435 break;
7436
7437 Type* e1;
7438 if (arg1_type->is_open_array_type())
7439 e1 = arg1_type->array_type()->element_type();
7440 else
7441 {
7442 this->report_error(_("left argument must be a slice"));
7443 break;
7444 }
7445
7446 Type* e2;
7447 if (arg2_type->is_open_array_type())
7448 e2 = arg2_type->array_type()->element_type();
7449 else if (arg2_type->is_string_type())
7450 e2 = Type::lookup_integer_type("uint8");
7451 else
7452 {
7453 this->report_error(_("right argument must be a slice or a string"));
7454 break;
7455 }
7456
7457 if (!Type::are_identical(e1, e2, true, NULL))
7458 this->report_error(_("element types must be the same"));
7459 }
7460 break;
7461
7462 case BUILTIN_APPEND:
7463 {
7464 const Expression_list* args = this->args();
7465 if (args == NULL || args->size() < 2)
7466 {
7467 this->report_error(_("not enough arguments"));
7468 break;
7469 }
7470 if (args->size() > 2)
7471 {
7472 this->report_error(_("too many arguments"));
7473 break;
7474 }
7475 std::string reason;
7476 if (!Type::are_assignable(args->front()->type(), args->back()->type(),
7477 &reason))
7478 {
7479 if (reason.empty())
7480 this->report_error(_("arguments 1 and 2 have different types"));
7481 else
7482 {
7483 error_at(this->location(),
7484 "arguments 1 and 2 have different types (%s)",
7485 reason.c_str());
7486 this->set_is_error();
7487 }
7488 }
7489 break;
7490 }
7491
7492 case BUILTIN_REAL:
7493 case BUILTIN_IMAG:
7494 if (this->check_one_arg())
7495 {
7496 if (this->one_arg()->type()->complex_type() == NULL)
7497 this->report_error(_("argument must have complex type"));
7498 }
7499 break;
7500
7501 case BUILTIN_CMPLX:
7502 {
7503 const Expression_list* args = this->args();
7504 if (args == NULL || args->size() < 2)
7505 this->report_error(_("not enough arguments"));
7506 else if (args->size() > 2)
7507 this->report_error(_("too many arguments"));
7508 else if (args->front()->is_error_expression()
7509 || args->front()->type()->is_error_type()
7510 || args->back()->is_error_expression()
7511 || args->back()->type()->is_error_type())
7512 this->set_is_error();
7513 else if (!Type::are_identical(args->front()->type(),
7514 args->back()->type(), true, NULL))
7515 this->report_error(_("cmplx arguments must have identical types"));
7516 else if (args->front()->type()->float_type() == NULL)
7517 this->report_error(_("cmplx arguments must have "
7518 "floating-point type"));
7519 }
7520 break;
7521
7522 default:
7523 gcc_unreachable();
7524 }
7525 }
7526
7527 // Return the tree for a builtin function.
7528
7529 tree
7530 Builtin_call_expression::do_get_tree(Translate_context* context)
7531 {
7532 Gogo* gogo = context->gogo();
7533 source_location location = this->location();
7534 switch (this->code_)
7535 {
7536 case BUILTIN_INVALID:
7537 case BUILTIN_NEW:
7538 case BUILTIN_MAKE:
7539 gcc_unreachable();
7540
7541 case BUILTIN_LEN:
7542 case BUILTIN_CAP:
7543 {
7544 const Expression_list* args = this->args();
7545 gcc_assert(args != NULL && args->size() == 1);
7546 Expression* arg = *args->begin();
7547 Type* arg_type = arg->type();
7548
7549 if (this->seen_)
7550 {
7551 gcc_assert(saw_errors());
7552 return error_mark_node;
7553 }
7554 this->seen_ = true;
7555
7556 tree arg_tree = arg->get_tree(context);
7557
7558 this->seen_ = false;
7559
7560 if (arg_tree == error_mark_node)
7561 return error_mark_node;
7562
7563 if (arg_type->points_to() != NULL)
7564 {
7565 arg_type = arg_type->points_to();
7566 gcc_assert(arg_type->array_type() != NULL
7567 && !arg_type->is_open_array_type());
7568 gcc_assert(POINTER_TYPE_P(TREE_TYPE(arg_tree)));
7569 arg_tree = build_fold_indirect_ref(arg_tree);
7570 }
7571
7572 tree val_tree;
7573 if (this->code_ == BUILTIN_LEN)
7574 {
7575 if (arg_type->is_string_type())
7576 val_tree = String_type::length_tree(gogo, arg_tree);
7577 else if (arg_type->array_type() != NULL)
7578 {
7579 if (this->seen_)
7580 {
7581 gcc_assert(saw_errors());
7582 return error_mark_node;
7583 }
7584 this->seen_ = true;
7585 val_tree = arg_type->array_type()->length_tree(gogo, arg_tree);
7586 this->seen_ = false;
7587 }
7588 else if (arg_type->map_type() != NULL)
7589 {
7590 static tree map_len_fndecl;
7591 val_tree = Gogo::call_builtin(&map_len_fndecl,
7592 location,
7593 "__go_map_len",
7594 1,
7595 sizetype,
7596 arg_type->get_tree(gogo),
7597 arg_tree);
7598 }
7599 else if (arg_type->channel_type() != NULL)
7600 {
7601 static tree chan_len_fndecl;
7602 val_tree = Gogo::call_builtin(&chan_len_fndecl,
7603 location,
7604 "__go_chan_len",
7605 1,
7606 sizetype,
7607 arg_type->get_tree(gogo),
7608 arg_tree);
7609 }
7610 else
7611 gcc_unreachable();
7612 }
7613 else
7614 {
7615 if (arg_type->array_type() != NULL)
7616 {
7617 if (this->seen_)
7618 {
7619 gcc_assert(saw_errors());
7620 return error_mark_node;
7621 }
7622 this->seen_ = true;
7623 val_tree = arg_type->array_type()->capacity_tree(gogo,
7624 arg_tree);
7625 this->seen_ = false;
7626 }
7627 else if (arg_type->channel_type() != NULL)
7628 {
7629 static tree chan_cap_fndecl;
7630 val_tree = Gogo::call_builtin(&chan_cap_fndecl,
7631 location,
7632 "__go_chan_cap",
7633 1,
7634 sizetype,
7635 arg_type->get_tree(gogo),
7636 arg_tree);
7637 }
7638 else
7639 gcc_unreachable();
7640 }
7641
7642 if (val_tree == error_mark_node)
7643 return error_mark_node;
7644
7645 tree type_tree = Type::lookup_integer_type("int")->get_tree(gogo);
7646 if (type_tree == TREE_TYPE(val_tree))
7647 return val_tree;
7648 else
7649 return fold(convert_to_integer(type_tree, val_tree));
7650 }
7651
7652 case BUILTIN_PRINT:
7653 case BUILTIN_PRINTLN:
7654 {
7655 const bool is_ln = this->code_ == BUILTIN_PRINTLN;
7656 tree stmt_list = NULL_TREE;
7657
7658 const Expression_list* call_args = this->args();
7659 if (call_args != NULL)
7660 {
7661 for (Expression_list::const_iterator p = call_args->begin();
7662 p != call_args->end();
7663 ++p)
7664 {
7665 if (is_ln && p != call_args->begin())
7666 {
7667 static tree print_space_fndecl;
7668 tree call = Gogo::call_builtin(&print_space_fndecl,
7669 location,
7670 "__go_print_space",
7671 0,
7672 void_type_node);
7673 if (call == error_mark_node)
7674 return error_mark_node;
7675 append_to_statement_list(call, &stmt_list);
7676 }
7677
7678 Type* type = (*p)->type();
7679
7680 tree arg = (*p)->get_tree(context);
7681 if (arg == error_mark_node)
7682 return error_mark_node;
7683
7684 tree* pfndecl;
7685 const char* fnname;
7686 if (type->is_string_type())
7687 {
7688 static tree print_string_fndecl;
7689 pfndecl = &print_string_fndecl;
7690 fnname = "__go_print_string";
7691 }
7692 else if (type->integer_type() != NULL
7693 && type->integer_type()->is_unsigned())
7694 {
7695 static tree print_uint64_fndecl;
7696 pfndecl = &print_uint64_fndecl;
7697 fnname = "__go_print_uint64";
7698 Type* itype = Type::lookup_integer_type("uint64");
7699 arg = fold_convert_loc(location, itype->get_tree(gogo),
7700 arg);
7701 }
7702 else if (type->integer_type() != NULL)
7703 {
7704 static tree print_int64_fndecl;
7705 pfndecl = &print_int64_fndecl;
7706 fnname = "__go_print_int64";
7707 Type* itype = Type::lookup_integer_type("int64");
7708 arg = fold_convert_loc(location, itype->get_tree(gogo),
7709 arg);
7710 }
7711 else if (type->float_type() != NULL)
7712 {
7713 static tree print_double_fndecl;
7714 pfndecl = &print_double_fndecl;
7715 fnname = "__go_print_double";
7716 arg = fold_convert_loc(location, double_type_node, arg);
7717 }
7718 else if (type->complex_type() != NULL)
7719 {
7720 static tree print_complex_fndecl;
7721 pfndecl = &print_complex_fndecl;
7722 fnname = "__go_print_complex";
7723 arg = fold_convert_loc(location, complex_double_type_node,
7724 arg);
7725 }
7726 else if (type->is_boolean_type())
7727 {
7728 static tree print_bool_fndecl;
7729 pfndecl = &print_bool_fndecl;
7730 fnname = "__go_print_bool";
7731 }
7732 else if (type->points_to() != NULL
7733 || type->channel_type() != NULL
7734 || type->map_type() != NULL
7735 || type->function_type() != NULL)
7736 {
7737 static tree print_pointer_fndecl;
7738 pfndecl = &print_pointer_fndecl;
7739 fnname = "__go_print_pointer";
7740 arg = fold_convert_loc(location, ptr_type_node, arg);
7741 }
7742 else if (type->interface_type() != NULL)
7743 {
7744 if (type->interface_type()->is_empty())
7745 {
7746 static tree print_empty_interface_fndecl;
7747 pfndecl = &print_empty_interface_fndecl;
7748 fnname = "__go_print_empty_interface";
7749 }
7750 else
7751 {
7752 static tree print_interface_fndecl;
7753 pfndecl = &print_interface_fndecl;
7754 fnname = "__go_print_interface";
7755 }
7756 }
7757 else if (type->is_open_array_type())
7758 {
7759 static tree print_slice_fndecl;
7760 pfndecl = &print_slice_fndecl;
7761 fnname = "__go_print_slice";
7762 }
7763 else
7764 gcc_unreachable();
7765
7766 tree call = Gogo::call_builtin(pfndecl,
7767 location,
7768 fnname,
7769 1,
7770 void_type_node,
7771 TREE_TYPE(arg),
7772 arg);
7773 if (call == error_mark_node)
7774 return error_mark_node;
7775 append_to_statement_list(call, &stmt_list);
7776 }
7777 }
7778
7779 if (is_ln)
7780 {
7781 static tree print_nl_fndecl;
7782 tree call = Gogo::call_builtin(&print_nl_fndecl,
7783 location,
7784 "__go_print_nl",
7785 0,
7786 void_type_node);
7787 if (call == error_mark_node)
7788 return error_mark_node;
7789 append_to_statement_list(call, &stmt_list);
7790 }
7791
7792 return stmt_list;
7793 }
7794
7795 case BUILTIN_PANIC:
7796 {
7797 const Expression_list* args = this->args();
7798 gcc_assert(args != NULL && args->size() == 1);
7799 Expression* arg = args->front();
7800 tree arg_tree = arg->get_tree(context);
7801 if (arg_tree == error_mark_node)
7802 return error_mark_node;
7803 Type *empty = Type::make_interface_type(NULL, BUILTINS_LOCATION);
7804 arg_tree = Expression::convert_for_assignment(context, empty,
7805 arg->type(),
7806 arg_tree, location);
7807 static tree panic_fndecl;
7808 tree call = Gogo::call_builtin(&panic_fndecl,
7809 location,
7810 "__go_panic",
7811 1,
7812 void_type_node,
7813 TREE_TYPE(arg_tree),
7814 arg_tree);
7815 if (call == error_mark_node)
7816 return error_mark_node;
7817 // This function will throw an exception.
7818 TREE_NOTHROW(panic_fndecl) = 0;
7819 // This function will not return.
7820 TREE_THIS_VOLATILE(panic_fndecl) = 1;
7821 return call;
7822 }
7823
7824 case BUILTIN_RECOVER:
7825 {
7826 // The argument is set when building recover thunks. It's a
7827 // boolean value which is true if we can recover a value now.
7828 const Expression_list* args = this->args();
7829 gcc_assert(args != NULL && args->size() == 1);
7830 Expression* arg = args->front();
7831 tree arg_tree = arg->get_tree(context);
7832 if (arg_tree == error_mark_node)
7833 return error_mark_node;
7834
7835 Type *empty = Type::make_interface_type(NULL, BUILTINS_LOCATION);
7836 tree empty_tree = empty->get_tree(context->gogo());
7837
7838 Type* nil_type = Type::make_nil_type();
7839 Expression* nil = Expression::make_nil(location);
7840 tree nil_tree = nil->get_tree(context);
7841 tree empty_nil_tree = Expression::convert_for_assignment(context,
7842 empty,
7843 nil_type,
7844 nil_tree,
7845 location);
7846
7847 // We need to handle a deferred call to recover specially,
7848 // because it changes whether it can recover a panic or not.
7849 // See test7 in test/recover1.go.
7850 tree call;
7851 if (this->is_deferred())
7852 {
7853 static tree deferred_recover_fndecl;
7854 call = Gogo::call_builtin(&deferred_recover_fndecl,
7855 location,
7856 "__go_deferred_recover",
7857 0,
7858 empty_tree);
7859 }
7860 else
7861 {
7862 static tree recover_fndecl;
7863 call = Gogo::call_builtin(&recover_fndecl,
7864 location,
7865 "__go_recover",
7866 0,
7867 empty_tree);
7868 }
7869 if (call == error_mark_node)
7870 return error_mark_node;
7871 return fold_build3_loc(location, COND_EXPR, empty_tree, arg_tree,
7872 call, empty_nil_tree);
7873 }
7874
7875 case BUILTIN_CLOSE:
7876 case BUILTIN_CLOSED:
7877 {
7878 const Expression_list* args = this->args();
7879 gcc_assert(args != NULL && args->size() == 1);
7880 Expression* arg = args->front();
7881 tree arg_tree = arg->get_tree(context);
7882 if (arg_tree == error_mark_node)
7883 return error_mark_node;
7884 if (this->code_ == BUILTIN_CLOSE)
7885 {
7886 static tree close_fndecl;
7887 return Gogo::call_builtin(&close_fndecl,
7888 location,
7889 "__go_builtin_close",
7890 1,
7891 void_type_node,
7892 TREE_TYPE(arg_tree),
7893 arg_tree);
7894 }
7895 else
7896 {
7897 static tree closed_fndecl;
7898 return Gogo::call_builtin(&closed_fndecl,
7899 location,
7900 "__go_builtin_closed",
7901 1,
7902 boolean_type_node,
7903 TREE_TYPE(arg_tree),
7904 arg_tree);
7905 }
7906 }
7907
7908 case BUILTIN_SIZEOF:
7909 case BUILTIN_OFFSETOF:
7910 case BUILTIN_ALIGNOF:
7911 {
7912 mpz_t val;
7913 mpz_init(val);
7914 Type* dummy;
7915 bool b = this->integer_constant_value(true, val, &dummy);
7916 gcc_assert(b);
7917 tree type = Type::lookup_integer_type("int")->get_tree(gogo);
7918 tree ret = Expression::integer_constant_tree(val, type);
7919 mpz_clear(val);
7920 return ret;
7921 }
7922
7923 case BUILTIN_COPY:
7924 {
7925 const Expression_list* args = this->args();
7926 gcc_assert(args != NULL && args->size() == 2);
7927 Expression* arg1 = args->front();
7928 Expression* arg2 = args->back();
7929
7930 tree arg1_tree = arg1->get_tree(context);
7931 tree arg2_tree = arg2->get_tree(context);
7932 if (arg1_tree == error_mark_node || arg2_tree == error_mark_node)
7933 return error_mark_node;
7934
7935 Type* arg1_type = arg1->type();
7936 Array_type* at = arg1_type->array_type();
7937 arg1_tree = save_expr(arg1_tree);
7938 tree arg1_val = at->value_pointer_tree(gogo, arg1_tree);
7939 tree arg1_len = at->length_tree(gogo, arg1_tree);
7940 if (arg1_val == error_mark_node || arg1_len == error_mark_node)
7941 return error_mark_node;
7942
7943 Type* arg2_type = arg2->type();
7944 tree arg2_val;
7945 tree arg2_len;
7946 if (arg2_type->is_open_array_type())
7947 {
7948 at = arg2_type->array_type();
7949 arg2_tree = save_expr(arg2_tree);
7950 arg2_val = at->value_pointer_tree(gogo, arg2_tree);
7951 arg2_len = at->length_tree(gogo, arg2_tree);
7952 }
7953 else
7954 {
7955 arg2_tree = save_expr(arg2_tree);
7956 arg2_val = String_type::bytes_tree(gogo, arg2_tree);
7957 arg2_len = String_type::length_tree(gogo, arg2_tree);
7958 }
7959 if (arg2_val == error_mark_node || arg2_len == error_mark_node)
7960 return error_mark_node;
7961
7962 arg1_len = save_expr(arg1_len);
7963 arg2_len = save_expr(arg2_len);
7964 tree len = fold_build3_loc(location, COND_EXPR, TREE_TYPE(arg1_len),
7965 fold_build2_loc(location, LT_EXPR,
7966 boolean_type_node,
7967 arg1_len, arg2_len),
7968 arg1_len, arg2_len);
7969 len = save_expr(len);
7970
7971 Type* element_type = at->element_type();
7972 tree element_type_tree = element_type->get_tree(gogo);
7973 if (element_type_tree == error_mark_node)
7974 return error_mark_node;
7975 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
7976 tree bytecount = fold_convert_loc(location, TREE_TYPE(element_size),
7977 len);
7978 bytecount = fold_build2_loc(location, MULT_EXPR,
7979 TREE_TYPE(element_size),
7980 bytecount, element_size);
7981 bytecount = fold_convert_loc(location, size_type_node, bytecount);
7982
7983 arg1_val = fold_convert_loc(location, ptr_type_node, arg1_val);
7984 arg2_val = fold_convert_loc(location, ptr_type_node, arg2_val);
7985
7986 static tree copy_fndecl;
7987 tree call = Gogo::call_builtin(&copy_fndecl,
7988 location,
7989 "__go_copy",
7990 3,
7991 void_type_node,
7992 ptr_type_node,
7993 arg1_val,
7994 ptr_type_node,
7995 arg2_val,
7996 size_type_node,
7997 bytecount);
7998 if (call == error_mark_node)
7999 return error_mark_node;
8000
8001 return fold_build2_loc(location, COMPOUND_EXPR, TREE_TYPE(len),
8002 call, len);
8003 }
8004
8005 case BUILTIN_APPEND:
8006 {
8007 const Expression_list* args = this->args();
8008 gcc_assert(args != NULL && args->size() == 2);
8009 Expression* arg1 = args->front();
8010 Expression* arg2 = args->back();
8011
8012 tree arg1_tree = arg1->get_tree(context);
8013 tree arg2_tree = arg2->get_tree(context);
8014 if (arg1_tree == error_mark_node || arg2_tree == error_mark_node)
8015 return error_mark_node;
8016
8017 Array_type* at = arg1->type()->array_type();
8018 Type* element_type = at->element_type();
8019
8020 arg2_tree = Expression::convert_for_assignment(context, at,
8021 arg2->type(),
8022 arg2_tree,
8023 location);
8024 if (arg2_tree == error_mark_node)
8025 return error_mark_node;
8026
8027 arg2_tree = save_expr(arg2_tree);
8028 tree arg2_val = at->value_pointer_tree(gogo, arg2_tree);
8029 tree arg2_len = at->length_tree(gogo, arg2_tree);
8030 if (arg2_val == error_mark_node || arg2_len == error_mark_node)
8031 return error_mark_node;
8032 arg2_val = fold_convert_loc(location, ptr_type_node, arg2_val);
8033 arg2_len = fold_convert_loc(location, size_type_node, arg2_len);
8034
8035 tree element_type_tree = element_type->get_tree(gogo);
8036 if (element_type_tree == error_mark_node)
8037 return error_mark_node;
8038 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
8039 element_size = fold_convert_loc(location, size_type_node,
8040 element_size);
8041
8042 // We rebuild the decl each time since the slice types may
8043 // change.
8044 tree append_fndecl = NULL_TREE;
8045 return Gogo::call_builtin(&append_fndecl,
8046 location,
8047 "__go_append",
8048 4,
8049 TREE_TYPE(arg1_tree),
8050 TREE_TYPE(arg1_tree),
8051 arg1_tree,
8052 ptr_type_node,
8053 arg2_val,
8054 size_type_node,
8055 arg2_len,
8056 size_type_node,
8057 element_size);
8058 }
8059
8060 case BUILTIN_REAL:
8061 case BUILTIN_IMAG:
8062 {
8063 const Expression_list* args = this->args();
8064 gcc_assert(args != NULL && args->size() == 1);
8065 Expression* arg = args->front();
8066 tree arg_tree = arg->get_tree(context);
8067 if (arg_tree == error_mark_node)
8068 return error_mark_node;
8069 gcc_assert(COMPLEX_FLOAT_TYPE_P(TREE_TYPE(arg_tree)));
8070 if (this->code_ == BUILTIN_REAL)
8071 return fold_build1_loc(location, REALPART_EXPR,
8072 TREE_TYPE(TREE_TYPE(arg_tree)),
8073 arg_tree);
8074 else
8075 return fold_build1_loc(location, IMAGPART_EXPR,
8076 TREE_TYPE(TREE_TYPE(arg_tree)),
8077 arg_tree);
8078 }
8079
8080 case BUILTIN_CMPLX:
8081 {
8082 const Expression_list* args = this->args();
8083 gcc_assert(args != NULL && args->size() == 2);
8084 tree r = args->front()->get_tree(context);
8085 tree i = args->back()->get_tree(context);
8086 if (r == error_mark_node || i == error_mark_node)
8087 return error_mark_node;
8088 gcc_assert(TYPE_MAIN_VARIANT(TREE_TYPE(r))
8089 == TYPE_MAIN_VARIANT(TREE_TYPE(i)));
8090 gcc_assert(SCALAR_FLOAT_TYPE_P(TREE_TYPE(r)));
8091 return fold_build2_loc(location, COMPLEX_EXPR,
8092 build_complex_type(TREE_TYPE(r)),
8093 r, i);
8094 }
8095
8096 default:
8097 gcc_unreachable();
8098 }
8099 }
8100
8101 // We have to support exporting a builtin call expression, because
8102 // code can set a constant to the result of a builtin expression.
8103
8104 void
8105 Builtin_call_expression::do_export(Export* exp) const
8106 {
8107 bool ok = false;
8108
8109 mpz_t val;
8110 mpz_init(val);
8111 Type* dummy;
8112 if (this->integer_constant_value(true, val, &dummy))
8113 {
8114 Integer_expression::export_integer(exp, val);
8115 ok = true;
8116 }
8117 mpz_clear(val);
8118
8119 if (!ok)
8120 {
8121 mpfr_t fval;
8122 mpfr_init(fval);
8123 if (this->float_constant_value(fval, &dummy))
8124 {
8125 Float_expression::export_float(exp, fval);
8126 ok = true;
8127 }
8128 mpfr_clear(fval);
8129 }
8130
8131 if (!ok)
8132 {
8133 mpfr_t real;
8134 mpfr_t imag;
8135 mpfr_init(real);
8136 mpfr_init(imag);
8137 if (this->complex_constant_value(real, imag, &dummy))
8138 {
8139 Complex_expression::export_complex(exp, real, imag);
8140 ok = true;
8141 }
8142 mpfr_clear(real);
8143 mpfr_clear(imag);
8144 }
8145
8146 if (!ok)
8147 {
8148 error_at(this->location(), "value is not constant");
8149 return;
8150 }
8151
8152 // A trailing space lets us reliably identify the end of the number.
8153 exp->write_c_string(" ");
8154 }
8155
8156 // Class Call_expression.
8157
8158 // Traversal.
8159
8160 int
8161 Call_expression::do_traverse(Traverse* traverse)
8162 {
8163 if (Expression::traverse(&this->fn_, traverse) == TRAVERSE_EXIT)
8164 return TRAVERSE_EXIT;
8165 if (this->args_ != NULL)
8166 {
8167 if (this->args_->traverse(traverse) == TRAVERSE_EXIT)
8168 return TRAVERSE_EXIT;
8169 }
8170 return TRAVERSE_CONTINUE;
8171 }
8172
8173 // Lower a call statement.
8174
8175 Expression*
8176 Call_expression::do_lower(Gogo* gogo, Named_object* function, int)
8177 {
8178 // A type case can look like a function call.
8179 if (this->fn_->is_type_expression()
8180 && this->args_ != NULL
8181 && this->args_->size() == 1)
8182 return Expression::make_cast(this->fn_->type(), this->args_->front(),
8183 this->location());
8184
8185 // Recognize a call to a builtin function.
8186 Func_expression* fne = this->fn_->func_expression();
8187 if (fne != NULL
8188 && fne->named_object()->is_function_declaration()
8189 && fne->named_object()->func_declaration_value()->type()->is_builtin())
8190 return new Builtin_call_expression(gogo, this->fn_, this->args_,
8191 this->is_varargs_, this->location());
8192
8193 // Handle an argument which is a call to a function which returns
8194 // multiple results.
8195 if (this->args_ != NULL
8196 && this->args_->size() == 1
8197 && this->args_->front()->call_expression() != NULL
8198 && this->fn_->type()->function_type() != NULL)
8199 {
8200 Function_type* fntype = this->fn_->type()->function_type();
8201 size_t rc = this->args_->front()->call_expression()->result_count();
8202 if (rc > 1
8203 && fntype->parameters() != NULL
8204 && (fntype->parameters()->size() == rc
8205 || (fntype->is_varargs()
8206 && fntype->parameters()->size() - 1 <= rc)))
8207 {
8208 Call_expression* call = this->args_->front()->call_expression();
8209 Expression_list* args = new Expression_list;
8210 for (size_t i = 0; i < rc; ++i)
8211 args->push_back(Expression::make_call_result(call, i));
8212 // We can't return a new call expression here, because this
8213 // one may be referenced by Call_result expressions. FIXME.
8214 delete this->args_;
8215 this->args_ = args;
8216 }
8217 }
8218
8219 // Handle a call to a varargs function by packaging up the extra
8220 // parameters.
8221 if (this->fn_->type()->function_type() != NULL
8222 && this->fn_->type()->function_type()->is_varargs())
8223 {
8224 Function_type* fntype = this->fn_->type()->function_type();
8225 const Typed_identifier_list* parameters = fntype->parameters();
8226 gcc_assert(parameters != NULL && !parameters->empty());
8227 Type* varargs_type = parameters->back().type();
8228 return this->lower_varargs(gogo, function, varargs_type,
8229 parameters->size());
8230 }
8231
8232 return this;
8233 }
8234
8235 // Lower a call to a varargs function. FUNCTION is the function in
8236 // which the call occurs--it's not the function we are calling.
8237 // VARARGS_TYPE is the type of the varargs parameter, a slice type.
8238 // PARAM_COUNT is the number of parameters of the function we are
8239 // calling; the last of these parameters will be the varargs
8240 // parameter.
8241
8242 Expression*
8243 Call_expression::lower_varargs(Gogo* gogo, Named_object* function,
8244 Type* varargs_type, size_t param_count)
8245 {
8246 if (this->varargs_are_lowered_)
8247 return this;
8248
8249 source_location loc = this->location();
8250
8251 gcc_assert(param_count > 0);
8252 gcc_assert(varargs_type->is_open_array_type());
8253
8254 size_t arg_count = this->args_ == NULL ? 0 : this->args_->size();
8255 if (arg_count < param_count - 1)
8256 {
8257 // Not enough arguments; will be caught in check_types.
8258 return this;
8259 }
8260
8261 Expression_list* old_args = this->args_;
8262 Expression_list* new_args = new Expression_list();
8263 bool push_empty_arg = false;
8264 if (old_args == NULL || old_args->empty())
8265 {
8266 gcc_assert(param_count == 1);
8267 push_empty_arg = true;
8268 }
8269 else
8270 {
8271 Expression_list::const_iterator pa;
8272 int i = 1;
8273 for (pa = old_args->begin(); pa != old_args->end(); ++pa, ++i)
8274 {
8275 if (static_cast<size_t>(i) == param_count)
8276 break;
8277 new_args->push_back(*pa);
8278 }
8279
8280 // We have reached the varargs parameter.
8281
8282 bool issued_error = false;
8283 if (pa == old_args->end())
8284 push_empty_arg = true;
8285 else if (pa + 1 == old_args->end() && this->is_varargs_)
8286 new_args->push_back(*pa);
8287 else if (this->is_varargs_)
8288 {
8289 this->report_error(_("too many arguments"));
8290 return this;
8291 }
8292 else if (pa + 1 == old_args->end()
8293 && this->is_compatible_varargs_argument(function, *pa,
8294 varargs_type,
8295 &issued_error))
8296 new_args->push_back(*pa);
8297 else
8298 {
8299 Type* element_type = varargs_type->array_type()->element_type();
8300 Expression_list* vals = new Expression_list;
8301 for (; pa != old_args->end(); ++pa, ++i)
8302 {
8303 // Check types here so that we get a better message.
8304 Type* patype = (*pa)->type();
8305 source_location paloc = (*pa)->location();
8306 if (!this->check_argument_type(i, element_type, patype,
8307 paloc, issued_error))
8308 continue;
8309 vals->push_back(*pa);
8310 }
8311 Expression* val =
8312 Expression::make_slice_composite_literal(varargs_type, vals, loc);
8313 new_args->push_back(val);
8314 }
8315 }
8316
8317 if (push_empty_arg)
8318 new_args->push_back(Expression::make_nil(loc));
8319
8320 // We can't return a new call expression here, because this one may
8321 // be referenced by Call_result expressions. FIXME.
8322 if (old_args != NULL)
8323 delete old_args;
8324 this->args_ = new_args;
8325 this->varargs_are_lowered_ = true;
8326
8327 // Lower all the new subexpressions.
8328 Expression* ret = this;
8329 gogo->lower_expression(function, &ret);
8330 gcc_assert(ret == this);
8331 return ret;
8332 }
8333
8334 // Return true if ARG is a varargs argment which should be passed to
8335 // the varargs parameter of type PARAM_TYPE without wrapping. ARG
8336 // will be the last argument passed in the call, and PARAM_TYPE will
8337 // be the type of the last parameter of the varargs function being
8338 // called.
8339
8340 bool
8341 Call_expression::is_compatible_varargs_argument(Named_object* function,
8342 Expression* arg,
8343 Type* param_type,
8344 bool* issued_error)
8345 {
8346 *issued_error = false;
8347
8348 Type* var_type = NULL;
8349
8350 // The simple case is passing the varargs parameter of the caller.
8351 Var_expression* ve = arg->var_expression();
8352 if (ve != NULL && ve->named_object()->is_variable())
8353 {
8354 Variable* var = ve->named_object()->var_value();
8355 if (var->is_varargs_parameter())
8356 var_type = var->type();
8357 }
8358
8359 // The complex case is passing the varargs parameter of some
8360 // enclosing function. This will look like passing down *c.f where
8361 // c is the closure variable and f is a field in the closure.
8362 if (function != NULL
8363 && function->func_value()->needs_closure()
8364 && arg->classification() == EXPRESSION_UNARY)
8365 {
8366 Unary_expression* ue = static_cast<Unary_expression*>(arg);
8367 if (ue->op() == OPERATOR_MULT)
8368 {
8369 Field_reference_expression* fre =
8370 ue->operand()->deref()->field_reference_expression();
8371 if (fre != NULL)
8372 {
8373 Var_expression* ve = fre->expr()->deref()->var_expression();
8374 if (ve != NULL)
8375 {
8376 Named_object* no = ve->named_object();
8377 Function* f = function->func_value();
8378 if (no == f->closure_var())
8379 {
8380 // At this point we know that this indeed a
8381 // reference to some enclosing variable. Now we
8382 // need to figure out whether that variable is a
8383 // varargs parameter.
8384 Named_object* enclosing =
8385 f->enclosing_var(fre->field_index());
8386 Variable* var = enclosing->var_value();
8387 if (var->is_varargs_parameter())
8388 var_type = var->type();
8389 }
8390 }
8391 }
8392 }
8393 }
8394
8395 if (var_type == NULL)
8396 return false;
8397
8398 // We only match if the parameter is the same, with an identical
8399 // type.
8400 Array_type* var_at = var_type->array_type();
8401 gcc_assert(var_at != NULL);
8402 Array_type* param_at = param_type->array_type();
8403 if (param_at != NULL
8404 && Type::are_identical(var_at->element_type(),
8405 param_at->element_type(), true, NULL))
8406 return true;
8407 error_at(arg->location(), "... mismatch: passing ...T as ...");
8408 *issued_error = true;
8409 return false;
8410 }
8411
8412 // Get the function type. Returns NULL if we don't know the type. If
8413 // this returns NULL, and if_ERROR is true, issues an error.
8414
8415 Function_type*
8416 Call_expression::get_function_type() const
8417 {
8418 return this->fn_->type()->function_type();
8419 }
8420
8421 // Return the number of values which this call will return.
8422
8423 size_t
8424 Call_expression::result_count() const
8425 {
8426 const Function_type* fntype = this->get_function_type();
8427 if (fntype == NULL)
8428 return 0;
8429 if (fntype->results() == NULL)
8430 return 0;
8431 return fntype->results()->size();
8432 }
8433
8434 // Return whether this is a call to the predeclared function recover.
8435
8436 bool
8437 Call_expression::is_recover_call() const
8438 {
8439 return this->do_is_recover_call();
8440 }
8441
8442 // Set the argument to the recover function.
8443
8444 void
8445 Call_expression::set_recover_arg(Expression* arg)
8446 {
8447 this->do_set_recover_arg(arg);
8448 }
8449
8450 // Virtual functions also implemented by Builtin_call_expression.
8451
8452 bool
8453 Call_expression::do_is_recover_call() const
8454 {
8455 return false;
8456 }
8457
8458 void
8459 Call_expression::do_set_recover_arg(Expression*)
8460 {
8461 gcc_unreachable();
8462 }
8463
8464 // Get the type.
8465
8466 Type*
8467 Call_expression::do_type()
8468 {
8469 if (this->type_ != NULL)
8470 return this->type_;
8471
8472 Type* ret;
8473 Function_type* fntype = this->get_function_type();
8474 if (fntype == NULL)
8475 return Type::make_error_type();
8476
8477 const Typed_identifier_list* results = fntype->results();
8478 if (results == NULL)
8479 ret = Type::make_void_type();
8480 else if (results->size() == 1)
8481 ret = results->begin()->type();
8482 else
8483 ret = Type::make_call_multiple_result_type(this);
8484
8485 this->type_ = ret;
8486
8487 return this->type_;
8488 }
8489
8490 // Determine types for a call expression. We can use the function
8491 // parameter types to set the types of the arguments.
8492
8493 void
8494 Call_expression::do_determine_type(const Type_context*)
8495 {
8496 this->fn_->determine_type_no_context();
8497 Function_type* fntype = this->get_function_type();
8498 const Typed_identifier_list* parameters = NULL;
8499 if (fntype != NULL)
8500 parameters = fntype->parameters();
8501 if (this->args_ != NULL)
8502 {
8503 Typed_identifier_list::const_iterator pt;
8504 if (parameters != NULL)
8505 pt = parameters->begin();
8506 for (Expression_list::const_iterator pa = this->args_->begin();
8507 pa != this->args_->end();
8508 ++pa)
8509 {
8510 if (parameters != NULL && pt != parameters->end())
8511 {
8512 Type_context subcontext(pt->type(), false);
8513 (*pa)->determine_type(&subcontext);
8514 ++pt;
8515 }
8516 else
8517 (*pa)->determine_type_no_context();
8518 }
8519 }
8520 }
8521
8522 // Check types for parameter I.
8523
8524 bool
8525 Call_expression::check_argument_type(int i, const Type* parameter_type,
8526 const Type* argument_type,
8527 source_location argument_location,
8528 bool issued_error)
8529 {
8530 std::string reason;
8531 if (!Type::are_assignable(parameter_type, argument_type, &reason))
8532 {
8533 if (!issued_error)
8534 {
8535 if (reason.empty())
8536 error_at(argument_location, "argument %d has incompatible type", i);
8537 else
8538 error_at(argument_location,
8539 "argument %d has incompatible type (%s)",
8540 i, reason.c_str());
8541 }
8542 this->set_is_error();
8543 return false;
8544 }
8545 return true;
8546 }
8547
8548 // Check types.
8549
8550 void
8551 Call_expression::do_check_types(Gogo*)
8552 {
8553 Function_type* fntype = this->get_function_type();
8554 if (fntype == NULL)
8555 {
8556 if (!this->fn_->type()->is_error_type())
8557 this->report_error(_("expected function"));
8558 return;
8559 }
8560
8561 if (fntype->is_method())
8562 {
8563 // We don't support pointers to methods, so the function has to
8564 // be a bound method expression.
8565 Bound_method_expression* bme = this->fn_->bound_method_expression();
8566 if (bme == NULL)
8567 {
8568 this->report_error(_("method call without object"));
8569 return;
8570 }
8571 Type* first_arg_type = bme->first_argument()->type();
8572 if (first_arg_type->points_to() == NULL)
8573 {
8574 // When passing a value, we need to check that we are
8575 // permitted to copy it.
8576 std::string reason;
8577 if (!Type::are_assignable(fntype->receiver()->type(),
8578 first_arg_type, &reason))
8579 {
8580 if (reason.empty())
8581 this->report_error(_("incompatible type for receiver"));
8582 else
8583 {
8584 error_at(this->location(),
8585 "incompatible type for receiver (%s)",
8586 reason.c_str());
8587 this->set_is_error();
8588 }
8589 }
8590 }
8591 }
8592
8593 // Note that varargs was handled by the lower_varargs() method, so
8594 // we don't have to worry about it here.
8595
8596 const Typed_identifier_list* parameters = fntype->parameters();
8597 if (this->args_ == NULL)
8598 {
8599 if (parameters != NULL && !parameters->empty())
8600 this->report_error(_("not enough arguments"));
8601 }
8602 else if (parameters == NULL)
8603 this->report_error(_("too many arguments"));
8604 else
8605 {
8606 int i = 0;
8607 Typed_identifier_list::const_iterator pt = parameters->begin();
8608 for (Expression_list::const_iterator pa = this->args_->begin();
8609 pa != this->args_->end();
8610 ++pa, ++pt, ++i)
8611 {
8612 if (pt == parameters->end())
8613 {
8614 this->report_error(_("too many arguments"));
8615 return;
8616 }
8617 this->check_argument_type(i + 1, pt->type(), (*pa)->type(),
8618 (*pa)->location(), false);
8619 }
8620 if (pt != parameters->end())
8621 this->report_error(_("not enough arguments"));
8622 }
8623 }
8624
8625 // Return whether we have to use a temporary variable to ensure that
8626 // we evaluate this call expression in order. If the call returns no
8627 // results then it will inevitably be executed last. If the call
8628 // returns more than one result then it will be used with Call_result
8629 // expressions. So we only have to use a temporary variable if the
8630 // call returns exactly one result.
8631
8632 bool
8633 Call_expression::do_must_eval_in_order() const
8634 {
8635 return this->result_count() == 1;
8636 }
8637
8638 // Get the function and the first argument to use when calling a bound
8639 // method.
8640
8641 tree
8642 Call_expression::bound_method_function(Translate_context* context,
8643 Bound_method_expression* bound_method,
8644 tree* first_arg_ptr)
8645 {
8646 Expression* first_argument = bound_method->first_argument();
8647 tree first_arg = first_argument->get_tree(context);
8648 if (first_arg == error_mark_node)
8649 return error_mark_node;
8650
8651 // We always pass a pointer to the first argument when calling a
8652 // method.
8653 if (first_argument->type()->points_to() == NULL)
8654 {
8655 tree pointer_to_arg_type = build_pointer_type(TREE_TYPE(first_arg));
8656 if (TREE_ADDRESSABLE(TREE_TYPE(first_arg))
8657 || DECL_P(first_arg)
8658 || TREE_CODE(first_arg) == INDIRECT_REF
8659 || TREE_CODE(first_arg) == COMPONENT_REF)
8660 {
8661 first_arg = build_fold_addr_expr(first_arg);
8662 if (DECL_P(first_arg))
8663 TREE_ADDRESSABLE(first_arg) = 1;
8664 }
8665 else
8666 {
8667 tree tmp = create_tmp_var(TREE_TYPE(first_arg),
8668 get_name(first_arg));
8669 DECL_IGNORED_P(tmp) = 0;
8670 DECL_INITIAL(tmp) = first_arg;
8671 first_arg = build2(COMPOUND_EXPR, pointer_to_arg_type,
8672 build1(DECL_EXPR, void_type_node, tmp),
8673 build_fold_addr_expr(tmp));
8674 TREE_ADDRESSABLE(tmp) = 1;
8675 }
8676 if (first_arg == error_mark_node)
8677 return error_mark_node;
8678 }
8679
8680 Type* fatype = bound_method->first_argument_type();
8681 if (fatype != NULL)
8682 {
8683 if (fatype->points_to() == NULL)
8684 fatype = Type::make_pointer_type(fatype);
8685 first_arg = fold_convert(fatype->get_tree(context->gogo()), first_arg);
8686 if (first_arg == error_mark_node
8687 || TREE_TYPE(first_arg) == error_mark_node)
8688 return error_mark_node;
8689 }
8690
8691 *first_arg_ptr = first_arg;
8692
8693 return bound_method->method()->get_tree(context);
8694 }
8695
8696 // Get the function and the first argument to use when calling an
8697 // interface method.
8698
8699 tree
8700 Call_expression::interface_method_function(
8701 Translate_context* context,
8702 Interface_field_reference_expression* interface_method,
8703 tree* first_arg_ptr)
8704 {
8705 tree expr = interface_method->expr()->get_tree(context);
8706 if (expr == error_mark_node)
8707 return error_mark_node;
8708 expr = save_expr(expr);
8709 tree first_arg = interface_method->get_underlying_object_tree(context, expr);
8710 if (first_arg == error_mark_node)
8711 return error_mark_node;
8712 *first_arg_ptr = first_arg;
8713 return interface_method->get_function_tree(context, expr);
8714 }
8715
8716 // Build the call expression.
8717
8718 tree
8719 Call_expression::do_get_tree(Translate_context* context)
8720 {
8721 if (this->tree_ != NULL_TREE)
8722 return this->tree_;
8723
8724 Function_type* fntype = this->get_function_type();
8725 if (fntype == NULL)
8726 return error_mark_node;
8727
8728 if (this->fn_->is_error_expression())
8729 return error_mark_node;
8730
8731 Gogo* gogo = context->gogo();
8732 source_location location = this->location();
8733
8734 Func_expression* func = this->fn_->func_expression();
8735 Bound_method_expression* bound_method = this->fn_->bound_method_expression();
8736 Interface_field_reference_expression* interface_method =
8737 this->fn_->interface_field_reference_expression();
8738 const bool has_closure = func != NULL && func->closure() != NULL;
8739 const bool is_method = bound_method != NULL || interface_method != NULL;
8740 gcc_assert(!fntype->is_method() || is_method);
8741
8742 int nargs;
8743 tree* args;
8744 if (this->args_ == NULL || this->args_->empty())
8745 {
8746 nargs = is_method ? 1 : 0;
8747 args = nargs == 0 ? NULL : new tree[nargs];
8748 }
8749 else
8750 {
8751 const Typed_identifier_list* params = fntype->parameters();
8752 gcc_assert(params != NULL);
8753
8754 nargs = this->args_->size();
8755 int i = is_method ? 1 : 0;
8756 nargs += i;
8757 args = new tree[nargs];
8758
8759 Typed_identifier_list::const_iterator pp = params->begin();
8760 Expression_list::const_iterator pe;
8761 for (pe = this->args_->begin();
8762 pe != this->args_->end();
8763 ++pe, ++pp, ++i)
8764 {
8765 gcc_assert(pp != params->end());
8766 tree arg_val = (*pe)->get_tree(context);
8767 args[i] = Expression::convert_for_assignment(context,
8768 pp->type(),
8769 (*pe)->type(),
8770 arg_val,
8771 location);
8772 if (args[i] == error_mark_node)
8773 {
8774 delete[] args;
8775 return error_mark_node;
8776 }
8777 }
8778 gcc_assert(pp == params->end());
8779 gcc_assert(i == nargs);
8780 }
8781
8782 tree rettype = TREE_TYPE(TREE_TYPE(fntype->get_tree(gogo)));
8783 if (rettype == error_mark_node)
8784 {
8785 delete[] args;
8786 return error_mark_node;
8787 }
8788
8789 tree fn;
8790 if (has_closure)
8791 fn = func->get_tree_without_closure(gogo);
8792 else if (!is_method)
8793 fn = this->fn_->get_tree(context);
8794 else if (bound_method != NULL)
8795 fn = this->bound_method_function(context, bound_method, &args[0]);
8796 else if (interface_method != NULL)
8797 fn = this->interface_method_function(context, interface_method, &args[0]);
8798 else
8799 gcc_unreachable();
8800
8801 if (fn == error_mark_node || TREE_TYPE(fn) == error_mark_node)
8802 {
8803 delete[] args;
8804 return error_mark_node;
8805 }
8806
8807 // This is to support builtin math functions when using 80387 math.
8808 tree fndecl = fn;
8809 if (TREE_CODE(fndecl) == ADDR_EXPR)
8810 fndecl = TREE_OPERAND(fndecl, 0);
8811 tree excess_type = NULL_TREE;
8812 if (DECL_P(fndecl)
8813 && DECL_IS_BUILTIN(fndecl)
8814 && DECL_BUILT_IN_CLASS(fndecl) == BUILT_IN_NORMAL
8815 && nargs > 0
8816 && ((SCALAR_FLOAT_TYPE_P(rettype)
8817 && SCALAR_FLOAT_TYPE_P(TREE_TYPE(args[0])))
8818 || (COMPLEX_FLOAT_TYPE_P(rettype)
8819 && COMPLEX_FLOAT_TYPE_P(TREE_TYPE(args[0])))))
8820 {
8821 excess_type = excess_precision_type(TREE_TYPE(args[0]));
8822 if (excess_type != NULL_TREE)
8823 {
8824 tree excess_fndecl = mathfn_built_in(excess_type,
8825 DECL_FUNCTION_CODE(fndecl));
8826 if (excess_fndecl == NULL_TREE)
8827 excess_type = NULL_TREE;
8828 else
8829 {
8830 fn = build_fold_addr_expr_loc(location, excess_fndecl);
8831 for (int i = 0; i < nargs; ++i)
8832 args[i] = ::convert(excess_type, args[i]);
8833 }
8834 }
8835 }
8836
8837 tree ret = build_call_array(excess_type != NULL_TREE ? excess_type : rettype,
8838 fn, nargs, args);
8839 delete[] args;
8840
8841 SET_EXPR_LOCATION(ret, location);
8842
8843 if (has_closure)
8844 {
8845 tree closure_tree = func->closure()->get_tree(context);
8846 if (closure_tree != error_mark_node)
8847 CALL_EXPR_STATIC_CHAIN(ret) = closure_tree;
8848 }
8849
8850 // If this is a recursive function type which returns itself, as in
8851 // type F func() F
8852 // we have used ptr_type_node for the return type. Add a cast here
8853 // to the correct type.
8854 if (TREE_TYPE(ret) == ptr_type_node)
8855 {
8856 tree t = this->type()->get_tree(gogo);
8857 ret = fold_convert_loc(location, t, ret);
8858 }
8859
8860 if (excess_type != NULL_TREE)
8861 {
8862 // Calling convert here can undo our excess precision change.
8863 // That may or may not be a bug in convert_to_real.
8864 ret = build1(NOP_EXPR, rettype, ret);
8865 }
8866
8867 // If there is more than one result, we will refer to the call
8868 // multiple times.
8869 if (fntype->results() != NULL && fntype->results()->size() > 1)
8870 ret = save_expr(ret);
8871
8872 this->tree_ = ret;
8873
8874 return ret;
8875 }
8876
8877 // Make a call expression.
8878
8879 Call_expression*
8880 Expression::make_call(Expression* fn, Expression_list* args, bool is_varargs,
8881 source_location location)
8882 {
8883 return new Call_expression(fn, args, is_varargs, location);
8884 }
8885
8886 // A single result from a call which returns multiple results.
8887
8888 class Call_result_expression : public Expression
8889 {
8890 public:
8891 Call_result_expression(Call_expression* call, unsigned int index)
8892 : Expression(EXPRESSION_CALL_RESULT, call->location()),
8893 call_(call), index_(index)
8894 { }
8895
8896 protected:
8897 int
8898 do_traverse(Traverse*);
8899
8900 Type*
8901 do_type();
8902
8903 void
8904 do_determine_type(const Type_context*);
8905
8906 void
8907 do_check_types(Gogo*);
8908
8909 Expression*
8910 do_copy()
8911 {
8912 return new Call_result_expression(this->call_->call_expression(),
8913 this->index_);
8914 }
8915
8916 bool
8917 do_must_eval_in_order() const
8918 { return true; }
8919
8920 tree
8921 do_get_tree(Translate_context*);
8922
8923 private:
8924 // The underlying call expression.
8925 Expression* call_;
8926 // Which result we want.
8927 unsigned int index_;
8928 };
8929
8930 // Traverse a call result.
8931
8932 int
8933 Call_result_expression::do_traverse(Traverse* traverse)
8934 {
8935 if (traverse->remember_expression(this->call_))
8936 {
8937 // We have already traversed the call expression.
8938 return TRAVERSE_CONTINUE;
8939 }
8940 return Expression::traverse(&this->call_, traverse);
8941 }
8942
8943 // Get the type.
8944
8945 Type*
8946 Call_result_expression::do_type()
8947 {
8948 if (this->classification() == EXPRESSION_ERROR)
8949 return Type::make_error_type();
8950
8951 // THIS->CALL_ can be replaced with a temporary reference due to
8952 // Call_expression::do_must_eval_in_order when there is an error.
8953 Call_expression* ce = this->call_->call_expression();
8954 if (ce == NULL)
8955 {
8956 this->set_is_error();
8957 return Type::make_error_type();
8958 }
8959 Function_type* fntype = ce->get_function_type();
8960 if (fntype == NULL)
8961 {
8962 this->set_is_error();
8963 return Type::make_error_type();
8964 }
8965 const Typed_identifier_list* results = fntype->results();
8966 if (results == NULL)
8967 {
8968 this->report_error(_("number of results does not match "
8969 "number of values"));
8970 return Type::make_error_type();
8971 }
8972 Typed_identifier_list::const_iterator pr = results->begin();
8973 for (unsigned int i = 0; i < this->index_; ++i)
8974 {
8975 if (pr == results->end())
8976 break;
8977 ++pr;
8978 }
8979 if (pr == results->end())
8980 {
8981 this->report_error(_("number of results does not match "
8982 "number of values"));
8983 return Type::make_error_type();
8984 }
8985 return pr->type();
8986 }
8987
8988 // Check the type. Just make sure that we trigger the warning in
8989 // do_type.
8990
8991 void
8992 Call_result_expression::do_check_types(Gogo*)
8993 {
8994 this->type();
8995 }
8996
8997 // Determine the type. We have nothing to do here, but the 0 result
8998 // needs to pass down to the caller.
8999
9000 void
9001 Call_result_expression::do_determine_type(const Type_context*)
9002 {
9003 if (this->index_ == 0)
9004 this->call_->determine_type_no_context();
9005 }
9006
9007 // Return the tree.
9008
9009 tree
9010 Call_result_expression::do_get_tree(Translate_context* context)
9011 {
9012 tree call_tree = this->call_->get_tree(context);
9013 if (call_tree == error_mark_node)
9014 return error_mark_node;
9015 if (TREE_CODE(TREE_TYPE(call_tree)) != RECORD_TYPE)
9016 {
9017 gcc_assert(saw_errors());
9018 return error_mark_node;
9019 }
9020 tree field = TYPE_FIELDS(TREE_TYPE(call_tree));
9021 for (unsigned int i = 0; i < this->index_; ++i)
9022 {
9023 gcc_assert(field != NULL_TREE);
9024 field = DECL_CHAIN(field);
9025 }
9026 gcc_assert(field != NULL_TREE);
9027 return build3(COMPONENT_REF, TREE_TYPE(field), call_tree, field, NULL_TREE);
9028 }
9029
9030 // Make a reference to a single result of a call which returns
9031 // multiple results.
9032
9033 Expression*
9034 Expression::make_call_result(Call_expression* call, unsigned int index)
9035 {
9036 return new Call_result_expression(call, index);
9037 }
9038
9039 // Class Index_expression.
9040
9041 // Traversal.
9042
9043 int
9044 Index_expression::do_traverse(Traverse* traverse)
9045 {
9046 if (Expression::traverse(&this->left_, traverse) == TRAVERSE_EXIT
9047 || Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT
9048 || (this->end_ != NULL
9049 && Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT))
9050 return TRAVERSE_EXIT;
9051 return TRAVERSE_CONTINUE;
9052 }
9053
9054 // Lower an index expression. This converts the generic index
9055 // expression into an array index, a string index, or a map index.
9056
9057 Expression*
9058 Index_expression::do_lower(Gogo*, Named_object*, int)
9059 {
9060 source_location location = this->location();
9061 Expression* left = this->left_;
9062 Expression* start = this->start_;
9063 Expression* end = this->end_;
9064
9065 Type* type = left->type();
9066 if (type->is_error_type())
9067 return Expression::make_error(location);
9068 else if (type->array_type() != NULL)
9069 return Expression::make_array_index(left, start, end, location);
9070 else if (type->points_to() != NULL
9071 && type->points_to()->array_type() != NULL
9072 && !type->points_to()->is_open_array_type())
9073 {
9074 Expression* deref = Expression::make_unary(OPERATOR_MULT, left,
9075 location);
9076 return Expression::make_array_index(deref, start, end, location);
9077 }
9078 else if (type->is_string_type())
9079 return Expression::make_string_index(left, start, end, location);
9080 else if (type->map_type() != NULL)
9081 {
9082 if (end != NULL)
9083 {
9084 error_at(location, "invalid slice of map");
9085 return Expression::make_error(location);
9086 }
9087 Map_index_expression* ret= Expression::make_map_index(left, start,
9088 location);
9089 if (this->is_lvalue_)
9090 ret->set_is_lvalue();
9091 return ret;
9092 }
9093 else
9094 {
9095 error_at(location,
9096 "attempt to index object which is not array, string, or map");
9097 return Expression::make_error(location);
9098 }
9099 }
9100
9101 // Make an index expression.
9102
9103 Expression*
9104 Expression::make_index(Expression* left, Expression* start, Expression* end,
9105 source_location location)
9106 {
9107 return new Index_expression(left, start, end, location);
9108 }
9109
9110 // An array index. This is used for both indexing and slicing.
9111
9112 class Array_index_expression : public Expression
9113 {
9114 public:
9115 Array_index_expression(Expression* array, Expression* start,
9116 Expression* end, source_location location)
9117 : Expression(EXPRESSION_ARRAY_INDEX, location),
9118 array_(array), start_(start), end_(end), type_(NULL)
9119 { }
9120
9121 protected:
9122 int
9123 do_traverse(Traverse*);
9124
9125 Type*
9126 do_type();
9127
9128 void
9129 do_determine_type(const Type_context*);
9130
9131 void
9132 do_check_types(Gogo*);
9133
9134 Expression*
9135 do_copy()
9136 {
9137 return Expression::make_array_index(this->array_->copy(),
9138 this->start_->copy(),
9139 (this->end_ == NULL
9140 ? NULL
9141 : this->end_->copy()),
9142 this->location());
9143 }
9144
9145 bool
9146 do_is_addressable() const;
9147
9148 void
9149 do_address_taken(bool escapes)
9150 { this->array_->address_taken(escapes); }
9151
9152 tree
9153 do_get_tree(Translate_context*);
9154
9155 private:
9156 // The array we are getting a value from.
9157 Expression* array_;
9158 // The start or only index.
9159 Expression* start_;
9160 // The end index of a slice. This may be NULL for a simple array
9161 // index, or it may be a nil expression for the length of the array.
9162 Expression* end_;
9163 // The type of the expression.
9164 Type* type_;
9165 };
9166
9167 // Array index traversal.
9168
9169 int
9170 Array_index_expression::do_traverse(Traverse* traverse)
9171 {
9172 if (Expression::traverse(&this->array_, traverse) == TRAVERSE_EXIT)
9173 return TRAVERSE_EXIT;
9174 if (Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT)
9175 return TRAVERSE_EXIT;
9176 if (this->end_ != NULL)
9177 {
9178 if (Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT)
9179 return TRAVERSE_EXIT;
9180 }
9181 return TRAVERSE_CONTINUE;
9182 }
9183
9184 // Return the type of an array index.
9185
9186 Type*
9187 Array_index_expression::do_type()
9188 {
9189 if (this->type_ == NULL)
9190 {
9191 Array_type* type = this->array_->type()->array_type();
9192 if (type == NULL)
9193 this->type_ = Type::make_error_type();
9194 else if (this->end_ == NULL)
9195 this->type_ = type->element_type();
9196 else if (type->is_open_array_type())
9197 {
9198 // A slice of a slice has the same type as the original
9199 // slice.
9200 this->type_ = this->array_->type()->deref();
9201 }
9202 else
9203 {
9204 // A slice of an array is a slice.
9205 this->type_ = Type::make_array_type(type->element_type(), NULL);
9206 }
9207 }
9208 return this->type_;
9209 }
9210
9211 // Set the type of an array index.
9212
9213 void
9214 Array_index_expression::do_determine_type(const Type_context*)
9215 {
9216 this->array_->determine_type_no_context();
9217 Type_context subcontext(NULL, true);
9218 this->start_->determine_type(&subcontext);
9219 if (this->end_ != NULL)
9220 this->end_->determine_type(&subcontext);
9221 }
9222
9223 // Check types of an array index.
9224
9225 void
9226 Array_index_expression::do_check_types(Gogo*)
9227 {
9228 if (this->start_->type()->integer_type() == NULL)
9229 this->report_error(_("index must be integer"));
9230 if (this->end_ != NULL
9231 && this->end_->type()->integer_type() == NULL
9232 && !this->end_->is_nil_expression())
9233 this->report_error(_("slice end must be integer"));
9234
9235 Array_type* array_type = this->array_->type()->array_type();
9236 if (array_type == NULL)
9237 {
9238 gcc_assert(this->array_->type()->is_error_type());
9239 return;
9240 }
9241
9242 unsigned int int_bits =
9243 Type::lookup_integer_type("int")->integer_type()->bits();
9244
9245 Type* dummy;
9246 mpz_t lval;
9247 mpz_init(lval);
9248 bool lval_valid = (array_type->length() != NULL
9249 && array_type->length()->integer_constant_value(true,
9250 lval,
9251 &dummy));
9252 mpz_t ival;
9253 mpz_init(ival);
9254 if (this->start_->integer_constant_value(true, ival, &dummy))
9255 {
9256 if (mpz_sgn(ival) < 0
9257 || mpz_sizeinbase(ival, 2) >= int_bits
9258 || (lval_valid
9259 && (this->end_ == NULL
9260 ? mpz_cmp(ival, lval) >= 0
9261 : mpz_cmp(ival, lval) > 0)))
9262 {
9263 error_at(this->start_->location(), "array index out of bounds");
9264 this->set_is_error();
9265 }
9266 }
9267 if (this->end_ != NULL && !this->end_->is_nil_expression())
9268 {
9269 if (this->end_->integer_constant_value(true, ival, &dummy))
9270 {
9271 if (mpz_sgn(ival) < 0
9272 || mpz_sizeinbase(ival, 2) >= int_bits
9273 || (lval_valid && mpz_cmp(ival, lval) > 0))
9274 {
9275 error_at(this->end_->location(), "array index out of bounds");
9276 this->set_is_error();
9277 }
9278 }
9279 }
9280 mpz_clear(ival);
9281 mpz_clear(lval);
9282
9283 // A slice of an array requires an addressable array. A slice of a
9284 // slice is always possible.
9285 if (this->end_ != NULL
9286 && !array_type->is_open_array_type()
9287 && !this->array_->is_addressable())
9288 this->report_error(_("array is not addressable"));
9289 }
9290
9291 // Return whether this expression is addressable.
9292
9293 bool
9294 Array_index_expression::do_is_addressable() const
9295 {
9296 // A slice expression is not addressable.
9297 if (this->end_ != NULL)
9298 return false;
9299
9300 // An index into a slice is addressable.
9301 if (this->array_->type()->is_open_array_type())
9302 return true;
9303
9304 // An index into an array is addressable if the array is
9305 // addressable.
9306 return this->array_->is_addressable();
9307 }
9308
9309 // Get a tree for an array index.
9310
9311 tree
9312 Array_index_expression::do_get_tree(Translate_context* context)
9313 {
9314 Gogo* gogo = context->gogo();
9315 source_location loc = this->location();
9316
9317 Array_type* array_type = this->array_->type()->array_type();
9318 if (array_type == NULL)
9319 {
9320 gcc_assert(this->array_->type()->is_error_type());
9321 return error_mark_node;
9322 }
9323
9324 tree type_tree = array_type->get_tree(gogo);
9325 if (type_tree == error_mark_node)
9326 return error_mark_node;
9327
9328 tree array_tree = this->array_->get_tree(context);
9329 if (array_tree == error_mark_node)
9330 return error_mark_node;
9331
9332 if (array_type->length() == NULL && !DECL_P(array_tree))
9333 array_tree = save_expr(array_tree);
9334 tree length_tree = array_type->length_tree(gogo, array_tree);
9335 if (length_tree == error_mark_node)
9336 return error_mark_node;
9337 length_tree = save_expr(length_tree);
9338 tree length_type = TREE_TYPE(length_tree);
9339
9340 tree bad_index = boolean_false_node;
9341
9342 tree start_tree = this->start_->get_tree(context);
9343 if (start_tree == error_mark_node)
9344 return error_mark_node;
9345 if (!DECL_P(start_tree))
9346 start_tree = save_expr(start_tree);
9347 if (!INTEGRAL_TYPE_P(TREE_TYPE(start_tree)))
9348 start_tree = convert_to_integer(length_type, start_tree);
9349
9350 bad_index = Expression::check_bounds(start_tree, length_type, bad_index,
9351 loc);
9352
9353 start_tree = fold_convert_loc(loc, length_type, start_tree);
9354 bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node, bad_index,
9355 fold_build2_loc(loc,
9356 (this->end_ == NULL
9357 ? GE_EXPR
9358 : GT_EXPR),
9359 boolean_type_node, start_tree,
9360 length_tree));
9361
9362 int code = (array_type->length() != NULL
9363 ? (this->end_ == NULL
9364 ? RUNTIME_ERROR_ARRAY_INDEX_OUT_OF_BOUNDS
9365 : RUNTIME_ERROR_ARRAY_SLICE_OUT_OF_BOUNDS)
9366 : (this->end_ == NULL
9367 ? RUNTIME_ERROR_SLICE_INDEX_OUT_OF_BOUNDS
9368 : RUNTIME_ERROR_SLICE_SLICE_OUT_OF_BOUNDS));
9369 tree crash = Gogo::runtime_error(code, loc);
9370
9371 if (this->end_ == NULL)
9372 {
9373 // Simple array indexing. This has to return an l-value, so
9374 // wrap the index check into START_TREE.
9375 start_tree = build2(COMPOUND_EXPR, TREE_TYPE(start_tree),
9376 build3(COND_EXPR, void_type_node,
9377 bad_index, crash, NULL_TREE),
9378 start_tree);
9379 start_tree = fold_convert_loc(loc, sizetype, start_tree);
9380
9381 if (array_type->length() != NULL)
9382 {
9383 // Fixed array.
9384 return build4(ARRAY_REF, TREE_TYPE(type_tree), array_tree,
9385 start_tree, NULL_TREE, NULL_TREE);
9386 }
9387 else
9388 {
9389 // Open array.
9390 tree values = array_type->value_pointer_tree(gogo, array_tree);
9391 tree element_type_tree = array_type->element_type()->get_tree(gogo);
9392 if (element_type_tree == error_mark_node)
9393 return error_mark_node;
9394 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
9395 tree offset = fold_build2_loc(loc, MULT_EXPR, sizetype,
9396 start_tree, element_size);
9397 tree ptr = fold_build2_loc(loc, POINTER_PLUS_EXPR,
9398 TREE_TYPE(values), values, offset);
9399 return build_fold_indirect_ref(ptr);
9400 }
9401 }
9402
9403 // Array slice.
9404
9405 tree capacity_tree = array_type->capacity_tree(gogo, array_tree);
9406 if (capacity_tree == error_mark_node)
9407 return error_mark_node;
9408 capacity_tree = fold_convert_loc(loc, length_type, capacity_tree);
9409
9410 tree end_tree;
9411 if (this->end_->is_nil_expression())
9412 end_tree = length_tree;
9413 else
9414 {
9415 end_tree = this->end_->get_tree(context);
9416 if (end_tree == error_mark_node)
9417 return error_mark_node;
9418 if (!DECL_P(end_tree))
9419 end_tree = save_expr(end_tree);
9420 if (!INTEGRAL_TYPE_P(TREE_TYPE(end_tree)))
9421 end_tree = convert_to_integer(length_type, end_tree);
9422
9423 bad_index = Expression::check_bounds(end_tree, length_type, bad_index,
9424 loc);
9425
9426 end_tree = fold_convert_loc(loc, length_type, end_tree);
9427
9428 capacity_tree = save_expr(capacity_tree);
9429 tree bad_end = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
9430 fold_build2_loc(loc, LT_EXPR,
9431 boolean_type_node,
9432 end_tree, start_tree),
9433 fold_build2_loc(loc, GT_EXPR,
9434 boolean_type_node,
9435 end_tree, capacity_tree));
9436 bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
9437 bad_index, bad_end);
9438 }
9439
9440 tree element_type_tree = array_type->element_type()->get_tree(gogo);
9441 if (element_type_tree == error_mark_node)
9442 return error_mark_node;
9443 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
9444
9445 tree offset = fold_build2_loc(loc, MULT_EXPR, sizetype,
9446 fold_convert_loc(loc, sizetype, start_tree),
9447 element_size);
9448
9449 tree value_pointer = array_type->value_pointer_tree(gogo, array_tree);
9450 if (value_pointer == error_mark_node)
9451 return error_mark_node;
9452
9453 value_pointer = fold_build2_loc(loc, POINTER_PLUS_EXPR,
9454 TREE_TYPE(value_pointer),
9455 value_pointer, offset);
9456
9457 tree result_length_tree = fold_build2_loc(loc, MINUS_EXPR, length_type,
9458 end_tree, start_tree);
9459
9460 tree result_capacity_tree = fold_build2_loc(loc, MINUS_EXPR, length_type,
9461 capacity_tree, start_tree);
9462
9463 tree struct_tree = this->type()->get_tree(gogo);
9464 gcc_assert(TREE_CODE(struct_tree) == RECORD_TYPE);
9465
9466 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
9467
9468 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
9469 tree field = TYPE_FIELDS(struct_tree);
9470 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
9471 elt->index = field;
9472 elt->value = value_pointer;
9473
9474 elt = VEC_quick_push(constructor_elt, init, NULL);
9475 field = DECL_CHAIN(field);
9476 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
9477 elt->index = field;
9478 elt->value = fold_convert_loc(loc, TREE_TYPE(field), result_length_tree);
9479
9480 elt = VEC_quick_push(constructor_elt, init, NULL);
9481 field = DECL_CHAIN(field);
9482 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__capacity") == 0);
9483 elt->index = field;
9484 elt->value = fold_convert_loc(loc, TREE_TYPE(field), result_capacity_tree);
9485
9486 tree constructor = build_constructor(struct_tree, init);
9487
9488 if (TREE_CONSTANT(value_pointer)
9489 && TREE_CONSTANT(result_length_tree)
9490 && TREE_CONSTANT(result_capacity_tree))
9491 TREE_CONSTANT(constructor) = 1;
9492
9493 return fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(constructor),
9494 build3(COND_EXPR, void_type_node,
9495 bad_index, crash, NULL_TREE),
9496 constructor);
9497 }
9498
9499 // Make an array index expression. END may be NULL.
9500
9501 Expression*
9502 Expression::make_array_index(Expression* array, Expression* start,
9503 Expression* end, source_location location)
9504 {
9505 // Taking a slice of a composite literal requires moving the literal
9506 // onto the heap.
9507 if (end != NULL && array->is_composite_literal())
9508 {
9509 array = Expression::make_heap_composite(array, location);
9510 array = Expression::make_unary(OPERATOR_MULT, array, location);
9511 }
9512 return new Array_index_expression(array, start, end, location);
9513 }
9514
9515 // A string index. This is used for both indexing and slicing.
9516
9517 class String_index_expression : public Expression
9518 {
9519 public:
9520 String_index_expression(Expression* string, Expression* start,
9521 Expression* end, source_location location)
9522 : Expression(EXPRESSION_STRING_INDEX, location),
9523 string_(string), start_(start), end_(end)
9524 { }
9525
9526 protected:
9527 int
9528 do_traverse(Traverse*);
9529
9530 Type*
9531 do_type();
9532
9533 void
9534 do_determine_type(const Type_context*);
9535
9536 void
9537 do_check_types(Gogo*);
9538
9539 Expression*
9540 do_copy()
9541 {
9542 return Expression::make_string_index(this->string_->copy(),
9543 this->start_->copy(),
9544 (this->end_ == NULL
9545 ? NULL
9546 : this->end_->copy()),
9547 this->location());
9548 }
9549
9550 tree
9551 do_get_tree(Translate_context*);
9552
9553 private:
9554 // The string we are getting a value from.
9555 Expression* string_;
9556 // The start or only index.
9557 Expression* start_;
9558 // The end index of a slice. This may be NULL for a single index,
9559 // or it may be a nil expression for the length of the string.
9560 Expression* end_;
9561 };
9562
9563 // String index traversal.
9564
9565 int
9566 String_index_expression::do_traverse(Traverse* traverse)
9567 {
9568 if (Expression::traverse(&this->string_, traverse) == TRAVERSE_EXIT)
9569 return TRAVERSE_EXIT;
9570 if (Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT)
9571 return TRAVERSE_EXIT;
9572 if (this->end_ != NULL)
9573 {
9574 if (Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT)
9575 return TRAVERSE_EXIT;
9576 }
9577 return TRAVERSE_CONTINUE;
9578 }
9579
9580 // Return the type of a string index.
9581
9582 Type*
9583 String_index_expression::do_type()
9584 {
9585 if (this->end_ == NULL)
9586 return Type::lookup_integer_type("uint8");
9587 else
9588 return this->string_->type();
9589 }
9590
9591 // Determine the type of a string index.
9592
9593 void
9594 String_index_expression::do_determine_type(const Type_context*)
9595 {
9596 this->string_->determine_type_no_context();
9597 Type_context subcontext(NULL, true);
9598 this->start_->determine_type(&subcontext);
9599 if (this->end_ != NULL)
9600 this->end_->determine_type(&subcontext);
9601 }
9602
9603 // Check types of a string index.
9604
9605 void
9606 String_index_expression::do_check_types(Gogo*)
9607 {
9608 if (this->start_->type()->integer_type() == NULL)
9609 this->report_error(_("index must be integer"));
9610 if (this->end_ != NULL
9611 && this->end_->type()->integer_type() == NULL
9612 && !this->end_->is_nil_expression())
9613 this->report_error(_("slice end must be integer"));
9614
9615 std::string sval;
9616 bool sval_valid = this->string_->string_constant_value(&sval);
9617
9618 mpz_t ival;
9619 mpz_init(ival);
9620 Type* dummy;
9621 if (this->start_->integer_constant_value(true, ival, &dummy))
9622 {
9623 if (mpz_sgn(ival) < 0
9624 || (sval_valid && mpz_cmp_ui(ival, sval.length()) >= 0))
9625 {
9626 error_at(this->start_->location(), "string index out of bounds");
9627 this->set_is_error();
9628 }
9629 }
9630 if (this->end_ != NULL && !this->end_->is_nil_expression())
9631 {
9632 if (this->end_->integer_constant_value(true, ival, &dummy))
9633 {
9634 if (mpz_sgn(ival) < 0
9635 || (sval_valid && mpz_cmp_ui(ival, sval.length()) > 0))
9636 {
9637 error_at(this->end_->location(), "string index out of bounds");
9638 this->set_is_error();
9639 }
9640 }
9641 }
9642 mpz_clear(ival);
9643 }
9644
9645 // Get a tree for a string index.
9646
9647 tree
9648 String_index_expression::do_get_tree(Translate_context* context)
9649 {
9650 source_location loc = this->location();
9651
9652 tree string_tree = this->string_->get_tree(context);
9653 if (string_tree == error_mark_node)
9654 return error_mark_node;
9655
9656 if (this->string_->type()->points_to() != NULL)
9657 string_tree = build_fold_indirect_ref(string_tree);
9658 if (!DECL_P(string_tree))
9659 string_tree = save_expr(string_tree);
9660 tree string_type = TREE_TYPE(string_tree);
9661
9662 tree length_tree = String_type::length_tree(context->gogo(), string_tree);
9663 length_tree = save_expr(length_tree);
9664 tree length_type = TREE_TYPE(length_tree);
9665
9666 tree bad_index = boolean_false_node;
9667
9668 tree start_tree = this->start_->get_tree(context);
9669 if (start_tree == error_mark_node)
9670 return error_mark_node;
9671 if (!DECL_P(start_tree))
9672 start_tree = save_expr(start_tree);
9673 if (!INTEGRAL_TYPE_P(TREE_TYPE(start_tree)))
9674 start_tree = convert_to_integer(length_type, start_tree);
9675
9676 bad_index = Expression::check_bounds(start_tree, length_type, bad_index,
9677 loc);
9678
9679 start_tree = fold_convert_loc(loc, length_type, start_tree);
9680
9681 int code = (this->end_ == NULL
9682 ? RUNTIME_ERROR_STRING_INDEX_OUT_OF_BOUNDS
9683 : RUNTIME_ERROR_STRING_SLICE_OUT_OF_BOUNDS);
9684 tree crash = Gogo::runtime_error(code, loc);
9685
9686 if (this->end_ == NULL)
9687 {
9688 bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
9689 bad_index,
9690 fold_build2_loc(loc, GE_EXPR,
9691 boolean_type_node,
9692 start_tree, length_tree));
9693
9694 tree bytes_tree = String_type::bytes_tree(context->gogo(), string_tree);
9695 tree ptr = fold_build2_loc(loc, POINTER_PLUS_EXPR, TREE_TYPE(bytes_tree),
9696 bytes_tree,
9697 fold_convert_loc(loc, sizetype, start_tree));
9698 tree index = build_fold_indirect_ref_loc(loc, ptr);
9699
9700 return build2(COMPOUND_EXPR, TREE_TYPE(index),
9701 build3(COND_EXPR, void_type_node,
9702 bad_index, crash, NULL_TREE),
9703 index);
9704 }
9705 else
9706 {
9707 tree end_tree;
9708 if (this->end_->is_nil_expression())
9709 end_tree = build_int_cst(length_type, -1);
9710 else
9711 {
9712 end_tree = this->end_->get_tree(context);
9713 if (end_tree == error_mark_node)
9714 return error_mark_node;
9715 if (!DECL_P(end_tree))
9716 end_tree = save_expr(end_tree);
9717 if (!INTEGRAL_TYPE_P(TREE_TYPE(end_tree)))
9718 end_tree = convert_to_integer(length_type, end_tree);
9719
9720 bad_index = Expression::check_bounds(end_tree, length_type,
9721 bad_index, loc);
9722
9723 end_tree = fold_convert_loc(loc, length_type, end_tree);
9724 }
9725
9726 static tree strslice_fndecl;
9727 tree ret = Gogo::call_builtin(&strslice_fndecl,
9728 loc,
9729 "__go_string_slice",
9730 3,
9731 string_type,
9732 string_type,
9733 string_tree,
9734 length_type,
9735 start_tree,
9736 length_type,
9737 end_tree);
9738 if (ret == error_mark_node)
9739 return error_mark_node;
9740 // This will panic if the bounds are out of range for the
9741 // string.
9742 TREE_NOTHROW(strslice_fndecl) = 0;
9743
9744 if (bad_index == boolean_false_node)
9745 return ret;
9746 else
9747 return build2(COMPOUND_EXPR, TREE_TYPE(ret),
9748 build3(COND_EXPR, void_type_node,
9749 bad_index, crash, NULL_TREE),
9750 ret);
9751 }
9752 }
9753
9754 // Make a string index expression. END may be NULL.
9755
9756 Expression*
9757 Expression::make_string_index(Expression* string, Expression* start,
9758 Expression* end, source_location location)
9759 {
9760 return new String_index_expression(string, start, end, location);
9761 }
9762
9763 // Class Map_index.
9764
9765 // Get the type of the map.
9766
9767 Map_type*
9768 Map_index_expression::get_map_type() const
9769 {
9770 Map_type* mt = this->map_->type()->deref()->map_type();
9771 if (mt == NULL)
9772 gcc_assert(saw_errors());
9773 return mt;
9774 }
9775
9776 // Map index traversal.
9777
9778 int
9779 Map_index_expression::do_traverse(Traverse* traverse)
9780 {
9781 if (Expression::traverse(&this->map_, traverse) == TRAVERSE_EXIT)
9782 return TRAVERSE_EXIT;
9783 return Expression::traverse(&this->index_, traverse);
9784 }
9785
9786 // Return the type of a map index.
9787
9788 Type*
9789 Map_index_expression::do_type()
9790 {
9791 Map_type* mt = this->get_map_type();
9792 if (mt == NULL)
9793 return Type::make_error_type();
9794 Type* type = mt->val_type();
9795 // If this map index is in a tuple assignment, we actually return a
9796 // pointer to the value type. Tuple_map_assignment_statement is
9797 // responsible for handling this correctly. We need to get the type
9798 // right in case this gets assigned to a temporary variable.
9799 if (this->is_in_tuple_assignment_)
9800 type = Type::make_pointer_type(type);
9801 return type;
9802 }
9803
9804 // Fix the type of a map index.
9805
9806 void
9807 Map_index_expression::do_determine_type(const Type_context*)
9808 {
9809 this->map_->determine_type_no_context();
9810 Map_type* mt = this->get_map_type();
9811 Type* key_type = mt == NULL ? NULL : mt->key_type();
9812 Type_context subcontext(key_type, false);
9813 this->index_->determine_type(&subcontext);
9814 }
9815
9816 // Check types of a map index.
9817
9818 void
9819 Map_index_expression::do_check_types(Gogo*)
9820 {
9821 std::string reason;
9822 Map_type* mt = this->get_map_type();
9823 if (mt == NULL)
9824 return;
9825 if (!Type::are_assignable(mt->key_type(), this->index_->type(), &reason))
9826 {
9827 if (reason.empty())
9828 this->report_error(_("incompatible type for map index"));
9829 else
9830 {
9831 error_at(this->location(), "incompatible type for map index (%s)",
9832 reason.c_str());
9833 this->set_is_error();
9834 }
9835 }
9836 }
9837
9838 // Get a tree for a map index.
9839
9840 tree
9841 Map_index_expression::do_get_tree(Translate_context* context)
9842 {
9843 Map_type* type = this->get_map_type();
9844 if (type == NULL)
9845 return error_mark_node;
9846
9847 tree valptr = this->get_value_pointer(context, this->is_lvalue_);
9848 if (valptr == error_mark_node)
9849 return error_mark_node;
9850 valptr = save_expr(valptr);
9851
9852 tree val_type_tree = TREE_TYPE(TREE_TYPE(valptr));
9853
9854 if (this->is_lvalue_)
9855 return build_fold_indirect_ref(valptr);
9856 else if (this->is_in_tuple_assignment_)
9857 {
9858 // Tuple_map_assignment_statement is responsible for using this
9859 // appropriately.
9860 return valptr;
9861 }
9862 else
9863 {
9864 return fold_build3(COND_EXPR, val_type_tree,
9865 fold_build2(EQ_EXPR, boolean_type_node, valptr,
9866 fold_convert(TREE_TYPE(valptr),
9867 null_pointer_node)),
9868 type->val_type()->get_init_tree(context->gogo(),
9869 false),
9870 build_fold_indirect_ref(valptr));
9871 }
9872 }
9873
9874 // Get a tree for the map index. This returns a tree which evaluates
9875 // to a pointer to a value. The pointer will be NULL if the key is
9876 // not in the map.
9877
9878 tree
9879 Map_index_expression::get_value_pointer(Translate_context* context,
9880 bool insert)
9881 {
9882 Map_type* type = this->get_map_type();
9883 if (type == NULL)
9884 return error_mark_node;
9885
9886 tree map_tree = this->map_->get_tree(context);
9887 tree index_tree = this->index_->get_tree(context);
9888 index_tree = Expression::convert_for_assignment(context, type->key_type(),
9889 this->index_->type(),
9890 index_tree,
9891 this->location());
9892 if (map_tree == error_mark_node || index_tree == error_mark_node)
9893 return error_mark_node;
9894
9895 if (this->map_->type()->points_to() != NULL)
9896 map_tree = build_fold_indirect_ref(map_tree);
9897
9898 // We need to pass in a pointer to the key, so stuff it into a
9899 // variable.
9900 tree tmp = create_tmp_var(TREE_TYPE(index_tree), get_name(index_tree));
9901 DECL_IGNORED_P(tmp) = 0;
9902 DECL_INITIAL(tmp) = index_tree;
9903 tree make_tmp = build1(DECL_EXPR, void_type_node, tmp);
9904 tree tmpref = fold_convert(const_ptr_type_node, build_fold_addr_expr(tmp));
9905 TREE_ADDRESSABLE(tmp) = 1;
9906
9907 static tree map_index_fndecl;
9908 tree call = Gogo::call_builtin(&map_index_fndecl,
9909 this->location(),
9910 "__go_map_index",
9911 3,
9912 const_ptr_type_node,
9913 TREE_TYPE(map_tree),
9914 map_tree,
9915 const_ptr_type_node,
9916 tmpref,
9917 boolean_type_node,
9918 (insert
9919 ? boolean_true_node
9920 : boolean_false_node));
9921 if (call == error_mark_node)
9922 return error_mark_node;
9923 // This can panic on a map of interface type if the interface holds
9924 // an uncomparable or unhashable type.
9925 TREE_NOTHROW(map_index_fndecl) = 0;
9926
9927 tree val_type_tree = type->val_type()->get_tree(context->gogo());
9928 if (val_type_tree == error_mark_node)
9929 return error_mark_node;
9930 tree ptr_val_type_tree = build_pointer_type(val_type_tree);
9931
9932 return build2(COMPOUND_EXPR, ptr_val_type_tree,
9933 make_tmp,
9934 fold_convert(ptr_val_type_tree, call));
9935 }
9936
9937 // Make a map index expression.
9938
9939 Map_index_expression*
9940 Expression::make_map_index(Expression* map, Expression* index,
9941 source_location location)
9942 {
9943 return new Map_index_expression(map, index, location);
9944 }
9945
9946 // Class Field_reference_expression.
9947
9948 // Return the type of a field reference.
9949
9950 Type*
9951 Field_reference_expression::do_type()
9952 {
9953 Struct_type* struct_type = this->expr_->type()->struct_type();
9954 gcc_assert(struct_type != NULL);
9955 return struct_type->field(this->field_index_)->type();
9956 }
9957
9958 // Check the types for a field reference.
9959
9960 void
9961 Field_reference_expression::do_check_types(Gogo*)
9962 {
9963 Struct_type* struct_type = this->expr_->type()->struct_type();
9964 gcc_assert(struct_type != NULL);
9965 gcc_assert(struct_type->field(this->field_index_) != NULL);
9966 }
9967
9968 // Get a tree for a field reference.
9969
9970 tree
9971 Field_reference_expression::do_get_tree(Translate_context* context)
9972 {
9973 tree struct_tree = this->expr_->get_tree(context);
9974 if (struct_tree == error_mark_node
9975 || TREE_TYPE(struct_tree) == error_mark_node)
9976 return error_mark_node;
9977 gcc_assert(TREE_CODE(TREE_TYPE(struct_tree)) == RECORD_TYPE);
9978 tree field = TYPE_FIELDS(TREE_TYPE(struct_tree));
9979 if (field == NULL_TREE)
9980 {
9981 // This can happen for a type which refers to itself indirectly
9982 // and then turns out to be erroneous.
9983 gcc_assert(saw_errors());
9984 return error_mark_node;
9985 }
9986 for (unsigned int i = this->field_index_; i > 0; --i)
9987 {
9988 field = DECL_CHAIN(field);
9989 gcc_assert(field != NULL_TREE);
9990 }
9991 return build3(COMPONENT_REF, TREE_TYPE(field), struct_tree, field,
9992 NULL_TREE);
9993 }
9994
9995 // Make a reference to a qualified identifier in an expression.
9996
9997 Field_reference_expression*
9998 Expression::make_field_reference(Expression* expr, unsigned int field_index,
9999 source_location location)
10000 {
10001 return new Field_reference_expression(expr, field_index, location);
10002 }
10003
10004 // Class Interface_field_reference_expression.
10005
10006 // Return a tree for the pointer to the function to call.
10007
10008 tree
10009 Interface_field_reference_expression::get_function_tree(Translate_context*,
10010 tree expr)
10011 {
10012 if (this->expr_->type()->points_to() != NULL)
10013 expr = build_fold_indirect_ref(expr);
10014
10015 tree expr_type = TREE_TYPE(expr);
10016 gcc_assert(TREE_CODE(expr_type) == RECORD_TYPE);
10017
10018 tree field = TYPE_FIELDS(expr_type);
10019 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods") == 0);
10020
10021 tree table = build3(COMPONENT_REF, TREE_TYPE(field), expr, field, NULL_TREE);
10022 gcc_assert(POINTER_TYPE_P(TREE_TYPE(table)));
10023
10024 table = build_fold_indirect_ref(table);
10025 gcc_assert(TREE_CODE(TREE_TYPE(table)) == RECORD_TYPE);
10026
10027 std::string name = Gogo::unpack_hidden_name(this->name_);
10028 for (field = DECL_CHAIN(TYPE_FIELDS(TREE_TYPE(table)));
10029 field != NULL_TREE;
10030 field = DECL_CHAIN(field))
10031 {
10032 if (name == IDENTIFIER_POINTER(DECL_NAME(field)))
10033 break;
10034 }
10035 gcc_assert(field != NULL_TREE);
10036
10037 return build3(COMPONENT_REF, TREE_TYPE(field), table, field, NULL_TREE);
10038 }
10039
10040 // Return a tree for the first argument to pass to the interface
10041 // function.
10042
10043 tree
10044 Interface_field_reference_expression::get_underlying_object_tree(
10045 Translate_context*,
10046 tree expr)
10047 {
10048 if (this->expr_->type()->points_to() != NULL)
10049 expr = build_fold_indirect_ref(expr);
10050
10051 tree expr_type = TREE_TYPE(expr);
10052 gcc_assert(TREE_CODE(expr_type) == RECORD_TYPE);
10053
10054 tree field = DECL_CHAIN(TYPE_FIELDS(expr_type));
10055 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
10056
10057 return build3(COMPONENT_REF, TREE_TYPE(field), expr, field, NULL_TREE);
10058 }
10059
10060 // Traversal.
10061
10062 int
10063 Interface_field_reference_expression::do_traverse(Traverse* traverse)
10064 {
10065 return Expression::traverse(&this->expr_, traverse);
10066 }
10067
10068 // Return the type of an interface field reference.
10069
10070 Type*
10071 Interface_field_reference_expression::do_type()
10072 {
10073 Type* expr_type = this->expr_->type();
10074
10075 Type* points_to = expr_type->points_to();
10076 if (points_to != NULL)
10077 expr_type = points_to;
10078
10079 Interface_type* interface_type = expr_type->interface_type();
10080 if (interface_type == NULL)
10081 return Type::make_error_type();
10082
10083 const Typed_identifier* method = interface_type->find_method(this->name_);
10084 if (method == NULL)
10085 return Type::make_error_type();
10086
10087 return method->type();
10088 }
10089
10090 // Determine types.
10091
10092 void
10093 Interface_field_reference_expression::do_determine_type(const Type_context*)
10094 {
10095 this->expr_->determine_type_no_context();
10096 }
10097
10098 // Check the types for an interface field reference.
10099
10100 void
10101 Interface_field_reference_expression::do_check_types(Gogo*)
10102 {
10103 Type* type = this->expr_->type();
10104
10105 Type* points_to = type->points_to();
10106 if (points_to != NULL)
10107 type = points_to;
10108
10109 Interface_type* interface_type = type->interface_type();
10110 if (interface_type == NULL)
10111 this->report_error(_("expected interface or pointer to interface"));
10112 else
10113 {
10114 const Typed_identifier* method =
10115 interface_type->find_method(this->name_);
10116 if (method == NULL)
10117 {
10118 error_at(this->location(), "method %qs not in interface",
10119 Gogo::message_name(this->name_).c_str());
10120 this->set_is_error();
10121 }
10122 }
10123 }
10124
10125 // Get a tree for a reference to a field in an interface. There is no
10126 // standard tree type representation for this: it's a function
10127 // attached to its first argument, like a Bound_method_expression.
10128 // The only places it may currently be used are in a Call_expression
10129 // or a Go_statement, which will take it apart directly. So this has
10130 // nothing to do at present.
10131
10132 tree
10133 Interface_field_reference_expression::do_get_tree(Translate_context*)
10134 {
10135 gcc_unreachable();
10136 }
10137
10138 // Make a reference to a field in an interface.
10139
10140 Expression*
10141 Expression::make_interface_field_reference(Expression* expr,
10142 const std::string& field,
10143 source_location location)
10144 {
10145 return new Interface_field_reference_expression(expr, field, location);
10146 }
10147
10148 // A general selector. This is a Parser_expression for LEFT.NAME. It
10149 // is lowered after we know the type of the left hand side.
10150
10151 class Selector_expression : public Parser_expression
10152 {
10153 public:
10154 Selector_expression(Expression* left, const std::string& name,
10155 source_location location)
10156 : Parser_expression(EXPRESSION_SELECTOR, location),
10157 left_(left), name_(name)
10158 { }
10159
10160 protected:
10161 int
10162 do_traverse(Traverse* traverse)
10163 { return Expression::traverse(&this->left_, traverse); }
10164
10165 Expression*
10166 do_lower(Gogo*, Named_object*, int);
10167
10168 Expression*
10169 do_copy()
10170 {
10171 return new Selector_expression(this->left_->copy(), this->name_,
10172 this->location());
10173 }
10174
10175 private:
10176 Expression*
10177 lower_method_expression(Gogo*);
10178
10179 // The expression on the left hand side.
10180 Expression* left_;
10181 // The name on the right hand side.
10182 std::string name_;
10183 };
10184
10185 // Lower a selector expression once we know the real type of the left
10186 // hand side.
10187
10188 Expression*
10189 Selector_expression::do_lower(Gogo* gogo, Named_object*, int)
10190 {
10191 Expression* left = this->left_;
10192 if (left->is_type_expression())
10193 return this->lower_method_expression(gogo);
10194 return Type::bind_field_or_method(gogo, left->type(), left, this->name_,
10195 this->location());
10196 }
10197
10198 // Lower a method expression T.M or (*T).M. We turn this into a
10199 // function literal.
10200
10201 Expression*
10202 Selector_expression::lower_method_expression(Gogo* gogo)
10203 {
10204 source_location location = this->location();
10205 Type* type = this->left_->type();
10206 const std::string& name(this->name_);
10207
10208 bool is_pointer;
10209 if (type->points_to() == NULL)
10210 is_pointer = false;
10211 else
10212 {
10213 is_pointer = true;
10214 type = type->points_to();
10215 }
10216 Named_type* nt = type->named_type();
10217 if (nt == NULL)
10218 {
10219 error_at(location,
10220 ("method expression requires named type or "
10221 "pointer to named type"));
10222 return Expression::make_error(location);
10223 }
10224
10225 bool is_ambiguous;
10226 Method* method = nt->method_function(name, &is_ambiguous);
10227 if (method == NULL)
10228 {
10229 if (!is_ambiguous)
10230 error_at(location, "type %<%s%> has no method %<%s%>",
10231 nt->message_name().c_str(),
10232 Gogo::message_name(name).c_str());
10233 else
10234 error_at(location, "method %<%s%> is ambiguous in type %<%s%>",
10235 Gogo::message_name(name).c_str(),
10236 nt->message_name().c_str());
10237 return Expression::make_error(location);
10238 }
10239
10240 if (!is_pointer && !method->is_value_method())
10241 {
10242 error_at(location, "method requires pointer (use %<(*%s).%s)%>",
10243 nt->message_name().c_str(),
10244 Gogo::message_name(name).c_str());
10245 return Expression::make_error(location);
10246 }
10247
10248 // Build a new function type in which the receiver becomes the first
10249 // argument.
10250 Function_type* method_type = method->type();
10251 gcc_assert(method_type->is_method());
10252
10253 const char* const receiver_name = "$this";
10254 Typed_identifier_list* parameters = new Typed_identifier_list();
10255 parameters->push_back(Typed_identifier(receiver_name, this->left_->type(),
10256 location));
10257
10258 const Typed_identifier_list* method_parameters = method_type->parameters();
10259 if (method_parameters != NULL)
10260 {
10261 for (Typed_identifier_list::const_iterator p = method_parameters->begin();
10262 p != method_parameters->end();
10263 ++p)
10264 parameters->push_back(*p);
10265 }
10266
10267 const Typed_identifier_list* method_results = method_type->results();
10268 Typed_identifier_list* results;
10269 if (method_results == NULL)
10270 results = NULL;
10271 else
10272 {
10273 results = new Typed_identifier_list();
10274 for (Typed_identifier_list::const_iterator p = method_results->begin();
10275 p != method_results->end();
10276 ++p)
10277 results->push_back(*p);
10278 }
10279
10280 Function_type* fntype = Type::make_function_type(NULL, parameters, results,
10281 location);
10282 if (method_type->is_varargs())
10283 fntype->set_is_varargs();
10284
10285 // We generate methods which always takes a pointer to the receiver
10286 // as their first argument. If this is for a pointer type, we can
10287 // simply reuse the existing function. We use an internal hack to
10288 // get the right type.
10289
10290 if (is_pointer)
10291 {
10292 Named_object* mno = (method->needs_stub_method()
10293 ? method->stub_object()
10294 : method->named_object());
10295 Expression* f = Expression::make_func_reference(mno, NULL, location);
10296 f = Expression::make_cast(fntype, f, location);
10297 Type_conversion_expression* tce =
10298 static_cast<Type_conversion_expression*>(f);
10299 tce->set_may_convert_function_types();
10300 return f;
10301 }
10302
10303 Named_object* no = gogo->start_function(Gogo::thunk_name(), fntype, false,
10304 location);
10305
10306 Named_object* vno = gogo->lookup(receiver_name, NULL);
10307 gcc_assert(vno != NULL);
10308 Expression* ve = Expression::make_var_reference(vno, location);
10309 Expression* bm = Type::bind_field_or_method(gogo, nt, ve, name, location);
10310 gcc_assert(bm != NULL && !bm->is_error_expression());
10311
10312 Expression_list* args;
10313 if (method_parameters == NULL)
10314 args = NULL;
10315 else
10316 {
10317 args = new Expression_list();
10318 for (Typed_identifier_list::const_iterator p = method_parameters->begin();
10319 p != method_parameters->end();
10320 ++p)
10321 {
10322 vno = gogo->lookup(p->name(), NULL);
10323 gcc_assert(vno != NULL);
10324 args->push_back(Expression::make_var_reference(vno, location));
10325 }
10326 }
10327
10328 Call_expression* call = Expression::make_call(bm, args,
10329 method_type->is_varargs(),
10330 location);
10331
10332 size_t count = call->result_count();
10333 Statement* s;
10334 if (count == 0)
10335 s = Statement::make_statement(call);
10336 else
10337 {
10338 Expression_list* retvals = new Expression_list();
10339 if (count <= 1)
10340 retvals->push_back(call);
10341 else
10342 {
10343 for (size_t i = 0; i < count; ++i)
10344 retvals->push_back(Expression::make_call_result(call, i));
10345 }
10346 s = Statement::make_return_statement(no->func_value()->type()->results(),
10347 retvals, location);
10348 }
10349 gogo->add_statement(s);
10350
10351 gogo->finish_function(location);
10352
10353 return Expression::make_func_reference(no, NULL, location);
10354 }
10355
10356 // Make a selector expression.
10357
10358 Expression*
10359 Expression::make_selector(Expression* left, const std::string& name,
10360 source_location location)
10361 {
10362 return new Selector_expression(left, name, location);
10363 }
10364
10365 // Implement the builtin function new.
10366
10367 class Allocation_expression : public Expression
10368 {
10369 public:
10370 Allocation_expression(Type* type, source_location location)
10371 : Expression(EXPRESSION_ALLOCATION, location),
10372 type_(type)
10373 { }
10374
10375 protected:
10376 int
10377 do_traverse(Traverse* traverse)
10378 { return Type::traverse(this->type_, traverse); }
10379
10380 Type*
10381 do_type()
10382 { return Type::make_pointer_type(this->type_); }
10383
10384 void
10385 do_determine_type(const Type_context*)
10386 { }
10387
10388 void
10389 do_check_types(Gogo*);
10390
10391 Expression*
10392 do_copy()
10393 { return new Allocation_expression(this->type_, this->location()); }
10394
10395 tree
10396 do_get_tree(Translate_context*);
10397
10398 private:
10399 // The type we are allocating.
10400 Type* type_;
10401 };
10402
10403 // Check the type of an allocation expression.
10404
10405 void
10406 Allocation_expression::do_check_types(Gogo*)
10407 {
10408 if (this->type_->function_type() != NULL)
10409 this->report_error(_("invalid new of function type"));
10410 }
10411
10412 // Return a tree for an allocation expression.
10413
10414 tree
10415 Allocation_expression::do_get_tree(Translate_context* context)
10416 {
10417 tree type_tree = this->type_->get_tree(context->gogo());
10418 if (type_tree == error_mark_node)
10419 return error_mark_node;
10420 tree size_tree = TYPE_SIZE_UNIT(type_tree);
10421 tree space = context->gogo()->allocate_memory(this->type_, size_tree,
10422 this->location());
10423 if (space == error_mark_node)
10424 return error_mark_node;
10425 return fold_convert(build_pointer_type(type_tree), space);
10426 }
10427
10428 // Make an allocation expression.
10429
10430 Expression*
10431 Expression::make_allocation(Type* type, source_location location)
10432 {
10433 return new Allocation_expression(type, location);
10434 }
10435
10436 // Implement the builtin function make.
10437
10438 class Make_expression : public Expression
10439 {
10440 public:
10441 Make_expression(Type* type, Expression_list* args, source_location location)
10442 : Expression(EXPRESSION_MAKE, location),
10443 type_(type), args_(args)
10444 { }
10445
10446 protected:
10447 int
10448 do_traverse(Traverse* traverse);
10449
10450 Type*
10451 do_type()
10452 { return this->type_; }
10453
10454 void
10455 do_determine_type(const Type_context*);
10456
10457 void
10458 do_check_types(Gogo*);
10459
10460 Expression*
10461 do_copy()
10462 {
10463 return new Make_expression(this->type_, this->args_->copy(),
10464 this->location());
10465 }
10466
10467 tree
10468 do_get_tree(Translate_context*);
10469
10470 private:
10471 // The type we are making.
10472 Type* type_;
10473 // The arguments to pass to the make routine.
10474 Expression_list* args_;
10475 };
10476
10477 // Traversal.
10478
10479 int
10480 Make_expression::do_traverse(Traverse* traverse)
10481 {
10482 if (this->args_ != NULL
10483 && this->args_->traverse(traverse) == TRAVERSE_EXIT)
10484 return TRAVERSE_EXIT;
10485 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10486 return TRAVERSE_EXIT;
10487 return TRAVERSE_CONTINUE;
10488 }
10489
10490 // Set types of arguments.
10491
10492 void
10493 Make_expression::do_determine_type(const Type_context*)
10494 {
10495 if (this->args_ != NULL)
10496 {
10497 Type_context context(Type::lookup_integer_type("int"), false);
10498 for (Expression_list::const_iterator pe = this->args_->begin();
10499 pe != this->args_->end();
10500 ++pe)
10501 (*pe)->determine_type(&context);
10502 }
10503 }
10504
10505 // Check types for a make expression.
10506
10507 void
10508 Make_expression::do_check_types(Gogo*)
10509 {
10510 if (this->type_->channel_type() == NULL
10511 && this->type_->map_type() == NULL
10512 && (this->type_->array_type() == NULL
10513 || this->type_->array_type()->length() != NULL))
10514 this->report_error(_("invalid type for make function"));
10515 else if (!this->type_->check_make_expression(this->args_, this->location()))
10516 this->set_is_error();
10517 }
10518
10519 // Return a tree for a make expression.
10520
10521 tree
10522 Make_expression::do_get_tree(Translate_context* context)
10523 {
10524 return this->type_->make_expression_tree(context, this->args_,
10525 this->location());
10526 }
10527
10528 // Make a make expression.
10529
10530 Expression*
10531 Expression::make_make(Type* type, Expression_list* args,
10532 source_location location)
10533 {
10534 return new Make_expression(type, args, location);
10535 }
10536
10537 // Construct a struct.
10538
10539 class Struct_construction_expression : public Expression
10540 {
10541 public:
10542 Struct_construction_expression(Type* type, Expression_list* vals,
10543 source_location location)
10544 : Expression(EXPRESSION_STRUCT_CONSTRUCTION, location),
10545 type_(type), vals_(vals)
10546 { }
10547
10548 // Return whether this is a constant initializer.
10549 bool
10550 is_constant_struct() const;
10551
10552 protected:
10553 int
10554 do_traverse(Traverse* traverse);
10555
10556 Type*
10557 do_type()
10558 { return this->type_; }
10559
10560 void
10561 do_determine_type(const Type_context*);
10562
10563 void
10564 do_check_types(Gogo*);
10565
10566 Expression*
10567 do_copy()
10568 {
10569 return new Struct_construction_expression(this->type_, this->vals_->copy(),
10570 this->location());
10571 }
10572
10573 bool
10574 do_is_addressable() const
10575 { return true; }
10576
10577 tree
10578 do_get_tree(Translate_context*);
10579
10580 void
10581 do_export(Export*) const;
10582
10583 private:
10584 // The type of the struct to construct.
10585 Type* type_;
10586 // The list of values, in order of the fields in the struct. A NULL
10587 // entry means that the field should be zero-initialized.
10588 Expression_list* vals_;
10589 };
10590
10591 // Traversal.
10592
10593 int
10594 Struct_construction_expression::do_traverse(Traverse* traverse)
10595 {
10596 if (this->vals_ != NULL
10597 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
10598 return TRAVERSE_EXIT;
10599 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10600 return TRAVERSE_EXIT;
10601 return TRAVERSE_CONTINUE;
10602 }
10603
10604 // Return whether this is a constant initializer.
10605
10606 bool
10607 Struct_construction_expression::is_constant_struct() const
10608 {
10609 if (this->vals_ == NULL)
10610 return true;
10611 for (Expression_list::const_iterator pv = this->vals_->begin();
10612 pv != this->vals_->end();
10613 ++pv)
10614 {
10615 if (*pv != NULL
10616 && !(*pv)->is_constant()
10617 && (!(*pv)->is_composite_literal()
10618 || (*pv)->is_nonconstant_composite_literal()))
10619 return false;
10620 }
10621
10622 const Struct_field_list* fields = this->type_->struct_type()->fields();
10623 for (Struct_field_list::const_iterator pf = fields->begin();
10624 pf != fields->end();
10625 ++pf)
10626 {
10627 // There are no constant constructors for interfaces.
10628 if (pf->type()->interface_type() != NULL)
10629 return false;
10630 }
10631
10632 return true;
10633 }
10634
10635 // Final type determination.
10636
10637 void
10638 Struct_construction_expression::do_determine_type(const Type_context*)
10639 {
10640 if (this->vals_ == NULL)
10641 return;
10642 const Struct_field_list* fields = this->type_->struct_type()->fields();
10643 Expression_list::const_iterator pv = this->vals_->begin();
10644 for (Struct_field_list::const_iterator pf = fields->begin();
10645 pf != fields->end();
10646 ++pf, ++pv)
10647 {
10648 if (pv == this->vals_->end())
10649 return;
10650 if (*pv != NULL)
10651 {
10652 Type_context subcontext(pf->type(), false);
10653 (*pv)->determine_type(&subcontext);
10654 }
10655 }
10656 // Extra values are an error we will report elsewhere; we still want
10657 // to determine the type to avoid knockon errors.
10658 for (; pv != this->vals_->end(); ++pv)
10659 (*pv)->determine_type_no_context();
10660 }
10661
10662 // Check types.
10663
10664 void
10665 Struct_construction_expression::do_check_types(Gogo*)
10666 {
10667 if (this->vals_ == NULL)
10668 return;
10669
10670 Struct_type* st = this->type_->struct_type();
10671 if (this->vals_->size() > st->field_count())
10672 {
10673 this->report_error(_("too many expressions for struct"));
10674 return;
10675 }
10676
10677 const Struct_field_list* fields = st->fields();
10678 Expression_list::const_iterator pv = this->vals_->begin();
10679 int i = 0;
10680 for (Struct_field_list::const_iterator pf = fields->begin();
10681 pf != fields->end();
10682 ++pf, ++pv, ++i)
10683 {
10684 if (pv == this->vals_->end())
10685 {
10686 this->report_error(_("too few expressions for struct"));
10687 break;
10688 }
10689
10690 if (*pv == NULL)
10691 continue;
10692
10693 std::string reason;
10694 if (!Type::are_assignable(pf->type(), (*pv)->type(), &reason))
10695 {
10696 if (reason.empty())
10697 error_at((*pv)->location(),
10698 "incompatible type for field %d in struct construction",
10699 i + 1);
10700 else
10701 error_at((*pv)->location(),
10702 ("incompatible type for field %d in "
10703 "struct construction (%s)"),
10704 i + 1, reason.c_str());
10705 this->set_is_error();
10706 }
10707 }
10708 gcc_assert(pv == this->vals_->end());
10709 }
10710
10711 // Return a tree for constructing a struct.
10712
10713 tree
10714 Struct_construction_expression::do_get_tree(Translate_context* context)
10715 {
10716 Gogo* gogo = context->gogo();
10717
10718 if (this->vals_ == NULL)
10719 return this->type_->get_init_tree(gogo, false);
10720
10721 tree type_tree = this->type_->get_tree(gogo);
10722 if (type_tree == error_mark_node)
10723 return error_mark_node;
10724 gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
10725
10726 bool is_constant = true;
10727 const Struct_field_list* fields = this->type_->struct_type()->fields();
10728 VEC(constructor_elt,gc)* elts = VEC_alloc(constructor_elt, gc,
10729 fields->size());
10730 Struct_field_list::const_iterator pf = fields->begin();
10731 Expression_list::const_iterator pv = this->vals_->begin();
10732 for (tree field = TYPE_FIELDS(type_tree);
10733 field != NULL_TREE;
10734 field = DECL_CHAIN(field), ++pf)
10735 {
10736 gcc_assert(pf != fields->end());
10737
10738 tree val;
10739 if (pv == this->vals_->end())
10740 val = pf->type()->get_init_tree(gogo, false);
10741 else if (*pv == NULL)
10742 {
10743 val = pf->type()->get_init_tree(gogo, false);
10744 ++pv;
10745 }
10746 else
10747 {
10748 val = Expression::convert_for_assignment(context, pf->type(),
10749 (*pv)->type(),
10750 (*pv)->get_tree(context),
10751 this->location());
10752 ++pv;
10753 }
10754
10755 if (val == error_mark_node || TREE_TYPE(val) == error_mark_node)
10756 return error_mark_node;
10757
10758 constructor_elt* elt = VEC_quick_push(constructor_elt, elts, NULL);
10759 elt->index = field;
10760 elt->value = val;
10761 if (!TREE_CONSTANT(val))
10762 is_constant = false;
10763 }
10764 gcc_assert(pf == fields->end());
10765
10766 tree ret = build_constructor(type_tree, elts);
10767 if (is_constant)
10768 TREE_CONSTANT(ret) = 1;
10769 return ret;
10770 }
10771
10772 // Export a struct construction.
10773
10774 void
10775 Struct_construction_expression::do_export(Export* exp) const
10776 {
10777 exp->write_c_string("convert(");
10778 exp->write_type(this->type_);
10779 for (Expression_list::const_iterator pv = this->vals_->begin();
10780 pv != this->vals_->end();
10781 ++pv)
10782 {
10783 exp->write_c_string(", ");
10784 if (*pv != NULL)
10785 (*pv)->export_expression(exp);
10786 }
10787 exp->write_c_string(")");
10788 }
10789
10790 // Make a struct composite literal. This used by the thunk code.
10791
10792 Expression*
10793 Expression::make_struct_composite_literal(Type* type, Expression_list* vals,
10794 source_location location)
10795 {
10796 gcc_assert(type->struct_type() != NULL);
10797 return new Struct_construction_expression(type, vals, location);
10798 }
10799
10800 // Construct an array. This class is not used directly; instead we
10801 // use the child classes, Fixed_array_construction_expression and
10802 // Open_array_construction_expression.
10803
10804 class Array_construction_expression : public Expression
10805 {
10806 protected:
10807 Array_construction_expression(Expression_classification classification,
10808 Type* type, Expression_list* vals,
10809 source_location location)
10810 : Expression(classification, location),
10811 type_(type), vals_(vals)
10812 { }
10813
10814 public:
10815 // Return whether this is a constant initializer.
10816 bool
10817 is_constant_array() const;
10818
10819 // Return the number of elements.
10820 size_t
10821 element_count() const
10822 { return this->vals_ == NULL ? 0 : this->vals_->size(); }
10823
10824 protected:
10825 int
10826 do_traverse(Traverse* traverse);
10827
10828 Type*
10829 do_type()
10830 { return this->type_; }
10831
10832 void
10833 do_determine_type(const Type_context*);
10834
10835 void
10836 do_check_types(Gogo*);
10837
10838 bool
10839 do_is_addressable() const
10840 { return true; }
10841
10842 void
10843 do_export(Export*) const;
10844
10845 // The list of values.
10846 Expression_list*
10847 vals()
10848 { return this->vals_; }
10849
10850 // Get a constructor tree for the array values.
10851 tree
10852 get_constructor_tree(Translate_context* context, tree type_tree);
10853
10854 private:
10855 // The type of the array to construct.
10856 Type* type_;
10857 // The list of values.
10858 Expression_list* vals_;
10859 };
10860
10861 // Traversal.
10862
10863 int
10864 Array_construction_expression::do_traverse(Traverse* traverse)
10865 {
10866 if (this->vals_ != NULL
10867 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
10868 return TRAVERSE_EXIT;
10869 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10870 return TRAVERSE_EXIT;
10871 return TRAVERSE_CONTINUE;
10872 }
10873
10874 // Return whether this is a constant initializer.
10875
10876 bool
10877 Array_construction_expression::is_constant_array() const
10878 {
10879 if (this->vals_ == NULL)
10880 return true;
10881
10882 // There are no constant constructors for interfaces.
10883 if (this->type_->array_type()->element_type()->interface_type() != NULL)
10884 return false;
10885
10886 for (Expression_list::const_iterator pv = this->vals_->begin();
10887 pv != this->vals_->end();
10888 ++pv)
10889 {
10890 if (*pv != NULL
10891 && !(*pv)->is_constant()
10892 && (!(*pv)->is_composite_literal()
10893 || (*pv)->is_nonconstant_composite_literal()))
10894 return false;
10895 }
10896 return true;
10897 }
10898
10899 // Final type determination.
10900
10901 void
10902 Array_construction_expression::do_determine_type(const Type_context*)
10903 {
10904 if (this->vals_ == NULL)
10905 return;
10906 Type_context subcontext(this->type_->array_type()->element_type(), false);
10907 for (Expression_list::const_iterator pv = this->vals_->begin();
10908 pv != this->vals_->end();
10909 ++pv)
10910 {
10911 if (*pv != NULL)
10912 (*pv)->determine_type(&subcontext);
10913 }
10914 }
10915
10916 // Check types.
10917
10918 void
10919 Array_construction_expression::do_check_types(Gogo*)
10920 {
10921 if (this->vals_ == NULL)
10922 return;
10923
10924 Array_type* at = this->type_->array_type();
10925 int i = 0;
10926 Type* element_type = at->element_type();
10927 for (Expression_list::const_iterator pv = this->vals_->begin();
10928 pv != this->vals_->end();
10929 ++pv, ++i)
10930 {
10931 if (*pv != NULL
10932 && !Type::are_assignable(element_type, (*pv)->type(), NULL))
10933 {
10934 error_at((*pv)->location(),
10935 "incompatible type for element %d in composite literal",
10936 i + 1);
10937 this->set_is_error();
10938 }
10939 }
10940
10941 Expression* length = at->length();
10942 if (length != NULL)
10943 {
10944 mpz_t val;
10945 mpz_init(val);
10946 Type* type;
10947 if (at->length()->integer_constant_value(true, val, &type))
10948 {
10949 if (this->vals_->size() > mpz_get_ui(val))
10950 this->report_error(_("too many elements in composite literal"));
10951 }
10952 mpz_clear(val);
10953 }
10954 }
10955
10956 // Get a constructor tree for the array values.
10957
10958 tree
10959 Array_construction_expression::get_constructor_tree(Translate_context* context,
10960 tree type_tree)
10961 {
10962 VEC(constructor_elt,gc)* values = VEC_alloc(constructor_elt, gc,
10963 (this->vals_ == NULL
10964 ? 0
10965 : this->vals_->size()));
10966 Type* element_type = this->type_->array_type()->element_type();
10967 bool is_constant = true;
10968 if (this->vals_ != NULL)
10969 {
10970 size_t i = 0;
10971 for (Expression_list::const_iterator pv = this->vals_->begin();
10972 pv != this->vals_->end();
10973 ++pv, ++i)
10974 {
10975 constructor_elt* elt = VEC_quick_push(constructor_elt, values, NULL);
10976 elt->index = size_int(i);
10977 if (*pv == NULL)
10978 elt->value = element_type->get_init_tree(context->gogo(), false);
10979 else
10980 {
10981 tree value_tree = (*pv)->get_tree(context);
10982 elt->value = Expression::convert_for_assignment(context,
10983 element_type,
10984 (*pv)->type(),
10985 value_tree,
10986 this->location());
10987 }
10988 if (elt->value == error_mark_node)
10989 return error_mark_node;
10990 if (!TREE_CONSTANT(elt->value))
10991 is_constant = false;
10992 }
10993 }
10994
10995 tree ret = build_constructor(type_tree, values);
10996 if (is_constant)
10997 TREE_CONSTANT(ret) = 1;
10998 return ret;
10999 }
11000
11001 // Export an array construction.
11002
11003 void
11004 Array_construction_expression::do_export(Export* exp) const
11005 {
11006 exp->write_c_string("convert(");
11007 exp->write_type(this->type_);
11008 if (this->vals_ != NULL)
11009 {
11010 for (Expression_list::const_iterator pv = this->vals_->begin();
11011 pv != this->vals_->end();
11012 ++pv)
11013 {
11014 exp->write_c_string(", ");
11015 if (*pv != NULL)
11016 (*pv)->export_expression(exp);
11017 }
11018 }
11019 exp->write_c_string(")");
11020 }
11021
11022 // Construct a fixed array.
11023
11024 class Fixed_array_construction_expression :
11025 public Array_construction_expression
11026 {
11027 public:
11028 Fixed_array_construction_expression(Type* type, Expression_list* vals,
11029 source_location location)
11030 : Array_construction_expression(EXPRESSION_FIXED_ARRAY_CONSTRUCTION,
11031 type, vals, location)
11032 {
11033 gcc_assert(type->array_type() != NULL
11034 && type->array_type()->length() != NULL);
11035 }
11036
11037 protected:
11038 Expression*
11039 do_copy()
11040 {
11041 return new Fixed_array_construction_expression(this->type(),
11042 (this->vals() == NULL
11043 ? NULL
11044 : this->vals()->copy()),
11045 this->location());
11046 }
11047
11048 tree
11049 do_get_tree(Translate_context*);
11050 };
11051
11052 // Return a tree for constructing a fixed array.
11053
11054 tree
11055 Fixed_array_construction_expression::do_get_tree(Translate_context* context)
11056 {
11057 return this->get_constructor_tree(context,
11058 this->type()->get_tree(context->gogo()));
11059 }
11060
11061 // Construct an open array.
11062
11063 class Open_array_construction_expression : public Array_construction_expression
11064 {
11065 public:
11066 Open_array_construction_expression(Type* type, Expression_list* vals,
11067 source_location location)
11068 : Array_construction_expression(EXPRESSION_OPEN_ARRAY_CONSTRUCTION,
11069 type, vals, location)
11070 {
11071 gcc_assert(type->array_type() != NULL
11072 && type->array_type()->length() == NULL);
11073 }
11074
11075 protected:
11076 // Note that taking the address of an open array literal is invalid.
11077
11078 Expression*
11079 do_copy()
11080 {
11081 return new Open_array_construction_expression(this->type(),
11082 (this->vals() == NULL
11083 ? NULL
11084 : this->vals()->copy()),
11085 this->location());
11086 }
11087
11088 tree
11089 do_get_tree(Translate_context*);
11090 };
11091
11092 // Return a tree for constructing an open array.
11093
11094 tree
11095 Open_array_construction_expression::do_get_tree(Translate_context* context)
11096 {
11097 Array_type* array_type = this->type()->array_type();
11098 if (array_type == NULL)
11099 {
11100 gcc_assert(this->type()->is_error_type());
11101 return error_mark_node;
11102 }
11103
11104 Type* element_type = array_type->element_type();
11105 tree element_type_tree = element_type->get_tree(context->gogo());
11106 if (element_type_tree == error_mark_node)
11107 return error_mark_node;
11108
11109 tree values;
11110 tree length_tree;
11111 if (this->vals() == NULL || this->vals()->empty())
11112 {
11113 // We need to create a unique value.
11114 tree max = size_int(0);
11115 tree constructor_type = build_array_type(element_type_tree,
11116 build_index_type(max));
11117 if (constructor_type == error_mark_node)
11118 return error_mark_node;
11119 VEC(constructor_elt,gc)* vec = VEC_alloc(constructor_elt, gc, 1);
11120 constructor_elt* elt = VEC_quick_push(constructor_elt, vec, NULL);
11121 elt->index = size_int(0);
11122 elt->value = element_type->get_init_tree(context->gogo(), false);
11123 values = build_constructor(constructor_type, vec);
11124 if (TREE_CONSTANT(elt->value))
11125 TREE_CONSTANT(values) = 1;
11126 length_tree = size_int(0);
11127 }
11128 else
11129 {
11130 tree max = size_int(this->vals()->size() - 1);
11131 tree constructor_type = build_array_type(element_type_tree,
11132 build_index_type(max));
11133 if (constructor_type == error_mark_node)
11134 return error_mark_node;
11135 values = this->get_constructor_tree(context, constructor_type);
11136 length_tree = size_int(this->vals()->size());
11137 }
11138
11139 if (values == error_mark_node)
11140 return error_mark_node;
11141
11142 bool is_constant_initializer = TREE_CONSTANT(values);
11143 bool is_in_function = context->function() != NULL;
11144
11145 if (is_constant_initializer)
11146 {
11147 tree tmp = build_decl(this->location(), VAR_DECL,
11148 create_tmp_var_name("C"), TREE_TYPE(values));
11149 DECL_EXTERNAL(tmp) = 0;
11150 TREE_PUBLIC(tmp) = 0;
11151 TREE_STATIC(tmp) = 1;
11152 DECL_ARTIFICIAL(tmp) = 1;
11153 if (is_in_function)
11154 {
11155 // If this is not a function, we will only initialize the
11156 // value once, so we can use this directly rather than
11157 // copying it. In that case we can't make it read-only,
11158 // because the program is permitted to change it.
11159 TREE_READONLY(tmp) = 1;
11160 TREE_CONSTANT(tmp) = 1;
11161 }
11162 DECL_INITIAL(tmp) = values;
11163 rest_of_decl_compilation(tmp, 1, 0);
11164 values = tmp;
11165 }
11166
11167 tree space;
11168 tree set;
11169 if (!is_in_function && is_constant_initializer)
11170 {
11171 // Outside of a function, we know the initializer will only run
11172 // once.
11173 space = build_fold_addr_expr(values);
11174 set = NULL_TREE;
11175 }
11176 else
11177 {
11178 tree memsize = TYPE_SIZE_UNIT(TREE_TYPE(values));
11179 space = context->gogo()->allocate_memory(element_type, memsize,
11180 this->location());
11181 space = save_expr(space);
11182
11183 tree s = fold_convert(build_pointer_type(TREE_TYPE(values)), space);
11184 tree ref = build_fold_indirect_ref_loc(this->location(), s);
11185 TREE_THIS_NOTRAP(ref) = 1;
11186 set = build2(MODIFY_EXPR, void_type_node, ref, values);
11187 }
11188
11189 // Build a constructor for the open array.
11190
11191 tree type_tree = this->type()->get_tree(context->gogo());
11192 if (type_tree == error_mark_node)
11193 return error_mark_node;
11194 gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
11195
11196 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
11197
11198 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
11199 tree field = TYPE_FIELDS(type_tree);
11200 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
11201 elt->index = field;
11202 elt->value = fold_convert(TREE_TYPE(field), space);
11203
11204 elt = VEC_quick_push(constructor_elt, init, NULL);
11205 field = DECL_CHAIN(field);
11206 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
11207 elt->index = field;
11208 elt->value = fold_convert(TREE_TYPE(field), length_tree);
11209
11210 elt = VEC_quick_push(constructor_elt, init, NULL);
11211 field = DECL_CHAIN(field);
11212 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),"__capacity") == 0);
11213 elt->index = field;
11214 elt->value = fold_convert(TREE_TYPE(field), length_tree);
11215
11216 tree constructor = build_constructor(type_tree, init);
11217 if (constructor == error_mark_node)
11218 return error_mark_node;
11219 if (!is_in_function && is_constant_initializer)
11220 TREE_CONSTANT(constructor) = 1;
11221
11222 if (set == NULL_TREE)
11223 return constructor;
11224 else
11225 return build2(COMPOUND_EXPR, type_tree, set, constructor);
11226 }
11227
11228 // Make a slice composite literal. This is used by the type
11229 // descriptor code.
11230
11231 Expression*
11232 Expression::make_slice_composite_literal(Type* type, Expression_list* vals,
11233 source_location location)
11234 {
11235 gcc_assert(type->is_open_array_type());
11236 return new Open_array_construction_expression(type, vals, location);
11237 }
11238
11239 // Construct a map.
11240
11241 class Map_construction_expression : public Expression
11242 {
11243 public:
11244 Map_construction_expression(Type* type, Expression_list* vals,
11245 source_location location)
11246 : Expression(EXPRESSION_MAP_CONSTRUCTION, location),
11247 type_(type), vals_(vals)
11248 { gcc_assert(vals == NULL || vals->size() % 2 == 0); }
11249
11250 protected:
11251 int
11252 do_traverse(Traverse* traverse);
11253
11254 Type*
11255 do_type()
11256 { return this->type_; }
11257
11258 void
11259 do_determine_type(const Type_context*);
11260
11261 void
11262 do_check_types(Gogo*);
11263
11264 Expression*
11265 do_copy()
11266 {
11267 return new Map_construction_expression(this->type_, this->vals_->copy(),
11268 this->location());
11269 }
11270
11271 tree
11272 do_get_tree(Translate_context*);
11273
11274 void
11275 do_export(Export*) const;
11276
11277 private:
11278 // The type of the map to construct.
11279 Type* type_;
11280 // The list of values.
11281 Expression_list* vals_;
11282 };
11283
11284 // Traversal.
11285
11286 int
11287 Map_construction_expression::do_traverse(Traverse* traverse)
11288 {
11289 if (this->vals_ != NULL
11290 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
11291 return TRAVERSE_EXIT;
11292 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
11293 return TRAVERSE_EXIT;
11294 return TRAVERSE_CONTINUE;
11295 }
11296
11297 // Final type determination.
11298
11299 void
11300 Map_construction_expression::do_determine_type(const Type_context*)
11301 {
11302 if (this->vals_ == NULL)
11303 return;
11304
11305 Map_type* mt = this->type_->map_type();
11306 Type_context key_context(mt->key_type(), false);
11307 Type_context val_context(mt->val_type(), false);
11308 for (Expression_list::const_iterator pv = this->vals_->begin();
11309 pv != this->vals_->end();
11310 ++pv)
11311 {
11312 (*pv)->determine_type(&key_context);
11313 ++pv;
11314 (*pv)->determine_type(&val_context);
11315 }
11316 }
11317
11318 // Check types.
11319
11320 void
11321 Map_construction_expression::do_check_types(Gogo*)
11322 {
11323 if (this->vals_ == NULL)
11324 return;
11325
11326 Map_type* mt = this->type_->map_type();
11327 int i = 0;
11328 Type* key_type = mt->key_type();
11329 Type* val_type = mt->val_type();
11330 for (Expression_list::const_iterator pv = this->vals_->begin();
11331 pv != this->vals_->end();
11332 ++pv, ++i)
11333 {
11334 if (!Type::are_assignable(key_type, (*pv)->type(), NULL))
11335 {
11336 error_at((*pv)->location(),
11337 "incompatible type for element %d key in map construction",
11338 i + 1);
11339 this->set_is_error();
11340 }
11341 ++pv;
11342 if (!Type::are_assignable(val_type, (*pv)->type(), NULL))
11343 {
11344 error_at((*pv)->location(),
11345 ("incompatible type for element %d value "
11346 "in map construction"),
11347 i + 1);
11348 this->set_is_error();
11349 }
11350 }
11351 }
11352
11353 // Return a tree for constructing a map.
11354
11355 tree
11356 Map_construction_expression::do_get_tree(Translate_context* context)
11357 {
11358 Gogo* gogo = context->gogo();
11359 source_location loc = this->location();
11360
11361 Map_type* mt = this->type_->map_type();
11362
11363 // Build a struct to hold the key and value.
11364 tree struct_type = make_node(RECORD_TYPE);
11365
11366 Type* key_type = mt->key_type();
11367 tree id = get_identifier("__key");
11368 tree key_type_tree = key_type->get_tree(gogo);
11369 if (key_type_tree == error_mark_node)
11370 return error_mark_node;
11371 tree key_field = build_decl(loc, FIELD_DECL, id, key_type_tree);
11372 DECL_CONTEXT(key_field) = struct_type;
11373 TYPE_FIELDS(struct_type) = key_field;
11374
11375 Type* val_type = mt->val_type();
11376 id = get_identifier("__val");
11377 tree val_type_tree = val_type->get_tree(gogo);
11378 if (val_type_tree == error_mark_node)
11379 return error_mark_node;
11380 tree val_field = build_decl(loc, FIELD_DECL, id, val_type_tree);
11381 DECL_CONTEXT(val_field) = struct_type;
11382 DECL_CHAIN(key_field) = val_field;
11383
11384 layout_type(struct_type);
11385
11386 bool is_constant = true;
11387 size_t i = 0;
11388 tree valaddr;
11389 tree make_tmp;
11390
11391 if (this->vals_ == NULL || this->vals_->empty())
11392 {
11393 valaddr = null_pointer_node;
11394 make_tmp = NULL_TREE;
11395 }
11396 else
11397 {
11398 VEC(constructor_elt,gc)* values = VEC_alloc(constructor_elt, gc,
11399 this->vals_->size() / 2);
11400
11401 for (Expression_list::const_iterator pv = this->vals_->begin();
11402 pv != this->vals_->end();
11403 ++pv, ++i)
11404 {
11405 bool one_is_constant = true;
11406
11407 VEC(constructor_elt,gc)* one = VEC_alloc(constructor_elt, gc, 2);
11408
11409 constructor_elt* elt = VEC_quick_push(constructor_elt, one, NULL);
11410 elt->index = key_field;
11411 tree val_tree = (*pv)->get_tree(context);
11412 elt->value = Expression::convert_for_assignment(context, key_type,
11413 (*pv)->type(),
11414 val_tree, loc);
11415 if (elt->value == error_mark_node)
11416 return error_mark_node;
11417 if (!TREE_CONSTANT(elt->value))
11418 one_is_constant = false;
11419
11420 ++pv;
11421
11422 elt = VEC_quick_push(constructor_elt, one, NULL);
11423 elt->index = val_field;
11424 val_tree = (*pv)->get_tree(context);
11425 elt->value = Expression::convert_for_assignment(context, val_type,
11426 (*pv)->type(),
11427 val_tree, loc);
11428 if (elt->value == error_mark_node)
11429 return error_mark_node;
11430 if (!TREE_CONSTANT(elt->value))
11431 one_is_constant = false;
11432
11433 elt = VEC_quick_push(constructor_elt, values, NULL);
11434 elt->index = size_int(i);
11435 elt->value = build_constructor(struct_type, one);
11436 if (one_is_constant)
11437 TREE_CONSTANT(elt->value) = 1;
11438 else
11439 is_constant = false;
11440 }
11441
11442 tree index_type = build_index_type(size_int(i - 1));
11443 tree array_type = build_array_type(struct_type, index_type);
11444 tree init = build_constructor(array_type, values);
11445 if (is_constant)
11446 TREE_CONSTANT(init) = 1;
11447 tree tmp;
11448 if (current_function_decl != NULL)
11449 {
11450 tmp = create_tmp_var(array_type, get_name(array_type));
11451 DECL_INITIAL(tmp) = init;
11452 make_tmp = fold_build1_loc(loc, DECL_EXPR, void_type_node, tmp);
11453 TREE_ADDRESSABLE(tmp) = 1;
11454 }
11455 else
11456 {
11457 tmp = build_decl(loc, VAR_DECL, create_tmp_var_name("M"), array_type);
11458 DECL_EXTERNAL(tmp) = 0;
11459 TREE_PUBLIC(tmp) = 0;
11460 TREE_STATIC(tmp) = 1;
11461 DECL_ARTIFICIAL(tmp) = 1;
11462 if (!TREE_CONSTANT(init))
11463 make_tmp = fold_build2_loc(loc, INIT_EXPR, void_type_node, tmp,
11464 init);
11465 else
11466 {
11467 TREE_READONLY(tmp) = 1;
11468 TREE_CONSTANT(tmp) = 1;
11469 DECL_INITIAL(tmp) = init;
11470 make_tmp = NULL_TREE;
11471 }
11472 rest_of_decl_compilation(tmp, 1, 0);
11473 }
11474
11475 valaddr = build_fold_addr_expr(tmp);
11476 }
11477
11478 tree descriptor = gogo->map_descriptor(mt);
11479
11480 tree type_tree = this->type_->get_tree(gogo);
11481 if (type_tree == error_mark_node)
11482 return error_mark_node;
11483
11484 static tree construct_map_fndecl;
11485 tree call = Gogo::call_builtin(&construct_map_fndecl,
11486 loc,
11487 "__go_construct_map",
11488 6,
11489 type_tree,
11490 TREE_TYPE(descriptor),
11491 descriptor,
11492 sizetype,
11493 size_int(i),
11494 sizetype,
11495 TYPE_SIZE_UNIT(struct_type),
11496 sizetype,
11497 byte_position(val_field),
11498 sizetype,
11499 TYPE_SIZE_UNIT(TREE_TYPE(val_field)),
11500 const_ptr_type_node,
11501 fold_convert(const_ptr_type_node, valaddr));
11502 if (call == error_mark_node)
11503 return error_mark_node;
11504
11505 tree ret;
11506 if (make_tmp == NULL)
11507 ret = call;
11508 else
11509 ret = fold_build2_loc(loc, COMPOUND_EXPR, type_tree, make_tmp, call);
11510 return ret;
11511 }
11512
11513 // Export an array construction.
11514
11515 void
11516 Map_construction_expression::do_export(Export* exp) const
11517 {
11518 exp->write_c_string("convert(");
11519 exp->write_type(this->type_);
11520 for (Expression_list::const_iterator pv = this->vals_->begin();
11521 pv != this->vals_->end();
11522 ++pv)
11523 {
11524 exp->write_c_string(", ");
11525 (*pv)->export_expression(exp);
11526 }
11527 exp->write_c_string(")");
11528 }
11529
11530 // A general composite literal. This is lowered to a type specific
11531 // version.
11532
11533 class Composite_literal_expression : public Parser_expression
11534 {
11535 public:
11536 Composite_literal_expression(Type* type, int depth, bool has_keys,
11537 Expression_list* vals, source_location location)
11538 : Parser_expression(EXPRESSION_COMPOSITE_LITERAL, location),
11539 type_(type), depth_(depth), vals_(vals), has_keys_(has_keys)
11540 { }
11541
11542 protected:
11543 int
11544 do_traverse(Traverse* traverse);
11545
11546 Expression*
11547 do_lower(Gogo*, Named_object*, int);
11548
11549 Expression*
11550 do_copy()
11551 {
11552 return new Composite_literal_expression(this->type_, this->depth_,
11553 this->has_keys_,
11554 (this->vals_ == NULL
11555 ? NULL
11556 : this->vals_->copy()),
11557 this->location());
11558 }
11559
11560 private:
11561 Expression*
11562 lower_struct(Type*);
11563
11564 Expression*
11565 lower_array(Type*);
11566
11567 Expression*
11568 make_array(Type*, Expression_list*);
11569
11570 Expression*
11571 lower_map(Gogo*, Named_object*, Type*);
11572
11573 // The type of the composite literal.
11574 Type* type_;
11575 // The depth within a list of composite literals within a composite
11576 // literal, when the type is omitted.
11577 int depth_;
11578 // The values to put in the composite literal.
11579 Expression_list* vals_;
11580 // If this is true, then VALS_ is a list of pairs: a key and a
11581 // value. In an array initializer, a missing key will be NULL.
11582 bool has_keys_;
11583 };
11584
11585 // Traversal.
11586
11587 int
11588 Composite_literal_expression::do_traverse(Traverse* traverse)
11589 {
11590 if (this->vals_ != NULL
11591 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
11592 return TRAVERSE_EXIT;
11593 return Type::traverse(this->type_, traverse);
11594 }
11595
11596 // Lower a generic composite literal into a specific version based on
11597 // the type.
11598
11599 Expression*
11600 Composite_literal_expression::do_lower(Gogo* gogo, Named_object* function, int)
11601 {
11602 Type* type = this->type_;
11603
11604 for (int depth = this->depth_; depth > 0; --depth)
11605 {
11606 if (type->array_type() != NULL)
11607 type = type->array_type()->element_type();
11608 else if (type->map_type() != NULL)
11609 type = type->map_type()->val_type();
11610 else
11611 {
11612 if (!type->is_error_type())
11613 error_at(this->location(),
11614 ("may only omit types within composite literals "
11615 "of slice, array, or map type"));
11616 return Expression::make_error(this->location());
11617 }
11618 }
11619
11620 if (type->is_error_type())
11621 return Expression::make_error(this->location());
11622 else if (type->struct_type() != NULL)
11623 return this->lower_struct(type);
11624 else if (type->array_type() != NULL)
11625 return this->lower_array(type);
11626 else if (type->map_type() != NULL)
11627 return this->lower_map(gogo, function, type);
11628 else
11629 {
11630 error_at(this->location(),
11631 ("expected struct, slice, array, or map type "
11632 "for composite literal"));
11633 return Expression::make_error(this->location());
11634 }
11635 }
11636
11637 // Lower a struct composite literal.
11638
11639 Expression*
11640 Composite_literal_expression::lower_struct(Type* type)
11641 {
11642 source_location location = this->location();
11643 Struct_type* st = type->struct_type();
11644 if (this->vals_ == NULL || !this->has_keys_)
11645 return new Struct_construction_expression(type, this->vals_, location);
11646
11647 size_t field_count = st->field_count();
11648 std::vector<Expression*> vals(field_count);
11649 Expression_list::const_iterator p = this->vals_->begin();
11650 while (p != this->vals_->end())
11651 {
11652 Expression* name_expr = *p;
11653
11654 ++p;
11655 gcc_assert(p != this->vals_->end());
11656 Expression* val = *p;
11657
11658 ++p;
11659
11660 if (name_expr == NULL)
11661 {
11662 error_at(val->location(), "mixture of field and value initializers");
11663 return Expression::make_error(location);
11664 }
11665
11666 bool bad_key = false;
11667 std::string name;
11668 switch (name_expr->classification())
11669 {
11670 case EXPRESSION_UNKNOWN_REFERENCE:
11671 name = name_expr->unknown_expression()->name();
11672 break;
11673
11674 case EXPRESSION_CONST_REFERENCE:
11675 name = static_cast<Const_expression*>(name_expr)->name();
11676 break;
11677
11678 case EXPRESSION_TYPE:
11679 {
11680 Type* t = name_expr->type();
11681 Named_type* nt = t->named_type();
11682 if (nt == NULL)
11683 bad_key = true;
11684 else
11685 name = nt->name();
11686 }
11687 break;
11688
11689 case EXPRESSION_VAR_REFERENCE:
11690 name = name_expr->var_expression()->name();
11691 break;
11692
11693 case EXPRESSION_FUNC_REFERENCE:
11694 name = name_expr->func_expression()->name();
11695 break;
11696
11697 case EXPRESSION_UNARY:
11698 // If there is a local variable around with the same name as
11699 // the field, and this occurs in the closure, then the
11700 // parser may turn the field reference into an indirection
11701 // through the closure. FIXME: This is a mess.
11702 {
11703 bad_key = true;
11704 Unary_expression* ue = static_cast<Unary_expression*>(name_expr);
11705 if (ue->op() == OPERATOR_MULT)
11706 {
11707 Field_reference_expression* fre =
11708 ue->operand()->field_reference_expression();
11709 if (fre != NULL)
11710 {
11711 Struct_type* st =
11712 fre->expr()->type()->deref()->struct_type();
11713 if (st != NULL)
11714 {
11715 const Struct_field* sf = st->field(fre->field_index());
11716 name = sf->field_name();
11717 char buf[20];
11718 snprintf(buf, sizeof buf, "%u", fre->field_index());
11719 size_t buflen = strlen(buf);
11720 if (name.compare(name.length() - buflen, buflen, buf)
11721 == 0)
11722 {
11723 name = name.substr(0, name.length() - buflen);
11724 bad_key = false;
11725 }
11726 }
11727 }
11728 }
11729 }
11730 break;
11731
11732 default:
11733 bad_key = true;
11734 break;
11735 }
11736 if (bad_key)
11737 {
11738 error_at(name_expr->location(), "expected struct field name");
11739 return Expression::make_error(location);
11740 }
11741
11742 unsigned int index;
11743 const Struct_field* sf = st->find_local_field(name, &index);
11744 if (sf == NULL)
11745 {
11746 error_at(name_expr->location(), "unknown field %qs in %qs",
11747 Gogo::message_name(name).c_str(),
11748 (type->named_type() != NULL
11749 ? type->named_type()->message_name().c_str()
11750 : "unnamed struct"));
11751 return Expression::make_error(location);
11752 }
11753 if (vals[index] != NULL)
11754 {
11755 error_at(name_expr->location(),
11756 "duplicate value for field %qs in %qs",
11757 Gogo::message_name(name).c_str(),
11758 (type->named_type() != NULL
11759 ? type->named_type()->message_name().c_str()
11760 : "unnamed struct"));
11761 return Expression::make_error(location);
11762 }
11763
11764 vals[index] = val;
11765 }
11766
11767 Expression_list* list = new Expression_list;
11768 list->reserve(field_count);
11769 for (size_t i = 0; i < field_count; ++i)
11770 list->push_back(vals[i]);
11771
11772 return new Struct_construction_expression(type, list, location);
11773 }
11774
11775 // Lower an array composite literal.
11776
11777 Expression*
11778 Composite_literal_expression::lower_array(Type* type)
11779 {
11780 source_location location = this->location();
11781 if (this->vals_ == NULL || !this->has_keys_)
11782 return this->make_array(type, this->vals_);
11783
11784 std::vector<Expression*> vals;
11785 vals.reserve(this->vals_->size());
11786 unsigned long index = 0;
11787 Expression_list::const_iterator p = this->vals_->begin();
11788 while (p != this->vals_->end())
11789 {
11790 Expression* index_expr = *p;
11791
11792 ++p;
11793 gcc_assert(p != this->vals_->end());
11794 Expression* val = *p;
11795
11796 ++p;
11797
11798 if (index_expr != NULL)
11799 {
11800 mpz_t ival;
11801 mpz_init(ival);
11802 Type* dummy;
11803 if (!index_expr->integer_constant_value(true, ival, &dummy))
11804 {
11805 mpz_clear(ival);
11806 error_at(index_expr->location(),
11807 "index expression is not integer constant");
11808 return Expression::make_error(location);
11809 }
11810 if (mpz_sgn(ival) < 0)
11811 {
11812 mpz_clear(ival);
11813 error_at(index_expr->location(), "index expression is negative");
11814 return Expression::make_error(location);
11815 }
11816 index = mpz_get_ui(ival);
11817 if (mpz_cmp_ui(ival, index) != 0)
11818 {
11819 mpz_clear(ival);
11820 error_at(index_expr->location(), "index value overflow");
11821 return Expression::make_error(location);
11822 }
11823 mpz_clear(ival);
11824 }
11825
11826 if (index == vals.size())
11827 vals.push_back(val);
11828 else
11829 {
11830 if (index > vals.size())
11831 {
11832 vals.reserve(index + 32);
11833 vals.resize(index + 1, static_cast<Expression*>(NULL));
11834 }
11835 if (vals[index] != NULL)
11836 {
11837 error_at((index_expr != NULL
11838 ? index_expr->location()
11839 : val->location()),
11840 "duplicate value for index %lu",
11841 index);
11842 return Expression::make_error(location);
11843 }
11844 vals[index] = val;
11845 }
11846
11847 ++index;
11848 }
11849
11850 size_t size = vals.size();
11851 Expression_list* list = new Expression_list;
11852 list->reserve(size);
11853 for (size_t i = 0; i < size; ++i)
11854 list->push_back(vals[i]);
11855
11856 return this->make_array(type, list);
11857 }
11858
11859 // Actually build the array composite literal. This handles
11860 // [...]{...}.
11861
11862 Expression*
11863 Composite_literal_expression::make_array(Type* type, Expression_list* vals)
11864 {
11865 source_location location = this->location();
11866 Array_type* at = type->array_type();
11867 if (at->length() != NULL && at->length()->is_nil_expression())
11868 {
11869 size_t size = vals == NULL ? 0 : vals->size();
11870 mpz_t vlen;
11871 mpz_init_set_ui(vlen, size);
11872 Expression* elen = Expression::make_integer(&vlen, NULL, location);
11873 mpz_clear(vlen);
11874 at = Type::make_array_type(at->element_type(), elen);
11875 type = at;
11876 }
11877 if (at->length() != NULL)
11878 return new Fixed_array_construction_expression(type, vals, location);
11879 else
11880 return new Open_array_construction_expression(type, vals, location);
11881 }
11882
11883 // Lower a map composite literal.
11884
11885 Expression*
11886 Composite_literal_expression::lower_map(Gogo* gogo, Named_object* function,
11887 Type* type)
11888 {
11889 source_location location = this->location();
11890 if (this->vals_ != NULL)
11891 {
11892 if (!this->has_keys_)
11893 {
11894 error_at(location, "map composite literal must have keys");
11895 return Expression::make_error(location);
11896 }
11897
11898 for (Expression_list::iterator p = this->vals_->begin();
11899 p != this->vals_->end();
11900 p += 2)
11901 {
11902 if (*p == NULL)
11903 {
11904 ++p;
11905 error_at((*p)->location(),
11906 "map composite literal must have keys for every value");
11907 return Expression::make_error(location);
11908 }
11909 // Make sure we have lowered the key; it may not have been
11910 // lowered in order to handle keys for struct composite
11911 // literals. Lower it now to get the right error message.
11912 if ((*p)->unknown_expression() != NULL)
11913 {
11914 (*p)->unknown_expression()->clear_is_composite_literal_key();
11915 gogo->lower_expression(function, &*p);
11916 gcc_assert((*p)->is_error_expression());
11917 return Expression::make_error(location);
11918 }
11919 }
11920 }
11921
11922 return new Map_construction_expression(type, this->vals_, location);
11923 }
11924
11925 // Make a composite literal expression.
11926
11927 Expression*
11928 Expression::make_composite_literal(Type* type, int depth, bool has_keys,
11929 Expression_list* vals,
11930 source_location location)
11931 {
11932 return new Composite_literal_expression(type, depth, has_keys, vals,
11933 location);
11934 }
11935
11936 // Return whether this expression is a composite literal.
11937
11938 bool
11939 Expression::is_composite_literal() const
11940 {
11941 switch (this->classification_)
11942 {
11943 case EXPRESSION_COMPOSITE_LITERAL:
11944 case EXPRESSION_STRUCT_CONSTRUCTION:
11945 case EXPRESSION_FIXED_ARRAY_CONSTRUCTION:
11946 case EXPRESSION_OPEN_ARRAY_CONSTRUCTION:
11947 case EXPRESSION_MAP_CONSTRUCTION:
11948 return true;
11949 default:
11950 return false;
11951 }
11952 }
11953
11954 // Return whether this expression is a composite literal which is not
11955 // constant.
11956
11957 bool
11958 Expression::is_nonconstant_composite_literal() const
11959 {
11960 switch (this->classification_)
11961 {
11962 case EXPRESSION_STRUCT_CONSTRUCTION:
11963 {
11964 const Struct_construction_expression *psce =
11965 static_cast<const Struct_construction_expression*>(this);
11966 return !psce->is_constant_struct();
11967 }
11968 case EXPRESSION_FIXED_ARRAY_CONSTRUCTION:
11969 {
11970 const Fixed_array_construction_expression *pace =
11971 static_cast<const Fixed_array_construction_expression*>(this);
11972 return !pace->is_constant_array();
11973 }
11974 case EXPRESSION_OPEN_ARRAY_CONSTRUCTION:
11975 {
11976 const Open_array_construction_expression *pace =
11977 static_cast<const Open_array_construction_expression*>(this);
11978 return !pace->is_constant_array();
11979 }
11980 case EXPRESSION_MAP_CONSTRUCTION:
11981 return true;
11982 default:
11983 return false;
11984 }
11985 }
11986
11987 // Return true if this is a reference to a local variable.
11988
11989 bool
11990 Expression::is_local_variable() const
11991 {
11992 const Var_expression* ve = this->var_expression();
11993 if (ve == NULL)
11994 return false;
11995 const Named_object* no = ve->named_object();
11996 return (no->is_result_variable()
11997 || (no->is_variable() && !no->var_value()->is_global()));
11998 }
11999
12000 // Class Type_guard_expression.
12001
12002 // Traversal.
12003
12004 int
12005 Type_guard_expression::do_traverse(Traverse* traverse)
12006 {
12007 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
12008 || Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
12009 return TRAVERSE_EXIT;
12010 return TRAVERSE_CONTINUE;
12011 }
12012
12013 // Check types of a type guard expression. The expression must have
12014 // an interface type, but the actual type conversion is checked at run
12015 // time.
12016
12017 void
12018 Type_guard_expression::do_check_types(Gogo*)
12019 {
12020 // 6g permits using a type guard with unsafe.pointer; we are
12021 // compatible.
12022 Type* expr_type = this->expr_->type();
12023 if (expr_type->is_unsafe_pointer_type())
12024 {
12025 if (this->type_->points_to() == NULL
12026 && (this->type_->integer_type() == NULL
12027 || (this->type_->forwarded()
12028 != Type::lookup_integer_type("uintptr"))))
12029 this->report_error(_("invalid unsafe.Pointer conversion"));
12030 }
12031 else if (this->type_->is_unsafe_pointer_type())
12032 {
12033 if (expr_type->points_to() == NULL
12034 && (expr_type->integer_type() == NULL
12035 || (expr_type->forwarded()
12036 != Type::lookup_integer_type("uintptr"))))
12037 this->report_error(_("invalid unsafe.Pointer conversion"));
12038 }
12039 else if (expr_type->interface_type() == NULL)
12040 {
12041 if (!expr_type->is_error_type() && !this->type_->is_error_type())
12042 this->report_error(_("type assertion only valid for interface types"));
12043 this->set_is_error();
12044 }
12045 else if (this->type_->interface_type() == NULL)
12046 {
12047 std::string reason;
12048 if (!expr_type->interface_type()->implements_interface(this->type_,
12049 &reason))
12050 {
12051 if (!this->type_->is_error_type())
12052 {
12053 if (reason.empty())
12054 this->report_error(_("impossible type assertion: "
12055 "type does not implement interface"));
12056 else
12057 error_at(this->location(),
12058 ("impossible type assertion: "
12059 "type does not implement interface (%s)"),
12060 reason.c_str());
12061 }
12062 this->set_is_error();
12063 }
12064 }
12065 }
12066
12067 // Return a tree for a type guard expression.
12068
12069 tree
12070 Type_guard_expression::do_get_tree(Translate_context* context)
12071 {
12072 Gogo* gogo = context->gogo();
12073 tree expr_tree = this->expr_->get_tree(context);
12074 if (expr_tree == error_mark_node)
12075 return error_mark_node;
12076 Type* expr_type = this->expr_->type();
12077 if ((this->type_->is_unsafe_pointer_type()
12078 && (expr_type->points_to() != NULL
12079 || expr_type->integer_type() != NULL))
12080 || (expr_type->is_unsafe_pointer_type()
12081 && this->type_->points_to() != NULL))
12082 return convert_to_pointer(this->type_->get_tree(gogo), expr_tree);
12083 else if (expr_type->is_unsafe_pointer_type()
12084 && this->type_->integer_type() != NULL)
12085 return convert_to_integer(this->type_->get_tree(gogo), expr_tree);
12086 else if (this->type_->interface_type() != NULL)
12087 return Expression::convert_interface_to_interface(context, this->type_,
12088 this->expr_->type(),
12089 expr_tree, true,
12090 this->location());
12091 else
12092 return Expression::convert_for_assignment(context, this->type_,
12093 this->expr_->type(), expr_tree,
12094 this->location());
12095 }
12096
12097 // Make a type guard expression.
12098
12099 Expression*
12100 Expression::make_type_guard(Expression* expr, Type* type,
12101 source_location location)
12102 {
12103 return new Type_guard_expression(expr, type, location);
12104 }
12105
12106 // Class Heap_composite_expression.
12107
12108 // When you take the address of a composite literal, it is allocated
12109 // on the heap. This class implements that.
12110
12111 class Heap_composite_expression : public Expression
12112 {
12113 public:
12114 Heap_composite_expression(Expression* expr, source_location location)
12115 : Expression(EXPRESSION_HEAP_COMPOSITE, location),
12116 expr_(expr)
12117 { }
12118
12119 protected:
12120 int
12121 do_traverse(Traverse* traverse)
12122 { return Expression::traverse(&this->expr_, traverse); }
12123
12124 Type*
12125 do_type()
12126 { return Type::make_pointer_type(this->expr_->type()); }
12127
12128 void
12129 do_determine_type(const Type_context*)
12130 { this->expr_->determine_type_no_context(); }
12131
12132 Expression*
12133 do_copy()
12134 {
12135 return Expression::make_heap_composite(this->expr_->copy(),
12136 this->location());
12137 }
12138
12139 tree
12140 do_get_tree(Translate_context*);
12141
12142 // We only export global objects, and the parser does not generate
12143 // this in global scope.
12144 void
12145 do_export(Export*) const
12146 { gcc_unreachable(); }
12147
12148 private:
12149 // The composite literal which is being put on the heap.
12150 Expression* expr_;
12151 };
12152
12153 // Return a tree which allocates a composite literal on the heap.
12154
12155 tree
12156 Heap_composite_expression::do_get_tree(Translate_context* context)
12157 {
12158 tree expr_tree = this->expr_->get_tree(context);
12159 if (expr_tree == error_mark_node)
12160 return error_mark_node;
12161 tree expr_size = TYPE_SIZE_UNIT(TREE_TYPE(expr_tree));
12162 gcc_assert(TREE_CODE(expr_size) == INTEGER_CST);
12163 tree space = context->gogo()->allocate_memory(this->expr_->type(),
12164 expr_size, this->location());
12165 space = fold_convert(build_pointer_type(TREE_TYPE(expr_tree)), space);
12166 space = save_expr(space);
12167 tree ref = build_fold_indirect_ref_loc(this->location(), space);
12168 TREE_THIS_NOTRAP(ref) = 1;
12169 tree ret = build2(COMPOUND_EXPR, TREE_TYPE(space),
12170 build2(MODIFY_EXPR, void_type_node, ref, expr_tree),
12171 space);
12172 SET_EXPR_LOCATION(ret, this->location());
12173 return ret;
12174 }
12175
12176 // Allocate a composite literal on the heap.
12177
12178 Expression*
12179 Expression::make_heap_composite(Expression* expr, source_location location)
12180 {
12181 return new Heap_composite_expression(expr, location);
12182 }
12183
12184 // Class Receive_expression.
12185
12186 // Return the type of a receive expression.
12187
12188 Type*
12189 Receive_expression::do_type()
12190 {
12191 Channel_type* channel_type = this->channel_->type()->channel_type();
12192 if (channel_type == NULL)
12193 return Type::make_error_type();
12194 return channel_type->element_type();
12195 }
12196
12197 // Check types for a receive expression.
12198
12199 void
12200 Receive_expression::do_check_types(Gogo*)
12201 {
12202 Type* type = this->channel_->type();
12203 if (type->is_error_type())
12204 {
12205 this->set_is_error();
12206 return;
12207 }
12208 if (type->channel_type() == NULL)
12209 {
12210 this->report_error(_("expected channel"));
12211 return;
12212 }
12213 if (!type->channel_type()->may_receive())
12214 {
12215 this->report_error(_("invalid receive on send-only channel"));
12216 return;
12217 }
12218 }
12219
12220 // Get a tree for a receive expression.
12221
12222 tree
12223 Receive_expression::do_get_tree(Translate_context* context)
12224 {
12225 Channel_type* channel_type = this->channel_->type()->channel_type();
12226 gcc_assert(channel_type != NULL);
12227 Type* element_type = channel_type->element_type();
12228 tree element_type_tree = element_type->get_tree(context->gogo());
12229
12230 tree channel = this->channel_->get_tree(context);
12231 if (element_type_tree == error_mark_node || channel == error_mark_node)
12232 return error_mark_node;
12233
12234 return Gogo::receive_from_channel(element_type_tree, channel,
12235 this->for_select_, this->location());
12236 }
12237
12238 // Make a receive expression.
12239
12240 Receive_expression*
12241 Expression::make_receive(Expression* channel, source_location location)
12242 {
12243 return new Receive_expression(channel, location);
12244 }
12245
12246 // Class Send_expression.
12247
12248 // Traversal.
12249
12250 int
12251 Send_expression::do_traverse(Traverse* traverse)
12252 {
12253 if (Expression::traverse(&this->channel_, traverse) == TRAVERSE_EXIT)
12254 return TRAVERSE_EXIT;
12255 return Expression::traverse(&this->val_, traverse);
12256 }
12257
12258 // Get the type.
12259
12260 Type*
12261 Send_expression::do_type()
12262 {
12263 return Type::lookup_bool_type();
12264 }
12265
12266 // Set types.
12267
12268 void
12269 Send_expression::do_determine_type(const Type_context*)
12270 {
12271 this->channel_->determine_type_no_context();
12272
12273 Type* type = this->channel_->type();
12274 Type_context subcontext;
12275 if (type->channel_type() != NULL)
12276 subcontext.type = type->channel_type()->element_type();
12277 this->val_->determine_type(&subcontext);
12278 }
12279
12280 // Check types.
12281
12282 void
12283 Send_expression::do_check_types(Gogo*)
12284 {
12285 Type* type = this->channel_->type();
12286 if (type->is_error_type())
12287 {
12288 this->set_is_error();
12289 return;
12290 }
12291 Channel_type* channel_type = type->channel_type();
12292 if (channel_type == NULL)
12293 {
12294 error_at(this->location(), "left operand of %<<-%> must be channel");
12295 this->set_is_error();
12296 return;
12297 }
12298 Type* element_type = channel_type->element_type();
12299 if (element_type != NULL
12300 && !Type::are_assignable(element_type, this->val_->type(), NULL))
12301 {
12302 this->report_error(_("incompatible types in send"));
12303 return;
12304 }
12305 if (!channel_type->may_send())
12306 {
12307 this->report_error(_("invalid send on receive-only channel"));
12308 return;
12309 }
12310 }
12311
12312 // Get a tree for a send expression.
12313
12314 tree
12315 Send_expression::do_get_tree(Translate_context* context)
12316 {
12317 tree channel = this->channel_->get_tree(context);
12318 tree val = this->val_->get_tree(context);
12319 if (channel == error_mark_node || val == error_mark_node)
12320 return error_mark_node;
12321 Channel_type* channel_type = this->channel_->type()->channel_type();
12322 val = Expression::convert_for_assignment(context,
12323 channel_type->element_type(),
12324 this->val_->type(),
12325 val,
12326 this->location());
12327 return Gogo::send_on_channel(channel, val, this->is_value_discarded_,
12328 this->for_select_, this->location());
12329 }
12330
12331 // Make a send expression
12332
12333 Send_expression*
12334 Expression::make_send(Expression* channel, Expression* val,
12335 source_location location)
12336 {
12337 return new Send_expression(channel, val, location);
12338 }
12339
12340 // An expression which evaluates to a pointer to the type descriptor
12341 // of a type.
12342
12343 class Type_descriptor_expression : public Expression
12344 {
12345 public:
12346 Type_descriptor_expression(Type* type, source_location location)
12347 : Expression(EXPRESSION_TYPE_DESCRIPTOR, location),
12348 type_(type)
12349 { }
12350
12351 protected:
12352 Type*
12353 do_type()
12354 { return Type::make_type_descriptor_ptr_type(); }
12355
12356 void
12357 do_determine_type(const Type_context*)
12358 { }
12359
12360 Expression*
12361 do_copy()
12362 { return this; }
12363
12364 tree
12365 do_get_tree(Translate_context* context)
12366 { return this->type_->type_descriptor_pointer(context->gogo()); }
12367
12368 private:
12369 // The type for which this is the descriptor.
12370 Type* type_;
12371 };
12372
12373 // Make a type descriptor expression.
12374
12375 Expression*
12376 Expression::make_type_descriptor(Type* type, source_location location)
12377 {
12378 return new Type_descriptor_expression(type, location);
12379 }
12380
12381 // An expression which evaluates to some characteristic of a type.
12382 // This is only used to initialize fields of a type descriptor. Using
12383 // a new expression class is slightly inefficient but gives us a good
12384 // separation between the frontend and the middle-end with regard to
12385 // how types are laid out.
12386
12387 class Type_info_expression : public Expression
12388 {
12389 public:
12390 Type_info_expression(Type* type, Type_info type_info)
12391 : Expression(EXPRESSION_TYPE_INFO, BUILTINS_LOCATION),
12392 type_(type), type_info_(type_info)
12393 { }
12394
12395 protected:
12396 Type*
12397 do_type();
12398
12399 void
12400 do_determine_type(const Type_context*)
12401 { }
12402
12403 Expression*
12404 do_copy()
12405 { return this; }
12406
12407 tree
12408 do_get_tree(Translate_context* context);
12409
12410 private:
12411 // The type for which we are getting information.
12412 Type* type_;
12413 // What information we want.
12414 Type_info type_info_;
12415 };
12416
12417 // The type is chosen to match what the type descriptor struct
12418 // expects.
12419
12420 Type*
12421 Type_info_expression::do_type()
12422 {
12423 switch (this->type_info_)
12424 {
12425 case TYPE_INFO_SIZE:
12426 return Type::lookup_integer_type("uintptr");
12427 case TYPE_INFO_ALIGNMENT:
12428 case TYPE_INFO_FIELD_ALIGNMENT:
12429 return Type::lookup_integer_type("uint8");
12430 default:
12431 gcc_unreachable();
12432 }
12433 }
12434
12435 // Return type information in GENERIC.
12436
12437 tree
12438 Type_info_expression::do_get_tree(Translate_context* context)
12439 {
12440 tree type_tree = this->type_->get_tree(context->gogo());
12441 if (type_tree == error_mark_node)
12442 return error_mark_node;
12443
12444 tree val_type_tree = this->type()->get_tree(context->gogo());
12445 gcc_assert(val_type_tree != error_mark_node);
12446
12447 if (this->type_info_ == TYPE_INFO_SIZE)
12448 return fold_convert_loc(BUILTINS_LOCATION, val_type_tree,
12449 TYPE_SIZE_UNIT(type_tree));
12450 else
12451 {
12452 unsigned int val;
12453 if (this->type_info_ == TYPE_INFO_ALIGNMENT)
12454 val = go_type_alignment(type_tree);
12455 else
12456 val = go_field_alignment(type_tree);
12457 return build_int_cstu(val_type_tree, val);
12458 }
12459 }
12460
12461 // Make a type info expression.
12462
12463 Expression*
12464 Expression::make_type_info(Type* type, Type_info type_info)
12465 {
12466 return new Type_info_expression(type, type_info);
12467 }
12468
12469 // An expression which evaluates to the offset of a field within a
12470 // struct. This, like Type_info_expression, q.v., is only used to
12471 // initialize fields of a type descriptor.
12472
12473 class Struct_field_offset_expression : public Expression
12474 {
12475 public:
12476 Struct_field_offset_expression(Struct_type* type, const Struct_field* field)
12477 : Expression(EXPRESSION_STRUCT_FIELD_OFFSET, BUILTINS_LOCATION),
12478 type_(type), field_(field)
12479 { }
12480
12481 protected:
12482 Type*
12483 do_type()
12484 { return Type::lookup_integer_type("uintptr"); }
12485
12486 void
12487 do_determine_type(const Type_context*)
12488 { }
12489
12490 Expression*
12491 do_copy()
12492 { return this; }
12493
12494 tree
12495 do_get_tree(Translate_context* context);
12496
12497 private:
12498 // The type of the struct.
12499 Struct_type* type_;
12500 // The field.
12501 const Struct_field* field_;
12502 };
12503
12504 // Return a struct field offset in GENERIC.
12505
12506 tree
12507 Struct_field_offset_expression::do_get_tree(Translate_context* context)
12508 {
12509 tree type_tree = this->type_->get_tree(context->gogo());
12510 if (type_tree == error_mark_node)
12511 return error_mark_node;
12512
12513 tree val_type_tree = this->type()->get_tree(context->gogo());
12514 gcc_assert(val_type_tree != error_mark_node);
12515
12516 const Struct_field_list* fields = this->type_->fields();
12517 tree struct_field_tree = TYPE_FIELDS(type_tree);
12518 Struct_field_list::const_iterator p;
12519 for (p = fields->begin();
12520 p != fields->end();
12521 ++p, struct_field_tree = DECL_CHAIN(struct_field_tree))
12522 {
12523 gcc_assert(struct_field_tree != NULL_TREE);
12524 if (&*p == this->field_)
12525 break;
12526 }
12527 gcc_assert(&*p == this->field_);
12528
12529 return fold_convert_loc(BUILTINS_LOCATION, val_type_tree,
12530 byte_position(struct_field_tree));
12531 }
12532
12533 // Make an expression for a struct field offset.
12534
12535 Expression*
12536 Expression::make_struct_field_offset(Struct_type* type,
12537 const Struct_field* field)
12538 {
12539 return new Struct_field_offset_expression(type, field);
12540 }
12541
12542 // An expression which evaluates to the address of an unnamed label.
12543
12544 class Label_addr_expression : public Expression
12545 {
12546 public:
12547 Label_addr_expression(Label* label, source_location location)
12548 : Expression(EXPRESSION_LABEL_ADDR, location),
12549 label_(label)
12550 { }
12551
12552 protected:
12553 Type*
12554 do_type()
12555 { return Type::make_pointer_type(Type::make_void_type()); }
12556
12557 void
12558 do_determine_type(const Type_context*)
12559 { }
12560
12561 Expression*
12562 do_copy()
12563 { return new Label_addr_expression(this->label_, this->location()); }
12564
12565 tree
12566 do_get_tree(Translate_context*)
12567 { return this->label_->get_addr(this->location()); }
12568
12569 private:
12570 // The label whose address we are taking.
12571 Label* label_;
12572 };
12573
12574 // Make an expression for the address of an unnamed label.
12575
12576 Expression*
12577 Expression::make_label_addr(Label* label, source_location location)
12578 {
12579 return new Label_addr_expression(label, location);
12580 }
12581
12582 // Import an expression. This comes at the end in order to see the
12583 // various class definitions.
12584
12585 Expression*
12586 Expression::import_expression(Import* imp)
12587 {
12588 int c = imp->peek_char();
12589 if (imp->match_c_string("- ")
12590 || imp->match_c_string("! ")
12591 || imp->match_c_string("^ "))
12592 return Unary_expression::do_import(imp);
12593 else if (c == '(')
12594 return Binary_expression::do_import(imp);
12595 else if (imp->match_c_string("true")
12596 || imp->match_c_string("false"))
12597 return Boolean_expression::do_import(imp);
12598 else if (c == '"')
12599 return String_expression::do_import(imp);
12600 else if (c == '-' || (c >= '0' && c <= '9'))
12601 {
12602 // This handles integers, floats and complex constants.
12603 return Integer_expression::do_import(imp);
12604 }
12605 else if (imp->match_c_string("nil"))
12606 return Nil_expression::do_import(imp);
12607 else if (imp->match_c_string("convert"))
12608 return Type_conversion_expression::do_import(imp);
12609 else
12610 {
12611 error_at(imp->location(), "import error: expected expression");
12612 return Expression::make_error(imp->location());
12613 }
12614 }
12615
12616 // Class Expression_list.
12617
12618 // Traverse the list.
12619
12620 int
12621 Expression_list::traverse(Traverse* traverse)
12622 {
12623 for (Expression_list::iterator p = this->begin();
12624 p != this->end();
12625 ++p)
12626 {
12627 if (*p != NULL)
12628 {
12629 if (Expression::traverse(&*p, traverse) == TRAVERSE_EXIT)
12630 return TRAVERSE_EXIT;
12631 }
12632 }
12633 return TRAVERSE_CONTINUE;
12634 }
12635
12636 // Copy the list.
12637
12638 Expression_list*
12639 Expression_list::copy()
12640 {
12641 Expression_list* ret = new Expression_list();
12642 for (Expression_list::iterator p = this->begin();
12643 p != this->end();
12644 ++p)
12645 {
12646 if (*p == NULL)
12647 ret->push_back(NULL);
12648 else
12649 ret->push_back((*p)->copy());
12650 }
12651 return ret;
12652 }
12653
12654 // Return whether an expression list has an error expression.
12655
12656 bool
12657 Expression_list::contains_error() const
12658 {
12659 for (Expression_list::const_iterator p = this->begin();
12660 p != this->end();
12661 ++p)
12662 if (*p != NULL && (*p)->is_error_expression())
12663 return true;
12664 return false;
12665 }