Avoid dangling open function after erroneous method expression.
[gcc.git] / gcc / go / gofrontend / expressions.cc
1 // expressions.cc -- Go frontend expression handling.
2
3 // Copyright 2009 The Go Authors. All rights reserved.
4 // Use of this source code is governed by a BSD-style
5 // license that can be found in the LICENSE file.
6
7 #include "go-system.h"
8
9 #include <gmp.h>
10
11 #ifndef ENABLE_BUILD_WITH_CXX
12 extern "C"
13 {
14 #endif
15
16 #include "toplev.h"
17 #include "intl.h"
18 #include "tree.h"
19 #include "gimple.h"
20 #include "tree-iterator.h"
21 #include "convert.h"
22 #include "real.h"
23 #include "realmpfr.h"
24
25 #ifndef ENABLE_BUILD_WITH_CXX
26 }
27 #endif
28
29 #include "go-c.h"
30 #include "gogo.h"
31 #include "types.h"
32 #include "export.h"
33 #include "import.h"
34 #include "statements.h"
35 #include "lex.h"
36 #include "expressions.h"
37
38 // Class Expression.
39
40 Expression::Expression(Expression_classification classification,
41 source_location location)
42 : classification_(classification), location_(location)
43 {
44 }
45
46 Expression::~Expression()
47 {
48 }
49
50 // If this expression has a constant integer value, return it.
51
52 bool
53 Expression::integer_constant_value(bool iota_is_constant, mpz_t val,
54 Type** ptype) const
55 {
56 *ptype = NULL;
57 return this->do_integer_constant_value(iota_is_constant, val, ptype);
58 }
59
60 // If this expression has a constant floating point value, return it.
61
62 bool
63 Expression::float_constant_value(mpfr_t val, Type** ptype) const
64 {
65 *ptype = NULL;
66 if (this->do_float_constant_value(val, ptype))
67 return true;
68 mpz_t ival;
69 mpz_init(ival);
70 Type* t;
71 bool ret;
72 if (!this->do_integer_constant_value(false, ival, &t))
73 ret = false;
74 else
75 {
76 mpfr_set_z(val, ival, GMP_RNDN);
77 ret = true;
78 }
79 mpz_clear(ival);
80 return ret;
81 }
82
83 // If this expression has a constant complex value, return it.
84
85 bool
86 Expression::complex_constant_value(mpfr_t real, mpfr_t imag,
87 Type** ptype) const
88 {
89 *ptype = NULL;
90 if (this->do_complex_constant_value(real, imag, ptype))
91 return true;
92 Type *t;
93 if (this->float_constant_value(real, &t))
94 {
95 mpfr_set_ui(imag, 0, GMP_RNDN);
96 return true;
97 }
98 return false;
99 }
100
101 // Traverse the expressions.
102
103 int
104 Expression::traverse(Expression** pexpr, Traverse* traverse)
105 {
106 Expression* expr = *pexpr;
107 if ((traverse->traverse_mask() & Traverse::traverse_expressions) != 0)
108 {
109 int t = traverse->expression(pexpr);
110 if (t == TRAVERSE_EXIT)
111 return TRAVERSE_EXIT;
112 else if (t == TRAVERSE_SKIP_COMPONENTS)
113 return TRAVERSE_CONTINUE;
114 }
115 return expr->do_traverse(traverse);
116 }
117
118 // Traverse subexpressions of this expression.
119
120 int
121 Expression::traverse_subexpressions(Traverse* traverse)
122 {
123 return this->do_traverse(traverse);
124 }
125
126 // Default implementation for do_traverse for child classes.
127
128 int
129 Expression::do_traverse(Traverse*)
130 {
131 return TRAVERSE_CONTINUE;
132 }
133
134 // This virtual function is called by the parser if the value of this
135 // expression is being discarded. By default, we warn. Expressions
136 // with side effects override.
137
138 void
139 Expression::do_discarding_value()
140 {
141 this->warn_about_unused_value();
142 }
143
144 // This virtual function is called to export expressions. This will
145 // only be used by expressions which may be constant.
146
147 void
148 Expression::do_export(Export*) const
149 {
150 gcc_unreachable();
151 }
152
153 // Warn that the value of the expression is not used.
154
155 void
156 Expression::warn_about_unused_value()
157 {
158 warning_at(this->location(), OPT_Wunused_value, "value computed is not used");
159 }
160
161 // Note that this expression is an error. This is called by children
162 // when they discover an error.
163
164 void
165 Expression::set_is_error()
166 {
167 this->classification_ = EXPRESSION_ERROR;
168 }
169
170 // For children to call to report an error conveniently.
171
172 void
173 Expression::report_error(const char* msg)
174 {
175 error_at(this->location_, "%s", msg);
176 this->set_is_error();
177 }
178
179 // Set types of variables and constants. This is implemented by the
180 // child class.
181
182 void
183 Expression::determine_type(const Type_context* context)
184 {
185 this->do_determine_type(context);
186 }
187
188 // Set types when there is no context.
189
190 void
191 Expression::determine_type_no_context()
192 {
193 Type_context context;
194 this->do_determine_type(&context);
195 }
196
197 // Return a tree handling any conversions which must be done during
198 // assignment.
199
200 tree
201 Expression::convert_for_assignment(Translate_context* context, Type* lhs_type,
202 Type* rhs_type, tree rhs_tree,
203 source_location location)
204 {
205 if (lhs_type == rhs_type)
206 return rhs_tree;
207
208 if (lhs_type->is_error_type() || rhs_type->is_error_type())
209 return error_mark_node;
210
211 if (lhs_type->is_undefined() || rhs_type->is_undefined())
212 {
213 // Make sure we report the error.
214 lhs_type->base();
215 rhs_type->base();
216 return error_mark_node;
217 }
218
219 if (rhs_tree == error_mark_node || TREE_TYPE(rhs_tree) == error_mark_node)
220 return error_mark_node;
221
222 Gogo* gogo = context->gogo();
223
224 tree lhs_type_tree = lhs_type->get_tree(gogo);
225 if (lhs_type_tree == error_mark_node)
226 return error_mark_node;
227
228 if (lhs_type->interface_type() != NULL)
229 {
230 if (rhs_type->interface_type() == NULL)
231 return Expression::convert_type_to_interface(context, lhs_type,
232 rhs_type, rhs_tree,
233 location);
234 else
235 return Expression::convert_interface_to_interface(context, lhs_type,
236 rhs_type, rhs_tree,
237 false, location);
238 }
239 else if (rhs_type->interface_type() != NULL)
240 return Expression::convert_interface_to_type(context, lhs_type, rhs_type,
241 rhs_tree, location);
242 else if (lhs_type->is_open_array_type()
243 && rhs_type->is_nil_type())
244 {
245 // Assigning nil to an open array.
246 gcc_assert(TREE_CODE(lhs_type_tree) == RECORD_TYPE);
247
248 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
249
250 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
251 tree field = TYPE_FIELDS(lhs_type_tree);
252 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
253 "__values") == 0);
254 elt->index = field;
255 elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
256
257 elt = VEC_quick_push(constructor_elt, init, NULL);
258 field = DECL_CHAIN(field);
259 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
260 "__count") == 0);
261 elt->index = field;
262 elt->value = fold_convert(TREE_TYPE(field), integer_zero_node);
263
264 elt = VEC_quick_push(constructor_elt, init, NULL);
265 field = DECL_CHAIN(field);
266 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
267 "__capacity") == 0);
268 elt->index = field;
269 elt->value = fold_convert(TREE_TYPE(field), integer_zero_node);
270
271 tree val = build_constructor(lhs_type_tree, init);
272 TREE_CONSTANT(val) = 1;
273
274 return val;
275 }
276 else if (rhs_type->is_nil_type())
277 {
278 // The left hand side should be a pointer type at the tree
279 // level.
280 gcc_assert(POINTER_TYPE_P(lhs_type_tree));
281 return fold_convert(lhs_type_tree, null_pointer_node);
282 }
283 else if (lhs_type_tree == TREE_TYPE(rhs_tree))
284 {
285 // No conversion is needed.
286 return rhs_tree;
287 }
288 else if (POINTER_TYPE_P(lhs_type_tree)
289 || INTEGRAL_TYPE_P(lhs_type_tree)
290 || SCALAR_FLOAT_TYPE_P(lhs_type_tree)
291 || COMPLEX_FLOAT_TYPE_P(lhs_type_tree))
292 return fold_convert_loc(location, lhs_type_tree, rhs_tree);
293 else if (TREE_CODE(lhs_type_tree) == RECORD_TYPE
294 && TREE_CODE(TREE_TYPE(rhs_tree)) == RECORD_TYPE)
295 {
296 // This conversion must be permitted by Go, or we wouldn't have
297 // gotten here.
298 gcc_assert(int_size_in_bytes(lhs_type_tree)
299 == int_size_in_bytes(TREE_TYPE(rhs_tree)));
300 return fold_build1_loc(location, VIEW_CONVERT_EXPR, lhs_type_tree,
301 rhs_tree);
302 }
303 else
304 {
305 gcc_assert(useless_type_conversion_p(lhs_type_tree, TREE_TYPE(rhs_tree)));
306 return rhs_tree;
307 }
308 }
309
310 // Return a tree for a conversion from a non-interface type to an
311 // interface type.
312
313 tree
314 Expression::convert_type_to_interface(Translate_context* context,
315 Type* lhs_type, Type* rhs_type,
316 tree rhs_tree, source_location location)
317 {
318 Gogo* gogo = context->gogo();
319 Interface_type* lhs_interface_type = lhs_type->interface_type();
320 bool lhs_is_empty = lhs_interface_type->is_empty();
321
322 // Since RHS_TYPE is a static type, we can create the interface
323 // method table at compile time.
324
325 // When setting an interface to nil, we just set both fields to
326 // NULL.
327 if (rhs_type->is_nil_type())
328 return lhs_type->get_init_tree(gogo, false);
329
330 // This should have been checked already.
331 gcc_assert(lhs_interface_type->implements_interface(rhs_type, NULL));
332
333 tree lhs_type_tree = lhs_type->get_tree(gogo);
334 if (lhs_type_tree == error_mark_node)
335 return error_mark_node;
336
337 // An interface is a tuple. If LHS_TYPE is an empty interface type,
338 // then the first field is the type descriptor for RHS_TYPE.
339 // Otherwise it is the interface method table for RHS_TYPE.
340 tree first_field_value;
341 if (lhs_is_empty)
342 first_field_value = rhs_type->type_descriptor_pointer(gogo);
343 else
344 {
345 // Build the interface method table for this interface and this
346 // object type: a list of function pointers for each interface
347 // method.
348 Named_type* rhs_named_type = rhs_type->named_type();
349 bool is_pointer = false;
350 if (rhs_named_type == NULL)
351 {
352 rhs_named_type = rhs_type->deref()->named_type();
353 is_pointer = true;
354 }
355 tree method_table;
356 if (rhs_named_type == NULL)
357 method_table = null_pointer_node;
358 else
359 method_table =
360 rhs_named_type->interface_method_table(gogo, lhs_interface_type,
361 is_pointer);
362 first_field_value = fold_convert_loc(location, const_ptr_type_node,
363 method_table);
364 }
365
366 // Start building a constructor for the value we will return.
367
368 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
369
370 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
371 tree field = TYPE_FIELDS(lhs_type_tree);
372 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
373 (lhs_is_empty ? "__type_descriptor" : "__methods")) == 0);
374 elt->index = field;
375 elt->value = fold_convert_loc(location, TREE_TYPE(field), first_field_value);
376
377 elt = VEC_quick_push(constructor_elt, init, NULL);
378 field = DECL_CHAIN(field);
379 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
380 elt->index = field;
381
382 if (rhs_type->points_to() != NULL)
383 {
384 // We are assigning a pointer to the interface; the interface
385 // holds the pointer itself.
386 elt->value = rhs_tree;
387 return build_constructor(lhs_type_tree, init);
388 }
389
390 // We are assigning a non-pointer value to the interface; the
391 // interface gets a copy of the value in the heap.
392
393 tree object_size = TYPE_SIZE_UNIT(TREE_TYPE(rhs_tree));
394
395 tree space = gogo->allocate_memory(rhs_type, object_size, location);
396 space = fold_convert_loc(location, build_pointer_type(TREE_TYPE(rhs_tree)),
397 space);
398 space = save_expr(space);
399
400 tree ref = build_fold_indirect_ref_loc(location, space);
401 TREE_THIS_NOTRAP(ref) = 1;
402 tree set = fold_build2_loc(location, MODIFY_EXPR, void_type_node,
403 ref, rhs_tree);
404
405 elt->value = fold_convert_loc(location, TREE_TYPE(field), space);
406
407 return build2(COMPOUND_EXPR, lhs_type_tree, set,
408 build_constructor(lhs_type_tree, init));
409 }
410
411 // Return a tree for the type descriptor of RHS_TREE, which has
412 // interface type RHS_TYPE. If RHS_TREE is nil the result will be
413 // NULL.
414
415 tree
416 Expression::get_interface_type_descriptor(Translate_context*,
417 Type* rhs_type, tree rhs_tree,
418 source_location location)
419 {
420 tree rhs_type_tree = TREE_TYPE(rhs_tree);
421 gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
422 tree rhs_field = TYPE_FIELDS(rhs_type_tree);
423 tree v = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
424 NULL_TREE);
425 if (rhs_type->interface_type()->is_empty())
426 {
427 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)),
428 "__type_descriptor") == 0);
429 return v;
430 }
431
432 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__methods")
433 == 0);
434 gcc_assert(POINTER_TYPE_P(TREE_TYPE(v)));
435 v = save_expr(v);
436 tree v1 = build_fold_indirect_ref_loc(location, v);
437 gcc_assert(TREE_CODE(TREE_TYPE(v1)) == RECORD_TYPE);
438 tree f = TYPE_FIELDS(TREE_TYPE(v1));
439 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(f)), "__type_descriptor")
440 == 0);
441 v1 = build3(COMPONENT_REF, TREE_TYPE(f), v1, f, NULL_TREE);
442
443 tree eq = fold_build2_loc(location, EQ_EXPR, boolean_type_node, v,
444 fold_convert_loc(location, TREE_TYPE(v),
445 null_pointer_node));
446 tree n = fold_convert_loc(location, TREE_TYPE(v1), null_pointer_node);
447 return fold_build3_loc(location, COND_EXPR, TREE_TYPE(v1),
448 eq, n, v1);
449 }
450
451 // Return a tree for the conversion of an interface type to an
452 // interface type.
453
454 tree
455 Expression::convert_interface_to_interface(Translate_context* context,
456 Type *lhs_type, Type *rhs_type,
457 tree rhs_tree, bool for_type_guard,
458 source_location location)
459 {
460 Gogo* gogo = context->gogo();
461 Interface_type* lhs_interface_type = lhs_type->interface_type();
462 bool lhs_is_empty = lhs_interface_type->is_empty();
463
464 tree lhs_type_tree = lhs_type->get_tree(gogo);
465 if (lhs_type_tree == error_mark_node)
466 return error_mark_node;
467
468 // In the general case this requires runtime examination of the type
469 // method table to match it up with the interface methods.
470
471 // FIXME: If all of the methods in the right hand side interface
472 // also appear in the left hand side interface, then we don't need
473 // to do a runtime check, although we still need to build a new
474 // method table.
475
476 // Get the type descriptor for the right hand side. This will be
477 // NULL for a nil interface.
478
479 if (!DECL_P(rhs_tree))
480 rhs_tree = save_expr(rhs_tree);
481
482 tree rhs_type_descriptor =
483 Expression::get_interface_type_descriptor(context, rhs_type, rhs_tree,
484 location);
485
486 // The result is going to be a two element constructor.
487
488 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
489
490 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
491 tree field = TYPE_FIELDS(lhs_type_tree);
492 elt->index = field;
493
494 if (for_type_guard)
495 {
496 // A type assertion fails when converting a nil interface.
497 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
498 static tree assert_interface_decl;
499 tree call = Gogo::call_builtin(&assert_interface_decl,
500 location,
501 "__go_assert_interface",
502 2,
503 ptr_type_node,
504 TREE_TYPE(lhs_type_descriptor),
505 lhs_type_descriptor,
506 TREE_TYPE(rhs_type_descriptor),
507 rhs_type_descriptor);
508 if (call == error_mark_node)
509 return error_mark_node;
510 // This will panic if the interface conversion fails.
511 TREE_NOTHROW(assert_interface_decl) = 0;
512 elt->value = fold_convert_loc(location, TREE_TYPE(field), call);
513 }
514 else if (lhs_is_empty)
515 {
516 // A convertion to an empty interface always succeeds, and the
517 // first field is just the type descriptor of the object.
518 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
519 "__type_descriptor") == 0);
520 gcc_assert(TREE_TYPE(field) == TREE_TYPE(rhs_type_descriptor));
521 elt->value = rhs_type_descriptor;
522 }
523 else
524 {
525 // A conversion to a non-empty interface may fail, but unlike a
526 // type assertion converting nil will always succeed.
527 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods")
528 == 0);
529 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
530 static tree convert_interface_decl;
531 tree call = Gogo::call_builtin(&convert_interface_decl,
532 location,
533 "__go_convert_interface",
534 2,
535 ptr_type_node,
536 TREE_TYPE(lhs_type_descriptor),
537 lhs_type_descriptor,
538 TREE_TYPE(rhs_type_descriptor),
539 rhs_type_descriptor);
540 if (call == error_mark_node)
541 return error_mark_node;
542 // This will panic if the interface conversion fails.
543 TREE_NOTHROW(convert_interface_decl) = 0;
544 elt->value = fold_convert_loc(location, TREE_TYPE(field), call);
545 }
546
547 // The second field is simply the object pointer.
548
549 elt = VEC_quick_push(constructor_elt, init, NULL);
550 field = DECL_CHAIN(field);
551 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
552 elt->index = field;
553
554 tree rhs_type_tree = TREE_TYPE(rhs_tree);
555 gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
556 tree rhs_field = DECL_CHAIN(TYPE_FIELDS(rhs_type_tree));
557 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__object") == 0);
558 elt->value = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
559 NULL_TREE);
560
561 return build_constructor(lhs_type_tree, init);
562 }
563
564 // Return a tree for the conversion of an interface type to a
565 // non-interface type.
566
567 tree
568 Expression::convert_interface_to_type(Translate_context* context,
569 Type *lhs_type, Type* rhs_type,
570 tree rhs_tree, source_location location)
571 {
572 Gogo* gogo = context->gogo();
573 tree rhs_type_tree = TREE_TYPE(rhs_tree);
574
575 tree lhs_type_tree = lhs_type->get_tree(gogo);
576 if (lhs_type_tree == error_mark_node)
577 return error_mark_node;
578
579 // Call a function to check that the type is valid. The function
580 // will panic with an appropriate runtime type error if the type is
581 // not valid.
582
583 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
584
585 if (!DECL_P(rhs_tree))
586 rhs_tree = save_expr(rhs_tree);
587
588 tree rhs_type_descriptor =
589 Expression::get_interface_type_descriptor(context, rhs_type, rhs_tree,
590 location);
591
592 tree rhs_inter_descriptor = rhs_type->type_descriptor_pointer(gogo);
593
594 static tree check_interface_type_decl;
595 tree call = Gogo::call_builtin(&check_interface_type_decl,
596 location,
597 "__go_check_interface_type",
598 3,
599 void_type_node,
600 TREE_TYPE(lhs_type_descriptor),
601 lhs_type_descriptor,
602 TREE_TYPE(rhs_type_descriptor),
603 rhs_type_descriptor,
604 TREE_TYPE(rhs_inter_descriptor),
605 rhs_inter_descriptor);
606 if (call == error_mark_node)
607 return error_mark_node;
608 // This call will panic if the conversion is invalid.
609 TREE_NOTHROW(check_interface_type_decl) = 0;
610
611 // If the call succeeds, pull out the value.
612 gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
613 tree rhs_field = DECL_CHAIN(TYPE_FIELDS(rhs_type_tree));
614 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__object") == 0);
615 tree val = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
616 NULL_TREE);
617
618 // If the value is a pointer, then it is the value we want.
619 // Otherwise it points to the value.
620 if (lhs_type->points_to() == NULL)
621 {
622 val = fold_convert_loc(location, build_pointer_type(lhs_type_tree), val);
623 val = build_fold_indirect_ref_loc(location, val);
624 }
625
626 return build2(COMPOUND_EXPR, lhs_type_tree, call,
627 fold_convert_loc(location, lhs_type_tree, val));
628 }
629
630 // Convert an expression to a tree. This is implemented by the child
631 // class. Not that it is not in general safe to call this multiple
632 // times for a single expression, but that we don't catch such errors.
633
634 tree
635 Expression::get_tree(Translate_context* context)
636 {
637 // The child may have marked this expression as having an error.
638 if (this->classification_ == EXPRESSION_ERROR)
639 return error_mark_node;
640
641 return this->do_get_tree(context);
642 }
643
644 // Return a tree for VAL in TYPE.
645
646 tree
647 Expression::integer_constant_tree(mpz_t val, tree type)
648 {
649 if (type == error_mark_node)
650 return error_mark_node;
651 else if (TREE_CODE(type) == INTEGER_TYPE)
652 return double_int_to_tree(type,
653 mpz_get_double_int(type, val, true));
654 else if (TREE_CODE(type) == REAL_TYPE)
655 {
656 mpfr_t fval;
657 mpfr_init_set_z(fval, val, GMP_RNDN);
658 tree ret = Expression::float_constant_tree(fval, type);
659 mpfr_clear(fval);
660 return ret;
661 }
662 else if (TREE_CODE(type) == COMPLEX_TYPE)
663 {
664 mpfr_t fval;
665 mpfr_init_set_z(fval, val, GMP_RNDN);
666 tree real = Expression::float_constant_tree(fval, TREE_TYPE(type));
667 mpfr_clear(fval);
668 tree imag = build_real_from_int_cst(TREE_TYPE(type),
669 integer_zero_node);
670 return build_complex(type, real, imag);
671 }
672 else
673 gcc_unreachable();
674 }
675
676 // Return a tree for VAL in TYPE.
677
678 tree
679 Expression::float_constant_tree(mpfr_t val, tree type)
680 {
681 if (type == error_mark_node)
682 return error_mark_node;
683 else if (TREE_CODE(type) == INTEGER_TYPE)
684 {
685 mpz_t ival;
686 mpz_init(ival);
687 mpfr_get_z(ival, val, GMP_RNDN);
688 tree ret = Expression::integer_constant_tree(ival, type);
689 mpz_clear(ival);
690 return ret;
691 }
692 else if (TREE_CODE(type) == REAL_TYPE)
693 {
694 REAL_VALUE_TYPE r1;
695 real_from_mpfr(&r1, val, type, GMP_RNDN);
696 REAL_VALUE_TYPE r2;
697 real_convert(&r2, TYPE_MODE(type), &r1);
698 return build_real(type, r2);
699 }
700 else if (TREE_CODE(type) == COMPLEX_TYPE)
701 {
702 REAL_VALUE_TYPE r1;
703 real_from_mpfr(&r1, val, TREE_TYPE(type), GMP_RNDN);
704 REAL_VALUE_TYPE r2;
705 real_convert(&r2, TYPE_MODE(TREE_TYPE(type)), &r1);
706 tree imag = build_real_from_int_cst(TREE_TYPE(type),
707 integer_zero_node);
708 return build_complex(type, build_real(TREE_TYPE(type), r2), imag);
709 }
710 else
711 gcc_unreachable();
712 }
713
714 // Return a tree for REAL/IMAG in TYPE.
715
716 tree
717 Expression::complex_constant_tree(mpfr_t real, mpfr_t imag, tree type)
718 {
719 if (type == error_mark_node)
720 return error_mark_node;
721 else if (TREE_CODE(type) == INTEGER_TYPE || TREE_CODE(type) == REAL_TYPE)
722 return Expression::float_constant_tree(real, type);
723 else if (TREE_CODE(type) == COMPLEX_TYPE)
724 {
725 REAL_VALUE_TYPE r1;
726 real_from_mpfr(&r1, real, TREE_TYPE(type), GMP_RNDN);
727 REAL_VALUE_TYPE r2;
728 real_convert(&r2, TYPE_MODE(TREE_TYPE(type)), &r1);
729
730 REAL_VALUE_TYPE r3;
731 real_from_mpfr(&r3, imag, TREE_TYPE(type), GMP_RNDN);
732 REAL_VALUE_TYPE r4;
733 real_convert(&r4, TYPE_MODE(TREE_TYPE(type)), &r3);
734
735 return build_complex(type, build_real(TREE_TYPE(type), r2),
736 build_real(TREE_TYPE(type), r4));
737 }
738 else
739 gcc_unreachable();
740 }
741
742 // Return a tree which evaluates to true if VAL, of arbitrary integer
743 // type, is negative or is more than the maximum value of BOUND_TYPE.
744 // If SOFAR is not NULL, it is or'red into the result. The return
745 // value may be NULL if SOFAR is NULL.
746
747 tree
748 Expression::check_bounds(tree val, tree bound_type, tree sofar,
749 source_location loc)
750 {
751 tree val_type = TREE_TYPE(val);
752 tree ret = NULL_TREE;
753
754 if (!TYPE_UNSIGNED(val_type))
755 {
756 ret = fold_build2_loc(loc, LT_EXPR, boolean_type_node, val,
757 build_int_cst(val_type, 0));
758 if (ret == boolean_false_node)
759 ret = NULL_TREE;
760 }
761
762 if ((TYPE_UNSIGNED(val_type) && !TYPE_UNSIGNED(bound_type))
763 || TYPE_SIZE(val_type) > TYPE_SIZE(bound_type))
764 {
765 tree max = TYPE_MAX_VALUE(bound_type);
766 tree big = fold_build2_loc(loc, GT_EXPR, boolean_type_node, val,
767 fold_convert_loc(loc, val_type, max));
768 if (big == boolean_false_node)
769 ;
770 else if (ret == NULL_TREE)
771 ret = big;
772 else
773 ret = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
774 ret, big);
775 }
776
777 if (ret == NULL_TREE)
778 return sofar;
779 else if (sofar == NULL_TREE)
780 return ret;
781 else
782 return fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
783 sofar, ret);
784 }
785
786 // Error expressions. This are used to avoid cascading errors.
787
788 class Error_expression : public Expression
789 {
790 public:
791 Error_expression(source_location location)
792 : Expression(EXPRESSION_ERROR, location)
793 { }
794
795 protected:
796 bool
797 do_is_constant() const
798 { return true; }
799
800 bool
801 do_integer_constant_value(bool, mpz_t val, Type**) const
802 {
803 mpz_set_ui(val, 0);
804 return true;
805 }
806
807 bool
808 do_float_constant_value(mpfr_t val, Type**) const
809 {
810 mpfr_set_ui(val, 0, GMP_RNDN);
811 return true;
812 }
813
814 bool
815 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const
816 {
817 mpfr_set_ui(real, 0, GMP_RNDN);
818 mpfr_set_ui(imag, 0, GMP_RNDN);
819 return true;
820 }
821
822 void
823 do_discarding_value()
824 { }
825
826 Type*
827 do_type()
828 { return Type::make_error_type(); }
829
830 void
831 do_determine_type(const Type_context*)
832 { }
833
834 Expression*
835 do_copy()
836 { return this; }
837
838 bool
839 do_is_addressable() const
840 { return true; }
841
842 tree
843 do_get_tree(Translate_context*)
844 { return error_mark_node; }
845 };
846
847 Expression*
848 Expression::make_error(source_location location)
849 {
850 return new Error_expression(location);
851 }
852
853 // An expression which is really a type. This is used during parsing.
854 // It is an error if these survive after lowering.
855
856 class
857 Type_expression : public Expression
858 {
859 public:
860 Type_expression(Type* type, source_location location)
861 : Expression(EXPRESSION_TYPE, location),
862 type_(type)
863 { }
864
865 protected:
866 int
867 do_traverse(Traverse* traverse)
868 { return Type::traverse(this->type_, traverse); }
869
870 Type*
871 do_type()
872 { return this->type_; }
873
874 void
875 do_determine_type(const Type_context*)
876 { }
877
878 void
879 do_check_types(Gogo*)
880 { this->report_error(_("invalid use of type")); }
881
882 Expression*
883 do_copy()
884 { return this; }
885
886 tree
887 do_get_tree(Translate_context*)
888 { gcc_unreachable(); }
889
890 private:
891 // The type which we are representing as an expression.
892 Type* type_;
893 };
894
895 Expression*
896 Expression::make_type(Type* type, source_location location)
897 {
898 return new Type_expression(type, location);
899 }
900
901 // Class Parser_expression.
902
903 Type*
904 Parser_expression::do_type()
905 {
906 // We should never really ask for the type of a Parser_expression.
907 // However, it can happen, at least when we have an invalid const
908 // whose initializer refers to the const itself. In that case we
909 // may ask for the type when lowering the const itself.
910 gcc_assert(saw_errors());
911 return Type::make_error_type();
912 }
913
914 // Class Var_expression.
915
916 // Lower a variable expression. Here we just make sure that the
917 // initialization expression of the variable has been lowered. This
918 // ensures that we will be able to determine the type of the variable
919 // if necessary.
920
921 Expression*
922 Var_expression::do_lower(Gogo* gogo, Named_object* function, int)
923 {
924 if (this->variable_->is_variable())
925 {
926 Variable* var = this->variable_->var_value();
927 // This is either a local variable or a global variable. A
928 // reference to a variable which is local to an enclosing
929 // function will be a reference to a field in a closure.
930 if (var->is_global())
931 function = NULL;
932 var->lower_init_expression(gogo, function);
933 }
934 return this;
935 }
936
937 // Return the name of the variable.
938
939 const std::string&
940 Var_expression::name() const
941 {
942 return this->variable_->name();
943 }
944
945 // Return the type of a reference to a variable.
946
947 Type*
948 Var_expression::do_type()
949 {
950 if (this->variable_->is_variable())
951 return this->variable_->var_value()->type();
952 else if (this->variable_->is_result_variable())
953 return this->variable_->result_var_value()->type();
954 else
955 gcc_unreachable();
956 }
957
958 // Something takes the address of this variable. This means that we
959 // may want to move the variable onto the heap.
960
961 void
962 Var_expression::do_address_taken(bool escapes)
963 {
964 if (!escapes)
965 ;
966 else if (this->variable_->is_variable())
967 this->variable_->var_value()->set_address_taken();
968 else if (this->variable_->is_result_variable())
969 this->variable_->result_var_value()->set_address_taken();
970 else
971 gcc_unreachable();
972 }
973
974 // Get the tree for a reference to a variable.
975
976 tree
977 Var_expression::do_get_tree(Translate_context* context)
978 {
979 return this->variable_->get_tree(context->gogo(), context->function());
980 }
981
982 // Make a reference to a variable in an expression.
983
984 Expression*
985 Expression::make_var_reference(Named_object* var, source_location location)
986 {
987 if (var->is_sink())
988 return Expression::make_sink(location);
989
990 // FIXME: Creating a new object for each reference to a variable is
991 // wasteful.
992 return new Var_expression(var, location);
993 }
994
995 // Class Temporary_reference_expression.
996
997 // The type.
998
999 Type*
1000 Temporary_reference_expression::do_type()
1001 {
1002 return this->statement_->type();
1003 }
1004
1005 // Called if something takes the address of this temporary variable.
1006 // We never have to move temporary variables to the heap, but we do
1007 // need to know that they must live in the stack rather than in a
1008 // register.
1009
1010 void
1011 Temporary_reference_expression::do_address_taken(bool)
1012 {
1013 this->statement_->set_is_address_taken();
1014 }
1015
1016 // Get a tree referring to the variable.
1017
1018 tree
1019 Temporary_reference_expression::do_get_tree(Translate_context*)
1020 {
1021 return this->statement_->get_decl();
1022 }
1023
1024 // Make a reference to a temporary variable.
1025
1026 Expression*
1027 Expression::make_temporary_reference(Temporary_statement* statement,
1028 source_location location)
1029 {
1030 return new Temporary_reference_expression(statement, location);
1031 }
1032
1033 // A sink expression--a use of the blank identifier _.
1034
1035 class Sink_expression : public Expression
1036 {
1037 public:
1038 Sink_expression(source_location location)
1039 : Expression(EXPRESSION_SINK, location),
1040 type_(NULL), var_(NULL_TREE)
1041 { }
1042
1043 protected:
1044 void
1045 do_discarding_value()
1046 { }
1047
1048 Type*
1049 do_type();
1050
1051 void
1052 do_determine_type(const Type_context*);
1053
1054 Expression*
1055 do_copy()
1056 { return new Sink_expression(this->location()); }
1057
1058 tree
1059 do_get_tree(Translate_context*);
1060
1061 private:
1062 // The type of this sink variable.
1063 Type* type_;
1064 // The temporary variable we generate.
1065 tree var_;
1066 };
1067
1068 // Return the type of a sink expression.
1069
1070 Type*
1071 Sink_expression::do_type()
1072 {
1073 if (this->type_ == NULL)
1074 return Type::make_sink_type();
1075 return this->type_;
1076 }
1077
1078 // Determine the type of a sink expression.
1079
1080 void
1081 Sink_expression::do_determine_type(const Type_context* context)
1082 {
1083 if (context->type != NULL)
1084 this->type_ = context->type;
1085 }
1086
1087 // Return a temporary variable for a sink expression. This will
1088 // presumably be a write-only variable which the middle-end will drop.
1089
1090 tree
1091 Sink_expression::do_get_tree(Translate_context* context)
1092 {
1093 if (this->var_ == NULL_TREE)
1094 {
1095 gcc_assert(this->type_ != NULL && !this->type_->is_sink_type());
1096 this->var_ = create_tmp_var(this->type_->get_tree(context->gogo()),
1097 "blank");
1098 }
1099 return this->var_;
1100 }
1101
1102 // Make a sink expression.
1103
1104 Expression*
1105 Expression::make_sink(source_location location)
1106 {
1107 return new Sink_expression(location);
1108 }
1109
1110 // Class Func_expression.
1111
1112 // FIXME: Can a function expression appear in a constant expression?
1113 // The value is unchanging. Initializing a constant to the address of
1114 // a function seems like it could work, though there might be little
1115 // point to it.
1116
1117 // Return the name of the function.
1118
1119 const std::string&
1120 Func_expression::name() const
1121 {
1122 return this->function_->name();
1123 }
1124
1125 // Traversal.
1126
1127 int
1128 Func_expression::do_traverse(Traverse* traverse)
1129 {
1130 return (this->closure_ == NULL
1131 ? TRAVERSE_CONTINUE
1132 : Expression::traverse(&this->closure_, traverse));
1133 }
1134
1135 // Return the type of a function expression.
1136
1137 Type*
1138 Func_expression::do_type()
1139 {
1140 if (this->function_->is_function())
1141 return this->function_->func_value()->type();
1142 else if (this->function_->is_function_declaration())
1143 return this->function_->func_declaration_value()->type();
1144 else
1145 gcc_unreachable();
1146 }
1147
1148 // Get the tree for a function expression without evaluating the
1149 // closure.
1150
1151 tree
1152 Func_expression::get_tree_without_closure(Gogo* gogo)
1153 {
1154 Function_type* fntype;
1155 if (this->function_->is_function())
1156 fntype = this->function_->func_value()->type();
1157 else if (this->function_->is_function_declaration())
1158 fntype = this->function_->func_declaration_value()->type();
1159 else
1160 gcc_unreachable();
1161
1162 // Builtin functions are handled specially by Call_expression. We
1163 // can't take their address.
1164 if (fntype->is_builtin())
1165 {
1166 error_at(this->location(), "invalid use of special builtin function %qs",
1167 this->function_->name().c_str());
1168 return error_mark_node;
1169 }
1170
1171 Named_object* no = this->function_;
1172
1173 tree id = no->get_id(gogo);
1174 if (id == error_mark_node)
1175 return error_mark_node;
1176
1177 tree fndecl;
1178 if (no->is_function())
1179 fndecl = no->func_value()->get_or_make_decl(gogo, no, id);
1180 else if (no->is_function_declaration())
1181 fndecl = no->func_declaration_value()->get_or_make_decl(gogo, no, id);
1182 else
1183 gcc_unreachable();
1184
1185 if (fndecl == error_mark_node)
1186 return error_mark_node;
1187
1188 return build_fold_addr_expr_loc(this->location(), fndecl);
1189 }
1190
1191 // Get the tree for a function expression. This is used when we take
1192 // the address of a function rather than simply calling it. If the
1193 // function has a closure, we must use a trampoline.
1194
1195 tree
1196 Func_expression::do_get_tree(Translate_context* context)
1197 {
1198 Gogo* gogo = context->gogo();
1199
1200 tree fnaddr = this->get_tree_without_closure(gogo);
1201 if (fnaddr == error_mark_node)
1202 return error_mark_node;
1203
1204 gcc_assert(TREE_CODE(fnaddr) == ADDR_EXPR
1205 && TREE_CODE(TREE_OPERAND(fnaddr, 0)) == FUNCTION_DECL);
1206 TREE_ADDRESSABLE(TREE_OPERAND(fnaddr, 0)) = 1;
1207
1208 // For a normal non-nested function call, that is all we have to do.
1209 if (!this->function_->is_function()
1210 || this->function_->func_value()->enclosing() == NULL)
1211 {
1212 gcc_assert(this->closure_ == NULL);
1213 return fnaddr;
1214 }
1215
1216 // For a nested function call, we have to always allocate a
1217 // trampoline. If we don't always allocate, then closures will not
1218 // be reliably distinct.
1219 Expression* closure = this->closure_;
1220 tree closure_tree;
1221 if (closure == NULL)
1222 closure_tree = null_pointer_node;
1223 else
1224 {
1225 // Get the value of the closure. This will be a pointer to
1226 // space allocated on the heap.
1227 closure_tree = closure->get_tree(context);
1228 if (closure_tree == error_mark_node)
1229 return error_mark_node;
1230 gcc_assert(POINTER_TYPE_P(TREE_TYPE(closure_tree)));
1231 }
1232
1233 // Now we need to build some code on the heap. This code will load
1234 // the static chain pointer with the closure and then jump to the
1235 // body of the function. The normal gcc approach is to build the
1236 // code on the stack. Unfortunately we can not do that, as Go
1237 // permits us to return the function pointer.
1238
1239 return gogo->make_trampoline(fnaddr, closure_tree, this->location());
1240 }
1241
1242 // Make a reference to a function in an expression.
1243
1244 Expression*
1245 Expression::make_func_reference(Named_object* function, Expression* closure,
1246 source_location location)
1247 {
1248 return new Func_expression(function, closure, location);
1249 }
1250
1251 // Class Unknown_expression.
1252
1253 // Return the name of an unknown expression.
1254
1255 const std::string&
1256 Unknown_expression::name() const
1257 {
1258 return this->named_object_->name();
1259 }
1260
1261 // Lower a reference to an unknown name.
1262
1263 Expression*
1264 Unknown_expression::do_lower(Gogo*, Named_object*, int)
1265 {
1266 source_location location = this->location();
1267 Named_object* no = this->named_object_;
1268 Named_object* real;
1269 if (!no->is_unknown())
1270 real = no;
1271 else
1272 {
1273 real = no->unknown_value()->real_named_object();
1274 if (real == NULL)
1275 {
1276 if (this->is_composite_literal_key_)
1277 return this;
1278 error_at(location, "reference to undefined name %qs",
1279 this->named_object_->message_name().c_str());
1280 return Expression::make_error(location);
1281 }
1282 }
1283 switch (real->classification())
1284 {
1285 case Named_object::NAMED_OBJECT_CONST:
1286 return Expression::make_const_reference(real, location);
1287 case Named_object::NAMED_OBJECT_TYPE:
1288 return Expression::make_type(real->type_value(), location);
1289 case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
1290 if (this->is_composite_literal_key_)
1291 return this;
1292 error_at(location, "reference to undefined type %qs",
1293 real->message_name().c_str());
1294 return Expression::make_error(location);
1295 case Named_object::NAMED_OBJECT_VAR:
1296 return Expression::make_var_reference(real, location);
1297 case Named_object::NAMED_OBJECT_FUNC:
1298 case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
1299 return Expression::make_func_reference(real, NULL, location);
1300 case Named_object::NAMED_OBJECT_PACKAGE:
1301 if (this->is_composite_literal_key_)
1302 return this;
1303 error_at(location, "unexpected reference to package");
1304 return Expression::make_error(location);
1305 default:
1306 gcc_unreachable();
1307 }
1308 }
1309
1310 // Make a reference to an unknown name.
1311
1312 Expression*
1313 Expression::make_unknown_reference(Named_object* no, source_location location)
1314 {
1315 gcc_assert(no->resolve()->is_unknown());
1316 return new Unknown_expression(no, location);
1317 }
1318
1319 // A boolean expression.
1320
1321 class Boolean_expression : public Expression
1322 {
1323 public:
1324 Boolean_expression(bool val, source_location location)
1325 : Expression(EXPRESSION_BOOLEAN, location),
1326 val_(val), type_(NULL)
1327 { }
1328
1329 static Expression*
1330 do_import(Import*);
1331
1332 protected:
1333 bool
1334 do_is_constant() const
1335 { return true; }
1336
1337 Type*
1338 do_type();
1339
1340 void
1341 do_determine_type(const Type_context*);
1342
1343 Expression*
1344 do_copy()
1345 { return this; }
1346
1347 tree
1348 do_get_tree(Translate_context*)
1349 { return this->val_ ? boolean_true_node : boolean_false_node; }
1350
1351 void
1352 do_export(Export* exp) const
1353 { exp->write_c_string(this->val_ ? "true" : "false"); }
1354
1355 private:
1356 // The constant.
1357 bool val_;
1358 // The type as determined by context.
1359 Type* type_;
1360 };
1361
1362 // Get the type.
1363
1364 Type*
1365 Boolean_expression::do_type()
1366 {
1367 if (this->type_ == NULL)
1368 this->type_ = Type::make_boolean_type();
1369 return this->type_;
1370 }
1371
1372 // Set the type from the context.
1373
1374 void
1375 Boolean_expression::do_determine_type(const Type_context* context)
1376 {
1377 if (this->type_ != NULL && !this->type_->is_abstract())
1378 ;
1379 else if (context->type != NULL && context->type->is_boolean_type())
1380 this->type_ = context->type;
1381 else if (!context->may_be_abstract)
1382 this->type_ = Type::lookup_bool_type();
1383 }
1384
1385 // Import a boolean constant.
1386
1387 Expression*
1388 Boolean_expression::do_import(Import* imp)
1389 {
1390 if (imp->peek_char() == 't')
1391 {
1392 imp->require_c_string("true");
1393 return Expression::make_boolean(true, imp->location());
1394 }
1395 else
1396 {
1397 imp->require_c_string("false");
1398 return Expression::make_boolean(false, imp->location());
1399 }
1400 }
1401
1402 // Make a boolean expression.
1403
1404 Expression*
1405 Expression::make_boolean(bool val, source_location location)
1406 {
1407 return new Boolean_expression(val, location);
1408 }
1409
1410 // Class String_expression.
1411
1412 // Get the type.
1413
1414 Type*
1415 String_expression::do_type()
1416 {
1417 if (this->type_ == NULL)
1418 this->type_ = Type::make_string_type();
1419 return this->type_;
1420 }
1421
1422 // Set the type from the context.
1423
1424 void
1425 String_expression::do_determine_type(const Type_context* context)
1426 {
1427 if (this->type_ != NULL && !this->type_->is_abstract())
1428 ;
1429 else if (context->type != NULL && context->type->is_string_type())
1430 this->type_ = context->type;
1431 else if (!context->may_be_abstract)
1432 this->type_ = Type::lookup_string_type();
1433 }
1434
1435 // Build a string constant.
1436
1437 tree
1438 String_expression::do_get_tree(Translate_context* context)
1439 {
1440 return context->gogo()->go_string_constant_tree(this->val_);
1441 }
1442
1443 // Export a string expression.
1444
1445 void
1446 String_expression::do_export(Export* exp) const
1447 {
1448 std::string s;
1449 s.reserve(this->val_.length() * 4 + 2);
1450 s += '"';
1451 for (std::string::const_iterator p = this->val_.begin();
1452 p != this->val_.end();
1453 ++p)
1454 {
1455 if (*p == '\\' || *p == '"')
1456 {
1457 s += '\\';
1458 s += *p;
1459 }
1460 else if (*p >= 0x20 && *p < 0x7f)
1461 s += *p;
1462 else if (*p == '\n')
1463 s += "\\n";
1464 else if (*p == '\t')
1465 s += "\\t";
1466 else
1467 {
1468 s += "\\x";
1469 unsigned char c = *p;
1470 unsigned int dig = c >> 4;
1471 s += dig < 10 ? '0' + dig : 'A' + dig - 10;
1472 dig = c & 0xf;
1473 s += dig < 10 ? '0' + dig : 'A' + dig - 10;
1474 }
1475 }
1476 s += '"';
1477 exp->write_string(s);
1478 }
1479
1480 // Import a string expression.
1481
1482 Expression*
1483 String_expression::do_import(Import* imp)
1484 {
1485 imp->require_c_string("\"");
1486 std::string val;
1487 while (true)
1488 {
1489 int c = imp->get_char();
1490 if (c == '"' || c == -1)
1491 break;
1492 if (c != '\\')
1493 val += static_cast<char>(c);
1494 else
1495 {
1496 c = imp->get_char();
1497 if (c == '\\' || c == '"')
1498 val += static_cast<char>(c);
1499 else if (c == 'n')
1500 val += '\n';
1501 else if (c == 't')
1502 val += '\t';
1503 else if (c == 'x')
1504 {
1505 c = imp->get_char();
1506 unsigned int vh = c >= '0' && c <= '9' ? c - '0' : c - 'A' + 10;
1507 c = imp->get_char();
1508 unsigned int vl = c >= '0' && c <= '9' ? c - '0' : c - 'A' + 10;
1509 char v = (vh << 4) | vl;
1510 val += v;
1511 }
1512 else
1513 {
1514 error_at(imp->location(), "bad string constant");
1515 return Expression::make_error(imp->location());
1516 }
1517 }
1518 }
1519 return Expression::make_string(val, imp->location());
1520 }
1521
1522 // Make a string expression.
1523
1524 Expression*
1525 Expression::make_string(const std::string& val, source_location location)
1526 {
1527 return new String_expression(val, location);
1528 }
1529
1530 // Make an integer expression.
1531
1532 class Integer_expression : public Expression
1533 {
1534 public:
1535 Integer_expression(const mpz_t* val, Type* type, source_location location)
1536 : Expression(EXPRESSION_INTEGER, location),
1537 type_(type)
1538 { mpz_init_set(this->val_, *val); }
1539
1540 static Expression*
1541 do_import(Import*);
1542
1543 // Return whether VAL fits in the type.
1544 static bool
1545 check_constant(mpz_t val, Type*, source_location);
1546
1547 // Write VAL to export data.
1548 static void
1549 export_integer(Export* exp, const mpz_t val);
1550
1551 protected:
1552 bool
1553 do_is_constant() const
1554 { return true; }
1555
1556 bool
1557 do_integer_constant_value(bool, mpz_t val, Type** ptype) const;
1558
1559 Type*
1560 do_type();
1561
1562 void
1563 do_determine_type(const Type_context* context);
1564
1565 void
1566 do_check_types(Gogo*);
1567
1568 tree
1569 do_get_tree(Translate_context*);
1570
1571 Expression*
1572 do_copy()
1573 { return Expression::make_integer(&this->val_, this->type_,
1574 this->location()); }
1575
1576 void
1577 do_export(Export*) const;
1578
1579 private:
1580 // The integer value.
1581 mpz_t val_;
1582 // The type so far.
1583 Type* type_;
1584 };
1585
1586 // Return an integer constant value.
1587
1588 bool
1589 Integer_expression::do_integer_constant_value(bool, mpz_t val,
1590 Type** ptype) const
1591 {
1592 if (this->type_ != NULL)
1593 *ptype = this->type_;
1594 mpz_set(val, this->val_);
1595 return true;
1596 }
1597
1598 // Return the current type. If we haven't set the type yet, we return
1599 // an abstract integer type.
1600
1601 Type*
1602 Integer_expression::do_type()
1603 {
1604 if (this->type_ == NULL)
1605 this->type_ = Type::make_abstract_integer_type();
1606 return this->type_;
1607 }
1608
1609 // Set the type of the integer value. Here we may switch from an
1610 // abstract type to a real type.
1611
1612 void
1613 Integer_expression::do_determine_type(const Type_context* context)
1614 {
1615 if (this->type_ != NULL && !this->type_->is_abstract())
1616 ;
1617 else if (context->type != NULL
1618 && (context->type->integer_type() != NULL
1619 || context->type->float_type() != NULL
1620 || context->type->complex_type() != NULL))
1621 this->type_ = context->type;
1622 else if (!context->may_be_abstract)
1623 this->type_ = Type::lookup_integer_type("int");
1624 }
1625
1626 // Return true if the integer VAL fits in the range of the type TYPE.
1627 // Otherwise give an error and return false. TYPE may be NULL.
1628
1629 bool
1630 Integer_expression::check_constant(mpz_t val, Type* type,
1631 source_location location)
1632 {
1633 if (type == NULL)
1634 return true;
1635 Integer_type* itype = type->integer_type();
1636 if (itype == NULL || itype->is_abstract())
1637 return true;
1638
1639 int bits = mpz_sizeinbase(val, 2);
1640
1641 if (itype->is_unsigned())
1642 {
1643 // For an unsigned type we can only accept a nonnegative number,
1644 // and we must be able to represent at least BITS.
1645 if (mpz_sgn(val) >= 0
1646 && bits <= itype->bits())
1647 return true;
1648 }
1649 else
1650 {
1651 // For a signed type we need an extra bit to indicate the sign.
1652 // We have to handle the most negative integer specially.
1653 if (bits + 1 <= itype->bits()
1654 || (bits <= itype->bits()
1655 && mpz_sgn(val) < 0
1656 && (mpz_scan1(val, 0)
1657 == static_cast<unsigned long>(itype->bits() - 1))
1658 && mpz_scan0(val, itype->bits()) == ULONG_MAX))
1659 return true;
1660 }
1661
1662 error_at(location, "integer constant overflow");
1663 return false;
1664 }
1665
1666 // Check the type of an integer constant.
1667
1668 void
1669 Integer_expression::do_check_types(Gogo*)
1670 {
1671 if (this->type_ == NULL)
1672 return;
1673 if (!Integer_expression::check_constant(this->val_, this->type_,
1674 this->location()))
1675 this->set_is_error();
1676 }
1677
1678 // Get a tree for an integer constant.
1679
1680 tree
1681 Integer_expression::do_get_tree(Translate_context* context)
1682 {
1683 Gogo* gogo = context->gogo();
1684 tree type;
1685 if (this->type_ != NULL && !this->type_->is_abstract())
1686 type = this->type_->get_tree(gogo);
1687 else if (this->type_ != NULL && this->type_->float_type() != NULL)
1688 {
1689 // We are converting to an abstract floating point type.
1690 type = Type::lookup_float_type("float64")->get_tree(gogo);
1691 }
1692 else if (this->type_ != NULL && this->type_->complex_type() != NULL)
1693 {
1694 // We are converting to an abstract complex type.
1695 type = Type::lookup_complex_type("complex128")->get_tree(gogo);
1696 }
1697 else
1698 {
1699 // If we still have an abstract type here, then this is being
1700 // used in a constant expression which didn't get reduced for
1701 // some reason. Use a type which will fit the value. We use <,
1702 // not <=, because we need an extra bit for the sign bit.
1703 int bits = mpz_sizeinbase(this->val_, 2);
1704 if (bits < INT_TYPE_SIZE)
1705 type = Type::lookup_integer_type("int")->get_tree(gogo);
1706 else if (bits < 64)
1707 type = Type::lookup_integer_type("int64")->get_tree(gogo);
1708 else
1709 type = long_long_integer_type_node;
1710 }
1711 return Expression::integer_constant_tree(this->val_, type);
1712 }
1713
1714 // Write VAL to export data.
1715
1716 void
1717 Integer_expression::export_integer(Export* exp, const mpz_t val)
1718 {
1719 char* s = mpz_get_str(NULL, 10, val);
1720 exp->write_c_string(s);
1721 free(s);
1722 }
1723
1724 // Export an integer in a constant expression.
1725
1726 void
1727 Integer_expression::do_export(Export* exp) const
1728 {
1729 Integer_expression::export_integer(exp, this->val_);
1730 // A trailing space lets us reliably identify the end of the number.
1731 exp->write_c_string(" ");
1732 }
1733
1734 // Import an integer, floating point, or complex value. This handles
1735 // all these types because they all start with digits.
1736
1737 Expression*
1738 Integer_expression::do_import(Import* imp)
1739 {
1740 std::string num = imp->read_identifier();
1741 imp->require_c_string(" ");
1742 if (!num.empty() && num[num.length() - 1] == 'i')
1743 {
1744 mpfr_t real;
1745 size_t plus_pos = num.find('+', 1);
1746 size_t minus_pos = num.find('-', 1);
1747 size_t pos;
1748 if (plus_pos == std::string::npos)
1749 pos = minus_pos;
1750 else if (minus_pos == std::string::npos)
1751 pos = plus_pos;
1752 else
1753 {
1754 error_at(imp->location(), "bad number in import data: %qs",
1755 num.c_str());
1756 return Expression::make_error(imp->location());
1757 }
1758 if (pos == std::string::npos)
1759 mpfr_set_ui(real, 0, GMP_RNDN);
1760 else
1761 {
1762 std::string real_str = num.substr(0, pos);
1763 if (mpfr_init_set_str(real, real_str.c_str(), 10, GMP_RNDN) != 0)
1764 {
1765 error_at(imp->location(), "bad number in import data: %qs",
1766 real_str.c_str());
1767 return Expression::make_error(imp->location());
1768 }
1769 }
1770
1771 std::string imag_str;
1772 if (pos == std::string::npos)
1773 imag_str = num;
1774 else
1775 imag_str = num.substr(pos);
1776 imag_str = imag_str.substr(0, imag_str.size() - 1);
1777 mpfr_t imag;
1778 if (mpfr_init_set_str(imag, imag_str.c_str(), 10, GMP_RNDN) != 0)
1779 {
1780 error_at(imp->location(), "bad number in import data: %qs",
1781 imag_str.c_str());
1782 return Expression::make_error(imp->location());
1783 }
1784 Expression* ret = Expression::make_complex(&real, &imag, NULL,
1785 imp->location());
1786 mpfr_clear(real);
1787 mpfr_clear(imag);
1788 return ret;
1789 }
1790 else if (num.find('.') == std::string::npos
1791 && num.find('E') == std::string::npos)
1792 {
1793 mpz_t val;
1794 if (mpz_init_set_str(val, num.c_str(), 10) != 0)
1795 {
1796 error_at(imp->location(), "bad number in import data: %qs",
1797 num.c_str());
1798 return Expression::make_error(imp->location());
1799 }
1800 Expression* ret = Expression::make_integer(&val, NULL, imp->location());
1801 mpz_clear(val);
1802 return ret;
1803 }
1804 else
1805 {
1806 mpfr_t val;
1807 if (mpfr_init_set_str(val, num.c_str(), 10, GMP_RNDN) != 0)
1808 {
1809 error_at(imp->location(), "bad number in import data: %qs",
1810 num.c_str());
1811 return Expression::make_error(imp->location());
1812 }
1813 Expression* ret = Expression::make_float(&val, NULL, imp->location());
1814 mpfr_clear(val);
1815 return ret;
1816 }
1817 }
1818
1819 // Build a new integer value.
1820
1821 Expression*
1822 Expression::make_integer(const mpz_t* val, Type* type,
1823 source_location location)
1824 {
1825 return new Integer_expression(val, type, location);
1826 }
1827
1828 // Floats.
1829
1830 class Float_expression : public Expression
1831 {
1832 public:
1833 Float_expression(const mpfr_t* val, Type* type, source_location location)
1834 : Expression(EXPRESSION_FLOAT, location),
1835 type_(type)
1836 {
1837 mpfr_init_set(this->val_, *val, GMP_RNDN);
1838 }
1839
1840 // Constrain VAL to fit into TYPE.
1841 static void
1842 constrain_float(mpfr_t val, Type* type);
1843
1844 // Return whether VAL fits in the type.
1845 static bool
1846 check_constant(mpfr_t val, Type*, source_location);
1847
1848 // Write VAL to export data.
1849 static void
1850 export_float(Export* exp, const mpfr_t val);
1851
1852 protected:
1853 bool
1854 do_is_constant() const
1855 { return true; }
1856
1857 bool
1858 do_float_constant_value(mpfr_t val, Type**) const;
1859
1860 Type*
1861 do_type();
1862
1863 void
1864 do_determine_type(const Type_context*);
1865
1866 void
1867 do_check_types(Gogo*);
1868
1869 Expression*
1870 do_copy()
1871 { return Expression::make_float(&this->val_, this->type_,
1872 this->location()); }
1873
1874 tree
1875 do_get_tree(Translate_context*);
1876
1877 void
1878 do_export(Export*) const;
1879
1880 private:
1881 // The floating point value.
1882 mpfr_t val_;
1883 // The type so far.
1884 Type* type_;
1885 };
1886
1887 // Constrain VAL to fit into TYPE.
1888
1889 void
1890 Float_expression::constrain_float(mpfr_t val, Type* type)
1891 {
1892 Float_type* ftype = type->float_type();
1893 if (ftype != NULL && !ftype->is_abstract())
1894 {
1895 tree type_tree = ftype->type_tree();
1896 REAL_VALUE_TYPE rvt;
1897 real_from_mpfr(&rvt, val, type_tree, GMP_RNDN);
1898 real_convert(&rvt, TYPE_MODE(type_tree), &rvt);
1899 mpfr_from_real(val, &rvt, GMP_RNDN);
1900 }
1901 }
1902
1903 // Return a floating point constant value.
1904
1905 bool
1906 Float_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
1907 {
1908 if (this->type_ != NULL)
1909 *ptype = this->type_;
1910 mpfr_set(val, this->val_, GMP_RNDN);
1911 return true;
1912 }
1913
1914 // Return the current type. If we haven't set the type yet, we return
1915 // an abstract float type.
1916
1917 Type*
1918 Float_expression::do_type()
1919 {
1920 if (this->type_ == NULL)
1921 this->type_ = Type::make_abstract_float_type();
1922 return this->type_;
1923 }
1924
1925 // Set the type of the float value. Here we may switch from an
1926 // abstract type to a real type.
1927
1928 void
1929 Float_expression::do_determine_type(const Type_context* context)
1930 {
1931 if (this->type_ != NULL && !this->type_->is_abstract())
1932 ;
1933 else if (context->type != NULL
1934 && (context->type->integer_type() != NULL
1935 || context->type->float_type() != NULL
1936 || context->type->complex_type() != NULL))
1937 this->type_ = context->type;
1938 else if (!context->may_be_abstract)
1939 this->type_ = Type::lookup_float_type("float64");
1940 }
1941
1942 // Return true if the floating point value VAL fits in the range of
1943 // the type TYPE. Otherwise give an error and return false. TYPE may
1944 // be NULL.
1945
1946 bool
1947 Float_expression::check_constant(mpfr_t val, Type* type,
1948 source_location location)
1949 {
1950 if (type == NULL)
1951 return true;
1952 Float_type* ftype = type->float_type();
1953 if (ftype == NULL || ftype->is_abstract())
1954 return true;
1955
1956 // A NaN or Infinity always fits in the range of the type.
1957 if (mpfr_nan_p(val) || mpfr_inf_p(val) || mpfr_zero_p(val))
1958 return true;
1959
1960 mp_exp_t exp = mpfr_get_exp(val);
1961 mp_exp_t max_exp;
1962 switch (ftype->bits())
1963 {
1964 case 32:
1965 max_exp = 128;
1966 break;
1967 case 64:
1968 max_exp = 1024;
1969 break;
1970 default:
1971 gcc_unreachable();
1972 }
1973 if (exp > max_exp)
1974 {
1975 error_at(location, "floating point constant overflow");
1976 return false;
1977 }
1978 return true;
1979 }
1980
1981 // Check the type of a float value.
1982
1983 void
1984 Float_expression::do_check_types(Gogo*)
1985 {
1986 if (this->type_ == NULL)
1987 return;
1988
1989 if (!Float_expression::check_constant(this->val_, this->type_,
1990 this->location()))
1991 this->set_is_error();
1992
1993 Integer_type* integer_type = this->type_->integer_type();
1994 if (integer_type != NULL)
1995 {
1996 if (!mpfr_integer_p(this->val_))
1997 this->report_error(_("floating point constant truncated to integer"));
1998 else
1999 {
2000 gcc_assert(!integer_type->is_abstract());
2001 mpz_t ival;
2002 mpz_init(ival);
2003 mpfr_get_z(ival, this->val_, GMP_RNDN);
2004 Integer_expression::check_constant(ival, integer_type,
2005 this->location());
2006 mpz_clear(ival);
2007 }
2008 }
2009 }
2010
2011 // Get a tree for a float constant.
2012
2013 tree
2014 Float_expression::do_get_tree(Translate_context* context)
2015 {
2016 Gogo* gogo = context->gogo();
2017 tree type;
2018 if (this->type_ != NULL && !this->type_->is_abstract())
2019 type = this->type_->get_tree(gogo);
2020 else if (this->type_ != NULL && this->type_->integer_type() != NULL)
2021 {
2022 // We have an abstract integer type. We just hope for the best.
2023 type = Type::lookup_integer_type("int")->get_tree(gogo);
2024 }
2025 else
2026 {
2027 // If we still have an abstract type here, then this is being
2028 // used in a constant expression which didn't get reduced. We
2029 // just use float64 and hope for the best.
2030 type = Type::lookup_float_type("float64")->get_tree(gogo);
2031 }
2032 return Expression::float_constant_tree(this->val_, type);
2033 }
2034
2035 // Write a floating point number to export data.
2036
2037 void
2038 Float_expression::export_float(Export *exp, const mpfr_t val)
2039 {
2040 mp_exp_t exponent;
2041 char* s = mpfr_get_str(NULL, &exponent, 10, 0, val, GMP_RNDN);
2042 if (*s == '-')
2043 exp->write_c_string("-");
2044 exp->write_c_string("0.");
2045 exp->write_c_string(*s == '-' ? s + 1 : s);
2046 mpfr_free_str(s);
2047 char buf[30];
2048 snprintf(buf, sizeof buf, "E%ld", exponent);
2049 exp->write_c_string(buf);
2050 }
2051
2052 // Export a floating point number in a constant expression.
2053
2054 void
2055 Float_expression::do_export(Export* exp) const
2056 {
2057 Float_expression::export_float(exp, this->val_);
2058 // A trailing space lets us reliably identify the end of the number.
2059 exp->write_c_string(" ");
2060 }
2061
2062 // Make a float expression.
2063
2064 Expression*
2065 Expression::make_float(const mpfr_t* val, Type* type, source_location location)
2066 {
2067 return new Float_expression(val, type, location);
2068 }
2069
2070 // Complex numbers.
2071
2072 class Complex_expression : public Expression
2073 {
2074 public:
2075 Complex_expression(const mpfr_t* real, const mpfr_t* imag, Type* type,
2076 source_location location)
2077 : Expression(EXPRESSION_COMPLEX, location),
2078 type_(type)
2079 {
2080 mpfr_init_set(this->real_, *real, GMP_RNDN);
2081 mpfr_init_set(this->imag_, *imag, GMP_RNDN);
2082 }
2083
2084 // Constrain REAL/IMAG to fit into TYPE.
2085 static void
2086 constrain_complex(mpfr_t real, mpfr_t imag, Type* type);
2087
2088 // Return whether REAL/IMAG fits in the type.
2089 static bool
2090 check_constant(mpfr_t real, mpfr_t imag, Type*, source_location);
2091
2092 // Write REAL/IMAG to export data.
2093 static void
2094 export_complex(Export* exp, const mpfr_t real, const mpfr_t val);
2095
2096 protected:
2097 bool
2098 do_is_constant() const
2099 { return true; }
2100
2101 bool
2102 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const;
2103
2104 Type*
2105 do_type();
2106
2107 void
2108 do_determine_type(const Type_context*);
2109
2110 void
2111 do_check_types(Gogo*);
2112
2113 Expression*
2114 do_copy()
2115 {
2116 return Expression::make_complex(&this->real_, &this->imag_, this->type_,
2117 this->location());
2118 }
2119
2120 tree
2121 do_get_tree(Translate_context*);
2122
2123 void
2124 do_export(Export*) const;
2125
2126 private:
2127 // The real part.
2128 mpfr_t real_;
2129 // The imaginary part;
2130 mpfr_t imag_;
2131 // The type if known.
2132 Type* type_;
2133 };
2134
2135 // Constrain REAL/IMAG to fit into TYPE.
2136
2137 void
2138 Complex_expression::constrain_complex(mpfr_t real, mpfr_t imag, Type* type)
2139 {
2140 Complex_type* ctype = type->complex_type();
2141 if (ctype != NULL && !ctype->is_abstract())
2142 {
2143 tree type_tree = ctype->type_tree();
2144
2145 REAL_VALUE_TYPE rvt;
2146 real_from_mpfr(&rvt, real, TREE_TYPE(type_tree), GMP_RNDN);
2147 real_convert(&rvt, TYPE_MODE(TREE_TYPE(type_tree)), &rvt);
2148 mpfr_from_real(real, &rvt, GMP_RNDN);
2149
2150 real_from_mpfr(&rvt, imag, TREE_TYPE(type_tree), GMP_RNDN);
2151 real_convert(&rvt, TYPE_MODE(TREE_TYPE(type_tree)), &rvt);
2152 mpfr_from_real(imag, &rvt, GMP_RNDN);
2153 }
2154 }
2155
2156 // Return a complex constant value.
2157
2158 bool
2159 Complex_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
2160 Type** ptype) const
2161 {
2162 if (this->type_ != NULL)
2163 *ptype = this->type_;
2164 mpfr_set(real, this->real_, GMP_RNDN);
2165 mpfr_set(imag, this->imag_, GMP_RNDN);
2166 return true;
2167 }
2168
2169 // Return the current type. If we haven't set the type yet, we return
2170 // an abstract complex type.
2171
2172 Type*
2173 Complex_expression::do_type()
2174 {
2175 if (this->type_ == NULL)
2176 this->type_ = Type::make_abstract_complex_type();
2177 return this->type_;
2178 }
2179
2180 // Set the type of the complex value. Here we may switch from an
2181 // abstract type to a real type.
2182
2183 void
2184 Complex_expression::do_determine_type(const Type_context* context)
2185 {
2186 if (this->type_ != NULL && !this->type_->is_abstract())
2187 ;
2188 else if (context->type != NULL
2189 && context->type->complex_type() != NULL)
2190 this->type_ = context->type;
2191 else if (!context->may_be_abstract)
2192 this->type_ = Type::lookup_complex_type("complex128");
2193 }
2194
2195 // Return true if the complex value REAL/IMAG fits in the range of the
2196 // type TYPE. Otherwise give an error and return false. TYPE may be
2197 // NULL.
2198
2199 bool
2200 Complex_expression::check_constant(mpfr_t real, mpfr_t imag, Type* type,
2201 source_location location)
2202 {
2203 if (type == NULL)
2204 return true;
2205 Complex_type* ctype = type->complex_type();
2206 if (ctype == NULL || ctype->is_abstract())
2207 return true;
2208
2209 mp_exp_t max_exp;
2210 switch (ctype->bits())
2211 {
2212 case 64:
2213 max_exp = 128;
2214 break;
2215 case 128:
2216 max_exp = 1024;
2217 break;
2218 default:
2219 gcc_unreachable();
2220 }
2221
2222 // A NaN or Infinity always fits in the range of the type.
2223 if (!mpfr_nan_p(real) && !mpfr_inf_p(real) && !mpfr_zero_p(real))
2224 {
2225 if (mpfr_get_exp(real) > max_exp)
2226 {
2227 error_at(location, "complex real part constant overflow");
2228 return false;
2229 }
2230 }
2231
2232 if (!mpfr_nan_p(imag) && !mpfr_inf_p(imag) && !mpfr_zero_p(imag))
2233 {
2234 if (mpfr_get_exp(imag) > max_exp)
2235 {
2236 error_at(location, "complex imaginary part constant overflow");
2237 return false;
2238 }
2239 }
2240
2241 return true;
2242 }
2243
2244 // Check the type of a complex value.
2245
2246 void
2247 Complex_expression::do_check_types(Gogo*)
2248 {
2249 if (this->type_ == NULL)
2250 return;
2251
2252 if (!Complex_expression::check_constant(this->real_, this->imag_,
2253 this->type_, this->location()))
2254 this->set_is_error();
2255 }
2256
2257 // Get a tree for a complex constant.
2258
2259 tree
2260 Complex_expression::do_get_tree(Translate_context* context)
2261 {
2262 Gogo* gogo = context->gogo();
2263 tree type;
2264 if (this->type_ != NULL && !this->type_->is_abstract())
2265 type = this->type_->get_tree(gogo);
2266 else
2267 {
2268 // If we still have an abstract type here, this this is being
2269 // used in a constant expression which didn't get reduced. We
2270 // just use complex128 and hope for the best.
2271 type = Type::lookup_complex_type("complex128")->get_tree(gogo);
2272 }
2273 return Expression::complex_constant_tree(this->real_, this->imag_, type);
2274 }
2275
2276 // Write REAL/IMAG to export data.
2277
2278 void
2279 Complex_expression::export_complex(Export* exp, const mpfr_t real,
2280 const mpfr_t imag)
2281 {
2282 if (!mpfr_zero_p(real))
2283 {
2284 Float_expression::export_float(exp, real);
2285 if (mpfr_sgn(imag) > 0)
2286 exp->write_c_string("+");
2287 }
2288 Float_expression::export_float(exp, imag);
2289 exp->write_c_string("i");
2290 }
2291
2292 // Export a complex number in a constant expression.
2293
2294 void
2295 Complex_expression::do_export(Export* exp) const
2296 {
2297 Complex_expression::export_complex(exp, this->real_, this->imag_);
2298 // A trailing space lets us reliably identify the end of the number.
2299 exp->write_c_string(" ");
2300 }
2301
2302 // Make a complex expression.
2303
2304 Expression*
2305 Expression::make_complex(const mpfr_t* real, const mpfr_t* imag, Type* type,
2306 source_location location)
2307 {
2308 return new Complex_expression(real, imag, type, location);
2309 }
2310
2311 // Find a named object in an expression.
2312
2313 class Find_named_object : public Traverse
2314 {
2315 public:
2316 Find_named_object(Named_object* no)
2317 : Traverse(traverse_expressions),
2318 no_(no), found_(false)
2319 { }
2320
2321 // Whether we found the object.
2322 bool
2323 found() const
2324 { return this->found_; }
2325
2326 protected:
2327 int
2328 expression(Expression**);
2329
2330 private:
2331 // The object we are looking for.
2332 Named_object* no_;
2333 // Whether we found it.
2334 bool found_;
2335 };
2336
2337 // A reference to a const in an expression.
2338
2339 class Const_expression : public Expression
2340 {
2341 public:
2342 Const_expression(Named_object* constant, source_location location)
2343 : Expression(EXPRESSION_CONST_REFERENCE, location),
2344 constant_(constant), type_(NULL), seen_(false)
2345 { }
2346
2347 Named_object*
2348 named_object()
2349 { return this->constant_; }
2350
2351 const std::string&
2352 name() const
2353 { return this->constant_->name(); }
2354
2355 // Check that the initializer does not refer to the constant itself.
2356 void
2357 check_for_init_loop();
2358
2359 protected:
2360 Expression*
2361 do_lower(Gogo*, Named_object*, int);
2362
2363 bool
2364 do_is_constant() const
2365 { return true; }
2366
2367 bool
2368 do_integer_constant_value(bool, mpz_t val, Type**) const;
2369
2370 bool
2371 do_float_constant_value(mpfr_t val, Type**) const;
2372
2373 bool
2374 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const;
2375
2376 bool
2377 do_string_constant_value(std::string* val) const
2378 { return this->constant_->const_value()->expr()->string_constant_value(val); }
2379
2380 Type*
2381 do_type();
2382
2383 // The type of a const is set by the declaration, not the use.
2384 void
2385 do_determine_type(const Type_context*);
2386
2387 void
2388 do_check_types(Gogo*);
2389
2390 Expression*
2391 do_copy()
2392 { return this; }
2393
2394 tree
2395 do_get_tree(Translate_context* context);
2396
2397 // When exporting a reference to a const as part of a const
2398 // expression, we export the value. We ignore the fact that it has
2399 // a name.
2400 void
2401 do_export(Export* exp) const
2402 { this->constant_->const_value()->expr()->export_expression(exp); }
2403
2404 private:
2405 // The constant.
2406 Named_object* constant_;
2407 // The type of this reference. This is used if the constant has an
2408 // abstract type.
2409 Type* type_;
2410 // Used to prevent infinite recursion when a constant incorrectly
2411 // refers to itself.
2412 mutable bool seen_;
2413 };
2414
2415 // Lower a constant expression. This is where we convert the
2416 // predeclared constant iota into an integer value.
2417
2418 Expression*
2419 Const_expression::do_lower(Gogo* gogo, Named_object*, int iota_value)
2420 {
2421 if (this->constant_->const_value()->expr()->classification()
2422 == EXPRESSION_IOTA)
2423 {
2424 if (iota_value == -1)
2425 {
2426 error_at(this->location(),
2427 "iota is only defined in const declarations");
2428 iota_value = 0;
2429 }
2430 mpz_t val;
2431 mpz_init_set_ui(val, static_cast<unsigned long>(iota_value));
2432 Expression* ret = Expression::make_integer(&val, NULL,
2433 this->location());
2434 mpz_clear(val);
2435 return ret;
2436 }
2437
2438 // Make sure that the constant itself has been lowered.
2439 gogo->lower_constant(this->constant_);
2440
2441 return this;
2442 }
2443
2444 // Return an integer constant value.
2445
2446 bool
2447 Const_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
2448 Type** ptype) const
2449 {
2450 if (this->seen_)
2451 return false;
2452
2453 Type* ctype;
2454 if (this->type_ != NULL)
2455 ctype = this->type_;
2456 else
2457 ctype = this->constant_->const_value()->type();
2458 if (ctype != NULL && ctype->integer_type() == NULL)
2459 return false;
2460
2461 Expression* e = this->constant_->const_value()->expr();
2462
2463 this->seen_ = true;
2464
2465 Type* t;
2466 bool r = e->integer_constant_value(iota_is_constant, val, &t);
2467
2468 this->seen_ = false;
2469
2470 if (r
2471 && ctype != NULL
2472 && !Integer_expression::check_constant(val, ctype, this->location()))
2473 return false;
2474
2475 *ptype = ctype != NULL ? ctype : t;
2476 return r;
2477 }
2478
2479 // Return a floating point constant value.
2480
2481 bool
2482 Const_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
2483 {
2484 if (this->seen_)
2485 return false;
2486
2487 Type* ctype;
2488 if (this->type_ != NULL)
2489 ctype = this->type_;
2490 else
2491 ctype = this->constant_->const_value()->type();
2492 if (ctype != NULL && ctype->float_type() == NULL)
2493 return false;
2494
2495 this->seen_ = true;
2496
2497 Type* t;
2498 bool r = this->constant_->const_value()->expr()->float_constant_value(val,
2499 &t);
2500
2501 this->seen_ = false;
2502
2503 if (r && ctype != NULL)
2504 {
2505 if (!Float_expression::check_constant(val, ctype, this->location()))
2506 return false;
2507 Float_expression::constrain_float(val, ctype);
2508 }
2509 *ptype = ctype != NULL ? ctype : t;
2510 return r;
2511 }
2512
2513 // Return a complex constant value.
2514
2515 bool
2516 Const_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
2517 Type **ptype) const
2518 {
2519 if (this->seen_)
2520 return false;
2521
2522 Type* ctype;
2523 if (this->type_ != NULL)
2524 ctype = this->type_;
2525 else
2526 ctype = this->constant_->const_value()->type();
2527 if (ctype != NULL && ctype->complex_type() == NULL)
2528 return false;
2529
2530 this->seen_ = true;
2531
2532 Type *t;
2533 bool r = this->constant_->const_value()->expr()->complex_constant_value(real,
2534 imag,
2535 &t);
2536
2537 this->seen_ = false;
2538
2539 if (r && ctype != NULL)
2540 {
2541 if (!Complex_expression::check_constant(real, imag, ctype,
2542 this->location()))
2543 return false;
2544 Complex_expression::constrain_complex(real, imag, ctype);
2545 }
2546 *ptype = ctype != NULL ? ctype : t;
2547 return r;
2548 }
2549
2550 // Return the type of the const reference.
2551
2552 Type*
2553 Const_expression::do_type()
2554 {
2555 if (this->type_ != NULL)
2556 return this->type_;
2557
2558 Named_constant* nc = this->constant_->const_value();
2559
2560 if (this->seen_ || nc->lowering())
2561 {
2562 this->report_error(_("constant refers to itself"));
2563 this->type_ = Type::make_error_type();
2564 return this->type_;
2565 }
2566
2567 this->seen_ = true;
2568
2569 Type* ret = nc->type();
2570
2571 if (ret != NULL)
2572 {
2573 this->seen_ = false;
2574 return ret;
2575 }
2576
2577 // During parsing, a named constant may have a NULL type, but we
2578 // must not return a NULL type here.
2579 ret = nc->expr()->type();
2580
2581 this->seen_ = false;
2582
2583 return ret;
2584 }
2585
2586 // Set the type of the const reference.
2587
2588 void
2589 Const_expression::do_determine_type(const Type_context* context)
2590 {
2591 Type* ctype = this->constant_->const_value()->type();
2592 Type* cetype = (ctype != NULL
2593 ? ctype
2594 : this->constant_->const_value()->expr()->type());
2595 if (ctype != NULL && !ctype->is_abstract())
2596 ;
2597 else if (context->type != NULL
2598 && (context->type->integer_type() != NULL
2599 || context->type->float_type() != NULL
2600 || context->type->complex_type() != NULL)
2601 && (cetype->integer_type() != NULL
2602 || cetype->float_type() != NULL
2603 || cetype->complex_type() != NULL))
2604 this->type_ = context->type;
2605 else if (context->type != NULL
2606 && context->type->is_string_type()
2607 && cetype->is_string_type())
2608 this->type_ = context->type;
2609 else if (context->type != NULL
2610 && context->type->is_boolean_type()
2611 && cetype->is_boolean_type())
2612 this->type_ = context->type;
2613 else if (!context->may_be_abstract)
2614 {
2615 if (cetype->is_abstract())
2616 cetype = cetype->make_non_abstract_type();
2617 this->type_ = cetype;
2618 }
2619 }
2620
2621 // Check for a loop in which the initializer of a constant refers to
2622 // the constant itself.
2623
2624 void
2625 Const_expression::check_for_init_loop()
2626 {
2627 if (this->type_ != NULL && this->type_->is_error_type())
2628 return;
2629
2630 if (this->seen_)
2631 {
2632 this->report_error(_("constant refers to itself"));
2633 this->type_ = Type::make_error_type();
2634 return;
2635 }
2636
2637 Expression* init = this->constant_->const_value()->expr();
2638 Find_named_object find_named_object(this->constant_);
2639
2640 this->seen_ = true;
2641 Expression::traverse(&init, &find_named_object);
2642 this->seen_ = false;
2643
2644 if (find_named_object.found())
2645 {
2646 if (this->type_ == NULL || !this->type_->is_error_type())
2647 {
2648 this->report_error(_("constant refers to itself"));
2649 this->type_ = Type::make_error_type();
2650 }
2651 return;
2652 }
2653 }
2654
2655 // Check types of a const reference.
2656
2657 void
2658 Const_expression::do_check_types(Gogo*)
2659 {
2660 if (this->type_ != NULL && this->type_->is_error_type())
2661 return;
2662
2663 this->check_for_init_loop();
2664
2665 if (this->type_ == NULL || this->type_->is_abstract())
2666 return;
2667
2668 // Check for integer overflow.
2669 if (this->type_->integer_type() != NULL)
2670 {
2671 mpz_t ival;
2672 mpz_init(ival);
2673 Type* dummy;
2674 if (!this->integer_constant_value(true, ival, &dummy))
2675 {
2676 mpfr_t fval;
2677 mpfr_init(fval);
2678 Expression* cexpr = this->constant_->const_value()->expr();
2679 if (cexpr->float_constant_value(fval, &dummy))
2680 {
2681 if (!mpfr_integer_p(fval))
2682 this->report_error(_("floating point constant "
2683 "truncated to integer"));
2684 else
2685 {
2686 mpfr_get_z(ival, fval, GMP_RNDN);
2687 Integer_expression::check_constant(ival, this->type_,
2688 this->location());
2689 }
2690 }
2691 mpfr_clear(fval);
2692 }
2693 mpz_clear(ival);
2694 }
2695 }
2696
2697 // Return a tree for the const reference.
2698
2699 tree
2700 Const_expression::do_get_tree(Translate_context* context)
2701 {
2702 Gogo* gogo = context->gogo();
2703 tree type_tree;
2704 if (this->type_ == NULL)
2705 type_tree = NULL_TREE;
2706 else
2707 {
2708 type_tree = this->type_->get_tree(gogo);
2709 if (type_tree == error_mark_node)
2710 return error_mark_node;
2711 }
2712
2713 // If the type has been set for this expression, but the underlying
2714 // object is an abstract int or float, we try to get the abstract
2715 // value. Otherwise we may lose something in the conversion.
2716 if (this->type_ != NULL
2717 && (this->constant_->const_value()->type() == NULL
2718 || this->constant_->const_value()->type()->is_abstract()))
2719 {
2720 Expression* expr = this->constant_->const_value()->expr();
2721 mpz_t ival;
2722 mpz_init(ival);
2723 Type* t;
2724 if (expr->integer_constant_value(true, ival, &t))
2725 {
2726 tree ret = Expression::integer_constant_tree(ival, type_tree);
2727 mpz_clear(ival);
2728 return ret;
2729 }
2730 mpz_clear(ival);
2731
2732 mpfr_t fval;
2733 mpfr_init(fval);
2734 if (expr->float_constant_value(fval, &t))
2735 {
2736 tree ret = Expression::float_constant_tree(fval, type_tree);
2737 mpfr_clear(fval);
2738 return ret;
2739 }
2740
2741 mpfr_t imag;
2742 mpfr_init(imag);
2743 if (expr->complex_constant_value(fval, imag, &t))
2744 {
2745 tree ret = Expression::complex_constant_tree(fval, imag, type_tree);
2746 mpfr_clear(fval);
2747 mpfr_clear(imag);
2748 return ret;
2749 }
2750 mpfr_clear(imag);
2751 mpfr_clear(fval);
2752 }
2753
2754 tree const_tree = this->constant_->get_tree(gogo, context->function());
2755 if (this->type_ == NULL
2756 || const_tree == error_mark_node
2757 || TREE_TYPE(const_tree) == error_mark_node)
2758 return const_tree;
2759
2760 tree ret;
2761 if (TYPE_MAIN_VARIANT(type_tree) == TYPE_MAIN_VARIANT(TREE_TYPE(const_tree)))
2762 ret = fold_convert(type_tree, const_tree);
2763 else if (TREE_CODE(type_tree) == INTEGER_TYPE)
2764 ret = fold(convert_to_integer(type_tree, const_tree));
2765 else if (TREE_CODE(type_tree) == REAL_TYPE)
2766 ret = fold(convert_to_real(type_tree, const_tree));
2767 else if (TREE_CODE(type_tree) == COMPLEX_TYPE)
2768 ret = fold(convert_to_complex(type_tree, const_tree));
2769 else
2770 gcc_unreachable();
2771 return ret;
2772 }
2773
2774 // Make a reference to a constant in an expression.
2775
2776 Expression*
2777 Expression::make_const_reference(Named_object* constant,
2778 source_location location)
2779 {
2780 return new Const_expression(constant, location);
2781 }
2782
2783 // Find a named object in an expression.
2784
2785 int
2786 Find_named_object::expression(Expression** pexpr)
2787 {
2788 switch ((*pexpr)->classification())
2789 {
2790 case Expression::EXPRESSION_CONST_REFERENCE:
2791 {
2792 Const_expression* ce = static_cast<Const_expression*>(*pexpr);
2793 if (ce->named_object() == this->no_)
2794 break;
2795
2796 // We need to check a constant initializer explicitly, as
2797 // loops here will not be caught by the loop checking for
2798 // variable initializers.
2799 ce->check_for_init_loop();
2800
2801 return TRAVERSE_CONTINUE;
2802 }
2803
2804 case Expression::EXPRESSION_VAR_REFERENCE:
2805 if ((*pexpr)->var_expression()->named_object() == this->no_)
2806 break;
2807 return TRAVERSE_CONTINUE;
2808 case Expression::EXPRESSION_FUNC_REFERENCE:
2809 if ((*pexpr)->func_expression()->named_object() == this->no_)
2810 break;
2811 return TRAVERSE_CONTINUE;
2812 default:
2813 return TRAVERSE_CONTINUE;
2814 }
2815 this->found_ = true;
2816 return TRAVERSE_EXIT;
2817 }
2818
2819 // The nil value.
2820
2821 class Nil_expression : public Expression
2822 {
2823 public:
2824 Nil_expression(source_location location)
2825 : Expression(EXPRESSION_NIL, location)
2826 { }
2827
2828 static Expression*
2829 do_import(Import*);
2830
2831 protected:
2832 bool
2833 do_is_constant() const
2834 { return true; }
2835
2836 Type*
2837 do_type()
2838 { return Type::make_nil_type(); }
2839
2840 void
2841 do_determine_type(const Type_context*)
2842 { }
2843
2844 Expression*
2845 do_copy()
2846 { return this; }
2847
2848 tree
2849 do_get_tree(Translate_context*)
2850 { return null_pointer_node; }
2851
2852 void
2853 do_export(Export* exp) const
2854 { exp->write_c_string("nil"); }
2855 };
2856
2857 // Import a nil expression.
2858
2859 Expression*
2860 Nil_expression::do_import(Import* imp)
2861 {
2862 imp->require_c_string("nil");
2863 return Expression::make_nil(imp->location());
2864 }
2865
2866 // Make a nil expression.
2867
2868 Expression*
2869 Expression::make_nil(source_location location)
2870 {
2871 return new Nil_expression(location);
2872 }
2873
2874 // The value of the predeclared constant iota. This is little more
2875 // than a marker. This will be lowered to an integer in
2876 // Const_expression::do_lower, which is where we know the value that
2877 // it should have.
2878
2879 class Iota_expression : public Parser_expression
2880 {
2881 public:
2882 Iota_expression(source_location location)
2883 : Parser_expression(EXPRESSION_IOTA, location)
2884 { }
2885
2886 protected:
2887 Expression*
2888 do_lower(Gogo*, Named_object*, int)
2889 { gcc_unreachable(); }
2890
2891 // There should only ever be one of these.
2892 Expression*
2893 do_copy()
2894 { gcc_unreachable(); }
2895 };
2896
2897 // Make an iota expression. This is only called for one case: the
2898 // value of the predeclared constant iota.
2899
2900 Expression*
2901 Expression::make_iota()
2902 {
2903 static Iota_expression iota_expression(UNKNOWN_LOCATION);
2904 return &iota_expression;
2905 }
2906
2907 // A type conversion expression.
2908
2909 class Type_conversion_expression : public Expression
2910 {
2911 public:
2912 Type_conversion_expression(Type* type, Expression* expr,
2913 source_location location)
2914 : Expression(EXPRESSION_CONVERSION, location),
2915 type_(type), expr_(expr), may_convert_function_types_(false)
2916 { }
2917
2918 // Return the type to which we are converting.
2919 Type*
2920 type() const
2921 { return this->type_; }
2922
2923 // Return the expression which we are converting.
2924 Expression*
2925 expr() const
2926 { return this->expr_; }
2927
2928 // Permit converting from one function type to another. This is
2929 // used internally for method expressions.
2930 void
2931 set_may_convert_function_types()
2932 {
2933 this->may_convert_function_types_ = true;
2934 }
2935
2936 // Import a type conversion expression.
2937 static Expression*
2938 do_import(Import*);
2939
2940 protected:
2941 int
2942 do_traverse(Traverse* traverse);
2943
2944 Expression*
2945 do_lower(Gogo*, Named_object*, int);
2946
2947 bool
2948 do_is_constant() const
2949 { return this->expr_->is_constant(); }
2950
2951 bool
2952 do_integer_constant_value(bool, mpz_t, Type**) const;
2953
2954 bool
2955 do_float_constant_value(mpfr_t, Type**) const;
2956
2957 bool
2958 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
2959
2960 bool
2961 do_string_constant_value(std::string*) const;
2962
2963 Type*
2964 do_type()
2965 { return this->type_; }
2966
2967 void
2968 do_determine_type(const Type_context*)
2969 {
2970 Type_context subcontext(this->type_, false);
2971 this->expr_->determine_type(&subcontext);
2972 }
2973
2974 void
2975 do_check_types(Gogo*);
2976
2977 Expression*
2978 do_copy()
2979 {
2980 return new Type_conversion_expression(this->type_, this->expr_->copy(),
2981 this->location());
2982 }
2983
2984 tree
2985 do_get_tree(Translate_context* context);
2986
2987 void
2988 do_export(Export*) const;
2989
2990 private:
2991 // The type to convert to.
2992 Type* type_;
2993 // The expression to convert.
2994 Expression* expr_;
2995 // True if this is permitted to convert function types. This is
2996 // used internally for method expressions.
2997 bool may_convert_function_types_;
2998 };
2999
3000 // Traversal.
3001
3002 int
3003 Type_conversion_expression::do_traverse(Traverse* traverse)
3004 {
3005 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
3006 || Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
3007 return TRAVERSE_EXIT;
3008 return TRAVERSE_CONTINUE;
3009 }
3010
3011 // Convert to a constant at lowering time.
3012
3013 Expression*
3014 Type_conversion_expression::do_lower(Gogo*, Named_object*, int)
3015 {
3016 Type* type = this->type_;
3017 Expression* val = this->expr_;
3018 source_location location = this->location();
3019
3020 if (type->integer_type() != NULL)
3021 {
3022 mpz_t ival;
3023 mpz_init(ival);
3024 Type* dummy;
3025 if (val->integer_constant_value(false, ival, &dummy))
3026 {
3027 if (!Integer_expression::check_constant(ival, type, location))
3028 mpz_set_ui(ival, 0);
3029 Expression* ret = Expression::make_integer(&ival, type, location);
3030 mpz_clear(ival);
3031 return ret;
3032 }
3033
3034 mpfr_t fval;
3035 mpfr_init(fval);
3036 if (val->float_constant_value(fval, &dummy))
3037 {
3038 if (!mpfr_integer_p(fval))
3039 {
3040 error_at(location,
3041 "floating point constant truncated to integer");
3042 return Expression::make_error(location);
3043 }
3044 mpfr_get_z(ival, fval, GMP_RNDN);
3045 if (!Integer_expression::check_constant(ival, type, location))
3046 mpz_set_ui(ival, 0);
3047 Expression* ret = Expression::make_integer(&ival, type, location);
3048 mpfr_clear(fval);
3049 mpz_clear(ival);
3050 return ret;
3051 }
3052 mpfr_clear(fval);
3053 mpz_clear(ival);
3054 }
3055
3056 if (type->float_type() != NULL)
3057 {
3058 mpfr_t fval;
3059 mpfr_init(fval);
3060 Type* dummy;
3061 if (val->float_constant_value(fval, &dummy))
3062 {
3063 if (!Float_expression::check_constant(fval, type, location))
3064 mpfr_set_ui(fval, 0, GMP_RNDN);
3065 Float_expression::constrain_float(fval, type);
3066 Expression *ret = Expression::make_float(&fval, type, location);
3067 mpfr_clear(fval);
3068 return ret;
3069 }
3070 mpfr_clear(fval);
3071 }
3072
3073 if (type->complex_type() != NULL)
3074 {
3075 mpfr_t real;
3076 mpfr_t imag;
3077 mpfr_init(real);
3078 mpfr_init(imag);
3079 Type* dummy;
3080 if (val->complex_constant_value(real, imag, &dummy))
3081 {
3082 if (!Complex_expression::check_constant(real, imag, type, location))
3083 {
3084 mpfr_set_ui(real, 0, GMP_RNDN);
3085 mpfr_set_ui(imag, 0, GMP_RNDN);
3086 }
3087 Complex_expression::constrain_complex(real, imag, type);
3088 Expression* ret = Expression::make_complex(&real, &imag, type,
3089 location);
3090 mpfr_clear(real);
3091 mpfr_clear(imag);
3092 return ret;
3093 }
3094 mpfr_clear(real);
3095 mpfr_clear(imag);
3096 }
3097
3098 if (type->is_open_array_type() && type->named_type() == NULL)
3099 {
3100 Type* element_type = type->array_type()->element_type()->forwarded();
3101 bool is_byte = element_type == Type::lookup_integer_type("uint8");
3102 bool is_int = element_type == Type::lookup_integer_type("int");
3103 if (is_byte || is_int)
3104 {
3105 std::string s;
3106 if (val->string_constant_value(&s))
3107 {
3108 Expression_list* vals = new Expression_list();
3109 if (is_byte)
3110 {
3111 for (std::string::const_iterator p = s.begin();
3112 p != s.end();
3113 p++)
3114 {
3115 mpz_t val;
3116 mpz_init_set_ui(val, static_cast<unsigned char>(*p));
3117 Expression* v = Expression::make_integer(&val,
3118 element_type,
3119 location);
3120 vals->push_back(v);
3121 mpz_clear(val);
3122 }
3123 }
3124 else
3125 {
3126 const char *p = s.data();
3127 const char *pend = s.data() + s.length();
3128 while (p < pend)
3129 {
3130 unsigned int c;
3131 int adv = Lex::fetch_char(p, &c);
3132 if (adv == 0)
3133 {
3134 warning_at(this->location(), 0,
3135 "invalid UTF-8 encoding");
3136 adv = 1;
3137 }
3138 p += adv;
3139 mpz_t val;
3140 mpz_init_set_ui(val, c);
3141 Expression* v = Expression::make_integer(&val,
3142 element_type,
3143 location);
3144 vals->push_back(v);
3145 mpz_clear(val);
3146 }
3147 }
3148
3149 return Expression::make_slice_composite_literal(type, vals,
3150 location);
3151 }
3152 }
3153 }
3154
3155 return this;
3156 }
3157
3158 // Return the constant integer value if there is one.
3159
3160 bool
3161 Type_conversion_expression::do_integer_constant_value(bool iota_is_constant,
3162 mpz_t val,
3163 Type** ptype) const
3164 {
3165 if (this->type_->integer_type() == NULL)
3166 return false;
3167
3168 mpz_t ival;
3169 mpz_init(ival);
3170 Type* dummy;
3171 if (this->expr_->integer_constant_value(iota_is_constant, ival, &dummy))
3172 {
3173 if (!Integer_expression::check_constant(ival, this->type_,
3174 this->location()))
3175 {
3176 mpz_clear(ival);
3177 return false;
3178 }
3179 mpz_set(val, ival);
3180 mpz_clear(ival);
3181 *ptype = this->type_;
3182 return true;
3183 }
3184 mpz_clear(ival);
3185
3186 mpfr_t fval;
3187 mpfr_init(fval);
3188 if (this->expr_->float_constant_value(fval, &dummy))
3189 {
3190 mpfr_get_z(val, fval, GMP_RNDN);
3191 mpfr_clear(fval);
3192 if (!Integer_expression::check_constant(val, this->type_,
3193 this->location()))
3194 return false;
3195 *ptype = this->type_;
3196 return true;
3197 }
3198 mpfr_clear(fval);
3199
3200 return false;
3201 }
3202
3203 // Return the constant floating point value if there is one.
3204
3205 bool
3206 Type_conversion_expression::do_float_constant_value(mpfr_t val,
3207 Type** ptype) const
3208 {
3209 if (this->type_->float_type() == NULL)
3210 return false;
3211
3212 mpfr_t fval;
3213 mpfr_init(fval);
3214 Type* dummy;
3215 if (this->expr_->float_constant_value(fval, &dummy))
3216 {
3217 if (!Float_expression::check_constant(fval, this->type_,
3218 this->location()))
3219 {
3220 mpfr_clear(fval);
3221 return false;
3222 }
3223 mpfr_set(val, fval, GMP_RNDN);
3224 mpfr_clear(fval);
3225 Float_expression::constrain_float(val, this->type_);
3226 *ptype = this->type_;
3227 return true;
3228 }
3229 mpfr_clear(fval);
3230
3231 return false;
3232 }
3233
3234 // Return the constant complex value if there is one.
3235
3236 bool
3237 Type_conversion_expression::do_complex_constant_value(mpfr_t real,
3238 mpfr_t imag,
3239 Type **ptype) const
3240 {
3241 if (this->type_->complex_type() == NULL)
3242 return false;
3243
3244 mpfr_t rval;
3245 mpfr_t ival;
3246 mpfr_init(rval);
3247 mpfr_init(ival);
3248 Type* dummy;
3249 if (this->expr_->complex_constant_value(rval, ival, &dummy))
3250 {
3251 if (!Complex_expression::check_constant(rval, ival, this->type_,
3252 this->location()))
3253 {
3254 mpfr_clear(rval);
3255 mpfr_clear(ival);
3256 return false;
3257 }
3258 mpfr_set(real, rval, GMP_RNDN);
3259 mpfr_set(imag, ival, GMP_RNDN);
3260 mpfr_clear(rval);
3261 mpfr_clear(ival);
3262 Complex_expression::constrain_complex(real, imag, this->type_);
3263 *ptype = this->type_;
3264 return true;
3265 }
3266 mpfr_clear(rval);
3267 mpfr_clear(ival);
3268
3269 return false;
3270 }
3271
3272 // Return the constant string value if there is one.
3273
3274 bool
3275 Type_conversion_expression::do_string_constant_value(std::string* val) const
3276 {
3277 if (this->type_->is_string_type()
3278 && this->expr_->type()->integer_type() != NULL)
3279 {
3280 mpz_t ival;
3281 mpz_init(ival);
3282 Type* dummy;
3283 if (this->expr_->integer_constant_value(false, ival, &dummy))
3284 {
3285 unsigned long ulval = mpz_get_ui(ival);
3286 if (mpz_cmp_ui(ival, ulval) == 0)
3287 {
3288 Lex::append_char(ulval, true, val, this->location());
3289 mpz_clear(ival);
3290 return true;
3291 }
3292 }
3293 mpz_clear(ival);
3294 }
3295
3296 // FIXME: Could handle conversion from const []int here.
3297
3298 return false;
3299 }
3300
3301 // Check that types are convertible.
3302
3303 void
3304 Type_conversion_expression::do_check_types(Gogo*)
3305 {
3306 Type* type = this->type_;
3307 Type* expr_type = this->expr_->type();
3308 std::string reason;
3309
3310 if (type->is_error_type()
3311 || type->is_undefined()
3312 || expr_type->is_error_type()
3313 || expr_type->is_undefined())
3314 {
3315 // Make sure we emit an error for an undefined type.
3316 type->base();
3317 expr_type->base();
3318 this->set_is_error();
3319 return;
3320 }
3321
3322 if (this->may_convert_function_types_
3323 && type->function_type() != NULL
3324 && expr_type->function_type() != NULL)
3325 return;
3326
3327 if (Type::are_convertible(type, expr_type, &reason))
3328 return;
3329
3330 error_at(this->location(), "%s", reason.c_str());
3331 this->set_is_error();
3332 }
3333
3334 // Get a tree for a type conversion.
3335
3336 tree
3337 Type_conversion_expression::do_get_tree(Translate_context* context)
3338 {
3339 Gogo* gogo = context->gogo();
3340 tree type_tree = this->type_->get_tree(gogo);
3341 tree expr_tree = this->expr_->get_tree(context);
3342
3343 if (type_tree == error_mark_node
3344 || expr_tree == error_mark_node
3345 || TREE_TYPE(expr_tree) == error_mark_node)
3346 return error_mark_node;
3347
3348 if (TYPE_MAIN_VARIANT(type_tree) == TYPE_MAIN_VARIANT(TREE_TYPE(expr_tree)))
3349 return fold_convert(type_tree, expr_tree);
3350
3351 Type* type = this->type_;
3352 Type* expr_type = this->expr_->type();
3353 tree ret;
3354 if (type->interface_type() != NULL || expr_type->interface_type() != NULL)
3355 ret = Expression::convert_for_assignment(context, type, expr_type,
3356 expr_tree, this->location());
3357 else if (type->integer_type() != NULL)
3358 {
3359 if (expr_type->integer_type() != NULL
3360 || expr_type->float_type() != NULL
3361 || expr_type->is_unsafe_pointer_type())
3362 ret = fold(convert_to_integer(type_tree, expr_tree));
3363 else
3364 gcc_unreachable();
3365 }
3366 else if (type->float_type() != NULL)
3367 {
3368 if (expr_type->integer_type() != NULL
3369 || expr_type->float_type() != NULL)
3370 ret = fold(convert_to_real(type_tree, expr_tree));
3371 else
3372 gcc_unreachable();
3373 }
3374 else if (type->complex_type() != NULL)
3375 {
3376 if (expr_type->complex_type() != NULL)
3377 ret = fold(convert_to_complex(type_tree, expr_tree));
3378 else
3379 gcc_unreachable();
3380 }
3381 else if (type->is_string_type()
3382 && expr_type->integer_type() != NULL)
3383 {
3384 expr_tree = fold_convert(integer_type_node, expr_tree);
3385 if (host_integerp(expr_tree, 0))
3386 {
3387 HOST_WIDE_INT intval = tree_low_cst(expr_tree, 0);
3388 std::string s;
3389 Lex::append_char(intval, true, &s, this->location());
3390 Expression* se = Expression::make_string(s, this->location());
3391 return se->get_tree(context);
3392 }
3393
3394 static tree int_to_string_fndecl;
3395 ret = Gogo::call_builtin(&int_to_string_fndecl,
3396 this->location(),
3397 "__go_int_to_string",
3398 1,
3399 type_tree,
3400 integer_type_node,
3401 fold_convert(integer_type_node, expr_tree));
3402 }
3403 else if (type->is_string_type()
3404 && (expr_type->array_type() != NULL
3405 || (expr_type->points_to() != NULL
3406 && expr_type->points_to()->array_type() != NULL)))
3407 {
3408 Type* t = expr_type;
3409 if (t->points_to() != NULL)
3410 {
3411 t = t->points_to();
3412 expr_tree = build_fold_indirect_ref(expr_tree);
3413 }
3414 if (!DECL_P(expr_tree))
3415 expr_tree = save_expr(expr_tree);
3416 Array_type* a = t->array_type();
3417 Type* e = a->element_type()->forwarded();
3418 gcc_assert(e->integer_type() != NULL);
3419 tree valptr = fold_convert(const_ptr_type_node,
3420 a->value_pointer_tree(gogo, expr_tree));
3421 tree len = a->length_tree(gogo, expr_tree);
3422 len = fold_convert_loc(this->location(), size_type_node, len);
3423 if (e->integer_type()->is_unsigned()
3424 && e->integer_type()->bits() == 8)
3425 {
3426 static tree byte_array_to_string_fndecl;
3427 ret = Gogo::call_builtin(&byte_array_to_string_fndecl,
3428 this->location(),
3429 "__go_byte_array_to_string",
3430 2,
3431 type_tree,
3432 const_ptr_type_node,
3433 valptr,
3434 size_type_node,
3435 len);
3436 }
3437 else
3438 {
3439 gcc_assert(e == Type::lookup_integer_type("int"));
3440 static tree int_array_to_string_fndecl;
3441 ret = Gogo::call_builtin(&int_array_to_string_fndecl,
3442 this->location(),
3443 "__go_int_array_to_string",
3444 2,
3445 type_tree,
3446 const_ptr_type_node,
3447 valptr,
3448 size_type_node,
3449 len);
3450 }
3451 }
3452 else if (type->is_open_array_type() && expr_type->is_string_type())
3453 {
3454 Type* e = type->array_type()->element_type()->forwarded();
3455 gcc_assert(e->integer_type() != NULL);
3456 if (e->integer_type()->is_unsigned()
3457 && e->integer_type()->bits() == 8)
3458 {
3459 static tree string_to_byte_array_fndecl;
3460 ret = Gogo::call_builtin(&string_to_byte_array_fndecl,
3461 this->location(),
3462 "__go_string_to_byte_array",
3463 1,
3464 type_tree,
3465 TREE_TYPE(expr_tree),
3466 expr_tree);
3467 }
3468 else
3469 {
3470 gcc_assert(e == Type::lookup_integer_type("int"));
3471 static tree string_to_int_array_fndecl;
3472 ret = Gogo::call_builtin(&string_to_int_array_fndecl,
3473 this->location(),
3474 "__go_string_to_int_array",
3475 1,
3476 type_tree,
3477 TREE_TYPE(expr_tree),
3478 expr_tree);
3479 }
3480 }
3481 else if ((type->is_unsafe_pointer_type()
3482 && expr_type->points_to() != NULL)
3483 || (expr_type->is_unsafe_pointer_type()
3484 && type->points_to() != NULL))
3485 ret = fold_convert(type_tree, expr_tree);
3486 else if (type->is_unsafe_pointer_type()
3487 && expr_type->integer_type() != NULL)
3488 ret = convert_to_pointer(type_tree, expr_tree);
3489 else if (this->may_convert_function_types_
3490 && type->function_type() != NULL
3491 && expr_type->function_type() != NULL)
3492 ret = fold_convert_loc(this->location(), type_tree, expr_tree);
3493 else
3494 ret = Expression::convert_for_assignment(context, type, expr_type,
3495 expr_tree, this->location());
3496
3497 return ret;
3498 }
3499
3500 // Output a type conversion in a constant expression.
3501
3502 void
3503 Type_conversion_expression::do_export(Export* exp) const
3504 {
3505 exp->write_c_string("convert(");
3506 exp->write_type(this->type_);
3507 exp->write_c_string(", ");
3508 this->expr_->export_expression(exp);
3509 exp->write_c_string(")");
3510 }
3511
3512 // Import a type conversion or a struct construction.
3513
3514 Expression*
3515 Type_conversion_expression::do_import(Import* imp)
3516 {
3517 imp->require_c_string("convert(");
3518 Type* type = imp->read_type();
3519 imp->require_c_string(", ");
3520 Expression* val = Expression::import_expression(imp);
3521 imp->require_c_string(")");
3522 return Expression::make_cast(type, val, imp->location());
3523 }
3524
3525 // Make a type cast expression.
3526
3527 Expression*
3528 Expression::make_cast(Type* type, Expression* val, source_location location)
3529 {
3530 if (type->is_error_type() || val->is_error_expression())
3531 return Expression::make_error(location);
3532 return new Type_conversion_expression(type, val, location);
3533 }
3534
3535 // Unary expressions.
3536
3537 class Unary_expression : public Expression
3538 {
3539 public:
3540 Unary_expression(Operator op, Expression* expr, source_location location)
3541 : Expression(EXPRESSION_UNARY, location),
3542 op_(op), escapes_(true), expr_(expr)
3543 { }
3544
3545 // Return the operator.
3546 Operator
3547 op() const
3548 { return this->op_; }
3549
3550 // Return the operand.
3551 Expression*
3552 operand() const
3553 { return this->expr_; }
3554
3555 // Record that an address expression does not escape.
3556 void
3557 set_does_not_escape()
3558 {
3559 gcc_assert(this->op_ == OPERATOR_AND);
3560 this->escapes_ = false;
3561 }
3562
3563 // Apply unary opcode OP to UVAL, setting VAL. Return true if this
3564 // could be done, false if not.
3565 static bool
3566 eval_integer(Operator op, Type* utype, mpz_t uval, mpz_t val,
3567 source_location);
3568
3569 // Apply unary opcode OP to UVAL, setting VAL. Return true if this
3570 // could be done, false if not.
3571 static bool
3572 eval_float(Operator op, mpfr_t uval, mpfr_t val);
3573
3574 // Apply unary opcode OP to UREAL/UIMAG, setting REAL/IMAG. Return
3575 // true if this could be done, false if not.
3576 static bool
3577 eval_complex(Operator op, mpfr_t ureal, mpfr_t uimag, mpfr_t real,
3578 mpfr_t imag);
3579
3580 static Expression*
3581 do_import(Import*);
3582
3583 protected:
3584 int
3585 do_traverse(Traverse* traverse)
3586 { return Expression::traverse(&this->expr_, traverse); }
3587
3588 Expression*
3589 do_lower(Gogo*, Named_object*, int);
3590
3591 bool
3592 do_is_constant() const;
3593
3594 bool
3595 do_integer_constant_value(bool, mpz_t, Type**) const;
3596
3597 bool
3598 do_float_constant_value(mpfr_t, Type**) const;
3599
3600 bool
3601 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
3602
3603 Type*
3604 do_type();
3605
3606 void
3607 do_determine_type(const Type_context*);
3608
3609 void
3610 do_check_types(Gogo*);
3611
3612 Expression*
3613 do_copy()
3614 {
3615 return Expression::make_unary(this->op_, this->expr_->copy(),
3616 this->location());
3617 }
3618
3619 bool
3620 do_is_addressable() const
3621 { return this->op_ == OPERATOR_MULT; }
3622
3623 tree
3624 do_get_tree(Translate_context*);
3625
3626 void
3627 do_export(Export*) const;
3628
3629 private:
3630 // The unary operator to apply.
3631 Operator op_;
3632 // Normally true. False if this is an address expression which does
3633 // not escape the current function.
3634 bool escapes_;
3635 // The operand.
3636 Expression* expr_;
3637 };
3638
3639 // If we are taking the address of a composite literal, and the
3640 // contents are not constant, then we want to make a heap composite
3641 // instead.
3642
3643 Expression*
3644 Unary_expression::do_lower(Gogo*, Named_object*, int)
3645 {
3646 source_location loc = this->location();
3647 Operator op = this->op_;
3648 Expression* expr = this->expr_;
3649
3650 if (op == OPERATOR_MULT && expr->is_type_expression())
3651 return Expression::make_type(Type::make_pointer_type(expr->type()), loc);
3652
3653 // *&x simplifies to x. *(*T)(unsafe.Pointer)(&x) does not require
3654 // moving x to the heap. FIXME: Is it worth doing a real escape
3655 // analysis here? This case is found in math/unsafe.go and is
3656 // therefore worth special casing.
3657 if (op == OPERATOR_MULT)
3658 {
3659 Expression* e = expr;
3660 while (e->classification() == EXPRESSION_CONVERSION)
3661 {
3662 Type_conversion_expression* te
3663 = static_cast<Type_conversion_expression*>(e);
3664 e = te->expr();
3665 }
3666
3667 if (e->classification() == EXPRESSION_UNARY)
3668 {
3669 Unary_expression* ue = static_cast<Unary_expression*>(e);
3670 if (ue->op_ == OPERATOR_AND)
3671 {
3672 if (e == expr)
3673 {
3674 // *&x == x.
3675 return ue->expr_;
3676 }
3677 ue->set_does_not_escape();
3678 }
3679 }
3680 }
3681
3682 if (op == OPERATOR_PLUS || op == OPERATOR_MINUS
3683 || op == OPERATOR_NOT || op == OPERATOR_XOR)
3684 {
3685 Expression* ret = NULL;
3686
3687 mpz_t eval;
3688 mpz_init(eval);
3689 Type* etype;
3690 if (expr->integer_constant_value(false, eval, &etype))
3691 {
3692 mpz_t val;
3693 mpz_init(val);
3694 if (Unary_expression::eval_integer(op, etype, eval, val, loc))
3695 ret = Expression::make_integer(&val, etype, loc);
3696 mpz_clear(val);
3697 }
3698 mpz_clear(eval);
3699 if (ret != NULL)
3700 return ret;
3701
3702 if (op == OPERATOR_PLUS || op == OPERATOR_MINUS)
3703 {
3704 mpfr_t fval;
3705 mpfr_init(fval);
3706 Type* ftype;
3707 if (expr->float_constant_value(fval, &ftype))
3708 {
3709 mpfr_t val;
3710 mpfr_init(val);
3711 if (Unary_expression::eval_float(op, fval, val))
3712 ret = Expression::make_float(&val, ftype, loc);
3713 mpfr_clear(val);
3714 }
3715 if (ret != NULL)
3716 {
3717 mpfr_clear(fval);
3718 return ret;
3719 }
3720
3721 mpfr_t ival;
3722 mpfr_init(ival);
3723 if (expr->complex_constant_value(fval, ival, &ftype))
3724 {
3725 mpfr_t real;
3726 mpfr_t imag;
3727 mpfr_init(real);
3728 mpfr_init(imag);
3729 if (Unary_expression::eval_complex(op, fval, ival, real, imag))
3730 ret = Expression::make_complex(&real, &imag, ftype, loc);
3731 mpfr_clear(real);
3732 mpfr_clear(imag);
3733 }
3734 mpfr_clear(ival);
3735 mpfr_clear(fval);
3736 if (ret != NULL)
3737 return ret;
3738 }
3739 }
3740
3741 return this;
3742 }
3743
3744 // Return whether a unary expression is a constant.
3745
3746 bool
3747 Unary_expression::do_is_constant() const
3748 {
3749 if (this->op_ == OPERATOR_MULT)
3750 {
3751 // Indirecting through a pointer is only constant if the object
3752 // to which the expression points is constant, but we currently
3753 // have no way to determine that.
3754 return false;
3755 }
3756 else if (this->op_ == OPERATOR_AND)
3757 {
3758 // Taking the address of a variable is constant if it is a
3759 // global variable, not constant otherwise. In other cases
3760 // taking the address is probably not a constant.
3761 Var_expression* ve = this->expr_->var_expression();
3762 if (ve != NULL)
3763 {
3764 Named_object* no = ve->named_object();
3765 return no->is_variable() && no->var_value()->is_global();
3766 }
3767 return false;
3768 }
3769 else
3770 return this->expr_->is_constant();
3771 }
3772
3773 // Apply unary opcode OP to UVAL, setting VAL. UTYPE is the type of
3774 // UVAL, if known; it may be NULL. Return true if this could be done,
3775 // false if not.
3776
3777 bool
3778 Unary_expression::eval_integer(Operator op, Type* utype, mpz_t uval, mpz_t val,
3779 source_location location)
3780 {
3781 switch (op)
3782 {
3783 case OPERATOR_PLUS:
3784 mpz_set(val, uval);
3785 return true;
3786 case OPERATOR_MINUS:
3787 mpz_neg(val, uval);
3788 return Integer_expression::check_constant(val, utype, location);
3789 case OPERATOR_NOT:
3790 mpz_set_ui(val, mpz_cmp_si(uval, 0) == 0 ? 1 : 0);
3791 return true;
3792 case OPERATOR_XOR:
3793 if (utype == NULL
3794 || utype->integer_type() == NULL
3795 || utype->integer_type()->is_abstract())
3796 mpz_com(val, uval);
3797 else
3798 {
3799 // The number of HOST_WIDE_INTs that it takes to represent
3800 // UVAL.
3801 size_t count = ((mpz_sizeinbase(uval, 2)
3802 + HOST_BITS_PER_WIDE_INT
3803 - 1)
3804 / HOST_BITS_PER_WIDE_INT);
3805
3806 unsigned HOST_WIDE_INT* phwi = new unsigned HOST_WIDE_INT[count];
3807 memset(phwi, 0, count * sizeof(HOST_WIDE_INT));
3808
3809 size_t ecount;
3810 mpz_export(phwi, &ecount, -1, sizeof(HOST_WIDE_INT), 0, 0, uval);
3811 gcc_assert(ecount <= count);
3812
3813 // Trim down to the number of words required by the type.
3814 size_t obits = utype->integer_type()->bits();
3815 if (!utype->integer_type()->is_unsigned())
3816 ++obits;
3817 size_t ocount = ((obits + HOST_BITS_PER_WIDE_INT - 1)
3818 / HOST_BITS_PER_WIDE_INT);
3819 gcc_assert(ocount <= ocount);
3820
3821 for (size_t i = 0; i < ocount; ++i)
3822 phwi[i] = ~phwi[i];
3823
3824 size_t clearbits = ocount * HOST_BITS_PER_WIDE_INT - obits;
3825 if (clearbits != 0)
3826 phwi[ocount - 1] &= (((unsigned HOST_WIDE_INT) (HOST_WIDE_INT) -1)
3827 >> clearbits);
3828
3829 mpz_import(val, ocount, -1, sizeof(HOST_WIDE_INT), 0, 0, phwi);
3830
3831 delete[] phwi;
3832 }
3833 return Integer_expression::check_constant(val, utype, location);
3834 case OPERATOR_AND:
3835 case OPERATOR_MULT:
3836 return false;
3837 default:
3838 gcc_unreachable();
3839 }
3840 }
3841
3842 // Apply unary opcode OP to UVAL, setting VAL. Return true if this
3843 // could be done, false if not.
3844
3845 bool
3846 Unary_expression::eval_float(Operator op, mpfr_t uval, mpfr_t val)
3847 {
3848 switch (op)
3849 {
3850 case OPERATOR_PLUS:
3851 mpfr_set(val, uval, GMP_RNDN);
3852 return true;
3853 case OPERATOR_MINUS:
3854 mpfr_neg(val, uval, GMP_RNDN);
3855 return true;
3856 case OPERATOR_NOT:
3857 case OPERATOR_XOR:
3858 case OPERATOR_AND:
3859 case OPERATOR_MULT:
3860 return false;
3861 default:
3862 gcc_unreachable();
3863 }
3864 }
3865
3866 // Apply unary opcode OP to RVAL/IVAL, setting REAL/IMAG. Return true
3867 // if this could be done, false if not.
3868
3869 bool
3870 Unary_expression::eval_complex(Operator op, mpfr_t rval, mpfr_t ival,
3871 mpfr_t real, mpfr_t imag)
3872 {
3873 switch (op)
3874 {
3875 case OPERATOR_PLUS:
3876 mpfr_set(real, rval, GMP_RNDN);
3877 mpfr_set(imag, ival, GMP_RNDN);
3878 return true;
3879 case OPERATOR_MINUS:
3880 mpfr_neg(real, rval, GMP_RNDN);
3881 mpfr_neg(imag, ival, GMP_RNDN);
3882 return true;
3883 case OPERATOR_NOT:
3884 case OPERATOR_XOR:
3885 case OPERATOR_AND:
3886 case OPERATOR_MULT:
3887 return false;
3888 default:
3889 gcc_unreachable();
3890 }
3891 }
3892
3893 // Return the integral constant value of a unary expression, if it has one.
3894
3895 bool
3896 Unary_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
3897 Type** ptype) const
3898 {
3899 mpz_t uval;
3900 mpz_init(uval);
3901 bool ret;
3902 if (!this->expr_->integer_constant_value(iota_is_constant, uval, ptype))
3903 ret = false;
3904 else
3905 ret = Unary_expression::eval_integer(this->op_, *ptype, uval, val,
3906 this->location());
3907 mpz_clear(uval);
3908 return ret;
3909 }
3910
3911 // Return the floating point constant value of a unary expression, if
3912 // it has one.
3913
3914 bool
3915 Unary_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
3916 {
3917 mpfr_t uval;
3918 mpfr_init(uval);
3919 bool ret;
3920 if (!this->expr_->float_constant_value(uval, ptype))
3921 ret = false;
3922 else
3923 ret = Unary_expression::eval_float(this->op_, uval, val);
3924 mpfr_clear(uval);
3925 return ret;
3926 }
3927
3928 // Return the complex constant value of a unary expression, if it has
3929 // one.
3930
3931 bool
3932 Unary_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
3933 Type** ptype) const
3934 {
3935 mpfr_t rval;
3936 mpfr_t ival;
3937 mpfr_init(rval);
3938 mpfr_init(ival);
3939 bool ret;
3940 if (!this->expr_->complex_constant_value(rval, ival, ptype))
3941 ret = false;
3942 else
3943 ret = Unary_expression::eval_complex(this->op_, rval, ival, real, imag);
3944 mpfr_clear(rval);
3945 mpfr_clear(ival);
3946 return ret;
3947 }
3948
3949 // Return the type of a unary expression.
3950
3951 Type*
3952 Unary_expression::do_type()
3953 {
3954 switch (this->op_)
3955 {
3956 case OPERATOR_PLUS:
3957 case OPERATOR_MINUS:
3958 case OPERATOR_NOT:
3959 case OPERATOR_XOR:
3960 return this->expr_->type();
3961
3962 case OPERATOR_AND:
3963 return Type::make_pointer_type(this->expr_->type());
3964
3965 case OPERATOR_MULT:
3966 {
3967 Type* subtype = this->expr_->type();
3968 Type* points_to = subtype->points_to();
3969 if (points_to == NULL)
3970 return Type::make_error_type();
3971 return points_to;
3972 }
3973
3974 default:
3975 gcc_unreachable();
3976 }
3977 }
3978
3979 // Determine abstract types for a unary expression.
3980
3981 void
3982 Unary_expression::do_determine_type(const Type_context* context)
3983 {
3984 switch (this->op_)
3985 {
3986 case OPERATOR_PLUS:
3987 case OPERATOR_MINUS:
3988 case OPERATOR_NOT:
3989 case OPERATOR_XOR:
3990 this->expr_->determine_type(context);
3991 break;
3992
3993 case OPERATOR_AND:
3994 // Taking the address of something.
3995 {
3996 Type* subtype = (context->type == NULL
3997 ? NULL
3998 : context->type->points_to());
3999 Type_context subcontext(subtype, false);
4000 this->expr_->determine_type(&subcontext);
4001 }
4002 break;
4003
4004 case OPERATOR_MULT:
4005 // Indirecting through a pointer.
4006 {
4007 Type* subtype = (context->type == NULL
4008 ? NULL
4009 : Type::make_pointer_type(context->type));
4010 Type_context subcontext(subtype, false);
4011 this->expr_->determine_type(&subcontext);
4012 }
4013 break;
4014
4015 default:
4016 gcc_unreachable();
4017 }
4018 }
4019
4020 // Check types for a unary expression.
4021
4022 void
4023 Unary_expression::do_check_types(Gogo*)
4024 {
4025 Type* type = this->expr_->type();
4026 if (type->is_error_type())
4027 {
4028 this->set_is_error();
4029 return;
4030 }
4031
4032 switch (this->op_)
4033 {
4034 case OPERATOR_PLUS:
4035 case OPERATOR_MINUS:
4036 if (type->integer_type() == NULL
4037 && type->float_type() == NULL
4038 && type->complex_type() == NULL)
4039 this->report_error(_("expected numeric type"));
4040 break;
4041
4042 case OPERATOR_NOT:
4043 case OPERATOR_XOR:
4044 if (type->integer_type() == NULL
4045 && !type->is_boolean_type())
4046 this->report_error(_("expected integer or boolean type"));
4047 break;
4048
4049 case OPERATOR_AND:
4050 if (!this->expr_->is_addressable())
4051 this->report_error(_("invalid operand for unary %<&%>"));
4052 else
4053 this->expr_->address_taken(this->escapes_);
4054 break;
4055
4056 case OPERATOR_MULT:
4057 // Indirecting through a pointer.
4058 if (type->points_to() == NULL)
4059 this->report_error(_("expected pointer"));
4060 break;
4061
4062 default:
4063 gcc_unreachable();
4064 }
4065 }
4066
4067 // Get a tree for a unary expression.
4068
4069 tree
4070 Unary_expression::do_get_tree(Translate_context* context)
4071 {
4072 tree expr = this->expr_->get_tree(context);
4073 if (expr == error_mark_node)
4074 return error_mark_node;
4075
4076 source_location loc = this->location();
4077 switch (this->op_)
4078 {
4079 case OPERATOR_PLUS:
4080 return expr;
4081
4082 case OPERATOR_MINUS:
4083 {
4084 tree type = TREE_TYPE(expr);
4085 tree compute_type = excess_precision_type(type);
4086 if (compute_type != NULL_TREE)
4087 expr = ::convert(compute_type, expr);
4088 tree ret = fold_build1_loc(loc, NEGATE_EXPR,
4089 (compute_type != NULL_TREE
4090 ? compute_type
4091 : type),
4092 expr);
4093 if (compute_type != NULL_TREE)
4094 ret = ::convert(type, ret);
4095 return ret;
4096 }
4097
4098 case OPERATOR_NOT:
4099 if (TREE_CODE(TREE_TYPE(expr)) == BOOLEAN_TYPE)
4100 return fold_build1_loc(loc, TRUTH_NOT_EXPR, TREE_TYPE(expr), expr);
4101 else
4102 return fold_build2_loc(loc, NE_EXPR, boolean_type_node, expr,
4103 build_int_cst(TREE_TYPE(expr), 0));
4104
4105 case OPERATOR_XOR:
4106 return fold_build1_loc(loc, BIT_NOT_EXPR, TREE_TYPE(expr), expr);
4107
4108 case OPERATOR_AND:
4109 // We should not see a non-constant constructor here; cases
4110 // where we would see one should have been moved onto the heap
4111 // at parse time. Taking the address of a nonconstant
4112 // constructor will not do what the programmer expects.
4113 gcc_assert(TREE_CODE(expr) != CONSTRUCTOR || TREE_CONSTANT(expr));
4114 gcc_assert(TREE_CODE(expr) != ADDR_EXPR);
4115
4116 // Build a decl for a constant constructor.
4117 if (TREE_CODE(expr) == CONSTRUCTOR && TREE_CONSTANT(expr))
4118 {
4119 tree decl = build_decl(this->location(), VAR_DECL,
4120 create_tmp_var_name("C"), TREE_TYPE(expr));
4121 DECL_EXTERNAL(decl) = 0;
4122 TREE_PUBLIC(decl) = 0;
4123 TREE_READONLY(decl) = 1;
4124 TREE_CONSTANT(decl) = 1;
4125 TREE_STATIC(decl) = 1;
4126 TREE_ADDRESSABLE(decl) = 1;
4127 DECL_ARTIFICIAL(decl) = 1;
4128 DECL_INITIAL(decl) = expr;
4129 rest_of_decl_compilation(decl, 1, 0);
4130 expr = decl;
4131 }
4132
4133 return build_fold_addr_expr_loc(loc, expr);
4134
4135 case OPERATOR_MULT:
4136 {
4137 gcc_assert(POINTER_TYPE_P(TREE_TYPE(expr)));
4138
4139 // If we are dereferencing the pointer to a large struct, we
4140 // need to check for nil. We don't bother to check for small
4141 // structs because we expect the system to crash on a nil
4142 // pointer dereference.
4143 HOST_WIDE_INT s = int_size_in_bytes(TREE_TYPE(TREE_TYPE(expr)));
4144 if (s == -1 || s >= 4096)
4145 {
4146 if (!DECL_P(expr))
4147 expr = save_expr(expr);
4148 tree compare = fold_build2_loc(loc, EQ_EXPR, boolean_type_node,
4149 expr,
4150 fold_convert(TREE_TYPE(expr),
4151 null_pointer_node));
4152 tree crash = Gogo::runtime_error(RUNTIME_ERROR_NIL_DEREFERENCE,
4153 loc);
4154 expr = fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(expr),
4155 build3(COND_EXPR, void_type_node,
4156 compare, crash, NULL_TREE),
4157 expr);
4158 }
4159
4160 // If the type of EXPR is a recursive pointer type, then we
4161 // need to insert a cast before indirecting.
4162 if (TREE_TYPE(TREE_TYPE(expr)) == ptr_type_node)
4163 {
4164 Type* pt = this->expr_->type()->points_to();
4165 tree ind = pt->get_tree(context->gogo());
4166 expr = fold_convert_loc(loc, build_pointer_type(ind), expr);
4167 }
4168
4169 return build_fold_indirect_ref_loc(loc, expr);
4170 }
4171
4172 default:
4173 gcc_unreachable();
4174 }
4175 }
4176
4177 // Export a unary expression.
4178
4179 void
4180 Unary_expression::do_export(Export* exp) const
4181 {
4182 switch (this->op_)
4183 {
4184 case OPERATOR_PLUS:
4185 exp->write_c_string("+ ");
4186 break;
4187 case OPERATOR_MINUS:
4188 exp->write_c_string("- ");
4189 break;
4190 case OPERATOR_NOT:
4191 exp->write_c_string("! ");
4192 break;
4193 case OPERATOR_XOR:
4194 exp->write_c_string("^ ");
4195 break;
4196 case OPERATOR_AND:
4197 case OPERATOR_MULT:
4198 default:
4199 gcc_unreachable();
4200 }
4201 this->expr_->export_expression(exp);
4202 }
4203
4204 // Import a unary expression.
4205
4206 Expression*
4207 Unary_expression::do_import(Import* imp)
4208 {
4209 Operator op;
4210 switch (imp->get_char())
4211 {
4212 case '+':
4213 op = OPERATOR_PLUS;
4214 break;
4215 case '-':
4216 op = OPERATOR_MINUS;
4217 break;
4218 case '!':
4219 op = OPERATOR_NOT;
4220 break;
4221 case '^':
4222 op = OPERATOR_XOR;
4223 break;
4224 default:
4225 gcc_unreachable();
4226 }
4227 imp->require_c_string(" ");
4228 Expression* expr = Expression::import_expression(imp);
4229 return Expression::make_unary(op, expr, imp->location());
4230 }
4231
4232 // Make a unary expression.
4233
4234 Expression*
4235 Expression::make_unary(Operator op, Expression* expr, source_location location)
4236 {
4237 return new Unary_expression(op, expr, location);
4238 }
4239
4240 // If this is an indirection through a pointer, return the expression
4241 // being pointed through. Otherwise return this.
4242
4243 Expression*
4244 Expression::deref()
4245 {
4246 if (this->classification_ == EXPRESSION_UNARY)
4247 {
4248 Unary_expression* ue = static_cast<Unary_expression*>(this);
4249 if (ue->op() == OPERATOR_MULT)
4250 return ue->operand();
4251 }
4252 return this;
4253 }
4254
4255 // Class Binary_expression.
4256
4257 // Traversal.
4258
4259 int
4260 Binary_expression::do_traverse(Traverse* traverse)
4261 {
4262 int t = Expression::traverse(&this->left_, traverse);
4263 if (t == TRAVERSE_EXIT)
4264 return TRAVERSE_EXIT;
4265 return Expression::traverse(&this->right_, traverse);
4266 }
4267
4268 // Compare integer constants according to OP.
4269
4270 bool
4271 Binary_expression::compare_integer(Operator op, mpz_t left_val,
4272 mpz_t right_val)
4273 {
4274 int i = mpz_cmp(left_val, right_val);
4275 switch (op)
4276 {
4277 case OPERATOR_EQEQ:
4278 return i == 0;
4279 case OPERATOR_NOTEQ:
4280 return i != 0;
4281 case OPERATOR_LT:
4282 return i < 0;
4283 case OPERATOR_LE:
4284 return i <= 0;
4285 case OPERATOR_GT:
4286 return i > 0;
4287 case OPERATOR_GE:
4288 return i >= 0;
4289 default:
4290 gcc_unreachable();
4291 }
4292 }
4293
4294 // Compare floating point constants according to OP.
4295
4296 bool
4297 Binary_expression::compare_float(Operator op, Type* type, mpfr_t left_val,
4298 mpfr_t right_val)
4299 {
4300 int i;
4301 if (type == NULL)
4302 i = mpfr_cmp(left_val, right_val);
4303 else
4304 {
4305 mpfr_t lv;
4306 mpfr_init_set(lv, left_val, GMP_RNDN);
4307 mpfr_t rv;
4308 mpfr_init_set(rv, right_val, GMP_RNDN);
4309 Float_expression::constrain_float(lv, type);
4310 Float_expression::constrain_float(rv, type);
4311 i = mpfr_cmp(lv, rv);
4312 mpfr_clear(lv);
4313 mpfr_clear(rv);
4314 }
4315 switch (op)
4316 {
4317 case OPERATOR_EQEQ:
4318 return i == 0;
4319 case OPERATOR_NOTEQ:
4320 return i != 0;
4321 case OPERATOR_LT:
4322 return i < 0;
4323 case OPERATOR_LE:
4324 return i <= 0;
4325 case OPERATOR_GT:
4326 return i > 0;
4327 case OPERATOR_GE:
4328 return i >= 0;
4329 default:
4330 gcc_unreachable();
4331 }
4332 }
4333
4334 // Compare complex constants according to OP. Complex numbers may
4335 // only be compared for equality.
4336
4337 bool
4338 Binary_expression::compare_complex(Operator op, Type* type,
4339 mpfr_t left_real, mpfr_t left_imag,
4340 mpfr_t right_real, mpfr_t right_imag)
4341 {
4342 bool is_equal;
4343 if (type == NULL)
4344 is_equal = (mpfr_cmp(left_real, right_real) == 0
4345 && mpfr_cmp(left_imag, right_imag) == 0);
4346 else
4347 {
4348 mpfr_t lr;
4349 mpfr_t li;
4350 mpfr_init_set(lr, left_real, GMP_RNDN);
4351 mpfr_init_set(li, left_imag, GMP_RNDN);
4352 mpfr_t rr;
4353 mpfr_t ri;
4354 mpfr_init_set(rr, right_real, GMP_RNDN);
4355 mpfr_init_set(ri, right_imag, GMP_RNDN);
4356 Complex_expression::constrain_complex(lr, li, type);
4357 Complex_expression::constrain_complex(rr, ri, type);
4358 is_equal = mpfr_cmp(lr, rr) == 0 && mpfr_cmp(li, ri) == 0;
4359 mpfr_clear(lr);
4360 mpfr_clear(li);
4361 mpfr_clear(rr);
4362 mpfr_clear(ri);
4363 }
4364 switch (op)
4365 {
4366 case OPERATOR_EQEQ:
4367 return is_equal;
4368 case OPERATOR_NOTEQ:
4369 return !is_equal;
4370 default:
4371 gcc_unreachable();
4372 }
4373 }
4374
4375 // Apply binary opcode OP to LEFT_VAL and RIGHT_VAL, setting VAL.
4376 // LEFT_TYPE is the type of LEFT_VAL, RIGHT_TYPE is the type of
4377 // RIGHT_VAL; LEFT_TYPE and/or RIGHT_TYPE may be NULL. Return true if
4378 // this could be done, false if not.
4379
4380 bool
4381 Binary_expression::eval_integer(Operator op, Type* left_type, mpz_t left_val,
4382 Type* right_type, mpz_t right_val,
4383 source_location location, mpz_t val)
4384 {
4385 bool is_shift_op = false;
4386 switch (op)
4387 {
4388 case OPERATOR_OROR:
4389 case OPERATOR_ANDAND:
4390 case OPERATOR_EQEQ:
4391 case OPERATOR_NOTEQ:
4392 case OPERATOR_LT:
4393 case OPERATOR_LE:
4394 case OPERATOR_GT:
4395 case OPERATOR_GE:
4396 // These return boolean values. We should probably handle them
4397 // anyhow in case a type conversion is used on the result.
4398 return false;
4399 case OPERATOR_PLUS:
4400 mpz_add(val, left_val, right_val);
4401 break;
4402 case OPERATOR_MINUS:
4403 mpz_sub(val, left_val, right_val);
4404 break;
4405 case OPERATOR_OR:
4406 mpz_ior(val, left_val, right_val);
4407 break;
4408 case OPERATOR_XOR:
4409 mpz_xor(val, left_val, right_val);
4410 break;
4411 case OPERATOR_MULT:
4412 mpz_mul(val, left_val, right_val);
4413 break;
4414 case OPERATOR_DIV:
4415 if (mpz_sgn(right_val) != 0)
4416 mpz_tdiv_q(val, left_val, right_val);
4417 else
4418 {
4419 error_at(location, "division by zero");
4420 mpz_set_ui(val, 0);
4421 return true;
4422 }
4423 break;
4424 case OPERATOR_MOD:
4425 if (mpz_sgn(right_val) != 0)
4426 mpz_tdiv_r(val, left_val, right_val);
4427 else
4428 {
4429 error_at(location, "division by zero");
4430 mpz_set_ui(val, 0);
4431 return true;
4432 }
4433 break;
4434 case OPERATOR_LSHIFT:
4435 {
4436 unsigned long shift = mpz_get_ui(right_val);
4437 if (mpz_cmp_ui(right_val, shift) != 0)
4438 {
4439 error_at(location, "shift count overflow");
4440 mpz_set_ui(val, 0);
4441 return true;
4442 }
4443 mpz_mul_2exp(val, left_val, shift);
4444 is_shift_op = true;
4445 break;
4446 }
4447 break;
4448 case OPERATOR_RSHIFT:
4449 {
4450 unsigned long shift = mpz_get_ui(right_val);
4451 if (mpz_cmp_ui(right_val, shift) != 0)
4452 {
4453 error_at(location, "shift count overflow");
4454 mpz_set_ui(val, 0);
4455 return true;
4456 }
4457 if (mpz_cmp_ui(left_val, 0) >= 0)
4458 mpz_tdiv_q_2exp(val, left_val, shift);
4459 else
4460 mpz_fdiv_q_2exp(val, left_val, shift);
4461 is_shift_op = true;
4462 break;
4463 }
4464 break;
4465 case OPERATOR_AND:
4466 mpz_and(val, left_val, right_val);
4467 break;
4468 case OPERATOR_BITCLEAR:
4469 {
4470 mpz_t tval;
4471 mpz_init(tval);
4472 mpz_com(tval, right_val);
4473 mpz_and(val, left_val, tval);
4474 mpz_clear(tval);
4475 }
4476 break;
4477 default:
4478 gcc_unreachable();
4479 }
4480
4481 Type* type = left_type;
4482 if (!is_shift_op)
4483 {
4484 if (type == NULL)
4485 type = right_type;
4486 else if (type != right_type && right_type != NULL)
4487 {
4488 if (type->is_abstract())
4489 type = right_type;
4490 else if (!right_type->is_abstract())
4491 {
4492 // This look like a type error which should be diagnosed
4493 // elsewhere. Don't do anything here, to avoid an
4494 // unhelpful chain of error messages.
4495 return true;
4496 }
4497 }
4498 }
4499
4500 if (type != NULL && !type->is_abstract())
4501 {
4502 // We have to check the operands too, as we have implicitly
4503 // coerced them to TYPE.
4504 if ((type != left_type
4505 && !Integer_expression::check_constant(left_val, type, location))
4506 || (!is_shift_op
4507 && type != right_type
4508 && !Integer_expression::check_constant(right_val, type,
4509 location))
4510 || !Integer_expression::check_constant(val, type, location))
4511 mpz_set_ui(val, 0);
4512 }
4513
4514 return true;
4515 }
4516
4517 // Apply binary opcode OP to LEFT_VAL and RIGHT_VAL, setting VAL.
4518 // Return true if this could be done, false if not.
4519
4520 bool
4521 Binary_expression::eval_float(Operator op, Type* left_type, mpfr_t left_val,
4522 Type* right_type, mpfr_t right_val,
4523 mpfr_t val, source_location location)
4524 {
4525 switch (op)
4526 {
4527 case OPERATOR_OROR:
4528 case OPERATOR_ANDAND:
4529 case OPERATOR_EQEQ:
4530 case OPERATOR_NOTEQ:
4531 case OPERATOR_LT:
4532 case OPERATOR_LE:
4533 case OPERATOR_GT:
4534 case OPERATOR_GE:
4535 // These return boolean values. We should probably handle them
4536 // anyhow in case a type conversion is used on the result.
4537 return false;
4538 case OPERATOR_PLUS:
4539 mpfr_add(val, left_val, right_val, GMP_RNDN);
4540 break;
4541 case OPERATOR_MINUS:
4542 mpfr_sub(val, left_val, right_val, GMP_RNDN);
4543 break;
4544 case OPERATOR_OR:
4545 case OPERATOR_XOR:
4546 case OPERATOR_AND:
4547 case OPERATOR_BITCLEAR:
4548 return false;
4549 case OPERATOR_MULT:
4550 mpfr_mul(val, left_val, right_val, GMP_RNDN);
4551 break;
4552 case OPERATOR_DIV:
4553 if (mpfr_zero_p(right_val))
4554 error_at(location, "division by zero");
4555 mpfr_div(val, left_val, right_val, GMP_RNDN);
4556 break;
4557 case OPERATOR_MOD:
4558 return false;
4559 case OPERATOR_LSHIFT:
4560 case OPERATOR_RSHIFT:
4561 return false;
4562 default:
4563 gcc_unreachable();
4564 }
4565
4566 Type* type = left_type;
4567 if (type == NULL)
4568 type = right_type;
4569 else if (type != right_type && right_type != NULL)
4570 {
4571 if (type->is_abstract())
4572 type = right_type;
4573 else if (!right_type->is_abstract())
4574 {
4575 // This looks like a type error which should be diagnosed
4576 // elsewhere. Don't do anything here, to avoid an unhelpful
4577 // chain of error messages.
4578 return true;
4579 }
4580 }
4581
4582 if (type != NULL && !type->is_abstract())
4583 {
4584 if ((type != left_type
4585 && !Float_expression::check_constant(left_val, type, location))
4586 || (type != right_type
4587 && !Float_expression::check_constant(right_val, type,
4588 location))
4589 || !Float_expression::check_constant(val, type, location))
4590 mpfr_set_ui(val, 0, GMP_RNDN);
4591 }
4592
4593 return true;
4594 }
4595
4596 // Apply binary opcode OP to LEFT_REAL/LEFT_IMAG and
4597 // RIGHT_REAL/RIGHT_IMAG, setting REAL/IMAG. Return true if this
4598 // could be done, false if not.
4599
4600 bool
4601 Binary_expression::eval_complex(Operator op, Type* left_type,
4602 mpfr_t left_real, mpfr_t left_imag,
4603 Type *right_type,
4604 mpfr_t right_real, mpfr_t right_imag,
4605 mpfr_t real, mpfr_t imag,
4606 source_location location)
4607 {
4608 switch (op)
4609 {
4610 case OPERATOR_OROR:
4611 case OPERATOR_ANDAND:
4612 case OPERATOR_EQEQ:
4613 case OPERATOR_NOTEQ:
4614 case OPERATOR_LT:
4615 case OPERATOR_LE:
4616 case OPERATOR_GT:
4617 case OPERATOR_GE:
4618 // These return boolean values and must be handled differently.
4619 return false;
4620 case OPERATOR_PLUS:
4621 mpfr_add(real, left_real, right_real, GMP_RNDN);
4622 mpfr_add(imag, left_imag, right_imag, GMP_RNDN);
4623 break;
4624 case OPERATOR_MINUS:
4625 mpfr_sub(real, left_real, right_real, GMP_RNDN);
4626 mpfr_sub(imag, left_imag, right_imag, GMP_RNDN);
4627 break;
4628 case OPERATOR_OR:
4629 case OPERATOR_XOR:
4630 case OPERATOR_AND:
4631 case OPERATOR_BITCLEAR:
4632 return false;
4633 case OPERATOR_MULT:
4634 {
4635 // You might think that multiplying two complex numbers would
4636 // be simple, and you would be right, until you start to think
4637 // about getting the right answer for infinity. If one
4638 // operand here is infinity and the other is anything other
4639 // than zero or NaN, then we are going to wind up subtracting
4640 // two infinity values. That will give us a NaN, but the
4641 // correct answer is infinity.
4642
4643 mpfr_t lrrr;
4644 mpfr_init(lrrr);
4645 mpfr_mul(lrrr, left_real, right_real, GMP_RNDN);
4646
4647 mpfr_t lrri;
4648 mpfr_init(lrri);
4649 mpfr_mul(lrri, left_real, right_imag, GMP_RNDN);
4650
4651 mpfr_t lirr;
4652 mpfr_init(lirr);
4653 mpfr_mul(lirr, left_imag, right_real, GMP_RNDN);
4654
4655 mpfr_t liri;
4656 mpfr_init(liri);
4657 mpfr_mul(liri, left_imag, right_imag, GMP_RNDN);
4658
4659 mpfr_sub(real, lrrr, liri, GMP_RNDN);
4660 mpfr_add(imag, lrri, lirr, GMP_RNDN);
4661
4662 // If we get NaN on both sides, check whether it should really
4663 // be infinity. The rule is that if either side of the
4664 // complex number is infinity, then the whole value is
4665 // infinity, even if the other side is NaN. So the only case
4666 // we have to fix is the one in which both sides are NaN.
4667 if (mpfr_nan_p(real) && mpfr_nan_p(imag)
4668 && (!mpfr_nan_p(left_real) || !mpfr_nan_p(left_imag))
4669 && (!mpfr_nan_p(right_real) || !mpfr_nan_p(right_imag)))
4670 {
4671 bool is_infinity = false;
4672
4673 mpfr_t lr;
4674 mpfr_t li;
4675 mpfr_init_set(lr, left_real, GMP_RNDN);
4676 mpfr_init_set(li, left_imag, GMP_RNDN);
4677
4678 mpfr_t rr;
4679 mpfr_t ri;
4680 mpfr_init_set(rr, right_real, GMP_RNDN);
4681 mpfr_init_set(ri, right_imag, GMP_RNDN);
4682
4683 // If the left side is infinity, then the result is
4684 // infinity.
4685 if (mpfr_inf_p(lr) || mpfr_inf_p(li))
4686 {
4687 mpfr_set_ui(lr, mpfr_inf_p(lr) ? 1 : 0, GMP_RNDN);
4688 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
4689 mpfr_set_ui(li, mpfr_inf_p(li) ? 1 : 0, GMP_RNDN);
4690 mpfr_copysign(li, li, left_imag, GMP_RNDN);
4691 if (mpfr_nan_p(rr))
4692 {
4693 mpfr_set_ui(rr, 0, GMP_RNDN);
4694 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
4695 }
4696 if (mpfr_nan_p(ri))
4697 {
4698 mpfr_set_ui(ri, 0, GMP_RNDN);
4699 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
4700 }
4701 is_infinity = true;
4702 }
4703
4704 // If the right side is infinity, then the result is
4705 // infinity.
4706 if (mpfr_inf_p(rr) || mpfr_inf_p(ri))
4707 {
4708 mpfr_set_ui(rr, mpfr_inf_p(rr) ? 1 : 0, GMP_RNDN);
4709 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
4710 mpfr_set_ui(ri, mpfr_inf_p(ri) ? 1 : 0, GMP_RNDN);
4711 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
4712 if (mpfr_nan_p(lr))
4713 {
4714 mpfr_set_ui(lr, 0, GMP_RNDN);
4715 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
4716 }
4717 if (mpfr_nan_p(li))
4718 {
4719 mpfr_set_ui(li, 0, GMP_RNDN);
4720 mpfr_copysign(li, li, left_imag, GMP_RNDN);
4721 }
4722 is_infinity = true;
4723 }
4724
4725 // If we got an overflow in the intermediate computations,
4726 // then the result is infinity.
4727 if (!is_infinity
4728 && (mpfr_inf_p(lrrr) || mpfr_inf_p(lrri)
4729 || mpfr_inf_p(lirr) || mpfr_inf_p(liri)))
4730 {
4731 if (mpfr_nan_p(lr))
4732 {
4733 mpfr_set_ui(lr, 0, GMP_RNDN);
4734 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
4735 }
4736 if (mpfr_nan_p(li))
4737 {
4738 mpfr_set_ui(li, 0, GMP_RNDN);
4739 mpfr_copysign(li, li, left_imag, GMP_RNDN);
4740 }
4741 if (mpfr_nan_p(rr))
4742 {
4743 mpfr_set_ui(rr, 0, GMP_RNDN);
4744 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
4745 }
4746 if (mpfr_nan_p(ri))
4747 {
4748 mpfr_set_ui(ri, 0, GMP_RNDN);
4749 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
4750 }
4751 is_infinity = true;
4752 }
4753
4754 if (is_infinity)
4755 {
4756 mpfr_mul(lrrr, lr, rr, GMP_RNDN);
4757 mpfr_mul(lrri, lr, ri, GMP_RNDN);
4758 mpfr_mul(lirr, li, rr, GMP_RNDN);
4759 mpfr_mul(liri, li, ri, GMP_RNDN);
4760 mpfr_sub(real, lrrr, liri, GMP_RNDN);
4761 mpfr_add(imag, lrri, lirr, GMP_RNDN);
4762 mpfr_set_inf(real, mpfr_sgn(real));
4763 mpfr_set_inf(imag, mpfr_sgn(imag));
4764 }
4765
4766 mpfr_clear(lr);
4767 mpfr_clear(li);
4768 mpfr_clear(rr);
4769 mpfr_clear(ri);
4770 }
4771
4772 mpfr_clear(lrrr);
4773 mpfr_clear(lrri);
4774 mpfr_clear(lirr);
4775 mpfr_clear(liri);
4776 }
4777 break;
4778 case OPERATOR_DIV:
4779 {
4780 // For complex division we want to avoid having an
4781 // intermediate overflow turn the whole result in a NaN. We
4782 // scale the values to try to avoid this.
4783
4784 if (mpfr_zero_p(right_real) && mpfr_zero_p(right_imag))
4785 error_at(location, "division by zero");
4786
4787 mpfr_t rra;
4788 mpfr_t ria;
4789 mpfr_init(rra);
4790 mpfr_init(ria);
4791 mpfr_abs(rra, right_real, GMP_RNDN);
4792 mpfr_abs(ria, right_imag, GMP_RNDN);
4793 mpfr_t t;
4794 mpfr_init(t);
4795 mpfr_max(t, rra, ria, GMP_RNDN);
4796
4797 mpfr_t rr;
4798 mpfr_t ri;
4799 mpfr_init_set(rr, right_real, GMP_RNDN);
4800 mpfr_init_set(ri, right_imag, GMP_RNDN);
4801 long ilogbw = 0;
4802 if (!mpfr_inf_p(t) && !mpfr_nan_p(t) && !mpfr_zero_p(t))
4803 {
4804 ilogbw = mpfr_get_exp(t);
4805 mpfr_mul_2si(rr, rr, - ilogbw, GMP_RNDN);
4806 mpfr_mul_2si(ri, ri, - ilogbw, GMP_RNDN);
4807 }
4808
4809 mpfr_t denom;
4810 mpfr_init(denom);
4811 mpfr_mul(denom, rr, rr, GMP_RNDN);
4812 mpfr_mul(t, ri, ri, GMP_RNDN);
4813 mpfr_add(denom, denom, t, GMP_RNDN);
4814
4815 mpfr_mul(real, left_real, rr, GMP_RNDN);
4816 mpfr_mul(t, left_imag, ri, GMP_RNDN);
4817 mpfr_add(real, real, t, GMP_RNDN);
4818 mpfr_div(real, real, denom, GMP_RNDN);
4819 mpfr_mul_2si(real, real, - ilogbw, GMP_RNDN);
4820
4821 mpfr_mul(imag, left_imag, rr, GMP_RNDN);
4822 mpfr_mul(t, left_real, ri, GMP_RNDN);
4823 mpfr_sub(imag, imag, t, GMP_RNDN);
4824 mpfr_div(imag, imag, denom, GMP_RNDN);
4825 mpfr_mul_2si(imag, imag, - ilogbw, GMP_RNDN);
4826
4827 // If we wind up with NaN on both sides, check whether we
4828 // should really have infinity. The rule is that if either
4829 // side of the complex number is infinity, then the whole
4830 // value is infinity, even if the other side is NaN. So the
4831 // only case we have to fix is the one in which both sides are
4832 // NaN.
4833 if (mpfr_nan_p(real) && mpfr_nan_p(imag)
4834 && (!mpfr_nan_p(left_real) || !mpfr_nan_p(left_imag))
4835 && (!mpfr_nan_p(right_real) || !mpfr_nan_p(right_imag)))
4836 {
4837 if (mpfr_zero_p(denom))
4838 {
4839 mpfr_set_inf(real, mpfr_sgn(rr));
4840 mpfr_mul(real, real, left_real, GMP_RNDN);
4841 mpfr_set_inf(imag, mpfr_sgn(rr));
4842 mpfr_mul(imag, imag, left_imag, GMP_RNDN);
4843 }
4844 else if ((mpfr_inf_p(left_real) || mpfr_inf_p(left_imag))
4845 && mpfr_number_p(rr) && mpfr_number_p(ri))
4846 {
4847 mpfr_set_ui(t, mpfr_inf_p(left_real) ? 1 : 0, GMP_RNDN);
4848 mpfr_copysign(t, t, left_real, GMP_RNDN);
4849
4850 mpfr_t t2;
4851 mpfr_init_set_ui(t2, mpfr_inf_p(left_imag) ? 1 : 0, GMP_RNDN);
4852 mpfr_copysign(t2, t2, left_imag, GMP_RNDN);
4853
4854 mpfr_t t3;
4855 mpfr_init(t3);
4856 mpfr_mul(t3, t, rr, GMP_RNDN);
4857
4858 mpfr_t t4;
4859 mpfr_init(t4);
4860 mpfr_mul(t4, t2, ri, GMP_RNDN);
4861
4862 mpfr_add(t3, t3, t4, GMP_RNDN);
4863 mpfr_set_inf(real, mpfr_sgn(t3));
4864
4865 mpfr_mul(t3, t2, rr, GMP_RNDN);
4866 mpfr_mul(t4, t, ri, GMP_RNDN);
4867 mpfr_sub(t3, t3, t4, GMP_RNDN);
4868 mpfr_set_inf(imag, mpfr_sgn(t3));
4869
4870 mpfr_clear(t2);
4871 mpfr_clear(t3);
4872 mpfr_clear(t4);
4873 }
4874 else if ((mpfr_inf_p(right_real) || mpfr_inf_p(right_imag))
4875 && mpfr_number_p(left_real) && mpfr_number_p(left_imag))
4876 {
4877 mpfr_set_ui(t, mpfr_inf_p(rr) ? 1 : 0, GMP_RNDN);
4878 mpfr_copysign(t, t, rr, GMP_RNDN);
4879
4880 mpfr_t t2;
4881 mpfr_init_set_ui(t2, mpfr_inf_p(ri) ? 1 : 0, GMP_RNDN);
4882 mpfr_copysign(t2, t2, ri, GMP_RNDN);
4883
4884 mpfr_t t3;
4885 mpfr_init(t3);
4886 mpfr_mul(t3, left_real, t, GMP_RNDN);
4887
4888 mpfr_t t4;
4889 mpfr_init(t4);
4890 mpfr_mul(t4, left_imag, t2, GMP_RNDN);
4891
4892 mpfr_add(t3, t3, t4, GMP_RNDN);
4893 mpfr_set_ui(real, 0, GMP_RNDN);
4894 mpfr_mul(real, real, t3, GMP_RNDN);
4895
4896 mpfr_mul(t3, left_imag, t, GMP_RNDN);
4897 mpfr_mul(t4, left_real, t2, GMP_RNDN);
4898 mpfr_sub(t3, t3, t4, GMP_RNDN);
4899 mpfr_set_ui(imag, 0, GMP_RNDN);
4900 mpfr_mul(imag, imag, t3, GMP_RNDN);
4901
4902 mpfr_clear(t2);
4903 mpfr_clear(t3);
4904 mpfr_clear(t4);
4905 }
4906 }
4907
4908 mpfr_clear(denom);
4909 mpfr_clear(rr);
4910 mpfr_clear(ri);
4911 mpfr_clear(t);
4912 mpfr_clear(rra);
4913 mpfr_clear(ria);
4914 }
4915 break;
4916 case OPERATOR_MOD:
4917 return false;
4918 case OPERATOR_LSHIFT:
4919 case OPERATOR_RSHIFT:
4920 return false;
4921 default:
4922 gcc_unreachable();
4923 }
4924
4925 Type* type = left_type;
4926 if (type == NULL)
4927 type = right_type;
4928 else if (type != right_type && right_type != NULL)
4929 {
4930 if (type->is_abstract())
4931 type = right_type;
4932 else if (!right_type->is_abstract())
4933 {
4934 // This looks like a type error which should be diagnosed
4935 // elsewhere. Don't do anything here, to avoid an unhelpful
4936 // chain of error messages.
4937 return true;
4938 }
4939 }
4940
4941 if (type != NULL && !type->is_abstract())
4942 {
4943 if ((type != left_type
4944 && !Complex_expression::check_constant(left_real, left_imag,
4945 type, location))
4946 || (type != right_type
4947 && !Complex_expression::check_constant(right_real, right_imag,
4948 type, location))
4949 || !Complex_expression::check_constant(real, imag, type,
4950 location))
4951 {
4952 mpfr_set_ui(real, 0, GMP_RNDN);
4953 mpfr_set_ui(imag, 0, GMP_RNDN);
4954 }
4955 }
4956
4957 return true;
4958 }
4959
4960 // Lower a binary expression. We have to evaluate constant
4961 // expressions now, in order to implement Go's unlimited precision
4962 // constants.
4963
4964 Expression*
4965 Binary_expression::do_lower(Gogo*, Named_object*, int)
4966 {
4967 source_location location = this->location();
4968 Operator op = this->op_;
4969 Expression* left = this->left_;
4970 Expression* right = this->right_;
4971
4972 const bool is_comparison = (op == OPERATOR_EQEQ
4973 || op == OPERATOR_NOTEQ
4974 || op == OPERATOR_LT
4975 || op == OPERATOR_LE
4976 || op == OPERATOR_GT
4977 || op == OPERATOR_GE);
4978
4979 // Integer constant expressions.
4980 {
4981 mpz_t left_val;
4982 mpz_init(left_val);
4983 Type* left_type;
4984 mpz_t right_val;
4985 mpz_init(right_val);
4986 Type* right_type;
4987 if (left->integer_constant_value(false, left_val, &left_type)
4988 && right->integer_constant_value(false, right_val, &right_type))
4989 {
4990 Expression* ret = NULL;
4991 if (left_type != right_type
4992 && left_type != NULL
4993 && right_type != NULL
4994 && left_type->base() != right_type->base()
4995 && op != OPERATOR_LSHIFT
4996 && op != OPERATOR_RSHIFT)
4997 {
4998 // May be a type error--let it be diagnosed later.
4999 }
5000 else if (is_comparison)
5001 {
5002 bool b = Binary_expression::compare_integer(op, left_val,
5003 right_val);
5004 ret = Expression::make_cast(Type::lookup_bool_type(),
5005 Expression::make_boolean(b, location),
5006 location);
5007 }
5008 else
5009 {
5010 mpz_t val;
5011 mpz_init(val);
5012
5013 if (Binary_expression::eval_integer(op, left_type, left_val,
5014 right_type, right_val,
5015 location, val))
5016 {
5017 gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND);
5018 Type* type;
5019 if (op == OPERATOR_LSHIFT || op == OPERATOR_RSHIFT)
5020 type = left_type;
5021 else if (left_type == NULL)
5022 type = right_type;
5023 else if (right_type == NULL)
5024 type = left_type;
5025 else if (!left_type->is_abstract()
5026 && left_type->named_type() != NULL)
5027 type = left_type;
5028 else if (!right_type->is_abstract()
5029 && right_type->named_type() != NULL)
5030 type = right_type;
5031 else if (!left_type->is_abstract())
5032 type = left_type;
5033 else if (!right_type->is_abstract())
5034 type = right_type;
5035 else if (left_type->float_type() != NULL)
5036 type = left_type;
5037 else if (right_type->float_type() != NULL)
5038 type = right_type;
5039 else if (left_type->complex_type() != NULL)
5040 type = left_type;
5041 else if (right_type->complex_type() != NULL)
5042 type = right_type;
5043 else
5044 type = left_type;
5045 ret = Expression::make_integer(&val, type, location);
5046 }
5047
5048 mpz_clear(val);
5049 }
5050
5051 if (ret != NULL)
5052 {
5053 mpz_clear(right_val);
5054 mpz_clear(left_val);
5055 return ret;
5056 }
5057 }
5058 mpz_clear(right_val);
5059 mpz_clear(left_val);
5060 }
5061
5062 // Floating point constant expressions.
5063 {
5064 mpfr_t left_val;
5065 mpfr_init(left_val);
5066 Type* left_type;
5067 mpfr_t right_val;
5068 mpfr_init(right_val);
5069 Type* right_type;
5070 if (left->float_constant_value(left_val, &left_type)
5071 && right->float_constant_value(right_val, &right_type))
5072 {
5073 Expression* ret = NULL;
5074 if (left_type != right_type
5075 && left_type != NULL
5076 && right_type != NULL
5077 && left_type->base() != right_type->base()
5078 && op != OPERATOR_LSHIFT
5079 && op != OPERATOR_RSHIFT)
5080 {
5081 // May be a type error--let it be diagnosed later.
5082 }
5083 else if (is_comparison)
5084 {
5085 bool b = Binary_expression::compare_float(op,
5086 (left_type != NULL
5087 ? left_type
5088 : right_type),
5089 left_val, right_val);
5090 ret = Expression::make_boolean(b, location);
5091 }
5092 else
5093 {
5094 mpfr_t val;
5095 mpfr_init(val);
5096
5097 if (Binary_expression::eval_float(op, left_type, left_val,
5098 right_type, right_val, val,
5099 location))
5100 {
5101 gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND
5102 && op != OPERATOR_LSHIFT && op != OPERATOR_RSHIFT);
5103 Type* type;
5104 if (left_type == NULL)
5105 type = right_type;
5106 else if (right_type == NULL)
5107 type = left_type;
5108 else if (!left_type->is_abstract()
5109 && left_type->named_type() != NULL)
5110 type = left_type;
5111 else if (!right_type->is_abstract()
5112 && right_type->named_type() != NULL)
5113 type = right_type;
5114 else if (!left_type->is_abstract())
5115 type = left_type;
5116 else if (!right_type->is_abstract())
5117 type = right_type;
5118 else if (left_type->float_type() != NULL)
5119 type = left_type;
5120 else if (right_type->float_type() != NULL)
5121 type = right_type;
5122 else
5123 type = left_type;
5124 ret = Expression::make_float(&val, type, location);
5125 }
5126
5127 mpfr_clear(val);
5128 }
5129
5130 if (ret != NULL)
5131 {
5132 mpfr_clear(right_val);
5133 mpfr_clear(left_val);
5134 return ret;
5135 }
5136 }
5137 mpfr_clear(right_val);
5138 mpfr_clear(left_val);
5139 }
5140
5141 // Complex constant expressions.
5142 {
5143 mpfr_t left_real;
5144 mpfr_t left_imag;
5145 mpfr_init(left_real);
5146 mpfr_init(left_imag);
5147 Type* left_type;
5148
5149 mpfr_t right_real;
5150 mpfr_t right_imag;
5151 mpfr_init(right_real);
5152 mpfr_init(right_imag);
5153 Type* right_type;
5154
5155 if (left->complex_constant_value(left_real, left_imag, &left_type)
5156 && right->complex_constant_value(right_real, right_imag, &right_type))
5157 {
5158 Expression* ret = NULL;
5159 if (left_type != right_type
5160 && left_type != NULL
5161 && right_type != NULL
5162 && left_type->base() != right_type->base())
5163 {
5164 // May be a type error--let it be diagnosed later.
5165 }
5166 else if (op == OPERATOR_EQEQ || op == OPERATOR_NOTEQ)
5167 {
5168 bool b = Binary_expression::compare_complex(op,
5169 (left_type != NULL
5170 ? left_type
5171 : right_type),
5172 left_real,
5173 left_imag,
5174 right_real,
5175 right_imag);
5176 ret = Expression::make_boolean(b, location);
5177 }
5178 else
5179 {
5180 mpfr_t real;
5181 mpfr_t imag;
5182 mpfr_init(real);
5183 mpfr_init(imag);
5184
5185 if (Binary_expression::eval_complex(op, left_type,
5186 left_real, left_imag,
5187 right_type,
5188 right_real, right_imag,
5189 real, imag,
5190 location))
5191 {
5192 gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND
5193 && op != OPERATOR_LSHIFT && op != OPERATOR_RSHIFT);
5194 Type* type;
5195 if (left_type == NULL)
5196 type = right_type;
5197 else if (right_type == NULL)
5198 type = left_type;
5199 else if (!left_type->is_abstract()
5200 && left_type->named_type() != NULL)
5201 type = left_type;
5202 else if (!right_type->is_abstract()
5203 && right_type->named_type() != NULL)
5204 type = right_type;
5205 else if (!left_type->is_abstract())
5206 type = left_type;
5207 else if (!right_type->is_abstract())
5208 type = right_type;
5209 else if (left_type->complex_type() != NULL)
5210 type = left_type;
5211 else if (right_type->complex_type() != NULL)
5212 type = right_type;
5213 else
5214 type = left_type;
5215 ret = Expression::make_complex(&real, &imag, type,
5216 location);
5217 }
5218 mpfr_clear(real);
5219 mpfr_clear(imag);
5220 }
5221
5222 if (ret != NULL)
5223 {
5224 mpfr_clear(left_real);
5225 mpfr_clear(left_imag);
5226 mpfr_clear(right_real);
5227 mpfr_clear(right_imag);
5228 return ret;
5229 }
5230 }
5231
5232 mpfr_clear(left_real);
5233 mpfr_clear(left_imag);
5234 mpfr_clear(right_real);
5235 mpfr_clear(right_imag);
5236 }
5237
5238 // String constant expressions.
5239 if (op == OPERATOR_PLUS
5240 && left->type()->is_string_type()
5241 && right->type()->is_string_type())
5242 {
5243 std::string left_string;
5244 std::string right_string;
5245 if (left->string_constant_value(&left_string)
5246 && right->string_constant_value(&right_string))
5247 return Expression::make_string(left_string + right_string, location);
5248 }
5249
5250 return this;
5251 }
5252
5253 // Return the integer constant value, if it has one.
5254
5255 bool
5256 Binary_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
5257 Type** ptype) const
5258 {
5259 mpz_t left_val;
5260 mpz_init(left_val);
5261 Type* left_type;
5262 if (!this->left_->integer_constant_value(iota_is_constant, left_val,
5263 &left_type))
5264 {
5265 mpz_clear(left_val);
5266 return false;
5267 }
5268
5269 mpz_t right_val;
5270 mpz_init(right_val);
5271 Type* right_type;
5272 if (!this->right_->integer_constant_value(iota_is_constant, right_val,
5273 &right_type))
5274 {
5275 mpz_clear(right_val);
5276 mpz_clear(left_val);
5277 return false;
5278 }
5279
5280 bool ret;
5281 if (left_type != right_type
5282 && left_type != NULL
5283 && right_type != NULL
5284 && left_type->base() != right_type->base()
5285 && this->op_ != OPERATOR_RSHIFT
5286 && this->op_ != OPERATOR_LSHIFT)
5287 ret = false;
5288 else
5289 ret = Binary_expression::eval_integer(this->op_, left_type, left_val,
5290 right_type, right_val,
5291 this->location(), val);
5292
5293 mpz_clear(right_val);
5294 mpz_clear(left_val);
5295
5296 if (ret)
5297 *ptype = left_type;
5298
5299 return ret;
5300 }
5301
5302 // Return the floating point constant value, if it has one.
5303
5304 bool
5305 Binary_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
5306 {
5307 mpfr_t left_val;
5308 mpfr_init(left_val);
5309 Type* left_type;
5310 if (!this->left_->float_constant_value(left_val, &left_type))
5311 {
5312 mpfr_clear(left_val);
5313 return false;
5314 }
5315
5316 mpfr_t right_val;
5317 mpfr_init(right_val);
5318 Type* right_type;
5319 if (!this->right_->float_constant_value(right_val, &right_type))
5320 {
5321 mpfr_clear(right_val);
5322 mpfr_clear(left_val);
5323 return false;
5324 }
5325
5326 bool ret;
5327 if (left_type != right_type
5328 && left_type != NULL
5329 && right_type != NULL
5330 && left_type->base() != right_type->base())
5331 ret = false;
5332 else
5333 ret = Binary_expression::eval_float(this->op_, left_type, left_val,
5334 right_type, right_val,
5335 val, this->location());
5336
5337 mpfr_clear(left_val);
5338 mpfr_clear(right_val);
5339
5340 if (ret)
5341 *ptype = left_type;
5342
5343 return ret;
5344 }
5345
5346 // Return the complex constant value, if it has one.
5347
5348 bool
5349 Binary_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
5350 Type** ptype) const
5351 {
5352 mpfr_t left_real;
5353 mpfr_t left_imag;
5354 mpfr_init(left_real);
5355 mpfr_init(left_imag);
5356 Type* left_type;
5357 if (!this->left_->complex_constant_value(left_real, left_imag, &left_type))
5358 {
5359 mpfr_clear(left_real);
5360 mpfr_clear(left_imag);
5361 return false;
5362 }
5363
5364 mpfr_t right_real;
5365 mpfr_t right_imag;
5366 mpfr_init(right_real);
5367 mpfr_init(right_imag);
5368 Type* right_type;
5369 if (!this->right_->complex_constant_value(right_real, right_imag,
5370 &right_type))
5371 {
5372 mpfr_clear(left_real);
5373 mpfr_clear(left_imag);
5374 mpfr_clear(right_real);
5375 mpfr_clear(right_imag);
5376 return false;
5377 }
5378
5379 bool ret;
5380 if (left_type != right_type
5381 && left_type != NULL
5382 && right_type != NULL
5383 && left_type->base() != right_type->base())
5384 ret = false;
5385 else
5386 ret = Binary_expression::eval_complex(this->op_, left_type,
5387 left_real, left_imag,
5388 right_type,
5389 right_real, right_imag,
5390 real, imag,
5391 this->location());
5392 mpfr_clear(left_real);
5393 mpfr_clear(left_imag);
5394 mpfr_clear(right_real);
5395 mpfr_clear(right_imag);
5396
5397 if (ret)
5398 *ptype = left_type;
5399
5400 return ret;
5401 }
5402
5403 // Note that the value is being discarded.
5404
5405 void
5406 Binary_expression::do_discarding_value()
5407 {
5408 if (this->op_ == OPERATOR_OROR || this->op_ == OPERATOR_ANDAND)
5409 this->right_->discarding_value();
5410 else
5411 this->warn_about_unused_value();
5412 }
5413
5414 // Get type.
5415
5416 Type*
5417 Binary_expression::do_type()
5418 {
5419 if (this->classification() == EXPRESSION_ERROR)
5420 return Type::make_error_type();
5421
5422 switch (this->op_)
5423 {
5424 case OPERATOR_OROR:
5425 case OPERATOR_ANDAND:
5426 case OPERATOR_EQEQ:
5427 case OPERATOR_NOTEQ:
5428 case OPERATOR_LT:
5429 case OPERATOR_LE:
5430 case OPERATOR_GT:
5431 case OPERATOR_GE:
5432 return Type::lookup_bool_type();
5433
5434 case OPERATOR_PLUS:
5435 case OPERATOR_MINUS:
5436 case OPERATOR_OR:
5437 case OPERATOR_XOR:
5438 case OPERATOR_MULT:
5439 case OPERATOR_DIV:
5440 case OPERATOR_MOD:
5441 case OPERATOR_AND:
5442 case OPERATOR_BITCLEAR:
5443 {
5444 Type* left_type = this->left_->type();
5445 Type* right_type = this->right_->type();
5446 if (left_type->is_error_type())
5447 return left_type;
5448 else if (right_type->is_error_type())
5449 return right_type;
5450 else if (!Type::are_compatible_for_binop(left_type, right_type))
5451 {
5452 this->report_error(_("incompatible types in binary expression"));
5453 return Type::make_error_type();
5454 }
5455 else if (!left_type->is_abstract() && left_type->named_type() != NULL)
5456 return left_type;
5457 else if (!right_type->is_abstract() && right_type->named_type() != NULL)
5458 return right_type;
5459 else if (!left_type->is_abstract())
5460 return left_type;
5461 else if (!right_type->is_abstract())
5462 return right_type;
5463 else if (left_type->complex_type() != NULL)
5464 return left_type;
5465 else if (right_type->complex_type() != NULL)
5466 return right_type;
5467 else if (left_type->float_type() != NULL)
5468 return left_type;
5469 else if (right_type->float_type() != NULL)
5470 return right_type;
5471 else
5472 return left_type;
5473 }
5474
5475 case OPERATOR_LSHIFT:
5476 case OPERATOR_RSHIFT:
5477 return this->left_->type();
5478
5479 default:
5480 gcc_unreachable();
5481 }
5482 }
5483
5484 // Set type for a binary expression.
5485
5486 void
5487 Binary_expression::do_determine_type(const Type_context* context)
5488 {
5489 Type* tleft = this->left_->type();
5490 Type* tright = this->right_->type();
5491
5492 // Both sides should have the same type, except for the shift
5493 // operations. For a comparison, we should ignore the incoming
5494 // type.
5495
5496 bool is_shift_op = (this->op_ == OPERATOR_LSHIFT
5497 || this->op_ == OPERATOR_RSHIFT);
5498
5499 bool is_comparison = (this->op_ == OPERATOR_EQEQ
5500 || this->op_ == OPERATOR_NOTEQ
5501 || this->op_ == OPERATOR_LT
5502 || this->op_ == OPERATOR_LE
5503 || this->op_ == OPERATOR_GT
5504 || this->op_ == OPERATOR_GE);
5505
5506 Type_context subcontext(*context);
5507
5508 if (is_comparison)
5509 {
5510 // In a comparison, the context does not determine the types of
5511 // the operands.
5512 subcontext.type = NULL;
5513 }
5514
5515 // Set the context for the left hand operand.
5516 if (is_shift_op)
5517 {
5518 // The right hand operand plays no role in determining the type
5519 // of the left hand operand. A shift of an abstract integer in
5520 // a string context gets special treatment, which may be a
5521 // language bug.
5522 if (subcontext.type != NULL
5523 && subcontext.type->is_string_type()
5524 && tleft->is_abstract())
5525 error_at(this->location(), "shift of non-integer operand");
5526 }
5527 else if (!tleft->is_abstract())
5528 subcontext.type = tleft;
5529 else if (!tright->is_abstract())
5530 subcontext.type = tright;
5531 else if (subcontext.type == NULL)
5532 {
5533 if ((tleft->integer_type() != NULL && tright->integer_type() != NULL)
5534 || (tleft->float_type() != NULL && tright->float_type() != NULL)
5535 || (tleft->complex_type() != NULL && tright->complex_type() != NULL))
5536 {
5537 // Both sides have an abstract integer, abstract float, or
5538 // abstract complex type. Just let CONTEXT determine
5539 // whether they may remain abstract or not.
5540 }
5541 else if (tleft->complex_type() != NULL)
5542 subcontext.type = tleft;
5543 else if (tright->complex_type() != NULL)
5544 subcontext.type = tright;
5545 else if (tleft->float_type() != NULL)
5546 subcontext.type = tleft;
5547 else if (tright->float_type() != NULL)
5548 subcontext.type = tright;
5549 else
5550 subcontext.type = tleft;
5551
5552 if (subcontext.type != NULL && !context->may_be_abstract)
5553 subcontext.type = subcontext.type->make_non_abstract_type();
5554 }
5555
5556 this->left_->determine_type(&subcontext);
5557
5558 // The context for the right hand operand is the same as for the
5559 // left hand operand, except for a shift operator.
5560 if (is_shift_op)
5561 {
5562 subcontext.type = Type::lookup_integer_type("uint");
5563 subcontext.may_be_abstract = false;
5564 }
5565
5566 this->right_->determine_type(&subcontext);
5567 }
5568
5569 // Report an error if the binary operator OP does not support TYPE.
5570 // Return whether the operation is OK. This should not be used for
5571 // shift.
5572
5573 bool
5574 Binary_expression::check_operator_type(Operator op, Type* type,
5575 source_location location)
5576 {
5577 switch (op)
5578 {
5579 case OPERATOR_OROR:
5580 case OPERATOR_ANDAND:
5581 if (!type->is_boolean_type())
5582 {
5583 error_at(location, "expected boolean type");
5584 return false;
5585 }
5586 break;
5587
5588 case OPERATOR_EQEQ:
5589 case OPERATOR_NOTEQ:
5590 if (type->integer_type() == NULL
5591 && type->float_type() == NULL
5592 && type->complex_type() == NULL
5593 && !type->is_string_type()
5594 && type->points_to() == NULL
5595 && !type->is_nil_type()
5596 && !type->is_boolean_type()
5597 && type->interface_type() == NULL
5598 && (type->array_type() == NULL
5599 || type->array_type()->length() != NULL)
5600 && type->map_type() == NULL
5601 && type->channel_type() == NULL
5602 && type->function_type() == NULL)
5603 {
5604 error_at(location,
5605 ("expected integer, floating, complex, string, pointer, "
5606 "boolean, interface, slice, map, channel, "
5607 "or function type"));
5608 return false;
5609 }
5610 break;
5611
5612 case OPERATOR_LT:
5613 case OPERATOR_LE:
5614 case OPERATOR_GT:
5615 case OPERATOR_GE:
5616 if (type->integer_type() == NULL
5617 && type->float_type() == NULL
5618 && !type->is_string_type())
5619 {
5620 error_at(location, "expected integer, floating, or string type");
5621 return false;
5622 }
5623 break;
5624
5625 case OPERATOR_PLUS:
5626 case OPERATOR_PLUSEQ:
5627 if (type->integer_type() == NULL
5628 && type->float_type() == NULL
5629 && type->complex_type() == NULL
5630 && !type->is_string_type())
5631 {
5632 error_at(location,
5633 "expected integer, floating, complex, or string type");
5634 return false;
5635 }
5636 break;
5637
5638 case OPERATOR_MINUS:
5639 case OPERATOR_MINUSEQ:
5640 case OPERATOR_MULT:
5641 case OPERATOR_MULTEQ:
5642 case OPERATOR_DIV:
5643 case OPERATOR_DIVEQ:
5644 if (type->integer_type() == NULL
5645 && type->float_type() == NULL
5646 && type->complex_type() == NULL)
5647 {
5648 error_at(location, "expected integer, floating, or complex type");
5649 return false;
5650 }
5651 break;
5652
5653 case OPERATOR_MOD:
5654 case OPERATOR_MODEQ:
5655 case OPERATOR_OR:
5656 case OPERATOR_OREQ:
5657 case OPERATOR_AND:
5658 case OPERATOR_ANDEQ:
5659 case OPERATOR_XOR:
5660 case OPERATOR_XOREQ:
5661 case OPERATOR_BITCLEAR:
5662 case OPERATOR_BITCLEAREQ:
5663 if (type->integer_type() == NULL)
5664 {
5665 error_at(location, "expected integer type");
5666 return false;
5667 }
5668 break;
5669
5670 default:
5671 gcc_unreachable();
5672 }
5673
5674 return true;
5675 }
5676
5677 // Check types.
5678
5679 void
5680 Binary_expression::do_check_types(Gogo*)
5681 {
5682 if (this->classification() == EXPRESSION_ERROR)
5683 return;
5684
5685 Type* left_type = this->left_->type();
5686 Type* right_type = this->right_->type();
5687 if (left_type->is_error_type() || right_type->is_error_type())
5688 {
5689 this->set_is_error();
5690 return;
5691 }
5692
5693 if (this->op_ == OPERATOR_EQEQ
5694 || this->op_ == OPERATOR_NOTEQ
5695 || this->op_ == OPERATOR_LT
5696 || this->op_ == OPERATOR_LE
5697 || this->op_ == OPERATOR_GT
5698 || this->op_ == OPERATOR_GE)
5699 {
5700 if (!Type::are_assignable(left_type, right_type, NULL)
5701 && !Type::are_assignable(right_type, left_type, NULL))
5702 {
5703 this->report_error(_("incompatible types in binary expression"));
5704 return;
5705 }
5706 if (!Binary_expression::check_operator_type(this->op_, left_type,
5707 this->location())
5708 || !Binary_expression::check_operator_type(this->op_, right_type,
5709 this->location()))
5710 {
5711 this->set_is_error();
5712 return;
5713 }
5714 }
5715 else if (this->op_ != OPERATOR_LSHIFT && this->op_ != OPERATOR_RSHIFT)
5716 {
5717 if (!Type::are_compatible_for_binop(left_type, right_type))
5718 {
5719 this->report_error(_("incompatible types in binary expression"));
5720 return;
5721 }
5722 if (!Binary_expression::check_operator_type(this->op_, left_type,
5723 this->location()))
5724 {
5725 this->set_is_error();
5726 return;
5727 }
5728 }
5729 else
5730 {
5731 if (left_type->integer_type() == NULL)
5732 this->report_error(_("shift of non-integer operand"));
5733
5734 if (!right_type->is_abstract()
5735 && (right_type->integer_type() == NULL
5736 || !right_type->integer_type()->is_unsigned()))
5737 this->report_error(_("shift count not unsigned integer"));
5738 else
5739 {
5740 mpz_t val;
5741 mpz_init(val);
5742 Type* type;
5743 if (this->right_->integer_constant_value(true, val, &type))
5744 {
5745 if (mpz_sgn(val) < 0)
5746 this->report_error(_("negative shift count"));
5747 }
5748 mpz_clear(val);
5749 }
5750 }
5751 }
5752
5753 // Get a tree for a binary expression.
5754
5755 tree
5756 Binary_expression::do_get_tree(Translate_context* context)
5757 {
5758 tree left = this->left_->get_tree(context);
5759 tree right = this->right_->get_tree(context);
5760
5761 if (left == error_mark_node || right == error_mark_node)
5762 return error_mark_node;
5763
5764 enum tree_code code;
5765 bool use_left_type = true;
5766 bool is_shift_op = false;
5767 switch (this->op_)
5768 {
5769 case OPERATOR_EQEQ:
5770 case OPERATOR_NOTEQ:
5771 case OPERATOR_LT:
5772 case OPERATOR_LE:
5773 case OPERATOR_GT:
5774 case OPERATOR_GE:
5775 return Expression::comparison_tree(context, this->op_,
5776 this->left_->type(), left,
5777 this->right_->type(), right,
5778 this->location());
5779
5780 case OPERATOR_OROR:
5781 code = TRUTH_ORIF_EXPR;
5782 use_left_type = false;
5783 break;
5784 case OPERATOR_ANDAND:
5785 code = TRUTH_ANDIF_EXPR;
5786 use_left_type = false;
5787 break;
5788 case OPERATOR_PLUS:
5789 code = PLUS_EXPR;
5790 break;
5791 case OPERATOR_MINUS:
5792 code = MINUS_EXPR;
5793 break;
5794 case OPERATOR_OR:
5795 code = BIT_IOR_EXPR;
5796 break;
5797 case OPERATOR_XOR:
5798 code = BIT_XOR_EXPR;
5799 break;
5800 case OPERATOR_MULT:
5801 code = MULT_EXPR;
5802 break;
5803 case OPERATOR_DIV:
5804 {
5805 Type *t = this->left_->type();
5806 if (t->float_type() != NULL || t->complex_type() != NULL)
5807 code = RDIV_EXPR;
5808 else
5809 code = TRUNC_DIV_EXPR;
5810 }
5811 break;
5812 case OPERATOR_MOD:
5813 code = TRUNC_MOD_EXPR;
5814 break;
5815 case OPERATOR_LSHIFT:
5816 code = LSHIFT_EXPR;
5817 is_shift_op = true;
5818 break;
5819 case OPERATOR_RSHIFT:
5820 code = RSHIFT_EXPR;
5821 is_shift_op = true;
5822 break;
5823 case OPERATOR_AND:
5824 code = BIT_AND_EXPR;
5825 break;
5826 case OPERATOR_BITCLEAR:
5827 right = fold_build1(BIT_NOT_EXPR, TREE_TYPE(right), right);
5828 code = BIT_AND_EXPR;
5829 break;
5830 default:
5831 gcc_unreachable();
5832 }
5833
5834 tree type = use_left_type ? TREE_TYPE(left) : TREE_TYPE(right);
5835
5836 if (this->left_->type()->is_string_type())
5837 {
5838 gcc_assert(this->op_ == OPERATOR_PLUS);
5839 tree string_type = Type::make_string_type()->get_tree(context->gogo());
5840 static tree string_plus_decl;
5841 return Gogo::call_builtin(&string_plus_decl,
5842 this->location(),
5843 "__go_string_plus",
5844 2,
5845 string_type,
5846 string_type,
5847 left,
5848 string_type,
5849 right);
5850 }
5851
5852 tree compute_type = excess_precision_type(type);
5853 if (compute_type != NULL_TREE)
5854 {
5855 left = ::convert(compute_type, left);
5856 right = ::convert(compute_type, right);
5857 }
5858
5859 tree eval_saved = NULL_TREE;
5860 if (is_shift_op)
5861 {
5862 if (!DECL_P(left))
5863 left = save_expr(left);
5864 if (!DECL_P(right))
5865 right = save_expr(right);
5866 // Make sure the values are evaluated.
5867 eval_saved = fold_build2_loc(this->location(), COMPOUND_EXPR,
5868 void_type_node, left, right);
5869 }
5870
5871 tree ret = fold_build2_loc(this->location(),
5872 code,
5873 compute_type != NULL_TREE ? compute_type : type,
5874 left, right);
5875
5876 if (compute_type != NULL_TREE)
5877 ret = ::convert(type, ret);
5878
5879 // In Go, a shift larger than the size of the type is well-defined.
5880 // This is not true in GENERIC, so we need to insert a conditional.
5881 if (is_shift_op)
5882 {
5883 gcc_assert(INTEGRAL_TYPE_P(TREE_TYPE(left)));
5884 gcc_assert(this->left_->type()->integer_type() != NULL);
5885 int bits = TYPE_PRECISION(TREE_TYPE(left));
5886
5887 tree compare = fold_build2(LT_EXPR, boolean_type_node, right,
5888 build_int_cst_type(TREE_TYPE(right), bits));
5889
5890 tree overflow_result = fold_convert_loc(this->location(),
5891 TREE_TYPE(left),
5892 integer_zero_node);
5893 if (this->op_ == OPERATOR_RSHIFT
5894 && !this->left_->type()->integer_type()->is_unsigned())
5895 {
5896 tree neg = fold_build2_loc(this->location(), LT_EXPR,
5897 boolean_type_node, left,
5898 fold_convert_loc(this->location(),
5899 TREE_TYPE(left),
5900 integer_zero_node));
5901 tree neg_one = fold_build2_loc(this->location(),
5902 MINUS_EXPR, TREE_TYPE(left),
5903 fold_convert_loc(this->location(),
5904 TREE_TYPE(left),
5905 integer_zero_node),
5906 fold_convert_loc(this->location(),
5907 TREE_TYPE(left),
5908 integer_one_node));
5909 overflow_result = fold_build3_loc(this->location(), COND_EXPR,
5910 TREE_TYPE(left), neg, neg_one,
5911 overflow_result);
5912 }
5913
5914 ret = fold_build3_loc(this->location(), COND_EXPR, TREE_TYPE(left),
5915 compare, ret, overflow_result);
5916
5917 ret = fold_build2_loc(this->location(), COMPOUND_EXPR,
5918 TREE_TYPE(ret), eval_saved, ret);
5919 }
5920
5921 return ret;
5922 }
5923
5924 // Export a binary expression.
5925
5926 void
5927 Binary_expression::do_export(Export* exp) const
5928 {
5929 exp->write_c_string("(");
5930 this->left_->export_expression(exp);
5931 switch (this->op_)
5932 {
5933 case OPERATOR_OROR:
5934 exp->write_c_string(" || ");
5935 break;
5936 case OPERATOR_ANDAND:
5937 exp->write_c_string(" && ");
5938 break;
5939 case OPERATOR_EQEQ:
5940 exp->write_c_string(" == ");
5941 break;
5942 case OPERATOR_NOTEQ:
5943 exp->write_c_string(" != ");
5944 break;
5945 case OPERATOR_LT:
5946 exp->write_c_string(" < ");
5947 break;
5948 case OPERATOR_LE:
5949 exp->write_c_string(" <= ");
5950 break;
5951 case OPERATOR_GT:
5952 exp->write_c_string(" > ");
5953 break;
5954 case OPERATOR_GE:
5955 exp->write_c_string(" >= ");
5956 break;
5957 case OPERATOR_PLUS:
5958 exp->write_c_string(" + ");
5959 break;
5960 case OPERATOR_MINUS:
5961 exp->write_c_string(" - ");
5962 break;
5963 case OPERATOR_OR:
5964 exp->write_c_string(" | ");
5965 break;
5966 case OPERATOR_XOR:
5967 exp->write_c_string(" ^ ");
5968 break;
5969 case OPERATOR_MULT:
5970 exp->write_c_string(" * ");
5971 break;
5972 case OPERATOR_DIV:
5973 exp->write_c_string(" / ");
5974 break;
5975 case OPERATOR_MOD:
5976 exp->write_c_string(" % ");
5977 break;
5978 case OPERATOR_LSHIFT:
5979 exp->write_c_string(" << ");
5980 break;
5981 case OPERATOR_RSHIFT:
5982 exp->write_c_string(" >> ");
5983 break;
5984 case OPERATOR_AND:
5985 exp->write_c_string(" & ");
5986 break;
5987 case OPERATOR_BITCLEAR:
5988 exp->write_c_string(" &^ ");
5989 break;
5990 default:
5991 gcc_unreachable();
5992 }
5993 this->right_->export_expression(exp);
5994 exp->write_c_string(")");
5995 }
5996
5997 // Import a binary expression.
5998
5999 Expression*
6000 Binary_expression::do_import(Import* imp)
6001 {
6002 imp->require_c_string("(");
6003
6004 Expression* left = Expression::import_expression(imp);
6005
6006 Operator op;
6007 if (imp->match_c_string(" || "))
6008 {
6009 op = OPERATOR_OROR;
6010 imp->advance(4);
6011 }
6012 else if (imp->match_c_string(" && "))
6013 {
6014 op = OPERATOR_ANDAND;
6015 imp->advance(4);
6016 }
6017 else if (imp->match_c_string(" == "))
6018 {
6019 op = OPERATOR_EQEQ;
6020 imp->advance(4);
6021 }
6022 else if (imp->match_c_string(" != "))
6023 {
6024 op = OPERATOR_NOTEQ;
6025 imp->advance(4);
6026 }
6027 else if (imp->match_c_string(" < "))
6028 {
6029 op = OPERATOR_LT;
6030 imp->advance(3);
6031 }
6032 else if (imp->match_c_string(" <= "))
6033 {
6034 op = OPERATOR_LE;
6035 imp->advance(4);
6036 }
6037 else if (imp->match_c_string(" > "))
6038 {
6039 op = OPERATOR_GT;
6040 imp->advance(3);
6041 }
6042 else if (imp->match_c_string(" >= "))
6043 {
6044 op = OPERATOR_GE;
6045 imp->advance(4);
6046 }
6047 else if (imp->match_c_string(" + "))
6048 {
6049 op = OPERATOR_PLUS;
6050 imp->advance(3);
6051 }
6052 else if (imp->match_c_string(" - "))
6053 {
6054 op = OPERATOR_MINUS;
6055 imp->advance(3);
6056 }
6057 else if (imp->match_c_string(" | "))
6058 {
6059 op = OPERATOR_OR;
6060 imp->advance(3);
6061 }
6062 else if (imp->match_c_string(" ^ "))
6063 {
6064 op = OPERATOR_XOR;
6065 imp->advance(3);
6066 }
6067 else if (imp->match_c_string(" * "))
6068 {
6069 op = OPERATOR_MULT;
6070 imp->advance(3);
6071 }
6072 else if (imp->match_c_string(" / "))
6073 {
6074 op = OPERATOR_DIV;
6075 imp->advance(3);
6076 }
6077 else if (imp->match_c_string(" % "))
6078 {
6079 op = OPERATOR_MOD;
6080 imp->advance(3);
6081 }
6082 else if (imp->match_c_string(" << "))
6083 {
6084 op = OPERATOR_LSHIFT;
6085 imp->advance(4);
6086 }
6087 else if (imp->match_c_string(" >> "))
6088 {
6089 op = OPERATOR_RSHIFT;
6090 imp->advance(4);
6091 }
6092 else if (imp->match_c_string(" & "))
6093 {
6094 op = OPERATOR_AND;
6095 imp->advance(3);
6096 }
6097 else if (imp->match_c_string(" &^ "))
6098 {
6099 op = OPERATOR_BITCLEAR;
6100 imp->advance(4);
6101 }
6102 else
6103 {
6104 error_at(imp->location(), "unrecognized binary operator");
6105 return Expression::make_error(imp->location());
6106 }
6107
6108 Expression* right = Expression::import_expression(imp);
6109
6110 imp->require_c_string(")");
6111
6112 return Expression::make_binary(op, left, right, imp->location());
6113 }
6114
6115 // Make a binary expression.
6116
6117 Expression*
6118 Expression::make_binary(Operator op, Expression* left, Expression* right,
6119 source_location location)
6120 {
6121 return new Binary_expression(op, left, right, location);
6122 }
6123
6124 // Implement a comparison.
6125
6126 tree
6127 Expression::comparison_tree(Translate_context* context, Operator op,
6128 Type* left_type, tree left_tree,
6129 Type* right_type, tree right_tree,
6130 source_location location)
6131 {
6132 enum tree_code code;
6133 switch (op)
6134 {
6135 case OPERATOR_EQEQ:
6136 code = EQ_EXPR;
6137 break;
6138 case OPERATOR_NOTEQ:
6139 code = NE_EXPR;
6140 break;
6141 case OPERATOR_LT:
6142 code = LT_EXPR;
6143 break;
6144 case OPERATOR_LE:
6145 code = LE_EXPR;
6146 break;
6147 case OPERATOR_GT:
6148 code = GT_EXPR;
6149 break;
6150 case OPERATOR_GE:
6151 code = GE_EXPR;
6152 break;
6153 default:
6154 gcc_unreachable();
6155 }
6156
6157 if (left_type->is_string_type() && right_type->is_string_type())
6158 {
6159 tree string_type = Type::make_string_type()->get_tree(context->gogo());
6160 static tree string_compare_decl;
6161 left_tree = Gogo::call_builtin(&string_compare_decl,
6162 location,
6163 "__go_strcmp",
6164 2,
6165 integer_type_node,
6166 string_type,
6167 left_tree,
6168 string_type,
6169 right_tree);
6170 right_tree = build_int_cst_type(integer_type_node, 0);
6171 }
6172 else if ((left_type->interface_type() != NULL
6173 && right_type->interface_type() == NULL
6174 && !right_type->is_nil_type())
6175 || (left_type->interface_type() == NULL
6176 && !left_type->is_nil_type()
6177 && right_type->interface_type() != NULL))
6178 {
6179 // Comparing an interface value to a non-interface value.
6180 if (left_type->interface_type() == NULL)
6181 {
6182 std::swap(left_type, right_type);
6183 std::swap(left_tree, right_tree);
6184 }
6185
6186 // The right operand is not an interface. We need to take its
6187 // address if it is not a pointer.
6188 tree make_tmp;
6189 tree arg;
6190 if (right_type->points_to() != NULL)
6191 {
6192 make_tmp = NULL_TREE;
6193 arg = right_tree;
6194 }
6195 else if (TREE_ADDRESSABLE(TREE_TYPE(right_tree)) || DECL_P(right_tree))
6196 {
6197 make_tmp = NULL_TREE;
6198 arg = build_fold_addr_expr_loc(location, right_tree);
6199 if (DECL_P(right_tree))
6200 TREE_ADDRESSABLE(right_tree) = 1;
6201 }
6202 else
6203 {
6204 tree tmp = create_tmp_var(TREE_TYPE(right_tree),
6205 get_name(right_tree));
6206 DECL_IGNORED_P(tmp) = 0;
6207 DECL_INITIAL(tmp) = right_tree;
6208 TREE_ADDRESSABLE(tmp) = 1;
6209 make_tmp = build1(DECL_EXPR, void_type_node, tmp);
6210 SET_EXPR_LOCATION(make_tmp, location);
6211 arg = build_fold_addr_expr_loc(location, tmp);
6212 }
6213 arg = fold_convert_loc(location, ptr_type_node, arg);
6214
6215 tree descriptor = right_type->type_descriptor_pointer(context->gogo());
6216
6217 if (left_type->interface_type()->is_empty())
6218 {
6219 static tree empty_interface_value_compare_decl;
6220 left_tree = Gogo::call_builtin(&empty_interface_value_compare_decl,
6221 location,
6222 "__go_empty_interface_value_compare",
6223 3,
6224 integer_type_node,
6225 TREE_TYPE(left_tree),
6226 left_tree,
6227 TREE_TYPE(descriptor),
6228 descriptor,
6229 ptr_type_node,
6230 arg);
6231 if (left_tree == error_mark_node)
6232 return error_mark_node;
6233 // This can panic if the type is not comparable.
6234 TREE_NOTHROW(empty_interface_value_compare_decl) = 0;
6235 }
6236 else
6237 {
6238 static tree interface_value_compare_decl;
6239 left_tree = Gogo::call_builtin(&interface_value_compare_decl,
6240 location,
6241 "__go_interface_value_compare",
6242 3,
6243 integer_type_node,
6244 TREE_TYPE(left_tree),
6245 left_tree,
6246 TREE_TYPE(descriptor),
6247 descriptor,
6248 ptr_type_node,
6249 arg);
6250 if (left_tree == error_mark_node)
6251 return error_mark_node;
6252 // This can panic if the type is not comparable.
6253 TREE_NOTHROW(interface_value_compare_decl) = 0;
6254 }
6255 right_tree = build_int_cst_type(integer_type_node, 0);
6256
6257 if (make_tmp != NULL_TREE)
6258 left_tree = build2(COMPOUND_EXPR, TREE_TYPE(left_tree), make_tmp,
6259 left_tree);
6260 }
6261 else if (left_type->interface_type() != NULL
6262 && right_type->interface_type() != NULL)
6263 {
6264 if (left_type->interface_type()->is_empty())
6265 {
6266 gcc_assert(right_type->interface_type()->is_empty());
6267 static tree empty_interface_compare_decl;
6268 left_tree = Gogo::call_builtin(&empty_interface_compare_decl,
6269 location,
6270 "__go_empty_interface_compare",
6271 2,
6272 integer_type_node,
6273 TREE_TYPE(left_tree),
6274 left_tree,
6275 TREE_TYPE(right_tree),
6276 right_tree);
6277 if (left_tree == error_mark_node)
6278 return error_mark_node;
6279 // This can panic if the type is uncomparable.
6280 TREE_NOTHROW(empty_interface_compare_decl) = 0;
6281 }
6282 else
6283 {
6284 gcc_assert(!right_type->interface_type()->is_empty());
6285 static tree interface_compare_decl;
6286 left_tree = Gogo::call_builtin(&interface_compare_decl,
6287 location,
6288 "__go_interface_compare",
6289 2,
6290 integer_type_node,
6291 TREE_TYPE(left_tree),
6292 left_tree,
6293 TREE_TYPE(right_tree),
6294 right_tree);
6295 if (left_tree == error_mark_node)
6296 return error_mark_node;
6297 // This can panic if the type is uncomparable.
6298 TREE_NOTHROW(interface_compare_decl) = 0;
6299 }
6300 right_tree = build_int_cst_type(integer_type_node, 0);
6301 }
6302
6303 if (left_type->is_nil_type()
6304 && (op == OPERATOR_EQEQ || op == OPERATOR_NOTEQ))
6305 {
6306 std::swap(left_type, right_type);
6307 std::swap(left_tree, right_tree);
6308 }
6309
6310 if (right_type->is_nil_type())
6311 {
6312 if (left_type->array_type() != NULL
6313 && left_type->array_type()->length() == NULL)
6314 {
6315 Array_type* at = left_type->array_type();
6316 left_tree = at->value_pointer_tree(context->gogo(), left_tree);
6317 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
6318 }
6319 else if (left_type->interface_type() != NULL)
6320 {
6321 // An interface is nil if the first field is nil.
6322 tree left_type_tree = TREE_TYPE(left_tree);
6323 gcc_assert(TREE_CODE(left_type_tree) == RECORD_TYPE);
6324 tree field = TYPE_FIELDS(left_type_tree);
6325 left_tree = build3(COMPONENT_REF, TREE_TYPE(field), left_tree,
6326 field, NULL_TREE);
6327 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
6328 }
6329 else
6330 {
6331 gcc_assert(POINTER_TYPE_P(TREE_TYPE(left_tree)));
6332 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
6333 }
6334 }
6335
6336 if (left_tree == error_mark_node || right_tree == error_mark_node)
6337 return error_mark_node;
6338
6339 tree ret = fold_build2(code, boolean_type_node, left_tree, right_tree);
6340 if (CAN_HAVE_LOCATION_P(ret))
6341 SET_EXPR_LOCATION(ret, location);
6342 return ret;
6343 }
6344
6345 // Class Bound_method_expression.
6346
6347 // Traversal.
6348
6349 int
6350 Bound_method_expression::do_traverse(Traverse* traverse)
6351 {
6352 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT)
6353 return TRAVERSE_EXIT;
6354 return Expression::traverse(&this->method_, traverse);
6355 }
6356
6357 // Return the type of a bound method expression. The type of this
6358 // object is really the type of the method with no receiver. We
6359 // should be able to get away with just returning the type of the
6360 // method.
6361
6362 Type*
6363 Bound_method_expression::do_type()
6364 {
6365 return this->method_->type();
6366 }
6367
6368 // Determine the types of a method expression.
6369
6370 void
6371 Bound_method_expression::do_determine_type(const Type_context*)
6372 {
6373 this->method_->determine_type_no_context();
6374 Type* mtype = this->method_->type();
6375 Function_type* fntype = mtype == NULL ? NULL : mtype->function_type();
6376 if (fntype == NULL || !fntype->is_method())
6377 this->expr_->determine_type_no_context();
6378 else
6379 {
6380 Type_context subcontext(fntype->receiver()->type(), false);
6381 this->expr_->determine_type(&subcontext);
6382 }
6383 }
6384
6385 // Check the types of a method expression.
6386
6387 void
6388 Bound_method_expression::do_check_types(Gogo*)
6389 {
6390 Type* type = this->method_->type()->deref();
6391 if (type == NULL
6392 || type->function_type() == NULL
6393 || !type->function_type()->is_method())
6394 this->report_error(_("object is not a method"));
6395 else
6396 {
6397 Type* rtype = type->function_type()->receiver()->type()->deref();
6398 Type* etype = (this->expr_type_ != NULL
6399 ? this->expr_type_
6400 : this->expr_->type());
6401 etype = etype->deref();
6402 if (!Type::are_identical(rtype, etype, true, NULL))
6403 this->report_error(_("method type does not match object type"));
6404 }
6405 }
6406
6407 // Get the tree for a method expression. There is no standard tree
6408 // representation for this. The only places it may currently be used
6409 // are in a Call_expression or a Go_statement, which will take it
6410 // apart directly. So this has nothing to do at present.
6411
6412 tree
6413 Bound_method_expression::do_get_tree(Translate_context*)
6414 {
6415 error_at(this->location(), "reference to method other than calling it");
6416 return error_mark_node;
6417 }
6418
6419 // Make a method expression.
6420
6421 Bound_method_expression*
6422 Expression::make_bound_method(Expression* expr, Expression* method,
6423 source_location location)
6424 {
6425 return new Bound_method_expression(expr, method, location);
6426 }
6427
6428 // Class Builtin_call_expression. This is used for a call to a
6429 // builtin function.
6430
6431 class Builtin_call_expression : public Call_expression
6432 {
6433 public:
6434 Builtin_call_expression(Gogo* gogo, Expression* fn, Expression_list* args,
6435 bool is_varargs, source_location location);
6436
6437 protected:
6438 // This overrides Call_expression::do_lower.
6439 Expression*
6440 do_lower(Gogo*, Named_object*, int);
6441
6442 bool
6443 do_is_constant() const;
6444
6445 bool
6446 do_integer_constant_value(bool, mpz_t, Type**) const;
6447
6448 bool
6449 do_float_constant_value(mpfr_t, Type**) const;
6450
6451 bool
6452 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
6453
6454 Type*
6455 do_type();
6456
6457 void
6458 do_determine_type(const Type_context*);
6459
6460 void
6461 do_check_types(Gogo*);
6462
6463 Expression*
6464 do_copy()
6465 {
6466 return new Builtin_call_expression(this->gogo_, this->fn()->copy(),
6467 this->args()->copy(),
6468 this->is_varargs(),
6469 this->location());
6470 }
6471
6472 tree
6473 do_get_tree(Translate_context*);
6474
6475 void
6476 do_export(Export*) const;
6477
6478 virtual bool
6479 do_is_recover_call() const;
6480
6481 virtual void
6482 do_set_recover_arg(Expression*);
6483
6484 private:
6485 // The builtin functions.
6486 enum Builtin_function_code
6487 {
6488 BUILTIN_INVALID,
6489
6490 // Predeclared builtin functions.
6491 BUILTIN_APPEND,
6492 BUILTIN_CAP,
6493 BUILTIN_CLOSE,
6494 BUILTIN_CLOSED,
6495 BUILTIN_COMPLEX,
6496 BUILTIN_COPY,
6497 BUILTIN_IMAG,
6498 BUILTIN_LEN,
6499 BUILTIN_MAKE,
6500 BUILTIN_NEW,
6501 BUILTIN_PANIC,
6502 BUILTIN_PRINT,
6503 BUILTIN_PRINTLN,
6504 BUILTIN_REAL,
6505 BUILTIN_RECOVER,
6506
6507 // Builtin functions from the unsafe package.
6508 BUILTIN_ALIGNOF,
6509 BUILTIN_OFFSETOF,
6510 BUILTIN_SIZEOF
6511 };
6512
6513 Expression*
6514 one_arg() const;
6515
6516 bool
6517 check_one_arg();
6518
6519 static Type*
6520 real_imag_type(Type*);
6521
6522 static Type*
6523 complex_type(Type*);
6524
6525 // A pointer back to the general IR structure. This avoids a global
6526 // variable, or passing it around everywhere.
6527 Gogo* gogo_;
6528 // The builtin function being called.
6529 Builtin_function_code code_;
6530 // Used to stop endless loops when the length of an array uses len
6531 // or cap of the array itself.
6532 mutable bool seen_;
6533 };
6534
6535 Builtin_call_expression::Builtin_call_expression(Gogo* gogo,
6536 Expression* fn,
6537 Expression_list* args,
6538 bool is_varargs,
6539 source_location location)
6540 : Call_expression(fn, args, is_varargs, location),
6541 gogo_(gogo), code_(BUILTIN_INVALID), seen_(false)
6542 {
6543 Func_expression* fnexp = this->fn()->func_expression();
6544 gcc_assert(fnexp != NULL);
6545 const std::string& name(fnexp->named_object()->name());
6546 if (name == "append")
6547 this->code_ = BUILTIN_APPEND;
6548 else if (name == "cap")
6549 this->code_ = BUILTIN_CAP;
6550 else if (name == "close")
6551 this->code_ = BUILTIN_CLOSE;
6552 else if (name == "closed")
6553 this->code_ = BUILTIN_CLOSED;
6554 else if (name == "complex")
6555 this->code_ = BUILTIN_COMPLEX;
6556 else if (name == "copy")
6557 this->code_ = BUILTIN_COPY;
6558 else if (name == "imag")
6559 this->code_ = BUILTIN_IMAG;
6560 else if (name == "len")
6561 this->code_ = BUILTIN_LEN;
6562 else if (name == "make")
6563 this->code_ = BUILTIN_MAKE;
6564 else if (name == "new")
6565 this->code_ = BUILTIN_NEW;
6566 else if (name == "panic")
6567 this->code_ = BUILTIN_PANIC;
6568 else if (name == "print")
6569 this->code_ = BUILTIN_PRINT;
6570 else if (name == "println")
6571 this->code_ = BUILTIN_PRINTLN;
6572 else if (name == "real")
6573 this->code_ = BUILTIN_REAL;
6574 else if (name == "recover")
6575 this->code_ = BUILTIN_RECOVER;
6576 else if (name == "Alignof")
6577 this->code_ = BUILTIN_ALIGNOF;
6578 else if (name == "Offsetof")
6579 this->code_ = BUILTIN_OFFSETOF;
6580 else if (name == "Sizeof")
6581 this->code_ = BUILTIN_SIZEOF;
6582 else
6583 gcc_unreachable();
6584 }
6585
6586 // Return whether this is a call to recover. This is a virtual
6587 // function called from the parent class.
6588
6589 bool
6590 Builtin_call_expression::do_is_recover_call() const
6591 {
6592 if (this->classification() == EXPRESSION_ERROR)
6593 return false;
6594 return this->code_ == BUILTIN_RECOVER;
6595 }
6596
6597 // Set the argument for a call to recover.
6598
6599 void
6600 Builtin_call_expression::do_set_recover_arg(Expression* arg)
6601 {
6602 const Expression_list* args = this->args();
6603 gcc_assert(args == NULL || args->empty());
6604 Expression_list* new_args = new Expression_list();
6605 new_args->push_back(arg);
6606 this->set_args(new_args);
6607 }
6608
6609 // A traversal class which looks for a call expression.
6610
6611 class Find_call_expression : public Traverse
6612 {
6613 public:
6614 Find_call_expression()
6615 : Traverse(traverse_expressions),
6616 found_(false)
6617 { }
6618
6619 int
6620 expression(Expression**);
6621
6622 bool
6623 found()
6624 { return this->found_; }
6625
6626 private:
6627 bool found_;
6628 };
6629
6630 int
6631 Find_call_expression::expression(Expression** pexpr)
6632 {
6633 if ((*pexpr)->call_expression() != NULL)
6634 {
6635 this->found_ = true;
6636 return TRAVERSE_EXIT;
6637 }
6638 return TRAVERSE_CONTINUE;
6639 }
6640
6641 // Lower a builtin call expression. This turns new and make into
6642 // specific expressions. We also convert to a constant if we can.
6643
6644 Expression*
6645 Builtin_call_expression::do_lower(Gogo* gogo, Named_object* function, int)
6646 {
6647 if (this->code_ == BUILTIN_NEW)
6648 {
6649 const Expression_list* args = this->args();
6650 if (args == NULL || args->size() < 1)
6651 this->report_error(_("not enough arguments"));
6652 else if (args->size() > 1)
6653 this->report_error(_("too many arguments"));
6654 else
6655 {
6656 Expression* arg = args->front();
6657 if (!arg->is_type_expression())
6658 {
6659 error_at(arg->location(), "expected type");
6660 this->set_is_error();
6661 }
6662 else
6663 return Expression::make_allocation(arg->type(), this->location());
6664 }
6665 }
6666 else if (this->code_ == BUILTIN_MAKE)
6667 {
6668 const Expression_list* args = this->args();
6669 if (args == NULL || args->size() < 1)
6670 this->report_error(_("not enough arguments"));
6671 else
6672 {
6673 Expression* arg = args->front();
6674 if (!arg->is_type_expression())
6675 {
6676 error_at(arg->location(), "expected type");
6677 this->set_is_error();
6678 }
6679 else
6680 {
6681 Expression_list* newargs;
6682 if (args->size() == 1)
6683 newargs = NULL;
6684 else
6685 {
6686 newargs = new Expression_list();
6687 Expression_list::const_iterator p = args->begin();
6688 ++p;
6689 for (; p != args->end(); ++p)
6690 newargs->push_back(*p);
6691 }
6692 return Expression::make_make(arg->type(), newargs,
6693 this->location());
6694 }
6695 }
6696 }
6697 else if (this->is_constant())
6698 {
6699 // We can only lower len and cap if there are no function calls
6700 // in the arguments. Otherwise we have to make the call.
6701 if (this->code_ == BUILTIN_LEN || this->code_ == BUILTIN_CAP)
6702 {
6703 Expression* arg = this->one_arg();
6704 if (!arg->is_constant())
6705 {
6706 Find_call_expression find_call;
6707 Expression::traverse(&arg, &find_call);
6708 if (find_call.found())
6709 return this;
6710 }
6711 }
6712
6713 mpz_t ival;
6714 mpz_init(ival);
6715 Type* type;
6716 if (this->integer_constant_value(true, ival, &type))
6717 {
6718 Expression* ret = Expression::make_integer(&ival, type,
6719 this->location());
6720 mpz_clear(ival);
6721 return ret;
6722 }
6723 mpz_clear(ival);
6724
6725 mpfr_t rval;
6726 mpfr_init(rval);
6727 if (this->float_constant_value(rval, &type))
6728 {
6729 Expression* ret = Expression::make_float(&rval, type,
6730 this->location());
6731 mpfr_clear(rval);
6732 return ret;
6733 }
6734
6735 mpfr_t imag;
6736 mpfr_init(imag);
6737 if (this->complex_constant_value(rval, imag, &type))
6738 {
6739 Expression* ret = Expression::make_complex(&rval, &imag, type,
6740 this->location());
6741 mpfr_clear(rval);
6742 mpfr_clear(imag);
6743 return ret;
6744 }
6745 mpfr_clear(rval);
6746 mpfr_clear(imag);
6747 }
6748 else if (this->code_ == BUILTIN_RECOVER)
6749 {
6750 if (function != NULL)
6751 function->func_value()->set_calls_recover();
6752 else
6753 {
6754 // Calling recover outside of a function always returns the
6755 // nil empty interface.
6756 Type* eface = Type::make_interface_type(NULL, this->location());
6757 return Expression::make_cast(eface,
6758 Expression::make_nil(this->location()),
6759 this->location());
6760 }
6761 }
6762 else if (this->code_ == BUILTIN_APPEND)
6763 {
6764 // Lower the varargs.
6765 const Expression_list* args = this->args();
6766 if (args == NULL || args->empty())
6767 return this;
6768 Type* slice_type = args->front()->type();
6769 if (!slice_type->is_open_array_type())
6770 {
6771 error_at(args->front()->location(), "argument 1 must be a slice");
6772 this->set_is_error();
6773 return this;
6774 }
6775 return this->lower_varargs(gogo, function, slice_type, 2);
6776 }
6777
6778 return this;
6779 }
6780
6781 // Return the type of the real or imag functions, given the type of
6782 // the argument. We need to map complex to float, complex64 to
6783 // float32, and complex128 to float64, so it has to be done by name.
6784 // This returns NULL if it can't figure out the type.
6785
6786 Type*
6787 Builtin_call_expression::real_imag_type(Type* arg_type)
6788 {
6789 if (arg_type == NULL || arg_type->is_abstract())
6790 return NULL;
6791 Named_type* nt = arg_type->named_type();
6792 if (nt == NULL)
6793 return NULL;
6794 while (nt->real_type()->named_type() != NULL)
6795 nt = nt->real_type()->named_type();
6796 if (nt->name() == "complex64")
6797 return Type::lookup_float_type("float32");
6798 else if (nt->name() == "complex128")
6799 return Type::lookup_float_type("float64");
6800 else
6801 return NULL;
6802 }
6803
6804 // Return the type of the complex function, given the type of one of the
6805 // argments. Like real_imag_type, we have to map by name.
6806
6807 Type*
6808 Builtin_call_expression::complex_type(Type* arg_type)
6809 {
6810 if (arg_type == NULL || arg_type->is_abstract())
6811 return NULL;
6812 Named_type* nt = arg_type->named_type();
6813 if (nt == NULL)
6814 return NULL;
6815 while (nt->real_type()->named_type() != NULL)
6816 nt = nt->real_type()->named_type();
6817 if (nt->name() == "float32")
6818 return Type::lookup_complex_type("complex64");
6819 else if (nt->name() == "float64")
6820 return Type::lookup_complex_type("complex128");
6821 else
6822 return NULL;
6823 }
6824
6825 // Return a single argument, or NULL if there isn't one.
6826
6827 Expression*
6828 Builtin_call_expression::one_arg() const
6829 {
6830 const Expression_list* args = this->args();
6831 if (args->size() != 1)
6832 return NULL;
6833 return args->front();
6834 }
6835
6836 // Return whether this is constant: len of a string, or len or cap of
6837 // a fixed array, or unsafe.Sizeof, unsafe.Offsetof, unsafe.Alignof.
6838
6839 bool
6840 Builtin_call_expression::do_is_constant() const
6841 {
6842 switch (this->code_)
6843 {
6844 case BUILTIN_LEN:
6845 case BUILTIN_CAP:
6846 {
6847 if (this->seen_)
6848 return false;
6849
6850 Expression* arg = this->one_arg();
6851 if (arg == NULL)
6852 return false;
6853 Type* arg_type = arg->type();
6854
6855 if (arg_type->points_to() != NULL
6856 && arg_type->points_to()->array_type() != NULL
6857 && !arg_type->points_to()->is_open_array_type())
6858 arg_type = arg_type->points_to();
6859
6860 if (arg_type->array_type() != NULL
6861 && arg_type->array_type()->length() != NULL)
6862 return true;
6863
6864 if (this->code_ == BUILTIN_LEN && arg_type->is_string_type())
6865 {
6866 this->seen_ = true;
6867 bool ret = arg->is_constant();
6868 this->seen_ = false;
6869 return ret;
6870 }
6871 }
6872 break;
6873
6874 case BUILTIN_SIZEOF:
6875 case BUILTIN_ALIGNOF:
6876 return this->one_arg() != NULL;
6877
6878 case BUILTIN_OFFSETOF:
6879 {
6880 Expression* arg = this->one_arg();
6881 if (arg == NULL)
6882 return false;
6883 return arg->field_reference_expression() != NULL;
6884 }
6885
6886 case BUILTIN_COMPLEX:
6887 {
6888 const Expression_list* args = this->args();
6889 if (args != NULL && args->size() == 2)
6890 return args->front()->is_constant() && args->back()->is_constant();
6891 }
6892 break;
6893
6894 case BUILTIN_REAL:
6895 case BUILTIN_IMAG:
6896 {
6897 Expression* arg = this->one_arg();
6898 return arg != NULL && arg->is_constant();
6899 }
6900
6901 default:
6902 break;
6903 }
6904
6905 return false;
6906 }
6907
6908 // Return an integer constant value if possible.
6909
6910 bool
6911 Builtin_call_expression::do_integer_constant_value(bool iota_is_constant,
6912 mpz_t val,
6913 Type** ptype) const
6914 {
6915 if (this->code_ == BUILTIN_LEN
6916 || this->code_ == BUILTIN_CAP)
6917 {
6918 Expression* arg = this->one_arg();
6919 if (arg == NULL)
6920 return false;
6921 Type* arg_type = arg->type();
6922
6923 if (this->code_ == BUILTIN_LEN && arg_type->is_string_type())
6924 {
6925 std::string sval;
6926 if (arg->string_constant_value(&sval))
6927 {
6928 mpz_set_ui(val, sval.length());
6929 *ptype = Type::lookup_integer_type("int");
6930 return true;
6931 }
6932 }
6933
6934 if (arg_type->points_to() != NULL
6935 && arg_type->points_to()->array_type() != NULL
6936 && !arg_type->points_to()->is_open_array_type())
6937 arg_type = arg_type->points_to();
6938
6939 if (arg_type->array_type() != NULL
6940 && arg_type->array_type()->length() != NULL)
6941 {
6942 if (this->seen_)
6943 return false;
6944 Expression* e = arg_type->array_type()->length();
6945 this->seen_ = true;
6946 bool r = e->integer_constant_value(iota_is_constant, val, ptype);
6947 this->seen_ = false;
6948 if (r)
6949 {
6950 *ptype = Type::lookup_integer_type("int");
6951 return true;
6952 }
6953 }
6954 }
6955 else if (this->code_ == BUILTIN_SIZEOF
6956 || this->code_ == BUILTIN_ALIGNOF)
6957 {
6958 Expression* arg = this->one_arg();
6959 if (arg == NULL)
6960 return false;
6961 Type* arg_type = arg->type();
6962 if (arg_type->is_error_type() || arg_type->is_undefined())
6963 return false;
6964 if (arg_type->is_abstract())
6965 return false;
6966 tree arg_type_tree = arg_type->get_tree(this->gogo_);
6967 if (arg_type_tree == error_mark_node)
6968 return false;
6969 unsigned long val_long;
6970 if (this->code_ == BUILTIN_SIZEOF)
6971 {
6972 tree type_size = TYPE_SIZE_UNIT(arg_type_tree);
6973 gcc_assert(TREE_CODE(type_size) == INTEGER_CST);
6974 if (TREE_INT_CST_HIGH(type_size) != 0)
6975 return false;
6976 unsigned HOST_WIDE_INT val_wide = TREE_INT_CST_LOW(type_size);
6977 val_long = static_cast<unsigned long>(val_wide);
6978 if (val_long != val_wide)
6979 return false;
6980 }
6981 else if (this->code_ == BUILTIN_ALIGNOF)
6982 {
6983 if (arg->field_reference_expression() == NULL)
6984 val_long = go_type_alignment(arg_type_tree);
6985 else
6986 {
6987 // Calling unsafe.Alignof(s.f) returns the alignment of
6988 // the type of f when it is used as a field in a struct.
6989 val_long = go_field_alignment(arg_type_tree);
6990 }
6991 }
6992 else
6993 gcc_unreachable();
6994 mpz_set_ui(val, val_long);
6995 *ptype = NULL;
6996 return true;
6997 }
6998 else if (this->code_ == BUILTIN_OFFSETOF)
6999 {
7000 Expression* arg = this->one_arg();
7001 if (arg == NULL)
7002 return false;
7003 Field_reference_expression* farg = arg->field_reference_expression();
7004 if (farg == NULL)
7005 return false;
7006 Expression* struct_expr = farg->expr();
7007 Type* st = struct_expr->type();
7008 if (st->struct_type() == NULL)
7009 return false;
7010 tree struct_tree = st->get_tree(this->gogo_);
7011 gcc_assert(TREE_CODE(struct_tree) == RECORD_TYPE);
7012 tree field = TYPE_FIELDS(struct_tree);
7013 for (unsigned int index = farg->field_index(); index > 0; --index)
7014 {
7015 field = DECL_CHAIN(field);
7016 gcc_assert(field != NULL_TREE);
7017 }
7018 HOST_WIDE_INT offset_wide = int_byte_position (field);
7019 if (offset_wide < 0)
7020 return false;
7021 unsigned long offset_long = static_cast<unsigned long>(offset_wide);
7022 if (offset_long != static_cast<unsigned HOST_WIDE_INT>(offset_wide))
7023 return false;
7024 mpz_set_ui(val, offset_long);
7025 return true;
7026 }
7027 return false;
7028 }
7029
7030 // Return a floating point constant value if possible.
7031
7032 bool
7033 Builtin_call_expression::do_float_constant_value(mpfr_t val,
7034 Type** ptype) const
7035 {
7036 if (this->code_ == BUILTIN_REAL || this->code_ == BUILTIN_IMAG)
7037 {
7038 Expression* arg = this->one_arg();
7039 if (arg == NULL)
7040 return false;
7041
7042 mpfr_t real;
7043 mpfr_t imag;
7044 mpfr_init(real);
7045 mpfr_init(imag);
7046
7047 bool ret = false;
7048 Type* type;
7049 if (arg->complex_constant_value(real, imag, &type))
7050 {
7051 if (this->code_ == BUILTIN_REAL)
7052 mpfr_set(val, real, GMP_RNDN);
7053 else
7054 mpfr_set(val, imag, GMP_RNDN);
7055 *ptype = Builtin_call_expression::real_imag_type(type);
7056 ret = true;
7057 }
7058
7059 mpfr_clear(real);
7060 mpfr_clear(imag);
7061 return ret;
7062 }
7063
7064 return false;
7065 }
7066
7067 // Return a complex constant value if possible.
7068
7069 bool
7070 Builtin_call_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
7071 Type** ptype) const
7072 {
7073 if (this->code_ == BUILTIN_COMPLEX)
7074 {
7075 const Expression_list* args = this->args();
7076 if (args == NULL || args->size() != 2)
7077 return false;
7078
7079 mpfr_t r;
7080 mpfr_init(r);
7081 Type* rtype;
7082 if (!args->front()->float_constant_value(r, &rtype))
7083 {
7084 mpfr_clear(r);
7085 return false;
7086 }
7087
7088 mpfr_t i;
7089 mpfr_init(i);
7090
7091 bool ret = false;
7092 Type* itype;
7093 if (args->back()->float_constant_value(i, &itype)
7094 && Type::are_identical(rtype, itype, false, NULL))
7095 {
7096 mpfr_set(real, r, GMP_RNDN);
7097 mpfr_set(imag, i, GMP_RNDN);
7098 *ptype = Builtin_call_expression::complex_type(rtype);
7099 ret = true;
7100 }
7101
7102 mpfr_clear(r);
7103 mpfr_clear(i);
7104
7105 return ret;
7106 }
7107
7108 return false;
7109 }
7110
7111 // Return the type.
7112
7113 Type*
7114 Builtin_call_expression::do_type()
7115 {
7116 switch (this->code_)
7117 {
7118 case BUILTIN_INVALID:
7119 default:
7120 gcc_unreachable();
7121
7122 case BUILTIN_NEW:
7123 case BUILTIN_MAKE:
7124 {
7125 const Expression_list* args = this->args();
7126 if (args == NULL || args->empty())
7127 return Type::make_error_type();
7128 return Type::make_pointer_type(args->front()->type());
7129 }
7130
7131 case BUILTIN_CAP:
7132 case BUILTIN_COPY:
7133 case BUILTIN_LEN:
7134 case BUILTIN_ALIGNOF:
7135 case BUILTIN_OFFSETOF:
7136 case BUILTIN_SIZEOF:
7137 return Type::lookup_integer_type("int");
7138
7139 case BUILTIN_CLOSE:
7140 case BUILTIN_PANIC:
7141 case BUILTIN_PRINT:
7142 case BUILTIN_PRINTLN:
7143 return Type::make_void_type();
7144
7145 case BUILTIN_CLOSED:
7146 return Type::lookup_bool_type();
7147
7148 case BUILTIN_RECOVER:
7149 return Type::make_interface_type(NULL, BUILTINS_LOCATION);
7150
7151 case BUILTIN_APPEND:
7152 {
7153 const Expression_list* args = this->args();
7154 if (args == NULL || args->empty())
7155 return Type::make_error_type();
7156 return args->front()->type();
7157 }
7158
7159 case BUILTIN_REAL:
7160 case BUILTIN_IMAG:
7161 {
7162 Expression* arg = this->one_arg();
7163 if (arg == NULL)
7164 return Type::make_error_type();
7165 Type* t = arg->type();
7166 if (t->is_abstract())
7167 t = t->make_non_abstract_type();
7168 t = Builtin_call_expression::real_imag_type(t);
7169 if (t == NULL)
7170 t = Type::make_error_type();
7171 return t;
7172 }
7173
7174 case BUILTIN_COMPLEX:
7175 {
7176 const Expression_list* args = this->args();
7177 if (args == NULL || args->size() != 2)
7178 return Type::make_error_type();
7179 Type* t = args->front()->type();
7180 if (t->is_abstract())
7181 {
7182 t = args->back()->type();
7183 if (t->is_abstract())
7184 t = t->make_non_abstract_type();
7185 }
7186 t = Builtin_call_expression::complex_type(t);
7187 if (t == NULL)
7188 t = Type::make_error_type();
7189 return t;
7190 }
7191 }
7192 }
7193
7194 // Determine the type.
7195
7196 void
7197 Builtin_call_expression::do_determine_type(const Type_context* context)
7198 {
7199 this->fn()->determine_type_no_context();
7200
7201 const Expression_list* args = this->args();
7202
7203 bool is_print;
7204 Type* arg_type = NULL;
7205 switch (this->code_)
7206 {
7207 case BUILTIN_PRINT:
7208 case BUILTIN_PRINTLN:
7209 // Do not force a large integer constant to "int".
7210 is_print = true;
7211 break;
7212
7213 case BUILTIN_REAL:
7214 case BUILTIN_IMAG:
7215 arg_type = Builtin_call_expression::complex_type(context->type);
7216 is_print = false;
7217 break;
7218
7219 case BUILTIN_COMPLEX:
7220 {
7221 // For the complex function the type of one operand can
7222 // determine the type of the other, as in a binary expression.
7223 arg_type = Builtin_call_expression::real_imag_type(context->type);
7224 if (args != NULL && args->size() == 2)
7225 {
7226 Type* t1 = args->front()->type();
7227 Type* t2 = args->front()->type();
7228 if (!t1->is_abstract())
7229 arg_type = t1;
7230 else if (!t2->is_abstract())
7231 arg_type = t2;
7232 }
7233 is_print = false;
7234 }
7235 break;
7236
7237 default:
7238 is_print = false;
7239 break;
7240 }
7241
7242 if (args != NULL)
7243 {
7244 for (Expression_list::const_iterator pa = args->begin();
7245 pa != args->end();
7246 ++pa)
7247 {
7248 Type_context subcontext;
7249 subcontext.type = arg_type;
7250
7251 if (is_print)
7252 {
7253 // We want to print large constants, we so can't just
7254 // use the appropriate nonabstract type. Use uint64 for
7255 // an integer if we know it is nonnegative, otherwise
7256 // use int64 for a integer, otherwise use float64 for a
7257 // float or complex128 for a complex.
7258 Type* want_type = NULL;
7259 Type* atype = (*pa)->type();
7260 if (atype->is_abstract())
7261 {
7262 if (atype->integer_type() != NULL)
7263 {
7264 mpz_t val;
7265 mpz_init(val);
7266 Type* dummy;
7267 if (this->integer_constant_value(true, val, &dummy)
7268 && mpz_sgn(val) >= 0)
7269 want_type = Type::lookup_integer_type("uint64");
7270 else
7271 want_type = Type::lookup_integer_type("int64");
7272 mpz_clear(val);
7273 }
7274 else if (atype->float_type() != NULL)
7275 want_type = Type::lookup_float_type("float64");
7276 else if (atype->complex_type() != NULL)
7277 want_type = Type::lookup_complex_type("complex128");
7278 else if (atype->is_abstract_string_type())
7279 want_type = Type::lookup_string_type();
7280 else if (atype->is_abstract_boolean_type())
7281 want_type = Type::lookup_bool_type();
7282 else
7283 gcc_unreachable();
7284 subcontext.type = want_type;
7285 }
7286 }
7287
7288 (*pa)->determine_type(&subcontext);
7289 }
7290 }
7291 }
7292
7293 // If there is exactly one argument, return true. Otherwise give an
7294 // error message and return false.
7295
7296 bool
7297 Builtin_call_expression::check_one_arg()
7298 {
7299 const Expression_list* args = this->args();
7300 if (args == NULL || args->size() < 1)
7301 {
7302 this->report_error(_("not enough arguments"));
7303 return false;
7304 }
7305 else if (args->size() > 1)
7306 {
7307 this->report_error(_("too many arguments"));
7308 return false;
7309 }
7310 if (args->front()->is_error_expression()
7311 || args->front()->type()->is_error_type()
7312 || args->front()->type()->is_undefined())
7313 {
7314 this->set_is_error();
7315 return false;
7316 }
7317 return true;
7318 }
7319
7320 // Check argument types for a builtin function.
7321
7322 void
7323 Builtin_call_expression::do_check_types(Gogo*)
7324 {
7325 switch (this->code_)
7326 {
7327 case BUILTIN_INVALID:
7328 case BUILTIN_NEW:
7329 case BUILTIN_MAKE:
7330 return;
7331
7332 case BUILTIN_LEN:
7333 case BUILTIN_CAP:
7334 {
7335 // The single argument may be either a string or an array or a
7336 // map or a channel, or a pointer to a closed array.
7337 if (this->check_one_arg())
7338 {
7339 Type* arg_type = this->one_arg()->type();
7340 if (arg_type->points_to() != NULL
7341 && arg_type->points_to()->array_type() != NULL
7342 && !arg_type->points_to()->is_open_array_type())
7343 arg_type = arg_type->points_to();
7344 if (this->code_ == BUILTIN_CAP)
7345 {
7346 if (!arg_type->is_error_type()
7347 && arg_type->array_type() == NULL
7348 && arg_type->channel_type() == NULL)
7349 this->report_error(_("argument must be array or slice "
7350 "or channel"));
7351 }
7352 else
7353 {
7354 if (!arg_type->is_error_type()
7355 && !arg_type->is_string_type()
7356 && arg_type->array_type() == NULL
7357 && arg_type->map_type() == NULL
7358 && arg_type->channel_type() == NULL)
7359 this->report_error(_("argument must be string or "
7360 "array or slice or map or channel"));
7361 }
7362 }
7363 }
7364 break;
7365
7366 case BUILTIN_PRINT:
7367 case BUILTIN_PRINTLN:
7368 {
7369 const Expression_list* args = this->args();
7370 if (args == NULL)
7371 {
7372 if (this->code_ == BUILTIN_PRINT)
7373 warning_at(this->location(), 0,
7374 "no arguments for builtin function %<%s%>",
7375 (this->code_ == BUILTIN_PRINT
7376 ? "print"
7377 : "println"));
7378 }
7379 else
7380 {
7381 for (Expression_list::const_iterator p = args->begin();
7382 p != args->end();
7383 ++p)
7384 {
7385 Type* type = (*p)->type();
7386 if (type->is_error_type()
7387 || type->is_string_type()
7388 || type->integer_type() != NULL
7389 || type->float_type() != NULL
7390 || type->complex_type() != NULL
7391 || type->is_boolean_type()
7392 || type->points_to() != NULL
7393 || type->interface_type() != NULL
7394 || type->channel_type() != NULL
7395 || type->map_type() != NULL
7396 || type->function_type() != NULL
7397 || type->is_open_array_type())
7398 ;
7399 else
7400 this->report_error(_("unsupported argument type to "
7401 "builtin function"));
7402 }
7403 }
7404 }
7405 break;
7406
7407 case BUILTIN_CLOSE:
7408 case BUILTIN_CLOSED:
7409 if (this->check_one_arg())
7410 {
7411 if (this->one_arg()->type()->channel_type() == NULL)
7412 this->report_error(_("argument must be channel"));
7413 }
7414 break;
7415
7416 case BUILTIN_PANIC:
7417 case BUILTIN_SIZEOF:
7418 case BUILTIN_ALIGNOF:
7419 this->check_one_arg();
7420 break;
7421
7422 case BUILTIN_RECOVER:
7423 if (this->args() != NULL && !this->args()->empty())
7424 this->report_error(_("too many arguments"));
7425 break;
7426
7427 case BUILTIN_OFFSETOF:
7428 if (this->check_one_arg())
7429 {
7430 Expression* arg = this->one_arg();
7431 if (arg->field_reference_expression() == NULL)
7432 this->report_error(_("argument must be a field reference"));
7433 }
7434 break;
7435
7436 case BUILTIN_COPY:
7437 {
7438 const Expression_list* args = this->args();
7439 if (args == NULL || args->size() < 2)
7440 {
7441 this->report_error(_("not enough arguments"));
7442 break;
7443 }
7444 else if (args->size() > 2)
7445 {
7446 this->report_error(_("too many arguments"));
7447 break;
7448 }
7449 Type* arg1_type = args->front()->type();
7450 Type* arg2_type = args->back()->type();
7451 if (arg1_type->is_error_type() || arg2_type->is_error_type())
7452 break;
7453
7454 Type* e1;
7455 if (arg1_type->is_open_array_type())
7456 e1 = arg1_type->array_type()->element_type();
7457 else
7458 {
7459 this->report_error(_("left argument must be a slice"));
7460 break;
7461 }
7462
7463 Type* e2;
7464 if (arg2_type->is_open_array_type())
7465 e2 = arg2_type->array_type()->element_type();
7466 else if (arg2_type->is_string_type())
7467 e2 = Type::lookup_integer_type("uint8");
7468 else
7469 {
7470 this->report_error(_("right argument must be a slice or a string"));
7471 break;
7472 }
7473
7474 if (!Type::are_identical(e1, e2, true, NULL))
7475 this->report_error(_("element types must be the same"));
7476 }
7477 break;
7478
7479 case BUILTIN_APPEND:
7480 {
7481 const Expression_list* args = this->args();
7482 if (args == NULL || args->size() < 2)
7483 {
7484 this->report_error(_("not enough arguments"));
7485 break;
7486 }
7487 if (args->size() > 2)
7488 {
7489 this->report_error(_("too many arguments"));
7490 break;
7491 }
7492 std::string reason;
7493 if (!Type::are_assignable(args->front()->type(), args->back()->type(),
7494 &reason))
7495 {
7496 if (reason.empty())
7497 this->report_error(_("arguments 1 and 2 have different types"));
7498 else
7499 {
7500 error_at(this->location(),
7501 "arguments 1 and 2 have different types (%s)",
7502 reason.c_str());
7503 this->set_is_error();
7504 }
7505 }
7506 break;
7507 }
7508
7509 case BUILTIN_REAL:
7510 case BUILTIN_IMAG:
7511 if (this->check_one_arg())
7512 {
7513 if (this->one_arg()->type()->complex_type() == NULL)
7514 this->report_error(_("argument must have complex type"));
7515 }
7516 break;
7517
7518 case BUILTIN_COMPLEX:
7519 {
7520 const Expression_list* args = this->args();
7521 if (args == NULL || args->size() < 2)
7522 this->report_error(_("not enough arguments"));
7523 else if (args->size() > 2)
7524 this->report_error(_("too many arguments"));
7525 else if (args->front()->is_error_expression()
7526 || args->front()->type()->is_error_type()
7527 || args->back()->is_error_expression()
7528 || args->back()->type()->is_error_type())
7529 this->set_is_error();
7530 else if (!Type::are_identical(args->front()->type(),
7531 args->back()->type(), true, NULL))
7532 this->report_error(_("complex arguments must have identical types"));
7533 else if (args->front()->type()->float_type() == NULL)
7534 this->report_error(_("complex arguments must have "
7535 "floating-point type"));
7536 }
7537 break;
7538
7539 default:
7540 gcc_unreachable();
7541 }
7542 }
7543
7544 // Return the tree for a builtin function.
7545
7546 tree
7547 Builtin_call_expression::do_get_tree(Translate_context* context)
7548 {
7549 Gogo* gogo = context->gogo();
7550 source_location location = this->location();
7551 switch (this->code_)
7552 {
7553 case BUILTIN_INVALID:
7554 case BUILTIN_NEW:
7555 case BUILTIN_MAKE:
7556 gcc_unreachable();
7557
7558 case BUILTIN_LEN:
7559 case BUILTIN_CAP:
7560 {
7561 const Expression_list* args = this->args();
7562 gcc_assert(args != NULL && args->size() == 1);
7563 Expression* arg = *args->begin();
7564 Type* arg_type = arg->type();
7565
7566 if (this->seen_)
7567 {
7568 gcc_assert(saw_errors());
7569 return error_mark_node;
7570 }
7571 this->seen_ = true;
7572
7573 tree arg_tree = arg->get_tree(context);
7574
7575 this->seen_ = false;
7576
7577 if (arg_tree == error_mark_node)
7578 return error_mark_node;
7579
7580 if (arg_type->points_to() != NULL)
7581 {
7582 arg_type = arg_type->points_to();
7583 gcc_assert(arg_type->array_type() != NULL
7584 && !arg_type->is_open_array_type());
7585 gcc_assert(POINTER_TYPE_P(TREE_TYPE(arg_tree)));
7586 arg_tree = build_fold_indirect_ref(arg_tree);
7587 }
7588
7589 tree val_tree;
7590 if (this->code_ == BUILTIN_LEN)
7591 {
7592 if (arg_type->is_string_type())
7593 val_tree = String_type::length_tree(gogo, arg_tree);
7594 else if (arg_type->array_type() != NULL)
7595 {
7596 if (this->seen_)
7597 {
7598 gcc_assert(saw_errors());
7599 return error_mark_node;
7600 }
7601 this->seen_ = true;
7602 val_tree = arg_type->array_type()->length_tree(gogo, arg_tree);
7603 this->seen_ = false;
7604 }
7605 else if (arg_type->map_type() != NULL)
7606 {
7607 static tree map_len_fndecl;
7608 val_tree = Gogo::call_builtin(&map_len_fndecl,
7609 location,
7610 "__go_map_len",
7611 1,
7612 sizetype,
7613 arg_type->get_tree(gogo),
7614 arg_tree);
7615 }
7616 else if (arg_type->channel_type() != NULL)
7617 {
7618 static tree chan_len_fndecl;
7619 val_tree = Gogo::call_builtin(&chan_len_fndecl,
7620 location,
7621 "__go_chan_len",
7622 1,
7623 sizetype,
7624 arg_type->get_tree(gogo),
7625 arg_tree);
7626 }
7627 else
7628 gcc_unreachable();
7629 }
7630 else
7631 {
7632 if (arg_type->array_type() != NULL)
7633 {
7634 if (this->seen_)
7635 {
7636 gcc_assert(saw_errors());
7637 return error_mark_node;
7638 }
7639 this->seen_ = true;
7640 val_tree = arg_type->array_type()->capacity_tree(gogo,
7641 arg_tree);
7642 this->seen_ = false;
7643 }
7644 else if (arg_type->channel_type() != NULL)
7645 {
7646 static tree chan_cap_fndecl;
7647 val_tree = Gogo::call_builtin(&chan_cap_fndecl,
7648 location,
7649 "__go_chan_cap",
7650 1,
7651 sizetype,
7652 arg_type->get_tree(gogo),
7653 arg_tree);
7654 }
7655 else
7656 gcc_unreachable();
7657 }
7658
7659 if (val_tree == error_mark_node)
7660 return error_mark_node;
7661
7662 tree type_tree = Type::lookup_integer_type("int")->get_tree(gogo);
7663 if (type_tree == TREE_TYPE(val_tree))
7664 return val_tree;
7665 else
7666 return fold(convert_to_integer(type_tree, val_tree));
7667 }
7668
7669 case BUILTIN_PRINT:
7670 case BUILTIN_PRINTLN:
7671 {
7672 const bool is_ln = this->code_ == BUILTIN_PRINTLN;
7673 tree stmt_list = NULL_TREE;
7674
7675 const Expression_list* call_args = this->args();
7676 if (call_args != NULL)
7677 {
7678 for (Expression_list::const_iterator p = call_args->begin();
7679 p != call_args->end();
7680 ++p)
7681 {
7682 if (is_ln && p != call_args->begin())
7683 {
7684 static tree print_space_fndecl;
7685 tree call = Gogo::call_builtin(&print_space_fndecl,
7686 location,
7687 "__go_print_space",
7688 0,
7689 void_type_node);
7690 if (call == error_mark_node)
7691 return error_mark_node;
7692 append_to_statement_list(call, &stmt_list);
7693 }
7694
7695 Type* type = (*p)->type();
7696
7697 tree arg = (*p)->get_tree(context);
7698 if (arg == error_mark_node)
7699 return error_mark_node;
7700
7701 tree* pfndecl;
7702 const char* fnname;
7703 if (type->is_string_type())
7704 {
7705 static tree print_string_fndecl;
7706 pfndecl = &print_string_fndecl;
7707 fnname = "__go_print_string";
7708 }
7709 else if (type->integer_type() != NULL
7710 && type->integer_type()->is_unsigned())
7711 {
7712 static tree print_uint64_fndecl;
7713 pfndecl = &print_uint64_fndecl;
7714 fnname = "__go_print_uint64";
7715 Type* itype = Type::lookup_integer_type("uint64");
7716 arg = fold_convert_loc(location, itype->get_tree(gogo),
7717 arg);
7718 }
7719 else if (type->integer_type() != NULL)
7720 {
7721 static tree print_int64_fndecl;
7722 pfndecl = &print_int64_fndecl;
7723 fnname = "__go_print_int64";
7724 Type* itype = Type::lookup_integer_type("int64");
7725 arg = fold_convert_loc(location, itype->get_tree(gogo),
7726 arg);
7727 }
7728 else if (type->float_type() != NULL)
7729 {
7730 static tree print_double_fndecl;
7731 pfndecl = &print_double_fndecl;
7732 fnname = "__go_print_double";
7733 arg = fold_convert_loc(location, double_type_node, arg);
7734 }
7735 else if (type->complex_type() != NULL)
7736 {
7737 static tree print_complex_fndecl;
7738 pfndecl = &print_complex_fndecl;
7739 fnname = "__go_print_complex";
7740 arg = fold_convert_loc(location, complex_double_type_node,
7741 arg);
7742 }
7743 else if (type->is_boolean_type())
7744 {
7745 static tree print_bool_fndecl;
7746 pfndecl = &print_bool_fndecl;
7747 fnname = "__go_print_bool";
7748 }
7749 else if (type->points_to() != NULL
7750 || type->channel_type() != NULL
7751 || type->map_type() != NULL
7752 || type->function_type() != NULL)
7753 {
7754 static tree print_pointer_fndecl;
7755 pfndecl = &print_pointer_fndecl;
7756 fnname = "__go_print_pointer";
7757 arg = fold_convert_loc(location, ptr_type_node, arg);
7758 }
7759 else if (type->interface_type() != NULL)
7760 {
7761 if (type->interface_type()->is_empty())
7762 {
7763 static tree print_empty_interface_fndecl;
7764 pfndecl = &print_empty_interface_fndecl;
7765 fnname = "__go_print_empty_interface";
7766 }
7767 else
7768 {
7769 static tree print_interface_fndecl;
7770 pfndecl = &print_interface_fndecl;
7771 fnname = "__go_print_interface";
7772 }
7773 }
7774 else if (type->is_open_array_type())
7775 {
7776 static tree print_slice_fndecl;
7777 pfndecl = &print_slice_fndecl;
7778 fnname = "__go_print_slice";
7779 }
7780 else
7781 gcc_unreachable();
7782
7783 tree call = Gogo::call_builtin(pfndecl,
7784 location,
7785 fnname,
7786 1,
7787 void_type_node,
7788 TREE_TYPE(arg),
7789 arg);
7790 if (call == error_mark_node)
7791 return error_mark_node;
7792 append_to_statement_list(call, &stmt_list);
7793 }
7794 }
7795
7796 if (is_ln)
7797 {
7798 static tree print_nl_fndecl;
7799 tree call = Gogo::call_builtin(&print_nl_fndecl,
7800 location,
7801 "__go_print_nl",
7802 0,
7803 void_type_node);
7804 if (call == error_mark_node)
7805 return error_mark_node;
7806 append_to_statement_list(call, &stmt_list);
7807 }
7808
7809 return stmt_list;
7810 }
7811
7812 case BUILTIN_PANIC:
7813 {
7814 const Expression_list* args = this->args();
7815 gcc_assert(args != NULL && args->size() == 1);
7816 Expression* arg = args->front();
7817 tree arg_tree = arg->get_tree(context);
7818 if (arg_tree == error_mark_node)
7819 return error_mark_node;
7820 Type *empty = Type::make_interface_type(NULL, BUILTINS_LOCATION);
7821 arg_tree = Expression::convert_for_assignment(context, empty,
7822 arg->type(),
7823 arg_tree, location);
7824 static tree panic_fndecl;
7825 tree call = Gogo::call_builtin(&panic_fndecl,
7826 location,
7827 "__go_panic",
7828 1,
7829 void_type_node,
7830 TREE_TYPE(arg_tree),
7831 arg_tree);
7832 if (call == error_mark_node)
7833 return error_mark_node;
7834 // This function will throw an exception.
7835 TREE_NOTHROW(panic_fndecl) = 0;
7836 // This function will not return.
7837 TREE_THIS_VOLATILE(panic_fndecl) = 1;
7838 return call;
7839 }
7840
7841 case BUILTIN_RECOVER:
7842 {
7843 // The argument is set when building recover thunks. It's a
7844 // boolean value which is true if we can recover a value now.
7845 const Expression_list* args = this->args();
7846 gcc_assert(args != NULL && args->size() == 1);
7847 Expression* arg = args->front();
7848 tree arg_tree = arg->get_tree(context);
7849 if (arg_tree == error_mark_node)
7850 return error_mark_node;
7851
7852 Type *empty = Type::make_interface_type(NULL, BUILTINS_LOCATION);
7853 tree empty_tree = empty->get_tree(context->gogo());
7854
7855 Type* nil_type = Type::make_nil_type();
7856 Expression* nil = Expression::make_nil(location);
7857 tree nil_tree = nil->get_tree(context);
7858 tree empty_nil_tree = Expression::convert_for_assignment(context,
7859 empty,
7860 nil_type,
7861 nil_tree,
7862 location);
7863
7864 // We need to handle a deferred call to recover specially,
7865 // because it changes whether it can recover a panic or not.
7866 // See test7 in test/recover1.go.
7867 tree call;
7868 if (this->is_deferred())
7869 {
7870 static tree deferred_recover_fndecl;
7871 call = Gogo::call_builtin(&deferred_recover_fndecl,
7872 location,
7873 "__go_deferred_recover",
7874 0,
7875 empty_tree);
7876 }
7877 else
7878 {
7879 static tree recover_fndecl;
7880 call = Gogo::call_builtin(&recover_fndecl,
7881 location,
7882 "__go_recover",
7883 0,
7884 empty_tree);
7885 }
7886 if (call == error_mark_node)
7887 return error_mark_node;
7888 return fold_build3_loc(location, COND_EXPR, empty_tree, arg_tree,
7889 call, empty_nil_tree);
7890 }
7891
7892 case BUILTIN_CLOSE:
7893 case BUILTIN_CLOSED:
7894 {
7895 const Expression_list* args = this->args();
7896 gcc_assert(args != NULL && args->size() == 1);
7897 Expression* arg = args->front();
7898 tree arg_tree = arg->get_tree(context);
7899 if (arg_tree == error_mark_node)
7900 return error_mark_node;
7901 if (this->code_ == BUILTIN_CLOSE)
7902 {
7903 static tree close_fndecl;
7904 return Gogo::call_builtin(&close_fndecl,
7905 location,
7906 "__go_builtin_close",
7907 1,
7908 void_type_node,
7909 TREE_TYPE(arg_tree),
7910 arg_tree);
7911 }
7912 else
7913 {
7914 static tree closed_fndecl;
7915 return Gogo::call_builtin(&closed_fndecl,
7916 location,
7917 "__go_builtin_closed",
7918 1,
7919 boolean_type_node,
7920 TREE_TYPE(arg_tree),
7921 arg_tree);
7922 }
7923 }
7924
7925 case BUILTIN_SIZEOF:
7926 case BUILTIN_OFFSETOF:
7927 case BUILTIN_ALIGNOF:
7928 {
7929 mpz_t val;
7930 mpz_init(val);
7931 Type* dummy;
7932 bool b = this->integer_constant_value(true, val, &dummy);
7933 gcc_assert(b);
7934 tree type = Type::lookup_integer_type("int")->get_tree(gogo);
7935 tree ret = Expression::integer_constant_tree(val, type);
7936 mpz_clear(val);
7937 return ret;
7938 }
7939
7940 case BUILTIN_COPY:
7941 {
7942 const Expression_list* args = this->args();
7943 gcc_assert(args != NULL && args->size() == 2);
7944 Expression* arg1 = args->front();
7945 Expression* arg2 = args->back();
7946
7947 tree arg1_tree = arg1->get_tree(context);
7948 tree arg2_tree = arg2->get_tree(context);
7949 if (arg1_tree == error_mark_node || arg2_tree == error_mark_node)
7950 return error_mark_node;
7951
7952 Type* arg1_type = arg1->type();
7953 Array_type* at = arg1_type->array_type();
7954 arg1_tree = save_expr(arg1_tree);
7955 tree arg1_val = at->value_pointer_tree(gogo, arg1_tree);
7956 tree arg1_len = at->length_tree(gogo, arg1_tree);
7957 if (arg1_val == error_mark_node || arg1_len == error_mark_node)
7958 return error_mark_node;
7959
7960 Type* arg2_type = arg2->type();
7961 tree arg2_val;
7962 tree arg2_len;
7963 if (arg2_type->is_open_array_type())
7964 {
7965 at = arg2_type->array_type();
7966 arg2_tree = save_expr(arg2_tree);
7967 arg2_val = at->value_pointer_tree(gogo, arg2_tree);
7968 arg2_len = at->length_tree(gogo, arg2_tree);
7969 }
7970 else
7971 {
7972 arg2_tree = save_expr(arg2_tree);
7973 arg2_val = String_type::bytes_tree(gogo, arg2_tree);
7974 arg2_len = String_type::length_tree(gogo, arg2_tree);
7975 }
7976 if (arg2_val == error_mark_node || arg2_len == error_mark_node)
7977 return error_mark_node;
7978
7979 arg1_len = save_expr(arg1_len);
7980 arg2_len = save_expr(arg2_len);
7981 tree len = fold_build3_loc(location, COND_EXPR, TREE_TYPE(arg1_len),
7982 fold_build2_loc(location, LT_EXPR,
7983 boolean_type_node,
7984 arg1_len, arg2_len),
7985 arg1_len, arg2_len);
7986 len = save_expr(len);
7987
7988 Type* element_type = at->element_type();
7989 tree element_type_tree = element_type->get_tree(gogo);
7990 if (element_type_tree == error_mark_node)
7991 return error_mark_node;
7992 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
7993 tree bytecount = fold_convert_loc(location, TREE_TYPE(element_size),
7994 len);
7995 bytecount = fold_build2_loc(location, MULT_EXPR,
7996 TREE_TYPE(element_size),
7997 bytecount, element_size);
7998 bytecount = fold_convert_loc(location, size_type_node, bytecount);
7999
8000 arg1_val = fold_convert_loc(location, ptr_type_node, arg1_val);
8001 arg2_val = fold_convert_loc(location, ptr_type_node, arg2_val);
8002
8003 static tree copy_fndecl;
8004 tree call = Gogo::call_builtin(&copy_fndecl,
8005 location,
8006 "__go_copy",
8007 3,
8008 void_type_node,
8009 ptr_type_node,
8010 arg1_val,
8011 ptr_type_node,
8012 arg2_val,
8013 size_type_node,
8014 bytecount);
8015 if (call == error_mark_node)
8016 return error_mark_node;
8017
8018 return fold_build2_loc(location, COMPOUND_EXPR, TREE_TYPE(len),
8019 call, len);
8020 }
8021
8022 case BUILTIN_APPEND:
8023 {
8024 const Expression_list* args = this->args();
8025 gcc_assert(args != NULL && args->size() == 2);
8026 Expression* arg1 = args->front();
8027 Expression* arg2 = args->back();
8028
8029 tree arg1_tree = arg1->get_tree(context);
8030 tree arg2_tree = arg2->get_tree(context);
8031 if (arg1_tree == error_mark_node || arg2_tree == error_mark_node)
8032 return error_mark_node;
8033
8034 Array_type* at = arg1->type()->array_type();
8035 Type* element_type = at->element_type();
8036
8037 arg2_tree = Expression::convert_for_assignment(context, at,
8038 arg2->type(),
8039 arg2_tree,
8040 location);
8041 if (arg2_tree == error_mark_node)
8042 return error_mark_node;
8043
8044 arg2_tree = save_expr(arg2_tree);
8045 tree arg2_val = at->value_pointer_tree(gogo, arg2_tree);
8046 tree arg2_len = at->length_tree(gogo, arg2_tree);
8047 if (arg2_val == error_mark_node || arg2_len == error_mark_node)
8048 return error_mark_node;
8049 arg2_val = fold_convert_loc(location, ptr_type_node, arg2_val);
8050 arg2_len = fold_convert_loc(location, size_type_node, arg2_len);
8051
8052 tree element_type_tree = element_type->get_tree(gogo);
8053 if (element_type_tree == error_mark_node)
8054 return error_mark_node;
8055 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
8056 element_size = fold_convert_loc(location, size_type_node,
8057 element_size);
8058
8059 // We rebuild the decl each time since the slice types may
8060 // change.
8061 tree append_fndecl = NULL_TREE;
8062 return Gogo::call_builtin(&append_fndecl,
8063 location,
8064 "__go_append",
8065 4,
8066 TREE_TYPE(arg1_tree),
8067 TREE_TYPE(arg1_tree),
8068 arg1_tree,
8069 ptr_type_node,
8070 arg2_val,
8071 size_type_node,
8072 arg2_len,
8073 size_type_node,
8074 element_size);
8075 }
8076
8077 case BUILTIN_REAL:
8078 case BUILTIN_IMAG:
8079 {
8080 const Expression_list* args = this->args();
8081 gcc_assert(args != NULL && args->size() == 1);
8082 Expression* arg = args->front();
8083 tree arg_tree = arg->get_tree(context);
8084 if (arg_tree == error_mark_node)
8085 return error_mark_node;
8086 gcc_assert(COMPLEX_FLOAT_TYPE_P(TREE_TYPE(arg_tree)));
8087 if (this->code_ == BUILTIN_REAL)
8088 return fold_build1_loc(location, REALPART_EXPR,
8089 TREE_TYPE(TREE_TYPE(arg_tree)),
8090 arg_tree);
8091 else
8092 return fold_build1_loc(location, IMAGPART_EXPR,
8093 TREE_TYPE(TREE_TYPE(arg_tree)),
8094 arg_tree);
8095 }
8096
8097 case BUILTIN_COMPLEX:
8098 {
8099 const Expression_list* args = this->args();
8100 gcc_assert(args != NULL && args->size() == 2);
8101 tree r = args->front()->get_tree(context);
8102 tree i = args->back()->get_tree(context);
8103 if (r == error_mark_node || i == error_mark_node)
8104 return error_mark_node;
8105 gcc_assert(TYPE_MAIN_VARIANT(TREE_TYPE(r))
8106 == TYPE_MAIN_VARIANT(TREE_TYPE(i)));
8107 gcc_assert(SCALAR_FLOAT_TYPE_P(TREE_TYPE(r)));
8108 return fold_build2_loc(location, COMPLEX_EXPR,
8109 build_complex_type(TREE_TYPE(r)),
8110 r, i);
8111 }
8112
8113 default:
8114 gcc_unreachable();
8115 }
8116 }
8117
8118 // We have to support exporting a builtin call expression, because
8119 // code can set a constant to the result of a builtin expression.
8120
8121 void
8122 Builtin_call_expression::do_export(Export* exp) const
8123 {
8124 bool ok = false;
8125
8126 mpz_t val;
8127 mpz_init(val);
8128 Type* dummy;
8129 if (this->integer_constant_value(true, val, &dummy))
8130 {
8131 Integer_expression::export_integer(exp, val);
8132 ok = true;
8133 }
8134 mpz_clear(val);
8135
8136 if (!ok)
8137 {
8138 mpfr_t fval;
8139 mpfr_init(fval);
8140 if (this->float_constant_value(fval, &dummy))
8141 {
8142 Float_expression::export_float(exp, fval);
8143 ok = true;
8144 }
8145 mpfr_clear(fval);
8146 }
8147
8148 if (!ok)
8149 {
8150 mpfr_t real;
8151 mpfr_t imag;
8152 mpfr_init(real);
8153 mpfr_init(imag);
8154 if (this->complex_constant_value(real, imag, &dummy))
8155 {
8156 Complex_expression::export_complex(exp, real, imag);
8157 ok = true;
8158 }
8159 mpfr_clear(real);
8160 mpfr_clear(imag);
8161 }
8162
8163 if (!ok)
8164 {
8165 error_at(this->location(), "value is not constant");
8166 return;
8167 }
8168
8169 // A trailing space lets us reliably identify the end of the number.
8170 exp->write_c_string(" ");
8171 }
8172
8173 // Class Call_expression.
8174
8175 // Traversal.
8176
8177 int
8178 Call_expression::do_traverse(Traverse* traverse)
8179 {
8180 if (Expression::traverse(&this->fn_, traverse) == TRAVERSE_EXIT)
8181 return TRAVERSE_EXIT;
8182 if (this->args_ != NULL)
8183 {
8184 if (this->args_->traverse(traverse) == TRAVERSE_EXIT)
8185 return TRAVERSE_EXIT;
8186 }
8187 return TRAVERSE_CONTINUE;
8188 }
8189
8190 // Lower a call statement.
8191
8192 Expression*
8193 Call_expression::do_lower(Gogo* gogo, Named_object* function, int)
8194 {
8195 // A type case can look like a function call.
8196 if (this->fn_->is_type_expression()
8197 && this->args_ != NULL
8198 && this->args_->size() == 1)
8199 return Expression::make_cast(this->fn_->type(), this->args_->front(),
8200 this->location());
8201
8202 // Recognize a call to a builtin function.
8203 Func_expression* fne = this->fn_->func_expression();
8204 if (fne != NULL
8205 && fne->named_object()->is_function_declaration()
8206 && fne->named_object()->func_declaration_value()->type()->is_builtin())
8207 return new Builtin_call_expression(gogo, this->fn_, this->args_,
8208 this->is_varargs_, this->location());
8209
8210 // Handle an argument which is a call to a function which returns
8211 // multiple results.
8212 if (this->args_ != NULL
8213 && this->args_->size() == 1
8214 && this->args_->front()->call_expression() != NULL
8215 && this->fn_->type()->function_type() != NULL)
8216 {
8217 Function_type* fntype = this->fn_->type()->function_type();
8218 size_t rc = this->args_->front()->call_expression()->result_count();
8219 if (rc > 1
8220 && fntype->parameters() != NULL
8221 && (fntype->parameters()->size() == rc
8222 || (fntype->is_varargs()
8223 && fntype->parameters()->size() - 1 <= rc)))
8224 {
8225 Call_expression* call = this->args_->front()->call_expression();
8226 Expression_list* args = new Expression_list;
8227 for (size_t i = 0; i < rc; ++i)
8228 args->push_back(Expression::make_call_result(call, i));
8229 // We can't return a new call expression here, because this
8230 // one may be referenced by Call_result expressions. FIXME.
8231 delete this->args_;
8232 this->args_ = args;
8233 }
8234 }
8235
8236 // Handle a call to a varargs function by packaging up the extra
8237 // parameters.
8238 if (this->fn_->type()->function_type() != NULL
8239 && this->fn_->type()->function_type()->is_varargs())
8240 {
8241 Function_type* fntype = this->fn_->type()->function_type();
8242 const Typed_identifier_list* parameters = fntype->parameters();
8243 gcc_assert(parameters != NULL && !parameters->empty());
8244 Type* varargs_type = parameters->back().type();
8245 return this->lower_varargs(gogo, function, varargs_type,
8246 parameters->size());
8247 }
8248
8249 return this;
8250 }
8251
8252 // Lower a call to a varargs function. FUNCTION is the function in
8253 // which the call occurs--it's not the function we are calling.
8254 // VARARGS_TYPE is the type of the varargs parameter, a slice type.
8255 // PARAM_COUNT is the number of parameters of the function we are
8256 // calling; the last of these parameters will be the varargs
8257 // parameter.
8258
8259 Expression*
8260 Call_expression::lower_varargs(Gogo* gogo, Named_object* function,
8261 Type* varargs_type, size_t param_count)
8262 {
8263 if (this->varargs_are_lowered_)
8264 return this;
8265
8266 source_location loc = this->location();
8267
8268 gcc_assert(param_count > 0);
8269 gcc_assert(varargs_type->is_open_array_type());
8270
8271 size_t arg_count = this->args_ == NULL ? 0 : this->args_->size();
8272 if (arg_count < param_count - 1)
8273 {
8274 // Not enough arguments; will be caught in check_types.
8275 return this;
8276 }
8277
8278 Expression_list* old_args = this->args_;
8279 Expression_list* new_args = new Expression_list();
8280 bool push_empty_arg = false;
8281 if (old_args == NULL || old_args->empty())
8282 {
8283 gcc_assert(param_count == 1);
8284 push_empty_arg = true;
8285 }
8286 else
8287 {
8288 Expression_list::const_iterator pa;
8289 int i = 1;
8290 for (pa = old_args->begin(); pa != old_args->end(); ++pa, ++i)
8291 {
8292 if (static_cast<size_t>(i) == param_count)
8293 break;
8294 new_args->push_back(*pa);
8295 }
8296
8297 // We have reached the varargs parameter.
8298
8299 bool issued_error = false;
8300 if (pa == old_args->end())
8301 push_empty_arg = true;
8302 else if (pa + 1 == old_args->end() && this->is_varargs_)
8303 new_args->push_back(*pa);
8304 else if (this->is_varargs_)
8305 {
8306 this->report_error(_("too many arguments"));
8307 return this;
8308 }
8309 else if (pa + 1 == old_args->end()
8310 && this->is_compatible_varargs_argument(function, *pa,
8311 varargs_type,
8312 &issued_error))
8313 new_args->push_back(*pa);
8314 else
8315 {
8316 Type* element_type = varargs_type->array_type()->element_type();
8317 Expression_list* vals = new Expression_list;
8318 for (; pa != old_args->end(); ++pa, ++i)
8319 {
8320 // Check types here so that we get a better message.
8321 Type* patype = (*pa)->type();
8322 source_location paloc = (*pa)->location();
8323 if (!this->check_argument_type(i, element_type, patype,
8324 paloc, issued_error))
8325 continue;
8326 vals->push_back(*pa);
8327 }
8328 Expression* val =
8329 Expression::make_slice_composite_literal(varargs_type, vals, loc);
8330 new_args->push_back(val);
8331 }
8332 }
8333
8334 if (push_empty_arg)
8335 new_args->push_back(Expression::make_nil(loc));
8336
8337 // We can't return a new call expression here, because this one may
8338 // be referenced by Call_result expressions. FIXME.
8339 if (old_args != NULL)
8340 delete old_args;
8341 this->args_ = new_args;
8342 this->varargs_are_lowered_ = true;
8343
8344 // Lower all the new subexpressions.
8345 Expression* ret = this;
8346 gogo->lower_expression(function, &ret);
8347 gcc_assert(ret == this);
8348 return ret;
8349 }
8350
8351 // Return true if ARG is a varargs argment which should be passed to
8352 // the varargs parameter of type PARAM_TYPE without wrapping. ARG
8353 // will be the last argument passed in the call, and PARAM_TYPE will
8354 // be the type of the last parameter of the varargs function being
8355 // called.
8356
8357 bool
8358 Call_expression::is_compatible_varargs_argument(Named_object* function,
8359 Expression* arg,
8360 Type* param_type,
8361 bool* issued_error)
8362 {
8363 *issued_error = false;
8364
8365 Type* var_type = NULL;
8366
8367 // The simple case is passing the varargs parameter of the caller.
8368 Var_expression* ve = arg->var_expression();
8369 if (ve != NULL && ve->named_object()->is_variable())
8370 {
8371 Variable* var = ve->named_object()->var_value();
8372 if (var->is_varargs_parameter())
8373 var_type = var->type();
8374 }
8375
8376 // The complex case is passing the varargs parameter of some
8377 // enclosing function. This will look like passing down *c.f where
8378 // c is the closure variable and f is a field in the closure.
8379 if (function != NULL
8380 && function->func_value()->needs_closure()
8381 && arg->classification() == EXPRESSION_UNARY)
8382 {
8383 Unary_expression* ue = static_cast<Unary_expression*>(arg);
8384 if (ue->op() == OPERATOR_MULT)
8385 {
8386 Field_reference_expression* fre =
8387 ue->operand()->deref()->field_reference_expression();
8388 if (fre != NULL)
8389 {
8390 Var_expression* ve = fre->expr()->deref()->var_expression();
8391 if (ve != NULL)
8392 {
8393 Named_object* no = ve->named_object();
8394 Function* f = function->func_value();
8395 if (no == f->closure_var())
8396 {
8397 // At this point we know that this indeed a
8398 // reference to some enclosing variable. Now we
8399 // need to figure out whether that variable is a
8400 // varargs parameter.
8401 Named_object* enclosing =
8402 f->enclosing_var(fre->field_index());
8403 Variable* var = enclosing->var_value();
8404 if (var->is_varargs_parameter())
8405 var_type = var->type();
8406 }
8407 }
8408 }
8409 }
8410 }
8411
8412 if (var_type == NULL)
8413 return false;
8414
8415 // We only match if the parameter is the same, with an identical
8416 // type.
8417 Array_type* var_at = var_type->array_type();
8418 gcc_assert(var_at != NULL);
8419 Array_type* param_at = param_type->array_type();
8420 if (param_at != NULL
8421 && Type::are_identical(var_at->element_type(),
8422 param_at->element_type(), true, NULL))
8423 return true;
8424 error_at(arg->location(), "... mismatch: passing ...T as ...");
8425 *issued_error = true;
8426 return false;
8427 }
8428
8429 // Get the function type. Returns NULL if we don't know the type. If
8430 // this returns NULL, and if_ERROR is true, issues an error.
8431
8432 Function_type*
8433 Call_expression::get_function_type() const
8434 {
8435 return this->fn_->type()->function_type();
8436 }
8437
8438 // Return the number of values which this call will return.
8439
8440 size_t
8441 Call_expression::result_count() const
8442 {
8443 const Function_type* fntype = this->get_function_type();
8444 if (fntype == NULL)
8445 return 0;
8446 if (fntype->results() == NULL)
8447 return 0;
8448 return fntype->results()->size();
8449 }
8450
8451 // Return whether this is a call to the predeclared function recover.
8452
8453 bool
8454 Call_expression::is_recover_call() const
8455 {
8456 return this->do_is_recover_call();
8457 }
8458
8459 // Set the argument to the recover function.
8460
8461 void
8462 Call_expression::set_recover_arg(Expression* arg)
8463 {
8464 this->do_set_recover_arg(arg);
8465 }
8466
8467 // Virtual functions also implemented by Builtin_call_expression.
8468
8469 bool
8470 Call_expression::do_is_recover_call() const
8471 {
8472 return false;
8473 }
8474
8475 void
8476 Call_expression::do_set_recover_arg(Expression*)
8477 {
8478 gcc_unreachable();
8479 }
8480
8481 // Get the type.
8482
8483 Type*
8484 Call_expression::do_type()
8485 {
8486 if (this->type_ != NULL)
8487 return this->type_;
8488
8489 Type* ret;
8490 Function_type* fntype = this->get_function_type();
8491 if (fntype == NULL)
8492 return Type::make_error_type();
8493
8494 const Typed_identifier_list* results = fntype->results();
8495 if (results == NULL)
8496 ret = Type::make_void_type();
8497 else if (results->size() == 1)
8498 ret = results->begin()->type();
8499 else
8500 ret = Type::make_call_multiple_result_type(this);
8501
8502 this->type_ = ret;
8503
8504 return this->type_;
8505 }
8506
8507 // Determine types for a call expression. We can use the function
8508 // parameter types to set the types of the arguments.
8509
8510 void
8511 Call_expression::do_determine_type(const Type_context*)
8512 {
8513 this->fn_->determine_type_no_context();
8514 Function_type* fntype = this->get_function_type();
8515 const Typed_identifier_list* parameters = NULL;
8516 if (fntype != NULL)
8517 parameters = fntype->parameters();
8518 if (this->args_ != NULL)
8519 {
8520 Typed_identifier_list::const_iterator pt;
8521 if (parameters != NULL)
8522 pt = parameters->begin();
8523 for (Expression_list::const_iterator pa = this->args_->begin();
8524 pa != this->args_->end();
8525 ++pa)
8526 {
8527 if (parameters != NULL && pt != parameters->end())
8528 {
8529 Type_context subcontext(pt->type(), false);
8530 (*pa)->determine_type(&subcontext);
8531 ++pt;
8532 }
8533 else
8534 (*pa)->determine_type_no_context();
8535 }
8536 }
8537 }
8538
8539 // Check types for parameter I.
8540
8541 bool
8542 Call_expression::check_argument_type(int i, const Type* parameter_type,
8543 const Type* argument_type,
8544 source_location argument_location,
8545 bool issued_error)
8546 {
8547 std::string reason;
8548 if (!Type::are_assignable(parameter_type, argument_type, &reason))
8549 {
8550 if (!issued_error)
8551 {
8552 if (reason.empty())
8553 error_at(argument_location, "argument %d has incompatible type", i);
8554 else
8555 error_at(argument_location,
8556 "argument %d has incompatible type (%s)",
8557 i, reason.c_str());
8558 }
8559 this->set_is_error();
8560 return false;
8561 }
8562 return true;
8563 }
8564
8565 // Check types.
8566
8567 void
8568 Call_expression::do_check_types(Gogo*)
8569 {
8570 Function_type* fntype = this->get_function_type();
8571 if (fntype == NULL)
8572 {
8573 if (!this->fn_->type()->is_error_type())
8574 this->report_error(_("expected function"));
8575 return;
8576 }
8577
8578 if (fntype->is_method())
8579 {
8580 // We don't support pointers to methods, so the function has to
8581 // be a bound method expression.
8582 Bound_method_expression* bme = this->fn_->bound_method_expression();
8583 if (bme == NULL)
8584 {
8585 this->report_error(_("method call without object"));
8586 return;
8587 }
8588 Type* first_arg_type = bme->first_argument()->type();
8589 if (first_arg_type->points_to() == NULL)
8590 {
8591 // When passing a value, we need to check that we are
8592 // permitted to copy it.
8593 std::string reason;
8594 if (!Type::are_assignable(fntype->receiver()->type(),
8595 first_arg_type, &reason))
8596 {
8597 if (reason.empty())
8598 this->report_error(_("incompatible type for receiver"));
8599 else
8600 {
8601 error_at(this->location(),
8602 "incompatible type for receiver (%s)",
8603 reason.c_str());
8604 this->set_is_error();
8605 }
8606 }
8607 }
8608 }
8609
8610 // Note that varargs was handled by the lower_varargs() method, so
8611 // we don't have to worry about it here.
8612
8613 const Typed_identifier_list* parameters = fntype->parameters();
8614 if (this->args_ == NULL)
8615 {
8616 if (parameters != NULL && !parameters->empty())
8617 this->report_error(_("not enough arguments"));
8618 }
8619 else if (parameters == NULL)
8620 this->report_error(_("too many arguments"));
8621 else
8622 {
8623 int i = 0;
8624 Typed_identifier_list::const_iterator pt = parameters->begin();
8625 for (Expression_list::const_iterator pa = this->args_->begin();
8626 pa != this->args_->end();
8627 ++pa, ++pt, ++i)
8628 {
8629 if (pt == parameters->end())
8630 {
8631 this->report_error(_("too many arguments"));
8632 return;
8633 }
8634 this->check_argument_type(i + 1, pt->type(), (*pa)->type(),
8635 (*pa)->location(), false);
8636 }
8637 if (pt != parameters->end())
8638 this->report_error(_("not enough arguments"));
8639 }
8640 }
8641
8642 // Return whether we have to use a temporary variable to ensure that
8643 // we evaluate this call expression in order. If the call returns no
8644 // results then it will inevitably be executed last. If the call
8645 // returns more than one result then it will be used with Call_result
8646 // expressions. So we only have to use a temporary variable if the
8647 // call returns exactly one result.
8648
8649 bool
8650 Call_expression::do_must_eval_in_order() const
8651 {
8652 return this->result_count() == 1;
8653 }
8654
8655 // Get the function and the first argument to use when calling a bound
8656 // method.
8657
8658 tree
8659 Call_expression::bound_method_function(Translate_context* context,
8660 Bound_method_expression* bound_method,
8661 tree* first_arg_ptr)
8662 {
8663 Expression* first_argument = bound_method->first_argument();
8664 tree first_arg = first_argument->get_tree(context);
8665 if (first_arg == error_mark_node)
8666 return error_mark_node;
8667
8668 // We always pass a pointer to the first argument when calling a
8669 // method.
8670 if (first_argument->type()->points_to() == NULL)
8671 {
8672 tree pointer_to_arg_type = build_pointer_type(TREE_TYPE(first_arg));
8673 if (TREE_ADDRESSABLE(TREE_TYPE(first_arg))
8674 || DECL_P(first_arg)
8675 || TREE_CODE(first_arg) == INDIRECT_REF
8676 || TREE_CODE(first_arg) == COMPONENT_REF)
8677 {
8678 first_arg = build_fold_addr_expr(first_arg);
8679 if (DECL_P(first_arg))
8680 TREE_ADDRESSABLE(first_arg) = 1;
8681 }
8682 else
8683 {
8684 tree tmp = create_tmp_var(TREE_TYPE(first_arg),
8685 get_name(first_arg));
8686 DECL_IGNORED_P(tmp) = 0;
8687 DECL_INITIAL(tmp) = first_arg;
8688 first_arg = build2(COMPOUND_EXPR, pointer_to_arg_type,
8689 build1(DECL_EXPR, void_type_node, tmp),
8690 build_fold_addr_expr(tmp));
8691 TREE_ADDRESSABLE(tmp) = 1;
8692 }
8693 if (first_arg == error_mark_node)
8694 return error_mark_node;
8695 }
8696
8697 Type* fatype = bound_method->first_argument_type();
8698 if (fatype != NULL)
8699 {
8700 if (fatype->points_to() == NULL)
8701 fatype = Type::make_pointer_type(fatype);
8702 first_arg = fold_convert(fatype->get_tree(context->gogo()), first_arg);
8703 if (first_arg == error_mark_node
8704 || TREE_TYPE(first_arg) == error_mark_node)
8705 return error_mark_node;
8706 }
8707
8708 *first_arg_ptr = first_arg;
8709
8710 return bound_method->method()->get_tree(context);
8711 }
8712
8713 // Get the function and the first argument to use when calling an
8714 // interface method.
8715
8716 tree
8717 Call_expression::interface_method_function(
8718 Translate_context* context,
8719 Interface_field_reference_expression* interface_method,
8720 tree* first_arg_ptr)
8721 {
8722 tree expr = interface_method->expr()->get_tree(context);
8723 if (expr == error_mark_node)
8724 return error_mark_node;
8725 expr = save_expr(expr);
8726 tree first_arg = interface_method->get_underlying_object_tree(context, expr);
8727 if (first_arg == error_mark_node)
8728 return error_mark_node;
8729 *first_arg_ptr = first_arg;
8730 return interface_method->get_function_tree(context, expr);
8731 }
8732
8733 // Build the call expression.
8734
8735 tree
8736 Call_expression::do_get_tree(Translate_context* context)
8737 {
8738 if (this->tree_ != NULL_TREE)
8739 return this->tree_;
8740
8741 Function_type* fntype = this->get_function_type();
8742 if (fntype == NULL)
8743 return error_mark_node;
8744
8745 if (this->fn_->is_error_expression())
8746 return error_mark_node;
8747
8748 Gogo* gogo = context->gogo();
8749 source_location location = this->location();
8750
8751 Func_expression* func = this->fn_->func_expression();
8752 Bound_method_expression* bound_method = this->fn_->bound_method_expression();
8753 Interface_field_reference_expression* interface_method =
8754 this->fn_->interface_field_reference_expression();
8755 const bool has_closure = func != NULL && func->closure() != NULL;
8756 const bool is_method = bound_method != NULL || interface_method != NULL;
8757 gcc_assert(!fntype->is_method() || is_method);
8758
8759 int nargs;
8760 tree* args;
8761 if (this->args_ == NULL || this->args_->empty())
8762 {
8763 nargs = is_method ? 1 : 0;
8764 args = nargs == 0 ? NULL : new tree[nargs];
8765 }
8766 else
8767 {
8768 const Typed_identifier_list* params = fntype->parameters();
8769 gcc_assert(params != NULL);
8770
8771 nargs = this->args_->size();
8772 int i = is_method ? 1 : 0;
8773 nargs += i;
8774 args = new tree[nargs];
8775
8776 Typed_identifier_list::const_iterator pp = params->begin();
8777 Expression_list::const_iterator pe;
8778 for (pe = this->args_->begin();
8779 pe != this->args_->end();
8780 ++pe, ++pp, ++i)
8781 {
8782 gcc_assert(pp != params->end());
8783 tree arg_val = (*pe)->get_tree(context);
8784 args[i] = Expression::convert_for_assignment(context,
8785 pp->type(),
8786 (*pe)->type(),
8787 arg_val,
8788 location);
8789 if (args[i] == error_mark_node)
8790 {
8791 delete[] args;
8792 return error_mark_node;
8793 }
8794 }
8795 gcc_assert(pp == params->end());
8796 gcc_assert(i == nargs);
8797 }
8798
8799 tree rettype = TREE_TYPE(TREE_TYPE(fntype->get_tree(gogo)));
8800 if (rettype == error_mark_node)
8801 {
8802 delete[] args;
8803 return error_mark_node;
8804 }
8805
8806 tree fn;
8807 if (has_closure)
8808 fn = func->get_tree_without_closure(gogo);
8809 else if (!is_method)
8810 fn = this->fn_->get_tree(context);
8811 else if (bound_method != NULL)
8812 fn = this->bound_method_function(context, bound_method, &args[0]);
8813 else if (interface_method != NULL)
8814 fn = this->interface_method_function(context, interface_method, &args[0]);
8815 else
8816 gcc_unreachable();
8817
8818 if (fn == error_mark_node || TREE_TYPE(fn) == error_mark_node)
8819 {
8820 delete[] args;
8821 return error_mark_node;
8822 }
8823
8824 // This is to support builtin math functions when using 80387 math.
8825 tree fndecl = fn;
8826 if (TREE_CODE(fndecl) == ADDR_EXPR)
8827 fndecl = TREE_OPERAND(fndecl, 0);
8828 tree excess_type = NULL_TREE;
8829 if (DECL_P(fndecl)
8830 && DECL_IS_BUILTIN(fndecl)
8831 && DECL_BUILT_IN_CLASS(fndecl) == BUILT_IN_NORMAL
8832 && nargs > 0
8833 && ((SCALAR_FLOAT_TYPE_P(rettype)
8834 && SCALAR_FLOAT_TYPE_P(TREE_TYPE(args[0])))
8835 || (COMPLEX_FLOAT_TYPE_P(rettype)
8836 && COMPLEX_FLOAT_TYPE_P(TREE_TYPE(args[0])))))
8837 {
8838 excess_type = excess_precision_type(TREE_TYPE(args[0]));
8839 if (excess_type != NULL_TREE)
8840 {
8841 tree excess_fndecl = mathfn_built_in(excess_type,
8842 DECL_FUNCTION_CODE(fndecl));
8843 if (excess_fndecl == NULL_TREE)
8844 excess_type = NULL_TREE;
8845 else
8846 {
8847 fn = build_fold_addr_expr_loc(location, excess_fndecl);
8848 for (int i = 0; i < nargs; ++i)
8849 args[i] = ::convert(excess_type, args[i]);
8850 }
8851 }
8852 }
8853
8854 tree ret = build_call_array(excess_type != NULL_TREE ? excess_type : rettype,
8855 fn, nargs, args);
8856 delete[] args;
8857
8858 SET_EXPR_LOCATION(ret, location);
8859
8860 if (has_closure)
8861 {
8862 tree closure_tree = func->closure()->get_tree(context);
8863 if (closure_tree != error_mark_node)
8864 CALL_EXPR_STATIC_CHAIN(ret) = closure_tree;
8865 }
8866
8867 // If this is a recursive function type which returns itself, as in
8868 // type F func() F
8869 // we have used ptr_type_node for the return type. Add a cast here
8870 // to the correct type.
8871 if (TREE_TYPE(ret) == ptr_type_node)
8872 {
8873 tree t = this->type()->get_tree(gogo);
8874 ret = fold_convert_loc(location, t, ret);
8875 }
8876
8877 if (excess_type != NULL_TREE)
8878 {
8879 // Calling convert here can undo our excess precision change.
8880 // That may or may not be a bug in convert_to_real.
8881 ret = build1(NOP_EXPR, rettype, ret);
8882 }
8883
8884 // If there is more than one result, we will refer to the call
8885 // multiple times.
8886 if (fntype->results() != NULL && fntype->results()->size() > 1)
8887 ret = save_expr(ret);
8888
8889 this->tree_ = ret;
8890
8891 return ret;
8892 }
8893
8894 // Make a call expression.
8895
8896 Call_expression*
8897 Expression::make_call(Expression* fn, Expression_list* args, bool is_varargs,
8898 source_location location)
8899 {
8900 return new Call_expression(fn, args, is_varargs, location);
8901 }
8902
8903 // A single result from a call which returns multiple results.
8904
8905 class Call_result_expression : public Expression
8906 {
8907 public:
8908 Call_result_expression(Call_expression* call, unsigned int index)
8909 : Expression(EXPRESSION_CALL_RESULT, call->location()),
8910 call_(call), index_(index)
8911 { }
8912
8913 protected:
8914 int
8915 do_traverse(Traverse*);
8916
8917 Type*
8918 do_type();
8919
8920 void
8921 do_determine_type(const Type_context*);
8922
8923 void
8924 do_check_types(Gogo*);
8925
8926 Expression*
8927 do_copy()
8928 {
8929 return new Call_result_expression(this->call_->call_expression(),
8930 this->index_);
8931 }
8932
8933 bool
8934 do_must_eval_in_order() const
8935 { return true; }
8936
8937 tree
8938 do_get_tree(Translate_context*);
8939
8940 private:
8941 // The underlying call expression.
8942 Expression* call_;
8943 // Which result we want.
8944 unsigned int index_;
8945 };
8946
8947 // Traverse a call result.
8948
8949 int
8950 Call_result_expression::do_traverse(Traverse* traverse)
8951 {
8952 if (traverse->remember_expression(this->call_))
8953 {
8954 // We have already traversed the call expression.
8955 return TRAVERSE_CONTINUE;
8956 }
8957 return Expression::traverse(&this->call_, traverse);
8958 }
8959
8960 // Get the type.
8961
8962 Type*
8963 Call_result_expression::do_type()
8964 {
8965 if (this->classification() == EXPRESSION_ERROR)
8966 return Type::make_error_type();
8967
8968 // THIS->CALL_ can be replaced with a temporary reference due to
8969 // Call_expression::do_must_eval_in_order when there is an error.
8970 Call_expression* ce = this->call_->call_expression();
8971 if (ce == NULL)
8972 {
8973 this->set_is_error();
8974 return Type::make_error_type();
8975 }
8976 Function_type* fntype = ce->get_function_type();
8977 if (fntype == NULL)
8978 {
8979 this->set_is_error();
8980 return Type::make_error_type();
8981 }
8982 const Typed_identifier_list* results = fntype->results();
8983 if (results == NULL)
8984 {
8985 this->report_error(_("number of results does not match "
8986 "number of values"));
8987 return Type::make_error_type();
8988 }
8989 Typed_identifier_list::const_iterator pr = results->begin();
8990 for (unsigned int i = 0; i < this->index_; ++i)
8991 {
8992 if (pr == results->end())
8993 break;
8994 ++pr;
8995 }
8996 if (pr == results->end())
8997 {
8998 this->report_error(_("number of results does not match "
8999 "number of values"));
9000 return Type::make_error_type();
9001 }
9002 return pr->type();
9003 }
9004
9005 // Check the type. Just make sure that we trigger the warning in
9006 // do_type.
9007
9008 void
9009 Call_result_expression::do_check_types(Gogo*)
9010 {
9011 this->type();
9012 }
9013
9014 // Determine the type. We have nothing to do here, but the 0 result
9015 // needs to pass down to the caller.
9016
9017 void
9018 Call_result_expression::do_determine_type(const Type_context*)
9019 {
9020 if (this->index_ == 0)
9021 this->call_->determine_type_no_context();
9022 }
9023
9024 // Return the tree.
9025
9026 tree
9027 Call_result_expression::do_get_tree(Translate_context* context)
9028 {
9029 tree call_tree = this->call_->get_tree(context);
9030 if (call_tree == error_mark_node)
9031 return error_mark_node;
9032 if (TREE_CODE(TREE_TYPE(call_tree)) != RECORD_TYPE)
9033 {
9034 gcc_assert(saw_errors());
9035 return error_mark_node;
9036 }
9037 tree field = TYPE_FIELDS(TREE_TYPE(call_tree));
9038 for (unsigned int i = 0; i < this->index_; ++i)
9039 {
9040 gcc_assert(field != NULL_TREE);
9041 field = DECL_CHAIN(field);
9042 }
9043 gcc_assert(field != NULL_TREE);
9044 return build3(COMPONENT_REF, TREE_TYPE(field), call_tree, field, NULL_TREE);
9045 }
9046
9047 // Make a reference to a single result of a call which returns
9048 // multiple results.
9049
9050 Expression*
9051 Expression::make_call_result(Call_expression* call, unsigned int index)
9052 {
9053 return new Call_result_expression(call, index);
9054 }
9055
9056 // Class Index_expression.
9057
9058 // Traversal.
9059
9060 int
9061 Index_expression::do_traverse(Traverse* traverse)
9062 {
9063 if (Expression::traverse(&this->left_, traverse) == TRAVERSE_EXIT
9064 || Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT
9065 || (this->end_ != NULL
9066 && Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT))
9067 return TRAVERSE_EXIT;
9068 return TRAVERSE_CONTINUE;
9069 }
9070
9071 // Lower an index expression. This converts the generic index
9072 // expression into an array index, a string index, or a map index.
9073
9074 Expression*
9075 Index_expression::do_lower(Gogo*, Named_object*, int)
9076 {
9077 source_location location = this->location();
9078 Expression* left = this->left_;
9079 Expression* start = this->start_;
9080 Expression* end = this->end_;
9081
9082 Type* type = left->type();
9083 if (type->is_error_type())
9084 return Expression::make_error(location);
9085 else if (type->array_type() != NULL)
9086 return Expression::make_array_index(left, start, end, location);
9087 else if (type->points_to() != NULL
9088 && type->points_to()->array_type() != NULL
9089 && !type->points_to()->is_open_array_type())
9090 {
9091 Expression* deref = Expression::make_unary(OPERATOR_MULT, left,
9092 location);
9093 return Expression::make_array_index(deref, start, end, location);
9094 }
9095 else if (type->is_string_type())
9096 return Expression::make_string_index(left, start, end, location);
9097 else if (type->map_type() != NULL)
9098 {
9099 if (end != NULL)
9100 {
9101 error_at(location, "invalid slice of map");
9102 return Expression::make_error(location);
9103 }
9104 Map_index_expression* ret= Expression::make_map_index(left, start,
9105 location);
9106 if (this->is_lvalue_)
9107 ret->set_is_lvalue();
9108 return ret;
9109 }
9110 else
9111 {
9112 error_at(location,
9113 "attempt to index object which is not array, string, or map");
9114 return Expression::make_error(location);
9115 }
9116 }
9117
9118 // Make an index expression.
9119
9120 Expression*
9121 Expression::make_index(Expression* left, Expression* start, Expression* end,
9122 source_location location)
9123 {
9124 return new Index_expression(left, start, end, location);
9125 }
9126
9127 // An array index. This is used for both indexing and slicing.
9128
9129 class Array_index_expression : public Expression
9130 {
9131 public:
9132 Array_index_expression(Expression* array, Expression* start,
9133 Expression* end, source_location location)
9134 : Expression(EXPRESSION_ARRAY_INDEX, location),
9135 array_(array), start_(start), end_(end), type_(NULL)
9136 { }
9137
9138 protected:
9139 int
9140 do_traverse(Traverse*);
9141
9142 Type*
9143 do_type();
9144
9145 void
9146 do_determine_type(const Type_context*);
9147
9148 void
9149 do_check_types(Gogo*);
9150
9151 Expression*
9152 do_copy()
9153 {
9154 return Expression::make_array_index(this->array_->copy(),
9155 this->start_->copy(),
9156 (this->end_ == NULL
9157 ? NULL
9158 : this->end_->copy()),
9159 this->location());
9160 }
9161
9162 bool
9163 do_is_addressable() const;
9164
9165 void
9166 do_address_taken(bool escapes)
9167 { this->array_->address_taken(escapes); }
9168
9169 tree
9170 do_get_tree(Translate_context*);
9171
9172 private:
9173 // The array we are getting a value from.
9174 Expression* array_;
9175 // The start or only index.
9176 Expression* start_;
9177 // The end index of a slice. This may be NULL for a simple array
9178 // index, or it may be a nil expression for the length of the array.
9179 Expression* end_;
9180 // The type of the expression.
9181 Type* type_;
9182 };
9183
9184 // Array index traversal.
9185
9186 int
9187 Array_index_expression::do_traverse(Traverse* traverse)
9188 {
9189 if (Expression::traverse(&this->array_, traverse) == TRAVERSE_EXIT)
9190 return TRAVERSE_EXIT;
9191 if (Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT)
9192 return TRAVERSE_EXIT;
9193 if (this->end_ != NULL)
9194 {
9195 if (Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT)
9196 return TRAVERSE_EXIT;
9197 }
9198 return TRAVERSE_CONTINUE;
9199 }
9200
9201 // Return the type of an array index.
9202
9203 Type*
9204 Array_index_expression::do_type()
9205 {
9206 if (this->type_ == NULL)
9207 {
9208 Array_type* type = this->array_->type()->array_type();
9209 if (type == NULL)
9210 this->type_ = Type::make_error_type();
9211 else if (this->end_ == NULL)
9212 this->type_ = type->element_type();
9213 else if (type->is_open_array_type())
9214 {
9215 // A slice of a slice has the same type as the original
9216 // slice.
9217 this->type_ = this->array_->type()->deref();
9218 }
9219 else
9220 {
9221 // A slice of an array is a slice.
9222 this->type_ = Type::make_array_type(type->element_type(), NULL);
9223 }
9224 }
9225 return this->type_;
9226 }
9227
9228 // Set the type of an array index.
9229
9230 void
9231 Array_index_expression::do_determine_type(const Type_context*)
9232 {
9233 this->array_->determine_type_no_context();
9234 this->start_->determine_type_no_context();
9235 if (this->end_ != NULL)
9236 this->end_->determine_type_no_context();
9237 }
9238
9239 // Check types of an array index.
9240
9241 void
9242 Array_index_expression::do_check_types(Gogo*)
9243 {
9244 if (this->start_->type()->integer_type() == NULL)
9245 this->report_error(_("index must be integer"));
9246 if (this->end_ != NULL
9247 && this->end_->type()->integer_type() == NULL
9248 && !this->end_->is_nil_expression())
9249 this->report_error(_("slice end must be integer"));
9250
9251 Array_type* array_type = this->array_->type()->array_type();
9252 if (array_type == NULL)
9253 {
9254 gcc_assert(this->array_->type()->is_error_type());
9255 return;
9256 }
9257
9258 unsigned int int_bits =
9259 Type::lookup_integer_type("int")->integer_type()->bits();
9260
9261 Type* dummy;
9262 mpz_t lval;
9263 mpz_init(lval);
9264 bool lval_valid = (array_type->length() != NULL
9265 && array_type->length()->integer_constant_value(true,
9266 lval,
9267 &dummy));
9268 mpz_t ival;
9269 mpz_init(ival);
9270 if (this->start_->integer_constant_value(true, ival, &dummy))
9271 {
9272 if (mpz_sgn(ival) < 0
9273 || mpz_sizeinbase(ival, 2) >= int_bits
9274 || (lval_valid
9275 && (this->end_ == NULL
9276 ? mpz_cmp(ival, lval) >= 0
9277 : mpz_cmp(ival, lval) > 0)))
9278 {
9279 error_at(this->start_->location(), "array index out of bounds");
9280 this->set_is_error();
9281 }
9282 }
9283 if (this->end_ != NULL && !this->end_->is_nil_expression())
9284 {
9285 if (this->end_->integer_constant_value(true, ival, &dummy))
9286 {
9287 if (mpz_sgn(ival) < 0
9288 || mpz_sizeinbase(ival, 2) >= int_bits
9289 || (lval_valid && mpz_cmp(ival, lval) > 0))
9290 {
9291 error_at(this->end_->location(), "array index out of bounds");
9292 this->set_is_error();
9293 }
9294 }
9295 }
9296 mpz_clear(ival);
9297 mpz_clear(lval);
9298
9299 // A slice of an array requires an addressable array. A slice of a
9300 // slice is always possible.
9301 if (this->end_ != NULL
9302 && !array_type->is_open_array_type()
9303 && !this->array_->is_addressable())
9304 this->report_error(_("array is not addressable"));
9305 }
9306
9307 // Return whether this expression is addressable.
9308
9309 bool
9310 Array_index_expression::do_is_addressable() const
9311 {
9312 // A slice expression is not addressable.
9313 if (this->end_ != NULL)
9314 return false;
9315
9316 // An index into a slice is addressable.
9317 if (this->array_->type()->is_open_array_type())
9318 return true;
9319
9320 // An index into an array is addressable if the array is
9321 // addressable.
9322 return this->array_->is_addressable();
9323 }
9324
9325 // Get a tree for an array index.
9326
9327 tree
9328 Array_index_expression::do_get_tree(Translate_context* context)
9329 {
9330 Gogo* gogo = context->gogo();
9331 source_location loc = this->location();
9332
9333 Array_type* array_type = this->array_->type()->array_type();
9334 if (array_type == NULL)
9335 {
9336 gcc_assert(this->array_->type()->is_error_type());
9337 return error_mark_node;
9338 }
9339
9340 tree type_tree = array_type->get_tree(gogo);
9341 if (type_tree == error_mark_node)
9342 return error_mark_node;
9343
9344 tree array_tree = this->array_->get_tree(context);
9345 if (array_tree == error_mark_node)
9346 return error_mark_node;
9347
9348 if (array_type->length() == NULL && !DECL_P(array_tree))
9349 array_tree = save_expr(array_tree);
9350 tree length_tree = array_type->length_tree(gogo, array_tree);
9351 if (length_tree == error_mark_node)
9352 return error_mark_node;
9353 length_tree = save_expr(length_tree);
9354 tree length_type = TREE_TYPE(length_tree);
9355
9356 tree bad_index = boolean_false_node;
9357
9358 tree start_tree = this->start_->get_tree(context);
9359 if (start_tree == error_mark_node)
9360 return error_mark_node;
9361 if (!DECL_P(start_tree))
9362 start_tree = save_expr(start_tree);
9363 if (!INTEGRAL_TYPE_P(TREE_TYPE(start_tree)))
9364 start_tree = convert_to_integer(length_type, start_tree);
9365
9366 bad_index = Expression::check_bounds(start_tree, length_type, bad_index,
9367 loc);
9368
9369 start_tree = fold_convert_loc(loc, length_type, start_tree);
9370 bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node, bad_index,
9371 fold_build2_loc(loc,
9372 (this->end_ == NULL
9373 ? GE_EXPR
9374 : GT_EXPR),
9375 boolean_type_node, start_tree,
9376 length_tree));
9377
9378 int code = (array_type->length() != NULL
9379 ? (this->end_ == NULL
9380 ? RUNTIME_ERROR_ARRAY_INDEX_OUT_OF_BOUNDS
9381 : RUNTIME_ERROR_ARRAY_SLICE_OUT_OF_BOUNDS)
9382 : (this->end_ == NULL
9383 ? RUNTIME_ERROR_SLICE_INDEX_OUT_OF_BOUNDS
9384 : RUNTIME_ERROR_SLICE_SLICE_OUT_OF_BOUNDS));
9385 tree crash = Gogo::runtime_error(code, loc);
9386
9387 if (this->end_ == NULL)
9388 {
9389 // Simple array indexing. This has to return an l-value, so
9390 // wrap the index check into START_TREE.
9391 start_tree = build2(COMPOUND_EXPR, TREE_TYPE(start_tree),
9392 build3(COND_EXPR, void_type_node,
9393 bad_index, crash, NULL_TREE),
9394 start_tree);
9395 start_tree = fold_convert_loc(loc, sizetype, start_tree);
9396
9397 if (array_type->length() != NULL)
9398 {
9399 // Fixed array.
9400 return build4(ARRAY_REF, TREE_TYPE(type_tree), array_tree,
9401 start_tree, NULL_TREE, NULL_TREE);
9402 }
9403 else
9404 {
9405 // Open array.
9406 tree values = array_type->value_pointer_tree(gogo, array_tree);
9407 tree element_type_tree = array_type->element_type()->get_tree(gogo);
9408 if (element_type_tree == error_mark_node)
9409 return error_mark_node;
9410 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
9411 tree offset = fold_build2_loc(loc, MULT_EXPR, sizetype,
9412 start_tree, element_size);
9413 tree ptr = fold_build2_loc(loc, POINTER_PLUS_EXPR,
9414 TREE_TYPE(values), values, offset);
9415 return build_fold_indirect_ref(ptr);
9416 }
9417 }
9418
9419 // Array slice.
9420
9421 tree capacity_tree = array_type->capacity_tree(gogo, array_tree);
9422 if (capacity_tree == error_mark_node)
9423 return error_mark_node;
9424 capacity_tree = fold_convert_loc(loc, length_type, capacity_tree);
9425
9426 tree end_tree;
9427 if (this->end_->is_nil_expression())
9428 end_tree = length_tree;
9429 else
9430 {
9431 end_tree = this->end_->get_tree(context);
9432 if (end_tree == error_mark_node)
9433 return error_mark_node;
9434 if (!DECL_P(end_tree))
9435 end_tree = save_expr(end_tree);
9436 if (!INTEGRAL_TYPE_P(TREE_TYPE(end_tree)))
9437 end_tree = convert_to_integer(length_type, end_tree);
9438
9439 bad_index = Expression::check_bounds(end_tree, length_type, bad_index,
9440 loc);
9441
9442 end_tree = fold_convert_loc(loc, length_type, end_tree);
9443
9444 capacity_tree = save_expr(capacity_tree);
9445 tree bad_end = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
9446 fold_build2_loc(loc, LT_EXPR,
9447 boolean_type_node,
9448 end_tree, start_tree),
9449 fold_build2_loc(loc, GT_EXPR,
9450 boolean_type_node,
9451 end_tree, capacity_tree));
9452 bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
9453 bad_index, bad_end);
9454 }
9455
9456 tree element_type_tree = array_type->element_type()->get_tree(gogo);
9457 if (element_type_tree == error_mark_node)
9458 return error_mark_node;
9459 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
9460
9461 tree offset = fold_build2_loc(loc, MULT_EXPR, sizetype,
9462 fold_convert_loc(loc, sizetype, start_tree),
9463 element_size);
9464
9465 tree value_pointer = array_type->value_pointer_tree(gogo, array_tree);
9466 if (value_pointer == error_mark_node)
9467 return error_mark_node;
9468
9469 value_pointer = fold_build2_loc(loc, POINTER_PLUS_EXPR,
9470 TREE_TYPE(value_pointer),
9471 value_pointer, offset);
9472
9473 tree result_length_tree = fold_build2_loc(loc, MINUS_EXPR, length_type,
9474 end_tree, start_tree);
9475
9476 tree result_capacity_tree = fold_build2_loc(loc, MINUS_EXPR, length_type,
9477 capacity_tree, start_tree);
9478
9479 tree struct_tree = this->type()->get_tree(gogo);
9480 gcc_assert(TREE_CODE(struct_tree) == RECORD_TYPE);
9481
9482 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
9483
9484 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
9485 tree field = TYPE_FIELDS(struct_tree);
9486 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
9487 elt->index = field;
9488 elt->value = value_pointer;
9489
9490 elt = VEC_quick_push(constructor_elt, init, NULL);
9491 field = DECL_CHAIN(field);
9492 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
9493 elt->index = field;
9494 elt->value = fold_convert_loc(loc, TREE_TYPE(field), result_length_tree);
9495
9496 elt = VEC_quick_push(constructor_elt, init, NULL);
9497 field = DECL_CHAIN(field);
9498 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__capacity") == 0);
9499 elt->index = field;
9500 elt->value = fold_convert_loc(loc, TREE_TYPE(field), result_capacity_tree);
9501
9502 tree constructor = build_constructor(struct_tree, init);
9503
9504 if (TREE_CONSTANT(value_pointer)
9505 && TREE_CONSTANT(result_length_tree)
9506 && TREE_CONSTANT(result_capacity_tree))
9507 TREE_CONSTANT(constructor) = 1;
9508
9509 return fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(constructor),
9510 build3(COND_EXPR, void_type_node,
9511 bad_index, crash, NULL_TREE),
9512 constructor);
9513 }
9514
9515 // Make an array index expression. END may be NULL.
9516
9517 Expression*
9518 Expression::make_array_index(Expression* array, Expression* start,
9519 Expression* end, source_location location)
9520 {
9521 // Taking a slice of a composite literal requires moving the literal
9522 // onto the heap.
9523 if (end != NULL && array->is_composite_literal())
9524 {
9525 array = Expression::make_heap_composite(array, location);
9526 array = Expression::make_unary(OPERATOR_MULT, array, location);
9527 }
9528 return new Array_index_expression(array, start, end, location);
9529 }
9530
9531 // A string index. This is used for both indexing and slicing.
9532
9533 class String_index_expression : public Expression
9534 {
9535 public:
9536 String_index_expression(Expression* string, Expression* start,
9537 Expression* end, source_location location)
9538 : Expression(EXPRESSION_STRING_INDEX, location),
9539 string_(string), start_(start), end_(end)
9540 { }
9541
9542 protected:
9543 int
9544 do_traverse(Traverse*);
9545
9546 Type*
9547 do_type();
9548
9549 void
9550 do_determine_type(const Type_context*);
9551
9552 void
9553 do_check_types(Gogo*);
9554
9555 Expression*
9556 do_copy()
9557 {
9558 return Expression::make_string_index(this->string_->copy(),
9559 this->start_->copy(),
9560 (this->end_ == NULL
9561 ? NULL
9562 : this->end_->copy()),
9563 this->location());
9564 }
9565
9566 tree
9567 do_get_tree(Translate_context*);
9568
9569 private:
9570 // The string we are getting a value from.
9571 Expression* string_;
9572 // The start or only index.
9573 Expression* start_;
9574 // The end index of a slice. This may be NULL for a single index,
9575 // or it may be a nil expression for the length of the string.
9576 Expression* end_;
9577 };
9578
9579 // String index traversal.
9580
9581 int
9582 String_index_expression::do_traverse(Traverse* traverse)
9583 {
9584 if (Expression::traverse(&this->string_, traverse) == TRAVERSE_EXIT)
9585 return TRAVERSE_EXIT;
9586 if (Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT)
9587 return TRAVERSE_EXIT;
9588 if (this->end_ != NULL)
9589 {
9590 if (Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT)
9591 return TRAVERSE_EXIT;
9592 }
9593 return TRAVERSE_CONTINUE;
9594 }
9595
9596 // Return the type of a string index.
9597
9598 Type*
9599 String_index_expression::do_type()
9600 {
9601 if (this->end_ == NULL)
9602 return Type::lookup_integer_type("uint8");
9603 else
9604 return this->string_->type();
9605 }
9606
9607 // Determine the type of a string index.
9608
9609 void
9610 String_index_expression::do_determine_type(const Type_context*)
9611 {
9612 this->string_->determine_type_no_context();
9613 Type_context subcontext(NULL, true);
9614 this->start_->determine_type(&subcontext);
9615 if (this->end_ != NULL)
9616 this->end_->determine_type(&subcontext);
9617 }
9618
9619 // Check types of a string index.
9620
9621 void
9622 String_index_expression::do_check_types(Gogo*)
9623 {
9624 if (this->start_->type()->integer_type() == NULL)
9625 this->report_error(_("index must be integer"));
9626 if (this->end_ != NULL
9627 && this->end_->type()->integer_type() == NULL
9628 && !this->end_->is_nil_expression())
9629 this->report_error(_("slice end must be integer"));
9630
9631 std::string sval;
9632 bool sval_valid = this->string_->string_constant_value(&sval);
9633
9634 mpz_t ival;
9635 mpz_init(ival);
9636 Type* dummy;
9637 if (this->start_->integer_constant_value(true, ival, &dummy))
9638 {
9639 if (mpz_sgn(ival) < 0
9640 || (sval_valid && mpz_cmp_ui(ival, sval.length()) >= 0))
9641 {
9642 error_at(this->start_->location(), "string index out of bounds");
9643 this->set_is_error();
9644 }
9645 }
9646 if (this->end_ != NULL && !this->end_->is_nil_expression())
9647 {
9648 if (this->end_->integer_constant_value(true, ival, &dummy))
9649 {
9650 if (mpz_sgn(ival) < 0
9651 || (sval_valid && mpz_cmp_ui(ival, sval.length()) > 0))
9652 {
9653 error_at(this->end_->location(), "string index out of bounds");
9654 this->set_is_error();
9655 }
9656 }
9657 }
9658 mpz_clear(ival);
9659 }
9660
9661 // Get a tree for a string index.
9662
9663 tree
9664 String_index_expression::do_get_tree(Translate_context* context)
9665 {
9666 source_location loc = this->location();
9667
9668 tree string_tree = this->string_->get_tree(context);
9669 if (string_tree == error_mark_node)
9670 return error_mark_node;
9671
9672 if (this->string_->type()->points_to() != NULL)
9673 string_tree = build_fold_indirect_ref(string_tree);
9674 if (!DECL_P(string_tree))
9675 string_tree = save_expr(string_tree);
9676 tree string_type = TREE_TYPE(string_tree);
9677
9678 tree length_tree = String_type::length_tree(context->gogo(), string_tree);
9679 length_tree = save_expr(length_tree);
9680 tree length_type = TREE_TYPE(length_tree);
9681
9682 tree bad_index = boolean_false_node;
9683
9684 tree start_tree = this->start_->get_tree(context);
9685 if (start_tree == error_mark_node)
9686 return error_mark_node;
9687 if (!DECL_P(start_tree))
9688 start_tree = save_expr(start_tree);
9689 if (!INTEGRAL_TYPE_P(TREE_TYPE(start_tree)))
9690 start_tree = convert_to_integer(length_type, start_tree);
9691
9692 bad_index = Expression::check_bounds(start_tree, length_type, bad_index,
9693 loc);
9694
9695 start_tree = fold_convert_loc(loc, length_type, start_tree);
9696
9697 int code = (this->end_ == NULL
9698 ? RUNTIME_ERROR_STRING_INDEX_OUT_OF_BOUNDS
9699 : RUNTIME_ERROR_STRING_SLICE_OUT_OF_BOUNDS);
9700 tree crash = Gogo::runtime_error(code, loc);
9701
9702 if (this->end_ == NULL)
9703 {
9704 bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
9705 bad_index,
9706 fold_build2_loc(loc, GE_EXPR,
9707 boolean_type_node,
9708 start_tree, length_tree));
9709
9710 tree bytes_tree = String_type::bytes_tree(context->gogo(), string_tree);
9711 tree ptr = fold_build2_loc(loc, POINTER_PLUS_EXPR, TREE_TYPE(bytes_tree),
9712 bytes_tree,
9713 fold_convert_loc(loc, sizetype, start_tree));
9714 tree index = build_fold_indirect_ref_loc(loc, ptr);
9715
9716 return build2(COMPOUND_EXPR, TREE_TYPE(index),
9717 build3(COND_EXPR, void_type_node,
9718 bad_index, crash, NULL_TREE),
9719 index);
9720 }
9721 else
9722 {
9723 tree end_tree;
9724 if (this->end_->is_nil_expression())
9725 end_tree = build_int_cst(length_type, -1);
9726 else
9727 {
9728 end_tree = this->end_->get_tree(context);
9729 if (end_tree == error_mark_node)
9730 return error_mark_node;
9731 if (!DECL_P(end_tree))
9732 end_tree = save_expr(end_tree);
9733 if (!INTEGRAL_TYPE_P(TREE_TYPE(end_tree)))
9734 end_tree = convert_to_integer(length_type, end_tree);
9735
9736 bad_index = Expression::check_bounds(end_tree, length_type,
9737 bad_index, loc);
9738
9739 end_tree = fold_convert_loc(loc, length_type, end_tree);
9740 }
9741
9742 static tree strslice_fndecl;
9743 tree ret = Gogo::call_builtin(&strslice_fndecl,
9744 loc,
9745 "__go_string_slice",
9746 3,
9747 string_type,
9748 string_type,
9749 string_tree,
9750 length_type,
9751 start_tree,
9752 length_type,
9753 end_tree);
9754 if (ret == error_mark_node)
9755 return error_mark_node;
9756 // This will panic if the bounds are out of range for the
9757 // string.
9758 TREE_NOTHROW(strslice_fndecl) = 0;
9759
9760 if (bad_index == boolean_false_node)
9761 return ret;
9762 else
9763 return build2(COMPOUND_EXPR, TREE_TYPE(ret),
9764 build3(COND_EXPR, void_type_node,
9765 bad_index, crash, NULL_TREE),
9766 ret);
9767 }
9768 }
9769
9770 // Make a string index expression. END may be NULL.
9771
9772 Expression*
9773 Expression::make_string_index(Expression* string, Expression* start,
9774 Expression* end, source_location location)
9775 {
9776 return new String_index_expression(string, start, end, location);
9777 }
9778
9779 // Class Map_index.
9780
9781 // Get the type of the map.
9782
9783 Map_type*
9784 Map_index_expression::get_map_type() const
9785 {
9786 Map_type* mt = this->map_->type()->deref()->map_type();
9787 if (mt == NULL)
9788 gcc_assert(saw_errors());
9789 return mt;
9790 }
9791
9792 // Map index traversal.
9793
9794 int
9795 Map_index_expression::do_traverse(Traverse* traverse)
9796 {
9797 if (Expression::traverse(&this->map_, traverse) == TRAVERSE_EXIT)
9798 return TRAVERSE_EXIT;
9799 return Expression::traverse(&this->index_, traverse);
9800 }
9801
9802 // Return the type of a map index.
9803
9804 Type*
9805 Map_index_expression::do_type()
9806 {
9807 Map_type* mt = this->get_map_type();
9808 if (mt == NULL)
9809 return Type::make_error_type();
9810 Type* type = mt->val_type();
9811 // If this map index is in a tuple assignment, we actually return a
9812 // pointer to the value type. Tuple_map_assignment_statement is
9813 // responsible for handling this correctly. We need to get the type
9814 // right in case this gets assigned to a temporary variable.
9815 if (this->is_in_tuple_assignment_)
9816 type = Type::make_pointer_type(type);
9817 return type;
9818 }
9819
9820 // Fix the type of a map index.
9821
9822 void
9823 Map_index_expression::do_determine_type(const Type_context*)
9824 {
9825 this->map_->determine_type_no_context();
9826 Map_type* mt = this->get_map_type();
9827 Type* key_type = mt == NULL ? NULL : mt->key_type();
9828 Type_context subcontext(key_type, false);
9829 this->index_->determine_type(&subcontext);
9830 }
9831
9832 // Check types of a map index.
9833
9834 void
9835 Map_index_expression::do_check_types(Gogo*)
9836 {
9837 std::string reason;
9838 Map_type* mt = this->get_map_type();
9839 if (mt == NULL)
9840 return;
9841 if (!Type::are_assignable(mt->key_type(), this->index_->type(), &reason))
9842 {
9843 if (reason.empty())
9844 this->report_error(_("incompatible type for map index"));
9845 else
9846 {
9847 error_at(this->location(), "incompatible type for map index (%s)",
9848 reason.c_str());
9849 this->set_is_error();
9850 }
9851 }
9852 }
9853
9854 // Get a tree for a map index.
9855
9856 tree
9857 Map_index_expression::do_get_tree(Translate_context* context)
9858 {
9859 Map_type* type = this->get_map_type();
9860 if (type == NULL)
9861 return error_mark_node;
9862
9863 tree valptr = this->get_value_pointer(context, this->is_lvalue_);
9864 if (valptr == error_mark_node)
9865 return error_mark_node;
9866 valptr = save_expr(valptr);
9867
9868 tree val_type_tree = TREE_TYPE(TREE_TYPE(valptr));
9869
9870 if (this->is_lvalue_)
9871 return build_fold_indirect_ref(valptr);
9872 else if (this->is_in_tuple_assignment_)
9873 {
9874 // Tuple_map_assignment_statement is responsible for using this
9875 // appropriately.
9876 return valptr;
9877 }
9878 else
9879 {
9880 return fold_build3(COND_EXPR, val_type_tree,
9881 fold_build2(EQ_EXPR, boolean_type_node, valptr,
9882 fold_convert(TREE_TYPE(valptr),
9883 null_pointer_node)),
9884 type->val_type()->get_init_tree(context->gogo(),
9885 false),
9886 build_fold_indirect_ref(valptr));
9887 }
9888 }
9889
9890 // Get a tree for the map index. This returns a tree which evaluates
9891 // to a pointer to a value. The pointer will be NULL if the key is
9892 // not in the map.
9893
9894 tree
9895 Map_index_expression::get_value_pointer(Translate_context* context,
9896 bool insert)
9897 {
9898 Map_type* type = this->get_map_type();
9899 if (type == NULL)
9900 return error_mark_node;
9901
9902 tree map_tree = this->map_->get_tree(context);
9903 tree index_tree = this->index_->get_tree(context);
9904 index_tree = Expression::convert_for_assignment(context, type->key_type(),
9905 this->index_->type(),
9906 index_tree,
9907 this->location());
9908 if (map_tree == error_mark_node || index_tree == error_mark_node)
9909 return error_mark_node;
9910
9911 if (this->map_->type()->points_to() != NULL)
9912 map_tree = build_fold_indirect_ref(map_tree);
9913
9914 // We need to pass in a pointer to the key, so stuff it into a
9915 // variable.
9916 tree tmp = create_tmp_var(TREE_TYPE(index_tree), get_name(index_tree));
9917 DECL_IGNORED_P(tmp) = 0;
9918 DECL_INITIAL(tmp) = index_tree;
9919 tree make_tmp = build1(DECL_EXPR, void_type_node, tmp);
9920 tree tmpref = fold_convert(const_ptr_type_node, build_fold_addr_expr(tmp));
9921 TREE_ADDRESSABLE(tmp) = 1;
9922
9923 static tree map_index_fndecl;
9924 tree call = Gogo::call_builtin(&map_index_fndecl,
9925 this->location(),
9926 "__go_map_index",
9927 3,
9928 const_ptr_type_node,
9929 TREE_TYPE(map_tree),
9930 map_tree,
9931 const_ptr_type_node,
9932 tmpref,
9933 boolean_type_node,
9934 (insert
9935 ? boolean_true_node
9936 : boolean_false_node));
9937 if (call == error_mark_node)
9938 return error_mark_node;
9939 // This can panic on a map of interface type if the interface holds
9940 // an uncomparable or unhashable type.
9941 TREE_NOTHROW(map_index_fndecl) = 0;
9942
9943 tree val_type_tree = type->val_type()->get_tree(context->gogo());
9944 if (val_type_tree == error_mark_node)
9945 return error_mark_node;
9946 tree ptr_val_type_tree = build_pointer_type(val_type_tree);
9947
9948 return build2(COMPOUND_EXPR, ptr_val_type_tree,
9949 make_tmp,
9950 fold_convert(ptr_val_type_tree, call));
9951 }
9952
9953 // Make a map index expression.
9954
9955 Map_index_expression*
9956 Expression::make_map_index(Expression* map, Expression* index,
9957 source_location location)
9958 {
9959 return new Map_index_expression(map, index, location);
9960 }
9961
9962 // Class Field_reference_expression.
9963
9964 // Return the type of a field reference.
9965
9966 Type*
9967 Field_reference_expression::do_type()
9968 {
9969 Type* type = this->expr_->type();
9970 if (type->is_error_type())
9971 return type;
9972 Struct_type* struct_type = type->struct_type();
9973 gcc_assert(struct_type != NULL);
9974 return struct_type->field(this->field_index_)->type();
9975 }
9976
9977 // Check the types for a field reference.
9978
9979 void
9980 Field_reference_expression::do_check_types(Gogo*)
9981 {
9982 Type* type = this->expr_->type();
9983 if (type->is_error_type())
9984 return;
9985 Struct_type* struct_type = type->struct_type();
9986 gcc_assert(struct_type != NULL);
9987 gcc_assert(struct_type->field(this->field_index_) != NULL);
9988 }
9989
9990 // Get a tree for a field reference.
9991
9992 tree
9993 Field_reference_expression::do_get_tree(Translate_context* context)
9994 {
9995 tree struct_tree = this->expr_->get_tree(context);
9996 if (struct_tree == error_mark_node
9997 || TREE_TYPE(struct_tree) == error_mark_node)
9998 return error_mark_node;
9999 gcc_assert(TREE_CODE(TREE_TYPE(struct_tree)) == RECORD_TYPE);
10000 tree field = TYPE_FIELDS(TREE_TYPE(struct_tree));
10001 if (field == NULL_TREE)
10002 {
10003 // This can happen for a type which refers to itself indirectly
10004 // and then turns out to be erroneous.
10005 gcc_assert(saw_errors());
10006 return error_mark_node;
10007 }
10008 for (unsigned int i = this->field_index_; i > 0; --i)
10009 {
10010 field = DECL_CHAIN(field);
10011 gcc_assert(field != NULL_TREE);
10012 }
10013 if (TREE_TYPE(field) == error_mark_node)
10014 return error_mark_node;
10015 return build3(COMPONENT_REF, TREE_TYPE(field), struct_tree, field,
10016 NULL_TREE);
10017 }
10018
10019 // Make a reference to a qualified identifier in an expression.
10020
10021 Field_reference_expression*
10022 Expression::make_field_reference(Expression* expr, unsigned int field_index,
10023 source_location location)
10024 {
10025 return new Field_reference_expression(expr, field_index, location);
10026 }
10027
10028 // Class Interface_field_reference_expression.
10029
10030 // Return a tree for the pointer to the function to call.
10031
10032 tree
10033 Interface_field_reference_expression::get_function_tree(Translate_context*,
10034 tree expr)
10035 {
10036 if (this->expr_->type()->points_to() != NULL)
10037 expr = build_fold_indirect_ref(expr);
10038
10039 tree expr_type = TREE_TYPE(expr);
10040 gcc_assert(TREE_CODE(expr_type) == RECORD_TYPE);
10041
10042 tree field = TYPE_FIELDS(expr_type);
10043 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods") == 0);
10044
10045 tree table = build3(COMPONENT_REF, TREE_TYPE(field), expr, field, NULL_TREE);
10046 gcc_assert(POINTER_TYPE_P(TREE_TYPE(table)));
10047
10048 table = build_fold_indirect_ref(table);
10049 gcc_assert(TREE_CODE(TREE_TYPE(table)) == RECORD_TYPE);
10050
10051 std::string name = Gogo::unpack_hidden_name(this->name_);
10052 for (field = DECL_CHAIN(TYPE_FIELDS(TREE_TYPE(table)));
10053 field != NULL_TREE;
10054 field = DECL_CHAIN(field))
10055 {
10056 if (name == IDENTIFIER_POINTER(DECL_NAME(field)))
10057 break;
10058 }
10059 gcc_assert(field != NULL_TREE);
10060
10061 return build3(COMPONENT_REF, TREE_TYPE(field), table, field, NULL_TREE);
10062 }
10063
10064 // Return a tree for the first argument to pass to the interface
10065 // function.
10066
10067 tree
10068 Interface_field_reference_expression::get_underlying_object_tree(
10069 Translate_context*,
10070 tree expr)
10071 {
10072 if (this->expr_->type()->points_to() != NULL)
10073 expr = build_fold_indirect_ref(expr);
10074
10075 tree expr_type = TREE_TYPE(expr);
10076 gcc_assert(TREE_CODE(expr_type) == RECORD_TYPE);
10077
10078 tree field = DECL_CHAIN(TYPE_FIELDS(expr_type));
10079 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
10080
10081 return build3(COMPONENT_REF, TREE_TYPE(field), expr, field, NULL_TREE);
10082 }
10083
10084 // Traversal.
10085
10086 int
10087 Interface_field_reference_expression::do_traverse(Traverse* traverse)
10088 {
10089 return Expression::traverse(&this->expr_, traverse);
10090 }
10091
10092 // Return the type of an interface field reference.
10093
10094 Type*
10095 Interface_field_reference_expression::do_type()
10096 {
10097 Type* expr_type = this->expr_->type();
10098
10099 Type* points_to = expr_type->points_to();
10100 if (points_to != NULL)
10101 expr_type = points_to;
10102
10103 Interface_type* interface_type = expr_type->interface_type();
10104 if (interface_type == NULL)
10105 return Type::make_error_type();
10106
10107 const Typed_identifier* method = interface_type->find_method(this->name_);
10108 if (method == NULL)
10109 return Type::make_error_type();
10110
10111 return method->type();
10112 }
10113
10114 // Determine types.
10115
10116 void
10117 Interface_field_reference_expression::do_determine_type(const Type_context*)
10118 {
10119 this->expr_->determine_type_no_context();
10120 }
10121
10122 // Check the types for an interface field reference.
10123
10124 void
10125 Interface_field_reference_expression::do_check_types(Gogo*)
10126 {
10127 Type* type = this->expr_->type();
10128
10129 Type* points_to = type->points_to();
10130 if (points_to != NULL)
10131 type = points_to;
10132
10133 Interface_type* interface_type = type->interface_type();
10134 if (interface_type == NULL)
10135 this->report_error(_("expected interface or pointer to interface"));
10136 else
10137 {
10138 const Typed_identifier* method =
10139 interface_type->find_method(this->name_);
10140 if (method == NULL)
10141 {
10142 error_at(this->location(), "method %qs not in interface",
10143 Gogo::message_name(this->name_).c_str());
10144 this->set_is_error();
10145 }
10146 }
10147 }
10148
10149 // Get a tree for a reference to a field in an interface. There is no
10150 // standard tree type representation for this: it's a function
10151 // attached to its first argument, like a Bound_method_expression.
10152 // The only places it may currently be used are in a Call_expression
10153 // or a Go_statement, which will take it apart directly. So this has
10154 // nothing to do at present.
10155
10156 tree
10157 Interface_field_reference_expression::do_get_tree(Translate_context*)
10158 {
10159 gcc_unreachable();
10160 }
10161
10162 // Make a reference to a field in an interface.
10163
10164 Expression*
10165 Expression::make_interface_field_reference(Expression* expr,
10166 const std::string& field,
10167 source_location location)
10168 {
10169 return new Interface_field_reference_expression(expr, field, location);
10170 }
10171
10172 // A general selector. This is a Parser_expression for LEFT.NAME. It
10173 // is lowered after we know the type of the left hand side.
10174
10175 class Selector_expression : public Parser_expression
10176 {
10177 public:
10178 Selector_expression(Expression* left, const std::string& name,
10179 source_location location)
10180 : Parser_expression(EXPRESSION_SELECTOR, location),
10181 left_(left), name_(name)
10182 { }
10183
10184 protected:
10185 int
10186 do_traverse(Traverse* traverse)
10187 { return Expression::traverse(&this->left_, traverse); }
10188
10189 Expression*
10190 do_lower(Gogo*, Named_object*, int);
10191
10192 Expression*
10193 do_copy()
10194 {
10195 return new Selector_expression(this->left_->copy(), this->name_,
10196 this->location());
10197 }
10198
10199 private:
10200 Expression*
10201 lower_method_expression(Gogo*);
10202
10203 // The expression on the left hand side.
10204 Expression* left_;
10205 // The name on the right hand side.
10206 std::string name_;
10207 };
10208
10209 // Lower a selector expression once we know the real type of the left
10210 // hand side.
10211
10212 Expression*
10213 Selector_expression::do_lower(Gogo* gogo, Named_object*, int)
10214 {
10215 Expression* left = this->left_;
10216 if (left->is_type_expression())
10217 return this->lower_method_expression(gogo);
10218 return Type::bind_field_or_method(gogo, left->type(), left, this->name_,
10219 this->location());
10220 }
10221
10222 // Lower a method expression T.M or (*T).M. We turn this into a
10223 // function literal.
10224
10225 Expression*
10226 Selector_expression::lower_method_expression(Gogo* gogo)
10227 {
10228 source_location location = this->location();
10229 Type* type = this->left_->type();
10230 const std::string& name(this->name_);
10231
10232 bool is_pointer;
10233 if (type->points_to() == NULL)
10234 is_pointer = false;
10235 else
10236 {
10237 is_pointer = true;
10238 type = type->points_to();
10239 }
10240 Named_type* nt = type->named_type();
10241 if (nt == NULL)
10242 {
10243 error_at(location,
10244 ("method expression requires named type or "
10245 "pointer to named type"));
10246 return Expression::make_error(location);
10247 }
10248
10249 bool is_ambiguous;
10250 Method* method = nt->method_function(name, &is_ambiguous);
10251 if (method == NULL)
10252 {
10253 if (!is_ambiguous)
10254 error_at(location, "type %<%s%> has no method %<%s%>",
10255 nt->message_name().c_str(),
10256 Gogo::message_name(name).c_str());
10257 else
10258 error_at(location, "method %<%s%> is ambiguous in type %<%s%>",
10259 Gogo::message_name(name).c_str(),
10260 nt->message_name().c_str());
10261 return Expression::make_error(location);
10262 }
10263
10264 if (!is_pointer && !method->is_value_method())
10265 {
10266 error_at(location, "method requires pointer (use %<(*%s).%s)%>",
10267 nt->message_name().c_str(),
10268 Gogo::message_name(name).c_str());
10269 return Expression::make_error(location);
10270 }
10271
10272 // Build a new function type in which the receiver becomes the first
10273 // argument.
10274 Function_type* method_type = method->type();
10275 gcc_assert(method_type->is_method());
10276
10277 const char* const receiver_name = "$this";
10278 Typed_identifier_list* parameters = new Typed_identifier_list();
10279 parameters->push_back(Typed_identifier(receiver_name, this->left_->type(),
10280 location));
10281
10282 const Typed_identifier_list* method_parameters = method_type->parameters();
10283 if (method_parameters != NULL)
10284 {
10285 for (Typed_identifier_list::const_iterator p = method_parameters->begin();
10286 p != method_parameters->end();
10287 ++p)
10288 parameters->push_back(*p);
10289 }
10290
10291 const Typed_identifier_list* method_results = method_type->results();
10292 Typed_identifier_list* results;
10293 if (method_results == NULL)
10294 results = NULL;
10295 else
10296 {
10297 results = new Typed_identifier_list();
10298 for (Typed_identifier_list::const_iterator p = method_results->begin();
10299 p != method_results->end();
10300 ++p)
10301 results->push_back(*p);
10302 }
10303
10304 Function_type* fntype = Type::make_function_type(NULL, parameters, results,
10305 location);
10306 if (method_type->is_varargs())
10307 fntype->set_is_varargs();
10308
10309 // We generate methods which always takes a pointer to the receiver
10310 // as their first argument. If this is for a pointer type, we can
10311 // simply reuse the existing function. We use an internal hack to
10312 // get the right type.
10313
10314 if (is_pointer)
10315 {
10316 Named_object* mno = (method->needs_stub_method()
10317 ? method->stub_object()
10318 : method->named_object());
10319 Expression* f = Expression::make_func_reference(mno, NULL, location);
10320 f = Expression::make_cast(fntype, f, location);
10321 Type_conversion_expression* tce =
10322 static_cast<Type_conversion_expression*>(f);
10323 tce->set_may_convert_function_types();
10324 return f;
10325 }
10326
10327 Named_object* no = gogo->start_function(Gogo::thunk_name(), fntype, false,
10328 location);
10329
10330 Named_object* vno = gogo->lookup(receiver_name, NULL);
10331 gcc_assert(vno != NULL);
10332 Expression* ve = Expression::make_var_reference(vno, location);
10333 Expression* bm = Type::bind_field_or_method(gogo, nt, ve, name, location);
10334
10335 // Even though we found the method above, if it has an error type we
10336 // may see an error here.
10337 if (bm->is_error_expression())
10338 {
10339 gogo->finish_function(location);
10340 return bm;
10341 }
10342
10343 Expression_list* args;
10344 if (method_parameters == NULL)
10345 args = NULL;
10346 else
10347 {
10348 args = new Expression_list();
10349 for (Typed_identifier_list::const_iterator p = method_parameters->begin();
10350 p != method_parameters->end();
10351 ++p)
10352 {
10353 vno = gogo->lookup(p->name(), NULL);
10354 gcc_assert(vno != NULL);
10355 args->push_back(Expression::make_var_reference(vno, location));
10356 }
10357 }
10358
10359 Call_expression* call = Expression::make_call(bm, args,
10360 method_type->is_varargs(),
10361 location);
10362
10363 size_t count = call->result_count();
10364 Statement* s;
10365 if (count == 0)
10366 s = Statement::make_statement(call);
10367 else
10368 {
10369 Expression_list* retvals = new Expression_list();
10370 if (count <= 1)
10371 retvals->push_back(call);
10372 else
10373 {
10374 for (size_t i = 0; i < count; ++i)
10375 retvals->push_back(Expression::make_call_result(call, i));
10376 }
10377 s = Statement::make_return_statement(no->func_value()->type()->results(),
10378 retvals, location);
10379 }
10380 gogo->add_statement(s);
10381
10382 gogo->finish_function(location);
10383
10384 return Expression::make_func_reference(no, NULL, location);
10385 }
10386
10387 // Make a selector expression.
10388
10389 Expression*
10390 Expression::make_selector(Expression* left, const std::string& name,
10391 source_location location)
10392 {
10393 return new Selector_expression(left, name, location);
10394 }
10395
10396 // Implement the builtin function new.
10397
10398 class Allocation_expression : public Expression
10399 {
10400 public:
10401 Allocation_expression(Type* type, source_location location)
10402 : Expression(EXPRESSION_ALLOCATION, location),
10403 type_(type)
10404 { }
10405
10406 protected:
10407 int
10408 do_traverse(Traverse* traverse)
10409 { return Type::traverse(this->type_, traverse); }
10410
10411 Type*
10412 do_type()
10413 { return Type::make_pointer_type(this->type_); }
10414
10415 void
10416 do_determine_type(const Type_context*)
10417 { }
10418
10419 void
10420 do_check_types(Gogo*);
10421
10422 Expression*
10423 do_copy()
10424 { return new Allocation_expression(this->type_, this->location()); }
10425
10426 tree
10427 do_get_tree(Translate_context*);
10428
10429 private:
10430 // The type we are allocating.
10431 Type* type_;
10432 };
10433
10434 // Check the type of an allocation expression.
10435
10436 void
10437 Allocation_expression::do_check_types(Gogo*)
10438 {
10439 if (this->type_->function_type() != NULL)
10440 this->report_error(_("invalid new of function type"));
10441 }
10442
10443 // Return a tree for an allocation expression.
10444
10445 tree
10446 Allocation_expression::do_get_tree(Translate_context* context)
10447 {
10448 tree type_tree = this->type_->get_tree(context->gogo());
10449 if (type_tree == error_mark_node)
10450 return error_mark_node;
10451 tree size_tree = TYPE_SIZE_UNIT(type_tree);
10452 tree space = context->gogo()->allocate_memory(this->type_, size_tree,
10453 this->location());
10454 if (space == error_mark_node)
10455 return error_mark_node;
10456 return fold_convert(build_pointer_type(type_tree), space);
10457 }
10458
10459 // Make an allocation expression.
10460
10461 Expression*
10462 Expression::make_allocation(Type* type, source_location location)
10463 {
10464 return new Allocation_expression(type, location);
10465 }
10466
10467 // Implement the builtin function make.
10468
10469 class Make_expression : public Expression
10470 {
10471 public:
10472 Make_expression(Type* type, Expression_list* args, source_location location)
10473 : Expression(EXPRESSION_MAKE, location),
10474 type_(type), args_(args)
10475 { }
10476
10477 protected:
10478 int
10479 do_traverse(Traverse* traverse);
10480
10481 Type*
10482 do_type()
10483 { return this->type_; }
10484
10485 void
10486 do_determine_type(const Type_context*);
10487
10488 void
10489 do_check_types(Gogo*);
10490
10491 Expression*
10492 do_copy()
10493 {
10494 return new Make_expression(this->type_, this->args_->copy(),
10495 this->location());
10496 }
10497
10498 tree
10499 do_get_tree(Translate_context*);
10500
10501 private:
10502 // The type we are making.
10503 Type* type_;
10504 // The arguments to pass to the make routine.
10505 Expression_list* args_;
10506 };
10507
10508 // Traversal.
10509
10510 int
10511 Make_expression::do_traverse(Traverse* traverse)
10512 {
10513 if (this->args_ != NULL
10514 && this->args_->traverse(traverse) == TRAVERSE_EXIT)
10515 return TRAVERSE_EXIT;
10516 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10517 return TRAVERSE_EXIT;
10518 return TRAVERSE_CONTINUE;
10519 }
10520
10521 // Set types of arguments.
10522
10523 void
10524 Make_expression::do_determine_type(const Type_context*)
10525 {
10526 if (this->args_ != NULL)
10527 {
10528 Type_context context(Type::lookup_integer_type("int"), false);
10529 for (Expression_list::const_iterator pe = this->args_->begin();
10530 pe != this->args_->end();
10531 ++pe)
10532 (*pe)->determine_type(&context);
10533 }
10534 }
10535
10536 // Check types for a make expression.
10537
10538 void
10539 Make_expression::do_check_types(Gogo*)
10540 {
10541 if (this->type_->channel_type() == NULL
10542 && this->type_->map_type() == NULL
10543 && (this->type_->array_type() == NULL
10544 || this->type_->array_type()->length() != NULL))
10545 this->report_error(_("invalid type for make function"));
10546 else if (!this->type_->check_make_expression(this->args_, this->location()))
10547 this->set_is_error();
10548 }
10549
10550 // Return a tree for a make expression.
10551
10552 tree
10553 Make_expression::do_get_tree(Translate_context* context)
10554 {
10555 return this->type_->make_expression_tree(context, this->args_,
10556 this->location());
10557 }
10558
10559 // Make a make expression.
10560
10561 Expression*
10562 Expression::make_make(Type* type, Expression_list* args,
10563 source_location location)
10564 {
10565 return new Make_expression(type, args, location);
10566 }
10567
10568 // Construct a struct.
10569
10570 class Struct_construction_expression : public Expression
10571 {
10572 public:
10573 Struct_construction_expression(Type* type, Expression_list* vals,
10574 source_location location)
10575 : Expression(EXPRESSION_STRUCT_CONSTRUCTION, location),
10576 type_(type), vals_(vals)
10577 { }
10578
10579 // Return whether this is a constant initializer.
10580 bool
10581 is_constant_struct() const;
10582
10583 protected:
10584 int
10585 do_traverse(Traverse* traverse);
10586
10587 Type*
10588 do_type()
10589 { return this->type_; }
10590
10591 void
10592 do_determine_type(const Type_context*);
10593
10594 void
10595 do_check_types(Gogo*);
10596
10597 Expression*
10598 do_copy()
10599 {
10600 return new Struct_construction_expression(this->type_, this->vals_->copy(),
10601 this->location());
10602 }
10603
10604 bool
10605 do_is_addressable() const
10606 { return true; }
10607
10608 tree
10609 do_get_tree(Translate_context*);
10610
10611 void
10612 do_export(Export*) const;
10613
10614 private:
10615 // The type of the struct to construct.
10616 Type* type_;
10617 // The list of values, in order of the fields in the struct. A NULL
10618 // entry means that the field should be zero-initialized.
10619 Expression_list* vals_;
10620 };
10621
10622 // Traversal.
10623
10624 int
10625 Struct_construction_expression::do_traverse(Traverse* traverse)
10626 {
10627 if (this->vals_ != NULL
10628 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
10629 return TRAVERSE_EXIT;
10630 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10631 return TRAVERSE_EXIT;
10632 return TRAVERSE_CONTINUE;
10633 }
10634
10635 // Return whether this is a constant initializer.
10636
10637 bool
10638 Struct_construction_expression::is_constant_struct() const
10639 {
10640 if (this->vals_ == NULL)
10641 return true;
10642 for (Expression_list::const_iterator pv = this->vals_->begin();
10643 pv != this->vals_->end();
10644 ++pv)
10645 {
10646 if (*pv != NULL
10647 && !(*pv)->is_constant()
10648 && (!(*pv)->is_composite_literal()
10649 || (*pv)->is_nonconstant_composite_literal()))
10650 return false;
10651 }
10652
10653 const Struct_field_list* fields = this->type_->struct_type()->fields();
10654 for (Struct_field_list::const_iterator pf = fields->begin();
10655 pf != fields->end();
10656 ++pf)
10657 {
10658 // There are no constant constructors for interfaces.
10659 if (pf->type()->interface_type() != NULL)
10660 return false;
10661 }
10662
10663 return true;
10664 }
10665
10666 // Final type determination.
10667
10668 void
10669 Struct_construction_expression::do_determine_type(const Type_context*)
10670 {
10671 if (this->vals_ == NULL)
10672 return;
10673 const Struct_field_list* fields = this->type_->struct_type()->fields();
10674 Expression_list::const_iterator pv = this->vals_->begin();
10675 for (Struct_field_list::const_iterator pf = fields->begin();
10676 pf != fields->end();
10677 ++pf, ++pv)
10678 {
10679 if (pv == this->vals_->end())
10680 return;
10681 if (*pv != NULL)
10682 {
10683 Type_context subcontext(pf->type(), false);
10684 (*pv)->determine_type(&subcontext);
10685 }
10686 }
10687 // Extra values are an error we will report elsewhere; we still want
10688 // to determine the type to avoid knockon errors.
10689 for (; pv != this->vals_->end(); ++pv)
10690 (*pv)->determine_type_no_context();
10691 }
10692
10693 // Check types.
10694
10695 void
10696 Struct_construction_expression::do_check_types(Gogo*)
10697 {
10698 if (this->vals_ == NULL)
10699 return;
10700
10701 Struct_type* st = this->type_->struct_type();
10702 if (this->vals_->size() > st->field_count())
10703 {
10704 this->report_error(_("too many expressions for struct"));
10705 return;
10706 }
10707
10708 const Struct_field_list* fields = st->fields();
10709 Expression_list::const_iterator pv = this->vals_->begin();
10710 int i = 0;
10711 for (Struct_field_list::const_iterator pf = fields->begin();
10712 pf != fields->end();
10713 ++pf, ++pv, ++i)
10714 {
10715 if (pv == this->vals_->end())
10716 {
10717 this->report_error(_("too few expressions for struct"));
10718 break;
10719 }
10720
10721 if (*pv == NULL)
10722 continue;
10723
10724 std::string reason;
10725 if (!Type::are_assignable(pf->type(), (*pv)->type(), &reason))
10726 {
10727 if (reason.empty())
10728 error_at((*pv)->location(),
10729 "incompatible type for field %d in struct construction",
10730 i + 1);
10731 else
10732 error_at((*pv)->location(),
10733 ("incompatible type for field %d in "
10734 "struct construction (%s)"),
10735 i + 1, reason.c_str());
10736 this->set_is_error();
10737 }
10738 }
10739 gcc_assert(pv == this->vals_->end());
10740 }
10741
10742 // Return a tree for constructing a struct.
10743
10744 tree
10745 Struct_construction_expression::do_get_tree(Translate_context* context)
10746 {
10747 Gogo* gogo = context->gogo();
10748
10749 if (this->vals_ == NULL)
10750 return this->type_->get_init_tree(gogo, false);
10751
10752 tree type_tree = this->type_->get_tree(gogo);
10753 if (type_tree == error_mark_node)
10754 return error_mark_node;
10755 gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
10756
10757 bool is_constant = true;
10758 const Struct_field_list* fields = this->type_->struct_type()->fields();
10759 VEC(constructor_elt,gc)* elts = VEC_alloc(constructor_elt, gc,
10760 fields->size());
10761 Struct_field_list::const_iterator pf = fields->begin();
10762 Expression_list::const_iterator pv = this->vals_->begin();
10763 for (tree field = TYPE_FIELDS(type_tree);
10764 field != NULL_TREE;
10765 field = DECL_CHAIN(field), ++pf)
10766 {
10767 gcc_assert(pf != fields->end());
10768
10769 tree val;
10770 if (pv == this->vals_->end())
10771 val = pf->type()->get_init_tree(gogo, false);
10772 else if (*pv == NULL)
10773 {
10774 val = pf->type()->get_init_tree(gogo, false);
10775 ++pv;
10776 }
10777 else
10778 {
10779 val = Expression::convert_for_assignment(context, pf->type(),
10780 (*pv)->type(),
10781 (*pv)->get_tree(context),
10782 this->location());
10783 ++pv;
10784 }
10785
10786 if (val == error_mark_node || TREE_TYPE(val) == error_mark_node)
10787 return error_mark_node;
10788
10789 constructor_elt* elt = VEC_quick_push(constructor_elt, elts, NULL);
10790 elt->index = field;
10791 elt->value = val;
10792 if (!TREE_CONSTANT(val))
10793 is_constant = false;
10794 }
10795 gcc_assert(pf == fields->end());
10796
10797 tree ret = build_constructor(type_tree, elts);
10798 if (is_constant)
10799 TREE_CONSTANT(ret) = 1;
10800 return ret;
10801 }
10802
10803 // Export a struct construction.
10804
10805 void
10806 Struct_construction_expression::do_export(Export* exp) const
10807 {
10808 exp->write_c_string("convert(");
10809 exp->write_type(this->type_);
10810 for (Expression_list::const_iterator pv = this->vals_->begin();
10811 pv != this->vals_->end();
10812 ++pv)
10813 {
10814 exp->write_c_string(", ");
10815 if (*pv != NULL)
10816 (*pv)->export_expression(exp);
10817 }
10818 exp->write_c_string(")");
10819 }
10820
10821 // Make a struct composite literal. This used by the thunk code.
10822
10823 Expression*
10824 Expression::make_struct_composite_literal(Type* type, Expression_list* vals,
10825 source_location location)
10826 {
10827 gcc_assert(type->struct_type() != NULL);
10828 return new Struct_construction_expression(type, vals, location);
10829 }
10830
10831 // Construct an array. This class is not used directly; instead we
10832 // use the child classes, Fixed_array_construction_expression and
10833 // Open_array_construction_expression.
10834
10835 class Array_construction_expression : public Expression
10836 {
10837 protected:
10838 Array_construction_expression(Expression_classification classification,
10839 Type* type, Expression_list* vals,
10840 source_location location)
10841 : Expression(classification, location),
10842 type_(type), vals_(vals)
10843 { }
10844
10845 public:
10846 // Return whether this is a constant initializer.
10847 bool
10848 is_constant_array() const;
10849
10850 // Return the number of elements.
10851 size_t
10852 element_count() const
10853 { return this->vals_ == NULL ? 0 : this->vals_->size(); }
10854
10855 protected:
10856 int
10857 do_traverse(Traverse* traverse);
10858
10859 Type*
10860 do_type()
10861 { return this->type_; }
10862
10863 void
10864 do_determine_type(const Type_context*);
10865
10866 void
10867 do_check_types(Gogo*);
10868
10869 bool
10870 do_is_addressable() const
10871 { return true; }
10872
10873 void
10874 do_export(Export*) const;
10875
10876 // The list of values.
10877 Expression_list*
10878 vals()
10879 { return this->vals_; }
10880
10881 // Get a constructor tree for the array values.
10882 tree
10883 get_constructor_tree(Translate_context* context, tree type_tree);
10884
10885 private:
10886 // The type of the array to construct.
10887 Type* type_;
10888 // The list of values.
10889 Expression_list* vals_;
10890 };
10891
10892 // Traversal.
10893
10894 int
10895 Array_construction_expression::do_traverse(Traverse* traverse)
10896 {
10897 if (this->vals_ != NULL
10898 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
10899 return TRAVERSE_EXIT;
10900 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10901 return TRAVERSE_EXIT;
10902 return TRAVERSE_CONTINUE;
10903 }
10904
10905 // Return whether this is a constant initializer.
10906
10907 bool
10908 Array_construction_expression::is_constant_array() const
10909 {
10910 if (this->vals_ == NULL)
10911 return true;
10912
10913 // There are no constant constructors for interfaces.
10914 if (this->type_->array_type()->element_type()->interface_type() != NULL)
10915 return false;
10916
10917 for (Expression_list::const_iterator pv = this->vals_->begin();
10918 pv != this->vals_->end();
10919 ++pv)
10920 {
10921 if (*pv != NULL
10922 && !(*pv)->is_constant()
10923 && (!(*pv)->is_composite_literal()
10924 || (*pv)->is_nonconstant_composite_literal()))
10925 return false;
10926 }
10927 return true;
10928 }
10929
10930 // Final type determination.
10931
10932 void
10933 Array_construction_expression::do_determine_type(const Type_context*)
10934 {
10935 if (this->vals_ == NULL)
10936 return;
10937 Type_context subcontext(this->type_->array_type()->element_type(), false);
10938 for (Expression_list::const_iterator pv = this->vals_->begin();
10939 pv != this->vals_->end();
10940 ++pv)
10941 {
10942 if (*pv != NULL)
10943 (*pv)->determine_type(&subcontext);
10944 }
10945 }
10946
10947 // Check types.
10948
10949 void
10950 Array_construction_expression::do_check_types(Gogo*)
10951 {
10952 if (this->vals_ == NULL)
10953 return;
10954
10955 Array_type* at = this->type_->array_type();
10956 int i = 0;
10957 Type* element_type = at->element_type();
10958 for (Expression_list::const_iterator pv = this->vals_->begin();
10959 pv != this->vals_->end();
10960 ++pv, ++i)
10961 {
10962 if (*pv != NULL
10963 && !Type::are_assignable(element_type, (*pv)->type(), NULL))
10964 {
10965 error_at((*pv)->location(),
10966 "incompatible type for element %d in composite literal",
10967 i + 1);
10968 this->set_is_error();
10969 }
10970 }
10971
10972 Expression* length = at->length();
10973 if (length != NULL)
10974 {
10975 mpz_t val;
10976 mpz_init(val);
10977 Type* type;
10978 if (at->length()->integer_constant_value(true, val, &type))
10979 {
10980 if (this->vals_->size() > mpz_get_ui(val))
10981 this->report_error(_("too many elements in composite literal"));
10982 }
10983 mpz_clear(val);
10984 }
10985 }
10986
10987 // Get a constructor tree for the array values.
10988
10989 tree
10990 Array_construction_expression::get_constructor_tree(Translate_context* context,
10991 tree type_tree)
10992 {
10993 VEC(constructor_elt,gc)* values = VEC_alloc(constructor_elt, gc,
10994 (this->vals_ == NULL
10995 ? 0
10996 : this->vals_->size()));
10997 Type* element_type = this->type_->array_type()->element_type();
10998 bool is_constant = true;
10999 if (this->vals_ != NULL)
11000 {
11001 size_t i = 0;
11002 for (Expression_list::const_iterator pv = this->vals_->begin();
11003 pv != this->vals_->end();
11004 ++pv, ++i)
11005 {
11006 constructor_elt* elt = VEC_quick_push(constructor_elt, values, NULL);
11007 elt->index = size_int(i);
11008 if (*pv == NULL)
11009 elt->value = element_type->get_init_tree(context->gogo(), false);
11010 else
11011 {
11012 tree value_tree = (*pv)->get_tree(context);
11013 elt->value = Expression::convert_for_assignment(context,
11014 element_type,
11015 (*pv)->type(),
11016 value_tree,
11017 this->location());
11018 }
11019 if (elt->value == error_mark_node)
11020 return error_mark_node;
11021 if (!TREE_CONSTANT(elt->value))
11022 is_constant = false;
11023 }
11024 }
11025
11026 tree ret = build_constructor(type_tree, values);
11027 if (is_constant)
11028 TREE_CONSTANT(ret) = 1;
11029 return ret;
11030 }
11031
11032 // Export an array construction.
11033
11034 void
11035 Array_construction_expression::do_export(Export* exp) const
11036 {
11037 exp->write_c_string("convert(");
11038 exp->write_type(this->type_);
11039 if (this->vals_ != NULL)
11040 {
11041 for (Expression_list::const_iterator pv = this->vals_->begin();
11042 pv != this->vals_->end();
11043 ++pv)
11044 {
11045 exp->write_c_string(", ");
11046 if (*pv != NULL)
11047 (*pv)->export_expression(exp);
11048 }
11049 }
11050 exp->write_c_string(")");
11051 }
11052
11053 // Construct a fixed array.
11054
11055 class Fixed_array_construction_expression :
11056 public Array_construction_expression
11057 {
11058 public:
11059 Fixed_array_construction_expression(Type* type, Expression_list* vals,
11060 source_location location)
11061 : Array_construction_expression(EXPRESSION_FIXED_ARRAY_CONSTRUCTION,
11062 type, vals, location)
11063 {
11064 gcc_assert(type->array_type() != NULL
11065 && type->array_type()->length() != NULL);
11066 }
11067
11068 protected:
11069 Expression*
11070 do_copy()
11071 {
11072 return new Fixed_array_construction_expression(this->type(),
11073 (this->vals() == NULL
11074 ? NULL
11075 : this->vals()->copy()),
11076 this->location());
11077 }
11078
11079 tree
11080 do_get_tree(Translate_context*);
11081 };
11082
11083 // Return a tree for constructing a fixed array.
11084
11085 tree
11086 Fixed_array_construction_expression::do_get_tree(Translate_context* context)
11087 {
11088 return this->get_constructor_tree(context,
11089 this->type()->get_tree(context->gogo()));
11090 }
11091
11092 // Construct an open array.
11093
11094 class Open_array_construction_expression : public Array_construction_expression
11095 {
11096 public:
11097 Open_array_construction_expression(Type* type, Expression_list* vals,
11098 source_location location)
11099 : Array_construction_expression(EXPRESSION_OPEN_ARRAY_CONSTRUCTION,
11100 type, vals, location)
11101 {
11102 gcc_assert(type->array_type() != NULL
11103 && type->array_type()->length() == NULL);
11104 }
11105
11106 protected:
11107 // Note that taking the address of an open array literal is invalid.
11108
11109 Expression*
11110 do_copy()
11111 {
11112 return new Open_array_construction_expression(this->type(),
11113 (this->vals() == NULL
11114 ? NULL
11115 : this->vals()->copy()),
11116 this->location());
11117 }
11118
11119 tree
11120 do_get_tree(Translate_context*);
11121 };
11122
11123 // Return a tree for constructing an open array.
11124
11125 tree
11126 Open_array_construction_expression::do_get_tree(Translate_context* context)
11127 {
11128 Array_type* array_type = this->type()->array_type();
11129 if (array_type == NULL)
11130 {
11131 gcc_assert(this->type()->is_error_type());
11132 return error_mark_node;
11133 }
11134
11135 Type* element_type = array_type->element_type();
11136 tree element_type_tree = element_type->get_tree(context->gogo());
11137 if (element_type_tree == error_mark_node)
11138 return error_mark_node;
11139
11140 tree values;
11141 tree length_tree;
11142 if (this->vals() == NULL || this->vals()->empty())
11143 {
11144 // We need to create a unique value.
11145 tree max = size_int(0);
11146 tree constructor_type = build_array_type(element_type_tree,
11147 build_index_type(max));
11148 if (constructor_type == error_mark_node)
11149 return error_mark_node;
11150 VEC(constructor_elt,gc)* vec = VEC_alloc(constructor_elt, gc, 1);
11151 constructor_elt* elt = VEC_quick_push(constructor_elt, vec, NULL);
11152 elt->index = size_int(0);
11153 elt->value = element_type->get_init_tree(context->gogo(), false);
11154 values = build_constructor(constructor_type, vec);
11155 if (TREE_CONSTANT(elt->value))
11156 TREE_CONSTANT(values) = 1;
11157 length_tree = size_int(0);
11158 }
11159 else
11160 {
11161 tree max = size_int(this->vals()->size() - 1);
11162 tree constructor_type = build_array_type(element_type_tree,
11163 build_index_type(max));
11164 if (constructor_type == error_mark_node)
11165 return error_mark_node;
11166 values = this->get_constructor_tree(context, constructor_type);
11167 length_tree = size_int(this->vals()->size());
11168 }
11169
11170 if (values == error_mark_node)
11171 return error_mark_node;
11172
11173 bool is_constant_initializer = TREE_CONSTANT(values);
11174
11175 // We have to copy the initial values into heap memory if we are in
11176 // a function or if the values are not constants. We also have to
11177 // copy them if they may contain pointers in a non-constant context,
11178 // as otherwise the garbage collector won't see them.
11179 bool copy_to_heap = (context->function() != NULL
11180 || !is_constant_initializer
11181 || (element_type->has_pointer()
11182 && !context->is_const()));
11183
11184 if (is_constant_initializer)
11185 {
11186 tree tmp = build_decl(this->location(), VAR_DECL,
11187 create_tmp_var_name("C"), TREE_TYPE(values));
11188 DECL_EXTERNAL(tmp) = 0;
11189 TREE_PUBLIC(tmp) = 0;
11190 TREE_STATIC(tmp) = 1;
11191 DECL_ARTIFICIAL(tmp) = 1;
11192 if (copy_to_heap)
11193 {
11194 // If we are not copying the value to the heap, we will only
11195 // initialize the value once, so we can use this directly
11196 // rather than copying it. In that case we can't make it
11197 // read-only, because the program is permitted to change it.
11198 TREE_READONLY(tmp) = 1;
11199 TREE_CONSTANT(tmp) = 1;
11200 }
11201 DECL_INITIAL(tmp) = values;
11202 rest_of_decl_compilation(tmp, 1, 0);
11203 values = tmp;
11204 }
11205
11206 tree space;
11207 tree set;
11208 if (!copy_to_heap)
11209 {
11210 // the initializer will only run once.
11211 space = build_fold_addr_expr(values);
11212 set = NULL_TREE;
11213 }
11214 else
11215 {
11216 tree memsize = TYPE_SIZE_UNIT(TREE_TYPE(values));
11217 space = context->gogo()->allocate_memory(element_type, memsize,
11218 this->location());
11219 space = save_expr(space);
11220
11221 tree s = fold_convert(build_pointer_type(TREE_TYPE(values)), space);
11222 tree ref = build_fold_indirect_ref_loc(this->location(), s);
11223 TREE_THIS_NOTRAP(ref) = 1;
11224 set = build2(MODIFY_EXPR, void_type_node, ref, values);
11225 }
11226
11227 // Build a constructor for the open array.
11228
11229 tree type_tree = this->type()->get_tree(context->gogo());
11230 if (type_tree == error_mark_node)
11231 return error_mark_node;
11232 gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
11233
11234 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
11235
11236 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
11237 tree field = TYPE_FIELDS(type_tree);
11238 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
11239 elt->index = field;
11240 elt->value = fold_convert(TREE_TYPE(field), space);
11241
11242 elt = VEC_quick_push(constructor_elt, init, NULL);
11243 field = DECL_CHAIN(field);
11244 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
11245 elt->index = field;
11246 elt->value = fold_convert(TREE_TYPE(field), length_tree);
11247
11248 elt = VEC_quick_push(constructor_elt, init, NULL);
11249 field = DECL_CHAIN(field);
11250 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),"__capacity") == 0);
11251 elt->index = field;
11252 elt->value = fold_convert(TREE_TYPE(field), length_tree);
11253
11254 tree constructor = build_constructor(type_tree, init);
11255 if (constructor == error_mark_node)
11256 return error_mark_node;
11257 if (!copy_to_heap)
11258 TREE_CONSTANT(constructor) = 1;
11259
11260 if (set == NULL_TREE)
11261 return constructor;
11262 else
11263 return build2(COMPOUND_EXPR, type_tree, set, constructor);
11264 }
11265
11266 // Make a slice composite literal. This is used by the type
11267 // descriptor code.
11268
11269 Expression*
11270 Expression::make_slice_composite_literal(Type* type, Expression_list* vals,
11271 source_location location)
11272 {
11273 gcc_assert(type->is_open_array_type());
11274 return new Open_array_construction_expression(type, vals, location);
11275 }
11276
11277 // Construct a map.
11278
11279 class Map_construction_expression : public Expression
11280 {
11281 public:
11282 Map_construction_expression(Type* type, Expression_list* vals,
11283 source_location location)
11284 : Expression(EXPRESSION_MAP_CONSTRUCTION, location),
11285 type_(type), vals_(vals)
11286 { gcc_assert(vals == NULL || vals->size() % 2 == 0); }
11287
11288 protected:
11289 int
11290 do_traverse(Traverse* traverse);
11291
11292 Type*
11293 do_type()
11294 { return this->type_; }
11295
11296 void
11297 do_determine_type(const Type_context*);
11298
11299 void
11300 do_check_types(Gogo*);
11301
11302 Expression*
11303 do_copy()
11304 {
11305 return new Map_construction_expression(this->type_, this->vals_->copy(),
11306 this->location());
11307 }
11308
11309 tree
11310 do_get_tree(Translate_context*);
11311
11312 void
11313 do_export(Export*) const;
11314
11315 private:
11316 // The type of the map to construct.
11317 Type* type_;
11318 // The list of values.
11319 Expression_list* vals_;
11320 };
11321
11322 // Traversal.
11323
11324 int
11325 Map_construction_expression::do_traverse(Traverse* traverse)
11326 {
11327 if (this->vals_ != NULL
11328 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
11329 return TRAVERSE_EXIT;
11330 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
11331 return TRAVERSE_EXIT;
11332 return TRAVERSE_CONTINUE;
11333 }
11334
11335 // Final type determination.
11336
11337 void
11338 Map_construction_expression::do_determine_type(const Type_context*)
11339 {
11340 if (this->vals_ == NULL)
11341 return;
11342
11343 Map_type* mt = this->type_->map_type();
11344 Type_context key_context(mt->key_type(), false);
11345 Type_context val_context(mt->val_type(), false);
11346 for (Expression_list::const_iterator pv = this->vals_->begin();
11347 pv != this->vals_->end();
11348 ++pv)
11349 {
11350 (*pv)->determine_type(&key_context);
11351 ++pv;
11352 (*pv)->determine_type(&val_context);
11353 }
11354 }
11355
11356 // Check types.
11357
11358 void
11359 Map_construction_expression::do_check_types(Gogo*)
11360 {
11361 if (this->vals_ == NULL)
11362 return;
11363
11364 Map_type* mt = this->type_->map_type();
11365 int i = 0;
11366 Type* key_type = mt->key_type();
11367 Type* val_type = mt->val_type();
11368 for (Expression_list::const_iterator pv = this->vals_->begin();
11369 pv != this->vals_->end();
11370 ++pv, ++i)
11371 {
11372 if (!Type::are_assignable(key_type, (*pv)->type(), NULL))
11373 {
11374 error_at((*pv)->location(),
11375 "incompatible type for element %d key in map construction",
11376 i + 1);
11377 this->set_is_error();
11378 }
11379 ++pv;
11380 if (!Type::are_assignable(val_type, (*pv)->type(), NULL))
11381 {
11382 error_at((*pv)->location(),
11383 ("incompatible type for element %d value "
11384 "in map construction"),
11385 i + 1);
11386 this->set_is_error();
11387 }
11388 }
11389 }
11390
11391 // Return a tree for constructing a map.
11392
11393 tree
11394 Map_construction_expression::do_get_tree(Translate_context* context)
11395 {
11396 Gogo* gogo = context->gogo();
11397 source_location loc = this->location();
11398
11399 Map_type* mt = this->type_->map_type();
11400
11401 // Build a struct to hold the key and value.
11402 tree struct_type = make_node(RECORD_TYPE);
11403
11404 Type* key_type = mt->key_type();
11405 tree id = get_identifier("__key");
11406 tree key_type_tree = key_type->get_tree(gogo);
11407 if (key_type_tree == error_mark_node)
11408 return error_mark_node;
11409 tree key_field = build_decl(loc, FIELD_DECL, id, key_type_tree);
11410 DECL_CONTEXT(key_field) = struct_type;
11411 TYPE_FIELDS(struct_type) = key_field;
11412
11413 Type* val_type = mt->val_type();
11414 id = get_identifier("__val");
11415 tree val_type_tree = val_type->get_tree(gogo);
11416 if (val_type_tree == error_mark_node)
11417 return error_mark_node;
11418 tree val_field = build_decl(loc, FIELD_DECL, id, val_type_tree);
11419 DECL_CONTEXT(val_field) = struct_type;
11420 DECL_CHAIN(key_field) = val_field;
11421
11422 layout_type(struct_type);
11423
11424 bool is_constant = true;
11425 size_t i = 0;
11426 tree valaddr;
11427 tree make_tmp;
11428
11429 if (this->vals_ == NULL || this->vals_->empty())
11430 {
11431 valaddr = null_pointer_node;
11432 make_tmp = NULL_TREE;
11433 }
11434 else
11435 {
11436 VEC(constructor_elt,gc)* values = VEC_alloc(constructor_elt, gc,
11437 this->vals_->size() / 2);
11438
11439 for (Expression_list::const_iterator pv = this->vals_->begin();
11440 pv != this->vals_->end();
11441 ++pv, ++i)
11442 {
11443 bool one_is_constant = true;
11444
11445 VEC(constructor_elt,gc)* one = VEC_alloc(constructor_elt, gc, 2);
11446
11447 constructor_elt* elt = VEC_quick_push(constructor_elt, one, NULL);
11448 elt->index = key_field;
11449 tree val_tree = (*pv)->get_tree(context);
11450 elt->value = Expression::convert_for_assignment(context, key_type,
11451 (*pv)->type(),
11452 val_tree, loc);
11453 if (elt->value == error_mark_node)
11454 return error_mark_node;
11455 if (!TREE_CONSTANT(elt->value))
11456 one_is_constant = false;
11457
11458 ++pv;
11459
11460 elt = VEC_quick_push(constructor_elt, one, NULL);
11461 elt->index = val_field;
11462 val_tree = (*pv)->get_tree(context);
11463 elt->value = Expression::convert_for_assignment(context, val_type,
11464 (*pv)->type(),
11465 val_tree, loc);
11466 if (elt->value == error_mark_node)
11467 return error_mark_node;
11468 if (!TREE_CONSTANT(elt->value))
11469 one_is_constant = false;
11470
11471 elt = VEC_quick_push(constructor_elt, values, NULL);
11472 elt->index = size_int(i);
11473 elt->value = build_constructor(struct_type, one);
11474 if (one_is_constant)
11475 TREE_CONSTANT(elt->value) = 1;
11476 else
11477 is_constant = false;
11478 }
11479
11480 tree index_type = build_index_type(size_int(i - 1));
11481 tree array_type = build_array_type(struct_type, index_type);
11482 tree init = build_constructor(array_type, values);
11483 if (is_constant)
11484 TREE_CONSTANT(init) = 1;
11485 tree tmp;
11486 if (current_function_decl != NULL)
11487 {
11488 tmp = create_tmp_var(array_type, get_name(array_type));
11489 DECL_INITIAL(tmp) = init;
11490 make_tmp = fold_build1_loc(loc, DECL_EXPR, void_type_node, tmp);
11491 TREE_ADDRESSABLE(tmp) = 1;
11492 }
11493 else
11494 {
11495 tmp = build_decl(loc, VAR_DECL, create_tmp_var_name("M"), array_type);
11496 DECL_EXTERNAL(tmp) = 0;
11497 TREE_PUBLIC(tmp) = 0;
11498 TREE_STATIC(tmp) = 1;
11499 DECL_ARTIFICIAL(tmp) = 1;
11500 if (!TREE_CONSTANT(init))
11501 make_tmp = fold_build2_loc(loc, INIT_EXPR, void_type_node, tmp,
11502 init);
11503 else
11504 {
11505 TREE_READONLY(tmp) = 1;
11506 TREE_CONSTANT(tmp) = 1;
11507 DECL_INITIAL(tmp) = init;
11508 make_tmp = NULL_TREE;
11509 }
11510 rest_of_decl_compilation(tmp, 1, 0);
11511 }
11512
11513 valaddr = build_fold_addr_expr(tmp);
11514 }
11515
11516 tree descriptor = gogo->map_descriptor(mt);
11517
11518 tree type_tree = this->type_->get_tree(gogo);
11519 if (type_tree == error_mark_node)
11520 return error_mark_node;
11521
11522 static tree construct_map_fndecl;
11523 tree call = Gogo::call_builtin(&construct_map_fndecl,
11524 loc,
11525 "__go_construct_map",
11526 6,
11527 type_tree,
11528 TREE_TYPE(descriptor),
11529 descriptor,
11530 sizetype,
11531 size_int(i),
11532 sizetype,
11533 TYPE_SIZE_UNIT(struct_type),
11534 sizetype,
11535 byte_position(val_field),
11536 sizetype,
11537 TYPE_SIZE_UNIT(TREE_TYPE(val_field)),
11538 const_ptr_type_node,
11539 fold_convert(const_ptr_type_node, valaddr));
11540 if (call == error_mark_node)
11541 return error_mark_node;
11542
11543 tree ret;
11544 if (make_tmp == NULL)
11545 ret = call;
11546 else
11547 ret = fold_build2_loc(loc, COMPOUND_EXPR, type_tree, make_tmp, call);
11548 return ret;
11549 }
11550
11551 // Export an array construction.
11552
11553 void
11554 Map_construction_expression::do_export(Export* exp) const
11555 {
11556 exp->write_c_string("convert(");
11557 exp->write_type(this->type_);
11558 for (Expression_list::const_iterator pv = this->vals_->begin();
11559 pv != this->vals_->end();
11560 ++pv)
11561 {
11562 exp->write_c_string(", ");
11563 (*pv)->export_expression(exp);
11564 }
11565 exp->write_c_string(")");
11566 }
11567
11568 // A general composite literal. This is lowered to a type specific
11569 // version.
11570
11571 class Composite_literal_expression : public Parser_expression
11572 {
11573 public:
11574 Composite_literal_expression(Type* type, int depth, bool has_keys,
11575 Expression_list* vals, source_location location)
11576 : Parser_expression(EXPRESSION_COMPOSITE_LITERAL, location),
11577 type_(type), depth_(depth), vals_(vals), has_keys_(has_keys)
11578 { }
11579
11580 protected:
11581 int
11582 do_traverse(Traverse* traverse);
11583
11584 Expression*
11585 do_lower(Gogo*, Named_object*, int);
11586
11587 Expression*
11588 do_copy()
11589 {
11590 return new Composite_literal_expression(this->type_, this->depth_,
11591 this->has_keys_,
11592 (this->vals_ == NULL
11593 ? NULL
11594 : this->vals_->copy()),
11595 this->location());
11596 }
11597
11598 private:
11599 Expression*
11600 lower_struct(Type*);
11601
11602 Expression*
11603 lower_array(Type*);
11604
11605 Expression*
11606 make_array(Type*, Expression_list*);
11607
11608 Expression*
11609 lower_map(Gogo*, Named_object*, Type*);
11610
11611 // The type of the composite literal.
11612 Type* type_;
11613 // The depth within a list of composite literals within a composite
11614 // literal, when the type is omitted.
11615 int depth_;
11616 // The values to put in the composite literal.
11617 Expression_list* vals_;
11618 // If this is true, then VALS_ is a list of pairs: a key and a
11619 // value. In an array initializer, a missing key will be NULL.
11620 bool has_keys_;
11621 };
11622
11623 // Traversal.
11624
11625 int
11626 Composite_literal_expression::do_traverse(Traverse* traverse)
11627 {
11628 if (this->vals_ != NULL
11629 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
11630 return TRAVERSE_EXIT;
11631 return Type::traverse(this->type_, traverse);
11632 }
11633
11634 // Lower a generic composite literal into a specific version based on
11635 // the type.
11636
11637 Expression*
11638 Composite_literal_expression::do_lower(Gogo* gogo, Named_object* function, int)
11639 {
11640 Type* type = this->type_;
11641
11642 for (int depth = this->depth_; depth > 0; --depth)
11643 {
11644 if (type->array_type() != NULL)
11645 type = type->array_type()->element_type();
11646 else if (type->map_type() != NULL)
11647 type = type->map_type()->val_type();
11648 else
11649 {
11650 if (!type->is_error_type())
11651 error_at(this->location(),
11652 ("may only omit types within composite literals "
11653 "of slice, array, or map type"));
11654 return Expression::make_error(this->location());
11655 }
11656 }
11657
11658 if (type->is_error_type())
11659 return Expression::make_error(this->location());
11660 else if (type->struct_type() != NULL)
11661 return this->lower_struct(type);
11662 else if (type->array_type() != NULL)
11663 return this->lower_array(type);
11664 else if (type->map_type() != NULL)
11665 return this->lower_map(gogo, function, type);
11666 else
11667 {
11668 error_at(this->location(),
11669 ("expected struct, slice, array, or map type "
11670 "for composite literal"));
11671 return Expression::make_error(this->location());
11672 }
11673 }
11674
11675 // Lower a struct composite literal.
11676
11677 Expression*
11678 Composite_literal_expression::lower_struct(Type* type)
11679 {
11680 source_location location = this->location();
11681 Struct_type* st = type->struct_type();
11682 if (this->vals_ == NULL || !this->has_keys_)
11683 return new Struct_construction_expression(type, this->vals_, location);
11684
11685 size_t field_count = st->field_count();
11686 std::vector<Expression*> vals(field_count);
11687 Expression_list::const_iterator p = this->vals_->begin();
11688 while (p != this->vals_->end())
11689 {
11690 Expression* name_expr = *p;
11691
11692 ++p;
11693 gcc_assert(p != this->vals_->end());
11694 Expression* val = *p;
11695
11696 ++p;
11697
11698 if (name_expr == NULL)
11699 {
11700 error_at(val->location(), "mixture of field and value initializers");
11701 return Expression::make_error(location);
11702 }
11703
11704 bool bad_key = false;
11705 std::string name;
11706 switch (name_expr->classification())
11707 {
11708 case EXPRESSION_UNKNOWN_REFERENCE:
11709 name = name_expr->unknown_expression()->name();
11710 break;
11711
11712 case EXPRESSION_CONST_REFERENCE:
11713 name = static_cast<Const_expression*>(name_expr)->name();
11714 break;
11715
11716 case EXPRESSION_TYPE:
11717 {
11718 Type* t = name_expr->type();
11719 Named_type* nt = t->named_type();
11720 if (nt == NULL)
11721 bad_key = true;
11722 else
11723 name = nt->name();
11724 }
11725 break;
11726
11727 case EXPRESSION_VAR_REFERENCE:
11728 name = name_expr->var_expression()->name();
11729 break;
11730
11731 case EXPRESSION_FUNC_REFERENCE:
11732 name = name_expr->func_expression()->name();
11733 break;
11734
11735 case EXPRESSION_UNARY:
11736 // If there is a local variable around with the same name as
11737 // the field, and this occurs in the closure, then the
11738 // parser may turn the field reference into an indirection
11739 // through the closure. FIXME: This is a mess.
11740 {
11741 bad_key = true;
11742 Unary_expression* ue = static_cast<Unary_expression*>(name_expr);
11743 if (ue->op() == OPERATOR_MULT)
11744 {
11745 Field_reference_expression* fre =
11746 ue->operand()->field_reference_expression();
11747 if (fre != NULL)
11748 {
11749 Struct_type* st =
11750 fre->expr()->type()->deref()->struct_type();
11751 if (st != NULL)
11752 {
11753 const Struct_field* sf = st->field(fre->field_index());
11754 name = sf->field_name();
11755 char buf[20];
11756 snprintf(buf, sizeof buf, "%u", fre->field_index());
11757 size_t buflen = strlen(buf);
11758 if (name.compare(name.length() - buflen, buflen, buf)
11759 == 0)
11760 {
11761 name = name.substr(0, name.length() - buflen);
11762 bad_key = false;
11763 }
11764 }
11765 }
11766 }
11767 }
11768 break;
11769
11770 default:
11771 bad_key = true;
11772 break;
11773 }
11774 if (bad_key)
11775 {
11776 error_at(name_expr->location(), "expected struct field name");
11777 return Expression::make_error(location);
11778 }
11779
11780 unsigned int index;
11781 const Struct_field* sf = st->find_local_field(name, &index);
11782 if (sf == NULL)
11783 {
11784 error_at(name_expr->location(), "unknown field %qs in %qs",
11785 Gogo::message_name(name).c_str(),
11786 (type->named_type() != NULL
11787 ? type->named_type()->message_name().c_str()
11788 : "unnamed struct"));
11789 return Expression::make_error(location);
11790 }
11791 if (vals[index] != NULL)
11792 {
11793 error_at(name_expr->location(),
11794 "duplicate value for field %qs in %qs",
11795 Gogo::message_name(name).c_str(),
11796 (type->named_type() != NULL
11797 ? type->named_type()->message_name().c_str()
11798 : "unnamed struct"));
11799 return Expression::make_error(location);
11800 }
11801
11802 vals[index] = val;
11803 }
11804
11805 Expression_list* list = new Expression_list;
11806 list->reserve(field_count);
11807 for (size_t i = 0; i < field_count; ++i)
11808 list->push_back(vals[i]);
11809
11810 return new Struct_construction_expression(type, list, location);
11811 }
11812
11813 // Lower an array composite literal.
11814
11815 Expression*
11816 Composite_literal_expression::lower_array(Type* type)
11817 {
11818 source_location location = this->location();
11819 if (this->vals_ == NULL || !this->has_keys_)
11820 return this->make_array(type, this->vals_);
11821
11822 std::vector<Expression*> vals;
11823 vals.reserve(this->vals_->size());
11824 unsigned long index = 0;
11825 Expression_list::const_iterator p = this->vals_->begin();
11826 while (p != this->vals_->end())
11827 {
11828 Expression* index_expr = *p;
11829
11830 ++p;
11831 gcc_assert(p != this->vals_->end());
11832 Expression* val = *p;
11833
11834 ++p;
11835
11836 if (index_expr != NULL)
11837 {
11838 mpz_t ival;
11839 mpz_init(ival);
11840 Type* dummy;
11841 if (!index_expr->integer_constant_value(true, ival, &dummy))
11842 {
11843 mpz_clear(ival);
11844 error_at(index_expr->location(),
11845 "index expression is not integer constant");
11846 return Expression::make_error(location);
11847 }
11848 if (mpz_sgn(ival) < 0)
11849 {
11850 mpz_clear(ival);
11851 error_at(index_expr->location(), "index expression is negative");
11852 return Expression::make_error(location);
11853 }
11854 index = mpz_get_ui(ival);
11855 if (mpz_cmp_ui(ival, index) != 0)
11856 {
11857 mpz_clear(ival);
11858 error_at(index_expr->location(), "index value overflow");
11859 return Expression::make_error(location);
11860 }
11861 mpz_clear(ival);
11862 }
11863
11864 if (index == vals.size())
11865 vals.push_back(val);
11866 else
11867 {
11868 if (index > vals.size())
11869 {
11870 vals.reserve(index + 32);
11871 vals.resize(index + 1, static_cast<Expression*>(NULL));
11872 }
11873 if (vals[index] != NULL)
11874 {
11875 error_at((index_expr != NULL
11876 ? index_expr->location()
11877 : val->location()),
11878 "duplicate value for index %lu",
11879 index);
11880 return Expression::make_error(location);
11881 }
11882 vals[index] = val;
11883 }
11884
11885 ++index;
11886 }
11887
11888 size_t size = vals.size();
11889 Expression_list* list = new Expression_list;
11890 list->reserve(size);
11891 for (size_t i = 0; i < size; ++i)
11892 list->push_back(vals[i]);
11893
11894 return this->make_array(type, list);
11895 }
11896
11897 // Actually build the array composite literal. This handles
11898 // [...]{...}.
11899
11900 Expression*
11901 Composite_literal_expression::make_array(Type* type, Expression_list* vals)
11902 {
11903 source_location location = this->location();
11904 Array_type* at = type->array_type();
11905 if (at->length() != NULL && at->length()->is_nil_expression())
11906 {
11907 size_t size = vals == NULL ? 0 : vals->size();
11908 mpz_t vlen;
11909 mpz_init_set_ui(vlen, size);
11910 Expression* elen = Expression::make_integer(&vlen, NULL, location);
11911 mpz_clear(vlen);
11912 at = Type::make_array_type(at->element_type(), elen);
11913 type = at;
11914 }
11915 if (at->length() != NULL)
11916 return new Fixed_array_construction_expression(type, vals, location);
11917 else
11918 return new Open_array_construction_expression(type, vals, location);
11919 }
11920
11921 // Lower a map composite literal.
11922
11923 Expression*
11924 Composite_literal_expression::lower_map(Gogo* gogo, Named_object* function,
11925 Type* type)
11926 {
11927 source_location location = this->location();
11928 if (this->vals_ != NULL)
11929 {
11930 if (!this->has_keys_)
11931 {
11932 error_at(location, "map composite literal must have keys");
11933 return Expression::make_error(location);
11934 }
11935
11936 for (Expression_list::iterator p = this->vals_->begin();
11937 p != this->vals_->end();
11938 p += 2)
11939 {
11940 if (*p == NULL)
11941 {
11942 ++p;
11943 error_at((*p)->location(),
11944 "map composite literal must have keys for every value");
11945 return Expression::make_error(location);
11946 }
11947 // Make sure we have lowered the key; it may not have been
11948 // lowered in order to handle keys for struct composite
11949 // literals. Lower it now to get the right error message.
11950 if ((*p)->unknown_expression() != NULL)
11951 {
11952 (*p)->unknown_expression()->clear_is_composite_literal_key();
11953 gogo->lower_expression(function, &*p);
11954 gcc_assert((*p)->is_error_expression());
11955 return Expression::make_error(location);
11956 }
11957 }
11958 }
11959
11960 return new Map_construction_expression(type, this->vals_, location);
11961 }
11962
11963 // Make a composite literal expression.
11964
11965 Expression*
11966 Expression::make_composite_literal(Type* type, int depth, bool has_keys,
11967 Expression_list* vals,
11968 source_location location)
11969 {
11970 return new Composite_literal_expression(type, depth, has_keys, vals,
11971 location);
11972 }
11973
11974 // Return whether this expression is a composite literal.
11975
11976 bool
11977 Expression::is_composite_literal() const
11978 {
11979 switch (this->classification_)
11980 {
11981 case EXPRESSION_COMPOSITE_LITERAL:
11982 case EXPRESSION_STRUCT_CONSTRUCTION:
11983 case EXPRESSION_FIXED_ARRAY_CONSTRUCTION:
11984 case EXPRESSION_OPEN_ARRAY_CONSTRUCTION:
11985 case EXPRESSION_MAP_CONSTRUCTION:
11986 return true;
11987 default:
11988 return false;
11989 }
11990 }
11991
11992 // Return whether this expression is a composite literal which is not
11993 // constant.
11994
11995 bool
11996 Expression::is_nonconstant_composite_literal() const
11997 {
11998 switch (this->classification_)
11999 {
12000 case EXPRESSION_STRUCT_CONSTRUCTION:
12001 {
12002 const Struct_construction_expression *psce =
12003 static_cast<const Struct_construction_expression*>(this);
12004 return !psce->is_constant_struct();
12005 }
12006 case EXPRESSION_FIXED_ARRAY_CONSTRUCTION:
12007 {
12008 const Fixed_array_construction_expression *pace =
12009 static_cast<const Fixed_array_construction_expression*>(this);
12010 return !pace->is_constant_array();
12011 }
12012 case EXPRESSION_OPEN_ARRAY_CONSTRUCTION:
12013 {
12014 const Open_array_construction_expression *pace =
12015 static_cast<const Open_array_construction_expression*>(this);
12016 return !pace->is_constant_array();
12017 }
12018 case EXPRESSION_MAP_CONSTRUCTION:
12019 return true;
12020 default:
12021 return false;
12022 }
12023 }
12024
12025 // Return true if this is a reference to a local variable.
12026
12027 bool
12028 Expression::is_local_variable() const
12029 {
12030 const Var_expression* ve = this->var_expression();
12031 if (ve == NULL)
12032 return false;
12033 const Named_object* no = ve->named_object();
12034 return (no->is_result_variable()
12035 || (no->is_variable() && !no->var_value()->is_global()));
12036 }
12037
12038 // Class Type_guard_expression.
12039
12040 // Traversal.
12041
12042 int
12043 Type_guard_expression::do_traverse(Traverse* traverse)
12044 {
12045 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
12046 || Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
12047 return TRAVERSE_EXIT;
12048 return TRAVERSE_CONTINUE;
12049 }
12050
12051 // Check types of a type guard expression. The expression must have
12052 // an interface type, but the actual type conversion is checked at run
12053 // time.
12054
12055 void
12056 Type_guard_expression::do_check_types(Gogo*)
12057 {
12058 // 6g permits using a type guard with unsafe.pointer; we are
12059 // compatible.
12060 Type* expr_type = this->expr_->type();
12061 if (expr_type->is_unsafe_pointer_type())
12062 {
12063 if (this->type_->points_to() == NULL
12064 && (this->type_->integer_type() == NULL
12065 || (this->type_->forwarded()
12066 != Type::lookup_integer_type("uintptr"))))
12067 this->report_error(_("invalid unsafe.Pointer conversion"));
12068 }
12069 else if (this->type_->is_unsafe_pointer_type())
12070 {
12071 if (expr_type->points_to() == NULL
12072 && (expr_type->integer_type() == NULL
12073 || (expr_type->forwarded()
12074 != Type::lookup_integer_type("uintptr"))))
12075 this->report_error(_("invalid unsafe.Pointer conversion"));
12076 }
12077 else if (expr_type->interface_type() == NULL)
12078 {
12079 if (!expr_type->is_error_type() && !this->type_->is_error_type())
12080 this->report_error(_("type assertion only valid for interface types"));
12081 this->set_is_error();
12082 }
12083 else if (this->type_->interface_type() == NULL)
12084 {
12085 std::string reason;
12086 if (!expr_type->interface_type()->implements_interface(this->type_,
12087 &reason))
12088 {
12089 if (!this->type_->is_error_type())
12090 {
12091 if (reason.empty())
12092 this->report_error(_("impossible type assertion: "
12093 "type does not implement interface"));
12094 else
12095 error_at(this->location(),
12096 ("impossible type assertion: "
12097 "type does not implement interface (%s)"),
12098 reason.c_str());
12099 }
12100 this->set_is_error();
12101 }
12102 }
12103 }
12104
12105 // Return a tree for a type guard expression.
12106
12107 tree
12108 Type_guard_expression::do_get_tree(Translate_context* context)
12109 {
12110 Gogo* gogo = context->gogo();
12111 tree expr_tree = this->expr_->get_tree(context);
12112 if (expr_tree == error_mark_node)
12113 return error_mark_node;
12114 Type* expr_type = this->expr_->type();
12115 if ((this->type_->is_unsafe_pointer_type()
12116 && (expr_type->points_to() != NULL
12117 || expr_type->integer_type() != NULL))
12118 || (expr_type->is_unsafe_pointer_type()
12119 && this->type_->points_to() != NULL))
12120 return convert_to_pointer(this->type_->get_tree(gogo), expr_tree);
12121 else if (expr_type->is_unsafe_pointer_type()
12122 && this->type_->integer_type() != NULL)
12123 return convert_to_integer(this->type_->get_tree(gogo), expr_tree);
12124 else if (this->type_->interface_type() != NULL)
12125 return Expression::convert_interface_to_interface(context, this->type_,
12126 this->expr_->type(),
12127 expr_tree, true,
12128 this->location());
12129 else
12130 return Expression::convert_for_assignment(context, this->type_,
12131 this->expr_->type(), expr_tree,
12132 this->location());
12133 }
12134
12135 // Make a type guard expression.
12136
12137 Expression*
12138 Expression::make_type_guard(Expression* expr, Type* type,
12139 source_location location)
12140 {
12141 return new Type_guard_expression(expr, type, location);
12142 }
12143
12144 // Class Heap_composite_expression.
12145
12146 // When you take the address of a composite literal, it is allocated
12147 // on the heap. This class implements that.
12148
12149 class Heap_composite_expression : public Expression
12150 {
12151 public:
12152 Heap_composite_expression(Expression* expr, source_location location)
12153 : Expression(EXPRESSION_HEAP_COMPOSITE, location),
12154 expr_(expr)
12155 { }
12156
12157 protected:
12158 int
12159 do_traverse(Traverse* traverse)
12160 { return Expression::traverse(&this->expr_, traverse); }
12161
12162 Type*
12163 do_type()
12164 { return Type::make_pointer_type(this->expr_->type()); }
12165
12166 void
12167 do_determine_type(const Type_context*)
12168 { this->expr_->determine_type_no_context(); }
12169
12170 Expression*
12171 do_copy()
12172 {
12173 return Expression::make_heap_composite(this->expr_->copy(),
12174 this->location());
12175 }
12176
12177 tree
12178 do_get_tree(Translate_context*);
12179
12180 // We only export global objects, and the parser does not generate
12181 // this in global scope.
12182 void
12183 do_export(Export*) const
12184 { gcc_unreachable(); }
12185
12186 private:
12187 // The composite literal which is being put on the heap.
12188 Expression* expr_;
12189 };
12190
12191 // Return a tree which allocates a composite literal on the heap.
12192
12193 tree
12194 Heap_composite_expression::do_get_tree(Translate_context* context)
12195 {
12196 tree expr_tree = this->expr_->get_tree(context);
12197 if (expr_tree == error_mark_node)
12198 return error_mark_node;
12199 tree expr_size = TYPE_SIZE_UNIT(TREE_TYPE(expr_tree));
12200 gcc_assert(TREE_CODE(expr_size) == INTEGER_CST);
12201 tree space = context->gogo()->allocate_memory(this->expr_->type(),
12202 expr_size, this->location());
12203 space = fold_convert(build_pointer_type(TREE_TYPE(expr_tree)), space);
12204 space = save_expr(space);
12205 tree ref = build_fold_indirect_ref_loc(this->location(), space);
12206 TREE_THIS_NOTRAP(ref) = 1;
12207 tree ret = build2(COMPOUND_EXPR, TREE_TYPE(space),
12208 build2(MODIFY_EXPR, void_type_node, ref, expr_tree),
12209 space);
12210 SET_EXPR_LOCATION(ret, this->location());
12211 return ret;
12212 }
12213
12214 // Allocate a composite literal on the heap.
12215
12216 Expression*
12217 Expression::make_heap_composite(Expression* expr, source_location location)
12218 {
12219 return new Heap_composite_expression(expr, location);
12220 }
12221
12222 // Class Receive_expression.
12223
12224 // Return the type of a receive expression.
12225
12226 Type*
12227 Receive_expression::do_type()
12228 {
12229 Channel_type* channel_type = this->channel_->type()->channel_type();
12230 if (channel_type == NULL)
12231 return Type::make_error_type();
12232 return channel_type->element_type();
12233 }
12234
12235 // Check types for a receive expression.
12236
12237 void
12238 Receive_expression::do_check_types(Gogo*)
12239 {
12240 Type* type = this->channel_->type();
12241 if (type->is_error_type())
12242 {
12243 this->set_is_error();
12244 return;
12245 }
12246 if (type->channel_type() == NULL)
12247 {
12248 this->report_error(_("expected channel"));
12249 return;
12250 }
12251 if (!type->channel_type()->may_receive())
12252 {
12253 this->report_error(_("invalid receive on send-only channel"));
12254 return;
12255 }
12256 }
12257
12258 // Get a tree for a receive expression.
12259
12260 tree
12261 Receive_expression::do_get_tree(Translate_context* context)
12262 {
12263 Channel_type* channel_type = this->channel_->type()->channel_type();
12264 gcc_assert(channel_type != NULL);
12265 Type* element_type = channel_type->element_type();
12266 tree element_type_tree = element_type->get_tree(context->gogo());
12267
12268 tree channel = this->channel_->get_tree(context);
12269 if (element_type_tree == error_mark_node || channel == error_mark_node)
12270 return error_mark_node;
12271
12272 return Gogo::receive_from_channel(element_type_tree, channel,
12273 this->for_select_, this->location());
12274 }
12275
12276 // Make a receive expression.
12277
12278 Receive_expression*
12279 Expression::make_receive(Expression* channel, source_location location)
12280 {
12281 return new Receive_expression(channel, location);
12282 }
12283
12284 // Class Send_expression.
12285
12286 // Traversal.
12287
12288 int
12289 Send_expression::do_traverse(Traverse* traverse)
12290 {
12291 if (Expression::traverse(&this->channel_, traverse) == TRAVERSE_EXIT)
12292 return TRAVERSE_EXIT;
12293 return Expression::traverse(&this->val_, traverse);
12294 }
12295
12296 // Get the type.
12297
12298 Type*
12299 Send_expression::do_type()
12300 {
12301 return Type::lookup_bool_type();
12302 }
12303
12304 // Set types.
12305
12306 void
12307 Send_expression::do_determine_type(const Type_context*)
12308 {
12309 this->channel_->determine_type_no_context();
12310
12311 Type* type = this->channel_->type();
12312 Type_context subcontext;
12313 if (type->channel_type() != NULL)
12314 subcontext.type = type->channel_type()->element_type();
12315 this->val_->determine_type(&subcontext);
12316 }
12317
12318 // Check types.
12319
12320 void
12321 Send_expression::do_check_types(Gogo*)
12322 {
12323 Type* type = this->channel_->type();
12324 if (type->is_error_type())
12325 {
12326 this->set_is_error();
12327 return;
12328 }
12329 Channel_type* channel_type = type->channel_type();
12330 if (channel_type == NULL)
12331 {
12332 error_at(this->location(), "left operand of %<<-%> must be channel");
12333 this->set_is_error();
12334 return;
12335 }
12336 Type* element_type = channel_type->element_type();
12337 if (element_type != NULL
12338 && !Type::are_assignable(element_type, this->val_->type(), NULL))
12339 {
12340 this->report_error(_("incompatible types in send"));
12341 return;
12342 }
12343 if (!channel_type->may_send())
12344 {
12345 this->report_error(_("invalid send on receive-only channel"));
12346 return;
12347 }
12348 }
12349
12350 // Get a tree for a send expression.
12351
12352 tree
12353 Send_expression::do_get_tree(Translate_context* context)
12354 {
12355 tree channel = this->channel_->get_tree(context);
12356 tree val = this->val_->get_tree(context);
12357 if (channel == error_mark_node || val == error_mark_node)
12358 return error_mark_node;
12359 Channel_type* channel_type = this->channel_->type()->channel_type();
12360 val = Expression::convert_for_assignment(context,
12361 channel_type->element_type(),
12362 this->val_->type(),
12363 val,
12364 this->location());
12365 return Gogo::send_on_channel(channel, val, this->is_value_discarded_,
12366 this->for_select_, this->location());
12367 }
12368
12369 // Make a send expression
12370
12371 Send_expression*
12372 Expression::make_send(Expression* channel, Expression* val,
12373 source_location location)
12374 {
12375 return new Send_expression(channel, val, location);
12376 }
12377
12378 // An expression which evaluates to a pointer to the type descriptor
12379 // of a type.
12380
12381 class Type_descriptor_expression : public Expression
12382 {
12383 public:
12384 Type_descriptor_expression(Type* type, source_location location)
12385 : Expression(EXPRESSION_TYPE_DESCRIPTOR, location),
12386 type_(type)
12387 { }
12388
12389 protected:
12390 Type*
12391 do_type()
12392 { return Type::make_type_descriptor_ptr_type(); }
12393
12394 void
12395 do_determine_type(const Type_context*)
12396 { }
12397
12398 Expression*
12399 do_copy()
12400 { return this; }
12401
12402 tree
12403 do_get_tree(Translate_context* context)
12404 { return this->type_->type_descriptor_pointer(context->gogo()); }
12405
12406 private:
12407 // The type for which this is the descriptor.
12408 Type* type_;
12409 };
12410
12411 // Make a type descriptor expression.
12412
12413 Expression*
12414 Expression::make_type_descriptor(Type* type, source_location location)
12415 {
12416 return new Type_descriptor_expression(type, location);
12417 }
12418
12419 // An expression which evaluates to some characteristic of a type.
12420 // This is only used to initialize fields of a type descriptor. Using
12421 // a new expression class is slightly inefficient but gives us a good
12422 // separation between the frontend and the middle-end with regard to
12423 // how types are laid out.
12424
12425 class Type_info_expression : public Expression
12426 {
12427 public:
12428 Type_info_expression(Type* type, Type_info type_info)
12429 : Expression(EXPRESSION_TYPE_INFO, BUILTINS_LOCATION),
12430 type_(type), type_info_(type_info)
12431 { }
12432
12433 protected:
12434 Type*
12435 do_type();
12436
12437 void
12438 do_determine_type(const Type_context*)
12439 { }
12440
12441 Expression*
12442 do_copy()
12443 { return this; }
12444
12445 tree
12446 do_get_tree(Translate_context* context);
12447
12448 private:
12449 // The type for which we are getting information.
12450 Type* type_;
12451 // What information we want.
12452 Type_info type_info_;
12453 };
12454
12455 // The type is chosen to match what the type descriptor struct
12456 // expects.
12457
12458 Type*
12459 Type_info_expression::do_type()
12460 {
12461 switch (this->type_info_)
12462 {
12463 case TYPE_INFO_SIZE:
12464 return Type::lookup_integer_type("uintptr");
12465 case TYPE_INFO_ALIGNMENT:
12466 case TYPE_INFO_FIELD_ALIGNMENT:
12467 return Type::lookup_integer_type("uint8");
12468 default:
12469 gcc_unreachable();
12470 }
12471 }
12472
12473 // Return type information in GENERIC.
12474
12475 tree
12476 Type_info_expression::do_get_tree(Translate_context* context)
12477 {
12478 tree type_tree = this->type_->get_tree(context->gogo());
12479 if (type_tree == error_mark_node)
12480 return error_mark_node;
12481
12482 tree val_type_tree = this->type()->get_tree(context->gogo());
12483 gcc_assert(val_type_tree != error_mark_node);
12484
12485 if (this->type_info_ == TYPE_INFO_SIZE)
12486 return fold_convert_loc(BUILTINS_LOCATION, val_type_tree,
12487 TYPE_SIZE_UNIT(type_tree));
12488 else
12489 {
12490 unsigned int val;
12491 if (this->type_info_ == TYPE_INFO_ALIGNMENT)
12492 val = go_type_alignment(type_tree);
12493 else
12494 val = go_field_alignment(type_tree);
12495 return build_int_cstu(val_type_tree, val);
12496 }
12497 }
12498
12499 // Make a type info expression.
12500
12501 Expression*
12502 Expression::make_type_info(Type* type, Type_info type_info)
12503 {
12504 return new Type_info_expression(type, type_info);
12505 }
12506
12507 // An expression which evaluates to the offset of a field within a
12508 // struct. This, like Type_info_expression, q.v., is only used to
12509 // initialize fields of a type descriptor.
12510
12511 class Struct_field_offset_expression : public Expression
12512 {
12513 public:
12514 Struct_field_offset_expression(Struct_type* type, const Struct_field* field)
12515 : Expression(EXPRESSION_STRUCT_FIELD_OFFSET, BUILTINS_LOCATION),
12516 type_(type), field_(field)
12517 { }
12518
12519 protected:
12520 Type*
12521 do_type()
12522 { return Type::lookup_integer_type("uintptr"); }
12523
12524 void
12525 do_determine_type(const Type_context*)
12526 { }
12527
12528 Expression*
12529 do_copy()
12530 { return this; }
12531
12532 tree
12533 do_get_tree(Translate_context* context);
12534
12535 private:
12536 // The type of the struct.
12537 Struct_type* type_;
12538 // The field.
12539 const Struct_field* field_;
12540 };
12541
12542 // Return a struct field offset in GENERIC.
12543
12544 tree
12545 Struct_field_offset_expression::do_get_tree(Translate_context* context)
12546 {
12547 tree type_tree = this->type_->get_tree(context->gogo());
12548 if (type_tree == error_mark_node)
12549 return error_mark_node;
12550
12551 tree val_type_tree = this->type()->get_tree(context->gogo());
12552 gcc_assert(val_type_tree != error_mark_node);
12553
12554 const Struct_field_list* fields = this->type_->fields();
12555 tree struct_field_tree = TYPE_FIELDS(type_tree);
12556 Struct_field_list::const_iterator p;
12557 for (p = fields->begin();
12558 p != fields->end();
12559 ++p, struct_field_tree = DECL_CHAIN(struct_field_tree))
12560 {
12561 gcc_assert(struct_field_tree != NULL_TREE);
12562 if (&*p == this->field_)
12563 break;
12564 }
12565 gcc_assert(&*p == this->field_);
12566
12567 return fold_convert_loc(BUILTINS_LOCATION, val_type_tree,
12568 byte_position(struct_field_tree));
12569 }
12570
12571 // Make an expression for a struct field offset.
12572
12573 Expression*
12574 Expression::make_struct_field_offset(Struct_type* type,
12575 const Struct_field* field)
12576 {
12577 return new Struct_field_offset_expression(type, field);
12578 }
12579
12580 // An expression which evaluates to the address of an unnamed label.
12581
12582 class Label_addr_expression : public Expression
12583 {
12584 public:
12585 Label_addr_expression(Label* label, source_location location)
12586 : Expression(EXPRESSION_LABEL_ADDR, location),
12587 label_(label)
12588 { }
12589
12590 protected:
12591 Type*
12592 do_type()
12593 { return Type::make_pointer_type(Type::make_void_type()); }
12594
12595 void
12596 do_determine_type(const Type_context*)
12597 { }
12598
12599 Expression*
12600 do_copy()
12601 { return new Label_addr_expression(this->label_, this->location()); }
12602
12603 tree
12604 do_get_tree(Translate_context*)
12605 { return this->label_->get_addr(this->location()); }
12606
12607 private:
12608 // The label whose address we are taking.
12609 Label* label_;
12610 };
12611
12612 // Make an expression for the address of an unnamed label.
12613
12614 Expression*
12615 Expression::make_label_addr(Label* label, source_location location)
12616 {
12617 return new Label_addr_expression(label, location);
12618 }
12619
12620 // Import an expression. This comes at the end in order to see the
12621 // various class definitions.
12622
12623 Expression*
12624 Expression::import_expression(Import* imp)
12625 {
12626 int c = imp->peek_char();
12627 if (imp->match_c_string("- ")
12628 || imp->match_c_string("! ")
12629 || imp->match_c_string("^ "))
12630 return Unary_expression::do_import(imp);
12631 else if (c == '(')
12632 return Binary_expression::do_import(imp);
12633 else if (imp->match_c_string("true")
12634 || imp->match_c_string("false"))
12635 return Boolean_expression::do_import(imp);
12636 else if (c == '"')
12637 return String_expression::do_import(imp);
12638 else if (c == '-' || (c >= '0' && c <= '9'))
12639 {
12640 // This handles integers, floats and complex constants.
12641 return Integer_expression::do_import(imp);
12642 }
12643 else if (imp->match_c_string("nil"))
12644 return Nil_expression::do_import(imp);
12645 else if (imp->match_c_string("convert"))
12646 return Type_conversion_expression::do_import(imp);
12647 else
12648 {
12649 error_at(imp->location(), "import error: expected expression");
12650 return Expression::make_error(imp->location());
12651 }
12652 }
12653
12654 // Class Expression_list.
12655
12656 // Traverse the list.
12657
12658 int
12659 Expression_list::traverse(Traverse* traverse)
12660 {
12661 for (Expression_list::iterator p = this->begin();
12662 p != this->end();
12663 ++p)
12664 {
12665 if (*p != NULL)
12666 {
12667 if (Expression::traverse(&*p, traverse) == TRAVERSE_EXIT)
12668 return TRAVERSE_EXIT;
12669 }
12670 }
12671 return TRAVERSE_CONTINUE;
12672 }
12673
12674 // Copy the list.
12675
12676 Expression_list*
12677 Expression_list::copy()
12678 {
12679 Expression_list* ret = new Expression_list();
12680 for (Expression_list::iterator p = this->begin();
12681 p != this->end();
12682 ++p)
12683 {
12684 if (*p == NULL)
12685 ret->push_back(NULL);
12686 else
12687 ret->push_back((*p)->copy());
12688 }
12689 return ret;
12690 }
12691
12692 // Return whether an expression list has an error expression.
12693
12694 bool
12695 Expression_list::contains_error() const
12696 {
12697 for (Expression_list::const_iterator p = this->begin();
12698 p != this->end();
12699 ++p)
12700 if (*p != NULL && (*p)->is_error_expression())
12701 return true;
12702 return false;
12703 }