Don't crash on Sizeof of undefined type.
[gcc.git] / gcc / go / gofrontend / expressions.cc
1 // expressions.cc -- Go frontend expression handling.
2
3 // Copyright 2009 The Go Authors. All rights reserved.
4 // Use of this source code is governed by a BSD-style
5 // license that can be found in the LICENSE file.
6
7 #include "go-system.h"
8
9 #include <gmp.h>
10
11 #ifndef ENABLE_BUILD_WITH_CXX
12 extern "C"
13 {
14 #endif
15
16 #include "toplev.h"
17 #include "intl.h"
18 #include "tree.h"
19 #include "gimple.h"
20 #include "tree-iterator.h"
21 #include "convert.h"
22 #include "real.h"
23 #include "realmpfr.h"
24
25 #ifndef ENABLE_BUILD_WITH_CXX
26 }
27 #endif
28
29 #include "go-c.h"
30 #include "gogo.h"
31 #include "types.h"
32 #include "export.h"
33 #include "import.h"
34 #include "statements.h"
35 #include "lex.h"
36 #include "expressions.h"
37
38 // Class Expression.
39
40 Expression::Expression(Expression_classification classification,
41 source_location location)
42 : classification_(classification), location_(location)
43 {
44 }
45
46 Expression::~Expression()
47 {
48 }
49
50 // If this expression has a constant integer value, return it.
51
52 bool
53 Expression::integer_constant_value(bool iota_is_constant, mpz_t val,
54 Type** ptype) const
55 {
56 *ptype = NULL;
57 return this->do_integer_constant_value(iota_is_constant, val, ptype);
58 }
59
60 // If this expression has a constant floating point value, return it.
61
62 bool
63 Expression::float_constant_value(mpfr_t val, Type** ptype) const
64 {
65 *ptype = NULL;
66 if (this->do_float_constant_value(val, ptype))
67 return true;
68 mpz_t ival;
69 mpz_init(ival);
70 Type* t;
71 bool ret;
72 if (!this->do_integer_constant_value(false, ival, &t))
73 ret = false;
74 else
75 {
76 mpfr_set_z(val, ival, GMP_RNDN);
77 ret = true;
78 }
79 mpz_clear(ival);
80 return ret;
81 }
82
83 // If this expression has a constant complex value, return it.
84
85 bool
86 Expression::complex_constant_value(mpfr_t real, mpfr_t imag,
87 Type** ptype) const
88 {
89 *ptype = NULL;
90 if (this->do_complex_constant_value(real, imag, ptype))
91 return true;
92 Type *t;
93 if (this->float_constant_value(real, &t))
94 {
95 mpfr_set_ui(imag, 0, GMP_RNDN);
96 return true;
97 }
98 return false;
99 }
100
101 // Traverse the expressions.
102
103 int
104 Expression::traverse(Expression** pexpr, Traverse* traverse)
105 {
106 Expression* expr = *pexpr;
107 if ((traverse->traverse_mask() & Traverse::traverse_expressions) != 0)
108 {
109 int t = traverse->expression(pexpr);
110 if (t == TRAVERSE_EXIT)
111 return TRAVERSE_EXIT;
112 else if (t == TRAVERSE_SKIP_COMPONENTS)
113 return TRAVERSE_CONTINUE;
114 }
115 return expr->do_traverse(traverse);
116 }
117
118 // Traverse subexpressions of this expression.
119
120 int
121 Expression::traverse_subexpressions(Traverse* traverse)
122 {
123 return this->do_traverse(traverse);
124 }
125
126 // Default implementation for do_traverse for child classes.
127
128 int
129 Expression::do_traverse(Traverse*)
130 {
131 return TRAVERSE_CONTINUE;
132 }
133
134 // This virtual function is called by the parser if the value of this
135 // expression is being discarded. By default, we warn. Expressions
136 // with side effects override.
137
138 void
139 Expression::do_discarding_value()
140 {
141 this->warn_about_unused_value();
142 }
143
144 // This virtual function is called to export expressions. This will
145 // only be used by expressions which may be constant.
146
147 void
148 Expression::do_export(Export*) const
149 {
150 gcc_unreachable();
151 }
152
153 // Warn that the value of the expression is not used.
154
155 void
156 Expression::warn_about_unused_value()
157 {
158 warning_at(this->location(), OPT_Wunused_value, "value computed is not used");
159 }
160
161 // Note that this expression is an error. This is called by children
162 // when they discover an error.
163
164 void
165 Expression::set_is_error()
166 {
167 this->classification_ = EXPRESSION_ERROR;
168 }
169
170 // For children to call to report an error conveniently.
171
172 void
173 Expression::report_error(const char* msg)
174 {
175 error_at(this->location_, "%s", msg);
176 this->set_is_error();
177 }
178
179 // Set types of variables and constants. This is implemented by the
180 // child class.
181
182 void
183 Expression::determine_type(const Type_context* context)
184 {
185 this->do_determine_type(context);
186 }
187
188 // Set types when there is no context.
189
190 void
191 Expression::determine_type_no_context()
192 {
193 Type_context context;
194 this->do_determine_type(&context);
195 }
196
197 // Return a tree handling any conversions which must be done during
198 // assignment.
199
200 tree
201 Expression::convert_for_assignment(Translate_context* context, Type* lhs_type,
202 Type* rhs_type, tree rhs_tree,
203 source_location location)
204 {
205 if (lhs_type == rhs_type)
206 return rhs_tree;
207
208 if (lhs_type->is_error_type() || rhs_type->is_error_type())
209 return error_mark_node;
210
211 if (lhs_type->is_undefined() || rhs_type->is_undefined())
212 {
213 // Make sure we report the error.
214 lhs_type->base();
215 rhs_type->base();
216 return error_mark_node;
217 }
218
219 if (rhs_tree == error_mark_node || TREE_TYPE(rhs_tree) == error_mark_node)
220 return error_mark_node;
221
222 Gogo* gogo = context->gogo();
223
224 tree lhs_type_tree = lhs_type->get_tree(gogo);
225 if (lhs_type_tree == error_mark_node)
226 return error_mark_node;
227
228 if (lhs_type->interface_type() != NULL)
229 {
230 if (rhs_type->interface_type() == NULL)
231 return Expression::convert_type_to_interface(context, lhs_type,
232 rhs_type, rhs_tree,
233 location);
234 else
235 return Expression::convert_interface_to_interface(context, lhs_type,
236 rhs_type, rhs_tree,
237 false, location);
238 }
239 else if (rhs_type->interface_type() != NULL)
240 return Expression::convert_interface_to_type(context, lhs_type, rhs_type,
241 rhs_tree, location);
242 else if (lhs_type->is_open_array_type()
243 && rhs_type->is_nil_type())
244 {
245 // Assigning nil to an open array.
246 gcc_assert(TREE_CODE(lhs_type_tree) == RECORD_TYPE);
247
248 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
249
250 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
251 tree field = TYPE_FIELDS(lhs_type_tree);
252 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
253 "__values") == 0);
254 elt->index = field;
255 elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
256
257 elt = VEC_quick_push(constructor_elt, init, NULL);
258 field = DECL_CHAIN(field);
259 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
260 "__count") == 0);
261 elt->index = field;
262 elt->value = fold_convert(TREE_TYPE(field), integer_zero_node);
263
264 elt = VEC_quick_push(constructor_elt, init, NULL);
265 field = DECL_CHAIN(field);
266 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
267 "__capacity") == 0);
268 elt->index = field;
269 elt->value = fold_convert(TREE_TYPE(field), integer_zero_node);
270
271 tree val = build_constructor(lhs_type_tree, init);
272 TREE_CONSTANT(val) = 1;
273
274 return val;
275 }
276 else if (rhs_type->is_nil_type())
277 {
278 // The left hand side should be a pointer type at the tree
279 // level.
280 gcc_assert(POINTER_TYPE_P(lhs_type_tree));
281 return fold_convert(lhs_type_tree, null_pointer_node);
282 }
283 else if (lhs_type_tree == TREE_TYPE(rhs_tree))
284 {
285 // No conversion is needed.
286 return rhs_tree;
287 }
288 else if (POINTER_TYPE_P(lhs_type_tree)
289 || INTEGRAL_TYPE_P(lhs_type_tree)
290 || SCALAR_FLOAT_TYPE_P(lhs_type_tree)
291 || COMPLEX_FLOAT_TYPE_P(lhs_type_tree))
292 return fold_convert_loc(location, lhs_type_tree, rhs_tree);
293 else if (TREE_CODE(lhs_type_tree) == RECORD_TYPE
294 && TREE_CODE(TREE_TYPE(rhs_tree)) == RECORD_TYPE)
295 {
296 // This conversion must be permitted by Go, or we wouldn't have
297 // gotten here.
298 gcc_assert(int_size_in_bytes(lhs_type_tree)
299 == int_size_in_bytes(TREE_TYPE(rhs_tree)));
300 return fold_build1_loc(location, VIEW_CONVERT_EXPR, lhs_type_tree,
301 rhs_tree);
302 }
303 else
304 {
305 gcc_assert(useless_type_conversion_p(lhs_type_tree, TREE_TYPE(rhs_tree)));
306 return rhs_tree;
307 }
308 }
309
310 // Return a tree for a conversion from a non-interface type to an
311 // interface type.
312
313 tree
314 Expression::convert_type_to_interface(Translate_context* context,
315 Type* lhs_type, Type* rhs_type,
316 tree rhs_tree, source_location location)
317 {
318 Gogo* gogo = context->gogo();
319 Interface_type* lhs_interface_type = lhs_type->interface_type();
320 bool lhs_is_empty = lhs_interface_type->is_empty();
321
322 // Since RHS_TYPE is a static type, we can create the interface
323 // method table at compile time.
324
325 // When setting an interface to nil, we just set both fields to
326 // NULL.
327 if (rhs_type->is_nil_type())
328 return lhs_type->get_init_tree(gogo, false);
329
330 // This should have been checked already.
331 gcc_assert(lhs_interface_type->implements_interface(rhs_type, NULL));
332
333 tree lhs_type_tree = lhs_type->get_tree(gogo);
334 if (lhs_type_tree == error_mark_node)
335 return error_mark_node;
336
337 // An interface is a tuple. If LHS_TYPE is an empty interface type,
338 // then the first field is the type descriptor for RHS_TYPE.
339 // Otherwise it is the interface method table for RHS_TYPE.
340 tree first_field_value;
341 if (lhs_is_empty)
342 first_field_value = rhs_type->type_descriptor_pointer(gogo);
343 else
344 {
345 // Build the interface method table for this interface and this
346 // object type: a list of function pointers for each interface
347 // method.
348 Named_type* rhs_named_type = rhs_type->named_type();
349 bool is_pointer = false;
350 if (rhs_named_type == NULL)
351 {
352 rhs_named_type = rhs_type->deref()->named_type();
353 is_pointer = true;
354 }
355 tree method_table;
356 if (rhs_named_type == NULL)
357 method_table = null_pointer_node;
358 else
359 method_table =
360 rhs_named_type->interface_method_table(gogo, lhs_interface_type,
361 is_pointer);
362 first_field_value = fold_convert_loc(location, const_ptr_type_node,
363 method_table);
364 }
365
366 // Start building a constructor for the value we will return.
367
368 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
369
370 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
371 tree field = TYPE_FIELDS(lhs_type_tree);
372 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
373 (lhs_is_empty ? "__type_descriptor" : "__methods")) == 0);
374 elt->index = field;
375 elt->value = fold_convert_loc(location, TREE_TYPE(field), first_field_value);
376
377 elt = VEC_quick_push(constructor_elt, init, NULL);
378 field = DECL_CHAIN(field);
379 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
380 elt->index = field;
381
382 if (rhs_type->points_to() != NULL)
383 {
384 // We are assigning a pointer to the interface; the interface
385 // holds the pointer itself.
386 elt->value = rhs_tree;
387 return build_constructor(lhs_type_tree, init);
388 }
389
390 // We are assigning a non-pointer value to the interface; the
391 // interface gets a copy of the value in the heap.
392
393 tree object_size = TYPE_SIZE_UNIT(TREE_TYPE(rhs_tree));
394
395 tree space = gogo->allocate_memory(rhs_type, object_size, location);
396 space = fold_convert_loc(location, build_pointer_type(TREE_TYPE(rhs_tree)),
397 space);
398 space = save_expr(space);
399
400 tree ref = build_fold_indirect_ref_loc(location, space);
401 TREE_THIS_NOTRAP(ref) = 1;
402 tree set = fold_build2_loc(location, MODIFY_EXPR, void_type_node,
403 ref, rhs_tree);
404
405 elt->value = fold_convert_loc(location, TREE_TYPE(field), space);
406
407 return build2(COMPOUND_EXPR, lhs_type_tree, set,
408 build_constructor(lhs_type_tree, init));
409 }
410
411 // Return a tree for the type descriptor of RHS_TREE, which has
412 // interface type RHS_TYPE. If RHS_TREE is nil the result will be
413 // NULL.
414
415 tree
416 Expression::get_interface_type_descriptor(Translate_context*,
417 Type* rhs_type, tree rhs_tree,
418 source_location location)
419 {
420 tree rhs_type_tree = TREE_TYPE(rhs_tree);
421 gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
422 tree rhs_field = TYPE_FIELDS(rhs_type_tree);
423 tree v = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
424 NULL_TREE);
425 if (rhs_type->interface_type()->is_empty())
426 {
427 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)),
428 "__type_descriptor") == 0);
429 return v;
430 }
431
432 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__methods")
433 == 0);
434 gcc_assert(POINTER_TYPE_P(TREE_TYPE(v)));
435 v = save_expr(v);
436 tree v1 = build_fold_indirect_ref_loc(location, v);
437 gcc_assert(TREE_CODE(TREE_TYPE(v1)) == RECORD_TYPE);
438 tree f = TYPE_FIELDS(TREE_TYPE(v1));
439 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(f)), "__type_descriptor")
440 == 0);
441 v1 = build3(COMPONENT_REF, TREE_TYPE(f), v1, f, NULL_TREE);
442
443 tree eq = fold_build2_loc(location, EQ_EXPR, boolean_type_node, v,
444 fold_convert_loc(location, TREE_TYPE(v),
445 null_pointer_node));
446 tree n = fold_convert_loc(location, TREE_TYPE(v1), null_pointer_node);
447 return fold_build3_loc(location, COND_EXPR, TREE_TYPE(v1),
448 eq, n, v1);
449 }
450
451 // Return a tree for the conversion of an interface type to an
452 // interface type.
453
454 tree
455 Expression::convert_interface_to_interface(Translate_context* context,
456 Type *lhs_type, Type *rhs_type,
457 tree rhs_tree, bool for_type_guard,
458 source_location location)
459 {
460 Gogo* gogo = context->gogo();
461 Interface_type* lhs_interface_type = lhs_type->interface_type();
462 bool lhs_is_empty = lhs_interface_type->is_empty();
463
464 tree lhs_type_tree = lhs_type->get_tree(gogo);
465 if (lhs_type_tree == error_mark_node)
466 return error_mark_node;
467
468 // In the general case this requires runtime examination of the type
469 // method table to match it up with the interface methods.
470
471 // FIXME: If all of the methods in the right hand side interface
472 // also appear in the left hand side interface, then we don't need
473 // to do a runtime check, although we still need to build a new
474 // method table.
475
476 // Get the type descriptor for the right hand side. This will be
477 // NULL for a nil interface.
478
479 if (!DECL_P(rhs_tree))
480 rhs_tree = save_expr(rhs_tree);
481
482 tree rhs_type_descriptor =
483 Expression::get_interface_type_descriptor(context, rhs_type, rhs_tree,
484 location);
485
486 // The result is going to be a two element constructor.
487
488 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
489
490 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
491 tree field = TYPE_FIELDS(lhs_type_tree);
492 elt->index = field;
493
494 if (for_type_guard)
495 {
496 // A type assertion fails when converting a nil interface.
497 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
498 static tree assert_interface_decl;
499 tree call = Gogo::call_builtin(&assert_interface_decl,
500 location,
501 "__go_assert_interface",
502 2,
503 ptr_type_node,
504 TREE_TYPE(lhs_type_descriptor),
505 lhs_type_descriptor,
506 TREE_TYPE(rhs_type_descriptor),
507 rhs_type_descriptor);
508 // This will panic if the interface conversion fails.
509 TREE_NOTHROW(assert_interface_decl) = 0;
510 elt->value = fold_convert_loc(location, TREE_TYPE(field), call);
511 }
512 else if (lhs_is_empty)
513 {
514 // A convertion to an empty interface always succeeds, and the
515 // first field is just the type descriptor of the object.
516 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
517 "__type_descriptor") == 0);
518 gcc_assert(TREE_TYPE(field) == TREE_TYPE(rhs_type_descriptor));
519 elt->value = rhs_type_descriptor;
520 }
521 else
522 {
523 // A conversion to a non-empty interface may fail, but unlike a
524 // type assertion converting nil will always succeed.
525 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods")
526 == 0);
527 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
528 static tree convert_interface_decl;
529 tree call = Gogo::call_builtin(&convert_interface_decl,
530 location,
531 "__go_convert_interface",
532 2,
533 ptr_type_node,
534 TREE_TYPE(lhs_type_descriptor),
535 lhs_type_descriptor,
536 TREE_TYPE(rhs_type_descriptor),
537 rhs_type_descriptor);
538 // This will panic if the interface conversion fails.
539 TREE_NOTHROW(convert_interface_decl) = 0;
540 elt->value = fold_convert_loc(location, TREE_TYPE(field), call);
541 }
542
543 // The second field is simply the object pointer.
544
545 elt = VEC_quick_push(constructor_elt, init, NULL);
546 field = DECL_CHAIN(field);
547 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
548 elt->index = field;
549
550 tree rhs_type_tree = TREE_TYPE(rhs_tree);
551 gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
552 tree rhs_field = DECL_CHAIN(TYPE_FIELDS(rhs_type_tree));
553 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__object") == 0);
554 elt->value = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
555 NULL_TREE);
556
557 return build_constructor(lhs_type_tree, init);
558 }
559
560 // Return a tree for the conversion of an interface type to a
561 // non-interface type.
562
563 tree
564 Expression::convert_interface_to_type(Translate_context* context,
565 Type *lhs_type, Type* rhs_type,
566 tree rhs_tree, source_location location)
567 {
568 Gogo* gogo = context->gogo();
569 tree rhs_type_tree = TREE_TYPE(rhs_tree);
570
571 tree lhs_type_tree = lhs_type->get_tree(gogo);
572 if (lhs_type_tree == error_mark_node)
573 return error_mark_node;
574
575 // Call a function to check that the type is valid. The function
576 // will panic with an appropriate runtime type error if the type is
577 // not valid.
578
579 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
580
581 if (!DECL_P(rhs_tree))
582 rhs_tree = save_expr(rhs_tree);
583
584 tree rhs_type_descriptor =
585 Expression::get_interface_type_descriptor(context, rhs_type, rhs_tree,
586 location);
587
588 tree rhs_inter_descriptor = rhs_type->type_descriptor_pointer(gogo);
589
590 static tree check_interface_type_decl;
591 tree call = Gogo::call_builtin(&check_interface_type_decl,
592 location,
593 "__go_check_interface_type",
594 3,
595 void_type_node,
596 TREE_TYPE(lhs_type_descriptor),
597 lhs_type_descriptor,
598 TREE_TYPE(rhs_type_descriptor),
599 rhs_type_descriptor,
600 TREE_TYPE(rhs_inter_descriptor),
601 rhs_inter_descriptor);
602 // This call will panic if the conversion is invalid.
603 TREE_NOTHROW(check_interface_type_decl) = 0;
604
605 // If the call succeeds, pull out the value.
606 gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
607 tree rhs_field = DECL_CHAIN(TYPE_FIELDS(rhs_type_tree));
608 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__object") == 0);
609 tree val = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
610 NULL_TREE);
611
612 // If the value is a pointer, then it is the value we want.
613 // Otherwise it points to the value.
614 if (lhs_type->points_to() == NULL)
615 {
616 val = fold_convert_loc(location, build_pointer_type(lhs_type_tree), val);
617 val = build_fold_indirect_ref_loc(location, val);
618 }
619
620 return build2(COMPOUND_EXPR, lhs_type_tree, call,
621 fold_convert_loc(location, lhs_type_tree, val));
622 }
623
624 // Convert an expression to a tree. This is implemented by the child
625 // class. Not that it is not in general safe to call this multiple
626 // times for a single expression, but that we don't catch such errors.
627
628 tree
629 Expression::get_tree(Translate_context* context)
630 {
631 // The child may have marked this expression as having an error.
632 if (this->classification_ == EXPRESSION_ERROR)
633 return error_mark_node;
634
635 return this->do_get_tree(context);
636 }
637
638 // Return a tree for VAL in TYPE.
639
640 tree
641 Expression::integer_constant_tree(mpz_t val, tree type)
642 {
643 if (type == error_mark_node)
644 return error_mark_node;
645 else if (TREE_CODE(type) == INTEGER_TYPE)
646 return double_int_to_tree(type,
647 mpz_get_double_int(type, val, true));
648 else if (TREE_CODE(type) == REAL_TYPE)
649 {
650 mpfr_t fval;
651 mpfr_init_set_z(fval, val, GMP_RNDN);
652 tree ret = Expression::float_constant_tree(fval, type);
653 mpfr_clear(fval);
654 return ret;
655 }
656 else if (TREE_CODE(type) == COMPLEX_TYPE)
657 {
658 mpfr_t fval;
659 mpfr_init_set_z(fval, val, GMP_RNDN);
660 tree real = Expression::float_constant_tree(fval, TREE_TYPE(type));
661 mpfr_clear(fval);
662 tree imag = build_real_from_int_cst(TREE_TYPE(type),
663 integer_zero_node);
664 return build_complex(type, real, imag);
665 }
666 else
667 gcc_unreachable();
668 }
669
670 // Return a tree for VAL in TYPE.
671
672 tree
673 Expression::float_constant_tree(mpfr_t val, tree type)
674 {
675 if (type == error_mark_node)
676 return error_mark_node;
677 else if (TREE_CODE(type) == INTEGER_TYPE)
678 {
679 mpz_t ival;
680 mpz_init(ival);
681 mpfr_get_z(ival, val, GMP_RNDN);
682 tree ret = Expression::integer_constant_tree(ival, type);
683 mpz_clear(ival);
684 return ret;
685 }
686 else if (TREE_CODE(type) == REAL_TYPE)
687 {
688 REAL_VALUE_TYPE r1;
689 real_from_mpfr(&r1, val, type, GMP_RNDN);
690 REAL_VALUE_TYPE r2;
691 real_convert(&r2, TYPE_MODE(type), &r1);
692 return build_real(type, r2);
693 }
694 else if (TREE_CODE(type) == COMPLEX_TYPE)
695 {
696 REAL_VALUE_TYPE r1;
697 real_from_mpfr(&r1, val, TREE_TYPE(type), GMP_RNDN);
698 REAL_VALUE_TYPE r2;
699 real_convert(&r2, TYPE_MODE(TREE_TYPE(type)), &r1);
700 tree imag = build_real_from_int_cst(TREE_TYPE(type),
701 integer_zero_node);
702 return build_complex(type, build_real(TREE_TYPE(type), r2), imag);
703 }
704 else
705 gcc_unreachable();
706 }
707
708 // Return a tree for REAL/IMAG in TYPE.
709
710 tree
711 Expression::complex_constant_tree(mpfr_t real, mpfr_t imag, tree type)
712 {
713 if (TREE_CODE(type) == COMPLEX_TYPE)
714 {
715 REAL_VALUE_TYPE r1;
716 real_from_mpfr(&r1, real, TREE_TYPE(type), GMP_RNDN);
717 REAL_VALUE_TYPE r2;
718 real_convert(&r2, TYPE_MODE(TREE_TYPE(type)), &r1);
719
720 REAL_VALUE_TYPE r3;
721 real_from_mpfr(&r3, imag, TREE_TYPE(type), GMP_RNDN);
722 REAL_VALUE_TYPE r4;
723 real_convert(&r4, TYPE_MODE(TREE_TYPE(type)), &r3);
724
725 return build_complex(type, build_real(TREE_TYPE(type), r2),
726 build_real(TREE_TYPE(type), r4));
727 }
728 else
729 gcc_unreachable();
730 }
731
732 // Return a tree which evaluates to true if VAL, of arbitrary integer
733 // type, is negative or is more than the maximum value of BOUND_TYPE.
734 // If SOFAR is not NULL, it is or'red into the result. The return
735 // value may be NULL if SOFAR is NULL.
736
737 tree
738 Expression::check_bounds(tree val, tree bound_type, tree sofar,
739 source_location loc)
740 {
741 tree val_type = TREE_TYPE(val);
742 tree ret = NULL_TREE;
743
744 if (!TYPE_UNSIGNED(val_type))
745 {
746 ret = fold_build2_loc(loc, LT_EXPR, boolean_type_node, val,
747 build_int_cst(val_type, 0));
748 if (ret == boolean_false_node)
749 ret = NULL_TREE;
750 }
751
752 if ((TYPE_UNSIGNED(val_type) && !TYPE_UNSIGNED(bound_type))
753 || TYPE_SIZE(val_type) > TYPE_SIZE(bound_type))
754 {
755 tree max = TYPE_MAX_VALUE(bound_type);
756 tree big = fold_build2_loc(loc, GT_EXPR, boolean_type_node, val,
757 fold_convert_loc(loc, val_type, max));
758 if (big == boolean_false_node)
759 ;
760 else if (ret == NULL_TREE)
761 ret = big;
762 else
763 ret = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
764 ret, big);
765 }
766
767 if (ret == NULL_TREE)
768 return sofar;
769 else if (sofar == NULL_TREE)
770 return ret;
771 else
772 return fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
773 sofar, ret);
774 }
775
776 // Error expressions. This are used to avoid cascading errors.
777
778 class Error_expression : public Expression
779 {
780 public:
781 Error_expression(source_location location)
782 : Expression(EXPRESSION_ERROR, location)
783 { }
784
785 protected:
786 bool
787 do_is_constant() const
788 { return true; }
789
790 bool
791 do_integer_constant_value(bool, mpz_t val, Type**) const
792 {
793 mpz_set_ui(val, 0);
794 return true;
795 }
796
797 bool
798 do_float_constant_value(mpfr_t val, Type**) const
799 {
800 mpfr_set_ui(val, 0, GMP_RNDN);
801 return true;
802 }
803
804 bool
805 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const
806 {
807 mpfr_set_ui(real, 0, GMP_RNDN);
808 mpfr_set_ui(imag, 0, GMP_RNDN);
809 return true;
810 }
811
812 void
813 do_discarding_value()
814 { }
815
816 Type*
817 do_type()
818 { return Type::make_error_type(); }
819
820 void
821 do_determine_type(const Type_context*)
822 { }
823
824 Expression*
825 do_copy()
826 { return this; }
827
828 bool
829 do_is_addressable() const
830 { return true; }
831
832 tree
833 do_get_tree(Translate_context*)
834 { return error_mark_node; }
835 };
836
837 Expression*
838 Expression::make_error(source_location location)
839 {
840 return new Error_expression(location);
841 }
842
843 // An expression which is really a type. This is used during parsing.
844 // It is an error if these survive after lowering.
845
846 class
847 Type_expression : public Expression
848 {
849 public:
850 Type_expression(Type* type, source_location location)
851 : Expression(EXPRESSION_TYPE, location),
852 type_(type)
853 { }
854
855 protected:
856 int
857 do_traverse(Traverse* traverse)
858 { return Type::traverse(this->type_, traverse); }
859
860 Type*
861 do_type()
862 { return this->type_; }
863
864 void
865 do_determine_type(const Type_context*)
866 { }
867
868 void
869 do_check_types(Gogo*)
870 { this->report_error(_("invalid use of type")); }
871
872 Expression*
873 do_copy()
874 { return this; }
875
876 tree
877 do_get_tree(Translate_context*)
878 { gcc_unreachable(); }
879
880 private:
881 // The type which we are representing as an expression.
882 Type* type_;
883 };
884
885 Expression*
886 Expression::make_type(Type* type, source_location location)
887 {
888 return new Type_expression(type, location);
889 }
890
891 // Class Var_expression.
892
893 // Lower a variable expression. Here we just make sure that the
894 // initialization expression of the variable has been lowered. This
895 // ensures that we will be able to determine the type of the variable
896 // if necessary.
897
898 Expression*
899 Var_expression::do_lower(Gogo* gogo, Named_object* function, int)
900 {
901 if (this->variable_->is_variable())
902 {
903 Variable* var = this->variable_->var_value();
904 // This is either a local variable or a global variable. A
905 // reference to a variable which is local to an enclosing
906 // function will be a reference to a field in a closure.
907 if (var->is_global())
908 function = NULL;
909 var->lower_init_expression(gogo, function);
910 }
911 return this;
912 }
913
914 // Return the name of the variable.
915
916 const std::string&
917 Var_expression::name() const
918 {
919 return this->variable_->name();
920 }
921
922 // Return the type of a reference to a variable.
923
924 Type*
925 Var_expression::do_type()
926 {
927 if (this->variable_->is_variable())
928 return this->variable_->var_value()->type();
929 else if (this->variable_->is_result_variable())
930 return this->variable_->result_var_value()->type();
931 else
932 gcc_unreachable();
933 }
934
935 // Something takes the address of this variable. This means that we
936 // may want to move the variable onto the heap.
937
938 void
939 Var_expression::do_address_taken(bool escapes)
940 {
941 if (!escapes)
942 ;
943 else if (this->variable_->is_variable())
944 this->variable_->var_value()->set_address_taken();
945 else if (this->variable_->is_result_variable())
946 this->variable_->result_var_value()->set_address_taken();
947 else
948 gcc_unreachable();
949 }
950
951 // Get the tree for a reference to a variable.
952
953 tree
954 Var_expression::do_get_tree(Translate_context* context)
955 {
956 return this->variable_->get_tree(context->gogo(), context->function());
957 }
958
959 // Make a reference to a variable in an expression.
960
961 Expression*
962 Expression::make_var_reference(Named_object* var, source_location location)
963 {
964 if (var->is_sink())
965 return Expression::make_sink(location);
966
967 // FIXME: Creating a new object for each reference to a variable is
968 // wasteful.
969 return new Var_expression(var, location);
970 }
971
972 // Class Temporary_reference_expression.
973
974 // The type.
975
976 Type*
977 Temporary_reference_expression::do_type()
978 {
979 return this->statement_->type();
980 }
981
982 // Called if something takes the address of this temporary variable.
983 // We never have to move temporary variables to the heap, but we do
984 // need to know that they must live in the stack rather than in a
985 // register.
986
987 void
988 Temporary_reference_expression::do_address_taken(bool)
989 {
990 this->statement_->set_is_address_taken();
991 }
992
993 // Get a tree referring to the variable.
994
995 tree
996 Temporary_reference_expression::do_get_tree(Translate_context*)
997 {
998 return this->statement_->get_decl();
999 }
1000
1001 // Make a reference to a temporary variable.
1002
1003 Expression*
1004 Expression::make_temporary_reference(Temporary_statement* statement,
1005 source_location location)
1006 {
1007 return new Temporary_reference_expression(statement, location);
1008 }
1009
1010 // A sink expression--a use of the blank identifier _.
1011
1012 class Sink_expression : public Expression
1013 {
1014 public:
1015 Sink_expression(source_location location)
1016 : Expression(EXPRESSION_SINK, location),
1017 type_(NULL), var_(NULL_TREE)
1018 { }
1019
1020 protected:
1021 void
1022 do_discarding_value()
1023 { }
1024
1025 Type*
1026 do_type();
1027
1028 void
1029 do_determine_type(const Type_context*);
1030
1031 Expression*
1032 do_copy()
1033 { return new Sink_expression(this->location()); }
1034
1035 tree
1036 do_get_tree(Translate_context*);
1037
1038 private:
1039 // The type of this sink variable.
1040 Type* type_;
1041 // The temporary variable we generate.
1042 tree var_;
1043 };
1044
1045 // Return the type of a sink expression.
1046
1047 Type*
1048 Sink_expression::do_type()
1049 {
1050 if (this->type_ == NULL)
1051 return Type::make_sink_type();
1052 return this->type_;
1053 }
1054
1055 // Determine the type of a sink expression.
1056
1057 void
1058 Sink_expression::do_determine_type(const Type_context* context)
1059 {
1060 if (context->type != NULL)
1061 this->type_ = context->type;
1062 }
1063
1064 // Return a temporary variable for a sink expression. This will
1065 // presumably be a write-only variable which the middle-end will drop.
1066
1067 tree
1068 Sink_expression::do_get_tree(Translate_context* context)
1069 {
1070 if (this->var_ == NULL_TREE)
1071 {
1072 gcc_assert(this->type_ != NULL && !this->type_->is_sink_type());
1073 this->var_ = create_tmp_var(this->type_->get_tree(context->gogo()),
1074 "blank");
1075 }
1076 return this->var_;
1077 }
1078
1079 // Make a sink expression.
1080
1081 Expression*
1082 Expression::make_sink(source_location location)
1083 {
1084 return new Sink_expression(location);
1085 }
1086
1087 // Class Func_expression.
1088
1089 // FIXME: Can a function expression appear in a constant expression?
1090 // The value is unchanging. Initializing a constant to the address of
1091 // a function seems like it could work, though there might be little
1092 // point to it.
1093
1094 // Return the name of the function.
1095
1096 const std::string&
1097 Func_expression::name() const
1098 {
1099 return this->function_->name();
1100 }
1101
1102 // Traversal.
1103
1104 int
1105 Func_expression::do_traverse(Traverse* traverse)
1106 {
1107 return (this->closure_ == NULL
1108 ? TRAVERSE_CONTINUE
1109 : Expression::traverse(&this->closure_, traverse));
1110 }
1111
1112 // Return the type of a function expression.
1113
1114 Type*
1115 Func_expression::do_type()
1116 {
1117 if (this->function_->is_function())
1118 return this->function_->func_value()->type();
1119 else if (this->function_->is_function_declaration())
1120 return this->function_->func_declaration_value()->type();
1121 else
1122 gcc_unreachable();
1123 }
1124
1125 // Get the tree for a function expression without evaluating the
1126 // closure.
1127
1128 tree
1129 Func_expression::get_tree_without_closure(Gogo* gogo)
1130 {
1131 Function_type* fntype;
1132 if (this->function_->is_function())
1133 fntype = this->function_->func_value()->type();
1134 else if (this->function_->is_function_declaration())
1135 fntype = this->function_->func_declaration_value()->type();
1136 else
1137 gcc_unreachable();
1138
1139 // Builtin functions are handled specially by Call_expression. We
1140 // can't take their address.
1141 if (fntype->is_builtin())
1142 {
1143 error_at(this->location(), "invalid use of special builtin function %qs",
1144 this->function_->name().c_str());
1145 return error_mark_node;
1146 }
1147
1148 Named_object* no = this->function_;
1149
1150 tree id = no->get_id(gogo);
1151 if (id == error_mark_node)
1152 return error_mark_node;
1153
1154 tree fndecl;
1155 if (no->is_function())
1156 fndecl = no->func_value()->get_or_make_decl(gogo, no, id);
1157 else if (no->is_function_declaration())
1158 fndecl = no->func_declaration_value()->get_or_make_decl(gogo, no, id);
1159 else
1160 gcc_unreachable();
1161
1162 if (fndecl == error_mark_node)
1163 return error_mark_node;
1164
1165 return build_fold_addr_expr_loc(this->location(), fndecl);
1166 }
1167
1168 // Get the tree for a function expression. This is used when we take
1169 // the address of a function rather than simply calling it. If the
1170 // function has a closure, we must use a trampoline.
1171
1172 tree
1173 Func_expression::do_get_tree(Translate_context* context)
1174 {
1175 Gogo* gogo = context->gogo();
1176
1177 tree fnaddr = this->get_tree_without_closure(gogo);
1178 if (fnaddr == error_mark_node)
1179 return error_mark_node;
1180
1181 gcc_assert(TREE_CODE(fnaddr) == ADDR_EXPR
1182 && TREE_CODE(TREE_OPERAND(fnaddr, 0)) == FUNCTION_DECL);
1183 TREE_ADDRESSABLE(TREE_OPERAND(fnaddr, 0)) = 1;
1184
1185 // For a normal non-nested function call, that is all we have to do.
1186 if (!this->function_->is_function()
1187 || this->function_->func_value()->enclosing() == NULL)
1188 {
1189 gcc_assert(this->closure_ == NULL);
1190 return fnaddr;
1191 }
1192
1193 // For a nested function call, we have to always allocate a
1194 // trampoline. If we don't always allocate, then closures will not
1195 // be reliably distinct.
1196 Expression* closure = this->closure_;
1197 tree closure_tree;
1198 if (closure == NULL)
1199 closure_tree = null_pointer_node;
1200 else
1201 {
1202 // Get the value of the closure. This will be a pointer to
1203 // space allocated on the heap.
1204 closure_tree = closure->get_tree(context);
1205 if (closure_tree == error_mark_node)
1206 return error_mark_node;
1207 gcc_assert(POINTER_TYPE_P(TREE_TYPE(closure_tree)));
1208 }
1209
1210 // Now we need to build some code on the heap. This code will load
1211 // the static chain pointer with the closure and then jump to the
1212 // body of the function. The normal gcc approach is to build the
1213 // code on the stack. Unfortunately we can not do that, as Go
1214 // permits us to return the function pointer.
1215
1216 return gogo->make_trampoline(fnaddr, closure_tree, this->location());
1217 }
1218
1219 // Make a reference to a function in an expression.
1220
1221 Expression*
1222 Expression::make_func_reference(Named_object* function, Expression* closure,
1223 source_location location)
1224 {
1225 return new Func_expression(function, closure, location);
1226 }
1227
1228 // Class Unknown_expression.
1229
1230 // Return the name of an unknown expression.
1231
1232 const std::string&
1233 Unknown_expression::name() const
1234 {
1235 return this->named_object_->name();
1236 }
1237
1238 // Lower a reference to an unknown name.
1239
1240 Expression*
1241 Unknown_expression::do_lower(Gogo*, Named_object*, int)
1242 {
1243 source_location location = this->location();
1244 Named_object* no = this->named_object_;
1245 Named_object* real = no->unknown_value()->real_named_object();
1246 if (real == NULL)
1247 {
1248 if (this->is_composite_literal_key_)
1249 return this;
1250 error_at(location, "reference to undefined name %qs",
1251 this->named_object_->message_name().c_str());
1252 return Expression::make_error(location);
1253 }
1254 switch (real->classification())
1255 {
1256 case Named_object::NAMED_OBJECT_CONST:
1257 return Expression::make_const_reference(real, location);
1258 case Named_object::NAMED_OBJECT_TYPE:
1259 return Expression::make_type(real->type_value(), location);
1260 case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
1261 if (this->is_composite_literal_key_)
1262 return this;
1263 error_at(location, "reference to undefined type %qs",
1264 real->message_name().c_str());
1265 return Expression::make_error(location);
1266 case Named_object::NAMED_OBJECT_VAR:
1267 return Expression::make_var_reference(real, location);
1268 case Named_object::NAMED_OBJECT_FUNC:
1269 case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
1270 return Expression::make_func_reference(real, NULL, location);
1271 case Named_object::NAMED_OBJECT_PACKAGE:
1272 if (this->is_composite_literal_key_)
1273 return this;
1274 error_at(location, "unexpected reference to package");
1275 return Expression::make_error(location);
1276 default:
1277 gcc_unreachable();
1278 }
1279 }
1280
1281 // Make a reference to an unknown name.
1282
1283 Expression*
1284 Expression::make_unknown_reference(Named_object* no, source_location location)
1285 {
1286 gcc_assert(no->resolve()->is_unknown());
1287 return new Unknown_expression(no, location);
1288 }
1289
1290 // A boolean expression.
1291
1292 class Boolean_expression : public Expression
1293 {
1294 public:
1295 Boolean_expression(bool val, source_location location)
1296 : Expression(EXPRESSION_BOOLEAN, location),
1297 val_(val), type_(NULL)
1298 { }
1299
1300 static Expression*
1301 do_import(Import*);
1302
1303 protected:
1304 bool
1305 do_is_constant() const
1306 { return true; }
1307
1308 Type*
1309 do_type();
1310
1311 void
1312 do_determine_type(const Type_context*);
1313
1314 Expression*
1315 do_copy()
1316 { return this; }
1317
1318 tree
1319 do_get_tree(Translate_context*)
1320 { return this->val_ ? boolean_true_node : boolean_false_node; }
1321
1322 void
1323 do_export(Export* exp) const
1324 { exp->write_c_string(this->val_ ? "true" : "false"); }
1325
1326 private:
1327 // The constant.
1328 bool val_;
1329 // The type as determined by context.
1330 Type* type_;
1331 };
1332
1333 // Get the type.
1334
1335 Type*
1336 Boolean_expression::do_type()
1337 {
1338 if (this->type_ == NULL)
1339 this->type_ = Type::make_boolean_type();
1340 return this->type_;
1341 }
1342
1343 // Set the type from the context.
1344
1345 void
1346 Boolean_expression::do_determine_type(const Type_context* context)
1347 {
1348 if (this->type_ != NULL && !this->type_->is_abstract())
1349 ;
1350 else if (context->type != NULL && context->type->is_boolean_type())
1351 this->type_ = context->type;
1352 else if (!context->may_be_abstract)
1353 this->type_ = Type::lookup_bool_type();
1354 }
1355
1356 // Import a boolean constant.
1357
1358 Expression*
1359 Boolean_expression::do_import(Import* imp)
1360 {
1361 if (imp->peek_char() == 't')
1362 {
1363 imp->require_c_string("true");
1364 return Expression::make_boolean(true, imp->location());
1365 }
1366 else
1367 {
1368 imp->require_c_string("false");
1369 return Expression::make_boolean(false, imp->location());
1370 }
1371 }
1372
1373 // Make a boolean expression.
1374
1375 Expression*
1376 Expression::make_boolean(bool val, source_location location)
1377 {
1378 return new Boolean_expression(val, location);
1379 }
1380
1381 // Class String_expression.
1382
1383 // Get the type.
1384
1385 Type*
1386 String_expression::do_type()
1387 {
1388 if (this->type_ == NULL)
1389 this->type_ = Type::make_string_type();
1390 return this->type_;
1391 }
1392
1393 // Set the type from the context.
1394
1395 void
1396 String_expression::do_determine_type(const Type_context* context)
1397 {
1398 if (this->type_ != NULL && !this->type_->is_abstract())
1399 ;
1400 else if (context->type != NULL && context->type->is_string_type())
1401 this->type_ = context->type;
1402 else if (!context->may_be_abstract)
1403 this->type_ = Type::lookup_string_type();
1404 }
1405
1406 // Build a string constant.
1407
1408 tree
1409 String_expression::do_get_tree(Translate_context* context)
1410 {
1411 return context->gogo()->go_string_constant_tree(this->val_);
1412 }
1413
1414 // Export a string expression.
1415
1416 void
1417 String_expression::do_export(Export* exp) const
1418 {
1419 std::string s;
1420 s.reserve(this->val_.length() * 4 + 2);
1421 s += '"';
1422 for (std::string::const_iterator p = this->val_.begin();
1423 p != this->val_.end();
1424 ++p)
1425 {
1426 if (*p == '\\' || *p == '"')
1427 {
1428 s += '\\';
1429 s += *p;
1430 }
1431 else if (*p >= 0x20 && *p < 0x7f)
1432 s += *p;
1433 else if (*p == '\n')
1434 s += "\\n";
1435 else if (*p == '\t')
1436 s += "\\t";
1437 else
1438 {
1439 s += "\\x";
1440 unsigned char c = *p;
1441 unsigned int dig = c >> 4;
1442 s += dig < 10 ? '0' + dig : 'A' + dig - 10;
1443 dig = c & 0xf;
1444 s += dig < 10 ? '0' + dig : 'A' + dig - 10;
1445 }
1446 }
1447 s += '"';
1448 exp->write_string(s);
1449 }
1450
1451 // Import a string expression.
1452
1453 Expression*
1454 String_expression::do_import(Import* imp)
1455 {
1456 imp->require_c_string("\"");
1457 std::string val;
1458 while (true)
1459 {
1460 int c = imp->get_char();
1461 if (c == '"' || c == -1)
1462 break;
1463 if (c != '\\')
1464 val += static_cast<char>(c);
1465 else
1466 {
1467 c = imp->get_char();
1468 if (c == '\\' || c == '"')
1469 val += static_cast<char>(c);
1470 else if (c == 'n')
1471 val += '\n';
1472 else if (c == 't')
1473 val += '\t';
1474 else if (c == 'x')
1475 {
1476 c = imp->get_char();
1477 unsigned int vh = c >= '0' && c <= '9' ? c - '0' : c - 'A' + 10;
1478 c = imp->get_char();
1479 unsigned int vl = c >= '0' && c <= '9' ? c - '0' : c - 'A' + 10;
1480 char v = (vh << 4) | vl;
1481 val += v;
1482 }
1483 else
1484 {
1485 error_at(imp->location(), "bad string constant");
1486 return Expression::make_error(imp->location());
1487 }
1488 }
1489 }
1490 return Expression::make_string(val, imp->location());
1491 }
1492
1493 // Make a string expression.
1494
1495 Expression*
1496 Expression::make_string(const std::string& val, source_location location)
1497 {
1498 return new String_expression(val, location);
1499 }
1500
1501 // Make an integer expression.
1502
1503 class Integer_expression : public Expression
1504 {
1505 public:
1506 Integer_expression(const mpz_t* val, Type* type, source_location location)
1507 : Expression(EXPRESSION_INTEGER, location),
1508 type_(type)
1509 { mpz_init_set(this->val_, *val); }
1510
1511 static Expression*
1512 do_import(Import*);
1513
1514 // Return whether VAL fits in the type.
1515 static bool
1516 check_constant(mpz_t val, Type*, source_location);
1517
1518 // Write VAL to export data.
1519 static void
1520 export_integer(Export* exp, const mpz_t val);
1521
1522 protected:
1523 bool
1524 do_is_constant() const
1525 { return true; }
1526
1527 bool
1528 do_integer_constant_value(bool, mpz_t val, Type** ptype) const;
1529
1530 Type*
1531 do_type();
1532
1533 void
1534 do_determine_type(const Type_context* context);
1535
1536 void
1537 do_check_types(Gogo*);
1538
1539 tree
1540 do_get_tree(Translate_context*);
1541
1542 Expression*
1543 do_copy()
1544 { return Expression::make_integer(&this->val_, this->type_,
1545 this->location()); }
1546
1547 void
1548 do_export(Export*) const;
1549
1550 private:
1551 // The integer value.
1552 mpz_t val_;
1553 // The type so far.
1554 Type* type_;
1555 };
1556
1557 // Return an integer constant value.
1558
1559 bool
1560 Integer_expression::do_integer_constant_value(bool, mpz_t val,
1561 Type** ptype) const
1562 {
1563 if (this->type_ != NULL)
1564 *ptype = this->type_;
1565 mpz_set(val, this->val_);
1566 return true;
1567 }
1568
1569 // Return the current type. If we haven't set the type yet, we return
1570 // an abstract integer type.
1571
1572 Type*
1573 Integer_expression::do_type()
1574 {
1575 if (this->type_ == NULL)
1576 this->type_ = Type::make_abstract_integer_type();
1577 return this->type_;
1578 }
1579
1580 // Set the type of the integer value. Here we may switch from an
1581 // abstract type to a real type.
1582
1583 void
1584 Integer_expression::do_determine_type(const Type_context* context)
1585 {
1586 if (this->type_ != NULL && !this->type_->is_abstract())
1587 ;
1588 else if (context->type != NULL
1589 && (context->type->integer_type() != NULL
1590 || context->type->float_type() != NULL
1591 || context->type->complex_type() != NULL))
1592 this->type_ = context->type;
1593 else if (!context->may_be_abstract)
1594 this->type_ = Type::lookup_integer_type("int");
1595 }
1596
1597 // Return true if the integer VAL fits in the range of the type TYPE.
1598 // Otherwise give an error and return false. TYPE may be NULL.
1599
1600 bool
1601 Integer_expression::check_constant(mpz_t val, Type* type,
1602 source_location location)
1603 {
1604 if (type == NULL)
1605 return true;
1606 Integer_type* itype = type->integer_type();
1607 if (itype == NULL || itype->is_abstract())
1608 return true;
1609
1610 int bits = mpz_sizeinbase(val, 2);
1611
1612 if (itype->is_unsigned())
1613 {
1614 // For an unsigned type we can only accept a nonnegative number,
1615 // and we must be able to represent at least BITS.
1616 if (mpz_sgn(val) >= 0
1617 && bits <= itype->bits())
1618 return true;
1619 }
1620 else
1621 {
1622 // For a signed type we need an extra bit to indicate the sign.
1623 // We have to handle the most negative integer specially.
1624 if (bits + 1 <= itype->bits()
1625 || (bits <= itype->bits()
1626 && mpz_sgn(val) < 0
1627 && (mpz_scan1(val, 0)
1628 == static_cast<unsigned long>(itype->bits() - 1))
1629 && mpz_scan0(val, itype->bits()) == ULONG_MAX))
1630 return true;
1631 }
1632
1633 error_at(location, "integer constant overflow");
1634 return false;
1635 }
1636
1637 // Check the type of an integer constant.
1638
1639 void
1640 Integer_expression::do_check_types(Gogo*)
1641 {
1642 if (this->type_ == NULL)
1643 return;
1644 if (!Integer_expression::check_constant(this->val_, this->type_,
1645 this->location()))
1646 this->set_is_error();
1647 }
1648
1649 // Get a tree for an integer constant.
1650
1651 tree
1652 Integer_expression::do_get_tree(Translate_context* context)
1653 {
1654 Gogo* gogo = context->gogo();
1655 tree type;
1656 if (this->type_ != NULL && !this->type_->is_abstract())
1657 type = this->type_->get_tree(gogo);
1658 else if (this->type_ != NULL && this->type_->float_type() != NULL)
1659 {
1660 // We are converting to an abstract floating point type.
1661 type = Type::lookup_float_type("float64")->get_tree(gogo);
1662 }
1663 else if (this->type_ != NULL && this->type_->complex_type() != NULL)
1664 {
1665 // We are converting to an abstract complex type.
1666 type = Type::lookup_complex_type("complex128")->get_tree(gogo);
1667 }
1668 else
1669 {
1670 // If we still have an abstract type here, then this is being
1671 // used in a constant expression which didn't get reduced for
1672 // some reason. Use a type which will fit the value. We use <,
1673 // not <=, because we need an extra bit for the sign bit.
1674 int bits = mpz_sizeinbase(this->val_, 2);
1675 if (bits < INT_TYPE_SIZE)
1676 type = Type::lookup_integer_type("int")->get_tree(gogo);
1677 else if (bits < 64)
1678 type = Type::lookup_integer_type("int64")->get_tree(gogo);
1679 else
1680 type = long_long_integer_type_node;
1681 }
1682 return Expression::integer_constant_tree(this->val_, type);
1683 }
1684
1685 // Write VAL to export data.
1686
1687 void
1688 Integer_expression::export_integer(Export* exp, const mpz_t val)
1689 {
1690 char* s = mpz_get_str(NULL, 10, val);
1691 exp->write_c_string(s);
1692 free(s);
1693 }
1694
1695 // Export an integer in a constant expression.
1696
1697 void
1698 Integer_expression::do_export(Export* exp) const
1699 {
1700 Integer_expression::export_integer(exp, this->val_);
1701 // A trailing space lets us reliably identify the end of the number.
1702 exp->write_c_string(" ");
1703 }
1704
1705 // Import an integer, floating point, or complex value. This handles
1706 // all these types because they all start with digits.
1707
1708 Expression*
1709 Integer_expression::do_import(Import* imp)
1710 {
1711 std::string num = imp->read_identifier();
1712 imp->require_c_string(" ");
1713 if (!num.empty() && num[num.length() - 1] == 'i')
1714 {
1715 mpfr_t real;
1716 size_t plus_pos = num.find('+', 1);
1717 size_t minus_pos = num.find('-', 1);
1718 size_t pos;
1719 if (plus_pos == std::string::npos)
1720 pos = minus_pos;
1721 else if (minus_pos == std::string::npos)
1722 pos = plus_pos;
1723 else
1724 {
1725 error_at(imp->location(), "bad number in import data: %qs",
1726 num.c_str());
1727 return Expression::make_error(imp->location());
1728 }
1729 if (pos == std::string::npos)
1730 mpfr_set_ui(real, 0, GMP_RNDN);
1731 else
1732 {
1733 std::string real_str = num.substr(0, pos);
1734 if (mpfr_init_set_str(real, real_str.c_str(), 10, GMP_RNDN) != 0)
1735 {
1736 error_at(imp->location(), "bad number in import data: %qs",
1737 real_str.c_str());
1738 return Expression::make_error(imp->location());
1739 }
1740 }
1741
1742 std::string imag_str;
1743 if (pos == std::string::npos)
1744 imag_str = num;
1745 else
1746 imag_str = num.substr(pos);
1747 imag_str = imag_str.substr(0, imag_str.size() - 1);
1748 mpfr_t imag;
1749 if (mpfr_init_set_str(imag, imag_str.c_str(), 10, GMP_RNDN) != 0)
1750 {
1751 error_at(imp->location(), "bad number in import data: %qs",
1752 imag_str.c_str());
1753 return Expression::make_error(imp->location());
1754 }
1755 Expression* ret = Expression::make_complex(&real, &imag, NULL,
1756 imp->location());
1757 mpfr_clear(real);
1758 mpfr_clear(imag);
1759 return ret;
1760 }
1761 else if (num.find('.') == std::string::npos
1762 && num.find('E') == std::string::npos)
1763 {
1764 mpz_t val;
1765 if (mpz_init_set_str(val, num.c_str(), 10) != 0)
1766 {
1767 error_at(imp->location(), "bad number in import data: %qs",
1768 num.c_str());
1769 return Expression::make_error(imp->location());
1770 }
1771 Expression* ret = Expression::make_integer(&val, NULL, imp->location());
1772 mpz_clear(val);
1773 return ret;
1774 }
1775 else
1776 {
1777 mpfr_t val;
1778 if (mpfr_init_set_str(val, num.c_str(), 10, GMP_RNDN) != 0)
1779 {
1780 error_at(imp->location(), "bad number in import data: %qs",
1781 num.c_str());
1782 return Expression::make_error(imp->location());
1783 }
1784 Expression* ret = Expression::make_float(&val, NULL, imp->location());
1785 mpfr_clear(val);
1786 return ret;
1787 }
1788 }
1789
1790 // Build a new integer value.
1791
1792 Expression*
1793 Expression::make_integer(const mpz_t* val, Type* type,
1794 source_location location)
1795 {
1796 return new Integer_expression(val, type, location);
1797 }
1798
1799 // Floats.
1800
1801 class Float_expression : public Expression
1802 {
1803 public:
1804 Float_expression(const mpfr_t* val, Type* type, source_location location)
1805 : Expression(EXPRESSION_FLOAT, location),
1806 type_(type)
1807 {
1808 mpfr_init_set(this->val_, *val, GMP_RNDN);
1809 }
1810
1811 // Constrain VAL to fit into TYPE.
1812 static void
1813 constrain_float(mpfr_t val, Type* type);
1814
1815 // Return whether VAL fits in the type.
1816 static bool
1817 check_constant(mpfr_t val, Type*, source_location);
1818
1819 // Write VAL to export data.
1820 static void
1821 export_float(Export* exp, const mpfr_t val);
1822
1823 protected:
1824 bool
1825 do_is_constant() const
1826 { return true; }
1827
1828 bool
1829 do_float_constant_value(mpfr_t val, Type**) const;
1830
1831 Type*
1832 do_type();
1833
1834 void
1835 do_determine_type(const Type_context*);
1836
1837 void
1838 do_check_types(Gogo*);
1839
1840 Expression*
1841 do_copy()
1842 { return Expression::make_float(&this->val_, this->type_,
1843 this->location()); }
1844
1845 tree
1846 do_get_tree(Translate_context*);
1847
1848 void
1849 do_export(Export*) const;
1850
1851 private:
1852 // The floating point value.
1853 mpfr_t val_;
1854 // The type so far.
1855 Type* type_;
1856 };
1857
1858 // Constrain VAL to fit into TYPE.
1859
1860 void
1861 Float_expression::constrain_float(mpfr_t val, Type* type)
1862 {
1863 Float_type* ftype = type->float_type();
1864 if (ftype != NULL && !ftype->is_abstract())
1865 {
1866 tree type_tree = ftype->type_tree();
1867 REAL_VALUE_TYPE rvt;
1868 real_from_mpfr(&rvt, val, type_tree, GMP_RNDN);
1869 real_convert(&rvt, TYPE_MODE(type_tree), &rvt);
1870 mpfr_from_real(val, &rvt, GMP_RNDN);
1871 }
1872 }
1873
1874 // Return a floating point constant value.
1875
1876 bool
1877 Float_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
1878 {
1879 if (this->type_ != NULL)
1880 *ptype = this->type_;
1881 mpfr_set(val, this->val_, GMP_RNDN);
1882 return true;
1883 }
1884
1885 // Return the current type. If we haven't set the type yet, we return
1886 // an abstract float type.
1887
1888 Type*
1889 Float_expression::do_type()
1890 {
1891 if (this->type_ == NULL)
1892 this->type_ = Type::make_abstract_float_type();
1893 return this->type_;
1894 }
1895
1896 // Set the type of the float value. Here we may switch from an
1897 // abstract type to a real type.
1898
1899 void
1900 Float_expression::do_determine_type(const Type_context* context)
1901 {
1902 if (this->type_ != NULL && !this->type_->is_abstract())
1903 ;
1904 else if (context->type != NULL
1905 && (context->type->integer_type() != NULL
1906 || context->type->float_type() != NULL
1907 || context->type->complex_type() != NULL))
1908 this->type_ = context->type;
1909 else if (!context->may_be_abstract)
1910 this->type_ = Type::lookup_float_type("float");
1911 }
1912
1913 // Return true if the floating point value VAL fits in the range of
1914 // the type TYPE. Otherwise give an error and return false. TYPE may
1915 // be NULL.
1916
1917 bool
1918 Float_expression::check_constant(mpfr_t val, Type* type,
1919 source_location location)
1920 {
1921 if (type == NULL)
1922 return true;
1923 Float_type* ftype = type->float_type();
1924 if (ftype == NULL || ftype->is_abstract())
1925 return true;
1926
1927 // A NaN or Infinity always fits in the range of the type.
1928 if (mpfr_nan_p(val) || mpfr_inf_p(val) || mpfr_zero_p(val))
1929 return true;
1930
1931 mp_exp_t exp = mpfr_get_exp(val);
1932 mp_exp_t max_exp;
1933 switch (ftype->bits())
1934 {
1935 case 32:
1936 max_exp = 128;
1937 break;
1938 case 64:
1939 max_exp = 1024;
1940 break;
1941 default:
1942 gcc_unreachable();
1943 }
1944 if (exp > max_exp)
1945 {
1946 error_at(location, "floating point constant overflow");
1947 return false;
1948 }
1949 return true;
1950 }
1951
1952 // Check the type of a float value.
1953
1954 void
1955 Float_expression::do_check_types(Gogo*)
1956 {
1957 if (this->type_ == NULL)
1958 return;
1959
1960 if (!Float_expression::check_constant(this->val_, this->type_,
1961 this->location()))
1962 this->set_is_error();
1963
1964 Integer_type* integer_type = this->type_->integer_type();
1965 if (integer_type != NULL)
1966 {
1967 if (!mpfr_integer_p(this->val_))
1968 this->report_error(_("floating point constant truncated to integer"));
1969 else
1970 {
1971 gcc_assert(!integer_type->is_abstract());
1972 mpz_t ival;
1973 mpz_init(ival);
1974 mpfr_get_z(ival, this->val_, GMP_RNDN);
1975 Integer_expression::check_constant(ival, integer_type,
1976 this->location());
1977 mpz_clear(ival);
1978 }
1979 }
1980 }
1981
1982 // Get a tree for a float constant.
1983
1984 tree
1985 Float_expression::do_get_tree(Translate_context* context)
1986 {
1987 Gogo* gogo = context->gogo();
1988 tree type;
1989 if (this->type_ != NULL && !this->type_->is_abstract())
1990 type = this->type_->get_tree(gogo);
1991 else if (this->type_ != NULL && this->type_->integer_type() != NULL)
1992 {
1993 // We have an abstract integer type. We just hope for the best.
1994 type = Type::lookup_integer_type("int")->get_tree(gogo);
1995 }
1996 else
1997 {
1998 // If we still have an abstract type here, then this is being
1999 // used in a constant expression which didn't get reduced. We
2000 // just use float64 and hope for the best.
2001 type = Type::lookup_float_type("float64")->get_tree(gogo);
2002 }
2003 return Expression::float_constant_tree(this->val_, type);
2004 }
2005
2006 // Write a floating point number to export data.
2007
2008 void
2009 Float_expression::export_float(Export *exp, const mpfr_t val)
2010 {
2011 mp_exp_t exponent;
2012 char* s = mpfr_get_str(NULL, &exponent, 10, 0, val, GMP_RNDN);
2013 if (*s == '-')
2014 exp->write_c_string("-");
2015 exp->write_c_string("0.");
2016 exp->write_c_string(*s == '-' ? s + 1 : s);
2017 mpfr_free_str(s);
2018 char buf[30];
2019 snprintf(buf, sizeof buf, "E%ld", exponent);
2020 exp->write_c_string(buf);
2021 }
2022
2023 // Export a floating point number in a constant expression.
2024
2025 void
2026 Float_expression::do_export(Export* exp) const
2027 {
2028 Float_expression::export_float(exp, this->val_);
2029 // A trailing space lets us reliably identify the end of the number.
2030 exp->write_c_string(" ");
2031 }
2032
2033 // Make a float expression.
2034
2035 Expression*
2036 Expression::make_float(const mpfr_t* val, Type* type, source_location location)
2037 {
2038 return new Float_expression(val, type, location);
2039 }
2040
2041 // Complex numbers.
2042
2043 class Complex_expression : public Expression
2044 {
2045 public:
2046 Complex_expression(const mpfr_t* real, const mpfr_t* imag, Type* type,
2047 source_location location)
2048 : Expression(EXPRESSION_COMPLEX, location),
2049 type_(type)
2050 {
2051 mpfr_init_set(this->real_, *real, GMP_RNDN);
2052 mpfr_init_set(this->imag_, *imag, GMP_RNDN);
2053 }
2054
2055 // Constrain REAL/IMAG to fit into TYPE.
2056 static void
2057 constrain_complex(mpfr_t real, mpfr_t imag, Type* type);
2058
2059 // Return whether REAL/IMAG fits in the type.
2060 static bool
2061 check_constant(mpfr_t real, mpfr_t imag, Type*, source_location);
2062
2063 // Write REAL/IMAG to export data.
2064 static void
2065 export_complex(Export* exp, const mpfr_t real, const mpfr_t val);
2066
2067 protected:
2068 bool
2069 do_is_constant() const
2070 { return true; }
2071
2072 bool
2073 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const;
2074
2075 Type*
2076 do_type();
2077
2078 void
2079 do_determine_type(const Type_context*);
2080
2081 void
2082 do_check_types(Gogo*);
2083
2084 Expression*
2085 do_copy()
2086 {
2087 return Expression::make_complex(&this->real_, &this->imag_, this->type_,
2088 this->location());
2089 }
2090
2091 tree
2092 do_get_tree(Translate_context*);
2093
2094 void
2095 do_export(Export*) const;
2096
2097 private:
2098 // The real part.
2099 mpfr_t real_;
2100 // The imaginary part;
2101 mpfr_t imag_;
2102 // The type if known.
2103 Type* type_;
2104 };
2105
2106 // Constrain REAL/IMAG to fit into TYPE.
2107
2108 void
2109 Complex_expression::constrain_complex(mpfr_t real, mpfr_t imag, Type* type)
2110 {
2111 Complex_type* ctype = type->complex_type();
2112 if (ctype != NULL && !ctype->is_abstract())
2113 {
2114 tree type_tree = ctype->type_tree();
2115
2116 REAL_VALUE_TYPE rvt;
2117 real_from_mpfr(&rvt, real, TREE_TYPE(type_tree), GMP_RNDN);
2118 real_convert(&rvt, TYPE_MODE(TREE_TYPE(type_tree)), &rvt);
2119 mpfr_from_real(real, &rvt, GMP_RNDN);
2120
2121 real_from_mpfr(&rvt, imag, TREE_TYPE(type_tree), GMP_RNDN);
2122 real_convert(&rvt, TYPE_MODE(TREE_TYPE(type_tree)), &rvt);
2123 mpfr_from_real(imag, &rvt, GMP_RNDN);
2124 }
2125 }
2126
2127 // Return a complex constant value.
2128
2129 bool
2130 Complex_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
2131 Type** ptype) const
2132 {
2133 if (this->type_ != NULL)
2134 *ptype = this->type_;
2135 mpfr_set(real, this->real_, GMP_RNDN);
2136 mpfr_set(imag, this->imag_, GMP_RNDN);
2137 return true;
2138 }
2139
2140 // Return the current type. If we haven't set the type yet, we return
2141 // an abstract complex type.
2142
2143 Type*
2144 Complex_expression::do_type()
2145 {
2146 if (this->type_ == NULL)
2147 this->type_ = Type::make_abstract_complex_type();
2148 return this->type_;
2149 }
2150
2151 // Set the type of the complex value. Here we may switch from an
2152 // abstract type to a real type.
2153
2154 void
2155 Complex_expression::do_determine_type(const Type_context* context)
2156 {
2157 if (this->type_ != NULL && !this->type_->is_abstract())
2158 ;
2159 else if (context->type != NULL
2160 && context->type->complex_type() != NULL)
2161 this->type_ = context->type;
2162 else if (!context->may_be_abstract)
2163 this->type_ = Type::lookup_complex_type("complex");
2164 }
2165
2166 // Return true if the complex value REAL/IMAG fits in the range of the
2167 // type TYPE. Otherwise give an error and return false. TYPE may be
2168 // NULL.
2169
2170 bool
2171 Complex_expression::check_constant(mpfr_t real, mpfr_t imag, Type* type,
2172 source_location location)
2173 {
2174 if (type == NULL)
2175 return true;
2176 Complex_type* ctype = type->complex_type();
2177 if (ctype == NULL || ctype->is_abstract())
2178 return true;
2179
2180 mp_exp_t max_exp;
2181 switch (ctype->bits())
2182 {
2183 case 64:
2184 max_exp = 128;
2185 break;
2186 case 128:
2187 max_exp = 1024;
2188 break;
2189 default:
2190 gcc_unreachable();
2191 }
2192
2193 // A NaN or Infinity always fits in the range of the type.
2194 if (!mpfr_nan_p(real) && !mpfr_inf_p(real) && !mpfr_zero_p(real))
2195 {
2196 if (mpfr_get_exp(real) > max_exp)
2197 {
2198 error_at(location, "complex real part constant overflow");
2199 return false;
2200 }
2201 }
2202
2203 if (!mpfr_nan_p(imag) && !mpfr_inf_p(imag) && !mpfr_zero_p(imag))
2204 {
2205 if (mpfr_get_exp(imag) > max_exp)
2206 {
2207 error_at(location, "complex imaginary part constant overflow");
2208 return false;
2209 }
2210 }
2211
2212 return true;
2213 }
2214
2215 // Check the type of a complex value.
2216
2217 void
2218 Complex_expression::do_check_types(Gogo*)
2219 {
2220 if (this->type_ == NULL)
2221 return;
2222
2223 if (!Complex_expression::check_constant(this->real_, this->imag_,
2224 this->type_, this->location()))
2225 this->set_is_error();
2226 }
2227
2228 // Get a tree for a complex constant.
2229
2230 tree
2231 Complex_expression::do_get_tree(Translate_context* context)
2232 {
2233 Gogo* gogo = context->gogo();
2234 tree type;
2235 if (this->type_ != NULL && !this->type_->is_abstract())
2236 type = this->type_->get_tree(gogo);
2237 else
2238 {
2239 // If we still have an abstract type here, this this is being
2240 // used in a constant expression which didn't get reduced. We
2241 // just use complex128 and hope for the best.
2242 type = Type::lookup_complex_type("complex128")->get_tree(gogo);
2243 }
2244 return Expression::complex_constant_tree(this->real_, this->imag_, type);
2245 }
2246
2247 // Write REAL/IMAG to export data.
2248
2249 void
2250 Complex_expression::export_complex(Export* exp, const mpfr_t real,
2251 const mpfr_t imag)
2252 {
2253 if (!mpfr_zero_p(real))
2254 {
2255 Float_expression::export_float(exp, real);
2256 if (mpfr_sgn(imag) > 0)
2257 exp->write_c_string("+");
2258 }
2259 Float_expression::export_float(exp, imag);
2260 exp->write_c_string("i");
2261 }
2262
2263 // Export a complex number in a constant expression.
2264
2265 void
2266 Complex_expression::do_export(Export* exp) const
2267 {
2268 Complex_expression::export_complex(exp, this->real_, this->imag_);
2269 // A trailing space lets us reliably identify the end of the number.
2270 exp->write_c_string(" ");
2271 }
2272
2273 // Make a complex expression.
2274
2275 Expression*
2276 Expression::make_complex(const mpfr_t* real, const mpfr_t* imag, Type* type,
2277 source_location location)
2278 {
2279 return new Complex_expression(real, imag, type, location);
2280 }
2281
2282 // A reference to a const in an expression.
2283
2284 class Const_expression : public Expression
2285 {
2286 public:
2287 Const_expression(Named_object* constant, source_location location)
2288 : Expression(EXPRESSION_CONST_REFERENCE, location),
2289 constant_(constant), type_(NULL)
2290 { }
2291
2292 const std::string&
2293 name() const
2294 { return this->constant_->name(); }
2295
2296 protected:
2297 Expression*
2298 do_lower(Gogo*, Named_object*, int);
2299
2300 bool
2301 do_is_constant() const
2302 { return true; }
2303
2304 bool
2305 do_integer_constant_value(bool, mpz_t val, Type**) const;
2306
2307 bool
2308 do_float_constant_value(mpfr_t val, Type**) const;
2309
2310 bool
2311 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const;
2312
2313 bool
2314 do_string_constant_value(std::string* val) const
2315 { return this->constant_->const_value()->expr()->string_constant_value(val); }
2316
2317 Type*
2318 do_type();
2319
2320 // The type of a const is set by the declaration, not the use.
2321 void
2322 do_determine_type(const Type_context*);
2323
2324 void
2325 do_check_types(Gogo*);
2326
2327 Expression*
2328 do_copy()
2329 { return this; }
2330
2331 tree
2332 do_get_tree(Translate_context* context);
2333
2334 // When exporting a reference to a const as part of a const
2335 // expression, we export the value. We ignore the fact that it has
2336 // a name.
2337 void
2338 do_export(Export* exp) const
2339 { this->constant_->const_value()->expr()->export_expression(exp); }
2340
2341 private:
2342 // The constant.
2343 Named_object* constant_;
2344 // The type of this reference. This is used if the constant has an
2345 // abstract type.
2346 Type* type_;
2347 };
2348
2349 // Lower a constant expression. This is where we convert the
2350 // predeclared constant iota into an integer value.
2351
2352 Expression*
2353 Const_expression::do_lower(Gogo* gogo, Named_object*, int iota_value)
2354 {
2355 if (this->constant_->const_value()->expr()->classification()
2356 == EXPRESSION_IOTA)
2357 {
2358 if (iota_value == -1)
2359 {
2360 error_at(this->location(),
2361 "iota is only defined in const declarations");
2362 iota_value = 0;
2363 }
2364 mpz_t val;
2365 mpz_init_set_ui(val, static_cast<unsigned long>(iota_value));
2366 Expression* ret = Expression::make_integer(&val, NULL,
2367 this->location());
2368 mpz_clear(val);
2369 return ret;
2370 }
2371
2372 // Make sure that the constant itself has been lowered.
2373 gogo->lower_constant(this->constant_);
2374
2375 return this;
2376 }
2377
2378 // Return an integer constant value.
2379
2380 bool
2381 Const_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
2382 Type** ptype) const
2383 {
2384 Type* ctype;
2385 if (this->type_ != NULL)
2386 ctype = this->type_;
2387 else
2388 ctype = this->constant_->const_value()->type();
2389 if (ctype != NULL && ctype->integer_type() == NULL)
2390 return false;
2391
2392 Expression* e = this->constant_->const_value()->expr();
2393 Type* t;
2394 bool r = e->integer_constant_value(iota_is_constant, val, &t);
2395
2396 if (r
2397 && ctype != NULL
2398 && !Integer_expression::check_constant(val, ctype, this->location()))
2399 return false;
2400
2401 *ptype = ctype != NULL ? ctype : t;
2402 return r;
2403 }
2404
2405 // Return a floating point constant value.
2406
2407 bool
2408 Const_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
2409 {
2410 Type* ctype;
2411 if (this->type_ != NULL)
2412 ctype = this->type_;
2413 else
2414 ctype = this->constant_->const_value()->type();
2415 if (ctype != NULL && ctype->float_type() == NULL)
2416 return false;
2417
2418 Type* t;
2419 bool r = this->constant_->const_value()->expr()->float_constant_value(val,
2420 &t);
2421 if (r && ctype != NULL)
2422 {
2423 if (!Float_expression::check_constant(val, ctype, this->location()))
2424 return false;
2425 Float_expression::constrain_float(val, ctype);
2426 }
2427 *ptype = ctype != NULL ? ctype : t;
2428 return r;
2429 }
2430
2431 // Return a complex constant value.
2432
2433 bool
2434 Const_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
2435 Type **ptype) const
2436 {
2437 Type* ctype;
2438 if (this->type_ != NULL)
2439 ctype = this->type_;
2440 else
2441 ctype = this->constant_->const_value()->type();
2442 if (ctype != NULL && ctype->complex_type() == NULL)
2443 return false;
2444
2445 Type *t;
2446 bool r = this->constant_->const_value()->expr()->complex_constant_value(real,
2447 imag,
2448 &t);
2449 if (r && ctype != NULL)
2450 {
2451 if (!Complex_expression::check_constant(real, imag, ctype,
2452 this->location()))
2453 return false;
2454 Complex_expression::constrain_complex(real, imag, ctype);
2455 }
2456 *ptype = ctype != NULL ? ctype : t;
2457 return r;
2458 }
2459
2460 // Return the type of the const reference.
2461
2462 Type*
2463 Const_expression::do_type()
2464 {
2465 if (this->type_ != NULL)
2466 return this->type_;
2467 Named_constant* nc = this->constant_->const_value();
2468 Type* ret = nc->type();
2469 if (ret != NULL)
2470 return ret;
2471 // During parsing, a named constant may have a NULL type, but we
2472 // must not return a NULL type here.
2473 return nc->expr()->type();
2474 }
2475
2476 // Set the type of the const reference.
2477
2478 void
2479 Const_expression::do_determine_type(const Type_context* context)
2480 {
2481 Type* ctype = this->constant_->const_value()->type();
2482 Type* cetype = (ctype != NULL
2483 ? ctype
2484 : this->constant_->const_value()->expr()->type());
2485 if (ctype != NULL && !ctype->is_abstract())
2486 ;
2487 else if (context->type != NULL
2488 && (context->type->integer_type() != NULL
2489 || context->type->float_type() != NULL
2490 || context->type->complex_type() != NULL)
2491 && (cetype->integer_type() != NULL
2492 || cetype->float_type() != NULL
2493 || cetype->complex_type() != NULL))
2494 this->type_ = context->type;
2495 else if (context->type != NULL
2496 && context->type->is_string_type()
2497 && cetype->is_string_type())
2498 this->type_ = context->type;
2499 else if (context->type != NULL
2500 && context->type->is_boolean_type()
2501 && cetype->is_boolean_type())
2502 this->type_ = context->type;
2503 else if (!context->may_be_abstract)
2504 {
2505 if (cetype->is_abstract())
2506 cetype = cetype->make_non_abstract_type();
2507 this->type_ = cetype;
2508 }
2509 }
2510
2511 // Check types of a const reference.
2512
2513 void
2514 Const_expression::do_check_types(Gogo*)
2515 {
2516 if (this->type_ == NULL || this->type_->is_abstract())
2517 return;
2518
2519 // Check for integer overflow.
2520 if (this->type_->integer_type() != NULL)
2521 {
2522 mpz_t ival;
2523 mpz_init(ival);
2524 Type* dummy;
2525 if (!this->integer_constant_value(true, ival, &dummy))
2526 {
2527 mpfr_t fval;
2528 mpfr_init(fval);
2529 Expression* cexpr = this->constant_->const_value()->expr();
2530 if (cexpr->float_constant_value(fval, &dummy))
2531 {
2532 if (!mpfr_integer_p(fval))
2533 this->report_error(_("floating point constant "
2534 "truncated to integer"));
2535 else
2536 {
2537 mpfr_get_z(ival, fval, GMP_RNDN);
2538 Integer_expression::check_constant(ival, this->type_,
2539 this->location());
2540 }
2541 }
2542 mpfr_clear(fval);
2543 }
2544 mpz_clear(ival);
2545 }
2546 }
2547
2548 // Return a tree for the const reference.
2549
2550 tree
2551 Const_expression::do_get_tree(Translate_context* context)
2552 {
2553 Gogo* gogo = context->gogo();
2554 tree type_tree;
2555 if (this->type_ == NULL)
2556 type_tree = NULL_TREE;
2557 else
2558 {
2559 type_tree = this->type_->get_tree(gogo);
2560 if (type_tree == error_mark_node)
2561 return error_mark_node;
2562 }
2563
2564 // If the type has been set for this expression, but the underlying
2565 // object is an abstract int or float, we try to get the abstract
2566 // value. Otherwise we may lose something in the conversion.
2567 if (this->type_ != NULL
2568 && this->constant_->const_value()->type()->is_abstract())
2569 {
2570 Expression* expr = this->constant_->const_value()->expr();
2571 mpz_t ival;
2572 mpz_init(ival);
2573 Type* t;
2574 if (expr->integer_constant_value(true, ival, &t))
2575 {
2576 tree ret = Expression::integer_constant_tree(ival, type_tree);
2577 mpz_clear(ival);
2578 return ret;
2579 }
2580 mpz_clear(ival);
2581
2582 mpfr_t fval;
2583 mpfr_init(fval);
2584 if (expr->float_constant_value(fval, &t))
2585 {
2586 tree ret = Expression::float_constant_tree(fval, type_tree);
2587 mpfr_clear(fval);
2588 return ret;
2589 }
2590
2591 mpfr_t imag;
2592 mpfr_init(imag);
2593 if (expr->complex_constant_value(fval, imag, &t))
2594 {
2595 tree ret = Expression::complex_constant_tree(fval, imag, type_tree);
2596 mpfr_clear(fval);
2597 mpfr_clear(imag);
2598 return ret;
2599 }
2600 mpfr_clear(imag);
2601 mpfr_clear(fval);
2602 }
2603
2604 tree const_tree = this->constant_->get_tree(gogo, context->function());
2605 if (this->type_ == NULL
2606 || const_tree == error_mark_node
2607 || TREE_TYPE(const_tree) == error_mark_node)
2608 return const_tree;
2609
2610 tree ret;
2611 if (TYPE_MAIN_VARIANT(type_tree) == TYPE_MAIN_VARIANT(TREE_TYPE(const_tree)))
2612 ret = fold_convert(type_tree, const_tree);
2613 else if (TREE_CODE(type_tree) == INTEGER_TYPE)
2614 ret = fold(convert_to_integer(type_tree, const_tree));
2615 else if (TREE_CODE(type_tree) == REAL_TYPE)
2616 ret = fold(convert_to_real(type_tree, const_tree));
2617 else if (TREE_CODE(type_tree) == COMPLEX_TYPE)
2618 ret = fold(convert_to_complex(type_tree, const_tree));
2619 else
2620 gcc_unreachable();
2621 return ret;
2622 }
2623
2624 // Make a reference to a constant in an expression.
2625
2626 Expression*
2627 Expression::make_const_reference(Named_object* constant,
2628 source_location location)
2629 {
2630 return new Const_expression(constant, location);
2631 }
2632
2633 // The nil value.
2634
2635 class Nil_expression : public Expression
2636 {
2637 public:
2638 Nil_expression(source_location location)
2639 : Expression(EXPRESSION_NIL, location)
2640 { }
2641
2642 static Expression*
2643 do_import(Import*);
2644
2645 protected:
2646 bool
2647 do_is_constant() const
2648 { return true; }
2649
2650 Type*
2651 do_type()
2652 { return Type::make_nil_type(); }
2653
2654 void
2655 do_determine_type(const Type_context*)
2656 { }
2657
2658 Expression*
2659 do_copy()
2660 { return this; }
2661
2662 tree
2663 do_get_tree(Translate_context*)
2664 { return null_pointer_node; }
2665
2666 void
2667 do_export(Export* exp) const
2668 { exp->write_c_string("nil"); }
2669 };
2670
2671 // Import a nil expression.
2672
2673 Expression*
2674 Nil_expression::do_import(Import* imp)
2675 {
2676 imp->require_c_string("nil");
2677 return Expression::make_nil(imp->location());
2678 }
2679
2680 // Make a nil expression.
2681
2682 Expression*
2683 Expression::make_nil(source_location location)
2684 {
2685 return new Nil_expression(location);
2686 }
2687
2688 // The value of the predeclared constant iota. This is little more
2689 // than a marker. This will be lowered to an integer in
2690 // Const_expression::do_lower, which is where we know the value that
2691 // it should have.
2692
2693 class Iota_expression : public Parser_expression
2694 {
2695 public:
2696 Iota_expression(source_location location)
2697 : Parser_expression(EXPRESSION_IOTA, location)
2698 { }
2699
2700 protected:
2701 Expression*
2702 do_lower(Gogo*, Named_object*, int)
2703 { gcc_unreachable(); }
2704
2705 // There should only ever be one of these.
2706 Expression*
2707 do_copy()
2708 { gcc_unreachable(); }
2709 };
2710
2711 // Make an iota expression. This is only called for one case: the
2712 // value of the predeclared constant iota.
2713
2714 Expression*
2715 Expression::make_iota()
2716 {
2717 static Iota_expression iota_expression(UNKNOWN_LOCATION);
2718 return &iota_expression;
2719 }
2720
2721 // A type conversion expression.
2722
2723 class Type_conversion_expression : public Expression
2724 {
2725 public:
2726 Type_conversion_expression(Type* type, Expression* expr,
2727 source_location location)
2728 : Expression(EXPRESSION_CONVERSION, location),
2729 type_(type), expr_(expr), may_convert_function_types_(false)
2730 { }
2731
2732 // Return the type to which we are converting.
2733 Type*
2734 type() const
2735 { return this->type_; }
2736
2737 // Return the expression which we are converting.
2738 Expression*
2739 expr() const
2740 { return this->expr_; }
2741
2742 // Permit converting from one function type to another. This is
2743 // used internally for method expressions.
2744 void
2745 set_may_convert_function_types()
2746 {
2747 this->may_convert_function_types_ = true;
2748 }
2749
2750 // Import a type conversion expression.
2751 static Expression*
2752 do_import(Import*);
2753
2754 protected:
2755 int
2756 do_traverse(Traverse* traverse);
2757
2758 Expression*
2759 do_lower(Gogo*, Named_object*, int);
2760
2761 bool
2762 do_is_constant() const
2763 { return this->expr_->is_constant(); }
2764
2765 bool
2766 do_integer_constant_value(bool, mpz_t, Type**) const;
2767
2768 bool
2769 do_float_constant_value(mpfr_t, Type**) const;
2770
2771 bool
2772 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
2773
2774 bool
2775 do_string_constant_value(std::string*) const;
2776
2777 Type*
2778 do_type()
2779 { return this->type_; }
2780
2781 void
2782 do_determine_type(const Type_context*)
2783 {
2784 Type_context subcontext(this->type_, false);
2785 this->expr_->determine_type(&subcontext);
2786 }
2787
2788 void
2789 do_check_types(Gogo*);
2790
2791 Expression*
2792 do_copy()
2793 {
2794 return new Type_conversion_expression(this->type_, this->expr_->copy(),
2795 this->location());
2796 }
2797
2798 tree
2799 do_get_tree(Translate_context* context);
2800
2801 void
2802 do_export(Export*) const;
2803
2804 private:
2805 // The type to convert to.
2806 Type* type_;
2807 // The expression to convert.
2808 Expression* expr_;
2809 // True if this is permitted to convert function types. This is
2810 // used internally for method expressions.
2811 bool may_convert_function_types_;
2812 };
2813
2814 // Traversal.
2815
2816 int
2817 Type_conversion_expression::do_traverse(Traverse* traverse)
2818 {
2819 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
2820 || Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
2821 return TRAVERSE_EXIT;
2822 return TRAVERSE_CONTINUE;
2823 }
2824
2825 // Convert to a constant at lowering time.
2826
2827 Expression*
2828 Type_conversion_expression::do_lower(Gogo*, Named_object*, int)
2829 {
2830 Type* type = this->type_;
2831 Expression* val = this->expr_;
2832 source_location location = this->location();
2833
2834 if (type->integer_type() != NULL)
2835 {
2836 mpz_t ival;
2837 mpz_init(ival);
2838 Type* dummy;
2839 if (val->integer_constant_value(false, ival, &dummy))
2840 {
2841 if (!Integer_expression::check_constant(ival, type, location))
2842 mpz_set_ui(ival, 0);
2843 Expression* ret = Expression::make_integer(&ival, type, location);
2844 mpz_clear(ival);
2845 return ret;
2846 }
2847
2848 mpfr_t fval;
2849 mpfr_init(fval);
2850 if (val->float_constant_value(fval, &dummy))
2851 {
2852 if (!mpfr_integer_p(fval))
2853 {
2854 error_at(location,
2855 "floating point constant truncated to integer");
2856 return Expression::make_error(location);
2857 }
2858 mpfr_get_z(ival, fval, GMP_RNDN);
2859 if (!Integer_expression::check_constant(ival, type, location))
2860 mpz_set_ui(ival, 0);
2861 Expression* ret = Expression::make_integer(&ival, type, location);
2862 mpfr_clear(fval);
2863 mpz_clear(ival);
2864 return ret;
2865 }
2866 mpfr_clear(fval);
2867 mpz_clear(ival);
2868 }
2869
2870 if (type->float_type() != NULL)
2871 {
2872 mpfr_t fval;
2873 mpfr_init(fval);
2874 Type* dummy;
2875 if (val->float_constant_value(fval, &dummy))
2876 {
2877 if (!Float_expression::check_constant(fval, type, location))
2878 mpfr_set_ui(fval, 0, GMP_RNDN);
2879 Float_expression::constrain_float(fval, type);
2880 Expression *ret = Expression::make_float(&fval, type, location);
2881 mpfr_clear(fval);
2882 return ret;
2883 }
2884 mpfr_clear(fval);
2885 }
2886
2887 if (type->complex_type() != NULL)
2888 {
2889 mpfr_t real;
2890 mpfr_t imag;
2891 mpfr_init(real);
2892 mpfr_init(imag);
2893 Type* dummy;
2894 if (val->complex_constant_value(real, imag, &dummy))
2895 {
2896 if (!Complex_expression::check_constant(real, imag, type, location))
2897 {
2898 mpfr_set_ui(real, 0, GMP_RNDN);
2899 mpfr_set_ui(imag, 0, GMP_RNDN);
2900 }
2901 Complex_expression::constrain_complex(real, imag, type);
2902 Expression* ret = Expression::make_complex(&real, &imag, type,
2903 location);
2904 mpfr_clear(real);
2905 mpfr_clear(imag);
2906 return ret;
2907 }
2908 mpfr_clear(real);
2909 mpfr_clear(imag);
2910 }
2911
2912 if (type->is_open_array_type() && type->named_type() == NULL)
2913 {
2914 Type* element_type = type->array_type()->element_type()->forwarded();
2915 bool is_byte = element_type == Type::lookup_integer_type("uint8");
2916 bool is_int = element_type == Type::lookup_integer_type("int");
2917 if (is_byte || is_int)
2918 {
2919 std::string s;
2920 if (val->string_constant_value(&s))
2921 {
2922 Expression_list* vals = new Expression_list();
2923 if (is_byte)
2924 {
2925 for (std::string::const_iterator p = s.begin();
2926 p != s.end();
2927 p++)
2928 {
2929 mpz_t val;
2930 mpz_init_set_ui(val, static_cast<unsigned char>(*p));
2931 Expression* v = Expression::make_integer(&val,
2932 element_type,
2933 location);
2934 vals->push_back(v);
2935 mpz_clear(val);
2936 }
2937 }
2938 else
2939 {
2940 const char *p = s.data();
2941 const char *pend = s.data() + s.length();
2942 while (p < pend)
2943 {
2944 unsigned int c;
2945 int adv = Lex::fetch_char(p, &c);
2946 if (adv == 0)
2947 {
2948 warning_at(this->location(), 0,
2949 "invalid UTF-8 encoding");
2950 adv = 1;
2951 }
2952 p += adv;
2953 mpz_t val;
2954 mpz_init_set_ui(val, c);
2955 Expression* v = Expression::make_integer(&val,
2956 element_type,
2957 location);
2958 vals->push_back(v);
2959 mpz_clear(val);
2960 }
2961 }
2962
2963 return Expression::make_slice_composite_literal(type, vals,
2964 location);
2965 }
2966 }
2967 }
2968
2969 return this;
2970 }
2971
2972 // Return the constant integer value if there is one.
2973
2974 bool
2975 Type_conversion_expression::do_integer_constant_value(bool iota_is_constant,
2976 mpz_t val,
2977 Type** ptype) const
2978 {
2979 if (this->type_->integer_type() == NULL)
2980 return false;
2981
2982 mpz_t ival;
2983 mpz_init(ival);
2984 Type* dummy;
2985 if (this->expr_->integer_constant_value(iota_is_constant, ival, &dummy))
2986 {
2987 if (!Integer_expression::check_constant(ival, this->type_,
2988 this->location()))
2989 {
2990 mpz_clear(ival);
2991 return false;
2992 }
2993 mpz_set(val, ival);
2994 mpz_clear(ival);
2995 *ptype = this->type_;
2996 return true;
2997 }
2998 mpz_clear(ival);
2999
3000 mpfr_t fval;
3001 mpfr_init(fval);
3002 if (this->expr_->float_constant_value(fval, &dummy))
3003 {
3004 mpfr_get_z(val, fval, GMP_RNDN);
3005 mpfr_clear(fval);
3006 if (!Integer_expression::check_constant(val, this->type_,
3007 this->location()))
3008 return false;
3009 *ptype = this->type_;
3010 return true;
3011 }
3012 mpfr_clear(fval);
3013
3014 return false;
3015 }
3016
3017 // Return the constant floating point value if there is one.
3018
3019 bool
3020 Type_conversion_expression::do_float_constant_value(mpfr_t val,
3021 Type** ptype) const
3022 {
3023 if (this->type_->float_type() == NULL)
3024 return false;
3025
3026 mpfr_t fval;
3027 mpfr_init(fval);
3028 Type* dummy;
3029 if (this->expr_->float_constant_value(fval, &dummy))
3030 {
3031 if (!Float_expression::check_constant(fval, this->type_,
3032 this->location()))
3033 {
3034 mpfr_clear(fval);
3035 return false;
3036 }
3037 mpfr_set(val, fval, GMP_RNDN);
3038 mpfr_clear(fval);
3039 Float_expression::constrain_float(val, this->type_);
3040 *ptype = this->type_;
3041 return true;
3042 }
3043 mpfr_clear(fval);
3044
3045 return false;
3046 }
3047
3048 // Return the constant complex value if there is one.
3049
3050 bool
3051 Type_conversion_expression::do_complex_constant_value(mpfr_t real,
3052 mpfr_t imag,
3053 Type **ptype) const
3054 {
3055 if (this->type_->complex_type() == NULL)
3056 return false;
3057
3058 mpfr_t rval;
3059 mpfr_t ival;
3060 mpfr_init(rval);
3061 mpfr_init(ival);
3062 Type* dummy;
3063 if (this->expr_->complex_constant_value(rval, ival, &dummy))
3064 {
3065 if (!Complex_expression::check_constant(rval, ival, this->type_,
3066 this->location()))
3067 {
3068 mpfr_clear(rval);
3069 mpfr_clear(ival);
3070 return false;
3071 }
3072 mpfr_set(real, rval, GMP_RNDN);
3073 mpfr_set(imag, ival, GMP_RNDN);
3074 mpfr_clear(rval);
3075 mpfr_clear(ival);
3076 Complex_expression::constrain_complex(real, imag, this->type_);
3077 *ptype = this->type_;
3078 return true;
3079 }
3080 mpfr_clear(rval);
3081 mpfr_clear(ival);
3082
3083 return false;
3084 }
3085
3086 // Return the constant string value if there is one.
3087
3088 bool
3089 Type_conversion_expression::do_string_constant_value(std::string* val) const
3090 {
3091 if (this->type_->is_string_type()
3092 && this->expr_->type()->integer_type() != NULL)
3093 {
3094 mpz_t ival;
3095 mpz_init(ival);
3096 Type* dummy;
3097 if (this->expr_->integer_constant_value(false, ival, &dummy))
3098 {
3099 unsigned long ulval = mpz_get_ui(ival);
3100 if (mpz_cmp_ui(ival, ulval) == 0)
3101 {
3102 Lex::append_char(ulval, true, val, this->location());
3103 mpz_clear(ival);
3104 return true;
3105 }
3106 }
3107 mpz_clear(ival);
3108 }
3109
3110 // FIXME: Could handle conversion from const []int here.
3111
3112 return false;
3113 }
3114
3115 // Check that types are convertible.
3116
3117 void
3118 Type_conversion_expression::do_check_types(Gogo*)
3119 {
3120 Type* type = this->type_;
3121 Type* expr_type = this->expr_->type();
3122 std::string reason;
3123
3124 if (this->may_convert_function_types_
3125 && type->function_type() != NULL
3126 && expr_type->function_type() != NULL)
3127 return;
3128
3129 if (Type::are_convertible(type, expr_type, &reason))
3130 return;
3131
3132 error_at(this->location(), "%s", reason.c_str());
3133 this->set_is_error();
3134 }
3135
3136 // Get a tree for a type conversion.
3137
3138 tree
3139 Type_conversion_expression::do_get_tree(Translate_context* context)
3140 {
3141 Gogo* gogo = context->gogo();
3142 tree type_tree = this->type_->get_tree(gogo);
3143 tree expr_tree = this->expr_->get_tree(context);
3144
3145 if (type_tree == error_mark_node
3146 || expr_tree == error_mark_node
3147 || TREE_TYPE(expr_tree) == error_mark_node)
3148 return error_mark_node;
3149
3150 if (TYPE_MAIN_VARIANT(type_tree) == TYPE_MAIN_VARIANT(TREE_TYPE(expr_tree)))
3151 return fold_convert(type_tree, expr_tree);
3152
3153 Type* type = this->type_;
3154 Type* expr_type = this->expr_->type();
3155 tree ret;
3156 if (type->interface_type() != NULL || expr_type->interface_type() != NULL)
3157 ret = Expression::convert_for_assignment(context, type, expr_type,
3158 expr_tree, this->location());
3159 else if (type->integer_type() != NULL)
3160 {
3161 if (expr_type->integer_type() != NULL
3162 || expr_type->float_type() != NULL
3163 || expr_type->is_unsafe_pointer_type())
3164 ret = fold(convert_to_integer(type_tree, expr_tree));
3165 else
3166 gcc_unreachable();
3167 }
3168 else if (type->float_type() != NULL)
3169 {
3170 if (expr_type->integer_type() != NULL
3171 || expr_type->float_type() != NULL)
3172 ret = fold(convert_to_real(type_tree, expr_tree));
3173 else
3174 gcc_unreachable();
3175 }
3176 else if (type->complex_type() != NULL)
3177 {
3178 if (expr_type->complex_type() != NULL)
3179 ret = fold(convert_to_complex(type_tree, expr_tree));
3180 else
3181 gcc_unreachable();
3182 }
3183 else if (type->is_string_type()
3184 && expr_type->integer_type() != NULL)
3185 {
3186 expr_tree = fold_convert(integer_type_node, expr_tree);
3187 if (host_integerp(expr_tree, 0))
3188 {
3189 HOST_WIDE_INT intval = tree_low_cst(expr_tree, 0);
3190 std::string s;
3191 Lex::append_char(intval, true, &s, this->location());
3192 Expression* se = Expression::make_string(s, this->location());
3193 return se->get_tree(context);
3194 }
3195
3196 static tree int_to_string_fndecl;
3197 ret = Gogo::call_builtin(&int_to_string_fndecl,
3198 this->location(),
3199 "__go_int_to_string",
3200 1,
3201 type_tree,
3202 integer_type_node,
3203 fold_convert(integer_type_node, expr_tree));
3204 }
3205 else if (type->is_string_type()
3206 && (expr_type->array_type() != NULL
3207 || (expr_type->points_to() != NULL
3208 && expr_type->points_to()->array_type() != NULL)))
3209 {
3210 Type* t = expr_type;
3211 if (t->points_to() != NULL)
3212 {
3213 t = t->points_to();
3214 expr_tree = build_fold_indirect_ref(expr_tree);
3215 }
3216 if (!DECL_P(expr_tree))
3217 expr_tree = save_expr(expr_tree);
3218 Array_type* a = t->array_type();
3219 Type* e = a->element_type()->forwarded();
3220 gcc_assert(e->integer_type() != NULL);
3221 tree valptr = fold_convert(const_ptr_type_node,
3222 a->value_pointer_tree(gogo, expr_tree));
3223 tree len = a->length_tree(gogo, expr_tree);
3224 len = fold_convert_loc(this->location(), size_type_node, len);
3225 if (e->integer_type()->is_unsigned()
3226 && e->integer_type()->bits() == 8)
3227 {
3228 static tree byte_array_to_string_fndecl;
3229 ret = Gogo::call_builtin(&byte_array_to_string_fndecl,
3230 this->location(),
3231 "__go_byte_array_to_string",
3232 2,
3233 type_tree,
3234 const_ptr_type_node,
3235 valptr,
3236 size_type_node,
3237 len);
3238 }
3239 else
3240 {
3241 gcc_assert(e == Type::lookup_integer_type("int"));
3242 static tree int_array_to_string_fndecl;
3243 ret = Gogo::call_builtin(&int_array_to_string_fndecl,
3244 this->location(),
3245 "__go_int_array_to_string",
3246 2,
3247 type_tree,
3248 const_ptr_type_node,
3249 valptr,
3250 size_type_node,
3251 len);
3252 }
3253 }
3254 else if (type->is_open_array_type() && expr_type->is_string_type())
3255 {
3256 Type* e = type->array_type()->element_type()->forwarded();
3257 gcc_assert(e->integer_type() != NULL);
3258 if (e->integer_type()->is_unsigned()
3259 && e->integer_type()->bits() == 8)
3260 {
3261 static tree string_to_byte_array_fndecl;
3262 ret = Gogo::call_builtin(&string_to_byte_array_fndecl,
3263 this->location(),
3264 "__go_string_to_byte_array",
3265 1,
3266 type_tree,
3267 TREE_TYPE(expr_tree),
3268 expr_tree);
3269 }
3270 else
3271 {
3272 gcc_assert(e == Type::lookup_integer_type("int"));
3273 static tree string_to_int_array_fndecl;
3274 ret = Gogo::call_builtin(&string_to_int_array_fndecl,
3275 this->location(),
3276 "__go_string_to_int_array",
3277 1,
3278 type_tree,
3279 TREE_TYPE(expr_tree),
3280 expr_tree);
3281 }
3282 }
3283 else if ((type->is_unsafe_pointer_type()
3284 && expr_type->points_to() != NULL)
3285 || (expr_type->is_unsafe_pointer_type()
3286 && type->points_to() != NULL))
3287 ret = fold_convert(type_tree, expr_tree);
3288 else if (type->is_unsafe_pointer_type()
3289 && expr_type->integer_type() != NULL)
3290 ret = convert_to_pointer(type_tree, expr_tree);
3291 else if (this->may_convert_function_types_
3292 && type->function_type() != NULL
3293 && expr_type->function_type() != NULL)
3294 ret = fold_convert_loc(this->location(), type_tree, expr_tree);
3295 else
3296 ret = Expression::convert_for_assignment(context, type, expr_type,
3297 expr_tree, this->location());
3298
3299 return ret;
3300 }
3301
3302 // Output a type conversion in a constant expression.
3303
3304 void
3305 Type_conversion_expression::do_export(Export* exp) const
3306 {
3307 exp->write_c_string("convert(");
3308 exp->write_type(this->type_);
3309 exp->write_c_string(", ");
3310 this->expr_->export_expression(exp);
3311 exp->write_c_string(")");
3312 }
3313
3314 // Import a type conversion or a struct construction.
3315
3316 Expression*
3317 Type_conversion_expression::do_import(Import* imp)
3318 {
3319 imp->require_c_string("convert(");
3320 Type* type = imp->read_type();
3321 imp->require_c_string(", ");
3322 Expression* val = Expression::import_expression(imp);
3323 imp->require_c_string(")");
3324 return Expression::make_cast(type, val, imp->location());
3325 }
3326
3327 // Make a type cast expression.
3328
3329 Expression*
3330 Expression::make_cast(Type* type, Expression* val, source_location location)
3331 {
3332 if (type->is_error_type() || val->is_error_expression())
3333 return Expression::make_error(location);
3334 return new Type_conversion_expression(type, val, location);
3335 }
3336
3337 // Unary expressions.
3338
3339 class Unary_expression : public Expression
3340 {
3341 public:
3342 Unary_expression(Operator op, Expression* expr, source_location location)
3343 : Expression(EXPRESSION_UNARY, location),
3344 op_(op), escapes_(true), expr_(expr)
3345 { }
3346
3347 // Return the operator.
3348 Operator
3349 op() const
3350 { return this->op_; }
3351
3352 // Return the operand.
3353 Expression*
3354 operand() const
3355 { return this->expr_; }
3356
3357 // Record that an address expression does not escape.
3358 void
3359 set_does_not_escape()
3360 {
3361 gcc_assert(this->op_ == OPERATOR_AND);
3362 this->escapes_ = false;
3363 }
3364
3365 // Apply unary opcode OP to UVAL, setting VAL. Return true if this
3366 // could be done, false if not.
3367 static bool
3368 eval_integer(Operator op, Type* utype, mpz_t uval, mpz_t val,
3369 source_location);
3370
3371 // Apply unary opcode OP to UVAL, setting VAL. Return true if this
3372 // could be done, false if not.
3373 static bool
3374 eval_float(Operator op, mpfr_t uval, mpfr_t val);
3375
3376 // Apply unary opcode OP to UREAL/UIMAG, setting REAL/IMAG. Return
3377 // true if this could be done, false if not.
3378 static bool
3379 eval_complex(Operator op, mpfr_t ureal, mpfr_t uimag, mpfr_t real,
3380 mpfr_t imag);
3381
3382 static Expression*
3383 do_import(Import*);
3384
3385 protected:
3386 int
3387 do_traverse(Traverse* traverse)
3388 { return Expression::traverse(&this->expr_, traverse); }
3389
3390 Expression*
3391 do_lower(Gogo*, Named_object*, int);
3392
3393 bool
3394 do_is_constant() const;
3395
3396 bool
3397 do_integer_constant_value(bool, mpz_t, Type**) const;
3398
3399 bool
3400 do_float_constant_value(mpfr_t, Type**) const;
3401
3402 bool
3403 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
3404
3405 Type*
3406 do_type();
3407
3408 void
3409 do_determine_type(const Type_context*);
3410
3411 void
3412 do_check_types(Gogo*);
3413
3414 Expression*
3415 do_copy()
3416 {
3417 return Expression::make_unary(this->op_, this->expr_->copy(),
3418 this->location());
3419 }
3420
3421 bool
3422 do_is_addressable() const
3423 { return this->op_ == OPERATOR_MULT; }
3424
3425 tree
3426 do_get_tree(Translate_context*);
3427
3428 void
3429 do_export(Export*) const;
3430
3431 private:
3432 // The unary operator to apply.
3433 Operator op_;
3434 // Normally true. False if this is an address expression which does
3435 // not escape the current function.
3436 bool escapes_;
3437 // The operand.
3438 Expression* expr_;
3439 };
3440
3441 // If we are taking the address of a composite literal, and the
3442 // contents are not constant, then we want to make a heap composite
3443 // instead.
3444
3445 Expression*
3446 Unary_expression::do_lower(Gogo*, Named_object*, int)
3447 {
3448 source_location loc = this->location();
3449 Operator op = this->op_;
3450 Expression* expr = this->expr_;
3451
3452 if (op == OPERATOR_MULT && expr->is_type_expression())
3453 return Expression::make_type(Type::make_pointer_type(expr->type()), loc);
3454
3455 // *&x simplifies to x. *(*T)(unsafe.Pointer)(&x) does not require
3456 // moving x to the heap. FIXME: Is it worth doing a real escape
3457 // analysis here? This case is found in math/unsafe.go and is
3458 // therefore worth special casing.
3459 if (op == OPERATOR_MULT)
3460 {
3461 Expression* e = expr;
3462 while (e->classification() == EXPRESSION_CONVERSION)
3463 {
3464 Type_conversion_expression* te
3465 = static_cast<Type_conversion_expression*>(e);
3466 e = te->expr();
3467 }
3468
3469 if (e->classification() == EXPRESSION_UNARY)
3470 {
3471 Unary_expression* ue = static_cast<Unary_expression*>(e);
3472 if (ue->op_ == OPERATOR_AND)
3473 {
3474 if (e == expr)
3475 {
3476 // *&x == x.
3477 return ue->expr_;
3478 }
3479 ue->set_does_not_escape();
3480 }
3481 }
3482 }
3483
3484 if (op == OPERATOR_PLUS || op == OPERATOR_MINUS
3485 || op == OPERATOR_NOT || op == OPERATOR_XOR)
3486 {
3487 Expression* ret = NULL;
3488
3489 mpz_t eval;
3490 mpz_init(eval);
3491 Type* etype;
3492 if (expr->integer_constant_value(false, eval, &etype))
3493 {
3494 mpz_t val;
3495 mpz_init(val);
3496 if (Unary_expression::eval_integer(op, etype, eval, val, loc))
3497 ret = Expression::make_integer(&val, etype, loc);
3498 mpz_clear(val);
3499 }
3500 mpz_clear(eval);
3501 if (ret != NULL)
3502 return ret;
3503
3504 if (op == OPERATOR_PLUS || op == OPERATOR_MINUS)
3505 {
3506 mpfr_t fval;
3507 mpfr_init(fval);
3508 Type* ftype;
3509 if (expr->float_constant_value(fval, &ftype))
3510 {
3511 mpfr_t val;
3512 mpfr_init(val);
3513 if (Unary_expression::eval_float(op, fval, val))
3514 ret = Expression::make_float(&val, ftype, loc);
3515 mpfr_clear(val);
3516 }
3517 if (ret != NULL)
3518 {
3519 mpfr_clear(fval);
3520 return ret;
3521 }
3522
3523 mpfr_t ival;
3524 mpfr_init(ival);
3525 if (expr->complex_constant_value(fval, ival, &ftype))
3526 {
3527 mpfr_t real;
3528 mpfr_t imag;
3529 mpfr_init(real);
3530 mpfr_init(imag);
3531 if (Unary_expression::eval_complex(op, fval, ival, real, imag))
3532 ret = Expression::make_complex(&real, &imag, ftype, loc);
3533 mpfr_clear(real);
3534 mpfr_clear(imag);
3535 }
3536 mpfr_clear(ival);
3537 mpfr_clear(fval);
3538 if (ret != NULL)
3539 return ret;
3540 }
3541 }
3542
3543 return this;
3544 }
3545
3546 // Return whether a unary expression is a constant.
3547
3548 bool
3549 Unary_expression::do_is_constant() const
3550 {
3551 if (this->op_ == OPERATOR_MULT)
3552 {
3553 // Indirecting through a pointer is only constant if the object
3554 // to which the expression points is constant, but we currently
3555 // have no way to determine that.
3556 return false;
3557 }
3558 else if (this->op_ == OPERATOR_AND)
3559 {
3560 // Taking the address of a variable is constant if it is a
3561 // global variable, not constant otherwise. In other cases
3562 // taking the address is probably not a constant.
3563 Var_expression* ve = this->expr_->var_expression();
3564 if (ve != NULL)
3565 {
3566 Named_object* no = ve->named_object();
3567 return no->is_variable() && no->var_value()->is_global();
3568 }
3569 return false;
3570 }
3571 else
3572 return this->expr_->is_constant();
3573 }
3574
3575 // Apply unary opcode OP to UVAL, setting VAL. UTYPE is the type of
3576 // UVAL, if known; it may be NULL. Return true if this could be done,
3577 // false if not.
3578
3579 bool
3580 Unary_expression::eval_integer(Operator op, Type* utype, mpz_t uval, mpz_t val,
3581 source_location location)
3582 {
3583 switch (op)
3584 {
3585 case OPERATOR_PLUS:
3586 mpz_set(val, uval);
3587 return true;
3588 case OPERATOR_MINUS:
3589 mpz_neg(val, uval);
3590 return Integer_expression::check_constant(val, utype, location);
3591 case OPERATOR_NOT:
3592 mpz_set_ui(val, mpz_cmp_si(uval, 0) == 0 ? 1 : 0);
3593 return true;
3594 case OPERATOR_XOR:
3595 if (utype == NULL
3596 || utype->integer_type() == NULL
3597 || utype->integer_type()->is_abstract())
3598 mpz_com(val, uval);
3599 else
3600 {
3601 // The number of HOST_WIDE_INTs that it takes to represent
3602 // UVAL.
3603 size_t count = ((mpz_sizeinbase(uval, 2)
3604 + HOST_BITS_PER_WIDE_INT
3605 - 1)
3606 / HOST_BITS_PER_WIDE_INT);
3607
3608 unsigned HOST_WIDE_INT* phwi = new unsigned HOST_WIDE_INT[count];
3609 memset(phwi, 0, count * sizeof(HOST_WIDE_INT));
3610
3611 size_t ecount;
3612 mpz_export(phwi, &ecount, -1, sizeof(HOST_WIDE_INT), 0, 0, uval);
3613 gcc_assert(ecount <= count);
3614
3615 // Trim down to the number of words required by the type.
3616 size_t obits = utype->integer_type()->bits();
3617 if (!utype->integer_type()->is_unsigned())
3618 ++obits;
3619 size_t ocount = ((obits + HOST_BITS_PER_WIDE_INT - 1)
3620 / HOST_BITS_PER_WIDE_INT);
3621 gcc_assert(ocount <= ocount);
3622
3623 for (size_t i = 0; i < ocount; ++i)
3624 phwi[i] = ~phwi[i];
3625
3626 size_t clearbits = ocount * HOST_BITS_PER_WIDE_INT - obits;
3627 if (clearbits != 0)
3628 phwi[ocount - 1] &= (((unsigned HOST_WIDE_INT) (HOST_WIDE_INT) -1)
3629 >> clearbits);
3630
3631 mpz_import(val, ocount, -1, sizeof(HOST_WIDE_INT), 0, 0, phwi);
3632
3633 delete[] phwi;
3634 }
3635 return Integer_expression::check_constant(val, utype, location);
3636 case OPERATOR_AND:
3637 case OPERATOR_MULT:
3638 return false;
3639 default:
3640 gcc_unreachable();
3641 }
3642 }
3643
3644 // Apply unary opcode OP to UVAL, setting VAL. Return true if this
3645 // could be done, false if not.
3646
3647 bool
3648 Unary_expression::eval_float(Operator op, mpfr_t uval, mpfr_t val)
3649 {
3650 switch (op)
3651 {
3652 case OPERATOR_PLUS:
3653 mpfr_set(val, uval, GMP_RNDN);
3654 return true;
3655 case OPERATOR_MINUS:
3656 mpfr_neg(val, uval, GMP_RNDN);
3657 return true;
3658 case OPERATOR_NOT:
3659 case OPERATOR_XOR:
3660 case OPERATOR_AND:
3661 case OPERATOR_MULT:
3662 return false;
3663 default:
3664 gcc_unreachable();
3665 }
3666 }
3667
3668 // Apply unary opcode OP to RVAL/IVAL, setting REAL/IMAG. Return true
3669 // if this could be done, false if not.
3670
3671 bool
3672 Unary_expression::eval_complex(Operator op, mpfr_t rval, mpfr_t ival,
3673 mpfr_t real, mpfr_t imag)
3674 {
3675 switch (op)
3676 {
3677 case OPERATOR_PLUS:
3678 mpfr_set(real, rval, GMP_RNDN);
3679 mpfr_set(imag, ival, GMP_RNDN);
3680 return true;
3681 case OPERATOR_MINUS:
3682 mpfr_neg(real, rval, GMP_RNDN);
3683 mpfr_neg(imag, ival, GMP_RNDN);
3684 return true;
3685 case OPERATOR_NOT:
3686 case OPERATOR_XOR:
3687 case OPERATOR_AND:
3688 case OPERATOR_MULT:
3689 return false;
3690 default:
3691 gcc_unreachable();
3692 }
3693 }
3694
3695 // Return the integral constant value of a unary expression, if it has one.
3696
3697 bool
3698 Unary_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
3699 Type** ptype) const
3700 {
3701 mpz_t uval;
3702 mpz_init(uval);
3703 bool ret;
3704 if (!this->expr_->integer_constant_value(iota_is_constant, uval, ptype))
3705 ret = false;
3706 else
3707 ret = Unary_expression::eval_integer(this->op_, *ptype, uval, val,
3708 this->location());
3709 mpz_clear(uval);
3710 return ret;
3711 }
3712
3713 // Return the floating point constant value of a unary expression, if
3714 // it has one.
3715
3716 bool
3717 Unary_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
3718 {
3719 mpfr_t uval;
3720 mpfr_init(uval);
3721 bool ret;
3722 if (!this->expr_->float_constant_value(uval, ptype))
3723 ret = false;
3724 else
3725 ret = Unary_expression::eval_float(this->op_, uval, val);
3726 mpfr_clear(uval);
3727 return ret;
3728 }
3729
3730 // Return the complex constant value of a unary expression, if it has
3731 // one.
3732
3733 bool
3734 Unary_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
3735 Type** ptype) const
3736 {
3737 mpfr_t rval;
3738 mpfr_t ival;
3739 mpfr_init(rval);
3740 mpfr_init(ival);
3741 bool ret;
3742 if (!this->expr_->complex_constant_value(rval, ival, ptype))
3743 ret = false;
3744 else
3745 ret = Unary_expression::eval_complex(this->op_, rval, ival, real, imag);
3746 mpfr_clear(rval);
3747 mpfr_clear(ival);
3748 return ret;
3749 }
3750
3751 // Return the type of a unary expression.
3752
3753 Type*
3754 Unary_expression::do_type()
3755 {
3756 switch (this->op_)
3757 {
3758 case OPERATOR_PLUS:
3759 case OPERATOR_MINUS:
3760 case OPERATOR_NOT:
3761 case OPERATOR_XOR:
3762 return this->expr_->type();
3763
3764 case OPERATOR_AND:
3765 return Type::make_pointer_type(this->expr_->type());
3766
3767 case OPERATOR_MULT:
3768 {
3769 Type* subtype = this->expr_->type();
3770 Type* points_to = subtype->points_to();
3771 if (points_to == NULL)
3772 return Type::make_error_type();
3773 return points_to;
3774 }
3775
3776 default:
3777 gcc_unreachable();
3778 }
3779 }
3780
3781 // Determine abstract types for a unary expression.
3782
3783 void
3784 Unary_expression::do_determine_type(const Type_context* context)
3785 {
3786 switch (this->op_)
3787 {
3788 case OPERATOR_PLUS:
3789 case OPERATOR_MINUS:
3790 case OPERATOR_NOT:
3791 case OPERATOR_XOR:
3792 this->expr_->determine_type(context);
3793 break;
3794
3795 case OPERATOR_AND:
3796 // Taking the address of something.
3797 {
3798 Type* subtype = (context->type == NULL
3799 ? NULL
3800 : context->type->points_to());
3801 Type_context subcontext(subtype, false);
3802 this->expr_->determine_type(&subcontext);
3803 }
3804 break;
3805
3806 case OPERATOR_MULT:
3807 // Indirecting through a pointer.
3808 {
3809 Type* subtype = (context->type == NULL
3810 ? NULL
3811 : Type::make_pointer_type(context->type));
3812 Type_context subcontext(subtype, false);
3813 this->expr_->determine_type(&subcontext);
3814 }
3815 break;
3816
3817 default:
3818 gcc_unreachable();
3819 }
3820 }
3821
3822 // Check types for a unary expression.
3823
3824 void
3825 Unary_expression::do_check_types(Gogo*)
3826 {
3827 Type* type = this->expr_->type();
3828 if (type->is_error_type())
3829 {
3830 this->set_is_error();
3831 return;
3832 }
3833
3834 switch (this->op_)
3835 {
3836 case OPERATOR_PLUS:
3837 case OPERATOR_MINUS:
3838 if (type->integer_type() == NULL
3839 && type->float_type() == NULL
3840 && type->complex_type() == NULL)
3841 this->report_error(_("expected numeric type"));
3842 break;
3843
3844 case OPERATOR_NOT:
3845 case OPERATOR_XOR:
3846 if (type->integer_type() == NULL
3847 && !type->is_boolean_type())
3848 this->report_error(_("expected integer or boolean type"));
3849 break;
3850
3851 case OPERATOR_AND:
3852 if (!this->expr_->is_addressable())
3853 this->report_error(_("invalid operand for unary %<&%>"));
3854 else
3855 this->expr_->address_taken(this->escapes_);
3856 break;
3857
3858 case OPERATOR_MULT:
3859 // Indirecting through a pointer.
3860 if (type->points_to() == NULL)
3861 this->report_error(_("expected pointer"));
3862 break;
3863
3864 default:
3865 gcc_unreachable();
3866 }
3867 }
3868
3869 // Get a tree for a unary expression.
3870
3871 tree
3872 Unary_expression::do_get_tree(Translate_context* context)
3873 {
3874 tree expr = this->expr_->get_tree(context);
3875 if (expr == error_mark_node)
3876 return error_mark_node;
3877
3878 source_location loc = this->location();
3879 switch (this->op_)
3880 {
3881 case OPERATOR_PLUS:
3882 return expr;
3883
3884 case OPERATOR_MINUS:
3885 {
3886 tree type = TREE_TYPE(expr);
3887 tree compute_type = excess_precision_type(type);
3888 if (compute_type != NULL_TREE)
3889 expr = ::convert(compute_type, expr);
3890 tree ret = fold_build1_loc(loc, NEGATE_EXPR,
3891 (compute_type != NULL_TREE
3892 ? compute_type
3893 : type),
3894 expr);
3895 if (compute_type != NULL_TREE)
3896 ret = ::convert(type, ret);
3897 return ret;
3898 }
3899
3900 case OPERATOR_NOT:
3901 if (TREE_CODE(TREE_TYPE(expr)) == BOOLEAN_TYPE)
3902 return fold_build1_loc(loc, TRUTH_NOT_EXPR, TREE_TYPE(expr), expr);
3903 else
3904 return fold_build2_loc(loc, NE_EXPR, boolean_type_node, expr,
3905 build_int_cst(TREE_TYPE(expr), 0));
3906
3907 case OPERATOR_XOR:
3908 return fold_build1_loc(loc, BIT_NOT_EXPR, TREE_TYPE(expr), expr);
3909
3910 case OPERATOR_AND:
3911 // We should not see a non-constant constructor here; cases
3912 // where we would see one should have been moved onto the heap
3913 // at parse time. Taking the address of a nonconstant
3914 // constructor will not do what the programmer expects.
3915 gcc_assert(TREE_CODE(expr) != CONSTRUCTOR || TREE_CONSTANT(expr));
3916 gcc_assert(TREE_CODE(expr) != ADDR_EXPR);
3917
3918 // Build a decl for a constant constructor.
3919 if (TREE_CODE(expr) == CONSTRUCTOR && TREE_CONSTANT(expr))
3920 {
3921 tree decl = build_decl(this->location(), VAR_DECL,
3922 create_tmp_var_name("C"), TREE_TYPE(expr));
3923 DECL_EXTERNAL(decl) = 0;
3924 TREE_PUBLIC(decl) = 0;
3925 TREE_READONLY(decl) = 1;
3926 TREE_CONSTANT(decl) = 1;
3927 TREE_STATIC(decl) = 1;
3928 TREE_ADDRESSABLE(decl) = 1;
3929 DECL_ARTIFICIAL(decl) = 1;
3930 DECL_INITIAL(decl) = expr;
3931 rest_of_decl_compilation(decl, 1, 0);
3932 expr = decl;
3933 }
3934
3935 return build_fold_addr_expr_loc(loc, expr);
3936
3937 case OPERATOR_MULT:
3938 {
3939 gcc_assert(POINTER_TYPE_P(TREE_TYPE(expr)));
3940
3941 // If we are dereferencing the pointer to a large struct, we
3942 // need to check for nil. We don't bother to check for small
3943 // structs because we expect the system to crash on a nil
3944 // pointer dereference.
3945 HOST_WIDE_INT s = int_size_in_bytes(TREE_TYPE(TREE_TYPE(expr)));
3946 if (s == -1 || s >= 4096)
3947 {
3948 if (!DECL_P(expr))
3949 expr = save_expr(expr);
3950 tree compare = fold_build2_loc(loc, EQ_EXPR, boolean_type_node,
3951 expr,
3952 fold_convert(TREE_TYPE(expr),
3953 null_pointer_node));
3954 tree crash = Gogo::runtime_error(RUNTIME_ERROR_NIL_DEREFERENCE,
3955 loc);
3956 expr = fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(expr),
3957 build3(COND_EXPR, void_type_node,
3958 compare, crash, NULL_TREE),
3959 expr);
3960 }
3961
3962 // If the type of EXPR is a recursive pointer type, then we
3963 // need to insert a cast before indirecting.
3964 if (TREE_TYPE(TREE_TYPE(expr)) == ptr_type_node)
3965 {
3966 Type* pt = this->expr_->type()->points_to();
3967 tree ind = pt->get_tree(context->gogo());
3968 expr = fold_convert_loc(loc, build_pointer_type(ind), expr);
3969 }
3970
3971 return build_fold_indirect_ref_loc(loc, expr);
3972 }
3973
3974 default:
3975 gcc_unreachable();
3976 }
3977 }
3978
3979 // Export a unary expression.
3980
3981 void
3982 Unary_expression::do_export(Export* exp) const
3983 {
3984 switch (this->op_)
3985 {
3986 case OPERATOR_PLUS:
3987 exp->write_c_string("+ ");
3988 break;
3989 case OPERATOR_MINUS:
3990 exp->write_c_string("- ");
3991 break;
3992 case OPERATOR_NOT:
3993 exp->write_c_string("! ");
3994 break;
3995 case OPERATOR_XOR:
3996 exp->write_c_string("^ ");
3997 break;
3998 case OPERATOR_AND:
3999 case OPERATOR_MULT:
4000 default:
4001 gcc_unreachable();
4002 }
4003 this->expr_->export_expression(exp);
4004 }
4005
4006 // Import a unary expression.
4007
4008 Expression*
4009 Unary_expression::do_import(Import* imp)
4010 {
4011 Operator op;
4012 switch (imp->get_char())
4013 {
4014 case '+':
4015 op = OPERATOR_PLUS;
4016 break;
4017 case '-':
4018 op = OPERATOR_MINUS;
4019 break;
4020 case '!':
4021 op = OPERATOR_NOT;
4022 break;
4023 case '^':
4024 op = OPERATOR_XOR;
4025 break;
4026 default:
4027 gcc_unreachable();
4028 }
4029 imp->require_c_string(" ");
4030 Expression* expr = Expression::import_expression(imp);
4031 return Expression::make_unary(op, expr, imp->location());
4032 }
4033
4034 // Make a unary expression.
4035
4036 Expression*
4037 Expression::make_unary(Operator op, Expression* expr, source_location location)
4038 {
4039 return new Unary_expression(op, expr, location);
4040 }
4041
4042 // If this is an indirection through a pointer, return the expression
4043 // being pointed through. Otherwise return this.
4044
4045 Expression*
4046 Expression::deref()
4047 {
4048 if (this->classification_ == EXPRESSION_UNARY)
4049 {
4050 Unary_expression* ue = static_cast<Unary_expression*>(this);
4051 if (ue->op() == OPERATOR_MULT)
4052 return ue->operand();
4053 }
4054 return this;
4055 }
4056
4057 // Class Binary_expression.
4058
4059 // Traversal.
4060
4061 int
4062 Binary_expression::do_traverse(Traverse* traverse)
4063 {
4064 int t = Expression::traverse(&this->left_, traverse);
4065 if (t == TRAVERSE_EXIT)
4066 return TRAVERSE_EXIT;
4067 return Expression::traverse(&this->right_, traverse);
4068 }
4069
4070 // Compare integer constants according to OP.
4071
4072 bool
4073 Binary_expression::compare_integer(Operator op, mpz_t left_val,
4074 mpz_t right_val)
4075 {
4076 int i = mpz_cmp(left_val, right_val);
4077 switch (op)
4078 {
4079 case OPERATOR_EQEQ:
4080 return i == 0;
4081 case OPERATOR_NOTEQ:
4082 return i != 0;
4083 case OPERATOR_LT:
4084 return i < 0;
4085 case OPERATOR_LE:
4086 return i <= 0;
4087 case OPERATOR_GT:
4088 return i > 0;
4089 case OPERATOR_GE:
4090 return i >= 0;
4091 default:
4092 gcc_unreachable();
4093 }
4094 }
4095
4096 // Compare floating point constants according to OP.
4097
4098 bool
4099 Binary_expression::compare_float(Operator op, Type* type, mpfr_t left_val,
4100 mpfr_t right_val)
4101 {
4102 int i;
4103 if (type == NULL)
4104 i = mpfr_cmp(left_val, right_val);
4105 else
4106 {
4107 mpfr_t lv;
4108 mpfr_init_set(lv, left_val, GMP_RNDN);
4109 mpfr_t rv;
4110 mpfr_init_set(rv, right_val, GMP_RNDN);
4111 Float_expression::constrain_float(lv, type);
4112 Float_expression::constrain_float(rv, type);
4113 i = mpfr_cmp(lv, rv);
4114 mpfr_clear(lv);
4115 mpfr_clear(rv);
4116 }
4117 switch (op)
4118 {
4119 case OPERATOR_EQEQ:
4120 return i == 0;
4121 case OPERATOR_NOTEQ:
4122 return i != 0;
4123 case OPERATOR_LT:
4124 return i < 0;
4125 case OPERATOR_LE:
4126 return i <= 0;
4127 case OPERATOR_GT:
4128 return i > 0;
4129 case OPERATOR_GE:
4130 return i >= 0;
4131 default:
4132 gcc_unreachable();
4133 }
4134 }
4135
4136 // Compare complex constants according to OP. Complex numbers may
4137 // only be compared for equality.
4138
4139 bool
4140 Binary_expression::compare_complex(Operator op, Type* type,
4141 mpfr_t left_real, mpfr_t left_imag,
4142 mpfr_t right_real, mpfr_t right_imag)
4143 {
4144 bool is_equal;
4145 if (type == NULL)
4146 is_equal = (mpfr_cmp(left_real, right_real) == 0
4147 && mpfr_cmp(left_imag, right_imag) == 0);
4148 else
4149 {
4150 mpfr_t lr;
4151 mpfr_t li;
4152 mpfr_init_set(lr, left_real, GMP_RNDN);
4153 mpfr_init_set(li, left_imag, GMP_RNDN);
4154 mpfr_t rr;
4155 mpfr_t ri;
4156 mpfr_init_set(rr, right_real, GMP_RNDN);
4157 mpfr_init_set(ri, right_imag, GMP_RNDN);
4158 Complex_expression::constrain_complex(lr, li, type);
4159 Complex_expression::constrain_complex(rr, ri, type);
4160 is_equal = mpfr_cmp(lr, rr) == 0 && mpfr_cmp(li, ri) == 0;
4161 mpfr_clear(lr);
4162 mpfr_clear(li);
4163 mpfr_clear(rr);
4164 mpfr_clear(ri);
4165 }
4166 switch (op)
4167 {
4168 case OPERATOR_EQEQ:
4169 return is_equal;
4170 case OPERATOR_NOTEQ:
4171 return !is_equal;
4172 default:
4173 gcc_unreachable();
4174 }
4175 }
4176
4177 // Apply binary opcode OP to LEFT_VAL and RIGHT_VAL, setting VAL.
4178 // LEFT_TYPE is the type of LEFT_VAL, RIGHT_TYPE is the type of
4179 // RIGHT_VAL; LEFT_TYPE and/or RIGHT_TYPE may be NULL. Return true if
4180 // this could be done, false if not.
4181
4182 bool
4183 Binary_expression::eval_integer(Operator op, Type* left_type, mpz_t left_val,
4184 Type* right_type, mpz_t right_val,
4185 source_location location, mpz_t val)
4186 {
4187 bool is_shift_op = false;
4188 switch (op)
4189 {
4190 case OPERATOR_OROR:
4191 case OPERATOR_ANDAND:
4192 case OPERATOR_EQEQ:
4193 case OPERATOR_NOTEQ:
4194 case OPERATOR_LT:
4195 case OPERATOR_LE:
4196 case OPERATOR_GT:
4197 case OPERATOR_GE:
4198 // These return boolean values. We should probably handle them
4199 // anyhow in case a type conversion is used on the result.
4200 return false;
4201 case OPERATOR_PLUS:
4202 mpz_add(val, left_val, right_val);
4203 break;
4204 case OPERATOR_MINUS:
4205 mpz_sub(val, left_val, right_val);
4206 break;
4207 case OPERATOR_OR:
4208 mpz_ior(val, left_val, right_val);
4209 break;
4210 case OPERATOR_XOR:
4211 mpz_xor(val, left_val, right_val);
4212 break;
4213 case OPERATOR_MULT:
4214 mpz_mul(val, left_val, right_val);
4215 break;
4216 case OPERATOR_DIV:
4217 if (mpz_sgn(right_val) != 0)
4218 mpz_tdiv_q(val, left_val, right_val);
4219 else
4220 {
4221 error_at(location, "division by zero");
4222 mpz_set_ui(val, 0);
4223 return true;
4224 }
4225 break;
4226 case OPERATOR_MOD:
4227 if (mpz_sgn(right_val) != 0)
4228 mpz_tdiv_r(val, left_val, right_val);
4229 else
4230 {
4231 error_at(location, "division by zero");
4232 mpz_set_ui(val, 0);
4233 return true;
4234 }
4235 break;
4236 case OPERATOR_LSHIFT:
4237 {
4238 unsigned long shift = mpz_get_ui(right_val);
4239 if (mpz_cmp_ui(right_val, shift) != 0)
4240 {
4241 error_at(location, "shift count overflow");
4242 mpz_set_ui(val, 0);
4243 return true;
4244 }
4245 mpz_mul_2exp(val, left_val, shift);
4246 is_shift_op = true;
4247 break;
4248 }
4249 break;
4250 case OPERATOR_RSHIFT:
4251 {
4252 unsigned long shift = mpz_get_ui(right_val);
4253 if (mpz_cmp_ui(right_val, shift) != 0)
4254 {
4255 error_at(location, "shift count overflow");
4256 mpz_set_ui(val, 0);
4257 return true;
4258 }
4259 if (mpz_cmp_ui(left_val, 0) >= 0)
4260 mpz_tdiv_q_2exp(val, left_val, shift);
4261 else
4262 mpz_fdiv_q_2exp(val, left_val, shift);
4263 is_shift_op = true;
4264 break;
4265 }
4266 break;
4267 case OPERATOR_AND:
4268 mpz_and(val, left_val, right_val);
4269 break;
4270 case OPERATOR_BITCLEAR:
4271 {
4272 mpz_t tval;
4273 mpz_init(tval);
4274 mpz_com(tval, right_val);
4275 mpz_and(val, left_val, tval);
4276 mpz_clear(tval);
4277 }
4278 break;
4279 default:
4280 gcc_unreachable();
4281 }
4282
4283 Type* type = left_type;
4284 if (!is_shift_op)
4285 {
4286 if (type == NULL)
4287 type = right_type;
4288 else if (type != right_type && right_type != NULL)
4289 {
4290 if (type->is_abstract())
4291 type = right_type;
4292 else if (!right_type->is_abstract())
4293 {
4294 // This look like a type error which should be diagnosed
4295 // elsewhere. Don't do anything here, to avoid an
4296 // unhelpful chain of error messages.
4297 return true;
4298 }
4299 }
4300 }
4301
4302 if (type != NULL && !type->is_abstract())
4303 {
4304 // We have to check the operands too, as we have implicitly
4305 // coerced them to TYPE.
4306 if ((type != left_type
4307 && !Integer_expression::check_constant(left_val, type, location))
4308 || (!is_shift_op
4309 && type != right_type
4310 && !Integer_expression::check_constant(right_val, type,
4311 location))
4312 || !Integer_expression::check_constant(val, type, location))
4313 mpz_set_ui(val, 0);
4314 }
4315
4316 return true;
4317 }
4318
4319 // Apply binary opcode OP to LEFT_VAL and RIGHT_VAL, setting VAL.
4320 // Return true if this could be done, false if not.
4321
4322 bool
4323 Binary_expression::eval_float(Operator op, Type* left_type, mpfr_t left_val,
4324 Type* right_type, mpfr_t right_val,
4325 mpfr_t val, source_location location)
4326 {
4327 switch (op)
4328 {
4329 case OPERATOR_OROR:
4330 case OPERATOR_ANDAND:
4331 case OPERATOR_EQEQ:
4332 case OPERATOR_NOTEQ:
4333 case OPERATOR_LT:
4334 case OPERATOR_LE:
4335 case OPERATOR_GT:
4336 case OPERATOR_GE:
4337 // These return boolean values. We should probably handle them
4338 // anyhow in case a type conversion is used on the result.
4339 return false;
4340 case OPERATOR_PLUS:
4341 mpfr_add(val, left_val, right_val, GMP_RNDN);
4342 break;
4343 case OPERATOR_MINUS:
4344 mpfr_sub(val, left_val, right_val, GMP_RNDN);
4345 break;
4346 case OPERATOR_OR:
4347 case OPERATOR_XOR:
4348 case OPERATOR_AND:
4349 case OPERATOR_BITCLEAR:
4350 return false;
4351 case OPERATOR_MULT:
4352 mpfr_mul(val, left_val, right_val, GMP_RNDN);
4353 break;
4354 case OPERATOR_DIV:
4355 if (mpfr_zero_p(right_val))
4356 error_at(location, "division by zero");
4357 mpfr_div(val, left_val, right_val, GMP_RNDN);
4358 break;
4359 case OPERATOR_MOD:
4360 return false;
4361 case OPERATOR_LSHIFT:
4362 case OPERATOR_RSHIFT:
4363 return false;
4364 default:
4365 gcc_unreachable();
4366 }
4367
4368 Type* type = left_type;
4369 if (type == NULL)
4370 type = right_type;
4371 else if (type != right_type && right_type != NULL)
4372 {
4373 if (type->is_abstract())
4374 type = right_type;
4375 else if (!right_type->is_abstract())
4376 {
4377 // This looks like a type error which should be diagnosed
4378 // elsewhere. Don't do anything here, to avoid an unhelpful
4379 // chain of error messages.
4380 return true;
4381 }
4382 }
4383
4384 if (type != NULL && !type->is_abstract())
4385 {
4386 if ((type != left_type
4387 && !Float_expression::check_constant(left_val, type, location))
4388 || (type != right_type
4389 && !Float_expression::check_constant(right_val, type,
4390 location))
4391 || !Float_expression::check_constant(val, type, location))
4392 mpfr_set_ui(val, 0, GMP_RNDN);
4393 }
4394
4395 return true;
4396 }
4397
4398 // Apply binary opcode OP to LEFT_REAL/LEFT_IMAG and
4399 // RIGHT_REAL/RIGHT_IMAG, setting REAL/IMAG. Return true if this
4400 // could be done, false if not.
4401
4402 bool
4403 Binary_expression::eval_complex(Operator op, Type* left_type,
4404 mpfr_t left_real, mpfr_t left_imag,
4405 Type *right_type,
4406 mpfr_t right_real, mpfr_t right_imag,
4407 mpfr_t real, mpfr_t imag,
4408 source_location location)
4409 {
4410 switch (op)
4411 {
4412 case OPERATOR_OROR:
4413 case OPERATOR_ANDAND:
4414 case OPERATOR_EQEQ:
4415 case OPERATOR_NOTEQ:
4416 case OPERATOR_LT:
4417 case OPERATOR_LE:
4418 case OPERATOR_GT:
4419 case OPERATOR_GE:
4420 // These return boolean values and must be handled differently.
4421 return false;
4422 case OPERATOR_PLUS:
4423 mpfr_add(real, left_real, right_real, GMP_RNDN);
4424 mpfr_add(imag, left_imag, right_imag, GMP_RNDN);
4425 break;
4426 case OPERATOR_MINUS:
4427 mpfr_sub(real, left_real, right_real, GMP_RNDN);
4428 mpfr_sub(imag, left_imag, right_imag, GMP_RNDN);
4429 break;
4430 case OPERATOR_OR:
4431 case OPERATOR_XOR:
4432 case OPERATOR_AND:
4433 case OPERATOR_BITCLEAR:
4434 return false;
4435 case OPERATOR_MULT:
4436 {
4437 // You might think that multiplying two complex numbers would
4438 // be simple, and you would be right, until you start to think
4439 // about getting the right answer for infinity. If one
4440 // operand here is infinity and the other is anything other
4441 // than zero or NaN, then we are going to wind up subtracting
4442 // two infinity values. That will give us a NaN, but the
4443 // correct answer is infinity.
4444
4445 mpfr_t lrrr;
4446 mpfr_init(lrrr);
4447 mpfr_mul(lrrr, left_real, right_real, GMP_RNDN);
4448
4449 mpfr_t lrri;
4450 mpfr_init(lrri);
4451 mpfr_mul(lrri, left_real, right_imag, GMP_RNDN);
4452
4453 mpfr_t lirr;
4454 mpfr_init(lirr);
4455 mpfr_mul(lirr, left_imag, right_real, GMP_RNDN);
4456
4457 mpfr_t liri;
4458 mpfr_init(liri);
4459 mpfr_mul(liri, left_imag, right_imag, GMP_RNDN);
4460
4461 mpfr_sub(real, lrrr, liri, GMP_RNDN);
4462 mpfr_add(imag, lrri, lirr, GMP_RNDN);
4463
4464 // If we get NaN on both sides, check whether it should really
4465 // be infinity. The rule is that if either side of the
4466 // complex number is infinity, then the whole value is
4467 // infinity, even if the other side is NaN. So the only case
4468 // we have to fix is the one in which both sides are NaN.
4469 if (mpfr_nan_p(real) && mpfr_nan_p(imag)
4470 && (!mpfr_nan_p(left_real) || !mpfr_nan_p(left_imag))
4471 && (!mpfr_nan_p(right_real) || !mpfr_nan_p(right_imag)))
4472 {
4473 bool is_infinity = false;
4474
4475 mpfr_t lr;
4476 mpfr_t li;
4477 mpfr_init_set(lr, left_real, GMP_RNDN);
4478 mpfr_init_set(li, left_imag, GMP_RNDN);
4479
4480 mpfr_t rr;
4481 mpfr_t ri;
4482 mpfr_init_set(rr, right_real, GMP_RNDN);
4483 mpfr_init_set(ri, right_imag, GMP_RNDN);
4484
4485 // If the left side is infinity, then the result is
4486 // infinity.
4487 if (mpfr_inf_p(lr) || mpfr_inf_p(li))
4488 {
4489 mpfr_set_ui(lr, mpfr_inf_p(lr) ? 1 : 0, GMP_RNDN);
4490 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
4491 mpfr_set_ui(li, mpfr_inf_p(li) ? 1 : 0, GMP_RNDN);
4492 mpfr_copysign(li, li, left_imag, GMP_RNDN);
4493 if (mpfr_nan_p(rr))
4494 {
4495 mpfr_set_ui(rr, 0, GMP_RNDN);
4496 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
4497 }
4498 if (mpfr_nan_p(ri))
4499 {
4500 mpfr_set_ui(ri, 0, GMP_RNDN);
4501 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
4502 }
4503 is_infinity = true;
4504 }
4505
4506 // If the right side is infinity, then the result is
4507 // infinity.
4508 if (mpfr_inf_p(rr) || mpfr_inf_p(ri))
4509 {
4510 mpfr_set_ui(rr, mpfr_inf_p(rr) ? 1 : 0, GMP_RNDN);
4511 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
4512 mpfr_set_ui(ri, mpfr_inf_p(ri) ? 1 : 0, GMP_RNDN);
4513 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
4514 if (mpfr_nan_p(lr))
4515 {
4516 mpfr_set_ui(lr, 0, GMP_RNDN);
4517 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
4518 }
4519 if (mpfr_nan_p(li))
4520 {
4521 mpfr_set_ui(li, 0, GMP_RNDN);
4522 mpfr_copysign(li, li, left_imag, GMP_RNDN);
4523 }
4524 is_infinity = true;
4525 }
4526
4527 // If we got an overflow in the intermediate computations,
4528 // then the result is infinity.
4529 if (!is_infinity
4530 && (mpfr_inf_p(lrrr) || mpfr_inf_p(lrri)
4531 || mpfr_inf_p(lirr) || mpfr_inf_p(liri)))
4532 {
4533 if (mpfr_nan_p(lr))
4534 {
4535 mpfr_set_ui(lr, 0, GMP_RNDN);
4536 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
4537 }
4538 if (mpfr_nan_p(li))
4539 {
4540 mpfr_set_ui(li, 0, GMP_RNDN);
4541 mpfr_copysign(li, li, left_imag, GMP_RNDN);
4542 }
4543 if (mpfr_nan_p(rr))
4544 {
4545 mpfr_set_ui(rr, 0, GMP_RNDN);
4546 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
4547 }
4548 if (mpfr_nan_p(ri))
4549 {
4550 mpfr_set_ui(ri, 0, GMP_RNDN);
4551 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
4552 }
4553 is_infinity = true;
4554 }
4555
4556 if (is_infinity)
4557 {
4558 mpfr_mul(lrrr, lr, rr, GMP_RNDN);
4559 mpfr_mul(lrri, lr, ri, GMP_RNDN);
4560 mpfr_mul(lirr, li, rr, GMP_RNDN);
4561 mpfr_mul(liri, li, ri, GMP_RNDN);
4562 mpfr_sub(real, lrrr, liri, GMP_RNDN);
4563 mpfr_add(imag, lrri, lirr, GMP_RNDN);
4564 mpfr_set_inf(real, mpfr_sgn(real));
4565 mpfr_set_inf(imag, mpfr_sgn(imag));
4566 }
4567
4568 mpfr_clear(lr);
4569 mpfr_clear(li);
4570 mpfr_clear(rr);
4571 mpfr_clear(ri);
4572 }
4573
4574 mpfr_clear(lrrr);
4575 mpfr_clear(lrri);
4576 mpfr_clear(lirr);
4577 mpfr_clear(liri);
4578 }
4579 break;
4580 case OPERATOR_DIV:
4581 {
4582 // For complex division we want to avoid having an
4583 // intermediate overflow turn the whole result in a NaN. We
4584 // scale the values to try to avoid this.
4585
4586 if (mpfr_zero_p(right_real) && mpfr_zero_p(right_imag))
4587 error_at(location, "division by zero");
4588
4589 mpfr_t rra;
4590 mpfr_t ria;
4591 mpfr_init(rra);
4592 mpfr_init(ria);
4593 mpfr_abs(rra, right_real, GMP_RNDN);
4594 mpfr_abs(ria, right_imag, GMP_RNDN);
4595 mpfr_t t;
4596 mpfr_init(t);
4597 mpfr_max(t, rra, ria, GMP_RNDN);
4598
4599 mpfr_t rr;
4600 mpfr_t ri;
4601 mpfr_init_set(rr, right_real, GMP_RNDN);
4602 mpfr_init_set(ri, right_imag, GMP_RNDN);
4603 long ilogbw = 0;
4604 if (!mpfr_inf_p(t) && !mpfr_nan_p(t) && !mpfr_zero_p(t))
4605 {
4606 ilogbw = mpfr_get_exp(t);
4607 mpfr_mul_2si(rr, rr, - ilogbw, GMP_RNDN);
4608 mpfr_mul_2si(ri, ri, - ilogbw, GMP_RNDN);
4609 }
4610
4611 mpfr_t denom;
4612 mpfr_init(denom);
4613 mpfr_mul(denom, rr, rr, GMP_RNDN);
4614 mpfr_mul(t, ri, ri, GMP_RNDN);
4615 mpfr_add(denom, denom, t, GMP_RNDN);
4616
4617 mpfr_mul(real, left_real, rr, GMP_RNDN);
4618 mpfr_mul(t, left_imag, ri, GMP_RNDN);
4619 mpfr_add(real, real, t, GMP_RNDN);
4620 mpfr_div(real, real, denom, GMP_RNDN);
4621 mpfr_mul_2si(real, real, - ilogbw, GMP_RNDN);
4622
4623 mpfr_mul(imag, left_imag, rr, GMP_RNDN);
4624 mpfr_mul(t, left_real, ri, GMP_RNDN);
4625 mpfr_sub(imag, imag, t, GMP_RNDN);
4626 mpfr_div(imag, imag, denom, GMP_RNDN);
4627 mpfr_mul_2si(imag, imag, - ilogbw, GMP_RNDN);
4628
4629 // If we wind up with NaN on both sides, check whether we
4630 // should really have infinity. The rule is that if either
4631 // side of the complex number is infinity, then the whole
4632 // value is infinity, even if the other side is NaN. So the
4633 // only case we have to fix is the one in which both sides are
4634 // NaN.
4635 if (mpfr_nan_p(real) && mpfr_nan_p(imag)
4636 && (!mpfr_nan_p(left_real) || !mpfr_nan_p(left_imag))
4637 && (!mpfr_nan_p(right_real) || !mpfr_nan_p(right_imag)))
4638 {
4639 if (mpfr_zero_p(denom))
4640 {
4641 mpfr_set_inf(real, mpfr_sgn(rr));
4642 mpfr_mul(real, real, left_real, GMP_RNDN);
4643 mpfr_set_inf(imag, mpfr_sgn(rr));
4644 mpfr_mul(imag, imag, left_imag, GMP_RNDN);
4645 }
4646 else if ((mpfr_inf_p(left_real) || mpfr_inf_p(left_imag))
4647 && mpfr_number_p(rr) && mpfr_number_p(ri))
4648 {
4649 mpfr_set_ui(t, mpfr_inf_p(left_real) ? 1 : 0, GMP_RNDN);
4650 mpfr_copysign(t, t, left_real, GMP_RNDN);
4651
4652 mpfr_t t2;
4653 mpfr_init_set_ui(t2, mpfr_inf_p(left_imag) ? 1 : 0, GMP_RNDN);
4654 mpfr_copysign(t2, t2, left_imag, GMP_RNDN);
4655
4656 mpfr_t t3;
4657 mpfr_init(t3);
4658 mpfr_mul(t3, t, rr, GMP_RNDN);
4659
4660 mpfr_t t4;
4661 mpfr_init(t4);
4662 mpfr_mul(t4, t2, ri, GMP_RNDN);
4663
4664 mpfr_add(t3, t3, t4, GMP_RNDN);
4665 mpfr_set_inf(real, mpfr_sgn(t3));
4666
4667 mpfr_mul(t3, t2, rr, GMP_RNDN);
4668 mpfr_mul(t4, t, ri, GMP_RNDN);
4669 mpfr_sub(t3, t3, t4, GMP_RNDN);
4670 mpfr_set_inf(imag, mpfr_sgn(t3));
4671
4672 mpfr_clear(t2);
4673 mpfr_clear(t3);
4674 mpfr_clear(t4);
4675 }
4676 else if ((mpfr_inf_p(right_real) || mpfr_inf_p(right_imag))
4677 && mpfr_number_p(left_real) && mpfr_number_p(left_imag))
4678 {
4679 mpfr_set_ui(t, mpfr_inf_p(rr) ? 1 : 0, GMP_RNDN);
4680 mpfr_copysign(t, t, rr, GMP_RNDN);
4681
4682 mpfr_t t2;
4683 mpfr_init_set_ui(t2, mpfr_inf_p(ri) ? 1 : 0, GMP_RNDN);
4684 mpfr_copysign(t2, t2, ri, GMP_RNDN);
4685
4686 mpfr_t t3;
4687 mpfr_init(t3);
4688 mpfr_mul(t3, left_real, t, GMP_RNDN);
4689
4690 mpfr_t t4;
4691 mpfr_init(t4);
4692 mpfr_mul(t4, left_imag, t2, GMP_RNDN);
4693
4694 mpfr_add(t3, t3, t4, GMP_RNDN);
4695 mpfr_set_ui(real, 0, GMP_RNDN);
4696 mpfr_mul(real, real, t3, GMP_RNDN);
4697
4698 mpfr_mul(t3, left_imag, t, GMP_RNDN);
4699 mpfr_mul(t4, left_real, t2, GMP_RNDN);
4700 mpfr_sub(t3, t3, t4, GMP_RNDN);
4701 mpfr_set_ui(imag, 0, GMP_RNDN);
4702 mpfr_mul(imag, imag, t3, GMP_RNDN);
4703
4704 mpfr_clear(t2);
4705 mpfr_clear(t3);
4706 mpfr_clear(t4);
4707 }
4708 }
4709
4710 mpfr_clear(denom);
4711 mpfr_clear(rr);
4712 mpfr_clear(ri);
4713 mpfr_clear(t);
4714 mpfr_clear(rra);
4715 mpfr_clear(ria);
4716 }
4717 break;
4718 case OPERATOR_MOD:
4719 return false;
4720 case OPERATOR_LSHIFT:
4721 case OPERATOR_RSHIFT:
4722 return false;
4723 default:
4724 gcc_unreachable();
4725 }
4726
4727 Type* type = left_type;
4728 if (type == NULL)
4729 type = right_type;
4730 else if (type != right_type && right_type != NULL)
4731 {
4732 if (type->is_abstract())
4733 type = right_type;
4734 else if (!right_type->is_abstract())
4735 {
4736 // This looks like a type error which should be diagnosed
4737 // elsewhere. Don't do anything here, to avoid an unhelpful
4738 // chain of error messages.
4739 return true;
4740 }
4741 }
4742
4743 if (type != NULL && !type->is_abstract())
4744 {
4745 if ((type != left_type
4746 && !Complex_expression::check_constant(left_real, left_imag,
4747 type, location))
4748 || (type != right_type
4749 && !Complex_expression::check_constant(right_real, right_imag,
4750 type, location))
4751 || !Complex_expression::check_constant(real, imag, type,
4752 location))
4753 {
4754 mpfr_set_ui(real, 0, GMP_RNDN);
4755 mpfr_set_ui(imag, 0, GMP_RNDN);
4756 }
4757 }
4758
4759 return true;
4760 }
4761
4762 // Lower a binary expression. We have to evaluate constant
4763 // expressions now, in order to implement Go's unlimited precision
4764 // constants.
4765
4766 Expression*
4767 Binary_expression::do_lower(Gogo*, Named_object*, int)
4768 {
4769 source_location location = this->location();
4770 Operator op = this->op_;
4771 Expression* left = this->left_;
4772 Expression* right = this->right_;
4773
4774 const bool is_comparison = (op == OPERATOR_EQEQ
4775 || op == OPERATOR_NOTEQ
4776 || op == OPERATOR_LT
4777 || op == OPERATOR_LE
4778 || op == OPERATOR_GT
4779 || op == OPERATOR_GE);
4780
4781 // Integer constant expressions.
4782 {
4783 mpz_t left_val;
4784 mpz_init(left_val);
4785 Type* left_type;
4786 mpz_t right_val;
4787 mpz_init(right_val);
4788 Type* right_type;
4789 if (left->integer_constant_value(false, left_val, &left_type)
4790 && right->integer_constant_value(false, right_val, &right_type))
4791 {
4792 Expression* ret = NULL;
4793 if (left_type != right_type
4794 && left_type != NULL
4795 && right_type != NULL
4796 && left_type->base() != right_type->base()
4797 && op != OPERATOR_LSHIFT
4798 && op != OPERATOR_RSHIFT)
4799 {
4800 // May be a type error--let it be diagnosed later.
4801 }
4802 else if (is_comparison)
4803 {
4804 bool b = Binary_expression::compare_integer(op, left_val,
4805 right_val);
4806 ret = Expression::make_cast(Type::lookup_bool_type(),
4807 Expression::make_boolean(b, location),
4808 location);
4809 }
4810 else
4811 {
4812 mpz_t val;
4813 mpz_init(val);
4814
4815 if (Binary_expression::eval_integer(op, left_type, left_val,
4816 right_type, right_val,
4817 location, val))
4818 {
4819 gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND);
4820 Type* type;
4821 if (op == OPERATOR_LSHIFT || op == OPERATOR_RSHIFT)
4822 type = left_type;
4823 else if (left_type == NULL)
4824 type = right_type;
4825 else if (right_type == NULL)
4826 type = left_type;
4827 else if (!left_type->is_abstract()
4828 && left_type->named_type() != NULL)
4829 type = left_type;
4830 else if (!right_type->is_abstract()
4831 && right_type->named_type() != NULL)
4832 type = right_type;
4833 else if (!left_type->is_abstract())
4834 type = left_type;
4835 else if (!right_type->is_abstract())
4836 type = right_type;
4837 else if (left_type->float_type() != NULL)
4838 type = left_type;
4839 else if (right_type->float_type() != NULL)
4840 type = right_type;
4841 else if (left_type->complex_type() != NULL)
4842 type = left_type;
4843 else if (right_type->complex_type() != NULL)
4844 type = right_type;
4845 else
4846 type = left_type;
4847 ret = Expression::make_integer(&val, type, location);
4848 }
4849
4850 mpz_clear(val);
4851 }
4852
4853 if (ret != NULL)
4854 {
4855 mpz_clear(right_val);
4856 mpz_clear(left_val);
4857 return ret;
4858 }
4859 }
4860 mpz_clear(right_val);
4861 mpz_clear(left_val);
4862 }
4863
4864 // Floating point constant expressions.
4865 {
4866 mpfr_t left_val;
4867 mpfr_init(left_val);
4868 Type* left_type;
4869 mpfr_t right_val;
4870 mpfr_init(right_val);
4871 Type* right_type;
4872 if (left->float_constant_value(left_val, &left_type)
4873 && right->float_constant_value(right_val, &right_type))
4874 {
4875 Expression* ret = NULL;
4876 if (left_type != right_type
4877 && left_type != NULL
4878 && right_type != NULL
4879 && left_type->base() != right_type->base()
4880 && op != OPERATOR_LSHIFT
4881 && op != OPERATOR_RSHIFT)
4882 {
4883 // May be a type error--let it be diagnosed later.
4884 }
4885 else if (is_comparison)
4886 {
4887 bool b = Binary_expression::compare_float(op,
4888 (left_type != NULL
4889 ? left_type
4890 : right_type),
4891 left_val, right_val);
4892 ret = Expression::make_boolean(b, location);
4893 }
4894 else
4895 {
4896 mpfr_t val;
4897 mpfr_init(val);
4898
4899 if (Binary_expression::eval_float(op, left_type, left_val,
4900 right_type, right_val, val,
4901 location))
4902 {
4903 gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND
4904 && op != OPERATOR_LSHIFT && op != OPERATOR_RSHIFT);
4905 Type* type;
4906 if (left_type == NULL)
4907 type = right_type;
4908 else if (right_type == NULL)
4909 type = left_type;
4910 else if (!left_type->is_abstract()
4911 && left_type->named_type() != NULL)
4912 type = left_type;
4913 else if (!right_type->is_abstract()
4914 && right_type->named_type() != NULL)
4915 type = right_type;
4916 else if (!left_type->is_abstract())
4917 type = left_type;
4918 else if (!right_type->is_abstract())
4919 type = right_type;
4920 else if (left_type->float_type() != NULL)
4921 type = left_type;
4922 else if (right_type->float_type() != NULL)
4923 type = right_type;
4924 else
4925 type = left_type;
4926 ret = Expression::make_float(&val, type, location);
4927 }
4928
4929 mpfr_clear(val);
4930 }
4931
4932 if (ret != NULL)
4933 {
4934 mpfr_clear(right_val);
4935 mpfr_clear(left_val);
4936 return ret;
4937 }
4938 }
4939 mpfr_clear(right_val);
4940 mpfr_clear(left_val);
4941 }
4942
4943 // Complex constant expressions.
4944 {
4945 mpfr_t left_real;
4946 mpfr_t left_imag;
4947 mpfr_init(left_real);
4948 mpfr_init(left_imag);
4949 Type* left_type;
4950
4951 mpfr_t right_real;
4952 mpfr_t right_imag;
4953 mpfr_init(right_real);
4954 mpfr_init(right_imag);
4955 Type* right_type;
4956
4957 if (left->complex_constant_value(left_real, left_imag, &left_type)
4958 && right->complex_constant_value(right_real, right_imag, &right_type))
4959 {
4960 Expression* ret = NULL;
4961 if (left_type != right_type
4962 && left_type != NULL
4963 && right_type != NULL
4964 && left_type->base() != right_type->base())
4965 {
4966 // May be a type error--let it be diagnosed later.
4967 }
4968 else if (is_comparison)
4969 {
4970 bool b = Binary_expression::compare_complex(op,
4971 (left_type != NULL
4972 ? left_type
4973 : right_type),
4974 left_real,
4975 left_imag,
4976 right_real,
4977 right_imag);
4978 ret = Expression::make_boolean(b, location);
4979 }
4980 else
4981 {
4982 mpfr_t real;
4983 mpfr_t imag;
4984 mpfr_init(real);
4985 mpfr_init(imag);
4986
4987 if (Binary_expression::eval_complex(op, left_type,
4988 left_real, left_imag,
4989 right_type,
4990 right_real, right_imag,
4991 real, imag,
4992 location))
4993 {
4994 gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND
4995 && op != OPERATOR_LSHIFT && op != OPERATOR_RSHIFT);
4996 Type* type;
4997 if (left_type == NULL)
4998 type = right_type;
4999 else if (right_type == NULL)
5000 type = left_type;
5001 else if (!left_type->is_abstract()
5002 && left_type->named_type() != NULL)
5003 type = left_type;
5004 else if (!right_type->is_abstract()
5005 && right_type->named_type() != NULL)
5006 type = right_type;
5007 else if (!left_type->is_abstract())
5008 type = left_type;
5009 else if (!right_type->is_abstract())
5010 type = right_type;
5011 else if (left_type->complex_type() != NULL)
5012 type = left_type;
5013 else if (right_type->complex_type() != NULL)
5014 type = right_type;
5015 else
5016 type = left_type;
5017 ret = Expression::make_complex(&real, &imag, type,
5018 location);
5019 }
5020 mpfr_clear(real);
5021 mpfr_clear(imag);
5022 }
5023
5024 if (ret != NULL)
5025 {
5026 mpfr_clear(left_real);
5027 mpfr_clear(left_imag);
5028 mpfr_clear(right_real);
5029 mpfr_clear(right_imag);
5030 return ret;
5031 }
5032 }
5033
5034 mpfr_clear(left_real);
5035 mpfr_clear(left_imag);
5036 mpfr_clear(right_real);
5037 mpfr_clear(right_imag);
5038 }
5039
5040 // String constant expressions.
5041 if (op == OPERATOR_PLUS
5042 && left->type()->is_string_type()
5043 && right->type()->is_string_type())
5044 {
5045 std::string left_string;
5046 std::string right_string;
5047 if (left->string_constant_value(&left_string)
5048 && right->string_constant_value(&right_string))
5049 return Expression::make_string(left_string + right_string, location);
5050 }
5051
5052 return this;
5053 }
5054
5055 // Return the integer constant value, if it has one.
5056
5057 bool
5058 Binary_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
5059 Type** ptype) const
5060 {
5061 mpz_t left_val;
5062 mpz_init(left_val);
5063 Type* left_type;
5064 if (!this->left_->integer_constant_value(iota_is_constant, left_val,
5065 &left_type))
5066 {
5067 mpz_clear(left_val);
5068 return false;
5069 }
5070
5071 mpz_t right_val;
5072 mpz_init(right_val);
5073 Type* right_type;
5074 if (!this->right_->integer_constant_value(iota_is_constant, right_val,
5075 &right_type))
5076 {
5077 mpz_clear(right_val);
5078 mpz_clear(left_val);
5079 return false;
5080 }
5081
5082 bool ret;
5083 if (left_type != right_type
5084 && left_type != NULL
5085 && right_type != NULL
5086 && left_type->base() != right_type->base()
5087 && this->op_ != OPERATOR_RSHIFT
5088 && this->op_ != OPERATOR_LSHIFT)
5089 ret = false;
5090 else
5091 ret = Binary_expression::eval_integer(this->op_, left_type, left_val,
5092 right_type, right_val,
5093 this->location(), val);
5094
5095 mpz_clear(right_val);
5096 mpz_clear(left_val);
5097
5098 if (ret)
5099 *ptype = left_type;
5100
5101 return ret;
5102 }
5103
5104 // Return the floating point constant value, if it has one.
5105
5106 bool
5107 Binary_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
5108 {
5109 mpfr_t left_val;
5110 mpfr_init(left_val);
5111 Type* left_type;
5112 if (!this->left_->float_constant_value(left_val, &left_type))
5113 {
5114 mpfr_clear(left_val);
5115 return false;
5116 }
5117
5118 mpfr_t right_val;
5119 mpfr_init(right_val);
5120 Type* right_type;
5121 if (!this->right_->float_constant_value(right_val, &right_type))
5122 {
5123 mpfr_clear(right_val);
5124 mpfr_clear(left_val);
5125 return false;
5126 }
5127
5128 bool ret;
5129 if (left_type != right_type
5130 && left_type != NULL
5131 && right_type != NULL
5132 && left_type->base() != right_type->base())
5133 ret = false;
5134 else
5135 ret = Binary_expression::eval_float(this->op_, left_type, left_val,
5136 right_type, right_val,
5137 val, this->location());
5138
5139 mpfr_clear(left_val);
5140 mpfr_clear(right_val);
5141
5142 if (ret)
5143 *ptype = left_type;
5144
5145 return ret;
5146 }
5147
5148 // Return the complex constant value, if it has one.
5149
5150 bool
5151 Binary_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
5152 Type** ptype) const
5153 {
5154 mpfr_t left_real;
5155 mpfr_t left_imag;
5156 mpfr_init(left_real);
5157 mpfr_init(left_imag);
5158 Type* left_type;
5159 if (!this->left_->complex_constant_value(left_real, left_imag, &left_type))
5160 {
5161 mpfr_clear(left_real);
5162 mpfr_clear(left_imag);
5163 return false;
5164 }
5165
5166 mpfr_t right_real;
5167 mpfr_t right_imag;
5168 mpfr_init(right_real);
5169 mpfr_init(right_imag);
5170 Type* right_type;
5171 if (!this->right_->complex_constant_value(right_real, right_imag,
5172 &right_type))
5173 {
5174 mpfr_clear(left_real);
5175 mpfr_clear(left_imag);
5176 mpfr_clear(right_real);
5177 mpfr_clear(right_imag);
5178 return false;
5179 }
5180
5181 bool ret;
5182 if (left_type != right_type
5183 && left_type != NULL
5184 && right_type != NULL
5185 && left_type->base() != right_type->base())
5186 ret = false;
5187 else
5188 ret = Binary_expression::eval_complex(this->op_, left_type,
5189 left_real, left_imag,
5190 right_type,
5191 right_real, right_imag,
5192 real, imag,
5193 this->location());
5194 mpfr_clear(left_real);
5195 mpfr_clear(left_imag);
5196 mpfr_clear(right_real);
5197 mpfr_clear(right_imag);
5198
5199 if (ret)
5200 *ptype = left_type;
5201
5202 return ret;
5203 }
5204
5205 // Note that the value is being discarded.
5206
5207 void
5208 Binary_expression::do_discarding_value()
5209 {
5210 if (this->op_ == OPERATOR_OROR || this->op_ == OPERATOR_ANDAND)
5211 this->right_->discarding_value();
5212 else
5213 this->warn_about_unused_value();
5214 }
5215
5216 // Get type.
5217
5218 Type*
5219 Binary_expression::do_type()
5220 {
5221 switch (this->op_)
5222 {
5223 case OPERATOR_OROR:
5224 case OPERATOR_ANDAND:
5225 case OPERATOR_EQEQ:
5226 case OPERATOR_NOTEQ:
5227 case OPERATOR_LT:
5228 case OPERATOR_LE:
5229 case OPERATOR_GT:
5230 case OPERATOR_GE:
5231 return Type::lookup_bool_type();
5232
5233 case OPERATOR_PLUS:
5234 case OPERATOR_MINUS:
5235 case OPERATOR_OR:
5236 case OPERATOR_XOR:
5237 case OPERATOR_MULT:
5238 case OPERATOR_DIV:
5239 case OPERATOR_MOD:
5240 case OPERATOR_AND:
5241 case OPERATOR_BITCLEAR:
5242 {
5243 Type* left_type = this->left_->type();
5244 Type* right_type = this->right_->type();
5245 if (!left_type->is_abstract() && left_type->named_type() != NULL)
5246 return left_type;
5247 else if (!right_type->is_abstract() && right_type->named_type() != NULL)
5248 return right_type;
5249 else if (!left_type->is_abstract())
5250 return left_type;
5251 else if (!right_type->is_abstract())
5252 return right_type;
5253 else if (left_type->complex_type() != NULL)
5254 return left_type;
5255 else if (right_type->complex_type() != NULL)
5256 return right_type;
5257 else if (left_type->float_type() != NULL)
5258 return left_type;
5259 else if (right_type->float_type() != NULL)
5260 return right_type;
5261 else
5262 return left_type;
5263 }
5264
5265 case OPERATOR_LSHIFT:
5266 case OPERATOR_RSHIFT:
5267 return this->left_->type();
5268
5269 default:
5270 gcc_unreachable();
5271 }
5272 }
5273
5274 // Set type for a binary expression.
5275
5276 void
5277 Binary_expression::do_determine_type(const Type_context* context)
5278 {
5279 Type* tleft = this->left_->type();
5280 Type* tright = this->right_->type();
5281
5282 // Both sides should have the same type, except for the shift
5283 // operations. For a comparison, we should ignore the incoming
5284 // type.
5285
5286 bool is_shift_op = (this->op_ == OPERATOR_LSHIFT
5287 || this->op_ == OPERATOR_RSHIFT);
5288
5289 bool is_comparison = (this->op_ == OPERATOR_EQEQ
5290 || this->op_ == OPERATOR_NOTEQ
5291 || this->op_ == OPERATOR_LT
5292 || this->op_ == OPERATOR_LE
5293 || this->op_ == OPERATOR_GT
5294 || this->op_ == OPERATOR_GE);
5295
5296 Type_context subcontext(*context);
5297
5298 if (is_comparison)
5299 {
5300 // In a comparison, the context does not determine the types of
5301 // the operands.
5302 subcontext.type = NULL;
5303 }
5304
5305 // Set the context for the left hand operand.
5306 if (is_shift_op)
5307 {
5308 // The right hand operand plays no role in determining the type
5309 // of the left hand operand. A shift of an abstract integer in
5310 // a string context gets special treatment, which may be a
5311 // language bug.
5312 if (subcontext.type != NULL
5313 && subcontext.type->is_string_type()
5314 && tleft->is_abstract())
5315 error_at(this->location(), "shift of non-integer operand");
5316 }
5317 else if (!tleft->is_abstract())
5318 subcontext.type = tleft;
5319 else if (!tright->is_abstract())
5320 subcontext.type = tright;
5321 else if (subcontext.type == NULL)
5322 {
5323 if ((tleft->integer_type() != NULL && tright->integer_type() != NULL)
5324 || (tleft->float_type() != NULL && tright->float_type() != NULL)
5325 || (tleft->complex_type() != NULL && tright->complex_type() != NULL))
5326 {
5327 // Both sides have an abstract integer, abstract float, or
5328 // abstract complex type. Just let CONTEXT determine
5329 // whether they may remain abstract or not.
5330 }
5331 else if (tleft->complex_type() != NULL)
5332 subcontext.type = tleft;
5333 else if (tright->complex_type() != NULL)
5334 subcontext.type = tright;
5335 else if (tleft->float_type() != NULL)
5336 subcontext.type = tleft;
5337 else if (tright->float_type() != NULL)
5338 subcontext.type = tright;
5339 else
5340 subcontext.type = tleft;
5341 }
5342
5343 this->left_->determine_type(&subcontext);
5344
5345 // The context for the right hand operand is the same as for the
5346 // left hand operand, except for a shift operator.
5347 if (is_shift_op)
5348 {
5349 subcontext.type = Type::lookup_integer_type("uint");
5350 subcontext.may_be_abstract = false;
5351 }
5352
5353 this->right_->determine_type(&subcontext);
5354 }
5355
5356 // Report an error if the binary operator OP does not support TYPE.
5357 // Return whether the operation is OK. This should not be used for
5358 // shift.
5359
5360 bool
5361 Binary_expression::check_operator_type(Operator op, Type* type,
5362 source_location location)
5363 {
5364 switch (op)
5365 {
5366 case OPERATOR_OROR:
5367 case OPERATOR_ANDAND:
5368 if (!type->is_boolean_type())
5369 {
5370 error_at(location, "expected boolean type");
5371 return false;
5372 }
5373 break;
5374
5375 case OPERATOR_EQEQ:
5376 case OPERATOR_NOTEQ:
5377 if (type->integer_type() == NULL
5378 && type->float_type() == NULL
5379 && type->complex_type() == NULL
5380 && !type->is_string_type()
5381 && type->points_to() == NULL
5382 && !type->is_nil_type()
5383 && !type->is_boolean_type()
5384 && type->interface_type() == NULL
5385 && (type->array_type() == NULL
5386 || type->array_type()->length() != NULL)
5387 && type->map_type() == NULL
5388 && type->channel_type() == NULL
5389 && type->function_type() == NULL)
5390 {
5391 error_at(location,
5392 ("expected integer, floating, complex, string, pointer, "
5393 "boolean, interface, slice, map, channel, "
5394 "or function type"));
5395 return false;
5396 }
5397 break;
5398
5399 case OPERATOR_LT:
5400 case OPERATOR_LE:
5401 case OPERATOR_GT:
5402 case OPERATOR_GE:
5403 if (type->integer_type() == NULL
5404 && type->float_type() == NULL
5405 && !type->is_string_type())
5406 {
5407 error_at(location, "expected integer, floating, or string type");
5408 return false;
5409 }
5410 break;
5411
5412 case OPERATOR_PLUS:
5413 case OPERATOR_PLUSEQ:
5414 if (type->integer_type() == NULL
5415 && type->float_type() == NULL
5416 && type->complex_type() == NULL
5417 && !type->is_string_type())
5418 {
5419 error_at(location,
5420 "expected integer, floating, complex, or string type");
5421 return false;
5422 }
5423 break;
5424
5425 case OPERATOR_MINUS:
5426 case OPERATOR_MINUSEQ:
5427 case OPERATOR_MULT:
5428 case OPERATOR_MULTEQ:
5429 case OPERATOR_DIV:
5430 case OPERATOR_DIVEQ:
5431 if (type->integer_type() == NULL
5432 && type->float_type() == NULL
5433 && type->complex_type() == NULL)
5434 {
5435 error_at(location, "expected integer, floating, or complex type");
5436 return false;
5437 }
5438 break;
5439
5440 case OPERATOR_MOD:
5441 case OPERATOR_MODEQ:
5442 case OPERATOR_OR:
5443 case OPERATOR_OREQ:
5444 case OPERATOR_AND:
5445 case OPERATOR_ANDEQ:
5446 case OPERATOR_XOR:
5447 case OPERATOR_XOREQ:
5448 case OPERATOR_BITCLEAR:
5449 case OPERATOR_BITCLEAREQ:
5450 if (type->integer_type() == NULL)
5451 {
5452 error_at(location, "expected integer type");
5453 return false;
5454 }
5455 break;
5456
5457 default:
5458 gcc_unreachable();
5459 }
5460
5461 return true;
5462 }
5463
5464 // Check types.
5465
5466 void
5467 Binary_expression::do_check_types(Gogo*)
5468 {
5469 Type* left_type = this->left_->type();
5470 Type* right_type = this->right_->type();
5471 if (left_type->is_error_type() || right_type->is_error_type())
5472 {
5473 this->set_is_error();
5474 return;
5475 }
5476
5477 if (this->op_ == OPERATOR_EQEQ
5478 || this->op_ == OPERATOR_NOTEQ
5479 || this->op_ == OPERATOR_LT
5480 || this->op_ == OPERATOR_LE
5481 || this->op_ == OPERATOR_GT
5482 || this->op_ == OPERATOR_GE)
5483 {
5484 if (!Type::are_assignable(left_type, right_type, NULL)
5485 && !Type::are_assignable(right_type, left_type, NULL))
5486 {
5487 this->report_error(_("incompatible types in binary expression"));
5488 return;
5489 }
5490 if (!Binary_expression::check_operator_type(this->op_, left_type,
5491 this->location())
5492 || !Binary_expression::check_operator_type(this->op_, right_type,
5493 this->location()))
5494 {
5495 this->set_is_error();
5496 return;
5497 }
5498 }
5499 else if (this->op_ != OPERATOR_LSHIFT && this->op_ != OPERATOR_RSHIFT)
5500 {
5501 if (!Type::are_compatible_for_binop(left_type, right_type))
5502 {
5503 this->report_error(_("incompatible types in binary expression"));
5504 return;
5505 }
5506 if (!Binary_expression::check_operator_type(this->op_, left_type,
5507 this->location()))
5508 {
5509 this->set_is_error();
5510 return;
5511 }
5512 }
5513 else
5514 {
5515 if (left_type->integer_type() == NULL)
5516 this->report_error(_("shift of non-integer operand"));
5517
5518 if (!right_type->is_abstract()
5519 && (right_type->integer_type() == NULL
5520 || !right_type->integer_type()->is_unsigned()))
5521 this->report_error(_("shift count not unsigned integer"));
5522 else
5523 {
5524 mpz_t val;
5525 mpz_init(val);
5526 Type* type;
5527 if (this->right_->integer_constant_value(true, val, &type))
5528 {
5529 if (mpz_sgn(val) < 0)
5530 this->report_error(_("negative shift count"));
5531 }
5532 mpz_clear(val);
5533 }
5534 }
5535 }
5536
5537 // Get a tree for a binary expression.
5538
5539 tree
5540 Binary_expression::do_get_tree(Translate_context* context)
5541 {
5542 tree left = this->left_->get_tree(context);
5543 tree right = this->right_->get_tree(context);
5544
5545 if (left == error_mark_node || right == error_mark_node)
5546 return error_mark_node;
5547
5548 enum tree_code code;
5549 bool use_left_type = true;
5550 bool is_shift_op = false;
5551 switch (this->op_)
5552 {
5553 case OPERATOR_EQEQ:
5554 case OPERATOR_NOTEQ:
5555 case OPERATOR_LT:
5556 case OPERATOR_LE:
5557 case OPERATOR_GT:
5558 case OPERATOR_GE:
5559 return Expression::comparison_tree(context, this->op_,
5560 this->left_->type(), left,
5561 this->right_->type(), right,
5562 this->location());
5563
5564 case OPERATOR_OROR:
5565 code = TRUTH_ORIF_EXPR;
5566 use_left_type = false;
5567 break;
5568 case OPERATOR_ANDAND:
5569 code = TRUTH_ANDIF_EXPR;
5570 use_left_type = false;
5571 break;
5572 case OPERATOR_PLUS:
5573 code = PLUS_EXPR;
5574 break;
5575 case OPERATOR_MINUS:
5576 code = MINUS_EXPR;
5577 break;
5578 case OPERATOR_OR:
5579 code = BIT_IOR_EXPR;
5580 break;
5581 case OPERATOR_XOR:
5582 code = BIT_XOR_EXPR;
5583 break;
5584 case OPERATOR_MULT:
5585 code = MULT_EXPR;
5586 break;
5587 case OPERATOR_DIV:
5588 {
5589 Type *t = this->left_->type();
5590 if (t->float_type() != NULL || t->complex_type() != NULL)
5591 code = RDIV_EXPR;
5592 else
5593 code = TRUNC_DIV_EXPR;
5594 }
5595 break;
5596 case OPERATOR_MOD:
5597 code = TRUNC_MOD_EXPR;
5598 break;
5599 case OPERATOR_LSHIFT:
5600 code = LSHIFT_EXPR;
5601 is_shift_op = true;
5602 break;
5603 case OPERATOR_RSHIFT:
5604 code = RSHIFT_EXPR;
5605 is_shift_op = true;
5606 break;
5607 case OPERATOR_AND:
5608 code = BIT_AND_EXPR;
5609 break;
5610 case OPERATOR_BITCLEAR:
5611 right = fold_build1(BIT_NOT_EXPR, TREE_TYPE(right), right);
5612 code = BIT_AND_EXPR;
5613 break;
5614 default:
5615 gcc_unreachable();
5616 }
5617
5618 tree type = use_left_type ? TREE_TYPE(left) : TREE_TYPE(right);
5619
5620 if (this->left_->type()->is_string_type())
5621 {
5622 gcc_assert(this->op_ == OPERATOR_PLUS);
5623 tree string_type = Type::make_string_type()->get_tree(context->gogo());
5624 static tree string_plus_decl;
5625 return Gogo::call_builtin(&string_plus_decl,
5626 this->location(),
5627 "__go_string_plus",
5628 2,
5629 string_type,
5630 string_type,
5631 left,
5632 string_type,
5633 right);
5634 }
5635
5636 tree compute_type = excess_precision_type(type);
5637 if (compute_type != NULL_TREE)
5638 {
5639 left = ::convert(compute_type, left);
5640 right = ::convert(compute_type, right);
5641 }
5642
5643 tree eval_saved = NULL_TREE;
5644 if (is_shift_op)
5645 {
5646 if (!DECL_P(left))
5647 left = save_expr(left);
5648 if (!DECL_P(right))
5649 right = save_expr(right);
5650 // Make sure the values are evaluated.
5651 eval_saved = fold_build2_loc(this->location(), COMPOUND_EXPR,
5652 void_type_node, left, right);
5653 }
5654
5655 tree ret = fold_build2_loc(this->location(),
5656 code,
5657 compute_type != NULL_TREE ? compute_type : type,
5658 left, right);
5659
5660 if (compute_type != NULL_TREE)
5661 ret = ::convert(type, ret);
5662
5663 // In Go, a shift larger than the size of the type is well-defined.
5664 // This is not true in GENERIC, so we need to insert a conditional.
5665 if (is_shift_op)
5666 {
5667 gcc_assert(INTEGRAL_TYPE_P(TREE_TYPE(left)));
5668 gcc_assert(this->left_->type()->integer_type() != NULL);
5669 int bits = TYPE_PRECISION(TREE_TYPE(left));
5670
5671 tree compare = fold_build2(LT_EXPR, boolean_type_node, right,
5672 build_int_cst_type(TREE_TYPE(right), bits));
5673
5674 tree overflow_result = fold_convert_loc(this->location(),
5675 TREE_TYPE(left),
5676 integer_zero_node);
5677 if (this->op_ == OPERATOR_RSHIFT
5678 && !this->left_->type()->integer_type()->is_unsigned())
5679 {
5680 tree neg = fold_build2_loc(this->location(), LT_EXPR,
5681 boolean_type_node, left,
5682 fold_convert_loc(this->location(),
5683 TREE_TYPE(left),
5684 integer_zero_node));
5685 tree neg_one = fold_build2_loc(this->location(),
5686 MINUS_EXPR, TREE_TYPE(left),
5687 fold_convert_loc(this->location(),
5688 TREE_TYPE(left),
5689 integer_zero_node),
5690 fold_convert_loc(this->location(),
5691 TREE_TYPE(left),
5692 integer_one_node));
5693 overflow_result = fold_build3_loc(this->location(), COND_EXPR,
5694 TREE_TYPE(left), neg, neg_one,
5695 overflow_result);
5696 }
5697
5698 ret = fold_build3_loc(this->location(), COND_EXPR, TREE_TYPE(left),
5699 compare, ret, overflow_result);
5700
5701 ret = fold_build2_loc(this->location(), COMPOUND_EXPR,
5702 TREE_TYPE(ret), eval_saved, ret);
5703 }
5704
5705 return ret;
5706 }
5707
5708 // Export a binary expression.
5709
5710 void
5711 Binary_expression::do_export(Export* exp) const
5712 {
5713 exp->write_c_string("(");
5714 this->left_->export_expression(exp);
5715 switch (this->op_)
5716 {
5717 case OPERATOR_OROR:
5718 exp->write_c_string(" || ");
5719 break;
5720 case OPERATOR_ANDAND:
5721 exp->write_c_string(" && ");
5722 break;
5723 case OPERATOR_EQEQ:
5724 exp->write_c_string(" == ");
5725 break;
5726 case OPERATOR_NOTEQ:
5727 exp->write_c_string(" != ");
5728 break;
5729 case OPERATOR_LT:
5730 exp->write_c_string(" < ");
5731 break;
5732 case OPERATOR_LE:
5733 exp->write_c_string(" <= ");
5734 break;
5735 case OPERATOR_GT:
5736 exp->write_c_string(" > ");
5737 break;
5738 case OPERATOR_GE:
5739 exp->write_c_string(" >= ");
5740 break;
5741 case OPERATOR_PLUS:
5742 exp->write_c_string(" + ");
5743 break;
5744 case OPERATOR_MINUS:
5745 exp->write_c_string(" - ");
5746 break;
5747 case OPERATOR_OR:
5748 exp->write_c_string(" | ");
5749 break;
5750 case OPERATOR_XOR:
5751 exp->write_c_string(" ^ ");
5752 break;
5753 case OPERATOR_MULT:
5754 exp->write_c_string(" * ");
5755 break;
5756 case OPERATOR_DIV:
5757 exp->write_c_string(" / ");
5758 break;
5759 case OPERATOR_MOD:
5760 exp->write_c_string(" % ");
5761 break;
5762 case OPERATOR_LSHIFT:
5763 exp->write_c_string(" << ");
5764 break;
5765 case OPERATOR_RSHIFT:
5766 exp->write_c_string(" >> ");
5767 break;
5768 case OPERATOR_AND:
5769 exp->write_c_string(" & ");
5770 break;
5771 case OPERATOR_BITCLEAR:
5772 exp->write_c_string(" &^ ");
5773 break;
5774 default:
5775 gcc_unreachable();
5776 }
5777 this->right_->export_expression(exp);
5778 exp->write_c_string(")");
5779 }
5780
5781 // Import a binary expression.
5782
5783 Expression*
5784 Binary_expression::do_import(Import* imp)
5785 {
5786 imp->require_c_string("(");
5787
5788 Expression* left = Expression::import_expression(imp);
5789
5790 Operator op;
5791 if (imp->match_c_string(" || "))
5792 {
5793 op = OPERATOR_OROR;
5794 imp->advance(4);
5795 }
5796 else if (imp->match_c_string(" && "))
5797 {
5798 op = OPERATOR_ANDAND;
5799 imp->advance(4);
5800 }
5801 else if (imp->match_c_string(" == "))
5802 {
5803 op = OPERATOR_EQEQ;
5804 imp->advance(4);
5805 }
5806 else if (imp->match_c_string(" != "))
5807 {
5808 op = OPERATOR_NOTEQ;
5809 imp->advance(4);
5810 }
5811 else if (imp->match_c_string(" < "))
5812 {
5813 op = OPERATOR_LT;
5814 imp->advance(3);
5815 }
5816 else if (imp->match_c_string(" <= "))
5817 {
5818 op = OPERATOR_LE;
5819 imp->advance(4);
5820 }
5821 else if (imp->match_c_string(" > "))
5822 {
5823 op = OPERATOR_GT;
5824 imp->advance(3);
5825 }
5826 else if (imp->match_c_string(" >= "))
5827 {
5828 op = OPERATOR_GE;
5829 imp->advance(4);
5830 }
5831 else if (imp->match_c_string(" + "))
5832 {
5833 op = OPERATOR_PLUS;
5834 imp->advance(3);
5835 }
5836 else if (imp->match_c_string(" - "))
5837 {
5838 op = OPERATOR_MINUS;
5839 imp->advance(3);
5840 }
5841 else if (imp->match_c_string(" | "))
5842 {
5843 op = OPERATOR_OR;
5844 imp->advance(3);
5845 }
5846 else if (imp->match_c_string(" ^ "))
5847 {
5848 op = OPERATOR_XOR;
5849 imp->advance(3);
5850 }
5851 else if (imp->match_c_string(" * "))
5852 {
5853 op = OPERATOR_MULT;
5854 imp->advance(3);
5855 }
5856 else if (imp->match_c_string(" / "))
5857 {
5858 op = OPERATOR_DIV;
5859 imp->advance(3);
5860 }
5861 else if (imp->match_c_string(" % "))
5862 {
5863 op = OPERATOR_MOD;
5864 imp->advance(3);
5865 }
5866 else if (imp->match_c_string(" << "))
5867 {
5868 op = OPERATOR_LSHIFT;
5869 imp->advance(4);
5870 }
5871 else if (imp->match_c_string(" >> "))
5872 {
5873 op = OPERATOR_RSHIFT;
5874 imp->advance(4);
5875 }
5876 else if (imp->match_c_string(" & "))
5877 {
5878 op = OPERATOR_AND;
5879 imp->advance(3);
5880 }
5881 else if (imp->match_c_string(" &^ "))
5882 {
5883 op = OPERATOR_BITCLEAR;
5884 imp->advance(4);
5885 }
5886 else
5887 {
5888 error_at(imp->location(), "unrecognized binary operator");
5889 return Expression::make_error(imp->location());
5890 }
5891
5892 Expression* right = Expression::import_expression(imp);
5893
5894 imp->require_c_string(")");
5895
5896 return Expression::make_binary(op, left, right, imp->location());
5897 }
5898
5899 // Make a binary expression.
5900
5901 Expression*
5902 Expression::make_binary(Operator op, Expression* left, Expression* right,
5903 source_location location)
5904 {
5905 return new Binary_expression(op, left, right, location);
5906 }
5907
5908 // Implement a comparison.
5909
5910 tree
5911 Expression::comparison_tree(Translate_context* context, Operator op,
5912 Type* left_type, tree left_tree,
5913 Type* right_type, tree right_tree,
5914 source_location location)
5915 {
5916 enum tree_code code;
5917 switch (op)
5918 {
5919 case OPERATOR_EQEQ:
5920 code = EQ_EXPR;
5921 break;
5922 case OPERATOR_NOTEQ:
5923 code = NE_EXPR;
5924 break;
5925 case OPERATOR_LT:
5926 code = LT_EXPR;
5927 break;
5928 case OPERATOR_LE:
5929 code = LE_EXPR;
5930 break;
5931 case OPERATOR_GT:
5932 code = GT_EXPR;
5933 break;
5934 case OPERATOR_GE:
5935 code = GE_EXPR;
5936 break;
5937 default:
5938 gcc_unreachable();
5939 }
5940
5941 if (left_type->is_string_type() && right_type->is_string_type())
5942 {
5943 tree string_type = Type::make_string_type()->get_tree(context->gogo());
5944 static tree string_compare_decl;
5945 left_tree = Gogo::call_builtin(&string_compare_decl,
5946 location,
5947 "__go_strcmp",
5948 2,
5949 integer_type_node,
5950 string_type,
5951 left_tree,
5952 string_type,
5953 right_tree);
5954 right_tree = build_int_cst_type(integer_type_node, 0);
5955 }
5956 else if ((left_type->interface_type() != NULL
5957 && right_type->interface_type() == NULL
5958 && !right_type->is_nil_type())
5959 || (left_type->interface_type() == NULL
5960 && !left_type->is_nil_type()
5961 && right_type->interface_type() != NULL))
5962 {
5963 // Comparing an interface value to a non-interface value.
5964 if (left_type->interface_type() == NULL)
5965 {
5966 std::swap(left_type, right_type);
5967 std::swap(left_tree, right_tree);
5968 }
5969
5970 // The right operand is not an interface. We need to take its
5971 // address if it is not a pointer.
5972 tree make_tmp;
5973 tree arg;
5974 if (right_type->points_to() != NULL)
5975 {
5976 make_tmp = NULL_TREE;
5977 arg = right_tree;
5978 }
5979 else if (TREE_ADDRESSABLE(TREE_TYPE(right_tree)) || DECL_P(right_tree))
5980 {
5981 make_tmp = NULL_TREE;
5982 arg = build_fold_addr_expr_loc(location, right_tree);
5983 if (DECL_P(right_tree))
5984 TREE_ADDRESSABLE(right_tree) = 1;
5985 }
5986 else
5987 {
5988 tree tmp = create_tmp_var(TREE_TYPE(right_tree),
5989 get_name(right_tree));
5990 DECL_IGNORED_P(tmp) = 0;
5991 DECL_INITIAL(tmp) = right_tree;
5992 TREE_ADDRESSABLE(tmp) = 1;
5993 make_tmp = build1(DECL_EXPR, void_type_node, tmp);
5994 SET_EXPR_LOCATION(make_tmp, location);
5995 arg = build_fold_addr_expr_loc(location, tmp);
5996 }
5997 arg = fold_convert_loc(location, ptr_type_node, arg);
5998
5999 tree descriptor = right_type->type_descriptor_pointer(context->gogo());
6000
6001 if (left_type->interface_type()->is_empty())
6002 {
6003 static tree empty_interface_value_compare_decl;
6004 left_tree = Gogo::call_builtin(&empty_interface_value_compare_decl,
6005 location,
6006 "__go_empty_interface_value_compare",
6007 3,
6008 integer_type_node,
6009 TREE_TYPE(left_tree),
6010 left_tree,
6011 TREE_TYPE(descriptor),
6012 descriptor,
6013 ptr_type_node,
6014 arg);
6015 // This can panic if the type is not comparable.
6016 TREE_NOTHROW(empty_interface_value_compare_decl) = 0;
6017 }
6018 else
6019 {
6020 static tree interface_value_compare_decl;
6021 left_tree = Gogo::call_builtin(&interface_value_compare_decl,
6022 location,
6023 "__go_interface_value_compare",
6024 3,
6025 integer_type_node,
6026 TREE_TYPE(left_tree),
6027 left_tree,
6028 TREE_TYPE(descriptor),
6029 descriptor,
6030 ptr_type_node,
6031 arg);
6032 // This can panic if the type is not comparable.
6033 TREE_NOTHROW(interface_value_compare_decl) = 0;
6034 }
6035 right_tree = build_int_cst_type(integer_type_node, 0);
6036
6037 if (make_tmp != NULL_TREE)
6038 left_tree = build2(COMPOUND_EXPR, TREE_TYPE(left_tree), make_tmp,
6039 left_tree);
6040 }
6041 else if (left_type->interface_type() != NULL
6042 && right_type->interface_type() != NULL)
6043 {
6044 if (left_type->interface_type()->is_empty())
6045 {
6046 gcc_assert(right_type->interface_type()->is_empty());
6047 static tree empty_interface_compare_decl;
6048 left_tree = Gogo::call_builtin(&empty_interface_compare_decl,
6049 location,
6050 "__go_empty_interface_compare",
6051 2,
6052 integer_type_node,
6053 TREE_TYPE(left_tree),
6054 left_tree,
6055 TREE_TYPE(right_tree),
6056 right_tree);
6057 // This can panic if the type is uncomparable.
6058 TREE_NOTHROW(empty_interface_compare_decl) = 0;
6059 }
6060 else
6061 {
6062 gcc_assert(!right_type->interface_type()->is_empty());
6063 static tree interface_compare_decl;
6064 left_tree = Gogo::call_builtin(&interface_compare_decl,
6065 location,
6066 "__go_interface_compare",
6067 2,
6068 integer_type_node,
6069 TREE_TYPE(left_tree),
6070 left_tree,
6071 TREE_TYPE(right_tree),
6072 right_tree);
6073 // This can panic if the type is uncomparable.
6074 TREE_NOTHROW(interface_compare_decl) = 0;
6075 }
6076 right_tree = build_int_cst_type(integer_type_node, 0);
6077 }
6078
6079 if (left_type->is_nil_type()
6080 && (op == OPERATOR_EQEQ || op == OPERATOR_NOTEQ))
6081 {
6082 std::swap(left_type, right_type);
6083 std::swap(left_tree, right_tree);
6084 }
6085
6086 if (right_type->is_nil_type())
6087 {
6088 if (left_type->array_type() != NULL
6089 && left_type->array_type()->length() == NULL)
6090 {
6091 Array_type* at = left_type->array_type();
6092 left_tree = at->value_pointer_tree(context->gogo(), left_tree);
6093 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
6094 }
6095 else if (left_type->interface_type() != NULL)
6096 {
6097 // An interface is nil if the first field is nil.
6098 tree left_type_tree = TREE_TYPE(left_tree);
6099 gcc_assert(TREE_CODE(left_type_tree) == RECORD_TYPE);
6100 tree field = TYPE_FIELDS(left_type_tree);
6101 left_tree = build3(COMPONENT_REF, TREE_TYPE(field), left_tree,
6102 field, NULL_TREE);
6103 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
6104 }
6105 else
6106 {
6107 gcc_assert(POINTER_TYPE_P(TREE_TYPE(left_tree)));
6108 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
6109 }
6110 }
6111
6112 if (left_tree == error_mark_node || right_tree == error_mark_node)
6113 return error_mark_node;
6114
6115 tree ret = fold_build2(code, boolean_type_node, left_tree, right_tree);
6116 if (CAN_HAVE_LOCATION_P(ret))
6117 SET_EXPR_LOCATION(ret, location);
6118 return ret;
6119 }
6120
6121 // Class Bound_method_expression.
6122
6123 // Traversal.
6124
6125 int
6126 Bound_method_expression::do_traverse(Traverse* traverse)
6127 {
6128 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT)
6129 return TRAVERSE_EXIT;
6130 return Expression::traverse(&this->method_, traverse);
6131 }
6132
6133 // Return the type of a bound method expression. The type of this
6134 // object is really the type of the method with no receiver. We
6135 // should be able to get away with just returning the type of the
6136 // method.
6137
6138 Type*
6139 Bound_method_expression::do_type()
6140 {
6141 return this->method_->type();
6142 }
6143
6144 // Determine the types of a method expression.
6145
6146 void
6147 Bound_method_expression::do_determine_type(const Type_context*)
6148 {
6149 this->method_->determine_type_no_context();
6150 Type* mtype = this->method_->type();
6151 Function_type* fntype = mtype == NULL ? NULL : mtype->function_type();
6152 if (fntype == NULL || !fntype->is_method())
6153 this->expr_->determine_type_no_context();
6154 else
6155 {
6156 Type_context subcontext(fntype->receiver()->type(), false);
6157 this->expr_->determine_type(&subcontext);
6158 }
6159 }
6160
6161 // Check the types of a method expression.
6162
6163 void
6164 Bound_method_expression::do_check_types(Gogo*)
6165 {
6166 Type* type = this->method_->type()->deref();
6167 if (type == NULL
6168 || type->function_type() == NULL
6169 || !type->function_type()->is_method())
6170 this->report_error(_("object is not a method"));
6171 else
6172 {
6173 Type* rtype = type->function_type()->receiver()->type()->deref();
6174 Type* etype = (this->expr_type_ != NULL
6175 ? this->expr_type_
6176 : this->expr_->type());
6177 etype = etype->deref();
6178 if (!Type::are_identical(rtype, etype, true, NULL))
6179 this->report_error(_("method type does not match object type"));
6180 }
6181 }
6182
6183 // Get the tree for a method expression. There is no standard tree
6184 // representation for this. The only places it may currently be used
6185 // are in a Call_expression or a Go_statement, which will take it
6186 // apart directly. So this has nothing to do at present.
6187
6188 tree
6189 Bound_method_expression::do_get_tree(Translate_context*)
6190 {
6191 gcc_unreachable();
6192 }
6193
6194 // Make a method expression.
6195
6196 Bound_method_expression*
6197 Expression::make_bound_method(Expression* expr, Expression* method,
6198 source_location location)
6199 {
6200 return new Bound_method_expression(expr, method, location);
6201 }
6202
6203 // Class Builtin_call_expression. This is used for a call to a
6204 // builtin function.
6205
6206 class Builtin_call_expression : public Call_expression
6207 {
6208 public:
6209 Builtin_call_expression(Gogo* gogo, Expression* fn, Expression_list* args,
6210 bool is_varargs, source_location location);
6211
6212 protected:
6213 // This overrides Call_expression::do_lower.
6214 Expression*
6215 do_lower(Gogo*, Named_object*, int);
6216
6217 bool
6218 do_is_constant() const;
6219
6220 bool
6221 do_integer_constant_value(bool, mpz_t, Type**) const;
6222
6223 bool
6224 do_float_constant_value(mpfr_t, Type**) const;
6225
6226 bool
6227 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
6228
6229 Type*
6230 do_type();
6231
6232 void
6233 do_determine_type(const Type_context*);
6234
6235 void
6236 do_check_types(Gogo*);
6237
6238 Expression*
6239 do_copy()
6240 {
6241 return new Builtin_call_expression(this->gogo_, this->fn()->copy(),
6242 this->args()->copy(),
6243 this->is_varargs(),
6244 this->location());
6245 }
6246
6247 tree
6248 do_get_tree(Translate_context*);
6249
6250 void
6251 do_export(Export*) const;
6252
6253 virtual bool
6254 do_is_recover_call() const;
6255
6256 virtual void
6257 do_set_recover_arg(Expression*);
6258
6259 private:
6260 // The builtin functions.
6261 enum Builtin_function_code
6262 {
6263 BUILTIN_INVALID,
6264
6265 // Predeclared builtin functions.
6266 BUILTIN_APPEND,
6267 BUILTIN_CAP,
6268 BUILTIN_CLOSE,
6269 BUILTIN_CLOSED,
6270 BUILTIN_CMPLX,
6271 BUILTIN_COPY,
6272 BUILTIN_IMAG,
6273 BUILTIN_LEN,
6274 BUILTIN_MAKE,
6275 BUILTIN_NEW,
6276 BUILTIN_PANIC,
6277 BUILTIN_PRINT,
6278 BUILTIN_PRINTLN,
6279 BUILTIN_REAL,
6280 BUILTIN_RECOVER,
6281
6282 // Builtin functions from the unsafe package.
6283 BUILTIN_ALIGNOF,
6284 BUILTIN_OFFSETOF,
6285 BUILTIN_SIZEOF
6286 };
6287
6288 Expression*
6289 one_arg() const;
6290
6291 bool
6292 check_one_arg();
6293
6294 static Type*
6295 real_imag_type(Type*);
6296
6297 static Type*
6298 cmplx_type(Type*);
6299
6300 // A pointer back to the general IR structure. This avoids a global
6301 // variable, or passing it around everywhere.
6302 Gogo* gogo_;
6303 // The builtin function being called.
6304 Builtin_function_code code_;
6305 };
6306
6307 Builtin_call_expression::Builtin_call_expression(Gogo* gogo,
6308 Expression* fn,
6309 Expression_list* args,
6310 bool is_varargs,
6311 source_location location)
6312 : Call_expression(fn, args, is_varargs, location),
6313 gogo_(gogo), code_(BUILTIN_INVALID)
6314 {
6315 Func_expression* fnexp = this->fn()->func_expression();
6316 gcc_assert(fnexp != NULL);
6317 const std::string& name(fnexp->named_object()->name());
6318 if (name == "append")
6319 this->code_ = BUILTIN_APPEND;
6320 else if (name == "cap")
6321 this->code_ = BUILTIN_CAP;
6322 else if (name == "close")
6323 this->code_ = BUILTIN_CLOSE;
6324 else if (name == "closed")
6325 this->code_ = BUILTIN_CLOSED;
6326 else if (name == "cmplx")
6327 this->code_ = BUILTIN_CMPLX;
6328 else if (name == "copy")
6329 this->code_ = BUILTIN_COPY;
6330 else if (name == "imag")
6331 this->code_ = BUILTIN_IMAG;
6332 else if (name == "len")
6333 this->code_ = BUILTIN_LEN;
6334 else if (name == "make")
6335 this->code_ = BUILTIN_MAKE;
6336 else if (name == "new")
6337 this->code_ = BUILTIN_NEW;
6338 else if (name == "panic")
6339 this->code_ = BUILTIN_PANIC;
6340 else if (name == "print")
6341 this->code_ = BUILTIN_PRINT;
6342 else if (name == "println")
6343 this->code_ = BUILTIN_PRINTLN;
6344 else if (name == "real")
6345 this->code_ = BUILTIN_REAL;
6346 else if (name == "recover")
6347 this->code_ = BUILTIN_RECOVER;
6348 else if (name == "Alignof")
6349 this->code_ = BUILTIN_ALIGNOF;
6350 else if (name == "Offsetof")
6351 this->code_ = BUILTIN_OFFSETOF;
6352 else if (name == "Sizeof")
6353 this->code_ = BUILTIN_SIZEOF;
6354 else
6355 gcc_unreachable();
6356 }
6357
6358 // Return whether this is a call to recover. This is a virtual
6359 // function called from the parent class.
6360
6361 bool
6362 Builtin_call_expression::do_is_recover_call() const
6363 {
6364 if (this->classification() == EXPRESSION_ERROR)
6365 return false;
6366 return this->code_ == BUILTIN_RECOVER;
6367 }
6368
6369 // Set the argument for a call to recover.
6370
6371 void
6372 Builtin_call_expression::do_set_recover_arg(Expression* arg)
6373 {
6374 const Expression_list* args = this->args();
6375 gcc_assert(args == NULL || args->empty());
6376 Expression_list* new_args = new Expression_list();
6377 new_args->push_back(arg);
6378 this->set_args(new_args);
6379 }
6380
6381 // A traversal class which looks for a call expression.
6382
6383 class Find_call_expression : public Traverse
6384 {
6385 public:
6386 Find_call_expression()
6387 : Traverse(traverse_expressions),
6388 found_(false)
6389 { }
6390
6391 int
6392 expression(Expression**);
6393
6394 bool
6395 found()
6396 { return this->found_; }
6397
6398 private:
6399 bool found_;
6400 };
6401
6402 int
6403 Find_call_expression::expression(Expression** pexpr)
6404 {
6405 if ((*pexpr)->call_expression() != NULL)
6406 {
6407 this->found_ = true;
6408 return TRAVERSE_EXIT;
6409 }
6410 return TRAVERSE_CONTINUE;
6411 }
6412
6413 // Lower a builtin call expression. This turns new and make into
6414 // specific expressions. We also convert to a constant if we can.
6415
6416 Expression*
6417 Builtin_call_expression::do_lower(Gogo* gogo, Named_object* function, int)
6418 {
6419 if (this->code_ == BUILTIN_NEW)
6420 {
6421 const Expression_list* args = this->args();
6422 if (args == NULL || args->size() < 1)
6423 this->report_error(_("not enough arguments"));
6424 else if (args->size() > 1)
6425 this->report_error(_("too many arguments"));
6426 else
6427 {
6428 Expression* arg = args->front();
6429 if (!arg->is_type_expression())
6430 {
6431 error_at(arg->location(), "expected type");
6432 this->set_is_error();
6433 }
6434 else
6435 return Expression::make_allocation(arg->type(), this->location());
6436 }
6437 }
6438 else if (this->code_ == BUILTIN_MAKE)
6439 {
6440 const Expression_list* args = this->args();
6441 if (args == NULL || args->size() < 1)
6442 this->report_error(_("not enough arguments"));
6443 else
6444 {
6445 Expression* arg = args->front();
6446 if (!arg->is_type_expression())
6447 {
6448 error_at(arg->location(), "expected type");
6449 this->set_is_error();
6450 }
6451 else
6452 {
6453 Expression_list* newargs;
6454 if (args->size() == 1)
6455 newargs = NULL;
6456 else
6457 {
6458 newargs = new Expression_list();
6459 Expression_list::const_iterator p = args->begin();
6460 ++p;
6461 for (; p != args->end(); ++p)
6462 newargs->push_back(*p);
6463 }
6464 return Expression::make_make(arg->type(), newargs,
6465 this->location());
6466 }
6467 }
6468 }
6469 else if (this->is_constant())
6470 {
6471 // We can only lower len and cap if there are no function calls
6472 // in the arguments. Otherwise we have to make the call.
6473 if (this->code_ == BUILTIN_LEN || this->code_ == BUILTIN_CAP)
6474 {
6475 Expression* arg = this->one_arg();
6476 if (!arg->is_constant())
6477 {
6478 Find_call_expression find_call;
6479 Expression::traverse(&arg, &find_call);
6480 if (find_call.found())
6481 return this;
6482 }
6483 }
6484
6485 mpz_t ival;
6486 mpz_init(ival);
6487 Type* type;
6488 if (this->integer_constant_value(true, ival, &type))
6489 {
6490 Expression* ret = Expression::make_integer(&ival, type,
6491 this->location());
6492 mpz_clear(ival);
6493 return ret;
6494 }
6495 mpz_clear(ival);
6496
6497 mpfr_t rval;
6498 mpfr_init(rval);
6499 if (this->float_constant_value(rval, &type))
6500 {
6501 Expression* ret = Expression::make_float(&rval, type,
6502 this->location());
6503 mpfr_clear(rval);
6504 return ret;
6505 }
6506
6507 mpfr_t imag;
6508 mpfr_init(imag);
6509 if (this->complex_constant_value(rval, imag, &type))
6510 {
6511 Expression* ret = Expression::make_complex(&rval, &imag, type,
6512 this->location());
6513 mpfr_clear(rval);
6514 mpfr_clear(imag);
6515 return ret;
6516 }
6517 mpfr_clear(rval);
6518 mpfr_clear(imag);
6519 }
6520 else if (this->code_ == BUILTIN_RECOVER)
6521 {
6522 if (function != NULL)
6523 function->func_value()->set_calls_recover();
6524 else
6525 {
6526 // Calling recover outside of a function always returns the
6527 // nil empty interface.
6528 Type* eface = Type::make_interface_type(NULL, this->location());
6529 return Expression::make_cast(eface,
6530 Expression::make_nil(this->location()),
6531 this->location());
6532 }
6533 }
6534 else if (this->code_ == BUILTIN_APPEND)
6535 {
6536 // Lower the varargs.
6537 const Expression_list* args = this->args();
6538 if (args == NULL || args->empty())
6539 return this;
6540 Type* slice_type = args->front()->type();
6541 if (!slice_type->is_open_array_type())
6542 {
6543 error_at(args->front()->location(), "argument 1 must be a slice");
6544 this->set_is_error();
6545 return this;
6546 }
6547 return this->lower_varargs(gogo, function, slice_type, 2);
6548 }
6549
6550 return this;
6551 }
6552
6553 // Return the type of the real or imag functions, given the type of
6554 // the argument. We need to map complex to float, complex64 to
6555 // float32, and complex128 to float64, so it has to be done by name.
6556 // This returns NULL if it can't figure out the type.
6557
6558 Type*
6559 Builtin_call_expression::real_imag_type(Type* arg_type)
6560 {
6561 if (arg_type == NULL || arg_type->is_abstract())
6562 return NULL;
6563 Named_type* nt = arg_type->named_type();
6564 if (nt == NULL)
6565 return NULL;
6566 while (nt->real_type()->named_type() != NULL)
6567 nt = nt->real_type()->named_type();
6568 if (nt->name() == "complex")
6569 return Type::lookup_float_type("float");
6570 else if (nt->name() == "complex64")
6571 return Type::lookup_float_type("float32");
6572 else if (nt->name() == "complex128")
6573 return Type::lookup_float_type("float64");
6574 else
6575 return NULL;
6576 }
6577
6578 // Return the type of the cmplx function, given the type of one of the
6579 // argments. Like real_imag_type, we have to map by name.
6580
6581 Type*
6582 Builtin_call_expression::cmplx_type(Type* arg_type)
6583 {
6584 if (arg_type == NULL || arg_type->is_abstract())
6585 return NULL;
6586 Named_type* nt = arg_type->named_type();
6587 if (nt == NULL)
6588 return NULL;
6589 while (nt->real_type()->named_type() != NULL)
6590 nt = nt->real_type()->named_type();
6591 if (nt->name() == "float")
6592 return Type::lookup_complex_type("complex");
6593 else if (nt->name() == "float32")
6594 return Type::lookup_complex_type("complex64");
6595 else if (nt->name() == "float64")
6596 return Type::lookup_complex_type("complex128");
6597 else
6598 return NULL;
6599 }
6600
6601 // Return a single argument, or NULL if there isn't one.
6602
6603 Expression*
6604 Builtin_call_expression::one_arg() const
6605 {
6606 const Expression_list* args = this->args();
6607 if (args->size() != 1)
6608 return NULL;
6609 return args->front();
6610 }
6611
6612 // Return whether this is constant: len of a string, or len or cap of
6613 // a fixed array, or unsafe.Sizeof, unsafe.Offsetof, unsafe.Alignof.
6614
6615 bool
6616 Builtin_call_expression::do_is_constant() const
6617 {
6618 switch (this->code_)
6619 {
6620 case BUILTIN_LEN:
6621 case BUILTIN_CAP:
6622 {
6623 Expression* arg = this->one_arg();
6624 if (arg == NULL)
6625 return false;
6626 Type* arg_type = arg->type();
6627
6628 if (arg_type->points_to() != NULL
6629 && arg_type->points_to()->array_type() != NULL
6630 && !arg_type->points_to()->is_open_array_type())
6631 arg_type = arg_type->points_to();
6632
6633 if (arg_type->array_type() != NULL
6634 && arg_type->array_type()->length() != NULL)
6635 return arg_type->array_type()->length()->is_constant();
6636
6637 if (this->code_ == BUILTIN_LEN && arg_type->is_string_type())
6638 return arg->is_constant();
6639 }
6640 break;
6641
6642 case BUILTIN_SIZEOF:
6643 case BUILTIN_ALIGNOF:
6644 return this->one_arg() != NULL;
6645
6646 case BUILTIN_OFFSETOF:
6647 {
6648 Expression* arg = this->one_arg();
6649 if (arg == NULL)
6650 return false;
6651 return arg->field_reference_expression() != NULL;
6652 }
6653
6654 case BUILTIN_CMPLX:
6655 {
6656 const Expression_list* args = this->args();
6657 if (args != NULL && args->size() == 2)
6658 return args->front()->is_constant() && args->back()->is_constant();
6659 }
6660 break;
6661
6662 case BUILTIN_REAL:
6663 case BUILTIN_IMAG:
6664 {
6665 Expression* arg = this->one_arg();
6666 return arg != NULL && arg->is_constant();
6667 }
6668
6669 default:
6670 break;
6671 }
6672
6673 return false;
6674 }
6675
6676 // Return an integer constant value if possible.
6677
6678 bool
6679 Builtin_call_expression::do_integer_constant_value(bool iota_is_constant,
6680 mpz_t val,
6681 Type** ptype) const
6682 {
6683 if (this->code_ == BUILTIN_LEN
6684 || this->code_ == BUILTIN_CAP)
6685 {
6686 Expression* arg = this->one_arg();
6687 if (arg == NULL)
6688 return false;
6689 Type* arg_type = arg->type();
6690
6691 if (this->code_ == BUILTIN_LEN && arg_type->is_string_type())
6692 {
6693 std::string sval;
6694 if (arg->string_constant_value(&sval))
6695 {
6696 mpz_set_ui(val, sval.length());
6697 *ptype = Type::lookup_integer_type("int");
6698 return true;
6699 }
6700 }
6701
6702 if (arg_type->points_to() != NULL
6703 && arg_type->points_to()->array_type() != NULL
6704 && !arg_type->points_to()->is_open_array_type())
6705 arg_type = arg_type->points_to();
6706
6707 if (arg_type->array_type() != NULL
6708 && arg_type->array_type()->length() != NULL)
6709 {
6710 Expression* e = arg_type->array_type()->length();
6711 if (e->integer_constant_value(iota_is_constant, val, ptype))
6712 {
6713 *ptype = Type::lookup_integer_type("int");
6714 return true;
6715 }
6716 }
6717 }
6718 else if (this->code_ == BUILTIN_SIZEOF
6719 || this->code_ == BUILTIN_ALIGNOF)
6720 {
6721 Expression* arg = this->one_arg();
6722 if (arg == NULL)
6723 return false;
6724 Type* arg_type = arg->type();
6725 if (arg_type->is_error_type() || arg_type->is_undefined())
6726 return false;
6727 if (arg_type->is_abstract())
6728 return false;
6729 tree arg_type_tree = arg_type->get_tree(this->gogo_);
6730 unsigned long val_long;
6731 if (this->code_ == BUILTIN_SIZEOF)
6732 {
6733 tree type_size = TYPE_SIZE_UNIT(arg_type_tree);
6734 gcc_assert(TREE_CODE(type_size) == INTEGER_CST);
6735 if (TREE_INT_CST_HIGH(type_size) != 0)
6736 return false;
6737 unsigned HOST_WIDE_INT val_wide = TREE_INT_CST_LOW(type_size);
6738 val_long = static_cast<unsigned long>(val_wide);
6739 if (val_long != val_wide)
6740 return false;
6741 }
6742 else if (this->code_ == BUILTIN_ALIGNOF)
6743 {
6744 if (arg->field_reference_expression() == NULL)
6745 val_long = go_type_alignment(arg_type_tree);
6746 else
6747 {
6748 // Calling unsafe.Alignof(s.f) returns the alignment of
6749 // the type of f when it is used as a field in a struct.
6750 val_long = go_field_alignment(arg_type_tree);
6751 }
6752 }
6753 else
6754 gcc_unreachable();
6755 mpz_set_ui(val, val_long);
6756 *ptype = NULL;
6757 return true;
6758 }
6759 else if (this->code_ == BUILTIN_OFFSETOF)
6760 {
6761 Expression* arg = this->one_arg();
6762 if (arg == NULL)
6763 return false;
6764 Field_reference_expression* farg = arg->field_reference_expression();
6765 if (farg == NULL)
6766 return false;
6767 Expression* struct_expr = farg->expr();
6768 Type* st = struct_expr->type();
6769 if (st->struct_type() == NULL)
6770 return false;
6771 tree struct_tree = st->get_tree(this->gogo_);
6772 gcc_assert(TREE_CODE(struct_tree) == RECORD_TYPE);
6773 tree field = TYPE_FIELDS(struct_tree);
6774 for (unsigned int index = farg->field_index(); index > 0; --index)
6775 {
6776 field = DECL_CHAIN(field);
6777 gcc_assert(field != NULL_TREE);
6778 }
6779 HOST_WIDE_INT offset_wide = int_byte_position (field);
6780 if (offset_wide < 0)
6781 return false;
6782 unsigned long offset_long = static_cast<unsigned long>(offset_wide);
6783 if (offset_long != static_cast<unsigned HOST_WIDE_INT>(offset_wide))
6784 return false;
6785 mpz_set_ui(val, offset_long);
6786 return true;
6787 }
6788 return false;
6789 }
6790
6791 // Return a floating point constant value if possible.
6792
6793 bool
6794 Builtin_call_expression::do_float_constant_value(mpfr_t val,
6795 Type** ptype) const
6796 {
6797 if (this->code_ == BUILTIN_REAL || this->code_ == BUILTIN_IMAG)
6798 {
6799 Expression* arg = this->one_arg();
6800 if (arg == NULL)
6801 return false;
6802
6803 mpfr_t real;
6804 mpfr_t imag;
6805 mpfr_init(real);
6806 mpfr_init(imag);
6807
6808 bool ret = false;
6809 Type* type;
6810 if (arg->complex_constant_value(real, imag, &type))
6811 {
6812 if (this->code_ == BUILTIN_REAL)
6813 mpfr_set(val, real, GMP_RNDN);
6814 else
6815 mpfr_set(val, imag, GMP_RNDN);
6816 *ptype = Builtin_call_expression::real_imag_type(type);
6817 ret = true;
6818 }
6819
6820 mpfr_clear(real);
6821 mpfr_clear(imag);
6822 return ret;
6823 }
6824
6825 return false;
6826 }
6827
6828 // Return a complex constant value if possible.
6829
6830 bool
6831 Builtin_call_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
6832 Type** ptype) const
6833 {
6834 if (this->code_ == BUILTIN_CMPLX)
6835 {
6836 const Expression_list* args = this->args();
6837 if (args == NULL || args->size() != 2)
6838 return false;
6839
6840 mpfr_t r;
6841 mpfr_init(r);
6842 Type* rtype;
6843 if (!args->front()->float_constant_value(r, &rtype))
6844 {
6845 mpfr_clear(r);
6846 return false;
6847 }
6848
6849 mpfr_t i;
6850 mpfr_init(i);
6851
6852 bool ret = false;
6853 Type* itype;
6854 if (args->back()->float_constant_value(i, &itype)
6855 && Type::are_identical(rtype, itype, false, NULL))
6856 {
6857 mpfr_set(real, r, GMP_RNDN);
6858 mpfr_set(imag, i, GMP_RNDN);
6859 *ptype = Builtin_call_expression::cmplx_type(rtype);
6860 ret = true;
6861 }
6862
6863 mpfr_clear(r);
6864 mpfr_clear(i);
6865
6866 return ret;
6867 }
6868
6869 return false;
6870 }
6871
6872 // Return the type.
6873
6874 Type*
6875 Builtin_call_expression::do_type()
6876 {
6877 switch (this->code_)
6878 {
6879 case BUILTIN_INVALID:
6880 default:
6881 gcc_unreachable();
6882
6883 case BUILTIN_NEW:
6884 case BUILTIN_MAKE:
6885 {
6886 const Expression_list* args = this->args();
6887 if (args == NULL || args->empty())
6888 return Type::make_error_type();
6889 return Type::make_pointer_type(args->front()->type());
6890 }
6891
6892 case BUILTIN_CAP:
6893 case BUILTIN_COPY:
6894 case BUILTIN_LEN:
6895 case BUILTIN_ALIGNOF:
6896 case BUILTIN_OFFSETOF:
6897 case BUILTIN_SIZEOF:
6898 return Type::lookup_integer_type("int");
6899
6900 case BUILTIN_CLOSE:
6901 case BUILTIN_PANIC:
6902 case BUILTIN_PRINT:
6903 case BUILTIN_PRINTLN:
6904 return Type::make_void_type();
6905
6906 case BUILTIN_CLOSED:
6907 return Type::lookup_bool_type();
6908
6909 case BUILTIN_RECOVER:
6910 return Type::make_interface_type(NULL, BUILTINS_LOCATION);
6911
6912 case BUILTIN_APPEND:
6913 {
6914 const Expression_list* args = this->args();
6915 if (args == NULL || args->empty())
6916 return Type::make_error_type();
6917 return args->front()->type();
6918 }
6919
6920 case BUILTIN_REAL:
6921 case BUILTIN_IMAG:
6922 {
6923 Expression* arg = this->one_arg();
6924 if (arg == NULL)
6925 return Type::make_error_type();
6926 Type* t = arg->type();
6927 if (t->is_abstract())
6928 t = t->make_non_abstract_type();
6929 t = Builtin_call_expression::real_imag_type(t);
6930 if (t == NULL)
6931 t = Type::make_error_type();
6932 return t;
6933 }
6934
6935 case BUILTIN_CMPLX:
6936 {
6937 const Expression_list* args = this->args();
6938 if (args == NULL || args->size() != 2)
6939 return Type::make_error_type();
6940 Type* t = args->front()->type();
6941 if (t->is_abstract())
6942 {
6943 t = args->back()->type();
6944 if (t->is_abstract())
6945 t = t->make_non_abstract_type();
6946 }
6947 t = Builtin_call_expression::cmplx_type(t);
6948 if (t == NULL)
6949 t = Type::make_error_type();
6950 return t;
6951 }
6952 }
6953 }
6954
6955 // Determine the type.
6956
6957 void
6958 Builtin_call_expression::do_determine_type(const Type_context* context)
6959 {
6960 this->fn()->determine_type_no_context();
6961
6962 const Expression_list* args = this->args();
6963
6964 bool is_print;
6965 Type* arg_type = NULL;
6966 switch (this->code_)
6967 {
6968 case BUILTIN_PRINT:
6969 case BUILTIN_PRINTLN:
6970 // Do not force a large integer constant to "int".
6971 is_print = true;
6972 break;
6973
6974 case BUILTIN_REAL:
6975 case BUILTIN_IMAG:
6976 arg_type = Builtin_call_expression::cmplx_type(context->type);
6977 is_print = false;
6978 break;
6979
6980 case BUILTIN_CMPLX:
6981 {
6982 // For the cmplx function the type of one operand can
6983 // determine the type of the other, as in a binary expression.
6984 arg_type = Builtin_call_expression::real_imag_type(context->type);
6985 if (args != NULL && args->size() == 2)
6986 {
6987 Type* t1 = args->front()->type();
6988 Type* t2 = args->front()->type();
6989 if (!t1->is_abstract())
6990 arg_type = t1;
6991 else if (!t2->is_abstract())
6992 arg_type = t2;
6993 }
6994 is_print = false;
6995 }
6996 break;
6997
6998 default:
6999 is_print = false;
7000 break;
7001 }
7002
7003 if (args != NULL)
7004 {
7005 for (Expression_list::const_iterator pa = args->begin();
7006 pa != args->end();
7007 ++pa)
7008 {
7009 Type_context subcontext;
7010 subcontext.type = arg_type;
7011
7012 if (is_print)
7013 {
7014 // We want to print large constants, we so can't just
7015 // use the appropriate nonabstract type. Use uint64 for
7016 // an integer if we know it is nonnegative, otherwise
7017 // use int64 for a integer, otherwise use float64 for a
7018 // float or complex128 for a complex.
7019 Type* want_type = NULL;
7020 Type* atype = (*pa)->type();
7021 if (atype->is_abstract())
7022 {
7023 if (atype->integer_type() != NULL)
7024 {
7025 mpz_t val;
7026 mpz_init(val);
7027 Type* dummy;
7028 if (this->integer_constant_value(true, val, &dummy)
7029 && mpz_sgn(val) >= 0)
7030 want_type = Type::lookup_integer_type("uint64");
7031 else
7032 want_type = Type::lookup_integer_type("int64");
7033 mpz_clear(val);
7034 }
7035 else if (atype->float_type() != NULL)
7036 want_type = Type::lookup_float_type("float64");
7037 else if (atype->complex_type() != NULL)
7038 want_type = Type::lookup_complex_type("complex128");
7039 else if (atype->is_abstract_string_type())
7040 want_type = Type::lookup_string_type();
7041 else if (atype->is_abstract_boolean_type())
7042 want_type = Type::lookup_bool_type();
7043 else
7044 gcc_unreachable();
7045 subcontext.type = want_type;
7046 }
7047 }
7048
7049 (*pa)->determine_type(&subcontext);
7050 }
7051 }
7052 }
7053
7054 // If there is exactly one argument, return true. Otherwise give an
7055 // error message and return false.
7056
7057 bool
7058 Builtin_call_expression::check_one_arg()
7059 {
7060 const Expression_list* args = this->args();
7061 if (args == NULL || args->size() < 1)
7062 {
7063 this->report_error(_("not enough arguments"));
7064 return false;
7065 }
7066 else if (args->size() > 1)
7067 {
7068 this->report_error(_("too many arguments"));
7069 return false;
7070 }
7071 if (args->front()->is_error_expression()
7072 || args->front()->type()->is_error_type())
7073 {
7074 this->set_is_error();
7075 return false;
7076 }
7077 return true;
7078 }
7079
7080 // Check argument types for a builtin function.
7081
7082 void
7083 Builtin_call_expression::do_check_types(Gogo*)
7084 {
7085 switch (this->code_)
7086 {
7087 case BUILTIN_INVALID:
7088 case BUILTIN_NEW:
7089 case BUILTIN_MAKE:
7090 return;
7091
7092 case BUILTIN_LEN:
7093 case BUILTIN_CAP:
7094 {
7095 // The single argument may be either a string or an array or a
7096 // map or a channel, or a pointer to a closed array.
7097 if (this->check_one_arg())
7098 {
7099 Type* arg_type = this->one_arg()->type();
7100 if (arg_type->points_to() != NULL
7101 && arg_type->points_to()->array_type() != NULL
7102 && !arg_type->points_to()->is_open_array_type())
7103 arg_type = arg_type->points_to();
7104 if (this->code_ == BUILTIN_CAP)
7105 {
7106 if (!arg_type->is_error_type()
7107 && arg_type->array_type() == NULL
7108 && arg_type->channel_type() == NULL)
7109 this->report_error(_("argument must be array or slice "
7110 "or channel"));
7111 }
7112 else
7113 {
7114 if (!arg_type->is_error_type()
7115 && !arg_type->is_string_type()
7116 && arg_type->array_type() == NULL
7117 && arg_type->map_type() == NULL
7118 && arg_type->channel_type() == NULL)
7119 this->report_error(_("argument must be string or "
7120 "array or slice or map or channel"));
7121 }
7122 }
7123 }
7124 break;
7125
7126 case BUILTIN_PRINT:
7127 case BUILTIN_PRINTLN:
7128 {
7129 const Expression_list* args = this->args();
7130 if (args == NULL)
7131 {
7132 if (this->code_ == BUILTIN_PRINT)
7133 warning_at(this->location(), 0,
7134 "no arguments for builtin function %<%s%>",
7135 (this->code_ == BUILTIN_PRINT
7136 ? "print"
7137 : "println"));
7138 }
7139 else
7140 {
7141 for (Expression_list::const_iterator p = args->begin();
7142 p != args->end();
7143 ++p)
7144 {
7145 Type* type = (*p)->type();
7146 if (type->is_error_type()
7147 || type->is_string_type()
7148 || type->integer_type() != NULL
7149 || type->float_type() != NULL
7150 || type->complex_type() != NULL
7151 || type->is_boolean_type()
7152 || type->points_to() != NULL
7153 || type->interface_type() != NULL
7154 || type->channel_type() != NULL
7155 || type->map_type() != NULL
7156 || type->function_type() != NULL
7157 || type->is_open_array_type())
7158 ;
7159 else
7160 this->report_error(_("unsupported argument type to "
7161 "builtin function"));
7162 }
7163 }
7164 }
7165 break;
7166
7167 case BUILTIN_CLOSE:
7168 case BUILTIN_CLOSED:
7169 if (this->check_one_arg())
7170 {
7171 if (this->one_arg()->type()->channel_type() == NULL)
7172 this->report_error(_("argument must be channel"));
7173 }
7174 break;
7175
7176 case BUILTIN_PANIC:
7177 case BUILTIN_SIZEOF:
7178 case BUILTIN_ALIGNOF:
7179 this->check_one_arg();
7180 break;
7181
7182 case BUILTIN_RECOVER:
7183 if (this->args() != NULL && !this->args()->empty())
7184 this->report_error(_("too many arguments"));
7185 break;
7186
7187 case BUILTIN_OFFSETOF:
7188 if (this->check_one_arg())
7189 {
7190 Expression* arg = this->one_arg();
7191 if (arg->field_reference_expression() == NULL)
7192 this->report_error(_("argument must be a field reference"));
7193 }
7194 break;
7195
7196 case BUILTIN_COPY:
7197 {
7198 const Expression_list* args = this->args();
7199 if (args == NULL || args->size() < 2)
7200 {
7201 this->report_error(_("not enough arguments"));
7202 break;
7203 }
7204 else if (args->size() > 2)
7205 {
7206 this->report_error(_("too many arguments"));
7207 break;
7208 }
7209 Type* arg1_type = args->front()->type();
7210 Type* arg2_type = args->back()->type();
7211 if (arg1_type->is_error_type() || arg2_type->is_error_type())
7212 break;
7213
7214 Type* e1;
7215 if (arg1_type->is_open_array_type())
7216 e1 = arg1_type->array_type()->element_type();
7217 else
7218 {
7219 this->report_error(_("left argument must be a slice"));
7220 break;
7221 }
7222
7223 Type* e2;
7224 if (arg2_type->is_open_array_type())
7225 e2 = arg2_type->array_type()->element_type();
7226 else if (arg2_type->is_string_type())
7227 e2 = Type::lookup_integer_type("uint8");
7228 else
7229 {
7230 this->report_error(_("right argument must be a slice or a string"));
7231 break;
7232 }
7233
7234 if (!Type::are_identical(e1, e2, true, NULL))
7235 this->report_error(_("element types must be the same"));
7236 }
7237 break;
7238
7239 case BUILTIN_APPEND:
7240 {
7241 const Expression_list* args = this->args();
7242 if (args == NULL || args->empty())
7243 {
7244 this->report_error(_("not enough arguments"));
7245 break;
7246 }
7247 /* Lowering varargs should have left us with 2 arguments. */
7248 gcc_assert(args->size() == 2);
7249 std::string reason;
7250 if (!Type::are_assignable(args->front()->type(), args->back()->type(),
7251 &reason))
7252 {
7253 if (reason.empty())
7254 this->report_error(_("arguments 1 and 2 have different types"));
7255 else
7256 {
7257 error_at(this->location(),
7258 "arguments 1 and 2 have different types (%s)",
7259 reason.c_str());
7260 this->set_is_error();
7261 }
7262 }
7263 break;
7264 }
7265
7266 case BUILTIN_REAL:
7267 case BUILTIN_IMAG:
7268 if (this->check_one_arg())
7269 {
7270 if (this->one_arg()->type()->complex_type() == NULL)
7271 this->report_error(_("argument must have complex type"));
7272 }
7273 break;
7274
7275 case BUILTIN_CMPLX:
7276 {
7277 const Expression_list* args = this->args();
7278 if (args == NULL || args->size() < 2)
7279 this->report_error(_("not enough arguments"));
7280 else if (args->size() > 2)
7281 this->report_error(_("too many arguments"));
7282 else if (args->front()->is_error_expression()
7283 || args->front()->type()->is_error_type()
7284 || args->back()->is_error_expression()
7285 || args->back()->type()->is_error_type())
7286 this->set_is_error();
7287 else if (!Type::are_identical(args->front()->type(),
7288 args->back()->type(), true, NULL))
7289 this->report_error(_("cmplx arguments must have identical types"));
7290 else if (args->front()->type()->float_type() == NULL)
7291 this->report_error(_("cmplx arguments must have "
7292 "floating-point type"));
7293 }
7294 break;
7295
7296 default:
7297 gcc_unreachable();
7298 }
7299 }
7300
7301 // Return the tree for a builtin function.
7302
7303 tree
7304 Builtin_call_expression::do_get_tree(Translate_context* context)
7305 {
7306 Gogo* gogo = context->gogo();
7307 source_location location = this->location();
7308 switch (this->code_)
7309 {
7310 case BUILTIN_INVALID:
7311 case BUILTIN_NEW:
7312 case BUILTIN_MAKE:
7313 gcc_unreachable();
7314
7315 case BUILTIN_LEN:
7316 case BUILTIN_CAP:
7317 {
7318 const Expression_list* args = this->args();
7319 gcc_assert(args != NULL && args->size() == 1);
7320 Expression* arg = *args->begin();
7321 Type* arg_type = arg->type();
7322 tree arg_tree = arg->get_tree(context);
7323 if (arg_tree == error_mark_node)
7324 return error_mark_node;
7325
7326 if (arg_type->points_to() != NULL)
7327 {
7328 arg_type = arg_type->points_to();
7329 gcc_assert(arg_type->array_type() != NULL
7330 && !arg_type->is_open_array_type());
7331 gcc_assert(POINTER_TYPE_P(TREE_TYPE(arg_tree)));
7332 arg_tree = build_fold_indirect_ref(arg_tree);
7333 }
7334
7335 tree val_tree;
7336 if (this->code_ == BUILTIN_LEN)
7337 {
7338 if (arg_type->is_string_type())
7339 val_tree = String_type::length_tree(gogo, arg_tree);
7340 else if (arg_type->array_type() != NULL)
7341 val_tree = arg_type->array_type()->length_tree(gogo, arg_tree);
7342 else if (arg_type->map_type() != NULL)
7343 {
7344 static tree map_len_fndecl;
7345 val_tree = Gogo::call_builtin(&map_len_fndecl,
7346 location,
7347 "__go_map_len",
7348 1,
7349 sizetype,
7350 arg_type->get_tree(gogo),
7351 arg_tree);
7352 }
7353 else if (arg_type->channel_type() != NULL)
7354 {
7355 static tree chan_len_fndecl;
7356 val_tree = Gogo::call_builtin(&chan_len_fndecl,
7357 location,
7358 "__go_chan_len",
7359 1,
7360 sizetype,
7361 arg_type->get_tree(gogo),
7362 arg_tree);
7363 }
7364 else
7365 gcc_unreachable();
7366 }
7367 else
7368 {
7369 if (arg_type->array_type() != NULL)
7370 val_tree = arg_type->array_type()->capacity_tree(gogo, arg_tree);
7371 else if (arg_type->channel_type() != NULL)
7372 {
7373 static tree chan_cap_fndecl;
7374 val_tree = Gogo::call_builtin(&chan_cap_fndecl,
7375 location,
7376 "__go_chan_cap",
7377 1,
7378 sizetype,
7379 arg_type->get_tree(gogo),
7380 arg_tree);
7381 }
7382 else
7383 gcc_unreachable();
7384 }
7385
7386 if (val_tree == error_mark_node)
7387 return error_mark_node;
7388
7389 tree type_tree = Type::lookup_integer_type("int")->get_tree(gogo);
7390 if (type_tree == TREE_TYPE(val_tree))
7391 return val_tree;
7392 else
7393 return fold(convert_to_integer(type_tree, val_tree));
7394 }
7395
7396 case BUILTIN_PRINT:
7397 case BUILTIN_PRINTLN:
7398 {
7399 const bool is_ln = this->code_ == BUILTIN_PRINTLN;
7400 tree stmt_list = NULL_TREE;
7401
7402 const Expression_list* call_args = this->args();
7403 if (call_args != NULL)
7404 {
7405 for (Expression_list::const_iterator p = call_args->begin();
7406 p != call_args->end();
7407 ++p)
7408 {
7409 if (is_ln && p != call_args->begin())
7410 {
7411 static tree print_space_fndecl;
7412 tree call = Gogo::call_builtin(&print_space_fndecl,
7413 location,
7414 "__go_print_space",
7415 0,
7416 void_type_node);
7417 append_to_statement_list(call, &stmt_list);
7418 }
7419
7420 Type* type = (*p)->type();
7421
7422 tree arg = (*p)->get_tree(context);
7423 if (arg == error_mark_node)
7424 return error_mark_node;
7425
7426 tree* pfndecl;
7427 const char* fnname;
7428 if (type->is_string_type())
7429 {
7430 static tree print_string_fndecl;
7431 pfndecl = &print_string_fndecl;
7432 fnname = "__go_print_string";
7433 }
7434 else if (type->integer_type() != NULL
7435 && type->integer_type()->is_unsigned())
7436 {
7437 static tree print_uint64_fndecl;
7438 pfndecl = &print_uint64_fndecl;
7439 fnname = "__go_print_uint64";
7440 Type* itype = Type::lookup_integer_type("uint64");
7441 arg = fold_convert_loc(location, itype->get_tree(gogo),
7442 arg);
7443 }
7444 else if (type->integer_type() != NULL)
7445 {
7446 static tree print_int64_fndecl;
7447 pfndecl = &print_int64_fndecl;
7448 fnname = "__go_print_int64";
7449 Type* itype = Type::lookup_integer_type("int64");
7450 arg = fold_convert_loc(location, itype->get_tree(gogo),
7451 arg);
7452 }
7453 else if (type->float_type() != NULL)
7454 {
7455 static tree print_double_fndecl;
7456 pfndecl = &print_double_fndecl;
7457 fnname = "__go_print_double";
7458 arg = fold_convert_loc(location, double_type_node, arg);
7459 }
7460 else if (type->complex_type() != NULL)
7461 {
7462 static tree print_complex_fndecl;
7463 pfndecl = &print_complex_fndecl;
7464 fnname = "__go_print_complex";
7465 arg = fold_convert_loc(location, complex_double_type_node,
7466 arg);
7467 }
7468 else if (type->is_boolean_type())
7469 {
7470 static tree print_bool_fndecl;
7471 pfndecl = &print_bool_fndecl;
7472 fnname = "__go_print_bool";
7473 }
7474 else if (type->points_to() != NULL
7475 || type->channel_type() != NULL
7476 || type->map_type() != NULL
7477 || type->function_type() != NULL)
7478 {
7479 static tree print_pointer_fndecl;
7480 pfndecl = &print_pointer_fndecl;
7481 fnname = "__go_print_pointer";
7482 arg = fold_convert_loc(location, ptr_type_node, arg);
7483 }
7484 else if (type->interface_type() != NULL)
7485 {
7486 if (type->interface_type()->is_empty())
7487 {
7488 static tree print_empty_interface_fndecl;
7489 pfndecl = &print_empty_interface_fndecl;
7490 fnname = "__go_print_empty_interface";
7491 }
7492 else
7493 {
7494 static tree print_interface_fndecl;
7495 pfndecl = &print_interface_fndecl;
7496 fnname = "__go_print_interface";
7497 }
7498 }
7499 else if (type->is_open_array_type())
7500 {
7501 static tree print_slice_fndecl;
7502 pfndecl = &print_slice_fndecl;
7503 fnname = "__go_print_slice";
7504 }
7505 else
7506 gcc_unreachable();
7507
7508 tree call = Gogo::call_builtin(pfndecl,
7509 location,
7510 fnname,
7511 1,
7512 void_type_node,
7513 TREE_TYPE(arg),
7514 arg);
7515 if (call != error_mark_node)
7516 append_to_statement_list(call, &stmt_list);
7517 }
7518 }
7519
7520 if (is_ln)
7521 {
7522 static tree print_nl_fndecl;
7523 tree call = Gogo::call_builtin(&print_nl_fndecl,
7524 location,
7525 "__go_print_nl",
7526 0,
7527 void_type_node);
7528 append_to_statement_list(call, &stmt_list);
7529 }
7530
7531 return stmt_list;
7532 }
7533
7534 case BUILTIN_PANIC:
7535 {
7536 const Expression_list* args = this->args();
7537 gcc_assert(args != NULL && args->size() == 1);
7538 Expression* arg = args->front();
7539 tree arg_tree = arg->get_tree(context);
7540 if (arg_tree == error_mark_node)
7541 return error_mark_node;
7542 Type *empty = Type::make_interface_type(NULL, BUILTINS_LOCATION);
7543 arg_tree = Expression::convert_for_assignment(context, empty,
7544 arg->type(),
7545 arg_tree, location);
7546 static tree panic_fndecl;
7547 tree call = Gogo::call_builtin(&panic_fndecl,
7548 location,
7549 "__go_panic",
7550 1,
7551 void_type_node,
7552 TREE_TYPE(arg_tree),
7553 arg_tree);
7554 // This function will throw an exception.
7555 TREE_NOTHROW(panic_fndecl) = 0;
7556 // This function will not return.
7557 TREE_THIS_VOLATILE(panic_fndecl) = 1;
7558 return call;
7559 }
7560
7561 case BUILTIN_RECOVER:
7562 {
7563 // The argument is set when building recover thunks. It's a
7564 // boolean value which is true if we can recover a value now.
7565 const Expression_list* args = this->args();
7566 gcc_assert(args != NULL && args->size() == 1);
7567 Expression* arg = args->front();
7568 tree arg_tree = arg->get_tree(context);
7569 if (arg_tree == error_mark_node)
7570 return error_mark_node;
7571
7572 Type *empty = Type::make_interface_type(NULL, BUILTINS_LOCATION);
7573 tree empty_tree = empty->get_tree(context->gogo());
7574
7575 Type* nil_type = Type::make_nil_type();
7576 Expression* nil = Expression::make_nil(location);
7577 tree nil_tree = nil->get_tree(context);
7578 tree empty_nil_tree = Expression::convert_for_assignment(context,
7579 empty,
7580 nil_type,
7581 nil_tree,
7582 location);
7583
7584 // We need to handle a deferred call to recover specially,
7585 // because it changes whether it can recover a panic or not.
7586 // See test7 in test/recover1.go.
7587 tree call;
7588 if (this->is_deferred())
7589 {
7590 static tree deferred_recover_fndecl;
7591 call = Gogo::call_builtin(&deferred_recover_fndecl,
7592 location,
7593 "__go_deferred_recover",
7594 0,
7595 empty_tree);
7596 }
7597 else
7598 {
7599 static tree recover_fndecl;
7600 call = Gogo::call_builtin(&recover_fndecl,
7601 location,
7602 "__go_recover",
7603 0,
7604 empty_tree);
7605 }
7606 return fold_build3_loc(location, COND_EXPR, empty_tree, arg_tree,
7607 call, empty_nil_tree);
7608 }
7609
7610 case BUILTIN_CLOSE:
7611 case BUILTIN_CLOSED:
7612 {
7613 const Expression_list* args = this->args();
7614 gcc_assert(args != NULL && args->size() == 1);
7615 Expression* arg = args->front();
7616 tree arg_tree = arg->get_tree(context);
7617 if (arg_tree == error_mark_node)
7618 return error_mark_node;
7619 if (this->code_ == BUILTIN_CLOSE)
7620 {
7621 static tree close_fndecl;
7622 return Gogo::call_builtin(&close_fndecl,
7623 location,
7624 "__go_builtin_close",
7625 1,
7626 void_type_node,
7627 TREE_TYPE(arg_tree),
7628 arg_tree);
7629 }
7630 else
7631 {
7632 static tree closed_fndecl;
7633 return Gogo::call_builtin(&closed_fndecl,
7634 location,
7635 "__go_builtin_closed",
7636 1,
7637 boolean_type_node,
7638 TREE_TYPE(arg_tree),
7639 arg_tree);
7640 }
7641 }
7642
7643 case BUILTIN_SIZEOF:
7644 case BUILTIN_OFFSETOF:
7645 case BUILTIN_ALIGNOF:
7646 {
7647 mpz_t val;
7648 mpz_init(val);
7649 Type* dummy;
7650 bool b = this->integer_constant_value(true, val, &dummy);
7651 gcc_assert(b);
7652 tree type = Type::lookup_integer_type("int")->get_tree(gogo);
7653 tree ret = Expression::integer_constant_tree(val, type);
7654 mpz_clear(val);
7655 return ret;
7656 }
7657
7658 case BUILTIN_COPY:
7659 {
7660 const Expression_list* args = this->args();
7661 gcc_assert(args != NULL && args->size() == 2);
7662 Expression* arg1 = args->front();
7663 Expression* arg2 = args->back();
7664
7665 tree arg1_tree = arg1->get_tree(context);
7666 tree arg2_tree = arg2->get_tree(context);
7667 if (arg1_tree == error_mark_node || arg2_tree == error_mark_node)
7668 return error_mark_node;
7669
7670 Type* arg1_type = arg1->type();
7671 Array_type* at = arg1_type->array_type();
7672 arg1_tree = save_expr(arg1_tree);
7673 tree arg1_val = at->value_pointer_tree(gogo, arg1_tree);
7674 tree arg1_len = at->length_tree(gogo, arg1_tree);
7675 if (arg1_val == error_mark_node || arg1_len == error_mark_node)
7676 return error_mark_node;
7677
7678 Type* arg2_type = arg2->type();
7679 tree arg2_val;
7680 tree arg2_len;
7681 if (arg2_type->is_open_array_type())
7682 {
7683 at = arg2_type->array_type();
7684 arg2_tree = save_expr(arg2_tree);
7685 arg2_val = at->value_pointer_tree(gogo, arg2_tree);
7686 arg2_len = at->length_tree(gogo, arg2_tree);
7687 }
7688 else
7689 {
7690 arg2_tree = save_expr(arg2_tree);
7691 arg2_val = String_type::bytes_tree(gogo, arg2_tree);
7692 arg2_len = String_type::length_tree(gogo, arg2_tree);
7693 }
7694 if (arg2_val == error_mark_node || arg2_len == error_mark_node)
7695 return error_mark_node;
7696
7697 arg1_len = save_expr(arg1_len);
7698 arg2_len = save_expr(arg2_len);
7699 tree len = fold_build3_loc(location, COND_EXPR, TREE_TYPE(arg1_len),
7700 fold_build2_loc(location, LT_EXPR,
7701 boolean_type_node,
7702 arg1_len, arg2_len),
7703 arg1_len, arg2_len);
7704 len = save_expr(len);
7705
7706 Type* element_type = at->element_type();
7707 tree element_type_tree = element_type->get_tree(gogo);
7708 if (element_type_tree == error_mark_node)
7709 return error_mark_node;
7710 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
7711 tree bytecount = fold_convert_loc(location, TREE_TYPE(element_size),
7712 len);
7713 bytecount = fold_build2_loc(location, MULT_EXPR,
7714 TREE_TYPE(element_size),
7715 bytecount, element_size);
7716 bytecount = fold_convert_loc(location, size_type_node, bytecount);
7717
7718 tree call = build_call_expr_loc(location,
7719 built_in_decls[BUILT_IN_MEMMOVE],
7720 3, arg1_val, arg2_val, bytecount);
7721
7722 return fold_build2_loc(location, COMPOUND_EXPR, TREE_TYPE(len),
7723 call, len);
7724 }
7725
7726 case BUILTIN_APPEND:
7727 {
7728 const Expression_list* args = this->args();
7729 gcc_assert(args != NULL && args->size() == 2);
7730 Expression* arg1 = args->front();
7731 Expression* arg2 = args->back();
7732
7733 tree arg1_tree = arg1->get_tree(context);
7734 tree arg2_tree = arg2->get_tree(context);
7735 if (arg1_tree == error_mark_node || arg2_tree == error_mark_node)
7736 return error_mark_node;
7737
7738 tree descriptor_tree = arg1->type()->type_descriptor_pointer(gogo);
7739
7740 // We rebuild the decl each time since the slice types may
7741 // change.
7742 tree append_fndecl = NULL_TREE;
7743 return Gogo::call_builtin(&append_fndecl,
7744 location,
7745 "__go_append",
7746 3,
7747 TREE_TYPE(arg1_tree),
7748 TREE_TYPE(descriptor_tree),
7749 descriptor_tree,
7750 TREE_TYPE(arg1_tree),
7751 arg1_tree,
7752 TREE_TYPE(arg2_tree),
7753 arg2_tree);
7754 }
7755
7756 case BUILTIN_REAL:
7757 case BUILTIN_IMAG:
7758 {
7759 const Expression_list* args = this->args();
7760 gcc_assert(args != NULL && args->size() == 1);
7761 Expression* arg = args->front();
7762 tree arg_tree = arg->get_tree(context);
7763 if (arg_tree == error_mark_node)
7764 return error_mark_node;
7765 gcc_assert(COMPLEX_FLOAT_TYPE_P(TREE_TYPE(arg_tree)));
7766 if (this->code_ == BUILTIN_REAL)
7767 return fold_build1_loc(location, REALPART_EXPR,
7768 TREE_TYPE(TREE_TYPE(arg_tree)),
7769 arg_tree);
7770 else
7771 return fold_build1_loc(location, IMAGPART_EXPR,
7772 TREE_TYPE(TREE_TYPE(arg_tree)),
7773 arg_tree);
7774 }
7775
7776 case BUILTIN_CMPLX:
7777 {
7778 const Expression_list* args = this->args();
7779 gcc_assert(args != NULL && args->size() == 2);
7780 tree r = args->front()->get_tree(context);
7781 tree i = args->back()->get_tree(context);
7782 if (r == error_mark_node || i == error_mark_node)
7783 return error_mark_node;
7784 gcc_assert(TYPE_MAIN_VARIANT(TREE_TYPE(r))
7785 == TYPE_MAIN_VARIANT(TREE_TYPE(i)));
7786 gcc_assert(SCALAR_FLOAT_TYPE_P(TREE_TYPE(r)));
7787 return fold_build2_loc(location, COMPLEX_EXPR,
7788 build_complex_type(TREE_TYPE(r)),
7789 r, i);
7790 }
7791
7792 default:
7793 gcc_unreachable();
7794 }
7795 }
7796
7797 // We have to support exporting a builtin call expression, because
7798 // code can set a constant to the result of a builtin expression.
7799
7800 void
7801 Builtin_call_expression::do_export(Export* exp) const
7802 {
7803 bool ok = false;
7804
7805 mpz_t val;
7806 mpz_init(val);
7807 Type* dummy;
7808 if (this->integer_constant_value(true, val, &dummy))
7809 {
7810 Integer_expression::export_integer(exp, val);
7811 ok = true;
7812 }
7813 mpz_clear(val);
7814
7815 if (!ok)
7816 {
7817 mpfr_t fval;
7818 mpfr_init(fval);
7819 if (this->float_constant_value(fval, &dummy))
7820 {
7821 Float_expression::export_float(exp, fval);
7822 ok = true;
7823 }
7824 mpfr_clear(fval);
7825 }
7826
7827 if (!ok)
7828 {
7829 mpfr_t real;
7830 mpfr_t imag;
7831 mpfr_init(real);
7832 mpfr_init(imag);
7833 if (this->complex_constant_value(real, imag, &dummy))
7834 {
7835 Complex_expression::export_complex(exp, real, imag);
7836 ok = true;
7837 }
7838 mpfr_clear(real);
7839 mpfr_clear(imag);
7840 }
7841
7842 if (!ok)
7843 {
7844 error_at(this->location(), "value is not constant");
7845 return;
7846 }
7847
7848 // A trailing space lets us reliably identify the end of the number.
7849 exp->write_c_string(" ");
7850 }
7851
7852 // Class Call_expression.
7853
7854 // Traversal.
7855
7856 int
7857 Call_expression::do_traverse(Traverse* traverse)
7858 {
7859 if (Expression::traverse(&this->fn_, traverse) == TRAVERSE_EXIT)
7860 return TRAVERSE_EXIT;
7861 if (this->args_ != NULL)
7862 {
7863 if (this->args_->traverse(traverse) == TRAVERSE_EXIT)
7864 return TRAVERSE_EXIT;
7865 }
7866 return TRAVERSE_CONTINUE;
7867 }
7868
7869 // Lower a call statement.
7870
7871 Expression*
7872 Call_expression::do_lower(Gogo* gogo, Named_object* function, int)
7873 {
7874 // A type case can look like a function call.
7875 if (this->fn_->is_type_expression()
7876 && this->args_ != NULL
7877 && this->args_->size() == 1)
7878 return Expression::make_cast(this->fn_->type(), this->args_->front(),
7879 this->location());
7880
7881 // Recognize a call to a builtin function.
7882 Func_expression* fne = this->fn_->func_expression();
7883 if (fne != NULL
7884 && fne->named_object()->is_function_declaration()
7885 && fne->named_object()->func_declaration_value()->type()->is_builtin())
7886 return new Builtin_call_expression(gogo, this->fn_, this->args_,
7887 this->is_varargs_, this->location());
7888
7889 // Handle an argument which is a call to a function which returns
7890 // multiple results.
7891 if (this->args_ != NULL
7892 && this->args_->size() == 1
7893 && this->args_->front()->call_expression() != NULL
7894 && this->fn_->type()->function_type() != NULL)
7895 {
7896 Function_type* fntype = this->fn_->type()->function_type();
7897 size_t rc = this->args_->front()->call_expression()->result_count();
7898 if (rc > 1
7899 && fntype->parameters() != NULL
7900 && (fntype->parameters()->size() == rc
7901 || (fntype->is_varargs()
7902 && fntype->parameters()->size() - 1 <= rc)))
7903 {
7904 Call_expression* call = this->args_->front()->call_expression();
7905 Expression_list* args = new Expression_list;
7906 for (size_t i = 0; i < rc; ++i)
7907 args->push_back(Expression::make_call_result(call, i));
7908 // We can't return a new call expression here, because this
7909 // one may be referenced by Call_result expressions. FIXME.
7910 delete this->args_;
7911 this->args_ = args;
7912 }
7913 }
7914
7915 // Handle a call to a varargs function by packaging up the extra
7916 // parameters.
7917 if (this->fn_->type()->function_type() != NULL
7918 && this->fn_->type()->function_type()->is_varargs())
7919 {
7920 Function_type* fntype = this->fn_->type()->function_type();
7921 const Typed_identifier_list* parameters = fntype->parameters();
7922 gcc_assert(parameters != NULL && !parameters->empty());
7923 Type* varargs_type = parameters->back().type();
7924 return this->lower_varargs(gogo, function, varargs_type,
7925 parameters->size());
7926 }
7927
7928 return this;
7929 }
7930
7931 // Lower a call to a varargs function. FUNCTION is the function in
7932 // which the call occurs--it's not the function we are calling.
7933 // VARARGS_TYPE is the type of the varargs parameter, a slice type.
7934 // PARAM_COUNT is the number of parameters of the function we are
7935 // calling; the last of these parameters will be the varargs
7936 // parameter.
7937
7938 Expression*
7939 Call_expression::lower_varargs(Gogo* gogo, Named_object* function,
7940 Type* varargs_type, size_t param_count)
7941 {
7942 if (this->varargs_are_lowered_)
7943 return this;
7944
7945 source_location loc = this->location();
7946
7947 gcc_assert(param_count > 0);
7948 gcc_assert(varargs_type->is_open_array_type());
7949
7950 size_t arg_count = this->args_ == NULL ? 0 : this->args_->size();
7951 if (arg_count < param_count - 1)
7952 {
7953 // Not enough arguments; will be caught in check_types.
7954 return this;
7955 }
7956
7957 Expression_list* old_args = this->args_;
7958 Expression_list* new_args = new Expression_list();
7959 bool push_empty_arg = false;
7960 if (old_args == NULL || old_args->empty())
7961 {
7962 gcc_assert(param_count == 1);
7963 push_empty_arg = true;
7964 }
7965 else
7966 {
7967 Expression_list::const_iterator pa;
7968 int i = 1;
7969 for (pa = old_args->begin(); pa != old_args->end(); ++pa, ++i)
7970 {
7971 if (static_cast<size_t>(i) == param_count)
7972 break;
7973 new_args->push_back(*pa);
7974 }
7975
7976 // We have reached the varargs parameter.
7977
7978 bool issued_error = false;
7979 if (pa == old_args->end())
7980 push_empty_arg = true;
7981 else if (pa + 1 == old_args->end() && this->is_varargs_)
7982 new_args->push_back(*pa);
7983 else if (this->is_varargs_)
7984 {
7985 this->report_error(_("too many arguments"));
7986 return this;
7987 }
7988 else if (pa + 1 == old_args->end()
7989 && this->is_compatible_varargs_argument(function, *pa,
7990 varargs_type,
7991 &issued_error))
7992 new_args->push_back(*pa);
7993 else
7994 {
7995 Type* element_type = varargs_type->array_type()->element_type();
7996 Expression_list* vals = new Expression_list;
7997 for (; pa != old_args->end(); ++pa, ++i)
7998 {
7999 // Check types here so that we get a better message.
8000 Type* patype = (*pa)->type();
8001 source_location paloc = (*pa)->location();
8002 if (!this->check_argument_type(i, element_type, patype,
8003 paloc, issued_error))
8004 continue;
8005 vals->push_back(*pa);
8006 }
8007 Expression* val =
8008 Expression::make_slice_composite_literal(varargs_type, vals, loc);
8009 new_args->push_back(val);
8010 }
8011 }
8012
8013 if (push_empty_arg)
8014 new_args->push_back(Expression::make_nil(loc));
8015
8016 // We can't return a new call expression here, because this one may
8017 // be referenced by Call_result expressions. FIXME.
8018 if (old_args != NULL)
8019 delete old_args;
8020 this->args_ = new_args;
8021 this->varargs_are_lowered_ = true;
8022
8023 // Lower all the new subexpressions.
8024 Expression* ret = this;
8025 gogo->lower_expression(function, &ret);
8026 gcc_assert(ret == this);
8027 return ret;
8028 }
8029
8030 // Return true if ARG is a varargs argment which should be passed to
8031 // the varargs parameter of type PARAM_TYPE without wrapping. ARG
8032 // will be the last argument passed in the call, and PARAM_TYPE will
8033 // be the type of the last parameter of the varargs function being
8034 // called.
8035
8036 bool
8037 Call_expression::is_compatible_varargs_argument(Named_object* function,
8038 Expression* arg,
8039 Type* param_type,
8040 bool* issued_error)
8041 {
8042 *issued_error = false;
8043
8044 Type* var_type = NULL;
8045
8046 // The simple case is passing the varargs parameter of the caller.
8047 Var_expression* ve = arg->var_expression();
8048 if (ve != NULL && ve->named_object()->is_variable())
8049 {
8050 Variable* var = ve->named_object()->var_value();
8051 if (var->is_varargs_parameter())
8052 var_type = var->type();
8053 }
8054
8055 // The complex case is passing the varargs parameter of some
8056 // enclosing function. This will look like passing down *c.f where
8057 // c is the closure variable and f is a field in the closure.
8058 if (function != NULL
8059 && function->func_value()->needs_closure()
8060 && arg->classification() == EXPRESSION_UNARY)
8061 {
8062 Unary_expression* ue = static_cast<Unary_expression*>(arg);
8063 if (ue->op() == OPERATOR_MULT)
8064 {
8065 Field_reference_expression* fre =
8066 ue->operand()->deref()->field_reference_expression();
8067 if (fre != NULL)
8068 {
8069 Var_expression* ve = fre->expr()->deref()->var_expression();
8070 if (ve != NULL)
8071 {
8072 Named_object* no = ve->named_object();
8073 Function* f = function->func_value();
8074 if (no == f->closure_var())
8075 {
8076 // At this point we know that this indeed a
8077 // reference to some enclosing variable. Now we
8078 // need to figure out whether that variable is a
8079 // varargs parameter.
8080 Named_object* enclosing =
8081 f->enclosing_var(fre->field_index());
8082 Variable* var = enclosing->var_value();
8083 if (var->is_varargs_parameter())
8084 var_type = var->type();
8085 }
8086 }
8087 }
8088 }
8089 }
8090
8091 if (var_type == NULL)
8092 return false;
8093
8094 // We only match if the parameter is the same, with an identical
8095 // type.
8096 Array_type* var_at = var_type->array_type();
8097 gcc_assert(var_at != NULL);
8098 Array_type* param_at = param_type->array_type();
8099 if (param_at != NULL
8100 && Type::are_identical(var_at->element_type(),
8101 param_at->element_type(), true, NULL))
8102 return true;
8103 error_at(arg->location(), "... mismatch: passing ...T as ...");
8104 *issued_error = true;
8105 return false;
8106 }
8107
8108 // Get the function type. Returns NULL if we don't know the type. If
8109 // this returns NULL, and if_ERROR is true, issues an error.
8110
8111 Function_type*
8112 Call_expression::get_function_type() const
8113 {
8114 return this->fn_->type()->function_type();
8115 }
8116
8117 // Return the number of values which this call will return.
8118
8119 size_t
8120 Call_expression::result_count() const
8121 {
8122 const Function_type* fntype = this->get_function_type();
8123 if (fntype == NULL)
8124 return 0;
8125 if (fntype->results() == NULL)
8126 return 0;
8127 return fntype->results()->size();
8128 }
8129
8130 // Return whether this is a call to the predeclared function recover.
8131
8132 bool
8133 Call_expression::is_recover_call() const
8134 {
8135 return this->do_is_recover_call();
8136 }
8137
8138 // Set the argument to the recover function.
8139
8140 void
8141 Call_expression::set_recover_arg(Expression* arg)
8142 {
8143 this->do_set_recover_arg(arg);
8144 }
8145
8146 // Virtual functions also implemented by Builtin_call_expression.
8147
8148 bool
8149 Call_expression::do_is_recover_call() const
8150 {
8151 return false;
8152 }
8153
8154 void
8155 Call_expression::do_set_recover_arg(Expression*)
8156 {
8157 gcc_unreachable();
8158 }
8159
8160 // Get the type.
8161
8162 Type*
8163 Call_expression::do_type()
8164 {
8165 if (this->type_ != NULL)
8166 return this->type_;
8167
8168 Type* ret;
8169 Function_type* fntype = this->get_function_type();
8170 if (fntype == NULL)
8171 return Type::make_error_type();
8172
8173 const Typed_identifier_list* results = fntype->results();
8174 if (results == NULL)
8175 ret = Type::make_void_type();
8176 else if (results->size() == 1)
8177 ret = results->begin()->type();
8178 else
8179 ret = Type::make_call_multiple_result_type(this);
8180
8181 this->type_ = ret;
8182
8183 return this->type_;
8184 }
8185
8186 // Determine types for a call expression. We can use the function
8187 // parameter types to set the types of the arguments.
8188
8189 void
8190 Call_expression::do_determine_type(const Type_context*)
8191 {
8192 this->fn_->determine_type_no_context();
8193 Function_type* fntype = this->get_function_type();
8194 const Typed_identifier_list* parameters = NULL;
8195 if (fntype != NULL)
8196 parameters = fntype->parameters();
8197 if (this->args_ != NULL)
8198 {
8199 Typed_identifier_list::const_iterator pt;
8200 if (parameters != NULL)
8201 pt = parameters->begin();
8202 for (Expression_list::const_iterator pa = this->args_->begin();
8203 pa != this->args_->end();
8204 ++pa)
8205 {
8206 if (parameters != NULL && pt != parameters->end())
8207 {
8208 Type_context subcontext(pt->type(), false);
8209 (*pa)->determine_type(&subcontext);
8210 ++pt;
8211 }
8212 else
8213 (*pa)->determine_type_no_context();
8214 }
8215 }
8216 }
8217
8218 // Check types for parameter I.
8219
8220 bool
8221 Call_expression::check_argument_type(int i, const Type* parameter_type,
8222 const Type* argument_type,
8223 source_location argument_location,
8224 bool issued_error)
8225 {
8226 std::string reason;
8227 if (!Type::are_assignable(parameter_type, argument_type, &reason))
8228 {
8229 if (!issued_error)
8230 {
8231 if (reason.empty())
8232 error_at(argument_location, "argument %d has incompatible type", i);
8233 else
8234 error_at(argument_location,
8235 "argument %d has incompatible type (%s)",
8236 i, reason.c_str());
8237 }
8238 this->set_is_error();
8239 return false;
8240 }
8241 return true;
8242 }
8243
8244 // Check types.
8245
8246 void
8247 Call_expression::do_check_types(Gogo*)
8248 {
8249 Function_type* fntype = this->get_function_type();
8250 if (fntype == NULL)
8251 {
8252 if (!this->fn_->type()->is_error_type())
8253 this->report_error(_("expected function"));
8254 return;
8255 }
8256
8257 if (fntype->is_method())
8258 {
8259 // We don't support pointers to methods, so the function has to
8260 // be a bound method expression.
8261 Bound_method_expression* bme = this->fn_->bound_method_expression();
8262 if (bme == NULL)
8263 {
8264 this->report_error(_("method call without object"));
8265 return;
8266 }
8267 Type* first_arg_type = bme->first_argument()->type();
8268 if (first_arg_type->points_to() == NULL)
8269 {
8270 // When passing a value, we need to check that we are
8271 // permitted to copy it.
8272 std::string reason;
8273 if (!Type::are_assignable(fntype->receiver()->type(),
8274 first_arg_type, &reason))
8275 {
8276 if (reason.empty())
8277 this->report_error(_("incompatible type for receiver"));
8278 else
8279 {
8280 error_at(this->location(),
8281 "incompatible type for receiver (%s)",
8282 reason.c_str());
8283 this->set_is_error();
8284 }
8285 }
8286 }
8287 }
8288
8289 // Note that varargs was handled by the lower_varargs() method, so
8290 // we don't have to worry about it here.
8291
8292 const Typed_identifier_list* parameters = fntype->parameters();
8293 if (this->args_ == NULL)
8294 {
8295 if (parameters != NULL && !parameters->empty())
8296 this->report_error(_("not enough arguments"));
8297 }
8298 else if (parameters == NULL)
8299 this->report_error(_("too many arguments"));
8300 else
8301 {
8302 int i = 0;
8303 Typed_identifier_list::const_iterator pt = parameters->begin();
8304 for (Expression_list::const_iterator pa = this->args_->begin();
8305 pa != this->args_->end();
8306 ++pa, ++pt, ++i)
8307 {
8308 if (pt == parameters->end())
8309 {
8310 this->report_error(_("too many arguments"));
8311 return;
8312 }
8313 this->check_argument_type(i + 1, pt->type(), (*pa)->type(),
8314 (*pa)->location(), false);
8315 }
8316 if (pt != parameters->end())
8317 this->report_error(_("not enough arguments"));
8318 }
8319 }
8320
8321 // Return whether we have to use a temporary variable to ensure that
8322 // we evaluate this call expression in order. If the call returns no
8323 // results then it will inevitably be executed last. If the call
8324 // returns more than one result then it will be used with Call_result
8325 // expressions. So we only have to use a temporary variable if the
8326 // call returns exactly one result.
8327
8328 bool
8329 Call_expression::do_must_eval_in_order() const
8330 {
8331 return this->result_count() == 1;
8332 }
8333
8334 // Get the function and the first argument to use when calling a bound
8335 // method.
8336
8337 tree
8338 Call_expression::bound_method_function(Translate_context* context,
8339 Bound_method_expression* bound_method,
8340 tree* first_arg_ptr)
8341 {
8342 Expression* first_argument = bound_method->first_argument();
8343 tree first_arg = first_argument->get_tree(context);
8344 if (first_arg == error_mark_node)
8345 return error_mark_node;
8346
8347 // We always pass a pointer to the first argument when calling a
8348 // method.
8349 if (first_argument->type()->points_to() == NULL)
8350 {
8351 tree pointer_to_arg_type = build_pointer_type(TREE_TYPE(first_arg));
8352 if (TREE_ADDRESSABLE(TREE_TYPE(first_arg))
8353 || DECL_P(first_arg)
8354 || TREE_CODE(first_arg) == INDIRECT_REF
8355 || TREE_CODE(first_arg) == COMPONENT_REF)
8356 {
8357 first_arg = build_fold_addr_expr(first_arg);
8358 if (DECL_P(first_arg))
8359 TREE_ADDRESSABLE(first_arg) = 1;
8360 }
8361 else
8362 {
8363 tree tmp = create_tmp_var(TREE_TYPE(first_arg),
8364 get_name(first_arg));
8365 DECL_IGNORED_P(tmp) = 0;
8366 DECL_INITIAL(tmp) = first_arg;
8367 first_arg = build2(COMPOUND_EXPR, pointer_to_arg_type,
8368 build1(DECL_EXPR, void_type_node, tmp),
8369 build_fold_addr_expr(tmp));
8370 TREE_ADDRESSABLE(tmp) = 1;
8371 }
8372 if (first_arg == error_mark_node)
8373 return error_mark_node;
8374 }
8375
8376 Type* fatype = bound_method->first_argument_type();
8377 if (fatype != NULL)
8378 {
8379 if (fatype->points_to() == NULL)
8380 fatype = Type::make_pointer_type(fatype);
8381 first_arg = fold_convert(fatype->get_tree(context->gogo()), first_arg);
8382 if (first_arg == error_mark_node
8383 || TREE_TYPE(first_arg) == error_mark_node)
8384 return error_mark_node;
8385 }
8386
8387 *first_arg_ptr = first_arg;
8388
8389 return bound_method->method()->get_tree(context);
8390 }
8391
8392 // Get the function and the first argument to use when calling an
8393 // interface method.
8394
8395 tree
8396 Call_expression::interface_method_function(
8397 Translate_context* context,
8398 Interface_field_reference_expression* interface_method,
8399 tree* first_arg_ptr)
8400 {
8401 tree expr = interface_method->expr()->get_tree(context);
8402 if (expr == error_mark_node)
8403 return error_mark_node;
8404 expr = save_expr(expr);
8405 tree first_arg = interface_method->get_underlying_object_tree(context, expr);
8406 if (first_arg == error_mark_node)
8407 return error_mark_node;
8408 *first_arg_ptr = first_arg;
8409 return interface_method->get_function_tree(context, expr);
8410 }
8411
8412 // Build the call expression.
8413
8414 tree
8415 Call_expression::do_get_tree(Translate_context* context)
8416 {
8417 if (this->tree_ != NULL_TREE)
8418 return this->tree_;
8419
8420 Function_type* fntype = this->get_function_type();
8421 if (fntype == NULL)
8422 return error_mark_node;
8423
8424 if (this->fn_->is_error_expression())
8425 return error_mark_node;
8426
8427 Gogo* gogo = context->gogo();
8428 source_location location = this->location();
8429
8430 Func_expression* func = this->fn_->func_expression();
8431 Bound_method_expression* bound_method = this->fn_->bound_method_expression();
8432 Interface_field_reference_expression* interface_method =
8433 this->fn_->interface_field_reference_expression();
8434 const bool has_closure = func != NULL && func->closure() != NULL;
8435 const bool is_method = bound_method != NULL || interface_method != NULL;
8436 gcc_assert(!fntype->is_method() || is_method);
8437
8438 int nargs;
8439 tree* args;
8440 if (this->args_ == NULL || this->args_->empty())
8441 {
8442 nargs = is_method ? 1 : 0;
8443 args = nargs == 0 ? NULL : new tree[nargs];
8444 }
8445 else
8446 {
8447 const Typed_identifier_list* params = fntype->parameters();
8448 gcc_assert(params != NULL);
8449
8450 nargs = this->args_->size();
8451 int i = is_method ? 1 : 0;
8452 nargs += i;
8453 args = new tree[nargs];
8454
8455 Typed_identifier_list::const_iterator pp = params->begin();
8456 Expression_list::const_iterator pe;
8457 for (pe = this->args_->begin();
8458 pe != this->args_->end();
8459 ++pe, ++pp, ++i)
8460 {
8461 tree arg_val = (*pe)->get_tree(context);
8462 args[i] = Expression::convert_for_assignment(context,
8463 pp->type(),
8464 (*pe)->type(),
8465 arg_val,
8466 location);
8467 if (args[i] == error_mark_node)
8468 return error_mark_node;
8469 }
8470 gcc_assert(pp == params->end());
8471 gcc_assert(i == nargs);
8472 }
8473
8474 tree rettype = TREE_TYPE(TREE_TYPE(fntype->get_tree(gogo)));
8475 if (rettype == error_mark_node)
8476 return error_mark_node;
8477
8478 tree fn;
8479 if (has_closure)
8480 fn = func->get_tree_without_closure(gogo);
8481 else if (!is_method)
8482 fn = this->fn_->get_tree(context);
8483 else if (bound_method != NULL)
8484 fn = this->bound_method_function(context, bound_method, &args[0]);
8485 else if (interface_method != NULL)
8486 fn = this->interface_method_function(context, interface_method, &args[0]);
8487 else
8488 gcc_unreachable();
8489
8490 if (fn == error_mark_node || TREE_TYPE(fn) == error_mark_node)
8491 return error_mark_node;
8492
8493 // This is to support builtin math functions when using 80387 math.
8494 tree fndecl = fn;
8495 if (TREE_CODE(fndecl) == ADDR_EXPR)
8496 fndecl = TREE_OPERAND(fndecl, 0);
8497 tree excess_type = NULL_TREE;
8498 if (DECL_P(fndecl)
8499 && DECL_IS_BUILTIN(fndecl)
8500 && DECL_BUILT_IN_CLASS(fndecl) == BUILT_IN_NORMAL
8501 && nargs > 0
8502 && ((SCALAR_FLOAT_TYPE_P(rettype)
8503 && SCALAR_FLOAT_TYPE_P(TREE_TYPE(args[0])))
8504 || (COMPLEX_FLOAT_TYPE_P(rettype)
8505 && COMPLEX_FLOAT_TYPE_P(TREE_TYPE(args[0])))))
8506 {
8507 excess_type = excess_precision_type(TREE_TYPE(args[0]));
8508 if (excess_type != NULL_TREE)
8509 {
8510 tree excess_fndecl = mathfn_built_in(excess_type,
8511 DECL_FUNCTION_CODE(fndecl));
8512 if (excess_fndecl == NULL_TREE)
8513 excess_type = NULL_TREE;
8514 else
8515 {
8516 fn = build_fold_addr_expr_loc(location, excess_fndecl);
8517 for (int i = 0; i < nargs; ++i)
8518 args[i] = ::convert(excess_type, args[i]);
8519 }
8520 }
8521 }
8522
8523 tree ret = build_call_array(excess_type != NULL_TREE ? excess_type : rettype,
8524 fn, nargs, args);
8525 delete[] args;
8526
8527 SET_EXPR_LOCATION(ret, location);
8528
8529 if (has_closure)
8530 {
8531 tree closure_tree = func->closure()->get_tree(context);
8532 if (closure_tree != error_mark_node)
8533 CALL_EXPR_STATIC_CHAIN(ret) = closure_tree;
8534 }
8535
8536 // If this is a recursive function type which returns itself, as in
8537 // type F func() F
8538 // we have used ptr_type_node for the return type. Add a cast here
8539 // to the correct type.
8540 if (TREE_TYPE(ret) == ptr_type_node)
8541 {
8542 tree t = this->type()->get_tree(gogo);
8543 ret = fold_convert_loc(location, t, ret);
8544 }
8545
8546 if (excess_type != NULL_TREE)
8547 {
8548 // Calling convert here can undo our excess precision change.
8549 // That may or may not be a bug in convert_to_real.
8550 ret = build1(NOP_EXPR, rettype, ret);
8551 }
8552
8553 // If there is more than one result, we will refer to the call
8554 // multiple times.
8555 if (fntype->results() != NULL && fntype->results()->size() > 1)
8556 ret = save_expr(ret);
8557
8558 this->tree_ = ret;
8559
8560 return ret;
8561 }
8562
8563 // Make a call expression.
8564
8565 Call_expression*
8566 Expression::make_call(Expression* fn, Expression_list* args, bool is_varargs,
8567 source_location location)
8568 {
8569 return new Call_expression(fn, args, is_varargs, location);
8570 }
8571
8572 // A single result from a call which returns multiple results.
8573
8574 class Call_result_expression : public Expression
8575 {
8576 public:
8577 Call_result_expression(Call_expression* call, unsigned int index)
8578 : Expression(EXPRESSION_CALL_RESULT, call->location()),
8579 call_(call), index_(index)
8580 { }
8581
8582 protected:
8583 int
8584 do_traverse(Traverse*);
8585
8586 Type*
8587 do_type();
8588
8589 void
8590 do_determine_type(const Type_context*);
8591
8592 void
8593 do_check_types(Gogo*);
8594
8595 Expression*
8596 do_copy()
8597 {
8598 return new Call_result_expression(this->call_->call_expression(),
8599 this->index_);
8600 }
8601
8602 bool
8603 do_must_eval_in_order() const
8604 { return true; }
8605
8606 tree
8607 do_get_tree(Translate_context*);
8608
8609 private:
8610 // The underlying call expression.
8611 Expression* call_;
8612 // Which result we want.
8613 unsigned int index_;
8614 };
8615
8616 // Traverse a call result.
8617
8618 int
8619 Call_result_expression::do_traverse(Traverse* traverse)
8620 {
8621 if (traverse->remember_expression(this->call_))
8622 {
8623 // We have already traversed the call expression.
8624 return TRAVERSE_CONTINUE;
8625 }
8626 return Expression::traverse(&this->call_, traverse);
8627 }
8628
8629 // Get the type.
8630
8631 Type*
8632 Call_result_expression::do_type()
8633 {
8634 // THIS->CALL_ can be replaced with a temporary reference due to
8635 // Call_expression::do_must_eval_in_order when there is an error.
8636 Call_expression* ce = this->call_->call_expression();
8637 if (ce == NULL)
8638 return Type::make_error_type();
8639 Function_type* fntype = ce->get_function_type();
8640 if (fntype == NULL)
8641 return Type::make_error_type();
8642 const Typed_identifier_list* results = fntype->results();
8643 Typed_identifier_list::const_iterator pr = results->begin();
8644 for (unsigned int i = 0; i < this->index_; ++i)
8645 {
8646 if (pr == results->end())
8647 return Type::make_error_type();
8648 ++pr;
8649 }
8650 if (pr == results->end())
8651 return Type::make_error_type();
8652 return pr->type();
8653 }
8654
8655 // Check the type. This is where we give an error if we're trying to
8656 // extract too many values from a call.
8657
8658 void
8659 Call_result_expression::do_check_types(Gogo*)
8660 {
8661 bool ok = true;
8662 Call_expression* ce = this->call_->call_expression();
8663 if (ce != NULL)
8664 ok = this->index_ < ce->result_count();
8665 else
8666 {
8667 // This can happen when the call returns a single value but we
8668 // are asking for the second result.
8669 if (this->call_->is_error_expression())
8670 return;
8671 ok = false;
8672 }
8673 if (!ok)
8674 this->report_error(_("number of results does not match number of values"));
8675 }
8676
8677 // Determine the type. We have nothing to do here, but the 0 result
8678 // needs to pass down to the caller.
8679
8680 void
8681 Call_result_expression::do_determine_type(const Type_context*)
8682 {
8683 if (this->index_ == 0)
8684 this->call_->determine_type_no_context();
8685 }
8686
8687 // Return the tree.
8688
8689 tree
8690 Call_result_expression::do_get_tree(Translate_context* context)
8691 {
8692 tree call_tree = this->call_->get_tree(context);
8693 if (call_tree == error_mark_node)
8694 return error_mark_node;
8695 gcc_assert(TREE_CODE(TREE_TYPE(call_tree)) == RECORD_TYPE);
8696 tree field = TYPE_FIELDS(TREE_TYPE(call_tree));
8697 for (unsigned int i = 0; i < this->index_; ++i)
8698 {
8699 gcc_assert(field != NULL_TREE);
8700 field = DECL_CHAIN(field);
8701 }
8702 gcc_assert(field != NULL_TREE);
8703 return build3(COMPONENT_REF, TREE_TYPE(field), call_tree, field, NULL_TREE);
8704 }
8705
8706 // Make a reference to a single result of a call which returns
8707 // multiple results.
8708
8709 Expression*
8710 Expression::make_call_result(Call_expression* call, unsigned int index)
8711 {
8712 return new Call_result_expression(call, index);
8713 }
8714
8715 // Class Index_expression.
8716
8717 // Traversal.
8718
8719 int
8720 Index_expression::do_traverse(Traverse* traverse)
8721 {
8722 if (Expression::traverse(&this->left_, traverse) == TRAVERSE_EXIT
8723 || Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT
8724 || (this->end_ != NULL
8725 && Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT))
8726 return TRAVERSE_EXIT;
8727 return TRAVERSE_CONTINUE;
8728 }
8729
8730 // Lower an index expression. This converts the generic index
8731 // expression into an array index, a string index, or a map index.
8732
8733 Expression*
8734 Index_expression::do_lower(Gogo*, Named_object*, int)
8735 {
8736 source_location location = this->location();
8737 Expression* left = this->left_;
8738 Expression* start = this->start_;
8739 Expression* end = this->end_;
8740
8741 Type* type = left->type();
8742 if (type->is_error_type())
8743 return Expression::make_error(location);
8744 else if (type->array_type() != NULL)
8745 return Expression::make_array_index(left, start, end, location);
8746 else if (type->points_to() != NULL
8747 && type->points_to()->array_type() != NULL
8748 && !type->points_to()->is_open_array_type())
8749 {
8750 Expression* deref = Expression::make_unary(OPERATOR_MULT, left,
8751 location);
8752 return Expression::make_array_index(deref, start, end, location);
8753 }
8754 else if (type->is_string_type())
8755 return Expression::make_string_index(left, start, end, location);
8756 else if (type->map_type() != NULL)
8757 {
8758 if (end != NULL)
8759 {
8760 error_at(location, "invalid slice of map");
8761 return Expression::make_error(location);
8762 }
8763 Map_index_expression* ret= Expression::make_map_index(left, start,
8764 location);
8765 if (this->is_lvalue_)
8766 ret->set_is_lvalue();
8767 return ret;
8768 }
8769 else
8770 {
8771 error_at(location,
8772 "attempt to index object which is not array, string, or map");
8773 return Expression::make_error(location);
8774 }
8775 }
8776
8777 // Make an index expression.
8778
8779 Expression*
8780 Expression::make_index(Expression* left, Expression* start, Expression* end,
8781 source_location location)
8782 {
8783 return new Index_expression(left, start, end, location);
8784 }
8785
8786 // An array index. This is used for both indexing and slicing.
8787
8788 class Array_index_expression : public Expression
8789 {
8790 public:
8791 Array_index_expression(Expression* array, Expression* start,
8792 Expression* end, source_location location)
8793 : Expression(EXPRESSION_ARRAY_INDEX, location),
8794 array_(array), start_(start), end_(end), type_(NULL)
8795 { }
8796
8797 protected:
8798 int
8799 do_traverse(Traverse*);
8800
8801 Type*
8802 do_type();
8803
8804 void
8805 do_determine_type(const Type_context*);
8806
8807 void
8808 do_check_types(Gogo*);
8809
8810 Expression*
8811 do_copy()
8812 {
8813 return Expression::make_array_index(this->array_->copy(),
8814 this->start_->copy(),
8815 (this->end_ == NULL
8816 ? NULL
8817 : this->end_->copy()),
8818 this->location());
8819 }
8820
8821 bool
8822 do_is_addressable() const;
8823
8824 void
8825 do_address_taken(bool escapes)
8826 { this->array_->address_taken(escapes); }
8827
8828 tree
8829 do_get_tree(Translate_context*);
8830
8831 private:
8832 // The array we are getting a value from.
8833 Expression* array_;
8834 // The start or only index.
8835 Expression* start_;
8836 // The end index of a slice. This may be NULL for a simple array
8837 // index, or it may be a nil expression for the length of the array.
8838 Expression* end_;
8839 // The type of the expression.
8840 Type* type_;
8841 };
8842
8843 // Array index traversal.
8844
8845 int
8846 Array_index_expression::do_traverse(Traverse* traverse)
8847 {
8848 if (Expression::traverse(&this->array_, traverse) == TRAVERSE_EXIT)
8849 return TRAVERSE_EXIT;
8850 if (Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT)
8851 return TRAVERSE_EXIT;
8852 if (this->end_ != NULL)
8853 {
8854 if (Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT)
8855 return TRAVERSE_EXIT;
8856 }
8857 return TRAVERSE_CONTINUE;
8858 }
8859
8860 // Return the type of an array index.
8861
8862 Type*
8863 Array_index_expression::do_type()
8864 {
8865 if (this->type_ == NULL)
8866 {
8867 Array_type* type = this->array_->type()->array_type();
8868 if (type == NULL)
8869 this->type_ = Type::make_error_type();
8870 else if (this->end_ == NULL)
8871 this->type_ = type->element_type();
8872 else if (type->is_open_array_type())
8873 {
8874 // A slice of a slice has the same type as the original
8875 // slice.
8876 this->type_ = this->array_->type()->deref();
8877 }
8878 else
8879 {
8880 // A slice of an array is a slice.
8881 this->type_ = Type::make_array_type(type->element_type(), NULL);
8882 }
8883 }
8884 return this->type_;
8885 }
8886
8887 // Set the type of an array index.
8888
8889 void
8890 Array_index_expression::do_determine_type(const Type_context*)
8891 {
8892 this->array_->determine_type_no_context();
8893 Type_context subcontext(NULL, true);
8894 this->start_->determine_type(&subcontext);
8895 if (this->end_ != NULL)
8896 this->end_->determine_type(&subcontext);
8897 }
8898
8899 // Check types of an array index.
8900
8901 void
8902 Array_index_expression::do_check_types(Gogo*)
8903 {
8904 if (this->start_->type()->integer_type() == NULL)
8905 this->report_error(_("index must be integer"));
8906 if (this->end_ != NULL
8907 && this->end_->type()->integer_type() == NULL
8908 && !this->end_->is_nil_expression())
8909 this->report_error(_("slice end must be integer"));
8910
8911 Array_type* array_type = this->array_->type()->array_type();
8912 gcc_assert(array_type != NULL);
8913
8914 unsigned int int_bits =
8915 Type::lookup_integer_type("int")->integer_type()->bits();
8916
8917 Type* dummy;
8918 mpz_t lval;
8919 mpz_init(lval);
8920 bool lval_valid = (array_type->length() != NULL
8921 && array_type->length()->integer_constant_value(true,
8922 lval,
8923 &dummy));
8924 mpz_t ival;
8925 mpz_init(ival);
8926 if (this->start_->integer_constant_value(true, ival, &dummy))
8927 {
8928 if (mpz_sgn(ival) < 0
8929 || mpz_sizeinbase(ival, 2) >= int_bits
8930 || (lval_valid
8931 && (this->end_ == NULL
8932 ? mpz_cmp(ival, lval) >= 0
8933 : mpz_cmp(ival, lval) > 0)))
8934 {
8935 error_at(this->start_->location(), "array index out of bounds");
8936 this->set_is_error();
8937 }
8938 }
8939 if (this->end_ != NULL && !this->end_->is_nil_expression())
8940 {
8941 if (this->end_->integer_constant_value(true, ival, &dummy))
8942 {
8943 if (mpz_sgn(ival) < 0
8944 || mpz_sizeinbase(ival, 2) >= int_bits
8945 || (lval_valid && mpz_cmp(ival, lval) > 0))
8946 {
8947 error_at(this->end_->location(), "array index out of bounds");
8948 this->set_is_error();
8949 }
8950 }
8951 }
8952 mpz_clear(ival);
8953 mpz_clear(lval);
8954
8955 // A slice of an array requires an addressable array. A slice of a
8956 // slice is always possible.
8957 if (this->end_ != NULL
8958 && !array_type->is_open_array_type()
8959 && !this->array_->is_addressable())
8960 this->report_error(_("array is not addressable"));
8961 }
8962
8963 // Return whether this expression is addressable.
8964
8965 bool
8966 Array_index_expression::do_is_addressable() const
8967 {
8968 // A slice expression is not addressable.
8969 if (this->end_ != NULL)
8970 return false;
8971
8972 // An index into a slice is addressable.
8973 if (this->array_->type()->is_open_array_type())
8974 return true;
8975
8976 // An index into an array is addressable if the array is
8977 // addressable.
8978 return this->array_->is_addressable();
8979 }
8980
8981 // Get a tree for an array index.
8982
8983 tree
8984 Array_index_expression::do_get_tree(Translate_context* context)
8985 {
8986 Gogo* gogo = context->gogo();
8987 source_location loc = this->location();
8988
8989 Array_type* array_type = this->array_->type()->array_type();
8990 gcc_assert(array_type != NULL);
8991
8992 tree type_tree = array_type->get_tree(gogo);
8993 if (type_tree == error_mark_node)
8994 return error_mark_node;
8995
8996 tree array_tree = this->array_->get_tree(context);
8997 if (array_tree == error_mark_node)
8998 return error_mark_node;
8999
9000 if (array_type->length() == NULL && !DECL_P(array_tree))
9001 array_tree = save_expr(array_tree);
9002 tree length_tree = array_type->length_tree(gogo, array_tree);
9003 if (length_tree == error_mark_node)
9004 return error_mark_node;
9005 length_tree = save_expr(length_tree);
9006 tree length_type = TREE_TYPE(length_tree);
9007
9008 tree bad_index = boolean_false_node;
9009
9010 tree start_tree = this->start_->get_tree(context);
9011 if (start_tree == error_mark_node)
9012 return error_mark_node;
9013 if (!DECL_P(start_tree))
9014 start_tree = save_expr(start_tree);
9015 if (!INTEGRAL_TYPE_P(TREE_TYPE(start_tree)))
9016 start_tree = convert_to_integer(length_type, start_tree);
9017
9018 bad_index = Expression::check_bounds(start_tree, length_type, bad_index,
9019 loc);
9020
9021 start_tree = fold_convert_loc(loc, length_type, start_tree);
9022 bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node, bad_index,
9023 fold_build2_loc(loc,
9024 (this->end_ == NULL
9025 ? GE_EXPR
9026 : GT_EXPR),
9027 boolean_type_node, start_tree,
9028 length_tree));
9029
9030 int code = (array_type->length() != NULL
9031 ? (this->end_ == NULL
9032 ? RUNTIME_ERROR_ARRAY_INDEX_OUT_OF_BOUNDS
9033 : RUNTIME_ERROR_ARRAY_SLICE_OUT_OF_BOUNDS)
9034 : (this->end_ == NULL
9035 ? RUNTIME_ERROR_SLICE_INDEX_OUT_OF_BOUNDS
9036 : RUNTIME_ERROR_SLICE_SLICE_OUT_OF_BOUNDS));
9037 tree crash = Gogo::runtime_error(code, loc);
9038
9039 if (this->end_ == NULL)
9040 {
9041 // Simple array indexing. This has to return an l-value, so
9042 // wrap the index check into START_TREE.
9043 start_tree = build2(COMPOUND_EXPR, TREE_TYPE(start_tree),
9044 build3(COND_EXPR, void_type_node,
9045 bad_index, crash, NULL_TREE),
9046 start_tree);
9047 start_tree = fold_convert_loc(loc, sizetype, start_tree);
9048
9049 if (array_type->length() != NULL)
9050 {
9051 // Fixed array.
9052 return build4(ARRAY_REF, TREE_TYPE(type_tree), array_tree,
9053 start_tree, NULL_TREE, NULL_TREE);
9054 }
9055 else
9056 {
9057 // Open array.
9058 tree values = array_type->value_pointer_tree(gogo, array_tree);
9059 tree element_type_tree = array_type->element_type()->get_tree(gogo);
9060 if (element_type_tree == error_mark_node)
9061 return error_mark_node;
9062 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
9063 tree offset = fold_build2_loc(loc, MULT_EXPR, sizetype,
9064 start_tree, element_size);
9065 tree ptr = fold_build2_loc(loc, POINTER_PLUS_EXPR,
9066 TREE_TYPE(values), values, offset);
9067 return build_fold_indirect_ref(ptr);
9068 }
9069 }
9070
9071 // Array slice.
9072
9073 tree capacity_tree = array_type->capacity_tree(gogo, array_tree);
9074 if (capacity_tree == error_mark_node)
9075 return error_mark_node;
9076 capacity_tree = fold_convert_loc(loc, length_type, capacity_tree);
9077
9078 tree end_tree;
9079 if (this->end_->is_nil_expression())
9080 end_tree = length_tree;
9081 else
9082 {
9083 end_tree = this->end_->get_tree(context);
9084 if (end_tree == error_mark_node)
9085 return error_mark_node;
9086 if (!DECL_P(end_tree))
9087 end_tree = save_expr(end_tree);
9088 if (!INTEGRAL_TYPE_P(TREE_TYPE(end_tree)))
9089 end_tree = convert_to_integer(length_type, end_tree);
9090
9091 bad_index = Expression::check_bounds(end_tree, length_type, bad_index,
9092 loc);
9093
9094 end_tree = fold_convert_loc(loc, length_type, end_tree);
9095
9096 capacity_tree = save_expr(capacity_tree);
9097 tree bad_end = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
9098 fold_build2_loc(loc, LT_EXPR,
9099 boolean_type_node,
9100 end_tree, start_tree),
9101 fold_build2_loc(loc, GT_EXPR,
9102 boolean_type_node,
9103 end_tree, capacity_tree));
9104 bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
9105 bad_index, bad_end);
9106 }
9107
9108 tree element_type_tree = array_type->element_type()->get_tree(gogo);
9109 if (element_type_tree == error_mark_node)
9110 return error_mark_node;
9111 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
9112
9113 tree offset = fold_build2_loc(loc, MULT_EXPR, sizetype,
9114 fold_convert_loc(loc, sizetype, start_tree),
9115 element_size);
9116
9117 tree value_pointer = array_type->value_pointer_tree(gogo, array_tree);
9118 if (value_pointer == error_mark_node)
9119 return error_mark_node;
9120
9121 value_pointer = fold_build2_loc(loc, POINTER_PLUS_EXPR,
9122 TREE_TYPE(value_pointer),
9123 value_pointer, offset);
9124
9125 tree result_length_tree = fold_build2_loc(loc, MINUS_EXPR, length_type,
9126 end_tree, start_tree);
9127
9128 tree result_capacity_tree = fold_build2_loc(loc, MINUS_EXPR, length_type,
9129 capacity_tree, start_tree);
9130
9131 tree struct_tree = this->type()->get_tree(gogo);
9132 gcc_assert(TREE_CODE(struct_tree) == RECORD_TYPE);
9133
9134 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
9135
9136 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
9137 tree field = TYPE_FIELDS(struct_tree);
9138 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
9139 elt->index = field;
9140 elt->value = value_pointer;
9141
9142 elt = VEC_quick_push(constructor_elt, init, NULL);
9143 field = DECL_CHAIN(field);
9144 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
9145 elt->index = field;
9146 elt->value = fold_convert_loc(loc, TREE_TYPE(field), result_length_tree);
9147
9148 elt = VEC_quick_push(constructor_elt, init, NULL);
9149 field = DECL_CHAIN(field);
9150 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__capacity") == 0);
9151 elt->index = field;
9152 elt->value = fold_convert_loc(loc, TREE_TYPE(field), result_capacity_tree);
9153
9154 tree constructor = build_constructor(struct_tree, init);
9155
9156 if (TREE_CONSTANT(value_pointer)
9157 && TREE_CONSTANT(result_length_tree)
9158 && TREE_CONSTANT(result_capacity_tree))
9159 TREE_CONSTANT(constructor) = 1;
9160
9161 return fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(constructor),
9162 build3(COND_EXPR, void_type_node,
9163 bad_index, crash, NULL_TREE),
9164 constructor);
9165 }
9166
9167 // Make an array index expression. END may be NULL.
9168
9169 Expression*
9170 Expression::make_array_index(Expression* array, Expression* start,
9171 Expression* end, source_location location)
9172 {
9173 // Taking a slice of a composite literal requires moving the literal
9174 // onto the heap.
9175 if (end != NULL && array->is_composite_literal())
9176 {
9177 array = Expression::make_heap_composite(array, location);
9178 array = Expression::make_unary(OPERATOR_MULT, array, location);
9179 }
9180 return new Array_index_expression(array, start, end, location);
9181 }
9182
9183 // A string index. This is used for both indexing and slicing.
9184
9185 class String_index_expression : public Expression
9186 {
9187 public:
9188 String_index_expression(Expression* string, Expression* start,
9189 Expression* end, source_location location)
9190 : Expression(EXPRESSION_STRING_INDEX, location),
9191 string_(string), start_(start), end_(end)
9192 { }
9193
9194 protected:
9195 int
9196 do_traverse(Traverse*);
9197
9198 Type*
9199 do_type();
9200
9201 void
9202 do_determine_type(const Type_context*);
9203
9204 void
9205 do_check_types(Gogo*);
9206
9207 Expression*
9208 do_copy()
9209 {
9210 return Expression::make_string_index(this->string_->copy(),
9211 this->start_->copy(),
9212 (this->end_ == NULL
9213 ? NULL
9214 : this->end_->copy()),
9215 this->location());
9216 }
9217
9218 tree
9219 do_get_tree(Translate_context*);
9220
9221 private:
9222 // The string we are getting a value from.
9223 Expression* string_;
9224 // The start or only index.
9225 Expression* start_;
9226 // The end index of a slice. This may be NULL for a single index,
9227 // or it may be a nil expression for the length of the string.
9228 Expression* end_;
9229 };
9230
9231 // String index traversal.
9232
9233 int
9234 String_index_expression::do_traverse(Traverse* traverse)
9235 {
9236 if (Expression::traverse(&this->string_, traverse) == TRAVERSE_EXIT)
9237 return TRAVERSE_EXIT;
9238 if (Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT)
9239 return TRAVERSE_EXIT;
9240 if (this->end_ != NULL)
9241 {
9242 if (Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT)
9243 return TRAVERSE_EXIT;
9244 }
9245 return TRAVERSE_CONTINUE;
9246 }
9247
9248 // Return the type of a string index.
9249
9250 Type*
9251 String_index_expression::do_type()
9252 {
9253 if (this->end_ == NULL)
9254 return Type::lookup_integer_type("uint8");
9255 else
9256 return Type::make_string_type();
9257 }
9258
9259 // Determine the type of a string index.
9260
9261 void
9262 String_index_expression::do_determine_type(const Type_context*)
9263 {
9264 this->string_->determine_type_no_context();
9265 Type_context subcontext(NULL, true);
9266 this->start_->determine_type(&subcontext);
9267 if (this->end_ != NULL)
9268 this->end_->determine_type(&subcontext);
9269 }
9270
9271 // Check types of a string index.
9272
9273 void
9274 String_index_expression::do_check_types(Gogo*)
9275 {
9276 if (this->start_->type()->integer_type() == NULL)
9277 this->report_error(_("index must be integer"));
9278 if (this->end_ != NULL
9279 && this->end_->type()->integer_type() == NULL
9280 && !this->end_->is_nil_expression())
9281 this->report_error(_("slice end must be integer"));
9282
9283 std::string sval;
9284 bool sval_valid = this->string_->string_constant_value(&sval);
9285
9286 mpz_t ival;
9287 mpz_init(ival);
9288 Type* dummy;
9289 if (this->start_->integer_constant_value(true, ival, &dummy))
9290 {
9291 if (mpz_sgn(ival) < 0
9292 || (sval_valid && mpz_cmp_ui(ival, sval.length()) >= 0))
9293 {
9294 error_at(this->start_->location(), "string index out of bounds");
9295 this->set_is_error();
9296 }
9297 }
9298 if (this->end_ != NULL && !this->end_->is_nil_expression())
9299 {
9300 if (this->end_->integer_constant_value(true, ival, &dummy))
9301 {
9302 if (mpz_sgn(ival) < 0
9303 || (sval_valid && mpz_cmp_ui(ival, sval.length()) > 0))
9304 {
9305 error_at(this->end_->location(), "string index out of bounds");
9306 this->set_is_error();
9307 }
9308 }
9309 }
9310 mpz_clear(ival);
9311 }
9312
9313 // Get a tree for a string index.
9314
9315 tree
9316 String_index_expression::do_get_tree(Translate_context* context)
9317 {
9318 source_location loc = this->location();
9319
9320 tree string_tree = this->string_->get_tree(context);
9321 if (string_tree == error_mark_node)
9322 return error_mark_node;
9323
9324 if (this->string_->type()->points_to() != NULL)
9325 string_tree = build_fold_indirect_ref(string_tree);
9326 if (!DECL_P(string_tree))
9327 string_tree = save_expr(string_tree);
9328 tree string_type = TREE_TYPE(string_tree);
9329
9330 tree length_tree = String_type::length_tree(context->gogo(), string_tree);
9331 length_tree = save_expr(length_tree);
9332 tree length_type = TREE_TYPE(length_tree);
9333
9334 tree bad_index = boolean_false_node;
9335
9336 tree start_tree = this->start_->get_tree(context);
9337 if (start_tree == error_mark_node)
9338 return error_mark_node;
9339 if (!DECL_P(start_tree))
9340 start_tree = save_expr(start_tree);
9341 if (!INTEGRAL_TYPE_P(TREE_TYPE(start_tree)))
9342 start_tree = convert_to_integer(length_type, start_tree);
9343
9344 bad_index = Expression::check_bounds(start_tree, length_type, bad_index,
9345 loc);
9346
9347 start_tree = fold_convert_loc(loc, length_type, start_tree);
9348
9349 int code = (this->end_ == NULL
9350 ? RUNTIME_ERROR_STRING_INDEX_OUT_OF_BOUNDS
9351 : RUNTIME_ERROR_STRING_SLICE_OUT_OF_BOUNDS);
9352 tree crash = Gogo::runtime_error(code, loc);
9353
9354 if (this->end_ == NULL)
9355 {
9356 bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
9357 bad_index,
9358 fold_build2_loc(loc, GE_EXPR,
9359 boolean_type_node,
9360 start_tree, length_tree));
9361
9362 tree bytes_tree = String_type::bytes_tree(context->gogo(), string_tree);
9363 tree ptr = fold_build2_loc(loc, POINTER_PLUS_EXPR, TREE_TYPE(bytes_tree),
9364 bytes_tree,
9365 fold_convert_loc(loc, sizetype, start_tree));
9366 tree index = build_fold_indirect_ref_loc(loc, ptr);
9367
9368 return build2(COMPOUND_EXPR, TREE_TYPE(index),
9369 build3(COND_EXPR, void_type_node,
9370 bad_index, crash, NULL_TREE),
9371 index);
9372 }
9373 else
9374 {
9375 tree end_tree;
9376 if (this->end_->is_nil_expression())
9377 end_tree = build_int_cst(length_type, -1);
9378 else
9379 {
9380 end_tree = this->end_->get_tree(context);
9381 if (end_tree == error_mark_node)
9382 return error_mark_node;
9383 if (!DECL_P(end_tree))
9384 end_tree = save_expr(end_tree);
9385 if (!INTEGRAL_TYPE_P(TREE_TYPE(end_tree)))
9386 end_tree = convert_to_integer(length_type, end_tree);
9387
9388 bad_index = Expression::check_bounds(end_tree, length_type,
9389 bad_index, loc);
9390
9391 end_tree = fold_convert_loc(loc, length_type, end_tree);
9392 }
9393
9394 static tree strslice_fndecl;
9395 tree ret = Gogo::call_builtin(&strslice_fndecl,
9396 loc,
9397 "__go_string_slice",
9398 3,
9399 string_type,
9400 string_type,
9401 string_tree,
9402 length_type,
9403 start_tree,
9404 length_type,
9405 end_tree);
9406 // This will panic if the bounds are out of range for the
9407 // string.
9408 TREE_NOTHROW(strslice_fndecl) = 0;
9409
9410 if (bad_index == boolean_false_node)
9411 return ret;
9412 else
9413 return build2(COMPOUND_EXPR, TREE_TYPE(ret),
9414 build3(COND_EXPR, void_type_node,
9415 bad_index, crash, NULL_TREE),
9416 ret);
9417 }
9418 }
9419
9420 // Make a string index expression. END may be NULL.
9421
9422 Expression*
9423 Expression::make_string_index(Expression* string, Expression* start,
9424 Expression* end, source_location location)
9425 {
9426 return new String_index_expression(string, start, end, location);
9427 }
9428
9429 // Class Map_index.
9430
9431 // Get the type of the map.
9432
9433 Map_type*
9434 Map_index_expression::get_map_type() const
9435 {
9436 Map_type* mt = this->map_->type()->deref()->map_type();
9437 gcc_assert(mt != NULL);
9438 return mt;
9439 }
9440
9441 // Map index traversal.
9442
9443 int
9444 Map_index_expression::do_traverse(Traverse* traverse)
9445 {
9446 if (Expression::traverse(&this->map_, traverse) == TRAVERSE_EXIT)
9447 return TRAVERSE_EXIT;
9448 return Expression::traverse(&this->index_, traverse);
9449 }
9450
9451 // Return the type of a map index.
9452
9453 Type*
9454 Map_index_expression::do_type()
9455 {
9456 Type* type = this->get_map_type()->val_type();
9457 // If this map index is in a tuple assignment, we actually return a
9458 // pointer to the value type. Tuple_map_assignment_statement is
9459 // responsible for handling this correctly. We need to get the type
9460 // right in case this gets assigned to a temporary variable.
9461 if (this->is_in_tuple_assignment_)
9462 type = Type::make_pointer_type(type);
9463 return type;
9464 }
9465
9466 // Fix the type of a map index.
9467
9468 void
9469 Map_index_expression::do_determine_type(const Type_context*)
9470 {
9471 this->map_->determine_type_no_context();
9472 Type_context subcontext(this->get_map_type()->key_type(), false);
9473 this->index_->determine_type(&subcontext);
9474 }
9475
9476 // Check types of a map index.
9477
9478 void
9479 Map_index_expression::do_check_types(Gogo*)
9480 {
9481 std::string reason;
9482 if (!Type::are_assignable(this->get_map_type()->key_type(),
9483 this->index_->type(), &reason))
9484 {
9485 if (reason.empty())
9486 this->report_error(_("incompatible type for map index"));
9487 else
9488 {
9489 error_at(this->location(), "incompatible type for map index (%s)",
9490 reason.c_str());
9491 this->set_is_error();
9492 }
9493 }
9494 }
9495
9496 // Get a tree for a map index.
9497
9498 tree
9499 Map_index_expression::do_get_tree(Translate_context* context)
9500 {
9501 Map_type* type = this->get_map_type();
9502
9503 tree valptr = this->get_value_pointer(context, this->is_lvalue_);
9504 if (valptr == error_mark_node)
9505 return error_mark_node;
9506 valptr = save_expr(valptr);
9507
9508 tree val_type_tree = TREE_TYPE(TREE_TYPE(valptr));
9509
9510 if (this->is_lvalue_)
9511 return build_fold_indirect_ref(valptr);
9512 else if (this->is_in_tuple_assignment_)
9513 {
9514 // Tuple_map_assignment_statement is responsible for using this
9515 // appropriately.
9516 return valptr;
9517 }
9518 else
9519 {
9520 return fold_build3(COND_EXPR, val_type_tree,
9521 fold_build2(EQ_EXPR, boolean_type_node, valptr,
9522 fold_convert(TREE_TYPE(valptr),
9523 null_pointer_node)),
9524 type->val_type()->get_init_tree(context->gogo(),
9525 false),
9526 build_fold_indirect_ref(valptr));
9527 }
9528 }
9529
9530 // Get a tree for the map index. This returns a tree which evaluates
9531 // to a pointer to a value. The pointer will be NULL if the key is
9532 // not in the map.
9533
9534 tree
9535 Map_index_expression::get_value_pointer(Translate_context* context,
9536 bool insert)
9537 {
9538 Map_type* type = this->get_map_type();
9539
9540 tree map_tree = this->map_->get_tree(context);
9541 tree index_tree = this->index_->get_tree(context);
9542 index_tree = Expression::convert_for_assignment(context, type->key_type(),
9543 this->index_->type(),
9544 index_tree,
9545 this->location());
9546 if (map_tree == error_mark_node || index_tree == error_mark_node)
9547 return error_mark_node;
9548
9549 if (this->map_->type()->points_to() != NULL)
9550 map_tree = build_fold_indirect_ref(map_tree);
9551
9552 // We need to pass in a pointer to the key, so stuff it into a
9553 // variable.
9554 tree tmp = create_tmp_var(TREE_TYPE(index_tree), get_name(index_tree));
9555 DECL_IGNORED_P(tmp) = 0;
9556 DECL_INITIAL(tmp) = index_tree;
9557 tree make_tmp = build1(DECL_EXPR, void_type_node, tmp);
9558 tree tmpref = fold_convert(const_ptr_type_node, build_fold_addr_expr(tmp));
9559 TREE_ADDRESSABLE(tmp) = 1;
9560
9561 static tree map_index_fndecl;
9562 tree call = Gogo::call_builtin(&map_index_fndecl,
9563 this->location(),
9564 "__go_map_index",
9565 3,
9566 const_ptr_type_node,
9567 TREE_TYPE(map_tree),
9568 map_tree,
9569 const_ptr_type_node,
9570 tmpref,
9571 boolean_type_node,
9572 (insert
9573 ? boolean_true_node
9574 : boolean_false_node));
9575 // This can panic on a map of interface type if the interface holds
9576 // an uncomparable or unhashable type.
9577 TREE_NOTHROW(map_index_fndecl) = 0;
9578
9579 tree val_type_tree = type->val_type()->get_tree(context->gogo());
9580 if (val_type_tree == error_mark_node)
9581 return error_mark_node;
9582 tree ptr_val_type_tree = build_pointer_type(val_type_tree);
9583
9584 return build2(COMPOUND_EXPR, ptr_val_type_tree,
9585 make_tmp,
9586 fold_convert(ptr_val_type_tree, call));
9587 }
9588
9589 // Make a map index expression.
9590
9591 Map_index_expression*
9592 Expression::make_map_index(Expression* map, Expression* index,
9593 source_location location)
9594 {
9595 return new Map_index_expression(map, index, location);
9596 }
9597
9598 // Class Field_reference_expression.
9599
9600 // Return the type of a field reference.
9601
9602 Type*
9603 Field_reference_expression::do_type()
9604 {
9605 Struct_type* struct_type = this->expr_->type()->struct_type();
9606 gcc_assert(struct_type != NULL);
9607 return struct_type->field(this->field_index_)->type();
9608 }
9609
9610 // Check the types for a field reference.
9611
9612 void
9613 Field_reference_expression::do_check_types(Gogo*)
9614 {
9615 Struct_type* struct_type = this->expr_->type()->struct_type();
9616 gcc_assert(struct_type != NULL);
9617 gcc_assert(struct_type->field(this->field_index_) != NULL);
9618 }
9619
9620 // Get a tree for a field reference.
9621
9622 tree
9623 Field_reference_expression::do_get_tree(Translate_context* context)
9624 {
9625 tree struct_tree = this->expr_->get_tree(context);
9626 if (struct_tree == error_mark_node
9627 || TREE_TYPE(struct_tree) == error_mark_node)
9628 return error_mark_node;
9629 gcc_assert(TREE_CODE(TREE_TYPE(struct_tree)) == RECORD_TYPE);
9630 tree field = TYPE_FIELDS(TREE_TYPE(struct_tree));
9631 if (field == NULL_TREE)
9632 {
9633 // This can happen for a type which refers to itself indirectly
9634 // and then turns out to be erroneous.
9635 gcc_assert(saw_errors());
9636 return error_mark_node;
9637 }
9638 for (unsigned int i = this->field_index_; i > 0; --i)
9639 {
9640 field = DECL_CHAIN(field);
9641 gcc_assert(field != NULL_TREE);
9642 }
9643 return build3(COMPONENT_REF, TREE_TYPE(field), struct_tree, field,
9644 NULL_TREE);
9645 }
9646
9647 // Make a reference to a qualified identifier in an expression.
9648
9649 Field_reference_expression*
9650 Expression::make_field_reference(Expression* expr, unsigned int field_index,
9651 source_location location)
9652 {
9653 return new Field_reference_expression(expr, field_index, location);
9654 }
9655
9656 // Class Interface_field_reference_expression.
9657
9658 // Return a tree for the pointer to the function to call.
9659
9660 tree
9661 Interface_field_reference_expression::get_function_tree(Translate_context*,
9662 tree expr)
9663 {
9664 if (this->expr_->type()->points_to() != NULL)
9665 expr = build_fold_indirect_ref(expr);
9666
9667 tree expr_type = TREE_TYPE(expr);
9668 gcc_assert(TREE_CODE(expr_type) == RECORD_TYPE);
9669
9670 tree field = TYPE_FIELDS(expr_type);
9671 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods") == 0);
9672
9673 tree table = build3(COMPONENT_REF, TREE_TYPE(field), expr, field, NULL_TREE);
9674 gcc_assert(POINTER_TYPE_P(TREE_TYPE(table)));
9675
9676 table = build_fold_indirect_ref(table);
9677 gcc_assert(TREE_CODE(TREE_TYPE(table)) == RECORD_TYPE);
9678
9679 std::string name = Gogo::unpack_hidden_name(this->name_);
9680 for (field = DECL_CHAIN(TYPE_FIELDS(TREE_TYPE(table)));
9681 field != NULL_TREE;
9682 field = DECL_CHAIN(field))
9683 {
9684 if (name == IDENTIFIER_POINTER(DECL_NAME(field)))
9685 break;
9686 }
9687 gcc_assert(field != NULL_TREE);
9688
9689 return build3(COMPONENT_REF, TREE_TYPE(field), table, field, NULL_TREE);
9690 }
9691
9692 // Return a tree for the first argument to pass to the interface
9693 // function.
9694
9695 tree
9696 Interface_field_reference_expression::get_underlying_object_tree(
9697 Translate_context*,
9698 tree expr)
9699 {
9700 if (this->expr_->type()->points_to() != NULL)
9701 expr = build_fold_indirect_ref(expr);
9702
9703 tree expr_type = TREE_TYPE(expr);
9704 gcc_assert(TREE_CODE(expr_type) == RECORD_TYPE);
9705
9706 tree field = DECL_CHAIN(TYPE_FIELDS(expr_type));
9707 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
9708
9709 return build3(COMPONENT_REF, TREE_TYPE(field), expr, field, NULL_TREE);
9710 }
9711
9712 // Traversal.
9713
9714 int
9715 Interface_field_reference_expression::do_traverse(Traverse* traverse)
9716 {
9717 return Expression::traverse(&this->expr_, traverse);
9718 }
9719
9720 // Return the type of an interface field reference.
9721
9722 Type*
9723 Interface_field_reference_expression::do_type()
9724 {
9725 Type* expr_type = this->expr_->type();
9726
9727 Type* points_to = expr_type->points_to();
9728 if (points_to != NULL)
9729 expr_type = points_to;
9730
9731 Interface_type* interface_type = expr_type->interface_type();
9732 if (interface_type == NULL)
9733 return Type::make_error_type();
9734
9735 const Typed_identifier* method = interface_type->find_method(this->name_);
9736 if (method == NULL)
9737 return Type::make_error_type();
9738
9739 return method->type();
9740 }
9741
9742 // Determine types.
9743
9744 void
9745 Interface_field_reference_expression::do_determine_type(const Type_context*)
9746 {
9747 this->expr_->determine_type_no_context();
9748 }
9749
9750 // Check the types for an interface field reference.
9751
9752 void
9753 Interface_field_reference_expression::do_check_types(Gogo*)
9754 {
9755 Type* type = this->expr_->type();
9756
9757 Type* points_to = type->points_to();
9758 if (points_to != NULL)
9759 type = points_to;
9760
9761 Interface_type* interface_type = type->interface_type();
9762 if (interface_type == NULL)
9763 this->report_error(_("expected interface or pointer to interface"));
9764 else
9765 {
9766 const Typed_identifier* method =
9767 interface_type->find_method(this->name_);
9768 if (method == NULL)
9769 {
9770 error_at(this->location(), "method %qs not in interface",
9771 Gogo::message_name(this->name_).c_str());
9772 this->set_is_error();
9773 }
9774 }
9775 }
9776
9777 // Get a tree for a reference to a field in an interface. There is no
9778 // standard tree type representation for this: it's a function
9779 // attached to its first argument, like a Bound_method_expression.
9780 // The only places it may currently be used are in a Call_expression
9781 // or a Go_statement, which will take it apart directly. So this has
9782 // nothing to do at present.
9783
9784 tree
9785 Interface_field_reference_expression::do_get_tree(Translate_context*)
9786 {
9787 gcc_unreachable();
9788 }
9789
9790 // Make a reference to a field in an interface.
9791
9792 Expression*
9793 Expression::make_interface_field_reference(Expression* expr,
9794 const std::string& field,
9795 source_location location)
9796 {
9797 return new Interface_field_reference_expression(expr, field, location);
9798 }
9799
9800 // A general selector. This is a Parser_expression for LEFT.NAME. It
9801 // is lowered after we know the type of the left hand side.
9802
9803 class Selector_expression : public Parser_expression
9804 {
9805 public:
9806 Selector_expression(Expression* left, const std::string& name,
9807 source_location location)
9808 : Parser_expression(EXPRESSION_SELECTOR, location),
9809 left_(left), name_(name)
9810 { }
9811
9812 protected:
9813 int
9814 do_traverse(Traverse* traverse)
9815 { return Expression::traverse(&this->left_, traverse); }
9816
9817 Expression*
9818 do_lower(Gogo*, Named_object*, int);
9819
9820 Expression*
9821 do_copy()
9822 {
9823 return new Selector_expression(this->left_->copy(), this->name_,
9824 this->location());
9825 }
9826
9827 private:
9828 Expression*
9829 lower_method_expression(Gogo*);
9830
9831 // The expression on the left hand side.
9832 Expression* left_;
9833 // The name on the right hand side.
9834 std::string name_;
9835 };
9836
9837 // Lower a selector expression once we know the real type of the left
9838 // hand side.
9839
9840 Expression*
9841 Selector_expression::do_lower(Gogo* gogo, Named_object*, int)
9842 {
9843 Expression* left = this->left_;
9844 if (left->is_type_expression())
9845 return this->lower_method_expression(gogo);
9846 return Type::bind_field_or_method(gogo, left->type(), left, this->name_,
9847 this->location());
9848 }
9849
9850 // Lower a method expression T.M or (*T).M. We turn this into a
9851 // function literal.
9852
9853 Expression*
9854 Selector_expression::lower_method_expression(Gogo* gogo)
9855 {
9856 source_location location = this->location();
9857 Type* type = this->left_->type();
9858 const std::string& name(this->name_);
9859
9860 bool is_pointer;
9861 if (type->points_to() == NULL)
9862 is_pointer = false;
9863 else
9864 {
9865 is_pointer = true;
9866 type = type->points_to();
9867 }
9868 Named_type* nt = type->named_type();
9869 if (nt == NULL)
9870 {
9871 error_at(location,
9872 ("method expression requires named type or "
9873 "pointer to named type"));
9874 return Expression::make_error(location);
9875 }
9876
9877 bool is_ambiguous;
9878 Method* method = nt->method_function(name, &is_ambiguous);
9879 if (method == NULL)
9880 {
9881 if (!is_ambiguous)
9882 error_at(location, "type %<%s%> has no method %<%s%>",
9883 nt->message_name().c_str(),
9884 Gogo::message_name(name).c_str());
9885 else
9886 error_at(location, "method %<%s%> is ambiguous in type %<%s%>",
9887 Gogo::message_name(name).c_str(),
9888 nt->message_name().c_str());
9889 return Expression::make_error(location);
9890 }
9891
9892 if (!is_pointer && !method->is_value_method())
9893 {
9894 error_at(location, "method requires pointer (use %<(*%s).%s)%>",
9895 nt->message_name().c_str(),
9896 Gogo::message_name(name).c_str());
9897 return Expression::make_error(location);
9898 }
9899
9900 // Build a new function type in which the receiver becomes the first
9901 // argument.
9902 Function_type* method_type = method->type();
9903 gcc_assert(method_type->is_method());
9904
9905 const char* const receiver_name = "$this";
9906 Typed_identifier_list* parameters = new Typed_identifier_list();
9907 parameters->push_back(Typed_identifier(receiver_name, this->left_->type(),
9908 location));
9909
9910 const Typed_identifier_list* method_parameters = method_type->parameters();
9911 if (method_parameters != NULL)
9912 {
9913 for (Typed_identifier_list::const_iterator p = method_parameters->begin();
9914 p != method_parameters->end();
9915 ++p)
9916 parameters->push_back(*p);
9917 }
9918
9919 const Typed_identifier_list* method_results = method_type->results();
9920 Typed_identifier_list* results;
9921 if (method_results == NULL)
9922 results = NULL;
9923 else
9924 {
9925 results = new Typed_identifier_list();
9926 for (Typed_identifier_list::const_iterator p = method_results->begin();
9927 p != method_results->end();
9928 ++p)
9929 results->push_back(*p);
9930 }
9931
9932 Function_type* fntype = Type::make_function_type(NULL, parameters, results,
9933 location);
9934 if (method_type->is_varargs())
9935 fntype->set_is_varargs();
9936
9937 // We generate methods which always takes a pointer to the receiver
9938 // as their first argument. If this is for a pointer type, we can
9939 // simply reuse the existing function. We use an internal hack to
9940 // get the right type.
9941
9942 if (is_pointer)
9943 {
9944 Named_object* mno = (method->needs_stub_method()
9945 ? method->stub_object()
9946 : method->named_object());
9947 Expression* f = Expression::make_func_reference(mno, NULL, location);
9948 f = Expression::make_cast(fntype, f, location);
9949 Type_conversion_expression* tce =
9950 static_cast<Type_conversion_expression*>(f);
9951 tce->set_may_convert_function_types();
9952 return f;
9953 }
9954
9955 Named_object* no = gogo->start_function(Gogo::thunk_name(), fntype, false,
9956 location);
9957
9958 Named_object* vno = gogo->lookup(receiver_name, NULL);
9959 gcc_assert(vno != NULL);
9960 Expression* ve = Expression::make_var_reference(vno, location);
9961 Expression* bm = Type::bind_field_or_method(gogo, nt, ve, name, location);
9962 gcc_assert(bm != NULL && !bm->is_error_expression());
9963
9964 Expression_list* args;
9965 if (method_parameters == NULL)
9966 args = NULL;
9967 else
9968 {
9969 args = new Expression_list();
9970 for (Typed_identifier_list::const_iterator p = method_parameters->begin();
9971 p != method_parameters->end();
9972 ++p)
9973 {
9974 vno = gogo->lookup(p->name(), NULL);
9975 gcc_assert(vno != NULL);
9976 args->push_back(Expression::make_var_reference(vno, location));
9977 }
9978 }
9979
9980 Call_expression* call = Expression::make_call(bm, args,
9981 method_type->is_varargs(),
9982 location);
9983
9984 size_t count = call->result_count();
9985 Statement* s;
9986 if (count == 0)
9987 s = Statement::make_statement(call);
9988 else
9989 {
9990 Expression_list* retvals = new Expression_list();
9991 if (count <= 1)
9992 retvals->push_back(call);
9993 else
9994 {
9995 for (size_t i = 0; i < count; ++i)
9996 retvals->push_back(Expression::make_call_result(call, i));
9997 }
9998 s = Statement::make_return_statement(no->func_value()->type()->results(),
9999 retvals, location);
10000 }
10001 gogo->add_statement(s);
10002
10003 gogo->finish_function(location);
10004
10005 return Expression::make_func_reference(no, NULL, location);
10006 }
10007
10008 // Make a selector expression.
10009
10010 Expression*
10011 Expression::make_selector(Expression* left, const std::string& name,
10012 source_location location)
10013 {
10014 return new Selector_expression(left, name, location);
10015 }
10016
10017 // Implement the builtin function new.
10018
10019 class Allocation_expression : public Expression
10020 {
10021 public:
10022 Allocation_expression(Type* type, source_location location)
10023 : Expression(EXPRESSION_ALLOCATION, location),
10024 type_(type)
10025 { }
10026
10027 protected:
10028 int
10029 do_traverse(Traverse* traverse)
10030 { return Type::traverse(this->type_, traverse); }
10031
10032 Type*
10033 do_type()
10034 { return Type::make_pointer_type(this->type_); }
10035
10036 void
10037 do_determine_type(const Type_context*)
10038 { }
10039
10040 void
10041 do_check_types(Gogo*);
10042
10043 Expression*
10044 do_copy()
10045 { return new Allocation_expression(this->type_, this->location()); }
10046
10047 tree
10048 do_get_tree(Translate_context*);
10049
10050 private:
10051 // The type we are allocating.
10052 Type* type_;
10053 };
10054
10055 // Check the type of an allocation expression.
10056
10057 void
10058 Allocation_expression::do_check_types(Gogo*)
10059 {
10060 if (this->type_->function_type() != NULL)
10061 this->report_error(_("invalid new of function type"));
10062 }
10063
10064 // Return a tree for an allocation expression.
10065
10066 tree
10067 Allocation_expression::do_get_tree(Translate_context* context)
10068 {
10069 tree type_tree = this->type_->get_tree(context->gogo());
10070 tree size_tree = TYPE_SIZE_UNIT(type_tree);
10071 tree space = context->gogo()->allocate_memory(this->type_, size_tree,
10072 this->location());
10073 return fold_convert(build_pointer_type(type_tree), space);
10074 }
10075
10076 // Make an allocation expression.
10077
10078 Expression*
10079 Expression::make_allocation(Type* type, source_location location)
10080 {
10081 return new Allocation_expression(type, location);
10082 }
10083
10084 // Implement the builtin function make.
10085
10086 class Make_expression : public Expression
10087 {
10088 public:
10089 Make_expression(Type* type, Expression_list* args, source_location location)
10090 : Expression(EXPRESSION_MAKE, location),
10091 type_(type), args_(args)
10092 { }
10093
10094 protected:
10095 int
10096 do_traverse(Traverse* traverse);
10097
10098 Type*
10099 do_type()
10100 { return this->type_; }
10101
10102 void
10103 do_determine_type(const Type_context*);
10104
10105 void
10106 do_check_types(Gogo*);
10107
10108 Expression*
10109 do_copy()
10110 {
10111 return new Make_expression(this->type_, this->args_->copy(),
10112 this->location());
10113 }
10114
10115 tree
10116 do_get_tree(Translate_context*);
10117
10118 private:
10119 // The type we are making.
10120 Type* type_;
10121 // The arguments to pass to the make routine.
10122 Expression_list* args_;
10123 };
10124
10125 // Traversal.
10126
10127 int
10128 Make_expression::do_traverse(Traverse* traverse)
10129 {
10130 if (this->args_ != NULL
10131 && this->args_->traverse(traverse) == TRAVERSE_EXIT)
10132 return TRAVERSE_EXIT;
10133 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10134 return TRAVERSE_EXIT;
10135 return TRAVERSE_CONTINUE;
10136 }
10137
10138 // Set types of arguments.
10139
10140 void
10141 Make_expression::do_determine_type(const Type_context*)
10142 {
10143 if (this->args_ != NULL)
10144 {
10145 Type_context context(Type::lookup_integer_type("int"), false);
10146 for (Expression_list::const_iterator pe = this->args_->begin();
10147 pe != this->args_->end();
10148 ++pe)
10149 (*pe)->determine_type(&context);
10150 }
10151 }
10152
10153 // Check types for a make expression.
10154
10155 void
10156 Make_expression::do_check_types(Gogo*)
10157 {
10158 if (this->type_->channel_type() == NULL
10159 && this->type_->map_type() == NULL
10160 && (this->type_->array_type() == NULL
10161 || this->type_->array_type()->length() != NULL))
10162 this->report_error(_("invalid type for make function"));
10163 else if (!this->type_->check_make_expression(this->args_, this->location()))
10164 this->set_is_error();
10165 }
10166
10167 // Return a tree for a make expression.
10168
10169 tree
10170 Make_expression::do_get_tree(Translate_context* context)
10171 {
10172 return this->type_->make_expression_tree(context, this->args_,
10173 this->location());
10174 }
10175
10176 // Make a make expression.
10177
10178 Expression*
10179 Expression::make_make(Type* type, Expression_list* args,
10180 source_location location)
10181 {
10182 return new Make_expression(type, args, location);
10183 }
10184
10185 // Construct a struct.
10186
10187 class Struct_construction_expression : public Expression
10188 {
10189 public:
10190 Struct_construction_expression(Type* type, Expression_list* vals,
10191 source_location location)
10192 : Expression(EXPRESSION_STRUCT_CONSTRUCTION, location),
10193 type_(type), vals_(vals)
10194 { }
10195
10196 // Return whether this is a constant initializer.
10197 bool
10198 is_constant_struct() const;
10199
10200 protected:
10201 int
10202 do_traverse(Traverse* traverse);
10203
10204 Type*
10205 do_type()
10206 { return this->type_; }
10207
10208 void
10209 do_determine_type(const Type_context*);
10210
10211 void
10212 do_check_types(Gogo*);
10213
10214 Expression*
10215 do_copy()
10216 {
10217 return new Struct_construction_expression(this->type_, this->vals_->copy(),
10218 this->location());
10219 }
10220
10221 bool
10222 do_is_addressable() const
10223 { return true; }
10224
10225 tree
10226 do_get_tree(Translate_context*);
10227
10228 void
10229 do_export(Export*) const;
10230
10231 private:
10232 // The type of the struct to construct.
10233 Type* type_;
10234 // The list of values, in order of the fields in the struct. A NULL
10235 // entry means that the field should be zero-initialized.
10236 Expression_list* vals_;
10237 };
10238
10239 // Traversal.
10240
10241 int
10242 Struct_construction_expression::do_traverse(Traverse* traverse)
10243 {
10244 if (this->vals_ != NULL
10245 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
10246 return TRAVERSE_EXIT;
10247 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10248 return TRAVERSE_EXIT;
10249 return TRAVERSE_CONTINUE;
10250 }
10251
10252 // Return whether this is a constant initializer.
10253
10254 bool
10255 Struct_construction_expression::is_constant_struct() const
10256 {
10257 if (this->vals_ == NULL)
10258 return true;
10259 for (Expression_list::const_iterator pv = this->vals_->begin();
10260 pv != this->vals_->end();
10261 ++pv)
10262 {
10263 if (*pv != NULL
10264 && !(*pv)->is_constant()
10265 && (!(*pv)->is_composite_literal()
10266 || (*pv)->is_nonconstant_composite_literal()))
10267 return false;
10268 }
10269
10270 const Struct_field_list* fields = this->type_->struct_type()->fields();
10271 for (Struct_field_list::const_iterator pf = fields->begin();
10272 pf != fields->end();
10273 ++pf)
10274 {
10275 // There are no constant constructors for interfaces.
10276 if (pf->type()->interface_type() != NULL)
10277 return false;
10278 }
10279
10280 return true;
10281 }
10282
10283 // Final type determination.
10284
10285 void
10286 Struct_construction_expression::do_determine_type(const Type_context*)
10287 {
10288 if (this->vals_ == NULL)
10289 return;
10290 const Struct_field_list* fields = this->type_->struct_type()->fields();
10291 Expression_list::const_iterator pv = this->vals_->begin();
10292 for (Struct_field_list::const_iterator pf = fields->begin();
10293 pf != fields->end();
10294 ++pf, ++pv)
10295 {
10296 if (pv == this->vals_->end())
10297 return;
10298 if (*pv != NULL)
10299 {
10300 Type_context subcontext(pf->type(), false);
10301 (*pv)->determine_type(&subcontext);
10302 }
10303 }
10304 }
10305
10306 // Check types.
10307
10308 void
10309 Struct_construction_expression::do_check_types(Gogo*)
10310 {
10311 if (this->vals_ == NULL)
10312 return;
10313
10314 Struct_type* st = this->type_->struct_type();
10315 if (this->vals_->size() > st->field_count())
10316 {
10317 this->report_error(_("too many expressions for struct"));
10318 return;
10319 }
10320
10321 const Struct_field_list* fields = st->fields();
10322 Expression_list::const_iterator pv = this->vals_->begin();
10323 int i = 0;
10324 for (Struct_field_list::const_iterator pf = fields->begin();
10325 pf != fields->end();
10326 ++pf, ++pv, ++i)
10327 {
10328 if (pv == this->vals_->end())
10329 {
10330 this->report_error(_("too few expressions for struct"));
10331 break;
10332 }
10333
10334 if (*pv == NULL)
10335 continue;
10336
10337 std::string reason;
10338 if (!Type::are_assignable(pf->type(), (*pv)->type(), &reason))
10339 {
10340 if (reason.empty())
10341 error_at((*pv)->location(),
10342 "incompatible type for field %d in struct construction",
10343 i + 1);
10344 else
10345 error_at((*pv)->location(),
10346 ("incompatible type for field %d in "
10347 "struct construction (%s)"),
10348 i + 1, reason.c_str());
10349 this->set_is_error();
10350 }
10351 }
10352 gcc_assert(pv == this->vals_->end());
10353 }
10354
10355 // Return a tree for constructing a struct.
10356
10357 tree
10358 Struct_construction_expression::do_get_tree(Translate_context* context)
10359 {
10360 Gogo* gogo = context->gogo();
10361
10362 if (this->vals_ == NULL)
10363 return this->type_->get_init_tree(gogo, false);
10364
10365 tree type_tree = this->type_->get_tree(gogo);
10366 if (type_tree == error_mark_node)
10367 return error_mark_node;
10368 gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
10369
10370 bool is_constant = true;
10371 const Struct_field_list* fields = this->type_->struct_type()->fields();
10372 VEC(constructor_elt,gc)* elts = VEC_alloc(constructor_elt, gc,
10373 fields->size());
10374 Struct_field_list::const_iterator pf = fields->begin();
10375 Expression_list::const_iterator pv = this->vals_->begin();
10376 for (tree field = TYPE_FIELDS(type_tree);
10377 field != NULL_TREE;
10378 field = DECL_CHAIN(field), ++pf)
10379 {
10380 gcc_assert(pf != fields->end());
10381
10382 tree val;
10383 if (pv == this->vals_->end())
10384 val = pf->type()->get_init_tree(gogo, false);
10385 else if (*pv == NULL)
10386 {
10387 val = pf->type()->get_init_tree(gogo, false);
10388 ++pv;
10389 }
10390 else
10391 {
10392 val = Expression::convert_for_assignment(context, pf->type(),
10393 (*pv)->type(),
10394 (*pv)->get_tree(context),
10395 this->location());
10396 ++pv;
10397 }
10398
10399 if (val == error_mark_node || TREE_TYPE(val) == error_mark_node)
10400 return error_mark_node;
10401
10402 constructor_elt* elt = VEC_quick_push(constructor_elt, elts, NULL);
10403 elt->index = field;
10404 elt->value = val;
10405 if (!TREE_CONSTANT(val))
10406 is_constant = false;
10407 }
10408 gcc_assert(pf == fields->end());
10409
10410 tree ret = build_constructor(type_tree, elts);
10411 if (is_constant)
10412 TREE_CONSTANT(ret) = 1;
10413 return ret;
10414 }
10415
10416 // Export a struct construction.
10417
10418 void
10419 Struct_construction_expression::do_export(Export* exp) const
10420 {
10421 exp->write_c_string("convert(");
10422 exp->write_type(this->type_);
10423 for (Expression_list::const_iterator pv = this->vals_->begin();
10424 pv != this->vals_->end();
10425 ++pv)
10426 {
10427 exp->write_c_string(", ");
10428 if (*pv != NULL)
10429 (*pv)->export_expression(exp);
10430 }
10431 exp->write_c_string(")");
10432 }
10433
10434 // Make a struct composite literal. This used by the thunk code.
10435
10436 Expression*
10437 Expression::make_struct_composite_literal(Type* type, Expression_list* vals,
10438 source_location location)
10439 {
10440 gcc_assert(type->struct_type() != NULL);
10441 return new Struct_construction_expression(type, vals, location);
10442 }
10443
10444 // Construct an array. This class is not used directly; instead we
10445 // use the child classes, Fixed_array_construction_expression and
10446 // Open_array_construction_expression.
10447
10448 class Array_construction_expression : public Expression
10449 {
10450 protected:
10451 Array_construction_expression(Expression_classification classification,
10452 Type* type, Expression_list* vals,
10453 source_location location)
10454 : Expression(classification, location),
10455 type_(type), vals_(vals)
10456 { }
10457
10458 public:
10459 // Return whether this is a constant initializer.
10460 bool
10461 is_constant_array() const;
10462
10463 // Return the number of elements.
10464 size_t
10465 element_count() const
10466 { return this->vals_ == NULL ? 0 : this->vals_->size(); }
10467
10468 protected:
10469 int
10470 do_traverse(Traverse* traverse);
10471
10472 Type*
10473 do_type()
10474 { return this->type_; }
10475
10476 void
10477 do_determine_type(const Type_context*);
10478
10479 void
10480 do_check_types(Gogo*);
10481
10482 bool
10483 do_is_addressable() const
10484 { return true; }
10485
10486 void
10487 do_export(Export*) const;
10488
10489 // The list of values.
10490 Expression_list*
10491 vals()
10492 { return this->vals_; }
10493
10494 // Get a constructor tree for the array values.
10495 tree
10496 get_constructor_tree(Translate_context* context, tree type_tree);
10497
10498 private:
10499 // The type of the array to construct.
10500 Type* type_;
10501 // The list of values.
10502 Expression_list* vals_;
10503 };
10504
10505 // Traversal.
10506
10507 int
10508 Array_construction_expression::do_traverse(Traverse* traverse)
10509 {
10510 if (this->vals_ != NULL
10511 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
10512 return TRAVERSE_EXIT;
10513 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10514 return TRAVERSE_EXIT;
10515 return TRAVERSE_CONTINUE;
10516 }
10517
10518 // Return whether this is a constant initializer.
10519
10520 bool
10521 Array_construction_expression::is_constant_array() const
10522 {
10523 if (this->vals_ == NULL)
10524 return true;
10525
10526 // There are no constant constructors for interfaces.
10527 if (this->type_->array_type()->element_type()->interface_type() != NULL)
10528 return false;
10529
10530 for (Expression_list::const_iterator pv = this->vals_->begin();
10531 pv != this->vals_->end();
10532 ++pv)
10533 {
10534 if (*pv != NULL
10535 && !(*pv)->is_constant()
10536 && (!(*pv)->is_composite_literal()
10537 || (*pv)->is_nonconstant_composite_literal()))
10538 return false;
10539 }
10540 return true;
10541 }
10542
10543 // Final type determination.
10544
10545 void
10546 Array_construction_expression::do_determine_type(const Type_context*)
10547 {
10548 if (this->vals_ == NULL)
10549 return;
10550 Type_context subcontext(this->type_->array_type()->element_type(), false);
10551 for (Expression_list::const_iterator pv = this->vals_->begin();
10552 pv != this->vals_->end();
10553 ++pv)
10554 {
10555 if (*pv != NULL)
10556 (*pv)->determine_type(&subcontext);
10557 }
10558 }
10559
10560 // Check types.
10561
10562 void
10563 Array_construction_expression::do_check_types(Gogo*)
10564 {
10565 if (this->vals_ == NULL)
10566 return;
10567
10568 Array_type* at = this->type_->array_type();
10569 int i = 0;
10570 Type* element_type = at->element_type();
10571 for (Expression_list::const_iterator pv = this->vals_->begin();
10572 pv != this->vals_->end();
10573 ++pv, ++i)
10574 {
10575 if (*pv != NULL
10576 && !Type::are_assignable(element_type, (*pv)->type(), NULL))
10577 {
10578 error_at((*pv)->location(),
10579 "incompatible type for element %d in composite literal",
10580 i + 1);
10581 this->set_is_error();
10582 }
10583 }
10584
10585 Expression* length = at->length();
10586 if (length != NULL)
10587 {
10588 mpz_t val;
10589 mpz_init(val);
10590 Type* type;
10591 if (at->length()->integer_constant_value(true, val, &type))
10592 {
10593 if (this->vals_->size() > mpz_get_ui(val))
10594 this->report_error(_("too many elements in composite literal"));
10595 }
10596 mpz_clear(val);
10597 }
10598 }
10599
10600 // Get a constructor tree for the array values.
10601
10602 tree
10603 Array_construction_expression::get_constructor_tree(Translate_context* context,
10604 tree type_tree)
10605 {
10606 VEC(constructor_elt,gc)* values = VEC_alloc(constructor_elt, gc,
10607 (this->vals_ == NULL
10608 ? 0
10609 : this->vals_->size()));
10610 Type* element_type = this->type_->array_type()->element_type();
10611 bool is_constant = true;
10612 if (this->vals_ != NULL)
10613 {
10614 size_t i = 0;
10615 for (Expression_list::const_iterator pv = this->vals_->begin();
10616 pv != this->vals_->end();
10617 ++pv, ++i)
10618 {
10619 constructor_elt* elt = VEC_quick_push(constructor_elt, values, NULL);
10620 elt->index = size_int(i);
10621 if (*pv == NULL)
10622 elt->value = element_type->get_init_tree(context->gogo(), false);
10623 else
10624 {
10625 tree value_tree = (*pv)->get_tree(context);
10626 elt->value = Expression::convert_for_assignment(context,
10627 element_type,
10628 (*pv)->type(),
10629 value_tree,
10630 this->location());
10631 }
10632 if (elt->value == error_mark_node)
10633 return error_mark_node;
10634 if (!TREE_CONSTANT(elt->value))
10635 is_constant = false;
10636 }
10637 }
10638
10639 tree ret = build_constructor(type_tree, values);
10640 if (is_constant)
10641 TREE_CONSTANT(ret) = 1;
10642 return ret;
10643 }
10644
10645 // Export an array construction.
10646
10647 void
10648 Array_construction_expression::do_export(Export* exp) const
10649 {
10650 exp->write_c_string("convert(");
10651 exp->write_type(this->type_);
10652 if (this->vals_ != NULL)
10653 {
10654 for (Expression_list::const_iterator pv = this->vals_->begin();
10655 pv != this->vals_->end();
10656 ++pv)
10657 {
10658 exp->write_c_string(", ");
10659 if (*pv != NULL)
10660 (*pv)->export_expression(exp);
10661 }
10662 }
10663 exp->write_c_string(")");
10664 }
10665
10666 // Construct a fixed array.
10667
10668 class Fixed_array_construction_expression :
10669 public Array_construction_expression
10670 {
10671 public:
10672 Fixed_array_construction_expression(Type* type, Expression_list* vals,
10673 source_location location)
10674 : Array_construction_expression(EXPRESSION_FIXED_ARRAY_CONSTRUCTION,
10675 type, vals, location)
10676 {
10677 gcc_assert(type->array_type() != NULL
10678 && type->array_type()->length() != NULL);
10679 }
10680
10681 protected:
10682 Expression*
10683 do_copy()
10684 {
10685 return new Fixed_array_construction_expression(this->type(),
10686 (this->vals() == NULL
10687 ? NULL
10688 : this->vals()->copy()),
10689 this->location());
10690 }
10691
10692 tree
10693 do_get_tree(Translate_context*);
10694 };
10695
10696 // Return a tree for constructing a fixed array.
10697
10698 tree
10699 Fixed_array_construction_expression::do_get_tree(Translate_context* context)
10700 {
10701 return this->get_constructor_tree(context,
10702 this->type()->get_tree(context->gogo()));
10703 }
10704
10705 // Construct an open array.
10706
10707 class Open_array_construction_expression : public Array_construction_expression
10708 {
10709 public:
10710 Open_array_construction_expression(Type* type, Expression_list* vals,
10711 source_location location)
10712 : Array_construction_expression(EXPRESSION_OPEN_ARRAY_CONSTRUCTION,
10713 type, vals, location)
10714 {
10715 gcc_assert(type->array_type() != NULL
10716 && type->array_type()->length() == NULL);
10717 }
10718
10719 protected:
10720 // Note that taking the address of an open array literal is invalid.
10721
10722 Expression*
10723 do_copy()
10724 {
10725 return new Open_array_construction_expression(this->type(),
10726 (this->vals() == NULL
10727 ? NULL
10728 : this->vals()->copy()),
10729 this->location());
10730 }
10731
10732 tree
10733 do_get_tree(Translate_context*);
10734 };
10735
10736 // Return a tree for constructing an open array.
10737
10738 tree
10739 Open_array_construction_expression::do_get_tree(Translate_context* context)
10740 {
10741 Type* element_type = this->type()->array_type()->element_type();
10742 tree element_type_tree = element_type->get_tree(context->gogo());
10743 if (element_type_tree == error_mark_node)
10744 return error_mark_node;
10745
10746 tree values;
10747 tree length_tree;
10748 if (this->vals() == NULL || this->vals()->empty())
10749 {
10750 // We need to create a unique value.
10751 tree max = size_int(0);
10752 tree constructor_type = build_array_type(element_type_tree,
10753 build_index_type(max));
10754 if (constructor_type == error_mark_node)
10755 return error_mark_node;
10756 VEC(constructor_elt,gc)* vec = VEC_alloc(constructor_elt, gc, 1);
10757 constructor_elt* elt = VEC_quick_push(constructor_elt, vec, NULL);
10758 elt->index = size_int(0);
10759 elt->value = element_type->get_init_tree(context->gogo(), false);
10760 values = build_constructor(constructor_type, vec);
10761 if (TREE_CONSTANT(elt->value))
10762 TREE_CONSTANT(values) = 1;
10763 length_tree = size_int(0);
10764 }
10765 else
10766 {
10767 tree max = size_int(this->vals()->size() - 1);
10768 tree constructor_type = build_array_type(element_type_tree,
10769 build_index_type(max));
10770 if (constructor_type == error_mark_node)
10771 return error_mark_node;
10772 values = this->get_constructor_tree(context, constructor_type);
10773 length_tree = size_int(this->vals()->size());
10774 }
10775
10776 if (values == error_mark_node)
10777 return error_mark_node;
10778
10779 bool is_constant_initializer = TREE_CONSTANT(values);
10780 bool is_in_function = context->function() != NULL;
10781
10782 if (is_constant_initializer)
10783 {
10784 tree tmp = build_decl(this->location(), VAR_DECL,
10785 create_tmp_var_name("C"), TREE_TYPE(values));
10786 DECL_EXTERNAL(tmp) = 0;
10787 TREE_PUBLIC(tmp) = 0;
10788 TREE_STATIC(tmp) = 1;
10789 DECL_ARTIFICIAL(tmp) = 1;
10790 if (is_in_function)
10791 {
10792 // If this is not a function, we will only initialize the
10793 // value once, so we can use this directly rather than
10794 // copying it. In that case we can't make it read-only,
10795 // because the program is permitted to change it.
10796 TREE_READONLY(tmp) = 1;
10797 TREE_CONSTANT(tmp) = 1;
10798 }
10799 DECL_INITIAL(tmp) = values;
10800 rest_of_decl_compilation(tmp, 1, 0);
10801 values = tmp;
10802 }
10803
10804 tree space;
10805 tree set;
10806 if (!is_in_function && is_constant_initializer)
10807 {
10808 // Outside of a function, we know the initializer will only run
10809 // once.
10810 space = build_fold_addr_expr(values);
10811 set = NULL_TREE;
10812 }
10813 else
10814 {
10815 tree memsize = TYPE_SIZE_UNIT(TREE_TYPE(values));
10816 space = context->gogo()->allocate_memory(element_type, memsize,
10817 this->location());
10818 space = save_expr(space);
10819
10820 tree s = fold_convert(build_pointer_type(TREE_TYPE(values)), space);
10821 tree ref = build_fold_indirect_ref_loc(this->location(), s);
10822 TREE_THIS_NOTRAP(ref) = 1;
10823 set = build2(MODIFY_EXPR, void_type_node, ref, values);
10824 }
10825
10826 // Build a constructor for the open array.
10827
10828 tree type_tree = this->type()->get_tree(context->gogo());
10829 if (type_tree == error_mark_node)
10830 return error_mark_node;
10831 gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
10832
10833 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
10834
10835 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
10836 tree field = TYPE_FIELDS(type_tree);
10837 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
10838 elt->index = field;
10839 elt->value = fold_convert(TREE_TYPE(field), space);
10840
10841 elt = VEC_quick_push(constructor_elt, init, NULL);
10842 field = DECL_CHAIN(field);
10843 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
10844 elt->index = field;
10845 elt->value = fold_convert(TREE_TYPE(field), length_tree);
10846
10847 elt = VEC_quick_push(constructor_elt, init, NULL);
10848 field = DECL_CHAIN(field);
10849 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),"__capacity") == 0);
10850 elt->index = field;
10851 elt->value = fold_convert(TREE_TYPE(field), length_tree);
10852
10853 tree constructor = build_constructor(type_tree, init);
10854 if (constructor == error_mark_node)
10855 return error_mark_node;
10856 if (!is_in_function && is_constant_initializer)
10857 TREE_CONSTANT(constructor) = 1;
10858
10859 if (set == NULL_TREE)
10860 return constructor;
10861 else
10862 return build2(COMPOUND_EXPR, type_tree, set, constructor);
10863 }
10864
10865 // Make a slice composite literal. This is used by the type
10866 // descriptor code.
10867
10868 Expression*
10869 Expression::make_slice_composite_literal(Type* type, Expression_list* vals,
10870 source_location location)
10871 {
10872 gcc_assert(type->is_open_array_type());
10873 return new Open_array_construction_expression(type, vals, location);
10874 }
10875
10876 // Construct a map.
10877
10878 class Map_construction_expression : public Expression
10879 {
10880 public:
10881 Map_construction_expression(Type* type, Expression_list* vals,
10882 source_location location)
10883 : Expression(EXPRESSION_MAP_CONSTRUCTION, location),
10884 type_(type), vals_(vals)
10885 { gcc_assert(vals == NULL || vals->size() % 2 == 0); }
10886
10887 protected:
10888 int
10889 do_traverse(Traverse* traverse);
10890
10891 Type*
10892 do_type()
10893 { return this->type_; }
10894
10895 void
10896 do_determine_type(const Type_context*);
10897
10898 void
10899 do_check_types(Gogo*);
10900
10901 Expression*
10902 do_copy()
10903 {
10904 return new Map_construction_expression(this->type_, this->vals_->copy(),
10905 this->location());
10906 }
10907
10908 tree
10909 do_get_tree(Translate_context*);
10910
10911 void
10912 do_export(Export*) const;
10913
10914 private:
10915 // The type of the map to construct.
10916 Type* type_;
10917 // The list of values.
10918 Expression_list* vals_;
10919 };
10920
10921 // Traversal.
10922
10923 int
10924 Map_construction_expression::do_traverse(Traverse* traverse)
10925 {
10926 if (this->vals_ != NULL
10927 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
10928 return TRAVERSE_EXIT;
10929 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10930 return TRAVERSE_EXIT;
10931 return TRAVERSE_CONTINUE;
10932 }
10933
10934 // Final type determination.
10935
10936 void
10937 Map_construction_expression::do_determine_type(const Type_context*)
10938 {
10939 if (this->vals_ == NULL)
10940 return;
10941
10942 Map_type* mt = this->type_->map_type();
10943 Type_context key_context(mt->key_type(), false);
10944 Type_context val_context(mt->val_type(), false);
10945 for (Expression_list::const_iterator pv = this->vals_->begin();
10946 pv != this->vals_->end();
10947 ++pv)
10948 {
10949 (*pv)->determine_type(&key_context);
10950 ++pv;
10951 (*pv)->determine_type(&val_context);
10952 }
10953 }
10954
10955 // Check types.
10956
10957 void
10958 Map_construction_expression::do_check_types(Gogo*)
10959 {
10960 if (this->vals_ == NULL)
10961 return;
10962
10963 Map_type* mt = this->type_->map_type();
10964 int i = 0;
10965 Type* key_type = mt->key_type();
10966 Type* val_type = mt->val_type();
10967 for (Expression_list::const_iterator pv = this->vals_->begin();
10968 pv != this->vals_->end();
10969 ++pv, ++i)
10970 {
10971 if (!Type::are_assignable(key_type, (*pv)->type(), NULL))
10972 {
10973 error_at((*pv)->location(),
10974 "incompatible type for element %d key in map construction",
10975 i + 1);
10976 this->set_is_error();
10977 }
10978 ++pv;
10979 if (!Type::are_assignable(val_type, (*pv)->type(), NULL))
10980 {
10981 error_at((*pv)->location(),
10982 ("incompatible type for element %d value "
10983 "in map construction"),
10984 i + 1);
10985 this->set_is_error();
10986 }
10987 }
10988 }
10989
10990 // Return a tree for constructing a map.
10991
10992 tree
10993 Map_construction_expression::do_get_tree(Translate_context* context)
10994 {
10995 Gogo* gogo = context->gogo();
10996 source_location loc = this->location();
10997
10998 Map_type* mt = this->type_->map_type();
10999
11000 // Build a struct to hold the key and value.
11001 tree struct_type = make_node(RECORD_TYPE);
11002
11003 Type* key_type = mt->key_type();
11004 tree id = get_identifier("__key");
11005 tree key_field = build_decl(loc, FIELD_DECL, id, key_type->get_tree(gogo));
11006 DECL_CONTEXT(key_field) = struct_type;
11007 TYPE_FIELDS(struct_type) = key_field;
11008
11009 Type* val_type = mt->val_type();
11010 id = get_identifier("__val");
11011 tree val_field = build_decl(loc, FIELD_DECL, id, val_type->get_tree(gogo));
11012 DECL_CONTEXT(val_field) = struct_type;
11013 DECL_CHAIN(key_field) = val_field;
11014
11015 layout_type(struct_type);
11016
11017 bool is_constant = true;
11018 size_t i = 0;
11019 tree valaddr;
11020 tree make_tmp;
11021
11022 if (this->vals_ == NULL || this->vals_->empty())
11023 {
11024 valaddr = null_pointer_node;
11025 make_tmp = NULL_TREE;
11026 }
11027 else
11028 {
11029 VEC(constructor_elt,gc)* values = VEC_alloc(constructor_elt, gc,
11030 this->vals_->size() / 2);
11031
11032 for (Expression_list::const_iterator pv = this->vals_->begin();
11033 pv != this->vals_->end();
11034 ++pv, ++i)
11035 {
11036 bool one_is_constant = true;
11037
11038 VEC(constructor_elt,gc)* one = VEC_alloc(constructor_elt, gc, 2);
11039
11040 constructor_elt* elt = VEC_quick_push(constructor_elt, one, NULL);
11041 elt->index = key_field;
11042 tree val_tree = (*pv)->get_tree(context);
11043 elt->value = Expression::convert_for_assignment(context, key_type,
11044 (*pv)->type(),
11045 val_tree, loc);
11046 if (elt->value == error_mark_node)
11047 return error_mark_node;
11048 if (!TREE_CONSTANT(elt->value))
11049 one_is_constant = false;
11050
11051 ++pv;
11052
11053 elt = VEC_quick_push(constructor_elt, one, NULL);
11054 elt->index = val_field;
11055 val_tree = (*pv)->get_tree(context);
11056 elt->value = Expression::convert_for_assignment(context, val_type,
11057 (*pv)->type(),
11058 val_tree, loc);
11059 if (elt->value == error_mark_node)
11060 return error_mark_node;
11061 if (!TREE_CONSTANT(elt->value))
11062 one_is_constant = false;
11063
11064 elt = VEC_quick_push(constructor_elt, values, NULL);
11065 elt->index = size_int(i);
11066 elt->value = build_constructor(struct_type, one);
11067 if (one_is_constant)
11068 TREE_CONSTANT(elt->value) = 1;
11069 else
11070 is_constant = false;
11071 }
11072
11073 tree index_type = build_index_type(size_int(i - 1));
11074 tree array_type = build_array_type(struct_type, index_type);
11075 tree init = build_constructor(array_type, values);
11076 if (is_constant)
11077 TREE_CONSTANT(init) = 1;
11078 tree tmp;
11079 if (current_function_decl != NULL)
11080 {
11081 tmp = create_tmp_var(array_type, get_name(array_type));
11082 DECL_INITIAL(tmp) = init;
11083 make_tmp = fold_build1_loc(loc, DECL_EXPR, void_type_node, tmp);
11084 TREE_ADDRESSABLE(tmp) = 1;
11085 }
11086 else
11087 {
11088 tmp = build_decl(loc, VAR_DECL, create_tmp_var_name("M"), array_type);
11089 DECL_EXTERNAL(tmp) = 0;
11090 TREE_PUBLIC(tmp) = 0;
11091 TREE_STATIC(tmp) = 1;
11092 DECL_ARTIFICIAL(tmp) = 1;
11093 if (!TREE_CONSTANT(init))
11094 make_tmp = fold_build2_loc(loc, INIT_EXPR, void_type_node, tmp,
11095 init);
11096 else
11097 {
11098 TREE_READONLY(tmp) = 1;
11099 TREE_CONSTANT(tmp) = 1;
11100 DECL_INITIAL(tmp) = init;
11101 make_tmp = NULL_TREE;
11102 }
11103 rest_of_decl_compilation(tmp, 1, 0);
11104 }
11105
11106 valaddr = build_fold_addr_expr(tmp);
11107 }
11108
11109 tree descriptor = gogo->map_descriptor(mt);
11110
11111 tree type_tree = this->type_->get_tree(gogo);
11112
11113 static tree construct_map_fndecl;
11114 tree call = Gogo::call_builtin(&construct_map_fndecl,
11115 loc,
11116 "__go_construct_map",
11117 6,
11118 type_tree,
11119 TREE_TYPE(descriptor),
11120 descriptor,
11121 sizetype,
11122 size_int(i),
11123 sizetype,
11124 TYPE_SIZE_UNIT(struct_type),
11125 sizetype,
11126 byte_position(val_field),
11127 sizetype,
11128 TYPE_SIZE_UNIT(TREE_TYPE(val_field)),
11129 const_ptr_type_node,
11130 fold_convert(const_ptr_type_node, valaddr));
11131
11132 tree ret;
11133 if (make_tmp == NULL)
11134 ret = call;
11135 else
11136 ret = fold_build2_loc(loc, COMPOUND_EXPR, type_tree, make_tmp, call);
11137 return ret;
11138 }
11139
11140 // Export an array construction.
11141
11142 void
11143 Map_construction_expression::do_export(Export* exp) const
11144 {
11145 exp->write_c_string("convert(");
11146 exp->write_type(this->type_);
11147 for (Expression_list::const_iterator pv = this->vals_->begin();
11148 pv != this->vals_->end();
11149 ++pv)
11150 {
11151 exp->write_c_string(", ");
11152 (*pv)->export_expression(exp);
11153 }
11154 exp->write_c_string(")");
11155 }
11156
11157 // A general composite literal. This is lowered to a type specific
11158 // version.
11159
11160 class Composite_literal_expression : public Parser_expression
11161 {
11162 public:
11163 Composite_literal_expression(Type* type, int depth, bool has_keys,
11164 Expression_list* vals, source_location location)
11165 : Parser_expression(EXPRESSION_COMPOSITE_LITERAL, location),
11166 type_(type), depth_(depth), vals_(vals), has_keys_(has_keys)
11167 { }
11168
11169 protected:
11170 int
11171 do_traverse(Traverse* traverse);
11172
11173 Expression*
11174 do_lower(Gogo*, Named_object*, int);
11175
11176 Expression*
11177 do_copy()
11178 {
11179 return new Composite_literal_expression(this->type_, this->depth_,
11180 this->has_keys_,
11181 (this->vals_ == NULL
11182 ? NULL
11183 : this->vals_->copy()),
11184 this->location());
11185 }
11186
11187 private:
11188 Expression*
11189 lower_struct(Type*);
11190
11191 Expression*
11192 lower_array(Type*);
11193
11194 Expression*
11195 make_array(Type*, Expression_list*);
11196
11197 Expression*
11198 lower_map(Gogo*, Named_object*, Type*);
11199
11200 // The type of the composite literal.
11201 Type* type_;
11202 // The depth within a list of composite literals within a composite
11203 // literal, when the type is omitted.
11204 int depth_;
11205 // The values to put in the composite literal.
11206 Expression_list* vals_;
11207 // If this is true, then VALS_ is a list of pairs: a key and a
11208 // value. In an array initializer, a missing key will be NULL.
11209 bool has_keys_;
11210 };
11211
11212 // Traversal.
11213
11214 int
11215 Composite_literal_expression::do_traverse(Traverse* traverse)
11216 {
11217 if (this->vals_ != NULL
11218 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
11219 return TRAVERSE_EXIT;
11220 return Type::traverse(this->type_, traverse);
11221 }
11222
11223 // Lower a generic composite literal into a specific version based on
11224 // the type.
11225
11226 Expression*
11227 Composite_literal_expression::do_lower(Gogo* gogo, Named_object* function, int)
11228 {
11229 Type* type = this->type_;
11230
11231 for (int depth = this->depth_; depth > 0; --depth)
11232 {
11233 if (type->array_type() != NULL)
11234 type = type->array_type()->element_type();
11235 else if (type->map_type() != NULL)
11236 type = type->map_type()->val_type();
11237 else
11238 {
11239 if (!type->is_error_type())
11240 error_at(this->location(),
11241 ("may only omit types within composite literals "
11242 "of slice, array, or map type"));
11243 return Expression::make_error(this->location());
11244 }
11245 }
11246
11247 if (type->is_error_type())
11248 return Expression::make_error(this->location());
11249 else if (type->struct_type() != NULL)
11250 return this->lower_struct(type);
11251 else if (type->array_type() != NULL)
11252 return this->lower_array(type);
11253 else if (type->map_type() != NULL)
11254 return this->lower_map(gogo, function, type);
11255 else
11256 {
11257 error_at(this->location(),
11258 ("expected struct, slice, array, or map type "
11259 "for composite literal"));
11260 return Expression::make_error(this->location());
11261 }
11262 }
11263
11264 // Lower a struct composite literal.
11265
11266 Expression*
11267 Composite_literal_expression::lower_struct(Type* type)
11268 {
11269 source_location location = this->location();
11270 Struct_type* st = type->struct_type();
11271 if (this->vals_ == NULL || !this->has_keys_)
11272 return new Struct_construction_expression(type, this->vals_, location);
11273
11274 size_t field_count = st->field_count();
11275 std::vector<Expression*> vals(field_count);
11276 Expression_list::const_iterator p = this->vals_->begin();
11277 while (p != this->vals_->end())
11278 {
11279 Expression* name_expr = *p;
11280
11281 ++p;
11282 gcc_assert(p != this->vals_->end());
11283 Expression* val = *p;
11284
11285 ++p;
11286
11287 if (name_expr == NULL)
11288 {
11289 error_at(val->location(), "mixture of field and value initializers");
11290 return Expression::make_error(location);
11291 }
11292
11293 bool bad_key = false;
11294 std::string name;
11295 switch (name_expr->classification())
11296 {
11297 case EXPRESSION_UNKNOWN_REFERENCE:
11298 name = name_expr->unknown_expression()->name();
11299 break;
11300
11301 case EXPRESSION_CONST_REFERENCE:
11302 name = static_cast<Const_expression*>(name_expr)->name();
11303 break;
11304
11305 case EXPRESSION_TYPE:
11306 {
11307 Type* t = name_expr->type();
11308 Named_type* nt = t->named_type();
11309 if (nt == NULL)
11310 bad_key = true;
11311 else
11312 name = nt->name();
11313 }
11314 break;
11315
11316 case EXPRESSION_VAR_REFERENCE:
11317 name = name_expr->var_expression()->name();
11318 break;
11319
11320 case EXPRESSION_FUNC_REFERENCE:
11321 name = name_expr->func_expression()->name();
11322 break;
11323
11324 case EXPRESSION_UNARY:
11325 // If there is a local variable around with the same name as
11326 // the field, and this occurs in the closure, then the
11327 // parser may turn the field reference into an indirection
11328 // through the closure. FIXME: This is a mess.
11329 {
11330 bad_key = true;
11331 Unary_expression* ue = static_cast<Unary_expression*>(name_expr);
11332 if (ue->op() == OPERATOR_MULT)
11333 {
11334 Field_reference_expression* fre =
11335 ue->operand()->field_reference_expression();
11336 if (fre != NULL)
11337 {
11338 Struct_type* st =
11339 fre->expr()->type()->deref()->struct_type();
11340 if (st != NULL)
11341 {
11342 const Struct_field* sf = st->field(fre->field_index());
11343 name = sf->field_name();
11344 char buf[20];
11345 snprintf(buf, sizeof buf, "%u", fre->field_index());
11346 size_t buflen = strlen(buf);
11347 if (name.compare(name.length() - buflen, buflen, buf)
11348 == 0)
11349 {
11350 name = name.substr(0, name.length() - buflen);
11351 bad_key = false;
11352 }
11353 }
11354 }
11355 }
11356 }
11357 break;
11358
11359 default:
11360 bad_key = true;
11361 break;
11362 }
11363 if (bad_key)
11364 {
11365 error_at(name_expr->location(), "expected struct field name");
11366 return Expression::make_error(location);
11367 }
11368
11369 unsigned int index;
11370 const Struct_field* sf = st->find_local_field(name, &index);
11371 if (sf == NULL)
11372 {
11373 error_at(name_expr->location(), "unknown field %qs in %qs",
11374 Gogo::message_name(name).c_str(),
11375 (type->named_type() != NULL
11376 ? type->named_type()->message_name().c_str()
11377 : "unnamed struct"));
11378 return Expression::make_error(location);
11379 }
11380 if (vals[index] != NULL)
11381 {
11382 error_at(name_expr->location(),
11383 "duplicate value for field %qs in %qs",
11384 Gogo::message_name(name).c_str(),
11385 (type->named_type() != NULL
11386 ? type->named_type()->message_name().c_str()
11387 : "unnamed struct"));
11388 return Expression::make_error(location);
11389 }
11390
11391 vals[index] = val;
11392 }
11393
11394 Expression_list* list = new Expression_list;
11395 list->reserve(field_count);
11396 for (size_t i = 0; i < field_count; ++i)
11397 list->push_back(vals[i]);
11398
11399 return new Struct_construction_expression(type, list, location);
11400 }
11401
11402 // Lower an array composite literal.
11403
11404 Expression*
11405 Composite_literal_expression::lower_array(Type* type)
11406 {
11407 source_location location = this->location();
11408 if (this->vals_ == NULL || !this->has_keys_)
11409 return this->make_array(type, this->vals_);
11410
11411 std::vector<Expression*> vals;
11412 vals.reserve(this->vals_->size());
11413 unsigned long index = 0;
11414 Expression_list::const_iterator p = this->vals_->begin();
11415 while (p != this->vals_->end())
11416 {
11417 Expression* index_expr = *p;
11418
11419 ++p;
11420 gcc_assert(p != this->vals_->end());
11421 Expression* val = *p;
11422
11423 ++p;
11424
11425 if (index_expr != NULL)
11426 {
11427 mpz_t ival;
11428 mpz_init(ival);
11429 Type* dummy;
11430 if (!index_expr->integer_constant_value(true, ival, &dummy))
11431 {
11432 mpz_clear(ival);
11433 error_at(index_expr->location(),
11434 "index expression is not integer constant");
11435 return Expression::make_error(location);
11436 }
11437 if (mpz_sgn(ival) < 0)
11438 {
11439 mpz_clear(ival);
11440 error_at(index_expr->location(), "index expression is negative");
11441 return Expression::make_error(location);
11442 }
11443 index = mpz_get_ui(ival);
11444 if (mpz_cmp_ui(ival, index) != 0)
11445 {
11446 mpz_clear(ival);
11447 error_at(index_expr->location(), "index value overflow");
11448 return Expression::make_error(location);
11449 }
11450 mpz_clear(ival);
11451 }
11452
11453 if (index == vals.size())
11454 vals.push_back(val);
11455 else
11456 {
11457 if (index > vals.size())
11458 {
11459 vals.reserve(index + 32);
11460 vals.resize(index + 1, static_cast<Expression*>(NULL));
11461 }
11462 if (vals[index] != NULL)
11463 {
11464 error_at((index_expr != NULL
11465 ? index_expr->location()
11466 : val->location()),
11467 "duplicate value for index %lu",
11468 index);
11469 return Expression::make_error(location);
11470 }
11471 vals[index] = val;
11472 }
11473
11474 ++index;
11475 }
11476
11477 size_t size = vals.size();
11478 Expression_list* list = new Expression_list;
11479 list->reserve(size);
11480 for (size_t i = 0; i < size; ++i)
11481 list->push_back(vals[i]);
11482
11483 return this->make_array(type, list);
11484 }
11485
11486 // Actually build the array composite literal. This handles
11487 // [...]{...}.
11488
11489 Expression*
11490 Composite_literal_expression::make_array(Type* type, Expression_list* vals)
11491 {
11492 source_location location = this->location();
11493 Array_type* at = type->array_type();
11494 if (at->length() != NULL && at->length()->is_nil_expression())
11495 {
11496 size_t size = vals == NULL ? 0 : vals->size();
11497 mpz_t vlen;
11498 mpz_init_set_ui(vlen, size);
11499 Expression* elen = Expression::make_integer(&vlen, NULL, location);
11500 mpz_clear(vlen);
11501 at = Type::make_array_type(at->element_type(), elen);
11502 type = at;
11503 }
11504 if (at->length() != NULL)
11505 return new Fixed_array_construction_expression(type, vals, location);
11506 else
11507 return new Open_array_construction_expression(type, vals, location);
11508 }
11509
11510 // Lower a map composite literal.
11511
11512 Expression*
11513 Composite_literal_expression::lower_map(Gogo* gogo, Named_object* function,
11514 Type* type)
11515 {
11516 source_location location = this->location();
11517 if (this->vals_ != NULL)
11518 {
11519 if (!this->has_keys_)
11520 {
11521 error_at(location, "map composite literal must have keys");
11522 return Expression::make_error(location);
11523 }
11524
11525 for (Expression_list::iterator p = this->vals_->begin();
11526 p != this->vals_->end();
11527 p += 2)
11528 {
11529 if (*p == NULL)
11530 {
11531 ++p;
11532 error_at((*p)->location(),
11533 "map composite literal must have keys for every value");
11534 return Expression::make_error(location);
11535 }
11536 // Make sure we have lowered the key; it may not have been
11537 // lowered in order to handle keys for struct composite
11538 // literals. Lower it now to get the right error message.
11539 if ((*p)->unknown_expression() != NULL)
11540 {
11541 (*p)->unknown_expression()->clear_is_composite_literal_key();
11542 gogo->lower_expression(function, &*p);
11543 gcc_assert((*p)->is_error_expression());
11544 return Expression::make_error(location);
11545 }
11546 }
11547 }
11548
11549 return new Map_construction_expression(type, this->vals_, location);
11550 }
11551
11552 // Make a composite literal expression.
11553
11554 Expression*
11555 Expression::make_composite_literal(Type* type, int depth, bool has_keys,
11556 Expression_list* vals,
11557 source_location location)
11558 {
11559 return new Composite_literal_expression(type, depth, has_keys, vals,
11560 location);
11561 }
11562
11563 // Return whether this expression is a composite literal.
11564
11565 bool
11566 Expression::is_composite_literal() const
11567 {
11568 switch (this->classification_)
11569 {
11570 case EXPRESSION_COMPOSITE_LITERAL:
11571 case EXPRESSION_STRUCT_CONSTRUCTION:
11572 case EXPRESSION_FIXED_ARRAY_CONSTRUCTION:
11573 case EXPRESSION_OPEN_ARRAY_CONSTRUCTION:
11574 case EXPRESSION_MAP_CONSTRUCTION:
11575 return true;
11576 default:
11577 return false;
11578 }
11579 }
11580
11581 // Return whether this expression is a composite literal which is not
11582 // constant.
11583
11584 bool
11585 Expression::is_nonconstant_composite_literal() const
11586 {
11587 switch (this->classification_)
11588 {
11589 case EXPRESSION_STRUCT_CONSTRUCTION:
11590 {
11591 const Struct_construction_expression *psce =
11592 static_cast<const Struct_construction_expression*>(this);
11593 return !psce->is_constant_struct();
11594 }
11595 case EXPRESSION_FIXED_ARRAY_CONSTRUCTION:
11596 {
11597 const Fixed_array_construction_expression *pace =
11598 static_cast<const Fixed_array_construction_expression*>(this);
11599 return !pace->is_constant_array();
11600 }
11601 case EXPRESSION_OPEN_ARRAY_CONSTRUCTION:
11602 {
11603 const Open_array_construction_expression *pace =
11604 static_cast<const Open_array_construction_expression*>(this);
11605 return !pace->is_constant_array();
11606 }
11607 case EXPRESSION_MAP_CONSTRUCTION:
11608 return true;
11609 default:
11610 return false;
11611 }
11612 }
11613
11614 // Return true if this is a reference to a local variable.
11615
11616 bool
11617 Expression::is_local_variable() const
11618 {
11619 const Var_expression* ve = this->var_expression();
11620 if (ve == NULL)
11621 return false;
11622 const Named_object* no = ve->named_object();
11623 return (no->is_result_variable()
11624 || (no->is_variable() && !no->var_value()->is_global()));
11625 }
11626
11627 // Class Type_guard_expression.
11628
11629 // Traversal.
11630
11631 int
11632 Type_guard_expression::do_traverse(Traverse* traverse)
11633 {
11634 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
11635 || Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
11636 return TRAVERSE_EXIT;
11637 return TRAVERSE_CONTINUE;
11638 }
11639
11640 // Check types of a type guard expression. The expression must have
11641 // an interface type, but the actual type conversion is checked at run
11642 // time.
11643
11644 void
11645 Type_guard_expression::do_check_types(Gogo*)
11646 {
11647 // 6g permits using a type guard with unsafe.pointer; we are
11648 // compatible.
11649 Type* expr_type = this->expr_->type();
11650 if (expr_type->is_unsafe_pointer_type())
11651 {
11652 if (this->type_->points_to() == NULL
11653 && (this->type_->integer_type() == NULL
11654 || (this->type_->forwarded()
11655 != Type::lookup_integer_type("uintptr"))))
11656 this->report_error(_("invalid unsafe.Pointer conversion"));
11657 }
11658 else if (this->type_->is_unsafe_pointer_type())
11659 {
11660 if (expr_type->points_to() == NULL
11661 && (expr_type->integer_type() == NULL
11662 || (expr_type->forwarded()
11663 != Type::lookup_integer_type("uintptr"))))
11664 this->report_error(_("invalid unsafe.Pointer conversion"));
11665 }
11666 else if (expr_type->interface_type() == NULL)
11667 {
11668 if (!expr_type->is_error_type() && !this->type_->is_error_type())
11669 this->report_error(_("type assertion only valid for interface types"));
11670 this->set_is_error();
11671 }
11672 else if (this->type_->interface_type() == NULL)
11673 {
11674 std::string reason;
11675 if (!expr_type->interface_type()->implements_interface(this->type_,
11676 &reason))
11677 {
11678 if (!this->type_->is_error_type())
11679 {
11680 if (reason.empty())
11681 this->report_error(_("impossible type assertion: "
11682 "type does not implement interface"));
11683 else
11684 error_at(this->location(),
11685 ("impossible type assertion: "
11686 "type does not implement interface (%s)"),
11687 reason.c_str());
11688 }
11689 this->set_is_error();
11690 }
11691 }
11692 }
11693
11694 // Return a tree for a type guard expression.
11695
11696 tree
11697 Type_guard_expression::do_get_tree(Translate_context* context)
11698 {
11699 Gogo* gogo = context->gogo();
11700 tree expr_tree = this->expr_->get_tree(context);
11701 if (expr_tree == error_mark_node)
11702 return error_mark_node;
11703 Type* expr_type = this->expr_->type();
11704 if ((this->type_->is_unsafe_pointer_type()
11705 && (expr_type->points_to() != NULL
11706 || expr_type->integer_type() != NULL))
11707 || (expr_type->is_unsafe_pointer_type()
11708 && this->type_->points_to() != NULL))
11709 return convert_to_pointer(this->type_->get_tree(gogo), expr_tree);
11710 else if (expr_type->is_unsafe_pointer_type()
11711 && this->type_->integer_type() != NULL)
11712 return convert_to_integer(this->type_->get_tree(gogo), expr_tree);
11713 else if (this->type_->interface_type() != NULL)
11714 return Expression::convert_interface_to_interface(context, this->type_,
11715 this->expr_->type(),
11716 expr_tree, true,
11717 this->location());
11718 else
11719 return Expression::convert_for_assignment(context, this->type_,
11720 this->expr_->type(), expr_tree,
11721 this->location());
11722 }
11723
11724 // Make a type guard expression.
11725
11726 Expression*
11727 Expression::make_type_guard(Expression* expr, Type* type,
11728 source_location location)
11729 {
11730 return new Type_guard_expression(expr, type, location);
11731 }
11732
11733 // Class Heap_composite_expression.
11734
11735 // When you take the address of a composite literal, it is allocated
11736 // on the heap. This class implements that.
11737
11738 class Heap_composite_expression : public Expression
11739 {
11740 public:
11741 Heap_composite_expression(Expression* expr, source_location location)
11742 : Expression(EXPRESSION_HEAP_COMPOSITE, location),
11743 expr_(expr)
11744 { }
11745
11746 protected:
11747 int
11748 do_traverse(Traverse* traverse)
11749 { return Expression::traverse(&this->expr_, traverse); }
11750
11751 Type*
11752 do_type()
11753 { return Type::make_pointer_type(this->expr_->type()); }
11754
11755 void
11756 do_determine_type(const Type_context*)
11757 { this->expr_->determine_type_no_context(); }
11758
11759 Expression*
11760 do_copy()
11761 {
11762 return Expression::make_heap_composite(this->expr_->copy(),
11763 this->location());
11764 }
11765
11766 tree
11767 do_get_tree(Translate_context*);
11768
11769 // We only export global objects, and the parser does not generate
11770 // this in global scope.
11771 void
11772 do_export(Export*) const
11773 { gcc_unreachable(); }
11774
11775 private:
11776 // The composite literal which is being put on the heap.
11777 Expression* expr_;
11778 };
11779
11780 // Return a tree which allocates a composite literal on the heap.
11781
11782 tree
11783 Heap_composite_expression::do_get_tree(Translate_context* context)
11784 {
11785 tree expr_tree = this->expr_->get_tree(context);
11786 if (expr_tree == error_mark_node)
11787 return error_mark_node;
11788 tree expr_size = TYPE_SIZE_UNIT(TREE_TYPE(expr_tree));
11789 gcc_assert(TREE_CODE(expr_size) == INTEGER_CST);
11790 tree space = context->gogo()->allocate_memory(this->expr_->type(),
11791 expr_size, this->location());
11792 space = fold_convert(build_pointer_type(TREE_TYPE(expr_tree)), space);
11793 space = save_expr(space);
11794 tree ref = build_fold_indirect_ref_loc(this->location(), space);
11795 TREE_THIS_NOTRAP(ref) = 1;
11796 tree ret = build2(COMPOUND_EXPR, TREE_TYPE(space),
11797 build2(MODIFY_EXPR, void_type_node, ref, expr_tree),
11798 space);
11799 SET_EXPR_LOCATION(ret, this->location());
11800 return ret;
11801 }
11802
11803 // Allocate a composite literal on the heap.
11804
11805 Expression*
11806 Expression::make_heap_composite(Expression* expr, source_location location)
11807 {
11808 return new Heap_composite_expression(expr, location);
11809 }
11810
11811 // Class Receive_expression.
11812
11813 // Return the type of a receive expression.
11814
11815 Type*
11816 Receive_expression::do_type()
11817 {
11818 Channel_type* channel_type = this->channel_->type()->channel_type();
11819 if (channel_type == NULL)
11820 return Type::make_error_type();
11821 return channel_type->element_type();
11822 }
11823
11824 // Check types for a receive expression.
11825
11826 void
11827 Receive_expression::do_check_types(Gogo*)
11828 {
11829 Type* type = this->channel_->type();
11830 if (type->is_error_type())
11831 {
11832 this->set_is_error();
11833 return;
11834 }
11835 if (type->channel_type() == NULL)
11836 {
11837 this->report_error(_("expected channel"));
11838 return;
11839 }
11840 if (!type->channel_type()->may_receive())
11841 {
11842 this->report_error(_("invalid receive on send-only channel"));
11843 return;
11844 }
11845 }
11846
11847 // Get a tree for a receive expression.
11848
11849 tree
11850 Receive_expression::do_get_tree(Translate_context* context)
11851 {
11852 Channel_type* channel_type = this->channel_->type()->channel_type();
11853 gcc_assert(channel_type != NULL);
11854 Type* element_type = channel_type->element_type();
11855 tree element_type_tree = element_type->get_tree(context->gogo());
11856
11857 tree channel = this->channel_->get_tree(context);
11858 if (element_type_tree == error_mark_node || channel == error_mark_node)
11859 return error_mark_node;
11860
11861 return Gogo::receive_from_channel(element_type_tree, channel,
11862 this->for_select_, this->location());
11863 }
11864
11865 // Make a receive expression.
11866
11867 Receive_expression*
11868 Expression::make_receive(Expression* channel, source_location location)
11869 {
11870 return new Receive_expression(channel, location);
11871 }
11872
11873 // Class Send_expression.
11874
11875 // Traversal.
11876
11877 int
11878 Send_expression::do_traverse(Traverse* traverse)
11879 {
11880 if (Expression::traverse(&this->channel_, traverse) == TRAVERSE_EXIT)
11881 return TRAVERSE_EXIT;
11882 return Expression::traverse(&this->val_, traverse);
11883 }
11884
11885 // Get the type.
11886
11887 Type*
11888 Send_expression::do_type()
11889 {
11890 return Type::lookup_bool_type();
11891 }
11892
11893 // Set types.
11894
11895 void
11896 Send_expression::do_determine_type(const Type_context*)
11897 {
11898 this->channel_->determine_type_no_context();
11899
11900 Type* type = this->channel_->type();
11901 Type_context subcontext;
11902 if (type->channel_type() != NULL)
11903 subcontext.type = type->channel_type()->element_type();
11904 this->val_->determine_type(&subcontext);
11905 }
11906
11907 // Check types.
11908
11909 void
11910 Send_expression::do_check_types(Gogo*)
11911 {
11912 Type* type = this->channel_->type();
11913 if (type->is_error_type())
11914 {
11915 this->set_is_error();
11916 return;
11917 }
11918 Channel_type* channel_type = type->channel_type();
11919 if (channel_type == NULL)
11920 {
11921 error_at(this->location(), "left operand of %<<-%> must be channel");
11922 this->set_is_error();
11923 return;
11924 }
11925 Type* element_type = channel_type->element_type();
11926 if (element_type != NULL
11927 && !Type::are_assignable(element_type, this->val_->type(), NULL))
11928 {
11929 this->report_error(_("incompatible types in send"));
11930 return;
11931 }
11932 if (!channel_type->may_send())
11933 {
11934 this->report_error(_("invalid send on receive-only channel"));
11935 return;
11936 }
11937 }
11938
11939 // Get a tree for a send expression.
11940
11941 tree
11942 Send_expression::do_get_tree(Translate_context* context)
11943 {
11944 tree channel = this->channel_->get_tree(context);
11945 tree val = this->val_->get_tree(context);
11946 if (channel == error_mark_node || val == error_mark_node)
11947 return error_mark_node;
11948 Channel_type* channel_type = this->channel_->type()->channel_type();
11949 val = Expression::convert_for_assignment(context,
11950 channel_type->element_type(),
11951 this->val_->type(),
11952 val,
11953 this->location());
11954 return Gogo::send_on_channel(channel, val, this->is_value_discarded_,
11955 this->for_select_, this->location());
11956 }
11957
11958 // Make a send expression
11959
11960 Send_expression*
11961 Expression::make_send(Expression* channel, Expression* val,
11962 source_location location)
11963 {
11964 return new Send_expression(channel, val, location);
11965 }
11966
11967 // An expression which evaluates to a pointer to the type descriptor
11968 // of a type.
11969
11970 class Type_descriptor_expression : public Expression
11971 {
11972 public:
11973 Type_descriptor_expression(Type* type, source_location location)
11974 : Expression(EXPRESSION_TYPE_DESCRIPTOR, location),
11975 type_(type)
11976 { }
11977
11978 protected:
11979 Type*
11980 do_type()
11981 { return Type::make_type_descriptor_ptr_type(); }
11982
11983 void
11984 do_determine_type(const Type_context*)
11985 { }
11986
11987 Expression*
11988 do_copy()
11989 { return this; }
11990
11991 tree
11992 do_get_tree(Translate_context* context)
11993 { return this->type_->type_descriptor_pointer(context->gogo()); }
11994
11995 private:
11996 // The type for which this is the descriptor.
11997 Type* type_;
11998 };
11999
12000 // Make a type descriptor expression.
12001
12002 Expression*
12003 Expression::make_type_descriptor(Type* type, source_location location)
12004 {
12005 return new Type_descriptor_expression(type, location);
12006 }
12007
12008 // An expression which evaluates to some characteristic of a type.
12009 // This is only used to initialize fields of a type descriptor. Using
12010 // a new expression class is slightly inefficient but gives us a good
12011 // separation between the frontend and the middle-end with regard to
12012 // how types are laid out.
12013
12014 class Type_info_expression : public Expression
12015 {
12016 public:
12017 Type_info_expression(Type* type, Type_info type_info)
12018 : Expression(EXPRESSION_TYPE_INFO, BUILTINS_LOCATION),
12019 type_(type), type_info_(type_info)
12020 { }
12021
12022 protected:
12023 Type*
12024 do_type();
12025
12026 void
12027 do_determine_type(const Type_context*)
12028 { }
12029
12030 Expression*
12031 do_copy()
12032 { return this; }
12033
12034 tree
12035 do_get_tree(Translate_context* context);
12036
12037 private:
12038 // The type for which we are getting information.
12039 Type* type_;
12040 // What information we want.
12041 Type_info type_info_;
12042 };
12043
12044 // The type is chosen to match what the type descriptor struct
12045 // expects.
12046
12047 Type*
12048 Type_info_expression::do_type()
12049 {
12050 switch (this->type_info_)
12051 {
12052 case TYPE_INFO_SIZE:
12053 return Type::lookup_integer_type("uintptr");
12054 case TYPE_INFO_ALIGNMENT:
12055 case TYPE_INFO_FIELD_ALIGNMENT:
12056 return Type::lookup_integer_type("uint8");
12057 default:
12058 gcc_unreachable();
12059 }
12060 }
12061
12062 // Return type information in GENERIC.
12063
12064 tree
12065 Type_info_expression::do_get_tree(Translate_context* context)
12066 {
12067 tree type_tree = this->type_->get_tree(context->gogo());
12068 if (type_tree == error_mark_node)
12069 return error_mark_node;
12070
12071 tree val_type_tree = this->type()->get_tree(context->gogo());
12072 gcc_assert(val_type_tree != error_mark_node);
12073
12074 if (this->type_info_ == TYPE_INFO_SIZE)
12075 return fold_convert_loc(BUILTINS_LOCATION, val_type_tree,
12076 TYPE_SIZE_UNIT(type_tree));
12077 else
12078 {
12079 unsigned int val;
12080 if (this->type_info_ == TYPE_INFO_ALIGNMENT)
12081 val = go_type_alignment(type_tree);
12082 else
12083 val = go_field_alignment(type_tree);
12084 return build_int_cstu(val_type_tree, val);
12085 }
12086 }
12087
12088 // Make a type info expression.
12089
12090 Expression*
12091 Expression::make_type_info(Type* type, Type_info type_info)
12092 {
12093 return new Type_info_expression(type, type_info);
12094 }
12095
12096 // An expression which evaluates to the offset of a field within a
12097 // struct. This, like Type_info_expression, q.v., is only used to
12098 // initialize fields of a type descriptor.
12099
12100 class Struct_field_offset_expression : public Expression
12101 {
12102 public:
12103 Struct_field_offset_expression(Struct_type* type, const Struct_field* field)
12104 : Expression(EXPRESSION_STRUCT_FIELD_OFFSET, BUILTINS_LOCATION),
12105 type_(type), field_(field)
12106 { }
12107
12108 protected:
12109 Type*
12110 do_type()
12111 { return Type::lookup_integer_type("uintptr"); }
12112
12113 void
12114 do_determine_type(const Type_context*)
12115 { }
12116
12117 Expression*
12118 do_copy()
12119 { return this; }
12120
12121 tree
12122 do_get_tree(Translate_context* context);
12123
12124 private:
12125 // The type of the struct.
12126 Struct_type* type_;
12127 // The field.
12128 const Struct_field* field_;
12129 };
12130
12131 // Return a struct field offset in GENERIC.
12132
12133 tree
12134 Struct_field_offset_expression::do_get_tree(Translate_context* context)
12135 {
12136 tree type_tree = this->type_->get_tree(context->gogo());
12137 if (type_tree == error_mark_node)
12138 return error_mark_node;
12139
12140 tree val_type_tree = this->type()->get_tree(context->gogo());
12141 gcc_assert(val_type_tree != error_mark_node);
12142
12143 const Struct_field_list* fields = this->type_->fields();
12144 tree struct_field_tree = TYPE_FIELDS(type_tree);
12145 Struct_field_list::const_iterator p;
12146 for (p = fields->begin();
12147 p != fields->end();
12148 ++p, struct_field_tree = DECL_CHAIN(struct_field_tree))
12149 {
12150 gcc_assert(struct_field_tree != NULL_TREE);
12151 if (&*p == this->field_)
12152 break;
12153 }
12154 gcc_assert(&*p == this->field_);
12155
12156 return fold_convert_loc(BUILTINS_LOCATION, val_type_tree,
12157 byte_position(struct_field_tree));
12158 }
12159
12160 // Make an expression for a struct field offset.
12161
12162 Expression*
12163 Expression::make_struct_field_offset(Struct_type* type,
12164 const Struct_field* field)
12165 {
12166 return new Struct_field_offset_expression(type, field);
12167 }
12168
12169 // An expression which evaluates to the address of an unnamed label.
12170
12171 class Label_addr_expression : public Expression
12172 {
12173 public:
12174 Label_addr_expression(Label* label, source_location location)
12175 : Expression(EXPRESSION_LABEL_ADDR, location),
12176 label_(label)
12177 { }
12178
12179 protected:
12180 Type*
12181 do_type()
12182 { return Type::make_pointer_type(Type::make_void_type()); }
12183
12184 void
12185 do_determine_type(const Type_context*)
12186 { }
12187
12188 Expression*
12189 do_copy()
12190 { return new Label_addr_expression(this->label_, this->location()); }
12191
12192 tree
12193 do_get_tree(Translate_context*)
12194 { return this->label_->get_addr(this->location()); }
12195
12196 private:
12197 // The label whose address we are taking.
12198 Label* label_;
12199 };
12200
12201 // Make an expression for the address of an unnamed label.
12202
12203 Expression*
12204 Expression::make_label_addr(Label* label, source_location location)
12205 {
12206 return new Label_addr_expression(label, location);
12207 }
12208
12209 // Import an expression. This comes at the end in order to see the
12210 // various class definitions.
12211
12212 Expression*
12213 Expression::import_expression(Import* imp)
12214 {
12215 int c = imp->peek_char();
12216 if (imp->match_c_string("- ")
12217 || imp->match_c_string("! ")
12218 || imp->match_c_string("^ "))
12219 return Unary_expression::do_import(imp);
12220 else if (c == '(')
12221 return Binary_expression::do_import(imp);
12222 else if (imp->match_c_string("true")
12223 || imp->match_c_string("false"))
12224 return Boolean_expression::do_import(imp);
12225 else if (c == '"')
12226 return String_expression::do_import(imp);
12227 else if (c == '-' || (c >= '0' && c <= '9'))
12228 {
12229 // This handles integers, floats and complex constants.
12230 return Integer_expression::do_import(imp);
12231 }
12232 else if (imp->match_c_string("nil"))
12233 return Nil_expression::do_import(imp);
12234 else if (imp->match_c_string("convert"))
12235 return Type_conversion_expression::do_import(imp);
12236 else
12237 {
12238 error_at(imp->location(), "import error: expected expression");
12239 return Expression::make_error(imp->location());
12240 }
12241 }
12242
12243 // Class Expression_list.
12244
12245 // Traverse the list.
12246
12247 int
12248 Expression_list::traverse(Traverse* traverse)
12249 {
12250 for (Expression_list::iterator p = this->begin();
12251 p != this->end();
12252 ++p)
12253 {
12254 if (*p != NULL)
12255 {
12256 if (Expression::traverse(&*p, traverse) == TRAVERSE_EXIT)
12257 return TRAVERSE_EXIT;
12258 }
12259 }
12260 return TRAVERSE_CONTINUE;
12261 }
12262
12263 // Copy the list.
12264
12265 Expression_list*
12266 Expression_list::copy()
12267 {
12268 Expression_list* ret = new Expression_list();
12269 for (Expression_list::iterator p = this->begin();
12270 p != this->end();
12271 ++p)
12272 {
12273 if (*p == NULL)
12274 ret->push_back(NULL);
12275 else
12276 ret->push_back((*p)->copy());
12277 }
12278 return ret;
12279 }
12280
12281 // Return whether an expression list has an error expression.
12282
12283 bool
12284 Expression_list::contains_error() const
12285 {
12286 for (Expression_list::const_iterator p = this->begin();
12287 p != this->end();
12288 ++p)
12289 if (*p != NULL && (*p)->is_error_expression())
12290 return true;
12291 return false;
12292 }