Remove the types float and complex.
[gcc.git] / gcc / go / gofrontend / expressions.cc
1 // expressions.cc -- Go frontend expression handling.
2
3 // Copyright 2009 The Go Authors. All rights reserved.
4 // Use of this source code is governed by a BSD-style
5 // license that can be found in the LICENSE file.
6
7 #include "go-system.h"
8
9 #include <gmp.h>
10
11 #ifndef ENABLE_BUILD_WITH_CXX
12 extern "C"
13 {
14 #endif
15
16 #include "toplev.h"
17 #include "intl.h"
18 #include "tree.h"
19 #include "gimple.h"
20 #include "tree-iterator.h"
21 #include "convert.h"
22 #include "real.h"
23 #include "realmpfr.h"
24
25 #ifndef ENABLE_BUILD_WITH_CXX
26 }
27 #endif
28
29 #include "go-c.h"
30 #include "gogo.h"
31 #include "types.h"
32 #include "export.h"
33 #include "import.h"
34 #include "statements.h"
35 #include "lex.h"
36 #include "expressions.h"
37
38 // Class Expression.
39
40 Expression::Expression(Expression_classification classification,
41 source_location location)
42 : classification_(classification), location_(location)
43 {
44 }
45
46 Expression::~Expression()
47 {
48 }
49
50 // If this expression has a constant integer value, return it.
51
52 bool
53 Expression::integer_constant_value(bool iota_is_constant, mpz_t val,
54 Type** ptype) const
55 {
56 *ptype = NULL;
57 return this->do_integer_constant_value(iota_is_constant, val, ptype);
58 }
59
60 // If this expression has a constant floating point value, return it.
61
62 bool
63 Expression::float_constant_value(mpfr_t val, Type** ptype) const
64 {
65 *ptype = NULL;
66 if (this->do_float_constant_value(val, ptype))
67 return true;
68 mpz_t ival;
69 mpz_init(ival);
70 Type* t;
71 bool ret;
72 if (!this->do_integer_constant_value(false, ival, &t))
73 ret = false;
74 else
75 {
76 mpfr_set_z(val, ival, GMP_RNDN);
77 ret = true;
78 }
79 mpz_clear(ival);
80 return ret;
81 }
82
83 // If this expression has a constant complex value, return it.
84
85 bool
86 Expression::complex_constant_value(mpfr_t real, mpfr_t imag,
87 Type** ptype) const
88 {
89 *ptype = NULL;
90 if (this->do_complex_constant_value(real, imag, ptype))
91 return true;
92 Type *t;
93 if (this->float_constant_value(real, &t))
94 {
95 mpfr_set_ui(imag, 0, GMP_RNDN);
96 return true;
97 }
98 return false;
99 }
100
101 // Traverse the expressions.
102
103 int
104 Expression::traverse(Expression** pexpr, Traverse* traverse)
105 {
106 Expression* expr = *pexpr;
107 if ((traverse->traverse_mask() & Traverse::traverse_expressions) != 0)
108 {
109 int t = traverse->expression(pexpr);
110 if (t == TRAVERSE_EXIT)
111 return TRAVERSE_EXIT;
112 else if (t == TRAVERSE_SKIP_COMPONENTS)
113 return TRAVERSE_CONTINUE;
114 }
115 return expr->do_traverse(traverse);
116 }
117
118 // Traverse subexpressions of this expression.
119
120 int
121 Expression::traverse_subexpressions(Traverse* traverse)
122 {
123 return this->do_traverse(traverse);
124 }
125
126 // Default implementation for do_traverse for child classes.
127
128 int
129 Expression::do_traverse(Traverse*)
130 {
131 return TRAVERSE_CONTINUE;
132 }
133
134 // This virtual function is called by the parser if the value of this
135 // expression is being discarded. By default, we warn. Expressions
136 // with side effects override.
137
138 void
139 Expression::do_discarding_value()
140 {
141 this->warn_about_unused_value();
142 }
143
144 // This virtual function is called to export expressions. This will
145 // only be used by expressions which may be constant.
146
147 void
148 Expression::do_export(Export*) const
149 {
150 gcc_unreachable();
151 }
152
153 // Warn that the value of the expression is not used.
154
155 void
156 Expression::warn_about_unused_value()
157 {
158 warning_at(this->location(), OPT_Wunused_value, "value computed is not used");
159 }
160
161 // Note that this expression is an error. This is called by children
162 // when they discover an error.
163
164 void
165 Expression::set_is_error()
166 {
167 this->classification_ = EXPRESSION_ERROR;
168 }
169
170 // For children to call to report an error conveniently.
171
172 void
173 Expression::report_error(const char* msg)
174 {
175 error_at(this->location_, "%s", msg);
176 this->set_is_error();
177 }
178
179 // Set types of variables and constants. This is implemented by the
180 // child class.
181
182 void
183 Expression::determine_type(const Type_context* context)
184 {
185 this->do_determine_type(context);
186 }
187
188 // Set types when there is no context.
189
190 void
191 Expression::determine_type_no_context()
192 {
193 Type_context context;
194 this->do_determine_type(&context);
195 }
196
197 // Return a tree handling any conversions which must be done during
198 // assignment.
199
200 tree
201 Expression::convert_for_assignment(Translate_context* context, Type* lhs_type,
202 Type* rhs_type, tree rhs_tree,
203 source_location location)
204 {
205 if (lhs_type == rhs_type)
206 return rhs_tree;
207
208 if (lhs_type->is_error_type() || rhs_type->is_error_type())
209 return error_mark_node;
210
211 if (lhs_type->is_undefined() || rhs_type->is_undefined())
212 {
213 // Make sure we report the error.
214 lhs_type->base();
215 rhs_type->base();
216 return error_mark_node;
217 }
218
219 if (rhs_tree == error_mark_node || TREE_TYPE(rhs_tree) == error_mark_node)
220 return error_mark_node;
221
222 Gogo* gogo = context->gogo();
223
224 tree lhs_type_tree = lhs_type->get_tree(gogo);
225 if (lhs_type_tree == error_mark_node)
226 return error_mark_node;
227
228 if (lhs_type->interface_type() != NULL)
229 {
230 if (rhs_type->interface_type() == NULL)
231 return Expression::convert_type_to_interface(context, lhs_type,
232 rhs_type, rhs_tree,
233 location);
234 else
235 return Expression::convert_interface_to_interface(context, lhs_type,
236 rhs_type, rhs_tree,
237 false, location);
238 }
239 else if (rhs_type->interface_type() != NULL)
240 return Expression::convert_interface_to_type(context, lhs_type, rhs_type,
241 rhs_tree, location);
242 else if (lhs_type->is_open_array_type()
243 && rhs_type->is_nil_type())
244 {
245 // Assigning nil to an open array.
246 gcc_assert(TREE_CODE(lhs_type_tree) == RECORD_TYPE);
247
248 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
249
250 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
251 tree field = TYPE_FIELDS(lhs_type_tree);
252 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
253 "__values") == 0);
254 elt->index = field;
255 elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
256
257 elt = VEC_quick_push(constructor_elt, init, NULL);
258 field = DECL_CHAIN(field);
259 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
260 "__count") == 0);
261 elt->index = field;
262 elt->value = fold_convert(TREE_TYPE(field), integer_zero_node);
263
264 elt = VEC_quick_push(constructor_elt, init, NULL);
265 field = DECL_CHAIN(field);
266 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
267 "__capacity") == 0);
268 elt->index = field;
269 elt->value = fold_convert(TREE_TYPE(field), integer_zero_node);
270
271 tree val = build_constructor(lhs_type_tree, init);
272 TREE_CONSTANT(val) = 1;
273
274 return val;
275 }
276 else if (rhs_type->is_nil_type())
277 {
278 // The left hand side should be a pointer type at the tree
279 // level.
280 gcc_assert(POINTER_TYPE_P(lhs_type_tree));
281 return fold_convert(lhs_type_tree, null_pointer_node);
282 }
283 else if (lhs_type_tree == TREE_TYPE(rhs_tree))
284 {
285 // No conversion is needed.
286 return rhs_tree;
287 }
288 else if (POINTER_TYPE_P(lhs_type_tree)
289 || INTEGRAL_TYPE_P(lhs_type_tree)
290 || SCALAR_FLOAT_TYPE_P(lhs_type_tree)
291 || COMPLEX_FLOAT_TYPE_P(lhs_type_tree))
292 return fold_convert_loc(location, lhs_type_tree, rhs_tree);
293 else if (TREE_CODE(lhs_type_tree) == RECORD_TYPE
294 && TREE_CODE(TREE_TYPE(rhs_tree)) == RECORD_TYPE)
295 {
296 // This conversion must be permitted by Go, or we wouldn't have
297 // gotten here.
298 gcc_assert(int_size_in_bytes(lhs_type_tree)
299 == int_size_in_bytes(TREE_TYPE(rhs_tree)));
300 return fold_build1_loc(location, VIEW_CONVERT_EXPR, lhs_type_tree,
301 rhs_tree);
302 }
303 else
304 {
305 gcc_assert(useless_type_conversion_p(lhs_type_tree, TREE_TYPE(rhs_tree)));
306 return rhs_tree;
307 }
308 }
309
310 // Return a tree for a conversion from a non-interface type to an
311 // interface type.
312
313 tree
314 Expression::convert_type_to_interface(Translate_context* context,
315 Type* lhs_type, Type* rhs_type,
316 tree rhs_tree, source_location location)
317 {
318 Gogo* gogo = context->gogo();
319 Interface_type* lhs_interface_type = lhs_type->interface_type();
320 bool lhs_is_empty = lhs_interface_type->is_empty();
321
322 // Since RHS_TYPE is a static type, we can create the interface
323 // method table at compile time.
324
325 // When setting an interface to nil, we just set both fields to
326 // NULL.
327 if (rhs_type->is_nil_type())
328 return lhs_type->get_init_tree(gogo, false);
329
330 // This should have been checked already.
331 gcc_assert(lhs_interface_type->implements_interface(rhs_type, NULL));
332
333 tree lhs_type_tree = lhs_type->get_tree(gogo);
334 if (lhs_type_tree == error_mark_node)
335 return error_mark_node;
336
337 // An interface is a tuple. If LHS_TYPE is an empty interface type,
338 // then the first field is the type descriptor for RHS_TYPE.
339 // Otherwise it is the interface method table for RHS_TYPE.
340 tree first_field_value;
341 if (lhs_is_empty)
342 first_field_value = rhs_type->type_descriptor_pointer(gogo);
343 else
344 {
345 // Build the interface method table for this interface and this
346 // object type: a list of function pointers for each interface
347 // method.
348 Named_type* rhs_named_type = rhs_type->named_type();
349 bool is_pointer = false;
350 if (rhs_named_type == NULL)
351 {
352 rhs_named_type = rhs_type->deref()->named_type();
353 is_pointer = true;
354 }
355 tree method_table;
356 if (rhs_named_type == NULL)
357 method_table = null_pointer_node;
358 else
359 method_table =
360 rhs_named_type->interface_method_table(gogo, lhs_interface_type,
361 is_pointer);
362 first_field_value = fold_convert_loc(location, const_ptr_type_node,
363 method_table);
364 }
365
366 // Start building a constructor for the value we will return.
367
368 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
369
370 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
371 tree field = TYPE_FIELDS(lhs_type_tree);
372 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
373 (lhs_is_empty ? "__type_descriptor" : "__methods")) == 0);
374 elt->index = field;
375 elt->value = fold_convert_loc(location, TREE_TYPE(field), first_field_value);
376
377 elt = VEC_quick_push(constructor_elt, init, NULL);
378 field = DECL_CHAIN(field);
379 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
380 elt->index = field;
381
382 if (rhs_type->points_to() != NULL)
383 {
384 // We are assigning a pointer to the interface; the interface
385 // holds the pointer itself.
386 elt->value = rhs_tree;
387 return build_constructor(lhs_type_tree, init);
388 }
389
390 // We are assigning a non-pointer value to the interface; the
391 // interface gets a copy of the value in the heap.
392
393 tree object_size = TYPE_SIZE_UNIT(TREE_TYPE(rhs_tree));
394
395 tree space = gogo->allocate_memory(rhs_type, object_size, location);
396 space = fold_convert_loc(location, build_pointer_type(TREE_TYPE(rhs_tree)),
397 space);
398 space = save_expr(space);
399
400 tree ref = build_fold_indirect_ref_loc(location, space);
401 TREE_THIS_NOTRAP(ref) = 1;
402 tree set = fold_build2_loc(location, MODIFY_EXPR, void_type_node,
403 ref, rhs_tree);
404
405 elt->value = fold_convert_loc(location, TREE_TYPE(field), space);
406
407 return build2(COMPOUND_EXPR, lhs_type_tree, set,
408 build_constructor(lhs_type_tree, init));
409 }
410
411 // Return a tree for the type descriptor of RHS_TREE, which has
412 // interface type RHS_TYPE. If RHS_TREE is nil the result will be
413 // NULL.
414
415 tree
416 Expression::get_interface_type_descriptor(Translate_context*,
417 Type* rhs_type, tree rhs_tree,
418 source_location location)
419 {
420 tree rhs_type_tree = TREE_TYPE(rhs_tree);
421 gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
422 tree rhs_field = TYPE_FIELDS(rhs_type_tree);
423 tree v = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
424 NULL_TREE);
425 if (rhs_type->interface_type()->is_empty())
426 {
427 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)),
428 "__type_descriptor") == 0);
429 return v;
430 }
431
432 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__methods")
433 == 0);
434 gcc_assert(POINTER_TYPE_P(TREE_TYPE(v)));
435 v = save_expr(v);
436 tree v1 = build_fold_indirect_ref_loc(location, v);
437 gcc_assert(TREE_CODE(TREE_TYPE(v1)) == RECORD_TYPE);
438 tree f = TYPE_FIELDS(TREE_TYPE(v1));
439 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(f)), "__type_descriptor")
440 == 0);
441 v1 = build3(COMPONENT_REF, TREE_TYPE(f), v1, f, NULL_TREE);
442
443 tree eq = fold_build2_loc(location, EQ_EXPR, boolean_type_node, v,
444 fold_convert_loc(location, TREE_TYPE(v),
445 null_pointer_node));
446 tree n = fold_convert_loc(location, TREE_TYPE(v1), null_pointer_node);
447 return fold_build3_loc(location, COND_EXPR, TREE_TYPE(v1),
448 eq, n, v1);
449 }
450
451 // Return a tree for the conversion of an interface type to an
452 // interface type.
453
454 tree
455 Expression::convert_interface_to_interface(Translate_context* context,
456 Type *lhs_type, Type *rhs_type,
457 tree rhs_tree, bool for_type_guard,
458 source_location location)
459 {
460 Gogo* gogo = context->gogo();
461 Interface_type* lhs_interface_type = lhs_type->interface_type();
462 bool lhs_is_empty = lhs_interface_type->is_empty();
463
464 tree lhs_type_tree = lhs_type->get_tree(gogo);
465 if (lhs_type_tree == error_mark_node)
466 return error_mark_node;
467
468 // In the general case this requires runtime examination of the type
469 // method table to match it up with the interface methods.
470
471 // FIXME: If all of the methods in the right hand side interface
472 // also appear in the left hand side interface, then we don't need
473 // to do a runtime check, although we still need to build a new
474 // method table.
475
476 // Get the type descriptor for the right hand side. This will be
477 // NULL for a nil interface.
478
479 if (!DECL_P(rhs_tree))
480 rhs_tree = save_expr(rhs_tree);
481
482 tree rhs_type_descriptor =
483 Expression::get_interface_type_descriptor(context, rhs_type, rhs_tree,
484 location);
485
486 // The result is going to be a two element constructor.
487
488 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
489
490 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
491 tree field = TYPE_FIELDS(lhs_type_tree);
492 elt->index = field;
493
494 if (for_type_guard)
495 {
496 // A type assertion fails when converting a nil interface.
497 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
498 static tree assert_interface_decl;
499 tree call = Gogo::call_builtin(&assert_interface_decl,
500 location,
501 "__go_assert_interface",
502 2,
503 ptr_type_node,
504 TREE_TYPE(lhs_type_descriptor),
505 lhs_type_descriptor,
506 TREE_TYPE(rhs_type_descriptor),
507 rhs_type_descriptor);
508 if (call == error_mark_node)
509 return error_mark_node;
510 // This will panic if the interface conversion fails.
511 TREE_NOTHROW(assert_interface_decl) = 0;
512 elt->value = fold_convert_loc(location, TREE_TYPE(field), call);
513 }
514 else if (lhs_is_empty)
515 {
516 // A convertion to an empty interface always succeeds, and the
517 // first field is just the type descriptor of the object.
518 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
519 "__type_descriptor") == 0);
520 gcc_assert(TREE_TYPE(field) == TREE_TYPE(rhs_type_descriptor));
521 elt->value = rhs_type_descriptor;
522 }
523 else
524 {
525 // A conversion to a non-empty interface may fail, but unlike a
526 // type assertion converting nil will always succeed.
527 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods")
528 == 0);
529 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
530 static tree convert_interface_decl;
531 tree call = Gogo::call_builtin(&convert_interface_decl,
532 location,
533 "__go_convert_interface",
534 2,
535 ptr_type_node,
536 TREE_TYPE(lhs_type_descriptor),
537 lhs_type_descriptor,
538 TREE_TYPE(rhs_type_descriptor),
539 rhs_type_descriptor);
540 if (call == error_mark_node)
541 return error_mark_node;
542 // This will panic if the interface conversion fails.
543 TREE_NOTHROW(convert_interface_decl) = 0;
544 elt->value = fold_convert_loc(location, TREE_TYPE(field), call);
545 }
546
547 // The second field is simply the object pointer.
548
549 elt = VEC_quick_push(constructor_elt, init, NULL);
550 field = DECL_CHAIN(field);
551 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
552 elt->index = field;
553
554 tree rhs_type_tree = TREE_TYPE(rhs_tree);
555 gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
556 tree rhs_field = DECL_CHAIN(TYPE_FIELDS(rhs_type_tree));
557 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__object") == 0);
558 elt->value = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
559 NULL_TREE);
560
561 return build_constructor(lhs_type_tree, init);
562 }
563
564 // Return a tree for the conversion of an interface type to a
565 // non-interface type.
566
567 tree
568 Expression::convert_interface_to_type(Translate_context* context,
569 Type *lhs_type, Type* rhs_type,
570 tree rhs_tree, source_location location)
571 {
572 Gogo* gogo = context->gogo();
573 tree rhs_type_tree = TREE_TYPE(rhs_tree);
574
575 tree lhs_type_tree = lhs_type->get_tree(gogo);
576 if (lhs_type_tree == error_mark_node)
577 return error_mark_node;
578
579 // Call a function to check that the type is valid. The function
580 // will panic with an appropriate runtime type error if the type is
581 // not valid.
582
583 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
584
585 if (!DECL_P(rhs_tree))
586 rhs_tree = save_expr(rhs_tree);
587
588 tree rhs_type_descriptor =
589 Expression::get_interface_type_descriptor(context, rhs_type, rhs_tree,
590 location);
591
592 tree rhs_inter_descriptor = rhs_type->type_descriptor_pointer(gogo);
593
594 static tree check_interface_type_decl;
595 tree call = Gogo::call_builtin(&check_interface_type_decl,
596 location,
597 "__go_check_interface_type",
598 3,
599 void_type_node,
600 TREE_TYPE(lhs_type_descriptor),
601 lhs_type_descriptor,
602 TREE_TYPE(rhs_type_descriptor),
603 rhs_type_descriptor,
604 TREE_TYPE(rhs_inter_descriptor),
605 rhs_inter_descriptor);
606 if (call == error_mark_node)
607 return error_mark_node;
608 // This call will panic if the conversion is invalid.
609 TREE_NOTHROW(check_interface_type_decl) = 0;
610
611 // If the call succeeds, pull out the value.
612 gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
613 tree rhs_field = DECL_CHAIN(TYPE_FIELDS(rhs_type_tree));
614 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__object") == 0);
615 tree val = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
616 NULL_TREE);
617
618 // If the value is a pointer, then it is the value we want.
619 // Otherwise it points to the value.
620 if (lhs_type->points_to() == NULL)
621 {
622 val = fold_convert_loc(location, build_pointer_type(lhs_type_tree), val);
623 val = build_fold_indirect_ref_loc(location, val);
624 }
625
626 return build2(COMPOUND_EXPR, lhs_type_tree, call,
627 fold_convert_loc(location, lhs_type_tree, val));
628 }
629
630 // Convert an expression to a tree. This is implemented by the child
631 // class. Not that it is not in general safe to call this multiple
632 // times for a single expression, but that we don't catch such errors.
633
634 tree
635 Expression::get_tree(Translate_context* context)
636 {
637 // The child may have marked this expression as having an error.
638 if (this->classification_ == EXPRESSION_ERROR)
639 return error_mark_node;
640
641 return this->do_get_tree(context);
642 }
643
644 // Return a tree for VAL in TYPE.
645
646 tree
647 Expression::integer_constant_tree(mpz_t val, tree type)
648 {
649 if (type == error_mark_node)
650 return error_mark_node;
651 else if (TREE_CODE(type) == INTEGER_TYPE)
652 return double_int_to_tree(type,
653 mpz_get_double_int(type, val, true));
654 else if (TREE_CODE(type) == REAL_TYPE)
655 {
656 mpfr_t fval;
657 mpfr_init_set_z(fval, val, GMP_RNDN);
658 tree ret = Expression::float_constant_tree(fval, type);
659 mpfr_clear(fval);
660 return ret;
661 }
662 else if (TREE_CODE(type) == COMPLEX_TYPE)
663 {
664 mpfr_t fval;
665 mpfr_init_set_z(fval, val, GMP_RNDN);
666 tree real = Expression::float_constant_tree(fval, TREE_TYPE(type));
667 mpfr_clear(fval);
668 tree imag = build_real_from_int_cst(TREE_TYPE(type),
669 integer_zero_node);
670 return build_complex(type, real, imag);
671 }
672 else
673 gcc_unreachable();
674 }
675
676 // Return a tree for VAL in TYPE.
677
678 tree
679 Expression::float_constant_tree(mpfr_t val, tree type)
680 {
681 if (type == error_mark_node)
682 return error_mark_node;
683 else if (TREE_CODE(type) == INTEGER_TYPE)
684 {
685 mpz_t ival;
686 mpz_init(ival);
687 mpfr_get_z(ival, val, GMP_RNDN);
688 tree ret = Expression::integer_constant_tree(ival, type);
689 mpz_clear(ival);
690 return ret;
691 }
692 else if (TREE_CODE(type) == REAL_TYPE)
693 {
694 REAL_VALUE_TYPE r1;
695 real_from_mpfr(&r1, val, type, GMP_RNDN);
696 REAL_VALUE_TYPE r2;
697 real_convert(&r2, TYPE_MODE(type), &r1);
698 return build_real(type, r2);
699 }
700 else if (TREE_CODE(type) == COMPLEX_TYPE)
701 {
702 REAL_VALUE_TYPE r1;
703 real_from_mpfr(&r1, val, TREE_TYPE(type), GMP_RNDN);
704 REAL_VALUE_TYPE r2;
705 real_convert(&r2, TYPE_MODE(TREE_TYPE(type)), &r1);
706 tree imag = build_real_from_int_cst(TREE_TYPE(type),
707 integer_zero_node);
708 return build_complex(type, build_real(TREE_TYPE(type), r2), imag);
709 }
710 else
711 gcc_unreachable();
712 }
713
714 // Return a tree for REAL/IMAG in TYPE.
715
716 tree
717 Expression::complex_constant_tree(mpfr_t real, mpfr_t imag, tree type)
718 {
719 if (TREE_CODE(type) == COMPLEX_TYPE)
720 {
721 REAL_VALUE_TYPE r1;
722 real_from_mpfr(&r1, real, TREE_TYPE(type), GMP_RNDN);
723 REAL_VALUE_TYPE r2;
724 real_convert(&r2, TYPE_MODE(TREE_TYPE(type)), &r1);
725
726 REAL_VALUE_TYPE r3;
727 real_from_mpfr(&r3, imag, TREE_TYPE(type), GMP_RNDN);
728 REAL_VALUE_TYPE r4;
729 real_convert(&r4, TYPE_MODE(TREE_TYPE(type)), &r3);
730
731 return build_complex(type, build_real(TREE_TYPE(type), r2),
732 build_real(TREE_TYPE(type), r4));
733 }
734 else
735 gcc_unreachable();
736 }
737
738 // Return a tree which evaluates to true if VAL, of arbitrary integer
739 // type, is negative or is more than the maximum value of BOUND_TYPE.
740 // If SOFAR is not NULL, it is or'red into the result. The return
741 // value may be NULL if SOFAR is NULL.
742
743 tree
744 Expression::check_bounds(tree val, tree bound_type, tree sofar,
745 source_location loc)
746 {
747 tree val_type = TREE_TYPE(val);
748 tree ret = NULL_TREE;
749
750 if (!TYPE_UNSIGNED(val_type))
751 {
752 ret = fold_build2_loc(loc, LT_EXPR, boolean_type_node, val,
753 build_int_cst(val_type, 0));
754 if (ret == boolean_false_node)
755 ret = NULL_TREE;
756 }
757
758 if ((TYPE_UNSIGNED(val_type) && !TYPE_UNSIGNED(bound_type))
759 || TYPE_SIZE(val_type) > TYPE_SIZE(bound_type))
760 {
761 tree max = TYPE_MAX_VALUE(bound_type);
762 tree big = fold_build2_loc(loc, GT_EXPR, boolean_type_node, val,
763 fold_convert_loc(loc, val_type, max));
764 if (big == boolean_false_node)
765 ;
766 else if (ret == NULL_TREE)
767 ret = big;
768 else
769 ret = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
770 ret, big);
771 }
772
773 if (ret == NULL_TREE)
774 return sofar;
775 else if (sofar == NULL_TREE)
776 return ret;
777 else
778 return fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
779 sofar, ret);
780 }
781
782 // Error expressions. This are used to avoid cascading errors.
783
784 class Error_expression : public Expression
785 {
786 public:
787 Error_expression(source_location location)
788 : Expression(EXPRESSION_ERROR, location)
789 { }
790
791 protected:
792 bool
793 do_is_constant() const
794 { return true; }
795
796 bool
797 do_integer_constant_value(bool, mpz_t val, Type**) const
798 {
799 mpz_set_ui(val, 0);
800 return true;
801 }
802
803 bool
804 do_float_constant_value(mpfr_t val, Type**) const
805 {
806 mpfr_set_ui(val, 0, GMP_RNDN);
807 return true;
808 }
809
810 bool
811 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const
812 {
813 mpfr_set_ui(real, 0, GMP_RNDN);
814 mpfr_set_ui(imag, 0, GMP_RNDN);
815 return true;
816 }
817
818 void
819 do_discarding_value()
820 { }
821
822 Type*
823 do_type()
824 { return Type::make_error_type(); }
825
826 void
827 do_determine_type(const Type_context*)
828 { }
829
830 Expression*
831 do_copy()
832 { return this; }
833
834 bool
835 do_is_addressable() const
836 { return true; }
837
838 tree
839 do_get_tree(Translate_context*)
840 { return error_mark_node; }
841 };
842
843 Expression*
844 Expression::make_error(source_location location)
845 {
846 return new Error_expression(location);
847 }
848
849 // An expression which is really a type. This is used during parsing.
850 // It is an error if these survive after lowering.
851
852 class
853 Type_expression : public Expression
854 {
855 public:
856 Type_expression(Type* type, source_location location)
857 : Expression(EXPRESSION_TYPE, location),
858 type_(type)
859 { }
860
861 protected:
862 int
863 do_traverse(Traverse* traverse)
864 { return Type::traverse(this->type_, traverse); }
865
866 Type*
867 do_type()
868 { return this->type_; }
869
870 void
871 do_determine_type(const Type_context*)
872 { }
873
874 void
875 do_check_types(Gogo*)
876 { this->report_error(_("invalid use of type")); }
877
878 Expression*
879 do_copy()
880 { return this; }
881
882 tree
883 do_get_tree(Translate_context*)
884 { gcc_unreachable(); }
885
886 private:
887 // The type which we are representing as an expression.
888 Type* type_;
889 };
890
891 Expression*
892 Expression::make_type(Type* type, source_location location)
893 {
894 return new Type_expression(type, location);
895 }
896
897 // Class Parser_expression.
898
899 Type*
900 Parser_expression::do_type()
901 {
902 // We should never really ask for the type of a Parser_expression.
903 // However, it can happen, at least when we have an invalid const
904 // whose initializer refers to the const itself. In that case we
905 // may ask for the type when lowering the const itself.
906 gcc_assert(saw_errors());
907 return Type::make_error_type();
908 }
909
910 // Class Var_expression.
911
912 // Lower a variable expression. Here we just make sure that the
913 // initialization expression of the variable has been lowered. This
914 // ensures that we will be able to determine the type of the variable
915 // if necessary.
916
917 Expression*
918 Var_expression::do_lower(Gogo* gogo, Named_object* function, int)
919 {
920 if (this->variable_->is_variable())
921 {
922 Variable* var = this->variable_->var_value();
923 // This is either a local variable or a global variable. A
924 // reference to a variable which is local to an enclosing
925 // function will be a reference to a field in a closure.
926 if (var->is_global())
927 function = NULL;
928 var->lower_init_expression(gogo, function);
929 }
930 return this;
931 }
932
933 // Return the name of the variable.
934
935 const std::string&
936 Var_expression::name() const
937 {
938 return this->variable_->name();
939 }
940
941 // Return the type of a reference to a variable.
942
943 Type*
944 Var_expression::do_type()
945 {
946 if (this->variable_->is_variable())
947 return this->variable_->var_value()->type();
948 else if (this->variable_->is_result_variable())
949 return this->variable_->result_var_value()->type();
950 else
951 gcc_unreachable();
952 }
953
954 // Something takes the address of this variable. This means that we
955 // may want to move the variable onto the heap.
956
957 void
958 Var_expression::do_address_taken(bool escapes)
959 {
960 if (!escapes)
961 ;
962 else if (this->variable_->is_variable())
963 this->variable_->var_value()->set_address_taken();
964 else if (this->variable_->is_result_variable())
965 this->variable_->result_var_value()->set_address_taken();
966 else
967 gcc_unreachable();
968 }
969
970 // Get the tree for a reference to a variable.
971
972 tree
973 Var_expression::do_get_tree(Translate_context* context)
974 {
975 return this->variable_->get_tree(context->gogo(), context->function());
976 }
977
978 // Make a reference to a variable in an expression.
979
980 Expression*
981 Expression::make_var_reference(Named_object* var, source_location location)
982 {
983 if (var->is_sink())
984 return Expression::make_sink(location);
985
986 // FIXME: Creating a new object for each reference to a variable is
987 // wasteful.
988 return new Var_expression(var, location);
989 }
990
991 // Class Temporary_reference_expression.
992
993 // The type.
994
995 Type*
996 Temporary_reference_expression::do_type()
997 {
998 return this->statement_->type();
999 }
1000
1001 // Called if something takes the address of this temporary variable.
1002 // We never have to move temporary variables to the heap, but we do
1003 // need to know that they must live in the stack rather than in a
1004 // register.
1005
1006 void
1007 Temporary_reference_expression::do_address_taken(bool)
1008 {
1009 this->statement_->set_is_address_taken();
1010 }
1011
1012 // Get a tree referring to the variable.
1013
1014 tree
1015 Temporary_reference_expression::do_get_tree(Translate_context*)
1016 {
1017 return this->statement_->get_decl();
1018 }
1019
1020 // Make a reference to a temporary variable.
1021
1022 Expression*
1023 Expression::make_temporary_reference(Temporary_statement* statement,
1024 source_location location)
1025 {
1026 return new Temporary_reference_expression(statement, location);
1027 }
1028
1029 // A sink expression--a use of the blank identifier _.
1030
1031 class Sink_expression : public Expression
1032 {
1033 public:
1034 Sink_expression(source_location location)
1035 : Expression(EXPRESSION_SINK, location),
1036 type_(NULL), var_(NULL_TREE)
1037 { }
1038
1039 protected:
1040 void
1041 do_discarding_value()
1042 { }
1043
1044 Type*
1045 do_type();
1046
1047 void
1048 do_determine_type(const Type_context*);
1049
1050 Expression*
1051 do_copy()
1052 { return new Sink_expression(this->location()); }
1053
1054 tree
1055 do_get_tree(Translate_context*);
1056
1057 private:
1058 // The type of this sink variable.
1059 Type* type_;
1060 // The temporary variable we generate.
1061 tree var_;
1062 };
1063
1064 // Return the type of a sink expression.
1065
1066 Type*
1067 Sink_expression::do_type()
1068 {
1069 if (this->type_ == NULL)
1070 return Type::make_sink_type();
1071 return this->type_;
1072 }
1073
1074 // Determine the type of a sink expression.
1075
1076 void
1077 Sink_expression::do_determine_type(const Type_context* context)
1078 {
1079 if (context->type != NULL)
1080 this->type_ = context->type;
1081 }
1082
1083 // Return a temporary variable for a sink expression. This will
1084 // presumably be a write-only variable which the middle-end will drop.
1085
1086 tree
1087 Sink_expression::do_get_tree(Translate_context* context)
1088 {
1089 if (this->var_ == NULL_TREE)
1090 {
1091 gcc_assert(this->type_ != NULL && !this->type_->is_sink_type());
1092 this->var_ = create_tmp_var(this->type_->get_tree(context->gogo()),
1093 "blank");
1094 }
1095 return this->var_;
1096 }
1097
1098 // Make a sink expression.
1099
1100 Expression*
1101 Expression::make_sink(source_location location)
1102 {
1103 return new Sink_expression(location);
1104 }
1105
1106 // Class Func_expression.
1107
1108 // FIXME: Can a function expression appear in a constant expression?
1109 // The value is unchanging. Initializing a constant to the address of
1110 // a function seems like it could work, though there might be little
1111 // point to it.
1112
1113 // Return the name of the function.
1114
1115 const std::string&
1116 Func_expression::name() const
1117 {
1118 return this->function_->name();
1119 }
1120
1121 // Traversal.
1122
1123 int
1124 Func_expression::do_traverse(Traverse* traverse)
1125 {
1126 return (this->closure_ == NULL
1127 ? TRAVERSE_CONTINUE
1128 : Expression::traverse(&this->closure_, traverse));
1129 }
1130
1131 // Return the type of a function expression.
1132
1133 Type*
1134 Func_expression::do_type()
1135 {
1136 if (this->function_->is_function())
1137 return this->function_->func_value()->type();
1138 else if (this->function_->is_function_declaration())
1139 return this->function_->func_declaration_value()->type();
1140 else
1141 gcc_unreachable();
1142 }
1143
1144 // Get the tree for a function expression without evaluating the
1145 // closure.
1146
1147 tree
1148 Func_expression::get_tree_without_closure(Gogo* gogo)
1149 {
1150 Function_type* fntype;
1151 if (this->function_->is_function())
1152 fntype = this->function_->func_value()->type();
1153 else if (this->function_->is_function_declaration())
1154 fntype = this->function_->func_declaration_value()->type();
1155 else
1156 gcc_unreachable();
1157
1158 // Builtin functions are handled specially by Call_expression. We
1159 // can't take their address.
1160 if (fntype->is_builtin())
1161 {
1162 error_at(this->location(), "invalid use of special builtin function %qs",
1163 this->function_->name().c_str());
1164 return error_mark_node;
1165 }
1166
1167 Named_object* no = this->function_;
1168
1169 tree id = no->get_id(gogo);
1170 if (id == error_mark_node)
1171 return error_mark_node;
1172
1173 tree fndecl;
1174 if (no->is_function())
1175 fndecl = no->func_value()->get_or_make_decl(gogo, no, id);
1176 else if (no->is_function_declaration())
1177 fndecl = no->func_declaration_value()->get_or_make_decl(gogo, no, id);
1178 else
1179 gcc_unreachable();
1180
1181 if (fndecl == error_mark_node)
1182 return error_mark_node;
1183
1184 return build_fold_addr_expr_loc(this->location(), fndecl);
1185 }
1186
1187 // Get the tree for a function expression. This is used when we take
1188 // the address of a function rather than simply calling it. If the
1189 // function has a closure, we must use a trampoline.
1190
1191 tree
1192 Func_expression::do_get_tree(Translate_context* context)
1193 {
1194 Gogo* gogo = context->gogo();
1195
1196 tree fnaddr = this->get_tree_without_closure(gogo);
1197 if (fnaddr == error_mark_node)
1198 return error_mark_node;
1199
1200 gcc_assert(TREE_CODE(fnaddr) == ADDR_EXPR
1201 && TREE_CODE(TREE_OPERAND(fnaddr, 0)) == FUNCTION_DECL);
1202 TREE_ADDRESSABLE(TREE_OPERAND(fnaddr, 0)) = 1;
1203
1204 // For a normal non-nested function call, that is all we have to do.
1205 if (!this->function_->is_function()
1206 || this->function_->func_value()->enclosing() == NULL)
1207 {
1208 gcc_assert(this->closure_ == NULL);
1209 return fnaddr;
1210 }
1211
1212 // For a nested function call, we have to always allocate a
1213 // trampoline. If we don't always allocate, then closures will not
1214 // be reliably distinct.
1215 Expression* closure = this->closure_;
1216 tree closure_tree;
1217 if (closure == NULL)
1218 closure_tree = null_pointer_node;
1219 else
1220 {
1221 // Get the value of the closure. This will be a pointer to
1222 // space allocated on the heap.
1223 closure_tree = closure->get_tree(context);
1224 if (closure_tree == error_mark_node)
1225 return error_mark_node;
1226 gcc_assert(POINTER_TYPE_P(TREE_TYPE(closure_tree)));
1227 }
1228
1229 // Now we need to build some code on the heap. This code will load
1230 // the static chain pointer with the closure and then jump to the
1231 // body of the function. The normal gcc approach is to build the
1232 // code on the stack. Unfortunately we can not do that, as Go
1233 // permits us to return the function pointer.
1234
1235 return gogo->make_trampoline(fnaddr, closure_tree, this->location());
1236 }
1237
1238 // Make a reference to a function in an expression.
1239
1240 Expression*
1241 Expression::make_func_reference(Named_object* function, Expression* closure,
1242 source_location location)
1243 {
1244 return new Func_expression(function, closure, location);
1245 }
1246
1247 // Class Unknown_expression.
1248
1249 // Return the name of an unknown expression.
1250
1251 const std::string&
1252 Unknown_expression::name() const
1253 {
1254 return this->named_object_->name();
1255 }
1256
1257 // Lower a reference to an unknown name.
1258
1259 Expression*
1260 Unknown_expression::do_lower(Gogo*, Named_object*, int)
1261 {
1262 source_location location = this->location();
1263 Named_object* no = this->named_object_;
1264 Named_object* real;
1265 if (!no->is_unknown())
1266 real = no;
1267 else
1268 {
1269 real = no->unknown_value()->real_named_object();
1270 if (real == NULL)
1271 {
1272 if (this->is_composite_literal_key_)
1273 return this;
1274 error_at(location, "reference to undefined name %qs",
1275 this->named_object_->message_name().c_str());
1276 return Expression::make_error(location);
1277 }
1278 }
1279 switch (real->classification())
1280 {
1281 case Named_object::NAMED_OBJECT_CONST:
1282 return Expression::make_const_reference(real, location);
1283 case Named_object::NAMED_OBJECT_TYPE:
1284 return Expression::make_type(real->type_value(), location);
1285 case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
1286 if (this->is_composite_literal_key_)
1287 return this;
1288 error_at(location, "reference to undefined type %qs",
1289 real->message_name().c_str());
1290 return Expression::make_error(location);
1291 case Named_object::NAMED_OBJECT_VAR:
1292 return Expression::make_var_reference(real, location);
1293 case Named_object::NAMED_OBJECT_FUNC:
1294 case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
1295 return Expression::make_func_reference(real, NULL, location);
1296 case Named_object::NAMED_OBJECT_PACKAGE:
1297 if (this->is_composite_literal_key_)
1298 return this;
1299 error_at(location, "unexpected reference to package");
1300 return Expression::make_error(location);
1301 default:
1302 gcc_unreachable();
1303 }
1304 }
1305
1306 // Make a reference to an unknown name.
1307
1308 Expression*
1309 Expression::make_unknown_reference(Named_object* no, source_location location)
1310 {
1311 gcc_assert(no->resolve()->is_unknown());
1312 return new Unknown_expression(no, location);
1313 }
1314
1315 // A boolean expression.
1316
1317 class Boolean_expression : public Expression
1318 {
1319 public:
1320 Boolean_expression(bool val, source_location location)
1321 : Expression(EXPRESSION_BOOLEAN, location),
1322 val_(val), type_(NULL)
1323 { }
1324
1325 static Expression*
1326 do_import(Import*);
1327
1328 protected:
1329 bool
1330 do_is_constant() const
1331 { return true; }
1332
1333 Type*
1334 do_type();
1335
1336 void
1337 do_determine_type(const Type_context*);
1338
1339 Expression*
1340 do_copy()
1341 { return this; }
1342
1343 tree
1344 do_get_tree(Translate_context*)
1345 { return this->val_ ? boolean_true_node : boolean_false_node; }
1346
1347 void
1348 do_export(Export* exp) const
1349 { exp->write_c_string(this->val_ ? "true" : "false"); }
1350
1351 private:
1352 // The constant.
1353 bool val_;
1354 // The type as determined by context.
1355 Type* type_;
1356 };
1357
1358 // Get the type.
1359
1360 Type*
1361 Boolean_expression::do_type()
1362 {
1363 if (this->type_ == NULL)
1364 this->type_ = Type::make_boolean_type();
1365 return this->type_;
1366 }
1367
1368 // Set the type from the context.
1369
1370 void
1371 Boolean_expression::do_determine_type(const Type_context* context)
1372 {
1373 if (this->type_ != NULL && !this->type_->is_abstract())
1374 ;
1375 else if (context->type != NULL && context->type->is_boolean_type())
1376 this->type_ = context->type;
1377 else if (!context->may_be_abstract)
1378 this->type_ = Type::lookup_bool_type();
1379 }
1380
1381 // Import a boolean constant.
1382
1383 Expression*
1384 Boolean_expression::do_import(Import* imp)
1385 {
1386 if (imp->peek_char() == 't')
1387 {
1388 imp->require_c_string("true");
1389 return Expression::make_boolean(true, imp->location());
1390 }
1391 else
1392 {
1393 imp->require_c_string("false");
1394 return Expression::make_boolean(false, imp->location());
1395 }
1396 }
1397
1398 // Make a boolean expression.
1399
1400 Expression*
1401 Expression::make_boolean(bool val, source_location location)
1402 {
1403 return new Boolean_expression(val, location);
1404 }
1405
1406 // Class String_expression.
1407
1408 // Get the type.
1409
1410 Type*
1411 String_expression::do_type()
1412 {
1413 if (this->type_ == NULL)
1414 this->type_ = Type::make_string_type();
1415 return this->type_;
1416 }
1417
1418 // Set the type from the context.
1419
1420 void
1421 String_expression::do_determine_type(const Type_context* context)
1422 {
1423 if (this->type_ != NULL && !this->type_->is_abstract())
1424 ;
1425 else if (context->type != NULL && context->type->is_string_type())
1426 this->type_ = context->type;
1427 else if (!context->may_be_abstract)
1428 this->type_ = Type::lookup_string_type();
1429 }
1430
1431 // Build a string constant.
1432
1433 tree
1434 String_expression::do_get_tree(Translate_context* context)
1435 {
1436 return context->gogo()->go_string_constant_tree(this->val_);
1437 }
1438
1439 // Export a string expression.
1440
1441 void
1442 String_expression::do_export(Export* exp) const
1443 {
1444 std::string s;
1445 s.reserve(this->val_.length() * 4 + 2);
1446 s += '"';
1447 for (std::string::const_iterator p = this->val_.begin();
1448 p != this->val_.end();
1449 ++p)
1450 {
1451 if (*p == '\\' || *p == '"')
1452 {
1453 s += '\\';
1454 s += *p;
1455 }
1456 else if (*p >= 0x20 && *p < 0x7f)
1457 s += *p;
1458 else if (*p == '\n')
1459 s += "\\n";
1460 else if (*p == '\t')
1461 s += "\\t";
1462 else
1463 {
1464 s += "\\x";
1465 unsigned char c = *p;
1466 unsigned int dig = c >> 4;
1467 s += dig < 10 ? '0' + dig : 'A' + dig - 10;
1468 dig = c & 0xf;
1469 s += dig < 10 ? '0' + dig : 'A' + dig - 10;
1470 }
1471 }
1472 s += '"';
1473 exp->write_string(s);
1474 }
1475
1476 // Import a string expression.
1477
1478 Expression*
1479 String_expression::do_import(Import* imp)
1480 {
1481 imp->require_c_string("\"");
1482 std::string val;
1483 while (true)
1484 {
1485 int c = imp->get_char();
1486 if (c == '"' || c == -1)
1487 break;
1488 if (c != '\\')
1489 val += static_cast<char>(c);
1490 else
1491 {
1492 c = imp->get_char();
1493 if (c == '\\' || c == '"')
1494 val += static_cast<char>(c);
1495 else if (c == 'n')
1496 val += '\n';
1497 else if (c == 't')
1498 val += '\t';
1499 else if (c == 'x')
1500 {
1501 c = imp->get_char();
1502 unsigned int vh = c >= '0' && c <= '9' ? c - '0' : c - 'A' + 10;
1503 c = imp->get_char();
1504 unsigned int vl = c >= '0' && c <= '9' ? c - '0' : c - 'A' + 10;
1505 char v = (vh << 4) | vl;
1506 val += v;
1507 }
1508 else
1509 {
1510 error_at(imp->location(), "bad string constant");
1511 return Expression::make_error(imp->location());
1512 }
1513 }
1514 }
1515 return Expression::make_string(val, imp->location());
1516 }
1517
1518 // Make a string expression.
1519
1520 Expression*
1521 Expression::make_string(const std::string& val, source_location location)
1522 {
1523 return new String_expression(val, location);
1524 }
1525
1526 // Make an integer expression.
1527
1528 class Integer_expression : public Expression
1529 {
1530 public:
1531 Integer_expression(const mpz_t* val, Type* type, source_location location)
1532 : Expression(EXPRESSION_INTEGER, location),
1533 type_(type)
1534 { mpz_init_set(this->val_, *val); }
1535
1536 static Expression*
1537 do_import(Import*);
1538
1539 // Return whether VAL fits in the type.
1540 static bool
1541 check_constant(mpz_t val, Type*, source_location);
1542
1543 // Write VAL to export data.
1544 static void
1545 export_integer(Export* exp, const mpz_t val);
1546
1547 protected:
1548 bool
1549 do_is_constant() const
1550 { return true; }
1551
1552 bool
1553 do_integer_constant_value(bool, mpz_t val, Type** ptype) const;
1554
1555 Type*
1556 do_type();
1557
1558 void
1559 do_determine_type(const Type_context* context);
1560
1561 void
1562 do_check_types(Gogo*);
1563
1564 tree
1565 do_get_tree(Translate_context*);
1566
1567 Expression*
1568 do_copy()
1569 { return Expression::make_integer(&this->val_, this->type_,
1570 this->location()); }
1571
1572 void
1573 do_export(Export*) const;
1574
1575 private:
1576 // The integer value.
1577 mpz_t val_;
1578 // The type so far.
1579 Type* type_;
1580 };
1581
1582 // Return an integer constant value.
1583
1584 bool
1585 Integer_expression::do_integer_constant_value(bool, mpz_t val,
1586 Type** ptype) const
1587 {
1588 if (this->type_ != NULL)
1589 *ptype = this->type_;
1590 mpz_set(val, this->val_);
1591 return true;
1592 }
1593
1594 // Return the current type. If we haven't set the type yet, we return
1595 // an abstract integer type.
1596
1597 Type*
1598 Integer_expression::do_type()
1599 {
1600 if (this->type_ == NULL)
1601 this->type_ = Type::make_abstract_integer_type();
1602 return this->type_;
1603 }
1604
1605 // Set the type of the integer value. Here we may switch from an
1606 // abstract type to a real type.
1607
1608 void
1609 Integer_expression::do_determine_type(const Type_context* context)
1610 {
1611 if (this->type_ != NULL && !this->type_->is_abstract())
1612 ;
1613 else if (context->type != NULL
1614 && (context->type->integer_type() != NULL
1615 || context->type->float_type() != NULL
1616 || context->type->complex_type() != NULL))
1617 this->type_ = context->type;
1618 else if (!context->may_be_abstract)
1619 this->type_ = Type::lookup_integer_type("int");
1620 }
1621
1622 // Return true if the integer VAL fits in the range of the type TYPE.
1623 // Otherwise give an error and return false. TYPE may be NULL.
1624
1625 bool
1626 Integer_expression::check_constant(mpz_t val, Type* type,
1627 source_location location)
1628 {
1629 if (type == NULL)
1630 return true;
1631 Integer_type* itype = type->integer_type();
1632 if (itype == NULL || itype->is_abstract())
1633 return true;
1634
1635 int bits = mpz_sizeinbase(val, 2);
1636
1637 if (itype->is_unsigned())
1638 {
1639 // For an unsigned type we can only accept a nonnegative number,
1640 // and we must be able to represent at least BITS.
1641 if (mpz_sgn(val) >= 0
1642 && bits <= itype->bits())
1643 return true;
1644 }
1645 else
1646 {
1647 // For a signed type we need an extra bit to indicate the sign.
1648 // We have to handle the most negative integer specially.
1649 if (bits + 1 <= itype->bits()
1650 || (bits <= itype->bits()
1651 && mpz_sgn(val) < 0
1652 && (mpz_scan1(val, 0)
1653 == static_cast<unsigned long>(itype->bits() - 1))
1654 && mpz_scan0(val, itype->bits()) == ULONG_MAX))
1655 return true;
1656 }
1657
1658 error_at(location, "integer constant overflow");
1659 return false;
1660 }
1661
1662 // Check the type of an integer constant.
1663
1664 void
1665 Integer_expression::do_check_types(Gogo*)
1666 {
1667 if (this->type_ == NULL)
1668 return;
1669 if (!Integer_expression::check_constant(this->val_, this->type_,
1670 this->location()))
1671 this->set_is_error();
1672 }
1673
1674 // Get a tree for an integer constant.
1675
1676 tree
1677 Integer_expression::do_get_tree(Translate_context* context)
1678 {
1679 Gogo* gogo = context->gogo();
1680 tree type;
1681 if (this->type_ != NULL && !this->type_->is_abstract())
1682 type = this->type_->get_tree(gogo);
1683 else if (this->type_ != NULL && this->type_->float_type() != NULL)
1684 {
1685 // We are converting to an abstract floating point type.
1686 type = Type::lookup_float_type("float64")->get_tree(gogo);
1687 }
1688 else if (this->type_ != NULL && this->type_->complex_type() != NULL)
1689 {
1690 // We are converting to an abstract complex type.
1691 type = Type::lookup_complex_type("complex128")->get_tree(gogo);
1692 }
1693 else
1694 {
1695 // If we still have an abstract type here, then this is being
1696 // used in a constant expression which didn't get reduced for
1697 // some reason. Use a type which will fit the value. We use <,
1698 // not <=, because we need an extra bit for the sign bit.
1699 int bits = mpz_sizeinbase(this->val_, 2);
1700 if (bits < INT_TYPE_SIZE)
1701 type = Type::lookup_integer_type("int")->get_tree(gogo);
1702 else if (bits < 64)
1703 type = Type::lookup_integer_type("int64")->get_tree(gogo);
1704 else
1705 type = long_long_integer_type_node;
1706 }
1707 return Expression::integer_constant_tree(this->val_, type);
1708 }
1709
1710 // Write VAL to export data.
1711
1712 void
1713 Integer_expression::export_integer(Export* exp, const mpz_t val)
1714 {
1715 char* s = mpz_get_str(NULL, 10, val);
1716 exp->write_c_string(s);
1717 free(s);
1718 }
1719
1720 // Export an integer in a constant expression.
1721
1722 void
1723 Integer_expression::do_export(Export* exp) const
1724 {
1725 Integer_expression::export_integer(exp, this->val_);
1726 // A trailing space lets us reliably identify the end of the number.
1727 exp->write_c_string(" ");
1728 }
1729
1730 // Import an integer, floating point, or complex value. This handles
1731 // all these types because they all start with digits.
1732
1733 Expression*
1734 Integer_expression::do_import(Import* imp)
1735 {
1736 std::string num = imp->read_identifier();
1737 imp->require_c_string(" ");
1738 if (!num.empty() && num[num.length() - 1] == 'i')
1739 {
1740 mpfr_t real;
1741 size_t plus_pos = num.find('+', 1);
1742 size_t minus_pos = num.find('-', 1);
1743 size_t pos;
1744 if (plus_pos == std::string::npos)
1745 pos = minus_pos;
1746 else if (minus_pos == std::string::npos)
1747 pos = plus_pos;
1748 else
1749 {
1750 error_at(imp->location(), "bad number in import data: %qs",
1751 num.c_str());
1752 return Expression::make_error(imp->location());
1753 }
1754 if (pos == std::string::npos)
1755 mpfr_set_ui(real, 0, GMP_RNDN);
1756 else
1757 {
1758 std::string real_str = num.substr(0, pos);
1759 if (mpfr_init_set_str(real, real_str.c_str(), 10, GMP_RNDN) != 0)
1760 {
1761 error_at(imp->location(), "bad number in import data: %qs",
1762 real_str.c_str());
1763 return Expression::make_error(imp->location());
1764 }
1765 }
1766
1767 std::string imag_str;
1768 if (pos == std::string::npos)
1769 imag_str = num;
1770 else
1771 imag_str = num.substr(pos);
1772 imag_str = imag_str.substr(0, imag_str.size() - 1);
1773 mpfr_t imag;
1774 if (mpfr_init_set_str(imag, imag_str.c_str(), 10, GMP_RNDN) != 0)
1775 {
1776 error_at(imp->location(), "bad number in import data: %qs",
1777 imag_str.c_str());
1778 return Expression::make_error(imp->location());
1779 }
1780 Expression* ret = Expression::make_complex(&real, &imag, NULL,
1781 imp->location());
1782 mpfr_clear(real);
1783 mpfr_clear(imag);
1784 return ret;
1785 }
1786 else if (num.find('.') == std::string::npos
1787 && num.find('E') == std::string::npos)
1788 {
1789 mpz_t val;
1790 if (mpz_init_set_str(val, num.c_str(), 10) != 0)
1791 {
1792 error_at(imp->location(), "bad number in import data: %qs",
1793 num.c_str());
1794 return Expression::make_error(imp->location());
1795 }
1796 Expression* ret = Expression::make_integer(&val, NULL, imp->location());
1797 mpz_clear(val);
1798 return ret;
1799 }
1800 else
1801 {
1802 mpfr_t val;
1803 if (mpfr_init_set_str(val, num.c_str(), 10, GMP_RNDN) != 0)
1804 {
1805 error_at(imp->location(), "bad number in import data: %qs",
1806 num.c_str());
1807 return Expression::make_error(imp->location());
1808 }
1809 Expression* ret = Expression::make_float(&val, NULL, imp->location());
1810 mpfr_clear(val);
1811 return ret;
1812 }
1813 }
1814
1815 // Build a new integer value.
1816
1817 Expression*
1818 Expression::make_integer(const mpz_t* val, Type* type,
1819 source_location location)
1820 {
1821 return new Integer_expression(val, type, location);
1822 }
1823
1824 // Floats.
1825
1826 class Float_expression : public Expression
1827 {
1828 public:
1829 Float_expression(const mpfr_t* val, Type* type, source_location location)
1830 : Expression(EXPRESSION_FLOAT, location),
1831 type_(type)
1832 {
1833 mpfr_init_set(this->val_, *val, GMP_RNDN);
1834 }
1835
1836 // Constrain VAL to fit into TYPE.
1837 static void
1838 constrain_float(mpfr_t val, Type* type);
1839
1840 // Return whether VAL fits in the type.
1841 static bool
1842 check_constant(mpfr_t val, Type*, source_location);
1843
1844 // Write VAL to export data.
1845 static void
1846 export_float(Export* exp, const mpfr_t val);
1847
1848 protected:
1849 bool
1850 do_is_constant() const
1851 { return true; }
1852
1853 bool
1854 do_float_constant_value(mpfr_t val, Type**) const;
1855
1856 Type*
1857 do_type();
1858
1859 void
1860 do_determine_type(const Type_context*);
1861
1862 void
1863 do_check_types(Gogo*);
1864
1865 Expression*
1866 do_copy()
1867 { return Expression::make_float(&this->val_, this->type_,
1868 this->location()); }
1869
1870 tree
1871 do_get_tree(Translate_context*);
1872
1873 void
1874 do_export(Export*) const;
1875
1876 private:
1877 // The floating point value.
1878 mpfr_t val_;
1879 // The type so far.
1880 Type* type_;
1881 };
1882
1883 // Constrain VAL to fit into TYPE.
1884
1885 void
1886 Float_expression::constrain_float(mpfr_t val, Type* type)
1887 {
1888 Float_type* ftype = type->float_type();
1889 if (ftype != NULL && !ftype->is_abstract())
1890 {
1891 tree type_tree = ftype->type_tree();
1892 REAL_VALUE_TYPE rvt;
1893 real_from_mpfr(&rvt, val, type_tree, GMP_RNDN);
1894 real_convert(&rvt, TYPE_MODE(type_tree), &rvt);
1895 mpfr_from_real(val, &rvt, GMP_RNDN);
1896 }
1897 }
1898
1899 // Return a floating point constant value.
1900
1901 bool
1902 Float_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
1903 {
1904 if (this->type_ != NULL)
1905 *ptype = this->type_;
1906 mpfr_set(val, this->val_, GMP_RNDN);
1907 return true;
1908 }
1909
1910 // Return the current type. If we haven't set the type yet, we return
1911 // an abstract float type.
1912
1913 Type*
1914 Float_expression::do_type()
1915 {
1916 if (this->type_ == NULL)
1917 this->type_ = Type::make_abstract_float_type();
1918 return this->type_;
1919 }
1920
1921 // Set the type of the float value. Here we may switch from an
1922 // abstract type to a real type.
1923
1924 void
1925 Float_expression::do_determine_type(const Type_context* context)
1926 {
1927 if (this->type_ != NULL && !this->type_->is_abstract())
1928 ;
1929 else if (context->type != NULL
1930 && (context->type->integer_type() != NULL
1931 || context->type->float_type() != NULL
1932 || context->type->complex_type() != NULL))
1933 this->type_ = context->type;
1934 else if (!context->may_be_abstract)
1935 this->type_ = Type::lookup_float_type("float64");
1936 }
1937
1938 // Return true if the floating point value VAL fits in the range of
1939 // the type TYPE. Otherwise give an error and return false. TYPE may
1940 // be NULL.
1941
1942 bool
1943 Float_expression::check_constant(mpfr_t val, Type* type,
1944 source_location location)
1945 {
1946 if (type == NULL)
1947 return true;
1948 Float_type* ftype = type->float_type();
1949 if (ftype == NULL || ftype->is_abstract())
1950 return true;
1951
1952 // A NaN or Infinity always fits in the range of the type.
1953 if (mpfr_nan_p(val) || mpfr_inf_p(val) || mpfr_zero_p(val))
1954 return true;
1955
1956 mp_exp_t exp = mpfr_get_exp(val);
1957 mp_exp_t max_exp;
1958 switch (ftype->bits())
1959 {
1960 case 32:
1961 max_exp = 128;
1962 break;
1963 case 64:
1964 max_exp = 1024;
1965 break;
1966 default:
1967 gcc_unreachable();
1968 }
1969 if (exp > max_exp)
1970 {
1971 error_at(location, "floating point constant overflow");
1972 return false;
1973 }
1974 return true;
1975 }
1976
1977 // Check the type of a float value.
1978
1979 void
1980 Float_expression::do_check_types(Gogo*)
1981 {
1982 if (this->type_ == NULL)
1983 return;
1984
1985 if (!Float_expression::check_constant(this->val_, this->type_,
1986 this->location()))
1987 this->set_is_error();
1988
1989 Integer_type* integer_type = this->type_->integer_type();
1990 if (integer_type != NULL)
1991 {
1992 if (!mpfr_integer_p(this->val_))
1993 this->report_error(_("floating point constant truncated to integer"));
1994 else
1995 {
1996 gcc_assert(!integer_type->is_abstract());
1997 mpz_t ival;
1998 mpz_init(ival);
1999 mpfr_get_z(ival, this->val_, GMP_RNDN);
2000 Integer_expression::check_constant(ival, integer_type,
2001 this->location());
2002 mpz_clear(ival);
2003 }
2004 }
2005 }
2006
2007 // Get a tree for a float constant.
2008
2009 tree
2010 Float_expression::do_get_tree(Translate_context* context)
2011 {
2012 Gogo* gogo = context->gogo();
2013 tree type;
2014 if (this->type_ != NULL && !this->type_->is_abstract())
2015 type = this->type_->get_tree(gogo);
2016 else if (this->type_ != NULL && this->type_->integer_type() != NULL)
2017 {
2018 // We have an abstract integer type. We just hope for the best.
2019 type = Type::lookup_integer_type("int")->get_tree(gogo);
2020 }
2021 else
2022 {
2023 // If we still have an abstract type here, then this is being
2024 // used in a constant expression which didn't get reduced. We
2025 // just use float64 and hope for the best.
2026 type = Type::lookup_float_type("float64")->get_tree(gogo);
2027 }
2028 return Expression::float_constant_tree(this->val_, type);
2029 }
2030
2031 // Write a floating point number to export data.
2032
2033 void
2034 Float_expression::export_float(Export *exp, const mpfr_t val)
2035 {
2036 mp_exp_t exponent;
2037 char* s = mpfr_get_str(NULL, &exponent, 10, 0, val, GMP_RNDN);
2038 if (*s == '-')
2039 exp->write_c_string("-");
2040 exp->write_c_string("0.");
2041 exp->write_c_string(*s == '-' ? s + 1 : s);
2042 mpfr_free_str(s);
2043 char buf[30];
2044 snprintf(buf, sizeof buf, "E%ld", exponent);
2045 exp->write_c_string(buf);
2046 }
2047
2048 // Export a floating point number in a constant expression.
2049
2050 void
2051 Float_expression::do_export(Export* exp) const
2052 {
2053 Float_expression::export_float(exp, this->val_);
2054 // A trailing space lets us reliably identify the end of the number.
2055 exp->write_c_string(" ");
2056 }
2057
2058 // Make a float expression.
2059
2060 Expression*
2061 Expression::make_float(const mpfr_t* val, Type* type, source_location location)
2062 {
2063 return new Float_expression(val, type, location);
2064 }
2065
2066 // Complex numbers.
2067
2068 class Complex_expression : public Expression
2069 {
2070 public:
2071 Complex_expression(const mpfr_t* real, const mpfr_t* imag, Type* type,
2072 source_location location)
2073 : Expression(EXPRESSION_COMPLEX, location),
2074 type_(type)
2075 {
2076 mpfr_init_set(this->real_, *real, GMP_RNDN);
2077 mpfr_init_set(this->imag_, *imag, GMP_RNDN);
2078 }
2079
2080 // Constrain REAL/IMAG to fit into TYPE.
2081 static void
2082 constrain_complex(mpfr_t real, mpfr_t imag, Type* type);
2083
2084 // Return whether REAL/IMAG fits in the type.
2085 static bool
2086 check_constant(mpfr_t real, mpfr_t imag, Type*, source_location);
2087
2088 // Write REAL/IMAG to export data.
2089 static void
2090 export_complex(Export* exp, const mpfr_t real, const mpfr_t val);
2091
2092 protected:
2093 bool
2094 do_is_constant() const
2095 { return true; }
2096
2097 bool
2098 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const;
2099
2100 Type*
2101 do_type();
2102
2103 void
2104 do_determine_type(const Type_context*);
2105
2106 void
2107 do_check_types(Gogo*);
2108
2109 Expression*
2110 do_copy()
2111 {
2112 return Expression::make_complex(&this->real_, &this->imag_, this->type_,
2113 this->location());
2114 }
2115
2116 tree
2117 do_get_tree(Translate_context*);
2118
2119 void
2120 do_export(Export*) const;
2121
2122 private:
2123 // The real part.
2124 mpfr_t real_;
2125 // The imaginary part;
2126 mpfr_t imag_;
2127 // The type if known.
2128 Type* type_;
2129 };
2130
2131 // Constrain REAL/IMAG to fit into TYPE.
2132
2133 void
2134 Complex_expression::constrain_complex(mpfr_t real, mpfr_t imag, Type* type)
2135 {
2136 Complex_type* ctype = type->complex_type();
2137 if (ctype != NULL && !ctype->is_abstract())
2138 {
2139 tree type_tree = ctype->type_tree();
2140
2141 REAL_VALUE_TYPE rvt;
2142 real_from_mpfr(&rvt, real, TREE_TYPE(type_tree), GMP_RNDN);
2143 real_convert(&rvt, TYPE_MODE(TREE_TYPE(type_tree)), &rvt);
2144 mpfr_from_real(real, &rvt, GMP_RNDN);
2145
2146 real_from_mpfr(&rvt, imag, TREE_TYPE(type_tree), GMP_RNDN);
2147 real_convert(&rvt, TYPE_MODE(TREE_TYPE(type_tree)), &rvt);
2148 mpfr_from_real(imag, &rvt, GMP_RNDN);
2149 }
2150 }
2151
2152 // Return a complex constant value.
2153
2154 bool
2155 Complex_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
2156 Type** ptype) const
2157 {
2158 if (this->type_ != NULL)
2159 *ptype = this->type_;
2160 mpfr_set(real, this->real_, GMP_RNDN);
2161 mpfr_set(imag, this->imag_, GMP_RNDN);
2162 return true;
2163 }
2164
2165 // Return the current type. If we haven't set the type yet, we return
2166 // an abstract complex type.
2167
2168 Type*
2169 Complex_expression::do_type()
2170 {
2171 if (this->type_ == NULL)
2172 this->type_ = Type::make_abstract_complex_type();
2173 return this->type_;
2174 }
2175
2176 // Set the type of the complex value. Here we may switch from an
2177 // abstract type to a real type.
2178
2179 void
2180 Complex_expression::do_determine_type(const Type_context* context)
2181 {
2182 if (this->type_ != NULL && !this->type_->is_abstract())
2183 ;
2184 else if (context->type != NULL
2185 && context->type->complex_type() != NULL)
2186 this->type_ = context->type;
2187 else if (!context->may_be_abstract)
2188 this->type_ = Type::lookup_complex_type("complex128");
2189 }
2190
2191 // Return true if the complex value REAL/IMAG fits in the range of the
2192 // type TYPE. Otherwise give an error and return false. TYPE may be
2193 // NULL.
2194
2195 bool
2196 Complex_expression::check_constant(mpfr_t real, mpfr_t imag, Type* type,
2197 source_location location)
2198 {
2199 if (type == NULL)
2200 return true;
2201 Complex_type* ctype = type->complex_type();
2202 if (ctype == NULL || ctype->is_abstract())
2203 return true;
2204
2205 mp_exp_t max_exp;
2206 switch (ctype->bits())
2207 {
2208 case 64:
2209 max_exp = 128;
2210 break;
2211 case 128:
2212 max_exp = 1024;
2213 break;
2214 default:
2215 gcc_unreachable();
2216 }
2217
2218 // A NaN or Infinity always fits in the range of the type.
2219 if (!mpfr_nan_p(real) && !mpfr_inf_p(real) && !mpfr_zero_p(real))
2220 {
2221 if (mpfr_get_exp(real) > max_exp)
2222 {
2223 error_at(location, "complex real part constant overflow");
2224 return false;
2225 }
2226 }
2227
2228 if (!mpfr_nan_p(imag) && !mpfr_inf_p(imag) && !mpfr_zero_p(imag))
2229 {
2230 if (mpfr_get_exp(imag) > max_exp)
2231 {
2232 error_at(location, "complex imaginary part constant overflow");
2233 return false;
2234 }
2235 }
2236
2237 return true;
2238 }
2239
2240 // Check the type of a complex value.
2241
2242 void
2243 Complex_expression::do_check_types(Gogo*)
2244 {
2245 if (this->type_ == NULL)
2246 return;
2247
2248 if (!Complex_expression::check_constant(this->real_, this->imag_,
2249 this->type_, this->location()))
2250 this->set_is_error();
2251 }
2252
2253 // Get a tree for a complex constant.
2254
2255 tree
2256 Complex_expression::do_get_tree(Translate_context* context)
2257 {
2258 Gogo* gogo = context->gogo();
2259 tree type;
2260 if (this->type_ != NULL && !this->type_->is_abstract())
2261 type = this->type_->get_tree(gogo);
2262 else
2263 {
2264 // If we still have an abstract type here, this this is being
2265 // used in a constant expression which didn't get reduced. We
2266 // just use complex128 and hope for the best.
2267 type = Type::lookup_complex_type("complex128")->get_tree(gogo);
2268 }
2269 return Expression::complex_constant_tree(this->real_, this->imag_, type);
2270 }
2271
2272 // Write REAL/IMAG to export data.
2273
2274 void
2275 Complex_expression::export_complex(Export* exp, const mpfr_t real,
2276 const mpfr_t imag)
2277 {
2278 if (!mpfr_zero_p(real))
2279 {
2280 Float_expression::export_float(exp, real);
2281 if (mpfr_sgn(imag) > 0)
2282 exp->write_c_string("+");
2283 }
2284 Float_expression::export_float(exp, imag);
2285 exp->write_c_string("i");
2286 }
2287
2288 // Export a complex number in a constant expression.
2289
2290 void
2291 Complex_expression::do_export(Export* exp) const
2292 {
2293 Complex_expression::export_complex(exp, this->real_, this->imag_);
2294 // A trailing space lets us reliably identify the end of the number.
2295 exp->write_c_string(" ");
2296 }
2297
2298 // Make a complex expression.
2299
2300 Expression*
2301 Expression::make_complex(const mpfr_t* real, const mpfr_t* imag, Type* type,
2302 source_location location)
2303 {
2304 return new Complex_expression(real, imag, type, location);
2305 }
2306
2307 // Find a named object in an expression.
2308
2309 class Find_named_object : public Traverse
2310 {
2311 public:
2312 Find_named_object(Named_object* no)
2313 : Traverse(traverse_expressions),
2314 no_(no), found_(false)
2315 { }
2316
2317 // Whether we found the object.
2318 bool
2319 found() const
2320 { return this->found_; }
2321
2322 protected:
2323 int
2324 expression(Expression**);
2325
2326 private:
2327 // The object we are looking for.
2328 Named_object* no_;
2329 // Whether we found it.
2330 bool found_;
2331 };
2332
2333 // A reference to a const in an expression.
2334
2335 class Const_expression : public Expression
2336 {
2337 public:
2338 Const_expression(Named_object* constant, source_location location)
2339 : Expression(EXPRESSION_CONST_REFERENCE, location),
2340 constant_(constant), type_(NULL), seen_(false)
2341 { }
2342
2343 Named_object*
2344 named_object()
2345 { return this->constant_; }
2346
2347 const std::string&
2348 name() const
2349 { return this->constant_->name(); }
2350
2351 // Check that the initializer does not refer to the constant itself.
2352 void
2353 check_for_init_loop();
2354
2355 protected:
2356 Expression*
2357 do_lower(Gogo*, Named_object*, int);
2358
2359 bool
2360 do_is_constant() const
2361 { return true; }
2362
2363 bool
2364 do_integer_constant_value(bool, mpz_t val, Type**) const;
2365
2366 bool
2367 do_float_constant_value(mpfr_t val, Type**) const;
2368
2369 bool
2370 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const;
2371
2372 bool
2373 do_string_constant_value(std::string* val) const
2374 { return this->constant_->const_value()->expr()->string_constant_value(val); }
2375
2376 Type*
2377 do_type();
2378
2379 // The type of a const is set by the declaration, not the use.
2380 void
2381 do_determine_type(const Type_context*);
2382
2383 void
2384 do_check_types(Gogo*);
2385
2386 Expression*
2387 do_copy()
2388 { return this; }
2389
2390 tree
2391 do_get_tree(Translate_context* context);
2392
2393 // When exporting a reference to a const as part of a const
2394 // expression, we export the value. We ignore the fact that it has
2395 // a name.
2396 void
2397 do_export(Export* exp) const
2398 { this->constant_->const_value()->expr()->export_expression(exp); }
2399
2400 private:
2401 // The constant.
2402 Named_object* constant_;
2403 // The type of this reference. This is used if the constant has an
2404 // abstract type.
2405 Type* type_;
2406 // Used to prevent infinite recursion when a constant incorrectly
2407 // refers to itself.
2408 mutable bool seen_;
2409 };
2410
2411 // Lower a constant expression. This is where we convert the
2412 // predeclared constant iota into an integer value.
2413
2414 Expression*
2415 Const_expression::do_lower(Gogo* gogo, Named_object*, int iota_value)
2416 {
2417 if (this->constant_->const_value()->expr()->classification()
2418 == EXPRESSION_IOTA)
2419 {
2420 if (iota_value == -1)
2421 {
2422 error_at(this->location(),
2423 "iota is only defined in const declarations");
2424 iota_value = 0;
2425 }
2426 mpz_t val;
2427 mpz_init_set_ui(val, static_cast<unsigned long>(iota_value));
2428 Expression* ret = Expression::make_integer(&val, NULL,
2429 this->location());
2430 mpz_clear(val);
2431 return ret;
2432 }
2433
2434 // Make sure that the constant itself has been lowered.
2435 gogo->lower_constant(this->constant_);
2436
2437 return this;
2438 }
2439
2440 // Return an integer constant value.
2441
2442 bool
2443 Const_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
2444 Type** ptype) const
2445 {
2446 if (this->seen_)
2447 return false;
2448
2449 Type* ctype;
2450 if (this->type_ != NULL)
2451 ctype = this->type_;
2452 else
2453 ctype = this->constant_->const_value()->type();
2454 if (ctype != NULL && ctype->integer_type() == NULL)
2455 return false;
2456
2457 Expression* e = this->constant_->const_value()->expr();
2458
2459 this->seen_ = true;
2460
2461 Type* t;
2462 bool r = e->integer_constant_value(iota_is_constant, val, &t);
2463
2464 this->seen_ = false;
2465
2466 if (r
2467 && ctype != NULL
2468 && !Integer_expression::check_constant(val, ctype, this->location()))
2469 return false;
2470
2471 *ptype = ctype != NULL ? ctype : t;
2472 return r;
2473 }
2474
2475 // Return a floating point constant value.
2476
2477 bool
2478 Const_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
2479 {
2480 if (this->seen_)
2481 return false;
2482
2483 Type* ctype;
2484 if (this->type_ != NULL)
2485 ctype = this->type_;
2486 else
2487 ctype = this->constant_->const_value()->type();
2488 if (ctype != NULL && ctype->float_type() == NULL)
2489 return false;
2490
2491 this->seen_ = true;
2492
2493 Type* t;
2494 bool r = this->constant_->const_value()->expr()->float_constant_value(val,
2495 &t);
2496
2497 this->seen_ = false;
2498
2499 if (r && ctype != NULL)
2500 {
2501 if (!Float_expression::check_constant(val, ctype, this->location()))
2502 return false;
2503 Float_expression::constrain_float(val, ctype);
2504 }
2505 *ptype = ctype != NULL ? ctype : t;
2506 return r;
2507 }
2508
2509 // Return a complex constant value.
2510
2511 bool
2512 Const_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
2513 Type **ptype) const
2514 {
2515 if (this->seen_)
2516 return false;
2517
2518 Type* ctype;
2519 if (this->type_ != NULL)
2520 ctype = this->type_;
2521 else
2522 ctype = this->constant_->const_value()->type();
2523 if (ctype != NULL && ctype->complex_type() == NULL)
2524 return false;
2525
2526 this->seen_ = true;
2527
2528 Type *t;
2529 bool r = this->constant_->const_value()->expr()->complex_constant_value(real,
2530 imag,
2531 &t);
2532
2533 this->seen_ = false;
2534
2535 if (r && ctype != NULL)
2536 {
2537 if (!Complex_expression::check_constant(real, imag, ctype,
2538 this->location()))
2539 return false;
2540 Complex_expression::constrain_complex(real, imag, ctype);
2541 }
2542 *ptype = ctype != NULL ? ctype : t;
2543 return r;
2544 }
2545
2546 // Return the type of the const reference.
2547
2548 Type*
2549 Const_expression::do_type()
2550 {
2551 if (this->type_ != NULL)
2552 return this->type_;
2553
2554 Named_constant* nc = this->constant_->const_value();
2555
2556 if (this->seen_ || nc->lowering())
2557 {
2558 this->report_error(_("constant refers to itself"));
2559 this->type_ = Type::make_error_type();
2560 return this->type_;
2561 }
2562
2563 this->seen_ = true;
2564
2565 Type* ret = nc->type();
2566
2567 if (ret != NULL)
2568 {
2569 this->seen_ = false;
2570 return ret;
2571 }
2572
2573 // During parsing, a named constant may have a NULL type, but we
2574 // must not return a NULL type here.
2575 ret = nc->expr()->type();
2576
2577 this->seen_ = false;
2578
2579 return ret;
2580 }
2581
2582 // Set the type of the const reference.
2583
2584 void
2585 Const_expression::do_determine_type(const Type_context* context)
2586 {
2587 Type* ctype = this->constant_->const_value()->type();
2588 Type* cetype = (ctype != NULL
2589 ? ctype
2590 : this->constant_->const_value()->expr()->type());
2591 if (ctype != NULL && !ctype->is_abstract())
2592 ;
2593 else if (context->type != NULL
2594 && (context->type->integer_type() != NULL
2595 || context->type->float_type() != NULL
2596 || context->type->complex_type() != NULL)
2597 && (cetype->integer_type() != NULL
2598 || cetype->float_type() != NULL
2599 || cetype->complex_type() != NULL))
2600 this->type_ = context->type;
2601 else if (context->type != NULL
2602 && context->type->is_string_type()
2603 && cetype->is_string_type())
2604 this->type_ = context->type;
2605 else if (context->type != NULL
2606 && context->type->is_boolean_type()
2607 && cetype->is_boolean_type())
2608 this->type_ = context->type;
2609 else if (!context->may_be_abstract)
2610 {
2611 if (cetype->is_abstract())
2612 cetype = cetype->make_non_abstract_type();
2613 this->type_ = cetype;
2614 }
2615 }
2616
2617 // Check for a loop in which the initializer of a constant refers to
2618 // the constant itself.
2619
2620 void
2621 Const_expression::check_for_init_loop()
2622 {
2623 if (this->type_ != NULL && this->type_->is_error_type())
2624 return;
2625
2626 if (this->seen_)
2627 {
2628 this->report_error(_("constant refers to itself"));
2629 this->type_ = Type::make_error_type();
2630 return;
2631 }
2632
2633 Expression* init = this->constant_->const_value()->expr();
2634 Find_named_object find_named_object(this->constant_);
2635
2636 this->seen_ = true;
2637 Expression::traverse(&init, &find_named_object);
2638 this->seen_ = false;
2639
2640 if (find_named_object.found())
2641 {
2642 if (this->type_ == NULL || !this->type_->is_error_type())
2643 {
2644 this->report_error(_("constant refers to itself"));
2645 this->type_ = Type::make_error_type();
2646 }
2647 return;
2648 }
2649 }
2650
2651 // Check types of a const reference.
2652
2653 void
2654 Const_expression::do_check_types(Gogo*)
2655 {
2656 if (this->type_ != NULL && this->type_->is_error_type())
2657 return;
2658
2659 this->check_for_init_loop();
2660
2661 if (this->type_ == NULL || this->type_->is_abstract())
2662 return;
2663
2664 // Check for integer overflow.
2665 if (this->type_->integer_type() != NULL)
2666 {
2667 mpz_t ival;
2668 mpz_init(ival);
2669 Type* dummy;
2670 if (!this->integer_constant_value(true, ival, &dummy))
2671 {
2672 mpfr_t fval;
2673 mpfr_init(fval);
2674 Expression* cexpr = this->constant_->const_value()->expr();
2675 if (cexpr->float_constant_value(fval, &dummy))
2676 {
2677 if (!mpfr_integer_p(fval))
2678 this->report_error(_("floating point constant "
2679 "truncated to integer"));
2680 else
2681 {
2682 mpfr_get_z(ival, fval, GMP_RNDN);
2683 Integer_expression::check_constant(ival, this->type_,
2684 this->location());
2685 }
2686 }
2687 mpfr_clear(fval);
2688 }
2689 mpz_clear(ival);
2690 }
2691 }
2692
2693 // Return a tree for the const reference.
2694
2695 tree
2696 Const_expression::do_get_tree(Translate_context* context)
2697 {
2698 Gogo* gogo = context->gogo();
2699 tree type_tree;
2700 if (this->type_ == NULL)
2701 type_tree = NULL_TREE;
2702 else
2703 {
2704 type_tree = this->type_->get_tree(gogo);
2705 if (type_tree == error_mark_node)
2706 return error_mark_node;
2707 }
2708
2709 // If the type has been set for this expression, but the underlying
2710 // object is an abstract int or float, we try to get the abstract
2711 // value. Otherwise we may lose something in the conversion.
2712 if (this->type_ != NULL
2713 && (this->constant_->const_value()->type() == NULL
2714 || this->constant_->const_value()->type()->is_abstract()))
2715 {
2716 Expression* expr = this->constant_->const_value()->expr();
2717 mpz_t ival;
2718 mpz_init(ival);
2719 Type* t;
2720 if (expr->integer_constant_value(true, ival, &t))
2721 {
2722 tree ret = Expression::integer_constant_tree(ival, type_tree);
2723 mpz_clear(ival);
2724 return ret;
2725 }
2726 mpz_clear(ival);
2727
2728 mpfr_t fval;
2729 mpfr_init(fval);
2730 if (expr->float_constant_value(fval, &t))
2731 {
2732 tree ret = Expression::float_constant_tree(fval, type_tree);
2733 mpfr_clear(fval);
2734 return ret;
2735 }
2736
2737 mpfr_t imag;
2738 mpfr_init(imag);
2739 if (expr->complex_constant_value(fval, imag, &t))
2740 {
2741 tree ret = Expression::complex_constant_tree(fval, imag, type_tree);
2742 mpfr_clear(fval);
2743 mpfr_clear(imag);
2744 return ret;
2745 }
2746 mpfr_clear(imag);
2747 mpfr_clear(fval);
2748 }
2749
2750 tree const_tree = this->constant_->get_tree(gogo, context->function());
2751 if (this->type_ == NULL
2752 || const_tree == error_mark_node
2753 || TREE_TYPE(const_tree) == error_mark_node)
2754 return const_tree;
2755
2756 tree ret;
2757 if (TYPE_MAIN_VARIANT(type_tree) == TYPE_MAIN_VARIANT(TREE_TYPE(const_tree)))
2758 ret = fold_convert(type_tree, const_tree);
2759 else if (TREE_CODE(type_tree) == INTEGER_TYPE)
2760 ret = fold(convert_to_integer(type_tree, const_tree));
2761 else if (TREE_CODE(type_tree) == REAL_TYPE)
2762 ret = fold(convert_to_real(type_tree, const_tree));
2763 else if (TREE_CODE(type_tree) == COMPLEX_TYPE)
2764 ret = fold(convert_to_complex(type_tree, const_tree));
2765 else
2766 gcc_unreachable();
2767 return ret;
2768 }
2769
2770 // Make a reference to a constant in an expression.
2771
2772 Expression*
2773 Expression::make_const_reference(Named_object* constant,
2774 source_location location)
2775 {
2776 return new Const_expression(constant, location);
2777 }
2778
2779 // Find a named object in an expression.
2780
2781 int
2782 Find_named_object::expression(Expression** pexpr)
2783 {
2784 switch ((*pexpr)->classification())
2785 {
2786 case Expression::EXPRESSION_CONST_REFERENCE:
2787 {
2788 Const_expression* ce = static_cast<Const_expression*>(*pexpr);
2789 if (ce->named_object() == this->no_)
2790 break;
2791
2792 // We need to check a constant initializer explicitly, as
2793 // loops here will not be caught by the loop checking for
2794 // variable initializers.
2795 ce->check_for_init_loop();
2796
2797 return TRAVERSE_CONTINUE;
2798 }
2799
2800 case Expression::EXPRESSION_VAR_REFERENCE:
2801 if ((*pexpr)->var_expression()->named_object() == this->no_)
2802 break;
2803 return TRAVERSE_CONTINUE;
2804 case Expression::EXPRESSION_FUNC_REFERENCE:
2805 if ((*pexpr)->func_expression()->named_object() == this->no_)
2806 break;
2807 return TRAVERSE_CONTINUE;
2808 default:
2809 return TRAVERSE_CONTINUE;
2810 }
2811 this->found_ = true;
2812 return TRAVERSE_EXIT;
2813 }
2814
2815 // The nil value.
2816
2817 class Nil_expression : public Expression
2818 {
2819 public:
2820 Nil_expression(source_location location)
2821 : Expression(EXPRESSION_NIL, location)
2822 { }
2823
2824 static Expression*
2825 do_import(Import*);
2826
2827 protected:
2828 bool
2829 do_is_constant() const
2830 { return true; }
2831
2832 Type*
2833 do_type()
2834 { return Type::make_nil_type(); }
2835
2836 void
2837 do_determine_type(const Type_context*)
2838 { }
2839
2840 Expression*
2841 do_copy()
2842 { return this; }
2843
2844 tree
2845 do_get_tree(Translate_context*)
2846 { return null_pointer_node; }
2847
2848 void
2849 do_export(Export* exp) const
2850 { exp->write_c_string("nil"); }
2851 };
2852
2853 // Import a nil expression.
2854
2855 Expression*
2856 Nil_expression::do_import(Import* imp)
2857 {
2858 imp->require_c_string("nil");
2859 return Expression::make_nil(imp->location());
2860 }
2861
2862 // Make a nil expression.
2863
2864 Expression*
2865 Expression::make_nil(source_location location)
2866 {
2867 return new Nil_expression(location);
2868 }
2869
2870 // The value of the predeclared constant iota. This is little more
2871 // than a marker. This will be lowered to an integer in
2872 // Const_expression::do_lower, which is where we know the value that
2873 // it should have.
2874
2875 class Iota_expression : public Parser_expression
2876 {
2877 public:
2878 Iota_expression(source_location location)
2879 : Parser_expression(EXPRESSION_IOTA, location)
2880 { }
2881
2882 protected:
2883 Expression*
2884 do_lower(Gogo*, Named_object*, int)
2885 { gcc_unreachable(); }
2886
2887 // There should only ever be one of these.
2888 Expression*
2889 do_copy()
2890 { gcc_unreachable(); }
2891 };
2892
2893 // Make an iota expression. This is only called for one case: the
2894 // value of the predeclared constant iota.
2895
2896 Expression*
2897 Expression::make_iota()
2898 {
2899 static Iota_expression iota_expression(UNKNOWN_LOCATION);
2900 return &iota_expression;
2901 }
2902
2903 // A type conversion expression.
2904
2905 class Type_conversion_expression : public Expression
2906 {
2907 public:
2908 Type_conversion_expression(Type* type, Expression* expr,
2909 source_location location)
2910 : Expression(EXPRESSION_CONVERSION, location),
2911 type_(type), expr_(expr), may_convert_function_types_(false)
2912 { }
2913
2914 // Return the type to which we are converting.
2915 Type*
2916 type() const
2917 { return this->type_; }
2918
2919 // Return the expression which we are converting.
2920 Expression*
2921 expr() const
2922 { return this->expr_; }
2923
2924 // Permit converting from one function type to another. This is
2925 // used internally for method expressions.
2926 void
2927 set_may_convert_function_types()
2928 {
2929 this->may_convert_function_types_ = true;
2930 }
2931
2932 // Import a type conversion expression.
2933 static Expression*
2934 do_import(Import*);
2935
2936 protected:
2937 int
2938 do_traverse(Traverse* traverse);
2939
2940 Expression*
2941 do_lower(Gogo*, Named_object*, int);
2942
2943 bool
2944 do_is_constant() const
2945 { return this->expr_->is_constant(); }
2946
2947 bool
2948 do_integer_constant_value(bool, mpz_t, Type**) const;
2949
2950 bool
2951 do_float_constant_value(mpfr_t, Type**) const;
2952
2953 bool
2954 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
2955
2956 bool
2957 do_string_constant_value(std::string*) const;
2958
2959 Type*
2960 do_type()
2961 { return this->type_; }
2962
2963 void
2964 do_determine_type(const Type_context*)
2965 {
2966 Type_context subcontext(this->type_, false);
2967 this->expr_->determine_type(&subcontext);
2968 }
2969
2970 void
2971 do_check_types(Gogo*);
2972
2973 Expression*
2974 do_copy()
2975 {
2976 return new Type_conversion_expression(this->type_, this->expr_->copy(),
2977 this->location());
2978 }
2979
2980 tree
2981 do_get_tree(Translate_context* context);
2982
2983 void
2984 do_export(Export*) const;
2985
2986 private:
2987 // The type to convert to.
2988 Type* type_;
2989 // The expression to convert.
2990 Expression* expr_;
2991 // True if this is permitted to convert function types. This is
2992 // used internally for method expressions.
2993 bool may_convert_function_types_;
2994 };
2995
2996 // Traversal.
2997
2998 int
2999 Type_conversion_expression::do_traverse(Traverse* traverse)
3000 {
3001 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
3002 || Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
3003 return TRAVERSE_EXIT;
3004 return TRAVERSE_CONTINUE;
3005 }
3006
3007 // Convert to a constant at lowering time.
3008
3009 Expression*
3010 Type_conversion_expression::do_lower(Gogo*, Named_object*, int)
3011 {
3012 Type* type = this->type_;
3013 Expression* val = this->expr_;
3014 source_location location = this->location();
3015
3016 if (type->integer_type() != NULL)
3017 {
3018 mpz_t ival;
3019 mpz_init(ival);
3020 Type* dummy;
3021 if (val->integer_constant_value(false, ival, &dummy))
3022 {
3023 if (!Integer_expression::check_constant(ival, type, location))
3024 mpz_set_ui(ival, 0);
3025 Expression* ret = Expression::make_integer(&ival, type, location);
3026 mpz_clear(ival);
3027 return ret;
3028 }
3029
3030 mpfr_t fval;
3031 mpfr_init(fval);
3032 if (val->float_constant_value(fval, &dummy))
3033 {
3034 if (!mpfr_integer_p(fval))
3035 {
3036 error_at(location,
3037 "floating point constant truncated to integer");
3038 return Expression::make_error(location);
3039 }
3040 mpfr_get_z(ival, fval, GMP_RNDN);
3041 if (!Integer_expression::check_constant(ival, type, location))
3042 mpz_set_ui(ival, 0);
3043 Expression* ret = Expression::make_integer(&ival, type, location);
3044 mpfr_clear(fval);
3045 mpz_clear(ival);
3046 return ret;
3047 }
3048 mpfr_clear(fval);
3049 mpz_clear(ival);
3050 }
3051
3052 if (type->float_type() != NULL)
3053 {
3054 mpfr_t fval;
3055 mpfr_init(fval);
3056 Type* dummy;
3057 if (val->float_constant_value(fval, &dummy))
3058 {
3059 if (!Float_expression::check_constant(fval, type, location))
3060 mpfr_set_ui(fval, 0, GMP_RNDN);
3061 Float_expression::constrain_float(fval, type);
3062 Expression *ret = Expression::make_float(&fval, type, location);
3063 mpfr_clear(fval);
3064 return ret;
3065 }
3066 mpfr_clear(fval);
3067 }
3068
3069 if (type->complex_type() != NULL)
3070 {
3071 mpfr_t real;
3072 mpfr_t imag;
3073 mpfr_init(real);
3074 mpfr_init(imag);
3075 Type* dummy;
3076 if (val->complex_constant_value(real, imag, &dummy))
3077 {
3078 if (!Complex_expression::check_constant(real, imag, type, location))
3079 {
3080 mpfr_set_ui(real, 0, GMP_RNDN);
3081 mpfr_set_ui(imag, 0, GMP_RNDN);
3082 }
3083 Complex_expression::constrain_complex(real, imag, type);
3084 Expression* ret = Expression::make_complex(&real, &imag, type,
3085 location);
3086 mpfr_clear(real);
3087 mpfr_clear(imag);
3088 return ret;
3089 }
3090 mpfr_clear(real);
3091 mpfr_clear(imag);
3092 }
3093
3094 if (type->is_open_array_type() && type->named_type() == NULL)
3095 {
3096 Type* element_type = type->array_type()->element_type()->forwarded();
3097 bool is_byte = element_type == Type::lookup_integer_type("uint8");
3098 bool is_int = element_type == Type::lookup_integer_type("int");
3099 if (is_byte || is_int)
3100 {
3101 std::string s;
3102 if (val->string_constant_value(&s))
3103 {
3104 Expression_list* vals = new Expression_list();
3105 if (is_byte)
3106 {
3107 for (std::string::const_iterator p = s.begin();
3108 p != s.end();
3109 p++)
3110 {
3111 mpz_t val;
3112 mpz_init_set_ui(val, static_cast<unsigned char>(*p));
3113 Expression* v = Expression::make_integer(&val,
3114 element_type,
3115 location);
3116 vals->push_back(v);
3117 mpz_clear(val);
3118 }
3119 }
3120 else
3121 {
3122 const char *p = s.data();
3123 const char *pend = s.data() + s.length();
3124 while (p < pend)
3125 {
3126 unsigned int c;
3127 int adv = Lex::fetch_char(p, &c);
3128 if (adv == 0)
3129 {
3130 warning_at(this->location(), 0,
3131 "invalid UTF-8 encoding");
3132 adv = 1;
3133 }
3134 p += adv;
3135 mpz_t val;
3136 mpz_init_set_ui(val, c);
3137 Expression* v = Expression::make_integer(&val,
3138 element_type,
3139 location);
3140 vals->push_back(v);
3141 mpz_clear(val);
3142 }
3143 }
3144
3145 return Expression::make_slice_composite_literal(type, vals,
3146 location);
3147 }
3148 }
3149 }
3150
3151 return this;
3152 }
3153
3154 // Return the constant integer value if there is one.
3155
3156 bool
3157 Type_conversion_expression::do_integer_constant_value(bool iota_is_constant,
3158 mpz_t val,
3159 Type** ptype) const
3160 {
3161 if (this->type_->integer_type() == NULL)
3162 return false;
3163
3164 mpz_t ival;
3165 mpz_init(ival);
3166 Type* dummy;
3167 if (this->expr_->integer_constant_value(iota_is_constant, ival, &dummy))
3168 {
3169 if (!Integer_expression::check_constant(ival, this->type_,
3170 this->location()))
3171 {
3172 mpz_clear(ival);
3173 return false;
3174 }
3175 mpz_set(val, ival);
3176 mpz_clear(ival);
3177 *ptype = this->type_;
3178 return true;
3179 }
3180 mpz_clear(ival);
3181
3182 mpfr_t fval;
3183 mpfr_init(fval);
3184 if (this->expr_->float_constant_value(fval, &dummy))
3185 {
3186 mpfr_get_z(val, fval, GMP_RNDN);
3187 mpfr_clear(fval);
3188 if (!Integer_expression::check_constant(val, this->type_,
3189 this->location()))
3190 return false;
3191 *ptype = this->type_;
3192 return true;
3193 }
3194 mpfr_clear(fval);
3195
3196 return false;
3197 }
3198
3199 // Return the constant floating point value if there is one.
3200
3201 bool
3202 Type_conversion_expression::do_float_constant_value(mpfr_t val,
3203 Type** ptype) const
3204 {
3205 if (this->type_->float_type() == NULL)
3206 return false;
3207
3208 mpfr_t fval;
3209 mpfr_init(fval);
3210 Type* dummy;
3211 if (this->expr_->float_constant_value(fval, &dummy))
3212 {
3213 if (!Float_expression::check_constant(fval, this->type_,
3214 this->location()))
3215 {
3216 mpfr_clear(fval);
3217 return false;
3218 }
3219 mpfr_set(val, fval, GMP_RNDN);
3220 mpfr_clear(fval);
3221 Float_expression::constrain_float(val, this->type_);
3222 *ptype = this->type_;
3223 return true;
3224 }
3225 mpfr_clear(fval);
3226
3227 return false;
3228 }
3229
3230 // Return the constant complex value if there is one.
3231
3232 bool
3233 Type_conversion_expression::do_complex_constant_value(mpfr_t real,
3234 mpfr_t imag,
3235 Type **ptype) const
3236 {
3237 if (this->type_->complex_type() == NULL)
3238 return false;
3239
3240 mpfr_t rval;
3241 mpfr_t ival;
3242 mpfr_init(rval);
3243 mpfr_init(ival);
3244 Type* dummy;
3245 if (this->expr_->complex_constant_value(rval, ival, &dummy))
3246 {
3247 if (!Complex_expression::check_constant(rval, ival, this->type_,
3248 this->location()))
3249 {
3250 mpfr_clear(rval);
3251 mpfr_clear(ival);
3252 return false;
3253 }
3254 mpfr_set(real, rval, GMP_RNDN);
3255 mpfr_set(imag, ival, GMP_RNDN);
3256 mpfr_clear(rval);
3257 mpfr_clear(ival);
3258 Complex_expression::constrain_complex(real, imag, this->type_);
3259 *ptype = this->type_;
3260 return true;
3261 }
3262 mpfr_clear(rval);
3263 mpfr_clear(ival);
3264
3265 return false;
3266 }
3267
3268 // Return the constant string value if there is one.
3269
3270 bool
3271 Type_conversion_expression::do_string_constant_value(std::string* val) const
3272 {
3273 if (this->type_->is_string_type()
3274 && this->expr_->type()->integer_type() != NULL)
3275 {
3276 mpz_t ival;
3277 mpz_init(ival);
3278 Type* dummy;
3279 if (this->expr_->integer_constant_value(false, ival, &dummy))
3280 {
3281 unsigned long ulval = mpz_get_ui(ival);
3282 if (mpz_cmp_ui(ival, ulval) == 0)
3283 {
3284 Lex::append_char(ulval, true, val, this->location());
3285 mpz_clear(ival);
3286 return true;
3287 }
3288 }
3289 mpz_clear(ival);
3290 }
3291
3292 // FIXME: Could handle conversion from const []int here.
3293
3294 return false;
3295 }
3296
3297 // Check that types are convertible.
3298
3299 void
3300 Type_conversion_expression::do_check_types(Gogo*)
3301 {
3302 Type* type = this->type_;
3303 Type* expr_type = this->expr_->type();
3304 std::string reason;
3305
3306 if (type->is_error_type()
3307 || type->is_undefined()
3308 || expr_type->is_error_type()
3309 || expr_type->is_undefined())
3310 {
3311 // Make sure we emit an error for an undefined type.
3312 type->base();
3313 expr_type->base();
3314 this->set_is_error();
3315 return;
3316 }
3317
3318 if (this->may_convert_function_types_
3319 && type->function_type() != NULL
3320 && expr_type->function_type() != NULL)
3321 return;
3322
3323 if (Type::are_convertible(type, expr_type, &reason))
3324 return;
3325
3326 error_at(this->location(), "%s", reason.c_str());
3327 this->set_is_error();
3328 }
3329
3330 // Get a tree for a type conversion.
3331
3332 tree
3333 Type_conversion_expression::do_get_tree(Translate_context* context)
3334 {
3335 Gogo* gogo = context->gogo();
3336 tree type_tree = this->type_->get_tree(gogo);
3337 tree expr_tree = this->expr_->get_tree(context);
3338
3339 if (type_tree == error_mark_node
3340 || expr_tree == error_mark_node
3341 || TREE_TYPE(expr_tree) == error_mark_node)
3342 return error_mark_node;
3343
3344 if (TYPE_MAIN_VARIANT(type_tree) == TYPE_MAIN_VARIANT(TREE_TYPE(expr_tree)))
3345 return fold_convert(type_tree, expr_tree);
3346
3347 Type* type = this->type_;
3348 Type* expr_type = this->expr_->type();
3349 tree ret;
3350 if (type->interface_type() != NULL || expr_type->interface_type() != NULL)
3351 ret = Expression::convert_for_assignment(context, type, expr_type,
3352 expr_tree, this->location());
3353 else if (type->integer_type() != NULL)
3354 {
3355 if (expr_type->integer_type() != NULL
3356 || expr_type->float_type() != NULL
3357 || expr_type->is_unsafe_pointer_type())
3358 ret = fold(convert_to_integer(type_tree, expr_tree));
3359 else
3360 gcc_unreachable();
3361 }
3362 else if (type->float_type() != NULL)
3363 {
3364 if (expr_type->integer_type() != NULL
3365 || expr_type->float_type() != NULL)
3366 ret = fold(convert_to_real(type_tree, expr_tree));
3367 else
3368 gcc_unreachable();
3369 }
3370 else if (type->complex_type() != NULL)
3371 {
3372 if (expr_type->complex_type() != NULL)
3373 ret = fold(convert_to_complex(type_tree, expr_tree));
3374 else
3375 gcc_unreachable();
3376 }
3377 else if (type->is_string_type()
3378 && expr_type->integer_type() != NULL)
3379 {
3380 expr_tree = fold_convert(integer_type_node, expr_tree);
3381 if (host_integerp(expr_tree, 0))
3382 {
3383 HOST_WIDE_INT intval = tree_low_cst(expr_tree, 0);
3384 std::string s;
3385 Lex::append_char(intval, true, &s, this->location());
3386 Expression* se = Expression::make_string(s, this->location());
3387 return se->get_tree(context);
3388 }
3389
3390 static tree int_to_string_fndecl;
3391 ret = Gogo::call_builtin(&int_to_string_fndecl,
3392 this->location(),
3393 "__go_int_to_string",
3394 1,
3395 type_tree,
3396 integer_type_node,
3397 fold_convert(integer_type_node, expr_tree));
3398 }
3399 else if (type->is_string_type()
3400 && (expr_type->array_type() != NULL
3401 || (expr_type->points_to() != NULL
3402 && expr_type->points_to()->array_type() != NULL)))
3403 {
3404 Type* t = expr_type;
3405 if (t->points_to() != NULL)
3406 {
3407 t = t->points_to();
3408 expr_tree = build_fold_indirect_ref(expr_tree);
3409 }
3410 if (!DECL_P(expr_tree))
3411 expr_tree = save_expr(expr_tree);
3412 Array_type* a = t->array_type();
3413 Type* e = a->element_type()->forwarded();
3414 gcc_assert(e->integer_type() != NULL);
3415 tree valptr = fold_convert(const_ptr_type_node,
3416 a->value_pointer_tree(gogo, expr_tree));
3417 tree len = a->length_tree(gogo, expr_tree);
3418 len = fold_convert_loc(this->location(), size_type_node, len);
3419 if (e->integer_type()->is_unsigned()
3420 && e->integer_type()->bits() == 8)
3421 {
3422 static tree byte_array_to_string_fndecl;
3423 ret = Gogo::call_builtin(&byte_array_to_string_fndecl,
3424 this->location(),
3425 "__go_byte_array_to_string",
3426 2,
3427 type_tree,
3428 const_ptr_type_node,
3429 valptr,
3430 size_type_node,
3431 len);
3432 }
3433 else
3434 {
3435 gcc_assert(e == Type::lookup_integer_type("int"));
3436 static tree int_array_to_string_fndecl;
3437 ret = Gogo::call_builtin(&int_array_to_string_fndecl,
3438 this->location(),
3439 "__go_int_array_to_string",
3440 2,
3441 type_tree,
3442 const_ptr_type_node,
3443 valptr,
3444 size_type_node,
3445 len);
3446 }
3447 }
3448 else if (type->is_open_array_type() && expr_type->is_string_type())
3449 {
3450 Type* e = type->array_type()->element_type()->forwarded();
3451 gcc_assert(e->integer_type() != NULL);
3452 if (e->integer_type()->is_unsigned()
3453 && e->integer_type()->bits() == 8)
3454 {
3455 static tree string_to_byte_array_fndecl;
3456 ret = Gogo::call_builtin(&string_to_byte_array_fndecl,
3457 this->location(),
3458 "__go_string_to_byte_array",
3459 1,
3460 type_tree,
3461 TREE_TYPE(expr_tree),
3462 expr_tree);
3463 }
3464 else
3465 {
3466 gcc_assert(e == Type::lookup_integer_type("int"));
3467 static tree string_to_int_array_fndecl;
3468 ret = Gogo::call_builtin(&string_to_int_array_fndecl,
3469 this->location(),
3470 "__go_string_to_int_array",
3471 1,
3472 type_tree,
3473 TREE_TYPE(expr_tree),
3474 expr_tree);
3475 }
3476 }
3477 else if ((type->is_unsafe_pointer_type()
3478 && expr_type->points_to() != NULL)
3479 || (expr_type->is_unsafe_pointer_type()
3480 && type->points_to() != NULL))
3481 ret = fold_convert(type_tree, expr_tree);
3482 else if (type->is_unsafe_pointer_type()
3483 && expr_type->integer_type() != NULL)
3484 ret = convert_to_pointer(type_tree, expr_tree);
3485 else if (this->may_convert_function_types_
3486 && type->function_type() != NULL
3487 && expr_type->function_type() != NULL)
3488 ret = fold_convert_loc(this->location(), type_tree, expr_tree);
3489 else
3490 ret = Expression::convert_for_assignment(context, type, expr_type,
3491 expr_tree, this->location());
3492
3493 return ret;
3494 }
3495
3496 // Output a type conversion in a constant expression.
3497
3498 void
3499 Type_conversion_expression::do_export(Export* exp) const
3500 {
3501 exp->write_c_string("convert(");
3502 exp->write_type(this->type_);
3503 exp->write_c_string(", ");
3504 this->expr_->export_expression(exp);
3505 exp->write_c_string(")");
3506 }
3507
3508 // Import a type conversion or a struct construction.
3509
3510 Expression*
3511 Type_conversion_expression::do_import(Import* imp)
3512 {
3513 imp->require_c_string("convert(");
3514 Type* type = imp->read_type();
3515 imp->require_c_string(", ");
3516 Expression* val = Expression::import_expression(imp);
3517 imp->require_c_string(")");
3518 return Expression::make_cast(type, val, imp->location());
3519 }
3520
3521 // Make a type cast expression.
3522
3523 Expression*
3524 Expression::make_cast(Type* type, Expression* val, source_location location)
3525 {
3526 if (type->is_error_type() || val->is_error_expression())
3527 return Expression::make_error(location);
3528 return new Type_conversion_expression(type, val, location);
3529 }
3530
3531 // Unary expressions.
3532
3533 class Unary_expression : public Expression
3534 {
3535 public:
3536 Unary_expression(Operator op, Expression* expr, source_location location)
3537 : Expression(EXPRESSION_UNARY, location),
3538 op_(op), escapes_(true), expr_(expr)
3539 { }
3540
3541 // Return the operator.
3542 Operator
3543 op() const
3544 { return this->op_; }
3545
3546 // Return the operand.
3547 Expression*
3548 operand() const
3549 { return this->expr_; }
3550
3551 // Record that an address expression does not escape.
3552 void
3553 set_does_not_escape()
3554 {
3555 gcc_assert(this->op_ == OPERATOR_AND);
3556 this->escapes_ = false;
3557 }
3558
3559 // Apply unary opcode OP to UVAL, setting VAL. Return true if this
3560 // could be done, false if not.
3561 static bool
3562 eval_integer(Operator op, Type* utype, mpz_t uval, mpz_t val,
3563 source_location);
3564
3565 // Apply unary opcode OP to UVAL, setting VAL. Return true if this
3566 // could be done, false if not.
3567 static bool
3568 eval_float(Operator op, mpfr_t uval, mpfr_t val);
3569
3570 // Apply unary opcode OP to UREAL/UIMAG, setting REAL/IMAG. Return
3571 // true if this could be done, false if not.
3572 static bool
3573 eval_complex(Operator op, mpfr_t ureal, mpfr_t uimag, mpfr_t real,
3574 mpfr_t imag);
3575
3576 static Expression*
3577 do_import(Import*);
3578
3579 protected:
3580 int
3581 do_traverse(Traverse* traverse)
3582 { return Expression::traverse(&this->expr_, traverse); }
3583
3584 Expression*
3585 do_lower(Gogo*, Named_object*, int);
3586
3587 bool
3588 do_is_constant() const;
3589
3590 bool
3591 do_integer_constant_value(bool, mpz_t, Type**) const;
3592
3593 bool
3594 do_float_constant_value(mpfr_t, Type**) const;
3595
3596 bool
3597 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
3598
3599 Type*
3600 do_type();
3601
3602 void
3603 do_determine_type(const Type_context*);
3604
3605 void
3606 do_check_types(Gogo*);
3607
3608 Expression*
3609 do_copy()
3610 {
3611 return Expression::make_unary(this->op_, this->expr_->copy(),
3612 this->location());
3613 }
3614
3615 bool
3616 do_is_addressable() const
3617 { return this->op_ == OPERATOR_MULT; }
3618
3619 tree
3620 do_get_tree(Translate_context*);
3621
3622 void
3623 do_export(Export*) const;
3624
3625 private:
3626 // The unary operator to apply.
3627 Operator op_;
3628 // Normally true. False if this is an address expression which does
3629 // not escape the current function.
3630 bool escapes_;
3631 // The operand.
3632 Expression* expr_;
3633 };
3634
3635 // If we are taking the address of a composite literal, and the
3636 // contents are not constant, then we want to make a heap composite
3637 // instead.
3638
3639 Expression*
3640 Unary_expression::do_lower(Gogo*, Named_object*, int)
3641 {
3642 source_location loc = this->location();
3643 Operator op = this->op_;
3644 Expression* expr = this->expr_;
3645
3646 if (op == OPERATOR_MULT && expr->is_type_expression())
3647 return Expression::make_type(Type::make_pointer_type(expr->type()), loc);
3648
3649 // *&x simplifies to x. *(*T)(unsafe.Pointer)(&x) does not require
3650 // moving x to the heap. FIXME: Is it worth doing a real escape
3651 // analysis here? This case is found in math/unsafe.go and is
3652 // therefore worth special casing.
3653 if (op == OPERATOR_MULT)
3654 {
3655 Expression* e = expr;
3656 while (e->classification() == EXPRESSION_CONVERSION)
3657 {
3658 Type_conversion_expression* te
3659 = static_cast<Type_conversion_expression*>(e);
3660 e = te->expr();
3661 }
3662
3663 if (e->classification() == EXPRESSION_UNARY)
3664 {
3665 Unary_expression* ue = static_cast<Unary_expression*>(e);
3666 if (ue->op_ == OPERATOR_AND)
3667 {
3668 if (e == expr)
3669 {
3670 // *&x == x.
3671 return ue->expr_;
3672 }
3673 ue->set_does_not_escape();
3674 }
3675 }
3676 }
3677
3678 if (op == OPERATOR_PLUS || op == OPERATOR_MINUS
3679 || op == OPERATOR_NOT || op == OPERATOR_XOR)
3680 {
3681 Expression* ret = NULL;
3682
3683 mpz_t eval;
3684 mpz_init(eval);
3685 Type* etype;
3686 if (expr->integer_constant_value(false, eval, &etype))
3687 {
3688 mpz_t val;
3689 mpz_init(val);
3690 if (Unary_expression::eval_integer(op, etype, eval, val, loc))
3691 ret = Expression::make_integer(&val, etype, loc);
3692 mpz_clear(val);
3693 }
3694 mpz_clear(eval);
3695 if (ret != NULL)
3696 return ret;
3697
3698 if (op == OPERATOR_PLUS || op == OPERATOR_MINUS)
3699 {
3700 mpfr_t fval;
3701 mpfr_init(fval);
3702 Type* ftype;
3703 if (expr->float_constant_value(fval, &ftype))
3704 {
3705 mpfr_t val;
3706 mpfr_init(val);
3707 if (Unary_expression::eval_float(op, fval, val))
3708 ret = Expression::make_float(&val, ftype, loc);
3709 mpfr_clear(val);
3710 }
3711 if (ret != NULL)
3712 {
3713 mpfr_clear(fval);
3714 return ret;
3715 }
3716
3717 mpfr_t ival;
3718 mpfr_init(ival);
3719 if (expr->complex_constant_value(fval, ival, &ftype))
3720 {
3721 mpfr_t real;
3722 mpfr_t imag;
3723 mpfr_init(real);
3724 mpfr_init(imag);
3725 if (Unary_expression::eval_complex(op, fval, ival, real, imag))
3726 ret = Expression::make_complex(&real, &imag, ftype, loc);
3727 mpfr_clear(real);
3728 mpfr_clear(imag);
3729 }
3730 mpfr_clear(ival);
3731 mpfr_clear(fval);
3732 if (ret != NULL)
3733 return ret;
3734 }
3735 }
3736
3737 return this;
3738 }
3739
3740 // Return whether a unary expression is a constant.
3741
3742 bool
3743 Unary_expression::do_is_constant() const
3744 {
3745 if (this->op_ == OPERATOR_MULT)
3746 {
3747 // Indirecting through a pointer is only constant if the object
3748 // to which the expression points is constant, but we currently
3749 // have no way to determine that.
3750 return false;
3751 }
3752 else if (this->op_ == OPERATOR_AND)
3753 {
3754 // Taking the address of a variable is constant if it is a
3755 // global variable, not constant otherwise. In other cases
3756 // taking the address is probably not a constant.
3757 Var_expression* ve = this->expr_->var_expression();
3758 if (ve != NULL)
3759 {
3760 Named_object* no = ve->named_object();
3761 return no->is_variable() && no->var_value()->is_global();
3762 }
3763 return false;
3764 }
3765 else
3766 return this->expr_->is_constant();
3767 }
3768
3769 // Apply unary opcode OP to UVAL, setting VAL. UTYPE is the type of
3770 // UVAL, if known; it may be NULL. Return true if this could be done,
3771 // false if not.
3772
3773 bool
3774 Unary_expression::eval_integer(Operator op, Type* utype, mpz_t uval, mpz_t val,
3775 source_location location)
3776 {
3777 switch (op)
3778 {
3779 case OPERATOR_PLUS:
3780 mpz_set(val, uval);
3781 return true;
3782 case OPERATOR_MINUS:
3783 mpz_neg(val, uval);
3784 return Integer_expression::check_constant(val, utype, location);
3785 case OPERATOR_NOT:
3786 mpz_set_ui(val, mpz_cmp_si(uval, 0) == 0 ? 1 : 0);
3787 return true;
3788 case OPERATOR_XOR:
3789 if (utype == NULL
3790 || utype->integer_type() == NULL
3791 || utype->integer_type()->is_abstract())
3792 mpz_com(val, uval);
3793 else
3794 {
3795 // The number of HOST_WIDE_INTs that it takes to represent
3796 // UVAL.
3797 size_t count = ((mpz_sizeinbase(uval, 2)
3798 + HOST_BITS_PER_WIDE_INT
3799 - 1)
3800 / HOST_BITS_PER_WIDE_INT);
3801
3802 unsigned HOST_WIDE_INT* phwi = new unsigned HOST_WIDE_INT[count];
3803 memset(phwi, 0, count * sizeof(HOST_WIDE_INT));
3804
3805 size_t ecount;
3806 mpz_export(phwi, &ecount, -1, sizeof(HOST_WIDE_INT), 0, 0, uval);
3807 gcc_assert(ecount <= count);
3808
3809 // Trim down to the number of words required by the type.
3810 size_t obits = utype->integer_type()->bits();
3811 if (!utype->integer_type()->is_unsigned())
3812 ++obits;
3813 size_t ocount = ((obits + HOST_BITS_PER_WIDE_INT - 1)
3814 / HOST_BITS_PER_WIDE_INT);
3815 gcc_assert(ocount <= ocount);
3816
3817 for (size_t i = 0; i < ocount; ++i)
3818 phwi[i] = ~phwi[i];
3819
3820 size_t clearbits = ocount * HOST_BITS_PER_WIDE_INT - obits;
3821 if (clearbits != 0)
3822 phwi[ocount - 1] &= (((unsigned HOST_WIDE_INT) (HOST_WIDE_INT) -1)
3823 >> clearbits);
3824
3825 mpz_import(val, ocount, -1, sizeof(HOST_WIDE_INT), 0, 0, phwi);
3826
3827 delete[] phwi;
3828 }
3829 return Integer_expression::check_constant(val, utype, location);
3830 case OPERATOR_AND:
3831 case OPERATOR_MULT:
3832 return false;
3833 default:
3834 gcc_unreachable();
3835 }
3836 }
3837
3838 // Apply unary opcode OP to UVAL, setting VAL. Return true if this
3839 // could be done, false if not.
3840
3841 bool
3842 Unary_expression::eval_float(Operator op, mpfr_t uval, mpfr_t val)
3843 {
3844 switch (op)
3845 {
3846 case OPERATOR_PLUS:
3847 mpfr_set(val, uval, GMP_RNDN);
3848 return true;
3849 case OPERATOR_MINUS:
3850 mpfr_neg(val, uval, GMP_RNDN);
3851 return true;
3852 case OPERATOR_NOT:
3853 case OPERATOR_XOR:
3854 case OPERATOR_AND:
3855 case OPERATOR_MULT:
3856 return false;
3857 default:
3858 gcc_unreachable();
3859 }
3860 }
3861
3862 // Apply unary opcode OP to RVAL/IVAL, setting REAL/IMAG. Return true
3863 // if this could be done, false if not.
3864
3865 bool
3866 Unary_expression::eval_complex(Operator op, mpfr_t rval, mpfr_t ival,
3867 mpfr_t real, mpfr_t imag)
3868 {
3869 switch (op)
3870 {
3871 case OPERATOR_PLUS:
3872 mpfr_set(real, rval, GMP_RNDN);
3873 mpfr_set(imag, ival, GMP_RNDN);
3874 return true;
3875 case OPERATOR_MINUS:
3876 mpfr_neg(real, rval, GMP_RNDN);
3877 mpfr_neg(imag, ival, GMP_RNDN);
3878 return true;
3879 case OPERATOR_NOT:
3880 case OPERATOR_XOR:
3881 case OPERATOR_AND:
3882 case OPERATOR_MULT:
3883 return false;
3884 default:
3885 gcc_unreachable();
3886 }
3887 }
3888
3889 // Return the integral constant value of a unary expression, if it has one.
3890
3891 bool
3892 Unary_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
3893 Type** ptype) const
3894 {
3895 mpz_t uval;
3896 mpz_init(uval);
3897 bool ret;
3898 if (!this->expr_->integer_constant_value(iota_is_constant, uval, ptype))
3899 ret = false;
3900 else
3901 ret = Unary_expression::eval_integer(this->op_, *ptype, uval, val,
3902 this->location());
3903 mpz_clear(uval);
3904 return ret;
3905 }
3906
3907 // Return the floating point constant value of a unary expression, if
3908 // it has one.
3909
3910 bool
3911 Unary_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
3912 {
3913 mpfr_t uval;
3914 mpfr_init(uval);
3915 bool ret;
3916 if (!this->expr_->float_constant_value(uval, ptype))
3917 ret = false;
3918 else
3919 ret = Unary_expression::eval_float(this->op_, uval, val);
3920 mpfr_clear(uval);
3921 return ret;
3922 }
3923
3924 // Return the complex constant value of a unary expression, if it has
3925 // one.
3926
3927 bool
3928 Unary_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
3929 Type** ptype) const
3930 {
3931 mpfr_t rval;
3932 mpfr_t ival;
3933 mpfr_init(rval);
3934 mpfr_init(ival);
3935 bool ret;
3936 if (!this->expr_->complex_constant_value(rval, ival, ptype))
3937 ret = false;
3938 else
3939 ret = Unary_expression::eval_complex(this->op_, rval, ival, real, imag);
3940 mpfr_clear(rval);
3941 mpfr_clear(ival);
3942 return ret;
3943 }
3944
3945 // Return the type of a unary expression.
3946
3947 Type*
3948 Unary_expression::do_type()
3949 {
3950 switch (this->op_)
3951 {
3952 case OPERATOR_PLUS:
3953 case OPERATOR_MINUS:
3954 case OPERATOR_NOT:
3955 case OPERATOR_XOR:
3956 return this->expr_->type();
3957
3958 case OPERATOR_AND:
3959 return Type::make_pointer_type(this->expr_->type());
3960
3961 case OPERATOR_MULT:
3962 {
3963 Type* subtype = this->expr_->type();
3964 Type* points_to = subtype->points_to();
3965 if (points_to == NULL)
3966 return Type::make_error_type();
3967 return points_to;
3968 }
3969
3970 default:
3971 gcc_unreachable();
3972 }
3973 }
3974
3975 // Determine abstract types for a unary expression.
3976
3977 void
3978 Unary_expression::do_determine_type(const Type_context* context)
3979 {
3980 switch (this->op_)
3981 {
3982 case OPERATOR_PLUS:
3983 case OPERATOR_MINUS:
3984 case OPERATOR_NOT:
3985 case OPERATOR_XOR:
3986 this->expr_->determine_type(context);
3987 break;
3988
3989 case OPERATOR_AND:
3990 // Taking the address of something.
3991 {
3992 Type* subtype = (context->type == NULL
3993 ? NULL
3994 : context->type->points_to());
3995 Type_context subcontext(subtype, false);
3996 this->expr_->determine_type(&subcontext);
3997 }
3998 break;
3999
4000 case OPERATOR_MULT:
4001 // Indirecting through a pointer.
4002 {
4003 Type* subtype = (context->type == NULL
4004 ? NULL
4005 : Type::make_pointer_type(context->type));
4006 Type_context subcontext(subtype, false);
4007 this->expr_->determine_type(&subcontext);
4008 }
4009 break;
4010
4011 default:
4012 gcc_unreachable();
4013 }
4014 }
4015
4016 // Check types for a unary expression.
4017
4018 void
4019 Unary_expression::do_check_types(Gogo*)
4020 {
4021 Type* type = this->expr_->type();
4022 if (type->is_error_type())
4023 {
4024 this->set_is_error();
4025 return;
4026 }
4027
4028 switch (this->op_)
4029 {
4030 case OPERATOR_PLUS:
4031 case OPERATOR_MINUS:
4032 if (type->integer_type() == NULL
4033 && type->float_type() == NULL
4034 && type->complex_type() == NULL)
4035 this->report_error(_("expected numeric type"));
4036 break;
4037
4038 case OPERATOR_NOT:
4039 case OPERATOR_XOR:
4040 if (type->integer_type() == NULL
4041 && !type->is_boolean_type())
4042 this->report_error(_("expected integer or boolean type"));
4043 break;
4044
4045 case OPERATOR_AND:
4046 if (!this->expr_->is_addressable())
4047 this->report_error(_("invalid operand for unary %<&%>"));
4048 else
4049 this->expr_->address_taken(this->escapes_);
4050 break;
4051
4052 case OPERATOR_MULT:
4053 // Indirecting through a pointer.
4054 if (type->points_to() == NULL)
4055 this->report_error(_("expected pointer"));
4056 break;
4057
4058 default:
4059 gcc_unreachable();
4060 }
4061 }
4062
4063 // Get a tree for a unary expression.
4064
4065 tree
4066 Unary_expression::do_get_tree(Translate_context* context)
4067 {
4068 tree expr = this->expr_->get_tree(context);
4069 if (expr == error_mark_node)
4070 return error_mark_node;
4071
4072 source_location loc = this->location();
4073 switch (this->op_)
4074 {
4075 case OPERATOR_PLUS:
4076 return expr;
4077
4078 case OPERATOR_MINUS:
4079 {
4080 tree type = TREE_TYPE(expr);
4081 tree compute_type = excess_precision_type(type);
4082 if (compute_type != NULL_TREE)
4083 expr = ::convert(compute_type, expr);
4084 tree ret = fold_build1_loc(loc, NEGATE_EXPR,
4085 (compute_type != NULL_TREE
4086 ? compute_type
4087 : type),
4088 expr);
4089 if (compute_type != NULL_TREE)
4090 ret = ::convert(type, ret);
4091 return ret;
4092 }
4093
4094 case OPERATOR_NOT:
4095 if (TREE_CODE(TREE_TYPE(expr)) == BOOLEAN_TYPE)
4096 return fold_build1_loc(loc, TRUTH_NOT_EXPR, TREE_TYPE(expr), expr);
4097 else
4098 return fold_build2_loc(loc, NE_EXPR, boolean_type_node, expr,
4099 build_int_cst(TREE_TYPE(expr), 0));
4100
4101 case OPERATOR_XOR:
4102 return fold_build1_loc(loc, BIT_NOT_EXPR, TREE_TYPE(expr), expr);
4103
4104 case OPERATOR_AND:
4105 // We should not see a non-constant constructor here; cases
4106 // where we would see one should have been moved onto the heap
4107 // at parse time. Taking the address of a nonconstant
4108 // constructor will not do what the programmer expects.
4109 gcc_assert(TREE_CODE(expr) != CONSTRUCTOR || TREE_CONSTANT(expr));
4110 gcc_assert(TREE_CODE(expr) != ADDR_EXPR);
4111
4112 // Build a decl for a constant constructor.
4113 if (TREE_CODE(expr) == CONSTRUCTOR && TREE_CONSTANT(expr))
4114 {
4115 tree decl = build_decl(this->location(), VAR_DECL,
4116 create_tmp_var_name("C"), TREE_TYPE(expr));
4117 DECL_EXTERNAL(decl) = 0;
4118 TREE_PUBLIC(decl) = 0;
4119 TREE_READONLY(decl) = 1;
4120 TREE_CONSTANT(decl) = 1;
4121 TREE_STATIC(decl) = 1;
4122 TREE_ADDRESSABLE(decl) = 1;
4123 DECL_ARTIFICIAL(decl) = 1;
4124 DECL_INITIAL(decl) = expr;
4125 rest_of_decl_compilation(decl, 1, 0);
4126 expr = decl;
4127 }
4128
4129 return build_fold_addr_expr_loc(loc, expr);
4130
4131 case OPERATOR_MULT:
4132 {
4133 gcc_assert(POINTER_TYPE_P(TREE_TYPE(expr)));
4134
4135 // If we are dereferencing the pointer to a large struct, we
4136 // need to check for nil. We don't bother to check for small
4137 // structs because we expect the system to crash on a nil
4138 // pointer dereference.
4139 HOST_WIDE_INT s = int_size_in_bytes(TREE_TYPE(TREE_TYPE(expr)));
4140 if (s == -1 || s >= 4096)
4141 {
4142 if (!DECL_P(expr))
4143 expr = save_expr(expr);
4144 tree compare = fold_build2_loc(loc, EQ_EXPR, boolean_type_node,
4145 expr,
4146 fold_convert(TREE_TYPE(expr),
4147 null_pointer_node));
4148 tree crash = Gogo::runtime_error(RUNTIME_ERROR_NIL_DEREFERENCE,
4149 loc);
4150 expr = fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(expr),
4151 build3(COND_EXPR, void_type_node,
4152 compare, crash, NULL_TREE),
4153 expr);
4154 }
4155
4156 // If the type of EXPR is a recursive pointer type, then we
4157 // need to insert a cast before indirecting.
4158 if (TREE_TYPE(TREE_TYPE(expr)) == ptr_type_node)
4159 {
4160 Type* pt = this->expr_->type()->points_to();
4161 tree ind = pt->get_tree(context->gogo());
4162 expr = fold_convert_loc(loc, build_pointer_type(ind), expr);
4163 }
4164
4165 return build_fold_indirect_ref_loc(loc, expr);
4166 }
4167
4168 default:
4169 gcc_unreachable();
4170 }
4171 }
4172
4173 // Export a unary expression.
4174
4175 void
4176 Unary_expression::do_export(Export* exp) const
4177 {
4178 switch (this->op_)
4179 {
4180 case OPERATOR_PLUS:
4181 exp->write_c_string("+ ");
4182 break;
4183 case OPERATOR_MINUS:
4184 exp->write_c_string("- ");
4185 break;
4186 case OPERATOR_NOT:
4187 exp->write_c_string("! ");
4188 break;
4189 case OPERATOR_XOR:
4190 exp->write_c_string("^ ");
4191 break;
4192 case OPERATOR_AND:
4193 case OPERATOR_MULT:
4194 default:
4195 gcc_unreachable();
4196 }
4197 this->expr_->export_expression(exp);
4198 }
4199
4200 // Import a unary expression.
4201
4202 Expression*
4203 Unary_expression::do_import(Import* imp)
4204 {
4205 Operator op;
4206 switch (imp->get_char())
4207 {
4208 case '+':
4209 op = OPERATOR_PLUS;
4210 break;
4211 case '-':
4212 op = OPERATOR_MINUS;
4213 break;
4214 case '!':
4215 op = OPERATOR_NOT;
4216 break;
4217 case '^':
4218 op = OPERATOR_XOR;
4219 break;
4220 default:
4221 gcc_unreachable();
4222 }
4223 imp->require_c_string(" ");
4224 Expression* expr = Expression::import_expression(imp);
4225 return Expression::make_unary(op, expr, imp->location());
4226 }
4227
4228 // Make a unary expression.
4229
4230 Expression*
4231 Expression::make_unary(Operator op, Expression* expr, source_location location)
4232 {
4233 return new Unary_expression(op, expr, location);
4234 }
4235
4236 // If this is an indirection through a pointer, return the expression
4237 // being pointed through. Otherwise return this.
4238
4239 Expression*
4240 Expression::deref()
4241 {
4242 if (this->classification_ == EXPRESSION_UNARY)
4243 {
4244 Unary_expression* ue = static_cast<Unary_expression*>(this);
4245 if (ue->op() == OPERATOR_MULT)
4246 return ue->operand();
4247 }
4248 return this;
4249 }
4250
4251 // Class Binary_expression.
4252
4253 // Traversal.
4254
4255 int
4256 Binary_expression::do_traverse(Traverse* traverse)
4257 {
4258 int t = Expression::traverse(&this->left_, traverse);
4259 if (t == TRAVERSE_EXIT)
4260 return TRAVERSE_EXIT;
4261 return Expression::traverse(&this->right_, traverse);
4262 }
4263
4264 // Compare integer constants according to OP.
4265
4266 bool
4267 Binary_expression::compare_integer(Operator op, mpz_t left_val,
4268 mpz_t right_val)
4269 {
4270 int i = mpz_cmp(left_val, right_val);
4271 switch (op)
4272 {
4273 case OPERATOR_EQEQ:
4274 return i == 0;
4275 case OPERATOR_NOTEQ:
4276 return i != 0;
4277 case OPERATOR_LT:
4278 return i < 0;
4279 case OPERATOR_LE:
4280 return i <= 0;
4281 case OPERATOR_GT:
4282 return i > 0;
4283 case OPERATOR_GE:
4284 return i >= 0;
4285 default:
4286 gcc_unreachable();
4287 }
4288 }
4289
4290 // Compare floating point constants according to OP.
4291
4292 bool
4293 Binary_expression::compare_float(Operator op, Type* type, mpfr_t left_val,
4294 mpfr_t right_val)
4295 {
4296 int i;
4297 if (type == NULL)
4298 i = mpfr_cmp(left_val, right_val);
4299 else
4300 {
4301 mpfr_t lv;
4302 mpfr_init_set(lv, left_val, GMP_RNDN);
4303 mpfr_t rv;
4304 mpfr_init_set(rv, right_val, GMP_RNDN);
4305 Float_expression::constrain_float(lv, type);
4306 Float_expression::constrain_float(rv, type);
4307 i = mpfr_cmp(lv, rv);
4308 mpfr_clear(lv);
4309 mpfr_clear(rv);
4310 }
4311 switch (op)
4312 {
4313 case OPERATOR_EQEQ:
4314 return i == 0;
4315 case OPERATOR_NOTEQ:
4316 return i != 0;
4317 case OPERATOR_LT:
4318 return i < 0;
4319 case OPERATOR_LE:
4320 return i <= 0;
4321 case OPERATOR_GT:
4322 return i > 0;
4323 case OPERATOR_GE:
4324 return i >= 0;
4325 default:
4326 gcc_unreachable();
4327 }
4328 }
4329
4330 // Compare complex constants according to OP. Complex numbers may
4331 // only be compared for equality.
4332
4333 bool
4334 Binary_expression::compare_complex(Operator op, Type* type,
4335 mpfr_t left_real, mpfr_t left_imag,
4336 mpfr_t right_real, mpfr_t right_imag)
4337 {
4338 bool is_equal;
4339 if (type == NULL)
4340 is_equal = (mpfr_cmp(left_real, right_real) == 0
4341 && mpfr_cmp(left_imag, right_imag) == 0);
4342 else
4343 {
4344 mpfr_t lr;
4345 mpfr_t li;
4346 mpfr_init_set(lr, left_real, GMP_RNDN);
4347 mpfr_init_set(li, left_imag, GMP_RNDN);
4348 mpfr_t rr;
4349 mpfr_t ri;
4350 mpfr_init_set(rr, right_real, GMP_RNDN);
4351 mpfr_init_set(ri, right_imag, GMP_RNDN);
4352 Complex_expression::constrain_complex(lr, li, type);
4353 Complex_expression::constrain_complex(rr, ri, type);
4354 is_equal = mpfr_cmp(lr, rr) == 0 && mpfr_cmp(li, ri) == 0;
4355 mpfr_clear(lr);
4356 mpfr_clear(li);
4357 mpfr_clear(rr);
4358 mpfr_clear(ri);
4359 }
4360 switch (op)
4361 {
4362 case OPERATOR_EQEQ:
4363 return is_equal;
4364 case OPERATOR_NOTEQ:
4365 return !is_equal;
4366 default:
4367 gcc_unreachable();
4368 }
4369 }
4370
4371 // Apply binary opcode OP to LEFT_VAL and RIGHT_VAL, setting VAL.
4372 // LEFT_TYPE is the type of LEFT_VAL, RIGHT_TYPE is the type of
4373 // RIGHT_VAL; LEFT_TYPE and/or RIGHT_TYPE may be NULL. Return true if
4374 // this could be done, false if not.
4375
4376 bool
4377 Binary_expression::eval_integer(Operator op, Type* left_type, mpz_t left_val,
4378 Type* right_type, mpz_t right_val,
4379 source_location location, mpz_t val)
4380 {
4381 bool is_shift_op = false;
4382 switch (op)
4383 {
4384 case OPERATOR_OROR:
4385 case OPERATOR_ANDAND:
4386 case OPERATOR_EQEQ:
4387 case OPERATOR_NOTEQ:
4388 case OPERATOR_LT:
4389 case OPERATOR_LE:
4390 case OPERATOR_GT:
4391 case OPERATOR_GE:
4392 // These return boolean values. We should probably handle them
4393 // anyhow in case a type conversion is used on the result.
4394 return false;
4395 case OPERATOR_PLUS:
4396 mpz_add(val, left_val, right_val);
4397 break;
4398 case OPERATOR_MINUS:
4399 mpz_sub(val, left_val, right_val);
4400 break;
4401 case OPERATOR_OR:
4402 mpz_ior(val, left_val, right_val);
4403 break;
4404 case OPERATOR_XOR:
4405 mpz_xor(val, left_val, right_val);
4406 break;
4407 case OPERATOR_MULT:
4408 mpz_mul(val, left_val, right_val);
4409 break;
4410 case OPERATOR_DIV:
4411 if (mpz_sgn(right_val) != 0)
4412 mpz_tdiv_q(val, left_val, right_val);
4413 else
4414 {
4415 error_at(location, "division by zero");
4416 mpz_set_ui(val, 0);
4417 return true;
4418 }
4419 break;
4420 case OPERATOR_MOD:
4421 if (mpz_sgn(right_val) != 0)
4422 mpz_tdiv_r(val, left_val, right_val);
4423 else
4424 {
4425 error_at(location, "division by zero");
4426 mpz_set_ui(val, 0);
4427 return true;
4428 }
4429 break;
4430 case OPERATOR_LSHIFT:
4431 {
4432 unsigned long shift = mpz_get_ui(right_val);
4433 if (mpz_cmp_ui(right_val, shift) != 0)
4434 {
4435 error_at(location, "shift count overflow");
4436 mpz_set_ui(val, 0);
4437 return true;
4438 }
4439 mpz_mul_2exp(val, left_val, shift);
4440 is_shift_op = true;
4441 break;
4442 }
4443 break;
4444 case OPERATOR_RSHIFT:
4445 {
4446 unsigned long shift = mpz_get_ui(right_val);
4447 if (mpz_cmp_ui(right_val, shift) != 0)
4448 {
4449 error_at(location, "shift count overflow");
4450 mpz_set_ui(val, 0);
4451 return true;
4452 }
4453 if (mpz_cmp_ui(left_val, 0) >= 0)
4454 mpz_tdiv_q_2exp(val, left_val, shift);
4455 else
4456 mpz_fdiv_q_2exp(val, left_val, shift);
4457 is_shift_op = true;
4458 break;
4459 }
4460 break;
4461 case OPERATOR_AND:
4462 mpz_and(val, left_val, right_val);
4463 break;
4464 case OPERATOR_BITCLEAR:
4465 {
4466 mpz_t tval;
4467 mpz_init(tval);
4468 mpz_com(tval, right_val);
4469 mpz_and(val, left_val, tval);
4470 mpz_clear(tval);
4471 }
4472 break;
4473 default:
4474 gcc_unreachable();
4475 }
4476
4477 Type* type = left_type;
4478 if (!is_shift_op)
4479 {
4480 if (type == NULL)
4481 type = right_type;
4482 else if (type != right_type && right_type != NULL)
4483 {
4484 if (type->is_abstract())
4485 type = right_type;
4486 else if (!right_type->is_abstract())
4487 {
4488 // This look like a type error which should be diagnosed
4489 // elsewhere. Don't do anything here, to avoid an
4490 // unhelpful chain of error messages.
4491 return true;
4492 }
4493 }
4494 }
4495
4496 if (type != NULL && !type->is_abstract())
4497 {
4498 // We have to check the operands too, as we have implicitly
4499 // coerced them to TYPE.
4500 if ((type != left_type
4501 && !Integer_expression::check_constant(left_val, type, location))
4502 || (!is_shift_op
4503 && type != right_type
4504 && !Integer_expression::check_constant(right_val, type,
4505 location))
4506 || !Integer_expression::check_constant(val, type, location))
4507 mpz_set_ui(val, 0);
4508 }
4509
4510 return true;
4511 }
4512
4513 // Apply binary opcode OP to LEFT_VAL and RIGHT_VAL, setting VAL.
4514 // Return true if this could be done, false if not.
4515
4516 bool
4517 Binary_expression::eval_float(Operator op, Type* left_type, mpfr_t left_val,
4518 Type* right_type, mpfr_t right_val,
4519 mpfr_t val, source_location location)
4520 {
4521 switch (op)
4522 {
4523 case OPERATOR_OROR:
4524 case OPERATOR_ANDAND:
4525 case OPERATOR_EQEQ:
4526 case OPERATOR_NOTEQ:
4527 case OPERATOR_LT:
4528 case OPERATOR_LE:
4529 case OPERATOR_GT:
4530 case OPERATOR_GE:
4531 // These return boolean values. We should probably handle them
4532 // anyhow in case a type conversion is used on the result.
4533 return false;
4534 case OPERATOR_PLUS:
4535 mpfr_add(val, left_val, right_val, GMP_RNDN);
4536 break;
4537 case OPERATOR_MINUS:
4538 mpfr_sub(val, left_val, right_val, GMP_RNDN);
4539 break;
4540 case OPERATOR_OR:
4541 case OPERATOR_XOR:
4542 case OPERATOR_AND:
4543 case OPERATOR_BITCLEAR:
4544 return false;
4545 case OPERATOR_MULT:
4546 mpfr_mul(val, left_val, right_val, GMP_RNDN);
4547 break;
4548 case OPERATOR_DIV:
4549 if (mpfr_zero_p(right_val))
4550 error_at(location, "division by zero");
4551 mpfr_div(val, left_val, right_val, GMP_RNDN);
4552 break;
4553 case OPERATOR_MOD:
4554 return false;
4555 case OPERATOR_LSHIFT:
4556 case OPERATOR_RSHIFT:
4557 return false;
4558 default:
4559 gcc_unreachable();
4560 }
4561
4562 Type* type = left_type;
4563 if (type == NULL)
4564 type = right_type;
4565 else if (type != right_type && right_type != NULL)
4566 {
4567 if (type->is_abstract())
4568 type = right_type;
4569 else if (!right_type->is_abstract())
4570 {
4571 // This looks like a type error which should be diagnosed
4572 // elsewhere. Don't do anything here, to avoid an unhelpful
4573 // chain of error messages.
4574 return true;
4575 }
4576 }
4577
4578 if (type != NULL && !type->is_abstract())
4579 {
4580 if ((type != left_type
4581 && !Float_expression::check_constant(left_val, type, location))
4582 || (type != right_type
4583 && !Float_expression::check_constant(right_val, type,
4584 location))
4585 || !Float_expression::check_constant(val, type, location))
4586 mpfr_set_ui(val, 0, GMP_RNDN);
4587 }
4588
4589 return true;
4590 }
4591
4592 // Apply binary opcode OP to LEFT_REAL/LEFT_IMAG and
4593 // RIGHT_REAL/RIGHT_IMAG, setting REAL/IMAG. Return true if this
4594 // could be done, false if not.
4595
4596 bool
4597 Binary_expression::eval_complex(Operator op, Type* left_type,
4598 mpfr_t left_real, mpfr_t left_imag,
4599 Type *right_type,
4600 mpfr_t right_real, mpfr_t right_imag,
4601 mpfr_t real, mpfr_t imag,
4602 source_location location)
4603 {
4604 switch (op)
4605 {
4606 case OPERATOR_OROR:
4607 case OPERATOR_ANDAND:
4608 case OPERATOR_EQEQ:
4609 case OPERATOR_NOTEQ:
4610 case OPERATOR_LT:
4611 case OPERATOR_LE:
4612 case OPERATOR_GT:
4613 case OPERATOR_GE:
4614 // These return boolean values and must be handled differently.
4615 return false;
4616 case OPERATOR_PLUS:
4617 mpfr_add(real, left_real, right_real, GMP_RNDN);
4618 mpfr_add(imag, left_imag, right_imag, GMP_RNDN);
4619 break;
4620 case OPERATOR_MINUS:
4621 mpfr_sub(real, left_real, right_real, GMP_RNDN);
4622 mpfr_sub(imag, left_imag, right_imag, GMP_RNDN);
4623 break;
4624 case OPERATOR_OR:
4625 case OPERATOR_XOR:
4626 case OPERATOR_AND:
4627 case OPERATOR_BITCLEAR:
4628 return false;
4629 case OPERATOR_MULT:
4630 {
4631 // You might think that multiplying two complex numbers would
4632 // be simple, and you would be right, until you start to think
4633 // about getting the right answer for infinity. If one
4634 // operand here is infinity and the other is anything other
4635 // than zero or NaN, then we are going to wind up subtracting
4636 // two infinity values. That will give us a NaN, but the
4637 // correct answer is infinity.
4638
4639 mpfr_t lrrr;
4640 mpfr_init(lrrr);
4641 mpfr_mul(lrrr, left_real, right_real, GMP_RNDN);
4642
4643 mpfr_t lrri;
4644 mpfr_init(lrri);
4645 mpfr_mul(lrri, left_real, right_imag, GMP_RNDN);
4646
4647 mpfr_t lirr;
4648 mpfr_init(lirr);
4649 mpfr_mul(lirr, left_imag, right_real, GMP_RNDN);
4650
4651 mpfr_t liri;
4652 mpfr_init(liri);
4653 mpfr_mul(liri, left_imag, right_imag, GMP_RNDN);
4654
4655 mpfr_sub(real, lrrr, liri, GMP_RNDN);
4656 mpfr_add(imag, lrri, lirr, GMP_RNDN);
4657
4658 // If we get NaN on both sides, check whether it should really
4659 // be infinity. The rule is that if either side of the
4660 // complex number is infinity, then the whole value is
4661 // infinity, even if the other side is NaN. So the only case
4662 // we have to fix is the one in which both sides are NaN.
4663 if (mpfr_nan_p(real) && mpfr_nan_p(imag)
4664 && (!mpfr_nan_p(left_real) || !mpfr_nan_p(left_imag))
4665 && (!mpfr_nan_p(right_real) || !mpfr_nan_p(right_imag)))
4666 {
4667 bool is_infinity = false;
4668
4669 mpfr_t lr;
4670 mpfr_t li;
4671 mpfr_init_set(lr, left_real, GMP_RNDN);
4672 mpfr_init_set(li, left_imag, GMP_RNDN);
4673
4674 mpfr_t rr;
4675 mpfr_t ri;
4676 mpfr_init_set(rr, right_real, GMP_RNDN);
4677 mpfr_init_set(ri, right_imag, GMP_RNDN);
4678
4679 // If the left side is infinity, then the result is
4680 // infinity.
4681 if (mpfr_inf_p(lr) || mpfr_inf_p(li))
4682 {
4683 mpfr_set_ui(lr, mpfr_inf_p(lr) ? 1 : 0, GMP_RNDN);
4684 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
4685 mpfr_set_ui(li, mpfr_inf_p(li) ? 1 : 0, GMP_RNDN);
4686 mpfr_copysign(li, li, left_imag, GMP_RNDN);
4687 if (mpfr_nan_p(rr))
4688 {
4689 mpfr_set_ui(rr, 0, GMP_RNDN);
4690 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
4691 }
4692 if (mpfr_nan_p(ri))
4693 {
4694 mpfr_set_ui(ri, 0, GMP_RNDN);
4695 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
4696 }
4697 is_infinity = true;
4698 }
4699
4700 // If the right side is infinity, then the result is
4701 // infinity.
4702 if (mpfr_inf_p(rr) || mpfr_inf_p(ri))
4703 {
4704 mpfr_set_ui(rr, mpfr_inf_p(rr) ? 1 : 0, GMP_RNDN);
4705 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
4706 mpfr_set_ui(ri, mpfr_inf_p(ri) ? 1 : 0, GMP_RNDN);
4707 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
4708 if (mpfr_nan_p(lr))
4709 {
4710 mpfr_set_ui(lr, 0, GMP_RNDN);
4711 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
4712 }
4713 if (mpfr_nan_p(li))
4714 {
4715 mpfr_set_ui(li, 0, GMP_RNDN);
4716 mpfr_copysign(li, li, left_imag, GMP_RNDN);
4717 }
4718 is_infinity = true;
4719 }
4720
4721 // If we got an overflow in the intermediate computations,
4722 // then the result is infinity.
4723 if (!is_infinity
4724 && (mpfr_inf_p(lrrr) || mpfr_inf_p(lrri)
4725 || mpfr_inf_p(lirr) || mpfr_inf_p(liri)))
4726 {
4727 if (mpfr_nan_p(lr))
4728 {
4729 mpfr_set_ui(lr, 0, GMP_RNDN);
4730 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
4731 }
4732 if (mpfr_nan_p(li))
4733 {
4734 mpfr_set_ui(li, 0, GMP_RNDN);
4735 mpfr_copysign(li, li, left_imag, GMP_RNDN);
4736 }
4737 if (mpfr_nan_p(rr))
4738 {
4739 mpfr_set_ui(rr, 0, GMP_RNDN);
4740 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
4741 }
4742 if (mpfr_nan_p(ri))
4743 {
4744 mpfr_set_ui(ri, 0, GMP_RNDN);
4745 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
4746 }
4747 is_infinity = true;
4748 }
4749
4750 if (is_infinity)
4751 {
4752 mpfr_mul(lrrr, lr, rr, GMP_RNDN);
4753 mpfr_mul(lrri, lr, ri, GMP_RNDN);
4754 mpfr_mul(lirr, li, rr, GMP_RNDN);
4755 mpfr_mul(liri, li, ri, GMP_RNDN);
4756 mpfr_sub(real, lrrr, liri, GMP_RNDN);
4757 mpfr_add(imag, lrri, lirr, GMP_RNDN);
4758 mpfr_set_inf(real, mpfr_sgn(real));
4759 mpfr_set_inf(imag, mpfr_sgn(imag));
4760 }
4761
4762 mpfr_clear(lr);
4763 mpfr_clear(li);
4764 mpfr_clear(rr);
4765 mpfr_clear(ri);
4766 }
4767
4768 mpfr_clear(lrrr);
4769 mpfr_clear(lrri);
4770 mpfr_clear(lirr);
4771 mpfr_clear(liri);
4772 }
4773 break;
4774 case OPERATOR_DIV:
4775 {
4776 // For complex division we want to avoid having an
4777 // intermediate overflow turn the whole result in a NaN. We
4778 // scale the values to try to avoid this.
4779
4780 if (mpfr_zero_p(right_real) && mpfr_zero_p(right_imag))
4781 error_at(location, "division by zero");
4782
4783 mpfr_t rra;
4784 mpfr_t ria;
4785 mpfr_init(rra);
4786 mpfr_init(ria);
4787 mpfr_abs(rra, right_real, GMP_RNDN);
4788 mpfr_abs(ria, right_imag, GMP_RNDN);
4789 mpfr_t t;
4790 mpfr_init(t);
4791 mpfr_max(t, rra, ria, GMP_RNDN);
4792
4793 mpfr_t rr;
4794 mpfr_t ri;
4795 mpfr_init_set(rr, right_real, GMP_RNDN);
4796 mpfr_init_set(ri, right_imag, GMP_RNDN);
4797 long ilogbw = 0;
4798 if (!mpfr_inf_p(t) && !mpfr_nan_p(t) && !mpfr_zero_p(t))
4799 {
4800 ilogbw = mpfr_get_exp(t);
4801 mpfr_mul_2si(rr, rr, - ilogbw, GMP_RNDN);
4802 mpfr_mul_2si(ri, ri, - ilogbw, GMP_RNDN);
4803 }
4804
4805 mpfr_t denom;
4806 mpfr_init(denom);
4807 mpfr_mul(denom, rr, rr, GMP_RNDN);
4808 mpfr_mul(t, ri, ri, GMP_RNDN);
4809 mpfr_add(denom, denom, t, GMP_RNDN);
4810
4811 mpfr_mul(real, left_real, rr, GMP_RNDN);
4812 mpfr_mul(t, left_imag, ri, GMP_RNDN);
4813 mpfr_add(real, real, t, GMP_RNDN);
4814 mpfr_div(real, real, denom, GMP_RNDN);
4815 mpfr_mul_2si(real, real, - ilogbw, GMP_RNDN);
4816
4817 mpfr_mul(imag, left_imag, rr, GMP_RNDN);
4818 mpfr_mul(t, left_real, ri, GMP_RNDN);
4819 mpfr_sub(imag, imag, t, GMP_RNDN);
4820 mpfr_div(imag, imag, denom, GMP_RNDN);
4821 mpfr_mul_2si(imag, imag, - ilogbw, GMP_RNDN);
4822
4823 // If we wind up with NaN on both sides, check whether we
4824 // should really have infinity. The rule is that if either
4825 // side of the complex number is infinity, then the whole
4826 // value is infinity, even if the other side is NaN. So the
4827 // only case we have to fix is the one in which both sides are
4828 // NaN.
4829 if (mpfr_nan_p(real) && mpfr_nan_p(imag)
4830 && (!mpfr_nan_p(left_real) || !mpfr_nan_p(left_imag))
4831 && (!mpfr_nan_p(right_real) || !mpfr_nan_p(right_imag)))
4832 {
4833 if (mpfr_zero_p(denom))
4834 {
4835 mpfr_set_inf(real, mpfr_sgn(rr));
4836 mpfr_mul(real, real, left_real, GMP_RNDN);
4837 mpfr_set_inf(imag, mpfr_sgn(rr));
4838 mpfr_mul(imag, imag, left_imag, GMP_RNDN);
4839 }
4840 else if ((mpfr_inf_p(left_real) || mpfr_inf_p(left_imag))
4841 && mpfr_number_p(rr) && mpfr_number_p(ri))
4842 {
4843 mpfr_set_ui(t, mpfr_inf_p(left_real) ? 1 : 0, GMP_RNDN);
4844 mpfr_copysign(t, t, left_real, GMP_RNDN);
4845
4846 mpfr_t t2;
4847 mpfr_init_set_ui(t2, mpfr_inf_p(left_imag) ? 1 : 0, GMP_RNDN);
4848 mpfr_copysign(t2, t2, left_imag, GMP_RNDN);
4849
4850 mpfr_t t3;
4851 mpfr_init(t3);
4852 mpfr_mul(t3, t, rr, GMP_RNDN);
4853
4854 mpfr_t t4;
4855 mpfr_init(t4);
4856 mpfr_mul(t4, t2, ri, GMP_RNDN);
4857
4858 mpfr_add(t3, t3, t4, GMP_RNDN);
4859 mpfr_set_inf(real, mpfr_sgn(t3));
4860
4861 mpfr_mul(t3, t2, rr, GMP_RNDN);
4862 mpfr_mul(t4, t, ri, GMP_RNDN);
4863 mpfr_sub(t3, t3, t4, GMP_RNDN);
4864 mpfr_set_inf(imag, mpfr_sgn(t3));
4865
4866 mpfr_clear(t2);
4867 mpfr_clear(t3);
4868 mpfr_clear(t4);
4869 }
4870 else if ((mpfr_inf_p(right_real) || mpfr_inf_p(right_imag))
4871 && mpfr_number_p(left_real) && mpfr_number_p(left_imag))
4872 {
4873 mpfr_set_ui(t, mpfr_inf_p(rr) ? 1 : 0, GMP_RNDN);
4874 mpfr_copysign(t, t, rr, GMP_RNDN);
4875
4876 mpfr_t t2;
4877 mpfr_init_set_ui(t2, mpfr_inf_p(ri) ? 1 : 0, GMP_RNDN);
4878 mpfr_copysign(t2, t2, ri, GMP_RNDN);
4879
4880 mpfr_t t3;
4881 mpfr_init(t3);
4882 mpfr_mul(t3, left_real, t, GMP_RNDN);
4883
4884 mpfr_t t4;
4885 mpfr_init(t4);
4886 mpfr_mul(t4, left_imag, t2, GMP_RNDN);
4887
4888 mpfr_add(t3, t3, t4, GMP_RNDN);
4889 mpfr_set_ui(real, 0, GMP_RNDN);
4890 mpfr_mul(real, real, t3, GMP_RNDN);
4891
4892 mpfr_mul(t3, left_imag, t, GMP_RNDN);
4893 mpfr_mul(t4, left_real, t2, GMP_RNDN);
4894 mpfr_sub(t3, t3, t4, GMP_RNDN);
4895 mpfr_set_ui(imag, 0, GMP_RNDN);
4896 mpfr_mul(imag, imag, t3, GMP_RNDN);
4897
4898 mpfr_clear(t2);
4899 mpfr_clear(t3);
4900 mpfr_clear(t4);
4901 }
4902 }
4903
4904 mpfr_clear(denom);
4905 mpfr_clear(rr);
4906 mpfr_clear(ri);
4907 mpfr_clear(t);
4908 mpfr_clear(rra);
4909 mpfr_clear(ria);
4910 }
4911 break;
4912 case OPERATOR_MOD:
4913 return false;
4914 case OPERATOR_LSHIFT:
4915 case OPERATOR_RSHIFT:
4916 return false;
4917 default:
4918 gcc_unreachable();
4919 }
4920
4921 Type* type = left_type;
4922 if (type == NULL)
4923 type = right_type;
4924 else if (type != right_type && right_type != NULL)
4925 {
4926 if (type->is_abstract())
4927 type = right_type;
4928 else if (!right_type->is_abstract())
4929 {
4930 // This looks like a type error which should be diagnosed
4931 // elsewhere. Don't do anything here, to avoid an unhelpful
4932 // chain of error messages.
4933 return true;
4934 }
4935 }
4936
4937 if (type != NULL && !type->is_abstract())
4938 {
4939 if ((type != left_type
4940 && !Complex_expression::check_constant(left_real, left_imag,
4941 type, location))
4942 || (type != right_type
4943 && !Complex_expression::check_constant(right_real, right_imag,
4944 type, location))
4945 || !Complex_expression::check_constant(real, imag, type,
4946 location))
4947 {
4948 mpfr_set_ui(real, 0, GMP_RNDN);
4949 mpfr_set_ui(imag, 0, GMP_RNDN);
4950 }
4951 }
4952
4953 return true;
4954 }
4955
4956 // Lower a binary expression. We have to evaluate constant
4957 // expressions now, in order to implement Go's unlimited precision
4958 // constants.
4959
4960 Expression*
4961 Binary_expression::do_lower(Gogo*, Named_object*, int)
4962 {
4963 source_location location = this->location();
4964 Operator op = this->op_;
4965 Expression* left = this->left_;
4966 Expression* right = this->right_;
4967
4968 const bool is_comparison = (op == OPERATOR_EQEQ
4969 || op == OPERATOR_NOTEQ
4970 || op == OPERATOR_LT
4971 || op == OPERATOR_LE
4972 || op == OPERATOR_GT
4973 || op == OPERATOR_GE);
4974
4975 // Integer constant expressions.
4976 {
4977 mpz_t left_val;
4978 mpz_init(left_val);
4979 Type* left_type;
4980 mpz_t right_val;
4981 mpz_init(right_val);
4982 Type* right_type;
4983 if (left->integer_constant_value(false, left_val, &left_type)
4984 && right->integer_constant_value(false, right_val, &right_type))
4985 {
4986 Expression* ret = NULL;
4987 if (left_type != right_type
4988 && left_type != NULL
4989 && right_type != NULL
4990 && left_type->base() != right_type->base()
4991 && op != OPERATOR_LSHIFT
4992 && op != OPERATOR_RSHIFT)
4993 {
4994 // May be a type error--let it be diagnosed later.
4995 }
4996 else if (is_comparison)
4997 {
4998 bool b = Binary_expression::compare_integer(op, left_val,
4999 right_val);
5000 ret = Expression::make_cast(Type::lookup_bool_type(),
5001 Expression::make_boolean(b, location),
5002 location);
5003 }
5004 else
5005 {
5006 mpz_t val;
5007 mpz_init(val);
5008
5009 if (Binary_expression::eval_integer(op, left_type, left_val,
5010 right_type, right_val,
5011 location, val))
5012 {
5013 gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND);
5014 Type* type;
5015 if (op == OPERATOR_LSHIFT || op == OPERATOR_RSHIFT)
5016 type = left_type;
5017 else if (left_type == NULL)
5018 type = right_type;
5019 else if (right_type == NULL)
5020 type = left_type;
5021 else if (!left_type->is_abstract()
5022 && left_type->named_type() != NULL)
5023 type = left_type;
5024 else if (!right_type->is_abstract()
5025 && right_type->named_type() != NULL)
5026 type = right_type;
5027 else if (!left_type->is_abstract())
5028 type = left_type;
5029 else if (!right_type->is_abstract())
5030 type = right_type;
5031 else if (left_type->float_type() != NULL)
5032 type = left_type;
5033 else if (right_type->float_type() != NULL)
5034 type = right_type;
5035 else if (left_type->complex_type() != NULL)
5036 type = left_type;
5037 else if (right_type->complex_type() != NULL)
5038 type = right_type;
5039 else
5040 type = left_type;
5041 ret = Expression::make_integer(&val, type, location);
5042 }
5043
5044 mpz_clear(val);
5045 }
5046
5047 if (ret != NULL)
5048 {
5049 mpz_clear(right_val);
5050 mpz_clear(left_val);
5051 return ret;
5052 }
5053 }
5054 mpz_clear(right_val);
5055 mpz_clear(left_val);
5056 }
5057
5058 // Floating point constant expressions.
5059 {
5060 mpfr_t left_val;
5061 mpfr_init(left_val);
5062 Type* left_type;
5063 mpfr_t right_val;
5064 mpfr_init(right_val);
5065 Type* right_type;
5066 if (left->float_constant_value(left_val, &left_type)
5067 && right->float_constant_value(right_val, &right_type))
5068 {
5069 Expression* ret = NULL;
5070 if (left_type != right_type
5071 && left_type != NULL
5072 && right_type != NULL
5073 && left_type->base() != right_type->base()
5074 && op != OPERATOR_LSHIFT
5075 && op != OPERATOR_RSHIFT)
5076 {
5077 // May be a type error--let it be diagnosed later.
5078 }
5079 else if (is_comparison)
5080 {
5081 bool b = Binary_expression::compare_float(op,
5082 (left_type != NULL
5083 ? left_type
5084 : right_type),
5085 left_val, right_val);
5086 ret = Expression::make_boolean(b, location);
5087 }
5088 else
5089 {
5090 mpfr_t val;
5091 mpfr_init(val);
5092
5093 if (Binary_expression::eval_float(op, left_type, left_val,
5094 right_type, right_val, val,
5095 location))
5096 {
5097 gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND
5098 && op != OPERATOR_LSHIFT && op != OPERATOR_RSHIFT);
5099 Type* type;
5100 if (left_type == NULL)
5101 type = right_type;
5102 else if (right_type == NULL)
5103 type = left_type;
5104 else if (!left_type->is_abstract()
5105 && left_type->named_type() != NULL)
5106 type = left_type;
5107 else if (!right_type->is_abstract()
5108 && right_type->named_type() != NULL)
5109 type = right_type;
5110 else if (!left_type->is_abstract())
5111 type = left_type;
5112 else if (!right_type->is_abstract())
5113 type = right_type;
5114 else if (left_type->float_type() != NULL)
5115 type = left_type;
5116 else if (right_type->float_type() != NULL)
5117 type = right_type;
5118 else
5119 type = left_type;
5120 ret = Expression::make_float(&val, type, location);
5121 }
5122
5123 mpfr_clear(val);
5124 }
5125
5126 if (ret != NULL)
5127 {
5128 mpfr_clear(right_val);
5129 mpfr_clear(left_val);
5130 return ret;
5131 }
5132 }
5133 mpfr_clear(right_val);
5134 mpfr_clear(left_val);
5135 }
5136
5137 // Complex constant expressions.
5138 {
5139 mpfr_t left_real;
5140 mpfr_t left_imag;
5141 mpfr_init(left_real);
5142 mpfr_init(left_imag);
5143 Type* left_type;
5144
5145 mpfr_t right_real;
5146 mpfr_t right_imag;
5147 mpfr_init(right_real);
5148 mpfr_init(right_imag);
5149 Type* right_type;
5150
5151 if (left->complex_constant_value(left_real, left_imag, &left_type)
5152 && right->complex_constant_value(right_real, right_imag, &right_type))
5153 {
5154 Expression* ret = NULL;
5155 if (left_type != right_type
5156 && left_type != NULL
5157 && right_type != NULL
5158 && left_type->base() != right_type->base())
5159 {
5160 // May be a type error--let it be diagnosed later.
5161 }
5162 else if (is_comparison)
5163 {
5164 bool b = Binary_expression::compare_complex(op,
5165 (left_type != NULL
5166 ? left_type
5167 : right_type),
5168 left_real,
5169 left_imag,
5170 right_real,
5171 right_imag);
5172 ret = Expression::make_boolean(b, location);
5173 }
5174 else
5175 {
5176 mpfr_t real;
5177 mpfr_t imag;
5178 mpfr_init(real);
5179 mpfr_init(imag);
5180
5181 if (Binary_expression::eval_complex(op, left_type,
5182 left_real, left_imag,
5183 right_type,
5184 right_real, right_imag,
5185 real, imag,
5186 location))
5187 {
5188 gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND
5189 && op != OPERATOR_LSHIFT && op != OPERATOR_RSHIFT);
5190 Type* type;
5191 if (left_type == NULL)
5192 type = right_type;
5193 else if (right_type == NULL)
5194 type = left_type;
5195 else if (!left_type->is_abstract()
5196 && left_type->named_type() != NULL)
5197 type = left_type;
5198 else if (!right_type->is_abstract()
5199 && right_type->named_type() != NULL)
5200 type = right_type;
5201 else if (!left_type->is_abstract())
5202 type = left_type;
5203 else if (!right_type->is_abstract())
5204 type = right_type;
5205 else if (left_type->complex_type() != NULL)
5206 type = left_type;
5207 else if (right_type->complex_type() != NULL)
5208 type = right_type;
5209 else
5210 type = left_type;
5211 ret = Expression::make_complex(&real, &imag, type,
5212 location);
5213 }
5214 mpfr_clear(real);
5215 mpfr_clear(imag);
5216 }
5217
5218 if (ret != NULL)
5219 {
5220 mpfr_clear(left_real);
5221 mpfr_clear(left_imag);
5222 mpfr_clear(right_real);
5223 mpfr_clear(right_imag);
5224 return ret;
5225 }
5226 }
5227
5228 mpfr_clear(left_real);
5229 mpfr_clear(left_imag);
5230 mpfr_clear(right_real);
5231 mpfr_clear(right_imag);
5232 }
5233
5234 // String constant expressions.
5235 if (op == OPERATOR_PLUS
5236 && left->type()->is_string_type()
5237 && right->type()->is_string_type())
5238 {
5239 std::string left_string;
5240 std::string right_string;
5241 if (left->string_constant_value(&left_string)
5242 && right->string_constant_value(&right_string))
5243 return Expression::make_string(left_string + right_string, location);
5244 }
5245
5246 return this;
5247 }
5248
5249 // Return the integer constant value, if it has one.
5250
5251 bool
5252 Binary_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
5253 Type** ptype) const
5254 {
5255 mpz_t left_val;
5256 mpz_init(left_val);
5257 Type* left_type;
5258 if (!this->left_->integer_constant_value(iota_is_constant, left_val,
5259 &left_type))
5260 {
5261 mpz_clear(left_val);
5262 return false;
5263 }
5264
5265 mpz_t right_val;
5266 mpz_init(right_val);
5267 Type* right_type;
5268 if (!this->right_->integer_constant_value(iota_is_constant, right_val,
5269 &right_type))
5270 {
5271 mpz_clear(right_val);
5272 mpz_clear(left_val);
5273 return false;
5274 }
5275
5276 bool ret;
5277 if (left_type != right_type
5278 && left_type != NULL
5279 && right_type != NULL
5280 && left_type->base() != right_type->base()
5281 && this->op_ != OPERATOR_RSHIFT
5282 && this->op_ != OPERATOR_LSHIFT)
5283 ret = false;
5284 else
5285 ret = Binary_expression::eval_integer(this->op_, left_type, left_val,
5286 right_type, right_val,
5287 this->location(), val);
5288
5289 mpz_clear(right_val);
5290 mpz_clear(left_val);
5291
5292 if (ret)
5293 *ptype = left_type;
5294
5295 return ret;
5296 }
5297
5298 // Return the floating point constant value, if it has one.
5299
5300 bool
5301 Binary_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
5302 {
5303 mpfr_t left_val;
5304 mpfr_init(left_val);
5305 Type* left_type;
5306 if (!this->left_->float_constant_value(left_val, &left_type))
5307 {
5308 mpfr_clear(left_val);
5309 return false;
5310 }
5311
5312 mpfr_t right_val;
5313 mpfr_init(right_val);
5314 Type* right_type;
5315 if (!this->right_->float_constant_value(right_val, &right_type))
5316 {
5317 mpfr_clear(right_val);
5318 mpfr_clear(left_val);
5319 return false;
5320 }
5321
5322 bool ret;
5323 if (left_type != right_type
5324 && left_type != NULL
5325 && right_type != NULL
5326 && left_type->base() != right_type->base())
5327 ret = false;
5328 else
5329 ret = Binary_expression::eval_float(this->op_, left_type, left_val,
5330 right_type, right_val,
5331 val, this->location());
5332
5333 mpfr_clear(left_val);
5334 mpfr_clear(right_val);
5335
5336 if (ret)
5337 *ptype = left_type;
5338
5339 return ret;
5340 }
5341
5342 // Return the complex constant value, if it has one.
5343
5344 bool
5345 Binary_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
5346 Type** ptype) const
5347 {
5348 mpfr_t left_real;
5349 mpfr_t left_imag;
5350 mpfr_init(left_real);
5351 mpfr_init(left_imag);
5352 Type* left_type;
5353 if (!this->left_->complex_constant_value(left_real, left_imag, &left_type))
5354 {
5355 mpfr_clear(left_real);
5356 mpfr_clear(left_imag);
5357 return false;
5358 }
5359
5360 mpfr_t right_real;
5361 mpfr_t right_imag;
5362 mpfr_init(right_real);
5363 mpfr_init(right_imag);
5364 Type* right_type;
5365 if (!this->right_->complex_constant_value(right_real, right_imag,
5366 &right_type))
5367 {
5368 mpfr_clear(left_real);
5369 mpfr_clear(left_imag);
5370 mpfr_clear(right_real);
5371 mpfr_clear(right_imag);
5372 return false;
5373 }
5374
5375 bool ret;
5376 if (left_type != right_type
5377 && left_type != NULL
5378 && right_type != NULL
5379 && left_type->base() != right_type->base())
5380 ret = false;
5381 else
5382 ret = Binary_expression::eval_complex(this->op_, left_type,
5383 left_real, left_imag,
5384 right_type,
5385 right_real, right_imag,
5386 real, imag,
5387 this->location());
5388 mpfr_clear(left_real);
5389 mpfr_clear(left_imag);
5390 mpfr_clear(right_real);
5391 mpfr_clear(right_imag);
5392
5393 if (ret)
5394 *ptype = left_type;
5395
5396 return ret;
5397 }
5398
5399 // Note that the value is being discarded.
5400
5401 void
5402 Binary_expression::do_discarding_value()
5403 {
5404 if (this->op_ == OPERATOR_OROR || this->op_ == OPERATOR_ANDAND)
5405 this->right_->discarding_value();
5406 else
5407 this->warn_about_unused_value();
5408 }
5409
5410 // Get type.
5411
5412 Type*
5413 Binary_expression::do_type()
5414 {
5415 switch (this->op_)
5416 {
5417 case OPERATOR_OROR:
5418 case OPERATOR_ANDAND:
5419 case OPERATOR_EQEQ:
5420 case OPERATOR_NOTEQ:
5421 case OPERATOR_LT:
5422 case OPERATOR_LE:
5423 case OPERATOR_GT:
5424 case OPERATOR_GE:
5425 return Type::lookup_bool_type();
5426
5427 case OPERATOR_PLUS:
5428 case OPERATOR_MINUS:
5429 case OPERATOR_OR:
5430 case OPERATOR_XOR:
5431 case OPERATOR_MULT:
5432 case OPERATOR_DIV:
5433 case OPERATOR_MOD:
5434 case OPERATOR_AND:
5435 case OPERATOR_BITCLEAR:
5436 {
5437 Type* left_type = this->left_->type();
5438 Type* right_type = this->right_->type();
5439 if (left_type->is_error_type())
5440 return left_type;
5441 else if (right_type->is_error_type())
5442 return right_type;
5443 else if (!left_type->is_abstract() && left_type->named_type() != NULL)
5444 return left_type;
5445 else if (!right_type->is_abstract() && right_type->named_type() != NULL)
5446 return right_type;
5447 else if (!left_type->is_abstract())
5448 return left_type;
5449 else if (!right_type->is_abstract())
5450 return right_type;
5451 else if (left_type->complex_type() != NULL)
5452 return left_type;
5453 else if (right_type->complex_type() != NULL)
5454 return right_type;
5455 else if (left_type->float_type() != NULL)
5456 return left_type;
5457 else if (right_type->float_type() != NULL)
5458 return right_type;
5459 else
5460 return left_type;
5461 }
5462
5463 case OPERATOR_LSHIFT:
5464 case OPERATOR_RSHIFT:
5465 return this->left_->type();
5466
5467 default:
5468 gcc_unreachable();
5469 }
5470 }
5471
5472 // Set type for a binary expression.
5473
5474 void
5475 Binary_expression::do_determine_type(const Type_context* context)
5476 {
5477 Type* tleft = this->left_->type();
5478 Type* tright = this->right_->type();
5479
5480 // Both sides should have the same type, except for the shift
5481 // operations. For a comparison, we should ignore the incoming
5482 // type.
5483
5484 bool is_shift_op = (this->op_ == OPERATOR_LSHIFT
5485 || this->op_ == OPERATOR_RSHIFT);
5486
5487 bool is_comparison = (this->op_ == OPERATOR_EQEQ
5488 || this->op_ == OPERATOR_NOTEQ
5489 || this->op_ == OPERATOR_LT
5490 || this->op_ == OPERATOR_LE
5491 || this->op_ == OPERATOR_GT
5492 || this->op_ == OPERATOR_GE);
5493
5494 Type_context subcontext(*context);
5495
5496 if (is_comparison)
5497 {
5498 // In a comparison, the context does not determine the types of
5499 // the operands.
5500 subcontext.type = NULL;
5501 }
5502
5503 // Set the context for the left hand operand.
5504 if (is_shift_op)
5505 {
5506 // The right hand operand plays no role in determining the type
5507 // of the left hand operand. A shift of an abstract integer in
5508 // a string context gets special treatment, which may be a
5509 // language bug.
5510 if (subcontext.type != NULL
5511 && subcontext.type->is_string_type()
5512 && tleft->is_abstract())
5513 error_at(this->location(), "shift of non-integer operand");
5514 }
5515 else if (!tleft->is_abstract())
5516 subcontext.type = tleft;
5517 else if (!tright->is_abstract())
5518 subcontext.type = tright;
5519 else if (subcontext.type == NULL)
5520 {
5521 if ((tleft->integer_type() != NULL && tright->integer_type() != NULL)
5522 || (tleft->float_type() != NULL && tright->float_type() != NULL)
5523 || (tleft->complex_type() != NULL && tright->complex_type() != NULL))
5524 {
5525 // Both sides have an abstract integer, abstract float, or
5526 // abstract complex type. Just let CONTEXT determine
5527 // whether they may remain abstract or not.
5528 }
5529 else if (tleft->complex_type() != NULL)
5530 subcontext.type = tleft;
5531 else if (tright->complex_type() != NULL)
5532 subcontext.type = tright;
5533 else if (tleft->float_type() != NULL)
5534 subcontext.type = tleft;
5535 else if (tright->float_type() != NULL)
5536 subcontext.type = tright;
5537 else
5538 subcontext.type = tleft;
5539 }
5540
5541 this->left_->determine_type(&subcontext);
5542
5543 // The context for the right hand operand is the same as for the
5544 // left hand operand, except for a shift operator.
5545 if (is_shift_op)
5546 {
5547 subcontext.type = Type::lookup_integer_type("uint");
5548 subcontext.may_be_abstract = false;
5549 }
5550
5551 this->right_->determine_type(&subcontext);
5552 }
5553
5554 // Report an error if the binary operator OP does not support TYPE.
5555 // Return whether the operation is OK. This should not be used for
5556 // shift.
5557
5558 bool
5559 Binary_expression::check_operator_type(Operator op, Type* type,
5560 source_location location)
5561 {
5562 switch (op)
5563 {
5564 case OPERATOR_OROR:
5565 case OPERATOR_ANDAND:
5566 if (!type->is_boolean_type())
5567 {
5568 error_at(location, "expected boolean type");
5569 return false;
5570 }
5571 break;
5572
5573 case OPERATOR_EQEQ:
5574 case OPERATOR_NOTEQ:
5575 if (type->integer_type() == NULL
5576 && type->float_type() == NULL
5577 && type->complex_type() == NULL
5578 && !type->is_string_type()
5579 && type->points_to() == NULL
5580 && !type->is_nil_type()
5581 && !type->is_boolean_type()
5582 && type->interface_type() == NULL
5583 && (type->array_type() == NULL
5584 || type->array_type()->length() != NULL)
5585 && type->map_type() == NULL
5586 && type->channel_type() == NULL
5587 && type->function_type() == NULL)
5588 {
5589 error_at(location,
5590 ("expected integer, floating, complex, string, pointer, "
5591 "boolean, interface, slice, map, channel, "
5592 "or function type"));
5593 return false;
5594 }
5595 break;
5596
5597 case OPERATOR_LT:
5598 case OPERATOR_LE:
5599 case OPERATOR_GT:
5600 case OPERATOR_GE:
5601 if (type->integer_type() == NULL
5602 && type->float_type() == NULL
5603 && !type->is_string_type())
5604 {
5605 error_at(location, "expected integer, floating, or string type");
5606 return false;
5607 }
5608 break;
5609
5610 case OPERATOR_PLUS:
5611 case OPERATOR_PLUSEQ:
5612 if (type->integer_type() == NULL
5613 && type->float_type() == NULL
5614 && type->complex_type() == NULL
5615 && !type->is_string_type())
5616 {
5617 error_at(location,
5618 "expected integer, floating, complex, or string type");
5619 return false;
5620 }
5621 break;
5622
5623 case OPERATOR_MINUS:
5624 case OPERATOR_MINUSEQ:
5625 case OPERATOR_MULT:
5626 case OPERATOR_MULTEQ:
5627 case OPERATOR_DIV:
5628 case OPERATOR_DIVEQ:
5629 if (type->integer_type() == NULL
5630 && type->float_type() == NULL
5631 && type->complex_type() == NULL)
5632 {
5633 error_at(location, "expected integer, floating, or complex type");
5634 return false;
5635 }
5636 break;
5637
5638 case OPERATOR_MOD:
5639 case OPERATOR_MODEQ:
5640 case OPERATOR_OR:
5641 case OPERATOR_OREQ:
5642 case OPERATOR_AND:
5643 case OPERATOR_ANDEQ:
5644 case OPERATOR_XOR:
5645 case OPERATOR_XOREQ:
5646 case OPERATOR_BITCLEAR:
5647 case OPERATOR_BITCLEAREQ:
5648 if (type->integer_type() == NULL)
5649 {
5650 error_at(location, "expected integer type");
5651 return false;
5652 }
5653 break;
5654
5655 default:
5656 gcc_unreachable();
5657 }
5658
5659 return true;
5660 }
5661
5662 // Check types.
5663
5664 void
5665 Binary_expression::do_check_types(Gogo*)
5666 {
5667 Type* left_type = this->left_->type();
5668 Type* right_type = this->right_->type();
5669 if (left_type->is_error_type() || right_type->is_error_type())
5670 {
5671 this->set_is_error();
5672 return;
5673 }
5674
5675 if (this->op_ == OPERATOR_EQEQ
5676 || this->op_ == OPERATOR_NOTEQ
5677 || this->op_ == OPERATOR_LT
5678 || this->op_ == OPERATOR_LE
5679 || this->op_ == OPERATOR_GT
5680 || this->op_ == OPERATOR_GE)
5681 {
5682 if (!Type::are_assignable(left_type, right_type, NULL)
5683 && !Type::are_assignable(right_type, left_type, NULL))
5684 {
5685 this->report_error(_("incompatible types in binary expression"));
5686 return;
5687 }
5688 if (!Binary_expression::check_operator_type(this->op_, left_type,
5689 this->location())
5690 || !Binary_expression::check_operator_type(this->op_, right_type,
5691 this->location()))
5692 {
5693 this->set_is_error();
5694 return;
5695 }
5696 }
5697 else if (this->op_ != OPERATOR_LSHIFT && this->op_ != OPERATOR_RSHIFT)
5698 {
5699 if (!Type::are_compatible_for_binop(left_type, right_type))
5700 {
5701 this->report_error(_("incompatible types in binary expression"));
5702 return;
5703 }
5704 if (!Binary_expression::check_operator_type(this->op_, left_type,
5705 this->location()))
5706 {
5707 this->set_is_error();
5708 return;
5709 }
5710 }
5711 else
5712 {
5713 if (left_type->integer_type() == NULL)
5714 this->report_error(_("shift of non-integer operand"));
5715
5716 if (!right_type->is_abstract()
5717 && (right_type->integer_type() == NULL
5718 || !right_type->integer_type()->is_unsigned()))
5719 this->report_error(_("shift count not unsigned integer"));
5720 else
5721 {
5722 mpz_t val;
5723 mpz_init(val);
5724 Type* type;
5725 if (this->right_->integer_constant_value(true, val, &type))
5726 {
5727 if (mpz_sgn(val) < 0)
5728 this->report_error(_("negative shift count"));
5729 }
5730 mpz_clear(val);
5731 }
5732 }
5733 }
5734
5735 // Get a tree for a binary expression.
5736
5737 tree
5738 Binary_expression::do_get_tree(Translate_context* context)
5739 {
5740 tree left = this->left_->get_tree(context);
5741 tree right = this->right_->get_tree(context);
5742
5743 if (left == error_mark_node || right == error_mark_node)
5744 return error_mark_node;
5745
5746 enum tree_code code;
5747 bool use_left_type = true;
5748 bool is_shift_op = false;
5749 switch (this->op_)
5750 {
5751 case OPERATOR_EQEQ:
5752 case OPERATOR_NOTEQ:
5753 case OPERATOR_LT:
5754 case OPERATOR_LE:
5755 case OPERATOR_GT:
5756 case OPERATOR_GE:
5757 return Expression::comparison_tree(context, this->op_,
5758 this->left_->type(), left,
5759 this->right_->type(), right,
5760 this->location());
5761
5762 case OPERATOR_OROR:
5763 code = TRUTH_ORIF_EXPR;
5764 use_left_type = false;
5765 break;
5766 case OPERATOR_ANDAND:
5767 code = TRUTH_ANDIF_EXPR;
5768 use_left_type = false;
5769 break;
5770 case OPERATOR_PLUS:
5771 code = PLUS_EXPR;
5772 break;
5773 case OPERATOR_MINUS:
5774 code = MINUS_EXPR;
5775 break;
5776 case OPERATOR_OR:
5777 code = BIT_IOR_EXPR;
5778 break;
5779 case OPERATOR_XOR:
5780 code = BIT_XOR_EXPR;
5781 break;
5782 case OPERATOR_MULT:
5783 code = MULT_EXPR;
5784 break;
5785 case OPERATOR_DIV:
5786 {
5787 Type *t = this->left_->type();
5788 if (t->float_type() != NULL || t->complex_type() != NULL)
5789 code = RDIV_EXPR;
5790 else
5791 code = TRUNC_DIV_EXPR;
5792 }
5793 break;
5794 case OPERATOR_MOD:
5795 code = TRUNC_MOD_EXPR;
5796 break;
5797 case OPERATOR_LSHIFT:
5798 code = LSHIFT_EXPR;
5799 is_shift_op = true;
5800 break;
5801 case OPERATOR_RSHIFT:
5802 code = RSHIFT_EXPR;
5803 is_shift_op = true;
5804 break;
5805 case OPERATOR_AND:
5806 code = BIT_AND_EXPR;
5807 break;
5808 case OPERATOR_BITCLEAR:
5809 right = fold_build1(BIT_NOT_EXPR, TREE_TYPE(right), right);
5810 code = BIT_AND_EXPR;
5811 break;
5812 default:
5813 gcc_unreachable();
5814 }
5815
5816 tree type = use_left_type ? TREE_TYPE(left) : TREE_TYPE(right);
5817
5818 if (this->left_->type()->is_string_type())
5819 {
5820 gcc_assert(this->op_ == OPERATOR_PLUS);
5821 tree string_type = Type::make_string_type()->get_tree(context->gogo());
5822 static tree string_plus_decl;
5823 return Gogo::call_builtin(&string_plus_decl,
5824 this->location(),
5825 "__go_string_plus",
5826 2,
5827 string_type,
5828 string_type,
5829 left,
5830 string_type,
5831 right);
5832 }
5833
5834 tree compute_type = excess_precision_type(type);
5835 if (compute_type != NULL_TREE)
5836 {
5837 left = ::convert(compute_type, left);
5838 right = ::convert(compute_type, right);
5839 }
5840
5841 tree eval_saved = NULL_TREE;
5842 if (is_shift_op)
5843 {
5844 if (!DECL_P(left))
5845 left = save_expr(left);
5846 if (!DECL_P(right))
5847 right = save_expr(right);
5848 // Make sure the values are evaluated.
5849 eval_saved = fold_build2_loc(this->location(), COMPOUND_EXPR,
5850 void_type_node, left, right);
5851 }
5852
5853 tree ret = fold_build2_loc(this->location(),
5854 code,
5855 compute_type != NULL_TREE ? compute_type : type,
5856 left, right);
5857
5858 if (compute_type != NULL_TREE)
5859 ret = ::convert(type, ret);
5860
5861 // In Go, a shift larger than the size of the type is well-defined.
5862 // This is not true in GENERIC, so we need to insert a conditional.
5863 if (is_shift_op)
5864 {
5865 gcc_assert(INTEGRAL_TYPE_P(TREE_TYPE(left)));
5866 gcc_assert(this->left_->type()->integer_type() != NULL);
5867 int bits = TYPE_PRECISION(TREE_TYPE(left));
5868
5869 tree compare = fold_build2(LT_EXPR, boolean_type_node, right,
5870 build_int_cst_type(TREE_TYPE(right), bits));
5871
5872 tree overflow_result = fold_convert_loc(this->location(),
5873 TREE_TYPE(left),
5874 integer_zero_node);
5875 if (this->op_ == OPERATOR_RSHIFT
5876 && !this->left_->type()->integer_type()->is_unsigned())
5877 {
5878 tree neg = fold_build2_loc(this->location(), LT_EXPR,
5879 boolean_type_node, left,
5880 fold_convert_loc(this->location(),
5881 TREE_TYPE(left),
5882 integer_zero_node));
5883 tree neg_one = fold_build2_loc(this->location(),
5884 MINUS_EXPR, TREE_TYPE(left),
5885 fold_convert_loc(this->location(),
5886 TREE_TYPE(left),
5887 integer_zero_node),
5888 fold_convert_loc(this->location(),
5889 TREE_TYPE(left),
5890 integer_one_node));
5891 overflow_result = fold_build3_loc(this->location(), COND_EXPR,
5892 TREE_TYPE(left), neg, neg_one,
5893 overflow_result);
5894 }
5895
5896 ret = fold_build3_loc(this->location(), COND_EXPR, TREE_TYPE(left),
5897 compare, ret, overflow_result);
5898
5899 ret = fold_build2_loc(this->location(), COMPOUND_EXPR,
5900 TREE_TYPE(ret), eval_saved, ret);
5901 }
5902
5903 return ret;
5904 }
5905
5906 // Export a binary expression.
5907
5908 void
5909 Binary_expression::do_export(Export* exp) const
5910 {
5911 exp->write_c_string("(");
5912 this->left_->export_expression(exp);
5913 switch (this->op_)
5914 {
5915 case OPERATOR_OROR:
5916 exp->write_c_string(" || ");
5917 break;
5918 case OPERATOR_ANDAND:
5919 exp->write_c_string(" && ");
5920 break;
5921 case OPERATOR_EQEQ:
5922 exp->write_c_string(" == ");
5923 break;
5924 case OPERATOR_NOTEQ:
5925 exp->write_c_string(" != ");
5926 break;
5927 case OPERATOR_LT:
5928 exp->write_c_string(" < ");
5929 break;
5930 case OPERATOR_LE:
5931 exp->write_c_string(" <= ");
5932 break;
5933 case OPERATOR_GT:
5934 exp->write_c_string(" > ");
5935 break;
5936 case OPERATOR_GE:
5937 exp->write_c_string(" >= ");
5938 break;
5939 case OPERATOR_PLUS:
5940 exp->write_c_string(" + ");
5941 break;
5942 case OPERATOR_MINUS:
5943 exp->write_c_string(" - ");
5944 break;
5945 case OPERATOR_OR:
5946 exp->write_c_string(" | ");
5947 break;
5948 case OPERATOR_XOR:
5949 exp->write_c_string(" ^ ");
5950 break;
5951 case OPERATOR_MULT:
5952 exp->write_c_string(" * ");
5953 break;
5954 case OPERATOR_DIV:
5955 exp->write_c_string(" / ");
5956 break;
5957 case OPERATOR_MOD:
5958 exp->write_c_string(" % ");
5959 break;
5960 case OPERATOR_LSHIFT:
5961 exp->write_c_string(" << ");
5962 break;
5963 case OPERATOR_RSHIFT:
5964 exp->write_c_string(" >> ");
5965 break;
5966 case OPERATOR_AND:
5967 exp->write_c_string(" & ");
5968 break;
5969 case OPERATOR_BITCLEAR:
5970 exp->write_c_string(" &^ ");
5971 break;
5972 default:
5973 gcc_unreachable();
5974 }
5975 this->right_->export_expression(exp);
5976 exp->write_c_string(")");
5977 }
5978
5979 // Import a binary expression.
5980
5981 Expression*
5982 Binary_expression::do_import(Import* imp)
5983 {
5984 imp->require_c_string("(");
5985
5986 Expression* left = Expression::import_expression(imp);
5987
5988 Operator op;
5989 if (imp->match_c_string(" || "))
5990 {
5991 op = OPERATOR_OROR;
5992 imp->advance(4);
5993 }
5994 else if (imp->match_c_string(" && "))
5995 {
5996 op = OPERATOR_ANDAND;
5997 imp->advance(4);
5998 }
5999 else if (imp->match_c_string(" == "))
6000 {
6001 op = OPERATOR_EQEQ;
6002 imp->advance(4);
6003 }
6004 else if (imp->match_c_string(" != "))
6005 {
6006 op = OPERATOR_NOTEQ;
6007 imp->advance(4);
6008 }
6009 else if (imp->match_c_string(" < "))
6010 {
6011 op = OPERATOR_LT;
6012 imp->advance(3);
6013 }
6014 else if (imp->match_c_string(" <= "))
6015 {
6016 op = OPERATOR_LE;
6017 imp->advance(4);
6018 }
6019 else if (imp->match_c_string(" > "))
6020 {
6021 op = OPERATOR_GT;
6022 imp->advance(3);
6023 }
6024 else if (imp->match_c_string(" >= "))
6025 {
6026 op = OPERATOR_GE;
6027 imp->advance(4);
6028 }
6029 else if (imp->match_c_string(" + "))
6030 {
6031 op = OPERATOR_PLUS;
6032 imp->advance(3);
6033 }
6034 else if (imp->match_c_string(" - "))
6035 {
6036 op = OPERATOR_MINUS;
6037 imp->advance(3);
6038 }
6039 else if (imp->match_c_string(" | "))
6040 {
6041 op = OPERATOR_OR;
6042 imp->advance(3);
6043 }
6044 else if (imp->match_c_string(" ^ "))
6045 {
6046 op = OPERATOR_XOR;
6047 imp->advance(3);
6048 }
6049 else if (imp->match_c_string(" * "))
6050 {
6051 op = OPERATOR_MULT;
6052 imp->advance(3);
6053 }
6054 else if (imp->match_c_string(" / "))
6055 {
6056 op = OPERATOR_DIV;
6057 imp->advance(3);
6058 }
6059 else if (imp->match_c_string(" % "))
6060 {
6061 op = OPERATOR_MOD;
6062 imp->advance(3);
6063 }
6064 else if (imp->match_c_string(" << "))
6065 {
6066 op = OPERATOR_LSHIFT;
6067 imp->advance(4);
6068 }
6069 else if (imp->match_c_string(" >> "))
6070 {
6071 op = OPERATOR_RSHIFT;
6072 imp->advance(4);
6073 }
6074 else if (imp->match_c_string(" & "))
6075 {
6076 op = OPERATOR_AND;
6077 imp->advance(3);
6078 }
6079 else if (imp->match_c_string(" &^ "))
6080 {
6081 op = OPERATOR_BITCLEAR;
6082 imp->advance(4);
6083 }
6084 else
6085 {
6086 error_at(imp->location(), "unrecognized binary operator");
6087 return Expression::make_error(imp->location());
6088 }
6089
6090 Expression* right = Expression::import_expression(imp);
6091
6092 imp->require_c_string(")");
6093
6094 return Expression::make_binary(op, left, right, imp->location());
6095 }
6096
6097 // Make a binary expression.
6098
6099 Expression*
6100 Expression::make_binary(Operator op, Expression* left, Expression* right,
6101 source_location location)
6102 {
6103 return new Binary_expression(op, left, right, location);
6104 }
6105
6106 // Implement a comparison.
6107
6108 tree
6109 Expression::comparison_tree(Translate_context* context, Operator op,
6110 Type* left_type, tree left_tree,
6111 Type* right_type, tree right_tree,
6112 source_location location)
6113 {
6114 enum tree_code code;
6115 switch (op)
6116 {
6117 case OPERATOR_EQEQ:
6118 code = EQ_EXPR;
6119 break;
6120 case OPERATOR_NOTEQ:
6121 code = NE_EXPR;
6122 break;
6123 case OPERATOR_LT:
6124 code = LT_EXPR;
6125 break;
6126 case OPERATOR_LE:
6127 code = LE_EXPR;
6128 break;
6129 case OPERATOR_GT:
6130 code = GT_EXPR;
6131 break;
6132 case OPERATOR_GE:
6133 code = GE_EXPR;
6134 break;
6135 default:
6136 gcc_unreachable();
6137 }
6138
6139 if (left_type->is_string_type() && right_type->is_string_type())
6140 {
6141 tree string_type = Type::make_string_type()->get_tree(context->gogo());
6142 static tree string_compare_decl;
6143 left_tree = Gogo::call_builtin(&string_compare_decl,
6144 location,
6145 "__go_strcmp",
6146 2,
6147 integer_type_node,
6148 string_type,
6149 left_tree,
6150 string_type,
6151 right_tree);
6152 right_tree = build_int_cst_type(integer_type_node, 0);
6153 }
6154 else if ((left_type->interface_type() != NULL
6155 && right_type->interface_type() == NULL
6156 && !right_type->is_nil_type())
6157 || (left_type->interface_type() == NULL
6158 && !left_type->is_nil_type()
6159 && right_type->interface_type() != NULL))
6160 {
6161 // Comparing an interface value to a non-interface value.
6162 if (left_type->interface_type() == NULL)
6163 {
6164 std::swap(left_type, right_type);
6165 std::swap(left_tree, right_tree);
6166 }
6167
6168 // The right operand is not an interface. We need to take its
6169 // address if it is not a pointer.
6170 tree make_tmp;
6171 tree arg;
6172 if (right_type->points_to() != NULL)
6173 {
6174 make_tmp = NULL_TREE;
6175 arg = right_tree;
6176 }
6177 else if (TREE_ADDRESSABLE(TREE_TYPE(right_tree)) || DECL_P(right_tree))
6178 {
6179 make_tmp = NULL_TREE;
6180 arg = build_fold_addr_expr_loc(location, right_tree);
6181 if (DECL_P(right_tree))
6182 TREE_ADDRESSABLE(right_tree) = 1;
6183 }
6184 else
6185 {
6186 tree tmp = create_tmp_var(TREE_TYPE(right_tree),
6187 get_name(right_tree));
6188 DECL_IGNORED_P(tmp) = 0;
6189 DECL_INITIAL(tmp) = right_tree;
6190 TREE_ADDRESSABLE(tmp) = 1;
6191 make_tmp = build1(DECL_EXPR, void_type_node, tmp);
6192 SET_EXPR_LOCATION(make_tmp, location);
6193 arg = build_fold_addr_expr_loc(location, tmp);
6194 }
6195 arg = fold_convert_loc(location, ptr_type_node, arg);
6196
6197 tree descriptor = right_type->type_descriptor_pointer(context->gogo());
6198
6199 if (left_type->interface_type()->is_empty())
6200 {
6201 static tree empty_interface_value_compare_decl;
6202 left_tree = Gogo::call_builtin(&empty_interface_value_compare_decl,
6203 location,
6204 "__go_empty_interface_value_compare",
6205 3,
6206 integer_type_node,
6207 TREE_TYPE(left_tree),
6208 left_tree,
6209 TREE_TYPE(descriptor),
6210 descriptor,
6211 ptr_type_node,
6212 arg);
6213 if (left_tree == error_mark_node)
6214 return error_mark_node;
6215 // This can panic if the type is not comparable.
6216 TREE_NOTHROW(empty_interface_value_compare_decl) = 0;
6217 }
6218 else
6219 {
6220 static tree interface_value_compare_decl;
6221 left_tree = Gogo::call_builtin(&interface_value_compare_decl,
6222 location,
6223 "__go_interface_value_compare",
6224 3,
6225 integer_type_node,
6226 TREE_TYPE(left_tree),
6227 left_tree,
6228 TREE_TYPE(descriptor),
6229 descriptor,
6230 ptr_type_node,
6231 arg);
6232 if (left_tree == error_mark_node)
6233 return error_mark_node;
6234 // This can panic if the type is not comparable.
6235 TREE_NOTHROW(interface_value_compare_decl) = 0;
6236 }
6237 right_tree = build_int_cst_type(integer_type_node, 0);
6238
6239 if (make_tmp != NULL_TREE)
6240 left_tree = build2(COMPOUND_EXPR, TREE_TYPE(left_tree), make_tmp,
6241 left_tree);
6242 }
6243 else if (left_type->interface_type() != NULL
6244 && right_type->interface_type() != NULL)
6245 {
6246 if (left_type->interface_type()->is_empty())
6247 {
6248 gcc_assert(right_type->interface_type()->is_empty());
6249 static tree empty_interface_compare_decl;
6250 left_tree = Gogo::call_builtin(&empty_interface_compare_decl,
6251 location,
6252 "__go_empty_interface_compare",
6253 2,
6254 integer_type_node,
6255 TREE_TYPE(left_tree),
6256 left_tree,
6257 TREE_TYPE(right_tree),
6258 right_tree);
6259 if (left_tree == error_mark_node)
6260 return error_mark_node;
6261 // This can panic if the type is uncomparable.
6262 TREE_NOTHROW(empty_interface_compare_decl) = 0;
6263 }
6264 else
6265 {
6266 gcc_assert(!right_type->interface_type()->is_empty());
6267 static tree interface_compare_decl;
6268 left_tree = Gogo::call_builtin(&interface_compare_decl,
6269 location,
6270 "__go_interface_compare",
6271 2,
6272 integer_type_node,
6273 TREE_TYPE(left_tree),
6274 left_tree,
6275 TREE_TYPE(right_tree),
6276 right_tree);
6277 if (left_tree == error_mark_node)
6278 return error_mark_node;
6279 // This can panic if the type is uncomparable.
6280 TREE_NOTHROW(interface_compare_decl) = 0;
6281 }
6282 right_tree = build_int_cst_type(integer_type_node, 0);
6283 }
6284
6285 if (left_type->is_nil_type()
6286 && (op == OPERATOR_EQEQ || op == OPERATOR_NOTEQ))
6287 {
6288 std::swap(left_type, right_type);
6289 std::swap(left_tree, right_tree);
6290 }
6291
6292 if (right_type->is_nil_type())
6293 {
6294 if (left_type->array_type() != NULL
6295 && left_type->array_type()->length() == NULL)
6296 {
6297 Array_type* at = left_type->array_type();
6298 left_tree = at->value_pointer_tree(context->gogo(), left_tree);
6299 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
6300 }
6301 else if (left_type->interface_type() != NULL)
6302 {
6303 // An interface is nil if the first field is nil.
6304 tree left_type_tree = TREE_TYPE(left_tree);
6305 gcc_assert(TREE_CODE(left_type_tree) == RECORD_TYPE);
6306 tree field = TYPE_FIELDS(left_type_tree);
6307 left_tree = build3(COMPONENT_REF, TREE_TYPE(field), left_tree,
6308 field, NULL_TREE);
6309 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
6310 }
6311 else
6312 {
6313 gcc_assert(POINTER_TYPE_P(TREE_TYPE(left_tree)));
6314 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
6315 }
6316 }
6317
6318 if (left_tree == error_mark_node || right_tree == error_mark_node)
6319 return error_mark_node;
6320
6321 tree ret = fold_build2(code, boolean_type_node, left_tree, right_tree);
6322 if (CAN_HAVE_LOCATION_P(ret))
6323 SET_EXPR_LOCATION(ret, location);
6324 return ret;
6325 }
6326
6327 // Class Bound_method_expression.
6328
6329 // Traversal.
6330
6331 int
6332 Bound_method_expression::do_traverse(Traverse* traverse)
6333 {
6334 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT)
6335 return TRAVERSE_EXIT;
6336 return Expression::traverse(&this->method_, traverse);
6337 }
6338
6339 // Return the type of a bound method expression. The type of this
6340 // object is really the type of the method with no receiver. We
6341 // should be able to get away with just returning the type of the
6342 // method.
6343
6344 Type*
6345 Bound_method_expression::do_type()
6346 {
6347 return this->method_->type();
6348 }
6349
6350 // Determine the types of a method expression.
6351
6352 void
6353 Bound_method_expression::do_determine_type(const Type_context*)
6354 {
6355 this->method_->determine_type_no_context();
6356 Type* mtype = this->method_->type();
6357 Function_type* fntype = mtype == NULL ? NULL : mtype->function_type();
6358 if (fntype == NULL || !fntype->is_method())
6359 this->expr_->determine_type_no_context();
6360 else
6361 {
6362 Type_context subcontext(fntype->receiver()->type(), false);
6363 this->expr_->determine_type(&subcontext);
6364 }
6365 }
6366
6367 // Check the types of a method expression.
6368
6369 void
6370 Bound_method_expression::do_check_types(Gogo*)
6371 {
6372 Type* type = this->method_->type()->deref();
6373 if (type == NULL
6374 || type->function_type() == NULL
6375 || !type->function_type()->is_method())
6376 this->report_error(_("object is not a method"));
6377 else
6378 {
6379 Type* rtype = type->function_type()->receiver()->type()->deref();
6380 Type* etype = (this->expr_type_ != NULL
6381 ? this->expr_type_
6382 : this->expr_->type());
6383 etype = etype->deref();
6384 if (!Type::are_identical(rtype, etype, true, NULL))
6385 this->report_error(_("method type does not match object type"));
6386 }
6387 }
6388
6389 // Get the tree for a method expression. There is no standard tree
6390 // representation for this. The only places it may currently be used
6391 // are in a Call_expression or a Go_statement, which will take it
6392 // apart directly. So this has nothing to do at present.
6393
6394 tree
6395 Bound_method_expression::do_get_tree(Translate_context*)
6396 {
6397 gcc_unreachable();
6398 }
6399
6400 // Make a method expression.
6401
6402 Bound_method_expression*
6403 Expression::make_bound_method(Expression* expr, Expression* method,
6404 source_location location)
6405 {
6406 return new Bound_method_expression(expr, method, location);
6407 }
6408
6409 // Class Builtin_call_expression. This is used for a call to a
6410 // builtin function.
6411
6412 class Builtin_call_expression : public Call_expression
6413 {
6414 public:
6415 Builtin_call_expression(Gogo* gogo, Expression* fn, Expression_list* args,
6416 bool is_varargs, source_location location);
6417
6418 protected:
6419 // This overrides Call_expression::do_lower.
6420 Expression*
6421 do_lower(Gogo*, Named_object*, int);
6422
6423 bool
6424 do_is_constant() const;
6425
6426 bool
6427 do_integer_constant_value(bool, mpz_t, Type**) const;
6428
6429 bool
6430 do_float_constant_value(mpfr_t, Type**) const;
6431
6432 bool
6433 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
6434
6435 Type*
6436 do_type();
6437
6438 void
6439 do_determine_type(const Type_context*);
6440
6441 void
6442 do_check_types(Gogo*);
6443
6444 Expression*
6445 do_copy()
6446 {
6447 return new Builtin_call_expression(this->gogo_, this->fn()->copy(),
6448 this->args()->copy(),
6449 this->is_varargs(),
6450 this->location());
6451 }
6452
6453 tree
6454 do_get_tree(Translate_context*);
6455
6456 void
6457 do_export(Export*) const;
6458
6459 virtual bool
6460 do_is_recover_call() const;
6461
6462 virtual void
6463 do_set_recover_arg(Expression*);
6464
6465 private:
6466 // The builtin functions.
6467 enum Builtin_function_code
6468 {
6469 BUILTIN_INVALID,
6470
6471 // Predeclared builtin functions.
6472 BUILTIN_APPEND,
6473 BUILTIN_CAP,
6474 BUILTIN_CLOSE,
6475 BUILTIN_CLOSED,
6476 BUILTIN_COMPLEX,
6477 BUILTIN_COPY,
6478 BUILTIN_IMAG,
6479 BUILTIN_LEN,
6480 BUILTIN_MAKE,
6481 BUILTIN_NEW,
6482 BUILTIN_PANIC,
6483 BUILTIN_PRINT,
6484 BUILTIN_PRINTLN,
6485 BUILTIN_REAL,
6486 BUILTIN_RECOVER,
6487
6488 // Builtin functions from the unsafe package.
6489 BUILTIN_ALIGNOF,
6490 BUILTIN_OFFSETOF,
6491 BUILTIN_SIZEOF
6492 };
6493
6494 Expression*
6495 one_arg() const;
6496
6497 bool
6498 check_one_arg();
6499
6500 static Type*
6501 real_imag_type(Type*);
6502
6503 static Type*
6504 complex_type(Type*);
6505
6506 // A pointer back to the general IR structure. This avoids a global
6507 // variable, or passing it around everywhere.
6508 Gogo* gogo_;
6509 // The builtin function being called.
6510 Builtin_function_code code_;
6511 // Used to stop endless loops when the length of an array uses len
6512 // or cap of the array itself.
6513 mutable bool seen_;
6514 };
6515
6516 Builtin_call_expression::Builtin_call_expression(Gogo* gogo,
6517 Expression* fn,
6518 Expression_list* args,
6519 bool is_varargs,
6520 source_location location)
6521 : Call_expression(fn, args, is_varargs, location),
6522 gogo_(gogo), code_(BUILTIN_INVALID), seen_(false)
6523 {
6524 Func_expression* fnexp = this->fn()->func_expression();
6525 gcc_assert(fnexp != NULL);
6526 const std::string& name(fnexp->named_object()->name());
6527 if (name == "append")
6528 this->code_ = BUILTIN_APPEND;
6529 else if (name == "cap")
6530 this->code_ = BUILTIN_CAP;
6531 else if (name == "close")
6532 this->code_ = BUILTIN_CLOSE;
6533 else if (name == "closed")
6534 this->code_ = BUILTIN_CLOSED;
6535 else if (name == "complex")
6536 this->code_ = BUILTIN_COMPLEX;
6537 else if (name == "copy")
6538 this->code_ = BUILTIN_COPY;
6539 else if (name == "imag")
6540 this->code_ = BUILTIN_IMAG;
6541 else if (name == "len")
6542 this->code_ = BUILTIN_LEN;
6543 else if (name == "make")
6544 this->code_ = BUILTIN_MAKE;
6545 else if (name == "new")
6546 this->code_ = BUILTIN_NEW;
6547 else if (name == "panic")
6548 this->code_ = BUILTIN_PANIC;
6549 else if (name == "print")
6550 this->code_ = BUILTIN_PRINT;
6551 else if (name == "println")
6552 this->code_ = BUILTIN_PRINTLN;
6553 else if (name == "real")
6554 this->code_ = BUILTIN_REAL;
6555 else if (name == "recover")
6556 this->code_ = BUILTIN_RECOVER;
6557 else if (name == "Alignof")
6558 this->code_ = BUILTIN_ALIGNOF;
6559 else if (name == "Offsetof")
6560 this->code_ = BUILTIN_OFFSETOF;
6561 else if (name == "Sizeof")
6562 this->code_ = BUILTIN_SIZEOF;
6563 else
6564 gcc_unreachable();
6565 }
6566
6567 // Return whether this is a call to recover. This is a virtual
6568 // function called from the parent class.
6569
6570 bool
6571 Builtin_call_expression::do_is_recover_call() const
6572 {
6573 if (this->classification() == EXPRESSION_ERROR)
6574 return false;
6575 return this->code_ == BUILTIN_RECOVER;
6576 }
6577
6578 // Set the argument for a call to recover.
6579
6580 void
6581 Builtin_call_expression::do_set_recover_arg(Expression* arg)
6582 {
6583 const Expression_list* args = this->args();
6584 gcc_assert(args == NULL || args->empty());
6585 Expression_list* new_args = new Expression_list();
6586 new_args->push_back(arg);
6587 this->set_args(new_args);
6588 }
6589
6590 // A traversal class which looks for a call expression.
6591
6592 class Find_call_expression : public Traverse
6593 {
6594 public:
6595 Find_call_expression()
6596 : Traverse(traverse_expressions),
6597 found_(false)
6598 { }
6599
6600 int
6601 expression(Expression**);
6602
6603 bool
6604 found()
6605 { return this->found_; }
6606
6607 private:
6608 bool found_;
6609 };
6610
6611 int
6612 Find_call_expression::expression(Expression** pexpr)
6613 {
6614 if ((*pexpr)->call_expression() != NULL)
6615 {
6616 this->found_ = true;
6617 return TRAVERSE_EXIT;
6618 }
6619 return TRAVERSE_CONTINUE;
6620 }
6621
6622 // Lower a builtin call expression. This turns new and make into
6623 // specific expressions. We also convert to a constant if we can.
6624
6625 Expression*
6626 Builtin_call_expression::do_lower(Gogo* gogo, Named_object* function, int)
6627 {
6628 if (this->code_ == BUILTIN_NEW)
6629 {
6630 const Expression_list* args = this->args();
6631 if (args == NULL || args->size() < 1)
6632 this->report_error(_("not enough arguments"));
6633 else if (args->size() > 1)
6634 this->report_error(_("too many arguments"));
6635 else
6636 {
6637 Expression* arg = args->front();
6638 if (!arg->is_type_expression())
6639 {
6640 error_at(arg->location(), "expected type");
6641 this->set_is_error();
6642 }
6643 else
6644 return Expression::make_allocation(arg->type(), this->location());
6645 }
6646 }
6647 else if (this->code_ == BUILTIN_MAKE)
6648 {
6649 const Expression_list* args = this->args();
6650 if (args == NULL || args->size() < 1)
6651 this->report_error(_("not enough arguments"));
6652 else
6653 {
6654 Expression* arg = args->front();
6655 if (!arg->is_type_expression())
6656 {
6657 error_at(arg->location(), "expected type");
6658 this->set_is_error();
6659 }
6660 else
6661 {
6662 Expression_list* newargs;
6663 if (args->size() == 1)
6664 newargs = NULL;
6665 else
6666 {
6667 newargs = new Expression_list();
6668 Expression_list::const_iterator p = args->begin();
6669 ++p;
6670 for (; p != args->end(); ++p)
6671 newargs->push_back(*p);
6672 }
6673 return Expression::make_make(arg->type(), newargs,
6674 this->location());
6675 }
6676 }
6677 }
6678 else if (this->is_constant())
6679 {
6680 // We can only lower len and cap if there are no function calls
6681 // in the arguments. Otherwise we have to make the call.
6682 if (this->code_ == BUILTIN_LEN || this->code_ == BUILTIN_CAP)
6683 {
6684 Expression* arg = this->one_arg();
6685 if (!arg->is_constant())
6686 {
6687 Find_call_expression find_call;
6688 Expression::traverse(&arg, &find_call);
6689 if (find_call.found())
6690 return this;
6691 }
6692 }
6693
6694 mpz_t ival;
6695 mpz_init(ival);
6696 Type* type;
6697 if (this->integer_constant_value(true, ival, &type))
6698 {
6699 Expression* ret = Expression::make_integer(&ival, type,
6700 this->location());
6701 mpz_clear(ival);
6702 return ret;
6703 }
6704 mpz_clear(ival);
6705
6706 mpfr_t rval;
6707 mpfr_init(rval);
6708 if (this->float_constant_value(rval, &type))
6709 {
6710 Expression* ret = Expression::make_float(&rval, type,
6711 this->location());
6712 mpfr_clear(rval);
6713 return ret;
6714 }
6715
6716 mpfr_t imag;
6717 mpfr_init(imag);
6718 if (this->complex_constant_value(rval, imag, &type))
6719 {
6720 Expression* ret = Expression::make_complex(&rval, &imag, type,
6721 this->location());
6722 mpfr_clear(rval);
6723 mpfr_clear(imag);
6724 return ret;
6725 }
6726 mpfr_clear(rval);
6727 mpfr_clear(imag);
6728 }
6729 else if (this->code_ == BUILTIN_RECOVER)
6730 {
6731 if (function != NULL)
6732 function->func_value()->set_calls_recover();
6733 else
6734 {
6735 // Calling recover outside of a function always returns the
6736 // nil empty interface.
6737 Type* eface = Type::make_interface_type(NULL, this->location());
6738 return Expression::make_cast(eface,
6739 Expression::make_nil(this->location()),
6740 this->location());
6741 }
6742 }
6743 else if (this->code_ == BUILTIN_APPEND)
6744 {
6745 // Lower the varargs.
6746 const Expression_list* args = this->args();
6747 if (args == NULL || args->empty())
6748 return this;
6749 Type* slice_type = args->front()->type();
6750 if (!slice_type->is_open_array_type())
6751 {
6752 error_at(args->front()->location(), "argument 1 must be a slice");
6753 this->set_is_error();
6754 return this;
6755 }
6756 return this->lower_varargs(gogo, function, slice_type, 2);
6757 }
6758
6759 return this;
6760 }
6761
6762 // Return the type of the real or imag functions, given the type of
6763 // the argument. We need to map complex to float, complex64 to
6764 // float32, and complex128 to float64, so it has to be done by name.
6765 // This returns NULL if it can't figure out the type.
6766
6767 Type*
6768 Builtin_call_expression::real_imag_type(Type* arg_type)
6769 {
6770 if (arg_type == NULL || arg_type->is_abstract())
6771 return NULL;
6772 Named_type* nt = arg_type->named_type();
6773 if (nt == NULL)
6774 return NULL;
6775 while (nt->real_type()->named_type() != NULL)
6776 nt = nt->real_type()->named_type();
6777 if (nt->name() == "complex64")
6778 return Type::lookup_float_type("float32");
6779 else if (nt->name() == "complex128")
6780 return Type::lookup_float_type("float64");
6781 else
6782 return NULL;
6783 }
6784
6785 // Return the type of the complex function, given the type of one of the
6786 // argments. Like real_imag_type, we have to map by name.
6787
6788 Type*
6789 Builtin_call_expression::complex_type(Type* arg_type)
6790 {
6791 if (arg_type == NULL || arg_type->is_abstract())
6792 return NULL;
6793 Named_type* nt = arg_type->named_type();
6794 if (nt == NULL)
6795 return NULL;
6796 while (nt->real_type()->named_type() != NULL)
6797 nt = nt->real_type()->named_type();
6798 if (nt->name() == "float32")
6799 return Type::lookup_complex_type("complex64");
6800 else if (nt->name() == "float64")
6801 return Type::lookup_complex_type("complex128");
6802 else
6803 return NULL;
6804 }
6805
6806 // Return a single argument, or NULL if there isn't one.
6807
6808 Expression*
6809 Builtin_call_expression::one_arg() const
6810 {
6811 const Expression_list* args = this->args();
6812 if (args->size() != 1)
6813 return NULL;
6814 return args->front();
6815 }
6816
6817 // Return whether this is constant: len of a string, or len or cap of
6818 // a fixed array, or unsafe.Sizeof, unsafe.Offsetof, unsafe.Alignof.
6819
6820 bool
6821 Builtin_call_expression::do_is_constant() const
6822 {
6823 switch (this->code_)
6824 {
6825 case BUILTIN_LEN:
6826 case BUILTIN_CAP:
6827 {
6828 if (this->seen_)
6829 return false;
6830
6831 Expression* arg = this->one_arg();
6832 if (arg == NULL)
6833 return false;
6834 Type* arg_type = arg->type();
6835
6836 if (arg_type->points_to() != NULL
6837 && arg_type->points_to()->array_type() != NULL
6838 && !arg_type->points_to()->is_open_array_type())
6839 arg_type = arg_type->points_to();
6840
6841 if (arg_type->array_type() != NULL
6842 && arg_type->array_type()->length() != NULL)
6843 return true;
6844
6845 if (this->code_ == BUILTIN_LEN && arg_type->is_string_type())
6846 {
6847 this->seen_ = true;
6848 bool ret = arg->is_constant();
6849 this->seen_ = false;
6850 return ret;
6851 }
6852 }
6853 break;
6854
6855 case BUILTIN_SIZEOF:
6856 case BUILTIN_ALIGNOF:
6857 return this->one_arg() != NULL;
6858
6859 case BUILTIN_OFFSETOF:
6860 {
6861 Expression* arg = this->one_arg();
6862 if (arg == NULL)
6863 return false;
6864 return arg->field_reference_expression() != NULL;
6865 }
6866
6867 case BUILTIN_COMPLEX:
6868 {
6869 const Expression_list* args = this->args();
6870 if (args != NULL && args->size() == 2)
6871 return args->front()->is_constant() && args->back()->is_constant();
6872 }
6873 break;
6874
6875 case BUILTIN_REAL:
6876 case BUILTIN_IMAG:
6877 {
6878 Expression* arg = this->one_arg();
6879 return arg != NULL && arg->is_constant();
6880 }
6881
6882 default:
6883 break;
6884 }
6885
6886 return false;
6887 }
6888
6889 // Return an integer constant value if possible.
6890
6891 bool
6892 Builtin_call_expression::do_integer_constant_value(bool iota_is_constant,
6893 mpz_t val,
6894 Type** ptype) const
6895 {
6896 if (this->code_ == BUILTIN_LEN
6897 || this->code_ == BUILTIN_CAP)
6898 {
6899 Expression* arg = this->one_arg();
6900 if (arg == NULL)
6901 return false;
6902 Type* arg_type = arg->type();
6903
6904 if (this->code_ == BUILTIN_LEN && arg_type->is_string_type())
6905 {
6906 std::string sval;
6907 if (arg->string_constant_value(&sval))
6908 {
6909 mpz_set_ui(val, sval.length());
6910 *ptype = Type::lookup_integer_type("int");
6911 return true;
6912 }
6913 }
6914
6915 if (arg_type->points_to() != NULL
6916 && arg_type->points_to()->array_type() != NULL
6917 && !arg_type->points_to()->is_open_array_type())
6918 arg_type = arg_type->points_to();
6919
6920 if (arg_type->array_type() != NULL
6921 && arg_type->array_type()->length() != NULL)
6922 {
6923 if (this->seen_)
6924 return false;
6925 Expression* e = arg_type->array_type()->length();
6926 this->seen_ = true;
6927 bool r = e->integer_constant_value(iota_is_constant, val, ptype);
6928 this->seen_ = false;
6929 if (r)
6930 {
6931 *ptype = Type::lookup_integer_type("int");
6932 return true;
6933 }
6934 }
6935 }
6936 else if (this->code_ == BUILTIN_SIZEOF
6937 || this->code_ == BUILTIN_ALIGNOF)
6938 {
6939 Expression* arg = this->one_arg();
6940 if (arg == NULL)
6941 return false;
6942 Type* arg_type = arg->type();
6943 if (arg_type->is_error_type() || arg_type->is_undefined())
6944 return false;
6945 if (arg_type->is_abstract())
6946 return false;
6947 tree arg_type_tree = arg_type->get_tree(this->gogo_);
6948 unsigned long val_long;
6949 if (this->code_ == BUILTIN_SIZEOF)
6950 {
6951 tree type_size = TYPE_SIZE_UNIT(arg_type_tree);
6952 gcc_assert(TREE_CODE(type_size) == INTEGER_CST);
6953 if (TREE_INT_CST_HIGH(type_size) != 0)
6954 return false;
6955 unsigned HOST_WIDE_INT val_wide = TREE_INT_CST_LOW(type_size);
6956 val_long = static_cast<unsigned long>(val_wide);
6957 if (val_long != val_wide)
6958 return false;
6959 }
6960 else if (this->code_ == BUILTIN_ALIGNOF)
6961 {
6962 if (arg->field_reference_expression() == NULL)
6963 val_long = go_type_alignment(arg_type_tree);
6964 else
6965 {
6966 // Calling unsafe.Alignof(s.f) returns the alignment of
6967 // the type of f when it is used as a field in a struct.
6968 val_long = go_field_alignment(arg_type_tree);
6969 }
6970 }
6971 else
6972 gcc_unreachable();
6973 mpz_set_ui(val, val_long);
6974 *ptype = NULL;
6975 return true;
6976 }
6977 else if (this->code_ == BUILTIN_OFFSETOF)
6978 {
6979 Expression* arg = this->one_arg();
6980 if (arg == NULL)
6981 return false;
6982 Field_reference_expression* farg = arg->field_reference_expression();
6983 if (farg == NULL)
6984 return false;
6985 Expression* struct_expr = farg->expr();
6986 Type* st = struct_expr->type();
6987 if (st->struct_type() == NULL)
6988 return false;
6989 tree struct_tree = st->get_tree(this->gogo_);
6990 gcc_assert(TREE_CODE(struct_tree) == RECORD_TYPE);
6991 tree field = TYPE_FIELDS(struct_tree);
6992 for (unsigned int index = farg->field_index(); index > 0; --index)
6993 {
6994 field = DECL_CHAIN(field);
6995 gcc_assert(field != NULL_TREE);
6996 }
6997 HOST_WIDE_INT offset_wide = int_byte_position (field);
6998 if (offset_wide < 0)
6999 return false;
7000 unsigned long offset_long = static_cast<unsigned long>(offset_wide);
7001 if (offset_long != static_cast<unsigned HOST_WIDE_INT>(offset_wide))
7002 return false;
7003 mpz_set_ui(val, offset_long);
7004 return true;
7005 }
7006 return false;
7007 }
7008
7009 // Return a floating point constant value if possible.
7010
7011 bool
7012 Builtin_call_expression::do_float_constant_value(mpfr_t val,
7013 Type** ptype) const
7014 {
7015 if (this->code_ == BUILTIN_REAL || this->code_ == BUILTIN_IMAG)
7016 {
7017 Expression* arg = this->one_arg();
7018 if (arg == NULL)
7019 return false;
7020
7021 mpfr_t real;
7022 mpfr_t imag;
7023 mpfr_init(real);
7024 mpfr_init(imag);
7025
7026 bool ret = false;
7027 Type* type;
7028 if (arg->complex_constant_value(real, imag, &type))
7029 {
7030 if (this->code_ == BUILTIN_REAL)
7031 mpfr_set(val, real, GMP_RNDN);
7032 else
7033 mpfr_set(val, imag, GMP_RNDN);
7034 *ptype = Builtin_call_expression::real_imag_type(type);
7035 ret = true;
7036 }
7037
7038 mpfr_clear(real);
7039 mpfr_clear(imag);
7040 return ret;
7041 }
7042
7043 return false;
7044 }
7045
7046 // Return a complex constant value if possible.
7047
7048 bool
7049 Builtin_call_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
7050 Type** ptype) const
7051 {
7052 if (this->code_ == BUILTIN_COMPLEX)
7053 {
7054 const Expression_list* args = this->args();
7055 if (args == NULL || args->size() != 2)
7056 return false;
7057
7058 mpfr_t r;
7059 mpfr_init(r);
7060 Type* rtype;
7061 if (!args->front()->float_constant_value(r, &rtype))
7062 {
7063 mpfr_clear(r);
7064 return false;
7065 }
7066
7067 mpfr_t i;
7068 mpfr_init(i);
7069
7070 bool ret = false;
7071 Type* itype;
7072 if (args->back()->float_constant_value(i, &itype)
7073 && Type::are_identical(rtype, itype, false, NULL))
7074 {
7075 mpfr_set(real, r, GMP_RNDN);
7076 mpfr_set(imag, i, GMP_RNDN);
7077 *ptype = Builtin_call_expression::complex_type(rtype);
7078 ret = true;
7079 }
7080
7081 mpfr_clear(r);
7082 mpfr_clear(i);
7083
7084 return ret;
7085 }
7086
7087 return false;
7088 }
7089
7090 // Return the type.
7091
7092 Type*
7093 Builtin_call_expression::do_type()
7094 {
7095 switch (this->code_)
7096 {
7097 case BUILTIN_INVALID:
7098 default:
7099 gcc_unreachable();
7100
7101 case BUILTIN_NEW:
7102 case BUILTIN_MAKE:
7103 {
7104 const Expression_list* args = this->args();
7105 if (args == NULL || args->empty())
7106 return Type::make_error_type();
7107 return Type::make_pointer_type(args->front()->type());
7108 }
7109
7110 case BUILTIN_CAP:
7111 case BUILTIN_COPY:
7112 case BUILTIN_LEN:
7113 case BUILTIN_ALIGNOF:
7114 case BUILTIN_OFFSETOF:
7115 case BUILTIN_SIZEOF:
7116 return Type::lookup_integer_type("int");
7117
7118 case BUILTIN_CLOSE:
7119 case BUILTIN_PANIC:
7120 case BUILTIN_PRINT:
7121 case BUILTIN_PRINTLN:
7122 return Type::make_void_type();
7123
7124 case BUILTIN_CLOSED:
7125 return Type::lookup_bool_type();
7126
7127 case BUILTIN_RECOVER:
7128 return Type::make_interface_type(NULL, BUILTINS_LOCATION);
7129
7130 case BUILTIN_APPEND:
7131 {
7132 const Expression_list* args = this->args();
7133 if (args == NULL || args->empty())
7134 return Type::make_error_type();
7135 return args->front()->type();
7136 }
7137
7138 case BUILTIN_REAL:
7139 case BUILTIN_IMAG:
7140 {
7141 Expression* arg = this->one_arg();
7142 if (arg == NULL)
7143 return Type::make_error_type();
7144 Type* t = arg->type();
7145 if (t->is_abstract())
7146 t = t->make_non_abstract_type();
7147 t = Builtin_call_expression::real_imag_type(t);
7148 if (t == NULL)
7149 t = Type::make_error_type();
7150 return t;
7151 }
7152
7153 case BUILTIN_COMPLEX:
7154 {
7155 const Expression_list* args = this->args();
7156 if (args == NULL || args->size() != 2)
7157 return Type::make_error_type();
7158 Type* t = args->front()->type();
7159 if (t->is_abstract())
7160 {
7161 t = args->back()->type();
7162 if (t->is_abstract())
7163 t = t->make_non_abstract_type();
7164 }
7165 t = Builtin_call_expression::complex_type(t);
7166 if (t == NULL)
7167 t = Type::make_error_type();
7168 return t;
7169 }
7170 }
7171 }
7172
7173 // Determine the type.
7174
7175 void
7176 Builtin_call_expression::do_determine_type(const Type_context* context)
7177 {
7178 this->fn()->determine_type_no_context();
7179
7180 const Expression_list* args = this->args();
7181
7182 bool is_print;
7183 Type* arg_type = NULL;
7184 switch (this->code_)
7185 {
7186 case BUILTIN_PRINT:
7187 case BUILTIN_PRINTLN:
7188 // Do not force a large integer constant to "int".
7189 is_print = true;
7190 break;
7191
7192 case BUILTIN_REAL:
7193 case BUILTIN_IMAG:
7194 arg_type = Builtin_call_expression::complex_type(context->type);
7195 is_print = false;
7196 break;
7197
7198 case BUILTIN_COMPLEX:
7199 {
7200 // For the complex function the type of one operand can
7201 // determine the type of the other, as in a binary expression.
7202 arg_type = Builtin_call_expression::real_imag_type(context->type);
7203 if (args != NULL && args->size() == 2)
7204 {
7205 Type* t1 = args->front()->type();
7206 Type* t2 = args->front()->type();
7207 if (!t1->is_abstract())
7208 arg_type = t1;
7209 else if (!t2->is_abstract())
7210 arg_type = t2;
7211 }
7212 is_print = false;
7213 }
7214 break;
7215
7216 default:
7217 is_print = false;
7218 break;
7219 }
7220
7221 if (args != NULL)
7222 {
7223 for (Expression_list::const_iterator pa = args->begin();
7224 pa != args->end();
7225 ++pa)
7226 {
7227 Type_context subcontext;
7228 subcontext.type = arg_type;
7229
7230 if (is_print)
7231 {
7232 // We want to print large constants, we so can't just
7233 // use the appropriate nonabstract type. Use uint64 for
7234 // an integer if we know it is nonnegative, otherwise
7235 // use int64 for a integer, otherwise use float64 for a
7236 // float or complex128 for a complex.
7237 Type* want_type = NULL;
7238 Type* atype = (*pa)->type();
7239 if (atype->is_abstract())
7240 {
7241 if (atype->integer_type() != NULL)
7242 {
7243 mpz_t val;
7244 mpz_init(val);
7245 Type* dummy;
7246 if (this->integer_constant_value(true, val, &dummy)
7247 && mpz_sgn(val) >= 0)
7248 want_type = Type::lookup_integer_type("uint64");
7249 else
7250 want_type = Type::lookup_integer_type("int64");
7251 mpz_clear(val);
7252 }
7253 else if (atype->float_type() != NULL)
7254 want_type = Type::lookup_float_type("float64");
7255 else if (atype->complex_type() != NULL)
7256 want_type = Type::lookup_complex_type("complex128");
7257 else if (atype->is_abstract_string_type())
7258 want_type = Type::lookup_string_type();
7259 else if (atype->is_abstract_boolean_type())
7260 want_type = Type::lookup_bool_type();
7261 else
7262 gcc_unreachable();
7263 subcontext.type = want_type;
7264 }
7265 }
7266
7267 (*pa)->determine_type(&subcontext);
7268 }
7269 }
7270 }
7271
7272 // If there is exactly one argument, return true. Otherwise give an
7273 // error message and return false.
7274
7275 bool
7276 Builtin_call_expression::check_one_arg()
7277 {
7278 const Expression_list* args = this->args();
7279 if (args == NULL || args->size() < 1)
7280 {
7281 this->report_error(_("not enough arguments"));
7282 return false;
7283 }
7284 else if (args->size() > 1)
7285 {
7286 this->report_error(_("too many arguments"));
7287 return false;
7288 }
7289 if (args->front()->is_error_expression()
7290 || args->front()->type()->is_error_type()
7291 || args->front()->type()->is_undefined())
7292 {
7293 this->set_is_error();
7294 return false;
7295 }
7296 return true;
7297 }
7298
7299 // Check argument types for a builtin function.
7300
7301 void
7302 Builtin_call_expression::do_check_types(Gogo*)
7303 {
7304 switch (this->code_)
7305 {
7306 case BUILTIN_INVALID:
7307 case BUILTIN_NEW:
7308 case BUILTIN_MAKE:
7309 return;
7310
7311 case BUILTIN_LEN:
7312 case BUILTIN_CAP:
7313 {
7314 // The single argument may be either a string or an array or a
7315 // map or a channel, or a pointer to a closed array.
7316 if (this->check_one_arg())
7317 {
7318 Type* arg_type = this->one_arg()->type();
7319 if (arg_type->points_to() != NULL
7320 && arg_type->points_to()->array_type() != NULL
7321 && !arg_type->points_to()->is_open_array_type())
7322 arg_type = arg_type->points_to();
7323 if (this->code_ == BUILTIN_CAP)
7324 {
7325 if (!arg_type->is_error_type()
7326 && arg_type->array_type() == NULL
7327 && arg_type->channel_type() == NULL)
7328 this->report_error(_("argument must be array or slice "
7329 "or channel"));
7330 }
7331 else
7332 {
7333 if (!arg_type->is_error_type()
7334 && !arg_type->is_string_type()
7335 && arg_type->array_type() == NULL
7336 && arg_type->map_type() == NULL
7337 && arg_type->channel_type() == NULL)
7338 this->report_error(_("argument must be string or "
7339 "array or slice or map or channel"));
7340 }
7341 }
7342 }
7343 break;
7344
7345 case BUILTIN_PRINT:
7346 case BUILTIN_PRINTLN:
7347 {
7348 const Expression_list* args = this->args();
7349 if (args == NULL)
7350 {
7351 if (this->code_ == BUILTIN_PRINT)
7352 warning_at(this->location(), 0,
7353 "no arguments for builtin function %<%s%>",
7354 (this->code_ == BUILTIN_PRINT
7355 ? "print"
7356 : "println"));
7357 }
7358 else
7359 {
7360 for (Expression_list::const_iterator p = args->begin();
7361 p != args->end();
7362 ++p)
7363 {
7364 Type* type = (*p)->type();
7365 if (type->is_error_type()
7366 || type->is_string_type()
7367 || type->integer_type() != NULL
7368 || type->float_type() != NULL
7369 || type->complex_type() != NULL
7370 || type->is_boolean_type()
7371 || type->points_to() != NULL
7372 || type->interface_type() != NULL
7373 || type->channel_type() != NULL
7374 || type->map_type() != NULL
7375 || type->function_type() != NULL
7376 || type->is_open_array_type())
7377 ;
7378 else
7379 this->report_error(_("unsupported argument type to "
7380 "builtin function"));
7381 }
7382 }
7383 }
7384 break;
7385
7386 case BUILTIN_CLOSE:
7387 case BUILTIN_CLOSED:
7388 if (this->check_one_arg())
7389 {
7390 if (this->one_arg()->type()->channel_type() == NULL)
7391 this->report_error(_("argument must be channel"));
7392 }
7393 break;
7394
7395 case BUILTIN_PANIC:
7396 case BUILTIN_SIZEOF:
7397 case BUILTIN_ALIGNOF:
7398 this->check_one_arg();
7399 break;
7400
7401 case BUILTIN_RECOVER:
7402 if (this->args() != NULL && !this->args()->empty())
7403 this->report_error(_("too many arguments"));
7404 break;
7405
7406 case BUILTIN_OFFSETOF:
7407 if (this->check_one_arg())
7408 {
7409 Expression* arg = this->one_arg();
7410 if (arg->field_reference_expression() == NULL)
7411 this->report_error(_("argument must be a field reference"));
7412 }
7413 break;
7414
7415 case BUILTIN_COPY:
7416 {
7417 const Expression_list* args = this->args();
7418 if (args == NULL || args->size() < 2)
7419 {
7420 this->report_error(_("not enough arguments"));
7421 break;
7422 }
7423 else if (args->size() > 2)
7424 {
7425 this->report_error(_("too many arguments"));
7426 break;
7427 }
7428 Type* arg1_type = args->front()->type();
7429 Type* arg2_type = args->back()->type();
7430 if (arg1_type->is_error_type() || arg2_type->is_error_type())
7431 break;
7432
7433 Type* e1;
7434 if (arg1_type->is_open_array_type())
7435 e1 = arg1_type->array_type()->element_type();
7436 else
7437 {
7438 this->report_error(_("left argument must be a slice"));
7439 break;
7440 }
7441
7442 Type* e2;
7443 if (arg2_type->is_open_array_type())
7444 e2 = arg2_type->array_type()->element_type();
7445 else if (arg2_type->is_string_type())
7446 e2 = Type::lookup_integer_type("uint8");
7447 else
7448 {
7449 this->report_error(_("right argument must be a slice or a string"));
7450 break;
7451 }
7452
7453 if (!Type::are_identical(e1, e2, true, NULL))
7454 this->report_error(_("element types must be the same"));
7455 }
7456 break;
7457
7458 case BUILTIN_APPEND:
7459 {
7460 const Expression_list* args = this->args();
7461 if (args == NULL || args->size() < 2)
7462 {
7463 this->report_error(_("not enough arguments"));
7464 break;
7465 }
7466 if (args->size() > 2)
7467 {
7468 this->report_error(_("too many arguments"));
7469 break;
7470 }
7471 std::string reason;
7472 if (!Type::are_assignable(args->front()->type(), args->back()->type(),
7473 &reason))
7474 {
7475 if (reason.empty())
7476 this->report_error(_("arguments 1 and 2 have different types"));
7477 else
7478 {
7479 error_at(this->location(),
7480 "arguments 1 and 2 have different types (%s)",
7481 reason.c_str());
7482 this->set_is_error();
7483 }
7484 }
7485 break;
7486 }
7487
7488 case BUILTIN_REAL:
7489 case BUILTIN_IMAG:
7490 if (this->check_one_arg())
7491 {
7492 if (this->one_arg()->type()->complex_type() == NULL)
7493 this->report_error(_("argument must have complex type"));
7494 }
7495 break;
7496
7497 case BUILTIN_COMPLEX:
7498 {
7499 const Expression_list* args = this->args();
7500 if (args == NULL || args->size() < 2)
7501 this->report_error(_("not enough arguments"));
7502 else if (args->size() > 2)
7503 this->report_error(_("too many arguments"));
7504 else if (args->front()->is_error_expression()
7505 || args->front()->type()->is_error_type()
7506 || args->back()->is_error_expression()
7507 || args->back()->type()->is_error_type())
7508 this->set_is_error();
7509 else if (!Type::are_identical(args->front()->type(),
7510 args->back()->type(), true, NULL))
7511 this->report_error(_("complex arguments must have identical types"));
7512 else if (args->front()->type()->float_type() == NULL)
7513 this->report_error(_("complex arguments must have "
7514 "floating-point type"));
7515 }
7516 break;
7517
7518 default:
7519 gcc_unreachable();
7520 }
7521 }
7522
7523 // Return the tree for a builtin function.
7524
7525 tree
7526 Builtin_call_expression::do_get_tree(Translate_context* context)
7527 {
7528 Gogo* gogo = context->gogo();
7529 source_location location = this->location();
7530 switch (this->code_)
7531 {
7532 case BUILTIN_INVALID:
7533 case BUILTIN_NEW:
7534 case BUILTIN_MAKE:
7535 gcc_unreachable();
7536
7537 case BUILTIN_LEN:
7538 case BUILTIN_CAP:
7539 {
7540 const Expression_list* args = this->args();
7541 gcc_assert(args != NULL && args->size() == 1);
7542 Expression* arg = *args->begin();
7543 Type* arg_type = arg->type();
7544
7545 if (this->seen_)
7546 {
7547 gcc_assert(saw_errors());
7548 return error_mark_node;
7549 }
7550 this->seen_ = true;
7551
7552 tree arg_tree = arg->get_tree(context);
7553
7554 this->seen_ = false;
7555
7556 if (arg_tree == error_mark_node)
7557 return error_mark_node;
7558
7559 if (arg_type->points_to() != NULL)
7560 {
7561 arg_type = arg_type->points_to();
7562 gcc_assert(arg_type->array_type() != NULL
7563 && !arg_type->is_open_array_type());
7564 gcc_assert(POINTER_TYPE_P(TREE_TYPE(arg_tree)));
7565 arg_tree = build_fold_indirect_ref(arg_tree);
7566 }
7567
7568 tree val_tree;
7569 if (this->code_ == BUILTIN_LEN)
7570 {
7571 if (arg_type->is_string_type())
7572 val_tree = String_type::length_tree(gogo, arg_tree);
7573 else if (arg_type->array_type() != NULL)
7574 {
7575 if (this->seen_)
7576 {
7577 gcc_assert(saw_errors());
7578 return error_mark_node;
7579 }
7580 this->seen_ = true;
7581 val_tree = arg_type->array_type()->length_tree(gogo, arg_tree);
7582 this->seen_ = false;
7583 }
7584 else if (arg_type->map_type() != NULL)
7585 {
7586 static tree map_len_fndecl;
7587 val_tree = Gogo::call_builtin(&map_len_fndecl,
7588 location,
7589 "__go_map_len",
7590 1,
7591 sizetype,
7592 arg_type->get_tree(gogo),
7593 arg_tree);
7594 }
7595 else if (arg_type->channel_type() != NULL)
7596 {
7597 static tree chan_len_fndecl;
7598 val_tree = Gogo::call_builtin(&chan_len_fndecl,
7599 location,
7600 "__go_chan_len",
7601 1,
7602 sizetype,
7603 arg_type->get_tree(gogo),
7604 arg_tree);
7605 }
7606 else
7607 gcc_unreachable();
7608 }
7609 else
7610 {
7611 if (arg_type->array_type() != NULL)
7612 {
7613 if (this->seen_)
7614 {
7615 gcc_assert(saw_errors());
7616 return error_mark_node;
7617 }
7618 this->seen_ = true;
7619 val_tree = arg_type->array_type()->capacity_tree(gogo,
7620 arg_tree);
7621 this->seen_ = false;
7622 }
7623 else if (arg_type->channel_type() != NULL)
7624 {
7625 static tree chan_cap_fndecl;
7626 val_tree = Gogo::call_builtin(&chan_cap_fndecl,
7627 location,
7628 "__go_chan_cap",
7629 1,
7630 sizetype,
7631 arg_type->get_tree(gogo),
7632 arg_tree);
7633 }
7634 else
7635 gcc_unreachable();
7636 }
7637
7638 if (val_tree == error_mark_node)
7639 return error_mark_node;
7640
7641 tree type_tree = Type::lookup_integer_type("int")->get_tree(gogo);
7642 if (type_tree == TREE_TYPE(val_tree))
7643 return val_tree;
7644 else
7645 return fold(convert_to_integer(type_tree, val_tree));
7646 }
7647
7648 case BUILTIN_PRINT:
7649 case BUILTIN_PRINTLN:
7650 {
7651 const bool is_ln = this->code_ == BUILTIN_PRINTLN;
7652 tree stmt_list = NULL_TREE;
7653
7654 const Expression_list* call_args = this->args();
7655 if (call_args != NULL)
7656 {
7657 for (Expression_list::const_iterator p = call_args->begin();
7658 p != call_args->end();
7659 ++p)
7660 {
7661 if (is_ln && p != call_args->begin())
7662 {
7663 static tree print_space_fndecl;
7664 tree call = Gogo::call_builtin(&print_space_fndecl,
7665 location,
7666 "__go_print_space",
7667 0,
7668 void_type_node);
7669 if (call == error_mark_node)
7670 return error_mark_node;
7671 append_to_statement_list(call, &stmt_list);
7672 }
7673
7674 Type* type = (*p)->type();
7675
7676 tree arg = (*p)->get_tree(context);
7677 if (arg == error_mark_node)
7678 return error_mark_node;
7679
7680 tree* pfndecl;
7681 const char* fnname;
7682 if (type->is_string_type())
7683 {
7684 static tree print_string_fndecl;
7685 pfndecl = &print_string_fndecl;
7686 fnname = "__go_print_string";
7687 }
7688 else if (type->integer_type() != NULL
7689 && type->integer_type()->is_unsigned())
7690 {
7691 static tree print_uint64_fndecl;
7692 pfndecl = &print_uint64_fndecl;
7693 fnname = "__go_print_uint64";
7694 Type* itype = Type::lookup_integer_type("uint64");
7695 arg = fold_convert_loc(location, itype->get_tree(gogo),
7696 arg);
7697 }
7698 else if (type->integer_type() != NULL)
7699 {
7700 static tree print_int64_fndecl;
7701 pfndecl = &print_int64_fndecl;
7702 fnname = "__go_print_int64";
7703 Type* itype = Type::lookup_integer_type("int64");
7704 arg = fold_convert_loc(location, itype->get_tree(gogo),
7705 arg);
7706 }
7707 else if (type->float_type() != NULL)
7708 {
7709 static tree print_double_fndecl;
7710 pfndecl = &print_double_fndecl;
7711 fnname = "__go_print_double";
7712 arg = fold_convert_loc(location, double_type_node, arg);
7713 }
7714 else if (type->complex_type() != NULL)
7715 {
7716 static tree print_complex_fndecl;
7717 pfndecl = &print_complex_fndecl;
7718 fnname = "__go_print_complex";
7719 arg = fold_convert_loc(location, complex_double_type_node,
7720 arg);
7721 }
7722 else if (type->is_boolean_type())
7723 {
7724 static tree print_bool_fndecl;
7725 pfndecl = &print_bool_fndecl;
7726 fnname = "__go_print_bool";
7727 }
7728 else if (type->points_to() != NULL
7729 || type->channel_type() != NULL
7730 || type->map_type() != NULL
7731 || type->function_type() != NULL)
7732 {
7733 static tree print_pointer_fndecl;
7734 pfndecl = &print_pointer_fndecl;
7735 fnname = "__go_print_pointer";
7736 arg = fold_convert_loc(location, ptr_type_node, arg);
7737 }
7738 else if (type->interface_type() != NULL)
7739 {
7740 if (type->interface_type()->is_empty())
7741 {
7742 static tree print_empty_interface_fndecl;
7743 pfndecl = &print_empty_interface_fndecl;
7744 fnname = "__go_print_empty_interface";
7745 }
7746 else
7747 {
7748 static tree print_interface_fndecl;
7749 pfndecl = &print_interface_fndecl;
7750 fnname = "__go_print_interface";
7751 }
7752 }
7753 else if (type->is_open_array_type())
7754 {
7755 static tree print_slice_fndecl;
7756 pfndecl = &print_slice_fndecl;
7757 fnname = "__go_print_slice";
7758 }
7759 else
7760 gcc_unreachable();
7761
7762 tree call = Gogo::call_builtin(pfndecl,
7763 location,
7764 fnname,
7765 1,
7766 void_type_node,
7767 TREE_TYPE(arg),
7768 arg);
7769 if (call == error_mark_node)
7770 return error_mark_node;
7771 append_to_statement_list(call, &stmt_list);
7772 }
7773 }
7774
7775 if (is_ln)
7776 {
7777 static tree print_nl_fndecl;
7778 tree call = Gogo::call_builtin(&print_nl_fndecl,
7779 location,
7780 "__go_print_nl",
7781 0,
7782 void_type_node);
7783 if (call == error_mark_node)
7784 return error_mark_node;
7785 append_to_statement_list(call, &stmt_list);
7786 }
7787
7788 return stmt_list;
7789 }
7790
7791 case BUILTIN_PANIC:
7792 {
7793 const Expression_list* args = this->args();
7794 gcc_assert(args != NULL && args->size() == 1);
7795 Expression* arg = args->front();
7796 tree arg_tree = arg->get_tree(context);
7797 if (arg_tree == error_mark_node)
7798 return error_mark_node;
7799 Type *empty = Type::make_interface_type(NULL, BUILTINS_LOCATION);
7800 arg_tree = Expression::convert_for_assignment(context, empty,
7801 arg->type(),
7802 arg_tree, location);
7803 static tree panic_fndecl;
7804 tree call = Gogo::call_builtin(&panic_fndecl,
7805 location,
7806 "__go_panic",
7807 1,
7808 void_type_node,
7809 TREE_TYPE(arg_tree),
7810 arg_tree);
7811 if (call == error_mark_node)
7812 return error_mark_node;
7813 // This function will throw an exception.
7814 TREE_NOTHROW(panic_fndecl) = 0;
7815 // This function will not return.
7816 TREE_THIS_VOLATILE(panic_fndecl) = 1;
7817 return call;
7818 }
7819
7820 case BUILTIN_RECOVER:
7821 {
7822 // The argument is set when building recover thunks. It's a
7823 // boolean value which is true if we can recover a value now.
7824 const Expression_list* args = this->args();
7825 gcc_assert(args != NULL && args->size() == 1);
7826 Expression* arg = args->front();
7827 tree arg_tree = arg->get_tree(context);
7828 if (arg_tree == error_mark_node)
7829 return error_mark_node;
7830
7831 Type *empty = Type::make_interface_type(NULL, BUILTINS_LOCATION);
7832 tree empty_tree = empty->get_tree(context->gogo());
7833
7834 Type* nil_type = Type::make_nil_type();
7835 Expression* nil = Expression::make_nil(location);
7836 tree nil_tree = nil->get_tree(context);
7837 tree empty_nil_tree = Expression::convert_for_assignment(context,
7838 empty,
7839 nil_type,
7840 nil_tree,
7841 location);
7842
7843 // We need to handle a deferred call to recover specially,
7844 // because it changes whether it can recover a panic or not.
7845 // See test7 in test/recover1.go.
7846 tree call;
7847 if (this->is_deferred())
7848 {
7849 static tree deferred_recover_fndecl;
7850 call = Gogo::call_builtin(&deferred_recover_fndecl,
7851 location,
7852 "__go_deferred_recover",
7853 0,
7854 empty_tree);
7855 }
7856 else
7857 {
7858 static tree recover_fndecl;
7859 call = Gogo::call_builtin(&recover_fndecl,
7860 location,
7861 "__go_recover",
7862 0,
7863 empty_tree);
7864 }
7865 if (call == error_mark_node)
7866 return error_mark_node;
7867 return fold_build3_loc(location, COND_EXPR, empty_tree, arg_tree,
7868 call, empty_nil_tree);
7869 }
7870
7871 case BUILTIN_CLOSE:
7872 case BUILTIN_CLOSED:
7873 {
7874 const Expression_list* args = this->args();
7875 gcc_assert(args != NULL && args->size() == 1);
7876 Expression* arg = args->front();
7877 tree arg_tree = arg->get_tree(context);
7878 if (arg_tree == error_mark_node)
7879 return error_mark_node;
7880 if (this->code_ == BUILTIN_CLOSE)
7881 {
7882 static tree close_fndecl;
7883 return Gogo::call_builtin(&close_fndecl,
7884 location,
7885 "__go_builtin_close",
7886 1,
7887 void_type_node,
7888 TREE_TYPE(arg_tree),
7889 arg_tree);
7890 }
7891 else
7892 {
7893 static tree closed_fndecl;
7894 return Gogo::call_builtin(&closed_fndecl,
7895 location,
7896 "__go_builtin_closed",
7897 1,
7898 boolean_type_node,
7899 TREE_TYPE(arg_tree),
7900 arg_tree);
7901 }
7902 }
7903
7904 case BUILTIN_SIZEOF:
7905 case BUILTIN_OFFSETOF:
7906 case BUILTIN_ALIGNOF:
7907 {
7908 mpz_t val;
7909 mpz_init(val);
7910 Type* dummy;
7911 bool b = this->integer_constant_value(true, val, &dummy);
7912 gcc_assert(b);
7913 tree type = Type::lookup_integer_type("int")->get_tree(gogo);
7914 tree ret = Expression::integer_constant_tree(val, type);
7915 mpz_clear(val);
7916 return ret;
7917 }
7918
7919 case BUILTIN_COPY:
7920 {
7921 const Expression_list* args = this->args();
7922 gcc_assert(args != NULL && args->size() == 2);
7923 Expression* arg1 = args->front();
7924 Expression* arg2 = args->back();
7925
7926 tree arg1_tree = arg1->get_tree(context);
7927 tree arg2_tree = arg2->get_tree(context);
7928 if (arg1_tree == error_mark_node || arg2_tree == error_mark_node)
7929 return error_mark_node;
7930
7931 Type* arg1_type = arg1->type();
7932 Array_type* at = arg1_type->array_type();
7933 arg1_tree = save_expr(arg1_tree);
7934 tree arg1_val = at->value_pointer_tree(gogo, arg1_tree);
7935 tree arg1_len = at->length_tree(gogo, arg1_tree);
7936 if (arg1_val == error_mark_node || arg1_len == error_mark_node)
7937 return error_mark_node;
7938
7939 Type* arg2_type = arg2->type();
7940 tree arg2_val;
7941 tree arg2_len;
7942 if (arg2_type->is_open_array_type())
7943 {
7944 at = arg2_type->array_type();
7945 arg2_tree = save_expr(arg2_tree);
7946 arg2_val = at->value_pointer_tree(gogo, arg2_tree);
7947 arg2_len = at->length_tree(gogo, arg2_tree);
7948 }
7949 else
7950 {
7951 arg2_tree = save_expr(arg2_tree);
7952 arg2_val = String_type::bytes_tree(gogo, arg2_tree);
7953 arg2_len = String_type::length_tree(gogo, arg2_tree);
7954 }
7955 if (arg2_val == error_mark_node || arg2_len == error_mark_node)
7956 return error_mark_node;
7957
7958 arg1_len = save_expr(arg1_len);
7959 arg2_len = save_expr(arg2_len);
7960 tree len = fold_build3_loc(location, COND_EXPR, TREE_TYPE(arg1_len),
7961 fold_build2_loc(location, LT_EXPR,
7962 boolean_type_node,
7963 arg1_len, arg2_len),
7964 arg1_len, arg2_len);
7965 len = save_expr(len);
7966
7967 Type* element_type = at->element_type();
7968 tree element_type_tree = element_type->get_tree(gogo);
7969 if (element_type_tree == error_mark_node)
7970 return error_mark_node;
7971 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
7972 tree bytecount = fold_convert_loc(location, TREE_TYPE(element_size),
7973 len);
7974 bytecount = fold_build2_loc(location, MULT_EXPR,
7975 TREE_TYPE(element_size),
7976 bytecount, element_size);
7977 bytecount = fold_convert_loc(location, size_type_node, bytecount);
7978
7979 arg1_val = fold_convert_loc(location, ptr_type_node, arg1_val);
7980 arg2_val = fold_convert_loc(location, ptr_type_node, arg2_val);
7981
7982 static tree copy_fndecl;
7983 tree call = Gogo::call_builtin(&copy_fndecl,
7984 location,
7985 "__go_copy",
7986 3,
7987 void_type_node,
7988 ptr_type_node,
7989 arg1_val,
7990 ptr_type_node,
7991 arg2_val,
7992 size_type_node,
7993 bytecount);
7994 if (call == error_mark_node)
7995 return error_mark_node;
7996
7997 return fold_build2_loc(location, COMPOUND_EXPR, TREE_TYPE(len),
7998 call, len);
7999 }
8000
8001 case BUILTIN_APPEND:
8002 {
8003 const Expression_list* args = this->args();
8004 gcc_assert(args != NULL && args->size() == 2);
8005 Expression* arg1 = args->front();
8006 Expression* arg2 = args->back();
8007
8008 tree arg1_tree = arg1->get_tree(context);
8009 tree arg2_tree = arg2->get_tree(context);
8010 if (arg1_tree == error_mark_node || arg2_tree == error_mark_node)
8011 return error_mark_node;
8012
8013 Array_type* at = arg1->type()->array_type();
8014 Type* element_type = at->element_type();
8015
8016 arg2_tree = Expression::convert_for_assignment(context, at,
8017 arg2->type(),
8018 arg2_tree,
8019 location);
8020 if (arg2_tree == error_mark_node)
8021 return error_mark_node;
8022
8023 arg2_tree = save_expr(arg2_tree);
8024 tree arg2_val = at->value_pointer_tree(gogo, arg2_tree);
8025 tree arg2_len = at->length_tree(gogo, arg2_tree);
8026 if (arg2_val == error_mark_node || arg2_len == error_mark_node)
8027 return error_mark_node;
8028 arg2_val = fold_convert_loc(location, ptr_type_node, arg2_val);
8029 arg2_len = fold_convert_loc(location, size_type_node, arg2_len);
8030
8031 tree element_type_tree = element_type->get_tree(gogo);
8032 if (element_type_tree == error_mark_node)
8033 return error_mark_node;
8034 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
8035 element_size = fold_convert_loc(location, size_type_node,
8036 element_size);
8037
8038 // We rebuild the decl each time since the slice types may
8039 // change.
8040 tree append_fndecl = NULL_TREE;
8041 return Gogo::call_builtin(&append_fndecl,
8042 location,
8043 "__go_append",
8044 4,
8045 TREE_TYPE(arg1_tree),
8046 TREE_TYPE(arg1_tree),
8047 arg1_tree,
8048 ptr_type_node,
8049 arg2_val,
8050 size_type_node,
8051 arg2_len,
8052 size_type_node,
8053 element_size);
8054 }
8055
8056 case BUILTIN_REAL:
8057 case BUILTIN_IMAG:
8058 {
8059 const Expression_list* args = this->args();
8060 gcc_assert(args != NULL && args->size() == 1);
8061 Expression* arg = args->front();
8062 tree arg_tree = arg->get_tree(context);
8063 if (arg_tree == error_mark_node)
8064 return error_mark_node;
8065 gcc_assert(COMPLEX_FLOAT_TYPE_P(TREE_TYPE(arg_tree)));
8066 if (this->code_ == BUILTIN_REAL)
8067 return fold_build1_loc(location, REALPART_EXPR,
8068 TREE_TYPE(TREE_TYPE(arg_tree)),
8069 arg_tree);
8070 else
8071 return fold_build1_loc(location, IMAGPART_EXPR,
8072 TREE_TYPE(TREE_TYPE(arg_tree)),
8073 arg_tree);
8074 }
8075
8076 case BUILTIN_COMPLEX:
8077 {
8078 const Expression_list* args = this->args();
8079 gcc_assert(args != NULL && args->size() == 2);
8080 tree r = args->front()->get_tree(context);
8081 tree i = args->back()->get_tree(context);
8082 if (r == error_mark_node || i == error_mark_node)
8083 return error_mark_node;
8084 gcc_assert(TYPE_MAIN_VARIANT(TREE_TYPE(r))
8085 == TYPE_MAIN_VARIANT(TREE_TYPE(i)));
8086 gcc_assert(SCALAR_FLOAT_TYPE_P(TREE_TYPE(r)));
8087 return fold_build2_loc(location, COMPLEX_EXPR,
8088 build_complex_type(TREE_TYPE(r)),
8089 r, i);
8090 }
8091
8092 default:
8093 gcc_unreachable();
8094 }
8095 }
8096
8097 // We have to support exporting a builtin call expression, because
8098 // code can set a constant to the result of a builtin expression.
8099
8100 void
8101 Builtin_call_expression::do_export(Export* exp) const
8102 {
8103 bool ok = false;
8104
8105 mpz_t val;
8106 mpz_init(val);
8107 Type* dummy;
8108 if (this->integer_constant_value(true, val, &dummy))
8109 {
8110 Integer_expression::export_integer(exp, val);
8111 ok = true;
8112 }
8113 mpz_clear(val);
8114
8115 if (!ok)
8116 {
8117 mpfr_t fval;
8118 mpfr_init(fval);
8119 if (this->float_constant_value(fval, &dummy))
8120 {
8121 Float_expression::export_float(exp, fval);
8122 ok = true;
8123 }
8124 mpfr_clear(fval);
8125 }
8126
8127 if (!ok)
8128 {
8129 mpfr_t real;
8130 mpfr_t imag;
8131 mpfr_init(real);
8132 mpfr_init(imag);
8133 if (this->complex_constant_value(real, imag, &dummy))
8134 {
8135 Complex_expression::export_complex(exp, real, imag);
8136 ok = true;
8137 }
8138 mpfr_clear(real);
8139 mpfr_clear(imag);
8140 }
8141
8142 if (!ok)
8143 {
8144 error_at(this->location(), "value is not constant");
8145 return;
8146 }
8147
8148 // A trailing space lets us reliably identify the end of the number.
8149 exp->write_c_string(" ");
8150 }
8151
8152 // Class Call_expression.
8153
8154 // Traversal.
8155
8156 int
8157 Call_expression::do_traverse(Traverse* traverse)
8158 {
8159 if (Expression::traverse(&this->fn_, traverse) == TRAVERSE_EXIT)
8160 return TRAVERSE_EXIT;
8161 if (this->args_ != NULL)
8162 {
8163 if (this->args_->traverse(traverse) == TRAVERSE_EXIT)
8164 return TRAVERSE_EXIT;
8165 }
8166 return TRAVERSE_CONTINUE;
8167 }
8168
8169 // Lower a call statement.
8170
8171 Expression*
8172 Call_expression::do_lower(Gogo* gogo, Named_object* function, int)
8173 {
8174 // A type case can look like a function call.
8175 if (this->fn_->is_type_expression()
8176 && this->args_ != NULL
8177 && this->args_->size() == 1)
8178 return Expression::make_cast(this->fn_->type(), this->args_->front(),
8179 this->location());
8180
8181 // Recognize a call to a builtin function.
8182 Func_expression* fne = this->fn_->func_expression();
8183 if (fne != NULL
8184 && fne->named_object()->is_function_declaration()
8185 && fne->named_object()->func_declaration_value()->type()->is_builtin())
8186 return new Builtin_call_expression(gogo, this->fn_, this->args_,
8187 this->is_varargs_, this->location());
8188
8189 // Handle an argument which is a call to a function which returns
8190 // multiple results.
8191 if (this->args_ != NULL
8192 && this->args_->size() == 1
8193 && this->args_->front()->call_expression() != NULL
8194 && this->fn_->type()->function_type() != NULL)
8195 {
8196 Function_type* fntype = this->fn_->type()->function_type();
8197 size_t rc = this->args_->front()->call_expression()->result_count();
8198 if (rc > 1
8199 && fntype->parameters() != NULL
8200 && (fntype->parameters()->size() == rc
8201 || (fntype->is_varargs()
8202 && fntype->parameters()->size() - 1 <= rc)))
8203 {
8204 Call_expression* call = this->args_->front()->call_expression();
8205 Expression_list* args = new Expression_list;
8206 for (size_t i = 0; i < rc; ++i)
8207 args->push_back(Expression::make_call_result(call, i));
8208 // We can't return a new call expression here, because this
8209 // one may be referenced by Call_result expressions. FIXME.
8210 delete this->args_;
8211 this->args_ = args;
8212 }
8213 }
8214
8215 // Handle a call to a varargs function by packaging up the extra
8216 // parameters.
8217 if (this->fn_->type()->function_type() != NULL
8218 && this->fn_->type()->function_type()->is_varargs())
8219 {
8220 Function_type* fntype = this->fn_->type()->function_type();
8221 const Typed_identifier_list* parameters = fntype->parameters();
8222 gcc_assert(parameters != NULL && !parameters->empty());
8223 Type* varargs_type = parameters->back().type();
8224 return this->lower_varargs(gogo, function, varargs_type,
8225 parameters->size());
8226 }
8227
8228 return this;
8229 }
8230
8231 // Lower a call to a varargs function. FUNCTION is the function in
8232 // which the call occurs--it's not the function we are calling.
8233 // VARARGS_TYPE is the type of the varargs parameter, a slice type.
8234 // PARAM_COUNT is the number of parameters of the function we are
8235 // calling; the last of these parameters will be the varargs
8236 // parameter.
8237
8238 Expression*
8239 Call_expression::lower_varargs(Gogo* gogo, Named_object* function,
8240 Type* varargs_type, size_t param_count)
8241 {
8242 if (this->varargs_are_lowered_)
8243 return this;
8244
8245 source_location loc = this->location();
8246
8247 gcc_assert(param_count > 0);
8248 gcc_assert(varargs_type->is_open_array_type());
8249
8250 size_t arg_count = this->args_ == NULL ? 0 : this->args_->size();
8251 if (arg_count < param_count - 1)
8252 {
8253 // Not enough arguments; will be caught in check_types.
8254 return this;
8255 }
8256
8257 Expression_list* old_args = this->args_;
8258 Expression_list* new_args = new Expression_list();
8259 bool push_empty_arg = false;
8260 if (old_args == NULL || old_args->empty())
8261 {
8262 gcc_assert(param_count == 1);
8263 push_empty_arg = true;
8264 }
8265 else
8266 {
8267 Expression_list::const_iterator pa;
8268 int i = 1;
8269 for (pa = old_args->begin(); pa != old_args->end(); ++pa, ++i)
8270 {
8271 if (static_cast<size_t>(i) == param_count)
8272 break;
8273 new_args->push_back(*pa);
8274 }
8275
8276 // We have reached the varargs parameter.
8277
8278 bool issued_error = false;
8279 if (pa == old_args->end())
8280 push_empty_arg = true;
8281 else if (pa + 1 == old_args->end() && this->is_varargs_)
8282 new_args->push_back(*pa);
8283 else if (this->is_varargs_)
8284 {
8285 this->report_error(_("too many arguments"));
8286 return this;
8287 }
8288 else if (pa + 1 == old_args->end()
8289 && this->is_compatible_varargs_argument(function, *pa,
8290 varargs_type,
8291 &issued_error))
8292 new_args->push_back(*pa);
8293 else
8294 {
8295 Type* element_type = varargs_type->array_type()->element_type();
8296 Expression_list* vals = new Expression_list;
8297 for (; pa != old_args->end(); ++pa, ++i)
8298 {
8299 // Check types here so that we get a better message.
8300 Type* patype = (*pa)->type();
8301 source_location paloc = (*pa)->location();
8302 if (!this->check_argument_type(i, element_type, patype,
8303 paloc, issued_error))
8304 continue;
8305 vals->push_back(*pa);
8306 }
8307 Expression* val =
8308 Expression::make_slice_composite_literal(varargs_type, vals, loc);
8309 new_args->push_back(val);
8310 }
8311 }
8312
8313 if (push_empty_arg)
8314 new_args->push_back(Expression::make_nil(loc));
8315
8316 // We can't return a new call expression here, because this one may
8317 // be referenced by Call_result expressions. FIXME.
8318 if (old_args != NULL)
8319 delete old_args;
8320 this->args_ = new_args;
8321 this->varargs_are_lowered_ = true;
8322
8323 // Lower all the new subexpressions.
8324 Expression* ret = this;
8325 gogo->lower_expression(function, &ret);
8326 gcc_assert(ret == this);
8327 return ret;
8328 }
8329
8330 // Return true if ARG is a varargs argment which should be passed to
8331 // the varargs parameter of type PARAM_TYPE without wrapping. ARG
8332 // will be the last argument passed in the call, and PARAM_TYPE will
8333 // be the type of the last parameter of the varargs function being
8334 // called.
8335
8336 bool
8337 Call_expression::is_compatible_varargs_argument(Named_object* function,
8338 Expression* arg,
8339 Type* param_type,
8340 bool* issued_error)
8341 {
8342 *issued_error = false;
8343
8344 Type* var_type = NULL;
8345
8346 // The simple case is passing the varargs parameter of the caller.
8347 Var_expression* ve = arg->var_expression();
8348 if (ve != NULL && ve->named_object()->is_variable())
8349 {
8350 Variable* var = ve->named_object()->var_value();
8351 if (var->is_varargs_parameter())
8352 var_type = var->type();
8353 }
8354
8355 // The complex case is passing the varargs parameter of some
8356 // enclosing function. This will look like passing down *c.f where
8357 // c is the closure variable and f is a field in the closure.
8358 if (function != NULL
8359 && function->func_value()->needs_closure()
8360 && arg->classification() == EXPRESSION_UNARY)
8361 {
8362 Unary_expression* ue = static_cast<Unary_expression*>(arg);
8363 if (ue->op() == OPERATOR_MULT)
8364 {
8365 Field_reference_expression* fre =
8366 ue->operand()->deref()->field_reference_expression();
8367 if (fre != NULL)
8368 {
8369 Var_expression* ve = fre->expr()->deref()->var_expression();
8370 if (ve != NULL)
8371 {
8372 Named_object* no = ve->named_object();
8373 Function* f = function->func_value();
8374 if (no == f->closure_var())
8375 {
8376 // At this point we know that this indeed a
8377 // reference to some enclosing variable. Now we
8378 // need to figure out whether that variable is a
8379 // varargs parameter.
8380 Named_object* enclosing =
8381 f->enclosing_var(fre->field_index());
8382 Variable* var = enclosing->var_value();
8383 if (var->is_varargs_parameter())
8384 var_type = var->type();
8385 }
8386 }
8387 }
8388 }
8389 }
8390
8391 if (var_type == NULL)
8392 return false;
8393
8394 // We only match if the parameter is the same, with an identical
8395 // type.
8396 Array_type* var_at = var_type->array_type();
8397 gcc_assert(var_at != NULL);
8398 Array_type* param_at = param_type->array_type();
8399 if (param_at != NULL
8400 && Type::are_identical(var_at->element_type(),
8401 param_at->element_type(), true, NULL))
8402 return true;
8403 error_at(arg->location(), "... mismatch: passing ...T as ...");
8404 *issued_error = true;
8405 return false;
8406 }
8407
8408 // Get the function type. Returns NULL if we don't know the type. If
8409 // this returns NULL, and if_ERROR is true, issues an error.
8410
8411 Function_type*
8412 Call_expression::get_function_type() const
8413 {
8414 return this->fn_->type()->function_type();
8415 }
8416
8417 // Return the number of values which this call will return.
8418
8419 size_t
8420 Call_expression::result_count() const
8421 {
8422 const Function_type* fntype = this->get_function_type();
8423 if (fntype == NULL)
8424 return 0;
8425 if (fntype->results() == NULL)
8426 return 0;
8427 return fntype->results()->size();
8428 }
8429
8430 // Return whether this is a call to the predeclared function recover.
8431
8432 bool
8433 Call_expression::is_recover_call() const
8434 {
8435 return this->do_is_recover_call();
8436 }
8437
8438 // Set the argument to the recover function.
8439
8440 void
8441 Call_expression::set_recover_arg(Expression* arg)
8442 {
8443 this->do_set_recover_arg(arg);
8444 }
8445
8446 // Virtual functions also implemented by Builtin_call_expression.
8447
8448 bool
8449 Call_expression::do_is_recover_call() const
8450 {
8451 return false;
8452 }
8453
8454 void
8455 Call_expression::do_set_recover_arg(Expression*)
8456 {
8457 gcc_unreachable();
8458 }
8459
8460 // Get the type.
8461
8462 Type*
8463 Call_expression::do_type()
8464 {
8465 if (this->type_ != NULL)
8466 return this->type_;
8467
8468 Type* ret;
8469 Function_type* fntype = this->get_function_type();
8470 if (fntype == NULL)
8471 return Type::make_error_type();
8472
8473 const Typed_identifier_list* results = fntype->results();
8474 if (results == NULL)
8475 ret = Type::make_void_type();
8476 else if (results->size() == 1)
8477 ret = results->begin()->type();
8478 else
8479 ret = Type::make_call_multiple_result_type(this);
8480
8481 this->type_ = ret;
8482
8483 return this->type_;
8484 }
8485
8486 // Determine types for a call expression. We can use the function
8487 // parameter types to set the types of the arguments.
8488
8489 void
8490 Call_expression::do_determine_type(const Type_context*)
8491 {
8492 this->fn_->determine_type_no_context();
8493 Function_type* fntype = this->get_function_type();
8494 const Typed_identifier_list* parameters = NULL;
8495 if (fntype != NULL)
8496 parameters = fntype->parameters();
8497 if (this->args_ != NULL)
8498 {
8499 Typed_identifier_list::const_iterator pt;
8500 if (parameters != NULL)
8501 pt = parameters->begin();
8502 for (Expression_list::const_iterator pa = this->args_->begin();
8503 pa != this->args_->end();
8504 ++pa)
8505 {
8506 if (parameters != NULL && pt != parameters->end())
8507 {
8508 Type_context subcontext(pt->type(), false);
8509 (*pa)->determine_type(&subcontext);
8510 ++pt;
8511 }
8512 else
8513 (*pa)->determine_type_no_context();
8514 }
8515 }
8516 }
8517
8518 // Check types for parameter I.
8519
8520 bool
8521 Call_expression::check_argument_type(int i, const Type* parameter_type,
8522 const Type* argument_type,
8523 source_location argument_location,
8524 bool issued_error)
8525 {
8526 std::string reason;
8527 if (!Type::are_assignable(parameter_type, argument_type, &reason))
8528 {
8529 if (!issued_error)
8530 {
8531 if (reason.empty())
8532 error_at(argument_location, "argument %d has incompatible type", i);
8533 else
8534 error_at(argument_location,
8535 "argument %d has incompatible type (%s)",
8536 i, reason.c_str());
8537 }
8538 this->set_is_error();
8539 return false;
8540 }
8541 return true;
8542 }
8543
8544 // Check types.
8545
8546 void
8547 Call_expression::do_check_types(Gogo*)
8548 {
8549 Function_type* fntype = this->get_function_type();
8550 if (fntype == NULL)
8551 {
8552 if (!this->fn_->type()->is_error_type())
8553 this->report_error(_("expected function"));
8554 return;
8555 }
8556
8557 if (fntype->is_method())
8558 {
8559 // We don't support pointers to methods, so the function has to
8560 // be a bound method expression.
8561 Bound_method_expression* bme = this->fn_->bound_method_expression();
8562 if (bme == NULL)
8563 {
8564 this->report_error(_("method call without object"));
8565 return;
8566 }
8567 Type* first_arg_type = bme->first_argument()->type();
8568 if (first_arg_type->points_to() == NULL)
8569 {
8570 // When passing a value, we need to check that we are
8571 // permitted to copy it.
8572 std::string reason;
8573 if (!Type::are_assignable(fntype->receiver()->type(),
8574 first_arg_type, &reason))
8575 {
8576 if (reason.empty())
8577 this->report_error(_("incompatible type for receiver"));
8578 else
8579 {
8580 error_at(this->location(),
8581 "incompatible type for receiver (%s)",
8582 reason.c_str());
8583 this->set_is_error();
8584 }
8585 }
8586 }
8587 }
8588
8589 // Note that varargs was handled by the lower_varargs() method, so
8590 // we don't have to worry about it here.
8591
8592 const Typed_identifier_list* parameters = fntype->parameters();
8593 if (this->args_ == NULL)
8594 {
8595 if (parameters != NULL && !parameters->empty())
8596 this->report_error(_("not enough arguments"));
8597 }
8598 else if (parameters == NULL)
8599 this->report_error(_("too many arguments"));
8600 else
8601 {
8602 int i = 0;
8603 Typed_identifier_list::const_iterator pt = parameters->begin();
8604 for (Expression_list::const_iterator pa = this->args_->begin();
8605 pa != this->args_->end();
8606 ++pa, ++pt, ++i)
8607 {
8608 if (pt == parameters->end())
8609 {
8610 this->report_error(_("too many arguments"));
8611 return;
8612 }
8613 this->check_argument_type(i + 1, pt->type(), (*pa)->type(),
8614 (*pa)->location(), false);
8615 }
8616 if (pt != parameters->end())
8617 this->report_error(_("not enough arguments"));
8618 }
8619 }
8620
8621 // Return whether we have to use a temporary variable to ensure that
8622 // we evaluate this call expression in order. If the call returns no
8623 // results then it will inevitably be executed last. If the call
8624 // returns more than one result then it will be used with Call_result
8625 // expressions. So we only have to use a temporary variable if the
8626 // call returns exactly one result.
8627
8628 bool
8629 Call_expression::do_must_eval_in_order() const
8630 {
8631 return this->result_count() == 1;
8632 }
8633
8634 // Get the function and the first argument to use when calling a bound
8635 // method.
8636
8637 tree
8638 Call_expression::bound_method_function(Translate_context* context,
8639 Bound_method_expression* bound_method,
8640 tree* first_arg_ptr)
8641 {
8642 Expression* first_argument = bound_method->first_argument();
8643 tree first_arg = first_argument->get_tree(context);
8644 if (first_arg == error_mark_node)
8645 return error_mark_node;
8646
8647 // We always pass a pointer to the first argument when calling a
8648 // method.
8649 if (first_argument->type()->points_to() == NULL)
8650 {
8651 tree pointer_to_arg_type = build_pointer_type(TREE_TYPE(first_arg));
8652 if (TREE_ADDRESSABLE(TREE_TYPE(first_arg))
8653 || DECL_P(first_arg)
8654 || TREE_CODE(first_arg) == INDIRECT_REF
8655 || TREE_CODE(first_arg) == COMPONENT_REF)
8656 {
8657 first_arg = build_fold_addr_expr(first_arg);
8658 if (DECL_P(first_arg))
8659 TREE_ADDRESSABLE(first_arg) = 1;
8660 }
8661 else
8662 {
8663 tree tmp = create_tmp_var(TREE_TYPE(first_arg),
8664 get_name(first_arg));
8665 DECL_IGNORED_P(tmp) = 0;
8666 DECL_INITIAL(tmp) = first_arg;
8667 first_arg = build2(COMPOUND_EXPR, pointer_to_arg_type,
8668 build1(DECL_EXPR, void_type_node, tmp),
8669 build_fold_addr_expr(tmp));
8670 TREE_ADDRESSABLE(tmp) = 1;
8671 }
8672 if (first_arg == error_mark_node)
8673 return error_mark_node;
8674 }
8675
8676 Type* fatype = bound_method->first_argument_type();
8677 if (fatype != NULL)
8678 {
8679 if (fatype->points_to() == NULL)
8680 fatype = Type::make_pointer_type(fatype);
8681 first_arg = fold_convert(fatype->get_tree(context->gogo()), first_arg);
8682 if (first_arg == error_mark_node
8683 || TREE_TYPE(first_arg) == error_mark_node)
8684 return error_mark_node;
8685 }
8686
8687 *first_arg_ptr = first_arg;
8688
8689 return bound_method->method()->get_tree(context);
8690 }
8691
8692 // Get the function and the first argument to use when calling an
8693 // interface method.
8694
8695 tree
8696 Call_expression::interface_method_function(
8697 Translate_context* context,
8698 Interface_field_reference_expression* interface_method,
8699 tree* first_arg_ptr)
8700 {
8701 tree expr = interface_method->expr()->get_tree(context);
8702 if (expr == error_mark_node)
8703 return error_mark_node;
8704 expr = save_expr(expr);
8705 tree first_arg = interface_method->get_underlying_object_tree(context, expr);
8706 if (first_arg == error_mark_node)
8707 return error_mark_node;
8708 *first_arg_ptr = first_arg;
8709 return interface_method->get_function_tree(context, expr);
8710 }
8711
8712 // Build the call expression.
8713
8714 tree
8715 Call_expression::do_get_tree(Translate_context* context)
8716 {
8717 if (this->tree_ != NULL_TREE)
8718 return this->tree_;
8719
8720 Function_type* fntype = this->get_function_type();
8721 if (fntype == NULL)
8722 return error_mark_node;
8723
8724 if (this->fn_->is_error_expression())
8725 return error_mark_node;
8726
8727 Gogo* gogo = context->gogo();
8728 source_location location = this->location();
8729
8730 Func_expression* func = this->fn_->func_expression();
8731 Bound_method_expression* bound_method = this->fn_->bound_method_expression();
8732 Interface_field_reference_expression* interface_method =
8733 this->fn_->interface_field_reference_expression();
8734 const bool has_closure = func != NULL && func->closure() != NULL;
8735 const bool is_method = bound_method != NULL || interface_method != NULL;
8736 gcc_assert(!fntype->is_method() || is_method);
8737
8738 int nargs;
8739 tree* args;
8740 if (this->args_ == NULL || this->args_->empty())
8741 {
8742 nargs = is_method ? 1 : 0;
8743 args = nargs == 0 ? NULL : new tree[nargs];
8744 }
8745 else
8746 {
8747 const Typed_identifier_list* params = fntype->parameters();
8748 gcc_assert(params != NULL);
8749
8750 nargs = this->args_->size();
8751 int i = is_method ? 1 : 0;
8752 nargs += i;
8753 args = new tree[nargs];
8754
8755 Typed_identifier_list::const_iterator pp = params->begin();
8756 Expression_list::const_iterator pe;
8757 for (pe = this->args_->begin();
8758 pe != this->args_->end();
8759 ++pe, ++pp, ++i)
8760 {
8761 gcc_assert(pp != params->end());
8762 tree arg_val = (*pe)->get_tree(context);
8763 args[i] = Expression::convert_for_assignment(context,
8764 pp->type(),
8765 (*pe)->type(),
8766 arg_val,
8767 location);
8768 if (args[i] == error_mark_node)
8769 {
8770 delete[] args;
8771 return error_mark_node;
8772 }
8773 }
8774 gcc_assert(pp == params->end());
8775 gcc_assert(i == nargs);
8776 }
8777
8778 tree rettype = TREE_TYPE(TREE_TYPE(fntype->get_tree(gogo)));
8779 if (rettype == error_mark_node)
8780 {
8781 delete[] args;
8782 return error_mark_node;
8783 }
8784
8785 tree fn;
8786 if (has_closure)
8787 fn = func->get_tree_without_closure(gogo);
8788 else if (!is_method)
8789 fn = this->fn_->get_tree(context);
8790 else if (bound_method != NULL)
8791 fn = this->bound_method_function(context, bound_method, &args[0]);
8792 else if (interface_method != NULL)
8793 fn = this->interface_method_function(context, interface_method, &args[0]);
8794 else
8795 gcc_unreachable();
8796
8797 if (fn == error_mark_node || TREE_TYPE(fn) == error_mark_node)
8798 {
8799 delete[] args;
8800 return error_mark_node;
8801 }
8802
8803 // This is to support builtin math functions when using 80387 math.
8804 tree fndecl = fn;
8805 if (TREE_CODE(fndecl) == ADDR_EXPR)
8806 fndecl = TREE_OPERAND(fndecl, 0);
8807 tree excess_type = NULL_TREE;
8808 if (DECL_P(fndecl)
8809 && DECL_IS_BUILTIN(fndecl)
8810 && DECL_BUILT_IN_CLASS(fndecl) == BUILT_IN_NORMAL
8811 && nargs > 0
8812 && ((SCALAR_FLOAT_TYPE_P(rettype)
8813 && SCALAR_FLOAT_TYPE_P(TREE_TYPE(args[0])))
8814 || (COMPLEX_FLOAT_TYPE_P(rettype)
8815 && COMPLEX_FLOAT_TYPE_P(TREE_TYPE(args[0])))))
8816 {
8817 excess_type = excess_precision_type(TREE_TYPE(args[0]));
8818 if (excess_type != NULL_TREE)
8819 {
8820 tree excess_fndecl = mathfn_built_in(excess_type,
8821 DECL_FUNCTION_CODE(fndecl));
8822 if (excess_fndecl == NULL_TREE)
8823 excess_type = NULL_TREE;
8824 else
8825 {
8826 fn = build_fold_addr_expr_loc(location, excess_fndecl);
8827 for (int i = 0; i < nargs; ++i)
8828 args[i] = ::convert(excess_type, args[i]);
8829 }
8830 }
8831 }
8832
8833 tree ret = build_call_array(excess_type != NULL_TREE ? excess_type : rettype,
8834 fn, nargs, args);
8835 delete[] args;
8836
8837 SET_EXPR_LOCATION(ret, location);
8838
8839 if (has_closure)
8840 {
8841 tree closure_tree = func->closure()->get_tree(context);
8842 if (closure_tree != error_mark_node)
8843 CALL_EXPR_STATIC_CHAIN(ret) = closure_tree;
8844 }
8845
8846 // If this is a recursive function type which returns itself, as in
8847 // type F func() F
8848 // we have used ptr_type_node for the return type. Add a cast here
8849 // to the correct type.
8850 if (TREE_TYPE(ret) == ptr_type_node)
8851 {
8852 tree t = this->type()->get_tree(gogo);
8853 ret = fold_convert_loc(location, t, ret);
8854 }
8855
8856 if (excess_type != NULL_TREE)
8857 {
8858 // Calling convert here can undo our excess precision change.
8859 // That may or may not be a bug in convert_to_real.
8860 ret = build1(NOP_EXPR, rettype, ret);
8861 }
8862
8863 // If there is more than one result, we will refer to the call
8864 // multiple times.
8865 if (fntype->results() != NULL && fntype->results()->size() > 1)
8866 ret = save_expr(ret);
8867
8868 this->tree_ = ret;
8869
8870 return ret;
8871 }
8872
8873 // Make a call expression.
8874
8875 Call_expression*
8876 Expression::make_call(Expression* fn, Expression_list* args, bool is_varargs,
8877 source_location location)
8878 {
8879 return new Call_expression(fn, args, is_varargs, location);
8880 }
8881
8882 // A single result from a call which returns multiple results.
8883
8884 class Call_result_expression : public Expression
8885 {
8886 public:
8887 Call_result_expression(Call_expression* call, unsigned int index)
8888 : Expression(EXPRESSION_CALL_RESULT, call->location()),
8889 call_(call), index_(index)
8890 { }
8891
8892 protected:
8893 int
8894 do_traverse(Traverse*);
8895
8896 Type*
8897 do_type();
8898
8899 void
8900 do_determine_type(const Type_context*);
8901
8902 void
8903 do_check_types(Gogo*);
8904
8905 Expression*
8906 do_copy()
8907 {
8908 return new Call_result_expression(this->call_->call_expression(),
8909 this->index_);
8910 }
8911
8912 bool
8913 do_must_eval_in_order() const
8914 { return true; }
8915
8916 tree
8917 do_get_tree(Translate_context*);
8918
8919 private:
8920 // The underlying call expression.
8921 Expression* call_;
8922 // Which result we want.
8923 unsigned int index_;
8924 };
8925
8926 // Traverse a call result.
8927
8928 int
8929 Call_result_expression::do_traverse(Traverse* traverse)
8930 {
8931 if (traverse->remember_expression(this->call_))
8932 {
8933 // We have already traversed the call expression.
8934 return TRAVERSE_CONTINUE;
8935 }
8936 return Expression::traverse(&this->call_, traverse);
8937 }
8938
8939 // Get the type.
8940
8941 Type*
8942 Call_result_expression::do_type()
8943 {
8944 if (this->classification() == EXPRESSION_ERROR)
8945 return Type::make_error_type();
8946
8947 // THIS->CALL_ can be replaced with a temporary reference due to
8948 // Call_expression::do_must_eval_in_order when there is an error.
8949 Call_expression* ce = this->call_->call_expression();
8950 if (ce == NULL)
8951 {
8952 this->set_is_error();
8953 return Type::make_error_type();
8954 }
8955 Function_type* fntype = ce->get_function_type();
8956 if (fntype == NULL)
8957 {
8958 this->set_is_error();
8959 return Type::make_error_type();
8960 }
8961 const Typed_identifier_list* results = fntype->results();
8962 if (results == NULL)
8963 {
8964 this->report_error(_("number of results does not match "
8965 "number of values"));
8966 return Type::make_error_type();
8967 }
8968 Typed_identifier_list::const_iterator pr = results->begin();
8969 for (unsigned int i = 0; i < this->index_; ++i)
8970 {
8971 if (pr == results->end())
8972 break;
8973 ++pr;
8974 }
8975 if (pr == results->end())
8976 {
8977 this->report_error(_("number of results does not match "
8978 "number of values"));
8979 return Type::make_error_type();
8980 }
8981 return pr->type();
8982 }
8983
8984 // Check the type. Just make sure that we trigger the warning in
8985 // do_type.
8986
8987 void
8988 Call_result_expression::do_check_types(Gogo*)
8989 {
8990 this->type();
8991 }
8992
8993 // Determine the type. We have nothing to do here, but the 0 result
8994 // needs to pass down to the caller.
8995
8996 void
8997 Call_result_expression::do_determine_type(const Type_context*)
8998 {
8999 if (this->index_ == 0)
9000 this->call_->determine_type_no_context();
9001 }
9002
9003 // Return the tree.
9004
9005 tree
9006 Call_result_expression::do_get_tree(Translate_context* context)
9007 {
9008 tree call_tree = this->call_->get_tree(context);
9009 if (call_tree == error_mark_node)
9010 return error_mark_node;
9011 if (TREE_CODE(TREE_TYPE(call_tree)) != RECORD_TYPE)
9012 {
9013 gcc_assert(saw_errors());
9014 return error_mark_node;
9015 }
9016 tree field = TYPE_FIELDS(TREE_TYPE(call_tree));
9017 for (unsigned int i = 0; i < this->index_; ++i)
9018 {
9019 gcc_assert(field != NULL_TREE);
9020 field = DECL_CHAIN(field);
9021 }
9022 gcc_assert(field != NULL_TREE);
9023 return build3(COMPONENT_REF, TREE_TYPE(field), call_tree, field, NULL_TREE);
9024 }
9025
9026 // Make a reference to a single result of a call which returns
9027 // multiple results.
9028
9029 Expression*
9030 Expression::make_call_result(Call_expression* call, unsigned int index)
9031 {
9032 return new Call_result_expression(call, index);
9033 }
9034
9035 // Class Index_expression.
9036
9037 // Traversal.
9038
9039 int
9040 Index_expression::do_traverse(Traverse* traverse)
9041 {
9042 if (Expression::traverse(&this->left_, traverse) == TRAVERSE_EXIT
9043 || Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT
9044 || (this->end_ != NULL
9045 && Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT))
9046 return TRAVERSE_EXIT;
9047 return TRAVERSE_CONTINUE;
9048 }
9049
9050 // Lower an index expression. This converts the generic index
9051 // expression into an array index, a string index, or a map index.
9052
9053 Expression*
9054 Index_expression::do_lower(Gogo*, Named_object*, int)
9055 {
9056 source_location location = this->location();
9057 Expression* left = this->left_;
9058 Expression* start = this->start_;
9059 Expression* end = this->end_;
9060
9061 Type* type = left->type();
9062 if (type->is_error_type())
9063 return Expression::make_error(location);
9064 else if (type->array_type() != NULL)
9065 return Expression::make_array_index(left, start, end, location);
9066 else if (type->points_to() != NULL
9067 && type->points_to()->array_type() != NULL
9068 && !type->points_to()->is_open_array_type())
9069 {
9070 Expression* deref = Expression::make_unary(OPERATOR_MULT, left,
9071 location);
9072 return Expression::make_array_index(deref, start, end, location);
9073 }
9074 else if (type->is_string_type())
9075 return Expression::make_string_index(left, start, end, location);
9076 else if (type->map_type() != NULL)
9077 {
9078 if (end != NULL)
9079 {
9080 error_at(location, "invalid slice of map");
9081 return Expression::make_error(location);
9082 }
9083 Map_index_expression* ret= Expression::make_map_index(left, start,
9084 location);
9085 if (this->is_lvalue_)
9086 ret->set_is_lvalue();
9087 return ret;
9088 }
9089 else
9090 {
9091 error_at(location,
9092 "attempt to index object which is not array, string, or map");
9093 return Expression::make_error(location);
9094 }
9095 }
9096
9097 // Make an index expression.
9098
9099 Expression*
9100 Expression::make_index(Expression* left, Expression* start, Expression* end,
9101 source_location location)
9102 {
9103 return new Index_expression(left, start, end, location);
9104 }
9105
9106 // An array index. This is used for both indexing and slicing.
9107
9108 class Array_index_expression : public Expression
9109 {
9110 public:
9111 Array_index_expression(Expression* array, Expression* start,
9112 Expression* end, source_location location)
9113 : Expression(EXPRESSION_ARRAY_INDEX, location),
9114 array_(array), start_(start), end_(end), type_(NULL)
9115 { }
9116
9117 protected:
9118 int
9119 do_traverse(Traverse*);
9120
9121 Type*
9122 do_type();
9123
9124 void
9125 do_determine_type(const Type_context*);
9126
9127 void
9128 do_check_types(Gogo*);
9129
9130 Expression*
9131 do_copy()
9132 {
9133 return Expression::make_array_index(this->array_->copy(),
9134 this->start_->copy(),
9135 (this->end_ == NULL
9136 ? NULL
9137 : this->end_->copy()),
9138 this->location());
9139 }
9140
9141 bool
9142 do_is_addressable() const;
9143
9144 void
9145 do_address_taken(bool escapes)
9146 { this->array_->address_taken(escapes); }
9147
9148 tree
9149 do_get_tree(Translate_context*);
9150
9151 private:
9152 // The array we are getting a value from.
9153 Expression* array_;
9154 // The start or only index.
9155 Expression* start_;
9156 // The end index of a slice. This may be NULL for a simple array
9157 // index, or it may be a nil expression for the length of the array.
9158 Expression* end_;
9159 // The type of the expression.
9160 Type* type_;
9161 };
9162
9163 // Array index traversal.
9164
9165 int
9166 Array_index_expression::do_traverse(Traverse* traverse)
9167 {
9168 if (Expression::traverse(&this->array_, traverse) == TRAVERSE_EXIT)
9169 return TRAVERSE_EXIT;
9170 if (Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT)
9171 return TRAVERSE_EXIT;
9172 if (this->end_ != NULL)
9173 {
9174 if (Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT)
9175 return TRAVERSE_EXIT;
9176 }
9177 return TRAVERSE_CONTINUE;
9178 }
9179
9180 // Return the type of an array index.
9181
9182 Type*
9183 Array_index_expression::do_type()
9184 {
9185 if (this->type_ == NULL)
9186 {
9187 Array_type* type = this->array_->type()->array_type();
9188 if (type == NULL)
9189 this->type_ = Type::make_error_type();
9190 else if (this->end_ == NULL)
9191 this->type_ = type->element_type();
9192 else if (type->is_open_array_type())
9193 {
9194 // A slice of a slice has the same type as the original
9195 // slice.
9196 this->type_ = this->array_->type()->deref();
9197 }
9198 else
9199 {
9200 // A slice of an array is a slice.
9201 this->type_ = Type::make_array_type(type->element_type(), NULL);
9202 }
9203 }
9204 return this->type_;
9205 }
9206
9207 // Set the type of an array index.
9208
9209 void
9210 Array_index_expression::do_determine_type(const Type_context*)
9211 {
9212 this->array_->determine_type_no_context();
9213 Type_context subcontext(NULL, true);
9214 this->start_->determine_type(&subcontext);
9215 if (this->end_ != NULL)
9216 this->end_->determine_type(&subcontext);
9217 }
9218
9219 // Check types of an array index.
9220
9221 void
9222 Array_index_expression::do_check_types(Gogo*)
9223 {
9224 if (this->start_->type()->integer_type() == NULL)
9225 this->report_error(_("index must be integer"));
9226 if (this->end_ != NULL
9227 && this->end_->type()->integer_type() == NULL
9228 && !this->end_->is_nil_expression())
9229 this->report_error(_("slice end must be integer"));
9230
9231 Array_type* array_type = this->array_->type()->array_type();
9232 if (array_type == NULL)
9233 {
9234 gcc_assert(this->array_->type()->is_error_type());
9235 return;
9236 }
9237
9238 unsigned int int_bits =
9239 Type::lookup_integer_type("int")->integer_type()->bits();
9240
9241 Type* dummy;
9242 mpz_t lval;
9243 mpz_init(lval);
9244 bool lval_valid = (array_type->length() != NULL
9245 && array_type->length()->integer_constant_value(true,
9246 lval,
9247 &dummy));
9248 mpz_t ival;
9249 mpz_init(ival);
9250 if (this->start_->integer_constant_value(true, ival, &dummy))
9251 {
9252 if (mpz_sgn(ival) < 0
9253 || mpz_sizeinbase(ival, 2) >= int_bits
9254 || (lval_valid
9255 && (this->end_ == NULL
9256 ? mpz_cmp(ival, lval) >= 0
9257 : mpz_cmp(ival, lval) > 0)))
9258 {
9259 error_at(this->start_->location(), "array index out of bounds");
9260 this->set_is_error();
9261 }
9262 }
9263 if (this->end_ != NULL && !this->end_->is_nil_expression())
9264 {
9265 if (this->end_->integer_constant_value(true, ival, &dummy))
9266 {
9267 if (mpz_sgn(ival) < 0
9268 || mpz_sizeinbase(ival, 2) >= int_bits
9269 || (lval_valid && mpz_cmp(ival, lval) > 0))
9270 {
9271 error_at(this->end_->location(), "array index out of bounds");
9272 this->set_is_error();
9273 }
9274 }
9275 }
9276 mpz_clear(ival);
9277 mpz_clear(lval);
9278
9279 // A slice of an array requires an addressable array. A slice of a
9280 // slice is always possible.
9281 if (this->end_ != NULL
9282 && !array_type->is_open_array_type()
9283 && !this->array_->is_addressable())
9284 this->report_error(_("array is not addressable"));
9285 }
9286
9287 // Return whether this expression is addressable.
9288
9289 bool
9290 Array_index_expression::do_is_addressable() const
9291 {
9292 // A slice expression is not addressable.
9293 if (this->end_ != NULL)
9294 return false;
9295
9296 // An index into a slice is addressable.
9297 if (this->array_->type()->is_open_array_type())
9298 return true;
9299
9300 // An index into an array is addressable if the array is
9301 // addressable.
9302 return this->array_->is_addressable();
9303 }
9304
9305 // Get a tree for an array index.
9306
9307 tree
9308 Array_index_expression::do_get_tree(Translate_context* context)
9309 {
9310 Gogo* gogo = context->gogo();
9311 source_location loc = this->location();
9312
9313 Array_type* array_type = this->array_->type()->array_type();
9314 if (array_type == NULL)
9315 {
9316 gcc_assert(this->array_->type()->is_error_type());
9317 return error_mark_node;
9318 }
9319
9320 tree type_tree = array_type->get_tree(gogo);
9321 if (type_tree == error_mark_node)
9322 return error_mark_node;
9323
9324 tree array_tree = this->array_->get_tree(context);
9325 if (array_tree == error_mark_node)
9326 return error_mark_node;
9327
9328 if (array_type->length() == NULL && !DECL_P(array_tree))
9329 array_tree = save_expr(array_tree);
9330 tree length_tree = array_type->length_tree(gogo, array_tree);
9331 if (length_tree == error_mark_node)
9332 return error_mark_node;
9333 length_tree = save_expr(length_tree);
9334 tree length_type = TREE_TYPE(length_tree);
9335
9336 tree bad_index = boolean_false_node;
9337
9338 tree start_tree = this->start_->get_tree(context);
9339 if (start_tree == error_mark_node)
9340 return error_mark_node;
9341 if (!DECL_P(start_tree))
9342 start_tree = save_expr(start_tree);
9343 if (!INTEGRAL_TYPE_P(TREE_TYPE(start_tree)))
9344 start_tree = convert_to_integer(length_type, start_tree);
9345
9346 bad_index = Expression::check_bounds(start_tree, length_type, bad_index,
9347 loc);
9348
9349 start_tree = fold_convert_loc(loc, length_type, start_tree);
9350 bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node, bad_index,
9351 fold_build2_loc(loc,
9352 (this->end_ == NULL
9353 ? GE_EXPR
9354 : GT_EXPR),
9355 boolean_type_node, start_tree,
9356 length_tree));
9357
9358 int code = (array_type->length() != NULL
9359 ? (this->end_ == NULL
9360 ? RUNTIME_ERROR_ARRAY_INDEX_OUT_OF_BOUNDS
9361 : RUNTIME_ERROR_ARRAY_SLICE_OUT_OF_BOUNDS)
9362 : (this->end_ == NULL
9363 ? RUNTIME_ERROR_SLICE_INDEX_OUT_OF_BOUNDS
9364 : RUNTIME_ERROR_SLICE_SLICE_OUT_OF_BOUNDS));
9365 tree crash = Gogo::runtime_error(code, loc);
9366
9367 if (this->end_ == NULL)
9368 {
9369 // Simple array indexing. This has to return an l-value, so
9370 // wrap the index check into START_TREE.
9371 start_tree = build2(COMPOUND_EXPR, TREE_TYPE(start_tree),
9372 build3(COND_EXPR, void_type_node,
9373 bad_index, crash, NULL_TREE),
9374 start_tree);
9375 start_tree = fold_convert_loc(loc, sizetype, start_tree);
9376
9377 if (array_type->length() != NULL)
9378 {
9379 // Fixed array.
9380 return build4(ARRAY_REF, TREE_TYPE(type_tree), array_tree,
9381 start_tree, NULL_TREE, NULL_TREE);
9382 }
9383 else
9384 {
9385 // Open array.
9386 tree values = array_type->value_pointer_tree(gogo, array_tree);
9387 tree element_type_tree = array_type->element_type()->get_tree(gogo);
9388 if (element_type_tree == error_mark_node)
9389 return error_mark_node;
9390 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
9391 tree offset = fold_build2_loc(loc, MULT_EXPR, sizetype,
9392 start_tree, element_size);
9393 tree ptr = fold_build2_loc(loc, POINTER_PLUS_EXPR,
9394 TREE_TYPE(values), values, offset);
9395 return build_fold_indirect_ref(ptr);
9396 }
9397 }
9398
9399 // Array slice.
9400
9401 tree capacity_tree = array_type->capacity_tree(gogo, array_tree);
9402 if (capacity_tree == error_mark_node)
9403 return error_mark_node;
9404 capacity_tree = fold_convert_loc(loc, length_type, capacity_tree);
9405
9406 tree end_tree;
9407 if (this->end_->is_nil_expression())
9408 end_tree = length_tree;
9409 else
9410 {
9411 end_tree = this->end_->get_tree(context);
9412 if (end_tree == error_mark_node)
9413 return error_mark_node;
9414 if (!DECL_P(end_tree))
9415 end_tree = save_expr(end_tree);
9416 if (!INTEGRAL_TYPE_P(TREE_TYPE(end_tree)))
9417 end_tree = convert_to_integer(length_type, end_tree);
9418
9419 bad_index = Expression::check_bounds(end_tree, length_type, bad_index,
9420 loc);
9421
9422 end_tree = fold_convert_loc(loc, length_type, end_tree);
9423
9424 capacity_tree = save_expr(capacity_tree);
9425 tree bad_end = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
9426 fold_build2_loc(loc, LT_EXPR,
9427 boolean_type_node,
9428 end_tree, start_tree),
9429 fold_build2_loc(loc, GT_EXPR,
9430 boolean_type_node,
9431 end_tree, capacity_tree));
9432 bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
9433 bad_index, bad_end);
9434 }
9435
9436 tree element_type_tree = array_type->element_type()->get_tree(gogo);
9437 if (element_type_tree == error_mark_node)
9438 return error_mark_node;
9439 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
9440
9441 tree offset = fold_build2_loc(loc, MULT_EXPR, sizetype,
9442 fold_convert_loc(loc, sizetype, start_tree),
9443 element_size);
9444
9445 tree value_pointer = array_type->value_pointer_tree(gogo, array_tree);
9446 if (value_pointer == error_mark_node)
9447 return error_mark_node;
9448
9449 value_pointer = fold_build2_loc(loc, POINTER_PLUS_EXPR,
9450 TREE_TYPE(value_pointer),
9451 value_pointer, offset);
9452
9453 tree result_length_tree = fold_build2_loc(loc, MINUS_EXPR, length_type,
9454 end_tree, start_tree);
9455
9456 tree result_capacity_tree = fold_build2_loc(loc, MINUS_EXPR, length_type,
9457 capacity_tree, start_tree);
9458
9459 tree struct_tree = this->type()->get_tree(gogo);
9460 gcc_assert(TREE_CODE(struct_tree) == RECORD_TYPE);
9461
9462 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
9463
9464 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
9465 tree field = TYPE_FIELDS(struct_tree);
9466 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
9467 elt->index = field;
9468 elt->value = value_pointer;
9469
9470 elt = VEC_quick_push(constructor_elt, init, NULL);
9471 field = DECL_CHAIN(field);
9472 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
9473 elt->index = field;
9474 elt->value = fold_convert_loc(loc, TREE_TYPE(field), result_length_tree);
9475
9476 elt = VEC_quick_push(constructor_elt, init, NULL);
9477 field = DECL_CHAIN(field);
9478 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__capacity") == 0);
9479 elt->index = field;
9480 elt->value = fold_convert_loc(loc, TREE_TYPE(field), result_capacity_tree);
9481
9482 tree constructor = build_constructor(struct_tree, init);
9483
9484 if (TREE_CONSTANT(value_pointer)
9485 && TREE_CONSTANT(result_length_tree)
9486 && TREE_CONSTANT(result_capacity_tree))
9487 TREE_CONSTANT(constructor) = 1;
9488
9489 return fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(constructor),
9490 build3(COND_EXPR, void_type_node,
9491 bad_index, crash, NULL_TREE),
9492 constructor);
9493 }
9494
9495 // Make an array index expression. END may be NULL.
9496
9497 Expression*
9498 Expression::make_array_index(Expression* array, Expression* start,
9499 Expression* end, source_location location)
9500 {
9501 // Taking a slice of a composite literal requires moving the literal
9502 // onto the heap.
9503 if (end != NULL && array->is_composite_literal())
9504 {
9505 array = Expression::make_heap_composite(array, location);
9506 array = Expression::make_unary(OPERATOR_MULT, array, location);
9507 }
9508 return new Array_index_expression(array, start, end, location);
9509 }
9510
9511 // A string index. This is used for both indexing and slicing.
9512
9513 class String_index_expression : public Expression
9514 {
9515 public:
9516 String_index_expression(Expression* string, Expression* start,
9517 Expression* end, source_location location)
9518 : Expression(EXPRESSION_STRING_INDEX, location),
9519 string_(string), start_(start), end_(end)
9520 { }
9521
9522 protected:
9523 int
9524 do_traverse(Traverse*);
9525
9526 Type*
9527 do_type();
9528
9529 void
9530 do_determine_type(const Type_context*);
9531
9532 void
9533 do_check_types(Gogo*);
9534
9535 Expression*
9536 do_copy()
9537 {
9538 return Expression::make_string_index(this->string_->copy(),
9539 this->start_->copy(),
9540 (this->end_ == NULL
9541 ? NULL
9542 : this->end_->copy()),
9543 this->location());
9544 }
9545
9546 tree
9547 do_get_tree(Translate_context*);
9548
9549 private:
9550 // The string we are getting a value from.
9551 Expression* string_;
9552 // The start or only index.
9553 Expression* start_;
9554 // The end index of a slice. This may be NULL for a single index,
9555 // or it may be a nil expression for the length of the string.
9556 Expression* end_;
9557 };
9558
9559 // String index traversal.
9560
9561 int
9562 String_index_expression::do_traverse(Traverse* traverse)
9563 {
9564 if (Expression::traverse(&this->string_, traverse) == TRAVERSE_EXIT)
9565 return TRAVERSE_EXIT;
9566 if (Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT)
9567 return TRAVERSE_EXIT;
9568 if (this->end_ != NULL)
9569 {
9570 if (Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT)
9571 return TRAVERSE_EXIT;
9572 }
9573 return TRAVERSE_CONTINUE;
9574 }
9575
9576 // Return the type of a string index.
9577
9578 Type*
9579 String_index_expression::do_type()
9580 {
9581 if (this->end_ == NULL)
9582 return Type::lookup_integer_type("uint8");
9583 else
9584 return this->string_->type();
9585 }
9586
9587 // Determine the type of a string index.
9588
9589 void
9590 String_index_expression::do_determine_type(const Type_context*)
9591 {
9592 this->string_->determine_type_no_context();
9593 Type_context subcontext(NULL, true);
9594 this->start_->determine_type(&subcontext);
9595 if (this->end_ != NULL)
9596 this->end_->determine_type(&subcontext);
9597 }
9598
9599 // Check types of a string index.
9600
9601 void
9602 String_index_expression::do_check_types(Gogo*)
9603 {
9604 if (this->start_->type()->integer_type() == NULL)
9605 this->report_error(_("index must be integer"));
9606 if (this->end_ != NULL
9607 && this->end_->type()->integer_type() == NULL
9608 && !this->end_->is_nil_expression())
9609 this->report_error(_("slice end must be integer"));
9610
9611 std::string sval;
9612 bool sval_valid = this->string_->string_constant_value(&sval);
9613
9614 mpz_t ival;
9615 mpz_init(ival);
9616 Type* dummy;
9617 if (this->start_->integer_constant_value(true, ival, &dummy))
9618 {
9619 if (mpz_sgn(ival) < 0
9620 || (sval_valid && mpz_cmp_ui(ival, sval.length()) >= 0))
9621 {
9622 error_at(this->start_->location(), "string index out of bounds");
9623 this->set_is_error();
9624 }
9625 }
9626 if (this->end_ != NULL && !this->end_->is_nil_expression())
9627 {
9628 if (this->end_->integer_constant_value(true, ival, &dummy))
9629 {
9630 if (mpz_sgn(ival) < 0
9631 || (sval_valid && mpz_cmp_ui(ival, sval.length()) > 0))
9632 {
9633 error_at(this->end_->location(), "string index out of bounds");
9634 this->set_is_error();
9635 }
9636 }
9637 }
9638 mpz_clear(ival);
9639 }
9640
9641 // Get a tree for a string index.
9642
9643 tree
9644 String_index_expression::do_get_tree(Translate_context* context)
9645 {
9646 source_location loc = this->location();
9647
9648 tree string_tree = this->string_->get_tree(context);
9649 if (string_tree == error_mark_node)
9650 return error_mark_node;
9651
9652 if (this->string_->type()->points_to() != NULL)
9653 string_tree = build_fold_indirect_ref(string_tree);
9654 if (!DECL_P(string_tree))
9655 string_tree = save_expr(string_tree);
9656 tree string_type = TREE_TYPE(string_tree);
9657
9658 tree length_tree = String_type::length_tree(context->gogo(), string_tree);
9659 length_tree = save_expr(length_tree);
9660 tree length_type = TREE_TYPE(length_tree);
9661
9662 tree bad_index = boolean_false_node;
9663
9664 tree start_tree = this->start_->get_tree(context);
9665 if (start_tree == error_mark_node)
9666 return error_mark_node;
9667 if (!DECL_P(start_tree))
9668 start_tree = save_expr(start_tree);
9669 if (!INTEGRAL_TYPE_P(TREE_TYPE(start_tree)))
9670 start_tree = convert_to_integer(length_type, start_tree);
9671
9672 bad_index = Expression::check_bounds(start_tree, length_type, bad_index,
9673 loc);
9674
9675 start_tree = fold_convert_loc(loc, length_type, start_tree);
9676
9677 int code = (this->end_ == NULL
9678 ? RUNTIME_ERROR_STRING_INDEX_OUT_OF_BOUNDS
9679 : RUNTIME_ERROR_STRING_SLICE_OUT_OF_BOUNDS);
9680 tree crash = Gogo::runtime_error(code, loc);
9681
9682 if (this->end_ == NULL)
9683 {
9684 bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
9685 bad_index,
9686 fold_build2_loc(loc, GE_EXPR,
9687 boolean_type_node,
9688 start_tree, length_tree));
9689
9690 tree bytes_tree = String_type::bytes_tree(context->gogo(), string_tree);
9691 tree ptr = fold_build2_loc(loc, POINTER_PLUS_EXPR, TREE_TYPE(bytes_tree),
9692 bytes_tree,
9693 fold_convert_loc(loc, sizetype, start_tree));
9694 tree index = build_fold_indirect_ref_loc(loc, ptr);
9695
9696 return build2(COMPOUND_EXPR, TREE_TYPE(index),
9697 build3(COND_EXPR, void_type_node,
9698 bad_index, crash, NULL_TREE),
9699 index);
9700 }
9701 else
9702 {
9703 tree end_tree;
9704 if (this->end_->is_nil_expression())
9705 end_tree = build_int_cst(length_type, -1);
9706 else
9707 {
9708 end_tree = this->end_->get_tree(context);
9709 if (end_tree == error_mark_node)
9710 return error_mark_node;
9711 if (!DECL_P(end_tree))
9712 end_tree = save_expr(end_tree);
9713 if (!INTEGRAL_TYPE_P(TREE_TYPE(end_tree)))
9714 end_tree = convert_to_integer(length_type, end_tree);
9715
9716 bad_index = Expression::check_bounds(end_tree, length_type,
9717 bad_index, loc);
9718
9719 end_tree = fold_convert_loc(loc, length_type, end_tree);
9720 }
9721
9722 static tree strslice_fndecl;
9723 tree ret = Gogo::call_builtin(&strslice_fndecl,
9724 loc,
9725 "__go_string_slice",
9726 3,
9727 string_type,
9728 string_type,
9729 string_tree,
9730 length_type,
9731 start_tree,
9732 length_type,
9733 end_tree);
9734 if (ret == error_mark_node)
9735 return error_mark_node;
9736 // This will panic if the bounds are out of range for the
9737 // string.
9738 TREE_NOTHROW(strslice_fndecl) = 0;
9739
9740 if (bad_index == boolean_false_node)
9741 return ret;
9742 else
9743 return build2(COMPOUND_EXPR, TREE_TYPE(ret),
9744 build3(COND_EXPR, void_type_node,
9745 bad_index, crash, NULL_TREE),
9746 ret);
9747 }
9748 }
9749
9750 // Make a string index expression. END may be NULL.
9751
9752 Expression*
9753 Expression::make_string_index(Expression* string, Expression* start,
9754 Expression* end, source_location location)
9755 {
9756 return new String_index_expression(string, start, end, location);
9757 }
9758
9759 // Class Map_index.
9760
9761 // Get the type of the map.
9762
9763 Map_type*
9764 Map_index_expression::get_map_type() const
9765 {
9766 Map_type* mt = this->map_->type()->deref()->map_type();
9767 if (mt == NULL)
9768 gcc_assert(saw_errors());
9769 return mt;
9770 }
9771
9772 // Map index traversal.
9773
9774 int
9775 Map_index_expression::do_traverse(Traverse* traverse)
9776 {
9777 if (Expression::traverse(&this->map_, traverse) == TRAVERSE_EXIT)
9778 return TRAVERSE_EXIT;
9779 return Expression::traverse(&this->index_, traverse);
9780 }
9781
9782 // Return the type of a map index.
9783
9784 Type*
9785 Map_index_expression::do_type()
9786 {
9787 Map_type* mt = this->get_map_type();
9788 if (mt == NULL)
9789 return Type::make_error_type();
9790 Type* type = mt->val_type();
9791 // If this map index is in a tuple assignment, we actually return a
9792 // pointer to the value type. Tuple_map_assignment_statement is
9793 // responsible for handling this correctly. We need to get the type
9794 // right in case this gets assigned to a temporary variable.
9795 if (this->is_in_tuple_assignment_)
9796 type = Type::make_pointer_type(type);
9797 return type;
9798 }
9799
9800 // Fix the type of a map index.
9801
9802 void
9803 Map_index_expression::do_determine_type(const Type_context*)
9804 {
9805 this->map_->determine_type_no_context();
9806 Map_type* mt = this->get_map_type();
9807 Type* key_type = mt == NULL ? NULL : mt->key_type();
9808 Type_context subcontext(key_type, false);
9809 this->index_->determine_type(&subcontext);
9810 }
9811
9812 // Check types of a map index.
9813
9814 void
9815 Map_index_expression::do_check_types(Gogo*)
9816 {
9817 std::string reason;
9818 Map_type* mt = this->get_map_type();
9819 if (mt == NULL)
9820 return;
9821 if (!Type::are_assignable(mt->key_type(), this->index_->type(), &reason))
9822 {
9823 if (reason.empty())
9824 this->report_error(_("incompatible type for map index"));
9825 else
9826 {
9827 error_at(this->location(), "incompatible type for map index (%s)",
9828 reason.c_str());
9829 this->set_is_error();
9830 }
9831 }
9832 }
9833
9834 // Get a tree for a map index.
9835
9836 tree
9837 Map_index_expression::do_get_tree(Translate_context* context)
9838 {
9839 Map_type* type = this->get_map_type();
9840 if (type == NULL)
9841 return error_mark_node;
9842
9843 tree valptr = this->get_value_pointer(context, this->is_lvalue_);
9844 if (valptr == error_mark_node)
9845 return error_mark_node;
9846 valptr = save_expr(valptr);
9847
9848 tree val_type_tree = TREE_TYPE(TREE_TYPE(valptr));
9849
9850 if (this->is_lvalue_)
9851 return build_fold_indirect_ref(valptr);
9852 else if (this->is_in_tuple_assignment_)
9853 {
9854 // Tuple_map_assignment_statement is responsible for using this
9855 // appropriately.
9856 return valptr;
9857 }
9858 else
9859 {
9860 return fold_build3(COND_EXPR, val_type_tree,
9861 fold_build2(EQ_EXPR, boolean_type_node, valptr,
9862 fold_convert(TREE_TYPE(valptr),
9863 null_pointer_node)),
9864 type->val_type()->get_init_tree(context->gogo(),
9865 false),
9866 build_fold_indirect_ref(valptr));
9867 }
9868 }
9869
9870 // Get a tree for the map index. This returns a tree which evaluates
9871 // to a pointer to a value. The pointer will be NULL if the key is
9872 // not in the map.
9873
9874 tree
9875 Map_index_expression::get_value_pointer(Translate_context* context,
9876 bool insert)
9877 {
9878 Map_type* type = this->get_map_type();
9879 if (type == NULL)
9880 return error_mark_node;
9881
9882 tree map_tree = this->map_->get_tree(context);
9883 tree index_tree = this->index_->get_tree(context);
9884 index_tree = Expression::convert_for_assignment(context, type->key_type(),
9885 this->index_->type(),
9886 index_tree,
9887 this->location());
9888 if (map_tree == error_mark_node || index_tree == error_mark_node)
9889 return error_mark_node;
9890
9891 if (this->map_->type()->points_to() != NULL)
9892 map_tree = build_fold_indirect_ref(map_tree);
9893
9894 // We need to pass in a pointer to the key, so stuff it into a
9895 // variable.
9896 tree tmp = create_tmp_var(TREE_TYPE(index_tree), get_name(index_tree));
9897 DECL_IGNORED_P(tmp) = 0;
9898 DECL_INITIAL(tmp) = index_tree;
9899 tree make_tmp = build1(DECL_EXPR, void_type_node, tmp);
9900 tree tmpref = fold_convert(const_ptr_type_node, build_fold_addr_expr(tmp));
9901 TREE_ADDRESSABLE(tmp) = 1;
9902
9903 static tree map_index_fndecl;
9904 tree call = Gogo::call_builtin(&map_index_fndecl,
9905 this->location(),
9906 "__go_map_index",
9907 3,
9908 const_ptr_type_node,
9909 TREE_TYPE(map_tree),
9910 map_tree,
9911 const_ptr_type_node,
9912 tmpref,
9913 boolean_type_node,
9914 (insert
9915 ? boolean_true_node
9916 : boolean_false_node));
9917 if (call == error_mark_node)
9918 return error_mark_node;
9919 // This can panic on a map of interface type if the interface holds
9920 // an uncomparable or unhashable type.
9921 TREE_NOTHROW(map_index_fndecl) = 0;
9922
9923 tree val_type_tree = type->val_type()->get_tree(context->gogo());
9924 if (val_type_tree == error_mark_node)
9925 return error_mark_node;
9926 tree ptr_val_type_tree = build_pointer_type(val_type_tree);
9927
9928 return build2(COMPOUND_EXPR, ptr_val_type_tree,
9929 make_tmp,
9930 fold_convert(ptr_val_type_tree, call));
9931 }
9932
9933 // Make a map index expression.
9934
9935 Map_index_expression*
9936 Expression::make_map_index(Expression* map, Expression* index,
9937 source_location location)
9938 {
9939 return new Map_index_expression(map, index, location);
9940 }
9941
9942 // Class Field_reference_expression.
9943
9944 // Return the type of a field reference.
9945
9946 Type*
9947 Field_reference_expression::do_type()
9948 {
9949 Struct_type* struct_type = this->expr_->type()->struct_type();
9950 gcc_assert(struct_type != NULL);
9951 return struct_type->field(this->field_index_)->type();
9952 }
9953
9954 // Check the types for a field reference.
9955
9956 void
9957 Field_reference_expression::do_check_types(Gogo*)
9958 {
9959 Struct_type* struct_type = this->expr_->type()->struct_type();
9960 gcc_assert(struct_type != NULL);
9961 gcc_assert(struct_type->field(this->field_index_) != NULL);
9962 }
9963
9964 // Get a tree for a field reference.
9965
9966 tree
9967 Field_reference_expression::do_get_tree(Translate_context* context)
9968 {
9969 tree struct_tree = this->expr_->get_tree(context);
9970 if (struct_tree == error_mark_node
9971 || TREE_TYPE(struct_tree) == error_mark_node)
9972 return error_mark_node;
9973 gcc_assert(TREE_CODE(TREE_TYPE(struct_tree)) == RECORD_TYPE);
9974 tree field = TYPE_FIELDS(TREE_TYPE(struct_tree));
9975 if (field == NULL_TREE)
9976 {
9977 // This can happen for a type which refers to itself indirectly
9978 // and then turns out to be erroneous.
9979 gcc_assert(saw_errors());
9980 return error_mark_node;
9981 }
9982 for (unsigned int i = this->field_index_; i > 0; --i)
9983 {
9984 field = DECL_CHAIN(field);
9985 gcc_assert(field != NULL_TREE);
9986 }
9987 if (TREE_TYPE(field) == error_mark_node)
9988 return error_mark_node;
9989 return build3(COMPONENT_REF, TREE_TYPE(field), struct_tree, field,
9990 NULL_TREE);
9991 }
9992
9993 // Make a reference to a qualified identifier in an expression.
9994
9995 Field_reference_expression*
9996 Expression::make_field_reference(Expression* expr, unsigned int field_index,
9997 source_location location)
9998 {
9999 return new Field_reference_expression(expr, field_index, location);
10000 }
10001
10002 // Class Interface_field_reference_expression.
10003
10004 // Return a tree for the pointer to the function to call.
10005
10006 tree
10007 Interface_field_reference_expression::get_function_tree(Translate_context*,
10008 tree expr)
10009 {
10010 if (this->expr_->type()->points_to() != NULL)
10011 expr = build_fold_indirect_ref(expr);
10012
10013 tree expr_type = TREE_TYPE(expr);
10014 gcc_assert(TREE_CODE(expr_type) == RECORD_TYPE);
10015
10016 tree field = TYPE_FIELDS(expr_type);
10017 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods") == 0);
10018
10019 tree table = build3(COMPONENT_REF, TREE_TYPE(field), expr, field, NULL_TREE);
10020 gcc_assert(POINTER_TYPE_P(TREE_TYPE(table)));
10021
10022 table = build_fold_indirect_ref(table);
10023 gcc_assert(TREE_CODE(TREE_TYPE(table)) == RECORD_TYPE);
10024
10025 std::string name = Gogo::unpack_hidden_name(this->name_);
10026 for (field = DECL_CHAIN(TYPE_FIELDS(TREE_TYPE(table)));
10027 field != NULL_TREE;
10028 field = DECL_CHAIN(field))
10029 {
10030 if (name == IDENTIFIER_POINTER(DECL_NAME(field)))
10031 break;
10032 }
10033 gcc_assert(field != NULL_TREE);
10034
10035 return build3(COMPONENT_REF, TREE_TYPE(field), table, field, NULL_TREE);
10036 }
10037
10038 // Return a tree for the first argument to pass to the interface
10039 // function.
10040
10041 tree
10042 Interface_field_reference_expression::get_underlying_object_tree(
10043 Translate_context*,
10044 tree expr)
10045 {
10046 if (this->expr_->type()->points_to() != NULL)
10047 expr = build_fold_indirect_ref(expr);
10048
10049 tree expr_type = TREE_TYPE(expr);
10050 gcc_assert(TREE_CODE(expr_type) == RECORD_TYPE);
10051
10052 tree field = DECL_CHAIN(TYPE_FIELDS(expr_type));
10053 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
10054
10055 return build3(COMPONENT_REF, TREE_TYPE(field), expr, field, NULL_TREE);
10056 }
10057
10058 // Traversal.
10059
10060 int
10061 Interface_field_reference_expression::do_traverse(Traverse* traverse)
10062 {
10063 return Expression::traverse(&this->expr_, traverse);
10064 }
10065
10066 // Return the type of an interface field reference.
10067
10068 Type*
10069 Interface_field_reference_expression::do_type()
10070 {
10071 Type* expr_type = this->expr_->type();
10072
10073 Type* points_to = expr_type->points_to();
10074 if (points_to != NULL)
10075 expr_type = points_to;
10076
10077 Interface_type* interface_type = expr_type->interface_type();
10078 if (interface_type == NULL)
10079 return Type::make_error_type();
10080
10081 const Typed_identifier* method = interface_type->find_method(this->name_);
10082 if (method == NULL)
10083 return Type::make_error_type();
10084
10085 return method->type();
10086 }
10087
10088 // Determine types.
10089
10090 void
10091 Interface_field_reference_expression::do_determine_type(const Type_context*)
10092 {
10093 this->expr_->determine_type_no_context();
10094 }
10095
10096 // Check the types for an interface field reference.
10097
10098 void
10099 Interface_field_reference_expression::do_check_types(Gogo*)
10100 {
10101 Type* type = this->expr_->type();
10102
10103 Type* points_to = type->points_to();
10104 if (points_to != NULL)
10105 type = points_to;
10106
10107 Interface_type* interface_type = type->interface_type();
10108 if (interface_type == NULL)
10109 this->report_error(_("expected interface or pointer to interface"));
10110 else
10111 {
10112 const Typed_identifier* method =
10113 interface_type->find_method(this->name_);
10114 if (method == NULL)
10115 {
10116 error_at(this->location(), "method %qs not in interface",
10117 Gogo::message_name(this->name_).c_str());
10118 this->set_is_error();
10119 }
10120 }
10121 }
10122
10123 // Get a tree for a reference to a field in an interface. There is no
10124 // standard tree type representation for this: it's a function
10125 // attached to its first argument, like a Bound_method_expression.
10126 // The only places it may currently be used are in a Call_expression
10127 // or a Go_statement, which will take it apart directly. So this has
10128 // nothing to do at present.
10129
10130 tree
10131 Interface_field_reference_expression::do_get_tree(Translate_context*)
10132 {
10133 gcc_unreachable();
10134 }
10135
10136 // Make a reference to a field in an interface.
10137
10138 Expression*
10139 Expression::make_interface_field_reference(Expression* expr,
10140 const std::string& field,
10141 source_location location)
10142 {
10143 return new Interface_field_reference_expression(expr, field, location);
10144 }
10145
10146 // A general selector. This is a Parser_expression for LEFT.NAME. It
10147 // is lowered after we know the type of the left hand side.
10148
10149 class Selector_expression : public Parser_expression
10150 {
10151 public:
10152 Selector_expression(Expression* left, const std::string& name,
10153 source_location location)
10154 : Parser_expression(EXPRESSION_SELECTOR, location),
10155 left_(left), name_(name)
10156 { }
10157
10158 protected:
10159 int
10160 do_traverse(Traverse* traverse)
10161 { return Expression::traverse(&this->left_, traverse); }
10162
10163 Expression*
10164 do_lower(Gogo*, Named_object*, int);
10165
10166 Expression*
10167 do_copy()
10168 {
10169 return new Selector_expression(this->left_->copy(), this->name_,
10170 this->location());
10171 }
10172
10173 private:
10174 Expression*
10175 lower_method_expression(Gogo*);
10176
10177 // The expression on the left hand side.
10178 Expression* left_;
10179 // The name on the right hand side.
10180 std::string name_;
10181 };
10182
10183 // Lower a selector expression once we know the real type of the left
10184 // hand side.
10185
10186 Expression*
10187 Selector_expression::do_lower(Gogo* gogo, Named_object*, int)
10188 {
10189 Expression* left = this->left_;
10190 if (left->is_type_expression())
10191 return this->lower_method_expression(gogo);
10192 return Type::bind_field_or_method(gogo, left->type(), left, this->name_,
10193 this->location());
10194 }
10195
10196 // Lower a method expression T.M or (*T).M. We turn this into a
10197 // function literal.
10198
10199 Expression*
10200 Selector_expression::lower_method_expression(Gogo* gogo)
10201 {
10202 source_location location = this->location();
10203 Type* type = this->left_->type();
10204 const std::string& name(this->name_);
10205
10206 bool is_pointer;
10207 if (type->points_to() == NULL)
10208 is_pointer = false;
10209 else
10210 {
10211 is_pointer = true;
10212 type = type->points_to();
10213 }
10214 Named_type* nt = type->named_type();
10215 if (nt == NULL)
10216 {
10217 error_at(location,
10218 ("method expression requires named type or "
10219 "pointer to named type"));
10220 return Expression::make_error(location);
10221 }
10222
10223 bool is_ambiguous;
10224 Method* method = nt->method_function(name, &is_ambiguous);
10225 if (method == NULL)
10226 {
10227 if (!is_ambiguous)
10228 error_at(location, "type %<%s%> has no method %<%s%>",
10229 nt->message_name().c_str(),
10230 Gogo::message_name(name).c_str());
10231 else
10232 error_at(location, "method %<%s%> is ambiguous in type %<%s%>",
10233 Gogo::message_name(name).c_str(),
10234 nt->message_name().c_str());
10235 return Expression::make_error(location);
10236 }
10237
10238 if (!is_pointer && !method->is_value_method())
10239 {
10240 error_at(location, "method requires pointer (use %<(*%s).%s)%>",
10241 nt->message_name().c_str(),
10242 Gogo::message_name(name).c_str());
10243 return Expression::make_error(location);
10244 }
10245
10246 // Build a new function type in which the receiver becomes the first
10247 // argument.
10248 Function_type* method_type = method->type();
10249 gcc_assert(method_type->is_method());
10250
10251 const char* const receiver_name = "$this";
10252 Typed_identifier_list* parameters = new Typed_identifier_list();
10253 parameters->push_back(Typed_identifier(receiver_name, this->left_->type(),
10254 location));
10255
10256 const Typed_identifier_list* method_parameters = method_type->parameters();
10257 if (method_parameters != NULL)
10258 {
10259 for (Typed_identifier_list::const_iterator p = method_parameters->begin();
10260 p != method_parameters->end();
10261 ++p)
10262 parameters->push_back(*p);
10263 }
10264
10265 const Typed_identifier_list* method_results = method_type->results();
10266 Typed_identifier_list* results;
10267 if (method_results == NULL)
10268 results = NULL;
10269 else
10270 {
10271 results = new Typed_identifier_list();
10272 for (Typed_identifier_list::const_iterator p = method_results->begin();
10273 p != method_results->end();
10274 ++p)
10275 results->push_back(*p);
10276 }
10277
10278 Function_type* fntype = Type::make_function_type(NULL, parameters, results,
10279 location);
10280 if (method_type->is_varargs())
10281 fntype->set_is_varargs();
10282
10283 // We generate methods which always takes a pointer to the receiver
10284 // as their first argument. If this is for a pointer type, we can
10285 // simply reuse the existing function. We use an internal hack to
10286 // get the right type.
10287
10288 if (is_pointer)
10289 {
10290 Named_object* mno = (method->needs_stub_method()
10291 ? method->stub_object()
10292 : method->named_object());
10293 Expression* f = Expression::make_func_reference(mno, NULL, location);
10294 f = Expression::make_cast(fntype, f, location);
10295 Type_conversion_expression* tce =
10296 static_cast<Type_conversion_expression*>(f);
10297 tce->set_may_convert_function_types();
10298 return f;
10299 }
10300
10301 Named_object* no = gogo->start_function(Gogo::thunk_name(), fntype, false,
10302 location);
10303
10304 Named_object* vno = gogo->lookup(receiver_name, NULL);
10305 gcc_assert(vno != NULL);
10306 Expression* ve = Expression::make_var_reference(vno, location);
10307 Expression* bm = Type::bind_field_or_method(gogo, nt, ve, name, location);
10308 gcc_assert(bm != NULL && !bm->is_error_expression());
10309
10310 Expression_list* args;
10311 if (method_parameters == NULL)
10312 args = NULL;
10313 else
10314 {
10315 args = new Expression_list();
10316 for (Typed_identifier_list::const_iterator p = method_parameters->begin();
10317 p != method_parameters->end();
10318 ++p)
10319 {
10320 vno = gogo->lookup(p->name(), NULL);
10321 gcc_assert(vno != NULL);
10322 args->push_back(Expression::make_var_reference(vno, location));
10323 }
10324 }
10325
10326 Call_expression* call = Expression::make_call(bm, args,
10327 method_type->is_varargs(),
10328 location);
10329
10330 size_t count = call->result_count();
10331 Statement* s;
10332 if (count == 0)
10333 s = Statement::make_statement(call);
10334 else
10335 {
10336 Expression_list* retvals = new Expression_list();
10337 if (count <= 1)
10338 retvals->push_back(call);
10339 else
10340 {
10341 for (size_t i = 0; i < count; ++i)
10342 retvals->push_back(Expression::make_call_result(call, i));
10343 }
10344 s = Statement::make_return_statement(no->func_value()->type()->results(),
10345 retvals, location);
10346 }
10347 gogo->add_statement(s);
10348
10349 gogo->finish_function(location);
10350
10351 return Expression::make_func_reference(no, NULL, location);
10352 }
10353
10354 // Make a selector expression.
10355
10356 Expression*
10357 Expression::make_selector(Expression* left, const std::string& name,
10358 source_location location)
10359 {
10360 return new Selector_expression(left, name, location);
10361 }
10362
10363 // Implement the builtin function new.
10364
10365 class Allocation_expression : public Expression
10366 {
10367 public:
10368 Allocation_expression(Type* type, source_location location)
10369 : Expression(EXPRESSION_ALLOCATION, location),
10370 type_(type)
10371 { }
10372
10373 protected:
10374 int
10375 do_traverse(Traverse* traverse)
10376 { return Type::traverse(this->type_, traverse); }
10377
10378 Type*
10379 do_type()
10380 { return Type::make_pointer_type(this->type_); }
10381
10382 void
10383 do_determine_type(const Type_context*)
10384 { }
10385
10386 void
10387 do_check_types(Gogo*);
10388
10389 Expression*
10390 do_copy()
10391 { return new Allocation_expression(this->type_, this->location()); }
10392
10393 tree
10394 do_get_tree(Translate_context*);
10395
10396 private:
10397 // The type we are allocating.
10398 Type* type_;
10399 };
10400
10401 // Check the type of an allocation expression.
10402
10403 void
10404 Allocation_expression::do_check_types(Gogo*)
10405 {
10406 if (this->type_->function_type() != NULL)
10407 this->report_error(_("invalid new of function type"));
10408 }
10409
10410 // Return a tree for an allocation expression.
10411
10412 tree
10413 Allocation_expression::do_get_tree(Translate_context* context)
10414 {
10415 tree type_tree = this->type_->get_tree(context->gogo());
10416 if (type_tree == error_mark_node)
10417 return error_mark_node;
10418 tree size_tree = TYPE_SIZE_UNIT(type_tree);
10419 tree space = context->gogo()->allocate_memory(this->type_, size_tree,
10420 this->location());
10421 if (space == error_mark_node)
10422 return error_mark_node;
10423 return fold_convert(build_pointer_type(type_tree), space);
10424 }
10425
10426 // Make an allocation expression.
10427
10428 Expression*
10429 Expression::make_allocation(Type* type, source_location location)
10430 {
10431 return new Allocation_expression(type, location);
10432 }
10433
10434 // Implement the builtin function make.
10435
10436 class Make_expression : public Expression
10437 {
10438 public:
10439 Make_expression(Type* type, Expression_list* args, source_location location)
10440 : Expression(EXPRESSION_MAKE, location),
10441 type_(type), args_(args)
10442 { }
10443
10444 protected:
10445 int
10446 do_traverse(Traverse* traverse);
10447
10448 Type*
10449 do_type()
10450 { return this->type_; }
10451
10452 void
10453 do_determine_type(const Type_context*);
10454
10455 void
10456 do_check_types(Gogo*);
10457
10458 Expression*
10459 do_copy()
10460 {
10461 return new Make_expression(this->type_, this->args_->copy(),
10462 this->location());
10463 }
10464
10465 tree
10466 do_get_tree(Translate_context*);
10467
10468 private:
10469 // The type we are making.
10470 Type* type_;
10471 // The arguments to pass to the make routine.
10472 Expression_list* args_;
10473 };
10474
10475 // Traversal.
10476
10477 int
10478 Make_expression::do_traverse(Traverse* traverse)
10479 {
10480 if (this->args_ != NULL
10481 && this->args_->traverse(traverse) == TRAVERSE_EXIT)
10482 return TRAVERSE_EXIT;
10483 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10484 return TRAVERSE_EXIT;
10485 return TRAVERSE_CONTINUE;
10486 }
10487
10488 // Set types of arguments.
10489
10490 void
10491 Make_expression::do_determine_type(const Type_context*)
10492 {
10493 if (this->args_ != NULL)
10494 {
10495 Type_context context(Type::lookup_integer_type("int"), false);
10496 for (Expression_list::const_iterator pe = this->args_->begin();
10497 pe != this->args_->end();
10498 ++pe)
10499 (*pe)->determine_type(&context);
10500 }
10501 }
10502
10503 // Check types for a make expression.
10504
10505 void
10506 Make_expression::do_check_types(Gogo*)
10507 {
10508 if (this->type_->channel_type() == NULL
10509 && this->type_->map_type() == NULL
10510 && (this->type_->array_type() == NULL
10511 || this->type_->array_type()->length() != NULL))
10512 this->report_error(_("invalid type for make function"));
10513 else if (!this->type_->check_make_expression(this->args_, this->location()))
10514 this->set_is_error();
10515 }
10516
10517 // Return a tree for a make expression.
10518
10519 tree
10520 Make_expression::do_get_tree(Translate_context* context)
10521 {
10522 return this->type_->make_expression_tree(context, this->args_,
10523 this->location());
10524 }
10525
10526 // Make a make expression.
10527
10528 Expression*
10529 Expression::make_make(Type* type, Expression_list* args,
10530 source_location location)
10531 {
10532 return new Make_expression(type, args, location);
10533 }
10534
10535 // Construct a struct.
10536
10537 class Struct_construction_expression : public Expression
10538 {
10539 public:
10540 Struct_construction_expression(Type* type, Expression_list* vals,
10541 source_location location)
10542 : Expression(EXPRESSION_STRUCT_CONSTRUCTION, location),
10543 type_(type), vals_(vals)
10544 { }
10545
10546 // Return whether this is a constant initializer.
10547 bool
10548 is_constant_struct() const;
10549
10550 protected:
10551 int
10552 do_traverse(Traverse* traverse);
10553
10554 Type*
10555 do_type()
10556 { return this->type_; }
10557
10558 void
10559 do_determine_type(const Type_context*);
10560
10561 void
10562 do_check_types(Gogo*);
10563
10564 Expression*
10565 do_copy()
10566 {
10567 return new Struct_construction_expression(this->type_, this->vals_->copy(),
10568 this->location());
10569 }
10570
10571 bool
10572 do_is_addressable() const
10573 { return true; }
10574
10575 tree
10576 do_get_tree(Translate_context*);
10577
10578 void
10579 do_export(Export*) const;
10580
10581 private:
10582 // The type of the struct to construct.
10583 Type* type_;
10584 // The list of values, in order of the fields in the struct. A NULL
10585 // entry means that the field should be zero-initialized.
10586 Expression_list* vals_;
10587 };
10588
10589 // Traversal.
10590
10591 int
10592 Struct_construction_expression::do_traverse(Traverse* traverse)
10593 {
10594 if (this->vals_ != NULL
10595 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
10596 return TRAVERSE_EXIT;
10597 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10598 return TRAVERSE_EXIT;
10599 return TRAVERSE_CONTINUE;
10600 }
10601
10602 // Return whether this is a constant initializer.
10603
10604 bool
10605 Struct_construction_expression::is_constant_struct() const
10606 {
10607 if (this->vals_ == NULL)
10608 return true;
10609 for (Expression_list::const_iterator pv = this->vals_->begin();
10610 pv != this->vals_->end();
10611 ++pv)
10612 {
10613 if (*pv != NULL
10614 && !(*pv)->is_constant()
10615 && (!(*pv)->is_composite_literal()
10616 || (*pv)->is_nonconstant_composite_literal()))
10617 return false;
10618 }
10619
10620 const Struct_field_list* fields = this->type_->struct_type()->fields();
10621 for (Struct_field_list::const_iterator pf = fields->begin();
10622 pf != fields->end();
10623 ++pf)
10624 {
10625 // There are no constant constructors for interfaces.
10626 if (pf->type()->interface_type() != NULL)
10627 return false;
10628 }
10629
10630 return true;
10631 }
10632
10633 // Final type determination.
10634
10635 void
10636 Struct_construction_expression::do_determine_type(const Type_context*)
10637 {
10638 if (this->vals_ == NULL)
10639 return;
10640 const Struct_field_list* fields = this->type_->struct_type()->fields();
10641 Expression_list::const_iterator pv = this->vals_->begin();
10642 for (Struct_field_list::const_iterator pf = fields->begin();
10643 pf != fields->end();
10644 ++pf, ++pv)
10645 {
10646 if (pv == this->vals_->end())
10647 return;
10648 if (*pv != NULL)
10649 {
10650 Type_context subcontext(pf->type(), false);
10651 (*pv)->determine_type(&subcontext);
10652 }
10653 }
10654 // Extra values are an error we will report elsewhere; we still want
10655 // to determine the type to avoid knockon errors.
10656 for (; pv != this->vals_->end(); ++pv)
10657 (*pv)->determine_type_no_context();
10658 }
10659
10660 // Check types.
10661
10662 void
10663 Struct_construction_expression::do_check_types(Gogo*)
10664 {
10665 if (this->vals_ == NULL)
10666 return;
10667
10668 Struct_type* st = this->type_->struct_type();
10669 if (this->vals_->size() > st->field_count())
10670 {
10671 this->report_error(_("too many expressions for struct"));
10672 return;
10673 }
10674
10675 const Struct_field_list* fields = st->fields();
10676 Expression_list::const_iterator pv = this->vals_->begin();
10677 int i = 0;
10678 for (Struct_field_list::const_iterator pf = fields->begin();
10679 pf != fields->end();
10680 ++pf, ++pv, ++i)
10681 {
10682 if (pv == this->vals_->end())
10683 {
10684 this->report_error(_("too few expressions for struct"));
10685 break;
10686 }
10687
10688 if (*pv == NULL)
10689 continue;
10690
10691 std::string reason;
10692 if (!Type::are_assignable(pf->type(), (*pv)->type(), &reason))
10693 {
10694 if (reason.empty())
10695 error_at((*pv)->location(),
10696 "incompatible type for field %d in struct construction",
10697 i + 1);
10698 else
10699 error_at((*pv)->location(),
10700 ("incompatible type for field %d in "
10701 "struct construction (%s)"),
10702 i + 1, reason.c_str());
10703 this->set_is_error();
10704 }
10705 }
10706 gcc_assert(pv == this->vals_->end());
10707 }
10708
10709 // Return a tree for constructing a struct.
10710
10711 tree
10712 Struct_construction_expression::do_get_tree(Translate_context* context)
10713 {
10714 Gogo* gogo = context->gogo();
10715
10716 if (this->vals_ == NULL)
10717 return this->type_->get_init_tree(gogo, false);
10718
10719 tree type_tree = this->type_->get_tree(gogo);
10720 if (type_tree == error_mark_node)
10721 return error_mark_node;
10722 gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
10723
10724 bool is_constant = true;
10725 const Struct_field_list* fields = this->type_->struct_type()->fields();
10726 VEC(constructor_elt,gc)* elts = VEC_alloc(constructor_elt, gc,
10727 fields->size());
10728 Struct_field_list::const_iterator pf = fields->begin();
10729 Expression_list::const_iterator pv = this->vals_->begin();
10730 for (tree field = TYPE_FIELDS(type_tree);
10731 field != NULL_TREE;
10732 field = DECL_CHAIN(field), ++pf)
10733 {
10734 gcc_assert(pf != fields->end());
10735
10736 tree val;
10737 if (pv == this->vals_->end())
10738 val = pf->type()->get_init_tree(gogo, false);
10739 else if (*pv == NULL)
10740 {
10741 val = pf->type()->get_init_tree(gogo, false);
10742 ++pv;
10743 }
10744 else
10745 {
10746 val = Expression::convert_for_assignment(context, pf->type(),
10747 (*pv)->type(),
10748 (*pv)->get_tree(context),
10749 this->location());
10750 ++pv;
10751 }
10752
10753 if (val == error_mark_node || TREE_TYPE(val) == error_mark_node)
10754 return error_mark_node;
10755
10756 constructor_elt* elt = VEC_quick_push(constructor_elt, elts, NULL);
10757 elt->index = field;
10758 elt->value = val;
10759 if (!TREE_CONSTANT(val))
10760 is_constant = false;
10761 }
10762 gcc_assert(pf == fields->end());
10763
10764 tree ret = build_constructor(type_tree, elts);
10765 if (is_constant)
10766 TREE_CONSTANT(ret) = 1;
10767 return ret;
10768 }
10769
10770 // Export a struct construction.
10771
10772 void
10773 Struct_construction_expression::do_export(Export* exp) const
10774 {
10775 exp->write_c_string("convert(");
10776 exp->write_type(this->type_);
10777 for (Expression_list::const_iterator pv = this->vals_->begin();
10778 pv != this->vals_->end();
10779 ++pv)
10780 {
10781 exp->write_c_string(", ");
10782 if (*pv != NULL)
10783 (*pv)->export_expression(exp);
10784 }
10785 exp->write_c_string(")");
10786 }
10787
10788 // Make a struct composite literal. This used by the thunk code.
10789
10790 Expression*
10791 Expression::make_struct_composite_literal(Type* type, Expression_list* vals,
10792 source_location location)
10793 {
10794 gcc_assert(type->struct_type() != NULL);
10795 return new Struct_construction_expression(type, vals, location);
10796 }
10797
10798 // Construct an array. This class is not used directly; instead we
10799 // use the child classes, Fixed_array_construction_expression and
10800 // Open_array_construction_expression.
10801
10802 class Array_construction_expression : public Expression
10803 {
10804 protected:
10805 Array_construction_expression(Expression_classification classification,
10806 Type* type, Expression_list* vals,
10807 source_location location)
10808 : Expression(classification, location),
10809 type_(type), vals_(vals)
10810 { }
10811
10812 public:
10813 // Return whether this is a constant initializer.
10814 bool
10815 is_constant_array() const;
10816
10817 // Return the number of elements.
10818 size_t
10819 element_count() const
10820 { return this->vals_ == NULL ? 0 : this->vals_->size(); }
10821
10822 protected:
10823 int
10824 do_traverse(Traverse* traverse);
10825
10826 Type*
10827 do_type()
10828 { return this->type_; }
10829
10830 void
10831 do_determine_type(const Type_context*);
10832
10833 void
10834 do_check_types(Gogo*);
10835
10836 bool
10837 do_is_addressable() const
10838 { return true; }
10839
10840 void
10841 do_export(Export*) const;
10842
10843 // The list of values.
10844 Expression_list*
10845 vals()
10846 { return this->vals_; }
10847
10848 // Get a constructor tree for the array values.
10849 tree
10850 get_constructor_tree(Translate_context* context, tree type_tree);
10851
10852 private:
10853 // The type of the array to construct.
10854 Type* type_;
10855 // The list of values.
10856 Expression_list* vals_;
10857 };
10858
10859 // Traversal.
10860
10861 int
10862 Array_construction_expression::do_traverse(Traverse* traverse)
10863 {
10864 if (this->vals_ != NULL
10865 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
10866 return TRAVERSE_EXIT;
10867 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10868 return TRAVERSE_EXIT;
10869 return TRAVERSE_CONTINUE;
10870 }
10871
10872 // Return whether this is a constant initializer.
10873
10874 bool
10875 Array_construction_expression::is_constant_array() const
10876 {
10877 if (this->vals_ == NULL)
10878 return true;
10879
10880 // There are no constant constructors for interfaces.
10881 if (this->type_->array_type()->element_type()->interface_type() != NULL)
10882 return false;
10883
10884 for (Expression_list::const_iterator pv = this->vals_->begin();
10885 pv != this->vals_->end();
10886 ++pv)
10887 {
10888 if (*pv != NULL
10889 && !(*pv)->is_constant()
10890 && (!(*pv)->is_composite_literal()
10891 || (*pv)->is_nonconstant_composite_literal()))
10892 return false;
10893 }
10894 return true;
10895 }
10896
10897 // Final type determination.
10898
10899 void
10900 Array_construction_expression::do_determine_type(const Type_context*)
10901 {
10902 if (this->vals_ == NULL)
10903 return;
10904 Type_context subcontext(this->type_->array_type()->element_type(), false);
10905 for (Expression_list::const_iterator pv = this->vals_->begin();
10906 pv != this->vals_->end();
10907 ++pv)
10908 {
10909 if (*pv != NULL)
10910 (*pv)->determine_type(&subcontext);
10911 }
10912 }
10913
10914 // Check types.
10915
10916 void
10917 Array_construction_expression::do_check_types(Gogo*)
10918 {
10919 if (this->vals_ == NULL)
10920 return;
10921
10922 Array_type* at = this->type_->array_type();
10923 int i = 0;
10924 Type* element_type = at->element_type();
10925 for (Expression_list::const_iterator pv = this->vals_->begin();
10926 pv != this->vals_->end();
10927 ++pv, ++i)
10928 {
10929 if (*pv != NULL
10930 && !Type::are_assignable(element_type, (*pv)->type(), NULL))
10931 {
10932 error_at((*pv)->location(),
10933 "incompatible type for element %d in composite literal",
10934 i + 1);
10935 this->set_is_error();
10936 }
10937 }
10938
10939 Expression* length = at->length();
10940 if (length != NULL)
10941 {
10942 mpz_t val;
10943 mpz_init(val);
10944 Type* type;
10945 if (at->length()->integer_constant_value(true, val, &type))
10946 {
10947 if (this->vals_->size() > mpz_get_ui(val))
10948 this->report_error(_("too many elements in composite literal"));
10949 }
10950 mpz_clear(val);
10951 }
10952 }
10953
10954 // Get a constructor tree for the array values.
10955
10956 tree
10957 Array_construction_expression::get_constructor_tree(Translate_context* context,
10958 tree type_tree)
10959 {
10960 VEC(constructor_elt,gc)* values = VEC_alloc(constructor_elt, gc,
10961 (this->vals_ == NULL
10962 ? 0
10963 : this->vals_->size()));
10964 Type* element_type = this->type_->array_type()->element_type();
10965 bool is_constant = true;
10966 if (this->vals_ != NULL)
10967 {
10968 size_t i = 0;
10969 for (Expression_list::const_iterator pv = this->vals_->begin();
10970 pv != this->vals_->end();
10971 ++pv, ++i)
10972 {
10973 constructor_elt* elt = VEC_quick_push(constructor_elt, values, NULL);
10974 elt->index = size_int(i);
10975 if (*pv == NULL)
10976 elt->value = element_type->get_init_tree(context->gogo(), false);
10977 else
10978 {
10979 tree value_tree = (*pv)->get_tree(context);
10980 elt->value = Expression::convert_for_assignment(context,
10981 element_type,
10982 (*pv)->type(),
10983 value_tree,
10984 this->location());
10985 }
10986 if (elt->value == error_mark_node)
10987 return error_mark_node;
10988 if (!TREE_CONSTANT(elt->value))
10989 is_constant = false;
10990 }
10991 }
10992
10993 tree ret = build_constructor(type_tree, values);
10994 if (is_constant)
10995 TREE_CONSTANT(ret) = 1;
10996 return ret;
10997 }
10998
10999 // Export an array construction.
11000
11001 void
11002 Array_construction_expression::do_export(Export* exp) const
11003 {
11004 exp->write_c_string("convert(");
11005 exp->write_type(this->type_);
11006 if (this->vals_ != NULL)
11007 {
11008 for (Expression_list::const_iterator pv = this->vals_->begin();
11009 pv != this->vals_->end();
11010 ++pv)
11011 {
11012 exp->write_c_string(", ");
11013 if (*pv != NULL)
11014 (*pv)->export_expression(exp);
11015 }
11016 }
11017 exp->write_c_string(")");
11018 }
11019
11020 // Construct a fixed array.
11021
11022 class Fixed_array_construction_expression :
11023 public Array_construction_expression
11024 {
11025 public:
11026 Fixed_array_construction_expression(Type* type, Expression_list* vals,
11027 source_location location)
11028 : Array_construction_expression(EXPRESSION_FIXED_ARRAY_CONSTRUCTION,
11029 type, vals, location)
11030 {
11031 gcc_assert(type->array_type() != NULL
11032 && type->array_type()->length() != NULL);
11033 }
11034
11035 protected:
11036 Expression*
11037 do_copy()
11038 {
11039 return new Fixed_array_construction_expression(this->type(),
11040 (this->vals() == NULL
11041 ? NULL
11042 : this->vals()->copy()),
11043 this->location());
11044 }
11045
11046 tree
11047 do_get_tree(Translate_context*);
11048 };
11049
11050 // Return a tree for constructing a fixed array.
11051
11052 tree
11053 Fixed_array_construction_expression::do_get_tree(Translate_context* context)
11054 {
11055 return this->get_constructor_tree(context,
11056 this->type()->get_tree(context->gogo()));
11057 }
11058
11059 // Construct an open array.
11060
11061 class Open_array_construction_expression : public Array_construction_expression
11062 {
11063 public:
11064 Open_array_construction_expression(Type* type, Expression_list* vals,
11065 source_location location)
11066 : Array_construction_expression(EXPRESSION_OPEN_ARRAY_CONSTRUCTION,
11067 type, vals, location)
11068 {
11069 gcc_assert(type->array_type() != NULL
11070 && type->array_type()->length() == NULL);
11071 }
11072
11073 protected:
11074 // Note that taking the address of an open array literal is invalid.
11075
11076 Expression*
11077 do_copy()
11078 {
11079 return new Open_array_construction_expression(this->type(),
11080 (this->vals() == NULL
11081 ? NULL
11082 : this->vals()->copy()),
11083 this->location());
11084 }
11085
11086 tree
11087 do_get_tree(Translate_context*);
11088 };
11089
11090 // Return a tree for constructing an open array.
11091
11092 tree
11093 Open_array_construction_expression::do_get_tree(Translate_context* context)
11094 {
11095 Array_type* array_type = this->type()->array_type();
11096 if (array_type == NULL)
11097 {
11098 gcc_assert(this->type()->is_error_type());
11099 return error_mark_node;
11100 }
11101
11102 Type* element_type = array_type->element_type();
11103 tree element_type_tree = element_type->get_tree(context->gogo());
11104 if (element_type_tree == error_mark_node)
11105 return error_mark_node;
11106
11107 tree values;
11108 tree length_tree;
11109 if (this->vals() == NULL || this->vals()->empty())
11110 {
11111 // We need to create a unique value.
11112 tree max = size_int(0);
11113 tree constructor_type = build_array_type(element_type_tree,
11114 build_index_type(max));
11115 if (constructor_type == error_mark_node)
11116 return error_mark_node;
11117 VEC(constructor_elt,gc)* vec = VEC_alloc(constructor_elt, gc, 1);
11118 constructor_elt* elt = VEC_quick_push(constructor_elt, vec, NULL);
11119 elt->index = size_int(0);
11120 elt->value = element_type->get_init_tree(context->gogo(), false);
11121 values = build_constructor(constructor_type, vec);
11122 if (TREE_CONSTANT(elt->value))
11123 TREE_CONSTANT(values) = 1;
11124 length_tree = size_int(0);
11125 }
11126 else
11127 {
11128 tree max = size_int(this->vals()->size() - 1);
11129 tree constructor_type = build_array_type(element_type_tree,
11130 build_index_type(max));
11131 if (constructor_type == error_mark_node)
11132 return error_mark_node;
11133 values = this->get_constructor_tree(context, constructor_type);
11134 length_tree = size_int(this->vals()->size());
11135 }
11136
11137 if (values == error_mark_node)
11138 return error_mark_node;
11139
11140 bool is_constant_initializer = TREE_CONSTANT(values);
11141 bool is_in_function = context->function() != NULL;
11142
11143 if (is_constant_initializer)
11144 {
11145 tree tmp = build_decl(this->location(), VAR_DECL,
11146 create_tmp_var_name("C"), TREE_TYPE(values));
11147 DECL_EXTERNAL(tmp) = 0;
11148 TREE_PUBLIC(tmp) = 0;
11149 TREE_STATIC(tmp) = 1;
11150 DECL_ARTIFICIAL(tmp) = 1;
11151 if (is_in_function)
11152 {
11153 // If this is not a function, we will only initialize the
11154 // value once, so we can use this directly rather than
11155 // copying it. In that case we can't make it read-only,
11156 // because the program is permitted to change it.
11157 TREE_READONLY(tmp) = 1;
11158 TREE_CONSTANT(tmp) = 1;
11159 }
11160 DECL_INITIAL(tmp) = values;
11161 rest_of_decl_compilation(tmp, 1, 0);
11162 values = tmp;
11163 }
11164
11165 tree space;
11166 tree set;
11167 if (!is_in_function && is_constant_initializer)
11168 {
11169 // Outside of a function, we know the initializer will only run
11170 // once.
11171 space = build_fold_addr_expr(values);
11172 set = NULL_TREE;
11173 }
11174 else
11175 {
11176 tree memsize = TYPE_SIZE_UNIT(TREE_TYPE(values));
11177 space = context->gogo()->allocate_memory(element_type, memsize,
11178 this->location());
11179 space = save_expr(space);
11180
11181 tree s = fold_convert(build_pointer_type(TREE_TYPE(values)), space);
11182 tree ref = build_fold_indirect_ref_loc(this->location(), s);
11183 TREE_THIS_NOTRAP(ref) = 1;
11184 set = build2(MODIFY_EXPR, void_type_node, ref, values);
11185 }
11186
11187 // Build a constructor for the open array.
11188
11189 tree type_tree = this->type()->get_tree(context->gogo());
11190 if (type_tree == error_mark_node)
11191 return error_mark_node;
11192 gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
11193
11194 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
11195
11196 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
11197 tree field = TYPE_FIELDS(type_tree);
11198 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
11199 elt->index = field;
11200 elt->value = fold_convert(TREE_TYPE(field), space);
11201
11202 elt = VEC_quick_push(constructor_elt, init, NULL);
11203 field = DECL_CHAIN(field);
11204 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
11205 elt->index = field;
11206 elt->value = fold_convert(TREE_TYPE(field), length_tree);
11207
11208 elt = VEC_quick_push(constructor_elt, init, NULL);
11209 field = DECL_CHAIN(field);
11210 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),"__capacity") == 0);
11211 elt->index = field;
11212 elt->value = fold_convert(TREE_TYPE(field), length_tree);
11213
11214 tree constructor = build_constructor(type_tree, init);
11215 if (constructor == error_mark_node)
11216 return error_mark_node;
11217 if (!is_in_function && is_constant_initializer)
11218 TREE_CONSTANT(constructor) = 1;
11219
11220 if (set == NULL_TREE)
11221 return constructor;
11222 else
11223 return build2(COMPOUND_EXPR, type_tree, set, constructor);
11224 }
11225
11226 // Make a slice composite literal. This is used by the type
11227 // descriptor code.
11228
11229 Expression*
11230 Expression::make_slice_composite_literal(Type* type, Expression_list* vals,
11231 source_location location)
11232 {
11233 gcc_assert(type->is_open_array_type());
11234 return new Open_array_construction_expression(type, vals, location);
11235 }
11236
11237 // Construct a map.
11238
11239 class Map_construction_expression : public Expression
11240 {
11241 public:
11242 Map_construction_expression(Type* type, Expression_list* vals,
11243 source_location location)
11244 : Expression(EXPRESSION_MAP_CONSTRUCTION, location),
11245 type_(type), vals_(vals)
11246 { gcc_assert(vals == NULL || vals->size() % 2 == 0); }
11247
11248 protected:
11249 int
11250 do_traverse(Traverse* traverse);
11251
11252 Type*
11253 do_type()
11254 { return this->type_; }
11255
11256 void
11257 do_determine_type(const Type_context*);
11258
11259 void
11260 do_check_types(Gogo*);
11261
11262 Expression*
11263 do_copy()
11264 {
11265 return new Map_construction_expression(this->type_, this->vals_->copy(),
11266 this->location());
11267 }
11268
11269 tree
11270 do_get_tree(Translate_context*);
11271
11272 void
11273 do_export(Export*) const;
11274
11275 private:
11276 // The type of the map to construct.
11277 Type* type_;
11278 // The list of values.
11279 Expression_list* vals_;
11280 };
11281
11282 // Traversal.
11283
11284 int
11285 Map_construction_expression::do_traverse(Traverse* traverse)
11286 {
11287 if (this->vals_ != NULL
11288 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
11289 return TRAVERSE_EXIT;
11290 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
11291 return TRAVERSE_EXIT;
11292 return TRAVERSE_CONTINUE;
11293 }
11294
11295 // Final type determination.
11296
11297 void
11298 Map_construction_expression::do_determine_type(const Type_context*)
11299 {
11300 if (this->vals_ == NULL)
11301 return;
11302
11303 Map_type* mt = this->type_->map_type();
11304 Type_context key_context(mt->key_type(), false);
11305 Type_context val_context(mt->val_type(), false);
11306 for (Expression_list::const_iterator pv = this->vals_->begin();
11307 pv != this->vals_->end();
11308 ++pv)
11309 {
11310 (*pv)->determine_type(&key_context);
11311 ++pv;
11312 (*pv)->determine_type(&val_context);
11313 }
11314 }
11315
11316 // Check types.
11317
11318 void
11319 Map_construction_expression::do_check_types(Gogo*)
11320 {
11321 if (this->vals_ == NULL)
11322 return;
11323
11324 Map_type* mt = this->type_->map_type();
11325 int i = 0;
11326 Type* key_type = mt->key_type();
11327 Type* val_type = mt->val_type();
11328 for (Expression_list::const_iterator pv = this->vals_->begin();
11329 pv != this->vals_->end();
11330 ++pv, ++i)
11331 {
11332 if (!Type::are_assignable(key_type, (*pv)->type(), NULL))
11333 {
11334 error_at((*pv)->location(),
11335 "incompatible type for element %d key in map construction",
11336 i + 1);
11337 this->set_is_error();
11338 }
11339 ++pv;
11340 if (!Type::are_assignable(val_type, (*pv)->type(), NULL))
11341 {
11342 error_at((*pv)->location(),
11343 ("incompatible type for element %d value "
11344 "in map construction"),
11345 i + 1);
11346 this->set_is_error();
11347 }
11348 }
11349 }
11350
11351 // Return a tree for constructing a map.
11352
11353 tree
11354 Map_construction_expression::do_get_tree(Translate_context* context)
11355 {
11356 Gogo* gogo = context->gogo();
11357 source_location loc = this->location();
11358
11359 Map_type* mt = this->type_->map_type();
11360
11361 // Build a struct to hold the key and value.
11362 tree struct_type = make_node(RECORD_TYPE);
11363
11364 Type* key_type = mt->key_type();
11365 tree id = get_identifier("__key");
11366 tree key_type_tree = key_type->get_tree(gogo);
11367 if (key_type_tree == error_mark_node)
11368 return error_mark_node;
11369 tree key_field = build_decl(loc, FIELD_DECL, id, key_type_tree);
11370 DECL_CONTEXT(key_field) = struct_type;
11371 TYPE_FIELDS(struct_type) = key_field;
11372
11373 Type* val_type = mt->val_type();
11374 id = get_identifier("__val");
11375 tree val_type_tree = val_type->get_tree(gogo);
11376 if (val_type_tree == error_mark_node)
11377 return error_mark_node;
11378 tree val_field = build_decl(loc, FIELD_DECL, id, val_type_tree);
11379 DECL_CONTEXT(val_field) = struct_type;
11380 DECL_CHAIN(key_field) = val_field;
11381
11382 layout_type(struct_type);
11383
11384 bool is_constant = true;
11385 size_t i = 0;
11386 tree valaddr;
11387 tree make_tmp;
11388
11389 if (this->vals_ == NULL || this->vals_->empty())
11390 {
11391 valaddr = null_pointer_node;
11392 make_tmp = NULL_TREE;
11393 }
11394 else
11395 {
11396 VEC(constructor_elt,gc)* values = VEC_alloc(constructor_elt, gc,
11397 this->vals_->size() / 2);
11398
11399 for (Expression_list::const_iterator pv = this->vals_->begin();
11400 pv != this->vals_->end();
11401 ++pv, ++i)
11402 {
11403 bool one_is_constant = true;
11404
11405 VEC(constructor_elt,gc)* one = VEC_alloc(constructor_elt, gc, 2);
11406
11407 constructor_elt* elt = VEC_quick_push(constructor_elt, one, NULL);
11408 elt->index = key_field;
11409 tree val_tree = (*pv)->get_tree(context);
11410 elt->value = Expression::convert_for_assignment(context, key_type,
11411 (*pv)->type(),
11412 val_tree, loc);
11413 if (elt->value == error_mark_node)
11414 return error_mark_node;
11415 if (!TREE_CONSTANT(elt->value))
11416 one_is_constant = false;
11417
11418 ++pv;
11419
11420 elt = VEC_quick_push(constructor_elt, one, NULL);
11421 elt->index = val_field;
11422 val_tree = (*pv)->get_tree(context);
11423 elt->value = Expression::convert_for_assignment(context, val_type,
11424 (*pv)->type(),
11425 val_tree, loc);
11426 if (elt->value == error_mark_node)
11427 return error_mark_node;
11428 if (!TREE_CONSTANT(elt->value))
11429 one_is_constant = false;
11430
11431 elt = VEC_quick_push(constructor_elt, values, NULL);
11432 elt->index = size_int(i);
11433 elt->value = build_constructor(struct_type, one);
11434 if (one_is_constant)
11435 TREE_CONSTANT(elt->value) = 1;
11436 else
11437 is_constant = false;
11438 }
11439
11440 tree index_type = build_index_type(size_int(i - 1));
11441 tree array_type = build_array_type(struct_type, index_type);
11442 tree init = build_constructor(array_type, values);
11443 if (is_constant)
11444 TREE_CONSTANT(init) = 1;
11445 tree tmp;
11446 if (current_function_decl != NULL)
11447 {
11448 tmp = create_tmp_var(array_type, get_name(array_type));
11449 DECL_INITIAL(tmp) = init;
11450 make_tmp = fold_build1_loc(loc, DECL_EXPR, void_type_node, tmp);
11451 TREE_ADDRESSABLE(tmp) = 1;
11452 }
11453 else
11454 {
11455 tmp = build_decl(loc, VAR_DECL, create_tmp_var_name("M"), array_type);
11456 DECL_EXTERNAL(tmp) = 0;
11457 TREE_PUBLIC(tmp) = 0;
11458 TREE_STATIC(tmp) = 1;
11459 DECL_ARTIFICIAL(tmp) = 1;
11460 if (!TREE_CONSTANT(init))
11461 make_tmp = fold_build2_loc(loc, INIT_EXPR, void_type_node, tmp,
11462 init);
11463 else
11464 {
11465 TREE_READONLY(tmp) = 1;
11466 TREE_CONSTANT(tmp) = 1;
11467 DECL_INITIAL(tmp) = init;
11468 make_tmp = NULL_TREE;
11469 }
11470 rest_of_decl_compilation(tmp, 1, 0);
11471 }
11472
11473 valaddr = build_fold_addr_expr(tmp);
11474 }
11475
11476 tree descriptor = gogo->map_descriptor(mt);
11477
11478 tree type_tree = this->type_->get_tree(gogo);
11479 if (type_tree == error_mark_node)
11480 return error_mark_node;
11481
11482 static tree construct_map_fndecl;
11483 tree call = Gogo::call_builtin(&construct_map_fndecl,
11484 loc,
11485 "__go_construct_map",
11486 6,
11487 type_tree,
11488 TREE_TYPE(descriptor),
11489 descriptor,
11490 sizetype,
11491 size_int(i),
11492 sizetype,
11493 TYPE_SIZE_UNIT(struct_type),
11494 sizetype,
11495 byte_position(val_field),
11496 sizetype,
11497 TYPE_SIZE_UNIT(TREE_TYPE(val_field)),
11498 const_ptr_type_node,
11499 fold_convert(const_ptr_type_node, valaddr));
11500 if (call == error_mark_node)
11501 return error_mark_node;
11502
11503 tree ret;
11504 if (make_tmp == NULL)
11505 ret = call;
11506 else
11507 ret = fold_build2_loc(loc, COMPOUND_EXPR, type_tree, make_tmp, call);
11508 return ret;
11509 }
11510
11511 // Export an array construction.
11512
11513 void
11514 Map_construction_expression::do_export(Export* exp) const
11515 {
11516 exp->write_c_string("convert(");
11517 exp->write_type(this->type_);
11518 for (Expression_list::const_iterator pv = this->vals_->begin();
11519 pv != this->vals_->end();
11520 ++pv)
11521 {
11522 exp->write_c_string(", ");
11523 (*pv)->export_expression(exp);
11524 }
11525 exp->write_c_string(")");
11526 }
11527
11528 // A general composite literal. This is lowered to a type specific
11529 // version.
11530
11531 class Composite_literal_expression : public Parser_expression
11532 {
11533 public:
11534 Composite_literal_expression(Type* type, int depth, bool has_keys,
11535 Expression_list* vals, source_location location)
11536 : Parser_expression(EXPRESSION_COMPOSITE_LITERAL, location),
11537 type_(type), depth_(depth), vals_(vals), has_keys_(has_keys)
11538 { }
11539
11540 protected:
11541 int
11542 do_traverse(Traverse* traverse);
11543
11544 Expression*
11545 do_lower(Gogo*, Named_object*, int);
11546
11547 Expression*
11548 do_copy()
11549 {
11550 return new Composite_literal_expression(this->type_, this->depth_,
11551 this->has_keys_,
11552 (this->vals_ == NULL
11553 ? NULL
11554 : this->vals_->copy()),
11555 this->location());
11556 }
11557
11558 private:
11559 Expression*
11560 lower_struct(Type*);
11561
11562 Expression*
11563 lower_array(Type*);
11564
11565 Expression*
11566 make_array(Type*, Expression_list*);
11567
11568 Expression*
11569 lower_map(Gogo*, Named_object*, Type*);
11570
11571 // The type of the composite literal.
11572 Type* type_;
11573 // The depth within a list of composite literals within a composite
11574 // literal, when the type is omitted.
11575 int depth_;
11576 // The values to put in the composite literal.
11577 Expression_list* vals_;
11578 // If this is true, then VALS_ is a list of pairs: a key and a
11579 // value. In an array initializer, a missing key will be NULL.
11580 bool has_keys_;
11581 };
11582
11583 // Traversal.
11584
11585 int
11586 Composite_literal_expression::do_traverse(Traverse* traverse)
11587 {
11588 if (this->vals_ != NULL
11589 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
11590 return TRAVERSE_EXIT;
11591 return Type::traverse(this->type_, traverse);
11592 }
11593
11594 // Lower a generic composite literal into a specific version based on
11595 // the type.
11596
11597 Expression*
11598 Composite_literal_expression::do_lower(Gogo* gogo, Named_object* function, int)
11599 {
11600 Type* type = this->type_;
11601
11602 for (int depth = this->depth_; depth > 0; --depth)
11603 {
11604 if (type->array_type() != NULL)
11605 type = type->array_type()->element_type();
11606 else if (type->map_type() != NULL)
11607 type = type->map_type()->val_type();
11608 else
11609 {
11610 if (!type->is_error_type())
11611 error_at(this->location(),
11612 ("may only omit types within composite literals "
11613 "of slice, array, or map type"));
11614 return Expression::make_error(this->location());
11615 }
11616 }
11617
11618 if (type->is_error_type())
11619 return Expression::make_error(this->location());
11620 else if (type->struct_type() != NULL)
11621 return this->lower_struct(type);
11622 else if (type->array_type() != NULL)
11623 return this->lower_array(type);
11624 else if (type->map_type() != NULL)
11625 return this->lower_map(gogo, function, type);
11626 else
11627 {
11628 error_at(this->location(),
11629 ("expected struct, slice, array, or map type "
11630 "for composite literal"));
11631 return Expression::make_error(this->location());
11632 }
11633 }
11634
11635 // Lower a struct composite literal.
11636
11637 Expression*
11638 Composite_literal_expression::lower_struct(Type* type)
11639 {
11640 source_location location = this->location();
11641 Struct_type* st = type->struct_type();
11642 if (this->vals_ == NULL || !this->has_keys_)
11643 return new Struct_construction_expression(type, this->vals_, location);
11644
11645 size_t field_count = st->field_count();
11646 std::vector<Expression*> vals(field_count);
11647 Expression_list::const_iterator p = this->vals_->begin();
11648 while (p != this->vals_->end())
11649 {
11650 Expression* name_expr = *p;
11651
11652 ++p;
11653 gcc_assert(p != this->vals_->end());
11654 Expression* val = *p;
11655
11656 ++p;
11657
11658 if (name_expr == NULL)
11659 {
11660 error_at(val->location(), "mixture of field and value initializers");
11661 return Expression::make_error(location);
11662 }
11663
11664 bool bad_key = false;
11665 std::string name;
11666 switch (name_expr->classification())
11667 {
11668 case EXPRESSION_UNKNOWN_REFERENCE:
11669 name = name_expr->unknown_expression()->name();
11670 break;
11671
11672 case EXPRESSION_CONST_REFERENCE:
11673 name = static_cast<Const_expression*>(name_expr)->name();
11674 break;
11675
11676 case EXPRESSION_TYPE:
11677 {
11678 Type* t = name_expr->type();
11679 Named_type* nt = t->named_type();
11680 if (nt == NULL)
11681 bad_key = true;
11682 else
11683 name = nt->name();
11684 }
11685 break;
11686
11687 case EXPRESSION_VAR_REFERENCE:
11688 name = name_expr->var_expression()->name();
11689 break;
11690
11691 case EXPRESSION_FUNC_REFERENCE:
11692 name = name_expr->func_expression()->name();
11693 break;
11694
11695 case EXPRESSION_UNARY:
11696 // If there is a local variable around with the same name as
11697 // the field, and this occurs in the closure, then the
11698 // parser may turn the field reference into an indirection
11699 // through the closure. FIXME: This is a mess.
11700 {
11701 bad_key = true;
11702 Unary_expression* ue = static_cast<Unary_expression*>(name_expr);
11703 if (ue->op() == OPERATOR_MULT)
11704 {
11705 Field_reference_expression* fre =
11706 ue->operand()->field_reference_expression();
11707 if (fre != NULL)
11708 {
11709 Struct_type* st =
11710 fre->expr()->type()->deref()->struct_type();
11711 if (st != NULL)
11712 {
11713 const Struct_field* sf = st->field(fre->field_index());
11714 name = sf->field_name();
11715 char buf[20];
11716 snprintf(buf, sizeof buf, "%u", fre->field_index());
11717 size_t buflen = strlen(buf);
11718 if (name.compare(name.length() - buflen, buflen, buf)
11719 == 0)
11720 {
11721 name = name.substr(0, name.length() - buflen);
11722 bad_key = false;
11723 }
11724 }
11725 }
11726 }
11727 }
11728 break;
11729
11730 default:
11731 bad_key = true;
11732 break;
11733 }
11734 if (bad_key)
11735 {
11736 error_at(name_expr->location(), "expected struct field name");
11737 return Expression::make_error(location);
11738 }
11739
11740 unsigned int index;
11741 const Struct_field* sf = st->find_local_field(name, &index);
11742 if (sf == NULL)
11743 {
11744 error_at(name_expr->location(), "unknown field %qs in %qs",
11745 Gogo::message_name(name).c_str(),
11746 (type->named_type() != NULL
11747 ? type->named_type()->message_name().c_str()
11748 : "unnamed struct"));
11749 return Expression::make_error(location);
11750 }
11751 if (vals[index] != NULL)
11752 {
11753 error_at(name_expr->location(),
11754 "duplicate value for field %qs in %qs",
11755 Gogo::message_name(name).c_str(),
11756 (type->named_type() != NULL
11757 ? type->named_type()->message_name().c_str()
11758 : "unnamed struct"));
11759 return Expression::make_error(location);
11760 }
11761
11762 vals[index] = val;
11763 }
11764
11765 Expression_list* list = new Expression_list;
11766 list->reserve(field_count);
11767 for (size_t i = 0; i < field_count; ++i)
11768 list->push_back(vals[i]);
11769
11770 return new Struct_construction_expression(type, list, location);
11771 }
11772
11773 // Lower an array composite literal.
11774
11775 Expression*
11776 Composite_literal_expression::lower_array(Type* type)
11777 {
11778 source_location location = this->location();
11779 if (this->vals_ == NULL || !this->has_keys_)
11780 return this->make_array(type, this->vals_);
11781
11782 std::vector<Expression*> vals;
11783 vals.reserve(this->vals_->size());
11784 unsigned long index = 0;
11785 Expression_list::const_iterator p = this->vals_->begin();
11786 while (p != this->vals_->end())
11787 {
11788 Expression* index_expr = *p;
11789
11790 ++p;
11791 gcc_assert(p != this->vals_->end());
11792 Expression* val = *p;
11793
11794 ++p;
11795
11796 if (index_expr != NULL)
11797 {
11798 mpz_t ival;
11799 mpz_init(ival);
11800 Type* dummy;
11801 if (!index_expr->integer_constant_value(true, ival, &dummy))
11802 {
11803 mpz_clear(ival);
11804 error_at(index_expr->location(),
11805 "index expression is not integer constant");
11806 return Expression::make_error(location);
11807 }
11808 if (mpz_sgn(ival) < 0)
11809 {
11810 mpz_clear(ival);
11811 error_at(index_expr->location(), "index expression is negative");
11812 return Expression::make_error(location);
11813 }
11814 index = mpz_get_ui(ival);
11815 if (mpz_cmp_ui(ival, index) != 0)
11816 {
11817 mpz_clear(ival);
11818 error_at(index_expr->location(), "index value overflow");
11819 return Expression::make_error(location);
11820 }
11821 mpz_clear(ival);
11822 }
11823
11824 if (index == vals.size())
11825 vals.push_back(val);
11826 else
11827 {
11828 if (index > vals.size())
11829 {
11830 vals.reserve(index + 32);
11831 vals.resize(index + 1, static_cast<Expression*>(NULL));
11832 }
11833 if (vals[index] != NULL)
11834 {
11835 error_at((index_expr != NULL
11836 ? index_expr->location()
11837 : val->location()),
11838 "duplicate value for index %lu",
11839 index);
11840 return Expression::make_error(location);
11841 }
11842 vals[index] = val;
11843 }
11844
11845 ++index;
11846 }
11847
11848 size_t size = vals.size();
11849 Expression_list* list = new Expression_list;
11850 list->reserve(size);
11851 for (size_t i = 0; i < size; ++i)
11852 list->push_back(vals[i]);
11853
11854 return this->make_array(type, list);
11855 }
11856
11857 // Actually build the array composite literal. This handles
11858 // [...]{...}.
11859
11860 Expression*
11861 Composite_literal_expression::make_array(Type* type, Expression_list* vals)
11862 {
11863 source_location location = this->location();
11864 Array_type* at = type->array_type();
11865 if (at->length() != NULL && at->length()->is_nil_expression())
11866 {
11867 size_t size = vals == NULL ? 0 : vals->size();
11868 mpz_t vlen;
11869 mpz_init_set_ui(vlen, size);
11870 Expression* elen = Expression::make_integer(&vlen, NULL, location);
11871 mpz_clear(vlen);
11872 at = Type::make_array_type(at->element_type(), elen);
11873 type = at;
11874 }
11875 if (at->length() != NULL)
11876 return new Fixed_array_construction_expression(type, vals, location);
11877 else
11878 return new Open_array_construction_expression(type, vals, location);
11879 }
11880
11881 // Lower a map composite literal.
11882
11883 Expression*
11884 Composite_literal_expression::lower_map(Gogo* gogo, Named_object* function,
11885 Type* type)
11886 {
11887 source_location location = this->location();
11888 if (this->vals_ != NULL)
11889 {
11890 if (!this->has_keys_)
11891 {
11892 error_at(location, "map composite literal must have keys");
11893 return Expression::make_error(location);
11894 }
11895
11896 for (Expression_list::iterator p = this->vals_->begin();
11897 p != this->vals_->end();
11898 p += 2)
11899 {
11900 if (*p == NULL)
11901 {
11902 ++p;
11903 error_at((*p)->location(),
11904 "map composite literal must have keys for every value");
11905 return Expression::make_error(location);
11906 }
11907 // Make sure we have lowered the key; it may not have been
11908 // lowered in order to handle keys for struct composite
11909 // literals. Lower it now to get the right error message.
11910 if ((*p)->unknown_expression() != NULL)
11911 {
11912 (*p)->unknown_expression()->clear_is_composite_literal_key();
11913 gogo->lower_expression(function, &*p);
11914 gcc_assert((*p)->is_error_expression());
11915 return Expression::make_error(location);
11916 }
11917 }
11918 }
11919
11920 return new Map_construction_expression(type, this->vals_, location);
11921 }
11922
11923 // Make a composite literal expression.
11924
11925 Expression*
11926 Expression::make_composite_literal(Type* type, int depth, bool has_keys,
11927 Expression_list* vals,
11928 source_location location)
11929 {
11930 return new Composite_literal_expression(type, depth, has_keys, vals,
11931 location);
11932 }
11933
11934 // Return whether this expression is a composite literal.
11935
11936 bool
11937 Expression::is_composite_literal() const
11938 {
11939 switch (this->classification_)
11940 {
11941 case EXPRESSION_COMPOSITE_LITERAL:
11942 case EXPRESSION_STRUCT_CONSTRUCTION:
11943 case EXPRESSION_FIXED_ARRAY_CONSTRUCTION:
11944 case EXPRESSION_OPEN_ARRAY_CONSTRUCTION:
11945 case EXPRESSION_MAP_CONSTRUCTION:
11946 return true;
11947 default:
11948 return false;
11949 }
11950 }
11951
11952 // Return whether this expression is a composite literal which is not
11953 // constant.
11954
11955 bool
11956 Expression::is_nonconstant_composite_literal() const
11957 {
11958 switch (this->classification_)
11959 {
11960 case EXPRESSION_STRUCT_CONSTRUCTION:
11961 {
11962 const Struct_construction_expression *psce =
11963 static_cast<const Struct_construction_expression*>(this);
11964 return !psce->is_constant_struct();
11965 }
11966 case EXPRESSION_FIXED_ARRAY_CONSTRUCTION:
11967 {
11968 const Fixed_array_construction_expression *pace =
11969 static_cast<const Fixed_array_construction_expression*>(this);
11970 return !pace->is_constant_array();
11971 }
11972 case EXPRESSION_OPEN_ARRAY_CONSTRUCTION:
11973 {
11974 const Open_array_construction_expression *pace =
11975 static_cast<const Open_array_construction_expression*>(this);
11976 return !pace->is_constant_array();
11977 }
11978 case EXPRESSION_MAP_CONSTRUCTION:
11979 return true;
11980 default:
11981 return false;
11982 }
11983 }
11984
11985 // Return true if this is a reference to a local variable.
11986
11987 bool
11988 Expression::is_local_variable() const
11989 {
11990 const Var_expression* ve = this->var_expression();
11991 if (ve == NULL)
11992 return false;
11993 const Named_object* no = ve->named_object();
11994 return (no->is_result_variable()
11995 || (no->is_variable() && !no->var_value()->is_global()));
11996 }
11997
11998 // Class Type_guard_expression.
11999
12000 // Traversal.
12001
12002 int
12003 Type_guard_expression::do_traverse(Traverse* traverse)
12004 {
12005 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
12006 || Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
12007 return TRAVERSE_EXIT;
12008 return TRAVERSE_CONTINUE;
12009 }
12010
12011 // Check types of a type guard expression. The expression must have
12012 // an interface type, but the actual type conversion is checked at run
12013 // time.
12014
12015 void
12016 Type_guard_expression::do_check_types(Gogo*)
12017 {
12018 // 6g permits using a type guard with unsafe.pointer; we are
12019 // compatible.
12020 Type* expr_type = this->expr_->type();
12021 if (expr_type->is_unsafe_pointer_type())
12022 {
12023 if (this->type_->points_to() == NULL
12024 && (this->type_->integer_type() == NULL
12025 || (this->type_->forwarded()
12026 != Type::lookup_integer_type("uintptr"))))
12027 this->report_error(_("invalid unsafe.Pointer conversion"));
12028 }
12029 else if (this->type_->is_unsafe_pointer_type())
12030 {
12031 if (expr_type->points_to() == NULL
12032 && (expr_type->integer_type() == NULL
12033 || (expr_type->forwarded()
12034 != Type::lookup_integer_type("uintptr"))))
12035 this->report_error(_("invalid unsafe.Pointer conversion"));
12036 }
12037 else if (expr_type->interface_type() == NULL)
12038 {
12039 if (!expr_type->is_error_type() && !this->type_->is_error_type())
12040 this->report_error(_("type assertion only valid for interface types"));
12041 this->set_is_error();
12042 }
12043 else if (this->type_->interface_type() == NULL)
12044 {
12045 std::string reason;
12046 if (!expr_type->interface_type()->implements_interface(this->type_,
12047 &reason))
12048 {
12049 if (!this->type_->is_error_type())
12050 {
12051 if (reason.empty())
12052 this->report_error(_("impossible type assertion: "
12053 "type does not implement interface"));
12054 else
12055 error_at(this->location(),
12056 ("impossible type assertion: "
12057 "type does not implement interface (%s)"),
12058 reason.c_str());
12059 }
12060 this->set_is_error();
12061 }
12062 }
12063 }
12064
12065 // Return a tree for a type guard expression.
12066
12067 tree
12068 Type_guard_expression::do_get_tree(Translate_context* context)
12069 {
12070 Gogo* gogo = context->gogo();
12071 tree expr_tree = this->expr_->get_tree(context);
12072 if (expr_tree == error_mark_node)
12073 return error_mark_node;
12074 Type* expr_type = this->expr_->type();
12075 if ((this->type_->is_unsafe_pointer_type()
12076 && (expr_type->points_to() != NULL
12077 || expr_type->integer_type() != NULL))
12078 || (expr_type->is_unsafe_pointer_type()
12079 && this->type_->points_to() != NULL))
12080 return convert_to_pointer(this->type_->get_tree(gogo), expr_tree);
12081 else if (expr_type->is_unsafe_pointer_type()
12082 && this->type_->integer_type() != NULL)
12083 return convert_to_integer(this->type_->get_tree(gogo), expr_tree);
12084 else if (this->type_->interface_type() != NULL)
12085 return Expression::convert_interface_to_interface(context, this->type_,
12086 this->expr_->type(),
12087 expr_tree, true,
12088 this->location());
12089 else
12090 return Expression::convert_for_assignment(context, this->type_,
12091 this->expr_->type(), expr_tree,
12092 this->location());
12093 }
12094
12095 // Make a type guard expression.
12096
12097 Expression*
12098 Expression::make_type_guard(Expression* expr, Type* type,
12099 source_location location)
12100 {
12101 return new Type_guard_expression(expr, type, location);
12102 }
12103
12104 // Class Heap_composite_expression.
12105
12106 // When you take the address of a composite literal, it is allocated
12107 // on the heap. This class implements that.
12108
12109 class Heap_composite_expression : public Expression
12110 {
12111 public:
12112 Heap_composite_expression(Expression* expr, source_location location)
12113 : Expression(EXPRESSION_HEAP_COMPOSITE, location),
12114 expr_(expr)
12115 { }
12116
12117 protected:
12118 int
12119 do_traverse(Traverse* traverse)
12120 { return Expression::traverse(&this->expr_, traverse); }
12121
12122 Type*
12123 do_type()
12124 { return Type::make_pointer_type(this->expr_->type()); }
12125
12126 void
12127 do_determine_type(const Type_context*)
12128 { this->expr_->determine_type_no_context(); }
12129
12130 Expression*
12131 do_copy()
12132 {
12133 return Expression::make_heap_composite(this->expr_->copy(),
12134 this->location());
12135 }
12136
12137 tree
12138 do_get_tree(Translate_context*);
12139
12140 // We only export global objects, and the parser does not generate
12141 // this in global scope.
12142 void
12143 do_export(Export*) const
12144 { gcc_unreachable(); }
12145
12146 private:
12147 // The composite literal which is being put on the heap.
12148 Expression* expr_;
12149 };
12150
12151 // Return a tree which allocates a composite literal on the heap.
12152
12153 tree
12154 Heap_composite_expression::do_get_tree(Translate_context* context)
12155 {
12156 tree expr_tree = this->expr_->get_tree(context);
12157 if (expr_tree == error_mark_node)
12158 return error_mark_node;
12159 tree expr_size = TYPE_SIZE_UNIT(TREE_TYPE(expr_tree));
12160 gcc_assert(TREE_CODE(expr_size) == INTEGER_CST);
12161 tree space = context->gogo()->allocate_memory(this->expr_->type(),
12162 expr_size, this->location());
12163 space = fold_convert(build_pointer_type(TREE_TYPE(expr_tree)), space);
12164 space = save_expr(space);
12165 tree ref = build_fold_indirect_ref_loc(this->location(), space);
12166 TREE_THIS_NOTRAP(ref) = 1;
12167 tree ret = build2(COMPOUND_EXPR, TREE_TYPE(space),
12168 build2(MODIFY_EXPR, void_type_node, ref, expr_tree),
12169 space);
12170 SET_EXPR_LOCATION(ret, this->location());
12171 return ret;
12172 }
12173
12174 // Allocate a composite literal on the heap.
12175
12176 Expression*
12177 Expression::make_heap_composite(Expression* expr, source_location location)
12178 {
12179 return new Heap_composite_expression(expr, location);
12180 }
12181
12182 // Class Receive_expression.
12183
12184 // Return the type of a receive expression.
12185
12186 Type*
12187 Receive_expression::do_type()
12188 {
12189 Channel_type* channel_type = this->channel_->type()->channel_type();
12190 if (channel_type == NULL)
12191 return Type::make_error_type();
12192 return channel_type->element_type();
12193 }
12194
12195 // Check types for a receive expression.
12196
12197 void
12198 Receive_expression::do_check_types(Gogo*)
12199 {
12200 Type* type = this->channel_->type();
12201 if (type->is_error_type())
12202 {
12203 this->set_is_error();
12204 return;
12205 }
12206 if (type->channel_type() == NULL)
12207 {
12208 this->report_error(_("expected channel"));
12209 return;
12210 }
12211 if (!type->channel_type()->may_receive())
12212 {
12213 this->report_error(_("invalid receive on send-only channel"));
12214 return;
12215 }
12216 }
12217
12218 // Get a tree for a receive expression.
12219
12220 tree
12221 Receive_expression::do_get_tree(Translate_context* context)
12222 {
12223 Channel_type* channel_type = this->channel_->type()->channel_type();
12224 gcc_assert(channel_type != NULL);
12225 Type* element_type = channel_type->element_type();
12226 tree element_type_tree = element_type->get_tree(context->gogo());
12227
12228 tree channel = this->channel_->get_tree(context);
12229 if (element_type_tree == error_mark_node || channel == error_mark_node)
12230 return error_mark_node;
12231
12232 return Gogo::receive_from_channel(element_type_tree, channel,
12233 this->for_select_, this->location());
12234 }
12235
12236 // Make a receive expression.
12237
12238 Receive_expression*
12239 Expression::make_receive(Expression* channel, source_location location)
12240 {
12241 return new Receive_expression(channel, location);
12242 }
12243
12244 // Class Send_expression.
12245
12246 // Traversal.
12247
12248 int
12249 Send_expression::do_traverse(Traverse* traverse)
12250 {
12251 if (Expression::traverse(&this->channel_, traverse) == TRAVERSE_EXIT)
12252 return TRAVERSE_EXIT;
12253 return Expression::traverse(&this->val_, traverse);
12254 }
12255
12256 // Get the type.
12257
12258 Type*
12259 Send_expression::do_type()
12260 {
12261 return Type::lookup_bool_type();
12262 }
12263
12264 // Set types.
12265
12266 void
12267 Send_expression::do_determine_type(const Type_context*)
12268 {
12269 this->channel_->determine_type_no_context();
12270
12271 Type* type = this->channel_->type();
12272 Type_context subcontext;
12273 if (type->channel_type() != NULL)
12274 subcontext.type = type->channel_type()->element_type();
12275 this->val_->determine_type(&subcontext);
12276 }
12277
12278 // Check types.
12279
12280 void
12281 Send_expression::do_check_types(Gogo*)
12282 {
12283 Type* type = this->channel_->type();
12284 if (type->is_error_type())
12285 {
12286 this->set_is_error();
12287 return;
12288 }
12289 Channel_type* channel_type = type->channel_type();
12290 if (channel_type == NULL)
12291 {
12292 error_at(this->location(), "left operand of %<<-%> must be channel");
12293 this->set_is_error();
12294 return;
12295 }
12296 Type* element_type = channel_type->element_type();
12297 if (element_type != NULL
12298 && !Type::are_assignable(element_type, this->val_->type(), NULL))
12299 {
12300 this->report_error(_("incompatible types in send"));
12301 return;
12302 }
12303 if (!channel_type->may_send())
12304 {
12305 this->report_error(_("invalid send on receive-only channel"));
12306 return;
12307 }
12308 }
12309
12310 // Get a tree for a send expression.
12311
12312 tree
12313 Send_expression::do_get_tree(Translate_context* context)
12314 {
12315 tree channel = this->channel_->get_tree(context);
12316 tree val = this->val_->get_tree(context);
12317 if (channel == error_mark_node || val == error_mark_node)
12318 return error_mark_node;
12319 Channel_type* channel_type = this->channel_->type()->channel_type();
12320 val = Expression::convert_for_assignment(context,
12321 channel_type->element_type(),
12322 this->val_->type(),
12323 val,
12324 this->location());
12325 return Gogo::send_on_channel(channel, val, this->is_value_discarded_,
12326 this->for_select_, this->location());
12327 }
12328
12329 // Make a send expression
12330
12331 Send_expression*
12332 Expression::make_send(Expression* channel, Expression* val,
12333 source_location location)
12334 {
12335 return new Send_expression(channel, val, location);
12336 }
12337
12338 // An expression which evaluates to a pointer to the type descriptor
12339 // of a type.
12340
12341 class Type_descriptor_expression : public Expression
12342 {
12343 public:
12344 Type_descriptor_expression(Type* type, source_location location)
12345 : Expression(EXPRESSION_TYPE_DESCRIPTOR, location),
12346 type_(type)
12347 { }
12348
12349 protected:
12350 Type*
12351 do_type()
12352 { return Type::make_type_descriptor_ptr_type(); }
12353
12354 void
12355 do_determine_type(const Type_context*)
12356 { }
12357
12358 Expression*
12359 do_copy()
12360 { return this; }
12361
12362 tree
12363 do_get_tree(Translate_context* context)
12364 { return this->type_->type_descriptor_pointer(context->gogo()); }
12365
12366 private:
12367 // The type for which this is the descriptor.
12368 Type* type_;
12369 };
12370
12371 // Make a type descriptor expression.
12372
12373 Expression*
12374 Expression::make_type_descriptor(Type* type, source_location location)
12375 {
12376 return new Type_descriptor_expression(type, location);
12377 }
12378
12379 // An expression which evaluates to some characteristic of a type.
12380 // This is only used to initialize fields of a type descriptor. Using
12381 // a new expression class is slightly inefficient but gives us a good
12382 // separation between the frontend and the middle-end with regard to
12383 // how types are laid out.
12384
12385 class Type_info_expression : public Expression
12386 {
12387 public:
12388 Type_info_expression(Type* type, Type_info type_info)
12389 : Expression(EXPRESSION_TYPE_INFO, BUILTINS_LOCATION),
12390 type_(type), type_info_(type_info)
12391 { }
12392
12393 protected:
12394 Type*
12395 do_type();
12396
12397 void
12398 do_determine_type(const Type_context*)
12399 { }
12400
12401 Expression*
12402 do_copy()
12403 { return this; }
12404
12405 tree
12406 do_get_tree(Translate_context* context);
12407
12408 private:
12409 // The type for which we are getting information.
12410 Type* type_;
12411 // What information we want.
12412 Type_info type_info_;
12413 };
12414
12415 // The type is chosen to match what the type descriptor struct
12416 // expects.
12417
12418 Type*
12419 Type_info_expression::do_type()
12420 {
12421 switch (this->type_info_)
12422 {
12423 case TYPE_INFO_SIZE:
12424 return Type::lookup_integer_type("uintptr");
12425 case TYPE_INFO_ALIGNMENT:
12426 case TYPE_INFO_FIELD_ALIGNMENT:
12427 return Type::lookup_integer_type("uint8");
12428 default:
12429 gcc_unreachable();
12430 }
12431 }
12432
12433 // Return type information in GENERIC.
12434
12435 tree
12436 Type_info_expression::do_get_tree(Translate_context* context)
12437 {
12438 tree type_tree = this->type_->get_tree(context->gogo());
12439 if (type_tree == error_mark_node)
12440 return error_mark_node;
12441
12442 tree val_type_tree = this->type()->get_tree(context->gogo());
12443 gcc_assert(val_type_tree != error_mark_node);
12444
12445 if (this->type_info_ == TYPE_INFO_SIZE)
12446 return fold_convert_loc(BUILTINS_LOCATION, val_type_tree,
12447 TYPE_SIZE_UNIT(type_tree));
12448 else
12449 {
12450 unsigned int val;
12451 if (this->type_info_ == TYPE_INFO_ALIGNMENT)
12452 val = go_type_alignment(type_tree);
12453 else
12454 val = go_field_alignment(type_tree);
12455 return build_int_cstu(val_type_tree, val);
12456 }
12457 }
12458
12459 // Make a type info expression.
12460
12461 Expression*
12462 Expression::make_type_info(Type* type, Type_info type_info)
12463 {
12464 return new Type_info_expression(type, type_info);
12465 }
12466
12467 // An expression which evaluates to the offset of a field within a
12468 // struct. This, like Type_info_expression, q.v., is only used to
12469 // initialize fields of a type descriptor.
12470
12471 class Struct_field_offset_expression : public Expression
12472 {
12473 public:
12474 Struct_field_offset_expression(Struct_type* type, const Struct_field* field)
12475 : Expression(EXPRESSION_STRUCT_FIELD_OFFSET, BUILTINS_LOCATION),
12476 type_(type), field_(field)
12477 { }
12478
12479 protected:
12480 Type*
12481 do_type()
12482 { return Type::lookup_integer_type("uintptr"); }
12483
12484 void
12485 do_determine_type(const Type_context*)
12486 { }
12487
12488 Expression*
12489 do_copy()
12490 { return this; }
12491
12492 tree
12493 do_get_tree(Translate_context* context);
12494
12495 private:
12496 // The type of the struct.
12497 Struct_type* type_;
12498 // The field.
12499 const Struct_field* field_;
12500 };
12501
12502 // Return a struct field offset in GENERIC.
12503
12504 tree
12505 Struct_field_offset_expression::do_get_tree(Translate_context* context)
12506 {
12507 tree type_tree = this->type_->get_tree(context->gogo());
12508 if (type_tree == error_mark_node)
12509 return error_mark_node;
12510
12511 tree val_type_tree = this->type()->get_tree(context->gogo());
12512 gcc_assert(val_type_tree != error_mark_node);
12513
12514 const Struct_field_list* fields = this->type_->fields();
12515 tree struct_field_tree = TYPE_FIELDS(type_tree);
12516 Struct_field_list::const_iterator p;
12517 for (p = fields->begin();
12518 p != fields->end();
12519 ++p, struct_field_tree = DECL_CHAIN(struct_field_tree))
12520 {
12521 gcc_assert(struct_field_tree != NULL_TREE);
12522 if (&*p == this->field_)
12523 break;
12524 }
12525 gcc_assert(&*p == this->field_);
12526
12527 return fold_convert_loc(BUILTINS_LOCATION, val_type_tree,
12528 byte_position(struct_field_tree));
12529 }
12530
12531 // Make an expression for a struct field offset.
12532
12533 Expression*
12534 Expression::make_struct_field_offset(Struct_type* type,
12535 const Struct_field* field)
12536 {
12537 return new Struct_field_offset_expression(type, field);
12538 }
12539
12540 // An expression which evaluates to the address of an unnamed label.
12541
12542 class Label_addr_expression : public Expression
12543 {
12544 public:
12545 Label_addr_expression(Label* label, source_location location)
12546 : Expression(EXPRESSION_LABEL_ADDR, location),
12547 label_(label)
12548 { }
12549
12550 protected:
12551 Type*
12552 do_type()
12553 { return Type::make_pointer_type(Type::make_void_type()); }
12554
12555 void
12556 do_determine_type(const Type_context*)
12557 { }
12558
12559 Expression*
12560 do_copy()
12561 { return new Label_addr_expression(this->label_, this->location()); }
12562
12563 tree
12564 do_get_tree(Translate_context*)
12565 { return this->label_->get_addr(this->location()); }
12566
12567 private:
12568 // The label whose address we are taking.
12569 Label* label_;
12570 };
12571
12572 // Make an expression for the address of an unnamed label.
12573
12574 Expression*
12575 Expression::make_label_addr(Label* label, source_location location)
12576 {
12577 return new Label_addr_expression(label, location);
12578 }
12579
12580 // Import an expression. This comes at the end in order to see the
12581 // various class definitions.
12582
12583 Expression*
12584 Expression::import_expression(Import* imp)
12585 {
12586 int c = imp->peek_char();
12587 if (imp->match_c_string("- ")
12588 || imp->match_c_string("! ")
12589 || imp->match_c_string("^ "))
12590 return Unary_expression::do_import(imp);
12591 else if (c == '(')
12592 return Binary_expression::do_import(imp);
12593 else if (imp->match_c_string("true")
12594 || imp->match_c_string("false"))
12595 return Boolean_expression::do_import(imp);
12596 else if (c == '"')
12597 return String_expression::do_import(imp);
12598 else if (c == '-' || (c >= '0' && c <= '9'))
12599 {
12600 // This handles integers, floats and complex constants.
12601 return Integer_expression::do_import(imp);
12602 }
12603 else if (imp->match_c_string("nil"))
12604 return Nil_expression::do_import(imp);
12605 else if (imp->match_c_string("convert"))
12606 return Type_conversion_expression::do_import(imp);
12607 else
12608 {
12609 error_at(imp->location(), "import error: expected expression");
12610 return Expression::make_error(imp->location());
12611 }
12612 }
12613
12614 // Class Expression_list.
12615
12616 // Traverse the list.
12617
12618 int
12619 Expression_list::traverse(Traverse* traverse)
12620 {
12621 for (Expression_list::iterator p = this->begin();
12622 p != this->end();
12623 ++p)
12624 {
12625 if (*p != NULL)
12626 {
12627 if (Expression::traverse(&*p, traverse) == TRAVERSE_EXIT)
12628 return TRAVERSE_EXIT;
12629 }
12630 }
12631 return TRAVERSE_CONTINUE;
12632 }
12633
12634 // Copy the list.
12635
12636 Expression_list*
12637 Expression_list::copy()
12638 {
12639 Expression_list* ret = new Expression_list();
12640 for (Expression_list::iterator p = this->begin();
12641 p != this->end();
12642 ++p)
12643 {
12644 if (*p == NULL)
12645 ret->push_back(NULL);
12646 else
12647 ret->push_back((*p)->copy());
12648 }
12649 return ret;
12650 }
12651
12652 // Return whether an expression list has an error expression.
12653
12654 bool
12655 Expression_list::contains_error() const
12656 {
12657 for (Expression_list::const_iterator p = this->begin();
12658 p != this->end();
12659 ++p)
12660 if (*p != NULL && (*p)->is_error_expression())
12661 return true;
12662 return false;
12663 }