Don't crash receiving multiple results from void function.
[gcc.git] / gcc / go / gofrontend / expressions.cc
1 // expressions.cc -- Go frontend expression handling.
2
3 // Copyright 2009 The Go Authors. All rights reserved.
4 // Use of this source code is governed by a BSD-style
5 // license that can be found in the LICENSE file.
6
7 #include "go-system.h"
8
9 #include <gmp.h>
10
11 #ifndef ENABLE_BUILD_WITH_CXX
12 extern "C"
13 {
14 #endif
15
16 #include "toplev.h"
17 #include "intl.h"
18 #include "tree.h"
19 #include "gimple.h"
20 #include "tree-iterator.h"
21 #include "convert.h"
22 #include "real.h"
23 #include "realmpfr.h"
24
25 #ifndef ENABLE_BUILD_WITH_CXX
26 }
27 #endif
28
29 #include "go-c.h"
30 #include "gogo.h"
31 #include "types.h"
32 #include "export.h"
33 #include "import.h"
34 #include "statements.h"
35 #include "lex.h"
36 #include "expressions.h"
37
38 // Class Expression.
39
40 Expression::Expression(Expression_classification classification,
41 source_location location)
42 : classification_(classification), location_(location)
43 {
44 }
45
46 Expression::~Expression()
47 {
48 }
49
50 // If this expression has a constant integer value, return it.
51
52 bool
53 Expression::integer_constant_value(bool iota_is_constant, mpz_t val,
54 Type** ptype) const
55 {
56 *ptype = NULL;
57 return this->do_integer_constant_value(iota_is_constant, val, ptype);
58 }
59
60 // If this expression has a constant floating point value, return it.
61
62 bool
63 Expression::float_constant_value(mpfr_t val, Type** ptype) const
64 {
65 *ptype = NULL;
66 if (this->do_float_constant_value(val, ptype))
67 return true;
68 mpz_t ival;
69 mpz_init(ival);
70 Type* t;
71 bool ret;
72 if (!this->do_integer_constant_value(false, ival, &t))
73 ret = false;
74 else
75 {
76 mpfr_set_z(val, ival, GMP_RNDN);
77 ret = true;
78 }
79 mpz_clear(ival);
80 return ret;
81 }
82
83 // If this expression has a constant complex value, return it.
84
85 bool
86 Expression::complex_constant_value(mpfr_t real, mpfr_t imag,
87 Type** ptype) const
88 {
89 *ptype = NULL;
90 if (this->do_complex_constant_value(real, imag, ptype))
91 return true;
92 Type *t;
93 if (this->float_constant_value(real, &t))
94 {
95 mpfr_set_ui(imag, 0, GMP_RNDN);
96 return true;
97 }
98 return false;
99 }
100
101 // Traverse the expressions.
102
103 int
104 Expression::traverse(Expression** pexpr, Traverse* traverse)
105 {
106 Expression* expr = *pexpr;
107 if ((traverse->traverse_mask() & Traverse::traverse_expressions) != 0)
108 {
109 int t = traverse->expression(pexpr);
110 if (t == TRAVERSE_EXIT)
111 return TRAVERSE_EXIT;
112 else if (t == TRAVERSE_SKIP_COMPONENTS)
113 return TRAVERSE_CONTINUE;
114 }
115 return expr->do_traverse(traverse);
116 }
117
118 // Traverse subexpressions of this expression.
119
120 int
121 Expression::traverse_subexpressions(Traverse* traverse)
122 {
123 return this->do_traverse(traverse);
124 }
125
126 // Default implementation for do_traverse for child classes.
127
128 int
129 Expression::do_traverse(Traverse*)
130 {
131 return TRAVERSE_CONTINUE;
132 }
133
134 // This virtual function is called by the parser if the value of this
135 // expression is being discarded. By default, we warn. Expressions
136 // with side effects override.
137
138 void
139 Expression::do_discarding_value()
140 {
141 this->warn_about_unused_value();
142 }
143
144 // This virtual function is called to export expressions. This will
145 // only be used by expressions which may be constant.
146
147 void
148 Expression::do_export(Export*) const
149 {
150 gcc_unreachable();
151 }
152
153 // Warn that the value of the expression is not used.
154
155 void
156 Expression::warn_about_unused_value()
157 {
158 warning_at(this->location(), OPT_Wunused_value, "value computed is not used");
159 }
160
161 // Note that this expression is an error. This is called by children
162 // when they discover an error.
163
164 void
165 Expression::set_is_error()
166 {
167 this->classification_ = EXPRESSION_ERROR;
168 }
169
170 // For children to call to report an error conveniently.
171
172 void
173 Expression::report_error(const char* msg)
174 {
175 error_at(this->location_, "%s", msg);
176 this->set_is_error();
177 }
178
179 // Set types of variables and constants. This is implemented by the
180 // child class.
181
182 void
183 Expression::determine_type(const Type_context* context)
184 {
185 this->do_determine_type(context);
186 }
187
188 // Set types when there is no context.
189
190 void
191 Expression::determine_type_no_context()
192 {
193 Type_context context;
194 this->do_determine_type(&context);
195 }
196
197 // Return a tree handling any conversions which must be done during
198 // assignment.
199
200 tree
201 Expression::convert_for_assignment(Translate_context* context, Type* lhs_type,
202 Type* rhs_type, tree rhs_tree,
203 source_location location)
204 {
205 if (lhs_type == rhs_type)
206 return rhs_tree;
207
208 if (lhs_type->is_error_type() || rhs_type->is_error_type())
209 return error_mark_node;
210
211 if (lhs_type->is_undefined() || rhs_type->is_undefined())
212 {
213 // Make sure we report the error.
214 lhs_type->base();
215 rhs_type->base();
216 return error_mark_node;
217 }
218
219 if (rhs_tree == error_mark_node || TREE_TYPE(rhs_tree) == error_mark_node)
220 return error_mark_node;
221
222 Gogo* gogo = context->gogo();
223
224 tree lhs_type_tree = lhs_type->get_tree(gogo);
225 if (lhs_type_tree == error_mark_node)
226 return error_mark_node;
227
228 if (lhs_type->interface_type() != NULL)
229 {
230 if (rhs_type->interface_type() == NULL)
231 return Expression::convert_type_to_interface(context, lhs_type,
232 rhs_type, rhs_tree,
233 location);
234 else
235 return Expression::convert_interface_to_interface(context, lhs_type,
236 rhs_type, rhs_tree,
237 false, location);
238 }
239 else if (rhs_type->interface_type() != NULL)
240 return Expression::convert_interface_to_type(context, lhs_type, rhs_type,
241 rhs_tree, location);
242 else if (lhs_type->is_open_array_type()
243 && rhs_type->is_nil_type())
244 {
245 // Assigning nil to an open array.
246 gcc_assert(TREE_CODE(lhs_type_tree) == RECORD_TYPE);
247
248 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
249
250 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
251 tree field = TYPE_FIELDS(lhs_type_tree);
252 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
253 "__values") == 0);
254 elt->index = field;
255 elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
256
257 elt = VEC_quick_push(constructor_elt, init, NULL);
258 field = DECL_CHAIN(field);
259 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
260 "__count") == 0);
261 elt->index = field;
262 elt->value = fold_convert(TREE_TYPE(field), integer_zero_node);
263
264 elt = VEC_quick_push(constructor_elt, init, NULL);
265 field = DECL_CHAIN(field);
266 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
267 "__capacity") == 0);
268 elt->index = field;
269 elt->value = fold_convert(TREE_TYPE(field), integer_zero_node);
270
271 tree val = build_constructor(lhs_type_tree, init);
272 TREE_CONSTANT(val) = 1;
273
274 return val;
275 }
276 else if (rhs_type->is_nil_type())
277 {
278 // The left hand side should be a pointer type at the tree
279 // level.
280 gcc_assert(POINTER_TYPE_P(lhs_type_tree));
281 return fold_convert(lhs_type_tree, null_pointer_node);
282 }
283 else if (lhs_type_tree == TREE_TYPE(rhs_tree))
284 {
285 // No conversion is needed.
286 return rhs_tree;
287 }
288 else if (POINTER_TYPE_P(lhs_type_tree)
289 || INTEGRAL_TYPE_P(lhs_type_tree)
290 || SCALAR_FLOAT_TYPE_P(lhs_type_tree)
291 || COMPLEX_FLOAT_TYPE_P(lhs_type_tree))
292 return fold_convert_loc(location, lhs_type_tree, rhs_tree);
293 else if (TREE_CODE(lhs_type_tree) == RECORD_TYPE
294 && TREE_CODE(TREE_TYPE(rhs_tree)) == RECORD_TYPE)
295 {
296 // This conversion must be permitted by Go, or we wouldn't have
297 // gotten here.
298 gcc_assert(int_size_in_bytes(lhs_type_tree)
299 == int_size_in_bytes(TREE_TYPE(rhs_tree)));
300 return fold_build1_loc(location, VIEW_CONVERT_EXPR, lhs_type_tree,
301 rhs_tree);
302 }
303 else
304 {
305 gcc_assert(useless_type_conversion_p(lhs_type_tree, TREE_TYPE(rhs_tree)));
306 return rhs_tree;
307 }
308 }
309
310 // Return a tree for a conversion from a non-interface type to an
311 // interface type.
312
313 tree
314 Expression::convert_type_to_interface(Translate_context* context,
315 Type* lhs_type, Type* rhs_type,
316 tree rhs_tree, source_location location)
317 {
318 Gogo* gogo = context->gogo();
319 Interface_type* lhs_interface_type = lhs_type->interface_type();
320 bool lhs_is_empty = lhs_interface_type->is_empty();
321
322 // Since RHS_TYPE is a static type, we can create the interface
323 // method table at compile time.
324
325 // When setting an interface to nil, we just set both fields to
326 // NULL.
327 if (rhs_type->is_nil_type())
328 return lhs_type->get_init_tree(gogo, false);
329
330 // This should have been checked already.
331 gcc_assert(lhs_interface_type->implements_interface(rhs_type, NULL));
332
333 tree lhs_type_tree = lhs_type->get_tree(gogo);
334 if (lhs_type_tree == error_mark_node)
335 return error_mark_node;
336
337 // An interface is a tuple. If LHS_TYPE is an empty interface type,
338 // then the first field is the type descriptor for RHS_TYPE.
339 // Otherwise it is the interface method table for RHS_TYPE.
340 tree first_field_value;
341 if (lhs_is_empty)
342 first_field_value = rhs_type->type_descriptor_pointer(gogo);
343 else
344 {
345 // Build the interface method table for this interface and this
346 // object type: a list of function pointers for each interface
347 // method.
348 Named_type* rhs_named_type = rhs_type->named_type();
349 bool is_pointer = false;
350 if (rhs_named_type == NULL)
351 {
352 rhs_named_type = rhs_type->deref()->named_type();
353 is_pointer = true;
354 }
355 tree method_table;
356 if (rhs_named_type == NULL)
357 method_table = null_pointer_node;
358 else
359 method_table =
360 rhs_named_type->interface_method_table(gogo, lhs_interface_type,
361 is_pointer);
362 first_field_value = fold_convert_loc(location, const_ptr_type_node,
363 method_table);
364 }
365
366 // Start building a constructor for the value we will return.
367
368 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
369
370 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
371 tree field = TYPE_FIELDS(lhs_type_tree);
372 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
373 (lhs_is_empty ? "__type_descriptor" : "__methods")) == 0);
374 elt->index = field;
375 elt->value = fold_convert_loc(location, TREE_TYPE(field), first_field_value);
376
377 elt = VEC_quick_push(constructor_elt, init, NULL);
378 field = DECL_CHAIN(field);
379 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
380 elt->index = field;
381
382 if (rhs_type->points_to() != NULL)
383 {
384 // We are assigning a pointer to the interface; the interface
385 // holds the pointer itself.
386 elt->value = rhs_tree;
387 return build_constructor(lhs_type_tree, init);
388 }
389
390 // We are assigning a non-pointer value to the interface; the
391 // interface gets a copy of the value in the heap.
392
393 tree object_size = TYPE_SIZE_UNIT(TREE_TYPE(rhs_tree));
394
395 tree space = gogo->allocate_memory(rhs_type, object_size, location);
396 space = fold_convert_loc(location, build_pointer_type(TREE_TYPE(rhs_tree)),
397 space);
398 space = save_expr(space);
399
400 tree ref = build_fold_indirect_ref_loc(location, space);
401 TREE_THIS_NOTRAP(ref) = 1;
402 tree set = fold_build2_loc(location, MODIFY_EXPR, void_type_node,
403 ref, rhs_tree);
404
405 elt->value = fold_convert_loc(location, TREE_TYPE(field), space);
406
407 return build2(COMPOUND_EXPR, lhs_type_tree, set,
408 build_constructor(lhs_type_tree, init));
409 }
410
411 // Return a tree for the type descriptor of RHS_TREE, which has
412 // interface type RHS_TYPE. If RHS_TREE is nil the result will be
413 // NULL.
414
415 tree
416 Expression::get_interface_type_descriptor(Translate_context*,
417 Type* rhs_type, tree rhs_tree,
418 source_location location)
419 {
420 tree rhs_type_tree = TREE_TYPE(rhs_tree);
421 gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
422 tree rhs_field = TYPE_FIELDS(rhs_type_tree);
423 tree v = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
424 NULL_TREE);
425 if (rhs_type->interface_type()->is_empty())
426 {
427 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)),
428 "__type_descriptor") == 0);
429 return v;
430 }
431
432 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__methods")
433 == 0);
434 gcc_assert(POINTER_TYPE_P(TREE_TYPE(v)));
435 v = save_expr(v);
436 tree v1 = build_fold_indirect_ref_loc(location, v);
437 gcc_assert(TREE_CODE(TREE_TYPE(v1)) == RECORD_TYPE);
438 tree f = TYPE_FIELDS(TREE_TYPE(v1));
439 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(f)), "__type_descriptor")
440 == 0);
441 v1 = build3(COMPONENT_REF, TREE_TYPE(f), v1, f, NULL_TREE);
442
443 tree eq = fold_build2_loc(location, EQ_EXPR, boolean_type_node, v,
444 fold_convert_loc(location, TREE_TYPE(v),
445 null_pointer_node));
446 tree n = fold_convert_loc(location, TREE_TYPE(v1), null_pointer_node);
447 return fold_build3_loc(location, COND_EXPR, TREE_TYPE(v1),
448 eq, n, v1);
449 }
450
451 // Return a tree for the conversion of an interface type to an
452 // interface type.
453
454 tree
455 Expression::convert_interface_to_interface(Translate_context* context,
456 Type *lhs_type, Type *rhs_type,
457 tree rhs_tree, bool for_type_guard,
458 source_location location)
459 {
460 Gogo* gogo = context->gogo();
461 Interface_type* lhs_interface_type = lhs_type->interface_type();
462 bool lhs_is_empty = lhs_interface_type->is_empty();
463
464 tree lhs_type_tree = lhs_type->get_tree(gogo);
465 if (lhs_type_tree == error_mark_node)
466 return error_mark_node;
467
468 // In the general case this requires runtime examination of the type
469 // method table to match it up with the interface methods.
470
471 // FIXME: If all of the methods in the right hand side interface
472 // also appear in the left hand side interface, then we don't need
473 // to do a runtime check, although we still need to build a new
474 // method table.
475
476 // Get the type descriptor for the right hand side. This will be
477 // NULL for a nil interface.
478
479 if (!DECL_P(rhs_tree))
480 rhs_tree = save_expr(rhs_tree);
481
482 tree rhs_type_descriptor =
483 Expression::get_interface_type_descriptor(context, rhs_type, rhs_tree,
484 location);
485
486 // The result is going to be a two element constructor.
487
488 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
489
490 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
491 tree field = TYPE_FIELDS(lhs_type_tree);
492 elt->index = field;
493
494 if (for_type_guard)
495 {
496 // A type assertion fails when converting a nil interface.
497 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
498 static tree assert_interface_decl;
499 tree call = Gogo::call_builtin(&assert_interface_decl,
500 location,
501 "__go_assert_interface",
502 2,
503 ptr_type_node,
504 TREE_TYPE(lhs_type_descriptor),
505 lhs_type_descriptor,
506 TREE_TYPE(rhs_type_descriptor),
507 rhs_type_descriptor);
508 if (call == error_mark_node)
509 return error_mark_node;
510 // This will panic if the interface conversion fails.
511 TREE_NOTHROW(assert_interface_decl) = 0;
512 elt->value = fold_convert_loc(location, TREE_TYPE(field), call);
513 }
514 else if (lhs_is_empty)
515 {
516 // A convertion to an empty interface always succeeds, and the
517 // first field is just the type descriptor of the object.
518 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
519 "__type_descriptor") == 0);
520 gcc_assert(TREE_TYPE(field) == TREE_TYPE(rhs_type_descriptor));
521 elt->value = rhs_type_descriptor;
522 }
523 else
524 {
525 // A conversion to a non-empty interface may fail, but unlike a
526 // type assertion converting nil will always succeed.
527 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods")
528 == 0);
529 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
530 static tree convert_interface_decl;
531 tree call = Gogo::call_builtin(&convert_interface_decl,
532 location,
533 "__go_convert_interface",
534 2,
535 ptr_type_node,
536 TREE_TYPE(lhs_type_descriptor),
537 lhs_type_descriptor,
538 TREE_TYPE(rhs_type_descriptor),
539 rhs_type_descriptor);
540 if (call == error_mark_node)
541 return error_mark_node;
542 // This will panic if the interface conversion fails.
543 TREE_NOTHROW(convert_interface_decl) = 0;
544 elt->value = fold_convert_loc(location, TREE_TYPE(field), call);
545 }
546
547 // The second field is simply the object pointer.
548
549 elt = VEC_quick_push(constructor_elt, init, NULL);
550 field = DECL_CHAIN(field);
551 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
552 elt->index = field;
553
554 tree rhs_type_tree = TREE_TYPE(rhs_tree);
555 gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
556 tree rhs_field = DECL_CHAIN(TYPE_FIELDS(rhs_type_tree));
557 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__object") == 0);
558 elt->value = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
559 NULL_TREE);
560
561 return build_constructor(lhs_type_tree, init);
562 }
563
564 // Return a tree for the conversion of an interface type to a
565 // non-interface type.
566
567 tree
568 Expression::convert_interface_to_type(Translate_context* context,
569 Type *lhs_type, Type* rhs_type,
570 tree rhs_tree, source_location location)
571 {
572 Gogo* gogo = context->gogo();
573 tree rhs_type_tree = TREE_TYPE(rhs_tree);
574
575 tree lhs_type_tree = lhs_type->get_tree(gogo);
576 if (lhs_type_tree == error_mark_node)
577 return error_mark_node;
578
579 // Call a function to check that the type is valid. The function
580 // will panic with an appropriate runtime type error if the type is
581 // not valid.
582
583 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
584
585 if (!DECL_P(rhs_tree))
586 rhs_tree = save_expr(rhs_tree);
587
588 tree rhs_type_descriptor =
589 Expression::get_interface_type_descriptor(context, rhs_type, rhs_tree,
590 location);
591
592 tree rhs_inter_descriptor = rhs_type->type_descriptor_pointer(gogo);
593
594 static tree check_interface_type_decl;
595 tree call = Gogo::call_builtin(&check_interface_type_decl,
596 location,
597 "__go_check_interface_type",
598 3,
599 void_type_node,
600 TREE_TYPE(lhs_type_descriptor),
601 lhs_type_descriptor,
602 TREE_TYPE(rhs_type_descriptor),
603 rhs_type_descriptor,
604 TREE_TYPE(rhs_inter_descriptor),
605 rhs_inter_descriptor);
606 if (call == error_mark_node)
607 return error_mark_node;
608 // This call will panic if the conversion is invalid.
609 TREE_NOTHROW(check_interface_type_decl) = 0;
610
611 // If the call succeeds, pull out the value.
612 gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
613 tree rhs_field = DECL_CHAIN(TYPE_FIELDS(rhs_type_tree));
614 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__object") == 0);
615 tree val = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
616 NULL_TREE);
617
618 // If the value is a pointer, then it is the value we want.
619 // Otherwise it points to the value.
620 if (lhs_type->points_to() == NULL)
621 {
622 val = fold_convert_loc(location, build_pointer_type(lhs_type_tree), val);
623 val = build_fold_indirect_ref_loc(location, val);
624 }
625
626 return build2(COMPOUND_EXPR, lhs_type_tree, call,
627 fold_convert_loc(location, lhs_type_tree, val));
628 }
629
630 // Convert an expression to a tree. This is implemented by the child
631 // class. Not that it is not in general safe to call this multiple
632 // times for a single expression, but that we don't catch such errors.
633
634 tree
635 Expression::get_tree(Translate_context* context)
636 {
637 // The child may have marked this expression as having an error.
638 if (this->classification_ == EXPRESSION_ERROR)
639 return error_mark_node;
640
641 return this->do_get_tree(context);
642 }
643
644 // Return a tree for VAL in TYPE.
645
646 tree
647 Expression::integer_constant_tree(mpz_t val, tree type)
648 {
649 if (type == error_mark_node)
650 return error_mark_node;
651 else if (TREE_CODE(type) == INTEGER_TYPE)
652 return double_int_to_tree(type,
653 mpz_get_double_int(type, val, true));
654 else if (TREE_CODE(type) == REAL_TYPE)
655 {
656 mpfr_t fval;
657 mpfr_init_set_z(fval, val, GMP_RNDN);
658 tree ret = Expression::float_constant_tree(fval, type);
659 mpfr_clear(fval);
660 return ret;
661 }
662 else if (TREE_CODE(type) == COMPLEX_TYPE)
663 {
664 mpfr_t fval;
665 mpfr_init_set_z(fval, val, GMP_RNDN);
666 tree real = Expression::float_constant_tree(fval, TREE_TYPE(type));
667 mpfr_clear(fval);
668 tree imag = build_real_from_int_cst(TREE_TYPE(type),
669 integer_zero_node);
670 return build_complex(type, real, imag);
671 }
672 else
673 gcc_unreachable();
674 }
675
676 // Return a tree for VAL in TYPE.
677
678 tree
679 Expression::float_constant_tree(mpfr_t val, tree type)
680 {
681 if (type == error_mark_node)
682 return error_mark_node;
683 else if (TREE_CODE(type) == INTEGER_TYPE)
684 {
685 mpz_t ival;
686 mpz_init(ival);
687 mpfr_get_z(ival, val, GMP_RNDN);
688 tree ret = Expression::integer_constant_tree(ival, type);
689 mpz_clear(ival);
690 return ret;
691 }
692 else if (TREE_CODE(type) == REAL_TYPE)
693 {
694 REAL_VALUE_TYPE r1;
695 real_from_mpfr(&r1, val, type, GMP_RNDN);
696 REAL_VALUE_TYPE r2;
697 real_convert(&r2, TYPE_MODE(type), &r1);
698 return build_real(type, r2);
699 }
700 else if (TREE_CODE(type) == COMPLEX_TYPE)
701 {
702 REAL_VALUE_TYPE r1;
703 real_from_mpfr(&r1, val, TREE_TYPE(type), GMP_RNDN);
704 REAL_VALUE_TYPE r2;
705 real_convert(&r2, TYPE_MODE(TREE_TYPE(type)), &r1);
706 tree imag = build_real_from_int_cst(TREE_TYPE(type),
707 integer_zero_node);
708 return build_complex(type, build_real(TREE_TYPE(type), r2), imag);
709 }
710 else
711 gcc_unreachable();
712 }
713
714 // Return a tree for REAL/IMAG in TYPE.
715
716 tree
717 Expression::complex_constant_tree(mpfr_t real, mpfr_t imag, tree type)
718 {
719 if (TREE_CODE(type) == COMPLEX_TYPE)
720 {
721 REAL_VALUE_TYPE r1;
722 real_from_mpfr(&r1, real, TREE_TYPE(type), GMP_RNDN);
723 REAL_VALUE_TYPE r2;
724 real_convert(&r2, TYPE_MODE(TREE_TYPE(type)), &r1);
725
726 REAL_VALUE_TYPE r3;
727 real_from_mpfr(&r3, imag, TREE_TYPE(type), GMP_RNDN);
728 REAL_VALUE_TYPE r4;
729 real_convert(&r4, TYPE_MODE(TREE_TYPE(type)), &r3);
730
731 return build_complex(type, build_real(TREE_TYPE(type), r2),
732 build_real(TREE_TYPE(type), r4));
733 }
734 else
735 gcc_unreachable();
736 }
737
738 // Return a tree which evaluates to true if VAL, of arbitrary integer
739 // type, is negative or is more than the maximum value of BOUND_TYPE.
740 // If SOFAR is not NULL, it is or'red into the result. The return
741 // value may be NULL if SOFAR is NULL.
742
743 tree
744 Expression::check_bounds(tree val, tree bound_type, tree sofar,
745 source_location loc)
746 {
747 tree val_type = TREE_TYPE(val);
748 tree ret = NULL_TREE;
749
750 if (!TYPE_UNSIGNED(val_type))
751 {
752 ret = fold_build2_loc(loc, LT_EXPR, boolean_type_node, val,
753 build_int_cst(val_type, 0));
754 if (ret == boolean_false_node)
755 ret = NULL_TREE;
756 }
757
758 if ((TYPE_UNSIGNED(val_type) && !TYPE_UNSIGNED(bound_type))
759 || TYPE_SIZE(val_type) > TYPE_SIZE(bound_type))
760 {
761 tree max = TYPE_MAX_VALUE(bound_type);
762 tree big = fold_build2_loc(loc, GT_EXPR, boolean_type_node, val,
763 fold_convert_loc(loc, val_type, max));
764 if (big == boolean_false_node)
765 ;
766 else if (ret == NULL_TREE)
767 ret = big;
768 else
769 ret = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
770 ret, big);
771 }
772
773 if (ret == NULL_TREE)
774 return sofar;
775 else if (sofar == NULL_TREE)
776 return ret;
777 else
778 return fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
779 sofar, ret);
780 }
781
782 // Error expressions. This are used to avoid cascading errors.
783
784 class Error_expression : public Expression
785 {
786 public:
787 Error_expression(source_location location)
788 : Expression(EXPRESSION_ERROR, location)
789 { }
790
791 protected:
792 bool
793 do_is_constant() const
794 { return true; }
795
796 bool
797 do_integer_constant_value(bool, mpz_t val, Type**) const
798 {
799 mpz_set_ui(val, 0);
800 return true;
801 }
802
803 bool
804 do_float_constant_value(mpfr_t val, Type**) const
805 {
806 mpfr_set_ui(val, 0, GMP_RNDN);
807 return true;
808 }
809
810 bool
811 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const
812 {
813 mpfr_set_ui(real, 0, GMP_RNDN);
814 mpfr_set_ui(imag, 0, GMP_RNDN);
815 return true;
816 }
817
818 void
819 do_discarding_value()
820 { }
821
822 Type*
823 do_type()
824 { return Type::make_error_type(); }
825
826 void
827 do_determine_type(const Type_context*)
828 { }
829
830 Expression*
831 do_copy()
832 { return this; }
833
834 bool
835 do_is_addressable() const
836 { return true; }
837
838 tree
839 do_get_tree(Translate_context*)
840 { return error_mark_node; }
841 };
842
843 Expression*
844 Expression::make_error(source_location location)
845 {
846 return new Error_expression(location);
847 }
848
849 // An expression which is really a type. This is used during parsing.
850 // It is an error if these survive after lowering.
851
852 class
853 Type_expression : public Expression
854 {
855 public:
856 Type_expression(Type* type, source_location location)
857 : Expression(EXPRESSION_TYPE, location),
858 type_(type)
859 { }
860
861 protected:
862 int
863 do_traverse(Traverse* traverse)
864 { return Type::traverse(this->type_, traverse); }
865
866 Type*
867 do_type()
868 { return this->type_; }
869
870 void
871 do_determine_type(const Type_context*)
872 { }
873
874 void
875 do_check_types(Gogo*)
876 { this->report_error(_("invalid use of type")); }
877
878 Expression*
879 do_copy()
880 { return this; }
881
882 tree
883 do_get_tree(Translate_context*)
884 { gcc_unreachable(); }
885
886 private:
887 // The type which we are representing as an expression.
888 Type* type_;
889 };
890
891 Expression*
892 Expression::make_type(Type* type, source_location location)
893 {
894 return new Type_expression(type, location);
895 }
896
897 // Class Var_expression.
898
899 // Lower a variable expression. Here we just make sure that the
900 // initialization expression of the variable has been lowered. This
901 // ensures that we will be able to determine the type of the variable
902 // if necessary.
903
904 Expression*
905 Var_expression::do_lower(Gogo* gogo, Named_object* function, int)
906 {
907 if (this->variable_->is_variable())
908 {
909 Variable* var = this->variable_->var_value();
910 // This is either a local variable or a global variable. A
911 // reference to a variable which is local to an enclosing
912 // function will be a reference to a field in a closure.
913 if (var->is_global())
914 function = NULL;
915 var->lower_init_expression(gogo, function);
916 }
917 return this;
918 }
919
920 // Return the name of the variable.
921
922 const std::string&
923 Var_expression::name() const
924 {
925 return this->variable_->name();
926 }
927
928 // Return the type of a reference to a variable.
929
930 Type*
931 Var_expression::do_type()
932 {
933 if (this->variable_->is_variable())
934 return this->variable_->var_value()->type();
935 else if (this->variable_->is_result_variable())
936 return this->variable_->result_var_value()->type();
937 else
938 gcc_unreachable();
939 }
940
941 // Something takes the address of this variable. This means that we
942 // may want to move the variable onto the heap.
943
944 void
945 Var_expression::do_address_taken(bool escapes)
946 {
947 if (!escapes)
948 ;
949 else if (this->variable_->is_variable())
950 this->variable_->var_value()->set_address_taken();
951 else if (this->variable_->is_result_variable())
952 this->variable_->result_var_value()->set_address_taken();
953 else
954 gcc_unreachable();
955 }
956
957 // Get the tree for a reference to a variable.
958
959 tree
960 Var_expression::do_get_tree(Translate_context* context)
961 {
962 return this->variable_->get_tree(context->gogo(), context->function());
963 }
964
965 // Make a reference to a variable in an expression.
966
967 Expression*
968 Expression::make_var_reference(Named_object* var, source_location location)
969 {
970 if (var->is_sink())
971 return Expression::make_sink(location);
972
973 // FIXME: Creating a new object for each reference to a variable is
974 // wasteful.
975 return new Var_expression(var, location);
976 }
977
978 // Class Temporary_reference_expression.
979
980 // The type.
981
982 Type*
983 Temporary_reference_expression::do_type()
984 {
985 return this->statement_->type();
986 }
987
988 // Called if something takes the address of this temporary variable.
989 // We never have to move temporary variables to the heap, but we do
990 // need to know that they must live in the stack rather than in a
991 // register.
992
993 void
994 Temporary_reference_expression::do_address_taken(bool)
995 {
996 this->statement_->set_is_address_taken();
997 }
998
999 // Get a tree referring to the variable.
1000
1001 tree
1002 Temporary_reference_expression::do_get_tree(Translate_context*)
1003 {
1004 return this->statement_->get_decl();
1005 }
1006
1007 // Make a reference to a temporary variable.
1008
1009 Expression*
1010 Expression::make_temporary_reference(Temporary_statement* statement,
1011 source_location location)
1012 {
1013 return new Temporary_reference_expression(statement, location);
1014 }
1015
1016 // A sink expression--a use of the blank identifier _.
1017
1018 class Sink_expression : public Expression
1019 {
1020 public:
1021 Sink_expression(source_location location)
1022 : Expression(EXPRESSION_SINK, location),
1023 type_(NULL), var_(NULL_TREE)
1024 { }
1025
1026 protected:
1027 void
1028 do_discarding_value()
1029 { }
1030
1031 Type*
1032 do_type();
1033
1034 void
1035 do_determine_type(const Type_context*);
1036
1037 Expression*
1038 do_copy()
1039 { return new Sink_expression(this->location()); }
1040
1041 tree
1042 do_get_tree(Translate_context*);
1043
1044 private:
1045 // The type of this sink variable.
1046 Type* type_;
1047 // The temporary variable we generate.
1048 tree var_;
1049 };
1050
1051 // Return the type of a sink expression.
1052
1053 Type*
1054 Sink_expression::do_type()
1055 {
1056 if (this->type_ == NULL)
1057 return Type::make_sink_type();
1058 return this->type_;
1059 }
1060
1061 // Determine the type of a sink expression.
1062
1063 void
1064 Sink_expression::do_determine_type(const Type_context* context)
1065 {
1066 if (context->type != NULL)
1067 this->type_ = context->type;
1068 }
1069
1070 // Return a temporary variable for a sink expression. This will
1071 // presumably be a write-only variable which the middle-end will drop.
1072
1073 tree
1074 Sink_expression::do_get_tree(Translate_context* context)
1075 {
1076 if (this->var_ == NULL_TREE)
1077 {
1078 gcc_assert(this->type_ != NULL && !this->type_->is_sink_type());
1079 this->var_ = create_tmp_var(this->type_->get_tree(context->gogo()),
1080 "blank");
1081 }
1082 return this->var_;
1083 }
1084
1085 // Make a sink expression.
1086
1087 Expression*
1088 Expression::make_sink(source_location location)
1089 {
1090 return new Sink_expression(location);
1091 }
1092
1093 // Class Func_expression.
1094
1095 // FIXME: Can a function expression appear in a constant expression?
1096 // The value is unchanging. Initializing a constant to the address of
1097 // a function seems like it could work, though there might be little
1098 // point to it.
1099
1100 // Return the name of the function.
1101
1102 const std::string&
1103 Func_expression::name() const
1104 {
1105 return this->function_->name();
1106 }
1107
1108 // Traversal.
1109
1110 int
1111 Func_expression::do_traverse(Traverse* traverse)
1112 {
1113 return (this->closure_ == NULL
1114 ? TRAVERSE_CONTINUE
1115 : Expression::traverse(&this->closure_, traverse));
1116 }
1117
1118 // Return the type of a function expression.
1119
1120 Type*
1121 Func_expression::do_type()
1122 {
1123 if (this->function_->is_function())
1124 return this->function_->func_value()->type();
1125 else if (this->function_->is_function_declaration())
1126 return this->function_->func_declaration_value()->type();
1127 else
1128 gcc_unreachable();
1129 }
1130
1131 // Get the tree for a function expression without evaluating the
1132 // closure.
1133
1134 tree
1135 Func_expression::get_tree_without_closure(Gogo* gogo)
1136 {
1137 Function_type* fntype;
1138 if (this->function_->is_function())
1139 fntype = this->function_->func_value()->type();
1140 else if (this->function_->is_function_declaration())
1141 fntype = this->function_->func_declaration_value()->type();
1142 else
1143 gcc_unreachable();
1144
1145 // Builtin functions are handled specially by Call_expression. We
1146 // can't take their address.
1147 if (fntype->is_builtin())
1148 {
1149 error_at(this->location(), "invalid use of special builtin function %qs",
1150 this->function_->name().c_str());
1151 return error_mark_node;
1152 }
1153
1154 Named_object* no = this->function_;
1155
1156 tree id = no->get_id(gogo);
1157 if (id == error_mark_node)
1158 return error_mark_node;
1159
1160 tree fndecl;
1161 if (no->is_function())
1162 fndecl = no->func_value()->get_or_make_decl(gogo, no, id);
1163 else if (no->is_function_declaration())
1164 fndecl = no->func_declaration_value()->get_or_make_decl(gogo, no, id);
1165 else
1166 gcc_unreachable();
1167
1168 if (fndecl == error_mark_node)
1169 return error_mark_node;
1170
1171 return build_fold_addr_expr_loc(this->location(), fndecl);
1172 }
1173
1174 // Get the tree for a function expression. This is used when we take
1175 // the address of a function rather than simply calling it. If the
1176 // function has a closure, we must use a trampoline.
1177
1178 tree
1179 Func_expression::do_get_tree(Translate_context* context)
1180 {
1181 Gogo* gogo = context->gogo();
1182
1183 tree fnaddr = this->get_tree_without_closure(gogo);
1184 if (fnaddr == error_mark_node)
1185 return error_mark_node;
1186
1187 gcc_assert(TREE_CODE(fnaddr) == ADDR_EXPR
1188 && TREE_CODE(TREE_OPERAND(fnaddr, 0)) == FUNCTION_DECL);
1189 TREE_ADDRESSABLE(TREE_OPERAND(fnaddr, 0)) = 1;
1190
1191 // For a normal non-nested function call, that is all we have to do.
1192 if (!this->function_->is_function()
1193 || this->function_->func_value()->enclosing() == NULL)
1194 {
1195 gcc_assert(this->closure_ == NULL);
1196 return fnaddr;
1197 }
1198
1199 // For a nested function call, we have to always allocate a
1200 // trampoline. If we don't always allocate, then closures will not
1201 // be reliably distinct.
1202 Expression* closure = this->closure_;
1203 tree closure_tree;
1204 if (closure == NULL)
1205 closure_tree = null_pointer_node;
1206 else
1207 {
1208 // Get the value of the closure. This will be a pointer to
1209 // space allocated on the heap.
1210 closure_tree = closure->get_tree(context);
1211 if (closure_tree == error_mark_node)
1212 return error_mark_node;
1213 gcc_assert(POINTER_TYPE_P(TREE_TYPE(closure_tree)));
1214 }
1215
1216 // Now we need to build some code on the heap. This code will load
1217 // the static chain pointer with the closure and then jump to the
1218 // body of the function. The normal gcc approach is to build the
1219 // code on the stack. Unfortunately we can not do that, as Go
1220 // permits us to return the function pointer.
1221
1222 return gogo->make_trampoline(fnaddr, closure_tree, this->location());
1223 }
1224
1225 // Make a reference to a function in an expression.
1226
1227 Expression*
1228 Expression::make_func_reference(Named_object* function, Expression* closure,
1229 source_location location)
1230 {
1231 return new Func_expression(function, closure, location);
1232 }
1233
1234 // Class Unknown_expression.
1235
1236 // Return the name of an unknown expression.
1237
1238 const std::string&
1239 Unknown_expression::name() const
1240 {
1241 return this->named_object_->name();
1242 }
1243
1244 // Lower a reference to an unknown name.
1245
1246 Expression*
1247 Unknown_expression::do_lower(Gogo*, Named_object*, int)
1248 {
1249 source_location location = this->location();
1250 Named_object* no = this->named_object_;
1251 Named_object* real = no->unknown_value()->real_named_object();
1252 if (real == NULL)
1253 {
1254 if (this->is_composite_literal_key_)
1255 return this;
1256 error_at(location, "reference to undefined name %qs",
1257 this->named_object_->message_name().c_str());
1258 return Expression::make_error(location);
1259 }
1260 switch (real->classification())
1261 {
1262 case Named_object::NAMED_OBJECT_CONST:
1263 return Expression::make_const_reference(real, location);
1264 case Named_object::NAMED_OBJECT_TYPE:
1265 return Expression::make_type(real->type_value(), location);
1266 case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
1267 if (this->is_composite_literal_key_)
1268 return this;
1269 error_at(location, "reference to undefined type %qs",
1270 real->message_name().c_str());
1271 return Expression::make_error(location);
1272 case Named_object::NAMED_OBJECT_VAR:
1273 return Expression::make_var_reference(real, location);
1274 case Named_object::NAMED_OBJECT_FUNC:
1275 case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
1276 return Expression::make_func_reference(real, NULL, location);
1277 case Named_object::NAMED_OBJECT_PACKAGE:
1278 if (this->is_composite_literal_key_)
1279 return this;
1280 error_at(location, "unexpected reference to package");
1281 return Expression::make_error(location);
1282 default:
1283 gcc_unreachable();
1284 }
1285 }
1286
1287 // Make a reference to an unknown name.
1288
1289 Expression*
1290 Expression::make_unknown_reference(Named_object* no, source_location location)
1291 {
1292 gcc_assert(no->resolve()->is_unknown());
1293 return new Unknown_expression(no, location);
1294 }
1295
1296 // A boolean expression.
1297
1298 class Boolean_expression : public Expression
1299 {
1300 public:
1301 Boolean_expression(bool val, source_location location)
1302 : Expression(EXPRESSION_BOOLEAN, location),
1303 val_(val), type_(NULL)
1304 { }
1305
1306 static Expression*
1307 do_import(Import*);
1308
1309 protected:
1310 bool
1311 do_is_constant() const
1312 { return true; }
1313
1314 Type*
1315 do_type();
1316
1317 void
1318 do_determine_type(const Type_context*);
1319
1320 Expression*
1321 do_copy()
1322 { return this; }
1323
1324 tree
1325 do_get_tree(Translate_context*)
1326 { return this->val_ ? boolean_true_node : boolean_false_node; }
1327
1328 void
1329 do_export(Export* exp) const
1330 { exp->write_c_string(this->val_ ? "true" : "false"); }
1331
1332 private:
1333 // The constant.
1334 bool val_;
1335 // The type as determined by context.
1336 Type* type_;
1337 };
1338
1339 // Get the type.
1340
1341 Type*
1342 Boolean_expression::do_type()
1343 {
1344 if (this->type_ == NULL)
1345 this->type_ = Type::make_boolean_type();
1346 return this->type_;
1347 }
1348
1349 // Set the type from the context.
1350
1351 void
1352 Boolean_expression::do_determine_type(const Type_context* context)
1353 {
1354 if (this->type_ != NULL && !this->type_->is_abstract())
1355 ;
1356 else if (context->type != NULL && context->type->is_boolean_type())
1357 this->type_ = context->type;
1358 else if (!context->may_be_abstract)
1359 this->type_ = Type::lookup_bool_type();
1360 }
1361
1362 // Import a boolean constant.
1363
1364 Expression*
1365 Boolean_expression::do_import(Import* imp)
1366 {
1367 if (imp->peek_char() == 't')
1368 {
1369 imp->require_c_string("true");
1370 return Expression::make_boolean(true, imp->location());
1371 }
1372 else
1373 {
1374 imp->require_c_string("false");
1375 return Expression::make_boolean(false, imp->location());
1376 }
1377 }
1378
1379 // Make a boolean expression.
1380
1381 Expression*
1382 Expression::make_boolean(bool val, source_location location)
1383 {
1384 return new Boolean_expression(val, location);
1385 }
1386
1387 // Class String_expression.
1388
1389 // Get the type.
1390
1391 Type*
1392 String_expression::do_type()
1393 {
1394 if (this->type_ == NULL)
1395 this->type_ = Type::make_string_type();
1396 return this->type_;
1397 }
1398
1399 // Set the type from the context.
1400
1401 void
1402 String_expression::do_determine_type(const Type_context* context)
1403 {
1404 if (this->type_ != NULL && !this->type_->is_abstract())
1405 ;
1406 else if (context->type != NULL && context->type->is_string_type())
1407 this->type_ = context->type;
1408 else if (!context->may_be_abstract)
1409 this->type_ = Type::lookup_string_type();
1410 }
1411
1412 // Build a string constant.
1413
1414 tree
1415 String_expression::do_get_tree(Translate_context* context)
1416 {
1417 return context->gogo()->go_string_constant_tree(this->val_);
1418 }
1419
1420 // Export a string expression.
1421
1422 void
1423 String_expression::do_export(Export* exp) const
1424 {
1425 std::string s;
1426 s.reserve(this->val_.length() * 4 + 2);
1427 s += '"';
1428 for (std::string::const_iterator p = this->val_.begin();
1429 p != this->val_.end();
1430 ++p)
1431 {
1432 if (*p == '\\' || *p == '"')
1433 {
1434 s += '\\';
1435 s += *p;
1436 }
1437 else if (*p >= 0x20 && *p < 0x7f)
1438 s += *p;
1439 else if (*p == '\n')
1440 s += "\\n";
1441 else if (*p == '\t')
1442 s += "\\t";
1443 else
1444 {
1445 s += "\\x";
1446 unsigned char c = *p;
1447 unsigned int dig = c >> 4;
1448 s += dig < 10 ? '0' + dig : 'A' + dig - 10;
1449 dig = c & 0xf;
1450 s += dig < 10 ? '0' + dig : 'A' + dig - 10;
1451 }
1452 }
1453 s += '"';
1454 exp->write_string(s);
1455 }
1456
1457 // Import a string expression.
1458
1459 Expression*
1460 String_expression::do_import(Import* imp)
1461 {
1462 imp->require_c_string("\"");
1463 std::string val;
1464 while (true)
1465 {
1466 int c = imp->get_char();
1467 if (c == '"' || c == -1)
1468 break;
1469 if (c != '\\')
1470 val += static_cast<char>(c);
1471 else
1472 {
1473 c = imp->get_char();
1474 if (c == '\\' || c == '"')
1475 val += static_cast<char>(c);
1476 else if (c == 'n')
1477 val += '\n';
1478 else if (c == 't')
1479 val += '\t';
1480 else if (c == 'x')
1481 {
1482 c = imp->get_char();
1483 unsigned int vh = c >= '0' && c <= '9' ? c - '0' : c - 'A' + 10;
1484 c = imp->get_char();
1485 unsigned int vl = c >= '0' && c <= '9' ? c - '0' : c - 'A' + 10;
1486 char v = (vh << 4) | vl;
1487 val += v;
1488 }
1489 else
1490 {
1491 error_at(imp->location(), "bad string constant");
1492 return Expression::make_error(imp->location());
1493 }
1494 }
1495 }
1496 return Expression::make_string(val, imp->location());
1497 }
1498
1499 // Make a string expression.
1500
1501 Expression*
1502 Expression::make_string(const std::string& val, source_location location)
1503 {
1504 return new String_expression(val, location);
1505 }
1506
1507 // Make an integer expression.
1508
1509 class Integer_expression : public Expression
1510 {
1511 public:
1512 Integer_expression(const mpz_t* val, Type* type, source_location location)
1513 : Expression(EXPRESSION_INTEGER, location),
1514 type_(type)
1515 { mpz_init_set(this->val_, *val); }
1516
1517 static Expression*
1518 do_import(Import*);
1519
1520 // Return whether VAL fits in the type.
1521 static bool
1522 check_constant(mpz_t val, Type*, source_location);
1523
1524 // Write VAL to export data.
1525 static void
1526 export_integer(Export* exp, const mpz_t val);
1527
1528 protected:
1529 bool
1530 do_is_constant() const
1531 { return true; }
1532
1533 bool
1534 do_integer_constant_value(bool, mpz_t val, Type** ptype) const;
1535
1536 Type*
1537 do_type();
1538
1539 void
1540 do_determine_type(const Type_context* context);
1541
1542 void
1543 do_check_types(Gogo*);
1544
1545 tree
1546 do_get_tree(Translate_context*);
1547
1548 Expression*
1549 do_copy()
1550 { return Expression::make_integer(&this->val_, this->type_,
1551 this->location()); }
1552
1553 void
1554 do_export(Export*) const;
1555
1556 private:
1557 // The integer value.
1558 mpz_t val_;
1559 // The type so far.
1560 Type* type_;
1561 };
1562
1563 // Return an integer constant value.
1564
1565 bool
1566 Integer_expression::do_integer_constant_value(bool, mpz_t val,
1567 Type** ptype) const
1568 {
1569 if (this->type_ != NULL)
1570 *ptype = this->type_;
1571 mpz_set(val, this->val_);
1572 return true;
1573 }
1574
1575 // Return the current type. If we haven't set the type yet, we return
1576 // an abstract integer type.
1577
1578 Type*
1579 Integer_expression::do_type()
1580 {
1581 if (this->type_ == NULL)
1582 this->type_ = Type::make_abstract_integer_type();
1583 return this->type_;
1584 }
1585
1586 // Set the type of the integer value. Here we may switch from an
1587 // abstract type to a real type.
1588
1589 void
1590 Integer_expression::do_determine_type(const Type_context* context)
1591 {
1592 if (this->type_ != NULL && !this->type_->is_abstract())
1593 ;
1594 else if (context->type != NULL
1595 && (context->type->integer_type() != NULL
1596 || context->type->float_type() != NULL
1597 || context->type->complex_type() != NULL))
1598 this->type_ = context->type;
1599 else if (!context->may_be_abstract)
1600 this->type_ = Type::lookup_integer_type("int");
1601 }
1602
1603 // Return true if the integer VAL fits in the range of the type TYPE.
1604 // Otherwise give an error and return false. TYPE may be NULL.
1605
1606 bool
1607 Integer_expression::check_constant(mpz_t val, Type* type,
1608 source_location location)
1609 {
1610 if (type == NULL)
1611 return true;
1612 Integer_type* itype = type->integer_type();
1613 if (itype == NULL || itype->is_abstract())
1614 return true;
1615
1616 int bits = mpz_sizeinbase(val, 2);
1617
1618 if (itype->is_unsigned())
1619 {
1620 // For an unsigned type we can only accept a nonnegative number,
1621 // and we must be able to represent at least BITS.
1622 if (mpz_sgn(val) >= 0
1623 && bits <= itype->bits())
1624 return true;
1625 }
1626 else
1627 {
1628 // For a signed type we need an extra bit to indicate the sign.
1629 // We have to handle the most negative integer specially.
1630 if (bits + 1 <= itype->bits()
1631 || (bits <= itype->bits()
1632 && mpz_sgn(val) < 0
1633 && (mpz_scan1(val, 0)
1634 == static_cast<unsigned long>(itype->bits() - 1))
1635 && mpz_scan0(val, itype->bits()) == ULONG_MAX))
1636 return true;
1637 }
1638
1639 error_at(location, "integer constant overflow");
1640 return false;
1641 }
1642
1643 // Check the type of an integer constant.
1644
1645 void
1646 Integer_expression::do_check_types(Gogo*)
1647 {
1648 if (this->type_ == NULL)
1649 return;
1650 if (!Integer_expression::check_constant(this->val_, this->type_,
1651 this->location()))
1652 this->set_is_error();
1653 }
1654
1655 // Get a tree for an integer constant.
1656
1657 tree
1658 Integer_expression::do_get_tree(Translate_context* context)
1659 {
1660 Gogo* gogo = context->gogo();
1661 tree type;
1662 if (this->type_ != NULL && !this->type_->is_abstract())
1663 type = this->type_->get_tree(gogo);
1664 else if (this->type_ != NULL && this->type_->float_type() != NULL)
1665 {
1666 // We are converting to an abstract floating point type.
1667 type = Type::lookup_float_type("float64")->get_tree(gogo);
1668 }
1669 else if (this->type_ != NULL && this->type_->complex_type() != NULL)
1670 {
1671 // We are converting to an abstract complex type.
1672 type = Type::lookup_complex_type("complex128")->get_tree(gogo);
1673 }
1674 else
1675 {
1676 // If we still have an abstract type here, then this is being
1677 // used in a constant expression which didn't get reduced for
1678 // some reason. Use a type which will fit the value. We use <,
1679 // not <=, because we need an extra bit for the sign bit.
1680 int bits = mpz_sizeinbase(this->val_, 2);
1681 if (bits < INT_TYPE_SIZE)
1682 type = Type::lookup_integer_type("int")->get_tree(gogo);
1683 else if (bits < 64)
1684 type = Type::lookup_integer_type("int64")->get_tree(gogo);
1685 else
1686 type = long_long_integer_type_node;
1687 }
1688 return Expression::integer_constant_tree(this->val_, type);
1689 }
1690
1691 // Write VAL to export data.
1692
1693 void
1694 Integer_expression::export_integer(Export* exp, const mpz_t val)
1695 {
1696 char* s = mpz_get_str(NULL, 10, val);
1697 exp->write_c_string(s);
1698 free(s);
1699 }
1700
1701 // Export an integer in a constant expression.
1702
1703 void
1704 Integer_expression::do_export(Export* exp) const
1705 {
1706 Integer_expression::export_integer(exp, this->val_);
1707 // A trailing space lets us reliably identify the end of the number.
1708 exp->write_c_string(" ");
1709 }
1710
1711 // Import an integer, floating point, or complex value. This handles
1712 // all these types because they all start with digits.
1713
1714 Expression*
1715 Integer_expression::do_import(Import* imp)
1716 {
1717 std::string num = imp->read_identifier();
1718 imp->require_c_string(" ");
1719 if (!num.empty() && num[num.length() - 1] == 'i')
1720 {
1721 mpfr_t real;
1722 size_t plus_pos = num.find('+', 1);
1723 size_t minus_pos = num.find('-', 1);
1724 size_t pos;
1725 if (plus_pos == std::string::npos)
1726 pos = minus_pos;
1727 else if (minus_pos == std::string::npos)
1728 pos = plus_pos;
1729 else
1730 {
1731 error_at(imp->location(), "bad number in import data: %qs",
1732 num.c_str());
1733 return Expression::make_error(imp->location());
1734 }
1735 if (pos == std::string::npos)
1736 mpfr_set_ui(real, 0, GMP_RNDN);
1737 else
1738 {
1739 std::string real_str = num.substr(0, pos);
1740 if (mpfr_init_set_str(real, real_str.c_str(), 10, GMP_RNDN) != 0)
1741 {
1742 error_at(imp->location(), "bad number in import data: %qs",
1743 real_str.c_str());
1744 return Expression::make_error(imp->location());
1745 }
1746 }
1747
1748 std::string imag_str;
1749 if (pos == std::string::npos)
1750 imag_str = num;
1751 else
1752 imag_str = num.substr(pos);
1753 imag_str = imag_str.substr(0, imag_str.size() - 1);
1754 mpfr_t imag;
1755 if (mpfr_init_set_str(imag, imag_str.c_str(), 10, GMP_RNDN) != 0)
1756 {
1757 error_at(imp->location(), "bad number in import data: %qs",
1758 imag_str.c_str());
1759 return Expression::make_error(imp->location());
1760 }
1761 Expression* ret = Expression::make_complex(&real, &imag, NULL,
1762 imp->location());
1763 mpfr_clear(real);
1764 mpfr_clear(imag);
1765 return ret;
1766 }
1767 else if (num.find('.') == std::string::npos
1768 && num.find('E') == std::string::npos)
1769 {
1770 mpz_t val;
1771 if (mpz_init_set_str(val, num.c_str(), 10) != 0)
1772 {
1773 error_at(imp->location(), "bad number in import data: %qs",
1774 num.c_str());
1775 return Expression::make_error(imp->location());
1776 }
1777 Expression* ret = Expression::make_integer(&val, NULL, imp->location());
1778 mpz_clear(val);
1779 return ret;
1780 }
1781 else
1782 {
1783 mpfr_t val;
1784 if (mpfr_init_set_str(val, num.c_str(), 10, GMP_RNDN) != 0)
1785 {
1786 error_at(imp->location(), "bad number in import data: %qs",
1787 num.c_str());
1788 return Expression::make_error(imp->location());
1789 }
1790 Expression* ret = Expression::make_float(&val, NULL, imp->location());
1791 mpfr_clear(val);
1792 return ret;
1793 }
1794 }
1795
1796 // Build a new integer value.
1797
1798 Expression*
1799 Expression::make_integer(const mpz_t* val, Type* type,
1800 source_location location)
1801 {
1802 return new Integer_expression(val, type, location);
1803 }
1804
1805 // Floats.
1806
1807 class Float_expression : public Expression
1808 {
1809 public:
1810 Float_expression(const mpfr_t* val, Type* type, source_location location)
1811 : Expression(EXPRESSION_FLOAT, location),
1812 type_(type)
1813 {
1814 mpfr_init_set(this->val_, *val, GMP_RNDN);
1815 }
1816
1817 // Constrain VAL to fit into TYPE.
1818 static void
1819 constrain_float(mpfr_t val, Type* type);
1820
1821 // Return whether VAL fits in the type.
1822 static bool
1823 check_constant(mpfr_t val, Type*, source_location);
1824
1825 // Write VAL to export data.
1826 static void
1827 export_float(Export* exp, const mpfr_t val);
1828
1829 protected:
1830 bool
1831 do_is_constant() const
1832 { return true; }
1833
1834 bool
1835 do_float_constant_value(mpfr_t val, Type**) const;
1836
1837 Type*
1838 do_type();
1839
1840 void
1841 do_determine_type(const Type_context*);
1842
1843 void
1844 do_check_types(Gogo*);
1845
1846 Expression*
1847 do_copy()
1848 { return Expression::make_float(&this->val_, this->type_,
1849 this->location()); }
1850
1851 tree
1852 do_get_tree(Translate_context*);
1853
1854 void
1855 do_export(Export*) const;
1856
1857 private:
1858 // The floating point value.
1859 mpfr_t val_;
1860 // The type so far.
1861 Type* type_;
1862 };
1863
1864 // Constrain VAL to fit into TYPE.
1865
1866 void
1867 Float_expression::constrain_float(mpfr_t val, Type* type)
1868 {
1869 Float_type* ftype = type->float_type();
1870 if (ftype != NULL && !ftype->is_abstract())
1871 {
1872 tree type_tree = ftype->type_tree();
1873 REAL_VALUE_TYPE rvt;
1874 real_from_mpfr(&rvt, val, type_tree, GMP_RNDN);
1875 real_convert(&rvt, TYPE_MODE(type_tree), &rvt);
1876 mpfr_from_real(val, &rvt, GMP_RNDN);
1877 }
1878 }
1879
1880 // Return a floating point constant value.
1881
1882 bool
1883 Float_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
1884 {
1885 if (this->type_ != NULL)
1886 *ptype = this->type_;
1887 mpfr_set(val, this->val_, GMP_RNDN);
1888 return true;
1889 }
1890
1891 // Return the current type. If we haven't set the type yet, we return
1892 // an abstract float type.
1893
1894 Type*
1895 Float_expression::do_type()
1896 {
1897 if (this->type_ == NULL)
1898 this->type_ = Type::make_abstract_float_type();
1899 return this->type_;
1900 }
1901
1902 // Set the type of the float value. Here we may switch from an
1903 // abstract type to a real type.
1904
1905 void
1906 Float_expression::do_determine_type(const Type_context* context)
1907 {
1908 if (this->type_ != NULL && !this->type_->is_abstract())
1909 ;
1910 else if (context->type != NULL
1911 && (context->type->integer_type() != NULL
1912 || context->type->float_type() != NULL
1913 || context->type->complex_type() != NULL))
1914 this->type_ = context->type;
1915 else if (!context->may_be_abstract)
1916 this->type_ = Type::lookup_float_type("float");
1917 }
1918
1919 // Return true if the floating point value VAL fits in the range of
1920 // the type TYPE. Otherwise give an error and return false. TYPE may
1921 // be NULL.
1922
1923 bool
1924 Float_expression::check_constant(mpfr_t val, Type* type,
1925 source_location location)
1926 {
1927 if (type == NULL)
1928 return true;
1929 Float_type* ftype = type->float_type();
1930 if (ftype == NULL || ftype->is_abstract())
1931 return true;
1932
1933 // A NaN or Infinity always fits in the range of the type.
1934 if (mpfr_nan_p(val) || mpfr_inf_p(val) || mpfr_zero_p(val))
1935 return true;
1936
1937 mp_exp_t exp = mpfr_get_exp(val);
1938 mp_exp_t max_exp;
1939 switch (ftype->bits())
1940 {
1941 case 32:
1942 max_exp = 128;
1943 break;
1944 case 64:
1945 max_exp = 1024;
1946 break;
1947 default:
1948 gcc_unreachable();
1949 }
1950 if (exp > max_exp)
1951 {
1952 error_at(location, "floating point constant overflow");
1953 return false;
1954 }
1955 return true;
1956 }
1957
1958 // Check the type of a float value.
1959
1960 void
1961 Float_expression::do_check_types(Gogo*)
1962 {
1963 if (this->type_ == NULL)
1964 return;
1965
1966 if (!Float_expression::check_constant(this->val_, this->type_,
1967 this->location()))
1968 this->set_is_error();
1969
1970 Integer_type* integer_type = this->type_->integer_type();
1971 if (integer_type != NULL)
1972 {
1973 if (!mpfr_integer_p(this->val_))
1974 this->report_error(_("floating point constant truncated to integer"));
1975 else
1976 {
1977 gcc_assert(!integer_type->is_abstract());
1978 mpz_t ival;
1979 mpz_init(ival);
1980 mpfr_get_z(ival, this->val_, GMP_RNDN);
1981 Integer_expression::check_constant(ival, integer_type,
1982 this->location());
1983 mpz_clear(ival);
1984 }
1985 }
1986 }
1987
1988 // Get a tree for a float constant.
1989
1990 tree
1991 Float_expression::do_get_tree(Translate_context* context)
1992 {
1993 Gogo* gogo = context->gogo();
1994 tree type;
1995 if (this->type_ != NULL && !this->type_->is_abstract())
1996 type = this->type_->get_tree(gogo);
1997 else if (this->type_ != NULL && this->type_->integer_type() != NULL)
1998 {
1999 // We have an abstract integer type. We just hope for the best.
2000 type = Type::lookup_integer_type("int")->get_tree(gogo);
2001 }
2002 else
2003 {
2004 // If we still have an abstract type here, then this is being
2005 // used in a constant expression which didn't get reduced. We
2006 // just use float64 and hope for the best.
2007 type = Type::lookup_float_type("float64")->get_tree(gogo);
2008 }
2009 return Expression::float_constant_tree(this->val_, type);
2010 }
2011
2012 // Write a floating point number to export data.
2013
2014 void
2015 Float_expression::export_float(Export *exp, const mpfr_t val)
2016 {
2017 mp_exp_t exponent;
2018 char* s = mpfr_get_str(NULL, &exponent, 10, 0, val, GMP_RNDN);
2019 if (*s == '-')
2020 exp->write_c_string("-");
2021 exp->write_c_string("0.");
2022 exp->write_c_string(*s == '-' ? s + 1 : s);
2023 mpfr_free_str(s);
2024 char buf[30];
2025 snprintf(buf, sizeof buf, "E%ld", exponent);
2026 exp->write_c_string(buf);
2027 }
2028
2029 // Export a floating point number in a constant expression.
2030
2031 void
2032 Float_expression::do_export(Export* exp) const
2033 {
2034 Float_expression::export_float(exp, this->val_);
2035 // A trailing space lets us reliably identify the end of the number.
2036 exp->write_c_string(" ");
2037 }
2038
2039 // Make a float expression.
2040
2041 Expression*
2042 Expression::make_float(const mpfr_t* val, Type* type, source_location location)
2043 {
2044 return new Float_expression(val, type, location);
2045 }
2046
2047 // Complex numbers.
2048
2049 class Complex_expression : public Expression
2050 {
2051 public:
2052 Complex_expression(const mpfr_t* real, const mpfr_t* imag, Type* type,
2053 source_location location)
2054 : Expression(EXPRESSION_COMPLEX, location),
2055 type_(type)
2056 {
2057 mpfr_init_set(this->real_, *real, GMP_RNDN);
2058 mpfr_init_set(this->imag_, *imag, GMP_RNDN);
2059 }
2060
2061 // Constrain REAL/IMAG to fit into TYPE.
2062 static void
2063 constrain_complex(mpfr_t real, mpfr_t imag, Type* type);
2064
2065 // Return whether REAL/IMAG fits in the type.
2066 static bool
2067 check_constant(mpfr_t real, mpfr_t imag, Type*, source_location);
2068
2069 // Write REAL/IMAG to export data.
2070 static void
2071 export_complex(Export* exp, const mpfr_t real, const mpfr_t val);
2072
2073 protected:
2074 bool
2075 do_is_constant() const
2076 { return true; }
2077
2078 bool
2079 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const;
2080
2081 Type*
2082 do_type();
2083
2084 void
2085 do_determine_type(const Type_context*);
2086
2087 void
2088 do_check_types(Gogo*);
2089
2090 Expression*
2091 do_copy()
2092 {
2093 return Expression::make_complex(&this->real_, &this->imag_, this->type_,
2094 this->location());
2095 }
2096
2097 tree
2098 do_get_tree(Translate_context*);
2099
2100 void
2101 do_export(Export*) const;
2102
2103 private:
2104 // The real part.
2105 mpfr_t real_;
2106 // The imaginary part;
2107 mpfr_t imag_;
2108 // The type if known.
2109 Type* type_;
2110 };
2111
2112 // Constrain REAL/IMAG to fit into TYPE.
2113
2114 void
2115 Complex_expression::constrain_complex(mpfr_t real, mpfr_t imag, Type* type)
2116 {
2117 Complex_type* ctype = type->complex_type();
2118 if (ctype != NULL && !ctype->is_abstract())
2119 {
2120 tree type_tree = ctype->type_tree();
2121
2122 REAL_VALUE_TYPE rvt;
2123 real_from_mpfr(&rvt, real, TREE_TYPE(type_tree), GMP_RNDN);
2124 real_convert(&rvt, TYPE_MODE(TREE_TYPE(type_tree)), &rvt);
2125 mpfr_from_real(real, &rvt, GMP_RNDN);
2126
2127 real_from_mpfr(&rvt, imag, TREE_TYPE(type_tree), GMP_RNDN);
2128 real_convert(&rvt, TYPE_MODE(TREE_TYPE(type_tree)), &rvt);
2129 mpfr_from_real(imag, &rvt, GMP_RNDN);
2130 }
2131 }
2132
2133 // Return a complex constant value.
2134
2135 bool
2136 Complex_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
2137 Type** ptype) const
2138 {
2139 if (this->type_ != NULL)
2140 *ptype = this->type_;
2141 mpfr_set(real, this->real_, GMP_RNDN);
2142 mpfr_set(imag, this->imag_, GMP_RNDN);
2143 return true;
2144 }
2145
2146 // Return the current type. If we haven't set the type yet, we return
2147 // an abstract complex type.
2148
2149 Type*
2150 Complex_expression::do_type()
2151 {
2152 if (this->type_ == NULL)
2153 this->type_ = Type::make_abstract_complex_type();
2154 return this->type_;
2155 }
2156
2157 // Set the type of the complex value. Here we may switch from an
2158 // abstract type to a real type.
2159
2160 void
2161 Complex_expression::do_determine_type(const Type_context* context)
2162 {
2163 if (this->type_ != NULL && !this->type_->is_abstract())
2164 ;
2165 else if (context->type != NULL
2166 && context->type->complex_type() != NULL)
2167 this->type_ = context->type;
2168 else if (!context->may_be_abstract)
2169 this->type_ = Type::lookup_complex_type("complex");
2170 }
2171
2172 // Return true if the complex value REAL/IMAG fits in the range of the
2173 // type TYPE. Otherwise give an error and return false. TYPE may be
2174 // NULL.
2175
2176 bool
2177 Complex_expression::check_constant(mpfr_t real, mpfr_t imag, Type* type,
2178 source_location location)
2179 {
2180 if (type == NULL)
2181 return true;
2182 Complex_type* ctype = type->complex_type();
2183 if (ctype == NULL || ctype->is_abstract())
2184 return true;
2185
2186 mp_exp_t max_exp;
2187 switch (ctype->bits())
2188 {
2189 case 64:
2190 max_exp = 128;
2191 break;
2192 case 128:
2193 max_exp = 1024;
2194 break;
2195 default:
2196 gcc_unreachable();
2197 }
2198
2199 // A NaN or Infinity always fits in the range of the type.
2200 if (!mpfr_nan_p(real) && !mpfr_inf_p(real) && !mpfr_zero_p(real))
2201 {
2202 if (mpfr_get_exp(real) > max_exp)
2203 {
2204 error_at(location, "complex real part constant overflow");
2205 return false;
2206 }
2207 }
2208
2209 if (!mpfr_nan_p(imag) && !mpfr_inf_p(imag) && !mpfr_zero_p(imag))
2210 {
2211 if (mpfr_get_exp(imag) > max_exp)
2212 {
2213 error_at(location, "complex imaginary part constant overflow");
2214 return false;
2215 }
2216 }
2217
2218 return true;
2219 }
2220
2221 // Check the type of a complex value.
2222
2223 void
2224 Complex_expression::do_check_types(Gogo*)
2225 {
2226 if (this->type_ == NULL)
2227 return;
2228
2229 if (!Complex_expression::check_constant(this->real_, this->imag_,
2230 this->type_, this->location()))
2231 this->set_is_error();
2232 }
2233
2234 // Get a tree for a complex constant.
2235
2236 tree
2237 Complex_expression::do_get_tree(Translate_context* context)
2238 {
2239 Gogo* gogo = context->gogo();
2240 tree type;
2241 if (this->type_ != NULL && !this->type_->is_abstract())
2242 type = this->type_->get_tree(gogo);
2243 else
2244 {
2245 // If we still have an abstract type here, this this is being
2246 // used in a constant expression which didn't get reduced. We
2247 // just use complex128 and hope for the best.
2248 type = Type::lookup_complex_type("complex128")->get_tree(gogo);
2249 }
2250 return Expression::complex_constant_tree(this->real_, this->imag_, type);
2251 }
2252
2253 // Write REAL/IMAG to export data.
2254
2255 void
2256 Complex_expression::export_complex(Export* exp, const mpfr_t real,
2257 const mpfr_t imag)
2258 {
2259 if (!mpfr_zero_p(real))
2260 {
2261 Float_expression::export_float(exp, real);
2262 if (mpfr_sgn(imag) > 0)
2263 exp->write_c_string("+");
2264 }
2265 Float_expression::export_float(exp, imag);
2266 exp->write_c_string("i");
2267 }
2268
2269 // Export a complex number in a constant expression.
2270
2271 void
2272 Complex_expression::do_export(Export* exp) const
2273 {
2274 Complex_expression::export_complex(exp, this->real_, this->imag_);
2275 // A trailing space lets us reliably identify the end of the number.
2276 exp->write_c_string(" ");
2277 }
2278
2279 // Make a complex expression.
2280
2281 Expression*
2282 Expression::make_complex(const mpfr_t* real, const mpfr_t* imag, Type* type,
2283 source_location location)
2284 {
2285 return new Complex_expression(real, imag, type, location);
2286 }
2287
2288 // Find a named object in an expression.
2289
2290 class Find_named_object : public Traverse
2291 {
2292 public:
2293 Find_named_object(Named_object* no)
2294 : Traverse(traverse_expressions),
2295 no_(no), found_(false)
2296 { }
2297
2298 // Whether we found the object.
2299 bool
2300 found() const
2301 { return this->found_; }
2302
2303 protected:
2304 int
2305 expression(Expression**);
2306
2307 private:
2308 // The object we are looking for.
2309 Named_object* no_;
2310 // Whether we found it.
2311 bool found_;
2312 };
2313
2314 // A reference to a const in an expression.
2315
2316 class Const_expression : public Expression
2317 {
2318 public:
2319 Const_expression(Named_object* constant, source_location location)
2320 : Expression(EXPRESSION_CONST_REFERENCE, location),
2321 constant_(constant), type_(NULL), seen_(false)
2322 { }
2323
2324 Named_object*
2325 named_object()
2326 { return this->constant_; }
2327
2328 const std::string&
2329 name() const
2330 { return this->constant_->name(); }
2331
2332 protected:
2333 Expression*
2334 do_lower(Gogo*, Named_object*, int);
2335
2336 bool
2337 do_is_constant() const
2338 { return true; }
2339
2340 bool
2341 do_integer_constant_value(bool, mpz_t val, Type**) const;
2342
2343 bool
2344 do_float_constant_value(mpfr_t val, Type**) const;
2345
2346 bool
2347 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const;
2348
2349 bool
2350 do_string_constant_value(std::string* val) const
2351 { return this->constant_->const_value()->expr()->string_constant_value(val); }
2352
2353 Type*
2354 do_type();
2355
2356 // The type of a const is set by the declaration, not the use.
2357 void
2358 do_determine_type(const Type_context*);
2359
2360 void
2361 do_check_types(Gogo*);
2362
2363 Expression*
2364 do_copy()
2365 { return this; }
2366
2367 tree
2368 do_get_tree(Translate_context* context);
2369
2370 // When exporting a reference to a const as part of a const
2371 // expression, we export the value. We ignore the fact that it has
2372 // a name.
2373 void
2374 do_export(Export* exp) const
2375 { this->constant_->const_value()->expr()->export_expression(exp); }
2376
2377 private:
2378 // The constant.
2379 Named_object* constant_;
2380 // The type of this reference. This is used if the constant has an
2381 // abstract type.
2382 Type* type_;
2383 // Used to prevent infinite recursion when a constant incorrectly
2384 // refers to itself.
2385 mutable bool seen_;
2386 };
2387
2388 // Lower a constant expression. This is where we convert the
2389 // predeclared constant iota into an integer value.
2390
2391 Expression*
2392 Const_expression::do_lower(Gogo* gogo, Named_object*, int iota_value)
2393 {
2394 if (this->constant_->const_value()->expr()->classification()
2395 == EXPRESSION_IOTA)
2396 {
2397 if (iota_value == -1)
2398 {
2399 error_at(this->location(),
2400 "iota is only defined in const declarations");
2401 iota_value = 0;
2402 }
2403 mpz_t val;
2404 mpz_init_set_ui(val, static_cast<unsigned long>(iota_value));
2405 Expression* ret = Expression::make_integer(&val, NULL,
2406 this->location());
2407 mpz_clear(val);
2408 return ret;
2409 }
2410
2411 // Make sure that the constant itself has been lowered.
2412 gogo->lower_constant(this->constant_);
2413
2414 return this;
2415 }
2416
2417 // Return an integer constant value.
2418
2419 bool
2420 Const_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
2421 Type** ptype) const
2422 {
2423 if (this->seen_)
2424 return false;
2425
2426 Type* ctype;
2427 if (this->type_ != NULL)
2428 ctype = this->type_;
2429 else
2430 ctype = this->constant_->const_value()->type();
2431 if (ctype != NULL && ctype->integer_type() == NULL)
2432 return false;
2433
2434 Expression* e = this->constant_->const_value()->expr();
2435
2436 this->seen_ = true;
2437
2438 Type* t;
2439 bool r = e->integer_constant_value(iota_is_constant, val, &t);
2440
2441 this->seen_ = false;
2442
2443 if (r
2444 && ctype != NULL
2445 && !Integer_expression::check_constant(val, ctype, this->location()))
2446 return false;
2447
2448 *ptype = ctype != NULL ? ctype : t;
2449 return r;
2450 }
2451
2452 // Return a floating point constant value.
2453
2454 bool
2455 Const_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
2456 {
2457 if (this->seen_)
2458 return false;
2459
2460 Type* ctype;
2461 if (this->type_ != NULL)
2462 ctype = this->type_;
2463 else
2464 ctype = this->constant_->const_value()->type();
2465 if (ctype != NULL && ctype->float_type() == NULL)
2466 return false;
2467
2468 this->seen_ = true;
2469
2470 Type* t;
2471 bool r = this->constant_->const_value()->expr()->float_constant_value(val,
2472 &t);
2473
2474 this->seen_ = false;
2475
2476 if (r && ctype != NULL)
2477 {
2478 if (!Float_expression::check_constant(val, ctype, this->location()))
2479 return false;
2480 Float_expression::constrain_float(val, ctype);
2481 }
2482 *ptype = ctype != NULL ? ctype : t;
2483 return r;
2484 }
2485
2486 // Return a complex constant value.
2487
2488 bool
2489 Const_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
2490 Type **ptype) const
2491 {
2492 if (this->seen_)
2493 return false;
2494
2495 Type* ctype;
2496 if (this->type_ != NULL)
2497 ctype = this->type_;
2498 else
2499 ctype = this->constant_->const_value()->type();
2500 if (ctype != NULL && ctype->complex_type() == NULL)
2501 return false;
2502
2503 this->seen_ = true;
2504
2505 Type *t;
2506 bool r = this->constant_->const_value()->expr()->complex_constant_value(real,
2507 imag,
2508 &t);
2509
2510 this->seen_ = false;
2511
2512 if (r && ctype != NULL)
2513 {
2514 if (!Complex_expression::check_constant(real, imag, ctype,
2515 this->location()))
2516 return false;
2517 Complex_expression::constrain_complex(real, imag, ctype);
2518 }
2519 *ptype = ctype != NULL ? ctype : t;
2520 return r;
2521 }
2522
2523 // Return the type of the const reference.
2524
2525 Type*
2526 Const_expression::do_type()
2527 {
2528 if (this->type_ != NULL)
2529 return this->type_;
2530
2531 if (this->seen_)
2532 {
2533 this->report_error(_("constant refers to itself"));
2534 this->type_ = Type::make_error_type();
2535 return this->type_;
2536 }
2537
2538 this->seen_ = true;
2539
2540 Named_constant* nc = this->constant_->const_value();
2541 Type* ret = nc->type();
2542
2543 if (ret != NULL)
2544 {
2545 this->seen_ = false;
2546 return ret;
2547 }
2548
2549 // During parsing, a named constant may have a NULL type, but we
2550 // must not return a NULL type here.
2551 ret = nc->expr()->type();
2552
2553 this->seen_ = false;
2554
2555 return ret;
2556 }
2557
2558 // Set the type of the const reference.
2559
2560 void
2561 Const_expression::do_determine_type(const Type_context* context)
2562 {
2563 Type* ctype = this->constant_->const_value()->type();
2564 Type* cetype = (ctype != NULL
2565 ? ctype
2566 : this->constant_->const_value()->expr()->type());
2567 if (ctype != NULL && !ctype->is_abstract())
2568 ;
2569 else if (context->type != NULL
2570 && (context->type->integer_type() != NULL
2571 || context->type->float_type() != NULL
2572 || context->type->complex_type() != NULL)
2573 && (cetype->integer_type() != NULL
2574 || cetype->float_type() != NULL
2575 || cetype->complex_type() != NULL))
2576 this->type_ = context->type;
2577 else if (context->type != NULL
2578 && context->type->is_string_type()
2579 && cetype->is_string_type())
2580 this->type_ = context->type;
2581 else if (context->type != NULL
2582 && context->type->is_boolean_type()
2583 && cetype->is_boolean_type())
2584 this->type_ = context->type;
2585 else if (!context->may_be_abstract)
2586 {
2587 if (cetype->is_abstract())
2588 cetype = cetype->make_non_abstract_type();
2589 this->type_ = cetype;
2590 }
2591 }
2592
2593 // Check types of a const reference.
2594
2595 void
2596 Const_expression::do_check_types(Gogo*)
2597 {
2598 if (this->type_ != NULL && this->type_->is_error_type())
2599 return;
2600
2601 Expression* init = this->constant_->const_value()->expr();
2602 Find_named_object find_named_object(this->constant_);
2603 Expression::traverse(&init, &find_named_object);
2604 if (find_named_object.found())
2605 {
2606 this->report_error(_("constant refers to itself"));
2607 this->type_ = Type::make_error_type();
2608 return;
2609 }
2610
2611 if (this->type_ == NULL || this->type_->is_abstract())
2612 return;
2613
2614 // Check for integer overflow.
2615 if (this->type_->integer_type() != NULL)
2616 {
2617 mpz_t ival;
2618 mpz_init(ival);
2619 Type* dummy;
2620 if (!this->integer_constant_value(true, ival, &dummy))
2621 {
2622 mpfr_t fval;
2623 mpfr_init(fval);
2624 Expression* cexpr = this->constant_->const_value()->expr();
2625 if (cexpr->float_constant_value(fval, &dummy))
2626 {
2627 if (!mpfr_integer_p(fval))
2628 this->report_error(_("floating point constant "
2629 "truncated to integer"));
2630 else
2631 {
2632 mpfr_get_z(ival, fval, GMP_RNDN);
2633 Integer_expression::check_constant(ival, this->type_,
2634 this->location());
2635 }
2636 }
2637 mpfr_clear(fval);
2638 }
2639 mpz_clear(ival);
2640 }
2641 }
2642
2643 // Return a tree for the const reference.
2644
2645 tree
2646 Const_expression::do_get_tree(Translate_context* context)
2647 {
2648 Gogo* gogo = context->gogo();
2649 tree type_tree;
2650 if (this->type_ == NULL)
2651 type_tree = NULL_TREE;
2652 else
2653 {
2654 type_tree = this->type_->get_tree(gogo);
2655 if (type_tree == error_mark_node)
2656 return error_mark_node;
2657 }
2658
2659 // If the type has been set for this expression, but the underlying
2660 // object is an abstract int or float, we try to get the abstract
2661 // value. Otherwise we may lose something in the conversion.
2662 if (this->type_ != NULL
2663 && this->constant_->const_value()->type()->is_abstract())
2664 {
2665 Expression* expr = this->constant_->const_value()->expr();
2666 mpz_t ival;
2667 mpz_init(ival);
2668 Type* t;
2669 if (expr->integer_constant_value(true, ival, &t))
2670 {
2671 tree ret = Expression::integer_constant_tree(ival, type_tree);
2672 mpz_clear(ival);
2673 return ret;
2674 }
2675 mpz_clear(ival);
2676
2677 mpfr_t fval;
2678 mpfr_init(fval);
2679 if (expr->float_constant_value(fval, &t))
2680 {
2681 tree ret = Expression::float_constant_tree(fval, type_tree);
2682 mpfr_clear(fval);
2683 return ret;
2684 }
2685
2686 mpfr_t imag;
2687 mpfr_init(imag);
2688 if (expr->complex_constant_value(fval, imag, &t))
2689 {
2690 tree ret = Expression::complex_constant_tree(fval, imag, type_tree);
2691 mpfr_clear(fval);
2692 mpfr_clear(imag);
2693 return ret;
2694 }
2695 mpfr_clear(imag);
2696 mpfr_clear(fval);
2697 }
2698
2699 tree const_tree = this->constant_->get_tree(gogo, context->function());
2700 if (this->type_ == NULL
2701 || const_tree == error_mark_node
2702 || TREE_TYPE(const_tree) == error_mark_node)
2703 return const_tree;
2704
2705 tree ret;
2706 if (TYPE_MAIN_VARIANT(type_tree) == TYPE_MAIN_VARIANT(TREE_TYPE(const_tree)))
2707 ret = fold_convert(type_tree, const_tree);
2708 else if (TREE_CODE(type_tree) == INTEGER_TYPE)
2709 ret = fold(convert_to_integer(type_tree, const_tree));
2710 else if (TREE_CODE(type_tree) == REAL_TYPE)
2711 ret = fold(convert_to_real(type_tree, const_tree));
2712 else if (TREE_CODE(type_tree) == COMPLEX_TYPE)
2713 ret = fold(convert_to_complex(type_tree, const_tree));
2714 else
2715 gcc_unreachable();
2716 return ret;
2717 }
2718
2719 // Make a reference to a constant in an expression.
2720
2721 Expression*
2722 Expression::make_const_reference(Named_object* constant,
2723 source_location location)
2724 {
2725 return new Const_expression(constant, location);
2726 }
2727
2728 // Find a named object in an expression.
2729
2730 int
2731 Find_named_object::expression(Expression** pexpr)
2732 {
2733 switch ((*pexpr)->classification())
2734 {
2735 case Expression::EXPRESSION_CONST_REFERENCE:
2736 if (static_cast<Const_expression*>(*pexpr)->named_object() == this->no_)
2737 break;
2738 return TRAVERSE_CONTINUE;
2739 case Expression::EXPRESSION_VAR_REFERENCE:
2740 if ((*pexpr)->var_expression()->named_object() == this->no_)
2741 break;
2742 return TRAVERSE_CONTINUE;
2743 case Expression::EXPRESSION_FUNC_REFERENCE:
2744 if ((*pexpr)->func_expression()->named_object() == this->no_)
2745 break;
2746 return TRAVERSE_CONTINUE;
2747 default:
2748 return TRAVERSE_CONTINUE;
2749 }
2750 this->found_ = true;
2751 return TRAVERSE_EXIT;
2752 }
2753
2754 // The nil value.
2755
2756 class Nil_expression : public Expression
2757 {
2758 public:
2759 Nil_expression(source_location location)
2760 : Expression(EXPRESSION_NIL, location)
2761 { }
2762
2763 static Expression*
2764 do_import(Import*);
2765
2766 protected:
2767 bool
2768 do_is_constant() const
2769 { return true; }
2770
2771 Type*
2772 do_type()
2773 { return Type::make_nil_type(); }
2774
2775 void
2776 do_determine_type(const Type_context*)
2777 { }
2778
2779 Expression*
2780 do_copy()
2781 { return this; }
2782
2783 tree
2784 do_get_tree(Translate_context*)
2785 { return null_pointer_node; }
2786
2787 void
2788 do_export(Export* exp) const
2789 { exp->write_c_string("nil"); }
2790 };
2791
2792 // Import a nil expression.
2793
2794 Expression*
2795 Nil_expression::do_import(Import* imp)
2796 {
2797 imp->require_c_string("nil");
2798 return Expression::make_nil(imp->location());
2799 }
2800
2801 // Make a nil expression.
2802
2803 Expression*
2804 Expression::make_nil(source_location location)
2805 {
2806 return new Nil_expression(location);
2807 }
2808
2809 // The value of the predeclared constant iota. This is little more
2810 // than a marker. This will be lowered to an integer in
2811 // Const_expression::do_lower, which is where we know the value that
2812 // it should have.
2813
2814 class Iota_expression : public Parser_expression
2815 {
2816 public:
2817 Iota_expression(source_location location)
2818 : Parser_expression(EXPRESSION_IOTA, location)
2819 { }
2820
2821 protected:
2822 Expression*
2823 do_lower(Gogo*, Named_object*, int)
2824 { gcc_unreachable(); }
2825
2826 // There should only ever be one of these.
2827 Expression*
2828 do_copy()
2829 { gcc_unreachable(); }
2830 };
2831
2832 // Make an iota expression. This is only called for one case: the
2833 // value of the predeclared constant iota.
2834
2835 Expression*
2836 Expression::make_iota()
2837 {
2838 static Iota_expression iota_expression(UNKNOWN_LOCATION);
2839 return &iota_expression;
2840 }
2841
2842 // A type conversion expression.
2843
2844 class Type_conversion_expression : public Expression
2845 {
2846 public:
2847 Type_conversion_expression(Type* type, Expression* expr,
2848 source_location location)
2849 : Expression(EXPRESSION_CONVERSION, location),
2850 type_(type), expr_(expr), may_convert_function_types_(false)
2851 { }
2852
2853 // Return the type to which we are converting.
2854 Type*
2855 type() const
2856 { return this->type_; }
2857
2858 // Return the expression which we are converting.
2859 Expression*
2860 expr() const
2861 { return this->expr_; }
2862
2863 // Permit converting from one function type to another. This is
2864 // used internally for method expressions.
2865 void
2866 set_may_convert_function_types()
2867 {
2868 this->may_convert_function_types_ = true;
2869 }
2870
2871 // Import a type conversion expression.
2872 static Expression*
2873 do_import(Import*);
2874
2875 protected:
2876 int
2877 do_traverse(Traverse* traverse);
2878
2879 Expression*
2880 do_lower(Gogo*, Named_object*, int);
2881
2882 bool
2883 do_is_constant() const
2884 { return this->expr_->is_constant(); }
2885
2886 bool
2887 do_integer_constant_value(bool, mpz_t, Type**) const;
2888
2889 bool
2890 do_float_constant_value(mpfr_t, Type**) const;
2891
2892 bool
2893 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
2894
2895 bool
2896 do_string_constant_value(std::string*) const;
2897
2898 Type*
2899 do_type()
2900 { return this->type_; }
2901
2902 void
2903 do_determine_type(const Type_context*)
2904 {
2905 Type_context subcontext(this->type_, false);
2906 this->expr_->determine_type(&subcontext);
2907 }
2908
2909 void
2910 do_check_types(Gogo*);
2911
2912 Expression*
2913 do_copy()
2914 {
2915 return new Type_conversion_expression(this->type_, this->expr_->copy(),
2916 this->location());
2917 }
2918
2919 tree
2920 do_get_tree(Translate_context* context);
2921
2922 void
2923 do_export(Export*) const;
2924
2925 private:
2926 // The type to convert to.
2927 Type* type_;
2928 // The expression to convert.
2929 Expression* expr_;
2930 // True if this is permitted to convert function types. This is
2931 // used internally for method expressions.
2932 bool may_convert_function_types_;
2933 };
2934
2935 // Traversal.
2936
2937 int
2938 Type_conversion_expression::do_traverse(Traverse* traverse)
2939 {
2940 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
2941 || Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
2942 return TRAVERSE_EXIT;
2943 return TRAVERSE_CONTINUE;
2944 }
2945
2946 // Convert to a constant at lowering time.
2947
2948 Expression*
2949 Type_conversion_expression::do_lower(Gogo*, Named_object*, int)
2950 {
2951 Type* type = this->type_;
2952 Expression* val = this->expr_;
2953 source_location location = this->location();
2954
2955 if (type->integer_type() != NULL)
2956 {
2957 mpz_t ival;
2958 mpz_init(ival);
2959 Type* dummy;
2960 if (val->integer_constant_value(false, ival, &dummy))
2961 {
2962 if (!Integer_expression::check_constant(ival, type, location))
2963 mpz_set_ui(ival, 0);
2964 Expression* ret = Expression::make_integer(&ival, type, location);
2965 mpz_clear(ival);
2966 return ret;
2967 }
2968
2969 mpfr_t fval;
2970 mpfr_init(fval);
2971 if (val->float_constant_value(fval, &dummy))
2972 {
2973 if (!mpfr_integer_p(fval))
2974 {
2975 error_at(location,
2976 "floating point constant truncated to integer");
2977 return Expression::make_error(location);
2978 }
2979 mpfr_get_z(ival, fval, GMP_RNDN);
2980 if (!Integer_expression::check_constant(ival, type, location))
2981 mpz_set_ui(ival, 0);
2982 Expression* ret = Expression::make_integer(&ival, type, location);
2983 mpfr_clear(fval);
2984 mpz_clear(ival);
2985 return ret;
2986 }
2987 mpfr_clear(fval);
2988 mpz_clear(ival);
2989 }
2990
2991 if (type->float_type() != NULL)
2992 {
2993 mpfr_t fval;
2994 mpfr_init(fval);
2995 Type* dummy;
2996 if (val->float_constant_value(fval, &dummy))
2997 {
2998 if (!Float_expression::check_constant(fval, type, location))
2999 mpfr_set_ui(fval, 0, GMP_RNDN);
3000 Float_expression::constrain_float(fval, type);
3001 Expression *ret = Expression::make_float(&fval, type, location);
3002 mpfr_clear(fval);
3003 return ret;
3004 }
3005 mpfr_clear(fval);
3006 }
3007
3008 if (type->complex_type() != NULL)
3009 {
3010 mpfr_t real;
3011 mpfr_t imag;
3012 mpfr_init(real);
3013 mpfr_init(imag);
3014 Type* dummy;
3015 if (val->complex_constant_value(real, imag, &dummy))
3016 {
3017 if (!Complex_expression::check_constant(real, imag, type, location))
3018 {
3019 mpfr_set_ui(real, 0, GMP_RNDN);
3020 mpfr_set_ui(imag, 0, GMP_RNDN);
3021 }
3022 Complex_expression::constrain_complex(real, imag, type);
3023 Expression* ret = Expression::make_complex(&real, &imag, type,
3024 location);
3025 mpfr_clear(real);
3026 mpfr_clear(imag);
3027 return ret;
3028 }
3029 mpfr_clear(real);
3030 mpfr_clear(imag);
3031 }
3032
3033 if (type->is_open_array_type() && type->named_type() == NULL)
3034 {
3035 Type* element_type = type->array_type()->element_type()->forwarded();
3036 bool is_byte = element_type == Type::lookup_integer_type("uint8");
3037 bool is_int = element_type == Type::lookup_integer_type("int");
3038 if (is_byte || is_int)
3039 {
3040 std::string s;
3041 if (val->string_constant_value(&s))
3042 {
3043 Expression_list* vals = new Expression_list();
3044 if (is_byte)
3045 {
3046 for (std::string::const_iterator p = s.begin();
3047 p != s.end();
3048 p++)
3049 {
3050 mpz_t val;
3051 mpz_init_set_ui(val, static_cast<unsigned char>(*p));
3052 Expression* v = Expression::make_integer(&val,
3053 element_type,
3054 location);
3055 vals->push_back(v);
3056 mpz_clear(val);
3057 }
3058 }
3059 else
3060 {
3061 const char *p = s.data();
3062 const char *pend = s.data() + s.length();
3063 while (p < pend)
3064 {
3065 unsigned int c;
3066 int adv = Lex::fetch_char(p, &c);
3067 if (adv == 0)
3068 {
3069 warning_at(this->location(), 0,
3070 "invalid UTF-8 encoding");
3071 adv = 1;
3072 }
3073 p += adv;
3074 mpz_t val;
3075 mpz_init_set_ui(val, c);
3076 Expression* v = Expression::make_integer(&val,
3077 element_type,
3078 location);
3079 vals->push_back(v);
3080 mpz_clear(val);
3081 }
3082 }
3083
3084 return Expression::make_slice_composite_literal(type, vals,
3085 location);
3086 }
3087 }
3088 }
3089
3090 return this;
3091 }
3092
3093 // Return the constant integer value if there is one.
3094
3095 bool
3096 Type_conversion_expression::do_integer_constant_value(bool iota_is_constant,
3097 mpz_t val,
3098 Type** ptype) const
3099 {
3100 if (this->type_->integer_type() == NULL)
3101 return false;
3102
3103 mpz_t ival;
3104 mpz_init(ival);
3105 Type* dummy;
3106 if (this->expr_->integer_constant_value(iota_is_constant, ival, &dummy))
3107 {
3108 if (!Integer_expression::check_constant(ival, this->type_,
3109 this->location()))
3110 {
3111 mpz_clear(ival);
3112 return false;
3113 }
3114 mpz_set(val, ival);
3115 mpz_clear(ival);
3116 *ptype = this->type_;
3117 return true;
3118 }
3119 mpz_clear(ival);
3120
3121 mpfr_t fval;
3122 mpfr_init(fval);
3123 if (this->expr_->float_constant_value(fval, &dummy))
3124 {
3125 mpfr_get_z(val, fval, GMP_RNDN);
3126 mpfr_clear(fval);
3127 if (!Integer_expression::check_constant(val, this->type_,
3128 this->location()))
3129 return false;
3130 *ptype = this->type_;
3131 return true;
3132 }
3133 mpfr_clear(fval);
3134
3135 return false;
3136 }
3137
3138 // Return the constant floating point value if there is one.
3139
3140 bool
3141 Type_conversion_expression::do_float_constant_value(mpfr_t val,
3142 Type** ptype) const
3143 {
3144 if (this->type_->float_type() == NULL)
3145 return false;
3146
3147 mpfr_t fval;
3148 mpfr_init(fval);
3149 Type* dummy;
3150 if (this->expr_->float_constant_value(fval, &dummy))
3151 {
3152 if (!Float_expression::check_constant(fval, this->type_,
3153 this->location()))
3154 {
3155 mpfr_clear(fval);
3156 return false;
3157 }
3158 mpfr_set(val, fval, GMP_RNDN);
3159 mpfr_clear(fval);
3160 Float_expression::constrain_float(val, this->type_);
3161 *ptype = this->type_;
3162 return true;
3163 }
3164 mpfr_clear(fval);
3165
3166 return false;
3167 }
3168
3169 // Return the constant complex value if there is one.
3170
3171 bool
3172 Type_conversion_expression::do_complex_constant_value(mpfr_t real,
3173 mpfr_t imag,
3174 Type **ptype) const
3175 {
3176 if (this->type_->complex_type() == NULL)
3177 return false;
3178
3179 mpfr_t rval;
3180 mpfr_t ival;
3181 mpfr_init(rval);
3182 mpfr_init(ival);
3183 Type* dummy;
3184 if (this->expr_->complex_constant_value(rval, ival, &dummy))
3185 {
3186 if (!Complex_expression::check_constant(rval, ival, this->type_,
3187 this->location()))
3188 {
3189 mpfr_clear(rval);
3190 mpfr_clear(ival);
3191 return false;
3192 }
3193 mpfr_set(real, rval, GMP_RNDN);
3194 mpfr_set(imag, ival, GMP_RNDN);
3195 mpfr_clear(rval);
3196 mpfr_clear(ival);
3197 Complex_expression::constrain_complex(real, imag, this->type_);
3198 *ptype = this->type_;
3199 return true;
3200 }
3201 mpfr_clear(rval);
3202 mpfr_clear(ival);
3203
3204 return false;
3205 }
3206
3207 // Return the constant string value if there is one.
3208
3209 bool
3210 Type_conversion_expression::do_string_constant_value(std::string* val) const
3211 {
3212 if (this->type_->is_string_type()
3213 && this->expr_->type()->integer_type() != NULL)
3214 {
3215 mpz_t ival;
3216 mpz_init(ival);
3217 Type* dummy;
3218 if (this->expr_->integer_constant_value(false, ival, &dummy))
3219 {
3220 unsigned long ulval = mpz_get_ui(ival);
3221 if (mpz_cmp_ui(ival, ulval) == 0)
3222 {
3223 Lex::append_char(ulval, true, val, this->location());
3224 mpz_clear(ival);
3225 return true;
3226 }
3227 }
3228 mpz_clear(ival);
3229 }
3230
3231 // FIXME: Could handle conversion from const []int here.
3232
3233 return false;
3234 }
3235
3236 // Check that types are convertible.
3237
3238 void
3239 Type_conversion_expression::do_check_types(Gogo*)
3240 {
3241 Type* type = this->type_;
3242 Type* expr_type = this->expr_->type();
3243 std::string reason;
3244
3245 if (this->may_convert_function_types_
3246 && type->function_type() != NULL
3247 && expr_type->function_type() != NULL)
3248 return;
3249
3250 if (Type::are_convertible(type, expr_type, &reason))
3251 return;
3252
3253 error_at(this->location(), "%s", reason.c_str());
3254 this->set_is_error();
3255 }
3256
3257 // Get a tree for a type conversion.
3258
3259 tree
3260 Type_conversion_expression::do_get_tree(Translate_context* context)
3261 {
3262 Gogo* gogo = context->gogo();
3263 tree type_tree = this->type_->get_tree(gogo);
3264 tree expr_tree = this->expr_->get_tree(context);
3265
3266 if (type_tree == error_mark_node
3267 || expr_tree == error_mark_node
3268 || TREE_TYPE(expr_tree) == error_mark_node)
3269 return error_mark_node;
3270
3271 if (TYPE_MAIN_VARIANT(type_tree) == TYPE_MAIN_VARIANT(TREE_TYPE(expr_tree)))
3272 return fold_convert(type_tree, expr_tree);
3273
3274 Type* type = this->type_;
3275 Type* expr_type = this->expr_->type();
3276 tree ret;
3277 if (type->interface_type() != NULL || expr_type->interface_type() != NULL)
3278 ret = Expression::convert_for_assignment(context, type, expr_type,
3279 expr_tree, this->location());
3280 else if (type->integer_type() != NULL)
3281 {
3282 if (expr_type->integer_type() != NULL
3283 || expr_type->float_type() != NULL
3284 || expr_type->is_unsafe_pointer_type())
3285 ret = fold(convert_to_integer(type_tree, expr_tree));
3286 else
3287 gcc_unreachable();
3288 }
3289 else if (type->float_type() != NULL)
3290 {
3291 if (expr_type->integer_type() != NULL
3292 || expr_type->float_type() != NULL)
3293 ret = fold(convert_to_real(type_tree, expr_tree));
3294 else
3295 gcc_unreachable();
3296 }
3297 else if (type->complex_type() != NULL)
3298 {
3299 if (expr_type->complex_type() != NULL)
3300 ret = fold(convert_to_complex(type_tree, expr_tree));
3301 else
3302 gcc_unreachable();
3303 }
3304 else if (type->is_string_type()
3305 && expr_type->integer_type() != NULL)
3306 {
3307 expr_tree = fold_convert(integer_type_node, expr_tree);
3308 if (host_integerp(expr_tree, 0))
3309 {
3310 HOST_WIDE_INT intval = tree_low_cst(expr_tree, 0);
3311 std::string s;
3312 Lex::append_char(intval, true, &s, this->location());
3313 Expression* se = Expression::make_string(s, this->location());
3314 return se->get_tree(context);
3315 }
3316
3317 static tree int_to_string_fndecl;
3318 ret = Gogo::call_builtin(&int_to_string_fndecl,
3319 this->location(),
3320 "__go_int_to_string",
3321 1,
3322 type_tree,
3323 integer_type_node,
3324 fold_convert(integer_type_node, expr_tree));
3325 }
3326 else if (type->is_string_type()
3327 && (expr_type->array_type() != NULL
3328 || (expr_type->points_to() != NULL
3329 && expr_type->points_to()->array_type() != NULL)))
3330 {
3331 Type* t = expr_type;
3332 if (t->points_to() != NULL)
3333 {
3334 t = t->points_to();
3335 expr_tree = build_fold_indirect_ref(expr_tree);
3336 }
3337 if (!DECL_P(expr_tree))
3338 expr_tree = save_expr(expr_tree);
3339 Array_type* a = t->array_type();
3340 Type* e = a->element_type()->forwarded();
3341 gcc_assert(e->integer_type() != NULL);
3342 tree valptr = fold_convert(const_ptr_type_node,
3343 a->value_pointer_tree(gogo, expr_tree));
3344 tree len = a->length_tree(gogo, expr_tree);
3345 len = fold_convert_loc(this->location(), size_type_node, len);
3346 if (e->integer_type()->is_unsigned()
3347 && e->integer_type()->bits() == 8)
3348 {
3349 static tree byte_array_to_string_fndecl;
3350 ret = Gogo::call_builtin(&byte_array_to_string_fndecl,
3351 this->location(),
3352 "__go_byte_array_to_string",
3353 2,
3354 type_tree,
3355 const_ptr_type_node,
3356 valptr,
3357 size_type_node,
3358 len);
3359 }
3360 else
3361 {
3362 gcc_assert(e == Type::lookup_integer_type("int"));
3363 static tree int_array_to_string_fndecl;
3364 ret = Gogo::call_builtin(&int_array_to_string_fndecl,
3365 this->location(),
3366 "__go_int_array_to_string",
3367 2,
3368 type_tree,
3369 const_ptr_type_node,
3370 valptr,
3371 size_type_node,
3372 len);
3373 }
3374 }
3375 else if (type->is_open_array_type() && expr_type->is_string_type())
3376 {
3377 Type* e = type->array_type()->element_type()->forwarded();
3378 gcc_assert(e->integer_type() != NULL);
3379 if (e->integer_type()->is_unsigned()
3380 && e->integer_type()->bits() == 8)
3381 {
3382 static tree string_to_byte_array_fndecl;
3383 ret = Gogo::call_builtin(&string_to_byte_array_fndecl,
3384 this->location(),
3385 "__go_string_to_byte_array",
3386 1,
3387 type_tree,
3388 TREE_TYPE(expr_tree),
3389 expr_tree);
3390 }
3391 else
3392 {
3393 gcc_assert(e == Type::lookup_integer_type("int"));
3394 static tree string_to_int_array_fndecl;
3395 ret = Gogo::call_builtin(&string_to_int_array_fndecl,
3396 this->location(),
3397 "__go_string_to_int_array",
3398 1,
3399 type_tree,
3400 TREE_TYPE(expr_tree),
3401 expr_tree);
3402 }
3403 }
3404 else if ((type->is_unsafe_pointer_type()
3405 && expr_type->points_to() != NULL)
3406 || (expr_type->is_unsafe_pointer_type()
3407 && type->points_to() != NULL))
3408 ret = fold_convert(type_tree, expr_tree);
3409 else if (type->is_unsafe_pointer_type()
3410 && expr_type->integer_type() != NULL)
3411 ret = convert_to_pointer(type_tree, expr_tree);
3412 else if (this->may_convert_function_types_
3413 && type->function_type() != NULL
3414 && expr_type->function_type() != NULL)
3415 ret = fold_convert_loc(this->location(), type_tree, expr_tree);
3416 else
3417 ret = Expression::convert_for_assignment(context, type, expr_type,
3418 expr_tree, this->location());
3419
3420 return ret;
3421 }
3422
3423 // Output a type conversion in a constant expression.
3424
3425 void
3426 Type_conversion_expression::do_export(Export* exp) const
3427 {
3428 exp->write_c_string("convert(");
3429 exp->write_type(this->type_);
3430 exp->write_c_string(", ");
3431 this->expr_->export_expression(exp);
3432 exp->write_c_string(")");
3433 }
3434
3435 // Import a type conversion or a struct construction.
3436
3437 Expression*
3438 Type_conversion_expression::do_import(Import* imp)
3439 {
3440 imp->require_c_string("convert(");
3441 Type* type = imp->read_type();
3442 imp->require_c_string(", ");
3443 Expression* val = Expression::import_expression(imp);
3444 imp->require_c_string(")");
3445 return Expression::make_cast(type, val, imp->location());
3446 }
3447
3448 // Make a type cast expression.
3449
3450 Expression*
3451 Expression::make_cast(Type* type, Expression* val, source_location location)
3452 {
3453 if (type->is_error_type() || val->is_error_expression())
3454 return Expression::make_error(location);
3455 return new Type_conversion_expression(type, val, location);
3456 }
3457
3458 // Unary expressions.
3459
3460 class Unary_expression : public Expression
3461 {
3462 public:
3463 Unary_expression(Operator op, Expression* expr, source_location location)
3464 : Expression(EXPRESSION_UNARY, location),
3465 op_(op), escapes_(true), expr_(expr)
3466 { }
3467
3468 // Return the operator.
3469 Operator
3470 op() const
3471 { return this->op_; }
3472
3473 // Return the operand.
3474 Expression*
3475 operand() const
3476 { return this->expr_; }
3477
3478 // Record that an address expression does not escape.
3479 void
3480 set_does_not_escape()
3481 {
3482 gcc_assert(this->op_ == OPERATOR_AND);
3483 this->escapes_ = false;
3484 }
3485
3486 // Apply unary opcode OP to UVAL, setting VAL. Return true if this
3487 // could be done, false if not.
3488 static bool
3489 eval_integer(Operator op, Type* utype, mpz_t uval, mpz_t val,
3490 source_location);
3491
3492 // Apply unary opcode OP to UVAL, setting VAL. Return true if this
3493 // could be done, false if not.
3494 static bool
3495 eval_float(Operator op, mpfr_t uval, mpfr_t val);
3496
3497 // Apply unary opcode OP to UREAL/UIMAG, setting REAL/IMAG. Return
3498 // true if this could be done, false if not.
3499 static bool
3500 eval_complex(Operator op, mpfr_t ureal, mpfr_t uimag, mpfr_t real,
3501 mpfr_t imag);
3502
3503 static Expression*
3504 do_import(Import*);
3505
3506 protected:
3507 int
3508 do_traverse(Traverse* traverse)
3509 { return Expression::traverse(&this->expr_, traverse); }
3510
3511 Expression*
3512 do_lower(Gogo*, Named_object*, int);
3513
3514 bool
3515 do_is_constant() const;
3516
3517 bool
3518 do_integer_constant_value(bool, mpz_t, Type**) const;
3519
3520 bool
3521 do_float_constant_value(mpfr_t, Type**) const;
3522
3523 bool
3524 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
3525
3526 Type*
3527 do_type();
3528
3529 void
3530 do_determine_type(const Type_context*);
3531
3532 void
3533 do_check_types(Gogo*);
3534
3535 Expression*
3536 do_copy()
3537 {
3538 return Expression::make_unary(this->op_, this->expr_->copy(),
3539 this->location());
3540 }
3541
3542 bool
3543 do_is_addressable() const
3544 { return this->op_ == OPERATOR_MULT; }
3545
3546 tree
3547 do_get_tree(Translate_context*);
3548
3549 void
3550 do_export(Export*) const;
3551
3552 private:
3553 // The unary operator to apply.
3554 Operator op_;
3555 // Normally true. False if this is an address expression which does
3556 // not escape the current function.
3557 bool escapes_;
3558 // The operand.
3559 Expression* expr_;
3560 };
3561
3562 // If we are taking the address of a composite literal, and the
3563 // contents are not constant, then we want to make a heap composite
3564 // instead.
3565
3566 Expression*
3567 Unary_expression::do_lower(Gogo*, Named_object*, int)
3568 {
3569 source_location loc = this->location();
3570 Operator op = this->op_;
3571 Expression* expr = this->expr_;
3572
3573 if (op == OPERATOR_MULT && expr->is_type_expression())
3574 return Expression::make_type(Type::make_pointer_type(expr->type()), loc);
3575
3576 // *&x simplifies to x. *(*T)(unsafe.Pointer)(&x) does not require
3577 // moving x to the heap. FIXME: Is it worth doing a real escape
3578 // analysis here? This case is found in math/unsafe.go and is
3579 // therefore worth special casing.
3580 if (op == OPERATOR_MULT)
3581 {
3582 Expression* e = expr;
3583 while (e->classification() == EXPRESSION_CONVERSION)
3584 {
3585 Type_conversion_expression* te
3586 = static_cast<Type_conversion_expression*>(e);
3587 e = te->expr();
3588 }
3589
3590 if (e->classification() == EXPRESSION_UNARY)
3591 {
3592 Unary_expression* ue = static_cast<Unary_expression*>(e);
3593 if (ue->op_ == OPERATOR_AND)
3594 {
3595 if (e == expr)
3596 {
3597 // *&x == x.
3598 return ue->expr_;
3599 }
3600 ue->set_does_not_escape();
3601 }
3602 }
3603 }
3604
3605 if (op == OPERATOR_PLUS || op == OPERATOR_MINUS
3606 || op == OPERATOR_NOT || op == OPERATOR_XOR)
3607 {
3608 Expression* ret = NULL;
3609
3610 mpz_t eval;
3611 mpz_init(eval);
3612 Type* etype;
3613 if (expr->integer_constant_value(false, eval, &etype))
3614 {
3615 mpz_t val;
3616 mpz_init(val);
3617 if (Unary_expression::eval_integer(op, etype, eval, val, loc))
3618 ret = Expression::make_integer(&val, etype, loc);
3619 mpz_clear(val);
3620 }
3621 mpz_clear(eval);
3622 if (ret != NULL)
3623 return ret;
3624
3625 if (op == OPERATOR_PLUS || op == OPERATOR_MINUS)
3626 {
3627 mpfr_t fval;
3628 mpfr_init(fval);
3629 Type* ftype;
3630 if (expr->float_constant_value(fval, &ftype))
3631 {
3632 mpfr_t val;
3633 mpfr_init(val);
3634 if (Unary_expression::eval_float(op, fval, val))
3635 ret = Expression::make_float(&val, ftype, loc);
3636 mpfr_clear(val);
3637 }
3638 if (ret != NULL)
3639 {
3640 mpfr_clear(fval);
3641 return ret;
3642 }
3643
3644 mpfr_t ival;
3645 mpfr_init(ival);
3646 if (expr->complex_constant_value(fval, ival, &ftype))
3647 {
3648 mpfr_t real;
3649 mpfr_t imag;
3650 mpfr_init(real);
3651 mpfr_init(imag);
3652 if (Unary_expression::eval_complex(op, fval, ival, real, imag))
3653 ret = Expression::make_complex(&real, &imag, ftype, loc);
3654 mpfr_clear(real);
3655 mpfr_clear(imag);
3656 }
3657 mpfr_clear(ival);
3658 mpfr_clear(fval);
3659 if (ret != NULL)
3660 return ret;
3661 }
3662 }
3663
3664 return this;
3665 }
3666
3667 // Return whether a unary expression is a constant.
3668
3669 bool
3670 Unary_expression::do_is_constant() const
3671 {
3672 if (this->op_ == OPERATOR_MULT)
3673 {
3674 // Indirecting through a pointer is only constant if the object
3675 // to which the expression points is constant, but we currently
3676 // have no way to determine that.
3677 return false;
3678 }
3679 else if (this->op_ == OPERATOR_AND)
3680 {
3681 // Taking the address of a variable is constant if it is a
3682 // global variable, not constant otherwise. In other cases
3683 // taking the address is probably not a constant.
3684 Var_expression* ve = this->expr_->var_expression();
3685 if (ve != NULL)
3686 {
3687 Named_object* no = ve->named_object();
3688 return no->is_variable() && no->var_value()->is_global();
3689 }
3690 return false;
3691 }
3692 else
3693 return this->expr_->is_constant();
3694 }
3695
3696 // Apply unary opcode OP to UVAL, setting VAL. UTYPE is the type of
3697 // UVAL, if known; it may be NULL. Return true if this could be done,
3698 // false if not.
3699
3700 bool
3701 Unary_expression::eval_integer(Operator op, Type* utype, mpz_t uval, mpz_t val,
3702 source_location location)
3703 {
3704 switch (op)
3705 {
3706 case OPERATOR_PLUS:
3707 mpz_set(val, uval);
3708 return true;
3709 case OPERATOR_MINUS:
3710 mpz_neg(val, uval);
3711 return Integer_expression::check_constant(val, utype, location);
3712 case OPERATOR_NOT:
3713 mpz_set_ui(val, mpz_cmp_si(uval, 0) == 0 ? 1 : 0);
3714 return true;
3715 case OPERATOR_XOR:
3716 if (utype == NULL
3717 || utype->integer_type() == NULL
3718 || utype->integer_type()->is_abstract())
3719 mpz_com(val, uval);
3720 else
3721 {
3722 // The number of HOST_WIDE_INTs that it takes to represent
3723 // UVAL.
3724 size_t count = ((mpz_sizeinbase(uval, 2)
3725 + HOST_BITS_PER_WIDE_INT
3726 - 1)
3727 / HOST_BITS_PER_WIDE_INT);
3728
3729 unsigned HOST_WIDE_INT* phwi = new unsigned HOST_WIDE_INT[count];
3730 memset(phwi, 0, count * sizeof(HOST_WIDE_INT));
3731
3732 size_t ecount;
3733 mpz_export(phwi, &ecount, -1, sizeof(HOST_WIDE_INT), 0, 0, uval);
3734 gcc_assert(ecount <= count);
3735
3736 // Trim down to the number of words required by the type.
3737 size_t obits = utype->integer_type()->bits();
3738 if (!utype->integer_type()->is_unsigned())
3739 ++obits;
3740 size_t ocount = ((obits + HOST_BITS_PER_WIDE_INT - 1)
3741 / HOST_BITS_PER_WIDE_INT);
3742 gcc_assert(ocount <= ocount);
3743
3744 for (size_t i = 0; i < ocount; ++i)
3745 phwi[i] = ~phwi[i];
3746
3747 size_t clearbits = ocount * HOST_BITS_PER_WIDE_INT - obits;
3748 if (clearbits != 0)
3749 phwi[ocount - 1] &= (((unsigned HOST_WIDE_INT) (HOST_WIDE_INT) -1)
3750 >> clearbits);
3751
3752 mpz_import(val, ocount, -1, sizeof(HOST_WIDE_INT), 0, 0, phwi);
3753
3754 delete[] phwi;
3755 }
3756 return Integer_expression::check_constant(val, utype, location);
3757 case OPERATOR_AND:
3758 case OPERATOR_MULT:
3759 return false;
3760 default:
3761 gcc_unreachable();
3762 }
3763 }
3764
3765 // Apply unary opcode OP to UVAL, setting VAL. Return true if this
3766 // could be done, false if not.
3767
3768 bool
3769 Unary_expression::eval_float(Operator op, mpfr_t uval, mpfr_t val)
3770 {
3771 switch (op)
3772 {
3773 case OPERATOR_PLUS:
3774 mpfr_set(val, uval, GMP_RNDN);
3775 return true;
3776 case OPERATOR_MINUS:
3777 mpfr_neg(val, uval, GMP_RNDN);
3778 return true;
3779 case OPERATOR_NOT:
3780 case OPERATOR_XOR:
3781 case OPERATOR_AND:
3782 case OPERATOR_MULT:
3783 return false;
3784 default:
3785 gcc_unreachable();
3786 }
3787 }
3788
3789 // Apply unary opcode OP to RVAL/IVAL, setting REAL/IMAG. Return true
3790 // if this could be done, false if not.
3791
3792 bool
3793 Unary_expression::eval_complex(Operator op, mpfr_t rval, mpfr_t ival,
3794 mpfr_t real, mpfr_t imag)
3795 {
3796 switch (op)
3797 {
3798 case OPERATOR_PLUS:
3799 mpfr_set(real, rval, GMP_RNDN);
3800 mpfr_set(imag, ival, GMP_RNDN);
3801 return true;
3802 case OPERATOR_MINUS:
3803 mpfr_neg(real, rval, GMP_RNDN);
3804 mpfr_neg(imag, ival, GMP_RNDN);
3805 return true;
3806 case OPERATOR_NOT:
3807 case OPERATOR_XOR:
3808 case OPERATOR_AND:
3809 case OPERATOR_MULT:
3810 return false;
3811 default:
3812 gcc_unreachable();
3813 }
3814 }
3815
3816 // Return the integral constant value of a unary expression, if it has one.
3817
3818 bool
3819 Unary_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
3820 Type** ptype) const
3821 {
3822 mpz_t uval;
3823 mpz_init(uval);
3824 bool ret;
3825 if (!this->expr_->integer_constant_value(iota_is_constant, uval, ptype))
3826 ret = false;
3827 else
3828 ret = Unary_expression::eval_integer(this->op_, *ptype, uval, val,
3829 this->location());
3830 mpz_clear(uval);
3831 return ret;
3832 }
3833
3834 // Return the floating point constant value of a unary expression, if
3835 // it has one.
3836
3837 bool
3838 Unary_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
3839 {
3840 mpfr_t uval;
3841 mpfr_init(uval);
3842 bool ret;
3843 if (!this->expr_->float_constant_value(uval, ptype))
3844 ret = false;
3845 else
3846 ret = Unary_expression::eval_float(this->op_, uval, val);
3847 mpfr_clear(uval);
3848 return ret;
3849 }
3850
3851 // Return the complex constant value of a unary expression, if it has
3852 // one.
3853
3854 bool
3855 Unary_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
3856 Type** ptype) const
3857 {
3858 mpfr_t rval;
3859 mpfr_t ival;
3860 mpfr_init(rval);
3861 mpfr_init(ival);
3862 bool ret;
3863 if (!this->expr_->complex_constant_value(rval, ival, ptype))
3864 ret = false;
3865 else
3866 ret = Unary_expression::eval_complex(this->op_, rval, ival, real, imag);
3867 mpfr_clear(rval);
3868 mpfr_clear(ival);
3869 return ret;
3870 }
3871
3872 // Return the type of a unary expression.
3873
3874 Type*
3875 Unary_expression::do_type()
3876 {
3877 switch (this->op_)
3878 {
3879 case OPERATOR_PLUS:
3880 case OPERATOR_MINUS:
3881 case OPERATOR_NOT:
3882 case OPERATOR_XOR:
3883 return this->expr_->type();
3884
3885 case OPERATOR_AND:
3886 return Type::make_pointer_type(this->expr_->type());
3887
3888 case OPERATOR_MULT:
3889 {
3890 Type* subtype = this->expr_->type();
3891 Type* points_to = subtype->points_to();
3892 if (points_to == NULL)
3893 return Type::make_error_type();
3894 return points_to;
3895 }
3896
3897 default:
3898 gcc_unreachable();
3899 }
3900 }
3901
3902 // Determine abstract types for a unary expression.
3903
3904 void
3905 Unary_expression::do_determine_type(const Type_context* context)
3906 {
3907 switch (this->op_)
3908 {
3909 case OPERATOR_PLUS:
3910 case OPERATOR_MINUS:
3911 case OPERATOR_NOT:
3912 case OPERATOR_XOR:
3913 this->expr_->determine_type(context);
3914 break;
3915
3916 case OPERATOR_AND:
3917 // Taking the address of something.
3918 {
3919 Type* subtype = (context->type == NULL
3920 ? NULL
3921 : context->type->points_to());
3922 Type_context subcontext(subtype, false);
3923 this->expr_->determine_type(&subcontext);
3924 }
3925 break;
3926
3927 case OPERATOR_MULT:
3928 // Indirecting through a pointer.
3929 {
3930 Type* subtype = (context->type == NULL
3931 ? NULL
3932 : Type::make_pointer_type(context->type));
3933 Type_context subcontext(subtype, false);
3934 this->expr_->determine_type(&subcontext);
3935 }
3936 break;
3937
3938 default:
3939 gcc_unreachable();
3940 }
3941 }
3942
3943 // Check types for a unary expression.
3944
3945 void
3946 Unary_expression::do_check_types(Gogo*)
3947 {
3948 Type* type = this->expr_->type();
3949 if (type->is_error_type())
3950 {
3951 this->set_is_error();
3952 return;
3953 }
3954
3955 switch (this->op_)
3956 {
3957 case OPERATOR_PLUS:
3958 case OPERATOR_MINUS:
3959 if (type->integer_type() == NULL
3960 && type->float_type() == NULL
3961 && type->complex_type() == NULL)
3962 this->report_error(_("expected numeric type"));
3963 break;
3964
3965 case OPERATOR_NOT:
3966 case OPERATOR_XOR:
3967 if (type->integer_type() == NULL
3968 && !type->is_boolean_type())
3969 this->report_error(_("expected integer or boolean type"));
3970 break;
3971
3972 case OPERATOR_AND:
3973 if (!this->expr_->is_addressable())
3974 this->report_error(_("invalid operand for unary %<&%>"));
3975 else
3976 this->expr_->address_taken(this->escapes_);
3977 break;
3978
3979 case OPERATOR_MULT:
3980 // Indirecting through a pointer.
3981 if (type->points_to() == NULL)
3982 this->report_error(_("expected pointer"));
3983 break;
3984
3985 default:
3986 gcc_unreachable();
3987 }
3988 }
3989
3990 // Get a tree for a unary expression.
3991
3992 tree
3993 Unary_expression::do_get_tree(Translate_context* context)
3994 {
3995 tree expr = this->expr_->get_tree(context);
3996 if (expr == error_mark_node)
3997 return error_mark_node;
3998
3999 source_location loc = this->location();
4000 switch (this->op_)
4001 {
4002 case OPERATOR_PLUS:
4003 return expr;
4004
4005 case OPERATOR_MINUS:
4006 {
4007 tree type = TREE_TYPE(expr);
4008 tree compute_type = excess_precision_type(type);
4009 if (compute_type != NULL_TREE)
4010 expr = ::convert(compute_type, expr);
4011 tree ret = fold_build1_loc(loc, NEGATE_EXPR,
4012 (compute_type != NULL_TREE
4013 ? compute_type
4014 : type),
4015 expr);
4016 if (compute_type != NULL_TREE)
4017 ret = ::convert(type, ret);
4018 return ret;
4019 }
4020
4021 case OPERATOR_NOT:
4022 if (TREE_CODE(TREE_TYPE(expr)) == BOOLEAN_TYPE)
4023 return fold_build1_loc(loc, TRUTH_NOT_EXPR, TREE_TYPE(expr), expr);
4024 else
4025 return fold_build2_loc(loc, NE_EXPR, boolean_type_node, expr,
4026 build_int_cst(TREE_TYPE(expr), 0));
4027
4028 case OPERATOR_XOR:
4029 return fold_build1_loc(loc, BIT_NOT_EXPR, TREE_TYPE(expr), expr);
4030
4031 case OPERATOR_AND:
4032 // We should not see a non-constant constructor here; cases
4033 // where we would see one should have been moved onto the heap
4034 // at parse time. Taking the address of a nonconstant
4035 // constructor will not do what the programmer expects.
4036 gcc_assert(TREE_CODE(expr) != CONSTRUCTOR || TREE_CONSTANT(expr));
4037 gcc_assert(TREE_CODE(expr) != ADDR_EXPR);
4038
4039 // Build a decl for a constant constructor.
4040 if (TREE_CODE(expr) == CONSTRUCTOR && TREE_CONSTANT(expr))
4041 {
4042 tree decl = build_decl(this->location(), VAR_DECL,
4043 create_tmp_var_name("C"), TREE_TYPE(expr));
4044 DECL_EXTERNAL(decl) = 0;
4045 TREE_PUBLIC(decl) = 0;
4046 TREE_READONLY(decl) = 1;
4047 TREE_CONSTANT(decl) = 1;
4048 TREE_STATIC(decl) = 1;
4049 TREE_ADDRESSABLE(decl) = 1;
4050 DECL_ARTIFICIAL(decl) = 1;
4051 DECL_INITIAL(decl) = expr;
4052 rest_of_decl_compilation(decl, 1, 0);
4053 expr = decl;
4054 }
4055
4056 return build_fold_addr_expr_loc(loc, expr);
4057
4058 case OPERATOR_MULT:
4059 {
4060 gcc_assert(POINTER_TYPE_P(TREE_TYPE(expr)));
4061
4062 // If we are dereferencing the pointer to a large struct, we
4063 // need to check for nil. We don't bother to check for small
4064 // structs because we expect the system to crash on a nil
4065 // pointer dereference.
4066 HOST_WIDE_INT s = int_size_in_bytes(TREE_TYPE(TREE_TYPE(expr)));
4067 if (s == -1 || s >= 4096)
4068 {
4069 if (!DECL_P(expr))
4070 expr = save_expr(expr);
4071 tree compare = fold_build2_loc(loc, EQ_EXPR, boolean_type_node,
4072 expr,
4073 fold_convert(TREE_TYPE(expr),
4074 null_pointer_node));
4075 tree crash = Gogo::runtime_error(RUNTIME_ERROR_NIL_DEREFERENCE,
4076 loc);
4077 expr = fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(expr),
4078 build3(COND_EXPR, void_type_node,
4079 compare, crash, NULL_TREE),
4080 expr);
4081 }
4082
4083 // If the type of EXPR is a recursive pointer type, then we
4084 // need to insert a cast before indirecting.
4085 if (TREE_TYPE(TREE_TYPE(expr)) == ptr_type_node)
4086 {
4087 Type* pt = this->expr_->type()->points_to();
4088 tree ind = pt->get_tree(context->gogo());
4089 expr = fold_convert_loc(loc, build_pointer_type(ind), expr);
4090 }
4091
4092 return build_fold_indirect_ref_loc(loc, expr);
4093 }
4094
4095 default:
4096 gcc_unreachable();
4097 }
4098 }
4099
4100 // Export a unary expression.
4101
4102 void
4103 Unary_expression::do_export(Export* exp) const
4104 {
4105 switch (this->op_)
4106 {
4107 case OPERATOR_PLUS:
4108 exp->write_c_string("+ ");
4109 break;
4110 case OPERATOR_MINUS:
4111 exp->write_c_string("- ");
4112 break;
4113 case OPERATOR_NOT:
4114 exp->write_c_string("! ");
4115 break;
4116 case OPERATOR_XOR:
4117 exp->write_c_string("^ ");
4118 break;
4119 case OPERATOR_AND:
4120 case OPERATOR_MULT:
4121 default:
4122 gcc_unreachable();
4123 }
4124 this->expr_->export_expression(exp);
4125 }
4126
4127 // Import a unary expression.
4128
4129 Expression*
4130 Unary_expression::do_import(Import* imp)
4131 {
4132 Operator op;
4133 switch (imp->get_char())
4134 {
4135 case '+':
4136 op = OPERATOR_PLUS;
4137 break;
4138 case '-':
4139 op = OPERATOR_MINUS;
4140 break;
4141 case '!':
4142 op = OPERATOR_NOT;
4143 break;
4144 case '^':
4145 op = OPERATOR_XOR;
4146 break;
4147 default:
4148 gcc_unreachable();
4149 }
4150 imp->require_c_string(" ");
4151 Expression* expr = Expression::import_expression(imp);
4152 return Expression::make_unary(op, expr, imp->location());
4153 }
4154
4155 // Make a unary expression.
4156
4157 Expression*
4158 Expression::make_unary(Operator op, Expression* expr, source_location location)
4159 {
4160 return new Unary_expression(op, expr, location);
4161 }
4162
4163 // If this is an indirection through a pointer, return the expression
4164 // being pointed through. Otherwise return this.
4165
4166 Expression*
4167 Expression::deref()
4168 {
4169 if (this->classification_ == EXPRESSION_UNARY)
4170 {
4171 Unary_expression* ue = static_cast<Unary_expression*>(this);
4172 if (ue->op() == OPERATOR_MULT)
4173 return ue->operand();
4174 }
4175 return this;
4176 }
4177
4178 // Class Binary_expression.
4179
4180 // Traversal.
4181
4182 int
4183 Binary_expression::do_traverse(Traverse* traverse)
4184 {
4185 int t = Expression::traverse(&this->left_, traverse);
4186 if (t == TRAVERSE_EXIT)
4187 return TRAVERSE_EXIT;
4188 return Expression::traverse(&this->right_, traverse);
4189 }
4190
4191 // Compare integer constants according to OP.
4192
4193 bool
4194 Binary_expression::compare_integer(Operator op, mpz_t left_val,
4195 mpz_t right_val)
4196 {
4197 int i = mpz_cmp(left_val, right_val);
4198 switch (op)
4199 {
4200 case OPERATOR_EQEQ:
4201 return i == 0;
4202 case OPERATOR_NOTEQ:
4203 return i != 0;
4204 case OPERATOR_LT:
4205 return i < 0;
4206 case OPERATOR_LE:
4207 return i <= 0;
4208 case OPERATOR_GT:
4209 return i > 0;
4210 case OPERATOR_GE:
4211 return i >= 0;
4212 default:
4213 gcc_unreachable();
4214 }
4215 }
4216
4217 // Compare floating point constants according to OP.
4218
4219 bool
4220 Binary_expression::compare_float(Operator op, Type* type, mpfr_t left_val,
4221 mpfr_t right_val)
4222 {
4223 int i;
4224 if (type == NULL)
4225 i = mpfr_cmp(left_val, right_val);
4226 else
4227 {
4228 mpfr_t lv;
4229 mpfr_init_set(lv, left_val, GMP_RNDN);
4230 mpfr_t rv;
4231 mpfr_init_set(rv, right_val, GMP_RNDN);
4232 Float_expression::constrain_float(lv, type);
4233 Float_expression::constrain_float(rv, type);
4234 i = mpfr_cmp(lv, rv);
4235 mpfr_clear(lv);
4236 mpfr_clear(rv);
4237 }
4238 switch (op)
4239 {
4240 case OPERATOR_EQEQ:
4241 return i == 0;
4242 case OPERATOR_NOTEQ:
4243 return i != 0;
4244 case OPERATOR_LT:
4245 return i < 0;
4246 case OPERATOR_LE:
4247 return i <= 0;
4248 case OPERATOR_GT:
4249 return i > 0;
4250 case OPERATOR_GE:
4251 return i >= 0;
4252 default:
4253 gcc_unreachable();
4254 }
4255 }
4256
4257 // Compare complex constants according to OP. Complex numbers may
4258 // only be compared for equality.
4259
4260 bool
4261 Binary_expression::compare_complex(Operator op, Type* type,
4262 mpfr_t left_real, mpfr_t left_imag,
4263 mpfr_t right_real, mpfr_t right_imag)
4264 {
4265 bool is_equal;
4266 if (type == NULL)
4267 is_equal = (mpfr_cmp(left_real, right_real) == 0
4268 && mpfr_cmp(left_imag, right_imag) == 0);
4269 else
4270 {
4271 mpfr_t lr;
4272 mpfr_t li;
4273 mpfr_init_set(lr, left_real, GMP_RNDN);
4274 mpfr_init_set(li, left_imag, GMP_RNDN);
4275 mpfr_t rr;
4276 mpfr_t ri;
4277 mpfr_init_set(rr, right_real, GMP_RNDN);
4278 mpfr_init_set(ri, right_imag, GMP_RNDN);
4279 Complex_expression::constrain_complex(lr, li, type);
4280 Complex_expression::constrain_complex(rr, ri, type);
4281 is_equal = mpfr_cmp(lr, rr) == 0 && mpfr_cmp(li, ri) == 0;
4282 mpfr_clear(lr);
4283 mpfr_clear(li);
4284 mpfr_clear(rr);
4285 mpfr_clear(ri);
4286 }
4287 switch (op)
4288 {
4289 case OPERATOR_EQEQ:
4290 return is_equal;
4291 case OPERATOR_NOTEQ:
4292 return !is_equal;
4293 default:
4294 gcc_unreachable();
4295 }
4296 }
4297
4298 // Apply binary opcode OP to LEFT_VAL and RIGHT_VAL, setting VAL.
4299 // LEFT_TYPE is the type of LEFT_VAL, RIGHT_TYPE is the type of
4300 // RIGHT_VAL; LEFT_TYPE and/or RIGHT_TYPE may be NULL. Return true if
4301 // this could be done, false if not.
4302
4303 bool
4304 Binary_expression::eval_integer(Operator op, Type* left_type, mpz_t left_val,
4305 Type* right_type, mpz_t right_val,
4306 source_location location, mpz_t val)
4307 {
4308 bool is_shift_op = false;
4309 switch (op)
4310 {
4311 case OPERATOR_OROR:
4312 case OPERATOR_ANDAND:
4313 case OPERATOR_EQEQ:
4314 case OPERATOR_NOTEQ:
4315 case OPERATOR_LT:
4316 case OPERATOR_LE:
4317 case OPERATOR_GT:
4318 case OPERATOR_GE:
4319 // These return boolean values. We should probably handle them
4320 // anyhow in case a type conversion is used on the result.
4321 return false;
4322 case OPERATOR_PLUS:
4323 mpz_add(val, left_val, right_val);
4324 break;
4325 case OPERATOR_MINUS:
4326 mpz_sub(val, left_val, right_val);
4327 break;
4328 case OPERATOR_OR:
4329 mpz_ior(val, left_val, right_val);
4330 break;
4331 case OPERATOR_XOR:
4332 mpz_xor(val, left_val, right_val);
4333 break;
4334 case OPERATOR_MULT:
4335 mpz_mul(val, left_val, right_val);
4336 break;
4337 case OPERATOR_DIV:
4338 if (mpz_sgn(right_val) != 0)
4339 mpz_tdiv_q(val, left_val, right_val);
4340 else
4341 {
4342 error_at(location, "division by zero");
4343 mpz_set_ui(val, 0);
4344 return true;
4345 }
4346 break;
4347 case OPERATOR_MOD:
4348 if (mpz_sgn(right_val) != 0)
4349 mpz_tdiv_r(val, left_val, right_val);
4350 else
4351 {
4352 error_at(location, "division by zero");
4353 mpz_set_ui(val, 0);
4354 return true;
4355 }
4356 break;
4357 case OPERATOR_LSHIFT:
4358 {
4359 unsigned long shift = mpz_get_ui(right_val);
4360 if (mpz_cmp_ui(right_val, shift) != 0)
4361 {
4362 error_at(location, "shift count overflow");
4363 mpz_set_ui(val, 0);
4364 return true;
4365 }
4366 mpz_mul_2exp(val, left_val, shift);
4367 is_shift_op = true;
4368 break;
4369 }
4370 break;
4371 case OPERATOR_RSHIFT:
4372 {
4373 unsigned long shift = mpz_get_ui(right_val);
4374 if (mpz_cmp_ui(right_val, shift) != 0)
4375 {
4376 error_at(location, "shift count overflow");
4377 mpz_set_ui(val, 0);
4378 return true;
4379 }
4380 if (mpz_cmp_ui(left_val, 0) >= 0)
4381 mpz_tdiv_q_2exp(val, left_val, shift);
4382 else
4383 mpz_fdiv_q_2exp(val, left_val, shift);
4384 is_shift_op = true;
4385 break;
4386 }
4387 break;
4388 case OPERATOR_AND:
4389 mpz_and(val, left_val, right_val);
4390 break;
4391 case OPERATOR_BITCLEAR:
4392 {
4393 mpz_t tval;
4394 mpz_init(tval);
4395 mpz_com(tval, right_val);
4396 mpz_and(val, left_val, tval);
4397 mpz_clear(tval);
4398 }
4399 break;
4400 default:
4401 gcc_unreachable();
4402 }
4403
4404 Type* type = left_type;
4405 if (!is_shift_op)
4406 {
4407 if (type == NULL)
4408 type = right_type;
4409 else if (type != right_type && right_type != NULL)
4410 {
4411 if (type->is_abstract())
4412 type = right_type;
4413 else if (!right_type->is_abstract())
4414 {
4415 // This look like a type error which should be diagnosed
4416 // elsewhere. Don't do anything here, to avoid an
4417 // unhelpful chain of error messages.
4418 return true;
4419 }
4420 }
4421 }
4422
4423 if (type != NULL && !type->is_abstract())
4424 {
4425 // We have to check the operands too, as we have implicitly
4426 // coerced them to TYPE.
4427 if ((type != left_type
4428 && !Integer_expression::check_constant(left_val, type, location))
4429 || (!is_shift_op
4430 && type != right_type
4431 && !Integer_expression::check_constant(right_val, type,
4432 location))
4433 || !Integer_expression::check_constant(val, type, location))
4434 mpz_set_ui(val, 0);
4435 }
4436
4437 return true;
4438 }
4439
4440 // Apply binary opcode OP to LEFT_VAL and RIGHT_VAL, setting VAL.
4441 // Return true if this could be done, false if not.
4442
4443 bool
4444 Binary_expression::eval_float(Operator op, Type* left_type, mpfr_t left_val,
4445 Type* right_type, mpfr_t right_val,
4446 mpfr_t val, source_location location)
4447 {
4448 switch (op)
4449 {
4450 case OPERATOR_OROR:
4451 case OPERATOR_ANDAND:
4452 case OPERATOR_EQEQ:
4453 case OPERATOR_NOTEQ:
4454 case OPERATOR_LT:
4455 case OPERATOR_LE:
4456 case OPERATOR_GT:
4457 case OPERATOR_GE:
4458 // These return boolean values. We should probably handle them
4459 // anyhow in case a type conversion is used on the result.
4460 return false;
4461 case OPERATOR_PLUS:
4462 mpfr_add(val, left_val, right_val, GMP_RNDN);
4463 break;
4464 case OPERATOR_MINUS:
4465 mpfr_sub(val, left_val, right_val, GMP_RNDN);
4466 break;
4467 case OPERATOR_OR:
4468 case OPERATOR_XOR:
4469 case OPERATOR_AND:
4470 case OPERATOR_BITCLEAR:
4471 return false;
4472 case OPERATOR_MULT:
4473 mpfr_mul(val, left_val, right_val, GMP_RNDN);
4474 break;
4475 case OPERATOR_DIV:
4476 if (mpfr_zero_p(right_val))
4477 error_at(location, "division by zero");
4478 mpfr_div(val, left_val, right_val, GMP_RNDN);
4479 break;
4480 case OPERATOR_MOD:
4481 return false;
4482 case OPERATOR_LSHIFT:
4483 case OPERATOR_RSHIFT:
4484 return false;
4485 default:
4486 gcc_unreachable();
4487 }
4488
4489 Type* type = left_type;
4490 if (type == NULL)
4491 type = right_type;
4492 else if (type != right_type && right_type != NULL)
4493 {
4494 if (type->is_abstract())
4495 type = right_type;
4496 else if (!right_type->is_abstract())
4497 {
4498 // This looks like a type error which should be diagnosed
4499 // elsewhere. Don't do anything here, to avoid an unhelpful
4500 // chain of error messages.
4501 return true;
4502 }
4503 }
4504
4505 if (type != NULL && !type->is_abstract())
4506 {
4507 if ((type != left_type
4508 && !Float_expression::check_constant(left_val, type, location))
4509 || (type != right_type
4510 && !Float_expression::check_constant(right_val, type,
4511 location))
4512 || !Float_expression::check_constant(val, type, location))
4513 mpfr_set_ui(val, 0, GMP_RNDN);
4514 }
4515
4516 return true;
4517 }
4518
4519 // Apply binary opcode OP to LEFT_REAL/LEFT_IMAG and
4520 // RIGHT_REAL/RIGHT_IMAG, setting REAL/IMAG. Return true if this
4521 // could be done, false if not.
4522
4523 bool
4524 Binary_expression::eval_complex(Operator op, Type* left_type,
4525 mpfr_t left_real, mpfr_t left_imag,
4526 Type *right_type,
4527 mpfr_t right_real, mpfr_t right_imag,
4528 mpfr_t real, mpfr_t imag,
4529 source_location location)
4530 {
4531 switch (op)
4532 {
4533 case OPERATOR_OROR:
4534 case OPERATOR_ANDAND:
4535 case OPERATOR_EQEQ:
4536 case OPERATOR_NOTEQ:
4537 case OPERATOR_LT:
4538 case OPERATOR_LE:
4539 case OPERATOR_GT:
4540 case OPERATOR_GE:
4541 // These return boolean values and must be handled differently.
4542 return false;
4543 case OPERATOR_PLUS:
4544 mpfr_add(real, left_real, right_real, GMP_RNDN);
4545 mpfr_add(imag, left_imag, right_imag, GMP_RNDN);
4546 break;
4547 case OPERATOR_MINUS:
4548 mpfr_sub(real, left_real, right_real, GMP_RNDN);
4549 mpfr_sub(imag, left_imag, right_imag, GMP_RNDN);
4550 break;
4551 case OPERATOR_OR:
4552 case OPERATOR_XOR:
4553 case OPERATOR_AND:
4554 case OPERATOR_BITCLEAR:
4555 return false;
4556 case OPERATOR_MULT:
4557 {
4558 // You might think that multiplying two complex numbers would
4559 // be simple, and you would be right, until you start to think
4560 // about getting the right answer for infinity. If one
4561 // operand here is infinity and the other is anything other
4562 // than zero or NaN, then we are going to wind up subtracting
4563 // two infinity values. That will give us a NaN, but the
4564 // correct answer is infinity.
4565
4566 mpfr_t lrrr;
4567 mpfr_init(lrrr);
4568 mpfr_mul(lrrr, left_real, right_real, GMP_RNDN);
4569
4570 mpfr_t lrri;
4571 mpfr_init(lrri);
4572 mpfr_mul(lrri, left_real, right_imag, GMP_RNDN);
4573
4574 mpfr_t lirr;
4575 mpfr_init(lirr);
4576 mpfr_mul(lirr, left_imag, right_real, GMP_RNDN);
4577
4578 mpfr_t liri;
4579 mpfr_init(liri);
4580 mpfr_mul(liri, left_imag, right_imag, GMP_RNDN);
4581
4582 mpfr_sub(real, lrrr, liri, GMP_RNDN);
4583 mpfr_add(imag, lrri, lirr, GMP_RNDN);
4584
4585 // If we get NaN on both sides, check whether it should really
4586 // be infinity. The rule is that if either side of the
4587 // complex number is infinity, then the whole value is
4588 // infinity, even if the other side is NaN. So the only case
4589 // we have to fix is the one in which both sides are NaN.
4590 if (mpfr_nan_p(real) && mpfr_nan_p(imag)
4591 && (!mpfr_nan_p(left_real) || !mpfr_nan_p(left_imag))
4592 && (!mpfr_nan_p(right_real) || !mpfr_nan_p(right_imag)))
4593 {
4594 bool is_infinity = false;
4595
4596 mpfr_t lr;
4597 mpfr_t li;
4598 mpfr_init_set(lr, left_real, GMP_RNDN);
4599 mpfr_init_set(li, left_imag, GMP_RNDN);
4600
4601 mpfr_t rr;
4602 mpfr_t ri;
4603 mpfr_init_set(rr, right_real, GMP_RNDN);
4604 mpfr_init_set(ri, right_imag, GMP_RNDN);
4605
4606 // If the left side is infinity, then the result is
4607 // infinity.
4608 if (mpfr_inf_p(lr) || mpfr_inf_p(li))
4609 {
4610 mpfr_set_ui(lr, mpfr_inf_p(lr) ? 1 : 0, GMP_RNDN);
4611 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
4612 mpfr_set_ui(li, mpfr_inf_p(li) ? 1 : 0, GMP_RNDN);
4613 mpfr_copysign(li, li, left_imag, GMP_RNDN);
4614 if (mpfr_nan_p(rr))
4615 {
4616 mpfr_set_ui(rr, 0, GMP_RNDN);
4617 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
4618 }
4619 if (mpfr_nan_p(ri))
4620 {
4621 mpfr_set_ui(ri, 0, GMP_RNDN);
4622 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
4623 }
4624 is_infinity = true;
4625 }
4626
4627 // If the right side is infinity, then the result is
4628 // infinity.
4629 if (mpfr_inf_p(rr) || mpfr_inf_p(ri))
4630 {
4631 mpfr_set_ui(rr, mpfr_inf_p(rr) ? 1 : 0, GMP_RNDN);
4632 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
4633 mpfr_set_ui(ri, mpfr_inf_p(ri) ? 1 : 0, GMP_RNDN);
4634 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
4635 if (mpfr_nan_p(lr))
4636 {
4637 mpfr_set_ui(lr, 0, GMP_RNDN);
4638 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
4639 }
4640 if (mpfr_nan_p(li))
4641 {
4642 mpfr_set_ui(li, 0, GMP_RNDN);
4643 mpfr_copysign(li, li, left_imag, GMP_RNDN);
4644 }
4645 is_infinity = true;
4646 }
4647
4648 // If we got an overflow in the intermediate computations,
4649 // then the result is infinity.
4650 if (!is_infinity
4651 && (mpfr_inf_p(lrrr) || mpfr_inf_p(lrri)
4652 || mpfr_inf_p(lirr) || mpfr_inf_p(liri)))
4653 {
4654 if (mpfr_nan_p(lr))
4655 {
4656 mpfr_set_ui(lr, 0, GMP_RNDN);
4657 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
4658 }
4659 if (mpfr_nan_p(li))
4660 {
4661 mpfr_set_ui(li, 0, GMP_RNDN);
4662 mpfr_copysign(li, li, left_imag, GMP_RNDN);
4663 }
4664 if (mpfr_nan_p(rr))
4665 {
4666 mpfr_set_ui(rr, 0, GMP_RNDN);
4667 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
4668 }
4669 if (mpfr_nan_p(ri))
4670 {
4671 mpfr_set_ui(ri, 0, GMP_RNDN);
4672 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
4673 }
4674 is_infinity = true;
4675 }
4676
4677 if (is_infinity)
4678 {
4679 mpfr_mul(lrrr, lr, rr, GMP_RNDN);
4680 mpfr_mul(lrri, lr, ri, GMP_RNDN);
4681 mpfr_mul(lirr, li, rr, GMP_RNDN);
4682 mpfr_mul(liri, li, ri, GMP_RNDN);
4683 mpfr_sub(real, lrrr, liri, GMP_RNDN);
4684 mpfr_add(imag, lrri, lirr, GMP_RNDN);
4685 mpfr_set_inf(real, mpfr_sgn(real));
4686 mpfr_set_inf(imag, mpfr_sgn(imag));
4687 }
4688
4689 mpfr_clear(lr);
4690 mpfr_clear(li);
4691 mpfr_clear(rr);
4692 mpfr_clear(ri);
4693 }
4694
4695 mpfr_clear(lrrr);
4696 mpfr_clear(lrri);
4697 mpfr_clear(lirr);
4698 mpfr_clear(liri);
4699 }
4700 break;
4701 case OPERATOR_DIV:
4702 {
4703 // For complex division we want to avoid having an
4704 // intermediate overflow turn the whole result in a NaN. We
4705 // scale the values to try to avoid this.
4706
4707 if (mpfr_zero_p(right_real) && mpfr_zero_p(right_imag))
4708 error_at(location, "division by zero");
4709
4710 mpfr_t rra;
4711 mpfr_t ria;
4712 mpfr_init(rra);
4713 mpfr_init(ria);
4714 mpfr_abs(rra, right_real, GMP_RNDN);
4715 mpfr_abs(ria, right_imag, GMP_RNDN);
4716 mpfr_t t;
4717 mpfr_init(t);
4718 mpfr_max(t, rra, ria, GMP_RNDN);
4719
4720 mpfr_t rr;
4721 mpfr_t ri;
4722 mpfr_init_set(rr, right_real, GMP_RNDN);
4723 mpfr_init_set(ri, right_imag, GMP_RNDN);
4724 long ilogbw = 0;
4725 if (!mpfr_inf_p(t) && !mpfr_nan_p(t) && !mpfr_zero_p(t))
4726 {
4727 ilogbw = mpfr_get_exp(t);
4728 mpfr_mul_2si(rr, rr, - ilogbw, GMP_RNDN);
4729 mpfr_mul_2si(ri, ri, - ilogbw, GMP_RNDN);
4730 }
4731
4732 mpfr_t denom;
4733 mpfr_init(denom);
4734 mpfr_mul(denom, rr, rr, GMP_RNDN);
4735 mpfr_mul(t, ri, ri, GMP_RNDN);
4736 mpfr_add(denom, denom, t, GMP_RNDN);
4737
4738 mpfr_mul(real, left_real, rr, GMP_RNDN);
4739 mpfr_mul(t, left_imag, ri, GMP_RNDN);
4740 mpfr_add(real, real, t, GMP_RNDN);
4741 mpfr_div(real, real, denom, GMP_RNDN);
4742 mpfr_mul_2si(real, real, - ilogbw, GMP_RNDN);
4743
4744 mpfr_mul(imag, left_imag, rr, GMP_RNDN);
4745 mpfr_mul(t, left_real, ri, GMP_RNDN);
4746 mpfr_sub(imag, imag, t, GMP_RNDN);
4747 mpfr_div(imag, imag, denom, GMP_RNDN);
4748 mpfr_mul_2si(imag, imag, - ilogbw, GMP_RNDN);
4749
4750 // If we wind up with NaN on both sides, check whether we
4751 // should really have infinity. The rule is that if either
4752 // side of the complex number is infinity, then the whole
4753 // value is infinity, even if the other side is NaN. So the
4754 // only case we have to fix is the one in which both sides are
4755 // NaN.
4756 if (mpfr_nan_p(real) && mpfr_nan_p(imag)
4757 && (!mpfr_nan_p(left_real) || !mpfr_nan_p(left_imag))
4758 && (!mpfr_nan_p(right_real) || !mpfr_nan_p(right_imag)))
4759 {
4760 if (mpfr_zero_p(denom))
4761 {
4762 mpfr_set_inf(real, mpfr_sgn(rr));
4763 mpfr_mul(real, real, left_real, GMP_RNDN);
4764 mpfr_set_inf(imag, mpfr_sgn(rr));
4765 mpfr_mul(imag, imag, left_imag, GMP_RNDN);
4766 }
4767 else if ((mpfr_inf_p(left_real) || mpfr_inf_p(left_imag))
4768 && mpfr_number_p(rr) && mpfr_number_p(ri))
4769 {
4770 mpfr_set_ui(t, mpfr_inf_p(left_real) ? 1 : 0, GMP_RNDN);
4771 mpfr_copysign(t, t, left_real, GMP_RNDN);
4772
4773 mpfr_t t2;
4774 mpfr_init_set_ui(t2, mpfr_inf_p(left_imag) ? 1 : 0, GMP_RNDN);
4775 mpfr_copysign(t2, t2, left_imag, GMP_RNDN);
4776
4777 mpfr_t t3;
4778 mpfr_init(t3);
4779 mpfr_mul(t3, t, rr, GMP_RNDN);
4780
4781 mpfr_t t4;
4782 mpfr_init(t4);
4783 mpfr_mul(t4, t2, ri, GMP_RNDN);
4784
4785 mpfr_add(t3, t3, t4, GMP_RNDN);
4786 mpfr_set_inf(real, mpfr_sgn(t3));
4787
4788 mpfr_mul(t3, t2, rr, GMP_RNDN);
4789 mpfr_mul(t4, t, ri, GMP_RNDN);
4790 mpfr_sub(t3, t3, t4, GMP_RNDN);
4791 mpfr_set_inf(imag, mpfr_sgn(t3));
4792
4793 mpfr_clear(t2);
4794 mpfr_clear(t3);
4795 mpfr_clear(t4);
4796 }
4797 else if ((mpfr_inf_p(right_real) || mpfr_inf_p(right_imag))
4798 && mpfr_number_p(left_real) && mpfr_number_p(left_imag))
4799 {
4800 mpfr_set_ui(t, mpfr_inf_p(rr) ? 1 : 0, GMP_RNDN);
4801 mpfr_copysign(t, t, rr, GMP_RNDN);
4802
4803 mpfr_t t2;
4804 mpfr_init_set_ui(t2, mpfr_inf_p(ri) ? 1 : 0, GMP_RNDN);
4805 mpfr_copysign(t2, t2, ri, GMP_RNDN);
4806
4807 mpfr_t t3;
4808 mpfr_init(t3);
4809 mpfr_mul(t3, left_real, t, GMP_RNDN);
4810
4811 mpfr_t t4;
4812 mpfr_init(t4);
4813 mpfr_mul(t4, left_imag, t2, GMP_RNDN);
4814
4815 mpfr_add(t3, t3, t4, GMP_RNDN);
4816 mpfr_set_ui(real, 0, GMP_RNDN);
4817 mpfr_mul(real, real, t3, GMP_RNDN);
4818
4819 mpfr_mul(t3, left_imag, t, GMP_RNDN);
4820 mpfr_mul(t4, left_real, t2, GMP_RNDN);
4821 mpfr_sub(t3, t3, t4, GMP_RNDN);
4822 mpfr_set_ui(imag, 0, GMP_RNDN);
4823 mpfr_mul(imag, imag, t3, GMP_RNDN);
4824
4825 mpfr_clear(t2);
4826 mpfr_clear(t3);
4827 mpfr_clear(t4);
4828 }
4829 }
4830
4831 mpfr_clear(denom);
4832 mpfr_clear(rr);
4833 mpfr_clear(ri);
4834 mpfr_clear(t);
4835 mpfr_clear(rra);
4836 mpfr_clear(ria);
4837 }
4838 break;
4839 case OPERATOR_MOD:
4840 return false;
4841 case OPERATOR_LSHIFT:
4842 case OPERATOR_RSHIFT:
4843 return false;
4844 default:
4845 gcc_unreachable();
4846 }
4847
4848 Type* type = left_type;
4849 if (type == NULL)
4850 type = right_type;
4851 else if (type != right_type && right_type != NULL)
4852 {
4853 if (type->is_abstract())
4854 type = right_type;
4855 else if (!right_type->is_abstract())
4856 {
4857 // This looks like a type error which should be diagnosed
4858 // elsewhere. Don't do anything here, to avoid an unhelpful
4859 // chain of error messages.
4860 return true;
4861 }
4862 }
4863
4864 if (type != NULL && !type->is_abstract())
4865 {
4866 if ((type != left_type
4867 && !Complex_expression::check_constant(left_real, left_imag,
4868 type, location))
4869 || (type != right_type
4870 && !Complex_expression::check_constant(right_real, right_imag,
4871 type, location))
4872 || !Complex_expression::check_constant(real, imag, type,
4873 location))
4874 {
4875 mpfr_set_ui(real, 0, GMP_RNDN);
4876 mpfr_set_ui(imag, 0, GMP_RNDN);
4877 }
4878 }
4879
4880 return true;
4881 }
4882
4883 // Lower a binary expression. We have to evaluate constant
4884 // expressions now, in order to implement Go's unlimited precision
4885 // constants.
4886
4887 Expression*
4888 Binary_expression::do_lower(Gogo*, Named_object*, int)
4889 {
4890 source_location location = this->location();
4891 Operator op = this->op_;
4892 Expression* left = this->left_;
4893 Expression* right = this->right_;
4894
4895 const bool is_comparison = (op == OPERATOR_EQEQ
4896 || op == OPERATOR_NOTEQ
4897 || op == OPERATOR_LT
4898 || op == OPERATOR_LE
4899 || op == OPERATOR_GT
4900 || op == OPERATOR_GE);
4901
4902 // Integer constant expressions.
4903 {
4904 mpz_t left_val;
4905 mpz_init(left_val);
4906 Type* left_type;
4907 mpz_t right_val;
4908 mpz_init(right_val);
4909 Type* right_type;
4910 if (left->integer_constant_value(false, left_val, &left_type)
4911 && right->integer_constant_value(false, right_val, &right_type))
4912 {
4913 Expression* ret = NULL;
4914 if (left_type != right_type
4915 && left_type != NULL
4916 && right_type != NULL
4917 && left_type->base() != right_type->base()
4918 && op != OPERATOR_LSHIFT
4919 && op != OPERATOR_RSHIFT)
4920 {
4921 // May be a type error--let it be diagnosed later.
4922 }
4923 else if (is_comparison)
4924 {
4925 bool b = Binary_expression::compare_integer(op, left_val,
4926 right_val);
4927 ret = Expression::make_cast(Type::lookup_bool_type(),
4928 Expression::make_boolean(b, location),
4929 location);
4930 }
4931 else
4932 {
4933 mpz_t val;
4934 mpz_init(val);
4935
4936 if (Binary_expression::eval_integer(op, left_type, left_val,
4937 right_type, right_val,
4938 location, val))
4939 {
4940 gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND);
4941 Type* type;
4942 if (op == OPERATOR_LSHIFT || op == OPERATOR_RSHIFT)
4943 type = left_type;
4944 else if (left_type == NULL)
4945 type = right_type;
4946 else if (right_type == NULL)
4947 type = left_type;
4948 else if (!left_type->is_abstract()
4949 && left_type->named_type() != NULL)
4950 type = left_type;
4951 else if (!right_type->is_abstract()
4952 && right_type->named_type() != NULL)
4953 type = right_type;
4954 else if (!left_type->is_abstract())
4955 type = left_type;
4956 else if (!right_type->is_abstract())
4957 type = right_type;
4958 else if (left_type->float_type() != NULL)
4959 type = left_type;
4960 else if (right_type->float_type() != NULL)
4961 type = right_type;
4962 else if (left_type->complex_type() != NULL)
4963 type = left_type;
4964 else if (right_type->complex_type() != NULL)
4965 type = right_type;
4966 else
4967 type = left_type;
4968 ret = Expression::make_integer(&val, type, location);
4969 }
4970
4971 mpz_clear(val);
4972 }
4973
4974 if (ret != NULL)
4975 {
4976 mpz_clear(right_val);
4977 mpz_clear(left_val);
4978 return ret;
4979 }
4980 }
4981 mpz_clear(right_val);
4982 mpz_clear(left_val);
4983 }
4984
4985 // Floating point constant expressions.
4986 {
4987 mpfr_t left_val;
4988 mpfr_init(left_val);
4989 Type* left_type;
4990 mpfr_t right_val;
4991 mpfr_init(right_val);
4992 Type* right_type;
4993 if (left->float_constant_value(left_val, &left_type)
4994 && right->float_constant_value(right_val, &right_type))
4995 {
4996 Expression* ret = NULL;
4997 if (left_type != right_type
4998 && left_type != NULL
4999 && right_type != NULL
5000 && left_type->base() != right_type->base()
5001 && op != OPERATOR_LSHIFT
5002 && op != OPERATOR_RSHIFT)
5003 {
5004 // May be a type error--let it be diagnosed later.
5005 }
5006 else if (is_comparison)
5007 {
5008 bool b = Binary_expression::compare_float(op,
5009 (left_type != NULL
5010 ? left_type
5011 : right_type),
5012 left_val, right_val);
5013 ret = Expression::make_boolean(b, location);
5014 }
5015 else
5016 {
5017 mpfr_t val;
5018 mpfr_init(val);
5019
5020 if (Binary_expression::eval_float(op, left_type, left_val,
5021 right_type, right_val, val,
5022 location))
5023 {
5024 gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND
5025 && op != OPERATOR_LSHIFT && op != OPERATOR_RSHIFT);
5026 Type* type;
5027 if (left_type == NULL)
5028 type = right_type;
5029 else if (right_type == NULL)
5030 type = left_type;
5031 else if (!left_type->is_abstract()
5032 && left_type->named_type() != NULL)
5033 type = left_type;
5034 else if (!right_type->is_abstract()
5035 && right_type->named_type() != NULL)
5036 type = right_type;
5037 else if (!left_type->is_abstract())
5038 type = left_type;
5039 else if (!right_type->is_abstract())
5040 type = right_type;
5041 else if (left_type->float_type() != NULL)
5042 type = left_type;
5043 else if (right_type->float_type() != NULL)
5044 type = right_type;
5045 else
5046 type = left_type;
5047 ret = Expression::make_float(&val, type, location);
5048 }
5049
5050 mpfr_clear(val);
5051 }
5052
5053 if (ret != NULL)
5054 {
5055 mpfr_clear(right_val);
5056 mpfr_clear(left_val);
5057 return ret;
5058 }
5059 }
5060 mpfr_clear(right_val);
5061 mpfr_clear(left_val);
5062 }
5063
5064 // Complex constant expressions.
5065 {
5066 mpfr_t left_real;
5067 mpfr_t left_imag;
5068 mpfr_init(left_real);
5069 mpfr_init(left_imag);
5070 Type* left_type;
5071
5072 mpfr_t right_real;
5073 mpfr_t right_imag;
5074 mpfr_init(right_real);
5075 mpfr_init(right_imag);
5076 Type* right_type;
5077
5078 if (left->complex_constant_value(left_real, left_imag, &left_type)
5079 && right->complex_constant_value(right_real, right_imag, &right_type))
5080 {
5081 Expression* ret = NULL;
5082 if (left_type != right_type
5083 && left_type != NULL
5084 && right_type != NULL
5085 && left_type->base() != right_type->base())
5086 {
5087 // May be a type error--let it be diagnosed later.
5088 }
5089 else if (is_comparison)
5090 {
5091 bool b = Binary_expression::compare_complex(op,
5092 (left_type != NULL
5093 ? left_type
5094 : right_type),
5095 left_real,
5096 left_imag,
5097 right_real,
5098 right_imag);
5099 ret = Expression::make_boolean(b, location);
5100 }
5101 else
5102 {
5103 mpfr_t real;
5104 mpfr_t imag;
5105 mpfr_init(real);
5106 mpfr_init(imag);
5107
5108 if (Binary_expression::eval_complex(op, left_type,
5109 left_real, left_imag,
5110 right_type,
5111 right_real, right_imag,
5112 real, imag,
5113 location))
5114 {
5115 gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND
5116 && op != OPERATOR_LSHIFT && op != OPERATOR_RSHIFT);
5117 Type* type;
5118 if (left_type == NULL)
5119 type = right_type;
5120 else if (right_type == NULL)
5121 type = left_type;
5122 else if (!left_type->is_abstract()
5123 && left_type->named_type() != NULL)
5124 type = left_type;
5125 else if (!right_type->is_abstract()
5126 && right_type->named_type() != NULL)
5127 type = right_type;
5128 else if (!left_type->is_abstract())
5129 type = left_type;
5130 else if (!right_type->is_abstract())
5131 type = right_type;
5132 else if (left_type->complex_type() != NULL)
5133 type = left_type;
5134 else if (right_type->complex_type() != NULL)
5135 type = right_type;
5136 else
5137 type = left_type;
5138 ret = Expression::make_complex(&real, &imag, type,
5139 location);
5140 }
5141 mpfr_clear(real);
5142 mpfr_clear(imag);
5143 }
5144
5145 if (ret != NULL)
5146 {
5147 mpfr_clear(left_real);
5148 mpfr_clear(left_imag);
5149 mpfr_clear(right_real);
5150 mpfr_clear(right_imag);
5151 return ret;
5152 }
5153 }
5154
5155 mpfr_clear(left_real);
5156 mpfr_clear(left_imag);
5157 mpfr_clear(right_real);
5158 mpfr_clear(right_imag);
5159 }
5160
5161 // String constant expressions.
5162 if (op == OPERATOR_PLUS
5163 && left->type()->is_string_type()
5164 && right->type()->is_string_type())
5165 {
5166 std::string left_string;
5167 std::string right_string;
5168 if (left->string_constant_value(&left_string)
5169 && right->string_constant_value(&right_string))
5170 return Expression::make_string(left_string + right_string, location);
5171 }
5172
5173 return this;
5174 }
5175
5176 // Return the integer constant value, if it has one.
5177
5178 bool
5179 Binary_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
5180 Type** ptype) const
5181 {
5182 mpz_t left_val;
5183 mpz_init(left_val);
5184 Type* left_type;
5185 if (!this->left_->integer_constant_value(iota_is_constant, left_val,
5186 &left_type))
5187 {
5188 mpz_clear(left_val);
5189 return false;
5190 }
5191
5192 mpz_t right_val;
5193 mpz_init(right_val);
5194 Type* right_type;
5195 if (!this->right_->integer_constant_value(iota_is_constant, right_val,
5196 &right_type))
5197 {
5198 mpz_clear(right_val);
5199 mpz_clear(left_val);
5200 return false;
5201 }
5202
5203 bool ret;
5204 if (left_type != right_type
5205 && left_type != NULL
5206 && right_type != NULL
5207 && left_type->base() != right_type->base()
5208 && this->op_ != OPERATOR_RSHIFT
5209 && this->op_ != OPERATOR_LSHIFT)
5210 ret = false;
5211 else
5212 ret = Binary_expression::eval_integer(this->op_, left_type, left_val,
5213 right_type, right_val,
5214 this->location(), val);
5215
5216 mpz_clear(right_val);
5217 mpz_clear(left_val);
5218
5219 if (ret)
5220 *ptype = left_type;
5221
5222 return ret;
5223 }
5224
5225 // Return the floating point constant value, if it has one.
5226
5227 bool
5228 Binary_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
5229 {
5230 mpfr_t left_val;
5231 mpfr_init(left_val);
5232 Type* left_type;
5233 if (!this->left_->float_constant_value(left_val, &left_type))
5234 {
5235 mpfr_clear(left_val);
5236 return false;
5237 }
5238
5239 mpfr_t right_val;
5240 mpfr_init(right_val);
5241 Type* right_type;
5242 if (!this->right_->float_constant_value(right_val, &right_type))
5243 {
5244 mpfr_clear(right_val);
5245 mpfr_clear(left_val);
5246 return false;
5247 }
5248
5249 bool ret;
5250 if (left_type != right_type
5251 && left_type != NULL
5252 && right_type != NULL
5253 && left_type->base() != right_type->base())
5254 ret = false;
5255 else
5256 ret = Binary_expression::eval_float(this->op_, left_type, left_val,
5257 right_type, right_val,
5258 val, this->location());
5259
5260 mpfr_clear(left_val);
5261 mpfr_clear(right_val);
5262
5263 if (ret)
5264 *ptype = left_type;
5265
5266 return ret;
5267 }
5268
5269 // Return the complex constant value, if it has one.
5270
5271 bool
5272 Binary_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
5273 Type** ptype) const
5274 {
5275 mpfr_t left_real;
5276 mpfr_t left_imag;
5277 mpfr_init(left_real);
5278 mpfr_init(left_imag);
5279 Type* left_type;
5280 if (!this->left_->complex_constant_value(left_real, left_imag, &left_type))
5281 {
5282 mpfr_clear(left_real);
5283 mpfr_clear(left_imag);
5284 return false;
5285 }
5286
5287 mpfr_t right_real;
5288 mpfr_t right_imag;
5289 mpfr_init(right_real);
5290 mpfr_init(right_imag);
5291 Type* right_type;
5292 if (!this->right_->complex_constant_value(right_real, right_imag,
5293 &right_type))
5294 {
5295 mpfr_clear(left_real);
5296 mpfr_clear(left_imag);
5297 mpfr_clear(right_real);
5298 mpfr_clear(right_imag);
5299 return false;
5300 }
5301
5302 bool ret;
5303 if (left_type != right_type
5304 && left_type != NULL
5305 && right_type != NULL
5306 && left_type->base() != right_type->base())
5307 ret = false;
5308 else
5309 ret = Binary_expression::eval_complex(this->op_, left_type,
5310 left_real, left_imag,
5311 right_type,
5312 right_real, right_imag,
5313 real, imag,
5314 this->location());
5315 mpfr_clear(left_real);
5316 mpfr_clear(left_imag);
5317 mpfr_clear(right_real);
5318 mpfr_clear(right_imag);
5319
5320 if (ret)
5321 *ptype = left_type;
5322
5323 return ret;
5324 }
5325
5326 // Note that the value is being discarded.
5327
5328 void
5329 Binary_expression::do_discarding_value()
5330 {
5331 if (this->op_ == OPERATOR_OROR || this->op_ == OPERATOR_ANDAND)
5332 this->right_->discarding_value();
5333 else
5334 this->warn_about_unused_value();
5335 }
5336
5337 // Get type.
5338
5339 Type*
5340 Binary_expression::do_type()
5341 {
5342 switch (this->op_)
5343 {
5344 case OPERATOR_OROR:
5345 case OPERATOR_ANDAND:
5346 case OPERATOR_EQEQ:
5347 case OPERATOR_NOTEQ:
5348 case OPERATOR_LT:
5349 case OPERATOR_LE:
5350 case OPERATOR_GT:
5351 case OPERATOR_GE:
5352 return Type::lookup_bool_type();
5353
5354 case OPERATOR_PLUS:
5355 case OPERATOR_MINUS:
5356 case OPERATOR_OR:
5357 case OPERATOR_XOR:
5358 case OPERATOR_MULT:
5359 case OPERATOR_DIV:
5360 case OPERATOR_MOD:
5361 case OPERATOR_AND:
5362 case OPERATOR_BITCLEAR:
5363 {
5364 Type* left_type = this->left_->type();
5365 Type* right_type = this->right_->type();
5366 if (!left_type->is_abstract() && left_type->named_type() != NULL)
5367 return left_type;
5368 else if (!right_type->is_abstract() && right_type->named_type() != NULL)
5369 return right_type;
5370 else if (!left_type->is_abstract())
5371 return left_type;
5372 else if (!right_type->is_abstract())
5373 return right_type;
5374 else if (left_type->complex_type() != NULL)
5375 return left_type;
5376 else if (right_type->complex_type() != NULL)
5377 return right_type;
5378 else if (left_type->float_type() != NULL)
5379 return left_type;
5380 else if (right_type->float_type() != NULL)
5381 return right_type;
5382 else
5383 return left_type;
5384 }
5385
5386 case OPERATOR_LSHIFT:
5387 case OPERATOR_RSHIFT:
5388 return this->left_->type();
5389
5390 default:
5391 gcc_unreachable();
5392 }
5393 }
5394
5395 // Set type for a binary expression.
5396
5397 void
5398 Binary_expression::do_determine_type(const Type_context* context)
5399 {
5400 Type* tleft = this->left_->type();
5401 Type* tright = this->right_->type();
5402
5403 // Both sides should have the same type, except for the shift
5404 // operations. For a comparison, we should ignore the incoming
5405 // type.
5406
5407 bool is_shift_op = (this->op_ == OPERATOR_LSHIFT
5408 || this->op_ == OPERATOR_RSHIFT);
5409
5410 bool is_comparison = (this->op_ == OPERATOR_EQEQ
5411 || this->op_ == OPERATOR_NOTEQ
5412 || this->op_ == OPERATOR_LT
5413 || this->op_ == OPERATOR_LE
5414 || this->op_ == OPERATOR_GT
5415 || this->op_ == OPERATOR_GE);
5416
5417 Type_context subcontext(*context);
5418
5419 if (is_comparison)
5420 {
5421 // In a comparison, the context does not determine the types of
5422 // the operands.
5423 subcontext.type = NULL;
5424 }
5425
5426 // Set the context for the left hand operand.
5427 if (is_shift_op)
5428 {
5429 // The right hand operand plays no role in determining the type
5430 // of the left hand operand. A shift of an abstract integer in
5431 // a string context gets special treatment, which may be a
5432 // language bug.
5433 if (subcontext.type != NULL
5434 && subcontext.type->is_string_type()
5435 && tleft->is_abstract())
5436 error_at(this->location(), "shift of non-integer operand");
5437 }
5438 else if (!tleft->is_abstract())
5439 subcontext.type = tleft;
5440 else if (!tright->is_abstract())
5441 subcontext.type = tright;
5442 else if (subcontext.type == NULL)
5443 {
5444 if ((tleft->integer_type() != NULL && tright->integer_type() != NULL)
5445 || (tleft->float_type() != NULL && tright->float_type() != NULL)
5446 || (tleft->complex_type() != NULL && tright->complex_type() != NULL))
5447 {
5448 // Both sides have an abstract integer, abstract float, or
5449 // abstract complex type. Just let CONTEXT determine
5450 // whether they may remain abstract or not.
5451 }
5452 else if (tleft->complex_type() != NULL)
5453 subcontext.type = tleft;
5454 else if (tright->complex_type() != NULL)
5455 subcontext.type = tright;
5456 else if (tleft->float_type() != NULL)
5457 subcontext.type = tleft;
5458 else if (tright->float_type() != NULL)
5459 subcontext.type = tright;
5460 else
5461 subcontext.type = tleft;
5462 }
5463
5464 this->left_->determine_type(&subcontext);
5465
5466 // The context for the right hand operand is the same as for the
5467 // left hand operand, except for a shift operator.
5468 if (is_shift_op)
5469 {
5470 subcontext.type = Type::lookup_integer_type("uint");
5471 subcontext.may_be_abstract = false;
5472 }
5473
5474 this->right_->determine_type(&subcontext);
5475 }
5476
5477 // Report an error if the binary operator OP does not support TYPE.
5478 // Return whether the operation is OK. This should not be used for
5479 // shift.
5480
5481 bool
5482 Binary_expression::check_operator_type(Operator op, Type* type,
5483 source_location location)
5484 {
5485 switch (op)
5486 {
5487 case OPERATOR_OROR:
5488 case OPERATOR_ANDAND:
5489 if (!type->is_boolean_type())
5490 {
5491 error_at(location, "expected boolean type");
5492 return false;
5493 }
5494 break;
5495
5496 case OPERATOR_EQEQ:
5497 case OPERATOR_NOTEQ:
5498 if (type->integer_type() == NULL
5499 && type->float_type() == NULL
5500 && type->complex_type() == NULL
5501 && !type->is_string_type()
5502 && type->points_to() == NULL
5503 && !type->is_nil_type()
5504 && !type->is_boolean_type()
5505 && type->interface_type() == NULL
5506 && (type->array_type() == NULL
5507 || type->array_type()->length() != NULL)
5508 && type->map_type() == NULL
5509 && type->channel_type() == NULL
5510 && type->function_type() == NULL)
5511 {
5512 error_at(location,
5513 ("expected integer, floating, complex, string, pointer, "
5514 "boolean, interface, slice, map, channel, "
5515 "or function type"));
5516 return false;
5517 }
5518 break;
5519
5520 case OPERATOR_LT:
5521 case OPERATOR_LE:
5522 case OPERATOR_GT:
5523 case OPERATOR_GE:
5524 if (type->integer_type() == NULL
5525 && type->float_type() == NULL
5526 && !type->is_string_type())
5527 {
5528 error_at(location, "expected integer, floating, or string type");
5529 return false;
5530 }
5531 break;
5532
5533 case OPERATOR_PLUS:
5534 case OPERATOR_PLUSEQ:
5535 if (type->integer_type() == NULL
5536 && type->float_type() == NULL
5537 && type->complex_type() == NULL
5538 && !type->is_string_type())
5539 {
5540 error_at(location,
5541 "expected integer, floating, complex, or string type");
5542 return false;
5543 }
5544 break;
5545
5546 case OPERATOR_MINUS:
5547 case OPERATOR_MINUSEQ:
5548 case OPERATOR_MULT:
5549 case OPERATOR_MULTEQ:
5550 case OPERATOR_DIV:
5551 case OPERATOR_DIVEQ:
5552 if (type->integer_type() == NULL
5553 && type->float_type() == NULL
5554 && type->complex_type() == NULL)
5555 {
5556 error_at(location, "expected integer, floating, or complex type");
5557 return false;
5558 }
5559 break;
5560
5561 case OPERATOR_MOD:
5562 case OPERATOR_MODEQ:
5563 case OPERATOR_OR:
5564 case OPERATOR_OREQ:
5565 case OPERATOR_AND:
5566 case OPERATOR_ANDEQ:
5567 case OPERATOR_XOR:
5568 case OPERATOR_XOREQ:
5569 case OPERATOR_BITCLEAR:
5570 case OPERATOR_BITCLEAREQ:
5571 if (type->integer_type() == NULL)
5572 {
5573 error_at(location, "expected integer type");
5574 return false;
5575 }
5576 break;
5577
5578 default:
5579 gcc_unreachable();
5580 }
5581
5582 return true;
5583 }
5584
5585 // Check types.
5586
5587 void
5588 Binary_expression::do_check_types(Gogo*)
5589 {
5590 Type* left_type = this->left_->type();
5591 Type* right_type = this->right_->type();
5592 if (left_type->is_error_type() || right_type->is_error_type())
5593 {
5594 this->set_is_error();
5595 return;
5596 }
5597
5598 if (this->op_ == OPERATOR_EQEQ
5599 || this->op_ == OPERATOR_NOTEQ
5600 || this->op_ == OPERATOR_LT
5601 || this->op_ == OPERATOR_LE
5602 || this->op_ == OPERATOR_GT
5603 || this->op_ == OPERATOR_GE)
5604 {
5605 if (!Type::are_assignable(left_type, right_type, NULL)
5606 && !Type::are_assignable(right_type, left_type, NULL))
5607 {
5608 this->report_error(_("incompatible types in binary expression"));
5609 return;
5610 }
5611 if (!Binary_expression::check_operator_type(this->op_, left_type,
5612 this->location())
5613 || !Binary_expression::check_operator_type(this->op_, right_type,
5614 this->location()))
5615 {
5616 this->set_is_error();
5617 return;
5618 }
5619 }
5620 else if (this->op_ != OPERATOR_LSHIFT && this->op_ != OPERATOR_RSHIFT)
5621 {
5622 if (!Type::are_compatible_for_binop(left_type, right_type))
5623 {
5624 this->report_error(_("incompatible types in binary expression"));
5625 return;
5626 }
5627 if (!Binary_expression::check_operator_type(this->op_, left_type,
5628 this->location()))
5629 {
5630 this->set_is_error();
5631 return;
5632 }
5633 }
5634 else
5635 {
5636 if (left_type->integer_type() == NULL)
5637 this->report_error(_("shift of non-integer operand"));
5638
5639 if (!right_type->is_abstract()
5640 && (right_type->integer_type() == NULL
5641 || !right_type->integer_type()->is_unsigned()))
5642 this->report_error(_("shift count not unsigned integer"));
5643 else
5644 {
5645 mpz_t val;
5646 mpz_init(val);
5647 Type* type;
5648 if (this->right_->integer_constant_value(true, val, &type))
5649 {
5650 if (mpz_sgn(val) < 0)
5651 this->report_error(_("negative shift count"));
5652 }
5653 mpz_clear(val);
5654 }
5655 }
5656 }
5657
5658 // Get a tree for a binary expression.
5659
5660 tree
5661 Binary_expression::do_get_tree(Translate_context* context)
5662 {
5663 tree left = this->left_->get_tree(context);
5664 tree right = this->right_->get_tree(context);
5665
5666 if (left == error_mark_node || right == error_mark_node)
5667 return error_mark_node;
5668
5669 enum tree_code code;
5670 bool use_left_type = true;
5671 bool is_shift_op = false;
5672 switch (this->op_)
5673 {
5674 case OPERATOR_EQEQ:
5675 case OPERATOR_NOTEQ:
5676 case OPERATOR_LT:
5677 case OPERATOR_LE:
5678 case OPERATOR_GT:
5679 case OPERATOR_GE:
5680 return Expression::comparison_tree(context, this->op_,
5681 this->left_->type(), left,
5682 this->right_->type(), right,
5683 this->location());
5684
5685 case OPERATOR_OROR:
5686 code = TRUTH_ORIF_EXPR;
5687 use_left_type = false;
5688 break;
5689 case OPERATOR_ANDAND:
5690 code = TRUTH_ANDIF_EXPR;
5691 use_left_type = false;
5692 break;
5693 case OPERATOR_PLUS:
5694 code = PLUS_EXPR;
5695 break;
5696 case OPERATOR_MINUS:
5697 code = MINUS_EXPR;
5698 break;
5699 case OPERATOR_OR:
5700 code = BIT_IOR_EXPR;
5701 break;
5702 case OPERATOR_XOR:
5703 code = BIT_XOR_EXPR;
5704 break;
5705 case OPERATOR_MULT:
5706 code = MULT_EXPR;
5707 break;
5708 case OPERATOR_DIV:
5709 {
5710 Type *t = this->left_->type();
5711 if (t->float_type() != NULL || t->complex_type() != NULL)
5712 code = RDIV_EXPR;
5713 else
5714 code = TRUNC_DIV_EXPR;
5715 }
5716 break;
5717 case OPERATOR_MOD:
5718 code = TRUNC_MOD_EXPR;
5719 break;
5720 case OPERATOR_LSHIFT:
5721 code = LSHIFT_EXPR;
5722 is_shift_op = true;
5723 break;
5724 case OPERATOR_RSHIFT:
5725 code = RSHIFT_EXPR;
5726 is_shift_op = true;
5727 break;
5728 case OPERATOR_AND:
5729 code = BIT_AND_EXPR;
5730 break;
5731 case OPERATOR_BITCLEAR:
5732 right = fold_build1(BIT_NOT_EXPR, TREE_TYPE(right), right);
5733 code = BIT_AND_EXPR;
5734 break;
5735 default:
5736 gcc_unreachable();
5737 }
5738
5739 tree type = use_left_type ? TREE_TYPE(left) : TREE_TYPE(right);
5740
5741 if (this->left_->type()->is_string_type())
5742 {
5743 gcc_assert(this->op_ == OPERATOR_PLUS);
5744 tree string_type = Type::make_string_type()->get_tree(context->gogo());
5745 static tree string_plus_decl;
5746 return Gogo::call_builtin(&string_plus_decl,
5747 this->location(),
5748 "__go_string_plus",
5749 2,
5750 string_type,
5751 string_type,
5752 left,
5753 string_type,
5754 right);
5755 }
5756
5757 tree compute_type = excess_precision_type(type);
5758 if (compute_type != NULL_TREE)
5759 {
5760 left = ::convert(compute_type, left);
5761 right = ::convert(compute_type, right);
5762 }
5763
5764 tree eval_saved = NULL_TREE;
5765 if (is_shift_op)
5766 {
5767 if (!DECL_P(left))
5768 left = save_expr(left);
5769 if (!DECL_P(right))
5770 right = save_expr(right);
5771 // Make sure the values are evaluated.
5772 eval_saved = fold_build2_loc(this->location(), COMPOUND_EXPR,
5773 void_type_node, left, right);
5774 }
5775
5776 tree ret = fold_build2_loc(this->location(),
5777 code,
5778 compute_type != NULL_TREE ? compute_type : type,
5779 left, right);
5780
5781 if (compute_type != NULL_TREE)
5782 ret = ::convert(type, ret);
5783
5784 // In Go, a shift larger than the size of the type is well-defined.
5785 // This is not true in GENERIC, so we need to insert a conditional.
5786 if (is_shift_op)
5787 {
5788 gcc_assert(INTEGRAL_TYPE_P(TREE_TYPE(left)));
5789 gcc_assert(this->left_->type()->integer_type() != NULL);
5790 int bits = TYPE_PRECISION(TREE_TYPE(left));
5791
5792 tree compare = fold_build2(LT_EXPR, boolean_type_node, right,
5793 build_int_cst_type(TREE_TYPE(right), bits));
5794
5795 tree overflow_result = fold_convert_loc(this->location(),
5796 TREE_TYPE(left),
5797 integer_zero_node);
5798 if (this->op_ == OPERATOR_RSHIFT
5799 && !this->left_->type()->integer_type()->is_unsigned())
5800 {
5801 tree neg = fold_build2_loc(this->location(), LT_EXPR,
5802 boolean_type_node, left,
5803 fold_convert_loc(this->location(),
5804 TREE_TYPE(left),
5805 integer_zero_node));
5806 tree neg_one = fold_build2_loc(this->location(),
5807 MINUS_EXPR, TREE_TYPE(left),
5808 fold_convert_loc(this->location(),
5809 TREE_TYPE(left),
5810 integer_zero_node),
5811 fold_convert_loc(this->location(),
5812 TREE_TYPE(left),
5813 integer_one_node));
5814 overflow_result = fold_build3_loc(this->location(), COND_EXPR,
5815 TREE_TYPE(left), neg, neg_one,
5816 overflow_result);
5817 }
5818
5819 ret = fold_build3_loc(this->location(), COND_EXPR, TREE_TYPE(left),
5820 compare, ret, overflow_result);
5821
5822 ret = fold_build2_loc(this->location(), COMPOUND_EXPR,
5823 TREE_TYPE(ret), eval_saved, ret);
5824 }
5825
5826 return ret;
5827 }
5828
5829 // Export a binary expression.
5830
5831 void
5832 Binary_expression::do_export(Export* exp) const
5833 {
5834 exp->write_c_string("(");
5835 this->left_->export_expression(exp);
5836 switch (this->op_)
5837 {
5838 case OPERATOR_OROR:
5839 exp->write_c_string(" || ");
5840 break;
5841 case OPERATOR_ANDAND:
5842 exp->write_c_string(" && ");
5843 break;
5844 case OPERATOR_EQEQ:
5845 exp->write_c_string(" == ");
5846 break;
5847 case OPERATOR_NOTEQ:
5848 exp->write_c_string(" != ");
5849 break;
5850 case OPERATOR_LT:
5851 exp->write_c_string(" < ");
5852 break;
5853 case OPERATOR_LE:
5854 exp->write_c_string(" <= ");
5855 break;
5856 case OPERATOR_GT:
5857 exp->write_c_string(" > ");
5858 break;
5859 case OPERATOR_GE:
5860 exp->write_c_string(" >= ");
5861 break;
5862 case OPERATOR_PLUS:
5863 exp->write_c_string(" + ");
5864 break;
5865 case OPERATOR_MINUS:
5866 exp->write_c_string(" - ");
5867 break;
5868 case OPERATOR_OR:
5869 exp->write_c_string(" | ");
5870 break;
5871 case OPERATOR_XOR:
5872 exp->write_c_string(" ^ ");
5873 break;
5874 case OPERATOR_MULT:
5875 exp->write_c_string(" * ");
5876 break;
5877 case OPERATOR_DIV:
5878 exp->write_c_string(" / ");
5879 break;
5880 case OPERATOR_MOD:
5881 exp->write_c_string(" % ");
5882 break;
5883 case OPERATOR_LSHIFT:
5884 exp->write_c_string(" << ");
5885 break;
5886 case OPERATOR_RSHIFT:
5887 exp->write_c_string(" >> ");
5888 break;
5889 case OPERATOR_AND:
5890 exp->write_c_string(" & ");
5891 break;
5892 case OPERATOR_BITCLEAR:
5893 exp->write_c_string(" &^ ");
5894 break;
5895 default:
5896 gcc_unreachable();
5897 }
5898 this->right_->export_expression(exp);
5899 exp->write_c_string(")");
5900 }
5901
5902 // Import a binary expression.
5903
5904 Expression*
5905 Binary_expression::do_import(Import* imp)
5906 {
5907 imp->require_c_string("(");
5908
5909 Expression* left = Expression::import_expression(imp);
5910
5911 Operator op;
5912 if (imp->match_c_string(" || "))
5913 {
5914 op = OPERATOR_OROR;
5915 imp->advance(4);
5916 }
5917 else if (imp->match_c_string(" && "))
5918 {
5919 op = OPERATOR_ANDAND;
5920 imp->advance(4);
5921 }
5922 else if (imp->match_c_string(" == "))
5923 {
5924 op = OPERATOR_EQEQ;
5925 imp->advance(4);
5926 }
5927 else if (imp->match_c_string(" != "))
5928 {
5929 op = OPERATOR_NOTEQ;
5930 imp->advance(4);
5931 }
5932 else if (imp->match_c_string(" < "))
5933 {
5934 op = OPERATOR_LT;
5935 imp->advance(3);
5936 }
5937 else if (imp->match_c_string(" <= "))
5938 {
5939 op = OPERATOR_LE;
5940 imp->advance(4);
5941 }
5942 else if (imp->match_c_string(" > "))
5943 {
5944 op = OPERATOR_GT;
5945 imp->advance(3);
5946 }
5947 else if (imp->match_c_string(" >= "))
5948 {
5949 op = OPERATOR_GE;
5950 imp->advance(4);
5951 }
5952 else if (imp->match_c_string(" + "))
5953 {
5954 op = OPERATOR_PLUS;
5955 imp->advance(3);
5956 }
5957 else if (imp->match_c_string(" - "))
5958 {
5959 op = OPERATOR_MINUS;
5960 imp->advance(3);
5961 }
5962 else if (imp->match_c_string(" | "))
5963 {
5964 op = OPERATOR_OR;
5965 imp->advance(3);
5966 }
5967 else if (imp->match_c_string(" ^ "))
5968 {
5969 op = OPERATOR_XOR;
5970 imp->advance(3);
5971 }
5972 else if (imp->match_c_string(" * "))
5973 {
5974 op = OPERATOR_MULT;
5975 imp->advance(3);
5976 }
5977 else if (imp->match_c_string(" / "))
5978 {
5979 op = OPERATOR_DIV;
5980 imp->advance(3);
5981 }
5982 else if (imp->match_c_string(" % "))
5983 {
5984 op = OPERATOR_MOD;
5985 imp->advance(3);
5986 }
5987 else if (imp->match_c_string(" << "))
5988 {
5989 op = OPERATOR_LSHIFT;
5990 imp->advance(4);
5991 }
5992 else if (imp->match_c_string(" >> "))
5993 {
5994 op = OPERATOR_RSHIFT;
5995 imp->advance(4);
5996 }
5997 else if (imp->match_c_string(" & "))
5998 {
5999 op = OPERATOR_AND;
6000 imp->advance(3);
6001 }
6002 else if (imp->match_c_string(" &^ "))
6003 {
6004 op = OPERATOR_BITCLEAR;
6005 imp->advance(4);
6006 }
6007 else
6008 {
6009 error_at(imp->location(), "unrecognized binary operator");
6010 return Expression::make_error(imp->location());
6011 }
6012
6013 Expression* right = Expression::import_expression(imp);
6014
6015 imp->require_c_string(")");
6016
6017 return Expression::make_binary(op, left, right, imp->location());
6018 }
6019
6020 // Make a binary expression.
6021
6022 Expression*
6023 Expression::make_binary(Operator op, Expression* left, Expression* right,
6024 source_location location)
6025 {
6026 return new Binary_expression(op, left, right, location);
6027 }
6028
6029 // Implement a comparison.
6030
6031 tree
6032 Expression::comparison_tree(Translate_context* context, Operator op,
6033 Type* left_type, tree left_tree,
6034 Type* right_type, tree right_tree,
6035 source_location location)
6036 {
6037 enum tree_code code;
6038 switch (op)
6039 {
6040 case OPERATOR_EQEQ:
6041 code = EQ_EXPR;
6042 break;
6043 case OPERATOR_NOTEQ:
6044 code = NE_EXPR;
6045 break;
6046 case OPERATOR_LT:
6047 code = LT_EXPR;
6048 break;
6049 case OPERATOR_LE:
6050 code = LE_EXPR;
6051 break;
6052 case OPERATOR_GT:
6053 code = GT_EXPR;
6054 break;
6055 case OPERATOR_GE:
6056 code = GE_EXPR;
6057 break;
6058 default:
6059 gcc_unreachable();
6060 }
6061
6062 if (left_type->is_string_type() && right_type->is_string_type())
6063 {
6064 tree string_type = Type::make_string_type()->get_tree(context->gogo());
6065 static tree string_compare_decl;
6066 left_tree = Gogo::call_builtin(&string_compare_decl,
6067 location,
6068 "__go_strcmp",
6069 2,
6070 integer_type_node,
6071 string_type,
6072 left_tree,
6073 string_type,
6074 right_tree);
6075 right_tree = build_int_cst_type(integer_type_node, 0);
6076 }
6077 else if ((left_type->interface_type() != NULL
6078 && right_type->interface_type() == NULL
6079 && !right_type->is_nil_type())
6080 || (left_type->interface_type() == NULL
6081 && !left_type->is_nil_type()
6082 && right_type->interface_type() != NULL))
6083 {
6084 // Comparing an interface value to a non-interface value.
6085 if (left_type->interface_type() == NULL)
6086 {
6087 std::swap(left_type, right_type);
6088 std::swap(left_tree, right_tree);
6089 }
6090
6091 // The right operand is not an interface. We need to take its
6092 // address if it is not a pointer.
6093 tree make_tmp;
6094 tree arg;
6095 if (right_type->points_to() != NULL)
6096 {
6097 make_tmp = NULL_TREE;
6098 arg = right_tree;
6099 }
6100 else if (TREE_ADDRESSABLE(TREE_TYPE(right_tree)) || DECL_P(right_tree))
6101 {
6102 make_tmp = NULL_TREE;
6103 arg = build_fold_addr_expr_loc(location, right_tree);
6104 if (DECL_P(right_tree))
6105 TREE_ADDRESSABLE(right_tree) = 1;
6106 }
6107 else
6108 {
6109 tree tmp = create_tmp_var(TREE_TYPE(right_tree),
6110 get_name(right_tree));
6111 DECL_IGNORED_P(tmp) = 0;
6112 DECL_INITIAL(tmp) = right_tree;
6113 TREE_ADDRESSABLE(tmp) = 1;
6114 make_tmp = build1(DECL_EXPR, void_type_node, tmp);
6115 SET_EXPR_LOCATION(make_tmp, location);
6116 arg = build_fold_addr_expr_loc(location, tmp);
6117 }
6118 arg = fold_convert_loc(location, ptr_type_node, arg);
6119
6120 tree descriptor = right_type->type_descriptor_pointer(context->gogo());
6121
6122 if (left_type->interface_type()->is_empty())
6123 {
6124 static tree empty_interface_value_compare_decl;
6125 left_tree = Gogo::call_builtin(&empty_interface_value_compare_decl,
6126 location,
6127 "__go_empty_interface_value_compare",
6128 3,
6129 integer_type_node,
6130 TREE_TYPE(left_tree),
6131 left_tree,
6132 TREE_TYPE(descriptor),
6133 descriptor,
6134 ptr_type_node,
6135 arg);
6136 if (left_tree == error_mark_node)
6137 return error_mark_node;
6138 // This can panic if the type is not comparable.
6139 TREE_NOTHROW(empty_interface_value_compare_decl) = 0;
6140 }
6141 else
6142 {
6143 static tree interface_value_compare_decl;
6144 left_tree = Gogo::call_builtin(&interface_value_compare_decl,
6145 location,
6146 "__go_interface_value_compare",
6147 3,
6148 integer_type_node,
6149 TREE_TYPE(left_tree),
6150 left_tree,
6151 TREE_TYPE(descriptor),
6152 descriptor,
6153 ptr_type_node,
6154 arg);
6155 if (left_tree == error_mark_node)
6156 return error_mark_node;
6157 // This can panic if the type is not comparable.
6158 TREE_NOTHROW(interface_value_compare_decl) = 0;
6159 }
6160 right_tree = build_int_cst_type(integer_type_node, 0);
6161
6162 if (make_tmp != NULL_TREE)
6163 left_tree = build2(COMPOUND_EXPR, TREE_TYPE(left_tree), make_tmp,
6164 left_tree);
6165 }
6166 else if (left_type->interface_type() != NULL
6167 && right_type->interface_type() != NULL)
6168 {
6169 if (left_type->interface_type()->is_empty())
6170 {
6171 gcc_assert(right_type->interface_type()->is_empty());
6172 static tree empty_interface_compare_decl;
6173 left_tree = Gogo::call_builtin(&empty_interface_compare_decl,
6174 location,
6175 "__go_empty_interface_compare",
6176 2,
6177 integer_type_node,
6178 TREE_TYPE(left_tree),
6179 left_tree,
6180 TREE_TYPE(right_tree),
6181 right_tree);
6182 if (left_tree == error_mark_node)
6183 return error_mark_node;
6184 // This can panic if the type is uncomparable.
6185 TREE_NOTHROW(empty_interface_compare_decl) = 0;
6186 }
6187 else
6188 {
6189 gcc_assert(!right_type->interface_type()->is_empty());
6190 static tree interface_compare_decl;
6191 left_tree = Gogo::call_builtin(&interface_compare_decl,
6192 location,
6193 "__go_interface_compare",
6194 2,
6195 integer_type_node,
6196 TREE_TYPE(left_tree),
6197 left_tree,
6198 TREE_TYPE(right_tree),
6199 right_tree);
6200 if (left_tree == error_mark_node)
6201 return error_mark_node;
6202 // This can panic if the type is uncomparable.
6203 TREE_NOTHROW(interface_compare_decl) = 0;
6204 }
6205 right_tree = build_int_cst_type(integer_type_node, 0);
6206 }
6207
6208 if (left_type->is_nil_type()
6209 && (op == OPERATOR_EQEQ || op == OPERATOR_NOTEQ))
6210 {
6211 std::swap(left_type, right_type);
6212 std::swap(left_tree, right_tree);
6213 }
6214
6215 if (right_type->is_nil_type())
6216 {
6217 if (left_type->array_type() != NULL
6218 && left_type->array_type()->length() == NULL)
6219 {
6220 Array_type* at = left_type->array_type();
6221 left_tree = at->value_pointer_tree(context->gogo(), left_tree);
6222 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
6223 }
6224 else if (left_type->interface_type() != NULL)
6225 {
6226 // An interface is nil if the first field is nil.
6227 tree left_type_tree = TREE_TYPE(left_tree);
6228 gcc_assert(TREE_CODE(left_type_tree) == RECORD_TYPE);
6229 tree field = TYPE_FIELDS(left_type_tree);
6230 left_tree = build3(COMPONENT_REF, TREE_TYPE(field), left_tree,
6231 field, NULL_TREE);
6232 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
6233 }
6234 else
6235 {
6236 gcc_assert(POINTER_TYPE_P(TREE_TYPE(left_tree)));
6237 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
6238 }
6239 }
6240
6241 if (left_tree == error_mark_node || right_tree == error_mark_node)
6242 return error_mark_node;
6243
6244 tree ret = fold_build2(code, boolean_type_node, left_tree, right_tree);
6245 if (CAN_HAVE_LOCATION_P(ret))
6246 SET_EXPR_LOCATION(ret, location);
6247 return ret;
6248 }
6249
6250 // Class Bound_method_expression.
6251
6252 // Traversal.
6253
6254 int
6255 Bound_method_expression::do_traverse(Traverse* traverse)
6256 {
6257 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT)
6258 return TRAVERSE_EXIT;
6259 return Expression::traverse(&this->method_, traverse);
6260 }
6261
6262 // Return the type of a bound method expression. The type of this
6263 // object is really the type of the method with no receiver. We
6264 // should be able to get away with just returning the type of the
6265 // method.
6266
6267 Type*
6268 Bound_method_expression::do_type()
6269 {
6270 return this->method_->type();
6271 }
6272
6273 // Determine the types of a method expression.
6274
6275 void
6276 Bound_method_expression::do_determine_type(const Type_context*)
6277 {
6278 this->method_->determine_type_no_context();
6279 Type* mtype = this->method_->type();
6280 Function_type* fntype = mtype == NULL ? NULL : mtype->function_type();
6281 if (fntype == NULL || !fntype->is_method())
6282 this->expr_->determine_type_no_context();
6283 else
6284 {
6285 Type_context subcontext(fntype->receiver()->type(), false);
6286 this->expr_->determine_type(&subcontext);
6287 }
6288 }
6289
6290 // Check the types of a method expression.
6291
6292 void
6293 Bound_method_expression::do_check_types(Gogo*)
6294 {
6295 Type* type = this->method_->type()->deref();
6296 if (type == NULL
6297 || type->function_type() == NULL
6298 || !type->function_type()->is_method())
6299 this->report_error(_("object is not a method"));
6300 else
6301 {
6302 Type* rtype = type->function_type()->receiver()->type()->deref();
6303 Type* etype = (this->expr_type_ != NULL
6304 ? this->expr_type_
6305 : this->expr_->type());
6306 etype = etype->deref();
6307 if (!Type::are_identical(rtype, etype, true, NULL))
6308 this->report_error(_("method type does not match object type"));
6309 }
6310 }
6311
6312 // Get the tree for a method expression. There is no standard tree
6313 // representation for this. The only places it may currently be used
6314 // are in a Call_expression or a Go_statement, which will take it
6315 // apart directly. So this has nothing to do at present.
6316
6317 tree
6318 Bound_method_expression::do_get_tree(Translate_context*)
6319 {
6320 gcc_unreachable();
6321 }
6322
6323 // Make a method expression.
6324
6325 Bound_method_expression*
6326 Expression::make_bound_method(Expression* expr, Expression* method,
6327 source_location location)
6328 {
6329 return new Bound_method_expression(expr, method, location);
6330 }
6331
6332 // Class Builtin_call_expression. This is used for a call to a
6333 // builtin function.
6334
6335 class Builtin_call_expression : public Call_expression
6336 {
6337 public:
6338 Builtin_call_expression(Gogo* gogo, Expression* fn, Expression_list* args,
6339 bool is_varargs, source_location location);
6340
6341 protected:
6342 // This overrides Call_expression::do_lower.
6343 Expression*
6344 do_lower(Gogo*, Named_object*, int);
6345
6346 bool
6347 do_is_constant() const;
6348
6349 bool
6350 do_integer_constant_value(bool, mpz_t, Type**) const;
6351
6352 bool
6353 do_float_constant_value(mpfr_t, Type**) const;
6354
6355 bool
6356 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
6357
6358 Type*
6359 do_type();
6360
6361 void
6362 do_determine_type(const Type_context*);
6363
6364 void
6365 do_check_types(Gogo*);
6366
6367 Expression*
6368 do_copy()
6369 {
6370 return new Builtin_call_expression(this->gogo_, this->fn()->copy(),
6371 this->args()->copy(),
6372 this->is_varargs(),
6373 this->location());
6374 }
6375
6376 tree
6377 do_get_tree(Translate_context*);
6378
6379 void
6380 do_export(Export*) const;
6381
6382 virtual bool
6383 do_is_recover_call() const;
6384
6385 virtual void
6386 do_set_recover_arg(Expression*);
6387
6388 private:
6389 // The builtin functions.
6390 enum Builtin_function_code
6391 {
6392 BUILTIN_INVALID,
6393
6394 // Predeclared builtin functions.
6395 BUILTIN_APPEND,
6396 BUILTIN_CAP,
6397 BUILTIN_CLOSE,
6398 BUILTIN_CLOSED,
6399 BUILTIN_CMPLX,
6400 BUILTIN_COPY,
6401 BUILTIN_IMAG,
6402 BUILTIN_LEN,
6403 BUILTIN_MAKE,
6404 BUILTIN_NEW,
6405 BUILTIN_PANIC,
6406 BUILTIN_PRINT,
6407 BUILTIN_PRINTLN,
6408 BUILTIN_REAL,
6409 BUILTIN_RECOVER,
6410
6411 // Builtin functions from the unsafe package.
6412 BUILTIN_ALIGNOF,
6413 BUILTIN_OFFSETOF,
6414 BUILTIN_SIZEOF
6415 };
6416
6417 Expression*
6418 one_arg() const;
6419
6420 bool
6421 check_one_arg();
6422
6423 static Type*
6424 real_imag_type(Type*);
6425
6426 static Type*
6427 cmplx_type(Type*);
6428
6429 // A pointer back to the general IR structure. This avoids a global
6430 // variable, or passing it around everywhere.
6431 Gogo* gogo_;
6432 // The builtin function being called.
6433 Builtin_function_code code_;
6434 };
6435
6436 Builtin_call_expression::Builtin_call_expression(Gogo* gogo,
6437 Expression* fn,
6438 Expression_list* args,
6439 bool is_varargs,
6440 source_location location)
6441 : Call_expression(fn, args, is_varargs, location),
6442 gogo_(gogo), code_(BUILTIN_INVALID)
6443 {
6444 Func_expression* fnexp = this->fn()->func_expression();
6445 gcc_assert(fnexp != NULL);
6446 const std::string& name(fnexp->named_object()->name());
6447 if (name == "append")
6448 this->code_ = BUILTIN_APPEND;
6449 else if (name == "cap")
6450 this->code_ = BUILTIN_CAP;
6451 else if (name == "close")
6452 this->code_ = BUILTIN_CLOSE;
6453 else if (name == "closed")
6454 this->code_ = BUILTIN_CLOSED;
6455 else if (name == "cmplx")
6456 this->code_ = BUILTIN_CMPLX;
6457 else if (name == "copy")
6458 this->code_ = BUILTIN_COPY;
6459 else if (name == "imag")
6460 this->code_ = BUILTIN_IMAG;
6461 else if (name == "len")
6462 this->code_ = BUILTIN_LEN;
6463 else if (name == "make")
6464 this->code_ = BUILTIN_MAKE;
6465 else if (name == "new")
6466 this->code_ = BUILTIN_NEW;
6467 else if (name == "panic")
6468 this->code_ = BUILTIN_PANIC;
6469 else if (name == "print")
6470 this->code_ = BUILTIN_PRINT;
6471 else if (name == "println")
6472 this->code_ = BUILTIN_PRINTLN;
6473 else if (name == "real")
6474 this->code_ = BUILTIN_REAL;
6475 else if (name == "recover")
6476 this->code_ = BUILTIN_RECOVER;
6477 else if (name == "Alignof")
6478 this->code_ = BUILTIN_ALIGNOF;
6479 else if (name == "Offsetof")
6480 this->code_ = BUILTIN_OFFSETOF;
6481 else if (name == "Sizeof")
6482 this->code_ = BUILTIN_SIZEOF;
6483 else
6484 gcc_unreachable();
6485 }
6486
6487 // Return whether this is a call to recover. This is a virtual
6488 // function called from the parent class.
6489
6490 bool
6491 Builtin_call_expression::do_is_recover_call() const
6492 {
6493 if (this->classification() == EXPRESSION_ERROR)
6494 return false;
6495 return this->code_ == BUILTIN_RECOVER;
6496 }
6497
6498 // Set the argument for a call to recover.
6499
6500 void
6501 Builtin_call_expression::do_set_recover_arg(Expression* arg)
6502 {
6503 const Expression_list* args = this->args();
6504 gcc_assert(args == NULL || args->empty());
6505 Expression_list* new_args = new Expression_list();
6506 new_args->push_back(arg);
6507 this->set_args(new_args);
6508 }
6509
6510 // A traversal class which looks for a call expression.
6511
6512 class Find_call_expression : public Traverse
6513 {
6514 public:
6515 Find_call_expression()
6516 : Traverse(traverse_expressions),
6517 found_(false)
6518 { }
6519
6520 int
6521 expression(Expression**);
6522
6523 bool
6524 found()
6525 { return this->found_; }
6526
6527 private:
6528 bool found_;
6529 };
6530
6531 int
6532 Find_call_expression::expression(Expression** pexpr)
6533 {
6534 if ((*pexpr)->call_expression() != NULL)
6535 {
6536 this->found_ = true;
6537 return TRAVERSE_EXIT;
6538 }
6539 return TRAVERSE_CONTINUE;
6540 }
6541
6542 // Lower a builtin call expression. This turns new and make into
6543 // specific expressions. We also convert to a constant if we can.
6544
6545 Expression*
6546 Builtin_call_expression::do_lower(Gogo* gogo, Named_object* function, int)
6547 {
6548 if (this->code_ == BUILTIN_NEW)
6549 {
6550 const Expression_list* args = this->args();
6551 if (args == NULL || args->size() < 1)
6552 this->report_error(_("not enough arguments"));
6553 else if (args->size() > 1)
6554 this->report_error(_("too many arguments"));
6555 else
6556 {
6557 Expression* arg = args->front();
6558 if (!arg->is_type_expression())
6559 {
6560 error_at(arg->location(), "expected type");
6561 this->set_is_error();
6562 }
6563 else
6564 return Expression::make_allocation(arg->type(), this->location());
6565 }
6566 }
6567 else if (this->code_ == BUILTIN_MAKE)
6568 {
6569 const Expression_list* args = this->args();
6570 if (args == NULL || args->size() < 1)
6571 this->report_error(_("not enough arguments"));
6572 else
6573 {
6574 Expression* arg = args->front();
6575 if (!arg->is_type_expression())
6576 {
6577 error_at(arg->location(), "expected type");
6578 this->set_is_error();
6579 }
6580 else
6581 {
6582 Expression_list* newargs;
6583 if (args->size() == 1)
6584 newargs = NULL;
6585 else
6586 {
6587 newargs = new Expression_list();
6588 Expression_list::const_iterator p = args->begin();
6589 ++p;
6590 for (; p != args->end(); ++p)
6591 newargs->push_back(*p);
6592 }
6593 return Expression::make_make(arg->type(), newargs,
6594 this->location());
6595 }
6596 }
6597 }
6598 else if (this->is_constant())
6599 {
6600 // We can only lower len and cap if there are no function calls
6601 // in the arguments. Otherwise we have to make the call.
6602 if (this->code_ == BUILTIN_LEN || this->code_ == BUILTIN_CAP)
6603 {
6604 Expression* arg = this->one_arg();
6605 if (!arg->is_constant())
6606 {
6607 Find_call_expression find_call;
6608 Expression::traverse(&arg, &find_call);
6609 if (find_call.found())
6610 return this;
6611 }
6612 }
6613
6614 mpz_t ival;
6615 mpz_init(ival);
6616 Type* type;
6617 if (this->integer_constant_value(true, ival, &type))
6618 {
6619 Expression* ret = Expression::make_integer(&ival, type,
6620 this->location());
6621 mpz_clear(ival);
6622 return ret;
6623 }
6624 mpz_clear(ival);
6625
6626 mpfr_t rval;
6627 mpfr_init(rval);
6628 if (this->float_constant_value(rval, &type))
6629 {
6630 Expression* ret = Expression::make_float(&rval, type,
6631 this->location());
6632 mpfr_clear(rval);
6633 return ret;
6634 }
6635
6636 mpfr_t imag;
6637 mpfr_init(imag);
6638 if (this->complex_constant_value(rval, imag, &type))
6639 {
6640 Expression* ret = Expression::make_complex(&rval, &imag, type,
6641 this->location());
6642 mpfr_clear(rval);
6643 mpfr_clear(imag);
6644 return ret;
6645 }
6646 mpfr_clear(rval);
6647 mpfr_clear(imag);
6648 }
6649 else if (this->code_ == BUILTIN_RECOVER)
6650 {
6651 if (function != NULL)
6652 function->func_value()->set_calls_recover();
6653 else
6654 {
6655 // Calling recover outside of a function always returns the
6656 // nil empty interface.
6657 Type* eface = Type::make_interface_type(NULL, this->location());
6658 return Expression::make_cast(eface,
6659 Expression::make_nil(this->location()),
6660 this->location());
6661 }
6662 }
6663 else if (this->code_ == BUILTIN_APPEND)
6664 {
6665 // Lower the varargs.
6666 const Expression_list* args = this->args();
6667 if (args == NULL || args->empty())
6668 return this;
6669 Type* slice_type = args->front()->type();
6670 if (!slice_type->is_open_array_type())
6671 {
6672 error_at(args->front()->location(), "argument 1 must be a slice");
6673 this->set_is_error();
6674 return this;
6675 }
6676 return this->lower_varargs(gogo, function, slice_type, 2);
6677 }
6678
6679 return this;
6680 }
6681
6682 // Return the type of the real or imag functions, given the type of
6683 // the argument. We need to map complex to float, complex64 to
6684 // float32, and complex128 to float64, so it has to be done by name.
6685 // This returns NULL if it can't figure out the type.
6686
6687 Type*
6688 Builtin_call_expression::real_imag_type(Type* arg_type)
6689 {
6690 if (arg_type == NULL || arg_type->is_abstract())
6691 return NULL;
6692 Named_type* nt = arg_type->named_type();
6693 if (nt == NULL)
6694 return NULL;
6695 while (nt->real_type()->named_type() != NULL)
6696 nt = nt->real_type()->named_type();
6697 if (nt->name() == "complex")
6698 return Type::lookup_float_type("float");
6699 else if (nt->name() == "complex64")
6700 return Type::lookup_float_type("float32");
6701 else if (nt->name() == "complex128")
6702 return Type::lookup_float_type("float64");
6703 else
6704 return NULL;
6705 }
6706
6707 // Return the type of the cmplx function, given the type of one of the
6708 // argments. Like real_imag_type, we have to map by name.
6709
6710 Type*
6711 Builtin_call_expression::cmplx_type(Type* arg_type)
6712 {
6713 if (arg_type == NULL || arg_type->is_abstract())
6714 return NULL;
6715 Named_type* nt = arg_type->named_type();
6716 if (nt == NULL)
6717 return NULL;
6718 while (nt->real_type()->named_type() != NULL)
6719 nt = nt->real_type()->named_type();
6720 if (nt->name() == "float")
6721 return Type::lookup_complex_type("complex");
6722 else if (nt->name() == "float32")
6723 return Type::lookup_complex_type("complex64");
6724 else if (nt->name() == "float64")
6725 return Type::lookup_complex_type("complex128");
6726 else
6727 return NULL;
6728 }
6729
6730 // Return a single argument, or NULL if there isn't one.
6731
6732 Expression*
6733 Builtin_call_expression::one_arg() const
6734 {
6735 const Expression_list* args = this->args();
6736 if (args->size() != 1)
6737 return NULL;
6738 return args->front();
6739 }
6740
6741 // Return whether this is constant: len of a string, or len or cap of
6742 // a fixed array, or unsafe.Sizeof, unsafe.Offsetof, unsafe.Alignof.
6743
6744 bool
6745 Builtin_call_expression::do_is_constant() const
6746 {
6747 switch (this->code_)
6748 {
6749 case BUILTIN_LEN:
6750 case BUILTIN_CAP:
6751 {
6752 Expression* arg = this->one_arg();
6753 if (arg == NULL)
6754 return false;
6755 Type* arg_type = arg->type();
6756
6757 if (arg_type->points_to() != NULL
6758 && arg_type->points_to()->array_type() != NULL
6759 && !arg_type->points_to()->is_open_array_type())
6760 arg_type = arg_type->points_to();
6761
6762 if (arg_type->array_type() != NULL
6763 && arg_type->array_type()->length() != NULL)
6764 return arg_type->array_type()->length()->is_constant();
6765
6766 if (this->code_ == BUILTIN_LEN && arg_type->is_string_type())
6767 return arg->is_constant();
6768 }
6769 break;
6770
6771 case BUILTIN_SIZEOF:
6772 case BUILTIN_ALIGNOF:
6773 return this->one_arg() != NULL;
6774
6775 case BUILTIN_OFFSETOF:
6776 {
6777 Expression* arg = this->one_arg();
6778 if (arg == NULL)
6779 return false;
6780 return arg->field_reference_expression() != NULL;
6781 }
6782
6783 case BUILTIN_CMPLX:
6784 {
6785 const Expression_list* args = this->args();
6786 if (args != NULL && args->size() == 2)
6787 return args->front()->is_constant() && args->back()->is_constant();
6788 }
6789 break;
6790
6791 case BUILTIN_REAL:
6792 case BUILTIN_IMAG:
6793 {
6794 Expression* arg = this->one_arg();
6795 return arg != NULL && arg->is_constant();
6796 }
6797
6798 default:
6799 break;
6800 }
6801
6802 return false;
6803 }
6804
6805 // Return an integer constant value if possible.
6806
6807 bool
6808 Builtin_call_expression::do_integer_constant_value(bool iota_is_constant,
6809 mpz_t val,
6810 Type** ptype) const
6811 {
6812 if (this->code_ == BUILTIN_LEN
6813 || this->code_ == BUILTIN_CAP)
6814 {
6815 Expression* arg = this->one_arg();
6816 if (arg == NULL)
6817 return false;
6818 Type* arg_type = arg->type();
6819
6820 if (this->code_ == BUILTIN_LEN && arg_type->is_string_type())
6821 {
6822 std::string sval;
6823 if (arg->string_constant_value(&sval))
6824 {
6825 mpz_set_ui(val, sval.length());
6826 *ptype = Type::lookup_integer_type("int");
6827 return true;
6828 }
6829 }
6830
6831 if (arg_type->points_to() != NULL
6832 && arg_type->points_to()->array_type() != NULL
6833 && !arg_type->points_to()->is_open_array_type())
6834 arg_type = arg_type->points_to();
6835
6836 if (arg_type->array_type() != NULL
6837 && arg_type->array_type()->length() != NULL)
6838 {
6839 Expression* e = arg_type->array_type()->length();
6840 if (e->integer_constant_value(iota_is_constant, val, ptype))
6841 {
6842 *ptype = Type::lookup_integer_type("int");
6843 return true;
6844 }
6845 }
6846 }
6847 else if (this->code_ == BUILTIN_SIZEOF
6848 || this->code_ == BUILTIN_ALIGNOF)
6849 {
6850 Expression* arg = this->one_arg();
6851 if (arg == NULL)
6852 return false;
6853 Type* arg_type = arg->type();
6854 if (arg_type->is_error_type() || arg_type->is_undefined())
6855 return false;
6856 if (arg_type->is_abstract())
6857 return false;
6858 tree arg_type_tree = arg_type->get_tree(this->gogo_);
6859 unsigned long val_long;
6860 if (this->code_ == BUILTIN_SIZEOF)
6861 {
6862 tree type_size = TYPE_SIZE_UNIT(arg_type_tree);
6863 gcc_assert(TREE_CODE(type_size) == INTEGER_CST);
6864 if (TREE_INT_CST_HIGH(type_size) != 0)
6865 return false;
6866 unsigned HOST_WIDE_INT val_wide = TREE_INT_CST_LOW(type_size);
6867 val_long = static_cast<unsigned long>(val_wide);
6868 if (val_long != val_wide)
6869 return false;
6870 }
6871 else if (this->code_ == BUILTIN_ALIGNOF)
6872 {
6873 if (arg->field_reference_expression() == NULL)
6874 val_long = go_type_alignment(arg_type_tree);
6875 else
6876 {
6877 // Calling unsafe.Alignof(s.f) returns the alignment of
6878 // the type of f when it is used as a field in a struct.
6879 val_long = go_field_alignment(arg_type_tree);
6880 }
6881 }
6882 else
6883 gcc_unreachable();
6884 mpz_set_ui(val, val_long);
6885 *ptype = NULL;
6886 return true;
6887 }
6888 else if (this->code_ == BUILTIN_OFFSETOF)
6889 {
6890 Expression* arg = this->one_arg();
6891 if (arg == NULL)
6892 return false;
6893 Field_reference_expression* farg = arg->field_reference_expression();
6894 if (farg == NULL)
6895 return false;
6896 Expression* struct_expr = farg->expr();
6897 Type* st = struct_expr->type();
6898 if (st->struct_type() == NULL)
6899 return false;
6900 tree struct_tree = st->get_tree(this->gogo_);
6901 gcc_assert(TREE_CODE(struct_tree) == RECORD_TYPE);
6902 tree field = TYPE_FIELDS(struct_tree);
6903 for (unsigned int index = farg->field_index(); index > 0; --index)
6904 {
6905 field = DECL_CHAIN(field);
6906 gcc_assert(field != NULL_TREE);
6907 }
6908 HOST_WIDE_INT offset_wide = int_byte_position (field);
6909 if (offset_wide < 0)
6910 return false;
6911 unsigned long offset_long = static_cast<unsigned long>(offset_wide);
6912 if (offset_long != static_cast<unsigned HOST_WIDE_INT>(offset_wide))
6913 return false;
6914 mpz_set_ui(val, offset_long);
6915 return true;
6916 }
6917 return false;
6918 }
6919
6920 // Return a floating point constant value if possible.
6921
6922 bool
6923 Builtin_call_expression::do_float_constant_value(mpfr_t val,
6924 Type** ptype) const
6925 {
6926 if (this->code_ == BUILTIN_REAL || this->code_ == BUILTIN_IMAG)
6927 {
6928 Expression* arg = this->one_arg();
6929 if (arg == NULL)
6930 return false;
6931
6932 mpfr_t real;
6933 mpfr_t imag;
6934 mpfr_init(real);
6935 mpfr_init(imag);
6936
6937 bool ret = false;
6938 Type* type;
6939 if (arg->complex_constant_value(real, imag, &type))
6940 {
6941 if (this->code_ == BUILTIN_REAL)
6942 mpfr_set(val, real, GMP_RNDN);
6943 else
6944 mpfr_set(val, imag, GMP_RNDN);
6945 *ptype = Builtin_call_expression::real_imag_type(type);
6946 ret = true;
6947 }
6948
6949 mpfr_clear(real);
6950 mpfr_clear(imag);
6951 return ret;
6952 }
6953
6954 return false;
6955 }
6956
6957 // Return a complex constant value if possible.
6958
6959 bool
6960 Builtin_call_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
6961 Type** ptype) const
6962 {
6963 if (this->code_ == BUILTIN_CMPLX)
6964 {
6965 const Expression_list* args = this->args();
6966 if (args == NULL || args->size() != 2)
6967 return false;
6968
6969 mpfr_t r;
6970 mpfr_init(r);
6971 Type* rtype;
6972 if (!args->front()->float_constant_value(r, &rtype))
6973 {
6974 mpfr_clear(r);
6975 return false;
6976 }
6977
6978 mpfr_t i;
6979 mpfr_init(i);
6980
6981 bool ret = false;
6982 Type* itype;
6983 if (args->back()->float_constant_value(i, &itype)
6984 && Type::are_identical(rtype, itype, false, NULL))
6985 {
6986 mpfr_set(real, r, GMP_RNDN);
6987 mpfr_set(imag, i, GMP_RNDN);
6988 *ptype = Builtin_call_expression::cmplx_type(rtype);
6989 ret = true;
6990 }
6991
6992 mpfr_clear(r);
6993 mpfr_clear(i);
6994
6995 return ret;
6996 }
6997
6998 return false;
6999 }
7000
7001 // Return the type.
7002
7003 Type*
7004 Builtin_call_expression::do_type()
7005 {
7006 switch (this->code_)
7007 {
7008 case BUILTIN_INVALID:
7009 default:
7010 gcc_unreachable();
7011
7012 case BUILTIN_NEW:
7013 case BUILTIN_MAKE:
7014 {
7015 const Expression_list* args = this->args();
7016 if (args == NULL || args->empty())
7017 return Type::make_error_type();
7018 return Type::make_pointer_type(args->front()->type());
7019 }
7020
7021 case BUILTIN_CAP:
7022 case BUILTIN_COPY:
7023 case BUILTIN_LEN:
7024 case BUILTIN_ALIGNOF:
7025 case BUILTIN_OFFSETOF:
7026 case BUILTIN_SIZEOF:
7027 return Type::lookup_integer_type("int");
7028
7029 case BUILTIN_CLOSE:
7030 case BUILTIN_PANIC:
7031 case BUILTIN_PRINT:
7032 case BUILTIN_PRINTLN:
7033 return Type::make_void_type();
7034
7035 case BUILTIN_CLOSED:
7036 return Type::lookup_bool_type();
7037
7038 case BUILTIN_RECOVER:
7039 return Type::make_interface_type(NULL, BUILTINS_LOCATION);
7040
7041 case BUILTIN_APPEND:
7042 {
7043 const Expression_list* args = this->args();
7044 if (args == NULL || args->empty())
7045 return Type::make_error_type();
7046 return args->front()->type();
7047 }
7048
7049 case BUILTIN_REAL:
7050 case BUILTIN_IMAG:
7051 {
7052 Expression* arg = this->one_arg();
7053 if (arg == NULL)
7054 return Type::make_error_type();
7055 Type* t = arg->type();
7056 if (t->is_abstract())
7057 t = t->make_non_abstract_type();
7058 t = Builtin_call_expression::real_imag_type(t);
7059 if (t == NULL)
7060 t = Type::make_error_type();
7061 return t;
7062 }
7063
7064 case BUILTIN_CMPLX:
7065 {
7066 const Expression_list* args = this->args();
7067 if (args == NULL || args->size() != 2)
7068 return Type::make_error_type();
7069 Type* t = args->front()->type();
7070 if (t->is_abstract())
7071 {
7072 t = args->back()->type();
7073 if (t->is_abstract())
7074 t = t->make_non_abstract_type();
7075 }
7076 t = Builtin_call_expression::cmplx_type(t);
7077 if (t == NULL)
7078 t = Type::make_error_type();
7079 return t;
7080 }
7081 }
7082 }
7083
7084 // Determine the type.
7085
7086 void
7087 Builtin_call_expression::do_determine_type(const Type_context* context)
7088 {
7089 this->fn()->determine_type_no_context();
7090
7091 const Expression_list* args = this->args();
7092
7093 bool is_print;
7094 Type* arg_type = NULL;
7095 switch (this->code_)
7096 {
7097 case BUILTIN_PRINT:
7098 case BUILTIN_PRINTLN:
7099 // Do not force a large integer constant to "int".
7100 is_print = true;
7101 break;
7102
7103 case BUILTIN_REAL:
7104 case BUILTIN_IMAG:
7105 arg_type = Builtin_call_expression::cmplx_type(context->type);
7106 is_print = false;
7107 break;
7108
7109 case BUILTIN_CMPLX:
7110 {
7111 // For the cmplx function the type of one operand can
7112 // determine the type of the other, as in a binary expression.
7113 arg_type = Builtin_call_expression::real_imag_type(context->type);
7114 if (args != NULL && args->size() == 2)
7115 {
7116 Type* t1 = args->front()->type();
7117 Type* t2 = args->front()->type();
7118 if (!t1->is_abstract())
7119 arg_type = t1;
7120 else if (!t2->is_abstract())
7121 arg_type = t2;
7122 }
7123 is_print = false;
7124 }
7125 break;
7126
7127 default:
7128 is_print = false;
7129 break;
7130 }
7131
7132 if (args != NULL)
7133 {
7134 for (Expression_list::const_iterator pa = args->begin();
7135 pa != args->end();
7136 ++pa)
7137 {
7138 Type_context subcontext;
7139 subcontext.type = arg_type;
7140
7141 if (is_print)
7142 {
7143 // We want to print large constants, we so can't just
7144 // use the appropriate nonabstract type. Use uint64 for
7145 // an integer if we know it is nonnegative, otherwise
7146 // use int64 for a integer, otherwise use float64 for a
7147 // float or complex128 for a complex.
7148 Type* want_type = NULL;
7149 Type* atype = (*pa)->type();
7150 if (atype->is_abstract())
7151 {
7152 if (atype->integer_type() != NULL)
7153 {
7154 mpz_t val;
7155 mpz_init(val);
7156 Type* dummy;
7157 if (this->integer_constant_value(true, val, &dummy)
7158 && mpz_sgn(val) >= 0)
7159 want_type = Type::lookup_integer_type("uint64");
7160 else
7161 want_type = Type::lookup_integer_type("int64");
7162 mpz_clear(val);
7163 }
7164 else if (atype->float_type() != NULL)
7165 want_type = Type::lookup_float_type("float64");
7166 else if (atype->complex_type() != NULL)
7167 want_type = Type::lookup_complex_type("complex128");
7168 else if (atype->is_abstract_string_type())
7169 want_type = Type::lookup_string_type();
7170 else if (atype->is_abstract_boolean_type())
7171 want_type = Type::lookup_bool_type();
7172 else
7173 gcc_unreachable();
7174 subcontext.type = want_type;
7175 }
7176 }
7177
7178 (*pa)->determine_type(&subcontext);
7179 }
7180 }
7181 }
7182
7183 // If there is exactly one argument, return true. Otherwise give an
7184 // error message and return false.
7185
7186 bool
7187 Builtin_call_expression::check_one_arg()
7188 {
7189 const Expression_list* args = this->args();
7190 if (args == NULL || args->size() < 1)
7191 {
7192 this->report_error(_("not enough arguments"));
7193 return false;
7194 }
7195 else if (args->size() > 1)
7196 {
7197 this->report_error(_("too many arguments"));
7198 return false;
7199 }
7200 if (args->front()->is_error_expression()
7201 || args->front()->type()->is_error_type()
7202 || args->front()->type()->is_undefined())
7203 {
7204 this->set_is_error();
7205 return false;
7206 }
7207 return true;
7208 }
7209
7210 // Check argument types for a builtin function.
7211
7212 void
7213 Builtin_call_expression::do_check_types(Gogo*)
7214 {
7215 switch (this->code_)
7216 {
7217 case BUILTIN_INVALID:
7218 case BUILTIN_NEW:
7219 case BUILTIN_MAKE:
7220 return;
7221
7222 case BUILTIN_LEN:
7223 case BUILTIN_CAP:
7224 {
7225 // The single argument may be either a string or an array or a
7226 // map or a channel, or a pointer to a closed array.
7227 if (this->check_one_arg())
7228 {
7229 Type* arg_type = this->one_arg()->type();
7230 if (arg_type->points_to() != NULL
7231 && arg_type->points_to()->array_type() != NULL
7232 && !arg_type->points_to()->is_open_array_type())
7233 arg_type = arg_type->points_to();
7234 if (this->code_ == BUILTIN_CAP)
7235 {
7236 if (!arg_type->is_error_type()
7237 && arg_type->array_type() == NULL
7238 && arg_type->channel_type() == NULL)
7239 this->report_error(_("argument must be array or slice "
7240 "or channel"));
7241 }
7242 else
7243 {
7244 if (!arg_type->is_error_type()
7245 && !arg_type->is_string_type()
7246 && arg_type->array_type() == NULL
7247 && arg_type->map_type() == NULL
7248 && arg_type->channel_type() == NULL)
7249 this->report_error(_("argument must be string or "
7250 "array or slice or map or channel"));
7251 }
7252 }
7253 }
7254 break;
7255
7256 case BUILTIN_PRINT:
7257 case BUILTIN_PRINTLN:
7258 {
7259 const Expression_list* args = this->args();
7260 if (args == NULL)
7261 {
7262 if (this->code_ == BUILTIN_PRINT)
7263 warning_at(this->location(), 0,
7264 "no arguments for builtin function %<%s%>",
7265 (this->code_ == BUILTIN_PRINT
7266 ? "print"
7267 : "println"));
7268 }
7269 else
7270 {
7271 for (Expression_list::const_iterator p = args->begin();
7272 p != args->end();
7273 ++p)
7274 {
7275 Type* type = (*p)->type();
7276 if (type->is_error_type()
7277 || type->is_string_type()
7278 || type->integer_type() != NULL
7279 || type->float_type() != NULL
7280 || type->complex_type() != NULL
7281 || type->is_boolean_type()
7282 || type->points_to() != NULL
7283 || type->interface_type() != NULL
7284 || type->channel_type() != NULL
7285 || type->map_type() != NULL
7286 || type->function_type() != NULL
7287 || type->is_open_array_type())
7288 ;
7289 else
7290 this->report_error(_("unsupported argument type to "
7291 "builtin function"));
7292 }
7293 }
7294 }
7295 break;
7296
7297 case BUILTIN_CLOSE:
7298 case BUILTIN_CLOSED:
7299 if (this->check_one_arg())
7300 {
7301 if (this->one_arg()->type()->channel_type() == NULL)
7302 this->report_error(_("argument must be channel"));
7303 }
7304 break;
7305
7306 case BUILTIN_PANIC:
7307 case BUILTIN_SIZEOF:
7308 case BUILTIN_ALIGNOF:
7309 this->check_one_arg();
7310 break;
7311
7312 case BUILTIN_RECOVER:
7313 if (this->args() != NULL && !this->args()->empty())
7314 this->report_error(_("too many arguments"));
7315 break;
7316
7317 case BUILTIN_OFFSETOF:
7318 if (this->check_one_arg())
7319 {
7320 Expression* arg = this->one_arg();
7321 if (arg->field_reference_expression() == NULL)
7322 this->report_error(_("argument must be a field reference"));
7323 }
7324 break;
7325
7326 case BUILTIN_COPY:
7327 {
7328 const Expression_list* args = this->args();
7329 if (args == NULL || args->size() < 2)
7330 {
7331 this->report_error(_("not enough arguments"));
7332 break;
7333 }
7334 else if (args->size() > 2)
7335 {
7336 this->report_error(_("too many arguments"));
7337 break;
7338 }
7339 Type* arg1_type = args->front()->type();
7340 Type* arg2_type = args->back()->type();
7341 if (arg1_type->is_error_type() || arg2_type->is_error_type())
7342 break;
7343
7344 Type* e1;
7345 if (arg1_type->is_open_array_type())
7346 e1 = arg1_type->array_type()->element_type();
7347 else
7348 {
7349 this->report_error(_("left argument must be a slice"));
7350 break;
7351 }
7352
7353 Type* e2;
7354 if (arg2_type->is_open_array_type())
7355 e2 = arg2_type->array_type()->element_type();
7356 else if (arg2_type->is_string_type())
7357 e2 = Type::lookup_integer_type("uint8");
7358 else
7359 {
7360 this->report_error(_("right argument must be a slice or a string"));
7361 break;
7362 }
7363
7364 if (!Type::are_identical(e1, e2, true, NULL))
7365 this->report_error(_("element types must be the same"));
7366 }
7367 break;
7368
7369 case BUILTIN_APPEND:
7370 {
7371 const Expression_list* args = this->args();
7372 if (args == NULL || args->empty())
7373 {
7374 this->report_error(_("not enough arguments"));
7375 break;
7376 }
7377 /* Lowering varargs should have left us with 2 arguments. */
7378 gcc_assert(args->size() == 2);
7379 std::string reason;
7380 if (!Type::are_assignable(args->front()->type(), args->back()->type(),
7381 &reason))
7382 {
7383 if (reason.empty())
7384 this->report_error(_("arguments 1 and 2 have different types"));
7385 else
7386 {
7387 error_at(this->location(),
7388 "arguments 1 and 2 have different types (%s)",
7389 reason.c_str());
7390 this->set_is_error();
7391 }
7392 }
7393 break;
7394 }
7395
7396 case BUILTIN_REAL:
7397 case BUILTIN_IMAG:
7398 if (this->check_one_arg())
7399 {
7400 if (this->one_arg()->type()->complex_type() == NULL)
7401 this->report_error(_("argument must have complex type"));
7402 }
7403 break;
7404
7405 case BUILTIN_CMPLX:
7406 {
7407 const Expression_list* args = this->args();
7408 if (args == NULL || args->size() < 2)
7409 this->report_error(_("not enough arguments"));
7410 else if (args->size() > 2)
7411 this->report_error(_("too many arguments"));
7412 else if (args->front()->is_error_expression()
7413 || args->front()->type()->is_error_type()
7414 || args->back()->is_error_expression()
7415 || args->back()->type()->is_error_type())
7416 this->set_is_error();
7417 else if (!Type::are_identical(args->front()->type(),
7418 args->back()->type(), true, NULL))
7419 this->report_error(_("cmplx arguments must have identical types"));
7420 else if (args->front()->type()->float_type() == NULL)
7421 this->report_error(_("cmplx arguments must have "
7422 "floating-point type"));
7423 }
7424 break;
7425
7426 default:
7427 gcc_unreachable();
7428 }
7429 }
7430
7431 // Return the tree for a builtin function.
7432
7433 tree
7434 Builtin_call_expression::do_get_tree(Translate_context* context)
7435 {
7436 Gogo* gogo = context->gogo();
7437 source_location location = this->location();
7438 switch (this->code_)
7439 {
7440 case BUILTIN_INVALID:
7441 case BUILTIN_NEW:
7442 case BUILTIN_MAKE:
7443 gcc_unreachable();
7444
7445 case BUILTIN_LEN:
7446 case BUILTIN_CAP:
7447 {
7448 const Expression_list* args = this->args();
7449 gcc_assert(args != NULL && args->size() == 1);
7450 Expression* arg = *args->begin();
7451 Type* arg_type = arg->type();
7452 tree arg_tree = arg->get_tree(context);
7453 if (arg_tree == error_mark_node)
7454 return error_mark_node;
7455
7456 if (arg_type->points_to() != NULL)
7457 {
7458 arg_type = arg_type->points_to();
7459 gcc_assert(arg_type->array_type() != NULL
7460 && !arg_type->is_open_array_type());
7461 gcc_assert(POINTER_TYPE_P(TREE_TYPE(arg_tree)));
7462 arg_tree = build_fold_indirect_ref(arg_tree);
7463 }
7464
7465 tree val_tree;
7466 if (this->code_ == BUILTIN_LEN)
7467 {
7468 if (arg_type->is_string_type())
7469 val_tree = String_type::length_tree(gogo, arg_tree);
7470 else if (arg_type->array_type() != NULL)
7471 val_tree = arg_type->array_type()->length_tree(gogo, arg_tree);
7472 else if (arg_type->map_type() != NULL)
7473 {
7474 static tree map_len_fndecl;
7475 val_tree = Gogo::call_builtin(&map_len_fndecl,
7476 location,
7477 "__go_map_len",
7478 1,
7479 sizetype,
7480 arg_type->get_tree(gogo),
7481 arg_tree);
7482 }
7483 else if (arg_type->channel_type() != NULL)
7484 {
7485 static tree chan_len_fndecl;
7486 val_tree = Gogo::call_builtin(&chan_len_fndecl,
7487 location,
7488 "__go_chan_len",
7489 1,
7490 sizetype,
7491 arg_type->get_tree(gogo),
7492 arg_tree);
7493 }
7494 else
7495 gcc_unreachable();
7496 }
7497 else
7498 {
7499 if (arg_type->array_type() != NULL)
7500 val_tree = arg_type->array_type()->capacity_tree(gogo, arg_tree);
7501 else if (arg_type->channel_type() != NULL)
7502 {
7503 static tree chan_cap_fndecl;
7504 val_tree = Gogo::call_builtin(&chan_cap_fndecl,
7505 location,
7506 "__go_chan_cap",
7507 1,
7508 sizetype,
7509 arg_type->get_tree(gogo),
7510 arg_tree);
7511 }
7512 else
7513 gcc_unreachable();
7514 }
7515
7516 if (val_tree == error_mark_node)
7517 return error_mark_node;
7518
7519 tree type_tree = Type::lookup_integer_type("int")->get_tree(gogo);
7520 if (type_tree == TREE_TYPE(val_tree))
7521 return val_tree;
7522 else
7523 return fold(convert_to_integer(type_tree, val_tree));
7524 }
7525
7526 case BUILTIN_PRINT:
7527 case BUILTIN_PRINTLN:
7528 {
7529 const bool is_ln = this->code_ == BUILTIN_PRINTLN;
7530 tree stmt_list = NULL_TREE;
7531
7532 const Expression_list* call_args = this->args();
7533 if (call_args != NULL)
7534 {
7535 for (Expression_list::const_iterator p = call_args->begin();
7536 p != call_args->end();
7537 ++p)
7538 {
7539 if (is_ln && p != call_args->begin())
7540 {
7541 static tree print_space_fndecl;
7542 tree call = Gogo::call_builtin(&print_space_fndecl,
7543 location,
7544 "__go_print_space",
7545 0,
7546 void_type_node);
7547 if (call == error_mark_node)
7548 return error_mark_node;
7549 append_to_statement_list(call, &stmt_list);
7550 }
7551
7552 Type* type = (*p)->type();
7553
7554 tree arg = (*p)->get_tree(context);
7555 if (arg == error_mark_node)
7556 return error_mark_node;
7557
7558 tree* pfndecl;
7559 const char* fnname;
7560 if (type->is_string_type())
7561 {
7562 static tree print_string_fndecl;
7563 pfndecl = &print_string_fndecl;
7564 fnname = "__go_print_string";
7565 }
7566 else if (type->integer_type() != NULL
7567 && type->integer_type()->is_unsigned())
7568 {
7569 static tree print_uint64_fndecl;
7570 pfndecl = &print_uint64_fndecl;
7571 fnname = "__go_print_uint64";
7572 Type* itype = Type::lookup_integer_type("uint64");
7573 arg = fold_convert_loc(location, itype->get_tree(gogo),
7574 arg);
7575 }
7576 else if (type->integer_type() != NULL)
7577 {
7578 static tree print_int64_fndecl;
7579 pfndecl = &print_int64_fndecl;
7580 fnname = "__go_print_int64";
7581 Type* itype = Type::lookup_integer_type("int64");
7582 arg = fold_convert_loc(location, itype->get_tree(gogo),
7583 arg);
7584 }
7585 else if (type->float_type() != NULL)
7586 {
7587 static tree print_double_fndecl;
7588 pfndecl = &print_double_fndecl;
7589 fnname = "__go_print_double";
7590 arg = fold_convert_loc(location, double_type_node, arg);
7591 }
7592 else if (type->complex_type() != NULL)
7593 {
7594 static tree print_complex_fndecl;
7595 pfndecl = &print_complex_fndecl;
7596 fnname = "__go_print_complex";
7597 arg = fold_convert_loc(location, complex_double_type_node,
7598 arg);
7599 }
7600 else if (type->is_boolean_type())
7601 {
7602 static tree print_bool_fndecl;
7603 pfndecl = &print_bool_fndecl;
7604 fnname = "__go_print_bool";
7605 }
7606 else if (type->points_to() != NULL
7607 || type->channel_type() != NULL
7608 || type->map_type() != NULL
7609 || type->function_type() != NULL)
7610 {
7611 static tree print_pointer_fndecl;
7612 pfndecl = &print_pointer_fndecl;
7613 fnname = "__go_print_pointer";
7614 arg = fold_convert_loc(location, ptr_type_node, arg);
7615 }
7616 else if (type->interface_type() != NULL)
7617 {
7618 if (type->interface_type()->is_empty())
7619 {
7620 static tree print_empty_interface_fndecl;
7621 pfndecl = &print_empty_interface_fndecl;
7622 fnname = "__go_print_empty_interface";
7623 }
7624 else
7625 {
7626 static tree print_interface_fndecl;
7627 pfndecl = &print_interface_fndecl;
7628 fnname = "__go_print_interface";
7629 }
7630 }
7631 else if (type->is_open_array_type())
7632 {
7633 static tree print_slice_fndecl;
7634 pfndecl = &print_slice_fndecl;
7635 fnname = "__go_print_slice";
7636 }
7637 else
7638 gcc_unreachable();
7639
7640 tree call = Gogo::call_builtin(pfndecl,
7641 location,
7642 fnname,
7643 1,
7644 void_type_node,
7645 TREE_TYPE(arg),
7646 arg);
7647 if (call == error_mark_node)
7648 return error_mark_node;
7649 append_to_statement_list(call, &stmt_list);
7650 }
7651 }
7652
7653 if (is_ln)
7654 {
7655 static tree print_nl_fndecl;
7656 tree call = Gogo::call_builtin(&print_nl_fndecl,
7657 location,
7658 "__go_print_nl",
7659 0,
7660 void_type_node);
7661 if (call == error_mark_node)
7662 return error_mark_node;
7663 append_to_statement_list(call, &stmt_list);
7664 }
7665
7666 return stmt_list;
7667 }
7668
7669 case BUILTIN_PANIC:
7670 {
7671 const Expression_list* args = this->args();
7672 gcc_assert(args != NULL && args->size() == 1);
7673 Expression* arg = args->front();
7674 tree arg_tree = arg->get_tree(context);
7675 if (arg_tree == error_mark_node)
7676 return error_mark_node;
7677 Type *empty = Type::make_interface_type(NULL, BUILTINS_LOCATION);
7678 arg_tree = Expression::convert_for_assignment(context, empty,
7679 arg->type(),
7680 arg_tree, location);
7681 static tree panic_fndecl;
7682 tree call = Gogo::call_builtin(&panic_fndecl,
7683 location,
7684 "__go_panic",
7685 1,
7686 void_type_node,
7687 TREE_TYPE(arg_tree),
7688 arg_tree);
7689 if (call == error_mark_node)
7690 return error_mark_node;
7691 // This function will throw an exception.
7692 TREE_NOTHROW(panic_fndecl) = 0;
7693 // This function will not return.
7694 TREE_THIS_VOLATILE(panic_fndecl) = 1;
7695 return call;
7696 }
7697
7698 case BUILTIN_RECOVER:
7699 {
7700 // The argument is set when building recover thunks. It's a
7701 // boolean value which is true if we can recover a value now.
7702 const Expression_list* args = this->args();
7703 gcc_assert(args != NULL && args->size() == 1);
7704 Expression* arg = args->front();
7705 tree arg_tree = arg->get_tree(context);
7706 if (arg_tree == error_mark_node)
7707 return error_mark_node;
7708
7709 Type *empty = Type::make_interface_type(NULL, BUILTINS_LOCATION);
7710 tree empty_tree = empty->get_tree(context->gogo());
7711
7712 Type* nil_type = Type::make_nil_type();
7713 Expression* nil = Expression::make_nil(location);
7714 tree nil_tree = nil->get_tree(context);
7715 tree empty_nil_tree = Expression::convert_for_assignment(context,
7716 empty,
7717 nil_type,
7718 nil_tree,
7719 location);
7720
7721 // We need to handle a deferred call to recover specially,
7722 // because it changes whether it can recover a panic or not.
7723 // See test7 in test/recover1.go.
7724 tree call;
7725 if (this->is_deferred())
7726 {
7727 static tree deferred_recover_fndecl;
7728 call = Gogo::call_builtin(&deferred_recover_fndecl,
7729 location,
7730 "__go_deferred_recover",
7731 0,
7732 empty_tree);
7733 }
7734 else
7735 {
7736 static tree recover_fndecl;
7737 call = Gogo::call_builtin(&recover_fndecl,
7738 location,
7739 "__go_recover",
7740 0,
7741 empty_tree);
7742 }
7743 if (call == error_mark_node)
7744 return error_mark_node;
7745 return fold_build3_loc(location, COND_EXPR, empty_tree, arg_tree,
7746 call, empty_nil_tree);
7747 }
7748
7749 case BUILTIN_CLOSE:
7750 case BUILTIN_CLOSED:
7751 {
7752 const Expression_list* args = this->args();
7753 gcc_assert(args != NULL && args->size() == 1);
7754 Expression* arg = args->front();
7755 tree arg_tree = arg->get_tree(context);
7756 if (arg_tree == error_mark_node)
7757 return error_mark_node;
7758 if (this->code_ == BUILTIN_CLOSE)
7759 {
7760 static tree close_fndecl;
7761 return Gogo::call_builtin(&close_fndecl,
7762 location,
7763 "__go_builtin_close",
7764 1,
7765 void_type_node,
7766 TREE_TYPE(arg_tree),
7767 arg_tree);
7768 }
7769 else
7770 {
7771 static tree closed_fndecl;
7772 return Gogo::call_builtin(&closed_fndecl,
7773 location,
7774 "__go_builtin_closed",
7775 1,
7776 boolean_type_node,
7777 TREE_TYPE(arg_tree),
7778 arg_tree);
7779 }
7780 }
7781
7782 case BUILTIN_SIZEOF:
7783 case BUILTIN_OFFSETOF:
7784 case BUILTIN_ALIGNOF:
7785 {
7786 mpz_t val;
7787 mpz_init(val);
7788 Type* dummy;
7789 bool b = this->integer_constant_value(true, val, &dummy);
7790 gcc_assert(b);
7791 tree type = Type::lookup_integer_type("int")->get_tree(gogo);
7792 tree ret = Expression::integer_constant_tree(val, type);
7793 mpz_clear(val);
7794 return ret;
7795 }
7796
7797 case BUILTIN_COPY:
7798 {
7799 const Expression_list* args = this->args();
7800 gcc_assert(args != NULL && args->size() == 2);
7801 Expression* arg1 = args->front();
7802 Expression* arg2 = args->back();
7803
7804 tree arg1_tree = arg1->get_tree(context);
7805 tree arg2_tree = arg2->get_tree(context);
7806 if (arg1_tree == error_mark_node || arg2_tree == error_mark_node)
7807 return error_mark_node;
7808
7809 Type* arg1_type = arg1->type();
7810 Array_type* at = arg1_type->array_type();
7811 arg1_tree = save_expr(arg1_tree);
7812 tree arg1_val = at->value_pointer_tree(gogo, arg1_tree);
7813 tree arg1_len = at->length_tree(gogo, arg1_tree);
7814 if (arg1_val == error_mark_node || arg1_len == error_mark_node)
7815 return error_mark_node;
7816
7817 Type* arg2_type = arg2->type();
7818 tree arg2_val;
7819 tree arg2_len;
7820 if (arg2_type->is_open_array_type())
7821 {
7822 at = arg2_type->array_type();
7823 arg2_tree = save_expr(arg2_tree);
7824 arg2_val = at->value_pointer_tree(gogo, arg2_tree);
7825 arg2_len = at->length_tree(gogo, arg2_tree);
7826 }
7827 else
7828 {
7829 arg2_tree = save_expr(arg2_tree);
7830 arg2_val = String_type::bytes_tree(gogo, arg2_tree);
7831 arg2_len = String_type::length_tree(gogo, arg2_tree);
7832 }
7833 if (arg2_val == error_mark_node || arg2_len == error_mark_node)
7834 return error_mark_node;
7835
7836 arg1_len = save_expr(arg1_len);
7837 arg2_len = save_expr(arg2_len);
7838 tree len = fold_build3_loc(location, COND_EXPR, TREE_TYPE(arg1_len),
7839 fold_build2_loc(location, LT_EXPR,
7840 boolean_type_node,
7841 arg1_len, arg2_len),
7842 arg1_len, arg2_len);
7843 len = save_expr(len);
7844
7845 Type* element_type = at->element_type();
7846 tree element_type_tree = element_type->get_tree(gogo);
7847 if (element_type_tree == error_mark_node)
7848 return error_mark_node;
7849 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
7850 tree bytecount = fold_convert_loc(location, TREE_TYPE(element_size),
7851 len);
7852 bytecount = fold_build2_loc(location, MULT_EXPR,
7853 TREE_TYPE(element_size),
7854 bytecount, element_size);
7855 bytecount = fold_convert_loc(location, size_type_node, bytecount);
7856
7857 arg1_val = fold_convert_loc(location, ptr_type_node, arg1_val);
7858 arg2_val = fold_convert_loc(location, ptr_type_node, arg2_val);
7859
7860 static tree copy_fndecl;
7861 tree call = Gogo::call_builtin(&copy_fndecl,
7862 location,
7863 "__go_copy",
7864 3,
7865 void_type_node,
7866 ptr_type_node,
7867 arg1_val,
7868 ptr_type_node,
7869 arg2_val,
7870 size_type_node,
7871 bytecount);
7872 if (call == error_mark_node)
7873 return error_mark_node;
7874
7875 return fold_build2_loc(location, COMPOUND_EXPR, TREE_TYPE(len),
7876 call, len);
7877 }
7878
7879 case BUILTIN_APPEND:
7880 {
7881 const Expression_list* args = this->args();
7882 gcc_assert(args != NULL && args->size() == 2);
7883 Expression* arg1 = args->front();
7884 Expression* arg2 = args->back();
7885
7886 Array_type* at = arg1->type()->array_type();
7887 Type* element_type = at->element_type();
7888
7889 tree arg1_tree = arg1->get_tree(context);
7890 tree arg2_tree = arg2->get_tree(context);
7891 if (arg1_tree == error_mark_node || arg2_tree == error_mark_node)
7892 return error_mark_node;
7893
7894 Array_type* at2 = arg2->type()->array_type();
7895 arg2_tree = save_expr(arg2_tree);
7896 tree arg2_val = at2->value_pointer_tree(gogo, arg2_tree);
7897 tree arg2_len = at2->length_tree(gogo, arg2_tree);
7898 if (arg2_val == error_mark_node || arg2_len == error_mark_node)
7899 return error_mark_node;
7900 arg2_val = fold_convert_loc(location, ptr_type_node, arg2_val);
7901 arg2_len = fold_convert_loc(location, size_type_node, arg2_len);
7902
7903 tree element_type_tree = element_type->get_tree(gogo);
7904 if (element_type_tree == error_mark_node)
7905 return error_mark_node;
7906 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
7907 element_size = fold_convert_loc(location, size_type_node,
7908 element_size);
7909
7910 // We rebuild the decl each time since the slice types may
7911 // change.
7912 tree append_fndecl = NULL_TREE;
7913 return Gogo::call_builtin(&append_fndecl,
7914 location,
7915 "__go_append",
7916 4,
7917 TREE_TYPE(arg1_tree),
7918 TREE_TYPE(arg1_tree),
7919 arg1_tree,
7920 ptr_type_node,
7921 arg2_val,
7922 size_type_node,
7923 arg2_len,
7924 size_type_node,
7925 element_size);
7926 }
7927
7928 case BUILTIN_REAL:
7929 case BUILTIN_IMAG:
7930 {
7931 const Expression_list* args = this->args();
7932 gcc_assert(args != NULL && args->size() == 1);
7933 Expression* arg = args->front();
7934 tree arg_tree = arg->get_tree(context);
7935 if (arg_tree == error_mark_node)
7936 return error_mark_node;
7937 gcc_assert(COMPLEX_FLOAT_TYPE_P(TREE_TYPE(arg_tree)));
7938 if (this->code_ == BUILTIN_REAL)
7939 return fold_build1_loc(location, REALPART_EXPR,
7940 TREE_TYPE(TREE_TYPE(arg_tree)),
7941 arg_tree);
7942 else
7943 return fold_build1_loc(location, IMAGPART_EXPR,
7944 TREE_TYPE(TREE_TYPE(arg_tree)),
7945 arg_tree);
7946 }
7947
7948 case BUILTIN_CMPLX:
7949 {
7950 const Expression_list* args = this->args();
7951 gcc_assert(args != NULL && args->size() == 2);
7952 tree r = args->front()->get_tree(context);
7953 tree i = args->back()->get_tree(context);
7954 if (r == error_mark_node || i == error_mark_node)
7955 return error_mark_node;
7956 gcc_assert(TYPE_MAIN_VARIANT(TREE_TYPE(r))
7957 == TYPE_MAIN_VARIANT(TREE_TYPE(i)));
7958 gcc_assert(SCALAR_FLOAT_TYPE_P(TREE_TYPE(r)));
7959 return fold_build2_loc(location, COMPLEX_EXPR,
7960 build_complex_type(TREE_TYPE(r)),
7961 r, i);
7962 }
7963
7964 default:
7965 gcc_unreachable();
7966 }
7967 }
7968
7969 // We have to support exporting a builtin call expression, because
7970 // code can set a constant to the result of a builtin expression.
7971
7972 void
7973 Builtin_call_expression::do_export(Export* exp) const
7974 {
7975 bool ok = false;
7976
7977 mpz_t val;
7978 mpz_init(val);
7979 Type* dummy;
7980 if (this->integer_constant_value(true, val, &dummy))
7981 {
7982 Integer_expression::export_integer(exp, val);
7983 ok = true;
7984 }
7985 mpz_clear(val);
7986
7987 if (!ok)
7988 {
7989 mpfr_t fval;
7990 mpfr_init(fval);
7991 if (this->float_constant_value(fval, &dummy))
7992 {
7993 Float_expression::export_float(exp, fval);
7994 ok = true;
7995 }
7996 mpfr_clear(fval);
7997 }
7998
7999 if (!ok)
8000 {
8001 mpfr_t real;
8002 mpfr_t imag;
8003 mpfr_init(real);
8004 mpfr_init(imag);
8005 if (this->complex_constant_value(real, imag, &dummy))
8006 {
8007 Complex_expression::export_complex(exp, real, imag);
8008 ok = true;
8009 }
8010 mpfr_clear(real);
8011 mpfr_clear(imag);
8012 }
8013
8014 if (!ok)
8015 {
8016 error_at(this->location(), "value is not constant");
8017 return;
8018 }
8019
8020 // A trailing space lets us reliably identify the end of the number.
8021 exp->write_c_string(" ");
8022 }
8023
8024 // Class Call_expression.
8025
8026 // Traversal.
8027
8028 int
8029 Call_expression::do_traverse(Traverse* traverse)
8030 {
8031 if (Expression::traverse(&this->fn_, traverse) == TRAVERSE_EXIT)
8032 return TRAVERSE_EXIT;
8033 if (this->args_ != NULL)
8034 {
8035 if (this->args_->traverse(traverse) == TRAVERSE_EXIT)
8036 return TRAVERSE_EXIT;
8037 }
8038 return TRAVERSE_CONTINUE;
8039 }
8040
8041 // Lower a call statement.
8042
8043 Expression*
8044 Call_expression::do_lower(Gogo* gogo, Named_object* function, int)
8045 {
8046 // A type case can look like a function call.
8047 if (this->fn_->is_type_expression()
8048 && this->args_ != NULL
8049 && this->args_->size() == 1)
8050 return Expression::make_cast(this->fn_->type(), this->args_->front(),
8051 this->location());
8052
8053 // Recognize a call to a builtin function.
8054 Func_expression* fne = this->fn_->func_expression();
8055 if (fne != NULL
8056 && fne->named_object()->is_function_declaration()
8057 && fne->named_object()->func_declaration_value()->type()->is_builtin())
8058 return new Builtin_call_expression(gogo, this->fn_, this->args_,
8059 this->is_varargs_, this->location());
8060
8061 // Handle an argument which is a call to a function which returns
8062 // multiple results.
8063 if (this->args_ != NULL
8064 && this->args_->size() == 1
8065 && this->args_->front()->call_expression() != NULL
8066 && this->fn_->type()->function_type() != NULL)
8067 {
8068 Function_type* fntype = this->fn_->type()->function_type();
8069 size_t rc = this->args_->front()->call_expression()->result_count();
8070 if (rc > 1
8071 && fntype->parameters() != NULL
8072 && (fntype->parameters()->size() == rc
8073 || (fntype->is_varargs()
8074 && fntype->parameters()->size() - 1 <= rc)))
8075 {
8076 Call_expression* call = this->args_->front()->call_expression();
8077 Expression_list* args = new Expression_list;
8078 for (size_t i = 0; i < rc; ++i)
8079 args->push_back(Expression::make_call_result(call, i));
8080 // We can't return a new call expression here, because this
8081 // one may be referenced by Call_result expressions. FIXME.
8082 delete this->args_;
8083 this->args_ = args;
8084 }
8085 }
8086
8087 // Handle a call to a varargs function by packaging up the extra
8088 // parameters.
8089 if (this->fn_->type()->function_type() != NULL
8090 && this->fn_->type()->function_type()->is_varargs())
8091 {
8092 Function_type* fntype = this->fn_->type()->function_type();
8093 const Typed_identifier_list* parameters = fntype->parameters();
8094 gcc_assert(parameters != NULL && !parameters->empty());
8095 Type* varargs_type = parameters->back().type();
8096 return this->lower_varargs(gogo, function, varargs_type,
8097 parameters->size());
8098 }
8099
8100 return this;
8101 }
8102
8103 // Lower a call to a varargs function. FUNCTION is the function in
8104 // which the call occurs--it's not the function we are calling.
8105 // VARARGS_TYPE is the type of the varargs parameter, a slice type.
8106 // PARAM_COUNT is the number of parameters of the function we are
8107 // calling; the last of these parameters will be the varargs
8108 // parameter.
8109
8110 Expression*
8111 Call_expression::lower_varargs(Gogo* gogo, Named_object* function,
8112 Type* varargs_type, size_t param_count)
8113 {
8114 if (this->varargs_are_lowered_)
8115 return this;
8116
8117 source_location loc = this->location();
8118
8119 gcc_assert(param_count > 0);
8120 gcc_assert(varargs_type->is_open_array_type());
8121
8122 size_t arg_count = this->args_ == NULL ? 0 : this->args_->size();
8123 if (arg_count < param_count - 1)
8124 {
8125 // Not enough arguments; will be caught in check_types.
8126 return this;
8127 }
8128
8129 Expression_list* old_args = this->args_;
8130 Expression_list* new_args = new Expression_list();
8131 bool push_empty_arg = false;
8132 if (old_args == NULL || old_args->empty())
8133 {
8134 gcc_assert(param_count == 1);
8135 push_empty_arg = true;
8136 }
8137 else
8138 {
8139 Expression_list::const_iterator pa;
8140 int i = 1;
8141 for (pa = old_args->begin(); pa != old_args->end(); ++pa, ++i)
8142 {
8143 if (static_cast<size_t>(i) == param_count)
8144 break;
8145 new_args->push_back(*pa);
8146 }
8147
8148 // We have reached the varargs parameter.
8149
8150 bool issued_error = false;
8151 if (pa == old_args->end())
8152 push_empty_arg = true;
8153 else if (pa + 1 == old_args->end() && this->is_varargs_)
8154 new_args->push_back(*pa);
8155 else if (this->is_varargs_)
8156 {
8157 this->report_error(_("too many arguments"));
8158 return this;
8159 }
8160 else if (pa + 1 == old_args->end()
8161 && this->is_compatible_varargs_argument(function, *pa,
8162 varargs_type,
8163 &issued_error))
8164 new_args->push_back(*pa);
8165 else
8166 {
8167 Type* element_type = varargs_type->array_type()->element_type();
8168 Expression_list* vals = new Expression_list;
8169 for (; pa != old_args->end(); ++pa, ++i)
8170 {
8171 // Check types here so that we get a better message.
8172 Type* patype = (*pa)->type();
8173 source_location paloc = (*pa)->location();
8174 if (!this->check_argument_type(i, element_type, patype,
8175 paloc, issued_error))
8176 continue;
8177 vals->push_back(*pa);
8178 }
8179 Expression* val =
8180 Expression::make_slice_composite_literal(varargs_type, vals, loc);
8181 new_args->push_back(val);
8182 }
8183 }
8184
8185 if (push_empty_arg)
8186 new_args->push_back(Expression::make_nil(loc));
8187
8188 // We can't return a new call expression here, because this one may
8189 // be referenced by Call_result expressions. FIXME.
8190 if (old_args != NULL)
8191 delete old_args;
8192 this->args_ = new_args;
8193 this->varargs_are_lowered_ = true;
8194
8195 // Lower all the new subexpressions.
8196 Expression* ret = this;
8197 gogo->lower_expression(function, &ret);
8198 gcc_assert(ret == this);
8199 return ret;
8200 }
8201
8202 // Return true if ARG is a varargs argment which should be passed to
8203 // the varargs parameter of type PARAM_TYPE without wrapping. ARG
8204 // will be the last argument passed in the call, and PARAM_TYPE will
8205 // be the type of the last parameter of the varargs function being
8206 // called.
8207
8208 bool
8209 Call_expression::is_compatible_varargs_argument(Named_object* function,
8210 Expression* arg,
8211 Type* param_type,
8212 bool* issued_error)
8213 {
8214 *issued_error = false;
8215
8216 Type* var_type = NULL;
8217
8218 // The simple case is passing the varargs parameter of the caller.
8219 Var_expression* ve = arg->var_expression();
8220 if (ve != NULL && ve->named_object()->is_variable())
8221 {
8222 Variable* var = ve->named_object()->var_value();
8223 if (var->is_varargs_parameter())
8224 var_type = var->type();
8225 }
8226
8227 // The complex case is passing the varargs parameter of some
8228 // enclosing function. This will look like passing down *c.f where
8229 // c is the closure variable and f is a field in the closure.
8230 if (function != NULL
8231 && function->func_value()->needs_closure()
8232 && arg->classification() == EXPRESSION_UNARY)
8233 {
8234 Unary_expression* ue = static_cast<Unary_expression*>(arg);
8235 if (ue->op() == OPERATOR_MULT)
8236 {
8237 Field_reference_expression* fre =
8238 ue->operand()->deref()->field_reference_expression();
8239 if (fre != NULL)
8240 {
8241 Var_expression* ve = fre->expr()->deref()->var_expression();
8242 if (ve != NULL)
8243 {
8244 Named_object* no = ve->named_object();
8245 Function* f = function->func_value();
8246 if (no == f->closure_var())
8247 {
8248 // At this point we know that this indeed a
8249 // reference to some enclosing variable. Now we
8250 // need to figure out whether that variable is a
8251 // varargs parameter.
8252 Named_object* enclosing =
8253 f->enclosing_var(fre->field_index());
8254 Variable* var = enclosing->var_value();
8255 if (var->is_varargs_parameter())
8256 var_type = var->type();
8257 }
8258 }
8259 }
8260 }
8261 }
8262
8263 if (var_type == NULL)
8264 return false;
8265
8266 // We only match if the parameter is the same, with an identical
8267 // type.
8268 Array_type* var_at = var_type->array_type();
8269 gcc_assert(var_at != NULL);
8270 Array_type* param_at = param_type->array_type();
8271 if (param_at != NULL
8272 && Type::are_identical(var_at->element_type(),
8273 param_at->element_type(), true, NULL))
8274 return true;
8275 error_at(arg->location(), "... mismatch: passing ...T as ...");
8276 *issued_error = true;
8277 return false;
8278 }
8279
8280 // Get the function type. Returns NULL if we don't know the type. If
8281 // this returns NULL, and if_ERROR is true, issues an error.
8282
8283 Function_type*
8284 Call_expression::get_function_type() const
8285 {
8286 return this->fn_->type()->function_type();
8287 }
8288
8289 // Return the number of values which this call will return.
8290
8291 size_t
8292 Call_expression::result_count() const
8293 {
8294 const Function_type* fntype = this->get_function_type();
8295 if (fntype == NULL)
8296 return 0;
8297 if (fntype->results() == NULL)
8298 return 0;
8299 return fntype->results()->size();
8300 }
8301
8302 // Return whether this is a call to the predeclared function recover.
8303
8304 bool
8305 Call_expression::is_recover_call() const
8306 {
8307 return this->do_is_recover_call();
8308 }
8309
8310 // Set the argument to the recover function.
8311
8312 void
8313 Call_expression::set_recover_arg(Expression* arg)
8314 {
8315 this->do_set_recover_arg(arg);
8316 }
8317
8318 // Virtual functions also implemented by Builtin_call_expression.
8319
8320 bool
8321 Call_expression::do_is_recover_call() const
8322 {
8323 return false;
8324 }
8325
8326 void
8327 Call_expression::do_set_recover_arg(Expression*)
8328 {
8329 gcc_unreachable();
8330 }
8331
8332 // Get the type.
8333
8334 Type*
8335 Call_expression::do_type()
8336 {
8337 if (this->type_ != NULL)
8338 return this->type_;
8339
8340 Type* ret;
8341 Function_type* fntype = this->get_function_type();
8342 if (fntype == NULL)
8343 return Type::make_error_type();
8344
8345 const Typed_identifier_list* results = fntype->results();
8346 if (results == NULL)
8347 ret = Type::make_void_type();
8348 else if (results->size() == 1)
8349 ret = results->begin()->type();
8350 else
8351 ret = Type::make_call_multiple_result_type(this);
8352
8353 this->type_ = ret;
8354
8355 return this->type_;
8356 }
8357
8358 // Determine types for a call expression. We can use the function
8359 // parameter types to set the types of the arguments.
8360
8361 void
8362 Call_expression::do_determine_type(const Type_context*)
8363 {
8364 this->fn_->determine_type_no_context();
8365 Function_type* fntype = this->get_function_type();
8366 const Typed_identifier_list* parameters = NULL;
8367 if (fntype != NULL)
8368 parameters = fntype->parameters();
8369 if (this->args_ != NULL)
8370 {
8371 Typed_identifier_list::const_iterator pt;
8372 if (parameters != NULL)
8373 pt = parameters->begin();
8374 for (Expression_list::const_iterator pa = this->args_->begin();
8375 pa != this->args_->end();
8376 ++pa)
8377 {
8378 if (parameters != NULL && pt != parameters->end())
8379 {
8380 Type_context subcontext(pt->type(), false);
8381 (*pa)->determine_type(&subcontext);
8382 ++pt;
8383 }
8384 else
8385 (*pa)->determine_type_no_context();
8386 }
8387 }
8388 }
8389
8390 // Check types for parameter I.
8391
8392 bool
8393 Call_expression::check_argument_type(int i, const Type* parameter_type,
8394 const Type* argument_type,
8395 source_location argument_location,
8396 bool issued_error)
8397 {
8398 std::string reason;
8399 if (!Type::are_assignable(parameter_type, argument_type, &reason))
8400 {
8401 if (!issued_error)
8402 {
8403 if (reason.empty())
8404 error_at(argument_location, "argument %d has incompatible type", i);
8405 else
8406 error_at(argument_location,
8407 "argument %d has incompatible type (%s)",
8408 i, reason.c_str());
8409 }
8410 this->set_is_error();
8411 return false;
8412 }
8413 return true;
8414 }
8415
8416 // Check types.
8417
8418 void
8419 Call_expression::do_check_types(Gogo*)
8420 {
8421 Function_type* fntype = this->get_function_type();
8422 if (fntype == NULL)
8423 {
8424 if (!this->fn_->type()->is_error_type())
8425 this->report_error(_("expected function"));
8426 return;
8427 }
8428
8429 if (fntype->is_method())
8430 {
8431 // We don't support pointers to methods, so the function has to
8432 // be a bound method expression.
8433 Bound_method_expression* bme = this->fn_->bound_method_expression();
8434 if (bme == NULL)
8435 {
8436 this->report_error(_("method call without object"));
8437 return;
8438 }
8439 Type* first_arg_type = bme->first_argument()->type();
8440 if (first_arg_type->points_to() == NULL)
8441 {
8442 // When passing a value, we need to check that we are
8443 // permitted to copy it.
8444 std::string reason;
8445 if (!Type::are_assignable(fntype->receiver()->type(),
8446 first_arg_type, &reason))
8447 {
8448 if (reason.empty())
8449 this->report_error(_("incompatible type for receiver"));
8450 else
8451 {
8452 error_at(this->location(),
8453 "incompatible type for receiver (%s)",
8454 reason.c_str());
8455 this->set_is_error();
8456 }
8457 }
8458 }
8459 }
8460
8461 // Note that varargs was handled by the lower_varargs() method, so
8462 // we don't have to worry about it here.
8463
8464 const Typed_identifier_list* parameters = fntype->parameters();
8465 if (this->args_ == NULL)
8466 {
8467 if (parameters != NULL && !parameters->empty())
8468 this->report_error(_("not enough arguments"));
8469 }
8470 else if (parameters == NULL)
8471 this->report_error(_("too many arguments"));
8472 else
8473 {
8474 int i = 0;
8475 Typed_identifier_list::const_iterator pt = parameters->begin();
8476 for (Expression_list::const_iterator pa = this->args_->begin();
8477 pa != this->args_->end();
8478 ++pa, ++pt, ++i)
8479 {
8480 if (pt == parameters->end())
8481 {
8482 this->report_error(_("too many arguments"));
8483 return;
8484 }
8485 this->check_argument_type(i + 1, pt->type(), (*pa)->type(),
8486 (*pa)->location(), false);
8487 }
8488 if (pt != parameters->end())
8489 this->report_error(_("not enough arguments"));
8490 }
8491 }
8492
8493 // Return whether we have to use a temporary variable to ensure that
8494 // we evaluate this call expression in order. If the call returns no
8495 // results then it will inevitably be executed last. If the call
8496 // returns more than one result then it will be used with Call_result
8497 // expressions. So we only have to use a temporary variable if the
8498 // call returns exactly one result.
8499
8500 bool
8501 Call_expression::do_must_eval_in_order() const
8502 {
8503 return this->result_count() == 1;
8504 }
8505
8506 // Get the function and the first argument to use when calling a bound
8507 // method.
8508
8509 tree
8510 Call_expression::bound_method_function(Translate_context* context,
8511 Bound_method_expression* bound_method,
8512 tree* first_arg_ptr)
8513 {
8514 Expression* first_argument = bound_method->first_argument();
8515 tree first_arg = first_argument->get_tree(context);
8516 if (first_arg == error_mark_node)
8517 return error_mark_node;
8518
8519 // We always pass a pointer to the first argument when calling a
8520 // method.
8521 if (first_argument->type()->points_to() == NULL)
8522 {
8523 tree pointer_to_arg_type = build_pointer_type(TREE_TYPE(first_arg));
8524 if (TREE_ADDRESSABLE(TREE_TYPE(first_arg))
8525 || DECL_P(first_arg)
8526 || TREE_CODE(first_arg) == INDIRECT_REF
8527 || TREE_CODE(first_arg) == COMPONENT_REF)
8528 {
8529 first_arg = build_fold_addr_expr(first_arg);
8530 if (DECL_P(first_arg))
8531 TREE_ADDRESSABLE(first_arg) = 1;
8532 }
8533 else
8534 {
8535 tree tmp = create_tmp_var(TREE_TYPE(first_arg),
8536 get_name(first_arg));
8537 DECL_IGNORED_P(tmp) = 0;
8538 DECL_INITIAL(tmp) = first_arg;
8539 first_arg = build2(COMPOUND_EXPR, pointer_to_arg_type,
8540 build1(DECL_EXPR, void_type_node, tmp),
8541 build_fold_addr_expr(tmp));
8542 TREE_ADDRESSABLE(tmp) = 1;
8543 }
8544 if (first_arg == error_mark_node)
8545 return error_mark_node;
8546 }
8547
8548 Type* fatype = bound_method->first_argument_type();
8549 if (fatype != NULL)
8550 {
8551 if (fatype->points_to() == NULL)
8552 fatype = Type::make_pointer_type(fatype);
8553 first_arg = fold_convert(fatype->get_tree(context->gogo()), first_arg);
8554 if (first_arg == error_mark_node
8555 || TREE_TYPE(first_arg) == error_mark_node)
8556 return error_mark_node;
8557 }
8558
8559 *first_arg_ptr = first_arg;
8560
8561 return bound_method->method()->get_tree(context);
8562 }
8563
8564 // Get the function and the first argument to use when calling an
8565 // interface method.
8566
8567 tree
8568 Call_expression::interface_method_function(
8569 Translate_context* context,
8570 Interface_field_reference_expression* interface_method,
8571 tree* first_arg_ptr)
8572 {
8573 tree expr = interface_method->expr()->get_tree(context);
8574 if (expr == error_mark_node)
8575 return error_mark_node;
8576 expr = save_expr(expr);
8577 tree first_arg = interface_method->get_underlying_object_tree(context, expr);
8578 if (first_arg == error_mark_node)
8579 return error_mark_node;
8580 *first_arg_ptr = first_arg;
8581 return interface_method->get_function_tree(context, expr);
8582 }
8583
8584 // Build the call expression.
8585
8586 tree
8587 Call_expression::do_get_tree(Translate_context* context)
8588 {
8589 if (this->tree_ != NULL_TREE)
8590 return this->tree_;
8591
8592 Function_type* fntype = this->get_function_type();
8593 if (fntype == NULL)
8594 return error_mark_node;
8595
8596 if (this->fn_->is_error_expression())
8597 return error_mark_node;
8598
8599 Gogo* gogo = context->gogo();
8600 source_location location = this->location();
8601
8602 Func_expression* func = this->fn_->func_expression();
8603 Bound_method_expression* bound_method = this->fn_->bound_method_expression();
8604 Interface_field_reference_expression* interface_method =
8605 this->fn_->interface_field_reference_expression();
8606 const bool has_closure = func != NULL && func->closure() != NULL;
8607 const bool is_method = bound_method != NULL || interface_method != NULL;
8608 gcc_assert(!fntype->is_method() || is_method);
8609
8610 int nargs;
8611 tree* args;
8612 if (this->args_ == NULL || this->args_->empty())
8613 {
8614 nargs = is_method ? 1 : 0;
8615 args = nargs == 0 ? NULL : new tree[nargs];
8616 }
8617 else
8618 {
8619 const Typed_identifier_list* params = fntype->parameters();
8620 gcc_assert(params != NULL);
8621
8622 nargs = this->args_->size();
8623 int i = is_method ? 1 : 0;
8624 nargs += i;
8625 args = new tree[nargs];
8626
8627 Typed_identifier_list::const_iterator pp = params->begin();
8628 Expression_list::const_iterator pe;
8629 for (pe = this->args_->begin();
8630 pe != this->args_->end();
8631 ++pe, ++pp, ++i)
8632 {
8633 gcc_assert(pp != params->end());
8634 tree arg_val = (*pe)->get_tree(context);
8635 args[i] = Expression::convert_for_assignment(context,
8636 pp->type(),
8637 (*pe)->type(),
8638 arg_val,
8639 location);
8640 if (args[i] == error_mark_node)
8641 return error_mark_node;
8642 }
8643 gcc_assert(pp == params->end());
8644 gcc_assert(i == nargs);
8645 }
8646
8647 tree rettype = TREE_TYPE(TREE_TYPE(fntype->get_tree(gogo)));
8648 if (rettype == error_mark_node)
8649 return error_mark_node;
8650
8651 tree fn;
8652 if (has_closure)
8653 fn = func->get_tree_without_closure(gogo);
8654 else if (!is_method)
8655 fn = this->fn_->get_tree(context);
8656 else if (bound_method != NULL)
8657 fn = this->bound_method_function(context, bound_method, &args[0]);
8658 else if (interface_method != NULL)
8659 fn = this->interface_method_function(context, interface_method, &args[0]);
8660 else
8661 gcc_unreachable();
8662
8663 if (fn == error_mark_node || TREE_TYPE(fn) == error_mark_node)
8664 return error_mark_node;
8665
8666 // This is to support builtin math functions when using 80387 math.
8667 tree fndecl = fn;
8668 if (TREE_CODE(fndecl) == ADDR_EXPR)
8669 fndecl = TREE_OPERAND(fndecl, 0);
8670 tree excess_type = NULL_TREE;
8671 if (DECL_P(fndecl)
8672 && DECL_IS_BUILTIN(fndecl)
8673 && DECL_BUILT_IN_CLASS(fndecl) == BUILT_IN_NORMAL
8674 && nargs > 0
8675 && ((SCALAR_FLOAT_TYPE_P(rettype)
8676 && SCALAR_FLOAT_TYPE_P(TREE_TYPE(args[0])))
8677 || (COMPLEX_FLOAT_TYPE_P(rettype)
8678 && COMPLEX_FLOAT_TYPE_P(TREE_TYPE(args[0])))))
8679 {
8680 excess_type = excess_precision_type(TREE_TYPE(args[0]));
8681 if (excess_type != NULL_TREE)
8682 {
8683 tree excess_fndecl = mathfn_built_in(excess_type,
8684 DECL_FUNCTION_CODE(fndecl));
8685 if (excess_fndecl == NULL_TREE)
8686 excess_type = NULL_TREE;
8687 else
8688 {
8689 fn = build_fold_addr_expr_loc(location, excess_fndecl);
8690 for (int i = 0; i < nargs; ++i)
8691 args[i] = ::convert(excess_type, args[i]);
8692 }
8693 }
8694 }
8695
8696 tree ret = build_call_array(excess_type != NULL_TREE ? excess_type : rettype,
8697 fn, nargs, args);
8698 delete[] args;
8699
8700 SET_EXPR_LOCATION(ret, location);
8701
8702 if (has_closure)
8703 {
8704 tree closure_tree = func->closure()->get_tree(context);
8705 if (closure_tree != error_mark_node)
8706 CALL_EXPR_STATIC_CHAIN(ret) = closure_tree;
8707 }
8708
8709 // If this is a recursive function type which returns itself, as in
8710 // type F func() F
8711 // we have used ptr_type_node for the return type. Add a cast here
8712 // to the correct type.
8713 if (TREE_TYPE(ret) == ptr_type_node)
8714 {
8715 tree t = this->type()->get_tree(gogo);
8716 ret = fold_convert_loc(location, t, ret);
8717 }
8718
8719 if (excess_type != NULL_TREE)
8720 {
8721 // Calling convert here can undo our excess precision change.
8722 // That may or may not be a bug in convert_to_real.
8723 ret = build1(NOP_EXPR, rettype, ret);
8724 }
8725
8726 // If there is more than one result, we will refer to the call
8727 // multiple times.
8728 if (fntype->results() != NULL && fntype->results()->size() > 1)
8729 ret = save_expr(ret);
8730
8731 this->tree_ = ret;
8732
8733 return ret;
8734 }
8735
8736 // Make a call expression.
8737
8738 Call_expression*
8739 Expression::make_call(Expression* fn, Expression_list* args, bool is_varargs,
8740 source_location location)
8741 {
8742 return new Call_expression(fn, args, is_varargs, location);
8743 }
8744
8745 // A single result from a call which returns multiple results.
8746
8747 class Call_result_expression : public Expression
8748 {
8749 public:
8750 Call_result_expression(Call_expression* call, unsigned int index)
8751 : Expression(EXPRESSION_CALL_RESULT, call->location()),
8752 call_(call), index_(index)
8753 { }
8754
8755 protected:
8756 int
8757 do_traverse(Traverse*);
8758
8759 Type*
8760 do_type();
8761
8762 void
8763 do_determine_type(const Type_context*);
8764
8765 void
8766 do_check_types(Gogo*);
8767
8768 Expression*
8769 do_copy()
8770 {
8771 return new Call_result_expression(this->call_->call_expression(),
8772 this->index_);
8773 }
8774
8775 bool
8776 do_must_eval_in_order() const
8777 { return true; }
8778
8779 tree
8780 do_get_tree(Translate_context*);
8781
8782 private:
8783 // The underlying call expression.
8784 Expression* call_;
8785 // Which result we want.
8786 unsigned int index_;
8787 };
8788
8789 // Traverse a call result.
8790
8791 int
8792 Call_result_expression::do_traverse(Traverse* traverse)
8793 {
8794 if (traverse->remember_expression(this->call_))
8795 {
8796 // We have already traversed the call expression.
8797 return TRAVERSE_CONTINUE;
8798 }
8799 return Expression::traverse(&this->call_, traverse);
8800 }
8801
8802 // Get the type.
8803
8804 Type*
8805 Call_result_expression::do_type()
8806 {
8807 if (this->classification() == EXPRESSION_ERROR)
8808 return Type::make_error_type();
8809
8810 // THIS->CALL_ can be replaced with a temporary reference due to
8811 // Call_expression::do_must_eval_in_order when there is an error.
8812 Call_expression* ce = this->call_->call_expression();
8813 if (ce == NULL)
8814 return Type::make_error_type();
8815 Function_type* fntype = ce->get_function_type();
8816 if (fntype == NULL)
8817 return Type::make_error_type();
8818 const Typed_identifier_list* results = fntype->results();
8819 if (results == NULL)
8820 {
8821 this->report_error(_("number of results does not match "
8822 "number of values"));
8823 return Type::make_error_type();
8824 }
8825 Typed_identifier_list::const_iterator pr = results->begin();
8826 for (unsigned int i = 0; i < this->index_; ++i)
8827 {
8828 if (pr == results->end())
8829 break;
8830 ++pr;
8831 }
8832 if (pr == results->end())
8833 {
8834 this->report_error(_("number of results does not match "
8835 "number of values"));
8836 return Type::make_error_type();
8837 }
8838 return pr->type();
8839 }
8840
8841 // Check the type. Just make sure that we trigger the warning in
8842 // do_type.
8843
8844 void
8845 Call_result_expression::do_check_types(Gogo*)
8846 {
8847 this->type();
8848 }
8849
8850 // Determine the type. We have nothing to do here, but the 0 result
8851 // needs to pass down to the caller.
8852
8853 void
8854 Call_result_expression::do_determine_type(const Type_context*)
8855 {
8856 if (this->index_ == 0)
8857 this->call_->determine_type_no_context();
8858 }
8859
8860 // Return the tree.
8861
8862 tree
8863 Call_result_expression::do_get_tree(Translate_context* context)
8864 {
8865 tree call_tree = this->call_->get_tree(context);
8866 if (call_tree == error_mark_node)
8867 return error_mark_node;
8868 gcc_assert(TREE_CODE(TREE_TYPE(call_tree)) == RECORD_TYPE);
8869 tree field = TYPE_FIELDS(TREE_TYPE(call_tree));
8870 for (unsigned int i = 0; i < this->index_; ++i)
8871 {
8872 gcc_assert(field != NULL_TREE);
8873 field = DECL_CHAIN(field);
8874 }
8875 gcc_assert(field != NULL_TREE);
8876 return build3(COMPONENT_REF, TREE_TYPE(field), call_tree, field, NULL_TREE);
8877 }
8878
8879 // Make a reference to a single result of a call which returns
8880 // multiple results.
8881
8882 Expression*
8883 Expression::make_call_result(Call_expression* call, unsigned int index)
8884 {
8885 return new Call_result_expression(call, index);
8886 }
8887
8888 // Class Index_expression.
8889
8890 // Traversal.
8891
8892 int
8893 Index_expression::do_traverse(Traverse* traverse)
8894 {
8895 if (Expression::traverse(&this->left_, traverse) == TRAVERSE_EXIT
8896 || Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT
8897 || (this->end_ != NULL
8898 && Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT))
8899 return TRAVERSE_EXIT;
8900 return TRAVERSE_CONTINUE;
8901 }
8902
8903 // Lower an index expression. This converts the generic index
8904 // expression into an array index, a string index, or a map index.
8905
8906 Expression*
8907 Index_expression::do_lower(Gogo*, Named_object*, int)
8908 {
8909 source_location location = this->location();
8910 Expression* left = this->left_;
8911 Expression* start = this->start_;
8912 Expression* end = this->end_;
8913
8914 Type* type = left->type();
8915 if (type->is_error_type())
8916 return Expression::make_error(location);
8917 else if (type->array_type() != NULL)
8918 return Expression::make_array_index(left, start, end, location);
8919 else if (type->points_to() != NULL
8920 && type->points_to()->array_type() != NULL
8921 && !type->points_to()->is_open_array_type())
8922 {
8923 Expression* deref = Expression::make_unary(OPERATOR_MULT, left,
8924 location);
8925 return Expression::make_array_index(deref, start, end, location);
8926 }
8927 else if (type->is_string_type())
8928 return Expression::make_string_index(left, start, end, location);
8929 else if (type->map_type() != NULL)
8930 {
8931 if (end != NULL)
8932 {
8933 error_at(location, "invalid slice of map");
8934 return Expression::make_error(location);
8935 }
8936 Map_index_expression* ret= Expression::make_map_index(left, start,
8937 location);
8938 if (this->is_lvalue_)
8939 ret->set_is_lvalue();
8940 return ret;
8941 }
8942 else
8943 {
8944 error_at(location,
8945 "attempt to index object which is not array, string, or map");
8946 return Expression::make_error(location);
8947 }
8948 }
8949
8950 // Make an index expression.
8951
8952 Expression*
8953 Expression::make_index(Expression* left, Expression* start, Expression* end,
8954 source_location location)
8955 {
8956 return new Index_expression(left, start, end, location);
8957 }
8958
8959 // An array index. This is used for both indexing and slicing.
8960
8961 class Array_index_expression : public Expression
8962 {
8963 public:
8964 Array_index_expression(Expression* array, Expression* start,
8965 Expression* end, source_location location)
8966 : Expression(EXPRESSION_ARRAY_INDEX, location),
8967 array_(array), start_(start), end_(end), type_(NULL)
8968 { }
8969
8970 protected:
8971 int
8972 do_traverse(Traverse*);
8973
8974 Type*
8975 do_type();
8976
8977 void
8978 do_determine_type(const Type_context*);
8979
8980 void
8981 do_check_types(Gogo*);
8982
8983 Expression*
8984 do_copy()
8985 {
8986 return Expression::make_array_index(this->array_->copy(),
8987 this->start_->copy(),
8988 (this->end_ == NULL
8989 ? NULL
8990 : this->end_->copy()),
8991 this->location());
8992 }
8993
8994 bool
8995 do_is_addressable() const;
8996
8997 void
8998 do_address_taken(bool escapes)
8999 { this->array_->address_taken(escapes); }
9000
9001 tree
9002 do_get_tree(Translate_context*);
9003
9004 private:
9005 // The array we are getting a value from.
9006 Expression* array_;
9007 // The start or only index.
9008 Expression* start_;
9009 // The end index of a slice. This may be NULL for a simple array
9010 // index, or it may be a nil expression for the length of the array.
9011 Expression* end_;
9012 // The type of the expression.
9013 Type* type_;
9014 };
9015
9016 // Array index traversal.
9017
9018 int
9019 Array_index_expression::do_traverse(Traverse* traverse)
9020 {
9021 if (Expression::traverse(&this->array_, traverse) == TRAVERSE_EXIT)
9022 return TRAVERSE_EXIT;
9023 if (Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT)
9024 return TRAVERSE_EXIT;
9025 if (this->end_ != NULL)
9026 {
9027 if (Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT)
9028 return TRAVERSE_EXIT;
9029 }
9030 return TRAVERSE_CONTINUE;
9031 }
9032
9033 // Return the type of an array index.
9034
9035 Type*
9036 Array_index_expression::do_type()
9037 {
9038 if (this->type_ == NULL)
9039 {
9040 Array_type* type = this->array_->type()->array_type();
9041 if (type == NULL)
9042 this->type_ = Type::make_error_type();
9043 else if (this->end_ == NULL)
9044 this->type_ = type->element_type();
9045 else if (type->is_open_array_type())
9046 {
9047 // A slice of a slice has the same type as the original
9048 // slice.
9049 this->type_ = this->array_->type()->deref();
9050 }
9051 else
9052 {
9053 // A slice of an array is a slice.
9054 this->type_ = Type::make_array_type(type->element_type(), NULL);
9055 }
9056 }
9057 return this->type_;
9058 }
9059
9060 // Set the type of an array index.
9061
9062 void
9063 Array_index_expression::do_determine_type(const Type_context*)
9064 {
9065 this->array_->determine_type_no_context();
9066 Type_context subcontext(NULL, true);
9067 this->start_->determine_type(&subcontext);
9068 if (this->end_ != NULL)
9069 this->end_->determine_type(&subcontext);
9070 }
9071
9072 // Check types of an array index.
9073
9074 void
9075 Array_index_expression::do_check_types(Gogo*)
9076 {
9077 if (this->start_->type()->integer_type() == NULL)
9078 this->report_error(_("index must be integer"));
9079 if (this->end_ != NULL
9080 && this->end_->type()->integer_type() == NULL
9081 && !this->end_->is_nil_expression())
9082 this->report_error(_("slice end must be integer"));
9083
9084 Array_type* array_type = this->array_->type()->array_type();
9085 gcc_assert(array_type != NULL);
9086
9087 unsigned int int_bits =
9088 Type::lookup_integer_type("int")->integer_type()->bits();
9089
9090 Type* dummy;
9091 mpz_t lval;
9092 mpz_init(lval);
9093 bool lval_valid = (array_type->length() != NULL
9094 && array_type->length()->integer_constant_value(true,
9095 lval,
9096 &dummy));
9097 mpz_t ival;
9098 mpz_init(ival);
9099 if (this->start_->integer_constant_value(true, ival, &dummy))
9100 {
9101 if (mpz_sgn(ival) < 0
9102 || mpz_sizeinbase(ival, 2) >= int_bits
9103 || (lval_valid
9104 && (this->end_ == NULL
9105 ? mpz_cmp(ival, lval) >= 0
9106 : mpz_cmp(ival, lval) > 0)))
9107 {
9108 error_at(this->start_->location(), "array index out of bounds");
9109 this->set_is_error();
9110 }
9111 }
9112 if (this->end_ != NULL && !this->end_->is_nil_expression())
9113 {
9114 if (this->end_->integer_constant_value(true, ival, &dummy))
9115 {
9116 if (mpz_sgn(ival) < 0
9117 || mpz_sizeinbase(ival, 2) >= int_bits
9118 || (lval_valid && mpz_cmp(ival, lval) > 0))
9119 {
9120 error_at(this->end_->location(), "array index out of bounds");
9121 this->set_is_error();
9122 }
9123 }
9124 }
9125 mpz_clear(ival);
9126 mpz_clear(lval);
9127
9128 // A slice of an array requires an addressable array. A slice of a
9129 // slice is always possible.
9130 if (this->end_ != NULL
9131 && !array_type->is_open_array_type()
9132 && !this->array_->is_addressable())
9133 this->report_error(_("array is not addressable"));
9134 }
9135
9136 // Return whether this expression is addressable.
9137
9138 bool
9139 Array_index_expression::do_is_addressable() const
9140 {
9141 // A slice expression is not addressable.
9142 if (this->end_ != NULL)
9143 return false;
9144
9145 // An index into a slice is addressable.
9146 if (this->array_->type()->is_open_array_type())
9147 return true;
9148
9149 // An index into an array is addressable if the array is
9150 // addressable.
9151 return this->array_->is_addressable();
9152 }
9153
9154 // Get a tree for an array index.
9155
9156 tree
9157 Array_index_expression::do_get_tree(Translate_context* context)
9158 {
9159 Gogo* gogo = context->gogo();
9160 source_location loc = this->location();
9161
9162 Array_type* array_type = this->array_->type()->array_type();
9163 if (array_type == NULL)
9164 {
9165 gcc_assert(this->array_->type()->is_error_type());
9166 return error_mark_node;
9167 }
9168
9169 tree type_tree = array_type->get_tree(gogo);
9170 if (type_tree == error_mark_node)
9171 return error_mark_node;
9172
9173 tree array_tree = this->array_->get_tree(context);
9174 if (array_tree == error_mark_node)
9175 return error_mark_node;
9176
9177 if (array_type->length() == NULL && !DECL_P(array_tree))
9178 array_tree = save_expr(array_tree);
9179 tree length_tree = array_type->length_tree(gogo, array_tree);
9180 if (length_tree == error_mark_node)
9181 return error_mark_node;
9182 length_tree = save_expr(length_tree);
9183 tree length_type = TREE_TYPE(length_tree);
9184
9185 tree bad_index = boolean_false_node;
9186
9187 tree start_tree = this->start_->get_tree(context);
9188 if (start_tree == error_mark_node)
9189 return error_mark_node;
9190 if (!DECL_P(start_tree))
9191 start_tree = save_expr(start_tree);
9192 if (!INTEGRAL_TYPE_P(TREE_TYPE(start_tree)))
9193 start_tree = convert_to_integer(length_type, start_tree);
9194
9195 bad_index = Expression::check_bounds(start_tree, length_type, bad_index,
9196 loc);
9197
9198 start_tree = fold_convert_loc(loc, length_type, start_tree);
9199 bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node, bad_index,
9200 fold_build2_loc(loc,
9201 (this->end_ == NULL
9202 ? GE_EXPR
9203 : GT_EXPR),
9204 boolean_type_node, start_tree,
9205 length_tree));
9206
9207 int code = (array_type->length() != NULL
9208 ? (this->end_ == NULL
9209 ? RUNTIME_ERROR_ARRAY_INDEX_OUT_OF_BOUNDS
9210 : RUNTIME_ERROR_ARRAY_SLICE_OUT_OF_BOUNDS)
9211 : (this->end_ == NULL
9212 ? RUNTIME_ERROR_SLICE_INDEX_OUT_OF_BOUNDS
9213 : RUNTIME_ERROR_SLICE_SLICE_OUT_OF_BOUNDS));
9214 tree crash = Gogo::runtime_error(code, loc);
9215
9216 if (this->end_ == NULL)
9217 {
9218 // Simple array indexing. This has to return an l-value, so
9219 // wrap the index check into START_TREE.
9220 start_tree = build2(COMPOUND_EXPR, TREE_TYPE(start_tree),
9221 build3(COND_EXPR, void_type_node,
9222 bad_index, crash, NULL_TREE),
9223 start_tree);
9224 start_tree = fold_convert_loc(loc, sizetype, start_tree);
9225
9226 if (array_type->length() != NULL)
9227 {
9228 // Fixed array.
9229 return build4(ARRAY_REF, TREE_TYPE(type_tree), array_tree,
9230 start_tree, NULL_TREE, NULL_TREE);
9231 }
9232 else
9233 {
9234 // Open array.
9235 tree values = array_type->value_pointer_tree(gogo, array_tree);
9236 tree element_type_tree = array_type->element_type()->get_tree(gogo);
9237 if (element_type_tree == error_mark_node)
9238 return error_mark_node;
9239 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
9240 tree offset = fold_build2_loc(loc, MULT_EXPR, sizetype,
9241 start_tree, element_size);
9242 tree ptr = fold_build2_loc(loc, POINTER_PLUS_EXPR,
9243 TREE_TYPE(values), values, offset);
9244 return build_fold_indirect_ref(ptr);
9245 }
9246 }
9247
9248 // Array slice.
9249
9250 tree capacity_tree = array_type->capacity_tree(gogo, array_tree);
9251 if (capacity_tree == error_mark_node)
9252 return error_mark_node;
9253 capacity_tree = fold_convert_loc(loc, length_type, capacity_tree);
9254
9255 tree end_tree;
9256 if (this->end_->is_nil_expression())
9257 end_tree = length_tree;
9258 else
9259 {
9260 end_tree = this->end_->get_tree(context);
9261 if (end_tree == error_mark_node)
9262 return error_mark_node;
9263 if (!DECL_P(end_tree))
9264 end_tree = save_expr(end_tree);
9265 if (!INTEGRAL_TYPE_P(TREE_TYPE(end_tree)))
9266 end_tree = convert_to_integer(length_type, end_tree);
9267
9268 bad_index = Expression::check_bounds(end_tree, length_type, bad_index,
9269 loc);
9270
9271 end_tree = fold_convert_loc(loc, length_type, end_tree);
9272
9273 capacity_tree = save_expr(capacity_tree);
9274 tree bad_end = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
9275 fold_build2_loc(loc, LT_EXPR,
9276 boolean_type_node,
9277 end_tree, start_tree),
9278 fold_build2_loc(loc, GT_EXPR,
9279 boolean_type_node,
9280 end_tree, capacity_tree));
9281 bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
9282 bad_index, bad_end);
9283 }
9284
9285 tree element_type_tree = array_type->element_type()->get_tree(gogo);
9286 if (element_type_tree == error_mark_node)
9287 return error_mark_node;
9288 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
9289
9290 tree offset = fold_build2_loc(loc, MULT_EXPR, sizetype,
9291 fold_convert_loc(loc, sizetype, start_tree),
9292 element_size);
9293
9294 tree value_pointer = array_type->value_pointer_tree(gogo, array_tree);
9295 if (value_pointer == error_mark_node)
9296 return error_mark_node;
9297
9298 value_pointer = fold_build2_loc(loc, POINTER_PLUS_EXPR,
9299 TREE_TYPE(value_pointer),
9300 value_pointer, offset);
9301
9302 tree result_length_tree = fold_build2_loc(loc, MINUS_EXPR, length_type,
9303 end_tree, start_tree);
9304
9305 tree result_capacity_tree = fold_build2_loc(loc, MINUS_EXPR, length_type,
9306 capacity_tree, start_tree);
9307
9308 tree struct_tree = this->type()->get_tree(gogo);
9309 gcc_assert(TREE_CODE(struct_tree) == RECORD_TYPE);
9310
9311 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
9312
9313 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
9314 tree field = TYPE_FIELDS(struct_tree);
9315 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
9316 elt->index = field;
9317 elt->value = value_pointer;
9318
9319 elt = VEC_quick_push(constructor_elt, init, NULL);
9320 field = DECL_CHAIN(field);
9321 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
9322 elt->index = field;
9323 elt->value = fold_convert_loc(loc, TREE_TYPE(field), result_length_tree);
9324
9325 elt = VEC_quick_push(constructor_elt, init, NULL);
9326 field = DECL_CHAIN(field);
9327 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__capacity") == 0);
9328 elt->index = field;
9329 elt->value = fold_convert_loc(loc, TREE_TYPE(field), result_capacity_tree);
9330
9331 tree constructor = build_constructor(struct_tree, init);
9332
9333 if (TREE_CONSTANT(value_pointer)
9334 && TREE_CONSTANT(result_length_tree)
9335 && TREE_CONSTANT(result_capacity_tree))
9336 TREE_CONSTANT(constructor) = 1;
9337
9338 return fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(constructor),
9339 build3(COND_EXPR, void_type_node,
9340 bad_index, crash, NULL_TREE),
9341 constructor);
9342 }
9343
9344 // Make an array index expression. END may be NULL.
9345
9346 Expression*
9347 Expression::make_array_index(Expression* array, Expression* start,
9348 Expression* end, source_location location)
9349 {
9350 // Taking a slice of a composite literal requires moving the literal
9351 // onto the heap.
9352 if (end != NULL && array->is_composite_literal())
9353 {
9354 array = Expression::make_heap_composite(array, location);
9355 array = Expression::make_unary(OPERATOR_MULT, array, location);
9356 }
9357 return new Array_index_expression(array, start, end, location);
9358 }
9359
9360 // A string index. This is used for both indexing and slicing.
9361
9362 class String_index_expression : public Expression
9363 {
9364 public:
9365 String_index_expression(Expression* string, Expression* start,
9366 Expression* end, source_location location)
9367 : Expression(EXPRESSION_STRING_INDEX, location),
9368 string_(string), start_(start), end_(end)
9369 { }
9370
9371 protected:
9372 int
9373 do_traverse(Traverse*);
9374
9375 Type*
9376 do_type();
9377
9378 void
9379 do_determine_type(const Type_context*);
9380
9381 void
9382 do_check_types(Gogo*);
9383
9384 Expression*
9385 do_copy()
9386 {
9387 return Expression::make_string_index(this->string_->copy(),
9388 this->start_->copy(),
9389 (this->end_ == NULL
9390 ? NULL
9391 : this->end_->copy()),
9392 this->location());
9393 }
9394
9395 tree
9396 do_get_tree(Translate_context*);
9397
9398 private:
9399 // The string we are getting a value from.
9400 Expression* string_;
9401 // The start or only index.
9402 Expression* start_;
9403 // The end index of a slice. This may be NULL for a single index,
9404 // or it may be a nil expression for the length of the string.
9405 Expression* end_;
9406 };
9407
9408 // String index traversal.
9409
9410 int
9411 String_index_expression::do_traverse(Traverse* traverse)
9412 {
9413 if (Expression::traverse(&this->string_, traverse) == TRAVERSE_EXIT)
9414 return TRAVERSE_EXIT;
9415 if (Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT)
9416 return TRAVERSE_EXIT;
9417 if (this->end_ != NULL)
9418 {
9419 if (Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT)
9420 return TRAVERSE_EXIT;
9421 }
9422 return TRAVERSE_CONTINUE;
9423 }
9424
9425 // Return the type of a string index.
9426
9427 Type*
9428 String_index_expression::do_type()
9429 {
9430 if (this->end_ == NULL)
9431 return Type::lookup_integer_type("uint8");
9432 else
9433 return Type::make_string_type();
9434 }
9435
9436 // Determine the type of a string index.
9437
9438 void
9439 String_index_expression::do_determine_type(const Type_context*)
9440 {
9441 this->string_->determine_type_no_context();
9442 Type_context subcontext(NULL, true);
9443 this->start_->determine_type(&subcontext);
9444 if (this->end_ != NULL)
9445 this->end_->determine_type(&subcontext);
9446 }
9447
9448 // Check types of a string index.
9449
9450 void
9451 String_index_expression::do_check_types(Gogo*)
9452 {
9453 if (this->start_->type()->integer_type() == NULL)
9454 this->report_error(_("index must be integer"));
9455 if (this->end_ != NULL
9456 && this->end_->type()->integer_type() == NULL
9457 && !this->end_->is_nil_expression())
9458 this->report_error(_("slice end must be integer"));
9459
9460 std::string sval;
9461 bool sval_valid = this->string_->string_constant_value(&sval);
9462
9463 mpz_t ival;
9464 mpz_init(ival);
9465 Type* dummy;
9466 if (this->start_->integer_constant_value(true, ival, &dummy))
9467 {
9468 if (mpz_sgn(ival) < 0
9469 || (sval_valid && mpz_cmp_ui(ival, sval.length()) >= 0))
9470 {
9471 error_at(this->start_->location(), "string index out of bounds");
9472 this->set_is_error();
9473 }
9474 }
9475 if (this->end_ != NULL && !this->end_->is_nil_expression())
9476 {
9477 if (this->end_->integer_constant_value(true, ival, &dummy))
9478 {
9479 if (mpz_sgn(ival) < 0
9480 || (sval_valid && mpz_cmp_ui(ival, sval.length()) > 0))
9481 {
9482 error_at(this->end_->location(), "string index out of bounds");
9483 this->set_is_error();
9484 }
9485 }
9486 }
9487 mpz_clear(ival);
9488 }
9489
9490 // Get a tree for a string index.
9491
9492 tree
9493 String_index_expression::do_get_tree(Translate_context* context)
9494 {
9495 source_location loc = this->location();
9496
9497 tree string_tree = this->string_->get_tree(context);
9498 if (string_tree == error_mark_node)
9499 return error_mark_node;
9500
9501 if (this->string_->type()->points_to() != NULL)
9502 string_tree = build_fold_indirect_ref(string_tree);
9503 if (!DECL_P(string_tree))
9504 string_tree = save_expr(string_tree);
9505 tree string_type = TREE_TYPE(string_tree);
9506
9507 tree length_tree = String_type::length_tree(context->gogo(), string_tree);
9508 length_tree = save_expr(length_tree);
9509 tree length_type = TREE_TYPE(length_tree);
9510
9511 tree bad_index = boolean_false_node;
9512
9513 tree start_tree = this->start_->get_tree(context);
9514 if (start_tree == error_mark_node)
9515 return error_mark_node;
9516 if (!DECL_P(start_tree))
9517 start_tree = save_expr(start_tree);
9518 if (!INTEGRAL_TYPE_P(TREE_TYPE(start_tree)))
9519 start_tree = convert_to_integer(length_type, start_tree);
9520
9521 bad_index = Expression::check_bounds(start_tree, length_type, bad_index,
9522 loc);
9523
9524 start_tree = fold_convert_loc(loc, length_type, start_tree);
9525
9526 int code = (this->end_ == NULL
9527 ? RUNTIME_ERROR_STRING_INDEX_OUT_OF_BOUNDS
9528 : RUNTIME_ERROR_STRING_SLICE_OUT_OF_BOUNDS);
9529 tree crash = Gogo::runtime_error(code, loc);
9530
9531 if (this->end_ == NULL)
9532 {
9533 bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
9534 bad_index,
9535 fold_build2_loc(loc, GE_EXPR,
9536 boolean_type_node,
9537 start_tree, length_tree));
9538
9539 tree bytes_tree = String_type::bytes_tree(context->gogo(), string_tree);
9540 tree ptr = fold_build2_loc(loc, POINTER_PLUS_EXPR, TREE_TYPE(bytes_tree),
9541 bytes_tree,
9542 fold_convert_loc(loc, sizetype, start_tree));
9543 tree index = build_fold_indirect_ref_loc(loc, ptr);
9544
9545 return build2(COMPOUND_EXPR, TREE_TYPE(index),
9546 build3(COND_EXPR, void_type_node,
9547 bad_index, crash, NULL_TREE),
9548 index);
9549 }
9550 else
9551 {
9552 tree end_tree;
9553 if (this->end_->is_nil_expression())
9554 end_tree = build_int_cst(length_type, -1);
9555 else
9556 {
9557 end_tree = this->end_->get_tree(context);
9558 if (end_tree == error_mark_node)
9559 return error_mark_node;
9560 if (!DECL_P(end_tree))
9561 end_tree = save_expr(end_tree);
9562 if (!INTEGRAL_TYPE_P(TREE_TYPE(end_tree)))
9563 end_tree = convert_to_integer(length_type, end_tree);
9564
9565 bad_index = Expression::check_bounds(end_tree, length_type,
9566 bad_index, loc);
9567
9568 end_tree = fold_convert_loc(loc, length_type, end_tree);
9569 }
9570
9571 static tree strslice_fndecl;
9572 tree ret = Gogo::call_builtin(&strslice_fndecl,
9573 loc,
9574 "__go_string_slice",
9575 3,
9576 string_type,
9577 string_type,
9578 string_tree,
9579 length_type,
9580 start_tree,
9581 length_type,
9582 end_tree);
9583 if (ret == error_mark_node)
9584 return error_mark_node;
9585 // This will panic if the bounds are out of range for the
9586 // string.
9587 TREE_NOTHROW(strslice_fndecl) = 0;
9588
9589 if (bad_index == boolean_false_node)
9590 return ret;
9591 else
9592 return build2(COMPOUND_EXPR, TREE_TYPE(ret),
9593 build3(COND_EXPR, void_type_node,
9594 bad_index, crash, NULL_TREE),
9595 ret);
9596 }
9597 }
9598
9599 // Make a string index expression. END may be NULL.
9600
9601 Expression*
9602 Expression::make_string_index(Expression* string, Expression* start,
9603 Expression* end, source_location location)
9604 {
9605 return new String_index_expression(string, start, end, location);
9606 }
9607
9608 // Class Map_index.
9609
9610 // Get the type of the map.
9611
9612 Map_type*
9613 Map_index_expression::get_map_type() const
9614 {
9615 Map_type* mt = this->map_->type()->deref()->map_type();
9616 gcc_assert(mt != NULL);
9617 return mt;
9618 }
9619
9620 // Map index traversal.
9621
9622 int
9623 Map_index_expression::do_traverse(Traverse* traverse)
9624 {
9625 if (Expression::traverse(&this->map_, traverse) == TRAVERSE_EXIT)
9626 return TRAVERSE_EXIT;
9627 return Expression::traverse(&this->index_, traverse);
9628 }
9629
9630 // Return the type of a map index.
9631
9632 Type*
9633 Map_index_expression::do_type()
9634 {
9635 Type* type = this->get_map_type()->val_type();
9636 // If this map index is in a tuple assignment, we actually return a
9637 // pointer to the value type. Tuple_map_assignment_statement is
9638 // responsible for handling this correctly. We need to get the type
9639 // right in case this gets assigned to a temporary variable.
9640 if (this->is_in_tuple_assignment_)
9641 type = Type::make_pointer_type(type);
9642 return type;
9643 }
9644
9645 // Fix the type of a map index.
9646
9647 void
9648 Map_index_expression::do_determine_type(const Type_context*)
9649 {
9650 this->map_->determine_type_no_context();
9651 Type_context subcontext(this->get_map_type()->key_type(), false);
9652 this->index_->determine_type(&subcontext);
9653 }
9654
9655 // Check types of a map index.
9656
9657 void
9658 Map_index_expression::do_check_types(Gogo*)
9659 {
9660 std::string reason;
9661 if (!Type::are_assignable(this->get_map_type()->key_type(),
9662 this->index_->type(), &reason))
9663 {
9664 if (reason.empty())
9665 this->report_error(_("incompatible type for map index"));
9666 else
9667 {
9668 error_at(this->location(), "incompatible type for map index (%s)",
9669 reason.c_str());
9670 this->set_is_error();
9671 }
9672 }
9673 }
9674
9675 // Get a tree for a map index.
9676
9677 tree
9678 Map_index_expression::do_get_tree(Translate_context* context)
9679 {
9680 Map_type* type = this->get_map_type();
9681
9682 tree valptr = this->get_value_pointer(context, this->is_lvalue_);
9683 if (valptr == error_mark_node)
9684 return error_mark_node;
9685 valptr = save_expr(valptr);
9686
9687 tree val_type_tree = TREE_TYPE(TREE_TYPE(valptr));
9688
9689 if (this->is_lvalue_)
9690 return build_fold_indirect_ref(valptr);
9691 else if (this->is_in_tuple_assignment_)
9692 {
9693 // Tuple_map_assignment_statement is responsible for using this
9694 // appropriately.
9695 return valptr;
9696 }
9697 else
9698 {
9699 return fold_build3(COND_EXPR, val_type_tree,
9700 fold_build2(EQ_EXPR, boolean_type_node, valptr,
9701 fold_convert(TREE_TYPE(valptr),
9702 null_pointer_node)),
9703 type->val_type()->get_init_tree(context->gogo(),
9704 false),
9705 build_fold_indirect_ref(valptr));
9706 }
9707 }
9708
9709 // Get a tree for the map index. This returns a tree which evaluates
9710 // to a pointer to a value. The pointer will be NULL if the key is
9711 // not in the map.
9712
9713 tree
9714 Map_index_expression::get_value_pointer(Translate_context* context,
9715 bool insert)
9716 {
9717 Map_type* type = this->get_map_type();
9718
9719 tree map_tree = this->map_->get_tree(context);
9720 tree index_tree = this->index_->get_tree(context);
9721 index_tree = Expression::convert_for_assignment(context, type->key_type(),
9722 this->index_->type(),
9723 index_tree,
9724 this->location());
9725 if (map_tree == error_mark_node || index_tree == error_mark_node)
9726 return error_mark_node;
9727
9728 if (this->map_->type()->points_to() != NULL)
9729 map_tree = build_fold_indirect_ref(map_tree);
9730
9731 // We need to pass in a pointer to the key, so stuff it into a
9732 // variable.
9733 tree tmp = create_tmp_var(TREE_TYPE(index_tree), get_name(index_tree));
9734 DECL_IGNORED_P(tmp) = 0;
9735 DECL_INITIAL(tmp) = index_tree;
9736 tree make_tmp = build1(DECL_EXPR, void_type_node, tmp);
9737 tree tmpref = fold_convert(const_ptr_type_node, build_fold_addr_expr(tmp));
9738 TREE_ADDRESSABLE(tmp) = 1;
9739
9740 static tree map_index_fndecl;
9741 tree call = Gogo::call_builtin(&map_index_fndecl,
9742 this->location(),
9743 "__go_map_index",
9744 3,
9745 const_ptr_type_node,
9746 TREE_TYPE(map_tree),
9747 map_tree,
9748 const_ptr_type_node,
9749 tmpref,
9750 boolean_type_node,
9751 (insert
9752 ? boolean_true_node
9753 : boolean_false_node));
9754 if (call == error_mark_node)
9755 return error_mark_node;
9756 // This can panic on a map of interface type if the interface holds
9757 // an uncomparable or unhashable type.
9758 TREE_NOTHROW(map_index_fndecl) = 0;
9759
9760 tree val_type_tree = type->val_type()->get_tree(context->gogo());
9761 if (val_type_tree == error_mark_node)
9762 return error_mark_node;
9763 tree ptr_val_type_tree = build_pointer_type(val_type_tree);
9764
9765 return build2(COMPOUND_EXPR, ptr_val_type_tree,
9766 make_tmp,
9767 fold_convert(ptr_val_type_tree, call));
9768 }
9769
9770 // Make a map index expression.
9771
9772 Map_index_expression*
9773 Expression::make_map_index(Expression* map, Expression* index,
9774 source_location location)
9775 {
9776 return new Map_index_expression(map, index, location);
9777 }
9778
9779 // Class Field_reference_expression.
9780
9781 // Return the type of a field reference.
9782
9783 Type*
9784 Field_reference_expression::do_type()
9785 {
9786 Struct_type* struct_type = this->expr_->type()->struct_type();
9787 gcc_assert(struct_type != NULL);
9788 return struct_type->field(this->field_index_)->type();
9789 }
9790
9791 // Check the types for a field reference.
9792
9793 void
9794 Field_reference_expression::do_check_types(Gogo*)
9795 {
9796 Struct_type* struct_type = this->expr_->type()->struct_type();
9797 gcc_assert(struct_type != NULL);
9798 gcc_assert(struct_type->field(this->field_index_) != NULL);
9799 }
9800
9801 // Get a tree for a field reference.
9802
9803 tree
9804 Field_reference_expression::do_get_tree(Translate_context* context)
9805 {
9806 tree struct_tree = this->expr_->get_tree(context);
9807 if (struct_tree == error_mark_node
9808 || TREE_TYPE(struct_tree) == error_mark_node)
9809 return error_mark_node;
9810 gcc_assert(TREE_CODE(TREE_TYPE(struct_tree)) == RECORD_TYPE);
9811 tree field = TYPE_FIELDS(TREE_TYPE(struct_tree));
9812 if (field == NULL_TREE)
9813 {
9814 // This can happen for a type which refers to itself indirectly
9815 // and then turns out to be erroneous.
9816 gcc_assert(saw_errors());
9817 return error_mark_node;
9818 }
9819 for (unsigned int i = this->field_index_; i > 0; --i)
9820 {
9821 field = DECL_CHAIN(field);
9822 gcc_assert(field != NULL_TREE);
9823 }
9824 return build3(COMPONENT_REF, TREE_TYPE(field), struct_tree, field,
9825 NULL_TREE);
9826 }
9827
9828 // Make a reference to a qualified identifier in an expression.
9829
9830 Field_reference_expression*
9831 Expression::make_field_reference(Expression* expr, unsigned int field_index,
9832 source_location location)
9833 {
9834 return new Field_reference_expression(expr, field_index, location);
9835 }
9836
9837 // Class Interface_field_reference_expression.
9838
9839 // Return a tree for the pointer to the function to call.
9840
9841 tree
9842 Interface_field_reference_expression::get_function_tree(Translate_context*,
9843 tree expr)
9844 {
9845 if (this->expr_->type()->points_to() != NULL)
9846 expr = build_fold_indirect_ref(expr);
9847
9848 tree expr_type = TREE_TYPE(expr);
9849 gcc_assert(TREE_CODE(expr_type) == RECORD_TYPE);
9850
9851 tree field = TYPE_FIELDS(expr_type);
9852 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods") == 0);
9853
9854 tree table = build3(COMPONENT_REF, TREE_TYPE(field), expr, field, NULL_TREE);
9855 gcc_assert(POINTER_TYPE_P(TREE_TYPE(table)));
9856
9857 table = build_fold_indirect_ref(table);
9858 gcc_assert(TREE_CODE(TREE_TYPE(table)) == RECORD_TYPE);
9859
9860 std::string name = Gogo::unpack_hidden_name(this->name_);
9861 for (field = DECL_CHAIN(TYPE_FIELDS(TREE_TYPE(table)));
9862 field != NULL_TREE;
9863 field = DECL_CHAIN(field))
9864 {
9865 if (name == IDENTIFIER_POINTER(DECL_NAME(field)))
9866 break;
9867 }
9868 gcc_assert(field != NULL_TREE);
9869
9870 return build3(COMPONENT_REF, TREE_TYPE(field), table, field, NULL_TREE);
9871 }
9872
9873 // Return a tree for the first argument to pass to the interface
9874 // function.
9875
9876 tree
9877 Interface_field_reference_expression::get_underlying_object_tree(
9878 Translate_context*,
9879 tree expr)
9880 {
9881 if (this->expr_->type()->points_to() != NULL)
9882 expr = build_fold_indirect_ref(expr);
9883
9884 tree expr_type = TREE_TYPE(expr);
9885 gcc_assert(TREE_CODE(expr_type) == RECORD_TYPE);
9886
9887 tree field = DECL_CHAIN(TYPE_FIELDS(expr_type));
9888 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
9889
9890 return build3(COMPONENT_REF, TREE_TYPE(field), expr, field, NULL_TREE);
9891 }
9892
9893 // Traversal.
9894
9895 int
9896 Interface_field_reference_expression::do_traverse(Traverse* traverse)
9897 {
9898 return Expression::traverse(&this->expr_, traverse);
9899 }
9900
9901 // Return the type of an interface field reference.
9902
9903 Type*
9904 Interface_field_reference_expression::do_type()
9905 {
9906 Type* expr_type = this->expr_->type();
9907
9908 Type* points_to = expr_type->points_to();
9909 if (points_to != NULL)
9910 expr_type = points_to;
9911
9912 Interface_type* interface_type = expr_type->interface_type();
9913 if (interface_type == NULL)
9914 return Type::make_error_type();
9915
9916 const Typed_identifier* method = interface_type->find_method(this->name_);
9917 if (method == NULL)
9918 return Type::make_error_type();
9919
9920 return method->type();
9921 }
9922
9923 // Determine types.
9924
9925 void
9926 Interface_field_reference_expression::do_determine_type(const Type_context*)
9927 {
9928 this->expr_->determine_type_no_context();
9929 }
9930
9931 // Check the types for an interface field reference.
9932
9933 void
9934 Interface_field_reference_expression::do_check_types(Gogo*)
9935 {
9936 Type* type = this->expr_->type();
9937
9938 Type* points_to = type->points_to();
9939 if (points_to != NULL)
9940 type = points_to;
9941
9942 Interface_type* interface_type = type->interface_type();
9943 if (interface_type == NULL)
9944 this->report_error(_("expected interface or pointer to interface"));
9945 else
9946 {
9947 const Typed_identifier* method =
9948 interface_type->find_method(this->name_);
9949 if (method == NULL)
9950 {
9951 error_at(this->location(), "method %qs not in interface",
9952 Gogo::message_name(this->name_).c_str());
9953 this->set_is_error();
9954 }
9955 }
9956 }
9957
9958 // Get a tree for a reference to a field in an interface. There is no
9959 // standard tree type representation for this: it's a function
9960 // attached to its first argument, like a Bound_method_expression.
9961 // The only places it may currently be used are in a Call_expression
9962 // or a Go_statement, which will take it apart directly. So this has
9963 // nothing to do at present.
9964
9965 tree
9966 Interface_field_reference_expression::do_get_tree(Translate_context*)
9967 {
9968 gcc_unreachable();
9969 }
9970
9971 // Make a reference to a field in an interface.
9972
9973 Expression*
9974 Expression::make_interface_field_reference(Expression* expr,
9975 const std::string& field,
9976 source_location location)
9977 {
9978 return new Interface_field_reference_expression(expr, field, location);
9979 }
9980
9981 // A general selector. This is a Parser_expression for LEFT.NAME. It
9982 // is lowered after we know the type of the left hand side.
9983
9984 class Selector_expression : public Parser_expression
9985 {
9986 public:
9987 Selector_expression(Expression* left, const std::string& name,
9988 source_location location)
9989 : Parser_expression(EXPRESSION_SELECTOR, location),
9990 left_(left), name_(name)
9991 { }
9992
9993 protected:
9994 int
9995 do_traverse(Traverse* traverse)
9996 { return Expression::traverse(&this->left_, traverse); }
9997
9998 Expression*
9999 do_lower(Gogo*, Named_object*, int);
10000
10001 Expression*
10002 do_copy()
10003 {
10004 return new Selector_expression(this->left_->copy(), this->name_,
10005 this->location());
10006 }
10007
10008 private:
10009 Expression*
10010 lower_method_expression(Gogo*);
10011
10012 // The expression on the left hand side.
10013 Expression* left_;
10014 // The name on the right hand side.
10015 std::string name_;
10016 };
10017
10018 // Lower a selector expression once we know the real type of the left
10019 // hand side.
10020
10021 Expression*
10022 Selector_expression::do_lower(Gogo* gogo, Named_object*, int)
10023 {
10024 Expression* left = this->left_;
10025 if (left->is_type_expression())
10026 return this->lower_method_expression(gogo);
10027 return Type::bind_field_or_method(gogo, left->type(), left, this->name_,
10028 this->location());
10029 }
10030
10031 // Lower a method expression T.M or (*T).M. We turn this into a
10032 // function literal.
10033
10034 Expression*
10035 Selector_expression::lower_method_expression(Gogo* gogo)
10036 {
10037 source_location location = this->location();
10038 Type* type = this->left_->type();
10039 const std::string& name(this->name_);
10040
10041 bool is_pointer;
10042 if (type->points_to() == NULL)
10043 is_pointer = false;
10044 else
10045 {
10046 is_pointer = true;
10047 type = type->points_to();
10048 }
10049 Named_type* nt = type->named_type();
10050 if (nt == NULL)
10051 {
10052 error_at(location,
10053 ("method expression requires named type or "
10054 "pointer to named type"));
10055 return Expression::make_error(location);
10056 }
10057
10058 bool is_ambiguous;
10059 Method* method = nt->method_function(name, &is_ambiguous);
10060 if (method == NULL)
10061 {
10062 if (!is_ambiguous)
10063 error_at(location, "type %<%s%> has no method %<%s%>",
10064 nt->message_name().c_str(),
10065 Gogo::message_name(name).c_str());
10066 else
10067 error_at(location, "method %<%s%> is ambiguous in type %<%s%>",
10068 Gogo::message_name(name).c_str(),
10069 nt->message_name().c_str());
10070 return Expression::make_error(location);
10071 }
10072
10073 if (!is_pointer && !method->is_value_method())
10074 {
10075 error_at(location, "method requires pointer (use %<(*%s).%s)%>",
10076 nt->message_name().c_str(),
10077 Gogo::message_name(name).c_str());
10078 return Expression::make_error(location);
10079 }
10080
10081 // Build a new function type in which the receiver becomes the first
10082 // argument.
10083 Function_type* method_type = method->type();
10084 gcc_assert(method_type->is_method());
10085
10086 const char* const receiver_name = "$this";
10087 Typed_identifier_list* parameters = new Typed_identifier_list();
10088 parameters->push_back(Typed_identifier(receiver_name, this->left_->type(),
10089 location));
10090
10091 const Typed_identifier_list* method_parameters = method_type->parameters();
10092 if (method_parameters != NULL)
10093 {
10094 for (Typed_identifier_list::const_iterator p = method_parameters->begin();
10095 p != method_parameters->end();
10096 ++p)
10097 parameters->push_back(*p);
10098 }
10099
10100 const Typed_identifier_list* method_results = method_type->results();
10101 Typed_identifier_list* results;
10102 if (method_results == NULL)
10103 results = NULL;
10104 else
10105 {
10106 results = new Typed_identifier_list();
10107 for (Typed_identifier_list::const_iterator p = method_results->begin();
10108 p != method_results->end();
10109 ++p)
10110 results->push_back(*p);
10111 }
10112
10113 Function_type* fntype = Type::make_function_type(NULL, parameters, results,
10114 location);
10115 if (method_type->is_varargs())
10116 fntype->set_is_varargs();
10117
10118 // We generate methods which always takes a pointer to the receiver
10119 // as their first argument. If this is for a pointer type, we can
10120 // simply reuse the existing function. We use an internal hack to
10121 // get the right type.
10122
10123 if (is_pointer)
10124 {
10125 Named_object* mno = (method->needs_stub_method()
10126 ? method->stub_object()
10127 : method->named_object());
10128 Expression* f = Expression::make_func_reference(mno, NULL, location);
10129 f = Expression::make_cast(fntype, f, location);
10130 Type_conversion_expression* tce =
10131 static_cast<Type_conversion_expression*>(f);
10132 tce->set_may_convert_function_types();
10133 return f;
10134 }
10135
10136 Named_object* no = gogo->start_function(Gogo::thunk_name(), fntype, false,
10137 location);
10138
10139 Named_object* vno = gogo->lookup(receiver_name, NULL);
10140 gcc_assert(vno != NULL);
10141 Expression* ve = Expression::make_var_reference(vno, location);
10142 Expression* bm = Type::bind_field_or_method(gogo, nt, ve, name, location);
10143 gcc_assert(bm != NULL && !bm->is_error_expression());
10144
10145 Expression_list* args;
10146 if (method_parameters == NULL)
10147 args = NULL;
10148 else
10149 {
10150 args = new Expression_list();
10151 for (Typed_identifier_list::const_iterator p = method_parameters->begin();
10152 p != method_parameters->end();
10153 ++p)
10154 {
10155 vno = gogo->lookup(p->name(), NULL);
10156 gcc_assert(vno != NULL);
10157 args->push_back(Expression::make_var_reference(vno, location));
10158 }
10159 }
10160
10161 Call_expression* call = Expression::make_call(bm, args,
10162 method_type->is_varargs(),
10163 location);
10164
10165 size_t count = call->result_count();
10166 Statement* s;
10167 if (count == 0)
10168 s = Statement::make_statement(call);
10169 else
10170 {
10171 Expression_list* retvals = new Expression_list();
10172 if (count <= 1)
10173 retvals->push_back(call);
10174 else
10175 {
10176 for (size_t i = 0; i < count; ++i)
10177 retvals->push_back(Expression::make_call_result(call, i));
10178 }
10179 s = Statement::make_return_statement(no->func_value()->type()->results(),
10180 retvals, location);
10181 }
10182 gogo->add_statement(s);
10183
10184 gogo->finish_function(location);
10185
10186 return Expression::make_func_reference(no, NULL, location);
10187 }
10188
10189 // Make a selector expression.
10190
10191 Expression*
10192 Expression::make_selector(Expression* left, const std::string& name,
10193 source_location location)
10194 {
10195 return new Selector_expression(left, name, location);
10196 }
10197
10198 // Implement the builtin function new.
10199
10200 class Allocation_expression : public Expression
10201 {
10202 public:
10203 Allocation_expression(Type* type, source_location location)
10204 : Expression(EXPRESSION_ALLOCATION, location),
10205 type_(type)
10206 { }
10207
10208 protected:
10209 int
10210 do_traverse(Traverse* traverse)
10211 { return Type::traverse(this->type_, traverse); }
10212
10213 Type*
10214 do_type()
10215 { return Type::make_pointer_type(this->type_); }
10216
10217 void
10218 do_determine_type(const Type_context*)
10219 { }
10220
10221 void
10222 do_check_types(Gogo*);
10223
10224 Expression*
10225 do_copy()
10226 { return new Allocation_expression(this->type_, this->location()); }
10227
10228 tree
10229 do_get_tree(Translate_context*);
10230
10231 private:
10232 // The type we are allocating.
10233 Type* type_;
10234 };
10235
10236 // Check the type of an allocation expression.
10237
10238 void
10239 Allocation_expression::do_check_types(Gogo*)
10240 {
10241 if (this->type_->function_type() != NULL)
10242 this->report_error(_("invalid new of function type"));
10243 }
10244
10245 // Return a tree for an allocation expression.
10246
10247 tree
10248 Allocation_expression::do_get_tree(Translate_context* context)
10249 {
10250 tree type_tree = this->type_->get_tree(context->gogo());
10251 if (type_tree == error_mark_node)
10252 return error_mark_node;
10253 tree size_tree = TYPE_SIZE_UNIT(type_tree);
10254 tree space = context->gogo()->allocate_memory(this->type_, size_tree,
10255 this->location());
10256 if (space == error_mark_node)
10257 return error_mark_node;
10258 return fold_convert(build_pointer_type(type_tree), space);
10259 }
10260
10261 // Make an allocation expression.
10262
10263 Expression*
10264 Expression::make_allocation(Type* type, source_location location)
10265 {
10266 return new Allocation_expression(type, location);
10267 }
10268
10269 // Implement the builtin function make.
10270
10271 class Make_expression : public Expression
10272 {
10273 public:
10274 Make_expression(Type* type, Expression_list* args, source_location location)
10275 : Expression(EXPRESSION_MAKE, location),
10276 type_(type), args_(args)
10277 { }
10278
10279 protected:
10280 int
10281 do_traverse(Traverse* traverse);
10282
10283 Type*
10284 do_type()
10285 { return this->type_; }
10286
10287 void
10288 do_determine_type(const Type_context*);
10289
10290 void
10291 do_check_types(Gogo*);
10292
10293 Expression*
10294 do_copy()
10295 {
10296 return new Make_expression(this->type_, this->args_->copy(),
10297 this->location());
10298 }
10299
10300 tree
10301 do_get_tree(Translate_context*);
10302
10303 private:
10304 // The type we are making.
10305 Type* type_;
10306 // The arguments to pass to the make routine.
10307 Expression_list* args_;
10308 };
10309
10310 // Traversal.
10311
10312 int
10313 Make_expression::do_traverse(Traverse* traverse)
10314 {
10315 if (this->args_ != NULL
10316 && this->args_->traverse(traverse) == TRAVERSE_EXIT)
10317 return TRAVERSE_EXIT;
10318 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10319 return TRAVERSE_EXIT;
10320 return TRAVERSE_CONTINUE;
10321 }
10322
10323 // Set types of arguments.
10324
10325 void
10326 Make_expression::do_determine_type(const Type_context*)
10327 {
10328 if (this->args_ != NULL)
10329 {
10330 Type_context context(Type::lookup_integer_type("int"), false);
10331 for (Expression_list::const_iterator pe = this->args_->begin();
10332 pe != this->args_->end();
10333 ++pe)
10334 (*pe)->determine_type(&context);
10335 }
10336 }
10337
10338 // Check types for a make expression.
10339
10340 void
10341 Make_expression::do_check_types(Gogo*)
10342 {
10343 if (this->type_->channel_type() == NULL
10344 && this->type_->map_type() == NULL
10345 && (this->type_->array_type() == NULL
10346 || this->type_->array_type()->length() != NULL))
10347 this->report_error(_("invalid type for make function"));
10348 else if (!this->type_->check_make_expression(this->args_, this->location()))
10349 this->set_is_error();
10350 }
10351
10352 // Return a tree for a make expression.
10353
10354 tree
10355 Make_expression::do_get_tree(Translate_context* context)
10356 {
10357 return this->type_->make_expression_tree(context, this->args_,
10358 this->location());
10359 }
10360
10361 // Make a make expression.
10362
10363 Expression*
10364 Expression::make_make(Type* type, Expression_list* args,
10365 source_location location)
10366 {
10367 return new Make_expression(type, args, location);
10368 }
10369
10370 // Construct a struct.
10371
10372 class Struct_construction_expression : public Expression
10373 {
10374 public:
10375 Struct_construction_expression(Type* type, Expression_list* vals,
10376 source_location location)
10377 : Expression(EXPRESSION_STRUCT_CONSTRUCTION, location),
10378 type_(type), vals_(vals)
10379 { }
10380
10381 // Return whether this is a constant initializer.
10382 bool
10383 is_constant_struct() const;
10384
10385 protected:
10386 int
10387 do_traverse(Traverse* traverse);
10388
10389 Type*
10390 do_type()
10391 { return this->type_; }
10392
10393 void
10394 do_determine_type(const Type_context*);
10395
10396 void
10397 do_check_types(Gogo*);
10398
10399 Expression*
10400 do_copy()
10401 {
10402 return new Struct_construction_expression(this->type_, this->vals_->copy(),
10403 this->location());
10404 }
10405
10406 bool
10407 do_is_addressable() const
10408 { return true; }
10409
10410 tree
10411 do_get_tree(Translate_context*);
10412
10413 void
10414 do_export(Export*) const;
10415
10416 private:
10417 // The type of the struct to construct.
10418 Type* type_;
10419 // The list of values, in order of the fields in the struct. A NULL
10420 // entry means that the field should be zero-initialized.
10421 Expression_list* vals_;
10422 };
10423
10424 // Traversal.
10425
10426 int
10427 Struct_construction_expression::do_traverse(Traverse* traverse)
10428 {
10429 if (this->vals_ != NULL
10430 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
10431 return TRAVERSE_EXIT;
10432 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10433 return TRAVERSE_EXIT;
10434 return TRAVERSE_CONTINUE;
10435 }
10436
10437 // Return whether this is a constant initializer.
10438
10439 bool
10440 Struct_construction_expression::is_constant_struct() const
10441 {
10442 if (this->vals_ == NULL)
10443 return true;
10444 for (Expression_list::const_iterator pv = this->vals_->begin();
10445 pv != this->vals_->end();
10446 ++pv)
10447 {
10448 if (*pv != NULL
10449 && !(*pv)->is_constant()
10450 && (!(*pv)->is_composite_literal()
10451 || (*pv)->is_nonconstant_composite_literal()))
10452 return false;
10453 }
10454
10455 const Struct_field_list* fields = this->type_->struct_type()->fields();
10456 for (Struct_field_list::const_iterator pf = fields->begin();
10457 pf != fields->end();
10458 ++pf)
10459 {
10460 // There are no constant constructors for interfaces.
10461 if (pf->type()->interface_type() != NULL)
10462 return false;
10463 }
10464
10465 return true;
10466 }
10467
10468 // Final type determination.
10469
10470 void
10471 Struct_construction_expression::do_determine_type(const Type_context*)
10472 {
10473 if (this->vals_ == NULL)
10474 return;
10475 const Struct_field_list* fields = this->type_->struct_type()->fields();
10476 Expression_list::const_iterator pv = this->vals_->begin();
10477 for (Struct_field_list::const_iterator pf = fields->begin();
10478 pf != fields->end();
10479 ++pf, ++pv)
10480 {
10481 if (pv == this->vals_->end())
10482 return;
10483 if (*pv != NULL)
10484 {
10485 Type_context subcontext(pf->type(), false);
10486 (*pv)->determine_type(&subcontext);
10487 }
10488 }
10489 }
10490
10491 // Check types.
10492
10493 void
10494 Struct_construction_expression::do_check_types(Gogo*)
10495 {
10496 if (this->vals_ == NULL)
10497 return;
10498
10499 Struct_type* st = this->type_->struct_type();
10500 if (this->vals_->size() > st->field_count())
10501 {
10502 this->report_error(_("too many expressions for struct"));
10503 return;
10504 }
10505
10506 const Struct_field_list* fields = st->fields();
10507 Expression_list::const_iterator pv = this->vals_->begin();
10508 int i = 0;
10509 for (Struct_field_list::const_iterator pf = fields->begin();
10510 pf != fields->end();
10511 ++pf, ++pv, ++i)
10512 {
10513 if (pv == this->vals_->end())
10514 {
10515 this->report_error(_("too few expressions for struct"));
10516 break;
10517 }
10518
10519 if (*pv == NULL)
10520 continue;
10521
10522 std::string reason;
10523 if (!Type::are_assignable(pf->type(), (*pv)->type(), &reason))
10524 {
10525 if (reason.empty())
10526 error_at((*pv)->location(),
10527 "incompatible type for field %d in struct construction",
10528 i + 1);
10529 else
10530 error_at((*pv)->location(),
10531 ("incompatible type for field %d in "
10532 "struct construction (%s)"),
10533 i + 1, reason.c_str());
10534 this->set_is_error();
10535 }
10536 }
10537 gcc_assert(pv == this->vals_->end());
10538 }
10539
10540 // Return a tree for constructing a struct.
10541
10542 tree
10543 Struct_construction_expression::do_get_tree(Translate_context* context)
10544 {
10545 Gogo* gogo = context->gogo();
10546
10547 if (this->vals_ == NULL)
10548 return this->type_->get_init_tree(gogo, false);
10549
10550 tree type_tree = this->type_->get_tree(gogo);
10551 if (type_tree == error_mark_node)
10552 return error_mark_node;
10553 gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
10554
10555 bool is_constant = true;
10556 const Struct_field_list* fields = this->type_->struct_type()->fields();
10557 VEC(constructor_elt,gc)* elts = VEC_alloc(constructor_elt, gc,
10558 fields->size());
10559 Struct_field_list::const_iterator pf = fields->begin();
10560 Expression_list::const_iterator pv = this->vals_->begin();
10561 for (tree field = TYPE_FIELDS(type_tree);
10562 field != NULL_TREE;
10563 field = DECL_CHAIN(field), ++pf)
10564 {
10565 gcc_assert(pf != fields->end());
10566
10567 tree val;
10568 if (pv == this->vals_->end())
10569 val = pf->type()->get_init_tree(gogo, false);
10570 else if (*pv == NULL)
10571 {
10572 val = pf->type()->get_init_tree(gogo, false);
10573 ++pv;
10574 }
10575 else
10576 {
10577 val = Expression::convert_for_assignment(context, pf->type(),
10578 (*pv)->type(),
10579 (*pv)->get_tree(context),
10580 this->location());
10581 ++pv;
10582 }
10583
10584 if (val == error_mark_node || TREE_TYPE(val) == error_mark_node)
10585 return error_mark_node;
10586
10587 constructor_elt* elt = VEC_quick_push(constructor_elt, elts, NULL);
10588 elt->index = field;
10589 elt->value = val;
10590 if (!TREE_CONSTANT(val))
10591 is_constant = false;
10592 }
10593 gcc_assert(pf == fields->end());
10594
10595 tree ret = build_constructor(type_tree, elts);
10596 if (is_constant)
10597 TREE_CONSTANT(ret) = 1;
10598 return ret;
10599 }
10600
10601 // Export a struct construction.
10602
10603 void
10604 Struct_construction_expression::do_export(Export* exp) const
10605 {
10606 exp->write_c_string("convert(");
10607 exp->write_type(this->type_);
10608 for (Expression_list::const_iterator pv = this->vals_->begin();
10609 pv != this->vals_->end();
10610 ++pv)
10611 {
10612 exp->write_c_string(", ");
10613 if (*pv != NULL)
10614 (*pv)->export_expression(exp);
10615 }
10616 exp->write_c_string(")");
10617 }
10618
10619 // Make a struct composite literal. This used by the thunk code.
10620
10621 Expression*
10622 Expression::make_struct_composite_literal(Type* type, Expression_list* vals,
10623 source_location location)
10624 {
10625 gcc_assert(type->struct_type() != NULL);
10626 return new Struct_construction_expression(type, vals, location);
10627 }
10628
10629 // Construct an array. This class is not used directly; instead we
10630 // use the child classes, Fixed_array_construction_expression and
10631 // Open_array_construction_expression.
10632
10633 class Array_construction_expression : public Expression
10634 {
10635 protected:
10636 Array_construction_expression(Expression_classification classification,
10637 Type* type, Expression_list* vals,
10638 source_location location)
10639 : Expression(classification, location),
10640 type_(type), vals_(vals)
10641 { }
10642
10643 public:
10644 // Return whether this is a constant initializer.
10645 bool
10646 is_constant_array() const;
10647
10648 // Return the number of elements.
10649 size_t
10650 element_count() const
10651 { return this->vals_ == NULL ? 0 : this->vals_->size(); }
10652
10653 protected:
10654 int
10655 do_traverse(Traverse* traverse);
10656
10657 Type*
10658 do_type()
10659 { return this->type_; }
10660
10661 void
10662 do_determine_type(const Type_context*);
10663
10664 void
10665 do_check_types(Gogo*);
10666
10667 bool
10668 do_is_addressable() const
10669 { return true; }
10670
10671 void
10672 do_export(Export*) const;
10673
10674 // The list of values.
10675 Expression_list*
10676 vals()
10677 { return this->vals_; }
10678
10679 // Get a constructor tree for the array values.
10680 tree
10681 get_constructor_tree(Translate_context* context, tree type_tree);
10682
10683 private:
10684 // The type of the array to construct.
10685 Type* type_;
10686 // The list of values.
10687 Expression_list* vals_;
10688 };
10689
10690 // Traversal.
10691
10692 int
10693 Array_construction_expression::do_traverse(Traverse* traverse)
10694 {
10695 if (this->vals_ != NULL
10696 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
10697 return TRAVERSE_EXIT;
10698 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10699 return TRAVERSE_EXIT;
10700 return TRAVERSE_CONTINUE;
10701 }
10702
10703 // Return whether this is a constant initializer.
10704
10705 bool
10706 Array_construction_expression::is_constant_array() const
10707 {
10708 if (this->vals_ == NULL)
10709 return true;
10710
10711 // There are no constant constructors for interfaces.
10712 if (this->type_->array_type()->element_type()->interface_type() != NULL)
10713 return false;
10714
10715 for (Expression_list::const_iterator pv = this->vals_->begin();
10716 pv != this->vals_->end();
10717 ++pv)
10718 {
10719 if (*pv != NULL
10720 && !(*pv)->is_constant()
10721 && (!(*pv)->is_composite_literal()
10722 || (*pv)->is_nonconstant_composite_literal()))
10723 return false;
10724 }
10725 return true;
10726 }
10727
10728 // Final type determination.
10729
10730 void
10731 Array_construction_expression::do_determine_type(const Type_context*)
10732 {
10733 if (this->vals_ == NULL)
10734 return;
10735 Type_context subcontext(this->type_->array_type()->element_type(), false);
10736 for (Expression_list::const_iterator pv = this->vals_->begin();
10737 pv != this->vals_->end();
10738 ++pv)
10739 {
10740 if (*pv != NULL)
10741 (*pv)->determine_type(&subcontext);
10742 }
10743 }
10744
10745 // Check types.
10746
10747 void
10748 Array_construction_expression::do_check_types(Gogo*)
10749 {
10750 if (this->vals_ == NULL)
10751 return;
10752
10753 Array_type* at = this->type_->array_type();
10754 int i = 0;
10755 Type* element_type = at->element_type();
10756 for (Expression_list::const_iterator pv = this->vals_->begin();
10757 pv != this->vals_->end();
10758 ++pv, ++i)
10759 {
10760 if (*pv != NULL
10761 && !Type::are_assignable(element_type, (*pv)->type(), NULL))
10762 {
10763 error_at((*pv)->location(),
10764 "incompatible type for element %d in composite literal",
10765 i + 1);
10766 this->set_is_error();
10767 }
10768 }
10769
10770 Expression* length = at->length();
10771 if (length != NULL)
10772 {
10773 mpz_t val;
10774 mpz_init(val);
10775 Type* type;
10776 if (at->length()->integer_constant_value(true, val, &type))
10777 {
10778 if (this->vals_->size() > mpz_get_ui(val))
10779 this->report_error(_("too many elements in composite literal"));
10780 }
10781 mpz_clear(val);
10782 }
10783 }
10784
10785 // Get a constructor tree for the array values.
10786
10787 tree
10788 Array_construction_expression::get_constructor_tree(Translate_context* context,
10789 tree type_tree)
10790 {
10791 VEC(constructor_elt,gc)* values = VEC_alloc(constructor_elt, gc,
10792 (this->vals_ == NULL
10793 ? 0
10794 : this->vals_->size()));
10795 Type* element_type = this->type_->array_type()->element_type();
10796 bool is_constant = true;
10797 if (this->vals_ != NULL)
10798 {
10799 size_t i = 0;
10800 for (Expression_list::const_iterator pv = this->vals_->begin();
10801 pv != this->vals_->end();
10802 ++pv, ++i)
10803 {
10804 constructor_elt* elt = VEC_quick_push(constructor_elt, values, NULL);
10805 elt->index = size_int(i);
10806 if (*pv == NULL)
10807 elt->value = element_type->get_init_tree(context->gogo(), false);
10808 else
10809 {
10810 tree value_tree = (*pv)->get_tree(context);
10811 elt->value = Expression::convert_for_assignment(context,
10812 element_type,
10813 (*pv)->type(),
10814 value_tree,
10815 this->location());
10816 }
10817 if (elt->value == error_mark_node)
10818 return error_mark_node;
10819 if (!TREE_CONSTANT(elt->value))
10820 is_constant = false;
10821 }
10822 }
10823
10824 tree ret = build_constructor(type_tree, values);
10825 if (is_constant)
10826 TREE_CONSTANT(ret) = 1;
10827 return ret;
10828 }
10829
10830 // Export an array construction.
10831
10832 void
10833 Array_construction_expression::do_export(Export* exp) const
10834 {
10835 exp->write_c_string("convert(");
10836 exp->write_type(this->type_);
10837 if (this->vals_ != NULL)
10838 {
10839 for (Expression_list::const_iterator pv = this->vals_->begin();
10840 pv != this->vals_->end();
10841 ++pv)
10842 {
10843 exp->write_c_string(", ");
10844 if (*pv != NULL)
10845 (*pv)->export_expression(exp);
10846 }
10847 }
10848 exp->write_c_string(")");
10849 }
10850
10851 // Construct a fixed array.
10852
10853 class Fixed_array_construction_expression :
10854 public Array_construction_expression
10855 {
10856 public:
10857 Fixed_array_construction_expression(Type* type, Expression_list* vals,
10858 source_location location)
10859 : Array_construction_expression(EXPRESSION_FIXED_ARRAY_CONSTRUCTION,
10860 type, vals, location)
10861 {
10862 gcc_assert(type->array_type() != NULL
10863 && type->array_type()->length() != NULL);
10864 }
10865
10866 protected:
10867 Expression*
10868 do_copy()
10869 {
10870 return new Fixed_array_construction_expression(this->type(),
10871 (this->vals() == NULL
10872 ? NULL
10873 : this->vals()->copy()),
10874 this->location());
10875 }
10876
10877 tree
10878 do_get_tree(Translate_context*);
10879 };
10880
10881 // Return a tree for constructing a fixed array.
10882
10883 tree
10884 Fixed_array_construction_expression::do_get_tree(Translate_context* context)
10885 {
10886 return this->get_constructor_tree(context,
10887 this->type()->get_tree(context->gogo()));
10888 }
10889
10890 // Construct an open array.
10891
10892 class Open_array_construction_expression : public Array_construction_expression
10893 {
10894 public:
10895 Open_array_construction_expression(Type* type, Expression_list* vals,
10896 source_location location)
10897 : Array_construction_expression(EXPRESSION_OPEN_ARRAY_CONSTRUCTION,
10898 type, vals, location)
10899 {
10900 gcc_assert(type->array_type() != NULL
10901 && type->array_type()->length() == NULL);
10902 }
10903
10904 protected:
10905 // Note that taking the address of an open array literal is invalid.
10906
10907 Expression*
10908 do_copy()
10909 {
10910 return new Open_array_construction_expression(this->type(),
10911 (this->vals() == NULL
10912 ? NULL
10913 : this->vals()->copy()),
10914 this->location());
10915 }
10916
10917 tree
10918 do_get_tree(Translate_context*);
10919 };
10920
10921 // Return a tree for constructing an open array.
10922
10923 tree
10924 Open_array_construction_expression::do_get_tree(Translate_context* context)
10925 {
10926 Type* element_type = this->type()->array_type()->element_type();
10927 tree element_type_tree = element_type->get_tree(context->gogo());
10928 if (element_type_tree == error_mark_node)
10929 return error_mark_node;
10930
10931 tree values;
10932 tree length_tree;
10933 if (this->vals() == NULL || this->vals()->empty())
10934 {
10935 // We need to create a unique value.
10936 tree max = size_int(0);
10937 tree constructor_type = build_array_type(element_type_tree,
10938 build_index_type(max));
10939 if (constructor_type == error_mark_node)
10940 return error_mark_node;
10941 VEC(constructor_elt,gc)* vec = VEC_alloc(constructor_elt, gc, 1);
10942 constructor_elt* elt = VEC_quick_push(constructor_elt, vec, NULL);
10943 elt->index = size_int(0);
10944 elt->value = element_type->get_init_tree(context->gogo(), false);
10945 values = build_constructor(constructor_type, vec);
10946 if (TREE_CONSTANT(elt->value))
10947 TREE_CONSTANT(values) = 1;
10948 length_tree = size_int(0);
10949 }
10950 else
10951 {
10952 tree max = size_int(this->vals()->size() - 1);
10953 tree constructor_type = build_array_type(element_type_tree,
10954 build_index_type(max));
10955 if (constructor_type == error_mark_node)
10956 return error_mark_node;
10957 values = this->get_constructor_tree(context, constructor_type);
10958 length_tree = size_int(this->vals()->size());
10959 }
10960
10961 if (values == error_mark_node)
10962 return error_mark_node;
10963
10964 bool is_constant_initializer = TREE_CONSTANT(values);
10965 bool is_in_function = context->function() != NULL;
10966
10967 if (is_constant_initializer)
10968 {
10969 tree tmp = build_decl(this->location(), VAR_DECL,
10970 create_tmp_var_name("C"), TREE_TYPE(values));
10971 DECL_EXTERNAL(tmp) = 0;
10972 TREE_PUBLIC(tmp) = 0;
10973 TREE_STATIC(tmp) = 1;
10974 DECL_ARTIFICIAL(tmp) = 1;
10975 if (is_in_function)
10976 {
10977 // If this is not a function, we will only initialize the
10978 // value once, so we can use this directly rather than
10979 // copying it. In that case we can't make it read-only,
10980 // because the program is permitted to change it.
10981 TREE_READONLY(tmp) = 1;
10982 TREE_CONSTANT(tmp) = 1;
10983 }
10984 DECL_INITIAL(tmp) = values;
10985 rest_of_decl_compilation(tmp, 1, 0);
10986 values = tmp;
10987 }
10988
10989 tree space;
10990 tree set;
10991 if (!is_in_function && is_constant_initializer)
10992 {
10993 // Outside of a function, we know the initializer will only run
10994 // once.
10995 space = build_fold_addr_expr(values);
10996 set = NULL_TREE;
10997 }
10998 else
10999 {
11000 tree memsize = TYPE_SIZE_UNIT(TREE_TYPE(values));
11001 space = context->gogo()->allocate_memory(element_type, memsize,
11002 this->location());
11003 space = save_expr(space);
11004
11005 tree s = fold_convert(build_pointer_type(TREE_TYPE(values)), space);
11006 tree ref = build_fold_indirect_ref_loc(this->location(), s);
11007 TREE_THIS_NOTRAP(ref) = 1;
11008 set = build2(MODIFY_EXPR, void_type_node, ref, values);
11009 }
11010
11011 // Build a constructor for the open array.
11012
11013 tree type_tree = this->type()->get_tree(context->gogo());
11014 if (type_tree == error_mark_node)
11015 return error_mark_node;
11016 gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
11017
11018 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
11019
11020 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
11021 tree field = TYPE_FIELDS(type_tree);
11022 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
11023 elt->index = field;
11024 elt->value = fold_convert(TREE_TYPE(field), space);
11025
11026 elt = VEC_quick_push(constructor_elt, init, NULL);
11027 field = DECL_CHAIN(field);
11028 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
11029 elt->index = field;
11030 elt->value = fold_convert(TREE_TYPE(field), length_tree);
11031
11032 elt = VEC_quick_push(constructor_elt, init, NULL);
11033 field = DECL_CHAIN(field);
11034 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),"__capacity") == 0);
11035 elt->index = field;
11036 elt->value = fold_convert(TREE_TYPE(field), length_tree);
11037
11038 tree constructor = build_constructor(type_tree, init);
11039 if (constructor == error_mark_node)
11040 return error_mark_node;
11041 if (!is_in_function && is_constant_initializer)
11042 TREE_CONSTANT(constructor) = 1;
11043
11044 if (set == NULL_TREE)
11045 return constructor;
11046 else
11047 return build2(COMPOUND_EXPR, type_tree, set, constructor);
11048 }
11049
11050 // Make a slice composite literal. This is used by the type
11051 // descriptor code.
11052
11053 Expression*
11054 Expression::make_slice_composite_literal(Type* type, Expression_list* vals,
11055 source_location location)
11056 {
11057 gcc_assert(type->is_open_array_type());
11058 return new Open_array_construction_expression(type, vals, location);
11059 }
11060
11061 // Construct a map.
11062
11063 class Map_construction_expression : public Expression
11064 {
11065 public:
11066 Map_construction_expression(Type* type, Expression_list* vals,
11067 source_location location)
11068 : Expression(EXPRESSION_MAP_CONSTRUCTION, location),
11069 type_(type), vals_(vals)
11070 { gcc_assert(vals == NULL || vals->size() % 2 == 0); }
11071
11072 protected:
11073 int
11074 do_traverse(Traverse* traverse);
11075
11076 Type*
11077 do_type()
11078 { return this->type_; }
11079
11080 void
11081 do_determine_type(const Type_context*);
11082
11083 void
11084 do_check_types(Gogo*);
11085
11086 Expression*
11087 do_copy()
11088 {
11089 return new Map_construction_expression(this->type_, this->vals_->copy(),
11090 this->location());
11091 }
11092
11093 tree
11094 do_get_tree(Translate_context*);
11095
11096 void
11097 do_export(Export*) const;
11098
11099 private:
11100 // The type of the map to construct.
11101 Type* type_;
11102 // The list of values.
11103 Expression_list* vals_;
11104 };
11105
11106 // Traversal.
11107
11108 int
11109 Map_construction_expression::do_traverse(Traverse* traverse)
11110 {
11111 if (this->vals_ != NULL
11112 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
11113 return TRAVERSE_EXIT;
11114 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
11115 return TRAVERSE_EXIT;
11116 return TRAVERSE_CONTINUE;
11117 }
11118
11119 // Final type determination.
11120
11121 void
11122 Map_construction_expression::do_determine_type(const Type_context*)
11123 {
11124 if (this->vals_ == NULL)
11125 return;
11126
11127 Map_type* mt = this->type_->map_type();
11128 Type_context key_context(mt->key_type(), false);
11129 Type_context val_context(mt->val_type(), false);
11130 for (Expression_list::const_iterator pv = this->vals_->begin();
11131 pv != this->vals_->end();
11132 ++pv)
11133 {
11134 (*pv)->determine_type(&key_context);
11135 ++pv;
11136 (*pv)->determine_type(&val_context);
11137 }
11138 }
11139
11140 // Check types.
11141
11142 void
11143 Map_construction_expression::do_check_types(Gogo*)
11144 {
11145 if (this->vals_ == NULL)
11146 return;
11147
11148 Map_type* mt = this->type_->map_type();
11149 int i = 0;
11150 Type* key_type = mt->key_type();
11151 Type* val_type = mt->val_type();
11152 for (Expression_list::const_iterator pv = this->vals_->begin();
11153 pv != this->vals_->end();
11154 ++pv, ++i)
11155 {
11156 if (!Type::are_assignable(key_type, (*pv)->type(), NULL))
11157 {
11158 error_at((*pv)->location(),
11159 "incompatible type for element %d key in map construction",
11160 i + 1);
11161 this->set_is_error();
11162 }
11163 ++pv;
11164 if (!Type::are_assignable(val_type, (*pv)->type(), NULL))
11165 {
11166 error_at((*pv)->location(),
11167 ("incompatible type for element %d value "
11168 "in map construction"),
11169 i + 1);
11170 this->set_is_error();
11171 }
11172 }
11173 }
11174
11175 // Return a tree for constructing a map.
11176
11177 tree
11178 Map_construction_expression::do_get_tree(Translate_context* context)
11179 {
11180 Gogo* gogo = context->gogo();
11181 source_location loc = this->location();
11182
11183 Map_type* mt = this->type_->map_type();
11184
11185 // Build a struct to hold the key and value.
11186 tree struct_type = make_node(RECORD_TYPE);
11187
11188 Type* key_type = mt->key_type();
11189 tree id = get_identifier("__key");
11190 tree key_type_tree = key_type->get_tree(gogo);
11191 if (key_type_tree == error_mark_node)
11192 return error_mark_node;
11193 tree key_field = build_decl(loc, FIELD_DECL, id, key_type_tree);
11194 DECL_CONTEXT(key_field) = struct_type;
11195 TYPE_FIELDS(struct_type) = key_field;
11196
11197 Type* val_type = mt->val_type();
11198 id = get_identifier("__val");
11199 tree val_type_tree = val_type->get_tree(gogo);
11200 if (val_type_tree == error_mark_node)
11201 return error_mark_node;
11202 tree val_field = build_decl(loc, FIELD_DECL, id, val_type_tree);
11203 DECL_CONTEXT(val_field) = struct_type;
11204 DECL_CHAIN(key_field) = val_field;
11205
11206 layout_type(struct_type);
11207
11208 bool is_constant = true;
11209 size_t i = 0;
11210 tree valaddr;
11211 tree make_tmp;
11212
11213 if (this->vals_ == NULL || this->vals_->empty())
11214 {
11215 valaddr = null_pointer_node;
11216 make_tmp = NULL_TREE;
11217 }
11218 else
11219 {
11220 VEC(constructor_elt,gc)* values = VEC_alloc(constructor_elt, gc,
11221 this->vals_->size() / 2);
11222
11223 for (Expression_list::const_iterator pv = this->vals_->begin();
11224 pv != this->vals_->end();
11225 ++pv, ++i)
11226 {
11227 bool one_is_constant = true;
11228
11229 VEC(constructor_elt,gc)* one = VEC_alloc(constructor_elt, gc, 2);
11230
11231 constructor_elt* elt = VEC_quick_push(constructor_elt, one, NULL);
11232 elt->index = key_field;
11233 tree val_tree = (*pv)->get_tree(context);
11234 elt->value = Expression::convert_for_assignment(context, key_type,
11235 (*pv)->type(),
11236 val_tree, loc);
11237 if (elt->value == error_mark_node)
11238 return error_mark_node;
11239 if (!TREE_CONSTANT(elt->value))
11240 one_is_constant = false;
11241
11242 ++pv;
11243
11244 elt = VEC_quick_push(constructor_elt, one, NULL);
11245 elt->index = val_field;
11246 val_tree = (*pv)->get_tree(context);
11247 elt->value = Expression::convert_for_assignment(context, val_type,
11248 (*pv)->type(),
11249 val_tree, loc);
11250 if (elt->value == error_mark_node)
11251 return error_mark_node;
11252 if (!TREE_CONSTANT(elt->value))
11253 one_is_constant = false;
11254
11255 elt = VEC_quick_push(constructor_elt, values, NULL);
11256 elt->index = size_int(i);
11257 elt->value = build_constructor(struct_type, one);
11258 if (one_is_constant)
11259 TREE_CONSTANT(elt->value) = 1;
11260 else
11261 is_constant = false;
11262 }
11263
11264 tree index_type = build_index_type(size_int(i - 1));
11265 tree array_type = build_array_type(struct_type, index_type);
11266 tree init = build_constructor(array_type, values);
11267 if (is_constant)
11268 TREE_CONSTANT(init) = 1;
11269 tree tmp;
11270 if (current_function_decl != NULL)
11271 {
11272 tmp = create_tmp_var(array_type, get_name(array_type));
11273 DECL_INITIAL(tmp) = init;
11274 make_tmp = fold_build1_loc(loc, DECL_EXPR, void_type_node, tmp);
11275 TREE_ADDRESSABLE(tmp) = 1;
11276 }
11277 else
11278 {
11279 tmp = build_decl(loc, VAR_DECL, create_tmp_var_name("M"), array_type);
11280 DECL_EXTERNAL(tmp) = 0;
11281 TREE_PUBLIC(tmp) = 0;
11282 TREE_STATIC(tmp) = 1;
11283 DECL_ARTIFICIAL(tmp) = 1;
11284 if (!TREE_CONSTANT(init))
11285 make_tmp = fold_build2_loc(loc, INIT_EXPR, void_type_node, tmp,
11286 init);
11287 else
11288 {
11289 TREE_READONLY(tmp) = 1;
11290 TREE_CONSTANT(tmp) = 1;
11291 DECL_INITIAL(tmp) = init;
11292 make_tmp = NULL_TREE;
11293 }
11294 rest_of_decl_compilation(tmp, 1, 0);
11295 }
11296
11297 valaddr = build_fold_addr_expr(tmp);
11298 }
11299
11300 tree descriptor = gogo->map_descriptor(mt);
11301
11302 tree type_tree = this->type_->get_tree(gogo);
11303 if (type_tree == error_mark_node)
11304 return error_mark_node;
11305
11306 static tree construct_map_fndecl;
11307 tree call = Gogo::call_builtin(&construct_map_fndecl,
11308 loc,
11309 "__go_construct_map",
11310 6,
11311 type_tree,
11312 TREE_TYPE(descriptor),
11313 descriptor,
11314 sizetype,
11315 size_int(i),
11316 sizetype,
11317 TYPE_SIZE_UNIT(struct_type),
11318 sizetype,
11319 byte_position(val_field),
11320 sizetype,
11321 TYPE_SIZE_UNIT(TREE_TYPE(val_field)),
11322 const_ptr_type_node,
11323 fold_convert(const_ptr_type_node, valaddr));
11324 if (call == error_mark_node)
11325 return error_mark_node;
11326
11327 tree ret;
11328 if (make_tmp == NULL)
11329 ret = call;
11330 else
11331 ret = fold_build2_loc(loc, COMPOUND_EXPR, type_tree, make_tmp, call);
11332 return ret;
11333 }
11334
11335 // Export an array construction.
11336
11337 void
11338 Map_construction_expression::do_export(Export* exp) const
11339 {
11340 exp->write_c_string("convert(");
11341 exp->write_type(this->type_);
11342 for (Expression_list::const_iterator pv = this->vals_->begin();
11343 pv != this->vals_->end();
11344 ++pv)
11345 {
11346 exp->write_c_string(", ");
11347 (*pv)->export_expression(exp);
11348 }
11349 exp->write_c_string(")");
11350 }
11351
11352 // A general composite literal. This is lowered to a type specific
11353 // version.
11354
11355 class Composite_literal_expression : public Parser_expression
11356 {
11357 public:
11358 Composite_literal_expression(Type* type, int depth, bool has_keys,
11359 Expression_list* vals, source_location location)
11360 : Parser_expression(EXPRESSION_COMPOSITE_LITERAL, location),
11361 type_(type), depth_(depth), vals_(vals), has_keys_(has_keys)
11362 { }
11363
11364 protected:
11365 int
11366 do_traverse(Traverse* traverse);
11367
11368 Expression*
11369 do_lower(Gogo*, Named_object*, int);
11370
11371 Expression*
11372 do_copy()
11373 {
11374 return new Composite_literal_expression(this->type_, this->depth_,
11375 this->has_keys_,
11376 (this->vals_ == NULL
11377 ? NULL
11378 : this->vals_->copy()),
11379 this->location());
11380 }
11381
11382 private:
11383 Expression*
11384 lower_struct(Type*);
11385
11386 Expression*
11387 lower_array(Type*);
11388
11389 Expression*
11390 make_array(Type*, Expression_list*);
11391
11392 Expression*
11393 lower_map(Gogo*, Named_object*, Type*);
11394
11395 // The type of the composite literal.
11396 Type* type_;
11397 // The depth within a list of composite literals within a composite
11398 // literal, when the type is omitted.
11399 int depth_;
11400 // The values to put in the composite literal.
11401 Expression_list* vals_;
11402 // If this is true, then VALS_ is a list of pairs: a key and a
11403 // value. In an array initializer, a missing key will be NULL.
11404 bool has_keys_;
11405 };
11406
11407 // Traversal.
11408
11409 int
11410 Composite_literal_expression::do_traverse(Traverse* traverse)
11411 {
11412 if (this->vals_ != NULL
11413 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
11414 return TRAVERSE_EXIT;
11415 return Type::traverse(this->type_, traverse);
11416 }
11417
11418 // Lower a generic composite literal into a specific version based on
11419 // the type.
11420
11421 Expression*
11422 Composite_literal_expression::do_lower(Gogo* gogo, Named_object* function, int)
11423 {
11424 Type* type = this->type_;
11425
11426 for (int depth = this->depth_; depth > 0; --depth)
11427 {
11428 if (type->array_type() != NULL)
11429 type = type->array_type()->element_type();
11430 else if (type->map_type() != NULL)
11431 type = type->map_type()->val_type();
11432 else
11433 {
11434 if (!type->is_error_type())
11435 error_at(this->location(),
11436 ("may only omit types within composite literals "
11437 "of slice, array, or map type"));
11438 return Expression::make_error(this->location());
11439 }
11440 }
11441
11442 if (type->is_error_type())
11443 return Expression::make_error(this->location());
11444 else if (type->struct_type() != NULL)
11445 return this->lower_struct(type);
11446 else if (type->array_type() != NULL)
11447 return this->lower_array(type);
11448 else if (type->map_type() != NULL)
11449 return this->lower_map(gogo, function, type);
11450 else
11451 {
11452 error_at(this->location(),
11453 ("expected struct, slice, array, or map type "
11454 "for composite literal"));
11455 return Expression::make_error(this->location());
11456 }
11457 }
11458
11459 // Lower a struct composite literal.
11460
11461 Expression*
11462 Composite_literal_expression::lower_struct(Type* type)
11463 {
11464 source_location location = this->location();
11465 Struct_type* st = type->struct_type();
11466 if (this->vals_ == NULL || !this->has_keys_)
11467 return new Struct_construction_expression(type, this->vals_, location);
11468
11469 size_t field_count = st->field_count();
11470 std::vector<Expression*> vals(field_count);
11471 Expression_list::const_iterator p = this->vals_->begin();
11472 while (p != this->vals_->end())
11473 {
11474 Expression* name_expr = *p;
11475
11476 ++p;
11477 gcc_assert(p != this->vals_->end());
11478 Expression* val = *p;
11479
11480 ++p;
11481
11482 if (name_expr == NULL)
11483 {
11484 error_at(val->location(), "mixture of field and value initializers");
11485 return Expression::make_error(location);
11486 }
11487
11488 bool bad_key = false;
11489 std::string name;
11490 switch (name_expr->classification())
11491 {
11492 case EXPRESSION_UNKNOWN_REFERENCE:
11493 name = name_expr->unknown_expression()->name();
11494 break;
11495
11496 case EXPRESSION_CONST_REFERENCE:
11497 name = static_cast<Const_expression*>(name_expr)->name();
11498 break;
11499
11500 case EXPRESSION_TYPE:
11501 {
11502 Type* t = name_expr->type();
11503 Named_type* nt = t->named_type();
11504 if (nt == NULL)
11505 bad_key = true;
11506 else
11507 name = nt->name();
11508 }
11509 break;
11510
11511 case EXPRESSION_VAR_REFERENCE:
11512 name = name_expr->var_expression()->name();
11513 break;
11514
11515 case EXPRESSION_FUNC_REFERENCE:
11516 name = name_expr->func_expression()->name();
11517 break;
11518
11519 case EXPRESSION_UNARY:
11520 // If there is a local variable around with the same name as
11521 // the field, and this occurs in the closure, then the
11522 // parser may turn the field reference into an indirection
11523 // through the closure. FIXME: This is a mess.
11524 {
11525 bad_key = true;
11526 Unary_expression* ue = static_cast<Unary_expression*>(name_expr);
11527 if (ue->op() == OPERATOR_MULT)
11528 {
11529 Field_reference_expression* fre =
11530 ue->operand()->field_reference_expression();
11531 if (fre != NULL)
11532 {
11533 Struct_type* st =
11534 fre->expr()->type()->deref()->struct_type();
11535 if (st != NULL)
11536 {
11537 const Struct_field* sf = st->field(fre->field_index());
11538 name = sf->field_name();
11539 char buf[20];
11540 snprintf(buf, sizeof buf, "%u", fre->field_index());
11541 size_t buflen = strlen(buf);
11542 if (name.compare(name.length() - buflen, buflen, buf)
11543 == 0)
11544 {
11545 name = name.substr(0, name.length() - buflen);
11546 bad_key = false;
11547 }
11548 }
11549 }
11550 }
11551 }
11552 break;
11553
11554 default:
11555 bad_key = true;
11556 break;
11557 }
11558 if (bad_key)
11559 {
11560 error_at(name_expr->location(), "expected struct field name");
11561 return Expression::make_error(location);
11562 }
11563
11564 unsigned int index;
11565 const Struct_field* sf = st->find_local_field(name, &index);
11566 if (sf == NULL)
11567 {
11568 error_at(name_expr->location(), "unknown field %qs in %qs",
11569 Gogo::message_name(name).c_str(),
11570 (type->named_type() != NULL
11571 ? type->named_type()->message_name().c_str()
11572 : "unnamed struct"));
11573 return Expression::make_error(location);
11574 }
11575 if (vals[index] != NULL)
11576 {
11577 error_at(name_expr->location(),
11578 "duplicate value for field %qs in %qs",
11579 Gogo::message_name(name).c_str(),
11580 (type->named_type() != NULL
11581 ? type->named_type()->message_name().c_str()
11582 : "unnamed struct"));
11583 return Expression::make_error(location);
11584 }
11585
11586 vals[index] = val;
11587 }
11588
11589 Expression_list* list = new Expression_list;
11590 list->reserve(field_count);
11591 for (size_t i = 0; i < field_count; ++i)
11592 list->push_back(vals[i]);
11593
11594 return new Struct_construction_expression(type, list, location);
11595 }
11596
11597 // Lower an array composite literal.
11598
11599 Expression*
11600 Composite_literal_expression::lower_array(Type* type)
11601 {
11602 source_location location = this->location();
11603 if (this->vals_ == NULL || !this->has_keys_)
11604 return this->make_array(type, this->vals_);
11605
11606 std::vector<Expression*> vals;
11607 vals.reserve(this->vals_->size());
11608 unsigned long index = 0;
11609 Expression_list::const_iterator p = this->vals_->begin();
11610 while (p != this->vals_->end())
11611 {
11612 Expression* index_expr = *p;
11613
11614 ++p;
11615 gcc_assert(p != this->vals_->end());
11616 Expression* val = *p;
11617
11618 ++p;
11619
11620 if (index_expr != NULL)
11621 {
11622 mpz_t ival;
11623 mpz_init(ival);
11624 Type* dummy;
11625 if (!index_expr->integer_constant_value(true, ival, &dummy))
11626 {
11627 mpz_clear(ival);
11628 error_at(index_expr->location(),
11629 "index expression is not integer constant");
11630 return Expression::make_error(location);
11631 }
11632 if (mpz_sgn(ival) < 0)
11633 {
11634 mpz_clear(ival);
11635 error_at(index_expr->location(), "index expression is negative");
11636 return Expression::make_error(location);
11637 }
11638 index = mpz_get_ui(ival);
11639 if (mpz_cmp_ui(ival, index) != 0)
11640 {
11641 mpz_clear(ival);
11642 error_at(index_expr->location(), "index value overflow");
11643 return Expression::make_error(location);
11644 }
11645 mpz_clear(ival);
11646 }
11647
11648 if (index == vals.size())
11649 vals.push_back(val);
11650 else
11651 {
11652 if (index > vals.size())
11653 {
11654 vals.reserve(index + 32);
11655 vals.resize(index + 1, static_cast<Expression*>(NULL));
11656 }
11657 if (vals[index] != NULL)
11658 {
11659 error_at((index_expr != NULL
11660 ? index_expr->location()
11661 : val->location()),
11662 "duplicate value for index %lu",
11663 index);
11664 return Expression::make_error(location);
11665 }
11666 vals[index] = val;
11667 }
11668
11669 ++index;
11670 }
11671
11672 size_t size = vals.size();
11673 Expression_list* list = new Expression_list;
11674 list->reserve(size);
11675 for (size_t i = 0; i < size; ++i)
11676 list->push_back(vals[i]);
11677
11678 return this->make_array(type, list);
11679 }
11680
11681 // Actually build the array composite literal. This handles
11682 // [...]{...}.
11683
11684 Expression*
11685 Composite_literal_expression::make_array(Type* type, Expression_list* vals)
11686 {
11687 source_location location = this->location();
11688 Array_type* at = type->array_type();
11689 if (at->length() != NULL && at->length()->is_nil_expression())
11690 {
11691 size_t size = vals == NULL ? 0 : vals->size();
11692 mpz_t vlen;
11693 mpz_init_set_ui(vlen, size);
11694 Expression* elen = Expression::make_integer(&vlen, NULL, location);
11695 mpz_clear(vlen);
11696 at = Type::make_array_type(at->element_type(), elen);
11697 type = at;
11698 }
11699 if (at->length() != NULL)
11700 return new Fixed_array_construction_expression(type, vals, location);
11701 else
11702 return new Open_array_construction_expression(type, vals, location);
11703 }
11704
11705 // Lower a map composite literal.
11706
11707 Expression*
11708 Composite_literal_expression::lower_map(Gogo* gogo, Named_object* function,
11709 Type* type)
11710 {
11711 source_location location = this->location();
11712 if (this->vals_ != NULL)
11713 {
11714 if (!this->has_keys_)
11715 {
11716 error_at(location, "map composite literal must have keys");
11717 return Expression::make_error(location);
11718 }
11719
11720 for (Expression_list::iterator p = this->vals_->begin();
11721 p != this->vals_->end();
11722 p += 2)
11723 {
11724 if (*p == NULL)
11725 {
11726 ++p;
11727 error_at((*p)->location(),
11728 "map composite literal must have keys for every value");
11729 return Expression::make_error(location);
11730 }
11731 // Make sure we have lowered the key; it may not have been
11732 // lowered in order to handle keys for struct composite
11733 // literals. Lower it now to get the right error message.
11734 if ((*p)->unknown_expression() != NULL)
11735 {
11736 (*p)->unknown_expression()->clear_is_composite_literal_key();
11737 gogo->lower_expression(function, &*p);
11738 gcc_assert((*p)->is_error_expression());
11739 return Expression::make_error(location);
11740 }
11741 }
11742 }
11743
11744 return new Map_construction_expression(type, this->vals_, location);
11745 }
11746
11747 // Make a composite literal expression.
11748
11749 Expression*
11750 Expression::make_composite_literal(Type* type, int depth, bool has_keys,
11751 Expression_list* vals,
11752 source_location location)
11753 {
11754 return new Composite_literal_expression(type, depth, has_keys, vals,
11755 location);
11756 }
11757
11758 // Return whether this expression is a composite literal.
11759
11760 bool
11761 Expression::is_composite_literal() const
11762 {
11763 switch (this->classification_)
11764 {
11765 case EXPRESSION_COMPOSITE_LITERAL:
11766 case EXPRESSION_STRUCT_CONSTRUCTION:
11767 case EXPRESSION_FIXED_ARRAY_CONSTRUCTION:
11768 case EXPRESSION_OPEN_ARRAY_CONSTRUCTION:
11769 case EXPRESSION_MAP_CONSTRUCTION:
11770 return true;
11771 default:
11772 return false;
11773 }
11774 }
11775
11776 // Return whether this expression is a composite literal which is not
11777 // constant.
11778
11779 bool
11780 Expression::is_nonconstant_composite_literal() const
11781 {
11782 switch (this->classification_)
11783 {
11784 case EXPRESSION_STRUCT_CONSTRUCTION:
11785 {
11786 const Struct_construction_expression *psce =
11787 static_cast<const Struct_construction_expression*>(this);
11788 return !psce->is_constant_struct();
11789 }
11790 case EXPRESSION_FIXED_ARRAY_CONSTRUCTION:
11791 {
11792 const Fixed_array_construction_expression *pace =
11793 static_cast<const Fixed_array_construction_expression*>(this);
11794 return !pace->is_constant_array();
11795 }
11796 case EXPRESSION_OPEN_ARRAY_CONSTRUCTION:
11797 {
11798 const Open_array_construction_expression *pace =
11799 static_cast<const Open_array_construction_expression*>(this);
11800 return !pace->is_constant_array();
11801 }
11802 case EXPRESSION_MAP_CONSTRUCTION:
11803 return true;
11804 default:
11805 return false;
11806 }
11807 }
11808
11809 // Return true if this is a reference to a local variable.
11810
11811 bool
11812 Expression::is_local_variable() const
11813 {
11814 const Var_expression* ve = this->var_expression();
11815 if (ve == NULL)
11816 return false;
11817 const Named_object* no = ve->named_object();
11818 return (no->is_result_variable()
11819 || (no->is_variable() && !no->var_value()->is_global()));
11820 }
11821
11822 // Class Type_guard_expression.
11823
11824 // Traversal.
11825
11826 int
11827 Type_guard_expression::do_traverse(Traverse* traverse)
11828 {
11829 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
11830 || Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
11831 return TRAVERSE_EXIT;
11832 return TRAVERSE_CONTINUE;
11833 }
11834
11835 // Check types of a type guard expression. The expression must have
11836 // an interface type, but the actual type conversion is checked at run
11837 // time.
11838
11839 void
11840 Type_guard_expression::do_check_types(Gogo*)
11841 {
11842 // 6g permits using a type guard with unsafe.pointer; we are
11843 // compatible.
11844 Type* expr_type = this->expr_->type();
11845 if (expr_type->is_unsafe_pointer_type())
11846 {
11847 if (this->type_->points_to() == NULL
11848 && (this->type_->integer_type() == NULL
11849 || (this->type_->forwarded()
11850 != Type::lookup_integer_type("uintptr"))))
11851 this->report_error(_("invalid unsafe.Pointer conversion"));
11852 }
11853 else if (this->type_->is_unsafe_pointer_type())
11854 {
11855 if (expr_type->points_to() == NULL
11856 && (expr_type->integer_type() == NULL
11857 || (expr_type->forwarded()
11858 != Type::lookup_integer_type("uintptr"))))
11859 this->report_error(_("invalid unsafe.Pointer conversion"));
11860 }
11861 else if (expr_type->interface_type() == NULL)
11862 {
11863 if (!expr_type->is_error_type() && !this->type_->is_error_type())
11864 this->report_error(_("type assertion only valid for interface types"));
11865 this->set_is_error();
11866 }
11867 else if (this->type_->interface_type() == NULL)
11868 {
11869 std::string reason;
11870 if (!expr_type->interface_type()->implements_interface(this->type_,
11871 &reason))
11872 {
11873 if (!this->type_->is_error_type())
11874 {
11875 if (reason.empty())
11876 this->report_error(_("impossible type assertion: "
11877 "type does not implement interface"));
11878 else
11879 error_at(this->location(),
11880 ("impossible type assertion: "
11881 "type does not implement interface (%s)"),
11882 reason.c_str());
11883 }
11884 this->set_is_error();
11885 }
11886 }
11887 }
11888
11889 // Return a tree for a type guard expression.
11890
11891 tree
11892 Type_guard_expression::do_get_tree(Translate_context* context)
11893 {
11894 Gogo* gogo = context->gogo();
11895 tree expr_tree = this->expr_->get_tree(context);
11896 if (expr_tree == error_mark_node)
11897 return error_mark_node;
11898 Type* expr_type = this->expr_->type();
11899 if ((this->type_->is_unsafe_pointer_type()
11900 && (expr_type->points_to() != NULL
11901 || expr_type->integer_type() != NULL))
11902 || (expr_type->is_unsafe_pointer_type()
11903 && this->type_->points_to() != NULL))
11904 return convert_to_pointer(this->type_->get_tree(gogo), expr_tree);
11905 else if (expr_type->is_unsafe_pointer_type()
11906 && this->type_->integer_type() != NULL)
11907 return convert_to_integer(this->type_->get_tree(gogo), expr_tree);
11908 else if (this->type_->interface_type() != NULL)
11909 return Expression::convert_interface_to_interface(context, this->type_,
11910 this->expr_->type(),
11911 expr_tree, true,
11912 this->location());
11913 else
11914 return Expression::convert_for_assignment(context, this->type_,
11915 this->expr_->type(), expr_tree,
11916 this->location());
11917 }
11918
11919 // Make a type guard expression.
11920
11921 Expression*
11922 Expression::make_type_guard(Expression* expr, Type* type,
11923 source_location location)
11924 {
11925 return new Type_guard_expression(expr, type, location);
11926 }
11927
11928 // Class Heap_composite_expression.
11929
11930 // When you take the address of a composite literal, it is allocated
11931 // on the heap. This class implements that.
11932
11933 class Heap_composite_expression : public Expression
11934 {
11935 public:
11936 Heap_composite_expression(Expression* expr, source_location location)
11937 : Expression(EXPRESSION_HEAP_COMPOSITE, location),
11938 expr_(expr)
11939 { }
11940
11941 protected:
11942 int
11943 do_traverse(Traverse* traverse)
11944 { return Expression::traverse(&this->expr_, traverse); }
11945
11946 Type*
11947 do_type()
11948 { return Type::make_pointer_type(this->expr_->type()); }
11949
11950 void
11951 do_determine_type(const Type_context*)
11952 { this->expr_->determine_type_no_context(); }
11953
11954 Expression*
11955 do_copy()
11956 {
11957 return Expression::make_heap_composite(this->expr_->copy(),
11958 this->location());
11959 }
11960
11961 tree
11962 do_get_tree(Translate_context*);
11963
11964 // We only export global objects, and the parser does not generate
11965 // this in global scope.
11966 void
11967 do_export(Export*) const
11968 { gcc_unreachable(); }
11969
11970 private:
11971 // The composite literal which is being put on the heap.
11972 Expression* expr_;
11973 };
11974
11975 // Return a tree which allocates a composite literal on the heap.
11976
11977 tree
11978 Heap_composite_expression::do_get_tree(Translate_context* context)
11979 {
11980 tree expr_tree = this->expr_->get_tree(context);
11981 if (expr_tree == error_mark_node)
11982 return error_mark_node;
11983 tree expr_size = TYPE_SIZE_UNIT(TREE_TYPE(expr_tree));
11984 gcc_assert(TREE_CODE(expr_size) == INTEGER_CST);
11985 tree space = context->gogo()->allocate_memory(this->expr_->type(),
11986 expr_size, this->location());
11987 space = fold_convert(build_pointer_type(TREE_TYPE(expr_tree)), space);
11988 space = save_expr(space);
11989 tree ref = build_fold_indirect_ref_loc(this->location(), space);
11990 TREE_THIS_NOTRAP(ref) = 1;
11991 tree ret = build2(COMPOUND_EXPR, TREE_TYPE(space),
11992 build2(MODIFY_EXPR, void_type_node, ref, expr_tree),
11993 space);
11994 SET_EXPR_LOCATION(ret, this->location());
11995 return ret;
11996 }
11997
11998 // Allocate a composite literal on the heap.
11999
12000 Expression*
12001 Expression::make_heap_composite(Expression* expr, source_location location)
12002 {
12003 return new Heap_composite_expression(expr, location);
12004 }
12005
12006 // Class Receive_expression.
12007
12008 // Return the type of a receive expression.
12009
12010 Type*
12011 Receive_expression::do_type()
12012 {
12013 Channel_type* channel_type = this->channel_->type()->channel_type();
12014 if (channel_type == NULL)
12015 return Type::make_error_type();
12016 return channel_type->element_type();
12017 }
12018
12019 // Check types for a receive expression.
12020
12021 void
12022 Receive_expression::do_check_types(Gogo*)
12023 {
12024 Type* type = this->channel_->type();
12025 if (type->is_error_type())
12026 {
12027 this->set_is_error();
12028 return;
12029 }
12030 if (type->channel_type() == NULL)
12031 {
12032 this->report_error(_("expected channel"));
12033 return;
12034 }
12035 if (!type->channel_type()->may_receive())
12036 {
12037 this->report_error(_("invalid receive on send-only channel"));
12038 return;
12039 }
12040 }
12041
12042 // Get a tree for a receive expression.
12043
12044 tree
12045 Receive_expression::do_get_tree(Translate_context* context)
12046 {
12047 Channel_type* channel_type = this->channel_->type()->channel_type();
12048 gcc_assert(channel_type != NULL);
12049 Type* element_type = channel_type->element_type();
12050 tree element_type_tree = element_type->get_tree(context->gogo());
12051
12052 tree channel = this->channel_->get_tree(context);
12053 if (element_type_tree == error_mark_node || channel == error_mark_node)
12054 return error_mark_node;
12055
12056 return Gogo::receive_from_channel(element_type_tree, channel,
12057 this->for_select_, this->location());
12058 }
12059
12060 // Make a receive expression.
12061
12062 Receive_expression*
12063 Expression::make_receive(Expression* channel, source_location location)
12064 {
12065 return new Receive_expression(channel, location);
12066 }
12067
12068 // Class Send_expression.
12069
12070 // Traversal.
12071
12072 int
12073 Send_expression::do_traverse(Traverse* traverse)
12074 {
12075 if (Expression::traverse(&this->channel_, traverse) == TRAVERSE_EXIT)
12076 return TRAVERSE_EXIT;
12077 return Expression::traverse(&this->val_, traverse);
12078 }
12079
12080 // Get the type.
12081
12082 Type*
12083 Send_expression::do_type()
12084 {
12085 return Type::lookup_bool_type();
12086 }
12087
12088 // Set types.
12089
12090 void
12091 Send_expression::do_determine_type(const Type_context*)
12092 {
12093 this->channel_->determine_type_no_context();
12094
12095 Type* type = this->channel_->type();
12096 Type_context subcontext;
12097 if (type->channel_type() != NULL)
12098 subcontext.type = type->channel_type()->element_type();
12099 this->val_->determine_type(&subcontext);
12100 }
12101
12102 // Check types.
12103
12104 void
12105 Send_expression::do_check_types(Gogo*)
12106 {
12107 Type* type = this->channel_->type();
12108 if (type->is_error_type())
12109 {
12110 this->set_is_error();
12111 return;
12112 }
12113 Channel_type* channel_type = type->channel_type();
12114 if (channel_type == NULL)
12115 {
12116 error_at(this->location(), "left operand of %<<-%> must be channel");
12117 this->set_is_error();
12118 return;
12119 }
12120 Type* element_type = channel_type->element_type();
12121 if (element_type != NULL
12122 && !Type::are_assignable(element_type, this->val_->type(), NULL))
12123 {
12124 this->report_error(_("incompatible types in send"));
12125 return;
12126 }
12127 if (!channel_type->may_send())
12128 {
12129 this->report_error(_("invalid send on receive-only channel"));
12130 return;
12131 }
12132 }
12133
12134 // Get a tree for a send expression.
12135
12136 tree
12137 Send_expression::do_get_tree(Translate_context* context)
12138 {
12139 tree channel = this->channel_->get_tree(context);
12140 tree val = this->val_->get_tree(context);
12141 if (channel == error_mark_node || val == error_mark_node)
12142 return error_mark_node;
12143 Channel_type* channel_type = this->channel_->type()->channel_type();
12144 val = Expression::convert_for_assignment(context,
12145 channel_type->element_type(),
12146 this->val_->type(),
12147 val,
12148 this->location());
12149 return Gogo::send_on_channel(channel, val, this->is_value_discarded_,
12150 this->for_select_, this->location());
12151 }
12152
12153 // Make a send expression
12154
12155 Send_expression*
12156 Expression::make_send(Expression* channel, Expression* val,
12157 source_location location)
12158 {
12159 return new Send_expression(channel, val, location);
12160 }
12161
12162 // An expression which evaluates to a pointer to the type descriptor
12163 // of a type.
12164
12165 class Type_descriptor_expression : public Expression
12166 {
12167 public:
12168 Type_descriptor_expression(Type* type, source_location location)
12169 : Expression(EXPRESSION_TYPE_DESCRIPTOR, location),
12170 type_(type)
12171 { }
12172
12173 protected:
12174 Type*
12175 do_type()
12176 { return Type::make_type_descriptor_ptr_type(); }
12177
12178 void
12179 do_determine_type(const Type_context*)
12180 { }
12181
12182 Expression*
12183 do_copy()
12184 { return this; }
12185
12186 tree
12187 do_get_tree(Translate_context* context)
12188 { return this->type_->type_descriptor_pointer(context->gogo()); }
12189
12190 private:
12191 // The type for which this is the descriptor.
12192 Type* type_;
12193 };
12194
12195 // Make a type descriptor expression.
12196
12197 Expression*
12198 Expression::make_type_descriptor(Type* type, source_location location)
12199 {
12200 return new Type_descriptor_expression(type, location);
12201 }
12202
12203 // An expression which evaluates to some characteristic of a type.
12204 // This is only used to initialize fields of a type descriptor. Using
12205 // a new expression class is slightly inefficient but gives us a good
12206 // separation between the frontend and the middle-end with regard to
12207 // how types are laid out.
12208
12209 class Type_info_expression : public Expression
12210 {
12211 public:
12212 Type_info_expression(Type* type, Type_info type_info)
12213 : Expression(EXPRESSION_TYPE_INFO, BUILTINS_LOCATION),
12214 type_(type), type_info_(type_info)
12215 { }
12216
12217 protected:
12218 Type*
12219 do_type();
12220
12221 void
12222 do_determine_type(const Type_context*)
12223 { }
12224
12225 Expression*
12226 do_copy()
12227 { return this; }
12228
12229 tree
12230 do_get_tree(Translate_context* context);
12231
12232 private:
12233 // The type for which we are getting information.
12234 Type* type_;
12235 // What information we want.
12236 Type_info type_info_;
12237 };
12238
12239 // The type is chosen to match what the type descriptor struct
12240 // expects.
12241
12242 Type*
12243 Type_info_expression::do_type()
12244 {
12245 switch (this->type_info_)
12246 {
12247 case TYPE_INFO_SIZE:
12248 return Type::lookup_integer_type("uintptr");
12249 case TYPE_INFO_ALIGNMENT:
12250 case TYPE_INFO_FIELD_ALIGNMENT:
12251 return Type::lookup_integer_type("uint8");
12252 default:
12253 gcc_unreachable();
12254 }
12255 }
12256
12257 // Return type information in GENERIC.
12258
12259 tree
12260 Type_info_expression::do_get_tree(Translate_context* context)
12261 {
12262 tree type_tree = this->type_->get_tree(context->gogo());
12263 if (type_tree == error_mark_node)
12264 return error_mark_node;
12265
12266 tree val_type_tree = this->type()->get_tree(context->gogo());
12267 gcc_assert(val_type_tree != error_mark_node);
12268
12269 if (this->type_info_ == TYPE_INFO_SIZE)
12270 return fold_convert_loc(BUILTINS_LOCATION, val_type_tree,
12271 TYPE_SIZE_UNIT(type_tree));
12272 else
12273 {
12274 unsigned int val;
12275 if (this->type_info_ == TYPE_INFO_ALIGNMENT)
12276 val = go_type_alignment(type_tree);
12277 else
12278 val = go_field_alignment(type_tree);
12279 return build_int_cstu(val_type_tree, val);
12280 }
12281 }
12282
12283 // Make a type info expression.
12284
12285 Expression*
12286 Expression::make_type_info(Type* type, Type_info type_info)
12287 {
12288 return new Type_info_expression(type, type_info);
12289 }
12290
12291 // An expression which evaluates to the offset of a field within a
12292 // struct. This, like Type_info_expression, q.v., is only used to
12293 // initialize fields of a type descriptor.
12294
12295 class Struct_field_offset_expression : public Expression
12296 {
12297 public:
12298 Struct_field_offset_expression(Struct_type* type, const Struct_field* field)
12299 : Expression(EXPRESSION_STRUCT_FIELD_OFFSET, BUILTINS_LOCATION),
12300 type_(type), field_(field)
12301 { }
12302
12303 protected:
12304 Type*
12305 do_type()
12306 { return Type::lookup_integer_type("uintptr"); }
12307
12308 void
12309 do_determine_type(const Type_context*)
12310 { }
12311
12312 Expression*
12313 do_copy()
12314 { return this; }
12315
12316 tree
12317 do_get_tree(Translate_context* context);
12318
12319 private:
12320 // The type of the struct.
12321 Struct_type* type_;
12322 // The field.
12323 const Struct_field* field_;
12324 };
12325
12326 // Return a struct field offset in GENERIC.
12327
12328 tree
12329 Struct_field_offset_expression::do_get_tree(Translate_context* context)
12330 {
12331 tree type_tree = this->type_->get_tree(context->gogo());
12332 if (type_tree == error_mark_node)
12333 return error_mark_node;
12334
12335 tree val_type_tree = this->type()->get_tree(context->gogo());
12336 gcc_assert(val_type_tree != error_mark_node);
12337
12338 const Struct_field_list* fields = this->type_->fields();
12339 tree struct_field_tree = TYPE_FIELDS(type_tree);
12340 Struct_field_list::const_iterator p;
12341 for (p = fields->begin();
12342 p != fields->end();
12343 ++p, struct_field_tree = DECL_CHAIN(struct_field_tree))
12344 {
12345 gcc_assert(struct_field_tree != NULL_TREE);
12346 if (&*p == this->field_)
12347 break;
12348 }
12349 gcc_assert(&*p == this->field_);
12350
12351 return fold_convert_loc(BUILTINS_LOCATION, val_type_tree,
12352 byte_position(struct_field_tree));
12353 }
12354
12355 // Make an expression for a struct field offset.
12356
12357 Expression*
12358 Expression::make_struct_field_offset(Struct_type* type,
12359 const Struct_field* field)
12360 {
12361 return new Struct_field_offset_expression(type, field);
12362 }
12363
12364 // An expression which evaluates to the address of an unnamed label.
12365
12366 class Label_addr_expression : public Expression
12367 {
12368 public:
12369 Label_addr_expression(Label* label, source_location location)
12370 : Expression(EXPRESSION_LABEL_ADDR, location),
12371 label_(label)
12372 { }
12373
12374 protected:
12375 Type*
12376 do_type()
12377 { return Type::make_pointer_type(Type::make_void_type()); }
12378
12379 void
12380 do_determine_type(const Type_context*)
12381 { }
12382
12383 Expression*
12384 do_copy()
12385 { return new Label_addr_expression(this->label_, this->location()); }
12386
12387 tree
12388 do_get_tree(Translate_context*)
12389 { return this->label_->get_addr(this->location()); }
12390
12391 private:
12392 // The label whose address we are taking.
12393 Label* label_;
12394 };
12395
12396 // Make an expression for the address of an unnamed label.
12397
12398 Expression*
12399 Expression::make_label_addr(Label* label, source_location location)
12400 {
12401 return new Label_addr_expression(label, location);
12402 }
12403
12404 // Import an expression. This comes at the end in order to see the
12405 // various class definitions.
12406
12407 Expression*
12408 Expression::import_expression(Import* imp)
12409 {
12410 int c = imp->peek_char();
12411 if (imp->match_c_string("- ")
12412 || imp->match_c_string("! ")
12413 || imp->match_c_string("^ "))
12414 return Unary_expression::do_import(imp);
12415 else if (c == '(')
12416 return Binary_expression::do_import(imp);
12417 else if (imp->match_c_string("true")
12418 || imp->match_c_string("false"))
12419 return Boolean_expression::do_import(imp);
12420 else if (c == '"')
12421 return String_expression::do_import(imp);
12422 else if (c == '-' || (c >= '0' && c <= '9'))
12423 {
12424 // This handles integers, floats and complex constants.
12425 return Integer_expression::do_import(imp);
12426 }
12427 else if (imp->match_c_string("nil"))
12428 return Nil_expression::do_import(imp);
12429 else if (imp->match_c_string("convert"))
12430 return Type_conversion_expression::do_import(imp);
12431 else
12432 {
12433 error_at(imp->location(), "import error: expected expression");
12434 return Expression::make_error(imp->location());
12435 }
12436 }
12437
12438 // Class Expression_list.
12439
12440 // Traverse the list.
12441
12442 int
12443 Expression_list::traverse(Traverse* traverse)
12444 {
12445 for (Expression_list::iterator p = this->begin();
12446 p != this->end();
12447 ++p)
12448 {
12449 if (*p != NULL)
12450 {
12451 if (Expression::traverse(&*p, traverse) == TRAVERSE_EXIT)
12452 return TRAVERSE_EXIT;
12453 }
12454 }
12455 return TRAVERSE_CONTINUE;
12456 }
12457
12458 // Copy the list.
12459
12460 Expression_list*
12461 Expression_list::copy()
12462 {
12463 Expression_list* ret = new Expression_list();
12464 for (Expression_list::iterator p = this->begin();
12465 p != this->end();
12466 ++p)
12467 {
12468 if (*p == NULL)
12469 ret->push_back(NULL);
12470 else
12471 ret->push_back((*p)->copy());
12472 }
12473 return ret;
12474 }
12475
12476 // Return whether an expression list has an error expression.
12477
12478 bool
12479 Expression_list::contains_error() const
12480 {
12481 for (Expression_list::const_iterator p = this->begin();
12482 p != this->end();
12483 ++p)
12484 if (*p != NULL && (*p)->is_error_expression())
12485 return true;
12486 return false;
12487 }