Don't try to build unary and binary expressions with invalid types.
[gcc.git] / gcc / go / gofrontend / expressions.cc
1 // expressions.cc -- Go frontend expression handling.
2
3 // Copyright 2009 The Go Authors. All rights reserved.
4 // Use of this source code is governed by a BSD-style
5 // license that can be found in the LICENSE file.
6
7 #include "go-system.h"
8
9 #include <gmp.h>
10
11 #ifndef ENABLE_BUILD_WITH_CXX
12 extern "C"
13 {
14 #endif
15
16 #include "toplev.h"
17 #include "intl.h"
18 #include "tree.h"
19 #include "gimple.h"
20 #include "tree-iterator.h"
21 #include "convert.h"
22 #include "real.h"
23 #include "realmpfr.h"
24
25 #ifndef ENABLE_BUILD_WITH_CXX
26 }
27 #endif
28
29 #include "go-c.h"
30 #include "gogo.h"
31 #include "types.h"
32 #include "export.h"
33 #include "import.h"
34 #include "statements.h"
35 #include "lex.h"
36 #include "expressions.h"
37
38 // Class Expression.
39
40 Expression::Expression(Expression_classification classification,
41 source_location location)
42 : classification_(classification), location_(location)
43 {
44 }
45
46 Expression::~Expression()
47 {
48 }
49
50 // If this expression has a constant integer value, return it.
51
52 bool
53 Expression::integer_constant_value(bool iota_is_constant, mpz_t val,
54 Type** ptype) const
55 {
56 *ptype = NULL;
57 return this->do_integer_constant_value(iota_is_constant, val, ptype);
58 }
59
60 // If this expression has a constant floating point value, return it.
61
62 bool
63 Expression::float_constant_value(mpfr_t val, Type** ptype) const
64 {
65 *ptype = NULL;
66 if (this->do_float_constant_value(val, ptype))
67 return true;
68 mpz_t ival;
69 mpz_init(ival);
70 Type* t;
71 bool ret;
72 if (!this->do_integer_constant_value(false, ival, &t))
73 ret = false;
74 else
75 {
76 mpfr_set_z(val, ival, GMP_RNDN);
77 ret = true;
78 }
79 mpz_clear(ival);
80 return ret;
81 }
82
83 // If this expression has a constant complex value, return it.
84
85 bool
86 Expression::complex_constant_value(mpfr_t real, mpfr_t imag,
87 Type** ptype) const
88 {
89 *ptype = NULL;
90 if (this->do_complex_constant_value(real, imag, ptype))
91 return true;
92 Type *t;
93 if (this->float_constant_value(real, &t))
94 {
95 mpfr_set_ui(imag, 0, GMP_RNDN);
96 return true;
97 }
98 return false;
99 }
100
101 // Traverse the expressions.
102
103 int
104 Expression::traverse(Expression** pexpr, Traverse* traverse)
105 {
106 Expression* expr = *pexpr;
107 if ((traverse->traverse_mask() & Traverse::traverse_expressions) != 0)
108 {
109 int t = traverse->expression(pexpr);
110 if (t == TRAVERSE_EXIT)
111 return TRAVERSE_EXIT;
112 else if (t == TRAVERSE_SKIP_COMPONENTS)
113 return TRAVERSE_CONTINUE;
114 }
115 return expr->do_traverse(traverse);
116 }
117
118 // Traverse subexpressions of this expression.
119
120 int
121 Expression::traverse_subexpressions(Traverse* traverse)
122 {
123 return this->do_traverse(traverse);
124 }
125
126 // Default implementation for do_traverse for child classes.
127
128 int
129 Expression::do_traverse(Traverse*)
130 {
131 return TRAVERSE_CONTINUE;
132 }
133
134 // This virtual function is called by the parser if the value of this
135 // expression is being discarded. By default, we warn. Expressions
136 // with side effects override.
137
138 void
139 Expression::do_discarding_value()
140 {
141 this->warn_about_unused_value();
142 }
143
144 // This virtual function is called to export expressions. This will
145 // only be used by expressions which may be constant.
146
147 void
148 Expression::do_export(Export*) const
149 {
150 gcc_unreachable();
151 }
152
153 // Warn that the value of the expression is not used.
154
155 void
156 Expression::warn_about_unused_value()
157 {
158 warning_at(this->location(), OPT_Wunused_value, "value computed is not used");
159 }
160
161 // Note that this expression is an error. This is called by children
162 // when they discover an error.
163
164 void
165 Expression::set_is_error()
166 {
167 this->classification_ = EXPRESSION_ERROR;
168 }
169
170 // For children to call to report an error conveniently.
171
172 void
173 Expression::report_error(const char* msg)
174 {
175 error_at(this->location_, "%s", msg);
176 this->set_is_error();
177 }
178
179 // Set types of variables and constants. This is implemented by the
180 // child class.
181
182 void
183 Expression::determine_type(const Type_context* context)
184 {
185 this->do_determine_type(context);
186 }
187
188 // Set types when there is no context.
189
190 void
191 Expression::determine_type_no_context()
192 {
193 Type_context context;
194 this->do_determine_type(&context);
195 }
196
197 // Return a tree handling any conversions which must be done during
198 // assignment.
199
200 tree
201 Expression::convert_for_assignment(Translate_context* context, Type* lhs_type,
202 Type* rhs_type, tree rhs_tree,
203 source_location location)
204 {
205 if (lhs_type == rhs_type)
206 return rhs_tree;
207
208 if (lhs_type->is_error_type() || rhs_type->is_error_type())
209 return error_mark_node;
210
211 if (lhs_type->is_undefined() || rhs_type->is_undefined())
212 {
213 // Make sure we report the error.
214 lhs_type->base();
215 rhs_type->base();
216 return error_mark_node;
217 }
218
219 if (rhs_tree == error_mark_node || TREE_TYPE(rhs_tree) == error_mark_node)
220 return error_mark_node;
221
222 Gogo* gogo = context->gogo();
223
224 tree lhs_type_tree = lhs_type->get_tree(gogo);
225 if (lhs_type_tree == error_mark_node)
226 return error_mark_node;
227
228 if (lhs_type->interface_type() != NULL)
229 {
230 if (rhs_type->interface_type() == NULL)
231 return Expression::convert_type_to_interface(context, lhs_type,
232 rhs_type, rhs_tree,
233 location);
234 else
235 return Expression::convert_interface_to_interface(context, lhs_type,
236 rhs_type, rhs_tree,
237 false, location);
238 }
239 else if (rhs_type->interface_type() != NULL)
240 return Expression::convert_interface_to_type(context, lhs_type, rhs_type,
241 rhs_tree, location);
242 else if (lhs_type->is_open_array_type()
243 && rhs_type->is_nil_type())
244 {
245 // Assigning nil to an open array.
246 gcc_assert(TREE_CODE(lhs_type_tree) == RECORD_TYPE);
247
248 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
249
250 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
251 tree field = TYPE_FIELDS(lhs_type_tree);
252 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
253 "__values") == 0);
254 elt->index = field;
255 elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
256
257 elt = VEC_quick_push(constructor_elt, init, NULL);
258 field = DECL_CHAIN(field);
259 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
260 "__count") == 0);
261 elt->index = field;
262 elt->value = fold_convert(TREE_TYPE(field), integer_zero_node);
263
264 elt = VEC_quick_push(constructor_elt, init, NULL);
265 field = DECL_CHAIN(field);
266 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
267 "__capacity") == 0);
268 elt->index = field;
269 elt->value = fold_convert(TREE_TYPE(field), integer_zero_node);
270
271 tree val = build_constructor(lhs_type_tree, init);
272 TREE_CONSTANT(val) = 1;
273
274 return val;
275 }
276 else if (rhs_type->is_nil_type())
277 {
278 // The left hand side should be a pointer type at the tree
279 // level.
280 gcc_assert(POINTER_TYPE_P(lhs_type_tree));
281 return fold_convert(lhs_type_tree, null_pointer_node);
282 }
283 else if (lhs_type_tree == TREE_TYPE(rhs_tree))
284 {
285 // No conversion is needed.
286 return rhs_tree;
287 }
288 else if (POINTER_TYPE_P(lhs_type_tree)
289 || INTEGRAL_TYPE_P(lhs_type_tree)
290 || SCALAR_FLOAT_TYPE_P(lhs_type_tree)
291 || COMPLEX_FLOAT_TYPE_P(lhs_type_tree))
292 return fold_convert_loc(location, lhs_type_tree, rhs_tree);
293 else if (TREE_CODE(lhs_type_tree) == RECORD_TYPE
294 && TREE_CODE(TREE_TYPE(rhs_tree)) == RECORD_TYPE)
295 {
296 // This conversion must be permitted by Go, or we wouldn't have
297 // gotten here.
298 gcc_assert(int_size_in_bytes(lhs_type_tree)
299 == int_size_in_bytes(TREE_TYPE(rhs_tree)));
300 return fold_build1_loc(location, VIEW_CONVERT_EXPR, lhs_type_tree,
301 rhs_tree);
302 }
303 else
304 {
305 gcc_assert(useless_type_conversion_p(lhs_type_tree, TREE_TYPE(rhs_tree)));
306 return rhs_tree;
307 }
308 }
309
310 // Return a tree for a conversion from a non-interface type to an
311 // interface type.
312
313 tree
314 Expression::convert_type_to_interface(Translate_context* context,
315 Type* lhs_type, Type* rhs_type,
316 tree rhs_tree, source_location location)
317 {
318 Gogo* gogo = context->gogo();
319 Interface_type* lhs_interface_type = lhs_type->interface_type();
320 bool lhs_is_empty = lhs_interface_type->is_empty();
321
322 // Since RHS_TYPE is a static type, we can create the interface
323 // method table at compile time.
324
325 // When setting an interface to nil, we just set both fields to
326 // NULL.
327 if (rhs_type->is_nil_type())
328 return lhs_type->get_init_tree(gogo, false);
329
330 // This should have been checked already.
331 gcc_assert(lhs_interface_type->implements_interface(rhs_type, NULL));
332
333 tree lhs_type_tree = lhs_type->get_tree(gogo);
334 if (lhs_type_tree == error_mark_node)
335 return error_mark_node;
336
337 // An interface is a tuple. If LHS_TYPE is an empty interface type,
338 // then the first field is the type descriptor for RHS_TYPE.
339 // Otherwise it is the interface method table for RHS_TYPE.
340 tree first_field_value;
341 if (lhs_is_empty)
342 first_field_value = rhs_type->type_descriptor_pointer(gogo);
343 else
344 {
345 // Build the interface method table for this interface and this
346 // object type: a list of function pointers for each interface
347 // method.
348 Named_type* rhs_named_type = rhs_type->named_type();
349 bool is_pointer = false;
350 if (rhs_named_type == NULL)
351 {
352 rhs_named_type = rhs_type->deref()->named_type();
353 is_pointer = true;
354 }
355 tree method_table;
356 if (rhs_named_type == NULL)
357 method_table = null_pointer_node;
358 else
359 method_table =
360 rhs_named_type->interface_method_table(gogo, lhs_interface_type,
361 is_pointer);
362 first_field_value = fold_convert_loc(location, const_ptr_type_node,
363 method_table);
364 }
365
366 // Start building a constructor for the value we will return.
367
368 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
369
370 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
371 tree field = TYPE_FIELDS(lhs_type_tree);
372 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
373 (lhs_is_empty ? "__type_descriptor" : "__methods")) == 0);
374 elt->index = field;
375 elt->value = fold_convert_loc(location, TREE_TYPE(field), first_field_value);
376
377 elt = VEC_quick_push(constructor_elt, init, NULL);
378 field = DECL_CHAIN(field);
379 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
380 elt->index = field;
381
382 if (rhs_type->points_to() != NULL)
383 {
384 // We are assigning a pointer to the interface; the interface
385 // holds the pointer itself.
386 elt->value = rhs_tree;
387 return build_constructor(lhs_type_tree, init);
388 }
389
390 // We are assigning a non-pointer value to the interface; the
391 // interface gets a copy of the value in the heap.
392
393 tree object_size = TYPE_SIZE_UNIT(TREE_TYPE(rhs_tree));
394
395 tree space = gogo->allocate_memory(rhs_type, object_size, location);
396 space = fold_convert_loc(location, build_pointer_type(TREE_TYPE(rhs_tree)),
397 space);
398 space = save_expr(space);
399
400 tree ref = build_fold_indirect_ref_loc(location, space);
401 TREE_THIS_NOTRAP(ref) = 1;
402 tree set = fold_build2_loc(location, MODIFY_EXPR, void_type_node,
403 ref, rhs_tree);
404
405 elt->value = fold_convert_loc(location, TREE_TYPE(field), space);
406
407 return build2(COMPOUND_EXPR, lhs_type_tree, set,
408 build_constructor(lhs_type_tree, init));
409 }
410
411 // Return a tree for the type descriptor of RHS_TREE, which has
412 // interface type RHS_TYPE. If RHS_TREE is nil the result will be
413 // NULL.
414
415 tree
416 Expression::get_interface_type_descriptor(Translate_context*,
417 Type* rhs_type, tree rhs_tree,
418 source_location location)
419 {
420 tree rhs_type_tree = TREE_TYPE(rhs_tree);
421 gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
422 tree rhs_field = TYPE_FIELDS(rhs_type_tree);
423 tree v = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
424 NULL_TREE);
425 if (rhs_type->interface_type()->is_empty())
426 {
427 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)),
428 "__type_descriptor") == 0);
429 return v;
430 }
431
432 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__methods")
433 == 0);
434 gcc_assert(POINTER_TYPE_P(TREE_TYPE(v)));
435 v = save_expr(v);
436 tree v1 = build_fold_indirect_ref_loc(location, v);
437 gcc_assert(TREE_CODE(TREE_TYPE(v1)) == RECORD_TYPE);
438 tree f = TYPE_FIELDS(TREE_TYPE(v1));
439 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(f)), "__type_descriptor")
440 == 0);
441 v1 = build3(COMPONENT_REF, TREE_TYPE(f), v1, f, NULL_TREE);
442
443 tree eq = fold_build2_loc(location, EQ_EXPR, boolean_type_node, v,
444 fold_convert_loc(location, TREE_TYPE(v),
445 null_pointer_node));
446 tree n = fold_convert_loc(location, TREE_TYPE(v1), null_pointer_node);
447 return fold_build3_loc(location, COND_EXPR, TREE_TYPE(v1),
448 eq, n, v1);
449 }
450
451 // Return a tree for the conversion of an interface type to an
452 // interface type.
453
454 tree
455 Expression::convert_interface_to_interface(Translate_context* context,
456 Type *lhs_type, Type *rhs_type,
457 tree rhs_tree, bool for_type_guard,
458 source_location location)
459 {
460 Gogo* gogo = context->gogo();
461 Interface_type* lhs_interface_type = lhs_type->interface_type();
462 bool lhs_is_empty = lhs_interface_type->is_empty();
463
464 tree lhs_type_tree = lhs_type->get_tree(gogo);
465 if (lhs_type_tree == error_mark_node)
466 return error_mark_node;
467
468 // In the general case this requires runtime examination of the type
469 // method table to match it up with the interface methods.
470
471 // FIXME: If all of the methods in the right hand side interface
472 // also appear in the left hand side interface, then we don't need
473 // to do a runtime check, although we still need to build a new
474 // method table.
475
476 // Get the type descriptor for the right hand side. This will be
477 // NULL for a nil interface.
478
479 if (!DECL_P(rhs_tree))
480 rhs_tree = save_expr(rhs_tree);
481
482 tree rhs_type_descriptor =
483 Expression::get_interface_type_descriptor(context, rhs_type, rhs_tree,
484 location);
485
486 // The result is going to be a two element constructor.
487
488 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
489
490 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
491 tree field = TYPE_FIELDS(lhs_type_tree);
492 elt->index = field;
493
494 if (for_type_guard)
495 {
496 // A type assertion fails when converting a nil interface.
497 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
498 static tree assert_interface_decl;
499 tree call = Gogo::call_builtin(&assert_interface_decl,
500 location,
501 "__go_assert_interface",
502 2,
503 ptr_type_node,
504 TREE_TYPE(lhs_type_descriptor),
505 lhs_type_descriptor,
506 TREE_TYPE(rhs_type_descriptor),
507 rhs_type_descriptor);
508 // This will panic if the interface conversion fails.
509 TREE_NOTHROW(assert_interface_decl) = 0;
510 elt->value = fold_convert_loc(location, TREE_TYPE(field), call);
511 }
512 else if (lhs_is_empty)
513 {
514 // A convertion to an empty interface always succeeds, and the
515 // first field is just the type descriptor of the object.
516 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
517 "__type_descriptor") == 0);
518 gcc_assert(TREE_TYPE(field) == TREE_TYPE(rhs_type_descriptor));
519 elt->value = rhs_type_descriptor;
520 }
521 else
522 {
523 // A conversion to a non-empty interface may fail, but unlike a
524 // type assertion converting nil will always succeed.
525 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods")
526 == 0);
527 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
528 static tree convert_interface_decl;
529 tree call = Gogo::call_builtin(&convert_interface_decl,
530 location,
531 "__go_convert_interface",
532 2,
533 ptr_type_node,
534 TREE_TYPE(lhs_type_descriptor),
535 lhs_type_descriptor,
536 TREE_TYPE(rhs_type_descriptor),
537 rhs_type_descriptor);
538 // This will panic if the interface conversion fails.
539 TREE_NOTHROW(convert_interface_decl) = 0;
540 elt->value = fold_convert_loc(location, TREE_TYPE(field), call);
541 }
542
543 // The second field is simply the object pointer.
544
545 elt = VEC_quick_push(constructor_elt, init, NULL);
546 field = DECL_CHAIN(field);
547 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
548 elt->index = field;
549
550 tree rhs_type_tree = TREE_TYPE(rhs_tree);
551 gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
552 tree rhs_field = DECL_CHAIN(TYPE_FIELDS(rhs_type_tree));
553 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__object") == 0);
554 elt->value = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
555 NULL_TREE);
556
557 return build_constructor(lhs_type_tree, init);
558 }
559
560 // Return a tree for the conversion of an interface type to a
561 // non-interface type.
562
563 tree
564 Expression::convert_interface_to_type(Translate_context* context,
565 Type *lhs_type, Type* rhs_type,
566 tree rhs_tree, source_location location)
567 {
568 Gogo* gogo = context->gogo();
569 tree rhs_type_tree = TREE_TYPE(rhs_tree);
570
571 tree lhs_type_tree = lhs_type->get_tree(gogo);
572 if (lhs_type_tree == error_mark_node)
573 return error_mark_node;
574
575 // Call a function to check that the type is valid. The function
576 // will panic with an appropriate runtime type error if the type is
577 // not valid.
578
579 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
580
581 if (!DECL_P(rhs_tree))
582 rhs_tree = save_expr(rhs_tree);
583
584 tree rhs_type_descriptor =
585 Expression::get_interface_type_descriptor(context, rhs_type, rhs_tree,
586 location);
587
588 tree rhs_inter_descriptor = rhs_type->type_descriptor_pointer(gogo);
589
590 static tree check_interface_type_decl;
591 tree call = Gogo::call_builtin(&check_interface_type_decl,
592 location,
593 "__go_check_interface_type",
594 3,
595 void_type_node,
596 TREE_TYPE(lhs_type_descriptor),
597 lhs_type_descriptor,
598 TREE_TYPE(rhs_type_descriptor),
599 rhs_type_descriptor,
600 TREE_TYPE(rhs_inter_descriptor),
601 rhs_inter_descriptor);
602 // This call will panic if the conversion is invalid.
603 TREE_NOTHROW(check_interface_type_decl) = 0;
604
605 // If the call succeeds, pull out the value.
606 gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
607 tree rhs_field = DECL_CHAIN(TYPE_FIELDS(rhs_type_tree));
608 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__object") == 0);
609 tree val = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
610 NULL_TREE);
611
612 // If the value is a pointer, then it is the value we want.
613 // Otherwise it points to the value.
614 if (lhs_type->points_to() == NULL)
615 {
616 val = fold_convert_loc(location, build_pointer_type(lhs_type_tree), val);
617 val = build_fold_indirect_ref_loc(location, val);
618 }
619
620 return build2(COMPOUND_EXPR, lhs_type_tree, call,
621 fold_convert_loc(location, lhs_type_tree, val));
622 }
623
624 // Convert an expression to a tree. This is implemented by the child
625 // class. Not that it is not in general safe to call this multiple
626 // times for a single expression, but that we don't catch such errors.
627
628 tree
629 Expression::get_tree(Translate_context* context)
630 {
631 // The child may have marked this expression as having an error.
632 if (this->classification_ == EXPRESSION_ERROR)
633 return error_mark_node;
634
635 return this->do_get_tree(context);
636 }
637
638 // Return a tree for VAL in TYPE.
639
640 tree
641 Expression::integer_constant_tree(mpz_t val, tree type)
642 {
643 if (type == error_mark_node)
644 return error_mark_node;
645 else if (TREE_CODE(type) == INTEGER_TYPE)
646 return double_int_to_tree(type,
647 mpz_get_double_int(type, val, true));
648 else if (TREE_CODE(type) == REAL_TYPE)
649 {
650 mpfr_t fval;
651 mpfr_init_set_z(fval, val, GMP_RNDN);
652 tree ret = Expression::float_constant_tree(fval, type);
653 mpfr_clear(fval);
654 return ret;
655 }
656 else if (TREE_CODE(type) == COMPLEX_TYPE)
657 {
658 mpfr_t fval;
659 mpfr_init_set_z(fval, val, GMP_RNDN);
660 tree real = Expression::float_constant_tree(fval, TREE_TYPE(type));
661 mpfr_clear(fval);
662 tree imag = build_real_from_int_cst(TREE_TYPE(type),
663 integer_zero_node);
664 return build_complex(type, real, imag);
665 }
666 else
667 gcc_unreachable();
668 }
669
670 // Return a tree for VAL in TYPE.
671
672 tree
673 Expression::float_constant_tree(mpfr_t val, tree type)
674 {
675 if (type == error_mark_node)
676 return error_mark_node;
677 else if (TREE_CODE(type) == INTEGER_TYPE)
678 {
679 mpz_t ival;
680 mpz_init(ival);
681 mpfr_get_z(ival, val, GMP_RNDN);
682 tree ret = Expression::integer_constant_tree(ival, type);
683 mpz_clear(ival);
684 return ret;
685 }
686 else if (TREE_CODE(type) == REAL_TYPE)
687 {
688 REAL_VALUE_TYPE r1;
689 real_from_mpfr(&r1, val, type, GMP_RNDN);
690 REAL_VALUE_TYPE r2;
691 real_convert(&r2, TYPE_MODE(type), &r1);
692 return build_real(type, r2);
693 }
694 else if (TREE_CODE(type) == COMPLEX_TYPE)
695 {
696 REAL_VALUE_TYPE r1;
697 real_from_mpfr(&r1, val, TREE_TYPE(type), GMP_RNDN);
698 REAL_VALUE_TYPE r2;
699 real_convert(&r2, TYPE_MODE(TREE_TYPE(type)), &r1);
700 tree imag = build_real_from_int_cst(TREE_TYPE(type),
701 integer_zero_node);
702 return build_complex(type, build_real(TREE_TYPE(type), r2), imag);
703 }
704 else
705 gcc_unreachable();
706 }
707
708 // Return a tree for REAL/IMAG in TYPE.
709
710 tree
711 Expression::complex_constant_tree(mpfr_t real, mpfr_t imag, tree type)
712 {
713 if (TREE_CODE(type) == COMPLEX_TYPE)
714 {
715 REAL_VALUE_TYPE r1;
716 real_from_mpfr(&r1, real, TREE_TYPE(type), GMP_RNDN);
717 REAL_VALUE_TYPE r2;
718 real_convert(&r2, TYPE_MODE(TREE_TYPE(type)), &r1);
719
720 REAL_VALUE_TYPE r3;
721 real_from_mpfr(&r3, imag, TREE_TYPE(type), GMP_RNDN);
722 REAL_VALUE_TYPE r4;
723 real_convert(&r4, TYPE_MODE(TREE_TYPE(type)), &r3);
724
725 return build_complex(type, build_real(TREE_TYPE(type), r2),
726 build_real(TREE_TYPE(type), r4));
727 }
728 else
729 gcc_unreachable();
730 }
731
732 // Return a tree which evaluates to true if VAL, of arbitrary integer
733 // type, is negative or is more than the maximum value of BOUND_TYPE.
734 // If SOFAR is not NULL, it is or'red into the result. The return
735 // value may be NULL if SOFAR is NULL.
736
737 tree
738 Expression::check_bounds(tree val, tree bound_type, tree sofar,
739 source_location loc)
740 {
741 tree val_type = TREE_TYPE(val);
742 tree ret = NULL_TREE;
743
744 if (!TYPE_UNSIGNED(val_type))
745 {
746 ret = fold_build2_loc(loc, LT_EXPR, boolean_type_node, val,
747 build_int_cst(val_type, 0));
748 if (ret == boolean_false_node)
749 ret = NULL_TREE;
750 }
751
752 if ((TYPE_UNSIGNED(val_type) && !TYPE_UNSIGNED(bound_type))
753 || TYPE_SIZE(val_type) > TYPE_SIZE(bound_type))
754 {
755 tree max = TYPE_MAX_VALUE(bound_type);
756 tree big = fold_build2_loc(loc, GT_EXPR, boolean_type_node, val,
757 fold_convert_loc(loc, val_type, max));
758 if (big == boolean_false_node)
759 ;
760 else if (ret == NULL_TREE)
761 ret = big;
762 else
763 ret = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
764 ret, big);
765 }
766
767 if (ret == NULL_TREE)
768 return sofar;
769 else if (sofar == NULL_TREE)
770 return ret;
771 else
772 return fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
773 sofar, ret);
774 }
775
776 // Error expressions. This are used to avoid cascading errors.
777
778 class Error_expression : public Expression
779 {
780 public:
781 Error_expression(source_location location)
782 : Expression(EXPRESSION_ERROR, location)
783 { }
784
785 protected:
786 bool
787 do_is_constant() const
788 { return true; }
789
790 bool
791 do_integer_constant_value(bool, mpz_t val, Type**) const
792 {
793 mpz_set_ui(val, 0);
794 return true;
795 }
796
797 bool
798 do_float_constant_value(mpfr_t val, Type**) const
799 {
800 mpfr_set_ui(val, 0, GMP_RNDN);
801 return true;
802 }
803
804 bool
805 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const
806 {
807 mpfr_set_ui(real, 0, GMP_RNDN);
808 mpfr_set_ui(imag, 0, GMP_RNDN);
809 return true;
810 }
811
812 void
813 do_discarding_value()
814 { }
815
816 Type*
817 do_type()
818 { return Type::make_error_type(); }
819
820 void
821 do_determine_type(const Type_context*)
822 { }
823
824 Expression*
825 do_copy()
826 { return this; }
827
828 bool
829 do_is_addressable() const
830 { return true; }
831
832 tree
833 do_get_tree(Translate_context*)
834 { return error_mark_node; }
835 };
836
837 Expression*
838 Expression::make_error(source_location location)
839 {
840 return new Error_expression(location);
841 }
842
843 // An expression which is really a type. This is used during parsing.
844 // It is an error if these survive after lowering.
845
846 class
847 Type_expression : public Expression
848 {
849 public:
850 Type_expression(Type* type, source_location location)
851 : Expression(EXPRESSION_TYPE, location),
852 type_(type)
853 { }
854
855 protected:
856 int
857 do_traverse(Traverse* traverse)
858 { return Type::traverse(this->type_, traverse); }
859
860 Type*
861 do_type()
862 { return this->type_; }
863
864 void
865 do_determine_type(const Type_context*)
866 { }
867
868 void
869 do_check_types(Gogo*)
870 { this->report_error(_("invalid use of type")); }
871
872 Expression*
873 do_copy()
874 { return this; }
875
876 tree
877 do_get_tree(Translate_context*)
878 { gcc_unreachable(); }
879
880 private:
881 // The type which we are representing as an expression.
882 Type* type_;
883 };
884
885 Expression*
886 Expression::make_type(Type* type, source_location location)
887 {
888 return new Type_expression(type, location);
889 }
890
891 // Class Var_expression.
892
893 // Lower a variable expression. Here we just make sure that the
894 // initialization expression of the variable has been lowered. This
895 // ensures that we will be able to determine the type of the variable
896 // if necessary.
897
898 Expression*
899 Var_expression::do_lower(Gogo* gogo, Named_object* function, int)
900 {
901 if (this->variable_->is_variable())
902 {
903 Variable* var = this->variable_->var_value();
904 // This is either a local variable or a global variable. A
905 // reference to a variable which is local to an enclosing
906 // function will be a reference to a field in a closure.
907 if (var->is_global())
908 function = NULL;
909 var->lower_init_expression(gogo, function);
910 }
911 return this;
912 }
913
914 // Return the name of the variable.
915
916 const std::string&
917 Var_expression::name() const
918 {
919 return this->variable_->name();
920 }
921
922 // Return the type of a reference to a variable.
923
924 Type*
925 Var_expression::do_type()
926 {
927 if (this->variable_->is_variable())
928 return this->variable_->var_value()->type();
929 else if (this->variable_->is_result_variable())
930 return this->variable_->result_var_value()->type();
931 else
932 gcc_unreachable();
933 }
934
935 // Something takes the address of this variable. This means that we
936 // may want to move the variable onto the heap.
937
938 void
939 Var_expression::do_address_taken(bool escapes)
940 {
941 if (!escapes)
942 ;
943 else if (this->variable_->is_variable())
944 this->variable_->var_value()->set_address_taken();
945 else if (this->variable_->is_result_variable())
946 this->variable_->result_var_value()->set_address_taken();
947 else
948 gcc_unreachable();
949 }
950
951 // Get the tree for a reference to a variable.
952
953 tree
954 Var_expression::do_get_tree(Translate_context* context)
955 {
956 return this->variable_->get_tree(context->gogo(), context->function());
957 }
958
959 // Make a reference to a variable in an expression.
960
961 Expression*
962 Expression::make_var_reference(Named_object* var, source_location location)
963 {
964 if (var->is_sink())
965 return Expression::make_sink(location);
966
967 // FIXME: Creating a new object for each reference to a variable is
968 // wasteful.
969 return new Var_expression(var, location);
970 }
971
972 // Class Temporary_reference_expression.
973
974 // The type.
975
976 Type*
977 Temporary_reference_expression::do_type()
978 {
979 return this->statement_->type();
980 }
981
982 // Called if something takes the address of this temporary variable.
983 // We never have to move temporary variables to the heap, but we do
984 // need to know that they must live in the stack rather than in a
985 // register.
986
987 void
988 Temporary_reference_expression::do_address_taken(bool)
989 {
990 this->statement_->set_is_address_taken();
991 }
992
993 // Get a tree referring to the variable.
994
995 tree
996 Temporary_reference_expression::do_get_tree(Translate_context*)
997 {
998 return this->statement_->get_decl();
999 }
1000
1001 // Make a reference to a temporary variable.
1002
1003 Expression*
1004 Expression::make_temporary_reference(Temporary_statement* statement,
1005 source_location location)
1006 {
1007 return new Temporary_reference_expression(statement, location);
1008 }
1009
1010 // A sink expression--a use of the blank identifier _.
1011
1012 class Sink_expression : public Expression
1013 {
1014 public:
1015 Sink_expression(source_location location)
1016 : Expression(EXPRESSION_SINK, location),
1017 type_(NULL), var_(NULL_TREE)
1018 { }
1019
1020 protected:
1021 void
1022 do_discarding_value()
1023 { }
1024
1025 Type*
1026 do_type();
1027
1028 void
1029 do_determine_type(const Type_context*);
1030
1031 Expression*
1032 do_copy()
1033 { return new Sink_expression(this->location()); }
1034
1035 tree
1036 do_get_tree(Translate_context*);
1037
1038 private:
1039 // The type of this sink variable.
1040 Type* type_;
1041 // The temporary variable we generate.
1042 tree var_;
1043 };
1044
1045 // Return the type of a sink expression.
1046
1047 Type*
1048 Sink_expression::do_type()
1049 {
1050 if (this->type_ == NULL)
1051 return Type::make_sink_type();
1052 return this->type_;
1053 }
1054
1055 // Determine the type of a sink expression.
1056
1057 void
1058 Sink_expression::do_determine_type(const Type_context* context)
1059 {
1060 if (context->type != NULL)
1061 this->type_ = context->type;
1062 }
1063
1064 // Return a temporary variable for a sink expression. This will
1065 // presumably be a write-only variable which the middle-end will drop.
1066
1067 tree
1068 Sink_expression::do_get_tree(Translate_context* context)
1069 {
1070 if (this->var_ == NULL_TREE)
1071 {
1072 gcc_assert(this->type_ != NULL && !this->type_->is_sink_type());
1073 this->var_ = create_tmp_var(this->type_->get_tree(context->gogo()),
1074 "blank");
1075 }
1076 return this->var_;
1077 }
1078
1079 // Make a sink expression.
1080
1081 Expression*
1082 Expression::make_sink(source_location location)
1083 {
1084 return new Sink_expression(location);
1085 }
1086
1087 // Class Func_expression.
1088
1089 // FIXME: Can a function expression appear in a constant expression?
1090 // The value is unchanging. Initializing a constant to the address of
1091 // a function seems like it could work, though there might be little
1092 // point to it.
1093
1094 // Return the name of the function.
1095
1096 const std::string&
1097 Func_expression::name() const
1098 {
1099 return this->function_->name();
1100 }
1101
1102 // Traversal.
1103
1104 int
1105 Func_expression::do_traverse(Traverse* traverse)
1106 {
1107 return (this->closure_ == NULL
1108 ? TRAVERSE_CONTINUE
1109 : Expression::traverse(&this->closure_, traverse));
1110 }
1111
1112 // Return the type of a function expression.
1113
1114 Type*
1115 Func_expression::do_type()
1116 {
1117 if (this->function_->is_function())
1118 return this->function_->func_value()->type();
1119 else if (this->function_->is_function_declaration())
1120 return this->function_->func_declaration_value()->type();
1121 else
1122 gcc_unreachable();
1123 }
1124
1125 // Get the tree for a function expression without evaluating the
1126 // closure.
1127
1128 tree
1129 Func_expression::get_tree_without_closure(Gogo* gogo)
1130 {
1131 Function_type* fntype;
1132 if (this->function_->is_function())
1133 fntype = this->function_->func_value()->type();
1134 else if (this->function_->is_function_declaration())
1135 fntype = this->function_->func_declaration_value()->type();
1136 else
1137 gcc_unreachable();
1138
1139 // Builtin functions are handled specially by Call_expression. We
1140 // can't take their address.
1141 if (fntype->is_builtin())
1142 {
1143 error_at(this->location(), "invalid use of special builtin function %qs",
1144 this->function_->name().c_str());
1145 return error_mark_node;
1146 }
1147
1148 Named_object* no = this->function_;
1149
1150 tree id = no->get_id(gogo);
1151 if (id == error_mark_node)
1152 return error_mark_node;
1153
1154 tree fndecl;
1155 if (no->is_function())
1156 fndecl = no->func_value()->get_or_make_decl(gogo, no, id);
1157 else if (no->is_function_declaration())
1158 fndecl = no->func_declaration_value()->get_or_make_decl(gogo, no, id);
1159 else
1160 gcc_unreachable();
1161
1162 if (fndecl == error_mark_node)
1163 return error_mark_node;
1164
1165 return build_fold_addr_expr_loc(this->location(), fndecl);
1166 }
1167
1168 // Get the tree for a function expression. This is used when we take
1169 // the address of a function rather than simply calling it. If the
1170 // function has a closure, we must use a trampoline.
1171
1172 tree
1173 Func_expression::do_get_tree(Translate_context* context)
1174 {
1175 Gogo* gogo = context->gogo();
1176
1177 tree fnaddr = this->get_tree_without_closure(gogo);
1178 if (fnaddr == error_mark_node)
1179 return error_mark_node;
1180
1181 gcc_assert(TREE_CODE(fnaddr) == ADDR_EXPR
1182 && TREE_CODE(TREE_OPERAND(fnaddr, 0)) == FUNCTION_DECL);
1183 TREE_ADDRESSABLE(TREE_OPERAND(fnaddr, 0)) = 1;
1184
1185 // For a normal non-nested function call, that is all we have to do.
1186 if (!this->function_->is_function()
1187 || this->function_->func_value()->enclosing() == NULL)
1188 {
1189 gcc_assert(this->closure_ == NULL);
1190 return fnaddr;
1191 }
1192
1193 // For a nested function call, we have to always allocate a
1194 // trampoline. If we don't always allocate, then closures will not
1195 // be reliably distinct.
1196 Expression* closure = this->closure_;
1197 tree closure_tree;
1198 if (closure == NULL)
1199 closure_tree = null_pointer_node;
1200 else
1201 {
1202 // Get the value of the closure. This will be a pointer to
1203 // space allocated on the heap.
1204 closure_tree = closure->get_tree(context);
1205 if (closure_tree == error_mark_node)
1206 return error_mark_node;
1207 gcc_assert(POINTER_TYPE_P(TREE_TYPE(closure_tree)));
1208 }
1209
1210 // Now we need to build some code on the heap. This code will load
1211 // the static chain pointer with the closure and then jump to the
1212 // body of the function. The normal gcc approach is to build the
1213 // code on the stack. Unfortunately we can not do that, as Go
1214 // permits us to return the function pointer.
1215
1216 return gogo->make_trampoline(fnaddr, closure_tree, this->location());
1217 }
1218
1219 // Make a reference to a function in an expression.
1220
1221 Expression*
1222 Expression::make_func_reference(Named_object* function, Expression* closure,
1223 source_location location)
1224 {
1225 return new Func_expression(function, closure, location);
1226 }
1227
1228 // Class Unknown_expression.
1229
1230 // Return the name of an unknown expression.
1231
1232 const std::string&
1233 Unknown_expression::name() const
1234 {
1235 return this->named_object_->name();
1236 }
1237
1238 // Lower a reference to an unknown name.
1239
1240 Expression*
1241 Unknown_expression::do_lower(Gogo*, Named_object*, int)
1242 {
1243 source_location location = this->location();
1244 Named_object* no = this->named_object_;
1245 Named_object* real = no->unknown_value()->real_named_object();
1246 if (real == NULL)
1247 {
1248 if (this->is_composite_literal_key_)
1249 return this;
1250 error_at(location, "reference to undefined name %qs",
1251 this->named_object_->message_name().c_str());
1252 return Expression::make_error(location);
1253 }
1254 switch (real->classification())
1255 {
1256 case Named_object::NAMED_OBJECT_CONST:
1257 return Expression::make_const_reference(real, location);
1258 case Named_object::NAMED_OBJECT_TYPE:
1259 return Expression::make_type(real->type_value(), location);
1260 case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
1261 if (this->is_composite_literal_key_)
1262 return this;
1263 error_at(location, "reference to undefined type %qs",
1264 real->message_name().c_str());
1265 return Expression::make_error(location);
1266 case Named_object::NAMED_OBJECT_VAR:
1267 return Expression::make_var_reference(real, location);
1268 case Named_object::NAMED_OBJECT_FUNC:
1269 case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
1270 return Expression::make_func_reference(real, NULL, location);
1271 case Named_object::NAMED_OBJECT_PACKAGE:
1272 if (this->is_composite_literal_key_)
1273 return this;
1274 error_at(location, "unexpected reference to package");
1275 return Expression::make_error(location);
1276 default:
1277 gcc_unreachable();
1278 }
1279 }
1280
1281 // Make a reference to an unknown name.
1282
1283 Expression*
1284 Expression::make_unknown_reference(Named_object* no, source_location location)
1285 {
1286 gcc_assert(no->resolve()->is_unknown());
1287 return new Unknown_expression(no, location);
1288 }
1289
1290 // A boolean expression.
1291
1292 class Boolean_expression : public Expression
1293 {
1294 public:
1295 Boolean_expression(bool val, source_location location)
1296 : Expression(EXPRESSION_BOOLEAN, location),
1297 val_(val), type_(NULL)
1298 { }
1299
1300 static Expression*
1301 do_import(Import*);
1302
1303 protected:
1304 bool
1305 do_is_constant() const
1306 { return true; }
1307
1308 Type*
1309 do_type();
1310
1311 void
1312 do_determine_type(const Type_context*);
1313
1314 Expression*
1315 do_copy()
1316 { return this; }
1317
1318 tree
1319 do_get_tree(Translate_context*)
1320 { return this->val_ ? boolean_true_node : boolean_false_node; }
1321
1322 void
1323 do_export(Export* exp) const
1324 { exp->write_c_string(this->val_ ? "true" : "false"); }
1325
1326 private:
1327 // The constant.
1328 bool val_;
1329 // The type as determined by context.
1330 Type* type_;
1331 };
1332
1333 // Get the type.
1334
1335 Type*
1336 Boolean_expression::do_type()
1337 {
1338 if (this->type_ == NULL)
1339 this->type_ = Type::make_boolean_type();
1340 return this->type_;
1341 }
1342
1343 // Set the type from the context.
1344
1345 void
1346 Boolean_expression::do_determine_type(const Type_context* context)
1347 {
1348 if (this->type_ != NULL && !this->type_->is_abstract())
1349 ;
1350 else if (context->type != NULL && context->type->is_boolean_type())
1351 this->type_ = context->type;
1352 else if (!context->may_be_abstract)
1353 this->type_ = Type::lookup_bool_type();
1354 }
1355
1356 // Import a boolean constant.
1357
1358 Expression*
1359 Boolean_expression::do_import(Import* imp)
1360 {
1361 if (imp->peek_char() == 't')
1362 {
1363 imp->require_c_string("true");
1364 return Expression::make_boolean(true, imp->location());
1365 }
1366 else
1367 {
1368 imp->require_c_string("false");
1369 return Expression::make_boolean(false, imp->location());
1370 }
1371 }
1372
1373 // Make a boolean expression.
1374
1375 Expression*
1376 Expression::make_boolean(bool val, source_location location)
1377 {
1378 return new Boolean_expression(val, location);
1379 }
1380
1381 // Class String_expression.
1382
1383 // Get the type.
1384
1385 Type*
1386 String_expression::do_type()
1387 {
1388 if (this->type_ == NULL)
1389 this->type_ = Type::make_string_type();
1390 return this->type_;
1391 }
1392
1393 // Set the type from the context.
1394
1395 void
1396 String_expression::do_determine_type(const Type_context* context)
1397 {
1398 if (this->type_ != NULL && !this->type_->is_abstract())
1399 ;
1400 else if (context->type != NULL && context->type->is_string_type())
1401 this->type_ = context->type;
1402 else if (!context->may_be_abstract)
1403 this->type_ = Type::lookup_string_type();
1404 }
1405
1406 // Build a string constant.
1407
1408 tree
1409 String_expression::do_get_tree(Translate_context* context)
1410 {
1411 return context->gogo()->go_string_constant_tree(this->val_);
1412 }
1413
1414 // Export a string expression.
1415
1416 void
1417 String_expression::do_export(Export* exp) const
1418 {
1419 std::string s;
1420 s.reserve(this->val_.length() * 4 + 2);
1421 s += '"';
1422 for (std::string::const_iterator p = this->val_.begin();
1423 p != this->val_.end();
1424 ++p)
1425 {
1426 if (*p == '\\' || *p == '"')
1427 {
1428 s += '\\';
1429 s += *p;
1430 }
1431 else if (*p >= 0x20 && *p < 0x7f)
1432 s += *p;
1433 else if (*p == '\n')
1434 s += "\\n";
1435 else if (*p == '\t')
1436 s += "\\t";
1437 else
1438 {
1439 s += "\\x";
1440 unsigned char c = *p;
1441 unsigned int dig = c >> 4;
1442 s += dig < 10 ? '0' + dig : 'A' + dig - 10;
1443 dig = c & 0xf;
1444 s += dig < 10 ? '0' + dig : 'A' + dig - 10;
1445 }
1446 }
1447 s += '"';
1448 exp->write_string(s);
1449 }
1450
1451 // Import a string expression.
1452
1453 Expression*
1454 String_expression::do_import(Import* imp)
1455 {
1456 imp->require_c_string("\"");
1457 std::string val;
1458 while (true)
1459 {
1460 int c = imp->get_char();
1461 if (c == '"' || c == -1)
1462 break;
1463 if (c != '\\')
1464 val += static_cast<char>(c);
1465 else
1466 {
1467 c = imp->get_char();
1468 if (c == '\\' || c == '"')
1469 val += static_cast<char>(c);
1470 else if (c == 'n')
1471 val += '\n';
1472 else if (c == 't')
1473 val += '\t';
1474 else if (c == 'x')
1475 {
1476 c = imp->get_char();
1477 unsigned int vh = c >= '0' && c <= '9' ? c - '0' : c - 'A' + 10;
1478 c = imp->get_char();
1479 unsigned int vl = c >= '0' && c <= '9' ? c - '0' : c - 'A' + 10;
1480 char v = (vh << 4) | vl;
1481 val += v;
1482 }
1483 else
1484 {
1485 error_at(imp->location(), "bad string constant");
1486 return Expression::make_error(imp->location());
1487 }
1488 }
1489 }
1490 return Expression::make_string(val, imp->location());
1491 }
1492
1493 // Make a string expression.
1494
1495 Expression*
1496 Expression::make_string(const std::string& val, source_location location)
1497 {
1498 return new String_expression(val, location);
1499 }
1500
1501 // Make an integer expression.
1502
1503 class Integer_expression : public Expression
1504 {
1505 public:
1506 Integer_expression(const mpz_t* val, Type* type, source_location location)
1507 : Expression(EXPRESSION_INTEGER, location),
1508 type_(type)
1509 { mpz_init_set(this->val_, *val); }
1510
1511 static Expression*
1512 do_import(Import*);
1513
1514 // Return whether VAL fits in the type.
1515 static bool
1516 check_constant(mpz_t val, Type*, source_location);
1517
1518 // Write VAL to export data.
1519 static void
1520 export_integer(Export* exp, const mpz_t val);
1521
1522 protected:
1523 bool
1524 do_is_constant() const
1525 { return true; }
1526
1527 bool
1528 do_integer_constant_value(bool, mpz_t val, Type** ptype) const;
1529
1530 Type*
1531 do_type();
1532
1533 void
1534 do_determine_type(const Type_context* context);
1535
1536 void
1537 do_check_types(Gogo*);
1538
1539 tree
1540 do_get_tree(Translate_context*);
1541
1542 Expression*
1543 do_copy()
1544 { return Expression::make_integer(&this->val_, this->type_,
1545 this->location()); }
1546
1547 void
1548 do_export(Export*) const;
1549
1550 private:
1551 // The integer value.
1552 mpz_t val_;
1553 // The type so far.
1554 Type* type_;
1555 };
1556
1557 // Return an integer constant value.
1558
1559 bool
1560 Integer_expression::do_integer_constant_value(bool, mpz_t val,
1561 Type** ptype) const
1562 {
1563 if (this->type_ != NULL)
1564 *ptype = this->type_;
1565 mpz_set(val, this->val_);
1566 return true;
1567 }
1568
1569 // Return the current type. If we haven't set the type yet, we return
1570 // an abstract integer type.
1571
1572 Type*
1573 Integer_expression::do_type()
1574 {
1575 if (this->type_ == NULL)
1576 this->type_ = Type::make_abstract_integer_type();
1577 return this->type_;
1578 }
1579
1580 // Set the type of the integer value. Here we may switch from an
1581 // abstract type to a real type.
1582
1583 void
1584 Integer_expression::do_determine_type(const Type_context* context)
1585 {
1586 if (this->type_ != NULL && !this->type_->is_abstract())
1587 ;
1588 else if (context->type != NULL
1589 && (context->type->integer_type() != NULL
1590 || context->type->float_type() != NULL
1591 || context->type->complex_type() != NULL))
1592 this->type_ = context->type;
1593 else if (!context->may_be_abstract)
1594 this->type_ = Type::lookup_integer_type("int");
1595 }
1596
1597 // Return true if the integer VAL fits in the range of the type TYPE.
1598 // Otherwise give an error and return false. TYPE may be NULL.
1599
1600 bool
1601 Integer_expression::check_constant(mpz_t val, Type* type,
1602 source_location location)
1603 {
1604 if (type == NULL)
1605 return true;
1606 Integer_type* itype = type->integer_type();
1607 if (itype == NULL || itype->is_abstract())
1608 return true;
1609
1610 int bits = mpz_sizeinbase(val, 2);
1611
1612 if (itype->is_unsigned())
1613 {
1614 // For an unsigned type we can only accept a nonnegative number,
1615 // and we must be able to represent at least BITS.
1616 if (mpz_sgn(val) >= 0
1617 && bits <= itype->bits())
1618 return true;
1619 }
1620 else
1621 {
1622 // For a signed type we need an extra bit to indicate the sign.
1623 // We have to handle the most negative integer specially.
1624 if (bits + 1 <= itype->bits()
1625 || (bits <= itype->bits()
1626 && mpz_sgn(val) < 0
1627 && (mpz_scan1(val, 0)
1628 == static_cast<unsigned long>(itype->bits() - 1))
1629 && mpz_scan0(val, itype->bits()) == ULONG_MAX))
1630 return true;
1631 }
1632
1633 error_at(location, "integer constant overflow");
1634 return false;
1635 }
1636
1637 // Check the type of an integer constant.
1638
1639 void
1640 Integer_expression::do_check_types(Gogo*)
1641 {
1642 if (this->type_ == NULL)
1643 return;
1644 if (!Integer_expression::check_constant(this->val_, this->type_,
1645 this->location()))
1646 this->set_is_error();
1647 }
1648
1649 // Get a tree for an integer constant.
1650
1651 tree
1652 Integer_expression::do_get_tree(Translate_context* context)
1653 {
1654 Gogo* gogo = context->gogo();
1655 tree type;
1656 if (this->type_ != NULL && !this->type_->is_abstract())
1657 type = this->type_->get_tree(gogo);
1658 else if (this->type_ != NULL && this->type_->float_type() != NULL)
1659 {
1660 // We are converting to an abstract floating point type.
1661 type = Type::lookup_float_type("float64")->get_tree(gogo);
1662 }
1663 else if (this->type_ != NULL && this->type_->complex_type() != NULL)
1664 {
1665 // We are converting to an abstract complex type.
1666 type = Type::lookup_complex_type("complex128")->get_tree(gogo);
1667 }
1668 else
1669 {
1670 // If we still have an abstract type here, then this is being
1671 // used in a constant expression which didn't get reduced for
1672 // some reason. Use a type which will fit the value. We use <,
1673 // not <=, because we need an extra bit for the sign bit.
1674 int bits = mpz_sizeinbase(this->val_, 2);
1675 if (bits < INT_TYPE_SIZE)
1676 type = Type::lookup_integer_type("int")->get_tree(gogo);
1677 else if (bits < 64)
1678 type = Type::lookup_integer_type("int64")->get_tree(gogo);
1679 else
1680 type = long_long_integer_type_node;
1681 }
1682 return Expression::integer_constant_tree(this->val_, type);
1683 }
1684
1685 // Write VAL to export data.
1686
1687 void
1688 Integer_expression::export_integer(Export* exp, const mpz_t val)
1689 {
1690 char* s = mpz_get_str(NULL, 10, val);
1691 exp->write_c_string(s);
1692 free(s);
1693 }
1694
1695 // Export an integer in a constant expression.
1696
1697 void
1698 Integer_expression::do_export(Export* exp) const
1699 {
1700 Integer_expression::export_integer(exp, this->val_);
1701 // A trailing space lets us reliably identify the end of the number.
1702 exp->write_c_string(" ");
1703 }
1704
1705 // Import an integer, floating point, or complex value. This handles
1706 // all these types because they all start with digits.
1707
1708 Expression*
1709 Integer_expression::do_import(Import* imp)
1710 {
1711 std::string num = imp->read_identifier();
1712 imp->require_c_string(" ");
1713 if (!num.empty() && num[num.length() - 1] == 'i')
1714 {
1715 mpfr_t real;
1716 size_t plus_pos = num.find('+', 1);
1717 size_t minus_pos = num.find('-', 1);
1718 size_t pos;
1719 if (plus_pos == std::string::npos)
1720 pos = minus_pos;
1721 else if (minus_pos == std::string::npos)
1722 pos = plus_pos;
1723 else
1724 {
1725 error_at(imp->location(), "bad number in import data: %qs",
1726 num.c_str());
1727 return Expression::make_error(imp->location());
1728 }
1729 if (pos == std::string::npos)
1730 mpfr_set_ui(real, 0, GMP_RNDN);
1731 else
1732 {
1733 std::string real_str = num.substr(0, pos);
1734 if (mpfr_init_set_str(real, real_str.c_str(), 10, GMP_RNDN) != 0)
1735 {
1736 error_at(imp->location(), "bad number in import data: %qs",
1737 real_str.c_str());
1738 return Expression::make_error(imp->location());
1739 }
1740 }
1741
1742 std::string imag_str;
1743 if (pos == std::string::npos)
1744 imag_str = num;
1745 else
1746 imag_str = num.substr(pos);
1747 imag_str = imag_str.substr(0, imag_str.size() - 1);
1748 mpfr_t imag;
1749 if (mpfr_init_set_str(imag, imag_str.c_str(), 10, GMP_RNDN) != 0)
1750 {
1751 error_at(imp->location(), "bad number in import data: %qs",
1752 imag_str.c_str());
1753 return Expression::make_error(imp->location());
1754 }
1755 Expression* ret = Expression::make_complex(&real, &imag, NULL,
1756 imp->location());
1757 mpfr_clear(real);
1758 mpfr_clear(imag);
1759 return ret;
1760 }
1761 else if (num.find('.') == std::string::npos
1762 && num.find('E') == std::string::npos)
1763 {
1764 mpz_t val;
1765 if (mpz_init_set_str(val, num.c_str(), 10) != 0)
1766 {
1767 error_at(imp->location(), "bad number in import data: %qs",
1768 num.c_str());
1769 return Expression::make_error(imp->location());
1770 }
1771 Expression* ret = Expression::make_integer(&val, NULL, imp->location());
1772 mpz_clear(val);
1773 return ret;
1774 }
1775 else
1776 {
1777 mpfr_t val;
1778 if (mpfr_init_set_str(val, num.c_str(), 10, GMP_RNDN) != 0)
1779 {
1780 error_at(imp->location(), "bad number in import data: %qs",
1781 num.c_str());
1782 return Expression::make_error(imp->location());
1783 }
1784 Expression* ret = Expression::make_float(&val, NULL, imp->location());
1785 mpfr_clear(val);
1786 return ret;
1787 }
1788 }
1789
1790 // Build a new integer value.
1791
1792 Expression*
1793 Expression::make_integer(const mpz_t* val, Type* type,
1794 source_location location)
1795 {
1796 return new Integer_expression(val, type, location);
1797 }
1798
1799 // Floats.
1800
1801 class Float_expression : public Expression
1802 {
1803 public:
1804 Float_expression(const mpfr_t* val, Type* type, source_location location)
1805 : Expression(EXPRESSION_FLOAT, location),
1806 type_(type)
1807 {
1808 mpfr_init_set(this->val_, *val, GMP_RNDN);
1809 }
1810
1811 // Constrain VAL to fit into TYPE.
1812 static void
1813 constrain_float(mpfr_t val, Type* type);
1814
1815 // Return whether VAL fits in the type.
1816 static bool
1817 check_constant(mpfr_t val, Type*, source_location);
1818
1819 // Write VAL to export data.
1820 static void
1821 export_float(Export* exp, const mpfr_t val);
1822
1823 protected:
1824 bool
1825 do_is_constant() const
1826 { return true; }
1827
1828 bool
1829 do_float_constant_value(mpfr_t val, Type**) const;
1830
1831 Type*
1832 do_type();
1833
1834 void
1835 do_determine_type(const Type_context*);
1836
1837 void
1838 do_check_types(Gogo*);
1839
1840 Expression*
1841 do_copy()
1842 { return Expression::make_float(&this->val_, this->type_,
1843 this->location()); }
1844
1845 tree
1846 do_get_tree(Translate_context*);
1847
1848 void
1849 do_export(Export*) const;
1850
1851 private:
1852 // The floating point value.
1853 mpfr_t val_;
1854 // The type so far.
1855 Type* type_;
1856 };
1857
1858 // Constrain VAL to fit into TYPE.
1859
1860 void
1861 Float_expression::constrain_float(mpfr_t val, Type* type)
1862 {
1863 Float_type* ftype = type->float_type();
1864 if (ftype != NULL && !ftype->is_abstract())
1865 {
1866 tree type_tree = ftype->type_tree();
1867 REAL_VALUE_TYPE rvt;
1868 real_from_mpfr(&rvt, val, type_tree, GMP_RNDN);
1869 real_convert(&rvt, TYPE_MODE(type_tree), &rvt);
1870 mpfr_from_real(val, &rvt, GMP_RNDN);
1871 }
1872 }
1873
1874 // Return a floating point constant value.
1875
1876 bool
1877 Float_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
1878 {
1879 if (this->type_ != NULL)
1880 *ptype = this->type_;
1881 mpfr_set(val, this->val_, GMP_RNDN);
1882 return true;
1883 }
1884
1885 // Return the current type. If we haven't set the type yet, we return
1886 // an abstract float type.
1887
1888 Type*
1889 Float_expression::do_type()
1890 {
1891 if (this->type_ == NULL)
1892 this->type_ = Type::make_abstract_float_type();
1893 return this->type_;
1894 }
1895
1896 // Set the type of the float value. Here we may switch from an
1897 // abstract type to a real type.
1898
1899 void
1900 Float_expression::do_determine_type(const Type_context* context)
1901 {
1902 if (this->type_ != NULL && !this->type_->is_abstract())
1903 ;
1904 else if (context->type != NULL
1905 && (context->type->integer_type() != NULL
1906 || context->type->float_type() != NULL
1907 || context->type->complex_type() != NULL))
1908 this->type_ = context->type;
1909 else if (!context->may_be_abstract)
1910 this->type_ = Type::lookup_float_type("float");
1911 }
1912
1913 // Return true if the floating point value VAL fits in the range of
1914 // the type TYPE. Otherwise give an error and return false. TYPE may
1915 // be NULL.
1916
1917 bool
1918 Float_expression::check_constant(mpfr_t val, Type* type,
1919 source_location location)
1920 {
1921 if (type == NULL)
1922 return true;
1923 Float_type* ftype = type->float_type();
1924 if (ftype == NULL || ftype->is_abstract())
1925 return true;
1926
1927 // A NaN or Infinity always fits in the range of the type.
1928 if (mpfr_nan_p(val) || mpfr_inf_p(val) || mpfr_zero_p(val))
1929 return true;
1930
1931 mp_exp_t exp = mpfr_get_exp(val);
1932 mp_exp_t max_exp;
1933 switch (ftype->bits())
1934 {
1935 case 32:
1936 max_exp = 128;
1937 break;
1938 case 64:
1939 max_exp = 1024;
1940 break;
1941 default:
1942 gcc_unreachable();
1943 }
1944 if (exp > max_exp)
1945 {
1946 error_at(location, "floating point constant overflow");
1947 return false;
1948 }
1949 return true;
1950 }
1951
1952 // Check the type of a float value.
1953
1954 void
1955 Float_expression::do_check_types(Gogo*)
1956 {
1957 if (this->type_ == NULL)
1958 return;
1959
1960 if (!Float_expression::check_constant(this->val_, this->type_,
1961 this->location()))
1962 this->set_is_error();
1963
1964 Integer_type* integer_type = this->type_->integer_type();
1965 if (integer_type != NULL)
1966 {
1967 if (!mpfr_integer_p(this->val_))
1968 this->report_error(_("floating point constant truncated to integer"));
1969 else
1970 {
1971 gcc_assert(!integer_type->is_abstract());
1972 mpz_t ival;
1973 mpz_init(ival);
1974 mpfr_get_z(ival, this->val_, GMP_RNDN);
1975 Integer_expression::check_constant(ival, integer_type,
1976 this->location());
1977 mpz_clear(ival);
1978 }
1979 }
1980 }
1981
1982 // Get a tree for a float constant.
1983
1984 tree
1985 Float_expression::do_get_tree(Translate_context* context)
1986 {
1987 Gogo* gogo = context->gogo();
1988 tree type;
1989 if (this->type_ != NULL && !this->type_->is_abstract())
1990 type = this->type_->get_tree(gogo);
1991 else if (this->type_ != NULL && this->type_->integer_type() != NULL)
1992 {
1993 // We have an abstract integer type. We just hope for the best.
1994 type = Type::lookup_integer_type("int")->get_tree(gogo);
1995 }
1996 else
1997 {
1998 // If we still have an abstract type here, then this is being
1999 // used in a constant expression which didn't get reduced. We
2000 // just use float64 and hope for the best.
2001 type = Type::lookup_float_type("float64")->get_tree(gogo);
2002 }
2003 return Expression::float_constant_tree(this->val_, type);
2004 }
2005
2006 // Write a floating point number to export data.
2007
2008 void
2009 Float_expression::export_float(Export *exp, const mpfr_t val)
2010 {
2011 mp_exp_t exponent;
2012 char* s = mpfr_get_str(NULL, &exponent, 10, 0, val, GMP_RNDN);
2013 if (*s == '-')
2014 exp->write_c_string("-");
2015 exp->write_c_string("0.");
2016 exp->write_c_string(*s == '-' ? s + 1 : s);
2017 mpfr_free_str(s);
2018 char buf[30];
2019 snprintf(buf, sizeof buf, "E%ld", exponent);
2020 exp->write_c_string(buf);
2021 }
2022
2023 // Export a floating point number in a constant expression.
2024
2025 void
2026 Float_expression::do_export(Export* exp) const
2027 {
2028 Float_expression::export_float(exp, this->val_);
2029 // A trailing space lets us reliably identify the end of the number.
2030 exp->write_c_string(" ");
2031 }
2032
2033 // Make a float expression.
2034
2035 Expression*
2036 Expression::make_float(const mpfr_t* val, Type* type, source_location location)
2037 {
2038 return new Float_expression(val, type, location);
2039 }
2040
2041 // Complex numbers.
2042
2043 class Complex_expression : public Expression
2044 {
2045 public:
2046 Complex_expression(const mpfr_t* real, const mpfr_t* imag, Type* type,
2047 source_location location)
2048 : Expression(EXPRESSION_COMPLEX, location),
2049 type_(type)
2050 {
2051 mpfr_init_set(this->real_, *real, GMP_RNDN);
2052 mpfr_init_set(this->imag_, *imag, GMP_RNDN);
2053 }
2054
2055 // Constrain REAL/IMAG to fit into TYPE.
2056 static void
2057 constrain_complex(mpfr_t real, mpfr_t imag, Type* type);
2058
2059 // Return whether REAL/IMAG fits in the type.
2060 static bool
2061 check_constant(mpfr_t real, mpfr_t imag, Type*, source_location);
2062
2063 // Write REAL/IMAG to export data.
2064 static void
2065 export_complex(Export* exp, const mpfr_t real, const mpfr_t val);
2066
2067 protected:
2068 bool
2069 do_is_constant() const
2070 { return true; }
2071
2072 bool
2073 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const;
2074
2075 Type*
2076 do_type();
2077
2078 void
2079 do_determine_type(const Type_context*);
2080
2081 void
2082 do_check_types(Gogo*);
2083
2084 Expression*
2085 do_copy()
2086 {
2087 return Expression::make_complex(&this->real_, &this->imag_, this->type_,
2088 this->location());
2089 }
2090
2091 tree
2092 do_get_tree(Translate_context*);
2093
2094 void
2095 do_export(Export*) const;
2096
2097 private:
2098 // The real part.
2099 mpfr_t real_;
2100 // The imaginary part;
2101 mpfr_t imag_;
2102 // The type if known.
2103 Type* type_;
2104 };
2105
2106 // Constrain REAL/IMAG to fit into TYPE.
2107
2108 void
2109 Complex_expression::constrain_complex(mpfr_t real, mpfr_t imag, Type* type)
2110 {
2111 Complex_type* ctype = type->complex_type();
2112 if (ctype != NULL && !ctype->is_abstract())
2113 {
2114 tree type_tree = ctype->type_tree();
2115
2116 REAL_VALUE_TYPE rvt;
2117 real_from_mpfr(&rvt, real, TREE_TYPE(type_tree), GMP_RNDN);
2118 real_convert(&rvt, TYPE_MODE(TREE_TYPE(type_tree)), &rvt);
2119 mpfr_from_real(real, &rvt, GMP_RNDN);
2120
2121 real_from_mpfr(&rvt, imag, TREE_TYPE(type_tree), GMP_RNDN);
2122 real_convert(&rvt, TYPE_MODE(TREE_TYPE(type_tree)), &rvt);
2123 mpfr_from_real(imag, &rvt, GMP_RNDN);
2124 }
2125 }
2126
2127 // Return a complex constant value.
2128
2129 bool
2130 Complex_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
2131 Type** ptype) const
2132 {
2133 if (this->type_ != NULL)
2134 *ptype = this->type_;
2135 mpfr_set(real, this->real_, GMP_RNDN);
2136 mpfr_set(imag, this->imag_, GMP_RNDN);
2137 return true;
2138 }
2139
2140 // Return the current type. If we haven't set the type yet, we return
2141 // an abstract complex type.
2142
2143 Type*
2144 Complex_expression::do_type()
2145 {
2146 if (this->type_ == NULL)
2147 this->type_ = Type::make_abstract_complex_type();
2148 return this->type_;
2149 }
2150
2151 // Set the type of the complex value. Here we may switch from an
2152 // abstract type to a real type.
2153
2154 void
2155 Complex_expression::do_determine_type(const Type_context* context)
2156 {
2157 if (this->type_ != NULL && !this->type_->is_abstract())
2158 ;
2159 else if (context->type != NULL
2160 && context->type->complex_type() != NULL)
2161 this->type_ = context->type;
2162 else if (!context->may_be_abstract)
2163 this->type_ = Type::lookup_complex_type("complex");
2164 }
2165
2166 // Return true if the complex value REAL/IMAG fits in the range of the
2167 // type TYPE. Otherwise give an error and return false. TYPE may be
2168 // NULL.
2169
2170 bool
2171 Complex_expression::check_constant(mpfr_t real, mpfr_t imag, Type* type,
2172 source_location location)
2173 {
2174 if (type == NULL)
2175 return true;
2176 Complex_type* ctype = type->complex_type();
2177 if (ctype == NULL || ctype->is_abstract())
2178 return true;
2179
2180 mp_exp_t max_exp;
2181 switch (ctype->bits())
2182 {
2183 case 64:
2184 max_exp = 128;
2185 break;
2186 case 128:
2187 max_exp = 1024;
2188 break;
2189 default:
2190 gcc_unreachable();
2191 }
2192
2193 // A NaN or Infinity always fits in the range of the type.
2194 if (!mpfr_nan_p(real) && !mpfr_inf_p(real) && !mpfr_zero_p(real))
2195 {
2196 if (mpfr_get_exp(real) > max_exp)
2197 {
2198 error_at(location, "complex real part constant overflow");
2199 return false;
2200 }
2201 }
2202
2203 if (!mpfr_nan_p(imag) && !mpfr_inf_p(imag) && !mpfr_zero_p(imag))
2204 {
2205 if (mpfr_get_exp(imag) > max_exp)
2206 {
2207 error_at(location, "complex imaginary part constant overflow");
2208 return false;
2209 }
2210 }
2211
2212 return true;
2213 }
2214
2215 // Check the type of a complex value.
2216
2217 void
2218 Complex_expression::do_check_types(Gogo*)
2219 {
2220 if (this->type_ == NULL)
2221 return;
2222
2223 if (!Complex_expression::check_constant(this->real_, this->imag_,
2224 this->type_, this->location()))
2225 this->set_is_error();
2226 }
2227
2228 // Get a tree for a complex constant.
2229
2230 tree
2231 Complex_expression::do_get_tree(Translate_context* context)
2232 {
2233 Gogo* gogo = context->gogo();
2234 tree type;
2235 if (this->type_ != NULL && !this->type_->is_abstract())
2236 type = this->type_->get_tree(gogo);
2237 else
2238 {
2239 // If we still have an abstract type here, this this is being
2240 // used in a constant expression which didn't get reduced. We
2241 // just use complex128 and hope for the best.
2242 type = Type::lookup_complex_type("complex128")->get_tree(gogo);
2243 }
2244 return Expression::complex_constant_tree(this->real_, this->imag_, type);
2245 }
2246
2247 // Write REAL/IMAG to export data.
2248
2249 void
2250 Complex_expression::export_complex(Export* exp, const mpfr_t real,
2251 const mpfr_t imag)
2252 {
2253 if (!mpfr_zero_p(real))
2254 {
2255 Float_expression::export_float(exp, real);
2256 if (mpfr_sgn(imag) > 0)
2257 exp->write_c_string("+");
2258 }
2259 Float_expression::export_float(exp, imag);
2260 exp->write_c_string("i");
2261 }
2262
2263 // Export a complex number in a constant expression.
2264
2265 void
2266 Complex_expression::do_export(Export* exp) const
2267 {
2268 Complex_expression::export_complex(exp, this->real_, this->imag_);
2269 // A trailing space lets us reliably identify the end of the number.
2270 exp->write_c_string(" ");
2271 }
2272
2273 // Make a complex expression.
2274
2275 Expression*
2276 Expression::make_complex(const mpfr_t* real, const mpfr_t* imag, Type* type,
2277 source_location location)
2278 {
2279 return new Complex_expression(real, imag, type, location);
2280 }
2281
2282 // A reference to a const in an expression.
2283
2284 class Const_expression : public Expression
2285 {
2286 public:
2287 Const_expression(Named_object* constant, source_location location)
2288 : Expression(EXPRESSION_CONST_REFERENCE, location),
2289 constant_(constant), type_(NULL)
2290 { }
2291
2292 const std::string&
2293 name() const
2294 { return this->constant_->name(); }
2295
2296 protected:
2297 Expression*
2298 do_lower(Gogo*, Named_object*, int);
2299
2300 bool
2301 do_is_constant() const
2302 { return true; }
2303
2304 bool
2305 do_integer_constant_value(bool, mpz_t val, Type**) const;
2306
2307 bool
2308 do_float_constant_value(mpfr_t val, Type**) const;
2309
2310 bool
2311 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const;
2312
2313 bool
2314 do_string_constant_value(std::string* val) const
2315 { return this->constant_->const_value()->expr()->string_constant_value(val); }
2316
2317 Type*
2318 do_type();
2319
2320 // The type of a const is set by the declaration, not the use.
2321 void
2322 do_determine_type(const Type_context*);
2323
2324 void
2325 do_check_types(Gogo*);
2326
2327 Expression*
2328 do_copy()
2329 { return this; }
2330
2331 tree
2332 do_get_tree(Translate_context* context);
2333
2334 // When exporting a reference to a const as part of a const
2335 // expression, we export the value. We ignore the fact that it has
2336 // a name.
2337 void
2338 do_export(Export* exp) const
2339 { this->constant_->const_value()->expr()->export_expression(exp); }
2340
2341 private:
2342 // The constant.
2343 Named_object* constant_;
2344 // The type of this reference. This is used if the constant has an
2345 // abstract type.
2346 Type* type_;
2347 };
2348
2349 // Lower a constant expression. This is where we convert the
2350 // predeclared constant iota into an integer value.
2351
2352 Expression*
2353 Const_expression::do_lower(Gogo* gogo, Named_object*, int iota_value)
2354 {
2355 if (this->constant_->const_value()->expr()->classification()
2356 == EXPRESSION_IOTA)
2357 {
2358 if (iota_value == -1)
2359 {
2360 error_at(this->location(),
2361 "iota is only defined in const declarations");
2362 iota_value = 0;
2363 }
2364 mpz_t val;
2365 mpz_init_set_ui(val, static_cast<unsigned long>(iota_value));
2366 Expression* ret = Expression::make_integer(&val, NULL,
2367 this->location());
2368 mpz_clear(val);
2369 return ret;
2370 }
2371
2372 // Make sure that the constant itself has been lowered.
2373 gogo->lower_constant(this->constant_);
2374
2375 return this;
2376 }
2377
2378 // Return an integer constant value.
2379
2380 bool
2381 Const_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
2382 Type** ptype) const
2383 {
2384 Type* ctype;
2385 if (this->type_ != NULL)
2386 ctype = this->type_;
2387 else
2388 ctype = this->constant_->const_value()->type();
2389 if (ctype != NULL && ctype->integer_type() == NULL)
2390 return false;
2391
2392 Expression* e = this->constant_->const_value()->expr();
2393 Type* t;
2394 bool r = e->integer_constant_value(iota_is_constant, val, &t);
2395
2396 if (r
2397 && ctype != NULL
2398 && !Integer_expression::check_constant(val, ctype, this->location()))
2399 return false;
2400
2401 *ptype = ctype != NULL ? ctype : t;
2402 return r;
2403 }
2404
2405 // Return a floating point constant value.
2406
2407 bool
2408 Const_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
2409 {
2410 Type* ctype;
2411 if (this->type_ != NULL)
2412 ctype = this->type_;
2413 else
2414 ctype = this->constant_->const_value()->type();
2415 if (ctype != NULL && ctype->float_type() == NULL)
2416 return false;
2417
2418 Type* t;
2419 bool r = this->constant_->const_value()->expr()->float_constant_value(val,
2420 &t);
2421 if (r && ctype != NULL)
2422 {
2423 if (!Float_expression::check_constant(val, ctype, this->location()))
2424 return false;
2425 Float_expression::constrain_float(val, ctype);
2426 }
2427 *ptype = ctype != NULL ? ctype : t;
2428 return r;
2429 }
2430
2431 // Return a complex constant value.
2432
2433 bool
2434 Const_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
2435 Type **ptype) const
2436 {
2437 Type* ctype;
2438 if (this->type_ != NULL)
2439 ctype = this->type_;
2440 else
2441 ctype = this->constant_->const_value()->type();
2442 if (ctype != NULL && ctype->complex_type() == NULL)
2443 return false;
2444
2445 Type *t;
2446 bool r = this->constant_->const_value()->expr()->complex_constant_value(real,
2447 imag,
2448 &t);
2449 if (r && ctype != NULL)
2450 {
2451 if (!Complex_expression::check_constant(real, imag, ctype,
2452 this->location()))
2453 return false;
2454 Complex_expression::constrain_complex(real, imag, ctype);
2455 }
2456 *ptype = ctype != NULL ? ctype : t;
2457 return r;
2458 }
2459
2460 // Return the type of the const reference.
2461
2462 Type*
2463 Const_expression::do_type()
2464 {
2465 if (this->type_ != NULL)
2466 return this->type_;
2467 Named_constant* nc = this->constant_->const_value();
2468 Type* ret = nc->type();
2469 if (ret != NULL)
2470 return ret;
2471 // During parsing, a named constant may have a NULL type, but we
2472 // must not return a NULL type here.
2473 return nc->expr()->type();
2474 }
2475
2476 // Set the type of the const reference.
2477
2478 void
2479 Const_expression::do_determine_type(const Type_context* context)
2480 {
2481 Type* ctype = this->constant_->const_value()->type();
2482 Type* cetype = (ctype != NULL
2483 ? ctype
2484 : this->constant_->const_value()->expr()->type());
2485 if (ctype != NULL && !ctype->is_abstract())
2486 ;
2487 else if (context->type != NULL
2488 && (context->type->integer_type() != NULL
2489 || context->type->float_type() != NULL
2490 || context->type->complex_type() != NULL)
2491 && (cetype->integer_type() != NULL
2492 || cetype->float_type() != NULL
2493 || cetype->complex_type() != NULL))
2494 this->type_ = context->type;
2495 else if (context->type != NULL
2496 && context->type->is_string_type()
2497 && cetype->is_string_type())
2498 this->type_ = context->type;
2499 else if (context->type != NULL
2500 && context->type->is_boolean_type()
2501 && cetype->is_boolean_type())
2502 this->type_ = context->type;
2503 else if (!context->may_be_abstract)
2504 {
2505 if (cetype->is_abstract())
2506 cetype = cetype->make_non_abstract_type();
2507 this->type_ = cetype;
2508 }
2509 }
2510
2511 // Check types of a const reference.
2512
2513 void
2514 Const_expression::do_check_types(Gogo*)
2515 {
2516 if (this->type_ == NULL || this->type_->is_abstract())
2517 return;
2518
2519 // Check for integer overflow.
2520 if (this->type_->integer_type() != NULL)
2521 {
2522 mpz_t ival;
2523 mpz_init(ival);
2524 Type* dummy;
2525 if (!this->integer_constant_value(true, ival, &dummy))
2526 {
2527 mpfr_t fval;
2528 mpfr_init(fval);
2529 Expression* cexpr = this->constant_->const_value()->expr();
2530 if (cexpr->float_constant_value(fval, &dummy))
2531 {
2532 if (!mpfr_integer_p(fval))
2533 this->report_error(_("floating point constant "
2534 "truncated to integer"));
2535 else
2536 {
2537 mpfr_get_z(ival, fval, GMP_RNDN);
2538 Integer_expression::check_constant(ival, this->type_,
2539 this->location());
2540 }
2541 }
2542 mpfr_clear(fval);
2543 }
2544 mpz_clear(ival);
2545 }
2546 }
2547
2548 // Return a tree for the const reference.
2549
2550 tree
2551 Const_expression::do_get_tree(Translate_context* context)
2552 {
2553 Gogo* gogo = context->gogo();
2554 tree type_tree;
2555 if (this->type_ == NULL)
2556 type_tree = NULL_TREE;
2557 else
2558 {
2559 type_tree = this->type_->get_tree(gogo);
2560 if (type_tree == error_mark_node)
2561 return error_mark_node;
2562 }
2563
2564 // If the type has been set for this expression, but the underlying
2565 // object is an abstract int or float, we try to get the abstract
2566 // value. Otherwise we may lose something in the conversion.
2567 if (this->type_ != NULL
2568 && this->constant_->const_value()->type()->is_abstract())
2569 {
2570 Expression* expr = this->constant_->const_value()->expr();
2571 mpz_t ival;
2572 mpz_init(ival);
2573 Type* t;
2574 if (expr->integer_constant_value(true, ival, &t))
2575 {
2576 tree ret = Expression::integer_constant_tree(ival, type_tree);
2577 mpz_clear(ival);
2578 return ret;
2579 }
2580 mpz_clear(ival);
2581
2582 mpfr_t fval;
2583 mpfr_init(fval);
2584 if (expr->float_constant_value(fval, &t))
2585 {
2586 tree ret = Expression::float_constant_tree(fval, type_tree);
2587 mpfr_clear(fval);
2588 return ret;
2589 }
2590
2591 mpfr_t imag;
2592 mpfr_init(imag);
2593 if (expr->complex_constant_value(fval, imag, &t))
2594 {
2595 tree ret = Expression::complex_constant_tree(fval, imag, type_tree);
2596 mpfr_clear(fval);
2597 mpfr_clear(imag);
2598 return ret;
2599 }
2600 mpfr_clear(imag);
2601 mpfr_clear(fval);
2602 }
2603
2604 tree const_tree = this->constant_->get_tree(gogo, context->function());
2605 if (this->type_ == NULL
2606 || const_tree == error_mark_node
2607 || TREE_TYPE(const_tree) == error_mark_node)
2608 return const_tree;
2609
2610 tree ret;
2611 if (TYPE_MAIN_VARIANT(type_tree) == TYPE_MAIN_VARIANT(TREE_TYPE(const_tree)))
2612 ret = fold_convert(type_tree, const_tree);
2613 else if (TREE_CODE(type_tree) == INTEGER_TYPE)
2614 ret = fold(convert_to_integer(type_tree, const_tree));
2615 else if (TREE_CODE(type_tree) == REAL_TYPE)
2616 ret = fold(convert_to_real(type_tree, const_tree));
2617 else if (TREE_CODE(type_tree) == COMPLEX_TYPE)
2618 ret = fold(convert_to_complex(type_tree, const_tree));
2619 else
2620 gcc_unreachable();
2621 return ret;
2622 }
2623
2624 // Make a reference to a constant in an expression.
2625
2626 Expression*
2627 Expression::make_const_reference(Named_object* constant,
2628 source_location location)
2629 {
2630 return new Const_expression(constant, location);
2631 }
2632
2633 // The nil value.
2634
2635 class Nil_expression : public Expression
2636 {
2637 public:
2638 Nil_expression(source_location location)
2639 : Expression(EXPRESSION_NIL, location)
2640 { }
2641
2642 static Expression*
2643 do_import(Import*);
2644
2645 protected:
2646 bool
2647 do_is_constant() const
2648 { return true; }
2649
2650 Type*
2651 do_type()
2652 { return Type::make_nil_type(); }
2653
2654 void
2655 do_determine_type(const Type_context*)
2656 { }
2657
2658 Expression*
2659 do_copy()
2660 { return this; }
2661
2662 tree
2663 do_get_tree(Translate_context*)
2664 { return null_pointer_node; }
2665
2666 void
2667 do_export(Export* exp) const
2668 { exp->write_c_string("nil"); }
2669 };
2670
2671 // Import a nil expression.
2672
2673 Expression*
2674 Nil_expression::do_import(Import* imp)
2675 {
2676 imp->require_c_string("nil");
2677 return Expression::make_nil(imp->location());
2678 }
2679
2680 // Make a nil expression.
2681
2682 Expression*
2683 Expression::make_nil(source_location location)
2684 {
2685 return new Nil_expression(location);
2686 }
2687
2688 // The value of the predeclared constant iota. This is little more
2689 // than a marker. This will be lowered to an integer in
2690 // Const_expression::do_lower, which is where we know the value that
2691 // it should have.
2692
2693 class Iota_expression : public Parser_expression
2694 {
2695 public:
2696 Iota_expression(source_location location)
2697 : Parser_expression(EXPRESSION_IOTA, location)
2698 { }
2699
2700 protected:
2701 Expression*
2702 do_lower(Gogo*, Named_object*, int)
2703 { gcc_unreachable(); }
2704
2705 // There should only ever be one of these.
2706 Expression*
2707 do_copy()
2708 { gcc_unreachable(); }
2709 };
2710
2711 // Make an iota expression. This is only called for one case: the
2712 // value of the predeclared constant iota.
2713
2714 Expression*
2715 Expression::make_iota()
2716 {
2717 static Iota_expression iota_expression(UNKNOWN_LOCATION);
2718 return &iota_expression;
2719 }
2720
2721 // A type conversion expression.
2722
2723 class Type_conversion_expression : public Expression
2724 {
2725 public:
2726 Type_conversion_expression(Type* type, Expression* expr,
2727 source_location location)
2728 : Expression(EXPRESSION_CONVERSION, location),
2729 type_(type), expr_(expr), may_convert_function_types_(false)
2730 { }
2731
2732 // Return the type to which we are converting.
2733 Type*
2734 type() const
2735 { return this->type_; }
2736
2737 // Return the expression which we are converting.
2738 Expression*
2739 expr() const
2740 { return this->expr_; }
2741
2742 // Permit converting from one function type to another. This is
2743 // used internally for method expressions.
2744 void
2745 set_may_convert_function_types()
2746 {
2747 this->may_convert_function_types_ = true;
2748 }
2749
2750 // Import a type conversion expression.
2751 static Expression*
2752 do_import(Import*);
2753
2754 protected:
2755 int
2756 do_traverse(Traverse* traverse);
2757
2758 Expression*
2759 do_lower(Gogo*, Named_object*, int);
2760
2761 bool
2762 do_is_constant() const
2763 { return this->expr_->is_constant(); }
2764
2765 bool
2766 do_integer_constant_value(bool, mpz_t, Type**) const;
2767
2768 bool
2769 do_float_constant_value(mpfr_t, Type**) const;
2770
2771 bool
2772 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
2773
2774 bool
2775 do_string_constant_value(std::string*) const;
2776
2777 Type*
2778 do_type()
2779 { return this->type_; }
2780
2781 void
2782 do_determine_type(const Type_context*)
2783 {
2784 Type_context subcontext(this->type_, false);
2785 this->expr_->determine_type(&subcontext);
2786 }
2787
2788 void
2789 do_check_types(Gogo*);
2790
2791 Expression*
2792 do_copy()
2793 {
2794 return new Type_conversion_expression(this->type_, this->expr_->copy(),
2795 this->location());
2796 }
2797
2798 tree
2799 do_get_tree(Translate_context* context);
2800
2801 void
2802 do_export(Export*) const;
2803
2804 private:
2805 // The type to convert to.
2806 Type* type_;
2807 // The expression to convert.
2808 Expression* expr_;
2809 // True if this is permitted to convert function types. This is
2810 // used internally for method expressions.
2811 bool may_convert_function_types_;
2812 };
2813
2814 // Traversal.
2815
2816 int
2817 Type_conversion_expression::do_traverse(Traverse* traverse)
2818 {
2819 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
2820 || Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
2821 return TRAVERSE_EXIT;
2822 return TRAVERSE_CONTINUE;
2823 }
2824
2825 // Convert to a constant at lowering time.
2826
2827 Expression*
2828 Type_conversion_expression::do_lower(Gogo*, Named_object*, int)
2829 {
2830 Type* type = this->type_;
2831 Expression* val = this->expr_;
2832 source_location location = this->location();
2833
2834 if (type->integer_type() != NULL)
2835 {
2836 mpz_t ival;
2837 mpz_init(ival);
2838 Type* dummy;
2839 if (val->integer_constant_value(false, ival, &dummy))
2840 {
2841 if (!Integer_expression::check_constant(ival, type, location))
2842 mpz_set_ui(ival, 0);
2843 Expression* ret = Expression::make_integer(&ival, type, location);
2844 mpz_clear(ival);
2845 return ret;
2846 }
2847
2848 mpfr_t fval;
2849 mpfr_init(fval);
2850 if (val->float_constant_value(fval, &dummy))
2851 {
2852 if (!mpfr_integer_p(fval))
2853 {
2854 error_at(location,
2855 "floating point constant truncated to integer");
2856 return Expression::make_error(location);
2857 }
2858 mpfr_get_z(ival, fval, GMP_RNDN);
2859 if (!Integer_expression::check_constant(ival, type, location))
2860 mpz_set_ui(ival, 0);
2861 Expression* ret = Expression::make_integer(&ival, type, location);
2862 mpfr_clear(fval);
2863 mpz_clear(ival);
2864 return ret;
2865 }
2866 mpfr_clear(fval);
2867 mpz_clear(ival);
2868 }
2869
2870 if (type->float_type() != NULL)
2871 {
2872 mpfr_t fval;
2873 mpfr_init(fval);
2874 Type* dummy;
2875 if (val->float_constant_value(fval, &dummy))
2876 {
2877 if (!Float_expression::check_constant(fval, type, location))
2878 mpfr_set_ui(fval, 0, GMP_RNDN);
2879 Float_expression::constrain_float(fval, type);
2880 Expression *ret = Expression::make_float(&fval, type, location);
2881 mpfr_clear(fval);
2882 return ret;
2883 }
2884 mpfr_clear(fval);
2885 }
2886
2887 if (type->complex_type() != NULL)
2888 {
2889 mpfr_t real;
2890 mpfr_t imag;
2891 mpfr_init(real);
2892 mpfr_init(imag);
2893 Type* dummy;
2894 if (val->complex_constant_value(real, imag, &dummy))
2895 {
2896 if (!Complex_expression::check_constant(real, imag, type, location))
2897 {
2898 mpfr_set_ui(real, 0, GMP_RNDN);
2899 mpfr_set_ui(imag, 0, GMP_RNDN);
2900 }
2901 Complex_expression::constrain_complex(real, imag, type);
2902 Expression* ret = Expression::make_complex(&real, &imag, type,
2903 location);
2904 mpfr_clear(real);
2905 mpfr_clear(imag);
2906 return ret;
2907 }
2908 mpfr_clear(real);
2909 mpfr_clear(imag);
2910 }
2911
2912 if (type->is_open_array_type() && type->named_type() == NULL)
2913 {
2914 Type* element_type = type->array_type()->element_type()->forwarded();
2915 bool is_byte = element_type == Type::lookup_integer_type("uint8");
2916 bool is_int = element_type == Type::lookup_integer_type("int");
2917 if (is_byte || is_int)
2918 {
2919 std::string s;
2920 if (val->string_constant_value(&s))
2921 {
2922 Expression_list* vals = new Expression_list();
2923 if (is_byte)
2924 {
2925 for (std::string::const_iterator p = s.begin();
2926 p != s.end();
2927 p++)
2928 {
2929 mpz_t val;
2930 mpz_init_set_ui(val, static_cast<unsigned char>(*p));
2931 Expression* v = Expression::make_integer(&val,
2932 element_type,
2933 location);
2934 vals->push_back(v);
2935 mpz_clear(val);
2936 }
2937 }
2938 else
2939 {
2940 const char *p = s.data();
2941 const char *pend = s.data() + s.length();
2942 while (p < pend)
2943 {
2944 unsigned int c;
2945 int adv = Lex::fetch_char(p, &c);
2946 if (adv == 0)
2947 {
2948 warning_at(this->location(), 0,
2949 "invalid UTF-8 encoding");
2950 adv = 1;
2951 }
2952 p += adv;
2953 mpz_t val;
2954 mpz_init_set_ui(val, c);
2955 Expression* v = Expression::make_integer(&val,
2956 element_type,
2957 location);
2958 vals->push_back(v);
2959 mpz_clear(val);
2960 }
2961 }
2962
2963 return Expression::make_slice_composite_literal(type, vals,
2964 location);
2965 }
2966 }
2967 }
2968
2969 return this;
2970 }
2971
2972 // Return the constant integer value if there is one.
2973
2974 bool
2975 Type_conversion_expression::do_integer_constant_value(bool iota_is_constant,
2976 mpz_t val,
2977 Type** ptype) const
2978 {
2979 if (this->type_->integer_type() == NULL)
2980 return false;
2981
2982 mpz_t ival;
2983 mpz_init(ival);
2984 Type* dummy;
2985 if (this->expr_->integer_constant_value(iota_is_constant, ival, &dummy))
2986 {
2987 if (!Integer_expression::check_constant(ival, this->type_,
2988 this->location()))
2989 {
2990 mpz_clear(ival);
2991 return false;
2992 }
2993 mpz_set(val, ival);
2994 mpz_clear(ival);
2995 *ptype = this->type_;
2996 return true;
2997 }
2998 mpz_clear(ival);
2999
3000 mpfr_t fval;
3001 mpfr_init(fval);
3002 if (this->expr_->float_constant_value(fval, &dummy))
3003 {
3004 mpfr_get_z(val, fval, GMP_RNDN);
3005 mpfr_clear(fval);
3006 if (!Integer_expression::check_constant(val, this->type_,
3007 this->location()))
3008 return false;
3009 *ptype = this->type_;
3010 return true;
3011 }
3012 mpfr_clear(fval);
3013
3014 return false;
3015 }
3016
3017 // Return the constant floating point value if there is one.
3018
3019 bool
3020 Type_conversion_expression::do_float_constant_value(mpfr_t val,
3021 Type** ptype) const
3022 {
3023 if (this->type_->float_type() == NULL)
3024 return false;
3025
3026 mpfr_t fval;
3027 mpfr_init(fval);
3028 Type* dummy;
3029 if (this->expr_->float_constant_value(fval, &dummy))
3030 {
3031 if (!Float_expression::check_constant(fval, this->type_,
3032 this->location()))
3033 {
3034 mpfr_clear(fval);
3035 return false;
3036 }
3037 mpfr_set(val, fval, GMP_RNDN);
3038 mpfr_clear(fval);
3039 Float_expression::constrain_float(val, this->type_);
3040 *ptype = this->type_;
3041 return true;
3042 }
3043 mpfr_clear(fval);
3044
3045 return false;
3046 }
3047
3048 // Return the constant complex value if there is one.
3049
3050 bool
3051 Type_conversion_expression::do_complex_constant_value(mpfr_t real,
3052 mpfr_t imag,
3053 Type **ptype) const
3054 {
3055 if (this->type_->complex_type() == NULL)
3056 return false;
3057
3058 mpfr_t rval;
3059 mpfr_t ival;
3060 mpfr_init(rval);
3061 mpfr_init(ival);
3062 Type* dummy;
3063 if (this->expr_->complex_constant_value(rval, ival, &dummy))
3064 {
3065 if (!Complex_expression::check_constant(rval, ival, this->type_,
3066 this->location()))
3067 {
3068 mpfr_clear(rval);
3069 mpfr_clear(ival);
3070 return false;
3071 }
3072 mpfr_set(real, rval, GMP_RNDN);
3073 mpfr_set(imag, ival, GMP_RNDN);
3074 mpfr_clear(rval);
3075 mpfr_clear(ival);
3076 Complex_expression::constrain_complex(real, imag, this->type_);
3077 *ptype = this->type_;
3078 return true;
3079 }
3080 mpfr_clear(rval);
3081 mpfr_clear(ival);
3082
3083 return false;
3084 }
3085
3086 // Return the constant string value if there is one.
3087
3088 bool
3089 Type_conversion_expression::do_string_constant_value(std::string* val) const
3090 {
3091 if (this->type_->is_string_type()
3092 && this->expr_->type()->integer_type() != NULL)
3093 {
3094 mpz_t ival;
3095 mpz_init(ival);
3096 Type* dummy;
3097 if (this->expr_->integer_constant_value(false, ival, &dummy))
3098 {
3099 unsigned long ulval = mpz_get_ui(ival);
3100 if (mpz_cmp_ui(ival, ulval) == 0)
3101 {
3102 Lex::append_char(ulval, true, val, this->location());
3103 mpz_clear(ival);
3104 return true;
3105 }
3106 }
3107 mpz_clear(ival);
3108 }
3109
3110 // FIXME: Could handle conversion from const []int here.
3111
3112 return false;
3113 }
3114
3115 // Check that types are convertible.
3116
3117 void
3118 Type_conversion_expression::do_check_types(Gogo*)
3119 {
3120 Type* type = this->type_;
3121 Type* expr_type = this->expr_->type();
3122 std::string reason;
3123
3124 if (this->may_convert_function_types_
3125 && type->function_type() != NULL
3126 && expr_type->function_type() != NULL)
3127 return;
3128
3129 if (Type::are_convertible(type, expr_type, &reason))
3130 return;
3131
3132 error_at(this->location(), "%s", reason.c_str());
3133 this->set_is_error();
3134 }
3135
3136 // Get a tree for a type conversion.
3137
3138 tree
3139 Type_conversion_expression::do_get_tree(Translate_context* context)
3140 {
3141 Gogo* gogo = context->gogo();
3142 tree type_tree = this->type_->get_tree(gogo);
3143 tree expr_tree = this->expr_->get_tree(context);
3144
3145 if (type_tree == error_mark_node
3146 || expr_tree == error_mark_node
3147 || TREE_TYPE(expr_tree) == error_mark_node)
3148 return error_mark_node;
3149
3150 if (TYPE_MAIN_VARIANT(type_tree) == TYPE_MAIN_VARIANT(TREE_TYPE(expr_tree)))
3151 return fold_convert(type_tree, expr_tree);
3152
3153 Type* type = this->type_;
3154 Type* expr_type = this->expr_->type();
3155 tree ret;
3156 if (type->interface_type() != NULL || expr_type->interface_type() != NULL)
3157 ret = Expression::convert_for_assignment(context, type, expr_type,
3158 expr_tree, this->location());
3159 else if (type->integer_type() != NULL)
3160 {
3161 if (expr_type->integer_type() != NULL
3162 || expr_type->float_type() != NULL
3163 || expr_type->is_unsafe_pointer_type())
3164 ret = fold(convert_to_integer(type_tree, expr_tree));
3165 else
3166 gcc_unreachable();
3167 }
3168 else if (type->float_type() != NULL)
3169 {
3170 if (expr_type->integer_type() != NULL
3171 || expr_type->float_type() != NULL)
3172 ret = fold(convert_to_real(type_tree, expr_tree));
3173 else
3174 gcc_unreachable();
3175 }
3176 else if (type->complex_type() != NULL)
3177 {
3178 if (expr_type->complex_type() != NULL)
3179 ret = fold(convert_to_complex(type_tree, expr_tree));
3180 else
3181 gcc_unreachable();
3182 }
3183 else if (type->is_string_type()
3184 && expr_type->integer_type() != NULL)
3185 {
3186 expr_tree = fold_convert(integer_type_node, expr_tree);
3187 if (host_integerp(expr_tree, 0))
3188 {
3189 HOST_WIDE_INT intval = tree_low_cst(expr_tree, 0);
3190 std::string s;
3191 Lex::append_char(intval, true, &s, this->location());
3192 Expression* se = Expression::make_string(s, this->location());
3193 return se->get_tree(context);
3194 }
3195
3196 static tree int_to_string_fndecl;
3197 ret = Gogo::call_builtin(&int_to_string_fndecl,
3198 this->location(),
3199 "__go_int_to_string",
3200 1,
3201 type_tree,
3202 integer_type_node,
3203 fold_convert(integer_type_node, expr_tree));
3204 }
3205 else if (type->is_string_type()
3206 && (expr_type->array_type() != NULL
3207 || (expr_type->points_to() != NULL
3208 && expr_type->points_to()->array_type() != NULL)))
3209 {
3210 Type* t = expr_type;
3211 if (t->points_to() != NULL)
3212 {
3213 t = t->points_to();
3214 expr_tree = build_fold_indirect_ref(expr_tree);
3215 }
3216 if (!DECL_P(expr_tree))
3217 expr_tree = save_expr(expr_tree);
3218 Array_type* a = t->array_type();
3219 Type* e = a->element_type()->forwarded();
3220 gcc_assert(e->integer_type() != NULL);
3221 tree valptr = fold_convert(const_ptr_type_node,
3222 a->value_pointer_tree(gogo, expr_tree));
3223 tree len = a->length_tree(gogo, expr_tree);
3224 len = fold_convert_loc(this->location(), size_type_node, len);
3225 if (e->integer_type()->is_unsigned()
3226 && e->integer_type()->bits() == 8)
3227 {
3228 static tree byte_array_to_string_fndecl;
3229 ret = Gogo::call_builtin(&byte_array_to_string_fndecl,
3230 this->location(),
3231 "__go_byte_array_to_string",
3232 2,
3233 type_tree,
3234 const_ptr_type_node,
3235 valptr,
3236 size_type_node,
3237 len);
3238 }
3239 else
3240 {
3241 gcc_assert(e == Type::lookup_integer_type("int"));
3242 static tree int_array_to_string_fndecl;
3243 ret = Gogo::call_builtin(&int_array_to_string_fndecl,
3244 this->location(),
3245 "__go_int_array_to_string",
3246 2,
3247 type_tree,
3248 const_ptr_type_node,
3249 valptr,
3250 size_type_node,
3251 len);
3252 }
3253 }
3254 else if (type->is_open_array_type() && expr_type->is_string_type())
3255 {
3256 Type* e = type->array_type()->element_type()->forwarded();
3257 gcc_assert(e->integer_type() != NULL);
3258 if (e->integer_type()->is_unsigned()
3259 && e->integer_type()->bits() == 8)
3260 {
3261 static tree string_to_byte_array_fndecl;
3262 ret = Gogo::call_builtin(&string_to_byte_array_fndecl,
3263 this->location(),
3264 "__go_string_to_byte_array",
3265 1,
3266 type_tree,
3267 TREE_TYPE(expr_tree),
3268 expr_tree);
3269 }
3270 else
3271 {
3272 gcc_assert(e == Type::lookup_integer_type("int"));
3273 static tree string_to_int_array_fndecl;
3274 ret = Gogo::call_builtin(&string_to_int_array_fndecl,
3275 this->location(),
3276 "__go_string_to_int_array",
3277 1,
3278 type_tree,
3279 TREE_TYPE(expr_tree),
3280 expr_tree);
3281 }
3282 }
3283 else if ((type->is_unsafe_pointer_type()
3284 && expr_type->points_to() != NULL)
3285 || (expr_type->is_unsafe_pointer_type()
3286 && type->points_to() != NULL))
3287 ret = fold_convert(type_tree, expr_tree);
3288 else if (type->is_unsafe_pointer_type()
3289 && expr_type->integer_type() != NULL)
3290 ret = convert_to_pointer(type_tree, expr_tree);
3291 else if (this->may_convert_function_types_
3292 && type->function_type() != NULL
3293 && expr_type->function_type() != NULL)
3294 ret = fold_convert_loc(this->location(), type_tree, expr_tree);
3295 else
3296 ret = Expression::convert_for_assignment(context, type, expr_type,
3297 expr_tree, this->location());
3298
3299 return ret;
3300 }
3301
3302 // Output a type conversion in a constant expression.
3303
3304 void
3305 Type_conversion_expression::do_export(Export* exp) const
3306 {
3307 exp->write_c_string("convert(");
3308 exp->write_type(this->type_);
3309 exp->write_c_string(", ");
3310 this->expr_->export_expression(exp);
3311 exp->write_c_string(")");
3312 }
3313
3314 // Import a type conversion or a struct construction.
3315
3316 Expression*
3317 Type_conversion_expression::do_import(Import* imp)
3318 {
3319 imp->require_c_string("convert(");
3320 Type* type = imp->read_type();
3321 imp->require_c_string(", ");
3322 Expression* val = Expression::import_expression(imp);
3323 imp->require_c_string(")");
3324 return Expression::make_cast(type, val, imp->location());
3325 }
3326
3327 // Make a type cast expression.
3328
3329 Expression*
3330 Expression::make_cast(Type* type, Expression* val, source_location location)
3331 {
3332 if (type->is_error_type() || val->is_error_expression())
3333 return Expression::make_error(location);
3334 return new Type_conversion_expression(type, val, location);
3335 }
3336
3337 // Unary expressions.
3338
3339 class Unary_expression : public Expression
3340 {
3341 public:
3342 Unary_expression(Operator op, Expression* expr, source_location location)
3343 : Expression(EXPRESSION_UNARY, location),
3344 op_(op), escapes_(true), expr_(expr)
3345 { }
3346
3347 // Return the operator.
3348 Operator
3349 op() const
3350 { return this->op_; }
3351
3352 // Return the operand.
3353 Expression*
3354 operand() const
3355 { return this->expr_; }
3356
3357 // Record that an address expression does not escape.
3358 void
3359 set_does_not_escape()
3360 {
3361 gcc_assert(this->op_ == OPERATOR_AND);
3362 this->escapes_ = false;
3363 }
3364
3365 // Apply unary opcode OP to UVAL, setting VAL. Return true if this
3366 // could be done, false if not.
3367 static bool
3368 eval_integer(Operator op, Type* utype, mpz_t uval, mpz_t val,
3369 source_location);
3370
3371 // Apply unary opcode OP to UVAL, setting VAL. Return true if this
3372 // could be done, false if not.
3373 static bool
3374 eval_float(Operator op, mpfr_t uval, mpfr_t val);
3375
3376 // Apply unary opcode OP to UREAL/UIMAG, setting REAL/IMAG. Return
3377 // true if this could be done, false if not.
3378 static bool
3379 eval_complex(Operator op, mpfr_t ureal, mpfr_t uimag, mpfr_t real,
3380 mpfr_t imag);
3381
3382 static Expression*
3383 do_import(Import*);
3384
3385 protected:
3386 int
3387 do_traverse(Traverse* traverse)
3388 { return Expression::traverse(&this->expr_, traverse); }
3389
3390 Expression*
3391 do_lower(Gogo*, Named_object*, int);
3392
3393 bool
3394 do_is_constant() const;
3395
3396 bool
3397 do_integer_constant_value(bool, mpz_t, Type**) const;
3398
3399 bool
3400 do_float_constant_value(mpfr_t, Type**) const;
3401
3402 bool
3403 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
3404
3405 Type*
3406 do_type();
3407
3408 void
3409 do_determine_type(const Type_context*);
3410
3411 void
3412 do_check_types(Gogo*);
3413
3414 Expression*
3415 do_copy()
3416 {
3417 return Expression::make_unary(this->op_, this->expr_->copy(),
3418 this->location());
3419 }
3420
3421 bool
3422 do_is_addressable() const
3423 { return this->op_ == OPERATOR_MULT; }
3424
3425 tree
3426 do_get_tree(Translate_context*);
3427
3428 void
3429 do_export(Export*) const;
3430
3431 private:
3432 // The unary operator to apply.
3433 Operator op_;
3434 // Normally true. False if this is an address expression which does
3435 // not escape the current function.
3436 bool escapes_;
3437 // The operand.
3438 Expression* expr_;
3439 };
3440
3441 // If we are taking the address of a composite literal, and the
3442 // contents are not constant, then we want to make a heap composite
3443 // instead.
3444
3445 Expression*
3446 Unary_expression::do_lower(Gogo*, Named_object*, int)
3447 {
3448 source_location loc = this->location();
3449 Operator op = this->op_;
3450 Expression* expr = this->expr_;
3451
3452 if (op == OPERATOR_MULT && expr->is_type_expression())
3453 return Expression::make_type(Type::make_pointer_type(expr->type()), loc);
3454
3455 // *&x simplifies to x. *(*T)(unsafe.Pointer)(&x) does not require
3456 // moving x to the heap. FIXME: Is it worth doing a real escape
3457 // analysis here? This case is found in math/unsafe.go and is
3458 // therefore worth special casing.
3459 if (op == OPERATOR_MULT)
3460 {
3461 Expression* e = expr;
3462 while (e->classification() == EXPRESSION_CONVERSION)
3463 {
3464 Type_conversion_expression* te
3465 = static_cast<Type_conversion_expression*>(e);
3466 e = te->expr();
3467 }
3468
3469 if (e->classification() == EXPRESSION_UNARY)
3470 {
3471 Unary_expression* ue = static_cast<Unary_expression*>(e);
3472 if (ue->op_ == OPERATOR_AND)
3473 {
3474 if (e == expr)
3475 {
3476 // *&x == x.
3477 return ue->expr_;
3478 }
3479 ue->set_does_not_escape();
3480 }
3481 }
3482 }
3483
3484 if (op == OPERATOR_PLUS || op == OPERATOR_MINUS
3485 || op == OPERATOR_NOT || op == OPERATOR_XOR)
3486 {
3487 Expression* ret = NULL;
3488
3489 mpz_t eval;
3490 mpz_init(eval);
3491 Type* etype;
3492 if (expr->integer_constant_value(false, eval, &etype))
3493 {
3494 mpz_t val;
3495 mpz_init(val);
3496 if (Unary_expression::eval_integer(op, etype, eval, val, loc))
3497 ret = Expression::make_integer(&val, etype, loc);
3498 mpz_clear(val);
3499 }
3500 mpz_clear(eval);
3501 if (ret != NULL)
3502 return ret;
3503
3504 if (op == OPERATOR_PLUS || op == OPERATOR_MINUS)
3505 {
3506 mpfr_t fval;
3507 mpfr_init(fval);
3508 Type* ftype;
3509 if (expr->float_constant_value(fval, &ftype))
3510 {
3511 mpfr_t val;
3512 mpfr_init(val);
3513 if (Unary_expression::eval_float(op, fval, val))
3514 ret = Expression::make_float(&val, ftype, loc);
3515 mpfr_clear(val);
3516 }
3517 if (ret != NULL)
3518 {
3519 mpfr_clear(fval);
3520 return ret;
3521 }
3522
3523 mpfr_t ival;
3524 mpfr_init(ival);
3525 if (expr->complex_constant_value(fval, ival, &ftype))
3526 {
3527 mpfr_t real;
3528 mpfr_t imag;
3529 mpfr_init(real);
3530 mpfr_init(imag);
3531 if (Unary_expression::eval_complex(op, fval, ival, real, imag))
3532 ret = Expression::make_complex(&real, &imag, ftype, loc);
3533 mpfr_clear(real);
3534 mpfr_clear(imag);
3535 }
3536 mpfr_clear(ival);
3537 mpfr_clear(fval);
3538 if (ret != NULL)
3539 return ret;
3540 }
3541 }
3542
3543 return this;
3544 }
3545
3546 // Return whether a unary expression is a constant.
3547
3548 bool
3549 Unary_expression::do_is_constant() const
3550 {
3551 if (this->op_ == OPERATOR_MULT)
3552 {
3553 // Indirecting through a pointer is only constant if the object
3554 // to which the expression points is constant, but we currently
3555 // have no way to determine that.
3556 return false;
3557 }
3558 else if (this->op_ == OPERATOR_AND)
3559 {
3560 // Taking the address of a variable is constant if it is a
3561 // global variable, not constant otherwise. In other cases
3562 // taking the address is probably not a constant.
3563 Var_expression* ve = this->expr_->var_expression();
3564 if (ve != NULL)
3565 {
3566 Named_object* no = ve->named_object();
3567 return no->is_variable() && no->var_value()->is_global();
3568 }
3569 return false;
3570 }
3571 else
3572 return this->expr_->is_constant();
3573 }
3574
3575 // Apply unary opcode OP to UVAL, setting VAL. UTYPE is the type of
3576 // UVAL, if known; it may be NULL. Return true if this could be done,
3577 // false if not.
3578
3579 bool
3580 Unary_expression::eval_integer(Operator op, Type* utype, mpz_t uval, mpz_t val,
3581 source_location location)
3582 {
3583 switch (op)
3584 {
3585 case OPERATOR_PLUS:
3586 mpz_set(val, uval);
3587 return true;
3588 case OPERATOR_MINUS:
3589 mpz_neg(val, uval);
3590 return Integer_expression::check_constant(val, utype, location);
3591 case OPERATOR_NOT:
3592 mpz_set_ui(val, mpz_cmp_si(uval, 0) == 0 ? 1 : 0);
3593 return true;
3594 case OPERATOR_XOR:
3595 if (utype == NULL
3596 || utype->integer_type() == NULL
3597 || utype->integer_type()->is_abstract())
3598 mpz_com(val, uval);
3599 else
3600 {
3601 // The number of HOST_WIDE_INTs that it takes to represent
3602 // UVAL.
3603 size_t count = ((mpz_sizeinbase(uval, 2)
3604 + HOST_BITS_PER_WIDE_INT
3605 - 1)
3606 / HOST_BITS_PER_WIDE_INT);
3607
3608 unsigned HOST_WIDE_INT* phwi = new unsigned HOST_WIDE_INT[count];
3609 memset(phwi, 0, count * sizeof(HOST_WIDE_INT));
3610
3611 size_t ecount;
3612 mpz_export(phwi, &ecount, -1, sizeof(HOST_WIDE_INT), 0, 0, uval);
3613 gcc_assert(ecount <= count);
3614
3615 // Trim down to the number of words required by the type.
3616 size_t obits = utype->integer_type()->bits();
3617 if (!utype->integer_type()->is_unsigned())
3618 ++obits;
3619 size_t ocount = ((obits + HOST_BITS_PER_WIDE_INT - 1)
3620 / HOST_BITS_PER_WIDE_INT);
3621 gcc_assert(ocount <= ocount);
3622
3623 for (size_t i = 0; i < ocount; ++i)
3624 phwi[i] = ~phwi[i];
3625
3626 size_t clearbits = ocount * HOST_BITS_PER_WIDE_INT - obits;
3627 if (clearbits != 0)
3628 phwi[ocount - 1] &= (((unsigned HOST_WIDE_INT) (HOST_WIDE_INT) -1)
3629 >> clearbits);
3630
3631 mpz_import(val, ocount, -1, sizeof(HOST_WIDE_INT), 0, 0, phwi);
3632
3633 delete[] phwi;
3634 }
3635 return Integer_expression::check_constant(val, utype, location);
3636 case OPERATOR_AND:
3637 case OPERATOR_MULT:
3638 return false;
3639 default:
3640 gcc_unreachable();
3641 }
3642 }
3643
3644 // Apply unary opcode OP to UVAL, setting VAL. Return true if this
3645 // could be done, false if not.
3646
3647 bool
3648 Unary_expression::eval_float(Operator op, mpfr_t uval, mpfr_t val)
3649 {
3650 switch (op)
3651 {
3652 case OPERATOR_PLUS:
3653 mpfr_set(val, uval, GMP_RNDN);
3654 return true;
3655 case OPERATOR_MINUS:
3656 mpfr_neg(val, uval, GMP_RNDN);
3657 return true;
3658 case OPERATOR_NOT:
3659 case OPERATOR_XOR:
3660 case OPERATOR_AND:
3661 case OPERATOR_MULT:
3662 return false;
3663 default:
3664 gcc_unreachable();
3665 }
3666 }
3667
3668 // Apply unary opcode OP to RVAL/IVAL, setting REAL/IMAG. Return true
3669 // if this could be done, false if not.
3670
3671 bool
3672 Unary_expression::eval_complex(Operator op, mpfr_t rval, mpfr_t ival,
3673 mpfr_t real, mpfr_t imag)
3674 {
3675 switch (op)
3676 {
3677 case OPERATOR_PLUS:
3678 mpfr_set(real, rval, GMP_RNDN);
3679 mpfr_set(imag, ival, GMP_RNDN);
3680 return true;
3681 case OPERATOR_MINUS:
3682 mpfr_neg(real, rval, GMP_RNDN);
3683 mpfr_neg(imag, ival, GMP_RNDN);
3684 return true;
3685 case OPERATOR_NOT:
3686 case OPERATOR_XOR:
3687 case OPERATOR_AND:
3688 case OPERATOR_MULT:
3689 return false;
3690 default:
3691 gcc_unreachable();
3692 }
3693 }
3694
3695 // Return the integral constant value of a unary expression, if it has one.
3696
3697 bool
3698 Unary_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
3699 Type** ptype) const
3700 {
3701 mpz_t uval;
3702 mpz_init(uval);
3703 bool ret;
3704 if (!this->expr_->integer_constant_value(iota_is_constant, uval, ptype))
3705 ret = false;
3706 else
3707 ret = Unary_expression::eval_integer(this->op_, *ptype, uval, val,
3708 this->location());
3709 mpz_clear(uval);
3710 return ret;
3711 }
3712
3713 // Return the floating point constant value of a unary expression, if
3714 // it has one.
3715
3716 bool
3717 Unary_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
3718 {
3719 mpfr_t uval;
3720 mpfr_init(uval);
3721 bool ret;
3722 if (!this->expr_->float_constant_value(uval, ptype))
3723 ret = false;
3724 else
3725 ret = Unary_expression::eval_float(this->op_, uval, val);
3726 mpfr_clear(uval);
3727 return ret;
3728 }
3729
3730 // Return the complex constant value of a unary expression, if it has
3731 // one.
3732
3733 bool
3734 Unary_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
3735 Type** ptype) const
3736 {
3737 mpfr_t rval;
3738 mpfr_t ival;
3739 mpfr_init(rval);
3740 mpfr_init(ival);
3741 bool ret;
3742 if (!this->expr_->complex_constant_value(rval, ival, ptype))
3743 ret = false;
3744 else
3745 ret = Unary_expression::eval_complex(this->op_, rval, ival, real, imag);
3746 mpfr_clear(rval);
3747 mpfr_clear(ival);
3748 return ret;
3749 }
3750
3751 // Return the type of a unary expression.
3752
3753 Type*
3754 Unary_expression::do_type()
3755 {
3756 switch (this->op_)
3757 {
3758 case OPERATOR_PLUS:
3759 case OPERATOR_MINUS:
3760 case OPERATOR_NOT:
3761 case OPERATOR_XOR:
3762 return this->expr_->type();
3763
3764 case OPERATOR_AND:
3765 return Type::make_pointer_type(this->expr_->type());
3766
3767 case OPERATOR_MULT:
3768 {
3769 Type* subtype = this->expr_->type();
3770 Type* points_to = subtype->points_to();
3771 if (points_to == NULL)
3772 return Type::make_error_type();
3773 return points_to;
3774 }
3775
3776 default:
3777 gcc_unreachable();
3778 }
3779 }
3780
3781 // Determine abstract types for a unary expression.
3782
3783 void
3784 Unary_expression::do_determine_type(const Type_context* context)
3785 {
3786 switch (this->op_)
3787 {
3788 case OPERATOR_PLUS:
3789 case OPERATOR_MINUS:
3790 case OPERATOR_NOT:
3791 case OPERATOR_XOR:
3792 this->expr_->determine_type(context);
3793 break;
3794
3795 case OPERATOR_AND:
3796 // Taking the address of something.
3797 {
3798 Type* subtype = (context->type == NULL
3799 ? NULL
3800 : context->type->points_to());
3801 Type_context subcontext(subtype, false);
3802 this->expr_->determine_type(&subcontext);
3803 }
3804 break;
3805
3806 case OPERATOR_MULT:
3807 // Indirecting through a pointer.
3808 {
3809 Type* subtype = (context->type == NULL
3810 ? NULL
3811 : Type::make_pointer_type(context->type));
3812 Type_context subcontext(subtype, false);
3813 this->expr_->determine_type(&subcontext);
3814 }
3815 break;
3816
3817 default:
3818 gcc_unreachable();
3819 }
3820 }
3821
3822 // Check types for a unary expression.
3823
3824 void
3825 Unary_expression::do_check_types(Gogo*)
3826 {
3827 Type* type = this->expr_->type();
3828 if (type->is_error_type())
3829 {
3830 this->set_is_error();
3831 return;
3832 }
3833
3834 switch (this->op_)
3835 {
3836 case OPERATOR_PLUS:
3837 case OPERATOR_MINUS:
3838 if (type->integer_type() == NULL
3839 && type->float_type() == NULL
3840 && type->complex_type() == NULL)
3841 this->report_error(_("expected numeric type"));
3842 break;
3843
3844 case OPERATOR_NOT:
3845 case OPERATOR_XOR:
3846 if (type->integer_type() == NULL
3847 && !type->is_boolean_type())
3848 this->report_error(_("expected integer or boolean type"));
3849 break;
3850
3851 case OPERATOR_AND:
3852 if (!this->expr_->is_addressable())
3853 this->report_error(_("invalid operand for unary %<&%>"));
3854 else
3855 this->expr_->address_taken(this->escapes_);
3856 break;
3857
3858 case OPERATOR_MULT:
3859 // Indirecting through a pointer.
3860 if (type->points_to() == NULL)
3861 this->report_error(_("expected pointer"));
3862 break;
3863
3864 default:
3865 gcc_unreachable();
3866 }
3867 }
3868
3869 // Get a tree for a unary expression.
3870
3871 tree
3872 Unary_expression::do_get_tree(Translate_context* context)
3873 {
3874 tree expr = this->expr_->get_tree(context);
3875 if (expr == error_mark_node)
3876 return error_mark_node;
3877
3878 source_location loc = this->location();
3879 switch (this->op_)
3880 {
3881 case OPERATOR_PLUS:
3882 return expr;
3883
3884 case OPERATOR_MINUS:
3885 {
3886 tree type = TREE_TYPE(expr);
3887 tree compute_type = excess_precision_type(type);
3888 if (compute_type != NULL_TREE)
3889 expr = ::convert(compute_type, expr);
3890 tree ret = fold_build1_loc(loc, NEGATE_EXPR,
3891 (compute_type != NULL_TREE
3892 ? compute_type
3893 : type),
3894 expr);
3895 if (compute_type != NULL_TREE)
3896 ret = ::convert(type, ret);
3897 return ret;
3898 }
3899
3900 case OPERATOR_NOT:
3901 if (TREE_CODE(TREE_TYPE(expr)) == BOOLEAN_TYPE)
3902 return fold_build1_loc(loc, TRUTH_NOT_EXPR, TREE_TYPE(expr), expr);
3903 else
3904 return fold_build2_loc(loc, NE_EXPR, boolean_type_node, expr,
3905 build_int_cst(TREE_TYPE(expr), 0));
3906
3907 case OPERATOR_XOR:
3908 return fold_build1_loc(loc, BIT_NOT_EXPR, TREE_TYPE(expr), expr);
3909
3910 case OPERATOR_AND:
3911 // We should not see a non-constant constructor here; cases
3912 // where we would see one should have been moved onto the heap
3913 // at parse time. Taking the address of a nonconstant
3914 // constructor will not do what the programmer expects.
3915 gcc_assert(TREE_CODE(expr) != CONSTRUCTOR || TREE_CONSTANT(expr));
3916 gcc_assert(TREE_CODE(expr) != ADDR_EXPR);
3917
3918 // Build a decl for a constant constructor.
3919 if (TREE_CODE(expr) == CONSTRUCTOR && TREE_CONSTANT(expr))
3920 {
3921 tree decl = build_decl(this->location(), VAR_DECL,
3922 create_tmp_var_name("C"), TREE_TYPE(expr));
3923 DECL_EXTERNAL(decl) = 0;
3924 TREE_PUBLIC(decl) = 0;
3925 TREE_READONLY(decl) = 1;
3926 TREE_CONSTANT(decl) = 1;
3927 TREE_STATIC(decl) = 1;
3928 TREE_ADDRESSABLE(decl) = 1;
3929 DECL_ARTIFICIAL(decl) = 1;
3930 DECL_INITIAL(decl) = expr;
3931 rest_of_decl_compilation(decl, 1, 0);
3932 expr = decl;
3933 }
3934
3935 return build_fold_addr_expr_loc(loc, expr);
3936
3937 case OPERATOR_MULT:
3938 {
3939 gcc_assert(POINTER_TYPE_P(TREE_TYPE(expr)));
3940
3941 // If we are dereferencing the pointer to a large struct, we
3942 // need to check for nil. We don't bother to check for small
3943 // structs because we expect the system to crash on a nil
3944 // pointer dereference.
3945 HOST_WIDE_INT s = int_size_in_bytes(TREE_TYPE(TREE_TYPE(expr)));
3946 if (s == -1 || s >= 4096)
3947 {
3948 if (!DECL_P(expr))
3949 expr = save_expr(expr);
3950 tree compare = fold_build2_loc(loc, EQ_EXPR, boolean_type_node,
3951 expr,
3952 fold_convert(TREE_TYPE(expr),
3953 null_pointer_node));
3954 tree crash = Gogo::runtime_error(RUNTIME_ERROR_NIL_DEREFERENCE,
3955 loc);
3956 expr = fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(expr),
3957 build3(COND_EXPR, void_type_node,
3958 compare, crash, NULL_TREE),
3959 expr);
3960 }
3961
3962 // If the type of EXPR is a recursive pointer type, then we
3963 // need to insert a cast before indirecting.
3964 if (TREE_TYPE(TREE_TYPE(expr)) == ptr_type_node)
3965 {
3966 Type* pt = this->expr_->type()->points_to();
3967 tree ind = pt->get_tree(context->gogo());
3968 expr = fold_convert_loc(loc, build_pointer_type(ind), expr);
3969 }
3970
3971 return build_fold_indirect_ref_loc(loc, expr);
3972 }
3973
3974 default:
3975 gcc_unreachable();
3976 }
3977 }
3978
3979 // Export a unary expression.
3980
3981 void
3982 Unary_expression::do_export(Export* exp) const
3983 {
3984 switch (this->op_)
3985 {
3986 case OPERATOR_PLUS:
3987 exp->write_c_string("+ ");
3988 break;
3989 case OPERATOR_MINUS:
3990 exp->write_c_string("- ");
3991 break;
3992 case OPERATOR_NOT:
3993 exp->write_c_string("! ");
3994 break;
3995 case OPERATOR_XOR:
3996 exp->write_c_string("^ ");
3997 break;
3998 case OPERATOR_AND:
3999 case OPERATOR_MULT:
4000 default:
4001 gcc_unreachable();
4002 }
4003 this->expr_->export_expression(exp);
4004 }
4005
4006 // Import a unary expression.
4007
4008 Expression*
4009 Unary_expression::do_import(Import* imp)
4010 {
4011 Operator op;
4012 switch (imp->get_char())
4013 {
4014 case '+':
4015 op = OPERATOR_PLUS;
4016 break;
4017 case '-':
4018 op = OPERATOR_MINUS;
4019 break;
4020 case '!':
4021 op = OPERATOR_NOT;
4022 break;
4023 case '^':
4024 op = OPERATOR_XOR;
4025 break;
4026 default:
4027 gcc_unreachable();
4028 }
4029 imp->require_c_string(" ");
4030 Expression* expr = Expression::import_expression(imp);
4031 return Expression::make_unary(op, expr, imp->location());
4032 }
4033
4034 // Make a unary expression.
4035
4036 Expression*
4037 Expression::make_unary(Operator op, Expression* expr, source_location location)
4038 {
4039 return new Unary_expression(op, expr, location);
4040 }
4041
4042 // If this is an indirection through a pointer, return the expression
4043 // being pointed through. Otherwise return this.
4044
4045 Expression*
4046 Expression::deref()
4047 {
4048 if (this->classification_ == EXPRESSION_UNARY)
4049 {
4050 Unary_expression* ue = static_cast<Unary_expression*>(this);
4051 if (ue->op() == OPERATOR_MULT)
4052 return ue->operand();
4053 }
4054 return this;
4055 }
4056
4057 // Class Binary_expression.
4058
4059 // Traversal.
4060
4061 int
4062 Binary_expression::do_traverse(Traverse* traverse)
4063 {
4064 int t = Expression::traverse(&this->left_, traverse);
4065 if (t == TRAVERSE_EXIT)
4066 return TRAVERSE_EXIT;
4067 return Expression::traverse(&this->right_, traverse);
4068 }
4069
4070 // Compare integer constants according to OP.
4071
4072 bool
4073 Binary_expression::compare_integer(Operator op, mpz_t left_val,
4074 mpz_t right_val)
4075 {
4076 int i = mpz_cmp(left_val, right_val);
4077 switch (op)
4078 {
4079 case OPERATOR_EQEQ:
4080 return i == 0;
4081 case OPERATOR_NOTEQ:
4082 return i != 0;
4083 case OPERATOR_LT:
4084 return i < 0;
4085 case OPERATOR_LE:
4086 return i <= 0;
4087 case OPERATOR_GT:
4088 return i > 0;
4089 case OPERATOR_GE:
4090 return i >= 0;
4091 default:
4092 gcc_unreachable();
4093 }
4094 }
4095
4096 // Compare floating point constants according to OP.
4097
4098 bool
4099 Binary_expression::compare_float(Operator op, Type* type, mpfr_t left_val,
4100 mpfr_t right_val)
4101 {
4102 int i;
4103 if (type == NULL)
4104 i = mpfr_cmp(left_val, right_val);
4105 else
4106 {
4107 mpfr_t lv;
4108 mpfr_init_set(lv, left_val, GMP_RNDN);
4109 mpfr_t rv;
4110 mpfr_init_set(rv, right_val, GMP_RNDN);
4111 Float_expression::constrain_float(lv, type);
4112 Float_expression::constrain_float(rv, type);
4113 i = mpfr_cmp(lv, rv);
4114 mpfr_clear(lv);
4115 mpfr_clear(rv);
4116 }
4117 switch (op)
4118 {
4119 case OPERATOR_EQEQ:
4120 return i == 0;
4121 case OPERATOR_NOTEQ:
4122 return i != 0;
4123 case OPERATOR_LT:
4124 return i < 0;
4125 case OPERATOR_LE:
4126 return i <= 0;
4127 case OPERATOR_GT:
4128 return i > 0;
4129 case OPERATOR_GE:
4130 return i >= 0;
4131 default:
4132 gcc_unreachable();
4133 }
4134 }
4135
4136 // Compare complex constants according to OP. Complex numbers may
4137 // only be compared for equality.
4138
4139 bool
4140 Binary_expression::compare_complex(Operator op, Type* type,
4141 mpfr_t left_real, mpfr_t left_imag,
4142 mpfr_t right_real, mpfr_t right_imag)
4143 {
4144 bool is_equal;
4145 if (type == NULL)
4146 is_equal = (mpfr_cmp(left_real, right_real) == 0
4147 && mpfr_cmp(left_imag, right_imag) == 0);
4148 else
4149 {
4150 mpfr_t lr;
4151 mpfr_t li;
4152 mpfr_init_set(lr, left_real, GMP_RNDN);
4153 mpfr_init_set(li, left_imag, GMP_RNDN);
4154 mpfr_t rr;
4155 mpfr_t ri;
4156 mpfr_init_set(rr, right_real, GMP_RNDN);
4157 mpfr_init_set(ri, right_imag, GMP_RNDN);
4158 Complex_expression::constrain_complex(lr, li, type);
4159 Complex_expression::constrain_complex(rr, ri, type);
4160 is_equal = mpfr_cmp(lr, rr) == 0 && mpfr_cmp(li, ri) == 0;
4161 mpfr_clear(lr);
4162 mpfr_clear(li);
4163 mpfr_clear(rr);
4164 mpfr_clear(ri);
4165 }
4166 switch (op)
4167 {
4168 case OPERATOR_EQEQ:
4169 return is_equal;
4170 case OPERATOR_NOTEQ:
4171 return !is_equal;
4172 default:
4173 gcc_unreachable();
4174 }
4175 }
4176
4177 // Apply binary opcode OP to LEFT_VAL and RIGHT_VAL, setting VAL.
4178 // LEFT_TYPE is the type of LEFT_VAL, RIGHT_TYPE is the type of
4179 // RIGHT_VAL; LEFT_TYPE and/or RIGHT_TYPE may be NULL. Return true if
4180 // this could be done, false if not.
4181
4182 bool
4183 Binary_expression::eval_integer(Operator op, Type* left_type, mpz_t left_val,
4184 Type* right_type, mpz_t right_val,
4185 source_location location, mpz_t val)
4186 {
4187 bool is_shift_op = false;
4188 switch (op)
4189 {
4190 case OPERATOR_OROR:
4191 case OPERATOR_ANDAND:
4192 case OPERATOR_EQEQ:
4193 case OPERATOR_NOTEQ:
4194 case OPERATOR_LT:
4195 case OPERATOR_LE:
4196 case OPERATOR_GT:
4197 case OPERATOR_GE:
4198 // These return boolean values. We should probably handle them
4199 // anyhow in case a type conversion is used on the result.
4200 return false;
4201 case OPERATOR_PLUS:
4202 mpz_add(val, left_val, right_val);
4203 break;
4204 case OPERATOR_MINUS:
4205 mpz_sub(val, left_val, right_val);
4206 break;
4207 case OPERATOR_OR:
4208 mpz_ior(val, left_val, right_val);
4209 break;
4210 case OPERATOR_XOR:
4211 mpz_xor(val, left_val, right_val);
4212 break;
4213 case OPERATOR_MULT:
4214 mpz_mul(val, left_val, right_val);
4215 break;
4216 case OPERATOR_DIV:
4217 if (mpz_sgn(right_val) != 0)
4218 mpz_tdiv_q(val, left_val, right_val);
4219 else
4220 {
4221 error_at(location, "division by zero");
4222 mpz_set_ui(val, 0);
4223 return true;
4224 }
4225 break;
4226 case OPERATOR_MOD:
4227 if (mpz_sgn(right_val) != 0)
4228 mpz_tdiv_r(val, left_val, right_val);
4229 else
4230 {
4231 error_at(location, "division by zero");
4232 mpz_set_ui(val, 0);
4233 return true;
4234 }
4235 break;
4236 case OPERATOR_LSHIFT:
4237 {
4238 unsigned long shift = mpz_get_ui(right_val);
4239 if (mpz_cmp_ui(right_val, shift) != 0)
4240 {
4241 error_at(location, "shift count overflow");
4242 mpz_set_ui(val, 0);
4243 return true;
4244 }
4245 mpz_mul_2exp(val, left_val, shift);
4246 is_shift_op = true;
4247 break;
4248 }
4249 break;
4250 case OPERATOR_RSHIFT:
4251 {
4252 unsigned long shift = mpz_get_ui(right_val);
4253 if (mpz_cmp_ui(right_val, shift) != 0)
4254 {
4255 error_at(location, "shift count overflow");
4256 mpz_set_ui(val, 0);
4257 return true;
4258 }
4259 if (mpz_cmp_ui(left_val, 0) >= 0)
4260 mpz_tdiv_q_2exp(val, left_val, shift);
4261 else
4262 mpz_fdiv_q_2exp(val, left_val, shift);
4263 is_shift_op = true;
4264 break;
4265 }
4266 break;
4267 case OPERATOR_AND:
4268 mpz_and(val, left_val, right_val);
4269 break;
4270 case OPERATOR_BITCLEAR:
4271 {
4272 mpz_t tval;
4273 mpz_init(tval);
4274 mpz_com(tval, right_val);
4275 mpz_and(val, left_val, tval);
4276 mpz_clear(tval);
4277 }
4278 break;
4279 default:
4280 gcc_unreachable();
4281 }
4282
4283 Type* type = left_type;
4284 if (!is_shift_op)
4285 {
4286 if (type == NULL)
4287 type = right_type;
4288 else if (type != right_type && right_type != NULL)
4289 {
4290 if (type->is_abstract())
4291 type = right_type;
4292 else if (!right_type->is_abstract())
4293 {
4294 // This look like a type error which should be diagnosed
4295 // elsewhere. Don't do anything here, to avoid an
4296 // unhelpful chain of error messages.
4297 return true;
4298 }
4299 }
4300 }
4301
4302 if (type != NULL && !type->is_abstract())
4303 {
4304 // We have to check the operands too, as we have implicitly
4305 // coerced them to TYPE.
4306 if ((type != left_type
4307 && !Integer_expression::check_constant(left_val, type, location))
4308 || (!is_shift_op
4309 && type != right_type
4310 && !Integer_expression::check_constant(right_val, type,
4311 location))
4312 || !Integer_expression::check_constant(val, type, location))
4313 mpz_set_ui(val, 0);
4314 }
4315
4316 return true;
4317 }
4318
4319 // Apply binary opcode OP to LEFT_VAL and RIGHT_VAL, setting VAL.
4320 // Return true if this could be done, false if not.
4321
4322 bool
4323 Binary_expression::eval_float(Operator op, Type* left_type, mpfr_t left_val,
4324 Type* right_type, mpfr_t right_val,
4325 mpfr_t val, source_location location)
4326 {
4327 switch (op)
4328 {
4329 case OPERATOR_OROR:
4330 case OPERATOR_ANDAND:
4331 case OPERATOR_EQEQ:
4332 case OPERATOR_NOTEQ:
4333 case OPERATOR_LT:
4334 case OPERATOR_LE:
4335 case OPERATOR_GT:
4336 case OPERATOR_GE:
4337 // These return boolean values. We should probably handle them
4338 // anyhow in case a type conversion is used on the result.
4339 return false;
4340 case OPERATOR_PLUS:
4341 mpfr_add(val, left_val, right_val, GMP_RNDN);
4342 break;
4343 case OPERATOR_MINUS:
4344 mpfr_sub(val, left_val, right_val, GMP_RNDN);
4345 break;
4346 case OPERATOR_OR:
4347 case OPERATOR_XOR:
4348 case OPERATOR_AND:
4349 case OPERATOR_BITCLEAR:
4350 return false;
4351 case OPERATOR_MULT:
4352 mpfr_mul(val, left_val, right_val, GMP_RNDN);
4353 break;
4354 case OPERATOR_DIV:
4355 if (mpfr_zero_p(right_val))
4356 error_at(location, "division by zero");
4357 mpfr_div(val, left_val, right_val, GMP_RNDN);
4358 break;
4359 case OPERATOR_MOD:
4360 return false;
4361 case OPERATOR_LSHIFT:
4362 case OPERATOR_RSHIFT:
4363 return false;
4364 default:
4365 gcc_unreachable();
4366 }
4367
4368 Type* type = left_type;
4369 if (type == NULL)
4370 type = right_type;
4371 else if (type != right_type && right_type != NULL)
4372 {
4373 if (type->is_abstract())
4374 type = right_type;
4375 else if (!right_type->is_abstract())
4376 {
4377 // This looks like a type error which should be diagnosed
4378 // elsewhere. Don't do anything here, to avoid an unhelpful
4379 // chain of error messages.
4380 return true;
4381 }
4382 }
4383
4384 if (type != NULL && !type->is_abstract())
4385 {
4386 if ((type != left_type
4387 && !Float_expression::check_constant(left_val, type, location))
4388 || (type != right_type
4389 && !Float_expression::check_constant(right_val, type,
4390 location))
4391 || !Float_expression::check_constant(val, type, location))
4392 mpfr_set_ui(val, 0, GMP_RNDN);
4393 }
4394
4395 return true;
4396 }
4397
4398 // Apply binary opcode OP to LEFT_REAL/LEFT_IMAG and
4399 // RIGHT_REAL/RIGHT_IMAG, setting REAL/IMAG. Return true if this
4400 // could be done, false if not.
4401
4402 bool
4403 Binary_expression::eval_complex(Operator op, Type* left_type,
4404 mpfr_t left_real, mpfr_t left_imag,
4405 Type *right_type,
4406 mpfr_t right_real, mpfr_t right_imag,
4407 mpfr_t real, mpfr_t imag,
4408 source_location location)
4409 {
4410 switch (op)
4411 {
4412 case OPERATOR_OROR:
4413 case OPERATOR_ANDAND:
4414 case OPERATOR_EQEQ:
4415 case OPERATOR_NOTEQ:
4416 case OPERATOR_LT:
4417 case OPERATOR_LE:
4418 case OPERATOR_GT:
4419 case OPERATOR_GE:
4420 // These return boolean values and must be handled differently.
4421 return false;
4422 case OPERATOR_PLUS:
4423 mpfr_add(real, left_real, right_real, GMP_RNDN);
4424 mpfr_add(imag, left_imag, right_imag, GMP_RNDN);
4425 break;
4426 case OPERATOR_MINUS:
4427 mpfr_sub(real, left_real, right_real, GMP_RNDN);
4428 mpfr_sub(imag, left_imag, right_imag, GMP_RNDN);
4429 break;
4430 case OPERATOR_OR:
4431 case OPERATOR_XOR:
4432 case OPERATOR_AND:
4433 case OPERATOR_BITCLEAR:
4434 return false;
4435 case OPERATOR_MULT:
4436 {
4437 // You might think that multiplying two complex numbers would
4438 // be simple, and you would be right, until you start to think
4439 // about getting the right answer for infinity. If one
4440 // operand here is infinity and the other is anything other
4441 // than zero or NaN, then we are going to wind up subtracting
4442 // two infinity values. That will give us a NaN, but the
4443 // correct answer is infinity.
4444
4445 mpfr_t lrrr;
4446 mpfr_init(lrrr);
4447 mpfr_mul(lrrr, left_real, right_real, GMP_RNDN);
4448
4449 mpfr_t lrri;
4450 mpfr_init(lrri);
4451 mpfr_mul(lrri, left_real, right_imag, GMP_RNDN);
4452
4453 mpfr_t lirr;
4454 mpfr_init(lirr);
4455 mpfr_mul(lirr, left_imag, right_real, GMP_RNDN);
4456
4457 mpfr_t liri;
4458 mpfr_init(liri);
4459 mpfr_mul(liri, left_imag, right_imag, GMP_RNDN);
4460
4461 mpfr_sub(real, lrrr, liri, GMP_RNDN);
4462 mpfr_add(imag, lrri, lirr, GMP_RNDN);
4463
4464 // If we get NaN on both sides, check whether it should really
4465 // be infinity. The rule is that if either side of the
4466 // complex number is infinity, then the whole value is
4467 // infinity, even if the other side is NaN. So the only case
4468 // we have to fix is the one in which both sides are NaN.
4469 if (mpfr_nan_p(real) && mpfr_nan_p(imag)
4470 && (!mpfr_nan_p(left_real) || !mpfr_nan_p(left_imag))
4471 && (!mpfr_nan_p(right_real) || !mpfr_nan_p(right_imag)))
4472 {
4473 bool is_infinity = false;
4474
4475 mpfr_t lr;
4476 mpfr_t li;
4477 mpfr_init_set(lr, left_real, GMP_RNDN);
4478 mpfr_init_set(li, left_imag, GMP_RNDN);
4479
4480 mpfr_t rr;
4481 mpfr_t ri;
4482 mpfr_init_set(rr, right_real, GMP_RNDN);
4483 mpfr_init_set(ri, right_imag, GMP_RNDN);
4484
4485 // If the left side is infinity, then the result is
4486 // infinity.
4487 if (mpfr_inf_p(lr) || mpfr_inf_p(li))
4488 {
4489 mpfr_set_ui(lr, mpfr_inf_p(lr) ? 1 : 0, GMP_RNDN);
4490 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
4491 mpfr_set_ui(li, mpfr_inf_p(li) ? 1 : 0, GMP_RNDN);
4492 mpfr_copysign(li, li, left_imag, GMP_RNDN);
4493 if (mpfr_nan_p(rr))
4494 {
4495 mpfr_set_ui(rr, 0, GMP_RNDN);
4496 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
4497 }
4498 if (mpfr_nan_p(ri))
4499 {
4500 mpfr_set_ui(ri, 0, GMP_RNDN);
4501 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
4502 }
4503 is_infinity = true;
4504 }
4505
4506 // If the right side is infinity, then the result is
4507 // infinity.
4508 if (mpfr_inf_p(rr) || mpfr_inf_p(ri))
4509 {
4510 mpfr_set_ui(rr, mpfr_inf_p(rr) ? 1 : 0, GMP_RNDN);
4511 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
4512 mpfr_set_ui(ri, mpfr_inf_p(ri) ? 1 : 0, GMP_RNDN);
4513 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
4514 if (mpfr_nan_p(lr))
4515 {
4516 mpfr_set_ui(lr, 0, GMP_RNDN);
4517 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
4518 }
4519 if (mpfr_nan_p(li))
4520 {
4521 mpfr_set_ui(li, 0, GMP_RNDN);
4522 mpfr_copysign(li, li, left_imag, GMP_RNDN);
4523 }
4524 is_infinity = true;
4525 }
4526
4527 // If we got an overflow in the intermediate computations,
4528 // then the result is infinity.
4529 if (!is_infinity
4530 && (mpfr_inf_p(lrrr) || mpfr_inf_p(lrri)
4531 || mpfr_inf_p(lirr) || mpfr_inf_p(liri)))
4532 {
4533 if (mpfr_nan_p(lr))
4534 {
4535 mpfr_set_ui(lr, 0, GMP_RNDN);
4536 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
4537 }
4538 if (mpfr_nan_p(li))
4539 {
4540 mpfr_set_ui(li, 0, GMP_RNDN);
4541 mpfr_copysign(li, li, left_imag, GMP_RNDN);
4542 }
4543 if (mpfr_nan_p(rr))
4544 {
4545 mpfr_set_ui(rr, 0, GMP_RNDN);
4546 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
4547 }
4548 if (mpfr_nan_p(ri))
4549 {
4550 mpfr_set_ui(ri, 0, GMP_RNDN);
4551 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
4552 }
4553 is_infinity = true;
4554 }
4555
4556 if (is_infinity)
4557 {
4558 mpfr_mul(lrrr, lr, rr, GMP_RNDN);
4559 mpfr_mul(lrri, lr, ri, GMP_RNDN);
4560 mpfr_mul(lirr, li, rr, GMP_RNDN);
4561 mpfr_mul(liri, li, ri, GMP_RNDN);
4562 mpfr_sub(real, lrrr, liri, GMP_RNDN);
4563 mpfr_add(imag, lrri, lirr, GMP_RNDN);
4564 mpfr_set_inf(real, mpfr_sgn(real));
4565 mpfr_set_inf(imag, mpfr_sgn(imag));
4566 }
4567
4568 mpfr_clear(lr);
4569 mpfr_clear(li);
4570 mpfr_clear(rr);
4571 mpfr_clear(ri);
4572 }
4573
4574 mpfr_clear(lrrr);
4575 mpfr_clear(lrri);
4576 mpfr_clear(lirr);
4577 mpfr_clear(liri);
4578 }
4579 break;
4580 case OPERATOR_DIV:
4581 {
4582 // For complex division we want to avoid having an
4583 // intermediate overflow turn the whole result in a NaN. We
4584 // scale the values to try to avoid this.
4585
4586 if (mpfr_zero_p(right_real) && mpfr_zero_p(right_imag))
4587 error_at(location, "division by zero");
4588
4589 mpfr_t rra;
4590 mpfr_t ria;
4591 mpfr_init(rra);
4592 mpfr_init(ria);
4593 mpfr_abs(rra, right_real, GMP_RNDN);
4594 mpfr_abs(ria, right_imag, GMP_RNDN);
4595 mpfr_t t;
4596 mpfr_init(t);
4597 mpfr_max(t, rra, ria, GMP_RNDN);
4598
4599 mpfr_t rr;
4600 mpfr_t ri;
4601 mpfr_init_set(rr, right_real, GMP_RNDN);
4602 mpfr_init_set(ri, right_imag, GMP_RNDN);
4603 long ilogbw = 0;
4604 if (!mpfr_inf_p(t) && !mpfr_nan_p(t) && !mpfr_zero_p(t))
4605 {
4606 ilogbw = mpfr_get_exp(t);
4607 mpfr_mul_2si(rr, rr, - ilogbw, GMP_RNDN);
4608 mpfr_mul_2si(ri, ri, - ilogbw, GMP_RNDN);
4609 }
4610
4611 mpfr_t denom;
4612 mpfr_init(denom);
4613 mpfr_mul(denom, rr, rr, GMP_RNDN);
4614 mpfr_mul(t, ri, ri, GMP_RNDN);
4615 mpfr_add(denom, denom, t, GMP_RNDN);
4616
4617 mpfr_mul(real, left_real, rr, GMP_RNDN);
4618 mpfr_mul(t, left_imag, ri, GMP_RNDN);
4619 mpfr_add(real, real, t, GMP_RNDN);
4620 mpfr_div(real, real, denom, GMP_RNDN);
4621 mpfr_mul_2si(real, real, - ilogbw, GMP_RNDN);
4622
4623 mpfr_mul(imag, left_imag, rr, GMP_RNDN);
4624 mpfr_mul(t, left_real, ri, GMP_RNDN);
4625 mpfr_sub(imag, imag, t, GMP_RNDN);
4626 mpfr_div(imag, imag, denom, GMP_RNDN);
4627 mpfr_mul_2si(imag, imag, - ilogbw, GMP_RNDN);
4628
4629 // If we wind up with NaN on both sides, check whether we
4630 // should really have infinity. The rule is that if either
4631 // side of the complex number is infinity, then the whole
4632 // value is infinity, even if the other side is NaN. So the
4633 // only case we have to fix is the one in which both sides are
4634 // NaN.
4635 if (mpfr_nan_p(real) && mpfr_nan_p(imag)
4636 && (!mpfr_nan_p(left_real) || !mpfr_nan_p(left_imag))
4637 && (!mpfr_nan_p(right_real) || !mpfr_nan_p(right_imag)))
4638 {
4639 if (mpfr_zero_p(denom))
4640 {
4641 mpfr_set_inf(real, mpfr_sgn(rr));
4642 mpfr_mul(real, real, left_real, GMP_RNDN);
4643 mpfr_set_inf(imag, mpfr_sgn(rr));
4644 mpfr_mul(imag, imag, left_imag, GMP_RNDN);
4645 }
4646 else if ((mpfr_inf_p(left_real) || mpfr_inf_p(left_imag))
4647 && mpfr_number_p(rr) && mpfr_number_p(ri))
4648 {
4649 mpfr_set_ui(t, mpfr_inf_p(left_real) ? 1 : 0, GMP_RNDN);
4650 mpfr_copysign(t, t, left_real, GMP_RNDN);
4651
4652 mpfr_t t2;
4653 mpfr_init_set_ui(t2, mpfr_inf_p(left_imag) ? 1 : 0, GMP_RNDN);
4654 mpfr_copysign(t2, t2, left_imag, GMP_RNDN);
4655
4656 mpfr_t t3;
4657 mpfr_init(t3);
4658 mpfr_mul(t3, t, rr, GMP_RNDN);
4659
4660 mpfr_t t4;
4661 mpfr_init(t4);
4662 mpfr_mul(t4, t2, ri, GMP_RNDN);
4663
4664 mpfr_add(t3, t3, t4, GMP_RNDN);
4665 mpfr_set_inf(real, mpfr_sgn(t3));
4666
4667 mpfr_mul(t3, t2, rr, GMP_RNDN);
4668 mpfr_mul(t4, t, ri, GMP_RNDN);
4669 mpfr_sub(t3, t3, t4, GMP_RNDN);
4670 mpfr_set_inf(imag, mpfr_sgn(t3));
4671
4672 mpfr_clear(t2);
4673 mpfr_clear(t3);
4674 mpfr_clear(t4);
4675 }
4676 else if ((mpfr_inf_p(right_real) || mpfr_inf_p(right_imag))
4677 && mpfr_number_p(left_real) && mpfr_number_p(left_imag))
4678 {
4679 mpfr_set_ui(t, mpfr_inf_p(rr) ? 1 : 0, GMP_RNDN);
4680 mpfr_copysign(t, t, rr, GMP_RNDN);
4681
4682 mpfr_t t2;
4683 mpfr_init_set_ui(t2, mpfr_inf_p(ri) ? 1 : 0, GMP_RNDN);
4684 mpfr_copysign(t2, t2, ri, GMP_RNDN);
4685
4686 mpfr_t t3;
4687 mpfr_init(t3);
4688 mpfr_mul(t3, left_real, t, GMP_RNDN);
4689
4690 mpfr_t t4;
4691 mpfr_init(t4);
4692 mpfr_mul(t4, left_imag, t2, GMP_RNDN);
4693
4694 mpfr_add(t3, t3, t4, GMP_RNDN);
4695 mpfr_set_ui(real, 0, GMP_RNDN);
4696 mpfr_mul(real, real, t3, GMP_RNDN);
4697
4698 mpfr_mul(t3, left_imag, t, GMP_RNDN);
4699 mpfr_mul(t4, left_real, t2, GMP_RNDN);
4700 mpfr_sub(t3, t3, t4, GMP_RNDN);
4701 mpfr_set_ui(imag, 0, GMP_RNDN);
4702 mpfr_mul(imag, imag, t3, GMP_RNDN);
4703
4704 mpfr_clear(t2);
4705 mpfr_clear(t3);
4706 mpfr_clear(t4);
4707 }
4708 }
4709
4710 mpfr_clear(denom);
4711 mpfr_clear(rr);
4712 mpfr_clear(ri);
4713 mpfr_clear(t);
4714 mpfr_clear(rra);
4715 mpfr_clear(ria);
4716 }
4717 break;
4718 case OPERATOR_MOD:
4719 return false;
4720 case OPERATOR_LSHIFT:
4721 case OPERATOR_RSHIFT:
4722 return false;
4723 default:
4724 gcc_unreachable();
4725 }
4726
4727 Type* type = left_type;
4728 if (type == NULL)
4729 type = right_type;
4730 else if (type != right_type && right_type != NULL)
4731 {
4732 if (type->is_abstract())
4733 type = right_type;
4734 else if (!right_type->is_abstract())
4735 {
4736 // This looks like a type error which should be diagnosed
4737 // elsewhere. Don't do anything here, to avoid an unhelpful
4738 // chain of error messages.
4739 return true;
4740 }
4741 }
4742
4743 if (type != NULL && !type->is_abstract())
4744 {
4745 if ((type != left_type
4746 && !Complex_expression::check_constant(left_real, left_imag,
4747 type, location))
4748 || (type != right_type
4749 && !Complex_expression::check_constant(right_real, right_imag,
4750 type, location))
4751 || !Complex_expression::check_constant(real, imag, type,
4752 location))
4753 {
4754 mpfr_set_ui(real, 0, GMP_RNDN);
4755 mpfr_set_ui(imag, 0, GMP_RNDN);
4756 }
4757 }
4758
4759 return true;
4760 }
4761
4762 // Lower a binary expression. We have to evaluate constant
4763 // expressions now, in order to implement Go's unlimited precision
4764 // constants.
4765
4766 Expression*
4767 Binary_expression::do_lower(Gogo*, Named_object*, int)
4768 {
4769 source_location location = this->location();
4770 Operator op = this->op_;
4771 Expression* left = this->left_;
4772 Expression* right = this->right_;
4773
4774 const bool is_comparison = (op == OPERATOR_EQEQ
4775 || op == OPERATOR_NOTEQ
4776 || op == OPERATOR_LT
4777 || op == OPERATOR_LE
4778 || op == OPERATOR_GT
4779 || op == OPERATOR_GE);
4780
4781 // Integer constant expressions.
4782 {
4783 mpz_t left_val;
4784 mpz_init(left_val);
4785 Type* left_type;
4786 mpz_t right_val;
4787 mpz_init(right_val);
4788 Type* right_type;
4789 if (left->integer_constant_value(false, left_val, &left_type)
4790 && right->integer_constant_value(false, right_val, &right_type))
4791 {
4792 Expression* ret = NULL;
4793 if (left_type != right_type
4794 && left_type != NULL
4795 && right_type != NULL
4796 && left_type->base() != right_type->base()
4797 && op != OPERATOR_LSHIFT
4798 && op != OPERATOR_RSHIFT)
4799 {
4800 // May be a type error--let it be diagnosed later.
4801 }
4802 else if (is_comparison)
4803 {
4804 bool b = Binary_expression::compare_integer(op, left_val,
4805 right_val);
4806 ret = Expression::make_cast(Type::lookup_bool_type(),
4807 Expression::make_boolean(b, location),
4808 location);
4809 }
4810 else
4811 {
4812 mpz_t val;
4813 mpz_init(val);
4814
4815 if (Binary_expression::eval_integer(op, left_type, left_val,
4816 right_type, right_val,
4817 location, val))
4818 {
4819 gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND);
4820 Type* type;
4821 if (op == OPERATOR_LSHIFT || op == OPERATOR_RSHIFT)
4822 type = left_type;
4823 else if (left_type == NULL)
4824 type = right_type;
4825 else if (right_type == NULL)
4826 type = left_type;
4827 else if (!left_type->is_abstract()
4828 && left_type->named_type() != NULL)
4829 type = left_type;
4830 else if (!right_type->is_abstract()
4831 && right_type->named_type() != NULL)
4832 type = right_type;
4833 else if (!left_type->is_abstract())
4834 type = left_type;
4835 else if (!right_type->is_abstract())
4836 type = right_type;
4837 else if (left_type->float_type() != NULL)
4838 type = left_type;
4839 else if (right_type->float_type() != NULL)
4840 type = right_type;
4841 else if (left_type->complex_type() != NULL)
4842 type = left_type;
4843 else if (right_type->complex_type() != NULL)
4844 type = right_type;
4845 else
4846 type = left_type;
4847 ret = Expression::make_integer(&val, type, location);
4848 }
4849
4850 mpz_clear(val);
4851 }
4852
4853 if (ret != NULL)
4854 {
4855 mpz_clear(right_val);
4856 mpz_clear(left_val);
4857 return ret;
4858 }
4859 }
4860 mpz_clear(right_val);
4861 mpz_clear(left_val);
4862 }
4863
4864 // Floating point constant expressions.
4865 {
4866 mpfr_t left_val;
4867 mpfr_init(left_val);
4868 Type* left_type;
4869 mpfr_t right_val;
4870 mpfr_init(right_val);
4871 Type* right_type;
4872 if (left->float_constant_value(left_val, &left_type)
4873 && right->float_constant_value(right_val, &right_type))
4874 {
4875 Expression* ret = NULL;
4876 if (left_type != right_type
4877 && left_type != NULL
4878 && right_type != NULL
4879 && left_type->base() != right_type->base()
4880 && op != OPERATOR_LSHIFT
4881 && op != OPERATOR_RSHIFT)
4882 {
4883 // May be a type error--let it be diagnosed later.
4884 }
4885 else if (is_comparison)
4886 {
4887 bool b = Binary_expression::compare_float(op,
4888 (left_type != NULL
4889 ? left_type
4890 : right_type),
4891 left_val, right_val);
4892 ret = Expression::make_boolean(b, location);
4893 }
4894 else
4895 {
4896 mpfr_t val;
4897 mpfr_init(val);
4898
4899 if (Binary_expression::eval_float(op, left_type, left_val,
4900 right_type, right_val, val,
4901 location))
4902 {
4903 gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND
4904 && op != OPERATOR_LSHIFT && op != OPERATOR_RSHIFT);
4905 Type* type;
4906 if (left_type == NULL)
4907 type = right_type;
4908 else if (right_type == NULL)
4909 type = left_type;
4910 else if (!left_type->is_abstract()
4911 && left_type->named_type() != NULL)
4912 type = left_type;
4913 else if (!right_type->is_abstract()
4914 && right_type->named_type() != NULL)
4915 type = right_type;
4916 else if (!left_type->is_abstract())
4917 type = left_type;
4918 else if (!right_type->is_abstract())
4919 type = right_type;
4920 else if (left_type->float_type() != NULL)
4921 type = left_type;
4922 else if (right_type->float_type() != NULL)
4923 type = right_type;
4924 else
4925 type = left_type;
4926 ret = Expression::make_float(&val, type, location);
4927 }
4928
4929 mpfr_clear(val);
4930 }
4931
4932 if (ret != NULL)
4933 {
4934 mpfr_clear(right_val);
4935 mpfr_clear(left_val);
4936 return ret;
4937 }
4938 }
4939 mpfr_clear(right_val);
4940 mpfr_clear(left_val);
4941 }
4942
4943 // Complex constant expressions.
4944 {
4945 mpfr_t left_real;
4946 mpfr_t left_imag;
4947 mpfr_init(left_real);
4948 mpfr_init(left_imag);
4949 Type* left_type;
4950
4951 mpfr_t right_real;
4952 mpfr_t right_imag;
4953 mpfr_init(right_real);
4954 mpfr_init(right_imag);
4955 Type* right_type;
4956
4957 if (left->complex_constant_value(left_real, left_imag, &left_type)
4958 && right->complex_constant_value(right_real, right_imag, &right_type))
4959 {
4960 Expression* ret = NULL;
4961 if (left_type != right_type
4962 && left_type != NULL
4963 && right_type != NULL
4964 && left_type->base() != right_type->base())
4965 {
4966 // May be a type error--let it be diagnosed later.
4967 }
4968 else if (is_comparison)
4969 {
4970 bool b = Binary_expression::compare_complex(op,
4971 (left_type != NULL
4972 ? left_type
4973 : right_type),
4974 left_real,
4975 left_imag,
4976 right_real,
4977 right_imag);
4978 ret = Expression::make_boolean(b, location);
4979 }
4980 else
4981 {
4982 mpfr_t real;
4983 mpfr_t imag;
4984 mpfr_init(real);
4985 mpfr_init(imag);
4986
4987 if (Binary_expression::eval_complex(op, left_type,
4988 left_real, left_imag,
4989 right_type,
4990 right_real, right_imag,
4991 real, imag,
4992 location))
4993 {
4994 gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND
4995 && op != OPERATOR_LSHIFT && op != OPERATOR_RSHIFT);
4996 Type* type;
4997 if (left_type == NULL)
4998 type = right_type;
4999 else if (right_type == NULL)
5000 type = left_type;
5001 else if (!left_type->is_abstract()
5002 && left_type->named_type() != NULL)
5003 type = left_type;
5004 else if (!right_type->is_abstract()
5005 && right_type->named_type() != NULL)
5006 type = right_type;
5007 else if (!left_type->is_abstract())
5008 type = left_type;
5009 else if (!right_type->is_abstract())
5010 type = right_type;
5011 else if (left_type->complex_type() != NULL)
5012 type = left_type;
5013 else if (right_type->complex_type() != NULL)
5014 type = right_type;
5015 else
5016 type = left_type;
5017 ret = Expression::make_complex(&real, &imag, type,
5018 location);
5019 }
5020 mpfr_clear(real);
5021 mpfr_clear(imag);
5022 }
5023
5024 if (ret != NULL)
5025 {
5026 mpfr_clear(left_real);
5027 mpfr_clear(left_imag);
5028 mpfr_clear(right_real);
5029 mpfr_clear(right_imag);
5030 return ret;
5031 }
5032 }
5033
5034 mpfr_clear(left_real);
5035 mpfr_clear(left_imag);
5036 mpfr_clear(right_real);
5037 mpfr_clear(right_imag);
5038 }
5039
5040 // String constant expressions.
5041 if (op == OPERATOR_PLUS
5042 && left->type()->is_string_type()
5043 && right->type()->is_string_type())
5044 {
5045 std::string left_string;
5046 std::string right_string;
5047 if (left->string_constant_value(&left_string)
5048 && right->string_constant_value(&right_string))
5049 return Expression::make_string(left_string + right_string, location);
5050 }
5051
5052 return this;
5053 }
5054
5055 // Return the integer constant value, if it has one.
5056
5057 bool
5058 Binary_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
5059 Type** ptype) const
5060 {
5061 mpz_t left_val;
5062 mpz_init(left_val);
5063 Type* left_type;
5064 if (!this->left_->integer_constant_value(iota_is_constant, left_val,
5065 &left_type))
5066 {
5067 mpz_clear(left_val);
5068 return false;
5069 }
5070
5071 mpz_t right_val;
5072 mpz_init(right_val);
5073 Type* right_type;
5074 if (!this->right_->integer_constant_value(iota_is_constant, right_val,
5075 &right_type))
5076 {
5077 mpz_clear(right_val);
5078 mpz_clear(left_val);
5079 return false;
5080 }
5081
5082 bool ret;
5083 if (left_type != right_type
5084 && left_type != NULL
5085 && right_type != NULL
5086 && left_type->base() != right_type->base()
5087 && this->op_ != OPERATOR_RSHIFT
5088 && this->op_ != OPERATOR_LSHIFT)
5089 ret = false;
5090 else
5091 ret = Binary_expression::eval_integer(this->op_, left_type, left_val,
5092 right_type, right_val,
5093 this->location(), val);
5094
5095 mpz_clear(right_val);
5096 mpz_clear(left_val);
5097
5098 if (ret)
5099 *ptype = left_type;
5100
5101 return ret;
5102 }
5103
5104 // Return the floating point constant value, if it has one.
5105
5106 bool
5107 Binary_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
5108 {
5109 mpfr_t left_val;
5110 mpfr_init(left_val);
5111 Type* left_type;
5112 if (!this->left_->float_constant_value(left_val, &left_type))
5113 {
5114 mpfr_clear(left_val);
5115 return false;
5116 }
5117
5118 mpfr_t right_val;
5119 mpfr_init(right_val);
5120 Type* right_type;
5121 if (!this->right_->float_constant_value(right_val, &right_type))
5122 {
5123 mpfr_clear(right_val);
5124 mpfr_clear(left_val);
5125 return false;
5126 }
5127
5128 bool ret;
5129 if (left_type != right_type
5130 && left_type != NULL
5131 && right_type != NULL
5132 && left_type->base() != right_type->base())
5133 ret = false;
5134 else
5135 ret = Binary_expression::eval_float(this->op_, left_type, left_val,
5136 right_type, right_val,
5137 val, this->location());
5138
5139 mpfr_clear(left_val);
5140 mpfr_clear(right_val);
5141
5142 if (ret)
5143 *ptype = left_type;
5144
5145 return ret;
5146 }
5147
5148 // Return the complex constant value, if it has one.
5149
5150 bool
5151 Binary_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
5152 Type** ptype) const
5153 {
5154 mpfr_t left_real;
5155 mpfr_t left_imag;
5156 mpfr_init(left_real);
5157 mpfr_init(left_imag);
5158 Type* left_type;
5159 if (!this->left_->complex_constant_value(left_real, left_imag, &left_type))
5160 {
5161 mpfr_clear(left_real);
5162 mpfr_clear(left_imag);
5163 return false;
5164 }
5165
5166 mpfr_t right_real;
5167 mpfr_t right_imag;
5168 mpfr_init(right_real);
5169 mpfr_init(right_imag);
5170 Type* right_type;
5171 if (!this->right_->complex_constant_value(right_real, right_imag,
5172 &right_type))
5173 {
5174 mpfr_clear(left_real);
5175 mpfr_clear(left_imag);
5176 mpfr_clear(right_real);
5177 mpfr_clear(right_imag);
5178 return false;
5179 }
5180
5181 bool ret;
5182 if (left_type != right_type
5183 && left_type != NULL
5184 && right_type != NULL
5185 && left_type->base() != right_type->base())
5186 ret = false;
5187 else
5188 ret = Binary_expression::eval_complex(this->op_, left_type,
5189 left_real, left_imag,
5190 right_type,
5191 right_real, right_imag,
5192 real, imag,
5193 this->location());
5194 mpfr_clear(left_real);
5195 mpfr_clear(left_imag);
5196 mpfr_clear(right_real);
5197 mpfr_clear(right_imag);
5198
5199 if (ret)
5200 *ptype = left_type;
5201
5202 return ret;
5203 }
5204
5205 // Note that the value is being discarded.
5206
5207 void
5208 Binary_expression::do_discarding_value()
5209 {
5210 if (this->op_ == OPERATOR_OROR || this->op_ == OPERATOR_ANDAND)
5211 this->right_->discarding_value();
5212 else
5213 this->warn_about_unused_value();
5214 }
5215
5216 // Get type.
5217
5218 Type*
5219 Binary_expression::do_type()
5220 {
5221 switch (this->op_)
5222 {
5223 case OPERATOR_OROR:
5224 case OPERATOR_ANDAND:
5225 case OPERATOR_EQEQ:
5226 case OPERATOR_NOTEQ:
5227 case OPERATOR_LT:
5228 case OPERATOR_LE:
5229 case OPERATOR_GT:
5230 case OPERATOR_GE:
5231 return Type::lookup_bool_type();
5232
5233 case OPERATOR_PLUS:
5234 case OPERATOR_MINUS:
5235 case OPERATOR_OR:
5236 case OPERATOR_XOR:
5237 case OPERATOR_MULT:
5238 case OPERATOR_DIV:
5239 case OPERATOR_MOD:
5240 case OPERATOR_AND:
5241 case OPERATOR_BITCLEAR:
5242 {
5243 Type* left_type = this->left_->type();
5244 Type* right_type = this->right_->type();
5245 if (!left_type->is_abstract() && left_type->named_type() != NULL)
5246 return left_type;
5247 else if (!right_type->is_abstract() && right_type->named_type() != NULL)
5248 return right_type;
5249 else if (!left_type->is_abstract())
5250 return left_type;
5251 else if (!right_type->is_abstract())
5252 return right_type;
5253 else if (left_type->complex_type() != NULL)
5254 return left_type;
5255 else if (right_type->complex_type() != NULL)
5256 return right_type;
5257 else if (left_type->float_type() != NULL)
5258 return left_type;
5259 else if (right_type->float_type() != NULL)
5260 return right_type;
5261 else
5262 return left_type;
5263 }
5264
5265 case OPERATOR_LSHIFT:
5266 case OPERATOR_RSHIFT:
5267 return this->left_->type();
5268
5269 default:
5270 gcc_unreachable();
5271 }
5272 }
5273
5274 // Set type for a binary expression.
5275
5276 void
5277 Binary_expression::do_determine_type(const Type_context* context)
5278 {
5279 Type* tleft = this->left_->type();
5280 Type* tright = this->right_->type();
5281
5282 // Both sides should have the same type, except for the shift
5283 // operations. For a comparison, we should ignore the incoming
5284 // type.
5285
5286 bool is_shift_op = (this->op_ == OPERATOR_LSHIFT
5287 || this->op_ == OPERATOR_RSHIFT);
5288
5289 bool is_comparison = (this->op_ == OPERATOR_EQEQ
5290 || this->op_ == OPERATOR_NOTEQ
5291 || this->op_ == OPERATOR_LT
5292 || this->op_ == OPERATOR_LE
5293 || this->op_ == OPERATOR_GT
5294 || this->op_ == OPERATOR_GE);
5295
5296 Type_context subcontext(*context);
5297
5298 if (is_comparison)
5299 {
5300 // In a comparison, the context does not determine the types of
5301 // the operands.
5302 subcontext.type = NULL;
5303 }
5304
5305 // Set the context for the left hand operand.
5306 if (is_shift_op)
5307 {
5308 // The right hand operand plays no role in determining the type
5309 // of the left hand operand. A shift of an abstract integer in
5310 // a string context gets special treatment, which may be a
5311 // language bug.
5312 if (subcontext.type != NULL
5313 && subcontext.type->is_string_type()
5314 && tleft->is_abstract())
5315 error_at(this->location(), "shift of non-integer operand");
5316 }
5317 else if (!tleft->is_abstract())
5318 subcontext.type = tleft;
5319 else if (!tright->is_abstract())
5320 subcontext.type = tright;
5321 else if (subcontext.type == NULL)
5322 {
5323 if ((tleft->integer_type() != NULL && tright->integer_type() != NULL)
5324 || (tleft->float_type() != NULL && tright->float_type() != NULL)
5325 || (tleft->complex_type() != NULL && tright->complex_type() != NULL))
5326 {
5327 // Both sides have an abstract integer, abstract float, or
5328 // abstract complex type. Just let CONTEXT determine
5329 // whether they may remain abstract or not.
5330 }
5331 else if (tleft->complex_type() != NULL)
5332 subcontext.type = tleft;
5333 else if (tright->complex_type() != NULL)
5334 subcontext.type = tright;
5335 else if (tleft->float_type() != NULL)
5336 subcontext.type = tleft;
5337 else if (tright->float_type() != NULL)
5338 subcontext.type = tright;
5339 else
5340 subcontext.type = tleft;
5341 }
5342
5343 this->left_->determine_type(&subcontext);
5344
5345 // The context for the right hand operand is the same as for the
5346 // left hand operand, except for a shift operator.
5347 if (is_shift_op)
5348 {
5349 subcontext.type = Type::lookup_integer_type("uint");
5350 subcontext.may_be_abstract = false;
5351 }
5352
5353 this->right_->determine_type(&subcontext);
5354 }
5355
5356 // Report an error if the binary operator OP does not support TYPE.
5357 // Return whether the operation is OK. This should not be used for
5358 // shift.
5359
5360 bool
5361 Binary_expression::check_operator_type(Operator op, Type* type,
5362 source_location location)
5363 {
5364 switch (op)
5365 {
5366 case OPERATOR_OROR:
5367 case OPERATOR_ANDAND:
5368 if (!type->is_boolean_type())
5369 {
5370 error_at(location, "expected boolean type");
5371 return false;
5372 }
5373 break;
5374
5375 case OPERATOR_EQEQ:
5376 case OPERATOR_NOTEQ:
5377 if (type->integer_type() == NULL
5378 && type->float_type() == NULL
5379 && type->complex_type() == NULL
5380 && !type->is_string_type()
5381 && type->points_to() == NULL
5382 && !type->is_nil_type()
5383 && !type->is_boolean_type()
5384 && type->interface_type() == NULL
5385 && (type->array_type() == NULL
5386 || type->array_type()->length() != NULL)
5387 && type->map_type() == NULL
5388 && type->channel_type() == NULL
5389 && type->function_type() == NULL)
5390 {
5391 error_at(location,
5392 ("expected integer, floating, complex, string, pointer, "
5393 "boolean, interface, slice, map, channel, "
5394 "or function type"));
5395 return false;
5396 }
5397 break;
5398
5399 case OPERATOR_LT:
5400 case OPERATOR_LE:
5401 case OPERATOR_GT:
5402 case OPERATOR_GE:
5403 if (type->integer_type() == NULL
5404 && type->float_type() == NULL
5405 && !type->is_string_type())
5406 {
5407 error_at(location, "expected integer, floating, or string type");
5408 return false;
5409 }
5410 break;
5411
5412 case OPERATOR_PLUS:
5413 case OPERATOR_PLUSEQ:
5414 if (type->integer_type() == NULL
5415 && type->float_type() == NULL
5416 && type->complex_type() == NULL
5417 && !type->is_string_type())
5418 {
5419 error_at(location,
5420 "expected integer, floating, complex, or string type");
5421 return false;
5422 }
5423 break;
5424
5425 case OPERATOR_MINUS:
5426 case OPERATOR_MINUSEQ:
5427 case OPERATOR_MULT:
5428 case OPERATOR_MULTEQ:
5429 case OPERATOR_DIV:
5430 case OPERATOR_DIVEQ:
5431 if (type->integer_type() == NULL
5432 && type->float_type() == NULL
5433 && type->complex_type() == NULL)
5434 {
5435 error_at(location, "expected integer, floating, or complex type");
5436 return false;
5437 }
5438 break;
5439
5440 case OPERATOR_MOD:
5441 case OPERATOR_MODEQ:
5442 case OPERATOR_OR:
5443 case OPERATOR_OREQ:
5444 case OPERATOR_AND:
5445 case OPERATOR_ANDEQ:
5446 case OPERATOR_XOR:
5447 case OPERATOR_XOREQ:
5448 case OPERATOR_BITCLEAR:
5449 case OPERATOR_BITCLEAREQ:
5450 if (type->integer_type() == NULL)
5451 {
5452 error_at(location, "expected integer type");
5453 return false;
5454 }
5455 break;
5456
5457 default:
5458 gcc_unreachable();
5459 }
5460
5461 return true;
5462 }
5463
5464 // Check types.
5465
5466 void
5467 Binary_expression::do_check_types(Gogo*)
5468 {
5469 Type* left_type = this->left_->type();
5470 Type* right_type = this->right_->type();
5471 if (left_type->is_error_type() || right_type->is_error_type())
5472 {
5473 this->set_is_error();
5474 return;
5475 }
5476
5477 if (this->op_ == OPERATOR_EQEQ
5478 || this->op_ == OPERATOR_NOTEQ
5479 || this->op_ == OPERATOR_LT
5480 || this->op_ == OPERATOR_LE
5481 || this->op_ == OPERATOR_GT
5482 || this->op_ == OPERATOR_GE)
5483 {
5484 if (!Type::are_assignable(left_type, right_type, NULL)
5485 && !Type::are_assignable(right_type, left_type, NULL))
5486 {
5487 this->report_error(_("incompatible types in binary expression"));
5488 return;
5489 }
5490 if (!Binary_expression::check_operator_type(this->op_, left_type,
5491 this->location())
5492 || !Binary_expression::check_operator_type(this->op_, right_type,
5493 this->location()))
5494 {
5495 this->set_is_error();
5496 return;
5497 }
5498 }
5499 else if (this->op_ != OPERATOR_LSHIFT && this->op_ != OPERATOR_RSHIFT)
5500 {
5501 if (!Type::are_compatible_for_binop(left_type, right_type))
5502 {
5503 this->report_error(_("incompatible types in binary expression"));
5504 return;
5505 }
5506 if (!Binary_expression::check_operator_type(this->op_, left_type,
5507 this->location()))
5508 {
5509 this->set_is_error();
5510 return;
5511 }
5512 }
5513 else
5514 {
5515 if (left_type->integer_type() == NULL)
5516 this->report_error(_("shift of non-integer operand"));
5517
5518 if (!right_type->is_abstract()
5519 && (right_type->integer_type() == NULL
5520 || !right_type->integer_type()->is_unsigned()))
5521 this->report_error(_("shift count not unsigned integer"));
5522 else
5523 {
5524 mpz_t val;
5525 mpz_init(val);
5526 Type* type;
5527 if (this->right_->integer_constant_value(true, val, &type))
5528 {
5529 if (mpz_sgn(val) < 0)
5530 this->report_error(_("negative shift count"));
5531 }
5532 mpz_clear(val);
5533 }
5534 }
5535 }
5536
5537 // Get a tree for a binary expression.
5538
5539 tree
5540 Binary_expression::do_get_tree(Translate_context* context)
5541 {
5542 tree left = this->left_->get_tree(context);
5543 tree right = this->right_->get_tree(context);
5544
5545 if (left == error_mark_node || right == error_mark_node)
5546 return error_mark_node;
5547
5548 enum tree_code code;
5549 bool use_left_type = true;
5550 bool is_shift_op = false;
5551 switch (this->op_)
5552 {
5553 case OPERATOR_EQEQ:
5554 case OPERATOR_NOTEQ:
5555 case OPERATOR_LT:
5556 case OPERATOR_LE:
5557 case OPERATOR_GT:
5558 case OPERATOR_GE:
5559 return Expression::comparison_tree(context, this->op_,
5560 this->left_->type(), left,
5561 this->right_->type(), right,
5562 this->location());
5563
5564 case OPERATOR_OROR:
5565 code = TRUTH_ORIF_EXPR;
5566 use_left_type = false;
5567 break;
5568 case OPERATOR_ANDAND:
5569 code = TRUTH_ANDIF_EXPR;
5570 use_left_type = false;
5571 break;
5572 case OPERATOR_PLUS:
5573 code = PLUS_EXPR;
5574 break;
5575 case OPERATOR_MINUS:
5576 code = MINUS_EXPR;
5577 break;
5578 case OPERATOR_OR:
5579 code = BIT_IOR_EXPR;
5580 break;
5581 case OPERATOR_XOR:
5582 code = BIT_XOR_EXPR;
5583 break;
5584 case OPERATOR_MULT:
5585 code = MULT_EXPR;
5586 break;
5587 case OPERATOR_DIV:
5588 {
5589 Type *t = this->left_->type();
5590 if (t->float_type() != NULL || t->complex_type() != NULL)
5591 code = RDIV_EXPR;
5592 else
5593 code = TRUNC_DIV_EXPR;
5594 }
5595 break;
5596 case OPERATOR_MOD:
5597 code = TRUNC_MOD_EXPR;
5598 break;
5599 case OPERATOR_LSHIFT:
5600 code = LSHIFT_EXPR;
5601 is_shift_op = true;
5602 break;
5603 case OPERATOR_RSHIFT:
5604 code = RSHIFT_EXPR;
5605 is_shift_op = true;
5606 break;
5607 case OPERATOR_AND:
5608 code = BIT_AND_EXPR;
5609 break;
5610 case OPERATOR_BITCLEAR:
5611 right = fold_build1(BIT_NOT_EXPR, TREE_TYPE(right), right);
5612 code = BIT_AND_EXPR;
5613 break;
5614 default:
5615 gcc_unreachable();
5616 }
5617
5618 tree type = use_left_type ? TREE_TYPE(left) : TREE_TYPE(right);
5619
5620 if (this->left_->type()->is_string_type())
5621 {
5622 gcc_assert(this->op_ == OPERATOR_PLUS);
5623 tree string_type = Type::make_string_type()->get_tree(context->gogo());
5624 static tree string_plus_decl;
5625 return Gogo::call_builtin(&string_plus_decl,
5626 this->location(),
5627 "__go_string_plus",
5628 2,
5629 string_type,
5630 string_type,
5631 left,
5632 string_type,
5633 right);
5634 }
5635
5636 tree compute_type = excess_precision_type(type);
5637 if (compute_type != NULL_TREE)
5638 {
5639 left = ::convert(compute_type, left);
5640 right = ::convert(compute_type, right);
5641 }
5642
5643 tree eval_saved = NULL_TREE;
5644 if (is_shift_op)
5645 {
5646 if (!DECL_P(left))
5647 left = save_expr(left);
5648 if (!DECL_P(right))
5649 right = save_expr(right);
5650 // Make sure the values are evaluated.
5651 eval_saved = fold_build2_loc(this->location(), COMPOUND_EXPR,
5652 void_type_node, left, right);
5653 }
5654
5655 tree ret = fold_build2_loc(this->location(),
5656 code,
5657 compute_type != NULL_TREE ? compute_type : type,
5658 left, right);
5659
5660 if (compute_type != NULL_TREE)
5661 ret = ::convert(type, ret);
5662
5663 // In Go, a shift larger than the size of the type is well-defined.
5664 // This is not true in GENERIC, so we need to insert a conditional.
5665 if (is_shift_op)
5666 {
5667 gcc_assert(INTEGRAL_TYPE_P(TREE_TYPE(left)));
5668 gcc_assert(this->left_->type()->integer_type() != NULL);
5669 int bits = TYPE_PRECISION(TREE_TYPE(left));
5670
5671 tree compare = fold_build2(LT_EXPR, boolean_type_node, right,
5672 build_int_cst_type(TREE_TYPE(right), bits));
5673
5674 tree overflow_result = fold_convert_loc(this->location(),
5675 TREE_TYPE(left),
5676 integer_zero_node);
5677 if (this->op_ == OPERATOR_RSHIFT
5678 && !this->left_->type()->integer_type()->is_unsigned())
5679 {
5680 tree neg = fold_build2_loc(this->location(), LT_EXPR,
5681 boolean_type_node, left,
5682 fold_convert_loc(this->location(),
5683 TREE_TYPE(left),
5684 integer_zero_node));
5685 tree neg_one = fold_build2_loc(this->location(),
5686 MINUS_EXPR, TREE_TYPE(left),
5687 fold_convert_loc(this->location(),
5688 TREE_TYPE(left),
5689 integer_zero_node),
5690 fold_convert_loc(this->location(),
5691 TREE_TYPE(left),
5692 integer_one_node));
5693 overflow_result = fold_build3_loc(this->location(), COND_EXPR,
5694 TREE_TYPE(left), neg, neg_one,
5695 overflow_result);
5696 }
5697
5698 ret = fold_build3_loc(this->location(), COND_EXPR, TREE_TYPE(left),
5699 compare, ret, overflow_result);
5700
5701 ret = fold_build2_loc(this->location(), COMPOUND_EXPR,
5702 TREE_TYPE(ret), eval_saved, ret);
5703 }
5704
5705 return ret;
5706 }
5707
5708 // Export a binary expression.
5709
5710 void
5711 Binary_expression::do_export(Export* exp) const
5712 {
5713 exp->write_c_string("(");
5714 this->left_->export_expression(exp);
5715 switch (this->op_)
5716 {
5717 case OPERATOR_OROR:
5718 exp->write_c_string(" || ");
5719 break;
5720 case OPERATOR_ANDAND:
5721 exp->write_c_string(" && ");
5722 break;
5723 case OPERATOR_EQEQ:
5724 exp->write_c_string(" == ");
5725 break;
5726 case OPERATOR_NOTEQ:
5727 exp->write_c_string(" != ");
5728 break;
5729 case OPERATOR_LT:
5730 exp->write_c_string(" < ");
5731 break;
5732 case OPERATOR_LE:
5733 exp->write_c_string(" <= ");
5734 break;
5735 case OPERATOR_GT:
5736 exp->write_c_string(" > ");
5737 break;
5738 case OPERATOR_GE:
5739 exp->write_c_string(" >= ");
5740 break;
5741 case OPERATOR_PLUS:
5742 exp->write_c_string(" + ");
5743 break;
5744 case OPERATOR_MINUS:
5745 exp->write_c_string(" - ");
5746 break;
5747 case OPERATOR_OR:
5748 exp->write_c_string(" | ");
5749 break;
5750 case OPERATOR_XOR:
5751 exp->write_c_string(" ^ ");
5752 break;
5753 case OPERATOR_MULT:
5754 exp->write_c_string(" * ");
5755 break;
5756 case OPERATOR_DIV:
5757 exp->write_c_string(" / ");
5758 break;
5759 case OPERATOR_MOD:
5760 exp->write_c_string(" % ");
5761 break;
5762 case OPERATOR_LSHIFT:
5763 exp->write_c_string(" << ");
5764 break;
5765 case OPERATOR_RSHIFT:
5766 exp->write_c_string(" >> ");
5767 break;
5768 case OPERATOR_AND:
5769 exp->write_c_string(" & ");
5770 break;
5771 case OPERATOR_BITCLEAR:
5772 exp->write_c_string(" &^ ");
5773 break;
5774 default:
5775 gcc_unreachable();
5776 }
5777 this->right_->export_expression(exp);
5778 exp->write_c_string(")");
5779 }
5780
5781 // Import a binary expression.
5782
5783 Expression*
5784 Binary_expression::do_import(Import* imp)
5785 {
5786 imp->require_c_string("(");
5787
5788 Expression* left = Expression::import_expression(imp);
5789
5790 Operator op;
5791 if (imp->match_c_string(" || "))
5792 {
5793 op = OPERATOR_OROR;
5794 imp->advance(4);
5795 }
5796 else if (imp->match_c_string(" && "))
5797 {
5798 op = OPERATOR_ANDAND;
5799 imp->advance(4);
5800 }
5801 else if (imp->match_c_string(" == "))
5802 {
5803 op = OPERATOR_EQEQ;
5804 imp->advance(4);
5805 }
5806 else if (imp->match_c_string(" != "))
5807 {
5808 op = OPERATOR_NOTEQ;
5809 imp->advance(4);
5810 }
5811 else if (imp->match_c_string(" < "))
5812 {
5813 op = OPERATOR_LT;
5814 imp->advance(3);
5815 }
5816 else if (imp->match_c_string(" <= "))
5817 {
5818 op = OPERATOR_LE;
5819 imp->advance(4);
5820 }
5821 else if (imp->match_c_string(" > "))
5822 {
5823 op = OPERATOR_GT;
5824 imp->advance(3);
5825 }
5826 else if (imp->match_c_string(" >= "))
5827 {
5828 op = OPERATOR_GE;
5829 imp->advance(4);
5830 }
5831 else if (imp->match_c_string(" + "))
5832 {
5833 op = OPERATOR_PLUS;
5834 imp->advance(3);
5835 }
5836 else if (imp->match_c_string(" - "))
5837 {
5838 op = OPERATOR_MINUS;
5839 imp->advance(3);
5840 }
5841 else if (imp->match_c_string(" | "))
5842 {
5843 op = OPERATOR_OR;
5844 imp->advance(3);
5845 }
5846 else if (imp->match_c_string(" ^ "))
5847 {
5848 op = OPERATOR_XOR;
5849 imp->advance(3);
5850 }
5851 else if (imp->match_c_string(" * "))
5852 {
5853 op = OPERATOR_MULT;
5854 imp->advance(3);
5855 }
5856 else if (imp->match_c_string(" / "))
5857 {
5858 op = OPERATOR_DIV;
5859 imp->advance(3);
5860 }
5861 else if (imp->match_c_string(" % "))
5862 {
5863 op = OPERATOR_MOD;
5864 imp->advance(3);
5865 }
5866 else if (imp->match_c_string(" << "))
5867 {
5868 op = OPERATOR_LSHIFT;
5869 imp->advance(4);
5870 }
5871 else if (imp->match_c_string(" >> "))
5872 {
5873 op = OPERATOR_RSHIFT;
5874 imp->advance(4);
5875 }
5876 else if (imp->match_c_string(" & "))
5877 {
5878 op = OPERATOR_AND;
5879 imp->advance(3);
5880 }
5881 else if (imp->match_c_string(" &^ "))
5882 {
5883 op = OPERATOR_BITCLEAR;
5884 imp->advance(4);
5885 }
5886 else
5887 {
5888 error_at(imp->location(), "unrecognized binary operator");
5889 return Expression::make_error(imp->location());
5890 }
5891
5892 Expression* right = Expression::import_expression(imp);
5893
5894 imp->require_c_string(")");
5895
5896 return Expression::make_binary(op, left, right, imp->location());
5897 }
5898
5899 // Make a binary expression.
5900
5901 Expression*
5902 Expression::make_binary(Operator op, Expression* left, Expression* right,
5903 source_location location)
5904 {
5905 return new Binary_expression(op, left, right, location);
5906 }
5907
5908 // Implement a comparison.
5909
5910 tree
5911 Expression::comparison_tree(Translate_context* context, Operator op,
5912 Type* left_type, tree left_tree,
5913 Type* right_type, tree right_tree,
5914 source_location location)
5915 {
5916 enum tree_code code;
5917 switch (op)
5918 {
5919 case OPERATOR_EQEQ:
5920 code = EQ_EXPR;
5921 break;
5922 case OPERATOR_NOTEQ:
5923 code = NE_EXPR;
5924 break;
5925 case OPERATOR_LT:
5926 code = LT_EXPR;
5927 break;
5928 case OPERATOR_LE:
5929 code = LE_EXPR;
5930 break;
5931 case OPERATOR_GT:
5932 code = GT_EXPR;
5933 break;
5934 case OPERATOR_GE:
5935 code = GE_EXPR;
5936 break;
5937 default:
5938 gcc_unreachable();
5939 }
5940
5941 if (left_type->is_string_type())
5942 {
5943 gcc_assert(right_type->is_string_type());
5944 tree string_type = Type::make_string_type()->get_tree(context->gogo());
5945 static tree string_compare_decl;
5946 left_tree = Gogo::call_builtin(&string_compare_decl,
5947 location,
5948 "__go_strcmp",
5949 2,
5950 integer_type_node,
5951 string_type,
5952 left_tree,
5953 string_type,
5954 right_tree);
5955 right_tree = build_int_cst_type(integer_type_node, 0);
5956 }
5957
5958 if ((left_type->interface_type() != NULL
5959 && right_type->interface_type() == NULL
5960 && !right_type->is_nil_type())
5961 || (left_type->interface_type() == NULL
5962 && !left_type->is_nil_type()
5963 && right_type->interface_type() != NULL))
5964 {
5965 // Comparing an interface value to a non-interface value.
5966 if (left_type->interface_type() == NULL)
5967 {
5968 std::swap(left_type, right_type);
5969 std::swap(left_tree, right_tree);
5970 }
5971
5972 // The right operand is not an interface. We need to take its
5973 // address if it is not a pointer.
5974 tree make_tmp;
5975 tree arg;
5976 if (right_type->points_to() != NULL)
5977 {
5978 make_tmp = NULL_TREE;
5979 arg = right_tree;
5980 }
5981 else if (TREE_ADDRESSABLE(TREE_TYPE(right_tree)) || DECL_P(right_tree))
5982 {
5983 make_tmp = NULL_TREE;
5984 arg = build_fold_addr_expr_loc(location, right_tree);
5985 if (DECL_P(right_tree))
5986 TREE_ADDRESSABLE(right_tree) = 1;
5987 }
5988 else
5989 {
5990 tree tmp = create_tmp_var(TREE_TYPE(right_tree),
5991 get_name(right_tree));
5992 DECL_IGNORED_P(tmp) = 0;
5993 DECL_INITIAL(tmp) = right_tree;
5994 TREE_ADDRESSABLE(tmp) = 1;
5995 make_tmp = build1(DECL_EXPR, void_type_node, tmp);
5996 SET_EXPR_LOCATION(make_tmp, location);
5997 arg = build_fold_addr_expr_loc(location, tmp);
5998 }
5999 arg = fold_convert_loc(location, ptr_type_node, arg);
6000
6001 tree descriptor = right_type->type_descriptor_pointer(context->gogo());
6002
6003 if (left_type->interface_type()->is_empty())
6004 {
6005 static tree empty_interface_value_compare_decl;
6006 left_tree = Gogo::call_builtin(&empty_interface_value_compare_decl,
6007 location,
6008 "__go_empty_interface_value_compare",
6009 3,
6010 integer_type_node,
6011 TREE_TYPE(left_tree),
6012 left_tree,
6013 TREE_TYPE(descriptor),
6014 descriptor,
6015 ptr_type_node,
6016 arg);
6017 // This can panic if the type is not comparable.
6018 TREE_NOTHROW(empty_interface_value_compare_decl) = 0;
6019 }
6020 else
6021 {
6022 static tree interface_value_compare_decl;
6023 left_tree = Gogo::call_builtin(&interface_value_compare_decl,
6024 location,
6025 "__go_interface_value_compare",
6026 3,
6027 integer_type_node,
6028 TREE_TYPE(left_tree),
6029 left_tree,
6030 TREE_TYPE(descriptor),
6031 descriptor,
6032 ptr_type_node,
6033 arg);
6034 // This can panic if the type is not comparable.
6035 TREE_NOTHROW(interface_value_compare_decl) = 0;
6036 }
6037 right_tree = build_int_cst_type(integer_type_node, 0);
6038
6039 if (make_tmp != NULL_TREE)
6040 left_tree = build2(COMPOUND_EXPR, TREE_TYPE(left_tree), make_tmp,
6041 left_tree);
6042 }
6043 else if (left_type->interface_type() != NULL
6044 && right_type->interface_type() != NULL)
6045 {
6046 if (left_type->interface_type()->is_empty())
6047 {
6048 gcc_assert(right_type->interface_type()->is_empty());
6049 static tree empty_interface_compare_decl;
6050 left_tree = Gogo::call_builtin(&empty_interface_compare_decl,
6051 location,
6052 "__go_empty_interface_compare",
6053 2,
6054 integer_type_node,
6055 TREE_TYPE(left_tree),
6056 left_tree,
6057 TREE_TYPE(right_tree),
6058 right_tree);
6059 // This can panic if the type is uncomparable.
6060 TREE_NOTHROW(empty_interface_compare_decl) = 0;
6061 }
6062 else
6063 {
6064 gcc_assert(!right_type->interface_type()->is_empty());
6065 static tree interface_compare_decl;
6066 left_tree = Gogo::call_builtin(&interface_compare_decl,
6067 location,
6068 "__go_interface_compare",
6069 2,
6070 integer_type_node,
6071 TREE_TYPE(left_tree),
6072 left_tree,
6073 TREE_TYPE(right_tree),
6074 right_tree);
6075 // This can panic if the type is uncomparable.
6076 TREE_NOTHROW(interface_compare_decl) = 0;
6077 }
6078 right_tree = build_int_cst_type(integer_type_node, 0);
6079 }
6080
6081 if (left_type->is_nil_type()
6082 && (op == OPERATOR_EQEQ || op == OPERATOR_NOTEQ))
6083 {
6084 std::swap(left_type, right_type);
6085 std::swap(left_tree, right_tree);
6086 }
6087
6088 if (right_type->is_nil_type())
6089 {
6090 if (left_type->array_type() != NULL
6091 && left_type->array_type()->length() == NULL)
6092 {
6093 Array_type* at = left_type->array_type();
6094 left_tree = at->value_pointer_tree(context->gogo(), left_tree);
6095 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
6096 }
6097 else if (left_type->interface_type() != NULL)
6098 {
6099 // An interface is nil if the first field is nil.
6100 tree left_type_tree = TREE_TYPE(left_tree);
6101 gcc_assert(TREE_CODE(left_type_tree) == RECORD_TYPE);
6102 tree field = TYPE_FIELDS(left_type_tree);
6103 left_tree = build3(COMPONENT_REF, TREE_TYPE(field), left_tree,
6104 field, NULL_TREE);
6105 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
6106 }
6107 else
6108 {
6109 gcc_assert(POINTER_TYPE_P(TREE_TYPE(left_tree)));
6110 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
6111 }
6112 }
6113
6114 tree ret = fold_build2(code, boolean_type_node, left_tree, right_tree);
6115 if (CAN_HAVE_LOCATION_P(ret))
6116 SET_EXPR_LOCATION(ret, location);
6117 return ret;
6118 }
6119
6120 // Class Bound_method_expression.
6121
6122 // Traversal.
6123
6124 int
6125 Bound_method_expression::do_traverse(Traverse* traverse)
6126 {
6127 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT)
6128 return TRAVERSE_EXIT;
6129 return Expression::traverse(&this->method_, traverse);
6130 }
6131
6132 // Return the type of a bound method expression. The type of this
6133 // object is really the type of the method with no receiver. We
6134 // should be able to get away with just returning the type of the
6135 // method.
6136
6137 Type*
6138 Bound_method_expression::do_type()
6139 {
6140 return this->method_->type();
6141 }
6142
6143 // Determine the types of a method expression.
6144
6145 void
6146 Bound_method_expression::do_determine_type(const Type_context*)
6147 {
6148 this->method_->determine_type_no_context();
6149 Type* mtype = this->method_->type();
6150 Function_type* fntype = mtype == NULL ? NULL : mtype->function_type();
6151 if (fntype == NULL || !fntype->is_method())
6152 this->expr_->determine_type_no_context();
6153 else
6154 {
6155 Type_context subcontext(fntype->receiver()->type(), false);
6156 this->expr_->determine_type(&subcontext);
6157 }
6158 }
6159
6160 // Check the types of a method expression.
6161
6162 void
6163 Bound_method_expression::do_check_types(Gogo*)
6164 {
6165 Type* type = this->method_->type()->deref();
6166 if (type == NULL
6167 || type->function_type() == NULL
6168 || !type->function_type()->is_method())
6169 this->report_error(_("object is not a method"));
6170 else
6171 {
6172 Type* rtype = type->function_type()->receiver()->type()->deref();
6173 Type* etype = (this->expr_type_ != NULL
6174 ? this->expr_type_
6175 : this->expr_->type());
6176 etype = etype->deref();
6177 if (!Type::are_identical(rtype, etype, NULL))
6178 this->report_error(_("method type does not match object type"));
6179 }
6180 }
6181
6182 // Get the tree for a method expression. There is no standard tree
6183 // representation for this. The only places it may currently be used
6184 // are in a Call_expression or a Go_statement, which will take it
6185 // apart directly. So this has nothing to do at present.
6186
6187 tree
6188 Bound_method_expression::do_get_tree(Translate_context*)
6189 {
6190 gcc_unreachable();
6191 }
6192
6193 // Make a method expression.
6194
6195 Bound_method_expression*
6196 Expression::make_bound_method(Expression* expr, Expression* method,
6197 source_location location)
6198 {
6199 return new Bound_method_expression(expr, method, location);
6200 }
6201
6202 // Class Builtin_call_expression. This is used for a call to a
6203 // builtin function.
6204
6205 class Builtin_call_expression : public Call_expression
6206 {
6207 public:
6208 Builtin_call_expression(Gogo* gogo, Expression* fn, Expression_list* args,
6209 bool is_varargs, source_location location);
6210
6211 protected:
6212 // This overrides Call_expression::do_lower.
6213 Expression*
6214 do_lower(Gogo*, Named_object*, int);
6215
6216 bool
6217 do_is_constant() const;
6218
6219 bool
6220 do_integer_constant_value(bool, mpz_t, Type**) const;
6221
6222 bool
6223 do_float_constant_value(mpfr_t, Type**) const;
6224
6225 bool
6226 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
6227
6228 Type*
6229 do_type();
6230
6231 void
6232 do_determine_type(const Type_context*);
6233
6234 void
6235 do_check_types(Gogo*);
6236
6237 Expression*
6238 do_copy()
6239 {
6240 return new Builtin_call_expression(this->gogo_, this->fn()->copy(),
6241 this->args()->copy(),
6242 this->is_varargs(),
6243 this->location());
6244 }
6245
6246 tree
6247 do_get_tree(Translate_context*);
6248
6249 void
6250 do_export(Export*) const;
6251
6252 virtual bool
6253 do_is_recover_call() const;
6254
6255 virtual void
6256 do_set_recover_arg(Expression*);
6257
6258 private:
6259 // The builtin functions.
6260 enum Builtin_function_code
6261 {
6262 BUILTIN_INVALID,
6263
6264 // Predeclared builtin functions.
6265 BUILTIN_APPEND,
6266 BUILTIN_CAP,
6267 BUILTIN_CLOSE,
6268 BUILTIN_CLOSED,
6269 BUILTIN_CMPLX,
6270 BUILTIN_COPY,
6271 BUILTIN_IMAG,
6272 BUILTIN_LEN,
6273 BUILTIN_MAKE,
6274 BUILTIN_NEW,
6275 BUILTIN_PANIC,
6276 BUILTIN_PRINT,
6277 BUILTIN_PRINTLN,
6278 BUILTIN_REAL,
6279 BUILTIN_RECOVER,
6280
6281 // Builtin functions from the unsafe package.
6282 BUILTIN_ALIGNOF,
6283 BUILTIN_OFFSETOF,
6284 BUILTIN_SIZEOF
6285 };
6286
6287 Expression*
6288 one_arg() const;
6289
6290 bool
6291 check_one_arg();
6292
6293 static Type*
6294 real_imag_type(Type*);
6295
6296 static Type*
6297 cmplx_type(Type*);
6298
6299 // A pointer back to the general IR structure. This avoids a global
6300 // variable, or passing it around everywhere.
6301 Gogo* gogo_;
6302 // The builtin function being called.
6303 Builtin_function_code code_;
6304 };
6305
6306 Builtin_call_expression::Builtin_call_expression(Gogo* gogo,
6307 Expression* fn,
6308 Expression_list* args,
6309 bool is_varargs,
6310 source_location location)
6311 : Call_expression(fn, args, is_varargs, location),
6312 gogo_(gogo), code_(BUILTIN_INVALID)
6313 {
6314 Func_expression* fnexp = this->fn()->func_expression();
6315 gcc_assert(fnexp != NULL);
6316 const std::string& name(fnexp->named_object()->name());
6317 if (name == "append")
6318 this->code_ = BUILTIN_APPEND;
6319 else if (name == "cap")
6320 this->code_ = BUILTIN_CAP;
6321 else if (name == "close")
6322 this->code_ = BUILTIN_CLOSE;
6323 else if (name == "closed")
6324 this->code_ = BUILTIN_CLOSED;
6325 else if (name == "cmplx")
6326 this->code_ = BUILTIN_CMPLX;
6327 else if (name == "copy")
6328 this->code_ = BUILTIN_COPY;
6329 else if (name == "imag")
6330 this->code_ = BUILTIN_IMAG;
6331 else if (name == "len")
6332 this->code_ = BUILTIN_LEN;
6333 else if (name == "make")
6334 this->code_ = BUILTIN_MAKE;
6335 else if (name == "new")
6336 this->code_ = BUILTIN_NEW;
6337 else if (name == "panic")
6338 this->code_ = BUILTIN_PANIC;
6339 else if (name == "print")
6340 this->code_ = BUILTIN_PRINT;
6341 else if (name == "println")
6342 this->code_ = BUILTIN_PRINTLN;
6343 else if (name == "real")
6344 this->code_ = BUILTIN_REAL;
6345 else if (name == "recover")
6346 this->code_ = BUILTIN_RECOVER;
6347 else if (name == "Alignof")
6348 this->code_ = BUILTIN_ALIGNOF;
6349 else if (name == "Offsetof")
6350 this->code_ = BUILTIN_OFFSETOF;
6351 else if (name == "Sizeof")
6352 this->code_ = BUILTIN_SIZEOF;
6353 else
6354 gcc_unreachable();
6355 }
6356
6357 // Return whether this is a call to recover. This is a virtual
6358 // function called from the parent class.
6359
6360 bool
6361 Builtin_call_expression::do_is_recover_call() const
6362 {
6363 if (this->classification() == EXPRESSION_ERROR)
6364 return false;
6365 return this->code_ == BUILTIN_RECOVER;
6366 }
6367
6368 // Set the argument for a call to recover.
6369
6370 void
6371 Builtin_call_expression::do_set_recover_arg(Expression* arg)
6372 {
6373 const Expression_list* args = this->args();
6374 gcc_assert(args == NULL || args->empty());
6375 Expression_list* new_args = new Expression_list();
6376 new_args->push_back(arg);
6377 this->set_args(new_args);
6378 }
6379
6380 // A traversal class which looks for a call expression.
6381
6382 class Find_call_expression : public Traverse
6383 {
6384 public:
6385 Find_call_expression()
6386 : Traverse(traverse_expressions),
6387 found_(false)
6388 { }
6389
6390 int
6391 expression(Expression**);
6392
6393 bool
6394 found()
6395 { return this->found_; }
6396
6397 private:
6398 bool found_;
6399 };
6400
6401 int
6402 Find_call_expression::expression(Expression** pexpr)
6403 {
6404 if ((*pexpr)->call_expression() != NULL)
6405 {
6406 this->found_ = true;
6407 return TRAVERSE_EXIT;
6408 }
6409 return TRAVERSE_CONTINUE;
6410 }
6411
6412 // Lower a builtin call expression. This turns new and make into
6413 // specific expressions. We also convert to a constant if we can.
6414
6415 Expression*
6416 Builtin_call_expression::do_lower(Gogo* gogo, Named_object* function, int)
6417 {
6418 if (this->code_ == BUILTIN_NEW)
6419 {
6420 const Expression_list* args = this->args();
6421 if (args == NULL || args->size() < 1)
6422 this->report_error(_("not enough arguments"));
6423 else if (args->size() > 1)
6424 this->report_error(_("too many arguments"));
6425 else
6426 {
6427 Expression* arg = args->front();
6428 if (!arg->is_type_expression())
6429 {
6430 error_at(arg->location(), "expected type");
6431 this->set_is_error();
6432 }
6433 else
6434 return Expression::make_allocation(arg->type(), this->location());
6435 }
6436 }
6437 else if (this->code_ == BUILTIN_MAKE)
6438 {
6439 const Expression_list* args = this->args();
6440 if (args == NULL || args->size() < 1)
6441 this->report_error(_("not enough arguments"));
6442 else
6443 {
6444 Expression* arg = args->front();
6445 if (!arg->is_type_expression())
6446 {
6447 error_at(arg->location(), "expected type");
6448 this->set_is_error();
6449 }
6450 else
6451 {
6452 Expression_list* newargs;
6453 if (args->size() == 1)
6454 newargs = NULL;
6455 else
6456 {
6457 newargs = new Expression_list();
6458 Expression_list::const_iterator p = args->begin();
6459 ++p;
6460 for (; p != args->end(); ++p)
6461 newargs->push_back(*p);
6462 }
6463 return Expression::make_make(arg->type(), newargs,
6464 this->location());
6465 }
6466 }
6467 }
6468 else if (this->is_constant())
6469 {
6470 // We can only lower len and cap if there are no function calls
6471 // in the arguments. Otherwise we have to make the call.
6472 if (this->code_ == BUILTIN_LEN || this->code_ == BUILTIN_CAP)
6473 {
6474 Expression* arg = this->one_arg();
6475 if (!arg->is_constant())
6476 {
6477 Find_call_expression find_call;
6478 Expression::traverse(&arg, &find_call);
6479 if (find_call.found())
6480 return this;
6481 }
6482 }
6483
6484 mpz_t ival;
6485 mpz_init(ival);
6486 Type* type;
6487 if (this->integer_constant_value(true, ival, &type))
6488 {
6489 Expression* ret = Expression::make_integer(&ival, type,
6490 this->location());
6491 mpz_clear(ival);
6492 return ret;
6493 }
6494 mpz_clear(ival);
6495
6496 mpfr_t rval;
6497 mpfr_init(rval);
6498 if (this->float_constant_value(rval, &type))
6499 {
6500 Expression* ret = Expression::make_float(&rval, type,
6501 this->location());
6502 mpfr_clear(rval);
6503 return ret;
6504 }
6505
6506 mpfr_t imag;
6507 mpfr_init(imag);
6508 if (this->complex_constant_value(rval, imag, &type))
6509 {
6510 Expression* ret = Expression::make_complex(&rval, &imag, type,
6511 this->location());
6512 mpfr_clear(rval);
6513 mpfr_clear(imag);
6514 return ret;
6515 }
6516 mpfr_clear(rval);
6517 mpfr_clear(imag);
6518 }
6519 else if (this->code_ == BUILTIN_RECOVER)
6520 {
6521 if (function != NULL)
6522 function->func_value()->set_calls_recover();
6523 else
6524 {
6525 // Calling recover outside of a function always returns the
6526 // nil empty interface.
6527 Type* eface = Type::make_interface_type(NULL, this->location());
6528 return Expression::make_cast(eface,
6529 Expression::make_nil(this->location()),
6530 this->location());
6531 }
6532 }
6533 else if (this->code_ == BUILTIN_APPEND)
6534 {
6535 // Lower the varargs.
6536 const Expression_list* args = this->args();
6537 if (args == NULL || args->empty())
6538 return this;
6539 Type* slice_type = args->front()->type();
6540 if (!slice_type->is_open_array_type())
6541 {
6542 error_at(args->front()->location(), "argument 1 must be a slice");
6543 this->set_is_error();
6544 return this;
6545 }
6546 return this->lower_varargs(gogo, function, slice_type, 2);
6547 }
6548
6549 return this;
6550 }
6551
6552 // Return the type of the real or imag functions, given the type of
6553 // the argument. We need to map complex to float, complex64 to
6554 // float32, and complex128 to float64, so it has to be done by name.
6555 // This returns NULL if it can't figure out the type.
6556
6557 Type*
6558 Builtin_call_expression::real_imag_type(Type* arg_type)
6559 {
6560 if (arg_type == NULL || arg_type->is_abstract())
6561 return NULL;
6562 Named_type* nt = arg_type->named_type();
6563 if (nt == NULL)
6564 return NULL;
6565 while (nt->real_type()->named_type() != NULL)
6566 nt = nt->real_type()->named_type();
6567 if (nt->name() == "complex")
6568 return Type::lookup_float_type("float");
6569 else if (nt->name() == "complex64")
6570 return Type::lookup_float_type("float32");
6571 else if (nt->name() == "complex128")
6572 return Type::lookup_float_type("float64");
6573 else
6574 return NULL;
6575 }
6576
6577 // Return the type of the cmplx function, given the type of one of the
6578 // argments. Like real_imag_type, we have to map by name.
6579
6580 Type*
6581 Builtin_call_expression::cmplx_type(Type* arg_type)
6582 {
6583 if (arg_type == NULL || arg_type->is_abstract())
6584 return NULL;
6585 Named_type* nt = arg_type->named_type();
6586 if (nt == NULL)
6587 return NULL;
6588 while (nt->real_type()->named_type() != NULL)
6589 nt = nt->real_type()->named_type();
6590 if (nt->name() == "float")
6591 return Type::lookup_complex_type("complex");
6592 else if (nt->name() == "float32")
6593 return Type::lookup_complex_type("complex64");
6594 else if (nt->name() == "float64")
6595 return Type::lookup_complex_type("complex128");
6596 else
6597 return NULL;
6598 }
6599
6600 // Return a single argument, or NULL if there isn't one.
6601
6602 Expression*
6603 Builtin_call_expression::one_arg() const
6604 {
6605 const Expression_list* args = this->args();
6606 if (args->size() != 1)
6607 return NULL;
6608 return args->front();
6609 }
6610
6611 // Return whether this is constant: len of a string, or len or cap of
6612 // a fixed array, or unsafe.Sizeof, unsafe.Offsetof, unsafe.Alignof.
6613
6614 bool
6615 Builtin_call_expression::do_is_constant() const
6616 {
6617 switch (this->code_)
6618 {
6619 case BUILTIN_LEN:
6620 case BUILTIN_CAP:
6621 {
6622 Expression* arg = this->one_arg();
6623 if (arg == NULL)
6624 return false;
6625 Type* arg_type = arg->type();
6626
6627 if (arg_type->points_to() != NULL
6628 && arg_type->points_to()->array_type() != NULL
6629 && !arg_type->points_to()->is_open_array_type())
6630 arg_type = arg_type->points_to();
6631
6632 if (arg_type->array_type() != NULL
6633 && arg_type->array_type()->length() != NULL)
6634 return arg_type->array_type()->length()->is_constant();
6635
6636 if (this->code_ == BUILTIN_LEN && arg_type->is_string_type())
6637 return arg->is_constant();
6638 }
6639 break;
6640
6641 case BUILTIN_SIZEOF:
6642 case BUILTIN_ALIGNOF:
6643 return this->one_arg() != NULL;
6644
6645 case BUILTIN_OFFSETOF:
6646 {
6647 Expression* arg = this->one_arg();
6648 if (arg == NULL)
6649 return false;
6650 return arg->field_reference_expression() != NULL;
6651 }
6652
6653 case BUILTIN_CMPLX:
6654 {
6655 const Expression_list* args = this->args();
6656 if (args != NULL && args->size() == 2)
6657 return args->front()->is_constant() && args->back()->is_constant();
6658 }
6659 break;
6660
6661 case BUILTIN_REAL:
6662 case BUILTIN_IMAG:
6663 {
6664 Expression* arg = this->one_arg();
6665 return arg != NULL && arg->is_constant();
6666 }
6667
6668 default:
6669 break;
6670 }
6671
6672 return false;
6673 }
6674
6675 // Return an integer constant value if possible.
6676
6677 bool
6678 Builtin_call_expression::do_integer_constant_value(bool iota_is_constant,
6679 mpz_t val,
6680 Type** ptype) const
6681 {
6682 if (this->code_ == BUILTIN_LEN
6683 || this->code_ == BUILTIN_CAP)
6684 {
6685 Expression* arg = this->one_arg();
6686 if (arg == NULL)
6687 return false;
6688 Type* arg_type = arg->type();
6689
6690 if (this->code_ == BUILTIN_LEN && arg_type->is_string_type())
6691 {
6692 std::string sval;
6693 if (arg->string_constant_value(&sval))
6694 {
6695 mpz_set_ui(val, sval.length());
6696 *ptype = Type::lookup_integer_type("int");
6697 return true;
6698 }
6699 }
6700
6701 if (arg_type->points_to() != NULL
6702 && arg_type->points_to()->array_type() != NULL
6703 && !arg_type->points_to()->is_open_array_type())
6704 arg_type = arg_type->points_to();
6705
6706 if (arg_type->array_type() != NULL
6707 && arg_type->array_type()->length() != NULL)
6708 {
6709 Expression* e = arg_type->array_type()->length();
6710 if (e->integer_constant_value(iota_is_constant, val, ptype))
6711 {
6712 *ptype = Type::lookup_integer_type("int");
6713 return true;
6714 }
6715 }
6716 }
6717 else if (this->code_ == BUILTIN_SIZEOF
6718 || this->code_ == BUILTIN_ALIGNOF)
6719 {
6720 Expression* arg = this->one_arg();
6721 if (arg == NULL)
6722 return false;
6723 Type* arg_type = arg->type();
6724 if (arg_type->is_error_type())
6725 return false;
6726 if (arg_type->is_abstract())
6727 return false;
6728 tree arg_type_tree = arg_type->get_tree(this->gogo_);
6729 unsigned long val_long;
6730 if (this->code_ == BUILTIN_SIZEOF)
6731 {
6732 tree type_size = TYPE_SIZE_UNIT(arg_type_tree);
6733 gcc_assert(TREE_CODE(type_size) == INTEGER_CST);
6734 if (TREE_INT_CST_HIGH(type_size) != 0)
6735 return false;
6736 unsigned HOST_WIDE_INT val_wide = TREE_INT_CST_LOW(type_size);
6737 val_long = static_cast<unsigned long>(val_wide);
6738 if (val_long != val_wide)
6739 return false;
6740 }
6741 else if (this->code_ == BUILTIN_ALIGNOF)
6742 {
6743 if (arg->field_reference_expression() == NULL)
6744 val_long = go_type_alignment(arg_type_tree);
6745 else
6746 {
6747 // Calling unsafe.Alignof(s.f) returns the alignment of
6748 // the type of f when it is used as a field in a struct.
6749 val_long = go_field_alignment(arg_type_tree);
6750 }
6751 }
6752 else
6753 gcc_unreachable();
6754 mpz_set_ui(val, val_long);
6755 *ptype = NULL;
6756 return true;
6757 }
6758 else if (this->code_ == BUILTIN_OFFSETOF)
6759 {
6760 Expression* arg = this->one_arg();
6761 if (arg == NULL)
6762 return false;
6763 Field_reference_expression* farg = arg->field_reference_expression();
6764 if (farg == NULL)
6765 return false;
6766 Expression* struct_expr = farg->expr();
6767 Type* st = struct_expr->type();
6768 if (st->struct_type() == NULL)
6769 return false;
6770 tree struct_tree = st->get_tree(this->gogo_);
6771 gcc_assert(TREE_CODE(struct_tree) == RECORD_TYPE);
6772 tree field = TYPE_FIELDS(struct_tree);
6773 for (unsigned int index = farg->field_index(); index > 0; --index)
6774 {
6775 field = DECL_CHAIN(field);
6776 gcc_assert(field != NULL_TREE);
6777 }
6778 HOST_WIDE_INT offset_wide = int_byte_position (field);
6779 if (offset_wide < 0)
6780 return false;
6781 unsigned long offset_long = static_cast<unsigned long>(offset_wide);
6782 if (offset_long != static_cast<unsigned HOST_WIDE_INT>(offset_wide))
6783 return false;
6784 mpz_set_ui(val, offset_long);
6785 return true;
6786 }
6787 return false;
6788 }
6789
6790 // Return a floating point constant value if possible.
6791
6792 bool
6793 Builtin_call_expression::do_float_constant_value(mpfr_t val,
6794 Type** ptype) const
6795 {
6796 if (this->code_ == BUILTIN_REAL || this->code_ == BUILTIN_IMAG)
6797 {
6798 Expression* arg = this->one_arg();
6799 if (arg == NULL)
6800 return false;
6801
6802 mpfr_t real;
6803 mpfr_t imag;
6804 mpfr_init(real);
6805 mpfr_init(imag);
6806
6807 bool ret = false;
6808 Type* type;
6809 if (arg->complex_constant_value(real, imag, &type))
6810 {
6811 if (this->code_ == BUILTIN_REAL)
6812 mpfr_set(val, real, GMP_RNDN);
6813 else
6814 mpfr_set(val, imag, GMP_RNDN);
6815 *ptype = Builtin_call_expression::real_imag_type(type);
6816 ret = true;
6817 }
6818
6819 mpfr_clear(real);
6820 mpfr_clear(imag);
6821 return ret;
6822 }
6823
6824 return false;
6825 }
6826
6827 // Return a complex constant value if possible.
6828
6829 bool
6830 Builtin_call_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
6831 Type** ptype) const
6832 {
6833 if (this->code_ == BUILTIN_CMPLX)
6834 {
6835 const Expression_list* args = this->args();
6836 if (args == NULL || args->size() != 2)
6837 return false;
6838
6839 mpfr_t r;
6840 mpfr_init(r);
6841 Type* rtype;
6842 if (!args->front()->float_constant_value(r, &rtype))
6843 {
6844 mpfr_clear(r);
6845 return false;
6846 }
6847
6848 mpfr_t i;
6849 mpfr_init(i);
6850
6851 bool ret = false;
6852 Type* itype;
6853 if (args->back()->float_constant_value(i, &itype)
6854 && Type::are_identical(rtype, itype, NULL))
6855 {
6856 mpfr_set(real, r, GMP_RNDN);
6857 mpfr_set(imag, i, GMP_RNDN);
6858 *ptype = Builtin_call_expression::cmplx_type(rtype);
6859 ret = true;
6860 }
6861
6862 mpfr_clear(r);
6863 mpfr_clear(i);
6864
6865 return ret;
6866 }
6867
6868 return false;
6869 }
6870
6871 // Return the type.
6872
6873 Type*
6874 Builtin_call_expression::do_type()
6875 {
6876 switch (this->code_)
6877 {
6878 case BUILTIN_INVALID:
6879 default:
6880 gcc_unreachable();
6881
6882 case BUILTIN_NEW:
6883 case BUILTIN_MAKE:
6884 {
6885 const Expression_list* args = this->args();
6886 if (args == NULL || args->empty())
6887 return Type::make_error_type();
6888 return Type::make_pointer_type(args->front()->type());
6889 }
6890
6891 case BUILTIN_CAP:
6892 case BUILTIN_COPY:
6893 case BUILTIN_LEN:
6894 case BUILTIN_ALIGNOF:
6895 case BUILTIN_OFFSETOF:
6896 case BUILTIN_SIZEOF:
6897 return Type::lookup_integer_type("int");
6898
6899 case BUILTIN_CLOSE:
6900 case BUILTIN_PANIC:
6901 case BUILTIN_PRINT:
6902 case BUILTIN_PRINTLN:
6903 return Type::make_void_type();
6904
6905 case BUILTIN_CLOSED:
6906 return Type::lookup_bool_type();
6907
6908 case BUILTIN_RECOVER:
6909 return Type::make_interface_type(NULL, BUILTINS_LOCATION);
6910
6911 case BUILTIN_APPEND:
6912 {
6913 const Expression_list* args = this->args();
6914 if (args == NULL || args->empty())
6915 return Type::make_error_type();
6916 return args->front()->type();
6917 }
6918
6919 case BUILTIN_REAL:
6920 case BUILTIN_IMAG:
6921 {
6922 Expression* arg = this->one_arg();
6923 if (arg == NULL)
6924 return Type::make_error_type();
6925 Type* t = arg->type();
6926 if (t->is_abstract())
6927 t = t->make_non_abstract_type();
6928 t = Builtin_call_expression::real_imag_type(t);
6929 if (t == NULL)
6930 t = Type::make_error_type();
6931 return t;
6932 }
6933
6934 case BUILTIN_CMPLX:
6935 {
6936 const Expression_list* args = this->args();
6937 if (args == NULL || args->size() != 2)
6938 return Type::make_error_type();
6939 Type* t = args->front()->type();
6940 if (t->is_abstract())
6941 {
6942 t = args->back()->type();
6943 if (t->is_abstract())
6944 t = t->make_non_abstract_type();
6945 }
6946 t = Builtin_call_expression::cmplx_type(t);
6947 if (t == NULL)
6948 t = Type::make_error_type();
6949 return t;
6950 }
6951 }
6952 }
6953
6954 // Determine the type.
6955
6956 void
6957 Builtin_call_expression::do_determine_type(const Type_context* context)
6958 {
6959 this->fn()->determine_type_no_context();
6960
6961 const Expression_list* args = this->args();
6962
6963 bool is_print;
6964 Type* arg_type = NULL;
6965 switch (this->code_)
6966 {
6967 case BUILTIN_PRINT:
6968 case BUILTIN_PRINTLN:
6969 // Do not force a large integer constant to "int".
6970 is_print = true;
6971 break;
6972
6973 case BUILTIN_REAL:
6974 case BUILTIN_IMAG:
6975 arg_type = Builtin_call_expression::cmplx_type(context->type);
6976 is_print = false;
6977 break;
6978
6979 case BUILTIN_CMPLX:
6980 {
6981 // For the cmplx function the type of one operand can
6982 // determine the type of the other, as in a binary expression.
6983 arg_type = Builtin_call_expression::real_imag_type(context->type);
6984 if (args != NULL && args->size() == 2)
6985 {
6986 Type* t1 = args->front()->type();
6987 Type* t2 = args->front()->type();
6988 if (!t1->is_abstract())
6989 arg_type = t1;
6990 else if (!t2->is_abstract())
6991 arg_type = t2;
6992 }
6993 is_print = false;
6994 }
6995 break;
6996
6997 default:
6998 is_print = false;
6999 break;
7000 }
7001
7002 if (args != NULL)
7003 {
7004 for (Expression_list::const_iterator pa = args->begin();
7005 pa != args->end();
7006 ++pa)
7007 {
7008 Type_context subcontext;
7009 subcontext.type = arg_type;
7010
7011 if (is_print)
7012 {
7013 // We want to print large constants, we so can't just
7014 // use the appropriate nonabstract type. Use uint64 for
7015 // an integer if we know it is nonnegative, otherwise
7016 // use int64 for a integer, otherwise use float64 for a
7017 // float or complex128 for a complex.
7018 Type* want_type = NULL;
7019 Type* atype = (*pa)->type();
7020 if (atype->is_abstract())
7021 {
7022 if (atype->integer_type() != NULL)
7023 {
7024 mpz_t val;
7025 mpz_init(val);
7026 Type* dummy;
7027 if (this->integer_constant_value(true, val, &dummy)
7028 && mpz_sgn(val) >= 0)
7029 want_type = Type::lookup_integer_type("uint64");
7030 else
7031 want_type = Type::lookup_integer_type("int64");
7032 mpz_clear(val);
7033 }
7034 else if (atype->float_type() != NULL)
7035 want_type = Type::lookup_float_type("float64");
7036 else if (atype->complex_type() != NULL)
7037 want_type = Type::lookup_complex_type("complex128");
7038 else if (atype->is_abstract_string_type())
7039 want_type = Type::lookup_string_type();
7040 else if (atype->is_abstract_boolean_type())
7041 want_type = Type::lookup_bool_type();
7042 else
7043 gcc_unreachable();
7044 subcontext.type = want_type;
7045 }
7046 }
7047
7048 (*pa)->determine_type(&subcontext);
7049 }
7050 }
7051 }
7052
7053 // If there is exactly one argument, return true. Otherwise give an
7054 // error message and return false.
7055
7056 bool
7057 Builtin_call_expression::check_one_arg()
7058 {
7059 const Expression_list* args = this->args();
7060 if (args == NULL || args->size() < 1)
7061 {
7062 this->report_error(_("not enough arguments"));
7063 return false;
7064 }
7065 else if (args->size() > 1)
7066 {
7067 this->report_error(_("too many arguments"));
7068 return false;
7069 }
7070 if (args->front()->is_error_expression()
7071 || args->front()->type()->is_error_type())
7072 {
7073 this->set_is_error();
7074 return false;
7075 }
7076 return true;
7077 }
7078
7079 // Check argument types for a builtin function.
7080
7081 void
7082 Builtin_call_expression::do_check_types(Gogo*)
7083 {
7084 switch (this->code_)
7085 {
7086 case BUILTIN_INVALID:
7087 case BUILTIN_NEW:
7088 case BUILTIN_MAKE:
7089 return;
7090
7091 case BUILTIN_LEN:
7092 case BUILTIN_CAP:
7093 {
7094 // The single argument may be either a string or an array or a
7095 // map or a channel, or a pointer to a closed array.
7096 if (this->check_one_arg())
7097 {
7098 Type* arg_type = this->one_arg()->type();
7099 if (arg_type->points_to() != NULL
7100 && arg_type->points_to()->array_type() != NULL
7101 && !arg_type->points_to()->is_open_array_type())
7102 arg_type = arg_type->points_to();
7103 if (this->code_ == BUILTIN_CAP)
7104 {
7105 if (!arg_type->is_error_type()
7106 && arg_type->array_type() == NULL
7107 && arg_type->channel_type() == NULL)
7108 this->report_error(_("argument must be array or slice "
7109 "or channel"));
7110 }
7111 else
7112 {
7113 if (!arg_type->is_error_type()
7114 && !arg_type->is_string_type()
7115 && arg_type->array_type() == NULL
7116 && arg_type->map_type() == NULL
7117 && arg_type->channel_type() == NULL)
7118 this->report_error(_("argument must be string or "
7119 "array or slice or map or channel"));
7120 }
7121 }
7122 }
7123 break;
7124
7125 case BUILTIN_PRINT:
7126 case BUILTIN_PRINTLN:
7127 {
7128 const Expression_list* args = this->args();
7129 if (args == NULL)
7130 {
7131 if (this->code_ == BUILTIN_PRINT)
7132 warning_at(this->location(), 0,
7133 "no arguments for builtin function %<%s%>",
7134 (this->code_ == BUILTIN_PRINT
7135 ? "print"
7136 : "println"));
7137 }
7138 else
7139 {
7140 for (Expression_list::const_iterator p = args->begin();
7141 p != args->end();
7142 ++p)
7143 {
7144 Type* type = (*p)->type();
7145 if (type->is_error_type()
7146 || type->is_string_type()
7147 || type->integer_type() != NULL
7148 || type->float_type() != NULL
7149 || type->complex_type() != NULL
7150 || type->is_boolean_type()
7151 || type->points_to() != NULL
7152 || type->interface_type() != NULL
7153 || type->channel_type() != NULL
7154 || type->map_type() != NULL
7155 || type->function_type() != NULL
7156 || type->is_open_array_type())
7157 ;
7158 else
7159 this->report_error(_("unsupported argument type to "
7160 "builtin function"));
7161 }
7162 }
7163 }
7164 break;
7165
7166 case BUILTIN_CLOSE:
7167 case BUILTIN_CLOSED:
7168 if (this->check_one_arg())
7169 {
7170 if (this->one_arg()->type()->channel_type() == NULL)
7171 this->report_error(_("argument must be channel"));
7172 }
7173 break;
7174
7175 case BUILTIN_PANIC:
7176 case BUILTIN_SIZEOF:
7177 case BUILTIN_ALIGNOF:
7178 this->check_one_arg();
7179 break;
7180
7181 case BUILTIN_RECOVER:
7182 if (this->args() != NULL && !this->args()->empty())
7183 this->report_error(_("too many arguments"));
7184 break;
7185
7186 case BUILTIN_OFFSETOF:
7187 if (this->check_one_arg())
7188 {
7189 Expression* arg = this->one_arg();
7190 if (arg->field_reference_expression() == NULL)
7191 this->report_error(_("argument must be a field reference"));
7192 }
7193 break;
7194
7195 case BUILTIN_COPY:
7196 {
7197 const Expression_list* args = this->args();
7198 if (args == NULL || args->size() < 2)
7199 {
7200 this->report_error(_("not enough arguments"));
7201 break;
7202 }
7203 else if (args->size() > 2)
7204 {
7205 this->report_error(_("too many arguments"));
7206 break;
7207 }
7208 Type* arg1_type = args->front()->type();
7209 Type* arg2_type = args->back()->type();
7210 if (arg1_type->is_error_type() || arg2_type->is_error_type())
7211 break;
7212
7213 Type* e1;
7214 if (arg1_type->is_open_array_type())
7215 e1 = arg1_type->array_type()->element_type();
7216 else
7217 {
7218 this->report_error(_("left argument must be a slice"));
7219 break;
7220 }
7221
7222 Type* e2;
7223 if (arg2_type->is_open_array_type())
7224 e2 = arg2_type->array_type()->element_type();
7225 else if (arg2_type->is_string_type())
7226 e2 = Type::lookup_integer_type("uint8");
7227 else
7228 {
7229 this->report_error(_("right argument must be a slice or a string"));
7230 break;
7231 }
7232
7233 if (!Type::are_identical(e1, e2, NULL))
7234 this->report_error(_("element types must be the same"));
7235 }
7236 break;
7237
7238 case BUILTIN_APPEND:
7239 {
7240 const Expression_list* args = this->args();
7241 if (args == NULL || args->empty())
7242 {
7243 this->report_error(_("not enough arguments"));
7244 break;
7245 }
7246 /* Lowering varargs should have left us with 2 arguments. */
7247 gcc_assert(args->size() == 2);
7248 std::string reason;
7249 if (!Type::are_assignable(args->front()->type(), args->back()->type(),
7250 &reason))
7251 {
7252 if (reason.empty())
7253 this->report_error(_("arguments 1 and 2 have different types"));
7254 else
7255 {
7256 error_at(this->location(),
7257 "arguments 1 and 2 have different types (%s)",
7258 reason.c_str());
7259 this->set_is_error();
7260 }
7261 }
7262 break;
7263 }
7264
7265 case BUILTIN_REAL:
7266 case BUILTIN_IMAG:
7267 if (this->check_one_arg())
7268 {
7269 if (this->one_arg()->type()->complex_type() == NULL)
7270 this->report_error(_("argument must have complex type"));
7271 }
7272 break;
7273
7274 case BUILTIN_CMPLX:
7275 {
7276 const Expression_list* args = this->args();
7277 if (args == NULL || args->size() < 2)
7278 this->report_error(_("not enough arguments"));
7279 else if (args->size() > 2)
7280 this->report_error(_("too many arguments"));
7281 else if (args->front()->is_error_expression()
7282 || args->front()->type()->is_error_type()
7283 || args->back()->is_error_expression()
7284 || args->back()->type()->is_error_type())
7285 this->set_is_error();
7286 else if (!Type::are_identical(args->front()->type(),
7287 args->back()->type(), NULL))
7288 this->report_error(_("cmplx arguments must have identical types"));
7289 else if (args->front()->type()->float_type() == NULL)
7290 this->report_error(_("cmplx arguments must have "
7291 "floating-point type"));
7292 }
7293 break;
7294
7295 default:
7296 gcc_unreachable();
7297 }
7298 }
7299
7300 // Return the tree for a builtin function.
7301
7302 tree
7303 Builtin_call_expression::do_get_tree(Translate_context* context)
7304 {
7305 Gogo* gogo = context->gogo();
7306 source_location location = this->location();
7307 switch (this->code_)
7308 {
7309 case BUILTIN_INVALID:
7310 case BUILTIN_NEW:
7311 case BUILTIN_MAKE:
7312 gcc_unreachable();
7313
7314 case BUILTIN_LEN:
7315 case BUILTIN_CAP:
7316 {
7317 const Expression_list* args = this->args();
7318 gcc_assert(args != NULL && args->size() == 1);
7319 Expression* arg = *args->begin();
7320 Type* arg_type = arg->type();
7321 tree arg_tree = arg->get_tree(context);
7322 if (arg_tree == error_mark_node)
7323 return error_mark_node;
7324
7325 if (arg_type->points_to() != NULL)
7326 {
7327 arg_type = arg_type->points_to();
7328 gcc_assert(arg_type->array_type() != NULL
7329 && !arg_type->is_open_array_type());
7330 gcc_assert(POINTER_TYPE_P(TREE_TYPE(arg_tree)));
7331 arg_tree = build_fold_indirect_ref(arg_tree);
7332 }
7333
7334 tree val_tree;
7335 if (this->code_ == BUILTIN_LEN)
7336 {
7337 if (arg_type->is_string_type())
7338 val_tree = String_type::length_tree(gogo, arg_tree);
7339 else if (arg_type->array_type() != NULL)
7340 val_tree = arg_type->array_type()->length_tree(gogo, arg_tree);
7341 else if (arg_type->map_type() != NULL)
7342 {
7343 static tree map_len_fndecl;
7344 val_tree = Gogo::call_builtin(&map_len_fndecl,
7345 location,
7346 "__go_map_len",
7347 1,
7348 sizetype,
7349 arg_type->get_tree(gogo),
7350 arg_tree);
7351 }
7352 else if (arg_type->channel_type() != NULL)
7353 {
7354 static tree chan_len_fndecl;
7355 val_tree = Gogo::call_builtin(&chan_len_fndecl,
7356 location,
7357 "__go_chan_len",
7358 1,
7359 sizetype,
7360 arg_type->get_tree(gogo),
7361 arg_tree);
7362 }
7363 else
7364 gcc_unreachable();
7365 }
7366 else
7367 {
7368 if (arg_type->array_type() != NULL)
7369 val_tree = arg_type->array_type()->capacity_tree(gogo, arg_tree);
7370 else if (arg_type->channel_type() != NULL)
7371 {
7372 static tree chan_cap_fndecl;
7373 val_tree = Gogo::call_builtin(&chan_cap_fndecl,
7374 location,
7375 "__go_chan_cap",
7376 1,
7377 sizetype,
7378 arg_type->get_tree(gogo),
7379 arg_tree);
7380 }
7381 else
7382 gcc_unreachable();
7383 }
7384
7385 tree type_tree = Type::lookup_integer_type("int")->get_tree(gogo);
7386 if (type_tree == TREE_TYPE(val_tree))
7387 return val_tree;
7388 else
7389 return fold(convert_to_integer(type_tree, val_tree));
7390 }
7391
7392 case BUILTIN_PRINT:
7393 case BUILTIN_PRINTLN:
7394 {
7395 const bool is_ln = this->code_ == BUILTIN_PRINTLN;
7396 tree stmt_list = NULL_TREE;
7397
7398 const Expression_list* call_args = this->args();
7399 if (call_args != NULL)
7400 {
7401 for (Expression_list::const_iterator p = call_args->begin();
7402 p != call_args->end();
7403 ++p)
7404 {
7405 if (is_ln && p != call_args->begin())
7406 {
7407 static tree print_space_fndecl;
7408 tree call = Gogo::call_builtin(&print_space_fndecl,
7409 location,
7410 "__go_print_space",
7411 0,
7412 void_type_node);
7413 append_to_statement_list(call, &stmt_list);
7414 }
7415
7416 Type* type = (*p)->type();
7417
7418 tree arg = (*p)->get_tree(context);
7419 if (arg == error_mark_node)
7420 return error_mark_node;
7421
7422 tree* pfndecl;
7423 const char* fnname;
7424 if (type->is_string_type())
7425 {
7426 static tree print_string_fndecl;
7427 pfndecl = &print_string_fndecl;
7428 fnname = "__go_print_string";
7429 }
7430 else if (type->integer_type() != NULL
7431 && type->integer_type()->is_unsigned())
7432 {
7433 static tree print_uint64_fndecl;
7434 pfndecl = &print_uint64_fndecl;
7435 fnname = "__go_print_uint64";
7436 Type* itype = Type::lookup_integer_type("uint64");
7437 arg = fold_convert_loc(location, itype->get_tree(gogo),
7438 arg);
7439 }
7440 else if (type->integer_type() != NULL)
7441 {
7442 static tree print_int64_fndecl;
7443 pfndecl = &print_int64_fndecl;
7444 fnname = "__go_print_int64";
7445 Type* itype = Type::lookup_integer_type("int64");
7446 arg = fold_convert_loc(location, itype->get_tree(gogo),
7447 arg);
7448 }
7449 else if (type->float_type() != NULL)
7450 {
7451 static tree print_double_fndecl;
7452 pfndecl = &print_double_fndecl;
7453 fnname = "__go_print_double";
7454 arg = fold_convert_loc(location, double_type_node, arg);
7455 }
7456 else if (type->complex_type() != NULL)
7457 {
7458 static tree print_complex_fndecl;
7459 pfndecl = &print_complex_fndecl;
7460 fnname = "__go_print_complex";
7461 arg = fold_convert_loc(location, complex_double_type_node,
7462 arg);
7463 }
7464 else if (type->is_boolean_type())
7465 {
7466 static tree print_bool_fndecl;
7467 pfndecl = &print_bool_fndecl;
7468 fnname = "__go_print_bool";
7469 }
7470 else if (type->points_to() != NULL
7471 || type->channel_type() != NULL
7472 || type->map_type() != NULL
7473 || type->function_type() != NULL)
7474 {
7475 static tree print_pointer_fndecl;
7476 pfndecl = &print_pointer_fndecl;
7477 fnname = "__go_print_pointer";
7478 arg = fold_convert_loc(location, ptr_type_node, arg);
7479 }
7480 else if (type->interface_type() != NULL)
7481 {
7482 if (type->interface_type()->is_empty())
7483 {
7484 static tree print_empty_interface_fndecl;
7485 pfndecl = &print_empty_interface_fndecl;
7486 fnname = "__go_print_empty_interface";
7487 }
7488 else
7489 {
7490 static tree print_interface_fndecl;
7491 pfndecl = &print_interface_fndecl;
7492 fnname = "__go_print_interface";
7493 }
7494 }
7495 else if (type->is_open_array_type())
7496 {
7497 static tree print_slice_fndecl;
7498 pfndecl = &print_slice_fndecl;
7499 fnname = "__go_print_slice";
7500 }
7501 else
7502 gcc_unreachable();
7503
7504 tree call = Gogo::call_builtin(pfndecl,
7505 location,
7506 fnname,
7507 1,
7508 void_type_node,
7509 TREE_TYPE(arg),
7510 arg);
7511 append_to_statement_list(call, &stmt_list);
7512 }
7513 }
7514
7515 if (is_ln)
7516 {
7517 static tree print_nl_fndecl;
7518 tree call = Gogo::call_builtin(&print_nl_fndecl,
7519 location,
7520 "__go_print_nl",
7521 0,
7522 void_type_node);
7523 append_to_statement_list(call, &stmt_list);
7524 }
7525
7526 return stmt_list;
7527 }
7528
7529 case BUILTIN_PANIC:
7530 {
7531 const Expression_list* args = this->args();
7532 gcc_assert(args != NULL && args->size() == 1);
7533 Expression* arg = args->front();
7534 tree arg_tree = arg->get_tree(context);
7535 if (arg_tree == error_mark_node)
7536 return error_mark_node;
7537 Type *empty = Type::make_interface_type(NULL, BUILTINS_LOCATION);
7538 arg_tree = Expression::convert_for_assignment(context, empty,
7539 arg->type(),
7540 arg_tree, location);
7541 static tree panic_fndecl;
7542 tree call = Gogo::call_builtin(&panic_fndecl,
7543 location,
7544 "__go_panic",
7545 1,
7546 void_type_node,
7547 TREE_TYPE(arg_tree),
7548 arg_tree);
7549 // This function will throw an exception.
7550 TREE_NOTHROW(panic_fndecl) = 0;
7551 // This function will not return.
7552 TREE_THIS_VOLATILE(panic_fndecl) = 1;
7553 return call;
7554 }
7555
7556 case BUILTIN_RECOVER:
7557 {
7558 // The argument is set when building recover thunks. It's a
7559 // boolean value which is true if we can recover a value now.
7560 const Expression_list* args = this->args();
7561 gcc_assert(args != NULL && args->size() == 1);
7562 Expression* arg = args->front();
7563 tree arg_tree = arg->get_tree(context);
7564 if (arg_tree == error_mark_node)
7565 return error_mark_node;
7566
7567 Type *empty = Type::make_interface_type(NULL, BUILTINS_LOCATION);
7568 tree empty_tree = empty->get_tree(context->gogo());
7569
7570 Type* nil_type = Type::make_nil_type();
7571 Expression* nil = Expression::make_nil(location);
7572 tree nil_tree = nil->get_tree(context);
7573 tree empty_nil_tree = Expression::convert_for_assignment(context,
7574 empty,
7575 nil_type,
7576 nil_tree,
7577 location);
7578
7579 // We need to handle a deferred call to recover specially,
7580 // because it changes whether it can recover a panic or not.
7581 // See test7 in test/recover1.go.
7582 tree call;
7583 if (this->is_deferred())
7584 {
7585 static tree deferred_recover_fndecl;
7586 call = Gogo::call_builtin(&deferred_recover_fndecl,
7587 location,
7588 "__go_deferred_recover",
7589 0,
7590 empty_tree);
7591 }
7592 else
7593 {
7594 static tree recover_fndecl;
7595 call = Gogo::call_builtin(&recover_fndecl,
7596 location,
7597 "__go_recover",
7598 0,
7599 empty_tree);
7600 }
7601 return fold_build3_loc(location, COND_EXPR, empty_tree, arg_tree,
7602 call, empty_nil_tree);
7603 }
7604
7605 case BUILTIN_CLOSE:
7606 case BUILTIN_CLOSED:
7607 {
7608 const Expression_list* args = this->args();
7609 gcc_assert(args != NULL && args->size() == 1);
7610 Expression* arg = args->front();
7611 tree arg_tree = arg->get_tree(context);
7612 if (arg_tree == error_mark_node)
7613 return error_mark_node;
7614 if (this->code_ == BUILTIN_CLOSE)
7615 {
7616 static tree close_fndecl;
7617 return Gogo::call_builtin(&close_fndecl,
7618 location,
7619 "__go_builtin_close",
7620 1,
7621 void_type_node,
7622 TREE_TYPE(arg_tree),
7623 arg_tree);
7624 }
7625 else
7626 {
7627 static tree closed_fndecl;
7628 return Gogo::call_builtin(&closed_fndecl,
7629 location,
7630 "__go_builtin_closed",
7631 1,
7632 boolean_type_node,
7633 TREE_TYPE(arg_tree),
7634 arg_tree);
7635 }
7636 }
7637
7638 case BUILTIN_SIZEOF:
7639 case BUILTIN_OFFSETOF:
7640 case BUILTIN_ALIGNOF:
7641 {
7642 mpz_t val;
7643 mpz_init(val);
7644 Type* dummy;
7645 bool b = this->integer_constant_value(true, val, &dummy);
7646 gcc_assert(b);
7647 tree type = Type::lookup_integer_type("int")->get_tree(gogo);
7648 tree ret = Expression::integer_constant_tree(val, type);
7649 mpz_clear(val);
7650 return ret;
7651 }
7652
7653 case BUILTIN_COPY:
7654 {
7655 const Expression_list* args = this->args();
7656 gcc_assert(args != NULL && args->size() == 2);
7657 Expression* arg1 = args->front();
7658 Expression* arg2 = args->back();
7659
7660 tree arg1_tree = arg1->get_tree(context);
7661 tree arg2_tree = arg2->get_tree(context);
7662 if (arg1_tree == error_mark_node || arg2_tree == error_mark_node)
7663 return error_mark_node;
7664
7665 Type* arg1_type = arg1->type();
7666 Array_type* at = arg1_type->array_type();
7667 arg1_tree = save_expr(arg1_tree);
7668 tree arg1_val = at->value_pointer_tree(gogo, arg1_tree);
7669 tree arg1_len = at->length_tree(gogo, arg1_tree);
7670
7671 Type* arg2_type = arg2->type();
7672 tree arg2_val;
7673 tree arg2_len;
7674 if (arg2_type->is_open_array_type())
7675 {
7676 at = arg2_type->array_type();
7677 arg2_tree = save_expr(arg2_tree);
7678 arg2_val = at->value_pointer_tree(gogo, arg2_tree);
7679 arg2_len = at->length_tree(gogo, arg2_tree);
7680 }
7681 else
7682 {
7683 arg2_tree = save_expr(arg2_tree);
7684 arg2_val = String_type::bytes_tree(gogo, arg2_tree);
7685 arg2_len = String_type::length_tree(gogo, arg2_tree);
7686 }
7687
7688 arg1_len = save_expr(arg1_len);
7689 arg2_len = save_expr(arg2_len);
7690 tree len = fold_build3_loc(location, COND_EXPR, TREE_TYPE(arg1_len),
7691 fold_build2_loc(location, LT_EXPR,
7692 boolean_type_node,
7693 arg1_len, arg2_len),
7694 arg1_len, arg2_len);
7695 len = save_expr(len);
7696
7697 Type* element_type = at->element_type();
7698 tree element_type_tree = element_type->get_tree(gogo);
7699 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
7700 tree bytecount = fold_convert_loc(location, TREE_TYPE(element_size),
7701 len);
7702 bytecount = fold_build2_loc(location, MULT_EXPR,
7703 TREE_TYPE(element_size),
7704 bytecount, element_size);
7705 bytecount = fold_convert_loc(location, size_type_node, bytecount);
7706
7707 tree call = build_call_expr_loc(location,
7708 built_in_decls[BUILT_IN_MEMMOVE],
7709 3, arg1_val, arg2_val, bytecount);
7710
7711 return fold_build2_loc(location, COMPOUND_EXPR, TREE_TYPE(len),
7712 call, len);
7713 }
7714
7715 case BUILTIN_APPEND:
7716 {
7717 const Expression_list* args = this->args();
7718 gcc_assert(args != NULL && args->size() == 2);
7719 Expression* arg1 = args->front();
7720 Expression* arg2 = args->back();
7721
7722 tree arg1_tree = arg1->get_tree(context);
7723 tree arg2_tree = arg2->get_tree(context);
7724 if (arg1_tree == error_mark_node || arg2_tree == error_mark_node)
7725 return error_mark_node;
7726
7727 tree descriptor_tree = arg1->type()->type_descriptor_pointer(gogo);
7728
7729 // We rebuild the decl each time since the slice types may
7730 // change.
7731 tree append_fndecl = NULL_TREE;
7732 return Gogo::call_builtin(&append_fndecl,
7733 location,
7734 "__go_append",
7735 3,
7736 TREE_TYPE(arg1_tree),
7737 TREE_TYPE(descriptor_tree),
7738 descriptor_tree,
7739 TREE_TYPE(arg1_tree),
7740 arg1_tree,
7741 TREE_TYPE(arg2_tree),
7742 arg2_tree);
7743 }
7744
7745 case BUILTIN_REAL:
7746 case BUILTIN_IMAG:
7747 {
7748 const Expression_list* args = this->args();
7749 gcc_assert(args != NULL && args->size() == 1);
7750 Expression* arg = args->front();
7751 tree arg_tree = arg->get_tree(context);
7752 if (arg_tree == error_mark_node)
7753 return error_mark_node;
7754 gcc_assert(COMPLEX_FLOAT_TYPE_P(TREE_TYPE(arg_tree)));
7755 if (this->code_ == BUILTIN_REAL)
7756 return fold_build1_loc(location, REALPART_EXPR,
7757 TREE_TYPE(TREE_TYPE(arg_tree)),
7758 arg_tree);
7759 else
7760 return fold_build1_loc(location, IMAGPART_EXPR,
7761 TREE_TYPE(TREE_TYPE(arg_tree)),
7762 arg_tree);
7763 }
7764
7765 case BUILTIN_CMPLX:
7766 {
7767 const Expression_list* args = this->args();
7768 gcc_assert(args != NULL && args->size() == 2);
7769 tree r = args->front()->get_tree(context);
7770 tree i = args->back()->get_tree(context);
7771 if (r == error_mark_node || i == error_mark_node)
7772 return error_mark_node;
7773 gcc_assert(TYPE_MAIN_VARIANT(TREE_TYPE(r))
7774 == TYPE_MAIN_VARIANT(TREE_TYPE(i)));
7775 gcc_assert(SCALAR_FLOAT_TYPE_P(TREE_TYPE(r)));
7776 return fold_build2_loc(location, COMPLEX_EXPR,
7777 build_complex_type(TREE_TYPE(r)),
7778 r, i);
7779 }
7780
7781 default:
7782 gcc_unreachable();
7783 }
7784 }
7785
7786 // We have to support exporting a builtin call expression, because
7787 // code can set a constant to the result of a builtin expression.
7788
7789 void
7790 Builtin_call_expression::do_export(Export* exp) const
7791 {
7792 bool ok = false;
7793
7794 mpz_t val;
7795 mpz_init(val);
7796 Type* dummy;
7797 if (this->integer_constant_value(true, val, &dummy))
7798 {
7799 Integer_expression::export_integer(exp, val);
7800 ok = true;
7801 }
7802 mpz_clear(val);
7803
7804 if (!ok)
7805 {
7806 mpfr_t fval;
7807 mpfr_init(fval);
7808 if (this->float_constant_value(fval, &dummy))
7809 {
7810 Float_expression::export_float(exp, fval);
7811 ok = true;
7812 }
7813 mpfr_clear(fval);
7814 }
7815
7816 if (!ok)
7817 {
7818 mpfr_t real;
7819 mpfr_t imag;
7820 mpfr_init(real);
7821 mpfr_init(imag);
7822 if (this->complex_constant_value(real, imag, &dummy))
7823 {
7824 Complex_expression::export_complex(exp, real, imag);
7825 ok = true;
7826 }
7827 mpfr_clear(real);
7828 mpfr_clear(imag);
7829 }
7830
7831 if (!ok)
7832 {
7833 error_at(this->location(), "value is not constant");
7834 return;
7835 }
7836
7837 // A trailing space lets us reliably identify the end of the number.
7838 exp->write_c_string(" ");
7839 }
7840
7841 // Class Call_expression.
7842
7843 // Traversal.
7844
7845 int
7846 Call_expression::do_traverse(Traverse* traverse)
7847 {
7848 if (Expression::traverse(&this->fn_, traverse) == TRAVERSE_EXIT)
7849 return TRAVERSE_EXIT;
7850 if (this->args_ != NULL)
7851 {
7852 if (this->args_->traverse(traverse) == TRAVERSE_EXIT)
7853 return TRAVERSE_EXIT;
7854 }
7855 return TRAVERSE_CONTINUE;
7856 }
7857
7858 // Lower a call statement.
7859
7860 Expression*
7861 Call_expression::do_lower(Gogo* gogo, Named_object* function, int)
7862 {
7863 // A type case can look like a function call.
7864 if (this->fn_->is_type_expression()
7865 && this->args_ != NULL
7866 && this->args_->size() == 1)
7867 return Expression::make_cast(this->fn_->type(), this->args_->front(),
7868 this->location());
7869
7870 // Recognize a call to a builtin function.
7871 Func_expression* fne = this->fn_->func_expression();
7872 if (fne != NULL
7873 && fne->named_object()->is_function_declaration()
7874 && fne->named_object()->func_declaration_value()->type()->is_builtin())
7875 return new Builtin_call_expression(gogo, this->fn_, this->args_,
7876 this->is_varargs_, this->location());
7877
7878 // Handle an argument which is a call to a function which returns
7879 // multiple results.
7880 if (this->args_ != NULL
7881 && this->args_->size() == 1
7882 && this->args_->front()->call_expression() != NULL
7883 && this->fn_->type()->function_type() != NULL)
7884 {
7885 Function_type* fntype = this->fn_->type()->function_type();
7886 size_t rc = this->args_->front()->call_expression()->result_count();
7887 if (rc > 1
7888 && fntype->parameters() != NULL
7889 && (fntype->parameters()->size() == rc
7890 || (fntype->is_varargs()
7891 && fntype->parameters()->size() - 1 <= rc)))
7892 {
7893 Call_expression* call = this->args_->front()->call_expression();
7894 Expression_list* args = new Expression_list;
7895 for (size_t i = 0; i < rc; ++i)
7896 args->push_back(Expression::make_call_result(call, i));
7897 // We can't return a new call expression here, because this
7898 // one may be referenced by Call_result expressions. FIXME.
7899 delete this->args_;
7900 this->args_ = args;
7901 }
7902 }
7903
7904 // Handle a call to a varargs function by packaging up the extra
7905 // parameters.
7906 if (this->fn_->type()->function_type() != NULL
7907 && this->fn_->type()->function_type()->is_varargs())
7908 {
7909 Function_type* fntype = this->fn_->type()->function_type();
7910 const Typed_identifier_list* parameters = fntype->parameters();
7911 gcc_assert(parameters != NULL && !parameters->empty());
7912 Type* varargs_type = parameters->back().type();
7913 return this->lower_varargs(gogo, function, varargs_type,
7914 parameters->size());
7915 }
7916
7917 return this;
7918 }
7919
7920 // Lower a call to a varargs function. FUNCTION is the function in
7921 // which the call occurs--it's not the function we are calling.
7922 // VARARGS_TYPE is the type of the varargs parameter, a slice type.
7923 // PARAM_COUNT is the number of parameters of the function we are
7924 // calling; the last of these parameters will be the varargs
7925 // parameter.
7926
7927 Expression*
7928 Call_expression::lower_varargs(Gogo* gogo, Named_object* function,
7929 Type* varargs_type, size_t param_count)
7930 {
7931 if (this->varargs_are_lowered_)
7932 return this;
7933
7934 source_location loc = this->location();
7935
7936 gcc_assert(param_count > 0);
7937 gcc_assert(varargs_type->is_open_array_type());
7938
7939 size_t arg_count = this->args_ == NULL ? 0 : this->args_->size();
7940 if (arg_count < param_count - 1)
7941 {
7942 // Not enough arguments; will be caught in check_types.
7943 return this;
7944 }
7945
7946 Expression_list* old_args = this->args_;
7947 Expression_list* new_args = new Expression_list();
7948 bool push_empty_arg = false;
7949 if (old_args == NULL || old_args->empty())
7950 {
7951 gcc_assert(param_count == 1);
7952 push_empty_arg = true;
7953 }
7954 else
7955 {
7956 Expression_list::const_iterator pa;
7957 int i = 1;
7958 for (pa = old_args->begin(); pa != old_args->end(); ++pa, ++i)
7959 {
7960 if (static_cast<size_t>(i) == param_count)
7961 break;
7962 new_args->push_back(*pa);
7963 }
7964
7965 // We have reached the varargs parameter.
7966
7967 bool issued_error = false;
7968 if (pa == old_args->end())
7969 push_empty_arg = true;
7970 else if (pa + 1 == old_args->end() && this->is_varargs_)
7971 new_args->push_back(*pa);
7972 else if (this->is_varargs_)
7973 {
7974 this->report_error(_("too many arguments"));
7975 return this;
7976 }
7977 else if (pa + 1 == old_args->end()
7978 && this->is_compatible_varargs_argument(function, *pa,
7979 varargs_type,
7980 &issued_error))
7981 new_args->push_back(*pa);
7982 else
7983 {
7984 Type* element_type = varargs_type->array_type()->element_type();
7985 Expression_list* vals = new Expression_list;
7986 for (; pa != old_args->end(); ++pa, ++i)
7987 {
7988 // Check types here so that we get a better message.
7989 Type* patype = (*pa)->type();
7990 source_location paloc = (*pa)->location();
7991 if (!this->check_argument_type(i, element_type, patype,
7992 paloc, issued_error))
7993 continue;
7994 vals->push_back(*pa);
7995 }
7996 Expression* val =
7997 Expression::make_slice_composite_literal(varargs_type, vals, loc);
7998 new_args->push_back(val);
7999 }
8000 }
8001
8002 if (push_empty_arg)
8003 new_args->push_back(Expression::make_nil(loc));
8004
8005 // We can't return a new call expression here, because this one may
8006 // be referenced by Call_result expressions. FIXME.
8007 if (old_args != NULL)
8008 delete old_args;
8009 this->args_ = new_args;
8010 this->varargs_are_lowered_ = true;
8011
8012 // Lower all the new subexpressions.
8013 Expression* ret = this;
8014 gogo->lower_expression(function, &ret);
8015 gcc_assert(ret == this);
8016 return ret;
8017 }
8018
8019 // Return true if ARG is a varargs argment which should be passed to
8020 // the varargs parameter of type PARAM_TYPE without wrapping. ARG
8021 // will be the last argument passed in the call, and PARAM_TYPE will
8022 // be the type of the last parameter of the varargs function being
8023 // called.
8024
8025 bool
8026 Call_expression::is_compatible_varargs_argument(Named_object* function,
8027 Expression* arg,
8028 Type* param_type,
8029 bool* issued_error)
8030 {
8031 *issued_error = false;
8032
8033 Type* var_type = NULL;
8034
8035 // The simple case is passing the varargs parameter of the caller.
8036 Var_expression* ve = arg->var_expression();
8037 if (ve != NULL && ve->named_object()->is_variable())
8038 {
8039 Variable* var = ve->named_object()->var_value();
8040 if (var->is_varargs_parameter())
8041 var_type = var->type();
8042 }
8043
8044 // The complex case is passing the varargs parameter of some
8045 // enclosing function. This will look like passing down *c.f where
8046 // c is the closure variable and f is a field in the closure.
8047 if (function != NULL
8048 && function->func_value()->needs_closure()
8049 && arg->classification() == EXPRESSION_UNARY)
8050 {
8051 Unary_expression* ue = static_cast<Unary_expression*>(arg);
8052 if (ue->op() == OPERATOR_MULT)
8053 {
8054 Field_reference_expression* fre =
8055 ue->operand()->deref()->field_reference_expression();
8056 if (fre != NULL)
8057 {
8058 Var_expression* ve = fre->expr()->deref()->var_expression();
8059 if (ve != NULL)
8060 {
8061 Named_object* no = ve->named_object();
8062 Function* f = function->func_value();
8063 if (no == f->closure_var())
8064 {
8065 // At this point we know that this indeed a
8066 // reference to some enclosing variable. Now we
8067 // need to figure out whether that variable is a
8068 // varargs parameter.
8069 Named_object* enclosing =
8070 f->enclosing_var(fre->field_index());
8071 Variable* var = enclosing->var_value();
8072 if (var->is_varargs_parameter())
8073 var_type = var->type();
8074 }
8075 }
8076 }
8077 }
8078 }
8079
8080 if (var_type == NULL)
8081 return false;
8082
8083 // We only match if the parameter is the same, with an identical
8084 // type.
8085 Array_type* var_at = var_type->array_type();
8086 gcc_assert(var_at != NULL);
8087 Array_type* param_at = param_type->array_type();
8088 if (param_at != NULL
8089 && Type::are_identical(var_at->element_type(),
8090 param_at->element_type(), NULL))
8091 return true;
8092 error_at(arg->location(), "... mismatch: passing ...T as ...");
8093 *issued_error = true;
8094 return false;
8095 }
8096
8097 // Get the function type. Returns NULL if we don't know the type. If
8098 // this returns NULL, and if_ERROR is true, issues an error.
8099
8100 Function_type*
8101 Call_expression::get_function_type() const
8102 {
8103 return this->fn_->type()->function_type();
8104 }
8105
8106 // Return the number of values which this call will return.
8107
8108 size_t
8109 Call_expression::result_count() const
8110 {
8111 const Function_type* fntype = this->get_function_type();
8112 if (fntype == NULL)
8113 return 0;
8114 if (fntype->results() == NULL)
8115 return 0;
8116 return fntype->results()->size();
8117 }
8118
8119 // Return whether this is a call to the predeclared function recover.
8120
8121 bool
8122 Call_expression::is_recover_call() const
8123 {
8124 return this->do_is_recover_call();
8125 }
8126
8127 // Set the argument to the recover function.
8128
8129 void
8130 Call_expression::set_recover_arg(Expression* arg)
8131 {
8132 this->do_set_recover_arg(arg);
8133 }
8134
8135 // Virtual functions also implemented by Builtin_call_expression.
8136
8137 bool
8138 Call_expression::do_is_recover_call() const
8139 {
8140 return false;
8141 }
8142
8143 void
8144 Call_expression::do_set_recover_arg(Expression*)
8145 {
8146 gcc_unreachable();
8147 }
8148
8149 // Get the type.
8150
8151 Type*
8152 Call_expression::do_type()
8153 {
8154 if (this->type_ != NULL)
8155 return this->type_;
8156
8157 Type* ret;
8158 Function_type* fntype = this->get_function_type();
8159 if (fntype == NULL)
8160 return Type::make_error_type();
8161
8162 const Typed_identifier_list* results = fntype->results();
8163 if (results == NULL)
8164 ret = Type::make_void_type();
8165 else if (results->size() == 1)
8166 ret = results->begin()->type();
8167 else
8168 ret = Type::make_call_multiple_result_type(this);
8169
8170 this->type_ = ret;
8171
8172 return this->type_;
8173 }
8174
8175 // Determine types for a call expression. We can use the function
8176 // parameter types to set the types of the arguments.
8177
8178 void
8179 Call_expression::do_determine_type(const Type_context*)
8180 {
8181 this->fn_->determine_type_no_context();
8182 Function_type* fntype = this->get_function_type();
8183 const Typed_identifier_list* parameters = NULL;
8184 if (fntype != NULL)
8185 parameters = fntype->parameters();
8186 if (this->args_ != NULL)
8187 {
8188 Typed_identifier_list::const_iterator pt;
8189 if (parameters != NULL)
8190 pt = parameters->begin();
8191 for (Expression_list::const_iterator pa = this->args_->begin();
8192 pa != this->args_->end();
8193 ++pa)
8194 {
8195 if (parameters != NULL && pt != parameters->end())
8196 {
8197 Type_context subcontext(pt->type(), false);
8198 (*pa)->determine_type(&subcontext);
8199 ++pt;
8200 }
8201 else
8202 (*pa)->determine_type_no_context();
8203 }
8204 }
8205 }
8206
8207 // Check types for parameter I.
8208
8209 bool
8210 Call_expression::check_argument_type(int i, const Type* parameter_type,
8211 const Type* argument_type,
8212 source_location argument_location,
8213 bool issued_error)
8214 {
8215 std::string reason;
8216 if (!Type::are_assignable(parameter_type, argument_type, &reason))
8217 {
8218 if (!issued_error)
8219 {
8220 if (reason.empty())
8221 error_at(argument_location, "argument %d has incompatible type", i);
8222 else
8223 error_at(argument_location,
8224 "argument %d has incompatible type (%s)",
8225 i, reason.c_str());
8226 }
8227 this->set_is_error();
8228 return false;
8229 }
8230 return true;
8231 }
8232
8233 // Check types.
8234
8235 void
8236 Call_expression::do_check_types(Gogo*)
8237 {
8238 Function_type* fntype = this->get_function_type();
8239 if (fntype == NULL)
8240 {
8241 if (!this->fn_->type()->is_error_type())
8242 this->report_error(_("expected function"));
8243 return;
8244 }
8245
8246 if (fntype->is_method())
8247 {
8248 // We don't support pointers to methods, so the function has to
8249 // be a bound method expression.
8250 Bound_method_expression* bme = this->fn_->bound_method_expression();
8251 if (bme == NULL)
8252 {
8253 this->report_error(_("method call without object"));
8254 return;
8255 }
8256 Type* first_arg_type = bme->first_argument()->type();
8257 if (first_arg_type->points_to() == NULL)
8258 {
8259 // When passing a value, we need to check that we are
8260 // permitted to copy it.
8261 std::string reason;
8262 if (!Type::are_assignable(fntype->receiver()->type(),
8263 first_arg_type, &reason))
8264 {
8265 if (reason.empty())
8266 this->report_error(_("incompatible type for receiver"));
8267 else
8268 {
8269 error_at(this->location(),
8270 "incompatible type for receiver (%s)",
8271 reason.c_str());
8272 this->set_is_error();
8273 }
8274 }
8275 }
8276 }
8277
8278 // Note that varargs was handled by the lower_varargs() method, so
8279 // we don't have to worry about it here.
8280
8281 const Typed_identifier_list* parameters = fntype->parameters();
8282 if (this->args_ == NULL)
8283 {
8284 if (parameters != NULL && !parameters->empty())
8285 this->report_error(_("not enough arguments"));
8286 }
8287 else if (parameters == NULL)
8288 this->report_error(_("too many arguments"));
8289 else
8290 {
8291 int i = 0;
8292 Typed_identifier_list::const_iterator pt = parameters->begin();
8293 for (Expression_list::const_iterator pa = this->args_->begin();
8294 pa != this->args_->end();
8295 ++pa, ++pt, ++i)
8296 {
8297 if (pt == parameters->end())
8298 {
8299 this->report_error(_("too many arguments"));
8300 return;
8301 }
8302 this->check_argument_type(i + 1, pt->type(), (*pa)->type(),
8303 (*pa)->location(), false);
8304 }
8305 if (pt != parameters->end())
8306 this->report_error(_("not enough arguments"));
8307 }
8308 }
8309
8310 // Return whether we have to use a temporary variable to ensure that
8311 // we evaluate this call expression in order. If the call returns no
8312 // results then it will inevitably be executed last. If the call
8313 // returns more than one result then it will be used with Call_result
8314 // expressions. So we only have to use a temporary variable if the
8315 // call returns exactly one result.
8316
8317 bool
8318 Call_expression::do_must_eval_in_order() const
8319 {
8320 return this->result_count() == 1;
8321 }
8322
8323 // Get the function and the first argument to use when calling a bound
8324 // method.
8325
8326 tree
8327 Call_expression::bound_method_function(Translate_context* context,
8328 Bound_method_expression* bound_method,
8329 tree* first_arg_ptr)
8330 {
8331 Expression* first_argument = bound_method->first_argument();
8332 tree first_arg = first_argument->get_tree(context);
8333 if (first_arg == error_mark_node)
8334 return error_mark_node;
8335
8336 // We always pass a pointer to the first argument when calling a
8337 // method.
8338 if (first_argument->type()->points_to() == NULL)
8339 {
8340 tree pointer_to_arg_type = build_pointer_type(TREE_TYPE(first_arg));
8341 if (TREE_ADDRESSABLE(TREE_TYPE(first_arg))
8342 || DECL_P(first_arg)
8343 || TREE_CODE(first_arg) == INDIRECT_REF
8344 || TREE_CODE(first_arg) == COMPONENT_REF)
8345 {
8346 first_arg = build_fold_addr_expr(first_arg);
8347 if (DECL_P(first_arg))
8348 TREE_ADDRESSABLE(first_arg) = 1;
8349 }
8350 else
8351 {
8352 tree tmp = create_tmp_var(TREE_TYPE(first_arg),
8353 get_name(first_arg));
8354 DECL_IGNORED_P(tmp) = 0;
8355 DECL_INITIAL(tmp) = first_arg;
8356 first_arg = build2(COMPOUND_EXPR, pointer_to_arg_type,
8357 build1(DECL_EXPR, void_type_node, tmp),
8358 build_fold_addr_expr(tmp));
8359 TREE_ADDRESSABLE(tmp) = 1;
8360 }
8361 if (first_arg == error_mark_node)
8362 return error_mark_node;
8363 }
8364
8365 Type* fatype = bound_method->first_argument_type();
8366 if (fatype != NULL)
8367 {
8368 if (fatype->points_to() == NULL)
8369 fatype = Type::make_pointer_type(fatype);
8370 first_arg = fold_convert(fatype->get_tree(context->gogo()), first_arg);
8371 if (first_arg == error_mark_node
8372 || TREE_TYPE(first_arg) == error_mark_node)
8373 return error_mark_node;
8374 }
8375
8376 *first_arg_ptr = first_arg;
8377
8378 return bound_method->method()->get_tree(context);
8379 }
8380
8381 // Get the function and the first argument to use when calling an
8382 // interface method.
8383
8384 tree
8385 Call_expression::interface_method_function(
8386 Translate_context* context,
8387 Interface_field_reference_expression* interface_method,
8388 tree* first_arg_ptr)
8389 {
8390 tree expr = interface_method->expr()->get_tree(context);
8391 if (expr == error_mark_node)
8392 return error_mark_node;
8393 expr = save_expr(expr);
8394 tree first_arg = interface_method->get_underlying_object_tree(context, expr);
8395 if (first_arg == error_mark_node)
8396 return error_mark_node;
8397 *first_arg_ptr = first_arg;
8398 return interface_method->get_function_tree(context, expr);
8399 }
8400
8401 // Build the call expression.
8402
8403 tree
8404 Call_expression::do_get_tree(Translate_context* context)
8405 {
8406 if (this->tree_ != NULL_TREE)
8407 return this->tree_;
8408
8409 Function_type* fntype = this->get_function_type();
8410 if (fntype == NULL)
8411 return error_mark_node;
8412
8413 if (this->fn_->is_error_expression())
8414 return error_mark_node;
8415
8416 Gogo* gogo = context->gogo();
8417 source_location location = this->location();
8418
8419 Func_expression* func = this->fn_->func_expression();
8420 Bound_method_expression* bound_method = this->fn_->bound_method_expression();
8421 Interface_field_reference_expression* interface_method =
8422 this->fn_->interface_field_reference_expression();
8423 const bool has_closure = func != NULL && func->closure() != NULL;
8424 const bool is_method = bound_method != NULL || interface_method != NULL;
8425 gcc_assert(!fntype->is_method() || is_method);
8426
8427 int nargs;
8428 tree* args;
8429 if (this->args_ == NULL || this->args_->empty())
8430 {
8431 nargs = is_method ? 1 : 0;
8432 args = nargs == 0 ? NULL : new tree[nargs];
8433 }
8434 else
8435 {
8436 const Typed_identifier_list* params = fntype->parameters();
8437 gcc_assert(params != NULL);
8438
8439 nargs = this->args_->size();
8440 int i = is_method ? 1 : 0;
8441 nargs += i;
8442 args = new tree[nargs];
8443
8444 Typed_identifier_list::const_iterator pp = params->begin();
8445 Expression_list::const_iterator pe;
8446 for (pe = this->args_->begin();
8447 pe != this->args_->end();
8448 ++pe, ++pp, ++i)
8449 {
8450 tree arg_val = (*pe)->get_tree(context);
8451 args[i] = Expression::convert_for_assignment(context,
8452 pp->type(),
8453 (*pe)->type(),
8454 arg_val,
8455 location);
8456 if (args[i] == error_mark_node)
8457 return error_mark_node;
8458 }
8459 gcc_assert(pp == params->end());
8460 gcc_assert(i == nargs);
8461 }
8462
8463 tree rettype = TREE_TYPE(TREE_TYPE(fntype->get_tree(gogo)));
8464 if (rettype == error_mark_node)
8465 return error_mark_node;
8466
8467 tree fn;
8468 if (has_closure)
8469 fn = func->get_tree_without_closure(gogo);
8470 else if (!is_method)
8471 fn = this->fn_->get_tree(context);
8472 else if (bound_method != NULL)
8473 fn = this->bound_method_function(context, bound_method, &args[0]);
8474 else if (interface_method != NULL)
8475 fn = this->interface_method_function(context, interface_method, &args[0]);
8476 else
8477 gcc_unreachable();
8478
8479 if (fn == error_mark_node || TREE_TYPE(fn) == error_mark_node)
8480 return error_mark_node;
8481
8482 // This is to support builtin math functions when using 80387 math.
8483 tree fndecl = fn;
8484 if (TREE_CODE(fndecl) == ADDR_EXPR)
8485 fndecl = TREE_OPERAND(fndecl, 0);
8486 tree excess_type = NULL_TREE;
8487 if (DECL_P(fndecl)
8488 && DECL_IS_BUILTIN(fndecl)
8489 && DECL_BUILT_IN_CLASS(fndecl) == BUILT_IN_NORMAL
8490 && nargs > 0
8491 && ((SCALAR_FLOAT_TYPE_P(rettype)
8492 && SCALAR_FLOAT_TYPE_P(TREE_TYPE(args[0])))
8493 || (COMPLEX_FLOAT_TYPE_P(rettype)
8494 && COMPLEX_FLOAT_TYPE_P(TREE_TYPE(args[0])))))
8495 {
8496 excess_type = excess_precision_type(TREE_TYPE(args[0]));
8497 if (excess_type != NULL_TREE)
8498 {
8499 tree excess_fndecl = mathfn_built_in(excess_type,
8500 DECL_FUNCTION_CODE(fndecl));
8501 if (excess_fndecl == NULL_TREE)
8502 excess_type = NULL_TREE;
8503 else
8504 {
8505 fn = build_fold_addr_expr_loc(location, excess_fndecl);
8506 for (int i = 0; i < nargs; ++i)
8507 args[i] = ::convert(excess_type, args[i]);
8508 }
8509 }
8510 }
8511
8512 tree ret = build_call_array(excess_type != NULL_TREE ? excess_type : rettype,
8513 fn, nargs, args);
8514 delete[] args;
8515
8516 SET_EXPR_LOCATION(ret, location);
8517
8518 if (has_closure)
8519 {
8520 tree closure_tree = func->closure()->get_tree(context);
8521 if (closure_tree != error_mark_node)
8522 CALL_EXPR_STATIC_CHAIN(ret) = closure_tree;
8523 }
8524
8525 // If this is a recursive function type which returns itself, as in
8526 // type F func() F
8527 // we have used ptr_type_node for the return type. Add a cast here
8528 // to the correct type.
8529 if (TREE_TYPE(ret) == ptr_type_node)
8530 {
8531 tree t = this->type()->get_tree(gogo);
8532 ret = fold_convert_loc(location, t, ret);
8533 }
8534
8535 if (excess_type != NULL_TREE)
8536 {
8537 // Calling convert here can undo our excess precision change.
8538 // That may or may not be a bug in convert_to_real.
8539 ret = build1(NOP_EXPR, rettype, ret);
8540 }
8541
8542 // If there is more than one result, we will refer to the call
8543 // multiple times.
8544 if (fntype->results() != NULL && fntype->results()->size() > 1)
8545 ret = save_expr(ret);
8546
8547 this->tree_ = ret;
8548
8549 return ret;
8550 }
8551
8552 // Make a call expression.
8553
8554 Call_expression*
8555 Expression::make_call(Expression* fn, Expression_list* args, bool is_varargs,
8556 source_location location)
8557 {
8558 return new Call_expression(fn, args, is_varargs, location);
8559 }
8560
8561 // A single result from a call which returns multiple results.
8562
8563 class Call_result_expression : public Expression
8564 {
8565 public:
8566 Call_result_expression(Call_expression* call, unsigned int index)
8567 : Expression(EXPRESSION_CALL_RESULT, call->location()),
8568 call_(call), index_(index)
8569 { }
8570
8571 protected:
8572 int
8573 do_traverse(Traverse*);
8574
8575 Type*
8576 do_type();
8577
8578 void
8579 do_determine_type(const Type_context*);
8580
8581 void
8582 do_check_types(Gogo*);
8583
8584 Expression*
8585 do_copy()
8586 {
8587 return new Call_result_expression(this->call_->call_expression(),
8588 this->index_);
8589 }
8590
8591 bool
8592 do_must_eval_in_order() const
8593 { return true; }
8594
8595 tree
8596 do_get_tree(Translate_context*);
8597
8598 private:
8599 // The underlying call expression.
8600 Expression* call_;
8601 // Which result we want.
8602 unsigned int index_;
8603 };
8604
8605 // Traverse a call result.
8606
8607 int
8608 Call_result_expression::do_traverse(Traverse* traverse)
8609 {
8610 if (traverse->remember_expression(this->call_))
8611 {
8612 // We have already traversed the call expression.
8613 return TRAVERSE_CONTINUE;
8614 }
8615 return Expression::traverse(&this->call_, traverse);
8616 }
8617
8618 // Get the type.
8619
8620 Type*
8621 Call_result_expression::do_type()
8622 {
8623 // THIS->CALL_ can be replaced with a temporary reference due to
8624 // Call_expression::do_must_eval_in_order when there is an error.
8625 Call_expression* ce = this->call_->call_expression();
8626 if (ce == NULL)
8627 return Type::make_error_type();
8628 Function_type* fntype = ce->get_function_type();
8629 if (fntype == NULL)
8630 return Type::make_error_type();
8631 const Typed_identifier_list* results = fntype->results();
8632 Typed_identifier_list::const_iterator pr = results->begin();
8633 for (unsigned int i = 0; i < this->index_; ++i)
8634 {
8635 if (pr == results->end())
8636 return Type::make_error_type();
8637 ++pr;
8638 }
8639 if (pr == results->end())
8640 return Type::make_error_type();
8641 return pr->type();
8642 }
8643
8644 // Check the type. This is where we give an error if we're trying to
8645 // extract too many values from a call.
8646
8647 void
8648 Call_result_expression::do_check_types(Gogo*)
8649 {
8650 bool ok = true;
8651 Call_expression* ce = this->call_->call_expression();
8652 if (ce != NULL)
8653 ok = this->index_ < ce->result_count();
8654 else
8655 {
8656 // This can happen when the call returns a single value but we
8657 // are asking for the second result.
8658 if (this->call_->is_error_expression())
8659 return;
8660 ok = false;
8661 }
8662 if (!ok)
8663 this->report_error(_("number of results does not match number of values"));
8664 }
8665
8666 // Determine the type. We have nothing to do here, but the 0 result
8667 // needs to pass down to the caller.
8668
8669 void
8670 Call_result_expression::do_determine_type(const Type_context*)
8671 {
8672 if (this->index_ == 0)
8673 this->call_->determine_type_no_context();
8674 }
8675
8676 // Return the tree.
8677
8678 tree
8679 Call_result_expression::do_get_tree(Translate_context* context)
8680 {
8681 tree call_tree = this->call_->get_tree(context);
8682 if (call_tree == error_mark_node)
8683 return error_mark_node;
8684 gcc_assert(TREE_CODE(TREE_TYPE(call_tree)) == RECORD_TYPE);
8685 tree field = TYPE_FIELDS(TREE_TYPE(call_tree));
8686 for (unsigned int i = 0; i < this->index_; ++i)
8687 {
8688 gcc_assert(field != NULL_TREE);
8689 field = DECL_CHAIN(field);
8690 }
8691 gcc_assert(field != NULL_TREE);
8692 return build3(COMPONENT_REF, TREE_TYPE(field), call_tree, field, NULL_TREE);
8693 }
8694
8695 // Make a reference to a single result of a call which returns
8696 // multiple results.
8697
8698 Expression*
8699 Expression::make_call_result(Call_expression* call, unsigned int index)
8700 {
8701 return new Call_result_expression(call, index);
8702 }
8703
8704 // Class Index_expression.
8705
8706 // Traversal.
8707
8708 int
8709 Index_expression::do_traverse(Traverse* traverse)
8710 {
8711 if (Expression::traverse(&this->left_, traverse) == TRAVERSE_EXIT
8712 || Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT
8713 || (this->end_ != NULL
8714 && Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT))
8715 return TRAVERSE_EXIT;
8716 return TRAVERSE_CONTINUE;
8717 }
8718
8719 // Lower an index expression. This converts the generic index
8720 // expression into an array index, a string index, or a map index.
8721
8722 Expression*
8723 Index_expression::do_lower(Gogo*, Named_object*, int)
8724 {
8725 source_location location = this->location();
8726 Expression* left = this->left_;
8727 Expression* start = this->start_;
8728 Expression* end = this->end_;
8729
8730 Type* type = left->type();
8731 if (type->is_error_type())
8732 return Expression::make_error(location);
8733 else if (type->array_type() != NULL)
8734 return Expression::make_array_index(left, start, end, location);
8735 else if (type->points_to() != NULL
8736 && type->points_to()->array_type() != NULL
8737 && !type->points_to()->is_open_array_type())
8738 {
8739 Expression* deref = Expression::make_unary(OPERATOR_MULT, left,
8740 location);
8741 return Expression::make_array_index(deref, start, end, location);
8742 }
8743 else if (type->is_string_type())
8744 return Expression::make_string_index(left, start, end, location);
8745 else if (type->map_type() != NULL)
8746 {
8747 if (end != NULL)
8748 {
8749 error_at(location, "invalid slice of map");
8750 return Expression::make_error(location);
8751 }
8752 Map_index_expression* ret= Expression::make_map_index(left, start,
8753 location);
8754 if (this->is_lvalue_)
8755 ret->set_is_lvalue();
8756 return ret;
8757 }
8758 else
8759 {
8760 error_at(location,
8761 "attempt to index object which is not array, string, or map");
8762 return Expression::make_error(location);
8763 }
8764 }
8765
8766 // Make an index expression.
8767
8768 Expression*
8769 Expression::make_index(Expression* left, Expression* start, Expression* end,
8770 source_location location)
8771 {
8772 return new Index_expression(left, start, end, location);
8773 }
8774
8775 // An array index. This is used for both indexing and slicing.
8776
8777 class Array_index_expression : public Expression
8778 {
8779 public:
8780 Array_index_expression(Expression* array, Expression* start,
8781 Expression* end, source_location location)
8782 : Expression(EXPRESSION_ARRAY_INDEX, location),
8783 array_(array), start_(start), end_(end), type_(NULL)
8784 { }
8785
8786 protected:
8787 int
8788 do_traverse(Traverse*);
8789
8790 Type*
8791 do_type();
8792
8793 void
8794 do_determine_type(const Type_context*);
8795
8796 void
8797 do_check_types(Gogo*);
8798
8799 Expression*
8800 do_copy()
8801 {
8802 return Expression::make_array_index(this->array_->copy(),
8803 this->start_->copy(),
8804 (this->end_ == NULL
8805 ? NULL
8806 : this->end_->copy()),
8807 this->location());
8808 }
8809
8810 bool
8811 do_is_addressable() const;
8812
8813 void
8814 do_address_taken(bool escapes)
8815 { this->array_->address_taken(escapes); }
8816
8817 tree
8818 do_get_tree(Translate_context*);
8819
8820 private:
8821 // The array we are getting a value from.
8822 Expression* array_;
8823 // The start or only index.
8824 Expression* start_;
8825 // The end index of a slice. This may be NULL for a simple array
8826 // index, or it may be a nil expression for the length of the array.
8827 Expression* end_;
8828 // The type of the expression.
8829 Type* type_;
8830 };
8831
8832 // Array index traversal.
8833
8834 int
8835 Array_index_expression::do_traverse(Traverse* traverse)
8836 {
8837 if (Expression::traverse(&this->array_, traverse) == TRAVERSE_EXIT)
8838 return TRAVERSE_EXIT;
8839 if (Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT)
8840 return TRAVERSE_EXIT;
8841 if (this->end_ != NULL)
8842 {
8843 if (Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT)
8844 return TRAVERSE_EXIT;
8845 }
8846 return TRAVERSE_CONTINUE;
8847 }
8848
8849 // Return the type of an array index.
8850
8851 Type*
8852 Array_index_expression::do_type()
8853 {
8854 if (this->type_ == NULL)
8855 {
8856 Array_type* type = this->array_->type()->array_type();
8857 if (type == NULL)
8858 this->type_ = Type::make_error_type();
8859 else if (this->end_ == NULL)
8860 this->type_ = type->element_type();
8861 else if (type->is_open_array_type())
8862 {
8863 // A slice of a slice has the same type as the original
8864 // slice.
8865 this->type_ = this->array_->type()->deref();
8866 }
8867 else
8868 {
8869 // A slice of an array is a slice.
8870 this->type_ = Type::make_array_type(type->element_type(), NULL);
8871 }
8872 }
8873 return this->type_;
8874 }
8875
8876 // Set the type of an array index.
8877
8878 void
8879 Array_index_expression::do_determine_type(const Type_context*)
8880 {
8881 this->array_->determine_type_no_context();
8882 Type_context subcontext(NULL, true);
8883 this->start_->determine_type(&subcontext);
8884 if (this->end_ != NULL)
8885 this->end_->determine_type(&subcontext);
8886 }
8887
8888 // Check types of an array index.
8889
8890 void
8891 Array_index_expression::do_check_types(Gogo*)
8892 {
8893 if (this->start_->type()->integer_type() == NULL)
8894 this->report_error(_("index must be integer"));
8895 if (this->end_ != NULL
8896 && this->end_->type()->integer_type() == NULL
8897 && !this->end_->is_nil_expression())
8898 this->report_error(_("slice end must be integer"));
8899
8900 Array_type* array_type = this->array_->type()->array_type();
8901 gcc_assert(array_type != NULL);
8902
8903 unsigned int int_bits =
8904 Type::lookup_integer_type("int")->integer_type()->bits();
8905
8906 Type* dummy;
8907 mpz_t lval;
8908 mpz_init(lval);
8909 bool lval_valid = (array_type->length() != NULL
8910 && array_type->length()->integer_constant_value(true,
8911 lval,
8912 &dummy));
8913 mpz_t ival;
8914 mpz_init(ival);
8915 if (this->start_->integer_constant_value(true, ival, &dummy))
8916 {
8917 if (mpz_sgn(ival) < 0
8918 || mpz_sizeinbase(ival, 2) >= int_bits
8919 || (lval_valid
8920 && (this->end_ == NULL
8921 ? mpz_cmp(ival, lval) >= 0
8922 : mpz_cmp(ival, lval) > 0)))
8923 {
8924 error_at(this->start_->location(), "array index out of bounds");
8925 this->set_is_error();
8926 }
8927 }
8928 if (this->end_ != NULL && !this->end_->is_nil_expression())
8929 {
8930 if (this->end_->integer_constant_value(true, ival, &dummy))
8931 {
8932 if (mpz_sgn(ival) < 0
8933 || mpz_sizeinbase(ival, 2) >= int_bits
8934 || (lval_valid && mpz_cmp(ival, lval) > 0))
8935 {
8936 error_at(this->end_->location(), "array index out of bounds");
8937 this->set_is_error();
8938 }
8939 }
8940 }
8941 mpz_clear(ival);
8942 mpz_clear(lval);
8943
8944 // A slice of an array requires an addressable array. A slice of a
8945 // slice is always possible.
8946 if (this->end_ != NULL
8947 && !array_type->is_open_array_type()
8948 && !this->array_->is_addressable())
8949 this->report_error(_("array is not addressable"));
8950 }
8951
8952 // Return whether this expression is addressable.
8953
8954 bool
8955 Array_index_expression::do_is_addressable() const
8956 {
8957 // A slice expression is not addressable.
8958 if (this->end_ != NULL)
8959 return false;
8960
8961 // An index into a slice is addressable.
8962 if (this->array_->type()->is_open_array_type())
8963 return true;
8964
8965 // An index into an array is addressable if the array is
8966 // addressable.
8967 return this->array_->is_addressable();
8968 }
8969
8970 // Get a tree for an array index.
8971
8972 tree
8973 Array_index_expression::do_get_tree(Translate_context* context)
8974 {
8975 Gogo* gogo = context->gogo();
8976 source_location loc = this->location();
8977
8978 Array_type* array_type = this->array_->type()->array_type();
8979 gcc_assert(array_type != NULL);
8980
8981 tree type_tree = array_type->get_tree(gogo);
8982
8983 tree array_tree = this->array_->get_tree(context);
8984 if (array_tree == error_mark_node)
8985 return error_mark_node;
8986
8987 if (array_type->length() == NULL && !DECL_P(array_tree))
8988 array_tree = save_expr(array_tree);
8989 tree length_tree = array_type->length_tree(gogo, array_tree);
8990 length_tree = save_expr(length_tree);
8991 tree length_type = TREE_TYPE(length_tree);
8992
8993 tree bad_index = boolean_false_node;
8994
8995 tree start_tree = this->start_->get_tree(context);
8996 if (start_tree == error_mark_node)
8997 return error_mark_node;
8998 if (!DECL_P(start_tree))
8999 start_tree = save_expr(start_tree);
9000 if (!INTEGRAL_TYPE_P(TREE_TYPE(start_tree)))
9001 start_tree = convert_to_integer(length_type, start_tree);
9002
9003 bad_index = Expression::check_bounds(start_tree, length_type, bad_index,
9004 loc);
9005
9006 start_tree = fold_convert_loc(loc, length_type, start_tree);
9007 bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node, bad_index,
9008 fold_build2_loc(loc,
9009 (this->end_ == NULL
9010 ? GE_EXPR
9011 : GT_EXPR),
9012 boolean_type_node, start_tree,
9013 length_tree));
9014
9015 int code = (array_type->length() != NULL
9016 ? (this->end_ == NULL
9017 ? RUNTIME_ERROR_ARRAY_INDEX_OUT_OF_BOUNDS
9018 : RUNTIME_ERROR_ARRAY_SLICE_OUT_OF_BOUNDS)
9019 : (this->end_ == NULL
9020 ? RUNTIME_ERROR_SLICE_INDEX_OUT_OF_BOUNDS
9021 : RUNTIME_ERROR_SLICE_SLICE_OUT_OF_BOUNDS));
9022 tree crash = Gogo::runtime_error(code, loc);
9023
9024 if (this->end_ == NULL)
9025 {
9026 // Simple array indexing. This has to return an l-value, so
9027 // wrap the index check into START_TREE.
9028 start_tree = build2(COMPOUND_EXPR, TREE_TYPE(start_tree),
9029 build3(COND_EXPR, void_type_node,
9030 bad_index, crash, NULL_TREE),
9031 start_tree);
9032 start_tree = fold_convert_loc(loc, sizetype, start_tree);
9033
9034 if (array_type->length() != NULL)
9035 {
9036 // Fixed array.
9037 return build4(ARRAY_REF, TREE_TYPE(type_tree), array_tree,
9038 start_tree, NULL_TREE, NULL_TREE);
9039 }
9040 else
9041 {
9042 // Open array.
9043 tree values = array_type->value_pointer_tree(gogo, array_tree);
9044 tree element_type_tree = array_type->element_type()->get_tree(gogo);
9045 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
9046 tree offset = fold_build2_loc(loc, MULT_EXPR, sizetype,
9047 start_tree, element_size);
9048 tree ptr = fold_build2_loc(loc, POINTER_PLUS_EXPR,
9049 TREE_TYPE(values), values, offset);
9050 return build_fold_indirect_ref(ptr);
9051 }
9052 }
9053
9054 // Array slice.
9055
9056 tree capacity_tree = array_type->capacity_tree(gogo, array_tree);
9057 capacity_tree = fold_convert_loc(loc, length_type, capacity_tree);
9058
9059 tree end_tree;
9060 if (this->end_->is_nil_expression())
9061 end_tree = length_tree;
9062 else
9063 {
9064 end_tree = this->end_->get_tree(context);
9065 if (end_tree == error_mark_node)
9066 return error_mark_node;
9067 if (!DECL_P(end_tree))
9068 end_tree = save_expr(end_tree);
9069 if (!INTEGRAL_TYPE_P(TREE_TYPE(end_tree)))
9070 end_tree = convert_to_integer(length_type, end_tree);
9071
9072 bad_index = Expression::check_bounds(end_tree, length_type, bad_index,
9073 loc);
9074
9075 end_tree = fold_convert_loc(loc, length_type, end_tree);
9076
9077 capacity_tree = save_expr(capacity_tree);
9078 tree bad_end = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
9079 fold_build2_loc(loc, LT_EXPR,
9080 boolean_type_node,
9081 end_tree, start_tree),
9082 fold_build2_loc(loc, GT_EXPR,
9083 boolean_type_node,
9084 end_tree, capacity_tree));
9085 bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
9086 bad_index, bad_end);
9087 }
9088
9089 tree element_type_tree = array_type->element_type()->get_tree(gogo);
9090 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
9091
9092 tree offset = fold_build2_loc(loc, MULT_EXPR, sizetype,
9093 fold_convert_loc(loc, sizetype, start_tree),
9094 element_size);
9095
9096 tree value_pointer = array_type->value_pointer_tree(gogo, array_tree);
9097
9098 value_pointer = fold_build2_loc(loc, POINTER_PLUS_EXPR,
9099 TREE_TYPE(value_pointer),
9100 value_pointer, offset);
9101
9102 tree result_length_tree = fold_build2_loc(loc, MINUS_EXPR, length_type,
9103 end_tree, start_tree);
9104
9105 tree result_capacity_tree = fold_build2_loc(loc, MINUS_EXPR, length_type,
9106 capacity_tree, start_tree);
9107
9108 tree struct_tree = this->type()->get_tree(gogo);
9109 gcc_assert(TREE_CODE(struct_tree) == RECORD_TYPE);
9110
9111 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
9112
9113 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
9114 tree field = TYPE_FIELDS(struct_tree);
9115 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
9116 elt->index = field;
9117 elt->value = value_pointer;
9118
9119 elt = VEC_quick_push(constructor_elt, init, NULL);
9120 field = DECL_CHAIN(field);
9121 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
9122 elt->index = field;
9123 elt->value = fold_convert_loc(loc, TREE_TYPE(field), result_length_tree);
9124
9125 elt = VEC_quick_push(constructor_elt, init, NULL);
9126 field = DECL_CHAIN(field);
9127 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__capacity") == 0);
9128 elt->index = field;
9129 elt->value = fold_convert_loc(loc, TREE_TYPE(field), result_capacity_tree);
9130
9131 tree constructor = build_constructor(struct_tree, init);
9132
9133 if (TREE_CONSTANT(value_pointer)
9134 && TREE_CONSTANT(result_length_tree)
9135 && TREE_CONSTANT(result_capacity_tree))
9136 TREE_CONSTANT(constructor) = 1;
9137
9138 return fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(constructor),
9139 build3(COND_EXPR, void_type_node,
9140 bad_index, crash, NULL_TREE),
9141 constructor);
9142 }
9143
9144 // Make an array index expression. END may be NULL.
9145
9146 Expression*
9147 Expression::make_array_index(Expression* array, Expression* start,
9148 Expression* end, source_location location)
9149 {
9150 // Taking a slice of a composite literal requires moving the literal
9151 // onto the heap.
9152 if (end != NULL && array->is_composite_literal())
9153 {
9154 array = Expression::make_heap_composite(array, location);
9155 array = Expression::make_unary(OPERATOR_MULT, array, location);
9156 }
9157 return new Array_index_expression(array, start, end, location);
9158 }
9159
9160 // A string index. This is used for both indexing and slicing.
9161
9162 class String_index_expression : public Expression
9163 {
9164 public:
9165 String_index_expression(Expression* string, Expression* start,
9166 Expression* end, source_location location)
9167 : Expression(EXPRESSION_STRING_INDEX, location),
9168 string_(string), start_(start), end_(end)
9169 { }
9170
9171 protected:
9172 int
9173 do_traverse(Traverse*);
9174
9175 Type*
9176 do_type();
9177
9178 void
9179 do_determine_type(const Type_context*);
9180
9181 void
9182 do_check_types(Gogo*);
9183
9184 Expression*
9185 do_copy()
9186 {
9187 return Expression::make_string_index(this->string_->copy(),
9188 this->start_->copy(),
9189 (this->end_ == NULL
9190 ? NULL
9191 : this->end_->copy()),
9192 this->location());
9193 }
9194
9195 tree
9196 do_get_tree(Translate_context*);
9197
9198 private:
9199 // The string we are getting a value from.
9200 Expression* string_;
9201 // The start or only index.
9202 Expression* start_;
9203 // The end index of a slice. This may be NULL for a single index,
9204 // or it may be a nil expression for the length of the string.
9205 Expression* end_;
9206 };
9207
9208 // String index traversal.
9209
9210 int
9211 String_index_expression::do_traverse(Traverse* traverse)
9212 {
9213 if (Expression::traverse(&this->string_, traverse) == TRAVERSE_EXIT)
9214 return TRAVERSE_EXIT;
9215 if (Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT)
9216 return TRAVERSE_EXIT;
9217 if (this->end_ != NULL)
9218 {
9219 if (Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT)
9220 return TRAVERSE_EXIT;
9221 }
9222 return TRAVERSE_CONTINUE;
9223 }
9224
9225 // Return the type of a string index.
9226
9227 Type*
9228 String_index_expression::do_type()
9229 {
9230 if (this->end_ == NULL)
9231 return Type::lookup_integer_type("uint8");
9232 else
9233 return Type::make_string_type();
9234 }
9235
9236 // Determine the type of a string index.
9237
9238 void
9239 String_index_expression::do_determine_type(const Type_context*)
9240 {
9241 this->string_->determine_type_no_context();
9242 Type_context subcontext(NULL, true);
9243 this->start_->determine_type(&subcontext);
9244 if (this->end_ != NULL)
9245 this->end_->determine_type(&subcontext);
9246 }
9247
9248 // Check types of a string index.
9249
9250 void
9251 String_index_expression::do_check_types(Gogo*)
9252 {
9253 if (this->start_->type()->integer_type() == NULL)
9254 this->report_error(_("index must be integer"));
9255 if (this->end_ != NULL
9256 && this->end_->type()->integer_type() == NULL
9257 && !this->end_->is_nil_expression())
9258 this->report_error(_("slice end must be integer"));
9259
9260 std::string sval;
9261 bool sval_valid = this->string_->string_constant_value(&sval);
9262
9263 mpz_t ival;
9264 mpz_init(ival);
9265 Type* dummy;
9266 if (this->start_->integer_constant_value(true, ival, &dummy))
9267 {
9268 if (mpz_sgn(ival) < 0
9269 || (sval_valid && mpz_cmp_ui(ival, sval.length()) >= 0))
9270 {
9271 error_at(this->start_->location(), "string index out of bounds");
9272 this->set_is_error();
9273 }
9274 }
9275 if (this->end_ != NULL && !this->end_->is_nil_expression())
9276 {
9277 if (this->end_->integer_constant_value(true, ival, &dummy))
9278 {
9279 if (mpz_sgn(ival) < 0
9280 || (sval_valid && mpz_cmp_ui(ival, sval.length()) > 0))
9281 {
9282 error_at(this->end_->location(), "string index out of bounds");
9283 this->set_is_error();
9284 }
9285 }
9286 }
9287 mpz_clear(ival);
9288 }
9289
9290 // Get a tree for a string index.
9291
9292 tree
9293 String_index_expression::do_get_tree(Translate_context* context)
9294 {
9295 source_location loc = this->location();
9296
9297 tree string_tree = this->string_->get_tree(context);
9298 if (string_tree == error_mark_node)
9299 return error_mark_node;
9300
9301 if (this->string_->type()->points_to() != NULL)
9302 string_tree = build_fold_indirect_ref(string_tree);
9303 if (!DECL_P(string_tree))
9304 string_tree = save_expr(string_tree);
9305 tree string_type = TREE_TYPE(string_tree);
9306
9307 tree length_tree = String_type::length_tree(context->gogo(), string_tree);
9308 length_tree = save_expr(length_tree);
9309 tree length_type = TREE_TYPE(length_tree);
9310
9311 tree bad_index = boolean_false_node;
9312
9313 tree start_tree = this->start_->get_tree(context);
9314 if (start_tree == error_mark_node)
9315 return error_mark_node;
9316 if (!DECL_P(start_tree))
9317 start_tree = save_expr(start_tree);
9318 if (!INTEGRAL_TYPE_P(TREE_TYPE(start_tree)))
9319 start_tree = convert_to_integer(length_type, start_tree);
9320
9321 bad_index = Expression::check_bounds(start_tree, length_type, bad_index,
9322 loc);
9323
9324 start_tree = fold_convert_loc(loc, length_type, start_tree);
9325
9326 int code = (this->end_ == NULL
9327 ? RUNTIME_ERROR_STRING_INDEX_OUT_OF_BOUNDS
9328 : RUNTIME_ERROR_STRING_SLICE_OUT_OF_BOUNDS);
9329 tree crash = Gogo::runtime_error(code, loc);
9330
9331 if (this->end_ == NULL)
9332 {
9333 bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
9334 bad_index,
9335 fold_build2_loc(loc, GE_EXPR,
9336 boolean_type_node,
9337 start_tree, length_tree));
9338
9339 tree bytes_tree = String_type::bytes_tree(context->gogo(), string_tree);
9340 tree ptr = fold_build2_loc(loc, POINTER_PLUS_EXPR, TREE_TYPE(bytes_tree),
9341 bytes_tree,
9342 fold_convert_loc(loc, sizetype, start_tree));
9343 tree index = build_fold_indirect_ref_loc(loc, ptr);
9344
9345 return build2(COMPOUND_EXPR, TREE_TYPE(index),
9346 build3(COND_EXPR, void_type_node,
9347 bad_index, crash, NULL_TREE),
9348 index);
9349 }
9350 else
9351 {
9352 tree end_tree;
9353 if (this->end_->is_nil_expression())
9354 end_tree = build_int_cst(length_type, -1);
9355 else
9356 {
9357 end_tree = this->end_->get_tree(context);
9358 if (end_tree == error_mark_node)
9359 return error_mark_node;
9360 if (!DECL_P(end_tree))
9361 end_tree = save_expr(end_tree);
9362 if (!INTEGRAL_TYPE_P(TREE_TYPE(end_tree)))
9363 end_tree = convert_to_integer(length_type, end_tree);
9364
9365 bad_index = Expression::check_bounds(end_tree, length_type,
9366 bad_index, loc);
9367
9368 end_tree = fold_convert_loc(loc, length_type, end_tree);
9369 }
9370
9371 static tree strslice_fndecl;
9372 tree ret = Gogo::call_builtin(&strslice_fndecl,
9373 loc,
9374 "__go_string_slice",
9375 3,
9376 string_type,
9377 string_type,
9378 string_tree,
9379 length_type,
9380 start_tree,
9381 length_type,
9382 end_tree);
9383 // This will panic if the bounds are out of range for the
9384 // string.
9385 TREE_NOTHROW(strslice_fndecl) = 0;
9386
9387 if (bad_index == boolean_false_node)
9388 return ret;
9389 else
9390 return build2(COMPOUND_EXPR, TREE_TYPE(ret),
9391 build3(COND_EXPR, void_type_node,
9392 bad_index, crash, NULL_TREE),
9393 ret);
9394 }
9395 }
9396
9397 // Make a string index expression. END may be NULL.
9398
9399 Expression*
9400 Expression::make_string_index(Expression* string, Expression* start,
9401 Expression* end, source_location location)
9402 {
9403 return new String_index_expression(string, start, end, location);
9404 }
9405
9406 // Class Map_index.
9407
9408 // Get the type of the map.
9409
9410 Map_type*
9411 Map_index_expression::get_map_type() const
9412 {
9413 Map_type* mt = this->map_->type()->deref()->map_type();
9414 gcc_assert(mt != NULL);
9415 return mt;
9416 }
9417
9418 // Map index traversal.
9419
9420 int
9421 Map_index_expression::do_traverse(Traverse* traverse)
9422 {
9423 if (Expression::traverse(&this->map_, traverse) == TRAVERSE_EXIT)
9424 return TRAVERSE_EXIT;
9425 return Expression::traverse(&this->index_, traverse);
9426 }
9427
9428 // Return the type of a map index.
9429
9430 Type*
9431 Map_index_expression::do_type()
9432 {
9433 Type* type = this->get_map_type()->val_type();
9434 // If this map index is in a tuple assignment, we actually return a
9435 // pointer to the value type. Tuple_map_assignment_statement is
9436 // responsible for handling this correctly. We need to get the type
9437 // right in case this gets assigned to a temporary variable.
9438 if (this->is_in_tuple_assignment_)
9439 type = Type::make_pointer_type(type);
9440 return type;
9441 }
9442
9443 // Fix the type of a map index.
9444
9445 void
9446 Map_index_expression::do_determine_type(const Type_context*)
9447 {
9448 this->map_->determine_type_no_context();
9449 Type_context subcontext(this->get_map_type()->key_type(), false);
9450 this->index_->determine_type(&subcontext);
9451 }
9452
9453 // Check types of a map index.
9454
9455 void
9456 Map_index_expression::do_check_types(Gogo*)
9457 {
9458 std::string reason;
9459 if (!Type::are_assignable(this->get_map_type()->key_type(),
9460 this->index_->type(), &reason))
9461 {
9462 if (reason.empty())
9463 this->report_error(_("incompatible type for map index"));
9464 else
9465 {
9466 error_at(this->location(), "incompatible type for map index (%s)",
9467 reason.c_str());
9468 this->set_is_error();
9469 }
9470 }
9471 }
9472
9473 // Get a tree for a map index.
9474
9475 tree
9476 Map_index_expression::do_get_tree(Translate_context* context)
9477 {
9478 Map_type* type = this->get_map_type();
9479
9480 tree valptr = this->get_value_pointer(context, this->is_lvalue_);
9481 if (valptr == error_mark_node)
9482 return error_mark_node;
9483 valptr = save_expr(valptr);
9484
9485 tree val_type_tree = TREE_TYPE(TREE_TYPE(valptr));
9486
9487 if (this->is_lvalue_)
9488 return build_fold_indirect_ref(valptr);
9489 else if (this->is_in_tuple_assignment_)
9490 {
9491 // Tuple_map_assignment_statement is responsible for using this
9492 // appropriately.
9493 return valptr;
9494 }
9495 else
9496 {
9497 return fold_build3(COND_EXPR, val_type_tree,
9498 fold_build2(EQ_EXPR, boolean_type_node, valptr,
9499 fold_convert(TREE_TYPE(valptr),
9500 null_pointer_node)),
9501 type->val_type()->get_init_tree(context->gogo(),
9502 false),
9503 build_fold_indirect_ref(valptr));
9504 }
9505 }
9506
9507 // Get a tree for the map index. This returns a tree which evaluates
9508 // to a pointer to a value. The pointer will be NULL if the key is
9509 // not in the map.
9510
9511 tree
9512 Map_index_expression::get_value_pointer(Translate_context* context,
9513 bool insert)
9514 {
9515 Map_type* type = this->get_map_type();
9516
9517 tree map_tree = this->map_->get_tree(context);
9518 tree index_tree = this->index_->get_tree(context);
9519 index_tree = Expression::convert_for_assignment(context, type->key_type(),
9520 this->index_->type(),
9521 index_tree,
9522 this->location());
9523 if (map_tree == error_mark_node || index_tree == error_mark_node)
9524 return error_mark_node;
9525
9526 if (this->map_->type()->points_to() != NULL)
9527 map_tree = build_fold_indirect_ref(map_tree);
9528
9529 // We need to pass in a pointer to the key, so stuff it into a
9530 // variable.
9531 tree tmp = create_tmp_var(TREE_TYPE(index_tree), get_name(index_tree));
9532 DECL_IGNORED_P(tmp) = 0;
9533 DECL_INITIAL(tmp) = index_tree;
9534 tree make_tmp = build1(DECL_EXPR, void_type_node, tmp);
9535 tree tmpref = fold_convert(const_ptr_type_node, build_fold_addr_expr(tmp));
9536 TREE_ADDRESSABLE(tmp) = 1;
9537
9538 static tree map_index_fndecl;
9539 tree call = Gogo::call_builtin(&map_index_fndecl,
9540 this->location(),
9541 "__go_map_index",
9542 3,
9543 const_ptr_type_node,
9544 TREE_TYPE(map_tree),
9545 map_tree,
9546 const_ptr_type_node,
9547 tmpref,
9548 boolean_type_node,
9549 (insert
9550 ? boolean_true_node
9551 : boolean_false_node));
9552 // This can panic on a map of interface type if the interface holds
9553 // an uncomparable or unhashable type.
9554 TREE_NOTHROW(map_index_fndecl) = 0;
9555
9556 tree val_type_tree = type->val_type()->get_tree(context->gogo());
9557 if (val_type_tree == error_mark_node)
9558 return error_mark_node;
9559 tree ptr_val_type_tree = build_pointer_type(val_type_tree);
9560
9561 return build2(COMPOUND_EXPR, ptr_val_type_tree,
9562 make_tmp,
9563 fold_convert(ptr_val_type_tree, call));
9564 }
9565
9566 // Make a map index expression.
9567
9568 Map_index_expression*
9569 Expression::make_map_index(Expression* map, Expression* index,
9570 source_location location)
9571 {
9572 return new Map_index_expression(map, index, location);
9573 }
9574
9575 // Class Field_reference_expression.
9576
9577 // Return the type of a field reference.
9578
9579 Type*
9580 Field_reference_expression::do_type()
9581 {
9582 Struct_type* struct_type = this->expr_->type()->struct_type();
9583 gcc_assert(struct_type != NULL);
9584 return struct_type->field(this->field_index_)->type();
9585 }
9586
9587 // Check the types for a field reference.
9588
9589 void
9590 Field_reference_expression::do_check_types(Gogo*)
9591 {
9592 Struct_type* struct_type = this->expr_->type()->struct_type();
9593 gcc_assert(struct_type != NULL);
9594 gcc_assert(struct_type->field(this->field_index_) != NULL);
9595 }
9596
9597 // Get a tree for a field reference.
9598
9599 tree
9600 Field_reference_expression::do_get_tree(Translate_context* context)
9601 {
9602 tree struct_tree = this->expr_->get_tree(context);
9603 if (struct_tree == error_mark_node
9604 || TREE_TYPE(struct_tree) == error_mark_node)
9605 return error_mark_node;
9606 gcc_assert(TREE_CODE(TREE_TYPE(struct_tree)) == RECORD_TYPE);
9607 tree field = TYPE_FIELDS(TREE_TYPE(struct_tree));
9608 gcc_assert(field != NULL_TREE);
9609 for (unsigned int i = this->field_index_; i > 0; --i)
9610 {
9611 field = DECL_CHAIN(field);
9612 gcc_assert(field != NULL_TREE);
9613 }
9614 return build3(COMPONENT_REF, TREE_TYPE(field), struct_tree, field,
9615 NULL_TREE);
9616 }
9617
9618 // Make a reference to a qualified identifier in an expression.
9619
9620 Field_reference_expression*
9621 Expression::make_field_reference(Expression* expr, unsigned int field_index,
9622 source_location location)
9623 {
9624 return new Field_reference_expression(expr, field_index, location);
9625 }
9626
9627 // Class Interface_field_reference_expression.
9628
9629 // Return a tree for the pointer to the function to call.
9630
9631 tree
9632 Interface_field_reference_expression::get_function_tree(Translate_context*,
9633 tree expr)
9634 {
9635 if (this->expr_->type()->points_to() != NULL)
9636 expr = build_fold_indirect_ref(expr);
9637
9638 tree expr_type = TREE_TYPE(expr);
9639 gcc_assert(TREE_CODE(expr_type) == RECORD_TYPE);
9640
9641 tree field = TYPE_FIELDS(expr_type);
9642 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods") == 0);
9643
9644 tree table = build3(COMPONENT_REF, TREE_TYPE(field), expr, field, NULL_TREE);
9645 gcc_assert(POINTER_TYPE_P(TREE_TYPE(table)));
9646
9647 table = build_fold_indirect_ref(table);
9648 gcc_assert(TREE_CODE(TREE_TYPE(table)) == RECORD_TYPE);
9649
9650 std::string name = Gogo::unpack_hidden_name(this->name_);
9651 for (field = DECL_CHAIN(TYPE_FIELDS(TREE_TYPE(table)));
9652 field != NULL_TREE;
9653 field = DECL_CHAIN(field))
9654 {
9655 if (name == IDENTIFIER_POINTER(DECL_NAME(field)))
9656 break;
9657 }
9658 gcc_assert(field != NULL_TREE);
9659
9660 return build3(COMPONENT_REF, TREE_TYPE(field), table, field, NULL_TREE);
9661 }
9662
9663 // Return a tree for the first argument to pass to the interface
9664 // function.
9665
9666 tree
9667 Interface_field_reference_expression::get_underlying_object_tree(
9668 Translate_context*,
9669 tree expr)
9670 {
9671 if (this->expr_->type()->points_to() != NULL)
9672 expr = build_fold_indirect_ref(expr);
9673
9674 tree expr_type = TREE_TYPE(expr);
9675 gcc_assert(TREE_CODE(expr_type) == RECORD_TYPE);
9676
9677 tree field = DECL_CHAIN(TYPE_FIELDS(expr_type));
9678 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
9679
9680 return build3(COMPONENT_REF, TREE_TYPE(field), expr, field, NULL_TREE);
9681 }
9682
9683 // Traversal.
9684
9685 int
9686 Interface_field_reference_expression::do_traverse(Traverse* traverse)
9687 {
9688 return Expression::traverse(&this->expr_, traverse);
9689 }
9690
9691 // Return the type of an interface field reference.
9692
9693 Type*
9694 Interface_field_reference_expression::do_type()
9695 {
9696 Type* expr_type = this->expr_->type();
9697
9698 Type* points_to = expr_type->points_to();
9699 if (points_to != NULL)
9700 expr_type = points_to;
9701
9702 Interface_type* interface_type = expr_type->interface_type();
9703 if (interface_type == NULL)
9704 return Type::make_error_type();
9705
9706 const Typed_identifier* method = interface_type->find_method(this->name_);
9707 if (method == NULL)
9708 return Type::make_error_type();
9709
9710 return method->type();
9711 }
9712
9713 // Determine types.
9714
9715 void
9716 Interface_field_reference_expression::do_determine_type(const Type_context*)
9717 {
9718 this->expr_->determine_type_no_context();
9719 }
9720
9721 // Check the types for an interface field reference.
9722
9723 void
9724 Interface_field_reference_expression::do_check_types(Gogo*)
9725 {
9726 Type* type = this->expr_->type();
9727
9728 Type* points_to = type->points_to();
9729 if (points_to != NULL)
9730 type = points_to;
9731
9732 Interface_type* interface_type = type->interface_type();
9733 if (interface_type == NULL)
9734 this->report_error(_("expected interface or pointer to interface"));
9735 else
9736 {
9737 const Typed_identifier* method =
9738 interface_type->find_method(this->name_);
9739 if (method == NULL)
9740 {
9741 error_at(this->location(), "method %qs not in interface",
9742 Gogo::message_name(this->name_).c_str());
9743 this->set_is_error();
9744 }
9745 }
9746 }
9747
9748 // Get a tree for a reference to a field in an interface. There is no
9749 // standard tree type representation for this: it's a function
9750 // attached to its first argument, like a Bound_method_expression.
9751 // The only places it may currently be used are in a Call_expression
9752 // or a Go_statement, which will take it apart directly. So this has
9753 // nothing to do at present.
9754
9755 tree
9756 Interface_field_reference_expression::do_get_tree(Translate_context*)
9757 {
9758 gcc_unreachable();
9759 }
9760
9761 // Make a reference to a field in an interface.
9762
9763 Expression*
9764 Expression::make_interface_field_reference(Expression* expr,
9765 const std::string& field,
9766 source_location location)
9767 {
9768 return new Interface_field_reference_expression(expr, field, location);
9769 }
9770
9771 // A general selector. This is a Parser_expression for LEFT.NAME. It
9772 // is lowered after we know the type of the left hand side.
9773
9774 class Selector_expression : public Parser_expression
9775 {
9776 public:
9777 Selector_expression(Expression* left, const std::string& name,
9778 source_location location)
9779 : Parser_expression(EXPRESSION_SELECTOR, location),
9780 left_(left), name_(name)
9781 { }
9782
9783 protected:
9784 int
9785 do_traverse(Traverse* traverse)
9786 { return Expression::traverse(&this->left_, traverse); }
9787
9788 Expression*
9789 do_lower(Gogo*, Named_object*, int);
9790
9791 Expression*
9792 do_copy()
9793 {
9794 return new Selector_expression(this->left_->copy(), this->name_,
9795 this->location());
9796 }
9797
9798 private:
9799 Expression*
9800 lower_method_expression(Gogo*);
9801
9802 // The expression on the left hand side.
9803 Expression* left_;
9804 // The name on the right hand side.
9805 std::string name_;
9806 };
9807
9808 // Lower a selector expression once we know the real type of the left
9809 // hand side.
9810
9811 Expression*
9812 Selector_expression::do_lower(Gogo* gogo, Named_object*, int)
9813 {
9814 Expression* left = this->left_;
9815 if (left->is_type_expression())
9816 return this->lower_method_expression(gogo);
9817 return Type::bind_field_or_method(gogo, left->type(), left, this->name_,
9818 this->location());
9819 }
9820
9821 // Lower a method expression T.M or (*T).M. We turn this into a
9822 // function literal.
9823
9824 Expression*
9825 Selector_expression::lower_method_expression(Gogo* gogo)
9826 {
9827 source_location location = this->location();
9828 Type* type = this->left_->type();
9829 const std::string& name(this->name_);
9830
9831 bool is_pointer;
9832 if (type->points_to() == NULL)
9833 is_pointer = false;
9834 else
9835 {
9836 is_pointer = true;
9837 type = type->points_to();
9838 }
9839 Named_type* nt = type->named_type();
9840 if (nt == NULL)
9841 {
9842 error_at(location,
9843 ("method expression requires named type or "
9844 "pointer to named type"));
9845 return Expression::make_error(location);
9846 }
9847
9848 bool is_ambiguous;
9849 Method* method = nt->method_function(name, &is_ambiguous);
9850 if (method == NULL)
9851 {
9852 if (!is_ambiguous)
9853 error_at(location, "type %<%s%> has no method %<%s%>",
9854 nt->message_name().c_str(),
9855 Gogo::message_name(name).c_str());
9856 else
9857 error_at(location, "method %<%s%> is ambiguous in type %<%s%>",
9858 Gogo::message_name(name).c_str(),
9859 nt->message_name().c_str());
9860 return Expression::make_error(location);
9861 }
9862
9863 if (!is_pointer && !method->is_value_method())
9864 {
9865 error_at(location, "method requires pointer (use %<(*%s).%s)%>",
9866 nt->message_name().c_str(),
9867 Gogo::message_name(name).c_str());
9868 return Expression::make_error(location);
9869 }
9870
9871 // Build a new function type in which the receiver becomes the first
9872 // argument.
9873 Function_type* method_type = method->type();
9874 gcc_assert(method_type->is_method());
9875
9876 const char* const receiver_name = "$this";
9877 Typed_identifier_list* parameters = new Typed_identifier_list();
9878 parameters->push_back(Typed_identifier(receiver_name, this->left_->type(),
9879 location));
9880
9881 const Typed_identifier_list* method_parameters = method_type->parameters();
9882 if (method_parameters != NULL)
9883 {
9884 for (Typed_identifier_list::const_iterator p = method_parameters->begin();
9885 p != method_parameters->end();
9886 ++p)
9887 parameters->push_back(*p);
9888 }
9889
9890 const Typed_identifier_list* method_results = method_type->results();
9891 Typed_identifier_list* results;
9892 if (method_results == NULL)
9893 results = NULL;
9894 else
9895 {
9896 results = new Typed_identifier_list();
9897 for (Typed_identifier_list::const_iterator p = method_results->begin();
9898 p != method_results->end();
9899 ++p)
9900 results->push_back(*p);
9901 }
9902
9903 Function_type* fntype = Type::make_function_type(NULL, parameters, results,
9904 location);
9905 if (method_type->is_varargs())
9906 fntype->set_is_varargs();
9907
9908 // We generate methods which always takes a pointer to the receiver
9909 // as their first argument. If this is for a pointer type, we can
9910 // simply reuse the existing function. We use an internal hack to
9911 // get the right type.
9912
9913 if (is_pointer)
9914 {
9915 Named_object* mno = (method->needs_stub_method()
9916 ? method->stub_object()
9917 : method->named_object());
9918 Expression* f = Expression::make_func_reference(mno, NULL, location);
9919 f = Expression::make_cast(fntype, f, location);
9920 Type_conversion_expression* tce =
9921 static_cast<Type_conversion_expression*>(f);
9922 tce->set_may_convert_function_types();
9923 return f;
9924 }
9925
9926 Named_object* no = gogo->start_function(Gogo::thunk_name(), fntype, false,
9927 location);
9928
9929 Named_object* vno = gogo->lookup(receiver_name, NULL);
9930 gcc_assert(vno != NULL);
9931 Expression* ve = Expression::make_var_reference(vno, location);
9932 Expression* bm = Type::bind_field_or_method(gogo, nt, ve, name, location);
9933 gcc_assert(bm != NULL && !bm->is_error_expression());
9934
9935 Expression_list* args;
9936 if (method_parameters == NULL)
9937 args = NULL;
9938 else
9939 {
9940 args = new Expression_list();
9941 for (Typed_identifier_list::const_iterator p = method_parameters->begin();
9942 p != method_parameters->end();
9943 ++p)
9944 {
9945 vno = gogo->lookup(p->name(), NULL);
9946 gcc_assert(vno != NULL);
9947 args->push_back(Expression::make_var_reference(vno, location));
9948 }
9949 }
9950
9951 Call_expression* call = Expression::make_call(bm, args,
9952 method_type->is_varargs(),
9953 location);
9954
9955 size_t count = call->result_count();
9956 Statement* s;
9957 if (count == 0)
9958 s = Statement::make_statement(call);
9959 else
9960 {
9961 Expression_list* retvals = new Expression_list();
9962 if (count <= 1)
9963 retvals->push_back(call);
9964 else
9965 {
9966 for (size_t i = 0; i < count; ++i)
9967 retvals->push_back(Expression::make_call_result(call, i));
9968 }
9969 s = Statement::make_return_statement(no->func_value()->type()->results(),
9970 retvals, location);
9971 }
9972 gogo->add_statement(s);
9973
9974 gogo->finish_function(location);
9975
9976 return Expression::make_func_reference(no, NULL, location);
9977 }
9978
9979 // Make a selector expression.
9980
9981 Expression*
9982 Expression::make_selector(Expression* left, const std::string& name,
9983 source_location location)
9984 {
9985 return new Selector_expression(left, name, location);
9986 }
9987
9988 // Implement the builtin function new.
9989
9990 class Allocation_expression : public Expression
9991 {
9992 public:
9993 Allocation_expression(Type* type, source_location location)
9994 : Expression(EXPRESSION_ALLOCATION, location),
9995 type_(type)
9996 { }
9997
9998 protected:
9999 int
10000 do_traverse(Traverse* traverse)
10001 { return Type::traverse(this->type_, traverse); }
10002
10003 Type*
10004 do_type()
10005 { return Type::make_pointer_type(this->type_); }
10006
10007 void
10008 do_determine_type(const Type_context*)
10009 { }
10010
10011 void
10012 do_check_types(Gogo*);
10013
10014 Expression*
10015 do_copy()
10016 { return new Allocation_expression(this->type_, this->location()); }
10017
10018 tree
10019 do_get_tree(Translate_context*);
10020
10021 private:
10022 // The type we are allocating.
10023 Type* type_;
10024 };
10025
10026 // Check the type of an allocation expression.
10027
10028 void
10029 Allocation_expression::do_check_types(Gogo*)
10030 {
10031 if (this->type_->function_type() != NULL)
10032 this->report_error(_("invalid new of function type"));
10033 }
10034
10035 // Return a tree for an allocation expression.
10036
10037 tree
10038 Allocation_expression::do_get_tree(Translate_context* context)
10039 {
10040 tree type_tree = this->type_->get_tree(context->gogo());
10041 tree size_tree = TYPE_SIZE_UNIT(type_tree);
10042 tree space = context->gogo()->allocate_memory(this->type_, size_tree,
10043 this->location());
10044 return fold_convert(build_pointer_type(type_tree), space);
10045 }
10046
10047 // Make an allocation expression.
10048
10049 Expression*
10050 Expression::make_allocation(Type* type, source_location location)
10051 {
10052 return new Allocation_expression(type, location);
10053 }
10054
10055 // Implement the builtin function make.
10056
10057 class Make_expression : public Expression
10058 {
10059 public:
10060 Make_expression(Type* type, Expression_list* args, source_location location)
10061 : Expression(EXPRESSION_MAKE, location),
10062 type_(type), args_(args)
10063 { }
10064
10065 protected:
10066 int
10067 do_traverse(Traverse* traverse);
10068
10069 Type*
10070 do_type()
10071 { return this->type_; }
10072
10073 void
10074 do_determine_type(const Type_context*);
10075
10076 void
10077 do_check_types(Gogo*);
10078
10079 Expression*
10080 do_copy()
10081 {
10082 return new Make_expression(this->type_, this->args_->copy(),
10083 this->location());
10084 }
10085
10086 tree
10087 do_get_tree(Translate_context*);
10088
10089 private:
10090 // The type we are making.
10091 Type* type_;
10092 // The arguments to pass to the make routine.
10093 Expression_list* args_;
10094 };
10095
10096 // Traversal.
10097
10098 int
10099 Make_expression::do_traverse(Traverse* traverse)
10100 {
10101 if (this->args_ != NULL
10102 && this->args_->traverse(traverse) == TRAVERSE_EXIT)
10103 return TRAVERSE_EXIT;
10104 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10105 return TRAVERSE_EXIT;
10106 return TRAVERSE_CONTINUE;
10107 }
10108
10109 // Set types of arguments.
10110
10111 void
10112 Make_expression::do_determine_type(const Type_context*)
10113 {
10114 if (this->args_ != NULL)
10115 {
10116 Type_context context(Type::lookup_integer_type("int"), false);
10117 for (Expression_list::const_iterator pe = this->args_->begin();
10118 pe != this->args_->end();
10119 ++pe)
10120 (*pe)->determine_type(&context);
10121 }
10122 }
10123
10124 // Check types for a make expression.
10125
10126 void
10127 Make_expression::do_check_types(Gogo*)
10128 {
10129 if (this->type_->channel_type() == NULL
10130 && this->type_->map_type() == NULL
10131 && (this->type_->array_type() == NULL
10132 || this->type_->array_type()->length() != NULL))
10133 this->report_error(_("invalid type for make function"));
10134 else if (!this->type_->check_make_expression(this->args_, this->location()))
10135 this->set_is_error();
10136 }
10137
10138 // Return a tree for a make expression.
10139
10140 tree
10141 Make_expression::do_get_tree(Translate_context* context)
10142 {
10143 return this->type_->make_expression_tree(context, this->args_,
10144 this->location());
10145 }
10146
10147 // Make a make expression.
10148
10149 Expression*
10150 Expression::make_make(Type* type, Expression_list* args,
10151 source_location location)
10152 {
10153 return new Make_expression(type, args, location);
10154 }
10155
10156 // Construct a struct.
10157
10158 class Struct_construction_expression : public Expression
10159 {
10160 public:
10161 Struct_construction_expression(Type* type, Expression_list* vals,
10162 source_location location)
10163 : Expression(EXPRESSION_STRUCT_CONSTRUCTION, location),
10164 type_(type), vals_(vals)
10165 { }
10166
10167 // Return whether this is a constant initializer.
10168 bool
10169 is_constant_struct() const;
10170
10171 protected:
10172 int
10173 do_traverse(Traverse* traverse);
10174
10175 Type*
10176 do_type()
10177 { return this->type_; }
10178
10179 void
10180 do_determine_type(const Type_context*);
10181
10182 void
10183 do_check_types(Gogo*);
10184
10185 Expression*
10186 do_copy()
10187 {
10188 return new Struct_construction_expression(this->type_, this->vals_->copy(),
10189 this->location());
10190 }
10191
10192 bool
10193 do_is_addressable() const
10194 { return true; }
10195
10196 tree
10197 do_get_tree(Translate_context*);
10198
10199 void
10200 do_export(Export*) const;
10201
10202 private:
10203 // The type of the struct to construct.
10204 Type* type_;
10205 // The list of values, in order of the fields in the struct. A NULL
10206 // entry means that the field should be zero-initialized.
10207 Expression_list* vals_;
10208 };
10209
10210 // Traversal.
10211
10212 int
10213 Struct_construction_expression::do_traverse(Traverse* traverse)
10214 {
10215 if (this->vals_ != NULL
10216 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
10217 return TRAVERSE_EXIT;
10218 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10219 return TRAVERSE_EXIT;
10220 return TRAVERSE_CONTINUE;
10221 }
10222
10223 // Return whether this is a constant initializer.
10224
10225 bool
10226 Struct_construction_expression::is_constant_struct() const
10227 {
10228 if (this->vals_ == NULL)
10229 return true;
10230 for (Expression_list::const_iterator pv = this->vals_->begin();
10231 pv != this->vals_->end();
10232 ++pv)
10233 {
10234 if (*pv != NULL
10235 && !(*pv)->is_constant()
10236 && (!(*pv)->is_composite_literal()
10237 || (*pv)->is_nonconstant_composite_literal()))
10238 return false;
10239 }
10240
10241 const Struct_field_list* fields = this->type_->struct_type()->fields();
10242 for (Struct_field_list::const_iterator pf = fields->begin();
10243 pf != fields->end();
10244 ++pf)
10245 {
10246 // There are no constant constructors for interfaces.
10247 if (pf->type()->interface_type() != NULL)
10248 return false;
10249 }
10250
10251 return true;
10252 }
10253
10254 // Final type determination.
10255
10256 void
10257 Struct_construction_expression::do_determine_type(const Type_context*)
10258 {
10259 if (this->vals_ == NULL)
10260 return;
10261 const Struct_field_list* fields = this->type_->struct_type()->fields();
10262 Expression_list::const_iterator pv = this->vals_->begin();
10263 for (Struct_field_list::const_iterator pf = fields->begin();
10264 pf != fields->end();
10265 ++pf, ++pv)
10266 {
10267 if (pv == this->vals_->end())
10268 return;
10269 if (*pv != NULL)
10270 {
10271 Type_context subcontext(pf->type(), false);
10272 (*pv)->determine_type(&subcontext);
10273 }
10274 }
10275 }
10276
10277 // Check types.
10278
10279 void
10280 Struct_construction_expression::do_check_types(Gogo*)
10281 {
10282 if (this->vals_ == NULL)
10283 return;
10284
10285 Struct_type* st = this->type_->struct_type();
10286 if (this->vals_->size() > st->field_count())
10287 {
10288 this->report_error(_("too many expressions for struct"));
10289 return;
10290 }
10291
10292 const Struct_field_list* fields = st->fields();
10293 Expression_list::const_iterator pv = this->vals_->begin();
10294 int i = 0;
10295 for (Struct_field_list::const_iterator pf = fields->begin();
10296 pf != fields->end();
10297 ++pf, ++pv, ++i)
10298 {
10299 if (pv == this->vals_->end())
10300 {
10301 this->report_error(_("too few expressions for struct"));
10302 break;
10303 }
10304
10305 if (*pv == NULL)
10306 continue;
10307
10308 std::string reason;
10309 if (!Type::are_assignable(pf->type(), (*pv)->type(), &reason))
10310 {
10311 if (reason.empty())
10312 error_at((*pv)->location(),
10313 "incompatible type for field %d in struct construction",
10314 i + 1);
10315 else
10316 error_at((*pv)->location(),
10317 ("incompatible type for field %d in "
10318 "struct construction (%s)"),
10319 i + 1, reason.c_str());
10320 this->set_is_error();
10321 }
10322 }
10323 gcc_assert(pv == this->vals_->end());
10324 }
10325
10326 // Return a tree for constructing a struct.
10327
10328 tree
10329 Struct_construction_expression::do_get_tree(Translate_context* context)
10330 {
10331 Gogo* gogo = context->gogo();
10332
10333 if (this->vals_ == NULL)
10334 return this->type_->get_init_tree(gogo, false);
10335
10336 tree type_tree = this->type_->get_tree(gogo);
10337 if (type_tree == error_mark_node)
10338 return error_mark_node;
10339 gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
10340
10341 bool is_constant = true;
10342 const Struct_field_list* fields = this->type_->struct_type()->fields();
10343 VEC(constructor_elt,gc)* elts = VEC_alloc(constructor_elt, gc,
10344 fields->size());
10345 Struct_field_list::const_iterator pf = fields->begin();
10346 Expression_list::const_iterator pv = this->vals_->begin();
10347 for (tree field = TYPE_FIELDS(type_tree);
10348 field != NULL_TREE;
10349 field = DECL_CHAIN(field), ++pf)
10350 {
10351 gcc_assert(pf != fields->end());
10352
10353 tree val;
10354 if (pv == this->vals_->end())
10355 val = pf->type()->get_init_tree(gogo, false);
10356 else if (*pv == NULL)
10357 {
10358 val = pf->type()->get_init_tree(gogo, false);
10359 ++pv;
10360 }
10361 else
10362 {
10363 val = Expression::convert_for_assignment(context, pf->type(),
10364 (*pv)->type(),
10365 (*pv)->get_tree(context),
10366 this->location());
10367 ++pv;
10368 }
10369
10370 if (val == error_mark_node || TREE_TYPE(val) == error_mark_node)
10371 return error_mark_node;
10372
10373 constructor_elt* elt = VEC_quick_push(constructor_elt, elts, NULL);
10374 elt->index = field;
10375 elt->value = val;
10376 if (!TREE_CONSTANT(val))
10377 is_constant = false;
10378 }
10379 gcc_assert(pf == fields->end());
10380
10381 tree ret = build_constructor(type_tree, elts);
10382 if (is_constant)
10383 TREE_CONSTANT(ret) = 1;
10384 return ret;
10385 }
10386
10387 // Export a struct construction.
10388
10389 void
10390 Struct_construction_expression::do_export(Export* exp) const
10391 {
10392 exp->write_c_string("convert(");
10393 exp->write_type(this->type_);
10394 for (Expression_list::const_iterator pv = this->vals_->begin();
10395 pv != this->vals_->end();
10396 ++pv)
10397 {
10398 exp->write_c_string(", ");
10399 if (*pv != NULL)
10400 (*pv)->export_expression(exp);
10401 }
10402 exp->write_c_string(")");
10403 }
10404
10405 // Make a struct composite literal. This used by the thunk code.
10406
10407 Expression*
10408 Expression::make_struct_composite_literal(Type* type, Expression_list* vals,
10409 source_location location)
10410 {
10411 gcc_assert(type->struct_type() != NULL);
10412 return new Struct_construction_expression(type, vals, location);
10413 }
10414
10415 // Construct an array. This class is not used directly; instead we
10416 // use the child classes, Fixed_array_construction_expression and
10417 // Open_array_construction_expression.
10418
10419 class Array_construction_expression : public Expression
10420 {
10421 protected:
10422 Array_construction_expression(Expression_classification classification,
10423 Type* type, Expression_list* vals,
10424 source_location location)
10425 : Expression(classification, location),
10426 type_(type), vals_(vals)
10427 { }
10428
10429 public:
10430 // Return whether this is a constant initializer.
10431 bool
10432 is_constant_array() const;
10433
10434 // Return the number of elements.
10435 size_t
10436 element_count() const
10437 { return this->vals_ == NULL ? 0 : this->vals_->size(); }
10438
10439 protected:
10440 int
10441 do_traverse(Traverse* traverse);
10442
10443 Type*
10444 do_type()
10445 { return this->type_; }
10446
10447 void
10448 do_determine_type(const Type_context*);
10449
10450 void
10451 do_check_types(Gogo*);
10452
10453 bool
10454 do_is_addressable() const
10455 { return true; }
10456
10457 void
10458 do_export(Export*) const;
10459
10460 // The list of values.
10461 Expression_list*
10462 vals()
10463 { return this->vals_; }
10464
10465 // Get a constructor tree for the array values.
10466 tree
10467 get_constructor_tree(Translate_context* context, tree type_tree);
10468
10469 private:
10470 // The type of the array to construct.
10471 Type* type_;
10472 // The list of values.
10473 Expression_list* vals_;
10474 };
10475
10476 // Traversal.
10477
10478 int
10479 Array_construction_expression::do_traverse(Traverse* traverse)
10480 {
10481 if (this->vals_ != NULL
10482 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
10483 return TRAVERSE_EXIT;
10484 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10485 return TRAVERSE_EXIT;
10486 return TRAVERSE_CONTINUE;
10487 }
10488
10489 // Return whether this is a constant initializer.
10490
10491 bool
10492 Array_construction_expression::is_constant_array() const
10493 {
10494 if (this->vals_ == NULL)
10495 return true;
10496
10497 // There are no constant constructors for interfaces.
10498 if (this->type_->array_type()->element_type()->interface_type() != NULL)
10499 return false;
10500
10501 for (Expression_list::const_iterator pv = this->vals_->begin();
10502 pv != this->vals_->end();
10503 ++pv)
10504 {
10505 if (*pv != NULL
10506 && !(*pv)->is_constant()
10507 && (!(*pv)->is_composite_literal()
10508 || (*pv)->is_nonconstant_composite_literal()))
10509 return false;
10510 }
10511 return true;
10512 }
10513
10514 // Final type determination.
10515
10516 void
10517 Array_construction_expression::do_determine_type(const Type_context*)
10518 {
10519 if (this->vals_ == NULL)
10520 return;
10521 Type_context subcontext(this->type_->array_type()->element_type(), false);
10522 for (Expression_list::const_iterator pv = this->vals_->begin();
10523 pv != this->vals_->end();
10524 ++pv)
10525 {
10526 if (*pv != NULL)
10527 (*pv)->determine_type(&subcontext);
10528 }
10529 }
10530
10531 // Check types.
10532
10533 void
10534 Array_construction_expression::do_check_types(Gogo*)
10535 {
10536 if (this->vals_ == NULL)
10537 return;
10538
10539 Array_type* at = this->type_->array_type();
10540 int i = 0;
10541 Type* element_type = at->element_type();
10542 for (Expression_list::const_iterator pv = this->vals_->begin();
10543 pv != this->vals_->end();
10544 ++pv, ++i)
10545 {
10546 if (*pv != NULL
10547 && !Type::are_assignable(element_type, (*pv)->type(), NULL))
10548 {
10549 error_at((*pv)->location(),
10550 "incompatible type for element %d in composite literal",
10551 i + 1);
10552 this->set_is_error();
10553 }
10554 }
10555
10556 Expression* length = at->length();
10557 if (length != NULL)
10558 {
10559 mpz_t val;
10560 mpz_init(val);
10561 Type* type;
10562 if (at->length()->integer_constant_value(true, val, &type))
10563 {
10564 if (this->vals_->size() > mpz_get_ui(val))
10565 this->report_error(_("too many elements in composite literal"));
10566 }
10567 mpz_clear(val);
10568 }
10569 }
10570
10571 // Get a constructor tree for the array values.
10572
10573 tree
10574 Array_construction_expression::get_constructor_tree(Translate_context* context,
10575 tree type_tree)
10576 {
10577 VEC(constructor_elt,gc)* values = VEC_alloc(constructor_elt, gc,
10578 (this->vals_ == NULL
10579 ? 0
10580 : this->vals_->size()));
10581 Type* element_type = this->type_->array_type()->element_type();
10582 bool is_constant = true;
10583 if (this->vals_ != NULL)
10584 {
10585 size_t i = 0;
10586 for (Expression_list::const_iterator pv = this->vals_->begin();
10587 pv != this->vals_->end();
10588 ++pv, ++i)
10589 {
10590 constructor_elt* elt = VEC_quick_push(constructor_elt, values, NULL);
10591 elt->index = size_int(i);
10592 if (*pv == NULL)
10593 elt->value = element_type->get_init_tree(context->gogo(), false);
10594 else
10595 {
10596 tree value_tree = (*pv)->get_tree(context);
10597 elt->value = Expression::convert_for_assignment(context,
10598 element_type,
10599 (*pv)->type(),
10600 value_tree,
10601 this->location());
10602 }
10603 if (elt->value == error_mark_node)
10604 return error_mark_node;
10605 if (!TREE_CONSTANT(elt->value))
10606 is_constant = false;
10607 }
10608 }
10609
10610 tree ret = build_constructor(type_tree, values);
10611 if (is_constant)
10612 TREE_CONSTANT(ret) = 1;
10613 return ret;
10614 }
10615
10616 // Export an array construction.
10617
10618 void
10619 Array_construction_expression::do_export(Export* exp) const
10620 {
10621 exp->write_c_string("convert(");
10622 exp->write_type(this->type_);
10623 if (this->vals_ != NULL)
10624 {
10625 for (Expression_list::const_iterator pv = this->vals_->begin();
10626 pv != this->vals_->end();
10627 ++pv)
10628 {
10629 exp->write_c_string(", ");
10630 if (*pv != NULL)
10631 (*pv)->export_expression(exp);
10632 }
10633 }
10634 exp->write_c_string(")");
10635 }
10636
10637 // Construct a fixed array.
10638
10639 class Fixed_array_construction_expression :
10640 public Array_construction_expression
10641 {
10642 public:
10643 Fixed_array_construction_expression(Type* type, Expression_list* vals,
10644 source_location location)
10645 : Array_construction_expression(EXPRESSION_FIXED_ARRAY_CONSTRUCTION,
10646 type, vals, location)
10647 {
10648 gcc_assert(type->array_type() != NULL
10649 && type->array_type()->length() != NULL);
10650 }
10651
10652 protected:
10653 Expression*
10654 do_copy()
10655 {
10656 return new Fixed_array_construction_expression(this->type(),
10657 (this->vals() == NULL
10658 ? NULL
10659 : this->vals()->copy()),
10660 this->location());
10661 }
10662
10663 tree
10664 do_get_tree(Translate_context*);
10665 };
10666
10667 // Return a tree for constructing a fixed array.
10668
10669 tree
10670 Fixed_array_construction_expression::do_get_tree(Translate_context* context)
10671 {
10672 return this->get_constructor_tree(context,
10673 this->type()->get_tree(context->gogo()));
10674 }
10675
10676 // Construct an open array.
10677
10678 class Open_array_construction_expression : public Array_construction_expression
10679 {
10680 public:
10681 Open_array_construction_expression(Type* type, Expression_list* vals,
10682 source_location location)
10683 : Array_construction_expression(EXPRESSION_OPEN_ARRAY_CONSTRUCTION,
10684 type, vals, location)
10685 {
10686 gcc_assert(type->array_type() != NULL
10687 && type->array_type()->length() == NULL);
10688 }
10689
10690 protected:
10691 // Note that taking the address of an open array literal is invalid.
10692
10693 Expression*
10694 do_copy()
10695 {
10696 return new Open_array_construction_expression(this->type(),
10697 (this->vals() == NULL
10698 ? NULL
10699 : this->vals()->copy()),
10700 this->location());
10701 }
10702
10703 tree
10704 do_get_tree(Translate_context*);
10705 };
10706
10707 // Return a tree for constructing an open array.
10708
10709 tree
10710 Open_array_construction_expression::do_get_tree(Translate_context* context)
10711 {
10712 Type* element_type = this->type()->array_type()->element_type();
10713 tree element_type_tree = element_type->get_tree(context->gogo());
10714 tree values;
10715 tree length_tree;
10716 if (this->vals() == NULL || this->vals()->empty())
10717 {
10718 // We need to create a unique value.
10719 tree max = size_int(0);
10720 tree constructor_type = build_array_type(element_type_tree,
10721 build_index_type(max));
10722 if (constructor_type == error_mark_node)
10723 return error_mark_node;
10724 VEC(constructor_elt,gc)* vec = VEC_alloc(constructor_elt, gc, 1);
10725 constructor_elt* elt = VEC_quick_push(constructor_elt, vec, NULL);
10726 elt->index = size_int(0);
10727 elt->value = element_type->get_init_tree(context->gogo(), false);
10728 values = build_constructor(constructor_type, vec);
10729 if (TREE_CONSTANT(elt->value))
10730 TREE_CONSTANT(values) = 1;
10731 length_tree = size_int(0);
10732 }
10733 else
10734 {
10735 tree max = size_int(this->vals()->size() - 1);
10736 tree constructor_type = build_array_type(element_type_tree,
10737 build_index_type(max));
10738 if (constructor_type == error_mark_node)
10739 return error_mark_node;
10740 values = this->get_constructor_tree(context, constructor_type);
10741 length_tree = size_int(this->vals()->size());
10742 }
10743
10744 if (values == error_mark_node)
10745 return error_mark_node;
10746
10747 bool is_constant_initializer = TREE_CONSTANT(values);
10748 bool is_in_function = context->function() != NULL;
10749
10750 if (is_constant_initializer)
10751 {
10752 tree tmp = build_decl(this->location(), VAR_DECL,
10753 create_tmp_var_name("C"), TREE_TYPE(values));
10754 DECL_EXTERNAL(tmp) = 0;
10755 TREE_PUBLIC(tmp) = 0;
10756 TREE_STATIC(tmp) = 1;
10757 DECL_ARTIFICIAL(tmp) = 1;
10758 if (is_in_function)
10759 {
10760 // If this is not a function, we will only initialize the
10761 // value once, so we can use this directly rather than
10762 // copying it. In that case we can't make it read-only,
10763 // because the program is permitted to change it.
10764 TREE_READONLY(tmp) = 1;
10765 TREE_CONSTANT(tmp) = 1;
10766 }
10767 DECL_INITIAL(tmp) = values;
10768 rest_of_decl_compilation(tmp, 1, 0);
10769 values = tmp;
10770 }
10771
10772 tree space;
10773 tree set;
10774 if (!is_in_function && is_constant_initializer)
10775 {
10776 // Outside of a function, we know the initializer will only run
10777 // once.
10778 space = build_fold_addr_expr(values);
10779 set = NULL_TREE;
10780 }
10781 else
10782 {
10783 tree memsize = TYPE_SIZE_UNIT(TREE_TYPE(values));
10784 space = context->gogo()->allocate_memory(element_type, memsize,
10785 this->location());
10786 space = save_expr(space);
10787
10788 tree s = fold_convert(build_pointer_type(TREE_TYPE(values)), space);
10789 tree ref = build_fold_indirect_ref_loc(this->location(), s);
10790 TREE_THIS_NOTRAP(ref) = 1;
10791 set = build2(MODIFY_EXPR, void_type_node, ref, values);
10792 }
10793
10794 // Build a constructor for the open array.
10795
10796 tree type_tree = this->type()->get_tree(context->gogo());
10797 gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
10798
10799 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
10800
10801 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
10802 tree field = TYPE_FIELDS(type_tree);
10803 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
10804 elt->index = field;
10805 elt->value = fold_convert(TREE_TYPE(field), space);
10806
10807 elt = VEC_quick_push(constructor_elt, init, NULL);
10808 field = DECL_CHAIN(field);
10809 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
10810 elt->index = field;
10811 elt->value = fold_convert(TREE_TYPE(field), length_tree);
10812
10813 elt = VEC_quick_push(constructor_elt, init, NULL);
10814 field = DECL_CHAIN(field);
10815 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),"__capacity") == 0);
10816 elt->index = field;
10817 elt->value = fold_convert(TREE_TYPE(field), length_tree);
10818
10819 tree constructor = build_constructor(type_tree, init);
10820 if (!is_in_function && is_constant_initializer)
10821 TREE_CONSTANT(constructor) = 1;
10822
10823 if (set == NULL_TREE)
10824 return constructor;
10825 else
10826 return build2(COMPOUND_EXPR, type_tree, set, constructor);
10827 }
10828
10829 // Make a slice composite literal. This is used by the type
10830 // descriptor code.
10831
10832 Expression*
10833 Expression::make_slice_composite_literal(Type* type, Expression_list* vals,
10834 source_location location)
10835 {
10836 gcc_assert(type->is_open_array_type());
10837 return new Open_array_construction_expression(type, vals, location);
10838 }
10839
10840 // Construct a map.
10841
10842 class Map_construction_expression : public Expression
10843 {
10844 public:
10845 Map_construction_expression(Type* type, Expression_list* vals,
10846 source_location location)
10847 : Expression(EXPRESSION_MAP_CONSTRUCTION, location),
10848 type_(type), vals_(vals)
10849 { gcc_assert(vals == NULL || vals->size() % 2 == 0); }
10850
10851 protected:
10852 int
10853 do_traverse(Traverse* traverse);
10854
10855 Type*
10856 do_type()
10857 { return this->type_; }
10858
10859 void
10860 do_determine_type(const Type_context*);
10861
10862 void
10863 do_check_types(Gogo*);
10864
10865 Expression*
10866 do_copy()
10867 {
10868 return new Map_construction_expression(this->type_, this->vals_->copy(),
10869 this->location());
10870 }
10871
10872 tree
10873 do_get_tree(Translate_context*);
10874
10875 void
10876 do_export(Export*) const;
10877
10878 private:
10879 // The type of the map to construct.
10880 Type* type_;
10881 // The list of values.
10882 Expression_list* vals_;
10883 };
10884
10885 // Traversal.
10886
10887 int
10888 Map_construction_expression::do_traverse(Traverse* traverse)
10889 {
10890 if (this->vals_ != NULL
10891 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
10892 return TRAVERSE_EXIT;
10893 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10894 return TRAVERSE_EXIT;
10895 return TRAVERSE_CONTINUE;
10896 }
10897
10898 // Final type determination.
10899
10900 void
10901 Map_construction_expression::do_determine_type(const Type_context*)
10902 {
10903 if (this->vals_ == NULL)
10904 return;
10905
10906 Map_type* mt = this->type_->map_type();
10907 Type_context key_context(mt->key_type(), false);
10908 Type_context val_context(mt->val_type(), false);
10909 for (Expression_list::const_iterator pv = this->vals_->begin();
10910 pv != this->vals_->end();
10911 ++pv)
10912 {
10913 (*pv)->determine_type(&key_context);
10914 ++pv;
10915 (*pv)->determine_type(&val_context);
10916 }
10917 }
10918
10919 // Check types.
10920
10921 void
10922 Map_construction_expression::do_check_types(Gogo*)
10923 {
10924 if (this->vals_ == NULL)
10925 return;
10926
10927 Map_type* mt = this->type_->map_type();
10928 int i = 0;
10929 Type* key_type = mt->key_type();
10930 Type* val_type = mt->val_type();
10931 for (Expression_list::const_iterator pv = this->vals_->begin();
10932 pv != this->vals_->end();
10933 ++pv, ++i)
10934 {
10935 if (!Type::are_assignable(key_type, (*pv)->type(), NULL))
10936 {
10937 error_at((*pv)->location(),
10938 "incompatible type for element %d key in map construction",
10939 i + 1);
10940 this->set_is_error();
10941 }
10942 ++pv;
10943 if (!Type::are_assignable(val_type, (*pv)->type(), NULL))
10944 {
10945 error_at((*pv)->location(),
10946 ("incompatible type for element %d value "
10947 "in map construction"),
10948 i + 1);
10949 this->set_is_error();
10950 }
10951 }
10952 }
10953
10954 // Return a tree for constructing a map.
10955
10956 tree
10957 Map_construction_expression::do_get_tree(Translate_context* context)
10958 {
10959 Gogo* gogo = context->gogo();
10960 source_location loc = this->location();
10961
10962 Map_type* mt = this->type_->map_type();
10963
10964 // Build a struct to hold the key and value.
10965 tree struct_type = make_node(RECORD_TYPE);
10966
10967 Type* key_type = mt->key_type();
10968 tree id = get_identifier("__key");
10969 tree key_field = build_decl(loc, FIELD_DECL, id, key_type->get_tree(gogo));
10970 DECL_CONTEXT(key_field) = struct_type;
10971 TYPE_FIELDS(struct_type) = key_field;
10972
10973 Type* val_type = mt->val_type();
10974 id = get_identifier("__val");
10975 tree val_field = build_decl(loc, FIELD_DECL, id, val_type->get_tree(gogo));
10976 DECL_CONTEXT(val_field) = struct_type;
10977 DECL_CHAIN(key_field) = val_field;
10978
10979 layout_type(struct_type);
10980
10981 bool is_constant = true;
10982 size_t i = 0;
10983 tree valaddr;
10984 tree make_tmp;
10985
10986 if (this->vals_ == NULL || this->vals_->empty())
10987 {
10988 valaddr = null_pointer_node;
10989 make_tmp = NULL_TREE;
10990 }
10991 else
10992 {
10993 VEC(constructor_elt,gc)* values = VEC_alloc(constructor_elt, gc,
10994 this->vals_->size() / 2);
10995
10996 for (Expression_list::const_iterator pv = this->vals_->begin();
10997 pv != this->vals_->end();
10998 ++pv, ++i)
10999 {
11000 bool one_is_constant = true;
11001
11002 VEC(constructor_elt,gc)* one = VEC_alloc(constructor_elt, gc, 2);
11003
11004 constructor_elt* elt = VEC_quick_push(constructor_elt, one, NULL);
11005 elt->index = key_field;
11006 tree val_tree = (*pv)->get_tree(context);
11007 elt->value = Expression::convert_for_assignment(context, key_type,
11008 (*pv)->type(),
11009 val_tree, loc);
11010 if (elt->value == error_mark_node)
11011 return error_mark_node;
11012 if (!TREE_CONSTANT(elt->value))
11013 one_is_constant = false;
11014
11015 ++pv;
11016
11017 elt = VEC_quick_push(constructor_elt, one, NULL);
11018 elt->index = val_field;
11019 val_tree = (*pv)->get_tree(context);
11020 elt->value = Expression::convert_for_assignment(context, val_type,
11021 (*pv)->type(),
11022 val_tree, loc);
11023 if (elt->value == error_mark_node)
11024 return error_mark_node;
11025 if (!TREE_CONSTANT(elt->value))
11026 one_is_constant = false;
11027
11028 elt = VEC_quick_push(constructor_elt, values, NULL);
11029 elt->index = size_int(i);
11030 elt->value = build_constructor(struct_type, one);
11031 if (one_is_constant)
11032 TREE_CONSTANT(elt->value) = 1;
11033 else
11034 is_constant = false;
11035 }
11036
11037 tree index_type = build_index_type(size_int(i - 1));
11038 tree array_type = build_array_type(struct_type, index_type);
11039 tree init = build_constructor(array_type, values);
11040 if (is_constant)
11041 TREE_CONSTANT(init) = 1;
11042 tree tmp;
11043 if (current_function_decl != NULL)
11044 {
11045 tmp = create_tmp_var(array_type, get_name(array_type));
11046 DECL_INITIAL(tmp) = init;
11047 make_tmp = fold_build1_loc(loc, DECL_EXPR, void_type_node, tmp);
11048 TREE_ADDRESSABLE(tmp) = 1;
11049 }
11050 else
11051 {
11052 tmp = build_decl(loc, VAR_DECL, create_tmp_var_name("M"), array_type);
11053 DECL_EXTERNAL(tmp) = 0;
11054 TREE_PUBLIC(tmp) = 0;
11055 TREE_STATIC(tmp) = 1;
11056 DECL_ARTIFICIAL(tmp) = 1;
11057 if (!TREE_CONSTANT(init))
11058 make_tmp = fold_build2_loc(loc, INIT_EXPR, void_type_node, tmp,
11059 init);
11060 else
11061 {
11062 TREE_READONLY(tmp) = 1;
11063 TREE_CONSTANT(tmp) = 1;
11064 DECL_INITIAL(tmp) = init;
11065 make_tmp = NULL_TREE;
11066 }
11067 rest_of_decl_compilation(tmp, 1, 0);
11068 }
11069
11070 valaddr = build_fold_addr_expr(tmp);
11071 }
11072
11073 tree descriptor = gogo->map_descriptor(mt);
11074
11075 tree type_tree = this->type_->get_tree(gogo);
11076
11077 static tree construct_map_fndecl;
11078 tree call = Gogo::call_builtin(&construct_map_fndecl,
11079 loc,
11080 "__go_construct_map",
11081 6,
11082 type_tree,
11083 TREE_TYPE(descriptor),
11084 descriptor,
11085 sizetype,
11086 size_int(i),
11087 sizetype,
11088 TYPE_SIZE_UNIT(struct_type),
11089 sizetype,
11090 byte_position(val_field),
11091 sizetype,
11092 TYPE_SIZE_UNIT(TREE_TYPE(val_field)),
11093 const_ptr_type_node,
11094 fold_convert(const_ptr_type_node, valaddr));
11095
11096 tree ret;
11097 if (make_tmp == NULL)
11098 ret = call;
11099 else
11100 ret = fold_build2_loc(loc, COMPOUND_EXPR, type_tree, make_tmp, call);
11101 return ret;
11102 }
11103
11104 // Export an array construction.
11105
11106 void
11107 Map_construction_expression::do_export(Export* exp) const
11108 {
11109 exp->write_c_string("convert(");
11110 exp->write_type(this->type_);
11111 for (Expression_list::const_iterator pv = this->vals_->begin();
11112 pv != this->vals_->end();
11113 ++pv)
11114 {
11115 exp->write_c_string(", ");
11116 (*pv)->export_expression(exp);
11117 }
11118 exp->write_c_string(")");
11119 }
11120
11121 // A general composite literal. This is lowered to a type specific
11122 // version.
11123
11124 class Composite_literal_expression : public Parser_expression
11125 {
11126 public:
11127 Composite_literal_expression(Type* type, int depth, bool has_keys,
11128 Expression_list* vals, source_location location)
11129 : Parser_expression(EXPRESSION_COMPOSITE_LITERAL, location),
11130 type_(type), depth_(depth), vals_(vals), has_keys_(has_keys)
11131 { }
11132
11133 protected:
11134 int
11135 do_traverse(Traverse* traverse);
11136
11137 Expression*
11138 do_lower(Gogo*, Named_object*, int);
11139
11140 Expression*
11141 do_copy()
11142 {
11143 return new Composite_literal_expression(this->type_, this->depth_,
11144 this->has_keys_,
11145 (this->vals_ == NULL
11146 ? NULL
11147 : this->vals_->copy()),
11148 this->location());
11149 }
11150
11151 private:
11152 Expression*
11153 lower_struct(Type*);
11154
11155 Expression*
11156 lower_array(Type*);
11157
11158 Expression*
11159 make_array(Type*, Expression_list*);
11160
11161 Expression*
11162 lower_map(Gogo*, Named_object*, Type*);
11163
11164 // The type of the composite literal.
11165 Type* type_;
11166 // The depth within a list of composite literals within a composite
11167 // literal, when the type is omitted.
11168 int depth_;
11169 // The values to put in the composite literal.
11170 Expression_list* vals_;
11171 // If this is true, then VALS_ is a list of pairs: a key and a
11172 // value. In an array initializer, a missing key will be NULL.
11173 bool has_keys_;
11174 };
11175
11176 // Traversal.
11177
11178 int
11179 Composite_literal_expression::do_traverse(Traverse* traverse)
11180 {
11181 if (this->vals_ != NULL
11182 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
11183 return TRAVERSE_EXIT;
11184 return Type::traverse(this->type_, traverse);
11185 }
11186
11187 // Lower a generic composite literal into a specific version based on
11188 // the type.
11189
11190 Expression*
11191 Composite_literal_expression::do_lower(Gogo* gogo, Named_object* function, int)
11192 {
11193 Type* type = this->type_;
11194
11195 for (int depth = this->depth_; depth > 0; --depth)
11196 {
11197 if (type->array_type() != NULL)
11198 type = type->array_type()->element_type();
11199 else if (type->map_type() != NULL)
11200 type = type->map_type()->val_type();
11201 else
11202 {
11203 if (!type->is_error_type())
11204 error_at(this->location(),
11205 ("may only omit types within composite literals "
11206 "of slice, array, or map type"));
11207 return Expression::make_error(this->location());
11208 }
11209 }
11210
11211 if (type->is_error_type())
11212 return Expression::make_error(this->location());
11213 else if (type->struct_type() != NULL)
11214 return this->lower_struct(type);
11215 else if (type->array_type() != NULL)
11216 return this->lower_array(type);
11217 else if (type->map_type() != NULL)
11218 return this->lower_map(gogo, function, type);
11219 else
11220 {
11221 error_at(this->location(),
11222 ("expected struct, slice, array, or map type "
11223 "for composite literal"));
11224 return Expression::make_error(this->location());
11225 }
11226 }
11227
11228 // Lower a struct composite literal.
11229
11230 Expression*
11231 Composite_literal_expression::lower_struct(Type* type)
11232 {
11233 source_location location = this->location();
11234 Struct_type* st = type->struct_type();
11235 if (this->vals_ == NULL || !this->has_keys_)
11236 return new Struct_construction_expression(type, this->vals_, location);
11237
11238 size_t field_count = st->field_count();
11239 std::vector<Expression*> vals(field_count);
11240 Expression_list::const_iterator p = this->vals_->begin();
11241 while (p != this->vals_->end())
11242 {
11243 Expression* name_expr = *p;
11244
11245 ++p;
11246 gcc_assert(p != this->vals_->end());
11247 Expression* val = *p;
11248
11249 ++p;
11250
11251 if (name_expr == NULL)
11252 {
11253 error_at(val->location(), "mixture of field and value initializers");
11254 return Expression::make_error(location);
11255 }
11256
11257 bool bad_key = false;
11258 std::string name;
11259 switch (name_expr->classification())
11260 {
11261 case EXPRESSION_UNKNOWN_REFERENCE:
11262 name = name_expr->unknown_expression()->name();
11263 break;
11264
11265 case EXPRESSION_CONST_REFERENCE:
11266 name = static_cast<Const_expression*>(name_expr)->name();
11267 break;
11268
11269 case EXPRESSION_TYPE:
11270 {
11271 Type* t = name_expr->type();
11272 Named_type* nt = t->named_type();
11273 if (nt == NULL)
11274 bad_key = true;
11275 else
11276 name = nt->name();
11277 }
11278 break;
11279
11280 case EXPRESSION_VAR_REFERENCE:
11281 name = name_expr->var_expression()->name();
11282 break;
11283
11284 case EXPRESSION_FUNC_REFERENCE:
11285 name = name_expr->func_expression()->name();
11286 break;
11287
11288 case EXPRESSION_UNARY:
11289 // If there is a local variable around with the same name as
11290 // the field, and this occurs in the closure, then the
11291 // parser may turn the field reference into an indirection
11292 // through the closure. FIXME: This is a mess.
11293 {
11294 bad_key = true;
11295 Unary_expression* ue = static_cast<Unary_expression*>(name_expr);
11296 if (ue->op() == OPERATOR_MULT)
11297 {
11298 Field_reference_expression* fre =
11299 ue->operand()->field_reference_expression();
11300 if (fre != NULL)
11301 {
11302 Struct_type* st =
11303 fre->expr()->type()->deref()->struct_type();
11304 if (st != NULL)
11305 {
11306 const Struct_field* sf = st->field(fre->field_index());
11307 name = sf->field_name();
11308 char buf[20];
11309 snprintf(buf, sizeof buf, "%u", fre->field_index());
11310 size_t buflen = strlen(buf);
11311 if (name.compare(name.length() - buflen, buflen, buf)
11312 == 0)
11313 {
11314 name = name.substr(0, name.length() - buflen);
11315 bad_key = false;
11316 }
11317 }
11318 }
11319 }
11320 }
11321 break;
11322
11323 default:
11324 bad_key = true;
11325 break;
11326 }
11327 if (bad_key)
11328 {
11329 error_at(name_expr->location(), "expected struct field name");
11330 return Expression::make_error(location);
11331 }
11332
11333 unsigned int index;
11334 const Struct_field* sf = st->find_local_field(name, &index);
11335 if (sf == NULL)
11336 {
11337 error_at(name_expr->location(), "unknown field %qs in %qs",
11338 Gogo::message_name(name).c_str(),
11339 (type->named_type() != NULL
11340 ? type->named_type()->message_name().c_str()
11341 : "unnamed struct"));
11342 return Expression::make_error(location);
11343 }
11344 if (vals[index] != NULL)
11345 {
11346 error_at(name_expr->location(),
11347 "duplicate value for field %qs in %qs",
11348 Gogo::message_name(name).c_str(),
11349 (type->named_type() != NULL
11350 ? type->named_type()->message_name().c_str()
11351 : "unnamed struct"));
11352 return Expression::make_error(location);
11353 }
11354
11355 vals[index] = val;
11356 }
11357
11358 Expression_list* list = new Expression_list;
11359 list->reserve(field_count);
11360 for (size_t i = 0; i < field_count; ++i)
11361 list->push_back(vals[i]);
11362
11363 return new Struct_construction_expression(type, list, location);
11364 }
11365
11366 // Lower an array composite literal.
11367
11368 Expression*
11369 Composite_literal_expression::lower_array(Type* type)
11370 {
11371 source_location location = this->location();
11372 if (this->vals_ == NULL || !this->has_keys_)
11373 return this->make_array(type, this->vals_);
11374
11375 std::vector<Expression*> vals;
11376 vals.reserve(this->vals_->size());
11377 unsigned long index = 0;
11378 Expression_list::const_iterator p = this->vals_->begin();
11379 while (p != this->vals_->end())
11380 {
11381 Expression* index_expr = *p;
11382
11383 ++p;
11384 gcc_assert(p != this->vals_->end());
11385 Expression* val = *p;
11386
11387 ++p;
11388
11389 if (index_expr != NULL)
11390 {
11391 mpz_t ival;
11392 mpz_init(ival);
11393 Type* dummy;
11394 if (!index_expr->integer_constant_value(true, ival, &dummy))
11395 {
11396 mpz_clear(ival);
11397 error_at(index_expr->location(),
11398 "index expression is not integer constant");
11399 return Expression::make_error(location);
11400 }
11401 if (mpz_sgn(ival) < 0)
11402 {
11403 mpz_clear(ival);
11404 error_at(index_expr->location(), "index expression is negative");
11405 return Expression::make_error(location);
11406 }
11407 index = mpz_get_ui(ival);
11408 if (mpz_cmp_ui(ival, index) != 0)
11409 {
11410 mpz_clear(ival);
11411 error_at(index_expr->location(), "index value overflow");
11412 return Expression::make_error(location);
11413 }
11414 mpz_clear(ival);
11415 }
11416
11417 if (index == vals.size())
11418 vals.push_back(val);
11419 else
11420 {
11421 if (index > vals.size())
11422 {
11423 vals.reserve(index + 32);
11424 vals.resize(index + 1, static_cast<Expression*>(NULL));
11425 }
11426 if (vals[index] != NULL)
11427 {
11428 error_at((index_expr != NULL
11429 ? index_expr->location()
11430 : val->location()),
11431 "duplicate value for index %lu",
11432 index);
11433 return Expression::make_error(location);
11434 }
11435 vals[index] = val;
11436 }
11437
11438 ++index;
11439 }
11440
11441 size_t size = vals.size();
11442 Expression_list* list = new Expression_list;
11443 list->reserve(size);
11444 for (size_t i = 0; i < size; ++i)
11445 list->push_back(vals[i]);
11446
11447 return this->make_array(type, list);
11448 }
11449
11450 // Actually build the array composite literal. This handles
11451 // [...]{...}.
11452
11453 Expression*
11454 Composite_literal_expression::make_array(Type* type, Expression_list* vals)
11455 {
11456 source_location location = this->location();
11457 Array_type* at = type->array_type();
11458 if (at->length() != NULL && at->length()->is_nil_expression())
11459 {
11460 size_t size = vals == NULL ? 0 : vals->size();
11461 mpz_t vlen;
11462 mpz_init_set_ui(vlen, size);
11463 Expression* elen = Expression::make_integer(&vlen, NULL, location);
11464 mpz_clear(vlen);
11465 at = Type::make_array_type(at->element_type(), elen);
11466 type = at;
11467 }
11468 if (at->length() != NULL)
11469 return new Fixed_array_construction_expression(type, vals, location);
11470 else
11471 return new Open_array_construction_expression(type, vals, location);
11472 }
11473
11474 // Lower a map composite literal.
11475
11476 Expression*
11477 Composite_literal_expression::lower_map(Gogo* gogo, Named_object* function,
11478 Type* type)
11479 {
11480 source_location location = this->location();
11481 if (this->vals_ != NULL)
11482 {
11483 if (!this->has_keys_)
11484 {
11485 error_at(location, "map composite literal must have keys");
11486 return Expression::make_error(location);
11487 }
11488
11489 for (Expression_list::iterator p = this->vals_->begin();
11490 p != this->vals_->end();
11491 p += 2)
11492 {
11493 if (*p == NULL)
11494 {
11495 ++p;
11496 error_at((*p)->location(),
11497 "map composite literal must have keys for every value");
11498 return Expression::make_error(location);
11499 }
11500 // Make sure we have lowered the key; it may not have been
11501 // lowered in order to handle keys for struct composite
11502 // literals. Lower it now to get the right error message.
11503 if ((*p)->unknown_expression() != NULL)
11504 {
11505 (*p)->unknown_expression()->clear_is_composite_literal_key();
11506 gogo->lower_expression(function, &*p);
11507 gcc_assert((*p)->is_error_expression());
11508 return Expression::make_error(location);
11509 }
11510 }
11511 }
11512
11513 return new Map_construction_expression(type, this->vals_, location);
11514 }
11515
11516 // Make a composite literal expression.
11517
11518 Expression*
11519 Expression::make_composite_literal(Type* type, int depth, bool has_keys,
11520 Expression_list* vals,
11521 source_location location)
11522 {
11523 return new Composite_literal_expression(type, depth, has_keys, vals,
11524 location);
11525 }
11526
11527 // Return whether this expression is a composite literal.
11528
11529 bool
11530 Expression::is_composite_literal() const
11531 {
11532 switch (this->classification_)
11533 {
11534 case EXPRESSION_COMPOSITE_LITERAL:
11535 case EXPRESSION_STRUCT_CONSTRUCTION:
11536 case EXPRESSION_FIXED_ARRAY_CONSTRUCTION:
11537 case EXPRESSION_OPEN_ARRAY_CONSTRUCTION:
11538 case EXPRESSION_MAP_CONSTRUCTION:
11539 return true;
11540 default:
11541 return false;
11542 }
11543 }
11544
11545 // Return whether this expression is a composite literal which is not
11546 // constant.
11547
11548 bool
11549 Expression::is_nonconstant_composite_literal() const
11550 {
11551 switch (this->classification_)
11552 {
11553 case EXPRESSION_STRUCT_CONSTRUCTION:
11554 {
11555 const Struct_construction_expression *psce =
11556 static_cast<const Struct_construction_expression*>(this);
11557 return !psce->is_constant_struct();
11558 }
11559 case EXPRESSION_FIXED_ARRAY_CONSTRUCTION:
11560 {
11561 const Fixed_array_construction_expression *pace =
11562 static_cast<const Fixed_array_construction_expression*>(this);
11563 return !pace->is_constant_array();
11564 }
11565 case EXPRESSION_OPEN_ARRAY_CONSTRUCTION:
11566 {
11567 const Open_array_construction_expression *pace =
11568 static_cast<const Open_array_construction_expression*>(this);
11569 return !pace->is_constant_array();
11570 }
11571 case EXPRESSION_MAP_CONSTRUCTION:
11572 return true;
11573 default:
11574 return false;
11575 }
11576 }
11577
11578 // Return true if this is a reference to a local variable.
11579
11580 bool
11581 Expression::is_local_variable() const
11582 {
11583 const Var_expression* ve = this->var_expression();
11584 if (ve == NULL)
11585 return false;
11586 const Named_object* no = ve->named_object();
11587 return (no->is_result_variable()
11588 || (no->is_variable() && !no->var_value()->is_global()));
11589 }
11590
11591 // Class Type_guard_expression.
11592
11593 // Traversal.
11594
11595 int
11596 Type_guard_expression::do_traverse(Traverse* traverse)
11597 {
11598 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
11599 || Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
11600 return TRAVERSE_EXIT;
11601 return TRAVERSE_CONTINUE;
11602 }
11603
11604 // Check types of a type guard expression. The expression must have
11605 // an interface type, but the actual type conversion is checked at run
11606 // time.
11607
11608 void
11609 Type_guard_expression::do_check_types(Gogo*)
11610 {
11611 // 6g permits using a type guard with unsafe.pointer; we are
11612 // compatible.
11613 Type* expr_type = this->expr_->type();
11614 if (expr_type->is_unsafe_pointer_type())
11615 {
11616 if (this->type_->points_to() == NULL
11617 && (this->type_->integer_type() == NULL
11618 || (this->type_->forwarded()
11619 != Type::lookup_integer_type("uintptr"))))
11620 this->report_error(_("invalid unsafe.Pointer conversion"));
11621 }
11622 else if (this->type_->is_unsafe_pointer_type())
11623 {
11624 if (expr_type->points_to() == NULL
11625 && (expr_type->integer_type() == NULL
11626 || (expr_type->forwarded()
11627 != Type::lookup_integer_type("uintptr"))))
11628 this->report_error(_("invalid unsafe.Pointer conversion"));
11629 }
11630 else if (expr_type->interface_type() == NULL)
11631 {
11632 if (!expr_type->is_error_type() && !this->type_->is_error_type())
11633 this->report_error(_("type assertion only valid for interface types"));
11634 this->set_is_error();
11635 }
11636 else if (this->type_->interface_type() == NULL)
11637 {
11638 std::string reason;
11639 if (!expr_type->interface_type()->implements_interface(this->type_,
11640 &reason))
11641 {
11642 if (!this->type_->is_error_type())
11643 {
11644 if (reason.empty())
11645 this->report_error(_("impossible type assertion: "
11646 "type does not implement interface"));
11647 else
11648 error_at(this->location(),
11649 ("impossible type assertion: "
11650 "type does not implement interface (%s)"),
11651 reason.c_str());
11652 }
11653 this->set_is_error();
11654 }
11655 }
11656 }
11657
11658 // Return a tree for a type guard expression.
11659
11660 tree
11661 Type_guard_expression::do_get_tree(Translate_context* context)
11662 {
11663 Gogo* gogo = context->gogo();
11664 tree expr_tree = this->expr_->get_tree(context);
11665 if (expr_tree == error_mark_node)
11666 return error_mark_node;
11667 Type* expr_type = this->expr_->type();
11668 if ((this->type_->is_unsafe_pointer_type()
11669 && (expr_type->points_to() != NULL
11670 || expr_type->integer_type() != NULL))
11671 || (expr_type->is_unsafe_pointer_type()
11672 && this->type_->points_to() != NULL))
11673 return convert_to_pointer(this->type_->get_tree(gogo), expr_tree);
11674 else if (expr_type->is_unsafe_pointer_type()
11675 && this->type_->integer_type() != NULL)
11676 return convert_to_integer(this->type_->get_tree(gogo), expr_tree);
11677 else if (this->type_->interface_type() != NULL)
11678 return Expression::convert_interface_to_interface(context, this->type_,
11679 this->expr_->type(),
11680 expr_tree, true,
11681 this->location());
11682 else
11683 return Expression::convert_for_assignment(context, this->type_,
11684 this->expr_->type(), expr_tree,
11685 this->location());
11686 }
11687
11688 // Make a type guard expression.
11689
11690 Expression*
11691 Expression::make_type_guard(Expression* expr, Type* type,
11692 source_location location)
11693 {
11694 return new Type_guard_expression(expr, type, location);
11695 }
11696
11697 // Class Heap_composite_expression.
11698
11699 // When you take the address of a composite literal, it is allocated
11700 // on the heap. This class implements that.
11701
11702 class Heap_composite_expression : public Expression
11703 {
11704 public:
11705 Heap_composite_expression(Expression* expr, source_location location)
11706 : Expression(EXPRESSION_HEAP_COMPOSITE, location),
11707 expr_(expr)
11708 { }
11709
11710 protected:
11711 int
11712 do_traverse(Traverse* traverse)
11713 { return Expression::traverse(&this->expr_, traverse); }
11714
11715 Type*
11716 do_type()
11717 { return Type::make_pointer_type(this->expr_->type()); }
11718
11719 void
11720 do_determine_type(const Type_context*)
11721 { this->expr_->determine_type_no_context(); }
11722
11723 Expression*
11724 do_copy()
11725 {
11726 return Expression::make_heap_composite(this->expr_->copy(),
11727 this->location());
11728 }
11729
11730 tree
11731 do_get_tree(Translate_context*);
11732
11733 // We only export global objects, and the parser does not generate
11734 // this in global scope.
11735 void
11736 do_export(Export*) const
11737 { gcc_unreachable(); }
11738
11739 private:
11740 // The composite literal which is being put on the heap.
11741 Expression* expr_;
11742 };
11743
11744 // Return a tree which allocates a composite literal on the heap.
11745
11746 tree
11747 Heap_composite_expression::do_get_tree(Translate_context* context)
11748 {
11749 tree expr_tree = this->expr_->get_tree(context);
11750 if (expr_tree == error_mark_node)
11751 return error_mark_node;
11752 tree expr_size = TYPE_SIZE_UNIT(TREE_TYPE(expr_tree));
11753 gcc_assert(TREE_CODE(expr_size) == INTEGER_CST);
11754 tree space = context->gogo()->allocate_memory(this->expr_->type(),
11755 expr_size, this->location());
11756 space = fold_convert(build_pointer_type(TREE_TYPE(expr_tree)), space);
11757 space = save_expr(space);
11758 tree ref = build_fold_indirect_ref_loc(this->location(), space);
11759 TREE_THIS_NOTRAP(ref) = 1;
11760 tree ret = build2(COMPOUND_EXPR, TREE_TYPE(space),
11761 build2(MODIFY_EXPR, void_type_node, ref, expr_tree),
11762 space);
11763 SET_EXPR_LOCATION(ret, this->location());
11764 return ret;
11765 }
11766
11767 // Allocate a composite literal on the heap.
11768
11769 Expression*
11770 Expression::make_heap_composite(Expression* expr, source_location location)
11771 {
11772 return new Heap_composite_expression(expr, location);
11773 }
11774
11775 // Class Receive_expression.
11776
11777 // Return the type of a receive expression.
11778
11779 Type*
11780 Receive_expression::do_type()
11781 {
11782 Channel_type* channel_type = this->channel_->type()->channel_type();
11783 if (channel_type == NULL)
11784 return Type::make_error_type();
11785 return channel_type->element_type();
11786 }
11787
11788 // Check types for a receive expression.
11789
11790 void
11791 Receive_expression::do_check_types(Gogo*)
11792 {
11793 Type* type = this->channel_->type();
11794 if (type->is_error_type())
11795 {
11796 this->set_is_error();
11797 return;
11798 }
11799 if (type->channel_type() == NULL)
11800 {
11801 this->report_error(_("expected channel"));
11802 return;
11803 }
11804 if (!type->channel_type()->may_receive())
11805 {
11806 this->report_error(_("invalid receive on send-only channel"));
11807 return;
11808 }
11809 }
11810
11811 // Get a tree for a receive expression.
11812
11813 tree
11814 Receive_expression::do_get_tree(Translate_context* context)
11815 {
11816 Channel_type* channel_type = this->channel_->type()->channel_type();
11817 gcc_assert(channel_type != NULL);
11818 Type* element_type = channel_type->element_type();
11819 tree element_type_tree = element_type->get_tree(context->gogo());
11820
11821 tree channel = this->channel_->get_tree(context);
11822 if (element_type_tree == error_mark_node || channel == error_mark_node)
11823 return error_mark_node;
11824
11825 return Gogo::receive_from_channel(element_type_tree, channel,
11826 this->for_select_, this->location());
11827 }
11828
11829 // Make a receive expression.
11830
11831 Receive_expression*
11832 Expression::make_receive(Expression* channel, source_location location)
11833 {
11834 return new Receive_expression(channel, location);
11835 }
11836
11837 // Class Send_expression.
11838
11839 // Traversal.
11840
11841 int
11842 Send_expression::do_traverse(Traverse* traverse)
11843 {
11844 if (Expression::traverse(&this->channel_, traverse) == TRAVERSE_EXIT)
11845 return TRAVERSE_EXIT;
11846 return Expression::traverse(&this->val_, traverse);
11847 }
11848
11849 // Get the type.
11850
11851 Type*
11852 Send_expression::do_type()
11853 {
11854 return Type::lookup_bool_type();
11855 }
11856
11857 // Set types.
11858
11859 void
11860 Send_expression::do_determine_type(const Type_context*)
11861 {
11862 this->channel_->determine_type_no_context();
11863
11864 Type* type = this->channel_->type();
11865 Type_context subcontext;
11866 if (type->channel_type() != NULL)
11867 subcontext.type = type->channel_type()->element_type();
11868 this->val_->determine_type(&subcontext);
11869 }
11870
11871 // Check types.
11872
11873 void
11874 Send_expression::do_check_types(Gogo*)
11875 {
11876 Type* type = this->channel_->type();
11877 if (type->is_error_type())
11878 {
11879 this->set_is_error();
11880 return;
11881 }
11882 Channel_type* channel_type = type->channel_type();
11883 if (channel_type == NULL)
11884 {
11885 error_at(this->location(), "left operand of %<<-%> must be channel");
11886 this->set_is_error();
11887 return;
11888 }
11889 Type* element_type = channel_type->element_type();
11890 if (element_type != NULL
11891 && !Type::are_assignable(element_type, this->val_->type(), NULL))
11892 {
11893 this->report_error(_("incompatible types in send"));
11894 return;
11895 }
11896 if (!channel_type->may_send())
11897 {
11898 this->report_error(_("invalid send on receive-only channel"));
11899 return;
11900 }
11901 }
11902
11903 // Get a tree for a send expression.
11904
11905 tree
11906 Send_expression::do_get_tree(Translate_context* context)
11907 {
11908 tree channel = this->channel_->get_tree(context);
11909 tree val = this->val_->get_tree(context);
11910 if (channel == error_mark_node || val == error_mark_node)
11911 return error_mark_node;
11912 Channel_type* channel_type = this->channel_->type()->channel_type();
11913 val = Expression::convert_for_assignment(context,
11914 channel_type->element_type(),
11915 this->val_->type(),
11916 val,
11917 this->location());
11918 return Gogo::send_on_channel(channel, val, this->is_value_discarded_,
11919 this->for_select_, this->location());
11920 }
11921
11922 // Make a send expression
11923
11924 Send_expression*
11925 Expression::make_send(Expression* channel, Expression* val,
11926 source_location location)
11927 {
11928 return new Send_expression(channel, val, location);
11929 }
11930
11931 // An expression which evaluates to a pointer to the type descriptor
11932 // of a type.
11933
11934 class Type_descriptor_expression : public Expression
11935 {
11936 public:
11937 Type_descriptor_expression(Type* type, source_location location)
11938 : Expression(EXPRESSION_TYPE_DESCRIPTOR, location),
11939 type_(type)
11940 { }
11941
11942 protected:
11943 Type*
11944 do_type()
11945 { return Type::make_type_descriptor_ptr_type(); }
11946
11947 void
11948 do_determine_type(const Type_context*)
11949 { }
11950
11951 Expression*
11952 do_copy()
11953 { return this; }
11954
11955 tree
11956 do_get_tree(Translate_context* context)
11957 { return this->type_->type_descriptor_pointer(context->gogo()); }
11958
11959 private:
11960 // The type for which this is the descriptor.
11961 Type* type_;
11962 };
11963
11964 // Make a type descriptor expression.
11965
11966 Expression*
11967 Expression::make_type_descriptor(Type* type, source_location location)
11968 {
11969 return new Type_descriptor_expression(type, location);
11970 }
11971
11972 // An expression which evaluates to some characteristic of a type.
11973 // This is only used to initialize fields of a type descriptor. Using
11974 // a new expression class is slightly inefficient but gives us a good
11975 // separation between the frontend and the middle-end with regard to
11976 // how types are laid out.
11977
11978 class Type_info_expression : public Expression
11979 {
11980 public:
11981 Type_info_expression(Type* type, Type_info type_info)
11982 : Expression(EXPRESSION_TYPE_INFO, BUILTINS_LOCATION),
11983 type_(type), type_info_(type_info)
11984 { }
11985
11986 protected:
11987 Type*
11988 do_type();
11989
11990 void
11991 do_determine_type(const Type_context*)
11992 { }
11993
11994 Expression*
11995 do_copy()
11996 { return this; }
11997
11998 tree
11999 do_get_tree(Translate_context* context);
12000
12001 private:
12002 // The type for which we are getting information.
12003 Type* type_;
12004 // What information we want.
12005 Type_info type_info_;
12006 };
12007
12008 // The type is chosen to match what the type descriptor struct
12009 // expects.
12010
12011 Type*
12012 Type_info_expression::do_type()
12013 {
12014 switch (this->type_info_)
12015 {
12016 case TYPE_INFO_SIZE:
12017 return Type::lookup_integer_type("uintptr");
12018 case TYPE_INFO_ALIGNMENT:
12019 case TYPE_INFO_FIELD_ALIGNMENT:
12020 return Type::lookup_integer_type("uint8");
12021 default:
12022 gcc_unreachable();
12023 }
12024 }
12025
12026 // Return type information in GENERIC.
12027
12028 tree
12029 Type_info_expression::do_get_tree(Translate_context* context)
12030 {
12031 tree type_tree = this->type_->get_tree(context->gogo());
12032 if (type_tree == error_mark_node)
12033 return error_mark_node;
12034
12035 tree val_type_tree = this->type()->get_tree(context->gogo());
12036 gcc_assert(val_type_tree != error_mark_node);
12037
12038 if (this->type_info_ == TYPE_INFO_SIZE)
12039 return fold_convert_loc(BUILTINS_LOCATION, val_type_tree,
12040 TYPE_SIZE_UNIT(type_tree));
12041 else
12042 {
12043 unsigned int val;
12044 if (this->type_info_ == TYPE_INFO_ALIGNMENT)
12045 val = go_type_alignment(type_tree);
12046 else
12047 val = go_field_alignment(type_tree);
12048 return build_int_cstu(val_type_tree, val);
12049 }
12050 }
12051
12052 // Make a type info expression.
12053
12054 Expression*
12055 Expression::make_type_info(Type* type, Type_info type_info)
12056 {
12057 return new Type_info_expression(type, type_info);
12058 }
12059
12060 // An expression which evaluates to the offset of a field within a
12061 // struct. This, like Type_info_expression, q.v., is only used to
12062 // initialize fields of a type descriptor.
12063
12064 class Struct_field_offset_expression : public Expression
12065 {
12066 public:
12067 Struct_field_offset_expression(Struct_type* type, const Struct_field* field)
12068 : Expression(EXPRESSION_STRUCT_FIELD_OFFSET, BUILTINS_LOCATION),
12069 type_(type), field_(field)
12070 { }
12071
12072 protected:
12073 Type*
12074 do_type()
12075 { return Type::lookup_integer_type("uintptr"); }
12076
12077 void
12078 do_determine_type(const Type_context*)
12079 { }
12080
12081 Expression*
12082 do_copy()
12083 { return this; }
12084
12085 tree
12086 do_get_tree(Translate_context* context);
12087
12088 private:
12089 // The type of the struct.
12090 Struct_type* type_;
12091 // The field.
12092 const Struct_field* field_;
12093 };
12094
12095 // Return a struct field offset in GENERIC.
12096
12097 tree
12098 Struct_field_offset_expression::do_get_tree(Translate_context* context)
12099 {
12100 tree type_tree = this->type_->get_tree(context->gogo());
12101 if (type_tree == error_mark_node)
12102 return error_mark_node;
12103
12104 tree val_type_tree = this->type()->get_tree(context->gogo());
12105 gcc_assert(val_type_tree != error_mark_node);
12106
12107 const Struct_field_list* fields = this->type_->fields();
12108 tree struct_field_tree = TYPE_FIELDS(type_tree);
12109 Struct_field_list::const_iterator p;
12110 for (p = fields->begin();
12111 p != fields->end();
12112 ++p, struct_field_tree = DECL_CHAIN(struct_field_tree))
12113 {
12114 gcc_assert(struct_field_tree != NULL_TREE);
12115 if (&*p == this->field_)
12116 break;
12117 }
12118 gcc_assert(&*p == this->field_);
12119
12120 return fold_convert_loc(BUILTINS_LOCATION, val_type_tree,
12121 byte_position(struct_field_tree));
12122 }
12123
12124 // Make an expression for a struct field offset.
12125
12126 Expression*
12127 Expression::make_struct_field_offset(Struct_type* type,
12128 const Struct_field* field)
12129 {
12130 return new Struct_field_offset_expression(type, field);
12131 }
12132
12133 // An expression which evaluates to the address of an unnamed label.
12134
12135 class Label_addr_expression : public Expression
12136 {
12137 public:
12138 Label_addr_expression(Label* label, source_location location)
12139 : Expression(EXPRESSION_LABEL_ADDR, location),
12140 label_(label)
12141 { }
12142
12143 protected:
12144 Type*
12145 do_type()
12146 { return Type::make_pointer_type(Type::make_void_type()); }
12147
12148 void
12149 do_determine_type(const Type_context*)
12150 { }
12151
12152 Expression*
12153 do_copy()
12154 { return new Label_addr_expression(this->label_, this->location()); }
12155
12156 tree
12157 do_get_tree(Translate_context*)
12158 { return this->label_->get_addr(this->location()); }
12159
12160 private:
12161 // The label whose address we are taking.
12162 Label* label_;
12163 };
12164
12165 // Make an expression for the address of an unnamed label.
12166
12167 Expression*
12168 Expression::make_label_addr(Label* label, source_location location)
12169 {
12170 return new Label_addr_expression(label, location);
12171 }
12172
12173 // Import an expression. This comes at the end in order to see the
12174 // various class definitions.
12175
12176 Expression*
12177 Expression::import_expression(Import* imp)
12178 {
12179 int c = imp->peek_char();
12180 if (imp->match_c_string("- ")
12181 || imp->match_c_string("! ")
12182 || imp->match_c_string("^ "))
12183 return Unary_expression::do_import(imp);
12184 else if (c == '(')
12185 return Binary_expression::do_import(imp);
12186 else if (imp->match_c_string("true")
12187 || imp->match_c_string("false"))
12188 return Boolean_expression::do_import(imp);
12189 else if (c == '"')
12190 return String_expression::do_import(imp);
12191 else if (c == '-' || (c >= '0' && c <= '9'))
12192 {
12193 // This handles integers, floats and complex constants.
12194 return Integer_expression::do_import(imp);
12195 }
12196 else if (imp->match_c_string("nil"))
12197 return Nil_expression::do_import(imp);
12198 else if (imp->match_c_string("convert"))
12199 return Type_conversion_expression::do_import(imp);
12200 else
12201 {
12202 error_at(imp->location(), "import error: expected expression");
12203 return Expression::make_error(imp->location());
12204 }
12205 }
12206
12207 // Class Expression_list.
12208
12209 // Traverse the list.
12210
12211 int
12212 Expression_list::traverse(Traverse* traverse)
12213 {
12214 for (Expression_list::iterator p = this->begin();
12215 p != this->end();
12216 ++p)
12217 {
12218 if (*p != NULL)
12219 {
12220 if (Expression::traverse(&*p, traverse) == TRAVERSE_EXIT)
12221 return TRAVERSE_EXIT;
12222 }
12223 }
12224 return TRAVERSE_CONTINUE;
12225 }
12226
12227 // Copy the list.
12228
12229 Expression_list*
12230 Expression_list::copy()
12231 {
12232 Expression_list* ret = new Expression_list();
12233 for (Expression_list::iterator p = this->begin();
12234 p != this->end();
12235 ++p)
12236 {
12237 if (*p == NULL)
12238 ret->push_back(NULL);
12239 else
12240 ret->push_back((*p)->copy());
12241 }
12242 return ret;
12243 }
12244
12245 // Return whether an expression list has an error expression.
12246
12247 bool
12248 Expression_list::contains_error() const
12249 {
12250 for (Expression_list::const_iterator p = this->begin();
12251 p != this->end();
12252 ++p)
12253 if (*p != NULL && (*p)->is_error_expression())
12254 return true;
12255 return false;
12256 }