Don't let array indexes be untyped.
[gcc.git] / gcc / go / gofrontend / expressions.cc
1 // expressions.cc -- Go frontend expression handling.
2
3 // Copyright 2009 The Go Authors. All rights reserved.
4 // Use of this source code is governed by a BSD-style
5 // license that can be found in the LICENSE file.
6
7 #include "go-system.h"
8
9 #include <gmp.h>
10
11 #ifndef ENABLE_BUILD_WITH_CXX
12 extern "C"
13 {
14 #endif
15
16 #include "toplev.h"
17 #include "intl.h"
18 #include "tree.h"
19 #include "gimple.h"
20 #include "tree-iterator.h"
21 #include "convert.h"
22 #include "real.h"
23 #include "realmpfr.h"
24
25 #ifndef ENABLE_BUILD_WITH_CXX
26 }
27 #endif
28
29 #include "go-c.h"
30 #include "gogo.h"
31 #include "types.h"
32 #include "export.h"
33 #include "import.h"
34 #include "statements.h"
35 #include "lex.h"
36 #include "expressions.h"
37
38 // Class Expression.
39
40 Expression::Expression(Expression_classification classification,
41 source_location location)
42 : classification_(classification), location_(location)
43 {
44 }
45
46 Expression::~Expression()
47 {
48 }
49
50 // If this expression has a constant integer value, return it.
51
52 bool
53 Expression::integer_constant_value(bool iota_is_constant, mpz_t val,
54 Type** ptype) const
55 {
56 *ptype = NULL;
57 return this->do_integer_constant_value(iota_is_constant, val, ptype);
58 }
59
60 // If this expression has a constant floating point value, return it.
61
62 bool
63 Expression::float_constant_value(mpfr_t val, Type** ptype) const
64 {
65 *ptype = NULL;
66 if (this->do_float_constant_value(val, ptype))
67 return true;
68 mpz_t ival;
69 mpz_init(ival);
70 Type* t;
71 bool ret;
72 if (!this->do_integer_constant_value(false, ival, &t))
73 ret = false;
74 else
75 {
76 mpfr_set_z(val, ival, GMP_RNDN);
77 ret = true;
78 }
79 mpz_clear(ival);
80 return ret;
81 }
82
83 // If this expression has a constant complex value, return it.
84
85 bool
86 Expression::complex_constant_value(mpfr_t real, mpfr_t imag,
87 Type** ptype) const
88 {
89 *ptype = NULL;
90 if (this->do_complex_constant_value(real, imag, ptype))
91 return true;
92 Type *t;
93 if (this->float_constant_value(real, &t))
94 {
95 mpfr_set_ui(imag, 0, GMP_RNDN);
96 return true;
97 }
98 return false;
99 }
100
101 // Traverse the expressions.
102
103 int
104 Expression::traverse(Expression** pexpr, Traverse* traverse)
105 {
106 Expression* expr = *pexpr;
107 if ((traverse->traverse_mask() & Traverse::traverse_expressions) != 0)
108 {
109 int t = traverse->expression(pexpr);
110 if (t == TRAVERSE_EXIT)
111 return TRAVERSE_EXIT;
112 else if (t == TRAVERSE_SKIP_COMPONENTS)
113 return TRAVERSE_CONTINUE;
114 }
115 return expr->do_traverse(traverse);
116 }
117
118 // Traverse subexpressions of this expression.
119
120 int
121 Expression::traverse_subexpressions(Traverse* traverse)
122 {
123 return this->do_traverse(traverse);
124 }
125
126 // Default implementation for do_traverse for child classes.
127
128 int
129 Expression::do_traverse(Traverse*)
130 {
131 return TRAVERSE_CONTINUE;
132 }
133
134 // This virtual function is called by the parser if the value of this
135 // expression is being discarded. By default, we warn. Expressions
136 // with side effects override.
137
138 void
139 Expression::do_discarding_value()
140 {
141 this->warn_about_unused_value();
142 }
143
144 // This virtual function is called to export expressions. This will
145 // only be used by expressions which may be constant.
146
147 void
148 Expression::do_export(Export*) const
149 {
150 gcc_unreachable();
151 }
152
153 // Warn that the value of the expression is not used.
154
155 void
156 Expression::warn_about_unused_value()
157 {
158 warning_at(this->location(), OPT_Wunused_value, "value computed is not used");
159 }
160
161 // Note that this expression is an error. This is called by children
162 // when they discover an error.
163
164 void
165 Expression::set_is_error()
166 {
167 this->classification_ = EXPRESSION_ERROR;
168 }
169
170 // For children to call to report an error conveniently.
171
172 void
173 Expression::report_error(const char* msg)
174 {
175 error_at(this->location_, "%s", msg);
176 this->set_is_error();
177 }
178
179 // Set types of variables and constants. This is implemented by the
180 // child class.
181
182 void
183 Expression::determine_type(const Type_context* context)
184 {
185 this->do_determine_type(context);
186 }
187
188 // Set types when there is no context.
189
190 void
191 Expression::determine_type_no_context()
192 {
193 Type_context context;
194 this->do_determine_type(&context);
195 }
196
197 // Return a tree handling any conversions which must be done during
198 // assignment.
199
200 tree
201 Expression::convert_for_assignment(Translate_context* context, Type* lhs_type,
202 Type* rhs_type, tree rhs_tree,
203 source_location location)
204 {
205 if (lhs_type == rhs_type)
206 return rhs_tree;
207
208 if (lhs_type->is_error_type() || rhs_type->is_error_type())
209 return error_mark_node;
210
211 if (lhs_type->is_undefined() || rhs_type->is_undefined())
212 {
213 // Make sure we report the error.
214 lhs_type->base();
215 rhs_type->base();
216 return error_mark_node;
217 }
218
219 if (rhs_tree == error_mark_node || TREE_TYPE(rhs_tree) == error_mark_node)
220 return error_mark_node;
221
222 Gogo* gogo = context->gogo();
223
224 tree lhs_type_tree = lhs_type->get_tree(gogo);
225 if (lhs_type_tree == error_mark_node)
226 return error_mark_node;
227
228 if (lhs_type->interface_type() != NULL)
229 {
230 if (rhs_type->interface_type() == NULL)
231 return Expression::convert_type_to_interface(context, lhs_type,
232 rhs_type, rhs_tree,
233 location);
234 else
235 return Expression::convert_interface_to_interface(context, lhs_type,
236 rhs_type, rhs_tree,
237 false, location);
238 }
239 else if (rhs_type->interface_type() != NULL)
240 return Expression::convert_interface_to_type(context, lhs_type, rhs_type,
241 rhs_tree, location);
242 else if (lhs_type->is_open_array_type()
243 && rhs_type->is_nil_type())
244 {
245 // Assigning nil to an open array.
246 gcc_assert(TREE_CODE(lhs_type_tree) == RECORD_TYPE);
247
248 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
249
250 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
251 tree field = TYPE_FIELDS(lhs_type_tree);
252 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
253 "__values") == 0);
254 elt->index = field;
255 elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
256
257 elt = VEC_quick_push(constructor_elt, init, NULL);
258 field = DECL_CHAIN(field);
259 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
260 "__count") == 0);
261 elt->index = field;
262 elt->value = fold_convert(TREE_TYPE(field), integer_zero_node);
263
264 elt = VEC_quick_push(constructor_elt, init, NULL);
265 field = DECL_CHAIN(field);
266 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
267 "__capacity") == 0);
268 elt->index = field;
269 elt->value = fold_convert(TREE_TYPE(field), integer_zero_node);
270
271 tree val = build_constructor(lhs_type_tree, init);
272 TREE_CONSTANT(val) = 1;
273
274 return val;
275 }
276 else if (rhs_type->is_nil_type())
277 {
278 // The left hand side should be a pointer type at the tree
279 // level.
280 gcc_assert(POINTER_TYPE_P(lhs_type_tree));
281 return fold_convert(lhs_type_tree, null_pointer_node);
282 }
283 else if (lhs_type_tree == TREE_TYPE(rhs_tree))
284 {
285 // No conversion is needed.
286 return rhs_tree;
287 }
288 else if (POINTER_TYPE_P(lhs_type_tree)
289 || INTEGRAL_TYPE_P(lhs_type_tree)
290 || SCALAR_FLOAT_TYPE_P(lhs_type_tree)
291 || COMPLEX_FLOAT_TYPE_P(lhs_type_tree))
292 return fold_convert_loc(location, lhs_type_tree, rhs_tree);
293 else if (TREE_CODE(lhs_type_tree) == RECORD_TYPE
294 && TREE_CODE(TREE_TYPE(rhs_tree)) == RECORD_TYPE)
295 {
296 // This conversion must be permitted by Go, or we wouldn't have
297 // gotten here.
298 gcc_assert(int_size_in_bytes(lhs_type_tree)
299 == int_size_in_bytes(TREE_TYPE(rhs_tree)));
300 return fold_build1_loc(location, VIEW_CONVERT_EXPR, lhs_type_tree,
301 rhs_tree);
302 }
303 else
304 {
305 gcc_assert(useless_type_conversion_p(lhs_type_tree, TREE_TYPE(rhs_tree)));
306 return rhs_tree;
307 }
308 }
309
310 // Return a tree for a conversion from a non-interface type to an
311 // interface type.
312
313 tree
314 Expression::convert_type_to_interface(Translate_context* context,
315 Type* lhs_type, Type* rhs_type,
316 tree rhs_tree, source_location location)
317 {
318 Gogo* gogo = context->gogo();
319 Interface_type* lhs_interface_type = lhs_type->interface_type();
320 bool lhs_is_empty = lhs_interface_type->is_empty();
321
322 // Since RHS_TYPE is a static type, we can create the interface
323 // method table at compile time.
324
325 // When setting an interface to nil, we just set both fields to
326 // NULL.
327 if (rhs_type->is_nil_type())
328 return lhs_type->get_init_tree(gogo, false);
329
330 // This should have been checked already.
331 gcc_assert(lhs_interface_type->implements_interface(rhs_type, NULL));
332
333 tree lhs_type_tree = lhs_type->get_tree(gogo);
334 if (lhs_type_tree == error_mark_node)
335 return error_mark_node;
336
337 // An interface is a tuple. If LHS_TYPE is an empty interface type,
338 // then the first field is the type descriptor for RHS_TYPE.
339 // Otherwise it is the interface method table for RHS_TYPE.
340 tree first_field_value;
341 if (lhs_is_empty)
342 first_field_value = rhs_type->type_descriptor_pointer(gogo);
343 else
344 {
345 // Build the interface method table for this interface and this
346 // object type: a list of function pointers for each interface
347 // method.
348 Named_type* rhs_named_type = rhs_type->named_type();
349 bool is_pointer = false;
350 if (rhs_named_type == NULL)
351 {
352 rhs_named_type = rhs_type->deref()->named_type();
353 is_pointer = true;
354 }
355 tree method_table;
356 if (rhs_named_type == NULL)
357 method_table = null_pointer_node;
358 else
359 method_table =
360 rhs_named_type->interface_method_table(gogo, lhs_interface_type,
361 is_pointer);
362 first_field_value = fold_convert_loc(location, const_ptr_type_node,
363 method_table);
364 }
365
366 // Start building a constructor for the value we will return.
367
368 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
369
370 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
371 tree field = TYPE_FIELDS(lhs_type_tree);
372 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
373 (lhs_is_empty ? "__type_descriptor" : "__methods")) == 0);
374 elt->index = field;
375 elt->value = fold_convert_loc(location, TREE_TYPE(field), first_field_value);
376
377 elt = VEC_quick_push(constructor_elt, init, NULL);
378 field = DECL_CHAIN(field);
379 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
380 elt->index = field;
381
382 if (rhs_type->points_to() != NULL)
383 {
384 // We are assigning a pointer to the interface; the interface
385 // holds the pointer itself.
386 elt->value = rhs_tree;
387 return build_constructor(lhs_type_tree, init);
388 }
389
390 // We are assigning a non-pointer value to the interface; the
391 // interface gets a copy of the value in the heap.
392
393 tree object_size = TYPE_SIZE_UNIT(TREE_TYPE(rhs_tree));
394
395 tree space = gogo->allocate_memory(rhs_type, object_size, location);
396 space = fold_convert_loc(location, build_pointer_type(TREE_TYPE(rhs_tree)),
397 space);
398 space = save_expr(space);
399
400 tree ref = build_fold_indirect_ref_loc(location, space);
401 TREE_THIS_NOTRAP(ref) = 1;
402 tree set = fold_build2_loc(location, MODIFY_EXPR, void_type_node,
403 ref, rhs_tree);
404
405 elt->value = fold_convert_loc(location, TREE_TYPE(field), space);
406
407 return build2(COMPOUND_EXPR, lhs_type_tree, set,
408 build_constructor(lhs_type_tree, init));
409 }
410
411 // Return a tree for the type descriptor of RHS_TREE, which has
412 // interface type RHS_TYPE. If RHS_TREE is nil the result will be
413 // NULL.
414
415 tree
416 Expression::get_interface_type_descriptor(Translate_context*,
417 Type* rhs_type, tree rhs_tree,
418 source_location location)
419 {
420 tree rhs_type_tree = TREE_TYPE(rhs_tree);
421 gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
422 tree rhs_field = TYPE_FIELDS(rhs_type_tree);
423 tree v = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
424 NULL_TREE);
425 if (rhs_type->interface_type()->is_empty())
426 {
427 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)),
428 "__type_descriptor") == 0);
429 return v;
430 }
431
432 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__methods")
433 == 0);
434 gcc_assert(POINTER_TYPE_P(TREE_TYPE(v)));
435 v = save_expr(v);
436 tree v1 = build_fold_indirect_ref_loc(location, v);
437 gcc_assert(TREE_CODE(TREE_TYPE(v1)) == RECORD_TYPE);
438 tree f = TYPE_FIELDS(TREE_TYPE(v1));
439 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(f)), "__type_descriptor")
440 == 0);
441 v1 = build3(COMPONENT_REF, TREE_TYPE(f), v1, f, NULL_TREE);
442
443 tree eq = fold_build2_loc(location, EQ_EXPR, boolean_type_node, v,
444 fold_convert_loc(location, TREE_TYPE(v),
445 null_pointer_node));
446 tree n = fold_convert_loc(location, TREE_TYPE(v1), null_pointer_node);
447 return fold_build3_loc(location, COND_EXPR, TREE_TYPE(v1),
448 eq, n, v1);
449 }
450
451 // Return a tree for the conversion of an interface type to an
452 // interface type.
453
454 tree
455 Expression::convert_interface_to_interface(Translate_context* context,
456 Type *lhs_type, Type *rhs_type,
457 tree rhs_tree, bool for_type_guard,
458 source_location location)
459 {
460 Gogo* gogo = context->gogo();
461 Interface_type* lhs_interface_type = lhs_type->interface_type();
462 bool lhs_is_empty = lhs_interface_type->is_empty();
463
464 tree lhs_type_tree = lhs_type->get_tree(gogo);
465 if (lhs_type_tree == error_mark_node)
466 return error_mark_node;
467
468 // In the general case this requires runtime examination of the type
469 // method table to match it up with the interface methods.
470
471 // FIXME: If all of the methods in the right hand side interface
472 // also appear in the left hand side interface, then we don't need
473 // to do a runtime check, although we still need to build a new
474 // method table.
475
476 // Get the type descriptor for the right hand side. This will be
477 // NULL for a nil interface.
478
479 if (!DECL_P(rhs_tree))
480 rhs_tree = save_expr(rhs_tree);
481
482 tree rhs_type_descriptor =
483 Expression::get_interface_type_descriptor(context, rhs_type, rhs_tree,
484 location);
485
486 // The result is going to be a two element constructor.
487
488 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
489
490 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
491 tree field = TYPE_FIELDS(lhs_type_tree);
492 elt->index = field;
493
494 if (for_type_guard)
495 {
496 // A type assertion fails when converting a nil interface.
497 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
498 static tree assert_interface_decl;
499 tree call = Gogo::call_builtin(&assert_interface_decl,
500 location,
501 "__go_assert_interface",
502 2,
503 ptr_type_node,
504 TREE_TYPE(lhs_type_descriptor),
505 lhs_type_descriptor,
506 TREE_TYPE(rhs_type_descriptor),
507 rhs_type_descriptor);
508 if (call == error_mark_node)
509 return error_mark_node;
510 // This will panic if the interface conversion fails.
511 TREE_NOTHROW(assert_interface_decl) = 0;
512 elt->value = fold_convert_loc(location, TREE_TYPE(field), call);
513 }
514 else if (lhs_is_empty)
515 {
516 // A convertion to an empty interface always succeeds, and the
517 // first field is just the type descriptor of the object.
518 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
519 "__type_descriptor") == 0);
520 gcc_assert(TREE_TYPE(field) == TREE_TYPE(rhs_type_descriptor));
521 elt->value = rhs_type_descriptor;
522 }
523 else
524 {
525 // A conversion to a non-empty interface may fail, but unlike a
526 // type assertion converting nil will always succeed.
527 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods")
528 == 0);
529 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
530 static tree convert_interface_decl;
531 tree call = Gogo::call_builtin(&convert_interface_decl,
532 location,
533 "__go_convert_interface",
534 2,
535 ptr_type_node,
536 TREE_TYPE(lhs_type_descriptor),
537 lhs_type_descriptor,
538 TREE_TYPE(rhs_type_descriptor),
539 rhs_type_descriptor);
540 if (call == error_mark_node)
541 return error_mark_node;
542 // This will panic if the interface conversion fails.
543 TREE_NOTHROW(convert_interface_decl) = 0;
544 elt->value = fold_convert_loc(location, TREE_TYPE(field), call);
545 }
546
547 // The second field is simply the object pointer.
548
549 elt = VEC_quick_push(constructor_elt, init, NULL);
550 field = DECL_CHAIN(field);
551 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
552 elt->index = field;
553
554 tree rhs_type_tree = TREE_TYPE(rhs_tree);
555 gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
556 tree rhs_field = DECL_CHAIN(TYPE_FIELDS(rhs_type_tree));
557 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__object") == 0);
558 elt->value = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
559 NULL_TREE);
560
561 return build_constructor(lhs_type_tree, init);
562 }
563
564 // Return a tree for the conversion of an interface type to a
565 // non-interface type.
566
567 tree
568 Expression::convert_interface_to_type(Translate_context* context,
569 Type *lhs_type, Type* rhs_type,
570 tree rhs_tree, source_location location)
571 {
572 Gogo* gogo = context->gogo();
573 tree rhs_type_tree = TREE_TYPE(rhs_tree);
574
575 tree lhs_type_tree = lhs_type->get_tree(gogo);
576 if (lhs_type_tree == error_mark_node)
577 return error_mark_node;
578
579 // Call a function to check that the type is valid. The function
580 // will panic with an appropriate runtime type error if the type is
581 // not valid.
582
583 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
584
585 if (!DECL_P(rhs_tree))
586 rhs_tree = save_expr(rhs_tree);
587
588 tree rhs_type_descriptor =
589 Expression::get_interface_type_descriptor(context, rhs_type, rhs_tree,
590 location);
591
592 tree rhs_inter_descriptor = rhs_type->type_descriptor_pointer(gogo);
593
594 static tree check_interface_type_decl;
595 tree call = Gogo::call_builtin(&check_interface_type_decl,
596 location,
597 "__go_check_interface_type",
598 3,
599 void_type_node,
600 TREE_TYPE(lhs_type_descriptor),
601 lhs_type_descriptor,
602 TREE_TYPE(rhs_type_descriptor),
603 rhs_type_descriptor,
604 TREE_TYPE(rhs_inter_descriptor),
605 rhs_inter_descriptor);
606 if (call == error_mark_node)
607 return error_mark_node;
608 // This call will panic if the conversion is invalid.
609 TREE_NOTHROW(check_interface_type_decl) = 0;
610
611 // If the call succeeds, pull out the value.
612 gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
613 tree rhs_field = DECL_CHAIN(TYPE_FIELDS(rhs_type_tree));
614 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__object") == 0);
615 tree val = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
616 NULL_TREE);
617
618 // If the value is a pointer, then it is the value we want.
619 // Otherwise it points to the value.
620 if (lhs_type->points_to() == NULL)
621 {
622 val = fold_convert_loc(location, build_pointer_type(lhs_type_tree), val);
623 val = build_fold_indirect_ref_loc(location, val);
624 }
625
626 return build2(COMPOUND_EXPR, lhs_type_tree, call,
627 fold_convert_loc(location, lhs_type_tree, val));
628 }
629
630 // Convert an expression to a tree. This is implemented by the child
631 // class. Not that it is not in general safe to call this multiple
632 // times for a single expression, but that we don't catch such errors.
633
634 tree
635 Expression::get_tree(Translate_context* context)
636 {
637 // The child may have marked this expression as having an error.
638 if (this->classification_ == EXPRESSION_ERROR)
639 return error_mark_node;
640
641 return this->do_get_tree(context);
642 }
643
644 // Return a tree for VAL in TYPE.
645
646 tree
647 Expression::integer_constant_tree(mpz_t val, tree type)
648 {
649 if (type == error_mark_node)
650 return error_mark_node;
651 else if (TREE_CODE(type) == INTEGER_TYPE)
652 return double_int_to_tree(type,
653 mpz_get_double_int(type, val, true));
654 else if (TREE_CODE(type) == REAL_TYPE)
655 {
656 mpfr_t fval;
657 mpfr_init_set_z(fval, val, GMP_RNDN);
658 tree ret = Expression::float_constant_tree(fval, type);
659 mpfr_clear(fval);
660 return ret;
661 }
662 else if (TREE_CODE(type) == COMPLEX_TYPE)
663 {
664 mpfr_t fval;
665 mpfr_init_set_z(fval, val, GMP_RNDN);
666 tree real = Expression::float_constant_tree(fval, TREE_TYPE(type));
667 mpfr_clear(fval);
668 tree imag = build_real_from_int_cst(TREE_TYPE(type),
669 integer_zero_node);
670 return build_complex(type, real, imag);
671 }
672 else
673 gcc_unreachable();
674 }
675
676 // Return a tree for VAL in TYPE.
677
678 tree
679 Expression::float_constant_tree(mpfr_t val, tree type)
680 {
681 if (type == error_mark_node)
682 return error_mark_node;
683 else if (TREE_CODE(type) == INTEGER_TYPE)
684 {
685 mpz_t ival;
686 mpz_init(ival);
687 mpfr_get_z(ival, val, GMP_RNDN);
688 tree ret = Expression::integer_constant_tree(ival, type);
689 mpz_clear(ival);
690 return ret;
691 }
692 else if (TREE_CODE(type) == REAL_TYPE)
693 {
694 REAL_VALUE_TYPE r1;
695 real_from_mpfr(&r1, val, type, GMP_RNDN);
696 REAL_VALUE_TYPE r2;
697 real_convert(&r2, TYPE_MODE(type), &r1);
698 return build_real(type, r2);
699 }
700 else if (TREE_CODE(type) == COMPLEX_TYPE)
701 {
702 REAL_VALUE_TYPE r1;
703 real_from_mpfr(&r1, val, TREE_TYPE(type), GMP_RNDN);
704 REAL_VALUE_TYPE r2;
705 real_convert(&r2, TYPE_MODE(TREE_TYPE(type)), &r1);
706 tree imag = build_real_from_int_cst(TREE_TYPE(type),
707 integer_zero_node);
708 return build_complex(type, build_real(TREE_TYPE(type), r2), imag);
709 }
710 else
711 gcc_unreachable();
712 }
713
714 // Return a tree for REAL/IMAG in TYPE.
715
716 tree
717 Expression::complex_constant_tree(mpfr_t real, mpfr_t imag, tree type)
718 {
719 if (TREE_CODE(type) == COMPLEX_TYPE)
720 {
721 REAL_VALUE_TYPE r1;
722 real_from_mpfr(&r1, real, TREE_TYPE(type), GMP_RNDN);
723 REAL_VALUE_TYPE r2;
724 real_convert(&r2, TYPE_MODE(TREE_TYPE(type)), &r1);
725
726 REAL_VALUE_TYPE r3;
727 real_from_mpfr(&r3, imag, TREE_TYPE(type), GMP_RNDN);
728 REAL_VALUE_TYPE r4;
729 real_convert(&r4, TYPE_MODE(TREE_TYPE(type)), &r3);
730
731 return build_complex(type, build_real(TREE_TYPE(type), r2),
732 build_real(TREE_TYPE(type), r4));
733 }
734 else
735 gcc_unreachable();
736 }
737
738 // Return a tree which evaluates to true if VAL, of arbitrary integer
739 // type, is negative or is more than the maximum value of BOUND_TYPE.
740 // If SOFAR is not NULL, it is or'red into the result. The return
741 // value may be NULL if SOFAR is NULL.
742
743 tree
744 Expression::check_bounds(tree val, tree bound_type, tree sofar,
745 source_location loc)
746 {
747 tree val_type = TREE_TYPE(val);
748 tree ret = NULL_TREE;
749
750 if (!TYPE_UNSIGNED(val_type))
751 {
752 ret = fold_build2_loc(loc, LT_EXPR, boolean_type_node, val,
753 build_int_cst(val_type, 0));
754 if (ret == boolean_false_node)
755 ret = NULL_TREE;
756 }
757
758 if ((TYPE_UNSIGNED(val_type) && !TYPE_UNSIGNED(bound_type))
759 || TYPE_SIZE(val_type) > TYPE_SIZE(bound_type))
760 {
761 tree max = TYPE_MAX_VALUE(bound_type);
762 tree big = fold_build2_loc(loc, GT_EXPR, boolean_type_node, val,
763 fold_convert_loc(loc, val_type, max));
764 if (big == boolean_false_node)
765 ;
766 else if (ret == NULL_TREE)
767 ret = big;
768 else
769 ret = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
770 ret, big);
771 }
772
773 if (ret == NULL_TREE)
774 return sofar;
775 else if (sofar == NULL_TREE)
776 return ret;
777 else
778 return fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
779 sofar, ret);
780 }
781
782 // Error expressions. This are used to avoid cascading errors.
783
784 class Error_expression : public Expression
785 {
786 public:
787 Error_expression(source_location location)
788 : Expression(EXPRESSION_ERROR, location)
789 { }
790
791 protected:
792 bool
793 do_is_constant() const
794 { return true; }
795
796 bool
797 do_integer_constant_value(bool, mpz_t val, Type**) const
798 {
799 mpz_set_ui(val, 0);
800 return true;
801 }
802
803 bool
804 do_float_constant_value(mpfr_t val, Type**) const
805 {
806 mpfr_set_ui(val, 0, GMP_RNDN);
807 return true;
808 }
809
810 bool
811 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const
812 {
813 mpfr_set_ui(real, 0, GMP_RNDN);
814 mpfr_set_ui(imag, 0, GMP_RNDN);
815 return true;
816 }
817
818 void
819 do_discarding_value()
820 { }
821
822 Type*
823 do_type()
824 { return Type::make_error_type(); }
825
826 void
827 do_determine_type(const Type_context*)
828 { }
829
830 Expression*
831 do_copy()
832 { return this; }
833
834 bool
835 do_is_addressable() const
836 { return true; }
837
838 tree
839 do_get_tree(Translate_context*)
840 { return error_mark_node; }
841 };
842
843 Expression*
844 Expression::make_error(source_location location)
845 {
846 return new Error_expression(location);
847 }
848
849 // An expression which is really a type. This is used during parsing.
850 // It is an error if these survive after lowering.
851
852 class
853 Type_expression : public Expression
854 {
855 public:
856 Type_expression(Type* type, source_location location)
857 : Expression(EXPRESSION_TYPE, location),
858 type_(type)
859 { }
860
861 protected:
862 int
863 do_traverse(Traverse* traverse)
864 { return Type::traverse(this->type_, traverse); }
865
866 Type*
867 do_type()
868 { return this->type_; }
869
870 void
871 do_determine_type(const Type_context*)
872 { }
873
874 void
875 do_check_types(Gogo*)
876 { this->report_error(_("invalid use of type")); }
877
878 Expression*
879 do_copy()
880 { return this; }
881
882 tree
883 do_get_tree(Translate_context*)
884 { gcc_unreachable(); }
885
886 private:
887 // The type which we are representing as an expression.
888 Type* type_;
889 };
890
891 Expression*
892 Expression::make_type(Type* type, source_location location)
893 {
894 return new Type_expression(type, location);
895 }
896
897 // Class Parser_expression.
898
899 Type*
900 Parser_expression::do_type()
901 {
902 // We should never really ask for the type of a Parser_expression.
903 // However, it can happen, at least when we have an invalid const
904 // whose initializer refers to the const itself. In that case we
905 // may ask for the type when lowering the const itself.
906 gcc_assert(saw_errors());
907 return Type::make_error_type();
908 }
909
910 // Class Var_expression.
911
912 // Lower a variable expression. Here we just make sure that the
913 // initialization expression of the variable has been lowered. This
914 // ensures that we will be able to determine the type of the variable
915 // if necessary.
916
917 Expression*
918 Var_expression::do_lower(Gogo* gogo, Named_object* function, int)
919 {
920 if (this->variable_->is_variable())
921 {
922 Variable* var = this->variable_->var_value();
923 // This is either a local variable or a global variable. A
924 // reference to a variable which is local to an enclosing
925 // function will be a reference to a field in a closure.
926 if (var->is_global())
927 function = NULL;
928 var->lower_init_expression(gogo, function);
929 }
930 return this;
931 }
932
933 // Return the name of the variable.
934
935 const std::string&
936 Var_expression::name() const
937 {
938 return this->variable_->name();
939 }
940
941 // Return the type of a reference to a variable.
942
943 Type*
944 Var_expression::do_type()
945 {
946 if (this->variable_->is_variable())
947 return this->variable_->var_value()->type();
948 else if (this->variable_->is_result_variable())
949 return this->variable_->result_var_value()->type();
950 else
951 gcc_unreachable();
952 }
953
954 // Something takes the address of this variable. This means that we
955 // may want to move the variable onto the heap.
956
957 void
958 Var_expression::do_address_taken(bool escapes)
959 {
960 if (!escapes)
961 ;
962 else if (this->variable_->is_variable())
963 this->variable_->var_value()->set_address_taken();
964 else if (this->variable_->is_result_variable())
965 this->variable_->result_var_value()->set_address_taken();
966 else
967 gcc_unreachable();
968 }
969
970 // Get the tree for a reference to a variable.
971
972 tree
973 Var_expression::do_get_tree(Translate_context* context)
974 {
975 return this->variable_->get_tree(context->gogo(), context->function());
976 }
977
978 // Make a reference to a variable in an expression.
979
980 Expression*
981 Expression::make_var_reference(Named_object* var, source_location location)
982 {
983 if (var->is_sink())
984 return Expression::make_sink(location);
985
986 // FIXME: Creating a new object for each reference to a variable is
987 // wasteful.
988 return new Var_expression(var, location);
989 }
990
991 // Class Temporary_reference_expression.
992
993 // The type.
994
995 Type*
996 Temporary_reference_expression::do_type()
997 {
998 return this->statement_->type();
999 }
1000
1001 // Called if something takes the address of this temporary variable.
1002 // We never have to move temporary variables to the heap, but we do
1003 // need to know that they must live in the stack rather than in a
1004 // register.
1005
1006 void
1007 Temporary_reference_expression::do_address_taken(bool)
1008 {
1009 this->statement_->set_is_address_taken();
1010 }
1011
1012 // Get a tree referring to the variable.
1013
1014 tree
1015 Temporary_reference_expression::do_get_tree(Translate_context*)
1016 {
1017 return this->statement_->get_decl();
1018 }
1019
1020 // Make a reference to a temporary variable.
1021
1022 Expression*
1023 Expression::make_temporary_reference(Temporary_statement* statement,
1024 source_location location)
1025 {
1026 return new Temporary_reference_expression(statement, location);
1027 }
1028
1029 // A sink expression--a use of the blank identifier _.
1030
1031 class Sink_expression : public Expression
1032 {
1033 public:
1034 Sink_expression(source_location location)
1035 : Expression(EXPRESSION_SINK, location),
1036 type_(NULL), var_(NULL_TREE)
1037 { }
1038
1039 protected:
1040 void
1041 do_discarding_value()
1042 { }
1043
1044 Type*
1045 do_type();
1046
1047 void
1048 do_determine_type(const Type_context*);
1049
1050 Expression*
1051 do_copy()
1052 { return new Sink_expression(this->location()); }
1053
1054 tree
1055 do_get_tree(Translate_context*);
1056
1057 private:
1058 // The type of this sink variable.
1059 Type* type_;
1060 // The temporary variable we generate.
1061 tree var_;
1062 };
1063
1064 // Return the type of a sink expression.
1065
1066 Type*
1067 Sink_expression::do_type()
1068 {
1069 if (this->type_ == NULL)
1070 return Type::make_sink_type();
1071 return this->type_;
1072 }
1073
1074 // Determine the type of a sink expression.
1075
1076 void
1077 Sink_expression::do_determine_type(const Type_context* context)
1078 {
1079 if (context->type != NULL)
1080 this->type_ = context->type;
1081 }
1082
1083 // Return a temporary variable for a sink expression. This will
1084 // presumably be a write-only variable which the middle-end will drop.
1085
1086 tree
1087 Sink_expression::do_get_tree(Translate_context* context)
1088 {
1089 if (this->var_ == NULL_TREE)
1090 {
1091 gcc_assert(this->type_ != NULL && !this->type_->is_sink_type());
1092 this->var_ = create_tmp_var(this->type_->get_tree(context->gogo()),
1093 "blank");
1094 }
1095 return this->var_;
1096 }
1097
1098 // Make a sink expression.
1099
1100 Expression*
1101 Expression::make_sink(source_location location)
1102 {
1103 return new Sink_expression(location);
1104 }
1105
1106 // Class Func_expression.
1107
1108 // FIXME: Can a function expression appear in a constant expression?
1109 // The value is unchanging. Initializing a constant to the address of
1110 // a function seems like it could work, though there might be little
1111 // point to it.
1112
1113 // Return the name of the function.
1114
1115 const std::string&
1116 Func_expression::name() const
1117 {
1118 return this->function_->name();
1119 }
1120
1121 // Traversal.
1122
1123 int
1124 Func_expression::do_traverse(Traverse* traverse)
1125 {
1126 return (this->closure_ == NULL
1127 ? TRAVERSE_CONTINUE
1128 : Expression::traverse(&this->closure_, traverse));
1129 }
1130
1131 // Return the type of a function expression.
1132
1133 Type*
1134 Func_expression::do_type()
1135 {
1136 if (this->function_->is_function())
1137 return this->function_->func_value()->type();
1138 else if (this->function_->is_function_declaration())
1139 return this->function_->func_declaration_value()->type();
1140 else
1141 gcc_unreachable();
1142 }
1143
1144 // Get the tree for a function expression without evaluating the
1145 // closure.
1146
1147 tree
1148 Func_expression::get_tree_without_closure(Gogo* gogo)
1149 {
1150 Function_type* fntype;
1151 if (this->function_->is_function())
1152 fntype = this->function_->func_value()->type();
1153 else if (this->function_->is_function_declaration())
1154 fntype = this->function_->func_declaration_value()->type();
1155 else
1156 gcc_unreachable();
1157
1158 // Builtin functions are handled specially by Call_expression. We
1159 // can't take their address.
1160 if (fntype->is_builtin())
1161 {
1162 error_at(this->location(), "invalid use of special builtin function %qs",
1163 this->function_->name().c_str());
1164 return error_mark_node;
1165 }
1166
1167 Named_object* no = this->function_;
1168
1169 tree id = no->get_id(gogo);
1170 if (id == error_mark_node)
1171 return error_mark_node;
1172
1173 tree fndecl;
1174 if (no->is_function())
1175 fndecl = no->func_value()->get_or_make_decl(gogo, no, id);
1176 else if (no->is_function_declaration())
1177 fndecl = no->func_declaration_value()->get_or_make_decl(gogo, no, id);
1178 else
1179 gcc_unreachable();
1180
1181 if (fndecl == error_mark_node)
1182 return error_mark_node;
1183
1184 return build_fold_addr_expr_loc(this->location(), fndecl);
1185 }
1186
1187 // Get the tree for a function expression. This is used when we take
1188 // the address of a function rather than simply calling it. If the
1189 // function has a closure, we must use a trampoline.
1190
1191 tree
1192 Func_expression::do_get_tree(Translate_context* context)
1193 {
1194 Gogo* gogo = context->gogo();
1195
1196 tree fnaddr = this->get_tree_without_closure(gogo);
1197 if (fnaddr == error_mark_node)
1198 return error_mark_node;
1199
1200 gcc_assert(TREE_CODE(fnaddr) == ADDR_EXPR
1201 && TREE_CODE(TREE_OPERAND(fnaddr, 0)) == FUNCTION_DECL);
1202 TREE_ADDRESSABLE(TREE_OPERAND(fnaddr, 0)) = 1;
1203
1204 // For a normal non-nested function call, that is all we have to do.
1205 if (!this->function_->is_function()
1206 || this->function_->func_value()->enclosing() == NULL)
1207 {
1208 gcc_assert(this->closure_ == NULL);
1209 return fnaddr;
1210 }
1211
1212 // For a nested function call, we have to always allocate a
1213 // trampoline. If we don't always allocate, then closures will not
1214 // be reliably distinct.
1215 Expression* closure = this->closure_;
1216 tree closure_tree;
1217 if (closure == NULL)
1218 closure_tree = null_pointer_node;
1219 else
1220 {
1221 // Get the value of the closure. This will be a pointer to
1222 // space allocated on the heap.
1223 closure_tree = closure->get_tree(context);
1224 if (closure_tree == error_mark_node)
1225 return error_mark_node;
1226 gcc_assert(POINTER_TYPE_P(TREE_TYPE(closure_tree)));
1227 }
1228
1229 // Now we need to build some code on the heap. This code will load
1230 // the static chain pointer with the closure and then jump to the
1231 // body of the function. The normal gcc approach is to build the
1232 // code on the stack. Unfortunately we can not do that, as Go
1233 // permits us to return the function pointer.
1234
1235 return gogo->make_trampoline(fnaddr, closure_tree, this->location());
1236 }
1237
1238 // Make a reference to a function in an expression.
1239
1240 Expression*
1241 Expression::make_func_reference(Named_object* function, Expression* closure,
1242 source_location location)
1243 {
1244 return new Func_expression(function, closure, location);
1245 }
1246
1247 // Class Unknown_expression.
1248
1249 // Return the name of an unknown expression.
1250
1251 const std::string&
1252 Unknown_expression::name() const
1253 {
1254 return this->named_object_->name();
1255 }
1256
1257 // Lower a reference to an unknown name.
1258
1259 Expression*
1260 Unknown_expression::do_lower(Gogo*, Named_object*, int)
1261 {
1262 source_location location = this->location();
1263 Named_object* no = this->named_object_;
1264 Named_object* real;
1265 if (!no->is_unknown())
1266 real = no;
1267 else
1268 {
1269 real = no->unknown_value()->real_named_object();
1270 if (real == NULL)
1271 {
1272 if (this->is_composite_literal_key_)
1273 return this;
1274 error_at(location, "reference to undefined name %qs",
1275 this->named_object_->message_name().c_str());
1276 return Expression::make_error(location);
1277 }
1278 }
1279 switch (real->classification())
1280 {
1281 case Named_object::NAMED_OBJECT_CONST:
1282 return Expression::make_const_reference(real, location);
1283 case Named_object::NAMED_OBJECT_TYPE:
1284 return Expression::make_type(real->type_value(), location);
1285 case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
1286 if (this->is_composite_literal_key_)
1287 return this;
1288 error_at(location, "reference to undefined type %qs",
1289 real->message_name().c_str());
1290 return Expression::make_error(location);
1291 case Named_object::NAMED_OBJECT_VAR:
1292 return Expression::make_var_reference(real, location);
1293 case Named_object::NAMED_OBJECT_FUNC:
1294 case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
1295 return Expression::make_func_reference(real, NULL, location);
1296 case Named_object::NAMED_OBJECT_PACKAGE:
1297 if (this->is_composite_literal_key_)
1298 return this;
1299 error_at(location, "unexpected reference to package");
1300 return Expression::make_error(location);
1301 default:
1302 gcc_unreachable();
1303 }
1304 }
1305
1306 // Make a reference to an unknown name.
1307
1308 Expression*
1309 Expression::make_unknown_reference(Named_object* no, source_location location)
1310 {
1311 gcc_assert(no->resolve()->is_unknown());
1312 return new Unknown_expression(no, location);
1313 }
1314
1315 // A boolean expression.
1316
1317 class Boolean_expression : public Expression
1318 {
1319 public:
1320 Boolean_expression(bool val, source_location location)
1321 : Expression(EXPRESSION_BOOLEAN, location),
1322 val_(val), type_(NULL)
1323 { }
1324
1325 static Expression*
1326 do_import(Import*);
1327
1328 protected:
1329 bool
1330 do_is_constant() const
1331 { return true; }
1332
1333 Type*
1334 do_type();
1335
1336 void
1337 do_determine_type(const Type_context*);
1338
1339 Expression*
1340 do_copy()
1341 { return this; }
1342
1343 tree
1344 do_get_tree(Translate_context*)
1345 { return this->val_ ? boolean_true_node : boolean_false_node; }
1346
1347 void
1348 do_export(Export* exp) const
1349 { exp->write_c_string(this->val_ ? "true" : "false"); }
1350
1351 private:
1352 // The constant.
1353 bool val_;
1354 // The type as determined by context.
1355 Type* type_;
1356 };
1357
1358 // Get the type.
1359
1360 Type*
1361 Boolean_expression::do_type()
1362 {
1363 if (this->type_ == NULL)
1364 this->type_ = Type::make_boolean_type();
1365 return this->type_;
1366 }
1367
1368 // Set the type from the context.
1369
1370 void
1371 Boolean_expression::do_determine_type(const Type_context* context)
1372 {
1373 if (this->type_ != NULL && !this->type_->is_abstract())
1374 ;
1375 else if (context->type != NULL && context->type->is_boolean_type())
1376 this->type_ = context->type;
1377 else if (!context->may_be_abstract)
1378 this->type_ = Type::lookup_bool_type();
1379 }
1380
1381 // Import a boolean constant.
1382
1383 Expression*
1384 Boolean_expression::do_import(Import* imp)
1385 {
1386 if (imp->peek_char() == 't')
1387 {
1388 imp->require_c_string("true");
1389 return Expression::make_boolean(true, imp->location());
1390 }
1391 else
1392 {
1393 imp->require_c_string("false");
1394 return Expression::make_boolean(false, imp->location());
1395 }
1396 }
1397
1398 // Make a boolean expression.
1399
1400 Expression*
1401 Expression::make_boolean(bool val, source_location location)
1402 {
1403 return new Boolean_expression(val, location);
1404 }
1405
1406 // Class String_expression.
1407
1408 // Get the type.
1409
1410 Type*
1411 String_expression::do_type()
1412 {
1413 if (this->type_ == NULL)
1414 this->type_ = Type::make_string_type();
1415 return this->type_;
1416 }
1417
1418 // Set the type from the context.
1419
1420 void
1421 String_expression::do_determine_type(const Type_context* context)
1422 {
1423 if (this->type_ != NULL && !this->type_->is_abstract())
1424 ;
1425 else if (context->type != NULL && context->type->is_string_type())
1426 this->type_ = context->type;
1427 else if (!context->may_be_abstract)
1428 this->type_ = Type::lookup_string_type();
1429 }
1430
1431 // Build a string constant.
1432
1433 tree
1434 String_expression::do_get_tree(Translate_context* context)
1435 {
1436 return context->gogo()->go_string_constant_tree(this->val_);
1437 }
1438
1439 // Export a string expression.
1440
1441 void
1442 String_expression::do_export(Export* exp) const
1443 {
1444 std::string s;
1445 s.reserve(this->val_.length() * 4 + 2);
1446 s += '"';
1447 for (std::string::const_iterator p = this->val_.begin();
1448 p != this->val_.end();
1449 ++p)
1450 {
1451 if (*p == '\\' || *p == '"')
1452 {
1453 s += '\\';
1454 s += *p;
1455 }
1456 else if (*p >= 0x20 && *p < 0x7f)
1457 s += *p;
1458 else if (*p == '\n')
1459 s += "\\n";
1460 else if (*p == '\t')
1461 s += "\\t";
1462 else
1463 {
1464 s += "\\x";
1465 unsigned char c = *p;
1466 unsigned int dig = c >> 4;
1467 s += dig < 10 ? '0' + dig : 'A' + dig - 10;
1468 dig = c & 0xf;
1469 s += dig < 10 ? '0' + dig : 'A' + dig - 10;
1470 }
1471 }
1472 s += '"';
1473 exp->write_string(s);
1474 }
1475
1476 // Import a string expression.
1477
1478 Expression*
1479 String_expression::do_import(Import* imp)
1480 {
1481 imp->require_c_string("\"");
1482 std::string val;
1483 while (true)
1484 {
1485 int c = imp->get_char();
1486 if (c == '"' || c == -1)
1487 break;
1488 if (c != '\\')
1489 val += static_cast<char>(c);
1490 else
1491 {
1492 c = imp->get_char();
1493 if (c == '\\' || c == '"')
1494 val += static_cast<char>(c);
1495 else if (c == 'n')
1496 val += '\n';
1497 else if (c == 't')
1498 val += '\t';
1499 else if (c == 'x')
1500 {
1501 c = imp->get_char();
1502 unsigned int vh = c >= '0' && c <= '9' ? c - '0' : c - 'A' + 10;
1503 c = imp->get_char();
1504 unsigned int vl = c >= '0' && c <= '9' ? c - '0' : c - 'A' + 10;
1505 char v = (vh << 4) | vl;
1506 val += v;
1507 }
1508 else
1509 {
1510 error_at(imp->location(), "bad string constant");
1511 return Expression::make_error(imp->location());
1512 }
1513 }
1514 }
1515 return Expression::make_string(val, imp->location());
1516 }
1517
1518 // Make a string expression.
1519
1520 Expression*
1521 Expression::make_string(const std::string& val, source_location location)
1522 {
1523 return new String_expression(val, location);
1524 }
1525
1526 // Make an integer expression.
1527
1528 class Integer_expression : public Expression
1529 {
1530 public:
1531 Integer_expression(const mpz_t* val, Type* type, source_location location)
1532 : Expression(EXPRESSION_INTEGER, location),
1533 type_(type)
1534 { mpz_init_set(this->val_, *val); }
1535
1536 static Expression*
1537 do_import(Import*);
1538
1539 // Return whether VAL fits in the type.
1540 static bool
1541 check_constant(mpz_t val, Type*, source_location);
1542
1543 // Write VAL to export data.
1544 static void
1545 export_integer(Export* exp, const mpz_t val);
1546
1547 protected:
1548 bool
1549 do_is_constant() const
1550 { return true; }
1551
1552 bool
1553 do_integer_constant_value(bool, mpz_t val, Type** ptype) const;
1554
1555 Type*
1556 do_type();
1557
1558 void
1559 do_determine_type(const Type_context* context);
1560
1561 void
1562 do_check_types(Gogo*);
1563
1564 tree
1565 do_get_tree(Translate_context*);
1566
1567 Expression*
1568 do_copy()
1569 { return Expression::make_integer(&this->val_, this->type_,
1570 this->location()); }
1571
1572 void
1573 do_export(Export*) const;
1574
1575 private:
1576 // The integer value.
1577 mpz_t val_;
1578 // The type so far.
1579 Type* type_;
1580 };
1581
1582 // Return an integer constant value.
1583
1584 bool
1585 Integer_expression::do_integer_constant_value(bool, mpz_t val,
1586 Type** ptype) const
1587 {
1588 if (this->type_ != NULL)
1589 *ptype = this->type_;
1590 mpz_set(val, this->val_);
1591 return true;
1592 }
1593
1594 // Return the current type. If we haven't set the type yet, we return
1595 // an abstract integer type.
1596
1597 Type*
1598 Integer_expression::do_type()
1599 {
1600 if (this->type_ == NULL)
1601 this->type_ = Type::make_abstract_integer_type();
1602 return this->type_;
1603 }
1604
1605 // Set the type of the integer value. Here we may switch from an
1606 // abstract type to a real type.
1607
1608 void
1609 Integer_expression::do_determine_type(const Type_context* context)
1610 {
1611 if (this->type_ != NULL && !this->type_->is_abstract())
1612 ;
1613 else if (context->type != NULL
1614 && (context->type->integer_type() != NULL
1615 || context->type->float_type() != NULL
1616 || context->type->complex_type() != NULL))
1617 this->type_ = context->type;
1618 else if (!context->may_be_abstract)
1619 this->type_ = Type::lookup_integer_type("int");
1620 }
1621
1622 // Return true if the integer VAL fits in the range of the type TYPE.
1623 // Otherwise give an error and return false. TYPE may be NULL.
1624
1625 bool
1626 Integer_expression::check_constant(mpz_t val, Type* type,
1627 source_location location)
1628 {
1629 if (type == NULL)
1630 return true;
1631 Integer_type* itype = type->integer_type();
1632 if (itype == NULL || itype->is_abstract())
1633 return true;
1634
1635 int bits = mpz_sizeinbase(val, 2);
1636
1637 if (itype->is_unsigned())
1638 {
1639 // For an unsigned type we can only accept a nonnegative number,
1640 // and we must be able to represent at least BITS.
1641 if (mpz_sgn(val) >= 0
1642 && bits <= itype->bits())
1643 return true;
1644 }
1645 else
1646 {
1647 // For a signed type we need an extra bit to indicate the sign.
1648 // We have to handle the most negative integer specially.
1649 if (bits + 1 <= itype->bits()
1650 || (bits <= itype->bits()
1651 && mpz_sgn(val) < 0
1652 && (mpz_scan1(val, 0)
1653 == static_cast<unsigned long>(itype->bits() - 1))
1654 && mpz_scan0(val, itype->bits()) == ULONG_MAX))
1655 return true;
1656 }
1657
1658 error_at(location, "integer constant overflow");
1659 return false;
1660 }
1661
1662 // Check the type of an integer constant.
1663
1664 void
1665 Integer_expression::do_check_types(Gogo*)
1666 {
1667 if (this->type_ == NULL)
1668 return;
1669 if (!Integer_expression::check_constant(this->val_, this->type_,
1670 this->location()))
1671 this->set_is_error();
1672 }
1673
1674 // Get a tree for an integer constant.
1675
1676 tree
1677 Integer_expression::do_get_tree(Translate_context* context)
1678 {
1679 Gogo* gogo = context->gogo();
1680 tree type;
1681 if (this->type_ != NULL && !this->type_->is_abstract())
1682 type = this->type_->get_tree(gogo);
1683 else if (this->type_ != NULL && this->type_->float_type() != NULL)
1684 {
1685 // We are converting to an abstract floating point type.
1686 type = Type::lookup_float_type("float64")->get_tree(gogo);
1687 }
1688 else if (this->type_ != NULL && this->type_->complex_type() != NULL)
1689 {
1690 // We are converting to an abstract complex type.
1691 type = Type::lookup_complex_type("complex128")->get_tree(gogo);
1692 }
1693 else
1694 {
1695 // If we still have an abstract type here, then this is being
1696 // used in a constant expression which didn't get reduced for
1697 // some reason. Use a type which will fit the value. We use <,
1698 // not <=, because we need an extra bit for the sign bit.
1699 int bits = mpz_sizeinbase(this->val_, 2);
1700 if (bits < INT_TYPE_SIZE)
1701 type = Type::lookup_integer_type("int")->get_tree(gogo);
1702 else if (bits < 64)
1703 type = Type::lookup_integer_type("int64")->get_tree(gogo);
1704 else
1705 type = long_long_integer_type_node;
1706 }
1707 return Expression::integer_constant_tree(this->val_, type);
1708 }
1709
1710 // Write VAL to export data.
1711
1712 void
1713 Integer_expression::export_integer(Export* exp, const mpz_t val)
1714 {
1715 char* s = mpz_get_str(NULL, 10, val);
1716 exp->write_c_string(s);
1717 free(s);
1718 }
1719
1720 // Export an integer in a constant expression.
1721
1722 void
1723 Integer_expression::do_export(Export* exp) const
1724 {
1725 Integer_expression::export_integer(exp, this->val_);
1726 // A trailing space lets us reliably identify the end of the number.
1727 exp->write_c_string(" ");
1728 }
1729
1730 // Import an integer, floating point, or complex value. This handles
1731 // all these types because they all start with digits.
1732
1733 Expression*
1734 Integer_expression::do_import(Import* imp)
1735 {
1736 std::string num = imp->read_identifier();
1737 imp->require_c_string(" ");
1738 if (!num.empty() && num[num.length() - 1] == 'i')
1739 {
1740 mpfr_t real;
1741 size_t plus_pos = num.find('+', 1);
1742 size_t minus_pos = num.find('-', 1);
1743 size_t pos;
1744 if (plus_pos == std::string::npos)
1745 pos = minus_pos;
1746 else if (minus_pos == std::string::npos)
1747 pos = plus_pos;
1748 else
1749 {
1750 error_at(imp->location(), "bad number in import data: %qs",
1751 num.c_str());
1752 return Expression::make_error(imp->location());
1753 }
1754 if (pos == std::string::npos)
1755 mpfr_set_ui(real, 0, GMP_RNDN);
1756 else
1757 {
1758 std::string real_str = num.substr(0, pos);
1759 if (mpfr_init_set_str(real, real_str.c_str(), 10, GMP_RNDN) != 0)
1760 {
1761 error_at(imp->location(), "bad number in import data: %qs",
1762 real_str.c_str());
1763 return Expression::make_error(imp->location());
1764 }
1765 }
1766
1767 std::string imag_str;
1768 if (pos == std::string::npos)
1769 imag_str = num;
1770 else
1771 imag_str = num.substr(pos);
1772 imag_str = imag_str.substr(0, imag_str.size() - 1);
1773 mpfr_t imag;
1774 if (mpfr_init_set_str(imag, imag_str.c_str(), 10, GMP_RNDN) != 0)
1775 {
1776 error_at(imp->location(), "bad number in import data: %qs",
1777 imag_str.c_str());
1778 return Expression::make_error(imp->location());
1779 }
1780 Expression* ret = Expression::make_complex(&real, &imag, NULL,
1781 imp->location());
1782 mpfr_clear(real);
1783 mpfr_clear(imag);
1784 return ret;
1785 }
1786 else if (num.find('.') == std::string::npos
1787 && num.find('E') == std::string::npos)
1788 {
1789 mpz_t val;
1790 if (mpz_init_set_str(val, num.c_str(), 10) != 0)
1791 {
1792 error_at(imp->location(), "bad number in import data: %qs",
1793 num.c_str());
1794 return Expression::make_error(imp->location());
1795 }
1796 Expression* ret = Expression::make_integer(&val, NULL, imp->location());
1797 mpz_clear(val);
1798 return ret;
1799 }
1800 else
1801 {
1802 mpfr_t val;
1803 if (mpfr_init_set_str(val, num.c_str(), 10, GMP_RNDN) != 0)
1804 {
1805 error_at(imp->location(), "bad number in import data: %qs",
1806 num.c_str());
1807 return Expression::make_error(imp->location());
1808 }
1809 Expression* ret = Expression::make_float(&val, NULL, imp->location());
1810 mpfr_clear(val);
1811 return ret;
1812 }
1813 }
1814
1815 // Build a new integer value.
1816
1817 Expression*
1818 Expression::make_integer(const mpz_t* val, Type* type,
1819 source_location location)
1820 {
1821 return new Integer_expression(val, type, location);
1822 }
1823
1824 // Floats.
1825
1826 class Float_expression : public Expression
1827 {
1828 public:
1829 Float_expression(const mpfr_t* val, Type* type, source_location location)
1830 : Expression(EXPRESSION_FLOAT, location),
1831 type_(type)
1832 {
1833 mpfr_init_set(this->val_, *val, GMP_RNDN);
1834 }
1835
1836 // Constrain VAL to fit into TYPE.
1837 static void
1838 constrain_float(mpfr_t val, Type* type);
1839
1840 // Return whether VAL fits in the type.
1841 static bool
1842 check_constant(mpfr_t val, Type*, source_location);
1843
1844 // Write VAL to export data.
1845 static void
1846 export_float(Export* exp, const mpfr_t val);
1847
1848 protected:
1849 bool
1850 do_is_constant() const
1851 { return true; }
1852
1853 bool
1854 do_float_constant_value(mpfr_t val, Type**) const;
1855
1856 Type*
1857 do_type();
1858
1859 void
1860 do_determine_type(const Type_context*);
1861
1862 void
1863 do_check_types(Gogo*);
1864
1865 Expression*
1866 do_copy()
1867 { return Expression::make_float(&this->val_, this->type_,
1868 this->location()); }
1869
1870 tree
1871 do_get_tree(Translate_context*);
1872
1873 void
1874 do_export(Export*) const;
1875
1876 private:
1877 // The floating point value.
1878 mpfr_t val_;
1879 // The type so far.
1880 Type* type_;
1881 };
1882
1883 // Constrain VAL to fit into TYPE.
1884
1885 void
1886 Float_expression::constrain_float(mpfr_t val, Type* type)
1887 {
1888 Float_type* ftype = type->float_type();
1889 if (ftype != NULL && !ftype->is_abstract())
1890 {
1891 tree type_tree = ftype->type_tree();
1892 REAL_VALUE_TYPE rvt;
1893 real_from_mpfr(&rvt, val, type_tree, GMP_RNDN);
1894 real_convert(&rvt, TYPE_MODE(type_tree), &rvt);
1895 mpfr_from_real(val, &rvt, GMP_RNDN);
1896 }
1897 }
1898
1899 // Return a floating point constant value.
1900
1901 bool
1902 Float_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
1903 {
1904 if (this->type_ != NULL)
1905 *ptype = this->type_;
1906 mpfr_set(val, this->val_, GMP_RNDN);
1907 return true;
1908 }
1909
1910 // Return the current type. If we haven't set the type yet, we return
1911 // an abstract float type.
1912
1913 Type*
1914 Float_expression::do_type()
1915 {
1916 if (this->type_ == NULL)
1917 this->type_ = Type::make_abstract_float_type();
1918 return this->type_;
1919 }
1920
1921 // Set the type of the float value. Here we may switch from an
1922 // abstract type to a real type.
1923
1924 void
1925 Float_expression::do_determine_type(const Type_context* context)
1926 {
1927 if (this->type_ != NULL && !this->type_->is_abstract())
1928 ;
1929 else if (context->type != NULL
1930 && (context->type->integer_type() != NULL
1931 || context->type->float_type() != NULL
1932 || context->type->complex_type() != NULL))
1933 this->type_ = context->type;
1934 else if (!context->may_be_abstract)
1935 this->type_ = Type::lookup_float_type("float64");
1936 }
1937
1938 // Return true if the floating point value VAL fits in the range of
1939 // the type TYPE. Otherwise give an error and return false. TYPE may
1940 // be NULL.
1941
1942 bool
1943 Float_expression::check_constant(mpfr_t val, Type* type,
1944 source_location location)
1945 {
1946 if (type == NULL)
1947 return true;
1948 Float_type* ftype = type->float_type();
1949 if (ftype == NULL || ftype->is_abstract())
1950 return true;
1951
1952 // A NaN or Infinity always fits in the range of the type.
1953 if (mpfr_nan_p(val) || mpfr_inf_p(val) || mpfr_zero_p(val))
1954 return true;
1955
1956 mp_exp_t exp = mpfr_get_exp(val);
1957 mp_exp_t max_exp;
1958 switch (ftype->bits())
1959 {
1960 case 32:
1961 max_exp = 128;
1962 break;
1963 case 64:
1964 max_exp = 1024;
1965 break;
1966 default:
1967 gcc_unreachable();
1968 }
1969 if (exp > max_exp)
1970 {
1971 error_at(location, "floating point constant overflow");
1972 return false;
1973 }
1974 return true;
1975 }
1976
1977 // Check the type of a float value.
1978
1979 void
1980 Float_expression::do_check_types(Gogo*)
1981 {
1982 if (this->type_ == NULL)
1983 return;
1984
1985 if (!Float_expression::check_constant(this->val_, this->type_,
1986 this->location()))
1987 this->set_is_error();
1988
1989 Integer_type* integer_type = this->type_->integer_type();
1990 if (integer_type != NULL)
1991 {
1992 if (!mpfr_integer_p(this->val_))
1993 this->report_error(_("floating point constant truncated to integer"));
1994 else
1995 {
1996 gcc_assert(!integer_type->is_abstract());
1997 mpz_t ival;
1998 mpz_init(ival);
1999 mpfr_get_z(ival, this->val_, GMP_RNDN);
2000 Integer_expression::check_constant(ival, integer_type,
2001 this->location());
2002 mpz_clear(ival);
2003 }
2004 }
2005 }
2006
2007 // Get a tree for a float constant.
2008
2009 tree
2010 Float_expression::do_get_tree(Translate_context* context)
2011 {
2012 Gogo* gogo = context->gogo();
2013 tree type;
2014 if (this->type_ != NULL && !this->type_->is_abstract())
2015 type = this->type_->get_tree(gogo);
2016 else if (this->type_ != NULL && this->type_->integer_type() != NULL)
2017 {
2018 // We have an abstract integer type. We just hope for the best.
2019 type = Type::lookup_integer_type("int")->get_tree(gogo);
2020 }
2021 else
2022 {
2023 // If we still have an abstract type here, then this is being
2024 // used in a constant expression which didn't get reduced. We
2025 // just use float64 and hope for the best.
2026 type = Type::lookup_float_type("float64")->get_tree(gogo);
2027 }
2028 return Expression::float_constant_tree(this->val_, type);
2029 }
2030
2031 // Write a floating point number to export data.
2032
2033 void
2034 Float_expression::export_float(Export *exp, const mpfr_t val)
2035 {
2036 mp_exp_t exponent;
2037 char* s = mpfr_get_str(NULL, &exponent, 10, 0, val, GMP_RNDN);
2038 if (*s == '-')
2039 exp->write_c_string("-");
2040 exp->write_c_string("0.");
2041 exp->write_c_string(*s == '-' ? s + 1 : s);
2042 mpfr_free_str(s);
2043 char buf[30];
2044 snprintf(buf, sizeof buf, "E%ld", exponent);
2045 exp->write_c_string(buf);
2046 }
2047
2048 // Export a floating point number in a constant expression.
2049
2050 void
2051 Float_expression::do_export(Export* exp) const
2052 {
2053 Float_expression::export_float(exp, this->val_);
2054 // A trailing space lets us reliably identify the end of the number.
2055 exp->write_c_string(" ");
2056 }
2057
2058 // Make a float expression.
2059
2060 Expression*
2061 Expression::make_float(const mpfr_t* val, Type* type, source_location location)
2062 {
2063 return new Float_expression(val, type, location);
2064 }
2065
2066 // Complex numbers.
2067
2068 class Complex_expression : public Expression
2069 {
2070 public:
2071 Complex_expression(const mpfr_t* real, const mpfr_t* imag, Type* type,
2072 source_location location)
2073 : Expression(EXPRESSION_COMPLEX, location),
2074 type_(type)
2075 {
2076 mpfr_init_set(this->real_, *real, GMP_RNDN);
2077 mpfr_init_set(this->imag_, *imag, GMP_RNDN);
2078 }
2079
2080 // Constrain REAL/IMAG to fit into TYPE.
2081 static void
2082 constrain_complex(mpfr_t real, mpfr_t imag, Type* type);
2083
2084 // Return whether REAL/IMAG fits in the type.
2085 static bool
2086 check_constant(mpfr_t real, mpfr_t imag, Type*, source_location);
2087
2088 // Write REAL/IMAG to export data.
2089 static void
2090 export_complex(Export* exp, const mpfr_t real, const mpfr_t val);
2091
2092 protected:
2093 bool
2094 do_is_constant() const
2095 { return true; }
2096
2097 bool
2098 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const;
2099
2100 Type*
2101 do_type();
2102
2103 void
2104 do_determine_type(const Type_context*);
2105
2106 void
2107 do_check_types(Gogo*);
2108
2109 Expression*
2110 do_copy()
2111 {
2112 return Expression::make_complex(&this->real_, &this->imag_, this->type_,
2113 this->location());
2114 }
2115
2116 tree
2117 do_get_tree(Translate_context*);
2118
2119 void
2120 do_export(Export*) const;
2121
2122 private:
2123 // The real part.
2124 mpfr_t real_;
2125 // The imaginary part;
2126 mpfr_t imag_;
2127 // The type if known.
2128 Type* type_;
2129 };
2130
2131 // Constrain REAL/IMAG to fit into TYPE.
2132
2133 void
2134 Complex_expression::constrain_complex(mpfr_t real, mpfr_t imag, Type* type)
2135 {
2136 Complex_type* ctype = type->complex_type();
2137 if (ctype != NULL && !ctype->is_abstract())
2138 {
2139 tree type_tree = ctype->type_tree();
2140
2141 REAL_VALUE_TYPE rvt;
2142 real_from_mpfr(&rvt, real, TREE_TYPE(type_tree), GMP_RNDN);
2143 real_convert(&rvt, TYPE_MODE(TREE_TYPE(type_tree)), &rvt);
2144 mpfr_from_real(real, &rvt, GMP_RNDN);
2145
2146 real_from_mpfr(&rvt, imag, TREE_TYPE(type_tree), GMP_RNDN);
2147 real_convert(&rvt, TYPE_MODE(TREE_TYPE(type_tree)), &rvt);
2148 mpfr_from_real(imag, &rvt, GMP_RNDN);
2149 }
2150 }
2151
2152 // Return a complex constant value.
2153
2154 bool
2155 Complex_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
2156 Type** ptype) const
2157 {
2158 if (this->type_ != NULL)
2159 *ptype = this->type_;
2160 mpfr_set(real, this->real_, GMP_RNDN);
2161 mpfr_set(imag, this->imag_, GMP_RNDN);
2162 return true;
2163 }
2164
2165 // Return the current type. If we haven't set the type yet, we return
2166 // an abstract complex type.
2167
2168 Type*
2169 Complex_expression::do_type()
2170 {
2171 if (this->type_ == NULL)
2172 this->type_ = Type::make_abstract_complex_type();
2173 return this->type_;
2174 }
2175
2176 // Set the type of the complex value. Here we may switch from an
2177 // abstract type to a real type.
2178
2179 void
2180 Complex_expression::do_determine_type(const Type_context* context)
2181 {
2182 if (this->type_ != NULL && !this->type_->is_abstract())
2183 ;
2184 else if (context->type != NULL
2185 && context->type->complex_type() != NULL)
2186 this->type_ = context->type;
2187 else if (!context->may_be_abstract)
2188 this->type_ = Type::lookup_complex_type("complex128");
2189 }
2190
2191 // Return true if the complex value REAL/IMAG fits in the range of the
2192 // type TYPE. Otherwise give an error and return false. TYPE may be
2193 // NULL.
2194
2195 bool
2196 Complex_expression::check_constant(mpfr_t real, mpfr_t imag, Type* type,
2197 source_location location)
2198 {
2199 if (type == NULL)
2200 return true;
2201 Complex_type* ctype = type->complex_type();
2202 if (ctype == NULL || ctype->is_abstract())
2203 return true;
2204
2205 mp_exp_t max_exp;
2206 switch (ctype->bits())
2207 {
2208 case 64:
2209 max_exp = 128;
2210 break;
2211 case 128:
2212 max_exp = 1024;
2213 break;
2214 default:
2215 gcc_unreachable();
2216 }
2217
2218 // A NaN or Infinity always fits in the range of the type.
2219 if (!mpfr_nan_p(real) && !mpfr_inf_p(real) && !mpfr_zero_p(real))
2220 {
2221 if (mpfr_get_exp(real) > max_exp)
2222 {
2223 error_at(location, "complex real part constant overflow");
2224 return false;
2225 }
2226 }
2227
2228 if (!mpfr_nan_p(imag) && !mpfr_inf_p(imag) && !mpfr_zero_p(imag))
2229 {
2230 if (mpfr_get_exp(imag) > max_exp)
2231 {
2232 error_at(location, "complex imaginary part constant overflow");
2233 return false;
2234 }
2235 }
2236
2237 return true;
2238 }
2239
2240 // Check the type of a complex value.
2241
2242 void
2243 Complex_expression::do_check_types(Gogo*)
2244 {
2245 if (this->type_ == NULL)
2246 return;
2247
2248 if (!Complex_expression::check_constant(this->real_, this->imag_,
2249 this->type_, this->location()))
2250 this->set_is_error();
2251 }
2252
2253 // Get a tree for a complex constant.
2254
2255 tree
2256 Complex_expression::do_get_tree(Translate_context* context)
2257 {
2258 Gogo* gogo = context->gogo();
2259 tree type;
2260 if (this->type_ != NULL && !this->type_->is_abstract())
2261 type = this->type_->get_tree(gogo);
2262 else
2263 {
2264 // If we still have an abstract type here, this this is being
2265 // used in a constant expression which didn't get reduced. We
2266 // just use complex128 and hope for the best.
2267 type = Type::lookup_complex_type("complex128")->get_tree(gogo);
2268 }
2269 return Expression::complex_constant_tree(this->real_, this->imag_, type);
2270 }
2271
2272 // Write REAL/IMAG to export data.
2273
2274 void
2275 Complex_expression::export_complex(Export* exp, const mpfr_t real,
2276 const mpfr_t imag)
2277 {
2278 if (!mpfr_zero_p(real))
2279 {
2280 Float_expression::export_float(exp, real);
2281 if (mpfr_sgn(imag) > 0)
2282 exp->write_c_string("+");
2283 }
2284 Float_expression::export_float(exp, imag);
2285 exp->write_c_string("i");
2286 }
2287
2288 // Export a complex number in a constant expression.
2289
2290 void
2291 Complex_expression::do_export(Export* exp) const
2292 {
2293 Complex_expression::export_complex(exp, this->real_, this->imag_);
2294 // A trailing space lets us reliably identify the end of the number.
2295 exp->write_c_string(" ");
2296 }
2297
2298 // Make a complex expression.
2299
2300 Expression*
2301 Expression::make_complex(const mpfr_t* real, const mpfr_t* imag, Type* type,
2302 source_location location)
2303 {
2304 return new Complex_expression(real, imag, type, location);
2305 }
2306
2307 // Find a named object in an expression.
2308
2309 class Find_named_object : public Traverse
2310 {
2311 public:
2312 Find_named_object(Named_object* no)
2313 : Traverse(traverse_expressions),
2314 no_(no), found_(false)
2315 { }
2316
2317 // Whether we found the object.
2318 bool
2319 found() const
2320 { return this->found_; }
2321
2322 protected:
2323 int
2324 expression(Expression**);
2325
2326 private:
2327 // The object we are looking for.
2328 Named_object* no_;
2329 // Whether we found it.
2330 bool found_;
2331 };
2332
2333 // A reference to a const in an expression.
2334
2335 class Const_expression : public Expression
2336 {
2337 public:
2338 Const_expression(Named_object* constant, source_location location)
2339 : Expression(EXPRESSION_CONST_REFERENCE, location),
2340 constant_(constant), type_(NULL), seen_(false)
2341 { }
2342
2343 Named_object*
2344 named_object()
2345 { return this->constant_; }
2346
2347 const std::string&
2348 name() const
2349 { return this->constant_->name(); }
2350
2351 // Check that the initializer does not refer to the constant itself.
2352 void
2353 check_for_init_loop();
2354
2355 protected:
2356 Expression*
2357 do_lower(Gogo*, Named_object*, int);
2358
2359 bool
2360 do_is_constant() const
2361 { return true; }
2362
2363 bool
2364 do_integer_constant_value(bool, mpz_t val, Type**) const;
2365
2366 bool
2367 do_float_constant_value(mpfr_t val, Type**) const;
2368
2369 bool
2370 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const;
2371
2372 bool
2373 do_string_constant_value(std::string* val) const
2374 { return this->constant_->const_value()->expr()->string_constant_value(val); }
2375
2376 Type*
2377 do_type();
2378
2379 // The type of a const is set by the declaration, not the use.
2380 void
2381 do_determine_type(const Type_context*);
2382
2383 void
2384 do_check_types(Gogo*);
2385
2386 Expression*
2387 do_copy()
2388 { return this; }
2389
2390 tree
2391 do_get_tree(Translate_context* context);
2392
2393 // When exporting a reference to a const as part of a const
2394 // expression, we export the value. We ignore the fact that it has
2395 // a name.
2396 void
2397 do_export(Export* exp) const
2398 { this->constant_->const_value()->expr()->export_expression(exp); }
2399
2400 private:
2401 // The constant.
2402 Named_object* constant_;
2403 // The type of this reference. This is used if the constant has an
2404 // abstract type.
2405 Type* type_;
2406 // Used to prevent infinite recursion when a constant incorrectly
2407 // refers to itself.
2408 mutable bool seen_;
2409 };
2410
2411 // Lower a constant expression. This is where we convert the
2412 // predeclared constant iota into an integer value.
2413
2414 Expression*
2415 Const_expression::do_lower(Gogo* gogo, Named_object*, int iota_value)
2416 {
2417 if (this->constant_->const_value()->expr()->classification()
2418 == EXPRESSION_IOTA)
2419 {
2420 if (iota_value == -1)
2421 {
2422 error_at(this->location(),
2423 "iota is only defined in const declarations");
2424 iota_value = 0;
2425 }
2426 mpz_t val;
2427 mpz_init_set_ui(val, static_cast<unsigned long>(iota_value));
2428 Expression* ret = Expression::make_integer(&val, NULL,
2429 this->location());
2430 mpz_clear(val);
2431 return ret;
2432 }
2433
2434 // Make sure that the constant itself has been lowered.
2435 gogo->lower_constant(this->constant_);
2436
2437 return this;
2438 }
2439
2440 // Return an integer constant value.
2441
2442 bool
2443 Const_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
2444 Type** ptype) const
2445 {
2446 if (this->seen_)
2447 return false;
2448
2449 Type* ctype;
2450 if (this->type_ != NULL)
2451 ctype = this->type_;
2452 else
2453 ctype = this->constant_->const_value()->type();
2454 if (ctype != NULL && ctype->integer_type() == NULL)
2455 return false;
2456
2457 Expression* e = this->constant_->const_value()->expr();
2458
2459 this->seen_ = true;
2460
2461 Type* t;
2462 bool r = e->integer_constant_value(iota_is_constant, val, &t);
2463
2464 this->seen_ = false;
2465
2466 if (r
2467 && ctype != NULL
2468 && !Integer_expression::check_constant(val, ctype, this->location()))
2469 return false;
2470
2471 *ptype = ctype != NULL ? ctype : t;
2472 return r;
2473 }
2474
2475 // Return a floating point constant value.
2476
2477 bool
2478 Const_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
2479 {
2480 if (this->seen_)
2481 return false;
2482
2483 Type* ctype;
2484 if (this->type_ != NULL)
2485 ctype = this->type_;
2486 else
2487 ctype = this->constant_->const_value()->type();
2488 if (ctype != NULL && ctype->float_type() == NULL)
2489 return false;
2490
2491 this->seen_ = true;
2492
2493 Type* t;
2494 bool r = this->constant_->const_value()->expr()->float_constant_value(val,
2495 &t);
2496
2497 this->seen_ = false;
2498
2499 if (r && ctype != NULL)
2500 {
2501 if (!Float_expression::check_constant(val, ctype, this->location()))
2502 return false;
2503 Float_expression::constrain_float(val, ctype);
2504 }
2505 *ptype = ctype != NULL ? ctype : t;
2506 return r;
2507 }
2508
2509 // Return a complex constant value.
2510
2511 bool
2512 Const_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
2513 Type **ptype) const
2514 {
2515 if (this->seen_)
2516 return false;
2517
2518 Type* ctype;
2519 if (this->type_ != NULL)
2520 ctype = this->type_;
2521 else
2522 ctype = this->constant_->const_value()->type();
2523 if (ctype != NULL && ctype->complex_type() == NULL)
2524 return false;
2525
2526 this->seen_ = true;
2527
2528 Type *t;
2529 bool r = this->constant_->const_value()->expr()->complex_constant_value(real,
2530 imag,
2531 &t);
2532
2533 this->seen_ = false;
2534
2535 if (r && ctype != NULL)
2536 {
2537 if (!Complex_expression::check_constant(real, imag, ctype,
2538 this->location()))
2539 return false;
2540 Complex_expression::constrain_complex(real, imag, ctype);
2541 }
2542 *ptype = ctype != NULL ? ctype : t;
2543 return r;
2544 }
2545
2546 // Return the type of the const reference.
2547
2548 Type*
2549 Const_expression::do_type()
2550 {
2551 if (this->type_ != NULL)
2552 return this->type_;
2553
2554 Named_constant* nc = this->constant_->const_value();
2555
2556 if (this->seen_ || nc->lowering())
2557 {
2558 this->report_error(_("constant refers to itself"));
2559 this->type_ = Type::make_error_type();
2560 return this->type_;
2561 }
2562
2563 this->seen_ = true;
2564
2565 Type* ret = nc->type();
2566
2567 if (ret != NULL)
2568 {
2569 this->seen_ = false;
2570 return ret;
2571 }
2572
2573 // During parsing, a named constant may have a NULL type, but we
2574 // must not return a NULL type here.
2575 ret = nc->expr()->type();
2576
2577 this->seen_ = false;
2578
2579 return ret;
2580 }
2581
2582 // Set the type of the const reference.
2583
2584 void
2585 Const_expression::do_determine_type(const Type_context* context)
2586 {
2587 Type* ctype = this->constant_->const_value()->type();
2588 Type* cetype = (ctype != NULL
2589 ? ctype
2590 : this->constant_->const_value()->expr()->type());
2591 if (ctype != NULL && !ctype->is_abstract())
2592 ;
2593 else if (context->type != NULL
2594 && (context->type->integer_type() != NULL
2595 || context->type->float_type() != NULL
2596 || context->type->complex_type() != NULL)
2597 && (cetype->integer_type() != NULL
2598 || cetype->float_type() != NULL
2599 || cetype->complex_type() != NULL))
2600 this->type_ = context->type;
2601 else if (context->type != NULL
2602 && context->type->is_string_type()
2603 && cetype->is_string_type())
2604 this->type_ = context->type;
2605 else if (context->type != NULL
2606 && context->type->is_boolean_type()
2607 && cetype->is_boolean_type())
2608 this->type_ = context->type;
2609 else if (!context->may_be_abstract)
2610 {
2611 if (cetype->is_abstract())
2612 cetype = cetype->make_non_abstract_type();
2613 this->type_ = cetype;
2614 }
2615 }
2616
2617 // Check for a loop in which the initializer of a constant refers to
2618 // the constant itself.
2619
2620 void
2621 Const_expression::check_for_init_loop()
2622 {
2623 if (this->type_ != NULL && this->type_->is_error_type())
2624 return;
2625
2626 if (this->seen_)
2627 {
2628 this->report_error(_("constant refers to itself"));
2629 this->type_ = Type::make_error_type();
2630 return;
2631 }
2632
2633 Expression* init = this->constant_->const_value()->expr();
2634 Find_named_object find_named_object(this->constant_);
2635
2636 this->seen_ = true;
2637 Expression::traverse(&init, &find_named_object);
2638 this->seen_ = false;
2639
2640 if (find_named_object.found())
2641 {
2642 if (this->type_ == NULL || !this->type_->is_error_type())
2643 {
2644 this->report_error(_("constant refers to itself"));
2645 this->type_ = Type::make_error_type();
2646 }
2647 return;
2648 }
2649 }
2650
2651 // Check types of a const reference.
2652
2653 void
2654 Const_expression::do_check_types(Gogo*)
2655 {
2656 if (this->type_ != NULL && this->type_->is_error_type())
2657 return;
2658
2659 this->check_for_init_loop();
2660
2661 if (this->type_ == NULL || this->type_->is_abstract())
2662 return;
2663
2664 // Check for integer overflow.
2665 if (this->type_->integer_type() != NULL)
2666 {
2667 mpz_t ival;
2668 mpz_init(ival);
2669 Type* dummy;
2670 if (!this->integer_constant_value(true, ival, &dummy))
2671 {
2672 mpfr_t fval;
2673 mpfr_init(fval);
2674 Expression* cexpr = this->constant_->const_value()->expr();
2675 if (cexpr->float_constant_value(fval, &dummy))
2676 {
2677 if (!mpfr_integer_p(fval))
2678 this->report_error(_("floating point constant "
2679 "truncated to integer"));
2680 else
2681 {
2682 mpfr_get_z(ival, fval, GMP_RNDN);
2683 Integer_expression::check_constant(ival, this->type_,
2684 this->location());
2685 }
2686 }
2687 mpfr_clear(fval);
2688 }
2689 mpz_clear(ival);
2690 }
2691 }
2692
2693 // Return a tree for the const reference.
2694
2695 tree
2696 Const_expression::do_get_tree(Translate_context* context)
2697 {
2698 Gogo* gogo = context->gogo();
2699 tree type_tree;
2700 if (this->type_ == NULL)
2701 type_tree = NULL_TREE;
2702 else
2703 {
2704 type_tree = this->type_->get_tree(gogo);
2705 if (type_tree == error_mark_node)
2706 return error_mark_node;
2707 }
2708
2709 // If the type has been set for this expression, but the underlying
2710 // object is an abstract int or float, we try to get the abstract
2711 // value. Otherwise we may lose something in the conversion.
2712 if (this->type_ != NULL
2713 && (this->constant_->const_value()->type() == NULL
2714 || this->constant_->const_value()->type()->is_abstract()))
2715 {
2716 Expression* expr = this->constant_->const_value()->expr();
2717 mpz_t ival;
2718 mpz_init(ival);
2719 Type* t;
2720 if (expr->integer_constant_value(true, ival, &t))
2721 {
2722 tree ret = Expression::integer_constant_tree(ival, type_tree);
2723 mpz_clear(ival);
2724 return ret;
2725 }
2726 mpz_clear(ival);
2727
2728 mpfr_t fval;
2729 mpfr_init(fval);
2730 if (expr->float_constant_value(fval, &t))
2731 {
2732 tree ret = Expression::float_constant_tree(fval, type_tree);
2733 mpfr_clear(fval);
2734 return ret;
2735 }
2736
2737 mpfr_t imag;
2738 mpfr_init(imag);
2739 if (expr->complex_constant_value(fval, imag, &t))
2740 {
2741 tree ret = Expression::complex_constant_tree(fval, imag, type_tree);
2742 mpfr_clear(fval);
2743 mpfr_clear(imag);
2744 return ret;
2745 }
2746 mpfr_clear(imag);
2747 mpfr_clear(fval);
2748 }
2749
2750 tree const_tree = this->constant_->get_tree(gogo, context->function());
2751 if (this->type_ == NULL
2752 || const_tree == error_mark_node
2753 || TREE_TYPE(const_tree) == error_mark_node)
2754 return const_tree;
2755
2756 tree ret;
2757 if (TYPE_MAIN_VARIANT(type_tree) == TYPE_MAIN_VARIANT(TREE_TYPE(const_tree)))
2758 ret = fold_convert(type_tree, const_tree);
2759 else if (TREE_CODE(type_tree) == INTEGER_TYPE)
2760 ret = fold(convert_to_integer(type_tree, const_tree));
2761 else if (TREE_CODE(type_tree) == REAL_TYPE)
2762 ret = fold(convert_to_real(type_tree, const_tree));
2763 else if (TREE_CODE(type_tree) == COMPLEX_TYPE)
2764 ret = fold(convert_to_complex(type_tree, const_tree));
2765 else
2766 gcc_unreachable();
2767 return ret;
2768 }
2769
2770 // Make a reference to a constant in an expression.
2771
2772 Expression*
2773 Expression::make_const_reference(Named_object* constant,
2774 source_location location)
2775 {
2776 return new Const_expression(constant, location);
2777 }
2778
2779 // Find a named object in an expression.
2780
2781 int
2782 Find_named_object::expression(Expression** pexpr)
2783 {
2784 switch ((*pexpr)->classification())
2785 {
2786 case Expression::EXPRESSION_CONST_REFERENCE:
2787 {
2788 Const_expression* ce = static_cast<Const_expression*>(*pexpr);
2789 if (ce->named_object() == this->no_)
2790 break;
2791
2792 // We need to check a constant initializer explicitly, as
2793 // loops here will not be caught by the loop checking for
2794 // variable initializers.
2795 ce->check_for_init_loop();
2796
2797 return TRAVERSE_CONTINUE;
2798 }
2799
2800 case Expression::EXPRESSION_VAR_REFERENCE:
2801 if ((*pexpr)->var_expression()->named_object() == this->no_)
2802 break;
2803 return TRAVERSE_CONTINUE;
2804 case Expression::EXPRESSION_FUNC_REFERENCE:
2805 if ((*pexpr)->func_expression()->named_object() == this->no_)
2806 break;
2807 return TRAVERSE_CONTINUE;
2808 default:
2809 return TRAVERSE_CONTINUE;
2810 }
2811 this->found_ = true;
2812 return TRAVERSE_EXIT;
2813 }
2814
2815 // The nil value.
2816
2817 class Nil_expression : public Expression
2818 {
2819 public:
2820 Nil_expression(source_location location)
2821 : Expression(EXPRESSION_NIL, location)
2822 { }
2823
2824 static Expression*
2825 do_import(Import*);
2826
2827 protected:
2828 bool
2829 do_is_constant() const
2830 { return true; }
2831
2832 Type*
2833 do_type()
2834 { return Type::make_nil_type(); }
2835
2836 void
2837 do_determine_type(const Type_context*)
2838 { }
2839
2840 Expression*
2841 do_copy()
2842 { return this; }
2843
2844 tree
2845 do_get_tree(Translate_context*)
2846 { return null_pointer_node; }
2847
2848 void
2849 do_export(Export* exp) const
2850 { exp->write_c_string("nil"); }
2851 };
2852
2853 // Import a nil expression.
2854
2855 Expression*
2856 Nil_expression::do_import(Import* imp)
2857 {
2858 imp->require_c_string("nil");
2859 return Expression::make_nil(imp->location());
2860 }
2861
2862 // Make a nil expression.
2863
2864 Expression*
2865 Expression::make_nil(source_location location)
2866 {
2867 return new Nil_expression(location);
2868 }
2869
2870 // The value of the predeclared constant iota. This is little more
2871 // than a marker. This will be lowered to an integer in
2872 // Const_expression::do_lower, which is where we know the value that
2873 // it should have.
2874
2875 class Iota_expression : public Parser_expression
2876 {
2877 public:
2878 Iota_expression(source_location location)
2879 : Parser_expression(EXPRESSION_IOTA, location)
2880 { }
2881
2882 protected:
2883 Expression*
2884 do_lower(Gogo*, Named_object*, int)
2885 { gcc_unreachable(); }
2886
2887 // There should only ever be one of these.
2888 Expression*
2889 do_copy()
2890 { gcc_unreachable(); }
2891 };
2892
2893 // Make an iota expression. This is only called for one case: the
2894 // value of the predeclared constant iota.
2895
2896 Expression*
2897 Expression::make_iota()
2898 {
2899 static Iota_expression iota_expression(UNKNOWN_LOCATION);
2900 return &iota_expression;
2901 }
2902
2903 // A type conversion expression.
2904
2905 class Type_conversion_expression : public Expression
2906 {
2907 public:
2908 Type_conversion_expression(Type* type, Expression* expr,
2909 source_location location)
2910 : Expression(EXPRESSION_CONVERSION, location),
2911 type_(type), expr_(expr), may_convert_function_types_(false)
2912 { }
2913
2914 // Return the type to which we are converting.
2915 Type*
2916 type() const
2917 { return this->type_; }
2918
2919 // Return the expression which we are converting.
2920 Expression*
2921 expr() const
2922 { return this->expr_; }
2923
2924 // Permit converting from one function type to another. This is
2925 // used internally for method expressions.
2926 void
2927 set_may_convert_function_types()
2928 {
2929 this->may_convert_function_types_ = true;
2930 }
2931
2932 // Import a type conversion expression.
2933 static Expression*
2934 do_import(Import*);
2935
2936 protected:
2937 int
2938 do_traverse(Traverse* traverse);
2939
2940 Expression*
2941 do_lower(Gogo*, Named_object*, int);
2942
2943 bool
2944 do_is_constant() const
2945 { return this->expr_->is_constant(); }
2946
2947 bool
2948 do_integer_constant_value(bool, mpz_t, Type**) const;
2949
2950 bool
2951 do_float_constant_value(mpfr_t, Type**) const;
2952
2953 bool
2954 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
2955
2956 bool
2957 do_string_constant_value(std::string*) const;
2958
2959 Type*
2960 do_type()
2961 { return this->type_; }
2962
2963 void
2964 do_determine_type(const Type_context*)
2965 {
2966 Type_context subcontext(this->type_, false);
2967 this->expr_->determine_type(&subcontext);
2968 }
2969
2970 void
2971 do_check_types(Gogo*);
2972
2973 Expression*
2974 do_copy()
2975 {
2976 return new Type_conversion_expression(this->type_, this->expr_->copy(),
2977 this->location());
2978 }
2979
2980 tree
2981 do_get_tree(Translate_context* context);
2982
2983 void
2984 do_export(Export*) const;
2985
2986 private:
2987 // The type to convert to.
2988 Type* type_;
2989 // The expression to convert.
2990 Expression* expr_;
2991 // True if this is permitted to convert function types. This is
2992 // used internally for method expressions.
2993 bool may_convert_function_types_;
2994 };
2995
2996 // Traversal.
2997
2998 int
2999 Type_conversion_expression::do_traverse(Traverse* traverse)
3000 {
3001 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
3002 || Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
3003 return TRAVERSE_EXIT;
3004 return TRAVERSE_CONTINUE;
3005 }
3006
3007 // Convert to a constant at lowering time.
3008
3009 Expression*
3010 Type_conversion_expression::do_lower(Gogo*, Named_object*, int)
3011 {
3012 Type* type = this->type_;
3013 Expression* val = this->expr_;
3014 source_location location = this->location();
3015
3016 if (type->integer_type() != NULL)
3017 {
3018 mpz_t ival;
3019 mpz_init(ival);
3020 Type* dummy;
3021 if (val->integer_constant_value(false, ival, &dummy))
3022 {
3023 if (!Integer_expression::check_constant(ival, type, location))
3024 mpz_set_ui(ival, 0);
3025 Expression* ret = Expression::make_integer(&ival, type, location);
3026 mpz_clear(ival);
3027 return ret;
3028 }
3029
3030 mpfr_t fval;
3031 mpfr_init(fval);
3032 if (val->float_constant_value(fval, &dummy))
3033 {
3034 if (!mpfr_integer_p(fval))
3035 {
3036 error_at(location,
3037 "floating point constant truncated to integer");
3038 return Expression::make_error(location);
3039 }
3040 mpfr_get_z(ival, fval, GMP_RNDN);
3041 if (!Integer_expression::check_constant(ival, type, location))
3042 mpz_set_ui(ival, 0);
3043 Expression* ret = Expression::make_integer(&ival, type, location);
3044 mpfr_clear(fval);
3045 mpz_clear(ival);
3046 return ret;
3047 }
3048 mpfr_clear(fval);
3049 mpz_clear(ival);
3050 }
3051
3052 if (type->float_type() != NULL)
3053 {
3054 mpfr_t fval;
3055 mpfr_init(fval);
3056 Type* dummy;
3057 if (val->float_constant_value(fval, &dummy))
3058 {
3059 if (!Float_expression::check_constant(fval, type, location))
3060 mpfr_set_ui(fval, 0, GMP_RNDN);
3061 Float_expression::constrain_float(fval, type);
3062 Expression *ret = Expression::make_float(&fval, type, location);
3063 mpfr_clear(fval);
3064 return ret;
3065 }
3066 mpfr_clear(fval);
3067 }
3068
3069 if (type->complex_type() != NULL)
3070 {
3071 mpfr_t real;
3072 mpfr_t imag;
3073 mpfr_init(real);
3074 mpfr_init(imag);
3075 Type* dummy;
3076 if (val->complex_constant_value(real, imag, &dummy))
3077 {
3078 if (!Complex_expression::check_constant(real, imag, type, location))
3079 {
3080 mpfr_set_ui(real, 0, GMP_RNDN);
3081 mpfr_set_ui(imag, 0, GMP_RNDN);
3082 }
3083 Complex_expression::constrain_complex(real, imag, type);
3084 Expression* ret = Expression::make_complex(&real, &imag, type,
3085 location);
3086 mpfr_clear(real);
3087 mpfr_clear(imag);
3088 return ret;
3089 }
3090 mpfr_clear(real);
3091 mpfr_clear(imag);
3092 }
3093
3094 if (type->is_open_array_type() && type->named_type() == NULL)
3095 {
3096 Type* element_type = type->array_type()->element_type()->forwarded();
3097 bool is_byte = element_type == Type::lookup_integer_type("uint8");
3098 bool is_int = element_type == Type::lookup_integer_type("int");
3099 if (is_byte || is_int)
3100 {
3101 std::string s;
3102 if (val->string_constant_value(&s))
3103 {
3104 Expression_list* vals = new Expression_list();
3105 if (is_byte)
3106 {
3107 for (std::string::const_iterator p = s.begin();
3108 p != s.end();
3109 p++)
3110 {
3111 mpz_t val;
3112 mpz_init_set_ui(val, static_cast<unsigned char>(*p));
3113 Expression* v = Expression::make_integer(&val,
3114 element_type,
3115 location);
3116 vals->push_back(v);
3117 mpz_clear(val);
3118 }
3119 }
3120 else
3121 {
3122 const char *p = s.data();
3123 const char *pend = s.data() + s.length();
3124 while (p < pend)
3125 {
3126 unsigned int c;
3127 int adv = Lex::fetch_char(p, &c);
3128 if (adv == 0)
3129 {
3130 warning_at(this->location(), 0,
3131 "invalid UTF-8 encoding");
3132 adv = 1;
3133 }
3134 p += adv;
3135 mpz_t val;
3136 mpz_init_set_ui(val, c);
3137 Expression* v = Expression::make_integer(&val,
3138 element_type,
3139 location);
3140 vals->push_back(v);
3141 mpz_clear(val);
3142 }
3143 }
3144
3145 return Expression::make_slice_composite_literal(type, vals,
3146 location);
3147 }
3148 }
3149 }
3150
3151 return this;
3152 }
3153
3154 // Return the constant integer value if there is one.
3155
3156 bool
3157 Type_conversion_expression::do_integer_constant_value(bool iota_is_constant,
3158 mpz_t val,
3159 Type** ptype) const
3160 {
3161 if (this->type_->integer_type() == NULL)
3162 return false;
3163
3164 mpz_t ival;
3165 mpz_init(ival);
3166 Type* dummy;
3167 if (this->expr_->integer_constant_value(iota_is_constant, ival, &dummy))
3168 {
3169 if (!Integer_expression::check_constant(ival, this->type_,
3170 this->location()))
3171 {
3172 mpz_clear(ival);
3173 return false;
3174 }
3175 mpz_set(val, ival);
3176 mpz_clear(ival);
3177 *ptype = this->type_;
3178 return true;
3179 }
3180 mpz_clear(ival);
3181
3182 mpfr_t fval;
3183 mpfr_init(fval);
3184 if (this->expr_->float_constant_value(fval, &dummy))
3185 {
3186 mpfr_get_z(val, fval, GMP_RNDN);
3187 mpfr_clear(fval);
3188 if (!Integer_expression::check_constant(val, this->type_,
3189 this->location()))
3190 return false;
3191 *ptype = this->type_;
3192 return true;
3193 }
3194 mpfr_clear(fval);
3195
3196 return false;
3197 }
3198
3199 // Return the constant floating point value if there is one.
3200
3201 bool
3202 Type_conversion_expression::do_float_constant_value(mpfr_t val,
3203 Type** ptype) const
3204 {
3205 if (this->type_->float_type() == NULL)
3206 return false;
3207
3208 mpfr_t fval;
3209 mpfr_init(fval);
3210 Type* dummy;
3211 if (this->expr_->float_constant_value(fval, &dummy))
3212 {
3213 if (!Float_expression::check_constant(fval, this->type_,
3214 this->location()))
3215 {
3216 mpfr_clear(fval);
3217 return false;
3218 }
3219 mpfr_set(val, fval, GMP_RNDN);
3220 mpfr_clear(fval);
3221 Float_expression::constrain_float(val, this->type_);
3222 *ptype = this->type_;
3223 return true;
3224 }
3225 mpfr_clear(fval);
3226
3227 return false;
3228 }
3229
3230 // Return the constant complex value if there is one.
3231
3232 bool
3233 Type_conversion_expression::do_complex_constant_value(mpfr_t real,
3234 mpfr_t imag,
3235 Type **ptype) const
3236 {
3237 if (this->type_->complex_type() == NULL)
3238 return false;
3239
3240 mpfr_t rval;
3241 mpfr_t ival;
3242 mpfr_init(rval);
3243 mpfr_init(ival);
3244 Type* dummy;
3245 if (this->expr_->complex_constant_value(rval, ival, &dummy))
3246 {
3247 if (!Complex_expression::check_constant(rval, ival, this->type_,
3248 this->location()))
3249 {
3250 mpfr_clear(rval);
3251 mpfr_clear(ival);
3252 return false;
3253 }
3254 mpfr_set(real, rval, GMP_RNDN);
3255 mpfr_set(imag, ival, GMP_RNDN);
3256 mpfr_clear(rval);
3257 mpfr_clear(ival);
3258 Complex_expression::constrain_complex(real, imag, this->type_);
3259 *ptype = this->type_;
3260 return true;
3261 }
3262 mpfr_clear(rval);
3263 mpfr_clear(ival);
3264
3265 return false;
3266 }
3267
3268 // Return the constant string value if there is one.
3269
3270 bool
3271 Type_conversion_expression::do_string_constant_value(std::string* val) const
3272 {
3273 if (this->type_->is_string_type()
3274 && this->expr_->type()->integer_type() != NULL)
3275 {
3276 mpz_t ival;
3277 mpz_init(ival);
3278 Type* dummy;
3279 if (this->expr_->integer_constant_value(false, ival, &dummy))
3280 {
3281 unsigned long ulval = mpz_get_ui(ival);
3282 if (mpz_cmp_ui(ival, ulval) == 0)
3283 {
3284 Lex::append_char(ulval, true, val, this->location());
3285 mpz_clear(ival);
3286 return true;
3287 }
3288 }
3289 mpz_clear(ival);
3290 }
3291
3292 // FIXME: Could handle conversion from const []int here.
3293
3294 return false;
3295 }
3296
3297 // Check that types are convertible.
3298
3299 void
3300 Type_conversion_expression::do_check_types(Gogo*)
3301 {
3302 Type* type = this->type_;
3303 Type* expr_type = this->expr_->type();
3304 std::string reason;
3305
3306 if (type->is_error_type()
3307 || type->is_undefined()
3308 || expr_type->is_error_type()
3309 || expr_type->is_undefined())
3310 {
3311 // Make sure we emit an error for an undefined type.
3312 type->base();
3313 expr_type->base();
3314 this->set_is_error();
3315 return;
3316 }
3317
3318 if (this->may_convert_function_types_
3319 && type->function_type() != NULL
3320 && expr_type->function_type() != NULL)
3321 return;
3322
3323 if (Type::are_convertible(type, expr_type, &reason))
3324 return;
3325
3326 error_at(this->location(), "%s", reason.c_str());
3327 this->set_is_error();
3328 }
3329
3330 // Get a tree for a type conversion.
3331
3332 tree
3333 Type_conversion_expression::do_get_tree(Translate_context* context)
3334 {
3335 Gogo* gogo = context->gogo();
3336 tree type_tree = this->type_->get_tree(gogo);
3337 tree expr_tree = this->expr_->get_tree(context);
3338
3339 if (type_tree == error_mark_node
3340 || expr_tree == error_mark_node
3341 || TREE_TYPE(expr_tree) == error_mark_node)
3342 return error_mark_node;
3343
3344 if (TYPE_MAIN_VARIANT(type_tree) == TYPE_MAIN_VARIANT(TREE_TYPE(expr_tree)))
3345 return fold_convert(type_tree, expr_tree);
3346
3347 Type* type = this->type_;
3348 Type* expr_type = this->expr_->type();
3349 tree ret;
3350 if (type->interface_type() != NULL || expr_type->interface_type() != NULL)
3351 ret = Expression::convert_for_assignment(context, type, expr_type,
3352 expr_tree, this->location());
3353 else if (type->integer_type() != NULL)
3354 {
3355 if (expr_type->integer_type() != NULL
3356 || expr_type->float_type() != NULL
3357 || expr_type->is_unsafe_pointer_type())
3358 ret = fold(convert_to_integer(type_tree, expr_tree));
3359 else
3360 gcc_unreachable();
3361 }
3362 else if (type->float_type() != NULL)
3363 {
3364 if (expr_type->integer_type() != NULL
3365 || expr_type->float_type() != NULL)
3366 ret = fold(convert_to_real(type_tree, expr_tree));
3367 else
3368 gcc_unreachable();
3369 }
3370 else if (type->complex_type() != NULL)
3371 {
3372 if (expr_type->complex_type() != NULL)
3373 ret = fold(convert_to_complex(type_tree, expr_tree));
3374 else
3375 gcc_unreachable();
3376 }
3377 else if (type->is_string_type()
3378 && expr_type->integer_type() != NULL)
3379 {
3380 expr_tree = fold_convert(integer_type_node, expr_tree);
3381 if (host_integerp(expr_tree, 0))
3382 {
3383 HOST_WIDE_INT intval = tree_low_cst(expr_tree, 0);
3384 std::string s;
3385 Lex::append_char(intval, true, &s, this->location());
3386 Expression* se = Expression::make_string(s, this->location());
3387 return se->get_tree(context);
3388 }
3389
3390 static tree int_to_string_fndecl;
3391 ret = Gogo::call_builtin(&int_to_string_fndecl,
3392 this->location(),
3393 "__go_int_to_string",
3394 1,
3395 type_tree,
3396 integer_type_node,
3397 fold_convert(integer_type_node, expr_tree));
3398 }
3399 else if (type->is_string_type()
3400 && (expr_type->array_type() != NULL
3401 || (expr_type->points_to() != NULL
3402 && expr_type->points_to()->array_type() != NULL)))
3403 {
3404 Type* t = expr_type;
3405 if (t->points_to() != NULL)
3406 {
3407 t = t->points_to();
3408 expr_tree = build_fold_indirect_ref(expr_tree);
3409 }
3410 if (!DECL_P(expr_tree))
3411 expr_tree = save_expr(expr_tree);
3412 Array_type* a = t->array_type();
3413 Type* e = a->element_type()->forwarded();
3414 gcc_assert(e->integer_type() != NULL);
3415 tree valptr = fold_convert(const_ptr_type_node,
3416 a->value_pointer_tree(gogo, expr_tree));
3417 tree len = a->length_tree(gogo, expr_tree);
3418 len = fold_convert_loc(this->location(), size_type_node, len);
3419 if (e->integer_type()->is_unsigned()
3420 && e->integer_type()->bits() == 8)
3421 {
3422 static tree byte_array_to_string_fndecl;
3423 ret = Gogo::call_builtin(&byte_array_to_string_fndecl,
3424 this->location(),
3425 "__go_byte_array_to_string",
3426 2,
3427 type_tree,
3428 const_ptr_type_node,
3429 valptr,
3430 size_type_node,
3431 len);
3432 }
3433 else
3434 {
3435 gcc_assert(e == Type::lookup_integer_type("int"));
3436 static tree int_array_to_string_fndecl;
3437 ret = Gogo::call_builtin(&int_array_to_string_fndecl,
3438 this->location(),
3439 "__go_int_array_to_string",
3440 2,
3441 type_tree,
3442 const_ptr_type_node,
3443 valptr,
3444 size_type_node,
3445 len);
3446 }
3447 }
3448 else if (type->is_open_array_type() && expr_type->is_string_type())
3449 {
3450 Type* e = type->array_type()->element_type()->forwarded();
3451 gcc_assert(e->integer_type() != NULL);
3452 if (e->integer_type()->is_unsigned()
3453 && e->integer_type()->bits() == 8)
3454 {
3455 static tree string_to_byte_array_fndecl;
3456 ret = Gogo::call_builtin(&string_to_byte_array_fndecl,
3457 this->location(),
3458 "__go_string_to_byte_array",
3459 1,
3460 type_tree,
3461 TREE_TYPE(expr_tree),
3462 expr_tree);
3463 }
3464 else
3465 {
3466 gcc_assert(e == Type::lookup_integer_type("int"));
3467 static tree string_to_int_array_fndecl;
3468 ret = Gogo::call_builtin(&string_to_int_array_fndecl,
3469 this->location(),
3470 "__go_string_to_int_array",
3471 1,
3472 type_tree,
3473 TREE_TYPE(expr_tree),
3474 expr_tree);
3475 }
3476 }
3477 else if ((type->is_unsafe_pointer_type()
3478 && expr_type->points_to() != NULL)
3479 || (expr_type->is_unsafe_pointer_type()
3480 && type->points_to() != NULL))
3481 ret = fold_convert(type_tree, expr_tree);
3482 else if (type->is_unsafe_pointer_type()
3483 && expr_type->integer_type() != NULL)
3484 ret = convert_to_pointer(type_tree, expr_tree);
3485 else if (this->may_convert_function_types_
3486 && type->function_type() != NULL
3487 && expr_type->function_type() != NULL)
3488 ret = fold_convert_loc(this->location(), type_tree, expr_tree);
3489 else
3490 ret = Expression::convert_for_assignment(context, type, expr_type,
3491 expr_tree, this->location());
3492
3493 return ret;
3494 }
3495
3496 // Output a type conversion in a constant expression.
3497
3498 void
3499 Type_conversion_expression::do_export(Export* exp) const
3500 {
3501 exp->write_c_string("convert(");
3502 exp->write_type(this->type_);
3503 exp->write_c_string(", ");
3504 this->expr_->export_expression(exp);
3505 exp->write_c_string(")");
3506 }
3507
3508 // Import a type conversion or a struct construction.
3509
3510 Expression*
3511 Type_conversion_expression::do_import(Import* imp)
3512 {
3513 imp->require_c_string("convert(");
3514 Type* type = imp->read_type();
3515 imp->require_c_string(", ");
3516 Expression* val = Expression::import_expression(imp);
3517 imp->require_c_string(")");
3518 return Expression::make_cast(type, val, imp->location());
3519 }
3520
3521 // Make a type cast expression.
3522
3523 Expression*
3524 Expression::make_cast(Type* type, Expression* val, source_location location)
3525 {
3526 if (type->is_error_type() || val->is_error_expression())
3527 return Expression::make_error(location);
3528 return new Type_conversion_expression(type, val, location);
3529 }
3530
3531 // Unary expressions.
3532
3533 class Unary_expression : public Expression
3534 {
3535 public:
3536 Unary_expression(Operator op, Expression* expr, source_location location)
3537 : Expression(EXPRESSION_UNARY, location),
3538 op_(op), escapes_(true), expr_(expr)
3539 { }
3540
3541 // Return the operator.
3542 Operator
3543 op() const
3544 { return this->op_; }
3545
3546 // Return the operand.
3547 Expression*
3548 operand() const
3549 { return this->expr_; }
3550
3551 // Record that an address expression does not escape.
3552 void
3553 set_does_not_escape()
3554 {
3555 gcc_assert(this->op_ == OPERATOR_AND);
3556 this->escapes_ = false;
3557 }
3558
3559 // Apply unary opcode OP to UVAL, setting VAL. Return true if this
3560 // could be done, false if not.
3561 static bool
3562 eval_integer(Operator op, Type* utype, mpz_t uval, mpz_t val,
3563 source_location);
3564
3565 // Apply unary opcode OP to UVAL, setting VAL. Return true if this
3566 // could be done, false if not.
3567 static bool
3568 eval_float(Operator op, mpfr_t uval, mpfr_t val);
3569
3570 // Apply unary opcode OP to UREAL/UIMAG, setting REAL/IMAG. Return
3571 // true if this could be done, false if not.
3572 static bool
3573 eval_complex(Operator op, mpfr_t ureal, mpfr_t uimag, mpfr_t real,
3574 mpfr_t imag);
3575
3576 static Expression*
3577 do_import(Import*);
3578
3579 protected:
3580 int
3581 do_traverse(Traverse* traverse)
3582 { return Expression::traverse(&this->expr_, traverse); }
3583
3584 Expression*
3585 do_lower(Gogo*, Named_object*, int);
3586
3587 bool
3588 do_is_constant() const;
3589
3590 bool
3591 do_integer_constant_value(bool, mpz_t, Type**) const;
3592
3593 bool
3594 do_float_constant_value(mpfr_t, Type**) const;
3595
3596 bool
3597 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
3598
3599 Type*
3600 do_type();
3601
3602 void
3603 do_determine_type(const Type_context*);
3604
3605 void
3606 do_check_types(Gogo*);
3607
3608 Expression*
3609 do_copy()
3610 {
3611 return Expression::make_unary(this->op_, this->expr_->copy(),
3612 this->location());
3613 }
3614
3615 bool
3616 do_is_addressable() const
3617 { return this->op_ == OPERATOR_MULT; }
3618
3619 tree
3620 do_get_tree(Translate_context*);
3621
3622 void
3623 do_export(Export*) const;
3624
3625 private:
3626 // The unary operator to apply.
3627 Operator op_;
3628 // Normally true. False if this is an address expression which does
3629 // not escape the current function.
3630 bool escapes_;
3631 // The operand.
3632 Expression* expr_;
3633 };
3634
3635 // If we are taking the address of a composite literal, and the
3636 // contents are not constant, then we want to make a heap composite
3637 // instead.
3638
3639 Expression*
3640 Unary_expression::do_lower(Gogo*, Named_object*, int)
3641 {
3642 source_location loc = this->location();
3643 Operator op = this->op_;
3644 Expression* expr = this->expr_;
3645
3646 if (op == OPERATOR_MULT && expr->is_type_expression())
3647 return Expression::make_type(Type::make_pointer_type(expr->type()), loc);
3648
3649 // *&x simplifies to x. *(*T)(unsafe.Pointer)(&x) does not require
3650 // moving x to the heap. FIXME: Is it worth doing a real escape
3651 // analysis here? This case is found in math/unsafe.go and is
3652 // therefore worth special casing.
3653 if (op == OPERATOR_MULT)
3654 {
3655 Expression* e = expr;
3656 while (e->classification() == EXPRESSION_CONVERSION)
3657 {
3658 Type_conversion_expression* te
3659 = static_cast<Type_conversion_expression*>(e);
3660 e = te->expr();
3661 }
3662
3663 if (e->classification() == EXPRESSION_UNARY)
3664 {
3665 Unary_expression* ue = static_cast<Unary_expression*>(e);
3666 if (ue->op_ == OPERATOR_AND)
3667 {
3668 if (e == expr)
3669 {
3670 // *&x == x.
3671 return ue->expr_;
3672 }
3673 ue->set_does_not_escape();
3674 }
3675 }
3676 }
3677
3678 if (op == OPERATOR_PLUS || op == OPERATOR_MINUS
3679 || op == OPERATOR_NOT || op == OPERATOR_XOR)
3680 {
3681 Expression* ret = NULL;
3682
3683 mpz_t eval;
3684 mpz_init(eval);
3685 Type* etype;
3686 if (expr->integer_constant_value(false, eval, &etype))
3687 {
3688 mpz_t val;
3689 mpz_init(val);
3690 if (Unary_expression::eval_integer(op, etype, eval, val, loc))
3691 ret = Expression::make_integer(&val, etype, loc);
3692 mpz_clear(val);
3693 }
3694 mpz_clear(eval);
3695 if (ret != NULL)
3696 return ret;
3697
3698 if (op == OPERATOR_PLUS || op == OPERATOR_MINUS)
3699 {
3700 mpfr_t fval;
3701 mpfr_init(fval);
3702 Type* ftype;
3703 if (expr->float_constant_value(fval, &ftype))
3704 {
3705 mpfr_t val;
3706 mpfr_init(val);
3707 if (Unary_expression::eval_float(op, fval, val))
3708 ret = Expression::make_float(&val, ftype, loc);
3709 mpfr_clear(val);
3710 }
3711 if (ret != NULL)
3712 {
3713 mpfr_clear(fval);
3714 return ret;
3715 }
3716
3717 mpfr_t ival;
3718 mpfr_init(ival);
3719 if (expr->complex_constant_value(fval, ival, &ftype))
3720 {
3721 mpfr_t real;
3722 mpfr_t imag;
3723 mpfr_init(real);
3724 mpfr_init(imag);
3725 if (Unary_expression::eval_complex(op, fval, ival, real, imag))
3726 ret = Expression::make_complex(&real, &imag, ftype, loc);
3727 mpfr_clear(real);
3728 mpfr_clear(imag);
3729 }
3730 mpfr_clear(ival);
3731 mpfr_clear(fval);
3732 if (ret != NULL)
3733 return ret;
3734 }
3735 }
3736
3737 return this;
3738 }
3739
3740 // Return whether a unary expression is a constant.
3741
3742 bool
3743 Unary_expression::do_is_constant() const
3744 {
3745 if (this->op_ == OPERATOR_MULT)
3746 {
3747 // Indirecting through a pointer is only constant if the object
3748 // to which the expression points is constant, but we currently
3749 // have no way to determine that.
3750 return false;
3751 }
3752 else if (this->op_ == OPERATOR_AND)
3753 {
3754 // Taking the address of a variable is constant if it is a
3755 // global variable, not constant otherwise. In other cases
3756 // taking the address is probably not a constant.
3757 Var_expression* ve = this->expr_->var_expression();
3758 if (ve != NULL)
3759 {
3760 Named_object* no = ve->named_object();
3761 return no->is_variable() && no->var_value()->is_global();
3762 }
3763 return false;
3764 }
3765 else
3766 return this->expr_->is_constant();
3767 }
3768
3769 // Apply unary opcode OP to UVAL, setting VAL. UTYPE is the type of
3770 // UVAL, if known; it may be NULL. Return true if this could be done,
3771 // false if not.
3772
3773 bool
3774 Unary_expression::eval_integer(Operator op, Type* utype, mpz_t uval, mpz_t val,
3775 source_location location)
3776 {
3777 switch (op)
3778 {
3779 case OPERATOR_PLUS:
3780 mpz_set(val, uval);
3781 return true;
3782 case OPERATOR_MINUS:
3783 mpz_neg(val, uval);
3784 return Integer_expression::check_constant(val, utype, location);
3785 case OPERATOR_NOT:
3786 mpz_set_ui(val, mpz_cmp_si(uval, 0) == 0 ? 1 : 0);
3787 return true;
3788 case OPERATOR_XOR:
3789 if (utype == NULL
3790 || utype->integer_type() == NULL
3791 || utype->integer_type()->is_abstract())
3792 mpz_com(val, uval);
3793 else
3794 {
3795 // The number of HOST_WIDE_INTs that it takes to represent
3796 // UVAL.
3797 size_t count = ((mpz_sizeinbase(uval, 2)
3798 + HOST_BITS_PER_WIDE_INT
3799 - 1)
3800 / HOST_BITS_PER_WIDE_INT);
3801
3802 unsigned HOST_WIDE_INT* phwi = new unsigned HOST_WIDE_INT[count];
3803 memset(phwi, 0, count * sizeof(HOST_WIDE_INT));
3804
3805 size_t ecount;
3806 mpz_export(phwi, &ecount, -1, sizeof(HOST_WIDE_INT), 0, 0, uval);
3807 gcc_assert(ecount <= count);
3808
3809 // Trim down to the number of words required by the type.
3810 size_t obits = utype->integer_type()->bits();
3811 if (!utype->integer_type()->is_unsigned())
3812 ++obits;
3813 size_t ocount = ((obits + HOST_BITS_PER_WIDE_INT - 1)
3814 / HOST_BITS_PER_WIDE_INT);
3815 gcc_assert(ocount <= ocount);
3816
3817 for (size_t i = 0; i < ocount; ++i)
3818 phwi[i] = ~phwi[i];
3819
3820 size_t clearbits = ocount * HOST_BITS_PER_WIDE_INT - obits;
3821 if (clearbits != 0)
3822 phwi[ocount - 1] &= (((unsigned HOST_WIDE_INT) (HOST_WIDE_INT) -1)
3823 >> clearbits);
3824
3825 mpz_import(val, ocount, -1, sizeof(HOST_WIDE_INT), 0, 0, phwi);
3826
3827 delete[] phwi;
3828 }
3829 return Integer_expression::check_constant(val, utype, location);
3830 case OPERATOR_AND:
3831 case OPERATOR_MULT:
3832 return false;
3833 default:
3834 gcc_unreachable();
3835 }
3836 }
3837
3838 // Apply unary opcode OP to UVAL, setting VAL. Return true if this
3839 // could be done, false if not.
3840
3841 bool
3842 Unary_expression::eval_float(Operator op, mpfr_t uval, mpfr_t val)
3843 {
3844 switch (op)
3845 {
3846 case OPERATOR_PLUS:
3847 mpfr_set(val, uval, GMP_RNDN);
3848 return true;
3849 case OPERATOR_MINUS:
3850 mpfr_neg(val, uval, GMP_RNDN);
3851 return true;
3852 case OPERATOR_NOT:
3853 case OPERATOR_XOR:
3854 case OPERATOR_AND:
3855 case OPERATOR_MULT:
3856 return false;
3857 default:
3858 gcc_unreachable();
3859 }
3860 }
3861
3862 // Apply unary opcode OP to RVAL/IVAL, setting REAL/IMAG. Return true
3863 // if this could be done, false if not.
3864
3865 bool
3866 Unary_expression::eval_complex(Operator op, mpfr_t rval, mpfr_t ival,
3867 mpfr_t real, mpfr_t imag)
3868 {
3869 switch (op)
3870 {
3871 case OPERATOR_PLUS:
3872 mpfr_set(real, rval, GMP_RNDN);
3873 mpfr_set(imag, ival, GMP_RNDN);
3874 return true;
3875 case OPERATOR_MINUS:
3876 mpfr_neg(real, rval, GMP_RNDN);
3877 mpfr_neg(imag, ival, GMP_RNDN);
3878 return true;
3879 case OPERATOR_NOT:
3880 case OPERATOR_XOR:
3881 case OPERATOR_AND:
3882 case OPERATOR_MULT:
3883 return false;
3884 default:
3885 gcc_unreachable();
3886 }
3887 }
3888
3889 // Return the integral constant value of a unary expression, if it has one.
3890
3891 bool
3892 Unary_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
3893 Type** ptype) const
3894 {
3895 mpz_t uval;
3896 mpz_init(uval);
3897 bool ret;
3898 if (!this->expr_->integer_constant_value(iota_is_constant, uval, ptype))
3899 ret = false;
3900 else
3901 ret = Unary_expression::eval_integer(this->op_, *ptype, uval, val,
3902 this->location());
3903 mpz_clear(uval);
3904 return ret;
3905 }
3906
3907 // Return the floating point constant value of a unary expression, if
3908 // it has one.
3909
3910 bool
3911 Unary_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
3912 {
3913 mpfr_t uval;
3914 mpfr_init(uval);
3915 bool ret;
3916 if (!this->expr_->float_constant_value(uval, ptype))
3917 ret = false;
3918 else
3919 ret = Unary_expression::eval_float(this->op_, uval, val);
3920 mpfr_clear(uval);
3921 return ret;
3922 }
3923
3924 // Return the complex constant value of a unary expression, if it has
3925 // one.
3926
3927 bool
3928 Unary_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
3929 Type** ptype) const
3930 {
3931 mpfr_t rval;
3932 mpfr_t ival;
3933 mpfr_init(rval);
3934 mpfr_init(ival);
3935 bool ret;
3936 if (!this->expr_->complex_constant_value(rval, ival, ptype))
3937 ret = false;
3938 else
3939 ret = Unary_expression::eval_complex(this->op_, rval, ival, real, imag);
3940 mpfr_clear(rval);
3941 mpfr_clear(ival);
3942 return ret;
3943 }
3944
3945 // Return the type of a unary expression.
3946
3947 Type*
3948 Unary_expression::do_type()
3949 {
3950 switch (this->op_)
3951 {
3952 case OPERATOR_PLUS:
3953 case OPERATOR_MINUS:
3954 case OPERATOR_NOT:
3955 case OPERATOR_XOR:
3956 return this->expr_->type();
3957
3958 case OPERATOR_AND:
3959 return Type::make_pointer_type(this->expr_->type());
3960
3961 case OPERATOR_MULT:
3962 {
3963 Type* subtype = this->expr_->type();
3964 Type* points_to = subtype->points_to();
3965 if (points_to == NULL)
3966 return Type::make_error_type();
3967 return points_to;
3968 }
3969
3970 default:
3971 gcc_unreachable();
3972 }
3973 }
3974
3975 // Determine abstract types for a unary expression.
3976
3977 void
3978 Unary_expression::do_determine_type(const Type_context* context)
3979 {
3980 switch (this->op_)
3981 {
3982 case OPERATOR_PLUS:
3983 case OPERATOR_MINUS:
3984 case OPERATOR_NOT:
3985 case OPERATOR_XOR:
3986 this->expr_->determine_type(context);
3987 break;
3988
3989 case OPERATOR_AND:
3990 // Taking the address of something.
3991 {
3992 Type* subtype = (context->type == NULL
3993 ? NULL
3994 : context->type->points_to());
3995 Type_context subcontext(subtype, false);
3996 this->expr_->determine_type(&subcontext);
3997 }
3998 break;
3999
4000 case OPERATOR_MULT:
4001 // Indirecting through a pointer.
4002 {
4003 Type* subtype = (context->type == NULL
4004 ? NULL
4005 : Type::make_pointer_type(context->type));
4006 Type_context subcontext(subtype, false);
4007 this->expr_->determine_type(&subcontext);
4008 }
4009 break;
4010
4011 default:
4012 gcc_unreachable();
4013 }
4014 }
4015
4016 // Check types for a unary expression.
4017
4018 void
4019 Unary_expression::do_check_types(Gogo*)
4020 {
4021 Type* type = this->expr_->type();
4022 if (type->is_error_type())
4023 {
4024 this->set_is_error();
4025 return;
4026 }
4027
4028 switch (this->op_)
4029 {
4030 case OPERATOR_PLUS:
4031 case OPERATOR_MINUS:
4032 if (type->integer_type() == NULL
4033 && type->float_type() == NULL
4034 && type->complex_type() == NULL)
4035 this->report_error(_("expected numeric type"));
4036 break;
4037
4038 case OPERATOR_NOT:
4039 case OPERATOR_XOR:
4040 if (type->integer_type() == NULL
4041 && !type->is_boolean_type())
4042 this->report_error(_("expected integer or boolean type"));
4043 break;
4044
4045 case OPERATOR_AND:
4046 if (!this->expr_->is_addressable())
4047 this->report_error(_("invalid operand for unary %<&%>"));
4048 else
4049 this->expr_->address_taken(this->escapes_);
4050 break;
4051
4052 case OPERATOR_MULT:
4053 // Indirecting through a pointer.
4054 if (type->points_to() == NULL)
4055 this->report_error(_("expected pointer"));
4056 break;
4057
4058 default:
4059 gcc_unreachable();
4060 }
4061 }
4062
4063 // Get a tree for a unary expression.
4064
4065 tree
4066 Unary_expression::do_get_tree(Translate_context* context)
4067 {
4068 tree expr = this->expr_->get_tree(context);
4069 if (expr == error_mark_node)
4070 return error_mark_node;
4071
4072 source_location loc = this->location();
4073 switch (this->op_)
4074 {
4075 case OPERATOR_PLUS:
4076 return expr;
4077
4078 case OPERATOR_MINUS:
4079 {
4080 tree type = TREE_TYPE(expr);
4081 tree compute_type = excess_precision_type(type);
4082 if (compute_type != NULL_TREE)
4083 expr = ::convert(compute_type, expr);
4084 tree ret = fold_build1_loc(loc, NEGATE_EXPR,
4085 (compute_type != NULL_TREE
4086 ? compute_type
4087 : type),
4088 expr);
4089 if (compute_type != NULL_TREE)
4090 ret = ::convert(type, ret);
4091 return ret;
4092 }
4093
4094 case OPERATOR_NOT:
4095 if (TREE_CODE(TREE_TYPE(expr)) == BOOLEAN_TYPE)
4096 return fold_build1_loc(loc, TRUTH_NOT_EXPR, TREE_TYPE(expr), expr);
4097 else
4098 return fold_build2_loc(loc, NE_EXPR, boolean_type_node, expr,
4099 build_int_cst(TREE_TYPE(expr), 0));
4100
4101 case OPERATOR_XOR:
4102 return fold_build1_loc(loc, BIT_NOT_EXPR, TREE_TYPE(expr), expr);
4103
4104 case OPERATOR_AND:
4105 // We should not see a non-constant constructor here; cases
4106 // where we would see one should have been moved onto the heap
4107 // at parse time. Taking the address of a nonconstant
4108 // constructor will not do what the programmer expects.
4109 gcc_assert(TREE_CODE(expr) != CONSTRUCTOR || TREE_CONSTANT(expr));
4110 gcc_assert(TREE_CODE(expr) != ADDR_EXPR);
4111
4112 // Build a decl for a constant constructor.
4113 if (TREE_CODE(expr) == CONSTRUCTOR && TREE_CONSTANT(expr))
4114 {
4115 tree decl = build_decl(this->location(), VAR_DECL,
4116 create_tmp_var_name("C"), TREE_TYPE(expr));
4117 DECL_EXTERNAL(decl) = 0;
4118 TREE_PUBLIC(decl) = 0;
4119 TREE_READONLY(decl) = 1;
4120 TREE_CONSTANT(decl) = 1;
4121 TREE_STATIC(decl) = 1;
4122 TREE_ADDRESSABLE(decl) = 1;
4123 DECL_ARTIFICIAL(decl) = 1;
4124 DECL_INITIAL(decl) = expr;
4125 rest_of_decl_compilation(decl, 1, 0);
4126 expr = decl;
4127 }
4128
4129 return build_fold_addr_expr_loc(loc, expr);
4130
4131 case OPERATOR_MULT:
4132 {
4133 gcc_assert(POINTER_TYPE_P(TREE_TYPE(expr)));
4134
4135 // If we are dereferencing the pointer to a large struct, we
4136 // need to check for nil. We don't bother to check for small
4137 // structs because we expect the system to crash on a nil
4138 // pointer dereference.
4139 HOST_WIDE_INT s = int_size_in_bytes(TREE_TYPE(TREE_TYPE(expr)));
4140 if (s == -1 || s >= 4096)
4141 {
4142 if (!DECL_P(expr))
4143 expr = save_expr(expr);
4144 tree compare = fold_build2_loc(loc, EQ_EXPR, boolean_type_node,
4145 expr,
4146 fold_convert(TREE_TYPE(expr),
4147 null_pointer_node));
4148 tree crash = Gogo::runtime_error(RUNTIME_ERROR_NIL_DEREFERENCE,
4149 loc);
4150 expr = fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(expr),
4151 build3(COND_EXPR, void_type_node,
4152 compare, crash, NULL_TREE),
4153 expr);
4154 }
4155
4156 // If the type of EXPR is a recursive pointer type, then we
4157 // need to insert a cast before indirecting.
4158 if (TREE_TYPE(TREE_TYPE(expr)) == ptr_type_node)
4159 {
4160 Type* pt = this->expr_->type()->points_to();
4161 tree ind = pt->get_tree(context->gogo());
4162 expr = fold_convert_loc(loc, build_pointer_type(ind), expr);
4163 }
4164
4165 return build_fold_indirect_ref_loc(loc, expr);
4166 }
4167
4168 default:
4169 gcc_unreachable();
4170 }
4171 }
4172
4173 // Export a unary expression.
4174
4175 void
4176 Unary_expression::do_export(Export* exp) const
4177 {
4178 switch (this->op_)
4179 {
4180 case OPERATOR_PLUS:
4181 exp->write_c_string("+ ");
4182 break;
4183 case OPERATOR_MINUS:
4184 exp->write_c_string("- ");
4185 break;
4186 case OPERATOR_NOT:
4187 exp->write_c_string("! ");
4188 break;
4189 case OPERATOR_XOR:
4190 exp->write_c_string("^ ");
4191 break;
4192 case OPERATOR_AND:
4193 case OPERATOR_MULT:
4194 default:
4195 gcc_unreachable();
4196 }
4197 this->expr_->export_expression(exp);
4198 }
4199
4200 // Import a unary expression.
4201
4202 Expression*
4203 Unary_expression::do_import(Import* imp)
4204 {
4205 Operator op;
4206 switch (imp->get_char())
4207 {
4208 case '+':
4209 op = OPERATOR_PLUS;
4210 break;
4211 case '-':
4212 op = OPERATOR_MINUS;
4213 break;
4214 case '!':
4215 op = OPERATOR_NOT;
4216 break;
4217 case '^':
4218 op = OPERATOR_XOR;
4219 break;
4220 default:
4221 gcc_unreachable();
4222 }
4223 imp->require_c_string(" ");
4224 Expression* expr = Expression::import_expression(imp);
4225 return Expression::make_unary(op, expr, imp->location());
4226 }
4227
4228 // Make a unary expression.
4229
4230 Expression*
4231 Expression::make_unary(Operator op, Expression* expr, source_location location)
4232 {
4233 return new Unary_expression(op, expr, location);
4234 }
4235
4236 // If this is an indirection through a pointer, return the expression
4237 // being pointed through. Otherwise return this.
4238
4239 Expression*
4240 Expression::deref()
4241 {
4242 if (this->classification_ == EXPRESSION_UNARY)
4243 {
4244 Unary_expression* ue = static_cast<Unary_expression*>(this);
4245 if (ue->op() == OPERATOR_MULT)
4246 return ue->operand();
4247 }
4248 return this;
4249 }
4250
4251 // Class Binary_expression.
4252
4253 // Traversal.
4254
4255 int
4256 Binary_expression::do_traverse(Traverse* traverse)
4257 {
4258 int t = Expression::traverse(&this->left_, traverse);
4259 if (t == TRAVERSE_EXIT)
4260 return TRAVERSE_EXIT;
4261 return Expression::traverse(&this->right_, traverse);
4262 }
4263
4264 // Compare integer constants according to OP.
4265
4266 bool
4267 Binary_expression::compare_integer(Operator op, mpz_t left_val,
4268 mpz_t right_val)
4269 {
4270 int i = mpz_cmp(left_val, right_val);
4271 switch (op)
4272 {
4273 case OPERATOR_EQEQ:
4274 return i == 0;
4275 case OPERATOR_NOTEQ:
4276 return i != 0;
4277 case OPERATOR_LT:
4278 return i < 0;
4279 case OPERATOR_LE:
4280 return i <= 0;
4281 case OPERATOR_GT:
4282 return i > 0;
4283 case OPERATOR_GE:
4284 return i >= 0;
4285 default:
4286 gcc_unreachable();
4287 }
4288 }
4289
4290 // Compare floating point constants according to OP.
4291
4292 bool
4293 Binary_expression::compare_float(Operator op, Type* type, mpfr_t left_val,
4294 mpfr_t right_val)
4295 {
4296 int i;
4297 if (type == NULL)
4298 i = mpfr_cmp(left_val, right_val);
4299 else
4300 {
4301 mpfr_t lv;
4302 mpfr_init_set(lv, left_val, GMP_RNDN);
4303 mpfr_t rv;
4304 mpfr_init_set(rv, right_val, GMP_RNDN);
4305 Float_expression::constrain_float(lv, type);
4306 Float_expression::constrain_float(rv, type);
4307 i = mpfr_cmp(lv, rv);
4308 mpfr_clear(lv);
4309 mpfr_clear(rv);
4310 }
4311 switch (op)
4312 {
4313 case OPERATOR_EQEQ:
4314 return i == 0;
4315 case OPERATOR_NOTEQ:
4316 return i != 0;
4317 case OPERATOR_LT:
4318 return i < 0;
4319 case OPERATOR_LE:
4320 return i <= 0;
4321 case OPERATOR_GT:
4322 return i > 0;
4323 case OPERATOR_GE:
4324 return i >= 0;
4325 default:
4326 gcc_unreachable();
4327 }
4328 }
4329
4330 // Compare complex constants according to OP. Complex numbers may
4331 // only be compared for equality.
4332
4333 bool
4334 Binary_expression::compare_complex(Operator op, Type* type,
4335 mpfr_t left_real, mpfr_t left_imag,
4336 mpfr_t right_real, mpfr_t right_imag)
4337 {
4338 bool is_equal;
4339 if (type == NULL)
4340 is_equal = (mpfr_cmp(left_real, right_real) == 0
4341 && mpfr_cmp(left_imag, right_imag) == 0);
4342 else
4343 {
4344 mpfr_t lr;
4345 mpfr_t li;
4346 mpfr_init_set(lr, left_real, GMP_RNDN);
4347 mpfr_init_set(li, left_imag, GMP_RNDN);
4348 mpfr_t rr;
4349 mpfr_t ri;
4350 mpfr_init_set(rr, right_real, GMP_RNDN);
4351 mpfr_init_set(ri, right_imag, GMP_RNDN);
4352 Complex_expression::constrain_complex(lr, li, type);
4353 Complex_expression::constrain_complex(rr, ri, type);
4354 is_equal = mpfr_cmp(lr, rr) == 0 && mpfr_cmp(li, ri) == 0;
4355 mpfr_clear(lr);
4356 mpfr_clear(li);
4357 mpfr_clear(rr);
4358 mpfr_clear(ri);
4359 }
4360 switch (op)
4361 {
4362 case OPERATOR_EQEQ:
4363 return is_equal;
4364 case OPERATOR_NOTEQ:
4365 return !is_equal;
4366 default:
4367 gcc_unreachable();
4368 }
4369 }
4370
4371 // Apply binary opcode OP to LEFT_VAL and RIGHT_VAL, setting VAL.
4372 // LEFT_TYPE is the type of LEFT_VAL, RIGHT_TYPE is the type of
4373 // RIGHT_VAL; LEFT_TYPE and/or RIGHT_TYPE may be NULL. Return true if
4374 // this could be done, false if not.
4375
4376 bool
4377 Binary_expression::eval_integer(Operator op, Type* left_type, mpz_t left_val,
4378 Type* right_type, mpz_t right_val,
4379 source_location location, mpz_t val)
4380 {
4381 bool is_shift_op = false;
4382 switch (op)
4383 {
4384 case OPERATOR_OROR:
4385 case OPERATOR_ANDAND:
4386 case OPERATOR_EQEQ:
4387 case OPERATOR_NOTEQ:
4388 case OPERATOR_LT:
4389 case OPERATOR_LE:
4390 case OPERATOR_GT:
4391 case OPERATOR_GE:
4392 // These return boolean values. We should probably handle them
4393 // anyhow in case a type conversion is used on the result.
4394 return false;
4395 case OPERATOR_PLUS:
4396 mpz_add(val, left_val, right_val);
4397 break;
4398 case OPERATOR_MINUS:
4399 mpz_sub(val, left_val, right_val);
4400 break;
4401 case OPERATOR_OR:
4402 mpz_ior(val, left_val, right_val);
4403 break;
4404 case OPERATOR_XOR:
4405 mpz_xor(val, left_val, right_val);
4406 break;
4407 case OPERATOR_MULT:
4408 mpz_mul(val, left_val, right_val);
4409 break;
4410 case OPERATOR_DIV:
4411 if (mpz_sgn(right_val) != 0)
4412 mpz_tdiv_q(val, left_val, right_val);
4413 else
4414 {
4415 error_at(location, "division by zero");
4416 mpz_set_ui(val, 0);
4417 return true;
4418 }
4419 break;
4420 case OPERATOR_MOD:
4421 if (mpz_sgn(right_val) != 0)
4422 mpz_tdiv_r(val, left_val, right_val);
4423 else
4424 {
4425 error_at(location, "division by zero");
4426 mpz_set_ui(val, 0);
4427 return true;
4428 }
4429 break;
4430 case OPERATOR_LSHIFT:
4431 {
4432 unsigned long shift = mpz_get_ui(right_val);
4433 if (mpz_cmp_ui(right_val, shift) != 0)
4434 {
4435 error_at(location, "shift count overflow");
4436 mpz_set_ui(val, 0);
4437 return true;
4438 }
4439 mpz_mul_2exp(val, left_val, shift);
4440 is_shift_op = true;
4441 break;
4442 }
4443 break;
4444 case OPERATOR_RSHIFT:
4445 {
4446 unsigned long shift = mpz_get_ui(right_val);
4447 if (mpz_cmp_ui(right_val, shift) != 0)
4448 {
4449 error_at(location, "shift count overflow");
4450 mpz_set_ui(val, 0);
4451 return true;
4452 }
4453 if (mpz_cmp_ui(left_val, 0) >= 0)
4454 mpz_tdiv_q_2exp(val, left_val, shift);
4455 else
4456 mpz_fdiv_q_2exp(val, left_val, shift);
4457 is_shift_op = true;
4458 break;
4459 }
4460 break;
4461 case OPERATOR_AND:
4462 mpz_and(val, left_val, right_val);
4463 break;
4464 case OPERATOR_BITCLEAR:
4465 {
4466 mpz_t tval;
4467 mpz_init(tval);
4468 mpz_com(tval, right_val);
4469 mpz_and(val, left_val, tval);
4470 mpz_clear(tval);
4471 }
4472 break;
4473 default:
4474 gcc_unreachable();
4475 }
4476
4477 Type* type = left_type;
4478 if (!is_shift_op)
4479 {
4480 if (type == NULL)
4481 type = right_type;
4482 else if (type != right_type && right_type != NULL)
4483 {
4484 if (type->is_abstract())
4485 type = right_type;
4486 else if (!right_type->is_abstract())
4487 {
4488 // This look like a type error which should be diagnosed
4489 // elsewhere. Don't do anything here, to avoid an
4490 // unhelpful chain of error messages.
4491 return true;
4492 }
4493 }
4494 }
4495
4496 if (type != NULL && !type->is_abstract())
4497 {
4498 // We have to check the operands too, as we have implicitly
4499 // coerced them to TYPE.
4500 if ((type != left_type
4501 && !Integer_expression::check_constant(left_val, type, location))
4502 || (!is_shift_op
4503 && type != right_type
4504 && !Integer_expression::check_constant(right_val, type,
4505 location))
4506 || !Integer_expression::check_constant(val, type, location))
4507 mpz_set_ui(val, 0);
4508 }
4509
4510 return true;
4511 }
4512
4513 // Apply binary opcode OP to LEFT_VAL and RIGHT_VAL, setting VAL.
4514 // Return true if this could be done, false if not.
4515
4516 bool
4517 Binary_expression::eval_float(Operator op, Type* left_type, mpfr_t left_val,
4518 Type* right_type, mpfr_t right_val,
4519 mpfr_t val, source_location location)
4520 {
4521 switch (op)
4522 {
4523 case OPERATOR_OROR:
4524 case OPERATOR_ANDAND:
4525 case OPERATOR_EQEQ:
4526 case OPERATOR_NOTEQ:
4527 case OPERATOR_LT:
4528 case OPERATOR_LE:
4529 case OPERATOR_GT:
4530 case OPERATOR_GE:
4531 // These return boolean values. We should probably handle them
4532 // anyhow in case a type conversion is used on the result.
4533 return false;
4534 case OPERATOR_PLUS:
4535 mpfr_add(val, left_val, right_val, GMP_RNDN);
4536 break;
4537 case OPERATOR_MINUS:
4538 mpfr_sub(val, left_val, right_val, GMP_RNDN);
4539 break;
4540 case OPERATOR_OR:
4541 case OPERATOR_XOR:
4542 case OPERATOR_AND:
4543 case OPERATOR_BITCLEAR:
4544 return false;
4545 case OPERATOR_MULT:
4546 mpfr_mul(val, left_val, right_val, GMP_RNDN);
4547 break;
4548 case OPERATOR_DIV:
4549 if (mpfr_zero_p(right_val))
4550 error_at(location, "division by zero");
4551 mpfr_div(val, left_val, right_val, GMP_RNDN);
4552 break;
4553 case OPERATOR_MOD:
4554 return false;
4555 case OPERATOR_LSHIFT:
4556 case OPERATOR_RSHIFT:
4557 return false;
4558 default:
4559 gcc_unreachable();
4560 }
4561
4562 Type* type = left_type;
4563 if (type == NULL)
4564 type = right_type;
4565 else if (type != right_type && right_type != NULL)
4566 {
4567 if (type->is_abstract())
4568 type = right_type;
4569 else if (!right_type->is_abstract())
4570 {
4571 // This looks like a type error which should be diagnosed
4572 // elsewhere. Don't do anything here, to avoid an unhelpful
4573 // chain of error messages.
4574 return true;
4575 }
4576 }
4577
4578 if (type != NULL && !type->is_abstract())
4579 {
4580 if ((type != left_type
4581 && !Float_expression::check_constant(left_val, type, location))
4582 || (type != right_type
4583 && !Float_expression::check_constant(right_val, type,
4584 location))
4585 || !Float_expression::check_constant(val, type, location))
4586 mpfr_set_ui(val, 0, GMP_RNDN);
4587 }
4588
4589 return true;
4590 }
4591
4592 // Apply binary opcode OP to LEFT_REAL/LEFT_IMAG and
4593 // RIGHT_REAL/RIGHT_IMAG, setting REAL/IMAG. Return true if this
4594 // could be done, false if not.
4595
4596 bool
4597 Binary_expression::eval_complex(Operator op, Type* left_type,
4598 mpfr_t left_real, mpfr_t left_imag,
4599 Type *right_type,
4600 mpfr_t right_real, mpfr_t right_imag,
4601 mpfr_t real, mpfr_t imag,
4602 source_location location)
4603 {
4604 switch (op)
4605 {
4606 case OPERATOR_OROR:
4607 case OPERATOR_ANDAND:
4608 case OPERATOR_EQEQ:
4609 case OPERATOR_NOTEQ:
4610 case OPERATOR_LT:
4611 case OPERATOR_LE:
4612 case OPERATOR_GT:
4613 case OPERATOR_GE:
4614 // These return boolean values and must be handled differently.
4615 return false;
4616 case OPERATOR_PLUS:
4617 mpfr_add(real, left_real, right_real, GMP_RNDN);
4618 mpfr_add(imag, left_imag, right_imag, GMP_RNDN);
4619 break;
4620 case OPERATOR_MINUS:
4621 mpfr_sub(real, left_real, right_real, GMP_RNDN);
4622 mpfr_sub(imag, left_imag, right_imag, GMP_RNDN);
4623 break;
4624 case OPERATOR_OR:
4625 case OPERATOR_XOR:
4626 case OPERATOR_AND:
4627 case OPERATOR_BITCLEAR:
4628 return false;
4629 case OPERATOR_MULT:
4630 {
4631 // You might think that multiplying two complex numbers would
4632 // be simple, and you would be right, until you start to think
4633 // about getting the right answer for infinity. If one
4634 // operand here is infinity and the other is anything other
4635 // than zero or NaN, then we are going to wind up subtracting
4636 // two infinity values. That will give us a NaN, but the
4637 // correct answer is infinity.
4638
4639 mpfr_t lrrr;
4640 mpfr_init(lrrr);
4641 mpfr_mul(lrrr, left_real, right_real, GMP_RNDN);
4642
4643 mpfr_t lrri;
4644 mpfr_init(lrri);
4645 mpfr_mul(lrri, left_real, right_imag, GMP_RNDN);
4646
4647 mpfr_t lirr;
4648 mpfr_init(lirr);
4649 mpfr_mul(lirr, left_imag, right_real, GMP_RNDN);
4650
4651 mpfr_t liri;
4652 mpfr_init(liri);
4653 mpfr_mul(liri, left_imag, right_imag, GMP_RNDN);
4654
4655 mpfr_sub(real, lrrr, liri, GMP_RNDN);
4656 mpfr_add(imag, lrri, lirr, GMP_RNDN);
4657
4658 // If we get NaN on both sides, check whether it should really
4659 // be infinity. The rule is that if either side of the
4660 // complex number is infinity, then the whole value is
4661 // infinity, even if the other side is NaN. So the only case
4662 // we have to fix is the one in which both sides are NaN.
4663 if (mpfr_nan_p(real) && mpfr_nan_p(imag)
4664 && (!mpfr_nan_p(left_real) || !mpfr_nan_p(left_imag))
4665 && (!mpfr_nan_p(right_real) || !mpfr_nan_p(right_imag)))
4666 {
4667 bool is_infinity = false;
4668
4669 mpfr_t lr;
4670 mpfr_t li;
4671 mpfr_init_set(lr, left_real, GMP_RNDN);
4672 mpfr_init_set(li, left_imag, GMP_RNDN);
4673
4674 mpfr_t rr;
4675 mpfr_t ri;
4676 mpfr_init_set(rr, right_real, GMP_RNDN);
4677 mpfr_init_set(ri, right_imag, GMP_RNDN);
4678
4679 // If the left side is infinity, then the result is
4680 // infinity.
4681 if (mpfr_inf_p(lr) || mpfr_inf_p(li))
4682 {
4683 mpfr_set_ui(lr, mpfr_inf_p(lr) ? 1 : 0, GMP_RNDN);
4684 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
4685 mpfr_set_ui(li, mpfr_inf_p(li) ? 1 : 0, GMP_RNDN);
4686 mpfr_copysign(li, li, left_imag, GMP_RNDN);
4687 if (mpfr_nan_p(rr))
4688 {
4689 mpfr_set_ui(rr, 0, GMP_RNDN);
4690 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
4691 }
4692 if (mpfr_nan_p(ri))
4693 {
4694 mpfr_set_ui(ri, 0, GMP_RNDN);
4695 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
4696 }
4697 is_infinity = true;
4698 }
4699
4700 // If the right side is infinity, then the result is
4701 // infinity.
4702 if (mpfr_inf_p(rr) || mpfr_inf_p(ri))
4703 {
4704 mpfr_set_ui(rr, mpfr_inf_p(rr) ? 1 : 0, GMP_RNDN);
4705 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
4706 mpfr_set_ui(ri, mpfr_inf_p(ri) ? 1 : 0, GMP_RNDN);
4707 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
4708 if (mpfr_nan_p(lr))
4709 {
4710 mpfr_set_ui(lr, 0, GMP_RNDN);
4711 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
4712 }
4713 if (mpfr_nan_p(li))
4714 {
4715 mpfr_set_ui(li, 0, GMP_RNDN);
4716 mpfr_copysign(li, li, left_imag, GMP_RNDN);
4717 }
4718 is_infinity = true;
4719 }
4720
4721 // If we got an overflow in the intermediate computations,
4722 // then the result is infinity.
4723 if (!is_infinity
4724 && (mpfr_inf_p(lrrr) || mpfr_inf_p(lrri)
4725 || mpfr_inf_p(lirr) || mpfr_inf_p(liri)))
4726 {
4727 if (mpfr_nan_p(lr))
4728 {
4729 mpfr_set_ui(lr, 0, GMP_RNDN);
4730 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
4731 }
4732 if (mpfr_nan_p(li))
4733 {
4734 mpfr_set_ui(li, 0, GMP_RNDN);
4735 mpfr_copysign(li, li, left_imag, GMP_RNDN);
4736 }
4737 if (mpfr_nan_p(rr))
4738 {
4739 mpfr_set_ui(rr, 0, GMP_RNDN);
4740 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
4741 }
4742 if (mpfr_nan_p(ri))
4743 {
4744 mpfr_set_ui(ri, 0, GMP_RNDN);
4745 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
4746 }
4747 is_infinity = true;
4748 }
4749
4750 if (is_infinity)
4751 {
4752 mpfr_mul(lrrr, lr, rr, GMP_RNDN);
4753 mpfr_mul(lrri, lr, ri, GMP_RNDN);
4754 mpfr_mul(lirr, li, rr, GMP_RNDN);
4755 mpfr_mul(liri, li, ri, GMP_RNDN);
4756 mpfr_sub(real, lrrr, liri, GMP_RNDN);
4757 mpfr_add(imag, lrri, lirr, GMP_RNDN);
4758 mpfr_set_inf(real, mpfr_sgn(real));
4759 mpfr_set_inf(imag, mpfr_sgn(imag));
4760 }
4761
4762 mpfr_clear(lr);
4763 mpfr_clear(li);
4764 mpfr_clear(rr);
4765 mpfr_clear(ri);
4766 }
4767
4768 mpfr_clear(lrrr);
4769 mpfr_clear(lrri);
4770 mpfr_clear(lirr);
4771 mpfr_clear(liri);
4772 }
4773 break;
4774 case OPERATOR_DIV:
4775 {
4776 // For complex division we want to avoid having an
4777 // intermediate overflow turn the whole result in a NaN. We
4778 // scale the values to try to avoid this.
4779
4780 if (mpfr_zero_p(right_real) && mpfr_zero_p(right_imag))
4781 error_at(location, "division by zero");
4782
4783 mpfr_t rra;
4784 mpfr_t ria;
4785 mpfr_init(rra);
4786 mpfr_init(ria);
4787 mpfr_abs(rra, right_real, GMP_RNDN);
4788 mpfr_abs(ria, right_imag, GMP_RNDN);
4789 mpfr_t t;
4790 mpfr_init(t);
4791 mpfr_max(t, rra, ria, GMP_RNDN);
4792
4793 mpfr_t rr;
4794 mpfr_t ri;
4795 mpfr_init_set(rr, right_real, GMP_RNDN);
4796 mpfr_init_set(ri, right_imag, GMP_RNDN);
4797 long ilogbw = 0;
4798 if (!mpfr_inf_p(t) && !mpfr_nan_p(t) && !mpfr_zero_p(t))
4799 {
4800 ilogbw = mpfr_get_exp(t);
4801 mpfr_mul_2si(rr, rr, - ilogbw, GMP_RNDN);
4802 mpfr_mul_2si(ri, ri, - ilogbw, GMP_RNDN);
4803 }
4804
4805 mpfr_t denom;
4806 mpfr_init(denom);
4807 mpfr_mul(denom, rr, rr, GMP_RNDN);
4808 mpfr_mul(t, ri, ri, GMP_RNDN);
4809 mpfr_add(denom, denom, t, GMP_RNDN);
4810
4811 mpfr_mul(real, left_real, rr, GMP_RNDN);
4812 mpfr_mul(t, left_imag, ri, GMP_RNDN);
4813 mpfr_add(real, real, t, GMP_RNDN);
4814 mpfr_div(real, real, denom, GMP_RNDN);
4815 mpfr_mul_2si(real, real, - ilogbw, GMP_RNDN);
4816
4817 mpfr_mul(imag, left_imag, rr, GMP_RNDN);
4818 mpfr_mul(t, left_real, ri, GMP_RNDN);
4819 mpfr_sub(imag, imag, t, GMP_RNDN);
4820 mpfr_div(imag, imag, denom, GMP_RNDN);
4821 mpfr_mul_2si(imag, imag, - ilogbw, GMP_RNDN);
4822
4823 // If we wind up with NaN on both sides, check whether we
4824 // should really have infinity. The rule is that if either
4825 // side of the complex number is infinity, then the whole
4826 // value is infinity, even if the other side is NaN. So the
4827 // only case we have to fix is the one in which both sides are
4828 // NaN.
4829 if (mpfr_nan_p(real) && mpfr_nan_p(imag)
4830 && (!mpfr_nan_p(left_real) || !mpfr_nan_p(left_imag))
4831 && (!mpfr_nan_p(right_real) || !mpfr_nan_p(right_imag)))
4832 {
4833 if (mpfr_zero_p(denom))
4834 {
4835 mpfr_set_inf(real, mpfr_sgn(rr));
4836 mpfr_mul(real, real, left_real, GMP_RNDN);
4837 mpfr_set_inf(imag, mpfr_sgn(rr));
4838 mpfr_mul(imag, imag, left_imag, GMP_RNDN);
4839 }
4840 else if ((mpfr_inf_p(left_real) || mpfr_inf_p(left_imag))
4841 && mpfr_number_p(rr) && mpfr_number_p(ri))
4842 {
4843 mpfr_set_ui(t, mpfr_inf_p(left_real) ? 1 : 0, GMP_RNDN);
4844 mpfr_copysign(t, t, left_real, GMP_RNDN);
4845
4846 mpfr_t t2;
4847 mpfr_init_set_ui(t2, mpfr_inf_p(left_imag) ? 1 : 0, GMP_RNDN);
4848 mpfr_copysign(t2, t2, left_imag, GMP_RNDN);
4849
4850 mpfr_t t3;
4851 mpfr_init(t3);
4852 mpfr_mul(t3, t, rr, GMP_RNDN);
4853
4854 mpfr_t t4;
4855 mpfr_init(t4);
4856 mpfr_mul(t4, t2, ri, GMP_RNDN);
4857
4858 mpfr_add(t3, t3, t4, GMP_RNDN);
4859 mpfr_set_inf(real, mpfr_sgn(t3));
4860
4861 mpfr_mul(t3, t2, rr, GMP_RNDN);
4862 mpfr_mul(t4, t, ri, GMP_RNDN);
4863 mpfr_sub(t3, t3, t4, GMP_RNDN);
4864 mpfr_set_inf(imag, mpfr_sgn(t3));
4865
4866 mpfr_clear(t2);
4867 mpfr_clear(t3);
4868 mpfr_clear(t4);
4869 }
4870 else if ((mpfr_inf_p(right_real) || mpfr_inf_p(right_imag))
4871 && mpfr_number_p(left_real) && mpfr_number_p(left_imag))
4872 {
4873 mpfr_set_ui(t, mpfr_inf_p(rr) ? 1 : 0, GMP_RNDN);
4874 mpfr_copysign(t, t, rr, GMP_RNDN);
4875
4876 mpfr_t t2;
4877 mpfr_init_set_ui(t2, mpfr_inf_p(ri) ? 1 : 0, GMP_RNDN);
4878 mpfr_copysign(t2, t2, ri, GMP_RNDN);
4879
4880 mpfr_t t3;
4881 mpfr_init(t3);
4882 mpfr_mul(t3, left_real, t, GMP_RNDN);
4883
4884 mpfr_t t4;
4885 mpfr_init(t4);
4886 mpfr_mul(t4, left_imag, t2, GMP_RNDN);
4887
4888 mpfr_add(t3, t3, t4, GMP_RNDN);
4889 mpfr_set_ui(real, 0, GMP_RNDN);
4890 mpfr_mul(real, real, t3, GMP_RNDN);
4891
4892 mpfr_mul(t3, left_imag, t, GMP_RNDN);
4893 mpfr_mul(t4, left_real, t2, GMP_RNDN);
4894 mpfr_sub(t3, t3, t4, GMP_RNDN);
4895 mpfr_set_ui(imag, 0, GMP_RNDN);
4896 mpfr_mul(imag, imag, t3, GMP_RNDN);
4897
4898 mpfr_clear(t2);
4899 mpfr_clear(t3);
4900 mpfr_clear(t4);
4901 }
4902 }
4903
4904 mpfr_clear(denom);
4905 mpfr_clear(rr);
4906 mpfr_clear(ri);
4907 mpfr_clear(t);
4908 mpfr_clear(rra);
4909 mpfr_clear(ria);
4910 }
4911 break;
4912 case OPERATOR_MOD:
4913 return false;
4914 case OPERATOR_LSHIFT:
4915 case OPERATOR_RSHIFT:
4916 return false;
4917 default:
4918 gcc_unreachable();
4919 }
4920
4921 Type* type = left_type;
4922 if (type == NULL)
4923 type = right_type;
4924 else if (type != right_type && right_type != NULL)
4925 {
4926 if (type->is_abstract())
4927 type = right_type;
4928 else if (!right_type->is_abstract())
4929 {
4930 // This looks like a type error which should be diagnosed
4931 // elsewhere. Don't do anything here, to avoid an unhelpful
4932 // chain of error messages.
4933 return true;
4934 }
4935 }
4936
4937 if (type != NULL && !type->is_abstract())
4938 {
4939 if ((type != left_type
4940 && !Complex_expression::check_constant(left_real, left_imag,
4941 type, location))
4942 || (type != right_type
4943 && !Complex_expression::check_constant(right_real, right_imag,
4944 type, location))
4945 || !Complex_expression::check_constant(real, imag, type,
4946 location))
4947 {
4948 mpfr_set_ui(real, 0, GMP_RNDN);
4949 mpfr_set_ui(imag, 0, GMP_RNDN);
4950 }
4951 }
4952
4953 return true;
4954 }
4955
4956 // Lower a binary expression. We have to evaluate constant
4957 // expressions now, in order to implement Go's unlimited precision
4958 // constants.
4959
4960 Expression*
4961 Binary_expression::do_lower(Gogo*, Named_object*, int)
4962 {
4963 source_location location = this->location();
4964 Operator op = this->op_;
4965 Expression* left = this->left_;
4966 Expression* right = this->right_;
4967
4968 const bool is_comparison = (op == OPERATOR_EQEQ
4969 || op == OPERATOR_NOTEQ
4970 || op == OPERATOR_LT
4971 || op == OPERATOR_LE
4972 || op == OPERATOR_GT
4973 || op == OPERATOR_GE);
4974
4975 // Integer constant expressions.
4976 {
4977 mpz_t left_val;
4978 mpz_init(left_val);
4979 Type* left_type;
4980 mpz_t right_val;
4981 mpz_init(right_val);
4982 Type* right_type;
4983 if (left->integer_constant_value(false, left_val, &left_type)
4984 && right->integer_constant_value(false, right_val, &right_type))
4985 {
4986 Expression* ret = NULL;
4987 if (left_type != right_type
4988 && left_type != NULL
4989 && right_type != NULL
4990 && left_type->base() != right_type->base()
4991 && op != OPERATOR_LSHIFT
4992 && op != OPERATOR_RSHIFT)
4993 {
4994 // May be a type error--let it be diagnosed later.
4995 }
4996 else if (is_comparison)
4997 {
4998 bool b = Binary_expression::compare_integer(op, left_val,
4999 right_val);
5000 ret = Expression::make_cast(Type::lookup_bool_type(),
5001 Expression::make_boolean(b, location),
5002 location);
5003 }
5004 else
5005 {
5006 mpz_t val;
5007 mpz_init(val);
5008
5009 if (Binary_expression::eval_integer(op, left_type, left_val,
5010 right_type, right_val,
5011 location, val))
5012 {
5013 gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND);
5014 Type* type;
5015 if (op == OPERATOR_LSHIFT || op == OPERATOR_RSHIFT)
5016 type = left_type;
5017 else if (left_type == NULL)
5018 type = right_type;
5019 else if (right_type == NULL)
5020 type = left_type;
5021 else if (!left_type->is_abstract()
5022 && left_type->named_type() != NULL)
5023 type = left_type;
5024 else if (!right_type->is_abstract()
5025 && right_type->named_type() != NULL)
5026 type = right_type;
5027 else if (!left_type->is_abstract())
5028 type = left_type;
5029 else if (!right_type->is_abstract())
5030 type = right_type;
5031 else if (left_type->float_type() != NULL)
5032 type = left_type;
5033 else if (right_type->float_type() != NULL)
5034 type = right_type;
5035 else if (left_type->complex_type() != NULL)
5036 type = left_type;
5037 else if (right_type->complex_type() != NULL)
5038 type = right_type;
5039 else
5040 type = left_type;
5041 ret = Expression::make_integer(&val, type, location);
5042 }
5043
5044 mpz_clear(val);
5045 }
5046
5047 if (ret != NULL)
5048 {
5049 mpz_clear(right_val);
5050 mpz_clear(left_val);
5051 return ret;
5052 }
5053 }
5054 mpz_clear(right_val);
5055 mpz_clear(left_val);
5056 }
5057
5058 // Floating point constant expressions.
5059 {
5060 mpfr_t left_val;
5061 mpfr_init(left_val);
5062 Type* left_type;
5063 mpfr_t right_val;
5064 mpfr_init(right_val);
5065 Type* right_type;
5066 if (left->float_constant_value(left_val, &left_type)
5067 && right->float_constant_value(right_val, &right_type))
5068 {
5069 Expression* ret = NULL;
5070 if (left_type != right_type
5071 && left_type != NULL
5072 && right_type != NULL
5073 && left_type->base() != right_type->base()
5074 && op != OPERATOR_LSHIFT
5075 && op != OPERATOR_RSHIFT)
5076 {
5077 // May be a type error--let it be diagnosed later.
5078 }
5079 else if (is_comparison)
5080 {
5081 bool b = Binary_expression::compare_float(op,
5082 (left_type != NULL
5083 ? left_type
5084 : right_type),
5085 left_val, right_val);
5086 ret = Expression::make_boolean(b, location);
5087 }
5088 else
5089 {
5090 mpfr_t val;
5091 mpfr_init(val);
5092
5093 if (Binary_expression::eval_float(op, left_type, left_val,
5094 right_type, right_val, val,
5095 location))
5096 {
5097 gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND
5098 && op != OPERATOR_LSHIFT && op != OPERATOR_RSHIFT);
5099 Type* type;
5100 if (left_type == NULL)
5101 type = right_type;
5102 else if (right_type == NULL)
5103 type = left_type;
5104 else if (!left_type->is_abstract()
5105 && left_type->named_type() != NULL)
5106 type = left_type;
5107 else if (!right_type->is_abstract()
5108 && right_type->named_type() != NULL)
5109 type = right_type;
5110 else if (!left_type->is_abstract())
5111 type = left_type;
5112 else if (!right_type->is_abstract())
5113 type = right_type;
5114 else if (left_type->float_type() != NULL)
5115 type = left_type;
5116 else if (right_type->float_type() != NULL)
5117 type = right_type;
5118 else
5119 type = left_type;
5120 ret = Expression::make_float(&val, type, location);
5121 }
5122
5123 mpfr_clear(val);
5124 }
5125
5126 if (ret != NULL)
5127 {
5128 mpfr_clear(right_val);
5129 mpfr_clear(left_val);
5130 return ret;
5131 }
5132 }
5133 mpfr_clear(right_val);
5134 mpfr_clear(left_val);
5135 }
5136
5137 // Complex constant expressions.
5138 {
5139 mpfr_t left_real;
5140 mpfr_t left_imag;
5141 mpfr_init(left_real);
5142 mpfr_init(left_imag);
5143 Type* left_type;
5144
5145 mpfr_t right_real;
5146 mpfr_t right_imag;
5147 mpfr_init(right_real);
5148 mpfr_init(right_imag);
5149 Type* right_type;
5150
5151 if (left->complex_constant_value(left_real, left_imag, &left_type)
5152 && right->complex_constant_value(right_real, right_imag, &right_type))
5153 {
5154 Expression* ret = NULL;
5155 if (left_type != right_type
5156 && left_type != NULL
5157 && right_type != NULL
5158 && left_type->base() != right_type->base())
5159 {
5160 // May be a type error--let it be diagnosed later.
5161 }
5162 else if (op == OPERATOR_EQEQ || op == OPERATOR_NOTEQ)
5163 {
5164 bool b = Binary_expression::compare_complex(op,
5165 (left_type != NULL
5166 ? left_type
5167 : right_type),
5168 left_real,
5169 left_imag,
5170 right_real,
5171 right_imag);
5172 ret = Expression::make_boolean(b, location);
5173 }
5174 else
5175 {
5176 mpfr_t real;
5177 mpfr_t imag;
5178 mpfr_init(real);
5179 mpfr_init(imag);
5180
5181 if (Binary_expression::eval_complex(op, left_type,
5182 left_real, left_imag,
5183 right_type,
5184 right_real, right_imag,
5185 real, imag,
5186 location))
5187 {
5188 gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND
5189 && op != OPERATOR_LSHIFT && op != OPERATOR_RSHIFT);
5190 Type* type;
5191 if (left_type == NULL)
5192 type = right_type;
5193 else if (right_type == NULL)
5194 type = left_type;
5195 else if (!left_type->is_abstract()
5196 && left_type->named_type() != NULL)
5197 type = left_type;
5198 else if (!right_type->is_abstract()
5199 && right_type->named_type() != NULL)
5200 type = right_type;
5201 else if (!left_type->is_abstract())
5202 type = left_type;
5203 else if (!right_type->is_abstract())
5204 type = right_type;
5205 else if (left_type->complex_type() != NULL)
5206 type = left_type;
5207 else if (right_type->complex_type() != NULL)
5208 type = right_type;
5209 else
5210 type = left_type;
5211 ret = Expression::make_complex(&real, &imag, type,
5212 location);
5213 }
5214 mpfr_clear(real);
5215 mpfr_clear(imag);
5216 }
5217
5218 if (ret != NULL)
5219 {
5220 mpfr_clear(left_real);
5221 mpfr_clear(left_imag);
5222 mpfr_clear(right_real);
5223 mpfr_clear(right_imag);
5224 return ret;
5225 }
5226 }
5227
5228 mpfr_clear(left_real);
5229 mpfr_clear(left_imag);
5230 mpfr_clear(right_real);
5231 mpfr_clear(right_imag);
5232 }
5233
5234 // String constant expressions.
5235 if (op == OPERATOR_PLUS
5236 && left->type()->is_string_type()
5237 && right->type()->is_string_type())
5238 {
5239 std::string left_string;
5240 std::string right_string;
5241 if (left->string_constant_value(&left_string)
5242 && right->string_constant_value(&right_string))
5243 return Expression::make_string(left_string + right_string, location);
5244 }
5245
5246 return this;
5247 }
5248
5249 // Return the integer constant value, if it has one.
5250
5251 bool
5252 Binary_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
5253 Type** ptype) const
5254 {
5255 mpz_t left_val;
5256 mpz_init(left_val);
5257 Type* left_type;
5258 if (!this->left_->integer_constant_value(iota_is_constant, left_val,
5259 &left_type))
5260 {
5261 mpz_clear(left_val);
5262 return false;
5263 }
5264
5265 mpz_t right_val;
5266 mpz_init(right_val);
5267 Type* right_type;
5268 if (!this->right_->integer_constant_value(iota_is_constant, right_val,
5269 &right_type))
5270 {
5271 mpz_clear(right_val);
5272 mpz_clear(left_val);
5273 return false;
5274 }
5275
5276 bool ret;
5277 if (left_type != right_type
5278 && left_type != NULL
5279 && right_type != NULL
5280 && left_type->base() != right_type->base()
5281 && this->op_ != OPERATOR_RSHIFT
5282 && this->op_ != OPERATOR_LSHIFT)
5283 ret = false;
5284 else
5285 ret = Binary_expression::eval_integer(this->op_, left_type, left_val,
5286 right_type, right_val,
5287 this->location(), val);
5288
5289 mpz_clear(right_val);
5290 mpz_clear(left_val);
5291
5292 if (ret)
5293 *ptype = left_type;
5294
5295 return ret;
5296 }
5297
5298 // Return the floating point constant value, if it has one.
5299
5300 bool
5301 Binary_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
5302 {
5303 mpfr_t left_val;
5304 mpfr_init(left_val);
5305 Type* left_type;
5306 if (!this->left_->float_constant_value(left_val, &left_type))
5307 {
5308 mpfr_clear(left_val);
5309 return false;
5310 }
5311
5312 mpfr_t right_val;
5313 mpfr_init(right_val);
5314 Type* right_type;
5315 if (!this->right_->float_constant_value(right_val, &right_type))
5316 {
5317 mpfr_clear(right_val);
5318 mpfr_clear(left_val);
5319 return false;
5320 }
5321
5322 bool ret;
5323 if (left_type != right_type
5324 && left_type != NULL
5325 && right_type != NULL
5326 && left_type->base() != right_type->base())
5327 ret = false;
5328 else
5329 ret = Binary_expression::eval_float(this->op_, left_type, left_val,
5330 right_type, right_val,
5331 val, this->location());
5332
5333 mpfr_clear(left_val);
5334 mpfr_clear(right_val);
5335
5336 if (ret)
5337 *ptype = left_type;
5338
5339 return ret;
5340 }
5341
5342 // Return the complex constant value, if it has one.
5343
5344 bool
5345 Binary_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
5346 Type** ptype) const
5347 {
5348 mpfr_t left_real;
5349 mpfr_t left_imag;
5350 mpfr_init(left_real);
5351 mpfr_init(left_imag);
5352 Type* left_type;
5353 if (!this->left_->complex_constant_value(left_real, left_imag, &left_type))
5354 {
5355 mpfr_clear(left_real);
5356 mpfr_clear(left_imag);
5357 return false;
5358 }
5359
5360 mpfr_t right_real;
5361 mpfr_t right_imag;
5362 mpfr_init(right_real);
5363 mpfr_init(right_imag);
5364 Type* right_type;
5365 if (!this->right_->complex_constant_value(right_real, right_imag,
5366 &right_type))
5367 {
5368 mpfr_clear(left_real);
5369 mpfr_clear(left_imag);
5370 mpfr_clear(right_real);
5371 mpfr_clear(right_imag);
5372 return false;
5373 }
5374
5375 bool ret;
5376 if (left_type != right_type
5377 && left_type != NULL
5378 && right_type != NULL
5379 && left_type->base() != right_type->base())
5380 ret = false;
5381 else
5382 ret = Binary_expression::eval_complex(this->op_, left_type,
5383 left_real, left_imag,
5384 right_type,
5385 right_real, right_imag,
5386 real, imag,
5387 this->location());
5388 mpfr_clear(left_real);
5389 mpfr_clear(left_imag);
5390 mpfr_clear(right_real);
5391 mpfr_clear(right_imag);
5392
5393 if (ret)
5394 *ptype = left_type;
5395
5396 return ret;
5397 }
5398
5399 // Note that the value is being discarded.
5400
5401 void
5402 Binary_expression::do_discarding_value()
5403 {
5404 if (this->op_ == OPERATOR_OROR || this->op_ == OPERATOR_ANDAND)
5405 this->right_->discarding_value();
5406 else
5407 this->warn_about_unused_value();
5408 }
5409
5410 // Get type.
5411
5412 Type*
5413 Binary_expression::do_type()
5414 {
5415 if (this->classification() == EXPRESSION_ERROR)
5416 return Type::make_error_type();
5417
5418 switch (this->op_)
5419 {
5420 case OPERATOR_OROR:
5421 case OPERATOR_ANDAND:
5422 case OPERATOR_EQEQ:
5423 case OPERATOR_NOTEQ:
5424 case OPERATOR_LT:
5425 case OPERATOR_LE:
5426 case OPERATOR_GT:
5427 case OPERATOR_GE:
5428 return Type::lookup_bool_type();
5429
5430 case OPERATOR_PLUS:
5431 case OPERATOR_MINUS:
5432 case OPERATOR_OR:
5433 case OPERATOR_XOR:
5434 case OPERATOR_MULT:
5435 case OPERATOR_DIV:
5436 case OPERATOR_MOD:
5437 case OPERATOR_AND:
5438 case OPERATOR_BITCLEAR:
5439 {
5440 Type* left_type = this->left_->type();
5441 Type* right_type = this->right_->type();
5442 if (left_type->is_error_type())
5443 return left_type;
5444 else if (right_type->is_error_type())
5445 return right_type;
5446 else if (!Type::are_compatible_for_binop(left_type, right_type))
5447 {
5448 this->report_error(_("incompatible types in binary expression"));
5449 return Type::make_error_type();
5450 }
5451 else if (!left_type->is_abstract() && left_type->named_type() != NULL)
5452 return left_type;
5453 else if (!right_type->is_abstract() && right_type->named_type() != NULL)
5454 return right_type;
5455 else if (!left_type->is_abstract())
5456 return left_type;
5457 else if (!right_type->is_abstract())
5458 return right_type;
5459 else if (left_type->complex_type() != NULL)
5460 return left_type;
5461 else if (right_type->complex_type() != NULL)
5462 return right_type;
5463 else if (left_type->float_type() != NULL)
5464 return left_type;
5465 else if (right_type->float_type() != NULL)
5466 return right_type;
5467 else
5468 return left_type;
5469 }
5470
5471 case OPERATOR_LSHIFT:
5472 case OPERATOR_RSHIFT:
5473 return this->left_->type();
5474
5475 default:
5476 gcc_unreachable();
5477 }
5478 }
5479
5480 // Set type for a binary expression.
5481
5482 void
5483 Binary_expression::do_determine_type(const Type_context* context)
5484 {
5485 Type* tleft = this->left_->type();
5486 Type* tright = this->right_->type();
5487
5488 // Both sides should have the same type, except for the shift
5489 // operations. For a comparison, we should ignore the incoming
5490 // type.
5491
5492 bool is_shift_op = (this->op_ == OPERATOR_LSHIFT
5493 || this->op_ == OPERATOR_RSHIFT);
5494
5495 bool is_comparison = (this->op_ == OPERATOR_EQEQ
5496 || this->op_ == OPERATOR_NOTEQ
5497 || this->op_ == OPERATOR_LT
5498 || this->op_ == OPERATOR_LE
5499 || this->op_ == OPERATOR_GT
5500 || this->op_ == OPERATOR_GE);
5501
5502 Type_context subcontext(*context);
5503
5504 if (is_comparison)
5505 {
5506 // In a comparison, the context does not determine the types of
5507 // the operands.
5508 subcontext.type = NULL;
5509 }
5510
5511 // Set the context for the left hand operand.
5512 if (is_shift_op)
5513 {
5514 // The right hand operand plays no role in determining the type
5515 // of the left hand operand. A shift of an abstract integer in
5516 // a string context gets special treatment, which may be a
5517 // language bug.
5518 if (subcontext.type != NULL
5519 && subcontext.type->is_string_type()
5520 && tleft->is_abstract())
5521 error_at(this->location(), "shift of non-integer operand");
5522 }
5523 else if (!tleft->is_abstract())
5524 subcontext.type = tleft;
5525 else if (!tright->is_abstract())
5526 subcontext.type = tright;
5527 else if (subcontext.type == NULL)
5528 {
5529 if ((tleft->integer_type() != NULL && tright->integer_type() != NULL)
5530 || (tleft->float_type() != NULL && tright->float_type() != NULL)
5531 || (tleft->complex_type() != NULL && tright->complex_type() != NULL))
5532 {
5533 // Both sides have an abstract integer, abstract float, or
5534 // abstract complex type. Just let CONTEXT determine
5535 // whether they may remain abstract or not.
5536 }
5537 else if (tleft->complex_type() != NULL)
5538 subcontext.type = tleft;
5539 else if (tright->complex_type() != NULL)
5540 subcontext.type = tright;
5541 else if (tleft->float_type() != NULL)
5542 subcontext.type = tleft;
5543 else if (tright->float_type() != NULL)
5544 subcontext.type = tright;
5545 else
5546 subcontext.type = tleft;
5547
5548 if (subcontext.type != NULL && !context->may_be_abstract)
5549 subcontext.type = subcontext.type->make_non_abstract_type();
5550 }
5551
5552 this->left_->determine_type(&subcontext);
5553
5554 // The context for the right hand operand is the same as for the
5555 // left hand operand, except for a shift operator.
5556 if (is_shift_op)
5557 {
5558 subcontext.type = Type::lookup_integer_type("uint");
5559 subcontext.may_be_abstract = false;
5560 }
5561
5562 this->right_->determine_type(&subcontext);
5563 }
5564
5565 // Report an error if the binary operator OP does not support TYPE.
5566 // Return whether the operation is OK. This should not be used for
5567 // shift.
5568
5569 bool
5570 Binary_expression::check_operator_type(Operator op, Type* type,
5571 source_location location)
5572 {
5573 switch (op)
5574 {
5575 case OPERATOR_OROR:
5576 case OPERATOR_ANDAND:
5577 if (!type->is_boolean_type())
5578 {
5579 error_at(location, "expected boolean type");
5580 return false;
5581 }
5582 break;
5583
5584 case OPERATOR_EQEQ:
5585 case OPERATOR_NOTEQ:
5586 if (type->integer_type() == NULL
5587 && type->float_type() == NULL
5588 && type->complex_type() == NULL
5589 && !type->is_string_type()
5590 && type->points_to() == NULL
5591 && !type->is_nil_type()
5592 && !type->is_boolean_type()
5593 && type->interface_type() == NULL
5594 && (type->array_type() == NULL
5595 || type->array_type()->length() != NULL)
5596 && type->map_type() == NULL
5597 && type->channel_type() == NULL
5598 && type->function_type() == NULL)
5599 {
5600 error_at(location,
5601 ("expected integer, floating, complex, string, pointer, "
5602 "boolean, interface, slice, map, channel, "
5603 "or function type"));
5604 return false;
5605 }
5606 break;
5607
5608 case OPERATOR_LT:
5609 case OPERATOR_LE:
5610 case OPERATOR_GT:
5611 case OPERATOR_GE:
5612 if (type->integer_type() == NULL
5613 && type->float_type() == NULL
5614 && !type->is_string_type())
5615 {
5616 error_at(location, "expected integer, floating, or string type");
5617 return false;
5618 }
5619 break;
5620
5621 case OPERATOR_PLUS:
5622 case OPERATOR_PLUSEQ:
5623 if (type->integer_type() == NULL
5624 && type->float_type() == NULL
5625 && type->complex_type() == NULL
5626 && !type->is_string_type())
5627 {
5628 error_at(location,
5629 "expected integer, floating, complex, or string type");
5630 return false;
5631 }
5632 break;
5633
5634 case OPERATOR_MINUS:
5635 case OPERATOR_MINUSEQ:
5636 case OPERATOR_MULT:
5637 case OPERATOR_MULTEQ:
5638 case OPERATOR_DIV:
5639 case OPERATOR_DIVEQ:
5640 if (type->integer_type() == NULL
5641 && type->float_type() == NULL
5642 && type->complex_type() == NULL)
5643 {
5644 error_at(location, "expected integer, floating, or complex type");
5645 return false;
5646 }
5647 break;
5648
5649 case OPERATOR_MOD:
5650 case OPERATOR_MODEQ:
5651 case OPERATOR_OR:
5652 case OPERATOR_OREQ:
5653 case OPERATOR_AND:
5654 case OPERATOR_ANDEQ:
5655 case OPERATOR_XOR:
5656 case OPERATOR_XOREQ:
5657 case OPERATOR_BITCLEAR:
5658 case OPERATOR_BITCLEAREQ:
5659 if (type->integer_type() == NULL)
5660 {
5661 error_at(location, "expected integer type");
5662 return false;
5663 }
5664 break;
5665
5666 default:
5667 gcc_unreachable();
5668 }
5669
5670 return true;
5671 }
5672
5673 // Check types.
5674
5675 void
5676 Binary_expression::do_check_types(Gogo*)
5677 {
5678 if (this->classification() == EXPRESSION_ERROR)
5679 return;
5680
5681 Type* left_type = this->left_->type();
5682 Type* right_type = this->right_->type();
5683 if (left_type->is_error_type() || right_type->is_error_type())
5684 {
5685 this->set_is_error();
5686 return;
5687 }
5688
5689 if (this->op_ == OPERATOR_EQEQ
5690 || this->op_ == OPERATOR_NOTEQ
5691 || this->op_ == OPERATOR_LT
5692 || this->op_ == OPERATOR_LE
5693 || this->op_ == OPERATOR_GT
5694 || this->op_ == OPERATOR_GE)
5695 {
5696 if (!Type::are_assignable(left_type, right_type, NULL)
5697 && !Type::are_assignable(right_type, left_type, NULL))
5698 {
5699 this->report_error(_("incompatible types in binary expression"));
5700 return;
5701 }
5702 if (!Binary_expression::check_operator_type(this->op_, left_type,
5703 this->location())
5704 || !Binary_expression::check_operator_type(this->op_, right_type,
5705 this->location()))
5706 {
5707 this->set_is_error();
5708 return;
5709 }
5710 }
5711 else if (this->op_ != OPERATOR_LSHIFT && this->op_ != OPERATOR_RSHIFT)
5712 {
5713 if (!Type::are_compatible_for_binop(left_type, right_type))
5714 {
5715 this->report_error(_("incompatible types in binary expression"));
5716 return;
5717 }
5718 if (!Binary_expression::check_operator_type(this->op_, left_type,
5719 this->location()))
5720 {
5721 this->set_is_error();
5722 return;
5723 }
5724 }
5725 else
5726 {
5727 if (left_type->integer_type() == NULL)
5728 this->report_error(_("shift of non-integer operand"));
5729
5730 if (!right_type->is_abstract()
5731 && (right_type->integer_type() == NULL
5732 || !right_type->integer_type()->is_unsigned()))
5733 this->report_error(_("shift count not unsigned integer"));
5734 else
5735 {
5736 mpz_t val;
5737 mpz_init(val);
5738 Type* type;
5739 if (this->right_->integer_constant_value(true, val, &type))
5740 {
5741 if (mpz_sgn(val) < 0)
5742 this->report_error(_("negative shift count"));
5743 }
5744 mpz_clear(val);
5745 }
5746 }
5747 }
5748
5749 // Get a tree for a binary expression.
5750
5751 tree
5752 Binary_expression::do_get_tree(Translate_context* context)
5753 {
5754 tree left = this->left_->get_tree(context);
5755 tree right = this->right_->get_tree(context);
5756
5757 if (left == error_mark_node || right == error_mark_node)
5758 return error_mark_node;
5759
5760 enum tree_code code;
5761 bool use_left_type = true;
5762 bool is_shift_op = false;
5763 switch (this->op_)
5764 {
5765 case OPERATOR_EQEQ:
5766 case OPERATOR_NOTEQ:
5767 case OPERATOR_LT:
5768 case OPERATOR_LE:
5769 case OPERATOR_GT:
5770 case OPERATOR_GE:
5771 return Expression::comparison_tree(context, this->op_,
5772 this->left_->type(), left,
5773 this->right_->type(), right,
5774 this->location());
5775
5776 case OPERATOR_OROR:
5777 code = TRUTH_ORIF_EXPR;
5778 use_left_type = false;
5779 break;
5780 case OPERATOR_ANDAND:
5781 code = TRUTH_ANDIF_EXPR;
5782 use_left_type = false;
5783 break;
5784 case OPERATOR_PLUS:
5785 code = PLUS_EXPR;
5786 break;
5787 case OPERATOR_MINUS:
5788 code = MINUS_EXPR;
5789 break;
5790 case OPERATOR_OR:
5791 code = BIT_IOR_EXPR;
5792 break;
5793 case OPERATOR_XOR:
5794 code = BIT_XOR_EXPR;
5795 break;
5796 case OPERATOR_MULT:
5797 code = MULT_EXPR;
5798 break;
5799 case OPERATOR_DIV:
5800 {
5801 Type *t = this->left_->type();
5802 if (t->float_type() != NULL || t->complex_type() != NULL)
5803 code = RDIV_EXPR;
5804 else
5805 code = TRUNC_DIV_EXPR;
5806 }
5807 break;
5808 case OPERATOR_MOD:
5809 code = TRUNC_MOD_EXPR;
5810 break;
5811 case OPERATOR_LSHIFT:
5812 code = LSHIFT_EXPR;
5813 is_shift_op = true;
5814 break;
5815 case OPERATOR_RSHIFT:
5816 code = RSHIFT_EXPR;
5817 is_shift_op = true;
5818 break;
5819 case OPERATOR_AND:
5820 code = BIT_AND_EXPR;
5821 break;
5822 case OPERATOR_BITCLEAR:
5823 right = fold_build1(BIT_NOT_EXPR, TREE_TYPE(right), right);
5824 code = BIT_AND_EXPR;
5825 break;
5826 default:
5827 gcc_unreachable();
5828 }
5829
5830 tree type = use_left_type ? TREE_TYPE(left) : TREE_TYPE(right);
5831
5832 if (this->left_->type()->is_string_type())
5833 {
5834 gcc_assert(this->op_ == OPERATOR_PLUS);
5835 tree string_type = Type::make_string_type()->get_tree(context->gogo());
5836 static tree string_plus_decl;
5837 return Gogo::call_builtin(&string_plus_decl,
5838 this->location(),
5839 "__go_string_plus",
5840 2,
5841 string_type,
5842 string_type,
5843 left,
5844 string_type,
5845 right);
5846 }
5847
5848 tree compute_type = excess_precision_type(type);
5849 if (compute_type != NULL_TREE)
5850 {
5851 left = ::convert(compute_type, left);
5852 right = ::convert(compute_type, right);
5853 }
5854
5855 tree eval_saved = NULL_TREE;
5856 if (is_shift_op)
5857 {
5858 if (!DECL_P(left))
5859 left = save_expr(left);
5860 if (!DECL_P(right))
5861 right = save_expr(right);
5862 // Make sure the values are evaluated.
5863 eval_saved = fold_build2_loc(this->location(), COMPOUND_EXPR,
5864 void_type_node, left, right);
5865 }
5866
5867 tree ret = fold_build2_loc(this->location(),
5868 code,
5869 compute_type != NULL_TREE ? compute_type : type,
5870 left, right);
5871
5872 if (compute_type != NULL_TREE)
5873 ret = ::convert(type, ret);
5874
5875 // In Go, a shift larger than the size of the type is well-defined.
5876 // This is not true in GENERIC, so we need to insert a conditional.
5877 if (is_shift_op)
5878 {
5879 gcc_assert(INTEGRAL_TYPE_P(TREE_TYPE(left)));
5880 gcc_assert(this->left_->type()->integer_type() != NULL);
5881 int bits = TYPE_PRECISION(TREE_TYPE(left));
5882
5883 tree compare = fold_build2(LT_EXPR, boolean_type_node, right,
5884 build_int_cst_type(TREE_TYPE(right), bits));
5885
5886 tree overflow_result = fold_convert_loc(this->location(),
5887 TREE_TYPE(left),
5888 integer_zero_node);
5889 if (this->op_ == OPERATOR_RSHIFT
5890 && !this->left_->type()->integer_type()->is_unsigned())
5891 {
5892 tree neg = fold_build2_loc(this->location(), LT_EXPR,
5893 boolean_type_node, left,
5894 fold_convert_loc(this->location(),
5895 TREE_TYPE(left),
5896 integer_zero_node));
5897 tree neg_one = fold_build2_loc(this->location(),
5898 MINUS_EXPR, TREE_TYPE(left),
5899 fold_convert_loc(this->location(),
5900 TREE_TYPE(left),
5901 integer_zero_node),
5902 fold_convert_loc(this->location(),
5903 TREE_TYPE(left),
5904 integer_one_node));
5905 overflow_result = fold_build3_loc(this->location(), COND_EXPR,
5906 TREE_TYPE(left), neg, neg_one,
5907 overflow_result);
5908 }
5909
5910 ret = fold_build3_loc(this->location(), COND_EXPR, TREE_TYPE(left),
5911 compare, ret, overflow_result);
5912
5913 ret = fold_build2_loc(this->location(), COMPOUND_EXPR,
5914 TREE_TYPE(ret), eval_saved, ret);
5915 }
5916
5917 return ret;
5918 }
5919
5920 // Export a binary expression.
5921
5922 void
5923 Binary_expression::do_export(Export* exp) const
5924 {
5925 exp->write_c_string("(");
5926 this->left_->export_expression(exp);
5927 switch (this->op_)
5928 {
5929 case OPERATOR_OROR:
5930 exp->write_c_string(" || ");
5931 break;
5932 case OPERATOR_ANDAND:
5933 exp->write_c_string(" && ");
5934 break;
5935 case OPERATOR_EQEQ:
5936 exp->write_c_string(" == ");
5937 break;
5938 case OPERATOR_NOTEQ:
5939 exp->write_c_string(" != ");
5940 break;
5941 case OPERATOR_LT:
5942 exp->write_c_string(" < ");
5943 break;
5944 case OPERATOR_LE:
5945 exp->write_c_string(" <= ");
5946 break;
5947 case OPERATOR_GT:
5948 exp->write_c_string(" > ");
5949 break;
5950 case OPERATOR_GE:
5951 exp->write_c_string(" >= ");
5952 break;
5953 case OPERATOR_PLUS:
5954 exp->write_c_string(" + ");
5955 break;
5956 case OPERATOR_MINUS:
5957 exp->write_c_string(" - ");
5958 break;
5959 case OPERATOR_OR:
5960 exp->write_c_string(" | ");
5961 break;
5962 case OPERATOR_XOR:
5963 exp->write_c_string(" ^ ");
5964 break;
5965 case OPERATOR_MULT:
5966 exp->write_c_string(" * ");
5967 break;
5968 case OPERATOR_DIV:
5969 exp->write_c_string(" / ");
5970 break;
5971 case OPERATOR_MOD:
5972 exp->write_c_string(" % ");
5973 break;
5974 case OPERATOR_LSHIFT:
5975 exp->write_c_string(" << ");
5976 break;
5977 case OPERATOR_RSHIFT:
5978 exp->write_c_string(" >> ");
5979 break;
5980 case OPERATOR_AND:
5981 exp->write_c_string(" & ");
5982 break;
5983 case OPERATOR_BITCLEAR:
5984 exp->write_c_string(" &^ ");
5985 break;
5986 default:
5987 gcc_unreachable();
5988 }
5989 this->right_->export_expression(exp);
5990 exp->write_c_string(")");
5991 }
5992
5993 // Import a binary expression.
5994
5995 Expression*
5996 Binary_expression::do_import(Import* imp)
5997 {
5998 imp->require_c_string("(");
5999
6000 Expression* left = Expression::import_expression(imp);
6001
6002 Operator op;
6003 if (imp->match_c_string(" || "))
6004 {
6005 op = OPERATOR_OROR;
6006 imp->advance(4);
6007 }
6008 else if (imp->match_c_string(" && "))
6009 {
6010 op = OPERATOR_ANDAND;
6011 imp->advance(4);
6012 }
6013 else if (imp->match_c_string(" == "))
6014 {
6015 op = OPERATOR_EQEQ;
6016 imp->advance(4);
6017 }
6018 else if (imp->match_c_string(" != "))
6019 {
6020 op = OPERATOR_NOTEQ;
6021 imp->advance(4);
6022 }
6023 else if (imp->match_c_string(" < "))
6024 {
6025 op = OPERATOR_LT;
6026 imp->advance(3);
6027 }
6028 else if (imp->match_c_string(" <= "))
6029 {
6030 op = OPERATOR_LE;
6031 imp->advance(4);
6032 }
6033 else if (imp->match_c_string(" > "))
6034 {
6035 op = OPERATOR_GT;
6036 imp->advance(3);
6037 }
6038 else if (imp->match_c_string(" >= "))
6039 {
6040 op = OPERATOR_GE;
6041 imp->advance(4);
6042 }
6043 else if (imp->match_c_string(" + "))
6044 {
6045 op = OPERATOR_PLUS;
6046 imp->advance(3);
6047 }
6048 else if (imp->match_c_string(" - "))
6049 {
6050 op = OPERATOR_MINUS;
6051 imp->advance(3);
6052 }
6053 else if (imp->match_c_string(" | "))
6054 {
6055 op = OPERATOR_OR;
6056 imp->advance(3);
6057 }
6058 else if (imp->match_c_string(" ^ "))
6059 {
6060 op = OPERATOR_XOR;
6061 imp->advance(3);
6062 }
6063 else if (imp->match_c_string(" * "))
6064 {
6065 op = OPERATOR_MULT;
6066 imp->advance(3);
6067 }
6068 else if (imp->match_c_string(" / "))
6069 {
6070 op = OPERATOR_DIV;
6071 imp->advance(3);
6072 }
6073 else if (imp->match_c_string(" % "))
6074 {
6075 op = OPERATOR_MOD;
6076 imp->advance(3);
6077 }
6078 else if (imp->match_c_string(" << "))
6079 {
6080 op = OPERATOR_LSHIFT;
6081 imp->advance(4);
6082 }
6083 else if (imp->match_c_string(" >> "))
6084 {
6085 op = OPERATOR_RSHIFT;
6086 imp->advance(4);
6087 }
6088 else if (imp->match_c_string(" & "))
6089 {
6090 op = OPERATOR_AND;
6091 imp->advance(3);
6092 }
6093 else if (imp->match_c_string(" &^ "))
6094 {
6095 op = OPERATOR_BITCLEAR;
6096 imp->advance(4);
6097 }
6098 else
6099 {
6100 error_at(imp->location(), "unrecognized binary operator");
6101 return Expression::make_error(imp->location());
6102 }
6103
6104 Expression* right = Expression::import_expression(imp);
6105
6106 imp->require_c_string(")");
6107
6108 return Expression::make_binary(op, left, right, imp->location());
6109 }
6110
6111 // Make a binary expression.
6112
6113 Expression*
6114 Expression::make_binary(Operator op, Expression* left, Expression* right,
6115 source_location location)
6116 {
6117 return new Binary_expression(op, left, right, location);
6118 }
6119
6120 // Implement a comparison.
6121
6122 tree
6123 Expression::comparison_tree(Translate_context* context, Operator op,
6124 Type* left_type, tree left_tree,
6125 Type* right_type, tree right_tree,
6126 source_location location)
6127 {
6128 enum tree_code code;
6129 switch (op)
6130 {
6131 case OPERATOR_EQEQ:
6132 code = EQ_EXPR;
6133 break;
6134 case OPERATOR_NOTEQ:
6135 code = NE_EXPR;
6136 break;
6137 case OPERATOR_LT:
6138 code = LT_EXPR;
6139 break;
6140 case OPERATOR_LE:
6141 code = LE_EXPR;
6142 break;
6143 case OPERATOR_GT:
6144 code = GT_EXPR;
6145 break;
6146 case OPERATOR_GE:
6147 code = GE_EXPR;
6148 break;
6149 default:
6150 gcc_unreachable();
6151 }
6152
6153 if (left_type->is_string_type() && right_type->is_string_type())
6154 {
6155 tree string_type = Type::make_string_type()->get_tree(context->gogo());
6156 static tree string_compare_decl;
6157 left_tree = Gogo::call_builtin(&string_compare_decl,
6158 location,
6159 "__go_strcmp",
6160 2,
6161 integer_type_node,
6162 string_type,
6163 left_tree,
6164 string_type,
6165 right_tree);
6166 right_tree = build_int_cst_type(integer_type_node, 0);
6167 }
6168 else if ((left_type->interface_type() != NULL
6169 && right_type->interface_type() == NULL
6170 && !right_type->is_nil_type())
6171 || (left_type->interface_type() == NULL
6172 && !left_type->is_nil_type()
6173 && right_type->interface_type() != NULL))
6174 {
6175 // Comparing an interface value to a non-interface value.
6176 if (left_type->interface_type() == NULL)
6177 {
6178 std::swap(left_type, right_type);
6179 std::swap(left_tree, right_tree);
6180 }
6181
6182 // The right operand is not an interface. We need to take its
6183 // address if it is not a pointer.
6184 tree make_tmp;
6185 tree arg;
6186 if (right_type->points_to() != NULL)
6187 {
6188 make_tmp = NULL_TREE;
6189 arg = right_tree;
6190 }
6191 else if (TREE_ADDRESSABLE(TREE_TYPE(right_tree)) || DECL_P(right_tree))
6192 {
6193 make_tmp = NULL_TREE;
6194 arg = build_fold_addr_expr_loc(location, right_tree);
6195 if (DECL_P(right_tree))
6196 TREE_ADDRESSABLE(right_tree) = 1;
6197 }
6198 else
6199 {
6200 tree tmp = create_tmp_var(TREE_TYPE(right_tree),
6201 get_name(right_tree));
6202 DECL_IGNORED_P(tmp) = 0;
6203 DECL_INITIAL(tmp) = right_tree;
6204 TREE_ADDRESSABLE(tmp) = 1;
6205 make_tmp = build1(DECL_EXPR, void_type_node, tmp);
6206 SET_EXPR_LOCATION(make_tmp, location);
6207 arg = build_fold_addr_expr_loc(location, tmp);
6208 }
6209 arg = fold_convert_loc(location, ptr_type_node, arg);
6210
6211 tree descriptor = right_type->type_descriptor_pointer(context->gogo());
6212
6213 if (left_type->interface_type()->is_empty())
6214 {
6215 static tree empty_interface_value_compare_decl;
6216 left_tree = Gogo::call_builtin(&empty_interface_value_compare_decl,
6217 location,
6218 "__go_empty_interface_value_compare",
6219 3,
6220 integer_type_node,
6221 TREE_TYPE(left_tree),
6222 left_tree,
6223 TREE_TYPE(descriptor),
6224 descriptor,
6225 ptr_type_node,
6226 arg);
6227 if (left_tree == error_mark_node)
6228 return error_mark_node;
6229 // This can panic if the type is not comparable.
6230 TREE_NOTHROW(empty_interface_value_compare_decl) = 0;
6231 }
6232 else
6233 {
6234 static tree interface_value_compare_decl;
6235 left_tree = Gogo::call_builtin(&interface_value_compare_decl,
6236 location,
6237 "__go_interface_value_compare",
6238 3,
6239 integer_type_node,
6240 TREE_TYPE(left_tree),
6241 left_tree,
6242 TREE_TYPE(descriptor),
6243 descriptor,
6244 ptr_type_node,
6245 arg);
6246 if (left_tree == error_mark_node)
6247 return error_mark_node;
6248 // This can panic if the type is not comparable.
6249 TREE_NOTHROW(interface_value_compare_decl) = 0;
6250 }
6251 right_tree = build_int_cst_type(integer_type_node, 0);
6252
6253 if (make_tmp != NULL_TREE)
6254 left_tree = build2(COMPOUND_EXPR, TREE_TYPE(left_tree), make_tmp,
6255 left_tree);
6256 }
6257 else if (left_type->interface_type() != NULL
6258 && right_type->interface_type() != NULL)
6259 {
6260 if (left_type->interface_type()->is_empty())
6261 {
6262 gcc_assert(right_type->interface_type()->is_empty());
6263 static tree empty_interface_compare_decl;
6264 left_tree = Gogo::call_builtin(&empty_interface_compare_decl,
6265 location,
6266 "__go_empty_interface_compare",
6267 2,
6268 integer_type_node,
6269 TREE_TYPE(left_tree),
6270 left_tree,
6271 TREE_TYPE(right_tree),
6272 right_tree);
6273 if (left_tree == error_mark_node)
6274 return error_mark_node;
6275 // This can panic if the type is uncomparable.
6276 TREE_NOTHROW(empty_interface_compare_decl) = 0;
6277 }
6278 else
6279 {
6280 gcc_assert(!right_type->interface_type()->is_empty());
6281 static tree interface_compare_decl;
6282 left_tree = Gogo::call_builtin(&interface_compare_decl,
6283 location,
6284 "__go_interface_compare",
6285 2,
6286 integer_type_node,
6287 TREE_TYPE(left_tree),
6288 left_tree,
6289 TREE_TYPE(right_tree),
6290 right_tree);
6291 if (left_tree == error_mark_node)
6292 return error_mark_node;
6293 // This can panic if the type is uncomparable.
6294 TREE_NOTHROW(interface_compare_decl) = 0;
6295 }
6296 right_tree = build_int_cst_type(integer_type_node, 0);
6297 }
6298
6299 if (left_type->is_nil_type()
6300 && (op == OPERATOR_EQEQ || op == OPERATOR_NOTEQ))
6301 {
6302 std::swap(left_type, right_type);
6303 std::swap(left_tree, right_tree);
6304 }
6305
6306 if (right_type->is_nil_type())
6307 {
6308 if (left_type->array_type() != NULL
6309 && left_type->array_type()->length() == NULL)
6310 {
6311 Array_type* at = left_type->array_type();
6312 left_tree = at->value_pointer_tree(context->gogo(), left_tree);
6313 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
6314 }
6315 else if (left_type->interface_type() != NULL)
6316 {
6317 // An interface is nil if the first field is nil.
6318 tree left_type_tree = TREE_TYPE(left_tree);
6319 gcc_assert(TREE_CODE(left_type_tree) == RECORD_TYPE);
6320 tree field = TYPE_FIELDS(left_type_tree);
6321 left_tree = build3(COMPONENT_REF, TREE_TYPE(field), left_tree,
6322 field, NULL_TREE);
6323 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
6324 }
6325 else
6326 {
6327 gcc_assert(POINTER_TYPE_P(TREE_TYPE(left_tree)));
6328 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
6329 }
6330 }
6331
6332 if (left_tree == error_mark_node || right_tree == error_mark_node)
6333 return error_mark_node;
6334
6335 tree ret = fold_build2(code, boolean_type_node, left_tree, right_tree);
6336 if (CAN_HAVE_LOCATION_P(ret))
6337 SET_EXPR_LOCATION(ret, location);
6338 return ret;
6339 }
6340
6341 // Class Bound_method_expression.
6342
6343 // Traversal.
6344
6345 int
6346 Bound_method_expression::do_traverse(Traverse* traverse)
6347 {
6348 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT)
6349 return TRAVERSE_EXIT;
6350 return Expression::traverse(&this->method_, traverse);
6351 }
6352
6353 // Return the type of a bound method expression. The type of this
6354 // object is really the type of the method with no receiver. We
6355 // should be able to get away with just returning the type of the
6356 // method.
6357
6358 Type*
6359 Bound_method_expression::do_type()
6360 {
6361 return this->method_->type();
6362 }
6363
6364 // Determine the types of a method expression.
6365
6366 void
6367 Bound_method_expression::do_determine_type(const Type_context*)
6368 {
6369 this->method_->determine_type_no_context();
6370 Type* mtype = this->method_->type();
6371 Function_type* fntype = mtype == NULL ? NULL : mtype->function_type();
6372 if (fntype == NULL || !fntype->is_method())
6373 this->expr_->determine_type_no_context();
6374 else
6375 {
6376 Type_context subcontext(fntype->receiver()->type(), false);
6377 this->expr_->determine_type(&subcontext);
6378 }
6379 }
6380
6381 // Check the types of a method expression.
6382
6383 void
6384 Bound_method_expression::do_check_types(Gogo*)
6385 {
6386 Type* type = this->method_->type()->deref();
6387 if (type == NULL
6388 || type->function_type() == NULL
6389 || !type->function_type()->is_method())
6390 this->report_error(_("object is not a method"));
6391 else
6392 {
6393 Type* rtype = type->function_type()->receiver()->type()->deref();
6394 Type* etype = (this->expr_type_ != NULL
6395 ? this->expr_type_
6396 : this->expr_->type());
6397 etype = etype->deref();
6398 if (!Type::are_identical(rtype, etype, true, NULL))
6399 this->report_error(_("method type does not match object type"));
6400 }
6401 }
6402
6403 // Get the tree for a method expression. There is no standard tree
6404 // representation for this. The only places it may currently be used
6405 // are in a Call_expression or a Go_statement, which will take it
6406 // apart directly. So this has nothing to do at present.
6407
6408 tree
6409 Bound_method_expression::do_get_tree(Translate_context*)
6410 {
6411 error_at(this->location(), "reference to method other than calling it");
6412 return error_mark_node;
6413 }
6414
6415 // Make a method expression.
6416
6417 Bound_method_expression*
6418 Expression::make_bound_method(Expression* expr, Expression* method,
6419 source_location location)
6420 {
6421 return new Bound_method_expression(expr, method, location);
6422 }
6423
6424 // Class Builtin_call_expression. This is used for a call to a
6425 // builtin function.
6426
6427 class Builtin_call_expression : public Call_expression
6428 {
6429 public:
6430 Builtin_call_expression(Gogo* gogo, Expression* fn, Expression_list* args,
6431 bool is_varargs, source_location location);
6432
6433 protected:
6434 // This overrides Call_expression::do_lower.
6435 Expression*
6436 do_lower(Gogo*, Named_object*, int);
6437
6438 bool
6439 do_is_constant() const;
6440
6441 bool
6442 do_integer_constant_value(bool, mpz_t, Type**) const;
6443
6444 bool
6445 do_float_constant_value(mpfr_t, Type**) const;
6446
6447 bool
6448 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
6449
6450 Type*
6451 do_type();
6452
6453 void
6454 do_determine_type(const Type_context*);
6455
6456 void
6457 do_check_types(Gogo*);
6458
6459 Expression*
6460 do_copy()
6461 {
6462 return new Builtin_call_expression(this->gogo_, this->fn()->copy(),
6463 this->args()->copy(),
6464 this->is_varargs(),
6465 this->location());
6466 }
6467
6468 tree
6469 do_get_tree(Translate_context*);
6470
6471 void
6472 do_export(Export*) const;
6473
6474 virtual bool
6475 do_is_recover_call() const;
6476
6477 virtual void
6478 do_set_recover_arg(Expression*);
6479
6480 private:
6481 // The builtin functions.
6482 enum Builtin_function_code
6483 {
6484 BUILTIN_INVALID,
6485
6486 // Predeclared builtin functions.
6487 BUILTIN_APPEND,
6488 BUILTIN_CAP,
6489 BUILTIN_CLOSE,
6490 BUILTIN_CLOSED,
6491 BUILTIN_COMPLEX,
6492 BUILTIN_COPY,
6493 BUILTIN_IMAG,
6494 BUILTIN_LEN,
6495 BUILTIN_MAKE,
6496 BUILTIN_NEW,
6497 BUILTIN_PANIC,
6498 BUILTIN_PRINT,
6499 BUILTIN_PRINTLN,
6500 BUILTIN_REAL,
6501 BUILTIN_RECOVER,
6502
6503 // Builtin functions from the unsafe package.
6504 BUILTIN_ALIGNOF,
6505 BUILTIN_OFFSETOF,
6506 BUILTIN_SIZEOF
6507 };
6508
6509 Expression*
6510 one_arg() const;
6511
6512 bool
6513 check_one_arg();
6514
6515 static Type*
6516 real_imag_type(Type*);
6517
6518 static Type*
6519 complex_type(Type*);
6520
6521 // A pointer back to the general IR structure. This avoids a global
6522 // variable, or passing it around everywhere.
6523 Gogo* gogo_;
6524 // The builtin function being called.
6525 Builtin_function_code code_;
6526 // Used to stop endless loops when the length of an array uses len
6527 // or cap of the array itself.
6528 mutable bool seen_;
6529 };
6530
6531 Builtin_call_expression::Builtin_call_expression(Gogo* gogo,
6532 Expression* fn,
6533 Expression_list* args,
6534 bool is_varargs,
6535 source_location location)
6536 : Call_expression(fn, args, is_varargs, location),
6537 gogo_(gogo), code_(BUILTIN_INVALID), seen_(false)
6538 {
6539 Func_expression* fnexp = this->fn()->func_expression();
6540 gcc_assert(fnexp != NULL);
6541 const std::string& name(fnexp->named_object()->name());
6542 if (name == "append")
6543 this->code_ = BUILTIN_APPEND;
6544 else if (name == "cap")
6545 this->code_ = BUILTIN_CAP;
6546 else if (name == "close")
6547 this->code_ = BUILTIN_CLOSE;
6548 else if (name == "closed")
6549 this->code_ = BUILTIN_CLOSED;
6550 else if (name == "complex")
6551 this->code_ = BUILTIN_COMPLEX;
6552 else if (name == "copy")
6553 this->code_ = BUILTIN_COPY;
6554 else if (name == "imag")
6555 this->code_ = BUILTIN_IMAG;
6556 else if (name == "len")
6557 this->code_ = BUILTIN_LEN;
6558 else if (name == "make")
6559 this->code_ = BUILTIN_MAKE;
6560 else if (name == "new")
6561 this->code_ = BUILTIN_NEW;
6562 else if (name == "panic")
6563 this->code_ = BUILTIN_PANIC;
6564 else if (name == "print")
6565 this->code_ = BUILTIN_PRINT;
6566 else if (name == "println")
6567 this->code_ = BUILTIN_PRINTLN;
6568 else if (name == "real")
6569 this->code_ = BUILTIN_REAL;
6570 else if (name == "recover")
6571 this->code_ = BUILTIN_RECOVER;
6572 else if (name == "Alignof")
6573 this->code_ = BUILTIN_ALIGNOF;
6574 else if (name == "Offsetof")
6575 this->code_ = BUILTIN_OFFSETOF;
6576 else if (name == "Sizeof")
6577 this->code_ = BUILTIN_SIZEOF;
6578 else
6579 gcc_unreachable();
6580 }
6581
6582 // Return whether this is a call to recover. This is a virtual
6583 // function called from the parent class.
6584
6585 bool
6586 Builtin_call_expression::do_is_recover_call() const
6587 {
6588 if (this->classification() == EXPRESSION_ERROR)
6589 return false;
6590 return this->code_ == BUILTIN_RECOVER;
6591 }
6592
6593 // Set the argument for a call to recover.
6594
6595 void
6596 Builtin_call_expression::do_set_recover_arg(Expression* arg)
6597 {
6598 const Expression_list* args = this->args();
6599 gcc_assert(args == NULL || args->empty());
6600 Expression_list* new_args = new Expression_list();
6601 new_args->push_back(arg);
6602 this->set_args(new_args);
6603 }
6604
6605 // A traversal class which looks for a call expression.
6606
6607 class Find_call_expression : public Traverse
6608 {
6609 public:
6610 Find_call_expression()
6611 : Traverse(traverse_expressions),
6612 found_(false)
6613 { }
6614
6615 int
6616 expression(Expression**);
6617
6618 bool
6619 found()
6620 { return this->found_; }
6621
6622 private:
6623 bool found_;
6624 };
6625
6626 int
6627 Find_call_expression::expression(Expression** pexpr)
6628 {
6629 if ((*pexpr)->call_expression() != NULL)
6630 {
6631 this->found_ = true;
6632 return TRAVERSE_EXIT;
6633 }
6634 return TRAVERSE_CONTINUE;
6635 }
6636
6637 // Lower a builtin call expression. This turns new and make into
6638 // specific expressions. We also convert to a constant if we can.
6639
6640 Expression*
6641 Builtin_call_expression::do_lower(Gogo* gogo, Named_object* function, int)
6642 {
6643 if (this->code_ == BUILTIN_NEW)
6644 {
6645 const Expression_list* args = this->args();
6646 if (args == NULL || args->size() < 1)
6647 this->report_error(_("not enough arguments"));
6648 else if (args->size() > 1)
6649 this->report_error(_("too many arguments"));
6650 else
6651 {
6652 Expression* arg = args->front();
6653 if (!arg->is_type_expression())
6654 {
6655 error_at(arg->location(), "expected type");
6656 this->set_is_error();
6657 }
6658 else
6659 return Expression::make_allocation(arg->type(), this->location());
6660 }
6661 }
6662 else if (this->code_ == BUILTIN_MAKE)
6663 {
6664 const Expression_list* args = this->args();
6665 if (args == NULL || args->size() < 1)
6666 this->report_error(_("not enough arguments"));
6667 else
6668 {
6669 Expression* arg = args->front();
6670 if (!arg->is_type_expression())
6671 {
6672 error_at(arg->location(), "expected type");
6673 this->set_is_error();
6674 }
6675 else
6676 {
6677 Expression_list* newargs;
6678 if (args->size() == 1)
6679 newargs = NULL;
6680 else
6681 {
6682 newargs = new Expression_list();
6683 Expression_list::const_iterator p = args->begin();
6684 ++p;
6685 for (; p != args->end(); ++p)
6686 newargs->push_back(*p);
6687 }
6688 return Expression::make_make(arg->type(), newargs,
6689 this->location());
6690 }
6691 }
6692 }
6693 else if (this->is_constant())
6694 {
6695 // We can only lower len and cap if there are no function calls
6696 // in the arguments. Otherwise we have to make the call.
6697 if (this->code_ == BUILTIN_LEN || this->code_ == BUILTIN_CAP)
6698 {
6699 Expression* arg = this->one_arg();
6700 if (!arg->is_constant())
6701 {
6702 Find_call_expression find_call;
6703 Expression::traverse(&arg, &find_call);
6704 if (find_call.found())
6705 return this;
6706 }
6707 }
6708
6709 mpz_t ival;
6710 mpz_init(ival);
6711 Type* type;
6712 if (this->integer_constant_value(true, ival, &type))
6713 {
6714 Expression* ret = Expression::make_integer(&ival, type,
6715 this->location());
6716 mpz_clear(ival);
6717 return ret;
6718 }
6719 mpz_clear(ival);
6720
6721 mpfr_t rval;
6722 mpfr_init(rval);
6723 if (this->float_constant_value(rval, &type))
6724 {
6725 Expression* ret = Expression::make_float(&rval, type,
6726 this->location());
6727 mpfr_clear(rval);
6728 return ret;
6729 }
6730
6731 mpfr_t imag;
6732 mpfr_init(imag);
6733 if (this->complex_constant_value(rval, imag, &type))
6734 {
6735 Expression* ret = Expression::make_complex(&rval, &imag, type,
6736 this->location());
6737 mpfr_clear(rval);
6738 mpfr_clear(imag);
6739 return ret;
6740 }
6741 mpfr_clear(rval);
6742 mpfr_clear(imag);
6743 }
6744 else if (this->code_ == BUILTIN_RECOVER)
6745 {
6746 if (function != NULL)
6747 function->func_value()->set_calls_recover();
6748 else
6749 {
6750 // Calling recover outside of a function always returns the
6751 // nil empty interface.
6752 Type* eface = Type::make_interface_type(NULL, this->location());
6753 return Expression::make_cast(eface,
6754 Expression::make_nil(this->location()),
6755 this->location());
6756 }
6757 }
6758 else if (this->code_ == BUILTIN_APPEND)
6759 {
6760 // Lower the varargs.
6761 const Expression_list* args = this->args();
6762 if (args == NULL || args->empty())
6763 return this;
6764 Type* slice_type = args->front()->type();
6765 if (!slice_type->is_open_array_type())
6766 {
6767 error_at(args->front()->location(), "argument 1 must be a slice");
6768 this->set_is_error();
6769 return this;
6770 }
6771 return this->lower_varargs(gogo, function, slice_type, 2);
6772 }
6773
6774 return this;
6775 }
6776
6777 // Return the type of the real or imag functions, given the type of
6778 // the argument. We need to map complex to float, complex64 to
6779 // float32, and complex128 to float64, so it has to be done by name.
6780 // This returns NULL if it can't figure out the type.
6781
6782 Type*
6783 Builtin_call_expression::real_imag_type(Type* arg_type)
6784 {
6785 if (arg_type == NULL || arg_type->is_abstract())
6786 return NULL;
6787 Named_type* nt = arg_type->named_type();
6788 if (nt == NULL)
6789 return NULL;
6790 while (nt->real_type()->named_type() != NULL)
6791 nt = nt->real_type()->named_type();
6792 if (nt->name() == "complex64")
6793 return Type::lookup_float_type("float32");
6794 else if (nt->name() == "complex128")
6795 return Type::lookup_float_type("float64");
6796 else
6797 return NULL;
6798 }
6799
6800 // Return the type of the complex function, given the type of one of the
6801 // argments. Like real_imag_type, we have to map by name.
6802
6803 Type*
6804 Builtin_call_expression::complex_type(Type* arg_type)
6805 {
6806 if (arg_type == NULL || arg_type->is_abstract())
6807 return NULL;
6808 Named_type* nt = arg_type->named_type();
6809 if (nt == NULL)
6810 return NULL;
6811 while (nt->real_type()->named_type() != NULL)
6812 nt = nt->real_type()->named_type();
6813 if (nt->name() == "float32")
6814 return Type::lookup_complex_type("complex64");
6815 else if (nt->name() == "float64")
6816 return Type::lookup_complex_type("complex128");
6817 else
6818 return NULL;
6819 }
6820
6821 // Return a single argument, or NULL if there isn't one.
6822
6823 Expression*
6824 Builtin_call_expression::one_arg() const
6825 {
6826 const Expression_list* args = this->args();
6827 if (args->size() != 1)
6828 return NULL;
6829 return args->front();
6830 }
6831
6832 // Return whether this is constant: len of a string, or len or cap of
6833 // a fixed array, or unsafe.Sizeof, unsafe.Offsetof, unsafe.Alignof.
6834
6835 bool
6836 Builtin_call_expression::do_is_constant() const
6837 {
6838 switch (this->code_)
6839 {
6840 case BUILTIN_LEN:
6841 case BUILTIN_CAP:
6842 {
6843 if (this->seen_)
6844 return false;
6845
6846 Expression* arg = this->one_arg();
6847 if (arg == NULL)
6848 return false;
6849 Type* arg_type = arg->type();
6850
6851 if (arg_type->points_to() != NULL
6852 && arg_type->points_to()->array_type() != NULL
6853 && !arg_type->points_to()->is_open_array_type())
6854 arg_type = arg_type->points_to();
6855
6856 if (arg_type->array_type() != NULL
6857 && arg_type->array_type()->length() != NULL)
6858 return true;
6859
6860 if (this->code_ == BUILTIN_LEN && arg_type->is_string_type())
6861 {
6862 this->seen_ = true;
6863 bool ret = arg->is_constant();
6864 this->seen_ = false;
6865 return ret;
6866 }
6867 }
6868 break;
6869
6870 case BUILTIN_SIZEOF:
6871 case BUILTIN_ALIGNOF:
6872 return this->one_arg() != NULL;
6873
6874 case BUILTIN_OFFSETOF:
6875 {
6876 Expression* arg = this->one_arg();
6877 if (arg == NULL)
6878 return false;
6879 return arg->field_reference_expression() != NULL;
6880 }
6881
6882 case BUILTIN_COMPLEX:
6883 {
6884 const Expression_list* args = this->args();
6885 if (args != NULL && args->size() == 2)
6886 return args->front()->is_constant() && args->back()->is_constant();
6887 }
6888 break;
6889
6890 case BUILTIN_REAL:
6891 case BUILTIN_IMAG:
6892 {
6893 Expression* arg = this->one_arg();
6894 return arg != NULL && arg->is_constant();
6895 }
6896
6897 default:
6898 break;
6899 }
6900
6901 return false;
6902 }
6903
6904 // Return an integer constant value if possible.
6905
6906 bool
6907 Builtin_call_expression::do_integer_constant_value(bool iota_is_constant,
6908 mpz_t val,
6909 Type** ptype) const
6910 {
6911 if (this->code_ == BUILTIN_LEN
6912 || this->code_ == BUILTIN_CAP)
6913 {
6914 Expression* arg = this->one_arg();
6915 if (arg == NULL)
6916 return false;
6917 Type* arg_type = arg->type();
6918
6919 if (this->code_ == BUILTIN_LEN && arg_type->is_string_type())
6920 {
6921 std::string sval;
6922 if (arg->string_constant_value(&sval))
6923 {
6924 mpz_set_ui(val, sval.length());
6925 *ptype = Type::lookup_integer_type("int");
6926 return true;
6927 }
6928 }
6929
6930 if (arg_type->points_to() != NULL
6931 && arg_type->points_to()->array_type() != NULL
6932 && !arg_type->points_to()->is_open_array_type())
6933 arg_type = arg_type->points_to();
6934
6935 if (arg_type->array_type() != NULL
6936 && arg_type->array_type()->length() != NULL)
6937 {
6938 if (this->seen_)
6939 return false;
6940 Expression* e = arg_type->array_type()->length();
6941 this->seen_ = true;
6942 bool r = e->integer_constant_value(iota_is_constant, val, ptype);
6943 this->seen_ = false;
6944 if (r)
6945 {
6946 *ptype = Type::lookup_integer_type("int");
6947 return true;
6948 }
6949 }
6950 }
6951 else if (this->code_ == BUILTIN_SIZEOF
6952 || this->code_ == BUILTIN_ALIGNOF)
6953 {
6954 Expression* arg = this->one_arg();
6955 if (arg == NULL)
6956 return false;
6957 Type* arg_type = arg->type();
6958 if (arg_type->is_error_type() || arg_type->is_undefined())
6959 return false;
6960 if (arg_type->is_abstract())
6961 return false;
6962 tree arg_type_tree = arg_type->get_tree(this->gogo_);
6963 unsigned long val_long;
6964 if (this->code_ == BUILTIN_SIZEOF)
6965 {
6966 tree type_size = TYPE_SIZE_UNIT(arg_type_tree);
6967 gcc_assert(TREE_CODE(type_size) == INTEGER_CST);
6968 if (TREE_INT_CST_HIGH(type_size) != 0)
6969 return false;
6970 unsigned HOST_WIDE_INT val_wide = TREE_INT_CST_LOW(type_size);
6971 val_long = static_cast<unsigned long>(val_wide);
6972 if (val_long != val_wide)
6973 return false;
6974 }
6975 else if (this->code_ == BUILTIN_ALIGNOF)
6976 {
6977 if (arg->field_reference_expression() == NULL)
6978 val_long = go_type_alignment(arg_type_tree);
6979 else
6980 {
6981 // Calling unsafe.Alignof(s.f) returns the alignment of
6982 // the type of f when it is used as a field in a struct.
6983 val_long = go_field_alignment(arg_type_tree);
6984 }
6985 }
6986 else
6987 gcc_unreachable();
6988 mpz_set_ui(val, val_long);
6989 *ptype = NULL;
6990 return true;
6991 }
6992 else if (this->code_ == BUILTIN_OFFSETOF)
6993 {
6994 Expression* arg = this->one_arg();
6995 if (arg == NULL)
6996 return false;
6997 Field_reference_expression* farg = arg->field_reference_expression();
6998 if (farg == NULL)
6999 return false;
7000 Expression* struct_expr = farg->expr();
7001 Type* st = struct_expr->type();
7002 if (st->struct_type() == NULL)
7003 return false;
7004 tree struct_tree = st->get_tree(this->gogo_);
7005 gcc_assert(TREE_CODE(struct_tree) == RECORD_TYPE);
7006 tree field = TYPE_FIELDS(struct_tree);
7007 for (unsigned int index = farg->field_index(); index > 0; --index)
7008 {
7009 field = DECL_CHAIN(field);
7010 gcc_assert(field != NULL_TREE);
7011 }
7012 HOST_WIDE_INT offset_wide = int_byte_position (field);
7013 if (offset_wide < 0)
7014 return false;
7015 unsigned long offset_long = static_cast<unsigned long>(offset_wide);
7016 if (offset_long != static_cast<unsigned HOST_WIDE_INT>(offset_wide))
7017 return false;
7018 mpz_set_ui(val, offset_long);
7019 return true;
7020 }
7021 return false;
7022 }
7023
7024 // Return a floating point constant value if possible.
7025
7026 bool
7027 Builtin_call_expression::do_float_constant_value(mpfr_t val,
7028 Type** ptype) const
7029 {
7030 if (this->code_ == BUILTIN_REAL || this->code_ == BUILTIN_IMAG)
7031 {
7032 Expression* arg = this->one_arg();
7033 if (arg == NULL)
7034 return false;
7035
7036 mpfr_t real;
7037 mpfr_t imag;
7038 mpfr_init(real);
7039 mpfr_init(imag);
7040
7041 bool ret = false;
7042 Type* type;
7043 if (arg->complex_constant_value(real, imag, &type))
7044 {
7045 if (this->code_ == BUILTIN_REAL)
7046 mpfr_set(val, real, GMP_RNDN);
7047 else
7048 mpfr_set(val, imag, GMP_RNDN);
7049 *ptype = Builtin_call_expression::real_imag_type(type);
7050 ret = true;
7051 }
7052
7053 mpfr_clear(real);
7054 mpfr_clear(imag);
7055 return ret;
7056 }
7057
7058 return false;
7059 }
7060
7061 // Return a complex constant value if possible.
7062
7063 bool
7064 Builtin_call_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
7065 Type** ptype) const
7066 {
7067 if (this->code_ == BUILTIN_COMPLEX)
7068 {
7069 const Expression_list* args = this->args();
7070 if (args == NULL || args->size() != 2)
7071 return false;
7072
7073 mpfr_t r;
7074 mpfr_init(r);
7075 Type* rtype;
7076 if (!args->front()->float_constant_value(r, &rtype))
7077 {
7078 mpfr_clear(r);
7079 return false;
7080 }
7081
7082 mpfr_t i;
7083 mpfr_init(i);
7084
7085 bool ret = false;
7086 Type* itype;
7087 if (args->back()->float_constant_value(i, &itype)
7088 && Type::are_identical(rtype, itype, false, NULL))
7089 {
7090 mpfr_set(real, r, GMP_RNDN);
7091 mpfr_set(imag, i, GMP_RNDN);
7092 *ptype = Builtin_call_expression::complex_type(rtype);
7093 ret = true;
7094 }
7095
7096 mpfr_clear(r);
7097 mpfr_clear(i);
7098
7099 return ret;
7100 }
7101
7102 return false;
7103 }
7104
7105 // Return the type.
7106
7107 Type*
7108 Builtin_call_expression::do_type()
7109 {
7110 switch (this->code_)
7111 {
7112 case BUILTIN_INVALID:
7113 default:
7114 gcc_unreachable();
7115
7116 case BUILTIN_NEW:
7117 case BUILTIN_MAKE:
7118 {
7119 const Expression_list* args = this->args();
7120 if (args == NULL || args->empty())
7121 return Type::make_error_type();
7122 return Type::make_pointer_type(args->front()->type());
7123 }
7124
7125 case BUILTIN_CAP:
7126 case BUILTIN_COPY:
7127 case BUILTIN_LEN:
7128 case BUILTIN_ALIGNOF:
7129 case BUILTIN_OFFSETOF:
7130 case BUILTIN_SIZEOF:
7131 return Type::lookup_integer_type("int");
7132
7133 case BUILTIN_CLOSE:
7134 case BUILTIN_PANIC:
7135 case BUILTIN_PRINT:
7136 case BUILTIN_PRINTLN:
7137 return Type::make_void_type();
7138
7139 case BUILTIN_CLOSED:
7140 return Type::lookup_bool_type();
7141
7142 case BUILTIN_RECOVER:
7143 return Type::make_interface_type(NULL, BUILTINS_LOCATION);
7144
7145 case BUILTIN_APPEND:
7146 {
7147 const Expression_list* args = this->args();
7148 if (args == NULL || args->empty())
7149 return Type::make_error_type();
7150 return args->front()->type();
7151 }
7152
7153 case BUILTIN_REAL:
7154 case BUILTIN_IMAG:
7155 {
7156 Expression* arg = this->one_arg();
7157 if (arg == NULL)
7158 return Type::make_error_type();
7159 Type* t = arg->type();
7160 if (t->is_abstract())
7161 t = t->make_non_abstract_type();
7162 t = Builtin_call_expression::real_imag_type(t);
7163 if (t == NULL)
7164 t = Type::make_error_type();
7165 return t;
7166 }
7167
7168 case BUILTIN_COMPLEX:
7169 {
7170 const Expression_list* args = this->args();
7171 if (args == NULL || args->size() != 2)
7172 return Type::make_error_type();
7173 Type* t = args->front()->type();
7174 if (t->is_abstract())
7175 {
7176 t = args->back()->type();
7177 if (t->is_abstract())
7178 t = t->make_non_abstract_type();
7179 }
7180 t = Builtin_call_expression::complex_type(t);
7181 if (t == NULL)
7182 t = Type::make_error_type();
7183 return t;
7184 }
7185 }
7186 }
7187
7188 // Determine the type.
7189
7190 void
7191 Builtin_call_expression::do_determine_type(const Type_context* context)
7192 {
7193 this->fn()->determine_type_no_context();
7194
7195 const Expression_list* args = this->args();
7196
7197 bool is_print;
7198 Type* arg_type = NULL;
7199 switch (this->code_)
7200 {
7201 case BUILTIN_PRINT:
7202 case BUILTIN_PRINTLN:
7203 // Do not force a large integer constant to "int".
7204 is_print = true;
7205 break;
7206
7207 case BUILTIN_REAL:
7208 case BUILTIN_IMAG:
7209 arg_type = Builtin_call_expression::complex_type(context->type);
7210 is_print = false;
7211 break;
7212
7213 case BUILTIN_COMPLEX:
7214 {
7215 // For the complex function the type of one operand can
7216 // determine the type of the other, as in a binary expression.
7217 arg_type = Builtin_call_expression::real_imag_type(context->type);
7218 if (args != NULL && args->size() == 2)
7219 {
7220 Type* t1 = args->front()->type();
7221 Type* t2 = args->front()->type();
7222 if (!t1->is_abstract())
7223 arg_type = t1;
7224 else if (!t2->is_abstract())
7225 arg_type = t2;
7226 }
7227 is_print = false;
7228 }
7229 break;
7230
7231 default:
7232 is_print = false;
7233 break;
7234 }
7235
7236 if (args != NULL)
7237 {
7238 for (Expression_list::const_iterator pa = args->begin();
7239 pa != args->end();
7240 ++pa)
7241 {
7242 Type_context subcontext;
7243 subcontext.type = arg_type;
7244
7245 if (is_print)
7246 {
7247 // We want to print large constants, we so can't just
7248 // use the appropriate nonabstract type. Use uint64 for
7249 // an integer if we know it is nonnegative, otherwise
7250 // use int64 for a integer, otherwise use float64 for a
7251 // float or complex128 for a complex.
7252 Type* want_type = NULL;
7253 Type* atype = (*pa)->type();
7254 if (atype->is_abstract())
7255 {
7256 if (atype->integer_type() != NULL)
7257 {
7258 mpz_t val;
7259 mpz_init(val);
7260 Type* dummy;
7261 if (this->integer_constant_value(true, val, &dummy)
7262 && mpz_sgn(val) >= 0)
7263 want_type = Type::lookup_integer_type("uint64");
7264 else
7265 want_type = Type::lookup_integer_type("int64");
7266 mpz_clear(val);
7267 }
7268 else if (atype->float_type() != NULL)
7269 want_type = Type::lookup_float_type("float64");
7270 else if (atype->complex_type() != NULL)
7271 want_type = Type::lookup_complex_type("complex128");
7272 else if (atype->is_abstract_string_type())
7273 want_type = Type::lookup_string_type();
7274 else if (atype->is_abstract_boolean_type())
7275 want_type = Type::lookup_bool_type();
7276 else
7277 gcc_unreachable();
7278 subcontext.type = want_type;
7279 }
7280 }
7281
7282 (*pa)->determine_type(&subcontext);
7283 }
7284 }
7285 }
7286
7287 // If there is exactly one argument, return true. Otherwise give an
7288 // error message and return false.
7289
7290 bool
7291 Builtin_call_expression::check_one_arg()
7292 {
7293 const Expression_list* args = this->args();
7294 if (args == NULL || args->size() < 1)
7295 {
7296 this->report_error(_("not enough arguments"));
7297 return false;
7298 }
7299 else if (args->size() > 1)
7300 {
7301 this->report_error(_("too many arguments"));
7302 return false;
7303 }
7304 if (args->front()->is_error_expression()
7305 || args->front()->type()->is_error_type()
7306 || args->front()->type()->is_undefined())
7307 {
7308 this->set_is_error();
7309 return false;
7310 }
7311 return true;
7312 }
7313
7314 // Check argument types for a builtin function.
7315
7316 void
7317 Builtin_call_expression::do_check_types(Gogo*)
7318 {
7319 switch (this->code_)
7320 {
7321 case BUILTIN_INVALID:
7322 case BUILTIN_NEW:
7323 case BUILTIN_MAKE:
7324 return;
7325
7326 case BUILTIN_LEN:
7327 case BUILTIN_CAP:
7328 {
7329 // The single argument may be either a string or an array or a
7330 // map or a channel, or a pointer to a closed array.
7331 if (this->check_one_arg())
7332 {
7333 Type* arg_type = this->one_arg()->type();
7334 if (arg_type->points_to() != NULL
7335 && arg_type->points_to()->array_type() != NULL
7336 && !arg_type->points_to()->is_open_array_type())
7337 arg_type = arg_type->points_to();
7338 if (this->code_ == BUILTIN_CAP)
7339 {
7340 if (!arg_type->is_error_type()
7341 && arg_type->array_type() == NULL
7342 && arg_type->channel_type() == NULL)
7343 this->report_error(_("argument must be array or slice "
7344 "or channel"));
7345 }
7346 else
7347 {
7348 if (!arg_type->is_error_type()
7349 && !arg_type->is_string_type()
7350 && arg_type->array_type() == NULL
7351 && arg_type->map_type() == NULL
7352 && arg_type->channel_type() == NULL)
7353 this->report_error(_("argument must be string or "
7354 "array or slice or map or channel"));
7355 }
7356 }
7357 }
7358 break;
7359
7360 case BUILTIN_PRINT:
7361 case BUILTIN_PRINTLN:
7362 {
7363 const Expression_list* args = this->args();
7364 if (args == NULL)
7365 {
7366 if (this->code_ == BUILTIN_PRINT)
7367 warning_at(this->location(), 0,
7368 "no arguments for builtin function %<%s%>",
7369 (this->code_ == BUILTIN_PRINT
7370 ? "print"
7371 : "println"));
7372 }
7373 else
7374 {
7375 for (Expression_list::const_iterator p = args->begin();
7376 p != args->end();
7377 ++p)
7378 {
7379 Type* type = (*p)->type();
7380 if (type->is_error_type()
7381 || type->is_string_type()
7382 || type->integer_type() != NULL
7383 || type->float_type() != NULL
7384 || type->complex_type() != NULL
7385 || type->is_boolean_type()
7386 || type->points_to() != NULL
7387 || type->interface_type() != NULL
7388 || type->channel_type() != NULL
7389 || type->map_type() != NULL
7390 || type->function_type() != NULL
7391 || type->is_open_array_type())
7392 ;
7393 else
7394 this->report_error(_("unsupported argument type to "
7395 "builtin function"));
7396 }
7397 }
7398 }
7399 break;
7400
7401 case BUILTIN_CLOSE:
7402 case BUILTIN_CLOSED:
7403 if (this->check_one_arg())
7404 {
7405 if (this->one_arg()->type()->channel_type() == NULL)
7406 this->report_error(_("argument must be channel"));
7407 }
7408 break;
7409
7410 case BUILTIN_PANIC:
7411 case BUILTIN_SIZEOF:
7412 case BUILTIN_ALIGNOF:
7413 this->check_one_arg();
7414 break;
7415
7416 case BUILTIN_RECOVER:
7417 if (this->args() != NULL && !this->args()->empty())
7418 this->report_error(_("too many arguments"));
7419 break;
7420
7421 case BUILTIN_OFFSETOF:
7422 if (this->check_one_arg())
7423 {
7424 Expression* arg = this->one_arg();
7425 if (arg->field_reference_expression() == NULL)
7426 this->report_error(_("argument must be a field reference"));
7427 }
7428 break;
7429
7430 case BUILTIN_COPY:
7431 {
7432 const Expression_list* args = this->args();
7433 if (args == NULL || args->size() < 2)
7434 {
7435 this->report_error(_("not enough arguments"));
7436 break;
7437 }
7438 else if (args->size() > 2)
7439 {
7440 this->report_error(_("too many arguments"));
7441 break;
7442 }
7443 Type* arg1_type = args->front()->type();
7444 Type* arg2_type = args->back()->type();
7445 if (arg1_type->is_error_type() || arg2_type->is_error_type())
7446 break;
7447
7448 Type* e1;
7449 if (arg1_type->is_open_array_type())
7450 e1 = arg1_type->array_type()->element_type();
7451 else
7452 {
7453 this->report_error(_("left argument must be a slice"));
7454 break;
7455 }
7456
7457 Type* e2;
7458 if (arg2_type->is_open_array_type())
7459 e2 = arg2_type->array_type()->element_type();
7460 else if (arg2_type->is_string_type())
7461 e2 = Type::lookup_integer_type("uint8");
7462 else
7463 {
7464 this->report_error(_("right argument must be a slice or a string"));
7465 break;
7466 }
7467
7468 if (!Type::are_identical(e1, e2, true, NULL))
7469 this->report_error(_("element types must be the same"));
7470 }
7471 break;
7472
7473 case BUILTIN_APPEND:
7474 {
7475 const Expression_list* args = this->args();
7476 if (args == NULL || args->size() < 2)
7477 {
7478 this->report_error(_("not enough arguments"));
7479 break;
7480 }
7481 if (args->size() > 2)
7482 {
7483 this->report_error(_("too many arguments"));
7484 break;
7485 }
7486 std::string reason;
7487 if (!Type::are_assignable(args->front()->type(), args->back()->type(),
7488 &reason))
7489 {
7490 if (reason.empty())
7491 this->report_error(_("arguments 1 and 2 have different types"));
7492 else
7493 {
7494 error_at(this->location(),
7495 "arguments 1 and 2 have different types (%s)",
7496 reason.c_str());
7497 this->set_is_error();
7498 }
7499 }
7500 break;
7501 }
7502
7503 case BUILTIN_REAL:
7504 case BUILTIN_IMAG:
7505 if (this->check_one_arg())
7506 {
7507 if (this->one_arg()->type()->complex_type() == NULL)
7508 this->report_error(_("argument must have complex type"));
7509 }
7510 break;
7511
7512 case BUILTIN_COMPLEX:
7513 {
7514 const Expression_list* args = this->args();
7515 if (args == NULL || args->size() < 2)
7516 this->report_error(_("not enough arguments"));
7517 else if (args->size() > 2)
7518 this->report_error(_("too many arguments"));
7519 else if (args->front()->is_error_expression()
7520 || args->front()->type()->is_error_type()
7521 || args->back()->is_error_expression()
7522 || args->back()->type()->is_error_type())
7523 this->set_is_error();
7524 else if (!Type::are_identical(args->front()->type(),
7525 args->back()->type(), true, NULL))
7526 this->report_error(_("complex arguments must have identical types"));
7527 else if (args->front()->type()->float_type() == NULL)
7528 this->report_error(_("complex arguments must have "
7529 "floating-point type"));
7530 }
7531 break;
7532
7533 default:
7534 gcc_unreachable();
7535 }
7536 }
7537
7538 // Return the tree for a builtin function.
7539
7540 tree
7541 Builtin_call_expression::do_get_tree(Translate_context* context)
7542 {
7543 Gogo* gogo = context->gogo();
7544 source_location location = this->location();
7545 switch (this->code_)
7546 {
7547 case BUILTIN_INVALID:
7548 case BUILTIN_NEW:
7549 case BUILTIN_MAKE:
7550 gcc_unreachable();
7551
7552 case BUILTIN_LEN:
7553 case BUILTIN_CAP:
7554 {
7555 const Expression_list* args = this->args();
7556 gcc_assert(args != NULL && args->size() == 1);
7557 Expression* arg = *args->begin();
7558 Type* arg_type = arg->type();
7559
7560 if (this->seen_)
7561 {
7562 gcc_assert(saw_errors());
7563 return error_mark_node;
7564 }
7565 this->seen_ = true;
7566
7567 tree arg_tree = arg->get_tree(context);
7568
7569 this->seen_ = false;
7570
7571 if (arg_tree == error_mark_node)
7572 return error_mark_node;
7573
7574 if (arg_type->points_to() != NULL)
7575 {
7576 arg_type = arg_type->points_to();
7577 gcc_assert(arg_type->array_type() != NULL
7578 && !arg_type->is_open_array_type());
7579 gcc_assert(POINTER_TYPE_P(TREE_TYPE(arg_tree)));
7580 arg_tree = build_fold_indirect_ref(arg_tree);
7581 }
7582
7583 tree val_tree;
7584 if (this->code_ == BUILTIN_LEN)
7585 {
7586 if (arg_type->is_string_type())
7587 val_tree = String_type::length_tree(gogo, arg_tree);
7588 else if (arg_type->array_type() != NULL)
7589 {
7590 if (this->seen_)
7591 {
7592 gcc_assert(saw_errors());
7593 return error_mark_node;
7594 }
7595 this->seen_ = true;
7596 val_tree = arg_type->array_type()->length_tree(gogo, arg_tree);
7597 this->seen_ = false;
7598 }
7599 else if (arg_type->map_type() != NULL)
7600 {
7601 static tree map_len_fndecl;
7602 val_tree = Gogo::call_builtin(&map_len_fndecl,
7603 location,
7604 "__go_map_len",
7605 1,
7606 sizetype,
7607 arg_type->get_tree(gogo),
7608 arg_tree);
7609 }
7610 else if (arg_type->channel_type() != NULL)
7611 {
7612 static tree chan_len_fndecl;
7613 val_tree = Gogo::call_builtin(&chan_len_fndecl,
7614 location,
7615 "__go_chan_len",
7616 1,
7617 sizetype,
7618 arg_type->get_tree(gogo),
7619 arg_tree);
7620 }
7621 else
7622 gcc_unreachable();
7623 }
7624 else
7625 {
7626 if (arg_type->array_type() != NULL)
7627 {
7628 if (this->seen_)
7629 {
7630 gcc_assert(saw_errors());
7631 return error_mark_node;
7632 }
7633 this->seen_ = true;
7634 val_tree = arg_type->array_type()->capacity_tree(gogo,
7635 arg_tree);
7636 this->seen_ = false;
7637 }
7638 else if (arg_type->channel_type() != NULL)
7639 {
7640 static tree chan_cap_fndecl;
7641 val_tree = Gogo::call_builtin(&chan_cap_fndecl,
7642 location,
7643 "__go_chan_cap",
7644 1,
7645 sizetype,
7646 arg_type->get_tree(gogo),
7647 arg_tree);
7648 }
7649 else
7650 gcc_unreachable();
7651 }
7652
7653 if (val_tree == error_mark_node)
7654 return error_mark_node;
7655
7656 tree type_tree = Type::lookup_integer_type("int")->get_tree(gogo);
7657 if (type_tree == TREE_TYPE(val_tree))
7658 return val_tree;
7659 else
7660 return fold(convert_to_integer(type_tree, val_tree));
7661 }
7662
7663 case BUILTIN_PRINT:
7664 case BUILTIN_PRINTLN:
7665 {
7666 const bool is_ln = this->code_ == BUILTIN_PRINTLN;
7667 tree stmt_list = NULL_TREE;
7668
7669 const Expression_list* call_args = this->args();
7670 if (call_args != NULL)
7671 {
7672 for (Expression_list::const_iterator p = call_args->begin();
7673 p != call_args->end();
7674 ++p)
7675 {
7676 if (is_ln && p != call_args->begin())
7677 {
7678 static tree print_space_fndecl;
7679 tree call = Gogo::call_builtin(&print_space_fndecl,
7680 location,
7681 "__go_print_space",
7682 0,
7683 void_type_node);
7684 if (call == error_mark_node)
7685 return error_mark_node;
7686 append_to_statement_list(call, &stmt_list);
7687 }
7688
7689 Type* type = (*p)->type();
7690
7691 tree arg = (*p)->get_tree(context);
7692 if (arg == error_mark_node)
7693 return error_mark_node;
7694
7695 tree* pfndecl;
7696 const char* fnname;
7697 if (type->is_string_type())
7698 {
7699 static tree print_string_fndecl;
7700 pfndecl = &print_string_fndecl;
7701 fnname = "__go_print_string";
7702 }
7703 else if (type->integer_type() != NULL
7704 && type->integer_type()->is_unsigned())
7705 {
7706 static tree print_uint64_fndecl;
7707 pfndecl = &print_uint64_fndecl;
7708 fnname = "__go_print_uint64";
7709 Type* itype = Type::lookup_integer_type("uint64");
7710 arg = fold_convert_loc(location, itype->get_tree(gogo),
7711 arg);
7712 }
7713 else if (type->integer_type() != NULL)
7714 {
7715 static tree print_int64_fndecl;
7716 pfndecl = &print_int64_fndecl;
7717 fnname = "__go_print_int64";
7718 Type* itype = Type::lookup_integer_type("int64");
7719 arg = fold_convert_loc(location, itype->get_tree(gogo),
7720 arg);
7721 }
7722 else if (type->float_type() != NULL)
7723 {
7724 static tree print_double_fndecl;
7725 pfndecl = &print_double_fndecl;
7726 fnname = "__go_print_double";
7727 arg = fold_convert_loc(location, double_type_node, arg);
7728 }
7729 else if (type->complex_type() != NULL)
7730 {
7731 static tree print_complex_fndecl;
7732 pfndecl = &print_complex_fndecl;
7733 fnname = "__go_print_complex";
7734 arg = fold_convert_loc(location, complex_double_type_node,
7735 arg);
7736 }
7737 else if (type->is_boolean_type())
7738 {
7739 static tree print_bool_fndecl;
7740 pfndecl = &print_bool_fndecl;
7741 fnname = "__go_print_bool";
7742 }
7743 else if (type->points_to() != NULL
7744 || type->channel_type() != NULL
7745 || type->map_type() != NULL
7746 || type->function_type() != NULL)
7747 {
7748 static tree print_pointer_fndecl;
7749 pfndecl = &print_pointer_fndecl;
7750 fnname = "__go_print_pointer";
7751 arg = fold_convert_loc(location, ptr_type_node, arg);
7752 }
7753 else if (type->interface_type() != NULL)
7754 {
7755 if (type->interface_type()->is_empty())
7756 {
7757 static tree print_empty_interface_fndecl;
7758 pfndecl = &print_empty_interface_fndecl;
7759 fnname = "__go_print_empty_interface";
7760 }
7761 else
7762 {
7763 static tree print_interface_fndecl;
7764 pfndecl = &print_interface_fndecl;
7765 fnname = "__go_print_interface";
7766 }
7767 }
7768 else if (type->is_open_array_type())
7769 {
7770 static tree print_slice_fndecl;
7771 pfndecl = &print_slice_fndecl;
7772 fnname = "__go_print_slice";
7773 }
7774 else
7775 gcc_unreachable();
7776
7777 tree call = Gogo::call_builtin(pfndecl,
7778 location,
7779 fnname,
7780 1,
7781 void_type_node,
7782 TREE_TYPE(arg),
7783 arg);
7784 if (call == error_mark_node)
7785 return error_mark_node;
7786 append_to_statement_list(call, &stmt_list);
7787 }
7788 }
7789
7790 if (is_ln)
7791 {
7792 static tree print_nl_fndecl;
7793 tree call = Gogo::call_builtin(&print_nl_fndecl,
7794 location,
7795 "__go_print_nl",
7796 0,
7797 void_type_node);
7798 if (call == error_mark_node)
7799 return error_mark_node;
7800 append_to_statement_list(call, &stmt_list);
7801 }
7802
7803 return stmt_list;
7804 }
7805
7806 case BUILTIN_PANIC:
7807 {
7808 const Expression_list* args = this->args();
7809 gcc_assert(args != NULL && args->size() == 1);
7810 Expression* arg = args->front();
7811 tree arg_tree = arg->get_tree(context);
7812 if (arg_tree == error_mark_node)
7813 return error_mark_node;
7814 Type *empty = Type::make_interface_type(NULL, BUILTINS_LOCATION);
7815 arg_tree = Expression::convert_for_assignment(context, empty,
7816 arg->type(),
7817 arg_tree, location);
7818 static tree panic_fndecl;
7819 tree call = Gogo::call_builtin(&panic_fndecl,
7820 location,
7821 "__go_panic",
7822 1,
7823 void_type_node,
7824 TREE_TYPE(arg_tree),
7825 arg_tree);
7826 if (call == error_mark_node)
7827 return error_mark_node;
7828 // This function will throw an exception.
7829 TREE_NOTHROW(panic_fndecl) = 0;
7830 // This function will not return.
7831 TREE_THIS_VOLATILE(panic_fndecl) = 1;
7832 return call;
7833 }
7834
7835 case BUILTIN_RECOVER:
7836 {
7837 // The argument is set when building recover thunks. It's a
7838 // boolean value which is true if we can recover a value now.
7839 const Expression_list* args = this->args();
7840 gcc_assert(args != NULL && args->size() == 1);
7841 Expression* arg = args->front();
7842 tree arg_tree = arg->get_tree(context);
7843 if (arg_tree == error_mark_node)
7844 return error_mark_node;
7845
7846 Type *empty = Type::make_interface_type(NULL, BUILTINS_LOCATION);
7847 tree empty_tree = empty->get_tree(context->gogo());
7848
7849 Type* nil_type = Type::make_nil_type();
7850 Expression* nil = Expression::make_nil(location);
7851 tree nil_tree = nil->get_tree(context);
7852 tree empty_nil_tree = Expression::convert_for_assignment(context,
7853 empty,
7854 nil_type,
7855 nil_tree,
7856 location);
7857
7858 // We need to handle a deferred call to recover specially,
7859 // because it changes whether it can recover a panic or not.
7860 // See test7 in test/recover1.go.
7861 tree call;
7862 if (this->is_deferred())
7863 {
7864 static tree deferred_recover_fndecl;
7865 call = Gogo::call_builtin(&deferred_recover_fndecl,
7866 location,
7867 "__go_deferred_recover",
7868 0,
7869 empty_tree);
7870 }
7871 else
7872 {
7873 static tree recover_fndecl;
7874 call = Gogo::call_builtin(&recover_fndecl,
7875 location,
7876 "__go_recover",
7877 0,
7878 empty_tree);
7879 }
7880 if (call == error_mark_node)
7881 return error_mark_node;
7882 return fold_build3_loc(location, COND_EXPR, empty_tree, arg_tree,
7883 call, empty_nil_tree);
7884 }
7885
7886 case BUILTIN_CLOSE:
7887 case BUILTIN_CLOSED:
7888 {
7889 const Expression_list* args = this->args();
7890 gcc_assert(args != NULL && args->size() == 1);
7891 Expression* arg = args->front();
7892 tree arg_tree = arg->get_tree(context);
7893 if (arg_tree == error_mark_node)
7894 return error_mark_node;
7895 if (this->code_ == BUILTIN_CLOSE)
7896 {
7897 static tree close_fndecl;
7898 return Gogo::call_builtin(&close_fndecl,
7899 location,
7900 "__go_builtin_close",
7901 1,
7902 void_type_node,
7903 TREE_TYPE(arg_tree),
7904 arg_tree);
7905 }
7906 else
7907 {
7908 static tree closed_fndecl;
7909 return Gogo::call_builtin(&closed_fndecl,
7910 location,
7911 "__go_builtin_closed",
7912 1,
7913 boolean_type_node,
7914 TREE_TYPE(arg_tree),
7915 arg_tree);
7916 }
7917 }
7918
7919 case BUILTIN_SIZEOF:
7920 case BUILTIN_OFFSETOF:
7921 case BUILTIN_ALIGNOF:
7922 {
7923 mpz_t val;
7924 mpz_init(val);
7925 Type* dummy;
7926 bool b = this->integer_constant_value(true, val, &dummy);
7927 gcc_assert(b);
7928 tree type = Type::lookup_integer_type("int")->get_tree(gogo);
7929 tree ret = Expression::integer_constant_tree(val, type);
7930 mpz_clear(val);
7931 return ret;
7932 }
7933
7934 case BUILTIN_COPY:
7935 {
7936 const Expression_list* args = this->args();
7937 gcc_assert(args != NULL && args->size() == 2);
7938 Expression* arg1 = args->front();
7939 Expression* arg2 = args->back();
7940
7941 tree arg1_tree = arg1->get_tree(context);
7942 tree arg2_tree = arg2->get_tree(context);
7943 if (arg1_tree == error_mark_node || arg2_tree == error_mark_node)
7944 return error_mark_node;
7945
7946 Type* arg1_type = arg1->type();
7947 Array_type* at = arg1_type->array_type();
7948 arg1_tree = save_expr(arg1_tree);
7949 tree arg1_val = at->value_pointer_tree(gogo, arg1_tree);
7950 tree arg1_len = at->length_tree(gogo, arg1_tree);
7951 if (arg1_val == error_mark_node || arg1_len == error_mark_node)
7952 return error_mark_node;
7953
7954 Type* arg2_type = arg2->type();
7955 tree arg2_val;
7956 tree arg2_len;
7957 if (arg2_type->is_open_array_type())
7958 {
7959 at = arg2_type->array_type();
7960 arg2_tree = save_expr(arg2_tree);
7961 arg2_val = at->value_pointer_tree(gogo, arg2_tree);
7962 arg2_len = at->length_tree(gogo, arg2_tree);
7963 }
7964 else
7965 {
7966 arg2_tree = save_expr(arg2_tree);
7967 arg2_val = String_type::bytes_tree(gogo, arg2_tree);
7968 arg2_len = String_type::length_tree(gogo, arg2_tree);
7969 }
7970 if (arg2_val == error_mark_node || arg2_len == error_mark_node)
7971 return error_mark_node;
7972
7973 arg1_len = save_expr(arg1_len);
7974 arg2_len = save_expr(arg2_len);
7975 tree len = fold_build3_loc(location, COND_EXPR, TREE_TYPE(arg1_len),
7976 fold_build2_loc(location, LT_EXPR,
7977 boolean_type_node,
7978 arg1_len, arg2_len),
7979 arg1_len, arg2_len);
7980 len = save_expr(len);
7981
7982 Type* element_type = at->element_type();
7983 tree element_type_tree = element_type->get_tree(gogo);
7984 if (element_type_tree == error_mark_node)
7985 return error_mark_node;
7986 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
7987 tree bytecount = fold_convert_loc(location, TREE_TYPE(element_size),
7988 len);
7989 bytecount = fold_build2_loc(location, MULT_EXPR,
7990 TREE_TYPE(element_size),
7991 bytecount, element_size);
7992 bytecount = fold_convert_loc(location, size_type_node, bytecount);
7993
7994 arg1_val = fold_convert_loc(location, ptr_type_node, arg1_val);
7995 arg2_val = fold_convert_loc(location, ptr_type_node, arg2_val);
7996
7997 static tree copy_fndecl;
7998 tree call = Gogo::call_builtin(&copy_fndecl,
7999 location,
8000 "__go_copy",
8001 3,
8002 void_type_node,
8003 ptr_type_node,
8004 arg1_val,
8005 ptr_type_node,
8006 arg2_val,
8007 size_type_node,
8008 bytecount);
8009 if (call == error_mark_node)
8010 return error_mark_node;
8011
8012 return fold_build2_loc(location, COMPOUND_EXPR, TREE_TYPE(len),
8013 call, len);
8014 }
8015
8016 case BUILTIN_APPEND:
8017 {
8018 const Expression_list* args = this->args();
8019 gcc_assert(args != NULL && args->size() == 2);
8020 Expression* arg1 = args->front();
8021 Expression* arg2 = args->back();
8022
8023 tree arg1_tree = arg1->get_tree(context);
8024 tree arg2_tree = arg2->get_tree(context);
8025 if (arg1_tree == error_mark_node || arg2_tree == error_mark_node)
8026 return error_mark_node;
8027
8028 Array_type* at = arg1->type()->array_type();
8029 Type* element_type = at->element_type();
8030
8031 arg2_tree = Expression::convert_for_assignment(context, at,
8032 arg2->type(),
8033 arg2_tree,
8034 location);
8035 if (arg2_tree == error_mark_node)
8036 return error_mark_node;
8037
8038 arg2_tree = save_expr(arg2_tree);
8039 tree arg2_val = at->value_pointer_tree(gogo, arg2_tree);
8040 tree arg2_len = at->length_tree(gogo, arg2_tree);
8041 if (arg2_val == error_mark_node || arg2_len == error_mark_node)
8042 return error_mark_node;
8043 arg2_val = fold_convert_loc(location, ptr_type_node, arg2_val);
8044 arg2_len = fold_convert_loc(location, size_type_node, arg2_len);
8045
8046 tree element_type_tree = element_type->get_tree(gogo);
8047 if (element_type_tree == error_mark_node)
8048 return error_mark_node;
8049 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
8050 element_size = fold_convert_loc(location, size_type_node,
8051 element_size);
8052
8053 // We rebuild the decl each time since the slice types may
8054 // change.
8055 tree append_fndecl = NULL_TREE;
8056 return Gogo::call_builtin(&append_fndecl,
8057 location,
8058 "__go_append",
8059 4,
8060 TREE_TYPE(arg1_tree),
8061 TREE_TYPE(arg1_tree),
8062 arg1_tree,
8063 ptr_type_node,
8064 arg2_val,
8065 size_type_node,
8066 arg2_len,
8067 size_type_node,
8068 element_size);
8069 }
8070
8071 case BUILTIN_REAL:
8072 case BUILTIN_IMAG:
8073 {
8074 const Expression_list* args = this->args();
8075 gcc_assert(args != NULL && args->size() == 1);
8076 Expression* arg = args->front();
8077 tree arg_tree = arg->get_tree(context);
8078 if (arg_tree == error_mark_node)
8079 return error_mark_node;
8080 gcc_assert(COMPLEX_FLOAT_TYPE_P(TREE_TYPE(arg_tree)));
8081 if (this->code_ == BUILTIN_REAL)
8082 return fold_build1_loc(location, REALPART_EXPR,
8083 TREE_TYPE(TREE_TYPE(arg_tree)),
8084 arg_tree);
8085 else
8086 return fold_build1_loc(location, IMAGPART_EXPR,
8087 TREE_TYPE(TREE_TYPE(arg_tree)),
8088 arg_tree);
8089 }
8090
8091 case BUILTIN_COMPLEX:
8092 {
8093 const Expression_list* args = this->args();
8094 gcc_assert(args != NULL && args->size() == 2);
8095 tree r = args->front()->get_tree(context);
8096 tree i = args->back()->get_tree(context);
8097 if (r == error_mark_node || i == error_mark_node)
8098 return error_mark_node;
8099 gcc_assert(TYPE_MAIN_VARIANT(TREE_TYPE(r))
8100 == TYPE_MAIN_VARIANT(TREE_TYPE(i)));
8101 gcc_assert(SCALAR_FLOAT_TYPE_P(TREE_TYPE(r)));
8102 return fold_build2_loc(location, COMPLEX_EXPR,
8103 build_complex_type(TREE_TYPE(r)),
8104 r, i);
8105 }
8106
8107 default:
8108 gcc_unreachable();
8109 }
8110 }
8111
8112 // We have to support exporting a builtin call expression, because
8113 // code can set a constant to the result of a builtin expression.
8114
8115 void
8116 Builtin_call_expression::do_export(Export* exp) const
8117 {
8118 bool ok = false;
8119
8120 mpz_t val;
8121 mpz_init(val);
8122 Type* dummy;
8123 if (this->integer_constant_value(true, val, &dummy))
8124 {
8125 Integer_expression::export_integer(exp, val);
8126 ok = true;
8127 }
8128 mpz_clear(val);
8129
8130 if (!ok)
8131 {
8132 mpfr_t fval;
8133 mpfr_init(fval);
8134 if (this->float_constant_value(fval, &dummy))
8135 {
8136 Float_expression::export_float(exp, fval);
8137 ok = true;
8138 }
8139 mpfr_clear(fval);
8140 }
8141
8142 if (!ok)
8143 {
8144 mpfr_t real;
8145 mpfr_t imag;
8146 mpfr_init(real);
8147 mpfr_init(imag);
8148 if (this->complex_constant_value(real, imag, &dummy))
8149 {
8150 Complex_expression::export_complex(exp, real, imag);
8151 ok = true;
8152 }
8153 mpfr_clear(real);
8154 mpfr_clear(imag);
8155 }
8156
8157 if (!ok)
8158 {
8159 error_at(this->location(), "value is not constant");
8160 return;
8161 }
8162
8163 // A trailing space lets us reliably identify the end of the number.
8164 exp->write_c_string(" ");
8165 }
8166
8167 // Class Call_expression.
8168
8169 // Traversal.
8170
8171 int
8172 Call_expression::do_traverse(Traverse* traverse)
8173 {
8174 if (Expression::traverse(&this->fn_, traverse) == TRAVERSE_EXIT)
8175 return TRAVERSE_EXIT;
8176 if (this->args_ != NULL)
8177 {
8178 if (this->args_->traverse(traverse) == TRAVERSE_EXIT)
8179 return TRAVERSE_EXIT;
8180 }
8181 return TRAVERSE_CONTINUE;
8182 }
8183
8184 // Lower a call statement.
8185
8186 Expression*
8187 Call_expression::do_lower(Gogo* gogo, Named_object* function, int)
8188 {
8189 // A type case can look like a function call.
8190 if (this->fn_->is_type_expression()
8191 && this->args_ != NULL
8192 && this->args_->size() == 1)
8193 return Expression::make_cast(this->fn_->type(), this->args_->front(),
8194 this->location());
8195
8196 // Recognize a call to a builtin function.
8197 Func_expression* fne = this->fn_->func_expression();
8198 if (fne != NULL
8199 && fne->named_object()->is_function_declaration()
8200 && fne->named_object()->func_declaration_value()->type()->is_builtin())
8201 return new Builtin_call_expression(gogo, this->fn_, this->args_,
8202 this->is_varargs_, this->location());
8203
8204 // Handle an argument which is a call to a function which returns
8205 // multiple results.
8206 if (this->args_ != NULL
8207 && this->args_->size() == 1
8208 && this->args_->front()->call_expression() != NULL
8209 && this->fn_->type()->function_type() != NULL)
8210 {
8211 Function_type* fntype = this->fn_->type()->function_type();
8212 size_t rc = this->args_->front()->call_expression()->result_count();
8213 if (rc > 1
8214 && fntype->parameters() != NULL
8215 && (fntype->parameters()->size() == rc
8216 || (fntype->is_varargs()
8217 && fntype->parameters()->size() - 1 <= rc)))
8218 {
8219 Call_expression* call = this->args_->front()->call_expression();
8220 Expression_list* args = new Expression_list;
8221 for (size_t i = 0; i < rc; ++i)
8222 args->push_back(Expression::make_call_result(call, i));
8223 // We can't return a new call expression here, because this
8224 // one may be referenced by Call_result expressions. FIXME.
8225 delete this->args_;
8226 this->args_ = args;
8227 }
8228 }
8229
8230 // Handle a call to a varargs function by packaging up the extra
8231 // parameters.
8232 if (this->fn_->type()->function_type() != NULL
8233 && this->fn_->type()->function_type()->is_varargs())
8234 {
8235 Function_type* fntype = this->fn_->type()->function_type();
8236 const Typed_identifier_list* parameters = fntype->parameters();
8237 gcc_assert(parameters != NULL && !parameters->empty());
8238 Type* varargs_type = parameters->back().type();
8239 return this->lower_varargs(gogo, function, varargs_type,
8240 parameters->size());
8241 }
8242
8243 return this;
8244 }
8245
8246 // Lower a call to a varargs function. FUNCTION is the function in
8247 // which the call occurs--it's not the function we are calling.
8248 // VARARGS_TYPE is the type of the varargs parameter, a slice type.
8249 // PARAM_COUNT is the number of parameters of the function we are
8250 // calling; the last of these parameters will be the varargs
8251 // parameter.
8252
8253 Expression*
8254 Call_expression::lower_varargs(Gogo* gogo, Named_object* function,
8255 Type* varargs_type, size_t param_count)
8256 {
8257 if (this->varargs_are_lowered_)
8258 return this;
8259
8260 source_location loc = this->location();
8261
8262 gcc_assert(param_count > 0);
8263 gcc_assert(varargs_type->is_open_array_type());
8264
8265 size_t arg_count = this->args_ == NULL ? 0 : this->args_->size();
8266 if (arg_count < param_count - 1)
8267 {
8268 // Not enough arguments; will be caught in check_types.
8269 return this;
8270 }
8271
8272 Expression_list* old_args = this->args_;
8273 Expression_list* new_args = new Expression_list();
8274 bool push_empty_arg = false;
8275 if (old_args == NULL || old_args->empty())
8276 {
8277 gcc_assert(param_count == 1);
8278 push_empty_arg = true;
8279 }
8280 else
8281 {
8282 Expression_list::const_iterator pa;
8283 int i = 1;
8284 for (pa = old_args->begin(); pa != old_args->end(); ++pa, ++i)
8285 {
8286 if (static_cast<size_t>(i) == param_count)
8287 break;
8288 new_args->push_back(*pa);
8289 }
8290
8291 // We have reached the varargs parameter.
8292
8293 bool issued_error = false;
8294 if (pa == old_args->end())
8295 push_empty_arg = true;
8296 else if (pa + 1 == old_args->end() && this->is_varargs_)
8297 new_args->push_back(*pa);
8298 else if (this->is_varargs_)
8299 {
8300 this->report_error(_("too many arguments"));
8301 return this;
8302 }
8303 else if (pa + 1 == old_args->end()
8304 && this->is_compatible_varargs_argument(function, *pa,
8305 varargs_type,
8306 &issued_error))
8307 new_args->push_back(*pa);
8308 else
8309 {
8310 Type* element_type = varargs_type->array_type()->element_type();
8311 Expression_list* vals = new Expression_list;
8312 for (; pa != old_args->end(); ++pa, ++i)
8313 {
8314 // Check types here so that we get a better message.
8315 Type* patype = (*pa)->type();
8316 source_location paloc = (*pa)->location();
8317 if (!this->check_argument_type(i, element_type, patype,
8318 paloc, issued_error))
8319 continue;
8320 vals->push_back(*pa);
8321 }
8322 Expression* val =
8323 Expression::make_slice_composite_literal(varargs_type, vals, loc);
8324 new_args->push_back(val);
8325 }
8326 }
8327
8328 if (push_empty_arg)
8329 new_args->push_back(Expression::make_nil(loc));
8330
8331 // We can't return a new call expression here, because this one may
8332 // be referenced by Call_result expressions. FIXME.
8333 if (old_args != NULL)
8334 delete old_args;
8335 this->args_ = new_args;
8336 this->varargs_are_lowered_ = true;
8337
8338 // Lower all the new subexpressions.
8339 Expression* ret = this;
8340 gogo->lower_expression(function, &ret);
8341 gcc_assert(ret == this);
8342 return ret;
8343 }
8344
8345 // Return true if ARG is a varargs argment which should be passed to
8346 // the varargs parameter of type PARAM_TYPE without wrapping. ARG
8347 // will be the last argument passed in the call, and PARAM_TYPE will
8348 // be the type of the last parameter of the varargs function being
8349 // called.
8350
8351 bool
8352 Call_expression::is_compatible_varargs_argument(Named_object* function,
8353 Expression* arg,
8354 Type* param_type,
8355 bool* issued_error)
8356 {
8357 *issued_error = false;
8358
8359 Type* var_type = NULL;
8360
8361 // The simple case is passing the varargs parameter of the caller.
8362 Var_expression* ve = arg->var_expression();
8363 if (ve != NULL && ve->named_object()->is_variable())
8364 {
8365 Variable* var = ve->named_object()->var_value();
8366 if (var->is_varargs_parameter())
8367 var_type = var->type();
8368 }
8369
8370 // The complex case is passing the varargs parameter of some
8371 // enclosing function. This will look like passing down *c.f where
8372 // c is the closure variable and f is a field in the closure.
8373 if (function != NULL
8374 && function->func_value()->needs_closure()
8375 && arg->classification() == EXPRESSION_UNARY)
8376 {
8377 Unary_expression* ue = static_cast<Unary_expression*>(arg);
8378 if (ue->op() == OPERATOR_MULT)
8379 {
8380 Field_reference_expression* fre =
8381 ue->operand()->deref()->field_reference_expression();
8382 if (fre != NULL)
8383 {
8384 Var_expression* ve = fre->expr()->deref()->var_expression();
8385 if (ve != NULL)
8386 {
8387 Named_object* no = ve->named_object();
8388 Function* f = function->func_value();
8389 if (no == f->closure_var())
8390 {
8391 // At this point we know that this indeed a
8392 // reference to some enclosing variable. Now we
8393 // need to figure out whether that variable is a
8394 // varargs parameter.
8395 Named_object* enclosing =
8396 f->enclosing_var(fre->field_index());
8397 Variable* var = enclosing->var_value();
8398 if (var->is_varargs_parameter())
8399 var_type = var->type();
8400 }
8401 }
8402 }
8403 }
8404 }
8405
8406 if (var_type == NULL)
8407 return false;
8408
8409 // We only match if the parameter is the same, with an identical
8410 // type.
8411 Array_type* var_at = var_type->array_type();
8412 gcc_assert(var_at != NULL);
8413 Array_type* param_at = param_type->array_type();
8414 if (param_at != NULL
8415 && Type::are_identical(var_at->element_type(),
8416 param_at->element_type(), true, NULL))
8417 return true;
8418 error_at(arg->location(), "... mismatch: passing ...T as ...");
8419 *issued_error = true;
8420 return false;
8421 }
8422
8423 // Get the function type. Returns NULL if we don't know the type. If
8424 // this returns NULL, and if_ERROR is true, issues an error.
8425
8426 Function_type*
8427 Call_expression::get_function_type() const
8428 {
8429 return this->fn_->type()->function_type();
8430 }
8431
8432 // Return the number of values which this call will return.
8433
8434 size_t
8435 Call_expression::result_count() const
8436 {
8437 const Function_type* fntype = this->get_function_type();
8438 if (fntype == NULL)
8439 return 0;
8440 if (fntype->results() == NULL)
8441 return 0;
8442 return fntype->results()->size();
8443 }
8444
8445 // Return whether this is a call to the predeclared function recover.
8446
8447 bool
8448 Call_expression::is_recover_call() const
8449 {
8450 return this->do_is_recover_call();
8451 }
8452
8453 // Set the argument to the recover function.
8454
8455 void
8456 Call_expression::set_recover_arg(Expression* arg)
8457 {
8458 this->do_set_recover_arg(arg);
8459 }
8460
8461 // Virtual functions also implemented by Builtin_call_expression.
8462
8463 bool
8464 Call_expression::do_is_recover_call() const
8465 {
8466 return false;
8467 }
8468
8469 void
8470 Call_expression::do_set_recover_arg(Expression*)
8471 {
8472 gcc_unreachable();
8473 }
8474
8475 // Get the type.
8476
8477 Type*
8478 Call_expression::do_type()
8479 {
8480 if (this->type_ != NULL)
8481 return this->type_;
8482
8483 Type* ret;
8484 Function_type* fntype = this->get_function_type();
8485 if (fntype == NULL)
8486 return Type::make_error_type();
8487
8488 const Typed_identifier_list* results = fntype->results();
8489 if (results == NULL)
8490 ret = Type::make_void_type();
8491 else if (results->size() == 1)
8492 ret = results->begin()->type();
8493 else
8494 ret = Type::make_call_multiple_result_type(this);
8495
8496 this->type_ = ret;
8497
8498 return this->type_;
8499 }
8500
8501 // Determine types for a call expression. We can use the function
8502 // parameter types to set the types of the arguments.
8503
8504 void
8505 Call_expression::do_determine_type(const Type_context*)
8506 {
8507 this->fn_->determine_type_no_context();
8508 Function_type* fntype = this->get_function_type();
8509 const Typed_identifier_list* parameters = NULL;
8510 if (fntype != NULL)
8511 parameters = fntype->parameters();
8512 if (this->args_ != NULL)
8513 {
8514 Typed_identifier_list::const_iterator pt;
8515 if (parameters != NULL)
8516 pt = parameters->begin();
8517 for (Expression_list::const_iterator pa = this->args_->begin();
8518 pa != this->args_->end();
8519 ++pa)
8520 {
8521 if (parameters != NULL && pt != parameters->end())
8522 {
8523 Type_context subcontext(pt->type(), false);
8524 (*pa)->determine_type(&subcontext);
8525 ++pt;
8526 }
8527 else
8528 (*pa)->determine_type_no_context();
8529 }
8530 }
8531 }
8532
8533 // Check types for parameter I.
8534
8535 bool
8536 Call_expression::check_argument_type(int i, const Type* parameter_type,
8537 const Type* argument_type,
8538 source_location argument_location,
8539 bool issued_error)
8540 {
8541 std::string reason;
8542 if (!Type::are_assignable(parameter_type, argument_type, &reason))
8543 {
8544 if (!issued_error)
8545 {
8546 if (reason.empty())
8547 error_at(argument_location, "argument %d has incompatible type", i);
8548 else
8549 error_at(argument_location,
8550 "argument %d has incompatible type (%s)",
8551 i, reason.c_str());
8552 }
8553 this->set_is_error();
8554 return false;
8555 }
8556 return true;
8557 }
8558
8559 // Check types.
8560
8561 void
8562 Call_expression::do_check_types(Gogo*)
8563 {
8564 Function_type* fntype = this->get_function_type();
8565 if (fntype == NULL)
8566 {
8567 if (!this->fn_->type()->is_error_type())
8568 this->report_error(_("expected function"));
8569 return;
8570 }
8571
8572 if (fntype->is_method())
8573 {
8574 // We don't support pointers to methods, so the function has to
8575 // be a bound method expression.
8576 Bound_method_expression* bme = this->fn_->bound_method_expression();
8577 if (bme == NULL)
8578 {
8579 this->report_error(_("method call without object"));
8580 return;
8581 }
8582 Type* first_arg_type = bme->first_argument()->type();
8583 if (first_arg_type->points_to() == NULL)
8584 {
8585 // When passing a value, we need to check that we are
8586 // permitted to copy it.
8587 std::string reason;
8588 if (!Type::are_assignable(fntype->receiver()->type(),
8589 first_arg_type, &reason))
8590 {
8591 if (reason.empty())
8592 this->report_error(_("incompatible type for receiver"));
8593 else
8594 {
8595 error_at(this->location(),
8596 "incompatible type for receiver (%s)",
8597 reason.c_str());
8598 this->set_is_error();
8599 }
8600 }
8601 }
8602 }
8603
8604 // Note that varargs was handled by the lower_varargs() method, so
8605 // we don't have to worry about it here.
8606
8607 const Typed_identifier_list* parameters = fntype->parameters();
8608 if (this->args_ == NULL)
8609 {
8610 if (parameters != NULL && !parameters->empty())
8611 this->report_error(_("not enough arguments"));
8612 }
8613 else if (parameters == NULL)
8614 this->report_error(_("too many arguments"));
8615 else
8616 {
8617 int i = 0;
8618 Typed_identifier_list::const_iterator pt = parameters->begin();
8619 for (Expression_list::const_iterator pa = this->args_->begin();
8620 pa != this->args_->end();
8621 ++pa, ++pt, ++i)
8622 {
8623 if (pt == parameters->end())
8624 {
8625 this->report_error(_("too many arguments"));
8626 return;
8627 }
8628 this->check_argument_type(i + 1, pt->type(), (*pa)->type(),
8629 (*pa)->location(), false);
8630 }
8631 if (pt != parameters->end())
8632 this->report_error(_("not enough arguments"));
8633 }
8634 }
8635
8636 // Return whether we have to use a temporary variable to ensure that
8637 // we evaluate this call expression in order. If the call returns no
8638 // results then it will inevitably be executed last. If the call
8639 // returns more than one result then it will be used with Call_result
8640 // expressions. So we only have to use a temporary variable if the
8641 // call returns exactly one result.
8642
8643 bool
8644 Call_expression::do_must_eval_in_order() const
8645 {
8646 return this->result_count() == 1;
8647 }
8648
8649 // Get the function and the first argument to use when calling a bound
8650 // method.
8651
8652 tree
8653 Call_expression::bound_method_function(Translate_context* context,
8654 Bound_method_expression* bound_method,
8655 tree* first_arg_ptr)
8656 {
8657 Expression* first_argument = bound_method->first_argument();
8658 tree first_arg = first_argument->get_tree(context);
8659 if (first_arg == error_mark_node)
8660 return error_mark_node;
8661
8662 // We always pass a pointer to the first argument when calling a
8663 // method.
8664 if (first_argument->type()->points_to() == NULL)
8665 {
8666 tree pointer_to_arg_type = build_pointer_type(TREE_TYPE(first_arg));
8667 if (TREE_ADDRESSABLE(TREE_TYPE(first_arg))
8668 || DECL_P(first_arg)
8669 || TREE_CODE(first_arg) == INDIRECT_REF
8670 || TREE_CODE(first_arg) == COMPONENT_REF)
8671 {
8672 first_arg = build_fold_addr_expr(first_arg);
8673 if (DECL_P(first_arg))
8674 TREE_ADDRESSABLE(first_arg) = 1;
8675 }
8676 else
8677 {
8678 tree tmp = create_tmp_var(TREE_TYPE(first_arg),
8679 get_name(first_arg));
8680 DECL_IGNORED_P(tmp) = 0;
8681 DECL_INITIAL(tmp) = first_arg;
8682 first_arg = build2(COMPOUND_EXPR, pointer_to_arg_type,
8683 build1(DECL_EXPR, void_type_node, tmp),
8684 build_fold_addr_expr(tmp));
8685 TREE_ADDRESSABLE(tmp) = 1;
8686 }
8687 if (first_arg == error_mark_node)
8688 return error_mark_node;
8689 }
8690
8691 Type* fatype = bound_method->first_argument_type();
8692 if (fatype != NULL)
8693 {
8694 if (fatype->points_to() == NULL)
8695 fatype = Type::make_pointer_type(fatype);
8696 first_arg = fold_convert(fatype->get_tree(context->gogo()), first_arg);
8697 if (first_arg == error_mark_node
8698 || TREE_TYPE(first_arg) == error_mark_node)
8699 return error_mark_node;
8700 }
8701
8702 *first_arg_ptr = first_arg;
8703
8704 return bound_method->method()->get_tree(context);
8705 }
8706
8707 // Get the function and the first argument to use when calling an
8708 // interface method.
8709
8710 tree
8711 Call_expression::interface_method_function(
8712 Translate_context* context,
8713 Interface_field_reference_expression* interface_method,
8714 tree* first_arg_ptr)
8715 {
8716 tree expr = interface_method->expr()->get_tree(context);
8717 if (expr == error_mark_node)
8718 return error_mark_node;
8719 expr = save_expr(expr);
8720 tree first_arg = interface_method->get_underlying_object_tree(context, expr);
8721 if (first_arg == error_mark_node)
8722 return error_mark_node;
8723 *first_arg_ptr = first_arg;
8724 return interface_method->get_function_tree(context, expr);
8725 }
8726
8727 // Build the call expression.
8728
8729 tree
8730 Call_expression::do_get_tree(Translate_context* context)
8731 {
8732 if (this->tree_ != NULL_TREE)
8733 return this->tree_;
8734
8735 Function_type* fntype = this->get_function_type();
8736 if (fntype == NULL)
8737 return error_mark_node;
8738
8739 if (this->fn_->is_error_expression())
8740 return error_mark_node;
8741
8742 Gogo* gogo = context->gogo();
8743 source_location location = this->location();
8744
8745 Func_expression* func = this->fn_->func_expression();
8746 Bound_method_expression* bound_method = this->fn_->bound_method_expression();
8747 Interface_field_reference_expression* interface_method =
8748 this->fn_->interface_field_reference_expression();
8749 const bool has_closure = func != NULL && func->closure() != NULL;
8750 const bool is_method = bound_method != NULL || interface_method != NULL;
8751 gcc_assert(!fntype->is_method() || is_method);
8752
8753 int nargs;
8754 tree* args;
8755 if (this->args_ == NULL || this->args_->empty())
8756 {
8757 nargs = is_method ? 1 : 0;
8758 args = nargs == 0 ? NULL : new tree[nargs];
8759 }
8760 else
8761 {
8762 const Typed_identifier_list* params = fntype->parameters();
8763 gcc_assert(params != NULL);
8764
8765 nargs = this->args_->size();
8766 int i = is_method ? 1 : 0;
8767 nargs += i;
8768 args = new tree[nargs];
8769
8770 Typed_identifier_list::const_iterator pp = params->begin();
8771 Expression_list::const_iterator pe;
8772 for (pe = this->args_->begin();
8773 pe != this->args_->end();
8774 ++pe, ++pp, ++i)
8775 {
8776 gcc_assert(pp != params->end());
8777 tree arg_val = (*pe)->get_tree(context);
8778 args[i] = Expression::convert_for_assignment(context,
8779 pp->type(),
8780 (*pe)->type(),
8781 arg_val,
8782 location);
8783 if (args[i] == error_mark_node)
8784 {
8785 delete[] args;
8786 return error_mark_node;
8787 }
8788 }
8789 gcc_assert(pp == params->end());
8790 gcc_assert(i == nargs);
8791 }
8792
8793 tree rettype = TREE_TYPE(TREE_TYPE(fntype->get_tree(gogo)));
8794 if (rettype == error_mark_node)
8795 {
8796 delete[] args;
8797 return error_mark_node;
8798 }
8799
8800 tree fn;
8801 if (has_closure)
8802 fn = func->get_tree_without_closure(gogo);
8803 else if (!is_method)
8804 fn = this->fn_->get_tree(context);
8805 else if (bound_method != NULL)
8806 fn = this->bound_method_function(context, bound_method, &args[0]);
8807 else if (interface_method != NULL)
8808 fn = this->interface_method_function(context, interface_method, &args[0]);
8809 else
8810 gcc_unreachable();
8811
8812 if (fn == error_mark_node || TREE_TYPE(fn) == error_mark_node)
8813 {
8814 delete[] args;
8815 return error_mark_node;
8816 }
8817
8818 // This is to support builtin math functions when using 80387 math.
8819 tree fndecl = fn;
8820 if (TREE_CODE(fndecl) == ADDR_EXPR)
8821 fndecl = TREE_OPERAND(fndecl, 0);
8822 tree excess_type = NULL_TREE;
8823 if (DECL_P(fndecl)
8824 && DECL_IS_BUILTIN(fndecl)
8825 && DECL_BUILT_IN_CLASS(fndecl) == BUILT_IN_NORMAL
8826 && nargs > 0
8827 && ((SCALAR_FLOAT_TYPE_P(rettype)
8828 && SCALAR_FLOAT_TYPE_P(TREE_TYPE(args[0])))
8829 || (COMPLEX_FLOAT_TYPE_P(rettype)
8830 && COMPLEX_FLOAT_TYPE_P(TREE_TYPE(args[0])))))
8831 {
8832 excess_type = excess_precision_type(TREE_TYPE(args[0]));
8833 if (excess_type != NULL_TREE)
8834 {
8835 tree excess_fndecl = mathfn_built_in(excess_type,
8836 DECL_FUNCTION_CODE(fndecl));
8837 if (excess_fndecl == NULL_TREE)
8838 excess_type = NULL_TREE;
8839 else
8840 {
8841 fn = build_fold_addr_expr_loc(location, excess_fndecl);
8842 for (int i = 0; i < nargs; ++i)
8843 args[i] = ::convert(excess_type, args[i]);
8844 }
8845 }
8846 }
8847
8848 tree ret = build_call_array(excess_type != NULL_TREE ? excess_type : rettype,
8849 fn, nargs, args);
8850 delete[] args;
8851
8852 SET_EXPR_LOCATION(ret, location);
8853
8854 if (has_closure)
8855 {
8856 tree closure_tree = func->closure()->get_tree(context);
8857 if (closure_tree != error_mark_node)
8858 CALL_EXPR_STATIC_CHAIN(ret) = closure_tree;
8859 }
8860
8861 // If this is a recursive function type which returns itself, as in
8862 // type F func() F
8863 // we have used ptr_type_node for the return type. Add a cast here
8864 // to the correct type.
8865 if (TREE_TYPE(ret) == ptr_type_node)
8866 {
8867 tree t = this->type()->get_tree(gogo);
8868 ret = fold_convert_loc(location, t, ret);
8869 }
8870
8871 if (excess_type != NULL_TREE)
8872 {
8873 // Calling convert here can undo our excess precision change.
8874 // That may or may not be a bug in convert_to_real.
8875 ret = build1(NOP_EXPR, rettype, ret);
8876 }
8877
8878 // If there is more than one result, we will refer to the call
8879 // multiple times.
8880 if (fntype->results() != NULL && fntype->results()->size() > 1)
8881 ret = save_expr(ret);
8882
8883 this->tree_ = ret;
8884
8885 return ret;
8886 }
8887
8888 // Make a call expression.
8889
8890 Call_expression*
8891 Expression::make_call(Expression* fn, Expression_list* args, bool is_varargs,
8892 source_location location)
8893 {
8894 return new Call_expression(fn, args, is_varargs, location);
8895 }
8896
8897 // A single result from a call which returns multiple results.
8898
8899 class Call_result_expression : public Expression
8900 {
8901 public:
8902 Call_result_expression(Call_expression* call, unsigned int index)
8903 : Expression(EXPRESSION_CALL_RESULT, call->location()),
8904 call_(call), index_(index)
8905 { }
8906
8907 protected:
8908 int
8909 do_traverse(Traverse*);
8910
8911 Type*
8912 do_type();
8913
8914 void
8915 do_determine_type(const Type_context*);
8916
8917 void
8918 do_check_types(Gogo*);
8919
8920 Expression*
8921 do_copy()
8922 {
8923 return new Call_result_expression(this->call_->call_expression(),
8924 this->index_);
8925 }
8926
8927 bool
8928 do_must_eval_in_order() const
8929 { return true; }
8930
8931 tree
8932 do_get_tree(Translate_context*);
8933
8934 private:
8935 // The underlying call expression.
8936 Expression* call_;
8937 // Which result we want.
8938 unsigned int index_;
8939 };
8940
8941 // Traverse a call result.
8942
8943 int
8944 Call_result_expression::do_traverse(Traverse* traverse)
8945 {
8946 if (traverse->remember_expression(this->call_))
8947 {
8948 // We have already traversed the call expression.
8949 return TRAVERSE_CONTINUE;
8950 }
8951 return Expression::traverse(&this->call_, traverse);
8952 }
8953
8954 // Get the type.
8955
8956 Type*
8957 Call_result_expression::do_type()
8958 {
8959 if (this->classification() == EXPRESSION_ERROR)
8960 return Type::make_error_type();
8961
8962 // THIS->CALL_ can be replaced with a temporary reference due to
8963 // Call_expression::do_must_eval_in_order when there is an error.
8964 Call_expression* ce = this->call_->call_expression();
8965 if (ce == NULL)
8966 {
8967 this->set_is_error();
8968 return Type::make_error_type();
8969 }
8970 Function_type* fntype = ce->get_function_type();
8971 if (fntype == NULL)
8972 {
8973 this->set_is_error();
8974 return Type::make_error_type();
8975 }
8976 const Typed_identifier_list* results = fntype->results();
8977 if (results == NULL)
8978 {
8979 this->report_error(_("number of results does not match "
8980 "number of values"));
8981 return Type::make_error_type();
8982 }
8983 Typed_identifier_list::const_iterator pr = results->begin();
8984 for (unsigned int i = 0; i < this->index_; ++i)
8985 {
8986 if (pr == results->end())
8987 break;
8988 ++pr;
8989 }
8990 if (pr == results->end())
8991 {
8992 this->report_error(_("number of results does not match "
8993 "number of values"));
8994 return Type::make_error_type();
8995 }
8996 return pr->type();
8997 }
8998
8999 // Check the type. Just make sure that we trigger the warning in
9000 // do_type.
9001
9002 void
9003 Call_result_expression::do_check_types(Gogo*)
9004 {
9005 this->type();
9006 }
9007
9008 // Determine the type. We have nothing to do here, but the 0 result
9009 // needs to pass down to the caller.
9010
9011 void
9012 Call_result_expression::do_determine_type(const Type_context*)
9013 {
9014 if (this->index_ == 0)
9015 this->call_->determine_type_no_context();
9016 }
9017
9018 // Return the tree.
9019
9020 tree
9021 Call_result_expression::do_get_tree(Translate_context* context)
9022 {
9023 tree call_tree = this->call_->get_tree(context);
9024 if (call_tree == error_mark_node)
9025 return error_mark_node;
9026 if (TREE_CODE(TREE_TYPE(call_tree)) != RECORD_TYPE)
9027 {
9028 gcc_assert(saw_errors());
9029 return error_mark_node;
9030 }
9031 tree field = TYPE_FIELDS(TREE_TYPE(call_tree));
9032 for (unsigned int i = 0; i < this->index_; ++i)
9033 {
9034 gcc_assert(field != NULL_TREE);
9035 field = DECL_CHAIN(field);
9036 }
9037 gcc_assert(field != NULL_TREE);
9038 return build3(COMPONENT_REF, TREE_TYPE(field), call_tree, field, NULL_TREE);
9039 }
9040
9041 // Make a reference to a single result of a call which returns
9042 // multiple results.
9043
9044 Expression*
9045 Expression::make_call_result(Call_expression* call, unsigned int index)
9046 {
9047 return new Call_result_expression(call, index);
9048 }
9049
9050 // Class Index_expression.
9051
9052 // Traversal.
9053
9054 int
9055 Index_expression::do_traverse(Traverse* traverse)
9056 {
9057 if (Expression::traverse(&this->left_, traverse) == TRAVERSE_EXIT
9058 || Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT
9059 || (this->end_ != NULL
9060 && Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT))
9061 return TRAVERSE_EXIT;
9062 return TRAVERSE_CONTINUE;
9063 }
9064
9065 // Lower an index expression. This converts the generic index
9066 // expression into an array index, a string index, or a map index.
9067
9068 Expression*
9069 Index_expression::do_lower(Gogo*, Named_object*, int)
9070 {
9071 source_location location = this->location();
9072 Expression* left = this->left_;
9073 Expression* start = this->start_;
9074 Expression* end = this->end_;
9075
9076 Type* type = left->type();
9077 if (type->is_error_type())
9078 return Expression::make_error(location);
9079 else if (type->array_type() != NULL)
9080 return Expression::make_array_index(left, start, end, location);
9081 else if (type->points_to() != NULL
9082 && type->points_to()->array_type() != NULL
9083 && !type->points_to()->is_open_array_type())
9084 {
9085 Expression* deref = Expression::make_unary(OPERATOR_MULT, left,
9086 location);
9087 return Expression::make_array_index(deref, start, end, location);
9088 }
9089 else if (type->is_string_type())
9090 return Expression::make_string_index(left, start, end, location);
9091 else if (type->map_type() != NULL)
9092 {
9093 if (end != NULL)
9094 {
9095 error_at(location, "invalid slice of map");
9096 return Expression::make_error(location);
9097 }
9098 Map_index_expression* ret= Expression::make_map_index(left, start,
9099 location);
9100 if (this->is_lvalue_)
9101 ret->set_is_lvalue();
9102 return ret;
9103 }
9104 else
9105 {
9106 error_at(location,
9107 "attempt to index object which is not array, string, or map");
9108 return Expression::make_error(location);
9109 }
9110 }
9111
9112 // Make an index expression.
9113
9114 Expression*
9115 Expression::make_index(Expression* left, Expression* start, Expression* end,
9116 source_location location)
9117 {
9118 return new Index_expression(left, start, end, location);
9119 }
9120
9121 // An array index. This is used for both indexing and slicing.
9122
9123 class Array_index_expression : public Expression
9124 {
9125 public:
9126 Array_index_expression(Expression* array, Expression* start,
9127 Expression* end, source_location location)
9128 : Expression(EXPRESSION_ARRAY_INDEX, location),
9129 array_(array), start_(start), end_(end), type_(NULL)
9130 { }
9131
9132 protected:
9133 int
9134 do_traverse(Traverse*);
9135
9136 Type*
9137 do_type();
9138
9139 void
9140 do_determine_type(const Type_context*);
9141
9142 void
9143 do_check_types(Gogo*);
9144
9145 Expression*
9146 do_copy()
9147 {
9148 return Expression::make_array_index(this->array_->copy(),
9149 this->start_->copy(),
9150 (this->end_ == NULL
9151 ? NULL
9152 : this->end_->copy()),
9153 this->location());
9154 }
9155
9156 bool
9157 do_is_addressable() const;
9158
9159 void
9160 do_address_taken(bool escapes)
9161 { this->array_->address_taken(escapes); }
9162
9163 tree
9164 do_get_tree(Translate_context*);
9165
9166 private:
9167 // The array we are getting a value from.
9168 Expression* array_;
9169 // The start or only index.
9170 Expression* start_;
9171 // The end index of a slice. This may be NULL for a simple array
9172 // index, or it may be a nil expression for the length of the array.
9173 Expression* end_;
9174 // The type of the expression.
9175 Type* type_;
9176 };
9177
9178 // Array index traversal.
9179
9180 int
9181 Array_index_expression::do_traverse(Traverse* traverse)
9182 {
9183 if (Expression::traverse(&this->array_, traverse) == TRAVERSE_EXIT)
9184 return TRAVERSE_EXIT;
9185 if (Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT)
9186 return TRAVERSE_EXIT;
9187 if (this->end_ != NULL)
9188 {
9189 if (Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT)
9190 return TRAVERSE_EXIT;
9191 }
9192 return TRAVERSE_CONTINUE;
9193 }
9194
9195 // Return the type of an array index.
9196
9197 Type*
9198 Array_index_expression::do_type()
9199 {
9200 if (this->type_ == NULL)
9201 {
9202 Array_type* type = this->array_->type()->array_type();
9203 if (type == NULL)
9204 this->type_ = Type::make_error_type();
9205 else if (this->end_ == NULL)
9206 this->type_ = type->element_type();
9207 else if (type->is_open_array_type())
9208 {
9209 // A slice of a slice has the same type as the original
9210 // slice.
9211 this->type_ = this->array_->type()->deref();
9212 }
9213 else
9214 {
9215 // A slice of an array is a slice.
9216 this->type_ = Type::make_array_type(type->element_type(), NULL);
9217 }
9218 }
9219 return this->type_;
9220 }
9221
9222 // Set the type of an array index.
9223
9224 void
9225 Array_index_expression::do_determine_type(const Type_context*)
9226 {
9227 this->array_->determine_type_no_context();
9228 this->start_->determine_type_no_context();
9229 if (this->end_ != NULL)
9230 this->end_->determine_type_no_context();
9231 }
9232
9233 // Check types of an array index.
9234
9235 void
9236 Array_index_expression::do_check_types(Gogo*)
9237 {
9238 if (this->start_->type()->integer_type() == NULL)
9239 this->report_error(_("index must be integer"));
9240 if (this->end_ != NULL
9241 && this->end_->type()->integer_type() == NULL
9242 && !this->end_->is_nil_expression())
9243 this->report_error(_("slice end must be integer"));
9244
9245 Array_type* array_type = this->array_->type()->array_type();
9246 if (array_type == NULL)
9247 {
9248 gcc_assert(this->array_->type()->is_error_type());
9249 return;
9250 }
9251
9252 unsigned int int_bits =
9253 Type::lookup_integer_type("int")->integer_type()->bits();
9254
9255 Type* dummy;
9256 mpz_t lval;
9257 mpz_init(lval);
9258 bool lval_valid = (array_type->length() != NULL
9259 && array_type->length()->integer_constant_value(true,
9260 lval,
9261 &dummy));
9262 mpz_t ival;
9263 mpz_init(ival);
9264 if (this->start_->integer_constant_value(true, ival, &dummy))
9265 {
9266 if (mpz_sgn(ival) < 0
9267 || mpz_sizeinbase(ival, 2) >= int_bits
9268 || (lval_valid
9269 && (this->end_ == NULL
9270 ? mpz_cmp(ival, lval) >= 0
9271 : mpz_cmp(ival, lval) > 0)))
9272 {
9273 error_at(this->start_->location(), "array index out of bounds");
9274 this->set_is_error();
9275 }
9276 }
9277 if (this->end_ != NULL && !this->end_->is_nil_expression())
9278 {
9279 if (this->end_->integer_constant_value(true, ival, &dummy))
9280 {
9281 if (mpz_sgn(ival) < 0
9282 || mpz_sizeinbase(ival, 2) >= int_bits
9283 || (lval_valid && mpz_cmp(ival, lval) > 0))
9284 {
9285 error_at(this->end_->location(), "array index out of bounds");
9286 this->set_is_error();
9287 }
9288 }
9289 }
9290 mpz_clear(ival);
9291 mpz_clear(lval);
9292
9293 // A slice of an array requires an addressable array. A slice of a
9294 // slice is always possible.
9295 if (this->end_ != NULL
9296 && !array_type->is_open_array_type()
9297 && !this->array_->is_addressable())
9298 this->report_error(_("array is not addressable"));
9299 }
9300
9301 // Return whether this expression is addressable.
9302
9303 bool
9304 Array_index_expression::do_is_addressable() const
9305 {
9306 // A slice expression is not addressable.
9307 if (this->end_ != NULL)
9308 return false;
9309
9310 // An index into a slice is addressable.
9311 if (this->array_->type()->is_open_array_type())
9312 return true;
9313
9314 // An index into an array is addressable if the array is
9315 // addressable.
9316 return this->array_->is_addressable();
9317 }
9318
9319 // Get a tree for an array index.
9320
9321 tree
9322 Array_index_expression::do_get_tree(Translate_context* context)
9323 {
9324 Gogo* gogo = context->gogo();
9325 source_location loc = this->location();
9326
9327 Array_type* array_type = this->array_->type()->array_type();
9328 if (array_type == NULL)
9329 {
9330 gcc_assert(this->array_->type()->is_error_type());
9331 return error_mark_node;
9332 }
9333
9334 tree type_tree = array_type->get_tree(gogo);
9335 if (type_tree == error_mark_node)
9336 return error_mark_node;
9337
9338 tree array_tree = this->array_->get_tree(context);
9339 if (array_tree == error_mark_node)
9340 return error_mark_node;
9341
9342 if (array_type->length() == NULL && !DECL_P(array_tree))
9343 array_tree = save_expr(array_tree);
9344 tree length_tree = array_type->length_tree(gogo, array_tree);
9345 if (length_tree == error_mark_node)
9346 return error_mark_node;
9347 length_tree = save_expr(length_tree);
9348 tree length_type = TREE_TYPE(length_tree);
9349
9350 tree bad_index = boolean_false_node;
9351
9352 tree start_tree = this->start_->get_tree(context);
9353 if (start_tree == error_mark_node)
9354 return error_mark_node;
9355 if (!DECL_P(start_tree))
9356 start_tree = save_expr(start_tree);
9357 if (!INTEGRAL_TYPE_P(TREE_TYPE(start_tree)))
9358 start_tree = convert_to_integer(length_type, start_tree);
9359
9360 bad_index = Expression::check_bounds(start_tree, length_type, bad_index,
9361 loc);
9362
9363 start_tree = fold_convert_loc(loc, length_type, start_tree);
9364 bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node, bad_index,
9365 fold_build2_loc(loc,
9366 (this->end_ == NULL
9367 ? GE_EXPR
9368 : GT_EXPR),
9369 boolean_type_node, start_tree,
9370 length_tree));
9371
9372 int code = (array_type->length() != NULL
9373 ? (this->end_ == NULL
9374 ? RUNTIME_ERROR_ARRAY_INDEX_OUT_OF_BOUNDS
9375 : RUNTIME_ERROR_ARRAY_SLICE_OUT_OF_BOUNDS)
9376 : (this->end_ == NULL
9377 ? RUNTIME_ERROR_SLICE_INDEX_OUT_OF_BOUNDS
9378 : RUNTIME_ERROR_SLICE_SLICE_OUT_OF_BOUNDS));
9379 tree crash = Gogo::runtime_error(code, loc);
9380
9381 if (this->end_ == NULL)
9382 {
9383 // Simple array indexing. This has to return an l-value, so
9384 // wrap the index check into START_TREE.
9385 start_tree = build2(COMPOUND_EXPR, TREE_TYPE(start_tree),
9386 build3(COND_EXPR, void_type_node,
9387 bad_index, crash, NULL_TREE),
9388 start_tree);
9389 start_tree = fold_convert_loc(loc, sizetype, start_tree);
9390
9391 if (array_type->length() != NULL)
9392 {
9393 // Fixed array.
9394 return build4(ARRAY_REF, TREE_TYPE(type_tree), array_tree,
9395 start_tree, NULL_TREE, NULL_TREE);
9396 }
9397 else
9398 {
9399 // Open array.
9400 tree values = array_type->value_pointer_tree(gogo, array_tree);
9401 tree element_type_tree = array_type->element_type()->get_tree(gogo);
9402 if (element_type_tree == error_mark_node)
9403 return error_mark_node;
9404 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
9405 tree offset = fold_build2_loc(loc, MULT_EXPR, sizetype,
9406 start_tree, element_size);
9407 tree ptr = fold_build2_loc(loc, POINTER_PLUS_EXPR,
9408 TREE_TYPE(values), values, offset);
9409 return build_fold_indirect_ref(ptr);
9410 }
9411 }
9412
9413 // Array slice.
9414
9415 tree capacity_tree = array_type->capacity_tree(gogo, array_tree);
9416 if (capacity_tree == error_mark_node)
9417 return error_mark_node;
9418 capacity_tree = fold_convert_loc(loc, length_type, capacity_tree);
9419
9420 tree end_tree;
9421 if (this->end_->is_nil_expression())
9422 end_tree = length_tree;
9423 else
9424 {
9425 end_tree = this->end_->get_tree(context);
9426 if (end_tree == error_mark_node)
9427 return error_mark_node;
9428 if (!DECL_P(end_tree))
9429 end_tree = save_expr(end_tree);
9430 if (!INTEGRAL_TYPE_P(TREE_TYPE(end_tree)))
9431 end_tree = convert_to_integer(length_type, end_tree);
9432
9433 bad_index = Expression::check_bounds(end_tree, length_type, bad_index,
9434 loc);
9435
9436 end_tree = fold_convert_loc(loc, length_type, end_tree);
9437
9438 capacity_tree = save_expr(capacity_tree);
9439 tree bad_end = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
9440 fold_build2_loc(loc, LT_EXPR,
9441 boolean_type_node,
9442 end_tree, start_tree),
9443 fold_build2_loc(loc, GT_EXPR,
9444 boolean_type_node,
9445 end_tree, capacity_tree));
9446 bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
9447 bad_index, bad_end);
9448 }
9449
9450 tree element_type_tree = array_type->element_type()->get_tree(gogo);
9451 if (element_type_tree == error_mark_node)
9452 return error_mark_node;
9453 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
9454
9455 tree offset = fold_build2_loc(loc, MULT_EXPR, sizetype,
9456 fold_convert_loc(loc, sizetype, start_tree),
9457 element_size);
9458
9459 tree value_pointer = array_type->value_pointer_tree(gogo, array_tree);
9460 if (value_pointer == error_mark_node)
9461 return error_mark_node;
9462
9463 value_pointer = fold_build2_loc(loc, POINTER_PLUS_EXPR,
9464 TREE_TYPE(value_pointer),
9465 value_pointer, offset);
9466
9467 tree result_length_tree = fold_build2_loc(loc, MINUS_EXPR, length_type,
9468 end_tree, start_tree);
9469
9470 tree result_capacity_tree = fold_build2_loc(loc, MINUS_EXPR, length_type,
9471 capacity_tree, start_tree);
9472
9473 tree struct_tree = this->type()->get_tree(gogo);
9474 gcc_assert(TREE_CODE(struct_tree) == RECORD_TYPE);
9475
9476 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
9477
9478 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
9479 tree field = TYPE_FIELDS(struct_tree);
9480 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
9481 elt->index = field;
9482 elt->value = value_pointer;
9483
9484 elt = VEC_quick_push(constructor_elt, init, NULL);
9485 field = DECL_CHAIN(field);
9486 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
9487 elt->index = field;
9488 elt->value = fold_convert_loc(loc, TREE_TYPE(field), result_length_tree);
9489
9490 elt = VEC_quick_push(constructor_elt, init, NULL);
9491 field = DECL_CHAIN(field);
9492 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__capacity") == 0);
9493 elt->index = field;
9494 elt->value = fold_convert_loc(loc, TREE_TYPE(field), result_capacity_tree);
9495
9496 tree constructor = build_constructor(struct_tree, init);
9497
9498 if (TREE_CONSTANT(value_pointer)
9499 && TREE_CONSTANT(result_length_tree)
9500 && TREE_CONSTANT(result_capacity_tree))
9501 TREE_CONSTANT(constructor) = 1;
9502
9503 return fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(constructor),
9504 build3(COND_EXPR, void_type_node,
9505 bad_index, crash, NULL_TREE),
9506 constructor);
9507 }
9508
9509 // Make an array index expression. END may be NULL.
9510
9511 Expression*
9512 Expression::make_array_index(Expression* array, Expression* start,
9513 Expression* end, source_location location)
9514 {
9515 // Taking a slice of a composite literal requires moving the literal
9516 // onto the heap.
9517 if (end != NULL && array->is_composite_literal())
9518 {
9519 array = Expression::make_heap_composite(array, location);
9520 array = Expression::make_unary(OPERATOR_MULT, array, location);
9521 }
9522 return new Array_index_expression(array, start, end, location);
9523 }
9524
9525 // A string index. This is used for both indexing and slicing.
9526
9527 class String_index_expression : public Expression
9528 {
9529 public:
9530 String_index_expression(Expression* string, Expression* start,
9531 Expression* end, source_location location)
9532 : Expression(EXPRESSION_STRING_INDEX, location),
9533 string_(string), start_(start), end_(end)
9534 { }
9535
9536 protected:
9537 int
9538 do_traverse(Traverse*);
9539
9540 Type*
9541 do_type();
9542
9543 void
9544 do_determine_type(const Type_context*);
9545
9546 void
9547 do_check_types(Gogo*);
9548
9549 Expression*
9550 do_copy()
9551 {
9552 return Expression::make_string_index(this->string_->copy(),
9553 this->start_->copy(),
9554 (this->end_ == NULL
9555 ? NULL
9556 : this->end_->copy()),
9557 this->location());
9558 }
9559
9560 tree
9561 do_get_tree(Translate_context*);
9562
9563 private:
9564 // The string we are getting a value from.
9565 Expression* string_;
9566 // The start or only index.
9567 Expression* start_;
9568 // The end index of a slice. This may be NULL for a single index,
9569 // or it may be a nil expression for the length of the string.
9570 Expression* end_;
9571 };
9572
9573 // String index traversal.
9574
9575 int
9576 String_index_expression::do_traverse(Traverse* traverse)
9577 {
9578 if (Expression::traverse(&this->string_, traverse) == TRAVERSE_EXIT)
9579 return TRAVERSE_EXIT;
9580 if (Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT)
9581 return TRAVERSE_EXIT;
9582 if (this->end_ != NULL)
9583 {
9584 if (Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT)
9585 return TRAVERSE_EXIT;
9586 }
9587 return TRAVERSE_CONTINUE;
9588 }
9589
9590 // Return the type of a string index.
9591
9592 Type*
9593 String_index_expression::do_type()
9594 {
9595 if (this->end_ == NULL)
9596 return Type::lookup_integer_type("uint8");
9597 else
9598 return this->string_->type();
9599 }
9600
9601 // Determine the type of a string index.
9602
9603 void
9604 String_index_expression::do_determine_type(const Type_context*)
9605 {
9606 this->string_->determine_type_no_context();
9607 Type_context subcontext(NULL, true);
9608 this->start_->determine_type(&subcontext);
9609 if (this->end_ != NULL)
9610 this->end_->determine_type(&subcontext);
9611 }
9612
9613 // Check types of a string index.
9614
9615 void
9616 String_index_expression::do_check_types(Gogo*)
9617 {
9618 if (this->start_->type()->integer_type() == NULL)
9619 this->report_error(_("index must be integer"));
9620 if (this->end_ != NULL
9621 && this->end_->type()->integer_type() == NULL
9622 && !this->end_->is_nil_expression())
9623 this->report_error(_("slice end must be integer"));
9624
9625 std::string sval;
9626 bool sval_valid = this->string_->string_constant_value(&sval);
9627
9628 mpz_t ival;
9629 mpz_init(ival);
9630 Type* dummy;
9631 if (this->start_->integer_constant_value(true, ival, &dummy))
9632 {
9633 if (mpz_sgn(ival) < 0
9634 || (sval_valid && mpz_cmp_ui(ival, sval.length()) >= 0))
9635 {
9636 error_at(this->start_->location(), "string index out of bounds");
9637 this->set_is_error();
9638 }
9639 }
9640 if (this->end_ != NULL && !this->end_->is_nil_expression())
9641 {
9642 if (this->end_->integer_constant_value(true, ival, &dummy))
9643 {
9644 if (mpz_sgn(ival) < 0
9645 || (sval_valid && mpz_cmp_ui(ival, sval.length()) > 0))
9646 {
9647 error_at(this->end_->location(), "string index out of bounds");
9648 this->set_is_error();
9649 }
9650 }
9651 }
9652 mpz_clear(ival);
9653 }
9654
9655 // Get a tree for a string index.
9656
9657 tree
9658 String_index_expression::do_get_tree(Translate_context* context)
9659 {
9660 source_location loc = this->location();
9661
9662 tree string_tree = this->string_->get_tree(context);
9663 if (string_tree == error_mark_node)
9664 return error_mark_node;
9665
9666 if (this->string_->type()->points_to() != NULL)
9667 string_tree = build_fold_indirect_ref(string_tree);
9668 if (!DECL_P(string_tree))
9669 string_tree = save_expr(string_tree);
9670 tree string_type = TREE_TYPE(string_tree);
9671
9672 tree length_tree = String_type::length_tree(context->gogo(), string_tree);
9673 length_tree = save_expr(length_tree);
9674 tree length_type = TREE_TYPE(length_tree);
9675
9676 tree bad_index = boolean_false_node;
9677
9678 tree start_tree = this->start_->get_tree(context);
9679 if (start_tree == error_mark_node)
9680 return error_mark_node;
9681 if (!DECL_P(start_tree))
9682 start_tree = save_expr(start_tree);
9683 if (!INTEGRAL_TYPE_P(TREE_TYPE(start_tree)))
9684 start_tree = convert_to_integer(length_type, start_tree);
9685
9686 bad_index = Expression::check_bounds(start_tree, length_type, bad_index,
9687 loc);
9688
9689 start_tree = fold_convert_loc(loc, length_type, start_tree);
9690
9691 int code = (this->end_ == NULL
9692 ? RUNTIME_ERROR_STRING_INDEX_OUT_OF_BOUNDS
9693 : RUNTIME_ERROR_STRING_SLICE_OUT_OF_BOUNDS);
9694 tree crash = Gogo::runtime_error(code, loc);
9695
9696 if (this->end_ == NULL)
9697 {
9698 bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
9699 bad_index,
9700 fold_build2_loc(loc, GE_EXPR,
9701 boolean_type_node,
9702 start_tree, length_tree));
9703
9704 tree bytes_tree = String_type::bytes_tree(context->gogo(), string_tree);
9705 tree ptr = fold_build2_loc(loc, POINTER_PLUS_EXPR, TREE_TYPE(bytes_tree),
9706 bytes_tree,
9707 fold_convert_loc(loc, sizetype, start_tree));
9708 tree index = build_fold_indirect_ref_loc(loc, ptr);
9709
9710 return build2(COMPOUND_EXPR, TREE_TYPE(index),
9711 build3(COND_EXPR, void_type_node,
9712 bad_index, crash, NULL_TREE),
9713 index);
9714 }
9715 else
9716 {
9717 tree end_tree;
9718 if (this->end_->is_nil_expression())
9719 end_tree = build_int_cst(length_type, -1);
9720 else
9721 {
9722 end_tree = this->end_->get_tree(context);
9723 if (end_tree == error_mark_node)
9724 return error_mark_node;
9725 if (!DECL_P(end_tree))
9726 end_tree = save_expr(end_tree);
9727 if (!INTEGRAL_TYPE_P(TREE_TYPE(end_tree)))
9728 end_tree = convert_to_integer(length_type, end_tree);
9729
9730 bad_index = Expression::check_bounds(end_tree, length_type,
9731 bad_index, loc);
9732
9733 end_tree = fold_convert_loc(loc, length_type, end_tree);
9734 }
9735
9736 static tree strslice_fndecl;
9737 tree ret = Gogo::call_builtin(&strslice_fndecl,
9738 loc,
9739 "__go_string_slice",
9740 3,
9741 string_type,
9742 string_type,
9743 string_tree,
9744 length_type,
9745 start_tree,
9746 length_type,
9747 end_tree);
9748 if (ret == error_mark_node)
9749 return error_mark_node;
9750 // This will panic if the bounds are out of range for the
9751 // string.
9752 TREE_NOTHROW(strslice_fndecl) = 0;
9753
9754 if (bad_index == boolean_false_node)
9755 return ret;
9756 else
9757 return build2(COMPOUND_EXPR, TREE_TYPE(ret),
9758 build3(COND_EXPR, void_type_node,
9759 bad_index, crash, NULL_TREE),
9760 ret);
9761 }
9762 }
9763
9764 // Make a string index expression. END may be NULL.
9765
9766 Expression*
9767 Expression::make_string_index(Expression* string, Expression* start,
9768 Expression* end, source_location location)
9769 {
9770 return new String_index_expression(string, start, end, location);
9771 }
9772
9773 // Class Map_index.
9774
9775 // Get the type of the map.
9776
9777 Map_type*
9778 Map_index_expression::get_map_type() const
9779 {
9780 Map_type* mt = this->map_->type()->deref()->map_type();
9781 if (mt == NULL)
9782 gcc_assert(saw_errors());
9783 return mt;
9784 }
9785
9786 // Map index traversal.
9787
9788 int
9789 Map_index_expression::do_traverse(Traverse* traverse)
9790 {
9791 if (Expression::traverse(&this->map_, traverse) == TRAVERSE_EXIT)
9792 return TRAVERSE_EXIT;
9793 return Expression::traverse(&this->index_, traverse);
9794 }
9795
9796 // Return the type of a map index.
9797
9798 Type*
9799 Map_index_expression::do_type()
9800 {
9801 Map_type* mt = this->get_map_type();
9802 if (mt == NULL)
9803 return Type::make_error_type();
9804 Type* type = mt->val_type();
9805 // If this map index is in a tuple assignment, we actually return a
9806 // pointer to the value type. Tuple_map_assignment_statement is
9807 // responsible for handling this correctly. We need to get the type
9808 // right in case this gets assigned to a temporary variable.
9809 if (this->is_in_tuple_assignment_)
9810 type = Type::make_pointer_type(type);
9811 return type;
9812 }
9813
9814 // Fix the type of a map index.
9815
9816 void
9817 Map_index_expression::do_determine_type(const Type_context*)
9818 {
9819 this->map_->determine_type_no_context();
9820 Map_type* mt = this->get_map_type();
9821 Type* key_type = mt == NULL ? NULL : mt->key_type();
9822 Type_context subcontext(key_type, false);
9823 this->index_->determine_type(&subcontext);
9824 }
9825
9826 // Check types of a map index.
9827
9828 void
9829 Map_index_expression::do_check_types(Gogo*)
9830 {
9831 std::string reason;
9832 Map_type* mt = this->get_map_type();
9833 if (mt == NULL)
9834 return;
9835 if (!Type::are_assignable(mt->key_type(), this->index_->type(), &reason))
9836 {
9837 if (reason.empty())
9838 this->report_error(_("incompatible type for map index"));
9839 else
9840 {
9841 error_at(this->location(), "incompatible type for map index (%s)",
9842 reason.c_str());
9843 this->set_is_error();
9844 }
9845 }
9846 }
9847
9848 // Get a tree for a map index.
9849
9850 tree
9851 Map_index_expression::do_get_tree(Translate_context* context)
9852 {
9853 Map_type* type = this->get_map_type();
9854 if (type == NULL)
9855 return error_mark_node;
9856
9857 tree valptr = this->get_value_pointer(context, this->is_lvalue_);
9858 if (valptr == error_mark_node)
9859 return error_mark_node;
9860 valptr = save_expr(valptr);
9861
9862 tree val_type_tree = TREE_TYPE(TREE_TYPE(valptr));
9863
9864 if (this->is_lvalue_)
9865 return build_fold_indirect_ref(valptr);
9866 else if (this->is_in_tuple_assignment_)
9867 {
9868 // Tuple_map_assignment_statement is responsible for using this
9869 // appropriately.
9870 return valptr;
9871 }
9872 else
9873 {
9874 return fold_build3(COND_EXPR, val_type_tree,
9875 fold_build2(EQ_EXPR, boolean_type_node, valptr,
9876 fold_convert(TREE_TYPE(valptr),
9877 null_pointer_node)),
9878 type->val_type()->get_init_tree(context->gogo(),
9879 false),
9880 build_fold_indirect_ref(valptr));
9881 }
9882 }
9883
9884 // Get a tree for the map index. This returns a tree which evaluates
9885 // to a pointer to a value. The pointer will be NULL if the key is
9886 // not in the map.
9887
9888 tree
9889 Map_index_expression::get_value_pointer(Translate_context* context,
9890 bool insert)
9891 {
9892 Map_type* type = this->get_map_type();
9893 if (type == NULL)
9894 return error_mark_node;
9895
9896 tree map_tree = this->map_->get_tree(context);
9897 tree index_tree = this->index_->get_tree(context);
9898 index_tree = Expression::convert_for_assignment(context, type->key_type(),
9899 this->index_->type(),
9900 index_tree,
9901 this->location());
9902 if (map_tree == error_mark_node || index_tree == error_mark_node)
9903 return error_mark_node;
9904
9905 if (this->map_->type()->points_to() != NULL)
9906 map_tree = build_fold_indirect_ref(map_tree);
9907
9908 // We need to pass in a pointer to the key, so stuff it into a
9909 // variable.
9910 tree tmp = create_tmp_var(TREE_TYPE(index_tree), get_name(index_tree));
9911 DECL_IGNORED_P(tmp) = 0;
9912 DECL_INITIAL(tmp) = index_tree;
9913 tree make_tmp = build1(DECL_EXPR, void_type_node, tmp);
9914 tree tmpref = fold_convert(const_ptr_type_node, build_fold_addr_expr(tmp));
9915 TREE_ADDRESSABLE(tmp) = 1;
9916
9917 static tree map_index_fndecl;
9918 tree call = Gogo::call_builtin(&map_index_fndecl,
9919 this->location(),
9920 "__go_map_index",
9921 3,
9922 const_ptr_type_node,
9923 TREE_TYPE(map_tree),
9924 map_tree,
9925 const_ptr_type_node,
9926 tmpref,
9927 boolean_type_node,
9928 (insert
9929 ? boolean_true_node
9930 : boolean_false_node));
9931 if (call == error_mark_node)
9932 return error_mark_node;
9933 // This can panic on a map of interface type if the interface holds
9934 // an uncomparable or unhashable type.
9935 TREE_NOTHROW(map_index_fndecl) = 0;
9936
9937 tree val_type_tree = type->val_type()->get_tree(context->gogo());
9938 if (val_type_tree == error_mark_node)
9939 return error_mark_node;
9940 tree ptr_val_type_tree = build_pointer_type(val_type_tree);
9941
9942 return build2(COMPOUND_EXPR, ptr_val_type_tree,
9943 make_tmp,
9944 fold_convert(ptr_val_type_tree, call));
9945 }
9946
9947 // Make a map index expression.
9948
9949 Map_index_expression*
9950 Expression::make_map_index(Expression* map, Expression* index,
9951 source_location location)
9952 {
9953 return new Map_index_expression(map, index, location);
9954 }
9955
9956 // Class Field_reference_expression.
9957
9958 // Return the type of a field reference.
9959
9960 Type*
9961 Field_reference_expression::do_type()
9962 {
9963 Type* type = this->expr_->type();
9964 if (type->is_error_type())
9965 return type;
9966 Struct_type* struct_type = type->struct_type();
9967 gcc_assert(struct_type != NULL);
9968 return struct_type->field(this->field_index_)->type();
9969 }
9970
9971 // Check the types for a field reference.
9972
9973 void
9974 Field_reference_expression::do_check_types(Gogo*)
9975 {
9976 Type* type = this->expr_->type();
9977 if (type->is_error_type())
9978 return;
9979 Struct_type* struct_type = type->struct_type();
9980 gcc_assert(struct_type != NULL);
9981 gcc_assert(struct_type->field(this->field_index_) != NULL);
9982 }
9983
9984 // Get a tree for a field reference.
9985
9986 tree
9987 Field_reference_expression::do_get_tree(Translate_context* context)
9988 {
9989 tree struct_tree = this->expr_->get_tree(context);
9990 if (struct_tree == error_mark_node
9991 || TREE_TYPE(struct_tree) == error_mark_node)
9992 return error_mark_node;
9993 gcc_assert(TREE_CODE(TREE_TYPE(struct_tree)) == RECORD_TYPE);
9994 tree field = TYPE_FIELDS(TREE_TYPE(struct_tree));
9995 if (field == NULL_TREE)
9996 {
9997 // This can happen for a type which refers to itself indirectly
9998 // and then turns out to be erroneous.
9999 gcc_assert(saw_errors());
10000 return error_mark_node;
10001 }
10002 for (unsigned int i = this->field_index_; i > 0; --i)
10003 {
10004 field = DECL_CHAIN(field);
10005 gcc_assert(field != NULL_TREE);
10006 }
10007 if (TREE_TYPE(field) == error_mark_node)
10008 return error_mark_node;
10009 return build3(COMPONENT_REF, TREE_TYPE(field), struct_tree, field,
10010 NULL_TREE);
10011 }
10012
10013 // Make a reference to a qualified identifier in an expression.
10014
10015 Field_reference_expression*
10016 Expression::make_field_reference(Expression* expr, unsigned int field_index,
10017 source_location location)
10018 {
10019 return new Field_reference_expression(expr, field_index, location);
10020 }
10021
10022 // Class Interface_field_reference_expression.
10023
10024 // Return a tree for the pointer to the function to call.
10025
10026 tree
10027 Interface_field_reference_expression::get_function_tree(Translate_context*,
10028 tree expr)
10029 {
10030 if (this->expr_->type()->points_to() != NULL)
10031 expr = build_fold_indirect_ref(expr);
10032
10033 tree expr_type = TREE_TYPE(expr);
10034 gcc_assert(TREE_CODE(expr_type) == RECORD_TYPE);
10035
10036 tree field = TYPE_FIELDS(expr_type);
10037 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods") == 0);
10038
10039 tree table = build3(COMPONENT_REF, TREE_TYPE(field), expr, field, NULL_TREE);
10040 gcc_assert(POINTER_TYPE_P(TREE_TYPE(table)));
10041
10042 table = build_fold_indirect_ref(table);
10043 gcc_assert(TREE_CODE(TREE_TYPE(table)) == RECORD_TYPE);
10044
10045 std::string name = Gogo::unpack_hidden_name(this->name_);
10046 for (field = DECL_CHAIN(TYPE_FIELDS(TREE_TYPE(table)));
10047 field != NULL_TREE;
10048 field = DECL_CHAIN(field))
10049 {
10050 if (name == IDENTIFIER_POINTER(DECL_NAME(field)))
10051 break;
10052 }
10053 gcc_assert(field != NULL_TREE);
10054
10055 return build3(COMPONENT_REF, TREE_TYPE(field), table, field, NULL_TREE);
10056 }
10057
10058 // Return a tree for the first argument to pass to the interface
10059 // function.
10060
10061 tree
10062 Interface_field_reference_expression::get_underlying_object_tree(
10063 Translate_context*,
10064 tree expr)
10065 {
10066 if (this->expr_->type()->points_to() != NULL)
10067 expr = build_fold_indirect_ref(expr);
10068
10069 tree expr_type = TREE_TYPE(expr);
10070 gcc_assert(TREE_CODE(expr_type) == RECORD_TYPE);
10071
10072 tree field = DECL_CHAIN(TYPE_FIELDS(expr_type));
10073 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
10074
10075 return build3(COMPONENT_REF, TREE_TYPE(field), expr, field, NULL_TREE);
10076 }
10077
10078 // Traversal.
10079
10080 int
10081 Interface_field_reference_expression::do_traverse(Traverse* traverse)
10082 {
10083 return Expression::traverse(&this->expr_, traverse);
10084 }
10085
10086 // Return the type of an interface field reference.
10087
10088 Type*
10089 Interface_field_reference_expression::do_type()
10090 {
10091 Type* expr_type = this->expr_->type();
10092
10093 Type* points_to = expr_type->points_to();
10094 if (points_to != NULL)
10095 expr_type = points_to;
10096
10097 Interface_type* interface_type = expr_type->interface_type();
10098 if (interface_type == NULL)
10099 return Type::make_error_type();
10100
10101 const Typed_identifier* method = interface_type->find_method(this->name_);
10102 if (method == NULL)
10103 return Type::make_error_type();
10104
10105 return method->type();
10106 }
10107
10108 // Determine types.
10109
10110 void
10111 Interface_field_reference_expression::do_determine_type(const Type_context*)
10112 {
10113 this->expr_->determine_type_no_context();
10114 }
10115
10116 // Check the types for an interface field reference.
10117
10118 void
10119 Interface_field_reference_expression::do_check_types(Gogo*)
10120 {
10121 Type* type = this->expr_->type();
10122
10123 Type* points_to = type->points_to();
10124 if (points_to != NULL)
10125 type = points_to;
10126
10127 Interface_type* interface_type = type->interface_type();
10128 if (interface_type == NULL)
10129 this->report_error(_("expected interface or pointer to interface"));
10130 else
10131 {
10132 const Typed_identifier* method =
10133 interface_type->find_method(this->name_);
10134 if (method == NULL)
10135 {
10136 error_at(this->location(), "method %qs not in interface",
10137 Gogo::message_name(this->name_).c_str());
10138 this->set_is_error();
10139 }
10140 }
10141 }
10142
10143 // Get a tree for a reference to a field in an interface. There is no
10144 // standard tree type representation for this: it's a function
10145 // attached to its first argument, like a Bound_method_expression.
10146 // The only places it may currently be used are in a Call_expression
10147 // or a Go_statement, which will take it apart directly. So this has
10148 // nothing to do at present.
10149
10150 tree
10151 Interface_field_reference_expression::do_get_tree(Translate_context*)
10152 {
10153 gcc_unreachable();
10154 }
10155
10156 // Make a reference to a field in an interface.
10157
10158 Expression*
10159 Expression::make_interface_field_reference(Expression* expr,
10160 const std::string& field,
10161 source_location location)
10162 {
10163 return new Interface_field_reference_expression(expr, field, location);
10164 }
10165
10166 // A general selector. This is a Parser_expression for LEFT.NAME. It
10167 // is lowered after we know the type of the left hand side.
10168
10169 class Selector_expression : public Parser_expression
10170 {
10171 public:
10172 Selector_expression(Expression* left, const std::string& name,
10173 source_location location)
10174 : Parser_expression(EXPRESSION_SELECTOR, location),
10175 left_(left), name_(name)
10176 { }
10177
10178 protected:
10179 int
10180 do_traverse(Traverse* traverse)
10181 { return Expression::traverse(&this->left_, traverse); }
10182
10183 Expression*
10184 do_lower(Gogo*, Named_object*, int);
10185
10186 Expression*
10187 do_copy()
10188 {
10189 return new Selector_expression(this->left_->copy(), this->name_,
10190 this->location());
10191 }
10192
10193 private:
10194 Expression*
10195 lower_method_expression(Gogo*);
10196
10197 // The expression on the left hand side.
10198 Expression* left_;
10199 // The name on the right hand side.
10200 std::string name_;
10201 };
10202
10203 // Lower a selector expression once we know the real type of the left
10204 // hand side.
10205
10206 Expression*
10207 Selector_expression::do_lower(Gogo* gogo, Named_object*, int)
10208 {
10209 Expression* left = this->left_;
10210 if (left->is_type_expression())
10211 return this->lower_method_expression(gogo);
10212 return Type::bind_field_or_method(gogo, left->type(), left, this->name_,
10213 this->location());
10214 }
10215
10216 // Lower a method expression T.M or (*T).M. We turn this into a
10217 // function literal.
10218
10219 Expression*
10220 Selector_expression::lower_method_expression(Gogo* gogo)
10221 {
10222 source_location location = this->location();
10223 Type* type = this->left_->type();
10224 const std::string& name(this->name_);
10225
10226 bool is_pointer;
10227 if (type->points_to() == NULL)
10228 is_pointer = false;
10229 else
10230 {
10231 is_pointer = true;
10232 type = type->points_to();
10233 }
10234 Named_type* nt = type->named_type();
10235 if (nt == NULL)
10236 {
10237 error_at(location,
10238 ("method expression requires named type or "
10239 "pointer to named type"));
10240 return Expression::make_error(location);
10241 }
10242
10243 bool is_ambiguous;
10244 Method* method = nt->method_function(name, &is_ambiguous);
10245 if (method == NULL)
10246 {
10247 if (!is_ambiguous)
10248 error_at(location, "type %<%s%> has no method %<%s%>",
10249 nt->message_name().c_str(),
10250 Gogo::message_name(name).c_str());
10251 else
10252 error_at(location, "method %<%s%> is ambiguous in type %<%s%>",
10253 Gogo::message_name(name).c_str(),
10254 nt->message_name().c_str());
10255 return Expression::make_error(location);
10256 }
10257
10258 if (!is_pointer && !method->is_value_method())
10259 {
10260 error_at(location, "method requires pointer (use %<(*%s).%s)%>",
10261 nt->message_name().c_str(),
10262 Gogo::message_name(name).c_str());
10263 return Expression::make_error(location);
10264 }
10265
10266 // Build a new function type in which the receiver becomes the first
10267 // argument.
10268 Function_type* method_type = method->type();
10269 gcc_assert(method_type->is_method());
10270
10271 const char* const receiver_name = "$this";
10272 Typed_identifier_list* parameters = new Typed_identifier_list();
10273 parameters->push_back(Typed_identifier(receiver_name, this->left_->type(),
10274 location));
10275
10276 const Typed_identifier_list* method_parameters = method_type->parameters();
10277 if (method_parameters != NULL)
10278 {
10279 for (Typed_identifier_list::const_iterator p = method_parameters->begin();
10280 p != method_parameters->end();
10281 ++p)
10282 parameters->push_back(*p);
10283 }
10284
10285 const Typed_identifier_list* method_results = method_type->results();
10286 Typed_identifier_list* results;
10287 if (method_results == NULL)
10288 results = NULL;
10289 else
10290 {
10291 results = new Typed_identifier_list();
10292 for (Typed_identifier_list::const_iterator p = method_results->begin();
10293 p != method_results->end();
10294 ++p)
10295 results->push_back(*p);
10296 }
10297
10298 Function_type* fntype = Type::make_function_type(NULL, parameters, results,
10299 location);
10300 if (method_type->is_varargs())
10301 fntype->set_is_varargs();
10302
10303 // We generate methods which always takes a pointer to the receiver
10304 // as their first argument. If this is for a pointer type, we can
10305 // simply reuse the existing function. We use an internal hack to
10306 // get the right type.
10307
10308 if (is_pointer)
10309 {
10310 Named_object* mno = (method->needs_stub_method()
10311 ? method->stub_object()
10312 : method->named_object());
10313 Expression* f = Expression::make_func_reference(mno, NULL, location);
10314 f = Expression::make_cast(fntype, f, location);
10315 Type_conversion_expression* tce =
10316 static_cast<Type_conversion_expression*>(f);
10317 tce->set_may_convert_function_types();
10318 return f;
10319 }
10320
10321 Named_object* no = gogo->start_function(Gogo::thunk_name(), fntype, false,
10322 location);
10323
10324 Named_object* vno = gogo->lookup(receiver_name, NULL);
10325 gcc_assert(vno != NULL);
10326 Expression* ve = Expression::make_var_reference(vno, location);
10327 Expression* bm = Type::bind_field_or_method(gogo, nt, ve, name, location);
10328 gcc_assert(bm != NULL && !bm->is_error_expression());
10329
10330 Expression_list* args;
10331 if (method_parameters == NULL)
10332 args = NULL;
10333 else
10334 {
10335 args = new Expression_list();
10336 for (Typed_identifier_list::const_iterator p = method_parameters->begin();
10337 p != method_parameters->end();
10338 ++p)
10339 {
10340 vno = gogo->lookup(p->name(), NULL);
10341 gcc_assert(vno != NULL);
10342 args->push_back(Expression::make_var_reference(vno, location));
10343 }
10344 }
10345
10346 Call_expression* call = Expression::make_call(bm, args,
10347 method_type->is_varargs(),
10348 location);
10349
10350 size_t count = call->result_count();
10351 Statement* s;
10352 if (count == 0)
10353 s = Statement::make_statement(call);
10354 else
10355 {
10356 Expression_list* retvals = new Expression_list();
10357 if (count <= 1)
10358 retvals->push_back(call);
10359 else
10360 {
10361 for (size_t i = 0; i < count; ++i)
10362 retvals->push_back(Expression::make_call_result(call, i));
10363 }
10364 s = Statement::make_return_statement(no->func_value()->type()->results(),
10365 retvals, location);
10366 }
10367 gogo->add_statement(s);
10368
10369 gogo->finish_function(location);
10370
10371 return Expression::make_func_reference(no, NULL, location);
10372 }
10373
10374 // Make a selector expression.
10375
10376 Expression*
10377 Expression::make_selector(Expression* left, const std::string& name,
10378 source_location location)
10379 {
10380 return new Selector_expression(left, name, location);
10381 }
10382
10383 // Implement the builtin function new.
10384
10385 class Allocation_expression : public Expression
10386 {
10387 public:
10388 Allocation_expression(Type* type, source_location location)
10389 : Expression(EXPRESSION_ALLOCATION, location),
10390 type_(type)
10391 { }
10392
10393 protected:
10394 int
10395 do_traverse(Traverse* traverse)
10396 { return Type::traverse(this->type_, traverse); }
10397
10398 Type*
10399 do_type()
10400 { return Type::make_pointer_type(this->type_); }
10401
10402 void
10403 do_determine_type(const Type_context*)
10404 { }
10405
10406 void
10407 do_check_types(Gogo*);
10408
10409 Expression*
10410 do_copy()
10411 { return new Allocation_expression(this->type_, this->location()); }
10412
10413 tree
10414 do_get_tree(Translate_context*);
10415
10416 private:
10417 // The type we are allocating.
10418 Type* type_;
10419 };
10420
10421 // Check the type of an allocation expression.
10422
10423 void
10424 Allocation_expression::do_check_types(Gogo*)
10425 {
10426 if (this->type_->function_type() != NULL)
10427 this->report_error(_("invalid new of function type"));
10428 }
10429
10430 // Return a tree for an allocation expression.
10431
10432 tree
10433 Allocation_expression::do_get_tree(Translate_context* context)
10434 {
10435 tree type_tree = this->type_->get_tree(context->gogo());
10436 if (type_tree == error_mark_node)
10437 return error_mark_node;
10438 tree size_tree = TYPE_SIZE_UNIT(type_tree);
10439 tree space = context->gogo()->allocate_memory(this->type_, size_tree,
10440 this->location());
10441 if (space == error_mark_node)
10442 return error_mark_node;
10443 return fold_convert(build_pointer_type(type_tree), space);
10444 }
10445
10446 // Make an allocation expression.
10447
10448 Expression*
10449 Expression::make_allocation(Type* type, source_location location)
10450 {
10451 return new Allocation_expression(type, location);
10452 }
10453
10454 // Implement the builtin function make.
10455
10456 class Make_expression : public Expression
10457 {
10458 public:
10459 Make_expression(Type* type, Expression_list* args, source_location location)
10460 : Expression(EXPRESSION_MAKE, location),
10461 type_(type), args_(args)
10462 { }
10463
10464 protected:
10465 int
10466 do_traverse(Traverse* traverse);
10467
10468 Type*
10469 do_type()
10470 { return this->type_; }
10471
10472 void
10473 do_determine_type(const Type_context*);
10474
10475 void
10476 do_check_types(Gogo*);
10477
10478 Expression*
10479 do_copy()
10480 {
10481 return new Make_expression(this->type_, this->args_->copy(),
10482 this->location());
10483 }
10484
10485 tree
10486 do_get_tree(Translate_context*);
10487
10488 private:
10489 // The type we are making.
10490 Type* type_;
10491 // The arguments to pass to the make routine.
10492 Expression_list* args_;
10493 };
10494
10495 // Traversal.
10496
10497 int
10498 Make_expression::do_traverse(Traverse* traverse)
10499 {
10500 if (this->args_ != NULL
10501 && this->args_->traverse(traverse) == TRAVERSE_EXIT)
10502 return TRAVERSE_EXIT;
10503 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10504 return TRAVERSE_EXIT;
10505 return TRAVERSE_CONTINUE;
10506 }
10507
10508 // Set types of arguments.
10509
10510 void
10511 Make_expression::do_determine_type(const Type_context*)
10512 {
10513 if (this->args_ != NULL)
10514 {
10515 Type_context context(Type::lookup_integer_type("int"), false);
10516 for (Expression_list::const_iterator pe = this->args_->begin();
10517 pe != this->args_->end();
10518 ++pe)
10519 (*pe)->determine_type(&context);
10520 }
10521 }
10522
10523 // Check types for a make expression.
10524
10525 void
10526 Make_expression::do_check_types(Gogo*)
10527 {
10528 if (this->type_->channel_type() == NULL
10529 && this->type_->map_type() == NULL
10530 && (this->type_->array_type() == NULL
10531 || this->type_->array_type()->length() != NULL))
10532 this->report_error(_("invalid type for make function"));
10533 else if (!this->type_->check_make_expression(this->args_, this->location()))
10534 this->set_is_error();
10535 }
10536
10537 // Return a tree for a make expression.
10538
10539 tree
10540 Make_expression::do_get_tree(Translate_context* context)
10541 {
10542 return this->type_->make_expression_tree(context, this->args_,
10543 this->location());
10544 }
10545
10546 // Make a make expression.
10547
10548 Expression*
10549 Expression::make_make(Type* type, Expression_list* args,
10550 source_location location)
10551 {
10552 return new Make_expression(type, args, location);
10553 }
10554
10555 // Construct a struct.
10556
10557 class Struct_construction_expression : public Expression
10558 {
10559 public:
10560 Struct_construction_expression(Type* type, Expression_list* vals,
10561 source_location location)
10562 : Expression(EXPRESSION_STRUCT_CONSTRUCTION, location),
10563 type_(type), vals_(vals)
10564 { }
10565
10566 // Return whether this is a constant initializer.
10567 bool
10568 is_constant_struct() const;
10569
10570 protected:
10571 int
10572 do_traverse(Traverse* traverse);
10573
10574 Type*
10575 do_type()
10576 { return this->type_; }
10577
10578 void
10579 do_determine_type(const Type_context*);
10580
10581 void
10582 do_check_types(Gogo*);
10583
10584 Expression*
10585 do_copy()
10586 {
10587 return new Struct_construction_expression(this->type_, this->vals_->copy(),
10588 this->location());
10589 }
10590
10591 bool
10592 do_is_addressable() const
10593 { return true; }
10594
10595 tree
10596 do_get_tree(Translate_context*);
10597
10598 void
10599 do_export(Export*) const;
10600
10601 private:
10602 // The type of the struct to construct.
10603 Type* type_;
10604 // The list of values, in order of the fields in the struct. A NULL
10605 // entry means that the field should be zero-initialized.
10606 Expression_list* vals_;
10607 };
10608
10609 // Traversal.
10610
10611 int
10612 Struct_construction_expression::do_traverse(Traverse* traverse)
10613 {
10614 if (this->vals_ != NULL
10615 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
10616 return TRAVERSE_EXIT;
10617 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10618 return TRAVERSE_EXIT;
10619 return TRAVERSE_CONTINUE;
10620 }
10621
10622 // Return whether this is a constant initializer.
10623
10624 bool
10625 Struct_construction_expression::is_constant_struct() const
10626 {
10627 if (this->vals_ == NULL)
10628 return true;
10629 for (Expression_list::const_iterator pv = this->vals_->begin();
10630 pv != this->vals_->end();
10631 ++pv)
10632 {
10633 if (*pv != NULL
10634 && !(*pv)->is_constant()
10635 && (!(*pv)->is_composite_literal()
10636 || (*pv)->is_nonconstant_composite_literal()))
10637 return false;
10638 }
10639
10640 const Struct_field_list* fields = this->type_->struct_type()->fields();
10641 for (Struct_field_list::const_iterator pf = fields->begin();
10642 pf != fields->end();
10643 ++pf)
10644 {
10645 // There are no constant constructors for interfaces.
10646 if (pf->type()->interface_type() != NULL)
10647 return false;
10648 }
10649
10650 return true;
10651 }
10652
10653 // Final type determination.
10654
10655 void
10656 Struct_construction_expression::do_determine_type(const Type_context*)
10657 {
10658 if (this->vals_ == NULL)
10659 return;
10660 const Struct_field_list* fields = this->type_->struct_type()->fields();
10661 Expression_list::const_iterator pv = this->vals_->begin();
10662 for (Struct_field_list::const_iterator pf = fields->begin();
10663 pf != fields->end();
10664 ++pf, ++pv)
10665 {
10666 if (pv == this->vals_->end())
10667 return;
10668 if (*pv != NULL)
10669 {
10670 Type_context subcontext(pf->type(), false);
10671 (*pv)->determine_type(&subcontext);
10672 }
10673 }
10674 // Extra values are an error we will report elsewhere; we still want
10675 // to determine the type to avoid knockon errors.
10676 for (; pv != this->vals_->end(); ++pv)
10677 (*pv)->determine_type_no_context();
10678 }
10679
10680 // Check types.
10681
10682 void
10683 Struct_construction_expression::do_check_types(Gogo*)
10684 {
10685 if (this->vals_ == NULL)
10686 return;
10687
10688 Struct_type* st = this->type_->struct_type();
10689 if (this->vals_->size() > st->field_count())
10690 {
10691 this->report_error(_("too many expressions for struct"));
10692 return;
10693 }
10694
10695 const Struct_field_list* fields = st->fields();
10696 Expression_list::const_iterator pv = this->vals_->begin();
10697 int i = 0;
10698 for (Struct_field_list::const_iterator pf = fields->begin();
10699 pf != fields->end();
10700 ++pf, ++pv, ++i)
10701 {
10702 if (pv == this->vals_->end())
10703 {
10704 this->report_error(_("too few expressions for struct"));
10705 break;
10706 }
10707
10708 if (*pv == NULL)
10709 continue;
10710
10711 std::string reason;
10712 if (!Type::are_assignable(pf->type(), (*pv)->type(), &reason))
10713 {
10714 if (reason.empty())
10715 error_at((*pv)->location(),
10716 "incompatible type for field %d in struct construction",
10717 i + 1);
10718 else
10719 error_at((*pv)->location(),
10720 ("incompatible type for field %d in "
10721 "struct construction (%s)"),
10722 i + 1, reason.c_str());
10723 this->set_is_error();
10724 }
10725 }
10726 gcc_assert(pv == this->vals_->end());
10727 }
10728
10729 // Return a tree for constructing a struct.
10730
10731 tree
10732 Struct_construction_expression::do_get_tree(Translate_context* context)
10733 {
10734 Gogo* gogo = context->gogo();
10735
10736 if (this->vals_ == NULL)
10737 return this->type_->get_init_tree(gogo, false);
10738
10739 tree type_tree = this->type_->get_tree(gogo);
10740 if (type_tree == error_mark_node)
10741 return error_mark_node;
10742 gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
10743
10744 bool is_constant = true;
10745 const Struct_field_list* fields = this->type_->struct_type()->fields();
10746 VEC(constructor_elt,gc)* elts = VEC_alloc(constructor_elt, gc,
10747 fields->size());
10748 Struct_field_list::const_iterator pf = fields->begin();
10749 Expression_list::const_iterator pv = this->vals_->begin();
10750 for (tree field = TYPE_FIELDS(type_tree);
10751 field != NULL_TREE;
10752 field = DECL_CHAIN(field), ++pf)
10753 {
10754 gcc_assert(pf != fields->end());
10755
10756 tree val;
10757 if (pv == this->vals_->end())
10758 val = pf->type()->get_init_tree(gogo, false);
10759 else if (*pv == NULL)
10760 {
10761 val = pf->type()->get_init_tree(gogo, false);
10762 ++pv;
10763 }
10764 else
10765 {
10766 val = Expression::convert_for_assignment(context, pf->type(),
10767 (*pv)->type(),
10768 (*pv)->get_tree(context),
10769 this->location());
10770 ++pv;
10771 }
10772
10773 if (val == error_mark_node || TREE_TYPE(val) == error_mark_node)
10774 return error_mark_node;
10775
10776 constructor_elt* elt = VEC_quick_push(constructor_elt, elts, NULL);
10777 elt->index = field;
10778 elt->value = val;
10779 if (!TREE_CONSTANT(val))
10780 is_constant = false;
10781 }
10782 gcc_assert(pf == fields->end());
10783
10784 tree ret = build_constructor(type_tree, elts);
10785 if (is_constant)
10786 TREE_CONSTANT(ret) = 1;
10787 return ret;
10788 }
10789
10790 // Export a struct construction.
10791
10792 void
10793 Struct_construction_expression::do_export(Export* exp) const
10794 {
10795 exp->write_c_string("convert(");
10796 exp->write_type(this->type_);
10797 for (Expression_list::const_iterator pv = this->vals_->begin();
10798 pv != this->vals_->end();
10799 ++pv)
10800 {
10801 exp->write_c_string(", ");
10802 if (*pv != NULL)
10803 (*pv)->export_expression(exp);
10804 }
10805 exp->write_c_string(")");
10806 }
10807
10808 // Make a struct composite literal. This used by the thunk code.
10809
10810 Expression*
10811 Expression::make_struct_composite_literal(Type* type, Expression_list* vals,
10812 source_location location)
10813 {
10814 gcc_assert(type->struct_type() != NULL);
10815 return new Struct_construction_expression(type, vals, location);
10816 }
10817
10818 // Construct an array. This class is not used directly; instead we
10819 // use the child classes, Fixed_array_construction_expression and
10820 // Open_array_construction_expression.
10821
10822 class Array_construction_expression : public Expression
10823 {
10824 protected:
10825 Array_construction_expression(Expression_classification classification,
10826 Type* type, Expression_list* vals,
10827 source_location location)
10828 : Expression(classification, location),
10829 type_(type), vals_(vals)
10830 { }
10831
10832 public:
10833 // Return whether this is a constant initializer.
10834 bool
10835 is_constant_array() const;
10836
10837 // Return the number of elements.
10838 size_t
10839 element_count() const
10840 { return this->vals_ == NULL ? 0 : this->vals_->size(); }
10841
10842 protected:
10843 int
10844 do_traverse(Traverse* traverse);
10845
10846 Type*
10847 do_type()
10848 { return this->type_; }
10849
10850 void
10851 do_determine_type(const Type_context*);
10852
10853 void
10854 do_check_types(Gogo*);
10855
10856 bool
10857 do_is_addressable() const
10858 { return true; }
10859
10860 void
10861 do_export(Export*) const;
10862
10863 // The list of values.
10864 Expression_list*
10865 vals()
10866 { return this->vals_; }
10867
10868 // Get a constructor tree for the array values.
10869 tree
10870 get_constructor_tree(Translate_context* context, tree type_tree);
10871
10872 private:
10873 // The type of the array to construct.
10874 Type* type_;
10875 // The list of values.
10876 Expression_list* vals_;
10877 };
10878
10879 // Traversal.
10880
10881 int
10882 Array_construction_expression::do_traverse(Traverse* traverse)
10883 {
10884 if (this->vals_ != NULL
10885 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
10886 return TRAVERSE_EXIT;
10887 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10888 return TRAVERSE_EXIT;
10889 return TRAVERSE_CONTINUE;
10890 }
10891
10892 // Return whether this is a constant initializer.
10893
10894 bool
10895 Array_construction_expression::is_constant_array() const
10896 {
10897 if (this->vals_ == NULL)
10898 return true;
10899
10900 // There are no constant constructors for interfaces.
10901 if (this->type_->array_type()->element_type()->interface_type() != NULL)
10902 return false;
10903
10904 for (Expression_list::const_iterator pv = this->vals_->begin();
10905 pv != this->vals_->end();
10906 ++pv)
10907 {
10908 if (*pv != NULL
10909 && !(*pv)->is_constant()
10910 && (!(*pv)->is_composite_literal()
10911 || (*pv)->is_nonconstant_composite_literal()))
10912 return false;
10913 }
10914 return true;
10915 }
10916
10917 // Final type determination.
10918
10919 void
10920 Array_construction_expression::do_determine_type(const Type_context*)
10921 {
10922 if (this->vals_ == NULL)
10923 return;
10924 Type_context subcontext(this->type_->array_type()->element_type(), false);
10925 for (Expression_list::const_iterator pv = this->vals_->begin();
10926 pv != this->vals_->end();
10927 ++pv)
10928 {
10929 if (*pv != NULL)
10930 (*pv)->determine_type(&subcontext);
10931 }
10932 }
10933
10934 // Check types.
10935
10936 void
10937 Array_construction_expression::do_check_types(Gogo*)
10938 {
10939 if (this->vals_ == NULL)
10940 return;
10941
10942 Array_type* at = this->type_->array_type();
10943 int i = 0;
10944 Type* element_type = at->element_type();
10945 for (Expression_list::const_iterator pv = this->vals_->begin();
10946 pv != this->vals_->end();
10947 ++pv, ++i)
10948 {
10949 if (*pv != NULL
10950 && !Type::are_assignable(element_type, (*pv)->type(), NULL))
10951 {
10952 error_at((*pv)->location(),
10953 "incompatible type for element %d in composite literal",
10954 i + 1);
10955 this->set_is_error();
10956 }
10957 }
10958
10959 Expression* length = at->length();
10960 if (length != NULL)
10961 {
10962 mpz_t val;
10963 mpz_init(val);
10964 Type* type;
10965 if (at->length()->integer_constant_value(true, val, &type))
10966 {
10967 if (this->vals_->size() > mpz_get_ui(val))
10968 this->report_error(_("too many elements in composite literal"));
10969 }
10970 mpz_clear(val);
10971 }
10972 }
10973
10974 // Get a constructor tree for the array values.
10975
10976 tree
10977 Array_construction_expression::get_constructor_tree(Translate_context* context,
10978 tree type_tree)
10979 {
10980 VEC(constructor_elt,gc)* values = VEC_alloc(constructor_elt, gc,
10981 (this->vals_ == NULL
10982 ? 0
10983 : this->vals_->size()));
10984 Type* element_type = this->type_->array_type()->element_type();
10985 bool is_constant = true;
10986 if (this->vals_ != NULL)
10987 {
10988 size_t i = 0;
10989 for (Expression_list::const_iterator pv = this->vals_->begin();
10990 pv != this->vals_->end();
10991 ++pv, ++i)
10992 {
10993 constructor_elt* elt = VEC_quick_push(constructor_elt, values, NULL);
10994 elt->index = size_int(i);
10995 if (*pv == NULL)
10996 elt->value = element_type->get_init_tree(context->gogo(), false);
10997 else
10998 {
10999 tree value_tree = (*pv)->get_tree(context);
11000 elt->value = Expression::convert_for_assignment(context,
11001 element_type,
11002 (*pv)->type(),
11003 value_tree,
11004 this->location());
11005 }
11006 if (elt->value == error_mark_node)
11007 return error_mark_node;
11008 if (!TREE_CONSTANT(elt->value))
11009 is_constant = false;
11010 }
11011 }
11012
11013 tree ret = build_constructor(type_tree, values);
11014 if (is_constant)
11015 TREE_CONSTANT(ret) = 1;
11016 return ret;
11017 }
11018
11019 // Export an array construction.
11020
11021 void
11022 Array_construction_expression::do_export(Export* exp) const
11023 {
11024 exp->write_c_string("convert(");
11025 exp->write_type(this->type_);
11026 if (this->vals_ != NULL)
11027 {
11028 for (Expression_list::const_iterator pv = this->vals_->begin();
11029 pv != this->vals_->end();
11030 ++pv)
11031 {
11032 exp->write_c_string(", ");
11033 if (*pv != NULL)
11034 (*pv)->export_expression(exp);
11035 }
11036 }
11037 exp->write_c_string(")");
11038 }
11039
11040 // Construct a fixed array.
11041
11042 class Fixed_array_construction_expression :
11043 public Array_construction_expression
11044 {
11045 public:
11046 Fixed_array_construction_expression(Type* type, Expression_list* vals,
11047 source_location location)
11048 : Array_construction_expression(EXPRESSION_FIXED_ARRAY_CONSTRUCTION,
11049 type, vals, location)
11050 {
11051 gcc_assert(type->array_type() != NULL
11052 && type->array_type()->length() != NULL);
11053 }
11054
11055 protected:
11056 Expression*
11057 do_copy()
11058 {
11059 return new Fixed_array_construction_expression(this->type(),
11060 (this->vals() == NULL
11061 ? NULL
11062 : this->vals()->copy()),
11063 this->location());
11064 }
11065
11066 tree
11067 do_get_tree(Translate_context*);
11068 };
11069
11070 // Return a tree for constructing a fixed array.
11071
11072 tree
11073 Fixed_array_construction_expression::do_get_tree(Translate_context* context)
11074 {
11075 return this->get_constructor_tree(context,
11076 this->type()->get_tree(context->gogo()));
11077 }
11078
11079 // Construct an open array.
11080
11081 class Open_array_construction_expression : public Array_construction_expression
11082 {
11083 public:
11084 Open_array_construction_expression(Type* type, Expression_list* vals,
11085 source_location location)
11086 : Array_construction_expression(EXPRESSION_OPEN_ARRAY_CONSTRUCTION,
11087 type, vals, location)
11088 {
11089 gcc_assert(type->array_type() != NULL
11090 && type->array_type()->length() == NULL);
11091 }
11092
11093 protected:
11094 // Note that taking the address of an open array literal is invalid.
11095
11096 Expression*
11097 do_copy()
11098 {
11099 return new Open_array_construction_expression(this->type(),
11100 (this->vals() == NULL
11101 ? NULL
11102 : this->vals()->copy()),
11103 this->location());
11104 }
11105
11106 tree
11107 do_get_tree(Translate_context*);
11108 };
11109
11110 // Return a tree for constructing an open array.
11111
11112 tree
11113 Open_array_construction_expression::do_get_tree(Translate_context* context)
11114 {
11115 Array_type* array_type = this->type()->array_type();
11116 if (array_type == NULL)
11117 {
11118 gcc_assert(this->type()->is_error_type());
11119 return error_mark_node;
11120 }
11121
11122 Type* element_type = array_type->element_type();
11123 tree element_type_tree = element_type->get_tree(context->gogo());
11124 if (element_type_tree == error_mark_node)
11125 return error_mark_node;
11126
11127 tree values;
11128 tree length_tree;
11129 if (this->vals() == NULL || this->vals()->empty())
11130 {
11131 // We need to create a unique value.
11132 tree max = size_int(0);
11133 tree constructor_type = build_array_type(element_type_tree,
11134 build_index_type(max));
11135 if (constructor_type == error_mark_node)
11136 return error_mark_node;
11137 VEC(constructor_elt,gc)* vec = VEC_alloc(constructor_elt, gc, 1);
11138 constructor_elt* elt = VEC_quick_push(constructor_elt, vec, NULL);
11139 elt->index = size_int(0);
11140 elt->value = element_type->get_init_tree(context->gogo(), false);
11141 values = build_constructor(constructor_type, vec);
11142 if (TREE_CONSTANT(elt->value))
11143 TREE_CONSTANT(values) = 1;
11144 length_tree = size_int(0);
11145 }
11146 else
11147 {
11148 tree max = size_int(this->vals()->size() - 1);
11149 tree constructor_type = build_array_type(element_type_tree,
11150 build_index_type(max));
11151 if (constructor_type == error_mark_node)
11152 return error_mark_node;
11153 values = this->get_constructor_tree(context, constructor_type);
11154 length_tree = size_int(this->vals()->size());
11155 }
11156
11157 if (values == error_mark_node)
11158 return error_mark_node;
11159
11160 bool is_constant_initializer = TREE_CONSTANT(values);
11161
11162 // We have to copy the initial values into heap memory if we are in
11163 // a function or if the values are not constants. We also have to
11164 // copy them if they may contain pointers in a non-constant context,
11165 // as otherwise the garbage collector won't see them.
11166 bool copy_to_heap = (context->function() != NULL
11167 || !is_constant_initializer
11168 || (element_type->has_pointer()
11169 && !context->is_const()));
11170
11171 if (is_constant_initializer)
11172 {
11173 tree tmp = build_decl(this->location(), VAR_DECL,
11174 create_tmp_var_name("C"), TREE_TYPE(values));
11175 DECL_EXTERNAL(tmp) = 0;
11176 TREE_PUBLIC(tmp) = 0;
11177 TREE_STATIC(tmp) = 1;
11178 DECL_ARTIFICIAL(tmp) = 1;
11179 if (copy_to_heap)
11180 {
11181 // If we are not copying the value to the heap, we will only
11182 // initialize the value once, so we can use this directly
11183 // rather than copying it. In that case we can't make it
11184 // read-only, because the program is permitted to change it.
11185 TREE_READONLY(tmp) = 1;
11186 TREE_CONSTANT(tmp) = 1;
11187 }
11188 DECL_INITIAL(tmp) = values;
11189 rest_of_decl_compilation(tmp, 1, 0);
11190 values = tmp;
11191 }
11192
11193 tree space;
11194 tree set;
11195 if (!copy_to_heap)
11196 {
11197 // the initializer will only run once.
11198 space = build_fold_addr_expr(values);
11199 set = NULL_TREE;
11200 }
11201 else
11202 {
11203 tree memsize = TYPE_SIZE_UNIT(TREE_TYPE(values));
11204 space = context->gogo()->allocate_memory(element_type, memsize,
11205 this->location());
11206 space = save_expr(space);
11207
11208 tree s = fold_convert(build_pointer_type(TREE_TYPE(values)), space);
11209 tree ref = build_fold_indirect_ref_loc(this->location(), s);
11210 TREE_THIS_NOTRAP(ref) = 1;
11211 set = build2(MODIFY_EXPR, void_type_node, ref, values);
11212 }
11213
11214 // Build a constructor for the open array.
11215
11216 tree type_tree = this->type()->get_tree(context->gogo());
11217 if (type_tree == error_mark_node)
11218 return error_mark_node;
11219 gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
11220
11221 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
11222
11223 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
11224 tree field = TYPE_FIELDS(type_tree);
11225 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
11226 elt->index = field;
11227 elt->value = fold_convert(TREE_TYPE(field), space);
11228
11229 elt = VEC_quick_push(constructor_elt, init, NULL);
11230 field = DECL_CHAIN(field);
11231 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
11232 elt->index = field;
11233 elt->value = fold_convert(TREE_TYPE(field), length_tree);
11234
11235 elt = VEC_quick_push(constructor_elt, init, NULL);
11236 field = DECL_CHAIN(field);
11237 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),"__capacity") == 0);
11238 elt->index = field;
11239 elt->value = fold_convert(TREE_TYPE(field), length_tree);
11240
11241 tree constructor = build_constructor(type_tree, init);
11242 if (constructor == error_mark_node)
11243 return error_mark_node;
11244 if (!copy_to_heap)
11245 TREE_CONSTANT(constructor) = 1;
11246
11247 if (set == NULL_TREE)
11248 return constructor;
11249 else
11250 return build2(COMPOUND_EXPR, type_tree, set, constructor);
11251 }
11252
11253 // Make a slice composite literal. This is used by the type
11254 // descriptor code.
11255
11256 Expression*
11257 Expression::make_slice_composite_literal(Type* type, Expression_list* vals,
11258 source_location location)
11259 {
11260 gcc_assert(type->is_open_array_type());
11261 return new Open_array_construction_expression(type, vals, location);
11262 }
11263
11264 // Construct a map.
11265
11266 class Map_construction_expression : public Expression
11267 {
11268 public:
11269 Map_construction_expression(Type* type, Expression_list* vals,
11270 source_location location)
11271 : Expression(EXPRESSION_MAP_CONSTRUCTION, location),
11272 type_(type), vals_(vals)
11273 { gcc_assert(vals == NULL || vals->size() % 2 == 0); }
11274
11275 protected:
11276 int
11277 do_traverse(Traverse* traverse);
11278
11279 Type*
11280 do_type()
11281 { return this->type_; }
11282
11283 void
11284 do_determine_type(const Type_context*);
11285
11286 void
11287 do_check_types(Gogo*);
11288
11289 Expression*
11290 do_copy()
11291 {
11292 return new Map_construction_expression(this->type_, this->vals_->copy(),
11293 this->location());
11294 }
11295
11296 tree
11297 do_get_tree(Translate_context*);
11298
11299 void
11300 do_export(Export*) const;
11301
11302 private:
11303 // The type of the map to construct.
11304 Type* type_;
11305 // The list of values.
11306 Expression_list* vals_;
11307 };
11308
11309 // Traversal.
11310
11311 int
11312 Map_construction_expression::do_traverse(Traverse* traverse)
11313 {
11314 if (this->vals_ != NULL
11315 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
11316 return TRAVERSE_EXIT;
11317 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
11318 return TRAVERSE_EXIT;
11319 return TRAVERSE_CONTINUE;
11320 }
11321
11322 // Final type determination.
11323
11324 void
11325 Map_construction_expression::do_determine_type(const Type_context*)
11326 {
11327 if (this->vals_ == NULL)
11328 return;
11329
11330 Map_type* mt = this->type_->map_type();
11331 Type_context key_context(mt->key_type(), false);
11332 Type_context val_context(mt->val_type(), false);
11333 for (Expression_list::const_iterator pv = this->vals_->begin();
11334 pv != this->vals_->end();
11335 ++pv)
11336 {
11337 (*pv)->determine_type(&key_context);
11338 ++pv;
11339 (*pv)->determine_type(&val_context);
11340 }
11341 }
11342
11343 // Check types.
11344
11345 void
11346 Map_construction_expression::do_check_types(Gogo*)
11347 {
11348 if (this->vals_ == NULL)
11349 return;
11350
11351 Map_type* mt = this->type_->map_type();
11352 int i = 0;
11353 Type* key_type = mt->key_type();
11354 Type* val_type = mt->val_type();
11355 for (Expression_list::const_iterator pv = this->vals_->begin();
11356 pv != this->vals_->end();
11357 ++pv, ++i)
11358 {
11359 if (!Type::are_assignable(key_type, (*pv)->type(), NULL))
11360 {
11361 error_at((*pv)->location(),
11362 "incompatible type for element %d key in map construction",
11363 i + 1);
11364 this->set_is_error();
11365 }
11366 ++pv;
11367 if (!Type::are_assignable(val_type, (*pv)->type(), NULL))
11368 {
11369 error_at((*pv)->location(),
11370 ("incompatible type for element %d value "
11371 "in map construction"),
11372 i + 1);
11373 this->set_is_error();
11374 }
11375 }
11376 }
11377
11378 // Return a tree for constructing a map.
11379
11380 tree
11381 Map_construction_expression::do_get_tree(Translate_context* context)
11382 {
11383 Gogo* gogo = context->gogo();
11384 source_location loc = this->location();
11385
11386 Map_type* mt = this->type_->map_type();
11387
11388 // Build a struct to hold the key and value.
11389 tree struct_type = make_node(RECORD_TYPE);
11390
11391 Type* key_type = mt->key_type();
11392 tree id = get_identifier("__key");
11393 tree key_type_tree = key_type->get_tree(gogo);
11394 if (key_type_tree == error_mark_node)
11395 return error_mark_node;
11396 tree key_field = build_decl(loc, FIELD_DECL, id, key_type_tree);
11397 DECL_CONTEXT(key_field) = struct_type;
11398 TYPE_FIELDS(struct_type) = key_field;
11399
11400 Type* val_type = mt->val_type();
11401 id = get_identifier("__val");
11402 tree val_type_tree = val_type->get_tree(gogo);
11403 if (val_type_tree == error_mark_node)
11404 return error_mark_node;
11405 tree val_field = build_decl(loc, FIELD_DECL, id, val_type_tree);
11406 DECL_CONTEXT(val_field) = struct_type;
11407 DECL_CHAIN(key_field) = val_field;
11408
11409 layout_type(struct_type);
11410
11411 bool is_constant = true;
11412 size_t i = 0;
11413 tree valaddr;
11414 tree make_tmp;
11415
11416 if (this->vals_ == NULL || this->vals_->empty())
11417 {
11418 valaddr = null_pointer_node;
11419 make_tmp = NULL_TREE;
11420 }
11421 else
11422 {
11423 VEC(constructor_elt,gc)* values = VEC_alloc(constructor_elt, gc,
11424 this->vals_->size() / 2);
11425
11426 for (Expression_list::const_iterator pv = this->vals_->begin();
11427 pv != this->vals_->end();
11428 ++pv, ++i)
11429 {
11430 bool one_is_constant = true;
11431
11432 VEC(constructor_elt,gc)* one = VEC_alloc(constructor_elt, gc, 2);
11433
11434 constructor_elt* elt = VEC_quick_push(constructor_elt, one, NULL);
11435 elt->index = key_field;
11436 tree val_tree = (*pv)->get_tree(context);
11437 elt->value = Expression::convert_for_assignment(context, key_type,
11438 (*pv)->type(),
11439 val_tree, loc);
11440 if (elt->value == error_mark_node)
11441 return error_mark_node;
11442 if (!TREE_CONSTANT(elt->value))
11443 one_is_constant = false;
11444
11445 ++pv;
11446
11447 elt = VEC_quick_push(constructor_elt, one, NULL);
11448 elt->index = val_field;
11449 val_tree = (*pv)->get_tree(context);
11450 elt->value = Expression::convert_for_assignment(context, val_type,
11451 (*pv)->type(),
11452 val_tree, loc);
11453 if (elt->value == error_mark_node)
11454 return error_mark_node;
11455 if (!TREE_CONSTANT(elt->value))
11456 one_is_constant = false;
11457
11458 elt = VEC_quick_push(constructor_elt, values, NULL);
11459 elt->index = size_int(i);
11460 elt->value = build_constructor(struct_type, one);
11461 if (one_is_constant)
11462 TREE_CONSTANT(elt->value) = 1;
11463 else
11464 is_constant = false;
11465 }
11466
11467 tree index_type = build_index_type(size_int(i - 1));
11468 tree array_type = build_array_type(struct_type, index_type);
11469 tree init = build_constructor(array_type, values);
11470 if (is_constant)
11471 TREE_CONSTANT(init) = 1;
11472 tree tmp;
11473 if (current_function_decl != NULL)
11474 {
11475 tmp = create_tmp_var(array_type, get_name(array_type));
11476 DECL_INITIAL(tmp) = init;
11477 make_tmp = fold_build1_loc(loc, DECL_EXPR, void_type_node, tmp);
11478 TREE_ADDRESSABLE(tmp) = 1;
11479 }
11480 else
11481 {
11482 tmp = build_decl(loc, VAR_DECL, create_tmp_var_name("M"), array_type);
11483 DECL_EXTERNAL(tmp) = 0;
11484 TREE_PUBLIC(tmp) = 0;
11485 TREE_STATIC(tmp) = 1;
11486 DECL_ARTIFICIAL(tmp) = 1;
11487 if (!TREE_CONSTANT(init))
11488 make_tmp = fold_build2_loc(loc, INIT_EXPR, void_type_node, tmp,
11489 init);
11490 else
11491 {
11492 TREE_READONLY(tmp) = 1;
11493 TREE_CONSTANT(tmp) = 1;
11494 DECL_INITIAL(tmp) = init;
11495 make_tmp = NULL_TREE;
11496 }
11497 rest_of_decl_compilation(tmp, 1, 0);
11498 }
11499
11500 valaddr = build_fold_addr_expr(tmp);
11501 }
11502
11503 tree descriptor = gogo->map_descriptor(mt);
11504
11505 tree type_tree = this->type_->get_tree(gogo);
11506 if (type_tree == error_mark_node)
11507 return error_mark_node;
11508
11509 static tree construct_map_fndecl;
11510 tree call = Gogo::call_builtin(&construct_map_fndecl,
11511 loc,
11512 "__go_construct_map",
11513 6,
11514 type_tree,
11515 TREE_TYPE(descriptor),
11516 descriptor,
11517 sizetype,
11518 size_int(i),
11519 sizetype,
11520 TYPE_SIZE_UNIT(struct_type),
11521 sizetype,
11522 byte_position(val_field),
11523 sizetype,
11524 TYPE_SIZE_UNIT(TREE_TYPE(val_field)),
11525 const_ptr_type_node,
11526 fold_convert(const_ptr_type_node, valaddr));
11527 if (call == error_mark_node)
11528 return error_mark_node;
11529
11530 tree ret;
11531 if (make_tmp == NULL)
11532 ret = call;
11533 else
11534 ret = fold_build2_loc(loc, COMPOUND_EXPR, type_tree, make_tmp, call);
11535 return ret;
11536 }
11537
11538 // Export an array construction.
11539
11540 void
11541 Map_construction_expression::do_export(Export* exp) const
11542 {
11543 exp->write_c_string("convert(");
11544 exp->write_type(this->type_);
11545 for (Expression_list::const_iterator pv = this->vals_->begin();
11546 pv != this->vals_->end();
11547 ++pv)
11548 {
11549 exp->write_c_string(", ");
11550 (*pv)->export_expression(exp);
11551 }
11552 exp->write_c_string(")");
11553 }
11554
11555 // A general composite literal. This is lowered to a type specific
11556 // version.
11557
11558 class Composite_literal_expression : public Parser_expression
11559 {
11560 public:
11561 Composite_literal_expression(Type* type, int depth, bool has_keys,
11562 Expression_list* vals, source_location location)
11563 : Parser_expression(EXPRESSION_COMPOSITE_LITERAL, location),
11564 type_(type), depth_(depth), vals_(vals), has_keys_(has_keys)
11565 { }
11566
11567 protected:
11568 int
11569 do_traverse(Traverse* traverse);
11570
11571 Expression*
11572 do_lower(Gogo*, Named_object*, int);
11573
11574 Expression*
11575 do_copy()
11576 {
11577 return new Composite_literal_expression(this->type_, this->depth_,
11578 this->has_keys_,
11579 (this->vals_ == NULL
11580 ? NULL
11581 : this->vals_->copy()),
11582 this->location());
11583 }
11584
11585 private:
11586 Expression*
11587 lower_struct(Type*);
11588
11589 Expression*
11590 lower_array(Type*);
11591
11592 Expression*
11593 make_array(Type*, Expression_list*);
11594
11595 Expression*
11596 lower_map(Gogo*, Named_object*, Type*);
11597
11598 // The type of the composite literal.
11599 Type* type_;
11600 // The depth within a list of composite literals within a composite
11601 // literal, when the type is omitted.
11602 int depth_;
11603 // The values to put in the composite literal.
11604 Expression_list* vals_;
11605 // If this is true, then VALS_ is a list of pairs: a key and a
11606 // value. In an array initializer, a missing key will be NULL.
11607 bool has_keys_;
11608 };
11609
11610 // Traversal.
11611
11612 int
11613 Composite_literal_expression::do_traverse(Traverse* traverse)
11614 {
11615 if (this->vals_ != NULL
11616 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
11617 return TRAVERSE_EXIT;
11618 return Type::traverse(this->type_, traverse);
11619 }
11620
11621 // Lower a generic composite literal into a specific version based on
11622 // the type.
11623
11624 Expression*
11625 Composite_literal_expression::do_lower(Gogo* gogo, Named_object* function, int)
11626 {
11627 Type* type = this->type_;
11628
11629 for (int depth = this->depth_; depth > 0; --depth)
11630 {
11631 if (type->array_type() != NULL)
11632 type = type->array_type()->element_type();
11633 else if (type->map_type() != NULL)
11634 type = type->map_type()->val_type();
11635 else
11636 {
11637 if (!type->is_error_type())
11638 error_at(this->location(),
11639 ("may only omit types within composite literals "
11640 "of slice, array, or map type"));
11641 return Expression::make_error(this->location());
11642 }
11643 }
11644
11645 if (type->is_error_type())
11646 return Expression::make_error(this->location());
11647 else if (type->struct_type() != NULL)
11648 return this->lower_struct(type);
11649 else if (type->array_type() != NULL)
11650 return this->lower_array(type);
11651 else if (type->map_type() != NULL)
11652 return this->lower_map(gogo, function, type);
11653 else
11654 {
11655 error_at(this->location(),
11656 ("expected struct, slice, array, or map type "
11657 "for composite literal"));
11658 return Expression::make_error(this->location());
11659 }
11660 }
11661
11662 // Lower a struct composite literal.
11663
11664 Expression*
11665 Composite_literal_expression::lower_struct(Type* type)
11666 {
11667 source_location location = this->location();
11668 Struct_type* st = type->struct_type();
11669 if (this->vals_ == NULL || !this->has_keys_)
11670 return new Struct_construction_expression(type, this->vals_, location);
11671
11672 size_t field_count = st->field_count();
11673 std::vector<Expression*> vals(field_count);
11674 Expression_list::const_iterator p = this->vals_->begin();
11675 while (p != this->vals_->end())
11676 {
11677 Expression* name_expr = *p;
11678
11679 ++p;
11680 gcc_assert(p != this->vals_->end());
11681 Expression* val = *p;
11682
11683 ++p;
11684
11685 if (name_expr == NULL)
11686 {
11687 error_at(val->location(), "mixture of field and value initializers");
11688 return Expression::make_error(location);
11689 }
11690
11691 bool bad_key = false;
11692 std::string name;
11693 switch (name_expr->classification())
11694 {
11695 case EXPRESSION_UNKNOWN_REFERENCE:
11696 name = name_expr->unknown_expression()->name();
11697 break;
11698
11699 case EXPRESSION_CONST_REFERENCE:
11700 name = static_cast<Const_expression*>(name_expr)->name();
11701 break;
11702
11703 case EXPRESSION_TYPE:
11704 {
11705 Type* t = name_expr->type();
11706 Named_type* nt = t->named_type();
11707 if (nt == NULL)
11708 bad_key = true;
11709 else
11710 name = nt->name();
11711 }
11712 break;
11713
11714 case EXPRESSION_VAR_REFERENCE:
11715 name = name_expr->var_expression()->name();
11716 break;
11717
11718 case EXPRESSION_FUNC_REFERENCE:
11719 name = name_expr->func_expression()->name();
11720 break;
11721
11722 case EXPRESSION_UNARY:
11723 // If there is a local variable around with the same name as
11724 // the field, and this occurs in the closure, then the
11725 // parser may turn the field reference into an indirection
11726 // through the closure. FIXME: This is a mess.
11727 {
11728 bad_key = true;
11729 Unary_expression* ue = static_cast<Unary_expression*>(name_expr);
11730 if (ue->op() == OPERATOR_MULT)
11731 {
11732 Field_reference_expression* fre =
11733 ue->operand()->field_reference_expression();
11734 if (fre != NULL)
11735 {
11736 Struct_type* st =
11737 fre->expr()->type()->deref()->struct_type();
11738 if (st != NULL)
11739 {
11740 const Struct_field* sf = st->field(fre->field_index());
11741 name = sf->field_name();
11742 char buf[20];
11743 snprintf(buf, sizeof buf, "%u", fre->field_index());
11744 size_t buflen = strlen(buf);
11745 if (name.compare(name.length() - buflen, buflen, buf)
11746 == 0)
11747 {
11748 name = name.substr(0, name.length() - buflen);
11749 bad_key = false;
11750 }
11751 }
11752 }
11753 }
11754 }
11755 break;
11756
11757 default:
11758 bad_key = true;
11759 break;
11760 }
11761 if (bad_key)
11762 {
11763 error_at(name_expr->location(), "expected struct field name");
11764 return Expression::make_error(location);
11765 }
11766
11767 unsigned int index;
11768 const Struct_field* sf = st->find_local_field(name, &index);
11769 if (sf == NULL)
11770 {
11771 error_at(name_expr->location(), "unknown field %qs in %qs",
11772 Gogo::message_name(name).c_str(),
11773 (type->named_type() != NULL
11774 ? type->named_type()->message_name().c_str()
11775 : "unnamed struct"));
11776 return Expression::make_error(location);
11777 }
11778 if (vals[index] != NULL)
11779 {
11780 error_at(name_expr->location(),
11781 "duplicate value for field %qs in %qs",
11782 Gogo::message_name(name).c_str(),
11783 (type->named_type() != NULL
11784 ? type->named_type()->message_name().c_str()
11785 : "unnamed struct"));
11786 return Expression::make_error(location);
11787 }
11788
11789 vals[index] = val;
11790 }
11791
11792 Expression_list* list = new Expression_list;
11793 list->reserve(field_count);
11794 for (size_t i = 0; i < field_count; ++i)
11795 list->push_back(vals[i]);
11796
11797 return new Struct_construction_expression(type, list, location);
11798 }
11799
11800 // Lower an array composite literal.
11801
11802 Expression*
11803 Composite_literal_expression::lower_array(Type* type)
11804 {
11805 source_location location = this->location();
11806 if (this->vals_ == NULL || !this->has_keys_)
11807 return this->make_array(type, this->vals_);
11808
11809 std::vector<Expression*> vals;
11810 vals.reserve(this->vals_->size());
11811 unsigned long index = 0;
11812 Expression_list::const_iterator p = this->vals_->begin();
11813 while (p != this->vals_->end())
11814 {
11815 Expression* index_expr = *p;
11816
11817 ++p;
11818 gcc_assert(p != this->vals_->end());
11819 Expression* val = *p;
11820
11821 ++p;
11822
11823 if (index_expr != NULL)
11824 {
11825 mpz_t ival;
11826 mpz_init(ival);
11827 Type* dummy;
11828 if (!index_expr->integer_constant_value(true, ival, &dummy))
11829 {
11830 mpz_clear(ival);
11831 error_at(index_expr->location(),
11832 "index expression is not integer constant");
11833 return Expression::make_error(location);
11834 }
11835 if (mpz_sgn(ival) < 0)
11836 {
11837 mpz_clear(ival);
11838 error_at(index_expr->location(), "index expression is negative");
11839 return Expression::make_error(location);
11840 }
11841 index = mpz_get_ui(ival);
11842 if (mpz_cmp_ui(ival, index) != 0)
11843 {
11844 mpz_clear(ival);
11845 error_at(index_expr->location(), "index value overflow");
11846 return Expression::make_error(location);
11847 }
11848 mpz_clear(ival);
11849 }
11850
11851 if (index == vals.size())
11852 vals.push_back(val);
11853 else
11854 {
11855 if (index > vals.size())
11856 {
11857 vals.reserve(index + 32);
11858 vals.resize(index + 1, static_cast<Expression*>(NULL));
11859 }
11860 if (vals[index] != NULL)
11861 {
11862 error_at((index_expr != NULL
11863 ? index_expr->location()
11864 : val->location()),
11865 "duplicate value for index %lu",
11866 index);
11867 return Expression::make_error(location);
11868 }
11869 vals[index] = val;
11870 }
11871
11872 ++index;
11873 }
11874
11875 size_t size = vals.size();
11876 Expression_list* list = new Expression_list;
11877 list->reserve(size);
11878 for (size_t i = 0; i < size; ++i)
11879 list->push_back(vals[i]);
11880
11881 return this->make_array(type, list);
11882 }
11883
11884 // Actually build the array composite literal. This handles
11885 // [...]{...}.
11886
11887 Expression*
11888 Composite_literal_expression::make_array(Type* type, Expression_list* vals)
11889 {
11890 source_location location = this->location();
11891 Array_type* at = type->array_type();
11892 if (at->length() != NULL && at->length()->is_nil_expression())
11893 {
11894 size_t size = vals == NULL ? 0 : vals->size();
11895 mpz_t vlen;
11896 mpz_init_set_ui(vlen, size);
11897 Expression* elen = Expression::make_integer(&vlen, NULL, location);
11898 mpz_clear(vlen);
11899 at = Type::make_array_type(at->element_type(), elen);
11900 type = at;
11901 }
11902 if (at->length() != NULL)
11903 return new Fixed_array_construction_expression(type, vals, location);
11904 else
11905 return new Open_array_construction_expression(type, vals, location);
11906 }
11907
11908 // Lower a map composite literal.
11909
11910 Expression*
11911 Composite_literal_expression::lower_map(Gogo* gogo, Named_object* function,
11912 Type* type)
11913 {
11914 source_location location = this->location();
11915 if (this->vals_ != NULL)
11916 {
11917 if (!this->has_keys_)
11918 {
11919 error_at(location, "map composite literal must have keys");
11920 return Expression::make_error(location);
11921 }
11922
11923 for (Expression_list::iterator p = this->vals_->begin();
11924 p != this->vals_->end();
11925 p += 2)
11926 {
11927 if (*p == NULL)
11928 {
11929 ++p;
11930 error_at((*p)->location(),
11931 "map composite literal must have keys for every value");
11932 return Expression::make_error(location);
11933 }
11934 // Make sure we have lowered the key; it may not have been
11935 // lowered in order to handle keys for struct composite
11936 // literals. Lower it now to get the right error message.
11937 if ((*p)->unknown_expression() != NULL)
11938 {
11939 (*p)->unknown_expression()->clear_is_composite_literal_key();
11940 gogo->lower_expression(function, &*p);
11941 gcc_assert((*p)->is_error_expression());
11942 return Expression::make_error(location);
11943 }
11944 }
11945 }
11946
11947 return new Map_construction_expression(type, this->vals_, location);
11948 }
11949
11950 // Make a composite literal expression.
11951
11952 Expression*
11953 Expression::make_composite_literal(Type* type, int depth, bool has_keys,
11954 Expression_list* vals,
11955 source_location location)
11956 {
11957 return new Composite_literal_expression(type, depth, has_keys, vals,
11958 location);
11959 }
11960
11961 // Return whether this expression is a composite literal.
11962
11963 bool
11964 Expression::is_composite_literal() const
11965 {
11966 switch (this->classification_)
11967 {
11968 case EXPRESSION_COMPOSITE_LITERAL:
11969 case EXPRESSION_STRUCT_CONSTRUCTION:
11970 case EXPRESSION_FIXED_ARRAY_CONSTRUCTION:
11971 case EXPRESSION_OPEN_ARRAY_CONSTRUCTION:
11972 case EXPRESSION_MAP_CONSTRUCTION:
11973 return true;
11974 default:
11975 return false;
11976 }
11977 }
11978
11979 // Return whether this expression is a composite literal which is not
11980 // constant.
11981
11982 bool
11983 Expression::is_nonconstant_composite_literal() const
11984 {
11985 switch (this->classification_)
11986 {
11987 case EXPRESSION_STRUCT_CONSTRUCTION:
11988 {
11989 const Struct_construction_expression *psce =
11990 static_cast<const Struct_construction_expression*>(this);
11991 return !psce->is_constant_struct();
11992 }
11993 case EXPRESSION_FIXED_ARRAY_CONSTRUCTION:
11994 {
11995 const Fixed_array_construction_expression *pace =
11996 static_cast<const Fixed_array_construction_expression*>(this);
11997 return !pace->is_constant_array();
11998 }
11999 case EXPRESSION_OPEN_ARRAY_CONSTRUCTION:
12000 {
12001 const Open_array_construction_expression *pace =
12002 static_cast<const Open_array_construction_expression*>(this);
12003 return !pace->is_constant_array();
12004 }
12005 case EXPRESSION_MAP_CONSTRUCTION:
12006 return true;
12007 default:
12008 return false;
12009 }
12010 }
12011
12012 // Return true if this is a reference to a local variable.
12013
12014 bool
12015 Expression::is_local_variable() const
12016 {
12017 const Var_expression* ve = this->var_expression();
12018 if (ve == NULL)
12019 return false;
12020 const Named_object* no = ve->named_object();
12021 return (no->is_result_variable()
12022 || (no->is_variable() && !no->var_value()->is_global()));
12023 }
12024
12025 // Class Type_guard_expression.
12026
12027 // Traversal.
12028
12029 int
12030 Type_guard_expression::do_traverse(Traverse* traverse)
12031 {
12032 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
12033 || Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
12034 return TRAVERSE_EXIT;
12035 return TRAVERSE_CONTINUE;
12036 }
12037
12038 // Check types of a type guard expression. The expression must have
12039 // an interface type, but the actual type conversion is checked at run
12040 // time.
12041
12042 void
12043 Type_guard_expression::do_check_types(Gogo*)
12044 {
12045 // 6g permits using a type guard with unsafe.pointer; we are
12046 // compatible.
12047 Type* expr_type = this->expr_->type();
12048 if (expr_type->is_unsafe_pointer_type())
12049 {
12050 if (this->type_->points_to() == NULL
12051 && (this->type_->integer_type() == NULL
12052 || (this->type_->forwarded()
12053 != Type::lookup_integer_type("uintptr"))))
12054 this->report_error(_("invalid unsafe.Pointer conversion"));
12055 }
12056 else if (this->type_->is_unsafe_pointer_type())
12057 {
12058 if (expr_type->points_to() == NULL
12059 && (expr_type->integer_type() == NULL
12060 || (expr_type->forwarded()
12061 != Type::lookup_integer_type("uintptr"))))
12062 this->report_error(_("invalid unsafe.Pointer conversion"));
12063 }
12064 else if (expr_type->interface_type() == NULL)
12065 {
12066 if (!expr_type->is_error_type() && !this->type_->is_error_type())
12067 this->report_error(_("type assertion only valid for interface types"));
12068 this->set_is_error();
12069 }
12070 else if (this->type_->interface_type() == NULL)
12071 {
12072 std::string reason;
12073 if (!expr_type->interface_type()->implements_interface(this->type_,
12074 &reason))
12075 {
12076 if (!this->type_->is_error_type())
12077 {
12078 if (reason.empty())
12079 this->report_error(_("impossible type assertion: "
12080 "type does not implement interface"));
12081 else
12082 error_at(this->location(),
12083 ("impossible type assertion: "
12084 "type does not implement interface (%s)"),
12085 reason.c_str());
12086 }
12087 this->set_is_error();
12088 }
12089 }
12090 }
12091
12092 // Return a tree for a type guard expression.
12093
12094 tree
12095 Type_guard_expression::do_get_tree(Translate_context* context)
12096 {
12097 Gogo* gogo = context->gogo();
12098 tree expr_tree = this->expr_->get_tree(context);
12099 if (expr_tree == error_mark_node)
12100 return error_mark_node;
12101 Type* expr_type = this->expr_->type();
12102 if ((this->type_->is_unsafe_pointer_type()
12103 && (expr_type->points_to() != NULL
12104 || expr_type->integer_type() != NULL))
12105 || (expr_type->is_unsafe_pointer_type()
12106 && this->type_->points_to() != NULL))
12107 return convert_to_pointer(this->type_->get_tree(gogo), expr_tree);
12108 else if (expr_type->is_unsafe_pointer_type()
12109 && this->type_->integer_type() != NULL)
12110 return convert_to_integer(this->type_->get_tree(gogo), expr_tree);
12111 else if (this->type_->interface_type() != NULL)
12112 return Expression::convert_interface_to_interface(context, this->type_,
12113 this->expr_->type(),
12114 expr_tree, true,
12115 this->location());
12116 else
12117 return Expression::convert_for_assignment(context, this->type_,
12118 this->expr_->type(), expr_tree,
12119 this->location());
12120 }
12121
12122 // Make a type guard expression.
12123
12124 Expression*
12125 Expression::make_type_guard(Expression* expr, Type* type,
12126 source_location location)
12127 {
12128 return new Type_guard_expression(expr, type, location);
12129 }
12130
12131 // Class Heap_composite_expression.
12132
12133 // When you take the address of a composite literal, it is allocated
12134 // on the heap. This class implements that.
12135
12136 class Heap_composite_expression : public Expression
12137 {
12138 public:
12139 Heap_composite_expression(Expression* expr, source_location location)
12140 : Expression(EXPRESSION_HEAP_COMPOSITE, location),
12141 expr_(expr)
12142 { }
12143
12144 protected:
12145 int
12146 do_traverse(Traverse* traverse)
12147 { return Expression::traverse(&this->expr_, traverse); }
12148
12149 Type*
12150 do_type()
12151 { return Type::make_pointer_type(this->expr_->type()); }
12152
12153 void
12154 do_determine_type(const Type_context*)
12155 { this->expr_->determine_type_no_context(); }
12156
12157 Expression*
12158 do_copy()
12159 {
12160 return Expression::make_heap_composite(this->expr_->copy(),
12161 this->location());
12162 }
12163
12164 tree
12165 do_get_tree(Translate_context*);
12166
12167 // We only export global objects, and the parser does not generate
12168 // this in global scope.
12169 void
12170 do_export(Export*) const
12171 { gcc_unreachable(); }
12172
12173 private:
12174 // The composite literal which is being put on the heap.
12175 Expression* expr_;
12176 };
12177
12178 // Return a tree which allocates a composite literal on the heap.
12179
12180 tree
12181 Heap_composite_expression::do_get_tree(Translate_context* context)
12182 {
12183 tree expr_tree = this->expr_->get_tree(context);
12184 if (expr_tree == error_mark_node)
12185 return error_mark_node;
12186 tree expr_size = TYPE_SIZE_UNIT(TREE_TYPE(expr_tree));
12187 gcc_assert(TREE_CODE(expr_size) == INTEGER_CST);
12188 tree space = context->gogo()->allocate_memory(this->expr_->type(),
12189 expr_size, this->location());
12190 space = fold_convert(build_pointer_type(TREE_TYPE(expr_tree)), space);
12191 space = save_expr(space);
12192 tree ref = build_fold_indirect_ref_loc(this->location(), space);
12193 TREE_THIS_NOTRAP(ref) = 1;
12194 tree ret = build2(COMPOUND_EXPR, TREE_TYPE(space),
12195 build2(MODIFY_EXPR, void_type_node, ref, expr_tree),
12196 space);
12197 SET_EXPR_LOCATION(ret, this->location());
12198 return ret;
12199 }
12200
12201 // Allocate a composite literal on the heap.
12202
12203 Expression*
12204 Expression::make_heap_composite(Expression* expr, source_location location)
12205 {
12206 return new Heap_composite_expression(expr, location);
12207 }
12208
12209 // Class Receive_expression.
12210
12211 // Return the type of a receive expression.
12212
12213 Type*
12214 Receive_expression::do_type()
12215 {
12216 Channel_type* channel_type = this->channel_->type()->channel_type();
12217 if (channel_type == NULL)
12218 return Type::make_error_type();
12219 return channel_type->element_type();
12220 }
12221
12222 // Check types for a receive expression.
12223
12224 void
12225 Receive_expression::do_check_types(Gogo*)
12226 {
12227 Type* type = this->channel_->type();
12228 if (type->is_error_type())
12229 {
12230 this->set_is_error();
12231 return;
12232 }
12233 if (type->channel_type() == NULL)
12234 {
12235 this->report_error(_("expected channel"));
12236 return;
12237 }
12238 if (!type->channel_type()->may_receive())
12239 {
12240 this->report_error(_("invalid receive on send-only channel"));
12241 return;
12242 }
12243 }
12244
12245 // Get a tree for a receive expression.
12246
12247 tree
12248 Receive_expression::do_get_tree(Translate_context* context)
12249 {
12250 Channel_type* channel_type = this->channel_->type()->channel_type();
12251 gcc_assert(channel_type != NULL);
12252 Type* element_type = channel_type->element_type();
12253 tree element_type_tree = element_type->get_tree(context->gogo());
12254
12255 tree channel = this->channel_->get_tree(context);
12256 if (element_type_tree == error_mark_node || channel == error_mark_node)
12257 return error_mark_node;
12258
12259 return Gogo::receive_from_channel(element_type_tree, channel,
12260 this->for_select_, this->location());
12261 }
12262
12263 // Make a receive expression.
12264
12265 Receive_expression*
12266 Expression::make_receive(Expression* channel, source_location location)
12267 {
12268 return new Receive_expression(channel, location);
12269 }
12270
12271 // Class Send_expression.
12272
12273 // Traversal.
12274
12275 int
12276 Send_expression::do_traverse(Traverse* traverse)
12277 {
12278 if (Expression::traverse(&this->channel_, traverse) == TRAVERSE_EXIT)
12279 return TRAVERSE_EXIT;
12280 return Expression::traverse(&this->val_, traverse);
12281 }
12282
12283 // Get the type.
12284
12285 Type*
12286 Send_expression::do_type()
12287 {
12288 return Type::lookup_bool_type();
12289 }
12290
12291 // Set types.
12292
12293 void
12294 Send_expression::do_determine_type(const Type_context*)
12295 {
12296 this->channel_->determine_type_no_context();
12297
12298 Type* type = this->channel_->type();
12299 Type_context subcontext;
12300 if (type->channel_type() != NULL)
12301 subcontext.type = type->channel_type()->element_type();
12302 this->val_->determine_type(&subcontext);
12303 }
12304
12305 // Check types.
12306
12307 void
12308 Send_expression::do_check_types(Gogo*)
12309 {
12310 Type* type = this->channel_->type();
12311 if (type->is_error_type())
12312 {
12313 this->set_is_error();
12314 return;
12315 }
12316 Channel_type* channel_type = type->channel_type();
12317 if (channel_type == NULL)
12318 {
12319 error_at(this->location(), "left operand of %<<-%> must be channel");
12320 this->set_is_error();
12321 return;
12322 }
12323 Type* element_type = channel_type->element_type();
12324 if (element_type != NULL
12325 && !Type::are_assignable(element_type, this->val_->type(), NULL))
12326 {
12327 this->report_error(_("incompatible types in send"));
12328 return;
12329 }
12330 if (!channel_type->may_send())
12331 {
12332 this->report_error(_("invalid send on receive-only channel"));
12333 return;
12334 }
12335 }
12336
12337 // Get a tree for a send expression.
12338
12339 tree
12340 Send_expression::do_get_tree(Translate_context* context)
12341 {
12342 tree channel = this->channel_->get_tree(context);
12343 tree val = this->val_->get_tree(context);
12344 if (channel == error_mark_node || val == error_mark_node)
12345 return error_mark_node;
12346 Channel_type* channel_type = this->channel_->type()->channel_type();
12347 val = Expression::convert_for_assignment(context,
12348 channel_type->element_type(),
12349 this->val_->type(),
12350 val,
12351 this->location());
12352 return Gogo::send_on_channel(channel, val, this->is_value_discarded_,
12353 this->for_select_, this->location());
12354 }
12355
12356 // Make a send expression
12357
12358 Send_expression*
12359 Expression::make_send(Expression* channel, Expression* val,
12360 source_location location)
12361 {
12362 return new Send_expression(channel, val, location);
12363 }
12364
12365 // An expression which evaluates to a pointer to the type descriptor
12366 // of a type.
12367
12368 class Type_descriptor_expression : public Expression
12369 {
12370 public:
12371 Type_descriptor_expression(Type* type, source_location location)
12372 : Expression(EXPRESSION_TYPE_DESCRIPTOR, location),
12373 type_(type)
12374 { }
12375
12376 protected:
12377 Type*
12378 do_type()
12379 { return Type::make_type_descriptor_ptr_type(); }
12380
12381 void
12382 do_determine_type(const Type_context*)
12383 { }
12384
12385 Expression*
12386 do_copy()
12387 { return this; }
12388
12389 tree
12390 do_get_tree(Translate_context* context)
12391 { return this->type_->type_descriptor_pointer(context->gogo()); }
12392
12393 private:
12394 // The type for which this is the descriptor.
12395 Type* type_;
12396 };
12397
12398 // Make a type descriptor expression.
12399
12400 Expression*
12401 Expression::make_type_descriptor(Type* type, source_location location)
12402 {
12403 return new Type_descriptor_expression(type, location);
12404 }
12405
12406 // An expression which evaluates to some characteristic of a type.
12407 // This is only used to initialize fields of a type descriptor. Using
12408 // a new expression class is slightly inefficient but gives us a good
12409 // separation between the frontend and the middle-end with regard to
12410 // how types are laid out.
12411
12412 class Type_info_expression : public Expression
12413 {
12414 public:
12415 Type_info_expression(Type* type, Type_info type_info)
12416 : Expression(EXPRESSION_TYPE_INFO, BUILTINS_LOCATION),
12417 type_(type), type_info_(type_info)
12418 { }
12419
12420 protected:
12421 Type*
12422 do_type();
12423
12424 void
12425 do_determine_type(const Type_context*)
12426 { }
12427
12428 Expression*
12429 do_copy()
12430 { return this; }
12431
12432 tree
12433 do_get_tree(Translate_context* context);
12434
12435 private:
12436 // The type for which we are getting information.
12437 Type* type_;
12438 // What information we want.
12439 Type_info type_info_;
12440 };
12441
12442 // The type is chosen to match what the type descriptor struct
12443 // expects.
12444
12445 Type*
12446 Type_info_expression::do_type()
12447 {
12448 switch (this->type_info_)
12449 {
12450 case TYPE_INFO_SIZE:
12451 return Type::lookup_integer_type("uintptr");
12452 case TYPE_INFO_ALIGNMENT:
12453 case TYPE_INFO_FIELD_ALIGNMENT:
12454 return Type::lookup_integer_type("uint8");
12455 default:
12456 gcc_unreachable();
12457 }
12458 }
12459
12460 // Return type information in GENERIC.
12461
12462 tree
12463 Type_info_expression::do_get_tree(Translate_context* context)
12464 {
12465 tree type_tree = this->type_->get_tree(context->gogo());
12466 if (type_tree == error_mark_node)
12467 return error_mark_node;
12468
12469 tree val_type_tree = this->type()->get_tree(context->gogo());
12470 gcc_assert(val_type_tree != error_mark_node);
12471
12472 if (this->type_info_ == TYPE_INFO_SIZE)
12473 return fold_convert_loc(BUILTINS_LOCATION, val_type_tree,
12474 TYPE_SIZE_UNIT(type_tree));
12475 else
12476 {
12477 unsigned int val;
12478 if (this->type_info_ == TYPE_INFO_ALIGNMENT)
12479 val = go_type_alignment(type_tree);
12480 else
12481 val = go_field_alignment(type_tree);
12482 return build_int_cstu(val_type_tree, val);
12483 }
12484 }
12485
12486 // Make a type info expression.
12487
12488 Expression*
12489 Expression::make_type_info(Type* type, Type_info type_info)
12490 {
12491 return new Type_info_expression(type, type_info);
12492 }
12493
12494 // An expression which evaluates to the offset of a field within a
12495 // struct. This, like Type_info_expression, q.v., is only used to
12496 // initialize fields of a type descriptor.
12497
12498 class Struct_field_offset_expression : public Expression
12499 {
12500 public:
12501 Struct_field_offset_expression(Struct_type* type, const Struct_field* field)
12502 : Expression(EXPRESSION_STRUCT_FIELD_OFFSET, BUILTINS_LOCATION),
12503 type_(type), field_(field)
12504 { }
12505
12506 protected:
12507 Type*
12508 do_type()
12509 { return Type::lookup_integer_type("uintptr"); }
12510
12511 void
12512 do_determine_type(const Type_context*)
12513 { }
12514
12515 Expression*
12516 do_copy()
12517 { return this; }
12518
12519 tree
12520 do_get_tree(Translate_context* context);
12521
12522 private:
12523 // The type of the struct.
12524 Struct_type* type_;
12525 // The field.
12526 const Struct_field* field_;
12527 };
12528
12529 // Return a struct field offset in GENERIC.
12530
12531 tree
12532 Struct_field_offset_expression::do_get_tree(Translate_context* context)
12533 {
12534 tree type_tree = this->type_->get_tree(context->gogo());
12535 if (type_tree == error_mark_node)
12536 return error_mark_node;
12537
12538 tree val_type_tree = this->type()->get_tree(context->gogo());
12539 gcc_assert(val_type_tree != error_mark_node);
12540
12541 const Struct_field_list* fields = this->type_->fields();
12542 tree struct_field_tree = TYPE_FIELDS(type_tree);
12543 Struct_field_list::const_iterator p;
12544 for (p = fields->begin();
12545 p != fields->end();
12546 ++p, struct_field_tree = DECL_CHAIN(struct_field_tree))
12547 {
12548 gcc_assert(struct_field_tree != NULL_TREE);
12549 if (&*p == this->field_)
12550 break;
12551 }
12552 gcc_assert(&*p == this->field_);
12553
12554 return fold_convert_loc(BUILTINS_LOCATION, val_type_tree,
12555 byte_position(struct_field_tree));
12556 }
12557
12558 // Make an expression for a struct field offset.
12559
12560 Expression*
12561 Expression::make_struct_field_offset(Struct_type* type,
12562 const Struct_field* field)
12563 {
12564 return new Struct_field_offset_expression(type, field);
12565 }
12566
12567 // An expression which evaluates to the address of an unnamed label.
12568
12569 class Label_addr_expression : public Expression
12570 {
12571 public:
12572 Label_addr_expression(Label* label, source_location location)
12573 : Expression(EXPRESSION_LABEL_ADDR, location),
12574 label_(label)
12575 { }
12576
12577 protected:
12578 Type*
12579 do_type()
12580 { return Type::make_pointer_type(Type::make_void_type()); }
12581
12582 void
12583 do_determine_type(const Type_context*)
12584 { }
12585
12586 Expression*
12587 do_copy()
12588 { return new Label_addr_expression(this->label_, this->location()); }
12589
12590 tree
12591 do_get_tree(Translate_context*)
12592 { return this->label_->get_addr(this->location()); }
12593
12594 private:
12595 // The label whose address we are taking.
12596 Label* label_;
12597 };
12598
12599 // Make an expression for the address of an unnamed label.
12600
12601 Expression*
12602 Expression::make_label_addr(Label* label, source_location location)
12603 {
12604 return new Label_addr_expression(label, location);
12605 }
12606
12607 // Import an expression. This comes at the end in order to see the
12608 // various class definitions.
12609
12610 Expression*
12611 Expression::import_expression(Import* imp)
12612 {
12613 int c = imp->peek_char();
12614 if (imp->match_c_string("- ")
12615 || imp->match_c_string("! ")
12616 || imp->match_c_string("^ "))
12617 return Unary_expression::do_import(imp);
12618 else if (c == '(')
12619 return Binary_expression::do_import(imp);
12620 else if (imp->match_c_string("true")
12621 || imp->match_c_string("false"))
12622 return Boolean_expression::do_import(imp);
12623 else if (c == '"')
12624 return String_expression::do_import(imp);
12625 else if (c == '-' || (c >= '0' && c <= '9'))
12626 {
12627 // This handles integers, floats and complex constants.
12628 return Integer_expression::do_import(imp);
12629 }
12630 else if (imp->match_c_string("nil"))
12631 return Nil_expression::do_import(imp);
12632 else if (imp->match_c_string("convert"))
12633 return Type_conversion_expression::do_import(imp);
12634 else
12635 {
12636 error_at(imp->location(), "import error: expected expression");
12637 return Expression::make_error(imp->location());
12638 }
12639 }
12640
12641 // Class Expression_list.
12642
12643 // Traverse the list.
12644
12645 int
12646 Expression_list::traverse(Traverse* traverse)
12647 {
12648 for (Expression_list::iterator p = this->begin();
12649 p != this->end();
12650 ++p)
12651 {
12652 if (*p != NULL)
12653 {
12654 if (Expression::traverse(&*p, traverse) == TRAVERSE_EXIT)
12655 return TRAVERSE_EXIT;
12656 }
12657 }
12658 return TRAVERSE_CONTINUE;
12659 }
12660
12661 // Copy the list.
12662
12663 Expression_list*
12664 Expression_list::copy()
12665 {
12666 Expression_list* ret = new Expression_list();
12667 for (Expression_list::iterator p = this->begin();
12668 p != this->end();
12669 ++p)
12670 {
12671 if (*p == NULL)
12672 ret->push_back(NULL);
12673 else
12674 ret->push_back((*p)->copy());
12675 }
12676 return ret;
12677 }
12678
12679 // Return whether an expression list has an error expression.
12680
12681 bool
12682 Expression_list::contains_error() const
12683 {
12684 for (Expression_list::const_iterator p = this->begin();
12685 p != this->end();
12686 ++p)
12687 if (*p != NULL && (*p)->is_error_expression())
12688 return true;
12689 return false;
12690 }