Don't crash initializing multiple vars from a single result function.
[gcc.git] / gcc / go / gofrontend / expressions.cc
1 // expressions.cc -- Go frontend expression handling.
2
3 // Copyright 2009 The Go Authors. All rights reserved.
4 // Use of this source code is governed by a BSD-style
5 // license that can be found in the LICENSE file.
6
7 #include "go-system.h"
8
9 #include <gmp.h>
10
11 #ifndef ENABLE_BUILD_WITH_CXX
12 extern "C"
13 {
14 #endif
15
16 #include "toplev.h"
17 #include "intl.h"
18 #include "tree.h"
19 #include "gimple.h"
20 #include "tree-iterator.h"
21 #include "convert.h"
22 #include "real.h"
23 #include "realmpfr.h"
24
25 #ifndef ENABLE_BUILD_WITH_CXX
26 }
27 #endif
28
29 #include "go-c.h"
30 #include "gogo.h"
31 #include "types.h"
32 #include "export.h"
33 #include "import.h"
34 #include "statements.h"
35 #include "lex.h"
36 #include "expressions.h"
37
38 // Class Expression.
39
40 Expression::Expression(Expression_classification classification,
41 source_location location)
42 : classification_(classification), location_(location)
43 {
44 }
45
46 Expression::~Expression()
47 {
48 }
49
50 // If this expression has a constant integer value, return it.
51
52 bool
53 Expression::integer_constant_value(bool iota_is_constant, mpz_t val,
54 Type** ptype) const
55 {
56 *ptype = NULL;
57 return this->do_integer_constant_value(iota_is_constant, val, ptype);
58 }
59
60 // If this expression has a constant floating point value, return it.
61
62 bool
63 Expression::float_constant_value(mpfr_t val, Type** ptype) const
64 {
65 *ptype = NULL;
66 if (this->do_float_constant_value(val, ptype))
67 return true;
68 mpz_t ival;
69 mpz_init(ival);
70 Type* t;
71 bool ret;
72 if (!this->do_integer_constant_value(false, ival, &t))
73 ret = false;
74 else
75 {
76 mpfr_set_z(val, ival, GMP_RNDN);
77 ret = true;
78 }
79 mpz_clear(ival);
80 return ret;
81 }
82
83 // If this expression has a constant complex value, return it.
84
85 bool
86 Expression::complex_constant_value(mpfr_t real, mpfr_t imag,
87 Type** ptype) const
88 {
89 *ptype = NULL;
90 if (this->do_complex_constant_value(real, imag, ptype))
91 return true;
92 Type *t;
93 if (this->float_constant_value(real, &t))
94 {
95 mpfr_set_ui(imag, 0, GMP_RNDN);
96 return true;
97 }
98 return false;
99 }
100
101 // Traverse the expressions.
102
103 int
104 Expression::traverse(Expression** pexpr, Traverse* traverse)
105 {
106 Expression* expr = *pexpr;
107 if ((traverse->traverse_mask() & Traverse::traverse_expressions) != 0)
108 {
109 int t = traverse->expression(pexpr);
110 if (t == TRAVERSE_EXIT)
111 return TRAVERSE_EXIT;
112 else if (t == TRAVERSE_SKIP_COMPONENTS)
113 return TRAVERSE_CONTINUE;
114 }
115 return expr->do_traverse(traverse);
116 }
117
118 // Traverse subexpressions of this expression.
119
120 int
121 Expression::traverse_subexpressions(Traverse* traverse)
122 {
123 return this->do_traverse(traverse);
124 }
125
126 // Default implementation for do_traverse for child classes.
127
128 int
129 Expression::do_traverse(Traverse*)
130 {
131 return TRAVERSE_CONTINUE;
132 }
133
134 // This virtual function is called by the parser if the value of this
135 // expression is being discarded. By default, we warn. Expressions
136 // with side effects override.
137
138 void
139 Expression::do_discarding_value()
140 {
141 this->warn_about_unused_value();
142 }
143
144 // This virtual function is called to export expressions. This will
145 // only be used by expressions which may be constant.
146
147 void
148 Expression::do_export(Export*) const
149 {
150 gcc_unreachable();
151 }
152
153 // Warn that the value of the expression is not used.
154
155 void
156 Expression::warn_about_unused_value()
157 {
158 warning_at(this->location(), OPT_Wunused_value, "value computed is not used");
159 }
160
161 // Note that this expression is an error. This is called by children
162 // when they discover an error.
163
164 void
165 Expression::set_is_error()
166 {
167 this->classification_ = EXPRESSION_ERROR;
168 }
169
170 // For children to call to report an error conveniently.
171
172 void
173 Expression::report_error(const char* msg)
174 {
175 error_at(this->location_, "%s", msg);
176 this->set_is_error();
177 }
178
179 // Set types of variables and constants. This is implemented by the
180 // child class.
181
182 void
183 Expression::determine_type(const Type_context* context)
184 {
185 this->do_determine_type(context);
186 }
187
188 // Set types when there is no context.
189
190 void
191 Expression::determine_type_no_context()
192 {
193 Type_context context;
194 this->do_determine_type(&context);
195 }
196
197 // Return a tree handling any conversions which must be done during
198 // assignment.
199
200 tree
201 Expression::convert_for_assignment(Translate_context* context, Type* lhs_type,
202 Type* rhs_type, tree rhs_tree,
203 source_location location)
204 {
205 if (lhs_type == rhs_type)
206 return rhs_tree;
207
208 if (lhs_type->is_error_type() || rhs_type->is_error_type())
209 return error_mark_node;
210
211 if (lhs_type->is_undefined() || rhs_type->is_undefined())
212 {
213 // Make sure we report the error.
214 lhs_type->base();
215 rhs_type->base();
216 return error_mark_node;
217 }
218
219 if (rhs_tree == error_mark_node || TREE_TYPE(rhs_tree) == error_mark_node)
220 return error_mark_node;
221
222 Gogo* gogo = context->gogo();
223
224 tree lhs_type_tree = lhs_type->get_tree(gogo);
225 if (lhs_type_tree == error_mark_node)
226 return error_mark_node;
227
228 if (lhs_type->interface_type() != NULL)
229 {
230 if (rhs_type->interface_type() == NULL)
231 return Expression::convert_type_to_interface(context, lhs_type,
232 rhs_type, rhs_tree,
233 location);
234 else
235 return Expression::convert_interface_to_interface(context, lhs_type,
236 rhs_type, rhs_tree,
237 false, location);
238 }
239 else if (rhs_type->interface_type() != NULL)
240 return Expression::convert_interface_to_type(context, lhs_type, rhs_type,
241 rhs_tree, location);
242 else if (lhs_type->is_open_array_type()
243 && rhs_type->is_nil_type())
244 {
245 // Assigning nil to an open array.
246 gcc_assert(TREE_CODE(lhs_type_tree) == RECORD_TYPE);
247
248 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
249
250 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
251 tree field = TYPE_FIELDS(lhs_type_tree);
252 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
253 "__values") == 0);
254 elt->index = field;
255 elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
256
257 elt = VEC_quick_push(constructor_elt, init, NULL);
258 field = DECL_CHAIN(field);
259 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
260 "__count") == 0);
261 elt->index = field;
262 elt->value = fold_convert(TREE_TYPE(field), integer_zero_node);
263
264 elt = VEC_quick_push(constructor_elt, init, NULL);
265 field = DECL_CHAIN(field);
266 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
267 "__capacity") == 0);
268 elt->index = field;
269 elt->value = fold_convert(TREE_TYPE(field), integer_zero_node);
270
271 tree val = build_constructor(lhs_type_tree, init);
272 TREE_CONSTANT(val) = 1;
273
274 return val;
275 }
276 else if (rhs_type->is_nil_type())
277 {
278 // The left hand side should be a pointer type at the tree
279 // level.
280 gcc_assert(POINTER_TYPE_P(lhs_type_tree));
281 return fold_convert(lhs_type_tree, null_pointer_node);
282 }
283 else if (lhs_type_tree == TREE_TYPE(rhs_tree))
284 {
285 // No conversion is needed.
286 return rhs_tree;
287 }
288 else if (POINTER_TYPE_P(lhs_type_tree)
289 || INTEGRAL_TYPE_P(lhs_type_tree)
290 || SCALAR_FLOAT_TYPE_P(lhs_type_tree)
291 || COMPLEX_FLOAT_TYPE_P(lhs_type_tree))
292 return fold_convert_loc(location, lhs_type_tree, rhs_tree);
293 else if (TREE_CODE(lhs_type_tree) == RECORD_TYPE
294 && TREE_CODE(TREE_TYPE(rhs_tree)) == RECORD_TYPE)
295 {
296 // This conversion must be permitted by Go, or we wouldn't have
297 // gotten here.
298 gcc_assert(int_size_in_bytes(lhs_type_tree)
299 == int_size_in_bytes(TREE_TYPE(rhs_tree)));
300 return fold_build1_loc(location, VIEW_CONVERT_EXPR, lhs_type_tree,
301 rhs_tree);
302 }
303 else
304 {
305 gcc_assert(useless_type_conversion_p(lhs_type_tree, TREE_TYPE(rhs_tree)));
306 return rhs_tree;
307 }
308 }
309
310 // Return a tree for a conversion from a non-interface type to an
311 // interface type.
312
313 tree
314 Expression::convert_type_to_interface(Translate_context* context,
315 Type* lhs_type, Type* rhs_type,
316 tree rhs_tree, source_location location)
317 {
318 Gogo* gogo = context->gogo();
319 Interface_type* lhs_interface_type = lhs_type->interface_type();
320 bool lhs_is_empty = lhs_interface_type->is_empty();
321
322 // Since RHS_TYPE is a static type, we can create the interface
323 // method table at compile time.
324
325 // When setting an interface to nil, we just set both fields to
326 // NULL.
327 if (rhs_type->is_nil_type())
328 return lhs_type->get_init_tree(gogo, false);
329
330 // This should have been checked already.
331 gcc_assert(lhs_interface_type->implements_interface(rhs_type, NULL));
332
333 tree lhs_type_tree = lhs_type->get_tree(gogo);
334 if (lhs_type_tree == error_mark_node)
335 return error_mark_node;
336
337 // An interface is a tuple. If LHS_TYPE is an empty interface type,
338 // then the first field is the type descriptor for RHS_TYPE.
339 // Otherwise it is the interface method table for RHS_TYPE.
340 tree first_field_value;
341 if (lhs_is_empty)
342 first_field_value = rhs_type->type_descriptor_pointer(gogo);
343 else
344 {
345 // Build the interface method table for this interface and this
346 // object type: a list of function pointers for each interface
347 // method.
348 Named_type* rhs_named_type = rhs_type->named_type();
349 bool is_pointer = false;
350 if (rhs_named_type == NULL)
351 {
352 rhs_named_type = rhs_type->deref()->named_type();
353 is_pointer = true;
354 }
355 tree method_table;
356 if (rhs_named_type == NULL)
357 method_table = null_pointer_node;
358 else
359 method_table =
360 rhs_named_type->interface_method_table(gogo, lhs_interface_type,
361 is_pointer);
362 first_field_value = fold_convert_loc(location, const_ptr_type_node,
363 method_table);
364 }
365
366 // Start building a constructor for the value we will return.
367
368 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
369
370 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
371 tree field = TYPE_FIELDS(lhs_type_tree);
372 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
373 (lhs_is_empty ? "__type_descriptor" : "__methods")) == 0);
374 elt->index = field;
375 elt->value = fold_convert_loc(location, TREE_TYPE(field), first_field_value);
376
377 elt = VEC_quick_push(constructor_elt, init, NULL);
378 field = DECL_CHAIN(field);
379 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
380 elt->index = field;
381
382 if (rhs_type->points_to() != NULL)
383 {
384 // We are assigning a pointer to the interface; the interface
385 // holds the pointer itself.
386 elt->value = rhs_tree;
387 return build_constructor(lhs_type_tree, init);
388 }
389
390 // We are assigning a non-pointer value to the interface; the
391 // interface gets a copy of the value in the heap.
392
393 tree object_size = TYPE_SIZE_UNIT(TREE_TYPE(rhs_tree));
394
395 tree space = gogo->allocate_memory(rhs_type, object_size, location);
396 space = fold_convert_loc(location, build_pointer_type(TREE_TYPE(rhs_tree)),
397 space);
398 space = save_expr(space);
399
400 tree ref = build_fold_indirect_ref_loc(location, space);
401 TREE_THIS_NOTRAP(ref) = 1;
402 tree set = fold_build2_loc(location, MODIFY_EXPR, void_type_node,
403 ref, rhs_tree);
404
405 elt->value = fold_convert_loc(location, TREE_TYPE(field), space);
406
407 return build2(COMPOUND_EXPR, lhs_type_tree, set,
408 build_constructor(lhs_type_tree, init));
409 }
410
411 // Return a tree for the type descriptor of RHS_TREE, which has
412 // interface type RHS_TYPE. If RHS_TREE is nil the result will be
413 // NULL.
414
415 tree
416 Expression::get_interface_type_descriptor(Translate_context*,
417 Type* rhs_type, tree rhs_tree,
418 source_location location)
419 {
420 tree rhs_type_tree = TREE_TYPE(rhs_tree);
421 gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
422 tree rhs_field = TYPE_FIELDS(rhs_type_tree);
423 tree v = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
424 NULL_TREE);
425 if (rhs_type->interface_type()->is_empty())
426 {
427 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)),
428 "__type_descriptor") == 0);
429 return v;
430 }
431
432 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__methods")
433 == 0);
434 gcc_assert(POINTER_TYPE_P(TREE_TYPE(v)));
435 v = save_expr(v);
436 tree v1 = build_fold_indirect_ref_loc(location, v);
437 gcc_assert(TREE_CODE(TREE_TYPE(v1)) == RECORD_TYPE);
438 tree f = TYPE_FIELDS(TREE_TYPE(v1));
439 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(f)), "__type_descriptor")
440 == 0);
441 v1 = build3(COMPONENT_REF, TREE_TYPE(f), v1, f, NULL_TREE);
442
443 tree eq = fold_build2_loc(location, EQ_EXPR, boolean_type_node, v,
444 fold_convert_loc(location, TREE_TYPE(v),
445 null_pointer_node));
446 tree n = fold_convert_loc(location, TREE_TYPE(v1), null_pointer_node);
447 return fold_build3_loc(location, COND_EXPR, TREE_TYPE(v1),
448 eq, n, v1);
449 }
450
451 // Return a tree for the conversion of an interface type to an
452 // interface type.
453
454 tree
455 Expression::convert_interface_to_interface(Translate_context* context,
456 Type *lhs_type, Type *rhs_type,
457 tree rhs_tree, bool for_type_guard,
458 source_location location)
459 {
460 Gogo* gogo = context->gogo();
461 Interface_type* lhs_interface_type = lhs_type->interface_type();
462 bool lhs_is_empty = lhs_interface_type->is_empty();
463
464 tree lhs_type_tree = lhs_type->get_tree(gogo);
465 if (lhs_type_tree == error_mark_node)
466 return error_mark_node;
467
468 // In the general case this requires runtime examination of the type
469 // method table to match it up with the interface methods.
470
471 // FIXME: If all of the methods in the right hand side interface
472 // also appear in the left hand side interface, then we don't need
473 // to do a runtime check, although we still need to build a new
474 // method table.
475
476 // Get the type descriptor for the right hand side. This will be
477 // NULL for a nil interface.
478
479 if (!DECL_P(rhs_tree))
480 rhs_tree = save_expr(rhs_tree);
481
482 tree rhs_type_descriptor =
483 Expression::get_interface_type_descriptor(context, rhs_type, rhs_tree,
484 location);
485
486 // The result is going to be a two element constructor.
487
488 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
489
490 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
491 tree field = TYPE_FIELDS(lhs_type_tree);
492 elt->index = field;
493
494 if (for_type_guard)
495 {
496 // A type assertion fails when converting a nil interface.
497 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
498 static tree assert_interface_decl;
499 tree call = Gogo::call_builtin(&assert_interface_decl,
500 location,
501 "__go_assert_interface",
502 2,
503 ptr_type_node,
504 TREE_TYPE(lhs_type_descriptor),
505 lhs_type_descriptor,
506 TREE_TYPE(rhs_type_descriptor),
507 rhs_type_descriptor);
508 if (call == error_mark_node)
509 return error_mark_node;
510 // This will panic if the interface conversion fails.
511 TREE_NOTHROW(assert_interface_decl) = 0;
512 elt->value = fold_convert_loc(location, TREE_TYPE(field), call);
513 }
514 else if (lhs_is_empty)
515 {
516 // A convertion to an empty interface always succeeds, and the
517 // first field is just the type descriptor of the object.
518 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
519 "__type_descriptor") == 0);
520 gcc_assert(TREE_TYPE(field) == TREE_TYPE(rhs_type_descriptor));
521 elt->value = rhs_type_descriptor;
522 }
523 else
524 {
525 // A conversion to a non-empty interface may fail, but unlike a
526 // type assertion converting nil will always succeed.
527 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods")
528 == 0);
529 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
530 static tree convert_interface_decl;
531 tree call = Gogo::call_builtin(&convert_interface_decl,
532 location,
533 "__go_convert_interface",
534 2,
535 ptr_type_node,
536 TREE_TYPE(lhs_type_descriptor),
537 lhs_type_descriptor,
538 TREE_TYPE(rhs_type_descriptor),
539 rhs_type_descriptor);
540 if (call == error_mark_node)
541 return error_mark_node;
542 // This will panic if the interface conversion fails.
543 TREE_NOTHROW(convert_interface_decl) = 0;
544 elt->value = fold_convert_loc(location, TREE_TYPE(field), call);
545 }
546
547 // The second field is simply the object pointer.
548
549 elt = VEC_quick_push(constructor_elt, init, NULL);
550 field = DECL_CHAIN(field);
551 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
552 elt->index = field;
553
554 tree rhs_type_tree = TREE_TYPE(rhs_tree);
555 gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
556 tree rhs_field = DECL_CHAIN(TYPE_FIELDS(rhs_type_tree));
557 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__object") == 0);
558 elt->value = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
559 NULL_TREE);
560
561 return build_constructor(lhs_type_tree, init);
562 }
563
564 // Return a tree for the conversion of an interface type to a
565 // non-interface type.
566
567 tree
568 Expression::convert_interface_to_type(Translate_context* context,
569 Type *lhs_type, Type* rhs_type,
570 tree rhs_tree, source_location location)
571 {
572 Gogo* gogo = context->gogo();
573 tree rhs_type_tree = TREE_TYPE(rhs_tree);
574
575 tree lhs_type_tree = lhs_type->get_tree(gogo);
576 if (lhs_type_tree == error_mark_node)
577 return error_mark_node;
578
579 // Call a function to check that the type is valid. The function
580 // will panic with an appropriate runtime type error if the type is
581 // not valid.
582
583 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
584
585 if (!DECL_P(rhs_tree))
586 rhs_tree = save_expr(rhs_tree);
587
588 tree rhs_type_descriptor =
589 Expression::get_interface_type_descriptor(context, rhs_type, rhs_tree,
590 location);
591
592 tree rhs_inter_descriptor = rhs_type->type_descriptor_pointer(gogo);
593
594 static tree check_interface_type_decl;
595 tree call = Gogo::call_builtin(&check_interface_type_decl,
596 location,
597 "__go_check_interface_type",
598 3,
599 void_type_node,
600 TREE_TYPE(lhs_type_descriptor),
601 lhs_type_descriptor,
602 TREE_TYPE(rhs_type_descriptor),
603 rhs_type_descriptor,
604 TREE_TYPE(rhs_inter_descriptor),
605 rhs_inter_descriptor);
606 if (call == error_mark_node)
607 return error_mark_node;
608 // This call will panic if the conversion is invalid.
609 TREE_NOTHROW(check_interface_type_decl) = 0;
610
611 // If the call succeeds, pull out the value.
612 gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
613 tree rhs_field = DECL_CHAIN(TYPE_FIELDS(rhs_type_tree));
614 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__object") == 0);
615 tree val = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
616 NULL_TREE);
617
618 // If the value is a pointer, then it is the value we want.
619 // Otherwise it points to the value.
620 if (lhs_type->points_to() == NULL)
621 {
622 val = fold_convert_loc(location, build_pointer_type(lhs_type_tree), val);
623 val = build_fold_indirect_ref_loc(location, val);
624 }
625
626 return build2(COMPOUND_EXPR, lhs_type_tree, call,
627 fold_convert_loc(location, lhs_type_tree, val));
628 }
629
630 // Convert an expression to a tree. This is implemented by the child
631 // class. Not that it is not in general safe to call this multiple
632 // times for a single expression, but that we don't catch such errors.
633
634 tree
635 Expression::get_tree(Translate_context* context)
636 {
637 // The child may have marked this expression as having an error.
638 if (this->classification_ == EXPRESSION_ERROR)
639 return error_mark_node;
640
641 return this->do_get_tree(context);
642 }
643
644 // Return a tree for VAL in TYPE.
645
646 tree
647 Expression::integer_constant_tree(mpz_t val, tree type)
648 {
649 if (type == error_mark_node)
650 return error_mark_node;
651 else if (TREE_CODE(type) == INTEGER_TYPE)
652 return double_int_to_tree(type,
653 mpz_get_double_int(type, val, true));
654 else if (TREE_CODE(type) == REAL_TYPE)
655 {
656 mpfr_t fval;
657 mpfr_init_set_z(fval, val, GMP_RNDN);
658 tree ret = Expression::float_constant_tree(fval, type);
659 mpfr_clear(fval);
660 return ret;
661 }
662 else if (TREE_CODE(type) == COMPLEX_TYPE)
663 {
664 mpfr_t fval;
665 mpfr_init_set_z(fval, val, GMP_RNDN);
666 tree real = Expression::float_constant_tree(fval, TREE_TYPE(type));
667 mpfr_clear(fval);
668 tree imag = build_real_from_int_cst(TREE_TYPE(type),
669 integer_zero_node);
670 return build_complex(type, real, imag);
671 }
672 else
673 gcc_unreachable();
674 }
675
676 // Return a tree for VAL in TYPE.
677
678 tree
679 Expression::float_constant_tree(mpfr_t val, tree type)
680 {
681 if (type == error_mark_node)
682 return error_mark_node;
683 else if (TREE_CODE(type) == INTEGER_TYPE)
684 {
685 mpz_t ival;
686 mpz_init(ival);
687 mpfr_get_z(ival, val, GMP_RNDN);
688 tree ret = Expression::integer_constant_tree(ival, type);
689 mpz_clear(ival);
690 return ret;
691 }
692 else if (TREE_CODE(type) == REAL_TYPE)
693 {
694 REAL_VALUE_TYPE r1;
695 real_from_mpfr(&r1, val, type, GMP_RNDN);
696 REAL_VALUE_TYPE r2;
697 real_convert(&r2, TYPE_MODE(type), &r1);
698 return build_real(type, r2);
699 }
700 else if (TREE_CODE(type) == COMPLEX_TYPE)
701 {
702 REAL_VALUE_TYPE r1;
703 real_from_mpfr(&r1, val, TREE_TYPE(type), GMP_RNDN);
704 REAL_VALUE_TYPE r2;
705 real_convert(&r2, TYPE_MODE(TREE_TYPE(type)), &r1);
706 tree imag = build_real_from_int_cst(TREE_TYPE(type),
707 integer_zero_node);
708 return build_complex(type, build_real(TREE_TYPE(type), r2), imag);
709 }
710 else
711 gcc_unreachable();
712 }
713
714 // Return a tree for REAL/IMAG in TYPE.
715
716 tree
717 Expression::complex_constant_tree(mpfr_t real, mpfr_t imag, tree type)
718 {
719 if (TREE_CODE(type) == COMPLEX_TYPE)
720 {
721 REAL_VALUE_TYPE r1;
722 real_from_mpfr(&r1, real, TREE_TYPE(type), GMP_RNDN);
723 REAL_VALUE_TYPE r2;
724 real_convert(&r2, TYPE_MODE(TREE_TYPE(type)), &r1);
725
726 REAL_VALUE_TYPE r3;
727 real_from_mpfr(&r3, imag, TREE_TYPE(type), GMP_RNDN);
728 REAL_VALUE_TYPE r4;
729 real_convert(&r4, TYPE_MODE(TREE_TYPE(type)), &r3);
730
731 return build_complex(type, build_real(TREE_TYPE(type), r2),
732 build_real(TREE_TYPE(type), r4));
733 }
734 else
735 gcc_unreachable();
736 }
737
738 // Return a tree which evaluates to true if VAL, of arbitrary integer
739 // type, is negative or is more than the maximum value of BOUND_TYPE.
740 // If SOFAR is not NULL, it is or'red into the result. The return
741 // value may be NULL if SOFAR is NULL.
742
743 tree
744 Expression::check_bounds(tree val, tree bound_type, tree sofar,
745 source_location loc)
746 {
747 tree val_type = TREE_TYPE(val);
748 tree ret = NULL_TREE;
749
750 if (!TYPE_UNSIGNED(val_type))
751 {
752 ret = fold_build2_loc(loc, LT_EXPR, boolean_type_node, val,
753 build_int_cst(val_type, 0));
754 if (ret == boolean_false_node)
755 ret = NULL_TREE;
756 }
757
758 if ((TYPE_UNSIGNED(val_type) && !TYPE_UNSIGNED(bound_type))
759 || TYPE_SIZE(val_type) > TYPE_SIZE(bound_type))
760 {
761 tree max = TYPE_MAX_VALUE(bound_type);
762 tree big = fold_build2_loc(loc, GT_EXPR, boolean_type_node, val,
763 fold_convert_loc(loc, val_type, max));
764 if (big == boolean_false_node)
765 ;
766 else if (ret == NULL_TREE)
767 ret = big;
768 else
769 ret = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
770 ret, big);
771 }
772
773 if (ret == NULL_TREE)
774 return sofar;
775 else if (sofar == NULL_TREE)
776 return ret;
777 else
778 return fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
779 sofar, ret);
780 }
781
782 // Error expressions. This are used to avoid cascading errors.
783
784 class Error_expression : public Expression
785 {
786 public:
787 Error_expression(source_location location)
788 : Expression(EXPRESSION_ERROR, location)
789 { }
790
791 protected:
792 bool
793 do_is_constant() const
794 { return true; }
795
796 bool
797 do_integer_constant_value(bool, mpz_t val, Type**) const
798 {
799 mpz_set_ui(val, 0);
800 return true;
801 }
802
803 bool
804 do_float_constant_value(mpfr_t val, Type**) const
805 {
806 mpfr_set_ui(val, 0, GMP_RNDN);
807 return true;
808 }
809
810 bool
811 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const
812 {
813 mpfr_set_ui(real, 0, GMP_RNDN);
814 mpfr_set_ui(imag, 0, GMP_RNDN);
815 return true;
816 }
817
818 void
819 do_discarding_value()
820 { }
821
822 Type*
823 do_type()
824 { return Type::make_error_type(); }
825
826 void
827 do_determine_type(const Type_context*)
828 { }
829
830 Expression*
831 do_copy()
832 { return this; }
833
834 bool
835 do_is_addressable() const
836 { return true; }
837
838 tree
839 do_get_tree(Translate_context*)
840 { return error_mark_node; }
841 };
842
843 Expression*
844 Expression::make_error(source_location location)
845 {
846 return new Error_expression(location);
847 }
848
849 // An expression which is really a type. This is used during parsing.
850 // It is an error if these survive after lowering.
851
852 class
853 Type_expression : public Expression
854 {
855 public:
856 Type_expression(Type* type, source_location location)
857 : Expression(EXPRESSION_TYPE, location),
858 type_(type)
859 { }
860
861 protected:
862 int
863 do_traverse(Traverse* traverse)
864 { return Type::traverse(this->type_, traverse); }
865
866 Type*
867 do_type()
868 { return this->type_; }
869
870 void
871 do_determine_type(const Type_context*)
872 { }
873
874 void
875 do_check_types(Gogo*)
876 { this->report_error(_("invalid use of type")); }
877
878 Expression*
879 do_copy()
880 { return this; }
881
882 tree
883 do_get_tree(Translate_context*)
884 { gcc_unreachable(); }
885
886 private:
887 // The type which we are representing as an expression.
888 Type* type_;
889 };
890
891 Expression*
892 Expression::make_type(Type* type, source_location location)
893 {
894 return new Type_expression(type, location);
895 }
896
897 // Class Parser_expression.
898
899 Type*
900 Parser_expression::do_type()
901 {
902 // We should never really ask for the type of a Parser_expression.
903 // However, it can happen, at least when we have an invalid const
904 // whose initializer refers to the const itself. In that case we
905 // may ask for the type when lowering the const itself.
906 gcc_assert(saw_errors());
907 return Type::make_error_type();
908 }
909
910 // Class Var_expression.
911
912 // Lower a variable expression. Here we just make sure that the
913 // initialization expression of the variable has been lowered. This
914 // ensures that we will be able to determine the type of the variable
915 // if necessary.
916
917 Expression*
918 Var_expression::do_lower(Gogo* gogo, Named_object* function, int)
919 {
920 if (this->variable_->is_variable())
921 {
922 Variable* var = this->variable_->var_value();
923 // This is either a local variable or a global variable. A
924 // reference to a variable which is local to an enclosing
925 // function will be a reference to a field in a closure.
926 if (var->is_global())
927 function = NULL;
928 var->lower_init_expression(gogo, function);
929 }
930 return this;
931 }
932
933 // Return the name of the variable.
934
935 const std::string&
936 Var_expression::name() const
937 {
938 return this->variable_->name();
939 }
940
941 // Return the type of a reference to a variable.
942
943 Type*
944 Var_expression::do_type()
945 {
946 if (this->variable_->is_variable())
947 return this->variable_->var_value()->type();
948 else if (this->variable_->is_result_variable())
949 return this->variable_->result_var_value()->type();
950 else
951 gcc_unreachable();
952 }
953
954 // Something takes the address of this variable. This means that we
955 // may want to move the variable onto the heap.
956
957 void
958 Var_expression::do_address_taken(bool escapes)
959 {
960 if (!escapes)
961 ;
962 else if (this->variable_->is_variable())
963 this->variable_->var_value()->set_address_taken();
964 else if (this->variable_->is_result_variable())
965 this->variable_->result_var_value()->set_address_taken();
966 else
967 gcc_unreachable();
968 }
969
970 // Get the tree for a reference to a variable.
971
972 tree
973 Var_expression::do_get_tree(Translate_context* context)
974 {
975 return this->variable_->get_tree(context->gogo(), context->function());
976 }
977
978 // Make a reference to a variable in an expression.
979
980 Expression*
981 Expression::make_var_reference(Named_object* var, source_location location)
982 {
983 if (var->is_sink())
984 return Expression::make_sink(location);
985
986 // FIXME: Creating a new object for each reference to a variable is
987 // wasteful.
988 return new Var_expression(var, location);
989 }
990
991 // Class Temporary_reference_expression.
992
993 // The type.
994
995 Type*
996 Temporary_reference_expression::do_type()
997 {
998 return this->statement_->type();
999 }
1000
1001 // Called if something takes the address of this temporary variable.
1002 // We never have to move temporary variables to the heap, but we do
1003 // need to know that they must live in the stack rather than in a
1004 // register.
1005
1006 void
1007 Temporary_reference_expression::do_address_taken(bool)
1008 {
1009 this->statement_->set_is_address_taken();
1010 }
1011
1012 // Get a tree referring to the variable.
1013
1014 tree
1015 Temporary_reference_expression::do_get_tree(Translate_context*)
1016 {
1017 return this->statement_->get_decl();
1018 }
1019
1020 // Make a reference to a temporary variable.
1021
1022 Expression*
1023 Expression::make_temporary_reference(Temporary_statement* statement,
1024 source_location location)
1025 {
1026 return new Temporary_reference_expression(statement, location);
1027 }
1028
1029 // A sink expression--a use of the blank identifier _.
1030
1031 class Sink_expression : public Expression
1032 {
1033 public:
1034 Sink_expression(source_location location)
1035 : Expression(EXPRESSION_SINK, location),
1036 type_(NULL), var_(NULL_TREE)
1037 { }
1038
1039 protected:
1040 void
1041 do_discarding_value()
1042 { }
1043
1044 Type*
1045 do_type();
1046
1047 void
1048 do_determine_type(const Type_context*);
1049
1050 Expression*
1051 do_copy()
1052 { return new Sink_expression(this->location()); }
1053
1054 tree
1055 do_get_tree(Translate_context*);
1056
1057 private:
1058 // The type of this sink variable.
1059 Type* type_;
1060 // The temporary variable we generate.
1061 tree var_;
1062 };
1063
1064 // Return the type of a sink expression.
1065
1066 Type*
1067 Sink_expression::do_type()
1068 {
1069 if (this->type_ == NULL)
1070 return Type::make_sink_type();
1071 return this->type_;
1072 }
1073
1074 // Determine the type of a sink expression.
1075
1076 void
1077 Sink_expression::do_determine_type(const Type_context* context)
1078 {
1079 if (context->type != NULL)
1080 this->type_ = context->type;
1081 }
1082
1083 // Return a temporary variable for a sink expression. This will
1084 // presumably be a write-only variable which the middle-end will drop.
1085
1086 tree
1087 Sink_expression::do_get_tree(Translate_context* context)
1088 {
1089 if (this->var_ == NULL_TREE)
1090 {
1091 gcc_assert(this->type_ != NULL && !this->type_->is_sink_type());
1092 this->var_ = create_tmp_var(this->type_->get_tree(context->gogo()),
1093 "blank");
1094 }
1095 return this->var_;
1096 }
1097
1098 // Make a sink expression.
1099
1100 Expression*
1101 Expression::make_sink(source_location location)
1102 {
1103 return new Sink_expression(location);
1104 }
1105
1106 // Class Func_expression.
1107
1108 // FIXME: Can a function expression appear in a constant expression?
1109 // The value is unchanging. Initializing a constant to the address of
1110 // a function seems like it could work, though there might be little
1111 // point to it.
1112
1113 // Return the name of the function.
1114
1115 const std::string&
1116 Func_expression::name() const
1117 {
1118 return this->function_->name();
1119 }
1120
1121 // Traversal.
1122
1123 int
1124 Func_expression::do_traverse(Traverse* traverse)
1125 {
1126 return (this->closure_ == NULL
1127 ? TRAVERSE_CONTINUE
1128 : Expression::traverse(&this->closure_, traverse));
1129 }
1130
1131 // Return the type of a function expression.
1132
1133 Type*
1134 Func_expression::do_type()
1135 {
1136 if (this->function_->is_function())
1137 return this->function_->func_value()->type();
1138 else if (this->function_->is_function_declaration())
1139 return this->function_->func_declaration_value()->type();
1140 else
1141 gcc_unreachable();
1142 }
1143
1144 // Get the tree for a function expression without evaluating the
1145 // closure.
1146
1147 tree
1148 Func_expression::get_tree_without_closure(Gogo* gogo)
1149 {
1150 Function_type* fntype;
1151 if (this->function_->is_function())
1152 fntype = this->function_->func_value()->type();
1153 else if (this->function_->is_function_declaration())
1154 fntype = this->function_->func_declaration_value()->type();
1155 else
1156 gcc_unreachable();
1157
1158 // Builtin functions are handled specially by Call_expression. We
1159 // can't take their address.
1160 if (fntype->is_builtin())
1161 {
1162 error_at(this->location(), "invalid use of special builtin function %qs",
1163 this->function_->name().c_str());
1164 return error_mark_node;
1165 }
1166
1167 Named_object* no = this->function_;
1168
1169 tree id = no->get_id(gogo);
1170 if (id == error_mark_node)
1171 return error_mark_node;
1172
1173 tree fndecl;
1174 if (no->is_function())
1175 fndecl = no->func_value()->get_or_make_decl(gogo, no, id);
1176 else if (no->is_function_declaration())
1177 fndecl = no->func_declaration_value()->get_or_make_decl(gogo, no, id);
1178 else
1179 gcc_unreachable();
1180
1181 if (fndecl == error_mark_node)
1182 return error_mark_node;
1183
1184 return build_fold_addr_expr_loc(this->location(), fndecl);
1185 }
1186
1187 // Get the tree for a function expression. This is used when we take
1188 // the address of a function rather than simply calling it. If the
1189 // function has a closure, we must use a trampoline.
1190
1191 tree
1192 Func_expression::do_get_tree(Translate_context* context)
1193 {
1194 Gogo* gogo = context->gogo();
1195
1196 tree fnaddr = this->get_tree_without_closure(gogo);
1197 if (fnaddr == error_mark_node)
1198 return error_mark_node;
1199
1200 gcc_assert(TREE_CODE(fnaddr) == ADDR_EXPR
1201 && TREE_CODE(TREE_OPERAND(fnaddr, 0)) == FUNCTION_DECL);
1202 TREE_ADDRESSABLE(TREE_OPERAND(fnaddr, 0)) = 1;
1203
1204 // For a normal non-nested function call, that is all we have to do.
1205 if (!this->function_->is_function()
1206 || this->function_->func_value()->enclosing() == NULL)
1207 {
1208 gcc_assert(this->closure_ == NULL);
1209 return fnaddr;
1210 }
1211
1212 // For a nested function call, we have to always allocate a
1213 // trampoline. If we don't always allocate, then closures will not
1214 // be reliably distinct.
1215 Expression* closure = this->closure_;
1216 tree closure_tree;
1217 if (closure == NULL)
1218 closure_tree = null_pointer_node;
1219 else
1220 {
1221 // Get the value of the closure. This will be a pointer to
1222 // space allocated on the heap.
1223 closure_tree = closure->get_tree(context);
1224 if (closure_tree == error_mark_node)
1225 return error_mark_node;
1226 gcc_assert(POINTER_TYPE_P(TREE_TYPE(closure_tree)));
1227 }
1228
1229 // Now we need to build some code on the heap. This code will load
1230 // the static chain pointer with the closure and then jump to the
1231 // body of the function. The normal gcc approach is to build the
1232 // code on the stack. Unfortunately we can not do that, as Go
1233 // permits us to return the function pointer.
1234
1235 return gogo->make_trampoline(fnaddr, closure_tree, this->location());
1236 }
1237
1238 // Make a reference to a function in an expression.
1239
1240 Expression*
1241 Expression::make_func_reference(Named_object* function, Expression* closure,
1242 source_location location)
1243 {
1244 return new Func_expression(function, closure, location);
1245 }
1246
1247 // Class Unknown_expression.
1248
1249 // Return the name of an unknown expression.
1250
1251 const std::string&
1252 Unknown_expression::name() const
1253 {
1254 return this->named_object_->name();
1255 }
1256
1257 // Lower a reference to an unknown name.
1258
1259 Expression*
1260 Unknown_expression::do_lower(Gogo*, Named_object*, int)
1261 {
1262 source_location location = this->location();
1263 Named_object* no = this->named_object_;
1264 Named_object* real;
1265 if (!no->is_unknown())
1266 real = no;
1267 else
1268 {
1269 real = no->unknown_value()->real_named_object();
1270 if (real == NULL)
1271 {
1272 if (this->is_composite_literal_key_)
1273 return this;
1274 error_at(location, "reference to undefined name %qs",
1275 this->named_object_->message_name().c_str());
1276 return Expression::make_error(location);
1277 }
1278 }
1279 switch (real->classification())
1280 {
1281 case Named_object::NAMED_OBJECT_CONST:
1282 return Expression::make_const_reference(real, location);
1283 case Named_object::NAMED_OBJECT_TYPE:
1284 return Expression::make_type(real->type_value(), location);
1285 case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
1286 if (this->is_composite_literal_key_)
1287 return this;
1288 error_at(location, "reference to undefined type %qs",
1289 real->message_name().c_str());
1290 return Expression::make_error(location);
1291 case Named_object::NAMED_OBJECT_VAR:
1292 return Expression::make_var_reference(real, location);
1293 case Named_object::NAMED_OBJECT_FUNC:
1294 case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
1295 return Expression::make_func_reference(real, NULL, location);
1296 case Named_object::NAMED_OBJECT_PACKAGE:
1297 if (this->is_composite_literal_key_)
1298 return this;
1299 error_at(location, "unexpected reference to package");
1300 return Expression::make_error(location);
1301 default:
1302 gcc_unreachable();
1303 }
1304 }
1305
1306 // Make a reference to an unknown name.
1307
1308 Expression*
1309 Expression::make_unknown_reference(Named_object* no, source_location location)
1310 {
1311 gcc_assert(no->resolve()->is_unknown());
1312 return new Unknown_expression(no, location);
1313 }
1314
1315 // A boolean expression.
1316
1317 class Boolean_expression : public Expression
1318 {
1319 public:
1320 Boolean_expression(bool val, source_location location)
1321 : Expression(EXPRESSION_BOOLEAN, location),
1322 val_(val), type_(NULL)
1323 { }
1324
1325 static Expression*
1326 do_import(Import*);
1327
1328 protected:
1329 bool
1330 do_is_constant() const
1331 { return true; }
1332
1333 Type*
1334 do_type();
1335
1336 void
1337 do_determine_type(const Type_context*);
1338
1339 Expression*
1340 do_copy()
1341 { return this; }
1342
1343 tree
1344 do_get_tree(Translate_context*)
1345 { return this->val_ ? boolean_true_node : boolean_false_node; }
1346
1347 void
1348 do_export(Export* exp) const
1349 { exp->write_c_string(this->val_ ? "true" : "false"); }
1350
1351 private:
1352 // The constant.
1353 bool val_;
1354 // The type as determined by context.
1355 Type* type_;
1356 };
1357
1358 // Get the type.
1359
1360 Type*
1361 Boolean_expression::do_type()
1362 {
1363 if (this->type_ == NULL)
1364 this->type_ = Type::make_boolean_type();
1365 return this->type_;
1366 }
1367
1368 // Set the type from the context.
1369
1370 void
1371 Boolean_expression::do_determine_type(const Type_context* context)
1372 {
1373 if (this->type_ != NULL && !this->type_->is_abstract())
1374 ;
1375 else if (context->type != NULL && context->type->is_boolean_type())
1376 this->type_ = context->type;
1377 else if (!context->may_be_abstract)
1378 this->type_ = Type::lookup_bool_type();
1379 }
1380
1381 // Import a boolean constant.
1382
1383 Expression*
1384 Boolean_expression::do_import(Import* imp)
1385 {
1386 if (imp->peek_char() == 't')
1387 {
1388 imp->require_c_string("true");
1389 return Expression::make_boolean(true, imp->location());
1390 }
1391 else
1392 {
1393 imp->require_c_string("false");
1394 return Expression::make_boolean(false, imp->location());
1395 }
1396 }
1397
1398 // Make a boolean expression.
1399
1400 Expression*
1401 Expression::make_boolean(bool val, source_location location)
1402 {
1403 return new Boolean_expression(val, location);
1404 }
1405
1406 // Class String_expression.
1407
1408 // Get the type.
1409
1410 Type*
1411 String_expression::do_type()
1412 {
1413 if (this->type_ == NULL)
1414 this->type_ = Type::make_string_type();
1415 return this->type_;
1416 }
1417
1418 // Set the type from the context.
1419
1420 void
1421 String_expression::do_determine_type(const Type_context* context)
1422 {
1423 if (this->type_ != NULL && !this->type_->is_abstract())
1424 ;
1425 else if (context->type != NULL && context->type->is_string_type())
1426 this->type_ = context->type;
1427 else if (!context->may_be_abstract)
1428 this->type_ = Type::lookup_string_type();
1429 }
1430
1431 // Build a string constant.
1432
1433 tree
1434 String_expression::do_get_tree(Translate_context* context)
1435 {
1436 return context->gogo()->go_string_constant_tree(this->val_);
1437 }
1438
1439 // Export a string expression.
1440
1441 void
1442 String_expression::do_export(Export* exp) const
1443 {
1444 std::string s;
1445 s.reserve(this->val_.length() * 4 + 2);
1446 s += '"';
1447 for (std::string::const_iterator p = this->val_.begin();
1448 p != this->val_.end();
1449 ++p)
1450 {
1451 if (*p == '\\' || *p == '"')
1452 {
1453 s += '\\';
1454 s += *p;
1455 }
1456 else if (*p >= 0x20 && *p < 0x7f)
1457 s += *p;
1458 else if (*p == '\n')
1459 s += "\\n";
1460 else if (*p == '\t')
1461 s += "\\t";
1462 else
1463 {
1464 s += "\\x";
1465 unsigned char c = *p;
1466 unsigned int dig = c >> 4;
1467 s += dig < 10 ? '0' + dig : 'A' + dig - 10;
1468 dig = c & 0xf;
1469 s += dig < 10 ? '0' + dig : 'A' + dig - 10;
1470 }
1471 }
1472 s += '"';
1473 exp->write_string(s);
1474 }
1475
1476 // Import a string expression.
1477
1478 Expression*
1479 String_expression::do_import(Import* imp)
1480 {
1481 imp->require_c_string("\"");
1482 std::string val;
1483 while (true)
1484 {
1485 int c = imp->get_char();
1486 if (c == '"' || c == -1)
1487 break;
1488 if (c != '\\')
1489 val += static_cast<char>(c);
1490 else
1491 {
1492 c = imp->get_char();
1493 if (c == '\\' || c == '"')
1494 val += static_cast<char>(c);
1495 else if (c == 'n')
1496 val += '\n';
1497 else if (c == 't')
1498 val += '\t';
1499 else if (c == 'x')
1500 {
1501 c = imp->get_char();
1502 unsigned int vh = c >= '0' && c <= '9' ? c - '0' : c - 'A' + 10;
1503 c = imp->get_char();
1504 unsigned int vl = c >= '0' && c <= '9' ? c - '0' : c - 'A' + 10;
1505 char v = (vh << 4) | vl;
1506 val += v;
1507 }
1508 else
1509 {
1510 error_at(imp->location(), "bad string constant");
1511 return Expression::make_error(imp->location());
1512 }
1513 }
1514 }
1515 return Expression::make_string(val, imp->location());
1516 }
1517
1518 // Make a string expression.
1519
1520 Expression*
1521 Expression::make_string(const std::string& val, source_location location)
1522 {
1523 return new String_expression(val, location);
1524 }
1525
1526 // Make an integer expression.
1527
1528 class Integer_expression : public Expression
1529 {
1530 public:
1531 Integer_expression(const mpz_t* val, Type* type, source_location location)
1532 : Expression(EXPRESSION_INTEGER, location),
1533 type_(type)
1534 { mpz_init_set(this->val_, *val); }
1535
1536 static Expression*
1537 do_import(Import*);
1538
1539 // Return whether VAL fits in the type.
1540 static bool
1541 check_constant(mpz_t val, Type*, source_location);
1542
1543 // Write VAL to export data.
1544 static void
1545 export_integer(Export* exp, const mpz_t val);
1546
1547 protected:
1548 bool
1549 do_is_constant() const
1550 { return true; }
1551
1552 bool
1553 do_integer_constant_value(bool, mpz_t val, Type** ptype) const;
1554
1555 Type*
1556 do_type();
1557
1558 void
1559 do_determine_type(const Type_context* context);
1560
1561 void
1562 do_check_types(Gogo*);
1563
1564 tree
1565 do_get_tree(Translate_context*);
1566
1567 Expression*
1568 do_copy()
1569 { return Expression::make_integer(&this->val_, this->type_,
1570 this->location()); }
1571
1572 void
1573 do_export(Export*) const;
1574
1575 private:
1576 // The integer value.
1577 mpz_t val_;
1578 // The type so far.
1579 Type* type_;
1580 };
1581
1582 // Return an integer constant value.
1583
1584 bool
1585 Integer_expression::do_integer_constant_value(bool, mpz_t val,
1586 Type** ptype) const
1587 {
1588 if (this->type_ != NULL)
1589 *ptype = this->type_;
1590 mpz_set(val, this->val_);
1591 return true;
1592 }
1593
1594 // Return the current type. If we haven't set the type yet, we return
1595 // an abstract integer type.
1596
1597 Type*
1598 Integer_expression::do_type()
1599 {
1600 if (this->type_ == NULL)
1601 this->type_ = Type::make_abstract_integer_type();
1602 return this->type_;
1603 }
1604
1605 // Set the type of the integer value. Here we may switch from an
1606 // abstract type to a real type.
1607
1608 void
1609 Integer_expression::do_determine_type(const Type_context* context)
1610 {
1611 if (this->type_ != NULL && !this->type_->is_abstract())
1612 ;
1613 else if (context->type != NULL
1614 && (context->type->integer_type() != NULL
1615 || context->type->float_type() != NULL
1616 || context->type->complex_type() != NULL))
1617 this->type_ = context->type;
1618 else if (!context->may_be_abstract)
1619 this->type_ = Type::lookup_integer_type("int");
1620 }
1621
1622 // Return true if the integer VAL fits in the range of the type TYPE.
1623 // Otherwise give an error and return false. TYPE may be NULL.
1624
1625 bool
1626 Integer_expression::check_constant(mpz_t val, Type* type,
1627 source_location location)
1628 {
1629 if (type == NULL)
1630 return true;
1631 Integer_type* itype = type->integer_type();
1632 if (itype == NULL || itype->is_abstract())
1633 return true;
1634
1635 int bits = mpz_sizeinbase(val, 2);
1636
1637 if (itype->is_unsigned())
1638 {
1639 // For an unsigned type we can only accept a nonnegative number,
1640 // and we must be able to represent at least BITS.
1641 if (mpz_sgn(val) >= 0
1642 && bits <= itype->bits())
1643 return true;
1644 }
1645 else
1646 {
1647 // For a signed type we need an extra bit to indicate the sign.
1648 // We have to handle the most negative integer specially.
1649 if (bits + 1 <= itype->bits()
1650 || (bits <= itype->bits()
1651 && mpz_sgn(val) < 0
1652 && (mpz_scan1(val, 0)
1653 == static_cast<unsigned long>(itype->bits() - 1))
1654 && mpz_scan0(val, itype->bits()) == ULONG_MAX))
1655 return true;
1656 }
1657
1658 error_at(location, "integer constant overflow");
1659 return false;
1660 }
1661
1662 // Check the type of an integer constant.
1663
1664 void
1665 Integer_expression::do_check_types(Gogo*)
1666 {
1667 if (this->type_ == NULL)
1668 return;
1669 if (!Integer_expression::check_constant(this->val_, this->type_,
1670 this->location()))
1671 this->set_is_error();
1672 }
1673
1674 // Get a tree for an integer constant.
1675
1676 tree
1677 Integer_expression::do_get_tree(Translate_context* context)
1678 {
1679 Gogo* gogo = context->gogo();
1680 tree type;
1681 if (this->type_ != NULL && !this->type_->is_abstract())
1682 type = this->type_->get_tree(gogo);
1683 else if (this->type_ != NULL && this->type_->float_type() != NULL)
1684 {
1685 // We are converting to an abstract floating point type.
1686 type = Type::lookup_float_type("float64")->get_tree(gogo);
1687 }
1688 else if (this->type_ != NULL && this->type_->complex_type() != NULL)
1689 {
1690 // We are converting to an abstract complex type.
1691 type = Type::lookup_complex_type("complex128")->get_tree(gogo);
1692 }
1693 else
1694 {
1695 // If we still have an abstract type here, then this is being
1696 // used in a constant expression which didn't get reduced for
1697 // some reason. Use a type which will fit the value. We use <,
1698 // not <=, because we need an extra bit for the sign bit.
1699 int bits = mpz_sizeinbase(this->val_, 2);
1700 if (bits < INT_TYPE_SIZE)
1701 type = Type::lookup_integer_type("int")->get_tree(gogo);
1702 else if (bits < 64)
1703 type = Type::lookup_integer_type("int64")->get_tree(gogo);
1704 else
1705 type = long_long_integer_type_node;
1706 }
1707 return Expression::integer_constant_tree(this->val_, type);
1708 }
1709
1710 // Write VAL to export data.
1711
1712 void
1713 Integer_expression::export_integer(Export* exp, const mpz_t val)
1714 {
1715 char* s = mpz_get_str(NULL, 10, val);
1716 exp->write_c_string(s);
1717 free(s);
1718 }
1719
1720 // Export an integer in a constant expression.
1721
1722 void
1723 Integer_expression::do_export(Export* exp) const
1724 {
1725 Integer_expression::export_integer(exp, this->val_);
1726 // A trailing space lets us reliably identify the end of the number.
1727 exp->write_c_string(" ");
1728 }
1729
1730 // Import an integer, floating point, or complex value. This handles
1731 // all these types because they all start with digits.
1732
1733 Expression*
1734 Integer_expression::do_import(Import* imp)
1735 {
1736 std::string num = imp->read_identifier();
1737 imp->require_c_string(" ");
1738 if (!num.empty() && num[num.length() - 1] == 'i')
1739 {
1740 mpfr_t real;
1741 size_t plus_pos = num.find('+', 1);
1742 size_t minus_pos = num.find('-', 1);
1743 size_t pos;
1744 if (plus_pos == std::string::npos)
1745 pos = minus_pos;
1746 else if (minus_pos == std::string::npos)
1747 pos = plus_pos;
1748 else
1749 {
1750 error_at(imp->location(), "bad number in import data: %qs",
1751 num.c_str());
1752 return Expression::make_error(imp->location());
1753 }
1754 if (pos == std::string::npos)
1755 mpfr_set_ui(real, 0, GMP_RNDN);
1756 else
1757 {
1758 std::string real_str = num.substr(0, pos);
1759 if (mpfr_init_set_str(real, real_str.c_str(), 10, GMP_RNDN) != 0)
1760 {
1761 error_at(imp->location(), "bad number in import data: %qs",
1762 real_str.c_str());
1763 return Expression::make_error(imp->location());
1764 }
1765 }
1766
1767 std::string imag_str;
1768 if (pos == std::string::npos)
1769 imag_str = num;
1770 else
1771 imag_str = num.substr(pos);
1772 imag_str = imag_str.substr(0, imag_str.size() - 1);
1773 mpfr_t imag;
1774 if (mpfr_init_set_str(imag, imag_str.c_str(), 10, GMP_RNDN) != 0)
1775 {
1776 error_at(imp->location(), "bad number in import data: %qs",
1777 imag_str.c_str());
1778 return Expression::make_error(imp->location());
1779 }
1780 Expression* ret = Expression::make_complex(&real, &imag, NULL,
1781 imp->location());
1782 mpfr_clear(real);
1783 mpfr_clear(imag);
1784 return ret;
1785 }
1786 else if (num.find('.') == std::string::npos
1787 && num.find('E') == std::string::npos)
1788 {
1789 mpz_t val;
1790 if (mpz_init_set_str(val, num.c_str(), 10) != 0)
1791 {
1792 error_at(imp->location(), "bad number in import data: %qs",
1793 num.c_str());
1794 return Expression::make_error(imp->location());
1795 }
1796 Expression* ret = Expression::make_integer(&val, NULL, imp->location());
1797 mpz_clear(val);
1798 return ret;
1799 }
1800 else
1801 {
1802 mpfr_t val;
1803 if (mpfr_init_set_str(val, num.c_str(), 10, GMP_RNDN) != 0)
1804 {
1805 error_at(imp->location(), "bad number in import data: %qs",
1806 num.c_str());
1807 return Expression::make_error(imp->location());
1808 }
1809 Expression* ret = Expression::make_float(&val, NULL, imp->location());
1810 mpfr_clear(val);
1811 return ret;
1812 }
1813 }
1814
1815 // Build a new integer value.
1816
1817 Expression*
1818 Expression::make_integer(const mpz_t* val, Type* type,
1819 source_location location)
1820 {
1821 return new Integer_expression(val, type, location);
1822 }
1823
1824 // Floats.
1825
1826 class Float_expression : public Expression
1827 {
1828 public:
1829 Float_expression(const mpfr_t* val, Type* type, source_location location)
1830 : Expression(EXPRESSION_FLOAT, location),
1831 type_(type)
1832 {
1833 mpfr_init_set(this->val_, *val, GMP_RNDN);
1834 }
1835
1836 // Constrain VAL to fit into TYPE.
1837 static void
1838 constrain_float(mpfr_t val, Type* type);
1839
1840 // Return whether VAL fits in the type.
1841 static bool
1842 check_constant(mpfr_t val, Type*, source_location);
1843
1844 // Write VAL to export data.
1845 static void
1846 export_float(Export* exp, const mpfr_t val);
1847
1848 protected:
1849 bool
1850 do_is_constant() const
1851 { return true; }
1852
1853 bool
1854 do_float_constant_value(mpfr_t val, Type**) const;
1855
1856 Type*
1857 do_type();
1858
1859 void
1860 do_determine_type(const Type_context*);
1861
1862 void
1863 do_check_types(Gogo*);
1864
1865 Expression*
1866 do_copy()
1867 { return Expression::make_float(&this->val_, this->type_,
1868 this->location()); }
1869
1870 tree
1871 do_get_tree(Translate_context*);
1872
1873 void
1874 do_export(Export*) const;
1875
1876 private:
1877 // The floating point value.
1878 mpfr_t val_;
1879 // The type so far.
1880 Type* type_;
1881 };
1882
1883 // Constrain VAL to fit into TYPE.
1884
1885 void
1886 Float_expression::constrain_float(mpfr_t val, Type* type)
1887 {
1888 Float_type* ftype = type->float_type();
1889 if (ftype != NULL && !ftype->is_abstract())
1890 {
1891 tree type_tree = ftype->type_tree();
1892 REAL_VALUE_TYPE rvt;
1893 real_from_mpfr(&rvt, val, type_tree, GMP_RNDN);
1894 real_convert(&rvt, TYPE_MODE(type_tree), &rvt);
1895 mpfr_from_real(val, &rvt, GMP_RNDN);
1896 }
1897 }
1898
1899 // Return a floating point constant value.
1900
1901 bool
1902 Float_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
1903 {
1904 if (this->type_ != NULL)
1905 *ptype = this->type_;
1906 mpfr_set(val, this->val_, GMP_RNDN);
1907 return true;
1908 }
1909
1910 // Return the current type. If we haven't set the type yet, we return
1911 // an abstract float type.
1912
1913 Type*
1914 Float_expression::do_type()
1915 {
1916 if (this->type_ == NULL)
1917 this->type_ = Type::make_abstract_float_type();
1918 return this->type_;
1919 }
1920
1921 // Set the type of the float value. Here we may switch from an
1922 // abstract type to a real type.
1923
1924 void
1925 Float_expression::do_determine_type(const Type_context* context)
1926 {
1927 if (this->type_ != NULL && !this->type_->is_abstract())
1928 ;
1929 else if (context->type != NULL
1930 && (context->type->integer_type() != NULL
1931 || context->type->float_type() != NULL
1932 || context->type->complex_type() != NULL))
1933 this->type_ = context->type;
1934 else if (!context->may_be_abstract)
1935 this->type_ = Type::lookup_float_type("float");
1936 }
1937
1938 // Return true if the floating point value VAL fits in the range of
1939 // the type TYPE. Otherwise give an error and return false. TYPE may
1940 // be NULL.
1941
1942 bool
1943 Float_expression::check_constant(mpfr_t val, Type* type,
1944 source_location location)
1945 {
1946 if (type == NULL)
1947 return true;
1948 Float_type* ftype = type->float_type();
1949 if (ftype == NULL || ftype->is_abstract())
1950 return true;
1951
1952 // A NaN or Infinity always fits in the range of the type.
1953 if (mpfr_nan_p(val) || mpfr_inf_p(val) || mpfr_zero_p(val))
1954 return true;
1955
1956 mp_exp_t exp = mpfr_get_exp(val);
1957 mp_exp_t max_exp;
1958 switch (ftype->bits())
1959 {
1960 case 32:
1961 max_exp = 128;
1962 break;
1963 case 64:
1964 max_exp = 1024;
1965 break;
1966 default:
1967 gcc_unreachable();
1968 }
1969 if (exp > max_exp)
1970 {
1971 error_at(location, "floating point constant overflow");
1972 return false;
1973 }
1974 return true;
1975 }
1976
1977 // Check the type of a float value.
1978
1979 void
1980 Float_expression::do_check_types(Gogo*)
1981 {
1982 if (this->type_ == NULL)
1983 return;
1984
1985 if (!Float_expression::check_constant(this->val_, this->type_,
1986 this->location()))
1987 this->set_is_error();
1988
1989 Integer_type* integer_type = this->type_->integer_type();
1990 if (integer_type != NULL)
1991 {
1992 if (!mpfr_integer_p(this->val_))
1993 this->report_error(_("floating point constant truncated to integer"));
1994 else
1995 {
1996 gcc_assert(!integer_type->is_abstract());
1997 mpz_t ival;
1998 mpz_init(ival);
1999 mpfr_get_z(ival, this->val_, GMP_RNDN);
2000 Integer_expression::check_constant(ival, integer_type,
2001 this->location());
2002 mpz_clear(ival);
2003 }
2004 }
2005 }
2006
2007 // Get a tree for a float constant.
2008
2009 tree
2010 Float_expression::do_get_tree(Translate_context* context)
2011 {
2012 Gogo* gogo = context->gogo();
2013 tree type;
2014 if (this->type_ != NULL && !this->type_->is_abstract())
2015 type = this->type_->get_tree(gogo);
2016 else if (this->type_ != NULL && this->type_->integer_type() != NULL)
2017 {
2018 // We have an abstract integer type. We just hope for the best.
2019 type = Type::lookup_integer_type("int")->get_tree(gogo);
2020 }
2021 else
2022 {
2023 // If we still have an abstract type here, then this is being
2024 // used in a constant expression which didn't get reduced. We
2025 // just use float64 and hope for the best.
2026 type = Type::lookup_float_type("float64")->get_tree(gogo);
2027 }
2028 return Expression::float_constant_tree(this->val_, type);
2029 }
2030
2031 // Write a floating point number to export data.
2032
2033 void
2034 Float_expression::export_float(Export *exp, const mpfr_t val)
2035 {
2036 mp_exp_t exponent;
2037 char* s = mpfr_get_str(NULL, &exponent, 10, 0, val, GMP_RNDN);
2038 if (*s == '-')
2039 exp->write_c_string("-");
2040 exp->write_c_string("0.");
2041 exp->write_c_string(*s == '-' ? s + 1 : s);
2042 mpfr_free_str(s);
2043 char buf[30];
2044 snprintf(buf, sizeof buf, "E%ld", exponent);
2045 exp->write_c_string(buf);
2046 }
2047
2048 // Export a floating point number in a constant expression.
2049
2050 void
2051 Float_expression::do_export(Export* exp) const
2052 {
2053 Float_expression::export_float(exp, this->val_);
2054 // A trailing space lets us reliably identify the end of the number.
2055 exp->write_c_string(" ");
2056 }
2057
2058 // Make a float expression.
2059
2060 Expression*
2061 Expression::make_float(const mpfr_t* val, Type* type, source_location location)
2062 {
2063 return new Float_expression(val, type, location);
2064 }
2065
2066 // Complex numbers.
2067
2068 class Complex_expression : public Expression
2069 {
2070 public:
2071 Complex_expression(const mpfr_t* real, const mpfr_t* imag, Type* type,
2072 source_location location)
2073 : Expression(EXPRESSION_COMPLEX, location),
2074 type_(type)
2075 {
2076 mpfr_init_set(this->real_, *real, GMP_RNDN);
2077 mpfr_init_set(this->imag_, *imag, GMP_RNDN);
2078 }
2079
2080 // Constrain REAL/IMAG to fit into TYPE.
2081 static void
2082 constrain_complex(mpfr_t real, mpfr_t imag, Type* type);
2083
2084 // Return whether REAL/IMAG fits in the type.
2085 static bool
2086 check_constant(mpfr_t real, mpfr_t imag, Type*, source_location);
2087
2088 // Write REAL/IMAG to export data.
2089 static void
2090 export_complex(Export* exp, const mpfr_t real, const mpfr_t val);
2091
2092 protected:
2093 bool
2094 do_is_constant() const
2095 { return true; }
2096
2097 bool
2098 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const;
2099
2100 Type*
2101 do_type();
2102
2103 void
2104 do_determine_type(const Type_context*);
2105
2106 void
2107 do_check_types(Gogo*);
2108
2109 Expression*
2110 do_copy()
2111 {
2112 return Expression::make_complex(&this->real_, &this->imag_, this->type_,
2113 this->location());
2114 }
2115
2116 tree
2117 do_get_tree(Translate_context*);
2118
2119 void
2120 do_export(Export*) const;
2121
2122 private:
2123 // The real part.
2124 mpfr_t real_;
2125 // The imaginary part;
2126 mpfr_t imag_;
2127 // The type if known.
2128 Type* type_;
2129 };
2130
2131 // Constrain REAL/IMAG to fit into TYPE.
2132
2133 void
2134 Complex_expression::constrain_complex(mpfr_t real, mpfr_t imag, Type* type)
2135 {
2136 Complex_type* ctype = type->complex_type();
2137 if (ctype != NULL && !ctype->is_abstract())
2138 {
2139 tree type_tree = ctype->type_tree();
2140
2141 REAL_VALUE_TYPE rvt;
2142 real_from_mpfr(&rvt, real, TREE_TYPE(type_tree), GMP_RNDN);
2143 real_convert(&rvt, TYPE_MODE(TREE_TYPE(type_tree)), &rvt);
2144 mpfr_from_real(real, &rvt, GMP_RNDN);
2145
2146 real_from_mpfr(&rvt, imag, TREE_TYPE(type_tree), GMP_RNDN);
2147 real_convert(&rvt, TYPE_MODE(TREE_TYPE(type_tree)), &rvt);
2148 mpfr_from_real(imag, &rvt, GMP_RNDN);
2149 }
2150 }
2151
2152 // Return a complex constant value.
2153
2154 bool
2155 Complex_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
2156 Type** ptype) const
2157 {
2158 if (this->type_ != NULL)
2159 *ptype = this->type_;
2160 mpfr_set(real, this->real_, GMP_RNDN);
2161 mpfr_set(imag, this->imag_, GMP_RNDN);
2162 return true;
2163 }
2164
2165 // Return the current type. If we haven't set the type yet, we return
2166 // an abstract complex type.
2167
2168 Type*
2169 Complex_expression::do_type()
2170 {
2171 if (this->type_ == NULL)
2172 this->type_ = Type::make_abstract_complex_type();
2173 return this->type_;
2174 }
2175
2176 // Set the type of the complex value. Here we may switch from an
2177 // abstract type to a real type.
2178
2179 void
2180 Complex_expression::do_determine_type(const Type_context* context)
2181 {
2182 if (this->type_ != NULL && !this->type_->is_abstract())
2183 ;
2184 else if (context->type != NULL
2185 && context->type->complex_type() != NULL)
2186 this->type_ = context->type;
2187 else if (!context->may_be_abstract)
2188 this->type_ = Type::lookup_complex_type("complex");
2189 }
2190
2191 // Return true if the complex value REAL/IMAG fits in the range of the
2192 // type TYPE. Otherwise give an error and return false. TYPE may be
2193 // NULL.
2194
2195 bool
2196 Complex_expression::check_constant(mpfr_t real, mpfr_t imag, Type* type,
2197 source_location location)
2198 {
2199 if (type == NULL)
2200 return true;
2201 Complex_type* ctype = type->complex_type();
2202 if (ctype == NULL || ctype->is_abstract())
2203 return true;
2204
2205 mp_exp_t max_exp;
2206 switch (ctype->bits())
2207 {
2208 case 64:
2209 max_exp = 128;
2210 break;
2211 case 128:
2212 max_exp = 1024;
2213 break;
2214 default:
2215 gcc_unreachable();
2216 }
2217
2218 // A NaN or Infinity always fits in the range of the type.
2219 if (!mpfr_nan_p(real) && !mpfr_inf_p(real) && !mpfr_zero_p(real))
2220 {
2221 if (mpfr_get_exp(real) > max_exp)
2222 {
2223 error_at(location, "complex real part constant overflow");
2224 return false;
2225 }
2226 }
2227
2228 if (!mpfr_nan_p(imag) && !mpfr_inf_p(imag) && !mpfr_zero_p(imag))
2229 {
2230 if (mpfr_get_exp(imag) > max_exp)
2231 {
2232 error_at(location, "complex imaginary part constant overflow");
2233 return false;
2234 }
2235 }
2236
2237 return true;
2238 }
2239
2240 // Check the type of a complex value.
2241
2242 void
2243 Complex_expression::do_check_types(Gogo*)
2244 {
2245 if (this->type_ == NULL)
2246 return;
2247
2248 if (!Complex_expression::check_constant(this->real_, this->imag_,
2249 this->type_, this->location()))
2250 this->set_is_error();
2251 }
2252
2253 // Get a tree for a complex constant.
2254
2255 tree
2256 Complex_expression::do_get_tree(Translate_context* context)
2257 {
2258 Gogo* gogo = context->gogo();
2259 tree type;
2260 if (this->type_ != NULL && !this->type_->is_abstract())
2261 type = this->type_->get_tree(gogo);
2262 else
2263 {
2264 // If we still have an abstract type here, this this is being
2265 // used in a constant expression which didn't get reduced. We
2266 // just use complex128 and hope for the best.
2267 type = Type::lookup_complex_type("complex128")->get_tree(gogo);
2268 }
2269 return Expression::complex_constant_tree(this->real_, this->imag_, type);
2270 }
2271
2272 // Write REAL/IMAG to export data.
2273
2274 void
2275 Complex_expression::export_complex(Export* exp, const mpfr_t real,
2276 const mpfr_t imag)
2277 {
2278 if (!mpfr_zero_p(real))
2279 {
2280 Float_expression::export_float(exp, real);
2281 if (mpfr_sgn(imag) > 0)
2282 exp->write_c_string("+");
2283 }
2284 Float_expression::export_float(exp, imag);
2285 exp->write_c_string("i");
2286 }
2287
2288 // Export a complex number in a constant expression.
2289
2290 void
2291 Complex_expression::do_export(Export* exp) const
2292 {
2293 Complex_expression::export_complex(exp, this->real_, this->imag_);
2294 // A trailing space lets us reliably identify the end of the number.
2295 exp->write_c_string(" ");
2296 }
2297
2298 // Make a complex expression.
2299
2300 Expression*
2301 Expression::make_complex(const mpfr_t* real, const mpfr_t* imag, Type* type,
2302 source_location location)
2303 {
2304 return new Complex_expression(real, imag, type, location);
2305 }
2306
2307 // Find a named object in an expression.
2308
2309 class Find_named_object : public Traverse
2310 {
2311 public:
2312 Find_named_object(Named_object* no)
2313 : Traverse(traverse_expressions),
2314 no_(no), found_(false)
2315 { }
2316
2317 // Whether we found the object.
2318 bool
2319 found() const
2320 { return this->found_; }
2321
2322 protected:
2323 int
2324 expression(Expression**);
2325
2326 private:
2327 // The object we are looking for.
2328 Named_object* no_;
2329 // Whether we found it.
2330 bool found_;
2331 };
2332
2333 // A reference to a const in an expression.
2334
2335 class Const_expression : public Expression
2336 {
2337 public:
2338 Const_expression(Named_object* constant, source_location location)
2339 : Expression(EXPRESSION_CONST_REFERENCE, location),
2340 constant_(constant), type_(NULL), seen_(false)
2341 { }
2342
2343 Named_object*
2344 named_object()
2345 { return this->constant_; }
2346
2347 const std::string&
2348 name() const
2349 { return this->constant_->name(); }
2350
2351 protected:
2352 Expression*
2353 do_lower(Gogo*, Named_object*, int);
2354
2355 bool
2356 do_is_constant() const
2357 { return true; }
2358
2359 bool
2360 do_integer_constant_value(bool, mpz_t val, Type**) const;
2361
2362 bool
2363 do_float_constant_value(mpfr_t val, Type**) const;
2364
2365 bool
2366 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const;
2367
2368 bool
2369 do_string_constant_value(std::string* val) const
2370 { return this->constant_->const_value()->expr()->string_constant_value(val); }
2371
2372 Type*
2373 do_type();
2374
2375 // The type of a const is set by the declaration, not the use.
2376 void
2377 do_determine_type(const Type_context*);
2378
2379 void
2380 do_check_types(Gogo*);
2381
2382 Expression*
2383 do_copy()
2384 { return this; }
2385
2386 tree
2387 do_get_tree(Translate_context* context);
2388
2389 // When exporting a reference to a const as part of a const
2390 // expression, we export the value. We ignore the fact that it has
2391 // a name.
2392 void
2393 do_export(Export* exp) const
2394 { this->constant_->const_value()->expr()->export_expression(exp); }
2395
2396 private:
2397 // The constant.
2398 Named_object* constant_;
2399 // The type of this reference. This is used if the constant has an
2400 // abstract type.
2401 Type* type_;
2402 // Used to prevent infinite recursion when a constant incorrectly
2403 // refers to itself.
2404 mutable bool seen_;
2405 };
2406
2407 // Lower a constant expression. This is where we convert the
2408 // predeclared constant iota into an integer value.
2409
2410 Expression*
2411 Const_expression::do_lower(Gogo* gogo, Named_object*, int iota_value)
2412 {
2413 if (this->constant_->const_value()->expr()->classification()
2414 == EXPRESSION_IOTA)
2415 {
2416 if (iota_value == -1)
2417 {
2418 error_at(this->location(),
2419 "iota is only defined in const declarations");
2420 iota_value = 0;
2421 }
2422 mpz_t val;
2423 mpz_init_set_ui(val, static_cast<unsigned long>(iota_value));
2424 Expression* ret = Expression::make_integer(&val, NULL,
2425 this->location());
2426 mpz_clear(val);
2427 return ret;
2428 }
2429
2430 // Make sure that the constant itself has been lowered.
2431 gogo->lower_constant(this->constant_);
2432
2433 return this;
2434 }
2435
2436 // Return an integer constant value.
2437
2438 bool
2439 Const_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
2440 Type** ptype) const
2441 {
2442 if (this->seen_)
2443 return false;
2444
2445 Type* ctype;
2446 if (this->type_ != NULL)
2447 ctype = this->type_;
2448 else
2449 ctype = this->constant_->const_value()->type();
2450 if (ctype != NULL && ctype->integer_type() == NULL)
2451 return false;
2452
2453 Expression* e = this->constant_->const_value()->expr();
2454
2455 this->seen_ = true;
2456
2457 Type* t;
2458 bool r = e->integer_constant_value(iota_is_constant, val, &t);
2459
2460 this->seen_ = false;
2461
2462 if (r
2463 && ctype != NULL
2464 && !Integer_expression::check_constant(val, ctype, this->location()))
2465 return false;
2466
2467 *ptype = ctype != NULL ? ctype : t;
2468 return r;
2469 }
2470
2471 // Return a floating point constant value.
2472
2473 bool
2474 Const_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
2475 {
2476 if (this->seen_)
2477 return false;
2478
2479 Type* ctype;
2480 if (this->type_ != NULL)
2481 ctype = this->type_;
2482 else
2483 ctype = this->constant_->const_value()->type();
2484 if (ctype != NULL && ctype->float_type() == NULL)
2485 return false;
2486
2487 this->seen_ = true;
2488
2489 Type* t;
2490 bool r = this->constant_->const_value()->expr()->float_constant_value(val,
2491 &t);
2492
2493 this->seen_ = false;
2494
2495 if (r && ctype != NULL)
2496 {
2497 if (!Float_expression::check_constant(val, ctype, this->location()))
2498 return false;
2499 Float_expression::constrain_float(val, ctype);
2500 }
2501 *ptype = ctype != NULL ? ctype : t;
2502 return r;
2503 }
2504
2505 // Return a complex constant value.
2506
2507 bool
2508 Const_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
2509 Type **ptype) const
2510 {
2511 if (this->seen_)
2512 return false;
2513
2514 Type* ctype;
2515 if (this->type_ != NULL)
2516 ctype = this->type_;
2517 else
2518 ctype = this->constant_->const_value()->type();
2519 if (ctype != NULL && ctype->complex_type() == NULL)
2520 return false;
2521
2522 this->seen_ = true;
2523
2524 Type *t;
2525 bool r = this->constant_->const_value()->expr()->complex_constant_value(real,
2526 imag,
2527 &t);
2528
2529 this->seen_ = false;
2530
2531 if (r && ctype != NULL)
2532 {
2533 if (!Complex_expression::check_constant(real, imag, ctype,
2534 this->location()))
2535 return false;
2536 Complex_expression::constrain_complex(real, imag, ctype);
2537 }
2538 *ptype = ctype != NULL ? ctype : t;
2539 return r;
2540 }
2541
2542 // Return the type of the const reference.
2543
2544 Type*
2545 Const_expression::do_type()
2546 {
2547 if (this->type_ != NULL)
2548 return this->type_;
2549
2550 Named_constant* nc = this->constant_->const_value();
2551
2552 if (this->seen_ || nc->lowering())
2553 {
2554 this->report_error(_("constant refers to itself"));
2555 this->type_ = Type::make_error_type();
2556 return this->type_;
2557 }
2558
2559 this->seen_ = true;
2560
2561 Type* ret = nc->type();
2562
2563 if (ret != NULL)
2564 {
2565 this->seen_ = false;
2566 return ret;
2567 }
2568
2569 // During parsing, a named constant may have a NULL type, but we
2570 // must not return a NULL type here.
2571 ret = nc->expr()->type();
2572
2573 this->seen_ = false;
2574
2575 return ret;
2576 }
2577
2578 // Set the type of the const reference.
2579
2580 void
2581 Const_expression::do_determine_type(const Type_context* context)
2582 {
2583 Type* ctype = this->constant_->const_value()->type();
2584 Type* cetype = (ctype != NULL
2585 ? ctype
2586 : this->constant_->const_value()->expr()->type());
2587 if (ctype != NULL && !ctype->is_abstract())
2588 ;
2589 else if (context->type != NULL
2590 && (context->type->integer_type() != NULL
2591 || context->type->float_type() != NULL
2592 || context->type->complex_type() != NULL)
2593 && (cetype->integer_type() != NULL
2594 || cetype->float_type() != NULL
2595 || cetype->complex_type() != NULL))
2596 this->type_ = context->type;
2597 else if (context->type != NULL
2598 && context->type->is_string_type()
2599 && cetype->is_string_type())
2600 this->type_ = context->type;
2601 else if (context->type != NULL
2602 && context->type->is_boolean_type()
2603 && cetype->is_boolean_type())
2604 this->type_ = context->type;
2605 else if (!context->may_be_abstract)
2606 {
2607 if (cetype->is_abstract())
2608 cetype = cetype->make_non_abstract_type();
2609 this->type_ = cetype;
2610 }
2611 }
2612
2613 // Check types of a const reference.
2614
2615 void
2616 Const_expression::do_check_types(Gogo*)
2617 {
2618 if (this->type_ != NULL && this->type_->is_error_type())
2619 return;
2620
2621 Expression* init = this->constant_->const_value()->expr();
2622 Find_named_object find_named_object(this->constant_);
2623 Expression::traverse(&init, &find_named_object);
2624 if (find_named_object.found())
2625 {
2626 this->report_error(_("constant refers to itself"));
2627 this->type_ = Type::make_error_type();
2628 return;
2629 }
2630
2631 if (this->type_ == NULL || this->type_->is_abstract())
2632 return;
2633
2634 // Check for integer overflow.
2635 if (this->type_->integer_type() != NULL)
2636 {
2637 mpz_t ival;
2638 mpz_init(ival);
2639 Type* dummy;
2640 if (!this->integer_constant_value(true, ival, &dummy))
2641 {
2642 mpfr_t fval;
2643 mpfr_init(fval);
2644 Expression* cexpr = this->constant_->const_value()->expr();
2645 if (cexpr->float_constant_value(fval, &dummy))
2646 {
2647 if (!mpfr_integer_p(fval))
2648 this->report_error(_("floating point constant "
2649 "truncated to integer"));
2650 else
2651 {
2652 mpfr_get_z(ival, fval, GMP_RNDN);
2653 Integer_expression::check_constant(ival, this->type_,
2654 this->location());
2655 }
2656 }
2657 mpfr_clear(fval);
2658 }
2659 mpz_clear(ival);
2660 }
2661 }
2662
2663 // Return a tree for the const reference.
2664
2665 tree
2666 Const_expression::do_get_tree(Translate_context* context)
2667 {
2668 Gogo* gogo = context->gogo();
2669 tree type_tree;
2670 if (this->type_ == NULL)
2671 type_tree = NULL_TREE;
2672 else
2673 {
2674 type_tree = this->type_->get_tree(gogo);
2675 if (type_tree == error_mark_node)
2676 return error_mark_node;
2677 }
2678
2679 // If the type has been set for this expression, but the underlying
2680 // object is an abstract int or float, we try to get the abstract
2681 // value. Otherwise we may lose something in the conversion.
2682 if (this->type_ != NULL
2683 && this->constant_->const_value()->type()->is_abstract())
2684 {
2685 Expression* expr = this->constant_->const_value()->expr();
2686 mpz_t ival;
2687 mpz_init(ival);
2688 Type* t;
2689 if (expr->integer_constant_value(true, ival, &t))
2690 {
2691 tree ret = Expression::integer_constant_tree(ival, type_tree);
2692 mpz_clear(ival);
2693 return ret;
2694 }
2695 mpz_clear(ival);
2696
2697 mpfr_t fval;
2698 mpfr_init(fval);
2699 if (expr->float_constant_value(fval, &t))
2700 {
2701 tree ret = Expression::float_constant_tree(fval, type_tree);
2702 mpfr_clear(fval);
2703 return ret;
2704 }
2705
2706 mpfr_t imag;
2707 mpfr_init(imag);
2708 if (expr->complex_constant_value(fval, imag, &t))
2709 {
2710 tree ret = Expression::complex_constant_tree(fval, imag, type_tree);
2711 mpfr_clear(fval);
2712 mpfr_clear(imag);
2713 return ret;
2714 }
2715 mpfr_clear(imag);
2716 mpfr_clear(fval);
2717 }
2718
2719 tree const_tree = this->constant_->get_tree(gogo, context->function());
2720 if (this->type_ == NULL
2721 || const_tree == error_mark_node
2722 || TREE_TYPE(const_tree) == error_mark_node)
2723 return const_tree;
2724
2725 tree ret;
2726 if (TYPE_MAIN_VARIANT(type_tree) == TYPE_MAIN_VARIANT(TREE_TYPE(const_tree)))
2727 ret = fold_convert(type_tree, const_tree);
2728 else if (TREE_CODE(type_tree) == INTEGER_TYPE)
2729 ret = fold(convert_to_integer(type_tree, const_tree));
2730 else if (TREE_CODE(type_tree) == REAL_TYPE)
2731 ret = fold(convert_to_real(type_tree, const_tree));
2732 else if (TREE_CODE(type_tree) == COMPLEX_TYPE)
2733 ret = fold(convert_to_complex(type_tree, const_tree));
2734 else
2735 gcc_unreachable();
2736 return ret;
2737 }
2738
2739 // Make a reference to a constant in an expression.
2740
2741 Expression*
2742 Expression::make_const_reference(Named_object* constant,
2743 source_location location)
2744 {
2745 return new Const_expression(constant, location);
2746 }
2747
2748 // Find a named object in an expression.
2749
2750 int
2751 Find_named_object::expression(Expression** pexpr)
2752 {
2753 switch ((*pexpr)->classification())
2754 {
2755 case Expression::EXPRESSION_CONST_REFERENCE:
2756 if (static_cast<Const_expression*>(*pexpr)->named_object() == this->no_)
2757 break;
2758 return TRAVERSE_CONTINUE;
2759 case Expression::EXPRESSION_VAR_REFERENCE:
2760 if ((*pexpr)->var_expression()->named_object() == this->no_)
2761 break;
2762 return TRAVERSE_CONTINUE;
2763 case Expression::EXPRESSION_FUNC_REFERENCE:
2764 if ((*pexpr)->func_expression()->named_object() == this->no_)
2765 break;
2766 return TRAVERSE_CONTINUE;
2767 default:
2768 return TRAVERSE_CONTINUE;
2769 }
2770 this->found_ = true;
2771 return TRAVERSE_EXIT;
2772 }
2773
2774 // The nil value.
2775
2776 class Nil_expression : public Expression
2777 {
2778 public:
2779 Nil_expression(source_location location)
2780 : Expression(EXPRESSION_NIL, location)
2781 { }
2782
2783 static Expression*
2784 do_import(Import*);
2785
2786 protected:
2787 bool
2788 do_is_constant() const
2789 { return true; }
2790
2791 Type*
2792 do_type()
2793 { return Type::make_nil_type(); }
2794
2795 void
2796 do_determine_type(const Type_context*)
2797 { }
2798
2799 Expression*
2800 do_copy()
2801 { return this; }
2802
2803 tree
2804 do_get_tree(Translate_context*)
2805 { return null_pointer_node; }
2806
2807 void
2808 do_export(Export* exp) const
2809 { exp->write_c_string("nil"); }
2810 };
2811
2812 // Import a nil expression.
2813
2814 Expression*
2815 Nil_expression::do_import(Import* imp)
2816 {
2817 imp->require_c_string("nil");
2818 return Expression::make_nil(imp->location());
2819 }
2820
2821 // Make a nil expression.
2822
2823 Expression*
2824 Expression::make_nil(source_location location)
2825 {
2826 return new Nil_expression(location);
2827 }
2828
2829 // The value of the predeclared constant iota. This is little more
2830 // than a marker. This will be lowered to an integer in
2831 // Const_expression::do_lower, which is where we know the value that
2832 // it should have.
2833
2834 class Iota_expression : public Parser_expression
2835 {
2836 public:
2837 Iota_expression(source_location location)
2838 : Parser_expression(EXPRESSION_IOTA, location)
2839 { }
2840
2841 protected:
2842 Expression*
2843 do_lower(Gogo*, Named_object*, int)
2844 { gcc_unreachable(); }
2845
2846 // There should only ever be one of these.
2847 Expression*
2848 do_copy()
2849 { gcc_unreachable(); }
2850 };
2851
2852 // Make an iota expression. This is only called for one case: the
2853 // value of the predeclared constant iota.
2854
2855 Expression*
2856 Expression::make_iota()
2857 {
2858 static Iota_expression iota_expression(UNKNOWN_LOCATION);
2859 return &iota_expression;
2860 }
2861
2862 // A type conversion expression.
2863
2864 class Type_conversion_expression : public Expression
2865 {
2866 public:
2867 Type_conversion_expression(Type* type, Expression* expr,
2868 source_location location)
2869 : Expression(EXPRESSION_CONVERSION, location),
2870 type_(type), expr_(expr), may_convert_function_types_(false)
2871 { }
2872
2873 // Return the type to which we are converting.
2874 Type*
2875 type() const
2876 { return this->type_; }
2877
2878 // Return the expression which we are converting.
2879 Expression*
2880 expr() const
2881 { return this->expr_; }
2882
2883 // Permit converting from one function type to another. This is
2884 // used internally for method expressions.
2885 void
2886 set_may_convert_function_types()
2887 {
2888 this->may_convert_function_types_ = true;
2889 }
2890
2891 // Import a type conversion expression.
2892 static Expression*
2893 do_import(Import*);
2894
2895 protected:
2896 int
2897 do_traverse(Traverse* traverse);
2898
2899 Expression*
2900 do_lower(Gogo*, Named_object*, int);
2901
2902 bool
2903 do_is_constant() const
2904 { return this->expr_->is_constant(); }
2905
2906 bool
2907 do_integer_constant_value(bool, mpz_t, Type**) const;
2908
2909 bool
2910 do_float_constant_value(mpfr_t, Type**) const;
2911
2912 bool
2913 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
2914
2915 bool
2916 do_string_constant_value(std::string*) const;
2917
2918 Type*
2919 do_type()
2920 { return this->type_; }
2921
2922 void
2923 do_determine_type(const Type_context*)
2924 {
2925 Type_context subcontext(this->type_, false);
2926 this->expr_->determine_type(&subcontext);
2927 }
2928
2929 void
2930 do_check_types(Gogo*);
2931
2932 Expression*
2933 do_copy()
2934 {
2935 return new Type_conversion_expression(this->type_, this->expr_->copy(),
2936 this->location());
2937 }
2938
2939 tree
2940 do_get_tree(Translate_context* context);
2941
2942 void
2943 do_export(Export*) const;
2944
2945 private:
2946 // The type to convert to.
2947 Type* type_;
2948 // The expression to convert.
2949 Expression* expr_;
2950 // True if this is permitted to convert function types. This is
2951 // used internally for method expressions.
2952 bool may_convert_function_types_;
2953 };
2954
2955 // Traversal.
2956
2957 int
2958 Type_conversion_expression::do_traverse(Traverse* traverse)
2959 {
2960 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
2961 || Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
2962 return TRAVERSE_EXIT;
2963 return TRAVERSE_CONTINUE;
2964 }
2965
2966 // Convert to a constant at lowering time.
2967
2968 Expression*
2969 Type_conversion_expression::do_lower(Gogo*, Named_object*, int)
2970 {
2971 Type* type = this->type_;
2972 Expression* val = this->expr_;
2973 source_location location = this->location();
2974
2975 if (type->integer_type() != NULL)
2976 {
2977 mpz_t ival;
2978 mpz_init(ival);
2979 Type* dummy;
2980 if (val->integer_constant_value(false, ival, &dummy))
2981 {
2982 if (!Integer_expression::check_constant(ival, type, location))
2983 mpz_set_ui(ival, 0);
2984 Expression* ret = Expression::make_integer(&ival, type, location);
2985 mpz_clear(ival);
2986 return ret;
2987 }
2988
2989 mpfr_t fval;
2990 mpfr_init(fval);
2991 if (val->float_constant_value(fval, &dummy))
2992 {
2993 if (!mpfr_integer_p(fval))
2994 {
2995 error_at(location,
2996 "floating point constant truncated to integer");
2997 return Expression::make_error(location);
2998 }
2999 mpfr_get_z(ival, fval, GMP_RNDN);
3000 if (!Integer_expression::check_constant(ival, type, location))
3001 mpz_set_ui(ival, 0);
3002 Expression* ret = Expression::make_integer(&ival, type, location);
3003 mpfr_clear(fval);
3004 mpz_clear(ival);
3005 return ret;
3006 }
3007 mpfr_clear(fval);
3008 mpz_clear(ival);
3009 }
3010
3011 if (type->float_type() != NULL)
3012 {
3013 mpfr_t fval;
3014 mpfr_init(fval);
3015 Type* dummy;
3016 if (val->float_constant_value(fval, &dummy))
3017 {
3018 if (!Float_expression::check_constant(fval, type, location))
3019 mpfr_set_ui(fval, 0, GMP_RNDN);
3020 Float_expression::constrain_float(fval, type);
3021 Expression *ret = Expression::make_float(&fval, type, location);
3022 mpfr_clear(fval);
3023 return ret;
3024 }
3025 mpfr_clear(fval);
3026 }
3027
3028 if (type->complex_type() != NULL)
3029 {
3030 mpfr_t real;
3031 mpfr_t imag;
3032 mpfr_init(real);
3033 mpfr_init(imag);
3034 Type* dummy;
3035 if (val->complex_constant_value(real, imag, &dummy))
3036 {
3037 if (!Complex_expression::check_constant(real, imag, type, location))
3038 {
3039 mpfr_set_ui(real, 0, GMP_RNDN);
3040 mpfr_set_ui(imag, 0, GMP_RNDN);
3041 }
3042 Complex_expression::constrain_complex(real, imag, type);
3043 Expression* ret = Expression::make_complex(&real, &imag, type,
3044 location);
3045 mpfr_clear(real);
3046 mpfr_clear(imag);
3047 return ret;
3048 }
3049 mpfr_clear(real);
3050 mpfr_clear(imag);
3051 }
3052
3053 if (type->is_open_array_type() && type->named_type() == NULL)
3054 {
3055 Type* element_type = type->array_type()->element_type()->forwarded();
3056 bool is_byte = element_type == Type::lookup_integer_type("uint8");
3057 bool is_int = element_type == Type::lookup_integer_type("int");
3058 if (is_byte || is_int)
3059 {
3060 std::string s;
3061 if (val->string_constant_value(&s))
3062 {
3063 Expression_list* vals = new Expression_list();
3064 if (is_byte)
3065 {
3066 for (std::string::const_iterator p = s.begin();
3067 p != s.end();
3068 p++)
3069 {
3070 mpz_t val;
3071 mpz_init_set_ui(val, static_cast<unsigned char>(*p));
3072 Expression* v = Expression::make_integer(&val,
3073 element_type,
3074 location);
3075 vals->push_back(v);
3076 mpz_clear(val);
3077 }
3078 }
3079 else
3080 {
3081 const char *p = s.data();
3082 const char *pend = s.data() + s.length();
3083 while (p < pend)
3084 {
3085 unsigned int c;
3086 int adv = Lex::fetch_char(p, &c);
3087 if (adv == 0)
3088 {
3089 warning_at(this->location(), 0,
3090 "invalid UTF-8 encoding");
3091 adv = 1;
3092 }
3093 p += adv;
3094 mpz_t val;
3095 mpz_init_set_ui(val, c);
3096 Expression* v = Expression::make_integer(&val,
3097 element_type,
3098 location);
3099 vals->push_back(v);
3100 mpz_clear(val);
3101 }
3102 }
3103
3104 return Expression::make_slice_composite_literal(type, vals,
3105 location);
3106 }
3107 }
3108 }
3109
3110 return this;
3111 }
3112
3113 // Return the constant integer value if there is one.
3114
3115 bool
3116 Type_conversion_expression::do_integer_constant_value(bool iota_is_constant,
3117 mpz_t val,
3118 Type** ptype) const
3119 {
3120 if (this->type_->integer_type() == NULL)
3121 return false;
3122
3123 mpz_t ival;
3124 mpz_init(ival);
3125 Type* dummy;
3126 if (this->expr_->integer_constant_value(iota_is_constant, ival, &dummy))
3127 {
3128 if (!Integer_expression::check_constant(ival, this->type_,
3129 this->location()))
3130 {
3131 mpz_clear(ival);
3132 return false;
3133 }
3134 mpz_set(val, ival);
3135 mpz_clear(ival);
3136 *ptype = this->type_;
3137 return true;
3138 }
3139 mpz_clear(ival);
3140
3141 mpfr_t fval;
3142 mpfr_init(fval);
3143 if (this->expr_->float_constant_value(fval, &dummy))
3144 {
3145 mpfr_get_z(val, fval, GMP_RNDN);
3146 mpfr_clear(fval);
3147 if (!Integer_expression::check_constant(val, this->type_,
3148 this->location()))
3149 return false;
3150 *ptype = this->type_;
3151 return true;
3152 }
3153 mpfr_clear(fval);
3154
3155 return false;
3156 }
3157
3158 // Return the constant floating point value if there is one.
3159
3160 bool
3161 Type_conversion_expression::do_float_constant_value(mpfr_t val,
3162 Type** ptype) const
3163 {
3164 if (this->type_->float_type() == NULL)
3165 return false;
3166
3167 mpfr_t fval;
3168 mpfr_init(fval);
3169 Type* dummy;
3170 if (this->expr_->float_constant_value(fval, &dummy))
3171 {
3172 if (!Float_expression::check_constant(fval, this->type_,
3173 this->location()))
3174 {
3175 mpfr_clear(fval);
3176 return false;
3177 }
3178 mpfr_set(val, fval, GMP_RNDN);
3179 mpfr_clear(fval);
3180 Float_expression::constrain_float(val, this->type_);
3181 *ptype = this->type_;
3182 return true;
3183 }
3184 mpfr_clear(fval);
3185
3186 return false;
3187 }
3188
3189 // Return the constant complex value if there is one.
3190
3191 bool
3192 Type_conversion_expression::do_complex_constant_value(mpfr_t real,
3193 mpfr_t imag,
3194 Type **ptype) const
3195 {
3196 if (this->type_->complex_type() == NULL)
3197 return false;
3198
3199 mpfr_t rval;
3200 mpfr_t ival;
3201 mpfr_init(rval);
3202 mpfr_init(ival);
3203 Type* dummy;
3204 if (this->expr_->complex_constant_value(rval, ival, &dummy))
3205 {
3206 if (!Complex_expression::check_constant(rval, ival, this->type_,
3207 this->location()))
3208 {
3209 mpfr_clear(rval);
3210 mpfr_clear(ival);
3211 return false;
3212 }
3213 mpfr_set(real, rval, GMP_RNDN);
3214 mpfr_set(imag, ival, GMP_RNDN);
3215 mpfr_clear(rval);
3216 mpfr_clear(ival);
3217 Complex_expression::constrain_complex(real, imag, this->type_);
3218 *ptype = this->type_;
3219 return true;
3220 }
3221 mpfr_clear(rval);
3222 mpfr_clear(ival);
3223
3224 return false;
3225 }
3226
3227 // Return the constant string value if there is one.
3228
3229 bool
3230 Type_conversion_expression::do_string_constant_value(std::string* val) const
3231 {
3232 if (this->type_->is_string_type()
3233 && this->expr_->type()->integer_type() != NULL)
3234 {
3235 mpz_t ival;
3236 mpz_init(ival);
3237 Type* dummy;
3238 if (this->expr_->integer_constant_value(false, ival, &dummy))
3239 {
3240 unsigned long ulval = mpz_get_ui(ival);
3241 if (mpz_cmp_ui(ival, ulval) == 0)
3242 {
3243 Lex::append_char(ulval, true, val, this->location());
3244 mpz_clear(ival);
3245 return true;
3246 }
3247 }
3248 mpz_clear(ival);
3249 }
3250
3251 // FIXME: Could handle conversion from const []int here.
3252
3253 return false;
3254 }
3255
3256 // Check that types are convertible.
3257
3258 void
3259 Type_conversion_expression::do_check_types(Gogo*)
3260 {
3261 Type* type = this->type_;
3262 Type* expr_type = this->expr_->type();
3263 std::string reason;
3264
3265 if (type->is_error_type()
3266 || type->is_undefined()
3267 || expr_type->is_error_type()
3268 || expr_type->is_undefined())
3269 {
3270 // Make sure we emit an error for an undefined type.
3271 type->base();
3272 expr_type->base();
3273 this->set_is_error();
3274 return;
3275 }
3276
3277 if (this->may_convert_function_types_
3278 && type->function_type() != NULL
3279 && expr_type->function_type() != NULL)
3280 return;
3281
3282 if (Type::are_convertible(type, expr_type, &reason))
3283 return;
3284
3285 error_at(this->location(), "%s", reason.c_str());
3286 this->set_is_error();
3287 }
3288
3289 // Get a tree for a type conversion.
3290
3291 tree
3292 Type_conversion_expression::do_get_tree(Translate_context* context)
3293 {
3294 Gogo* gogo = context->gogo();
3295 tree type_tree = this->type_->get_tree(gogo);
3296 tree expr_tree = this->expr_->get_tree(context);
3297
3298 if (type_tree == error_mark_node
3299 || expr_tree == error_mark_node
3300 || TREE_TYPE(expr_tree) == error_mark_node)
3301 return error_mark_node;
3302
3303 if (TYPE_MAIN_VARIANT(type_tree) == TYPE_MAIN_VARIANT(TREE_TYPE(expr_tree)))
3304 return fold_convert(type_tree, expr_tree);
3305
3306 Type* type = this->type_;
3307 Type* expr_type = this->expr_->type();
3308 tree ret;
3309 if (type->interface_type() != NULL || expr_type->interface_type() != NULL)
3310 ret = Expression::convert_for_assignment(context, type, expr_type,
3311 expr_tree, this->location());
3312 else if (type->integer_type() != NULL)
3313 {
3314 if (expr_type->integer_type() != NULL
3315 || expr_type->float_type() != NULL
3316 || expr_type->is_unsafe_pointer_type())
3317 ret = fold(convert_to_integer(type_tree, expr_tree));
3318 else
3319 gcc_unreachable();
3320 }
3321 else if (type->float_type() != NULL)
3322 {
3323 if (expr_type->integer_type() != NULL
3324 || expr_type->float_type() != NULL)
3325 ret = fold(convert_to_real(type_tree, expr_tree));
3326 else
3327 gcc_unreachable();
3328 }
3329 else if (type->complex_type() != NULL)
3330 {
3331 if (expr_type->complex_type() != NULL)
3332 ret = fold(convert_to_complex(type_tree, expr_tree));
3333 else
3334 gcc_unreachable();
3335 }
3336 else if (type->is_string_type()
3337 && expr_type->integer_type() != NULL)
3338 {
3339 expr_tree = fold_convert(integer_type_node, expr_tree);
3340 if (host_integerp(expr_tree, 0))
3341 {
3342 HOST_WIDE_INT intval = tree_low_cst(expr_tree, 0);
3343 std::string s;
3344 Lex::append_char(intval, true, &s, this->location());
3345 Expression* se = Expression::make_string(s, this->location());
3346 return se->get_tree(context);
3347 }
3348
3349 static tree int_to_string_fndecl;
3350 ret = Gogo::call_builtin(&int_to_string_fndecl,
3351 this->location(),
3352 "__go_int_to_string",
3353 1,
3354 type_tree,
3355 integer_type_node,
3356 fold_convert(integer_type_node, expr_tree));
3357 }
3358 else if (type->is_string_type()
3359 && (expr_type->array_type() != NULL
3360 || (expr_type->points_to() != NULL
3361 && expr_type->points_to()->array_type() != NULL)))
3362 {
3363 Type* t = expr_type;
3364 if (t->points_to() != NULL)
3365 {
3366 t = t->points_to();
3367 expr_tree = build_fold_indirect_ref(expr_tree);
3368 }
3369 if (!DECL_P(expr_tree))
3370 expr_tree = save_expr(expr_tree);
3371 Array_type* a = t->array_type();
3372 Type* e = a->element_type()->forwarded();
3373 gcc_assert(e->integer_type() != NULL);
3374 tree valptr = fold_convert(const_ptr_type_node,
3375 a->value_pointer_tree(gogo, expr_tree));
3376 tree len = a->length_tree(gogo, expr_tree);
3377 len = fold_convert_loc(this->location(), size_type_node, len);
3378 if (e->integer_type()->is_unsigned()
3379 && e->integer_type()->bits() == 8)
3380 {
3381 static tree byte_array_to_string_fndecl;
3382 ret = Gogo::call_builtin(&byte_array_to_string_fndecl,
3383 this->location(),
3384 "__go_byte_array_to_string",
3385 2,
3386 type_tree,
3387 const_ptr_type_node,
3388 valptr,
3389 size_type_node,
3390 len);
3391 }
3392 else
3393 {
3394 gcc_assert(e == Type::lookup_integer_type("int"));
3395 static tree int_array_to_string_fndecl;
3396 ret = Gogo::call_builtin(&int_array_to_string_fndecl,
3397 this->location(),
3398 "__go_int_array_to_string",
3399 2,
3400 type_tree,
3401 const_ptr_type_node,
3402 valptr,
3403 size_type_node,
3404 len);
3405 }
3406 }
3407 else if (type->is_open_array_type() && expr_type->is_string_type())
3408 {
3409 Type* e = type->array_type()->element_type()->forwarded();
3410 gcc_assert(e->integer_type() != NULL);
3411 if (e->integer_type()->is_unsigned()
3412 && e->integer_type()->bits() == 8)
3413 {
3414 static tree string_to_byte_array_fndecl;
3415 ret = Gogo::call_builtin(&string_to_byte_array_fndecl,
3416 this->location(),
3417 "__go_string_to_byte_array",
3418 1,
3419 type_tree,
3420 TREE_TYPE(expr_tree),
3421 expr_tree);
3422 }
3423 else
3424 {
3425 gcc_assert(e == Type::lookup_integer_type("int"));
3426 static tree string_to_int_array_fndecl;
3427 ret = Gogo::call_builtin(&string_to_int_array_fndecl,
3428 this->location(),
3429 "__go_string_to_int_array",
3430 1,
3431 type_tree,
3432 TREE_TYPE(expr_tree),
3433 expr_tree);
3434 }
3435 }
3436 else if ((type->is_unsafe_pointer_type()
3437 && expr_type->points_to() != NULL)
3438 || (expr_type->is_unsafe_pointer_type()
3439 && type->points_to() != NULL))
3440 ret = fold_convert(type_tree, expr_tree);
3441 else if (type->is_unsafe_pointer_type()
3442 && expr_type->integer_type() != NULL)
3443 ret = convert_to_pointer(type_tree, expr_tree);
3444 else if (this->may_convert_function_types_
3445 && type->function_type() != NULL
3446 && expr_type->function_type() != NULL)
3447 ret = fold_convert_loc(this->location(), type_tree, expr_tree);
3448 else
3449 ret = Expression::convert_for_assignment(context, type, expr_type,
3450 expr_tree, this->location());
3451
3452 return ret;
3453 }
3454
3455 // Output a type conversion in a constant expression.
3456
3457 void
3458 Type_conversion_expression::do_export(Export* exp) const
3459 {
3460 exp->write_c_string("convert(");
3461 exp->write_type(this->type_);
3462 exp->write_c_string(", ");
3463 this->expr_->export_expression(exp);
3464 exp->write_c_string(")");
3465 }
3466
3467 // Import a type conversion or a struct construction.
3468
3469 Expression*
3470 Type_conversion_expression::do_import(Import* imp)
3471 {
3472 imp->require_c_string("convert(");
3473 Type* type = imp->read_type();
3474 imp->require_c_string(", ");
3475 Expression* val = Expression::import_expression(imp);
3476 imp->require_c_string(")");
3477 return Expression::make_cast(type, val, imp->location());
3478 }
3479
3480 // Make a type cast expression.
3481
3482 Expression*
3483 Expression::make_cast(Type* type, Expression* val, source_location location)
3484 {
3485 if (type->is_error_type() || val->is_error_expression())
3486 return Expression::make_error(location);
3487 return new Type_conversion_expression(type, val, location);
3488 }
3489
3490 // Unary expressions.
3491
3492 class Unary_expression : public Expression
3493 {
3494 public:
3495 Unary_expression(Operator op, Expression* expr, source_location location)
3496 : Expression(EXPRESSION_UNARY, location),
3497 op_(op), escapes_(true), expr_(expr)
3498 { }
3499
3500 // Return the operator.
3501 Operator
3502 op() const
3503 { return this->op_; }
3504
3505 // Return the operand.
3506 Expression*
3507 operand() const
3508 { return this->expr_; }
3509
3510 // Record that an address expression does not escape.
3511 void
3512 set_does_not_escape()
3513 {
3514 gcc_assert(this->op_ == OPERATOR_AND);
3515 this->escapes_ = false;
3516 }
3517
3518 // Apply unary opcode OP to UVAL, setting VAL. Return true if this
3519 // could be done, false if not.
3520 static bool
3521 eval_integer(Operator op, Type* utype, mpz_t uval, mpz_t val,
3522 source_location);
3523
3524 // Apply unary opcode OP to UVAL, setting VAL. Return true if this
3525 // could be done, false if not.
3526 static bool
3527 eval_float(Operator op, mpfr_t uval, mpfr_t val);
3528
3529 // Apply unary opcode OP to UREAL/UIMAG, setting REAL/IMAG. Return
3530 // true if this could be done, false if not.
3531 static bool
3532 eval_complex(Operator op, mpfr_t ureal, mpfr_t uimag, mpfr_t real,
3533 mpfr_t imag);
3534
3535 static Expression*
3536 do_import(Import*);
3537
3538 protected:
3539 int
3540 do_traverse(Traverse* traverse)
3541 { return Expression::traverse(&this->expr_, traverse); }
3542
3543 Expression*
3544 do_lower(Gogo*, Named_object*, int);
3545
3546 bool
3547 do_is_constant() const;
3548
3549 bool
3550 do_integer_constant_value(bool, mpz_t, Type**) const;
3551
3552 bool
3553 do_float_constant_value(mpfr_t, Type**) const;
3554
3555 bool
3556 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
3557
3558 Type*
3559 do_type();
3560
3561 void
3562 do_determine_type(const Type_context*);
3563
3564 void
3565 do_check_types(Gogo*);
3566
3567 Expression*
3568 do_copy()
3569 {
3570 return Expression::make_unary(this->op_, this->expr_->copy(),
3571 this->location());
3572 }
3573
3574 bool
3575 do_is_addressable() const
3576 { return this->op_ == OPERATOR_MULT; }
3577
3578 tree
3579 do_get_tree(Translate_context*);
3580
3581 void
3582 do_export(Export*) const;
3583
3584 private:
3585 // The unary operator to apply.
3586 Operator op_;
3587 // Normally true. False if this is an address expression which does
3588 // not escape the current function.
3589 bool escapes_;
3590 // The operand.
3591 Expression* expr_;
3592 };
3593
3594 // If we are taking the address of a composite literal, and the
3595 // contents are not constant, then we want to make a heap composite
3596 // instead.
3597
3598 Expression*
3599 Unary_expression::do_lower(Gogo*, Named_object*, int)
3600 {
3601 source_location loc = this->location();
3602 Operator op = this->op_;
3603 Expression* expr = this->expr_;
3604
3605 if (op == OPERATOR_MULT && expr->is_type_expression())
3606 return Expression::make_type(Type::make_pointer_type(expr->type()), loc);
3607
3608 // *&x simplifies to x. *(*T)(unsafe.Pointer)(&x) does not require
3609 // moving x to the heap. FIXME: Is it worth doing a real escape
3610 // analysis here? This case is found in math/unsafe.go and is
3611 // therefore worth special casing.
3612 if (op == OPERATOR_MULT)
3613 {
3614 Expression* e = expr;
3615 while (e->classification() == EXPRESSION_CONVERSION)
3616 {
3617 Type_conversion_expression* te
3618 = static_cast<Type_conversion_expression*>(e);
3619 e = te->expr();
3620 }
3621
3622 if (e->classification() == EXPRESSION_UNARY)
3623 {
3624 Unary_expression* ue = static_cast<Unary_expression*>(e);
3625 if (ue->op_ == OPERATOR_AND)
3626 {
3627 if (e == expr)
3628 {
3629 // *&x == x.
3630 return ue->expr_;
3631 }
3632 ue->set_does_not_escape();
3633 }
3634 }
3635 }
3636
3637 if (op == OPERATOR_PLUS || op == OPERATOR_MINUS
3638 || op == OPERATOR_NOT || op == OPERATOR_XOR)
3639 {
3640 Expression* ret = NULL;
3641
3642 mpz_t eval;
3643 mpz_init(eval);
3644 Type* etype;
3645 if (expr->integer_constant_value(false, eval, &etype))
3646 {
3647 mpz_t val;
3648 mpz_init(val);
3649 if (Unary_expression::eval_integer(op, etype, eval, val, loc))
3650 ret = Expression::make_integer(&val, etype, loc);
3651 mpz_clear(val);
3652 }
3653 mpz_clear(eval);
3654 if (ret != NULL)
3655 return ret;
3656
3657 if (op == OPERATOR_PLUS || op == OPERATOR_MINUS)
3658 {
3659 mpfr_t fval;
3660 mpfr_init(fval);
3661 Type* ftype;
3662 if (expr->float_constant_value(fval, &ftype))
3663 {
3664 mpfr_t val;
3665 mpfr_init(val);
3666 if (Unary_expression::eval_float(op, fval, val))
3667 ret = Expression::make_float(&val, ftype, loc);
3668 mpfr_clear(val);
3669 }
3670 if (ret != NULL)
3671 {
3672 mpfr_clear(fval);
3673 return ret;
3674 }
3675
3676 mpfr_t ival;
3677 mpfr_init(ival);
3678 if (expr->complex_constant_value(fval, ival, &ftype))
3679 {
3680 mpfr_t real;
3681 mpfr_t imag;
3682 mpfr_init(real);
3683 mpfr_init(imag);
3684 if (Unary_expression::eval_complex(op, fval, ival, real, imag))
3685 ret = Expression::make_complex(&real, &imag, ftype, loc);
3686 mpfr_clear(real);
3687 mpfr_clear(imag);
3688 }
3689 mpfr_clear(ival);
3690 mpfr_clear(fval);
3691 if (ret != NULL)
3692 return ret;
3693 }
3694 }
3695
3696 return this;
3697 }
3698
3699 // Return whether a unary expression is a constant.
3700
3701 bool
3702 Unary_expression::do_is_constant() const
3703 {
3704 if (this->op_ == OPERATOR_MULT)
3705 {
3706 // Indirecting through a pointer is only constant if the object
3707 // to which the expression points is constant, but we currently
3708 // have no way to determine that.
3709 return false;
3710 }
3711 else if (this->op_ == OPERATOR_AND)
3712 {
3713 // Taking the address of a variable is constant if it is a
3714 // global variable, not constant otherwise. In other cases
3715 // taking the address is probably not a constant.
3716 Var_expression* ve = this->expr_->var_expression();
3717 if (ve != NULL)
3718 {
3719 Named_object* no = ve->named_object();
3720 return no->is_variable() && no->var_value()->is_global();
3721 }
3722 return false;
3723 }
3724 else
3725 return this->expr_->is_constant();
3726 }
3727
3728 // Apply unary opcode OP to UVAL, setting VAL. UTYPE is the type of
3729 // UVAL, if known; it may be NULL. Return true if this could be done,
3730 // false if not.
3731
3732 bool
3733 Unary_expression::eval_integer(Operator op, Type* utype, mpz_t uval, mpz_t val,
3734 source_location location)
3735 {
3736 switch (op)
3737 {
3738 case OPERATOR_PLUS:
3739 mpz_set(val, uval);
3740 return true;
3741 case OPERATOR_MINUS:
3742 mpz_neg(val, uval);
3743 return Integer_expression::check_constant(val, utype, location);
3744 case OPERATOR_NOT:
3745 mpz_set_ui(val, mpz_cmp_si(uval, 0) == 0 ? 1 : 0);
3746 return true;
3747 case OPERATOR_XOR:
3748 if (utype == NULL
3749 || utype->integer_type() == NULL
3750 || utype->integer_type()->is_abstract())
3751 mpz_com(val, uval);
3752 else
3753 {
3754 // The number of HOST_WIDE_INTs that it takes to represent
3755 // UVAL.
3756 size_t count = ((mpz_sizeinbase(uval, 2)
3757 + HOST_BITS_PER_WIDE_INT
3758 - 1)
3759 / HOST_BITS_PER_WIDE_INT);
3760
3761 unsigned HOST_WIDE_INT* phwi = new unsigned HOST_WIDE_INT[count];
3762 memset(phwi, 0, count * sizeof(HOST_WIDE_INT));
3763
3764 size_t ecount;
3765 mpz_export(phwi, &ecount, -1, sizeof(HOST_WIDE_INT), 0, 0, uval);
3766 gcc_assert(ecount <= count);
3767
3768 // Trim down to the number of words required by the type.
3769 size_t obits = utype->integer_type()->bits();
3770 if (!utype->integer_type()->is_unsigned())
3771 ++obits;
3772 size_t ocount = ((obits + HOST_BITS_PER_WIDE_INT - 1)
3773 / HOST_BITS_PER_WIDE_INT);
3774 gcc_assert(ocount <= ocount);
3775
3776 for (size_t i = 0; i < ocount; ++i)
3777 phwi[i] = ~phwi[i];
3778
3779 size_t clearbits = ocount * HOST_BITS_PER_WIDE_INT - obits;
3780 if (clearbits != 0)
3781 phwi[ocount - 1] &= (((unsigned HOST_WIDE_INT) (HOST_WIDE_INT) -1)
3782 >> clearbits);
3783
3784 mpz_import(val, ocount, -1, sizeof(HOST_WIDE_INT), 0, 0, phwi);
3785
3786 delete[] phwi;
3787 }
3788 return Integer_expression::check_constant(val, utype, location);
3789 case OPERATOR_AND:
3790 case OPERATOR_MULT:
3791 return false;
3792 default:
3793 gcc_unreachable();
3794 }
3795 }
3796
3797 // Apply unary opcode OP to UVAL, setting VAL. Return true if this
3798 // could be done, false if not.
3799
3800 bool
3801 Unary_expression::eval_float(Operator op, mpfr_t uval, mpfr_t val)
3802 {
3803 switch (op)
3804 {
3805 case OPERATOR_PLUS:
3806 mpfr_set(val, uval, GMP_RNDN);
3807 return true;
3808 case OPERATOR_MINUS:
3809 mpfr_neg(val, uval, GMP_RNDN);
3810 return true;
3811 case OPERATOR_NOT:
3812 case OPERATOR_XOR:
3813 case OPERATOR_AND:
3814 case OPERATOR_MULT:
3815 return false;
3816 default:
3817 gcc_unreachable();
3818 }
3819 }
3820
3821 // Apply unary opcode OP to RVAL/IVAL, setting REAL/IMAG. Return true
3822 // if this could be done, false if not.
3823
3824 bool
3825 Unary_expression::eval_complex(Operator op, mpfr_t rval, mpfr_t ival,
3826 mpfr_t real, mpfr_t imag)
3827 {
3828 switch (op)
3829 {
3830 case OPERATOR_PLUS:
3831 mpfr_set(real, rval, GMP_RNDN);
3832 mpfr_set(imag, ival, GMP_RNDN);
3833 return true;
3834 case OPERATOR_MINUS:
3835 mpfr_neg(real, rval, GMP_RNDN);
3836 mpfr_neg(imag, ival, GMP_RNDN);
3837 return true;
3838 case OPERATOR_NOT:
3839 case OPERATOR_XOR:
3840 case OPERATOR_AND:
3841 case OPERATOR_MULT:
3842 return false;
3843 default:
3844 gcc_unreachable();
3845 }
3846 }
3847
3848 // Return the integral constant value of a unary expression, if it has one.
3849
3850 bool
3851 Unary_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
3852 Type** ptype) const
3853 {
3854 mpz_t uval;
3855 mpz_init(uval);
3856 bool ret;
3857 if (!this->expr_->integer_constant_value(iota_is_constant, uval, ptype))
3858 ret = false;
3859 else
3860 ret = Unary_expression::eval_integer(this->op_, *ptype, uval, val,
3861 this->location());
3862 mpz_clear(uval);
3863 return ret;
3864 }
3865
3866 // Return the floating point constant value of a unary expression, if
3867 // it has one.
3868
3869 bool
3870 Unary_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
3871 {
3872 mpfr_t uval;
3873 mpfr_init(uval);
3874 bool ret;
3875 if (!this->expr_->float_constant_value(uval, ptype))
3876 ret = false;
3877 else
3878 ret = Unary_expression::eval_float(this->op_, uval, val);
3879 mpfr_clear(uval);
3880 return ret;
3881 }
3882
3883 // Return the complex constant value of a unary expression, if it has
3884 // one.
3885
3886 bool
3887 Unary_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
3888 Type** ptype) const
3889 {
3890 mpfr_t rval;
3891 mpfr_t ival;
3892 mpfr_init(rval);
3893 mpfr_init(ival);
3894 bool ret;
3895 if (!this->expr_->complex_constant_value(rval, ival, ptype))
3896 ret = false;
3897 else
3898 ret = Unary_expression::eval_complex(this->op_, rval, ival, real, imag);
3899 mpfr_clear(rval);
3900 mpfr_clear(ival);
3901 return ret;
3902 }
3903
3904 // Return the type of a unary expression.
3905
3906 Type*
3907 Unary_expression::do_type()
3908 {
3909 switch (this->op_)
3910 {
3911 case OPERATOR_PLUS:
3912 case OPERATOR_MINUS:
3913 case OPERATOR_NOT:
3914 case OPERATOR_XOR:
3915 return this->expr_->type();
3916
3917 case OPERATOR_AND:
3918 return Type::make_pointer_type(this->expr_->type());
3919
3920 case OPERATOR_MULT:
3921 {
3922 Type* subtype = this->expr_->type();
3923 Type* points_to = subtype->points_to();
3924 if (points_to == NULL)
3925 return Type::make_error_type();
3926 return points_to;
3927 }
3928
3929 default:
3930 gcc_unreachable();
3931 }
3932 }
3933
3934 // Determine abstract types for a unary expression.
3935
3936 void
3937 Unary_expression::do_determine_type(const Type_context* context)
3938 {
3939 switch (this->op_)
3940 {
3941 case OPERATOR_PLUS:
3942 case OPERATOR_MINUS:
3943 case OPERATOR_NOT:
3944 case OPERATOR_XOR:
3945 this->expr_->determine_type(context);
3946 break;
3947
3948 case OPERATOR_AND:
3949 // Taking the address of something.
3950 {
3951 Type* subtype = (context->type == NULL
3952 ? NULL
3953 : context->type->points_to());
3954 Type_context subcontext(subtype, false);
3955 this->expr_->determine_type(&subcontext);
3956 }
3957 break;
3958
3959 case OPERATOR_MULT:
3960 // Indirecting through a pointer.
3961 {
3962 Type* subtype = (context->type == NULL
3963 ? NULL
3964 : Type::make_pointer_type(context->type));
3965 Type_context subcontext(subtype, false);
3966 this->expr_->determine_type(&subcontext);
3967 }
3968 break;
3969
3970 default:
3971 gcc_unreachable();
3972 }
3973 }
3974
3975 // Check types for a unary expression.
3976
3977 void
3978 Unary_expression::do_check_types(Gogo*)
3979 {
3980 Type* type = this->expr_->type();
3981 if (type->is_error_type())
3982 {
3983 this->set_is_error();
3984 return;
3985 }
3986
3987 switch (this->op_)
3988 {
3989 case OPERATOR_PLUS:
3990 case OPERATOR_MINUS:
3991 if (type->integer_type() == NULL
3992 && type->float_type() == NULL
3993 && type->complex_type() == NULL)
3994 this->report_error(_("expected numeric type"));
3995 break;
3996
3997 case OPERATOR_NOT:
3998 case OPERATOR_XOR:
3999 if (type->integer_type() == NULL
4000 && !type->is_boolean_type())
4001 this->report_error(_("expected integer or boolean type"));
4002 break;
4003
4004 case OPERATOR_AND:
4005 if (!this->expr_->is_addressable())
4006 this->report_error(_("invalid operand for unary %<&%>"));
4007 else
4008 this->expr_->address_taken(this->escapes_);
4009 break;
4010
4011 case OPERATOR_MULT:
4012 // Indirecting through a pointer.
4013 if (type->points_to() == NULL)
4014 this->report_error(_("expected pointer"));
4015 break;
4016
4017 default:
4018 gcc_unreachable();
4019 }
4020 }
4021
4022 // Get a tree for a unary expression.
4023
4024 tree
4025 Unary_expression::do_get_tree(Translate_context* context)
4026 {
4027 tree expr = this->expr_->get_tree(context);
4028 if (expr == error_mark_node)
4029 return error_mark_node;
4030
4031 source_location loc = this->location();
4032 switch (this->op_)
4033 {
4034 case OPERATOR_PLUS:
4035 return expr;
4036
4037 case OPERATOR_MINUS:
4038 {
4039 tree type = TREE_TYPE(expr);
4040 tree compute_type = excess_precision_type(type);
4041 if (compute_type != NULL_TREE)
4042 expr = ::convert(compute_type, expr);
4043 tree ret = fold_build1_loc(loc, NEGATE_EXPR,
4044 (compute_type != NULL_TREE
4045 ? compute_type
4046 : type),
4047 expr);
4048 if (compute_type != NULL_TREE)
4049 ret = ::convert(type, ret);
4050 return ret;
4051 }
4052
4053 case OPERATOR_NOT:
4054 if (TREE_CODE(TREE_TYPE(expr)) == BOOLEAN_TYPE)
4055 return fold_build1_loc(loc, TRUTH_NOT_EXPR, TREE_TYPE(expr), expr);
4056 else
4057 return fold_build2_loc(loc, NE_EXPR, boolean_type_node, expr,
4058 build_int_cst(TREE_TYPE(expr), 0));
4059
4060 case OPERATOR_XOR:
4061 return fold_build1_loc(loc, BIT_NOT_EXPR, TREE_TYPE(expr), expr);
4062
4063 case OPERATOR_AND:
4064 // We should not see a non-constant constructor here; cases
4065 // where we would see one should have been moved onto the heap
4066 // at parse time. Taking the address of a nonconstant
4067 // constructor will not do what the programmer expects.
4068 gcc_assert(TREE_CODE(expr) != CONSTRUCTOR || TREE_CONSTANT(expr));
4069 gcc_assert(TREE_CODE(expr) != ADDR_EXPR);
4070
4071 // Build a decl for a constant constructor.
4072 if (TREE_CODE(expr) == CONSTRUCTOR && TREE_CONSTANT(expr))
4073 {
4074 tree decl = build_decl(this->location(), VAR_DECL,
4075 create_tmp_var_name("C"), TREE_TYPE(expr));
4076 DECL_EXTERNAL(decl) = 0;
4077 TREE_PUBLIC(decl) = 0;
4078 TREE_READONLY(decl) = 1;
4079 TREE_CONSTANT(decl) = 1;
4080 TREE_STATIC(decl) = 1;
4081 TREE_ADDRESSABLE(decl) = 1;
4082 DECL_ARTIFICIAL(decl) = 1;
4083 DECL_INITIAL(decl) = expr;
4084 rest_of_decl_compilation(decl, 1, 0);
4085 expr = decl;
4086 }
4087
4088 return build_fold_addr_expr_loc(loc, expr);
4089
4090 case OPERATOR_MULT:
4091 {
4092 gcc_assert(POINTER_TYPE_P(TREE_TYPE(expr)));
4093
4094 // If we are dereferencing the pointer to a large struct, we
4095 // need to check for nil. We don't bother to check for small
4096 // structs because we expect the system to crash on a nil
4097 // pointer dereference.
4098 HOST_WIDE_INT s = int_size_in_bytes(TREE_TYPE(TREE_TYPE(expr)));
4099 if (s == -1 || s >= 4096)
4100 {
4101 if (!DECL_P(expr))
4102 expr = save_expr(expr);
4103 tree compare = fold_build2_loc(loc, EQ_EXPR, boolean_type_node,
4104 expr,
4105 fold_convert(TREE_TYPE(expr),
4106 null_pointer_node));
4107 tree crash = Gogo::runtime_error(RUNTIME_ERROR_NIL_DEREFERENCE,
4108 loc);
4109 expr = fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(expr),
4110 build3(COND_EXPR, void_type_node,
4111 compare, crash, NULL_TREE),
4112 expr);
4113 }
4114
4115 // If the type of EXPR is a recursive pointer type, then we
4116 // need to insert a cast before indirecting.
4117 if (TREE_TYPE(TREE_TYPE(expr)) == ptr_type_node)
4118 {
4119 Type* pt = this->expr_->type()->points_to();
4120 tree ind = pt->get_tree(context->gogo());
4121 expr = fold_convert_loc(loc, build_pointer_type(ind), expr);
4122 }
4123
4124 return build_fold_indirect_ref_loc(loc, expr);
4125 }
4126
4127 default:
4128 gcc_unreachable();
4129 }
4130 }
4131
4132 // Export a unary expression.
4133
4134 void
4135 Unary_expression::do_export(Export* exp) const
4136 {
4137 switch (this->op_)
4138 {
4139 case OPERATOR_PLUS:
4140 exp->write_c_string("+ ");
4141 break;
4142 case OPERATOR_MINUS:
4143 exp->write_c_string("- ");
4144 break;
4145 case OPERATOR_NOT:
4146 exp->write_c_string("! ");
4147 break;
4148 case OPERATOR_XOR:
4149 exp->write_c_string("^ ");
4150 break;
4151 case OPERATOR_AND:
4152 case OPERATOR_MULT:
4153 default:
4154 gcc_unreachable();
4155 }
4156 this->expr_->export_expression(exp);
4157 }
4158
4159 // Import a unary expression.
4160
4161 Expression*
4162 Unary_expression::do_import(Import* imp)
4163 {
4164 Operator op;
4165 switch (imp->get_char())
4166 {
4167 case '+':
4168 op = OPERATOR_PLUS;
4169 break;
4170 case '-':
4171 op = OPERATOR_MINUS;
4172 break;
4173 case '!':
4174 op = OPERATOR_NOT;
4175 break;
4176 case '^':
4177 op = OPERATOR_XOR;
4178 break;
4179 default:
4180 gcc_unreachable();
4181 }
4182 imp->require_c_string(" ");
4183 Expression* expr = Expression::import_expression(imp);
4184 return Expression::make_unary(op, expr, imp->location());
4185 }
4186
4187 // Make a unary expression.
4188
4189 Expression*
4190 Expression::make_unary(Operator op, Expression* expr, source_location location)
4191 {
4192 return new Unary_expression(op, expr, location);
4193 }
4194
4195 // If this is an indirection through a pointer, return the expression
4196 // being pointed through. Otherwise return this.
4197
4198 Expression*
4199 Expression::deref()
4200 {
4201 if (this->classification_ == EXPRESSION_UNARY)
4202 {
4203 Unary_expression* ue = static_cast<Unary_expression*>(this);
4204 if (ue->op() == OPERATOR_MULT)
4205 return ue->operand();
4206 }
4207 return this;
4208 }
4209
4210 // Class Binary_expression.
4211
4212 // Traversal.
4213
4214 int
4215 Binary_expression::do_traverse(Traverse* traverse)
4216 {
4217 int t = Expression::traverse(&this->left_, traverse);
4218 if (t == TRAVERSE_EXIT)
4219 return TRAVERSE_EXIT;
4220 return Expression::traverse(&this->right_, traverse);
4221 }
4222
4223 // Compare integer constants according to OP.
4224
4225 bool
4226 Binary_expression::compare_integer(Operator op, mpz_t left_val,
4227 mpz_t right_val)
4228 {
4229 int i = mpz_cmp(left_val, right_val);
4230 switch (op)
4231 {
4232 case OPERATOR_EQEQ:
4233 return i == 0;
4234 case OPERATOR_NOTEQ:
4235 return i != 0;
4236 case OPERATOR_LT:
4237 return i < 0;
4238 case OPERATOR_LE:
4239 return i <= 0;
4240 case OPERATOR_GT:
4241 return i > 0;
4242 case OPERATOR_GE:
4243 return i >= 0;
4244 default:
4245 gcc_unreachable();
4246 }
4247 }
4248
4249 // Compare floating point constants according to OP.
4250
4251 bool
4252 Binary_expression::compare_float(Operator op, Type* type, mpfr_t left_val,
4253 mpfr_t right_val)
4254 {
4255 int i;
4256 if (type == NULL)
4257 i = mpfr_cmp(left_val, right_val);
4258 else
4259 {
4260 mpfr_t lv;
4261 mpfr_init_set(lv, left_val, GMP_RNDN);
4262 mpfr_t rv;
4263 mpfr_init_set(rv, right_val, GMP_RNDN);
4264 Float_expression::constrain_float(lv, type);
4265 Float_expression::constrain_float(rv, type);
4266 i = mpfr_cmp(lv, rv);
4267 mpfr_clear(lv);
4268 mpfr_clear(rv);
4269 }
4270 switch (op)
4271 {
4272 case OPERATOR_EQEQ:
4273 return i == 0;
4274 case OPERATOR_NOTEQ:
4275 return i != 0;
4276 case OPERATOR_LT:
4277 return i < 0;
4278 case OPERATOR_LE:
4279 return i <= 0;
4280 case OPERATOR_GT:
4281 return i > 0;
4282 case OPERATOR_GE:
4283 return i >= 0;
4284 default:
4285 gcc_unreachable();
4286 }
4287 }
4288
4289 // Compare complex constants according to OP. Complex numbers may
4290 // only be compared for equality.
4291
4292 bool
4293 Binary_expression::compare_complex(Operator op, Type* type,
4294 mpfr_t left_real, mpfr_t left_imag,
4295 mpfr_t right_real, mpfr_t right_imag)
4296 {
4297 bool is_equal;
4298 if (type == NULL)
4299 is_equal = (mpfr_cmp(left_real, right_real) == 0
4300 && mpfr_cmp(left_imag, right_imag) == 0);
4301 else
4302 {
4303 mpfr_t lr;
4304 mpfr_t li;
4305 mpfr_init_set(lr, left_real, GMP_RNDN);
4306 mpfr_init_set(li, left_imag, GMP_RNDN);
4307 mpfr_t rr;
4308 mpfr_t ri;
4309 mpfr_init_set(rr, right_real, GMP_RNDN);
4310 mpfr_init_set(ri, right_imag, GMP_RNDN);
4311 Complex_expression::constrain_complex(lr, li, type);
4312 Complex_expression::constrain_complex(rr, ri, type);
4313 is_equal = mpfr_cmp(lr, rr) == 0 && mpfr_cmp(li, ri) == 0;
4314 mpfr_clear(lr);
4315 mpfr_clear(li);
4316 mpfr_clear(rr);
4317 mpfr_clear(ri);
4318 }
4319 switch (op)
4320 {
4321 case OPERATOR_EQEQ:
4322 return is_equal;
4323 case OPERATOR_NOTEQ:
4324 return !is_equal;
4325 default:
4326 gcc_unreachable();
4327 }
4328 }
4329
4330 // Apply binary opcode OP to LEFT_VAL and RIGHT_VAL, setting VAL.
4331 // LEFT_TYPE is the type of LEFT_VAL, RIGHT_TYPE is the type of
4332 // RIGHT_VAL; LEFT_TYPE and/or RIGHT_TYPE may be NULL. Return true if
4333 // this could be done, false if not.
4334
4335 bool
4336 Binary_expression::eval_integer(Operator op, Type* left_type, mpz_t left_val,
4337 Type* right_type, mpz_t right_val,
4338 source_location location, mpz_t val)
4339 {
4340 bool is_shift_op = false;
4341 switch (op)
4342 {
4343 case OPERATOR_OROR:
4344 case OPERATOR_ANDAND:
4345 case OPERATOR_EQEQ:
4346 case OPERATOR_NOTEQ:
4347 case OPERATOR_LT:
4348 case OPERATOR_LE:
4349 case OPERATOR_GT:
4350 case OPERATOR_GE:
4351 // These return boolean values. We should probably handle them
4352 // anyhow in case a type conversion is used on the result.
4353 return false;
4354 case OPERATOR_PLUS:
4355 mpz_add(val, left_val, right_val);
4356 break;
4357 case OPERATOR_MINUS:
4358 mpz_sub(val, left_val, right_val);
4359 break;
4360 case OPERATOR_OR:
4361 mpz_ior(val, left_val, right_val);
4362 break;
4363 case OPERATOR_XOR:
4364 mpz_xor(val, left_val, right_val);
4365 break;
4366 case OPERATOR_MULT:
4367 mpz_mul(val, left_val, right_val);
4368 break;
4369 case OPERATOR_DIV:
4370 if (mpz_sgn(right_val) != 0)
4371 mpz_tdiv_q(val, left_val, right_val);
4372 else
4373 {
4374 error_at(location, "division by zero");
4375 mpz_set_ui(val, 0);
4376 return true;
4377 }
4378 break;
4379 case OPERATOR_MOD:
4380 if (mpz_sgn(right_val) != 0)
4381 mpz_tdiv_r(val, left_val, right_val);
4382 else
4383 {
4384 error_at(location, "division by zero");
4385 mpz_set_ui(val, 0);
4386 return true;
4387 }
4388 break;
4389 case OPERATOR_LSHIFT:
4390 {
4391 unsigned long shift = mpz_get_ui(right_val);
4392 if (mpz_cmp_ui(right_val, shift) != 0)
4393 {
4394 error_at(location, "shift count overflow");
4395 mpz_set_ui(val, 0);
4396 return true;
4397 }
4398 mpz_mul_2exp(val, left_val, shift);
4399 is_shift_op = true;
4400 break;
4401 }
4402 break;
4403 case OPERATOR_RSHIFT:
4404 {
4405 unsigned long shift = mpz_get_ui(right_val);
4406 if (mpz_cmp_ui(right_val, shift) != 0)
4407 {
4408 error_at(location, "shift count overflow");
4409 mpz_set_ui(val, 0);
4410 return true;
4411 }
4412 if (mpz_cmp_ui(left_val, 0) >= 0)
4413 mpz_tdiv_q_2exp(val, left_val, shift);
4414 else
4415 mpz_fdiv_q_2exp(val, left_val, shift);
4416 is_shift_op = true;
4417 break;
4418 }
4419 break;
4420 case OPERATOR_AND:
4421 mpz_and(val, left_val, right_val);
4422 break;
4423 case OPERATOR_BITCLEAR:
4424 {
4425 mpz_t tval;
4426 mpz_init(tval);
4427 mpz_com(tval, right_val);
4428 mpz_and(val, left_val, tval);
4429 mpz_clear(tval);
4430 }
4431 break;
4432 default:
4433 gcc_unreachable();
4434 }
4435
4436 Type* type = left_type;
4437 if (!is_shift_op)
4438 {
4439 if (type == NULL)
4440 type = right_type;
4441 else if (type != right_type && right_type != NULL)
4442 {
4443 if (type->is_abstract())
4444 type = right_type;
4445 else if (!right_type->is_abstract())
4446 {
4447 // This look like a type error which should be diagnosed
4448 // elsewhere. Don't do anything here, to avoid an
4449 // unhelpful chain of error messages.
4450 return true;
4451 }
4452 }
4453 }
4454
4455 if (type != NULL && !type->is_abstract())
4456 {
4457 // We have to check the operands too, as we have implicitly
4458 // coerced them to TYPE.
4459 if ((type != left_type
4460 && !Integer_expression::check_constant(left_val, type, location))
4461 || (!is_shift_op
4462 && type != right_type
4463 && !Integer_expression::check_constant(right_val, type,
4464 location))
4465 || !Integer_expression::check_constant(val, type, location))
4466 mpz_set_ui(val, 0);
4467 }
4468
4469 return true;
4470 }
4471
4472 // Apply binary opcode OP to LEFT_VAL and RIGHT_VAL, setting VAL.
4473 // Return true if this could be done, false if not.
4474
4475 bool
4476 Binary_expression::eval_float(Operator op, Type* left_type, mpfr_t left_val,
4477 Type* right_type, mpfr_t right_val,
4478 mpfr_t val, source_location location)
4479 {
4480 switch (op)
4481 {
4482 case OPERATOR_OROR:
4483 case OPERATOR_ANDAND:
4484 case OPERATOR_EQEQ:
4485 case OPERATOR_NOTEQ:
4486 case OPERATOR_LT:
4487 case OPERATOR_LE:
4488 case OPERATOR_GT:
4489 case OPERATOR_GE:
4490 // These return boolean values. We should probably handle them
4491 // anyhow in case a type conversion is used on the result.
4492 return false;
4493 case OPERATOR_PLUS:
4494 mpfr_add(val, left_val, right_val, GMP_RNDN);
4495 break;
4496 case OPERATOR_MINUS:
4497 mpfr_sub(val, left_val, right_val, GMP_RNDN);
4498 break;
4499 case OPERATOR_OR:
4500 case OPERATOR_XOR:
4501 case OPERATOR_AND:
4502 case OPERATOR_BITCLEAR:
4503 return false;
4504 case OPERATOR_MULT:
4505 mpfr_mul(val, left_val, right_val, GMP_RNDN);
4506 break;
4507 case OPERATOR_DIV:
4508 if (mpfr_zero_p(right_val))
4509 error_at(location, "division by zero");
4510 mpfr_div(val, left_val, right_val, GMP_RNDN);
4511 break;
4512 case OPERATOR_MOD:
4513 return false;
4514 case OPERATOR_LSHIFT:
4515 case OPERATOR_RSHIFT:
4516 return false;
4517 default:
4518 gcc_unreachable();
4519 }
4520
4521 Type* type = left_type;
4522 if (type == NULL)
4523 type = right_type;
4524 else if (type != right_type && right_type != NULL)
4525 {
4526 if (type->is_abstract())
4527 type = right_type;
4528 else if (!right_type->is_abstract())
4529 {
4530 // This looks like a type error which should be diagnosed
4531 // elsewhere. Don't do anything here, to avoid an unhelpful
4532 // chain of error messages.
4533 return true;
4534 }
4535 }
4536
4537 if (type != NULL && !type->is_abstract())
4538 {
4539 if ((type != left_type
4540 && !Float_expression::check_constant(left_val, type, location))
4541 || (type != right_type
4542 && !Float_expression::check_constant(right_val, type,
4543 location))
4544 || !Float_expression::check_constant(val, type, location))
4545 mpfr_set_ui(val, 0, GMP_RNDN);
4546 }
4547
4548 return true;
4549 }
4550
4551 // Apply binary opcode OP to LEFT_REAL/LEFT_IMAG and
4552 // RIGHT_REAL/RIGHT_IMAG, setting REAL/IMAG. Return true if this
4553 // could be done, false if not.
4554
4555 bool
4556 Binary_expression::eval_complex(Operator op, Type* left_type,
4557 mpfr_t left_real, mpfr_t left_imag,
4558 Type *right_type,
4559 mpfr_t right_real, mpfr_t right_imag,
4560 mpfr_t real, mpfr_t imag,
4561 source_location location)
4562 {
4563 switch (op)
4564 {
4565 case OPERATOR_OROR:
4566 case OPERATOR_ANDAND:
4567 case OPERATOR_EQEQ:
4568 case OPERATOR_NOTEQ:
4569 case OPERATOR_LT:
4570 case OPERATOR_LE:
4571 case OPERATOR_GT:
4572 case OPERATOR_GE:
4573 // These return boolean values and must be handled differently.
4574 return false;
4575 case OPERATOR_PLUS:
4576 mpfr_add(real, left_real, right_real, GMP_RNDN);
4577 mpfr_add(imag, left_imag, right_imag, GMP_RNDN);
4578 break;
4579 case OPERATOR_MINUS:
4580 mpfr_sub(real, left_real, right_real, GMP_RNDN);
4581 mpfr_sub(imag, left_imag, right_imag, GMP_RNDN);
4582 break;
4583 case OPERATOR_OR:
4584 case OPERATOR_XOR:
4585 case OPERATOR_AND:
4586 case OPERATOR_BITCLEAR:
4587 return false;
4588 case OPERATOR_MULT:
4589 {
4590 // You might think that multiplying two complex numbers would
4591 // be simple, and you would be right, until you start to think
4592 // about getting the right answer for infinity. If one
4593 // operand here is infinity and the other is anything other
4594 // than zero or NaN, then we are going to wind up subtracting
4595 // two infinity values. That will give us a NaN, but the
4596 // correct answer is infinity.
4597
4598 mpfr_t lrrr;
4599 mpfr_init(lrrr);
4600 mpfr_mul(lrrr, left_real, right_real, GMP_RNDN);
4601
4602 mpfr_t lrri;
4603 mpfr_init(lrri);
4604 mpfr_mul(lrri, left_real, right_imag, GMP_RNDN);
4605
4606 mpfr_t lirr;
4607 mpfr_init(lirr);
4608 mpfr_mul(lirr, left_imag, right_real, GMP_RNDN);
4609
4610 mpfr_t liri;
4611 mpfr_init(liri);
4612 mpfr_mul(liri, left_imag, right_imag, GMP_RNDN);
4613
4614 mpfr_sub(real, lrrr, liri, GMP_RNDN);
4615 mpfr_add(imag, lrri, lirr, GMP_RNDN);
4616
4617 // If we get NaN on both sides, check whether it should really
4618 // be infinity. The rule is that if either side of the
4619 // complex number is infinity, then the whole value is
4620 // infinity, even if the other side is NaN. So the only case
4621 // we have to fix is the one in which both sides are NaN.
4622 if (mpfr_nan_p(real) && mpfr_nan_p(imag)
4623 && (!mpfr_nan_p(left_real) || !mpfr_nan_p(left_imag))
4624 && (!mpfr_nan_p(right_real) || !mpfr_nan_p(right_imag)))
4625 {
4626 bool is_infinity = false;
4627
4628 mpfr_t lr;
4629 mpfr_t li;
4630 mpfr_init_set(lr, left_real, GMP_RNDN);
4631 mpfr_init_set(li, left_imag, GMP_RNDN);
4632
4633 mpfr_t rr;
4634 mpfr_t ri;
4635 mpfr_init_set(rr, right_real, GMP_RNDN);
4636 mpfr_init_set(ri, right_imag, GMP_RNDN);
4637
4638 // If the left side is infinity, then the result is
4639 // infinity.
4640 if (mpfr_inf_p(lr) || mpfr_inf_p(li))
4641 {
4642 mpfr_set_ui(lr, mpfr_inf_p(lr) ? 1 : 0, GMP_RNDN);
4643 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
4644 mpfr_set_ui(li, mpfr_inf_p(li) ? 1 : 0, GMP_RNDN);
4645 mpfr_copysign(li, li, left_imag, GMP_RNDN);
4646 if (mpfr_nan_p(rr))
4647 {
4648 mpfr_set_ui(rr, 0, GMP_RNDN);
4649 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
4650 }
4651 if (mpfr_nan_p(ri))
4652 {
4653 mpfr_set_ui(ri, 0, GMP_RNDN);
4654 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
4655 }
4656 is_infinity = true;
4657 }
4658
4659 // If the right side is infinity, then the result is
4660 // infinity.
4661 if (mpfr_inf_p(rr) || mpfr_inf_p(ri))
4662 {
4663 mpfr_set_ui(rr, mpfr_inf_p(rr) ? 1 : 0, GMP_RNDN);
4664 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
4665 mpfr_set_ui(ri, mpfr_inf_p(ri) ? 1 : 0, GMP_RNDN);
4666 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
4667 if (mpfr_nan_p(lr))
4668 {
4669 mpfr_set_ui(lr, 0, GMP_RNDN);
4670 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
4671 }
4672 if (mpfr_nan_p(li))
4673 {
4674 mpfr_set_ui(li, 0, GMP_RNDN);
4675 mpfr_copysign(li, li, left_imag, GMP_RNDN);
4676 }
4677 is_infinity = true;
4678 }
4679
4680 // If we got an overflow in the intermediate computations,
4681 // then the result is infinity.
4682 if (!is_infinity
4683 && (mpfr_inf_p(lrrr) || mpfr_inf_p(lrri)
4684 || mpfr_inf_p(lirr) || mpfr_inf_p(liri)))
4685 {
4686 if (mpfr_nan_p(lr))
4687 {
4688 mpfr_set_ui(lr, 0, GMP_RNDN);
4689 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
4690 }
4691 if (mpfr_nan_p(li))
4692 {
4693 mpfr_set_ui(li, 0, GMP_RNDN);
4694 mpfr_copysign(li, li, left_imag, GMP_RNDN);
4695 }
4696 if (mpfr_nan_p(rr))
4697 {
4698 mpfr_set_ui(rr, 0, GMP_RNDN);
4699 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
4700 }
4701 if (mpfr_nan_p(ri))
4702 {
4703 mpfr_set_ui(ri, 0, GMP_RNDN);
4704 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
4705 }
4706 is_infinity = true;
4707 }
4708
4709 if (is_infinity)
4710 {
4711 mpfr_mul(lrrr, lr, rr, GMP_RNDN);
4712 mpfr_mul(lrri, lr, ri, GMP_RNDN);
4713 mpfr_mul(lirr, li, rr, GMP_RNDN);
4714 mpfr_mul(liri, li, ri, GMP_RNDN);
4715 mpfr_sub(real, lrrr, liri, GMP_RNDN);
4716 mpfr_add(imag, lrri, lirr, GMP_RNDN);
4717 mpfr_set_inf(real, mpfr_sgn(real));
4718 mpfr_set_inf(imag, mpfr_sgn(imag));
4719 }
4720
4721 mpfr_clear(lr);
4722 mpfr_clear(li);
4723 mpfr_clear(rr);
4724 mpfr_clear(ri);
4725 }
4726
4727 mpfr_clear(lrrr);
4728 mpfr_clear(lrri);
4729 mpfr_clear(lirr);
4730 mpfr_clear(liri);
4731 }
4732 break;
4733 case OPERATOR_DIV:
4734 {
4735 // For complex division we want to avoid having an
4736 // intermediate overflow turn the whole result in a NaN. We
4737 // scale the values to try to avoid this.
4738
4739 if (mpfr_zero_p(right_real) && mpfr_zero_p(right_imag))
4740 error_at(location, "division by zero");
4741
4742 mpfr_t rra;
4743 mpfr_t ria;
4744 mpfr_init(rra);
4745 mpfr_init(ria);
4746 mpfr_abs(rra, right_real, GMP_RNDN);
4747 mpfr_abs(ria, right_imag, GMP_RNDN);
4748 mpfr_t t;
4749 mpfr_init(t);
4750 mpfr_max(t, rra, ria, GMP_RNDN);
4751
4752 mpfr_t rr;
4753 mpfr_t ri;
4754 mpfr_init_set(rr, right_real, GMP_RNDN);
4755 mpfr_init_set(ri, right_imag, GMP_RNDN);
4756 long ilogbw = 0;
4757 if (!mpfr_inf_p(t) && !mpfr_nan_p(t) && !mpfr_zero_p(t))
4758 {
4759 ilogbw = mpfr_get_exp(t);
4760 mpfr_mul_2si(rr, rr, - ilogbw, GMP_RNDN);
4761 mpfr_mul_2si(ri, ri, - ilogbw, GMP_RNDN);
4762 }
4763
4764 mpfr_t denom;
4765 mpfr_init(denom);
4766 mpfr_mul(denom, rr, rr, GMP_RNDN);
4767 mpfr_mul(t, ri, ri, GMP_RNDN);
4768 mpfr_add(denom, denom, t, GMP_RNDN);
4769
4770 mpfr_mul(real, left_real, rr, GMP_RNDN);
4771 mpfr_mul(t, left_imag, ri, GMP_RNDN);
4772 mpfr_add(real, real, t, GMP_RNDN);
4773 mpfr_div(real, real, denom, GMP_RNDN);
4774 mpfr_mul_2si(real, real, - ilogbw, GMP_RNDN);
4775
4776 mpfr_mul(imag, left_imag, rr, GMP_RNDN);
4777 mpfr_mul(t, left_real, ri, GMP_RNDN);
4778 mpfr_sub(imag, imag, t, GMP_RNDN);
4779 mpfr_div(imag, imag, denom, GMP_RNDN);
4780 mpfr_mul_2si(imag, imag, - ilogbw, GMP_RNDN);
4781
4782 // If we wind up with NaN on both sides, check whether we
4783 // should really have infinity. The rule is that if either
4784 // side of the complex number is infinity, then the whole
4785 // value is infinity, even if the other side is NaN. So the
4786 // only case we have to fix is the one in which both sides are
4787 // NaN.
4788 if (mpfr_nan_p(real) && mpfr_nan_p(imag)
4789 && (!mpfr_nan_p(left_real) || !mpfr_nan_p(left_imag))
4790 && (!mpfr_nan_p(right_real) || !mpfr_nan_p(right_imag)))
4791 {
4792 if (mpfr_zero_p(denom))
4793 {
4794 mpfr_set_inf(real, mpfr_sgn(rr));
4795 mpfr_mul(real, real, left_real, GMP_RNDN);
4796 mpfr_set_inf(imag, mpfr_sgn(rr));
4797 mpfr_mul(imag, imag, left_imag, GMP_RNDN);
4798 }
4799 else if ((mpfr_inf_p(left_real) || mpfr_inf_p(left_imag))
4800 && mpfr_number_p(rr) && mpfr_number_p(ri))
4801 {
4802 mpfr_set_ui(t, mpfr_inf_p(left_real) ? 1 : 0, GMP_RNDN);
4803 mpfr_copysign(t, t, left_real, GMP_RNDN);
4804
4805 mpfr_t t2;
4806 mpfr_init_set_ui(t2, mpfr_inf_p(left_imag) ? 1 : 0, GMP_RNDN);
4807 mpfr_copysign(t2, t2, left_imag, GMP_RNDN);
4808
4809 mpfr_t t3;
4810 mpfr_init(t3);
4811 mpfr_mul(t3, t, rr, GMP_RNDN);
4812
4813 mpfr_t t4;
4814 mpfr_init(t4);
4815 mpfr_mul(t4, t2, ri, GMP_RNDN);
4816
4817 mpfr_add(t3, t3, t4, GMP_RNDN);
4818 mpfr_set_inf(real, mpfr_sgn(t3));
4819
4820 mpfr_mul(t3, t2, rr, GMP_RNDN);
4821 mpfr_mul(t4, t, ri, GMP_RNDN);
4822 mpfr_sub(t3, t3, t4, GMP_RNDN);
4823 mpfr_set_inf(imag, mpfr_sgn(t3));
4824
4825 mpfr_clear(t2);
4826 mpfr_clear(t3);
4827 mpfr_clear(t4);
4828 }
4829 else if ((mpfr_inf_p(right_real) || mpfr_inf_p(right_imag))
4830 && mpfr_number_p(left_real) && mpfr_number_p(left_imag))
4831 {
4832 mpfr_set_ui(t, mpfr_inf_p(rr) ? 1 : 0, GMP_RNDN);
4833 mpfr_copysign(t, t, rr, GMP_RNDN);
4834
4835 mpfr_t t2;
4836 mpfr_init_set_ui(t2, mpfr_inf_p(ri) ? 1 : 0, GMP_RNDN);
4837 mpfr_copysign(t2, t2, ri, GMP_RNDN);
4838
4839 mpfr_t t3;
4840 mpfr_init(t3);
4841 mpfr_mul(t3, left_real, t, GMP_RNDN);
4842
4843 mpfr_t t4;
4844 mpfr_init(t4);
4845 mpfr_mul(t4, left_imag, t2, GMP_RNDN);
4846
4847 mpfr_add(t3, t3, t4, GMP_RNDN);
4848 mpfr_set_ui(real, 0, GMP_RNDN);
4849 mpfr_mul(real, real, t3, GMP_RNDN);
4850
4851 mpfr_mul(t3, left_imag, t, GMP_RNDN);
4852 mpfr_mul(t4, left_real, t2, GMP_RNDN);
4853 mpfr_sub(t3, t3, t4, GMP_RNDN);
4854 mpfr_set_ui(imag, 0, GMP_RNDN);
4855 mpfr_mul(imag, imag, t3, GMP_RNDN);
4856
4857 mpfr_clear(t2);
4858 mpfr_clear(t3);
4859 mpfr_clear(t4);
4860 }
4861 }
4862
4863 mpfr_clear(denom);
4864 mpfr_clear(rr);
4865 mpfr_clear(ri);
4866 mpfr_clear(t);
4867 mpfr_clear(rra);
4868 mpfr_clear(ria);
4869 }
4870 break;
4871 case OPERATOR_MOD:
4872 return false;
4873 case OPERATOR_LSHIFT:
4874 case OPERATOR_RSHIFT:
4875 return false;
4876 default:
4877 gcc_unreachable();
4878 }
4879
4880 Type* type = left_type;
4881 if (type == NULL)
4882 type = right_type;
4883 else if (type != right_type && right_type != NULL)
4884 {
4885 if (type->is_abstract())
4886 type = right_type;
4887 else if (!right_type->is_abstract())
4888 {
4889 // This looks like a type error which should be diagnosed
4890 // elsewhere. Don't do anything here, to avoid an unhelpful
4891 // chain of error messages.
4892 return true;
4893 }
4894 }
4895
4896 if (type != NULL && !type->is_abstract())
4897 {
4898 if ((type != left_type
4899 && !Complex_expression::check_constant(left_real, left_imag,
4900 type, location))
4901 || (type != right_type
4902 && !Complex_expression::check_constant(right_real, right_imag,
4903 type, location))
4904 || !Complex_expression::check_constant(real, imag, type,
4905 location))
4906 {
4907 mpfr_set_ui(real, 0, GMP_RNDN);
4908 mpfr_set_ui(imag, 0, GMP_RNDN);
4909 }
4910 }
4911
4912 return true;
4913 }
4914
4915 // Lower a binary expression. We have to evaluate constant
4916 // expressions now, in order to implement Go's unlimited precision
4917 // constants.
4918
4919 Expression*
4920 Binary_expression::do_lower(Gogo*, Named_object*, int)
4921 {
4922 source_location location = this->location();
4923 Operator op = this->op_;
4924 Expression* left = this->left_;
4925 Expression* right = this->right_;
4926
4927 const bool is_comparison = (op == OPERATOR_EQEQ
4928 || op == OPERATOR_NOTEQ
4929 || op == OPERATOR_LT
4930 || op == OPERATOR_LE
4931 || op == OPERATOR_GT
4932 || op == OPERATOR_GE);
4933
4934 // Integer constant expressions.
4935 {
4936 mpz_t left_val;
4937 mpz_init(left_val);
4938 Type* left_type;
4939 mpz_t right_val;
4940 mpz_init(right_val);
4941 Type* right_type;
4942 if (left->integer_constant_value(false, left_val, &left_type)
4943 && right->integer_constant_value(false, right_val, &right_type))
4944 {
4945 Expression* ret = NULL;
4946 if (left_type != right_type
4947 && left_type != NULL
4948 && right_type != NULL
4949 && left_type->base() != right_type->base()
4950 && op != OPERATOR_LSHIFT
4951 && op != OPERATOR_RSHIFT)
4952 {
4953 // May be a type error--let it be diagnosed later.
4954 }
4955 else if (is_comparison)
4956 {
4957 bool b = Binary_expression::compare_integer(op, left_val,
4958 right_val);
4959 ret = Expression::make_cast(Type::lookup_bool_type(),
4960 Expression::make_boolean(b, location),
4961 location);
4962 }
4963 else
4964 {
4965 mpz_t val;
4966 mpz_init(val);
4967
4968 if (Binary_expression::eval_integer(op, left_type, left_val,
4969 right_type, right_val,
4970 location, val))
4971 {
4972 gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND);
4973 Type* type;
4974 if (op == OPERATOR_LSHIFT || op == OPERATOR_RSHIFT)
4975 type = left_type;
4976 else if (left_type == NULL)
4977 type = right_type;
4978 else if (right_type == NULL)
4979 type = left_type;
4980 else if (!left_type->is_abstract()
4981 && left_type->named_type() != NULL)
4982 type = left_type;
4983 else if (!right_type->is_abstract()
4984 && right_type->named_type() != NULL)
4985 type = right_type;
4986 else if (!left_type->is_abstract())
4987 type = left_type;
4988 else if (!right_type->is_abstract())
4989 type = right_type;
4990 else if (left_type->float_type() != NULL)
4991 type = left_type;
4992 else if (right_type->float_type() != NULL)
4993 type = right_type;
4994 else if (left_type->complex_type() != NULL)
4995 type = left_type;
4996 else if (right_type->complex_type() != NULL)
4997 type = right_type;
4998 else
4999 type = left_type;
5000 ret = Expression::make_integer(&val, type, location);
5001 }
5002
5003 mpz_clear(val);
5004 }
5005
5006 if (ret != NULL)
5007 {
5008 mpz_clear(right_val);
5009 mpz_clear(left_val);
5010 return ret;
5011 }
5012 }
5013 mpz_clear(right_val);
5014 mpz_clear(left_val);
5015 }
5016
5017 // Floating point constant expressions.
5018 {
5019 mpfr_t left_val;
5020 mpfr_init(left_val);
5021 Type* left_type;
5022 mpfr_t right_val;
5023 mpfr_init(right_val);
5024 Type* right_type;
5025 if (left->float_constant_value(left_val, &left_type)
5026 && right->float_constant_value(right_val, &right_type))
5027 {
5028 Expression* ret = NULL;
5029 if (left_type != right_type
5030 && left_type != NULL
5031 && right_type != NULL
5032 && left_type->base() != right_type->base()
5033 && op != OPERATOR_LSHIFT
5034 && op != OPERATOR_RSHIFT)
5035 {
5036 // May be a type error--let it be diagnosed later.
5037 }
5038 else if (is_comparison)
5039 {
5040 bool b = Binary_expression::compare_float(op,
5041 (left_type != NULL
5042 ? left_type
5043 : right_type),
5044 left_val, right_val);
5045 ret = Expression::make_boolean(b, location);
5046 }
5047 else
5048 {
5049 mpfr_t val;
5050 mpfr_init(val);
5051
5052 if (Binary_expression::eval_float(op, left_type, left_val,
5053 right_type, right_val, val,
5054 location))
5055 {
5056 gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND
5057 && op != OPERATOR_LSHIFT && op != OPERATOR_RSHIFT);
5058 Type* type;
5059 if (left_type == NULL)
5060 type = right_type;
5061 else if (right_type == NULL)
5062 type = left_type;
5063 else if (!left_type->is_abstract()
5064 && left_type->named_type() != NULL)
5065 type = left_type;
5066 else if (!right_type->is_abstract()
5067 && right_type->named_type() != NULL)
5068 type = right_type;
5069 else if (!left_type->is_abstract())
5070 type = left_type;
5071 else if (!right_type->is_abstract())
5072 type = right_type;
5073 else if (left_type->float_type() != NULL)
5074 type = left_type;
5075 else if (right_type->float_type() != NULL)
5076 type = right_type;
5077 else
5078 type = left_type;
5079 ret = Expression::make_float(&val, type, location);
5080 }
5081
5082 mpfr_clear(val);
5083 }
5084
5085 if (ret != NULL)
5086 {
5087 mpfr_clear(right_val);
5088 mpfr_clear(left_val);
5089 return ret;
5090 }
5091 }
5092 mpfr_clear(right_val);
5093 mpfr_clear(left_val);
5094 }
5095
5096 // Complex constant expressions.
5097 {
5098 mpfr_t left_real;
5099 mpfr_t left_imag;
5100 mpfr_init(left_real);
5101 mpfr_init(left_imag);
5102 Type* left_type;
5103
5104 mpfr_t right_real;
5105 mpfr_t right_imag;
5106 mpfr_init(right_real);
5107 mpfr_init(right_imag);
5108 Type* right_type;
5109
5110 if (left->complex_constant_value(left_real, left_imag, &left_type)
5111 && right->complex_constant_value(right_real, right_imag, &right_type))
5112 {
5113 Expression* ret = NULL;
5114 if (left_type != right_type
5115 && left_type != NULL
5116 && right_type != NULL
5117 && left_type->base() != right_type->base())
5118 {
5119 // May be a type error--let it be diagnosed later.
5120 }
5121 else if (is_comparison)
5122 {
5123 bool b = Binary_expression::compare_complex(op,
5124 (left_type != NULL
5125 ? left_type
5126 : right_type),
5127 left_real,
5128 left_imag,
5129 right_real,
5130 right_imag);
5131 ret = Expression::make_boolean(b, location);
5132 }
5133 else
5134 {
5135 mpfr_t real;
5136 mpfr_t imag;
5137 mpfr_init(real);
5138 mpfr_init(imag);
5139
5140 if (Binary_expression::eval_complex(op, left_type,
5141 left_real, left_imag,
5142 right_type,
5143 right_real, right_imag,
5144 real, imag,
5145 location))
5146 {
5147 gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND
5148 && op != OPERATOR_LSHIFT && op != OPERATOR_RSHIFT);
5149 Type* type;
5150 if (left_type == NULL)
5151 type = right_type;
5152 else if (right_type == NULL)
5153 type = left_type;
5154 else if (!left_type->is_abstract()
5155 && left_type->named_type() != NULL)
5156 type = left_type;
5157 else if (!right_type->is_abstract()
5158 && right_type->named_type() != NULL)
5159 type = right_type;
5160 else if (!left_type->is_abstract())
5161 type = left_type;
5162 else if (!right_type->is_abstract())
5163 type = right_type;
5164 else if (left_type->complex_type() != NULL)
5165 type = left_type;
5166 else if (right_type->complex_type() != NULL)
5167 type = right_type;
5168 else
5169 type = left_type;
5170 ret = Expression::make_complex(&real, &imag, type,
5171 location);
5172 }
5173 mpfr_clear(real);
5174 mpfr_clear(imag);
5175 }
5176
5177 if (ret != NULL)
5178 {
5179 mpfr_clear(left_real);
5180 mpfr_clear(left_imag);
5181 mpfr_clear(right_real);
5182 mpfr_clear(right_imag);
5183 return ret;
5184 }
5185 }
5186
5187 mpfr_clear(left_real);
5188 mpfr_clear(left_imag);
5189 mpfr_clear(right_real);
5190 mpfr_clear(right_imag);
5191 }
5192
5193 // String constant expressions.
5194 if (op == OPERATOR_PLUS
5195 && left->type()->is_string_type()
5196 && right->type()->is_string_type())
5197 {
5198 std::string left_string;
5199 std::string right_string;
5200 if (left->string_constant_value(&left_string)
5201 && right->string_constant_value(&right_string))
5202 return Expression::make_string(left_string + right_string, location);
5203 }
5204
5205 return this;
5206 }
5207
5208 // Return the integer constant value, if it has one.
5209
5210 bool
5211 Binary_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
5212 Type** ptype) const
5213 {
5214 mpz_t left_val;
5215 mpz_init(left_val);
5216 Type* left_type;
5217 if (!this->left_->integer_constant_value(iota_is_constant, left_val,
5218 &left_type))
5219 {
5220 mpz_clear(left_val);
5221 return false;
5222 }
5223
5224 mpz_t right_val;
5225 mpz_init(right_val);
5226 Type* right_type;
5227 if (!this->right_->integer_constant_value(iota_is_constant, right_val,
5228 &right_type))
5229 {
5230 mpz_clear(right_val);
5231 mpz_clear(left_val);
5232 return false;
5233 }
5234
5235 bool ret;
5236 if (left_type != right_type
5237 && left_type != NULL
5238 && right_type != NULL
5239 && left_type->base() != right_type->base()
5240 && this->op_ != OPERATOR_RSHIFT
5241 && this->op_ != OPERATOR_LSHIFT)
5242 ret = false;
5243 else
5244 ret = Binary_expression::eval_integer(this->op_, left_type, left_val,
5245 right_type, right_val,
5246 this->location(), val);
5247
5248 mpz_clear(right_val);
5249 mpz_clear(left_val);
5250
5251 if (ret)
5252 *ptype = left_type;
5253
5254 return ret;
5255 }
5256
5257 // Return the floating point constant value, if it has one.
5258
5259 bool
5260 Binary_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
5261 {
5262 mpfr_t left_val;
5263 mpfr_init(left_val);
5264 Type* left_type;
5265 if (!this->left_->float_constant_value(left_val, &left_type))
5266 {
5267 mpfr_clear(left_val);
5268 return false;
5269 }
5270
5271 mpfr_t right_val;
5272 mpfr_init(right_val);
5273 Type* right_type;
5274 if (!this->right_->float_constant_value(right_val, &right_type))
5275 {
5276 mpfr_clear(right_val);
5277 mpfr_clear(left_val);
5278 return false;
5279 }
5280
5281 bool ret;
5282 if (left_type != right_type
5283 && left_type != NULL
5284 && right_type != NULL
5285 && left_type->base() != right_type->base())
5286 ret = false;
5287 else
5288 ret = Binary_expression::eval_float(this->op_, left_type, left_val,
5289 right_type, right_val,
5290 val, this->location());
5291
5292 mpfr_clear(left_val);
5293 mpfr_clear(right_val);
5294
5295 if (ret)
5296 *ptype = left_type;
5297
5298 return ret;
5299 }
5300
5301 // Return the complex constant value, if it has one.
5302
5303 bool
5304 Binary_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
5305 Type** ptype) const
5306 {
5307 mpfr_t left_real;
5308 mpfr_t left_imag;
5309 mpfr_init(left_real);
5310 mpfr_init(left_imag);
5311 Type* left_type;
5312 if (!this->left_->complex_constant_value(left_real, left_imag, &left_type))
5313 {
5314 mpfr_clear(left_real);
5315 mpfr_clear(left_imag);
5316 return false;
5317 }
5318
5319 mpfr_t right_real;
5320 mpfr_t right_imag;
5321 mpfr_init(right_real);
5322 mpfr_init(right_imag);
5323 Type* right_type;
5324 if (!this->right_->complex_constant_value(right_real, right_imag,
5325 &right_type))
5326 {
5327 mpfr_clear(left_real);
5328 mpfr_clear(left_imag);
5329 mpfr_clear(right_real);
5330 mpfr_clear(right_imag);
5331 return false;
5332 }
5333
5334 bool ret;
5335 if (left_type != right_type
5336 && left_type != NULL
5337 && right_type != NULL
5338 && left_type->base() != right_type->base())
5339 ret = false;
5340 else
5341 ret = Binary_expression::eval_complex(this->op_, left_type,
5342 left_real, left_imag,
5343 right_type,
5344 right_real, right_imag,
5345 real, imag,
5346 this->location());
5347 mpfr_clear(left_real);
5348 mpfr_clear(left_imag);
5349 mpfr_clear(right_real);
5350 mpfr_clear(right_imag);
5351
5352 if (ret)
5353 *ptype = left_type;
5354
5355 return ret;
5356 }
5357
5358 // Note that the value is being discarded.
5359
5360 void
5361 Binary_expression::do_discarding_value()
5362 {
5363 if (this->op_ == OPERATOR_OROR || this->op_ == OPERATOR_ANDAND)
5364 this->right_->discarding_value();
5365 else
5366 this->warn_about_unused_value();
5367 }
5368
5369 // Get type.
5370
5371 Type*
5372 Binary_expression::do_type()
5373 {
5374 switch (this->op_)
5375 {
5376 case OPERATOR_OROR:
5377 case OPERATOR_ANDAND:
5378 case OPERATOR_EQEQ:
5379 case OPERATOR_NOTEQ:
5380 case OPERATOR_LT:
5381 case OPERATOR_LE:
5382 case OPERATOR_GT:
5383 case OPERATOR_GE:
5384 return Type::lookup_bool_type();
5385
5386 case OPERATOR_PLUS:
5387 case OPERATOR_MINUS:
5388 case OPERATOR_OR:
5389 case OPERATOR_XOR:
5390 case OPERATOR_MULT:
5391 case OPERATOR_DIV:
5392 case OPERATOR_MOD:
5393 case OPERATOR_AND:
5394 case OPERATOR_BITCLEAR:
5395 {
5396 Type* left_type = this->left_->type();
5397 Type* right_type = this->right_->type();
5398 if (!left_type->is_abstract() && left_type->named_type() != NULL)
5399 return left_type;
5400 else if (!right_type->is_abstract() && right_type->named_type() != NULL)
5401 return right_type;
5402 else if (!left_type->is_abstract())
5403 return left_type;
5404 else if (!right_type->is_abstract())
5405 return right_type;
5406 else if (left_type->complex_type() != NULL)
5407 return left_type;
5408 else if (right_type->complex_type() != NULL)
5409 return right_type;
5410 else if (left_type->float_type() != NULL)
5411 return left_type;
5412 else if (right_type->float_type() != NULL)
5413 return right_type;
5414 else
5415 return left_type;
5416 }
5417
5418 case OPERATOR_LSHIFT:
5419 case OPERATOR_RSHIFT:
5420 return this->left_->type();
5421
5422 default:
5423 gcc_unreachable();
5424 }
5425 }
5426
5427 // Set type for a binary expression.
5428
5429 void
5430 Binary_expression::do_determine_type(const Type_context* context)
5431 {
5432 Type* tleft = this->left_->type();
5433 Type* tright = this->right_->type();
5434
5435 // Both sides should have the same type, except for the shift
5436 // operations. For a comparison, we should ignore the incoming
5437 // type.
5438
5439 bool is_shift_op = (this->op_ == OPERATOR_LSHIFT
5440 || this->op_ == OPERATOR_RSHIFT);
5441
5442 bool is_comparison = (this->op_ == OPERATOR_EQEQ
5443 || this->op_ == OPERATOR_NOTEQ
5444 || this->op_ == OPERATOR_LT
5445 || this->op_ == OPERATOR_LE
5446 || this->op_ == OPERATOR_GT
5447 || this->op_ == OPERATOR_GE);
5448
5449 Type_context subcontext(*context);
5450
5451 if (is_comparison)
5452 {
5453 // In a comparison, the context does not determine the types of
5454 // the operands.
5455 subcontext.type = NULL;
5456 }
5457
5458 // Set the context for the left hand operand.
5459 if (is_shift_op)
5460 {
5461 // The right hand operand plays no role in determining the type
5462 // of the left hand operand. A shift of an abstract integer in
5463 // a string context gets special treatment, which may be a
5464 // language bug.
5465 if (subcontext.type != NULL
5466 && subcontext.type->is_string_type()
5467 && tleft->is_abstract())
5468 error_at(this->location(), "shift of non-integer operand");
5469 }
5470 else if (!tleft->is_abstract())
5471 subcontext.type = tleft;
5472 else if (!tright->is_abstract())
5473 subcontext.type = tright;
5474 else if (subcontext.type == NULL)
5475 {
5476 if ((tleft->integer_type() != NULL && tright->integer_type() != NULL)
5477 || (tleft->float_type() != NULL && tright->float_type() != NULL)
5478 || (tleft->complex_type() != NULL && tright->complex_type() != NULL))
5479 {
5480 // Both sides have an abstract integer, abstract float, or
5481 // abstract complex type. Just let CONTEXT determine
5482 // whether they may remain abstract or not.
5483 }
5484 else if (tleft->complex_type() != NULL)
5485 subcontext.type = tleft;
5486 else if (tright->complex_type() != NULL)
5487 subcontext.type = tright;
5488 else if (tleft->float_type() != NULL)
5489 subcontext.type = tleft;
5490 else if (tright->float_type() != NULL)
5491 subcontext.type = tright;
5492 else
5493 subcontext.type = tleft;
5494 }
5495
5496 this->left_->determine_type(&subcontext);
5497
5498 // The context for the right hand operand is the same as for the
5499 // left hand operand, except for a shift operator.
5500 if (is_shift_op)
5501 {
5502 subcontext.type = Type::lookup_integer_type("uint");
5503 subcontext.may_be_abstract = false;
5504 }
5505
5506 this->right_->determine_type(&subcontext);
5507 }
5508
5509 // Report an error if the binary operator OP does not support TYPE.
5510 // Return whether the operation is OK. This should not be used for
5511 // shift.
5512
5513 bool
5514 Binary_expression::check_operator_type(Operator op, Type* type,
5515 source_location location)
5516 {
5517 switch (op)
5518 {
5519 case OPERATOR_OROR:
5520 case OPERATOR_ANDAND:
5521 if (!type->is_boolean_type())
5522 {
5523 error_at(location, "expected boolean type");
5524 return false;
5525 }
5526 break;
5527
5528 case OPERATOR_EQEQ:
5529 case OPERATOR_NOTEQ:
5530 if (type->integer_type() == NULL
5531 && type->float_type() == NULL
5532 && type->complex_type() == NULL
5533 && !type->is_string_type()
5534 && type->points_to() == NULL
5535 && !type->is_nil_type()
5536 && !type->is_boolean_type()
5537 && type->interface_type() == NULL
5538 && (type->array_type() == NULL
5539 || type->array_type()->length() != NULL)
5540 && type->map_type() == NULL
5541 && type->channel_type() == NULL
5542 && type->function_type() == NULL)
5543 {
5544 error_at(location,
5545 ("expected integer, floating, complex, string, pointer, "
5546 "boolean, interface, slice, map, channel, "
5547 "or function type"));
5548 return false;
5549 }
5550 break;
5551
5552 case OPERATOR_LT:
5553 case OPERATOR_LE:
5554 case OPERATOR_GT:
5555 case OPERATOR_GE:
5556 if (type->integer_type() == NULL
5557 && type->float_type() == NULL
5558 && !type->is_string_type())
5559 {
5560 error_at(location, "expected integer, floating, or string type");
5561 return false;
5562 }
5563 break;
5564
5565 case OPERATOR_PLUS:
5566 case OPERATOR_PLUSEQ:
5567 if (type->integer_type() == NULL
5568 && type->float_type() == NULL
5569 && type->complex_type() == NULL
5570 && !type->is_string_type())
5571 {
5572 error_at(location,
5573 "expected integer, floating, complex, or string type");
5574 return false;
5575 }
5576 break;
5577
5578 case OPERATOR_MINUS:
5579 case OPERATOR_MINUSEQ:
5580 case OPERATOR_MULT:
5581 case OPERATOR_MULTEQ:
5582 case OPERATOR_DIV:
5583 case OPERATOR_DIVEQ:
5584 if (type->integer_type() == NULL
5585 && type->float_type() == NULL
5586 && type->complex_type() == NULL)
5587 {
5588 error_at(location, "expected integer, floating, or complex type");
5589 return false;
5590 }
5591 break;
5592
5593 case OPERATOR_MOD:
5594 case OPERATOR_MODEQ:
5595 case OPERATOR_OR:
5596 case OPERATOR_OREQ:
5597 case OPERATOR_AND:
5598 case OPERATOR_ANDEQ:
5599 case OPERATOR_XOR:
5600 case OPERATOR_XOREQ:
5601 case OPERATOR_BITCLEAR:
5602 case OPERATOR_BITCLEAREQ:
5603 if (type->integer_type() == NULL)
5604 {
5605 error_at(location, "expected integer type");
5606 return false;
5607 }
5608 break;
5609
5610 default:
5611 gcc_unreachable();
5612 }
5613
5614 return true;
5615 }
5616
5617 // Check types.
5618
5619 void
5620 Binary_expression::do_check_types(Gogo*)
5621 {
5622 Type* left_type = this->left_->type();
5623 Type* right_type = this->right_->type();
5624 if (left_type->is_error_type() || right_type->is_error_type())
5625 {
5626 this->set_is_error();
5627 return;
5628 }
5629
5630 if (this->op_ == OPERATOR_EQEQ
5631 || this->op_ == OPERATOR_NOTEQ
5632 || this->op_ == OPERATOR_LT
5633 || this->op_ == OPERATOR_LE
5634 || this->op_ == OPERATOR_GT
5635 || this->op_ == OPERATOR_GE)
5636 {
5637 if (!Type::are_assignable(left_type, right_type, NULL)
5638 && !Type::are_assignable(right_type, left_type, NULL))
5639 {
5640 this->report_error(_("incompatible types in binary expression"));
5641 return;
5642 }
5643 if (!Binary_expression::check_operator_type(this->op_, left_type,
5644 this->location())
5645 || !Binary_expression::check_operator_type(this->op_, right_type,
5646 this->location()))
5647 {
5648 this->set_is_error();
5649 return;
5650 }
5651 }
5652 else if (this->op_ != OPERATOR_LSHIFT && this->op_ != OPERATOR_RSHIFT)
5653 {
5654 if (!Type::are_compatible_for_binop(left_type, right_type))
5655 {
5656 this->report_error(_("incompatible types in binary expression"));
5657 return;
5658 }
5659 if (!Binary_expression::check_operator_type(this->op_, left_type,
5660 this->location()))
5661 {
5662 this->set_is_error();
5663 return;
5664 }
5665 }
5666 else
5667 {
5668 if (left_type->integer_type() == NULL)
5669 this->report_error(_("shift of non-integer operand"));
5670
5671 if (!right_type->is_abstract()
5672 && (right_type->integer_type() == NULL
5673 || !right_type->integer_type()->is_unsigned()))
5674 this->report_error(_("shift count not unsigned integer"));
5675 else
5676 {
5677 mpz_t val;
5678 mpz_init(val);
5679 Type* type;
5680 if (this->right_->integer_constant_value(true, val, &type))
5681 {
5682 if (mpz_sgn(val) < 0)
5683 this->report_error(_("negative shift count"));
5684 }
5685 mpz_clear(val);
5686 }
5687 }
5688 }
5689
5690 // Get a tree for a binary expression.
5691
5692 tree
5693 Binary_expression::do_get_tree(Translate_context* context)
5694 {
5695 tree left = this->left_->get_tree(context);
5696 tree right = this->right_->get_tree(context);
5697
5698 if (left == error_mark_node || right == error_mark_node)
5699 return error_mark_node;
5700
5701 enum tree_code code;
5702 bool use_left_type = true;
5703 bool is_shift_op = false;
5704 switch (this->op_)
5705 {
5706 case OPERATOR_EQEQ:
5707 case OPERATOR_NOTEQ:
5708 case OPERATOR_LT:
5709 case OPERATOR_LE:
5710 case OPERATOR_GT:
5711 case OPERATOR_GE:
5712 return Expression::comparison_tree(context, this->op_,
5713 this->left_->type(), left,
5714 this->right_->type(), right,
5715 this->location());
5716
5717 case OPERATOR_OROR:
5718 code = TRUTH_ORIF_EXPR;
5719 use_left_type = false;
5720 break;
5721 case OPERATOR_ANDAND:
5722 code = TRUTH_ANDIF_EXPR;
5723 use_left_type = false;
5724 break;
5725 case OPERATOR_PLUS:
5726 code = PLUS_EXPR;
5727 break;
5728 case OPERATOR_MINUS:
5729 code = MINUS_EXPR;
5730 break;
5731 case OPERATOR_OR:
5732 code = BIT_IOR_EXPR;
5733 break;
5734 case OPERATOR_XOR:
5735 code = BIT_XOR_EXPR;
5736 break;
5737 case OPERATOR_MULT:
5738 code = MULT_EXPR;
5739 break;
5740 case OPERATOR_DIV:
5741 {
5742 Type *t = this->left_->type();
5743 if (t->float_type() != NULL || t->complex_type() != NULL)
5744 code = RDIV_EXPR;
5745 else
5746 code = TRUNC_DIV_EXPR;
5747 }
5748 break;
5749 case OPERATOR_MOD:
5750 code = TRUNC_MOD_EXPR;
5751 break;
5752 case OPERATOR_LSHIFT:
5753 code = LSHIFT_EXPR;
5754 is_shift_op = true;
5755 break;
5756 case OPERATOR_RSHIFT:
5757 code = RSHIFT_EXPR;
5758 is_shift_op = true;
5759 break;
5760 case OPERATOR_AND:
5761 code = BIT_AND_EXPR;
5762 break;
5763 case OPERATOR_BITCLEAR:
5764 right = fold_build1(BIT_NOT_EXPR, TREE_TYPE(right), right);
5765 code = BIT_AND_EXPR;
5766 break;
5767 default:
5768 gcc_unreachable();
5769 }
5770
5771 tree type = use_left_type ? TREE_TYPE(left) : TREE_TYPE(right);
5772
5773 if (this->left_->type()->is_string_type())
5774 {
5775 gcc_assert(this->op_ == OPERATOR_PLUS);
5776 tree string_type = Type::make_string_type()->get_tree(context->gogo());
5777 static tree string_plus_decl;
5778 return Gogo::call_builtin(&string_plus_decl,
5779 this->location(),
5780 "__go_string_plus",
5781 2,
5782 string_type,
5783 string_type,
5784 left,
5785 string_type,
5786 right);
5787 }
5788
5789 tree compute_type = excess_precision_type(type);
5790 if (compute_type != NULL_TREE)
5791 {
5792 left = ::convert(compute_type, left);
5793 right = ::convert(compute_type, right);
5794 }
5795
5796 tree eval_saved = NULL_TREE;
5797 if (is_shift_op)
5798 {
5799 if (!DECL_P(left))
5800 left = save_expr(left);
5801 if (!DECL_P(right))
5802 right = save_expr(right);
5803 // Make sure the values are evaluated.
5804 eval_saved = fold_build2_loc(this->location(), COMPOUND_EXPR,
5805 void_type_node, left, right);
5806 }
5807
5808 tree ret = fold_build2_loc(this->location(),
5809 code,
5810 compute_type != NULL_TREE ? compute_type : type,
5811 left, right);
5812
5813 if (compute_type != NULL_TREE)
5814 ret = ::convert(type, ret);
5815
5816 // In Go, a shift larger than the size of the type is well-defined.
5817 // This is not true in GENERIC, so we need to insert a conditional.
5818 if (is_shift_op)
5819 {
5820 gcc_assert(INTEGRAL_TYPE_P(TREE_TYPE(left)));
5821 gcc_assert(this->left_->type()->integer_type() != NULL);
5822 int bits = TYPE_PRECISION(TREE_TYPE(left));
5823
5824 tree compare = fold_build2(LT_EXPR, boolean_type_node, right,
5825 build_int_cst_type(TREE_TYPE(right), bits));
5826
5827 tree overflow_result = fold_convert_loc(this->location(),
5828 TREE_TYPE(left),
5829 integer_zero_node);
5830 if (this->op_ == OPERATOR_RSHIFT
5831 && !this->left_->type()->integer_type()->is_unsigned())
5832 {
5833 tree neg = fold_build2_loc(this->location(), LT_EXPR,
5834 boolean_type_node, left,
5835 fold_convert_loc(this->location(),
5836 TREE_TYPE(left),
5837 integer_zero_node));
5838 tree neg_one = fold_build2_loc(this->location(),
5839 MINUS_EXPR, TREE_TYPE(left),
5840 fold_convert_loc(this->location(),
5841 TREE_TYPE(left),
5842 integer_zero_node),
5843 fold_convert_loc(this->location(),
5844 TREE_TYPE(left),
5845 integer_one_node));
5846 overflow_result = fold_build3_loc(this->location(), COND_EXPR,
5847 TREE_TYPE(left), neg, neg_one,
5848 overflow_result);
5849 }
5850
5851 ret = fold_build3_loc(this->location(), COND_EXPR, TREE_TYPE(left),
5852 compare, ret, overflow_result);
5853
5854 ret = fold_build2_loc(this->location(), COMPOUND_EXPR,
5855 TREE_TYPE(ret), eval_saved, ret);
5856 }
5857
5858 return ret;
5859 }
5860
5861 // Export a binary expression.
5862
5863 void
5864 Binary_expression::do_export(Export* exp) const
5865 {
5866 exp->write_c_string("(");
5867 this->left_->export_expression(exp);
5868 switch (this->op_)
5869 {
5870 case OPERATOR_OROR:
5871 exp->write_c_string(" || ");
5872 break;
5873 case OPERATOR_ANDAND:
5874 exp->write_c_string(" && ");
5875 break;
5876 case OPERATOR_EQEQ:
5877 exp->write_c_string(" == ");
5878 break;
5879 case OPERATOR_NOTEQ:
5880 exp->write_c_string(" != ");
5881 break;
5882 case OPERATOR_LT:
5883 exp->write_c_string(" < ");
5884 break;
5885 case OPERATOR_LE:
5886 exp->write_c_string(" <= ");
5887 break;
5888 case OPERATOR_GT:
5889 exp->write_c_string(" > ");
5890 break;
5891 case OPERATOR_GE:
5892 exp->write_c_string(" >= ");
5893 break;
5894 case OPERATOR_PLUS:
5895 exp->write_c_string(" + ");
5896 break;
5897 case OPERATOR_MINUS:
5898 exp->write_c_string(" - ");
5899 break;
5900 case OPERATOR_OR:
5901 exp->write_c_string(" | ");
5902 break;
5903 case OPERATOR_XOR:
5904 exp->write_c_string(" ^ ");
5905 break;
5906 case OPERATOR_MULT:
5907 exp->write_c_string(" * ");
5908 break;
5909 case OPERATOR_DIV:
5910 exp->write_c_string(" / ");
5911 break;
5912 case OPERATOR_MOD:
5913 exp->write_c_string(" % ");
5914 break;
5915 case OPERATOR_LSHIFT:
5916 exp->write_c_string(" << ");
5917 break;
5918 case OPERATOR_RSHIFT:
5919 exp->write_c_string(" >> ");
5920 break;
5921 case OPERATOR_AND:
5922 exp->write_c_string(" & ");
5923 break;
5924 case OPERATOR_BITCLEAR:
5925 exp->write_c_string(" &^ ");
5926 break;
5927 default:
5928 gcc_unreachable();
5929 }
5930 this->right_->export_expression(exp);
5931 exp->write_c_string(")");
5932 }
5933
5934 // Import a binary expression.
5935
5936 Expression*
5937 Binary_expression::do_import(Import* imp)
5938 {
5939 imp->require_c_string("(");
5940
5941 Expression* left = Expression::import_expression(imp);
5942
5943 Operator op;
5944 if (imp->match_c_string(" || "))
5945 {
5946 op = OPERATOR_OROR;
5947 imp->advance(4);
5948 }
5949 else if (imp->match_c_string(" && "))
5950 {
5951 op = OPERATOR_ANDAND;
5952 imp->advance(4);
5953 }
5954 else if (imp->match_c_string(" == "))
5955 {
5956 op = OPERATOR_EQEQ;
5957 imp->advance(4);
5958 }
5959 else if (imp->match_c_string(" != "))
5960 {
5961 op = OPERATOR_NOTEQ;
5962 imp->advance(4);
5963 }
5964 else if (imp->match_c_string(" < "))
5965 {
5966 op = OPERATOR_LT;
5967 imp->advance(3);
5968 }
5969 else if (imp->match_c_string(" <= "))
5970 {
5971 op = OPERATOR_LE;
5972 imp->advance(4);
5973 }
5974 else if (imp->match_c_string(" > "))
5975 {
5976 op = OPERATOR_GT;
5977 imp->advance(3);
5978 }
5979 else if (imp->match_c_string(" >= "))
5980 {
5981 op = OPERATOR_GE;
5982 imp->advance(4);
5983 }
5984 else if (imp->match_c_string(" + "))
5985 {
5986 op = OPERATOR_PLUS;
5987 imp->advance(3);
5988 }
5989 else if (imp->match_c_string(" - "))
5990 {
5991 op = OPERATOR_MINUS;
5992 imp->advance(3);
5993 }
5994 else if (imp->match_c_string(" | "))
5995 {
5996 op = OPERATOR_OR;
5997 imp->advance(3);
5998 }
5999 else if (imp->match_c_string(" ^ "))
6000 {
6001 op = OPERATOR_XOR;
6002 imp->advance(3);
6003 }
6004 else if (imp->match_c_string(" * "))
6005 {
6006 op = OPERATOR_MULT;
6007 imp->advance(3);
6008 }
6009 else if (imp->match_c_string(" / "))
6010 {
6011 op = OPERATOR_DIV;
6012 imp->advance(3);
6013 }
6014 else if (imp->match_c_string(" % "))
6015 {
6016 op = OPERATOR_MOD;
6017 imp->advance(3);
6018 }
6019 else if (imp->match_c_string(" << "))
6020 {
6021 op = OPERATOR_LSHIFT;
6022 imp->advance(4);
6023 }
6024 else if (imp->match_c_string(" >> "))
6025 {
6026 op = OPERATOR_RSHIFT;
6027 imp->advance(4);
6028 }
6029 else if (imp->match_c_string(" & "))
6030 {
6031 op = OPERATOR_AND;
6032 imp->advance(3);
6033 }
6034 else if (imp->match_c_string(" &^ "))
6035 {
6036 op = OPERATOR_BITCLEAR;
6037 imp->advance(4);
6038 }
6039 else
6040 {
6041 error_at(imp->location(), "unrecognized binary operator");
6042 return Expression::make_error(imp->location());
6043 }
6044
6045 Expression* right = Expression::import_expression(imp);
6046
6047 imp->require_c_string(")");
6048
6049 return Expression::make_binary(op, left, right, imp->location());
6050 }
6051
6052 // Make a binary expression.
6053
6054 Expression*
6055 Expression::make_binary(Operator op, Expression* left, Expression* right,
6056 source_location location)
6057 {
6058 return new Binary_expression(op, left, right, location);
6059 }
6060
6061 // Implement a comparison.
6062
6063 tree
6064 Expression::comparison_tree(Translate_context* context, Operator op,
6065 Type* left_type, tree left_tree,
6066 Type* right_type, tree right_tree,
6067 source_location location)
6068 {
6069 enum tree_code code;
6070 switch (op)
6071 {
6072 case OPERATOR_EQEQ:
6073 code = EQ_EXPR;
6074 break;
6075 case OPERATOR_NOTEQ:
6076 code = NE_EXPR;
6077 break;
6078 case OPERATOR_LT:
6079 code = LT_EXPR;
6080 break;
6081 case OPERATOR_LE:
6082 code = LE_EXPR;
6083 break;
6084 case OPERATOR_GT:
6085 code = GT_EXPR;
6086 break;
6087 case OPERATOR_GE:
6088 code = GE_EXPR;
6089 break;
6090 default:
6091 gcc_unreachable();
6092 }
6093
6094 if (left_type->is_string_type() && right_type->is_string_type())
6095 {
6096 tree string_type = Type::make_string_type()->get_tree(context->gogo());
6097 static tree string_compare_decl;
6098 left_tree = Gogo::call_builtin(&string_compare_decl,
6099 location,
6100 "__go_strcmp",
6101 2,
6102 integer_type_node,
6103 string_type,
6104 left_tree,
6105 string_type,
6106 right_tree);
6107 right_tree = build_int_cst_type(integer_type_node, 0);
6108 }
6109 else if ((left_type->interface_type() != NULL
6110 && right_type->interface_type() == NULL
6111 && !right_type->is_nil_type())
6112 || (left_type->interface_type() == NULL
6113 && !left_type->is_nil_type()
6114 && right_type->interface_type() != NULL))
6115 {
6116 // Comparing an interface value to a non-interface value.
6117 if (left_type->interface_type() == NULL)
6118 {
6119 std::swap(left_type, right_type);
6120 std::swap(left_tree, right_tree);
6121 }
6122
6123 // The right operand is not an interface. We need to take its
6124 // address if it is not a pointer.
6125 tree make_tmp;
6126 tree arg;
6127 if (right_type->points_to() != NULL)
6128 {
6129 make_tmp = NULL_TREE;
6130 arg = right_tree;
6131 }
6132 else if (TREE_ADDRESSABLE(TREE_TYPE(right_tree)) || DECL_P(right_tree))
6133 {
6134 make_tmp = NULL_TREE;
6135 arg = build_fold_addr_expr_loc(location, right_tree);
6136 if (DECL_P(right_tree))
6137 TREE_ADDRESSABLE(right_tree) = 1;
6138 }
6139 else
6140 {
6141 tree tmp = create_tmp_var(TREE_TYPE(right_tree),
6142 get_name(right_tree));
6143 DECL_IGNORED_P(tmp) = 0;
6144 DECL_INITIAL(tmp) = right_tree;
6145 TREE_ADDRESSABLE(tmp) = 1;
6146 make_tmp = build1(DECL_EXPR, void_type_node, tmp);
6147 SET_EXPR_LOCATION(make_tmp, location);
6148 arg = build_fold_addr_expr_loc(location, tmp);
6149 }
6150 arg = fold_convert_loc(location, ptr_type_node, arg);
6151
6152 tree descriptor = right_type->type_descriptor_pointer(context->gogo());
6153
6154 if (left_type->interface_type()->is_empty())
6155 {
6156 static tree empty_interface_value_compare_decl;
6157 left_tree = Gogo::call_builtin(&empty_interface_value_compare_decl,
6158 location,
6159 "__go_empty_interface_value_compare",
6160 3,
6161 integer_type_node,
6162 TREE_TYPE(left_tree),
6163 left_tree,
6164 TREE_TYPE(descriptor),
6165 descriptor,
6166 ptr_type_node,
6167 arg);
6168 if (left_tree == error_mark_node)
6169 return error_mark_node;
6170 // This can panic if the type is not comparable.
6171 TREE_NOTHROW(empty_interface_value_compare_decl) = 0;
6172 }
6173 else
6174 {
6175 static tree interface_value_compare_decl;
6176 left_tree = Gogo::call_builtin(&interface_value_compare_decl,
6177 location,
6178 "__go_interface_value_compare",
6179 3,
6180 integer_type_node,
6181 TREE_TYPE(left_tree),
6182 left_tree,
6183 TREE_TYPE(descriptor),
6184 descriptor,
6185 ptr_type_node,
6186 arg);
6187 if (left_tree == error_mark_node)
6188 return error_mark_node;
6189 // This can panic if the type is not comparable.
6190 TREE_NOTHROW(interface_value_compare_decl) = 0;
6191 }
6192 right_tree = build_int_cst_type(integer_type_node, 0);
6193
6194 if (make_tmp != NULL_TREE)
6195 left_tree = build2(COMPOUND_EXPR, TREE_TYPE(left_tree), make_tmp,
6196 left_tree);
6197 }
6198 else if (left_type->interface_type() != NULL
6199 && right_type->interface_type() != NULL)
6200 {
6201 if (left_type->interface_type()->is_empty())
6202 {
6203 gcc_assert(right_type->interface_type()->is_empty());
6204 static tree empty_interface_compare_decl;
6205 left_tree = Gogo::call_builtin(&empty_interface_compare_decl,
6206 location,
6207 "__go_empty_interface_compare",
6208 2,
6209 integer_type_node,
6210 TREE_TYPE(left_tree),
6211 left_tree,
6212 TREE_TYPE(right_tree),
6213 right_tree);
6214 if (left_tree == error_mark_node)
6215 return error_mark_node;
6216 // This can panic if the type is uncomparable.
6217 TREE_NOTHROW(empty_interface_compare_decl) = 0;
6218 }
6219 else
6220 {
6221 gcc_assert(!right_type->interface_type()->is_empty());
6222 static tree interface_compare_decl;
6223 left_tree = Gogo::call_builtin(&interface_compare_decl,
6224 location,
6225 "__go_interface_compare",
6226 2,
6227 integer_type_node,
6228 TREE_TYPE(left_tree),
6229 left_tree,
6230 TREE_TYPE(right_tree),
6231 right_tree);
6232 if (left_tree == error_mark_node)
6233 return error_mark_node;
6234 // This can panic if the type is uncomparable.
6235 TREE_NOTHROW(interface_compare_decl) = 0;
6236 }
6237 right_tree = build_int_cst_type(integer_type_node, 0);
6238 }
6239
6240 if (left_type->is_nil_type()
6241 && (op == OPERATOR_EQEQ || op == OPERATOR_NOTEQ))
6242 {
6243 std::swap(left_type, right_type);
6244 std::swap(left_tree, right_tree);
6245 }
6246
6247 if (right_type->is_nil_type())
6248 {
6249 if (left_type->array_type() != NULL
6250 && left_type->array_type()->length() == NULL)
6251 {
6252 Array_type* at = left_type->array_type();
6253 left_tree = at->value_pointer_tree(context->gogo(), left_tree);
6254 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
6255 }
6256 else if (left_type->interface_type() != NULL)
6257 {
6258 // An interface is nil if the first field is nil.
6259 tree left_type_tree = TREE_TYPE(left_tree);
6260 gcc_assert(TREE_CODE(left_type_tree) == RECORD_TYPE);
6261 tree field = TYPE_FIELDS(left_type_tree);
6262 left_tree = build3(COMPONENT_REF, TREE_TYPE(field), left_tree,
6263 field, NULL_TREE);
6264 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
6265 }
6266 else
6267 {
6268 gcc_assert(POINTER_TYPE_P(TREE_TYPE(left_tree)));
6269 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
6270 }
6271 }
6272
6273 if (left_tree == error_mark_node || right_tree == error_mark_node)
6274 return error_mark_node;
6275
6276 tree ret = fold_build2(code, boolean_type_node, left_tree, right_tree);
6277 if (CAN_HAVE_LOCATION_P(ret))
6278 SET_EXPR_LOCATION(ret, location);
6279 return ret;
6280 }
6281
6282 // Class Bound_method_expression.
6283
6284 // Traversal.
6285
6286 int
6287 Bound_method_expression::do_traverse(Traverse* traverse)
6288 {
6289 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT)
6290 return TRAVERSE_EXIT;
6291 return Expression::traverse(&this->method_, traverse);
6292 }
6293
6294 // Return the type of a bound method expression. The type of this
6295 // object is really the type of the method with no receiver. We
6296 // should be able to get away with just returning the type of the
6297 // method.
6298
6299 Type*
6300 Bound_method_expression::do_type()
6301 {
6302 return this->method_->type();
6303 }
6304
6305 // Determine the types of a method expression.
6306
6307 void
6308 Bound_method_expression::do_determine_type(const Type_context*)
6309 {
6310 this->method_->determine_type_no_context();
6311 Type* mtype = this->method_->type();
6312 Function_type* fntype = mtype == NULL ? NULL : mtype->function_type();
6313 if (fntype == NULL || !fntype->is_method())
6314 this->expr_->determine_type_no_context();
6315 else
6316 {
6317 Type_context subcontext(fntype->receiver()->type(), false);
6318 this->expr_->determine_type(&subcontext);
6319 }
6320 }
6321
6322 // Check the types of a method expression.
6323
6324 void
6325 Bound_method_expression::do_check_types(Gogo*)
6326 {
6327 Type* type = this->method_->type()->deref();
6328 if (type == NULL
6329 || type->function_type() == NULL
6330 || !type->function_type()->is_method())
6331 this->report_error(_("object is not a method"));
6332 else
6333 {
6334 Type* rtype = type->function_type()->receiver()->type()->deref();
6335 Type* etype = (this->expr_type_ != NULL
6336 ? this->expr_type_
6337 : this->expr_->type());
6338 etype = etype->deref();
6339 if (!Type::are_identical(rtype, etype, true, NULL))
6340 this->report_error(_("method type does not match object type"));
6341 }
6342 }
6343
6344 // Get the tree for a method expression. There is no standard tree
6345 // representation for this. The only places it may currently be used
6346 // are in a Call_expression or a Go_statement, which will take it
6347 // apart directly. So this has nothing to do at present.
6348
6349 tree
6350 Bound_method_expression::do_get_tree(Translate_context*)
6351 {
6352 gcc_unreachable();
6353 }
6354
6355 // Make a method expression.
6356
6357 Bound_method_expression*
6358 Expression::make_bound_method(Expression* expr, Expression* method,
6359 source_location location)
6360 {
6361 return new Bound_method_expression(expr, method, location);
6362 }
6363
6364 // Class Builtin_call_expression. This is used for a call to a
6365 // builtin function.
6366
6367 class Builtin_call_expression : public Call_expression
6368 {
6369 public:
6370 Builtin_call_expression(Gogo* gogo, Expression* fn, Expression_list* args,
6371 bool is_varargs, source_location location);
6372
6373 protected:
6374 // This overrides Call_expression::do_lower.
6375 Expression*
6376 do_lower(Gogo*, Named_object*, int);
6377
6378 bool
6379 do_is_constant() const;
6380
6381 bool
6382 do_integer_constant_value(bool, mpz_t, Type**) const;
6383
6384 bool
6385 do_float_constant_value(mpfr_t, Type**) const;
6386
6387 bool
6388 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
6389
6390 Type*
6391 do_type();
6392
6393 void
6394 do_determine_type(const Type_context*);
6395
6396 void
6397 do_check_types(Gogo*);
6398
6399 Expression*
6400 do_copy()
6401 {
6402 return new Builtin_call_expression(this->gogo_, this->fn()->copy(),
6403 this->args()->copy(),
6404 this->is_varargs(),
6405 this->location());
6406 }
6407
6408 tree
6409 do_get_tree(Translate_context*);
6410
6411 void
6412 do_export(Export*) const;
6413
6414 virtual bool
6415 do_is_recover_call() const;
6416
6417 virtual void
6418 do_set_recover_arg(Expression*);
6419
6420 private:
6421 // The builtin functions.
6422 enum Builtin_function_code
6423 {
6424 BUILTIN_INVALID,
6425
6426 // Predeclared builtin functions.
6427 BUILTIN_APPEND,
6428 BUILTIN_CAP,
6429 BUILTIN_CLOSE,
6430 BUILTIN_CLOSED,
6431 BUILTIN_CMPLX,
6432 BUILTIN_COPY,
6433 BUILTIN_IMAG,
6434 BUILTIN_LEN,
6435 BUILTIN_MAKE,
6436 BUILTIN_NEW,
6437 BUILTIN_PANIC,
6438 BUILTIN_PRINT,
6439 BUILTIN_PRINTLN,
6440 BUILTIN_REAL,
6441 BUILTIN_RECOVER,
6442
6443 // Builtin functions from the unsafe package.
6444 BUILTIN_ALIGNOF,
6445 BUILTIN_OFFSETOF,
6446 BUILTIN_SIZEOF
6447 };
6448
6449 Expression*
6450 one_arg() const;
6451
6452 bool
6453 check_one_arg();
6454
6455 static Type*
6456 real_imag_type(Type*);
6457
6458 static Type*
6459 cmplx_type(Type*);
6460
6461 // A pointer back to the general IR structure. This avoids a global
6462 // variable, or passing it around everywhere.
6463 Gogo* gogo_;
6464 // The builtin function being called.
6465 Builtin_function_code code_;
6466 // Used to stop endless loops when the length of an array uses len
6467 // or cap of the array itself.
6468 mutable bool seen_;
6469 };
6470
6471 Builtin_call_expression::Builtin_call_expression(Gogo* gogo,
6472 Expression* fn,
6473 Expression_list* args,
6474 bool is_varargs,
6475 source_location location)
6476 : Call_expression(fn, args, is_varargs, location),
6477 gogo_(gogo), code_(BUILTIN_INVALID), seen_(false)
6478 {
6479 Func_expression* fnexp = this->fn()->func_expression();
6480 gcc_assert(fnexp != NULL);
6481 const std::string& name(fnexp->named_object()->name());
6482 if (name == "append")
6483 this->code_ = BUILTIN_APPEND;
6484 else if (name == "cap")
6485 this->code_ = BUILTIN_CAP;
6486 else if (name == "close")
6487 this->code_ = BUILTIN_CLOSE;
6488 else if (name == "closed")
6489 this->code_ = BUILTIN_CLOSED;
6490 else if (name == "cmplx")
6491 this->code_ = BUILTIN_CMPLX;
6492 else if (name == "copy")
6493 this->code_ = BUILTIN_COPY;
6494 else if (name == "imag")
6495 this->code_ = BUILTIN_IMAG;
6496 else if (name == "len")
6497 this->code_ = BUILTIN_LEN;
6498 else if (name == "make")
6499 this->code_ = BUILTIN_MAKE;
6500 else if (name == "new")
6501 this->code_ = BUILTIN_NEW;
6502 else if (name == "panic")
6503 this->code_ = BUILTIN_PANIC;
6504 else if (name == "print")
6505 this->code_ = BUILTIN_PRINT;
6506 else if (name == "println")
6507 this->code_ = BUILTIN_PRINTLN;
6508 else if (name == "real")
6509 this->code_ = BUILTIN_REAL;
6510 else if (name == "recover")
6511 this->code_ = BUILTIN_RECOVER;
6512 else if (name == "Alignof")
6513 this->code_ = BUILTIN_ALIGNOF;
6514 else if (name == "Offsetof")
6515 this->code_ = BUILTIN_OFFSETOF;
6516 else if (name == "Sizeof")
6517 this->code_ = BUILTIN_SIZEOF;
6518 else
6519 gcc_unreachable();
6520 }
6521
6522 // Return whether this is a call to recover. This is a virtual
6523 // function called from the parent class.
6524
6525 bool
6526 Builtin_call_expression::do_is_recover_call() const
6527 {
6528 if (this->classification() == EXPRESSION_ERROR)
6529 return false;
6530 return this->code_ == BUILTIN_RECOVER;
6531 }
6532
6533 // Set the argument for a call to recover.
6534
6535 void
6536 Builtin_call_expression::do_set_recover_arg(Expression* arg)
6537 {
6538 const Expression_list* args = this->args();
6539 gcc_assert(args == NULL || args->empty());
6540 Expression_list* new_args = new Expression_list();
6541 new_args->push_back(arg);
6542 this->set_args(new_args);
6543 }
6544
6545 // A traversal class which looks for a call expression.
6546
6547 class Find_call_expression : public Traverse
6548 {
6549 public:
6550 Find_call_expression()
6551 : Traverse(traverse_expressions),
6552 found_(false)
6553 { }
6554
6555 int
6556 expression(Expression**);
6557
6558 bool
6559 found()
6560 { return this->found_; }
6561
6562 private:
6563 bool found_;
6564 };
6565
6566 int
6567 Find_call_expression::expression(Expression** pexpr)
6568 {
6569 if ((*pexpr)->call_expression() != NULL)
6570 {
6571 this->found_ = true;
6572 return TRAVERSE_EXIT;
6573 }
6574 return TRAVERSE_CONTINUE;
6575 }
6576
6577 // Lower a builtin call expression. This turns new and make into
6578 // specific expressions. We also convert to a constant if we can.
6579
6580 Expression*
6581 Builtin_call_expression::do_lower(Gogo* gogo, Named_object* function, int)
6582 {
6583 if (this->code_ == BUILTIN_NEW)
6584 {
6585 const Expression_list* args = this->args();
6586 if (args == NULL || args->size() < 1)
6587 this->report_error(_("not enough arguments"));
6588 else if (args->size() > 1)
6589 this->report_error(_("too many arguments"));
6590 else
6591 {
6592 Expression* arg = args->front();
6593 if (!arg->is_type_expression())
6594 {
6595 error_at(arg->location(), "expected type");
6596 this->set_is_error();
6597 }
6598 else
6599 return Expression::make_allocation(arg->type(), this->location());
6600 }
6601 }
6602 else if (this->code_ == BUILTIN_MAKE)
6603 {
6604 const Expression_list* args = this->args();
6605 if (args == NULL || args->size() < 1)
6606 this->report_error(_("not enough arguments"));
6607 else
6608 {
6609 Expression* arg = args->front();
6610 if (!arg->is_type_expression())
6611 {
6612 error_at(arg->location(), "expected type");
6613 this->set_is_error();
6614 }
6615 else
6616 {
6617 Expression_list* newargs;
6618 if (args->size() == 1)
6619 newargs = NULL;
6620 else
6621 {
6622 newargs = new Expression_list();
6623 Expression_list::const_iterator p = args->begin();
6624 ++p;
6625 for (; p != args->end(); ++p)
6626 newargs->push_back(*p);
6627 }
6628 return Expression::make_make(arg->type(), newargs,
6629 this->location());
6630 }
6631 }
6632 }
6633 else if (this->is_constant())
6634 {
6635 // We can only lower len and cap if there are no function calls
6636 // in the arguments. Otherwise we have to make the call.
6637 if (this->code_ == BUILTIN_LEN || this->code_ == BUILTIN_CAP)
6638 {
6639 Expression* arg = this->one_arg();
6640 if (!arg->is_constant())
6641 {
6642 Find_call_expression find_call;
6643 Expression::traverse(&arg, &find_call);
6644 if (find_call.found())
6645 return this;
6646 }
6647 }
6648
6649 mpz_t ival;
6650 mpz_init(ival);
6651 Type* type;
6652 if (this->integer_constant_value(true, ival, &type))
6653 {
6654 Expression* ret = Expression::make_integer(&ival, type,
6655 this->location());
6656 mpz_clear(ival);
6657 return ret;
6658 }
6659 mpz_clear(ival);
6660
6661 mpfr_t rval;
6662 mpfr_init(rval);
6663 if (this->float_constant_value(rval, &type))
6664 {
6665 Expression* ret = Expression::make_float(&rval, type,
6666 this->location());
6667 mpfr_clear(rval);
6668 return ret;
6669 }
6670
6671 mpfr_t imag;
6672 mpfr_init(imag);
6673 if (this->complex_constant_value(rval, imag, &type))
6674 {
6675 Expression* ret = Expression::make_complex(&rval, &imag, type,
6676 this->location());
6677 mpfr_clear(rval);
6678 mpfr_clear(imag);
6679 return ret;
6680 }
6681 mpfr_clear(rval);
6682 mpfr_clear(imag);
6683 }
6684 else if (this->code_ == BUILTIN_RECOVER)
6685 {
6686 if (function != NULL)
6687 function->func_value()->set_calls_recover();
6688 else
6689 {
6690 // Calling recover outside of a function always returns the
6691 // nil empty interface.
6692 Type* eface = Type::make_interface_type(NULL, this->location());
6693 return Expression::make_cast(eface,
6694 Expression::make_nil(this->location()),
6695 this->location());
6696 }
6697 }
6698 else if (this->code_ == BUILTIN_APPEND)
6699 {
6700 // Lower the varargs.
6701 const Expression_list* args = this->args();
6702 if (args == NULL || args->empty())
6703 return this;
6704 Type* slice_type = args->front()->type();
6705 if (!slice_type->is_open_array_type())
6706 {
6707 error_at(args->front()->location(), "argument 1 must be a slice");
6708 this->set_is_error();
6709 return this;
6710 }
6711 return this->lower_varargs(gogo, function, slice_type, 2);
6712 }
6713
6714 return this;
6715 }
6716
6717 // Return the type of the real or imag functions, given the type of
6718 // the argument. We need to map complex to float, complex64 to
6719 // float32, and complex128 to float64, so it has to be done by name.
6720 // This returns NULL if it can't figure out the type.
6721
6722 Type*
6723 Builtin_call_expression::real_imag_type(Type* arg_type)
6724 {
6725 if (arg_type == NULL || arg_type->is_abstract())
6726 return NULL;
6727 Named_type* nt = arg_type->named_type();
6728 if (nt == NULL)
6729 return NULL;
6730 while (nt->real_type()->named_type() != NULL)
6731 nt = nt->real_type()->named_type();
6732 if (nt->name() == "complex")
6733 return Type::lookup_float_type("float");
6734 else if (nt->name() == "complex64")
6735 return Type::lookup_float_type("float32");
6736 else if (nt->name() == "complex128")
6737 return Type::lookup_float_type("float64");
6738 else
6739 return NULL;
6740 }
6741
6742 // Return the type of the cmplx function, given the type of one of the
6743 // argments. Like real_imag_type, we have to map by name.
6744
6745 Type*
6746 Builtin_call_expression::cmplx_type(Type* arg_type)
6747 {
6748 if (arg_type == NULL || arg_type->is_abstract())
6749 return NULL;
6750 Named_type* nt = arg_type->named_type();
6751 if (nt == NULL)
6752 return NULL;
6753 while (nt->real_type()->named_type() != NULL)
6754 nt = nt->real_type()->named_type();
6755 if (nt->name() == "float")
6756 return Type::lookup_complex_type("complex");
6757 else if (nt->name() == "float32")
6758 return Type::lookup_complex_type("complex64");
6759 else if (nt->name() == "float64")
6760 return Type::lookup_complex_type("complex128");
6761 else
6762 return NULL;
6763 }
6764
6765 // Return a single argument, or NULL if there isn't one.
6766
6767 Expression*
6768 Builtin_call_expression::one_arg() const
6769 {
6770 const Expression_list* args = this->args();
6771 if (args->size() != 1)
6772 return NULL;
6773 return args->front();
6774 }
6775
6776 // Return whether this is constant: len of a string, or len or cap of
6777 // a fixed array, or unsafe.Sizeof, unsafe.Offsetof, unsafe.Alignof.
6778
6779 bool
6780 Builtin_call_expression::do_is_constant() const
6781 {
6782 switch (this->code_)
6783 {
6784 case BUILTIN_LEN:
6785 case BUILTIN_CAP:
6786 {
6787 if (this->seen_)
6788 return false;
6789
6790 Expression* arg = this->one_arg();
6791 if (arg == NULL)
6792 return false;
6793 Type* arg_type = arg->type();
6794
6795 if (arg_type->points_to() != NULL
6796 && arg_type->points_to()->array_type() != NULL
6797 && !arg_type->points_to()->is_open_array_type())
6798 arg_type = arg_type->points_to();
6799
6800 if (arg_type->array_type() != NULL
6801 && arg_type->array_type()->length() != NULL)
6802 return true;
6803
6804 if (this->code_ == BUILTIN_LEN && arg_type->is_string_type())
6805 {
6806 this->seen_ = true;
6807 bool ret = arg->is_constant();
6808 this->seen_ = false;
6809 return ret;
6810 }
6811 }
6812 break;
6813
6814 case BUILTIN_SIZEOF:
6815 case BUILTIN_ALIGNOF:
6816 return this->one_arg() != NULL;
6817
6818 case BUILTIN_OFFSETOF:
6819 {
6820 Expression* arg = this->one_arg();
6821 if (arg == NULL)
6822 return false;
6823 return arg->field_reference_expression() != NULL;
6824 }
6825
6826 case BUILTIN_CMPLX:
6827 {
6828 const Expression_list* args = this->args();
6829 if (args != NULL && args->size() == 2)
6830 return args->front()->is_constant() && args->back()->is_constant();
6831 }
6832 break;
6833
6834 case BUILTIN_REAL:
6835 case BUILTIN_IMAG:
6836 {
6837 Expression* arg = this->one_arg();
6838 return arg != NULL && arg->is_constant();
6839 }
6840
6841 default:
6842 break;
6843 }
6844
6845 return false;
6846 }
6847
6848 // Return an integer constant value if possible.
6849
6850 bool
6851 Builtin_call_expression::do_integer_constant_value(bool iota_is_constant,
6852 mpz_t val,
6853 Type** ptype) const
6854 {
6855 if (this->code_ == BUILTIN_LEN
6856 || this->code_ == BUILTIN_CAP)
6857 {
6858 Expression* arg = this->one_arg();
6859 if (arg == NULL)
6860 return false;
6861 Type* arg_type = arg->type();
6862
6863 if (this->code_ == BUILTIN_LEN && arg_type->is_string_type())
6864 {
6865 std::string sval;
6866 if (arg->string_constant_value(&sval))
6867 {
6868 mpz_set_ui(val, sval.length());
6869 *ptype = Type::lookup_integer_type("int");
6870 return true;
6871 }
6872 }
6873
6874 if (arg_type->points_to() != NULL
6875 && arg_type->points_to()->array_type() != NULL
6876 && !arg_type->points_to()->is_open_array_type())
6877 arg_type = arg_type->points_to();
6878
6879 if (arg_type->array_type() != NULL
6880 && arg_type->array_type()->length() != NULL)
6881 {
6882 if (this->seen_)
6883 return false;
6884 Expression* e = arg_type->array_type()->length();
6885 this->seen_ = true;
6886 bool r = e->integer_constant_value(iota_is_constant, val, ptype);
6887 this->seen_ = false;
6888 if (r)
6889 {
6890 *ptype = Type::lookup_integer_type("int");
6891 return true;
6892 }
6893 }
6894 }
6895 else if (this->code_ == BUILTIN_SIZEOF
6896 || this->code_ == BUILTIN_ALIGNOF)
6897 {
6898 Expression* arg = this->one_arg();
6899 if (arg == NULL)
6900 return false;
6901 Type* arg_type = arg->type();
6902 if (arg_type->is_error_type() || arg_type->is_undefined())
6903 return false;
6904 if (arg_type->is_abstract())
6905 return false;
6906 tree arg_type_tree = arg_type->get_tree(this->gogo_);
6907 unsigned long val_long;
6908 if (this->code_ == BUILTIN_SIZEOF)
6909 {
6910 tree type_size = TYPE_SIZE_UNIT(arg_type_tree);
6911 gcc_assert(TREE_CODE(type_size) == INTEGER_CST);
6912 if (TREE_INT_CST_HIGH(type_size) != 0)
6913 return false;
6914 unsigned HOST_WIDE_INT val_wide = TREE_INT_CST_LOW(type_size);
6915 val_long = static_cast<unsigned long>(val_wide);
6916 if (val_long != val_wide)
6917 return false;
6918 }
6919 else if (this->code_ == BUILTIN_ALIGNOF)
6920 {
6921 if (arg->field_reference_expression() == NULL)
6922 val_long = go_type_alignment(arg_type_tree);
6923 else
6924 {
6925 // Calling unsafe.Alignof(s.f) returns the alignment of
6926 // the type of f when it is used as a field in a struct.
6927 val_long = go_field_alignment(arg_type_tree);
6928 }
6929 }
6930 else
6931 gcc_unreachable();
6932 mpz_set_ui(val, val_long);
6933 *ptype = NULL;
6934 return true;
6935 }
6936 else if (this->code_ == BUILTIN_OFFSETOF)
6937 {
6938 Expression* arg = this->one_arg();
6939 if (arg == NULL)
6940 return false;
6941 Field_reference_expression* farg = arg->field_reference_expression();
6942 if (farg == NULL)
6943 return false;
6944 Expression* struct_expr = farg->expr();
6945 Type* st = struct_expr->type();
6946 if (st->struct_type() == NULL)
6947 return false;
6948 tree struct_tree = st->get_tree(this->gogo_);
6949 gcc_assert(TREE_CODE(struct_tree) == RECORD_TYPE);
6950 tree field = TYPE_FIELDS(struct_tree);
6951 for (unsigned int index = farg->field_index(); index > 0; --index)
6952 {
6953 field = DECL_CHAIN(field);
6954 gcc_assert(field != NULL_TREE);
6955 }
6956 HOST_WIDE_INT offset_wide = int_byte_position (field);
6957 if (offset_wide < 0)
6958 return false;
6959 unsigned long offset_long = static_cast<unsigned long>(offset_wide);
6960 if (offset_long != static_cast<unsigned HOST_WIDE_INT>(offset_wide))
6961 return false;
6962 mpz_set_ui(val, offset_long);
6963 return true;
6964 }
6965 return false;
6966 }
6967
6968 // Return a floating point constant value if possible.
6969
6970 bool
6971 Builtin_call_expression::do_float_constant_value(mpfr_t val,
6972 Type** ptype) const
6973 {
6974 if (this->code_ == BUILTIN_REAL || this->code_ == BUILTIN_IMAG)
6975 {
6976 Expression* arg = this->one_arg();
6977 if (arg == NULL)
6978 return false;
6979
6980 mpfr_t real;
6981 mpfr_t imag;
6982 mpfr_init(real);
6983 mpfr_init(imag);
6984
6985 bool ret = false;
6986 Type* type;
6987 if (arg->complex_constant_value(real, imag, &type))
6988 {
6989 if (this->code_ == BUILTIN_REAL)
6990 mpfr_set(val, real, GMP_RNDN);
6991 else
6992 mpfr_set(val, imag, GMP_RNDN);
6993 *ptype = Builtin_call_expression::real_imag_type(type);
6994 ret = true;
6995 }
6996
6997 mpfr_clear(real);
6998 mpfr_clear(imag);
6999 return ret;
7000 }
7001
7002 return false;
7003 }
7004
7005 // Return a complex constant value if possible.
7006
7007 bool
7008 Builtin_call_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
7009 Type** ptype) const
7010 {
7011 if (this->code_ == BUILTIN_CMPLX)
7012 {
7013 const Expression_list* args = this->args();
7014 if (args == NULL || args->size() != 2)
7015 return false;
7016
7017 mpfr_t r;
7018 mpfr_init(r);
7019 Type* rtype;
7020 if (!args->front()->float_constant_value(r, &rtype))
7021 {
7022 mpfr_clear(r);
7023 return false;
7024 }
7025
7026 mpfr_t i;
7027 mpfr_init(i);
7028
7029 bool ret = false;
7030 Type* itype;
7031 if (args->back()->float_constant_value(i, &itype)
7032 && Type::are_identical(rtype, itype, false, NULL))
7033 {
7034 mpfr_set(real, r, GMP_RNDN);
7035 mpfr_set(imag, i, GMP_RNDN);
7036 *ptype = Builtin_call_expression::cmplx_type(rtype);
7037 ret = true;
7038 }
7039
7040 mpfr_clear(r);
7041 mpfr_clear(i);
7042
7043 return ret;
7044 }
7045
7046 return false;
7047 }
7048
7049 // Return the type.
7050
7051 Type*
7052 Builtin_call_expression::do_type()
7053 {
7054 switch (this->code_)
7055 {
7056 case BUILTIN_INVALID:
7057 default:
7058 gcc_unreachable();
7059
7060 case BUILTIN_NEW:
7061 case BUILTIN_MAKE:
7062 {
7063 const Expression_list* args = this->args();
7064 if (args == NULL || args->empty())
7065 return Type::make_error_type();
7066 return Type::make_pointer_type(args->front()->type());
7067 }
7068
7069 case BUILTIN_CAP:
7070 case BUILTIN_COPY:
7071 case BUILTIN_LEN:
7072 case BUILTIN_ALIGNOF:
7073 case BUILTIN_OFFSETOF:
7074 case BUILTIN_SIZEOF:
7075 return Type::lookup_integer_type("int");
7076
7077 case BUILTIN_CLOSE:
7078 case BUILTIN_PANIC:
7079 case BUILTIN_PRINT:
7080 case BUILTIN_PRINTLN:
7081 return Type::make_void_type();
7082
7083 case BUILTIN_CLOSED:
7084 return Type::lookup_bool_type();
7085
7086 case BUILTIN_RECOVER:
7087 return Type::make_interface_type(NULL, BUILTINS_LOCATION);
7088
7089 case BUILTIN_APPEND:
7090 {
7091 const Expression_list* args = this->args();
7092 if (args == NULL || args->empty())
7093 return Type::make_error_type();
7094 return args->front()->type();
7095 }
7096
7097 case BUILTIN_REAL:
7098 case BUILTIN_IMAG:
7099 {
7100 Expression* arg = this->one_arg();
7101 if (arg == NULL)
7102 return Type::make_error_type();
7103 Type* t = arg->type();
7104 if (t->is_abstract())
7105 t = t->make_non_abstract_type();
7106 t = Builtin_call_expression::real_imag_type(t);
7107 if (t == NULL)
7108 t = Type::make_error_type();
7109 return t;
7110 }
7111
7112 case BUILTIN_CMPLX:
7113 {
7114 const Expression_list* args = this->args();
7115 if (args == NULL || args->size() != 2)
7116 return Type::make_error_type();
7117 Type* t = args->front()->type();
7118 if (t->is_abstract())
7119 {
7120 t = args->back()->type();
7121 if (t->is_abstract())
7122 t = t->make_non_abstract_type();
7123 }
7124 t = Builtin_call_expression::cmplx_type(t);
7125 if (t == NULL)
7126 t = Type::make_error_type();
7127 return t;
7128 }
7129 }
7130 }
7131
7132 // Determine the type.
7133
7134 void
7135 Builtin_call_expression::do_determine_type(const Type_context* context)
7136 {
7137 this->fn()->determine_type_no_context();
7138
7139 const Expression_list* args = this->args();
7140
7141 bool is_print;
7142 Type* arg_type = NULL;
7143 switch (this->code_)
7144 {
7145 case BUILTIN_PRINT:
7146 case BUILTIN_PRINTLN:
7147 // Do not force a large integer constant to "int".
7148 is_print = true;
7149 break;
7150
7151 case BUILTIN_REAL:
7152 case BUILTIN_IMAG:
7153 arg_type = Builtin_call_expression::cmplx_type(context->type);
7154 is_print = false;
7155 break;
7156
7157 case BUILTIN_CMPLX:
7158 {
7159 // For the cmplx function the type of one operand can
7160 // determine the type of the other, as in a binary expression.
7161 arg_type = Builtin_call_expression::real_imag_type(context->type);
7162 if (args != NULL && args->size() == 2)
7163 {
7164 Type* t1 = args->front()->type();
7165 Type* t2 = args->front()->type();
7166 if (!t1->is_abstract())
7167 arg_type = t1;
7168 else if (!t2->is_abstract())
7169 arg_type = t2;
7170 }
7171 is_print = false;
7172 }
7173 break;
7174
7175 default:
7176 is_print = false;
7177 break;
7178 }
7179
7180 if (args != NULL)
7181 {
7182 for (Expression_list::const_iterator pa = args->begin();
7183 pa != args->end();
7184 ++pa)
7185 {
7186 Type_context subcontext;
7187 subcontext.type = arg_type;
7188
7189 if (is_print)
7190 {
7191 // We want to print large constants, we so can't just
7192 // use the appropriate nonabstract type. Use uint64 for
7193 // an integer if we know it is nonnegative, otherwise
7194 // use int64 for a integer, otherwise use float64 for a
7195 // float or complex128 for a complex.
7196 Type* want_type = NULL;
7197 Type* atype = (*pa)->type();
7198 if (atype->is_abstract())
7199 {
7200 if (atype->integer_type() != NULL)
7201 {
7202 mpz_t val;
7203 mpz_init(val);
7204 Type* dummy;
7205 if (this->integer_constant_value(true, val, &dummy)
7206 && mpz_sgn(val) >= 0)
7207 want_type = Type::lookup_integer_type("uint64");
7208 else
7209 want_type = Type::lookup_integer_type("int64");
7210 mpz_clear(val);
7211 }
7212 else if (atype->float_type() != NULL)
7213 want_type = Type::lookup_float_type("float64");
7214 else if (atype->complex_type() != NULL)
7215 want_type = Type::lookup_complex_type("complex128");
7216 else if (atype->is_abstract_string_type())
7217 want_type = Type::lookup_string_type();
7218 else if (atype->is_abstract_boolean_type())
7219 want_type = Type::lookup_bool_type();
7220 else
7221 gcc_unreachable();
7222 subcontext.type = want_type;
7223 }
7224 }
7225
7226 (*pa)->determine_type(&subcontext);
7227 }
7228 }
7229 }
7230
7231 // If there is exactly one argument, return true. Otherwise give an
7232 // error message and return false.
7233
7234 bool
7235 Builtin_call_expression::check_one_arg()
7236 {
7237 const Expression_list* args = this->args();
7238 if (args == NULL || args->size() < 1)
7239 {
7240 this->report_error(_("not enough arguments"));
7241 return false;
7242 }
7243 else if (args->size() > 1)
7244 {
7245 this->report_error(_("too many arguments"));
7246 return false;
7247 }
7248 if (args->front()->is_error_expression()
7249 || args->front()->type()->is_error_type()
7250 || args->front()->type()->is_undefined())
7251 {
7252 this->set_is_error();
7253 return false;
7254 }
7255 return true;
7256 }
7257
7258 // Check argument types for a builtin function.
7259
7260 void
7261 Builtin_call_expression::do_check_types(Gogo*)
7262 {
7263 switch (this->code_)
7264 {
7265 case BUILTIN_INVALID:
7266 case BUILTIN_NEW:
7267 case BUILTIN_MAKE:
7268 return;
7269
7270 case BUILTIN_LEN:
7271 case BUILTIN_CAP:
7272 {
7273 // The single argument may be either a string or an array or a
7274 // map or a channel, or a pointer to a closed array.
7275 if (this->check_one_arg())
7276 {
7277 Type* arg_type = this->one_arg()->type();
7278 if (arg_type->points_to() != NULL
7279 && arg_type->points_to()->array_type() != NULL
7280 && !arg_type->points_to()->is_open_array_type())
7281 arg_type = arg_type->points_to();
7282 if (this->code_ == BUILTIN_CAP)
7283 {
7284 if (!arg_type->is_error_type()
7285 && arg_type->array_type() == NULL
7286 && arg_type->channel_type() == NULL)
7287 this->report_error(_("argument must be array or slice "
7288 "or channel"));
7289 }
7290 else
7291 {
7292 if (!arg_type->is_error_type()
7293 && !arg_type->is_string_type()
7294 && arg_type->array_type() == NULL
7295 && arg_type->map_type() == NULL
7296 && arg_type->channel_type() == NULL)
7297 this->report_error(_("argument must be string or "
7298 "array or slice or map or channel"));
7299 }
7300 }
7301 }
7302 break;
7303
7304 case BUILTIN_PRINT:
7305 case BUILTIN_PRINTLN:
7306 {
7307 const Expression_list* args = this->args();
7308 if (args == NULL)
7309 {
7310 if (this->code_ == BUILTIN_PRINT)
7311 warning_at(this->location(), 0,
7312 "no arguments for builtin function %<%s%>",
7313 (this->code_ == BUILTIN_PRINT
7314 ? "print"
7315 : "println"));
7316 }
7317 else
7318 {
7319 for (Expression_list::const_iterator p = args->begin();
7320 p != args->end();
7321 ++p)
7322 {
7323 Type* type = (*p)->type();
7324 if (type->is_error_type()
7325 || type->is_string_type()
7326 || type->integer_type() != NULL
7327 || type->float_type() != NULL
7328 || type->complex_type() != NULL
7329 || type->is_boolean_type()
7330 || type->points_to() != NULL
7331 || type->interface_type() != NULL
7332 || type->channel_type() != NULL
7333 || type->map_type() != NULL
7334 || type->function_type() != NULL
7335 || type->is_open_array_type())
7336 ;
7337 else
7338 this->report_error(_("unsupported argument type to "
7339 "builtin function"));
7340 }
7341 }
7342 }
7343 break;
7344
7345 case BUILTIN_CLOSE:
7346 case BUILTIN_CLOSED:
7347 if (this->check_one_arg())
7348 {
7349 if (this->one_arg()->type()->channel_type() == NULL)
7350 this->report_error(_("argument must be channel"));
7351 }
7352 break;
7353
7354 case BUILTIN_PANIC:
7355 case BUILTIN_SIZEOF:
7356 case BUILTIN_ALIGNOF:
7357 this->check_one_arg();
7358 break;
7359
7360 case BUILTIN_RECOVER:
7361 if (this->args() != NULL && !this->args()->empty())
7362 this->report_error(_("too many arguments"));
7363 break;
7364
7365 case BUILTIN_OFFSETOF:
7366 if (this->check_one_arg())
7367 {
7368 Expression* arg = this->one_arg();
7369 if (arg->field_reference_expression() == NULL)
7370 this->report_error(_("argument must be a field reference"));
7371 }
7372 break;
7373
7374 case BUILTIN_COPY:
7375 {
7376 const Expression_list* args = this->args();
7377 if (args == NULL || args->size() < 2)
7378 {
7379 this->report_error(_("not enough arguments"));
7380 break;
7381 }
7382 else if (args->size() > 2)
7383 {
7384 this->report_error(_("too many arguments"));
7385 break;
7386 }
7387 Type* arg1_type = args->front()->type();
7388 Type* arg2_type = args->back()->type();
7389 if (arg1_type->is_error_type() || arg2_type->is_error_type())
7390 break;
7391
7392 Type* e1;
7393 if (arg1_type->is_open_array_type())
7394 e1 = arg1_type->array_type()->element_type();
7395 else
7396 {
7397 this->report_error(_("left argument must be a slice"));
7398 break;
7399 }
7400
7401 Type* e2;
7402 if (arg2_type->is_open_array_type())
7403 e2 = arg2_type->array_type()->element_type();
7404 else if (arg2_type->is_string_type())
7405 e2 = Type::lookup_integer_type("uint8");
7406 else
7407 {
7408 this->report_error(_("right argument must be a slice or a string"));
7409 break;
7410 }
7411
7412 if (!Type::are_identical(e1, e2, true, NULL))
7413 this->report_error(_("element types must be the same"));
7414 }
7415 break;
7416
7417 case BUILTIN_APPEND:
7418 {
7419 const Expression_list* args = this->args();
7420 if (args == NULL || args->size() < 2)
7421 {
7422 this->report_error(_("not enough arguments"));
7423 break;
7424 }
7425 if (args->size() > 2)
7426 {
7427 this->report_error(_("too many arguments"));
7428 break;
7429 }
7430 std::string reason;
7431 if (!Type::are_assignable(args->front()->type(), args->back()->type(),
7432 &reason))
7433 {
7434 if (reason.empty())
7435 this->report_error(_("arguments 1 and 2 have different types"));
7436 else
7437 {
7438 error_at(this->location(),
7439 "arguments 1 and 2 have different types (%s)",
7440 reason.c_str());
7441 this->set_is_error();
7442 }
7443 }
7444 break;
7445 }
7446
7447 case BUILTIN_REAL:
7448 case BUILTIN_IMAG:
7449 if (this->check_one_arg())
7450 {
7451 if (this->one_arg()->type()->complex_type() == NULL)
7452 this->report_error(_("argument must have complex type"));
7453 }
7454 break;
7455
7456 case BUILTIN_CMPLX:
7457 {
7458 const Expression_list* args = this->args();
7459 if (args == NULL || args->size() < 2)
7460 this->report_error(_("not enough arguments"));
7461 else if (args->size() > 2)
7462 this->report_error(_("too many arguments"));
7463 else if (args->front()->is_error_expression()
7464 || args->front()->type()->is_error_type()
7465 || args->back()->is_error_expression()
7466 || args->back()->type()->is_error_type())
7467 this->set_is_error();
7468 else if (!Type::are_identical(args->front()->type(),
7469 args->back()->type(), true, NULL))
7470 this->report_error(_("cmplx arguments must have identical types"));
7471 else if (args->front()->type()->float_type() == NULL)
7472 this->report_error(_("cmplx arguments must have "
7473 "floating-point type"));
7474 }
7475 break;
7476
7477 default:
7478 gcc_unreachable();
7479 }
7480 }
7481
7482 // Return the tree for a builtin function.
7483
7484 tree
7485 Builtin_call_expression::do_get_tree(Translate_context* context)
7486 {
7487 Gogo* gogo = context->gogo();
7488 source_location location = this->location();
7489 switch (this->code_)
7490 {
7491 case BUILTIN_INVALID:
7492 case BUILTIN_NEW:
7493 case BUILTIN_MAKE:
7494 gcc_unreachable();
7495
7496 case BUILTIN_LEN:
7497 case BUILTIN_CAP:
7498 {
7499 const Expression_list* args = this->args();
7500 gcc_assert(args != NULL && args->size() == 1);
7501 Expression* arg = *args->begin();
7502 Type* arg_type = arg->type();
7503
7504 if (this->seen_)
7505 {
7506 gcc_assert(saw_errors());
7507 return error_mark_node;
7508 }
7509 this->seen_ = true;
7510
7511 tree arg_tree = arg->get_tree(context);
7512
7513 this->seen_ = false;
7514
7515 if (arg_tree == error_mark_node)
7516 return error_mark_node;
7517
7518 if (arg_type->points_to() != NULL)
7519 {
7520 arg_type = arg_type->points_to();
7521 gcc_assert(arg_type->array_type() != NULL
7522 && !arg_type->is_open_array_type());
7523 gcc_assert(POINTER_TYPE_P(TREE_TYPE(arg_tree)));
7524 arg_tree = build_fold_indirect_ref(arg_tree);
7525 }
7526
7527 tree val_tree;
7528 if (this->code_ == BUILTIN_LEN)
7529 {
7530 if (arg_type->is_string_type())
7531 val_tree = String_type::length_tree(gogo, arg_tree);
7532 else if (arg_type->array_type() != NULL)
7533 {
7534 if (this->seen_)
7535 {
7536 gcc_assert(saw_errors());
7537 return error_mark_node;
7538 }
7539 this->seen_ = true;
7540 val_tree = arg_type->array_type()->length_tree(gogo, arg_tree);
7541 this->seen_ = false;
7542 }
7543 else if (arg_type->map_type() != NULL)
7544 {
7545 static tree map_len_fndecl;
7546 val_tree = Gogo::call_builtin(&map_len_fndecl,
7547 location,
7548 "__go_map_len",
7549 1,
7550 sizetype,
7551 arg_type->get_tree(gogo),
7552 arg_tree);
7553 }
7554 else if (arg_type->channel_type() != NULL)
7555 {
7556 static tree chan_len_fndecl;
7557 val_tree = Gogo::call_builtin(&chan_len_fndecl,
7558 location,
7559 "__go_chan_len",
7560 1,
7561 sizetype,
7562 arg_type->get_tree(gogo),
7563 arg_tree);
7564 }
7565 else
7566 gcc_unreachable();
7567 }
7568 else
7569 {
7570 if (arg_type->array_type() != NULL)
7571 {
7572 if (this->seen_)
7573 {
7574 gcc_assert(saw_errors());
7575 return error_mark_node;
7576 }
7577 this->seen_ = true;
7578 val_tree = arg_type->array_type()->capacity_tree(gogo,
7579 arg_tree);
7580 this->seen_ = false;
7581 }
7582 else if (arg_type->channel_type() != NULL)
7583 {
7584 static tree chan_cap_fndecl;
7585 val_tree = Gogo::call_builtin(&chan_cap_fndecl,
7586 location,
7587 "__go_chan_cap",
7588 1,
7589 sizetype,
7590 arg_type->get_tree(gogo),
7591 arg_tree);
7592 }
7593 else
7594 gcc_unreachable();
7595 }
7596
7597 if (val_tree == error_mark_node)
7598 return error_mark_node;
7599
7600 tree type_tree = Type::lookup_integer_type("int")->get_tree(gogo);
7601 if (type_tree == TREE_TYPE(val_tree))
7602 return val_tree;
7603 else
7604 return fold(convert_to_integer(type_tree, val_tree));
7605 }
7606
7607 case BUILTIN_PRINT:
7608 case BUILTIN_PRINTLN:
7609 {
7610 const bool is_ln = this->code_ == BUILTIN_PRINTLN;
7611 tree stmt_list = NULL_TREE;
7612
7613 const Expression_list* call_args = this->args();
7614 if (call_args != NULL)
7615 {
7616 for (Expression_list::const_iterator p = call_args->begin();
7617 p != call_args->end();
7618 ++p)
7619 {
7620 if (is_ln && p != call_args->begin())
7621 {
7622 static tree print_space_fndecl;
7623 tree call = Gogo::call_builtin(&print_space_fndecl,
7624 location,
7625 "__go_print_space",
7626 0,
7627 void_type_node);
7628 if (call == error_mark_node)
7629 return error_mark_node;
7630 append_to_statement_list(call, &stmt_list);
7631 }
7632
7633 Type* type = (*p)->type();
7634
7635 tree arg = (*p)->get_tree(context);
7636 if (arg == error_mark_node)
7637 return error_mark_node;
7638
7639 tree* pfndecl;
7640 const char* fnname;
7641 if (type->is_string_type())
7642 {
7643 static tree print_string_fndecl;
7644 pfndecl = &print_string_fndecl;
7645 fnname = "__go_print_string";
7646 }
7647 else if (type->integer_type() != NULL
7648 && type->integer_type()->is_unsigned())
7649 {
7650 static tree print_uint64_fndecl;
7651 pfndecl = &print_uint64_fndecl;
7652 fnname = "__go_print_uint64";
7653 Type* itype = Type::lookup_integer_type("uint64");
7654 arg = fold_convert_loc(location, itype->get_tree(gogo),
7655 arg);
7656 }
7657 else if (type->integer_type() != NULL)
7658 {
7659 static tree print_int64_fndecl;
7660 pfndecl = &print_int64_fndecl;
7661 fnname = "__go_print_int64";
7662 Type* itype = Type::lookup_integer_type("int64");
7663 arg = fold_convert_loc(location, itype->get_tree(gogo),
7664 arg);
7665 }
7666 else if (type->float_type() != NULL)
7667 {
7668 static tree print_double_fndecl;
7669 pfndecl = &print_double_fndecl;
7670 fnname = "__go_print_double";
7671 arg = fold_convert_loc(location, double_type_node, arg);
7672 }
7673 else if (type->complex_type() != NULL)
7674 {
7675 static tree print_complex_fndecl;
7676 pfndecl = &print_complex_fndecl;
7677 fnname = "__go_print_complex";
7678 arg = fold_convert_loc(location, complex_double_type_node,
7679 arg);
7680 }
7681 else if (type->is_boolean_type())
7682 {
7683 static tree print_bool_fndecl;
7684 pfndecl = &print_bool_fndecl;
7685 fnname = "__go_print_bool";
7686 }
7687 else if (type->points_to() != NULL
7688 || type->channel_type() != NULL
7689 || type->map_type() != NULL
7690 || type->function_type() != NULL)
7691 {
7692 static tree print_pointer_fndecl;
7693 pfndecl = &print_pointer_fndecl;
7694 fnname = "__go_print_pointer";
7695 arg = fold_convert_loc(location, ptr_type_node, arg);
7696 }
7697 else if (type->interface_type() != NULL)
7698 {
7699 if (type->interface_type()->is_empty())
7700 {
7701 static tree print_empty_interface_fndecl;
7702 pfndecl = &print_empty_interface_fndecl;
7703 fnname = "__go_print_empty_interface";
7704 }
7705 else
7706 {
7707 static tree print_interface_fndecl;
7708 pfndecl = &print_interface_fndecl;
7709 fnname = "__go_print_interface";
7710 }
7711 }
7712 else if (type->is_open_array_type())
7713 {
7714 static tree print_slice_fndecl;
7715 pfndecl = &print_slice_fndecl;
7716 fnname = "__go_print_slice";
7717 }
7718 else
7719 gcc_unreachable();
7720
7721 tree call = Gogo::call_builtin(pfndecl,
7722 location,
7723 fnname,
7724 1,
7725 void_type_node,
7726 TREE_TYPE(arg),
7727 arg);
7728 if (call == error_mark_node)
7729 return error_mark_node;
7730 append_to_statement_list(call, &stmt_list);
7731 }
7732 }
7733
7734 if (is_ln)
7735 {
7736 static tree print_nl_fndecl;
7737 tree call = Gogo::call_builtin(&print_nl_fndecl,
7738 location,
7739 "__go_print_nl",
7740 0,
7741 void_type_node);
7742 if (call == error_mark_node)
7743 return error_mark_node;
7744 append_to_statement_list(call, &stmt_list);
7745 }
7746
7747 return stmt_list;
7748 }
7749
7750 case BUILTIN_PANIC:
7751 {
7752 const Expression_list* args = this->args();
7753 gcc_assert(args != NULL && args->size() == 1);
7754 Expression* arg = args->front();
7755 tree arg_tree = arg->get_tree(context);
7756 if (arg_tree == error_mark_node)
7757 return error_mark_node;
7758 Type *empty = Type::make_interface_type(NULL, BUILTINS_LOCATION);
7759 arg_tree = Expression::convert_for_assignment(context, empty,
7760 arg->type(),
7761 arg_tree, location);
7762 static tree panic_fndecl;
7763 tree call = Gogo::call_builtin(&panic_fndecl,
7764 location,
7765 "__go_panic",
7766 1,
7767 void_type_node,
7768 TREE_TYPE(arg_tree),
7769 arg_tree);
7770 if (call == error_mark_node)
7771 return error_mark_node;
7772 // This function will throw an exception.
7773 TREE_NOTHROW(panic_fndecl) = 0;
7774 // This function will not return.
7775 TREE_THIS_VOLATILE(panic_fndecl) = 1;
7776 return call;
7777 }
7778
7779 case BUILTIN_RECOVER:
7780 {
7781 // The argument is set when building recover thunks. It's a
7782 // boolean value which is true if we can recover a value now.
7783 const Expression_list* args = this->args();
7784 gcc_assert(args != NULL && args->size() == 1);
7785 Expression* arg = args->front();
7786 tree arg_tree = arg->get_tree(context);
7787 if (arg_tree == error_mark_node)
7788 return error_mark_node;
7789
7790 Type *empty = Type::make_interface_type(NULL, BUILTINS_LOCATION);
7791 tree empty_tree = empty->get_tree(context->gogo());
7792
7793 Type* nil_type = Type::make_nil_type();
7794 Expression* nil = Expression::make_nil(location);
7795 tree nil_tree = nil->get_tree(context);
7796 tree empty_nil_tree = Expression::convert_for_assignment(context,
7797 empty,
7798 nil_type,
7799 nil_tree,
7800 location);
7801
7802 // We need to handle a deferred call to recover specially,
7803 // because it changes whether it can recover a panic or not.
7804 // See test7 in test/recover1.go.
7805 tree call;
7806 if (this->is_deferred())
7807 {
7808 static tree deferred_recover_fndecl;
7809 call = Gogo::call_builtin(&deferred_recover_fndecl,
7810 location,
7811 "__go_deferred_recover",
7812 0,
7813 empty_tree);
7814 }
7815 else
7816 {
7817 static tree recover_fndecl;
7818 call = Gogo::call_builtin(&recover_fndecl,
7819 location,
7820 "__go_recover",
7821 0,
7822 empty_tree);
7823 }
7824 if (call == error_mark_node)
7825 return error_mark_node;
7826 return fold_build3_loc(location, COND_EXPR, empty_tree, arg_tree,
7827 call, empty_nil_tree);
7828 }
7829
7830 case BUILTIN_CLOSE:
7831 case BUILTIN_CLOSED:
7832 {
7833 const Expression_list* args = this->args();
7834 gcc_assert(args != NULL && args->size() == 1);
7835 Expression* arg = args->front();
7836 tree arg_tree = arg->get_tree(context);
7837 if (arg_tree == error_mark_node)
7838 return error_mark_node;
7839 if (this->code_ == BUILTIN_CLOSE)
7840 {
7841 static tree close_fndecl;
7842 return Gogo::call_builtin(&close_fndecl,
7843 location,
7844 "__go_builtin_close",
7845 1,
7846 void_type_node,
7847 TREE_TYPE(arg_tree),
7848 arg_tree);
7849 }
7850 else
7851 {
7852 static tree closed_fndecl;
7853 return Gogo::call_builtin(&closed_fndecl,
7854 location,
7855 "__go_builtin_closed",
7856 1,
7857 boolean_type_node,
7858 TREE_TYPE(arg_tree),
7859 arg_tree);
7860 }
7861 }
7862
7863 case BUILTIN_SIZEOF:
7864 case BUILTIN_OFFSETOF:
7865 case BUILTIN_ALIGNOF:
7866 {
7867 mpz_t val;
7868 mpz_init(val);
7869 Type* dummy;
7870 bool b = this->integer_constant_value(true, val, &dummy);
7871 gcc_assert(b);
7872 tree type = Type::lookup_integer_type("int")->get_tree(gogo);
7873 tree ret = Expression::integer_constant_tree(val, type);
7874 mpz_clear(val);
7875 return ret;
7876 }
7877
7878 case BUILTIN_COPY:
7879 {
7880 const Expression_list* args = this->args();
7881 gcc_assert(args != NULL && args->size() == 2);
7882 Expression* arg1 = args->front();
7883 Expression* arg2 = args->back();
7884
7885 tree arg1_tree = arg1->get_tree(context);
7886 tree arg2_tree = arg2->get_tree(context);
7887 if (arg1_tree == error_mark_node || arg2_tree == error_mark_node)
7888 return error_mark_node;
7889
7890 Type* arg1_type = arg1->type();
7891 Array_type* at = arg1_type->array_type();
7892 arg1_tree = save_expr(arg1_tree);
7893 tree arg1_val = at->value_pointer_tree(gogo, arg1_tree);
7894 tree arg1_len = at->length_tree(gogo, arg1_tree);
7895 if (arg1_val == error_mark_node || arg1_len == error_mark_node)
7896 return error_mark_node;
7897
7898 Type* arg2_type = arg2->type();
7899 tree arg2_val;
7900 tree arg2_len;
7901 if (arg2_type->is_open_array_type())
7902 {
7903 at = arg2_type->array_type();
7904 arg2_tree = save_expr(arg2_tree);
7905 arg2_val = at->value_pointer_tree(gogo, arg2_tree);
7906 arg2_len = at->length_tree(gogo, arg2_tree);
7907 }
7908 else
7909 {
7910 arg2_tree = save_expr(arg2_tree);
7911 arg2_val = String_type::bytes_tree(gogo, arg2_tree);
7912 arg2_len = String_type::length_tree(gogo, arg2_tree);
7913 }
7914 if (arg2_val == error_mark_node || arg2_len == error_mark_node)
7915 return error_mark_node;
7916
7917 arg1_len = save_expr(arg1_len);
7918 arg2_len = save_expr(arg2_len);
7919 tree len = fold_build3_loc(location, COND_EXPR, TREE_TYPE(arg1_len),
7920 fold_build2_loc(location, LT_EXPR,
7921 boolean_type_node,
7922 arg1_len, arg2_len),
7923 arg1_len, arg2_len);
7924 len = save_expr(len);
7925
7926 Type* element_type = at->element_type();
7927 tree element_type_tree = element_type->get_tree(gogo);
7928 if (element_type_tree == error_mark_node)
7929 return error_mark_node;
7930 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
7931 tree bytecount = fold_convert_loc(location, TREE_TYPE(element_size),
7932 len);
7933 bytecount = fold_build2_loc(location, MULT_EXPR,
7934 TREE_TYPE(element_size),
7935 bytecount, element_size);
7936 bytecount = fold_convert_loc(location, size_type_node, bytecount);
7937
7938 arg1_val = fold_convert_loc(location, ptr_type_node, arg1_val);
7939 arg2_val = fold_convert_loc(location, ptr_type_node, arg2_val);
7940
7941 static tree copy_fndecl;
7942 tree call = Gogo::call_builtin(&copy_fndecl,
7943 location,
7944 "__go_copy",
7945 3,
7946 void_type_node,
7947 ptr_type_node,
7948 arg1_val,
7949 ptr_type_node,
7950 arg2_val,
7951 size_type_node,
7952 bytecount);
7953 if (call == error_mark_node)
7954 return error_mark_node;
7955
7956 return fold_build2_loc(location, COMPOUND_EXPR, TREE_TYPE(len),
7957 call, len);
7958 }
7959
7960 case BUILTIN_APPEND:
7961 {
7962 const Expression_list* args = this->args();
7963 gcc_assert(args != NULL && args->size() == 2);
7964 Expression* arg1 = args->front();
7965 Expression* arg2 = args->back();
7966
7967 Array_type* at = arg1->type()->array_type();
7968 Type* element_type = at->element_type();
7969
7970 tree arg1_tree = arg1->get_tree(context);
7971 tree arg2_tree = arg2->get_tree(context);
7972 if (arg1_tree == error_mark_node || arg2_tree == error_mark_node)
7973 return error_mark_node;
7974
7975 arg2_tree = Expression::convert_for_assignment(context, at,
7976 arg2->type(),
7977 arg2_tree,
7978 location);
7979 if (arg2_tree == error_mark_node)
7980 return error_mark_node;
7981
7982 arg2_tree = save_expr(arg2_tree);
7983 tree arg2_val = at->value_pointer_tree(gogo, arg2_tree);
7984 tree arg2_len = at->length_tree(gogo, arg2_tree);
7985 if (arg2_val == error_mark_node || arg2_len == error_mark_node)
7986 return error_mark_node;
7987 arg2_val = fold_convert_loc(location, ptr_type_node, arg2_val);
7988 arg2_len = fold_convert_loc(location, size_type_node, arg2_len);
7989
7990 tree element_type_tree = element_type->get_tree(gogo);
7991 if (element_type_tree == error_mark_node)
7992 return error_mark_node;
7993 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
7994 element_size = fold_convert_loc(location, size_type_node,
7995 element_size);
7996
7997 // We rebuild the decl each time since the slice types may
7998 // change.
7999 tree append_fndecl = NULL_TREE;
8000 return Gogo::call_builtin(&append_fndecl,
8001 location,
8002 "__go_append",
8003 4,
8004 TREE_TYPE(arg1_tree),
8005 TREE_TYPE(arg1_tree),
8006 arg1_tree,
8007 ptr_type_node,
8008 arg2_val,
8009 size_type_node,
8010 arg2_len,
8011 size_type_node,
8012 element_size);
8013 }
8014
8015 case BUILTIN_REAL:
8016 case BUILTIN_IMAG:
8017 {
8018 const Expression_list* args = this->args();
8019 gcc_assert(args != NULL && args->size() == 1);
8020 Expression* arg = args->front();
8021 tree arg_tree = arg->get_tree(context);
8022 if (arg_tree == error_mark_node)
8023 return error_mark_node;
8024 gcc_assert(COMPLEX_FLOAT_TYPE_P(TREE_TYPE(arg_tree)));
8025 if (this->code_ == BUILTIN_REAL)
8026 return fold_build1_loc(location, REALPART_EXPR,
8027 TREE_TYPE(TREE_TYPE(arg_tree)),
8028 arg_tree);
8029 else
8030 return fold_build1_loc(location, IMAGPART_EXPR,
8031 TREE_TYPE(TREE_TYPE(arg_tree)),
8032 arg_tree);
8033 }
8034
8035 case BUILTIN_CMPLX:
8036 {
8037 const Expression_list* args = this->args();
8038 gcc_assert(args != NULL && args->size() == 2);
8039 tree r = args->front()->get_tree(context);
8040 tree i = args->back()->get_tree(context);
8041 if (r == error_mark_node || i == error_mark_node)
8042 return error_mark_node;
8043 gcc_assert(TYPE_MAIN_VARIANT(TREE_TYPE(r))
8044 == TYPE_MAIN_VARIANT(TREE_TYPE(i)));
8045 gcc_assert(SCALAR_FLOAT_TYPE_P(TREE_TYPE(r)));
8046 return fold_build2_loc(location, COMPLEX_EXPR,
8047 build_complex_type(TREE_TYPE(r)),
8048 r, i);
8049 }
8050
8051 default:
8052 gcc_unreachable();
8053 }
8054 }
8055
8056 // We have to support exporting a builtin call expression, because
8057 // code can set a constant to the result of a builtin expression.
8058
8059 void
8060 Builtin_call_expression::do_export(Export* exp) const
8061 {
8062 bool ok = false;
8063
8064 mpz_t val;
8065 mpz_init(val);
8066 Type* dummy;
8067 if (this->integer_constant_value(true, val, &dummy))
8068 {
8069 Integer_expression::export_integer(exp, val);
8070 ok = true;
8071 }
8072 mpz_clear(val);
8073
8074 if (!ok)
8075 {
8076 mpfr_t fval;
8077 mpfr_init(fval);
8078 if (this->float_constant_value(fval, &dummy))
8079 {
8080 Float_expression::export_float(exp, fval);
8081 ok = true;
8082 }
8083 mpfr_clear(fval);
8084 }
8085
8086 if (!ok)
8087 {
8088 mpfr_t real;
8089 mpfr_t imag;
8090 mpfr_init(real);
8091 mpfr_init(imag);
8092 if (this->complex_constant_value(real, imag, &dummy))
8093 {
8094 Complex_expression::export_complex(exp, real, imag);
8095 ok = true;
8096 }
8097 mpfr_clear(real);
8098 mpfr_clear(imag);
8099 }
8100
8101 if (!ok)
8102 {
8103 error_at(this->location(), "value is not constant");
8104 return;
8105 }
8106
8107 // A trailing space lets us reliably identify the end of the number.
8108 exp->write_c_string(" ");
8109 }
8110
8111 // Class Call_expression.
8112
8113 // Traversal.
8114
8115 int
8116 Call_expression::do_traverse(Traverse* traverse)
8117 {
8118 if (Expression::traverse(&this->fn_, traverse) == TRAVERSE_EXIT)
8119 return TRAVERSE_EXIT;
8120 if (this->args_ != NULL)
8121 {
8122 if (this->args_->traverse(traverse) == TRAVERSE_EXIT)
8123 return TRAVERSE_EXIT;
8124 }
8125 return TRAVERSE_CONTINUE;
8126 }
8127
8128 // Lower a call statement.
8129
8130 Expression*
8131 Call_expression::do_lower(Gogo* gogo, Named_object* function, int)
8132 {
8133 // A type case can look like a function call.
8134 if (this->fn_->is_type_expression()
8135 && this->args_ != NULL
8136 && this->args_->size() == 1)
8137 return Expression::make_cast(this->fn_->type(), this->args_->front(),
8138 this->location());
8139
8140 // Recognize a call to a builtin function.
8141 Func_expression* fne = this->fn_->func_expression();
8142 if (fne != NULL
8143 && fne->named_object()->is_function_declaration()
8144 && fne->named_object()->func_declaration_value()->type()->is_builtin())
8145 return new Builtin_call_expression(gogo, this->fn_, this->args_,
8146 this->is_varargs_, this->location());
8147
8148 // Handle an argument which is a call to a function which returns
8149 // multiple results.
8150 if (this->args_ != NULL
8151 && this->args_->size() == 1
8152 && this->args_->front()->call_expression() != NULL
8153 && this->fn_->type()->function_type() != NULL)
8154 {
8155 Function_type* fntype = this->fn_->type()->function_type();
8156 size_t rc = this->args_->front()->call_expression()->result_count();
8157 if (rc > 1
8158 && fntype->parameters() != NULL
8159 && (fntype->parameters()->size() == rc
8160 || (fntype->is_varargs()
8161 && fntype->parameters()->size() - 1 <= rc)))
8162 {
8163 Call_expression* call = this->args_->front()->call_expression();
8164 Expression_list* args = new Expression_list;
8165 for (size_t i = 0; i < rc; ++i)
8166 args->push_back(Expression::make_call_result(call, i));
8167 // We can't return a new call expression here, because this
8168 // one may be referenced by Call_result expressions. FIXME.
8169 delete this->args_;
8170 this->args_ = args;
8171 }
8172 }
8173
8174 // Handle a call to a varargs function by packaging up the extra
8175 // parameters.
8176 if (this->fn_->type()->function_type() != NULL
8177 && this->fn_->type()->function_type()->is_varargs())
8178 {
8179 Function_type* fntype = this->fn_->type()->function_type();
8180 const Typed_identifier_list* parameters = fntype->parameters();
8181 gcc_assert(parameters != NULL && !parameters->empty());
8182 Type* varargs_type = parameters->back().type();
8183 return this->lower_varargs(gogo, function, varargs_type,
8184 parameters->size());
8185 }
8186
8187 return this;
8188 }
8189
8190 // Lower a call to a varargs function. FUNCTION is the function in
8191 // which the call occurs--it's not the function we are calling.
8192 // VARARGS_TYPE is the type of the varargs parameter, a slice type.
8193 // PARAM_COUNT is the number of parameters of the function we are
8194 // calling; the last of these parameters will be the varargs
8195 // parameter.
8196
8197 Expression*
8198 Call_expression::lower_varargs(Gogo* gogo, Named_object* function,
8199 Type* varargs_type, size_t param_count)
8200 {
8201 if (this->varargs_are_lowered_)
8202 return this;
8203
8204 source_location loc = this->location();
8205
8206 gcc_assert(param_count > 0);
8207 gcc_assert(varargs_type->is_open_array_type());
8208
8209 size_t arg_count = this->args_ == NULL ? 0 : this->args_->size();
8210 if (arg_count < param_count - 1)
8211 {
8212 // Not enough arguments; will be caught in check_types.
8213 return this;
8214 }
8215
8216 Expression_list* old_args = this->args_;
8217 Expression_list* new_args = new Expression_list();
8218 bool push_empty_arg = false;
8219 if (old_args == NULL || old_args->empty())
8220 {
8221 gcc_assert(param_count == 1);
8222 push_empty_arg = true;
8223 }
8224 else
8225 {
8226 Expression_list::const_iterator pa;
8227 int i = 1;
8228 for (pa = old_args->begin(); pa != old_args->end(); ++pa, ++i)
8229 {
8230 if (static_cast<size_t>(i) == param_count)
8231 break;
8232 new_args->push_back(*pa);
8233 }
8234
8235 // We have reached the varargs parameter.
8236
8237 bool issued_error = false;
8238 if (pa == old_args->end())
8239 push_empty_arg = true;
8240 else if (pa + 1 == old_args->end() && this->is_varargs_)
8241 new_args->push_back(*pa);
8242 else if (this->is_varargs_)
8243 {
8244 this->report_error(_("too many arguments"));
8245 return this;
8246 }
8247 else if (pa + 1 == old_args->end()
8248 && this->is_compatible_varargs_argument(function, *pa,
8249 varargs_type,
8250 &issued_error))
8251 new_args->push_back(*pa);
8252 else
8253 {
8254 Type* element_type = varargs_type->array_type()->element_type();
8255 Expression_list* vals = new Expression_list;
8256 for (; pa != old_args->end(); ++pa, ++i)
8257 {
8258 // Check types here so that we get a better message.
8259 Type* patype = (*pa)->type();
8260 source_location paloc = (*pa)->location();
8261 if (!this->check_argument_type(i, element_type, patype,
8262 paloc, issued_error))
8263 continue;
8264 vals->push_back(*pa);
8265 }
8266 Expression* val =
8267 Expression::make_slice_composite_literal(varargs_type, vals, loc);
8268 new_args->push_back(val);
8269 }
8270 }
8271
8272 if (push_empty_arg)
8273 new_args->push_back(Expression::make_nil(loc));
8274
8275 // We can't return a new call expression here, because this one may
8276 // be referenced by Call_result expressions. FIXME.
8277 if (old_args != NULL)
8278 delete old_args;
8279 this->args_ = new_args;
8280 this->varargs_are_lowered_ = true;
8281
8282 // Lower all the new subexpressions.
8283 Expression* ret = this;
8284 gogo->lower_expression(function, &ret);
8285 gcc_assert(ret == this);
8286 return ret;
8287 }
8288
8289 // Return true if ARG is a varargs argment which should be passed to
8290 // the varargs parameter of type PARAM_TYPE without wrapping. ARG
8291 // will be the last argument passed in the call, and PARAM_TYPE will
8292 // be the type of the last parameter of the varargs function being
8293 // called.
8294
8295 bool
8296 Call_expression::is_compatible_varargs_argument(Named_object* function,
8297 Expression* arg,
8298 Type* param_type,
8299 bool* issued_error)
8300 {
8301 *issued_error = false;
8302
8303 Type* var_type = NULL;
8304
8305 // The simple case is passing the varargs parameter of the caller.
8306 Var_expression* ve = arg->var_expression();
8307 if (ve != NULL && ve->named_object()->is_variable())
8308 {
8309 Variable* var = ve->named_object()->var_value();
8310 if (var->is_varargs_parameter())
8311 var_type = var->type();
8312 }
8313
8314 // The complex case is passing the varargs parameter of some
8315 // enclosing function. This will look like passing down *c.f where
8316 // c is the closure variable and f is a field in the closure.
8317 if (function != NULL
8318 && function->func_value()->needs_closure()
8319 && arg->classification() == EXPRESSION_UNARY)
8320 {
8321 Unary_expression* ue = static_cast<Unary_expression*>(arg);
8322 if (ue->op() == OPERATOR_MULT)
8323 {
8324 Field_reference_expression* fre =
8325 ue->operand()->deref()->field_reference_expression();
8326 if (fre != NULL)
8327 {
8328 Var_expression* ve = fre->expr()->deref()->var_expression();
8329 if (ve != NULL)
8330 {
8331 Named_object* no = ve->named_object();
8332 Function* f = function->func_value();
8333 if (no == f->closure_var())
8334 {
8335 // At this point we know that this indeed a
8336 // reference to some enclosing variable. Now we
8337 // need to figure out whether that variable is a
8338 // varargs parameter.
8339 Named_object* enclosing =
8340 f->enclosing_var(fre->field_index());
8341 Variable* var = enclosing->var_value();
8342 if (var->is_varargs_parameter())
8343 var_type = var->type();
8344 }
8345 }
8346 }
8347 }
8348 }
8349
8350 if (var_type == NULL)
8351 return false;
8352
8353 // We only match if the parameter is the same, with an identical
8354 // type.
8355 Array_type* var_at = var_type->array_type();
8356 gcc_assert(var_at != NULL);
8357 Array_type* param_at = param_type->array_type();
8358 if (param_at != NULL
8359 && Type::are_identical(var_at->element_type(),
8360 param_at->element_type(), true, NULL))
8361 return true;
8362 error_at(arg->location(), "... mismatch: passing ...T as ...");
8363 *issued_error = true;
8364 return false;
8365 }
8366
8367 // Get the function type. Returns NULL if we don't know the type. If
8368 // this returns NULL, and if_ERROR is true, issues an error.
8369
8370 Function_type*
8371 Call_expression::get_function_type() const
8372 {
8373 return this->fn_->type()->function_type();
8374 }
8375
8376 // Return the number of values which this call will return.
8377
8378 size_t
8379 Call_expression::result_count() const
8380 {
8381 const Function_type* fntype = this->get_function_type();
8382 if (fntype == NULL)
8383 return 0;
8384 if (fntype->results() == NULL)
8385 return 0;
8386 return fntype->results()->size();
8387 }
8388
8389 // Return whether this is a call to the predeclared function recover.
8390
8391 bool
8392 Call_expression::is_recover_call() const
8393 {
8394 return this->do_is_recover_call();
8395 }
8396
8397 // Set the argument to the recover function.
8398
8399 void
8400 Call_expression::set_recover_arg(Expression* arg)
8401 {
8402 this->do_set_recover_arg(arg);
8403 }
8404
8405 // Virtual functions also implemented by Builtin_call_expression.
8406
8407 bool
8408 Call_expression::do_is_recover_call() const
8409 {
8410 return false;
8411 }
8412
8413 void
8414 Call_expression::do_set_recover_arg(Expression*)
8415 {
8416 gcc_unreachable();
8417 }
8418
8419 // Get the type.
8420
8421 Type*
8422 Call_expression::do_type()
8423 {
8424 if (this->type_ != NULL)
8425 return this->type_;
8426
8427 Type* ret;
8428 Function_type* fntype = this->get_function_type();
8429 if (fntype == NULL)
8430 return Type::make_error_type();
8431
8432 const Typed_identifier_list* results = fntype->results();
8433 if (results == NULL)
8434 ret = Type::make_void_type();
8435 else if (results->size() == 1)
8436 ret = results->begin()->type();
8437 else
8438 ret = Type::make_call_multiple_result_type(this);
8439
8440 this->type_ = ret;
8441
8442 return this->type_;
8443 }
8444
8445 // Determine types for a call expression. We can use the function
8446 // parameter types to set the types of the arguments.
8447
8448 void
8449 Call_expression::do_determine_type(const Type_context*)
8450 {
8451 this->fn_->determine_type_no_context();
8452 Function_type* fntype = this->get_function_type();
8453 const Typed_identifier_list* parameters = NULL;
8454 if (fntype != NULL)
8455 parameters = fntype->parameters();
8456 if (this->args_ != NULL)
8457 {
8458 Typed_identifier_list::const_iterator pt;
8459 if (parameters != NULL)
8460 pt = parameters->begin();
8461 for (Expression_list::const_iterator pa = this->args_->begin();
8462 pa != this->args_->end();
8463 ++pa)
8464 {
8465 if (parameters != NULL && pt != parameters->end())
8466 {
8467 Type_context subcontext(pt->type(), false);
8468 (*pa)->determine_type(&subcontext);
8469 ++pt;
8470 }
8471 else
8472 (*pa)->determine_type_no_context();
8473 }
8474 }
8475 }
8476
8477 // Check types for parameter I.
8478
8479 bool
8480 Call_expression::check_argument_type(int i, const Type* parameter_type,
8481 const Type* argument_type,
8482 source_location argument_location,
8483 bool issued_error)
8484 {
8485 std::string reason;
8486 if (!Type::are_assignable(parameter_type, argument_type, &reason))
8487 {
8488 if (!issued_error)
8489 {
8490 if (reason.empty())
8491 error_at(argument_location, "argument %d has incompatible type", i);
8492 else
8493 error_at(argument_location,
8494 "argument %d has incompatible type (%s)",
8495 i, reason.c_str());
8496 }
8497 this->set_is_error();
8498 return false;
8499 }
8500 return true;
8501 }
8502
8503 // Check types.
8504
8505 void
8506 Call_expression::do_check_types(Gogo*)
8507 {
8508 Function_type* fntype = this->get_function_type();
8509 if (fntype == NULL)
8510 {
8511 if (!this->fn_->type()->is_error_type())
8512 this->report_error(_("expected function"));
8513 return;
8514 }
8515
8516 if (fntype->is_method())
8517 {
8518 // We don't support pointers to methods, so the function has to
8519 // be a bound method expression.
8520 Bound_method_expression* bme = this->fn_->bound_method_expression();
8521 if (bme == NULL)
8522 {
8523 this->report_error(_("method call without object"));
8524 return;
8525 }
8526 Type* first_arg_type = bme->first_argument()->type();
8527 if (first_arg_type->points_to() == NULL)
8528 {
8529 // When passing a value, we need to check that we are
8530 // permitted to copy it.
8531 std::string reason;
8532 if (!Type::are_assignable(fntype->receiver()->type(),
8533 first_arg_type, &reason))
8534 {
8535 if (reason.empty())
8536 this->report_error(_("incompatible type for receiver"));
8537 else
8538 {
8539 error_at(this->location(),
8540 "incompatible type for receiver (%s)",
8541 reason.c_str());
8542 this->set_is_error();
8543 }
8544 }
8545 }
8546 }
8547
8548 // Note that varargs was handled by the lower_varargs() method, so
8549 // we don't have to worry about it here.
8550
8551 const Typed_identifier_list* parameters = fntype->parameters();
8552 if (this->args_ == NULL)
8553 {
8554 if (parameters != NULL && !parameters->empty())
8555 this->report_error(_("not enough arguments"));
8556 }
8557 else if (parameters == NULL)
8558 this->report_error(_("too many arguments"));
8559 else
8560 {
8561 int i = 0;
8562 Typed_identifier_list::const_iterator pt = parameters->begin();
8563 for (Expression_list::const_iterator pa = this->args_->begin();
8564 pa != this->args_->end();
8565 ++pa, ++pt, ++i)
8566 {
8567 if (pt == parameters->end())
8568 {
8569 this->report_error(_("too many arguments"));
8570 return;
8571 }
8572 this->check_argument_type(i + 1, pt->type(), (*pa)->type(),
8573 (*pa)->location(), false);
8574 }
8575 if (pt != parameters->end())
8576 this->report_error(_("not enough arguments"));
8577 }
8578 }
8579
8580 // Return whether we have to use a temporary variable to ensure that
8581 // we evaluate this call expression in order. If the call returns no
8582 // results then it will inevitably be executed last. If the call
8583 // returns more than one result then it will be used with Call_result
8584 // expressions. So we only have to use a temporary variable if the
8585 // call returns exactly one result.
8586
8587 bool
8588 Call_expression::do_must_eval_in_order() const
8589 {
8590 return this->result_count() == 1;
8591 }
8592
8593 // Get the function and the first argument to use when calling a bound
8594 // method.
8595
8596 tree
8597 Call_expression::bound_method_function(Translate_context* context,
8598 Bound_method_expression* bound_method,
8599 tree* first_arg_ptr)
8600 {
8601 Expression* first_argument = bound_method->first_argument();
8602 tree first_arg = first_argument->get_tree(context);
8603 if (first_arg == error_mark_node)
8604 return error_mark_node;
8605
8606 // We always pass a pointer to the first argument when calling a
8607 // method.
8608 if (first_argument->type()->points_to() == NULL)
8609 {
8610 tree pointer_to_arg_type = build_pointer_type(TREE_TYPE(first_arg));
8611 if (TREE_ADDRESSABLE(TREE_TYPE(first_arg))
8612 || DECL_P(first_arg)
8613 || TREE_CODE(first_arg) == INDIRECT_REF
8614 || TREE_CODE(first_arg) == COMPONENT_REF)
8615 {
8616 first_arg = build_fold_addr_expr(first_arg);
8617 if (DECL_P(first_arg))
8618 TREE_ADDRESSABLE(first_arg) = 1;
8619 }
8620 else
8621 {
8622 tree tmp = create_tmp_var(TREE_TYPE(first_arg),
8623 get_name(first_arg));
8624 DECL_IGNORED_P(tmp) = 0;
8625 DECL_INITIAL(tmp) = first_arg;
8626 first_arg = build2(COMPOUND_EXPR, pointer_to_arg_type,
8627 build1(DECL_EXPR, void_type_node, tmp),
8628 build_fold_addr_expr(tmp));
8629 TREE_ADDRESSABLE(tmp) = 1;
8630 }
8631 if (first_arg == error_mark_node)
8632 return error_mark_node;
8633 }
8634
8635 Type* fatype = bound_method->first_argument_type();
8636 if (fatype != NULL)
8637 {
8638 if (fatype->points_to() == NULL)
8639 fatype = Type::make_pointer_type(fatype);
8640 first_arg = fold_convert(fatype->get_tree(context->gogo()), first_arg);
8641 if (first_arg == error_mark_node
8642 || TREE_TYPE(first_arg) == error_mark_node)
8643 return error_mark_node;
8644 }
8645
8646 *first_arg_ptr = first_arg;
8647
8648 return bound_method->method()->get_tree(context);
8649 }
8650
8651 // Get the function and the first argument to use when calling an
8652 // interface method.
8653
8654 tree
8655 Call_expression::interface_method_function(
8656 Translate_context* context,
8657 Interface_field_reference_expression* interface_method,
8658 tree* first_arg_ptr)
8659 {
8660 tree expr = interface_method->expr()->get_tree(context);
8661 if (expr == error_mark_node)
8662 return error_mark_node;
8663 expr = save_expr(expr);
8664 tree first_arg = interface_method->get_underlying_object_tree(context, expr);
8665 if (first_arg == error_mark_node)
8666 return error_mark_node;
8667 *first_arg_ptr = first_arg;
8668 return interface_method->get_function_tree(context, expr);
8669 }
8670
8671 // Build the call expression.
8672
8673 tree
8674 Call_expression::do_get_tree(Translate_context* context)
8675 {
8676 if (this->tree_ != NULL_TREE)
8677 return this->tree_;
8678
8679 Function_type* fntype = this->get_function_type();
8680 if (fntype == NULL)
8681 return error_mark_node;
8682
8683 if (this->fn_->is_error_expression())
8684 return error_mark_node;
8685
8686 Gogo* gogo = context->gogo();
8687 source_location location = this->location();
8688
8689 Func_expression* func = this->fn_->func_expression();
8690 Bound_method_expression* bound_method = this->fn_->bound_method_expression();
8691 Interface_field_reference_expression* interface_method =
8692 this->fn_->interface_field_reference_expression();
8693 const bool has_closure = func != NULL && func->closure() != NULL;
8694 const bool is_method = bound_method != NULL || interface_method != NULL;
8695 gcc_assert(!fntype->is_method() || is_method);
8696
8697 int nargs;
8698 tree* args;
8699 if (this->args_ == NULL || this->args_->empty())
8700 {
8701 nargs = is_method ? 1 : 0;
8702 args = nargs == 0 ? NULL : new tree[nargs];
8703 }
8704 else
8705 {
8706 const Typed_identifier_list* params = fntype->parameters();
8707 gcc_assert(params != NULL);
8708
8709 nargs = this->args_->size();
8710 int i = is_method ? 1 : 0;
8711 nargs += i;
8712 args = new tree[nargs];
8713
8714 Typed_identifier_list::const_iterator pp = params->begin();
8715 Expression_list::const_iterator pe;
8716 for (pe = this->args_->begin();
8717 pe != this->args_->end();
8718 ++pe, ++pp, ++i)
8719 {
8720 gcc_assert(pp != params->end());
8721 tree arg_val = (*pe)->get_tree(context);
8722 args[i] = Expression::convert_for_assignment(context,
8723 pp->type(),
8724 (*pe)->type(),
8725 arg_val,
8726 location);
8727 if (args[i] == error_mark_node)
8728 return error_mark_node;
8729 }
8730 gcc_assert(pp == params->end());
8731 gcc_assert(i == nargs);
8732 }
8733
8734 tree rettype = TREE_TYPE(TREE_TYPE(fntype->get_tree(gogo)));
8735 if (rettype == error_mark_node)
8736 return error_mark_node;
8737
8738 tree fn;
8739 if (has_closure)
8740 fn = func->get_tree_without_closure(gogo);
8741 else if (!is_method)
8742 fn = this->fn_->get_tree(context);
8743 else if (bound_method != NULL)
8744 fn = this->bound_method_function(context, bound_method, &args[0]);
8745 else if (interface_method != NULL)
8746 fn = this->interface_method_function(context, interface_method, &args[0]);
8747 else
8748 gcc_unreachable();
8749
8750 if (fn == error_mark_node || TREE_TYPE(fn) == error_mark_node)
8751 return error_mark_node;
8752
8753 // This is to support builtin math functions when using 80387 math.
8754 tree fndecl = fn;
8755 if (TREE_CODE(fndecl) == ADDR_EXPR)
8756 fndecl = TREE_OPERAND(fndecl, 0);
8757 tree excess_type = NULL_TREE;
8758 if (DECL_P(fndecl)
8759 && DECL_IS_BUILTIN(fndecl)
8760 && DECL_BUILT_IN_CLASS(fndecl) == BUILT_IN_NORMAL
8761 && nargs > 0
8762 && ((SCALAR_FLOAT_TYPE_P(rettype)
8763 && SCALAR_FLOAT_TYPE_P(TREE_TYPE(args[0])))
8764 || (COMPLEX_FLOAT_TYPE_P(rettype)
8765 && COMPLEX_FLOAT_TYPE_P(TREE_TYPE(args[0])))))
8766 {
8767 excess_type = excess_precision_type(TREE_TYPE(args[0]));
8768 if (excess_type != NULL_TREE)
8769 {
8770 tree excess_fndecl = mathfn_built_in(excess_type,
8771 DECL_FUNCTION_CODE(fndecl));
8772 if (excess_fndecl == NULL_TREE)
8773 excess_type = NULL_TREE;
8774 else
8775 {
8776 fn = build_fold_addr_expr_loc(location, excess_fndecl);
8777 for (int i = 0; i < nargs; ++i)
8778 args[i] = ::convert(excess_type, args[i]);
8779 }
8780 }
8781 }
8782
8783 tree ret = build_call_array(excess_type != NULL_TREE ? excess_type : rettype,
8784 fn, nargs, args);
8785 delete[] args;
8786
8787 SET_EXPR_LOCATION(ret, location);
8788
8789 if (has_closure)
8790 {
8791 tree closure_tree = func->closure()->get_tree(context);
8792 if (closure_tree != error_mark_node)
8793 CALL_EXPR_STATIC_CHAIN(ret) = closure_tree;
8794 }
8795
8796 // If this is a recursive function type which returns itself, as in
8797 // type F func() F
8798 // we have used ptr_type_node for the return type. Add a cast here
8799 // to the correct type.
8800 if (TREE_TYPE(ret) == ptr_type_node)
8801 {
8802 tree t = this->type()->get_tree(gogo);
8803 ret = fold_convert_loc(location, t, ret);
8804 }
8805
8806 if (excess_type != NULL_TREE)
8807 {
8808 // Calling convert here can undo our excess precision change.
8809 // That may or may not be a bug in convert_to_real.
8810 ret = build1(NOP_EXPR, rettype, ret);
8811 }
8812
8813 // If there is more than one result, we will refer to the call
8814 // multiple times.
8815 if (fntype->results() != NULL && fntype->results()->size() > 1)
8816 ret = save_expr(ret);
8817
8818 this->tree_ = ret;
8819
8820 return ret;
8821 }
8822
8823 // Make a call expression.
8824
8825 Call_expression*
8826 Expression::make_call(Expression* fn, Expression_list* args, bool is_varargs,
8827 source_location location)
8828 {
8829 return new Call_expression(fn, args, is_varargs, location);
8830 }
8831
8832 // A single result from a call which returns multiple results.
8833
8834 class Call_result_expression : public Expression
8835 {
8836 public:
8837 Call_result_expression(Call_expression* call, unsigned int index)
8838 : Expression(EXPRESSION_CALL_RESULT, call->location()),
8839 call_(call), index_(index)
8840 { }
8841
8842 protected:
8843 int
8844 do_traverse(Traverse*);
8845
8846 Type*
8847 do_type();
8848
8849 void
8850 do_determine_type(const Type_context*);
8851
8852 void
8853 do_check_types(Gogo*);
8854
8855 Expression*
8856 do_copy()
8857 {
8858 return new Call_result_expression(this->call_->call_expression(),
8859 this->index_);
8860 }
8861
8862 bool
8863 do_must_eval_in_order() const
8864 { return true; }
8865
8866 tree
8867 do_get_tree(Translate_context*);
8868
8869 private:
8870 // The underlying call expression.
8871 Expression* call_;
8872 // Which result we want.
8873 unsigned int index_;
8874 };
8875
8876 // Traverse a call result.
8877
8878 int
8879 Call_result_expression::do_traverse(Traverse* traverse)
8880 {
8881 if (traverse->remember_expression(this->call_))
8882 {
8883 // We have already traversed the call expression.
8884 return TRAVERSE_CONTINUE;
8885 }
8886 return Expression::traverse(&this->call_, traverse);
8887 }
8888
8889 // Get the type.
8890
8891 Type*
8892 Call_result_expression::do_type()
8893 {
8894 if (this->classification() == EXPRESSION_ERROR)
8895 return Type::make_error_type();
8896
8897 // THIS->CALL_ can be replaced with a temporary reference due to
8898 // Call_expression::do_must_eval_in_order when there is an error.
8899 Call_expression* ce = this->call_->call_expression();
8900 if (ce == NULL)
8901 {
8902 this->set_is_error();
8903 return Type::make_error_type();
8904 }
8905 Function_type* fntype = ce->get_function_type();
8906 if (fntype == NULL)
8907 {
8908 this->set_is_error();
8909 return Type::make_error_type();
8910 }
8911 const Typed_identifier_list* results = fntype->results();
8912 if (results == NULL)
8913 {
8914 this->report_error(_("number of results does not match "
8915 "number of values"));
8916 return Type::make_error_type();
8917 }
8918 Typed_identifier_list::const_iterator pr = results->begin();
8919 for (unsigned int i = 0; i < this->index_; ++i)
8920 {
8921 if (pr == results->end())
8922 break;
8923 ++pr;
8924 }
8925 if (pr == results->end())
8926 {
8927 this->report_error(_("number of results does not match "
8928 "number of values"));
8929 return Type::make_error_type();
8930 }
8931 return pr->type();
8932 }
8933
8934 // Check the type. Just make sure that we trigger the warning in
8935 // do_type.
8936
8937 void
8938 Call_result_expression::do_check_types(Gogo*)
8939 {
8940 this->type();
8941 }
8942
8943 // Determine the type. We have nothing to do here, but the 0 result
8944 // needs to pass down to the caller.
8945
8946 void
8947 Call_result_expression::do_determine_type(const Type_context*)
8948 {
8949 if (this->index_ == 0)
8950 this->call_->determine_type_no_context();
8951 }
8952
8953 // Return the tree.
8954
8955 tree
8956 Call_result_expression::do_get_tree(Translate_context* context)
8957 {
8958 tree call_tree = this->call_->get_tree(context);
8959 if (call_tree == error_mark_node)
8960 return error_mark_node;
8961 if (TREE_CODE(TREE_TYPE(call_tree)) != RECORD_TYPE)
8962 {
8963 gcc_assert(saw_errors());
8964 return error_mark_node;
8965 }
8966 tree field = TYPE_FIELDS(TREE_TYPE(call_tree));
8967 for (unsigned int i = 0; i < this->index_; ++i)
8968 {
8969 gcc_assert(field != NULL_TREE);
8970 field = DECL_CHAIN(field);
8971 }
8972 gcc_assert(field != NULL_TREE);
8973 return build3(COMPONENT_REF, TREE_TYPE(field), call_tree, field, NULL_TREE);
8974 }
8975
8976 // Make a reference to a single result of a call which returns
8977 // multiple results.
8978
8979 Expression*
8980 Expression::make_call_result(Call_expression* call, unsigned int index)
8981 {
8982 return new Call_result_expression(call, index);
8983 }
8984
8985 // Class Index_expression.
8986
8987 // Traversal.
8988
8989 int
8990 Index_expression::do_traverse(Traverse* traverse)
8991 {
8992 if (Expression::traverse(&this->left_, traverse) == TRAVERSE_EXIT
8993 || Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT
8994 || (this->end_ != NULL
8995 && Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT))
8996 return TRAVERSE_EXIT;
8997 return TRAVERSE_CONTINUE;
8998 }
8999
9000 // Lower an index expression. This converts the generic index
9001 // expression into an array index, a string index, or a map index.
9002
9003 Expression*
9004 Index_expression::do_lower(Gogo*, Named_object*, int)
9005 {
9006 source_location location = this->location();
9007 Expression* left = this->left_;
9008 Expression* start = this->start_;
9009 Expression* end = this->end_;
9010
9011 Type* type = left->type();
9012 if (type->is_error_type())
9013 return Expression::make_error(location);
9014 else if (type->array_type() != NULL)
9015 return Expression::make_array_index(left, start, end, location);
9016 else if (type->points_to() != NULL
9017 && type->points_to()->array_type() != NULL
9018 && !type->points_to()->is_open_array_type())
9019 {
9020 Expression* deref = Expression::make_unary(OPERATOR_MULT, left,
9021 location);
9022 return Expression::make_array_index(deref, start, end, location);
9023 }
9024 else if (type->is_string_type())
9025 return Expression::make_string_index(left, start, end, location);
9026 else if (type->map_type() != NULL)
9027 {
9028 if (end != NULL)
9029 {
9030 error_at(location, "invalid slice of map");
9031 return Expression::make_error(location);
9032 }
9033 Map_index_expression* ret= Expression::make_map_index(left, start,
9034 location);
9035 if (this->is_lvalue_)
9036 ret->set_is_lvalue();
9037 return ret;
9038 }
9039 else
9040 {
9041 error_at(location,
9042 "attempt to index object which is not array, string, or map");
9043 return Expression::make_error(location);
9044 }
9045 }
9046
9047 // Make an index expression.
9048
9049 Expression*
9050 Expression::make_index(Expression* left, Expression* start, Expression* end,
9051 source_location location)
9052 {
9053 return new Index_expression(left, start, end, location);
9054 }
9055
9056 // An array index. This is used for both indexing and slicing.
9057
9058 class Array_index_expression : public Expression
9059 {
9060 public:
9061 Array_index_expression(Expression* array, Expression* start,
9062 Expression* end, source_location location)
9063 : Expression(EXPRESSION_ARRAY_INDEX, location),
9064 array_(array), start_(start), end_(end), type_(NULL)
9065 { }
9066
9067 protected:
9068 int
9069 do_traverse(Traverse*);
9070
9071 Type*
9072 do_type();
9073
9074 void
9075 do_determine_type(const Type_context*);
9076
9077 void
9078 do_check_types(Gogo*);
9079
9080 Expression*
9081 do_copy()
9082 {
9083 return Expression::make_array_index(this->array_->copy(),
9084 this->start_->copy(),
9085 (this->end_ == NULL
9086 ? NULL
9087 : this->end_->copy()),
9088 this->location());
9089 }
9090
9091 bool
9092 do_is_addressable() const;
9093
9094 void
9095 do_address_taken(bool escapes)
9096 { this->array_->address_taken(escapes); }
9097
9098 tree
9099 do_get_tree(Translate_context*);
9100
9101 private:
9102 // The array we are getting a value from.
9103 Expression* array_;
9104 // The start or only index.
9105 Expression* start_;
9106 // The end index of a slice. This may be NULL for a simple array
9107 // index, or it may be a nil expression for the length of the array.
9108 Expression* end_;
9109 // The type of the expression.
9110 Type* type_;
9111 };
9112
9113 // Array index traversal.
9114
9115 int
9116 Array_index_expression::do_traverse(Traverse* traverse)
9117 {
9118 if (Expression::traverse(&this->array_, traverse) == TRAVERSE_EXIT)
9119 return TRAVERSE_EXIT;
9120 if (Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT)
9121 return TRAVERSE_EXIT;
9122 if (this->end_ != NULL)
9123 {
9124 if (Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT)
9125 return TRAVERSE_EXIT;
9126 }
9127 return TRAVERSE_CONTINUE;
9128 }
9129
9130 // Return the type of an array index.
9131
9132 Type*
9133 Array_index_expression::do_type()
9134 {
9135 if (this->type_ == NULL)
9136 {
9137 Array_type* type = this->array_->type()->array_type();
9138 if (type == NULL)
9139 this->type_ = Type::make_error_type();
9140 else if (this->end_ == NULL)
9141 this->type_ = type->element_type();
9142 else if (type->is_open_array_type())
9143 {
9144 // A slice of a slice has the same type as the original
9145 // slice.
9146 this->type_ = this->array_->type()->deref();
9147 }
9148 else
9149 {
9150 // A slice of an array is a slice.
9151 this->type_ = Type::make_array_type(type->element_type(), NULL);
9152 }
9153 }
9154 return this->type_;
9155 }
9156
9157 // Set the type of an array index.
9158
9159 void
9160 Array_index_expression::do_determine_type(const Type_context*)
9161 {
9162 this->array_->determine_type_no_context();
9163 Type_context subcontext(NULL, true);
9164 this->start_->determine_type(&subcontext);
9165 if (this->end_ != NULL)
9166 this->end_->determine_type(&subcontext);
9167 }
9168
9169 // Check types of an array index.
9170
9171 void
9172 Array_index_expression::do_check_types(Gogo*)
9173 {
9174 if (this->start_->type()->integer_type() == NULL)
9175 this->report_error(_("index must be integer"));
9176 if (this->end_ != NULL
9177 && this->end_->type()->integer_type() == NULL
9178 && !this->end_->is_nil_expression())
9179 this->report_error(_("slice end must be integer"));
9180
9181 Array_type* array_type = this->array_->type()->array_type();
9182 if (array_type == NULL)
9183 {
9184 gcc_assert(this->array_->type()->is_error_type());
9185 return;
9186 }
9187
9188 unsigned int int_bits =
9189 Type::lookup_integer_type("int")->integer_type()->bits();
9190
9191 Type* dummy;
9192 mpz_t lval;
9193 mpz_init(lval);
9194 bool lval_valid = (array_type->length() != NULL
9195 && array_type->length()->integer_constant_value(true,
9196 lval,
9197 &dummy));
9198 mpz_t ival;
9199 mpz_init(ival);
9200 if (this->start_->integer_constant_value(true, ival, &dummy))
9201 {
9202 if (mpz_sgn(ival) < 0
9203 || mpz_sizeinbase(ival, 2) >= int_bits
9204 || (lval_valid
9205 && (this->end_ == NULL
9206 ? mpz_cmp(ival, lval) >= 0
9207 : mpz_cmp(ival, lval) > 0)))
9208 {
9209 error_at(this->start_->location(), "array index out of bounds");
9210 this->set_is_error();
9211 }
9212 }
9213 if (this->end_ != NULL && !this->end_->is_nil_expression())
9214 {
9215 if (this->end_->integer_constant_value(true, ival, &dummy))
9216 {
9217 if (mpz_sgn(ival) < 0
9218 || mpz_sizeinbase(ival, 2) >= int_bits
9219 || (lval_valid && mpz_cmp(ival, lval) > 0))
9220 {
9221 error_at(this->end_->location(), "array index out of bounds");
9222 this->set_is_error();
9223 }
9224 }
9225 }
9226 mpz_clear(ival);
9227 mpz_clear(lval);
9228
9229 // A slice of an array requires an addressable array. A slice of a
9230 // slice is always possible.
9231 if (this->end_ != NULL
9232 && !array_type->is_open_array_type()
9233 && !this->array_->is_addressable())
9234 this->report_error(_("array is not addressable"));
9235 }
9236
9237 // Return whether this expression is addressable.
9238
9239 bool
9240 Array_index_expression::do_is_addressable() const
9241 {
9242 // A slice expression is not addressable.
9243 if (this->end_ != NULL)
9244 return false;
9245
9246 // An index into a slice is addressable.
9247 if (this->array_->type()->is_open_array_type())
9248 return true;
9249
9250 // An index into an array is addressable if the array is
9251 // addressable.
9252 return this->array_->is_addressable();
9253 }
9254
9255 // Get a tree for an array index.
9256
9257 tree
9258 Array_index_expression::do_get_tree(Translate_context* context)
9259 {
9260 Gogo* gogo = context->gogo();
9261 source_location loc = this->location();
9262
9263 Array_type* array_type = this->array_->type()->array_type();
9264 if (array_type == NULL)
9265 {
9266 gcc_assert(this->array_->type()->is_error_type());
9267 return error_mark_node;
9268 }
9269
9270 tree type_tree = array_type->get_tree(gogo);
9271 if (type_tree == error_mark_node)
9272 return error_mark_node;
9273
9274 tree array_tree = this->array_->get_tree(context);
9275 if (array_tree == error_mark_node)
9276 return error_mark_node;
9277
9278 if (array_type->length() == NULL && !DECL_P(array_tree))
9279 array_tree = save_expr(array_tree);
9280 tree length_tree = array_type->length_tree(gogo, array_tree);
9281 if (length_tree == error_mark_node)
9282 return error_mark_node;
9283 length_tree = save_expr(length_tree);
9284 tree length_type = TREE_TYPE(length_tree);
9285
9286 tree bad_index = boolean_false_node;
9287
9288 tree start_tree = this->start_->get_tree(context);
9289 if (start_tree == error_mark_node)
9290 return error_mark_node;
9291 if (!DECL_P(start_tree))
9292 start_tree = save_expr(start_tree);
9293 if (!INTEGRAL_TYPE_P(TREE_TYPE(start_tree)))
9294 start_tree = convert_to_integer(length_type, start_tree);
9295
9296 bad_index = Expression::check_bounds(start_tree, length_type, bad_index,
9297 loc);
9298
9299 start_tree = fold_convert_loc(loc, length_type, start_tree);
9300 bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node, bad_index,
9301 fold_build2_loc(loc,
9302 (this->end_ == NULL
9303 ? GE_EXPR
9304 : GT_EXPR),
9305 boolean_type_node, start_tree,
9306 length_tree));
9307
9308 int code = (array_type->length() != NULL
9309 ? (this->end_ == NULL
9310 ? RUNTIME_ERROR_ARRAY_INDEX_OUT_OF_BOUNDS
9311 : RUNTIME_ERROR_ARRAY_SLICE_OUT_OF_BOUNDS)
9312 : (this->end_ == NULL
9313 ? RUNTIME_ERROR_SLICE_INDEX_OUT_OF_BOUNDS
9314 : RUNTIME_ERROR_SLICE_SLICE_OUT_OF_BOUNDS));
9315 tree crash = Gogo::runtime_error(code, loc);
9316
9317 if (this->end_ == NULL)
9318 {
9319 // Simple array indexing. This has to return an l-value, so
9320 // wrap the index check into START_TREE.
9321 start_tree = build2(COMPOUND_EXPR, TREE_TYPE(start_tree),
9322 build3(COND_EXPR, void_type_node,
9323 bad_index, crash, NULL_TREE),
9324 start_tree);
9325 start_tree = fold_convert_loc(loc, sizetype, start_tree);
9326
9327 if (array_type->length() != NULL)
9328 {
9329 // Fixed array.
9330 return build4(ARRAY_REF, TREE_TYPE(type_tree), array_tree,
9331 start_tree, NULL_TREE, NULL_TREE);
9332 }
9333 else
9334 {
9335 // Open array.
9336 tree values = array_type->value_pointer_tree(gogo, array_tree);
9337 tree element_type_tree = array_type->element_type()->get_tree(gogo);
9338 if (element_type_tree == error_mark_node)
9339 return error_mark_node;
9340 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
9341 tree offset = fold_build2_loc(loc, MULT_EXPR, sizetype,
9342 start_tree, element_size);
9343 tree ptr = fold_build2_loc(loc, POINTER_PLUS_EXPR,
9344 TREE_TYPE(values), values, offset);
9345 return build_fold_indirect_ref(ptr);
9346 }
9347 }
9348
9349 // Array slice.
9350
9351 tree capacity_tree = array_type->capacity_tree(gogo, array_tree);
9352 if (capacity_tree == error_mark_node)
9353 return error_mark_node;
9354 capacity_tree = fold_convert_loc(loc, length_type, capacity_tree);
9355
9356 tree end_tree;
9357 if (this->end_->is_nil_expression())
9358 end_tree = length_tree;
9359 else
9360 {
9361 end_tree = this->end_->get_tree(context);
9362 if (end_tree == error_mark_node)
9363 return error_mark_node;
9364 if (!DECL_P(end_tree))
9365 end_tree = save_expr(end_tree);
9366 if (!INTEGRAL_TYPE_P(TREE_TYPE(end_tree)))
9367 end_tree = convert_to_integer(length_type, end_tree);
9368
9369 bad_index = Expression::check_bounds(end_tree, length_type, bad_index,
9370 loc);
9371
9372 end_tree = fold_convert_loc(loc, length_type, end_tree);
9373
9374 capacity_tree = save_expr(capacity_tree);
9375 tree bad_end = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
9376 fold_build2_loc(loc, LT_EXPR,
9377 boolean_type_node,
9378 end_tree, start_tree),
9379 fold_build2_loc(loc, GT_EXPR,
9380 boolean_type_node,
9381 end_tree, capacity_tree));
9382 bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
9383 bad_index, bad_end);
9384 }
9385
9386 tree element_type_tree = array_type->element_type()->get_tree(gogo);
9387 if (element_type_tree == error_mark_node)
9388 return error_mark_node;
9389 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
9390
9391 tree offset = fold_build2_loc(loc, MULT_EXPR, sizetype,
9392 fold_convert_loc(loc, sizetype, start_tree),
9393 element_size);
9394
9395 tree value_pointer = array_type->value_pointer_tree(gogo, array_tree);
9396 if (value_pointer == error_mark_node)
9397 return error_mark_node;
9398
9399 value_pointer = fold_build2_loc(loc, POINTER_PLUS_EXPR,
9400 TREE_TYPE(value_pointer),
9401 value_pointer, offset);
9402
9403 tree result_length_tree = fold_build2_loc(loc, MINUS_EXPR, length_type,
9404 end_tree, start_tree);
9405
9406 tree result_capacity_tree = fold_build2_loc(loc, MINUS_EXPR, length_type,
9407 capacity_tree, start_tree);
9408
9409 tree struct_tree = this->type()->get_tree(gogo);
9410 gcc_assert(TREE_CODE(struct_tree) == RECORD_TYPE);
9411
9412 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
9413
9414 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
9415 tree field = TYPE_FIELDS(struct_tree);
9416 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
9417 elt->index = field;
9418 elt->value = value_pointer;
9419
9420 elt = VEC_quick_push(constructor_elt, init, NULL);
9421 field = DECL_CHAIN(field);
9422 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
9423 elt->index = field;
9424 elt->value = fold_convert_loc(loc, TREE_TYPE(field), result_length_tree);
9425
9426 elt = VEC_quick_push(constructor_elt, init, NULL);
9427 field = DECL_CHAIN(field);
9428 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__capacity") == 0);
9429 elt->index = field;
9430 elt->value = fold_convert_loc(loc, TREE_TYPE(field), result_capacity_tree);
9431
9432 tree constructor = build_constructor(struct_tree, init);
9433
9434 if (TREE_CONSTANT(value_pointer)
9435 && TREE_CONSTANT(result_length_tree)
9436 && TREE_CONSTANT(result_capacity_tree))
9437 TREE_CONSTANT(constructor) = 1;
9438
9439 return fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(constructor),
9440 build3(COND_EXPR, void_type_node,
9441 bad_index, crash, NULL_TREE),
9442 constructor);
9443 }
9444
9445 // Make an array index expression. END may be NULL.
9446
9447 Expression*
9448 Expression::make_array_index(Expression* array, Expression* start,
9449 Expression* end, source_location location)
9450 {
9451 // Taking a slice of a composite literal requires moving the literal
9452 // onto the heap.
9453 if (end != NULL && array->is_composite_literal())
9454 {
9455 array = Expression::make_heap_composite(array, location);
9456 array = Expression::make_unary(OPERATOR_MULT, array, location);
9457 }
9458 return new Array_index_expression(array, start, end, location);
9459 }
9460
9461 // A string index. This is used for both indexing and slicing.
9462
9463 class String_index_expression : public Expression
9464 {
9465 public:
9466 String_index_expression(Expression* string, Expression* start,
9467 Expression* end, source_location location)
9468 : Expression(EXPRESSION_STRING_INDEX, location),
9469 string_(string), start_(start), end_(end)
9470 { }
9471
9472 protected:
9473 int
9474 do_traverse(Traverse*);
9475
9476 Type*
9477 do_type();
9478
9479 void
9480 do_determine_type(const Type_context*);
9481
9482 void
9483 do_check_types(Gogo*);
9484
9485 Expression*
9486 do_copy()
9487 {
9488 return Expression::make_string_index(this->string_->copy(),
9489 this->start_->copy(),
9490 (this->end_ == NULL
9491 ? NULL
9492 : this->end_->copy()),
9493 this->location());
9494 }
9495
9496 tree
9497 do_get_tree(Translate_context*);
9498
9499 private:
9500 // The string we are getting a value from.
9501 Expression* string_;
9502 // The start or only index.
9503 Expression* start_;
9504 // The end index of a slice. This may be NULL for a single index,
9505 // or it may be a nil expression for the length of the string.
9506 Expression* end_;
9507 };
9508
9509 // String index traversal.
9510
9511 int
9512 String_index_expression::do_traverse(Traverse* traverse)
9513 {
9514 if (Expression::traverse(&this->string_, traverse) == TRAVERSE_EXIT)
9515 return TRAVERSE_EXIT;
9516 if (Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT)
9517 return TRAVERSE_EXIT;
9518 if (this->end_ != NULL)
9519 {
9520 if (Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT)
9521 return TRAVERSE_EXIT;
9522 }
9523 return TRAVERSE_CONTINUE;
9524 }
9525
9526 // Return the type of a string index.
9527
9528 Type*
9529 String_index_expression::do_type()
9530 {
9531 if (this->end_ == NULL)
9532 return Type::lookup_integer_type("uint8");
9533 else
9534 return Type::make_string_type();
9535 }
9536
9537 // Determine the type of a string index.
9538
9539 void
9540 String_index_expression::do_determine_type(const Type_context*)
9541 {
9542 this->string_->determine_type_no_context();
9543 Type_context subcontext(NULL, true);
9544 this->start_->determine_type(&subcontext);
9545 if (this->end_ != NULL)
9546 this->end_->determine_type(&subcontext);
9547 }
9548
9549 // Check types of a string index.
9550
9551 void
9552 String_index_expression::do_check_types(Gogo*)
9553 {
9554 if (this->start_->type()->integer_type() == NULL)
9555 this->report_error(_("index must be integer"));
9556 if (this->end_ != NULL
9557 && this->end_->type()->integer_type() == NULL
9558 && !this->end_->is_nil_expression())
9559 this->report_error(_("slice end must be integer"));
9560
9561 std::string sval;
9562 bool sval_valid = this->string_->string_constant_value(&sval);
9563
9564 mpz_t ival;
9565 mpz_init(ival);
9566 Type* dummy;
9567 if (this->start_->integer_constant_value(true, ival, &dummy))
9568 {
9569 if (mpz_sgn(ival) < 0
9570 || (sval_valid && mpz_cmp_ui(ival, sval.length()) >= 0))
9571 {
9572 error_at(this->start_->location(), "string index out of bounds");
9573 this->set_is_error();
9574 }
9575 }
9576 if (this->end_ != NULL && !this->end_->is_nil_expression())
9577 {
9578 if (this->end_->integer_constant_value(true, ival, &dummy))
9579 {
9580 if (mpz_sgn(ival) < 0
9581 || (sval_valid && mpz_cmp_ui(ival, sval.length()) > 0))
9582 {
9583 error_at(this->end_->location(), "string index out of bounds");
9584 this->set_is_error();
9585 }
9586 }
9587 }
9588 mpz_clear(ival);
9589 }
9590
9591 // Get a tree for a string index.
9592
9593 tree
9594 String_index_expression::do_get_tree(Translate_context* context)
9595 {
9596 source_location loc = this->location();
9597
9598 tree string_tree = this->string_->get_tree(context);
9599 if (string_tree == error_mark_node)
9600 return error_mark_node;
9601
9602 if (this->string_->type()->points_to() != NULL)
9603 string_tree = build_fold_indirect_ref(string_tree);
9604 if (!DECL_P(string_tree))
9605 string_tree = save_expr(string_tree);
9606 tree string_type = TREE_TYPE(string_tree);
9607
9608 tree length_tree = String_type::length_tree(context->gogo(), string_tree);
9609 length_tree = save_expr(length_tree);
9610 tree length_type = TREE_TYPE(length_tree);
9611
9612 tree bad_index = boolean_false_node;
9613
9614 tree start_tree = this->start_->get_tree(context);
9615 if (start_tree == error_mark_node)
9616 return error_mark_node;
9617 if (!DECL_P(start_tree))
9618 start_tree = save_expr(start_tree);
9619 if (!INTEGRAL_TYPE_P(TREE_TYPE(start_tree)))
9620 start_tree = convert_to_integer(length_type, start_tree);
9621
9622 bad_index = Expression::check_bounds(start_tree, length_type, bad_index,
9623 loc);
9624
9625 start_tree = fold_convert_loc(loc, length_type, start_tree);
9626
9627 int code = (this->end_ == NULL
9628 ? RUNTIME_ERROR_STRING_INDEX_OUT_OF_BOUNDS
9629 : RUNTIME_ERROR_STRING_SLICE_OUT_OF_BOUNDS);
9630 tree crash = Gogo::runtime_error(code, loc);
9631
9632 if (this->end_ == NULL)
9633 {
9634 bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
9635 bad_index,
9636 fold_build2_loc(loc, GE_EXPR,
9637 boolean_type_node,
9638 start_tree, length_tree));
9639
9640 tree bytes_tree = String_type::bytes_tree(context->gogo(), string_tree);
9641 tree ptr = fold_build2_loc(loc, POINTER_PLUS_EXPR, TREE_TYPE(bytes_tree),
9642 bytes_tree,
9643 fold_convert_loc(loc, sizetype, start_tree));
9644 tree index = build_fold_indirect_ref_loc(loc, ptr);
9645
9646 return build2(COMPOUND_EXPR, TREE_TYPE(index),
9647 build3(COND_EXPR, void_type_node,
9648 bad_index, crash, NULL_TREE),
9649 index);
9650 }
9651 else
9652 {
9653 tree end_tree;
9654 if (this->end_->is_nil_expression())
9655 end_tree = build_int_cst(length_type, -1);
9656 else
9657 {
9658 end_tree = this->end_->get_tree(context);
9659 if (end_tree == error_mark_node)
9660 return error_mark_node;
9661 if (!DECL_P(end_tree))
9662 end_tree = save_expr(end_tree);
9663 if (!INTEGRAL_TYPE_P(TREE_TYPE(end_tree)))
9664 end_tree = convert_to_integer(length_type, end_tree);
9665
9666 bad_index = Expression::check_bounds(end_tree, length_type,
9667 bad_index, loc);
9668
9669 end_tree = fold_convert_loc(loc, length_type, end_tree);
9670 }
9671
9672 static tree strslice_fndecl;
9673 tree ret = Gogo::call_builtin(&strslice_fndecl,
9674 loc,
9675 "__go_string_slice",
9676 3,
9677 string_type,
9678 string_type,
9679 string_tree,
9680 length_type,
9681 start_tree,
9682 length_type,
9683 end_tree);
9684 if (ret == error_mark_node)
9685 return error_mark_node;
9686 // This will panic if the bounds are out of range for the
9687 // string.
9688 TREE_NOTHROW(strslice_fndecl) = 0;
9689
9690 if (bad_index == boolean_false_node)
9691 return ret;
9692 else
9693 return build2(COMPOUND_EXPR, TREE_TYPE(ret),
9694 build3(COND_EXPR, void_type_node,
9695 bad_index, crash, NULL_TREE),
9696 ret);
9697 }
9698 }
9699
9700 // Make a string index expression. END may be NULL.
9701
9702 Expression*
9703 Expression::make_string_index(Expression* string, Expression* start,
9704 Expression* end, source_location location)
9705 {
9706 return new String_index_expression(string, start, end, location);
9707 }
9708
9709 // Class Map_index.
9710
9711 // Get the type of the map.
9712
9713 Map_type*
9714 Map_index_expression::get_map_type() const
9715 {
9716 Map_type* mt = this->map_->type()->deref()->map_type();
9717 if (mt == NULL)
9718 gcc_assert(saw_errors());
9719 return mt;
9720 }
9721
9722 // Map index traversal.
9723
9724 int
9725 Map_index_expression::do_traverse(Traverse* traverse)
9726 {
9727 if (Expression::traverse(&this->map_, traverse) == TRAVERSE_EXIT)
9728 return TRAVERSE_EXIT;
9729 return Expression::traverse(&this->index_, traverse);
9730 }
9731
9732 // Return the type of a map index.
9733
9734 Type*
9735 Map_index_expression::do_type()
9736 {
9737 Map_type* mt = this->get_map_type();
9738 if (mt == NULL)
9739 return Type::make_error_type();
9740 Type* type = mt->val_type();
9741 // If this map index is in a tuple assignment, we actually return a
9742 // pointer to the value type. Tuple_map_assignment_statement is
9743 // responsible for handling this correctly. We need to get the type
9744 // right in case this gets assigned to a temporary variable.
9745 if (this->is_in_tuple_assignment_)
9746 type = Type::make_pointer_type(type);
9747 return type;
9748 }
9749
9750 // Fix the type of a map index.
9751
9752 void
9753 Map_index_expression::do_determine_type(const Type_context*)
9754 {
9755 this->map_->determine_type_no_context();
9756 Map_type* mt = this->get_map_type();
9757 Type* key_type = mt == NULL ? NULL : mt->key_type();
9758 Type_context subcontext(key_type, false);
9759 this->index_->determine_type(&subcontext);
9760 }
9761
9762 // Check types of a map index.
9763
9764 void
9765 Map_index_expression::do_check_types(Gogo*)
9766 {
9767 std::string reason;
9768 Map_type* mt = this->get_map_type();
9769 if (mt == NULL)
9770 return;
9771 if (!Type::are_assignable(mt->key_type(), this->index_->type(), &reason))
9772 {
9773 if (reason.empty())
9774 this->report_error(_("incompatible type for map index"));
9775 else
9776 {
9777 error_at(this->location(), "incompatible type for map index (%s)",
9778 reason.c_str());
9779 this->set_is_error();
9780 }
9781 }
9782 }
9783
9784 // Get a tree for a map index.
9785
9786 tree
9787 Map_index_expression::do_get_tree(Translate_context* context)
9788 {
9789 Map_type* type = this->get_map_type();
9790 if (type == NULL)
9791 return error_mark_node;
9792
9793 tree valptr = this->get_value_pointer(context, this->is_lvalue_);
9794 if (valptr == error_mark_node)
9795 return error_mark_node;
9796 valptr = save_expr(valptr);
9797
9798 tree val_type_tree = TREE_TYPE(TREE_TYPE(valptr));
9799
9800 if (this->is_lvalue_)
9801 return build_fold_indirect_ref(valptr);
9802 else if (this->is_in_tuple_assignment_)
9803 {
9804 // Tuple_map_assignment_statement is responsible for using this
9805 // appropriately.
9806 return valptr;
9807 }
9808 else
9809 {
9810 return fold_build3(COND_EXPR, val_type_tree,
9811 fold_build2(EQ_EXPR, boolean_type_node, valptr,
9812 fold_convert(TREE_TYPE(valptr),
9813 null_pointer_node)),
9814 type->val_type()->get_init_tree(context->gogo(),
9815 false),
9816 build_fold_indirect_ref(valptr));
9817 }
9818 }
9819
9820 // Get a tree for the map index. This returns a tree which evaluates
9821 // to a pointer to a value. The pointer will be NULL if the key is
9822 // not in the map.
9823
9824 tree
9825 Map_index_expression::get_value_pointer(Translate_context* context,
9826 bool insert)
9827 {
9828 Map_type* type = this->get_map_type();
9829 if (type == NULL)
9830 return error_mark_node;
9831
9832 tree map_tree = this->map_->get_tree(context);
9833 tree index_tree = this->index_->get_tree(context);
9834 index_tree = Expression::convert_for_assignment(context, type->key_type(),
9835 this->index_->type(),
9836 index_tree,
9837 this->location());
9838 if (map_tree == error_mark_node || index_tree == error_mark_node)
9839 return error_mark_node;
9840
9841 if (this->map_->type()->points_to() != NULL)
9842 map_tree = build_fold_indirect_ref(map_tree);
9843
9844 // We need to pass in a pointer to the key, so stuff it into a
9845 // variable.
9846 tree tmp = create_tmp_var(TREE_TYPE(index_tree), get_name(index_tree));
9847 DECL_IGNORED_P(tmp) = 0;
9848 DECL_INITIAL(tmp) = index_tree;
9849 tree make_tmp = build1(DECL_EXPR, void_type_node, tmp);
9850 tree tmpref = fold_convert(const_ptr_type_node, build_fold_addr_expr(tmp));
9851 TREE_ADDRESSABLE(tmp) = 1;
9852
9853 static tree map_index_fndecl;
9854 tree call = Gogo::call_builtin(&map_index_fndecl,
9855 this->location(),
9856 "__go_map_index",
9857 3,
9858 const_ptr_type_node,
9859 TREE_TYPE(map_tree),
9860 map_tree,
9861 const_ptr_type_node,
9862 tmpref,
9863 boolean_type_node,
9864 (insert
9865 ? boolean_true_node
9866 : boolean_false_node));
9867 if (call == error_mark_node)
9868 return error_mark_node;
9869 // This can panic on a map of interface type if the interface holds
9870 // an uncomparable or unhashable type.
9871 TREE_NOTHROW(map_index_fndecl) = 0;
9872
9873 tree val_type_tree = type->val_type()->get_tree(context->gogo());
9874 if (val_type_tree == error_mark_node)
9875 return error_mark_node;
9876 tree ptr_val_type_tree = build_pointer_type(val_type_tree);
9877
9878 return build2(COMPOUND_EXPR, ptr_val_type_tree,
9879 make_tmp,
9880 fold_convert(ptr_val_type_tree, call));
9881 }
9882
9883 // Make a map index expression.
9884
9885 Map_index_expression*
9886 Expression::make_map_index(Expression* map, Expression* index,
9887 source_location location)
9888 {
9889 return new Map_index_expression(map, index, location);
9890 }
9891
9892 // Class Field_reference_expression.
9893
9894 // Return the type of a field reference.
9895
9896 Type*
9897 Field_reference_expression::do_type()
9898 {
9899 Struct_type* struct_type = this->expr_->type()->struct_type();
9900 gcc_assert(struct_type != NULL);
9901 return struct_type->field(this->field_index_)->type();
9902 }
9903
9904 // Check the types for a field reference.
9905
9906 void
9907 Field_reference_expression::do_check_types(Gogo*)
9908 {
9909 Struct_type* struct_type = this->expr_->type()->struct_type();
9910 gcc_assert(struct_type != NULL);
9911 gcc_assert(struct_type->field(this->field_index_) != NULL);
9912 }
9913
9914 // Get a tree for a field reference.
9915
9916 tree
9917 Field_reference_expression::do_get_tree(Translate_context* context)
9918 {
9919 tree struct_tree = this->expr_->get_tree(context);
9920 if (struct_tree == error_mark_node
9921 || TREE_TYPE(struct_tree) == error_mark_node)
9922 return error_mark_node;
9923 gcc_assert(TREE_CODE(TREE_TYPE(struct_tree)) == RECORD_TYPE);
9924 tree field = TYPE_FIELDS(TREE_TYPE(struct_tree));
9925 if (field == NULL_TREE)
9926 {
9927 // This can happen for a type which refers to itself indirectly
9928 // and then turns out to be erroneous.
9929 gcc_assert(saw_errors());
9930 return error_mark_node;
9931 }
9932 for (unsigned int i = this->field_index_; i > 0; --i)
9933 {
9934 field = DECL_CHAIN(field);
9935 gcc_assert(field != NULL_TREE);
9936 }
9937 return build3(COMPONENT_REF, TREE_TYPE(field), struct_tree, field,
9938 NULL_TREE);
9939 }
9940
9941 // Make a reference to a qualified identifier in an expression.
9942
9943 Field_reference_expression*
9944 Expression::make_field_reference(Expression* expr, unsigned int field_index,
9945 source_location location)
9946 {
9947 return new Field_reference_expression(expr, field_index, location);
9948 }
9949
9950 // Class Interface_field_reference_expression.
9951
9952 // Return a tree for the pointer to the function to call.
9953
9954 tree
9955 Interface_field_reference_expression::get_function_tree(Translate_context*,
9956 tree expr)
9957 {
9958 if (this->expr_->type()->points_to() != NULL)
9959 expr = build_fold_indirect_ref(expr);
9960
9961 tree expr_type = TREE_TYPE(expr);
9962 gcc_assert(TREE_CODE(expr_type) == RECORD_TYPE);
9963
9964 tree field = TYPE_FIELDS(expr_type);
9965 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods") == 0);
9966
9967 tree table = build3(COMPONENT_REF, TREE_TYPE(field), expr, field, NULL_TREE);
9968 gcc_assert(POINTER_TYPE_P(TREE_TYPE(table)));
9969
9970 table = build_fold_indirect_ref(table);
9971 gcc_assert(TREE_CODE(TREE_TYPE(table)) == RECORD_TYPE);
9972
9973 std::string name = Gogo::unpack_hidden_name(this->name_);
9974 for (field = DECL_CHAIN(TYPE_FIELDS(TREE_TYPE(table)));
9975 field != NULL_TREE;
9976 field = DECL_CHAIN(field))
9977 {
9978 if (name == IDENTIFIER_POINTER(DECL_NAME(field)))
9979 break;
9980 }
9981 gcc_assert(field != NULL_TREE);
9982
9983 return build3(COMPONENT_REF, TREE_TYPE(field), table, field, NULL_TREE);
9984 }
9985
9986 // Return a tree for the first argument to pass to the interface
9987 // function.
9988
9989 tree
9990 Interface_field_reference_expression::get_underlying_object_tree(
9991 Translate_context*,
9992 tree expr)
9993 {
9994 if (this->expr_->type()->points_to() != NULL)
9995 expr = build_fold_indirect_ref(expr);
9996
9997 tree expr_type = TREE_TYPE(expr);
9998 gcc_assert(TREE_CODE(expr_type) == RECORD_TYPE);
9999
10000 tree field = DECL_CHAIN(TYPE_FIELDS(expr_type));
10001 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
10002
10003 return build3(COMPONENT_REF, TREE_TYPE(field), expr, field, NULL_TREE);
10004 }
10005
10006 // Traversal.
10007
10008 int
10009 Interface_field_reference_expression::do_traverse(Traverse* traverse)
10010 {
10011 return Expression::traverse(&this->expr_, traverse);
10012 }
10013
10014 // Return the type of an interface field reference.
10015
10016 Type*
10017 Interface_field_reference_expression::do_type()
10018 {
10019 Type* expr_type = this->expr_->type();
10020
10021 Type* points_to = expr_type->points_to();
10022 if (points_to != NULL)
10023 expr_type = points_to;
10024
10025 Interface_type* interface_type = expr_type->interface_type();
10026 if (interface_type == NULL)
10027 return Type::make_error_type();
10028
10029 const Typed_identifier* method = interface_type->find_method(this->name_);
10030 if (method == NULL)
10031 return Type::make_error_type();
10032
10033 return method->type();
10034 }
10035
10036 // Determine types.
10037
10038 void
10039 Interface_field_reference_expression::do_determine_type(const Type_context*)
10040 {
10041 this->expr_->determine_type_no_context();
10042 }
10043
10044 // Check the types for an interface field reference.
10045
10046 void
10047 Interface_field_reference_expression::do_check_types(Gogo*)
10048 {
10049 Type* type = this->expr_->type();
10050
10051 Type* points_to = type->points_to();
10052 if (points_to != NULL)
10053 type = points_to;
10054
10055 Interface_type* interface_type = type->interface_type();
10056 if (interface_type == NULL)
10057 this->report_error(_("expected interface or pointer to interface"));
10058 else
10059 {
10060 const Typed_identifier* method =
10061 interface_type->find_method(this->name_);
10062 if (method == NULL)
10063 {
10064 error_at(this->location(), "method %qs not in interface",
10065 Gogo::message_name(this->name_).c_str());
10066 this->set_is_error();
10067 }
10068 }
10069 }
10070
10071 // Get a tree for a reference to a field in an interface. There is no
10072 // standard tree type representation for this: it's a function
10073 // attached to its first argument, like a Bound_method_expression.
10074 // The only places it may currently be used are in a Call_expression
10075 // or a Go_statement, which will take it apart directly. So this has
10076 // nothing to do at present.
10077
10078 tree
10079 Interface_field_reference_expression::do_get_tree(Translate_context*)
10080 {
10081 gcc_unreachable();
10082 }
10083
10084 // Make a reference to a field in an interface.
10085
10086 Expression*
10087 Expression::make_interface_field_reference(Expression* expr,
10088 const std::string& field,
10089 source_location location)
10090 {
10091 return new Interface_field_reference_expression(expr, field, location);
10092 }
10093
10094 // A general selector. This is a Parser_expression for LEFT.NAME. It
10095 // is lowered after we know the type of the left hand side.
10096
10097 class Selector_expression : public Parser_expression
10098 {
10099 public:
10100 Selector_expression(Expression* left, const std::string& name,
10101 source_location location)
10102 : Parser_expression(EXPRESSION_SELECTOR, location),
10103 left_(left), name_(name)
10104 { }
10105
10106 protected:
10107 int
10108 do_traverse(Traverse* traverse)
10109 { return Expression::traverse(&this->left_, traverse); }
10110
10111 Expression*
10112 do_lower(Gogo*, Named_object*, int);
10113
10114 Expression*
10115 do_copy()
10116 {
10117 return new Selector_expression(this->left_->copy(), this->name_,
10118 this->location());
10119 }
10120
10121 private:
10122 Expression*
10123 lower_method_expression(Gogo*);
10124
10125 // The expression on the left hand side.
10126 Expression* left_;
10127 // The name on the right hand side.
10128 std::string name_;
10129 };
10130
10131 // Lower a selector expression once we know the real type of the left
10132 // hand side.
10133
10134 Expression*
10135 Selector_expression::do_lower(Gogo* gogo, Named_object*, int)
10136 {
10137 Expression* left = this->left_;
10138 if (left->is_type_expression())
10139 return this->lower_method_expression(gogo);
10140 return Type::bind_field_or_method(gogo, left->type(), left, this->name_,
10141 this->location());
10142 }
10143
10144 // Lower a method expression T.M or (*T).M. We turn this into a
10145 // function literal.
10146
10147 Expression*
10148 Selector_expression::lower_method_expression(Gogo* gogo)
10149 {
10150 source_location location = this->location();
10151 Type* type = this->left_->type();
10152 const std::string& name(this->name_);
10153
10154 bool is_pointer;
10155 if (type->points_to() == NULL)
10156 is_pointer = false;
10157 else
10158 {
10159 is_pointer = true;
10160 type = type->points_to();
10161 }
10162 Named_type* nt = type->named_type();
10163 if (nt == NULL)
10164 {
10165 error_at(location,
10166 ("method expression requires named type or "
10167 "pointer to named type"));
10168 return Expression::make_error(location);
10169 }
10170
10171 bool is_ambiguous;
10172 Method* method = nt->method_function(name, &is_ambiguous);
10173 if (method == NULL)
10174 {
10175 if (!is_ambiguous)
10176 error_at(location, "type %<%s%> has no method %<%s%>",
10177 nt->message_name().c_str(),
10178 Gogo::message_name(name).c_str());
10179 else
10180 error_at(location, "method %<%s%> is ambiguous in type %<%s%>",
10181 Gogo::message_name(name).c_str(),
10182 nt->message_name().c_str());
10183 return Expression::make_error(location);
10184 }
10185
10186 if (!is_pointer && !method->is_value_method())
10187 {
10188 error_at(location, "method requires pointer (use %<(*%s).%s)%>",
10189 nt->message_name().c_str(),
10190 Gogo::message_name(name).c_str());
10191 return Expression::make_error(location);
10192 }
10193
10194 // Build a new function type in which the receiver becomes the first
10195 // argument.
10196 Function_type* method_type = method->type();
10197 gcc_assert(method_type->is_method());
10198
10199 const char* const receiver_name = "$this";
10200 Typed_identifier_list* parameters = new Typed_identifier_list();
10201 parameters->push_back(Typed_identifier(receiver_name, this->left_->type(),
10202 location));
10203
10204 const Typed_identifier_list* method_parameters = method_type->parameters();
10205 if (method_parameters != NULL)
10206 {
10207 for (Typed_identifier_list::const_iterator p = method_parameters->begin();
10208 p != method_parameters->end();
10209 ++p)
10210 parameters->push_back(*p);
10211 }
10212
10213 const Typed_identifier_list* method_results = method_type->results();
10214 Typed_identifier_list* results;
10215 if (method_results == NULL)
10216 results = NULL;
10217 else
10218 {
10219 results = new Typed_identifier_list();
10220 for (Typed_identifier_list::const_iterator p = method_results->begin();
10221 p != method_results->end();
10222 ++p)
10223 results->push_back(*p);
10224 }
10225
10226 Function_type* fntype = Type::make_function_type(NULL, parameters, results,
10227 location);
10228 if (method_type->is_varargs())
10229 fntype->set_is_varargs();
10230
10231 // We generate methods which always takes a pointer to the receiver
10232 // as their first argument. If this is for a pointer type, we can
10233 // simply reuse the existing function. We use an internal hack to
10234 // get the right type.
10235
10236 if (is_pointer)
10237 {
10238 Named_object* mno = (method->needs_stub_method()
10239 ? method->stub_object()
10240 : method->named_object());
10241 Expression* f = Expression::make_func_reference(mno, NULL, location);
10242 f = Expression::make_cast(fntype, f, location);
10243 Type_conversion_expression* tce =
10244 static_cast<Type_conversion_expression*>(f);
10245 tce->set_may_convert_function_types();
10246 return f;
10247 }
10248
10249 Named_object* no = gogo->start_function(Gogo::thunk_name(), fntype, false,
10250 location);
10251
10252 Named_object* vno = gogo->lookup(receiver_name, NULL);
10253 gcc_assert(vno != NULL);
10254 Expression* ve = Expression::make_var_reference(vno, location);
10255 Expression* bm = Type::bind_field_or_method(gogo, nt, ve, name, location);
10256 gcc_assert(bm != NULL && !bm->is_error_expression());
10257
10258 Expression_list* args;
10259 if (method_parameters == NULL)
10260 args = NULL;
10261 else
10262 {
10263 args = new Expression_list();
10264 for (Typed_identifier_list::const_iterator p = method_parameters->begin();
10265 p != method_parameters->end();
10266 ++p)
10267 {
10268 vno = gogo->lookup(p->name(), NULL);
10269 gcc_assert(vno != NULL);
10270 args->push_back(Expression::make_var_reference(vno, location));
10271 }
10272 }
10273
10274 Call_expression* call = Expression::make_call(bm, args,
10275 method_type->is_varargs(),
10276 location);
10277
10278 size_t count = call->result_count();
10279 Statement* s;
10280 if (count == 0)
10281 s = Statement::make_statement(call);
10282 else
10283 {
10284 Expression_list* retvals = new Expression_list();
10285 if (count <= 1)
10286 retvals->push_back(call);
10287 else
10288 {
10289 for (size_t i = 0; i < count; ++i)
10290 retvals->push_back(Expression::make_call_result(call, i));
10291 }
10292 s = Statement::make_return_statement(no->func_value()->type()->results(),
10293 retvals, location);
10294 }
10295 gogo->add_statement(s);
10296
10297 gogo->finish_function(location);
10298
10299 return Expression::make_func_reference(no, NULL, location);
10300 }
10301
10302 // Make a selector expression.
10303
10304 Expression*
10305 Expression::make_selector(Expression* left, const std::string& name,
10306 source_location location)
10307 {
10308 return new Selector_expression(left, name, location);
10309 }
10310
10311 // Implement the builtin function new.
10312
10313 class Allocation_expression : public Expression
10314 {
10315 public:
10316 Allocation_expression(Type* type, source_location location)
10317 : Expression(EXPRESSION_ALLOCATION, location),
10318 type_(type)
10319 { }
10320
10321 protected:
10322 int
10323 do_traverse(Traverse* traverse)
10324 { return Type::traverse(this->type_, traverse); }
10325
10326 Type*
10327 do_type()
10328 { return Type::make_pointer_type(this->type_); }
10329
10330 void
10331 do_determine_type(const Type_context*)
10332 { }
10333
10334 void
10335 do_check_types(Gogo*);
10336
10337 Expression*
10338 do_copy()
10339 { return new Allocation_expression(this->type_, this->location()); }
10340
10341 tree
10342 do_get_tree(Translate_context*);
10343
10344 private:
10345 // The type we are allocating.
10346 Type* type_;
10347 };
10348
10349 // Check the type of an allocation expression.
10350
10351 void
10352 Allocation_expression::do_check_types(Gogo*)
10353 {
10354 if (this->type_->function_type() != NULL)
10355 this->report_error(_("invalid new of function type"));
10356 }
10357
10358 // Return a tree for an allocation expression.
10359
10360 tree
10361 Allocation_expression::do_get_tree(Translate_context* context)
10362 {
10363 tree type_tree = this->type_->get_tree(context->gogo());
10364 if (type_tree == error_mark_node)
10365 return error_mark_node;
10366 tree size_tree = TYPE_SIZE_UNIT(type_tree);
10367 tree space = context->gogo()->allocate_memory(this->type_, size_tree,
10368 this->location());
10369 if (space == error_mark_node)
10370 return error_mark_node;
10371 return fold_convert(build_pointer_type(type_tree), space);
10372 }
10373
10374 // Make an allocation expression.
10375
10376 Expression*
10377 Expression::make_allocation(Type* type, source_location location)
10378 {
10379 return new Allocation_expression(type, location);
10380 }
10381
10382 // Implement the builtin function make.
10383
10384 class Make_expression : public Expression
10385 {
10386 public:
10387 Make_expression(Type* type, Expression_list* args, source_location location)
10388 : Expression(EXPRESSION_MAKE, location),
10389 type_(type), args_(args)
10390 { }
10391
10392 protected:
10393 int
10394 do_traverse(Traverse* traverse);
10395
10396 Type*
10397 do_type()
10398 { return this->type_; }
10399
10400 void
10401 do_determine_type(const Type_context*);
10402
10403 void
10404 do_check_types(Gogo*);
10405
10406 Expression*
10407 do_copy()
10408 {
10409 return new Make_expression(this->type_, this->args_->copy(),
10410 this->location());
10411 }
10412
10413 tree
10414 do_get_tree(Translate_context*);
10415
10416 private:
10417 // The type we are making.
10418 Type* type_;
10419 // The arguments to pass to the make routine.
10420 Expression_list* args_;
10421 };
10422
10423 // Traversal.
10424
10425 int
10426 Make_expression::do_traverse(Traverse* traverse)
10427 {
10428 if (this->args_ != NULL
10429 && this->args_->traverse(traverse) == TRAVERSE_EXIT)
10430 return TRAVERSE_EXIT;
10431 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10432 return TRAVERSE_EXIT;
10433 return TRAVERSE_CONTINUE;
10434 }
10435
10436 // Set types of arguments.
10437
10438 void
10439 Make_expression::do_determine_type(const Type_context*)
10440 {
10441 if (this->args_ != NULL)
10442 {
10443 Type_context context(Type::lookup_integer_type("int"), false);
10444 for (Expression_list::const_iterator pe = this->args_->begin();
10445 pe != this->args_->end();
10446 ++pe)
10447 (*pe)->determine_type(&context);
10448 }
10449 }
10450
10451 // Check types for a make expression.
10452
10453 void
10454 Make_expression::do_check_types(Gogo*)
10455 {
10456 if (this->type_->channel_type() == NULL
10457 && this->type_->map_type() == NULL
10458 && (this->type_->array_type() == NULL
10459 || this->type_->array_type()->length() != NULL))
10460 this->report_error(_("invalid type for make function"));
10461 else if (!this->type_->check_make_expression(this->args_, this->location()))
10462 this->set_is_error();
10463 }
10464
10465 // Return a tree for a make expression.
10466
10467 tree
10468 Make_expression::do_get_tree(Translate_context* context)
10469 {
10470 return this->type_->make_expression_tree(context, this->args_,
10471 this->location());
10472 }
10473
10474 // Make a make expression.
10475
10476 Expression*
10477 Expression::make_make(Type* type, Expression_list* args,
10478 source_location location)
10479 {
10480 return new Make_expression(type, args, location);
10481 }
10482
10483 // Construct a struct.
10484
10485 class Struct_construction_expression : public Expression
10486 {
10487 public:
10488 Struct_construction_expression(Type* type, Expression_list* vals,
10489 source_location location)
10490 : Expression(EXPRESSION_STRUCT_CONSTRUCTION, location),
10491 type_(type), vals_(vals)
10492 { }
10493
10494 // Return whether this is a constant initializer.
10495 bool
10496 is_constant_struct() const;
10497
10498 protected:
10499 int
10500 do_traverse(Traverse* traverse);
10501
10502 Type*
10503 do_type()
10504 { return this->type_; }
10505
10506 void
10507 do_determine_type(const Type_context*);
10508
10509 void
10510 do_check_types(Gogo*);
10511
10512 Expression*
10513 do_copy()
10514 {
10515 return new Struct_construction_expression(this->type_, this->vals_->copy(),
10516 this->location());
10517 }
10518
10519 bool
10520 do_is_addressable() const
10521 { return true; }
10522
10523 tree
10524 do_get_tree(Translate_context*);
10525
10526 void
10527 do_export(Export*) const;
10528
10529 private:
10530 // The type of the struct to construct.
10531 Type* type_;
10532 // The list of values, in order of the fields in the struct. A NULL
10533 // entry means that the field should be zero-initialized.
10534 Expression_list* vals_;
10535 };
10536
10537 // Traversal.
10538
10539 int
10540 Struct_construction_expression::do_traverse(Traverse* traverse)
10541 {
10542 if (this->vals_ != NULL
10543 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
10544 return TRAVERSE_EXIT;
10545 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10546 return TRAVERSE_EXIT;
10547 return TRAVERSE_CONTINUE;
10548 }
10549
10550 // Return whether this is a constant initializer.
10551
10552 bool
10553 Struct_construction_expression::is_constant_struct() const
10554 {
10555 if (this->vals_ == NULL)
10556 return true;
10557 for (Expression_list::const_iterator pv = this->vals_->begin();
10558 pv != this->vals_->end();
10559 ++pv)
10560 {
10561 if (*pv != NULL
10562 && !(*pv)->is_constant()
10563 && (!(*pv)->is_composite_literal()
10564 || (*pv)->is_nonconstant_composite_literal()))
10565 return false;
10566 }
10567
10568 const Struct_field_list* fields = this->type_->struct_type()->fields();
10569 for (Struct_field_list::const_iterator pf = fields->begin();
10570 pf != fields->end();
10571 ++pf)
10572 {
10573 // There are no constant constructors for interfaces.
10574 if (pf->type()->interface_type() != NULL)
10575 return false;
10576 }
10577
10578 return true;
10579 }
10580
10581 // Final type determination.
10582
10583 void
10584 Struct_construction_expression::do_determine_type(const Type_context*)
10585 {
10586 if (this->vals_ == NULL)
10587 return;
10588 const Struct_field_list* fields = this->type_->struct_type()->fields();
10589 Expression_list::const_iterator pv = this->vals_->begin();
10590 for (Struct_field_list::const_iterator pf = fields->begin();
10591 pf != fields->end();
10592 ++pf, ++pv)
10593 {
10594 if (pv == this->vals_->end())
10595 return;
10596 if (*pv != NULL)
10597 {
10598 Type_context subcontext(pf->type(), false);
10599 (*pv)->determine_type(&subcontext);
10600 }
10601 }
10602 }
10603
10604 // Check types.
10605
10606 void
10607 Struct_construction_expression::do_check_types(Gogo*)
10608 {
10609 if (this->vals_ == NULL)
10610 return;
10611
10612 Struct_type* st = this->type_->struct_type();
10613 if (this->vals_->size() > st->field_count())
10614 {
10615 this->report_error(_("too many expressions for struct"));
10616 return;
10617 }
10618
10619 const Struct_field_list* fields = st->fields();
10620 Expression_list::const_iterator pv = this->vals_->begin();
10621 int i = 0;
10622 for (Struct_field_list::const_iterator pf = fields->begin();
10623 pf != fields->end();
10624 ++pf, ++pv, ++i)
10625 {
10626 if (pv == this->vals_->end())
10627 {
10628 this->report_error(_("too few expressions for struct"));
10629 break;
10630 }
10631
10632 if (*pv == NULL)
10633 continue;
10634
10635 std::string reason;
10636 if (!Type::are_assignable(pf->type(), (*pv)->type(), &reason))
10637 {
10638 if (reason.empty())
10639 error_at((*pv)->location(),
10640 "incompatible type for field %d in struct construction",
10641 i + 1);
10642 else
10643 error_at((*pv)->location(),
10644 ("incompatible type for field %d in "
10645 "struct construction (%s)"),
10646 i + 1, reason.c_str());
10647 this->set_is_error();
10648 }
10649 }
10650 gcc_assert(pv == this->vals_->end());
10651 }
10652
10653 // Return a tree for constructing a struct.
10654
10655 tree
10656 Struct_construction_expression::do_get_tree(Translate_context* context)
10657 {
10658 Gogo* gogo = context->gogo();
10659
10660 if (this->vals_ == NULL)
10661 return this->type_->get_init_tree(gogo, false);
10662
10663 tree type_tree = this->type_->get_tree(gogo);
10664 if (type_tree == error_mark_node)
10665 return error_mark_node;
10666 gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
10667
10668 bool is_constant = true;
10669 const Struct_field_list* fields = this->type_->struct_type()->fields();
10670 VEC(constructor_elt,gc)* elts = VEC_alloc(constructor_elt, gc,
10671 fields->size());
10672 Struct_field_list::const_iterator pf = fields->begin();
10673 Expression_list::const_iterator pv = this->vals_->begin();
10674 for (tree field = TYPE_FIELDS(type_tree);
10675 field != NULL_TREE;
10676 field = DECL_CHAIN(field), ++pf)
10677 {
10678 gcc_assert(pf != fields->end());
10679
10680 tree val;
10681 if (pv == this->vals_->end())
10682 val = pf->type()->get_init_tree(gogo, false);
10683 else if (*pv == NULL)
10684 {
10685 val = pf->type()->get_init_tree(gogo, false);
10686 ++pv;
10687 }
10688 else
10689 {
10690 val = Expression::convert_for_assignment(context, pf->type(),
10691 (*pv)->type(),
10692 (*pv)->get_tree(context),
10693 this->location());
10694 ++pv;
10695 }
10696
10697 if (val == error_mark_node || TREE_TYPE(val) == error_mark_node)
10698 return error_mark_node;
10699
10700 constructor_elt* elt = VEC_quick_push(constructor_elt, elts, NULL);
10701 elt->index = field;
10702 elt->value = val;
10703 if (!TREE_CONSTANT(val))
10704 is_constant = false;
10705 }
10706 gcc_assert(pf == fields->end());
10707
10708 tree ret = build_constructor(type_tree, elts);
10709 if (is_constant)
10710 TREE_CONSTANT(ret) = 1;
10711 return ret;
10712 }
10713
10714 // Export a struct construction.
10715
10716 void
10717 Struct_construction_expression::do_export(Export* exp) const
10718 {
10719 exp->write_c_string("convert(");
10720 exp->write_type(this->type_);
10721 for (Expression_list::const_iterator pv = this->vals_->begin();
10722 pv != this->vals_->end();
10723 ++pv)
10724 {
10725 exp->write_c_string(", ");
10726 if (*pv != NULL)
10727 (*pv)->export_expression(exp);
10728 }
10729 exp->write_c_string(")");
10730 }
10731
10732 // Make a struct composite literal. This used by the thunk code.
10733
10734 Expression*
10735 Expression::make_struct_composite_literal(Type* type, Expression_list* vals,
10736 source_location location)
10737 {
10738 gcc_assert(type->struct_type() != NULL);
10739 return new Struct_construction_expression(type, vals, location);
10740 }
10741
10742 // Construct an array. This class is not used directly; instead we
10743 // use the child classes, Fixed_array_construction_expression and
10744 // Open_array_construction_expression.
10745
10746 class Array_construction_expression : public Expression
10747 {
10748 protected:
10749 Array_construction_expression(Expression_classification classification,
10750 Type* type, Expression_list* vals,
10751 source_location location)
10752 : Expression(classification, location),
10753 type_(type), vals_(vals)
10754 { }
10755
10756 public:
10757 // Return whether this is a constant initializer.
10758 bool
10759 is_constant_array() const;
10760
10761 // Return the number of elements.
10762 size_t
10763 element_count() const
10764 { return this->vals_ == NULL ? 0 : this->vals_->size(); }
10765
10766 protected:
10767 int
10768 do_traverse(Traverse* traverse);
10769
10770 Type*
10771 do_type()
10772 { return this->type_; }
10773
10774 void
10775 do_determine_type(const Type_context*);
10776
10777 void
10778 do_check_types(Gogo*);
10779
10780 bool
10781 do_is_addressable() const
10782 { return true; }
10783
10784 void
10785 do_export(Export*) const;
10786
10787 // The list of values.
10788 Expression_list*
10789 vals()
10790 { return this->vals_; }
10791
10792 // Get a constructor tree for the array values.
10793 tree
10794 get_constructor_tree(Translate_context* context, tree type_tree);
10795
10796 private:
10797 // The type of the array to construct.
10798 Type* type_;
10799 // The list of values.
10800 Expression_list* vals_;
10801 };
10802
10803 // Traversal.
10804
10805 int
10806 Array_construction_expression::do_traverse(Traverse* traverse)
10807 {
10808 if (this->vals_ != NULL
10809 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
10810 return TRAVERSE_EXIT;
10811 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10812 return TRAVERSE_EXIT;
10813 return TRAVERSE_CONTINUE;
10814 }
10815
10816 // Return whether this is a constant initializer.
10817
10818 bool
10819 Array_construction_expression::is_constant_array() const
10820 {
10821 if (this->vals_ == NULL)
10822 return true;
10823
10824 // There are no constant constructors for interfaces.
10825 if (this->type_->array_type()->element_type()->interface_type() != NULL)
10826 return false;
10827
10828 for (Expression_list::const_iterator pv = this->vals_->begin();
10829 pv != this->vals_->end();
10830 ++pv)
10831 {
10832 if (*pv != NULL
10833 && !(*pv)->is_constant()
10834 && (!(*pv)->is_composite_literal()
10835 || (*pv)->is_nonconstant_composite_literal()))
10836 return false;
10837 }
10838 return true;
10839 }
10840
10841 // Final type determination.
10842
10843 void
10844 Array_construction_expression::do_determine_type(const Type_context*)
10845 {
10846 if (this->vals_ == NULL)
10847 return;
10848 Type_context subcontext(this->type_->array_type()->element_type(), false);
10849 for (Expression_list::const_iterator pv = this->vals_->begin();
10850 pv != this->vals_->end();
10851 ++pv)
10852 {
10853 if (*pv != NULL)
10854 (*pv)->determine_type(&subcontext);
10855 }
10856 }
10857
10858 // Check types.
10859
10860 void
10861 Array_construction_expression::do_check_types(Gogo*)
10862 {
10863 if (this->vals_ == NULL)
10864 return;
10865
10866 Array_type* at = this->type_->array_type();
10867 int i = 0;
10868 Type* element_type = at->element_type();
10869 for (Expression_list::const_iterator pv = this->vals_->begin();
10870 pv != this->vals_->end();
10871 ++pv, ++i)
10872 {
10873 if (*pv != NULL
10874 && !Type::are_assignable(element_type, (*pv)->type(), NULL))
10875 {
10876 error_at((*pv)->location(),
10877 "incompatible type for element %d in composite literal",
10878 i + 1);
10879 this->set_is_error();
10880 }
10881 }
10882
10883 Expression* length = at->length();
10884 if (length != NULL)
10885 {
10886 mpz_t val;
10887 mpz_init(val);
10888 Type* type;
10889 if (at->length()->integer_constant_value(true, val, &type))
10890 {
10891 if (this->vals_->size() > mpz_get_ui(val))
10892 this->report_error(_("too many elements in composite literal"));
10893 }
10894 mpz_clear(val);
10895 }
10896 }
10897
10898 // Get a constructor tree for the array values.
10899
10900 tree
10901 Array_construction_expression::get_constructor_tree(Translate_context* context,
10902 tree type_tree)
10903 {
10904 VEC(constructor_elt,gc)* values = VEC_alloc(constructor_elt, gc,
10905 (this->vals_ == NULL
10906 ? 0
10907 : this->vals_->size()));
10908 Type* element_type = this->type_->array_type()->element_type();
10909 bool is_constant = true;
10910 if (this->vals_ != NULL)
10911 {
10912 size_t i = 0;
10913 for (Expression_list::const_iterator pv = this->vals_->begin();
10914 pv != this->vals_->end();
10915 ++pv, ++i)
10916 {
10917 constructor_elt* elt = VEC_quick_push(constructor_elt, values, NULL);
10918 elt->index = size_int(i);
10919 if (*pv == NULL)
10920 elt->value = element_type->get_init_tree(context->gogo(), false);
10921 else
10922 {
10923 tree value_tree = (*pv)->get_tree(context);
10924 elt->value = Expression::convert_for_assignment(context,
10925 element_type,
10926 (*pv)->type(),
10927 value_tree,
10928 this->location());
10929 }
10930 if (elt->value == error_mark_node)
10931 return error_mark_node;
10932 if (!TREE_CONSTANT(elt->value))
10933 is_constant = false;
10934 }
10935 }
10936
10937 tree ret = build_constructor(type_tree, values);
10938 if (is_constant)
10939 TREE_CONSTANT(ret) = 1;
10940 return ret;
10941 }
10942
10943 // Export an array construction.
10944
10945 void
10946 Array_construction_expression::do_export(Export* exp) const
10947 {
10948 exp->write_c_string("convert(");
10949 exp->write_type(this->type_);
10950 if (this->vals_ != NULL)
10951 {
10952 for (Expression_list::const_iterator pv = this->vals_->begin();
10953 pv != this->vals_->end();
10954 ++pv)
10955 {
10956 exp->write_c_string(", ");
10957 if (*pv != NULL)
10958 (*pv)->export_expression(exp);
10959 }
10960 }
10961 exp->write_c_string(")");
10962 }
10963
10964 // Construct a fixed array.
10965
10966 class Fixed_array_construction_expression :
10967 public Array_construction_expression
10968 {
10969 public:
10970 Fixed_array_construction_expression(Type* type, Expression_list* vals,
10971 source_location location)
10972 : Array_construction_expression(EXPRESSION_FIXED_ARRAY_CONSTRUCTION,
10973 type, vals, location)
10974 {
10975 gcc_assert(type->array_type() != NULL
10976 && type->array_type()->length() != NULL);
10977 }
10978
10979 protected:
10980 Expression*
10981 do_copy()
10982 {
10983 return new Fixed_array_construction_expression(this->type(),
10984 (this->vals() == NULL
10985 ? NULL
10986 : this->vals()->copy()),
10987 this->location());
10988 }
10989
10990 tree
10991 do_get_tree(Translate_context*);
10992 };
10993
10994 // Return a tree for constructing a fixed array.
10995
10996 tree
10997 Fixed_array_construction_expression::do_get_tree(Translate_context* context)
10998 {
10999 return this->get_constructor_tree(context,
11000 this->type()->get_tree(context->gogo()));
11001 }
11002
11003 // Construct an open array.
11004
11005 class Open_array_construction_expression : public Array_construction_expression
11006 {
11007 public:
11008 Open_array_construction_expression(Type* type, Expression_list* vals,
11009 source_location location)
11010 : Array_construction_expression(EXPRESSION_OPEN_ARRAY_CONSTRUCTION,
11011 type, vals, location)
11012 {
11013 gcc_assert(type->array_type() != NULL
11014 && type->array_type()->length() == NULL);
11015 }
11016
11017 protected:
11018 // Note that taking the address of an open array literal is invalid.
11019
11020 Expression*
11021 do_copy()
11022 {
11023 return new Open_array_construction_expression(this->type(),
11024 (this->vals() == NULL
11025 ? NULL
11026 : this->vals()->copy()),
11027 this->location());
11028 }
11029
11030 tree
11031 do_get_tree(Translate_context*);
11032 };
11033
11034 // Return a tree for constructing an open array.
11035
11036 tree
11037 Open_array_construction_expression::do_get_tree(Translate_context* context)
11038 {
11039 Array_type* array_type = this->type()->array_type();
11040 if (array_type == NULL)
11041 {
11042 gcc_assert(this->type()->is_error_type());
11043 return error_mark_node;
11044 }
11045
11046 Type* element_type = array_type->element_type();
11047 tree element_type_tree = element_type->get_tree(context->gogo());
11048 if (element_type_tree == error_mark_node)
11049 return error_mark_node;
11050
11051 tree values;
11052 tree length_tree;
11053 if (this->vals() == NULL || this->vals()->empty())
11054 {
11055 // We need to create a unique value.
11056 tree max = size_int(0);
11057 tree constructor_type = build_array_type(element_type_tree,
11058 build_index_type(max));
11059 if (constructor_type == error_mark_node)
11060 return error_mark_node;
11061 VEC(constructor_elt,gc)* vec = VEC_alloc(constructor_elt, gc, 1);
11062 constructor_elt* elt = VEC_quick_push(constructor_elt, vec, NULL);
11063 elt->index = size_int(0);
11064 elt->value = element_type->get_init_tree(context->gogo(), false);
11065 values = build_constructor(constructor_type, vec);
11066 if (TREE_CONSTANT(elt->value))
11067 TREE_CONSTANT(values) = 1;
11068 length_tree = size_int(0);
11069 }
11070 else
11071 {
11072 tree max = size_int(this->vals()->size() - 1);
11073 tree constructor_type = build_array_type(element_type_tree,
11074 build_index_type(max));
11075 if (constructor_type == error_mark_node)
11076 return error_mark_node;
11077 values = this->get_constructor_tree(context, constructor_type);
11078 length_tree = size_int(this->vals()->size());
11079 }
11080
11081 if (values == error_mark_node)
11082 return error_mark_node;
11083
11084 bool is_constant_initializer = TREE_CONSTANT(values);
11085 bool is_in_function = context->function() != NULL;
11086
11087 if (is_constant_initializer)
11088 {
11089 tree tmp = build_decl(this->location(), VAR_DECL,
11090 create_tmp_var_name("C"), TREE_TYPE(values));
11091 DECL_EXTERNAL(tmp) = 0;
11092 TREE_PUBLIC(tmp) = 0;
11093 TREE_STATIC(tmp) = 1;
11094 DECL_ARTIFICIAL(tmp) = 1;
11095 if (is_in_function)
11096 {
11097 // If this is not a function, we will only initialize the
11098 // value once, so we can use this directly rather than
11099 // copying it. In that case we can't make it read-only,
11100 // because the program is permitted to change it.
11101 TREE_READONLY(tmp) = 1;
11102 TREE_CONSTANT(tmp) = 1;
11103 }
11104 DECL_INITIAL(tmp) = values;
11105 rest_of_decl_compilation(tmp, 1, 0);
11106 values = tmp;
11107 }
11108
11109 tree space;
11110 tree set;
11111 if (!is_in_function && is_constant_initializer)
11112 {
11113 // Outside of a function, we know the initializer will only run
11114 // once.
11115 space = build_fold_addr_expr(values);
11116 set = NULL_TREE;
11117 }
11118 else
11119 {
11120 tree memsize = TYPE_SIZE_UNIT(TREE_TYPE(values));
11121 space = context->gogo()->allocate_memory(element_type, memsize,
11122 this->location());
11123 space = save_expr(space);
11124
11125 tree s = fold_convert(build_pointer_type(TREE_TYPE(values)), space);
11126 tree ref = build_fold_indirect_ref_loc(this->location(), s);
11127 TREE_THIS_NOTRAP(ref) = 1;
11128 set = build2(MODIFY_EXPR, void_type_node, ref, values);
11129 }
11130
11131 // Build a constructor for the open array.
11132
11133 tree type_tree = this->type()->get_tree(context->gogo());
11134 if (type_tree == error_mark_node)
11135 return error_mark_node;
11136 gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
11137
11138 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
11139
11140 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
11141 tree field = TYPE_FIELDS(type_tree);
11142 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
11143 elt->index = field;
11144 elt->value = fold_convert(TREE_TYPE(field), space);
11145
11146 elt = VEC_quick_push(constructor_elt, init, NULL);
11147 field = DECL_CHAIN(field);
11148 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
11149 elt->index = field;
11150 elt->value = fold_convert(TREE_TYPE(field), length_tree);
11151
11152 elt = VEC_quick_push(constructor_elt, init, NULL);
11153 field = DECL_CHAIN(field);
11154 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),"__capacity") == 0);
11155 elt->index = field;
11156 elt->value = fold_convert(TREE_TYPE(field), length_tree);
11157
11158 tree constructor = build_constructor(type_tree, init);
11159 if (constructor == error_mark_node)
11160 return error_mark_node;
11161 if (!is_in_function && is_constant_initializer)
11162 TREE_CONSTANT(constructor) = 1;
11163
11164 if (set == NULL_TREE)
11165 return constructor;
11166 else
11167 return build2(COMPOUND_EXPR, type_tree, set, constructor);
11168 }
11169
11170 // Make a slice composite literal. This is used by the type
11171 // descriptor code.
11172
11173 Expression*
11174 Expression::make_slice_composite_literal(Type* type, Expression_list* vals,
11175 source_location location)
11176 {
11177 gcc_assert(type->is_open_array_type());
11178 return new Open_array_construction_expression(type, vals, location);
11179 }
11180
11181 // Construct a map.
11182
11183 class Map_construction_expression : public Expression
11184 {
11185 public:
11186 Map_construction_expression(Type* type, Expression_list* vals,
11187 source_location location)
11188 : Expression(EXPRESSION_MAP_CONSTRUCTION, location),
11189 type_(type), vals_(vals)
11190 { gcc_assert(vals == NULL || vals->size() % 2 == 0); }
11191
11192 protected:
11193 int
11194 do_traverse(Traverse* traverse);
11195
11196 Type*
11197 do_type()
11198 { return this->type_; }
11199
11200 void
11201 do_determine_type(const Type_context*);
11202
11203 void
11204 do_check_types(Gogo*);
11205
11206 Expression*
11207 do_copy()
11208 {
11209 return new Map_construction_expression(this->type_, this->vals_->copy(),
11210 this->location());
11211 }
11212
11213 tree
11214 do_get_tree(Translate_context*);
11215
11216 void
11217 do_export(Export*) const;
11218
11219 private:
11220 // The type of the map to construct.
11221 Type* type_;
11222 // The list of values.
11223 Expression_list* vals_;
11224 };
11225
11226 // Traversal.
11227
11228 int
11229 Map_construction_expression::do_traverse(Traverse* traverse)
11230 {
11231 if (this->vals_ != NULL
11232 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
11233 return TRAVERSE_EXIT;
11234 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
11235 return TRAVERSE_EXIT;
11236 return TRAVERSE_CONTINUE;
11237 }
11238
11239 // Final type determination.
11240
11241 void
11242 Map_construction_expression::do_determine_type(const Type_context*)
11243 {
11244 if (this->vals_ == NULL)
11245 return;
11246
11247 Map_type* mt = this->type_->map_type();
11248 Type_context key_context(mt->key_type(), false);
11249 Type_context val_context(mt->val_type(), false);
11250 for (Expression_list::const_iterator pv = this->vals_->begin();
11251 pv != this->vals_->end();
11252 ++pv)
11253 {
11254 (*pv)->determine_type(&key_context);
11255 ++pv;
11256 (*pv)->determine_type(&val_context);
11257 }
11258 }
11259
11260 // Check types.
11261
11262 void
11263 Map_construction_expression::do_check_types(Gogo*)
11264 {
11265 if (this->vals_ == NULL)
11266 return;
11267
11268 Map_type* mt = this->type_->map_type();
11269 int i = 0;
11270 Type* key_type = mt->key_type();
11271 Type* val_type = mt->val_type();
11272 for (Expression_list::const_iterator pv = this->vals_->begin();
11273 pv != this->vals_->end();
11274 ++pv, ++i)
11275 {
11276 if (!Type::are_assignable(key_type, (*pv)->type(), NULL))
11277 {
11278 error_at((*pv)->location(),
11279 "incompatible type for element %d key in map construction",
11280 i + 1);
11281 this->set_is_error();
11282 }
11283 ++pv;
11284 if (!Type::are_assignable(val_type, (*pv)->type(), NULL))
11285 {
11286 error_at((*pv)->location(),
11287 ("incompatible type for element %d value "
11288 "in map construction"),
11289 i + 1);
11290 this->set_is_error();
11291 }
11292 }
11293 }
11294
11295 // Return a tree for constructing a map.
11296
11297 tree
11298 Map_construction_expression::do_get_tree(Translate_context* context)
11299 {
11300 Gogo* gogo = context->gogo();
11301 source_location loc = this->location();
11302
11303 Map_type* mt = this->type_->map_type();
11304
11305 // Build a struct to hold the key and value.
11306 tree struct_type = make_node(RECORD_TYPE);
11307
11308 Type* key_type = mt->key_type();
11309 tree id = get_identifier("__key");
11310 tree key_type_tree = key_type->get_tree(gogo);
11311 if (key_type_tree == error_mark_node)
11312 return error_mark_node;
11313 tree key_field = build_decl(loc, FIELD_DECL, id, key_type_tree);
11314 DECL_CONTEXT(key_field) = struct_type;
11315 TYPE_FIELDS(struct_type) = key_field;
11316
11317 Type* val_type = mt->val_type();
11318 id = get_identifier("__val");
11319 tree val_type_tree = val_type->get_tree(gogo);
11320 if (val_type_tree == error_mark_node)
11321 return error_mark_node;
11322 tree val_field = build_decl(loc, FIELD_DECL, id, val_type_tree);
11323 DECL_CONTEXT(val_field) = struct_type;
11324 DECL_CHAIN(key_field) = val_field;
11325
11326 layout_type(struct_type);
11327
11328 bool is_constant = true;
11329 size_t i = 0;
11330 tree valaddr;
11331 tree make_tmp;
11332
11333 if (this->vals_ == NULL || this->vals_->empty())
11334 {
11335 valaddr = null_pointer_node;
11336 make_tmp = NULL_TREE;
11337 }
11338 else
11339 {
11340 VEC(constructor_elt,gc)* values = VEC_alloc(constructor_elt, gc,
11341 this->vals_->size() / 2);
11342
11343 for (Expression_list::const_iterator pv = this->vals_->begin();
11344 pv != this->vals_->end();
11345 ++pv, ++i)
11346 {
11347 bool one_is_constant = true;
11348
11349 VEC(constructor_elt,gc)* one = VEC_alloc(constructor_elt, gc, 2);
11350
11351 constructor_elt* elt = VEC_quick_push(constructor_elt, one, NULL);
11352 elt->index = key_field;
11353 tree val_tree = (*pv)->get_tree(context);
11354 elt->value = Expression::convert_for_assignment(context, key_type,
11355 (*pv)->type(),
11356 val_tree, loc);
11357 if (elt->value == error_mark_node)
11358 return error_mark_node;
11359 if (!TREE_CONSTANT(elt->value))
11360 one_is_constant = false;
11361
11362 ++pv;
11363
11364 elt = VEC_quick_push(constructor_elt, one, NULL);
11365 elt->index = val_field;
11366 val_tree = (*pv)->get_tree(context);
11367 elt->value = Expression::convert_for_assignment(context, val_type,
11368 (*pv)->type(),
11369 val_tree, loc);
11370 if (elt->value == error_mark_node)
11371 return error_mark_node;
11372 if (!TREE_CONSTANT(elt->value))
11373 one_is_constant = false;
11374
11375 elt = VEC_quick_push(constructor_elt, values, NULL);
11376 elt->index = size_int(i);
11377 elt->value = build_constructor(struct_type, one);
11378 if (one_is_constant)
11379 TREE_CONSTANT(elt->value) = 1;
11380 else
11381 is_constant = false;
11382 }
11383
11384 tree index_type = build_index_type(size_int(i - 1));
11385 tree array_type = build_array_type(struct_type, index_type);
11386 tree init = build_constructor(array_type, values);
11387 if (is_constant)
11388 TREE_CONSTANT(init) = 1;
11389 tree tmp;
11390 if (current_function_decl != NULL)
11391 {
11392 tmp = create_tmp_var(array_type, get_name(array_type));
11393 DECL_INITIAL(tmp) = init;
11394 make_tmp = fold_build1_loc(loc, DECL_EXPR, void_type_node, tmp);
11395 TREE_ADDRESSABLE(tmp) = 1;
11396 }
11397 else
11398 {
11399 tmp = build_decl(loc, VAR_DECL, create_tmp_var_name("M"), array_type);
11400 DECL_EXTERNAL(tmp) = 0;
11401 TREE_PUBLIC(tmp) = 0;
11402 TREE_STATIC(tmp) = 1;
11403 DECL_ARTIFICIAL(tmp) = 1;
11404 if (!TREE_CONSTANT(init))
11405 make_tmp = fold_build2_loc(loc, INIT_EXPR, void_type_node, tmp,
11406 init);
11407 else
11408 {
11409 TREE_READONLY(tmp) = 1;
11410 TREE_CONSTANT(tmp) = 1;
11411 DECL_INITIAL(tmp) = init;
11412 make_tmp = NULL_TREE;
11413 }
11414 rest_of_decl_compilation(tmp, 1, 0);
11415 }
11416
11417 valaddr = build_fold_addr_expr(tmp);
11418 }
11419
11420 tree descriptor = gogo->map_descriptor(mt);
11421
11422 tree type_tree = this->type_->get_tree(gogo);
11423 if (type_tree == error_mark_node)
11424 return error_mark_node;
11425
11426 static tree construct_map_fndecl;
11427 tree call = Gogo::call_builtin(&construct_map_fndecl,
11428 loc,
11429 "__go_construct_map",
11430 6,
11431 type_tree,
11432 TREE_TYPE(descriptor),
11433 descriptor,
11434 sizetype,
11435 size_int(i),
11436 sizetype,
11437 TYPE_SIZE_UNIT(struct_type),
11438 sizetype,
11439 byte_position(val_field),
11440 sizetype,
11441 TYPE_SIZE_UNIT(TREE_TYPE(val_field)),
11442 const_ptr_type_node,
11443 fold_convert(const_ptr_type_node, valaddr));
11444 if (call == error_mark_node)
11445 return error_mark_node;
11446
11447 tree ret;
11448 if (make_tmp == NULL)
11449 ret = call;
11450 else
11451 ret = fold_build2_loc(loc, COMPOUND_EXPR, type_tree, make_tmp, call);
11452 return ret;
11453 }
11454
11455 // Export an array construction.
11456
11457 void
11458 Map_construction_expression::do_export(Export* exp) const
11459 {
11460 exp->write_c_string("convert(");
11461 exp->write_type(this->type_);
11462 for (Expression_list::const_iterator pv = this->vals_->begin();
11463 pv != this->vals_->end();
11464 ++pv)
11465 {
11466 exp->write_c_string(", ");
11467 (*pv)->export_expression(exp);
11468 }
11469 exp->write_c_string(")");
11470 }
11471
11472 // A general composite literal. This is lowered to a type specific
11473 // version.
11474
11475 class Composite_literal_expression : public Parser_expression
11476 {
11477 public:
11478 Composite_literal_expression(Type* type, int depth, bool has_keys,
11479 Expression_list* vals, source_location location)
11480 : Parser_expression(EXPRESSION_COMPOSITE_LITERAL, location),
11481 type_(type), depth_(depth), vals_(vals), has_keys_(has_keys)
11482 { }
11483
11484 protected:
11485 int
11486 do_traverse(Traverse* traverse);
11487
11488 Expression*
11489 do_lower(Gogo*, Named_object*, int);
11490
11491 Expression*
11492 do_copy()
11493 {
11494 return new Composite_literal_expression(this->type_, this->depth_,
11495 this->has_keys_,
11496 (this->vals_ == NULL
11497 ? NULL
11498 : this->vals_->copy()),
11499 this->location());
11500 }
11501
11502 private:
11503 Expression*
11504 lower_struct(Type*);
11505
11506 Expression*
11507 lower_array(Type*);
11508
11509 Expression*
11510 make_array(Type*, Expression_list*);
11511
11512 Expression*
11513 lower_map(Gogo*, Named_object*, Type*);
11514
11515 // The type of the composite literal.
11516 Type* type_;
11517 // The depth within a list of composite literals within a composite
11518 // literal, when the type is omitted.
11519 int depth_;
11520 // The values to put in the composite literal.
11521 Expression_list* vals_;
11522 // If this is true, then VALS_ is a list of pairs: a key and a
11523 // value. In an array initializer, a missing key will be NULL.
11524 bool has_keys_;
11525 };
11526
11527 // Traversal.
11528
11529 int
11530 Composite_literal_expression::do_traverse(Traverse* traverse)
11531 {
11532 if (this->vals_ != NULL
11533 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
11534 return TRAVERSE_EXIT;
11535 return Type::traverse(this->type_, traverse);
11536 }
11537
11538 // Lower a generic composite literal into a specific version based on
11539 // the type.
11540
11541 Expression*
11542 Composite_literal_expression::do_lower(Gogo* gogo, Named_object* function, int)
11543 {
11544 Type* type = this->type_;
11545
11546 for (int depth = this->depth_; depth > 0; --depth)
11547 {
11548 if (type->array_type() != NULL)
11549 type = type->array_type()->element_type();
11550 else if (type->map_type() != NULL)
11551 type = type->map_type()->val_type();
11552 else
11553 {
11554 if (!type->is_error_type())
11555 error_at(this->location(),
11556 ("may only omit types within composite literals "
11557 "of slice, array, or map type"));
11558 return Expression::make_error(this->location());
11559 }
11560 }
11561
11562 if (type->is_error_type())
11563 return Expression::make_error(this->location());
11564 else if (type->struct_type() != NULL)
11565 return this->lower_struct(type);
11566 else if (type->array_type() != NULL)
11567 return this->lower_array(type);
11568 else if (type->map_type() != NULL)
11569 return this->lower_map(gogo, function, type);
11570 else
11571 {
11572 error_at(this->location(),
11573 ("expected struct, slice, array, or map type "
11574 "for composite literal"));
11575 return Expression::make_error(this->location());
11576 }
11577 }
11578
11579 // Lower a struct composite literal.
11580
11581 Expression*
11582 Composite_literal_expression::lower_struct(Type* type)
11583 {
11584 source_location location = this->location();
11585 Struct_type* st = type->struct_type();
11586 if (this->vals_ == NULL || !this->has_keys_)
11587 return new Struct_construction_expression(type, this->vals_, location);
11588
11589 size_t field_count = st->field_count();
11590 std::vector<Expression*> vals(field_count);
11591 Expression_list::const_iterator p = this->vals_->begin();
11592 while (p != this->vals_->end())
11593 {
11594 Expression* name_expr = *p;
11595
11596 ++p;
11597 gcc_assert(p != this->vals_->end());
11598 Expression* val = *p;
11599
11600 ++p;
11601
11602 if (name_expr == NULL)
11603 {
11604 error_at(val->location(), "mixture of field and value initializers");
11605 return Expression::make_error(location);
11606 }
11607
11608 bool bad_key = false;
11609 std::string name;
11610 switch (name_expr->classification())
11611 {
11612 case EXPRESSION_UNKNOWN_REFERENCE:
11613 name = name_expr->unknown_expression()->name();
11614 break;
11615
11616 case EXPRESSION_CONST_REFERENCE:
11617 name = static_cast<Const_expression*>(name_expr)->name();
11618 break;
11619
11620 case EXPRESSION_TYPE:
11621 {
11622 Type* t = name_expr->type();
11623 Named_type* nt = t->named_type();
11624 if (nt == NULL)
11625 bad_key = true;
11626 else
11627 name = nt->name();
11628 }
11629 break;
11630
11631 case EXPRESSION_VAR_REFERENCE:
11632 name = name_expr->var_expression()->name();
11633 break;
11634
11635 case EXPRESSION_FUNC_REFERENCE:
11636 name = name_expr->func_expression()->name();
11637 break;
11638
11639 case EXPRESSION_UNARY:
11640 // If there is a local variable around with the same name as
11641 // the field, and this occurs in the closure, then the
11642 // parser may turn the field reference into an indirection
11643 // through the closure. FIXME: This is a mess.
11644 {
11645 bad_key = true;
11646 Unary_expression* ue = static_cast<Unary_expression*>(name_expr);
11647 if (ue->op() == OPERATOR_MULT)
11648 {
11649 Field_reference_expression* fre =
11650 ue->operand()->field_reference_expression();
11651 if (fre != NULL)
11652 {
11653 Struct_type* st =
11654 fre->expr()->type()->deref()->struct_type();
11655 if (st != NULL)
11656 {
11657 const Struct_field* sf = st->field(fre->field_index());
11658 name = sf->field_name();
11659 char buf[20];
11660 snprintf(buf, sizeof buf, "%u", fre->field_index());
11661 size_t buflen = strlen(buf);
11662 if (name.compare(name.length() - buflen, buflen, buf)
11663 == 0)
11664 {
11665 name = name.substr(0, name.length() - buflen);
11666 bad_key = false;
11667 }
11668 }
11669 }
11670 }
11671 }
11672 break;
11673
11674 default:
11675 bad_key = true;
11676 break;
11677 }
11678 if (bad_key)
11679 {
11680 error_at(name_expr->location(), "expected struct field name");
11681 return Expression::make_error(location);
11682 }
11683
11684 unsigned int index;
11685 const Struct_field* sf = st->find_local_field(name, &index);
11686 if (sf == NULL)
11687 {
11688 error_at(name_expr->location(), "unknown field %qs in %qs",
11689 Gogo::message_name(name).c_str(),
11690 (type->named_type() != NULL
11691 ? type->named_type()->message_name().c_str()
11692 : "unnamed struct"));
11693 return Expression::make_error(location);
11694 }
11695 if (vals[index] != NULL)
11696 {
11697 error_at(name_expr->location(),
11698 "duplicate value for field %qs in %qs",
11699 Gogo::message_name(name).c_str(),
11700 (type->named_type() != NULL
11701 ? type->named_type()->message_name().c_str()
11702 : "unnamed struct"));
11703 return Expression::make_error(location);
11704 }
11705
11706 vals[index] = val;
11707 }
11708
11709 Expression_list* list = new Expression_list;
11710 list->reserve(field_count);
11711 for (size_t i = 0; i < field_count; ++i)
11712 list->push_back(vals[i]);
11713
11714 return new Struct_construction_expression(type, list, location);
11715 }
11716
11717 // Lower an array composite literal.
11718
11719 Expression*
11720 Composite_literal_expression::lower_array(Type* type)
11721 {
11722 source_location location = this->location();
11723 if (this->vals_ == NULL || !this->has_keys_)
11724 return this->make_array(type, this->vals_);
11725
11726 std::vector<Expression*> vals;
11727 vals.reserve(this->vals_->size());
11728 unsigned long index = 0;
11729 Expression_list::const_iterator p = this->vals_->begin();
11730 while (p != this->vals_->end())
11731 {
11732 Expression* index_expr = *p;
11733
11734 ++p;
11735 gcc_assert(p != this->vals_->end());
11736 Expression* val = *p;
11737
11738 ++p;
11739
11740 if (index_expr != NULL)
11741 {
11742 mpz_t ival;
11743 mpz_init(ival);
11744 Type* dummy;
11745 if (!index_expr->integer_constant_value(true, ival, &dummy))
11746 {
11747 mpz_clear(ival);
11748 error_at(index_expr->location(),
11749 "index expression is not integer constant");
11750 return Expression::make_error(location);
11751 }
11752 if (mpz_sgn(ival) < 0)
11753 {
11754 mpz_clear(ival);
11755 error_at(index_expr->location(), "index expression is negative");
11756 return Expression::make_error(location);
11757 }
11758 index = mpz_get_ui(ival);
11759 if (mpz_cmp_ui(ival, index) != 0)
11760 {
11761 mpz_clear(ival);
11762 error_at(index_expr->location(), "index value overflow");
11763 return Expression::make_error(location);
11764 }
11765 mpz_clear(ival);
11766 }
11767
11768 if (index == vals.size())
11769 vals.push_back(val);
11770 else
11771 {
11772 if (index > vals.size())
11773 {
11774 vals.reserve(index + 32);
11775 vals.resize(index + 1, static_cast<Expression*>(NULL));
11776 }
11777 if (vals[index] != NULL)
11778 {
11779 error_at((index_expr != NULL
11780 ? index_expr->location()
11781 : val->location()),
11782 "duplicate value for index %lu",
11783 index);
11784 return Expression::make_error(location);
11785 }
11786 vals[index] = val;
11787 }
11788
11789 ++index;
11790 }
11791
11792 size_t size = vals.size();
11793 Expression_list* list = new Expression_list;
11794 list->reserve(size);
11795 for (size_t i = 0; i < size; ++i)
11796 list->push_back(vals[i]);
11797
11798 return this->make_array(type, list);
11799 }
11800
11801 // Actually build the array composite literal. This handles
11802 // [...]{...}.
11803
11804 Expression*
11805 Composite_literal_expression::make_array(Type* type, Expression_list* vals)
11806 {
11807 source_location location = this->location();
11808 Array_type* at = type->array_type();
11809 if (at->length() != NULL && at->length()->is_nil_expression())
11810 {
11811 size_t size = vals == NULL ? 0 : vals->size();
11812 mpz_t vlen;
11813 mpz_init_set_ui(vlen, size);
11814 Expression* elen = Expression::make_integer(&vlen, NULL, location);
11815 mpz_clear(vlen);
11816 at = Type::make_array_type(at->element_type(), elen);
11817 type = at;
11818 }
11819 if (at->length() != NULL)
11820 return new Fixed_array_construction_expression(type, vals, location);
11821 else
11822 return new Open_array_construction_expression(type, vals, location);
11823 }
11824
11825 // Lower a map composite literal.
11826
11827 Expression*
11828 Composite_literal_expression::lower_map(Gogo* gogo, Named_object* function,
11829 Type* type)
11830 {
11831 source_location location = this->location();
11832 if (this->vals_ != NULL)
11833 {
11834 if (!this->has_keys_)
11835 {
11836 error_at(location, "map composite literal must have keys");
11837 return Expression::make_error(location);
11838 }
11839
11840 for (Expression_list::iterator p = this->vals_->begin();
11841 p != this->vals_->end();
11842 p += 2)
11843 {
11844 if (*p == NULL)
11845 {
11846 ++p;
11847 error_at((*p)->location(),
11848 "map composite literal must have keys for every value");
11849 return Expression::make_error(location);
11850 }
11851 // Make sure we have lowered the key; it may not have been
11852 // lowered in order to handle keys for struct composite
11853 // literals. Lower it now to get the right error message.
11854 if ((*p)->unknown_expression() != NULL)
11855 {
11856 (*p)->unknown_expression()->clear_is_composite_literal_key();
11857 gogo->lower_expression(function, &*p);
11858 gcc_assert((*p)->is_error_expression());
11859 return Expression::make_error(location);
11860 }
11861 }
11862 }
11863
11864 return new Map_construction_expression(type, this->vals_, location);
11865 }
11866
11867 // Make a composite literal expression.
11868
11869 Expression*
11870 Expression::make_composite_literal(Type* type, int depth, bool has_keys,
11871 Expression_list* vals,
11872 source_location location)
11873 {
11874 return new Composite_literal_expression(type, depth, has_keys, vals,
11875 location);
11876 }
11877
11878 // Return whether this expression is a composite literal.
11879
11880 bool
11881 Expression::is_composite_literal() const
11882 {
11883 switch (this->classification_)
11884 {
11885 case EXPRESSION_COMPOSITE_LITERAL:
11886 case EXPRESSION_STRUCT_CONSTRUCTION:
11887 case EXPRESSION_FIXED_ARRAY_CONSTRUCTION:
11888 case EXPRESSION_OPEN_ARRAY_CONSTRUCTION:
11889 case EXPRESSION_MAP_CONSTRUCTION:
11890 return true;
11891 default:
11892 return false;
11893 }
11894 }
11895
11896 // Return whether this expression is a composite literal which is not
11897 // constant.
11898
11899 bool
11900 Expression::is_nonconstant_composite_literal() const
11901 {
11902 switch (this->classification_)
11903 {
11904 case EXPRESSION_STRUCT_CONSTRUCTION:
11905 {
11906 const Struct_construction_expression *psce =
11907 static_cast<const Struct_construction_expression*>(this);
11908 return !psce->is_constant_struct();
11909 }
11910 case EXPRESSION_FIXED_ARRAY_CONSTRUCTION:
11911 {
11912 const Fixed_array_construction_expression *pace =
11913 static_cast<const Fixed_array_construction_expression*>(this);
11914 return !pace->is_constant_array();
11915 }
11916 case EXPRESSION_OPEN_ARRAY_CONSTRUCTION:
11917 {
11918 const Open_array_construction_expression *pace =
11919 static_cast<const Open_array_construction_expression*>(this);
11920 return !pace->is_constant_array();
11921 }
11922 case EXPRESSION_MAP_CONSTRUCTION:
11923 return true;
11924 default:
11925 return false;
11926 }
11927 }
11928
11929 // Return true if this is a reference to a local variable.
11930
11931 bool
11932 Expression::is_local_variable() const
11933 {
11934 const Var_expression* ve = this->var_expression();
11935 if (ve == NULL)
11936 return false;
11937 const Named_object* no = ve->named_object();
11938 return (no->is_result_variable()
11939 || (no->is_variable() && !no->var_value()->is_global()));
11940 }
11941
11942 // Class Type_guard_expression.
11943
11944 // Traversal.
11945
11946 int
11947 Type_guard_expression::do_traverse(Traverse* traverse)
11948 {
11949 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
11950 || Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
11951 return TRAVERSE_EXIT;
11952 return TRAVERSE_CONTINUE;
11953 }
11954
11955 // Check types of a type guard expression. The expression must have
11956 // an interface type, but the actual type conversion is checked at run
11957 // time.
11958
11959 void
11960 Type_guard_expression::do_check_types(Gogo*)
11961 {
11962 // 6g permits using a type guard with unsafe.pointer; we are
11963 // compatible.
11964 Type* expr_type = this->expr_->type();
11965 if (expr_type->is_unsafe_pointer_type())
11966 {
11967 if (this->type_->points_to() == NULL
11968 && (this->type_->integer_type() == NULL
11969 || (this->type_->forwarded()
11970 != Type::lookup_integer_type("uintptr"))))
11971 this->report_error(_("invalid unsafe.Pointer conversion"));
11972 }
11973 else if (this->type_->is_unsafe_pointer_type())
11974 {
11975 if (expr_type->points_to() == NULL
11976 && (expr_type->integer_type() == NULL
11977 || (expr_type->forwarded()
11978 != Type::lookup_integer_type("uintptr"))))
11979 this->report_error(_("invalid unsafe.Pointer conversion"));
11980 }
11981 else if (expr_type->interface_type() == NULL)
11982 {
11983 if (!expr_type->is_error_type() && !this->type_->is_error_type())
11984 this->report_error(_("type assertion only valid for interface types"));
11985 this->set_is_error();
11986 }
11987 else if (this->type_->interface_type() == NULL)
11988 {
11989 std::string reason;
11990 if (!expr_type->interface_type()->implements_interface(this->type_,
11991 &reason))
11992 {
11993 if (!this->type_->is_error_type())
11994 {
11995 if (reason.empty())
11996 this->report_error(_("impossible type assertion: "
11997 "type does not implement interface"));
11998 else
11999 error_at(this->location(),
12000 ("impossible type assertion: "
12001 "type does not implement interface (%s)"),
12002 reason.c_str());
12003 }
12004 this->set_is_error();
12005 }
12006 }
12007 }
12008
12009 // Return a tree for a type guard expression.
12010
12011 tree
12012 Type_guard_expression::do_get_tree(Translate_context* context)
12013 {
12014 Gogo* gogo = context->gogo();
12015 tree expr_tree = this->expr_->get_tree(context);
12016 if (expr_tree == error_mark_node)
12017 return error_mark_node;
12018 Type* expr_type = this->expr_->type();
12019 if ((this->type_->is_unsafe_pointer_type()
12020 && (expr_type->points_to() != NULL
12021 || expr_type->integer_type() != NULL))
12022 || (expr_type->is_unsafe_pointer_type()
12023 && this->type_->points_to() != NULL))
12024 return convert_to_pointer(this->type_->get_tree(gogo), expr_tree);
12025 else if (expr_type->is_unsafe_pointer_type()
12026 && this->type_->integer_type() != NULL)
12027 return convert_to_integer(this->type_->get_tree(gogo), expr_tree);
12028 else if (this->type_->interface_type() != NULL)
12029 return Expression::convert_interface_to_interface(context, this->type_,
12030 this->expr_->type(),
12031 expr_tree, true,
12032 this->location());
12033 else
12034 return Expression::convert_for_assignment(context, this->type_,
12035 this->expr_->type(), expr_tree,
12036 this->location());
12037 }
12038
12039 // Make a type guard expression.
12040
12041 Expression*
12042 Expression::make_type_guard(Expression* expr, Type* type,
12043 source_location location)
12044 {
12045 return new Type_guard_expression(expr, type, location);
12046 }
12047
12048 // Class Heap_composite_expression.
12049
12050 // When you take the address of a composite literal, it is allocated
12051 // on the heap. This class implements that.
12052
12053 class Heap_composite_expression : public Expression
12054 {
12055 public:
12056 Heap_composite_expression(Expression* expr, source_location location)
12057 : Expression(EXPRESSION_HEAP_COMPOSITE, location),
12058 expr_(expr)
12059 { }
12060
12061 protected:
12062 int
12063 do_traverse(Traverse* traverse)
12064 { return Expression::traverse(&this->expr_, traverse); }
12065
12066 Type*
12067 do_type()
12068 { return Type::make_pointer_type(this->expr_->type()); }
12069
12070 void
12071 do_determine_type(const Type_context*)
12072 { this->expr_->determine_type_no_context(); }
12073
12074 Expression*
12075 do_copy()
12076 {
12077 return Expression::make_heap_composite(this->expr_->copy(),
12078 this->location());
12079 }
12080
12081 tree
12082 do_get_tree(Translate_context*);
12083
12084 // We only export global objects, and the parser does not generate
12085 // this in global scope.
12086 void
12087 do_export(Export*) const
12088 { gcc_unreachable(); }
12089
12090 private:
12091 // The composite literal which is being put on the heap.
12092 Expression* expr_;
12093 };
12094
12095 // Return a tree which allocates a composite literal on the heap.
12096
12097 tree
12098 Heap_composite_expression::do_get_tree(Translate_context* context)
12099 {
12100 tree expr_tree = this->expr_->get_tree(context);
12101 if (expr_tree == error_mark_node)
12102 return error_mark_node;
12103 tree expr_size = TYPE_SIZE_UNIT(TREE_TYPE(expr_tree));
12104 gcc_assert(TREE_CODE(expr_size) == INTEGER_CST);
12105 tree space = context->gogo()->allocate_memory(this->expr_->type(),
12106 expr_size, this->location());
12107 space = fold_convert(build_pointer_type(TREE_TYPE(expr_tree)), space);
12108 space = save_expr(space);
12109 tree ref = build_fold_indirect_ref_loc(this->location(), space);
12110 TREE_THIS_NOTRAP(ref) = 1;
12111 tree ret = build2(COMPOUND_EXPR, TREE_TYPE(space),
12112 build2(MODIFY_EXPR, void_type_node, ref, expr_tree),
12113 space);
12114 SET_EXPR_LOCATION(ret, this->location());
12115 return ret;
12116 }
12117
12118 // Allocate a composite literal on the heap.
12119
12120 Expression*
12121 Expression::make_heap_composite(Expression* expr, source_location location)
12122 {
12123 return new Heap_composite_expression(expr, location);
12124 }
12125
12126 // Class Receive_expression.
12127
12128 // Return the type of a receive expression.
12129
12130 Type*
12131 Receive_expression::do_type()
12132 {
12133 Channel_type* channel_type = this->channel_->type()->channel_type();
12134 if (channel_type == NULL)
12135 return Type::make_error_type();
12136 return channel_type->element_type();
12137 }
12138
12139 // Check types for a receive expression.
12140
12141 void
12142 Receive_expression::do_check_types(Gogo*)
12143 {
12144 Type* type = this->channel_->type();
12145 if (type->is_error_type())
12146 {
12147 this->set_is_error();
12148 return;
12149 }
12150 if (type->channel_type() == NULL)
12151 {
12152 this->report_error(_("expected channel"));
12153 return;
12154 }
12155 if (!type->channel_type()->may_receive())
12156 {
12157 this->report_error(_("invalid receive on send-only channel"));
12158 return;
12159 }
12160 }
12161
12162 // Get a tree for a receive expression.
12163
12164 tree
12165 Receive_expression::do_get_tree(Translate_context* context)
12166 {
12167 Channel_type* channel_type = this->channel_->type()->channel_type();
12168 gcc_assert(channel_type != NULL);
12169 Type* element_type = channel_type->element_type();
12170 tree element_type_tree = element_type->get_tree(context->gogo());
12171
12172 tree channel = this->channel_->get_tree(context);
12173 if (element_type_tree == error_mark_node || channel == error_mark_node)
12174 return error_mark_node;
12175
12176 return Gogo::receive_from_channel(element_type_tree, channel,
12177 this->for_select_, this->location());
12178 }
12179
12180 // Make a receive expression.
12181
12182 Receive_expression*
12183 Expression::make_receive(Expression* channel, source_location location)
12184 {
12185 return new Receive_expression(channel, location);
12186 }
12187
12188 // Class Send_expression.
12189
12190 // Traversal.
12191
12192 int
12193 Send_expression::do_traverse(Traverse* traverse)
12194 {
12195 if (Expression::traverse(&this->channel_, traverse) == TRAVERSE_EXIT)
12196 return TRAVERSE_EXIT;
12197 return Expression::traverse(&this->val_, traverse);
12198 }
12199
12200 // Get the type.
12201
12202 Type*
12203 Send_expression::do_type()
12204 {
12205 return Type::lookup_bool_type();
12206 }
12207
12208 // Set types.
12209
12210 void
12211 Send_expression::do_determine_type(const Type_context*)
12212 {
12213 this->channel_->determine_type_no_context();
12214
12215 Type* type = this->channel_->type();
12216 Type_context subcontext;
12217 if (type->channel_type() != NULL)
12218 subcontext.type = type->channel_type()->element_type();
12219 this->val_->determine_type(&subcontext);
12220 }
12221
12222 // Check types.
12223
12224 void
12225 Send_expression::do_check_types(Gogo*)
12226 {
12227 Type* type = this->channel_->type();
12228 if (type->is_error_type())
12229 {
12230 this->set_is_error();
12231 return;
12232 }
12233 Channel_type* channel_type = type->channel_type();
12234 if (channel_type == NULL)
12235 {
12236 error_at(this->location(), "left operand of %<<-%> must be channel");
12237 this->set_is_error();
12238 return;
12239 }
12240 Type* element_type = channel_type->element_type();
12241 if (element_type != NULL
12242 && !Type::are_assignable(element_type, this->val_->type(), NULL))
12243 {
12244 this->report_error(_("incompatible types in send"));
12245 return;
12246 }
12247 if (!channel_type->may_send())
12248 {
12249 this->report_error(_("invalid send on receive-only channel"));
12250 return;
12251 }
12252 }
12253
12254 // Get a tree for a send expression.
12255
12256 tree
12257 Send_expression::do_get_tree(Translate_context* context)
12258 {
12259 tree channel = this->channel_->get_tree(context);
12260 tree val = this->val_->get_tree(context);
12261 if (channel == error_mark_node || val == error_mark_node)
12262 return error_mark_node;
12263 Channel_type* channel_type = this->channel_->type()->channel_type();
12264 val = Expression::convert_for_assignment(context,
12265 channel_type->element_type(),
12266 this->val_->type(),
12267 val,
12268 this->location());
12269 return Gogo::send_on_channel(channel, val, this->is_value_discarded_,
12270 this->for_select_, this->location());
12271 }
12272
12273 // Make a send expression
12274
12275 Send_expression*
12276 Expression::make_send(Expression* channel, Expression* val,
12277 source_location location)
12278 {
12279 return new Send_expression(channel, val, location);
12280 }
12281
12282 // An expression which evaluates to a pointer to the type descriptor
12283 // of a type.
12284
12285 class Type_descriptor_expression : public Expression
12286 {
12287 public:
12288 Type_descriptor_expression(Type* type, source_location location)
12289 : Expression(EXPRESSION_TYPE_DESCRIPTOR, location),
12290 type_(type)
12291 { }
12292
12293 protected:
12294 Type*
12295 do_type()
12296 { return Type::make_type_descriptor_ptr_type(); }
12297
12298 void
12299 do_determine_type(const Type_context*)
12300 { }
12301
12302 Expression*
12303 do_copy()
12304 { return this; }
12305
12306 tree
12307 do_get_tree(Translate_context* context)
12308 { return this->type_->type_descriptor_pointer(context->gogo()); }
12309
12310 private:
12311 // The type for which this is the descriptor.
12312 Type* type_;
12313 };
12314
12315 // Make a type descriptor expression.
12316
12317 Expression*
12318 Expression::make_type_descriptor(Type* type, source_location location)
12319 {
12320 return new Type_descriptor_expression(type, location);
12321 }
12322
12323 // An expression which evaluates to some characteristic of a type.
12324 // This is only used to initialize fields of a type descriptor. Using
12325 // a new expression class is slightly inefficient but gives us a good
12326 // separation between the frontend and the middle-end with regard to
12327 // how types are laid out.
12328
12329 class Type_info_expression : public Expression
12330 {
12331 public:
12332 Type_info_expression(Type* type, Type_info type_info)
12333 : Expression(EXPRESSION_TYPE_INFO, BUILTINS_LOCATION),
12334 type_(type), type_info_(type_info)
12335 { }
12336
12337 protected:
12338 Type*
12339 do_type();
12340
12341 void
12342 do_determine_type(const Type_context*)
12343 { }
12344
12345 Expression*
12346 do_copy()
12347 { return this; }
12348
12349 tree
12350 do_get_tree(Translate_context* context);
12351
12352 private:
12353 // The type for which we are getting information.
12354 Type* type_;
12355 // What information we want.
12356 Type_info type_info_;
12357 };
12358
12359 // The type is chosen to match what the type descriptor struct
12360 // expects.
12361
12362 Type*
12363 Type_info_expression::do_type()
12364 {
12365 switch (this->type_info_)
12366 {
12367 case TYPE_INFO_SIZE:
12368 return Type::lookup_integer_type("uintptr");
12369 case TYPE_INFO_ALIGNMENT:
12370 case TYPE_INFO_FIELD_ALIGNMENT:
12371 return Type::lookup_integer_type("uint8");
12372 default:
12373 gcc_unreachable();
12374 }
12375 }
12376
12377 // Return type information in GENERIC.
12378
12379 tree
12380 Type_info_expression::do_get_tree(Translate_context* context)
12381 {
12382 tree type_tree = this->type_->get_tree(context->gogo());
12383 if (type_tree == error_mark_node)
12384 return error_mark_node;
12385
12386 tree val_type_tree = this->type()->get_tree(context->gogo());
12387 gcc_assert(val_type_tree != error_mark_node);
12388
12389 if (this->type_info_ == TYPE_INFO_SIZE)
12390 return fold_convert_loc(BUILTINS_LOCATION, val_type_tree,
12391 TYPE_SIZE_UNIT(type_tree));
12392 else
12393 {
12394 unsigned int val;
12395 if (this->type_info_ == TYPE_INFO_ALIGNMENT)
12396 val = go_type_alignment(type_tree);
12397 else
12398 val = go_field_alignment(type_tree);
12399 return build_int_cstu(val_type_tree, val);
12400 }
12401 }
12402
12403 // Make a type info expression.
12404
12405 Expression*
12406 Expression::make_type_info(Type* type, Type_info type_info)
12407 {
12408 return new Type_info_expression(type, type_info);
12409 }
12410
12411 // An expression which evaluates to the offset of a field within a
12412 // struct. This, like Type_info_expression, q.v., is only used to
12413 // initialize fields of a type descriptor.
12414
12415 class Struct_field_offset_expression : public Expression
12416 {
12417 public:
12418 Struct_field_offset_expression(Struct_type* type, const Struct_field* field)
12419 : Expression(EXPRESSION_STRUCT_FIELD_OFFSET, BUILTINS_LOCATION),
12420 type_(type), field_(field)
12421 { }
12422
12423 protected:
12424 Type*
12425 do_type()
12426 { return Type::lookup_integer_type("uintptr"); }
12427
12428 void
12429 do_determine_type(const Type_context*)
12430 { }
12431
12432 Expression*
12433 do_copy()
12434 { return this; }
12435
12436 tree
12437 do_get_tree(Translate_context* context);
12438
12439 private:
12440 // The type of the struct.
12441 Struct_type* type_;
12442 // The field.
12443 const Struct_field* field_;
12444 };
12445
12446 // Return a struct field offset in GENERIC.
12447
12448 tree
12449 Struct_field_offset_expression::do_get_tree(Translate_context* context)
12450 {
12451 tree type_tree = this->type_->get_tree(context->gogo());
12452 if (type_tree == error_mark_node)
12453 return error_mark_node;
12454
12455 tree val_type_tree = this->type()->get_tree(context->gogo());
12456 gcc_assert(val_type_tree != error_mark_node);
12457
12458 const Struct_field_list* fields = this->type_->fields();
12459 tree struct_field_tree = TYPE_FIELDS(type_tree);
12460 Struct_field_list::const_iterator p;
12461 for (p = fields->begin();
12462 p != fields->end();
12463 ++p, struct_field_tree = DECL_CHAIN(struct_field_tree))
12464 {
12465 gcc_assert(struct_field_tree != NULL_TREE);
12466 if (&*p == this->field_)
12467 break;
12468 }
12469 gcc_assert(&*p == this->field_);
12470
12471 return fold_convert_loc(BUILTINS_LOCATION, val_type_tree,
12472 byte_position(struct_field_tree));
12473 }
12474
12475 // Make an expression for a struct field offset.
12476
12477 Expression*
12478 Expression::make_struct_field_offset(Struct_type* type,
12479 const Struct_field* field)
12480 {
12481 return new Struct_field_offset_expression(type, field);
12482 }
12483
12484 // An expression which evaluates to the address of an unnamed label.
12485
12486 class Label_addr_expression : public Expression
12487 {
12488 public:
12489 Label_addr_expression(Label* label, source_location location)
12490 : Expression(EXPRESSION_LABEL_ADDR, location),
12491 label_(label)
12492 { }
12493
12494 protected:
12495 Type*
12496 do_type()
12497 { return Type::make_pointer_type(Type::make_void_type()); }
12498
12499 void
12500 do_determine_type(const Type_context*)
12501 { }
12502
12503 Expression*
12504 do_copy()
12505 { return new Label_addr_expression(this->label_, this->location()); }
12506
12507 tree
12508 do_get_tree(Translate_context*)
12509 { return this->label_->get_addr(this->location()); }
12510
12511 private:
12512 // The label whose address we are taking.
12513 Label* label_;
12514 };
12515
12516 // Make an expression for the address of an unnamed label.
12517
12518 Expression*
12519 Expression::make_label_addr(Label* label, source_location location)
12520 {
12521 return new Label_addr_expression(label, location);
12522 }
12523
12524 // Import an expression. This comes at the end in order to see the
12525 // various class definitions.
12526
12527 Expression*
12528 Expression::import_expression(Import* imp)
12529 {
12530 int c = imp->peek_char();
12531 if (imp->match_c_string("- ")
12532 || imp->match_c_string("! ")
12533 || imp->match_c_string("^ "))
12534 return Unary_expression::do_import(imp);
12535 else if (c == '(')
12536 return Binary_expression::do_import(imp);
12537 else if (imp->match_c_string("true")
12538 || imp->match_c_string("false"))
12539 return Boolean_expression::do_import(imp);
12540 else if (c == '"')
12541 return String_expression::do_import(imp);
12542 else if (c == '-' || (c >= '0' && c <= '9'))
12543 {
12544 // This handles integers, floats and complex constants.
12545 return Integer_expression::do_import(imp);
12546 }
12547 else if (imp->match_c_string("nil"))
12548 return Nil_expression::do_import(imp);
12549 else if (imp->match_c_string("convert"))
12550 return Type_conversion_expression::do_import(imp);
12551 else
12552 {
12553 error_at(imp->location(), "import error: expected expression");
12554 return Expression::make_error(imp->location());
12555 }
12556 }
12557
12558 // Class Expression_list.
12559
12560 // Traverse the list.
12561
12562 int
12563 Expression_list::traverse(Traverse* traverse)
12564 {
12565 for (Expression_list::iterator p = this->begin();
12566 p != this->end();
12567 ++p)
12568 {
12569 if (*p != NULL)
12570 {
12571 if (Expression::traverse(&*p, traverse) == TRAVERSE_EXIT)
12572 return TRAVERSE_EXIT;
12573 }
12574 }
12575 return TRAVERSE_CONTINUE;
12576 }
12577
12578 // Copy the list.
12579
12580 Expression_list*
12581 Expression_list::copy()
12582 {
12583 Expression_list* ret = new Expression_list();
12584 for (Expression_list::iterator p = this->begin();
12585 p != this->end();
12586 ++p)
12587 {
12588 if (*p == NULL)
12589 ret->push_back(NULL);
12590 else
12591 ret->push_back((*p)->copy());
12592 }
12593 return ret;
12594 }
12595
12596 // Return whether an expression list has an error expression.
12597
12598 bool
12599 Expression_list::contains_error() const
12600 {
12601 for (Expression_list::const_iterator p = this->begin();
12602 p != this->end();
12603 ++p)
12604 if (*p != NULL && (*p)->is_error_expression())
12605 return true;
12606 return false;
12607 }