Don't get confused when mixing different abstract types in binary expr.
[gcc.git] / gcc / go / gofrontend / expressions.cc
1 // expressions.cc -- Go frontend expression handling.
2
3 // Copyright 2009 The Go Authors. All rights reserved.
4 // Use of this source code is governed by a BSD-style
5 // license that can be found in the LICENSE file.
6
7 #include "go-system.h"
8
9 #include <gmp.h>
10
11 #ifndef ENABLE_BUILD_WITH_CXX
12 extern "C"
13 {
14 #endif
15
16 #include "toplev.h"
17 #include "intl.h"
18 #include "tree.h"
19 #include "gimple.h"
20 #include "tree-iterator.h"
21 #include "convert.h"
22 #include "real.h"
23 #include "realmpfr.h"
24
25 #ifndef ENABLE_BUILD_WITH_CXX
26 }
27 #endif
28
29 #include "go-c.h"
30 #include "gogo.h"
31 #include "types.h"
32 #include "export.h"
33 #include "import.h"
34 #include "statements.h"
35 #include "lex.h"
36 #include "expressions.h"
37
38 // Class Expression.
39
40 Expression::Expression(Expression_classification classification,
41 source_location location)
42 : classification_(classification), location_(location)
43 {
44 }
45
46 Expression::~Expression()
47 {
48 }
49
50 // If this expression has a constant integer value, return it.
51
52 bool
53 Expression::integer_constant_value(bool iota_is_constant, mpz_t val,
54 Type** ptype) const
55 {
56 *ptype = NULL;
57 return this->do_integer_constant_value(iota_is_constant, val, ptype);
58 }
59
60 // If this expression has a constant floating point value, return it.
61
62 bool
63 Expression::float_constant_value(mpfr_t val, Type** ptype) const
64 {
65 *ptype = NULL;
66 if (this->do_float_constant_value(val, ptype))
67 return true;
68 mpz_t ival;
69 mpz_init(ival);
70 Type* t;
71 bool ret;
72 if (!this->do_integer_constant_value(false, ival, &t))
73 ret = false;
74 else
75 {
76 mpfr_set_z(val, ival, GMP_RNDN);
77 ret = true;
78 }
79 mpz_clear(ival);
80 return ret;
81 }
82
83 // If this expression has a constant complex value, return it.
84
85 bool
86 Expression::complex_constant_value(mpfr_t real, mpfr_t imag,
87 Type** ptype) const
88 {
89 *ptype = NULL;
90 if (this->do_complex_constant_value(real, imag, ptype))
91 return true;
92 Type *t;
93 if (this->float_constant_value(real, &t))
94 {
95 mpfr_set_ui(imag, 0, GMP_RNDN);
96 return true;
97 }
98 return false;
99 }
100
101 // Traverse the expressions.
102
103 int
104 Expression::traverse(Expression** pexpr, Traverse* traverse)
105 {
106 Expression* expr = *pexpr;
107 if ((traverse->traverse_mask() & Traverse::traverse_expressions) != 0)
108 {
109 int t = traverse->expression(pexpr);
110 if (t == TRAVERSE_EXIT)
111 return TRAVERSE_EXIT;
112 else if (t == TRAVERSE_SKIP_COMPONENTS)
113 return TRAVERSE_CONTINUE;
114 }
115 return expr->do_traverse(traverse);
116 }
117
118 // Traverse subexpressions of this expression.
119
120 int
121 Expression::traverse_subexpressions(Traverse* traverse)
122 {
123 return this->do_traverse(traverse);
124 }
125
126 // Default implementation for do_traverse for child classes.
127
128 int
129 Expression::do_traverse(Traverse*)
130 {
131 return TRAVERSE_CONTINUE;
132 }
133
134 // This virtual function is called by the parser if the value of this
135 // expression is being discarded. By default, we warn. Expressions
136 // with side effects override.
137
138 void
139 Expression::do_discarding_value()
140 {
141 this->warn_about_unused_value();
142 }
143
144 // This virtual function is called to export expressions. This will
145 // only be used by expressions which may be constant.
146
147 void
148 Expression::do_export(Export*) const
149 {
150 gcc_unreachable();
151 }
152
153 // Warn that the value of the expression is not used.
154
155 void
156 Expression::warn_about_unused_value()
157 {
158 warning_at(this->location(), OPT_Wunused_value, "value computed is not used");
159 }
160
161 // Note that this expression is an error. This is called by children
162 // when they discover an error.
163
164 void
165 Expression::set_is_error()
166 {
167 this->classification_ = EXPRESSION_ERROR;
168 }
169
170 // For children to call to report an error conveniently.
171
172 void
173 Expression::report_error(const char* msg)
174 {
175 error_at(this->location_, "%s", msg);
176 this->set_is_error();
177 }
178
179 // Set types of variables and constants. This is implemented by the
180 // child class.
181
182 void
183 Expression::determine_type(const Type_context* context)
184 {
185 this->do_determine_type(context);
186 }
187
188 // Set types when there is no context.
189
190 void
191 Expression::determine_type_no_context()
192 {
193 Type_context context;
194 this->do_determine_type(&context);
195 }
196
197 // Return a tree handling any conversions which must be done during
198 // assignment.
199
200 tree
201 Expression::convert_for_assignment(Translate_context* context, Type* lhs_type,
202 Type* rhs_type, tree rhs_tree,
203 source_location location)
204 {
205 if (lhs_type == rhs_type)
206 return rhs_tree;
207
208 if (lhs_type->is_error_type() || rhs_type->is_error_type())
209 return error_mark_node;
210
211 if (lhs_type->is_undefined() || rhs_type->is_undefined())
212 {
213 // Make sure we report the error.
214 lhs_type->base();
215 rhs_type->base();
216 return error_mark_node;
217 }
218
219 if (rhs_tree == error_mark_node || TREE_TYPE(rhs_tree) == error_mark_node)
220 return error_mark_node;
221
222 Gogo* gogo = context->gogo();
223
224 tree lhs_type_tree = lhs_type->get_tree(gogo);
225 if (lhs_type_tree == error_mark_node)
226 return error_mark_node;
227
228 if (lhs_type->interface_type() != NULL)
229 {
230 if (rhs_type->interface_type() == NULL)
231 return Expression::convert_type_to_interface(context, lhs_type,
232 rhs_type, rhs_tree,
233 location);
234 else
235 return Expression::convert_interface_to_interface(context, lhs_type,
236 rhs_type, rhs_tree,
237 false, location);
238 }
239 else if (rhs_type->interface_type() != NULL)
240 return Expression::convert_interface_to_type(context, lhs_type, rhs_type,
241 rhs_tree, location);
242 else if (lhs_type->is_open_array_type()
243 && rhs_type->is_nil_type())
244 {
245 // Assigning nil to an open array.
246 gcc_assert(TREE_CODE(lhs_type_tree) == RECORD_TYPE);
247
248 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
249
250 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
251 tree field = TYPE_FIELDS(lhs_type_tree);
252 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
253 "__values") == 0);
254 elt->index = field;
255 elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
256
257 elt = VEC_quick_push(constructor_elt, init, NULL);
258 field = DECL_CHAIN(field);
259 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
260 "__count") == 0);
261 elt->index = field;
262 elt->value = fold_convert(TREE_TYPE(field), integer_zero_node);
263
264 elt = VEC_quick_push(constructor_elt, init, NULL);
265 field = DECL_CHAIN(field);
266 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
267 "__capacity") == 0);
268 elt->index = field;
269 elt->value = fold_convert(TREE_TYPE(field), integer_zero_node);
270
271 tree val = build_constructor(lhs_type_tree, init);
272 TREE_CONSTANT(val) = 1;
273
274 return val;
275 }
276 else if (rhs_type->is_nil_type())
277 {
278 // The left hand side should be a pointer type at the tree
279 // level.
280 gcc_assert(POINTER_TYPE_P(lhs_type_tree));
281 return fold_convert(lhs_type_tree, null_pointer_node);
282 }
283 else if (lhs_type_tree == TREE_TYPE(rhs_tree))
284 {
285 // No conversion is needed.
286 return rhs_tree;
287 }
288 else if (POINTER_TYPE_P(lhs_type_tree)
289 || INTEGRAL_TYPE_P(lhs_type_tree)
290 || SCALAR_FLOAT_TYPE_P(lhs_type_tree)
291 || COMPLEX_FLOAT_TYPE_P(lhs_type_tree))
292 return fold_convert_loc(location, lhs_type_tree, rhs_tree);
293 else if (TREE_CODE(lhs_type_tree) == RECORD_TYPE
294 && TREE_CODE(TREE_TYPE(rhs_tree)) == RECORD_TYPE)
295 {
296 // This conversion must be permitted by Go, or we wouldn't have
297 // gotten here.
298 gcc_assert(int_size_in_bytes(lhs_type_tree)
299 == int_size_in_bytes(TREE_TYPE(rhs_tree)));
300 return fold_build1_loc(location, VIEW_CONVERT_EXPR, lhs_type_tree,
301 rhs_tree);
302 }
303 else
304 {
305 gcc_assert(useless_type_conversion_p(lhs_type_tree, TREE_TYPE(rhs_tree)));
306 return rhs_tree;
307 }
308 }
309
310 // Return a tree for a conversion from a non-interface type to an
311 // interface type.
312
313 tree
314 Expression::convert_type_to_interface(Translate_context* context,
315 Type* lhs_type, Type* rhs_type,
316 tree rhs_tree, source_location location)
317 {
318 Gogo* gogo = context->gogo();
319 Interface_type* lhs_interface_type = lhs_type->interface_type();
320 bool lhs_is_empty = lhs_interface_type->is_empty();
321
322 // Since RHS_TYPE is a static type, we can create the interface
323 // method table at compile time.
324
325 // When setting an interface to nil, we just set both fields to
326 // NULL.
327 if (rhs_type->is_nil_type())
328 return lhs_type->get_init_tree(gogo, false);
329
330 // This should have been checked already.
331 gcc_assert(lhs_interface_type->implements_interface(rhs_type, NULL));
332
333 tree lhs_type_tree = lhs_type->get_tree(gogo);
334 if (lhs_type_tree == error_mark_node)
335 return error_mark_node;
336
337 // An interface is a tuple. If LHS_TYPE is an empty interface type,
338 // then the first field is the type descriptor for RHS_TYPE.
339 // Otherwise it is the interface method table for RHS_TYPE.
340 tree first_field_value;
341 if (lhs_is_empty)
342 first_field_value = rhs_type->type_descriptor_pointer(gogo);
343 else
344 {
345 // Build the interface method table for this interface and this
346 // object type: a list of function pointers for each interface
347 // method.
348 Named_type* rhs_named_type = rhs_type->named_type();
349 bool is_pointer = false;
350 if (rhs_named_type == NULL)
351 {
352 rhs_named_type = rhs_type->deref()->named_type();
353 is_pointer = true;
354 }
355 tree method_table;
356 if (rhs_named_type == NULL)
357 method_table = null_pointer_node;
358 else
359 method_table =
360 rhs_named_type->interface_method_table(gogo, lhs_interface_type,
361 is_pointer);
362 first_field_value = fold_convert_loc(location, const_ptr_type_node,
363 method_table);
364 }
365
366 // Start building a constructor for the value we will return.
367
368 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
369
370 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
371 tree field = TYPE_FIELDS(lhs_type_tree);
372 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
373 (lhs_is_empty ? "__type_descriptor" : "__methods")) == 0);
374 elt->index = field;
375 elt->value = fold_convert_loc(location, TREE_TYPE(field), first_field_value);
376
377 elt = VEC_quick_push(constructor_elt, init, NULL);
378 field = DECL_CHAIN(field);
379 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
380 elt->index = field;
381
382 if (rhs_type->points_to() != NULL)
383 {
384 // We are assigning a pointer to the interface; the interface
385 // holds the pointer itself.
386 elt->value = rhs_tree;
387 return build_constructor(lhs_type_tree, init);
388 }
389
390 // We are assigning a non-pointer value to the interface; the
391 // interface gets a copy of the value in the heap.
392
393 tree object_size = TYPE_SIZE_UNIT(TREE_TYPE(rhs_tree));
394
395 tree space = gogo->allocate_memory(rhs_type, object_size, location);
396 space = fold_convert_loc(location, build_pointer_type(TREE_TYPE(rhs_tree)),
397 space);
398 space = save_expr(space);
399
400 tree ref = build_fold_indirect_ref_loc(location, space);
401 TREE_THIS_NOTRAP(ref) = 1;
402 tree set = fold_build2_loc(location, MODIFY_EXPR, void_type_node,
403 ref, rhs_tree);
404
405 elt->value = fold_convert_loc(location, TREE_TYPE(field), space);
406
407 return build2(COMPOUND_EXPR, lhs_type_tree, set,
408 build_constructor(lhs_type_tree, init));
409 }
410
411 // Return a tree for the type descriptor of RHS_TREE, which has
412 // interface type RHS_TYPE. If RHS_TREE is nil the result will be
413 // NULL.
414
415 tree
416 Expression::get_interface_type_descriptor(Translate_context*,
417 Type* rhs_type, tree rhs_tree,
418 source_location location)
419 {
420 tree rhs_type_tree = TREE_TYPE(rhs_tree);
421 gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
422 tree rhs_field = TYPE_FIELDS(rhs_type_tree);
423 tree v = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
424 NULL_TREE);
425 if (rhs_type->interface_type()->is_empty())
426 {
427 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)),
428 "__type_descriptor") == 0);
429 return v;
430 }
431
432 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__methods")
433 == 0);
434 gcc_assert(POINTER_TYPE_P(TREE_TYPE(v)));
435 v = save_expr(v);
436 tree v1 = build_fold_indirect_ref_loc(location, v);
437 gcc_assert(TREE_CODE(TREE_TYPE(v1)) == RECORD_TYPE);
438 tree f = TYPE_FIELDS(TREE_TYPE(v1));
439 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(f)), "__type_descriptor")
440 == 0);
441 v1 = build3(COMPONENT_REF, TREE_TYPE(f), v1, f, NULL_TREE);
442
443 tree eq = fold_build2_loc(location, EQ_EXPR, boolean_type_node, v,
444 fold_convert_loc(location, TREE_TYPE(v),
445 null_pointer_node));
446 tree n = fold_convert_loc(location, TREE_TYPE(v1), null_pointer_node);
447 return fold_build3_loc(location, COND_EXPR, TREE_TYPE(v1),
448 eq, n, v1);
449 }
450
451 // Return a tree for the conversion of an interface type to an
452 // interface type.
453
454 tree
455 Expression::convert_interface_to_interface(Translate_context* context,
456 Type *lhs_type, Type *rhs_type,
457 tree rhs_tree, bool for_type_guard,
458 source_location location)
459 {
460 Gogo* gogo = context->gogo();
461 Interface_type* lhs_interface_type = lhs_type->interface_type();
462 bool lhs_is_empty = lhs_interface_type->is_empty();
463
464 tree lhs_type_tree = lhs_type->get_tree(gogo);
465 if (lhs_type_tree == error_mark_node)
466 return error_mark_node;
467
468 // In the general case this requires runtime examination of the type
469 // method table to match it up with the interface methods.
470
471 // FIXME: If all of the methods in the right hand side interface
472 // also appear in the left hand side interface, then we don't need
473 // to do a runtime check, although we still need to build a new
474 // method table.
475
476 // Get the type descriptor for the right hand side. This will be
477 // NULL for a nil interface.
478
479 if (!DECL_P(rhs_tree))
480 rhs_tree = save_expr(rhs_tree);
481
482 tree rhs_type_descriptor =
483 Expression::get_interface_type_descriptor(context, rhs_type, rhs_tree,
484 location);
485
486 // The result is going to be a two element constructor.
487
488 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
489
490 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
491 tree field = TYPE_FIELDS(lhs_type_tree);
492 elt->index = field;
493
494 if (for_type_guard)
495 {
496 // A type assertion fails when converting a nil interface.
497 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
498 static tree assert_interface_decl;
499 tree call = Gogo::call_builtin(&assert_interface_decl,
500 location,
501 "__go_assert_interface",
502 2,
503 ptr_type_node,
504 TREE_TYPE(lhs_type_descriptor),
505 lhs_type_descriptor,
506 TREE_TYPE(rhs_type_descriptor),
507 rhs_type_descriptor);
508 if (call == error_mark_node)
509 return error_mark_node;
510 // This will panic if the interface conversion fails.
511 TREE_NOTHROW(assert_interface_decl) = 0;
512 elt->value = fold_convert_loc(location, TREE_TYPE(field), call);
513 }
514 else if (lhs_is_empty)
515 {
516 // A convertion to an empty interface always succeeds, and the
517 // first field is just the type descriptor of the object.
518 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
519 "__type_descriptor") == 0);
520 gcc_assert(TREE_TYPE(field) == TREE_TYPE(rhs_type_descriptor));
521 elt->value = rhs_type_descriptor;
522 }
523 else
524 {
525 // A conversion to a non-empty interface may fail, but unlike a
526 // type assertion converting nil will always succeed.
527 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods")
528 == 0);
529 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
530 static tree convert_interface_decl;
531 tree call = Gogo::call_builtin(&convert_interface_decl,
532 location,
533 "__go_convert_interface",
534 2,
535 ptr_type_node,
536 TREE_TYPE(lhs_type_descriptor),
537 lhs_type_descriptor,
538 TREE_TYPE(rhs_type_descriptor),
539 rhs_type_descriptor);
540 if (call == error_mark_node)
541 return error_mark_node;
542 // This will panic if the interface conversion fails.
543 TREE_NOTHROW(convert_interface_decl) = 0;
544 elt->value = fold_convert_loc(location, TREE_TYPE(field), call);
545 }
546
547 // The second field is simply the object pointer.
548
549 elt = VEC_quick_push(constructor_elt, init, NULL);
550 field = DECL_CHAIN(field);
551 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
552 elt->index = field;
553
554 tree rhs_type_tree = TREE_TYPE(rhs_tree);
555 gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
556 tree rhs_field = DECL_CHAIN(TYPE_FIELDS(rhs_type_tree));
557 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__object") == 0);
558 elt->value = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
559 NULL_TREE);
560
561 return build_constructor(lhs_type_tree, init);
562 }
563
564 // Return a tree for the conversion of an interface type to a
565 // non-interface type.
566
567 tree
568 Expression::convert_interface_to_type(Translate_context* context,
569 Type *lhs_type, Type* rhs_type,
570 tree rhs_tree, source_location location)
571 {
572 Gogo* gogo = context->gogo();
573 tree rhs_type_tree = TREE_TYPE(rhs_tree);
574
575 tree lhs_type_tree = lhs_type->get_tree(gogo);
576 if (lhs_type_tree == error_mark_node)
577 return error_mark_node;
578
579 // Call a function to check that the type is valid. The function
580 // will panic with an appropriate runtime type error if the type is
581 // not valid.
582
583 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
584
585 if (!DECL_P(rhs_tree))
586 rhs_tree = save_expr(rhs_tree);
587
588 tree rhs_type_descriptor =
589 Expression::get_interface_type_descriptor(context, rhs_type, rhs_tree,
590 location);
591
592 tree rhs_inter_descriptor = rhs_type->type_descriptor_pointer(gogo);
593
594 static tree check_interface_type_decl;
595 tree call = Gogo::call_builtin(&check_interface_type_decl,
596 location,
597 "__go_check_interface_type",
598 3,
599 void_type_node,
600 TREE_TYPE(lhs_type_descriptor),
601 lhs_type_descriptor,
602 TREE_TYPE(rhs_type_descriptor),
603 rhs_type_descriptor,
604 TREE_TYPE(rhs_inter_descriptor),
605 rhs_inter_descriptor);
606 if (call == error_mark_node)
607 return error_mark_node;
608 // This call will panic if the conversion is invalid.
609 TREE_NOTHROW(check_interface_type_decl) = 0;
610
611 // If the call succeeds, pull out the value.
612 gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
613 tree rhs_field = DECL_CHAIN(TYPE_FIELDS(rhs_type_tree));
614 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__object") == 0);
615 tree val = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
616 NULL_TREE);
617
618 // If the value is a pointer, then it is the value we want.
619 // Otherwise it points to the value.
620 if (lhs_type->points_to() == NULL)
621 {
622 val = fold_convert_loc(location, build_pointer_type(lhs_type_tree), val);
623 val = build_fold_indirect_ref_loc(location, val);
624 }
625
626 return build2(COMPOUND_EXPR, lhs_type_tree, call,
627 fold_convert_loc(location, lhs_type_tree, val));
628 }
629
630 // Convert an expression to a tree. This is implemented by the child
631 // class. Not that it is not in general safe to call this multiple
632 // times for a single expression, but that we don't catch such errors.
633
634 tree
635 Expression::get_tree(Translate_context* context)
636 {
637 // The child may have marked this expression as having an error.
638 if (this->classification_ == EXPRESSION_ERROR)
639 return error_mark_node;
640
641 return this->do_get_tree(context);
642 }
643
644 // Return a tree for VAL in TYPE.
645
646 tree
647 Expression::integer_constant_tree(mpz_t val, tree type)
648 {
649 if (type == error_mark_node)
650 return error_mark_node;
651 else if (TREE_CODE(type) == INTEGER_TYPE)
652 return double_int_to_tree(type,
653 mpz_get_double_int(type, val, true));
654 else if (TREE_CODE(type) == REAL_TYPE)
655 {
656 mpfr_t fval;
657 mpfr_init_set_z(fval, val, GMP_RNDN);
658 tree ret = Expression::float_constant_tree(fval, type);
659 mpfr_clear(fval);
660 return ret;
661 }
662 else if (TREE_CODE(type) == COMPLEX_TYPE)
663 {
664 mpfr_t fval;
665 mpfr_init_set_z(fval, val, GMP_RNDN);
666 tree real = Expression::float_constant_tree(fval, TREE_TYPE(type));
667 mpfr_clear(fval);
668 tree imag = build_real_from_int_cst(TREE_TYPE(type),
669 integer_zero_node);
670 return build_complex(type, real, imag);
671 }
672 else
673 gcc_unreachable();
674 }
675
676 // Return a tree for VAL in TYPE.
677
678 tree
679 Expression::float_constant_tree(mpfr_t val, tree type)
680 {
681 if (type == error_mark_node)
682 return error_mark_node;
683 else if (TREE_CODE(type) == INTEGER_TYPE)
684 {
685 mpz_t ival;
686 mpz_init(ival);
687 mpfr_get_z(ival, val, GMP_RNDN);
688 tree ret = Expression::integer_constant_tree(ival, type);
689 mpz_clear(ival);
690 return ret;
691 }
692 else if (TREE_CODE(type) == REAL_TYPE)
693 {
694 REAL_VALUE_TYPE r1;
695 real_from_mpfr(&r1, val, type, GMP_RNDN);
696 REAL_VALUE_TYPE r2;
697 real_convert(&r2, TYPE_MODE(type), &r1);
698 return build_real(type, r2);
699 }
700 else if (TREE_CODE(type) == COMPLEX_TYPE)
701 {
702 REAL_VALUE_TYPE r1;
703 real_from_mpfr(&r1, val, TREE_TYPE(type), GMP_RNDN);
704 REAL_VALUE_TYPE r2;
705 real_convert(&r2, TYPE_MODE(TREE_TYPE(type)), &r1);
706 tree imag = build_real_from_int_cst(TREE_TYPE(type),
707 integer_zero_node);
708 return build_complex(type, build_real(TREE_TYPE(type), r2), imag);
709 }
710 else
711 gcc_unreachable();
712 }
713
714 // Return a tree for REAL/IMAG in TYPE.
715
716 tree
717 Expression::complex_constant_tree(mpfr_t real, mpfr_t imag, tree type)
718 {
719 if (TREE_CODE(type) == COMPLEX_TYPE)
720 {
721 REAL_VALUE_TYPE r1;
722 real_from_mpfr(&r1, real, TREE_TYPE(type), GMP_RNDN);
723 REAL_VALUE_TYPE r2;
724 real_convert(&r2, TYPE_MODE(TREE_TYPE(type)), &r1);
725
726 REAL_VALUE_TYPE r3;
727 real_from_mpfr(&r3, imag, TREE_TYPE(type), GMP_RNDN);
728 REAL_VALUE_TYPE r4;
729 real_convert(&r4, TYPE_MODE(TREE_TYPE(type)), &r3);
730
731 return build_complex(type, build_real(TREE_TYPE(type), r2),
732 build_real(TREE_TYPE(type), r4));
733 }
734 else
735 gcc_unreachable();
736 }
737
738 // Return a tree which evaluates to true if VAL, of arbitrary integer
739 // type, is negative or is more than the maximum value of BOUND_TYPE.
740 // If SOFAR is not NULL, it is or'red into the result. The return
741 // value may be NULL if SOFAR is NULL.
742
743 tree
744 Expression::check_bounds(tree val, tree bound_type, tree sofar,
745 source_location loc)
746 {
747 tree val_type = TREE_TYPE(val);
748 tree ret = NULL_TREE;
749
750 if (!TYPE_UNSIGNED(val_type))
751 {
752 ret = fold_build2_loc(loc, LT_EXPR, boolean_type_node, val,
753 build_int_cst(val_type, 0));
754 if (ret == boolean_false_node)
755 ret = NULL_TREE;
756 }
757
758 if ((TYPE_UNSIGNED(val_type) && !TYPE_UNSIGNED(bound_type))
759 || TYPE_SIZE(val_type) > TYPE_SIZE(bound_type))
760 {
761 tree max = TYPE_MAX_VALUE(bound_type);
762 tree big = fold_build2_loc(loc, GT_EXPR, boolean_type_node, val,
763 fold_convert_loc(loc, val_type, max));
764 if (big == boolean_false_node)
765 ;
766 else if (ret == NULL_TREE)
767 ret = big;
768 else
769 ret = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
770 ret, big);
771 }
772
773 if (ret == NULL_TREE)
774 return sofar;
775 else if (sofar == NULL_TREE)
776 return ret;
777 else
778 return fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
779 sofar, ret);
780 }
781
782 // Error expressions. This are used to avoid cascading errors.
783
784 class Error_expression : public Expression
785 {
786 public:
787 Error_expression(source_location location)
788 : Expression(EXPRESSION_ERROR, location)
789 { }
790
791 protected:
792 bool
793 do_is_constant() const
794 { return true; }
795
796 bool
797 do_integer_constant_value(bool, mpz_t val, Type**) const
798 {
799 mpz_set_ui(val, 0);
800 return true;
801 }
802
803 bool
804 do_float_constant_value(mpfr_t val, Type**) const
805 {
806 mpfr_set_ui(val, 0, GMP_RNDN);
807 return true;
808 }
809
810 bool
811 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const
812 {
813 mpfr_set_ui(real, 0, GMP_RNDN);
814 mpfr_set_ui(imag, 0, GMP_RNDN);
815 return true;
816 }
817
818 void
819 do_discarding_value()
820 { }
821
822 Type*
823 do_type()
824 { return Type::make_error_type(); }
825
826 void
827 do_determine_type(const Type_context*)
828 { }
829
830 Expression*
831 do_copy()
832 { return this; }
833
834 bool
835 do_is_addressable() const
836 { return true; }
837
838 tree
839 do_get_tree(Translate_context*)
840 { return error_mark_node; }
841 };
842
843 Expression*
844 Expression::make_error(source_location location)
845 {
846 return new Error_expression(location);
847 }
848
849 // An expression which is really a type. This is used during parsing.
850 // It is an error if these survive after lowering.
851
852 class
853 Type_expression : public Expression
854 {
855 public:
856 Type_expression(Type* type, source_location location)
857 : Expression(EXPRESSION_TYPE, location),
858 type_(type)
859 { }
860
861 protected:
862 int
863 do_traverse(Traverse* traverse)
864 { return Type::traverse(this->type_, traverse); }
865
866 Type*
867 do_type()
868 { return this->type_; }
869
870 void
871 do_determine_type(const Type_context*)
872 { }
873
874 void
875 do_check_types(Gogo*)
876 { this->report_error(_("invalid use of type")); }
877
878 Expression*
879 do_copy()
880 { return this; }
881
882 tree
883 do_get_tree(Translate_context*)
884 { gcc_unreachable(); }
885
886 private:
887 // The type which we are representing as an expression.
888 Type* type_;
889 };
890
891 Expression*
892 Expression::make_type(Type* type, source_location location)
893 {
894 return new Type_expression(type, location);
895 }
896
897 // Class Parser_expression.
898
899 Type*
900 Parser_expression::do_type()
901 {
902 // We should never really ask for the type of a Parser_expression.
903 // However, it can happen, at least when we have an invalid const
904 // whose initializer refers to the const itself. In that case we
905 // may ask for the type when lowering the const itself.
906 gcc_assert(saw_errors());
907 return Type::make_error_type();
908 }
909
910 // Class Var_expression.
911
912 // Lower a variable expression. Here we just make sure that the
913 // initialization expression of the variable has been lowered. This
914 // ensures that we will be able to determine the type of the variable
915 // if necessary.
916
917 Expression*
918 Var_expression::do_lower(Gogo* gogo, Named_object* function, int)
919 {
920 if (this->variable_->is_variable())
921 {
922 Variable* var = this->variable_->var_value();
923 // This is either a local variable or a global variable. A
924 // reference to a variable which is local to an enclosing
925 // function will be a reference to a field in a closure.
926 if (var->is_global())
927 function = NULL;
928 var->lower_init_expression(gogo, function);
929 }
930 return this;
931 }
932
933 // Return the name of the variable.
934
935 const std::string&
936 Var_expression::name() const
937 {
938 return this->variable_->name();
939 }
940
941 // Return the type of a reference to a variable.
942
943 Type*
944 Var_expression::do_type()
945 {
946 if (this->variable_->is_variable())
947 return this->variable_->var_value()->type();
948 else if (this->variable_->is_result_variable())
949 return this->variable_->result_var_value()->type();
950 else
951 gcc_unreachable();
952 }
953
954 // Something takes the address of this variable. This means that we
955 // may want to move the variable onto the heap.
956
957 void
958 Var_expression::do_address_taken(bool escapes)
959 {
960 if (!escapes)
961 ;
962 else if (this->variable_->is_variable())
963 this->variable_->var_value()->set_address_taken();
964 else if (this->variable_->is_result_variable())
965 this->variable_->result_var_value()->set_address_taken();
966 else
967 gcc_unreachable();
968 }
969
970 // Get the tree for a reference to a variable.
971
972 tree
973 Var_expression::do_get_tree(Translate_context* context)
974 {
975 return this->variable_->get_tree(context->gogo(), context->function());
976 }
977
978 // Make a reference to a variable in an expression.
979
980 Expression*
981 Expression::make_var_reference(Named_object* var, source_location location)
982 {
983 if (var->is_sink())
984 return Expression::make_sink(location);
985
986 // FIXME: Creating a new object for each reference to a variable is
987 // wasteful.
988 return new Var_expression(var, location);
989 }
990
991 // Class Temporary_reference_expression.
992
993 // The type.
994
995 Type*
996 Temporary_reference_expression::do_type()
997 {
998 return this->statement_->type();
999 }
1000
1001 // Called if something takes the address of this temporary variable.
1002 // We never have to move temporary variables to the heap, but we do
1003 // need to know that they must live in the stack rather than in a
1004 // register.
1005
1006 void
1007 Temporary_reference_expression::do_address_taken(bool)
1008 {
1009 this->statement_->set_is_address_taken();
1010 }
1011
1012 // Get a tree referring to the variable.
1013
1014 tree
1015 Temporary_reference_expression::do_get_tree(Translate_context*)
1016 {
1017 return this->statement_->get_decl();
1018 }
1019
1020 // Make a reference to a temporary variable.
1021
1022 Expression*
1023 Expression::make_temporary_reference(Temporary_statement* statement,
1024 source_location location)
1025 {
1026 return new Temporary_reference_expression(statement, location);
1027 }
1028
1029 // A sink expression--a use of the blank identifier _.
1030
1031 class Sink_expression : public Expression
1032 {
1033 public:
1034 Sink_expression(source_location location)
1035 : Expression(EXPRESSION_SINK, location),
1036 type_(NULL), var_(NULL_TREE)
1037 { }
1038
1039 protected:
1040 void
1041 do_discarding_value()
1042 { }
1043
1044 Type*
1045 do_type();
1046
1047 void
1048 do_determine_type(const Type_context*);
1049
1050 Expression*
1051 do_copy()
1052 { return new Sink_expression(this->location()); }
1053
1054 tree
1055 do_get_tree(Translate_context*);
1056
1057 private:
1058 // The type of this sink variable.
1059 Type* type_;
1060 // The temporary variable we generate.
1061 tree var_;
1062 };
1063
1064 // Return the type of a sink expression.
1065
1066 Type*
1067 Sink_expression::do_type()
1068 {
1069 if (this->type_ == NULL)
1070 return Type::make_sink_type();
1071 return this->type_;
1072 }
1073
1074 // Determine the type of a sink expression.
1075
1076 void
1077 Sink_expression::do_determine_type(const Type_context* context)
1078 {
1079 if (context->type != NULL)
1080 this->type_ = context->type;
1081 }
1082
1083 // Return a temporary variable for a sink expression. This will
1084 // presumably be a write-only variable which the middle-end will drop.
1085
1086 tree
1087 Sink_expression::do_get_tree(Translate_context* context)
1088 {
1089 if (this->var_ == NULL_TREE)
1090 {
1091 gcc_assert(this->type_ != NULL && !this->type_->is_sink_type());
1092 this->var_ = create_tmp_var(this->type_->get_tree(context->gogo()),
1093 "blank");
1094 }
1095 return this->var_;
1096 }
1097
1098 // Make a sink expression.
1099
1100 Expression*
1101 Expression::make_sink(source_location location)
1102 {
1103 return new Sink_expression(location);
1104 }
1105
1106 // Class Func_expression.
1107
1108 // FIXME: Can a function expression appear in a constant expression?
1109 // The value is unchanging. Initializing a constant to the address of
1110 // a function seems like it could work, though there might be little
1111 // point to it.
1112
1113 // Return the name of the function.
1114
1115 const std::string&
1116 Func_expression::name() const
1117 {
1118 return this->function_->name();
1119 }
1120
1121 // Traversal.
1122
1123 int
1124 Func_expression::do_traverse(Traverse* traverse)
1125 {
1126 return (this->closure_ == NULL
1127 ? TRAVERSE_CONTINUE
1128 : Expression::traverse(&this->closure_, traverse));
1129 }
1130
1131 // Return the type of a function expression.
1132
1133 Type*
1134 Func_expression::do_type()
1135 {
1136 if (this->function_->is_function())
1137 return this->function_->func_value()->type();
1138 else if (this->function_->is_function_declaration())
1139 return this->function_->func_declaration_value()->type();
1140 else
1141 gcc_unreachable();
1142 }
1143
1144 // Get the tree for a function expression without evaluating the
1145 // closure.
1146
1147 tree
1148 Func_expression::get_tree_without_closure(Gogo* gogo)
1149 {
1150 Function_type* fntype;
1151 if (this->function_->is_function())
1152 fntype = this->function_->func_value()->type();
1153 else if (this->function_->is_function_declaration())
1154 fntype = this->function_->func_declaration_value()->type();
1155 else
1156 gcc_unreachable();
1157
1158 // Builtin functions are handled specially by Call_expression. We
1159 // can't take their address.
1160 if (fntype->is_builtin())
1161 {
1162 error_at(this->location(), "invalid use of special builtin function %qs",
1163 this->function_->name().c_str());
1164 return error_mark_node;
1165 }
1166
1167 Named_object* no = this->function_;
1168
1169 tree id = no->get_id(gogo);
1170 if (id == error_mark_node)
1171 return error_mark_node;
1172
1173 tree fndecl;
1174 if (no->is_function())
1175 fndecl = no->func_value()->get_or_make_decl(gogo, no, id);
1176 else if (no->is_function_declaration())
1177 fndecl = no->func_declaration_value()->get_or_make_decl(gogo, no, id);
1178 else
1179 gcc_unreachable();
1180
1181 if (fndecl == error_mark_node)
1182 return error_mark_node;
1183
1184 return build_fold_addr_expr_loc(this->location(), fndecl);
1185 }
1186
1187 // Get the tree for a function expression. This is used when we take
1188 // the address of a function rather than simply calling it. If the
1189 // function has a closure, we must use a trampoline.
1190
1191 tree
1192 Func_expression::do_get_tree(Translate_context* context)
1193 {
1194 Gogo* gogo = context->gogo();
1195
1196 tree fnaddr = this->get_tree_without_closure(gogo);
1197 if (fnaddr == error_mark_node)
1198 return error_mark_node;
1199
1200 gcc_assert(TREE_CODE(fnaddr) == ADDR_EXPR
1201 && TREE_CODE(TREE_OPERAND(fnaddr, 0)) == FUNCTION_DECL);
1202 TREE_ADDRESSABLE(TREE_OPERAND(fnaddr, 0)) = 1;
1203
1204 // For a normal non-nested function call, that is all we have to do.
1205 if (!this->function_->is_function()
1206 || this->function_->func_value()->enclosing() == NULL)
1207 {
1208 gcc_assert(this->closure_ == NULL);
1209 return fnaddr;
1210 }
1211
1212 // For a nested function call, we have to always allocate a
1213 // trampoline. If we don't always allocate, then closures will not
1214 // be reliably distinct.
1215 Expression* closure = this->closure_;
1216 tree closure_tree;
1217 if (closure == NULL)
1218 closure_tree = null_pointer_node;
1219 else
1220 {
1221 // Get the value of the closure. This will be a pointer to
1222 // space allocated on the heap.
1223 closure_tree = closure->get_tree(context);
1224 if (closure_tree == error_mark_node)
1225 return error_mark_node;
1226 gcc_assert(POINTER_TYPE_P(TREE_TYPE(closure_tree)));
1227 }
1228
1229 // Now we need to build some code on the heap. This code will load
1230 // the static chain pointer with the closure and then jump to the
1231 // body of the function. The normal gcc approach is to build the
1232 // code on the stack. Unfortunately we can not do that, as Go
1233 // permits us to return the function pointer.
1234
1235 return gogo->make_trampoline(fnaddr, closure_tree, this->location());
1236 }
1237
1238 // Make a reference to a function in an expression.
1239
1240 Expression*
1241 Expression::make_func_reference(Named_object* function, Expression* closure,
1242 source_location location)
1243 {
1244 return new Func_expression(function, closure, location);
1245 }
1246
1247 // Class Unknown_expression.
1248
1249 // Return the name of an unknown expression.
1250
1251 const std::string&
1252 Unknown_expression::name() const
1253 {
1254 return this->named_object_->name();
1255 }
1256
1257 // Lower a reference to an unknown name.
1258
1259 Expression*
1260 Unknown_expression::do_lower(Gogo*, Named_object*, int)
1261 {
1262 source_location location = this->location();
1263 Named_object* no = this->named_object_;
1264 Named_object* real;
1265 if (!no->is_unknown())
1266 real = no;
1267 else
1268 {
1269 real = no->unknown_value()->real_named_object();
1270 if (real == NULL)
1271 {
1272 if (this->is_composite_literal_key_)
1273 return this;
1274 error_at(location, "reference to undefined name %qs",
1275 this->named_object_->message_name().c_str());
1276 return Expression::make_error(location);
1277 }
1278 }
1279 switch (real->classification())
1280 {
1281 case Named_object::NAMED_OBJECT_CONST:
1282 return Expression::make_const_reference(real, location);
1283 case Named_object::NAMED_OBJECT_TYPE:
1284 return Expression::make_type(real->type_value(), location);
1285 case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
1286 if (this->is_composite_literal_key_)
1287 return this;
1288 error_at(location, "reference to undefined type %qs",
1289 real->message_name().c_str());
1290 return Expression::make_error(location);
1291 case Named_object::NAMED_OBJECT_VAR:
1292 return Expression::make_var_reference(real, location);
1293 case Named_object::NAMED_OBJECT_FUNC:
1294 case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
1295 return Expression::make_func_reference(real, NULL, location);
1296 case Named_object::NAMED_OBJECT_PACKAGE:
1297 if (this->is_composite_literal_key_)
1298 return this;
1299 error_at(location, "unexpected reference to package");
1300 return Expression::make_error(location);
1301 default:
1302 gcc_unreachable();
1303 }
1304 }
1305
1306 // Make a reference to an unknown name.
1307
1308 Expression*
1309 Expression::make_unknown_reference(Named_object* no, source_location location)
1310 {
1311 gcc_assert(no->resolve()->is_unknown());
1312 return new Unknown_expression(no, location);
1313 }
1314
1315 // A boolean expression.
1316
1317 class Boolean_expression : public Expression
1318 {
1319 public:
1320 Boolean_expression(bool val, source_location location)
1321 : Expression(EXPRESSION_BOOLEAN, location),
1322 val_(val), type_(NULL)
1323 { }
1324
1325 static Expression*
1326 do_import(Import*);
1327
1328 protected:
1329 bool
1330 do_is_constant() const
1331 { return true; }
1332
1333 Type*
1334 do_type();
1335
1336 void
1337 do_determine_type(const Type_context*);
1338
1339 Expression*
1340 do_copy()
1341 { return this; }
1342
1343 tree
1344 do_get_tree(Translate_context*)
1345 { return this->val_ ? boolean_true_node : boolean_false_node; }
1346
1347 void
1348 do_export(Export* exp) const
1349 { exp->write_c_string(this->val_ ? "true" : "false"); }
1350
1351 private:
1352 // The constant.
1353 bool val_;
1354 // The type as determined by context.
1355 Type* type_;
1356 };
1357
1358 // Get the type.
1359
1360 Type*
1361 Boolean_expression::do_type()
1362 {
1363 if (this->type_ == NULL)
1364 this->type_ = Type::make_boolean_type();
1365 return this->type_;
1366 }
1367
1368 // Set the type from the context.
1369
1370 void
1371 Boolean_expression::do_determine_type(const Type_context* context)
1372 {
1373 if (this->type_ != NULL && !this->type_->is_abstract())
1374 ;
1375 else if (context->type != NULL && context->type->is_boolean_type())
1376 this->type_ = context->type;
1377 else if (!context->may_be_abstract)
1378 this->type_ = Type::lookup_bool_type();
1379 }
1380
1381 // Import a boolean constant.
1382
1383 Expression*
1384 Boolean_expression::do_import(Import* imp)
1385 {
1386 if (imp->peek_char() == 't')
1387 {
1388 imp->require_c_string("true");
1389 return Expression::make_boolean(true, imp->location());
1390 }
1391 else
1392 {
1393 imp->require_c_string("false");
1394 return Expression::make_boolean(false, imp->location());
1395 }
1396 }
1397
1398 // Make a boolean expression.
1399
1400 Expression*
1401 Expression::make_boolean(bool val, source_location location)
1402 {
1403 return new Boolean_expression(val, location);
1404 }
1405
1406 // Class String_expression.
1407
1408 // Get the type.
1409
1410 Type*
1411 String_expression::do_type()
1412 {
1413 if (this->type_ == NULL)
1414 this->type_ = Type::make_string_type();
1415 return this->type_;
1416 }
1417
1418 // Set the type from the context.
1419
1420 void
1421 String_expression::do_determine_type(const Type_context* context)
1422 {
1423 if (this->type_ != NULL && !this->type_->is_abstract())
1424 ;
1425 else if (context->type != NULL && context->type->is_string_type())
1426 this->type_ = context->type;
1427 else if (!context->may_be_abstract)
1428 this->type_ = Type::lookup_string_type();
1429 }
1430
1431 // Build a string constant.
1432
1433 tree
1434 String_expression::do_get_tree(Translate_context* context)
1435 {
1436 return context->gogo()->go_string_constant_tree(this->val_);
1437 }
1438
1439 // Export a string expression.
1440
1441 void
1442 String_expression::do_export(Export* exp) const
1443 {
1444 std::string s;
1445 s.reserve(this->val_.length() * 4 + 2);
1446 s += '"';
1447 for (std::string::const_iterator p = this->val_.begin();
1448 p != this->val_.end();
1449 ++p)
1450 {
1451 if (*p == '\\' || *p == '"')
1452 {
1453 s += '\\';
1454 s += *p;
1455 }
1456 else if (*p >= 0x20 && *p < 0x7f)
1457 s += *p;
1458 else if (*p == '\n')
1459 s += "\\n";
1460 else if (*p == '\t')
1461 s += "\\t";
1462 else
1463 {
1464 s += "\\x";
1465 unsigned char c = *p;
1466 unsigned int dig = c >> 4;
1467 s += dig < 10 ? '0' + dig : 'A' + dig - 10;
1468 dig = c & 0xf;
1469 s += dig < 10 ? '0' + dig : 'A' + dig - 10;
1470 }
1471 }
1472 s += '"';
1473 exp->write_string(s);
1474 }
1475
1476 // Import a string expression.
1477
1478 Expression*
1479 String_expression::do_import(Import* imp)
1480 {
1481 imp->require_c_string("\"");
1482 std::string val;
1483 while (true)
1484 {
1485 int c = imp->get_char();
1486 if (c == '"' || c == -1)
1487 break;
1488 if (c != '\\')
1489 val += static_cast<char>(c);
1490 else
1491 {
1492 c = imp->get_char();
1493 if (c == '\\' || c == '"')
1494 val += static_cast<char>(c);
1495 else if (c == 'n')
1496 val += '\n';
1497 else if (c == 't')
1498 val += '\t';
1499 else if (c == 'x')
1500 {
1501 c = imp->get_char();
1502 unsigned int vh = c >= '0' && c <= '9' ? c - '0' : c - 'A' + 10;
1503 c = imp->get_char();
1504 unsigned int vl = c >= '0' && c <= '9' ? c - '0' : c - 'A' + 10;
1505 char v = (vh << 4) | vl;
1506 val += v;
1507 }
1508 else
1509 {
1510 error_at(imp->location(), "bad string constant");
1511 return Expression::make_error(imp->location());
1512 }
1513 }
1514 }
1515 return Expression::make_string(val, imp->location());
1516 }
1517
1518 // Make a string expression.
1519
1520 Expression*
1521 Expression::make_string(const std::string& val, source_location location)
1522 {
1523 return new String_expression(val, location);
1524 }
1525
1526 // Make an integer expression.
1527
1528 class Integer_expression : public Expression
1529 {
1530 public:
1531 Integer_expression(const mpz_t* val, Type* type, source_location location)
1532 : Expression(EXPRESSION_INTEGER, location),
1533 type_(type)
1534 { mpz_init_set(this->val_, *val); }
1535
1536 static Expression*
1537 do_import(Import*);
1538
1539 // Return whether VAL fits in the type.
1540 static bool
1541 check_constant(mpz_t val, Type*, source_location);
1542
1543 // Write VAL to export data.
1544 static void
1545 export_integer(Export* exp, const mpz_t val);
1546
1547 protected:
1548 bool
1549 do_is_constant() const
1550 { return true; }
1551
1552 bool
1553 do_integer_constant_value(bool, mpz_t val, Type** ptype) const;
1554
1555 Type*
1556 do_type();
1557
1558 void
1559 do_determine_type(const Type_context* context);
1560
1561 void
1562 do_check_types(Gogo*);
1563
1564 tree
1565 do_get_tree(Translate_context*);
1566
1567 Expression*
1568 do_copy()
1569 { return Expression::make_integer(&this->val_, this->type_,
1570 this->location()); }
1571
1572 void
1573 do_export(Export*) const;
1574
1575 private:
1576 // The integer value.
1577 mpz_t val_;
1578 // The type so far.
1579 Type* type_;
1580 };
1581
1582 // Return an integer constant value.
1583
1584 bool
1585 Integer_expression::do_integer_constant_value(bool, mpz_t val,
1586 Type** ptype) const
1587 {
1588 if (this->type_ != NULL)
1589 *ptype = this->type_;
1590 mpz_set(val, this->val_);
1591 return true;
1592 }
1593
1594 // Return the current type. If we haven't set the type yet, we return
1595 // an abstract integer type.
1596
1597 Type*
1598 Integer_expression::do_type()
1599 {
1600 if (this->type_ == NULL)
1601 this->type_ = Type::make_abstract_integer_type();
1602 return this->type_;
1603 }
1604
1605 // Set the type of the integer value. Here we may switch from an
1606 // abstract type to a real type.
1607
1608 void
1609 Integer_expression::do_determine_type(const Type_context* context)
1610 {
1611 if (this->type_ != NULL && !this->type_->is_abstract())
1612 ;
1613 else if (context->type != NULL
1614 && (context->type->integer_type() != NULL
1615 || context->type->float_type() != NULL
1616 || context->type->complex_type() != NULL))
1617 this->type_ = context->type;
1618 else if (!context->may_be_abstract)
1619 this->type_ = Type::lookup_integer_type("int");
1620 }
1621
1622 // Return true if the integer VAL fits in the range of the type TYPE.
1623 // Otherwise give an error and return false. TYPE may be NULL.
1624
1625 bool
1626 Integer_expression::check_constant(mpz_t val, Type* type,
1627 source_location location)
1628 {
1629 if (type == NULL)
1630 return true;
1631 Integer_type* itype = type->integer_type();
1632 if (itype == NULL || itype->is_abstract())
1633 return true;
1634
1635 int bits = mpz_sizeinbase(val, 2);
1636
1637 if (itype->is_unsigned())
1638 {
1639 // For an unsigned type we can only accept a nonnegative number,
1640 // and we must be able to represent at least BITS.
1641 if (mpz_sgn(val) >= 0
1642 && bits <= itype->bits())
1643 return true;
1644 }
1645 else
1646 {
1647 // For a signed type we need an extra bit to indicate the sign.
1648 // We have to handle the most negative integer specially.
1649 if (bits + 1 <= itype->bits()
1650 || (bits <= itype->bits()
1651 && mpz_sgn(val) < 0
1652 && (mpz_scan1(val, 0)
1653 == static_cast<unsigned long>(itype->bits() - 1))
1654 && mpz_scan0(val, itype->bits()) == ULONG_MAX))
1655 return true;
1656 }
1657
1658 error_at(location, "integer constant overflow");
1659 return false;
1660 }
1661
1662 // Check the type of an integer constant.
1663
1664 void
1665 Integer_expression::do_check_types(Gogo*)
1666 {
1667 if (this->type_ == NULL)
1668 return;
1669 if (!Integer_expression::check_constant(this->val_, this->type_,
1670 this->location()))
1671 this->set_is_error();
1672 }
1673
1674 // Get a tree for an integer constant.
1675
1676 tree
1677 Integer_expression::do_get_tree(Translate_context* context)
1678 {
1679 Gogo* gogo = context->gogo();
1680 tree type;
1681 if (this->type_ != NULL && !this->type_->is_abstract())
1682 type = this->type_->get_tree(gogo);
1683 else if (this->type_ != NULL && this->type_->float_type() != NULL)
1684 {
1685 // We are converting to an abstract floating point type.
1686 type = Type::lookup_float_type("float64")->get_tree(gogo);
1687 }
1688 else if (this->type_ != NULL && this->type_->complex_type() != NULL)
1689 {
1690 // We are converting to an abstract complex type.
1691 type = Type::lookup_complex_type("complex128")->get_tree(gogo);
1692 }
1693 else
1694 {
1695 // If we still have an abstract type here, then this is being
1696 // used in a constant expression which didn't get reduced for
1697 // some reason. Use a type which will fit the value. We use <,
1698 // not <=, because we need an extra bit for the sign bit.
1699 int bits = mpz_sizeinbase(this->val_, 2);
1700 if (bits < INT_TYPE_SIZE)
1701 type = Type::lookup_integer_type("int")->get_tree(gogo);
1702 else if (bits < 64)
1703 type = Type::lookup_integer_type("int64")->get_tree(gogo);
1704 else
1705 type = long_long_integer_type_node;
1706 }
1707 return Expression::integer_constant_tree(this->val_, type);
1708 }
1709
1710 // Write VAL to export data.
1711
1712 void
1713 Integer_expression::export_integer(Export* exp, const mpz_t val)
1714 {
1715 char* s = mpz_get_str(NULL, 10, val);
1716 exp->write_c_string(s);
1717 free(s);
1718 }
1719
1720 // Export an integer in a constant expression.
1721
1722 void
1723 Integer_expression::do_export(Export* exp) const
1724 {
1725 Integer_expression::export_integer(exp, this->val_);
1726 // A trailing space lets us reliably identify the end of the number.
1727 exp->write_c_string(" ");
1728 }
1729
1730 // Import an integer, floating point, or complex value. This handles
1731 // all these types because they all start with digits.
1732
1733 Expression*
1734 Integer_expression::do_import(Import* imp)
1735 {
1736 std::string num = imp->read_identifier();
1737 imp->require_c_string(" ");
1738 if (!num.empty() && num[num.length() - 1] == 'i')
1739 {
1740 mpfr_t real;
1741 size_t plus_pos = num.find('+', 1);
1742 size_t minus_pos = num.find('-', 1);
1743 size_t pos;
1744 if (plus_pos == std::string::npos)
1745 pos = minus_pos;
1746 else if (minus_pos == std::string::npos)
1747 pos = plus_pos;
1748 else
1749 {
1750 error_at(imp->location(), "bad number in import data: %qs",
1751 num.c_str());
1752 return Expression::make_error(imp->location());
1753 }
1754 if (pos == std::string::npos)
1755 mpfr_set_ui(real, 0, GMP_RNDN);
1756 else
1757 {
1758 std::string real_str = num.substr(0, pos);
1759 if (mpfr_init_set_str(real, real_str.c_str(), 10, GMP_RNDN) != 0)
1760 {
1761 error_at(imp->location(), "bad number in import data: %qs",
1762 real_str.c_str());
1763 return Expression::make_error(imp->location());
1764 }
1765 }
1766
1767 std::string imag_str;
1768 if (pos == std::string::npos)
1769 imag_str = num;
1770 else
1771 imag_str = num.substr(pos);
1772 imag_str = imag_str.substr(0, imag_str.size() - 1);
1773 mpfr_t imag;
1774 if (mpfr_init_set_str(imag, imag_str.c_str(), 10, GMP_RNDN) != 0)
1775 {
1776 error_at(imp->location(), "bad number in import data: %qs",
1777 imag_str.c_str());
1778 return Expression::make_error(imp->location());
1779 }
1780 Expression* ret = Expression::make_complex(&real, &imag, NULL,
1781 imp->location());
1782 mpfr_clear(real);
1783 mpfr_clear(imag);
1784 return ret;
1785 }
1786 else if (num.find('.') == std::string::npos
1787 && num.find('E') == std::string::npos)
1788 {
1789 mpz_t val;
1790 if (mpz_init_set_str(val, num.c_str(), 10) != 0)
1791 {
1792 error_at(imp->location(), "bad number in import data: %qs",
1793 num.c_str());
1794 return Expression::make_error(imp->location());
1795 }
1796 Expression* ret = Expression::make_integer(&val, NULL, imp->location());
1797 mpz_clear(val);
1798 return ret;
1799 }
1800 else
1801 {
1802 mpfr_t val;
1803 if (mpfr_init_set_str(val, num.c_str(), 10, GMP_RNDN) != 0)
1804 {
1805 error_at(imp->location(), "bad number in import data: %qs",
1806 num.c_str());
1807 return Expression::make_error(imp->location());
1808 }
1809 Expression* ret = Expression::make_float(&val, NULL, imp->location());
1810 mpfr_clear(val);
1811 return ret;
1812 }
1813 }
1814
1815 // Build a new integer value.
1816
1817 Expression*
1818 Expression::make_integer(const mpz_t* val, Type* type,
1819 source_location location)
1820 {
1821 return new Integer_expression(val, type, location);
1822 }
1823
1824 // Floats.
1825
1826 class Float_expression : public Expression
1827 {
1828 public:
1829 Float_expression(const mpfr_t* val, Type* type, source_location location)
1830 : Expression(EXPRESSION_FLOAT, location),
1831 type_(type)
1832 {
1833 mpfr_init_set(this->val_, *val, GMP_RNDN);
1834 }
1835
1836 // Constrain VAL to fit into TYPE.
1837 static void
1838 constrain_float(mpfr_t val, Type* type);
1839
1840 // Return whether VAL fits in the type.
1841 static bool
1842 check_constant(mpfr_t val, Type*, source_location);
1843
1844 // Write VAL to export data.
1845 static void
1846 export_float(Export* exp, const mpfr_t val);
1847
1848 protected:
1849 bool
1850 do_is_constant() const
1851 { return true; }
1852
1853 bool
1854 do_float_constant_value(mpfr_t val, Type**) const;
1855
1856 Type*
1857 do_type();
1858
1859 void
1860 do_determine_type(const Type_context*);
1861
1862 void
1863 do_check_types(Gogo*);
1864
1865 Expression*
1866 do_copy()
1867 { return Expression::make_float(&this->val_, this->type_,
1868 this->location()); }
1869
1870 tree
1871 do_get_tree(Translate_context*);
1872
1873 void
1874 do_export(Export*) const;
1875
1876 private:
1877 // The floating point value.
1878 mpfr_t val_;
1879 // The type so far.
1880 Type* type_;
1881 };
1882
1883 // Constrain VAL to fit into TYPE.
1884
1885 void
1886 Float_expression::constrain_float(mpfr_t val, Type* type)
1887 {
1888 Float_type* ftype = type->float_type();
1889 if (ftype != NULL && !ftype->is_abstract())
1890 {
1891 tree type_tree = ftype->type_tree();
1892 REAL_VALUE_TYPE rvt;
1893 real_from_mpfr(&rvt, val, type_tree, GMP_RNDN);
1894 real_convert(&rvt, TYPE_MODE(type_tree), &rvt);
1895 mpfr_from_real(val, &rvt, GMP_RNDN);
1896 }
1897 }
1898
1899 // Return a floating point constant value.
1900
1901 bool
1902 Float_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
1903 {
1904 if (this->type_ != NULL)
1905 *ptype = this->type_;
1906 mpfr_set(val, this->val_, GMP_RNDN);
1907 return true;
1908 }
1909
1910 // Return the current type. If we haven't set the type yet, we return
1911 // an abstract float type.
1912
1913 Type*
1914 Float_expression::do_type()
1915 {
1916 if (this->type_ == NULL)
1917 this->type_ = Type::make_abstract_float_type();
1918 return this->type_;
1919 }
1920
1921 // Set the type of the float value. Here we may switch from an
1922 // abstract type to a real type.
1923
1924 void
1925 Float_expression::do_determine_type(const Type_context* context)
1926 {
1927 if (this->type_ != NULL && !this->type_->is_abstract())
1928 ;
1929 else if (context->type != NULL
1930 && (context->type->integer_type() != NULL
1931 || context->type->float_type() != NULL
1932 || context->type->complex_type() != NULL))
1933 this->type_ = context->type;
1934 else if (!context->may_be_abstract)
1935 this->type_ = Type::lookup_float_type("float64");
1936 }
1937
1938 // Return true if the floating point value VAL fits in the range of
1939 // the type TYPE. Otherwise give an error and return false. TYPE may
1940 // be NULL.
1941
1942 bool
1943 Float_expression::check_constant(mpfr_t val, Type* type,
1944 source_location location)
1945 {
1946 if (type == NULL)
1947 return true;
1948 Float_type* ftype = type->float_type();
1949 if (ftype == NULL || ftype->is_abstract())
1950 return true;
1951
1952 // A NaN or Infinity always fits in the range of the type.
1953 if (mpfr_nan_p(val) || mpfr_inf_p(val) || mpfr_zero_p(val))
1954 return true;
1955
1956 mp_exp_t exp = mpfr_get_exp(val);
1957 mp_exp_t max_exp;
1958 switch (ftype->bits())
1959 {
1960 case 32:
1961 max_exp = 128;
1962 break;
1963 case 64:
1964 max_exp = 1024;
1965 break;
1966 default:
1967 gcc_unreachable();
1968 }
1969 if (exp > max_exp)
1970 {
1971 error_at(location, "floating point constant overflow");
1972 return false;
1973 }
1974 return true;
1975 }
1976
1977 // Check the type of a float value.
1978
1979 void
1980 Float_expression::do_check_types(Gogo*)
1981 {
1982 if (this->type_ == NULL)
1983 return;
1984
1985 if (!Float_expression::check_constant(this->val_, this->type_,
1986 this->location()))
1987 this->set_is_error();
1988
1989 Integer_type* integer_type = this->type_->integer_type();
1990 if (integer_type != NULL)
1991 {
1992 if (!mpfr_integer_p(this->val_))
1993 this->report_error(_("floating point constant truncated to integer"));
1994 else
1995 {
1996 gcc_assert(!integer_type->is_abstract());
1997 mpz_t ival;
1998 mpz_init(ival);
1999 mpfr_get_z(ival, this->val_, GMP_RNDN);
2000 Integer_expression::check_constant(ival, integer_type,
2001 this->location());
2002 mpz_clear(ival);
2003 }
2004 }
2005 }
2006
2007 // Get a tree for a float constant.
2008
2009 tree
2010 Float_expression::do_get_tree(Translate_context* context)
2011 {
2012 Gogo* gogo = context->gogo();
2013 tree type;
2014 if (this->type_ != NULL && !this->type_->is_abstract())
2015 type = this->type_->get_tree(gogo);
2016 else if (this->type_ != NULL && this->type_->integer_type() != NULL)
2017 {
2018 // We have an abstract integer type. We just hope for the best.
2019 type = Type::lookup_integer_type("int")->get_tree(gogo);
2020 }
2021 else
2022 {
2023 // If we still have an abstract type here, then this is being
2024 // used in a constant expression which didn't get reduced. We
2025 // just use float64 and hope for the best.
2026 type = Type::lookup_float_type("float64")->get_tree(gogo);
2027 }
2028 return Expression::float_constant_tree(this->val_, type);
2029 }
2030
2031 // Write a floating point number to export data.
2032
2033 void
2034 Float_expression::export_float(Export *exp, const mpfr_t val)
2035 {
2036 mp_exp_t exponent;
2037 char* s = mpfr_get_str(NULL, &exponent, 10, 0, val, GMP_RNDN);
2038 if (*s == '-')
2039 exp->write_c_string("-");
2040 exp->write_c_string("0.");
2041 exp->write_c_string(*s == '-' ? s + 1 : s);
2042 mpfr_free_str(s);
2043 char buf[30];
2044 snprintf(buf, sizeof buf, "E%ld", exponent);
2045 exp->write_c_string(buf);
2046 }
2047
2048 // Export a floating point number in a constant expression.
2049
2050 void
2051 Float_expression::do_export(Export* exp) const
2052 {
2053 Float_expression::export_float(exp, this->val_);
2054 // A trailing space lets us reliably identify the end of the number.
2055 exp->write_c_string(" ");
2056 }
2057
2058 // Make a float expression.
2059
2060 Expression*
2061 Expression::make_float(const mpfr_t* val, Type* type, source_location location)
2062 {
2063 return new Float_expression(val, type, location);
2064 }
2065
2066 // Complex numbers.
2067
2068 class Complex_expression : public Expression
2069 {
2070 public:
2071 Complex_expression(const mpfr_t* real, const mpfr_t* imag, Type* type,
2072 source_location location)
2073 : Expression(EXPRESSION_COMPLEX, location),
2074 type_(type)
2075 {
2076 mpfr_init_set(this->real_, *real, GMP_RNDN);
2077 mpfr_init_set(this->imag_, *imag, GMP_RNDN);
2078 }
2079
2080 // Constrain REAL/IMAG to fit into TYPE.
2081 static void
2082 constrain_complex(mpfr_t real, mpfr_t imag, Type* type);
2083
2084 // Return whether REAL/IMAG fits in the type.
2085 static bool
2086 check_constant(mpfr_t real, mpfr_t imag, Type*, source_location);
2087
2088 // Write REAL/IMAG to export data.
2089 static void
2090 export_complex(Export* exp, const mpfr_t real, const mpfr_t val);
2091
2092 protected:
2093 bool
2094 do_is_constant() const
2095 { return true; }
2096
2097 bool
2098 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const;
2099
2100 Type*
2101 do_type();
2102
2103 void
2104 do_determine_type(const Type_context*);
2105
2106 void
2107 do_check_types(Gogo*);
2108
2109 Expression*
2110 do_copy()
2111 {
2112 return Expression::make_complex(&this->real_, &this->imag_, this->type_,
2113 this->location());
2114 }
2115
2116 tree
2117 do_get_tree(Translate_context*);
2118
2119 void
2120 do_export(Export*) const;
2121
2122 private:
2123 // The real part.
2124 mpfr_t real_;
2125 // The imaginary part;
2126 mpfr_t imag_;
2127 // The type if known.
2128 Type* type_;
2129 };
2130
2131 // Constrain REAL/IMAG to fit into TYPE.
2132
2133 void
2134 Complex_expression::constrain_complex(mpfr_t real, mpfr_t imag, Type* type)
2135 {
2136 Complex_type* ctype = type->complex_type();
2137 if (ctype != NULL && !ctype->is_abstract())
2138 {
2139 tree type_tree = ctype->type_tree();
2140
2141 REAL_VALUE_TYPE rvt;
2142 real_from_mpfr(&rvt, real, TREE_TYPE(type_tree), GMP_RNDN);
2143 real_convert(&rvt, TYPE_MODE(TREE_TYPE(type_tree)), &rvt);
2144 mpfr_from_real(real, &rvt, GMP_RNDN);
2145
2146 real_from_mpfr(&rvt, imag, TREE_TYPE(type_tree), GMP_RNDN);
2147 real_convert(&rvt, TYPE_MODE(TREE_TYPE(type_tree)), &rvt);
2148 mpfr_from_real(imag, &rvt, GMP_RNDN);
2149 }
2150 }
2151
2152 // Return a complex constant value.
2153
2154 bool
2155 Complex_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
2156 Type** ptype) const
2157 {
2158 if (this->type_ != NULL)
2159 *ptype = this->type_;
2160 mpfr_set(real, this->real_, GMP_RNDN);
2161 mpfr_set(imag, this->imag_, GMP_RNDN);
2162 return true;
2163 }
2164
2165 // Return the current type. If we haven't set the type yet, we return
2166 // an abstract complex type.
2167
2168 Type*
2169 Complex_expression::do_type()
2170 {
2171 if (this->type_ == NULL)
2172 this->type_ = Type::make_abstract_complex_type();
2173 return this->type_;
2174 }
2175
2176 // Set the type of the complex value. Here we may switch from an
2177 // abstract type to a real type.
2178
2179 void
2180 Complex_expression::do_determine_type(const Type_context* context)
2181 {
2182 if (this->type_ != NULL && !this->type_->is_abstract())
2183 ;
2184 else if (context->type != NULL
2185 && context->type->complex_type() != NULL)
2186 this->type_ = context->type;
2187 else if (!context->may_be_abstract)
2188 this->type_ = Type::lookup_complex_type("complex128");
2189 }
2190
2191 // Return true if the complex value REAL/IMAG fits in the range of the
2192 // type TYPE. Otherwise give an error and return false. TYPE may be
2193 // NULL.
2194
2195 bool
2196 Complex_expression::check_constant(mpfr_t real, mpfr_t imag, Type* type,
2197 source_location location)
2198 {
2199 if (type == NULL)
2200 return true;
2201 Complex_type* ctype = type->complex_type();
2202 if (ctype == NULL || ctype->is_abstract())
2203 return true;
2204
2205 mp_exp_t max_exp;
2206 switch (ctype->bits())
2207 {
2208 case 64:
2209 max_exp = 128;
2210 break;
2211 case 128:
2212 max_exp = 1024;
2213 break;
2214 default:
2215 gcc_unreachable();
2216 }
2217
2218 // A NaN or Infinity always fits in the range of the type.
2219 if (!mpfr_nan_p(real) && !mpfr_inf_p(real) && !mpfr_zero_p(real))
2220 {
2221 if (mpfr_get_exp(real) > max_exp)
2222 {
2223 error_at(location, "complex real part constant overflow");
2224 return false;
2225 }
2226 }
2227
2228 if (!mpfr_nan_p(imag) && !mpfr_inf_p(imag) && !mpfr_zero_p(imag))
2229 {
2230 if (mpfr_get_exp(imag) > max_exp)
2231 {
2232 error_at(location, "complex imaginary part constant overflow");
2233 return false;
2234 }
2235 }
2236
2237 return true;
2238 }
2239
2240 // Check the type of a complex value.
2241
2242 void
2243 Complex_expression::do_check_types(Gogo*)
2244 {
2245 if (this->type_ == NULL)
2246 return;
2247
2248 if (!Complex_expression::check_constant(this->real_, this->imag_,
2249 this->type_, this->location()))
2250 this->set_is_error();
2251 }
2252
2253 // Get a tree for a complex constant.
2254
2255 tree
2256 Complex_expression::do_get_tree(Translate_context* context)
2257 {
2258 Gogo* gogo = context->gogo();
2259 tree type;
2260 if (this->type_ != NULL && !this->type_->is_abstract())
2261 type = this->type_->get_tree(gogo);
2262 else
2263 {
2264 // If we still have an abstract type here, this this is being
2265 // used in a constant expression which didn't get reduced. We
2266 // just use complex128 and hope for the best.
2267 type = Type::lookup_complex_type("complex128")->get_tree(gogo);
2268 }
2269 return Expression::complex_constant_tree(this->real_, this->imag_, type);
2270 }
2271
2272 // Write REAL/IMAG to export data.
2273
2274 void
2275 Complex_expression::export_complex(Export* exp, const mpfr_t real,
2276 const mpfr_t imag)
2277 {
2278 if (!mpfr_zero_p(real))
2279 {
2280 Float_expression::export_float(exp, real);
2281 if (mpfr_sgn(imag) > 0)
2282 exp->write_c_string("+");
2283 }
2284 Float_expression::export_float(exp, imag);
2285 exp->write_c_string("i");
2286 }
2287
2288 // Export a complex number in a constant expression.
2289
2290 void
2291 Complex_expression::do_export(Export* exp) const
2292 {
2293 Complex_expression::export_complex(exp, this->real_, this->imag_);
2294 // A trailing space lets us reliably identify the end of the number.
2295 exp->write_c_string(" ");
2296 }
2297
2298 // Make a complex expression.
2299
2300 Expression*
2301 Expression::make_complex(const mpfr_t* real, const mpfr_t* imag, Type* type,
2302 source_location location)
2303 {
2304 return new Complex_expression(real, imag, type, location);
2305 }
2306
2307 // Find a named object in an expression.
2308
2309 class Find_named_object : public Traverse
2310 {
2311 public:
2312 Find_named_object(Named_object* no)
2313 : Traverse(traverse_expressions),
2314 no_(no), found_(false)
2315 { }
2316
2317 // Whether we found the object.
2318 bool
2319 found() const
2320 { return this->found_; }
2321
2322 protected:
2323 int
2324 expression(Expression**);
2325
2326 private:
2327 // The object we are looking for.
2328 Named_object* no_;
2329 // Whether we found it.
2330 bool found_;
2331 };
2332
2333 // A reference to a const in an expression.
2334
2335 class Const_expression : public Expression
2336 {
2337 public:
2338 Const_expression(Named_object* constant, source_location location)
2339 : Expression(EXPRESSION_CONST_REFERENCE, location),
2340 constant_(constant), type_(NULL), seen_(false)
2341 { }
2342
2343 Named_object*
2344 named_object()
2345 { return this->constant_; }
2346
2347 const std::string&
2348 name() const
2349 { return this->constant_->name(); }
2350
2351 // Check that the initializer does not refer to the constant itself.
2352 void
2353 check_for_init_loop();
2354
2355 protected:
2356 Expression*
2357 do_lower(Gogo*, Named_object*, int);
2358
2359 bool
2360 do_is_constant() const
2361 { return true; }
2362
2363 bool
2364 do_integer_constant_value(bool, mpz_t val, Type**) const;
2365
2366 bool
2367 do_float_constant_value(mpfr_t val, Type**) const;
2368
2369 bool
2370 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const;
2371
2372 bool
2373 do_string_constant_value(std::string* val) const
2374 { return this->constant_->const_value()->expr()->string_constant_value(val); }
2375
2376 Type*
2377 do_type();
2378
2379 // The type of a const is set by the declaration, not the use.
2380 void
2381 do_determine_type(const Type_context*);
2382
2383 void
2384 do_check_types(Gogo*);
2385
2386 Expression*
2387 do_copy()
2388 { return this; }
2389
2390 tree
2391 do_get_tree(Translate_context* context);
2392
2393 // When exporting a reference to a const as part of a const
2394 // expression, we export the value. We ignore the fact that it has
2395 // a name.
2396 void
2397 do_export(Export* exp) const
2398 { this->constant_->const_value()->expr()->export_expression(exp); }
2399
2400 private:
2401 // The constant.
2402 Named_object* constant_;
2403 // The type of this reference. This is used if the constant has an
2404 // abstract type.
2405 Type* type_;
2406 // Used to prevent infinite recursion when a constant incorrectly
2407 // refers to itself.
2408 mutable bool seen_;
2409 };
2410
2411 // Lower a constant expression. This is where we convert the
2412 // predeclared constant iota into an integer value.
2413
2414 Expression*
2415 Const_expression::do_lower(Gogo* gogo, Named_object*, int iota_value)
2416 {
2417 if (this->constant_->const_value()->expr()->classification()
2418 == EXPRESSION_IOTA)
2419 {
2420 if (iota_value == -1)
2421 {
2422 error_at(this->location(),
2423 "iota is only defined in const declarations");
2424 iota_value = 0;
2425 }
2426 mpz_t val;
2427 mpz_init_set_ui(val, static_cast<unsigned long>(iota_value));
2428 Expression* ret = Expression::make_integer(&val, NULL,
2429 this->location());
2430 mpz_clear(val);
2431 return ret;
2432 }
2433
2434 // Make sure that the constant itself has been lowered.
2435 gogo->lower_constant(this->constant_);
2436
2437 return this;
2438 }
2439
2440 // Return an integer constant value.
2441
2442 bool
2443 Const_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
2444 Type** ptype) const
2445 {
2446 if (this->seen_)
2447 return false;
2448
2449 Type* ctype;
2450 if (this->type_ != NULL)
2451 ctype = this->type_;
2452 else
2453 ctype = this->constant_->const_value()->type();
2454 if (ctype != NULL && ctype->integer_type() == NULL)
2455 return false;
2456
2457 Expression* e = this->constant_->const_value()->expr();
2458
2459 this->seen_ = true;
2460
2461 Type* t;
2462 bool r = e->integer_constant_value(iota_is_constant, val, &t);
2463
2464 this->seen_ = false;
2465
2466 if (r
2467 && ctype != NULL
2468 && !Integer_expression::check_constant(val, ctype, this->location()))
2469 return false;
2470
2471 *ptype = ctype != NULL ? ctype : t;
2472 return r;
2473 }
2474
2475 // Return a floating point constant value.
2476
2477 bool
2478 Const_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
2479 {
2480 if (this->seen_)
2481 return false;
2482
2483 Type* ctype;
2484 if (this->type_ != NULL)
2485 ctype = this->type_;
2486 else
2487 ctype = this->constant_->const_value()->type();
2488 if (ctype != NULL && ctype->float_type() == NULL)
2489 return false;
2490
2491 this->seen_ = true;
2492
2493 Type* t;
2494 bool r = this->constant_->const_value()->expr()->float_constant_value(val,
2495 &t);
2496
2497 this->seen_ = false;
2498
2499 if (r && ctype != NULL)
2500 {
2501 if (!Float_expression::check_constant(val, ctype, this->location()))
2502 return false;
2503 Float_expression::constrain_float(val, ctype);
2504 }
2505 *ptype = ctype != NULL ? ctype : t;
2506 return r;
2507 }
2508
2509 // Return a complex constant value.
2510
2511 bool
2512 Const_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
2513 Type **ptype) const
2514 {
2515 if (this->seen_)
2516 return false;
2517
2518 Type* ctype;
2519 if (this->type_ != NULL)
2520 ctype = this->type_;
2521 else
2522 ctype = this->constant_->const_value()->type();
2523 if (ctype != NULL && ctype->complex_type() == NULL)
2524 return false;
2525
2526 this->seen_ = true;
2527
2528 Type *t;
2529 bool r = this->constant_->const_value()->expr()->complex_constant_value(real,
2530 imag,
2531 &t);
2532
2533 this->seen_ = false;
2534
2535 if (r && ctype != NULL)
2536 {
2537 if (!Complex_expression::check_constant(real, imag, ctype,
2538 this->location()))
2539 return false;
2540 Complex_expression::constrain_complex(real, imag, ctype);
2541 }
2542 *ptype = ctype != NULL ? ctype : t;
2543 return r;
2544 }
2545
2546 // Return the type of the const reference.
2547
2548 Type*
2549 Const_expression::do_type()
2550 {
2551 if (this->type_ != NULL)
2552 return this->type_;
2553
2554 Named_constant* nc = this->constant_->const_value();
2555
2556 if (this->seen_ || nc->lowering())
2557 {
2558 this->report_error(_("constant refers to itself"));
2559 this->type_ = Type::make_error_type();
2560 return this->type_;
2561 }
2562
2563 this->seen_ = true;
2564
2565 Type* ret = nc->type();
2566
2567 if (ret != NULL)
2568 {
2569 this->seen_ = false;
2570 return ret;
2571 }
2572
2573 // During parsing, a named constant may have a NULL type, but we
2574 // must not return a NULL type here.
2575 ret = nc->expr()->type();
2576
2577 this->seen_ = false;
2578
2579 return ret;
2580 }
2581
2582 // Set the type of the const reference.
2583
2584 void
2585 Const_expression::do_determine_type(const Type_context* context)
2586 {
2587 Type* ctype = this->constant_->const_value()->type();
2588 Type* cetype = (ctype != NULL
2589 ? ctype
2590 : this->constant_->const_value()->expr()->type());
2591 if (ctype != NULL && !ctype->is_abstract())
2592 ;
2593 else if (context->type != NULL
2594 && (context->type->integer_type() != NULL
2595 || context->type->float_type() != NULL
2596 || context->type->complex_type() != NULL)
2597 && (cetype->integer_type() != NULL
2598 || cetype->float_type() != NULL
2599 || cetype->complex_type() != NULL))
2600 this->type_ = context->type;
2601 else if (context->type != NULL
2602 && context->type->is_string_type()
2603 && cetype->is_string_type())
2604 this->type_ = context->type;
2605 else if (context->type != NULL
2606 && context->type->is_boolean_type()
2607 && cetype->is_boolean_type())
2608 this->type_ = context->type;
2609 else if (!context->may_be_abstract)
2610 {
2611 if (cetype->is_abstract())
2612 cetype = cetype->make_non_abstract_type();
2613 this->type_ = cetype;
2614 }
2615 }
2616
2617 // Check for a loop in which the initializer of a constant refers to
2618 // the constant itself.
2619
2620 void
2621 Const_expression::check_for_init_loop()
2622 {
2623 if (this->type_ != NULL && this->type_->is_error_type())
2624 return;
2625
2626 if (this->seen_)
2627 {
2628 this->report_error(_("constant refers to itself"));
2629 this->type_ = Type::make_error_type();
2630 return;
2631 }
2632
2633 Expression* init = this->constant_->const_value()->expr();
2634 Find_named_object find_named_object(this->constant_);
2635
2636 this->seen_ = true;
2637 Expression::traverse(&init, &find_named_object);
2638 this->seen_ = false;
2639
2640 if (find_named_object.found())
2641 {
2642 if (this->type_ == NULL || !this->type_->is_error_type())
2643 {
2644 this->report_error(_("constant refers to itself"));
2645 this->type_ = Type::make_error_type();
2646 }
2647 return;
2648 }
2649 }
2650
2651 // Check types of a const reference.
2652
2653 void
2654 Const_expression::do_check_types(Gogo*)
2655 {
2656 if (this->type_ != NULL && this->type_->is_error_type())
2657 return;
2658
2659 this->check_for_init_loop();
2660
2661 if (this->type_ == NULL || this->type_->is_abstract())
2662 return;
2663
2664 // Check for integer overflow.
2665 if (this->type_->integer_type() != NULL)
2666 {
2667 mpz_t ival;
2668 mpz_init(ival);
2669 Type* dummy;
2670 if (!this->integer_constant_value(true, ival, &dummy))
2671 {
2672 mpfr_t fval;
2673 mpfr_init(fval);
2674 Expression* cexpr = this->constant_->const_value()->expr();
2675 if (cexpr->float_constant_value(fval, &dummy))
2676 {
2677 if (!mpfr_integer_p(fval))
2678 this->report_error(_("floating point constant "
2679 "truncated to integer"));
2680 else
2681 {
2682 mpfr_get_z(ival, fval, GMP_RNDN);
2683 Integer_expression::check_constant(ival, this->type_,
2684 this->location());
2685 }
2686 }
2687 mpfr_clear(fval);
2688 }
2689 mpz_clear(ival);
2690 }
2691 }
2692
2693 // Return a tree for the const reference.
2694
2695 tree
2696 Const_expression::do_get_tree(Translate_context* context)
2697 {
2698 Gogo* gogo = context->gogo();
2699 tree type_tree;
2700 if (this->type_ == NULL)
2701 type_tree = NULL_TREE;
2702 else
2703 {
2704 type_tree = this->type_->get_tree(gogo);
2705 if (type_tree == error_mark_node)
2706 return error_mark_node;
2707 }
2708
2709 // If the type has been set for this expression, but the underlying
2710 // object is an abstract int or float, we try to get the abstract
2711 // value. Otherwise we may lose something in the conversion.
2712 if (this->type_ != NULL
2713 && (this->constant_->const_value()->type() == NULL
2714 || this->constant_->const_value()->type()->is_abstract()))
2715 {
2716 Expression* expr = this->constant_->const_value()->expr();
2717 mpz_t ival;
2718 mpz_init(ival);
2719 Type* t;
2720 if (expr->integer_constant_value(true, ival, &t))
2721 {
2722 tree ret = Expression::integer_constant_tree(ival, type_tree);
2723 mpz_clear(ival);
2724 return ret;
2725 }
2726 mpz_clear(ival);
2727
2728 mpfr_t fval;
2729 mpfr_init(fval);
2730 if (expr->float_constant_value(fval, &t))
2731 {
2732 tree ret = Expression::float_constant_tree(fval, type_tree);
2733 mpfr_clear(fval);
2734 return ret;
2735 }
2736
2737 mpfr_t imag;
2738 mpfr_init(imag);
2739 if (expr->complex_constant_value(fval, imag, &t))
2740 {
2741 tree ret = Expression::complex_constant_tree(fval, imag, type_tree);
2742 mpfr_clear(fval);
2743 mpfr_clear(imag);
2744 return ret;
2745 }
2746 mpfr_clear(imag);
2747 mpfr_clear(fval);
2748 }
2749
2750 tree const_tree = this->constant_->get_tree(gogo, context->function());
2751 if (this->type_ == NULL
2752 || const_tree == error_mark_node
2753 || TREE_TYPE(const_tree) == error_mark_node)
2754 return const_tree;
2755
2756 tree ret;
2757 if (TYPE_MAIN_VARIANT(type_tree) == TYPE_MAIN_VARIANT(TREE_TYPE(const_tree)))
2758 ret = fold_convert(type_tree, const_tree);
2759 else if (TREE_CODE(type_tree) == INTEGER_TYPE)
2760 ret = fold(convert_to_integer(type_tree, const_tree));
2761 else if (TREE_CODE(type_tree) == REAL_TYPE)
2762 ret = fold(convert_to_real(type_tree, const_tree));
2763 else if (TREE_CODE(type_tree) == COMPLEX_TYPE)
2764 ret = fold(convert_to_complex(type_tree, const_tree));
2765 else
2766 gcc_unreachable();
2767 return ret;
2768 }
2769
2770 // Make a reference to a constant in an expression.
2771
2772 Expression*
2773 Expression::make_const_reference(Named_object* constant,
2774 source_location location)
2775 {
2776 return new Const_expression(constant, location);
2777 }
2778
2779 // Find a named object in an expression.
2780
2781 int
2782 Find_named_object::expression(Expression** pexpr)
2783 {
2784 switch ((*pexpr)->classification())
2785 {
2786 case Expression::EXPRESSION_CONST_REFERENCE:
2787 {
2788 Const_expression* ce = static_cast<Const_expression*>(*pexpr);
2789 if (ce->named_object() == this->no_)
2790 break;
2791
2792 // We need to check a constant initializer explicitly, as
2793 // loops here will not be caught by the loop checking for
2794 // variable initializers.
2795 ce->check_for_init_loop();
2796
2797 return TRAVERSE_CONTINUE;
2798 }
2799
2800 case Expression::EXPRESSION_VAR_REFERENCE:
2801 if ((*pexpr)->var_expression()->named_object() == this->no_)
2802 break;
2803 return TRAVERSE_CONTINUE;
2804 case Expression::EXPRESSION_FUNC_REFERENCE:
2805 if ((*pexpr)->func_expression()->named_object() == this->no_)
2806 break;
2807 return TRAVERSE_CONTINUE;
2808 default:
2809 return TRAVERSE_CONTINUE;
2810 }
2811 this->found_ = true;
2812 return TRAVERSE_EXIT;
2813 }
2814
2815 // The nil value.
2816
2817 class Nil_expression : public Expression
2818 {
2819 public:
2820 Nil_expression(source_location location)
2821 : Expression(EXPRESSION_NIL, location)
2822 { }
2823
2824 static Expression*
2825 do_import(Import*);
2826
2827 protected:
2828 bool
2829 do_is_constant() const
2830 { return true; }
2831
2832 Type*
2833 do_type()
2834 { return Type::make_nil_type(); }
2835
2836 void
2837 do_determine_type(const Type_context*)
2838 { }
2839
2840 Expression*
2841 do_copy()
2842 { return this; }
2843
2844 tree
2845 do_get_tree(Translate_context*)
2846 { return null_pointer_node; }
2847
2848 void
2849 do_export(Export* exp) const
2850 { exp->write_c_string("nil"); }
2851 };
2852
2853 // Import a nil expression.
2854
2855 Expression*
2856 Nil_expression::do_import(Import* imp)
2857 {
2858 imp->require_c_string("nil");
2859 return Expression::make_nil(imp->location());
2860 }
2861
2862 // Make a nil expression.
2863
2864 Expression*
2865 Expression::make_nil(source_location location)
2866 {
2867 return new Nil_expression(location);
2868 }
2869
2870 // The value of the predeclared constant iota. This is little more
2871 // than a marker. This will be lowered to an integer in
2872 // Const_expression::do_lower, which is where we know the value that
2873 // it should have.
2874
2875 class Iota_expression : public Parser_expression
2876 {
2877 public:
2878 Iota_expression(source_location location)
2879 : Parser_expression(EXPRESSION_IOTA, location)
2880 { }
2881
2882 protected:
2883 Expression*
2884 do_lower(Gogo*, Named_object*, int)
2885 { gcc_unreachable(); }
2886
2887 // There should only ever be one of these.
2888 Expression*
2889 do_copy()
2890 { gcc_unreachable(); }
2891 };
2892
2893 // Make an iota expression. This is only called for one case: the
2894 // value of the predeclared constant iota.
2895
2896 Expression*
2897 Expression::make_iota()
2898 {
2899 static Iota_expression iota_expression(UNKNOWN_LOCATION);
2900 return &iota_expression;
2901 }
2902
2903 // A type conversion expression.
2904
2905 class Type_conversion_expression : public Expression
2906 {
2907 public:
2908 Type_conversion_expression(Type* type, Expression* expr,
2909 source_location location)
2910 : Expression(EXPRESSION_CONVERSION, location),
2911 type_(type), expr_(expr), may_convert_function_types_(false)
2912 { }
2913
2914 // Return the type to which we are converting.
2915 Type*
2916 type() const
2917 { return this->type_; }
2918
2919 // Return the expression which we are converting.
2920 Expression*
2921 expr() const
2922 { return this->expr_; }
2923
2924 // Permit converting from one function type to another. This is
2925 // used internally for method expressions.
2926 void
2927 set_may_convert_function_types()
2928 {
2929 this->may_convert_function_types_ = true;
2930 }
2931
2932 // Import a type conversion expression.
2933 static Expression*
2934 do_import(Import*);
2935
2936 protected:
2937 int
2938 do_traverse(Traverse* traverse);
2939
2940 Expression*
2941 do_lower(Gogo*, Named_object*, int);
2942
2943 bool
2944 do_is_constant() const
2945 { return this->expr_->is_constant(); }
2946
2947 bool
2948 do_integer_constant_value(bool, mpz_t, Type**) const;
2949
2950 bool
2951 do_float_constant_value(mpfr_t, Type**) const;
2952
2953 bool
2954 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
2955
2956 bool
2957 do_string_constant_value(std::string*) const;
2958
2959 Type*
2960 do_type()
2961 { return this->type_; }
2962
2963 void
2964 do_determine_type(const Type_context*)
2965 {
2966 Type_context subcontext(this->type_, false);
2967 this->expr_->determine_type(&subcontext);
2968 }
2969
2970 void
2971 do_check_types(Gogo*);
2972
2973 Expression*
2974 do_copy()
2975 {
2976 return new Type_conversion_expression(this->type_, this->expr_->copy(),
2977 this->location());
2978 }
2979
2980 tree
2981 do_get_tree(Translate_context* context);
2982
2983 void
2984 do_export(Export*) const;
2985
2986 private:
2987 // The type to convert to.
2988 Type* type_;
2989 // The expression to convert.
2990 Expression* expr_;
2991 // True if this is permitted to convert function types. This is
2992 // used internally for method expressions.
2993 bool may_convert_function_types_;
2994 };
2995
2996 // Traversal.
2997
2998 int
2999 Type_conversion_expression::do_traverse(Traverse* traverse)
3000 {
3001 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
3002 || Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
3003 return TRAVERSE_EXIT;
3004 return TRAVERSE_CONTINUE;
3005 }
3006
3007 // Convert to a constant at lowering time.
3008
3009 Expression*
3010 Type_conversion_expression::do_lower(Gogo*, Named_object*, int)
3011 {
3012 Type* type = this->type_;
3013 Expression* val = this->expr_;
3014 source_location location = this->location();
3015
3016 if (type->integer_type() != NULL)
3017 {
3018 mpz_t ival;
3019 mpz_init(ival);
3020 Type* dummy;
3021 if (val->integer_constant_value(false, ival, &dummy))
3022 {
3023 if (!Integer_expression::check_constant(ival, type, location))
3024 mpz_set_ui(ival, 0);
3025 Expression* ret = Expression::make_integer(&ival, type, location);
3026 mpz_clear(ival);
3027 return ret;
3028 }
3029
3030 mpfr_t fval;
3031 mpfr_init(fval);
3032 if (val->float_constant_value(fval, &dummy))
3033 {
3034 if (!mpfr_integer_p(fval))
3035 {
3036 error_at(location,
3037 "floating point constant truncated to integer");
3038 return Expression::make_error(location);
3039 }
3040 mpfr_get_z(ival, fval, GMP_RNDN);
3041 if (!Integer_expression::check_constant(ival, type, location))
3042 mpz_set_ui(ival, 0);
3043 Expression* ret = Expression::make_integer(&ival, type, location);
3044 mpfr_clear(fval);
3045 mpz_clear(ival);
3046 return ret;
3047 }
3048 mpfr_clear(fval);
3049 mpz_clear(ival);
3050 }
3051
3052 if (type->float_type() != NULL)
3053 {
3054 mpfr_t fval;
3055 mpfr_init(fval);
3056 Type* dummy;
3057 if (val->float_constant_value(fval, &dummy))
3058 {
3059 if (!Float_expression::check_constant(fval, type, location))
3060 mpfr_set_ui(fval, 0, GMP_RNDN);
3061 Float_expression::constrain_float(fval, type);
3062 Expression *ret = Expression::make_float(&fval, type, location);
3063 mpfr_clear(fval);
3064 return ret;
3065 }
3066 mpfr_clear(fval);
3067 }
3068
3069 if (type->complex_type() != NULL)
3070 {
3071 mpfr_t real;
3072 mpfr_t imag;
3073 mpfr_init(real);
3074 mpfr_init(imag);
3075 Type* dummy;
3076 if (val->complex_constant_value(real, imag, &dummy))
3077 {
3078 if (!Complex_expression::check_constant(real, imag, type, location))
3079 {
3080 mpfr_set_ui(real, 0, GMP_RNDN);
3081 mpfr_set_ui(imag, 0, GMP_RNDN);
3082 }
3083 Complex_expression::constrain_complex(real, imag, type);
3084 Expression* ret = Expression::make_complex(&real, &imag, type,
3085 location);
3086 mpfr_clear(real);
3087 mpfr_clear(imag);
3088 return ret;
3089 }
3090 mpfr_clear(real);
3091 mpfr_clear(imag);
3092 }
3093
3094 if (type->is_open_array_type() && type->named_type() == NULL)
3095 {
3096 Type* element_type = type->array_type()->element_type()->forwarded();
3097 bool is_byte = element_type == Type::lookup_integer_type("uint8");
3098 bool is_int = element_type == Type::lookup_integer_type("int");
3099 if (is_byte || is_int)
3100 {
3101 std::string s;
3102 if (val->string_constant_value(&s))
3103 {
3104 Expression_list* vals = new Expression_list();
3105 if (is_byte)
3106 {
3107 for (std::string::const_iterator p = s.begin();
3108 p != s.end();
3109 p++)
3110 {
3111 mpz_t val;
3112 mpz_init_set_ui(val, static_cast<unsigned char>(*p));
3113 Expression* v = Expression::make_integer(&val,
3114 element_type,
3115 location);
3116 vals->push_back(v);
3117 mpz_clear(val);
3118 }
3119 }
3120 else
3121 {
3122 const char *p = s.data();
3123 const char *pend = s.data() + s.length();
3124 while (p < pend)
3125 {
3126 unsigned int c;
3127 int adv = Lex::fetch_char(p, &c);
3128 if (adv == 0)
3129 {
3130 warning_at(this->location(), 0,
3131 "invalid UTF-8 encoding");
3132 adv = 1;
3133 }
3134 p += adv;
3135 mpz_t val;
3136 mpz_init_set_ui(val, c);
3137 Expression* v = Expression::make_integer(&val,
3138 element_type,
3139 location);
3140 vals->push_back(v);
3141 mpz_clear(val);
3142 }
3143 }
3144
3145 return Expression::make_slice_composite_literal(type, vals,
3146 location);
3147 }
3148 }
3149 }
3150
3151 return this;
3152 }
3153
3154 // Return the constant integer value if there is one.
3155
3156 bool
3157 Type_conversion_expression::do_integer_constant_value(bool iota_is_constant,
3158 mpz_t val,
3159 Type** ptype) const
3160 {
3161 if (this->type_->integer_type() == NULL)
3162 return false;
3163
3164 mpz_t ival;
3165 mpz_init(ival);
3166 Type* dummy;
3167 if (this->expr_->integer_constant_value(iota_is_constant, ival, &dummy))
3168 {
3169 if (!Integer_expression::check_constant(ival, this->type_,
3170 this->location()))
3171 {
3172 mpz_clear(ival);
3173 return false;
3174 }
3175 mpz_set(val, ival);
3176 mpz_clear(ival);
3177 *ptype = this->type_;
3178 return true;
3179 }
3180 mpz_clear(ival);
3181
3182 mpfr_t fval;
3183 mpfr_init(fval);
3184 if (this->expr_->float_constant_value(fval, &dummy))
3185 {
3186 mpfr_get_z(val, fval, GMP_RNDN);
3187 mpfr_clear(fval);
3188 if (!Integer_expression::check_constant(val, this->type_,
3189 this->location()))
3190 return false;
3191 *ptype = this->type_;
3192 return true;
3193 }
3194 mpfr_clear(fval);
3195
3196 return false;
3197 }
3198
3199 // Return the constant floating point value if there is one.
3200
3201 bool
3202 Type_conversion_expression::do_float_constant_value(mpfr_t val,
3203 Type** ptype) const
3204 {
3205 if (this->type_->float_type() == NULL)
3206 return false;
3207
3208 mpfr_t fval;
3209 mpfr_init(fval);
3210 Type* dummy;
3211 if (this->expr_->float_constant_value(fval, &dummy))
3212 {
3213 if (!Float_expression::check_constant(fval, this->type_,
3214 this->location()))
3215 {
3216 mpfr_clear(fval);
3217 return false;
3218 }
3219 mpfr_set(val, fval, GMP_RNDN);
3220 mpfr_clear(fval);
3221 Float_expression::constrain_float(val, this->type_);
3222 *ptype = this->type_;
3223 return true;
3224 }
3225 mpfr_clear(fval);
3226
3227 return false;
3228 }
3229
3230 // Return the constant complex value if there is one.
3231
3232 bool
3233 Type_conversion_expression::do_complex_constant_value(mpfr_t real,
3234 mpfr_t imag,
3235 Type **ptype) const
3236 {
3237 if (this->type_->complex_type() == NULL)
3238 return false;
3239
3240 mpfr_t rval;
3241 mpfr_t ival;
3242 mpfr_init(rval);
3243 mpfr_init(ival);
3244 Type* dummy;
3245 if (this->expr_->complex_constant_value(rval, ival, &dummy))
3246 {
3247 if (!Complex_expression::check_constant(rval, ival, this->type_,
3248 this->location()))
3249 {
3250 mpfr_clear(rval);
3251 mpfr_clear(ival);
3252 return false;
3253 }
3254 mpfr_set(real, rval, GMP_RNDN);
3255 mpfr_set(imag, ival, GMP_RNDN);
3256 mpfr_clear(rval);
3257 mpfr_clear(ival);
3258 Complex_expression::constrain_complex(real, imag, this->type_);
3259 *ptype = this->type_;
3260 return true;
3261 }
3262 mpfr_clear(rval);
3263 mpfr_clear(ival);
3264
3265 return false;
3266 }
3267
3268 // Return the constant string value if there is one.
3269
3270 bool
3271 Type_conversion_expression::do_string_constant_value(std::string* val) const
3272 {
3273 if (this->type_->is_string_type()
3274 && this->expr_->type()->integer_type() != NULL)
3275 {
3276 mpz_t ival;
3277 mpz_init(ival);
3278 Type* dummy;
3279 if (this->expr_->integer_constant_value(false, ival, &dummy))
3280 {
3281 unsigned long ulval = mpz_get_ui(ival);
3282 if (mpz_cmp_ui(ival, ulval) == 0)
3283 {
3284 Lex::append_char(ulval, true, val, this->location());
3285 mpz_clear(ival);
3286 return true;
3287 }
3288 }
3289 mpz_clear(ival);
3290 }
3291
3292 // FIXME: Could handle conversion from const []int here.
3293
3294 return false;
3295 }
3296
3297 // Check that types are convertible.
3298
3299 void
3300 Type_conversion_expression::do_check_types(Gogo*)
3301 {
3302 Type* type = this->type_;
3303 Type* expr_type = this->expr_->type();
3304 std::string reason;
3305
3306 if (type->is_error_type()
3307 || type->is_undefined()
3308 || expr_type->is_error_type()
3309 || expr_type->is_undefined())
3310 {
3311 // Make sure we emit an error for an undefined type.
3312 type->base();
3313 expr_type->base();
3314 this->set_is_error();
3315 return;
3316 }
3317
3318 if (this->may_convert_function_types_
3319 && type->function_type() != NULL
3320 && expr_type->function_type() != NULL)
3321 return;
3322
3323 if (Type::are_convertible(type, expr_type, &reason))
3324 return;
3325
3326 error_at(this->location(), "%s", reason.c_str());
3327 this->set_is_error();
3328 }
3329
3330 // Get a tree for a type conversion.
3331
3332 tree
3333 Type_conversion_expression::do_get_tree(Translate_context* context)
3334 {
3335 Gogo* gogo = context->gogo();
3336 tree type_tree = this->type_->get_tree(gogo);
3337 tree expr_tree = this->expr_->get_tree(context);
3338
3339 if (type_tree == error_mark_node
3340 || expr_tree == error_mark_node
3341 || TREE_TYPE(expr_tree) == error_mark_node)
3342 return error_mark_node;
3343
3344 if (TYPE_MAIN_VARIANT(type_tree) == TYPE_MAIN_VARIANT(TREE_TYPE(expr_tree)))
3345 return fold_convert(type_tree, expr_tree);
3346
3347 Type* type = this->type_;
3348 Type* expr_type = this->expr_->type();
3349 tree ret;
3350 if (type->interface_type() != NULL || expr_type->interface_type() != NULL)
3351 ret = Expression::convert_for_assignment(context, type, expr_type,
3352 expr_tree, this->location());
3353 else if (type->integer_type() != NULL)
3354 {
3355 if (expr_type->integer_type() != NULL
3356 || expr_type->float_type() != NULL
3357 || expr_type->is_unsafe_pointer_type())
3358 ret = fold(convert_to_integer(type_tree, expr_tree));
3359 else
3360 gcc_unreachable();
3361 }
3362 else if (type->float_type() != NULL)
3363 {
3364 if (expr_type->integer_type() != NULL
3365 || expr_type->float_type() != NULL)
3366 ret = fold(convert_to_real(type_tree, expr_tree));
3367 else
3368 gcc_unreachable();
3369 }
3370 else if (type->complex_type() != NULL)
3371 {
3372 if (expr_type->complex_type() != NULL)
3373 ret = fold(convert_to_complex(type_tree, expr_tree));
3374 else
3375 gcc_unreachable();
3376 }
3377 else if (type->is_string_type()
3378 && expr_type->integer_type() != NULL)
3379 {
3380 expr_tree = fold_convert(integer_type_node, expr_tree);
3381 if (host_integerp(expr_tree, 0))
3382 {
3383 HOST_WIDE_INT intval = tree_low_cst(expr_tree, 0);
3384 std::string s;
3385 Lex::append_char(intval, true, &s, this->location());
3386 Expression* se = Expression::make_string(s, this->location());
3387 return se->get_tree(context);
3388 }
3389
3390 static tree int_to_string_fndecl;
3391 ret = Gogo::call_builtin(&int_to_string_fndecl,
3392 this->location(),
3393 "__go_int_to_string",
3394 1,
3395 type_tree,
3396 integer_type_node,
3397 fold_convert(integer_type_node, expr_tree));
3398 }
3399 else if (type->is_string_type()
3400 && (expr_type->array_type() != NULL
3401 || (expr_type->points_to() != NULL
3402 && expr_type->points_to()->array_type() != NULL)))
3403 {
3404 Type* t = expr_type;
3405 if (t->points_to() != NULL)
3406 {
3407 t = t->points_to();
3408 expr_tree = build_fold_indirect_ref(expr_tree);
3409 }
3410 if (!DECL_P(expr_tree))
3411 expr_tree = save_expr(expr_tree);
3412 Array_type* a = t->array_type();
3413 Type* e = a->element_type()->forwarded();
3414 gcc_assert(e->integer_type() != NULL);
3415 tree valptr = fold_convert(const_ptr_type_node,
3416 a->value_pointer_tree(gogo, expr_tree));
3417 tree len = a->length_tree(gogo, expr_tree);
3418 len = fold_convert_loc(this->location(), size_type_node, len);
3419 if (e->integer_type()->is_unsigned()
3420 && e->integer_type()->bits() == 8)
3421 {
3422 static tree byte_array_to_string_fndecl;
3423 ret = Gogo::call_builtin(&byte_array_to_string_fndecl,
3424 this->location(),
3425 "__go_byte_array_to_string",
3426 2,
3427 type_tree,
3428 const_ptr_type_node,
3429 valptr,
3430 size_type_node,
3431 len);
3432 }
3433 else
3434 {
3435 gcc_assert(e == Type::lookup_integer_type("int"));
3436 static tree int_array_to_string_fndecl;
3437 ret = Gogo::call_builtin(&int_array_to_string_fndecl,
3438 this->location(),
3439 "__go_int_array_to_string",
3440 2,
3441 type_tree,
3442 const_ptr_type_node,
3443 valptr,
3444 size_type_node,
3445 len);
3446 }
3447 }
3448 else if (type->is_open_array_type() && expr_type->is_string_type())
3449 {
3450 Type* e = type->array_type()->element_type()->forwarded();
3451 gcc_assert(e->integer_type() != NULL);
3452 if (e->integer_type()->is_unsigned()
3453 && e->integer_type()->bits() == 8)
3454 {
3455 static tree string_to_byte_array_fndecl;
3456 ret = Gogo::call_builtin(&string_to_byte_array_fndecl,
3457 this->location(),
3458 "__go_string_to_byte_array",
3459 1,
3460 type_tree,
3461 TREE_TYPE(expr_tree),
3462 expr_tree);
3463 }
3464 else
3465 {
3466 gcc_assert(e == Type::lookup_integer_type("int"));
3467 static tree string_to_int_array_fndecl;
3468 ret = Gogo::call_builtin(&string_to_int_array_fndecl,
3469 this->location(),
3470 "__go_string_to_int_array",
3471 1,
3472 type_tree,
3473 TREE_TYPE(expr_tree),
3474 expr_tree);
3475 }
3476 }
3477 else if ((type->is_unsafe_pointer_type()
3478 && expr_type->points_to() != NULL)
3479 || (expr_type->is_unsafe_pointer_type()
3480 && type->points_to() != NULL))
3481 ret = fold_convert(type_tree, expr_tree);
3482 else if (type->is_unsafe_pointer_type()
3483 && expr_type->integer_type() != NULL)
3484 ret = convert_to_pointer(type_tree, expr_tree);
3485 else if (this->may_convert_function_types_
3486 && type->function_type() != NULL
3487 && expr_type->function_type() != NULL)
3488 ret = fold_convert_loc(this->location(), type_tree, expr_tree);
3489 else
3490 ret = Expression::convert_for_assignment(context, type, expr_type,
3491 expr_tree, this->location());
3492
3493 return ret;
3494 }
3495
3496 // Output a type conversion in a constant expression.
3497
3498 void
3499 Type_conversion_expression::do_export(Export* exp) const
3500 {
3501 exp->write_c_string("convert(");
3502 exp->write_type(this->type_);
3503 exp->write_c_string(", ");
3504 this->expr_->export_expression(exp);
3505 exp->write_c_string(")");
3506 }
3507
3508 // Import a type conversion or a struct construction.
3509
3510 Expression*
3511 Type_conversion_expression::do_import(Import* imp)
3512 {
3513 imp->require_c_string("convert(");
3514 Type* type = imp->read_type();
3515 imp->require_c_string(", ");
3516 Expression* val = Expression::import_expression(imp);
3517 imp->require_c_string(")");
3518 return Expression::make_cast(type, val, imp->location());
3519 }
3520
3521 // Make a type cast expression.
3522
3523 Expression*
3524 Expression::make_cast(Type* type, Expression* val, source_location location)
3525 {
3526 if (type->is_error_type() || val->is_error_expression())
3527 return Expression::make_error(location);
3528 return new Type_conversion_expression(type, val, location);
3529 }
3530
3531 // Unary expressions.
3532
3533 class Unary_expression : public Expression
3534 {
3535 public:
3536 Unary_expression(Operator op, Expression* expr, source_location location)
3537 : Expression(EXPRESSION_UNARY, location),
3538 op_(op), escapes_(true), expr_(expr)
3539 { }
3540
3541 // Return the operator.
3542 Operator
3543 op() const
3544 { return this->op_; }
3545
3546 // Return the operand.
3547 Expression*
3548 operand() const
3549 { return this->expr_; }
3550
3551 // Record that an address expression does not escape.
3552 void
3553 set_does_not_escape()
3554 {
3555 gcc_assert(this->op_ == OPERATOR_AND);
3556 this->escapes_ = false;
3557 }
3558
3559 // Apply unary opcode OP to UVAL, setting VAL. Return true if this
3560 // could be done, false if not.
3561 static bool
3562 eval_integer(Operator op, Type* utype, mpz_t uval, mpz_t val,
3563 source_location);
3564
3565 // Apply unary opcode OP to UVAL, setting VAL. Return true if this
3566 // could be done, false if not.
3567 static bool
3568 eval_float(Operator op, mpfr_t uval, mpfr_t val);
3569
3570 // Apply unary opcode OP to UREAL/UIMAG, setting REAL/IMAG. Return
3571 // true if this could be done, false if not.
3572 static bool
3573 eval_complex(Operator op, mpfr_t ureal, mpfr_t uimag, mpfr_t real,
3574 mpfr_t imag);
3575
3576 static Expression*
3577 do_import(Import*);
3578
3579 protected:
3580 int
3581 do_traverse(Traverse* traverse)
3582 { return Expression::traverse(&this->expr_, traverse); }
3583
3584 Expression*
3585 do_lower(Gogo*, Named_object*, int);
3586
3587 bool
3588 do_is_constant() const;
3589
3590 bool
3591 do_integer_constant_value(bool, mpz_t, Type**) const;
3592
3593 bool
3594 do_float_constant_value(mpfr_t, Type**) const;
3595
3596 bool
3597 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
3598
3599 Type*
3600 do_type();
3601
3602 void
3603 do_determine_type(const Type_context*);
3604
3605 void
3606 do_check_types(Gogo*);
3607
3608 Expression*
3609 do_copy()
3610 {
3611 return Expression::make_unary(this->op_, this->expr_->copy(),
3612 this->location());
3613 }
3614
3615 bool
3616 do_is_addressable() const
3617 { return this->op_ == OPERATOR_MULT; }
3618
3619 tree
3620 do_get_tree(Translate_context*);
3621
3622 void
3623 do_export(Export*) const;
3624
3625 private:
3626 // The unary operator to apply.
3627 Operator op_;
3628 // Normally true. False if this is an address expression which does
3629 // not escape the current function.
3630 bool escapes_;
3631 // The operand.
3632 Expression* expr_;
3633 };
3634
3635 // If we are taking the address of a composite literal, and the
3636 // contents are not constant, then we want to make a heap composite
3637 // instead.
3638
3639 Expression*
3640 Unary_expression::do_lower(Gogo*, Named_object*, int)
3641 {
3642 source_location loc = this->location();
3643 Operator op = this->op_;
3644 Expression* expr = this->expr_;
3645
3646 if (op == OPERATOR_MULT && expr->is_type_expression())
3647 return Expression::make_type(Type::make_pointer_type(expr->type()), loc);
3648
3649 // *&x simplifies to x. *(*T)(unsafe.Pointer)(&x) does not require
3650 // moving x to the heap. FIXME: Is it worth doing a real escape
3651 // analysis here? This case is found in math/unsafe.go and is
3652 // therefore worth special casing.
3653 if (op == OPERATOR_MULT)
3654 {
3655 Expression* e = expr;
3656 while (e->classification() == EXPRESSION_CONVERSION)
3657 {
3658 Type_conversion_expression* te
3659 = static_cast<Type_conversion_expression*>(e);
3660 e = te->expr();
3661 }
3662
3663 if (e->classification() == EXPRESSION_UNARY)
3664 {
3665 Unary_expression* ue = static_cast<Unary_expression*>(e);
3666 if (ue->op_ == OPERATOR_AND)
3667 {
3668 if (e == expr)
3669 {
3670 // *&x == x.
3671 return ue->expr_;
3672 }
3673 ue->set_does_not_escape();
3674 }
3675 }
3676 }
3677
3678 if (op == OPERATOR_PLUS || op == OPERATOR_MINUS
3679 || op == OPERATOR_NOT || op == OPERATOR_XOR)
3680 {
3681 Expression* ret = NULL;
3682
3683 mpz_t eval;
3684 mpz_init(eval);
3685 Type* etype;
3686 if (expr->integer_constant_value(false, eval, &etype))
3687 {
3688 mpz_t val;
3689 mpz_init(val);
3690 if (Unary_expression::eval_integer(op, etype, eval, val, loc))
3691 ret = Expression::make_integer(&val, etype, loc);
3692 mpz_clear(val);
3693 }
3694 mpz_clear(eval);
3695 if (ret != NULL)
3696 return ret;
3697
3698 if (op == OPERATOR_PLUS || op == OPERATOR_MINUS)
3699 {
3700 mpfr_t fval;
3701 mpfr_init(fval);
3702 Type* ftype;
3703 if (expr->float_constant_value(fval, &ftype))
3704 {
3705 mpfr_t val;
3706 mpfr_init(val);
3707 if (Unary_expression::eval_float(op, fval, val))
3708 ret = Expression::make_float(&val, ftype, loc);
3709 mpfr_clear(val);
3710 }
3711 if (ret != NULL)
3712 {
3713 mpfr_clear(fval);
3714 return ret;
3715 }
3716
3717 mpfr_t ival;
3718 mpfr_init(ival);
3719 if (expr->complex_constant_value(fval, ival, &ftype))
3720 {
3721 mpfr_t real;
3722 mpfr_t imag;
3723 mpfr_init(real);
3724 mpfr_init(imag);
3725 if (Unary_expression::eval_complex(op, fval, ival, real, imag))
3726 ret = Expression::make_complex(&real, &imag, ftype, loc);
3727 mpfr_clear(real);
3728 mpfr_clear(imag);
3729 }
3730 mpfr_clear(ival);
3731 mpfr_clear(fval);
3732 if (ret != NULL)
3733 return ret;
3734 }
3735 }
3736
3737 return this;
3738 }
3739
3740 // Return whether a unary expression is a constant.
3741
3742 bool
3743 Unary_expression::do_is_constant() const
3744 {
3745 if (this->op_ == OPERATOR_MULT)
3746 {
3747 // Indirecting through a pointer is only constant if the object
3748 // to which the expression points is constant, but we currently
3749 // have no way to determine that.
3750 return false;
3751 }
3752 else if (this->op_ == OPERATOR_AND)
3753 {
3754 // Taking the address of a variable is constant if it is a
3755 // global variable, not constant otherwise. In other cases
3756 // taking the address is probably not a constant.
3757 Var_expression* ve = this->expr_->var_expression();
3758 if (ve != NULL)
3759 {
3760 Named_object* no = ve->named_object();
3761 return no->is_variable() && no->var_value()->is_global();
3762 }
3763 return false;
3764 }
3765 else
3766 return this->expr_->is_constant();
3767 }
3768
3769 // Apply unary opcode OP to UVAL, setting VAL. UTYPE is the type of
3770 // UVAL, if known; it may be NULL. Return true if this could be done,
3771 // false if not.
3772
3773 bool
3774 Unary_expression::eval_integer(Operator op, Type* utype, mpz_t uval, mpz_t val,
3775 source_location location)
3776 {
3777 switch (op)
3778 {
3779 case OPERATOR_PLUS:
3780 mpz_set(val, uval);
3781 return true;
3782 case OPERATOR_MINUS:
3783 mpz_neg(val, uval);
3784 return Integer_expression::check_constant(val, utype, location);
3785 case OPERATOR_NOT:
3786 mpz_set_ui(val, mpz_cmp_si(uval, 0) == 0 ? 1 : 0);
3787 return true;
3788 case OPERATOR_XOR:
3789 if (utype == NULL
3790 || utype->integer_type() == NULL
3791 || utype->integer_type()->is_abstract())
3792 mpz_com(val, uval);
3793 else
3794 {
3795 // The number of HOST_WIDE_INTs that it takes to represent
3796 // UVAL.
3797 size_t count = ((mpz_sizeinbase(uval, 2)
3798 + HOST_BITS_PER_WIDE_INT
3799 - 1)
3800 / HOST_BITS_PER_WIDE_INT);
3801
3802 unsigned HOST_WIDE_INT* phwi = new unsigned HOST_WIDE_INT[count];
3803 memset(phwi, 0, count * sizeof(HOST_WIDE_INT));
3804
3805 size_t ecount;
3806 mpz_export(phwi, &ecount, -1, sizeof(HOST_WIDE_INT), 0, 0, uval);
3807 gcc_assert(ecount <= count);
3808
3809 // Trim down to the number of words required by the type.
3810 size_t obits = utype->integer_type()->bits();
3811 if (!utype->integer_type()->is_unsigned())
3812 ++obits;
3813 size_t ocount = ((obits + HOST_BITS_PER_WIDE_INT - 1)
3814 / HOST_BITS_PER_WIDE_INT);
3815 gcc_assert(ocount <= ocount);
3816
3817 for (size_t i = 0; i < ocount; ++i)
3818 phwi[i] = ~phwi[i];
3819
3820 size_t clearbits = ocount * HOST_BITS_PER_WIDE_INT - obits;
3821 if (clearbits != 0)
3822 phwi[ocount - 1] &= (((unsigned HOST_WIDE_INT) (HOST_WIDE_INT) -1)
3823 >> clearbits);
3824
3825 mpz_import(val, ocount, -1, sizeof(HOST_WIDE_INT), 0, 0, phwi);
3826
3827 delete[] phwi;
3828 }
3829 return Integer_expression::check_constant(val, utype, location);
3830 case OPERATOR_AND:
3831 case OPERATOR_MULT:
3832 return false;
3833 default:
3834 gcc_unreachable();
3835 }
3836 }
3837
3838 // Apply unary opcode OP to UVAL, setting VAL. Return true if this
3839 // could be done, false if not.
3840
3841 bool
3842 Unary_expression::eval_float(Operator op, mpfr_t uval, mpfr_t val)
3843 {
3844 switch (op)
3845 {
3846 case OPERATOR_PLUS:
3847 mpfr_set(val, uval, GMP_RNDN);
3848 return true;
3849 case OPERATOR_MINUS:
3850 mpfr_neg(val, uval, GMP_RNDN);
3851 return true;
3852 case OPERATOR_NOT:
3853 case OPERATOR_XOR:
3854 case OPERATOR_AND:
3855 case OPERATOR_MULT:
3856 return false;
3857 default:
3858 gcc_unreachable();
3859 }
3860 }
3861
3862 // Apply unary opcode OP to RVAL/IVAL, setting REAL/IMAG. Return true
3863 // if this could be done, false if not.
3864
3865 bool
3866 Unary_expression::eval_complex(Operator op, mpfr_t rval, mpfr_t ival,
3867 mpfr_t real, mpfr_t imag)
3868 {
3869 switch (op)
3870 {
3871 case OPERATOR_PLUS:
3872 mpfr_set(real, rval, GMP_RNDN);
3873 mpfr_set(imag, ival, GMP_RNDN);
3874 return true;
3875 case OPERATOR_MINUS:
3876 mpfr_neg(real, rval, GMP_RNDN);
3877 mpfr_neg(imag, ival, GMP_RNDN);
3878 return true;
3879 case OPERATOR_NOT:
3880 case OPERATOR_XOR:
3881 case OPERATOR_AND:
3882 case OPERATOR_MULT:
3883 return false;
3884 default:
3885 gcc_unreachable();
3886 }
3887 }
3888
3889 // Return the integral constant value of a unary expression, if it has one.
3890
3891 bool
3892 Unary_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
3893 Type** ptype) const
3894 {
3895 mpz_t uval;
3896 mpz_init(uval);
3897 bool ret;
3898 if (!this->expr_->integer_constant_value(iota_is_constant, uval, ptype))
3899 ret = false;
3900 else
3901 ret = Unary_expression::eval_integer(this->op_, *ptype, uval, val,
3902 this->location());
3903 mpz_clear(uval);
3904 return ret;
3905 }
3906
3907 // Return the floating point constant value of a unary expression, if
3908 // it has one.
3909
3910 bool
3911 Unary_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
3912 {
3913 mpfr_t uval;
3914 mpfr_init(uval);
3915 bool ret;
3916 if (!this->expr_->float_constant_value(uval, ptype))
3917 ret = false;
3918 else
3919 ret = Unary_expression::eval_float(this->op_, uval, val);
3920 mpfr_clear(uval);
3921 return ret;
3922 }
3923
3924 // Return the complex constant value of a unary expression, if it has
3925 // one.
3926
3927 bool
3928 Unary_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
3929 Type** ptype) const
3930 {
3931 mpfr_t rval;
3932 mpfr_t ival;
3933 mpfr_init(rval);
3934 mpfr_init(ival);
3935 bool ret;
3936 if (!this->expr_->complex_constant_value(rval, ival, ptype))
3937 ret = false;
3938 else
3939 ret = Unary_expression::eval_complex(this->op_, rval, ival, real, imag);
3940 mpfr_clear(rval);
3941 mpfr_clear(ival);
3942 return ret;
3943 }
3944
3945 // Return the type of a unary expression.
3946
3947 Type*
3948 Unary_expression::do_type()
3949 {
3950 switch (this->op_)
3951 {
3952 case OPERATOR_PLUS:
3953 case OPERATOR_MINUS:
3954 case OPERATOR_NOT:
3955 case OPERATOR_XOR:
3956 return this->expr_->type();
3957
3958 case OPERATOR_AND:
3959 return Type::make_pointer_type(this->expr_->type());
3960
3961 case OPERATOR_MULT:
3962 {
3963 Type* subtype = this->expr_->type();
3964 Type* points_to = subtype->points_to();
3965 if (points_to == NULL)
3966 return Type::make_error_type();
3967 return points_to;
3968 }
3969
3970 default:
3971 gcc_unreachable();
3972 }
3973 }
3974
3975 // Determine abstract types for a unary expression.
3976
3977 void
3978 Unary_expression::do_determine_type(const Type_context* context)
3979 {
3980 switch (this->op_)
3981 {
3982 case OPERATOR_PLUS:
3983 case OPERATOR_MINUS:
3984 case OPERATOR_NOT:
3985 case OPERATOR_XOR:
3986 this->expr_->determine_type(context);
3987 break;
3988
3989 case OPERATOR_AND:
3990 // Taking the address of something.
3991 {
3992 Type* subtype = (context->type == NULL
3993 ? NULL
3994 : context->type->points_to());
3995 Type_context subcontext(subtype, false);
3996 this->expr_->determine_type(&subcontext);
3997 }
3998 break;
3999
4000 case OPERATOR_MULT:
4001 // Indirecting through a pointer.
4002 {
4003 Type* subtype = (context->type == NULL
4004 ? NULL
4005 : Type::make_pointer_type(context->type));
4006 Type_context subcontext(subtype, false);
4007 this->expr_->determine_type(&subcontext);
4008 }
4009 break;
4010
4011 default:
4012 gcc_unreachable();
4013 }
4014 }
4015
4016 // Check types for a unary expression.
4017
4018 void
4019 Unary_expression::do_check_types(Gogo*)
4020 {
4021 Type* type = this->expr_->type();
4022 if (type->is_error_type())
4023 {
4024 this->set_is_error();
4025 return;
4026 }
4027
4028 switch (this->op_)
4029 {
4030 case OPERATOR_PLUS:
4031 case OPERATOR_MINUS:
4032 if (type->integer_type() == NULL
4033 && type->float_type() == NULL
4034 && type->complex_type() == NULL)
4035 this->report_error(_("expected numeric type"));
4036 break;
4037
4038 case OPERATOR_NOT:
4039 case OPERATOR_XOR:
4040 if (type->integer_type() == NULL
4041 && !type->is_boolean_type())
4042 this->report_error(_("expected integer or boolean type"));
4043 break;
4044
4045 case OPERATOR_AND:
4046 if (!this->expr_->is_addressable())
4047 this->report_error(_("invalid operand for unary %<&%>"));
4048 else
4049 this->expr_->address_taken(this->escapes_);
4050 break;
4051
4052 case OPERATOR_MULT:
4053 // Indirecting through a pointer.
4054 if (type->points_to() == NULL)
4055 this->report_error(_("expected pointer"));
4056 break;
4057
4058 default:
4059 gcc_unreachable();
4060 }
4061 }
4062
4063 // Get a tree for a unary expression.
4064
4065 tree
4066 Unary_expression::do_get_tree(Translate_context* context)
4067 {
4068 tree expr = this->expr_->get_tree(context);
4069 if (expr == error_mark_node)
4070 return error_mark_node;
4071
4072 source_location loc = this->location();
4073 switch (this->op_)
4074 {
4075 case OPERATOR_PLUS:
4076 return expr;
4077
4078 case OPERATOR_MINUS:
4079 {
4080 tree type = TREE_TYPE(expr);
4081 tree compute_type = excess_precision_type(type);
4082 if (compute_type != NULL_TREE)
4083 expr = ::convert(compute_type, expr);
4084 tree ret = fold_build1_loc(loc, NEGATE_EXPR,
4085 (compute_type != NULL_TREE
4086 ? compute_type
4087 : type),
4088 expr);
4089 if (compute_type != NULL_TREE)
4090 ret = ::convert(type, ret);
4091 return ret;
4092 }
4093
4094 case OPERATOR_NOT:
4095 if (TREE_CODE(TREE_TYPE(expr)) == BOOLEAN_TYPE)
4096 return fold_build1_loc(loc, TRUTH_NOT_EXPR, TREE_TYPE(expr), expr);
4097 else
4098 return fold_build2_loc(loc, NE_EXPR, boolean_type_node, expr,
4099 build_int_cst(TREE_TYPE(expr), 0));
4100
4101 case OPERATOR_XOR:
4102 return fold_build1_loc(loc, BIT_NOT_EXPR, TREE_TYPE(expr), expr);
4103
4104 case OPERATOR_AND:
4105 // We should not see a non-constant constructor here; cases
4106 // where we would see one should have been moved onto the heap
4107 // at parse time. Taking the address of a nonconstant
4108 // constructor will not do what the programmer expects.
4109 gcc_assert(TREE_CODE(expr) != CONSTRUCTOR || TREE_CONSTANT(expr));
4110 gcc_assert(TREE_CODE(expr) != ADDR_EXPR);
4111
4112 // Build a decl for a constant constructor.
4113 if (TREE_CODE(expr) == CONSTRUCTOR && TREE_CONSTANT(expr))
4114 {
4115 tree decl = build_decl(this->location(), VAR_DECL,
4116 create_tmp_var_name("C"), TREE_TYPE(expr));
4117 DECL_EXTERNAL(decl) = 0;
4118 TREE_PUBLIC(decl) = 0;
4119 TREE_READONLY(decl) = 1;
4120 TREE_CONSTANT(decl) = 1;
4121 TREE_STATIC(decl) = 1;
4122 TREE_ADDRESSABLE(decl) = 1;
4123 DECL_ARTIFICIAL(decl) = 1;
4124 DECL_INITIAL(decl) = expr;
4125 rest_of_decl_compilation(decl, 1, 0);
4126 expr = decl;
4127 }
4128
4129 return build_fold_addr_expr_loc(loc, expr);
4130
4131 case OPERATOR_MULT:
4132 {
4133 gcc_assert(POINTER_TYPE_P(TREE_TYPE(expr)));
4134
4135 // If we are dereferencing the pointer to a large struct, we
4136 // need to check for nil. We don't bother to check for small
4137 // structs because we expect the system to crash on a nil
4138 // pointer dereference.
4139 HOST_WIDE_INT s = int_size_in_bytes(TREE_TYPE(TREE_TYPE(expr)));
4140 if (s == -1 || s >= 4096)
4141 {
4142 if (!DECL_P(expr))
4143 expr = save_expr(expr);
4144 tree compare = fold_build2_loc(loc, EQ_EXPR, boolean_type_node,
4145 expr,
4146 fold_convert(TREE_TYPE(expr),
4147 null_pointer_node));
4148 tree crash = Gogo::runtime_error(RUNTIME_ERROR_NIL_DEREFERENCE,
4149 loc);
4150 expr = fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(expr),
4151 build3(COND_EXPR, void_type_node,
4152 compare, crash, NULL_TREE),
4153 expr);
4154 }
4155
4156 // If the type of EXPR is a recursive pointer type, then we
4157 // need to insert a cast before indirecting.
4158 if (TREE_TYPE(TREE_TYPE(expr)) == ptr_type_node)
4159 {
4160 Type* pt = this->expr_->type()->points_to();
4161 tree ind = pt->get_tree(context->gogo());
4162 expr = fold_convert_loc(loc, build_pointer_type(ind), expr);
4163 }
4164
4165 return build_fold_indirect_ref_loc(loc, expr);
4166 }
4167
4168 default:
4169 gcc_unreachable();
4170 }
4171 }
4172
4173 // Export a unary expression.
4174
4175 void
4176 Unary_expression::do_export(Export* exp) const
4177 {
4178 switch (this->op_)
4179 {
4180 case OPERATOR_PLUS:
4181 exp->write_c_string("+ ");
4182 break;
4183 case OPERATOR_MINUS:
4184 exp->write_c_string("- ");
4185 break;
4186 case OPERATOR_NOT:
4187 exp->write_c_string("! ");
4188 break;
4189 case OPERATOR_XOR:
4190 exp->write_c_string("^ ");
4191 break;
4192 case OPERATOR_AND:
4193 case OPERATOR_MULT:
4194 default:
4195 gcc_unreachable();
4196 }
4197 this->expr_->export_expression(exp);
4198 }
4199
4200 // Import a unary expression.
4201
4202 Expression*
4203 Unary_expression::do_import(Import* imp)
4204 {
4205 Operator op;
4206 switch (imp->get_char())
4207 {
4208 case '+':
4209 op = OPERATOR_PLUS;
4210 break;
4211 case '-':
4212 op = OPERATOR_MINUS;
4213 break;
4214 case '!':
4215 op = OPERATOR_NOT;
4216 break;
4217 case '^':
4218 op = OPERATOR_XOR;
4219 break;
4220 default:
4221 gcc_unreachable();
4222 }
4223 imp->require_c_string(" ");
4224 Expression* expr = Expression::import_expression(imp);
4225 return Expression::make_unary(op, expr, imp->location());
4226 }
4227
4228 // Make a unary expression.
4229
4230 Expression*
4231 Expression::make_unary(Operator op, Expression* expr, source_location location)
4232 {
4233 return new Unary_expression(op, expr, location);
4234 }
4235
4236 // If this is an indirection through a pointer, return the expression
4237 // being pointed through. Otherwise return this.
4238
4239 Expression*
4240 Expression::deref()
4241 {
4242 if (this->classification_ == EXPRESSION_UNARY)
4243 {
4244 Unary_expression* ue = static_cast<Unary_expression*>(this);
4245 if (ue->op() == OPERATOR_MULT)
4246 return ue->operand();
4247 }
4248 return this;
4249 }
4250
4251 // Class Binary_expression.
4252
4253 // Traversal.
4254
4255 int
4256 Binary_expression::do_traverse(Traverse* traverse)
4257 {
4258 int t = Expression::traverse(&this->left_, traverse);
4259 if (t == TRAVERSE_EXIT)
4260 return TRAVERSE_EXIT;
4261 return Expression::traverse(&this->right_, traverse);
4262 }
4263
4264 // Compare integer constants according to OP.
4265
4266 bool
4267 Binary_expression::compare_integer(Operator op, mpz_t left_val,
4268 mpz_t right_val)
4269 {
4270 int i = mpz_cmp(left_val, right_val);
4271 switch (op)
4272 {
4273 case OPERATOR_EQEQ:
4274 return i == 0;
4275 case OPERATOR_NOTEQ:
4276 return i != 0;
4277 case OPERATOR_LT:
4278 return i < 0;
4279 case OPERATOR_LE:
4280 return i <= 0;
4281 case OPERATOR_GT:
4282 return i > 0;
4283 case OPERATOR_GE:
4284 return i >= 0;
4285 default:
4286 gcc_unreachable();
4287 }
4288 }
4289
4290 // Compare floating point constants according to OP.
4291
4292 bool
4293 Binary_expression::compare_float(Operator op, Type* type, mpfr_t left_val,
4294 mpfr_t right_val)
4295 {
4296 int i;
4297 if (type == NULL)
4298 i = mpfr_cmp(left_val, right_val);
4299 else
4300 {
4301 mpfr_t lv;
4302 mpfr_init_set(lv, left_val, GMP_RNDN);
4303 mpfr_t rv;
4304 mpfr_init_set(rv, right_val, GMP_RNDN);
4305 Float_expression::constrain_float(lv, type);
4306 Float_expression::constrain_float(rv, type);
4307 i = mpfr_cmp(lv, rv);
4308 mpfr_clear(lv);
4309 mpfr_clear(rv);
4310 }
4311 switch (op)
4312 {
4313 case OPERATOR_EQEQ:
4314 return i == 0;
4315 case OPERATOR_NOTEQ:
4316 return i != 0;
4317 case OPERATOR_LT:
4318 return i < 0;
4319 case OPERATOR_LE:
4320 return i <= 0;
4321 case OPERATOR_GT:
4322 return i > 0;
4323 case OPERATOR_GE:
4324 return i >= 0;
4325 default:
4326 gcc_unreachable();
4327 }
4328 }
4329
4330 // Compare complex constants according to OP. Complex numbers may
4331 // only be compared for equality.
4332
4333 bool
4334 Binary_expression::compare_complex(Operator op, Type* type,
4335 mpfr_t left_real, mpfr_t left_imag,
4336 mpfr_t right_real, mpfr_t right_imag)
4337 {
4338 bool is_equal;
4339 if (type == NULL)
4340 is_equal = (mpfr_cmp(left_real, right_real) == 0
4341 && mpfr_cmp(left_imag, right_imag) == 0);
4342 else
4343 {
4344 mpfr_t lr;
4345 mpfr_t li;
4346 mpfr_init_set(lr, left_real, GMP_RNDN);
4347 mpfr_init_set(li, left_imag, GMP_RNDN);
4348 mpfr_t rr;
4349 mpfr_t ri;
4350 mpfr_init_set(rr, right_real, GMP_RNDN);
4351 mpfr_init_set(ri, right_imag, GMP_RNDN);
4352 Complex_expression::constrain_complex(lr, li, type);
4353 Complex_expression::constrain_complex(rr, ri, type);
4354 is_equal = mpfr_cmp(lr, rr) == 0 && mpfr_cmp(li, ri) == 0;
4355 mpfr_clear(lr);
4356 mpfr_clear(li);
4357 mpfr_clear(rr);
4358 mpfr_clear(ri);
4359 }
4360 switch (op)
4361 {
4362 case OPERATOR_EQEQ:
4363 return is_equal;
4364 case OPERATOR_NOTEQ:
4365 return !is_equal;
4366 default:
4367 gcc_unreachable();
4368 }
4369 }
4370
4371 // Apply binary opcode OP to LEFT_VAL and RIGHT_VAL, setting VAL.
4372 // LEFT_TYPE is the type of LEFT_VAL, RIGHT_TYPE is the type of
4373 // RIGHT_VAL; LEFT_TYPE and/or RIGHT_TYPE may be NULL. Return true if
4374 // this could be done, false if not.
4375
4376 bool
4377 Binary_expression::eval_integer(Operator op, Type* left_type, mpz_t left_val,
4378 Type* right_type, mpz_t right_val,
4379 source_location location, mpz_t val)
4380 {
4381 bool is_shift_op = false;
4382 switch (op)
4383 {
4384 case OPERATOR_OROR:
4385 case OPERATOR_ANDAND:
4386 case OPERATOR_EQEQ:
4387 case OPERATOR_NOTEQ:
4388 case OPERATOR_LT:
4389 case OPERATOR_LE:
4390 case OPERATOR_GT:
4391 case OPERATOR_GE:
4392 // These return boolean values. We should probably handle them
4393 // anyhow in case a type conversion is used on the result.
4394 return false;
4395 case OPERATOR_PLUS:
4396 mpz_add(val, left_val, right_val);
4397 break;
4398 case OPERATOR_MINUS:
4399 mpz_sub(val, left_val, right_val);
4400 break;
4401 case OPERATOR_OR:
4402 mpz_ior(val, left_val, right_val);
4403 break;
4404 case OPERATOR_XOR:
4405 mpz_xor(val, left_val, right_val);
4406 break;
4407 case OPERATOR_MULT:
4408 mpz_mul(val, left_val, right_val);
4409 break;
4410 case OPERATOR_DIV:
4411 if (mpz_sgn(right_val) != 0)
4412 mpz_tdiv_q(val, left_val, right_val);
4413 else
4414 {
4415 error_at(location, "division by zero");
4416 mpz_set_ui(val, 0);
4417 return true;
4418 }
4419 break;
4420 case OPERATOR_MOD:
4421 if (mpz_sgn(right_val) != 0)
4422 mpz_tdiv_r(val, left_val, right_val);
4423 else
4424 {
4425 error_at(location, "division by zero");
4426 mpz_set_ui(val, 0);
4427 return true;
4428 }
4429 break;
4430 case OPERATOR_LSHIFT:
4431 {
4432 unsigned long shift = mpz_get_ui(right_val);
4433 if (mpz_cmp_ui(right_val, shift) != 0)
4434 {
4435 error_at(location, "shift count overflow");
4436 mpz_set_ui(val, 0);
4437 return true;
4438 }
4439 mpz_mul_2exp(val, left_val, shift);
4440 is_shift_op = true;
4441 break;
4442 }
4443 break;
4444 case OPERATOR_RSHIFT:
4445 {
4446 unsigned long shift = mpz_get_ui(right_val);
4447 if (mpz_cmp_ui(right_val, shift) != 0)
4448 {
4449 error_at(location, "shift count overflow");
4450 mpz_set_ui(val, 0);
4451 return true;
4452 }
4453 if (mpz_cmp_ui(left_val, 0) >= 0)
4454 mpz_tdiv_q_2exp(val, left_val, shift);
4455 else
4456 mpz_fdiv_q_2exp(val, left_val, shift);
4457 is_shift_op = true;
4458 break;
4459 }
4460 break;
4461 case OPERATOR_AND:
4462 mpz_and(val, left_val, right_val);
4463 break;
4464 case OPERATOR_BITCLEAR:
4465 {
4466 mpz_t tval;
4467 mpz_init(tval);
4468 mpz_com(tval, right_val);
4469 mpz_and(val, left_val, tval);
4470 mpz_clear(tval);
4471 }
4472 break;
4473 default:
4474 gcc_unreachable();
4475 }
4476
4477 Type* type = left_type;
4478 if (!is_shift_op)
4479 {
4480 if (type == NULL)
4481 type = right_type;
4482 else if (type != right_type && right_type != NULL)
4483 {
4484 if (type->is_abstract())
4485 type = right_type;
4486 else if (!right_type->is_abstract())
4487 {
4488 // This look like a type error which should be diagnosed
4489 // elsewhere. Don't do anything here, to avoid an
4490 // unhelpful chain of error messages.
4491 return true;
4492 }
4493 }
4494 }
4495
4496 if (type != NULL && !type->is_abstract())
4497 {
4498 // We have to check the operands too, as we have implicitly
4499 // coerced them to TYPE.
4500 if ((type != left_type
4501 && !Integer_expression::check_constant(left_val, type, location))
4502 || (!is_shift_op
4503 && type != right_type
4504 && !Integer_expression::check_constant(right_val, type,
4505 location))
4506 || !Integer_expression::check_constant(val, type, location))
4507 mpz_set_ui(val, 0);
4508 }
4509
4510 return true;
4511 }
4512
4513 // Apply binary opcode OP to LEFT_VAL and RIGHT_VAL, setting VAL.
4514 // Return true if this could be done, false if not.
4515
4516 bool
4517 Binary_expression::eval_float(Operator op, Type* left_type, mpfr_t left_val,
4518 Type* right_type, mpfr_t right_val,
4519 mpfr_t val, source_location location)
4520 {
4521 switch (op)
4522 {
4523 case OPERATOR_OROR:
4524 case OPERATOR_ANDAND:
4525 case OPERATOR_EQEQ:
4526 case OPERATOR_NOTEQ:
4527 case OPERATOR_LT:
4528 case OPERATOR_LE:
4529 case OPERATOR_GT:
4530 case OPERATOR_GE:
4531 // These return boolean values. We should probably handle them
4532 // anyhow in case a type conversion is used on the result.
4533 return false;
4534 case OPERATOR_PLUS:
4535 mpfr_add(val, left_val, right_val, GMP_RNDN);
4536 break;
4537 case OPERATOR_MINUS:
4538 mpfr_sub(val, left_val, right_val, GMP_RNDN);
4539 break;
4540 case OPERATOR_OR:
4541 case OPERATOR_XOR:
4542 case OPERATOR_AND:
4543 case OPERATOR_BITCLEAR:
4544 return false;
4545 case OPERATOR_MULT:
4546 mpfr_mul(val, left_val, right_val, GMP_RNDN);
4547 break;
4548 case OPERATOR_DIV:
4549 if (mpfr_zero_p(right_val))
4550 error_at(location, "division by zero");
4551 mpfr_div(val, left_val, right_val, GMP_RNDN);
4552 break;
4553 case OPERATOR_MOD:
4554 return false;
4555 case OPERATOR_LSHIFT:
4556 case OPERATOR_RSHIFT:
4557 return false;
4558 default:
4559 gcc_unreachable();
4560 }
4561
4562 Type* type = left_type;
4563 if (type == NULL)
4564 type = right_type;
4565 else if (type != right_type && right_type != NULL)
4566 {
4567 if (type->is_abstract())
4568 type = right_type;
4569 else if (!right_type->is_abstract())
4570 {
4571 // This looks like a type error which should be diagnosed
4572 // elsewhere. Don't do anything here, to avoid an unhelpful
4573 // chain of error messages.
4574 return true;
4575 }
4576 }
4577
4578 if (type != NULL && !type->is_abstract())
4579 {
4580 if ((type != left_type
4581 && !Float_expression::check_constant(left_val, type, location))
4582 || (type != right_type
4583 && !Float_expression::check_constant(right_val, type,
4584 location))
4585 || !Float_expression::check_constant(val, type, location))
4586 mpfr_set_ui(val, 0, GMP_RNDN);
4587 }
4588
4589 return true;
4590 }
4591
4592 // Apply binary opcode OP to LEFT_REAL/LEFT_IMAG and
4593 // RIGHT_REAL/RIGHT_IMAG, setting REAL/IMAG. Return true if this
4594 // could be done, false if not.
4595
4596 bool
4597 Binary_expression::eval_complex(Operator op, Type* left_type,
4598 mpfr_t left_real, mpfr_t left_imag,
4599 Type *right_type,
4600 mpfr_t right_real, mpfr_t right_imag,
4601 mpfr_t real, mpfr_t imag,
4602 source_location location)
4603 {
4604 switch (op)
4605 {
4606 case OPERATOR_OROR:
4607 case OPERATOR_ANDAND:
4608 case OPERATOR_EQEQ:
4609 case OPERATOR_NOTEQ:
4610 case OPERATOR_LT:
4611 case OPERATOR_LE:
4612 case OPERATOR_GT:
4613 case OPERATOR_GE:
4614 // These return boolean values and must be handled differently.
4615 return false;
4616 case OPERATOR_PLUS:
4617 mpfr_add(real, left_real, right_real, GMP_RNDN);
4618 mpfr_add(imag, left_imag, right_imag, GMP_RNDN);
4619 break;
4620 case OPERATOR_MINUS:
4621 mpfr_sub(real, left_real, right_real, GMP_RNDN);
4622 mpfr_sub(imag, left_imag, right_imag, GMP_RNDN);
4623 break;
4624 case OPERATOR_OR:
4625 case OPERATOR_XOR:
4626 case OPERATOR_AND:
4627 case OPERATOR_BITCLEAR:
4628 return false;
4629 case OPERATOR_MULT:
4630 {
4631 // You might think that multiplying two complex numbers would
4632 // be simple, and you would be right, until you start to think
4633 // about getting the right answer for infinity. If one
4634 // operand here is infinity and the other is anything other
4635 // than zero or NaN, then we are going to wind up subtracting
4636 // two infinity values. That will give us a NaN, but the
4637 // correct answer is infinity.
4638
4639 mpfr_t lrrr;
4640 mpfr_init(lrrr);
4641 mpfr_mul(lrrr, left_real, right_real, GMP_RNDN);
4642
4643 mpfr_t lrri;
4644 mpfr_init(lrri);
4645 mpfr_mul(lrri, left_real, right_imag, GMP_RNDN);
4646
4647 mpfr_t lirr;
4648 mpfr_init(lirr);
4649 mpfr_mul(lirr, left_imag, right_real, GMP_RNDN);
4650
4651 mpfr_t liri;
4652 mpfr_init(liri);
4653 mpfr_mul(liri, left_imag, right_imag, GMP_RNDN);
4654
4655 mpfr_sub(real, lrrr, liri, GMP_RNDN);
4656 mpfr_add(imag, lrri, lirr, GMP_RNDN);
4657
4658 // If we get NaN on both sides, check whether it should really
4659 // be infinity. The rule is that if either side of the
4660 // complex number is infinity, then the whole value is
4661 // infinity, even if the other side is NaN. So the only case
4662 // we have to fix is the one in which both sides are NaN.
4663 if (mpfr_nan_p(real) && mpfr_nan_p(imag)
4664 && (!mpfr_nan_p(left_real) || !mpfr_nan_p(left_imag))
4665 && (!mpfr_nan_p(right_real) || !mpfr_nan_p(right_imag)))
4666 {
4667 bool is_infinity = false;
4668
4669 mpfr_t lr;
4670 mpfr_t li;
4671 mpfr_init_set(lr, left_real, GMP_RNDN);
4672 mpfr_init_set(li, left_imag, GMP_RNDN);
4673
4674 mpfr_t rr;
4675 mpfr_t ri;
4676 mpfr_init_set(rr, right_real, GMP_RNDN);
4677 mpfr_init_set(ri, right_imag, GMP_RNDN);
4678
4679 // If the left side is infinity, then the result is
4680 // infinity.
4681 if (mpfr_inf_p(lr) || mpfr_inf_p(li))
4682 {
4683 mpfr_set_ui(lr, mpfr_inf_p(lr) ? 1 : 0, GMP_RNDN);
4684 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
4685 mpfr_set_ui(li, mpfr_inf_p(li) ? 1 : 0, GMP_RNDN);
4686 mpfr_copysign(li, li, left_imag, GMP_RNDN);
4687 if (mpfr_nan_p(rr))
4688 {
4689 mpfr_set_ui(rr, 0, GMP_RNDN);
4690 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
4691 }
4692 if (mpfr_nan_p(ri))
4693 {
4694 mpfr_set_ui(ri, 0, GMP_RNDN);
4695 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
4696 }
4697 is_infinity = true;
4698 }
4699
4700 // If the right side is infinity, then the result is
4701 // infinity.
4702 if (mpfr_inf_p(rr) || mpfr_inf_p(ri))
4703 {
4704 mpfr_set_ui(rr, mpfr_inf_p(rr) ? 1 : 0, GMP_RNDN);
4705 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
4706 mpfr_set_ui(ri, mpfr_inf_p(ri) ? 1 : 0, GMP_RNDN);
4707 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
4708 if (mpfr_nan_p(lr))
4709 {
4710 mpfr_set_ui(lr, 0, GMP_RNDN);
4711 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
4712 }
4713 if (mpfr_nan_p(li))
4714 {
4715 mpfr_set_ui(li, 0, GMP_RNDN);
4716 mpfr_copysign(li, li, left_imag, GMP_RNDN);
4717 }
4718 is_infinity = true;
4719 }
4720
4721 // If we got an overflow in the intermediate computations,
4722 // then the result is infinity.
4723 if (!is_infinity
4724 && (mpfr_inf_p(lrrr) || mpfr_inf_p(lrri)
4725 || mpfr_inf_p(lirr) || mpfr_inf_p(liri)))
4726 {
4727 if (mpfr_nan_p(lr))
4728 {
4729 mpfr_set_ui(lr, 0, GMP_RNDN);
4730 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
4731 }
4732 if (mpfr_nan_p(li))
4733 {
4734 mpfr_set_ui(li, 0, GMP_RNDN);
4735 mpfr_copysign(li, li, left_imag, GMP_RNDN);
4736 }
4737 if (mpfr_nan_p(rr))
4738 {
4739 mpfr_set_ui(rr, 0, GMP_RNDN);
4740 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
4741 }
4742 if (mpfr_nan_p(ri))
4743 {
4744 mpfr_set_ui(ri, 0, GMP_RNDN);
4745 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
4746 }
4747 is_infinity = true;
4748 }
4749
4750 if (is_infinity)
4751 {
4752 mpfr_mul(lrrr, lr, rr, GMP_RNDN);
4753 mpfr_mul(lrri, lr, ri, GMP_RNDN);
4754 mpfr_mul(lirr, li, rr, GMP_RNDN);
4755 mpfr_mul(liri, li, ri, GMP_RNDN);
4756 mpfr_sub(real, lrrr, liri, GMP_RNDN);
4757 mpfr_add(imag, lrri, lirr, GMP_RNDN);
4758 mpfr_set_inf(real, mpfr_sgn(real));
4759 mpfr_set_inf(imag, mpfr_sgn(imag));
4760 }
4761
4762 mpfr_clear(lr);
4763 mpfr_clear(li);
4764 mpfr_clear(rr);
4765 mpfr_clear(ri);
4766 }
4767
4768 mpfr_clear(lrrr);
4769 mpfr_clear(lrri);
4770 mpfr_clear(lirr);
4771 mpfr_clear(liri);
4772 }
4773 break;
4774 case OPERATOR_DIV:
4775 {
4776 // For complex division we want to avoid having an
4777 // intermediate overflow turn the whole result in a NaN. We
4778 // scale the values to try to avoid this.
4779
4780 if (mpfr_zero_p(right_real) && mpfr_zero_p(right_imag))
4781 error_at(location, "division by zero");
4782
4783 mpfr_t rra;
4784 mpfr_t ria;
4785 mpfr_init(rra);
4786 mpfr_init(ria);
4787 mpfr_abs(rra, right_real, GMP_RNDN);
4788 mpfr_abs(ria, right_imag, GMP_RNDN);
4789 mpfr_t t;
4790 mpfr_init(t);
4791 mpfr_max(t, rra, ria, GMP_RNDN);
4792
4793 mpfr_t rr;
4794 mpfr_t ri;
4795 mpfr_init_set(rr, right_real, GMP_RNDN);
4796 mpfr_init_set(ri, right_imag, GMP_RNDN);
4797 long ilogbw = 0;
4798 if (!mpfr_inf_p(t) && !mpfr_nan_p(t) && !mpfr_zero_p(t))
4799 {
4800 ilogbw = mpfr_get_exp(t);
4801 mpfr_mul_2si(rr, rr, - ilogbw, GMP_RNDN);
4802 mpfr_mul_2si(ri, ri, - ilogbw, GMP_RNDN);
4803 }
4804
4805 mpfr_t denom;
4806 mpfr_init(denom);
4807 mpfr_mul(denom, rr, rr, GMP_RNDN);
4808 mpfr_mul(t, ri, ri, GMP_RNDN);
4809 mpfr_add(denom, denom, t, GMP_RNDN);
4810
4811 mpfr_mul(real, left_real, rr, GMP_RNDN);
4812 mpfr_mul(t, left_imag, ri, GMP_RNDN);
4813 mpfr_add(real, real, t, GMP_RNDN);
4814 mpfr_div(real, real, denom, GMP_RNDN);
4815 mpfr_mul_2si(real, real, - ilogbw, GMP_RNDN);
4816
4817 mpfr_mul(imag, left_imag, rr, GMP_RNDN);
4818 mpfr_mul(t, left_real, ri, GMP_RNDN);
4819 mpfr_sub(imag, imag, t, GMP_RNDN);
4820 mpfr_div(imag, imag, denom, GMP_RNDN);
4821 mpfr_mul_2si(imag, imag, - ilogbw, GMP_RNDN);
4822
4823 // If we wind up with NaN on both sides, check whether we
4824 // should really have infinity. The rule is that if either
4825 // side of the complex number is infinity, then the whole
4826 // value is infinity, even if the other side is NaN. So the
4827 // only case we have to fix is the one in which both sides are
4828 // NaN.
4829 if (mpfr_nan_p(real) && mpfr_nan_p(imag)
4830 && (!mpfr_nan_p(left_real) || !mpfr_nan_p(left_imag))
4831 && (!mpfr_nan_p(right_real) || !mpfr_nan_p(right_imag)))
4832 {
4833 if (mpfr_zero_p(denom))
4834 {
4835 mpfr_set_inf(real, mpfr_sgn(rr));
4836 mpfr_mul(real, real, left_real, GMP_RNDN);
4837 mpfr_set_inf(imag, mpfr_sgn(rr));
4838 mpfr_mul(imag, imag, left_imag, GMP_RNDN);
4839 }
4840 else if ((mpfr_inf_p(left_real) || mpfr_inf_p(left_imag))
4841 && mpfr_number_p(rr) && mpfr_number_p(ri))
4842 {
4843 mpfr_set_ui(t, mpfr_inf_p(left_real) ? 1 : 0, GMP_RNDN);
4844 mpfr_copysign(t, t, left_real, GMP_RNDN);
4845
4846 mpfr_t t2;
4847 mpfr_init_set_ui(t2, mpfr_inf_p(left_imag) ? 1 : 0, GMP_RNDN);
4848 mpfr_copysign(t2, t2, left_imag, GMP_RNDN);
4849
4850 mpfr_t t3;
4851 mpfr_init(t3);
4852 mpfr_mul(t3, t, rr, GMP_RNDN);
4853
4854 mpfr_t t4;
4855 mpfr_init(t4);
4856 mpfr_mul(t4, t2, ri, GMP_RNDN);
4857
4858 mpfr_add(t3, t3, t4, GMP_RNDN);
4859 mpfr_set_inf(real, mpfr_sgn(t3));
4860
4861 mpfr_mul(t3, t2, rr, GMP_RNDN);
4862 mpfr_mul(t4, t, ri, GMP_RNDN);
4863 mpfr_sub(t3, t3, t4, GMP_RNDN);
4864 mpfr_set_inf(imag, mpfr_sgn(t3));
4865
4866 mpfr_clear(t2);
4867 mpfr_clear(t3);
4868 mpfr_clear(t4);
4869 }
4870 else if ((mpfr_inf_p(right_real) || mpfr_inf_p(right_imag))
4871 && mpfr_number_p(left_real) && mpfr_number_p(left_imag))
4872 {
4873 mpfr_set_ui(t, mpfr_inf_p(rr) ? 1 : 0, GMP_RNDN);
4874 mpfr_copysign(t, t, rr, GMP_RNDN);
4875
4876 mpfr_t t2;
4877 mpfr_init_set_ui(t2, mpfr_inf_p(ri) ? 1 : 0, GMP_RNDN);
4878 mpfr_copysign(t2, t2, ri, GMP_RNDN);
4879
4880 mpfr_t t3;
4881 mpfr_init(t3);
4882 mpfr_mul(t3, left_real, t, GMP_RNDN);
4883
4884 mpfr_t t4;
4885 mpfr_init(t4);
4886 mpfr_mul(t4, left_imag, t2, GMP_RNDN);
4887
4888 mpfr_add(t3, t3, t4, GMP_RNDN);
4889 mpfr_set_ui(real, 0, GMP_RNDN);
4890 mpfr_mul(real, real, t3, GMP_RNDN);
4891
4892 mpfr_mul(t3, left_imag, t, GMP_RNDN);
4893 mpfr_mul(t4, left_real, t2, GMP_RNDN);
4894 mpfr_sub(t3, t3, t4, GMP_RNDN);
4895 mpfr_set_ui(imag, 0, GMP_RNDN);
4896 mpfr_mul(imag, imag, t3, GMP_RNDN);
4897
4898 mpfr_clear(t2);
4899 mpfr_clear(t3);
4900 mpfr_clear(t4);
4901 }
4902 }
4903
4904 mpfr_clear(denom);
4905 mpfr_clear(rr);
4906 mpfr_clear(ri);
4907 mpfr_clear(t);
4908 mpfr_clear(rra);
4909 mpfr_clear(ria);
4910 }
4911 break;
4912 case OPERATOR_MOD:
4913 return false;
4914 case OPERATOR_LSHIFT:
4915 case OPERATOR_RSHIFT:
4916 return false;
4917 default:
4918 gcc_unreachable();
4919 }
4920
4921 Type* type = left_type;
4922 if (type == NULL)
4923 type = right_type;
4924 else if (type != right_type && right_type != NULL)
4925 {
4926 if (type->is_abstract())
4927 type = right_type;
4928 else if (!right_type->is_abstract())
4929 {
4930 // This looks like a type error which should be diagnosed
4931 // elsewhere. Don't do anything here, to avoid an unhelpful
4932 // chain of error messages.
4933 return true;
4934 }
4935 }
4936
4937 if (type != NULL && !type->is_abstract())
4938 {
4939 if ((type != left_type
4940 && !Complex_expression::check_constant(left_real, left_imag,
4941 type, location))
4942 || (type != right_type
4943 && !Complex_expression::check_constant(right_real, right_imag,
4944 type, location))
4945 || !Complex_expression::check_constant(real, imag, type,
4946 location))
4947 {
4948 mpfr_set_ui(real, 0, GMP_RNDN);
4949 mpfr_set_ui(imag, 0, GMP_RNDN);
4950 }
4951 }
4952
4953 return true;
4954 }
4955
4956 // Lower a binary expression. We have to evaluate constant
4957 // expressions now, in order to implement Go's unlimited precision
4958 // constants.
4959
4960 Expression*
4961 Binary_expression::do_lower(Gogo*, Named_object*, int)
4962 {
4963 source_location location = this->location();
4964 Operator op = this->op_;
4965 Expression* left = this->left_;
4966 Expression* right = this->right_;
4967
4968 const bool is_comparison = (op == OPERATOR_EQEQ
4969 || op == OPERATOR_NOTEQ
4970 || op == OPERATOR_LT
4971 || op == OPERATOR_LE
4972 || op == OPERATOR_GT
4973 || op == OPERATOR_GE);
4974
4975 // Integer constant expressions.
4976 {
4977 mpz_t left_val;
4978 mpz_init(left_val);
4979 Type* left_type;
4980 mpz_t right_val;
4981 mpz_init(right_val);
4982 Type* right_type;
4983 if (left->integer_constant_value(false, left_val, &left_type)
4984 && right->integer_constant_value(false, right_val, &right_type))
4985 {
4986 Expression* ret = NULL;
4987 if (left_type != right_type
4988 && left_type != NULL
4989 && right_type != NULL
4990 && left_type->base() != right_type->base()
4991 && op != OPERATOR_LSHIFT
4992 && op != OPERATOR_RSHIFT)
4993 {
4994 // May be a type error--let it be diagnosed later.
4995 }
4996 else if (is_comparison)
4997 {
4998 bool b = Binary_expression::compare_integer(op, left_val,
4999 right_val);
5000 ret = Expression::make_cast(Type::lookup_bool_type(),
5001 Expression::make_boolean(b, location),
5002 location);
5003 }
5004 else
5005 {
5006 mpz_t val;
5007 mpz_init(val);
5008
5009 if (Binary_expression::eval_integer(op, left_type, left_val,
5010 right_type, right_val,
5011 location, val))
5012 {
5013 gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND);
5014 Type* type;
5015 if (op == OPERATOR_LSHIFT || op == OPERATOR_RSHIFT)
5016 type = left_type;
5017 else if (left_type == NULL)
5018 type = right_type;
5019 else if (right_type == NULL)
5020 type = left_type;
5021 else if (!left_type->is_abstract()
5022 && left_type->named_type() != NULL)
5023 type = left_type;
5024 else if (!right_type->is_abstract()
5025 && right_type->named_type() != NULL)
5026 type = right_type;
5027 else if (!left_type->is_abstract())
5028 type = left_type;
5029 else if (!right_type->is_abstract())
5030 type = right_type;
5031 else if (left_type->float_type() != NULL)
5032 type = left_type;
5033 else if (right_type->float_type() != NULL)
5034 type = right_type;
5035 else if (left_type->complex_type() != NULL)
5036 type = left_type;
5037 else if (right_type->complex_type() != NULL)
5038 type = right_type;
5039 else
5040 type = left_type;
5041 ret = Expression::make_integer(&val, type, location);
5042 }
5043
5044 mpz_clear(val);
5045 }
5046
5047 if (ret != NULL)
5048 {
5049 mpz_clear(right_val);
5050 mpz_clear(left_val);
5051 return ret;
5052 }
5053 }
5054 mpz_clear(right_val);
5055 mpz_clear(left_val);
5056 }
5057
5058 // Floating point constant expressions.
5059 {
5060 mpfr_t left_val;
5061 mpfr_init(left_val);
5062 Type* left_type;
5063 mpfr_t right_val;
5064 mpfr_init(right_val);
5065 Type* right_type;
5066 if (left->float_constant_value(left_val, &left_type)
5067 && right->float_constant_value(right_val, &right_type))
5068 {
5069 Expression* ret = NULL;
5070 if (left_type != right_type
5071 && left_type != NULL
5072 && right_type != NULL
5073 && left_type->base() != right_type->base()
5074 && op != OPERATOR_LSHIFT
5075 && op != OPERATOR_RSHIFT)
5076 {
5077 // May be a type error--let it be diagnosed later.
5078 }
5079 else if (is_comparison)
5080 {
5081 bool b = Binary_expression::compare_float(op,
5082 (left_type != NULL
5083 ? left_type
5084 : right_type),
5085 left_val, right_val);
5086 ret = Expression::make_boolean(b, location);
5087 }
5088 else
5089 {
5090 mpfr_t val;
5091 mpfr_init(val);
5092
5093 if (Binary_expression::eval_float(op, left_type, left_val,
5094 right_type, right_val, val,
5095 location))
5096 {
5097 gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND
5098 && op != OPERATOR_LSHIFT && op != OPERATOR_RSHIFT);
5099 Type* type;
5100 if (left_type == NULL)
5101 type = right_type;
5102 else if (right_type == NULL)
5103 type = left_type;
5104 else if (!left_type->is_abstract()
5105 && left_type->named_type() != NULL)
5106 type = left_type;
5107 else if (!right_type->is_abstract()
5108 && right_type->named_type() != NULL)
5109 type = right_type;
5110 else if (!left_type->is_abstract())
5111 type = left_type;
5112 else if (!right_type->is_abstract())
5113 type = right_type;
5114 else if (left_type->float_type() != NULL)
5115 type = left_type;
5116 else if (right_type->float_type() != NULL)
5117 type = right_type;
5118 else
5119 type = left_type;
5120 ret = Expression::make_float(&val, type, location);
5121 }
5122
5123 mpfr_clear(val);
5124 }
5125
5126 if (ret != NULL)
5127 {
5128 mpfr_clear(right_val);
5129 mpfr_clear(left_val);
5130 return ret;
5131 }
5132 }
5133 mpfr_clear(right_val);
5134 mpfr_clear(left_val);
5135 }
5136
5137 // Complex constant expressions.
5138 {
5139 mpfr_t left_real;
5140 mpfr_t left_imag;
5141 mpfr_init(left_real);
5142 mpfr_init(left_imag);
5143 Type* left_type;
5144
5145 mpfr_t right_real;
5146 mpfr_t right_imag;
5147 mpfr_init(right_real);
5148 mpfr_init(right_imag);
5149 Type* right_type;
5150
5151 if (left->complex_constant_value(left_real, left_imag, &left_type)
5152 && right->complex_constant_value(right_real, right_imag, &right_type))
5153 {
5154 Expression* ret = NULL;
5155 if (left_type != right_type
5156 && left_type != NULL
5157 && right_type != NULL
5158 && left_type->base() != right_type->base())
5159 {
5160 // May be a type error--let it be diagnosed later.
5161 }
5162 else if (is_comparison)
5163 {
5164 bool b = Binary_expression::compare_complex(op,
5165 (left_type != NULL
5166 ? left_type
5167 : right_type),
5168 left_real,
5169 left_imag,
5170 right_real,
5171 right_imag);
5172 ret = Expression::make_boolean(b, location);
5173 }
5174 else
5175 {
5176 mpfr_t real;
5177 mpfr_t imag;
5178 mpfr_init(real);
5179 mpfr_init(imag);
5180
5181 if (Binary_expression::eval_complex(op, left_type,
5182 left_real, left_imag,
5183 right_type,
5184 right_real, right_imag,
5185 real, imag,
5186 location))
5187 {
5188 gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND
5189 && op != OPERATOR_LSHIFT && op != OPERATOR_RSHIFT);
5190 Type* type;
5191 if (left_type == NULL)
5192 type = right_type;
5193 else if (right_type == NULL)
5194 type = left_type;
5195 else if (!left_type->is_abstract()
5196 && left_type->named_type() != NULL)
5197 type = left_type;
5198 else if (!right_type->is_abstract()
5199 && right_type->named_type() != NULL)
5200 type = right_type;
5201 else if (!left_type->is_abstract())
5202 type = left_type;
5203 else if (!right_type->is_abstract())
5204 type = right_type;
5205 else if (left_type->complex_type() != NULL)
5206 type = left_type;
5207 else if (right_type->complex_type() != NULL)
5208 type = right_type;
5209 else
5210 type = left_type;
5211 ret = Expression::make_complex(&real, &imag, type,
5212 location);
5213 }
5214 mpfr_clear(real);
5215 mpfr_clear(imag);
5216 }
5217
5218 if (ret != NULL)
5219 {
5220 mpfr_clear(left_real);
5221 mpfr_clear(left_imag);
5222 mpfr_clear(right_real);
5223 mpfr_clear(right_imag);
5224 return ret;
5225 }
5226 }
5227
5228 mpfr_clear(left_real);
5229 mpfr_clear(left_imag);
5230 mpfr_clear(right_real);
5231 mpfr_clear(right_imag);
5232 }
5233
5234 // String constant expressions.
5235 if (op == OPERATOR_PLUS
5236 && left->type()->is_string_type()
5237 && right->type()->is_string_type())
5238 {
5239 std::string left_string;
5240 std::string right_string;
5241 if (left->string_constant_value(&left_string)
5242 && right->string_constant_value(&right_string))
5243 return Expression::make_string(left_string + right_string, location);
5244 }
5245
5246 return this;
5247 }
5248
5249 // Return the integer constant value, if it has one.
5250
5251 bool
5252 Binary_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
5253 Type** ptype) const
5254 {
5255 mpz_t left_val;
5256 mpz_init(left_val);
5257 Type* left_type;
5258 if (!this->left_->integer_constant_value(iota_is_constant, left_val,
5259 &left_type))
5260 {
5261 mpz_clear(left_val);
5262 return false;
5263 }
5264
5265 mpz_t right_val;
5266 mpz_init(right_val);
5267 Type* right_type;
5268 if (!this->right_->integer_constant_value(iota_is_constant, right_val,
5269 &right_type))
5270 {
5271 mpz_clear(right_val);
5272 mpz_clear(left_val);
5273 return false;
5274 }
5275
5276 bool ret;
5277 if (left_type != right_type
5278 && left_type != NULL
5279 && right_type != NULL
5280 && left_type->base() != right_type->base()
5281 && this->op_ != OPERATOR_RSHIFT
5282 && this->op_ != OPERATOR_LSHIFT)
5283 ret = false;
5284 else
5285 ret = Binary_expression::eval_integer(this->op_, left_type, left_val,
5286 right_type, right_val,
5287 this->location(), val);
5288
5289 mpz_clear(right_val);
5290 mpz_clear(left_val);
5291
5292 if (ret)
5293 *ptype = left_type;
5294
5295 return ret;
5296 }
5297
5298 // Return the floating point constant value, if it has one.
5299
5300 bool
5301 Binary_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
5302 {
5303 mpfr_t left_val;
5304 mpfr_init(left_val);
5305 Type* left_type;
5306 if (!this->left_->float_constant_value(left_val, &left_type))
5307 {
5308 mpfr_clear(left_val);
5309 return false;
5310 }
5311
5312 mpfr_t right_val;
5313 mpfr_init(right_val);
5314 Type* right_type;
5315 if (!this->right_->float_constant_value(right_val, &right_type))
5316 {
5317 mpfr_clear(right_val);
5318 mpfr_clear(left_val);
5319 return false;
5320 }
5321
5322 bool ret;
5323 if (left_type != right_type
5324 && left_type != NULL
5325 && right_type != NULL
5326 && left_type->base() != right_type->base())
5327 ret = false;
5328 else
5329 ret = Binary_expression::eval_float(this->op_, left_type, left_val,
5330 right_type, right_val,
5331 val, this->location());
5332
5333 mpfr_clear(left_val);
5334 mpfr_clear(right_val);
5335
5336 if (ret)
5337 *ptype = left_type;
5338
5339 return ret;
5340 }
5341
5342 // Return the complex constant value, if it has one.
5343
5344 bool
5345 Binary_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
5346 Type** ptype) const
5347 {
5348 mpfr_t left_real;
5349 mpfr_t left_imag;
5350 mpfr_init(left_real);
5351 mpfr_init(left_imag);
5352 Type* left_type;
5353 if (!this->left_->complex_constant_value(left_real, left_imag, &left_type))
5354 {
5355 mpfr_clear(left_real);
5356 mpfr_clear(left_imag);
5357 return false;
5358 }
5359
5360 mpfr_t right_real;
5361 mpfr_t right_imag;
5362 mpfr_init(right_real);
5363 mpfr_init(right_imag);
5364 Type* right_type;
5365 if (!this->right_->complex_constant_value(right_real, right_imag,
5366 &right_type))
5367 {
5368 mpfr_clear(left_real);
5369 mpfr_clear(left_imag);
5370 mpfr_clear(right_real);
5371 mpfr_clear(right_imag);
5372 return false;
5373 }
5374
5375 bool ret;
5376 if (left_type != right_type
5377 && left_type != NULL
5378 && right_type != NULL
5379 && left_type->base() != right_type->base())
5380 ret = false;
5381 else
5382 ret = Binary_expression::eval_complex(this->op_, left_type,
5383 left_real, left_imag,
5384 right_type,
5385 right_real, right_imag,
5386 real, imag,
5387 this->location());
5388 mpfr_clear(left_real);
5389 mpfr_clear(left_imag);
5390 mpfr_clear(right_real);
5391 mpfr_clear(right_imag);
5392
5393 if (ret)
5394 *ptype = left_type;
5395
5396 return ret;
5397 }
5398
5399 // Note that the value is being discarded.
5400
5401 void
5402 Binary_expression::do_discarding_value()
5403 {
5404 if (this->op_ == OPERATOR_OROR || this->op_ == OPERATOR_ANDAND)
5405 this->right_->discarding_value();
5406 else
5407 this->warn_about_unused_value();
5408 }
5409
5410 // Get type.
5411
5412 Type*
5413 Binary_expression::do_type()
5414 {
5415 switch (this->op_)
5416 {
5417 case OPERATOR_OROR:
5418 case OPERATOR_ANDAND:
5419 case OPERATOR_EQEQ:
5420 case OPERATOR_NOTEQ:
5421 case OPERATOR_LT:
5422 case OPERATOR_LE:
5423 case OPERATOR_GT:
5424 case OPERATOR_GE:
5425 return Type::lookup_bool_type();
5426
5427 case OPERATOR_PLUS:
5428 case OPERATOR_MINUS:
5429 case OPERATOR_OR:
5430 case OPERATOR_XOR:
5431 case OPERATOR_MULT:
5432 case OPERATOR_DIV:
5433 case OPERATOR_MOD:
5434 case OPERATOR_AND:
5435 case OPERATOR_BITCLEAR:
5436 {
5437 Type* left_type = this->left_->type();
5438 Type* right_type = this->right_->type();
5439 if (left_type->is_error_type())
5440 return left_type;
5441 else if (right_type->is_error_type())
5442 return right_type;
5443 else if (!left_type->is_abstract() && left_type->named_type() != NULL)
5444 return left_type;
5445 else if (!right_type->is_abstract() && right_type->named_type() != NULL)
5446 return right_type;
5447 else if (!left_type->is_abstract())
5448 return left_type;
5449 else if (!right_type->is_abstract())
5450 return right_type;
5451 else if (left_type->complex_type() != NULL)
5452 return left_type;
5453 else if (right_type->complex_type() != NULL)
5454 return right_type;
5455 else if (left_type->float_type() != NULL)
5456 return left_type;
5457 else if (right_type->float_type() != NULL)
5458 return right_type;
5459 else
5460 return left_type;
5461 }
5462
5463 case OPERATOR_LSHIFT:
5464 case OPERATOR_RSHIFT:
5465 return this->left_->type();
5466
5467 default:
5468 gcc_unreachable();
5469 }
5470 }
5471
5472 // Set type for a binary expression.
5473
5474 void
5475 Binary_expression::do_determine_type(const Type_context* context)
5476 {
5477 Type* tleft = this->left_->type();
5478 Type* tright = this->right_->type();
5479
5480 // Both sides should have the same type, except for the shift
5481 // operations. For a comparison, we should ignore the incoming
5482 // type.
5483
5484 bool is_shift_op = (this->op_ == OPERATOR_LSHIFT
5485 || this->op_ == OPERATOR_RSHIFT);
5486
5487 bool is_comparison = (this->op_ == OPERATOR_EQEQ
5488 || this->op_ == OPERATOR_NOTEQ
5489 || this->op_ == OPERATOR_LT
5490 || this->op_ == OPERATOR_LE
5491 || this->op_ == OPERATOR_GT
5492 || this->op_ == OPERATOR_GE);
5493
5494 Type_context subcontext(*context);
5495
5496 if (is_comparison)
5497 {
5498 // In a comparison, the context does not determine the types of
5499 // the operands.
5500 subcontext.type = NULL;
5501 }
5502
5503 // Set the context for the left hand operand.
5504 if (is_shift_op)
5505 {
5506 // The right hand operand plays no role in determining the type
5507 // of the left hand operand. A shift of an abstract integer in
5508 // a string context gets special treatment, which may be a
5509 // language bug.
5510 if (subcontext.type != NULL
5511 && subcontext.type->is_string_type()
5512 && tleft->is_abstract())
5513 error_at(this->location(), "shift of non-integer operand");
5514 }
5515 else if (!tleft->is_abstract())
5516 subcontext.type = tleft;
5517 else if (!tright->is_abstract())
5518 subcontext.type = tright;
5519 else if (subcontext.type == NULL)
5520 {
5521 if ((tleft->integer_type() != NULL && tright->integer_type() != NULL)
5522 || (tleft->float_type() != NULL && tright->float_type() != NULL)
5523 || (tleft->complex_type() != NULL && tright->complex_type() != NULL))
5524 {
5525 // Both sides have an abstract integer, abstract float, or
5526 // abstract complex type. Just let CONTEXT determine
5527 // whether they may remain abstract or not.
5528 }
5529 else if (tleft->complex_type() != NULL)
5530 subcontext.type = tleft;
5531 else if (tright->complex_type() != NULL)
5532 subcontext.type = tright;
5533 else if (tleft->float_type() != NULL)
5534 subcontext.type = tleft;
5535 else if (tright->float_type() != NULL)
5536 subcontext.type = tright;
5537 else
5538 subcontext.type = tleft;
5539
5540 if (subcontext.type != NULL && !context->may_be_abstract)
5541 subcontext.type = subcontext.type->make_non_abstract_type();
5542 }
5543
5544 this->left_->determine_type(&subcontext);
5545
5546 // The context for the right hand operand is the same as for the
5547 // left hand operand, except for a shift operator.
5548 if (is_shift_op)
5549 {
5550 subcontext.type = Type::lookup_integer_type("uint");
5551 subcontext.may_be_abstract = false;
5552 }
5553
5554 this->right_->determine_type(&subcontext);
5555 }
5556
5557 // Report an error if the binary operator OP does not support TYPE.
5558 // Return whether the operation is OK. This should not be used for
5559 // shift.
5560
5561 bool
5562 Binary_expression::check_operator_type(Operator op, Type* type,
5563 source_location location)
5564 {
5565 switch (op)
5566 {
5567 case OPERATOR_OROR:
5568 case OPERATOR_ANDAND:
5569 if (!type->is_boolean_type())
5570 {
5571 error_at(location, "expected boolean type");
5572 return false;
5573 }
5574 break;
5575
5576 case OPERATOR_EQEQ:
5577 case OPERATOR_NOTEQ:
5578 if (type->integer_type() == NULL
5579 && type->float_type() == NULL
5580 && type->complex_type() == NULL
5581 && !type->is_string_type()
5582 && type->points_to() == NULL
5583 && !type->is_nil_type()
5584 && !type->is_boolean_type()
5585 && type->interface_type() == NULL
5586 && (type->array_type() == NULL
5587 || type->array_type()->length() != NULL)
5588 && type->map_type() == NULL
5589 && type->channel_type() == NULL
5590 && type->function_type() == NULL)
5591 {
5592 error_at(location,
5593 ("expected integer, floating, complex, string, pointer, "
5594 "boolean, interface, slice, map, channel, "
5595 "or function type"));
5596 return false;
5597 }
5598 break;
5599
5600 case OPERATOR_LT:
5601 case OPERATOR_LE:
5602 case OPERATOR_GT:
5603 case OPERATOR_GE:
5604 if (type->integer_type() == NULL
5605 && type->float_type() == NULL
5606 && !type->is_string_type())
5607 {
5608 error_at(location, "expected integer, floating, or string type");
5609 return false;
5610 }
5611 break;
5612
5613 case OPERATOR_PLUS:
5614 case OPERATOR_PLUSEQ:
5615 if (type->integer_type() == NULL
5616 && type->float_type() == NULL
5617 && type->complex_type() == NULL
5618 && !type->is_string_type())
5619 {
5620 error_at(location,
5621 "expected integer, floating, complex, or string type");
5622 return false;
5623 }
5624 break;
5625
5626 case OPERATOR_MINUS:
5627 case OPERATOR_MINUSEQ:
5628 case OPERATOR_MULT:
5629 case OPERATOR_MULTEQ:
5630 case OPERATOR_DIV:
5631 case OPERATOR_DIVEQ:
5632 if (type->integer_type() == NULL
5633 && type->float_type() == NULL
5634 && type->complex_type() == NULL)
5635 {
5636 error_at(location, "expected integer, floating, or complex type");
5637 return false;
5638 }
5639 break;
5640
5641 case OPERATOR_MOD:
5642 case OPERATOR_MODEQ:
5643 case OPERATOR_OR:
5644 case OPERATOR_OREQ:
5645 case OPERATOR_AND:
5646 case OPERATOR_ANDEQ:
5647 case OPERATOR_XOR:
5648 case OPERATOR_XOREQ:
5649 case OPERATOR_BITCLEAR:
5650 case OPERATOR_BITCLEAREQ:
5651 if (type->integer_type() == NULL)
5652 {
5653 error_at(location, "expected integer type");
5654 return false;
5655 }
5656 break;
5657
5658 default:
5659 gcc_unreachable();
5660 }
5661
5662 return true;
5663 }
5664
5665 // Check types.
5666
5667 void
5668 Binary_expression::do_check_types(Gogo*)
5669 {
5670 Type* left_type = this->left_->type();
5671 Type* right_type = this->right_->type();
5672 if (left_type->is_error_type() || right_type->is_error_type())
5673 {
5674 this->set_is_error();
5675 return;
5676 }
5677
5678 if (this->op_ == OPERATOR_EQEQ
5679 || this->op_ == OPERATOR_NOTEQ
5680 || this->op_ == OPERATOR_LT
5681 || this->op_ == OPERATOR_LE
5682 || this->op_ == OPERATOR_GT
5683 || this->op_ == OPERATOR_GE)
5684 {
5685 if (!Type::are_assignable(left_type, right_type, NULL)
5686 && !Type::are_assignable(right_type, left_type, NULL))
5687 {
5688 this->report_error(_("incompatible types in binary expression"));
5689 return;
5690 }
5691 if (!Binary_expression::check_operator_type(this->op_, left_type,
5692 this->location())
5693 || !Binary_expression::check_operator_type(this->op_, right_type,
5694 this->location()))
5695 {
5696 this->set_is_error();
5697 return;
5698 }
5699 }
5700 else if (this->op_ != OPERATOR_LSHIFT && this->op_ != OPERATOR_RSHIFT)
5701 {
5702 if (!Type::are_compatible_for_binop(left_type, right_type))
5703 {
5704 this->report_error(_("incompatible types in binary expression"));
5705 return;
5706 }
5707 if (!Binary_expression::check_operator_type(this->op_, left_type,
5708 this->location()))
5709 {
5710 this->set_is_error();
5711 return;
5712 }
5713 }
5714 else
5715 {
5716 if (left_type->integer_type() == NULL)
5717 this->report_error(_("shift of non-integer operand"));
5718
5719 if (!right_type->is_abstract()
5720 && (right_type->integer_type() == NULL
5721 || !right_type->integer_type()->is_unsigned()))
5722 this->report_error(_("shift count not unsigned integer"));
5723 else
5724 {
5725 mpz_t val;
5726 mpz_init(val);
5727 Type* type;
5728 if (this->right_->integer_constant_value(true, val, &type))
5729 {
5730 if (mpz_sgn(val) < 0)
5731 this->report_error(_("negative shift count"));
5732 }
5733 mpz_clear(val);
5734 }
5735 }
5736 }
5737
5738 // Get a tree for a binary expression.
5739
5740 tree
5741 Binary_expression::do_get_tree(Translate_context* context)
5742 {
5743 tree left = this->left_->get_tree(context);
5744 tree right = this->right_->get_tree(context);
5745
5746 if (left == error_mark_node || right == error_mark_node)
5747 return error_mark_node;
5748
5749 enum tree_code code;
5750 bool use_left_type = true;
5751 bool is_shift_op = false;
5752 switch (this->op_)
5753 {
5754 case OPERATOR_EQEQ:
5755 case OPERATOR_NOTEQ:
5756 case OPERATOR_LT:
5757 case OPERATOR_LE:
5758 case OPERATOR_GT:
5759 case OPERATOR_GE:
5760 return Expression::comparison_tree(context, this->op_,
5761 this->left_->type(), left,
5762 this->right_->type(), right,
5763 this->location());
5764
5765 case OPERATOR_OROR:
5766 code = TRUTH_ORIF_EXPR;
5767 use_left_type = false;
5768 break;
5769 case OPERATOR_ANDAND:
5770 code = TRUTH_ANDIF_EXPR;
5771 use_left_type = false;
5772 break;
5773 case OPERATOR_PLUS:
5774 code = PLUS_EXPR;
5775 break;
5776 case OPERATOR_MINUS:
5777 code = MINUS_EXPR;
5778 break;
5779 case OPERATOR_OR:
5780 code = BIT_IOR_EXPR;
5781 break;
5782 case OPERATOR_XOR:
5783 code = BIT_XOR_EXPR;
5784 break;
5785 case OPERATOR_MULT:
5786 code = MULT_EXPR;
5787 break;
5788 case OPERATOR_DIV:
5789 {
5790 Type *t = this->left_->type();
5791 if (t->float_type() != NULL || t->complex_type() != NULL)
5792 code = RDIV_EXPR;
5793 else
5794 code = TRUNC_DIV_EXPR;
5795 }
5796 break;
5797 case OPERATOR_MOD:
5798 code = TRUNC_MOD_EXPR;
5799 break;
5800 case OPERATOR_LSHIFT:
5801 code = LSHIFT_EXPR;
5802 is_shift_op = true;
5803 break;
5804 case OPERATOR_RSHIFT:
5805 code = RSHIFT_EXPR;
5806 is_shift_op = true;
5807 break;
5808 case OPERATOR_AND:
5809 code = BIT_AND_EXPR;
5810 break;
5811 case OPERATOR_BITCLEAR:
5812 right = fold_build1(BIT_NOT_EXPR, TREE_TYPE(right), right);
5813 code = BIT_AND_EXPR;
5814 break;
5815 default:
5816 gcc_unreachable();
5817 }
5818
5819 tree type = use_left_type ? TREE_TYPE(left) : TREE_TYPE(right);
5820
5821 if (this->left_->type()->is_string_type())
5822 {
5823 gcc_assert(this->op_ == OPERATOR_PLUS);
5824 tree string_type = Type::make_string_type()->get_tree(context->gogo());
5825 static tree string_plus_decl;
5826 return Gogo::call_builtin(&string_plus_decl,
5827 this->location(),
5828 "__go_string_plus",
5829 2,
5830 string_type,
5831 string_type,
5832 left,
5833 string_type,
5834 right);
5835 }
5836
5837 tree compute_type = excess_precision_type(type);
5838 if (compute_type != NULL_TREE)
5839 {
5840 left = ::convert(compute_type, left);
5841 right = ::convert(compute_type, right);
5842 }
5843
5844 tree eval_saved = NULL_TREE;
5845 if (is_shift_op)
5846 {
5847 if (!DECL_P(left))
5848 left = save_expr(left);
5849 if (!DECL_P(right))
5850 right = save_expr(right);
5851 // Make sure the values are evaluated.
5852 eval_saved = fold_build2_loc(this->location(), COMPOUND_EXPR,
5853 void_type_node, left, right);
5854 }
5855
5856 tree ret = fold_build2_loc(this->location(),
5857 code,
5858 compute_type != NULL_TREE ? compute_type : type,
5859 left, right);
5860
5861 if (compute_type != NULL_TREE)
5862 ret = ::convert(type, ret);
5863
5864 // In Go, a shift larger than the size of the type is well-defined.
5865 // This is not true in GENERIC, so we need to insert a conditional.
5866 if (is_shift_op)
5867 {
5868 gcc_assert(INTEGRAL_TYPE_P(TREE_TYPE(left)));
5869 gcc_assert(this->left_->type()->integer_type() != NULL);
5870 int bits = TYPE_PRECISION(TREE_TYPE(left));
5871
5872 tree compare = fold_build2(LT_EXPR, boolean_type_node, right,
5873 build_int_cst_type(TREE_TYPE(right), bits));
5874
5875 tree overflow_result = fold_convert_loc(this->location(),
5876 TREE_TYPE(left),
5877 integer_zero_node);
5878 if (this->op_ == OPERATOR_RSHIFT
5879 && !this->left_->type()->integer_type()->is_unsigned())
5880 {
5881 tree neg = fold_build2_loc(this->location(), LT_EXPR,
5882 boolean_type_node, left,
5883 fold_convert_loc(this->location(),
5884 TREE_TYPE(left),
5885 integer_zero_node));
5886 tree neg_one = fold_build2_loc(this->location(),
5887 MINUS_EXPR, TREE_TYPE(left),
5888 fold_convert_loc(this->location(),
5889 TREE_TYPE(left),
5890 integer_zero_node),
5891 fold_convert_loc(this->location(),
5892 TREE_TYPE(left),
5893 integer_one_node));
5894 overflow_result = fold_build3_loc(this->location(), COND_EXPR,
5895 TREE_TYPE(left), neg, neg_one,
5896 overflow_result);
5897 }
5898
5899 ret = fold_build3_loc(this->location(), COND_EXPR, TREE_TYPE(left),
5900 compare, ret, overflow_result);
5901
5902 ret = fold_build2_loc(this->location(), COMPOUND_EXPR,
5903 TREE_TYPE(ret), eval_saved, ret);
5904 }
5905
5906 return ret;
5907 }
5908
5909 // Export a binary expression.
5910
5911 void
5912 Binary_expression::do_export(Export* exp) const
5913 {
5914 exp->write_c_string("(");
5915 this->left_->export_expression(exp);
5916 switch (this->op_)
5917 {
5918 case OPERATOR_OROR:
5919 exp->write_c_string(" || ");
5920 break;
5921 case OPERATOR_ANDAND:
5922 exp->write_c_string(" && ");
5923 break;
5924 case OPERATOR_EQEQ:
5925 exp->write_c_string(" == ");
5926 break;
5927 case OPERATOR_NOTEQ:
5928 exp->write_c_string(" != ");
5929 break;
5930 case OPERATOR_LT:
5931 exp->write_c_string(" < ");
5932 break;
5933 case OPERATOR_LE:
5934 exp->write_c_string(" <= ");
5935 break;
5936 case OPERATOR_GT:
5937 exp->write_c_string(" > ");
5938 break;
5939 case OPERATOR_GE:
5940 exp->write_c_string(" >= ");
5941 break;
5942 case OPERATOR_PLUS:
5943 exp->write_c_string(" + ");
5944 break;
5945 case OPERATOR_MINUS:
5946 exp->write_c_string(" - ");
5947 break;
5948 case OPERATOR_OR:
5949 exp->write_c_string(" | ");
5950 break;
5951 case OPERATOR_XOR:
5952 exp->write_c_string(" ^ ");
5953 break;
5954 case OPERATOR_MULT:
5955 exp->write_c_string(" * ");
5956 break;
5957 case OPERATOR_DIV:
5958 exp->write_c_string(" / ");
5959 break;
5960 case OPERATOR_MOD:
5961 exp->write_c_string(" % ");
5962 break;
5963 case OPERATOR_LSHIFT:
5964 exp->write_c_string(" << ");
5965 break;
5966 case OPERATOR_RSHIFT:
5967 exp->write_c_string(" >> ");
5968 break;
5969 case OPERATOR_AND:
5970 exp->write_c_string(" & ");
5971 break;
5972 case OPERATOR_BITCLEAR:
5973 exp->write_c_string(" &^ ");
5974 break;
5975 default:
5976 gcc_unreachable();
5977 }
5978 this->right_->export_expression(exp);
5979 exp->write_c_string(")");
5980 }
5981
5982 // Import a binary expression.
5983
5984 Expression*
5985 Binary_expression::do_import(Import* imp)
5986 {
5987 imp->require_c_string("(");
5988
5989 Expression* left = Expression::import_expression(imp);
5990
5991 Operator op;
5992 if (imp->match_c_string(" || "))
5993 {
5994 op = OPERATOR_OROR;
5995 imp->advance(4);
5996 }
5997 else if (imp->match_c_string(" && "))
5998 {
5999 op = OPERATOR_ANDAND;
6000 imp->advance(4);
6001 }
6002 else if (imp->match_c_string(" == "))
6003 {
6004 op = OPERATOR_EQEQ;
6005 imp->advance(4);
6006 }
6007 else if (imp->match_c_string(" != "))
6008 {
6009 op = OPERATOR_NOTEQ;
6010 imp->advance(4);
6011 }
6012 else if (imp->match_c_string(" < "))
6013 {
6014 op = OPERATOR_LT;
6015 imp->advance(3);
6016 }
6017 else if (imp->match_c_string(" <= "))
6018 {
6019 op = OPERATOR_LE;
6020 imp->advance(4);
6021 }
6022 else if (imp->match_c_string(" > "))
6023 {
6024 op = OPERATOR_GT;
6025 imp->advance(3);
6026 }
6027 else if (imp->match_c_string(" >= "))
6028 {
6029 op = OPERATOR_GE;
6030 imp->advance(4);
6031 }
6032 else if (imp->match_c_string(" + "))
6033 {
6034 op = OPERATOR_PLUS;
6035 imp->advance(3);
6036 }
6037 else if (imp->match_c_string(" - "))
6038 {
6039 op = OPERATOR_MINUS;
6040 imp->advance(3);
6041 }
6042 else if (imp->match_c_string(" | "))
6043 {
6044 op = OPERATOR_OR;
6045 imp->advance(3);
6046 }
6047 else if (imp->match_c_string(" ^ "))
6048 {
6049 op = OPERATOR_XOR;
6050 imp->advance(3);
6051 }
6052 else if (imp->match_c_string(" * "))
6053 {
6054 op = OPERATOR_MULT;
6055 imp->advance(3);
6056 }
6057 else if (imp->match_c_string(" / "))
6058 {
6059 op = OPERATOR_DIV;
6060 imp->advance(3);
6061 }
6062 else if (imp->match_c_string(" % "))
6063 {
6064 op = OPERATOR_MOD;
6065 imp->advance(3);
6066 }
6067 else if (imp->match_c_string(" << "))
6068 {
6069 op = OPERATOR_LSHIFT;
6070 imp->advance(4);
6071 }
6072 else if (imp->match_c_string(" >> "))
6073 {
6074 op = OPERATOR_RSHIFT;
6075 imp->advance(4);
6076 }
6077 else if (imp->match_c_string(" & "))
6078 {
6079 op = OPERATOR_AND;
6080 imp->advance(3);
6081 }
6082 else if (imp->match_c_string(" &^ "))
6083 {
6084 op = OPERATOR_BITCLEAR;
6085 imp->advance(4);
6086 }
6087 else
6088 {
6089 error_at(imp->location(), "unrecognized binary operator");
6090 return Expression::make_error(imp->location());
6091 }
6092
6093 Expression* right = Expression::import_expression(imp);
6094
6095 imp->require_c_string(")");
6096
6097 return Expression::make_binary(op, left, right, imp->location());
6098 }
6099
6100 // Make a binary expression.
6101
6102 Expression*
6103 Expression::make_binary(Operator op, Expression* left, Expression* right,
6104 source_location location)
6105 {
6106 return new Binary_expression(op, left, right, location);
6107 }
6108
6109 // Implement a comparison.
6110
6111 tree
6112 Expression::comparison_tree(Translate_context* context, Operator op,
6113 Type* left_type, tree left_tree,
6114 Type* right_type, tree right_tree,
6115 source_location location)
6116 {
6117 enum tree_code code;
6118 switch (op)
6119 {
6120 case OPERATOR_EQEQ:
6121 code = EQ_EXPR;
6122 break;
6123 case OPERATOR_NOTEQ:
6124 code = NE_EXPR;
6125 break;
6126 case OPERATOR_LT:
6127 code = LT_EXPR;
6128 break;
6129 case OPERATOR_LE:
6130 code = LE_EXPR;
6131 break;
6132 case OPERATOR_GT:
6133 code = GT_EXPR;
6134 break;
6135 case OPERATOR_GE:
6136 code = GE_EXPR;
6137 break;
6138 default:
6139 gcc_unreachable();
6140 }
6141
6142 if (left_type->is_string_type() && right_type->is_string_type())
6143 {
6144 tree string_type = Type::make_string_type()->get_tree(context->gogo());
6145 static tree string_compare_decl;
6146 left_tree = Gogo::call_builtin(&string_compare_decl,
6147 location,
6148 "__go_strcmp",
6149 2,
6150 integer_type_node,
6151 string_type,
6152 left_tree,
6153 string_type,
6154 right_tree);
6155 right_tree = build_int_cst_type(integer_type_node, 0);
6156 }
6157 else if ((left_type->interface_type() != NULL
6158 && right_type->interface_type() == NULL
6159 && !right_type->is_nil_type())
6160 || (left_type->interface_type() == NULL
6161 && !left_type->is_nil_type()
6162 && right_type->interface_type() != NULL))
6163 {
6164 // Comparing an interface value to a non-interface value.
6165 if (left_type->interface_type() == NULL)
6166 {
6167 std::swap(left_type, right_type);
6168 std::swap(left_tree, right_tree);
6169 }
6170
6171 // The right operand is not an interface. We need to take its
6172 // address if it is not a pointer.
6173 tree make_tmp;
6174 tree arg;
6175 if (right_type->points_to() != NULL)
6176 {
6177 make_tmp = NULL_TREE;
6178 arg = right_tree;
6179 }
6180 else if (TREE_ADDRESSABLE(TREE_TYPE(right_tree)) || DECL_P(right_tree))
6181 {
6182 make_tmp = NULL_TREE;
6183 arg = build_fold_addr_expr_loc(location, right_tree);
6184 if (DECL_P(right_tree))
6185 TREE_ADDRESSABLE(right_tree) = 1;
6186 }
6187 else
6188 {
6189 tree tmp = create_tmp_var(TREE_TYPE(right_tree),
6190 get_name(right_tree));
6191 DECL_IGNORED_P(tmp) = 0;
6192 DECL_INITIAL(tmp) = right_tree;
6193 TREE_ADDRESSABLE(tmp) = 1;
6194 make_tmp = build1(DECL_EXPR, void_type_node, tmp);
6195 SET_EXPR_LOCATION(make_tmp, location);
6196 arg = build_fold_addr_expr_loc(location, tmp);
6197 }
6198 arg = fold_convert_loc(location, ptr_type_node, arg);
6199
6200 tree descriptor = right_type->type_descriptor_pointer(context->gogo());
6201
6202 if (left_type->interface_type()->is_empty())
6203 {
6204 static tree empty_interface_value_compare_decl;
6205 left_tree = Gogo::call_builtin(&empty_interface_value_compare_decl,
6206 location,
6207 "__go_empty_interface_value_compare",
6208 3,
6209 integer_type_node,
6210 TREE_TYPE(left_tree),
6211 left_tree,
6212 TREE_TYPE(descriptor),
6213 descriptor,
6214 ptr_type_node,
6215 arg);
6216 if (left_tree == error_mark_node)
6217 return error_mark_node;
6218 // This can panic if the type is not comparable.
6219 TREE_NOTHROW(empty_interface_value_compare_decl) = 0;
6220 }
6221 else
6222 {
6223 static tree interface_value_compare_decl;
6224 left_tree = Gogo::call_builtin(&interface_value_compare_decl,
6225 location,
6226 "__go_interface_value_compare",
6227 3,
6228 integer_type_node,
6229 TREE_TYPE(left_tree),
6230 left_tree,
6231 TREE_TYPE(descriptor),
6232 descriptor,
6233 ptr_type_node,
6234 arg);
6235 if (left_tree == error_mark_node)
6236 return error_mark_node;
6237 // This can panic if the type is not comparable.
6238 TREE_NOTHROW(interface_value_compare_decl) = 0;
6239 }
6240 right_tree = build_int_cst_type(integer_type_node, 0);
6241
6242 if (make_tmp != NULL_TREE)
6243 left_tree = build2(COMPOUND_EXPR, TREE_TYPE(left_tree), make_tmp,
6244 left_tree);
6245 }
6246 else if (left_type->interface_type() != NULL
6247 && right_type->interface_type() != NULL)
6248 {
6249 if (left_type->interface_type()->is_empty())
6250 {
6251 gcc_assert(right_type->interface_type()->is_empty());
6252 static tree empty_interface_compare_decl;
6253 left_tree = Gogo::call_builtin(&empty_interface_compare_decl,
6254 location,
6255 "__go_empty_interface_compare",
6256 2,
6257 integer_type_node,
6258 TREE_TYPE(left_tree),
6259 left_tree,
6260 TREE_TYPE(right_tree),
6261 right_tree);
6262 if (left_tree == error_mark_node)
6263 return error_mark_node;
6264 // This can panic if the type is uncomparable.
6265 TREE_NOTHROW(empty_interface_compare_decl) = 0;
6266 }
6267 else
6268 {
6269 gcc_assert(!right_type->interface_type()->is_empty());
6270 static tree interface_compare_decl;
6271 left_tree = Gogo::call_builtin(&interface_compare_decl,
6272 location,
6273 "__go_interface_compare",
6274 2,
6275 integer_type_node,
6276 TREE_TYPE(left_tree),
6277 left_tree,
6278 TREE_TYPE(right_tree),
6279 right_tree);
6280 if (left_tree == error_mark_node)
6281 return error_mark_node;
6282 // This can panic if the type is uncomparable.
6283 TREE_NOTHROW(interface_compare_decl) = 0;
6284 }
6285 right_tree = build_int_cst_type(integer_type_node, 0);
6286 }
6287
6288 if (left_type->is_nil_type()
6289 && (op == OPERATOR_EQEQ || op == OPERATOR_NOTEQ))
6290 {
6291 std::swap(left_type, right_type);
6292 std::swap(left_tree, right_tree);
6293 }
6294
6295 if (right_type->is_nil_type())
6296 {
6297 if (left_type->array_type() != NULL
6298 && left_type->array_type()->length() == NULL)
6299 {
6300 Array_type* at = left_type->array_type();
6301 left_tree = at->value_pointer_tree(context->gogo(), left_tree);
6302 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
6303 }
6304 else if (left_type->interface_type() != NULL)
6305 {
6306 // An interface is nil if the first field is nil.
6307 tree left_type_tree = TREE_TYPE(left_tree);
6308 gcc_assert(TREE_CODE(left_type_tree) == RECORD_TYPE);
6309 tree field = TYPE_FIELDS(left_type_tree);
6310 left_tree = build3(COMPONENT_REF, TREE_TYPE(field), left_tree,
6311 field, NULL_TREE);
6312 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
6313 }
6314 else
6315 {
6316 gcc_assert(POINTER_TYPE_P(TREE_TYPE(left_tree)));
6317 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
6318 }
6319 }
6320
6321 if (left_tree == error_mark_node || right_tree == error_mark_node)
6322 return error_mark_node;
6323
6324 tree ret = fold_build2(code, boolean_type_node, left_tree, right_tree);
6325 if (CAN_HAVE_LOCATION_P(ret))
6326 SET_EXPR_LOCATION(ret, location);
6327 return ret;
6328 }
6329
6330 // Class Bound_method_expression.
6331
6332 // Traversal.
6333
6334 int
6335 Bound_method_expression::do_traverse(Traverse* traverse)
6336 {
6337 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT)
6338 return TRAVERSE_EXIT;
6339 return Expression::traverse(&this->method_, traverse);
6340 }
6341
6342 // Return the type of a bound method expression. The type of this
6343 // object is really the type of the method with no receiver. We
6344 // should be able to get away with just returning the type of the
6345 // method.
6346
6347 Type*
6348 Bound_method_expression::do_type()
6349 {
6350 return this->method_->type();
6351 }
6352
6353 // Determine the types of a method expression.
6354
6355 void
6356 Bound_method_expression::do_determine_type(const Type_context*)
6357 {
6358 this->method_->determine_type_no_context();
6359 Type* mtype = this->method_->type();
6360 Function_type* fntype = mtype == NULL ? NULL : mtype->function_type();
6361 if (fntype == NULL || !fntype->is_method())
6362 this->expr_->determine_type_no_context();
6363 else
6364 {
6365 Type_context subcontext(fntype->receiver()->type(), false);
6366 this->expr_->determine_type(&subcontext);
6367 }
6368 }
6369
6370 // Check the types of a method expression.
6371
6372 void
6373 Bound_method_expression::do_check_types(Gogo*)
6374 {
6375 Type* type = this->method_->type()->deref();
6376 if (type == NULL
6377 || type->function_type() == NULL
6378 || !type->function_type()->is_method())
6379 this->report_error(_("object is not a method"));
6380 else
6381 {
6382 Type* rtype = type->function_type()->receiver()->type()->deref();
6383 Type* etype = (this->expr_type_ != NULL
6384 ? this->expr_type_
6385 : this->expr_->type());
6386 etype = etype->deref();
6387 if (!Type::are_identical(rtype, etype, true, NULL))
6388 this->report_error(_("method type does not match object type"));
6389 }
6390 }
6391
6392 // Get the tree for a method expression. There is no standard tree
6393 // representation for this. The only places it may currently be used
6394 // are in a Call_expression or a Go_statement, which will take it
6395 // apart directly. So this has nothing to do at present.
6396
6397 tree
6398 Bound_method_expression::do_get_tree(Translate_context*)
6399 {
6400 gcc_unreachable();
6401 }
6402
6403 // Make a method expression.
6404
6405 Bound_method_expression*
6406 Expression::make_bound_method(Expression* expr, Expression* method,
6407 source_location location)
6408 {
6409 return new Bound_method_expression(expr, method, location);
6410 }
6411
6412 // Class Builtin_call_expression. This is used for a call to a
6413 // builtin function.
6414
6415 class Builtin_call_expression : public Call_expression
6416 {
6417 public:
6418 Builtin_call_expression(Gogo* gogo, Expression* fn, Expression_list* args,
6419 bool is_varargs, source_location location);
6420
6421 protected:
6422 // This overrides Call_expression::do_lower.
6423 Expression*
6424 do_lower(Gogo*, Named_object*, int);
6425
6426 bool
6427 do_is_constant() const;
6428
6429 bool
6430 do_integer_constant_value(bool, mpz_t, Type**) const;
6431
6432 bool
6433 do_float_constant_value(mpfr_t, Type**) const;
6434
6435 bool
6436 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
6437
6438 Type*
6439 do_type();
6440
6441 void
6442 do_determine_type(const Type_context*);
6443
6444 void
6445 do_check_types(Gogo*);
6446
6447 Expression*
6448 do_copy()
6449 {
6450 return new Builtin_call_expression(this->gogo_, this->fn()->copy(),
6451 this->args()->copy(),
6452 this->is_varargs(),
6453 this->location());
6454 }
6455
6456 tree
6457 do_get_tree(Translate_context*);
6458
6459 void
6460 do_export(Export*) const;
6461
6462 virtual bool
6463 do_is_recover_call() const;
6464
6465 virtual void
6466 do_set_recover_arg(Expression*);
6467
6468 private:
6469 // The builtin functions.
6470 enum Builtin_function_code
6471 {
6472 BUILTIN_INVALID,
6473
6474 // Predeclared builtin functions.
6475 BUILTIN_APPEND,
6476 BUILTIN_CAP,
6477 BUILTIN_CLOSE,
6478 BUILTIN_CLOSED,
6479 BUILTIN_COMPLEX,
6480 BUILTIN_COPY,
6481 BUILTIN_IMAG,
6482 BUILTIN_LEN,
6483 BUILTIN_MAKE,
6484 BUILTIN_NEW,
6485 BUILTIN_PANIC,
6486 BUILTIN_PRINT,
6487 BUILTIN_PRINTLN,
6488 BUILTIN_REAL,
6489 BUILTIN_RECOVER,
6490
6491 // Builtin functions from the unsafe package.
6492 BUILTIN_ALIGNOF,
6493 BUILTIN_OFFSETOF,
6494 BUILTIN_SIZEOF
6495 };
6496
6497 Expression*
6498 one_arg() const;
6499
6500 bool
6501 check_one_arg();
6502
6503 static Type*
6504 real_imag_type(Type*);
6505
6506 static Type*
6507 complex_type(Type*);
6508
6509 // A pointer back to the general IR structure. This avoids a global
6510 // variable, or passing it around everywhere.
6511 Gogo* gogo_;
6512 // The builtin function being called.
6513 Builtin_function_code code_;
6514 // Used to stop endless loops when the length of an array uses len
6515 // or cap of the array itself.
6516 mutable bool seen_;
6517 };
6518
6519 Builtin_call_expression::Builtin_call_expression(Gogo* gogo,
6520 Expression* fn,
6521 Expression_list* args,
6522 bool is_varargs,
6523 source_location location)
6524 : Call_expression(fn, args, is_varargs, location),
6525 gogo_(gogo), code_(BUILTIN_INVALID), seen_(false)
6526 {
6527 Func_expression* fnexp = this->fn()->func_expression();
6528 gcc_assert(fnexp != NULL);
6529 const std::string& name(fnexp->named_object()->name());
6530 if (name == "append")
6531 this->code_ = BUILTIN_APPEND;
6532 else if (name == "cap")
6533 this->code_ = BUILTIN_CAP;
6534 else if (name == "close")
6535 this->code_ = BUILTIN_CLOSE;
6536 else if (name == "closed")
6537 this->code_ = BUILTIN_CLOSED;
6538 else if (name == "complex")
6539 this->code_ = BUILTIN_COMPLEX;
6540 else if (name == "copy")
6541 this->code_ = BUILTIN_COPY;
6542 else if (name == "imag")
6543 this->code_ = BUILTIN_IMAG;
6544 else if (name == "len")
6545 this->code_ = BUILTIN_LEN;
6546 else if (name == "make")
6547 this->code_ = BUILTIN_MAKE;
6548 else if (name == "new")
6549 this->code_ = BUILTIN_NEW;
6550 else if (name == "panic")
6551 this->code_ = BUILTIN_PANIC;
6552 else if (name == "print")
6553 this->code_ = BUILTIN_PRINT;
6554 else if (name == "println")
6555 this->code_ = BUILTIN_PRINTLN;
6556 else if (name == "real")
6557 this->code_ = BUILTIN_REAL;
6558 else if (name == "recover")
6559 this->code_ = BUILTIN_RECOVER;
6560 else if (name == "Alignof")
6561 this->code_ = BUILTIN_ALIGNOF;
6562 else if (name == "Offsetof")
6563 this->code_ = BUILTIN_OFFSETOF;
6564 else if (name == "Sizeof")
6565 this->code_ = BUILTIN_SIZEOF;
6566 else
6567 gcc_unreachable();
6568 }
6569
6570 // Return whether this is a call to recover. This is a virtual
6571 // function called from the parent class.
6572
6573 bool
6574 Builtin_call_expression::do_is_recover_call() const
6575 {
6576 if (this->classification() == EXPRESSION_ERROR)
6577 return false;
6578 return this->code_ == BUILTIN_RECOVER;
6579 }
6580
6581 // Set the argument for a call to recover.
6582
6583 void
6584 Builtin_call_expression::do_set_recover_arg(Expression* arg)
6585 {
6586 const Expression_list* args = this->args();
6587 gcc_assert(args == NULL || args->empty());
6588 Expression_list* new_args = new Expression_list();
6589 new_args->push_back(arg);
6590 this->set_args(new_args);
6591 }
6592
6593 // A traversal class which looks for a call expression.
6594
6595 class Find_call_expression : public Traverse
6596 {
6597 public:
6598 Find_call_expression()
6599 : Traverse(traverse_expressions),
6600 found_(false)
6601 { }
6602
6603 int
6604 expression(Expression**);
6605
6606 bool
6607 found()
6608 { return this->found_; }
6609
6610 private:
6611 bool found_;
6612 };
6613
6614 int
6615 Find_call_expression::expression(Expression** pexpr)
6616 {
6617 if ((*pexpr)->call_expression() != NULL)
6618 {
6619 this->found_ = true;
6620 return TRAVERSE_EXIT;
6621 }
6622 return TRAVERSE_CONTINUE;
6623 }
6624
6625 // Lower a builtin call expression. This turns new and make into
6626 // specific expressions. We also convert to a constant if we can.
6627
6628 Expression*
6629 Builtin_call_expression::do_lower(Gogo* gogo, Named_object* function, int)
6630 {
6631 if (this->code_ == BUILTIN_NEW)
6632 {
6633 const Expression_list* args = this->args();
6634 if (args == NULL || args->size() < 1)
6635 this->report_error(_("not enough arguments"));
6636 else if (args->size() > 1)
6637 this->report_error(_("too many arguments"));
6638 else
6639 {
6640 Expression* arg = args->front();
6641 if (!arg->is_type_expression())
6642 {
6643 error_at(arg->location(), "expected type");
6644 this->set_is_error();
6645 }
6646 else
6647 return Expression::make_allocation(arg->type(), this->location());
6648 }
6649 }
6650 else if (this->code_ == BUILTIN_MAKE)
6651 {
6652 const Expression_list* args = this->args();
6653 if (args == NULL || args->size() < 1)
6654 this->report_error(_("not enough arguments"));
6655 else
6656 {
6657 Expression* arg = args->front();
6658 if (!arg->is_type_expression())
6659 {
6660 error_at(arg->location(), "expected type");
6661 this->set_is_error();
6662 }
6663 else
6664 {
6665 Expression_list* newargs;
6666 if (args->size() == 1)
6667 newargs = NULL;
6668 else
6669 {
6670 newargs = new Expression_list();
6671 Expression_list::const_iterator p = args->begin();
6672 ++p;
6673 for (; p != args->end(); ++p)
6674 newargs->push_back(*p);
6675 }
6676 return Expression::make_make(arg->type(), newargs,
6677 this->location());
6678 }
6679 }
6680 }
6681 else if (this->is_constant())
6682 {
6683 // We can only lower len and cap if there are no function calls
6684 // in the arguments. Otherwise we have to make the call.
6685 if (this->code_ == BUILTIN_LEN || this->code_ == BUILTIN_CAP)
6686 {
6687 Expression* arg = this->one_arg();
6688 if (!arg->is_constant())
6689 {
6690 Find_call_expression find_call;
6691 Expression::traverse(&arg, &find_call);
6692 if (find_call.found())
6693 return this;
6694 }
6695 }
6696
6697 mpz_t ival;
6698 mpz_init(ival);
6699 Type* type;
6700 if (this->integer_constant_value(true, ival, &type))
6701 {
6702 Expression* ret = Expression::make_integer(&ival, type,
6703 this->location());
6704 mpz_clear(ival);
6705 return ret;
6706 }
6707 mpz_clear(ival);
6708
6709 mpfr_t rval;
6710 mpfr_init(rval);
6711 if (this->float_constant_value(rval, &type))
6712 {
6713 Expression* ret = Expression::make_float(&rval, type,
6714 this->location());
6715 mpfr_clear(rval);
6716 return ret;
6717 }
6718
6719 mpfr_t imag;
6720 mpfr_init(imag);
6721 if (this->complex_constant_value(rval, imag, &type))
6722 {
6723 Expression* ret = Expression::make_complex(&rval, &imag, type,
6724 this->location());
6725 mpfr_clear(rval);
6726 mpfr_clear(imag);
6727 return ret;
6728 }
6729 mpfr_clear(rval);
6730 mpfr_clear(imag);
6731 }
6732 else if (this->code_ == BUILTIN_RECOVER)
6733 {
6734 if (function != NULL)
6735 function->func_value()->set_calls_recover();
6736 else
6737 {
6738 // Calling recover outside of a function always returns the
6739 // nil empty interface.
6740 Type* eface = Type::make_interface_type(NULL, this->location());
6741 return Expression::make_cast(eface,
6742 Expression::make_nil(this->location()),
6743 this->location());
6744 }
6745 }
6746 else if (this->code_ == BUILTIN_APPEND)
6747 {
6748 // Lower the varargs.
6749 const Expression_list* args = this->args();
6750 if (args == NULL || args->empty())
6751 return this;
6752 Type* slice_type = args->front()->type();
6753 if (!slice_type->is_open_array_type())
6754 {
6755 error_at(args->front()->location(), "argument 1 must be a slice");
6756 this->set_is_error();
6757 return this;
6758 }
6759 return this->lower_varargs(gogo, function, slice_type, 2);
6760 }
6761
6762 return this;
6763 }
6764
6765 // Return the type of the real or imag functions, given the type of
6766 // the argument. We need to map complex to float, complex64 to
6767 // float32, and complex128 to float64, so it has to be done by name.
6768 // This returns NULL if it can't figure out the type.
6769
6770 Type*
6771 Builtin_call_expression::real_imag_type(Type* arg_type)
6772 {
6773 if (arg_type == NULL || arg_type->is_abstract())
6774 return NULL;
6775 Named_type* nt = arg_type->named_type();
6776 if (nt == NULL)
6777 return NULL;
6778 while (nt->real_type()->named_type() != NULL)
6779 nt = nt->real_type()->named_type();
6780 if (nt->name() == "complex64")
6781 return Type::lookup_float_type("float32");
6782 else if (nt->name() == "complex128")
6783 return Type::lookup_float_type("float64");
6784 else
6785 return NULL;
6786 }
6787
6788 // Return the type of the complex function, given the type of one of the
6789 // argments. Like real_imag_type, we have to map by name.
6790
6791 Type*
6792 Builtin_call_expression::complex_type(Type* arg_type)
6793 {
6794 if (arg_type == NULL || arg_type->is_abstract())
6795 return NULL;
6796 Named_type* nt = arg_type->named_type();
6797 if (nt == NULL)
6798 return NULL;
6799 while (nt->real_type()->named_type() != NULL)
6800 nt = nt->real_type()->named_type();
6801 if (nt->name() == "float32")
6802 return Type::lookup_complex_type("complex64");
6803 else if (nt->name() == "float64")
6804 return Type::lookup_complex_type("complex128");
6805 else
6806 return NULL;
6807 }
6808
6809 // Return a single argument, or NULL if there isn't one.
6810
6811 Expression*
6812 Builtin_call_expression::one_arg() const
6813 {
6814 const Expression_list* args = this->args();
6815 if (args->size() != 1)
6816 return NULL;
6817 return args->front();
6818 }
6819
6820 // Return whether this is constant: len of a string, or len or cap of
6821 // a fixed array, or unsafe.Sizeof, unsafe.Offsetof, unsafe.Alignof.
6822
6823 bool
6824 Builtin_call_expression::do_is_constant() const
6825 {
6826 switch (this->code_)
6827 {
6828 case BUILTIN_LEN:
6829 case BUILTIN_CAP:
6830 {
6831 if (this->seen_)
6832 return false;
6833
6834 Expression* arg = this->one_arg();
6835 if (arg == NULL)
6836 return false;
6837 Type* arg_type = arg->type();
6838
6839 if (arg_type->points_to() != NULL
6840 && arg_type->points_to()->array_type() != NULL
6841 && !arg_type->points_to()->is_open_array_type())
6842 arg_type = arg_type->points_to();
6843
6844 if (arg_type->array_type() != NULL
6845 && arg_type->array_type()->length() != NULL)
6846 return true;
6847
6848 if (this->code_ == BUILTIN_LEN && arg_type->is_string_type())
6849 {
6850 this->seen_ = true;
6851 bool ret = arg->is_constant();
6852 this->seen_ = false;
6853 return ret;
6854 }
6855 }
6856 break;
6857
6858 case BUILTIN_SIZEOF:
6859 case BUILTIN_ALIGNOF:
6860 return this->one_arg() != NULL;
6861
6862 case BUILTIN_OFFSETOF:
6863 {
6864 Expression* arg = this->one_arg();
6865 if (arg == NULL)
6866 return false;
6867 return arg->field_reference_expression() != NULL;
6868 }
6869
6870 case BUILTIN_COMPLEX:
6871 {
6872 const Expression_list* args = this->args();
6873 if (args != NULL && args->size() == 2)
6874 return args->front()->is_constant() && args->back()->is_constant();
6875 }
6876 break;
6877
6878 case BUILTIN_REAL:
6879 case BUILTIN_IMAG:
6880 {
6881 Expression* arg = this->one_arg();
6882 return arg != NULL && arg->is_constant();
6883 }
6884
6885 default:
6886 break;
6887 }
6888
6889 return false;
6890 }
6891
6892 // Return an integer constant value if possible.
6893
6894 bool
6895 Builtin_call_expression::do_integer_constant_value(bool iota_is_constant,
6896 mpz_t val,
6897 Type** ptype) const
6898 {
6899 if (this->code_ == BUILTIN_LEN
6900 || this->code_ == BUILTIN_CAP)
6901 {
6902 Expression* arg = this->one_arg();
6903 if (arg == NULL)
6904 return false;
6905 Type* arg_type = arg->type();
6906
6907 if (this->code_ == BUILTIN_LEN && arg_type->is_string_type())
6908 {
6909 std::string sval;
6910 if (arg->string_constant_value(&sval))
6911 {
6912 mpz_set_ui(val, sval.length());
6913 *ptype = Type::lookup_integer_type("int");
6914 return true;
6915 }
6916 }
6917
6918 if (arg_type->points_to() != NULL
6919 && arg_type->points_to()->array_type() != NULL
6920 && !arg_type->points_to()->is_open_array_type())
6921 arg_type = arg_type->points_to();
6922
6923 if (arg_type->array_type() != NULL
6924 && arg_type->array_type()->length() != NULL)
6925 {
6926 if (this->seen_)
6927 return false;
6928 Expression* e = arg_type->array_type()->length();
6929 this->seen_ = true;
6930 bool r = e->integer_constant_value(iota_is_constant, val, ptype);
6931 this->seen_ = false;
6932 if (r)
6933 {
6934 *ptype = Type::lookup_integer_type("int");
6935 return true;
6936 }
6937 }
6938 }
6939 else if (this->code_ == BUILTIN_SIZEOF
6940 || this->code_ == BUILTIN_ALIGNOF)
6941 {
6942 Expression* arg = this->one_arg();
6943 if (arg == NULL)
6944 return false;
6945 Type* arg_type = arg->type();
6946 if (arg_type->is_error_type() || arg_type->is_undefined())
6947 return false;
6948 if (arg_type->is_abstract())
6949 return false;
6950 tree arg_type_tree = arg_type->get_tree(this->gogo_);
6951 unsigned long val_long;
6952 if (this->code_ == BUILTIN_SIZEOF)
6953 {
6954 tree type_size = TYPE_SIZE_UNIT(arg_type_tree);
6955 gcc_assert(TREE_CODE(type_size) == INTEGER_CST);
6956 if (TREE_INT_CST_HIGH(type_size) != 0)
6957 return false;
6958 unsigned HOST_WIDE_INT val_wide = TREE_INT_CST_LOW(type_size);
6959 val_long = static_cast<unsigned long>(val_wide);
6960 if (val_long != val_wide)
6961 return false;
6962 }
6963 else if (this->code_ == BUILTIN_ALIGNOF)
6964 {
6965 if (arg->field_reference_expression() == NULL)
6966 val_long = go_type_alignment(arg_type_tree);
6967 else
6968 {
6969 // Calling unsafe.Alignof(s.f) returns the alignment of
6970 // the type of f when it is used as a field in a struct.
6971 val_long = go_field_alignment(arg_type_tree);
6972 }
6973 }
6974 else
6975 gcc_unreachable();
6976 mpz_set_ui(val, val_long);
6977 *ptype = NULL;
6978 return true;
6979 }
6980 else if (this->code_ == BUILTIN_OFFSETOF)
6981 {
6982 Expression* arg = this->one_arg();
6983 if (arg == NULL)
6984 return false;
6985 Field_reference_expression* farg = arg->field_reference_expression();
6986 if (farg == NULL)
6987 return false;
6988 Expression* struct_expr = farg->expr();
6989 Type* st = struct_expr->type();
6990 if (st->struct_type() == NULL)
6991 return false;
6992 tree struct_tree = st->get_tree(this->gogo_);
6993 gcc_assert(TREE_CODE(struct_tree) == RECORD_TYPE);
6994 tree field = TYPE_FIELDS(struct_tree);
6995 for (unsigned int index = farg->field_index(); index > 0; --index)
6996 {
6997 field = DECL_CHAIN(field);
6998 gcc_assert(field != NULL_TREE);
6999 }
7000 HOST_WIDE_INT offset_wide = int_byte_position (field);
7001 if (offset_wide < 0)
7002 return false;
7003 unsigned long offset_long = static_cast<unsigned long>(offset_wide);
7004 if (offset_long != static_cast<unsigned HOST_WIDE_INT>(offset_wide))
7005 return false;
7006 mpz_set_ui(val, offset_long);
7007 return true;
7008 }
7009 return false;
7010 }
7011
7012 // Return a floating point constant value if possible.
7013
7014 bool
7015 Builtin_call_expression::do_float_constant_value(mpfr_t val,
7016 Type** ptype) const
7017 {
7018 if (this->code_ == BUILTIN_REAL || this->code_ == BUILTIN_IMAG)
7019 {
7020 Expression* arg = this->one_arg();
7021 if (arg == NULL)
7022 return false;
7023
7024 mpfr_t real;
7025 mpfr_t imag;
7026 mpfr_init(real);
7027 mpfr_init(imag);
7028
7029 bool ret = false;
7030 Type* type;
7031 if (arg->complex_constant_value(real, imag, &type))
7032 {
7033 if (this->code_ == BUILTIN_REAL)
7034 mpfr_set(val, real, GMP_RNDN);
7035 else
7036 mpfr_set(val, imag, GMP_RNDN);
7037 *ptype = Builtin_call_expression::real_imag_type(type);
7038 ret = true;
7039 }
7040
7041 mpfr_clear(real);
7042 mpfr_clear(imag);
7043 return ret;
7044 }
7045
7046 return false;
7047 }
7048
7049 // Return a complex constant value if possible.
7050
7051 bool
7052 Builtin_call_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
7053 Type** ptype) const
7054 {
7055 if (this->code_ == BUILTIN_COMPLEX)
7056 {
7057 const Expression_list* args = this->args();
7058 if (args == NULL || args->size() != 2)
7059 return false;
7060
7061 mpfr_t r;
7062 mpfr_init(r);
7063 Type* rtype;
7064 if (!args->front()->float_constant_value(r, &rtype))
7065 {
7066 mpfr_clear(r);
7067 return false;
7068 }
7069
7070 mpfr_t i;
7071 mpfr_init(i);
7072
7073 bool ret = false;
7074 Type* itype;
7075 if (args->back()->float_constant_value(i, &itype)
7076 && Type::are_identical(rtype, itype, false, NULL))
7077 {
7078 mpfr_set(real, r, GMP_RNDN);
7079 mpfr_set(imag, i, GMP_RNDN);
7080 *ptype = Builtin_call_expression::complex_type(rtype);
7081 ret = true;
7082 }
7083
7084 mpfr_clear(r);
7085 mpfr_clear(i);
7086
7087 return ret;
7088 }
7089
7090 return false;
7091 }
7092
7093 // Return the type.
7094
7095 Type*
7096 Builtin_call_expression::do_type()
7097 {
7098 switch (this->code_)
7099 {
7100 case BUILTIN_INVALID:
7101 default:
7102 gcc_unreachable();
7103
7104 case BUILTIN_NEW:
7105 case BUILTIN_MAKE:
7106 {
7107 const Expression_list* args = this->args();
7108 if (args == NULL || args->empty())
7109 return Type::make_error_type();
7110 return Type::make_pointer_type(args->front()->type());
7111 }
7112
7113 case BUILTIN_CAP:
7114 case BUILTIN_COPY:
7115 case BUILTIN_LEN:
7116 case BUILTIN_ALIGNOF:
7117 case BUILTIN_OFFSETOF:
7118 case BUILTIN_SIZEOF:
7119 return Type::lookup_integer_type("int");
7120
7121 case BUILTIN_CLOSE:
7122 case BUILTIN_PANIC:
7123 case BUILTIN_PRINT:
7124 case BUILTIN_PRINTLN:
7125 return Type::make_void_type();
7126
7127 case BUILTIN_CLOSED:
7128 return Type::lookup_bool_type();
7129
7130 case BUILTIN_RECOVER:
7131 return Type::make_interface_type(NULL, BUILTINS_LOCATION);
7132
7133 case BUILTIN_APPEND:
7134 {
7135 const Expression_list* args = this->args();
7136 if (args == NULL || args->empty())
7137 return Type::make_error_type();
7138 return args->front()->type();
7139 }
7140
7141 case BUILTIN_REAL:
7142 case BUILTIN_IMAG:
7143 {
7144 Expression* arg = this->one_arg();
7145 if (arg == NULL)
7146 return Type::make_error_type();
7147 Type* t = arg->type();
7148 if (t->is_abstract())
7149 t = t->make_non_abstract_type();
7150 t = Builtin_call_expression::real_imag_type(t);
7151 if (t == NULL)
7152 t = Type::make_error_type();
7153 return t;
7154 }
7155
7156 case BUILTIN_COMPLEX:
7157 {
7158 const Expression_list* args = this->args();
7159 if (args == NULL || args->size() != 2)
7160 return Type::make_error_type();
7161 Type* t = args->front()->type();
7162 if (t->is_abstract())
7163 {
7164 t = args->back()->type();
7165 if (t->is_abstract())
7166 t = t->make_non_abstract_type();
7167 }
7168 t = Builtin_call_expression::complex_type(t);
7169 if (t == NULL)
7170 t = Type::make_error_type();
7171 return t;
7172 }
7173 }
7174 }
7175
7176 // Determine the type.
7177
7178 void
7179 Builtin_call_expression::do_determine_type(const Type_context* context)
7180 {
7181 this->fn()->determine_type_no_context();
7182
7183 const Expression_list* args = this->args();
7184
7185 bool is_print;
7186 Type* arg_type = NULL;
7187 switch (this->code_)
7188 {
7189 case BUILTIN_PRINT:
7190 case BUILTIN_PRINTLN:
7191 // Do not force a large integer constant to "int".
7192 is_print = true;
7193 break;
7194
7195 case BUILTIN_REAL:
7196 case BUILTIN_IMAG:
7197 arg_type = Builtin_call_expression::complex_type(context->type);
7198 is_print = false;
7199 break;
7200
7201 case BUILTIN_COMPLEX:
7202 {
7203 // For the complex function the type of one operand can
7204 // determine the type of the other, as in a binary expression.
7205 arg_type = Builtin_call_expression::real_imag_type(context->type);
7206 if (args != NULL && args->size() == 2)
7207 {
7208 Type* t1 = args->front()->type();
7209 Type* t2 = args->front()->type();
7210 if (!t1->is_abstract())
7211 arg_type = t1;
7212 else if (!t2->is_abstract())
7213 arg_type = t2;
7214 }
7215 is_print = false;
7216 }
7217 break;
7218
7219 default:
7220 is_print = false;
7221 break;
7222 }
7223
7224 if (args != NULL)
7225 {
7226 for (Expression_list::const_iterator pa = args->begin();
7227 pa != args->end();
7228 ++pa)
7229 {
7230 Type_context subcontext;
7231 subcontext.type = arg_type;
7232
7233 if (is_print)
7234 {
7235 // We want to print large constants, we so can't just
7236 // use the appropriate nonabstract type. Use uint64 for
7237 // an integer if we know it is nonnegative, otherwise
7238 // use int64 for a integer, otherwise use float64 for a
7239 // float or complex128 for a complex.
7240 Type* want_type = NULL;
7241 Type* atype = (*pa)->type();
7242 if (atype->is_abstract())
7243 {
7244 if (atype->integer_type() != NULL)
7245 {
7246 mpz_t val;
7247 mpz_init(val);
7248 Type* dummy;
7249 if (this->integer_constant_value(true, val, &dummy)
7250 && mpz_sgn(val) >= 0)
7251 want_type = Type::lookup_integer_type("uint64");
7252 else
7253 want_type = Type::lookup_integer_type("int64");
7254 mpz_clear(val);
7255 }
7256 else if (atype->float_type() != NULL)
7257 want_type = Type::lookup_float_type("float64");
7258 else if (atype->complex_type() != NULL)
7259 want_type = Type::lookup_complex_type("complex128");
7260 else if (atype->is_abstract_string_type())
7261 want_type = Type::lookup_string_type();
7262 else if (atype->is_abstract_boolean_type())
7263 want_type = Type::lookup_bool_type();
7264 else
7265 gcc_unreachable();
7266 subcontext.type = want_type;
7267 }
7268 }
7269
7270 (*pa)->determine_type(&subcontext);
7271 }
7272 }
7273 }
7274
7275 // If there is exactly one argument, return true. Otherwise give an
7276 // error message and return false.
7277
7278 bool
7279 Builtin_call_expression::check_one_arg()
7280 {
7281 const Expression_list* args = this->args();
7282 if (args == NULL || args->size() < 1)
7283 {
7284 this->report_error(_("not enough arguments"));
7285 return false;
7286 }
7287 else if (args->size() > 1)
7288 {
7289 this->report_error(_("too many arguments"));
7290 return false;
7291 }
7292 if (args->front()->is_error_expression()
7293 || args->front()->type()->is_error_type()
7294 || args->front()->type()->is_undefined())
7295 {
7296 this->set_is_error();
7297 return false;
7298 }
7299 return true;
7300 }
7301
7302 // Check argument types for a builtin function.
7303
7304 void
7305 Builtin_call_expression::do_check_types(Gogo*)
7306 {
7307 switch (this->code_)
7308 {
7309 case BUILTIN_INVALID:
7310 case BUILTIN_NEW:
7311 case BUILTIN_MAKE:
7312 return;
7313
7314 case BUILTIN_LEN:
7315 case BUILTIN_CAP:
7316 {
7317 // The single argument may be either a string or an array or a
7318 // map or a channel, or a pointer to a closed array.
7319 if (this->check_one_arg())
7320 {
7321 Type* arg_type = this->one_arg()->type();
7322 if (arg_type->points_to() != NULL
7323 && arg_type->points_to()->array_type() != NULL
7324 && !arg_type->points_to()->is_open_array_type())
7325 arg_type = arg_type->points_to();
7326 if (this->code_ == BUILTIN_CAP)
7327 {
7328 if (!arg_type->is_error_type()
7329 && arg_type->array_type() == NULL
7330 && arg_type->channel_type() == NULL)
7331 this->report_error(_("argument must be array or slice "
7332 "or channel"));
7333 }
7334 else
7335 {
7336 if (!arg_type->is_error_type()
7337 && !arg_type->is_string_type()
7338 && arg_type->array_type() == NULL
7339 && arg_type->map_type() == NULL
7340 && arg_type->channel_type() == NULL)
7341 this->report_error(_("argument must be string or "
7342 "array or slice or map or channel"));
7343 }
7344 }
7345 }
7346 break;
7347
7348 case BUILTIN_PRINT:
7349 case BUILTIN_PRINTLN:
7350 {
7351 const Expression_list* args = this->args();
7352 if (args == NULL)
7353 {
7354 if (this->code_ == BUILTIN_PRINT)
7355 warning_at(this->location(), 0,
7356 "no arguments for builtin function %<%s%>",
7357 (this->code_ == BUILTIN_PRINT
7358 ? "print"
7359 : "println"));
7360 }
7361 else
7362 {
7363 for (Expression_list::const_iterator p = args->begin();
7364 p != args->end();
7365 ++p)
7366 {
7367 Type* type = (*p)->type();
7368 if (type->is_error_type()
7369 || type->is_string_type()
7370 || type->integer_type() != NULL
7371 || type->float_type() != NULL
7372 || type->complex_type() != NULL
7373 || type->is_boolean_type()
7374 || type->points_to() != NULL
7375 || type->interface_type() != NULL
7376 || type->channel_type() != NULL
7377 || type->map_type() != NULL
7378 || type->function_type() != NULL
7379 || type->is_open_array_type())
7380 ;
7381 else
7382 this->report_error(_("unsupported argument type to "
7383 "builtin function"));
7384 }
7385 }
7386 }
7387 break;
7388
7389 case BUILTIN_CLOSE:
7390 case BUILTIN_CLOSED:
7391 if (this->check_one_arg())
7392 {
7393 if (this->one_arg()->type()->channel_type() == NULL)
7394 this->report_error(_("argument must be channel"));
7395 }
7396 break;
7397
7398 case BUILTIN_PANIC:
7399 case BUILTIN_SIZEOF:
7400 case BUILTIN_ALIGNOF:
7401 this->check_one_arg();
7402 break;
7403
7404 case BUILTIN_RECOVER:
7405 if (this->args() != NULL && !this->args()->empty())
7406 this->report_error(_("too many arguments"));
7407 break;
7408
7409 case BUILTIN_OFFSETOF:
7410 if (this->check_one_arg())
7411 {
7412 Expression* arg = this->one_arg();
7413 if (arg->field_reference_expression() == NULL)
7414 this->report_error(_("argument must be a field reference"));
7415 }
7416 break;
7417
7418 case BUILTIN_COPY:
7419 {
7420 const Expression_list* args = this->args();
7421 if (args == NULL || args->size() < 2)
7422 {
7423 this->report_error(_("not enough arguments"));
7424 break;
7425 }
7426 else if (args->size() > 2)
7427 {
7428 this->report_error(_("too many arguments"));
7429 break;
7430 }
7431 Type* arg1_type = args->front()->type();
7432 Type* arg2_type = args->back()->type();
7433 if (arg1_type->is_error_type() || arg2_type->is_error_type())
7434 break;
7435
7436 Type* e1;
7437 if (arg1_type->is_open_array_type())
7438 e1 = arg1_type->array_type()->element_type();
7439 else
7440 {
7441 this->report_error(_("left argument must be a slice"));
7442 break;
7443 }
7444
7445 Type* e2;
7446 if (arg2_type->is_open_array_type())
7447 e2 = arg2_type->array_type()->element_type();
7448 else if (arg2_type->is_string_type())
7449 e2 = Type::lookup_integer_type("uint8");
7450 else
7451 {
7452 this->report_error(_("right argument must be a slice or a string"));
7453 break;
7454 }
7455
7456 if (!Type::are_identical(e1, e2, true, NULL))
7457 this->report_error(_("element types must be the same"));
7458 }
7459 break;
7460
7461 case BUILTIN_APPEND:
7462 {
7463 const Expression_list* args = this->args();
7464 if (args == NULL || args->size() < 2)
7465 {
7466 this->report_error(_("not enough arguments"));
7467 break;
7468 }
7469 if (args->size() > 2)
7470 {
7471 this->report_error(_("too many arguments"));
7472 break;
7473 }
7474 std::string reason;
7475 if (!Type::are_assignable(args->front()->type(), args->back()->type(),
7476 &reason))
7477 {
7478 if (reason.empty())
7479 this->report_error(_("arguments 1 and 2 have different types"));
7480 else
7481 {
7482 error_at(this->location(),
7483 "arguments 1 and 2 have different types (%s)",
7484 reason.c_str());
7485 this->set_is_error();
7486 }
7487 }
7488 break;
7489 }
7490
7491 case BUILTIN_REAL:
7492 case BUILTIN_IMAG:
7493 if (this->check_one_arg())
7494 {
7495 if (this->one_arg()->type()->complex_type() == NULL)
7496 this->report_error(_("argument must have complex type"));
7497 }
7498 break;
7499
7500 case BUILTIN_COMPLEX:
7501 {
7502 const Expression_list* args = this->args();
7503 if (args == NULL || args->size() < 2)
7504 this->report_error(_("not enough arguments"));
7505 else if (args->size() > 2)
7506 this->report_error(_("too many arguments"));
7507 else if (args->front()->is_error_expression()
7508 || args->front()->type()->is_error_type()
7509 || args->back()->is_error_expression()
7510 || args->back()->type()->is_error_type())
7511 this->set_is_error();
7512 else if (!Type::are_identical(args->front()->type(),
7513 args->back()->type(), true, NULL))
7514 this->report_error(_("complex arguments must have identical types"));
7515 else if (args->front()->type()->float_type() == NULL)
7516 this->report_error(_("complex arguments must have "
7517 "floating-point type"));
7518 }
7519 break;
7520
7521 default:
7522 gcc_unreachable();
7523 }
7524 }
7525
7526 // Return the tree for a builtin function.
7527
7528 tree
7529 Builtin_call_expression::do_get_tree(Translate_context* context)
7530 {
7531 Gogo* gogo = context->gogo();
7532 source_location location = this->location();
7533 switch (this->code_)
7534 {
7535 case BUILTIN_INVALID:
7536 case BUILTIN_NEW:
7537 case BUILTIN_MAKE:
7538 gcc_unreachable();
7539
7540 case BUILTIN_LEN:
7541 case BUILTIN_CAP:
7542 {
7543 const Expression_list* args = this->args();
7544 gcc_assert(args != NULL && args->size() == 1);
7545 Expression* arg = *args->begin();
7546 Type* arg_type = arg->type();
7547
7548 if (this->seen_)
7549 {
7550 gcc_assert(saw_errors());
7551 return error_mark_node;
7552 }
7553 this->seen_ = true;
7554
7555 tree arg_tree = arg->get_tree(context);
7556
7557 this->seen_ = false;
7558
7559 if (arg_tree == error_mark_node)
7560 return error_mark_node;
7561
7562 if (arg_type->points_to() != NULL)
7563 {
7564 arg_type = arg_type->points_to();
7565 gcc_assert(arg_type->array_type() != NULL
7566 && !arg_type->is_open_array_type());
7567 gcc_assert(POINTER_TYPE_P(TREE_TYPE(arg_tree)));
7568 arg_tree = build_fold_indirect_ref(arg_tree);
7569 }
7570
7571 tree val_tree;
7572 if (this->code_ == BUILTIN_LEN)
7573 {
7574 if (arg_type->is_string_type())
7575 val_tree = String_type::length_tree(gogo, arg_tree);
7576 else if (arg_type->array_type() != NULL)
7577 {
7578 if (this->seen_)
7579 {
7580 gcc_assert(saw_errors());
7581 return error_mark_node;
7582 }
7583 this->seen_ = true;
7584 val_tree = arg_type->array_type()->length_tree(gogo, arg_tree);
7585 this->seen_ = false;
7586 }
7587 else if (arg_type->map_type() != NULL)
7588 {
7589 static tree map_len_fndecl;
7590 val_tree = Gogo::call_builtin(&map_len_fndecl,
7591 location,
7592 "__go_map_len",
7593 1,
7594 sizetype,
7595 arg_type->get_tree(gogo),
7596 arg_tree);
7597 }
7598 else if (arg_type->channel_type() != NULL)
7599 {
7600 static tree chan_len_fndecl;
7601 val_tree = Gogo::call_builtin(&chan_len_fndecl,
7602 location,
7603 "__go_chan_len",
7604 1,
7605 sizetype,
7606 arg_type->get_tree(gogo),
7607 arg_tree);
7608 }
7609 else
7610 gcc_unreachable();
7611 }
7612 else
7613 {
7614 if (arg_type->array_type() != NULL)
7615 {
7616 if (this->seen_)
7617 {
7618 gcc_assert(saw_errors());
7619 return error_mark_node;
7620 }
7621 this->seen_ = true;
7622 val_tree = arg_type->array_type()->capacity_tree(gogo,
7623 arg_tree);
7624 this->seen_ = false;
7625 }
7626 else if (arg_type->channel_type() != NULL)
7627 {
7628 static tree chan_cap_fndecl;
7629 val_tree = Gogo::call_builtin(&chan_cap_fndecl,
7630 location,
7631 "__go_chan_cap",
7632 1,
7633 sizetype,
7634 arg_type->get_tree(gogo),
7635 arg_tree);
7636 }
7637 else
7638 gcc_unreachable();
7639 }
7640
7641 if (val_tree == error_mark_node)
7642 return error_mark_node;
7643
7644 tree type_tree = Type::lookup_integer_type("int")->get_tree(gogo);
7645 if (type_tree == TREE_TYPE(val_tree))
7646 return val_tree;
7647 else
7648 return fold(convert_to_integer(type_tree, val_tree));
7649 }
7650
7651 case BUILTIN_PRINT:
7652 case BUILTIN_PRINTLN:
7653 {
7654 const bool is_ln = this->code_ == BUILTIN_PRINTLN;
7655 tree stmt_list = NULL_TREE;
7656
7657 const Expression_list* call_args = this->args();
7658 if (call_args != NULL)
7659 {
7660 for (Expression_list::const_iterator p = call_args->begin();
7661 p != call_args->end();
7662 ++p)
7663 {
7664 if (is_ln && p != call_args->begin())
7665 {
7666 static tree print_space_fndecl;
7667 tree call = Gogo::call_builtin(&print_space_fndecl,
7668 location,
7669 "__go_print_space",
7670 0,
7671 void_type_node);
7672 if (call == error_mark_node)
7673 return error_mark_node;
7674 append_to_statement_list(call, &stmt_list);
7675 }
7676
7677 Type* type = (*p)->type();
7678
7679 tree arg = (*p)->get_tree(context);
7680 if (arg == error_mark_node)
7681 return error_mark_node;
7682
7683 tree* pfndecl;
7684 const char* fnname;
7685 if (type->is_string_type())
7686 {
7687 static tree print_string_fndecl;
7688 pfndecl = &print_string_fndecl;
7689 fnname = "__go_print_string";
7690 }
7691 else if (type->integer_type() != NULL
7692 && type->integer_type()->is_unsigned())
7693 {
7694 static tree print_uint64_fndecl;
7695 pfndecl = &print_uint64_fndecl;
7696 fnname = "__go_print_uint64";
7697 Type* itype = Type::lookup_integer_type("uint64");
7698 arg = fold_convert_loc(location, itype->get_tree(gogo),
7699 arg);
7700 }
7701 else if (type->integer_type() != NULL)
7702 {
7703 static tree print_int64_fndecl;
7704 pfndecl = &print_int64_fndecl;
7705 fnname = "__go_print_int64";
7706 Type* itype = Type::lookup_integer_type("int64");
7707 arg = fold_convert_loc(location, itype->get_tree(gogo),
7708 arg);
7709 }
7710 else if (type->float_type() != NULL)
7711 {
7712 static tree print_double_fndecl;
7713 pfndecl = &print_double_fndecl;
7714 fnname = "__go_print_double";
7715 arg = fold_convert_loc(location, double_type_node, arg);
7716 }
7717 else if (type->complex_type() != NULL)
7718 {
7719 static tree print_complex_fndecl;
7720 pfndecl = &print_complex_fndecl;
7721 fnname = "__go_print_complex";
7722 arg = fold_convert_loc(location, complex_double_type_node,
7723 arg);
7724 }
7725 else if (type->is_boolean_type())
7726 {
7727 static tree print_bool_fndecl;
7728 pfndecl = &print_bool_fndecl;
7729 fnname = "__go_print_bool";
7730 }
7731 else if (type->points_to() != NULL
7732 || type->channel_type() != NULL
7733 || type->map_type() != NULL
7734 || type->function_type() != NULL)
7735 {
7736 static tree print_pointer_fndecl;
7737 pfndecl = &print_pointer_fndecl;
7738 fnname = "__go_print_pointer";
7739 arg = fold_convert_loc(location, ptr_type_node, arg);
7740 }
7741 else if (type->interface_type() != NULL)
7742 {
7743 if (type->interface_type()->is_empty())
7744 {
7745 static tree print_empty_interface_fndecl;
7746 pfndecl = &print_empty_interface_fndecl;
7747 fnname = "__go_print_empty_interface";
7748 }
7749 else
7750 {
7751 static tree print_interface_fndecl;
7752 pfndecl = &print_interface_fndecl;
7753 fnname = "__go_print_interface";
7754 }
7755 }
7756 else if (type->is_open_array_type())
7757 {
7758 static tree print_slice_fndecl;
7759 pfndecl = &print_slice_fndecl;
7760 fnname = "__go_print_slice";
7761 }
7762 else
7763 gcc_unreachable();
7764
7765 tree call = Gogo::call_builtin(pfndecl,
7766 location,
7767 fnname,
7768 1,
7769 void_type_node,
7770 TREE_TYPE(arg),
7771 arg);
7772 if (call == error_mark_node)
7773 return error_mark_node;
7774 append_to_statement_list(call, &stmt_list);
7775 }
7776 }
7777
7778 if (is_ln)
7779 {
7780 static tree print_nl_fndecl;
7781 tree call = Gogo::call_builtin(&print_nl_fndecl,
7782 location,
7783 "__go_print_nl",
7784 0,
7785 void_type_node);
7786 if (call == error_mark_node)
7787 return error_mark_node;
7788 append_to_statement_list(call, &stmt_list);
7789 }
7790
7791 return stmt_list;
7792 }
7793
7794 case BUILTIN_PANIC:
7795 {
7796 const Expression_list* args = this->args();
7797 gcc_assert(args != NULL && args->size() == 1);
7798 Expression* arg = args->front();
7799 tree arg_tree = arg->get_tree(context);
7800 if (arg_tree == error_mark_node)
7801 return error_mark_node;
7802 Type *empty = Type::make_interface_type(NULL, BUILTINS_LOCATION);
7803 arg_tree = Expression::convert_for_assignment(context, empty,
7804 arg->type(),
7805 arg_tree, location);
7806 static tree panic_fndecl;
7807 tree call = Gogo::call_builtin(&panic_fndecl,
7808 location,
7809 "__go_panic",
7810 1,
7811 void_type_node,
7812 TREE_TYPE(arg_tree),
7813 arg_tree);
7814 if (call == error_mark_node)
7815 return error_mark_node;
7816 // This function will throw an exception.
7817 TREE_NOTHROW(panic_fndecl) = 0;
7818 // This function will not return.
7819 TREE_THIS_VOLATILE(panic_fndecl) = 1;
7820 return call;
7821 }
7822
7823 case BUILTIN_RECOVER:
7824 {
7825 // The argument is set when building recover thunks. It's a
7826 // boolean value which is true if we can recover a value now.
7827 const Expression_list* args = this->args();
7828 gcc_assert(args != NULL && args->size() == 1);
7829 Expression* arg = args->front();
7830 tree arg_tree = arg->get_tree(context);
7831 if (arg_tree == error_mark_node)
7832 return error_mark_node;
7833
7834 Type *empty = Type::make_interface_type(NULL, BUILTINS_LOCATION);
7835 tree empty_tree = empty->get_tree(context->gogo());
7836
7837 Type* nil_type = Type::make_nil_type();
7838 Expression* nil = Expression::make_nil(location);
7839 tree nil_tree = nil->get_tree(context);
7840 tree empty_nil_tree = Expression::convert_for_assignment(context,
7841 empty,
7842 nil_type,
7843 nil_tree,
7844 location);
7845
7846 // We need to handle a deferred call to recover specially,
7847 // because it changes whether it can recover a panic or not.
7848 // See test7 in test/recover1.go.
7849 tree call;
7850 if (this->is_deferred())
7851 {
7852 static tree deferred_recover_fndecl;
7853 call = Gogo::call_builtin(&deferred_recover_fndecl,
7854 location,
7855 "__go_deferred_recover",
7856 0,
7857 empty_tree);
7858 }
7859 else
7860 {
7861 static tree recover_fndecl;
7862 call = Gogo::call_builtin(&recover_fndecl,
7863 location,
7864 "__go_recover",
7865 0,
7866 empty_tree);
7867 }
7868 if (call == error_mark_node)
7869 return error_mark_node;
7870 return fold_build3_loc(location, COND_EXPR, empty_tree, arg_tree,
7871 call, empty_nil_tree);
7872 }
7873
7874 case BUILTIN_CLOSE:
7875 case BUILTIN_CLOSED:
7876 {
7877 const Expression_list* args = this->args();
7878 gcc_assert(args != NULL && args->size() == 1);
7879 Expression* arg = args->front();
7880 tree arg_tree = arg->get_tree(context);
7881 if (arg_tree == error_mark_node)
7882 return error_mark_node;
7883 if (this->code_ == BUILTIN_CLOSE)
7884 {
7885 static tree close_fndecl;
7886 return Gogo::call_builtin(&close_fndecl,
7887 location,
7888 "__go_builtin_close",
7889 1,
7890 void_type_node,
7891 TREE_TYPE(arg_tree),
7892 arg_tree);
7893 }
7894 else
7895 {
7896 static tree closed_fndecl;
7897 return Gogo::call_builtin(&closed_fndecl,
7898 location,
7899 "__go_builtin_closed",
7900 1,
7901 boolean_type_node,
7902 TREE_TYPE(arg_tree),
7903 arg_tree);
7904 }
7905 }
7906
7907 case BUILTIN_SIZEOF:
7908 case BUILTIN_OFFSETOF:
7909 case BUILTIN_ALIGNOF:
7910 {
7911 mpz_t val;
7912 mpz_init(val);
7913 Type* dummy;
7914 bool b = this->integer_constant_value(true, val, &dummy);
7915 gcc_assert(b);
7916 tree type = Type::lookup_integer_type("int")->get_tree(gogo);
7917 tree ret = Expression::integer_constant_tree(val, type);
7918 mpz_clear(val);
7919 return ret;
7920 }
7921
7922 case BUILTIN_COPY:
7923 {
7924 const Expression_list* args = this->args();
7925 gcc_assert(args != NULL && args->size() == 2);
7926 Expression* arg1 = args->front();
7927 Expression* arg2 = args->back();
7928
7929 tree arg1_tree = arg1->get_tree(context);
7930 tree arg2_tree = arg2->get_tree(context);
7931 if (arg1_tree == error_mark_node || arg2_tree == error_mark_node)
7932 return error_mark_node;
7933
7934 Type* arg1_type = arg1->type();
7935 Array_type* at = arg1_type->array_type();
7936 arg1_tree = save_expr(arg1_tree);
7937 tree arg1_val = at->value_pointer_tree(gogo, arg1_tree);
7938 tree arg1_len = at->length_tree(gogo, arg1_tree);
7939 if (arg1_val == error_mark_node || arg1_len == error_mark_node)
7940 return error_mark_node;
7941
7942 Type* arg2_type = arg2->type();
7943 tree arg2_val;
7944 tree arg2_len;
7945 if (arg2_type->is_open_array_type())
7946 {
7947 at = arg2_type->array_type();
7948 arg2_tree = save_expr(arg2_tree);
7949 arg2_val = at->value_pointer_tree(gogo, arg2_tree);
7950 arg2_len = at->length_tree(gogo, arg2_tree);
7951 }
7952 else
7953 {
7954 arg2_tree = save_expr(arg2_tree);
7955 arg2_val = String_type::bytes_tree(gogo, arg2_tree);
7956 arg2_len = String_type::length_tree(gogo, arg2_tree);
7957 }
7958 if (arg2_val == error_mark_node || arg2_len == error_mark_node)
7959 return error_mark_node;
7960
7961 arg1_len = save_expr(arg1_len);
7962 arg2_len = save_expr(arg2_len);
7963 tree len = fold_build3_loc(location, COND_EXPR, TREE_TYPE(arg1_len),
7964 fold_build2_loc(location, LT_EXPR,
7965 boolean_type_node,
7966 arg1_len, arg2_len),
7967 arg1_len, arg2_len);
7968 len = save_expr(len);
7969
7970 Type* element_type = at->element_type();
7971 tree element_type_tree = element_type->get_tree(gogo);
7972 if (element_type_tree == error_mark_node)
7973 return error_mark_node;
7974 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
7975 tree bytecount = fold_convert_loc(location, TREE_TYPE(element_size),
7976 len);
7977 bytecount = fold_build2_loc(location, MULT_EXPR,
7978 TREE_TYPE(element_size),
7979 bytecount, element_size);
7980 bytecount = fold_convert_loc(location, size_type_node, bytecount);
7981
7982 arg1_val = fold_convert_loc(location, ptr_type_node, arg1_val);
7983 arg2_val = fold_convert_loc(location, ptr_type_node, arg2_val);
7984
7985 static tree copy_fndecl;
7986 tree call = Gogo::call_builtin(&copy_fndecl,
7987 location,
7988 "__go_copy",
7989 3,
7990 void_type_node,
7991 ptr_type_node,
7992 arg1_val,
7993 ptr_type_node,
7994 arg2_val,
7995 size_type_node,
7996 bytecount);
7997 if (call == error_mark_node)
7998 return error_mark_node;
7999
8000 return fold_build2_loc(location, COMPOUND_EXPR, TREE_TYPE(len),
8001 call, len);
8002 }
8003
8004 case BUILTIN_APPEND:
8005 {
8006 const Expression_list* args = this->args();
8007 gcc_assert(args != NULL && args->size() == 2);
8008 Expression* arg1 = args->front();
8009 Expression* arg2 = args->back();
8010
8011 tree arg1_tree = arg1->get_tree(context);
8012 tree arg2_tree = arg2->get_tree(context);
8013 if (arg1_tree == error_mark_node || arg2_tree == error_mark_node)
8014 return error_mark_node;
8015
8016 Array_type* at = arg1->type()->array_type();
8017 Type* element_type = at->element_type();
8018
8019 arg2_tree = Expression::convert_for_assignment(context, at,
8020 arg2->type(),
8021 arg2_tree,
8022 location);
8023 if (arg2_tree == error_mark_node)
8024 return error_mark_node;
8025
8026 arg2_tree = save_expr(arg2_tree);
8027 tree arg2_val = at->value_pointer_tree(gogo, arg2_tree);
8028 tree arg2_len = at->length_tree(gogo, arg2_tree);
8029 if (arg2_val == error_mark_node || arg2_len == error_mark_node)
8030 return error_mark_node;
8031 arg2_val = fold_convert_loc(location, ptr_type_node, arg2_val);
8032 arg2_len = fold_convert_loc(location, size_type_node, arg2_len);
8033
8034 tree element_type_tree = element_type->get_tree(gogo);
8035 if (element_type_tree == error_mark_node)
8036 return error_mark_node;
8037 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
8038 element_size = fold_convert_loc(location, size_type_node,
8039 element_size);
8040
8041 // We rebuild the decl each time since the slice types may
8042 // change.
8043 tree append_fndecl = NULL_TREE;
8044 return Gogo::call_builtin(&append_fndecl,
8045 location,
8046 "__go_append",
8047 4,
8048 TREE_TYPE(arg1_tree),
8049 TREE_TYPE(arg1_tree),
8050 arg1_tree,
8051 ptr_type_node,
8052 arg2_val,
8053 size_type_node,
8054 arg2_len,
8055 size_type_node,
8056 element_size);
8057 }
8058
8059 case BUILTIN_REAL:
8060 case BUILTIN_IMAG:
8061 {
8062 const Expression_list* args = this->args();
8063 gcc_assert(args != NULL && args->size() == 1);
8064 Expression* arg = args->front();
8065 tree arg_tree = arg->get_tree(context);
8066 if (arg_tree == error_mark_node)
8067 return error_mark_node;
8068 gcc_assert(COMPLEX_FLOAT_TYPE_P(TREE_TYPE(arg_tree)));
8069 if (this->code_ == BUILTIN_REAL)
8070 return fold_build1_loc(location, REALPART_EXPR,
8071 TREE_TYPE(TREE_TYPE(arg_tree)),
8072 arg_tree);
8073 else
8074 return fold_build1_loc(location, IMAGPART_EXPR,
8075 TREE_TYPE(TREE_TYPE(arg_tree)),
8076 arg_tree);
8077 }
8078
8079 case BUILTIN_COMPLEX:
8080 {
8081 const Expression_list* args = this->args();
8082 gcc_assert(args != NULL && args->size() == 2);
8083 tree r = args->front()->get_tree(context);
8084 tree i = args->back()->get_tree(context);
8085 if (r == error_mark_node || i == error_mark_node)
8086 return error_mark_node;
8087 gcc_assert(TYPE_MAIN_VARIANT(TREE_TYPE(r))
8088 == TYPE_MAIN_VARIANT(TREE_TYPE(i)));
8089 gcc_assert(SCALAR_FLOAT_TYPE_P(TREE_TYPE(r)));
8090 return fold_build2_loc(location, COMPLEX_EXPR,
8091 build_complex_type(TREE_TYPE(r)),
8092 r, i);
8093 }
8094
8095 default:
8096 gcc_unreachable();
8097 }
8098 }
8099
8100 // We have to support exporting a builtin call expression, because
8101 // code can set a constant to the result of a builtin expression.
8102
8103 void
8104 Builtin_call_expression::do_export(Export* exp) const
8105 {
8106 bool ok = false;
8107
8108 mpz_t val;
8109 mpz_init(val);
8110 Type* dummy;
8111 if (this->integer_constant_value(true, val, &dummy))
8112 {
8113 Integer_expression::export_integer(exp, val);
8114 ok = true;
8115 }
8116 mpz_clear(val);
8117
8118 if (!ok)
8119 {
8120 mpfr_t fval;
8121 mpfr_init(fval);
8122 if (this->float_constant_value(fval, &dummy))
8123 {
8124 Float_expression::export_float(exp, fval);
8125 ok = true;
8126 }
8127 mpfr_clear(fval);
8128 }
8129
8130 if (!ok)
8131 {
8132 mpfr_t real;
8133 mpfr_t imag;
8134 mpfr_init(real);
8135 mpfr_init(imag);
8136 if (this->complex_constant_value(real, imag, &dummy))
8137 {
8138 Complex_expression::export_complex(exp, real, imag);
8139 ok = true;
8140 }
8141 mpfr_clear(real);
8142 mpfr_clear(imag);
8143 }
8144
8145 if (!ok)
8146 {
8147 error_at(this->location(), "value is not constant");
8148 return;
8149 }
8150
8151 // A trailing space lets us reliably identify the end of the number.
8152 exp->write_c_string(" ");
8153 }
8154
8155 // Class Call_expression.
8156
8157 // Traversal.
8158
8159 int
8160 Call_expression::do_traverse(Traverse* traverse)
8161 {
8162 if (Expression::traverse(&this->fn_, traverse) == TRAVERSE_EXIT)
8163 return TRAVERSE_EXIT;
8164 if (this->args_ != NULL)
8165 {
8166 if (this->args_->traverse(traverse) == TRAVERSE_EXIT)
8167 return TRAVERSE_EXIT;
8168 }
8169 return TRAVERSE_CONTINUE;
8170 }
8171
8172 // Lower a call statement.
8173
8174 Expression*
8175 Call_expression::do_lower(Gogo* gogo, Named_object* function, int)
8176 {
8177 // A type case can look like a function call.
8178 if (this->fn_->is_type_expression()
8179 && this->args_ != NULL
8180 && this->args_->size() == 1)
8181 return Expression::make_cast(this->fn_->type(), this->args_->front(),
8182 this->location());
8183
8184 // Recognize a call to a builtin function.
8185 Func_expression* fne = this->fn_->func_expression();
8186 if (fne != NULL
8187 && fne->named_object()->is_function_declaration()
8188 && fne->named_object()->func_declaration_value()->type()->is_builtin())
8189 return new Builtin_call_expression(gogo, this->fn_, this->args_,
8190 this->is_varargs_, this->location());
8191
8192 // Handle an argument which is a call to a function which returns
8193 // multiple results.
8194 if (this->args_ != NULL
8195 && this->args_->size() == 1
8196 && this->args_->front()->call_expression() != NULL
8197 && this->fn_->type()->function_type() != NULL)
8198 {
8199 Function_type* fntype = this->fn_->type()->function_type();
8200 size_t rc = this->args_->front()->call_expression()->result_count();
8201 if (rc > 1
8202 && fntype->parameters() != NULL
8203 && (fntype->parameters()->size() == rc
8204 || (fntype->is_varargs()
8205 && fntype->parameters()->size() - 1 <= rc)))
8206 {
8207 Call_expression* call = this->args_->front()->call_expression();
8208 Expression_list* args = new Expression_list;
8209 for (size_t i = 0; i < rc; ++i)
8210 args->push_back(Expression::make_call_result(call, i));
8211 // We can't return a new call expression here, because this
8212 // one may be referenced by Call_result expressions. FIXME.
8213 delete this->args_;
8214 this->args_ = args;
8215 }
8216 }
8217
8218 // Handle a call to a varargs function by packaging up the extra
8219 // parameters.
8220 if (this->fn_->type()->function_type() != NULL
8221 && this->fn_->type()->function_type()->is_varargs())
8222 {
8223 Function_type* fntype = this->fn_->type()->function_type();
8224 const Typed_identifier_list* parameters = fntype->parameters();
8225 gcc_assert(parameters != NULL && !parameters->empty());
8226 Type* varargs_type = parameters->back().type();
8227 return this->lower_varargs(gogo, function, varargs_type,
8228 parameters->size());
8229 }
8230
8231 return this;
8232 }
8233
8234 // Lower a call to a varargs function. FUNCTION is the function in
8235 // which the call occurs--it's not the function we are calling.
8236 // VARARGS_TYPE is the type of the varargs parameter, a slice type.
8237 // PARAM_COUNT is the number of parameters of the function we are
8238 // calling; the last of these parameters will be the varargs
8239 // parameter.
8240
8241 Expression*
8242 Call_expression::lower_varargs(Gogo* gogo, Named_object* function,
8243 Type* varargs_type, size_t param_count)
8244 {
8245 if (this->varargs_are_lowered_)
8246 return this;
8247
8248 source_location loc = this->location();
8249
8250 gcc_assert(param_count > 0);
8251 gcc_assert(varargs_type->is_open_array_type());
8252
8253 size_t arg_count = this->args_ == NULL ? 0 : this->args_->size();
8254 if (arg_count < param_count - 1)
8255 {
8256 // Not enough arguments; will be caught in check_types.
8257 return this;
8258 }
8259
8260 Expression_list* old_args = this->args_;
8261 Expression_list* new_args = new Expression_list();
8262 bool push_empty_arg = false;
8263 if (old_args == NULL || old_args->empty())
8264 {
8265 gcc_assert(param_count == 1);
8266 push_empty_arg = true;
8267 }
8268 else
8269 {
8270 Expression_list::const_iterator pa;
8271 int i = 1;
8272 for (pa = old_args->begin(); pa != old_args->end(); ++pa, ++i)
8273 {
8274 if (static_cast<size_t>(i) == param_count)
8275 break;
8276 new_args->push_back(*pa);
8277 }
8278
8279 // We have reached the varargs parameter.
8280
8281 bool issued_error = false;
8282 if (pa == old_args->end())
8283 push_empty_arg = true;
8284 else if (pa + 1 == old_args->end() && this->is_varargs_)
8285 new_args->push_back(*pa);
8286 else if (this->is_varargs_)
8287 {
8288 this->report_error(_("too many arguments"));
8289 return this;
8290 }
8291 else if (pa + 1 == old_args->end()
8292 && this->is_compatible_varargs_argument(function, *pa,
8293 varargs_type,
8294 &issued_error))
8295 new_args->push_back(*pa);
8296 else
8297 {
8298 Type* element_type = varargs_type->array_type()->element_type();
8299 Expression_list* vals = new Expression_list;
8300 for (; pa != old_args->end(); ++pa, ++i)
8301 {
8302 // Check types here so that we get a better message.
8303 Type* patype = (*pa)->type();
8304 source_location paloc = (*pa)->location();
8305 if (!this->check_argument_type(i, element_type, patype,
8306 paloc, issued_error))
8307 continue;
8308 vals->push_back(*pa);
8309 }
8310 Expression* val =
8311 Expression::make_slice_composite_literal(varargs_type, vals, loc);
8312 new_args->push_back(val);
8313 }
8314 }
8315
8316 if (push_empty_arg)
8317 new_args->push_back(Expression::make_nil(loc));
8318
8319 // We can't return a new call expression here, because this one may
8320 // be referenced by Call_result expressions. FIXME.
8321 if (old_args != NULL)
8322 delete old_args;
8323 this->args_ = new_args;
8324 this->varargs_are_lowered_ = true;
8325
8326 // Lower all the new subexpressions.
8327 Expression* ret = this;
8328 gogo->lower_expression(function, &ret);
8329 gcc_assert(ret == this);
8330 return ret;
8331 }
8332
8333 // Return true if ARG is a varargs argment which should be passed to
8334 // the varargs parameter of type PARAM_TYPE without wrapping. ARG
8335 // will be the last argument passed in the call, and PARAM_TYPE will
8336 // be the type of the last parameter of the varargs function being
8337 // called.
8338
8339 bool
8340 Call_expression::is_compatible_varargs_argument(Named_object* function,
8341 Expression* arg,
8342 Type* param_type,
8343 bool* issued_error)
8344 {
8345 *issued_error = false;
8346
8347 Type* var_type = NULL;
8348
8349 // The simple case is passing the varargs parameter of the caller.
8350 Var_expression* ve = arg->var_expression();
8351 if (ve != NULL && ve->named_object()->is_variable())
8352 {
8353 Variable* var = ve->named_object()->var_value();
8354 if (var->is_varargs_parameter())
8355 var_type = var->type();
8356 }
8357
8358 // The complex case is passing the varargs parameter of some
8359 // enclosing function. This will look like passing down *c.f where
8360 // c is the closure variable and f is a field in the closure.
8361 if (function != NULL
8362 && function->func_value()->needs_closure()
8363 && arg->classification() == EXPRESSION_UNARY)
8364 {
8365 Unary_expression* ue = static_cast<Unary_expression*>(arg);
8366 if (ue->op() == OPERATOR_MULT)
8367 {
8368 Field_reference_expression* fre =
8369 ue->operand()->deref()->field_reference_expression();
8370 if (fre != NULL)
8371 {
8372 Var_expression* ve = fre->expr()->deref()->var_expression();
8373 if (ve != NULL)
8374 {
8375 Named_object* no = ve->named_object();
8376 Function* f = function->func_value();
8377 if (no == f->closure_var())
8378 {
8379 // At this point we know that this indeed a
8380 // reference to some enclosing variable. Now we
8381 // need to figure out whether that variable is a
8382 // varargs parameter.
8383 Named_object* enclosing =
8384 f->enclosing_var(fre->field_index());
8385 Variable* var = enclosing->var_value();
8386 if (var->is_varargs_parameter())
8387 var_type = var->type();
8388 }
8389 }
8390 }
8391 }
8392 }
8393
8394 if (var_type == NULL)
8395 return false;
8396
8397 // We only match if the parameter is the same, with an identical
8398 // type.
8399 Array_type* var_at = var_type->array_type();
8400 gcc_assert(var_at != NULL);
8401 Array_type* param_at = param_type->array_type();
8402 if (param_at != NULL
8403 && Type::are_identical(var_at->element_type(),
8404 param_at->element_type(), true, NULL))
8405 return true;
8406 error_at(arg->location(), "... mismatch: passing ...T as ...");
8407 *issued_error = true;
8408 return false;
8409 }
8410
8411 // Get the function type. Returns NULL if we don't know the type. If
8412 // this returns NULL, and if_ERROR is true, issues an error.
8413
8414 Function_type*
8415 Call_expression::get_function_type() const
8416 {
8417 return this->fn_->type()->function_type();
8418 }
8419
8420 // Return the number of values which this call will return.
8421
8422 size_t
8423 Call_expression::result_count() const
8424 {
8425 const Function_type* fntype = this->get_function_type();
8426 if (fntype == NULL)
8427 return 0;
8428 if (fntype->results() == NULL)
8429 return 0;
8430 return fntype->results()->size();
8431 }
8432
8433 // Return whether this is a call to the predeclared function recover.
8434
8435 bool
8436 Call_expression::is_recover_call() const
8437 {
8438 return this->do_is_recover_call();
8439 }
8440
8441 // Set the argument to the recover function.
8442
8443 void
8444 Call_expression::set_recover_arg(Expression* arg)
8445 {
8446 this->do_set_recover_arg(arg);
8447 }
8448
8449 // Virtual functions also implemented by Builtin_call_expression.
8450
8451 bool
8452 Call_expression::do_is_recover_call() const
8453 {
8454 return false;
8455 }
8456
8457 void
8458 Call_expression::do_set_recover_arg(Expression*)
8459 {
8460 gcc_unreachable();
8461 }
8462
8463 // Get the type.
8464
8465 Type*
8466 Call_expression::do_type()
8467 {
8468 if (this->type_ != NULL)
8469 return this->type_;
8470
8471 Type* ret;
8472 Function_type* fntype = this->get_function_type();
8473 if (fntype == NULL)
8474 return Type::make_error_type();
8475
8476 const Typed_identifier_list* results = fntype->results();
8477 if (results == NULL)
8478 ret = Type::make_void_type();
8479 else if (results->size() == 1)
8480 ret = results->begin()->type();
8481 else
8482 ret = Type::make_call_multiple_result_type(this);
8483
8484 this->type_ = ret;
8485
8486 return this->type_;
8487 }
8488
8489 // Determine types for a call expression. We can use the function
8490 // parameter types to set the types of the arguments.
8491
8492 void
8493 Call_expression::do_determine_type(const Type_context*)
8494 {
8495 this->fn_->determine_type_no_context();
8496 Function_type* fntype = this->get_function_type();
8497 const Typed_identifier_list* parameters = NULL;
8498 if (fntype != NULL)
8499 parameters = fntype->parameters();
8500 if (this->args_ != NULL)
8501 {
8502 Typed_identifier_list::const_iterator pt;
8503 if (parameters != NULL)
8504 pt = parameters->begin();
8505 for (Expression_list::const_iterator pa = this->args_->begin();
8506 pa != this->args_->end();
8507 ++pa)
8508 {
8509 if (parameters != NULL && pt != parameters->end())
8510 {
8511 Type_context subcontext(pt->type(), false);
8512 (*pa)->determine_type(&subcontext);
8513 ++pt;
8514 }
8515 else
8516 (*pa)->determine_type_no_context();
8517 }
8518 }
8519 }
8520
8521 // Check types for parameter I.
8522
8523 bool
8524 Call_expression::check_argument_type(int i, const Type* parameter_type,
8525 const Type* argument_type,
8526 source_location argument_location,
8527 bool issued_error)
8528 {
8529 std::string reason;
8530 if (!Type::are_assignable(parameter_type, argument_type, &reason))
8531 {
8532 if (!issued_error)
8533 {
8534 if (reason.empty())
8535 error_at(argument_location, "argument %d has incompatible type", i);
8536 else
8537 error_at(argument_location,
8538 "argument %d has incompatible type (%s)",
8539 i, reason.c_str());
8540 }
8541 this->set_is_error();
8542 return false;
8543 }
8544 return true;
8545 }
8546
8547 // Check types.
8548
8549 void
8550 Call_expression::do_check_types(Gogo*)
8551 {
8552 Function_type* fntype = this->get_function_type();
8553 if (fntype == NULL)
8554 {
8555 if (!this->fn_->type()->is_error_type())
8556 this->report_error(_("expected function"));
8557 return;
8558 }
8559
8560 if (fntype->is_method())
8561 {
8562 // We don't support pointers to methods, so the function has to
8563 // be a bound method expression.
8564 Bound_method_expression* bme = this->fn_->bound_method_expression();
8565 if (bme == NULL)
8566 {
8567 this->report_error(_("method call without object"));
8568 return;
8569 }
8570 Type* first_arg_type = bme->first_argument()->type();
8571 if (first_arg_type->points_to() == NULL)
8572 {
8573 // When passing a value, we need to check that we are
8574 // permitted to copy it.
8575 std::string reason;
8576 if (!Type::are_assignable(fntype->receiver()->type(),
8577 first_arg_type, &reason))
8578 {
8579 if (reason.empty())
8580 this->report_error(_("incompatible type for receiver"));
8581 else
8582 {
8583 error_at(this->location(),
8584 "incompatible type for receiver (%s)",
8585 reason.c_str());
8586 this->set_is_error();
8587 }
8588 }
8589 }
8590 }
8591
8592 // Note that varargs was handled by the lower_varargs() method, so
8593 // we don't have to worry about it here.
8594
8595 const Typed_identifier_list* parameters = fntype->parameters();
8596 if (this->args_ == NULL)
8597 {
8598 if (parameters != NULL && !parameters->empty())
8599 this->report_error(_("not enough arguments"));
8600 }
8601 else if (parameters == NULL)
8602 this->report_error(_("too many arguments"));
8603 else
8604 {
8605 int i = 0;
8606 Typed_identifier_list::const_iterator pt = parameters->begin();
8607 for (Expression_list::const_iterator pa = this->args_->begin();
8608 pa != this->args_->end();
8609 ++pa, ++pt, ++i)
8610 {
8611 if (pt == parameters->end())
8612 {
8613 this->report_error(_("too many arguments"));
8614 return;
8615 }
8616 this->check_argument_type(i + 1, pt->type(), (*pa)->type(),
8617 (*pa)->location(), false);
8618 }
8619 if (pt != parameters->end())
8620 this->report_error(_("not enough arguments"));
8621 }
8622 }
8623
8624 // Return whether we have to use a temporary variable to ensure that
8625 // we evaluate this call expression in order. If the call returns no
8626 // results then it will inevitably be executed last. If the call
8627 // returns more than one result then it will be used with Call_result
8628 // expressions. So we only have to use a temporary variable if the
8629 // call returns exactly one result.
8630
8631 bool
8632 Call_expression::do_must_eval_in_order() const
8633 {
8634 return this->result_count() == 1;
8635 }
8636
8637 // Get the function and the first argument to use when calling a bound
8638 // method.
8639
8640 tree
8641 Call_expression::bound_method_function(Translate_context* context,
8642 Bound_method_expression* bound_method,
8643 tree* first_arg_ptr)
8644 {
8645 Expression* first_argument = bound_method->first_argument();
8646 tree first_arg = first_argument->get_tree(context);
8647 if (first_arg == error_mark_node)
8648 return error_mark_node;
8649
8650 // We always pass a pointer to the first argument when calling a
8651 // method.
8652 if (first_argument->type()->points_to() == NULL)
8653 {
8654 tree pointer_to_arg_type = build_pointer_type(TREE_TYPE(first_arg));
8655 if (TREE_ADDRESSABLE(TREE_TYPE(first_arg))
8656 || DECL_P(first_arg)
8657 || TREE_CODE(first_arg) == INDIRECT_REF
8658 || TREE_CODE(first_arg) == COMPONENT_REF)
8659 {
8660 first_arg = build_fold_addr_expr(first_arg);
8661 if (DECL_P(first_arg))
8662 TREE_ADDRESSABLE(first_arg) = 1;
8663 }
8664 else
8665 {
8666 tree tmp = create_tmp_var(TREE_TYPE(first_arg),
8667 get_name(first_arg));
8668 DECL_IGNORED_P(tmp) = 0;
8669 DECL_INITIAL(tmp) = first_arg;
8670 first_arg = build2(COMPOUND_EXPR, pointer_to_arg_type,
8671 build1(DECL_EXPR, void_type_node, tmp),
8672 build_fold_addr_expr(tmp));
8673 TREE_ADDRESSABLE(tmp) = 1;
8674 }
8675 if (first_arg == error_mark_node)
8676 return error_mark_node;
8677 }
8678
8679 Type* fatype = bound_method->first_argument_type();
8680 if (fatype != NULL)
8681 {
8682 if (fatype->points_to() == NULL)
8683 fatype = Type::make_pointer_type(fatype);
8684 first_arg = fold_convert(fatype->get_tree(context->gogo()), first_arg);
8685 if (first_arg == error_mark_node
8686 || TREE_TYPE(first_arg) == error_mark_node)
8687 return error_mark_node;
8688 }
8689
8690 *first_arg_ptr = first_arg;
8691
8692 return bound_method->method()->get_tree(context);
8693 }
8694
8695 // Get the function and the first argument to use when calling an
8696 // interface method.
8697
8698 tree
8699 Call_expression::interface_method_function(
8700 Translate_context* context,
8701 Interface_field_reference_expression* interface_method,
8702 tree* first_arg_ptr)
8703 {
8704 tree expr = interface_method->expr()->get_tree(context);
8705 if (expr == error_mark_node)
8706 return error_mark_node;
8707 expr = save_expr(expr);
8708 tree first_arg = interface_method->get_underlying_object_tree(context, expr);
8709 if (first_arg == error_mark_node)
8710 return error_mark_node;
8711 *first_arg_ptr = first_arg;
8712 return interface_method->get_function_tree(context, expr);
8713 }
8714
8715 // Build the call expression.
8716
8717 tree
8718 Call_expression::do_get_tree(Translate_context* context)
8719 {
8720 if (this->tree_ != NULL_TREE)
8721 return this->tree_;
8722
8723 Function_type* fntype = this->get_function_type();
8724 if (fntype == NULL)
8725 return error_mark_node;
8726
8727 if (this->fn_->is_error_expression())
8728 return error_mark_node;
8729
8730 Gogo* gogo = context->gogo();
8731 source_location location = this->location();
8732
8733 Func_expression* func = this->fn_->func_expression();
8734 Bound_method_expression* bound_method = this->fn_->bound_method_expression();
8735 Interface_field_reference_expression* interface_method =
8736 this->fn_->interface_field_reference_expression();
8737 const bool has_closure = func != NULL && func->closure() != NULL;
8738 const bool is_method = bound_method != NULL || interface_method != NULL;
8739 gcc_assert(!fntype->is_method() || is_method);
8740
8741 int nargs;
8742 tree* args;
8743 if (this->args_ == NULL || this->args_->empty())
8744 {
8745 nargs = is_method ? 1 : 0;
8746 args = nargs == 0 ? NULL : new tree[nargs];
8747 }
8748 else
8749 {
8750 const Typed_identifier_list* params = fntype->parameters();
8751 gcc_assert(params != NULL);
8752
8753 nargs = this->args_->size();
8754 int i = is_method ? 1 : 0;
8755 nargs += i;
8756 args = new tree[nargs];
8757
8758 Typed_identifier_list::const_iterator pp = params->begin();
8759 Expression_list::const_iterator pe;
8760 for (pe = this->args_->begin();
8761 pe != this->args_->end();
8762 ++pe, ++pp, ++i)
8763 {
8764 gcc_assert(pp != params->end());
8765 tree arg_val = (*pe)->get_tree(context);
8766 args[i] = Expression::convert_for_assignment(context,
8767 pp->type(),
8768 (*pe)->type(),
8769 arg_val,
8770 location);
8771 if (args[i] == error_mark_node)
8772 {
8773 delete[] args;
8774 return error_mark_node;
8775 }
8776 }
8777 gcc_assert(pp == params->end());
8778 gcc_assert(i == nargs);
8779 }
8780
8781 tree rettype = TREE_TYPE(TREE_TYPE(fntype->get_tree(gogo)));
8782 if (rettype == error_mark_node)
8783 {
8784 delete[] args;
8785 return error_mark_node;
8786 }
8787
8788 tree fn;
8789 if (has_closure)
8790 fn = func->get_tree_without_closure(gogo);
8791 else if (!is_method)
8792 fn = this->fn_->get_tree(context);
8793 else if (bound_method != NULL)
8794 fn = this->bound_method_function(context, bound_method, &args[0]);
8795 else if (interface_method != NULL)
8796 fn = this->interface_method_function(context, interface_method, &args[0]);
8797 else
8798 gcc_unreachable();
8799
8800 if (fn == error_mark_node || TREE_TYPE(fn) == error_mark_node)
8801 {
8802 delete[] args;
8803 return error_mark_node;
8804 }
8805
8806 // This is to support builtin math functions when using 80387 math.
8807 tree fndecl = fn;
8808 if (TREE_CODE(fndecl) == ADDR_EXPR)
8809 fndecl = TREE_OPERAND(fndecl, 0);
8810 tree excess_type = NULL_TREE;
8811 if (DECL_P(fndecl)
8812 && DECL_IS_BUILTIN(fndecl)
8813 && DECL_BUILT_IN_CLASS(fndecl) == BUILT_IN_NORMAL
8814 && nargs > 0
8815 && ((SCALAR_FLOAT_TYPE_P(rettype)
8816 && SCALAR_FLOAT_TYPE_P(TREE_TYPE(args[0])))
8817 || (COMPLEX_FLOAT_TYPE_P(rettype)
8818 && COMPLEX_FLOAT_TYPE_P(TREE_TYPE(args[0])))))
8819 {
8820 excess_type = excess_precision_type(TREE_TYPE(args[0]));
8821 if (excess_type != NULL_TREE)
8822 {
8823 tree excess_fndecl = mathfn_built_in(excess_type,
8824 DECL_FUNCTION_CODE(fndecl));
8825 if (excess_fndecl == NULL_TREE)
8826 excess_type = NULL_TREE;
8827 else
8828 {
8829 fn = build_fold_addr_expr_loc(location, excess_fndecl);
8830 for (int i = 0; i < nargs; ++i)
8831 args[i] = ::convert(excess_type, args[i]);
8832 }
8833 }
8834 }
8835
8836 tree ret = build_call_array(excess_type != NULL_TREE ? excess_type : rettype,
8837 fn, nargs, args);
8838 delete[] args;
8839
8840 SET_EXPR_LOCATION(ret, location);
8841
8842 if (has_closure)
8843 {
8844 tree closure_tree = func->closure()->get_tree(context);
8845 if (closure_tree != error_mark_node)
8846 CALL_EXPR_STATIC_CHAIN(ret) = closure_tree;
8847 }
8848
8849 // If this is a recursive function type which returns itself, as in
8850 // type F func() F
8851 // we have used ptr_type_node for the return type. Add a cast here
8852 // to the correct type.
8853 if (TREE_TYPE(ret) == ptr_type_node)
8854 {
8855 tree t = this->type()->get_tree(gogo);
8856 ret = fold_convert_loc(location, t, ret);
8857 }
8858
8859 if (excess_type != NULL_TREE)
8860 {
8861 // Calling convert here can undo our excess precision change.
8862 // That may or may not be a bug in convert_to_real.
8863 ret = build1(NOP_EXPR, rettype, ret);
8864 }
8865
8866 // If there is more than one result, we will refer to the call
8867 // multiple times.
8868 if (fntype->results() != NULL && fntype->results()->size() > 1)
8869 ret = save_expr(ret);
8870
8871 this->tree_ = ret;
8872
8873 return ret;
8874 }
8875
8876 // Make a call expression.
8877
8878 Call_expression*
8879 Expression::make_call(Expression* fn, Expression_list* args, bool is_varargs,
8880 source_location location)
8881 {
8882 return new Call_expression(fn, args, is_varargs, location);
8883 }
8884
8885 // A single result from a call which returns multiple results.
8886
8887 class Call_result_expression : public Expression
8888 {
8889 public:
8890 Call_result_expression(Call_expression* call, unsigned int index)
8891 : Expression(EXPRESSION_CALL_RESULT, call->location()),
8892 call_(call), index_(index)
8893 { }
8894
8895 protected:
8896 int
8897 do_traverse(Traverse*);
8898
8899 Type*
8900 do_type();
8901
8902 void
8903 do_determine_type(const Type_context*);
8904
8905 void
8906 do_check_types(Gogo*);
8907
8908 Expression*
8909 do_copy()
8910 {
8911 return new Call_result_expression(this->call_->call_expression(),
8912 this->index_);
8913 }
8914
8915 bool
8916 do_must_eval_in_order() const
8917 { return true; }
8918
8919 tree
8920 do_get_tree(Translate_context*);
8921
8922 private:
8923 // The underlying call expression.
8924 Expression* call_;
8925 // Which result we want.
8926 unsigned int index_;
8927 };
8928
8929 // Traverse a call result.
8930
8931 int
8932 Call_result_expression::do_traverse(Traverse* traverse)
8933 {
8934 if (traverse->remember_expression(this->call_))
8935 {
8936 // We have already traversed the call expression.
8937 return TRAVERSE_CONTINUE;
8938 }
8939 return Expression::traverse(&this->call_, traverse);
8940 }
8941
8942 // Get the type.
8943
8944 Type*
8945 Call_result_expression::do_type()
8946 {
8947 if (this->classification() == EXPRESSION_ERROR)
8948 return Type::make_error_type();
8949
8950 // THIS->CALL_ can be replaced with a temporary reference due to
8951 // Call_expression::do_must_eval_in_order when there is an error.
8952 Call_expression* ce = this->call_->call_expression();
8953 if (ce == NULL)
8954 {
8955 this->set_is_error();
8956 return Type::make_error_type();
8957 }
8958 Function_type* fntype = ce->get_function_type();
8959 if (fntype == NULL)
8960 {
8961 this->set_is_error();
8962 return Type::make_error_type();
8963 }
8964 const Typed_identifier_list* results = fntype->results();
8965 if (results == NULL)
8966 {
8967 this->report_error(_("number of results does not match "
8968 "number of values"));
8969 return Type::make_error_type();
8970 }
8971 Typed_identifier_list::const_iterator pr = results->begin();
8972 for (unsigned int i = 0; i < this->index_; ++i)
8973 {
8974 if (pr == results->end())
8975 break;
8976 ++pr;
8977 }
8978 if (pr == results->end())
8979 {
8980 this->report_error(_("number of results does not match "
8981 "number of values"));
8982 return Type::make_error_type();
8983 }
8984 return pr->type();
8985 }
8986
8987 // Check the type. Just make sure that we trigger the warning in
8988 // do_type.
8989
8990 void
8991 Call_result_expression::do_check_types(Gogo*)
8992 {
8993 this->type();
8994 }
8995
8996 // Determine the type. We have nothing to do here, but the 0 result
8997 // needs to pass down to the caller.
8998
8999 void
9000 Call_result_expression::do_determine_type(const Type_context*)
9001 {
9002 if (this->index_ == 0)
9003 this->call_->determine_type_no_context();
9004 }
9005
9006 // Return the tree.
9007
9008 tree
9009 Call_result_expression::do_get_tree(Translate_context* context)
9010 {
9011 tree call_tree = this->call_->get_tree(context);
9012 if (call_tree == error_mark_node)
9013 return error_mark_node;
9014 if (TREE_CODE(TREE_TYPE(call_tree)) != RECORD_TYPE)
9015 {
9016 gcc_assert(saw_errors());
9017 return error_mark_node;
9018 }
9019 tree field = TYPE_FIELDS(TREE_TYPE(call_tree));
9020 for (unsigned int i = 0; i < this->index_; ++i)
9021 {
9022 gcc_assert(field != NULL_TREE);
9023 field = DECL_CHAIN(field);
9024 }
9025 gcc_assert(field != NULL_TREE);
9026 return build3(COMPONENT_REF, TREE_TYPE(field), call_tree, field, NULL_TREE);
9027 }
9028
9029 // Make a reference to a single result of a call which returns
9030 // multiple results.
9031
9032 Expression*
9033 Expression::make_call_result(Call_expression* call, unsigned int index)
9034 {
9035 return new Call_result_expression(call, index);
9036 }
9037
9038 // Class Index_expression.
9039
9040 // Traversal.
9041
9042 int
9043 Index_expression::do_traverse(Traverse* traverse)
9044 {
9045 if (Expression::traverse(&this->left_, traverse) == TRAVERSE_EXIT
9046 || Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT
9047 || (this->end_ != NULL
9048 && Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT))
9049 return TRAVERSE_EXIT;
9050 return TRAVERSE_CONTINUE;
9051 }
9052
9053 // Lower an index expression. This converts the generic index
9054 // expression into an array index, a string index, or a map index.
9055
9056 Expression*
9057 Index_expression::do_lower(Gogo*, Named_object*, int)
9058 {
9059 source_location location = this->location();
9060 Expression* left = this->left_;
9061 Expression* start = this->start_;
9062 Expression* end = this->end_;
9063
9064 Type* type = left->type();
9065 if (type->is_error_type())
9066 return Expression::make_error(location);
9067 else if (type->array_type() != NULL)
9068 return Expression::make_array_index(left, start, end, location);
9069 else if (type->points_to() != NULL
9070 && type->points_to()->array_type() != NULL
9071 && !type->points_to()->is_open_array_type())
9072 {
9073 Expression* deref = Expression::make_unary(OPERATOR_MULT, left,
9074 location);
9075 return Expression::make_array_index(deref, start, end, location);
9076 }
9077 else if (type->is_string_type())
9078 return Expression::make_string_index(left, start, end, location);
9079 else if (type->map_type() != NULL)
9080 {
9081 if (end != NULL)
9082 {
9083 error_at(location, "invalid slice of map");
9084 return Expression::make_error(location);
9085 }
9086 Map_index_expression* ret= Expression::make_map_index(left, start,
9087 location);
9088 if (this->is_lvalue_)
9089 ret->set_is_lvalue();
9090 return ret;
9091 }
9092 else
9093 {
9094 error_at(location,
9095 "attempt to index object which is not array, string, or map");
9096 return Expression::make_error(location);
9097 }
9098 }
9099
9100 // Make an index expression.
9101
9102 Expression*
9103 Expression::make_index(Expression* left, Expression* start, Expression* end,
9104 source_location location)
9105 {
9106 return new Index_expression(left, start, end, location);
9107 }
9108
9109 // An array index. This is used for both indexing and slicing.
9110
9111 class Array_index_expression : public Expression
9112 {
9113 public:
9114 Array_index_expression(Expression* array, Expression* start,
9115 Expression* end, source_location location)
9116 : Expression(EXPRESSION_ARRAY_INDEX, location),
9117 array_(array), start_(start), end_(end), type_(NULL)
9118 { }
9119
9120 protected:
9121 int
9122 do_traverse(Traverse*);
9123
9124 Type*
9125 do_type();
9126
9127 void
9128 do_determine_type(const Type_context*);
9129
9130 void
9131 do_check_types(Gogo*);
9132
9133 Expression*
9134 do_copy()
9135 {
9136 return Expression::make_array_index(this->array_->copy(),
9137 this->start_->copy(),
9138 (this->end_ == NULL
9139 ? NULL
9140 : this->end_->copy()),
9141 this->location());
9142 }
9143
9144 bool
9145 do_is_addressable() const;
9146
9147 void
9148 do_address_taken(bool escapes)
9149 { this->array_->address_taken(escapes); }
9150
9151 tree
9152 do_get_tree(Translate_context*);
9153
9154 private:
9155 // The array we are getting a value from.
9156 Expression* array_;
9157 // The start or only index.
9158 Expression* start_;
9159 // The end index of a slice. This may be NULL for a simple array
9160 // index, or it may be a nil expression for the length of the array.
9161 Expression* end_;
9162 // The type of the expression.
9163 Type* type_;
9164 };
9165
9166 // Array index traversal.
9167
9168 int
9169 Array_index_expression::do_traverse(Traverse* traverse)
9170 {
9171 if (Expression::traverse(&this->array_, traverse) == TRAVERSE_EXIT)
9172 return TRAVERSE_EXIT;
9173 if (Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT)
9174 return TRAVERSE_EXIT;
9175 if (this->end_ != NULL)
9176 {
9177 if (Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT)
9178 return TRAVERSE_EXIT;
9179 }
9180 return TRAVERSE_CONTINUE;
9181 }
9182
9183 // Return the type of an array index.
9184
9185 Type*
9186 Array_index_expression::do_type()
9187 {
9188 if (this->type_ == NULL)
9189 {
9190 Array_type* type = this->array_->type()->array_type();
9191 if (type == NULL)
9192 this->type_ = Type::make_error_type();
9193 else if (this->end_ == NULL)
9194 this->type_ = type->element_type();
9195 else if (type->is_open_array_type())
9196 {
9197 // A slice of a slice has the same type as the original
9198 // slice.
9199 this->type_ = this->array_->type()->deref();
9200 }
9201 else
9202 {
9203 // A slice of an array is a slice.
9204 this->type_ = Type::make_array_type(type->element_type(), NULL);
9205 }
9206 }
9207 return this->type_;
9208 }
9209
9210 // Set the type of an array index.
9211
9212 void
9213 Array_index_expression::do_determine_type(const Type_context*)
9214 {
9215 this->array_->determine_type_no_context();
9216 Type_context subcontext(NULL, true);
9217 this->start_->determine_type(&subcontext);
9218 if (this->end_ != NULL)
9219 this->end_->determine_type(&subcontext);
9220 }
9221
9222 // Check types of an array index.
9223
9224 void
9225 Array_index_expression::do_check_types(Gogo*)
9226 {
9227 if (this->start_->type()->integer_type() == NULL)
9228 this->report_error(_("index must be integer"));
9229 if (this->end_ != NULL
9230 && this->end_->type()->integer_type() == NULL
9231 && !this->end_->is_nil_expression())
9232 this->report_error(_("slice end must be integer"));
9233
9234 Array_type* array_type = this->array_->type()->array_type();
9235 if (array_type == NULL)
9236 {
9237 gcc_assert(this->array_->type()->is_error_type());
9238 return;
9239 }
9240
9241 unsigned int int_bits =
9242 Type::lookup_integer_type("int")->integer_type()->bits();
9243
9244 Type* dummy;
9245 mpz_t lval;
9246 mpz_init(lval);
9247 bool lval_valid = (array_type->length() != NULL
9248 && array_type->length()->integer_constant_value(true,
9249 lval,
9250 &dummy));
9251 mpz_t ival;
9252 mpz_init(ival);
9253 if (this->start_->integer_constant_value(true, ival, &dummy))
9254 {
9255 if (mpz_sgn(ival) < 0
9256 || mpz_sizeinbase(ival, 2) >= int_bits
9257 || (lval_valid
9258 && (this->end_ == NULL
9259 ? mpz_cmp(ival, lval) >= 0
9260 : mpz_cmp(ival, lval) > 0)))
9261 {
9262 error_at(this->start_->location(), "array index out of bounds");
9263 this->set_is_error();
9264 }
9265 }
9266 if (this->end_ != NULL && !this->end_->is_nil_expression())
9267 {
9268 if (this->end_->integer_constant_value(true, ival, &dummy))
9269 {
9270 if (mpz_sgn(ival) < 0
9271 || mpz_sizeinbase(ival, 2) >= int_bits
9272 || (lval_valid && mpz_cmp(ival, lval) > 0))
9273 {
9274 error_at(this->end_->location(), "array index out of bounds");
9275 this->set_is_error();
9276 }
9277 }
9278 }
9279 mpz_clear(ival);
9280 mpz_clear(lval);
9281
9282 // A slice of an array requires an addressable array. A slice of a
9283 // slice is always possible.
9284 if (this->end_ != NULL
9285 && !array_type->is_open_array_type()
9286 && !this->array_->is_addressable())
9287 this->report_error(_("array is not addressable"));
9288 }
9289
9290 // Return whether this expression is addressable.
9291
9292 bool
9293 Array_index_expression::do_is_addressable() const
9294 {
9295 // A slice expression is not addressable.
9296 if (this->end_ != NULL)
9297 return false;
9298
9299 // An index into a slice is addressable.
9300 if (this->array_->type()->is_open_array_type())
9301 return true;
9302
9303 // An index into an array is addressable if the array is
9304 // addressable.
9305 return this->array_->is_addressable();
9306 }
9307
9308 // Get a tree for an array index.
9309
9310 tree
9311 Array_index_expression::do_get_tree(Translate_context* context)
9312 {
9313 Gogo* gogo = context->gogo();
9314 source_location loc = this->location();
9315
9316 Array_type* array_type = this->array_->type()->array_type();
9317 if (array_type == NULL)
9318 {
9319 gcc_assert(this->array_->type()->is_error_type());
9320 return error_mark_node;
9321 }
9322
9323 tree type_tree = array_type->get_tree(gogo);
9324 if (type_tree == error_mark_node)
9325 return error_mark_node;
9326
9327 tree array_tree = this->array_->get_tree(context);
9328 if (array_tree == error_mark_node)
9329 return error_mark_node;
9330
9331 if (array_type->length() == NULL && !DECL_P(array_tree))
9332 array_tree = save_expr(array_tree);
9333 tree length_tree = array_type->length_tree(gogo, array_tree);
9334 if (length_tree == error_mark_node)
9335 return error_mark_node;
9336 length_tree = save_expr(length_tree);
9337 tree length_type = TREE_TYPE(length_tree);
9338
9339 tree bad_index = boolean_false_node;
9340
9341 tree start_tree = this->start_->get_tree(context);
9342 if (start_tree == error_mark_node)
9343 return error_mark_node;
9344 if (!DECL_P(start_tree))
9345 start_tree = save_expr(start_tree);
9346 if (!INTEGRAL_TYPE_P(TREE_TYPE(start_tree)))
9347 start_tree = convert_to_integer(length_type, start_tree);
9348
9349 bad_index = Expression::check_bounds(start_tree, length_type, bad_index,
9350 loc);
9351
9352 start_tree = fold_convert_loc(loc, length_type, start_tree);
9353 bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node, bad_index,
9354 fold_build2_loc(loc,
9355 (this->end_ == NULL
9356 ? GE_EXPR
9357 : GT_EXPR),
9358 boolean_type_node, start_tree,
9359 length_tree));
9360
9361 int code = (array_type->length() != NULL
9362 ? (this->end_ == NULL
9363 ? RUNTIME_ERROR_ARRAY_INDEX_OUT_OF_BOUNDS
9364 : RUNTIME_ERROR_ARRAY_SLICE_OUT_OF_BOUNDS)
9365 : (this->end_ == NULL
9366 ? RUNTIME_ERROR_SLICE_INDEX_OUT_OF_BOUNDS
9367 : RUNTIME_ERROR_SLICE_SLICE_OUT_OF_BOUNDS));
9368 tree crash = Gogo::runtime_error(code, loc);
9369
9370 if (this->end_ == NULL)
9371 {
9372 // Simple array indexing. This has to return an l-value, so
9373 // wrap the index check into START_TREE.
9374 start_tree = build2(COMPOUND_EXPR, TREE_TYPE(start_tree),
9375 build3(COND_EXPR, void_type_node,
9376 bad_index, crash, NULL_TREE),
9377 start_tree);
9378 start_tree = fold_convert_loc(loc, sizetype, start_tree);
9379
9380 if (array_type->length() != NULL)
9381 {
9382 // Fixed array.
9383 return build4(ARRAY_REF, TREE_TYPE(type_tree), array_tree,
9384 start_tree, NULL_TREE, NULL_TREE);
9385 }
9386 else
9387 {
9388 // Open array.
9389 tree values = array_type->value_pointer_tree(gogo, array_tree);
9390 tree element_type_tree = array_type->element_type()->get_tree(gogo);
9391 if (element_type_tree == error_mark_node)
9392 return error_mark_node;
9393 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
9394 tree offset = fold_build2_loc(loc, MULT_EXPR, sizetype,
9395 start_tree, element_size);
9396 tree ptr = fold_build2_loc(loc, POINTER_PLUS_EXPR,
9397 TREE_TYPE(values), values, offset);
9398 return build_fold_indirect_ref(ptr);
9399 }
9400 }
9401
9402 // Array slice.
9403
9404 tree capacity_tree = array_type->capacity_tree(gogo, array_tree);
9405 if (capacity_tree == error_mark_node)
9406 return error_mark_node;
9407 capacity_tree = fold_convert_loc(loc, length_type, capacity_tree);
9408
9409 tree end_tree;
9410 if (this->end_->is_nil_expression())
9411 end_tree = length_tree;
9412 else
9413 {
9414 end_tree = this->end_->get_tree(context);
9415 if (end_tree == error_mark_node)
9416 return error_mark_node;
9417 if (!DECL_P(end_tree))
9418 end_tree = save_expr(end_tree);
9419 if (!INTEGRAL_TYPE_P(TREE_TYPE(end_tree)))
9420 end_tree = convert_to_integer(length_type, end_tree);
9421
9422 bad_index = Expression::check_bounds(end_tree, length_type, bad_index,
9423 loc);
9424
9425 end_tree = fold_convert_loc(loc, length_type, end_tree);
9426
9427 capacity_tree = save_expr(capacity_tree);
9428 tree bad_end = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
9429 fold_build2_loc(loc, LT_EXPR,
9430 boolean_type_node,
9431 end_tree, start_tree),
9432 fold_build2_loc(loc, GT_EXPR,
9433 boolean_type_node,
9434 end_tree, capacity_tree));
9435 bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
9436 bad_index, bad_end);
9437 }
9438
9439 tree element_type_tree = array_type->element_type()->get_tree(gogo);
9440 if (element_type_tree == error_mark_node)
9441 return error_mark_node;
9442 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
9443
9444 tree offset = fold_build2_loc(loc, MULT_EXPR, sizetype,
9445 fold_convert_loc(loc, sizetype, start_tree),
9446 element_size);
9447
9448 tree value_pointer = array_type->value_pointer_tree(gogo, array_tree);
9449 if (value_pointer == error_mark_node)
9450 return error_mark_node;
9451
9452 value_pointer = fold_build2_loc(loc, POINTER_PLUS_EXPR,
9453 TREE_TYPE(value_pointer),
9454 value_pointer, offset);
9455
9456 tree result_length_tree = fold_build2_loc(loc, MINUS_EXPR, length_type,
9457 end_tree, start_tree);
9458
9459 tree result_capacity_tree = fold_build2_loc(loc, MINUS_EXPR, length_type,
9460 capacity_tree, start_tree);
9461
9462 tree struct_tree = this->type()->get_tree(gogo);
9463 gcc_assert(TREE_CODE(struct_tree) == RECORD_TYPE);
9464
9465 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
9466
9467 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
9468 tree field = TYPE_FIELDS(struct_tree);
9469 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
9470 elt->index = field;
9471 elt->value = value_pointer;
9472
9473 elt = VEC_quick_push(constructor_elt, init, NULL);
9474 field = DECL_CHAIN(field);
9475 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
9476 elt->index = field;
9477 elt->value = fold_convert_loc(loc, TREE_TYPE(field), result_length_tree);
9478
9479 elt = VEC_quick_push(constructor_elt, init, NULL);
9480 field = DECL_CHAIN(field);
9481 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__capacity") == 0);
9482 elt->index = field;
9483 elt->value = fold_convert_loc(loc, TREE_TYPE(field), result_capacity_tree);
9484
9485 tree constructor = build_constructor(struct_tree, init);
9486
9487 if (TREE_CONSTANT(value_pointer)
9488 && TREE_CONSTANT(result_length_tree)
9489 && TREE_CONSTANT(result_capacity_tree))
9490 TREE_CONSTANT(constructor) = 1;
9491
9492 return fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(constructor),
9493 build3(COND_EXPR, void_type_node,
9494 bad_index, crash, NULL_TREE),
9495 constructor);
9496 }
9497
9498 // Make an array index expression. END may be NULL.
9499
9500 Expression*
9501 Expression::make_array_index(Expression* array, Expression* start,
9502 Expression* end, source_location location)
9503 {
9504 // Taking a slice of a composite literal requires moving the literal
9505 // onto the heap.
9506 if (end != NULL && array->is_composite_literal())
9507 {
9508 array = Expression::make_heap_composite(array, location);
9509 array = Expression::make_unary(OPERATOR_MULT, array, location);
9510 }
9511 return new Array_index_expression(array, start, end, location);
9512 }
9513
9514 // A string index. This is used for both indexing and slicing.
9515
9516 class String_index_expression : public Expression
9517 {
9518 public:
9519 String_index_expression(Expression* string, Expression* start,
9520 Expression* end, source_location location)
9521 : Expression(EXPRESSION_STRING_INDEX, location),
9522 string_(string), start_(start), end_(end)
9523 { }
9524
9525 protected:
9526 int
9527 do_traverse(Traverse*);
9528
9529 Type*
9530 do_type();
9531
9532 void
9533 do_determine_type(const Type_context*);
9534
9535 void
9536 do_check_types(Gogo*);
9537
9538 Expression*
9539 do_copy()
9540 {
9541 return Expression::make_string_index(this->string_->copy(),
9542 this->start_->copy(),
9543 (this->end_ == NULL
9544 ? NULL
9545 : this->end_->copy()),
9546 this->location());
9547 }
9548
9549 tree
9550 do_get_tree(Translate_context*);
9551
9552 private:
9553 // The string we are getting a value from.
9554 Expression* string_;
9555 // The start or only index.
9556 Expression* start_;
9557 // The end index of a slice. This may be NULL for a single index,
9558 // or it may be a nil expression for the length of the string.
9559 Expression* end_;
9560 };
9561
9562 // String index traversal.
9563
9564 int
9565 String_index_expression::do_traverse(Traverse* traverse)
9566 {
9567 if (Expression::traverse(&this->string_, traverse) == TRAVERSE_EXIT)
9568 return TRAVERSE_EXIT;
9569 if (Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT)
9570 return TRAVERSE_EXIT;
9571 if (this->end_ != NULL)
9572 {
9573 if (Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT)
9574 return TRAVERSE_EXIT;
9575 }
9576 return TRAVERSE_CONTINUE;
9577 }
9578
9579 // Return the type of a string index.
9580
9581 Type*
9582 String_index_expression::do_type()
9583 {
9584 if (this->end_ == NULL)
9585 return Type::lookup_integer_type("uint8");
9586 else
9587 return this->string_->type();
9588 }
9589
9590 // Determine the type of a string index.
9591
9592 void
9593 String_index_expression::do_determine_type(const Type_context*)
9594 {
9595 this->string_->determine_type_no_context();
9596 Type_context subcontext(NULL, true);
9597 this->start_->determine_type(&subcontext);
9598 if (this->end_ != NULL)
9599 this->end_->determine_type(&subcontext);
9600 }
9601
9602 // Check types of a string index.
9603
9604 void
9605 String_index_expression::do_check_types(Gogo*)
9606 {
9607 if (this->start_->type()->integer_type() == NULL)
9608 this->report_error(_("index must be integer"));
9609 if (this->end_ != NULL
9610 && this->end_->type()->integer_type() == NULL
9611 && !this->end_->is_nil_expression())
9612 this->report_error(_("slice end must be integer"));
9613
9614 std::string sval;
9615 bool sval_valid = this->string_->string_constant_value(&sval);
9616
9617 mpz_t ival;
9618 mpz_init(ival);
9619 Type* dummy;
9620 if (this->start_->integer_constant_value(true, ival, &dummy))
9621 {
9622 if (mpz_sgn(ival) < 0
9623 || (sval_valid && mpz_cmp_ui(ival, sval.length()) >= 0))
9624 {
9625 error_at(this->start_->location(), "string index out of bounds");
9626 this->set_is_error();
9627 }
9628 }
9629 if (this->end_ != NULL && !this->end_->is_nil_expression())
9630 {
9631 if (this->end_->integer_constant_value(true, ival, &dummy))
9632 {
9633 if (mpz_sgn(ival) < 0
9634 || (sval_valid && mpz_cmp_ui(ival, sval.length()) > 0))
9635 {
9636 error_at(this->end_->location(), "string index out of bounds");
9637 this->set_is_error();
9638 }
9639 }
9640 }
9641 mpz_clear(ival);
9642 }
9643
9644 // Get a tree for a string index.
9645
9646 tree
9647 String_index_expression::do_get_tree(Translate_context* context)
9648 {
9649 source_location loc = this->location();
9650
9651 tree string_tree = this->string_->get_tree(context);
9652 if (string_tree == error_mark_node)
9653 return error_mark_node;
9654
9655 if (this->string_->type()->points_to() != NULL)
9656 string_tree = build_fold_indirect_ref(string_tree);
9657 if (!DECL_P(string_tree))
9658 string_tree = save_expr(string_tree);
9659 tree string_type = TREE_TYPE(string_tree);
9660
9661 tree length_tree = String_type::length_tree(context->gogo(), string_tree);
9662 length_tree = save_expr(length_tree);
9663 tree length_type = TREE_TYPE(length_tree);
9664
9665 tree bad_index = boolean_false_node;
9666
9667 tree start_tree = this->start_->get_tree(context);
9668 if (start_tree == error_mark_node)
9669 return error_mark_node;
9670 if (!DECL_P(start_tree))
9671 start_tree = save_expr(start_tree);
9672 if (!INTEGRAL_TYPE_P(TREE_TYPE(start_tree)))
9673 start_tree = convert_to_integer(length_type, start_tree);
9674
9675 bad_index = Expression::check_bounds(start_tree, length_type, bad_index,
9676 loc);
9677
9678 start_tree = fold_convert_loc(loc, length_type, start_tree);
9679
9680 int code = (this->end_ == NULL
9681 ? RUNTIME_ERROR_STRING_INDEX_OUT_OF_BOUNDS
9682 : RUNTIME_ERROR_STRING_SLICE_OUT_OF_BOUNDS);
9683 tree crash = Gogo::runtime_error(code, loc);
9684
9685 if (this->end_ == NULL)
9686 {
9687 bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
9688 bad_index,
9689 fold_build2_loc(loc, GE_EXPR,
9690 boolean_type_node,
9691 start_tree, length_tree));
9692
9693 tree bytes_tree = String_type::bytes_tree(context->gogo(), string_tree);
9694 tree ptr = fold_build2_loc(loc, POINTER_PLUS_EXPR, TREE_TYPE(bytes_tree),
9695 bytes_tree,
9696 fold_convert_loc(loc, sizetype, start_tree));
9697 tree index = build_fold_indirect_ref_loc(loc, ptr);
9698
9699 return build2(COMPOUND_EXPR, TREE_TYPE(index),
9700 build3(COND_EXPR, void_type_node,
9701 bad_index, crash, NULL_TREE),
9702 index);
9703 }
9704 else
9705 {
9706 tree end_tree;
9707 if (this->end_->is_nil_expression())
9708 end_tree = build_int_cst(length_type, -1);
9709 else
9710 {
9711 end_tree = this->end_->get_tree(context);
9712 if (end_tree == error_mark_node)
9713 return error_mark_node;
9714 if (!DECL_P(end_tree))
9715 end_tree = save_expr(end_tree);
9716 if (!INTEGRAL_TYPE_P(TREE_TYPE(end_tree)))
9717 end_tree = convert_to_integer(length_type, end_tree);
9718
9719 bad_index = Expression::check_bounds(end_tree, length_type,
9720 bad_index, loc);
9721
9722 end_tree = fold_convert_loc(loc, length_type, end_tree);
9723 }
9724
9725 static tree strslice_fndecl;
9726 tree ret = Gogo::call_builtin(&strslice_fndecl,
9727 loc,
9728 "__go_string_slice",
9729 3,
9730 string_type,
9731 string_type,
9732 string_tree,
9733 length_type,
9734 start_tree,
9735 length_type,
9736 end_tree);
9737 if (ret == error_mark_node)
9738 return error_mark_node;
9739 // This will panic if the bounds are out of range for the
9740 // string.
9741 TREE_NOTHROW(strslice_fndecl) = 0;
9742
9743 if (bad_index == boolean_false_node)
9744 return ret;
9745 else
9746 return build2(COMPOUND_EXPR, TREE_TYPE(ret),
9747 build3(COND_EXPR, void_type_node,
9748 bad_index, crash, NULL_TREE),
9749 ret);
9750 }
9751 }
9752
9753 // Make a string index expression. END may be NULL.
9754
9755 Expression*
9756 Expression::make_string_index(Expression* string, Expression* start,
9757 Expression* end, source_location location)
9758 {
9759 return new String_index_expression(string, start, end, location);
9760 }
9761
9762 // Class Map_index.
9763
9764 // Get the type of the map.
9765
9766 Map_type*
9767 Map_index_expression::get_map_type() const
9768 {
9769 Map_type* mt = this->map_->type()->deref()->map_type();
9770 if (mt == NULL)
9771 gcc_assert(saw_errors());
9772 return mt;
9773 }
9774
9775 // Map index traversal.
9776
9777 int
9778 Map_index_expression::do_traverse(Traverse* traverse)
9779 {
9780 if (Expression::traverse(&this->map_, traverse) == TRAVERSE_EXIT)
9781 return TRAVERSE_EXIT;
9782 return Expression::traverse(&this->index_, traverse);
9783 }
9784
9785 // Return the type of a map index.
9786
9787 Type*
9788 Map_index_expression::do_type()
9789 {
9790 Map_type* mt = this->get_map_type();
9791 if (mt == NULL)
9792 return Type::make_error_type();
9793 Type* type = mt->val_type();
9794 // If this map index is in a tuple assignment, we actually return a
9795 // pointer to the value type. Tuple_map_assignment_statement is
9796 // responsible for handling this correctly. We need to get the type
9797 // right in case this gets assigned to a temporary variable.
9798 if (this->is_in_tuple_assignment_)
9799 type = Type::make_pointer_type(type);
9800 return type;
9801 }
9802
9803 // Fix the type of a map index.
9804
9805 void
9806 Map_index_expression::do_determine_type(const Type_context*)
9807 {
9808 this->map_->determine_type_no_context();
9809 Map_type* mt = this->get_map_type();
9810 Type* key_type = mt == NULL ? NULL : mt->key_type();
9811 Type_context subcontext(key_type, false);
9812 this->index_->determine_type(&subcontext);
9813 }
9814
9815 // Check types of a map index.
9816
9817 void
9818 Map_index_expression::do_check_types(Gogo*)
9819 {
9820 std::string reason;
9821 Map_type* mt = this->get_map_type();
9822 if (mt == NULL)
9823 return;
9824 if (!Type::are_assignable(mt->key_type(), this->index_->type(), &reason))
9825 {
9826 if (reason.empty())
9827 this->report_error(_("incompatible type for map index"));
9828 else
9829 {
9830 error_at(this->location(), "incompatible type for map index (%s)",
9831 reason.c_str());
9832 this->set_is_error();
9833 }
9834 }
9835 }
9836
9837 // Get a tree for a map index.
9838
9839 tree
9840 Map_index_expression::do_get_tree(Translate_context* context)
9841 {
9842 Map_type* type = this->get_map_type();
9843 if (type == NULL)
9844 return error_mark_node;
9845
9846 tree valptr = this->get_value_pointer(context, this->is_lvalue_);
9847 if (valptr == error_mark_node)
9848 return error_mark_node;
9849 valptr = save_expr(valptr);
9850
9851 tree val_type_tree = TREE_TYPE(TREE_TYPE(valptr));
9852
9853 if (this->is_lvalue_)
9854 return build_fold_indirect_ref(valptr);
9855 else if (this->is_in_tuple_assignment_)
9856 {
9857 // Tuple_map_assignment_statement is responsible for using this
9858 // appropriately.
9859 return valptr;
9860 }
9861 else
9862 {
9863 return fold_build3(COND_EXPR, val_type_tree,
9864 fold_build2(EQ_EXPR, boolean_type_node, valptr,
9865 fold_convert(TREE_TYPE(valptr),
9866 null_pointer_node)),
9867 type->val_type()->get_init_tree(context->gogo(),
9868 false),
9869 build_fold_indirect_ref(valptr));
9870 }
9871 }
9872
9873 // Get a tree for the map index. This returns a tree which evaluates
9874 // to a pointer to a value. The pointer will be NULL if the key is
9875 // not in the map.
9876
9877 tree
9878 Map_index_expression::get_value_pointer(Translate_context* context,
9879 bool insert)
9880 {
9881 Map_type* type = this->get_map_type();
9882 if (type == NULL)
9883 return error_mark_node;
9884
9885 tree map_tree = this->map_->get_tree(context);
9886 tree index_tree = this->index_->get_tree(context);
9887 index_tree = Expression::convert_for_assignment(context, type->key_type(),
9888 this->index_->type(),
9889 index_tree,
9890 this->location());
9891 if (map_tree == error_mark_node || index_tree == error_mark_node)
9892 return error_mark_node;
9893
9894 if (this->map_->type()->points_to() != NULL)
9895 map_tree = build_fold_indirect_ref(map_tree);
9896
9897 // We need to pass in a pointer to the key, so stuff it into a
9898 // variable.
9899 tree tmp = create_tmp_var(TREE_TYPE(index_tree), get_name(index_tree));
9900 DECL_IGNORED_P(tmp) = 0;
9901 DECL_INITIAL(tmp) = index_tree;
9902 tree make_tmp = build1(DECL_EXPR, void_type_node, tmp);
9903 tree tmpref = fold_convert(const_ptr_type_node, build_fold_addr_expr(tmp));
9904 TREE_ADDRESSABLE(tmp) = 1;
9905
9906 static tree map_index_fndecl;
9907 tree call = Gogo::call_builtin(&map_index_fndecl,
9908 this->location(),
9909 "__go_map_index",
9910 3,
9911 const_ptr_type_node,
9912 TREE_TYPE(map_tree),
9913 map_tree,
9914 const_ptr_type_node,
9915 tmpref,
9916 boolean_type_node,
9917 (insert
9918 ? boolean_true_node
9919 : boolean_false_node));
9920 if (call == error_mark_node)
9921 return error_mark_node;
9922 // This can panic on a map of interface type if the interface holds
9923 // an uncomparable or unhashable type.
9924 TREE_NOTHROW(map_index_fndecl) = 0;
9925
9926 tree val_type_tree = type->val_type()->get_tree(context->gogo());
9927 if (val_type_tree == error_mark_node)
9928 return error_mark_node;
9929 tree ptr_val_type_tree = build_pointer_type(val_type_tree);
9930
9931 return build2(COMPOUND_EXPR, ptr_val_type_tree,
9932 make_tmp,
9933 fold_convert(ptr_val_type_tree, call));
9934 }
9935
9936 // Make a map index expression.
9937
9938 Map_index_expression*
9939 Expression::make_map_index(Expression* map, Expression* index,
9940 source_location location)
9941 {
9942 return new Map_index_expression(map, index, location);
9943 }
9944
9945 // Class Field_reference_expression.
9946
9947 // Return the type of a field reference.
9948
9949 Type*
9950 Field_reference_expression::do_type()
9951 {
9952 Type* type = this->expr_->type();
9953 if (type->is_error_type())
9954 return type;
9955 Struct_type* struct_type = type->struct_type();
9956 gcc_assert(struct_type != NULL);
9957 return struct_type->field(this->field_index_)->type();
9958 }
9959
9960 // Check the types for a field reference.
9961
9962 void
9963 Field_reference_expression::do_check_types(Gogo*)
9964 {
9965 Type* type = this->expr_->type();
9966 if (type->is_error_type())
9967 return;
9968 Struct_type* struct_type = type->struct_type();
9969 gcc_assert(struct_type != NULL);
9970 gcc_assert(struct_type->field(this->field_index_) != NULL);
9971 }
9972
9973 // Get a tree for a field reference.
9974
9975 tree
9976 Field_reference_expression::do_get_tree(Translate_context* context)
9977 {
9978 tree struct_tree = this->expr_->get_tree(context);
9979 if (struct_tree == error_mark_node
9980 || TREE_TYPE(struct_tree) == error_mark_node)
9981 return error_mark_node;
9982 gcc_assert(TREE_CODE(TREE_TYPE(struct_tree)) == RECORD_TYPE);
9983 tree field = TYPE_FIELDS(TREE_TYPE(struct_tree));
9984 if (field == NULL_TREE)
9985 {
9986 // This can happen for a type which refers to itself indirectly
9987 // and then turns out to be erroneous.
9988 gcc_assert(saw_errors());
9989 return error_mark_node;
9990 }
9991 for (unsigned int i = this->field_index_; i > 0; --i)
9992 {
9993 field = DECL_CHAIN(field);
9994 gcc_assert(field != NULL_TREE);
9995 }
9996 if (TREE_TYPE(field) == error_mark_node)
9997 return error_mark_node;
9998 return build3(COMPONENT_REF, TREE_TYPE(field), struct_tree, field,
9999 NULL_TREE);
10000 }
10001
10002 // Make a reference to a qualified identifier in an expression.
10003
10004 Field_reference_expression*
10005 Expression::make_field_reference(Expression* expr, unsigned int field_index,
10006 source_location location)
10007 {
10008 return new Field_reference_expression(expr, field_index, location);
10009 }
10010
10011 // Class Interface_field_reference_expression.
10012
10013 // Return a tree for the pointer to the function to call.
10014
10015 tree
10016 Interface_field_reference_expression::get_function_tree(Translate_context*,
10017 tree expr)
10018 {
10019 if (this->expr_->type()->points_to() != NULL)
10020 expr = build_fold_indirect_ref(expr);
10021
10022 tree expr_type = TREE_TYPE(expr);
10023 gcc_assert(TREE_CODE(expr_type) == RECORD_TYPE);
10024
10025 tree field = TYPE_FIELDS(expr_type);
10026 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods") == 0);
10027
10028 tree table = build3(COMPONENT_REF, TREE_TYPE(field), expr, field, NULL_TREE);
10029 gcc_assert(POINTER_TYPE_P(TREE_TYPE(table)));
10030
10031 table = build_fold_indirect_ref(table);
10032 gcc_assert(TREE_CODE(TREE_TYPE(table)) == RECORD_TYPE);
10033
10034 std::string name = Gogo::unpack_hidden_name(this->name_);
10035 for (field = DECL_CHAIN(TYPE_FIELDS(TREE_TYPE(table)));
10036 field != NULL_TREE;
10037 field = DECL_CHAIN(field))
10038 {
10039 if (name == IDENTIFIER_POINTER(DECL_NAME(field)))
10040 break;
10041 }
10042 gcc_assert(field != NULL_TREE);
10043
10044 return build3(COMPONENT_REF, TREE_TYPE(field), table, field, NULL_TREE);
10045 }
10046
10047 // Return a tree for the first argument to pass to the interface
10048 // function.
10049
10050 tree
10051 Interface_field_reference_expression::get_underlying_object_tree(
10052 Translate_context*,
10053 tree expr)
10054 {
10055 if (this->expr_->type()->points_to() != NULL)
10056 expr = build_fold_indirect_ref(expr);
10057
10058 tree expr_type = TREE_TYPE(expr);
10059 gcc_assert(TREE_CODE(expr_type) == RECORD_TYPE);
10060
10061 tree field = DECL_CHAIN(TYPE_FIELDS(expr_type));
10062 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
10063
10064 return build3(COMPONENT_REF, TREE_TYPE(field), expr, field, NULL_TREE);
10065 }
10066
10067 // Traversal.
10068
10069 int
10070 Interface_field_reference_expression::do_traverse(Traverse* traverse)
10071 {
10072 return Expression::traverse(&this->expr_, traverse);
10073 }
10074
10075 // Return the type of an interface field reference.
10076
10077 Type*
10078 Interface_field_reference_expression::do_type()
10079 {
10080 Type* expr_type = this->expr_->type();
10081
10082 Type* points_to = expr_type->points_to();
10083 if (points_to != NULL)
10084 expr_type = points_to;
10085
10086 Interface_type* interface_type = expr_type->interface_type();
10087 if (interface_type == NULL)
10088 return Type::make_error_type();
10089
10090 const Typed_identifier* method = interface_type->find_method(this->name_);
10091 if (method == NULL)
10092 return Type::make_error_type();
10093
10094 return method->type();
10095 }
10096
10097 // Determine types.
10098
10099 void
10100 Interface_field_reference_expression::do_determine_type(const Type_context*)
10101 {
10102 this->expr_->determine_type_no_context();
10103 }
10104
10105 // Check the types for an interface field reference.
10106
10107 void
10108 Interface_field_reference_expression::do_check_types(Gogo*)
10109 {
10110 Type* type = this->expr_->type();
10111
10112 Type* points_to = type->points_to();
10113 if (points_to != NULL)
10114 type = points_to;
10115
10116 Interface_type* interface_type = type->interface_type();
10117 if (interface_type == NULL)
10118 this->report_error(_("expected interface or pointer to interface"));
10119 else
10120 {
10121 const Typed_identifier* method =
10122 interface_type->find_method(this->name_);
10123 if (method == NULL)
10124 {
10125 error_at(this->location(), "method %qs not in interface",
10126 Gogo::message_name(this->name_).c_str());
10127 this->set_is_error();
10128 }
10129 }
10130 }
10131
10132 // Get a tree for a reference to a field in an interface. There is no
10133 // standard tree type representation for this: it's a function
10134 // attached to its first argument, like a Bound_method_expression.
10135 // The only places it may currently be used are in a Call_expression
10136 // or a Go_statement, which will take it apart directly. So this has
10137 // nothing to do at present.
10138
10139 tree
10140 Interface_field_reference_expression::do_get_tree(Translate_context*)
10141 {
10142 gcc_unreachable();
10143 }
10144
10145 // Make a reference to a field in an interface.
10146
10147 Expression*
10148 Expression::make_interface_field_reference(Expression* expr,
10149 const std::string& field,
10150 source_location location)
10151 {
10152 return new Interface_field_reference_expression(expr, field, location);
10153 }
10154
10155 // A general selector. This is a Parser_expression for LEFT.NAME. It
10156 // is lowered after we know the type of the left hand side.
10157
10158 class Selector_expression : public Parser_expression
10159 {
10160 public:
10161 Selector_expression(Expression* left, const std::string& name,
10162 source_location location)
10163 : Parser_expression(EXPRESSION_SELECTOR, location),
10164 left_(left), name_(name)
10165 { }
10166
10167 protected:
10168 int
10169 do_traverse(Traverse* traverse)
10170 { return Expression::traverse(&this->left_, traverse); }
10171
10172 Expression*
10173 do_lower(Gogo*, Named_object*, int);
10174
10175 Expression*
10176 do_copy()
10177 {
10178 return new Selector_expression(this->left_->copy(), this->name_,
10179 this->location());
10180 }
10181
10182 private:
10183 Expression*
10184 lower_method_expression(Gogo*);
10185
10186 // The expression on the left hand side.
10187 Expression* left_;
10188 // The name on the right hand side.
10189 std::string name_;
10190 };
10191
10192 // Lower a selector expression once we know the real type of the left
10193 // hand side.
10194
10195 Expression*
10196 Selector_expression::do_lower(Gogo* gogo, Named_object*, int)
10197 {
10198 Expression* left = this->left_;
10199 if (left->is_type_expression())
10200 return this->lower_method_expression(gogo);
10201 return Type::bind_field_or_method(gogo, left->type(), left, this->name_,
10202 this->location());
10203 }
10204
10205 // Lower a method expression T.M or (*T).M. We turn this into a
10206 // function literal.
10207
10208 Expression*
10209 Selector_expression::lower_method_expression(Gogo* gogo)
10210 {
10211 source_location location = this->location();
10212 Type* type = this->left_->type();
10213 const std::string& name(this->name_);
10214
10215 bool is_pointer;
10216 if (type->points_to() == NULL)
10217 is_pointer = false;
10218 else
10219 {
10220 is_pointer = true;
10221 type = type->points_to();
10222 }
10223 Named_type* nt = type->named_type();
10224 if (nt == NULL)
10225 {
10226 error_at(location,
10227 ("method expression requires named type or "
10228 "pointer to named type"));
10229 return Expression::make_error(location);
10230 }
10231
10232 bool is_ambiguous;
10233 Method* method = nt->method_function(name, &is_ambiguous);
10234 if (method == NULL)
10235 {
10236 if (!is_ambiguous)
10237 error_at(location, "type %<%s%> has no method %<%s%>",
10238 nt->message_name().c_str(),
10239 Gogo::message_name(name).c_str());
10240 else
10241 error_at(location, "method %<%s%> is ambiguous in type %<%s%>",
10242 Gogo::message_name(name).c_str(),
10243 nt->message_name().c_str());
10244 return Expression::make_error(location);
10245 }
10246
10247 if (!is_pointer && !method->is_value_method())
10248 {
10249 error_at(location, "method requires pointer (use %<(*%s).%s)%>",
10250 nt->message_name().c_str(),
10251 Gogo::message_name(name).c_str());
10252 return Expression::make_error(location);
10253 }
10254
10255 // Build a new function type in which the receiver becomes the first
10256 // argument.
10257 Function_type* method_type = method->type();
10258 gcc_assert(method_type->is_method());
10259
10260 const char* const receiver_name = "$this";
10261 Typed_identifier_list* parameters = new Typed_identifier_list();
10262 parameters->push_back(Typed_identifier(receiver_name, this->left_->type(),
10263 location));
10264
10265 const Typed_identifier_list* method_parameters = method_type->parameters();
10266 if (method_parameters != NULL)
10267 {
10268 for (Typed_identifier_list::const_iterator p = method_parameters->begin();
10269 p != method_parameters->end();
10270 ++p)
10271 parameters->push_back(*p);
10272 }
10273
10274 const Typed_identifier_list* method_results = method_type->results();
10275 Typed_identifier_list* results;
10276 if (method_results == NULL)
10277 results = NULL;
10278 else
10279 {
10280 results = new Typed_identifier_list();
10281 for (Typed_identifier_list::const_iterator p = method_results->begin();
10282 p != method_results->end();
10283 ++p)
10284 results->push_back(*p);
10285 }
10286
10287 Function_type* fntype = Type::make_function_type(NULL, parameters, results,
10288 location);
10289 if (method_type->is_varargs())
10290 fntype->set_is_varargs();
10291
10292 // We generate methods which always takes a pointer to the receiver
10293 // as their first argument. If this is for a pointer type, we can
10294 // simply reuse the existing function. We use an internal hack to
10295 // get the right type.
10296
10297 if (is_pointer)
10298 {
10299 Named_object* mno = (method->needs_stub_method()
10300 ? method->stub_object()
10301 : method->named_object());
10302 Expression* f = Expression::make_func_reference(mno, NULL, location);
10303 f = Expression::make_cast(fntype, f, location);
10304 Type_conversion_expression* tce =
10305 static_cast<Type_conversion_expression*>(f);
10306 tce->set_may_convert_function_types();
10307 return f;
10308 }
10309
10310 Named_object* no = gogo->start_function(Gogo::thunk_name(), fntype, false,
10311 location);
10312
10313 Named_object* vno = gogo->lookup(receiver_name, NULL);
10314 gcc_assert(vno != NULL);
10315 Expression* ve = Expression::make_var_reference(vno, location);
10316 Expression* bm = Type::bind_field_or_method(gogo, nt, ve, name, location);
10317 gcc_assert(bm != NULL && !bm->is_error_expression());
10318
10319 Expression_list* args;
10320 if (method_parameters == NULL)
10321 args = NULL;
10322 else
10323 {
10324 args = new Expression_list();
10325 for (Typed_identifier_list::const_iterator p = method_parameters->begin();
10326 p != method_parameters->end();
10327 ++p)
10328 {
10329 vno = gogo->lookup(p->name(), NULL);
10330 gcc_assert(vno != NULL);
10331 args->push_back(Expression::make_var_reference(vno, location));
10332 }
10333 }
10334
10335 Call_expression* call = Expression::make_call(bm, args,
10336 method_type->is_varargs(),
10337 location);
10338
10339 size_t count = call->result_count();
10340 Statement* s;
10341 if (count == 0)
10342 s = Statement::make_statement(call);
10343 else
10344 {
10345 Expression_list* retvals = new Expression_list();
10346 if (count <= 1)
10347 retvals->push_back(call);
10348 else
10349 {
10350 for (size_t i = 0; i < count; ++i)
10351 retvals->push_back(Expression::make_call_result(call, i));
10352 }
10353 s = Statement::make_return_statement(no->func_value()->type()->results(),
10354 retvals, location);
10355 }
10356 gogo->add_statement(s);
10357
10358 gogo->finish_function(location);
10359
10360 return Expression::make_func_reference(no, NULL, location);
10361 }
10362
10363 // Make a selector expression.
10364
10365 Expression*
10366 Expression::make_selector(Expression* left, const std::string& name,
10367 source_location location)
10368 {
10369 return new Selector_expression(left, name, location);
10370 }
10371
10372 // Implement the builtin function new.
10373
10374 class Allocation_expression : public Expression
10375 {
10376 public:
10377 Allocation_expression(Type* type, source_location location)
10378 : Expression(EXPRESSION_ALLOCATION, location),
10379 type_(type)
10380 { }
10381
10382 protected:
10383 int
10384 do_traverse(Traverse* traverse)
10385 { return Type::traverse(this->type_, traverse); }
10386
10387 Type*
10388 do_type()
10389 { return Type::make_pointer_type(this->type_); }
10390
10391 void
10392 do_determine_type(const Type_context*)
10393 { }
10394
10395 void
10396 do_check_types(Gogo*);
10397
10398 Expression*
10399 do_copy()
10400 { return new Allocation_expression(this->type_, this->location()); }
10401
10402 tree
10403 do_get_tree(Translate_context*);
10404
10405 private:
10406 // The type we are allocating.
10407 Type* type_;
10408 };
10409
10410 // Check the type of an allocation expression.
10411
10412 void
10413 Allocation_expression::do_check_types(Gogo*)
10414 {
10415 if (this->type_->function_type() != NULL)
10416 this->report_error(_("invalid new of function type"));
10417 }
10418
10419 // Return a tree for an allocation expression.
10420
10421 tree
10422 Allocation_expression::do_get_tree(Translate_context* context)
10423 {
10424 tree type_tree = this->type_->get_tree(context->gogo());
10425 if (type_tree == error_mark_node)
10426 return error_mark_node;
10427 tree size_tree = TYPE_SIZE_UNIT(type_tree);
10428 tree space = context->gogo()->allocate_memory(this->type_, size_tree,
10429 this->location());
10430 if (space == error_mark_node)
10431 return error_mark_node;
10432 return fold_convert(build_pointer_type(type_tree), space);
10433 }
10434
10435 // Make an allocation expression.
10436
10437 Expression*
10438 Expression::make_allocation(Type* type, source_location location)
10439 {
10440 return new Allocation_expression(type, location);
10441 }
10442
10443 // Implement the builtin function make.
10444
10445 class Make_expression : public Expression
10446 {
10447 public:
10448 Make_expression(Type* type, Expression_list* args, source_location location)
10449 : Expression(EXPRESSION_MAKE, location),
10450 type_(type), args_(args)
10451 { }
10452
10453 protected:
10454 int
10455 do_traverse(Traverse* traverse);
10456
10457 Type*
10458 do_type()
10459 { return this->type_; }
10460
10461 void
10462 do_determine_type(const Type_context*);
10463
10464 void
10465 do_check_types(Gogo*);
10466
10467 Expression*
10468 do_copy()
10469 {
10470 return new Make_expression(this->type_, this->args_->copy(),
10471 this->location());
10472 }
10473
10474 tree
10475 do_get_tree(Translate_context*);
10476
10477 private:
10478 // The type we are making.
10479 Type* type_;
10480 // The arguments to pass to the make routine.
10481 Expression_list* args_;
10482 };
10483
10484 // Traversal.
10485
10486 int
10487 Make_expression::do_traverse(Traverse* traverse)
10488 {
10489 if (this->args_ != NULL
10490 && this->args_->traverse(traverse) == TRAVERSE_EXIT)
10491 return TRAVERSE_EXIT;
10492 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10493 return TRAVERSE_EXIT;
10494 return TRAVERSE_CONTINUE;
10495 }
10496
10497 // Set types of arguments.
10498
10499 void
10500 Make_expression::do_determine_type(const Type_context*)
10501 {
10502 if (this->args_ != NULL)
10503 {
10504 Type_context context(Type::lookup_integer_type("int"), false);
10505 for (Expression_list::const_iterator pe = this->args_->begin();
10506 pe != this->args_->end();
10507 ++pe)
10508 (*pe)->determine_type(&context);
10509 }
10510 }
10511
10512 // Check types for a make expression.
10513
10514 void
10515 Make_expression::do_check_types(Gogo*)
10516 {
10517 if (this->type_->channel_type() == NULL
10518 && this->type_->map_type() == NULL
10519 && (this->type_->array_type() == NULL
10520 || this->type_->array_type()->length() != NULL))
10521 this->report_error(_("invalid type for make function"));
10522 else if (!this->type_->check_make_expression(this->args_, this->location()))
10523 this->set_is_error();
10524 }
10525
10526 // Return a tree for a make expression.
10527
10528 tree
10529 Make_expression::do_get_tree(Translate_context* context)
10530 {
10531 return this->type_->make_expression_tree(context, this->args_,
10532 this->location());
10533 }
10534
10535 // Make a make expression.
10536
10537 Expression*
10538 Expression::make_make(Type* type, Expression_list* args,
10539 source_location location)
10540 {
10541 return new Make_expression(type, args, location);
10542 }
10543
10544 // Construct a struct.
10545
10546 class Struct_construction_expression : public Expression
10547 {
10548 public:
10549 Struct_construction_expression(Type* type, Expression_list* vals,
10550 source_location location)
10551 : Expression(EXPRESSION_STRUCT_CONSTRUCTION, location),
10552 type_(type), vals_(vals)
10553 { }
10554
10555 // Return whether this is a constant initializer.
10556 bool
10557 is_constant_struct() const;
10558
10559 protected:
10560 int
10561 do_traverse(Traverse* traverse);
10562
10563 Type*
10564 do_type()
10565 { return this->type_; }
10566
10567 void
10568 do_determine_type(const Type_context*);
10569
10570 void
10571 do_check_types(Gogo*);
10572
10573 Expression*
10574 do_copy()
10575 {
10576 return new Struct_construction_expression(this->type_, this->vals_->copy(),
10577 this->location());
10578 }
10579
10580 bool
10581 do_is_addressable() const
10582 { return true; }
10583
10584 tree
10585 do_get_tree(Translate_context*);
10586
10587 void
10588 do_export(Export*) const;
10589
10590 private:
10591 // The type of the struct to construct.
10592 Type* type_;
10593 // The list of values, in order of the fields in the struct. A NULL
10594 // entry means that the field should be zero-initialized.
10595 Expression_list* vals_;
10596 };
10597
10598 // Traversal.
10599
10600 int
10601 Struct_construction_expression::do_traverse(Traverse* traverse)
10602 {
10603 if (this->vals_ != NULL
10604 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
10605 return TRAVERSE_EXIT;
10606 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10607 return TRAVERSE_EXIT;
10608 return TRAVERSE_CONTINUE;
10609 }
10610
10611 // Return whether this is a constant initializer.
10612
10613 bool
10614 Struct_construction_expression::is_constant_struct() const
10615 {
10616 if (this->vals_ == NULL)
10617 return true;
10618 for (Expression_list::const_iterator pv = this->vals_->begin();
10619 pv != this->vals_->end();
10620 ++pv)
10621 {
10622 if (*pv != NULL
10623 && !(*pv)->is_constant()
10624 && (!(*pv)->is_composite_literal()
10625 || (*pv)->is_nonconstant_composite_literal()))
10626 return false;
10627 }
10628
10629 const Struct_field_list* fields = this->type_->struct_type()->fields();
10630 for (Struct_field_list::const_iterator pf = fields->begin();
10631 pf != fields->end();
10632 ++pf)
10633 {
10634 // There are no constant constructors for interfaces.
10635 if (pf->type()->interface_type() != NULL)
10636 return false;
10637 }
10638
10639 return true;
10640 }
10641
10642 // Final type determination.
10643
10644 void
10645 Struct_construction_expression::do_determine_type(const Type_context*)
10646 {
10647 if (this->vals_ == NULL)
10648 return;
10649 const Struct_field_list* fields = this->type_->struct_type()->fields();
10650 Expression_list::const_iterator pv = this->vals_->begin();
10651 for (Struct_field_list::const_iterator pf = fields->begin();
10652 pf != fields->end();
10653 ++pf, ++pv)
10654 {
10655 if (pv == this->vals_->end())
10656 return;
10657 if (*pv != NULL)
10658 {
10659 Type_context subcontext(pf->type(), false);
10660 (*pv)->determine_type(&subcontext);
10661 }
10662 }
10663 // Extra values are an error we will report elsewhere; we still want
10664 // to determine the type to avoid knockon errors.
10665 for (; pv != this->vals_->end(); ++pv)
10666 (*pv)->determine_type_no_context();
10667 }
10668
10669 // Check types.
10670
10671 void
10672 Struct_construction_expression::do_check_types(Gogo*)
10673 {
10674 if (this->vals_ == NULL)
10675 return;
10676
10677 Struct_type* st = this->type_->struct_type();
10678 if (this->vals_->size() > st->field_count())
10679 {
10680 this->report_error(_("too many expressions for struct"));
10681 return;
10682 }
10683
10684 const Struct_field_list* fields = st->fields();
10685 Expression_list::const_iterator pv = this->vals_->begin();
10686 int i = 0;
10687 for (Struct_field_list::const_iterator pf = fields->begin();
10688 pf != fields->end();
10689 ++pf, ++pv, ++i)
10690 {
10691 if (pv == this->vals_->end())
10692 {
10693 this->report_error(_("too few expressions for struct"));
10694 break;
10695 }
10696
10697 if (*pv == NULL)
10698 continue;
10699
10700 std::string reason;
10701 if (!Type::are_assignable(pf->type(), (*pv)->type(), &reason))
10702 {
10703 if (reason.empty())
10704 error_at((*pv)->location(),
10705 "incompatible type for field %d in struct construction",
10706 i + 1);
10707 else
10708 error_at((*pv)->location(),
10709 ("incompatible type for field %d in "
10710 "struct construction (%s)"),
10711 i + 1, reason.c_str());
10712 this->set_is_error();
10713 }
10714 }
10715 gcc_assert(pv == this->vals_->end());
10716 }
10717
10718 // Return a tree for constructing a struct.
10719
10720 tree
10721 Struct_construction_expression::do_get_tree(Translate_context* context)
10722 {
10723 Gogo* gogo = context->gogo();
10724
10725 if (this->vals_ == NULL)
10726 return this->type_->get_init_tree(gogo, false);
10727
10728 tree type_tree = this->type_->get_tree(gogo);
10729 if (type_tree == error_mark_node)
10730 return error_mark_node;
10731 gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
10732
10733 bool is_constant = true;
10734 const Struct_field_list* fields = this->type_->struct_type()->fields();
10735 VEC(constructor_elt,gc)* elts = VEC_alloc(constructor_elt, gc,
10736 fields->size());
10737 Struct_field_list::const_iterator pf = fields->begin();
10738 Expression_list::const_iterator pv = this->vals_->begin();
10739 for (tree field = TYPE_FIELDS(type_tree);
10740 field != NULL_TREE;
10741 field = DECL_CHAIN(field), ++pf)
10742 {
10743 gcc_assert(pf != fields->end());
10744
10745 tree val;
10746 if (pv == this->vals_->end())
10747 val = pf->type()->get_init_tree(gogo, false);
10748 else if (*pv == NULL)
10749 {
10750 val = pf->type()->get_init_tree(gogo, false);
10751 ++pv;
10752 }
10753 else
10754 {
10755 val = Expression::convert_for_assignment(context, pf->type(),
10756 (*pv)->type(),
10757 (*pv)->get_tree(context),
10758 this->location());
10759 ++pv;
10760 }
10761
10762 if (val == error_mark_node || TREE_TYPE(val) == error_mark_node)
10763 return error_mark_node;
10764
10765 constructor_elt* elt = VEC_quick_push(constructor_elt, elts, NULL);
10766 elt->index = field;
10767 elt->value = val;
10768 if (!TREE_CONSTANT(val))
10769 is_constant = false;
10770 }
10771 gcc_assert(pf == fields->end());
10772
10773 tree ret = build_constructor(type_tree, elts);
10774 if (is_constant)
10775 TREE_CONSTANT(ret) = 1;
10776 return ret;
10777 }
10778
10779 // Export a struct construction.
10780
10781 void
10782 Struct_construction_expression::do_export(Export* exp) const
10783 {
10784 exp->write_c_string("convert(");
10785 exp->write_type(this->type_);
10786 for (Expression_list::const_iterator pv = this->vals_->begin();
10787 pv != this->vals_->end();
10788 ++pv)
10789 {
10790 exp->write_c_string(", ");
10791 if (*pv != NULL)
10792 (*pv)->export_expression(exp);
10793 }
10794 exp->write_c_string(")");
10795 }
10796
10797 // Make a struct composite literal. This used by the thunk code.
10798
10799 Expression*
10800 Expression::make_struct_composite_literal(Type* type, Expression_list* vals,
10801 source_location location)
10802 {
10803 gcc_assert(type->struct_type() != NULL);
10804 return new Struct_construction_expression(type, vals, location);
10805 }
10806
10807 // Construct an array. This class is not used directly; instead we
10808 // use the child classes, Fixed_array_construction_expression and
10809 // Open_array_construction_expression.
10810
10811 class Array_construction_expression : public Expression
10812 {
10813 protected:
10814 Array_construction_expression(Expression_classification classification,
10815 Type* type, Expression_list* vals,
10816 source_location location)
10817 : Expression(classification, location),
10818 type_(type), vals_(vals)
10819 { }
10820
10821 public:
10822 // Return whether this is a constant initializer.
10823 bool
10824 is_constant_array() const;
10825
10826 // Return the number of elements.
10827 size_t
10828 element_count() const
10829 { return this->vals_ == NULL ? 0 : this->vals_->size(); }
10830
10831 protected:
10832 int
10833 do_traverse(Traverse* traverse);
10834
10835 Type*
10836 do_type()
10837 { return this->type_; }
10838
10839 void
10840 do_determine_type(const Type_context*);
10841
10842 void
10843 do_check_types(Gogo*);
10844
10845 bool
10846 do_is_addressable() const
10847 { return true; }
10848
10849 void
10850 do_export(Export*) const;
10851
10852 // The list of values.
10853 Expression_list*
10854 vals()
10855 { return this->vals_; }
10856
10857 // Get a constructor tree for the array values.
10858 tree
10859 get_constructor_tree(Translate_context* context, tree type_tree);
10860
10861 private:
10862 // The type of the array to construct.
10863 Type* type_;
10864 // The list of values.
10865 Expression_list* vals_;
10866 };
10867
10868 // Traversal.
10869
10870 int
10871 Array_construction_expression::do_traverse(Traverse* traverse)
10872 {
10873 if (this->vals_ != NULL
10874 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
10875 return TRAVERSE_EXIT;
10876 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10877 return TRAVERSE_EXIT;
10878 return TRAVERSE_CONTINUE;
10879 }
10880
10881 // Return whether this is a constant initializer.
10882
10883 bool
10884 Array_construction_expression::is_constant_array() const
10885 {
10886 if (this->vals_ == NULL)
10887 return true;
10888
10889 // There are no constant constructors for interfaces.
10890 if (this->type_->array_type()->element_type()->interface_type() != NULL)
10891 return false;
10892
10893 for (Expression_list::const_iterator pv = this->vals_->begin();
10894 pv != this->vals_->end();
10895 ++pv)
10896 {
10897 if (*pv != NULL
10898 && !(*pv)->is_constant()
10899 && (!(*pv)->is_composite_literal()
10900 || (*pv)->is_nonconstant_composite_literal()))
10901 return false;
10902 }
10903 return true;
10904 }
10905
10906 // Final type determination.
10907
10908 void
10909 Array_construction_expression::do_determine_type(const Type_context*)
10910 {
10911 if (this->vals_ == NULL)
10912 return;
10913 Type_context subcontext(this->type_->array_type()->element_type(), false);
10914 for (Expression_list::const_iterator pv = this->vals_->begin();
10915 pv != this->vals_->end();
10916 ++pv)
10917 {
10918 if (*pv != NULL)
10919 (*pv)->determine_type(&subcontext);
10920 }
10921 }
10922
10923 // Check types.
10924
10925 void
10926 Array_construction_expression::do_check_types(Gogo*)
10927 {
10928 if (this->vals_ == NULL)
10929 return;
10930
10931 Array_type* at = this->type_->array_type();
10932 int i = 0;
10933 Type* element_type = at->element_type();
10934 for (Expression_list::const_iterator pv = this->vals_->begin();
10935 pv != this->vals_->end();
10936 ++pv, ++i)
10937 {
10938 if (*pv != NULL
10939 && !Type::are_assignable(element_type, (*pv)->type(), NULL))
10940 {
10941 error_at((*pv)->location(),
10942 "incompatible type for element %d in composite literal",
10943 i + 1);
10944 this->set_is_error();
10945 }
10946 }
10947
10948 Expression* length = at->length();
10949 if (length != NULL)
10950 {
10951 mpz_t val;
10952 mpz_init(val);
10953 Type* type;
10954 if (at->length()->integer_constant_value(true, val, &type))
10955 {
10956 if (this->vals_->size() > mpz_get_ui(val))
10957 this->report_error(_("too many elements in composite literal"));
10958 }
10959 mpz_clear(val);
10960 }
10961 }
10962
10963 // Get a constructor tree for the array values.
10964
10965 tree
10966 Array_construction_expression::get_constructor_tree(Translate_context* context,
10967 tree type_tree)
10968 {
10969 VEC(constructor_elt,gc)* values = VEC_alloc(constructor_elt, gc,
10970 (this->vals_ == NULL
10971 ? 0
10972 : this->vals_->size()));
10973 Type* element_type = this->type_->array_type()->element_type();
10974 bool is_constant = true;
10975 if (this->vals_ != NULL)
10976 {
10977 size_t i = 0;
10978 for (Expression_list::const_iterator pv = this->vals_->begin();
10979 pv != this->vals_->end();
10980 ++pv, ++i)
10981 {
10982 constructor_elt* elt = VEC_quick_push(constructor_elt, values, NULL);
10983 elt->index = size_int(i);
10984 if (*pv == NULL)
10985 elt->value = element_type->get_init_tree(context->gogo(), false);
10986 else
10987 {
10988 tree value_tree = (*pv)->get_tree(context);
10989 elt->value = Expression::convert_for_assignment(context,
10990 element_type,
10991 (*pv)->type(),
10992 value_tree,
10993 this->location());
10994 }
10995 if (elt->value == error_mark_node)
10996 return error_mark_node;
10997 if (!TREE_CONSTANT(elt->value))
10998 is_constant = false;
10999 }
11000 }
11001
11002 tree ret = build_constructor(type_tree, values);
11003 if (is_constant)
11004 TREE_CONSTANT(ret) = 1;
11005 return ret;
11006 }
11007
11008 // Export an array construction.
11009
11010 void
11011 Array_construction_expression::do_export(Export* exp) const
11012 {
11013 exp->write_c_string("convert(");
11014 exp->write_type(this->type_);
11015 if (this->vals_ != NULL)
11016 {
11017 for (Expression_list::const_iterator pv = this->vals_->begin();
11018 pv != this->vals_->end();
11019 ++pv)
11020 {
11021 exp->write_c_string(", ");
11022 if (*pv != NULL)
11023 (*pv)->export_expression(exp);
11024 }
11025 }
11026 exp->write_c_string(")");
11027 }
11028
11029 // Construct a fixed array.
11030
11031 class Fixed_array_construction_expression :
11032 public Array_construction_expression
11033 {
11034 public:
11035 Fixed_array_construction_expression(Type* type, Expression_list* vals,
11036 source_location location)
11037 : Array_construction_expression(EXPRESSION_FIXED_ARRAY_CONSTRUCTION,
11038 type, vals, location)
11039 {
11040 gcc_assert(type->array_type() != NULL
11041 && type->array_type()->length() != NULL);
11042 }
11043
11044 protected:
11045 Expression*
11046 do_copy()
11047 {
11048 return new Fixed_array_construction_expression(this->type(),
11049 (this->vals() == NULL
11050 ? NULL
11051 : this->vals()->copy()),
11052 this->location());
11053 }
11054
11055 tree
11056 do_get_tree(Translate_context*);
11057 };
11058
11059 // Return a tree for constructing a fixed array.
11060
11061 tree
11062 Fixed_array_construction_expression::do_get_tree(Translate_context* context)
11063 {
11064 return this->get_constructor_tree(context,
11065 this->type()->get_tree(context->gogo()));
11066 }
11067
11068 // Construct an open array.
11069
11070 class Open_array_construction_expression : public Array_construction_expression
11071 {
11072 public:
11073 Open_array_construction_expression(Type* type, Expression_list* vals,
11074 source_location location)
11075 : Array_construction_expression(EXPRESSION_OPEN_ARRAY_CONSTRUCTION,
11076 type, vals, location)
11077 {
11078 gcc_assert(type->array_type() != NULL
11079 && type->array_type()->length() == NULL);
11080 }
11081
11082 protected:
11083 // Note that taking the address of an open array literal is invalid.
11084
11085 Expression*
11086 do_copy()
11087 {
11088 return new Open_array_construction_expression(this->type(),
11089 (this->vals() == NULL
11090 ? NULL
11091 : this->vals()->copy()),
11092 this->location());
11093 }
11094
11095 tree
11096 do_get_tree(Translate_context*);
11097 };
11098
11099 // Return a tree for constructing an open array.
11100
11101 tree
11102 Open_array_construction_expression::do_get_tree(Translate_context* context)
11103 {
11104 Array_type* array_type = this->type()->array_type();
11105 if (array_type == NULL)
11106 {
11107 gcc_assert(this->type()->is_error_type());
11108 return error_mark_node;
11109 }
11110
11111 Type* element_type = array_type->element_type();
11112 tree element_type_tree = element_type->get_tree(context->gogo());
11113 if (element_type_tree == error_mark_node)
11114 return error_mark_node;
11115
11116 tree values;
11117 tree length_tree;
11118 if (this->vals() == NULL || this->vals()->empty())
11119 {
11120 // We need to create a unique value.
11121 tree max = size_int(0);
11122 tree constructor_type = build_array_type(element_type_tree,
11123 build_index_type(max));
11124 if (constructor_type == error_mark_node)
11125 return error_mark_node;
11126 VEC(constructor_elt,gc)* vec = VEC_alloc(constructor_elt, gc, 1);
11127 constructor_elt* elt = VEC_quick_push(constructor_elt, vec, NULL);
11128 elt->index = size_int(0);
11129 elt->value = element_type->get_init_tree(context->gogo(), false);
11130 values = build_constructor(constructor_type, vec);
11131 if (TREE_CONSTANT(elt->value))
11132 TREE_CONSTANT(values) = 1;
11133 length_tree = size_int(0);
11134 }
11135 else
11136 {
11137 tree max = size_int(this->vals()->size() - 1);
11138 tree constructor_type = build_array_type(element_type_tree,
11139 build_index_type(max));
11140 if (constructor_type == error_mark_node)
11141 return error_mark_node;
11142 values = this->get_constructor_tree(context, constructor_type);
11143 length_tree = size_int(this->vals()->size());
11144 }
11145
11146 if (values == error_mark_node)
11147 return error_mark_node;
11148
11149 bool is_constant_initializer = TREE_CONSTANT(values);
11150
11151 // We have to copy the initial values into heap memory if we are in
11152 // a function or if the values are not constants. We also have to
11153 // copy them if they may contain pointers in a non-constant context,
11154 // as otherwise the garbage collector won't see them.
11155 bool copy_to_heap = (context->function() != NULL
11156 || !is_constant_initializer
11157 || (element_type->has_pointer()
11158 && !context->is_const()));
11159
11160 if (is_constant_initializer)
11161 {
11162 tree tmp = build_decl(this->location(), VAR_DECL,
11163 create_tmp_var_name("C"), TREE_TYPE(values));
11164 DECL_EXTERNAL(tmp) = 0;
11165 TREE_PUBLIC(tmp) = 0;
11166 TREE_STATIC(tmp) = 1;
11167 DECL_ARTIFICIAL(tmp) = 1;
11168 if (copy_to_heap)
11169 {
11170 // If we are not copying the value to the heap, we will only
11171 // initialize the value once, so we can use this directly
11172 // rather than copying it. In that case we can't make it
11173 // read-only, because the program is permitted to change it.
11174 TREE_READONLY(tmp) = 1;
11175 TREE_CONSTANT(tmp) = 1;
11176 }
11177 DECL_INITIAL(tmp) = values;
11178 rest_of_decl_compilation(tmp, 1, 0);
11179 values = tmp;
11180 }
11181
11182 tree space;
11183 tree set;
11184 if (!copy_to_heap)
11185 {
11186 // the initializer will only run once.
11187 space = build_fold_addr_expr(values);
11188 set = NULL_TREE;
11189 }
11190 else
11191 {
11192 tree memsize = TYPE_SIZE_UNIT(TREE_TYPE(values));
11193 space = context->gogo()->allocate_memory(element_type, memsize,
11194 this->location());
11195 space = save_expr(space);
11196
11197 tree s = fold_convert(build_pointer_type(TREE_TYPE(values)), space);
11198 tree ref = build_fold_indirect_ref_loc(this->location(), s);
11199 TREE_THIS_NOTRAP(ref) = 1;
11200 set = build2(MODIFY_EXPR, void_type_node, ref, values);
11201 }
11202
11203 // Build a constructor for the open array.
11204
11205 tree type_tree = this->type()->get_tree(context->gogo());
11206 if (type_tree == error_mark_node)
11207 return error_mark_node;
11208 gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
11209
11210 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
11211
11212 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
11213 tree field = TYPE_FIELDS(type_tree);
11214 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
11215 elt->index = field;
11216 elt->value = fold_convert(TREE_TYPE(field), space);
11217
11218 elt = VEC_quick_push(constructor_elt, init, NULL);
11219 field = DECL_CHAIN(field);
11220 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
11221 elt->index = field;
11222 elt->value = fold_convert(TREE_TYPE(field), length_tree);
11223
11224 elt = VEC_quick_push(constructor_elt, init, NULL);
11225 field = DECL_CHAIN(field);
11226 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),"__capacity") == 0);
11227 elt->index = field;
11228 elt->value = fold_convert(TREE_TYPE(field), length_tree);
11229
11230 tree constructor = build_constructor(type_tree, init);
11231 if (constructor == error_mark_node)
11232 return error_mark_node;
11233 if (!copy_to_heap)
11234 TREE_CONSTANT(constructor) = 1;
11235
11236 if (set == NULL_TREE)
11237 return constructor;
11238 else
11239 return build2(COMPOUND_EXPR, type_tree, set, constructor);
11240 }
11241
11242 // Make a slice composite literal. This is used by the type
11243 // descriptor code.
11244
11245 Expression*
11246 Expression::make_slice_composite_literal(Type* type, Expression_list* vals,
11247 source_location location)
11248 {
11249 gcc_assert(type->is_open_array_type());
11250 return new Open_array_construction_expression(type, vals, location);
11251 }
11252
11253 // Construct a map.
11254
11255 class Map_construction_expression : public Expression
11256 {
11257 public:
11258 Map_construction_expression(Type* type, Expression_list* vals,
11259 source_location location)
11260 : Expression(EXPRESSION_MAP_CONSTRUCTION, location),
11261 type_(type), vals_(vals)
11262 { gcc_assert(vals == NULL || vals->size() % 2 == 0); }
11263
11264 protected:
11265 int
11266 do_traverse(Traverse* traverse);
11267
11268 Type*
11269 do_type()
11270 { return this->type_; }
11271
11272 void
11273 do_determine_type(const Type_context*);
11274
11275 void
11276 do_check_types(Gogo*);
11277
11278 Expression*
11279 do_copy()
11280 {
11281 return new Map_construction_expression(this->type_, this->vals_->copy(),
11282 this->location());
11283 }
11284
11285 tree
11286 do_get_tree(Translate_context*);
11287
11288 void
11289 do_export(Export*) const;
11290
11291 private:
11292 // The type of the map to construct.
11293 Type* type_;
11294 // The list of values.
11295 Expression_list* vals_;
11296 };
11297
11298 // Traversal.
11299
11300 int
11301 Map_construction_expression::do_traverse(Traverse* traverse)
11302 {
11303 if (this->vals_ != NULL
11304 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
11305 return TRAVERSE_EXIT;
11306 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
11307 return TRAVERSE_EXIT;
11308 return TRAVERSE_CONTINUE;
11309 }
11310
11311 // Final type determination.
11312
11313 void
11314 Map_construction_expression::do_determine_type(const Type_context*)
11315 {
11316 if (this->vals_ == NULL)
11317 return;
11318
11319 Map_type* mt = this->type_->map_type();
11320 Type_context key_context(mt->key_type(), false);
11321 Type_context val_context(mt->val_type(), false);
11322 for (Expression_list::const_iterator pv = this->vals_->begin();
11323 pv != this->vals_->end();
11324 ++pv)
11325 {
11326 (*pv)->determine_type(&key_context);
11327 ++pv;
11328 (*pv)->determine_type(&val_context);
11329 }
11330 }
11331
11332 // Check types.
11333
11334 void
11335 Map_construction_expression::do_check_types(Gogo*)
11336 {
11337 if (this->vals_ == NULL)
11338 return;
11339
11340 Map_type* mt = this->type_->map_type();
11341 int i = 0;
11342 Type* key_type = mt->key_type();
11343 Type* val_type = mt->val_type();
11344 for (Expression_list::const_iterator pv = this->vals_->begin();
11345 pv != this->vals_->end();
11346 ++pv, ++i)
11347 {
11348 if (!Type::are_assignable(key_type, (*pv)->type(), NULL))
11349 {
11350 error_at((*pv)->location(),
11351 "incompatible type for element %d key in map construction",
11352 i + 1);
11353 this->set_is_error();
11354 }
11355 ++pv;
11356 if (!Type::are_assignable(val_type, (*pv)->type(), NULL))
11357 {
11358 error_at((*pv)->location(),
11359 ("incompatible type for element %d value "
11360 "in map construction"),
11361 i + 1);
11362 this->set_is_error();
11363 }
11364 }
11365 }
11366
11367 // Return a tree for constructing a map.
11368
11369 tree
11370 Map_construction_expression::do_get_tree(Translate_context* context)
11371 {
11372 Gogo* gogo = context->gogo();
11373 source_location loc = this->location();
11374
11375 Map_type* mt = this->type_->map_type();
11376
11377 // Build a struct to hold the key and value.
11378 tree struct_type = make_node(RECORD_TYPE);
11379
11380 Type* key_type = mt->key_type();
11381 tree id = get_identifier("__key");
11382 tree key_type_tree = key_type->get_tree(gogo);
11383 if (key_type_tree == error_mark_node)
11384 return error_mark_node;
11385 tree key_field = build_decl(loc, FIELD_DECL, id, key_type_tree);
11386 DECL_CONTEXT(key_field) = struct_type;
11387 TYPE_FIELDS(struct_type) = key_field;
11388
11389 Type* val_type = mt->val_type();
11390 id = get_identifier("__val");
11391 tree val_type_tree = val_type->get_tree(gogo);
11392 if (val_type_tree == error_mark_node)
11393 return error_mark_node;
11394 tree val_field = build_decl(loc, FIELD_DECL, id, val_type_tree);
11395 DECL_CONTEXT(val_field) = struct_type;
11396 DECL_CHAIN(key_field) = val_field;
11397
11398 layout_type(struct_type);
11399
11400 bool is_constant = true;
11401 size_t i = 0;
11402 tree valaddr;
11403 tree make_tmp;
11404
11405 if (this->vals_ == NULL || this->vals_->empty())
11406 {
11407 valaddr = null_pointer_node;
11408 make_tmp = NULL_TREE;
11409 }
11410 else
11411 {
11412 VEC(constructor_elt,gc)* values = VEC_alloc(constructor_elt, gc,
11413 this->vals_->size() / 2);
11414
11415 for (Expression_list::const_iterator pv = this->vals_->begin();
11416 pv != this->vals_->end();
11417 ++pv, ++i)
11418 {
11419 bool one_is_constant = true;
11420
11421 VEC(constructor_elt,gc)* one = VEC_alloc(constructor_elt, gc, 2);
11422
11423 constructor_elt* elt = VEC_quick_push(constructor_elt, one, NULL);
11424 elt->index = key_field;
11425 tree val_tree = (*pv)->get_tree(context);
11426 elt->value = Expression::convert_for_assignment(context, key_type,
11427 (*pv)->type(),
11428 val_tree, loc);
11429 if (elt->value == error_mark_node)
11430 return error_mark_node;
11431 if (!TREE_CONSTANT(elt->value))
11432 one_is_constant = false;
11433
11434 ++pv;
11435
11436 elt = VEC_quick_push(constructor_elt, one, NULL);
11437 elt->index = val_field;
11438 val_tree = (*pv)->get_tree(context);
11439 elt->value = Expression::convert_for_assignment(context, val_type,
11440 (*pv)->type(),
11441 val_tree, loc);
11442 if (elt->value == error_mark_node)
11443 return error_mark_node;
11444 if (!TREE_CONSTANT(elt->value))
11445 one_is_constant = false;
11446
11447 elt = VEC_quick_push(constructor_elt, values, NULL);
11448 elt->index = size_int(i);
11449 elt->value = build_constructor(struct_type, one);
11450 if (one_is_constant)
11451 TREE_CONSTANT(elt->value) = 1;
11452 else
11453 is_constant = false;
11454 }
11455
11456 tree index_type = build_index_type(size_int(i - 1));
11457 tree array_type = build_array_type(struct_type, index_type);
11458 tree init = build_constructor(array_type, values);
11459 if (is_constant)
11460 TREE_CONSTANT(init) = 1;
11461 tree tmp;
11462 if (current_function_decl != NULL)
11463 {
11464 tmp = create_tmp_var(array_type, get_name(array_type));
11465 DECL_INITIAL(tmp) = init;
11466 make_tmp = fold_build1_loc(loc, DECL_EXPR, void_type_node, tmp);
11467 TREE_ADDRESSABLE(tmp) = 1;
11468 }
11469 else
11470 {
11471 tmp = build_decl(loc, VAR_DECL, create_tmp_var_name("M"), array_type);
11472 DECL_EXTERNAL(tmp) = 0;
11473 TREE_PUBLIC(tmp) = 0;
11474 TREE_STATIC(tmp) = 1;
11475 DECL_ARTIFICIAL(tmp) = 1;
11476 if (!TREE_CONSTANT(init))
11477 make_tmp = fold_build2_loc(loc, INIT_EXPR, void_type_node, tmp,
11478 init);
11479 else
11480 {
11481 TREE_READONLY(tmp) = 1;
11482 TREE_CONSTANT(tmp) = 1;
11483 DECL_INITIAL(tmp) = init;
11484 make_tmp = NULL_TREE;
11485 }
11486 rest_of_decl_compilation(tmp, 1, 0);
11487 }
11488
11489 valaddr = build_fold_addr_expr(tmp);
11490 }
11491
11492 tree descriptor = gogo->map_descriptor(mt);
11493
11494 tree type_tree = this->type_->get_tree(gogo);
11495 if (type_tree == error_mark_node)
11496 return error_mark_node;
11497
11498 static tree construct_map_fndecl;
11499 tree call = Gogo::call_builtin(&construct_map_fndecl,
11500 loc,
11501 "__go_construct_map",
11502 6,
11503 type_tree,
11504 TREE_TYPE(descriptor),
11505 descriptor,
11506 sizetype,
11507 size_int(i),
11508 sizetype,
11509 TYPE_SIZE_UNIT(struct_type),
11510 sizetype,
11511 byte_position(val_field),
11512 sizetype,
11513 TYPE_SIZE_UNIT(TREE_TYPE(val_field)),
11514 const_ptr_type_node,
11515 fold_convert(const_ptr_type_node, valaddr));
11516 if (call == error_mark_node)
11517 return error_mark_node;
11518
11519 tree ret;
11520 if (make_tmp == NULL)
11521 ret = call;
11522 else
11523 ret = fold_build2_loc(loc, COMPOUND_EXPR, type_tree, make_tmp, call);
11524 return ret;
11525 }
11526
11527 // Export an array construction.
11528
11529 void
11530 Map_construction_expression::do_export(Export* exp) const
11531 {
11532 exp->write_c_string("convert(");
11533 exp->write_type(this->type_);
11534 for (Expression_list::const_iterator pv = this->vals_->begin();
11535 pv != this->vals_->end();
11536 ++pv)
11537 {
11538 exp->write_c_string(", ");
11539 (*pv)->export_expression(exp);
11540 }
11541 exp->write_c_string(")");
11542 }
11543
11544 // A general composite literal. This is lowered to a type specific
11545 // version.
11546
11547 class Composite_literal_expression : public Parser_expression
11548 {
11549 public:
11550 Composite_literal_expression(Type* type, int depth, bool has_keys,
11551 Expression_list* vals, source_location location)
11552 : Parser_expression(EXPRESSION_COMPOSITE_LITERAL, location),
11553 type_(type), depth_(depth), vals_(vals), has_keys_(has_keys)
11554 { }
11555
11556 protected:
11557 int
11558 do_traverse(Traverse* traverse);
11559
11560 Expression*
11561 do_lower(Gogo*, Named_object*, int);
11562
11563 Expression*
11564 do_copy()
11565 {
11566 return new Composite_literal_expression(this->type_, this->depth_,
11567 this->has_keys_,
11568 (this->vals_ == NULL
11569 ? NULL
11570 : this->vals_->copy()),
11571 this->location());
11572 }
11573
11574 private:
11575 Expression*
11576 lower_struct(Type*);
11577
11578 Expression*
11579 lower_array(Type*);
11580
11581 Expression*
11582 make_array(Type*, Expression_list*);
11583
11584 Expression*
11585 lower_map(Gogo*, Named_object*, Type*);
11586
11587 // The type of the composite literal.
11588 Type* type_;
11589 // The depth within a list of composite literals within a composite
11590 // literal, when the type is omitted.
11591 int depth_;
11592 // The values to put in the composite literal.
11593 Expression_list* vals_;
11594 // If this is true, then VALS_ is a list of pairs: a key and a
11595 // value. In an array initializer, a missing key will be NULL.
11596 bool has_keys_;
11597 };
11598
11599 // Traversal.
11600
11601 int
11602 Composite_literal_expression::do_traverse(Traverse* traverse)
11603 {
11604 if (this->vals_ != NULL
11605 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
11606 return TRAVERSE_EXIT;
11607 return Type::traverse(this->type_, traverse);
11608 }
11609
11610 // Lower a generic composite literal into a specific version based on
11611 // the type.
11612
11613 Expression*
11614 Composite_literal_expression::do_lower(Gogo* gogo, Named_object* function, int)
11615 {
11616 Type* type = this->type_;
11617
11618 for (int depth = this->depth_; depth > 0; --depth)
11619 {
11620 if (type->array_type() != NULL)
11621 type = type->array_type()->element_type();
11622 else if (type->map_type() != NULL)
11623 type = type->map_type()->val_type();
11624 else
11625 {
11626 if (!type->is_error_type())
11627 error_at(this->location(),
11628 ("may only omit types within composite literals "
11629 "of slice, array, or map type"));
11630 return Expression::make_error(this->location());
11631 }
11632 }
11633
11634 if (type->is_error_type())
11635 return Expression::make_error(this->location());
11636 else if (type->struct_type() != NULL)
11637 return this->lower_struct(type);
11638 else if (type->array_type() != NULL)
11639 return this->lower_array(type);
11640 else if (type->map_type() != NULL)
11641 return this->lower_map(gogo, function, type);
11642 else
11643 {
11644 error_at(this->location(),
11645 ("expected struct, slice, array, or map type "
11646 "for composite literal"));
11647 return Expression::make_error(this->location());
11648 }
11649 }
11650
11651 // Lower a struct composite literal.
11652
11653 Expression*
11654 Composite_literal_expression::lower_struct(Type* type)
11655 {
11656 source_location location = this->location();
11657 Struct_type* st = type->struct_type();
11658 if (this->vals_ == NULL || !this->has_keys_)
11659 return new Struct_construction_expression(type, this->vals_, location);
11660
11661 size_t field_count = st->field_count();
11662 std::vector<Expression*> vals(field_count);
11663 Expression_list::const_iterator p = this->vals_->begin();
11664 while (p != this->vals_->end())
11665 {
11666 Expression* name_expr = *p;
11667
11668 ++p;
11669 gcc_assert(p != this->vals_->end());
11670 Expression* val = *p;
11671
11672 ++p;
11673
11674 if (name_expr == NULL)
11675 {
11676 error_at(val->location(), "mixture of field and value initializers");
11677 return Expression::make_error(location);
11678 }
11679
11680 bool bad_key = false;
11681 std::string name;
11682 switch (name_expr->classification())
11683 {
11684 case EXPRESSION_UNKNOWN_REFERENCE:
11685 name = name_expr->unknown_expression()->name();
11686 break;
11687
11688 case EXPRESSION_CONST_REFERENCE:
11689 name = static_cast<Const_expression*>(name_expr)->name();
11690 break;
11691
11692 case EXPRESSION_TYPE:
11693 {
11694 Type* t = name_expr->type();
11695 Named_type* nt = t->named_type();
11696 if (nt == NULL)
11697 bad_key = true;
11698 else
11699 name = nt->name();
11700 }
11701 break;
11702
11703 case EXPRESSION_VAR_REFERENCE:
11704 name = name_expr->var_expression()->name();
11705 break;
11706
11707 case EXPRESSION_FUNC_REFERENCE:
11708 name = name_expr->func_expression()->name();
11709 break;
11710
11711 case EXPRESSION_UNARY:
11712 // If there is a local variable around with the same name as
11713 // the field, and this occurs in the closure, then the
11714 // parser may turn the field reference into an indirection
11715 // through the closure. FIXME: This is a mess.
11716 {
11717 bad_key = true;
11718 Unary_expression* ue = static_cast<Unary_expression*>(name_expr);
11719 if (ue->op() == OPERATOR_MULT)
11720 {
11721 Field_reference_expression* fre =
11722 ue->operand()->field_reference_expression();
11723 if (fre != NULL)
11724 {
11725 Struct_type* st =
11726 fre->expr()->type()->deref()->struct_type();
11727 if (st != NULL)
11728 {
11729 const Struct_field* sf = st->field(fre->field_index());
11730 name = sf->field_name();
11731 char buf[20];
11732 snprintf(buf, sizeof buf, "%u", fre->field_index());
11733 size_t buflen = strlen(buf);
11734 if (name.compare(name.length() - buflen, buflen, buf)
11735 == 0)
11736 {
11737 name = name.substr(0, name.length() - buflen);
11738 bad_key = false;
11739 }
11740 }
11741 }
11742 }
11743 }
11744 break;
11745
11746 default:
11747 bad_key = true;
11748 break;
11749 }
11750 if (bad_key)
11751 {
11752 error_at(name_expr->location(), "expected struct field name");
11753 return Expression::make_error(location);
11754 }
11755
11756 unsigned int index;
11757 const Struct_field* sf = st->find_local_field(name, &index);
11758 if (sf == NULL)
11759 {
11760 error_at(name_expr->location(), "unknown field %qs in %qs",
11761 Gogo::message_name(name).c_str(),
11762 (type->named_type() != NULL
11763 ? type->named_type()->message_name().c_str()
11764 : "unnamed struct"));
11765 return Expression::make_error(location);
11766 }
11767 if (vals[index] != NULL)
11768 {
11769 error_at(name_expr->location(),
11770 "duplicate value for field %qs in %qs",
11771 Gogo::message_name(name).c_str(),
11772 (type->named_type() != NULL
11773 ? type->named_type()->message_name().c_str()
11774 : "unnamed struct"));
11775 return Expression::make_error(location);
11776 }
11777
11778 vals[index] = val;
11779 }
11780
11781 Expression_list* list = new Expression_list;
11782 list->reserve(field_count);
11783 for (size_t i = 0; i < field_count; ++i)
11784 list->push_back(vals[i]);
11785
11786 return new Struct_construction_expression(type, list, location);
11787 }
11788
11789 // Lower an array composite literal.
11790
11791 Expression*
11792 Composite_literal_expression::lower_array(Type* type)
11793 {
11794 source_location location = this->location();
11795 if (this->vals_ == NULL || !this->has_keys_)
11796 return this->make_array(type, this->vals_);
11797
11798 std::vector<Expression*> vals;
11799 vals.reserve(this->vals_->size());
11800 unsigned long index = 0;
11801 Expression_list::const_iterator p = this->vals_->begin();
11802 while (p != this->vals_->end())
11803 {
11804 Expression* index_expr = *p;
11805
11806 ++p;
11807 gcc_assert(p != this->vals_->end());
11808 Expression* val = *p;
11809
11810 ++p;
11811
11812 if (index_expr != NULL)
11813 {
11814 mpz_t ival;
11815 mpz_init(ival);
11816 Type* dummy;
11817 if (!index_expr->integer_constant_value(true, ival, &dummy))
11818 {
11819 mpz_clear(ival);
11820 error_at(index_expr->location(),
11821 "index expression is not integer constant");
11822 return Expression::make_error(location);
11823 }
11824 if (mpz_sgn(ival) < 0)
11825 {
11826 mpz_clear(ival);
11827 error_at(index_expr->location(), "index expression is negative");
11828 return Expression::make_error(location);
11829 }
11830 index = mpz_get_ui(ival);
11831 if (mpz_cmp_ui(ival, index) != 0)
11832 {
11833 mpz_clear(ival);
11834 error_at(index_expr->location(), "index value overflow");
11835 return Expression::make_error(location);
11836 }
11837 mpz_clear(ival);
11838 }
11839
11840 if (index == vals.size())
11841 vals.push_back(val);
11842 else
11843 {
11844 if (index > vals.size())
11845 {
11846 vals.reserve(index + 32);
11847 vals.resize(index + 1, static_cast<Expression*>(NULL));
11848 }
11849 if (vals[index] != NULL)
11850 {
11851 error_at((index_expr != NULL
11852 ? index_expr->location()
11853 : val->location()),
11854 "duplicate value for index %lu",
11855 index);
11856 return Expression::make_error(location);
11857 }
11858 vals[index] = val;
11859 }
11860
11861 ++index;
11862 }
11863
11864 size_t size = vals.size();
11865 Expression_list* list = new Expression_list;
11866 list->reserve(size);
11867 for (size_t i = 0; i < size; ++i)
11868 list->push_back(vals[i]);
11869
11870 return this->make_array(type, list);
11871 }
11872
11873 // Actually build the array composite literal. This handles
11874 // [...]{...}.
11875
11876 Expression*
11877 Composite_literal_expression::make_array(Type* type, Expression_list* vals)
11878 {
11879 source_location location = this->location();
11880 Array_type* at = type->array_type();
11881 if (at->length() != NULL && at->length()->is_nil_expression())
11882 {
11883 size_t size = vals == NULL ? 0 : vals->size();
11884 mpz_t vlen;
11885 mpz_init_set_ui(vlen, size);
11886 Expression* elen = Expression::make_integer(&vlen, NULL, location);
11887 mpz_clear(vlen);
11888 at = Type::make_array_type(at->element_type(), elen);
11889 type = at;
11890 }
11891 if (at->length() != NULL)
11892 return new Fixed_array_construction_expression(type, vals, location);
11893 else
11894 return new Open_array_construction_expression(type, vals, location);
11895 }
11896
11897 // Lower a map composite literal.
11898
11899 Expression*
11900 Composite_literal_expression::lower_map(Gogo* gogo, Named_object* function,
11901 Type* type)
11902 {
11903 source_location location = this->location();
11904 if (this->vals_ != NULL)
11905 {
11906 if (!this->has_keys_)
11907 {
11908 error_at(location, "map composite literal must have keys");
11909 return Expression::make_error(location);
11910 }
11911
11912 for (Expression_list::iterator p = this->vals_->begin();
11913 p != this->vals_->end();
11914 p += 2)
11915 {
11916 if (*p == NULL)
11917 {
11918 ++p;
11919 error_at((*p)->location(),
11920 "map composite literal must have keys for every value");
11921 return Expression::make_error(location);
11922 }
11923 // Make sure we have lowered the key; it may not have been
11924 // lowered in order to handle keys for struct composite
11925 // literals. Lower it now to get the right error message.
11926 if ((*p)->unknown_expression() != NULL)
11927 {
11928 (*p)->unknown_expression()->clear_is_composite_literal_key();
11929 gogo->lower_expression(function, &*p);
11930 gcc_assert((*p)->is_error_expression());
11931 return Expression::make_error(location);
11932 }
11933 }
11934 }
11935
11936 return new Map_construction_expression(type, this->vals_, location);
11937 }
11938
11939 // Make a composite literal expression.
11940
11941 Expression*
11942 Expression::make_composite_literal(Type* type, int depth, bool has_keys,
11943 Expression_list* vals,
11944 source_location location)
11945 {
11946 return new Composite_literal_expression(type, depth, has_keys, vals,
11947 location);
11948 }
11949
11950 // Return whether this expression is a composite literal.
11951
11952 bool
11953 Expression::is_composite_literal() const
11954 {
11955 switch (this->classification_)
11956 {
11957 case EXPRESSION_COMPOSITE_LITERAL:
11958 case EXPRESSION_STRUCT_CONSTRUCTION:
11959 case EXPRESSION_FIXED_ARRAY_CONSTRUCTION:
11960 case EXPRESSION_OPEN_ARRAY_CONSTRUCTION:
11961 case EXPRESSION_MAP_CONSTRUCTION:
11962 return true;
11963 default:
11964 return false;
11965 }
11966 }
11967
11968 // Return whether this expression is a composite literal which is not
11969 // constant.
11970
11971 bool
11972 Expression::is_nonconstant_composite_literal() const
11973 {
11974 switch (this->classification_)
11975 {
11976 case EXPRESSION_STRUCT_CONSTRUCTION:
11977 {
11978 const Struct_construction_expression *psce =
11979 static_cast<const Struct_construction_expression*>(this);
11980 return !psce->is_constant_struct();
11981 }
11982 case EXPRESSION_FIXED_ARRAY_CONSTRUCTION:
11983 {
11984 const Fixed_array_construction_expression *pace =
11985 static_cast<const Fixed_array_construction_expression*>(this);
11986 return !pace->is_constant_array();
11987 }
11988 case EXPRESSION_OPEN_ARRAY_CONSTRUCTION:
11989 {
11990 const Open_array_construction_expression *pace =
11991 static_cast<const Open_array_construction_expression*>(this);
11992 return !pace->is_constant_array();
11993 }
11994 case EXPRESSION_MAP_CONSTRUCTION:
11995 return true;
11996 default:
11997 return false;
11998 }
11999 }
12000
12001 // Return true if this is a reference to a local variable.
12002
12003 bool
12004 Expression::is_local_variable() const
12005 {
12006 const Var_expression* ve = this->var_expression();
12007 if (ve == NULL)
12008 return false;
12009 const Named_object* no = ve->named_object();
12010 return (no->is_result_variable()
12011 || (no->is_variable() && !no->var_value()->is_global()));
12012 }
12013
12014 // Class Type_guard_expression.
12015
12016 // Traversal.
12017
12018 int
12019 Type_guard_expression::do_traverse(Traverse* traverse)
12020 {
12021 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
12022 || Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
12023 return TRAVERSE_EXIT;
12024 return TRAVERSE_CONTINUE;
12025 }
12026
12027 // Check types of a type guard expression. The expression must have
12028 // an interface type, but the actual type conversion is checked at run
12029 // time.
12030
12031 void
12032 Type_guard_expression::do_check_types(Gogo*)
12033 {
12034 // 6g permits using a type guard with unsafe.pointer; we are
12035 // compatible.
12036 Type* expr_type = this->expr_->type();
12037 if (expr_type->is_unsafe_pointer_type())
12038 {
12039 if (this->type_->points_to() == NULL
12040 && (this->type_->integer_type() == NULL
12041 || (this->type_->forwarded()
12042 != Type::lookup_integer_type("uintptr"))))
12043 this->report_error(_("invalid unsafe.Pointer conversion"));
12044 }
12045 else if (this->type_->is_unsafe_pointer_type())
12046 {
12047 if (expr_type->points_to() == NULL
12048 && (expr_type->integer_type() == NULL
12049 || (expr_type->forwarded()
12050 != Type::lookup_integer_type("uintptr"))))
12051 this->report_error(_("invalid unsafe.Pointer conversion"));
12052 }
12053 else if (expr_type->interface_type() == NULL)
12054 {
12055 if (!expr_type->is_error_type() && !this->type_->is_error_type())
12056 this->report_error(_("type assertion only valid for interface types"));
12057 this->set_is_error();
12058 }
12059 else if (this->type_->interface_type() == NULL)
12060 {
12061 std::string reason;
12062 if (!expr_type->interface_type()->implements_interface(this->type_,
12063 &reason))
12064 {
12065 if (!this->type_->is_error_type())
12066 {
12067 if (reason.empty())
12068 this->report_error(_("impossible type assertion: "
12069 "type does not implement interface"));
12070 else
12071 error_at(this->location(),
12072 ("impossible type assertion: "
12073 "type does not implement interface (%s)"),
12074 reason.c_str());
12075 }
12076 this->set_is_error();
12077 }
12078 }
12079 }
12080
12081 // Return a tree for a type guard expression.
12082
12083 tree
12084 Type_guard_expression::do_get_tree(Translate_context* context)
12085 {
12086 Gogo* gogo = context->gogo();
12087 tree expr_tree = this->expr_->get_tree(context);
12088 if (expr_tree == error_mark_node)
12089 return error_mark_node;
12090 Type* expr_type = this->expr_->type();
12091 if ((this->type_->is_unsafe_pointer_type()
12092 && (expr_type->points_to() != NULL
12093 || expr_type->integer_type() != NULL))
12094 || (expr_type->is_unsafe_pointer_type()
12095 && this->type_->points_to() != NULL))
12096 return convert_to_pointer(this->type_->get_tree(gogo), expr_tree);
12097 else if (expr_type->is_unsafe_pointer_type()
12098 && this->type_->integer_type() != NULL)
12099 return convert_to_integer(this->type_->get_tree(gogo), expr_tree);
12100 else if (this->type_->interface_type() != NULL)
12101 return Expression::convert_interface_to_interface(context, this->type_,
12102 this->expr_->type(),
12103 expr_tree, true,
12104 this->location());
12105 else
12106 return Expression::convert_for_assignment(context, this->type_,
12107 this->expr_->type(), expr_tree,
12108 this->location());
12109 }
12110
12111 // Make a type guard expression.
12112
12113 Expression*
12114 Expression::make_type_guard(Expression* expr, Type* type,
12115 source_location location)
12116 {
12117 return new Type_guard_expression(expr, type, location);
12118 }
12119
12120 // Class Heap_composite_expression.
12121
12122 // When you take the address of a composite literal, it is allocated
12123 // on the heap. This class implements that.
12124
12125 class Heap_composite_expression : public Expression
12126 {
12127 public:
12128 Heap_composite_expression(Expression* expr, source_location location)
12129 : Expression(EXPRESSION_HEAP_COMPOSITE, location),
12130 expr_(expr)
12131 { }
12132
12133 protected:
12134 int
12135 do_traverse(Traverse* traverse)
12136 { return Expression::traverse(&this->expr_, traverse); }
12137
12138 Type*
12139 do_type()
12140 { return Type::make_pointer_type(this->expr_->type()); }
12141
12142 void
12143 do_determine_type(const Type_context*)
12144 { this->expr_->determine_type_no_context(); }
12145
12146 Expression*
12147 do_copy()
12148 {
12149 return Expression::make_heap_composite(this->expr_->copy(),
12150 this->location());
12151 }
12152
12153 tree
12154 do_get_tree(Translate_context*);
12155
12156 // We only export global objects, and the parser does not generate
12157 // this in global scope.
12158 void
12159 do_export(Export*) const
12160 { gcc_unreachable(); }
12161
12162 private:
12163 // The composite literal which is being put on the heap.
12164 Expression* expr_;
12165 };
12166
12167 // Return a tree which allocates a composite literal on the heap.
12168
12169 tree
12170 Heap_composite_expression::do_get_tree(Translate_context* context)
12171 {
12172 tree expr_tree = this->expr_->get_tree(context);
12173 if (expr_tree == error_mark_node)
12174 return error_mark_node;
12175 tree expr_size = TYPE_SIZE_UNIT(TREE_TYPE(expr_tree));
12176 gcc_assert(TREE_CODE(expr_size) == INTEGER_CST);
12177 tree space = context->gogo()->allocate_memory(this->expr_->type(),
12178 expr_size, this->location());
12179 space = fold_convert(build_pointer_type(TREE_TYPE(expr_tree)), space);
12180 space = save_expr(space);
12181 tree ref = build_fold_indirect_ref_loc(this->location(), space);
12182 TREE_THIS_NOTRAP(ref) = 1;
12183 tree ret = build2(COMPOUND_EXPR, TREE_TYPE(space),
12184 build2(MODIFY_EXPR, void_type_node, ref, expr_tree),
12185 space);
12186 SET_EXPR_LOCATION(ret, this->location());
12187 return ret;
12188 }
12189
12190 // Allocate a composite literal on the heap.
12191
12192 Expression*
12193 Expression::make_heap_composite(Expression* expr, source_location location)
12194 {
12195 return new Heap_composite_expression(expr, location);
12196 }
12197
12198 // Class Receive_expression.
12199
12200 // Return the type of a receive expression.
12201
12202 Type*
12203 Receive_expression::do_type()
12204 {
12205 Channel_type* channel_type = this->channel_->type()->channel_type();
12206 if (channel_type == NULL)
12207 return Type::make_error_type();
12208 return channel_type->element_type();
12209 }
12210
12211 // Check types for a receive expression.
12212
12213 void
12214 Receive_expression::do_check_types(Gogo*)
12215 {
12216 Type* type = this->channel_->type();
12217 if (type->is_error_type())
12218 {
12219 this->set_is_error();
12220 return;
12221 }
12222 if (type->channel_type() == NULL)
12223 {
12224 this->report_error(_("expected channel"));
12225 return;
12226 }
12227 if (!type->channel_type()->may_receive())
12228 {
12229 this->report_error(_("invalid receive on send-only channel"));
12230 return;
12231 }
12232 }
12233
12234 // Get a tree for a receive expression.
12235
12236 tree
12237 Receive_expression::do_get_tree(Translate_context* context)
12238 {
12239 Channel_type* channel_type = this->channel_->type()->channel_type();
12240 gcc_assert(channel_type != NULL);
12241 Type* element_type = channel_type->element_type();
12242 tree element_type_tree = element_type->get_tree(context->gogo());
12243
12244 tree channel = this->channel_->get_tree(context);
12245 if (element_type_tree == error_mark_node || channel == error_mark_node)
12246 return error_mark_node;
12247
12248 return Gogo::receive_from_channel(element_type_tree, channel,
12249 this->for_select_, this->location());
12250 }
12251
12252 // Make a receive expression.
12253
12254 Receive_expression*
12255 Expression::make_receive(Expression* channel, source_location location)
12256 {
12257 return new Receive_expression(channel, location);
12258 }
12259
12260 // Class Send_expression.
12261
12262 // Traversal.
12263
12264 int
12265 Send_expression::do_traverse(Traverse* traverse)
12266 {
12267 if (Expression::traverse(&this->channel_, traverse) == TRAVERSE_EXIT)
12268 return TRAVERSE_EXIT;
12269 return Expression::traverse(&this->val_, traverse);
12270 }
12271
12272 // Get the type.
12273
12274 Type*
12275 Send_expression::do_type()
12276 {
12277 return Type::lookup_bool_type();
12278 }
12279
12280 // Set types.
12281
12282 void
12283 Send_expression::do_determine_type(const Type_context*)
12284 {
12285 this->channel_->determine_type_no_context();
12286
12287 Type* type = this->channel_->type();
12288 Type_context subcontext;
12289 if (type->channel_type() != NULL)
12290 subcontext.type = type->channel_type()->element_type();
12291 this->val_->determine_type(&subcontext);
12292 }
12293
12294 // Check types.
12295
12296 void
12297 Send_expression::do_check_types(Gogo*)
12298 {
12299 Type* type = this->channel_->type();
12300 if (type->is_error_type())
12301 {
12302 this->set_is_error();
12303 return;
12304 }
12305 Channel_type* channel_type = type->channel_type();
12306 if (channel_type == NULL)
12307 {
12308 error_at(this->location(), "left operand of %<<-%> must be channel");
12309 this->set_is_error();
12310 return;
12311 }
12312 Type* element_type = channel_type->element_type();
12313 if (element_type != NULL
12314 && !Type::are_assignable(element_type, this->val_->type(), NULL))
12315 {
12316 this->report_error(_("incompatible types in send"));
12317 return;
12318 }
12319 if (!channel_type->may_send())
12320 {
12321 this->report_error(_("invalid send on receive-only channel"));
12322 return;
12323 }
12324 }
12325
12326 // Get a tree for a send expression.
12327
12328 tree
12329 Send_expression::do_get_tree(Translate_context* context)
12330 {
12331 tree channel = this->channel_->get_tree(context);
12332 tree val = this->val_->get_tree(context);
12333 if (channel == error_mark_node || val == error_mark_node)
12334 return error_mark_node;
12335 Channel_type* channel_type = this->channel_->type()->channel_type();
12336 val = Expression::convert_for_assignment(context,
12337 channel_type->element_type(),
12338 this->val_->type(),
12339 val,
12340 this->location());
12341 return Gogo::send_on_channel(channel, val, this->is_value_discarded_,
12342 this->for_select_, this->location());
12343 }
12344
12345 // Make a send expression
12346
12347 Send_expression*
12348 Expression::make_send(Expression* channel, Expression* val,
12349 source_location location)
12350 {
12351 return new Send_expression(channel, val, location);
12352 }
12353
12354 // An expression which evaluates to a pointer to the type descriptor
12355 // of a type.
12356
12357 class Type_descriptor_expression : public Expression
12358 {
12359 public:
12360 Type_descriptor_expression(Type* type, source_location location)
12361 : Expression(EXPRESSION_TYPE_DESCRIPTOR, location),
12362 type_(type)
12363 { }
12364
12365 protected:
12366 Type*
12367 do_type()
12368 { return Type::make_type_descriptor_ptr_type(); }
12369
12370 void
12371 do_determine_type(const Type_context*)
12372 { }
12373
12374 Expression*
12375 do_copy()
12376 { return this; }
12377
12378 tree
12379 do_get_tree(Translate_context* context)
12380 { return this->type_->type_descriptor_pointer(context->gogo()); }
12381
12382 private:
12383 // The type for which this is the descriptor.
12384 Type* type_;
12385 };
12386
12387 // Make a type descriptor expression.
12388
12389 Expression*
12390 Expression::make_type_descriptor(Type* type, source_location location)
12391 {
12392 return new Type_descriptor_expression(type, location);
12393 }
12394
12395 // An expression which evaluates to some characteristic of a type.
12396 // This is only used to initialize fields of a type descriptor. Using
12397 // a new expression class is slightly inefficient but gives us a good
12398 // separation between the frontend and the middle-end with regard to
12399 // how types are laid out.
12400
12401 class Type_info_expression : public Expression
12402 {
12403 public:
12404 Type_info_expression(Type* type, Type_info type_info)
12405 : Expression(EXPRESSION_TYPE_INFO, BUILTINS_LOCATION),
12406 type_(type), type_info_(type_info)
12407 { }
12408
12409 protected:
12410 Type*
12411 do_type();
12412
12413 void
12414 do_determine_type(const Type_context*)
12415 { }
12416
12417 Expression*
12418 do_copy()
12419 { return this; }
12420
12421 tree
12422 do_get_tree(Translate_context* context);
12423
12424 private:
12425 // The type for which we are getting information.
12426 Type* type_;
12427 // What information we want.
12428 Type_info type_info_;
12429 };
12430
12431 // The type is chosen to match what the type descriptor struct
12432 // expects.
12433
12434 Type*
12435 Type_info_expression::do_type()
12436 {
12437 switch (this->type_info_)
12438 {
12439 case TYPE_INFO_SIZE:
12440 return Type::lookup_integer_type("uintptr");
12441 case TYPE_INFO_ALIGNMENT:
12442 case TYPE_INFO_FIELD_ALIGNMENT:
12443 return Type::lookup_integer_type("uint8");
12444 default:
12445 gcc_unreachable();
12446 }
12447 }
12448
12449 // Return type information in GENERIC.
12450
12451 tree
12452 Type_info_expression::do_get_tree(Translate_context* context)
12453 {
12454 tree type_tree = this->type_->get_tree(context->gogo());
12455 if (type_tree == error_mark_node)
12456 return error_mark_node;
12457
12458 tree val_type_tree = this->type()->get_tree(context->gogo());
12459 gcc_assert(val_type_tree != error_mark_node);
12460
12461 if (this->type_info_ == TYPE_INFO_SIZE)
12462 return fold_convert_loc(BUILTINS_LOCATION, val_type_tree,
12463 TYPE_SIZE_UNIT(type_tree));
12464 else
12465 {
12466 unsigned int val;
12467 if (this->type_info_ == TYPE_INFO_ALIGNMENT)
12468 val = go_type_alignment(type_tree);
12469 else
12470 val = go_field_alignment(type_tree);
12471 return build_int_cstu(val_type_tree, val);
12472 }
12473 }
12474
12475 // Make a type info expression.
12476
12477 Expression*
12478 Expression::make_type_info(Type* type, Type_info type_info)
12479 {
12480 return new Type_info_expression(type, type_info);
12481 }
12482
12483 // An expression which evaluates to the offset of a field within a
12484 // struct. This, like Type_info_expression, q.v., is only used to
12485 // initialize fields of a type descriptor.
12486
12487 class Struct_field_offset_expression : public Expression
12488 {
12489 public:
12490 Struct_field_offset_expression(Struct_type* type, const Struct_field* field)
12491 : Expression(EXPRESSION_STRUCT_FIELD_OFFSET, BUILTINS_LOCATION),
12492 type_(type), field_(field)
12493 { }
12494
12495 protected:
12496 Type*
12497 do_type()
12498 { return Type::lookup_integer_type("uintptr"); }
12499
12500 void
12501 do_determine_type(const Type_context*)
12502 { }
12503
12504 Expression*
12505 do_copy()
12506 { return this; }
12507
12508 tree
12509 do_get_tree(Translate_context* context);
12510
12511 private:
12512 // The type of the struct.
12513 Struct_type* type_;
12514 // The field.
12515 const Struct_field* field_;
12516 };
12517
12518 // Return a struct field offset in GENERIC.
12519
12520 tree
12521 Struct_field_offset_expression::do_get_tree(Translate_context* context)
12522 {
12523 tree type_tree = this->type_->get_tree(context->gogo());
12524 if (type_tree == error_mark_node)
12525 return error_mark_node;
12526
12527 tree val_type_tree = this->type()->get_tree(context->gogo());
12528 gcc_assert(val_type_tree != error_mark_node);
12529
12530 const Struct_field_list* fields = this->type_->fields();
12531 tree struct_field_tree = TYPE_FIELDS(type_tree);
12532 Struct_field_list::const_iterator p;
12533 for (p = fields->begin();
12534 p != fields->end();
12535 ++p, struct_field_tree = DECL_CHAIN(struct_field_tree))
12536 {
12537 gcc_assert(struct_field_tree != NULL_TREE);
12538 if (&*p == this->field_)
12539 break;
12540 }
12541 gcc_assert(&*p == this->field_);
12542
12543 return fold_convert_loc(BUILTINS_LOCATION, val_type_tree,
12544 byte_position(struct_field_tree));
12545 }
12546
12547 // Make an expression for a struct field offset.
12548
12549 Expression*
12550 Expression::make_struct_field_offset(Struct_type* type,
12551 const Struct_field* field)
12552 {
12553 return new Struct_field_offset_expression(type, field);
12554 }
12555
12556 // An expression which evaluates to the address of an unnamed label.
12557
12558 class Label_addr_expression : public Expression
12559 {
12560 public:
12561 Label_addr_expression(Label* label, source_location location)
12562 : Expression(EXPRESSION_LABEL_ADDR, location),
12563 label_(label)
12564 { }
12565
12566 protected:
12567 Type*
12568 do_type()
12569 { return Type::make_pointer_type(Type::make_void_type()); }
12570
12571 void
12572 do_determine_type(const Type_context*)
12573 { }
12574
12575 Expression*
12576 do_copy()
12577 { return new Label_addr_expression(this->label_, this->location()); }
12578
12579 tree
12580 do_get_tree(Translate_context*)
12581 { return this->label_->get_addr(this->location()); }
12582
12583 private:
12584 // The label whose address we are taking.
12585 Label* label_;
12586 };
12587
12588 // Make an expression for the address of an unnamed label.
12589
12590 Expression*
12591 Expression::make_label_addr(Label* label, source_location location)
12592 {
12593 return new Label_addr_expression(label, location);
12594 }
12595
12596 // Import an expression. This comes at the end in order to see the
12597 // various class definitions.
12598
12599 Expression*
12600 Expression::import_expression(Import* imp)
12601 {
12602 int c = imp->peek_char();
12603 if (imp->match_c_string("- ")
12604 || imp->match_c_string("! ")
12605 || imp->match_c_string("^ "))
12606 return Unary_expression::do_import(imp);
12607 else if (c == '(')
12608 return Binary_expression::do_import(imp);
12609 else if (imp->match_c_string("true")
12610 || imp->match_c_string("false"))
12611 return Boolean_expression::do_import(imp);
12612 else if (c == '"')
12613 return String_expression::do_import(imp);
12614 else if (c == '-' || (c >= '0' && c <= '9'))
12615 {
12616 // This handles integers, floats and complex constants.
12617 return Integer_expression::do_import(imp);
12618 }
12619 else if (imp->match_c_string("nil"))
12620 return Nil_expression::do_import(imp);
12621 else if (imp->match_c_string("convert"))
12622 return Type_conversion_expression::do_import(imp);
12623 else
12624 {
12625 error_at(imp->location(), "import error: expected expression");
12626 return Expression::make_error(imp->location());
12627 }
12628 }
12629
12630 // Class Expression_list.
12631
12632 // Traverse the list.
12633
12634 int
12635 Expression_list::traverse(Traverse* traverse)
12636 {
12637 for (Expression_list::iterator p = this->begin();
12638 p != this->end();
12639 ++p)
12640 {
12641 if (*p != NULL)
12642 {
12643 if (Expression::traverse(&*p, traverse) == TRAVERSE_EXIT)
12644 return TRAVERSE_EXIT;
12645 }
12646 }
12647 return TRAVERSE_CONTINUE;
12648 }
12649
12650 // Copy the list.
12651
12652 Expression_list*
12653 Expression_list::copy()
12654 {
12655 Expression_list* ret = new Expression_list();
12656 for (Expression_list::iterator p = this->begin();
12657 p != this->end();
12658 ++p)
12659 {
12660 if (*p == NULL)
12661 ret->push_back(NULL);
12662 else
12663 ret->push_back((*p)->copy());
12664 }
12665 return ret;
12666 }
12667
12668 // Return whether an expression list has an error expression.
12669
12670 bool
12671 Expression_list::contains_error() const
12672 {
12673 for (Expression_list::const_iterator p = this->begin();
12674 p != this->end();
12675 ++p)
12676 if (*p != NULL && (*p)->is_error_expression())
12677 return true;
12678 return false;
12679 }