Permit comparing non-empty interfaces with empty interfaces.
[gcc.git] / gcc / go / gofrontend / expressions.cc
1 // expressions.cc -- Go frontend expression handling.
2
3 // Copyright 2009 The Go Authors. All rights reserved.
4 // Use of this source code is governed by a BSD-style
5 // license that can be found in the LICENSE file.
6
7 #include "go-system.h"
8
9 #include <gmp.h>
10
11 #ifndef ENABLE_BUILD_WITH_CXX
12 extern "C"
13 {
14 #endif
15
16 #include "toplev.h"
17 #include "intl.h"
18 #include "tree.h"
19 #include "gimple.h"
20 #include "tree-iterator.h"
21 #include "convert.h"
22 #include "real.h"
23 #include "realmpfr.h"
24
25 #ifndef ENABLE_BUILD_WITH_CXX
26 }
27 #endif
28
29 #include "go-c.h"
30 #include "gogo.h"
31 #include "types.h"
32 #include "export.h"
33 #include "import.h"
34 #include "statements.h"
35 #include "lex.h"
36 #include "expressions.h"
37
38 // Class Expression.
39
40 Expression::Expression(Expression_classification classification,
41 source_location location)
42 : classification_(classification), location_(location)
43 {
44 }
45
46 Expression::~Expression()
47 {
48 }
49
50 // If this expression has a constant integer value, return it.
51
52 bool
53 Expression::integer_constant_value(bool iota_is_constant, mpz_t val,
54 Type** ptype) const
55 {
56 *ptype = NULL;
57 return this->do_integer_constant_value(iota_is_constant, val, ptype);
58 }
59
60 // If this expression has a constant floating point value, return it.
61
62 bool
63 Expression::float_constant_value(mpfr_t val, Type** ptype) const
64 {
65 *ptype = NULL;
66 if (this->do_float_constant_value(val, ptype))
67 return true;
68 mpz_t ival;
69 mpz_init(ival);
70 Type* t;
71 bool ret;
72 if (!this->do_integer_constant_value(false, ival, &t))
73 ret = false;
74 else
75 {
76 mpfr_set_z(val, ival, GMP_RNDN);
77 ret = true;
78 }
79 mpz_clear(ival);
80 return ret;
81 }
82
83 // If this expression has a constant complex value, return it.
84
85 bool
86 Expression::complex_constant_value(mpfr_t real, mpfr_t imag,
87 Type** ptype) const
88 {
89 *ptype = NULL;
90 if (this->do_complex_constant_value(real, imag, ptype))
91 return true;
92 Type *t;
93 if (this->float_constant_value(real, &t))
94 {
95 mpfr_set_ui(imag, 0, GMP_RNDN);
96 return true;
97 }
98 return false;
99 }
100
101 // Traverse the expressions.
102
103 int
104 Expression::traverse(Expression** pexpr, Traverse* traverse)
105 {
106 Expression* expr = *pexpr;
107 if ((traverse->traverse_mask() & Traverse::traverse_expressions) != 0)
108 {
109 int t = traverse->expression(pexpr);
110 if (t == TRAVERSE_EXIT)
111 return TRAVERSE_EXIT;
112 else if (t == TRAVERSE_SKIP_COMPONENTS)
113 return TRAVERSE_CONTINUE;
114 }
115 return expr->do_traverse(traverse);
116 }
117
118 // Traverse subexpressions of this expression.
119
120 int
121 Expression::traverse_subexpressions(Traverse* traverse)
122 {
123 return this->do_traverse(traverse);
124 }
125
126 // Default implementation for do_traverse for child classes.
127
128 int
129 Expression::do_traverse(Traverse*)
130 {
131 return TRAVERSE_CONTINUE;
132 }
133
134 // This virtual function is called by the parser if the value of this
135 // expression is being discarded. By default, we warn. Expressions
136 // with side effects override.
137
138 void
139 Expression::do_discarding_value()
140 {
141 this->warn_about_unused_value();
142 }
143
144 // This virtual function is called to export expressions. This will
145 // only be used by expressions which may be constant.
146
147 void
148 Expression::do_export(Export*) const
149 {
150 gcc_unreachable();
151 }
152
153 // Warn that the value of the expression is not used.
154
155 void
156 Expression::warn_about_unused_value()
157 {
158 warning_at(this->location(), OPT_Wunused_value, "value computed is not used");
159 }
160
161 // Note that this expression is an error. This is called by children
162 // when they discover an error.
163
164 void
165 Expression::set_is_error()
166 {
167 this->classification_ = EXPRESSION_ERROR;
168 }
169
170 // For children to call to report an error conveniently.
171
172 void
173 Expression::report_error(const char* msg)
174 {
175 error_at(this->location_, "%s", msg);
176 this->set_is_error();
177 }
178
179 // Set types of variables and constants. This is implemented by the
180 // child class.
181
182 void
183 Expression::determine_type(const Type_context* context)
184 {
185 this->do_determine_type(context);
186 }
187
188 // Set types when there is no context.
189
190 void
191 Expression::determine_type_no_context()
192 {
193 Type_context context;
194 this->do_determine_type(&context);
195 }
196
197 // Return a tree handling any conversions which must be done during
198 // assignment.
199
200 tree
201 Expression::convert_for_assignment(Translate_context* context, Type* lhs_type,
202 Type* rhs_type, tree rhs_tree,
203 source_location location)
204 {
205 if (lhs_type == rhs_type)
206 return rhs_tree;
207
208 if (lhs_type->is_error_type() || rhs_type->is_error_type())
209 return error_mark_node;
210
211 if (lhs_type->is_undefined() || rhs_type->is_undefined())
212 {
213 // Make sure we report the error.
214 lhs_type->base();
215 rhs_type->base();
216 return error_mark_node;
217 }
218
219 if (rhs_tree == error_mark_node || TREE_TYPE(rhs_tree) == error_mark_node)
220 return error_mark_node;
221
222 Gogo* gogo = context->gogo();
223
224 tree lhs_type_tree = lhs_type->get_tree(gogo);
225 if (lhs_type_tree == error_mark_node)
226 return error_mark_node;
227
228 if (lhs_type->interface_type() != NULL)
229 {
230 if (rhs_type->interface_type() == NULL)
231 return Expression::convert_type_to_interface(context, lhs_type,
232 rhs_type, rhs_tree,
233 location);
234 else
235 return Expression::convert_interface_to_interface(context, lhs_type,
236 rhs_type, rhs_tree,
237 false, location);
238 }
239 else if (rhs_type->interface_type() != NULL)
240 return Expression::convert_interface_to_type(context, lhs_type, rhs_type,
241 rhs_tree, location);
242 else if (lhs_type->is_open_array_type()
243 && rhs_type->is_nil_type())
244 {
245 // Assigning nil to an open array.
246 gcc_assert(TREE_CODE(lhs_type_tree) == RECORD_TYPE);
247
248 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
249
250 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
251 tree field = TYPE_FIELDS(lhs_type_tree);
252 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
253 "__values") == 0);
254 elt->index = field;
255 elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
256
257 elt = VEC_quick_push(constructor_elt, init, NULL);
258 field = DECL_CHAIN(field);
259 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
260 "__count") == 0);
261 elt->index = field;
262 elt->value = fold_convert(TREE_TYPE(field), integer_zero_node);
263
264 elt = VEC_quick_push(constructor_elt, init, NULL);
265 field = DECL_CHAIN(field);
266 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
267 "__capacity") == 0);
268 elt->index = field;
269 elt->value = fold_convert(TREE_TYPE(field), integer_zero_node);
270
271 tree val = build_constructor(lhs_type_tree, init);
272 TREE_CONSTANT(val) = 1;
273
274 return val;
275 }
276 else if (rhs_type->is_nil_type())
277 {
278 // The left hand side should be a pointer type at the tree
279 // level.
280 gcc_assert(POINTER_TYPE_P(lhs_type_tree));
281 return fold_convert(lhs_type_tree, null_pointer_node);
282 }
283 else if (lhs_type_tree == TREE_TYPE(rhs_tree))
284 {
285 // No conversion is needed.
286 return rhs_tree;
287 }
288 else if (POINTER_TYPE_P(lhs_type_tree)
289 || INTEGRAL_TYPE_P(lhs_type_tree)
290 || SCALAR_FLOAT_TYPE_P(lhs_type_tree)
291 || COMPLEX_FLOAT_TYPE_P(lhs_type_tree))
292 return fold_convert_loc(location, lhs_type_tree, rhs_tree);
293 else if (TREE_CODE(lhs_type_tree) == RECORD_TYPE
294 && TREE_CODE(TREE_TYPE(rhs_tree)) == RECORD_TYPE)
295 {
296 // This conversion must be permitted by Go, or we wouldn't have
297 // gotten here.
298 gcc_assert(int_size_in_bytes(lhs_type_tree)
299 == int_size_in_bytes(TREE_TYPE(rhs_tree)));
300 return fold_build1_loc(location, VIEW_CONVERT_EXPR, lhs_type_tree,
301 rhs_tree);
302 }
303 else
304 {
305 gcc_assert(useless_type_conversion_p(lhs_type_tree, TREE_TYPE(rhs_tree)));
306 return rhs_tree;
307 }
308 }
309
310 // Return a tree for a conversion from a non-interface type to an
311 // interface type.
312
313 tree
314 Expression::convert_type_to_interface(Translate_context* context,
315 Type* lhs_type, Type* rhs_type,
316 tree rhs_tree, source_location location)
317 {
318 Gogo* gogo = context->gogo();
319 Interface_type* lhs_interface_type = lhs_type->interface_type();
320 bool lhs_is_empty = lhs_interface_type->is_empty();
321
322 // Since RHS_TYPE is a static type, we can create the interface
323 // method table at compile time.
324
325 // When setting an interface to nil, we just set both fields to
326 // NULL.
327 if (rhs_type->is_nil_type())
328 return lhs_type->get_init_tree(gogo, false);
329
330 // This should have been checked already.
331 gcc_assert(lhs_interface_type->implements_interface(rhs_type, NULL));
332
333 tree lhs_type_tree = lhs_type->get_tree(gogo);
334 if (lhs_type_tree == error_mark_node)
335 return error_mark_node;
336
337 // An interface is a tuple. If LHS_TYPE is an empty interface type,
338 // then the first field is the type descriptor for RHS_TYPE.
339 // Otherwise it is the interface method table for RHS_TYPE.
340 tree first_field_value;
341 if (lhs_is_empty)
342 first_field_value = rhs_type->type_descriptor_pointer(gogo);
343 else
344 {
345 // Build the interface method table for this interface and this
346 // object type: a list of function pointers for each interface
347 // method.
348 Named_type* rhs_named_type = rhs_type->named_type();
349 bool is_pointer = false;
350 if (rhs_named_type == NULL)
351 {
352 rhs_named_type = rhs_type->deref()->named_type();
353 is_pointer = true;
354 }
355 tree method_table;
356 if (rhs_named_type == NULL)
357 method_table = null_pointer_node;
358 else
359 method_table =
360 rhs_named_type->interface_method_table(gogo, lhs_interface_type,
361 is_pointer);
362 first_field_value = fold_convert_loc(location, const_ptr_type_node,
363 method_table);
364 }
365
366 // Start building a constructor for the value we will return.
367
368 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
369
370 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
371 tree field = TYPE_FIELDS(lhs_type_tree);
372 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
373 (lhs_is_empty ? "__type_descriptor" : "__methods")) == 0);
374 elt->index = field;
375 elt->value = fold_convert_loc(location, TREE_TYPE(field), first_field_value);
376
377 elt = VEC_quick_push(constructor_elt, init, NULL);
378 field = DECL_CHAIN(field);
379 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
380 elt->index = field;
381
382 if (rhs_type->points_to() != NULL)
383 {
384 // We are assigning a pointer to the interface; the interface
385 // holds the pointer itself.
386 elt->value = rhs_tree;
387 return build_constructor(lhs_type_tree, init);
388 }
389
390 // We are assigning a non-pointer value to the interface; the
391 // interface gets a copy of the value in the heap.
392
393 tree object_size = TYPE_SIZE_UNIT(TREE_TYPE(rhs_tree));
394
395 tree space = gogo->allocate_memory(rhs_type, object_size, location);
396 space = fold_convert_loc(location, build_pointer_type(TREE_TYPE(rhs_tree)),
397 space);
398 space = save_expr(space);
399
400 tree ref = build_fold_indirect_ref_loc(location, space);
401 TREE_THIS_NOTRAP(ref) = 1;
402 tree set = fold_build2_loc(location, MODIFY_EXPR, void_type_node,
403 ref, rhs_tree);
404
405 elt->value = fold_convert_loc(location, TREE_TYPE(field), space);
406
407 return build2(COMPOUND_EXPR, lhs_type_tree, set,
408 build_constructor(lhs_type_tree, init));
409 }
410
411 // Return a tree for the type descriptor of RHS_TREE, which has
412 // interface type RHS_TYPE. If RHS_TREE is nil the result will be
413 // NULL.
414
415 tree
416 Expression::get_interface_type_descriptor(Translate_context*,
417 Type* rhs_type, tree rhs_tree,
418 source_location location)
419 {
420 tree rhs_type_tree = TREE_TYPE(rhs_tree);
421 gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
422 tree rhs_field = TYPE_FIELDS(rhs_type_tree);
423 tree v = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
424 NULL_TREE);
425 if (rhs_type->interface_type()->is_empty())
426 {
427 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)),
428 "__type_descriptor") == 0);
429 return v;
430 }
431
432 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__methods")
433 == 0);
434 gcc_assert(POINTER_TYPE_P(TREE_TYPE(v)));
435 v = save_expr(v);
436 tree v1 = build_fold_indirect_ref_loc(location, v);
437 gcc_assert(TREE_CODE(TREE_TYPE(v1)) == RECORD_TYPE);
438 tree f = TYPE_FIELDS(TREE_TYPE(v1));
439 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(f)), "__type_descriptor")
440 == 0);
441 v1 = build3(COMPONENT_REF, TREE_TYPE(f), v1, f, NULL_TREE);
442
443 tree eq = fold_build2_loc(location, EQ_EXPR, boolean_type_node, v,
444 fold_convert_loc(location, TREE_TYPE(v),
445 null_pointer_node));
446 tree n = fold_convert_loc(location, TREE_TYPE(v1), null_pointer_node);
447 return fold_build3_loc(location, COND_EXPR, TREE_TYPE(v1),
448 eq, n, v1);
449 }
450
451 // Return a tree for the conversion of an interface type to an
452 // interface type.
453
454 tree
455 Expression::convert_interface_to_interface(Translate_context* context,
456 Type *lhs_type, Type *rhs_type,
457 tree rhs_tree, bool for_type_guard,
458 source_location location)
459 {
460 Gogo* gogo = context->gogo();
461 Interface_type* lhs_interface_type = lhs_type->interface_type();
462 bool lhs_is_empty = lhs_interface_type->is_empty();
463
464 tree lhs_type_tree = lhs_type->get_tree(gogo);
465 if (lhs_type_tree == error_mark_node)
466 return error_mark_node;
467
468 // In the general case this requires runtime examination of the type
469 // method table to match it up with the interface methods.
470
471 // FIXME: If all of the methods in the right hand side interface
472 // also appear in the left hand side interface, then we don't need
473 // to do a runtime check, although we still need to build a new
474 // method table.
475
476 // Get the type descriptor for the right hand side. This will be
477 // NULL for a nil interface.
478
479 if (!DECL_P(rhs_tree))
480 rhs_tree = save_expr(rhs_tree);
481
482 tree rhs_type_descriptor =
483 Expression::get_interface_type_descriptor(context, rhs_type, rhs_tree,
484 location);
485
486 // The result is going to be a two element constructor.
487
488 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
489
490 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
491 tree field = TYPE_FIELDS(lhs_type_tree);
492 elt->index = field;
493
494 if (for_type_guard)
495 {
496 // A type assertion fails when converting a nil interface.
497 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
498 static tree assert_interface_decl;
499 tree call = Gogo::call_builtin(&assert_interface_decl,
500 location,
501 "__go_assert_interface",
502 2,
503 ptr_type_node,
504 TREE_TYPE(lhs_type_descriptor),
505 lhs_type_descriptor,
506 TREE_TYPE(rhs_type_descriptor),
507 rhs_type_descriptor);
508 if (call == error_mark_node)
509 return error_mark_node;
510 // This will panic if the interface conversion fails.
511 TREE_NOTHROW(assert_interface_decl) = 0;
512 elt->value = fold_convert_loc(location, TREE_TYPE(field), call);
513 }
514 else if (lhs_is_empty)
515 {
516 // A convertion to an empty interface always succeeds, and the
517 // first field is just the type descriptor of the object.
518 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
519 "__type_descriptor") == 0);
520 gcc_assert(TREE_TYPE(field) == TREE_TYPE(rhs_type_descriptor));
521 elt->value = rhs_type_descriptor;
522 }
523 else
524 {
525 // A conversion to a non-empty interface may fail, but unlike a
526 // type assertion converting nil will always succeed.
527 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods")
528 == 0);
529 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
530 static tree convert_interface_decl;
531 tree call = Gogo::call_builtin(&convert_interface_decl,
532 location,
533 "__go_convert_interface",
534 2,
535 ptr_type_node,
536 TREE_TYPE(lhs_type_descriptor),
537 lhs_type_descriptor,
538 TREE_TYPE(rhs_type_descriptor),
539 rhs_type_descriptor);
540 if (call == error_mark_node)
541 return error_mark_node;
542 // This will panic if the interface conversion fails.
543 TREE_NOTHROW(convert_interface_decl) = 0;
544 elt->value = fold_convert_loc(location, TREE_TYPE(field), call);
545 }
546
547 // The second field is simply the object pointer.
548
549 elt = VEC_quick_push(constructor_elt, init, NULL);
550 field = DECL_CHAIN(field);
551 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
552 elt->index = field;
553
554 tree rhs_type_tree = TREE_TYPE(rhs_tree);
555 gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
556 tree rhs_field = DECL_CHAIN(TYPE_FIELDS(rhs_type_tree));
557 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__object") == 0);
558 elt->value = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
559 NULL_TREE);
560
561 return build_constructor(lhs_type_tree, init);
562 }
563
564 // Return a tree for the conversion of an interface type to a
565 // non-interface type.
566
567 tree
568 Expression::convert_interface_to_type(Translate_context* context,
569 Type *lhs_type, Type* rhs_type,
570 tree rhs_tree, source_location location)
571 {
572 Gogo* gogo = context->gogo();
573 tree rhs_type_tree = TREE_TYPE(rhs_tree);
574
575 tree lhs_type_tree = lhs_type->get_tree(gogo);
576 if (lhs_type_tree == error_mark_node)
577 return error_mark_node;
578
579 // Call a function to check that the type is valid. The function
580 // will panic with an appropriate runtime type error if the type is
581 // not valid.
582
583 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
584
585 if (!DECL_P(rhs_tree))
586 rhs_tree = save_expr(rhs_tree);
587
588 tree rhs_type_descriptor =
589 Expression::get_interface_type_descriptor(context, rhs_type, rhs_tree,
590 location);
591
592 tree rhs_inter_descriptor = rhs_type->type_descriptor_pointer(gogo);
593
594 static tree check_interface_type_decl;
595 tree call = Gogo::call_builtin(&check_interface_type_decl,
596 location,
597 "__go_check_interface_type",
598 3,
599 void_type_node,
600 TREE_TYPE(lhs_type_descriptor),
601 lhs_type_descriptor,
602 TREE_TYPE(rhs_type_descriptor),
603 rhs_type_descriptor,
604 TREE_TYPE(rhs_inter_descriptor),
605 rhs_inter_descriptor);
606 if (call == error_mark_node)
607 return error_mark_node;
608 // This call will panic if the conversion is invalid.
609 TREE_NOTHROW(check_interface_type_decl) = 0;
610
611 // If the call succeeds, pull out the value.
612 gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
613 tree rhs_field = DECL_CHAIN(TYPE_FIELDS(rhs_type_tree));
614 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__object") == 0);
615 tree val = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
616 NULL_TREE);
617
618 // If the value is a pointer, then it is the value we want.
619 // Otherwise it points to the value.
620 if (lhs_type->points_to() == NULL)
621 {
622 val = fold_convert_loc(location, build_pointer_type(lhs_type_tree), val);
623 val = build_fold_indirect_ref_loc(location, val);
624 }
625
626 return build2(COMPOUND_EXPR, lhs_type_tree, call,
627 fold_convert_loc(location, lhs_type_tree, val));
628 }
629
630 // Convert an expression to a tree. This is implemented by the child
631 // class. Not that it is not in general safe to call this multiple
632 // times for a single expression, but that we don't catch such errors.
633
634 tree
635 Expression::get_tree(Translate_context* context)
636 {
637 // The child may have marked this expression as having an error.
638 if (this->classification_ == EXPRESSION_ERROR)
639 return error_mark_node;
640
641 return this->do_get_tree(context);
642 }
643
644 // Return a tree for VAL in TYPE.
645
646 tree
647 Expression::integer_constant_tree(mpz_t val, tree type)
648 {
649 if (type == error_mark_node)
650 return error_mark_node;
651 else if (TREE_CODE(type) == INTEGER_TYPE)
652 return double_int_to_tree(type,
653 mpz_get_double_int(type, val, true));
654 else if (TREE_CODE(type) == REAL_TYPE)
655 {
656 mpfr_t fval;
657 mpfr_init_set_z(fval, val, GMP_RNDN);
658 tree ret = Expression::float_constant_tree(fval, type);
659 mpfr_clear(fval);
660 return ret;
661 }
662 else if (TREE_CODE(type) == COMPLEX_TYPE)
663 {
664 mpfr_t fval;
665 mpfr_init_set_z(fval, val, GMP_RNDN);
666 tree real = Expression::float_constant_tree(fval, TREE_TYPE(type));
667 mpfr_clear(fval);
668 tree imag = build_real_from_int_cst(TREE_TYPE(type),
669 integer_zero_node);
670 return build_complex(type, real, imag);
671 }
672 else
673 gcc_unreachable();
674 }
675
676 // Return a tree for VAL in TYPE.
677
678 tree
679 Expression::float_constant_tree(mpfr_t val, tree type)
680 {
681 if (type == error_mark_node)
682 return error_mark_node;
683 else if (TREE_CODE(type) == INTEGER_TYPE)
684 {
685 mpz_t ival;
686 mpz_init(ival);
687 mpfr_get_z(ival, val, GMP_RNDN);
688 tree ret = Expression::integer_constant_tree(ival, type);
689 mpz_clear(ival);
690 return ret;
691 }
692 else if (TREE_CODE(type) == REAL_TYPE)
693 {
694 REAL_VALUE_TYPE r1;
695 real_from_mpfr(&r1, val, type, GMP_RNDN);
696 REAL_VALUE_TYPE r2;
697 real_convert(&r2, TYPE_MODE(type), &r1);
698 return build_real(type, r2);
699 }
700 else if (TREE_CODE(type) == COMPLEX_TYPE)
701 {
702 REAL_VALUE_TYPE r1;
703 real_from_mpfr(&r1, val, TREE_TYPE(type), GMP_RNDN);
704 REAL_VALUE_TYPE r2;
705 real_convert(&r2, TYPE_MODE(TREE_TYPE(type)), &r1);
706 tree imag = build_real_from_int_cst(TREE_TYPE(type),
707 integer_zero_node);
708 return build_complex(type, build_real(TREE_TYPE(type), r2), imag);
709 }
710 else
711 gcc_unreachable();
712 }
713
714 // Return a tree for REAL/IMAG in TYPE.
715
716 tree
717 Expression::complex_constant_tree(mpfr_t real, mpfr_t imag, tree type)
718 {
719 if (type == error_mark_node)
720 return error_mark_node;
721 else if (TREE_CODE(type) == INTEGER_TYPE || TREE_CODE(type) == REAL_TYPE)
722 return Expression::float_constant_tree(real, type);
723 else if (TREE_CODE(type) == COMPLEX_TYPE)
724 {
725 REAL_VALUE_TYPE r1;
726 real_from_mpfr(&r1, real, TREE_TYPE(type), GMP_RNDN);
727 REAL_VALUE_TYPE r2;
728 real_convert(&r2, TYPE_MODE(TREE_TYPE(type)), &r1);
729
730 REAL_VALUE_TYPE r3;
731 real_from_mpfr(&r3, imag, TREE_TYPE(type), GMP_RNDN);
732 REAL_VALUE_TYPE r4;
733 real_convert(&r4, TYPE_MODE(TREE_TYPE(type)), &r3);
734
735 return build_complex(type, build_real(TREE_TYPE(type), r2),
736 build_real(TREE_TYPE(type), r4));
737 }
738 else
739 gcc_unreachable();
740 }
741
742 // Return a tree which evaluates to true if VAL, of arbitrary integer
743 // type, is negative or is more than the maximum value of BOUND_TYPE.
744 // If SOFAR is not NULL, it is or'red into the result. The return
745 // value may be NULL if SOFAR is NULL.
746
747 tree
748 Expression::check_bounds(tree val, tree bound_type, tree sofar,
749 source_location loc)
750 {
751 tree val_type = TREE_TYPE(val);
752 tree ret = NULL_TREE;
753
754 if (!TYPE_UNSIGNED(val_type))
755 {
756 ret = fold_build2_loc(loc, LT_EXPR, boolean_type_node, val,
757 build_int_cst(val_type, 0));
758 if (ret == boolean_false_node)
759 ret = NULL_TREE;
760 }
761
762 if ((TYPE_UNSIGNED(val_type) && !TYPE_UNSIGNED(bound_type))
763 || TYPE_SIZE(val_type) > TYPE_SIZE(bound_type))
764 {
765 tree max = TYPE_MAX_VALUE(bound_type);
766 tree big = fold_build2_loc(loc, GT_EXPR, boolean_type_node, val,
767 fold_convert_loc(loc, val_type, max));
768 if (big == boolean_false_node)
769 ;
770 else if (ret == NULL_TREE)
771 ret = big;
772 else
773 ret = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
774 ret, big);
775 }
776
777 if (ret == NULL_TREE)
778 return sofar;
779 else if (sofar == NULL_TREE)
780 return ret;
781 else
782 return fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
783 sofar, ret);
784 }
785
786 // Error expressions. This are used to avoid cascading errors.
787
788 class Error_expression : public Expression
789 {
790 public:
791 Error_expression(source_location location)
792 : Expression(EXPRESSION_ERROR, location)
793 { }
794
795 protected:
796 bool
797 do_is_constant() const
798 { return true; }
799
800 bool
801 do_integer_constant_value(bool, mpz_t val, Type**) const
802 {
803 mpz_set_ui(val, 0);
804 return true;
805 }
806
807 bool
808 do_float_constant_value(mpfr_t val, Type**) const
809 {
810 mpfr_set_ui(val, 0, GMP_RNDN);
811 return true;
812 }
813
814 bool
815 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const
816 {
817 mpfr_set_ui(real, 0, GMP_RNDN);
818 mpfr_set_ui(imag, 0, GMP_RNDN);
819 return true;
820 }
821
822 void
823 do_discarding_value()
824 { }
825
826 Type*
827 do_type()
828 { return Type::make_error_type(); }
829
830 void
831 do_determine_type(const Type_context*)
832 { }
833
834 Expression*
835 do_copy()
836 { return this; }
837
838 bool
839 do_is_addressable() const
840 { return true; }
841
842 tree
843 do_get_tree(Translate_context*)
844 { return error_mark_node; }
845 };
846
847 Expression*
848 Expression::make_error(source_location location)
849 {
850 return new Error_expression(location);
851 }
852
853 // An expression which is really a type. This is used during parsing.
854 // It is an error if these survive after lowering.
855
856 class
857 Type_expression : public Expression
858 {
859 public:
860 Type_expression(Type* type, source_location location)
861 : Expression(EXPRESSION_TYPE, location),
862 type_(type)
863 { }
864
865 protected:
866 int
867 do_traverse(Traverse* traverse)
868 { return Type::traverse(this->type_, traverse); }
869
870 Type*
871 do_type()
872 { return this->type_; }
873
874 void
875 do_determine_type(const Type_context*)
876 { }
877
878 void
879 do_check_types(Gogo*)
880 { this->report_error(_("invalid use of type")); }
881
882 Expression*
883 do_copy()
884 { return this; }
885
886 tree
887 do_get_tree(Translate_context*)
888 { gcc_unreachable(); }
889
890 private:
891 // The type which we are representing as an expression.
892 Type* type_;
893 };
894
895 Expression*
896 Expression::make_type(Type* type, source_location location)
897 {
898 return new Type_expression(type, location);
899 }
900
901 // Class Parser_expression.
902
903 Type*
904 Parser_expression::do_type()
905 {
906 // We should never really ask for the type of a Parser_expression.
907 // However, it can happen, at least when we have an invalid const
908 // whose initializer refers to the const itself. In that case we
909 // may ask for the type when lowering the const itself.
910 gcc_assert(saw_errors());
911 return Type::make_error_type();
912 }
913
914 // Class Var_expression.
915
916 // Lower a variable expression. Here we just make sure that the
917 // initialization expression of the variable has been lowered. This
918 // ensures that we will be able to determine the type of the variable
919 // if necessary.
920
921 Expression*
922 Var_expression::do_lower(Gogo* gogo, Named_object* function, int)
923 {
924 if (this->variable_->is_variable())
925 {
926 Variable* var = this->variable_->var_value();
927 // This is either a local variable or a global variable. A
928 // reference to a variable which is local to an enclosing
929 // function will be a reference to a field in a closure.
930 if (var->is_global())
931 function = NULL;
932 var->lower_init_expression(gogo, function);
933 }
934 return this;
935 }
936
937 // Return the name of the variable.
938
939 const std::string&
940 Var_expression::name() const
941 {
942 return this->variable_->name();
943 }
944
945 // Return the type of a reference to a variable.
946
947 Type*
948 Var_expression::do_type()
949 {
950 if (this->variable_->is_variable())
951 return this->variable_->var_value()->type();
952 else if (this->variable_->is_result_variable())
953 return this->variable_->result_var_value()->type();
954 else
955 gcc_unreachable();
956 }
957
958 // Something takes the address of this variable. This means that we
959 // may want to move the variable onto the heap.
960
961 void
962 Var_expression::do_address_taken(bool escapes)
963 {
964 if (!escapes)
965 ;
966 else if (this->variable_->is_variable())
967 this->variable_->var_value()->set_address_taken();
968 else if (this->variable_->is_result_variable())
969 this->variable_->result_var_value()->set_address_taken();
970 else
971 gcc_unreachable();
972 }
973
974 // Get the tree for a reference to a variable.
975
976 tree
977 Var_expression::do_get_tree(Translate_context* context)
978 {
979 return this->variable_->get_tree(context->gogo(), context->function());
980 }
981
982 // Make a reference to a variable in an expression.
983
984 Expression*
985 Expression::make_var_reference(Named_object* var, source_location location)
986 {
987 if (var->is_sink())
988 return Expression::make_sink(location);
989
990 // FIXME: Creating a new object for each reference to a variable is
991 // wasteful.
992 return new Var_expression(var, location);
993 }
994
995 // Class Temporary_reference_expression.
996
997 // The type.
998
999 Type*
1000 Temporary_reference_expression::do_type()
1001 {
1002 return this->statement_->type();
1003 }
1004
1005 // Called if something takes the address of this temporary variable.
1006 // We never have to move temporary variables to the heap, but we do
1007 // need to know that they must live in the stack rather than in a
1008 // register.
1009
1010 void
1011 Temporary_reference_expression::do_address_taken(bool)
1012 {
1013 this->statement_->set_is_address_taken();
1014 }
1015
1016 // Get a tree referring to the variable.
1017
1018 tree
1019 Temporary_reference_expression::do_get_tree(Translate_context*)
1020 {
1021 return this->statement_->get_decl();
1022 }
1023
1024 // Make a reference to a temporary variable.
1025
1026 Expression*
1027 Expression::make_temporary_reference(Temporary_statement* statement,
1028 source_location location)
1029 {
1030 return new Temporary_reference_expression(statement, location);
1031 }
1032
1033 // A sink expression--a use of the blank identifier _.
1034
1035 class Sink_expression : public Expression
1036 {
1037 public:
1038 Sink_expression(source_location location)
1039 : Expression(EXPRESSION_SINK, location),
1040 type_(NULL), var_(NULL_TREE)
1041 { }
1042
1043 protected:
1044 void
1045 do_discarding_value()
1046 { }
1047
1048 Type*
1049 do_type();
1050
1051 void
1052 do_determine_type(const Type_context*);
1053
1054 Expression*
1055 do_copy()
1056 { return new Sink_expression(this->location()); }
1057
1058 tree
1059 do_get_tree(Translate_context*);
1060
1061 private:
1062 // The type of this sink variable.
1063 Type* type_;
1064 // The temporary variable we generate.
1065 tree var_;
1066 };
1067
1068 // Return the type of a sink expression.
1069
1070 Type*
1071 Sink_expression::do_type()
1072 {
1073 if (this->type_ == NULL)
1074 return Type::make_sink_type();
1075 return this->type_;
1076 }
1077
1078 // Determine the type of a sink expression.
1079
1080 void
1081 Sink_expression::do_determine_type(const Type_context* context)
1082 {
1083 if (context->type != NULL)
1084 this->type_ = context->type;
1085 }
1086
1087 // Return a temporary variable for a sink expression. This will
1088 // presumably be a write-only variable which the middle-end will drop.
1089
1090 tree
1091 Sink_expression::do_get_tree(Translate_context* context)
1092 {
1093 if (this->var_ == NULL_TREE)
1094 {
1095 gcc_assert(this->type_ != NULL && !this->type_->is_sink_type());
1096 this->var_ = create_tmp_var(this->type_->get_tree(context->gogo()),
1097 "blank");
1098 }
1099 return this->var_;
1100 }
1101
1102 // Make a sink expression.
1103
1104 Expression*
1105 Expression::make_sink(source_location location)
1106 {
1107 return new Sink_expression(location);
1108 }
1109
1110 // Class Func_expression.
1111
1112 // FIXME: Can a function expression appear in a constant expression?
1113 // The value is unchanging. Initializing a constant to the address of
1114 // a function seems like it could work, though there might be little
1115 // point to it.
1116
1117 // Return the name of the function.
1118
1119 const std::string&
1120 Func_expression::name() const
1121 {
1122 return this->function_->name();
1123 }
1124
1125 // Traversal.
1126
1127 int
1128 Func_expression::do_traverse(Traverse* traverse)
1129 {
1130 return (this->closure_ == NULL
1131 ? TRAVERSE_CONTINUE
1132 : Expression::traverse(&this->closure_, traverse));
1133 }
1134
1135 // Return the type of a function expression.
1136
1137 Type*
1138 Func_expression::do_type()
1139 {
1140 if (this->function_->is_function())
1141 return this->function_->func_value()->type();
1142 else if (this->function_->is_function_declaration())
1143 return this->function_->func_declaration_value()->type();
1144 else
1145 gcc_unreachable();
1146 }
1147
1148 // Get the tree for a function expression without evaluating the
1149 // closure.
1150
1151 tree
1152 Func_expression::get_tree_without_closure(Gogo* gogo)
1153 {
1154 Function_type* fntype;
1155 if (this->function_->is_function())
1156 fntype = this->function_->func_value()->type();
1157 else if (this->function_->is_function_declaration())
1158 fntype = this->function_->func_declaration_value()->type();
1159 else
1160 gcc_unreachable();
1161
1162 // Builtin functions are handled specially by Call_expression. We
1163 // can't take their address.
1164 if (fntype->is_builtin())
1165 {
1166 error_at(this->location(), "invalid use of special builtin function %qs",
1167 this->function_->name().c_str());
1168 return error_mark_node;
1169 }
1170
1171 Named_object* no = this->function_;
1172
1173 tree id = no->get_id(gogo);
1174 if (id == error_mark_node)
1175 return error_mark_node;
1176
1177 tree fndecl;
1178 if (no->is_function())
1179 fndecl = no->func_value()->get_or_make_decl(gogo, no, id);
1180 else if (no->is_function_declaration())
1181 fndecl = no->func_declaration_value()->get_or_make_decl(gogo, no, id);
1182 else
1183 gcc_unreachable();
1184
1185 if (fndecl == error_mark_node)
1186 return error_mark_node;
1187
1188 return build_fold_addr_expr_loc(this->location(), fndecl);
1189 }
1190
1191 // Get the tree for a function expression. This is used when we take
1192 // the address of a function rather than simply calling it. If the
1193 // function has a closure, we must use a trampoline.
1194
1195 tree
1196 Func_expression::do_get_tree(Translate_context* context)
1197 {
1198 Gogo* gogo = context->gogo();
1199
1200 tree fnaddr = this->get_tree_without_closure(gogo);
1201 if (fnaddr == error_mark_node)
1202 return error_mark_node;
1203
1204 gcc_assert(TREE_CODE(fnaddr) == ADDR_EXPR
1205 && TREE_CODE(TREE_OPERAND(fnaddr, 0)) == FUNCTION_DECL);
1206 TREE_ADDRESSABLE(TREE_OPERAND(fnaddr, 0)) = 1;
1207
1208 // For a normal non-nested function call, that is all we have to do.
1209 if (!this->function_->is_function()
1210 || this->function_->func_value()->enclosing() == NULL)
1211 {
1212 gcc_assert(this->closure_ == NULL);
1213 return fnaddr;
1214 }
1215
1216 // For a nested function call, we have to always allocate a
1217 // trampoline. If we don't always allocate, then closures will not
1218 // be reliably distinct.
1219 Expression* closure = this->closure_;
1220 tree closure_tree;
1221 if (closure == NULL)
1222 closure_tree = null_pointer_node;
1223 else
1224 {
1225 // Get the value of the closure. This will be a pointer to
1226 // space allocated on the heap.
1227 closure_tree = closure->get_tree(context);
1228 if (closure_tree == error_mark_node)
1229 return error_mark_node;
1230 gcc_assert(POINTER_TYPE_P(TREE_TYPE(closure_tree)));
1231 }
1232
1233 // Now we need to build some code on the heap. This code will load
1234 // the static chain pointer with the closure and then jump to the
1235 // body of the function. The normal gcc approach is to build the
1236 // code on the stack. Unfortunately we can not do that, as Go
1237 // permits us to return the function pointer.
1238
1239 return gogo->make_trampoline(fnaddr, closure_tree, this->location());
1240 }
1241
1242 // Make a reference to a function in an expression.
1243
1244 Expression*
1245 Expression::make_func_reference(Named_object* function, Expression* closure,
1246 source_location location)
1247 {
1248 return new Func_expression(function, closure, location);
1249 }
1250
1251 // Class Unknown_expression.
1252
1253 // Return the name of an unknown expression.
1254
1255 const std::string&
1256 Unknown_expression::name() const
1257 {
1258 return this->named_object_->name();
1259 }
1260
1261 // Lower a reference to an unknown name.
1262
1263 Expression*
1264 Unknown_expression::do_lower(Gogo*, Named_object*, int)
1265 {
1266 source_location location = this->location();
1267 Named_object* no = this->named_object_;
1268 Named_object* real;
1269 if (!no->is_unknown())
1270 real = no;
1271 else
1272 {
1273 real = no->unknown_value()->real_named_object();
1274 if (real == NULL)
1275 {
1276 if (this->is_composite_literal_key_)
1277 return this;
1278 error_at(location, "reference to undefined name %qs",
1279 this->named_object_->message_name().c_str());
1280 return Expression::make_error(location);
1281 }
1282 }
1283 switch (real->classification())
1284 {
1285 case Named_object::NAMED_OBJECT_CONST:
1286 return Expression::make_const_reference(real, location);
1287 case Named_object::NAMED_OBJECT_TYPE:
1288 return Expression::make_type(real->type_value(), location);
1289 case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
1290 if (this->is_composite_literal_key_)
1291 return this;
1292 error_at(location, "reference to undefined type %qs",
1293 real->message_name().c_str());
1294 return Expression::make_error(location);
1295 case Named_object::NAMED_OBJECT_VAR:
1296 return Expression::make_var_reference(real, location);
1297 case Named_object::NAMED_OBJECT_FUNC:
1298 case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
1299 return Expression::make_func_reference(real, NULL, location);
1300 case Named_object::NAMED_OBJECT_PACKAGE:
1301 if (this->is_composite_literal_key_)
1302 return this;
1303 error_at(location, "unexpected reference to package");
1304 return Expression::make_error(location);
1305 default:
1306 gcc_unreachable();
1307 }
1308 }
1309
1310 // Make a reference to an unknown name.
1311
1312 Expression*
1313 Expression::make_unknown_reference(Named_object* no, source_location location)
1314 {
1315 gcc_assert(no->resolve()->is_unknown());
1316 return new Unknown_expression(no, location);
1317 }
1318
1319 // A boolean expression.
1320
1321 class Boolean_expression : public Expression
1322 {
1323 public:
1324 Boolean_expression(bool val, source_location location)
1325 : Expression(EXPRESSION_BOOLEAN, location),
1326 val_(val), type_(NULL)
1327 { }
1328
1329 static Expression*
1330 do_import(Import*);
1331
1332 protected:
1333 bool
1334 do_is_constant() const
1335 { return true; }
1336
1337 Type*
1338 do_type();
1339
1340 void
1341 do_determine_type(const Type_context*);
1342
1343 Expression*
1344 do_copy()
1345 { return this; }
1346
1347 tree
1348 do_get_tree(Translate_context*)
1349 { return this->val_ ? boolean_true_node : boolean_false_node; }
1350
1351 void
1352 do_export(Export* exp) const
1353 { exp->write_c_string(this->val_ ? "true" : "false"); }
1354
1355 private:
1356 // The constant.
1357 bool val_;
1358 // The type as determined by context.
1359 Type* type_;
1360 };
1361
1362 // Get the type.
1363
1364 Type*
1365 Boolean_expression::do_type()
1366 {
1367 if (this->type_ == NULL)
1368 this->type_ = Type::make_boolean_type();
1369 return this->type_;
1370 }
1371
1372 // Set the type from the context.
1373
1374 void
1375 Boolean_expression::do_determine_type(const Type_context* context)
1376 {
1377 if (this->type_ != NULL && !this->type_->is_abstract())
1378 ;
1379 else if (context->type != NULL && context->type->is_boolean_type())
1380 this->type_ = context->type;
1381 else if (!context->may_be_abstract)
1382 this->type_ = Type::lookup_bool_type();
1383 }
1384
1385 // Import a boolean constant.
1386
1387 Expression*
1388 Boolean_expression::do_import(Import* imp)
1389 {
1390 if (imp->peek_char() == 't')
1391 {
1392 imp->require_c_string("true");
1393 return Expression::make_boolean(true, imp->location());
1394 }
1395 else
1396 {
1397 imp->require_c_string("false");
1398 return Expression::make_boolean(false, imp->location());
1399 }
1400 }
1401
1402 // Make a boolean expression.
1403
1404 Expression*
1405 Expression::make_boolean(bool val, source_location location)
1406 {
1407 return new Boolean_expression(val, location);
1408 }
1409
1410 // Class String_expression.
1411
1412 // Get the type.
1413
1414 Type*
1415 String_expression::do_type()
1416 {
1417 if (this->type_ == NULL)
1418 this->type_ = Type::make_string_type();
1419 return this->type_;
1420 }
1421
1422 // Set the type from the context.
1423
1424 void
1425 String_expression::do_determine_type(const Type_context* context)
1426 {
1427 if (this->type_ != NULL && !this->type_->is_abstract())
1428 ;
1429 else if (context->type != NULL && context->type->is_string_type())
1430 this->type_ = context->type;
1431 else if (!context->may_be_abstract)
1432 this->type_ = Type::lookup_string_type();
1433 }
1434
1435 // Build a string constant.
1436
1437 tree
1438 String_expression::do_get_tree(Translate_context* context)
1439 {
1440 return context->gogo()->go_string_constant_tree(this->val_);
1441 }
1442
1443 // Export a string expression.
1444
1445 void
1446 String_expression::do_export(Export* exp) const
1447 {
1448 std::string s;
1449 s.reserve(this->val_.length() * 4 + 2);
1450 s += '"';
1451 for (std::string::const_iterator p = this->val_.begin();
1452 p != this->val_.end();
1453 ++p)
1454 {
1455 if (*p == '\\' || *p == '"')
1456 {
1457 s += '\\';
1458 s += *p;
1459 }
1460 else if (*p >= 0x20 && *p < 0x7f)
1461 s += *p;
1462 else if (*p == '\n')
1463 s += "\\n";
1464 else if (*p == '\t')
1465 s += "\\t";
1466 else
1467 {
1468 s += "\\x";
1469 unsigned char c = *p;
1470 unsigned int dig = c >> 4;
1471 s += dig < 10 ? '0' + dig : 'A' + dig - 10;
1472 dig = c & 0xf;
1473 s += dig < 10 ? '0' + dig : 'A' + dig - 10;
1474 }
1475 }
1476 s += '"';
1477 exp->write_string(s);
1478 }
1479
1480 // Import a string expression.
1481
1482 Expression*
1483 String_expression::do_import(Import* imp)
1484 {
1485 imp->require_c_string("\"");
1486 std::string val;
1487 while (true)
1488 {
1489 int c = imp->get_char();
1490 if (c == '"' || c == -1)
1491 break;
1492 if (c != '\\')
1493 val += static_cast<char>(c);
1494 else
1495 {
1496 c = imp->get_char();
1497 if (c == '\\' || c == '"')
1498 val += static_cast<char>(c);
1499 else if (c == 'n')
1500 val += '\n';
1501 else if (c == 't')
1502 val += '\t';
1503 else if (c == 'x')
1504 {
1505 c = imp->get_char();
1506 unsigned int vh = c >= '0' && c <= '9' ? c - '0' : c - 'A' + 10;
1507 c = imp->get_char();
1508 unsigned int vl = c >= '0' && c <= '9' ? c - '0' : c - 'A' + 10;
1509 char v = (vh << 4) | vl;
1510 val += v;
1511 }
1512 else
1513 {
1514 error_at(imp->location(), "bad string constant");
1515 return Expression::make_error(imp->location());
1516 }
1517 }
1518 }
1519 return Expression::make_string(val, imp->location());
1520 }
1521
1522 // Make a string expression.
1523
1524 Expression*
1525 Expression::make_string(const std::string& val, source_location location)
1526 {
1527 return new String_expression(val, location);
1528 }
1529
1530 // Make an integer expression.
1531
1532 class Integer_expression : public Expression
1533 {
1534 public:
1535 Integer_expression(const mpz_t* val, Type* type, source_location location)
1536 : Expression(EXPRESSION_INTEGER, location),
1537 type_(type)
1538 { mpz_init_set(this->val_, *val); }
1539
1540 static Expression*
1541 do_import(Import*);
1542
1543 // Return whether VAL fits in the type.
1544 static bool
1545 check_constant(mpz_t val, Type*, source_location);
1546
1547 // Write VAL to export data.
1548 static void
1549 export_integer(Export* exp, const mpz_t val);
1550
1551 protected:
1552 bool
1553 do_is_constant() const
1554 { return true; }
1555
1556 bool
1557 do_integer_constant_value(bool, mpz_t val, Type** ptype) const;
1558
1559 Type*
1560 do_type();
1561
1562 void
1563 do_determine_type(const Type_context* context);
1564
1565 void
1566 do_check_types(Gogo*);
1567
1568 tree
1569 do_get_tree(Translate_context*);
1570
1571 Expression*
1572 do_copy()
1573 { return Expression::make_integer(&this->val_, this->type_,
1574 this->location()); }
1575
1576 void
1577 do_export(Export*) const;
1578
1579 private:
1580 // The integer value.
1581 mpz_t val_;
1582 // The type so far.
1583 Type* type_;
1584 };
1585
1586 // Return an integer constant value.
1587
1588 bool
1589 Integer_expression::do_integer_constant_value(bool, mpz_t val,
1590 Type** ptype) const
1591 {
1592 if (this->type_ != NULL)
1593 *ptype = this->type_;
1594 mpz_set(val, this->val_);
1595 return true;
1596 }
1597
1598 // Return the current type. If we haven't set the type yet, we return
1599 // an abstract integer type.
1600
1601 Type*
1602 Integer_expression::do_type()
1603 {
1604 if (this->type_ == NULL)
1605 this->type_ = Type::make_abstract_integer_type();
1606 return this->type_;
1607 }
1608
1609 // Set the type of the integer value. Here we may switch from an
1610 // abstract type to a real type.
1611
1612 void
1613 Integer_expression::do_determine_type(const Type_context* context)
1614 {
1615 if (this->type_ != NULL && !this->type_->is_abstract())
1616 ;
1617 else if (context->type != NULL
1618 && (context->type->integer_type() != NULL
1619 || context->type->float_type() != NULL
1620 || context->type->complex_type() != NULL))
1621 this->type_ = context->type;
1622 else if (!context->may_be_abstract)
1623 this->type_ = Type::lookup_integer_type("int");
1624 }
1625
1626 // Return true if the integer VAL fits in the range of the type TYPE.
1627 // Otherwise give an error and return false. TYPE may be NULL.
1628
1629 bool
1630 Integer_expression::check_constant(mpz_t val, Type* type,
1631 source_location location)
1632 {
1633 if (type == NULL)
1634 return true;
1635 Integer_type* itype = type->integer_type();
1636 if (itype == NULL || itype->is_abstract())
1637 return true;
1638
1639 int bits = mpz_sizeinbase(val, 2);
1640
1641 if (itype->is_unsigned())
1642 {
1643 // For an unsigned type we can only accept a nonnegative number,
1644 // and we must be able to represent at least BITS.
1645 if (mpz_sgn(val) >= 0
1646 && bits <= itype->bits())
1647 return true;
1648 }
1649 else
1650 {
1651 // For a signed type we need an extra bit to indicate the sign.
1652 // We have to handle the most negative integer specially.
1653 if (bits + 1 <= itype->bits()
1654 || (bits <= itype->bits()
1655 && mpz_sgn(val) < 0
1656 && (mpz_scan1(val, 0)
1657 == static_cast<unsigned long>(itype->bits() - 1))
1658 && mpz_scan0(val, itype->bits()) == ULONG_MAX))
1659 return true;
1660 }
1661
1662 error_at(location, "integer constant overflow");
1663 return false;
1664 }
1665
1666 // Check the type of an integer constant.
1667
1668 void
1669 Integer_expression::do_check_types(Gogo*)
1670 {
1671 if (this->type_ == NULL)
1672 return;
1673 if (!Integer_expression::check_constant(this->val_, this->type_,
1674 this->location()))
1675 this->set_is_error();
1676 }
1677
1678 // Get a tree for an integer constant.
1679
1680 tree
1681 Integer_expression::do_get_tree(Translate_context* context)
1682 {
1683 Gogo* gogo = context->gogo();
1684 tree type;
1685 if (this->type_ != NULL && !this->type_->is_abstract())
1686 type = this->type_->get_tree(gogo);
1687 else if (this->type_ != NULL && this->type_->float_type() != NULL)
1688 {
1689 // We are converting to an abstract floating point type.
1690 type = Type::lookup_float_type("float64")->get_tree(gogo);
1691 }
1692 else if (this->type_ != NULL && this->type_->complex_type() != NULL)
1693 {
1694 // We are converting to an abstract complex type.
1695 type = Type::lookup_complex_type("complex128")->get_tree(gogo);
1696 }
1697 else
1698 {
1699 // If we still have an abstract type here, then this is being
1700 // used in a constant expression which didn't get reduced for
1701 // some reason. Use a type which will fit the value. We use <,
1702 // not <=, because we need an extra bit for the sign bit.
1703 int bits = mpz_sizeinbase(this->val_, 2);
1704 if (bits < INT_TYPE_SIZE)
1705 type = Type::lookup_integer_type("int")->get_tree(gogo);
1706 else if (bits < 64)
1707 type = Type::lookup_integer_type("int64")->get_tree(gogo);
1708 else
1709 type = long_long_integer_type_node;
1710 }
1711 return Expression::integer_constant_tree(this->val_, type);
1712 }
1713
1714 // Write VAL to export data.
1715
1716 void
1717 Integer_expression::export_integer(Export* exp, const mpz_t val)
1718 {
1719 char* s = mpz_get_str(NULL, 10, val);
1720 exp->write_c_string(s);
1721 free(s);
1722 }
1723
1724 // Export an integer in a constant expression.
1725
1726 void
1727 Integer_expression::do_export(Export* exp) const
1728 {
1729 Integer_expression::export_integer(exp, this->val_);
1730 // A trailing space lets us reliably identify the end of the number.
1731 exp->write_c_string(" ");
1732 }
1733
1734 // Import an integer, floating point, or complex value. This handles
1735 // all these types because they all start with digits.
1736
1737 Expression*
1738 Integer_expression::do_import(Import* imp)
1739 {
1740 std::string num = imp->read_identifier();
1741 imp->require_c_string(" ");
1742 if (!num.empty() && num[num.length() - 1] == 'i')
1743 {
1744 mpfr_t real;
1745 size_t plus_pos = num.find('+', 1);
1746 size_t minus_pos = num.find('-', 1);
1747 size_t pos;
1748 if (plus_pos == std::string::npos)
1749 pos = minus_pos;
1750 else if (minus_pos == std::string::npos)
1751 pos = plus_pos;
1752 else
1753 {
1754 error_at(imp->location(), "bad number in import data: %qs",
1755 num.c_str());
1756 return Expression::make_error(imp->location());
1757 }
1758 if (pos == std::string::npos)
1759 mpfr_set_ui(real, 0, GMP_RNDN);
1760 else
1761 {
1762 std::string real_str = num.substr(0, pos);
1763 if (mpfr_init_set_str(real, real_str.c_str(), 10, GMP_RNDN) != 0)
1764 {
1765 error_at(imp->location(), "bad number in import data: %qs",
1766 real_str.c_str());
1767 return Expression::make_error(imp->location());
1768 }
1769 }
1770
1771 std::string imag_str;
1772 if (pos == std::string::npos)
1773 imag_str = num;
1774 else
1775 imag_str = num.substr(pos);
1776 imag_str = imag_str.substr(0, imag_str.size() - 1);
1777 mpfr_t imag;
1778 if (mpfr_init_set_str(imag, imag_str.c_str(), 10, GMP_RNDN) != 0)
1779 {
1780 error_at(imp->location(), "bad number in import data: %qs",
1781 imag_str.c_str());
1782 return Expression::make_error(imp->location());
1783 }
1784 Expression* ret = Expression::make_complex(&real, &imag, NULL,
1785 imp->location());
1786 mpfr_clear(real);
1787 mpfr_clear(imag);
1788 return ret;
1789 }
1790 else if (num.find('.') == std::string::npos
1791 && num.find('E') == std::string::npos)
1792 {
1793 mpz_t val;
1794 if (mpz_init_set_str(val, num.c_str(), 10) != 0)
1795 {
1796 error_at(imp->location(), "bad number in import data: %qs",
1797 num.c_str());
1798 return Expression::make_error(imp->location());
1799 }
1800 Expression* ret = Expression::make_integer(&val, NULL, imp->location());
1801 mpz_clear(val);
1802 return ret;
1803 }
1804 else
1805 {
1806 mpfr_t val;
1807 if (mpfr_init_set_str(val, num.c_str(), 10, GMP_RNDN) != 0)
1808 {
1809 error_at(imp->location(), "bad number in import data: %qs",
1810 num.c_str());
1811 return Expression::make_error(imp->location());
1812 }
1813 Expression* ret = Expression::make_float(&val, NULL, imp->location());
1814 mpfr_clear(val);
1815 return ret;
1816 }
1817 }
1818
1819 // Build a new integer value.
1820
1821 Expression*
1822 Expression::make_integer(const mpz_t* val, Type* type,
1823 source_location location)
1824 {
1825 return new Integer_expression(val, type, location);
1826 }
1827
1828 // Floats.
1829
1830 class Float_expression : public Expression
1831 {
1832 public:
1833 Float_expression(const mpfr_t* val, Type* type, source_location location)
1834 : Expression(EXPRESSION_FLOAT, location),
1835 type_(type)
1836 {
1837 mpfr_init_set(this->val_, *val, GMP_RNDN);
1838 }
1839
1840 // Constrain VAL to fit into TYPE.
1841 static void
1842 constrain_float(mpfr_t val, Type* type);
1843
1844 // Return whether VAL fits in the type.
1845 static bool
1846 check_constant(mpfr_t val, Type*, source_location);
1847
1848 // Write VAL to export data.
1849 static void
1850 export_float(Export* exp, const mpfr_t val);
1851
1852 protected:
1853 bool
1854 do_is_constant() const
1855 { return true; }
1856
1857 bool
1858 do_float_constant_value(mpfr_t val, Type**) const;
1859
1860 Type*
1861 do_type();
1862
1863 void
1864 do_determine_type(const Type_context*);
1865
1866 void
1867 do_check_types(Gogo*);
1868
1869 Expression*
1870 do_copy()
1871 { return Expression::make_float(&this->val_, this->type_,
1872 this->location()); }
1873
1874 tree
1875 do_get_tree(Translate_context*);
1876
1877 void
1878 do_export(Export*) const;
1879
1880 private:
1881 // The floating point value.
1882 mpfr_t val_;
1883 // The type so far.
1884 Type* type_;
1885 };
1886
1887 // Constrain VAL to fit into TYPE.
1888
1889 void
1890 Float_expression::constrain_float(mpfr_t val, Type* type)
1891 {
1892 Float_type* ftype = type->float_type();
1893 if (ftype != NULL && !ftype->is_abstract())
1894 {
1895 tree type_tree = ftype->type_tree();
1896 REAL_VALUE_TYPE rvt;
1897 real_from_mpfr(&rvt, val, type_tree, GMP_RNDN);
1898 real_convert(&rvt, TYPE_MODE(type_tree), &rvt);
1899 mpfr_from_real(val, &rvt, GMP_RNDN);
1900 }
1901 }
1902
1903 // Return a floating point constant value.
1904
1905 bool
1906 Float_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
1907 {
1908 if (this->type_ != NULL)
1909 *ptype = this->type_;
1910 mpfr_set(val, this->val_, GMP_RNDN);
1911 return true;
1912 }
1913
1914 // Return the current type. If we haven't set the type yet, we return
1915 // an abstract float type.
1916
1917 Type*
1918 Float_expression::do_type()
1919 {
1920 if (this->type_ == NULL)
1921 this->type_ = Type::make_abstract_float_type();
1922 return this->type_;
1923 }
1924
1925 // Set the type of the float value. Here we may switch from an
1926 // abstract type to a real type.
1927
1928 void
1929 Float_expression::do_determine_type(const Type_context* context)
1930 {
1931 if (this->type_ != NULL && !this->type_->is_abstract())
1932 ;
1933 else if (context->type != NULL
1934 && (context->type->integer_type() != NULL
1935 || context->type->float_type() != NULL
1936 || context->type->complex_type() != NULL))
1937 this->type_ = context->type;
1938 else if (!context->may_be_abstract)
1939 this->type_ = Type::lookup_float_type("float64");
1940 }
1941
1942 // Return true if the floating point value VAL fits in the range of
1943 // the type TYPE. Otherwise give an error and return false. TYPE may
1944 // be NULL.
1945
1946 bool
1947 Float_expression::check_constant(mpfr_t val, Type* type,
1948 source_location location)
1949 {
1950 if (type == NULL)
1951 return true;
1952 Float_type* ftype = type->float_type();
1953 if (ftype == NULL || ftype->is_abstract())
1954 return true;
1955
1956 // A NaN or Infinity always fits in the range of the type.
1957 if (mpfr_nan_p(val) || mpfr_inf_p(val) || mpfr_zero_p(val))
1958 return true;
1959
1960 mp_exp_t exp = mpfr_get_exp(val);
1961 mp_exp_t max_exp;
1962 switch (ftype->bits())
1963 {
1964 case 32:
1965 max_exp = 128;
1966 break;
1967 case 64:
1968 max_exp = 1024;
1969 break;
1970 default:
1971 gcc_unreachable();
1972 }
1973 if (exp > max_exp)
1974 {
1975 error_at(location, "floating point constant overflow");
1976 return false;
1977 }
1978 return true;
1979 }
1980
1981 // Check the type of a float value.
1982
1983 void
1984 Float_expression::do_check_types(Gogo*)
1985 {
1986 if (this->type_ == NULL)
1987 return;
1988
1989 if (!Float_expression::check_constant(this->val_, this->type_,
1990 this->location()))
1991 this->set_is_error();
1992
1993 Integer_type* integer_type = this->type_->integer_type();
1994 if (integer_type != NULL)
1995 {
1996 if (!mpfr_integer_p(this->val_))
1997 this->report_error(_("floating point constant truncated to integer"));
1998 else
1999 {
2000 gcc_assert(!integer_type->is_abstract());
2001 mpz_t ival;
2002 mpz_init(ival);
2003 mpfr_get_z(ival, this->val_, GMP_RNDN);
2004 Integer_expression::check_constant(ival, integer_type,
2005 this->location());
2006 mpz_clear(ival);
2007 }
2008 }
2009 }
2010
2011 // Get a tree for a float constant.
2012
2013 tree
2014 Float_expression::do_get_tree(Translate_context* context)
2015 {
2016 Gogo* gogo = context->gogo();
2017 tree type;
2018 if (this->type_ != NULL && !this->type_->is_abstract())
2019 type = this->type_->get_tree(gogo);
2020 else if (this->type_ != NULL && this->type_->integer_type() != NULL)
2021 {
2022 // We have an abstract integer type. We just hope for the best.
2023 type = Type::lookup_integer_type("int")->get_tree(gogo);
2024 }
2025 else
2026 {
2027 // If we still have an abstract type here, then this is being
2028 // used in a constant expression which didn't get reduced. We
2029 // just use float64 and hope for the best.
2030 type = Type::lookup_float_type("float64")->get_tree(gogo);
2031 }
2032 return Expression::float_constant_tree(this->val_, type);
2033 }
2034
2035 // Write a floating point number to export data.
2036
2037 void
2038 Float_expression::export_float(Export *exp, const mpfr_t val)
2039 {
2040 mp_exp_t exponent;
2041 char* s = mpfr_get_str(NULL, &exponent, 10, 0, val, GMP_RNDN);
2042 if (*s == '-')
2043 exp->write_c_string("-");
2044 exp->write_c_string("0.");
2045 exp->write_c_string(*s == '-' ? s + 1 : s);
2046 mpfr_free_str(s);
2047 char buf[30];
2048 snprintf(buf, sizeof buf, "E%ld", exponent);
2049 exp->write_c_string(buf);
2050 }
2051
2052 // Export a floating point number in a constant expression.
2053
2054 void
2055 Float_expression::do_export(Export* exp) const
2056 {
2057 Float_expression::export_float(exp, this->val_);
2058 // A trailing space lets us reliably identify the end of the number.
2059 exp->write_c_string(" ");
2060 }
2061
2062 // Make a float expression.
2063
2064 Expression*
2065 Expression::make_float(const mpfr_t* val, Type* type, source_location location)
2066 {
2067 return new Float_expression(val, type, location);
2068 }
2069
2070 // Complex numbers.
2071
2072 class Complex_expression : public Expression
2073 {
2074 public:
2075 Complex_expression(const mpfr_t* real, const mpfr_t* imag, Type* type,
2076 source_location location)
2077 : Expression(EXPRESSION_COMPLEX, location),
2078 type_(type)
2079 {
2080 mpfr_init_set(this->real_, *real, GMP_RNDN);
2081 mpfr_init_set(this->imag_, *imag, GMP_RNDN);
2082 }
2083
2084 // Constrain REAL/IMAG to fit into TYPE.
2085 static void
2086 constrain_complex(mpfr_t real, mpfr_t imag, Type* type);
2087
2088 // Return whether REAL/IMAG fits in the type.
2089 static bool
2090 check_constant(mpfr_t real, mpfr_t imag, Type*, source_location);
2091
2092 // Write REAL/IMAG to export data.
2093 static void
2094 export_complex(Export* exp, const mpfr_t real, const mpfr_t val);
2095
2096 protected:
2097 bool
2098 do_is_constant() const
2099 { return true; }
2100
2101 bool
2102 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const;
2103
2104 Type*
2105 do_type();
2106
2107 void
2108 do_determine_type(const Type_context*);
2109
2110 void
2111 do_check_types(Gogo*);
2112
2113 Expression*
2114 do_copy()
2115 {
2116 return Expression::make_complex(&this->real_, &this->imag_, this->type_,
2117 this->location());
2118 }
2119
2120 tree
2121 do_get_tree(Translate_context*);
2122
2123 void
2124 do_export(Export*) const;
2125
2126 private:
2127 // The real part.
2128 mpfr_t real_;
2129 // The imaginary part;
2130 mpfr_t imag_;
2131 // The type if known.
2132 Type* type_;
2133 };
2134
2135 // Constrain REAL/IMAG to fit into TYPE.
2136
2137 void
2138 Complex_expression::constrain_complex(mpfr_t real, mpfr_t imag, Type* type)
2139 {
2140 Complex_type* ctype = type->complex_type();
2141 if (ctype != NULL && !ctype->is_abstract())
2142 {
2143 tree type_tree = ctype->type_tree();
2144
2145 REAL_VALUE_TYPE rvt;
2146 real_from_mpfr(&rvt, real, TREE_TYPE(type_tree), GMP_RNDN);
2147 real_convert(&rvt, TYPE_MODE(TREE_TYPE(type_tree)), &rvt);
2148 mpfr_from_real(real, &rvt, GMP_RNDN);
2149
2150 real_from_mpfr(&rvt, imag, TREE_TYPE(type_tree), GMP_RNDN);
2151 real_convert(&rvt, TYPE_MODE(TREE_TYPE(type_tree)), &rvt);
2152 mpfr_from_real(imag, &rvt, GMP_RNDN);
2153 }
2154 }
2155
2156 // Return a complex constant value.
2157
2158 bool
2159 Complex_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
2160 Type** ptype) const
2161 {
2162 if (this->type_ != NULL)
2163 *ptype = this->type_;
2164 mpfr_set(real, this->real_, GMP_RNDN);
2165 mpfr_set(imag, this->imag_, GMP_RNDN);
2166 return true;
2167 }
2168
2169 // Return the current type. If we haven't set the type yet, we return
2170 // an abstract complex type.
2171
2172 Type*
2173 Complex_expression::do_type()
2174 {
2175 if (this->type_ == NULL)
2176 this->type_ = Type::make_abstract_complex_type();
2177 return this->type_;
2178 }
2179
2180 // Set the type of the complex value. Here we may switch from an
2181 // abstract type to a real type.
2182
2183 void
2184 Complex_expression::do_determine_type(const Type_context* context)
2185 {
2186 if (this->type_ != NULL && !this->type_->is_abstract())
2187 ;
2188 else if (context->type != NULL
2189 && context->type->complex_type() != NULL)
2190 this->type_ = context->type;
2191 else if (!context->may_be_abstract)
2192 this->type_ = Type::lookup_complex_type("complex128");
2193 }
2194
2195 // Return true if the complex value REAL/IMAG fits in the range of the
2196 // type TYPE. Otherwise give an error and return false. TYPE may be
2197 // NULL.
2198
2199 bool
2200 Complex_expression::check_constant(mpfr_t real, mpfr_t imag, Type* type,
2201 source_location location)
2202 {
2203 if (type == NULL)
2204 return true;
2205 Complex_type* ctype = type->complex_type();
2206 if (ctype == NULL || ctype->is_abstract())
2207 return true;
2208
2209 mp_exp_t max_exp;
2210 switch (ctype->bits())
2211 {
2212 case 64:
2213 max_exp = 128;
2214 break;
2215 case 128:
2216 max_exp = 1024;
2217 break;
2218 default:
2219 gcc_unreachable();
2220 }
2221
2222 // A NaN or Infinity always fits in the range of the type.
2223 if (!mpfr_nan_p(real) && !mpfr_inf_p(real) && !mpfr_zero_p(real))
2224 {
2225 if (mpfr_get_exp(real) > max_exp)
2226 {
2227 error_at(location, "complex real part constant overflow");
2228 return false;
2229 }
2230 }
2231
2232 if (!mpfr_nan_p(imag) && !mpfr_inf_p(imag) && !mpfr_zero_p(imag))
2233 {
2234 if (mpfr_get_exp(imag) > max_exp)
2235 {
2236 error_at(location, "complex imaginary part constant overflow");
2237 return false;
2238 }
2239 }
2240
2241 return true;
2242 }
2243
2244 // Check the type of a complex value.
2245
2246 void
2247 Complex_expression::do_check_types(Gogo*)
2248 {
2249 if (this->type_ == NULL)
2250 return;
2251
2252 if (!Complex_expression::check_constant(this->real_, this->imag_,
2253 this->type_, this->location()))
2254 this->set_is_error();
2255 }
2256
2257 // Get a tree for a complex constant.
2258
2259 tree
2260 Complex_expression::do_get_tree(Translate_context* context)
2261 {
2262 Gogo* gogo = context->gogo();
2263 tree type;
2264 if (this->type_ != NULL && !this->type_->is_abstract())
2265 type = this->type_->get_tree(gogo);
2266 else
2267 {
2268 // If we still have an abstract type here, this this is being
2269 // used in a constant expression which didn't get reduced. We
2270 // just use complex128 and hope for the best.
2271 type = Type::lookup_complex_type("complex128")->get_tree(gogo);
2272 }
2273 return Expression::complex_constant_tree(this->real_, this->imag_, type);
2274 }
2275
2276 // Write REAL/IMAG to export data.
2277
2278 void
2279 Complex_expression::export_complex(Export* exp, const mpfr_t real,
2280 const mpfr_t imag)
2281 {
2282 if (!mpfr_zero_p(real))
2283 {
2284 Float_expression::export_float(exp, real);
2285 if (mpfr_sgn(imag) > 0)
2286 exp->write_c_string("+");
2287 }
2288 Float_expression::export_float(exp, imag);
2289 exp->write_c_string("i");
2290 }
2291
2292 // Export a complex number in a constant expression.
2293
2294 void
2295 Complex_expression::do_export(Export* exp) const
2296 {
2297 Complex_expression::export_complex(exp, this->real_, this->imag_);
2298 // A trailing space lets us reliably identify the end of the number.
2299 exp->write_c_string(" ");
2300 }
2301
2302 // Make a complex expression.
2303
2304 Expression*
2305 Expression::make_complex(const mpfr_t* real, const mpfr_t* imag, Type* type,
2306 source_location location)
2307 {
2308 return new Complex_expression(real, imag, type, location);
2309 }
2310
2311 // Find a named object in an expression.
2312
2313 class Find_named_object : public Traverse
2314 {
2315 public:
2316 Find_named_object(Named_object* no)
2317 : Traverse(traverse_expressions),
2318 no_(no), found_(false)
2319 { }
2320
2321 // Whether we found the object.
2322 bool
2323 found() const
2324 { return this->found_; }
2325
2326 protected:
2327 int
2328 expression(Expression**);
2329
2330 private:
2331 // The object we are looking for.
2332 Named_object* no_;
2333 // Whether we found it.
2334 bool found_;
2335 };
2336
2337 // A reference to a const in an expression.
2338
2339 class Const_expression : public Expression
2340 {
2341 public:
2342 Const_expression(Named_object* constant, source_location location)
2343 : Expression(EXPRESSION_CONST_REFERENCE, location),
2344 constant_(constant), type_(NULL), seen_(false)
2345 { }
2346
2347 Named_object*
2348 named_object()
2349 { return this->constant_; }
2350
2351 const std::string&
2352 name() const
2353 { return this->constant_->name(); }
2354
2355 // Check that the initializer does not refer to the constant itself.
2356 void
2357 check_for_init_loop();
2358
2359 protected:
2360 Expression*
2361 do_lower(Gogo*, Named_object*, int);
2362
2363 bool
2364 do_is_constant() const
2365 { return true; }
2366
2367 bool
2368 do_integer_constant_value(bool, mpz_t val, Type**) const;
2369
2370 bool
2371 do_float_constant_value(mpfr_t val, Type**) const;
2372
2373 bool
2374 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const;
2375
2376 bool
2377 do_string_constant_value(std::string* val) const
2378 { return this->constant_->const_value()->expr()->string_constant_value(val); }
2379
2380 Type*
2381 do_type();
2382
2383 // The type of a const is set by the declaration, not the use.
2384 void
2385 do_determine_type(const Type_context*);
2386
2387 void
2388 do_check_types(Gogo*);
2389
2390 Expression*
2391 do_copy()
2392 { return this; }
2393
2394 tree
2395 do_get_tree(Translate_context* context);
2396
2397 // When exporting a reference to a const as part of a const
2398 // expression, we export the value. We ignore the fact that it has
2399 // a name.
2400 void
2401 do_export(Export* exp) const
2402 { this->constant_->const_value()->expr()->export_expression(exp); }
2403
2404 private:
2405 // The constant.
2406 Named_object* constant_;
2407 // The type of this reference. This is used if the constant has an
2408 // abstract type.
2409 Type* type_;
2410 // Used to prevent infinite recursion when a constant incorrectly
2411 // refers to itself.
2412 mutable bool seen_;
2413 };
2414
2415 // Lower a constant expression. This is where we convert the
2416 // predeclared constant iota into an integer value.
2417
2418 Expression*
2419 Const_expression::do_lower(Gogo* gogo, Named_object*, int iota_value)
2420 {
2421 if (this->constant_->const_value()->expr()->classification()
2422 == EXPRESSION_IOTA)
2423 {
2424 if (iota_value == -1)
2425 {
2426 error_at(this->location(),
2427 "iota is only defined in const declarations");
2428 iota_value = 0;
2429 }
2430 mpz_t val;
2431 mpz_init_set_ui(val, static_cast<unsigned long>(iota_value));
2432 Expression* ret = Expression::make_integer(&val, NULL,
2433 this->location());
2434 mpz_clear(val);
2435 return ret;
2436 }
2437
2438 // Make sure that the constant itself has been lowered.
2439 gogo->lower_constant(this->constant_);
2440
2441 return this;
2442 }
2443
2444 // Return an integer constant value.
2445
2446 bool
2447 Const_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
2448 Type** ptype) const
2449 {
2450 if (this->seen_)
2451 return false;
2452
2453 Type* ctype;
2454 if (this->type_ != NULL)
2455 ctype = this->type_;
2456 else
2457 ctype = this->constant_->const_value()->type();
2458 if (ctype != NULL && ctype->integer_type() == NULL)
2459 return false;
2460
2461 Expression* e = this->constant_->const_value()->expr();
2462
2463 this->seen_ = true;
2464
2465 Type* t;
2466 bool r = e->integer_constant_value(iota_is_constant, val, &t);
2467
2468 this->seen_ = false;
2469
2470 if (r
2471 && ctype != NULL
2472 && !Integer_expression::check_constant(val, ctype, this->location()))
2473 return false;
2474
2475 *ptype = ctype != NULL ? ctype : t;
2476 return r;
2477 }
2478
2479 // Return a floating point constant value.
2480
2481 bool
2482 Const_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
2483 {
2484 if (this->seen_)
2485 return false;
2486
2487 Type* ctype;
2488 if (this->type_ != NULL)
2489 ctype = this->type_;
2490 else
2491 ctype = this->constant_->const_value()->type();
2492 if (ctype != NULL && ctype->float_type() == NULL)
2493 return false;
2494
2495 this->seen_ = true;
2496
2497 Type* t;
2498 bool r = this->constant_->const_value()->expr()->float_constant_value(val,
2499 &t);
2500
2501 this->seen_ = false;
2502
2503 if (r && ctype != NULL)
2504 {
2505 if (!Float_expression::check_constant(val, ctype, this->location()))
2506 return false;
2507 Float_expression::constrain_float(val, ctype);
2508 }
2509 *ptype = ctype != NULL ? ctype : t;
2510 return r;
2511 }
2512
2513 // Return a complex constant value.
2514
2515 bool
2516 Const_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
2517 Type **ptype) const
2518 {
2519 if (this->seen_)
2520 return false;
2521
2522 Type* ctype;
2523 if (this->type_ != NULL)
2524 ctype = this->type_;
2525 else
2526 ctype = this->constant_->const_value()->type();
2527 if (ctype != NULL && ctype->complex_type() == NULL)
2528 return false;
2529
2530 this->seen_ = true;
2531
2532 Type *t;
2533 bool r = this->constant_->const_value()->expr()->complex_constant_value(real,
2534 imag,
2535 &t);
2536
2537 this->seen_ = false;
2538
2539 if (r && ctype != NULL)
2540 {
2541 if (!Complex_expression::check_constant(real, imag, ctype,
2542 this->location()))
2543 return false;
2544 Complex_expression::constrain_complex(real, imag, ctype);
2545 }
2546 *ptype = ctype != NULL ? ctype : t;
2547 return r;
2548 }
2549
2550 // Return the type of the const reference.
2551
2552 Type*
2553 Const_expression::do_type()
2554 {
2555 if (this->type_ != NULL)
2556 return this->type_;
2557
2558 Named_constant* nc = this->constant_->const_value();
2559
2560 if (this->seen_ || nc->lowering())
2561 {
2562 this->report_error(_("constant refers to itself"));
2563 this->type_ = Type::make_error_type();
2564 return this->type_;
2565 }
2566
2567 this->seen_ = true;
2568
2569 Type* ret = nc->type();
2570
2571 if (ret != NULL)
2572 {
2573 this->seen_ = false;
2574 return ret;
2575 }
2576
2577 // During parsing, a named constant may have a NULL type, but we
2578 // must not return a NULL type here.
2579 ret = nc->expr()->type();
2580
2581 this->seen_ = false;
2582
2583 return ret;
2584 }
2585
2586 // Set the type of the const reference.
2587
2588 void
2589 Const_expression::do_determine_type(const Type_context* context)
2590 {
2591 Type* ctype = this->constant_->const_value()->type();
2592 Type* cetype = (ctype != NULL
2593 ? ctype
2594 : this->constant_->const_value()->expr()->type());
2595 if (ctype != NULL && !ctype->is_abstract())
2596 ;
2597 else if (context->type != NULL
2598 && (context->type->integer_type() != NULL
2599 || context->type->float_type() != NULL
2600 || context->type->complex_type() != NULL)
2601 && (cetype->integer_type() != NULL
2602 || cetype->float_type() != NULL
2603 || cetype->complex_type() != NULL))
2604 this->type_ = context->type;
2605 else if (context->type != NULL
2606 && context->type->is_string_type()
2607 && cetype->is_string_type())
2608 this->type_ = context->type;
2609 else if (context->type != NULL
2610 && context->type->is_boolean_type()
2611 && cetype->is_boolean_type())
2612 this->type_ = context->type;
2613 else if (!context->may_be_abstract)
2614 {
2615 if (cetype->is_abstract())
2616 cetype = cetype->make_non_abstract_type();
2617 this->type_ = cetype;
2618 }
2619 }
2620
2621 // Check for a loop in which the initializer of a constant refers to
2622 // the constant itself.
2623
2624 void
2625 Const_expression::check_for_init_loop()
2626 {
2627 if (this->type_ != NULL && this->type_->is_error_type())
2628 return;
2629
2630 if (this->seen_)
2631 {
2632 this->report_error(_("constant refers to itself"));
2633 this->type_ = Type::make_error_type();
2634 return;
2635 }
2636
2637 Expression* init = this->constant_->const_value()->expr();
2638 Find_named_object find_named_object(this->constant_);
2639
2640 this->seen_ = true;
2641 Expression::traverse(&init, &find_named_object);
2642 this->seen_ = false;
2643
2644 if (find_named_object.found())
2645 {
2646 if (this->type_ == NULL || !this->type_->is_error_type())
2647 {
2648 this->report_error(_("constant refers to itself"));
2649 this->type_ = Type::make_error_type();
2650 }
2651 return;
2652 }
2653 }
2654
2655 // Check types of a const reference.
2656
2657 void
2658 Const_expression::do_check_types(Gogo*)
2659 {
2660 if (this->type_ != NULL && this->type_->is_error_type())
2661 return;
2662
2663 this->check_for_init_loop();
2664
2665 if (this->type_ == NULL || this->type_->is_abstract())
2666 return;
2667
2668 // Check for integer overflow.
2669 if (this->type_->integer_type() != NULL)
2670 {
2671 mpz_t ival;
2672 mpz_init(ival);
2673 Type* dummy;
2674 if (!this->integer_constant_value(true, ival, &dummy))
2675 {
2676 mpfr_t fval;
2677 mpfr_init(fval);
2678 Expression* cexpr = this->constant_->const_value()->expr();
2679 if (cexpr->float_constant_value(fval, &dummy))
2680 {
2681 if (!mpfr_integer_p(fval))
2682 this->report_error(_("floating point constant "
2683 "truncated to integer"));
2684 else
2685 {
2686 mpfr_get_z(ival, fval, GMP_RNDN);
2687 Integer_expression::check_constant(ival, this->type_,
2688 this->location());
2689 }
2690 }
2691 mpfr_clear(fval);
2692 }
2693 mpz_clear(ival);
2694 }
2695 }
2696
2697 // Return a tree for the const reference.
2698
2699 tree
2700 Const_expression::do_get_tree(Translate_context* context)
2701 {
2702 Gogo* gogo = context->gogo();
2703 tree type_tree;
2704 if (this->type_ == NULL)
2705 type_tree = NULL_TREE;
2706 else
2707 {
2708 type_tree = this->type_->get_tree(gogo);
2709 if (type_tree == error_mark_node)
2710 return error_mark_node;
2711 }
2712
2713 // If the type has been set for this expression, but the underlying
2714 // object is an abstract int or float, we try to get the abstract
2715 // value. Otherwise we may lose something in the conversion.
2716 if (this->type_ != NULL
2717 && (this->constant_->const_value()->type() == NULL
2718 || this->constant_->const_value()->type()->is_abstract()))
2719 {
2720 Expression* expr = this->constant_->const_value()->expr();
2721 mpz_t ival;
2722 mpz_init(ival);
2723 Type* t;
2724 if (expr->integer_constant_value(true, ival, &t))
2725 {
2726 tree ret = Expression::integer_constant_tree(ival, type_tree);
2727 mpz_clear(ival);
2728 return ret;
2729 }
2730 mpz_clear(ival);
2731
2732 mpfr_t fval;
2733 mpfr_init(fval);
2734 if (expr->float_constant_value(fval, &t))
2735 {
2736 tree ret = Expression::float_constant_tree(fval, type_tree);
2737 mpfr_clear(fval);
2738 return ret;
2739 }
2740
2741 mpfr_t imag;
2742 mpfr_init(imag);
2743 if (expr->complex_constant_value(fval, imag, &t))
2744 {
2745 tree ret = Expression::complex_constant_tree(fval, imag, type_tree);
2746 mpfr_clear(fval);
2747 mpfr_clear(imag);
2748 return ret;
2749 }
2750 mpfr_clear(imag);
2751 mpfr_clear(fval);
2752 }
2753
2754 tree const_tree = this->constant_->get_tree(gogo, context->function());
2755 if (this->type_ == NULL
2756 || const_tree == error_mark_node
2757 || TREE_TYPE(const_tree) == error_mark_node)
2758 return const_tree;
2759
2760 tree ret;
2761 if (TYPE_MAIN_VARIANT(type_tree) == TYPE_MAIN_VARIANT(TREE_TYPE(const_tree)))
2762 ret = fold_convert(type_tree, const_tree);
2763 else if (TREE_CODE(type_tree) == INTEGER_TYPE)
2764 ret = fold(convert_to_integer(type_tree, const_tree));
2765 else if (TREE_CODE(type_tree) == REAL_TYPE)
2766 ret = fold(convert_to_real(type_tree, const_tree));
2767 else if (TREE_CODE(type_tree) == COMPLEX_TYPE)
2768 ret = fold(convert_to_complex(type_tree, const_tree));
2769 else
2770 gcc_unreachable();
2771 return ret;
2772 }
2773
2774 // Make a reference to a constant in an expression.
2775
2776 Expression*
2777 Expression::make_const_reference(Named_object* constant,
2778 source_location location)
2779 {
2780 return new Const_expression(constant, location);
2781 }
2782
2783 // Find a named object in an expression.
2784
2785 int
2786 Find_named_object::expression(Expression** pexpr)
2787 {
2788 switch ((*pexpr)->classification())
2789 {
2790 case Expression::EXPRESSION_CONST_REFERENCE:
2791 {
2792 Const_expression* ce = static_cast<Const_expression*>(*pexpr);
2793 if (ce->named_object() == this->no_)
2794 break;
2795
2796 // We need to check a constant initializer explicitly, as
2797 // loops here will not be caught by the loop checking for
2798 // variable initializers.
2799 ce->check_for_init_loop();
2800
2801 return TRAVERSE_CONTINUE;
2802 }
2803
2804 case Expression::EXPRESSION_VAR_REFERENCE:
2805 if ((*pexpr)->var_expression()->named_object() == this->no_)
2806 break;
2807 return TRAVERSE_CONTINUE;
2808 case Expression::EXPRESSION_FUNC_REFERENCE:
2809 if ((*pexpr)->func_expression()->named_object() == this->no_)
2810 break;
2811 return TRAVERSE_CONTINUE;
2812 default:
2813 return TRAVERSE_CONTINUE;
2814 }
2815 this->found_ = true;
2816 return TRAVERSE_EXIT;
2817 }
2818
2819 // The nil value.
2820
2821 class Nil_expression : public Expression
2822 {
2823 public:
2824 Nil_expression(source_location location)
2825 : Expression(EXPRESSION_NIL, location)
2826 { }
2827
2828 static Expression*
2829 do_import(Import*);
2830
2831 protected:
2832 bool
2833 do_is_constant() const
2834 { return true; }
2835
2836 Type*
2837 do_type()
2838 { return Type::make_nil_type(); }
2839
2840 void
2841 do_determine_type(const Type_context*)
2842 { }
2843
2844 Expression*
2845 do_copy()
2846 { return this; }
2847
2848 tree
2849 do_get_tree(Translate_context*)
2850 { return null_pointer_node; }
2851
2852 void
2853 do_export(Export* exp) const
2854 { exp->write_c_string("nil"); }
2855 };
2856
2857 // Import a nil expression.
2858
2859 Expression*
2860 Nil_expression::do_import(Import* imp)
2861 {
2862 imp->require_c_string("nil");
2863 return Expression::make_nil(imp->location());
2864 }
2865
2866 // Make a nil expression.
2867
2868 Expression*
2869 Expression::make_nil(source_location location)
2870 {
2871 return new Nil_expression(location);
2872 }
2873
2874 // The value of the predeclared constant iota. This is little more
2875 // than a marker. This will be lowered to an integer in
2876 // Const_expression::do_lower, which is where we know the value that
2877 // it should have.
2878
2879 class Iota_expression : public Parser_expression
2880 {
2881 public:
2882 Iota_expression(source_location location)
2883 : Parser_expression(EXPRESSION_IOTA, location)
2884 { }
2885
2886 protected:
2887 Expression*
2888 do_lower(Gogo*, Named_object*, int)
2889 { gcc_unreachable(); }
2890
2891 // There should only ever be one of these.
2892 Expression*
2893 do_copy()
2894 { gcc_unreachable(); }
2895 };
2896
2897 // Make an iota expression. This is only called for one case: the
2898 // value of the predeclared constant iota.
2899
2900 Expression*
2901 Expression::make_iota()
2902 {
2903 static Iota_expression iota_expression(UNKNOWN_LOCATION);
2904 return &iota_expression;
2905 }
2906
2907 // A type conversion expression.
2908
2909 class Type_conversion_expression : public Expression
2910 {
2911 public:
2912 Type_conversion_expression(Type* type, Expression* expr,
2913 source_location location)
2914 : Expression(EXPRESSION_CONVERSION, location),
2915 type_(type), expr_(expr), may_convert_function_types_(false)
2916 { }
2917
2918 // Return the type to which we are converting.
2919 Type*
2920 type() const
2921 { return this->type_; }
2922
2923 // Return the expression which we are converting.
2924 Expression*
2925 expr() const
2926 { return this->expr_; }
2927
2928 // Permit converting from one function type to another. This is
2929 // used internally for method expressions.
2930 void
2931 set_may_convert_function_types()
2932 {
2933 this->may_convert_function_types_ = true;
2934 }
2935
2936 // Import a type conversion expression.
2937 static Expression*
2938 do_import(Import*);
2939
2940 protected:
2941 int
2942 do_traverse(Traverse* traverse);
2943
2944 Expression*
2945 do_lower(Gogo*, Named_object*, int);
2946
2947 bool
2948 do_is_constant() const
2949 { return this->expr_->is_constant(); }
2950
2951 bool
2952 do_integer_constant_value(bool, mpz_t, Type**) const;
2953
2954 bool
2955 do_float_constant_value(mpfr_t, Type**) const;
2956
2957 bool
2958 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
2959
2960 bool
2961 do_string_constant_value(std::string*) const;
2962
2963 Type*
2964 do_type()
2965 { return this->type_; }
2966
2967 void
2968 do_determine_type(const Type_context*)
2969 {
2970 Type_context subcontext(this->type_, false);
2971 this->expr_->determine_type(&subcontext);
2972 }
2973
2974 void
2975 do_check_types(Gogo*);
2976
2977 Expression*
2978 do_copy()
2979 {
2980 return new Type_conversion_expression(this->type_, this->expr_->copy(),
2981 this->location());
2982 }
2983
2984 tree
2985 do_get_tree(Translate_context* context);
2986
2987 void
2988 do_export(Export*) const;
2989
2990 private:
2991 // The type to convert to.
2992 Type* type_;
2993 // The expression to convert.
2994 Expression* expr_;
2995 // True if this is permitted to convert function types. This is
2996 // used internally for method expressions.
2997 bool may_convert_function_types_;
2998 };
2999
3000 // Traversal.
3001
3002 int
3003 Type_conversion_expression::do_traverse(Traverse* traverse)
3004 {
3005 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
3006 || Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
3007 return TRAVERSE_EXIT;
3008 return TRAVERSE_CONTINUE;
3009 }
3010
3011 // Convert to a constant at lowering time.
3012
3013 Expression*
3014 Type_conversion_expression::do_lower(Gogo*, Named_object*, int)
3015 {
3016 Type* type = this->type_;
3017 Expression* val = this->expr_;
3018 source_location location = this->location();
3019
3020 if (type->integer_type() != NULL)
3021 {
3022 mpz_t ival;
3023 mpz_init(ival);
3024 Type* dummy;
3025 if (val->integer_constant_value(false, ival, &dummy))
3026 {
3027 if (!Integer_expression::check_constant(ival, type, location))
3028 mpz_set_ui(ival, 0);
3029 Expression* ret = Expression::make_integer(&ival, type, location);
3030 mpz_clear(ival);
3031 return ret;
3032 }
3033
3034 mpfr_t fval;
3035 mpfr_init(fval);
3036 if (val->float_constant_value(fval, &dummy))
3037 {
3038 if (!mpfr_integer_p(fval))
3039 {
3040 error_at(location,
3041 "floating point constant truncated to integer");
3042 return Expression::make_error(location);
3043 }
3044 mpfr_get_z(ival, fval, GMP_RNDN);
3045 if (!Integer_expression::check_constant(ival, type, location))
3046 mpz_set_ui(ival, 0);
3047 Expression* ret = Expression::make_integer(&ival, type, location);
3048 mpfr_clear(fval);
3049 mpz_clear(ival);
3050 return ret;
3051 }
3052 mpfr_clear(fval);
3053 mpz_clear(ival);
3054 }
3055
3056 if (type->float_type() != NULL)
3057 {
3058 mpfr_t fval;
3059 mpfr_init(fval);
3060 Type* dummy;
3061 if (val->float_constant_value(fval, &dummy))
3062 {
3063 if (!Float_expression::check_constant(fval, type, location))
3064 mpfr_set_ui(fval, 0, GMP_RNDN);
3065 Float_expression::constrain_float(fval, type);
3066 Expression *ret = Expression::make_float(&fval, type, location);
3067 mpfr_clear(fval);
3068 return ret;
3069 }
3070 mpfr_clear(fval);
3071 }
3072
3073 if (type->complex_type() != NULL)
3074 {
3075 mpfr_t real;
3076 mpfr_t imag;
3077 mpfr_init(real);
3078 mpfr_init(imag);
3079 Type* dummy;
3080 if (val->complex_constant_value(real, imag, &dummy))
3081 {
3082 if (!Complex_expression::check_constant(real, imag, type, location))
3083 {
3084 mpfr_set_ui(real, 0, GMP_RNDN);
3085 mpfr_set_ui(imag, 0, GMP_RNDN);
3086 }
3087 Complex_expression::constrain_complex(real, imag, type);
3088 Expression* ret = Expression::make_complex(&real, &imag, type,
3089 location);
3090 mpfr_clear(real);
3091 mpfr_clear(imag);
3092 return ret;
3093 }
3094 mpfr_clear(real);
3095 mpfr_clear(imag);
3096 }
3097
3098 if (type->is_open_array_type() && type->named_type() == NULL)
3099 {
3100 Type* element_type = type->array_type()->element_type()->forwarded();
3101 bool is_byte = element_type == Type::lookup_integer_type("uint8");
3102 bool is_int = element_type == Type::lookup_integer_type("int");
3103 if (is_byte || is_int)
3104 {
3105 std::string s;
3106 if (val->string_constant_value(&s))
3107 {
3108 Expression_list* vals = new Expression_list();
3109 if (is_byte)
3110 {
3111 for (std::string::const_iterator p = s.begin();
3112 p != s.end();
3113 p++)
3114 {
3115 mpz_t val;
3116 mpz_init_set_ui(val, static_cast<unsigned char>(*p));
3117 Expression* v = Expression::make_integer(&val,
3118 element_type,
3119 location);
3120 vals->push_back(v);
3121 mpz_clear(val);
3122 }
3123 }
3124 else
3125 {
3126 const char *p = s.data();
3127 const char *pend = s.data() + s.length();
3128 while (p < pend)
3129 {
3130 unsigned int c;
3131 int adv = Lex::fetch_char(p, &c);
3132 if (adv == 0)
3133 {
3134 warning_at(this->location(), 0,
3135 "invalid UTF-8 encoding");
3136 adv = 1;
3137 }
3138 p += adv;
3139 mpz_t val;
3140 mpz_init_set_ui(val, c);
3141 Expression* v = Expression::make_integer(&val,
3142 element_type,
3143 location);
3144 vals->push_back(v);
3145 mpz_clear(val);
3146 }
3147 }
3148
3149 return Expression::make_slice_composite_literal(type, vals,
3150 location);
3151 }
3152 }
3153 }
3154
3155 return this;
3156 }
3157
3158 // Return the constant integer value if there is one.
3159
3160 bool
3161 Type_conversion_expression::do_integer_constant_value(bool iota_is_constant,
3162 mpz_t val,
3163 Type** ptype) const
3164 {
3165 if (this->type_->integer_type() == NULL)
3166 return false;
3167
3168 mpz_t ival;
3169 mpz_init(ival);
3170 Type* dummy;
3171 if (this->expr_->integer_constant_value(iota_is_constant, ival, &dummy))
3172 {
3173 if (!Integer_expression::check_constant(ival, this->type_,
3174 this->location()))
3175 {
3176 mpz_clear(ival);
3177 return false;
3178 }
3179 mpz_set(val, ival);
3180 mpz_clear(ival);
3181 *ptype = this->type_;
3182 return true;
3183 }
3184 mpz_clear(ival);
3185
3186 mpfr_t fval;
3187 mpfr_init(fval);
3188 if (this->expr_->float_constant_value(fval, &dummy))
3189 {
3190 mpfr_get_z(val, fval, GMP_RNDN);
3191 mpfr_clear(fval);
3192 if (!Integer_expression::check_constant(val, this->type_,
3193 this->location()))
3194 return false;
3195 *ptype = this->type_;
3196 return true;
3197 }
3198 mpfr_clear(fval);
3199
3200 return false;
3201 }
3202
3203 // Return the constant floating point value if there is one.
3204
3205 bool
3206 Type_conversion_expression::do_float_constant_value(mpfr_t val,
3207 Type** ptype) const
3208 {
3209 if (this->type_->float_type() == NULL)
3210 return false;
3211
3212 mpfr_t fval;
3213 mpfr_init(fval);
3214 Type* dummy;
3215 if (this->expr_->float_constant_value(fval, &dummy))
3216 {
3217 if (!Float_expression::check_constant(fval, this->type_,
3218 this->location()))
3219 {
3220 mpfr_clear(fval);
3221 return false;
3222 }
3223 mpfr_set(val, fval, GMP_RNDN);
3224 mpfr_clear(fval);
3225 Float_expression::constrain_float(val, this->type_);
3226 *ptype = this->type_;
3227 return true;
3228 }
3229 mpfr_clear(fval);
3230
3231 return false;
3232 }
3233
3234 // Return the constant complex value if there is one.
3235
3236 bool
3237 Type_conversion_expression::do_complex_constant_value(mpfr_t real,
3238 mpfr_t imag,
3239 Type **ptype) const
3240 {
3241 if (this->type_->complex_type() == NULL)
3242 return false;
3243
3244 mpfr_t rval;
3245 mpfr_t ival;
3246 mpfr_init(rval);
3247 mpfr_init(ival);
3248 Type* dummy;
3249 if (this->expr_->complex_constant_value(rval, ival, &dummy))
3250 {
3251 if (!Complex_expression::check_constant(rval, ival, this->type_,
3252 this->location()))
3253 {
3254 mpfr_clear(rval);
3255 mpfr_clear(ival);
3256 return false;
3257 }
3258 mpfr_set(real, rval, GMP_RNDN);
3259 mpfr_set(imag, ival, GMP_RNDN);
3260 mpfr_clear(rval);
3261 mpfr_clear(ival);
3262 Complex_expression::constrain_complex(real, imag, this->type_);
3263 *ptype = this->type_;
3264 return true;
3265 }
3266 mpfr_clear(rval);
3267 mpfr_clear(ival);
3268
3269 return false;
3270 }
3271
3272 // Return the constant string value if there is one.
3273
3274 bool
3275 Type_conversion_expression::do_string_constant_value(std::string* val) const
3276 {
3277 if (this->type_->is_string_type()
3278 && this->expr_->type()->integer_type() != NULL)
3279 {
3280 mpz_t ival;
3281 mpz_init(ival);
3282 Type* dummy;
3283 if (this->expr_->integer_constant_value(false, ival, &dummy))
3284 {
3285 unsigned long ulval = mpz_get_ui(ival);
3286 if (mpz_cmp_ui(ival, ulval) == 0)
3287 {
3288 Lex::append_char(ulval, true, val, this->location());
3289 mpz_clear(ival);
3290 return true;
3291 }
3292 }
3293 mpz_clear(ival);
3294 }
3295
3296 // FIXME: Could handle conversion from const []int here.
3297
3298 return false;
3299 }
3300
3301 // Check that types are convertible.
3302
3303 void
3304 Type_conversion_expression::do_check_types(Gogo*)
3305 {
3306 Type* type = this->type_;
3307 Type* expr_type = this->expr_->type();
3308 std::string reason;
3309
3310 if (type->is_error_type()
3311 || type->is_undefined()
3312 || expr_type->is_error_type()
3313 || expr_type->is_undefined())
3314 {
3315 // Make sure we emit an error for an undefined type.
3316 type->base();
3317 expr_type->base();
3318 this->set_is_error();
3319 return;
3320 }
3321
3322 if (this->may_convert_function_types_
3323 && type->function_type() != NULL
3324 && expr_type->function_type() != NULL)
3325 return;
3326
3327 if (Type::are_convertible(type, expr_type, &reason))
3328 return;
3329
3330 error_at(this->location(), "%s", reason.c_str());
3331 this->set_is_error();
3332 }
3333
3334 // Get a tree for a type conversion.
3335
3336 tree
3337 Type_conversion_expression::do_get_tree(Translate_context* context)
3338 {
3339 Gogo* gogo = context->gogo();
3340 tree type_tree = this->type_->get_tree(gogo);
3341 tree expr_tree = this->expr_->get_tree(context);
3342
3343 if (type_tree == error_mark_node
3344 || expr_tree == error_mark_node
3345 || TREE_TYPE(expr_tree) == error_mark_node)
3346 return error_mark_node;
3347
3348 if (TYPE_MAIN_VARIANT(type_tree) == TYPE_MAIN_VARIANT(TREE_TYPE(expr_tree)))
3349 return fold_convert(type_tree, expr_tree);
3350
3351 Type* type = this->type_;
3352 Type* expr_type = this->expr_->type();
3353 tree ret;
3354 if (type->interface_type() != NULL || expr_type->interface_type() != NULL)
3355 ret = Expression::convert_for_assignment(context, type, expr_type,
3356 expr_tree, this->location());
3357 else if (type->integer_type() != NULL)
3358 {
3359 if (expr_type->integer_type() != NULL
3360 || expr_type->float_type() != NULL
3361 || expr_type->is_unsafe_pointer_type())
3362 ret = fold(convert_to_integer(type_tree, expr_tree));
3363 else
3364 gcc_unreachable();
3365 }
3366 else if (type->float_type() != NULL)
3367 {
3368 if (expr_type->integer_type() != NULL
3369 || expr_type->float_type() != NULL)
3370 ret = fold(convert_to_real(type_tree, expr_tree));
3371 else
3372 gcc_unreachable();
3373 }
3374 else if (type->complex_type() != NULL)
3375 {
3376 if (expr_type->complex_type() != NULL)
3377 ret = fold(convert_to_complex(type_tree, expr_tree));
3378 else
3379 gcc_unreachable();
3380 }
3381 else if (type->is_string_type()
3382 && expr_type->integer_type() != NULL)
3383 {
3384 expr_tree = fold_convert(integer_type_node, expr_tree);
3385 if (host_integerp(expr_tree, 0))
3386 {
3387 HOST_WIDE_INT intval = tree_low_cst(expr_tree, 0);
3388 std::string s;
3389 Lex::append_char(intval, true, &s, this->location());
3390 Expression* se = Expression::make_string(s, this->location());
3391 return se->get_tree(context);
3392 }
3393
3394 static tree int_to_string_fndecl;
3395 ret = Gogo::call_builtin(&int_to_string_fndecl,
3396 this->location(),
3397 "__go_int_to_string",
3398 1,
3399 type_tree,
3400 integer_type_node,
3401 fold_convert(integer_type_node, expr_tree));
3402 }
3403 else if (type->is_string_type()
3404 && (expr_type->array_type() != NULL
3405 || (expr_type->points_to() != NULL
3406 && expr_type->points_to()->array_type() != NULL)))
3407 {
3408 Type* t = expr_type;
3409 if (t->points_to() != NULL)
3410 {
3411 t = t->points_to();
3412 expr_tree = build_fold_indirect_ref(expr_tree);
3413 }
3414 if (!DECL_P(expr_tree))
3415 expr_tree = save_expr(expr_tree);
3416 Array_type* a = t->array_type();
3417 Type* e = a->element_type()->forwarded();
3418 gcc_assert(e->integer_type() != NULL);
3419 tree valptr = fold_convert(const_ptr_type_node,
3420 a->value_pointer_tree(gogo, expr_tree));
3421 tree len = a->length_tree(gogo, expr_tree);
3422 len = fold_convert_loc(this->location(), size_type_node, len);
3423 if (e->integer_type()->is_unsigned()
3424 && e->integer_type()->bits() == 8)
3425 {
3426 static tree byte_array_to_string_fndecl;
3427 ret = Gogo::call_builtin(&byte_array_to_string_fndecl,
3428 this->location(),
3429 "__go_byte_array_to_string",
3430 2,
3431 type_tree,
3432 const_ptr_type_node,
3433 valptr,
3434 size_type_node,
3435 len);
3436 }
3437 else
3438 {
3439 gcc_assert(e == Type::lookup_integer_type("int"));
3440 static tree int_array_to_string_fndecl;
3441 ret = Gogo::call_builtin(&int_array_to_string_fndecl,
3442 this->location(),
3443 "__go_int_array_to_string",
3444 2,
3445 type_tree,
3446 const_ptr_type_node,
3447 valptr,
3448 size_type_node,
3449 len);
3450 }
3451 }
3452 else if (type->is_open_array_type() && expr_type->is_string_type())
3453 {
3454 Type* e = type->array_type()->element_type()->forwarded();
3455 gcc_assert(e->integer_type() != NULL);
3456 if (e->integer_type()->is_unsigned()
3457 && e->integer_type()->bits() == 8)
3458 {
3459 static tree string_to_byte_array_fndecl;
3460 ret = Gogo::call_builtin(&string_to_byte_array_fndecl,
3461 this->location(),
3462 "__go_string_to_byte_array",
3463 1,
3464 type_tree,
3465 TREE_TYPE(expr_tree),
3466 expr_tree);
3467 }
3468 else
3469 {
3470 gcc_assert(e == Type::lookup_integer_type("int"));
3471 static tree string_to_int_array_fndecl;
3472 ret = Gogo::call_builtin(&string_to_int_array_fndecl,
3473 this->location(),
3474 "__go_string_to_int_array",
3475 1,
3476 type_tree,
3477 TREE_TYPE(expr_tree),
3478 expr_tree);
3479 }
3480 }
3481 else if ((type->is_unsafe_pointer_type()
3482 && expr_type->points_to() != NULL)
3483 || (expr_type->is_unsafe_pointer_type()
3484 && type->points_to() != NULL))
3485 ret = fold_convert(type_tree, expr_tree);
3486 else if (type->is_unsafe_pointer_type()
3487 && expr_type->integer_type() != NULL)
3488 ret = convert_to_pointer(type_tree, expr_tree);
3489 else if (this->may_convert_function_types_
3490 && type->function_type() != NULL
3491 && expr_type->function_type() != NULL)
3492 ret = fold_convert_loc(this->location(), type_tree, expr_tree);
3493 else
3494 ret = Expression::convert_for_assignment(context, type, expr_type,
3495 expr_tree, this->location());
3496
3497 return ret;
3498 }
3499
3500 // Output a type conversion in a constant expression.
3501
3502 void
3503 Type_conversion_expression::do_export(Export* exp) const
3504 {
3505 exp->write_c_string("convert(");
3506 exp->write_type(this->type_);
3507 exp->write_c_string(", ");
3508 this->expr_->export_expression(exp);
3509 exp->write_c_string(")");
3510 }
3511
3512 // Import a type conversion or a struct construction.
3513
3514 Expression*
3515 Type_conversion_expression::do_import(Import* imp)
3516 {
3517 imp->require_c_string("convert(");
3518 Type* type = imp->read_type();
3519 imp->require_c_string(", ");
3520 Expression* val = Expression::import_expression(imp);
3521 imp->require_c_string(")");
3522 return Expression::make_cast(type, val, imp->location());
3523 }
3524
3525 // Make a type cast expression.
3526
3527 Expression*
3528 Expression::make_cast(Type* type, Expression* val, source_location location)
3529 {
3530 if (type->is_error_type() || val->is_error_expression())
3531 return Expression::make_error(location);
3532 return new Type_conversion_expression(type, val, location);
3533 }
3534
3535 // Unary expressions.
3536
3537 class Unary_expression : public Expression
3538 {
3539 public:
3540 Unary_expression(Operator op, Expression* expr, source_location location)
3541 : Expression(EXPRESSION_UNARY, location),
3542 op_(op), escapes_(true), expr_(expr)
3543 { }
3544
3545 // Return the operator.
3546 Operator
3547 op() const
3548 { return this->op_; }
3549
3550 // Return the operand.
3551 Expression*
3552 operand() const
3553 { return this->expr_; }
3554
3555 // Record that an address expression does not escape.
3556 void
3557 set_does_not_escape()
3558 {
3559 gcc_assert(this->op_ == OPERATOR_AND);
3560 this->escapes_ = false;
3561 }
3562
3563 // Apply unary opcode OP to UVAL, setting VAL. Return true if this
3564 // could be done, false if not.
3565 static bool
3566 eval_integer(Operator op, Type* utype, mpz_t uval, mpz_t val,
3567 source_location);
3568
3569 // Apply unary opcode OP to UVAL, setting VAL. Return true if this
3570 // could be done, false if not.
3571 static bool
3572 eval_float(Operator op, mpfr_t uval, mpfr_t val);
3573
3574 // Apply unary opcode OP to UREAL/UIMAG, setting REAL/IMAG. Return
3575 // true if this could be done, false if not.
3576 static bool
3577 eval_complex(Operator op, mpfr_t ureal, mpfr_t uimag, mpfr_t real,
3578 mpfr_t imag);
3579
3580 static Expression*
3581 do_import(Import*);
3582
3583 protected:
3584 int
3585 do_traverse(Traverse* traverse)
3586 { return Expression::traverse(&this->expr_, traverse); }
3587
3588 Expression*
3589 do_lower(Gogo*, Named_object*, int);
3590
3591 bool
3592 do_is_constant() const;
3593
3594 bool
3595 do_integer_constant_value(bool, mpz_t, Type**) const;
3596
3597 bool
3598 do_float_constant_value(mpfr_t, Type**) const;
3599
3600 bool
3601 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
3602
3603 Type*
3604 do_type();
3605
3606 void
3607 do_determine_type(const Type_context*);
3608
3609 void
3610 do_check_types(Gogo*);
3611
3612 Expression*
3613 do_copy()
3614 {
3615 return Expression::make_unary(this->op_, this->expr_->copy(),
3616 this->location());
3617 }
3618
3619 bool
3620 do_is_addressable() const
3621 { return this->op_ == OPERATOR_MULT; }
3622
3623 tree
3624 do_get_tree(Translate_context*);
3625
3626 void
3627 do_export(Export*) const;
3628
3629 private:
3630 // The unary operator to apply.
3631 Operator op_;
3632 // Normally true. False if this is an address expression which does
3633 // not escape the current function.
3634 bool escapes_;
3635 // The operand.
3636 Expression* expr_;
3637 };
3638
3639 // If we are taking the address of a composite literal, and the
3640 // contents are not constant, then we want to make a heap composite
3641 // instead.
3642
3643 Expression*
3644 Unary_expression::do_lower(Gogo*, Named_object*, int)
3645 {
3646 source_location loc = this->location();
3647 Operator op = this->op_;
3648 Expression* expr = this->expr_;
3649
3650 if (op == OPERATOR_MULT && expr->is_type_expression())
3651 return Expression::make_type(Type::make_pointer_type(expr->type()), loc);
3652
3653 // *&x simplifies to x. *(*T)(unsafe.Pointer)(&x) does not require
3654 // moving x to the heap. FIXME: Is it worth doing a real escape
3655 // analysis here? This case is found in math/unsafe.go and is
3656 // therefore worth special casing.
3657 if (op == OPERATOR_MULT)
3658 {
3659 Expression* e = expr;
3660 while (e->classification() == EXPRESSION_CONVERSION)
3661 {
3662 Type_conversion_expression* te
3663 = static_cast<Type_conversion_expression*>(e);
3664 e = te->expr();
3665 }
3666
3667 if (e->classification() == EXPRESSION_UNARY)
3668 {
3669 Unary_expression* ue = static_cast<Unary_expression*>(e);
3670 if (ue->op_ == OPERATOR_AND)
3671 {
3672 if (e == expr)
3673 {
3674 // *&x == x.
3675 return ue->expr_;
3676 }
3677 ue->set_does_not_escape();
3678 }
3679 }
3680 }
3681
3682 if (op == OPERATOR_PLUS || op == OPERATOR_MINUS
3683 || op == OPERATOR_NOT || op == OPERATOR_XOR)
3684 {
3685 Expression* ret = NULL;
3686
3687 mpz_t eval;
3688 mpz_init(eval);
3689 Type* etype;
3690 if (expr->integer_constant_value(false, eval, &etype))
3691 {
3692 mpz_t val;
3693 mpz_init(val);
3694 if (Unary_expression::eval_integer(op, etype, eval, val, loc))
3695 ret = Expression::make_integer(&val, etype, loc);
3696 mpz_clear(val);
3697 }
3698 mpz_clear(eval);
3699 if (ret != NULL)
3700 return ret;
3701
3702 if (op == OPERATOR_PLUS || op == OPERATOR_MINUS)
3703 {
3704 mpfr_t fval;
3705 mpfr_init(fval);
3706 Type* ftype;
3707 if (expr->float_constant_value(fval, &ftype))
3708 {
3709 mpfr_t val;
3710 mpfr_init(val);
3711 if (Unary_expression::eval_float(op, fval, val))
3712 ret = Expression::make_float(&val, ftype, loc);
3713 mpfr_clear(val);
3714 }
3715 if (ret != NULL)
3716 {
3717 mpfr_clear(fval);
3718 return ret;
3719 }
3720
3721 mpfr_t ival;
3722 mpfr_init(ival);
3723 if (expr->complex_constant_value(fval, ival, &ftype))
3724 {
3725 mpfr_t real;
3726 mpfr_t imag;
3727 mpfr_init(real);
3728 mpfr_init(imag);
3729 if (Unary_expression::eval_complex(op, fval, ival, real, imag))
3730 ret = Expression::make_complex(&real, &imag, ftype, loc);
3731 mpfr_clear(real);
3732 mpfr_clear(imag);
3733 }
3734 mpfr_clear(ival);
3735 mpfr_clear(fval);
3736 if (ret != NULL)
3737 return ret;
3738 }
3739 }
3740
3741 return this;
3742 }
3743
3744 // Return whether a unary expression is a constant.
3745
3746 bool
3747 Unary_expression::do_is_constant() const
3748 {
3749 if (this->op_ == OPERATOR_MULT)
3750 {
3751 // Indirecting through a pointer is only constant if the object
3752 // to which the expression points is constant, but we currently
3753 // have no way to determine that.
3754 return false;
3755 }
3756 else if (this->op_ == OPERATOR_AND)
3757 {
3758 // Taking the address of a variable is constant if it is a
3759 // global variable, not constant otherwise. In other cases
3760 // taking the address is probably not a constant.
3761 Var_expression* ve = this->expr_->var_expression();
3762 if (ve != NULL)
3763 {
3764 Named_object* no = ve->named_object();
3765 return no->is_variable() && no->var_value()->is_global();
3766 }
3767 return false;
3768 }
3769 else
3770 return this->expr_->is_constant();
3771 }
3772
3773 // Apply unary opcode OP to UVAL, setting VAL. UTYPE is the type of
3774 // UVAL, if known; it may be NULL. Return true if this could be done,
3775 // false if not.
3776
3777 bool
3778 Unary_expression::eval_integer(Operator op, Type* utype, mpz_t uval, mpz_t val,
3779 source_location location)
3780 {
3781 switch (op)
3782 {
3783 case OPERATOR_PLUS:
3784 mpz_set(val, uval);
3785 return true;
3786 case OPERATOR_MINUS:
3787 mpz_neg(val, uval);
3788 return Integer_expression::check_constant(val, utype, location);
3789 case OPERATOR_NOT:
3790 mpz_set_ui(val, mpz_cmp_si(uval, 0) == 0 ? 1 : 0);
3791 return true;
3792 case OPERATOR_XOR:
3793 if (utype == NULL
3794 || utype->integer_type() == NULL
3795 || utype->integer_type()->is_abstract())
3796 mpz_com(val, uval);
3797 else
3798 {
3799 // The number of HOST_WIDE_INTs that it takes to represent
3800 // UVAL.
3801 size_t count = ((mpz_sizeinbase(uval, 2)
3802 + HOST_BITS_PER_WIDE_INT
3803 - 1)
3804 / HOST_BITS_PER_WIDE_INT);
3805
3806 unsigned HOST_WIDE_INT* phwi = new unsigned HOST_WIDE_INT[count];
3807 memset(phwi, 0, count * sizeof(HOST_WIDE_INT));
3808
3809 size_t ecount;
3810 mpz_export(phwi, &ecount, -1, sizeof(HOST_WIDE_INT), 0, 0, uval);
3811 gcc_assert(ecount <= count);
3812
3813 // Trim down to the number of words required by the type.
3814 size_t obits = utype->integer_type()->bits();
3815 if (!utype->integer_type()->is_unsigned())
3816 ++obits;
3817 size_t ocount = ((obits + HOST_BITS_PER_WIDE_INT - 1)
3818 / HOST_BITS_PER_WIDE_INT);
3819 gcc_assert(ocount <= ocount);
3820
3821 for (size_t i = 0; i < ocount; ++i)
3822 phwi[i] = ~phwi[i];
3823
3824 size_t clearbits = ocount * HOST_BITS_PER_WIDE_INT - obits;
3825 if (clearbits != 0)
3826 phwi[ocount - 1] &= (((unsigned HOST_WIDE_INT) (HOST_WIDE_INT) -1)
3827 >> clearbits);
3828
3829 mpz_import(val, ocount, -1, sizeof(HOST_WIDE_INT), 0, 0, phwi);
3830
3831 delete[] phwi;
3832 }
3833 return Integer_expression::check_constant(val, utype, location);
3834 case OPERATOR_AND:
3835 case OPERATOR_MULT:
3836 return false;
3837 default:
3838 gcc_unreachable();
3839 }
3840 }
3841
3842 // Apply unary opcode OP to UVAL, setting VAL. Return true if this
3843 // could be done, false if not.
3844
3845 bool
3846 Unary_expression::eval_float(Operator op, mpfr_t uval, mpfr_t val)
3847 {
3848 switch (op)
3849 {
3850 case OPERATOR_PLUS:
3851 mpfr_set(val, uval, GMP_RNDN);
3852 return true;
3853 case OPERATOR_MINUS:
3854 mpfr_neg(val, uval, GMP_RNDN);
3855 return true;
3856 case OPERATOR_NOT:
3857 case OPERATOR_XOR:
3858 case OPERATOR_AND:
3859 case OPERATOR_MULT:
3860 return false;
3861 default:
3862 gcc_unreachable();
3863 }
3864 }
3865
3866 // Apply unary opcode OP to RVAL/IVAL, setting REAL/IMAG. Return true
3867 // if this could be done, false if not.
3868
3869 bool
3870 Unary_expression::eval_complex(Operator op, mpfr_t rval, mpfr_t ival,
3871 mpfr_t real, mpfr_t imag)
3872 {
3873 switch (op)
3874 {
3875 case OPERATOR_PLUS:
3876 mpfr_set(real, rval, GMP_RNDN);
3877 mpfr_set(imag, ival, GMP_RNDN);
3878 return true;
3879 case OPERATOR_MINUS:
3880 mpfr_neg(real, rval, GMP_RNDN);
3881 mpfr_neg(imag, ival, GMP_RNDN);
3882 return true;
3883 case OPERATOR_NOT:
3884 case OPERATOR_XOR:
3885 case OPERATOR_AND:
3886 case OPERATOR_MULT:
3887 return false;
3888 default:
3889 gcc_unreachable();
3890 }
3891 }
3892
3893 // Return the integral constant value of a unary expression, if it has one.
3894
3895 bool
3896 Unary_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
3897 Type** ptype) const
3898 {
3899 mpz_t uval;
3900 mpz_init(uval);
3901 bool ret;
3902 if (!this->expr_->integer_constant_value(iota_is_constant, uval, ptype))
3903 ret = false;
3904 else
3905 ret = Unary_expression::eval_integer(this->op_, *ptype, uval, val,
3906 this->location());
3907 mpz_clear(uval);
3908 return ret;
3909 }
3910
3911 // Return the floating point constant value of a unary expression, if
3912 // it has one.
3913
3914 bool
3915 Unary_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
3916 {
3917 mpfr_t uval;
3918 mpfr_init(uval);
3919 bool ret;
3920 if (!this->expr_->float_constant_value(uval, ptype))
3921 ret = false;
3922 else
3923 ret = Unary_expression::eval_float(this->op_, uval, val);
3924 mpfr_clear(uval);
3925 return ret;
3926 }
3927
3928 // Return the complex constant value of a unary expression, if it has
3929 // one.
3930
3931 bool
3932 Unary_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
3933 Type** ptype) const
3934 {
3935 mpfr_t rval;
3936 mpfr_t ival;
3937 mpfr_init(rval);
3938 mpfr_init(ival);
3939 bool ret;
3940 if (!this->expr_->complex_constant_value(rval, ival, ptype))
3941 ret = false;
3942 else
3943 ret = Unary_expression::eval_complex(this->op_, rval, ival, real, imag);
3944 mpfr_clear(rval);
3945 mpfr_clear(ival);
3946 return ret;
3947 }
3948
3949 // Return the type of a unary expression.
3950
3951 Type*
3952 Unary_expression::do_type()
3953 {
3954 switch (this->op_)
3955 {
3956 case OPERATOR_PLUS:
3957 case OPERATOR_MINUS:
3958 case OPERATOR_NOT:
3959 case OPERATOR_XOR:
3960 return this->expr_->type();
3961
3962 case OPERATOR_AND:
3963 return Type::make_pointer_type(this->expr_->type());
3964
3965 case OPERATOR_MULT:
3966 {
3967 Type* subtype = this->expr_->type();
3968 Type* points_to = subtype->points_to();
3969 if (points_to == NULL)
3970 return Type::make_error_type();
3971 return points_to;
3972 }
3973
3974 default:
3975 gcc_unreachable();
3976 }
3977 }
3978
3979 // Determine abstract types for a unary expression.
3980
3981 void
3982 Unary_expression::do_determine_type(const Type_context* context)
3983 {
3984 switch (this->op_)
3985 {
3986 case OPERATOR_PLUS:
3987 case OPERATOR_MINUS:
3988 case OPERATOR_NOT:
3989 case OPERATOR_XOR:
3990 this->expr_->determine_type(context);
3991 break;
3992
3993 case OPERATOR_AND:
3994 // Taking the address of something.
3995 {
3996 Type* subtype = (context->type == NULL
3997 ? NULL
3998 : context->type->points_to());
3999 Type_context subcontext(subtype, false);
4000 this->expr_->determine_type(&subcontext);
4001 }
4002 break;
4003
4004 case OPERATOR_MULT:
4005 // Indirecting through a pointer.
4006 {
4007 Type* subtype = (context->type == NULL
4008 ? NULL
4009 : Type::make_pointer_type(context->type));
4010 Type_context subcontext(subtype, false);
4011 this->expr_->determine_type(&subcontext);
4012 }
4013 break;
4014
4015 default:
4016 gcc_unreachable();
4017 }
4018 }
4019
4020 // Check types for a unary expression.
4021
4022 void
4023 Unary_expression::do_check_types(Gogo*)
4024 {
4025 Type* type = this->expr_->type();
4026 if (type->is_error_type())
4027 {
4028 this->set_is_error();
4029 return;
4030 }
4031
4032 switch (this->op_)
4033 {
4034 case OPERATOR_PLUS:
4035 case OPERATOR_MINUS:
4036 if (type->integer_type() == NULL
4037 && type->float_type() == NULL
4038 && type->complex_type() == NULL)
4039 this->report_error(_("expected numeric type"));
4040 break;
4041
4042 case OPERATOR_NOT:
4043 case OPERATOR_XOR:
4044 if (type->integer_type() == NULL
4045 && !type->is_boolean_type())
4046 this->report_error(_("expected integer or boolean type"));
4047 break;
4048
4049 case OPERATOR_AND:
4050 if (!this->expr_->is_addressable())
4051 this->report_error(_("invalid operand for unary %<&%>"));
4052 else
4053 this->expr_->address_taken(this->escapes_);
4054 break;
4055
4056 case OPERATOR_MULT:
4057 // Indirecting through a pointer.
4058 if (type->points_to() == NULL)
4059 this->report_error(_("expected pointer"));
4060 break;
4061
4062 default:
4063 gcc_unreachable();
4064 }
4065 }
4066
4067 // Get a tree for a unary expression.
4068
4069 tree
4070 Unary_expression::do_get_tree(Translate_context* context)
4071 {
4072 tree expr = this->expr_->get_tree(context);
4073 if (expr == error_mark_node)
4074 return error_mark_node;
4075
4076 source_location loc = this->location();
4077 switch (this->op_)
4078 {
4079 case OPERATOR_PLUS:
4080 return expr;
4081
4082 case OPERATOR_MINUS:
4083 {
4084 tree type = TREE_TYPE(expr);
4085 tree compute_type = excess_precision_type(type);
4086 if (compute_type != NULL_TREE)
4087 expr = ::convert(compute_type, expr);
4088 tree ret = fold_build1_loc(loc, NEGATE_EXPR,
4089 (compute_type != NULL_TREE
4090 ? compute_type
4091 : type),
4092 expr);
4093 if (compute_type != NULL_TREE)
4094 ret = ::convert(type, ret);
4095 return ret;
4096 }
4097
4098 case OPERATOR_NOT:
4099 if (TREE_CODE(TREE_TYPE(expr)) == BOOLEAN_TYPE)
4100 return fold_build1_loc(loc, TRUTH_NOT_EXPR, TREE_TYPE(expr), expr);
4101 else
4102 return fold_build2_loc(loc, NE_EXPR, boolean_type_node, expr,
4103 build_int_cst(TREE_TYPE(expr), 0));
4104
4105 case OPERATOR_XOR:
4106 return fold_build1_loc(loc, BIT_NOT_EXPR, TREE_TYPE(expr), expr);
4107
4108 case OPERATOR_AND:
4109 // We should not see a non-constant constructor here; cases
4110 // where we would see one should have been moved onto the heap
4111 // at parse time. Taking the address of a nonconstant
4112 // constructor will not do what the programmer expects.
4113 gcc_assert(TREE_CODE(expr) != CONSTRUCTOR || TREE_CONSTANT(expr));
4114 gcc_assert(TREE_CODE(expr) != ADDR_EXPR);
4115
4116 // Build a decl for a constant constructor.
4117 if (TREE_CODE(expr) == CONSTRUCTOR && TREE_CONSTANT(expr))
4118 {
4119 tree decl = build_decl(this->location(), VAR_DECL,
4120 create_tmp_var_name("C"), TREE_TYPE(expr));
4121 DECL_EXTERNAL(decl) = 0;
4122 TREE_PUBLIC(decl) = 0;
4123 TREE_READONLY(decl) = 1;
4124 TREE_CONSTANT(decl) = 1;
4125 TREE_STATIC(decl) = 1;
4126 TREE_ADDRESSABLE(decl) = 1;
4127 DECL_ARTIFICIAL(decl) = 1;
4128 DECL_INITIAL(decl) = expr;
4129 rest_of_decl_compilation(decl, 1, 0);
4130 expr = decl;
4131 }
4132
4133 return build_fold_addr_expr_loc(loc, expr);
4134
4135 case OPERATOR_MULT:
4136 {
4137 gcc_assert(POINTER_TYPE_P(TREE_TYPE(expr)));
4138
4139 // If we are dereferencing the pointer to a large struct, we
4140 // need to check for nil. We don't bother to check for small
4141 // structs because we expect the system to crash on a nil
4142 // pointer dereference.
4143 HOST_WIDE_INT s = int_size_in_bytes(TREE_TYPE(TREE_TYPE(expr)));
4144 if (s == -1 || s >= 4096)
4145 {
4146 if (!DECL_P(expr))
4147 expr = save_expr(expr);
4148 tree compare = fold_build2_loc(loc, EQ_EXPR, boolean_type_node,
4149 expr,
4150 fold_convert(TREE_TYPE(expr),
4151 null_pointer_node));
4152 tree crash = Gogo::runtime_error(RUNTIME_ERROR_NIL_DEREFERENCE,
4153 loc);
4154 expr = fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(expr),
4155 build3(COND_EXPR, void_type_node,
4156 compare, crash, NULL_TREE),
4157 expr);
4158 }
4159
4160 // If the type of EXPR is a recursive pointer type, then we
4161 // need to insert a cast before indirecting.
4162 if (TREE_TYPE(TREE_TYPE(expr)) == ptr_type_node)
4163 {
4164 Type* pt = this->expr_->type()->points_to();
4165 tree ind = pt->get_tree(context->gogo());
4166 expr = fold_convert_loc(loc, build_pointer_type(ind), expr);
4167 }
4168
4169 return build_fold_indirect_ref_loc(loc, expr);
4170 }
4171
4172 default:
4173 gcc_unreachable();
4174 }
4175 }
4176
4177 // Export a unary expression.
4178
4179 void
4180 Unary_expression::do_export(Export* exp) const
4181 {
4182 switch (this->op_)
4183 {
4184 case OPERATOR_PLUS:
4185 exp->write_c_string("+ ");
4186 break;
4187 case OPERATOR_MINUS:
4188 exp->write_c_string("- ");
4189 break;
4190 case OPERATOR_NOT:
4191 exp->write_c_string("! ");
4192 break;
4193 case OPERATOR_XOR:
4194 exp->write_c_string("^ ");
4195 break;
4196 case OPERATOR_AND:
4197 case OPERATOR_MULT:
4198 default:
4199 gcc_unreachable();
4200 }
4201 this->expr_->export_expression(exp);
4202 }
4203
4204 // Import a unary expression.
4205
4206 Expression*
4207 Unary_expression::do_import(Import* imp)
4208 {
4209 Operator op;
4210 switch (imp->get_char())
4211 {
4212 case '+':
4213 op = OPERATOR_PLUS;
4214 break;
4215 case '-':
4216 op = OPERATOR_MINUS;
4217 break;
4218 case '!':
4219 op = OPERATOR_NOT;
4220 break;
4221 case '^':
4222 op = OPERATOR_XOR;
4223 break;
4224 default:
4225 gcc_unreachable();
4226 }
4227 imp->require_c_string(" ");
4228 Expression* expr = Expression::import_expression(imp);
4229 return Expression::make_unary(op, expr, imp->location());
4230 }
4231
4232 // Make a unary expression.
4233
4234 Expression*
4235 Expression::make_unary(Operator op, Expression* expr, source_location location)
4236 {
4237 return new Unary_expression(op, expr, location);
4238 }
4239
4240 // If this is an indirection through a pointer, return the expression
4241 // being pointed through. Otherwise return this.
4242
4243 Expression*
4244 Expression::deref()
4245 {
4246 if (this->classification_ == EXPRESSION_UNARY)
4247 {
4248 Unary_expression* ue = static_cast<Unary_expression*>(this);
4249 if (ue->op() == OPERATOR_MULT)
4250 return ue->operand();
4251 }
4252 return this;
4253 }
4254
4255 // Class Binary_expression.
4256
4257 // Traversal.
4258
4259 int
4260 Binary_expression::do_traverse(Traverse* traverse)
4261 {
4262 int t = Expression::traverse(&this->left_, traverse);
4263 if (t == TRAVERSE_EXIT)
4264 return TRAVERSE_EXIT;
4265 return Expression::traverse(&this->right_, traverse);
4266 }
4267
4268 // Compare integer constants according to OP.
4269
4270 bool
4271 Binary_expression::compare_integer(Operator op, mpz_t left_val,
4272 mpz_t right_val)
4273 {
4274 int i = mpz_cmp(left_val, right_val);
4275 switch (op)
4276 {
4277 case OPERATOR_EQEQ:
4278 return i == 0;
4279 case OPERATOR_NOTEQ:
4280 return i != 0;
4281 case OPERATOR_LT:
4282 return i < 0;
4283 case OPERATOR_LE:
4284 return i <= 0;
4285 case OPERATOR_GT:
4286 return i > 0;
4287 case OPERATOR_GE:
4288 return i >= 0;
4289 default:
4290 gcc_unreachable();
4291 }
4292 }
4293
4294 // Compare floating point constants according to OP.
4295
4296 bool
4297 Binary_expression::compare_float(Operator op, Type* type, mpfr_t left_val,
4298 mpfr_t right_val)
4299 {
4300 int i;
4301 if (type == NULL)
4302 i = mpfr_cmp(left_val, right_val);
4303 else
4304 {
4305 mpfr_t lv;
4306 mpfr_init_set(lv, left_val, GMP_RNDN);
4307 mpfr_t rv;
4308 mpfr_init_set(rv, right_val, GMP_RNDN);
4309 Float_expression::constrain_float(lv, type);
4310 Float_expression::constrain_float(rv, type);
4311 i = mpfr_cmp(lv, rv);
4312 mpfr_clear(lv);
4313 mpfr_clear(rv);
4314 }
4315 switch (op)
4316 {
4317 case OPERATOR_EQEQ:
4318 return i == 0;
4319 case OPERATOR_NOTEQ:
4320 return i != 0;
4321 case OPERATOR_LT:
4322 return i < 0;
4323 case OPERATOR_LE:
4324 return i <= 0;
4325 case OPERATOR_GT:
4326 return i > 0;
4327 case OPERATOR_GE:
4328 return i >= 0;
4329 default:
4330 gcc_unreachable();
4331 }
4332 }
4333
4334 // Compare complex constants according to OP. Complex numbers may
4335 // only be compared for equality.
4336
4337 bool
4338 Binary_expression::compare_complex(Operator op, Type* type,
4339 mpfr_t left_real, mpfr_t left_imag,
4340 mpfr_t right_real, mpfr_t right_imag)
4341 {
4342 bool is_equal;
4343 if (type == NULL)
4344 is_equal = (mpfr_cmp(left_real, right_real) == 0
4345 && mpfr_cmp(left_imag, right_imag) == 0);
4346 else
4347 {
4348 mpfr_t lr;
4349 mpfr_t li;
4350 mpfr_init_set(lr, left_real, GMP_RNDN);
4351 mpfr_init_set(li, left_imag, GMP_RNDN);
4352 mpfr_t rr;
4353 mpfr_t ri;
4354 mpfr_init_set(rr, right_real, GMP_RNDN);
4355 mpfr_init_set(ri, right_imag, GMP_RNDN);
4356 Complex_expression::constrain_complex(lr, li, type);
4357 Complex_expression::constrain_complex(rr, ri, type);
4358 is_equal = mpfr_cmp(lr, rr) == 0 && mpfr_cmp(li, ri) == 0;
4359 mpfr_clear(lr);
4360 mpfr_clear(li);
4361 mpfr_clear(rr);
4362 mpfr_clear(ri);
4363 }
4364 switch (op)
4365 {
4366 case OPERATOR_EQEQ:
4367 return is_equal;
4368 case OPERATOR_NOTEQ:
4369 return !is_equal;
4370 default:
4371 gcc_unreachable();
4372 }
4373 }
4374
4375 // Apply binary opcode OP to LEFT_VAL and RIGHT_VAL, setting VAL.
4376 // LEFT_TYPE is the type of LEFT_VAL, RIGHT_TYPE is the type of
4377 // RIGHT_VAL; LEFT_TYPE and/or RIGHT_TYPE may be NULL. Return true if
4378 // this could be done, false if not.
4379
4380 bool
4381 Binary_expression::eval_integer(Operator op, Type* left_type, mpz_t left_val,
4382 Type* right_type, mpz_t right_val,
4383 source_location location, mpz_t val)
4384 {
4385 bool is_shift_op = false;
4386 switch (op)
4387 {
4388 case OPERATOR_OROR:
4389 case OPERATOR_ANDAND:
4390 case OPERATOR_EQEQ:
4391 case OPERATOR_NOTEQ:
4392 case OPERATOR_LT:
4393 case OPERATOR_LE:
4394 case OPERATOR_GT:
4395 case OPERATOR_GE:
4396 // These return boolean values. We should probably handle them
4397 // anyhow in case a type conversion is used on the result.
4398 return false;
4399 case OPERATOR_PLUS:
4400 mpz_add(val, left_val, right_val);
4401 break;
4402 case OPERATOR_MINUS:
4403 mpz_sub(val, left_val, right_val);
4404 break;
4405 case OPERATOR_OR:
4406 mpz_ior(val, left_val, right_val);
4407 break;
4408 case OPERATOR_XOR:
4409 mpz_xor(val, left_val, right_val);
4410 break;
4411 case OPERATOR_MULT:
4412 mpz_mul(val, left_val, right_val);
4413 break;
4414 case OPERATOR_DIV:
4415 if (mpz_sgn(right_val) != 0)
4416 mpz_tdiv_q(val, left_val, right_val);
4417 else
4418 {
4419 error_at(location, "division by zero");
4420 mpz_set_ui(val, 0);
4421 return true;
4422 }
4423 break;
4424 case OPERATOR_MOD:
4425 if (mpz_sgn(right_val) != 0)
4426 mpz_tdiv_r(val, left_val, right_val);
4427 else
4428 {
4429 error_at(location, "division by zero");
4430 mpz_set_ui(val, 0);
4431 return true;
4432 }
4433 break;
4434 case OPERATOR_LSHIFT:
4435 {
4436 unsigned long shift = mpz_get_ui(right_val);
4437 if (mpz_cmp_ui(right_val, shift) != 0 || shift > 0x100000)
4438 {
4439 error_at(location, "shift count overflow");
4440 mpz_set_ui(val, 0);
4441 return true;
4442 }
4443 mpz_mul_2exp(val, left_val, shift);
4444 is_shift_op = true;
4445 break;
4446 }
4447 break;
4448 case OPERATOR_RSHIFT:
4449 {
4450 unsigned long shift = mpz_get_ui(right_val);
4451 if (mpz_cmp_ui(right_val, shift) != 0)
4452 {
4453 error_at(location, "shift count overflow");
4454 mpz_set_ui(val, 0);
4455 return true;
4456 }
4457 if (mpz_cmp_ui(left_val, 0) >= 0)
4458 mpz_tdiv_q_2exp(val, left_val, shift);
4459 else
4460 mpz_fdiv_q_2exp(val, left_val, shift);
4461 is_shift_op = true;
4462 break;
4463 }
4464 break;
4465 case OPERATOR_AND:
4466 mpz_and(val, left_val, right_val);
4467 break;
4468 case OPERATOR_BITCLEAR:
4469 {
4470 mpz_t tval;
4471 mpz_init(tval);
4472 mpz_com(tval, right_val);
4473 mpz_and(val, left_val, tval);
4474 mpz_clear(tval);
4475 }
4476 break;
4477 default:
4478 gcc_unreachable();
4479 }
4480
4481 Type* type = left_type;
4482 if (!is_shift_op)
4483 {
4484 if (type == NULL)
4485 type = right_type;
4486 else if (type != right_type && right_type != NULL)
4487 {
4488 if (type->is_abstract())
4489 type = right_type;
4490 else if (!right_type->is_abstract())
4491 {
4492 // This look like a type error which should be diagnosed
4493 // elsewhere. Don't do anything here, to avoid an
4494 // unhelpful chain of error messages.
4495 return true;
4496 }
4497 }
4498 }
4499
4500 if (type != NULL && !type->is_abstract())
4501 {
4502 // We have to check the operands too, as we have implicitly
4503 // coerced them to TYPE.
4504 if ((type != left_type
4505 && !Integer_expression::check_constant(left_val, type, location))
4506 || (!is_shift_op
4507 && type != right_type
4508 && !Integer_expression::check_constant(right_val, type,
4509 location))
4510 || !Integer_expression::check_constant(val, type, location))
4511 mpz_set_ui(val, 0);
4512 }
4513
4514 return true;
4515 }
4516
4517 // Apply binary opcode OP to LEFT_VAL and RIGHT_VAL, setting VAL.
4518 // Return true if this could be done, false if not.
4519
4520 bool
4521 Binary_expression::eval_float(Operator op, Type* left_type, mpfr_t left_val,
4522 Type* right_type, mpfr_t right_val,
4523 mpfr_t val, source_location location)
4524 {
4525 switch (op)
4526 {
4527 case OPERATOR_OROR:
4528 case OPERATOR_ANDAND:
4529 case OPERATOR_EQEQ:
4530 case OPERATOR_NOTEQ:
4531 case OPERATOR_LT:
4532 case OPERATOR_LE:
4533 case OPERATOR_GT:
4534 case OPERATOR_GE:
4535 // These return boolean values. We should probably handle them
4536 // anyhow in case a type conversion is used on the result.
4537 return false;
4538 case OPERATOR_PLUS:
4539 mpfr_add(val, left_val, right_val, GMP_RNDN);
4540 break;
4541 case OPERATOR_MINUS:
4542 mpfr_sub(val, left_val, right_val, GMP_RNDN);
4543 break;
4544 case OPERATOR_OR:
4545 case OPERATOR_XOR:
4546 case OPERATOR_AND:
4547 case OPERATOR_BITCLEAR:
4548 return false;
4549 case OPERATOR_MULT:
4550 mpfr_mul(val, left_val, right_val, GMP_RNDN);
4551 break;
4552 case OPERATOR_DIV:
4553 if (mpfr_zero_p(right_val))
4554 error_at(location, "division by zero");
4555 mpfr_div(val, left_val, right_val, GMP_RNDN);
4556 break;
4557 case OPERATOR_MOD:
4558 return false;
4559 case OPERATOR_LSHIFT:
4560 case OPERATOR_RSHIFT:
4561 return false;
4562 default:
4563 gcc_unreachable();
4564 }
4565
4566 Type* type = left_type;
4567 if (type == NULL)
4568 type = right_type;
4569 else if (type != right_type && right_type != NULL)
4570 {
4571 if (type->is_abstract())
4572 type = right_type;
4573 else if (!right_type->is_abstract())
4574 {
4575 // This looks like a type error which should be diagnosed
4576 // elsewhere. Don't do anything here, to avoid an unhelpful
4577 // chain of error messages.
4578 return true;
4579 }
4580 }
4581
4582 if (type != NULL && !type->is_abstract())
4583 {
4584 if ((type != left_type
4585 && !Float_expression::check_constant(left_val, type, location))
4586 || (type != right_type
4587 && !Float_expression::check_constant(right_val, type,
4588 location))
4589 || !Float_expression::check_constant(val, type, location))
4590 mpfr_set_ui(val, 0, GMP_RNDN);
4591 }
4592
4593 return true;
4594 }
4595
4596 // Apply binary opcode OP to LEFT_REAL/LEFT_IMAG and
4597 // RIGHT_REAL/RIGHT_IMAG, setting REAL/IMAG. Return true if this
4598 // could be done, false if not.
4599
4600 bool
4601 Binary_expression::eval_complex(Operator op, Type* left_type,
4602 mpfr_t left_real, mpfr_t left_imag,
4603 Type *right_type,
4604 mpfr_t right_real, mpfr_t right_imag,
4605 mpfr_t real, mpfr_t imag,
4606 source_location location)
4607 {
4608 switch (op)
4609 {
4610 case OPERATOR_OROR:
4611 case OPERATOR_ANDAND:
4612 case OPERATOR_EQEQ:
4613 case OPERATOR_NOTEQ:
4614 case OPERATOR_LT:
4615 case OPERATOR_LE:
4616 case OPERATOR_GT:
4617 case OPERATOR_GE:
4618 // These return boolean values and must be handled differently.
4619 return false;
4620 case OPERATOR_PLUS:
4621 mpfr_add(real, left_real, right_real, GMP_RNDN);
4622 mpfr_add(imag, left_imag, right_imag, GMP_RNDN);
4623 break;
4624 case OPERATOR_MINUS:
4625 mpfr_sub(real, left_real, right_real, GMP_RNDN);
4626 mpfr_sub(imag, left_imag, right_imag, GMP_RNDN);
4627 break;
4628 case OPERATOR_OR:
4629 case OPERATOR_XOR:
4630 case OPERATOR_AND:
4631 case OPERATOR_BITCLEAR:
4632 return false;
4633 case OPERATOR_MULT:
4634 {
4635 // You might think that multiplying two complex numbers would
4636 // be simple, and you would be right, until you start to think
4637 // about getting the right answer for infinity. If one
4638 // operand here is infinity and the other is anything other
4639 // than zero or NaN, then we are going to wind up subtracting
4640 // two infinity values. That will give us a NaN, but the
4641 // correct answer is infinity.
4642
4643 mpfr_t lrrr;
4644 mpfr_init(lrrr);
4645 mpfr_mul(lrrr, left_real, right_real, GMP_RNDN);
4646
4647 mpfr_t lrri;
4648 mpfr_init(lrri);
4649 mpfr_mul(lrri, left_real, right_imag, GMP_RNDN);
4650
4651 mpfr_t lirr;
4652 mpfr_init(lirr);
4653 mpfr_mul(lirr, left_imag, right_real, GMP_RNDN);
4654
4655 mpfr_t liri;
4656 mpfr_init(liri);
4657 mpfr_mul(liri, left_imag, right_imag, GMP_RNDN);
4658
4659 mpfr_sub(real, lrrr, liri, GMP_RNDN);
4660 mpfr_add(imag, lrri, lirr, GMP_RNDN);
4661
4662 // If we get NaN on both sides, check whether it should really
4663 // be infinity. The rule is that if either side of the
4664 // complex number is infinity, then the whole value is
4665 // infinity, even if the other side is NaN. So the only case
4666 // we have to fix is the one in which both sides are NaN.
4667 if (mpfr_nan_p(real) && mpfr_nan_p(imag)
4668 && (!mpfr_nan_p(left_real) || !mpfr_nan_p(left_imag))
4669 && (!mpfr_nan_p(right_real) || !mpfr_nan_p(right_imag)))
4670 {
4671 bool is_infinity = false;
4672
4673 mpfr_t lr;
4674 mpfr_t li;
4675 mpfr_init_set(lr, left_real, GMP_RNDN);
4676 mpfr_init_set(li, left_imag, GMP_RNDN);
4677
4678 mpfr_t rr;
4679 mpfr_t ri;
4680 mpfr_init_set(rr, right_real, GMP_RNDN);
4681 mpfr_init_set(ri, right_imag, GMP_RNDN);
4682
4683 // If the left side is infinity, then the result is
4684 // infinity.
4685 if (mpfr_inf_p(lr) || mpfr_inf_p(li))
4686 {
4687 mpfr_set_ui(lr, mpfr_inf_p(lr) ? 1 : 0, GMP_RNDN);
4688 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
4689 mpfr_set_ui(li, mpfr_inf_p(li) ? 1 : 0, GMP_RNDN);
4690 mpfr_copysign(li, li, left_imag, GMP_RNDN);
4691 if (mpfr_nan_p(rr))
4692 {
4693 mpfr_set_ui(rr, 0, GMP_RNDN);
4694 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
4695 }
4696 if (mpfr_nan_p(ri))
4697 {
4698 mpfr_set_ui(ri, 0, GMP_RNDN);
4699 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
4700 }
4701 is_infinity = true;
4702 }
4703
4704 // If the right side is infinity, then the result is
4705 // infinity.
4706 if (mpfr_inf_p(rr) || mpfr_inf_p(ri))
4707 {
4708 mpfr_set_ui(rr, mpfr_inf_p(rr) ? 1 : 0, GMP_RNDN);
4709 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
4710 mpfr_set_ui(ri, mpfr_inf_p(ri) ? 1 : 0, GMP_RNDN);
4711 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
4712 if (mpfr_nan_p(lr))
4713 {
4714 mpfr_set_ui(lr, 0, GMP_RNDN);
4715 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
4716 }
4717 if (mpfr_nan_p(li))
4718 {
4719 mpfr_set_ui(li, 0, GMP_RNDN);
4720 mpfr_copysign(li, li, left_imag, GMP_RNDN);
4721 }
4722 is_infinity = true;
4723 }
4724
4725 // If we got an overflow in the intermediate computations,
4726 // then the result is infinity.
4727 if (!is_infinity
4728 && (mpfr_inf_p(lrrr) || mpfr_inf_p(lrri)
4729 || mpfr_inf_p(lirr) || mpfr_inf_p(liri)))
4730 {
4731 if (mpfr_nan_p(lr))
4732 {
4733 mpfr_set_ui(lr, 0, GMP_RNDN);
4734 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
4735 }
4736 if (mpfr_nan_p(li))
4737 {
4738 mpfr_set_ui(li, 0, GMP_RNDN);
4739 mpfr_copysign(li, li, left_imag, GMP_RNDN);
4740 }
4741 if (mpfr_nan_p(rr))
4742 {
4743 mpfr_set_ui(rr, 0, GMP_RNDN);
4744 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
4745 }
4746 if (mpfr_nan_p(ri))
4747 {
4748 mpfr_set_ui(ri, 0, GMP_RNDN);
4749 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
4750 }
4751 is_infinity = true;
4752 }
4753
4754 if (is_infinity)
4755 {
4756 mpfr_mul(lrrr, lr, rr, GMP_RNDN);
4757 mpfr_mul(lrri, lr, ri, GMP_RNDN);
4758 mpfr_mul(lirr, li, rr, GMP_RNDN);
4759 mpfr_mul(liri, li, ri, GMP_RNDN);
4760 mpfr_sub(real, lrrr, liri, GMP_RNDN);
4761 mpfr_add(imag, lrri, lirr, GMP_RNDN);
4762 mpfr_set_inf(real, mpfr_sgn(real));
4763 mpfr_set_inf(imag, mpfr_sgn(imag));
4764 }
4765
4766 mpfr_clear(lr);
4767 mpfr_clear(li);
4768 mpfr_clear(rr);
4769 mpfr_clear(ri);
4770 }
4771
4772 mpfr_clear(lrrr);
4773 mpfr_clear(lrri);
4774 mpfr_clear(lirr);
4775 mpfr_clear(liri);
4776 }
4777 break;
4778 case OPERATOR_DIV:
4779 {
4780 // For complex division we want to avoid having an
4781 // intermediate overflow turn the whole result in a NaN. We
4782 // scale the values to try to avoid this.
4783
4784 if (mpfr_zero_p(right_real) && mpfr_zero_p(right_imag))
4785 error_at(location, "division by zero");
4786
4787 mpfr_t rra;
4788 mpfr_t ria;
4789 mpfr_init(rra);
4790 mpfr_init(ria);
4791 mpfr_abs(rra, right_real, GMP_RNDN);
4792 mpfr_abs(ria, right_imag, GMP_RNDN);
4793 mpfr_t t;
4794 mpfr_init(t);
4795 mpfr_max(t, rra, ria, GMP_RNDN);
4796
4797 mpfr_t rr;
4798 mpfr_t ri;
4799 mpfr_init_set(rr, right_real, GMP_RNDN);
4800 mpfr_init_set(ri, right_imag, GMP_RNDN);
4801 long ilogbw = 0;
4802 if (!mpfr_inf_p(t) && !mpfr_nan_p(t) && !mpfr_zero_p(t))
4803 {
4804 ilogbw = mpfr_get_exp(t);
4805 mpfr_mul_2si(rr, rr, - ilogbw, GMP_RNDN);
4806 mpfr_mul_2si(ri, ri, - ilogbw, GMP_RNDN);
4807 }
4808
4809 mpfr_t denom;
4810 mpfr_init(denom);
4811 mpfr_mul(denom, rr, rr, GMP_RNDN);
4812 mpfr_mul(t, ri, ri, GMP_RNDN);
4813 mpfr_add(denom, denom, t, GMP_RNDN);
4814
4815 mpfr_mul(real, left_real, rr, GMP_RNDN);
4816 mpfr_mul(t, left_imag, ri, GMP_RNDN);
4817 mpfr_add(real, real, t, GMP_RNDN);
4818 mpfr_div(real, real, denom, GMP_RNDN);
4819 mpfr_mul_2si(real, real, - ilogbw, GMP_RNDN);
4820
4821 mpfr_mul(imag, left_imag, rr, GMP_RNDN);
4822 mpfr_mul(t, left_real, ri, GMP_RNDN);
4823 mpfr_sub(imag, imag, t, GMP_RNDN);
4824 mpfr_div(imag, imag, denom, GMP_RNDN);
4825 mpfr_mul_2si(imag, imag, - ilogbw, GMP_RNDN);
4826
4827 // If we wind up with NaN on both sides, check whether we
4828 // should really have infinity. The rule is that if either
4829 // side of the complex number is infinity, then the whole
4830 // value is infinity, even if the other side is NaN. So the
4831 // only case we have to fix is the one in which both sides are
4832 // NaN.
4833 if (mpfr_nan_p(real) && mpfr_nan_p(imag)
4834 && (!mpfr_nan_p(left_real) || !mpfr_nan_p(left_imag))
4835 && (!mpfr_nan_p(right_real) || !mpfr_nan_p(right_imag)))
4836 {
4837 if (mpfr_zero_p(denom))
4838 {
4839 mpfr_set_inf(real, mpfr_sgn(rr));
4840 mpfr_mul(real, real, left_real, GMP_RNDN);
4841 mpfr_set_inf(imag, mpfr_sgn(rr));
4842 mpfr_mul(imag, imag, left_imag, GMP_RNDN);
4843 }
4844 else if ((mpfr_inf_p(left_real) || mpfr_inf_p(left_imag))
4845 && mpfr_number_p(rr) && mpfr_number_p(ri))
4846 {
4847 mpfr_set_ui(t, mpfr_inf_p(left_real) ? 1 : 0, GMP_RNDN);
4848 mpfr_copysign(t, t, left_real, GMP_RNDN);
4849
4850 mpfr_t t2;
4851 mpfr_init_set_ui(t2, mpfr_inf_p(left_imag) ? 1 : 0, GMP_RNDN);
4852 mpfr_copysign(t2, t2, left_imag, GMP_RNDN);
4853
4854 mpfr_t t3;
4855 mpfr_init(t3);
4856 mpfr_mul(t3, t, rr, GMP_RNDN);
4857
4858 mpfr_t t4;
4859 mpfr_init(t4);
4860 mpfr_mul(t4, t2, ri, GMP_RNDN);
4861
4862 mpfr_add(t3, t3, t4, GMP_RNDN);
4863 mpfr_set_inf(real, mpfr_sgn(t3));
4864
4865 mpfr_mul(t3, t2, rr, GMP_RNDN);
4866 mpfr_mul(t4, t, ri, GMP_RNDN);
4867 mpfr_sub(t3, t3, t4, GMP_RNDN);
4868 mpfr_set_inf(imag, mpfr_sgn(t3));
4869
4870 mpfr_clear(t2);
4871 mpfr_clear(t3);
4872 mpfr_clear(t4);
4873 }
4874 else if ((mpfr_inf_p(right_real) || mpfr_inf_p(right_imag))
4875 && mpfr_number_p(left_real) && mpfr_number_p(left_imag))
4876 {
4877 mpfr_set_ui(t, mpfr_inf_p(rr) ? 1 : 0, GMP_RNDN);
4878 mpfr_copysign(t, t, rr, GMP_RNDN);
4879
4880 mpfr_t t2;
4881 mpfr_init_set_ui(t2, mpfr_inf_p(ri) ? 1 : 0, GMP_RNDN);
4882 mpfr_copysign(t2, t2, ri, GMP_RNDN);
4883
4884 mpfr_t t3;
4885 mpfr_init(t3);
4886 mpfr_mul(t3, left_real, t, GMP_RNDN);
4887
4888 mpfr_t t4;
4889 mpfr_init(t4);
4890 mpfr_mul(t4, left_imag, t2, GMP_RNDN);
4891
4892 mpfr_add(t3, t3, t4, GMP_RNDN);
4893 mpfr_set_ui(real, 0, GMP_RNDN);
4894 mpfr_mul(real, real, t3, GMP_RNDN);
4895
4896 mpfr_mul(t3, left_imag, t, GMP_RNDN);
4897 mpfr_mul(t4, left_real, t2, GMP_RNDN);
4898 mpfr_sub(t3, t3, t4, GMP_RNDN);
4899 mpfr_set_ui(imag, 0, GMP_RNDN);
4900 mpfr_mul(imag, imag, t3, GMP_RNDN);
4901
4902 mpfr_clear(t2);
4903 mpfr_clear(t3);
4904 mpfr_clear(t4);
4905 }
4906 }
4907
4908 mpfr_clear(denom);
4909 mpfr_clear(rr);
4910 mpfr_clear(ri);
4911 mpfr_clear(t);
4912 mpfr_clear(rra);
4913 mpfr_clear(ria);
4914 }
4915 break;
4916 case OPERATOR_MOD:
4917 return false;
4918 case OPERATOR_LSHIFT:
4919 case OPERATOR_RSHIFT:
4920 return false;
4921 default:
4922 gcc_unreachable();
4923 }
4924
4925 Type* type = left_type;
4926 if (type == NULL)
4927 type = right_type;
4928 else if (type != right_type && right_type != NULL)
4929 {
4930 if (type->is_abstract())
4931 type = right_type;
4932 else if (!right_type->is_abstract())
4933 {
4934 // This looks like a type error which should be diagnosed
4935 // elsewhere. Don't do anything here, to avoid an unhelpful
4936 // chain of error messages.
4937 return true;
4938 }
4939 }
4940
4941 if (type != NULL && !type->is_abstract())
4942 {
4943 if ((type != left_type
4944 && !Complex_expression::check_constant(left_real, left_imag,
4945 type, location))
4946 || (type != right_type
4947 && !Complex_expression::check_constant(right_real, right_imag,
4948 type, location))
4949 || !Complex_expression::check_constant(real, imag, type,
4950 location))
4951 {
4952 mpfr_set_ui(real, 0, GMP_RNDN);
4953 mpfr_set_ui(imag, 0, GMP_RNDN);
4954 }
4955 }
4956
4957 return true;
4958 }
4959
4960 // Lower a binary expression. We have to evaluate constant
4961 // expressions now, in order to implement Go's unlimited precision
4962 // constants.
4963
4964 Expression*
4965 Binary_expression::do_lower(Gogo*, Named_object*, int)
4966 {
4967 source_location location = this->location();
4968 Operator op = this->op_;
4969 Expression* left = this->left_;
4970 Expression* right = this->right_;
4971
4972 const bool is_comparison = (op == OPERATOR_EQEQ
4973 || op == OPERATOR_NOTEQ
4974 || op == OPERATOR_LT
4975 || op == OPERATOR_LE
4976 || op == OPERATOR_GT
4977 || op == OPERATOR_GE);
4978
4979 // Integer constant expressions.
4980 {
4981 mpz_t left_val;
4982 mpz_init(left_val);
4983 Type* left_type;
4984 mpz_t right_val;
4985 mpz_init(right_val);
4986 Type* right_type;
4987 if (left->integer_constant_value(false, left_val, &left_type)
4988 && right->integer_constant_value(false, right_val, &right_type))
4989 {
4990 Expression* ret = NULL;
4991 if (left_type != right_type
4992 && left_type != NULL
4993 && right_type != NULL
4994 && left_type->base() != right_type->base()
4995 && op != OPERATOR_LSHIFT
4996 && op != OPERATOR_RSHIFT)
4997 {
4998 // May be a type error--let it be diagnosed later.
4999 }
5000 else if (is_comparison)
5001 {
5002 bool b = Binary_expression::compare_integer(op, left_val,
5003 right_val);
5004 ret = Expression::make_cast(Type::lookup_bool_type(),
5005 Expression::make_boolean(b, location),
5006 location);
5007 }
5008 else
5009 {
5010 mpz_t val;
5011 mpz_init(val);
5012
5013 if (Binary_expression::eval_integer(op, left_type, left_val,
5014 right_type, right_val,
5015 location, val))
5016 {
5017 gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND);
5018 Type* type;
5019 if (op == OPERATOR_LSHIFT || op == OPERATOR_RSHIFT)
5020 type = left_type;
5021 else if (left_type == NULL)
5022 type = right_type;
5023 else if (right_type == NULL)
5024 type = left_type;
5025 else if (!left_type->is_abstract()
5026 && left_type->named_type() != NULL)
5027 type = left_type;
5028 else if (!right_type->is_abstract()
5029 && right_type->named_type() != NULL)
5030 type = right_type;
5031 else if (!left_type->is_abstract())
5032 type = left_type;
5033 else if (!right_type->is_abstract())
5034 type = right_type;
5035 else if (left_type->float_type() != NULL)
5036 type = left_type;
5037 else if (right_type->float_type() != NULL)
5038 type = right_type;
5039 else if (left_type->complex_type() != NULL)
5040 type = left_type;
5041 else if (right_type->complex_type() != NULL)
5042 type = right_type;
5043 else
5044 type = left_type;
5045 ret = Expression::make_integer(&val, type, location);
5046 }
5047
5048 mpz_clear(val);
5049 }
5050
5051 if (ret != NULL)
5052 {
5053 mpz_clear(right_val);
5054 mpz_clear(left_val);
5055 return ret;
5056 }
5057 }
5058 mpz_clear(right_val);
5059 mpz_clear(left_val);
5060 }
5061
5062 // Floating point constant expressions.
5063 {
5064 mpfr_t left_val;
5065 mpfr_init(left_val);
5066 Type* left_type;
5067 mpfr_t right_val;
5068 mpfr_init(right_val);
5069 Type* right_type;
5070 if (left->float_constant_value(left_val, &left_type)
5071 && right->float_constant_value(right_val, &right_type))
5072 {
5073 Expression* ret = NULL;
5074 if (left_type != right_type
5075 && left_type != NULL
5076 && right_type != NULL
5077 && left_type->base() != right_type->base()
5078 && op != OPERATOR_LSHIFT
5079 && op != OPERATOR_RSHIFT)
5080 {
5081 // May be a type error--let it be diagnosed later.
5082 }
5083 else if (is_comparison)
5084 {
5085 bool b = Binary_expression::compare_float(op,
5086 (left_type != NULL
5087 ? left_type
5088 : right_type),
5089 left_val, right_val);
5090 ret = Expression::make_boolean(b, location);
5091 }
5092 else
5093 {
5094 mpfr_t val;
5095 mpfr_init(val);
5096
5097 if (Binary_expression::eval_float(op, left_type, left_val,
5098 right_type, right_val, val,
5099 location))
5100 {
5101 gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND
5102 && op != OPERATOR_LSHIFT && op != OPERATOR_RSHIFT);
5103 Type* type;
5104 if (left_type == NULL)
5105 type = right_type;
5106 else if (right_type == NULL)
5107 type = left_type;
5108 else if (!left_type->is_abstract()
5109 && left_type->named_type() != NULL)
5110 type = left_type;
5111 else if (!right_type->is_abstract()
5112 && right_type->named_type() != NULL)
5113 type = right_type;
5114 else if (!left_type->is_abstract())
5115 type = left_type;
5116 else if (!right_type->is_abstract())
5117 type = right_type;
5118 else if (left_type->float_type() != NULL)
5119 type = left_type;
5120 else if (right_type->float_type() != NULL)
5121 type = right_type;
5122 else
5123 type = left_type;
5124 ret = Expression::make_float(&val, type, location);
5125 }
5126
5127 mpfr_clear(val);
5128 }
5129
5130 if (ret != NULL)
5131 {
5132 mpfr_clear(right_val);
5133 mpfr_clear(left_val);
5134 return ret;
5135 }
5136 }
5137 mpfr_clear(right_val);
5138 mpfr_clear(left_val);
5139 }
5140
5141 // Complex constant expressions.
5142 {
5143 mpfr_t left_real;
5144 mpfr_t left_imag;
5145 mpfr_init(left_real);
5146 mpfr_init(left_imag);
5147 Type* left_type;
5148
5149 mpfr_t right_real;
5150 mpfr_t right_imag;
5151 mpfr_init(right_real);
5152 mpfr_init(right_imag);
5153 Type* right_type;
5154
5155 if (left->complex_constant_value(left_real, left_imag, &left_type)
5156 && right->complex_constant_value(right_real, right_imag, &right_type))
5157 {
5158 Expression* ret = NULL;
5159 if (left_type != right_type
5160 && left_type != NULL
5161 && right_type != NULL
5162 && left_type->base() != right_type->base())
5163 {
5164 // May be a type error--let it be diagnosed later.
5165 }
5166 else if (op == OPERATOR_EQEQ || op == OPERATOR_NOTEQ)
5167 {
5168 bool b = Binary_expression::compare_complex(op,
5169 (left_type != NULL
5170 ? left_type
5171 : right_type),
5172 left_real,
5173 left_imag,
5174 right_real,
5175 right_imag);
5176 ret = Expression::make_boolean(b, location);
5177 }
5178 else
5179 {
5180 mpfr_t real;
5181 mpfr_t imag;
5182 mpfr_init(real);
5183 mpfr_init(imag);
5184
5185 if (Binary_expression::eval_complex(op, left_type,
5186 left_real, left_imag,
5187 right_type,
5188 right_real, right_imag,
5189 real, imag,
5190 location))
5191 {
5192 gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND
5193 && op != OPERATOR_LSHIFT && op != OPERATOR_RSHIFT);
5194 Type* type;
5195 if (left_type == NULL)
5196 type = right_type;
5197 else if (right_type == NULL)
5198 type = left_type;
5199 else if (!left_type->is_abstract()
5200 && left_type->named_type() != NULL)
5201 type = left_type;
5202 else if (!right_type->is_abstract()
5203 && right_type->named_type() != NULL)
5204 type = right_type;
5205 else if (!left_type->is_abstract())
5206 type = left_type;
5207 else if (!right_type->is_abstract())
5208 type = right_type;
5209 else if (left_type->complex_type() != NULL)
5210 type = left_type;
5211 else if (right_type->complex_type() != NULL)
5212 type = right_type;
5213 else
5214 type = left_type;
5215 ret = Expression::make_complex(&real, &imag, type,
5216 location);
5217 }
5218 mpfr_clear(real);
5219 mpfr_clear(imag);
5220 }
5221
5222 if (ret != NULL)
5223 {
5224 mpfr_clear(left_real);
5225 mpfr_clear(left_imag);
5226 mpfr_clear(right_real);
5227 mpfr_clear(right_imag);
5228 return ret;
5229 }
5230 }
5231
5232 mpfr_clear(left_real);
5233 mpfr_clear(left_imag);
5234 mpfr_clear(right_real);
5235 mpfr_clear(right_imag);
5236 }
5237
5238 // String constant expressions.
5239 if (op == OPERATOR_PLUS
5240 && left->type()->is_string_type()
5241 && right->type()->is_string_type())
5242 {
5243 std::string left_string;
5244 std::string right_string;
5245 if (left->string_constant_value(&left_string)
5246 && right->string_constant_value(&right_string))
5247 return Expression::make_string(left_string + right_string, location);
5248 }
5249
5250 return this;
5251 }
5252
5253 // Return the integer constant value, if it has one.
5254
5255 bool
5256 Binary_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
5257 Type** ptype) const
5258 {
5259 mpz_t left_val;
5260 mpz_init(left_val);
5261 Type* left_type;
5262 if (!this->left_->integer_constant_value(iota_is_constant, left_val,
5263 &left_type))
5264 {
5265 mpz_clear(left_val);
5266 return false;
5267 }
5268
5269 mpz_t right_val;
5270 mpz_init(right_val);
5271 Type* right_type;
5272 if (!this->right_->integer_constant_value(iota_is_constant, right_val,
5273 &right_type))
5274 {
5275 mpz_clear(right_val);
5276 mpz_clear(left_val);
5277 return false;
5278 }
5279
5280 bool ret;
5281 if (left_type != right_type
5282 && left_type != NULL
5283 && right_type != NULL
5284 && left_type->base() != right_type->base()
5285 && this->op_ != OPERATOR_RSHIFT
5286 && this->op_ != OPERATOR_LSHIFT)
5287 ret = false;
5288 else
5289 ret = Binary_expression::eval_integer(this->op_, left_type, left_val,
5290 right_type, right_val,
5291 this->location(), val);
5292
5293 mpz_clear(right_val);
5294 mpz_clear(left_val);
5295
5296 if (ret)
5297 *ptype = left_type;
5298
5299 return ret;
5300 }
5301
5302 // Return the floating point constant value, if it has one.
5303
5304 bool
5305 Binary_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
5306 {
5307 mpfr_t left_val;
5308 mpfr_init(left_val);
5309 Type* left_type;
5310 if (!this->left_->float_constant_value(left_val, &left_type))
5311 {
5312 mpfr_clear(left_val);
5313 return false;
5314 }
5315
5316 mpfr_t right_val;
5317 mpfr_init(right_val);
5318 Type* right_type;
5319 if (!this->right_->float_constant_value(right_val, &right_type))
5320 {
5321 mpfr_clear(right_val);
5322 mpfr_clear(left_val);
5323 return false;
5324 }
5325
5326 bool ret;
5327 if (left_type != right_type
5328 && left_type != NULL
5329 && right_type != NULL
5330 && left_type->base() != right_type->base())
5331 ret = false;
5332 else
5333 ret = Binary_expression::eval_float(this->op_, left_type, left_val,
5334 right_type, right_val,
5335 val, this->location());
5336
5337 mpfr_clear(left_val);
5338 mpfr_clear(right_val);
5339
5340 if (ret)
5341 *ptype = left_type;
5342
5343 return ret;
5344 }
5345
5346 // Return the complex constant value, if it has one.
5347
5348 bool
5349 Binary_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
5350 Type** ptype) const
5351 {
5352 mpfr_t left_real;
5353 mpfr_t left_imag;
5354 mpfr_init(left_real);
5355 mpfr_init(left_imag);
5356 Type* left_type;
5357 if (!this->left_->complex_constant_value(left_real, left_imag, &left_type))
5358 {
5359 mpfr_clear(left_real);
5360 mpfr_clear(left_imag);
5361 return false;
5362 }
5363
5364 mpfr_t right_real;
5365 mpfr_t right_imag;
5366 mpfr_init(right_real);
5367 mpfr_init(right_imag);
5368 Type* right_type;
5369 if (!this->right_->complex_constant_value(right_real, right_imag,
5370 &right_type))
5371 {
5372 mpfr_clear(left_real);
5373 mpfr_clear(left_imag);
5374 mpfr_clear(right_real);
5375 mpfr_clear(right_imag);
5376 return false;
5377 }
5378
5379 bool ret;
5380 if (left_type != right_type
5381 && left_type != NULL
5382 && right_type != NULL
5383 && left_type->base() != right_type->base())
5384 ret = false;
5385 else
5386 ret = Binary_expression::eval_complex(this->op_, left_type,
5387 left_real, left_imag,
5388 right_type,
5389 right_real, right_imag,
5390 real, imag,
5391 this->location());
5392 mpfr_clear(left_real);
5393 mpfr_clear(left_imag);
5394 mpfr_clear(right_real);
5395 mpfr_clear(right_imag);
5396
5397 if (ret)
5398 *ptype = left_type;
5399
5400 return ret;
5401 }
5402
5403 // Note that the value is being discarded.
5404
5405 void
5406 Binary_expression::do_discarding_value()
5407 {
5408 if (this->op_ == OPERATOR_OROR || this->op_ == OPERATOR_ANDAND)
5409 this->right_->discarding_value();
5410 else
5411 this->warn_about_unused_value();
5412 }
5413
5414 // Get type.
5415
5416 Type*
5417 Binary_expression::do_type()
5418 {
5419 if (this->classification() == EXPRESSION_ERROR)
5420 return Type::make_error_type();
5421
5422 switch (this->op_)
5423 {
5424 case OPERATOR_OROR:
5425 case OPERATOR_ANDAND:
5426 case OPERATOR_EQEQ:
5427 case OPERATOR_NOTEQ:
5428 case OPERATOR_LT:
5429 case OPERATOR_LE:
5430 case OPERATOR_GT:
5431 case OPERATOR_GE:
5432 return Type::lookup_bool_type();
5433
5434 case OPERATOR_PLUS:
5435 case OPERATOR_MINUS:
5436 case OPERATOR_OR:
5437 case OPERATOR_XOR:
5438 case OPERATOR_MULT:
5439 case OPERATOR_DIV:
5440 case OPERATOR_MOD:
5441 case OPERATOR_AND:
5442 case OPERATOR_BITCLEAR:
5443 {
5444 Type* left_type = this->left_->type();
5445 Type* right_type = this->right_->type();
5446 if (left_type->is_error_type())
5447 return left_type;
5448 else if (right_type->is_error_type())
5449 return right_type;
5450 else if (!Type::are_compatible_for_binop(left_type, right_type))
5451 {
5452 this->report_error(_("incompatible types in binary expression"));
5453 return Type::make_error_type();
5454 }
5455 else if (!left_type->is_abstract() && left_type->named_type() != NULL)
5456 return left_type;
5457 else if (!right_type->is_abstract() && right_type->named_type() != NULL)
5458 return right_type;
5459 else if (!left_type->is_abstract())
5460 return left_type;
5461 else if (!right_type->is_abstract())
5462 return right_type;
5463 else if (left_type->complex_type() != NULL)
5464 return left_type;
5465 else if (right_type->complex_type() != NULL)
5466 return right_type;
5467 else if (left_type->float_type() != NULL)
5468 return left_type;
5469 else if (right_type->float_type() != NULL)
5470 return right_type;
5471 else
5472 return left_type;
5473 }
5474
5475 case OPERATOR_LSHIFT:
5476 case OPERATOR_RSHIFT:
5477 return this->left_->type();
5478
5479 default:
5480 gcc_unreachable();
5481 }
5482 }
5483
5484 // Set type for a binary expression.
5485
5486 void
5487 Binary_expression::do_determine_type(const Type_context* context)
5488 {
5489 Type* tleft = this->left_->type();
5490 Type* tright = this->right_->type();
5491
5492 // Both sides should have the same type, except for the shift
5493 // operations. For a comparison, we should ignore the incoming
5494 // type.
5495
5496 bool is_shift_op = (this->op_ == OPERATOR_LSHIFT
5497 || this->op_ == OPERATOR_RSHIFT);
5498
5499 bool is_comparison = (this->op_ == OPERATOR_EQEQ
5500 || this->op_ == OPERATOR_NOTEQ
5501 || this->op_ == OPERATOR_LT
5502 || this->op_ == OPERATOR_LE
5503 || this->op_ == OPERATOR_GT
5504 || this->op_ == OPERATOR_GE);
5505
5506 Type_context subcontext(*context);
5507
5508 if (is_comparison)
5509 {
5510 // In a comparison, the context does not determine the types of
5511 // the operands.
5512 subcontext.type = NULL;
5513 }
5514
5515 // Set the context for the left hand operand.
5516 if (is_shift_op)
5517 {
5518 // The right hand operand plays no role in determining the type
5519 // of the left hand operand. A shift of an abstract integer in
5520 // a string context gets special treatment, which may be a
5521 // language bug.
5522 if (subcontext.type != NULL
5523 && subcontext.type->is_string_type()
5524 && tleft->is_abstract())
5525 error_at(this->location(), "shift of non-integer operand");
5526 }
5527 else if (!tleft->is_abstract())
5528 subcontext.type = tleft;
5529 else if (!tright->is_abstract())
5530 subcontext.type = tright;
5531 else if (subcontext.type == NULL)
5532 {
5533 if ((tleft->integer_type() != NULL && tright->integer_type() != NULL)
5534 || (tleft->float_type() != NULL && tright->float_type() != NULL)
5535 || (tleft->complex_type() != NULL && tright->complex_type() != NULL))
5536 {
5537 // Both sides have an abstract integer, abstract float, or
5538 // abstract complex type. Just let CONTEXT determine
5539 // whether they may remain abstract or not.
5540 }
5541 else if (tleft->complex_type() != NULL)
5542 subcontext.type = tleft;
5543 else if (tright->complex_type() != NULL)
5544 subcontext.type = tright;
5545 else if (tleft->float_type() != NULL)
5546 subcontext.type = tleft;
5547 else if (tright->float_type() != NULL)
5548 subcontext.type = tright;
5549 else
5550 subcontext.type = tleft;
5551
5552 if (subcontext.type != NULL && !context->may_be_abstract)
5553 subcontext.type = subcontext.type->make_non_abstract_type();
5554 }
5555
5556 this->left_->determine_type(&subcontext);
5557
5558 // The context for the right hand operand is the same as for the
5559 // left hand operand, except for a shift operator.
5560 if (is_shift_op)
5561 {
5562 subcontext.type = Type::lookup_integer_type("uint");
5563 subcontext.may_be_abstract = false;
5564 }
5565
5566 this->right_->determine_type(&subcontext);
5567 }
5568
5569 // Report an error if the binary operator OP does not support TYPE.
5570 // Return whether the operation is OK. This should not be used for
5571 // shift.
5572
5573 bool
5574 Binary_expression::check_operator_type(Operator op, Type* type,
5575 source_location location)
5576 {
5577 switch (op)
5578 {
5579 case OPERATOR_OROR:
5580 case OPERATOR_ANDAND:
5581 if (!type->is_boolean_type())
5582 {
5583 error_at(location, "expected boolean type");
5584 return false;
5585 }
5586 break;
5587
5588 case OPERATOR_EQEQ:
5589 case OPERATOR_NOTEQ:
5590 if (type->integer_type() == NULL
5591 && type->float_type() == NULL
5592 && type->complex_type() == NULL
5593 && !type->is_string_type()
5594 && type->points_to() == NULL
5595 && !type->is_nil_type()
5596 && !type->is_boolean_type()
5597 && type->interface_type() == NULL
5598 && (type->array_type() == NULL
5599 || type->array_type()->length() != NULL)
5600 && type->map_type() == NULL
5601 && type->channel_type() == NULL
5602 && type->function_type() == NULL)
5603 {
5604 error_at(location,
5605 ("expected integer, floating, complex, string, pointer, "
5606 "boolean, interface, slice, map, channel, "
5607 "or function type"));
5608 return false;
5609 }
5610 break;
5611
5612 case OPERATOR_LT:
5613 case OPERATOR_LE:
5614 case OPERATOR_GT:
5615 case OPERATOR_GE:
5616 if (type->integer_type() == NULL
5617 && type->float_type() == NULL
5618 && !type->is_string_type())
5619 {
5620 error_at(location, "expected integer, floating, or string type");
5621 return false;
5622 }
5623 break;
5624
5625 case OPERATOR_PLUS:
5626 case OPERATOR_PLUSEQ:
5627 if (type->integer_type() == NULL
5628 && type->float_type() == NULL
5629 && type->complex_type() == NULL
5630 && !type->is_string_type())
5631 {
5632 error_at(location,
5633 "expected integer, floating, complex, or string type");
5634 return false;
5635 }
5636 break;
5637
5638 case OPERATOR_MINUS:
5639 case OPERATOR_MINUSEQ:
5640 case OPERATOR_MULT:
5641 case OPERATOR_MULTEQ:
5642 case OPERATOR_DIV:
5643 case OPERATOR_DIVEQ:
5644 if (type->integer_type() == NULL
5645 && type->float_type() == NULL
5646 && type->complex_type() == NULL)
5647 {
5648 error_at(location, "expected integer, floating, or complex type");
5649 return false;
5650 }
5651 break;
5652
5653 case OPERATOR_MOD:
5654 case OPERATOR_MODEQ:
5655 case OPERATOR_OR:
5656 case OPERATOR_OREQ:
5657 case OPERATOR_AND:
5658 case OPERATOR_ANDEQ:
5659 case OPERATOR_XOR:
5660 case OPERATOR_XOREQ:
5661 case OPERATOR_BITCLEAR:
5662 case OPERATOR_BITCLEAREQ:
5663 if (type->integer_type() == NULL)
5664 {
5665 error_at(location, "expected integer type");
5666 return false;
5667 }
5668 break;
5669
5670 default:
5671 gcc_unreachable();
5672 }
5673
5674 return true;
5675 }
5676
5677 // Check types.
5678
5679 void
5680 Binary_expression::do_check_types(Gogo*)
5681 {
5682 if (this->classification() == EXPRESSION_ERROR)
5683 return;
5684
5685 Type* left_type = this->left_->type();
5686 Type* right_type = this->right_->type();
5687 if (left_type->is_error_type() || right_type->is_error_type())
5688 {
5689 this->set_is_error();
5690 return;
5691 }
5692
5693 if (this->op_ == OPERATOR_EQEQ
5694 || this->op_ == OPERATOR_NOTEQ
5695 || this->op_ == OPERATOR_LT
5696 || this->op_ == OPERATOR_LE
5697 || this->op_ == OPERATOR_GT
5698 || this->op_ == OPERATOR_GE)
5699 {
5700 if (!Type::are_assignable(left_type, right_type, NULL)
5701 && !Type::are_assignable(right_type, left_type, NULL))
5702 {
5703 this->report_error(_("incompatible types in binary expression"));
5704 return;
5705 }
5706 if (!Binary_expression::check_operator_type(this->op_, left_type,
5707 this->location())
5708 || !Binary_expression::check_operator_type(this->op_, right_type,
5709 this->location()))
5710 {
5711 this->set_is_error();
5712 return;
5713 }
5714 }
5715 else if (this->op_ != OPERATOR_LSHIFT && this->op_ != OPERATOR_RSHIFT)
5716 {
5717 if (!Type::are_compatible_for_binop(left_type, right_type))
5718 {
5719 this->report_error(_("incompatible types in binary expression"));
5720 return;
5721 }
5722 if (!Binary_expression::check_operator_type(this->op_, left_type,
5723 this->location()))
5724 {
5725 this->set_is_error();
5726 return;
5727 }
5728 }
5729 else
5730 {
5731 if (left_type->integer_type() == NULL)
5732 this->report_error(_("shift of non-integer operand"));
5733
5734 if (!right_type->is_abstract()
5735 && (right_type->integer_type() == NULL
5736 || !right_type->integer_type()->is_unsigned()))
5737 this->report_error(_("shift count not unsigned integer"));
5738 else
5739 {
5740 mpz_t val;
5741 mpz_init(val);
5742 Type* type;
5743 if (this->right_->integer_constant_value(true, val, &type))
5744 {
5745 if (mpz_sgn(val) < 0)
5746 this->report_error(_("negative shift count"));
5747 }
5748 mpz_clear(val);
5749 }
5750 }
5751 }
5752
5753 // Get a tree for a binary expression.
5754
5755 tree
5756 Binary_expression::do_get_tree(Translate_context* context)
5757 {
5758 tree left = this->left_->get_tree(context);
5759 tree right = this->right_->get_tree(context);
5760
5761 if (left == error_mark_node || right == error_mark_node)
5762 return error_mark_node;
5763
5764 enum tree_code code;
5765 bool use_left_type = true;
5766 bool is_shift_op = false;
5767 switch (this->op_)
5768 {
5769 case OPERATOR_EQEQ:
5770 case OPERATOR_NOTEQ:
5771 case OPERATOR_LT:
5772 case OPERATOR_LE:
5773 case OPERATOR_GT:
5774 case OPERATOR_GE:
5775 return Expression::comparison_tree(context, this->op_,
5776 this->left_->type(), left,
5777 this->right_->type(), right,
5778 this->location());
5779
5780 case OPERATOR_OROR:
5781 code = TRUTH_ORIF_EXPR;
5782 use_left_type = false;
5783 break;
5784 case OPERATOR_ANDAND:
5785 code = TRUTH_ANDIF_EXPR;
5786 use_left_type = false;
5787 break;
5788 case OPERATOR_PLUS:
5789 code = PLUS_EXPR;
5790 break;
5791 case OPERATOR_MINUS:
5792 code = MINUS_EXPR;
5793 break;
5794 case OPERATOR_OR:
5795 code = BIT_IOR_EXPR;
5796 break;
5797 case OPERATOR_XOR:
5798 code = BIT_XOR_EXPR;
5799 break;
5800 case OPERATOR_MULT:
5801 code = MULT_EXPR;
5802 break;
5803 case OPERATOR_DIV:
5804 {
5805 Type *t = this->left_->type();
5806 if (t->float_type() != NULL || t->complex_type() != NULL)
5807 code = RDIV_EXPR;
5808 else
5809 code = TRUNC_DIV_EXPR;
5810 }
5811 break;
5812 case OPERATOR_MOD:
5813 code = TRUNC_MOD_EXPR;
5814 break;
5815 case OPERATOR_LSHIFT:
5816 code = LSHIFT_EXPR;
5817 is_shift_op = true;
5818 break;
5819 case OPERATOR_RSHIFT:
5820 code = RSHIFT_EXPR;
5821 is_shift_op = true;
5822 break;
5823 case OPERATOR_AND:
5824 code = BIT_AND_EXPR;
5825 break;
5826 case OPERATOR_BITCLEAR:
5827 right = fold_build1(BIT_NOT_EXPR, TREE_TYPE(right), right);
5828 code = BIT_AND_EXPR;
5829 break;
5830 default:
5831 gcc_unreachable();
5832 }
5833
5834 tree type = use_left_type ? TREE_TYPE(left) : TREE_TYPE(right);
5835
5836 if (this->left_->type()->is_string_type())
5837 {
5838 gcc_assert(this->op_ == OPERATOR_PLUS);
5839 tree string_type = Type::make_string_type()->get_tree(context->gogo());
5840 static tree string_plus_decl;
5841 return Gogo::call_builtin(&string_plus_decl,
5842 this->location(),
5843 "__go_string_plus",
5844 2,
5845 string_type,
5846 string_type,
5847 left,
5848 string_type,
5849 right);
5850 }
5851
5852 tree compute_type = excess_precision_type(type);
5853 if (compute_type != NULL_TREE)
5854 {
5855 left = ::convert(compute_type, left);
5856 right = ::convert(compute_type, right);
5857 }
5858
5859 tree eval_saved = NULL_TREE;
5860 if (is_shift_op)
5861 {
5862 // Make sure the values are evaluated.
5863 if (!DECL_P(left) && TREE_SIDE_EFFECTS(left))
5864 {
5865 left = save_expr(left);
5866 eval_saved = left;
5867 }
5868 if (!DECL_P(right) && TREE_SIDE_EFFECTS(right))
5869 {
5870 right = save_expr(right);
5871 if (eval_saved == NULL_TREE)
5872 eval_saved = right;
5873 else
5874 eval_saved = fold_build2_loc(this->location(), COMPOUND_EXPR,
5875 void_type_node, eval_saved, right);
5876 }
5877 }
5878
5879 tree ret = fold_build2_loc(this->location(),
5880 code,
5881 compute_type != NULL_TREE ? compute_type : type,
5882 left, right);
5883
5884 if (compute_type != NULL_TREE)
5885 ret = ::convert(type, ret);
5886
5887 // In Go, a shift larger than the size of the type is well-defined.
5888 // This is not true in GENERIC, so we need to insert a conditional.
5889 if (is_shift_op)
5890 {
5891 gcc_assert(INTEGRAL_TYPE_P(TREE_TYPE(left)));
5892 gcc_assert(this->left_->type()->integer_type() != NULL);
5893 int bits = TYPE_PRECISION(TREE_TYPE(left));
5894
5895 tree compare = fold_build2(LT_EXPR, boolean_type_node, right,
5896 build_int_cst_type(TREE_TYPE(right), bits));
5897
5898 tree overflow_result = fold_convert_loc(this->location(),
5899 TREE_TYPE(left),
5900 integer_zero_node);
5901 if (this->op_ == OPERATOR_RSHIFT
5902 && !this->left_->type()->integer_type()->is_unsigned())
5903 {
5904 tree neg = fold_build2_loc(this->location(), LT_EXPR,
5905 boolean_type_node, left,
5906 fold_convert_loc(this->location(),
5907 TREE_TYPE(left),
5908 integer_zero_node));
5909 tree neg_one = fold_build2_loc(this->location(),
5910 MINUS_EXPR, TREE_TYPE(left),
5911 fold_convert_loc(this->location(),
5912 TREE_TYPE(left),
5913 integer_zero_node),
5914 fold_convert_loc(this->location(),
5915 TREE_TYPE(left),
5916 integer_one_node));
5917 overflow_result = fold_build3_loc(this->location(), COND_EXPR,
5918 TREE_TYPE(left), neg, neg_one,
5919 overflow_result);
5920 }
5921
5922 ret = fold_build3_loc(this->location(), COND_EXPR, TREE_TYPE(left),
5923 compare, ret, overflow_result);
5924
5925 if (eval_saved != NULL_TREE)
5926 ret = fold_build2_loc(this->location(), COMPOUND_EXPR,
5927 TREE_TYPE(ret), eval_saved, ret);
5928 }
5929
5930 return ret;
5931 }
5932
5933 // Export a binary expression.
5934
5935 void
5936 Binary_expression::do_export(Export* exp) const
5937 {
5938 exp->write_c_string("(");
5939 this->left_->export_expression(exp);
5940 switch (this->op_)
5941 {
5942 case OPERATOR_OROR:
5943 exp->write_c_string(" || ");
5944 break;
5945 case OPERATOR_ANDAND:
5946 exp->write_c_string(" && ");
5947 break;
5948 case OPERATOR_EQEQ:
5949 exp->write_c_string(" == ");
5950 break;
5951 case OPERATOR_NOTEQ:
5952 exp->write_c_string(" != ");
5953 break;
5954 case OPERATOR_LT:
5955 exp->write_c_string(" < ");
5956 break;
5957 case OPERATOR_LE:
5958 exp->write_c_string(" <= ");
5959 break;
5960 case OPERATOR_GT:
5961 exp->write_c_string(" > ");
5962 break;
5963 case OPERATOR_GE:
5964 exp->write_c_string(" >= ");
5965 break;
5966 case OPERATOR_PLUS:
5967 exp->write_c_string(" + ");
5968 break;
5969 case OPERATOR_MINUS:
5970 exp->write_c_string(" - ");
5971 break;
5972 case OPERATOR_OR:
5973 exp->write_c_string(" | ");
5974 break;
5975 case OPERATOR_XOR:
5976 exp->write_c_string(" ^ ");
5977 break;
5978 case OPERATOR_MULT:
5979 exp->write_c_string(" * ");
5980 break;
5981 case OPERATOR_DIV:
5982 exp->write_c_string(" / ");
5983 break;
5984 case OPERATOR_MOD:
5985 exp->write_c_string(" % ");
5986 break;
5987 case OPERATOR_LSHIFT:
5988 exp->write_c_string(" << ");
5989 break;
5990 case OPERATOR_RSHIFT:
5991 exp->write_c_string(" >> ");
5992 break;
5993 case OPERATOR_AND:
5994 exp->write_c_string(" & ");
5995 break;
5996 case OPERATOR_BITCLEAR:
5997 exp->write_c_string(" &^ ");
5998 break;
5999 default:
6000 gcc_unreachable();
6001 }
6002 this->right_->export_expression(exp);
6003 exp->write_c_string(")");
6004 }
6005
6006 // Import a binary expression.
6007
6008 Expression*
6009 Binary_expression::do_import(Import* imp)
6010 {
6011 imp->require_c_string("(");
6012
6013 Expression* left = Expression::import_expression(imp);
6014
6015 Operator op;
6016 if (imp->match_c_string(" || "))
6017 {
6018 op = OPERATOR_OROR;
6019 imp->advance(4);
6020 }
6021 else if (imp->match_c_string(" && "))
6022 {
6023 op = OPERATOR_ANDAND;
6024 imp->advance(4);
6025 }
6026 else if (imp->match_c_string(" == "))
6027 {
6028 op = OPERATOR_EQEQ;
6029 imp->advance(4);
6030 }
6031 else if (imp->match_c_string(" != "))
6032 {
6033 op = OPERATOR_NOTEQ;
6034 imp->advance(4);
6035 }
6036 else if (imp->match_c_string(" < "))
6037 {
6038 op = OPERATOR_LT;
6039 imp->advance(3);
6040 }
6041 else if (imp->match_c_string(" <= "))
6042 {
6043 op = OPERATOR_LE;
6044 imp->advance(4);
6045 }
6046 else if (imp->match_c_string(" > "))
6047 {
6048 op = OPERATOR_GT;
6049 imp->advance(3);
6050 }
6051 else if (imp->match_c_string(" >= "))
6052 {
6053 op = OPERATOR_GE;
6054 imp->advance(4);
6055 }
6056 else if (imp->match_c_string(" + "))
6057 {
6058 op = OPERATOR_PLUS;
6059 imp->advance(3);
6060 }
6061 else if (imp->match_c_string(" - "))
6062 {
6063 op = OPERATOR_MINUS;
6064 imp->advance(3);
6065 }
6066 else if (imp->match_c_string(" | "))
6067 {
6068 op = OPERATOR_OR;
6069 imp->advance(3);
6070 }
6071 else if (imp->match_c_string(" ^ "))
6072 {
6073 op = OPERATOR_XOR;
6074 imp->advance(3);
6075 }
6076 else if (imp->match_c_string(" * "))
6077 {
6078 op = OPERATOR_MULT;
6079 imp->advance(3);
6080 }
6081 else if (imp->match_c_string(" / "))
6082 {
6083 op = OPERATOR_DIV;
6084 imp->advance(3);
6085 }
6086 else if (imp->match_c_string(" % "))
6087 {
6088 op = OPERATOR_MOD;
6089 imp->advance(3);
6090 }
6091 else if (imp->match_c_string(" << "))
6092 {
6093 op = OPERATOR_LSHIFT;
6094 imp->advance(4);
6095 }
6096 else if (imp->match_c_string(" >> "))
6097 {
6098 op = OPERATOR_RSHIFT;
6099 imp->advance(4);
6100 }
6101 else if (imp->match_c_string(" & "))
6102 {
6103 op = OPERATOR_AND;
6104 imp->advance(3);
6105 }
6106 else if (imp->match_c_string(" &^ "))
6107 {
6108 op = OPERATOR_BITCLEAR;
6109 imp->advance(4);
6110 }
6111 else
6112 {
6113 error_at(imp->location(), "unrecognized binary operator");
6114 return Expression::make_error(imp->location());
6115 }
6116
6117 Expression* right = Expression::import_expression(imp);
6118
6119 imp->require_c_string(")");
6120
6121 return Expression::make_binary(op, left, right, imp->location());
6122 }
6123
6124 // Make a binary expression.
6125
6126 Expression*
6127 Expression::make_binary(Operator op, Expression* left, Expression* right,
6128 source_location location)
6129 {
6130 return new Binary_expression(op, left, right, location);
6131 }
6132
6133 // Implement a comparison.
6134
6135 tree
6136 Expression::comparison_tree(Translate_context* context, Operator op,
6137 Type* left_type, tree left_tree,
6138 Type* right_type, tree right_tree,
6139 source_location location)
6140 {
6141 enum tree_code code;
6142 switch (op)
6143 {
6144 case OPERATOR_EQEQ:
6145 code = EQ_EXPR;
6146 break;
6147 case OPERATOR_NOTEQ:
6148 code = NE_EXPR;
6149 break;
6150 case OPERATOR_LT:
6151 code = LT_EXPR;
6152 break;
6153 case OPERATOR_LE:
6154 code = LE_EXPR;
6155 break;
6156 case OPERATOR_GT:
6157 code = GT_EXPR;
6158 break;
6159 case OPERATOR_GE:
6160 code = GE_EXPR;
6161 break;
6162 default:
6163 gcc_unreachable();
6164 }
6165
6166 if (left_type->is_string_type() && right_type->is_string_type())
6167 {
6168 tree string_type = Type::make_string_type()->get_tree(context->gogo());
6169 static tree string_compare_decl;
6170 left_tree = Gogo::call_builtin(&string_compare_decl,
6171 location,
6172 "__go_strcmp",
6173 2,
6174 integer_type_node,
6175 string_type,
6176 left_tree,
6177 string_type,
6178 right_tree);
6179 right_tree = build_int_cst_type(integer_type_node, 0);
6180 }
6181 else if ((left_type->interface_type() != NULL
6182 && right_type->interface_type() == NULL
6183 && !right_type->is_nil_type())
6184 || (left_type->interface_type() == NULL
6185 && !left_type->is_nil_type()
6186 && right_type->interface_type() != NULL))
6187 {
6188 // Comparing an interface value to a non-interface value.
6189 if (left_type->interface_type() == NULL)
6190 {
6191 std::swap(left_type, right_type);
6192 std::swap(left_tree, right_tree);
6193 }
6194
6195 // The right operand is not an interface. We need to take its
6196 // address if it is not a pointer.
6197 tree make_tmp;
6198 tree arg;
6199 if (right_type->points_to() != NULL)
6200 {
6201 make_tmp = NULL_TREE;
6202 arg = right_tree;
6203 }
6204 else if (TREE_ADDRESSABLE(TREE_TYPE(right_tree)) || DECL_P(right_tree))
6205 {
6206 make_tmp = NULL_TREE;
6207 arg = build_fold_addr_expr_loc(location, right_tree);
6208 if (DECL_P(right_tree))
6209 TREE_ADDRESSABLE(right_tree) = 1;
6210 }
6211 else
6212 {
6213 tree tmp = create_tmp_var(TREE_TYPE(right_tree),
6214 get_name(right_tree));
6215 DECL_IGNORED_P(tmp) = 0;
6216 DECL_INITIAL(tmp) = right_tree;
6217 TREE_ADDRESSABLE(tmp) = 1;
6218 make_tmp = build1(DECL_EXPR, void_type_node, tmp);
6219 SET_EXPR_LOCATION(make_tmp, location);
6220 arg = build_fold_addr_expr_loc(location, tmp);
6221 }
6222 arg = fold_convert_loc(location, ptr_type_node, arg);
6223
6224 tree descriptor = right_type->type_descriptor_pointer(context->gogo());
6225
6226 if (left_type->interface_type()->is_empty())
6227 {
6228 static tree empty_interface_value_compare_decl;
6229 left_tree = Gogo::call_builtin(&empty_interface_value_compare_decl,
6230 location,
6231 "__go_empty_interface_value_compare",
6232 3,
6233 integer_type_node,
6234 TREE_TYPE(left_tree),
6235 left_tree,
6236 TREE_TYPE(descriptor),
6237 descriptor,
6238 ptr_type_node,
6239 arg);
6240 if (left_tree == error_mark_node)
6241 return error_mark_node;
6242 // This can panic if the type is not comparable.
6243 TREE_NOTHROW(empty_interface_value_compare_decl) = 0;
6244 }
6245 else
6246 {
6247 static tree interface_value_compare_decl;
6248 left_tree = Gogo::call_builtin(&interface_value_compare_decl,
6249 location,
6250 "__go_interface_value_compare",
6251 3,
6252 integer_type_node,
6253 TREE_TYPE(left_tree),
6254 left_tree,
6255 TREE_TYPE(descriptor),
6256 descriptor,
6257 ptr_type_node,
6258 arg);
6259 if (left_tree == error_mark_node)
6260 return error_mark_node;
6261 // This can panic if the type is not comparable.
6262 TREE_NOTHROW(interface_value_compare_decl) = 0;
6263 }
6264 right_tree = build_int_cst_type(integer_type_node, 0);
6265
6266 if (make_tmp != NULL_TREE)
6267 left_tree = build2(COMPOUND_EXPR, TREE_TYPE(left_tree), make_tmp,
6268 left_tree);
6269 }
6270 else if (left_type->interface_type() != NULL
6271 && right_type->interface_type() != NULL)
6272 {
6273 if (left_type->interface_type()->is_empty()
6274 && right_type->interface_type()->is_empty())
6275 {
6276 static tree empty_interface_compare_decl;
6277 left_tree = Gogo::call_builtin(&empty_interface_compare_decl,
6278 location,
6279 "__go_empty_interface_compare",
6280 2,
6281 integer_type_node,
6282 TREE_TYPE(left_tree),
6283 left_tree,
6284 TREE_TYPE(right_tree),
6285 right_tree);
6286 if (left_tree == error_mark_node)
6287 return error_mark_node;
6288 // This can panic if the type is uncomparable.
6289 TREE_NOTHROW(empty_interface_compare_decl) = 0;
6290 }
6291 else if (!left_type->interface_type()->is_empty()
6292 && !right_type->interface_type()->is_empty())
6293 {
6294 static tree interface_compare_decl;
6295 left_tree = Gogo::call_builtin(&interface_compare_decl,
6296 location,
6297 "__go_interface_compare",
6298 2,
6299 integer_type_node,
6300 TREE_TYPE(left_tree),
6301 left_tree,
6302 TREE_TYPE(right_tree),
6303 right_tree);
6304 if (left_tree == error_mark_node)
6305 return error_mark_node;
6306 // This can panic if the type is uncomparable.
6307 TREE_NOTHROW(interface_compare_decl) = 0;
6308 }
6309 else
6310 {
6311 if (left_type->interface_type()->is_empty())
6312 {
6313 gcc_assert(op == OPERATOR_EQEQ || op == OPERATOR_NOTEQ);
6314 std::swap(left_type, right_type);
6315 std::swap(left_tree, right_tree);
6316 }
6317 gcc_assert(!left_type->interface_type()->is_empty());
6318 gcc_assert(right_type->interface_type()->is_empty());
6319 static tree interface_empty_compare_decl;
6320 left_tree = Gogo::call_builtin(&interface_empty_compare_decl,
6321 location,
6322 "__go_interface_empty_compare",
6323 2,
6324 integer_type_node,
6325 TREE_TYPE(left_tree),
6326 left_tree,
6327 TREE_TYPE(right_tree),
6328 right_tree);
6329 if (left_tree == error_mark_node)
6330 return error_mark_node;
6331 // This can panic if the type is uncomparable.
6332 TREE_NOTHROW(interface_empty_compare_decl) = 0;
6333 }
6334
6335 right_tree = build_int_cst_type(integer_type_node, 0);
6336 }
6337
6338 if (left_type->is_nil_type()
6339 && (op == OPERATOR_EQEQ || op == OPERATOR_NOTEQ))
6340 {
6341 std::swap(left_type, right_type);
6342 std::swap(left_tree, right_tree);
6343 }
6344
6345 if (right_type->is_nil_type())
6346 {
6347 if (left_type->array_type() != NULL
6348 && left_type->array_type()->length() == NULL)
6349 {
6350 Array_type* at = left_type->array_type();
6351 left_tree = at->value_pointer_tree(context->gogo(), left_tree);
6352 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
6353 }
6354 else if (left_type->interface_type() != NULL)
6355 {
6356 // An interface is nil if the first field is nil.
6357 tree left_type_tree = TREE_TYPE(left_tree);
6358 gcc_assert(TREE_CODE(left_type_tree) == RECORD_TYPE);
6359 tree field = TYPE_FIELDS(left_type_tree);
6360 left_tree = build3(COMPONENT_REF, TREE_TYPE(field), left_tree,
6361 field, NULL_TREE);
6362 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
6363 }
6364 else
6365 {
6366 gcc_assert(POINTER_TYPE_P(TREE_TYPE(left_tree)));
6367 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
6368 }
6369 }
6370
6371 if (left_tree == error_mark_node || right_tree == error_mark_node)
6372 return error_mark_node;
6373
6374 tree ret = fold_build2(code, boolean_type_node, left_tree, right_tree);
6375 if (CAN_HAVE_LOCATION_P(ret))
6376 SET_EXPR_LOCATION(ret, location);
6377 return ret;
6378 }
6379
6380 // Class Bound_method_expression.
6381
6382 // Traversal.
6383
6384 int
6385 Bound_method_expression::do_traverse(Traverse* traverse)
6386 {
6387 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT)
6388 return TRAVERSE_EXIT;
6389 return Expression::traverse(&this->method_, traverse);
6390 }
6391
6392 // Return the type of a bound method expression. The type of this
6393 // object is really the type of the method with no receiver. We
6394 // should be able to get away with just returning the type of the
6395 // method.
6396
6397 Type*
6398 Bound_method_expression::do_type()
6399 {
6400 return this->method_->type();
6401 }
6402
6403 // Determine the types of a method expression.
6404
6405 void
6406 Bound_method_expression::do_determine_type(const Type_context*)
6407 {
6408 this->method_->determine_type_no_context();
6409 Type* mtype = this->method_->type();
6410 Function_type* fntype = mtype == NULL ? NULL : mtype->function_type();
6411 if (fntype == NULL || !fntype->is_method())
6412 this->expr_->determine_type_no_context();
6413 else
6414 {
6415 Type_context subcontext(fntype->receiver()->type(), false);
6416 this->expr_->determine_type(&subcontext);
6417 }
6418 }
6419
6420 // Check the types of a method expression.
6421
6422 void
6423 Bound_method_expression::do_check_types(Gogo*)
6424 {
6425 Type* type = this->method_->type()->deref();
6426 if (type == NULL
6427 || type->function_type() == NULL
6428 || !type->function_type()->is_method())
6429 this->report_error(_("object is not a method"));
6430 else
6431 {
6432 Type* rtype = type->function_type()->receiver()->type()->deref();
6433 Type* etype = (this->expr_type_ != NULL
6434 ? this->expr_type_
6435 : this->expr_->type());
6436 etype = etype->deref();
6437 if (!Type::are_identical(rtype, etype, true, NULL))
6438 this->report_error(_("method type does not match object type"));
6439 }
6440 }
6441
6442 // Get the tree for a method expression. There is no standard tree
6443 // representation for this. The only places it may currently be used
6444 // are in a Call_expression or a Go_statement, which will take it
6445 // apart directly. So this has nothing to do at present.
6446
6447 tree
6448 Bound_method_expression::do_get_tree(Translate_context*)
6449 {
6450 error_at(this->location(), "reference to method other than calling it");
6451 return error_mark_node;
6452 }
6453
6454 // Make a method expression.
6455
6456 Bound_method_expression*
6457 Expression::make_bound_method(Expression* expr, Expression* method,
6458 source_location location)
6459 {
6460 return new Bound_method_expression(expr, method, location);
6461 }
6462
6463 // Class Builtin_call_expression. This is used for a call to a
6464 // builtin function.
6465
6466 class Builtin_call_expression : public Call_expression
6467 {
6468 public:
6469 Builtin_call_expression(Gogo* gogo, Expression* fn, Expression_list* args,
6470 bool is_varargs, source_location location);
6471
6472 protected:
6473 // This overrides Call_expression::do_lower.
6474 Expression*
6475 do_lower(Gogo*, Named_object*, int);
6476
6477 bool
6478 do_is_constant() const;
6479
6480 bool
6481 do_integer_constant_value(bool, mpz_t, Type**) const;
6482
6483 bool
6484 do_float_constant_value(mpfr_t, Type**) const;
6485
6486 bool
6487 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
6488
6489 Type*
6490 do_type();
6491
6492 void
6493 do_determine_type(const Type_context*);
6494
6495 void
6496 do_check_types(Gogo*);
6497
6498 Expression*
6499 do_copy()
6500 {
6501 return new Builtin_call_expression(this->gogo_, this->fn()->copy(),
6502 this->args()->copy(),
6503 this->is_varargs(),
6504 this->location());
6505 }
6506
6507 tree
6508 do_get_tree(Translate_context*);
6509
6510 void
6511 do_export(Export*) const;
6512
6513 virtual bool
6514 do_is_recover_call() const;
6515
6516 virtual void
6517 do_set_recover_arg(Expression*);
6518
6519 private:
6520 // The builtin functions.
6521 enum Builtin_function_code
6522 {
6523 BUILTIN_INVALID,
6524
6525 // Predeclared builtin functions.
6526 BUILTIN_APPEND,
6527 BUILTIN_CAP,
6528 BUILTIN_CLOSE,
6529 BUILTIN_CLOSED,
6530 BUILTIN_COMPLEX,
6531 BUILTIN_COPY,
6532 BUILTIN_IMAG,
6533 BUILTIN_LEN,
6534 BUILTIN_MAKE,
6535 BUILTIN_NEW,
6536 BUILTIN_PANIC,
6537 BUILTIN_PRINT,
6538 BUILTIN_PRINTLN,
6539 BUILTIN_REAL,
6540 BUILTIN_RECOVER,
6541
6542 // Builtin functions from the unsafe package.
6543 BUILTIN_ALIGNOF,
6544 BUILTIN_OFFSETOF,
6545 BUILTIN_SIZEOF
6546 };
6547
6548 Expression*
6549 one_arg() const;
6550
6551 bool
6552 check_one_arg();
6553
6554 static Type*
6555 real_imag_type(Type*);
6556
6557 static Type*
6558 complex_type(Type*);
6559
6560 // A pointer back to the general IR structure. This avoids a global
6561 // variable, or passing it around everywhere.
6562 Gogo* gogo_;
6563 // The builtin function being called.
6564 Builtin_function_code code_;
6565 // Used to stop endless loops when the length of an array uses len
6566 // or cap of the array itself.
6567 mutable bool seen_;
6568 };
6569
6570 Builtin_call_expression::Builtin_call_expression(Gogo* gogo,
6571 Expression* fn,
6572 Expression_list* args,
6573 bool is_varargs,
6574 source_location location)
6575 : Call_expression(fn, args, is_varargs, location),
6576 gogo_(gogo), code_(BUILTIN_INVALID), seen_(false)
6577 {
6578 Func_expression* fnexp = this->fn()->func_expression();
6579 gcc_assert(fnexp != NULL);
6580 const std::string& name(fnexp->named_object()->name());
6581 if (name == "append")
6582 this->code_ = BUILTIN_APPEND;
6583 else if (name == "cap")
6584 this->code_ = BUILTIN_CAP;
6585 else if (name == "close")
6586 this->code_ = BUILTIN_CLOSE;
6587 else if (name == "closed")
6588 this->code_ = BUILTIN_CLOSED;
6589 else if (name == "complex")
6590 this->code_ = BUILTIN_COMPLEX;
6591 else if (name == "copy")
6592 this->code_ = BUILTIN_COPY;
6593 else if (name == "imag")
6594 this->code_ = BUILTIN_IMAG;
6595 else if (name == "len")
6596 this->code_ = BUILTIN_LEN;
6597 else if (name == "make")
6598 this->code_ = BUILTIN_MAKE;
6599 else if (name == "new")
6600 this->code_ = BUILTIN_NEW;
6601 else if (name == "panic")
6602 this->code_ = BUILTIN_PANIC;
6603 else if (name == "print")
6604 this->code_ = BUILTIN_PRINT;
6605 else if (name == "println")
6606 this->code_ = BUILTIN_PRINTLN;
6607 else if (name == "real")
6608 this->code_ = BUILTIN_REAL;
6609 else if (name == "recover")
6610 this->code_ = BUILTIN_RECOVER;
6611 else if (name == "Alignof")
6612 this->code_ = BUILTIN_ALIGNOF;
6613 else if (name == "Offsetof")
6614 this->code_ = BUILTIN_OFFSETOF;
6615 else if (name == "Sizeof")
6616 this->code_ = BUILTIN_SIZEOF;
6617 else
6618 gcc_unreachable();
6619 }
6620
6621 // Return whether this is a call to recover. This is a virtual
6622 // function called from the parent class.
6623
6624 bool
6625 Builtin_call_expression::do_is_recover_call() const
6626 {
6627 if (this->classification() == EXPRESSION_ERROR)
6628 return false;
6629 return this->code_ == BUILTIN_RECOVER;
6630 }
6631
6632 // Set the argument for a call to recover.
6633
6634 void
6635 Builtin_call_expression::do_set_recover_arg(Expression* arg)
6636 {
6637 const Expression_list* args = this->args();
6638 gcc_assert(args == NULL || args->empty());
6639 Expression_list* new_args = new Expression_list();
6640 new_args->push_back(arg);
6641 this->set_args(new_args);
6642 }
6643
6644 // A traversal class which looks for a call expression.
6645
6646 class Find_call_expression : public Traverse
6647 {
6648 public:
6649 Find_call_expression()
6650 : Traverse(traverse_expressions),
6651 found_(false)
6652 { }
6653
6654 int
6655 expression(Expression**);
6656
6657 bool
6658 found()
6659 { return this->found_; }
6660
6661 private:
6662 bool found_;
6663 };
6664
6665 int
6666 Find_call_expression::expression(Expression** pexpr)
6667 {
6668 if ((*pexpr)->call_expression() != NULL)
6669 {
6670 this->found_ = true;
6671 return TRAVERSE_EXIT;
6672 }
6673 return TRAVERSE_CONTINUE;
6674 }
6675
6676 // Lower a builtin call expression. This turns new and make into
6677 // specific expressions. We also convert to a constant if we can.
6678
6679 Expression*
6680 Builtin_call_expression::do_lower(Gogo* gogo, Named_object* function, int)
6681 {
6682 if (this->code_ == BUILTIN_NEW)
6683 {
6684 const Expression_list* args = this->args();
6685 if (args == NULL || args->size() < 1)
6686 this->report_error(_("not enough arguments"));
6687 else if (args->size() > 1)
6688 this->report_error(_("too many arguments"));
6689 else
6690 {
6691 Expression* arg = args->front();
6692 if (!arg->is_type_expression())
6693 {
6694 error_at(arg->location(), "expected type");
6695 this->set_is_error();
6696 }
6697 else
6698 return Expression::make_allocation(arg->type(), this->location());
6699 }
6700 }
6701 else if (this->code_ == BUILTIN_MAKE)
6702 {
6703 const Expression_list* args = this->args();
6704 if (args == NULL || args->size() < 1)
6705 this->report_error(_("not enough arguments"));
6706 else
6707 {
6708 Expression* arg = args->front();
6709 if (!arg->is_type_expression())
6710 {
6711 error_at(arg->location(), "expected type");
6712 this->set_is_error();
6713 }
6714 else
6715 {
6716 Expression_list* newargs;
6717 if (args->size() == 1)
6718 newargs = NULL;
6719 else
6720 {
6721 newargs = new Expression_list();
6722 Expression_list::const_iterator p = args->begin();
6723 ++p;
6724 for (; p != args->end(); ++p)
6725 newargs->push_back(*p);
6726 }
6727 return Expression::make_make(arg->type(), newargs,
6728 this->location());
6729 }
6730 }
6731 }
6732 else if (this->is_constant())
6733 {
6734 // We can only lower len and cap if there are no function calls
6735 // in the arguments. Otherwise we have to make the call.
6736 if (this->code_ == BUILTIN_LEN || this->code_ == BUILTIN_CAP)
6737 {
6738 Expression* arg = this->one_arg();
6739 if (!arg->is_constant())
6740 {
6741 Find_call_expression find_call;
6742 Expression::traverse(&arg, &find_call);
6743 if (find_call.found())
6744 return this;
6745 }
6746 }
6747
6748 mpz_t ival;
6749 mpz_init(ival);
6750 Type* type;
6751 if (this->integer_constant_value(true, ival, &type))
6752 {
6753 Expression* ret = Expression::make_integer(&ival, type,
6754 this->location());
6755 mpz_clear(ival);
6756 return ret;
6757 }
6758 mpz_clear(ival);
6759
6760 mpfr_t rval;
6761 mpfr_init(rval);
6762 if (this->float_constant_value(rval, &type))
6763 {
6764 Expression* ret = Expression::make_float(&rval, type,
6765 this->location());
6766 mpfr_clear(rval);
6767 return ret;
6768 }
6769
6770 mpfr_t imag;
6771 mpfr_init(imag);
6772 if (this->complex_constant_value(rval, imag, &type))
6773 {
6774 Expression* ret = Expression::make_complex(&rval, &imag, type,
6775 this->location());
6776 mpfr_clear(rval);
6777 mpfr_clear(imag);
6778 return ret;
6779 }
6780 mpfr_clear(rval);
6781 mpfr_clear(imag);
6782 }
6783 else if (this->code_ == BUILTIN_RECOVER)
6784 {
6785 if (function != NULL)
6786 function->func_value()->set_calls_recover();
6787 else
6788 {
6789 // Calling recover outside of a function always returns the
6790 // nil empty interface.
6791 Type* eface = Type::make_interface_type(NULL, this->location());
6792 return Expression::make_cast(eface,
6793 Expression::make_nil(this->location()),
6794 this->location());
6795 }
6796 }
6797 else if (this->code_ == BUILTIN_APPEND)
6798 {
6799 // Lower the varargs.
6800 const Expression_list* args = this->args();
6801 if (args == NULL || args->empty())
6802 return this;
6803 Type* slice_type = args->front()->type();
6804 if (!slice_type->is_open_array_type())
6805 {
6806 error_at(args->front()->location(), "argument 1 must be a slice");
6807 this->set_is_error();
6808 return this;
6809 }
6810 return this->lower_varargs(gogo, function, slice_type, 2);
6811 }
6812
6813 return this;
6814 }
6815
6816 // Return the type of the real or imag functions, given the type of
6817 // the argument. We need to map complex to float, complex64 to
6818 // float32, and complex128 to float64, so it has to be done by name.
6819 // This returns NULL if it can't figure out the type.
6820
6821 Type*
6822 Builtin_call_expression::real_imag_type(Type* arg_type)
6823 {
6824 if (arg_type == NULL || arg_type->is_abstract())
6825 return NULL;
6826 Named_type* nt = arg_type->named_type();
6827 if (nt == NULL)
6828 return NULL;
6829 while (nt->real_type()->named_type() != NULL)
6830 nt = nt->real_type()->named_type();
6831 if (nt->name() == "complex64")
6832 return Type::lookup_float_type("float32");
6833 else if (nt->name() == "complex128")
6834 return Type::lookup_float_type("float64");
6835 else
6836 return NULL;
6837 }
6838
6839 // Return the type of the complex function, given the type of one of the
6840 // argments. Like real_imag_type, we have to map by name.
6841
6842 Type*
6843 Builtin_call_expression::complex_type(Type* arg_type)
6844 {
6845 if (arg_type == NULL || arg_type->is_abstract())
6846 return NULL;
6847 Named_type* nt = arg_type->named_type();
6848 if (nt == NULL)
6849 return NULL;
6850 while (nt->real_type()->named_type() != NULL)
6851 nt = nt->real_type()->named_type();
6852 if (nt->name() == "float32")
6853 return Type::lookup_complex_type("complex64");
6854 else if (nt->name() == "float64")
6855 return Type::lookup_complex_type("complex128");
6856 else
6857 return NULL;
6858 }
6859
6860 // Return a single argument, or NULL if there isn't one.
6861
6862 Expression*
6863 Builtin_call_expression::one_arg() const
6864 {
6865 const Expression_list* args = this->args();
6866 if (args->size() != 1)
6867 return NULL;
6868 return args->front();
6869 }
6870
6871 // Return whether this is constant: len of a string, or len or cap of
6872 // a fixed array, or unsafe.Sizeof, unsafe.Offsetof, unsafe.Alignof.
6873
6874 bool
6875 Builtin_call_expression::do_is_constant() const
6876 {
6877 switch (this->code_)
6878 {
6879 case BUILTIN_LEN:
6880 case BUILTIN_CAP:
6881 {
6882 if (this->seen_)
6883 return false;
6884
6885 Expression* arg = this->one_arg();
6886 if (arg == NULL)
6887 return false;
6888 Type* arg_type = arg->type();
6889
6890 if (arg_type->points_to() != NULL
6891 && arg_type->points_to()->array_type() != NULL
6892 && !arg_type->points_to()->is_open_array_type())
6893 arg_type = arg_type->points_to();
6894
6895 if (arg_type->array_type() != NULL
6896 && arg_type->array_type()->length() != NULL)
6897 return true;
6898
6899 if (this->code_ == BUILTIN_LEN && arg_type->is_string_type())
6900 {
6901 this->seen_ = true;
6902 bool ret = arg->is_constant();
6903 this->seen_ = false;
6904 return ret;
6905 }
6906 }
6907 break;
6908
6909 case BUILTIN_SIZEOF:
6910 case BUILTIN_ALIGNOF:
6911 return this->one_arg() != NULL;
6912
6913 case BUILTIN_OFFSETOF:
6914 {
6915 Expression* arg = this->one_arg();
6916 if (arg == NULL)
6917 return false;
6918 return arg->field_reference_expression() != NULL;
6919 }
6920
6921 case BUILTIN_COMPLEX:
6922 {
6923 const Expression_list* args = this->args();
6924 if (args != NULL && args->size() == 2)
6925 return args->front()->is_constant() && args->back()->is_constant();
6926 }
6927 break;
6928
6929 case BUILTIN_REAL:
6930 case BUILTIN_IMAG:
6931 {
6932 Expression* arg = this->one_arg();
6933 return arg != NULL && arg->is_constant();
6934 }
6935
6936 default:
6937 break;
6938 }
6939
6940 return false;
6941 }
6942
6943 // Return an integer constant value if possible.
6944
6945 bool
6946 Builtin_call_expression::do_integer_constant_value(bool iota_is_constant,
6947 mpz_t val,
6948 Type** ptype) const
6949 {
6950 if (this->code_ == BUILTIN_LEN
6951 || this->code_ == BUILTIN_CAP)
6952 {
6953 Expression* arg = this->one_arg();
6954 if (arg == NULL)
6955 return false;
6956 Type* arg_type = arg->type();
6957
6958 if (this->code_ == BUILTIN_LEN && arg_type->is_string_type())
6959 {
6960 std::string sval;
6961 if (arg->string_constant_value(&sval))
6962 {
6963 mpz_set_ui(val, sval.length());
6964 *ptype = Type::lookup_integer_type("int");
6965 return true;
6966 }
6967 }
6968
6969 if (arg_type->points_to() != NULL
6970 && arg_type->points_to()->array_type() != NULL
6971 && !arg_type->points_to()->is_open_array_type())
6972 arg_type = arg_type->points_to();
6973
6974 if (arg_type->array_type() != NULL
6975 && arg_type->array_type()->length() != NULL)
6976 {
6977 if (this->seen_)
6978 return false;
6979 Expression* e = arg_type->array_type()->length();
6980 this->seen_ = true;
6981 bool r = e->integer_constant_value(iota_is_constant, val, ptype);
6982 this->seen_ = false;
6983 if (r)
6984 {
6985 *ptype = Type::lookup_integer_type("int");
6986 return true;
6987 }
6988 }
6989 }
6990 else if (this->code_ == BUILTIN_SIZEOF
6991 || this->code_ == BUILTIN_ALIGNOF)
6992 {
6993 Expression* arg = this->one_arg();
6994 if (arg == NULL)
6995 return false;
6996 Type* arg_type = arg->type();
6997 if (arg_type->is_error_type() || arg_type->is_undefined())
6998 return false;
6999 if (arg_type->is_abstract())
7000 return false;
7001 tree arg_type_tree = arg_type->get_tree(this->gogo_);
7002 if (arg_type_tree == error_mark_node)
7003 return false;
7004 unsigned long val_long;
7005 if (this->code_ == BUILTIN_SIZEOF)
7006 {
7007 tree type_size = TYPE_SIZE_UNIT(arg_type_tree);
7008 gcc_assert(TREE_CODE(type_size) == INTEGER_CST);
7009 if (TREE_INT_CST_HIGH(type_size) != 0)
7010 return false;
7011 unsigned HOST_WIDE_INT val_wide = TREE_INT_CST_LOW(type_size);
7012 val_long = static_cast<unsigned long>(val_wide);
7013 if (val_long != val_wide)
7014 return false;
7015 }
7016 else if (this->code_ == BUILTIN_ALIGNOF)
7017 {
7018 if (arg->field_reference_expression() == NULL)
7019 val_long = go_type_alignment(arg_type_tree);
7020 else
7021 {
7022 // Calling unsafe.Alignof(s.f) returns the alignment of
7023 // the type of f when it is used as a field in a struct.
7024 val_long = go_field_alignment(arg_type_tree);
7025 }
7026 }
7027 else
7028 gcc_unreachable();
7029 mpz_set_ui(val, val_long);
7030 *ptype = NULL;
7031 return true;
7032 }
7033 else if (this->code_ == BUILTIN_OFFSETOF)
7034 {
7035 Expression* arg = this->one_arg();
7036 if (arg == NULL)
7037 return false;
7038 Field_reference_expression* farg = arg->field_reference_expression();
7039 if (farg == NULL)
7040 return false;
7041 Expression* struct_expr = farg->expr();
7042 Type* st = struct_expr->type();
7043 if (st->struct_type() == NULL)
7044 return false;
7045 tree struct_tree = st->get_tree(this->gogo_);
7046 gcc_assert(TREE_CODE(struct_tree) == RECORD_TYPE);
7047 tree field = TYPE_FIELDS(struct_tree);
7048 for (unsigned int index = farg->field_index(); index > 0; --index)
7049 {
7050 field = DECL_CHAIN(field);
7051 gcc_assert(field != NULL_TREE);
7052 }
7053 HOST_WIDE_INT offset_wide = int_byte_position (field);
7054 if (offset_wide < 0)
7055 return false;
7056 unsigned long offset_long = static_cast<unsigned long>(offset_wide);
7057 if (offset_long != static_cast<unsigned HOST_WIDE_INT>(offset_wide))
7058 return false;
7059 mpz_set_ui(val, offset_long);
7060 return true;
7061 }
7062 return false;
7063 }
7064
7065 // Return a floating point constant value if possible.
7066
7067 bool
7068 Builtin_call_expression::do_float_constant_value(mpfr_t val,
7069 Type** ptype) const
7070 {
7071 if (this->code_ == BUILTIN_REAL || this->code_ == BUILTIN_IMAG)
7072 {
7073 Expression* arg = this->one_arg();
7074 if (arg == NULL)
7075 return false;
7076
7077 mpfr_t real;
7078 mpfr_t imag;
7079 mpfr_init(real);
7080 mpfr_init(imag);
7081
7082 bool ret = false;
7083 Type* type;
7084 if (arg->complex_constant_value(real, imag, &type))
7085 {
7086 if (this->code_ == BUILTIN_REAL)
7087 mpfr_set(val, real, GMP_RNDN);
7088 else
7089 mpfr_set(val, imag, GMP_RNDN);
7090 *ptype = Builtin_call_expression::real_imag_type(type);
7091 ret = true;
7092 }
7093
7094 mpfr_clear(real);
7095 mpfr_clear(imag);
7096 return ret;
7097 }
7098
7099 return false;
7100 }
7101
7102 // Return a complex constant value if possible.
7103
7104 bool
7105 Builtin_call_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
7106 Type** ptype) const
7107 {
7108 if (this->code_ == BUILTIN_COMPLEX)
7109 {
7110 const Expression_list* args = this->args();
7111 if (args == NULL || args->size() != 2)
7112 return false;
7113
7114 mpfr_t r;
7115 mpfr_init(r);
7116 Type* rtype;
7117 if (!args->front()->float_constant_value(r, &rtype))
7118 {
7119 mpfr_clear(r);
7120 return false;
7121 }
7122
7123 mpfr_t i;
7124 mpfr_init(i);
7125
7126 bool ret = false;
7127 Type* itype;
7128 if (args->back()->float_constant_value(i, &itype)
7129 && Type::are_identical(rtype, itype, false, NULL))
7130 {
7131 mpfr_set(real, r, GMP_RNDN);
7132 mpfr_set(imag, i, GMP_RNDN);
7133 *ptype = Builtin_call_expression::complex_type(rtype);
7134 ret = true;
7135 }
7136
7137 mpfr_clear(r);
7138 mpfr_clear(i);
7139
7140 return ret;
7141 }
7142
7143 return false;
7144 }
7145
7146 // Return the type.
7147
7148 Type*
7149 Builtin_call_expression::do_type()
7150 {
7151 switch (this->code_)
7152 {
7153 case BUILTIN_INVALID:
7154 default:
7155 gcc_unreachable();
7156
7157 case BUILTIN_NEW:
7158 case BUILTIN_MAKE:
7159 {
7160 const Expression_list* args = this->args();
7161 if (args == NULL || args->empty())
7162 return Type::make_error_type();
7163 return Type::make_pointer_type(args->front()->type());
7164 }
7165
7166 case BUILTIN_CAP:
7167 case BUILTIN_COPY:
7168 case BUILTIN_LEN:
7169 case BUILTIN_ALIGNOF:
7170 case BUILTIN_OFFSETOF:
7171 case BUILTIN_SIZEOF:
7172 return Type::lookup_integer_type("int");
7173
7174 case BUILTIN_CLOSE:
7175 case BUILTIN_PANIC:
7176 case BUILTIN_PRINT:
7177 case BUILTIN_PRINTLN:
7178 return Type::make_void_type();
7179
7180 case BUILTIN_CLOSED:
7181 return Type::lookup_bool_type();
7182
7183 case BUILTIN_RECOVER:
7184 return Type::make_interface_type(NULL, BUILTINS_LOCATION);
7185
7186 case BUILTIN_APPEND:
7187 {
7188 const Expression_list* args = this->args();
7189 if (args == NULL || args->empty())
7190 return Type::make_error_type();
7191 return args->front()->type();
7192 }
7193
7194 case BUILTIN_REAL:
7195 case BUILTIN_IMAG:
7196 {
7197 Expression* arg = this->one_arg();
7198 if (arg == NULL)
7199 return Type::make_error_type();
7200 Type* t = arg->type();
7201 if (t->is_abstract())
7202 t = t->make_non_abstract_type();
7203 t = Builtin_call_expression::real_imag_type(t);
7204 if (t == NULL)
7205 t = Type::make_error_type();
7206 return t;
7207 }
7208
7209 case BUILTIN_COMPLEX:
7210 {
7211 const Expression_list* args = this->args();
7212 if (args == NULL || args->size() != 2)
7213 return Type::make_error_type();
7214 Type* t = args->front()->type();
7215 if (t->is_abstract())
7216 {
7217 t = args->back()->type();
7218 if (t->is_abstract())
7219 t = t->make_non_abstract_type();
7220 }
7221 t = Builtin_call_expression::complex_type(t);
7222 if (t == NULL)
7223 t = Type::make_error_type();
7224 return t;
7225 }
7226 }
7227 }
7228
7229 // Determine the type.
7230
7231 void
7232 Builtin_call_expression::do_determine_type(const Type_context* context)
7233 {
7234 this->fn()->determine_type_no_context();
7235
7236 const Expression_list* args = this->args();
7237
7238 bool is_print;
7239 Type* arg_type = NULL;
7240 switch (this->code_)
7241 {
7242 case BUILTIN_PRINT:
7243 case BUILTIN_PRINTLN:
7244 // Do not force a large integer constant to "int".
7245 is_print = true;
7246 break;
7247
7248 case BUILTIN_REAL:
7249 case BUILTIN_IMAG:
7250 arg_type = Builtin_call_expression::complex_type(context->type);
7251 is_print = false;
7252 break;
7253
7254 case BUILTIN_COMPLEX:
7255 {
7256 // For the complex function the type of one operand can
7257 // determine the type of the other, as in a binary expression.
7258 arg_type = Builtin_call_expression::real_imag_type(context->type);
7259 if (args != NULL && args->size() == 2)
7260 {
7261 Type* t1 = args->front()->type();
7262 Type* t2 = args->front()->type();
7263 if (!t1->is_abstract())
7264 arg_type = t1;
7265 else if (!t2->is_abstract())
7266 arg_type = t2;
7267 }
7268 is_print = false;
7269 }
7270 break;
7271
7272 default:
7273 is_print = false;
7274 break;
7275 }
7276
7277 if (args != NULL)
7278 {
7279 for (Expression_list::const_iterator pa = args->begin();
7280 pa != args->end();
7281 ++pa)
7282 {
7283 Type_context subcontext;
7284 subcontext.type = arg_type;
7285
7286 if (is_print)
7287 {
7288 // We want to print large constants, we so can't just
7289 // use the appropriate nonabstract type. Use uint64 for
7290 // an integer if we know it is nonnegative, otherwise
7291 // use int64 for a integer, otherwise use float64 for a
7292 // float or complex128 for a complex.
7293 Type* want_type = NULL;
7294 Type* atype = (*pa)->type();
7295 if (atype->is_abstract())
7296 {
7297 if (atype->integer_type() != NULL)
7298 {
7299 mpz_t val;
7300 mpz_init(val);
7301 Type* dummy;
7302 if (this->integer_constant_value(true, val, &dummy)
7303 && mpz_sgn(val) >= 0)
7304 want_type = Type::lookup_integer_type("uint64");
7305 else
7306 want_type = Type::lookup_integer_type("int64");
7307 mpz_clear(val);
7308 }
7309 else if (atype->float_type() != NULL)
7310 want_type = Type::lookup_float_type("float64");
7311 else if (atype->complex_type() != NULL)
7312 want_type = Type::lookup_complex_type("complex128");
7313 else if (atype->is_abstract_string_type())
7314 want_type = Type::lookup_string_type();
7315 else if (atype->is_abstract_boolean_type())
7316 want_type = Type::lookup_bool_type();
7317 else
7318 gcc_unreachable();
7319 subcontext.type = want_type;
7320 }
7321 }
7322
7323 (*pa)->determine_type(&subcontext);
7324 }
7325 }
7326 }
7327
7328 // If there is exactly one argument, return true. Otherwise give an
7329 // error message and return false.
7330
7331 bool
7332 Builtin_call_expression::check_one_arg()
7333 {
7334 const Expression_list* args = this->args();
7335 if (args == NULL || args->size() < 1)
7336 {
7337 this->report_error(_("not enough arguments"));
7338 return false;
7339 }
7340 else if (args->size() > 1)
7341 {
7342 this->report_error(_("too many arguments"));
7343 return false;
7344 }
7345 if (args->front()->is_error_expression()
7346 || args->front()->type()->is_error_type()
7347 || args->front()->type()->is_undefined())
7348 {
7349 this->set_is_error();
7350 return false;
7351 }
7352 return true;
7353 }
7354
7355 // Check argument types for a builtin function.
7356
7357 void
7358 Builtin_call_expression::do_check_types(Gogo*)
7359 {
7360 switch (this->code_)
7361 {
7362 case BUILTIN_INVALID:
7363 case BUILTIN_NEW:
7364 case BUILTIN_MAKE:
7365 return;
7366
7367 case BUILTIN_LEN:
7368 case BUILTIN_CAP:
7369 {
7370 // The single argument may be either a string or an array or a
7371 // map or a channel, or a pointer to a closed array.
7372 if (this->check_one_arg())
7373 {
7374 Type* arg_type = this->one_arg()->type();
7375 if (arg_type->points_to() != NULL
7376 && arg_type->points_to()->array_type() != NULL
7377 && !arg_type->points_to()->is_open_array_type())
7378 arg_type = arg_type->points_to();
7379 if (this->code_ == BUILTIN_CAP)
7380 {
7381 if (!arg_type->is_error_type()
7382 && arg_type->array_type() == NULL
7383 && arg_type->channel_type() == NULL)
7384 this->report_error(_("argument must be array or slice "
7385 "or channel"));
7386 }
7387 else
7388 {
7389 if (!arg_type->is_error_type()
7390 && !arg_type->is_string_type()
7391 && arg_type->array_type() == NULL
7392 && arg_type->map_type() == NULL
7393 && arg_type->channel_type() == NULL)
7394 this->report_error(_("argument must be string or "
7395 "array or slice or map or channel"));
7396 }
7397 }
7398 }
7399 break;
7400
7401 case BUILTIN_PRINT:
7402 case BUILTIN_PRINTLN:
7403 {
7404 const Expression_list* args = this->args();
7405 if (args == NULL)
7406 {
7407 if (this->code_ == BUILTIN_PRINT)
7408 warning_at(this->location(), 0,
7409 "no arguments for builtin function %<%s%>",
7410 (this->code_ == BUILTIN_PRINT
7411 ? "print"
7412 : "println"));
7413 }
7414 else
7415 {
7416 for (Expression_list::const_iterator p = args->begin();
7417 p != args->end();
7418 ++p)
7419 {
7420 Type* type = (*p)->type();
7421 if (type->is_error_type()
7422 || type->is_string_type()
7423 || type->integer_type() != NULL
7424 || type->float_type() != NULL
7425 || type->complex_type() != NULL
7426 || type->is_boolean_type()
7427 || type->points_to() != NULL
7428 || type->interface_type() != NULL
7429 || type->channel_type() != NULL
7430 || type->map_type() != NULL
7431 || type->function_type() != NULL
7432 || type->is_open_array_type())
7433 ;
7434 else
7435 this->report_error(_("unsupported argument type to "
7436 "builtin function"));
7437 }
7438 }
7439 }
7440 break;
7441
7442 case BUILTIN_CLOSE:
7443 case BUILTIN_CLOSED:
7444 if (this->check_one_arg())
7445 {
7446 if (this->one_arg()->type()->channel_type() == NULL)
7447 this->report_error(_("argument must be channel"));
7448 }
7449 break;
7450
7451 case BUILTIN_PANIC:
7452 case BUILTIN_SIZEOF:
7453 case BUILTIN_ALIGNOF:
7454 this->check_one_arg();
7455 break;
7456
7457 case BUILTIN_RECOVER:
7458 if (this->args() != NULL && !this->args()->empty())
7459 this->report_error(_("too many arguments"));
7460 break;
7461
7462 case BUILTIN_OFFSETOF:
7463 if (this->check_one_arg())
7464 {
7465 Expression* arg = this->one_arg();
7466 if (arg->field_reference_expression() == NULL)
7467 this->report_error(_("argument must be a field reference"));
7468 }
7469 break;
7470
7471 case BUILTIN_COPY:
7472 {
7473 const Expression_list* args = this->args();
7474 if (args == NULL || args->size() < 2)
7475 {
7476 this->report_error(_("not enough arguments"));
7477 break;
7478 }
7479 else if (args->size() > 2)
7480 {
7481 this->report_error(_("too many arguments"));
7482 break;
7483 }
7484 Type* arg1_type = args->front()->type();
7485 Type* arg2_type = args->back()->type();
7486 if (arg1_type->is_error_type() || arg2_type->is_error_type())
7487 break;
7488
7489 Type* e1;
7490 if (arg1_type->is_open_array_type())
7491 e1 = arg1_type->array_type()->element_type();
7492 else
7493 {
7494 this->report_error(_("left argument must be a slice"));
7495 break;
7496 }
7497
7498 Type* e2;
7499 if (arg2_type->is_open_array_type())
7500 e2 = arg2_type->array_type()->element_type();
7501 else if (arg2_type->is_string_type())
7502 e2 = Type::lookup_integer_type("uint8");
7503 else
7504 {
7505 this->report_error(_("right argument must be a slice or a string"));
7506 break;
7507 }
7508
7509 if (!Type::are_identical(e1, e2, true, NULL))
7510 this->report_error(_("element types must be the same"));
7511 }
7512 break;
7513
7514 case BUILTIN_APPEND:
7515 {
7516 const Expression_list* args = this->args();
7517 if (args == NULL || args->size() < 2)
7518 {
7519 this->report_error(_("not enough arguments"));
7520 break;
7521 }
7522 if (args->size() > 2)
7523 {
7524 this->report_error(_("too many arguments"));
7525 break;
7526 }
7527 std::string reason;
7528 if (!Type::are_assignable(args->front()->type(), args->back()->type(),
7529 &reason))
7530 {
7531 if (reason.empty())
7532 this->report_error(_("arguments 1 and 2 have different types"));
7533 else
7534 {
7535 error_at(this->location(),
7536 "arguments 1 and 2 have different types (%s)",
7537 reason.c_str());
7538 this->set_is_error();
7539 }
7540 }
7541 break;
7542 }
7543
7544 case BUILTIN_REAL:
7545 case BUILTIN_IMAG:
7546 if (this->check_one_arg())
7547 {
7548 if (this->one_arg()->type()->complex_type() == NULL)
7549 this->report_error(_("argument must have complex type"));
7550 }
7551 break;
7552
7553 case BUILTIN_COMPLEX:
7554 {
7555 const Expression_list* args = this->args();
7556 if (args == NULL || args->size() < 2)
7557 this->report_error(_("not enough arguments"));
7558 else if (args->size() > 2)
7559 this->report_error(_("too many arguments"));
7560 else if (args->front()->is_error_expression()
7561 || args->front()->type()->is_error_type()
7562 || args->back()->is_error_expression()
7563 || args->back()->type()->is_error_type())
7564 this->set_is_error();
7565 else if (!Type::are_identical(args->front()->type(),
7566 args->back()->type(), true, NULL))
7567 this->report_error(_("complex arguments must have identical types"));
7568 else if (args->front()->type()->float_type() == NULL)
7569 this->report_error(_("complex arguments must have "
7570 "floating-point type"));
7571 }
7572 break;
7573
7574 default:
7575 gcc_unreachable();
7576 }
7577 }
7578
7579 // Return the tree for a builtin function.
7580
7581 tree
7582 Builtin_call_expression::do_get_tree(Translate_context* context)
7583 {
7584 Gogo* gogo = context->gogo();
7585 source_location location = this->location();
7586 switch (this->code_)
7587 {
7588 case BUILTIN_INVALID:
7589 case BUILTIN_NEW:
7590 case BUILTIN_MAKE:
7591 gcc_unreachable();
7592
7593 case BUILTIN_LEN:
7594 case BUILTIN_CAP:
7595 {
7596 const Expression_list* args = this->args();
7597 gcc_assert(args != NULL && args->size() == 1);
7598 Expression* arg = *args->begin();
7599 Type* arg_type = arg->type();
7600
7601 if (this->seen_)
7602 {
7603 gcc_assert(saw_errors());
7604 return error_mark_node;
7605 }
7606 this->seen_ = true;
7607
7608 tree arg_tree = arg->get_tree(context);
7609
7610 this->seen_ = false;
7611
7612 if (arg_tree == error_mark_node)
7613 return error_mark_node;
7614
7615 if (arg_type->points_to() != NULL)
7616 {
7617 arg_type = arg_type->points_to();
7618 gcc_assert(arg_type->array_type() != NULL
7619 && !arg_type->is_open_array_type());
7620 gcc_assert(POINTER_TYPE_P(TREE_TYPE(arg_tree)));
7621 arg_tree = build_fold_indirect_ref(arg_tree);
7622 }
7623
7624 tree val_tree;
7625 if (this->code_ == BUILTIN_LEN)
7626 {
7627 if (arg_type->is_string_type())
7628 val_tree = String_type::length_tree(gogo, arg_tree);
7629 else if (arg_type->array_type() != NULL)
7630 {
7631 if (this->seen_)
7632 {
7633 gcc_assert(saw_errors());
7634 return error_mark_node;
7635 }
7636 this->seen_ = true;
7637 val_tree = arg_type->array_type()->length_tree(gogo, arg_tree);
7638 this->seen_ = false;
7639 }
7640 else if (arg_type->map_type() != NULL)
7641 {
7642 static tree map_len_fndecl;
7643 val_tree = Gogo::call_builtin(&map_len_fndecl,
7644 location,
7645 "__go_map_len",
7646 1,
7647 sizetype,
7648 arg_type->get_tree(gogo),
7649 arg_tree);
7650 }
7651 else if (arg_type->channel_type() != NULL)
7652 {
7653 static tree chan_len_fndecl;
7654 val_tree = Gogo::call_builtin(&chan_len_fndecl,
7655 location,
7656 "__go_chan_len",
7657 1,
7658 sizetype,
7659 arg_type->get_tree(gogo),
7660 arg_tree);
7661 }
7662 else
7663 gcc_unreachable();
7664 }
7665 else
7666 {
7667 if (arg_type->array_type() != NULL)
7668 {
7669 if (this->seen_)
7670 {
7671 gcc_assert(saw_errors());
7672 return error_mark_node;
7673 }
7674 this->seen_ = true;
7675 val_tree = arg_type->array_type()->capacity_tree(gogo,
7676 arg_tree);
7677 this->seen_ = false;
7678 }
7679 else if (arg_type->channel_type() != NULL)
7680 {
7681 static tree chan_cap_fndecl;
7682 val_tree = Gogo::call_builtin(&chan_cap_fndecl,
7683 location,
7684 "__go_chan_cap",
7685 1,
7686 sizetype,
7687 arg_type->get_tree(gogo),
7688 arg_tree);
7689 }
7690 else
7691 gcc_unreachable();
7692 }
7693
7694 if (val_tree == error_mark_node)
7695 return error_mark_node;
7696
7697 tree type_tree = Type::lookup_integer_type("int")->get_tree(gogo);
7698 if (type_tree == TREE_TYPE(val_tree))
7699 return val_tree;
7700 else
7701 return fold(convert_to_integer(type_tree, val_tree));
7702 }
7703
7704 case BUILTIN_PRINT:
7705 case BUILTIN_PRINTLN:
7706 {
7707 const bool is_ln = this->code_ == BUILTIN_PRINTLN;
7708 tree stmt_list = NULL_TREE;
7709
7710 const Expression_list* call_args = this->args();
7711 if (call_args != NULL)
7712 {
7713 for (Expression_list::const_iterator p = call_args->begin();
7714 p != call_args->end();
7715 ++p)
7716 {
7717 if (is_ln && p != call_args->begin())
7718 {
7719 static tree print_space_fndecl;
7720 tree call = Gogo::call_builtin(&print_space_fndecl,
7721 location,
7722 "__go_print_space",
7723 0,
7724 void_type_node);
7725 if (call == error_mark_node)
7726 return error_mark_node;
7727 append_to_statement_list(call, &stmt_list);
7728 }
7729
7730 Type* type = (*p)->type();
7731
7732 tree arg = (*p)->get_tree(context);
7733 if (arg == error_mark_node)
7734 return error_mark_node;
7735
7736 tree* pfndecl;
7737 const char* fnname;
7738 if (type->is_string_type())
7739 {
7740 static tree print_string_fndecl;
7741 pfndecl = &print_string_fndecl;
7742 fnname = "__go_print_string";
7743 }
7744 else if (type->integer_type() != NULL
7745 && type->integer_type()->is_unsigned())
7746 {
7747 static tree print_uint64_fndecl;
7748 pfndecl = &print_uint64_fndecl;
7749 fnname = "__go_print_uint64";
7750 Type* itype = Type::lookup_integer_type("uint64");
7751 arg = fold_convert_loc(location, itype->get_tree(gogo),
7752 arg);
7753 }
7754 else if (type->integer_type() != NULL)
7755 {
7756 static tree print_int64_fndecl;
7757 pfndecl = &print_int64_fndecl;
7758 fnname = "__go_print_int64";
7759 Type* itype = Type::lookup_integer_type("int64");
7760 arg = fold_convert_loc(location, itype->get_tree(gogo),
7761 arg);
7762 }
7763 else if (type->float_type() != NULL)
7764 {
7765 static tree print_double_fndecl;
7766 pfndecl = &print_double_fndecl;
7767 fnname = "__go_print_double";
7768 arg = fold_convert_loc(location, double_type_node, arg);
7769 }
7770 else if (type->complex_type() != NULL)
7771 {
7772 static tree print_complex_fndecl;
7773 pfndecl = &print_complex_fndecl;
7774 fnname = "__go_print_complex";
7775 arg = fold_convert_loc(location, complex_double_type_node,
7776 arg);
7777 }
7778 else if (type->is_boolean_type())
7779 {
7780 static tree print_bool_fndecl;
7781 pfndecl = &print_bool_fndecl;
7782 fnname = "__go_print_bool";
7783 }
7784 else if (type->points_to() != NULL
7785 || type->channel_type() != NULL
7786 || type->map_type() != NULL
7787 || type->function_type() != NULL)
7788 {
7789 static tree print_pointer_fndecl;
7790 pfndecl = &print_pointer_fndecl;
7791 fnname = "__go_print_pointer";
7792 arg = fold_convert_loc(location, ptr_type_node, arg);
7793 }
7794 else if (type->interface_type() != NULL)
7795 {
7796 if (type->interface_type()->is_empty())
7797 {
7798 static tree print_empty_interface_fndecl;
7799 pfndecl = &print_empty_interface_fndecl;
7800 fnname = "__go_print_empty_interface";
7801 }
7802 else
7803 {
7804 static tree print_interface_fndecl;
7805 pfndecl = &print_interface_fndecl;
7806 fnname = "__go_print_interface";
7807 }
7808 }
7809 else if (type->is_open_array_type())
7810 {
7811 static tree print_slice_fndecl;
7812 pfndecl = &print_slice_fndecl;
7813 fnname = "__go_print_slice";
7814 }
7815 else
7816 gcc_unreachable();
7817
7818 tree call = Gogo::call_builtin(pfndecl,
7819 location,
7820 fnname,
7821 1,
7822 void_type_node,
7823 TREE_TYPE(arg),
7824 arg);
7825 if (call == error_mark_node)
7826 return error_mark_node;
7827 append_to_statement_list(call, &stmt_list);
7828 }
7829 }
7830
7831 if (is_ln)
7832 {
7833 static tree print_nl_fndecl;
7834 tree call = Gogo::call_builtin(&print_nl_fndecl,
7835 location,
7836 "__go_print_nl",
7837 0,
7838 void_type_node);
7839 if (call == error_mark_node)
7840 return error_mark_node;
7841 append_to_statement_list(call, &stmt_list);
7842 }
7843
7844 return stmt_list;
7845 }
7846
7847 case BUILTIN_PANIC:
7848 {
7849 const Expression_list* args = this->args();
7850 gcc_assert(args != NULL && args->size() == 1);
7851 Expression* arg = args->front();
7852 tree arg_tree = arg->get_tree(context);
7853 if (arg_tree == error_mark_node)
7854 return error_mark_node;
7855 Type *empty = Type::make_interface_type(NULL, BUILTINS_LOCATION);
7856 arg_tree = Expression::convert_for_assignment(context, empty,
7857 arg->type(),
7858 arg_tree, location);
7859 static tree panic_fndecl;
7860 tree call = Gogo::call_builtin(&panic_fndecl,
7861 location,
7862 "__go_panic",
7863 1,
7864 void_type_node,
7865 TREE_TYPE(arg_tree),
7866 arg_tree);
7867 if (call == error_mark_node)
7868 return error_mark_node;
7869 // This function will throw an exception.
7870 TREE_NOTHROW(panic_fndecl) = 0;
7871 // This function will not return.
7872 TREE_THIS_VOLATILE(panic_fndecl) = 1;
7873 return call;
7874 }
7875
7876 case BUILTIN_RECOVER:
7877 {
7878 // The argument is set when building recover thunks. It's a
7879 // boolean value which is true if we can recover a value now.
7880 const Expression_list* args = this->args();
7881 gcc_assert(args != NULL && args->size() == 1);
7882 Expression* arg = args->front();
7883 tree arg_tree = arg->get_tree(context);
7884 if (arg_tree == error_mark_node)
7885 return error_mark_node;
7886
7887 Type *empty = Type::make_interface_type(NULL, BUILTINS_LOCATION);
7888 tree empty_tree = empty->get_tree(context->gogo());
7889
7890 Type* nil_type = Type::make_nil_type();
7891 Expression* nil = Expression::make_nil(location);
7892 tree nil_tree = nil->get_tree(context);
7893 tree empty_nil_tree = Expression::convert_for_assignment(context,
7894 empty,
7895 nil_type,
7896 nil_tree,
7897 location);
7898
7899 // We need to handle a deferred call to recover specially,
7900 // because it changes whether it can recover a panic or not.
7901 // See test7 in test/recover1.go.
7902 tree call;
7903 if (this->is_deferred())
7904 {
7905 static tree deferred_recover_fndecl;
7906 call = Gogo::call_builtin(&deferred_recover_fndecl,
7907 location,
7908 "__go_deferred_recover",
7909 0,
7910 empty_tree);
7911 }
7912 else
7913 {
7914 static tree recover_fndecl;
7915 call = Gogo::call_builtin(&recover_fndecl,
7916 location,
7917 "__go_recover",
7918 0,
7919 empty_tree);
7920 }
7921 if (call == error_mark_node)
7922 return error_mark_node;
7923 return fold_build3_loc(location, COND_EXPR, empty_tree, arg_tree,
7924 call, empty_nil_tree);
7925 }
7926
7927 case BUILTIN_CLOSE:
7928 case BUILTIN_CLOSED:
7929 {
7930 const Expression_list* args = this->args();
7931 gcc_assert(args != NULL && args->size() == 1);
7932 Expression* arg = args->front();
7933 tree arg_tree = arg->get_tree(context);
7934 if (arg_tree == error_mark_node)
7935 return error_mark_node;
7936 if (this->code_ == BUILTIN_CLOSE)
7937 {
7938 static tree close_fndecl;
7939 return Gogo::call_builtin(&close_fndecl,
7940 location,
7941 "__go_builtin_close",
7942 1,
7943 void_type_node,
7944 TREE_TYPE(arg_tree),
7945 arg_tree);
7946 }
7947 else
7948 {
7949 static tree closed_fndecl;
7950 return Gogo::call_builtin(&closed_fndecl,
7951 location,
7952 "__go_builtin_closed",
7953 1,
7954 boolean_type_node,
7955 TREE_TYPE(arg_tree),
7956 arg_tree);
7957 }
7958 }
7959
7960 case BUILTIN_SIZEOF:
7961 case BUILTIN_OFFSETOF:
7962 case BUILTIN_ALIGNOF:
7963 {
7964 mpz_t val;
7965 mpz_init(val);
7966 Type* dummy;
7967 bool b = this->integer_constant_value(true, val, &dummy);
7968 gcc_assert(b);
7969 tree type = Type::lookup_integer_type("int")->get_tree(gogo);
7970 tree ret = Expression::integer_constant_tree(val, type);
7971 mpz_clear(val);
7972 return ret;
7973 }
7974
7975 case BUILTIN_COPY:
7976 {
7977 const Expression_list* args = this->args();
7978 gcc_assert(args != NULL && args->size() == 2);
7979 Expression* arg1 = args->front();
7980 Expression* arg2 = args->back();
7981
7982 tree arg1_tree = arg1->get_tree(context);
7983 tree arg2_tree = arg2->get_tree(context);
7984 if (arg1_tree == error_mark_node || arg2_tree == error_mark_node)
7985 return error_mark_node;
7986
7987 Type* arg1_type = arg1->type();
7988 Array_type* at = arg1_type->array_type();
7989 arg1_tree = save_expr(arg1_tree);
7990 tree arg1_val = at->value_pointer_tree(gogo, arg1_tree);
7991 tree arg1_len = at->length_tree(gogo, arg1_tree);
7992 if (arg1_val == error_mark_node || arg1_len == error_mark_node)
7993 return error_mark_node;
7994
7995 Type* arg2_type = arg2->type();
7996 tree arg2_val;
7997 tree arg2_len;
7998 if (arg2_type->is_open_array_type())
7999 {
8000 at = arg2_type->array_type();
8001 arg2_tree = save_expr(arg2_tree);
8002 arg2_val = at->value_pointer_tree(gogo, arg2_tree);
8003 arg2_len = at->length_tree(gogo, arg2_tree);
8004 }
8005 else
8006 {
8007 arg2_tree = save_expr(arg2_tree);
8008 arg2_val = String_type::bytes_tree(gogo, arg2_tree);
8009 arg2_len = String_type::length_tree(gogo, arg2_tree);
8010 }
8011 if (arg2_val == error_mark_node || arg2_len == error_mark_node)
8012 return error_mark_node;
8013
8014 arg1_len = save_expr(arg1_len);
8015 arg2_len = save_expr(arg2_len);
8016 tree len = fold_build3_loc(location, COND_EXPR, TREE_TYPE(arg1_len),
8017 fold_build2_loc(location, LT_EXPR,
8018 boolean_type_node,
8019 arg1_len, arg2_len),
8020 arg1_len, arg2_len);
8021 len = save_expr(len);
8022
8023 Type* element_type = at->element_type();
8024 tree element_type_tree = element_type->get_tree(gogo);
8025 if (element_type_tree == error_mark_node)
8026 return error_mark_node;
8027 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
8028 tree bytecount = fold_convert_loc(location, TREE_TYPE(element_size),
8029 len);
8030 bytecount = fold_build2_loc(location, MULT_EXPR,
8031 TREE_TYPE(element_size),
8032 bytecount, element_size);
8033 bytecount = fold_convert_loc(location, size_type_node, bytecount);
8034
8035 arg1_val = fold_convert_loc(location, ptr_type_node, arg1_val);
8036 arg2_val = fold_convert_loc(location, ptr_type_node, arg2_val);
8037
8038 static tree copy_fndecl;
8039 tree call = Gogo::call_builtin(&copy_fndecl,
8040 location,
8041 "__go_copy",
8042 3,
8043 void_type_node,
8044 ptr_type_node,
8045 arg1_val,
8046 ptr_type_node,
8047 arg2_val,
8048 size_type_node,
8049 bytecount);
8050 if (call == error_mark_node)
8051 return error_mark_node;
8052
8053 return fold_build2_loc(location, COMPOUND_EXPR, TREE_TYPE(len),
8054 call, len);
8055 }
8056
8057 case BUILTIN_APPEND:
8058 {
8059 const Expression_list* args = this->args();
8060 gcc_assert(args != NULL && args->size() == 2);
8061 Expression* arg1 = args->front();
8062 Expression* arg2 = args->back();
8063
8064 tree arg1_tree = arg1->get_tree(context);
8065 tree arg2_tree = arg2->get_tree(context);
8066 if (arg1_tree == error_mark_node || arg2_tree == error_mark_node)
8067 return error_mark_node;
8068
8069 Array_type* at = arg1->type()->array_type();
8070 Type* element_type = at->element_type();
8071
8072 arg2_tree = Expression::convert_for_assignment(context, at,
8073 arg2->type(),
8074 arg2_tree,
8075 location);
8076 if (arg2_tree == error_mark_node)
8077 return error_mark_node;
8078
8079 arg2_tree = save_expr(arg2_tree);
8080 tree arg2_val = at->value_pointer_tree(gogo, arg2_tree);
8081 tree arg2_len = at->length_tree(gogo, arg2_tree);
8082 if (arg2_val == error_mark_node || arg2_len == error_mark_node)
8083 return error_mark_node;
8084 arg2_val = fold_convert_loc(location, ptr_type_node, arg2_val);
8085 arg2_len = fold_convert_loc(location, size_type_node, arg2_len);
8086
8087 tree element_type_tree = element_type->get_tree(gogo);
8088 if (element_type_tree == error_mark_node)
8089 return error_mark_node;
8090 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
8091 element_size = fold_convert_loc(location, size_type_node,
8092 element_size);
8093
8094 // We rebuild the decl each time since the slice types may
8095 // change.
8096 tree append_fndecl = NULL_TREE;
8097 return Gogo::call_builtin(&append_fndecl,
8098 location,
8099 "__go_append",
8100 4,
8101 TREE_TYPE(arg1_tree),
8102 TREE_TYPE(arg1_tree),
8103 arg1_tree,
8104 ptr_type_node,
8105 arg2_val,
8106 size_type_node,
8107 arg2_len,
8108 size_type_node,
8109 element_size);
8110 }
8111
8112 case BUILTIN_REAL:
8113 case BUILTIN_IMAG:
8114 {
8115 const Expression_list* args = this->args();
8116 gcc_assert(args != NULL && args->size() == 1);
8117 Expression* arg = args->front();
8118 tree arg_tree = arg->get_tree(context);
8119 if (arg_tree == error_mark_node)
8120 return error_mark_node;
8121 gcc_assert(COMPLEX_FLOAT_TYPE_P(TREE_TYPE(arg_tree)));
8122 if (this->code_ == BUILTIN_REAL)
8123 return fold_build1_loc(location, REALPART_EXPR,
8124 TREE_TYPE(TREE_TYPE(arg_tree)),
8125 arg_tree);
8126 else
8127 return fold_build1_loc(location, IMAGPART_EXPR,
8128 TREE_TYPE(TREE_TYPE(arg_tree)),
8129 arg_tree);
8130 }
8131
8132 case BUILTIN_COMPLEX:
8133 {
8134 const Expression_list* args = this->args();
8135 gcc_assert(args != NULL && args->size() == 2);
8136 tree r = args->front()->get_tree(context);
8137 tree i = args->back()->get_tree(context);
8138 if (r == error_mark_node || i == error_mark_node)
8139 return error_mark_node;
8140 gcc_assert(TYPE_MAIN_VARIANT(TREE_TYPE(r))
8141 == TYPE_MAIN_VARIANT(TREE_TYPE(i)));
8142 gcc_assert(SCALAR_FLOAT_TYPE_P(TREE_TYPE(r)));
8143 return fold_build2_loc(location, COMPLEX_EXPR,
8144 build_complex_type(TREE_TYPE(r)),
8145 r, i);
8146 }
8147
8148 default:
8149 gcc_unreachable();
8150 }
8151 }
8152
8153 // We have to support exporting a builtin call expression, because
8154 // code can set a constant to the result of a builtin expression.
8155
8156 void
8157 Builtin_call_expression::do_export(Export* exp) const
8158 {
8159 bool ok = false;
8160
8161 mpz_t val;
8162 mpz_init(val);
8163 Type* dummy;
8164 if (this->integer_constant_value(true, val, &dummy))
8165 {
8166 Integer_expression::export_integer(exp, val);
8167 ok = true;
8168 }
8169 mpz_clear(val);
8170
8171 if (!ok)
8172 {
8173 mpfr_t fval;
8174 mpfr_init(fval);
8175 if (this->float_constant_value(fval, &dummy))
8176 {
8177 Float_expression::export_float(exp, fval);
8178 ok = true;
8179 }
8180 mpfr_clear(fval);
8181 }
8182
8183 if (!ok)
8184 {
8185 mpfr_t real;
8186 mpfr_t imag;
8187 mpfr_init(real);
8188 mpfr_init(imag);
8189 if (this->complex_constant_value(real, imag, &dummy))
8190 {
8191 Complex_expression::export_complex(exp, real, imag);
8192 ok = true;
8193 }
8194 mpfr_clear(real);
8195 mpfr_clear(imag);
8196 }
8197
8198 if (!ok)
8199 {
8200 error_at(this->location(), "value is not constant");
8201 return;
8202 }
8203
8204 // A trailing space lets us reliably identify the end of the number.
8205 exp->write_c_string(" ");
8206 }
8207
8208 // Class Call_expression.
8209
8210 // Traversal.
8211
8212 int
8213 Call_expression::do_traverse(Traverse* traverse)
8214 {
8215 if (Expression::traverse(&this->fn_, traverse) == TRAVERSE_EXIT)
8216 return TRAVERSE_EXIT;
8217 if (this->args_ != NULL)
8218 {
8219 if (this->args_->traverse(traverse) == TRAVERSE_EXIT)
8220 return TRAVERSE_EXIT;
8221 }
8222 return TRAVERSE_CONTINUE;
8223 }
8224
8225 // Lower a call statement.
8226
8227 Expression*
8228 Call_expression::do_lower(Gogo* gogo, Named_object* function, int)
8229 {
8230 // A type case can look like a function call.
8231 if (this->fn_->is_type_expression()
8232 && this->args_ != NULL
8233 && this->args_->size() == 1)
8234 return Expression::make_cast(this->fn_->type(), this->args_->front(),
8235 this->location());
8236
8237 // Recognize a call to a builtin function.
8238 Func_expression* fne = this->fn_->func_expression();
8239 if (fne != NULL
8240 && fne->named_object()->is_function_declaration()
8241 && fne->named_object()->func_declaration_value()->type()->is_builtin())
8242 return new Builtin_call_expression(gogo, this->fn_, this->args_,
8243 this->is_varargs_, this->location());
8244
8245 // Handle an argument which is a call to a function which returns
8246 // multiple results.
8247 if (this->args_ != NULL
8248 && this->args_->size() == 1
8249 && this->args_->front()->call_expression() != NULL
8250 && this->fn_->type()->function_type() != NULL)
8251 {
8252 Function_type* fntype = this->fn_->type()->function_type();
8253 size_t rc = this->args_->front()->call_expression()->result_count();
8254 if (rc > 1
8255 && fntype->parameters() != NULL
8256 && (fntype->parameters()->size() == rc
8257 || (fntype->is_varargs()
8258 && fntype->parameters()->size() - 1 <= rc)))
8259 {
8260 Call_expression* call = this->args_->front()->call_expression();
8261 Expression_list* args = new Expression_list;
8262 for (size_t i = 0; i < rc; ++i)
8263 args->push_back(Expression::make_call_result(call, i));
8264 // We can't return a new call expression here, because this
8265 // one may be referenced by Call_result expressions. FIXME.
8266 delete this->args_;
8267 this->args_ = args;
8268 }
8269 }
8270
8271 // Handle a call to a varargs function by packaging up the extra
8272 // parameters.
8273 if (this->fn_->type()->function_type() != NULL
8274 && this->fn_->type()->function_type()->is_varargs())
8275 {
8276 Function_type* fntype = this->fn_->type()->function_type();
8277 const Typed_identifier_list* parameters = fntype->parameters();
8278 gcc_assert(parameters != NULL && !parameters->empty());
8279 Type* varargs_type = parameters->back().type();
8280 return this->lower_varargs(gogo, function, varargs_type,
8281 parameters->size());
8282 }
8283
8284 return this;
8285 }
8286
8287 // Lower a call to a varargs function. FUNCTION is the function in
8288 // which the call occurs--it's not the function we are calling.
8289 // VARARGS_TYPE is the type of the varargs parameter, a slice type.
8290 // PARAM_COUNT is the number of parameters of the function we are
8291 // calling; the last of these parameters will be the varargs
8292 // parameter.
8293
8294 Expression*
8295 Call_expression::lower_varargs(Gogo* gogo, Named_object* function,
8296 Type* varargs_type, size_t param_count)
8297 {
8298 if (this->varargs_are_lowered_)
8299 return this;
8300
8301 source_location loc = this->location();
8302
8303 gcc_assert(param_count > 0);
8304 gcc_assert(varargs_type->is_open_array_type());
8305
8306 size_t arg_count = this->args_ == NULL ? 0 : this->args_->size();
8307 if (arg_count < param_count - 1)
8308 {
8309 // Not enough arguments; will be caught in check_types.
8310 return this;
8311 }
8312
8313 Expression_list* old_args = this->args_;
8314 Expression_list* new_args = new Expression_list();
8315 bool push_empty_arg = false;
8316 if (old_args == NULL || old_args->empty())
8317 {
8318 gcc_assert(param_count == 1);
8319 push_empty_arg = true;
8320 }
8321 else
8322 {
8323 Expression_list::const_iterator pa;
8324 int i = 1;
8325 for (pa = old_args->begin(); pa != old_args->end(); ++pa, ++i)
8326 {
8327 if (static_cast<size_t>(i) == param_count)
8328 break;
8329 new_args->push_back(*pa);
8330 }
8331
8332 // We have reached the varargs parameter.
8333
8334 bool issued_error = false;
8335 if (pa == old_args->end())
8336 push_empty_arg = true;
8337 else if (pa + 1 == old_args->end() && this->is_varargs_)
8338 new_args->push_back(*pa);
8339 else if (this->is_varargs_)
8340 {
8341 this->report_error(_("too many arguments"));
8342 return this;
8343 }
8344 else
8345 {
8346 Type* element_type = varargs_type->array_type()->element_type();
8347 Expression_list* vals = new Expression_list;
8348 for (; pa != old_args->end(); ++pa, ++i)
8349 {
8350 // Check types here so that we get a better message.
8351 Type* patype = (*pa)->type();
8352 source_location paloc = (*pa)->location();
8353 if (!this->check_argument_type(i, element_type, patype,
8354 paloc, issued_error))
8355 continue;
8356 vals->push_back(*pa);
8357 }
8358 Expression* val =
8359 Expression::make_slice_composite_literal(varargs_type, vals, loc);
8360 new_args->push_back(val);
8361 }
8362 }
8363
8364 if (push_empty_arg)
8365 new_args->push_back(Expression::make_nil(loc));
8366
8367 // We can't return a new call expression here, because this one may
8368 // be referenced by Call_result expressions. FIXME.
8369 if (old_args != NULL)
8370 delete old_args;
8371 this->args_ = new_args;
8372 this->varargs_are_lowered_ = true;
8373
8374 // Lower all the new subexpressions.
8375 Expression* ret = this;
8376 gogo->lower_expression(function, &ret);
8377 gcc_assert(ret == this);
8378 return ret;
8379 }
8380
8381 // Get the function type. Returns NULL if we don't know the type. If
8382 // this returns NULL, and if_ERROR is true, issues an error.
8383
8384 Function_type*
8385 Call_expression::get_function_type() const
8386 {
8387 return this->fn_->type()->function_type();
8388 }
8389
8390 // Return the number of values which this call will return.
8391
8392 size_t
8393 Call_expression::result_count() const
8394 {
8395 const Function_type* fntype = this->get_function_type();
8396 if (fntype == NULL)
8397 return 0;
8398 if (fntype->results() == NULL)
8399 return 0;
8400 return fntype->results()->size();
8401 }
8402
8403 // Return whether this is a call to the predeclared function recover.
8404
8405 bool
8406 Call_expression::is_recover_call() const
8407 {
8408 return this->do_is_recover_call();
8409 }
8410
8411 // Set the argument to the recover function.
8412
8413 void
8414 Call_expression::set_recover_arg(Expression* arg)
8415 {
8416 this->do_set_recover_arg(arg);
8417 }
8418
8419 // Virtual functions also implemented by Builtin_call_expression.
8420
8421 bool
8422 Call_expression::do_is_recover_call() const
8423 {
8424 return false;
8425 }
8426
8427 void
8428 Call_expression::do_set_recover_arg(Expression*)
8429 {
8430 gcc_unreachable();
8431 }
8432
8433 // Get the type.
8434
8435 Type*
8436 Call_expression::do_type()
8437 {
8438 if (this->type_ != NULL)
8439 return this->type_;
8440
8441 Type* ret;
8442 Function_type* fntype = this->get_function_type();
8443 if (fntype == NULL)
8444 return Type::make_error_type();
8445
8446 const Typed_identifier_list* results = fntype->results();
8447 if (results == NULL)
8448 ret = Type::make_void_type();
8449 else if (results->size() == 1)
8450 ret = results->begin()->type();
8451 else
8452 ret = Type::make_call_multiple_result_type(this);
8453
8454 this->type_ = ret;
8455
8456 return this->type_;
8457 }
8458
8459 // Determine types for a call expression. We can use the function
8460 // parameter types to set the types of the arguments.
8461
8462 void
8463 Call_expression::do_determine_type(const Type_context*)
8464 {
8465 this->fn_->determine_type_no_context();
8466 Function_type* fntype = this->get_function_type();
8467 const Typed_identifier_list* parameters = NULL;
8468 if (fntype != NULL)
8469 parameters = fntype->parameters();
8470 if (this->args_ != NULL)
8471 {
8472 Typed_identifier_list::const_iterator pt;
8473 if (parameters != NULL)
8474 pt = parameters->begin();
8475 for (Expression_list::const_iterator pa = this->args_->begin();
8476 pa != this->args_->end();
8477 ++pa)
8478 {
8479 if (parameters != NULL && pt != parameters->end())
8480 {
8481 Type_context subcontext(pt->type(), false);
8482 (*pa)->determine_type(&subcontext);
8483 ++pt;
8484 }
8485 else
8486 (*pa)->determine_type_no_context();
8487 }
8488 }
8489 }
8490
8491 // Check types for parameter I.
8492
8493 bool
8494 Call_expression::check_argument_type(int i, const Type* parameter_type,
8495 const Type* argument_type,
8496 source_location argument_location,
8497 bool issued_error)
8498 {
8499 std::string reason;
8500 if (!Type::are_assignable(parameter_type, argument_type, &reason))
8501 {
8502 if (!issued_error)
8503 {
8504 if (reason.empty())
8505 error_at(argument_location, "argument %d has incompatible type", i);
8506 else
8507 error_at(argument_location,
8508 "argument %d has incompatible type (%s)",
8509 i, reason.c_str());
8510 }
8511 this->set_is_error();
8512 return false;
8513 }
8514 return true;
8515 }
8516
8517 // Check types.
8518
8519 void
8520 Call_expression::do_check_types(Gogo*)
8521 {
8522 Function_type* fntype = this->get_function_type();
8523 if (fntype == NULL)
8524 {
8525 if (!this->fn_->type()->is_error_type())
8526 this->report_error(_("expected function"));
8527 return;
8528 }
8529
8530 if (fntype->is_method())
8531 {
8532 // We don't support pointers to methods, so the function has to
8533 // be a bound method expression.
8534 Bound_method_expression* bme = this->fn_->bound_method_expression();
8535 if (bme == NULL)
8536 {
8537 this->report_error(_("method call without object"));
8538 return;
8539 }
8540 Type* first_arg_type = bme->first_argument()->type();
8541 if (first_arg_type->points_to() == NULL)
8542 {
8543 // When passing a value, we need to check that we are
8544 // permitted to copy it.
8545 std::string reason;
8546 if (!Type::are_assignable(fntype->receiver()->type(),
8547 first_arg_type, &reason))
8548 {
8549 if (reason.empty())
8550 this->report_error(_("incompatible type for receiver"));
8551 else
8552 {
8553 error_at(this->location(),
8554 "incompatible type for receiver (%s)",
8555 reason.c_str());
8556 this->set_is_error();
8557 }
8558 }
8559 }
8560 }
8561
8562 // Note that varargs was handled by the lower_varargs() method, so
8563 // we don't have to worry about it here.
8564
8565 const Typed_identifier_list* parameters = fntype->parameters();
8566 if (this->args_ == NULL)
8567 {
8568 if (parameters != NULL && !parameters->empty())
8569 this->report_error(_("not enough arguments"));
8570 }
8571 else if (parameters == NULL)
8572 this->report_error(_("too many arguments"));
8573 else
8574 {
8575 int i = 0;
8576 Typed_identifier_list::const_iterator pt = parameters->begin();
8577 for (Expression_list::const_iterator pa = this->args_->begin();
8578 pa != this->args_->end();
8579 ++pa, ++pt, ++i)
8580 {
8581 if (pt == parameters->end())
8582 {
8583 this->report_error(_("too many arguments"));
8584 return;
8585 }
8586 this->check_argument_type(i + 1, pt->type(), (*pa)->type(),
8587 (*pa)->location(), false);
8588 }
8589 if (pt != parameters->end())
8590 this->report_error(_("not enough arguments"));
8591 }
8592 }
8593
8594 // Return whether we have to use a temporary variable to ensure that
8595 // we evaluate this call expression in order. If the call returns no
8596 // results then it will inevitably be executed last. If the call
8597 // returns more than one result then it will be used with Call_result
8598 // expressions. So we only have to use a temporary variable if the
8599 // call returns exactly one result.
8600
8601 bool
8602 Call_expression::do_must_eval_in_order() const
8603 {
8604 return this->result_count() == 1;
8605 }
8606
8607 // Get the function and the first argument to use when calling a bound
8608 // method.
8609
8610 tree
8611 Call_expression::bound_method_function(Translate_context* context,
8612 Bound_method_expression* bound_method,
8613 tree* first_arg_ptr)
8614 {
8615 Expression* first_argument = bound_method->first_argument();
8616 tree first_arg = first_argument->get_tree(context);
8617 if (first_arg == error_mark_node)
8618 return error_mark_node;
8619
8620 // We always pass a pointer to the first argument when calling a
8621 // method.
8622 if (first_argument->type()->points_to() == NULL)
8623 {
8624 tree pointer_to_arg_type = build_pointer_type(TREE_TYPE(first_arg));
8625 if (TREE_ADDRESSABLE(TREE_TYPE(first_arg))
8626 || DECL_P(first_arg)
8627 || TREE_CODE(first_arg) == INDIRECT_REF
8628 || TREE_CODE(first_arg) == COMPONENT_REF)
8629 {
8630 first_arg = build_fold_addr_expr(first_arg);
8631 if (DECL_P(first_arg))
8632 TREE_ADDRESSABLE(first_arg) = 1;
8633 }
8634 else
8635 {
8636 tree tmp = create_tmp_var(TREE_TYPE(first_arg),
8637 get_name(first_arg));
8638 DECL_IGNORED_P(tmp) = 0;
8639 DECL_INITIAL(tmp) = first_arg;
8640 first_arg = build2(COMPOUND_EXPR, pointer_to_arg_type,
8641 build1(DECL_EXPR, void_type_node, tmp),
8642 build_fold_addr_expr(tmp));
8643 TREE_ADDRESSABLE(tmp) = 1;
8644 }
8645 if (first_arg == error_mark_node)
8646 return error_mark_node;
8647 }
8648
8649 Type* fatype = bound_method->first_argument_type();
8650 if (fatype != NULL)
8651 {
8652 if (fatype->points_to() == NULL)
8653 fatype = Type::make_pointer_type(fatype);
8654 first_arg = fold_convert(fatype->get_tree(context->gogo()), first_arg);
8655 if (first_arg == error_mark_node
8656 || TREE_TYPE(first_arg) == error_mark_node)
8657 return error_mark_node;
8658 }
8659
8660 *first_arg_ptr = first_arg;
8661
8662 return bound_method->method()->get_tree(context);
8663 }
8664
8665 // Get the function and the first argument to use when calling an
8666 // interface method.
8667
8668 tree
8669 Call_expression::interface_method_function(
8670 Translate_context* context,
8671 Interface_field_reference_expression* interface_method,
8672 tree* first_arg_ptr)
8673 {
8674 tree expr = interface_method->expr()->get_tree(context);
8675 if (expr == error_mark_node)
8676 return error_mark_node;
8677 expr = save_expr(expr);
8678 tree first_arg = interface_method->get_underlying_object_tree(context, expr);
8679 if (first_arg == error_mark_node)
8680 return error_mark_node;
8681 *first_arg_ptr = first_arg;
8682 return interface_method->get_function_tree(context, expr);
8683 }
8684
8685 // Build the call expression.
8686
8687 tree
8688 Call_expression::do_get_tree(Translate_context* context)
8689 {
8690 if (this->tree_ != NULL_TREE)
8691 return this->tree_;
8692
8693 Function_type* fntype = this->get_function_type();
8694 if (fntype == NULL)
8695 return error_mark_node;
8696
8697 if (this->fn_->is_error_expression())
8698 return error_mark_node;
8699
8700 Gogo* gogo = context->gogo();
8701 source_location location = this->location();
8702
8703 Func_expression* func = this->fn_->func_expression();
8704 Bound_method_expression* bound_method = this->fn_->bound_method_expression();
8705 Interface_field_reference_expression* interface_method =
8706 this->fn_->interface_field_reference_expression();
8707 const bool has_closure = func != NULL && func->closure() != NULL;
8708 const bool is_method = bound_method != NULL || interface_method != NULL;
8709 gcc_assert(!fntype->is_method() || is_method);
8710
8711 int nargs;
8712 tree* args;
8713 if (this->args_ == NULL || this->args_->empty())
8714 {
8715 nargs = is_method ? 1 : 0;
8716 args = nargs == 0 ? NULL : new tree[nargs];
8717 }
8718 else
8719 {
8720 const Typed_identifier_list* params = fntype->parameters();
8721 gcc_assert(params != NULL);
8722
8723 nargs = this->args_->size();
8724 int i = is_method ? 1 : 0;
8725 nargs += i;
8726 args = new tree[nargs];
8727
8728 Typed_identifier_list::const_iterator pp = params->begin();
8729 Expression_list::const_iterator pe;
8730 for (pe = this->args_->begin();
8731 pe != this->args_->end();
8732 ++pe, ++pp, ++i)
8733 {
8734 gcc_assert(pp != params->end());
8735 tree arg_val = (*pe)->get_tree(context);
8736 args[i] = Expression::convert_for_assignment(context,
8737 pp->type(),
8738 (*pe)->type(),
8739 arg_val,
8740 location);
8741 if (args[i] == error_mark_node)
8742 {
8743 delete[] args;
8744 return error_mark_node;
8745 }
8746 }
8747 gcc_assert(pp == params->end());
8748 gcc_assert(i == nargs);
8749 }
8750
8751 tree rettype = TREE_TYPE(TREE_TYPE(fntype->get_tree(gogo)));
8752 if (rettype == error_mark_node)
8753 {
8754 delete[] args;
8755 return error_mark_node;
8756 }
8757
8758 tree fn;
8759 if (has_closure)
8760 fn = func->get_tree_without_closure(gogo);
8761 else if (!is_method)
8762 fn = this->fn_->get_tree(context);
8763 else if (bound_method != NULL)
8764 fn = this->bound_method_function(context, bound_method, &args[0]);
8765 else if (interface_method != NULL)
8766 fn = this->interface_method_function(context, interface_method, &args[0]);
8767 else
8768 gcc_unreachable();
8769
8770 if (fn == error_mark_node || TREE_TYPE(fn) == error_mark_node)
8771 {
8772 delete[] args;
8773 return error_mark_node;
8774 }
8775
8776 // This is to support builtin math functions when using 80387 math.
8777 tree fndecl = fn;
8778 if (TREE_CODE(fndecl) == ADDR_EXPR)
8779 fndecl = TREE_OPERAND(fndecl, 0);
8780 tree excess_type = NULL_TREE;
8781 if (DECL_P(fndecl)
8782 && DECL_IS_BUILTIN(fndecl)
8783 && DECL_BUILT_IN_CLASS(fndecl) == BUILT_IN_NORMAL
8784 && nargs > 0
8785 && ((SCALAR_FLOAT_TYPE_P(rettype)
8786 && SCALAR_FLOAT_TYPE_P(TREE_TYPE(args[0])))
8787 || (COMPLEX_FLOAT_TYPE_P(rettype)
8788 && COMPLEX_FLOAT_TYPE_P(TREE_TYPE(args[0])))))
8789 {
8790 excess_type = excess_precision_type(TREE_TYPE(args[0]));
8791 if (excess_type != NULL_TREE)
8792 {
8793 tree excess_fndecl = mathfn_built_in(excess_type,
8794 DECL_FUNCTION_CODE(fndecl));
8795 if (excess_fndecl == NULL_TREE)
8796 excess_type = NULL_TREE;
8797 else
8798 {
8799 fn = build_fold_addr_expr_loc(location, excess_fndecl);
8800 for (int i = 0; i < nargs; ++i)
8801 args[i] = ::convert(excess_type, args[i]);
8802 }
8803 }
8804 }
8805
8806 tree ret = build_call_array(excess_type != NULL_TREE ? excess_type : rettype,
8807 fn, nargs, args);
8808 delete[] args;
8809
8810 SET_EXPR_LOCATION(ret, location);
8811
8812 if (has_closure)
8813 {
8814 tree closure_tree = func->closure()->get_tree(context);
8815 if (closure_tree != error_mark_node)
8816 CALL_EXPR_STATIC_CHAIN(ret) = closure_tree;
8817 }
8818
8819 // If this is a recursive function type which returns itself, as in
8820 // type F func() F
8821 // we have used ptr_type_node for the return type. Add a cast here
8822 // to the correct type.
8823 if (TREE_TYPE(ret) == ptr_type_node)
8824 {
8825 tree t = this->type()->get_tree(gogo);
8826 ret = fold_convert_loc(location, t, ret);
8827 }
8828
8829 if (excess_type != NULL_TREE)
8830 {
8831 // Calling convert here can undo our excess precision change.
8832 // That may or may not be a bug in convert_to_real.
8833 ret = build1(NOP_EXPR, rettype, ret);
8834 }
8835
8836 // If there is more than one result, we will refer to the call
8837 // multiple times.
8838 if (fntype->results() != NULL && fntype->results()->size() > 1)
8839 ret = save_expr(ret);
8840
8841 this->tree_ = ret;
8842
8843 return ret;
8844 }
8845
8846 // Make a call expression.
8847
8848 Call_expression*
8849 Expression::make_call(Expression* fn, Expression_list* args, bool is_varargs,
8850 source_location location)
8851 {
8852 return new Call_expression(fn, args, is_varargs, location);
8853 }
8854
8855 // A single result from a call which returns multiple results.
8856
8857 class Call_result_expression : public Expression
8858 {
8859 public:
8860 Call_result_expression(Call_expression* call, unsigned int index)
8861 : Expression(EXPRESSION_CALL_RESULT, call->location()),
8862 call_(call), index_(index)
8863 { }
8864
8865 protected:
8866 int
8867 do_traverse(Traverse*);
8868
8869 Type*
8870 do_type();
8871
8872 void
8873 do_determine_type(const Type_context*);
8874
8875 void
8876 do_check_types(Gogo*);
8877
8878 Expression*
8879 do_copy()
8880 {
8881 return new Call_result_expression(this->call_->call_expression(),
8882 this->index_);
8883 }
8884
8885 bool
8886 do_must_eval_in_order() const
8887 { return true; }
8888
8889 tree
8890 do_get_tree(Translate_context*);
8891
8892 private:
8893 // The underlying call expression.
8894 Expression* call_;
8895 // Which result we want.
8896 unsigned int index_;
8897 };
8898
8899 // Traverse a call result.
8900
8901 int
8902 Call_result_expression::do_traverse(Traverse* traverse)
8903 {
8904 if (traverse->remember_expression(this->call_))
8905 {
8906 // We have already traversed the call expression.
8907 return TRAVERSE_CONTINUE;
8908 }
8909 return Expression::traverse(&this->call_, traverse);
8910 }
8911
8912 // Get the type.
8913
8914 Type*
8915 Call_result_expression::do_type()
8916 {
8917 if (this->classification() == EXPRESSION_ERROR)
8918 return Type::make_error_type();
8919
8920 // THIS->CALL_ can be replaced with a temporary reference due to
8921 // Call_expression::do_must_eval_in_order when there is an error.
8922 Call_expression* ce = this->call_->call_expression();
8923 if (ce == NULL)
8924 {
8925 this->set_is_error();
8926 return Type::make_error_type();
8927 }
8928 Function_type* fntype = ce->get_function_type();
8929 if (fntype == NULL)
8930 {
8931 this->set_is_error();
8932 return Type::make_error_type();
8933 }
8934 const Typed_identifier_list* results = fntype->results();
8935 if (results == NULL)
8936 {
8937 this->report_error(_("number of results does not match "
8938 "number of values"));
8939 return Type::make_error_type();
8940 }
8941 Typed_identifier_list::const_iterator pr = results->begin();
8942 for (unsigned int i = 0; i < this->index_; ++i)
8943 {
8944 if (pr == results->end())
8945 break;
8946 ++pr;
8947 }
8948 if (pr == results->end())
8949 {
8950 this->report_error(_("number of results does not match "
8951 "number of values"));
8952 return Type::make_error_type();
8953 }
8954 return pr->type();
8955 }
8956
8957 // Check the type. Just make sure that we trigger the warning in
8958 // do_type.
8959
8960 void
8961 Call_result_expression::do_check_types(Gogo*)
8962 {
8963 this->type();
8964 }
8965
8966 // Determine the type. We have nothing to do here, but the 0 result
8967 // needs to pass down to the caller.
8968
8969 void
8970 Call_result_expression::do_determine_type(const Type_context*)
8971 {
8972 if (this->index_ == 0)
8973 this->call_->determine_type_no_context();
8974 }
8975
8976 // Return the tree.
8977
8978 tree
8979 Call_result_expression::do_get_tree(Translate_context* context)
8980 {
8981 tree call_tree = this->call_->get_tree(context);
8982 if (call_tree == error_mark_node)
8983 return error_mark_node;
8984 if (TREE_CODE(TREE_TYPE(call_tree)) != RECORD_TYPE)
8985 {
8986 gcc_assert(saw_errors());
8987 return error_mark_node;
8988 }
8989 tree field = TYPE_FIELDS(TREE_TYPE(call_tree));
8990 for (unsigned int i = 0; i < this->index_; ++i)
8991 {
8992 gcc_assert(field != NULL_TREE);
8993 field = DECL_CHAIN(field);
8994 }
8995 gcc_assert(field != NULL_TREE);
8996 return build3(COMPONENT_REF, TREE_TYPE(field), call_tree, field, NULL_TREE);
8997 }
8998
8999 // Make a reference to a single result of a call which returns
9000 // multiple results.
9001
9002 Expression*
9003 Expression::make_call_result(Call_expression* call, unsigned int index)
9004 {
9005 return new Call_result_expression(call, index);
9006 }
9007
9008 // Class Index_expression.
9009
9010 // Traversal.
9011
9012 int
9013 Index_expression::do_traverse(Traverse* traverse)
9014 {
9015 if (Expression::traverse(&this->left_, traverse) == TRAVERSE_EXIT
9016 || Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT
9017 || (this->end_ != NULL
9018 && Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT))
9019 return TRAVERSE_EXIT;
9020 return TRAVERSE_CONTINUE;
9021 }
9022
9023 // Lower an index expression. This converts the generic index
9024 // expression into an array index, a string index, or a map index.
9025
9026 Expression*
9027 Index_expression::do_lower(Gogo*, Named_object*, int)
9028 {
9029 source_location location = this->location();
9030 Expression* left = this->left_;
9031 Expression* start = this->start_;
9032 Expression* end = this->end_;
9033
9034 Type* type = left->type();
9035 if (type->is_error_type())
9036 return Expression::make_error(location);
9037 else if (type->array_type() != NULL)
9038 return Expression::make_array_index(left, start, end, location);
9039 else if (type->points_to() != NULL
9040 && type->points_to()->array_type() != NULL
9041 && !type->points_to()->is_open_array_type())
9042 {
9043 Expression* deref = Expression::make_unary(OPERATOR_MULT, left,
9044 location);
9045 return Expression::make_array_index(deref, start, end, location);
9046 }
9047 else if (type->is_string_type())
9048 return Expression::make_string_index(left, start, end, location);
9049 else if (type->map_type() != NULL)
9050 {
9051 if (end != NULL)
9052 {
9053 error_at(location, "invalid slice of map");
9054 return Expression::make_error(location);
9055 }
9056 Map_index_expression* ret= Expression::make_map_index(left, start,
9057 location);
9058 if (this->is_lvalue_)
9059 ret->set_is_lvalue();
9060 return ret;
9061 }
9062 else
9063 {
9064 error_at(location,
9065 "attempt to index object which is not array, string, or map");
9066 return Expression::make_error(location);
9067 }
9068 }
9069
9070 // Make an index expression.
9071
9072 Expression*
9073 Expression::make_index(Expression* left, Expression* start, Expression* end,
9074 source_location location)
9075 {
9076 return new Index_expression(left, start, end, location);
9077 }
9078
9079 // An array index. This is used for both indexing and slicing.
9080
9081 class Array_index_expression : public Expression
9082 {
9083 public:
9084 Array_index_expression(Expression* array, Expression* start,
9085 Expression* end, source_location location)
9086 : Expression(EXPRESSION_ARRAY_INDEX, location),
9087 array_(array), start_(start), end_(end), type_(NULL)
9088 { }
9089
9090 protected:
9091 int
9092 do_traverse(Traverse*);
9093
9094 Type*
9095 do_type();
9096
9097 void
9098 do_determine_type(const Type_context*);
9099
9100 void
9101 do_check_types(Gogo*);
9102
9103 Expression*
9104 do_copy()
9105 {
9106 return Expression::make_array_index(this->array_->copy(),
9107 this->start_->copy(),
9108 (this->end_ == NULL
9109 ? NULL
9110 : this->end_->copy()),
9111 this->location());
9112 }
9113
9114 bool
9115 do_is_addressable() const;
9116
9117 void
9118 do_address_taken(bool escapes)
9119 { this->array_->address_taken(escapes); }
9120
9121 tree
9122 do_get_tree(Translate_context*);
9123
9124 private:
9125 // The array we are getting a value from.
9126 Expression* array_;
9127 // The start or only index.
9128 Expression* start_;
9129 // The end index of a slice. This may be NULL for a simple array
9130 // index, or it may be a nil expression for the length of the array.
9131 Expression* end_;
9132 // The type of the expression.
9133 Type* type_;
9134 };
9135
9136 // Array index traversal.
9137
9138 int
9139 Array_index_expression::do_traverse(Traverse* traverse)
9140 {
9141 if (Expression::traverse(&this->array_, traverse) == TRAVERSE_EXIT)
9142 return TRAVERSE_EXIT;
9143 if (Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT)
9144 return TRAVERSE_EXIT;
9145 if (this->end_ != NULL)
9146 {
9147 if (Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT)
9148 return TRAVERSE_EXIT;
9149 }
9150 return TRAVERSE_CONTINUE;
9151 }
9152
9153 // Return the type of an array index.
9154
9155 Type*
9156 Array_index_expression::do_type()
9157 {
9158 if (this->type_ == NULL)
9159 {
9160 Array_type* type = this->array_->type()->array_type();
9161 if (type == NULL)
9162 this->type_ = Type::make_error_type();
9163 else if (this->end_ == NULL)
9164 this->type_ = type->element_type();
9165 else if (type->is_open_array_type())
9166 {
9167 // A slice of a slice has the same type as the original
9168 // slice.
9169 this->type_ = this->array_->type()->deref();
9170 }
9171 else
9172 {
9173 // A slice of an array is a slice.
9174 this->type_ = Type::make_array_type(type->element_type(), NULL);
9175 }
9176 }
9177 return this->type_;
9178 }
9179
9180 // Set the type of an array index.
9181
9182 void
9183 Array_index_expression::do_determine_type(const Type_context*)
9184 {
9185 this->array_->determine_type_no_context();
9186 this->start_->determine_type_no_context();
9187 if (this->end_ != NULL)
9188 this->end_->determine_type_no_context();
9189 }
9190
9191 // Check types of an array index.
9192
9193 void
9194 Array_index_expression::do_check_types(Gogo*)
9195 {
9196 if (this->start_->type()->integer_type() == NULL)
9197 this->report_error(_("index must be integer"));
9198 if (this->end_ != NULL
9199 && this->end_->type()->integer_type() == NULL
9200 && !this->end_->is_nil_expression())
9201 this->report_error(_("slice end must be integer"));
9202
9203 Array_type* array_type = this->array_->type()->array_type();
9204 if (array_type == NULL)
9205 {
9206 gcc_assert(this->array_->type()->is_error_type());
9207 return;
9208 }
9209
9210 unsigned int int_bits =
9211 Type::lookup_integer_type("int")->integer_type()->bits();
9212
9213 Type* dummy;
9214 mpz_t lval;
9215 mpz_init(lval);
9216 bool lval_valid = (array_type->length() != NULL
9217 && array_type->length()->integer_constant_value(true,
9218 lval,
9219 &dummy));
9220 mpz_t ival;
9221 mpz_init(ival);
9222 if (this->start_->integer_constant_value(true, ival, &dummy))
9223 {
9224 if (mpz_sgn(ival) < 0
9225 || mpz_sizeinbase(ival, 2) >= int_bits
9226 || (lval_valid
9227 && (this->end_ == NULL
9228 ? mpz_cmp(ival, lval) >= 0
9229 : mpz_cmp(ival, lval) > 0)))
9230 {
9231 error_at(this->start_->location(), "array index out of bounds");
9232 this->set_is_error();
9233 }
9234 }
9235 if (this->end_ != NULL && !this->end_->is_nil_expression())
9236 {
9237 if (this->end_->integer_constant_value(true, ival, &dummy))
9238 {
9239 if (mpz_sgn(ival) < 0
9240 || mpz_sizeinbase(ival, 2) >= int_bits
9241 || (lval_valid && mpz_cmp(ival, lval) > 0))
9242 {
9243 error_at(this->end_->location(), "array index out of bounds");
9244 this->set_is_error();
9245 }
9246 }
9247 }
9248 mpz_clear(ival);
9249 mpz_clear(lval);
9250
9251 // A slice of an array requires an addressable array. A slice of a
9252 // slice is always possible.
9253 if (this->end_ != NULL
9254 && !array_type->is_open_array_type()
9255 && !this->array_->is_addressable())
9256 this->report_error(_("array is not addressable"));
9257 }
9258
9259 // Return whether this expression is addressable.
9260
9261 bool
9262 Array_index_expression::do_is_addressable() const
9263 {
9264 // A slice expression is not addressable.
9265 if (this->end_ != NULL)
9266 return false;
9267
9268 // An index into a slice is addressable.
9269 if (this->array_->type()->is_open_array_type())
9270 return true;
9271
9272 // An index into an array is addressable if the array is
9273 // addressable.
9274 return this->array_->is_addressable();
9275 }
9276
9277 // Get a tree for an array index.
9278
9279 tree
9280 Array_index_expression::do_get_tree(Translate_context* context)
9281 {
9282 Gogo* gogo = context->gogo();
9283 source_location loc = this->location();
9284
9285 Array_type* array_type = this->array_->type()->array_type();
9286 if (array_type == NULL)
9287 {
9288 gcc_assert(this->array_->type()->is_error_type());
9289 return error_mark_node;
9290 }
9291
9292 tree type_tree = array_type->get_tree(gogo);
9293 if (type_tree == error_mark_node)
9294 return error_mark_node;
9295
9296 tree array_tree = this->array_->get_tree(context);
9297 if (array_tree == error_mark_node)
9298 return error_mark_node;
9299
9300 if (array_type->length() == NULL && !DECL_P(array_tree))
9301 array_tree = save_expr(array_tree);
9302 tree length_tree = array_type->length_tree(gogo, array_tree);
9303 if (length_tree == error_mark_node)
9304 return error_mark_node;
9305 length_tree = save_expr(length_tree);
9306 tree length_type = TREE_TYPE(length_tree);
9307
9308 tree bad_index = boolean_false_node;
9309
9310 tree start_tree = this->start_->get_tree(context);
9311 if (start_tree == error_mark_node)
9312 return error_mark_node;
9313 if (!DECL_P(start_tree))
9314 start_tree = save_expr(start_tree);
9315 if (!INTEGRAL_TYPE_P(TREE_TYPE(start_tree)))
9316 start_tree = convert_to_integer(length_type, start_tree);
9317
9318 bad_index = Expression::check_bounds(start_tree, length_type, bad_index,
9319 loc);
9320
9321 start_tree = fold_convert_loc(loc, length_type, start_tree);
9322 bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node, bad_index,
9323 fold_build2_loc(loc,
9324 (this->end_ == NULL
9325 ? GE_EXPR
9326 : GT_EXPR),
9327 boolean_type_node, start_tree,
9328 length_tree));
9329
9330 int code = (array_type->length() != NULL
9331 ? (this->end_ == NULL
9332 ? RUNTIME_ERROR_ARRAY_INDEX_OUT_OF_BOUNDS
9333 : RUNTIME_ERROR_ARRAY_SLICE_OUT_OF_BOUNDS)
9334 : (this->end_ == NULL
9335 ? RUNTIME_ERROR_SLICE_INDEX_OUT_OF_BOUNDS
9336 : RUNTIME_ERROR_SLICE_SLICE_OUT_OF_BOUNDS));
9337 tree crash = Gogo::runtime_error(code, loc);
9338
9339 if (this->end_ == NULL)
9340 {
9341 // Simple array indexing. This has to return an l-value, so
9342 // wrap the index check into START_TREE.
9343 start_tree = build2(COMPOUND_EXPR, TREE_TYPE(start_tree),
9344 build3(COND_EXPR, void_type_node,
9345 bad_index, crash, NULL_TREE),
9346 start_tree);
9347 start_tree = fold_convert_loc(loc, sizetype, start_tree);
9348
9349 if (array_type->length() != NULL)
9350 {
9351 // Fixed array.
9352 return build4(ARRAY_REF, TREE_TYPE(type_tree), array_tree,
9353 start_tree, NULL_TREE, NULL_TREE);
9354 }
9355 else
9356 {
9357 // Open array.
9358 tree values = array_type->value_pointer_tree(gogo, array_tree);
9359 tree element_type_tree = array_type->element_type()->get_tree(gogo);
9360 if (element_type_tree == error_mark_node)
9361 return error_mark_node;
9362 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
9363 tree offset = fold_build2_loc(loc, MULT_EXPR, sizetype,
9364 start_tree, element_size);
9365 tree ptr = fold_build2_loc(loc, POINTER_PLUS_EXPR,
9366 TREE_TYPE(values), values, offset);
9367 return build_fold_indirect_ref(ptr);
9368 }
9369 }
9370
9371 // Array slice.
9372
9373 tree capacity_tree = array_type->capacity_tree(gogo, array_tree);
9374 if (capacity_tree == error_mark_node)
9375 return error_mark_node;
9376 capacity_tree = fold_convert_loc(loc, length_type, capacity_tree);
9377
9378 tree end_tree;
9379 if (this->end_->is_nil_expression())
9380 end_tree = length_tree;
9381 else
9382 {
9383 end_tree = this->end_->get_tree(context);
9384 if (end_tree == error_mark_node)
9385 return error_mark_node;
9386 if (!DECL_P(end_tree))
9387 end_tree = save_expr(end_tree);
9388 if (!INTEGRAL_TYPE_P(TREE_TYPE(end_tree)))
9389 end_tree = convert_to_integer(length_type, end_tree);
9390
9391 bad_index = Expression::check_bounds(end_tree, length_type, bad_index,
9392 loc);
9393
9394 end_tree = fold_convert_loc(loc, length_type, end_tree);
9395
9396 capacity_tree = save_expr(capacity_tree);
9397 tree bad_end = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
9398 fold_build2_loc(loc, LT_EXPR,
9399 boolean_type_node,
9400 end_tree, start_tree),
9401 fold_build2_loc(loc, GT_EXPR,
9402 boolean_type_node,
9403 end_tree, capacity_tree));
9404 bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
9405 bad_index, bad_end);
9406 }
9407
9408 tree element_type_tree = array_type->element_type()->get_tree(gogo);
9409 if (element_type_tree == error_mark_node)
9410 return error_mark_node;
9411 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
9412
9413 tree offset = fold_build2_loc(loc, MULT_EXPR, sizetype,
9414 fold_convert_loc(loc, sizetype, start_tree),
9415 element_size);
9416
9417 tree value_pointer = array_type->value_pointer_tree(gogo, array_tree);
9418 if (value_pointer == error_mark_node)
9419 return error_mark_node;
9420
9421 value_pointer = fold_build2_loc(loc, POINTER_PLUS_EXPR,
9422 TREE_TYPE(value_pointer),
9423 value_pointer, offset);
9424
9425 tree result_length_tree = fold_build2_loc(loc, MINUS_EXPR, length_type,
9426 end_tree, start_tree);
9427
9428 tree result_capacity_tree = fold_build2_loc(loc, MINUS_EXPR, length_type,
9429 capacity_tree, start_tree);
9430
9431 tree struct_tree = this->type()->get_tree(gogo);
9432 gcc_assert(TREE_CODE(struct_tree) == RECORD_TYPE);
9433
9434 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
9435
9436 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
9437 tree field = TYPE_FIELDS(struct_tree);
9438 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
9439 elt->index = field;
9440 elt->value = value_pointer;
9441
9442 elt = VEC_quick_push(constructor_elt, init, NULL);
9443 field = DECL_CHAIN(field);
9444 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
9445 elt->index = field;
9446 elt->value = fold_convert_loc(loc, TREE_TYPE(field), result_length_tree);
9447
9448 elt = VEC_quick_push(constructor_elt, init, NULL);
9449 field = DECL_CHAIN(field);
9450 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__capacity") == 0);
9451 elt->index = field;
9452 elt->value = fold_convert_loc(loc, TREE_TYPE(field), result_capacity_tree);
9453
9454 tree constructor = build_constructor(struct_tree, init);
9455
9456 if (TREE_CONSTANT(value_pointer)
9457 && TREE_CONSTANT(result_length_tree)
9458 && TREE_CONSTANT(result_capacity_tree))
9459 TREE_CONSTANT(constructor) = 1;
9460
9461 return fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(constructor),
9462 build3(COND_EXPR, void_type_node,
9463 bad_index, crash, NULL_TREE),
9464 constructor);
9465 }
9466
9467 // Make an array index expression. END may be NULL.
9468
9469 Expression*
9470 Expression::make_array_index(Expression* array, Expression* start,
9471 Expression* end, source_location location)
9472 {
9473 // Taking a slice of a composite literal requires moving the literal
9474 // onto the heap.
9475 if (end != NULL && array->is_composite_literal())
9476 {
9477 array = Expression::make_heap_composite(array, location);
9478 array = Expression::make_unary(OPERATOR_MULT, array, location);
9479 }
9480 return new Array_index_expression(array, start, end, location);
9481 }
9482
9483 // A string index. This is used for both indexing and slicing.
9484
9485 class String_index_expression : public Expression
9486 {
9487 public:
9488 String_index_expression(Expression* string, Expression* start,
9489 Expression* end, source_location location)
9490 : Expression(EXPRESSION_STRING_INDEX, location),
9491 string_(string), start_(start), end_(end)
9492 { }
9493
9494 protected:
9495 int
9496 do_traverse(Traverse*);
9497
9498 Type*
9499 do_type();
9500
9501 void
9502 do_determine_type(const Type_context*);
9503
9504 void
9505 do_check_types(Gogo*);
9506
9507 Expression*
9508 do_copy()
9509 {
9510 return Expression::make_string_index(this->string_->copy(),
9511 this->start_->copy(),
9512 (this->end_ == NULL
9513 ? NULL
9514 : this->end_->copy()),
9515 this->location());
9516 }
9517
9518 tree
9519 do_get_tree(Translate_context*);
9520
9521 private:
9522 // The string we are getting a value from.
9523 Expression* string_;
9524 // The start or only index.
9525 Expression* start_;
9526 // The end index of a slice. This may be NULL for a single index,
9527 // or it may be a nil expression for the length of the string.
9528 Expression* end_;
9529 };
9530
9531 // String index traversal.
9532
9533 int
9534 String_index_expression::do_traverse(Traverse* traverse)
9535 {
9536 if (Expression::traverse(&this->string_, traverse) == TRAVERSE_EXIT)
9537 return TRAVERSE_EXIT;
9538 if (Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT)
9539 return TRAVERSE_EXIT;
9540 if (this->end_ != NULL)
9541 {
9542 if (Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT)
9543 return TRAVERSE_EXIT;
9544 }
9545 return TRAVERSE_CONTINUE;
9546 }
9547
9548 // Return the type of a string index.
9549
9550 Type*
9551 String_index_expression::do_type()
9552 {
9553 if (this->end_ == NULL)
9554 return Type::lookup_integer_type("uint8");
9555 else
9556 return this->string_->type();
9557 }
9558
9559 // Determine the type of a string index.
9560
9561 void
9562 String_index_expression::do_determine_type(const Type_context*)
9563 {
9564 this->string_->determine_type_no_context();
9565 Type_context subcontext(NULL, true);
9566 this->start_->determine_type(&subcontext);
9567 if (this->end_ != NULL)
9568 this->end_->determine_type(&subcontext);
9569 }
9570
9571 // Check types of a string index.
9572
9573 void
9574 String_index_expression::do_check_types(Gogo*)
9575 {
9576 if (this->start_->type()->integer_type() == NULL)
9577 this->report_error(_("index must be integer"));
9578 if (this->end_ != NULL
9579 && this->end_->type()->integer_type() == NULL
9580 && !this->end_->is_nil_expression())
9581 this->report_error(_("slice end must be integer"));
9582
9583 std::string sval;
9584 bool sval_valid = this->string_->string_constant_value(&sval);
9585
9586 mpz_t ival;
9587 mpz_init(ival);
9588 Type* dummy;
9589 if (this->start_->integer_constant_value(true, ival, &dummy))
9590 {
9591 if (mpz_sgn(ival) < 0
9592 || (sval_valid && mpz_cmp_ui(ival, sval.length()) >= 0))
9593 {
9594 error_at(this->start_->location(), "string index out of bounds");
9595 this->set_is_error();
9596 }
9597 }
9598 if (this->end_ != NULL && !this->end_->is_nil_expression())
9599 {
9600 if (this->end_->integer_constant_value(true, ival, &dummy))
9601 {
9602 if (mpz_sgn(ival) < 0
9603 || (sval_valid && mpz_cmp_ui(ival, sval.length()) > 0))
9604 {
9605 error_at(this->end_->location(), "string index out of bounds");
9606 this->set_is_error();
9607 }
9608 }
9609 }
9610 mpz_clear(ival);
9611 }
9612
9613 // Get a tree for a string index.
9614
9615 tree
9616 String_index_expression::do_get_tree(Translate_context* context)
9617 {
9618 source_location loc = this->location();
9619
9620 tree string_tree = this->string_->get_tree(context);
9621 if (string_tree == error_mark_node)
9622 return error_mark_node;
9623
9624 if (this->string_->type()->points_to() != NULL)
9625 string_tree = build_fold_indirect_ref(string_tree);
9626 if (!DECL_P(string_tree))
9627 string_tree = save_expr(string_tree);
9628 tree string_type = TREE_TYPE(string_tree);
9629
9630 tree length_tree = String_type::length_tree(context->gogo(), string_tree);
9631 length_tree = save_expr(length_tree);
9632 tree length_type = TREE_TYPE(length_tree);
9633
9634 tree bad_index = boolean_false_node;
9635
9636 tree start_tree = this->start_->get_tree(context);
9637 if (start_tree == error_mark_node)
9638 return error_mark_node;
9639 if (!DECL_P(start_tree))
9640 start_tree = save_expr(start_tree);
9641 if (!INTEGRAL_TYPE_P(TREE_TYPE(start_tree)))
9642 start_tree = convert_to_integer(length_type, start_tree);
9643
9644 bad_index = Expression::check_bounds(start_tree, length_type, bad_index,
9645 loc);
9646
9647 start_tree = fold_convert_loc(loc, length_type, start_tree);
9648
9649 int code = (this->end_ == NULL
9650 ? RUNTIME_ERROR_STRING_INDEX_OUT_OF_BOUNDS
9651 : RUNTIME_ERROR_STRING_SLICE_OUT_OF_BOUNDS);
9652 tree crash = Gogo::runtime_error(code, loc);
9653
9654 if (this->end_ == NULL)
9655 {
9656 bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
9657 bad_index,
9658 fold_build2_loc(loc, GE_EXPR,
9659 boolean_type_node,
9660 start_tree, length_tree));
9661
9662 tree bytes_tree = String_type::bytes_tree(context->gogo(), string_tree);
9663 tree ptr = fold_build2_loc(loc, POINTER_PLUS_EXPR, TREE_TYPE(bytes_tree),
9664 bytes_tree,
9665 fold_convert_loc(loc, sizetype, start_tree));
9666 tree index = build_fold_indirect_ref_loc(loc, ptr);
9667
9668 return build2(COMPOUND_EXPR, TREE_TYPE(index),
9669 build3(COND_EXPR, void_type_node,
9670 bad_index, crash, NULL_TREE),
9671 index);
9672 }
9673 else
9674 {
9675 tree end_tree;
9676 if (this->end_->is_nil_expression())
9677 end_tree = build_int_cst(length_type, -1);
9678 else
9679 {
9680 end_tree = this->end_->get_tree(context);
9681 if (end_tree == error_mark_node)
9682 return error_mark_node;
9683 if (!DECL_P(end_tree))
9684 end_tree = save_expr(end_tree);
9685 if (!INTEGRAL_TYPE_P(TREE_TYPE(end_tree)))
9686 end_tree = convert_to_integer(length_type, end_tree);
9687
9688 bad_index = Expression::check_bounds(end_tree, length_type,
9689 bad_index, loc);
9690
9691 end_tree = fold_convert_loc(loc, length_type, end_tree);
9692 }
9693
9694 static tree strslice_fndecl;
9695 tree ret = Gogo::call_builtin(&strslice_fndecl,
9696 loc,
9697 "__go_string_slice",
9698 3,
9699 string_type,
9700 string_type,
9701 string_tree,
9702 length_type,
9703 start_tree,
9704 length_type,
9705 end_tree);
9706 if (ret == error_mark_node)
9707 return error_mark_node;
9708 // This will panic if the bounds are out of range for the
9709 // string.
9710 TREE_NOTHROW(strslice_fndecl) = 0;
9711
9712 if (bad_index == boolean_false_node)
9713 return ret;
9714 else
9715 return build2(COMPOUND_EXPR, TREE_TYPE(ret),
9716 build3(COND_EXPR, void_type_node,
9717 bad_index, crash, NULL_TREE),
9718 ret);
9719 }
9720 }
9721
9722 // Make a string index expression. END may be NULL.
9723
9724 Expression*
9725 Expression::make_string_index(Expression* string, Expression* start,
9726 Expression* end, source_location location)
9727 {
9728 return new String_index_expression(string, start, end, location);
9729 }
9730
9731 // Class Map_index.
9732
9733 // Get the type of the map.
9734
9735 Map_type*
9736 Map_index_expression::get_map_type() const
9737 {
9738 Map_type* mt = this->map_->type()->deref()->map_type();
9739 if (mt == NULL)
9740 gcc_assert(saw_errors());
9741 return mt;
9742 }
9743
9744 // Map index traversal.
9745
9746 int
9747 Map_index_expression::do_traverse(Traverse* traverse)
9748 {
9749 if (Expression::traverse(&this->map_, traverse) == TRAVERSE_EXIT)
9750 return TRAVERSE_EXIT;
9751 return Expression::traverse(&this->index_, traverse);
9752 }
9753
9754 // Return the type of a map index.
9755
9756 Type*
9757 Map_index_expression::do_type()
9758 {
9759 Map_type* mt = this->get_map_type();
9760 if (mt == NULL)
9761 return Type::make_error_type();
9762 Type* type = mt->val_type();
9763 // If this map index is in a tuple assignment, we actually return a
9764 // pointer to the value type. Tuple_map_assignment_statement is
9765 // responsible for handling this correctly. We need to get the type
9766 // right in case this gets assigned to a temporary variable.
9767 if (this->is_in_tuple_assignment_)
9768 type = Type::make_pointer_type(type);
9769 return type;
9770 }
9771
9772 // Fix the type of a map index.
9773
9774 void
9775 Map_index_expression::do_determine_type(const Type_context*)
9776 {
9777 this->map_->determine_type_no_context();
9778 Map_type* mt = this->get_map_type();
9779 Type* key_type = mt == NULL ? NULL : mt->key_type();
9780 Type_context subcontext(key_type, false);
9781 this->index_->determine_type(&subcontext);
9782 }
9783
9784 // Check types of a map index.
9785
9786 void
9787 Map_index_expression::do_check_types(Gogo*)
9788 {
9789 std::string reason;
9790 Map_type* mt = this->get_map_type();
9791 if (mt == NULL)
9792 return;
9793 if (!Type::are_assignable(mt->key_type(), this->index_->type(), &reason))
9794 {
9795 if (reason.empty())
9796 this->report_error(_("incompatible type for map index"));
9797 else
9798 {
9799 error_at(this->location(), "incompatible type for map index (%s)",
9800 reason.c_str());
9801 this->set_is_error();
9802 }
9803 }
9804 }
9805
9806 // Get a tree for a map index.
9807
9808 tree
9809 Map_index_expression::do_get_tree(Translate_context* context)
9810 {
9811 Map_type* type = this->get_map_type();
9812 if (type == NULL)
9813 return error_mark_node;
9814
9815 tree valptr = this->get_value_pointer(context, this->is_lvalue_);
9816 if (valptr == error_mark_node)
9817 return error_mark_node;
9818 valptr = save_expr(valptr);
9819
9820 tree val_type_tree = TREE_TYPE(TREE_TYPE(valptr));
9821
9822 if (this->is_lvalue_)
9823 return build_fold_indirect_ref(valptr);
9824 else if (this->is_in_tuple_assignment_)
9825 {
9826 // Tuple_map_assignment_statement is responsible for using this
9827 // appropriately.
9828 return valptr;
9829 }
9830 else
9831 {
9832 return fold_build3(COND_EXPR, val_type_tree,
9833 fold_build2(EQ_EXPR, boolean_type_node, valptr,
9834 fold_convert(TREE_TYPE(valptr),
9835 null_pointer_node)),
9836 type->val_type()->get_init_tree(context->gogo(),
9837 false),
9838 build_fold_indirect_ref(valptr));
9839 }
9840 }
9841
9842 // Get a tree for the map index. This returns a tree which evaluates
9843 // to a pointer to a value. The pointer will be NULL if the key is
9844 // not in the map.
9845
9846 tree
9847 Map_index_expression::get_value_pointer(Translate_context* context,
9848 bool insert)
9849 {
9850 Map_type* type = this->get_map_type();
9851 if (type == NULL)
9852 return error_mark_node;
9853
9854 tree map_tree = this->map_->get_tree(context);
9855 tree index_tree = this->index_->get_tree(context);
9856 index_tree = Expression::convert_for_assignment(context, type->key_type(),
9857 this->index_->type(),
9858 index_tree,
9859 this->location());
9860 if (map_tree == error_mark_node || index_tree == error_mark_node)
9861 return error_mark_node;
9862
9863 if (this->map_->type()->points_to() != NULL)
9864 map_tree = build_fold_indirect_ref(map_tree);
9865
9866 // We need to pass in a pointer to the key, so stuff it into a
9867 // variable.
9868 tree tmp = create_tmp_var(TREE_TYPE(index_tree), get_name(index_tree));
9869 DECL_IGNORED_P(tmp) = 0;
9870 DECL_INITIAL(tmp) = index_tree;
9871 tree make_tmp = build1(DECL_EXPR, void_type_node, tmp);
9872 tree tmpref = fold_convert(const_ptr_type_node, build_fold_addr_expr(tmp));
9873 TREE_ADDRESSABLE(tmp) = 1;
9874
9875 static tree map_index_fndecl;
9876 tree call = Gogo::call_builtin(&map_index_fndecl,
9877 this->location(),
9878 "__go_map_index",
9879 3,
9880 const_ptr_type_node,
9881 TREE_TYPE(map_tree),
9882 map_tree,
9883 const_ptr_type_node,
9884 tmpref,
9885 boolean_type_node,
9886 (insert
9887 ? boolean_true_node
9888 : boolean_false_node));
9889 if (call == error_mark_node)
9890 return error_mark_node;
9891 // This can panic on a map of interface type if the interface holds
9892 // an uncomparable or unhashable type.
9893 TREE_NOTHROW(map_index_fndecl) = 0;
9894
9895 tree val_type_tree = type->val_type()->get_tree(context->gogo());
9896 if (val_type_tree == error_mark_node)
9897 return error_mark_node;
9898 tree ptr_val_type_tree = build_pointer_type(val_type_tree);
9899
9900 return build2(COMPOUND_EXPR, ptr_val_type_tree,
9901 make_tmp,
9902 fold_convert(ptr_val_type_tree, call));
9903 }
9904
9905 // Make a map index expression.
9906
9907 Map_index_expression*
9908 Expression::make_map_index(Expression* map, Expression* index,
9909 source_location location)
9910 {
9911 return new Map_index_expression(map, index, location);
9912 }
9913
9914 // Class Field_reference_expression.
9915
9916 // Return the type of a field reference.
9917
9918 Type*
9919 Field_reference_expression::do_type()
9920 {
9921 Type* type = this->expr_->type();
9922 if (type->is_error_type())
9923 return type;
9924 Struct_type* struct_type = type->struct_type();
9925 gcc_assert(struct_type != NULL);
9926 return struct_type->field(this->field_index_)->type();
9927 }
9928
9929 // Check the types for a field reference.
9930
9931 void
9932 Field_reference_expression::do_check_types(Gogo*)
9933 {
9934 Type* type = this->expr_->type();
9935 if (type->is_error_type())
9936 return;
9937 Struct_type* struct_type = type->struct_type();
9938 gcc_assert(struct_type != NULL);
9939 gcc_assert(struct_type->field(this->field_index_) != NULL);
9940 }
9941
9942 // Get a tree for a field reference.
9943
9944 tree
9945 Field_reference_expression::do_get_tree(Translate_context* context)
9946 {
9947 tree struct_tree = this->expr_->get_tree(context);
9948 if (struct_tree == error_mark_node
9949 || TREE_TYPE(struct_tree) == error_mark_node)
9950 return error_mark_node;
9951 gcc_assert(TREE_CODE(TREE_TYPE(struct_tree)) == RECORD_TYPE);
9952 tree field = TYPE_FIELDS(TREE_TYPE(struct_tree));
9953 if (field == NULL_TREE)
9954 {
9955 // This can happen for a type which refers to itself indirectly
9956 // and then turns out to be erroneous.
9957 gcc_assert(saw_errors());
9958 return error_mark_node;
9959 }
9960 for (unsigned int i = this->field_index_; i > 0; --i)
9961 {
9962 field = DECL_CHAIN(field);
9963 gcc_assert(field != NULL_TREE);
9964 }
9965 if (TREE_TYPE(field) == error_mark_node)
9966 return error_mark_node;
9967 return build3(COMPONENT_REF, TREE_TYPE(field), struct_tree, field,
9968 NULL_TREE);
9969 }
9970
9971 // Make a reference to a qualified identifier in an expression.
9972
9973 Field_reference_expression*
9974 Expression::make_field_reference(Expression* expr, unsigned int field_index,
9975 source_location location)
9976 {
9977 return new Field_reference_expression(expr, field_index, location);
9978 }
9979
9980 // Class Interface_field_reference_expression.
9981
9982 // Return a tree for the pointer to the function to call.
9983
9984 tree
9985 Interface_field_reference_expression::get_function_tree(Translate_context*,
9986 tree expr)
9987 {
9988 if (this->expr_->type()->points_to() != NULL)
9989 expr = build_fold_indirect_ref(expr);
9990
9991 tree expr_type = TREE_TYPE(expr);
9992 gcc_assert(TREE_CODE(expr_type) == RECORD_TYPE);
9993
9994 tree field = TYPE_FIELDS(expr_type);
9995 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods") == 0);
9996
9997 tree table = build3(COMPONENT_REF, TREE_TYPE(field), expr, field, NULL_TREE);
9998 gcc_assert(POINTER_TYPE_P(TREE_TYPE(table)));
9999
10000 table = build_fold_indirect_ref(table);
10001 gcc_assert(TREE_CODE(TREE_TYPE(table)) == RECORD_TYPE);
10002
10003 std::string name = Gogo::unpack_hidden_name(this->name_);
10004 for (field = DECL_CHAIN(TYPE_FIELDS(TREE_TYPE(table)));
10005 field != NULL_TREE;
10006 field = DECL_CHAIN(field))
10007 {
10008 if (name == IDENTIFIER_POINTER(DECL_NAME(field)))
10009 break;
10010 }
10011 gcc_assert(field != NULL_TREE);
10012
10013 return build3(COMPONENT_REF, TREE_TYPE(field), table, field, NULL_TREE);
10014 }
10015
10016 // Return a tree for the first argument to pass to the interface
10017 // function.
10018
10019 tree
10020 Interface_field_reference_expression::get_underlying_object_tree(
10021 Translate_context*,
10022 tree expr)
10023 {
10024 if (this->expr_->type()->points_to() != NULL)
10025 expr = build_fold_indirect_ref(expr);
10026
10027 tree expr_type = TREE_TYPE(expr);
10028 gcc_assert(TREE_CODE(expr_type) == RECORD_TYPE);
10029
10030 tree field = DECL_CHAIN(TYPE_FIELDS(expr_type));
10031 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
10032
10033 return build3(COMPONENT_REF, TREE_TYPE(field), expr, field, NULL_TREE);
10034 }
10035
10036 // Traversal.
10037
10038 int
10039 Interface_field_reference_expression::do_traverse(Traverse* traverse)
10040 {
10041 return Expression::traverse(&this->expr_, traverse);
10042 }
10043
10044 // Return the type of an interface field reference.
10045
10046 Type*
10047 Interface_field_reference_expression::do_type()
10048 {
10049 Type* expr_type = this->expr_->type();
10050
10051 Type* points_to = expr_type->points_to();
10052 if (points_to != NULL)
10053 expr_type = points_to;
10054
10055 Interface_type* interface_type = expr_type->interface_type();
10056 if (interface_type == NULL)
10057 return Type::make_error_type();
10058
10059 const Typed_identifier* method = interface_type->find_method(this->name_);
10060 if (method == NULL)
10061 return Type::make_error_type();
10062
10063 return method->type();
10064 }
10065
10066 // Determine types.
10067
10068 void
10069 Interface_field_reference_expression::do_determine_type(const Type_context*)
10070 {
10071 this->expr_->determine_type_no_context();
10072 }
10073
10074 // Check the types for an interface field reference.
10075
10076 void
10077 Interface_field_reference_expression::do_check_types(Gogo*)
10078 {
10079 Type* type = this->expr_->type();
10080
10081 Type* points_to = type->points_to();
10082 if (points_to != NULL)
10083 type = points_to;
10084
10085 Interface_type* interface_type = type->interface_type();
10086 if (interface_type == NULL)
10087 this->report_error(_("expected interface or pointer to interface"));
10088 else
10089 {
10090 const Typed_identifier* method =
10091 interface_type->find_method(this->name_);
10092 if (method == NULL)
10093 {
10094 error_at(this->location(), "method %qs not in interface",
10095 Gogo::message_name(this->name_).c_str());
10096 this->set_is_error();
10097 }
10098 }
10099 }
10100
10101 // Get a tree for a reference to a field in an interface. There is no
10102 // standard tree type representation for this: it's a function
10103 // attached to its first argument, like a Bound_method_expression.
10104 // The only places it may currently be used are in a Call_expression
10105 // or a Go_statement, which will take it apart directly. So this has
10106 // nothing to do at present.
10107
10108 tree
10109 Interface_field_reference_expression::do_get_tree(Translate_context*)
10110 {
10111 gcc_unreachable();
10112 }
10113
10114 // Make a reference to a field in an interface.
10115
10116 Expression*
10117 Expression::make_interface_field_reference(Expression* expr,
10118 const std::string& field,
10119 source_location location)
10120 {
10121 return new Interface_field_reference_expression(expr, field, location);
10122 }
10123
10124 // A general selector. This is a Parser_expression for LEFT.NAME. It
10125 // is lowered after we know the type of the left hand side.
10126
10127 class Selector_expression : public Parser_expression
10128 {
10129 public:
10130 Selector_expression(Expression* left, const std::string& name,
10131 source_location location)
10132 : Parser_expression(EXPRESSION_SELECTOR, location),
10133 left_(left), name_(name)
10134 { }
10135
10136 protected:
10137 int
10138 do_traverse(Traverse* traverse)
10139 { return Expression::traverse(&this->left_, traverse); }
10140
10141 Expression*
10142 do_lower(Gogo*, Named_object*, int);
10143
10144 Expression*
10145 do_copy()
10146 {
10147 return new Selector_expression(this->left_->copy(), this->name_,
10148 this->location());
10149 }
10150
10151 private:
10152 Expression*
10153 lower_method_expression(Gogo*);
10154
10155 // The expression on the left hand side.
10156 Expression* left_;
10157 // The name on the right hand side.
10158 std::string name_;
10159 };
10160
10161 // Lower a selector expression once we know the real type of the left
10162 // hand side.
10163
10164 Expression*
10165 Selector_expression::do_lower(Gogo* gogo, Named_object*, int)
10166 {
10167 Expression* left = this->left_;
10168 if (left->is_type_expression())
10169 return this->lower_method_expression(gogo);
10170 return Type::bind_field_or_method(gogo, left->type(), left, this->name_,
10171 this->location());
10172 }
10173
10174 // Lower a method expression T.M or (*T).M. We turn this into a
10175 // function literal.
10176
10177 Expression*
10178 Selector_expression::lower_method_expression(Gogo* gogo)
10179 {
10180 source_location location = this->location();
10181 Type* type = this->left_->type();
10182 const std::string& name(this->name_);
10183
10184 bool is_pointer;
10185 if (type->points_to() == NULL)
10186 is_pointer = false;
10187 else
10188 {
10189 is_pointer = true;
10190 type = type->points_to();
10191 }
10192 Named_type* nt = type->named_type();
10193 if (nt == NULL)
10194 {
10195 error_at(location,
10196 ("method expression requires named type or "
10197 "pointer to named type"));
10198 return Expression::make_error(location);
10199 }
10200
10201 bool is_ambiguous;
10202 Method* method = nt->method_function(name, &is_ambiguous);
10203 if (method == NULL)
10204 {
10205 if (!is_ambiguous)
10206 error_at(location, "type %<%s%> has no method %<%s%>",
10207 nt->message_name().c_str(),
10208 Gogo::message_name(name).c_str());
10209 else
10210 error_at(location, "method %<%s%> is ambiguous in type %<%s%>",
10211 Gogo::message_name(name).c_str(),
10212 nt->message_name().c_str());
10213 return Expression::make_error(location);
10214 }
10215
10216 if (!is_pointer && !method->is_value_method())
10217 {
10218 error_at(location, "method requires pointer (use %<(*%s).%s)%>",
10219 nt->message_name().c_str(),
10220 Gogo::message_name(name).c_str());
10221 return Expression::make_error(location);
10222 }
10223
10224 // Build a new function type in which the receiver becomes the first
10225 // argument.
10226 Function_type* method_type = method->type();
10227 gcc_assert(method_type->is_method());
10228
10229 const char* const receiver_name = "$this";
10230 Typed_identifier_list* parameters = new Typed_identifier_list();
10231 parameters->push_back(Typed_identifier(receiver_name, this->left_->type(),
10232 location));
10233
10234 const Typed_identifier_list* method_parameters = method_type->parameters();
10235 if (method_parameters != NULL)
10236 {
10237 for (Typed_identifier_list::const_iterator p = method_parameters->begin();
10238 p != method_parameters->end();
10239 ++p)
10240 parameters->push_back(*p);
10241 }
10242
10243 const Typed_identifier_list* method_results = method_type->results();
10244 Typed_identifier_list* results;
10245 if (method_results == NULL)
10246 results = NULL;
10247 else
10248 {
10249 results = new Typed_identifier_list();
10250 for (Typed_identifier_list::const_iterator p = method_results->begin();
10251 p != method_results->end();
10252 ++p)
10253 results->push_back(*p);
10254 }
10255
10256 Function_type* fntype = Type::make_function_type(NULL, parameters, results,
10257 location);
10258 if (method_type->is_varargs())
10259 fntype->set_is_varargs();
10260
10261 // We generate methods which always takes a pointer to the receiver
10262 // as their first argument. If this is for a pointer type, we can
10263 // simply reuse the existing function. We use an internal hack to
10264 // get the right type.
10265
10266 if (is_pointer)
10267 {
10268 Named_object* mno = (method->needs_stub_method()
10269 ? method->stub_object()
10270 : method->named_object());
10271 Expression* f = Expression::make_func_reference(mno, NULL, location);
10272 f = Expression::make_cast(fntype, f, location);
10273 Type_conversion_expression* tce =
10274 static_cast<Type_conversion_expression*>(f);
10275 tce->set_may_convert_function_types();
10276 return f;
10277 }
10278
10279 Named_object* no = gogo->start_function(Gogo::thunk_name(), fntype, false,
10280 location);
10281
10282 Named_object* vno = gogo->lookup(receiver_name, NULL);
10283 gcc_assert(vno != NULL);
10284 Expression* ve = Expression::make_var_reference(vno, location);
10285 Expression* bm = Type::bind_field_or_method(gogo, nt, ve, name, location);
10286
10287 // Even though we found the method above, if it has an error type we
10288 // may see an error here.
10289 if (bm->is_error_expression())
10290 {
10291 gogo->finish_function(location);
10292 return bm;
10293 }
10294
10295 Expression_list* args;
10296 if (method_parameters == NULL)
10297 args = NULL;
10298 else
10299 {
10300 args = new Expression_list();
10301 for (Typed_identifier_list::const_iterator p = method_parameters->begin();
10302 p != method_parameters->end();
10303 ++p)
10304 {
10305 vno = gogo->lookup(p->name(), NULL);
10306 gcc_assert(vno != NULL);
10307 args->push_back(Expression::make_var_reference(vno, location));
10308 }
10309 }
10310
10311 Call_expression* call = Expression::make_call(bm, args,
10312 method_type->is_varargs(),
10313 location);
10314
10315 size_t count = call->result_count();
10316 Statement* s;
10317 if (count == 0)
10318 s = Statement::make_statement(call);
10319 else
10320 {
10321 Expression_list* retvals = new Expression_list();
10322 if (count <= 1)
10323 retvals->push_back(call);
10324 else
10325 {
10326 for (size_t i = 0; i < count; ++i)
10327 retvals->push_back(Expression::make_call_result(call, i));
10328 }
10329 s = Statement::make_return_statement(no->func_value()->type()->results(),
10330 retvals, location);
10331 }
10332 gogo->add_statement(s);
10333
10334 gogo->finish_function(location);
10335
10336 return Expression::make_func_reference(no, NULL, location);
10337 }
10338
10339 // Make a selector expression.
10340
10341 Expression*
10342 Expression::make_selector(Expression* left, const std::string& name,
10343 source_location location)
10344 {
10345 return new Selector_expression(left, name, location);
10346 }
10347
10348 // Implement the builtin function new.
10349
10350 class Allocation_expression : public Expression
10351 {
10352 public:
10353 Allocation_expression(Type* type, source_location location)
10354 : Expression(EXPRESSION_ALLOCATION, location),
10355 type_(type)
10356 { }
10357
10358 protected:
10359 int
10360 do_traverse(Traverse* traverse)
10361 { return Type::traverse(this->type_, traverse); }
10362
10363 Type*
10364 do_type()
10365 { return Type::make_pointer_type(this->type_); }
10366
10367 void
10368 do_determine_type(const Type_context*)
10369 { }
10370
10371 void
10372 do_check_types(Gogo*);
10373
10374 Expression*
10375 do_copy()
10376 { return new Allocation_expression(this->type_, this->location()); }
10377
10378 tree
10379 do_get_tree(Translate_context*);
10380
10381 private:
10382 // The type we are allocating.
10383 Type* type_;
10384 };
10385
10386 // Check the type of an allocation expression.
10387
10388 void
10389 Allocation_expression::do_check_types(Gogo*)
10390 {
10391 if (this->type_->function_type() != NULL)
10392 this->report_error(_("invalid new of function type"));
10393 }
10394
10395 // Return a tree for an allocation expression.
10396
10397 tree
10398 Allocation_expression::do_get_tree(Translate_context* context)
10399 {
10400 tree type_tree = this->type_->get_tree(context->gogo());
10401 if (type_tree == error_mark_node)
10402 return error_mark_node;
10403 tree size_tree = TYPE_SIZE_UNIT(type_tree);
10404 tree space = context->gogo()->allocate_memory(this->type_, size_tree,
10405 this->location());
10406 if (space == error_mark_node)
10407 return error_mark_node;
10408 return fold_convert(build_pointer_type(type_tree), space);
10409 }
10410
10411 // Make an allocation expression.
10412
10413 Expression*
10414 Expression::make_allocation(Type* type, source_location location)
10415 {
10416 return new Allocation_expression(type, location);
10417 }
10418
10419 // Implement the builtin function make.
10420
10421 class Make_expression : public Expression
10422 {
10423 public:
10424 Make_expression(Type* type, Expression_list* args, source_location location)
10425 : Expression(EXPRESSION_MAKE, location),
10426 type_(type), args_(args)
10427 { }
10428
10429 protected:
10430 int
10431 do_traverse(Traverse* traverse);
10432
10433 Type*
10434 do_type()
10435 { return this->type_; }
10436
10437 void
10438 do_determine_type(const Type_context*);
10439
10440 void
10441 do_check_types(Gogo*);
10442
10443 Expression*
10444 do_copy()
10445 {
10446 return new Make_expression(this->type_, this->args_->copy(),
10447 this->location());
10448 }
10449
10450 tree
10451 do_get_tree(Translate_context*);
10452
10453 private:
10454 // The type we are making.
10455 Type* type_;
10456 // The arguments to pass to the make routine.
10457 Expression_list* args_;
10458 };
10459
10460 // Traversal.
10461
10462 int
10463 Make_expression::do_traverse(Traverse* traverse)
10464 {
10465 if (this->args_ != NULL
10466 && this->args_->traverse(traverse) == TRAVERSE_EXIT)
10467 return TRAVERSE_EXIT;
10468 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10469 return TRAVERSE_EXIT;
10470 return TRAVERSE_CONTINUE;
10471 }
10472
10473 // Set types of arguments.
10474
10475 void
10476 Make_expression::do_determine_type(const Type_context*)
10477 {
10478 if (this->args_ != NULL)
10479 {
10480 Type_context context(Type::lookup_integer_type("int"), false);
10481 for (Expression_list::const_iterator pe = this->args_->begin();
10482 pe != this->args_->end();
10483 ++pe)
10484 (*pe)->determine_type(&context);
10485 }
10486 }
10487
10488 // Check types for a make expression.
10489
10490 void
10491 Make_expression::do_check_types(Gogo*)
10492 {
10493 if (this->type_->channel_type() == NULL
10494 && this->type_->map_type() == NULL
10495 && (this->type_->array_type() == NULL
10496 || this->type_->array_type()->length() != NULL))
10497 this->report_error(_("invalid type for make function"));
10498 else if (!this->type_->check_make_expression(this->args_, this->location()))
10499 this->set_is_error();
10500 }
10501
10502 // Return a tree for a make expression.
10503
10504 tree
10505 Make_expression::do_get_tree(Translate_context* context)
10506 {
10507 return this->type_->make_expression_tree(context, this->args_,
10508 this->location());
10509 }
10510
10511 // Make a make expression.
10512
10513 Expression*
10514 Expression::make_make(Type* type, Expression_list* args,
10515 source_location location)
10516 {
10517 return new Make_expression(type, args, location);
10518 }
10519
10520 // Construct a struct.
10521
10522 class Struct_construction_expression : public Expression
10523 {
10524 public:
10525 Struct_construction_expression(Type* type, Expression_list* vals,
10526 source_location location)
10527 : Expression(EXPRESSION_STRUCT_CONSTRUCTION, location),
10528 type_(type), vals_(vals)
10529 { }
10530
10531 // Return whether this is a constant initializer.
10532 bool
10533 is_constant_struct() const;
10534
10535 protected:
10536 int
10537 do_traverse(Traverse* traverse);
10538
10539 Type*
10540 do_type()
10541 { return this->type_; }
10542
10543 void
10544 do_determine_type(const Type_context*);
10545
10546 void
10547 do_check_types(Gogo*);
10548
10549 Expression*
10550 do_copy()
10551 {
10552 return new Struct_construction_expression(this->type_, this->vals_->copy(),
10553 this->location());
10554 }
10555
10556 bool
10557 do_is_addressable() const
10558 { return true; }
10559
10560 tree
10561 do_get_tree(Translate_context*);
10562
10563 void
10564 do_export(Export*) const;
10565
10566 private:
10567 // The type of the struct to construct.
10568 Type* type_;
10569 // The list of values, in order of the fields in the struct. A NULL
10570 // entry means that the field should be zero-initialized.
10571 Expression_list* vals_;
10572 };
10573
10574 // Traversal.
10575
10576 int
10577 Struct_construction_expression::do_traverse(Traverse* traverse)
10578 {
10579 if (this->vals_ != NULL
10580 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
10581 return TRAVERSE_EXIT;
10582 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10583 return TRAVERSE_EXIT;
10584 return TRAVERSE_CONTINUE;
10585 }
10586
10587 // Return whether this is a constant initializer.
10588
10589 bool
10590 Struct_construction_expression::is_constant_struct() const
10591 {
10592 if (this->vals_ == NULL)
10593 return true;
10594 for (Expression_list::const_iterator pv = this->vals_->begin();
10595 pv != this->vals_->end();
10596 ++pv)
10597 {
10598 if (*pv != NULL
10599 && !(*pv)->is_constant()
10600 && (!(*pv)->is_composite_literal()
10601 || (*pv)->is_nonconstant_composite_literal()))
10602 return false;
10603 }
10604
10605 const Struct_field_list* fields = this->type_->struct_type()->fields();
10606 for (Struct_field_list::const_iterator pf = fields->begin();
10607 pf != fields->end();
10608 ++pf)
10609 {
10610 // There are no constant constructors for interfaces.
10611 if (pf->type()->interface_type() != NULL)
10612 return false;
10613 }
10614
10615 return true;
10616 }
10617
10618 // Final type determination.
10619
10620 void
10621 Struct_construction_expression::do_determine_type(const Type_context*)
10622 {
10623 if (this->vals_ == NULL)
10624 return;
10625 const Struct_field_list* fields = this->type_->struct_type()->fields();
10626 Expression_list::const_iterator pv = this->vals_->begin();
10627 for (Struct_field_list::const_iterator pf = fields->begin();
10628 pf != fields->end();
10629 ++pf, ++pv)
10630 {
10631 if (pv == this->vals_->end())
10632 return;
10633 if (*pv != NULL)
10634 {
10635 Type_context subcontext(pf->type(), false);
10636 (*pv)->determine_type(&subcontext);
10637 }
10638 }
10639 // Extra values are an error we will report elsewhere; we still want
10640 // to determine the type to avoid knockon errors.
10641 for (; pv != this->vals_->end(); ++pv)
10642 (*pv)->determine_type_no_context();
10643 }
10644
10645 // Check types.
10646
10647 void
10648 Struct_construction_expression::do_check_types(Gogo*)
10649 {
10650 if (this->vals_ == NULL)
10651 return;
10652
10653 Struct_type* st = this->type_->struct_type();
10654 if (this->vals_->size() > st->field_count())
10655 {
10656 this->report_error(_("too many expressions for struct"));
10657 return;
10658 }
10659
10660 const Struct_field_list* fields = st->fields();
10661 Expression_list::const_iterator pv = this->vals_->begin();
10662 int i = 0;
10663 for (Struct_field_list::const_iterator pf = fields->begin();
10664 pf != fields->end();
10665 ++pf, ++pv, ++i)
10666 {
10667 if (pv == this->vals_->end())
10668 {
10669 this->report_error(_("too few expressions for struct"));
10670 break;
10671 }
10672
10673 if (*pv == NULL)
10674 continue;
10675
10676 std::string reason;
10677 if (!Type::are_assignable(pf->type(), (*pv)->type(), &reason))
10678 {
10679 if (reason.empty())
10680 error_at((*pv)->location(),
10681 "incompatible type for field %d in struct construction",
10682 i + 1);
10683 else
10684 error_at((*pv)->location(),
10685 ("incompatible type for field %d in "
10686 "struct construction (%s)"),
10687 i + 1, reason.c_str());
10688 this->set_is_error();
10689 }
10690 }
10691 gcc_assert(pv == this->vals_->end());
10692 }
10693
10694 // Return a tree for constructing a struct.
10695
10696 tree
10697 Struct_construction_expression::do_get_tree(Translate_context* context)
10698 {
10699 Gogo* gogo = context->gogo();
10700
10701 if (this->vals_ == NULL)
10702 return this->type_->get_init_tree(gogo, false);
10703
10704 tree type_tree = this->type_->get_tree(gogo);
10705 if (type_tree == error_mark_node)
10706 return error_mark_node;
10707 gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
10708
10709 bool is_constant = true;
10710 const Struct_field_list* fields = this->type_->struct_type()->fields();
10711 VEC(constructor_elt,gc)* elts = VEC_alloc(constructor_elt, gc,
10712 fields->size());
10713 Struct_field_list::const_iterator pf = fields->begin();
10714 Expression_list::const_iterator pv = this->vals_->begin();
10715 for (tree field = TYPE_FIELDS(type_tree);
10716 field != NULL_TREE;
10717 field = DECL_CHAIN(field), ++pf)
10718 {
10719 gcc_assert(pf != fields->end());
10720
10721 tree val;
10722 if (pv == this->vals_->end())
10723 val = pf->type()->get_init_tree(gogo, false);
10724 else if (*pv == NULL)
10725 {
10726 val = pf->type()->get_init_tree(gogo, false);
10727 ++pv;
10728 }
10729 else
10730 {
10731 val = Expression::convert_for_assignment(context, pf->type(),
10732 (*pv)->type(),
10733 (*pv)->get_tree(context),
10734 this->location());
10735 ++pv;
10736 }
10737
10738 if (val == error_mark_node || TREE_TYPE(val) == error_mark_node)
10739 return error_mark_node;
10740
10741 constructor_elt* elt = VEC_quick_push(constructor_elt, elts, NULL);
10742 elt->index = field;
10743 elt->value = val;
10744 if (!TREE_CONSTANT(val))
10745 is_constant = false;
10746 }
10747 gcc_assert(pf == fields->end());
10748
10749 tree ret = build_constructor(type_tree, elts);
10750 if (is_constant)
10751 TREE_CONSTANT(ret) = 1;
10752 return ret;
10753 }
10754
10755 // Export a struct construction.
10756
10757 void
10758 Struct_construction_expression::do_export(Export* exp) const
10759 {
10760 exp->write_c_string("convert(");
10761 exp->write_type(this->type_);
10762 for (Expression_list::const_iterator pv = this->vals_->begin();
10763 pv != this->vals_->end();
10764 ++pv)
10765 {
10766 exp->write_c_string(", ");
10767 if (*pv != NULL)
10768 (*pv)->export_expression(exp);
10769 }
10770 exp->write_c_string(")");
10771 }
10772
10773 // Make a struct composite literal. This used by the thunk code.
10774
10775 Expression*
10776 Expression::make_struct_composite_literal(Type* type, Expression_list* vals,
10777 source_location location)
10778 {
10779 gcc_assert(type->struct_type() != NULL);
10780 return new Struct_construction_expression(type, vals, location);
10781 }
10782
10783 // Construct an array. This class is not used directly; instead we
10784 // use the child classes, Fixed_array_construction_expression and
10785 // Open_array_construction_expression.
10786
10787 class Array_construction_expression : public Expression
10788 {
10789 protected:
10790 Array_construction_expression(Expression_classification classification,
10791 Type* type, Expression_list* vals,
10792 source_location location)
10793 : Expression(classification, location),
10794 type_(type), vals_(vals)
10795 { }
10796
10797 public:
10798 // Return whether this is a constant initializer.
10799 bool
10800 is_constant_array() const;
10801
10802 // Return the number of elements.
10803 size_t
10804 element_count() const
10805 { return this->vals_ == NULL ? 0 : this->vals_->size(); }
10806
10807 protected:
10808 int
10809 do_traverse(Traverse* traverse);
10810
10811 Type*
10812 do_type()
10813 { return this->type_; }
10814
10815 void
10816 do_determine_type(const Type_context*);
10817
10818 void
10819 do_check_types(Gogo*);
10820
10821 bool
10822 do_is_addressable() const
10823 { return true; }
10824
10825 void
10826 do_export(Export*) const;
10827
10828 // The list of values.
10829 Expression_list*
10830 vals()
10831 { return this->vals_; }
10832
10833 // Get a constructor tree for the array values.
10834 tree
10835 get_constructor_tree(Translate_context* context, tree type_tree);
10836
10837 private:
10838 // The type of the array to construct.
10839 Type* type_;
10840 // The list of values.
10841 Expression_list* vals_;
10842 };
10843
10844 // Traversal.
10845
10846 int
10847 Array_construction_expression::do_traverse(Traverse* traverse)
10848 {
10849 if (this->vals_ != NULL
10850 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
10851 return TRAVERSE_EXIT;
10852 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10853 return TRAVERSE_EXIT;
10854 return TRAVERSE_CONTINUE;
10855 }
10856
10857 // Return whether this is a constant initializer.
10858
10859 bool
10860 Array_construction_expression::is_constant_array() const
10861 {
10862 if (this->vals_ == NULL)
10863 return true;
10864
10865 // There are no constant constructors for interfaces.
10866 if (this->type_->array_type()->element_type()->interface_type() != NULL)
10867 return false;
10868
10869 for (Expression_list::const_iterator pv = this->vals_->begin();
10870 pv != this->vals_->end();
10871 ++pv)
10872 {
10873 if (*pv != NULL
10874 && !(*pv)->is_constant()
10875 && (!(*pv)->is_composite_literal()
10876 || (*pv)->is_nonconstant_composite_literal()))
10877 return false;
10878 }
10879 return true;
10880 }
10881
10882 // Final type determination.
10883
10884 void
10885 Array_construction_expression::do_determine_type(const Type_context*)
10886 {
10887 if (this->vals_ == NULL)
10888 return;
10889 Type_context subcontext(this->type_->array_type()->element_type(), false);
10890 for (Expression_list::const_iterator pv = this->vals_->begin();
10891 pv != this->vals_->end();
10892 ++pv)
10893 {
10894 if (*pv != NULL)
10895 (*pv)->determine_type(&subcontext);
10896 }
10897 }
10898
10899 // Check types.
10900
10901 void
10902 Array_construction_expression::do_check_types(Gogo*)
10903 {
10904 if (this->vals_ == NULL)
10905 return;
10906
10907 Array_type* at = this->type_->array_type();
10908 int i = 0;
10909 Type* element_type = at->element_type();
10910 for (Expression_list::const_iterator pv = this->vals_->begin();
10911 pv != this->vals_->end();
10912 ++pv, ++i)
10913 {
10914 if (*pv != NULL
10915 && !Type::are_assignable(element_type, (*pv)->type(), NULL))
10916 {
10917 error_at((*pv)->location(),
10918 "incompatible type for element %d in composite literal",
10919 i + 1);
10920 this->set_is_error();
10921 }
10922 }
10923
10924 Expression* length = at->length();
10925 if (length != NULL)
10926 {
10927 mpz_t val;
10928 mpz_init(val);
10929 Type* type;
10930 if (at->length()->integer_constant_value(true, val, &type))
10931 {
10932 if (this->vals_->size() > mpz_get_ui(val))
10933 this->report_error(_("too many elements in composite literal"));
10934 }
10935 mpz_clear(val);
10936 }
10937 }
10938
10939 // Get a constructor tree for the array values.
10940
10941 tree
10942 Array_construction_expression::get_constructor_tree(Translate_context* context,
10943 tree type_tree)
10944 {
10945 VEC(constructor_elt,gc)* values = VEC_alloc(constructor_elt, gc,
10946 (this->vals_ == NULL
10947 ? 0
10948 : this->vals_->size()));
10949 Type* element_type = this->type_->array_type()->element_type();
10950 bool is_constant = true;
10951 if (this->vals_ != NULL)
10952 {
10953 size_t i = 0;
10954 for (Expression_list::const_iterator pv = this->vals_->begin();
10955 pv != this->vals_->end();
10956 ++pv, ++i)
10957 {
10958 constructor_elt* elt = VEC_quick_push(constructor_elt, values, NULL);
10959 elt->index = size_int(i);
10960 if (*pv == NULL)
10961 elt->value = element_type->get_init_tree(context->gogo(), false);
10962 else
10963 {
10964 tree value_tree = (*pv)->get_tree(context);
10965 elt->value = Expression::convert_for_assignment(context,
10966 element_type,
10967 (*pv)->type(),
10968 value_tree,
10969 this->location());
10970 }
10971 if (elt->value == error_mark_node)
10972 return error_mark_node;
10973 if (!TREE_CONSTANT(elt->value))
10974 is_constant = false;
10975 }
10976 }
10977
10978 tree ret = build_constructor(type_tree, values);
10979 if (is_constant)
10980 TREE_CONSTANT(ret) = 1;
10981 return ret;
10982 }
10983
10984 // Export an array construction.
10985
10986 void
10987 Array_construction_expression::do_export(Export* exp) const
10988 {
10989 exp->write_c_string("convert(");
10990 exp->write_type(this->type_);
10991 if (this->vals_ != NULL)
10992 {
10993 for (Expression_list::const_iterator pv = this->vals_->begin();
10994 pv != this->vals_->end();
10995 ++pv)
10996 {
10997 exp->write_c_string(", ");
10998 if (*pv != NULL)
10999 (*pv)->export_expression(exp);
11000 }
11001 }
11002 exp->write_c_string(")");
11003 }
11004
11005 // Construct a fixed array.
11006
11007 class Fixed_array_construction_expression :
11008 public Array_construction_expression
11009 {
11010 public:
11011 Fixed_array_construction_expression(Type* type, Expression_list* vals,
11012 source_location location)
11013 : Array_construction_expression(EXPRESSION_FIXED_ARRAY_CONSTRUCTION,
11014 type, vals, location)
11015 {
11016 gcc_assert(type->array_type() != NULL
11017 && type->array_type()->length() != NULL);
11018 }
11019
11020 protected:
11021 Expression*
11022 do_copy()
11023 {
11024 return new Fixed_array_construction_expression(this->type(),
11025 (this->vals() == NULL
11026 ? NULL
11027 : this->vals()->copy()),
11028 this->location());
11029 }
11030
11031 tree
11032 do_get_tree(Translate_context*);
11033 };
11034
11035 // Return a tree for constructing a fixed array.
11036
11037 tree
11038 Fixed_array_construction_expression::do_get_tree(Translate_context* context)
11039 {
11040 return this->get_constructor_tree(context,
11041 this->type()->get_tree(context->gogo()));
11042 }
11043
11044 // Construct an open array.
11045
11046 class Open_array_construction_expression : public Array_construction_expression
11047 {
11048 public:
11049 Open_array_construction_expression(Type* type, Expression_list* vals,
11050 source_location location)
11051 : Array_construction_expression(EXPRESSION_OPEN_ARRAY_CONSTRUCTION,
11052 type, vals, location)
11053 {
11054 gcc_assert(type->array_type() != NULL
11055 && type->array_type()->length() == NULL);
11056 }
11057
11058 protected:
11059 // Note that taking the address of an open array literal is invalid.
11060
11061 Expression*
11062 do_copy()
11063 {
11064 return new Open_array_construction_expression(this->type(),
11065 (this->vals() == NULL
11066 ? NULL
11067 : this->vals()->copy()),
11068 this->location());
11069 }
11070
11071 tree
11072 do_get_tree(Translate_context*);
11073 };
11074
11075 // Return a tree for constructing an open array.
11076
11077 tree
11078 Open_array_construction_expression::do_get_tree(Translate_context* context)
11079 {
11080 Array_type* array_type = this->type()->array_type();
11081 if (array_type == NULL)
11082 {
11083 gcc_assert(this->type()->is_error_type());
11084 return error_mark_node;
11085 }
11086
11087 Type* element_type = array_type->element_type();
11088 tree element_type_tree = element_type->get_tree(context->gogo());
11089 if (element_type_tree == error_mark_node)
11090 return error_mark_node;
11091
11092 tree values;
11093 tree length_tree;
11094 if (this->vals() == NULL || this->vals()->empty())
11095 {
11096 // We need to create a unique value.
11097 tree max = size_int(0);
11098 tree constructor_type = build_array_type(element_type_tree,
11099 build_index_type(max));
11100 if (constructor_type == error_mark_node)
11101 return error_mark_node;
11102 VEC(constructor_elt,gc)* vec = VEC_alloc(constructor_elt, gc, 1);
11103 constructor_elt* elt = VEC_quick_push(constructor_elt, vec, NULL);
11104 elt->index = size_int(0);
11105 elt->value = element_type->get_init_tree(context->gogo(), false);
11106 values = build_constructor(constructor_type, vec);
11107 if (TREE_CONSTANT(elt->value))
11108 TREE_CONSTANT(values) = 1;
11109 length_tree = size_int(0);
11110 }
11111 else
11112 {
11113 tree max = size_int(this->vals()->size() - 1);
11114 tree constructor_type = build_array_type(element_type_tree,
11115 build_index_type(max));
11116 if (constructor_type == error_mark_node)
11117 return error_mark_node;
11118 values = this->get_constructor_tree(context, constructor_type);
11119 length_tree = size_int(this->vals()->size());
11120 }
11121
11122 if (values == error_mark_node)
11123 return error_mark_node;
11124
11125 bool is_constant_initializer = TREE_CONSTANT(values);
11126
11127 // We have to copy the initial values into heap memory if we are in
11128 // a function or if the values are not constants. We also have to
11129 // copy them if they may contain pointers in a non-constant context,
11130 // as otherwise the garbage collector won't see them.
11131 bool copy_to_heap = (context->function() != NULL
11132 || !is_constant_initializer
11133 || (element_type->has_pointer()
11134 && !context->is_const()));
11135
11136 if (is_constant_initializer)
11137 {
11138 tree tmp = build_decl(this->location(), VAR_DECL,
11139 create_tmp_var_name("C"), TREE_TYPE(values));
11140 DECL_EXTERNAL(tmp) = 0;
11141 TREE_PUBLIC(tmp) = 0;
11142 TREE_STATIC(tmp) = 1;
11143 DECL_ARTIFICIAL(tmp) = 1;
11144 if (copy_to_heap)
11145 {
11146 // If we are not copying the value to the heap, we will only
11147 // initialize the value once, so we can use this directly
11148 // rather than copying it. In that case we can't make it
11149 // read-only, because the program is permitted to change it.
11150 TREE_READONLY(tmp) = 1;
11151 TREE_CONSTANT(tmp) = 1;
11152 }
11153 DECL_INITIAL(tmp) = values;
11154 rest_of_decl_compilation(tmp, 1, 0);
11155 values = tmp;
11156 }
11157
11158 tree space;
11159 tree set;
11160 if (!copy_to_heap)
11161 {
11162 // the initializer will only run once.
11163 space = build_fold_addr_expr(values);
11164 set = NULL_TREE;
11165 }
11166 else
11167 {
11168 tree memsize = TYPE_SIZE_UNIT(TREE_TYPE(values));
11169 space = context->gogo()->allocate_memory(element_type, memsize,
11170 this->location());
11171 space = save_expr(space);
11172
11173 tree s = fold_convert(build_pointer_type(TREE_TYPE(values)), space);
11174 tree ref = build_fold_indirect_ref_loc(this->location(), s);
11175 TREE_THIS_NOTRAP(ref) = 1;
11176 set = build2(MODIFY_EXPR, void_type_node, ref, values);
11177 }
11178
11179 // Build a constructor for the open array.
11180
11181 tree type_tree = this->type()->get_tree(context->gogo());
11182 if (type_tree == error_mark_node)
11183 return error_mark_node;
11184 gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
11185
11186 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
11187
11188 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
11189 tree field = TYPE_FIELDS(type_tree);
11190 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
11191 elt->index = field;
11192 elt->value = fold_convert(TREE_TYPE(field), space);
11193
11194 elt = VEC_quick_push(constructor_elt, init, NULL);
11195 field = DECL_CHAIN(field);
11196 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
11197 elt->index = field;
11198 elt->value = fold_convert(TREE_TYPE(field), length_tree);
11199
11200 elt = VEC_quick_push(constructor_elt, init, NULL);
11201 field = DECL_CHAIN(field);
11202 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),"__capacity") == 0);
11203 elt->index = field;
11204 elt->value = fold_convert(TREE_TYPE(field), length_tree);
11205
11206 tree constructor = build_constructor(type_tree, init);
11207 if (constructor == error_mark_node)
11208 return error_mark_node;
11209 if (!copy_to_heap)
11210 TREE_CONSTANT(constructor) = 1;
11211
11212 if (set == NULL_TREE)
11213 return constructor;
11214 else
11215 return build2(COMPOUND_EXPR, type_tree, set, constructor);
11216 }
11217
11218 // Make a slice composite literal. This is used by the type
11219 // descriptor code.
11220
11221 Expression*
11222 Expression::make_slice_composite_literal(Type* type, Expression_list* vals,
11223 source_location location)
11224 {
11225 gcc_assert(type->is_open_array_type());
11226 return new Open_array_construction_expression(type, vals, location);
11227 }
11228
11229 // Construct a map.
11230
11231 class Map_construction_expression : public Expression
11232 {
11233 public:
11234 Map_construction_expression(Type* type, Expression_list* vals,
11235 source_location location)
11236 : Expression(EXPRESSION_MAP_CONSTRUCTION, location),
11237 type_(type), vals_(vals)
11238 { gcc_assert(vals == NULL || vals->size() % 2 == 0); }
11239
11240 protected:
11241 int
11242 do_traverse(Traverse* traverse);
11243
11244 Type*
11245 do_type()
11246 { return this->type_; }
11247
11248 void
11249 do_determine_type(const Type_context*);
11250
11251 void
11252 do_check_types(Gogo*);
11253
11254 Expression*
11255 do_copy()
11256 {
11257 return new Map_construction_expression(this->type_, this->vals_->copy(),
11258 this->location());
11259 }
11260
11261 tree
11262 do_get_tree(Translate_context*);
11263
11264 void
11265 do_export(Export*) const;
11266
11267 private:
11268 // The type of the map to construct.
11269 Type* type_;
11270 // The list of values.
11271 Expression_list* vals_;
11272 };
11273
11274 // Traversal.
11275
11276 int
11277 Map_construction_expression::do_traverse(Traverse* traverse)
11278 {
11279 if (this->vals_ != NULL
11280 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
11281 return TRAVERSE_EXIT;
11282 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
11283 return TRAVERSE_EXIT;
11284 return TRAVERSE_CONTINUE;
11285 }
11286
11287 // Final type determination.
11288
11289 void
11290 Map_construction_expression::do_determine_type(const Type_context*)
11291 {
11292 if (this->vals_ == NULL)
11293 return;
11294
11295 Map_type* mt = this->type_->map_type();
11296 Type_context key_context(mt->key_type(), false);
11297 Type_context val_context(mt->val_type(), false);
11298 for (Expression_list::const_iterator pv = this->vals_->begin();
11299 pv != this->vals_->end();
11300 ++pv)
11301 {
11302 (*pv)->determine_type(&key_context);
11303 ++pv;
11304 (*pv)->determine_type(&val_context);
11305 }
11306 }
11307
11308 // Check types.
11309
11310 void
11311 Map_construction_expression::do_check_types(Gogo*)
11312 {
11313 if (this->vals_ == NULL)
11314 return;
11315
11316 Map_type* mt = this->type_->map_type();
11317 int i = 0;
11318 Type* key_type = mt->key_type();
11319 Type* val_type = mt->val_type();
11320 for (Expression_list::const_iterator pv = this->vals_->begin();
11321 pv != this->vals_->end();
11322 ++pv, ++i)
11323 {
11324 if (!Type::are_assignable(key_type, (*pv)->type(), NULL))
11325 {
11326 error_at((*pv)->location(),
11327 "incompatible type for element %d key in map construction",
11328 i + 1);
11329 this->set_is_error();
11330 }
11331 ++pv;
11332 if (!Type::are_assignable(val_type, (*pv)->type(), NULL))
11333 {
11334 error_at((*pv)->location(),
11335 ("incompatible type for element %d value "
11336 "in map construction"),
11337 i + 1);
11338 this->set_is_error();
11339 }
11340 }
11341 }
11342
11343 // Return a tree for constructing a map.
11344
11345 tree
11346 Map_construction_expression::do_get_tree(Translate_context* context)
11347 {
11348 Gogo* gogo = context->gogo();
11349 source_location loc = this->location();
11350
11351 Map_type* mt = this->type_->map_type();
11352
11353 // Build a struct to hold the key and value.
11354 tree struct_type = make_node(RECORD_TYPE);
11355
11356 Type* key_type = mt->key_type();
11357 tree id = get_identifier("__key");
11358 tree key_type_tree = key_type->get_tree(gogo);
11359 if (key_type_tree == error_mark_node)
11360 return error_mark_node;
11361 tree key_field = build_decl(loc, FIELD_DECL, id, key_type_tree);
11362 DECL_CONTEXT(key_field) = struct_type;
11363 TYPE_FIELDS(struct_type) = key_field;
11364
11365 Type* val_type = mt->val_type();
11366 id = get_identifier("__val");
11367 tree val_type_tree = val_type->get_tree(gogo);
11368 if (val_type_tree == error_mark_node)
11369 return error_mark_node;
11370 tree val_field = build_decl(loc, FIELD_DECL, id, val_type_tree);
11371 DECL_CONTEXT(val_field) = struct_type;
11372 DECL_CHAIN(key_field) = val_field;
11373
11374 layout_type(struct_type);
11375
11376 bool is_constant = true;
11377 size_t i = 0;
11378 tree valaddr;
11379 tree make_tmp;
11380
11381 if (this->vals_ == NULL || this->vals_->empty())
11382 {
11383 valaddr = null_pointer_node;
11384 make_tmp = NULL_TREE;
11385 }
11386 else
11387 {
11388 VEC(constructor_elt,gc)* values = VEC_alloc(constructor_elt, gc,
11389 this->vals_->size() / 2);
11390
11391 for (Expression_list::const_iterator pv = this->vals_->begin();
11392 pv != this->vals_->end();
11393 ++pv, ++i)
11394 {
11395 bool one_is_constant = true;
11396
11397 VEC(constructor_elt,gc)* one = VEC_alloc(constructor_elt, gc, 2);
11398
11399 constructor_elt* elt = VEC_quick_push(constructor_elt, one, NULL);
11400 elt->index = key_field;
11401 tree val_tree = (*pv)->get_tree(context);
11402 elt->value = Expression::convert_for_assignment(context, key_type,
11403 (*pv)->type(),
11404 val_tree, loc);
11405 if (elt->value == error_mark_node)
11406 return error_mark_node;
11407 if (!TREE_CONSTANT(elt->value))
11408 one_is_constant = false;
11409
11410 ++pv;
11411
11412 elt = VEC_quick_push(constructor_elt, one, NULL);
11413 elt->index = val_field;
11414 val_tree = (*pv)->get_tree(context);
11415 elt->value = Expression::convert_for_assignment(context, val_type,
11416 (*pv)->type(),
11417 val_tree, loc);
11418 if (elt->value == error_mark_node)
11419 return error_mark_node;
11420 if (!TREE_CONSTANT(elt->value))
11421 one_is_constant = false;
11422
11423 elt = VEC_quick_push(constructor_elt, values, NULL);
11424 elt->index = size_int(i);
11425 elt->value = build_constructor(struct_type, one);
11426 if (one_is_constant)
11427 TREE_CONSTANT(elt->value) = 1;
11428 else
11429 is_constant = false;
11430 }
11431
11432 tree index_type = build_index_type(size_int(i - 1));
11433 tree array_type = build_array_type(struct_type, index_type);
11434 tree init = build_constructor(array_type, values);
11435 if (is_constant)
11436 TREE_CONSTANT(init) = 1;
11437 tree tmp;
11438 if (current_function_decl != NULL)
11439 {
11440 tmp = create_tmp_var(array_type, get_name(array_type));
11441 DECL_INITIAL(tmp) = init;
11442 make_tmp = fold_build1_loc(loc, DECL_EXPR, void_type_node, tmp);
11443 TREE_ADDRESSABLE(tmp) = 1;
11444 }
11445 else
11446 {
11447 tmp = build_decl(loc, VAR_DECL, create_tmp_var_name("M"), array_type);
11448 DECL_EXTERNAL(tmp) = 0;
11449 TREE_PUBLIC(tmp) = 0;
11450 TREE_STATIC(tmp) = 1;
11451 DECL_ARTIFICIAL(tmp) = 1;
11452 if (!TREE_CONSTANT(init))
11453 make_tmp = fold_build2_loc(loc, INIT_EXPR, void_type_node, tmp,
11454 init);
11455 else
11456 {
11457 TREE_READONLY(tmp) = 1;
11458 TREE_CONSTANT(tmp) = 1;
11459 DECL_INITIAL(tmp) = init;
11460 make_tmp = NULL_TREE;
11461 }
11462 rest_of_decl_compilation(tmp, 1, 0);
11463 }
11464
11465 valaddr = build_fold_addr_expr(tmp);
11466 }
11467
11468 tree descriptor = gogo->map_descriptor(mt);
11469
11470 tree type_tree = this->type_->get_tree(gogo);
11471 if (type_tree == error_mark_node)
11472 return error_mark_node;
11473
11474 static tree construct_map_fndecl;
11475 tree call = Gogo::call_builtin(&construct_map_fndecl,
11476 loc,
11477 "__go_construct_map",
11478 6,
11479 type_tree,
11480 TREE_TYPE(descriptor),
11481 descriptor,
11482 sizetype,
11483 size_int(i),
11484 sizetype,
11485 TYPE_SIZE_UNIT(struct_type),
11486 sizetype,
11487 byte_position(val_field),
11488 sizetype,
11489 TYPE_SIZE_UNIT(TREE_TYPE(val_field)),
11490 const_ptr_type_node,
11491 fold_convert(const_ptr_type_node, valaddr));
11492 if (call == error_mark_node)
11493 return error_mark_node;
11494
11495 tree ret;
11496 if (make_tmp == NULL)
11497 ret = call;
11498 else
11499 ret = fold_build2_loc(loc, COMPOUND_EXPR, type_tree, make_tmp, call);
11500 return ret;
11501 }
11502
11503 // Export an array construction.
11504
11505 void
11506 Map_construction_expression::do_export(Export* exp) const
11507 {
11508 exp->write_c_string("convert(");
11509 exp->write_type(this->type_);
11510 for (Expression_list::const_iterator pv = this->vals_->begin();
11511 pv != this->vals_->end();
11512 ++pv)
11513 {
11514 exp->write_c_string(", ");
11515 (*pv)->export_expression(exp);
11516 }
11517 exp->write_c_string(")");
11518 }
11519
11520 // A general composite literal. This is lowered to a type specific
11521 // version.
11522
11523 class Composite_literal_expression : public Parser_expression
11524 {
11525 public:
11526 Composite_literal_expression(Type* type, int depth, bool has_keys,
11527 Expression_list* vals, source_location location)
11528 : Parser_expression(EXPRESSION_COMPOSITE_LITERAL, location),
11529 type_(type), depth_(depth), vals_(vals), has_keys_(has_keys)
11530 { }
11531
11532 protected:
11533 int
11534 do_traverse(Traverse* traverse);
11535
11536 Expression*
11537 do_lower(Gogo*, Named_object*, int);
11538
11539 Expression*
11540 do_copy()
11541 {
11542 return new Composite_literal_expression(this->type_, this->depth_,
11543 this->has_keys_,
11544 (this->vals_ == NULL
11545 ? NULL
11546 : this->vals_->copy()),
11547 this->location());
11548 }
11549
11550 private:
11551 Expression*
11552 lower_struct(Type*);
11553
11554 Expression*
11555 lower_array(Type*);
11556
11557 Expression*
11558 make_array(Type*, Expression_list*);
11559
11560 Expression*
11561 lower_map(Gogo*, Named_object*, Type*);
11562
11563 // The type of the composite literal.
11564 Type* type_;
11565 // The depth within a list of composite literals within a composite
11566 // literal, when the type is omitted.
11567 int depth_;
11568 // The values to put in the composite literal.
11569 Expression_list* vals_;
11570 // If this is true, then VALS_ is a list of pairs: a key and a
11571 // value. In an array initializer, a missing key will be NULL.
11572 bool has_keys_;
11573 };
11574
11575 // Traversal.
11576
11577 int
11578 Composite_literal_expression::do_traverse(Traverse* traverse)
11579 {
11580 if (this->vals_ != NULL
11581 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
11582 return TRAVERSE_EXIT;
11583 return Type::traverse(this->type_, traverse);
11584 }
11585
11586 // Lower a generic composite literal into a specific version based on
11587 // the type.
11588
11589 Expression*
11590 Composite_literal_expression::do_lower(Gogo* gogo, Named_object* function, int)
11591 {
11592 Type* type = this->type_;
11593
11594 for (int depth = this->depth_; depth > 0; --depth)
11595 {
11596 if (type->array_type() != NULL)
11597 type = type->array_type()->element_type();
11598 else if (type->map_type() != NULL)
11599 type = type->map_type()->val_type();
11600 else
11601 {
11602 if (!type->is_error_type())
11603 error_at(this->location(),
11604 ("may only omit types within composite literals "
11605 "of slice, array, or map type"));
11606 return Expression::make_error(this->location());
11607 }
11608 }
11609
11610 if (type->is_error_type())
11611 return Expression::make_error(this->location());
11612 else if (type->struct_type() != NULL)
11613 return this->lower_struct(type);
11614 else if (type->array_type() != NULL)
11615 return this->lower_array(type);
11616 else if (type->map_type() != NULL)
11617 return this->lower_map(gogo, function, type);
11618 else
11619 {
11620 error_at(this->location(),
11621 ("expected struct, slice, array, or map type "
11622 "for composite literal"));
11623 return Expression::make_error(this->location());
11624 }
11625 }
11626
11627 // Lower a struct composite literal.
11628
11629 Expression*
11630 Composite_literal_expression::lower_struct(Type* type)
11631 {
11632 source_location location = this->location();
11633 Struct_type* st = type->struct_type();
11634 if (this->vals_ == NULL || !this->has_keys_)
11635 return new Struct_construction_expression(type, this->vals_, location);
11636
11637 size_t field_count = st->field_count();
11638 std::vector<Expression*> vals(field_count);
11639 Expression_list::const_iterator p = this->vals_->begin();
11640 while (p != this->vals_->end())
11641 {
11642 Expression* name_expr = *p;
11643
11644 ++p;
11645 gcc_assert(p != this->vals_->end());
11646 Expression* val = *p;
11647
11648 ++p;
11649
11650 if (name_expr == NULL)
11651 {
11652 error_at(val->location(), "mixture of field and value initializers");
11653 return Expression::make_error(location);
11654 }
11655
11656 bool bad_key = false;
11657 std::string name;
11658 switch (name_expr->classification())
11659 {
11660 case EXPRESSION_UNKNOWN_REFERENCE:
11661 name = name_expr->unknown_expression()->name();
11662 break;
11663
11664 case EXPRESSION_CONST_REFERENCE:
11665 name = static_cast<Const_expression*>(name_expr)->name();
11666 break;
11667
11668 case EXPRESSION_TYPE:
11669 {
11670 Type* t = name_expr->type();
11671 Named_type* nt = t->named_type();
11672 if (nt == NULL)
11673 bad_key = true;
11674 else
11675 name = nt->name();
11676 }
11677 break;
11678
11679 case EXPRESSION_VAR_REFERENCE:
11680 name = name_expr->var_expression()->name();
11681 break;
11682
11683 case EXPRESSION_FUNC_REFERENCE:
11684 name = name_expr->func_expression()->name();
11685 break;
11686
11687 case EXPRESSION_UNARY:
11688 // If there is a local variable around with the same name as
11689 // the field, and this occurs in the closure, then the
11690 // parser may turn the field reference into an indirection
11691 // through the closure. FIXME: This is a mess.
11692 {
11693 bad_key = true;
11694 Unary_expression* ue = static_cast<Unary_expression*>(name_expr);
11695 if (ue->op() == OPERATOR_MULT)
11696 {
11697 Field_reference_expression* fre =
11698 ue->operand()->field_reference_expression();
11699 if (fre != NULL)
11700 {
11701 Struct_type* st =
11702 fre->expr()->type()->deref()->struct_type();
11703 if (st != NULL)
11704 {
11705 const Struct_field* sf = st->field(fre->field_index());
11706 name = sf->field_name();
11707 char buf[20];
11708 snprintf(buf, sizeof buf, "%u", fre->field_index());
11709 size_t buflen = strlen(buf);
11710 if (name.compare(name.length() - buflen, buflen, buf)
11711 == 0)
11712 {
11713 name = name.substr(0, name.length() - buflen);
11714 bad_key = false;
11715 }
11716 }
11717 }
11718 }
11719 }
11720 break;
11721
11722 default:
11723 bad_key = true;
11724 break;
11725 }
11726 if (bad_key)
11727 {
11728 error_at(name_expr->location(), "expected struct field name");
11729 return Expression::make_error(location);
11730 }
11731
11732 unsigned int index;
11733 const Struct_field* sf = st->find_local_field(name, &index);
11734 if (sf == NULL)
11735 {
11736 error_at(name_expr->location(), "unknown field %qs in %qs",
11737 Gogo::message_name(name).c_str(),
11738 (type->named_type() != NULL
11739 ? type->named_type()->message_name().c_str()
11740 : "unnamed struct"));
11741 return Expression::make_error(location);
11742 }
11743 if (vals[index] != NULL)
11744 {
11745 error_at(name_expr->location(),
11746 "duplicate value for field %qs in %qs",
11747 Gogo::message_name(name).c_str(),
11748 (type->named_type() != NULL
11749 ? type->named_type()->message_name().c_str()
11750 : "unnamed struct"));
11751 return Expression::make_error(location);
11752 }
11753
11754 vals[index] = val;
11755 }
11756
11757 Expression_list* list = new Expression_list;
11758 list->reserve(field_count);
11759 for (size_t i = 0; i < field_count; ++i)
11760 list->push_back(vals[i]);
11761
11762 return new Struct_construction_expression(type, list, location);
11763 }
11764
11765 // Lower an array composite literal.
11766
11767 Expression*
11768 Composite_literal_expression::lower_array(Type* type)
11769 {
11770 source_location location = this->location();
11771 if (this->vals_ == NULL || !this->has_keys_)
11772 return this->make_array(type, this->vals_);
11773
11774 std::vector<Expression*> vals;
11775 vals.reserve(this->vals_->size());
11776 unsigned long index = 0;
11777 Expression_list::const_iterator p = this->vals_->begin();
11778 while (p != this->vals_->end())
11779 {
11780 Expression* index_expr = *p;
11781
11782 ++p;
11783 gcc_assert(p != this->vals_->end());
11784 Expression* val = *p;
11785
11786 ++p;
11787
11788 if (index_expr != NULL)
11789 {
11790 mpz_t ival;
11791 mpz_init(ival);
11792 Type* dummy;
11793 if (!index_expr->integer_constant_value(true, ival, &dummy))
11794 {
11795 mpz_clear(ival);
11796 error_at(index_expr->location(),
11797 "index expression is not integer constant");
11798 return Expression::make_error(location);
11799 }
11800 if (mpz_sgn(ival) < 0)
11801 {
11802 mpz_clear(ival);
11803 error_at(index_expr->location(), "index expression is negative");
11804 return Expression::make_error(location);
11805 }
11806 index = mpz_get_ui(ival);
11807 if (mpz_cmp_ui(ival, index) != 0)
11808 {
11809 mpz_clear(ival);
11810 error_at(index_expr->location(), "index value overflow");
11811 return Expression::make_error(location);
11812 }
11813 mpz_clear(ival);
11814 }
11815
11816 if (index == vals.size())
11817 vals.push_back(val);
11818 else
11819 {
11820 if (index > vals.size())
11821 {
11822 vals.reserve(index + 32);
11823 vals.resize(index + 1, static_cast<Expression*>(NULL));
11824 }
11825 if (vals[index] != NULL)
11826 {
11827 error_at((index_expr != NULL
11828 ? index_expr->location()
11829 : val->location()),
11830 "duplicate value for index %lu",
11831 index);
11832 return Expression::make_error(location);
11833 }
11834 vals[index] = val;
11835 }
11836
11837 ++index;
11838 }
11839
11840 size_t size = vals.size();
11841 Expression_list* list = new Expression_list;
11842 list->reserve(size);
11843 for (size_t i = 0; i < size; ++i)
11844 list->push_back(vals[i]);
11845
11846 return this->make_array(type, list);
11847 }
11848
11849 // Actually build the array composite literal. This handles
11850 // [...]{...}.
11851
11852 Expression*
11853 Composite_literal_expression::make_array(Type* type, Expression_list* vals)
11854 {
11855 source_location location = this->location();
11856 Array_type* at = type->array_type();
11857 if (at->length() != NULL && at->length()->is_nil_expression())
11858 {
11859 size_t size = vals == NULL ? 0 : vals->size();
11860 mpz_t vlen;
11861 mpz_init_set_ui(vlen, size);
11862 Expression* elen = Expression::make_integer(&vlen, NULL, location);
11863 mpz_clear(vlen);
11864 at = Type::make_array_type(at->element_type(), elen);
11865 type = at;
11866 }
11867 if (at->length() != NULL)
11868 return new Fixed_array_construction_expression(type, vals, location);
11869 else
11870 return new Open_array_construction_expression(type, vals, location);
11871 }
11872
11873 // Lower a map composite literal.
11874
11875 Expression*
11876 Composite_literal_expression::lower_map(Gogo* gogo, Named_object* function,
11877 Type* type)
11878 {
11879 source_location location = this->location();
11880 if (this->vals_ != NULL)
11881 {
11882 if (!this->has_keys_)
11883 {
11884 error_at(location, "map composite literal must have keys");
11885 return Expression::make_error(location);
11886 }
11887
11888 for (Expression_list::iterator p = this->vals_->begin();
11889 p != this->vals_->end();
11890 p += 2)
11891 {
11892 if (*p == NULL)
11893 {
11894 ++p;
11895 error_at((*p)->location(),
11896 "map composite literal must have keys for every value");
11897 return Expression::make_error(location);
11898 }
11899 // Make sure we have lowered the key; it may not have been
11900 // lowered in order to handle keys for struct composite
11901 // literals. Lower it now to get the right error message.
11902 if ((*p)->unknown_expression() != NULL)
11903 {
11904 (*p)->unknown_expression()->clear_is_composite_literal_key();
11905 gogo->lower_expression(function, &*p);
11906 gcc_assert((*p)->is_error_expression());
11907 return Expression::make_error(location);
11908 }
11909 }
11910 }
11911
11912 return new Map_construction_expression(type, this->vals_, location);
11913 }
11914
11915 // Make a composite literal expression.
11916
11917 Expression*
11918 Expression::make_composite_literal(Type* type, int depth, bool has_keys,
11919 Expression_list* vals,
11920 source_location location)
11921 {
11922 return new Composite_literal_expression(type, depth, has_keys, vals,
11923 location);
11924 }
11925
11926 // Return whether this expression is a composite literal.
11927
11928 bool
11929 Expression::is_composite_literal() const
11930 {
11931 switch (this->classification_)
11932 {
11933 case EXPRESSION_COMPOSITE_LITERAL:
11934 case EXPRESSION_STRUCT_CONSTRUCTION:
11935 case EXPRESSION_FIXED_ARRAY_CONSTRUCTION:
11936 case EXPRESSION_OPEN_ARRAY_CONSTRUCTION:
11937 case EXPRESSION_MAP_CONSTRUCTION:
11938 return true;
11939 default:
11940 return false;
11941 }
11942 }
11943
11944 // Return whether this expression is a composite literal which is not
11945 // constant.
11946
11947 bool
11948 Expression::is_nonconstant_composite_literal() const
11949 {
11950 switch (this->classification_)
11951 {
11952 case EXPRESSION_STRUCT_CONSTRUCTION:
11953 {
11954 const Struct_construction_expression *psce =
11955 static_cast<const Struct_construction_expression*>(this);
11956 return !psce->is_constant_struct();
11957 }
11958 case EXPRESSION_FIXED_ARRAY_CONSTRUCTION:
11959 {
11960 const Fixed_array_construction_expression *pace =
11961 static_cast<const Fixed_array_construction_expression*>(this);
11962 return !pace->is_constant_array();
11963 }
11964 case EXPRESSION_OPEN_ARRAY_CONSTRUCTION:
11965 {
11966 const Open_array_construction_expression *pace =
11967 static_cast<const Open_array_construction_expression*>(this);
11968 return !pace->is_constant_array();
11969 }
11970 case EXPRESSION_MAP_CONSTRUCTION:
11971 return true;
11972 default:
11973 return false;
11974 }
11975 }
11976
11977 // Return true if this is a reference to a local variable.
11978
11979 bool
11980 Expression::is_local_variable() const
11981 {
11982 const Var_expression* ve = this->var_expression();
11983 if (ve == NULL)
11984 return false;
11985 const Named_object* no = ve->named_object();
11986 return (no->is_result_variable()
11987 || (no->is_variable() && !no->var_value()->is_global()));
11988 }
11989
11990 // Class Type_guard_expression.
11991
11992 // Traversal.
11993
11994 int
11995 Type_guard_expression::do_traverse(Traverse* traverse)
11996 {
11997 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
11998 || Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
11999 return TRAVERSE_EXIT;
12000 return TRAVERSE_CONTINUE;
12001 }
12002
12003 // Check types of a type guard expression. The expression must have
12004 // an interface type, but the actual type conversion is checked at run
12005 // time.
12006
12007 void
12008 Type_guard_expression::do_check_types(Gogo*)
12009 {
12010 // 6g permits using a type guard with unsafe.pointer; we are
12011 // compatible.
12012 Type* expr_type = this->expr_->type();
12013 if (expr_type->is_unsafe_pointer_type())
12014 {
12015 if (this->type_->points_to() == NULL
12016 && (this->type_->integer_type() == NULL
12017 || (this->type_->forwarded()
12018 != Type::lookup_integer_type("uintptr"))))
12019 this->report_error(_("invalid unsafe.Pointer conversion"));
12020 }
12021 else if (this->type_->is_unsafe_pointer_type())
12022 {
12023 if (expr_type->points_to() == NULL
12024 && (expr_type->integer_type() == NULL
12025 || (expr_type->forwarded()
12026 != Type::lookup_integer_type("uintptr"))))
12027 this->report_error(_("invalid unsafe.Pointer conversion"));
12028 }
12029 else if (expr_type->interface_type() == NULL)
12030 {
12031 if (!expr_type->is_error_type() && !this->type_->is_error_type())
12032 this->report_error(_("type assertion only valid for interface types"));
12033 this->set_is_error();
12034 }
12035 else if (this->type_->interface_type() == NULL)
12036 {
12037 std::string reason;
12038 if (!expr_type->interface_type()->implements_interface(this->type_,
12039 &reason))
12040 {
12041 if (!this->type_->is_error_type())
12042 {
12043 if (reason.empty())
12044 this->report_error(_("impossible type assertion: "
12045 "type does not implement interface"));
12046 else
12047 error_at(this->location(),
12048 ("impossible type assertion: "
12049 "type does not implement interface (%s)"),
12050 reason.c_str());
12051 }
12052 this->set_is_error();
12053 }
12054 }
12055 }
12056
12057 // Return a tree for a type guard expression.
12058
12059 tree
12060 Type_guard_expression::do_get_tree(Translate_context* context)
12061 {
12062 Gogo* gogo = context->gogo();
12063 tree expr_tree = this->expr_->get_tree(context);
12064 if (expr_tree == error_mark_node)
12065 return error_mark_node;
12066 Type* expr_type = this->expr_->type();
12067 if ((this->type_->is_unsafe_pointer_type()
12068 && (expr_type->points_to() != NULL
12069 || expr_type->integer_type() != NULL))
12070 || (expr_type->is_unsafe_pointer_type()
12071 && this->type_->points_to() != NULL))
12072 return convert_to_pointer(this->type_->get_tree(gogo), expr_tree);
12073 else if (expr_type->is_unsafe_pointer_type()
12074 && this->type_->integer_type() != NULL)
12075 return convert_to_integer(this->type_->get_tree(gogo), expr_tree);
12076 else if (this->type_->interface_type() != NULL)
12077 return Expression::convert_interface_to_interface(context, this->type_,
12078 this->expr_->type(),
12079 expr_tree, true,
12080 this->location());
12081 else
12082 return Expression::convert_for_assignment(context, this->type_,
12083 this->expr_->type(), expr_tree,
12084 this->location());
12085 }
12086
12087 // Make a type guard expression.
12088
12089 Expression*
12090 Expression::make_type_guard(Expression* expr, Type* type,
12091 source_location location)
12092 {
12093 return new Type_guard_expression(expr, type, location);
12094 }
12095
12096 // Class Heap_composite_expression.
12097
12098 // When you take the address of a composite literal, it is allocated
12099 // on the heap. This class implements that.
12100
12101 class Heap_composite_expression : public Expression
12102 {
12103 public:
12104 Heap_composite_expression(Expression* expr, source_location location)
12105 : Expression(EXPRESSION_HEAP_COMPOSITE, location),
12106 expr_(expr)
12107 { }
12108
12109 protected:
12110 int
12111 do_traverse(Traverse* traverse)
12112 { return Expression::traverse(&this->expr_, traverse); }
12113
12114 Type*
12115 do_type()
12116 { return Type::make_pointer_type(this->expr_->type()); }
12117
12118 void
12119 do_determine_type(const Type_context*)
12120 { this->expr_->determine_type_no_context(); }
12121
12122 Expression*
12123 do_copy()
12124 {
12125 return Expression::make_heap_composite(this->expr_->copy(),
12126 this->location());
12127 }
12128
12129 tree
12130 do_get_tree(Translate_context*);
12131
12132 // We only export global objects, and the parser does not generate
12133 // this in global scope.
12134 void
12135 do_export(Export*) const
12136 { gcc_unreachable(); }
12137
12138 private:
12139 // The composite literal which is being put on the heap.
12140 Expression* expr_;
12141 };
12142
12143 // Return a tree which allocates a composite literal on the heap.
12144
12145 tree
12146 Heap_composite_expression::do_get_tree(Translate_context* context)
12147 {
12148 tree expr_tree = this->expr_->get_tree(context);
12149 if (expr_tree == error_mark_node)
12150 return error_mark_node;
12151 tree expr_size = TYPE_SIZE_UNIT(TREE_TYPE(expr_tree));
12152 gcc_assert(TREE_CODE(expr_size) == INTEGER_CST);
12153 tree space = context->gogo()->allocate_memory(this->expr_->type(),
12154 expr_size, this->location());
12155 space = fold_convert(build_pointer_type(TREE_TYPE(expr_tree)), space);
12156 space = save_expr(space);
12157 tree ref = build_fold_indirect_ref_loc(this->location(), space);
12158 TREE_THIS_NOTRAP(ref) = 1;
12159 tree ret = build2(COMPOUND_EXPR, TREE_TYPE(space),
12160 build2(MODIFY_EXPR, void_type_node, ref, expr_tree),
12161 space);
12162 SET_EXPR_LOCATION(ret, this->location());
12163 return ret;
12164 }
12165
12166 // Allocate a composite literal on the heap.
12167
12168 Expression*
12169 Expression::make_heap_composite(Expression* expr, source_location location)
12170 {
12171 return new Heap_composite_expression(expr, location);
12172 }
12173
12174 // Class Receive_expression.
12175
12176 // Return the type of a receive expression.
12177
12178 Type*
12179 Receive_expression::do_type()
12180 {
12181 Channel_type* channel_type = this->channel_->type()->channel_type();
12182 if (channel_type == NULL)
12183 return Type::make_error_type();
12184 return channel_type->element_type();
12185 }
12186
12187 // Check types for a receive expression.
12188
12189 void
12190 Receive_expression::do_check_types(Gogo*)
12191 {
12192 Type* type = this->channel_->type();
12193 if (type->is_error_type())
12194 {
12195 this->set_is_error();
12196 return;
12197 }
12198 if (type->channel_type() == NULL)
12199 {
12200 this->report_error(_("expected channel"));
12201 return;
12202 }
12203 if (!type->channel_type()->may_receive())
12204 {
12205 this->report_error(_("invalid receive on send-only channel"));
12206 return;
12207 }
12208 }
12209
12210 // Get a tree for a receive expression.
12211
12212 tree
12213 Receive_expression::do_get_tree(Translate_context* context)
12214 {
12215 Channel_type* channel_type = this->channel_->type()->channel_type();
12216 gcc_assert(channel_type != NULL);
12217 Type* element_type = channel_type->element_type();
12218 tree element_type_tree = element_type->get_tree(context->gogo());
12219
12220 tree channel = this->channel_->get_tree(context);
12221 if (element_type_tree == error_mark_node || channel == error_mark_node)
12222 return error_mark_node;
12223
12224 return Gogo::receive_from_channel(element_type_tree, channel,
12225 this->for_select_, this->location());
12226 }
12227
12228 // Make a receive expression.
12229
12230 Receive_expression*
12231 Expression::make_receive(Expression* channel, source_location location)
12232 {
12233 return new Receive_expression(channel, location);
12234 }
12235
12236 // Class Send_expression.
12237
12238 // Traversal.
12239
12240 int
12241 Send_expression::do_traverse(Traverse* traverse)
12242 {
12243 if (Expression::traverse(&this->channel_, traverse) == TRAVERSE_EXIT)
12244 return TRAVERSE_EXIT;
12245 return Expression::traverse(&this->val_, traverse);
12246 }
12247
12248 // Get the type.
12249
12250 Type*
12251 Send_expression::do_type()
12252 {
12253 return Type::lookup_bool_type();
12254 }
12255
12256 // Set types.
12257
12258 void
12259 Send_expression::do_determine_type(const Type_context*)
12260 {
12261 this->channel_->determine_type_no_context();
12262
12263 Type* type = this->channel_->type();
12264 Type_context subcontext;
12265 if (type->channel_type() != NULL)
12266 subcontext.type = type->channel_type()->element_type();
12267 this->val_->determine_type(&subcontext);
12268 }
12269
12270 // Check types.
12271
12272 void
12273 Send_expression::do_check_types(Gogo*)
12274 {
12275 Type* type = this->channel_->type();
12276 if (type->is_error_type())
12277 {
12278 this->set_is_error();
12279 return;
12280 }
12281 Channel_type* channel_type = type->channel_type();
12282 if (channel_type == NULL)
12283 {
12284 error_at(this->location(), "left operand of %<<-%> must be channel");
12285 this->set_is_error();
12286 return;
12287 }
12288 Type* element_type = channel_type->element_type();
12289 if (element_type != NULL
12290 && !Type::are_assignable(element_type, this->val_->type(), NULL))
12291 {
12292 this->report_error(_("incompatible types in send"));
12293 return;
12294 }
12295 if (!channel_type->may_send())
12296 {
12297 this->report_error(_("invalid send on receive-only channel"));
12298 return;
12299 }
12300 }
12301
12302 // Get a tree for a send expression.
12303
12304 tree
12305 Send_expression::do_get_tree(Translate_context* context)
12306 {
12307 tree channel = this->channel_->get_tree(context);
12308 tree val = this->val_->get_tree(context);
12309 if (channel == error_mark_node || val == error_mark_node)
12310 return error_mark_node;
12311 Channel_type* channel_type = this->channel_->type()->channel_type();
12312 val = Expression::convert_for_assignment(context,
12313 channel_type->element_type(),
12314 this->val_->type(),
12315 val,
12316 this->location());
12317 return Gogo::send_on_channel(channel, val, this->is_value_discarded_,
12318 this->for_select_, this->location());
12319 }
12320
12321 // Make a send expression
12322
12323 Send_expression*
12324 Expression::make_send(Expression* channel, Expression* val,
12325 source_location location)
12326 {
12327 return new Send_expression(channel, val, location);
12328 }
12329
12330 // An expression which evaluates to a pointer to the type descriptor
12331 // of a type.
12332
12333 class Type_descriptor_expression : public Expression
12334 {
12335 public:
12336 Type_descriptor_expression(Type* type, source_location location)
12337 : Expression(EXPRESSION_TYPE_DESCRIPTOR, location),
12338 type_(type)
12339 { }
12340
12341 protected:
12342 Type*
12343 do_type()
12344 { return Type::make_type_descriptor_ptr_type(); }
12345
12346 void
12347 do_determine_type(const Type_context*)
12348 { }
12349
12350 Expression*
12351 do_copy()
12352 { return this; }
12353
12354 tree
12355 do_get_tree(Translate_context* context)
12356 { return this->type_->type_descriptor_pointer(context->gogo()); }
12357
12358 private:
12359 // The type for which this is the descriptor.
12360 Type* type_;
12361 };
12362
12363 // Make a type descriptor expression.
12364
12365 Expression*
12366 Expression::make_type_descriptor(Type* type, source_location location)
12367 {
12368 return new Type_descriptor_expression(type, location);
12369 }
12370
12371 // An expression which evaluates to some characteristic of a type.
12372 // This is only used to initialize fields of a type descriptor. Using
12373 // a new expression class is slightly inefficient but gives us a good
12374 // separation between the frontend and the middle-end with regard to
12375 // how types are laid out.
12376
12377 class Type_info_expression : public Expression
12378 {
12379 public:
12380 Type_info_expression(Type* type, Type_info type_info)
12381 : Expression(EXPRESSION_TYPE_INFO, BUILTINS_LOCATION),
12382 type_(type), type_info_(type_info)
12383 { }
12384
12385 protected:
12386 Type*
12387 do_type();
12388
12389 void
12390 do_determine_type(const Type_context*)
12391 { }
12392
12393 Expression*
12394 do_copy()
12395 { return this; }
12396
12397 tree
12398 do_get_tree(Translate_context* context);
12399
12400 private:
12401 // The type for which we are getting information.
12402 Type* type_;
12403 // What information we want.
12404 Type_info type_info_;
12405 };
12406
12407 // The type is chosen to match what the type descriptor struct
12408 // expects.
12409
12410 Type*
12411 Type_info_expression::do_type()
12412 {
12413 switch (this->type_info_)
12414 {
12415 case TYPE_INFO_SIZE:
12416 return Type::lookup_integer_type("uintptr");
12417 case TYPE_INFO_ALIGNMENT:
12418 case TYPE_INFO_FIELD_ALIGNMENT:
12419 return Type::lookup_integer_type("uint8");
12420 default:
12421 gcc_unreachable();
12422 }
12423 }
12424
12425 // Return type information in GENERIC.
12426
12427 tree
12428 Type_info_expression::do_get_tree(Translate_context* context)
12429 {
12430 tree type_tree = this->type_->get_tree(context->gogo());
12431 if (type_tree == error_mark_node)
12432 return error_mark_node;
12433
12434 tree val_type_tree = this->type()->get_tree(context->gogo());
12435 gcc_assert(val_type_tree != error_mark_node);
12436
12437 if (this->type_info_ == TYPE_INFO_SIZE)
12438 return fold_convert_loc(BUILTINS_LOCATION, val_type_tree,
12439 TYPE_SIZE_UNIT(type_tree));
12440 else
12441 {
12442 unsigned int val;
12443 if (this->type_info_ == TYPE_INFO_ALIGNMENT)
12444 val = go_type_alignment(type_tree);
12445 else
12446 val = go_field_alignment(type_tree);
12447 return build_int_cstu(val_type_tree, val);
12448 }
12449 }
12450
12451 // Make a type info expression.
12452
12453 Expression*
12454 Expression::make_type_info(Type* type, Type_info type_info)
12455 {
12456 return new Type_info_expression(type, type_info);
12457 }
12458
12459 // An expression which evaluates to the offset of a field within a
12460 // struct. This, like Type_info_expression, q.v., is only used to
12461 // initialize fields of a type descriptor.
12462
12463 class Struct_field_offset_expression : public Expression
12464 {
12465 public:
12466 Struct_field_offset_expression(Struct_type* type, const Struct_field* field)
12467 : Expression(EXPRESSION_STRUCT_FIELD_OFFSET, BUILTINS_LOCATION),
12468 type_(type), field_(field)
12469 { }
12470
12471 protected:
12472 Type*
12473 do_type()
12474 { return Type::lookup_integer_type("uintptr"); }
12475
12476 void
12477 do_determine_type(const Type_context*)
12478 { }
12479
12480 Expression*
12481 do_copy()
12482 { return this; }
12483
12484 tree
12485 do_get_tree(Translate_context* context);
12486
12487 private:
12488 // The type of the struct.
12489 Struct_type* type_;
12490 // The field.
12491 const Struct_field* field_;
12492 };
12493
12494 // Return a struct field offset in GENERIC.
12495
12496 tree
12497 Struct_field_offset_expression::do_get_tree(Translate_context* context)
12498 {
12499 tree type_tree = this->type_->get_tree(context->gogo());
12500 if (type_tree == error_mark_node)
12501 return error_mark_node;
12502
12503 tree val_type_tree = this->type()->get_tree(context->gogo());
12504 gcc_assert(val_type_tree != error_mark_node);
12505
12506 const Struct_field_list* fields = this->type_->fields();
12507 tree struct_field_tree = TYPE_FIELDS(type_tree);
12508 Struct_field_list::const_iterator p;
12509 for (p = fields->begin();
12510 p != fields->end();
12511 ++p, struct_field_tree = DECL_CHAIN(struct_field_tree))
12512 {
12513 gcc_assert(struct_field_tree != NULL_TREE);
12514 if (&*p == this->field_)
12515 break;
12516 }
12517 gcc_assert(&*p == this->field_);
12518
12519 return fold_convert_loc(BUILTINS_LOCATION, val_type_tree,
12520 byte_position(struct_field_tree));
12521 }
12522
12523 // Make an expression for a struct field offset.
12524
12525 Expression*
12526 Expression::make_struct_field_offset(Struct_type* type,
12527 const Struct_field* field)
12528 {
12529 return new Struct_field_offset_expression(type, field);
12530 }
12531
12532 // An expression which evaluates to the address of an unnamed label.
12533
12534 class Label_addr_expression : public Expression
12535 {
12536 public:
12537 Label_addr_expression(Label* label, source_location location)
12538 : Expression(EXPRESSION_LABEL_ADDR, location),
12539 label_(label)
12540 { }
12541
12542 protected:
12543 Type*
12544 do_type()
12545 { return Type::make_pointer_type(Type::make_void_type()); }
12546
12547 void
12548 do_determine_type(const Type_context*)
12549 { }
12550
12551 Expression*
12552 do_copy()
12553 { return new Label_addr_expression(this->label_, this->location()); }
12554
12555 tree
12556 do_get_tree(Translate_context*)
12557 { return this->label_->get_addr(this->location()); }
12558
12559 private:
12560 // The label whose address we are taking.
12561 Label* label_;
12562 };
12563
12564 // Make an expression for the address of an unnamed label.
12565
12566 Expression*
12567 Expression::make_label_addr(Label* label, source_location location)
12568 {
12569 return new Label_addr_expression(label, location);
12570 }
12571
12572 // Import an expression. This comes at the end in order to see the
12573 // various class definitions.
12574
12575 Expression*
12576 Expression::import_expression(Import* imp)
12577 {
12578 int c = imp->peek_char();
12579 if (imp->match_c_string("- ")
12580 || imp->match_c_string("! ")
12581 || imp->match_c_string("^ "))
12582 return Unary_expression::do_import(imp);
12583 else if (c == '(')
12584 return Binary_expression::do_import(imp);
12585 else if (imp->match_c_string("true")
12586 || imp->match_c_string("false"))
12587 return Boolean_expression::do_import(imp);
12588 else if (c == '"')
12589 return String_expression::do_import(imp);
12590 else if (c == '-' || (c >= '0' && c <= '9'))
12591 {
12592 // This handles integers, floats and complex constants.
12593 return Integer_expression::do_import(imp);
12594 }
12595 else if (imp->match_c_string("nil"))
12596 return Nil_expression::do_import(imp);
12597 else if (imp->match_c_string("convert"))
12598 return Type_conversion_expression::do_import(imp);
12599 else
12600 {
12601 error_at(imp->location(), "import error: expected expression");
12602 return Expression::make_error(imp->location());
12603 }
12604 }
12605
12606 // Class Expression_list.
12607
12608 // Traverse the list.
12609
12610 int
12611 Expression_list::traverse(Traverse* traverse)
12612 {
12613 for (Expression_list::iterator p = this->begin();
12614 p != this->end();
12615 ++p)
12616 {
12617 if (*p != NULL)
12618 {
12619 if (Expression::traverse(&*p, traverse) == TRAVERSE_EXIT)
12620 return TRAVERSE_EXIT;
12621 }
12622 }
12623 return TRAVERSE_CONTINUE;
12624 }
12625
12626 // Copy the list.
12627
12628 Expression_list*
12629 Expression_list::copy()
12630 {
12631 Expression_list* ret = new Expression_list();
12632 for (Expression_list::iterator p = this->begin();
12633 p != this->end();
12634 ++p)
12635 {
12636 if (*p == NULL)
12637 ret->push_back(NULL);
12638 else
12639 ret->push_back((*p)->copy());
12640 }
12641 return ret;
12642 }
12643
12644 // Return whether an expression list has an error expression.
12645
12646 bool
12647 Expression_list::contains_error() const
12648 {
12649 for (Expression_list::const_iterator p = this->begin();
12650 p != this->end();
12651 ++p)
12652 if (*p != NULL && (*p)->is_error_expression())
12653 return true;
12654 return false;
12655 }