3228c42ec3b57e1586074f7a701b89c02b9b03bf
[gcc.git] / gcc / go / gofrontend / gogo-tree.cc
1 // gogo-tree.cc -- convert Go frontend Gogo IR to gcc trees.
2
3 // Copyright 2009 The Go Authors. All rights reserved.
4 // Use of this source code is governed by a BSD-style
5 // license that can be found in the LICENSE file.
6
7 #include "go-system.h"
8
9 #include <gmp.h>
10
11 #ifndef ENABLE_BUILD_WITH_CXX
12 extern "C"
13 {
14 #endif
15
16 #include "toplev.h"
17 #include "tree.h"
18 #include "gimple.h"
19 #include "tree-iterator.h"
20 #include "cgraph.h"
21 #include "langhooks.h"
22 #include "convert.h"
23 #include "output.h"
24 #include "diagnostic.h"
25
26 #ifndef ENABLE_BUILD_WITH_CXX
27 }
28 #endif
29
30 #include "go-c.h"
31 #include "types.h"
32 #include "expressions.h"
33 #include "statements.h"
34 #include "gogo.h"
35
36 // Whether we have seen any errors.
37
38 bool
39 saw_errors()
40 {
41 return errorcount != 0 || sorrycount != 0;
42 }
43
44 // A helper function.
45
46 static inline tree
47 get_identifier_from_string(const std::string& str)
48 {
49 return get_identifier_with_length(str.data(), str.length());
50 }
51
52 // Builtin functions.
53
54 static std::map<std::string, tree> builtin_functions;
55
56 // Define a builtin function. BCODE is the builtin function code
57 // defined by builtins.def. NAME is the name of the builtin function.
58 // LIBNAME is the name of the corresponding library function, and is
59 // NULL if there isn't one. FNTYPE is the type of the function.
60 // CONST_P is true if the function has the const attribute.
61
62 static void
63 define_builtin(built_in_function bcode, const char* name, const char* libname,
64 tree fntype, bool const_p)
65 {
66 tree decl = add_builtin_function(name, fntype, bcode, BUILT_IN_NORMAL,
67 libname, NULL_TREE);
68 if (const_p)
69 TREE_READONLY(decl) = 1;
70 built_in_decls[bcode] = decl;
71 implicit_built_in_decls[bcode] = decl;
72 builtin_functions[name] = decl;
73 if (libname != NULL)
74 {
75 decl = add_builtin_function(libname, fntype, bcode, BUILT_IN_NORMAL,
76 NULL, NULL_TREE);
77 if (const_p)
78 TREE_READONLY(decl) = 1;
79 builtin_functions[libname] = decl;
80 }
81 }
82
83 // Create trees for implicit builtin functions.
84
85 void
86 Gogo::define_builtin_function_trees()
87 {
88 /* We need to define the fetch_and_add functions, since we use them
89 for ++ and --. */
90 tree t = go_type_for_size(BITS_PER_UNIT, 1);
91 tree p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
92 define_builtin(BUILT_IN_ADD_AND_FETCH_1, "__sync_fetch_and_add_1", NULL,
93 build_function_type_list(t, p, t, NULL_TREE), false);
94
95 t = go_type_for_size(BITS_PER_UNIT * 2, 1);
96 p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
97 define_builtin (BUILT_IN_ADD_AND_FETCH_2, "__sync_fetch_and_add_2", NULL,
98 build_function_type_list(t, p, t, NULL_TREE), false);
99
100 t = go_type_for_size(BITS_PER_UNIT * 4, 1);
101 p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
102 define_builtin(BUILT_IN_ADD_AND_FETCH_4, "__sync_fetch_and_add_4", NULL,
103 build_function_type_list(t, p, t, NULL_TREE), false);
104
105 t = go_type_for_size(BITS_PER_UNIT * 8, 1);
106 p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
107 define_builtin(BUILT_IN_ADD_AND_FETCH_8, "__sync_fetch_and_add_8", NULL,
108 build_function_type_list(t, p, t, NULL_TREE), false);
109
110 // We use __builtin_expect for magic import functions.
111 define_builtin(BUILT_IN_EXPECT, "__builtin_expect", NULL,
112 build_function_type_list(long_integer_type_node,
113 long_integer_type_node,
114 long_integer_type_node,
115 NULL_TREE),
116 true);
117
118 // We use __builtin_memmove for the predeclared copy function.
119 define_builtin(BUILT_IN_MEMMOVE, "__builtin_memmove", "memmove",
120 build_function_type_list(ptr_type_node,
121 ptr_type_node,
122 const_ptr_type_node,
123 size_type_node,
124 NULL_TREE),
125 false);
126
127 // We provide sqrt for the math library.
128 define_builtin(BUILT_IN_SQRT, "__builtin_sqrt", "sqrt",
129 build_function_type_list(double_type_node,
130 double_type_node,
131 NULL_TREE),
132 true);
133 define_builtin(BUILT_IN_SQRTL, "__builtin_sqrtl", "sqrtl",
134 build_function_type_list(long_double_type_node,
135 long_double_type_node,
136 NULL_TREE),
137 true);
138
139 // We use __builtin_return_address in the thunk we build for
140 // functions which call recover.
141 define_builtin(BUILT_IN_RETURN_ADDRESS, "__builtin_return_address", NULL,
142 build_function_type_list(ptr_type_node,
143 unsigned_type_node,
144 NULL_TREE),
145 false);
146
147 // The compiler uses __builtin_trap for some exception handling
148 // cases.
149 define_builtin(BUILT_IN_TRAP, "__builtin_trap", NULL,
150 build_function_type(void_type_node, void_list_node),
151 false);
152 }
153
154 // Get the name to use for the import control function. If there is a
155 // global function or variable, then we know that that name must be
156 // unique in the link, and we use it as the basis for our name.
157
158 const std::string&
159 Gogo::get_init_fn_name()
160 {
161 if (this->init_fn_name_.empty())
162 {
163 gcc_assert(this->package_ != NULL);
164 if (this->is_main_package())
165 {
166 // Use a name which the runtime knows.
167 this->init_fn_name_ = "__go_init_main";
168 }
169 else
170 {
171 std::string s = this->unique_prefix();
172 s.append(1, '.');
173 s.append(this->package_name());
174 s.append("..import");
175 this->init_fn_name_ = s;
176 }
177 }
178
179 return this->init_fn_name_;
180 }
181
182 // Add statements to INIT_STMT_LIST which run the initialization
183 // functions for imported packages. This is only used for the "main"
184 // package.
185
186 void
187 Gogo::init_imports(tree* init_stmt_list)
188 {
189 gcc_assert(this->is_main_package());
190
191 if (this->imported_init_fns_.empty())
192 return;
193
194 tree fntype = build_function_type(void_type_node, void_list_node);
195
196 // We must call them in increasing priority order.
197 std::vector<Import_init> v;
198 for (std::set<Import_init>::const_iterator p =
199 this->imported_init_fns_.begin();
200 p != this->imported_init_fns_.end();
201 ++p)
202 v.push_back(*p);
203 std::sort(v.begin(), v.end());
204
205 for (std::vector<Import_init>::const_iterator p = v.begin();
206 p != v.end();
207 ++p)
208 {
209 std::string user_name = p->package_name() + ".init";
210 tree decl = build_decl(UNKNOWN_LOCATION, FUNCTION_DECL,
211 get_identifier_from_string(user_name),
212 fntype);
213 const std::string& init_name(p->init_name());
214 SET_DECL_ASSEMBLER_NAME(decl, get_identifier_from_string(init_name));
215 TREE_PUBLIC(decl) = 1;
216 DECL_EXTERNAL(decl) = 1;
217 append_to_statement_list(build_call_expr(decl, 0), init_stmt_list);
218 }
219 }
220
221 // Register global variables with the garbage collector. We need to
222 // register all variables which can hold a pointer value. They become
223 // roots during the mark phase. We build a struct that is easy to
224 // hook into a list of roots.
225
226 // struct __go_gc_root_list
227 // {
228 // struct __go_gc_root_list* __next;
229 // struct __go_gc_root
230 // {
231 // void* __decl;
232 // size_t __size;
233 // } __roots[];
234 // };
235
236 // The last entry in the roots array has a NULL decl field.
237
238 void
239 Gogo::register_gc_vars(const std::vector<Named_object*>& var_gc,
240 tree* init_stmt_list)
241 {
242 if (var_gc.empty())
243 return;
244
245 size_t count = var_gc.size();
246
247 tree root_type = Gogo::builtin_struct(NULL, "__go_gc_root", NULL_TREE, 2,
248 "__next",
249 ptr_type_node,
250 "__size",
251 sizetype);
252
253 tree index_type = build_index_type(size_int(count));
254 tree array_type = build_array_type(root_type, index_type);
255
256 tree root_list_type = make_node(RECORD_TYPE);
257 root_list_type = Gogo::builtin_struct(NULL, "__go_gc_root_list",
258 root_list_type, 2,
259 "__next",
260 build_pointer_type(root_list_type),
261 "__roots",
262 array_type);
263
264 // Build an initialier for the __roots array.
265
266 VEC(constructor_elt,gc)* roots_init = VEC_alloc(constructor_elt, gc,
267 count + 1);
268
269 size_t i = 0;
270 for (std::vector<Named_object*>::const_iterator p = var_gc.begin();
271 p != var_gc.end();
272 ++p, ++i)
273 {
274 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
275
276 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
277 tree field = TYPE_FIELDS(root_type);
278 elt->index = field;
279 tree decl = (*p)->get_tree(this, NULL);
280 gcc_assert(TREE_CODE(decl) == VAR_DECL);
281 elt->value = build_fold_addr_expr(decl);
282
283 elt = VEC_quick_push(constructor_elt, init, NULL);
284 field = DECL_CHAIN(field);
285 elt->index = field;
286 elt->value = DECL_SIZE_UNIT(decl);
287
288 elt = VEC_quick_push(constructor_elt, roots_init, NULL);
289 elt->index = size_int(i);
290 elt->value = build_constructor(root_type, init);
291 }
292
293 // The list ends with a NULL entry.
294
295 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
296
297 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
298 tree field = TYPE_FIELDS(root_type);
299 elt->index = field;
300 elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
301
302 elt = VEC_quick_push(constructor_elt, init, NULL);
303 field = DECL_CHAIN(field);
304 elt->index = field;
305 elt->value = size_zero_node;
306
307 elt = VEC_quick_push(constructor_elt, roots_init, NULL);
308 elt->index = size_int(i);
309 elt->value = build_constructor(root_type, init);
310
311 // Build a constructor for the struct.
312
313 VEC(constructor_elt,gc*) root_list_init = VEC_alloc(constructor_elt, gc, 2);
314
315 elt = VEC_quick_push(constructor_elt, root_list_init, NULL);
316 field = TYPE_FIELDS(root_list_type);
317 elt->index = field;
318 elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
319
320 elt = VEC_quick_push(constructor_elt, root_list_init, NULL);
321 field = DECL_CHAIN(field);
322 elt->index = field;
323 elt->value = build_constructor(array_type, roots_init);
324
325 // Build a decl to register.
326
327 tree decl = build_decl(BUILTINS_LOCATION, VAR_DECL,
328 create_tmp_var_name("gc"), root_list_type);
329 DECL_EXTERNAL(decl) = 0;
330 TREE_PUBLIC(decl) = 0;
331 TREE_STATIC(decl) = 1;
332 DECL_ARTIFICIAL(decl) = 1;
333 DECL_INITIAL(decl) = build_constructor(root_list_type, root_list_init);
334 rest_of_decl_compilation(decl, 1, 0);
335
336 static tree register_gc_fndecl;
337 tree call = Gogo::call_builtin(&register_gc_fndecl, BUILTINS_LOCATION,
338 "__go_register_gc_roots",
339 1,
340 void_type_node,
341 build_pointer_type(root_list_type),
342 build_fold_addr_expr(decl));
343 if (call != error_mark_node)
344 append_to_statement_list(call, init_stmt_list);
345 }
346
347 // Build the decl for the initialization function.
348
349 tree
350 Gogo::initialization_function_decl()
351 {
352 // The tedious details of building your own function. There doesn't
353 // seem to be a helper function for this.
354 std::string name = this->package_name() + ".init";
355 tree fndecl = build_decl(BUILTINS_LOCATION, FUNCTION_DECL,
356 get_identifier_from_string(name),
357 build_function_type(void_type_node,
358 void_list_node));
359 const std::string& asm_name(this->get_init_fn_name());
360 SET_DECL_ASSEMBLER_NAME(fndecl, get_identifier_from_string(asm_name));
361
362 tree resdecl = build_decl(BUILTINS_LOCATION, RESULT_DECL, NULL_TREE,
363 void_type_node);
364 DECL_ARTIFICIAL(resdecl) = 1;
365 DECL_CONTEXT(resdecl) = fndecl;
366 DECL_RESULT(fndecl) = resdecl;
367
368 TREE_STATIC(fndecl) = 1;
369 TREE_USED(fndecl) = 1;
370 DECL_ARTIFICIAL(fndecl) = 1;
371 TREE_PUBLIC(fndecl) = 1;
372
373 DECL_INITIAL(fndecl) = make_node(BLOCK);
374 TREE_USED(DECL_INITIAL(fndecl)) = 1;
375
376 return fndecl;
377 }
378
379 // Create the magic initialization function. INIT_STMT_LIST is the
380 // code that it needs to run.
381
382 void
383 Gogo::write_initialization_function(tree fndecl, tree init_stmt_list)
384 {
385 // Make sure that we thought we needed an initialization function,
386 // as otherwise we will not have reported it in the export data.
387 gcc_assert(this->is_main_package() || this->need_init_fn_);
388
389 if (fndecl == NULL_TREE)
390 fndecl = this->initialization_function_decl();
391
392 DECL_SAVED_TREE(fndecl) = init_stmt_list;
393
394 current_function_decl = fndecl;
395 if (DECL_STRUCT_FUNCTION(fndecl) == NULL)
396 push_struct_function(fndecl);
397 else
398 push_cfun(DECL_STRUCT_FUNCTION(fndecl));
399 cfun->function_end_locus = BUILTINS_LOCATION;
400
401 gimplify_function_tree(fndecl);
402
403 cgraph_add_new_function(fndecl, false);
404 cgraph_mark_needed_node(cgraph_node(fndecl));
405
406 current_function_decl = NULL_TREE;
407 pop_cfun();
408 }
409
410 // Search for references to VAR in any statements or called functions.
411
412 class Find_var : public Traverse
413 {
414 public:
415 // A hash table we use to avoid looping. The index is the name of a
416 // named object. We only look through objects defined in this
417 // package.
418 typedef Unordered_set(std::string) Seen_objects;
419
420 Find_var(Named_object* var, Seen_objects* seen_objects)
421 : Traverse(traverse_expressions),
422 var_(var), seen_objects_(seen_objects), found_(false)
423 { }
424
425 // Whether the variable was found.
426 bool
427 found() const
428 { return this->found_; }
429
430 int
431 expression(Expression**);
432
433 private:
434 // The variable we are looking for.
435 Named_object* var_;
436 // Names of objects we have already seen.
437 Seen_objects* seen_objects_;
438 // True if the variable was found.
439 bool found_;
440 };
441
442 // See if EXPR refers to VAR, looking through function calls and
443 // variable initializations.
444
445 int
446 Find_var::expression(Expression** pexpr)
447 {
448 Expression* e = *pexpr;
449
450 Var_expression* ve = e->var_expression();
451 if (ve != NULL)
452 {
453 Named_object* v = ve->named_object();
454 if (v == this->var_)
455 {
456 this->found_ = true;
457 return TRAVERSE_EXIT;
458 }
459
460 if (v->is_variable() && v->package() == NULL)
461 {
462 Expression* init = v->var_value()->init();
463 if (init != NULL)
464 {
465 std::pair<Seen_objects::iterator, bool> ins =
466 this->seen_objects_->insert(v->name());
467 if (ins.second)
468 {
469 // This is the first time we have seen this name.
470 if (Expression::traverse(&init, this) == TRAVERSE_EXIT)
471 return TRAVERSE_EXIT;
472 }
473 }
474 }
475 }
476
477 // We traverse the code of any function we see. Note that this
478 // means that we will traverse the code of a function whose address
479 // is taken even if it is not called.
480 Func_expression* fe = e->func_expression();
481 if (fe != NULL)
482 {
483 const Named_object* f = fe->named_object();
484 if (f->is_function() && f->package() == NULL)
485 {
486 std::pair<Seen_objects::iterator, bool> ins =
487 this->seen_objects_->insert(f->name());
488 if (ins.second)
489 {
490 // This is the first time we have seen this name.
491 if (f->func_value()->block()->traverse(this) == TRAVERSE_EXIT)
492 return TRAVERSE_EXIT;
493 }
494 }
495 }
496
497 return TRAVERSE_CONTINUE;
498 }
499
500 // Return true if EXPR refers to VAR.
501
502 static bool
503 expression_requires(Expression* expr, Block* preinit, Named_object* var)
504 {
505 Find_var::Seen_objects seen_objects;
506 Find_var find_var(var, &seen_objects);
507 if (expr != NULL)
508 Expression::traverse(&expr, &find_var);
509 if (preinit != NULL)
510 preinit->traverse(&find_var);
511
512 return find_var.found();
513 }
514
515 // Sort variable initializations. If the initialization expression
516 // for variable A refers directly or indirectly to the initialization
517 // expression for variable B, then we must initialize B before A.
518
519 class Var_init
520 {
521 public:
522 Var_init()
523 : var_(NULL), init_(NULL_TREE), waiting_(0)
524 { }
525
526 Var_init(Named_object* var, tree init)
527 : var_(var), init_(init), waiting_(0)
528 { }
529
530 // Return the variable.
531 Named_object*
532 var() const
533 { return this->var_; }
534
535 // Return the initialization expression.
536 tree
537 init() const
538 { return this->init_; }
539
540 // Return the number of variables waiting for this one to be
541 // initialized.
542 size_t
543 waiting() const
544 { return this->waiting_; }
545
546 // Increment the number waiting.
547 void
548 increment_waiting()
549 { ++this->waiting_; }
550
551 private:
552 // The variable being initialized.
553 Named_object* var_;
554 // The initialization expression to run.
555 tree init_;
556 // The number of variables which are waiting for this one.
557 size_t waiting_;
558 };
559
560 typedef std::list<Var_init> Var_inits;
561
562 // Sort the variable initializations. The rule we follow is that we
563 // emit them in the order they appear in the array, except that if the
564 // initialization expression for a variable V1 depends upon another
565 // variable V2 then we initialize V1 after V2.
566
567 static void
568 sort_var_inits(Var_inits* var_inits)
569 {
570 Var_inits ready;
571 while (!var_inits->empty())
572 {
573 Var_inits::iterator p1 = var_inits->begin();
574 Named_object* var = p1->var();
575 Expression* init = var->var_value()->init();
576 Block* preinit = var->var_value()->preinit();
577
578 // Start walking through the list to see which variables VAR
579 // needs to wait for. We can skip P1->WAITING variables--that
580 // is the number we've already checked.
581 Var_inits::iterator p2 = p1;
582 ++p2;
583 for (size_t i = p1->waiting(); i > 0; --i)
584 ++p2;
585
586 for (; p2 != var_inits->end(); ++p2)
587 {
588 if (expression_requires(init, preinit, p2->var()))
589 {
590 // Check for cycles.
591 if (expression_requires(p2->var()->var_value()->init(),
592 p2->var()->var_value()->preinit(),
593 var))
594 {
595 error_at(var->location(),
596 ("initialization expressions for %qs and "
597 "%qs depend upon each other"),
598 var->message_name().c_str(),
599 p2->var()->message_name().c_str());
600 inform(p2->var()->location(), "%qs defined here",
601 p2->var()->message_name().c_str());
602 p2 = var_inits->end();
603 }
604 else
605 {
606 // We can't emit P1 until P2 is emitted. Move P1.
607 // Note that the WAITING loop always executes at
608 // least once, which is what we want.
609 p2->increment_waiting();
610 Var_inits::iterator p3 = p2;
611 for (size_t i = p2->waiting(); i > 0; --i)
612 ++p3;
613 var_inits->splice(p3, *var_inits, p1);
614 }
615 break;
616 }
617 }
618
619 if (p2 == var_inits->end())
620 {
621 // VAR does not depends upon any other initialization expressions.
622
623 // Check for a loop of VAR on itself. We only do this if
624 // INIT is not NULL; when INIT is NULL, it means that
625 // PREINIT sets VAR, which we will interpret as a loop.
626 if (init != NULL && expression_requires(init, preinit, var))
627 error_at(var->location(),
628 "initialization expression for %qs depends upon itself",
629 var->message_name().c_str());
630 ready.splice(ready.end(), *var_inits, p1);
631 }
632 }
633
634 // Now READY is the list in the desired initialization order.
635 var_inits->swap(ready);
636 }
637
638 // Write out the global definitions.
639
640 void
641 Gogo::write_globals()
642 {
643 Bindings* bindings = this->current_bindings();
644 size_t count = bindings->size_definitions();
645
646 tree* vec = new tree[count];
647
648 tree init_fndecl = NULL_TREE;
649 tree init_stmt_list = NULL_TREE;
650
651 if (this->is_main_package())
652 this->init_imports(&init_stmt_list);
653
654 // A list of variable initializations.
655 Var_inits var_inits;
656
657 // A list of variables which need to be registered with the garbage
658 // collector.
659 std::vector<Named_object*> var_gc;
660 var_gc.reserve(count);
661
662 tree var_init_stmt_list = NULL_TREE;
663 size_t i = 0;
664 for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
665 p != bindings->end_definitions();
666 ++p, ++i)
667 {
668 Named_object* no = *p;
669
670 gcc_assert(!no->is_type_declaration() && !no->is_function_declaration());
671 // There is nothing to do for a package.
672 if (no->is_package())
673 {
674 --i;
675 --count;
676 continue;
677 }
678
679 // There is nothing to do for an object which was imported from
680 // a different package into the global scope.
681 if (no->package() != NULL)
682 {
683 --i;
684 --count;
685 continue;
686 }
687
688 // There is nothing useful we can output for constants which
689 // have ideal or non-integeral type.
690 if (no->is_const())
691 {
692 Type* type = no->const_value()->type();
693 if (type == NULL)
694 type = no->const_value()->expr()->type();
695 if (type->is_abstract() || type->integer_type() == NULL)
696 {
697 --i;
698 --count;
699 continue;
700 }
701 }
702
703 vec[i] = no->get_tree(this, NULL);
704
705 if (vec[i] == error_mark_node)
706 {
707 gcc_assert(saw_errors());
708 --i;
709 --count;
710 continue;
711 }
712
713 // If a variable is initialized to a non-constant value, do the
714 // initialization in an initialization function.
715 if (TREE_CODE(vec[i]) == VAR_DECL)
716 {
717 gcc_assert(no->is_variable());
718
719 // Check for a sink variable, which may be used to run
720 // an initializer purely for its side effects.
721 bool is_sink = no->name()[0] == '_' && no->name()[1] == '.';
722
723 tree var_init_tree = NULL_TREE;
724 if (!no->var_value()->has_pre_init())
725 {
726 tree init = no->var_value()->get_init_tree(this, NULL);
727 if (init == error_mark_node)
728 gcc_assert(saw_errors());
729 else if (init == NULL_TREE)
730 ;
731 else if (TREE_CONSTANT(init))
732 DECL_INITIAL(vec[i]) = init;
733 else if (is_sink)
734 var_init_tree = init;
735 else
736 var_init_tree = fold_build2_loc(no->location(), MODIFY_EXPR,
737 void_type_node, vec[i], init);
738 }
739 else
740 {
741 // We are going to create temporary variables which
742 // means that we need an fndecl.
743 if (init_fndecl == NULL_TREE)
744 init_fndecl = this->initialization_function_decl();
745 current_function_decl = init_fndecl;
746 if (DECL_STRUCT_FUNCTION(init_fndecl) == NULL)
747 push_struct_function(init_fndecl);
748 else
749 push_cfun(DECL_STRUCT_FUNCTION(init_fndecl));
750
751 tree var_decl = is_sink ? NULL_TREE : vec[i];
752 var_init_tree = no->var_value()->get_init_block(this, NULL,
753 var_decl);
754
755 current_function_decl = NULL_TREE;
756 pop_cfun();
757 }
758
759 if (var_init_tree != NULL_TREE && var_init_tree != error_mark_node)
760 {
761 if (no->var_value()->init() == NULL
762 && !no->var_value()->has_pre_init())
763 append_to_statement_list(var_init_tree, &var_init_stmt_list);
764 else
765 var_inits.push_back(Var_init(no, var_init_tree));
766 }
767
768 if (!is_sink && no->var_value()->type()->has_pointer())
769 var_gc.push_back(no);
770 }
771 }
772
773 // Register global variables with the garbage collector.
774 this->register_gc_vars(var_gc, &init_stmt_list);
775
776 // Simple variable initializations, after all variables are
777 // registered.
778 append_to_statement_list(var_init_stmt_list, &init_stmt_list);
779
780 // Complex variable initializations, first sorting them into a
781 // workable order.
782 if (!var_inits.empty())
783 {
784 sort_var_inits(&var_inits);
785 for (Var_inits::const_iterator p = var_inits.begin();
786 p != var_inits.end();
787 ++p)
788 append_to_statement_list(p->init(), &init_stmt_list);
789 }
790
791 // After all the variables are initialized, call the "init"
792 // functions if there are any.
793 for (std::vector<Named_object*>::const_iterator p =
794 this->init_functions_.begin();
795 p != this->init_functions_.end();
796 ++p)
797 {
798 tree decl = (*p)->get_tree(this, NULL);
799 tree call = build_call_expr(decl, 0);
800 append_to_statement_list(call, &init_stmt_list);
801 }
802
803 // Set up a magic function to do all the initialization actions.
804 // This will be called if this package is imported.
805 if (init_stmt_list != NULL_TREE
806 || this->need_init_fn_
807 || this->is_main_package())
808 this->write_initialization_function(init_fndecl, init_stmt_list);
809
810 // Pass everything back to the middle-end.
811
812 wrapup_global_declarations(vec, count);
813
814 cgraph_finalize_compilation_unit();
815
816 check_global_declarations(vec, count);
817 emit_debug_global_declarations(vec, count);
818
819 delete[] vec;
820 }
821
822 // Get a tree for the identifier for a named object.
823
824 tree
825 Named_object::get_id(Gogo* gogo)
826 {
827 std::string decl_name;
828 if (this->is_function_declaration()
829 && !this->func_declaration_value()->asm_name().empty())
830 decl_name = this->func_declaration_value()->asm_name();
831 else if ((this->is_variable() && !this->var_value()->is_global())
832 || (this->is_type()
833 && this->type_value()->location() == BUILTINS_LOCATION))
834 {
835 // We don't need the package name for local variables or builtin
836 // types.
837 decl_name = Gogo::unpack_hidden_name(this->name_);
838 }
839 else if (this->is_function()
840 && !this->func_value()->is_method()
841 && this->package_ == NULL
842 && Gogo::unpack_hidden_name(this->name_) == "init")
843 {
844 // A single package can have multiple "init" functions, which
845 // means that we need to give them different names.
846 static int init_index;
847 char buf[20];
848 snprintf(buf, sizeof buf, "%d", init_index);
849 ++init_index;
850 decl_name = gogo->package_name() + ".init." + buf;
851 }
852 else
853 {
854 std::string package_name;
855 if (this->package_ == NULL)
856 package_name = gogo->package_name();
857 else
858 package_name = this->package_->name();
859
860 decl_name = package_name + '.' + Gogo::unpack_hidden_name(this->name_);
861
862 Function_type* fntype;
863 if (this->is_function())
864 fntype = this->func_value()->type();
865 else if (this->is_function_declaration())
866 fntype = this->func_declaration_value()->type();
867 else
868 fntype = NULL;
869 if (fntype != NULL && fntype->is_method())
870 {
871 decl_name.push_back('.');
872 decl_name.append(fntype->receiver()->type()->mangled_name(gogo));
873 }
874 }
875 if (this->is_type())
876 {
877 const Named_object* in_function = this->type_value()->in_function();
878 if (in_function != NULL)
879 decl_name += '$' + in_function->name();
880 }
881 return get_identifier_from_string(decl_name);
882 }
883
884 // Get a tree for a named object.
885
886 tree
887 Named_object::get_tree(Gogo* gogo, Named_object* function)
888 {
889 if (this->tree_ != NULL_TREE)
890 {
891 // If this is a variable whose address is taken, we must rebuild
892 // the INDIRECT_REF each time to avoid invalid sharing.
893 tree ret = this->tree_;
894 if (((this->classification_ == NAMED_OBJECT_VAR
895 && this->var_value()->is_in_heap())
896 || (this->classification_ == NAMED_OBJECT_RESULT_VAR
897 && this->result_var_value()->is_in_heap()))
898 && ret != error_mark_node)
899 {
900 gcc_assert(TREE_CODE(ret) == INDIRECT_REF);
901 ret = build_fold_indirect_ref(TREE_OPERAND(ret, 0));
902 TREE_THIS_NOTRAP(ret) = 1;
903 }
904 return ret;
905 }
906
907 tree name;
908 if (this->classification_ == NAMED_OBJECT_TYPE)
909 name = NULL_TREE;
910 else
911 name = this->get_id(gogo);
912 tree decl;
913 switch (this->classification_)
914 {
915 case NAMED_OBJECT_CONST:
916 {
917 Named_constant* named_constant = this->u_.const_value;
918 Translate_context subcontext(gogo, function, NULL, NULL_TREE);
919 tree expr_tree = named_constant->expr()->get_tree(&subcontext);
920 if (expr_tree == error_mark_node)
921 decl = error_mark_node;
922 else
923 {
924 Type* type = named_constant->type();
925 if (type != NULL && !type->is_abstract())
926 expr_tree = fold_convert(type->get_tree(gogo), expr_tree);
927 if (expr_tree == error_mark_node)
928 decl = error_mark_node;
929 else if (INTEGRAL_TYPE_P(TREE_TYPE(expr_tree)))
930 {
931 decl = build_decl(named_constant->location(), CONST_DECL,
932 name, TREE_TYPE(expr_tree));
933 DECL_INITIAL(decl) = expr_tree;
934 TREE_CONSTANT(decl) = 1;
935 TREE_READONLY(decl) = 1;
936 }
937 else
938 {
939 // A CONST_DECL is only for an enum constant, so we
940 // shouldn't use for non-integral types. Instead we
941 // just return the constant itself, rather than a
942 // decl.
943 decl = expr_tree;
944 }
945 }
946 }
947 break;
948
949 case NAMED_OBJECT_TYPE:
950 {
951 Named_type* named_type = this->u_.type_value;
952 tree type_tree = named_type->get_tree(gogo);
953 if (type_tree == error_mark_node)
954 decl = error_mark_node;
955 else
956 {
957 decl = TYPE_NAME(type_tree);
958 gcc_assert(decl != NULL_TREE);
959
960 // We need to produce a type descriptor for every named
961 // type, and for a pointer to every named type, since
962 // other files or packages might refer to them. We need
963 // to do this even for hidden types, because they might
964 // still be returned by some function. Simply calling the
965 // type_descriptor method is enough to create the type
966 // descriptor, even though we don't do anything with it.
967 if (this->package_ == NULL)
968 {
969 named_type->type_descriptor_pointer(gogo);
970 Type* pn = Type::make_pointer_type(named_type);
971 pn->type_descriptor_pointer(gogo);
972 }
973 }
974 }
975 break;
976
977 case NAMED_OBJECT_TYPE_DECLARATION:
978 error("reference to undefined type %qs",
979 this->message_name().c_str());
980 return error_mark_node;
981
982 case NAMED_OBJECT_VAR:
983 {
984 Variable* var = this->u_.var_value;
985 Type* type = var->type();
986 if (type->is_error_type()
987 || (type->is_undefined()
988 && (!var->is_global() || this->package() == NULL)))
989 {
990 // Force the error for an undefined type, just in case.
991 type->base();
992 decl = error_mark_node;
993 }
994 else
995 {
996 tree var_type = type->get_tree(gogo);
997 bool is_parameter = var->is_parameter();
998 if (var->is_receiver() && type->points_to() == NULL)
999 is_parameter = false;
1000 if (var->is_in_heap())
1001 {
1002 is_parameter = false;
1003 var_type = build_pointer_type(var_type);
1004 }
1005 decl = build_decl(var->location(),
1006 is_parameter ? PARM_DECL : VAR_DECL,
1007 name, var_type);
1008 if (!var->is_global())
1009 {
1010 tree fnid = function->get_id(gogo);
1011 tree fndecl = function->func_value()->get_or_make_decl(gogo,
1012 function,
1013 fnid);
1014 DECL_CONTEXT(decl) = fndecl;
1015 }
1016 if (is_parameter)
1017 DECL_ARG_TYPE(decl) = TREE_TYPE(decl);
1018
1019 if (var->is_global())
1020 {
1021 const Package* package = this->package();
1022 if (package == NULL)
1023 TREE_STATIC(decl) = 1;
1024 else
1025 DECL_EXTERNAL(decl) = 1;
1026 if (!Gogo::is_hidden_name(this->name_))
1027 {
1028 TREE_PUBLIC(decl) = 1;
1029 std::string asm_name = (package == NULL
1030 ? gogo->unique_prefix()
1031 : package->unique_prefix());
1032 asm_name.append(1, '.');
1033 asm_name.append(IDENTIFIER_POINTER(name),
1034 IDENTIFIER_LENGTH(name));
1035 tree asm_id = get_identifier_from_string(asm_name);
1036 SET_DECL_ASSEMBLER_NAME(decl, asm_id);
1037 }
1038 }
1039
1040 // FIXME: We should only set this for variables which are
1041 // actually used somewhere.
1042 TREE_USED(decl) = 1;
1043 }
1044 }
1045 break;
1046
1047 case NAMED_OBJECT_RESULT_VAR:
1048 {
1049 Result_variable* result = this->u_.result_var_value;
1050 Type* type = result->type();
1051 if (type->is_error_type() || type->is_undefined())
1052 {
1053 // Force the error.
1054 type->base();
1055 decl = error_mark_node;
1056 }
1057 else
1058 {
1059 gcc_assert(result->function() == function->func_value());
1060 source_location loc = function->location();
1061 tree result_type = type->get_tree(gogo);
1062 tree init;
1063 if (!result->is_in_heap())
1064 init = type->get_init_tree(gogo, false);
1065 else
1066 {
1067 tree space = gogo->allocate_memory(type,
1068 TYPE_SIZE_UNIT(result_type),
1069 loc);
1070 result_type = build_pointer_type(result_type);
1071 tree subinit = type->get_init_tree(gogo, true);
1072 if (subinit == NULL_TREE)
1073 init = fold_convert_loc(loc, result_type, space);
1074 else
1075 {
1076 space = save_expr(space);
1077 space = fold_convert_loc(loc, result_type, space);
1078 tree spaceref = build_fold_indirect_ref_loc(loc, space);
1079 TREE_THIS_NOTRAP(spaceref) = 1;
1080 tree set = fold_build2_loc(loc, MODIFY_EXPR, void_type_node,
1081 spaceref, subinit);
1082 init = fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(space),
1083 set, space);
1084 }
1085 }
1086 decl = build_decl(loc, VAR_DECL, name, result_type);
1087 tree fnid = function->get_id(gogo);
1088 tree fndecl = function->func_value()->get_or_make_decl(gogo,
1089 function,
1090 fnid);
1091 DECL_CONTEXT(decl) = fndecl;
1092 DECL_INITIAL(decl) = init;
1093 TREE_USED(decl) = 1;
1094 }
1095 }
1096 break;
1097
1098 case NAMED_OBJECT_SINK:
1099 gcc_unreachable();
1100
1101 case NAMED_OBJECT_FUNC:
1102 {
1103 Function* func = this->u_.func_value;
1104 decl = func->get_or_make_decl(gogo, this, name);
1105 if (decl != error_mark_node)
1106 {
1107 if (func->block() != NULL)
1108 {
1109 if (DECL_STRUCT_FUNCTION(decl) == NULL)
1110 push_struct_function(decl);
1111 else
1112 push_cfun(DECL_STRUCT_FUNCTION(decl));
1113
1114 cfun->function_end_locus = func->block()->end_location();
1115
1116 current_function_decl = decl;
1117
1118 func->build_tree(gogo, this);
1119
1120 gimplify_function_tree(decl);
1121
1122 cgraph_finalize_function(decl, true);
1123
1124 current_function_decl = NULL_TREE;
1125 pop_cfun();
1126 }
1127 }
1128 }
1129 break;
1130
1131 default:
1132 gcc_unreachable();
1133 }
1134
1135 if (TREE_TYPE(decl) == error_mark_node)
1136 decl = error_mark_node;
1137
1138 tree ret = decl;
1139
1140 // If this is a local variable whose address is taken, then we
1141 // actually store it in the heap. For uses of the variable we need
1142 // to return a reference to that heap location.
1143 if (((this->classification_ == NAMED_OBJECT_VAR
1144 && this->var_value()->is_in_heap())
1145 || (this->classification_ == NAMED_OBJECT_RESULT_VAR
1146 && this->result_var_value()->is_in_heap()))
1147 && ret != error_mark_node)
1148 {
1149 gcc_assert(POINTER_TYPE_P(TREE_TYPE(ret)));
1150 ret = build_fold_indirect_ref(ret);
1151 TREE_THIS_NOTRAP(ret) = 1;
1152 }
1153
1154 this->tree_ = ret;
1155
1156 if (ret != error_mark_node)
1157 go_preserve_from_gc(ret);
1158
1159 return ret;
1160 }
1161
1162 // Get the initial value of a variable as a tree. This does not
1163 // consider whether the variable is in the heap--it returns the
1164 // initial value as though it were always stored in the stack.
1165
1166 tree
1167 Variable::get_init_tree(Gogo* gogo, Named_object* function)
1168 {
1169 gcc_assert(this->preinit_ == NULL);
1170 if (this->init_ == NULL)
1171 {
1172 gcc_assert(!this->is_parameter_);
1173 return this->type_->get_init_tree(gogo, this->is_global_);
1174 }
1175 else
1176 {
1177 Translate_context context(gogo, function, NULL, NULL_TREE);
1178 tree rhs_tree = this->init_->get_tree(&context);
1179 return Expression::convert_for_assignment(&context, this->type(),
1180 this->init_->type(),
1181 rhs_tree, this->location());
1182 }
1183 }
1184
1185 // Get the initial value of a variable when a block is required.
1186 // VAR_DECL is the decl to set; it may be NULL for a sink variable.
1187
1188 tree
1189 Variable::get_init_block(Gogo* gogo, Named_object* function, tree var_decl)
1190 {
1191 gcc_assert(this->preinit_ != NULL);
1192
1193 // We want to add the variable assignment to the end of the preinit
1194 // block. The preinit block may have a TRY_FINALLY_EXPR and a
1195 // TRY_CATCH_EXPR; if it does, we want to add to the end of the
1196 // regular statements.
1197
1198 Translate_context context(gogo, function, NULL, NULL_TREE);
1199 tree block_tree = this->preinit_->get_tree(&context);
1200 if (block_tree == error_mark_node)
1201 return error_mark_node;
1202 gcc_assert(TREE_CODE(block_tree) == BIND_EXPR);
1203 tree statements = BIND_EXPR_BODY(block_tree);
1204 while (statements != NULL_TREE
1205 && (TREE_CODE(statements) == TRY_FINALLY_EXPR
1206 || TREE_CODE(statements) == TRY_CATCH_EXPR))
1207 statements = TREE_OPERAND(statements, 0);
1208
1209 // It's possible to have pre-init statements without an initializer
1210 // if the pre-init statements set the variable.
1211 if (this->init_ != NULL)
1212 {
1213 tree rhs_tree = this->init_->get_tree(&context);
1214 if (rhs_tree == error_mark_node)
1215 return error_mark_node;
1216 if (var_decl == NULL_TREE)
1217 append_to_statement_list(rhs_tree, &statements);
1218 else
1219 {
1220 tree val = Expression::convert_for_assignment(&context, this->type(),
1221 this->init_->type(),
1222 rhs_tree,
1223 this->location());
1224 if (val == error_mark_node)
1225 return error_mark_node;
1226 tree set = fold_build2_loc(this->location(), MODIFY_EXPR,
1227 void_type_node, var_decl, val);
1228 append_to_statement_list(set, &statements);
1229 }
1230 }
1231
1232 return block_tree;
1233 }
1234
1235 // Get a tree for a function decl.
1236
1237 tree
1238 Function::get_or_make_decl(Gogo* gogo, Named_object* no, tree id)
1239 {
1240 if (this->fndecl_ == NULL_TREE)
1241 {
1242 tree functype = this->type_->get_tree(gogo);
1243 if (functype == error_mark_node)
1244 this->fndecl_ = error_mark_node;
1245 else
1246 {
1247 // The type of a function comes back as a pointer, but we
1248 // want the real function type for a function declaration.
1249 gcc_assert(POINTER_TYPE_P(functype));
1250 functype = TREE_TYPE(functype);
1251 tree decl = build_decl(this->location(), FUNCTION_DECL, id, functype);
1252
1253 this->fndecl_ = decl;
1254
1255 if (no->package() != NULL)
1256 ;
1257 else if (this->enclosing_ != NULL || Gogo::is_thunk(no))
1258 ;
1259 else if (Gogo::unpack_hidden_name(no->name()) == "init"
1260 && !this->type_->is_method())
1261 ;
1262 else if (Gogo::unpack_hidden_name(no->name()) == "main"
1263 && gogo->is_main_package())
1264 TREE_PUBLIC(decl) = 1;
1265 // Methods have to be public even if they are hidden because
1266 // they can be pulled into type descriptors when using
1267 // anonymous fields.
1268 else if (!Gogo::is_hidden_name(no->name())
1269 || this->type_->is_method())
1270 {
1271 TREE_PUBLIC(decl) = 1;
1272 std::string asm_name = gogo->unique_prefix();
1273 asm_name.append(1, '.');
1274 asm_name.append(IDENTIFIER_POINTER(id), IDENTIFIER_LENGTH(id));
1275 SET_DECL_ASSEMBLER_NAME(decl,
1276 get_identifier_from_string(asm_name));
1277 }
1278
1279 // Why do we have to do this in the frontend?
1280 tree restype = TREE_TYPE(functype);
1281 tree resdecl = build_decl(this->location(), RESULT_DECL, NULL_TREE,
1282 restype);
1283 DECL_ARTIFICIAL(resdecl) = 1;
1284 DECL_IGNORED_P(resdecl) = 1;
1285 DECL_CONTEXT(resdecl) = decl;
1286 DECL_RESULT(decl) = resdecl;
1287
1288 if (this->enclosing_ != NULL)
1289 DECL_STATIC_CHAIN(decl) = 1;
1290
1291 // If a function calls the predeclared recover function, we
1292 // can't inline it, because recover behaves differently in a
1293 // function passed directly to defer.
1294 if (this->calls_recover_ && !this->is_recover_thunk_)
1295 DECL_UNINLINABLE(decl) = 1;
1296
1297 // If this is a thunk created to call a function which calls
1298 // the predeclared recover function, we need to disable
1299 // stack splitting for the thunk.
1300 if (this->is_recover_thunk_)
1301 {
1302 tree attr = get_identifier("__no_split_stack__");
1303 DECL_ATTRIBUTES(decl) = tree_cons(attr, NULL_TREE, NULL_TREE);
1304 }
1305
1306 go_preserve_from_gc(decl);
1307
1308 if (this->closure_var_ != NULL)
1309 {
1310 push_struct_function(decl);
1311
1312 tree closure_decl = this->closure_var_->get_tree(gogo, no);
1313 if (closure_decl == error_mark_node)
1314 this->fndecl_ = error_mark_node;
1315 else
1316 {
1317 DECL_ARTIFICIAL(closure_decl) = 1;
1318 DECL_IGNORED_P(closure_decl) = 1;
1319 TREE_USED(closure_decl) = 1;
1320 DECL_ARG_TYPE(closure_decl) = TREE_TYPE(closure_decl);
1321 TREE_READONLY(closure_decl) = 1;
1322
1323 DECL_STRUCT_FUNCTION(decl)->static_chain_decl = closure_decl;
1324 }
1325
1326 pop_cfun();
1327 }
1328 }
1329 }
1330 return this->fndecl_;
1331 }
1332
1333 // Get a tree for a function declaration.
1334
1335 tree
1336 Function_declaration::get_or_make_decl(Gogo* gogo, Named_object* no, tree id)
1337 {
1338 if (this->fndecl_ == NULL_TREE)
1339 {
1340 // Let Go code use an asm declaration to pick up a builtin
1341 // function.
1342 if (!this->asm_name_.empty())
1343 {
1344 std::map<std::string, tree>::const_iterator p =
1345 builtin_functions.find(this->asm_name_);
1346 if (p != builtin_functions.end())
1347 {
1348 this->fndecl_ = p->second;
1349 return this->fndecl_;
1350 }
1351 }
1352
1353 tree functype = this->fntype_->get_tree(gogo);
1354 tree decl;
1355 if (functype == error_mark_node)
1356 decl = error_mark_node;
1357 else
1358 {
1359 // The type of a function comes back as a pointer, but we
1360 // want the real function type for a function declaration.
1361 gcc_assert(POINTER_TYPE_P(functype));
1362 functype = TREE_TYPE(functype);
1363 decl = build_decl(this->location(), FUNCTION_DECL, id, functype);
1364 TREE_PUBLIC(decl) = 1;
1365 DECL_EXTERNAL(decl) = 1;
1366
1367 if (this->asm_name_.empty())
1368 {
1369 std::string asm_name = (no->package() == NULL
1370 ? gogo->unique_prefix()
1371 : no->package()->unique_prefix());
1372 asm_name.append(1, '.');
1373 asm_name.append(IDENTIFIER_POINTER(id), IDENTIFIER_LENGTH(id));
1374 SET_DECL_ASSEMBLER_NAME(decl,
1375 get_identifier_from_string(asm_name));
1376 }
1377 }
1378 this->fndecl_ = decl;
1379 go_preserve_from_gc(decl);
1380 }
1381 return this->fndecl_;
1382 }
1383
1384 // We always pass the receiver to a method as a pointer. If the
1385 // receiver is actually declared as a non-pointer type, then we copy
1386 // the value into a local variable, so that it has the right type. In
1387 // this function we create the real PARM_DECL to use, and set
1388 // DEC_INITIAL of the var_decl to be the value passed in.
1389
1390 tree
1391 Function::make_receiver_parm_decl(Gogo* gogo, Named_object* no, tree var_decl)
1392 {
1393 if (var_decl == error_mark_node)
1394 return error_mark_node;
1395 // If the function takes the address of a receiver which is passed
1396 // by value, then we will have an INDIRECT_REF here. We need to get
1397 // the real variable.
1398 bool is_in_heap = no->var_value()->is_in_heap();
1399 tree val_type;
1400 if (TREE_CODE(var_decl) != INDIRECT_REF)
1401 {
1402 gcc_assert(!is_in_heap);
1403 val_type = TREE_TYPE(var_decl);
1404 }
1405 else
1406 {
1407 gcc_assert(is_in_heap);
1408 var_decl = TREE_OPERAND(var_decl, 0);
1409 if (var_decl == error_mark_node)
1410 return error_mark_node;
1411 gcc_assert(POINTER_TYPE_P(TREE_TYPE(var_decl)));
1412 val_type = TREE_TYPE(TREE_TYPE(var_decl));
1413 }
1414 gcc_assert(TREE_CODE(var_decl) == VAR_DECL);
1415 source_location loc = DECL_SOURCE_LOCATION(var_decl);
1416 std::string name = IDENTIFIER_POINTER(DECL_NAME(var_decl));
1417 name += ".pointer";
1418 tree id = get_identifier_from_string(name);
1419 tree parm_decl = build_decl(loc, PARM_DECL, id, build_pointer_type(val_type));
1420 DECL_CONTEXT(parm_decl) = current_function_decl;
1421 DECL_ARG_TYPE(parm_decl) = TREE_TYPE(parm_decl);
1422
1423 gcc_assert(DECL_INITIAL(var_decl) == NULL_TREE);
1424 // The receiver might be passed as a null pointer.
1425 tree check = fold_build2_loc(loc, NE_EXPR, boolean_type_node, parm_decl,
1426 fold_convert_loc(loc, TREE_TYPE(parm_decl),
1427 null_pointer_node));
1428 tree ind = build_fold_indirect_ref_loc(loc, parm_decl);
1429 TREE_THIS_NOTRAP(ind) = 1;
1430 tree zero_init = no->var_value()->type()->get_init_tree(gogo, false);
1431 tree init = fold_build3_loc(loc, COND_EXPR, TREE_TYPE(ind),
1432 check, ind, zero_init);
1433
1434 if (is_in_heap)
1435 {
1436 tree size = TYPE_SIZE_UNIT(val_type);
1437 tree space = gogo->allocate_memory(no->var_value()->type(), size,
1438 no->location());
1439 space = save_expr(space);
1440 space = fold_convert(build_pointer_type(val_type), space);
1441 tree spaceref = build_fold_indirect_ref_loc(no->location(), space);
1442 TREE_THIS_NOTRAP(spaceref) = 1;
1443 tree check = fold_build2_loc(loc, NE_EXPR, boolean_type_node,
1444 parm_decl,
1445 fold_convert_loc(loc, TREE_TYPE(parm_decl),
1446 null_pointer_node));
1447 tree parmref = build_fold_indirect_ref_loc(no->location(), parm_decl);
1448 TREE_THIS_NOTRAP(parmref) = 1;
1449 tree set = fold_build2_loc(loc, MODIFY_EXPR, void_type_node,
1450 spaceref, parmref);
1451 init = fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(space),
1452 build3(COND_EXPR, void_type_node,
1453 check, set, NULL_TREE),
1454 space);
1455 }
1456
1457 DECL_INITIAL(var_decl) = init;
1458
1459 return parm_decl;
1460 }
1461
1462 // If we take the address of a parameter, then we need to copy it into
1463 // the heap. We will access it as a local variable via an
1464 // indirection.
1465
1466 tree
1467 Function::copy_parm_to_heap(Gogo* gogo, Named_object* no, tree ref)
1468 {
1469 if (ref == error_mark_node)
1470 return error_mark_node;
1471
1472 gcc_assert(TREE_CODE(ref) == INDIRECT_REF);
1473
1474 tree var_decl = TREE_OPERAND(ref, 0);
1475 if (var_decl == error_mark_node)
1476 return error_mark_node;
1477 gcc_assert(TREE_CODE(var_decl) == VAR_DECL);
1478 source_location loc = DECL_SOURCE_LOCATION(var_decl);
1479
1480 std::string name = IDENTIFIER_POINTER(DECL_NAME(var_decl));
1481 name += ".param";
1482 tree id = get_identifier_from_string(name);
1483
1484 tree type = TREE_TYPE(var_decl);
1485 gcc_assert(POINTER_TYPE_P(type));
1486 type = TREE_TYPE(type);
1487
1488 tree parm_decl = build_decl(loc, PARM_DECL, id, type);
1489 DECL_CONTEXT(parm_decl) = current_function_decl;
1490 DECL_ARG_TYPE(parm_decl) = type;
1491
1492 tree size = TYPE_SIZE_UNIT(type);
1493 tree space = gogo->allocate_memory(no->var_value()->type(), size, loc);
1494 space = save_expr(space);
1495 space = fold_convert(TREE_TYPE(var_decl), space);
1496 tree spaceref = build_fold_indirect_ref_loc(loc, space);
1497 TREE_THIS_NOTRAP(spaceref) = 1;
1498 tree init = build2(COMPOUND_EXPR, TREE_TYPE(space),
1499 build2(MODIFY_EXPR, void_type_node, spaceref, parm_decl),
1500 space);
1501 DECL_INITIAL(var_decl) = init;
1502
1503 return parm_decl;
1504 }
1505
1506 // Get a tree for function code.
1507
1508 void
1509 Function::build_tree(Gogo* gogo, Named_object* named_function)
1510 {
1511 tree fndecl = this->fndecl_;
1512 gcc_assert(fndecl != NULL_TREE);
1513
1514 tree params = NULL_TREE;
1515 tree* pp = &params;
1516
1517 tree declare_vars = NULL_TREE;
1518 for (Bindings::const_definitions_iterator p =
1519 this->block_->bindings()->begin_definitions();
1520 p != this->block_->bindings()->end_definitions();
1521 ++p)
1522 {
1523 if ((*p)->is_variable() && (*p)->var_value()->is_parameter())
1524 {
1525 *pp = (*p)->get_tree(gogo, named_function);
1526
1527 // We always pass the receiver to a method as a pointer. If
1528 // the receiver is declared as a non-pointer type, then we
1529 // copy the value into a local variable.
1530 if ((*p)->var_value()->is_receiver()
1531 && (*p)->var_value()->type()->points_to() == NULL)
1532 {
1533 tree parm_decl = this->make_receiver_parm_decl(gogo, *p, *pp);
1534 tree var = *pp;
1535 if (TREE_CODE(var) == INDIRECT_REF)
1536 var = TREE_OPERAND(var, 0);
1537 if (var != error_mark_node)
1538 {
1539 gcc_assert(TREE_CODE(var) == VAR_DECL);
1540 DECL_CHAIN(var) = declare_vars;
1541 declare_vars = var;
1542 }
1543 *pp = parm_decl;
1544 }
1545 else if ((*p)->var_value()->is_in_heap())
1546 {
1547 // If we take the address of a parameter, then we need
1548 // to copy it into the heap.
1549 tree parm_decl = this->copy_parm_to_heap(gogo, *p, *pp);
1550 if (*pp != error_mark_node)
1551 {
1552 gcc_assert(TREE_CODE(*pp) == INDIRECT_REF);
1553 tree var_decl = TREE_OPERAND(*pp, 0);
1554 if (var_decl != error_mark_node)
1555 {
1556 gcc_assert(TREE_CODE(var_decl) == VAR_DECL);
1557 DECL_CHAIN(var_decl) = declare_vars;
1558 declare_vars = var_decl;
1559 }
1560 }
1561 *pp = parm_decl;
1562 }
1563
1564 if (*pp != error_mark_node)
1565 {
1566 gcc_assert(TREE_CODE(*pp) == PARM_DECL);
1567 pp = &DECL_CHAIN(*pp);
1568 }
1569 }
1570 else if ((*p)->is_result_variable())
1571 {
1572 tree var_decl = (*p)->get_tree(gogo, named_function);
1573 if (var_decl != error_mark_node
1574 && (*p)->result_var_value()->is_in_heap())
1575 {
1576 gcc_assert(TREE_CODE(var_decl) == INDIRECT_REF);
1577 var_decl = TREE_OPERAND(var_decl, 0);
1578 }
1579 if (var_decl != error_mark_node)
1580 {
1581 gcc_assert(TREE_CODE(var_decl) == VAR_DECL);
1582 DECL_CHAIN(var_decl) = declare_vars;
1583 declare_vars = var_decl;
1584 }
1585 }
1586 }
1587 *pp = NULL_TREE;
1588
1589 DECL_ARGUMENTS(fndecl) = params;
1590
1591 if (this->block_ != NULL)
1592 {
1593 gcc_assert(DECL_INITIAL(fndecl) == NULL_TREE);
1594
1595 // Declare variables if necessary.
1596 tree bind = NULL_TREE;
1597 if (declare_vars != NULL_TREE)
1598 {
1599 tree block = make_node(BLOCK);
1600 BLOCK_SUPERCONTEXT(block) = fndecl;
1601 DECL_INITIAL(fndecl) = block;
1602 BLOCK_VARS(block) = declare_vars;
1603 TREE_USED(block) = 1;
1604 bind = build3(BIND_EXPR, void_type_node, BLOCK_VARS(block),
1605 NULL_TREE, block);
1606 TREE_SIDE_EFFECTS(bind) = 1;
1607 }
1608
1609 // Build the trees for all the statements in the function.
1610 Translate_context context(gogo, named_function, NULL, NULL_TREE);
1611 tree code = this->block_->get_tree(&context);
1612
1613 tree init = NULL_TREE;
1614 tree except = NULL_TREE;
1615 tree fini = NULL_TREE;
1616
1617 // Initialize variables if necessary.
1618 for (tree v = declare_vars; v != NULL_TREE; v = DECL_CHAIN(v))
1619 {
1620 tree dv = build1(DECL_EXPR, void_type_node, v);
1621 SET_EXPR_LOCATION(dv, DECL_SOURCE_LOCATION(v));
1622 append_to_statement_list(dv, &init);
1623 }
1624
1625 // If we have a defer stack, initialize it at the start of a
1626 // function.
1627 if (this->defer_stack_ != NULL_TREE)
1628 {
1629 tree defer_init = build1(DECL_EXPR, void_type_node,
1630 this->defer_stack_);
1631 SET_EXPR_LOCATION(defer_init, this->block_->start_location());
1632 append_to_statement_list(defer_init, &init);
1633
1634 // Clean up the defer stack when we leave the function.
1635 this->build_defer_wrapper(gogo, named_function, &except, &fini);
1636 }
1637
1638 if (code != NULL_TREE && code != error_mark_node)
1639 {
1640 if (init != NULL_TREE)
1641 code = build2(COMPOUND_EXPR, void_type_node, init, code);
1642 if (except != NULL_TREE)
1643 code = build2(TRY_CATCH_EXPR, void_type_node, code,
1644 build2(CATCH_EXPR, void_type_node, NULL, except));
1645 if (fini != NULL_TREE)
1646 code = build2(TRY_FINALLY_EXPR, void_type_node, code, fini);
1647 }
1648
1649 // Stick the code into the block we built for the receiver, if
1650 // we built on.
1651 if (bind != NULL_TREE && code != NULL_TREE && code != error_mark_node)
1652 {
1653 BIND_EXPR_BODY(bind) = code;
1654 code = bind;
1655 }
1656
1657 DECL_SAVED_TREE(fndecl) = code;
1658 }
1659 }
1660
1661 // Build the wrappers around function code needed if the function has
1662 // any defer statements. This sets *EXCEPT to an exception handler
1663 // and *FINI to a finally handler.
1664
1665 void
1666 Function::build_defer_wrapper(Gogo* gogo, Named_object* named_function,
1667 tree *except, tree *fini)
1668 {
1669 source_location end_loc = this->block_->end_location();
1670
1671 // Add an exception handler. This is used if a panic occurs. Its
1672 // purpose is to stop the stack unwinding if a deferred function
1673 // calls recover. There are more details in
1674 // libgo/runtime/go-unwind.c.
1675 tree stmt_list = NULL_TREE;
1676 static tree check_fndecl;
1677 tree call = Gogo::call_builtin(&check_fndecl,
1678 end_loc,
1679 "__go_check_defer",
1680 1,
1681 void_type_node,
1682 ptr_type_node,
1683 this->defer_stack(end_loc));
1684 if (call != error_mark_node)
1685 append_to_statement_list(call, &stmt_list);
1686
1687 tree retval = this->return_value(gogo, named_function, end_loc, &stmt_list);
1688 tree set;
1689 if (retval == NULL_TREE)
1690 set = NULL_TREE;
1691 else
1692 set = fold_build2_loc(end_loc, MODIFY_EXPR, void_type_node,
1693 DECL_RESULT(this->fndecl_), retval);
1694 tree ret_stmt = fold_build1_loc(end_loc, RETURN_EXPR, void_type_node, set);
1695 append_to_statement_list(ret_stmt, &stmt_list);
1696
1697 gcc_assert(*except == NULL_TREE);
1698 *except = stmt_list;
1699
1700 // Add some finally code to run the defer functions. This is used
1701 // both in the normal case, when no panic occurs, and also if a
1702 // panic occurs to run any further defer functions. Of course, it
1703 // is possible for a defer function to call panic which should be
1704 // caught by another defer function. To handle that we use a loop.
1705 // finish:
1706 // try { __go_undefer(); } catch { __go_check_defer(); goto finish; }
1707 // if (return values are named) return named_vals;
1708
1709 stmt_list = NULL;
1710
1711 tree label = create_artificial_label(end_loc);
1712 tree define_label = fold_build1_loc(end_loc, LABEL_EXPR, void_type_node,
1713 label);
1714 append_to_statement_list(define_label, &stmt_list);
1715
1716 static tree undefer_fndecl;
1717 tree undefer = Gogo::call_builtin(&undefer_fndecl,
1718 end_loc,
1719 "__go_undefer",
1720 1,
1721 void_type_node,
1722 ptr_type_node,
1723 this->defer_stack(end_loc));
1724 if (undefer_fndecl != NULL_TREE)
1725 TREE_NOTHROW(undefer_fndecl) = 0;
1726
1727 tree defer = Gogo::call_builtin(&check_fndecl,
1728 end_loc,
1729 "__go_check_defer",
1730 1,
1731 void_type_node,
1732 ptr_type_node,
1733 this->defer_stack(end_loc));
1734 tree jump = fold_build1_loc(end_loc, GOTO_EXPR, void_type_node, label);
1735 tree catch_body = build2(COMPOUND_EXPR, void_type_node, defer, jump);
1736 catch_body = build2(CATCH_EXPR, void_type_node, NULL, catch_body);
1737 tree try_catch = build2(TRY_CATCH_EXPR, void_type_node, undefer, catch_body);
1738
1739 append_to_statement_list(try_catch, &stmt_list);
1740
1741 if (this->type_->results() != NULL
1742 && !this->type_->results()->empty()
1743 && !this->type_->results()->front().name().empty())
1744 {
1745 // If the result variables are named, we need to return them
1746 // again, because they might have been changed by a defer
1747 // function.
1748 retval = this->return_value(gogo, named_function, end_loc,
1749 &stmt_list);
1750 set = fold_build2_loc(end_loc, MODIFY_EXPR, void_type_node,
1751 DECL_RESULT(this->fndecl_), retval);
1752 ret_stmt = fold_build1_loc(end_loc, RETURN_EXPR, void_type_node, set);
1753 append_to_statement_list(ret_stmt, &stmt_list);
1754 }
1755
1756 gcc_assert(*fini == NULL_TREE);
1757 *fini = stmt_list;
1758 }
1759
1760 // Return the value to assign to DECL_RESULT(this->fndecl_). This may
1761 // also add statements to STMT_LIST, which need to be executed before
1762 // the assignment. This is used for a return statement with no
1763 // explicit values.
1764
1765 tree
1766 Function::return_value(Gogo* gogo, Named_object* named_function,
1767 source_location location, tree* stmt_list) const
1768 {
1769 const Typed_identifier_list* results = this->type_->results();
1770 if (results == NULL || results->empty())
1771 return NULL_TREE;
1772
1773 // In the case of an exception handler created for functions with
1774 // defer statements, the result variables may be unnamed.
1775 bool is_named = !results->front().name().empty();
1776 if (is_named)
1777 gcc_assert(this->named_results_ != NULL
1778 && this->named_results_->size() == results->size());
1779
1780 tree retval;
1781 if (results->size() == 1)
1782 {
1783 if (is_named)
1784 return this->named_results_->front()->get_tree(gogo, named_function);
1785 else
1786 return results->front().type()->get_init_tree(gogo, false);
1787 }
1788 else
1789 {
1790 tree rettype = TREE_TYPE(DECL_RESULT(this->fndecl_));
1791 retval = create_tmp_var(rettype, "RESULT");
1792 tree field = TYPE_FIELDS(rettype);
1793 int index = 0;
1794 for (Typed_identifier_list::const_iterator pr = results->begin();
1795 pr != results->end();
1796 ++pr, ++index, field = DECL_CHAIN(field))
1797 {
1798 gcc_assert(field != NULL);
1799 tree val;
1800 if (is_named)
1801 val = (*this->named_results_)[index]->get_tree(gogo,
1802 named_function);
1803 else
1804 val = pr->type()->get_init_tree(gogo, false);
1805 tree set = fold_build2_loc(location, MODIFY_EXPR, void_type_node,
1806 build3(COMPONENT_REF, TREE_TYPE(field),
1807 retval, field, NULL_TREE),
1808 val);
1809 append_to_statement_list(set, stmt_list);
1810 }
1811 return retval;
1812 }
1813 }
1814
1815 // Get the tree for the variable holding the defer stack for this
1816 // function. At least at present, the value of this variable is not
1817 // used. However, a pointer to this variable is used as a marker for
1818 // the functions on the defer stack associated with this function.
1819 // Doing things this way permits inlining a function which uses defer.
1820
1821 tree
1822 Function::defer_stack(source_location location)
1823 {
1824 if (this->defer_stack_ == NULL_TREE)
1825 {
1826 tree var = create_tmp_var(ptr_type_node, "DEFER");
1827 DECL_INITIAL(var) = null_pointer_node;
1828 DECL_SOURCE_LOCATION(var) = location;
1829 TREE_ADDRESSABLE(var) = 1;
1830 this->defer_stack_ = var;
1831 }
1832 return fold_convert_loc(location, ptr_type_node,
1833 build_fold_addr_expr_loc(location,
1834 this->defer_stack_));
1835 }
1836
1837 // Get a tree for the statements in a block.
1838
1839 tree
1840 Block::get_tree(Translate_context* context)
1841 {
1842 Gogo* gogo = context->gogo();
1843
1844 tree block = make_node(BLOCK);
1845
1846 // Put the new block into the block tree.
1847
1848 if (context->block() == NULL)
1849 {
1850 tree fndecl;
1851 if (context->function() != NULL)
1852 fndecl = context->function()->func_value()->get_decl();
1853 else
1854 fndecl = current_function_decl;
1855 gcc_assert(fndecl != NULL_TREE);
1856
1857 // We may have already created a block for the receiver.
1858 if (DECL_INITIAL(fndecl) == NULL_TREE)
1859 {
1860 BLOCK_SUPERCONTEXT(block) = fndecl;
1861 DECL_INITIAL(fndecl) = block;
1862 }
1863 else
1864 {
1865 tree superblock_tree = DECL_INITIAL(fndecl);
1866 BLOCK_SUPERCONTEXT(block) = superblock_tree;
1867 gcc_assert(BLOCK_CHAIN(block) == NULL_TREE);
1868 BLOCK_CHAIN(block) = block;
1869 }
1870 }
1871 else
1872 {
1873 tree superblock_tree = context->block_tree();
1874 BLOCK_SUPERCONTEXT(block) = superblock_tree;
1875 tree* pp;
1876 for (pp = &BLOCK_SUBBLOCKS(superblock_tree);
1877 *pp != NULL_TREE;
1878 pp = &BLOCK_CHAIN(*pp))
1879 ;
1880 *pp = block;
1881 }
1882
1883 // Expand local variables in the block.
1884
1885 tree* pp = &BLOCK_VARS(block);
1886 for (Bindings::const_definitions_iterator pv =
1887 this->bindings_->begin_definitions();
1888 pv != this->bindings_->end_definitions();
1889 ++pv)
1890 {
1891 if ((!(*pv)->is_variable() || !(*pv)->var_value()->is_parameter())
1892 && !(*pv)->is_result_variable()
1893 && !(*pv)->is_const())
1894 {
1895 tree var = (*pv)->get_tree(gogo, context->function());
1896 if (var != error_mark_node && TREE_TYPE(var) != error_mark_node)
1897 {
1898 if ((*pv)->is_variable() && (*pv)->var_value()->is_in_heap())
1899 {
1900 gcc_assert(TREE_CODE(var) == INDIRECT_REF);
1901 var = TREE_OPERAND(var, 0);
1902 gcc_assert(TREE_CODE(var) == VAR_DECL);
1903 }
1904 *pp = var;
1905 pp = &DECL_CHAIN(*pp);
1906 }
1907 }
1908 }
1909 *pp = NULL_TREE;
1910
1911 Translate_context subcontext(context->gogo(), context->function(),
1912 this, block);
1913
1914 tree statements = NULL_TREE;
1915
1916 // Expand the statements.
1917
1918 for (std::vector<Statement*>::const_iterator p = this->statements_.begin();
1919 p != this->statements_.end();
1920 ++p)
1921 {
1922 tree statement = (*p)->get_tree(&subcontext);
1923 if (statement != error_mark_node)
1924 append_to_statement_list(statement, &statements);
1925 }
1926
1927 TREE_USED(block) = 1;
1928
1929 tree bind = build3(BIND_EXPR, void_type_node, BLOCK_VARS(block), statements,
1930 block);
1931 TREE_SIDE_EFFECTS(bind) = 1;
1932
1933 return bind;
1934 }
1935
1936 // Get the LABEL_DECL for a label.
1937
1938 tree
1939 Label::get_decl()
1940 {
1941 if (this->decl_ == NULL)
1942 {
1943 tree id = get_identifier_from_string(this->name_);
1944 this->decl_ = build_decl(this->location_, LABEL_DECL, id, void_type_node);
1945 DECL_CONTEXT(this->decl_) = current_function_decl;
1946 }
1947 return this->decl_;
1948 }
1949
1950 // Return an expression for the address of this label.
1951
1952 tree
1953 Label::get_addr(source_location location)
1954 {
1955 tree decl = this->get_decl();
1956 TREE_USED(decl) = 1;
1957 TREE_ADDRESSABLE(decl) = 1;
1958 return fold_convert_loc(location, ptr_type_node,
1959 build_fold_addr_expr_loc(location, decl));
1960 }
1961
1962 // Get the LABEL_DECL for an unnamed label.
1963
1964 tree
1965 Unnamed_label::get_decl()
1966 {
1967 if (this->decl_ == NULL)
1968 this->decl_ = create_artificial_label(this->location_);
1969 return this->decl_;
1970 }
1971
1972 // Get the LABEL_EXPR for an unnamed label.
1973
1974 tree
1975 Unnamed_label::get_definition()
1976 {
1977 tree t = build1(LABEL_EXPR, void_type_node, this->get_decl());
1978 SET_EXPR_LOCATION(t, this->location_);
1979 return t;
1980 }
1981
1982 // Return a goto to this label.
1983
1984 tree
1985 Unnamed_label::get_goto(source_location location)
1986 {
1987 tree t = build1(GOTO_EXPR, void_type_node, this->get_decl());
1988 SET_EXPR_LOCATION(t, location);
1989 return t;
1990 }
1991
1992 // Return the integer type to use for a size.
1993
1994 GO_EXTERN_C
1995 tree
1996 go_type_for_size(unsigned int bits, int unsignedp)
1997 {
1998 const char* name;
1999 switch (bits)
2000 {
2001 case 8:
2002 name = unsignedp ? "uint8" : "int8";
2003 break;
2004 case 16:
2005 name = unsignedp ? "uint16" : "int16";
2006 break;
2007 case 32:
2008 name = unsignedp ? "uint32" : "int32";
2009 break;
2010 case 64:
2011 name = unsignedp ? "uint64" : "int64";
2012 break;
2013 default:
2014 if (bits == POINTER_SIZE && unsignedp)
2015 name = "uintptr";
2016 else
2017 return NULL_TREE;
2018 }
2019 Type* type = Type::lookup_integer_type(name);
2020 return type->get_tree(go_get_gogo());
2021 }
2022
2023 // Return the type to use for a mode.
2024
2025 GO_EXTERN_C
2026 tree
2027 go_type_for_mode(enum machine_mode mode, int unsignedp)
2028 {
2029 // FIXME: This static_cast should be in machmode.h.
2030 enum mode_class mc = static_cast<enum mode_class>(GET_MODE_CLASS(mode));
2031 if (mc == MODE_INT)
2032 return go_type_for_size(GET_MODE_BITSIZE(mode), unsignedp);
2033 else if (mc == MODE_FLOAT)
2034 {
2035 Type* type;
2036 switch (GET_MODE_BITSIZE (mode))
2037 {
2038 case 32:
2039 type = Type::lookup_float_type("float32");
2040 break;
2041 case 64:
2042 type = Type::lookup_float_type("float64");
2043 break;
2044 default:
2045 // We have to check for long double in order to support
2046 // i386 excess precision.
2047 if (mode == TYPE_MODE(long_double_type_node))
2048 return long_double_type_node;
2049 return NULL_TREE;
2050 }
2051 return type->float_type()->type_tree();
2052 }
2053 else if (mc == MODE_COMPLEX_FLOAT)
2054 {
2055 Type *type;
2056 switch (GET_MODE_BITSIZE (mode))
2057 {
2058 case 64:
2059 type = Type::lookup_complex_type("complex64");
2060 break;
2061 case 128:
2062 type = Type::lookup_complex_type("complex128");
2063 break;
2064 default:
2065 // We have to check for long double in order to support
2066 // i386 excess precision.
2067 if (mode == TYPE_MODE(complex_long_double_type_node))
2068 return complex_long_double_type_node;
2069 return NULL_TREE;
2070 }
2071 return type->complex_type()->type_tree();
2072 }
2073 else
2074 return NULL_TREE;
2075 }
2076
2077 // Return a tree which allocates SIZE bytes which will holds value of
2078 // type TYPE.
2079
2080 tree
2081 Gogo::allocate_memory(Type* type, tree size, source_location location)
2082 {
2083 // If the package imports unsafe, then it may play games with
2084 // pointers that look like integers.
2085 if (this->imported_unsafe_ || type->has_pointer())
2086 {
2087 static tree new_fndecl;
2088 return Gogo::call_builtin(&new_fndecl,
2089 location,
2090 "__go_new",
2091 1,
2092 ptr_type_node,
2093 sizetype,
2094 size);
2095 }
2096 else
2097 {
2098 static tree new_nopointers_fndecl;
2099 return Gogo::call_builtin(&new_nopointers_fndecl,
2100 location,
2101 "__go_new_nopointers",
2102 1,
2103 ptr_type_node,
2104 sizetype,
2105 size);
2106 }
2107 }
2108
2109 // Build a builtin struct with a list of fields. The name is
2110 // STRUCT_NAME. STRUCT_TYPE is NULL_TREE or an empty RECORD_TYPE
2111 // node; this exists so that the struct can have fields which point to
2112 // itself. If PTYPE is not NULL, store the result in *PTYPE. There
2113 // are NFIELDS fields. Each field is a name (a const char*) followed
2114 // by a type (a tree).
2115
2116 tree
2117 Gogo::builtin_struct(tree* ptype, const char* struct_name, tree struct_type,
2118 int nfields, ...)
2119 {
2120 if (ptype != NULL && *ptype != NULL_TREE)
2121 return *ptype;
2122
2123 va_list ap;
2124 va_start(ap, nfields);
2125
2126 tree fields = NULL_TREE;
2127 for (int i = 0; i < nfields; ++i)
2128 {
2129 const char* field_name = va_arg(ap, const char*);
2130 tree type = va_arg(ap, tree);
2131 if (type == error_mark_node)
2132 {
2133 if (ptype != NULL)
2134 *ptype = error_mark_node;
2135 return error_mark_node;
2136 }
2137 tree field = build_decl(BUILTINS_LOCATION, FIELD_DECL,
2138 get_identifier(field_name), type);
2139 DECL_CHAIN(field) = fields;
2140 fields = field;
2141 }
2142
2143 va_end(ap);
2144
2145 if (struct_type == NULL_TREE)
2146 struct_type = make_node(RECORD_TYPE);
2147 finish_builtin_struct(struct_type, struct_name, fields, NULL_TREE);
2148
2149 if (ptype != NULL)
2150 {
2151 go_preserve_from_gc(struct_type);
2152 *ptype = struct_type;
2153 }
2154
2155 return struct_type;
2156 }
2157
2158 // Return a type to use for pointer to const char for a string.
2159
2160 tree
2161 Gogo::const_char_pointer_type_tree()
2162 {
2163 static tree type;
2164 if (type == NULL_TREE)
2165 {
2166 tree const_char_type = build_qualified_type(unsigned_char_type_node,
2167 TYPE_QUAL_CONST);
2168 type = build_pointer_type(const_char_type);
2169 go_preserve_from_gc(type);
2170 }
2171 return type;
2172 }
2173
2174 // Return a tree for a string constant.
2175
2176 tree
2177 Gogo::string_constant_tree(const std::string& val)
2178 {
2179 tree index_type = build_index_type(size_int(val.length()));
2180 tree const_char_type = build_qualified_type(unsigned_char_type_node,
2181 TYPE_QUAL_CONST);
2182 tree string_type = build_array_type(const_char_type, index_type);
2183 string_type = build_variant_type_copy(string_type);
2184 TYPE_STRING_FLAG(string_type) = 1;
2185 tree string_val = build_string(val.length(), val.data());
2186 TREE_TYPE(string_val) = string_type;
2187 return string_val;
2188 }
2189
2190 // Return a tree for a Go string constant.
2191
2192 tree
2193 Gogo::go_string_constant_tree(const std::string& val)
2194 {
2195 tree string_type = Type::make_string_type()->get_tree(this);
2196
2197 VEC(constructor_elt, gc)* init = VEC_alloc(constructor_elt, gc, 2);
2198
2199 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
2200 tree field = TYPE_FIELDS(string_type);
2201 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__data") == 0);
2202 elt->index = field;
2203 tree str = Gogo::string_constant_tree(val);
2204 elt->value = fold_convert(TREE_TYPE(field),
2205 build_fold_addr_expr(str));
2206
2207 elt = VEC_quick_push(constructor_elt, init, NULL);
2208 field = DECL_CHAIN(field);
2209 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__length") == 0);
2210 elt->index = field;
2211 elt->value = build_int_cst_type(TREE_TYPE(field), val.length());
2212
2213 tree constructor = build_constructor(string_type, init);
2214 TREE_READONLY(constructor) = 1;
2215 TREE_CONSTANT(constructor) = 1;
2216
2217 return constructor;
2218 }
2219
2220 // Return a tree for a pointer to a Go string constant. This is only
2221 // used for type descriptors, so we return a pointer to a constant
2222 // decl.
2223
2224 tree
2225 Gogo::ptr_go_string_constant_tree(const std::string& val)
2226 {
2227 tree pval = this->go_string_constant_tree(val);
2228
2229 tree decl = build_decl(UNKNOWN_LOCATION, VAR_DECL,
2230 create_tmp_var_name("SP"), TREE_TYPE(pval));
2231 DECL_EXTERNAL(decl) = 0;
2232 TREE_PUBLIC(decl) = 0;
2233 TREE_USED(decl) = 1;
2234 TREE_READONLY(decl) = 1;
2235 TREE_CONSTANT(decl) = 1;
2236 TREE_STATIC(decl) = 1;
2237 DECL_ARTIFICIAL(decl) = 1;
2238 DECL_INITIAL(decl) = pval;
2239 rest_of_decl_compilation(decl, 1, 0);
2240
2241 return build_fold_addr_expr(decl);
2242 }
2243
2244 // Build the type of the struct that holds a slice for the given
2245 // element type.
2246
2247 tree
2248 Gogo::slice_type_tree(tree element_type_tree)
2249 {
2250 // We use int for the count and capacity fields in a slice header.
2251 // This matches 6g. The language definition guarantees that we
2252 // can't allocate space of a size which does not fit in int
2253 // anyhow. FIXME: integer_type_node is the the C type "int" but is
2254 // not necessarily the Go type "int". They will differ when the C
2255 // type "int" has fewer than 32 bits.
2256 return Gogo::builtin_struct(NULL, "__go_slice", NULL_TREE, 3,
2257 "__values",
2258 build_pointer_type(element_type_tree),
2259 "__count",
2260 integer_type_node,
2261 "__capacity",
2262 integer_type_node);
2263 }
2264
2265 // Given the tree for a slice type, return the tree for the type of
2266 // the elements of the slice.
2267
2268 tree
2269 Gogo::slice_element_type_tree(tree slice_type_tree)
2270 {
2271 gcc_assert(TREE_CODE(slice_type_tree) == RECORD_TYPE
2272 && POINTER_TYPE_P(TREE_TYPE(TYPE_FIELDS(slice_type_tree))));
2273 return TREE_TYPE(TREE_TYPE(TYPE_FIELDS(slice_type_tree)));
2274 }
2275
2276 // Build a constructor for a slice. SLICE_TYPE_TREE is the type of
2277 // the slice. VALUES is the value pointer and COUNT is the number of
2278 // entries. If CAPACITY is not NULL, it is the capacity; otherwise
2279 // the capacity and the count are the same.
2280
2281 tree
2282 Gogo::slice_constructor(tree slice_type_tree, tree values, tree count,
2283 tree capacity)
2284 {
2285 gcc_assert(TREE_CODE(slice_type_tree) == RECORD_TYPE);
2286
2287 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
2288
2289 tree field = TYPE_FIELDS(slice_type_tree);
2290 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
2291 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
2292 elt->index = field;
2293 gcc_assert(TYPE_MAIN_VARIANT(TREE_TYPE(field))
2294 == TYPE_MAIN_VARIANT(TREE_TYPE(values)));
2295 elt->value = values;
2296
2297 count = fold_convert(sizetype, count);
2298 if (capacity == NULL_TREE)
2299 {
2300 count = save_expr(count);
2301 capacity = count;
2302 }
2303
2304 field = DECL_CHAIN(field);
2305 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
2306 elt = VEC_quick_push(constructor_elt, init, NULL);
2307 elt->index = field;
2308 elt->value = fold_convert(TREE_TYPE(field), count);
2309
2310 field = DECL_CHAIN(field);
2311 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__capacity") == 0);
2312 elt = VEC_quick_push(constructor_elt, init, NULL);
2313 elt->index = field;
2314 elt->value = fold_convert(TREE_TYPE(field), capacity);
2315
2316 return build_constructor(slice_type_tree, init);
2317 }
2318
2319 // Build a constructor for an empty slice.
2320
2321 tree
2322 Gogo::empty_slice_constructor(tree slice_type_tree)
2323 {
2324 tree element_field = TYPE_FIELDS(slice_type_tree);
2325 tree ret = Gogo::slice_constructor(slice_type_tree,
2326 fold_convert(TREE_TYPE(element_field),
2327 null_pointer_node),
2328 size_zero_node,
2329 size_zero_node);
2330 TREE_CONSTANT(ret) = 1;
2331 return ret;
2332 }
2333
2334 // Build a map descriptor for a map of type MAPTYPE.
2335
2336 tree
2337 Gogo::map_descriptor(Map_type* maptype)
2338 {
2339 if (this->map_descriptors_ == NULL)
2340 this->map_descriptors_ = new Map_descriptors(10);
2341
2342 std::pair<const Map_type*, tree> val(maptype, NULL);
2343 std::pair<Map_descriptors::iterator, bool> ins =
2344 this->map_descriptors_->insert(val);
2345 Map_descriptors::iterator p = ins.first;
2346 if (!ins.second)
2347 {
2348 if (p->second == error_mark_node)
2349 return error_mark_node;
2350 gcc_assert(p->second != NULL_TREE && DECL_P(p->second));
2351 return build_fold_addr_expr(p->second);
2352 }
2353
2354 Type* keytype = maptype->key_type();
2355 Type* valtype = maptype->val_type();
2356
2357 std::string mangled_name = ("__go_map_" + maptype->mangled_name(this));
2358
2359 tree id = get_identifier_from_string(mangled_name);
2360
2361 // Get the type of the map descriptor. This is __go_map_descriptor
2362 // in libgo/map.h.
2363
2364 tree struct_type = this->map_descriptor_type();
2365
2366 // The map entry type is a struct with three fields. This struct is
2367 // specific to MAPTYPE. Build it.
2368
2369 tree map_entry_type = make_node(RECORD_TYPE);
2370
2371 map_entry_type = Gogo::builtin_struct(NULL, "__map", map_entry_type, 3,
2372 "__next",
2373 build_pointer_type(map_entry_type),
2374 "__key",
2375 keytype->get_tree(this),
2376 "__val",
2377 valtype->get_tree(this));
2378 if (map_entry_type == error_mark_node)
2379 {
2380 p->second = error_mark_node;
2381 return error_mark_node;
2382 }
2383
2384 tree map_entry_key_field = DECL_CHAIN(TYPE_FIELDS(map_entry_type));
2385 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(map_entry_key_field)),
2386 "__key") == 0);
2387
2388 tree map_entry_val_field = DECL_CHAIN(map_entry_key_field);
2389 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(map_entry_val_field)),
2390 "__val") == 0);
2391
2392 // Initialize the entries.
2393
2394 tree map_descriptor_field = TYPE_FIELDS(struct_type);
2395 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(map_descriptor_field)),
2396 "__map_descriptor") == 0);
2397 tree entry_size_field = DECL_CHAIN(map_descriptor_field);
2398 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(entry_size_field)),
2399 "__entry_size") == 0);
2400 tree key_offset_field = DECL_CHAIN(entry_size_field);
2401 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(key_offset_field)),
2402 "__key_offset") == 0);
2403 tree val_offset_field = DECL_CHAIN(key_offset_field);
2404 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(val_offset_field)),
2405 "__val_offset") == 0);
2406
2407 VEC(constructor_elt, gc)* descriptor = VEC_alloc(constructor_elt, gc, 6);
2408
2409 constructor_elt* elt = VEC_quick_push(constructor_elt, descriptor, NULL);
2410 elt->index = map_descriptor_field;
2411 elt->value = maptype->type_descriptor_pointer(this);
2412
2413 elt = VEC_quick_push(constructor_elt, descriptor, NULL);
2414 elt->index = entry_size_field;
2415 elt->value = TYPE_SIZE_UNIT(map_entry_type);
2416
2417 elt = VEC_quick_push(constructor_elt, descriptor, NULL);
2418 elt->index = key_offset_field;
2419 elt->value = byte_position(map_entry_key_field);
2420
2421 elt = VEC_quick_push(constructor_elt, descriptor, NULL);
2422 elt->index = val_offset_field;
2423 elt->value = byte_position(map_entry_val_field);
2424
2425 tree constructor = build_constructor(struct_type, descriptor);
2426
2427 tree decl = build_decl(BUILTINS_LOCATION, VAR_DECL, id, struct_type);
2428 TREE_STATIC(decl) = 1;
2429 TREE_USED(decl) = 1;
2430 TREE_READONLY(decl) = 1;
2431 TREE_CONSTANT(decl) = 1;
2432 DECL_INITIAL(decl) = constructor;
2433 make_decl_one_only(decl, DECL_ASSEMBLER_NAME(decl));
2434 resolve_unique_section(decl, 1, 0);
2435
2436 rest_of_decl_compilation(decl, 1, 0);
2437
2438 go_preserve_from_gc(decl);
2439 p->second = decl;
2440
2441 return build_fold_addr_expr(decl);
2442 }
2443
2444 // Return a tree for the type of a map descriptor. This is struct
2445 // __go_map_descriptor in libgo/runtime/map.h. This is the same for
2446 // all map types.
2447
2448 tree
2449 Gogo::map_descriptor_type()
2450 {
2451 static tree struct_type;
2452 tree dtype = Type::make_type_descriptor_type()->get_tree(this);
2453 dtype = build_qualified_type(dtype, TYPE_QUAL_CONST);
2454 return Gogo::builtin_struct(&struct_type, "__go_map_descriptor", NULL_TREE,
2455 4,
2456 "__map_descriptor",
2457 build_pointer_type(dtype),
2458 "__entry_size",
2459 sizetype,
2460 "__key_offset",
2461 sizetype,
2462 "__val_offset",
2463 sizetype);
2464 }
2465
2466 // Return the name to use for a type descriptor decl for TYPE. This
2467 // is used when TYPE does not have a name.
2468
2469 std::string
2470 Gogo::unnamed_type_descriptor_decl_name(const Type* type)
2471 {
2472 return "__go_td_" + type->mangled_name(this);
2473 }
2474
2475 // Return the name to use for a type descriptor decl for a type named
2476 // NAME, defined in the function IN_FUNCTION. IN_FUNCTION will
2477 // normally be NULL.
2478
2479 std::string
2480 Gogo::type_descriptor_decl_name(const Named_object* no,
2481 const Named_object* in_function)
2482 {
2483 std::string ret = "__go_tdn_";
2484 if (no->type_value()->is_builtin())
2485 gcc_assert(in_function == NULL);
2486 else
2487 {
2488 const std::string& unique_prefix(no->package() == NULL
2489 ? this->unique_prefix()
2490 : no->package()->unique_prefix());
2491 const std::string& package_name(no->package() == NULL
2492 ? this->package_name()
2493 : no->package()->name());
2494 ret.append(unique_prefix);
2495 ret.append(1, '.');
2496 ret.append(package_name);
2497 ret.append(1, '.');
2498 if (in_function != NULL)
2499 {
2500 ret.append(Gogo::unpack_hidden_name(in_function->name()));
2501 ret.append(1, '.');
2502 }
2503 }
2504 ret.append(no->name());
2505 return ret;
2506 }
2507
2508 // Where a type descriptor decl should be defined.
2509
2510 Gogo::Type_descriptor_location
2511 Gogo::type_descriptor_location(const Type* type)
2512 {
2513 const Named_type* name = type->named_type();
2514 if (name != NULL)
2515 {
2516 if (name->named_object()->package() != NULL)
2517 {
2518 // This is a named type defined in a different package. The
2519 // descriptor should be defined in that package.
2520 return TYPE_DESCRIPTOR_UNDEFINED;
2521 }
2522 else if (name->is_builtin())
2523 {
2524 // We create the descriptor for a builtin type whenever we
2525 // need it.
2526 return TYPE_DESCRIPTOR_COMMON;
2527 }
2528 else
2529 {
2530 // This is a named type defined in this package. The
2531 // descriptor should be defined here.
2532 return TYPE_DESCRIPTOR_DEFINED;
2533 }
2534 }
2535 else
2536 {
2537 if (type->points_to() != NULL
2538 && type->points_to()->named_type() != NULL
2539 && type->points_to()->named_type()->named_object()->package() != NULL)
2540 {
2541 // This is an unnamed pointer to a named type defined in a
2542 // different package. The descriptor should be defined in
2543 // that package.
2544 return TYPE_DESCRIPTOR_UNDEFINED;
2545 }
2546 else
2547 {
2548 // This is an unnamed type. The descriptor could be defined
2549 // in any package where it is needed, and the linker will
2550 // pick one descriptor to keep.
2551 return TYPE_DESCRIPTOR_COMMON;
2552 }
2553 }
2554 }
2555
2556 // Build a type descriptor decl for TYPE. INITIALIZER is a struct
2557 // composite literal which initializers the type descriptor.
2558
2559 void
2560 Gogo::build_type_descriptor_decl(const Type* type, Expression* initializer,
2561 tree* pdecl)
2562 {
2563 const Named_type* name = type->named_type();
2564
2565 // We can have multiple instances of unnamed types, but we only want
2566 // to emit the type descriptor once. We use a hash table to handle
2567 // this. This is not necessary for named types, as they are unique,
2568 // and we store the type descriptor decl in the type itself.
2569 tree* phash = NULL;
2570 if (name == NULL)
2571 {
2572 if (this->type_descriptor_decls_ == NULL)
2573 this->type_descriptor_decls_ = new Type_descriptor_decls(10);
2574
2575 std::pair<Type_descriptor_decls::iterator, bool> ins =
2576 this->type_descriptor_decls_->insert(std::make_pair(type, NULL_TREE));
2577 if (!ins.second)
2578 {
2579 // We've already built a type descriptor for this type.
2580 *pdecl = ins.first->second;
2581 return;
2582 }
2583 phash = &ins.first->second;
2584 }
2585
2586 std::string decl_name;
2587 if (name == NULL)
2588 decl_name = this->unnamed_type_descriptor_decl_name(type);
2589 else
2590 decl_name = this->type_descriptor_decl_name(name->named_object(),
2591 name->in_function());
2592 tree id = get_identifier_from_string(decl_name);
2593 tree descriptor_type_tree = initializer->type()->get_tree(this);
2594 if (descriptor_type_tree == error_mark_node)
2595 {
2596 *pdecl = error_mark_node;
2597 return;
2598 }
2599 tree decl = build_decl(name == NULL ? BUILTINS_LOCATION : name->location(),
2600 VAR_DECL, id,
2601 build_qualified_type(descriptor_type_tree,
2602 TYPE_QUAL_CONST));
2603 TREE_READONLY(decl) = 1;
2604 TREE_CONSTANT(decl) = 1;
2605 DECL_ARTIFICIAL(decl) = 1;
2606
2607 go_preserve_from_gc(decl);
2608 if (phash != NULL)
2609 *phash = decl;
2610
2611 // We store the new DECL now because we may need to refer to it when
2612 // expanding INITIALIZER.
2613 *pdecl = decl;
2614
2615 // If appropriate, just refer to the exported type identifier.
2616 Gogo::Type_descriptor_location type_descriptor_location =
2617 this->type_descriptor_location(type);
2618 if (type_descriptor_location == TYPE_DESCRIPTOR_UNDEFINED)
2619 {
2620 TREE_PUBLIC(decl) = 1;
2621 DECL_EXTERNAL(decl) = 1;
2622 return;
2623 }
2624
2625 TREE_STATIC(decl) = 1;
2626 TREE_USED(decl) = 1;
2627
2628 Translate_context context(this, NULL, NULL, NULL);
2629 context.set_is_const();
2630 tree constructor = initializer->get_tree(&context);
2631
2632 if (constructor == error_mark_node)
2633 gcc_assert(saw_errors());
2634
2635 DECL_INITIAL(decl) = constructor;
2636
2637 if (type_descriptor_location == TYPE_DESCRIPTOR_DEFINED)
2638 TREE_PUBLIC(decl) = 1;
2639 else
2640 {
2641 gcc_assert(type_descriptor_location == TYPE_DESCRIPTOR_COMMON);
2642 make_decl_one_only(decl, DECL_ASSEMBLER_NAME(decl));
2643 resolve_unique_section(decl, 1, 0);
2644 }
2645
2646 rest_of_decl_compilation(decl, 1, 0);
2647 }
2648
2649 // Build an interface method table for a type: a list of function
2650 // pointers, one for each interface method. This is used for
2651 // interfaces.
2652
2653 tree
2654 Gogo::interface_method_table_for_type(const Interface_type* interface,
2655 Named_type* type,
2656 bool is_pointer)
2657 {
2658 const Typed_identifier_list* interface_methods = interface->methods();
2659 gcc_assert(!interface_methods->empty());
2660
2661 std::string mangled_name = ((is_pointer ? "__go_pimt__" : "__go_imt_")
2662 + interface->mangled_name(this)
2663 + "__"
2664 + type->mangled_name(this));
2665
2666 tree id = get_identifier_from_string(mangled_name);
2667
2668 // See whether this interface has any hidden methods.
2669 bool has_hidden_methods = false;
2670 for (Typed_identifier_list::const_iterator p = interface_methods->begin();
2671 p != interface_methods->end();
2672 ++p)
2673 {
2674 if (Gogo::is_hidden_name(p->name()))
2675 {
2676 has_hidden_methods = true;
2677 break;
2678 }
2679 }
2680
2681 // We already know that the named type is convertible to the
2682 // interface. If the interface has hidden methods, and the named
2683 // type is defined in a different package, then the interface
2684 // conversion table will be defined by that other package.
2685 if (has_hidden_methods && type->named_object()->package() != NULL)
2686 {
2687 tree array_type = build_array_type(const_ptr_type_node, NULL);
2688 tree decl = build_decl(BUILTINS_LOCATION, VAR_DECL, id, array_type);
2689 TREE_READONLY(decl) = 1;
2690 TREE_CONSTANT(decl) = 1;
2691 TREE_PUBLIC(decl) = 1;
2692 DECL_EXTERNAL(decl) = 1;
2693 go_preserve_from_gc(decl);
2694 return decl;
2695 }
2696
2697 size_t count = interface_methods->size();
2698 VEC(constructor_elt, gc)* pointers = VEC_alloc(constructor_elt, gc,
2699 count + 1);
2700
2701 // The first element is the type descriptor.
2702 constructor_elt* elt = VEC_quick_push(constructor_elt, pointers, NULL);
2703 elt->index = size_zero_node;
2704 Type* td_type;
2705 if (!is_pointer)
2706 td_type = type;
2707 else
2708 td_type = Type::make_pointer_type(type);
2709 elt->value = fold_convert(const_ptr_type_node,
2710 td_type->type_descriptor_pointer(this));
2711
2712 size_t i = 1;
2713 for (Typed_identifier_list::const_iterator p = interface_methods->begin();
2714 p != interface_methods->end();
2715 ++p, ++i)
2716 {
2717 bool is_ambiguous;
2718 Method* m = type->method_function(p->name(), &is_ambiguous);
2719 gcc_assert(m != NULL);
2720
2721 Named_object* no = m->named_object();
2722
2723 tree fnid = no->get_id(this);
2724
2725 tree fndecl;
2726 if (no->is_function())
2727 fndecl = no->func_value()->get_or_make_decl(this, no, fnid);
2728 else if (no->is_function_declaration())
2729 fndecl = no->func_declaration_value()->get_or_make_decl(this, no,
2730 fnid);
2731 else
2732 gcc_unreachable();
2733 fndecl = build_fold_addr_expr(fndecl);
2734
2735 elt = VEC_quick_push(constructor_elt, pointers, NULL);
2736 elt->index = size_int(i);
2737 elt->value = fold_convert(const_ptr_type_node, fndecl);
2738 }
2739 gcc_assert(i == count + 1);
2740
2741 tree array_type = build_array_type(const_ptr_type_node,
2742 build_index_type(size_int(count)));
2743 tree constructor = build_constructor(array_type, pointers);
2744
2745 tree decl = build_decl(BUILTINS_LOCATION, VAR_DECL, id, array_type);
2746 TREE_STATIC(decl) = 1;
2747 TREE_USED(decl) = 1;
2748 TREE_READONLY(decl) = 1;
2749 TREE_CONSTANT(decl) = 1;
2750 DECL_INITIAL(decl) = constructor;
2751
2752 // If the interface type has hidden methods, then this is the only
2753 // definition of the table. Otherwise it is a comdat table which
2754 // may be defined in multiple packages.
2755 if (has_hidden_methods)
2756 TREE_PUBLIC(decl) = 1;
2757 else
2758 {
2759 make_decl_one_only(decl, DECL_ASSEMBLER_NAME(decl));
2760 resolve_unique_section(decl, 1, 0);
2761 }
2762
2763 rest_of_decl_compilation(decl, 1, 0);
2764
2765 go_preserve_from_gc(decl);
2766
2767 return decl;
2768 }
2769
2770 // Mark a function as a builtin library function.
2771
2772 void
2773 Gogo::mark_fndecl_as_builtin_library(tree fndecl)
2774 {
2775 DECL_EXTERNAL(fndecl) = 1;
2776 TREE_PUBLIC(fndecl) = 1;
2777 DECL_ARTIFICIAL(fndecl) = 1;
2778 TREE_NOTHROW(fndecl) = 1;
2779 DECL_VISIBILITY(fndecl) = VISIBILITY_DEFAULT;
2780 DECL_VISIBILITY_SPECIFIED(fndecl) = 1;
2781 }
2782
2783 // Build a call to a builtin function.
2784
2785 tree
2786 Gogo::call_builtin(tree* pdecl, source_location location, const char* name,
2787 int nargs, tree rettype, ...)
2788 {
2789 if (rettype == error_mark_node)
2790 return error_mark_node;
2791
2792 tree* types = new tree[nargs];
2793 tree* args = new tree[nargs];
2794
2795 va_list ap;
2796 va_start(ap, rettype);
2797 for (int i = 0; i < nargs; ++i)
2798 {
2799 types[i] = va_arg(ap, tree);
2800 args[i] = va_arg(ap, tree);
2801 if (types[i] == error_mark_node || args[i] == error_mark_node)
2802 {
2803 delete[] types;
2804 delete[] args;
2805 return error_mark_node;
2806 }
2807 }
2808 va_end(ap);
2809
2810 if (*pdecl == NULL_TREE)
2811 {
2812 tree fnid = get_identifier(name);
2813
2814 tree argtypes = NULL_TREE;
2815 tree* pp = &argtypes;
2816 for (int i = 0; i < nargs; ++i)
2817 {
2818 *pp = tree_cons(NULL_TREE, types[i], NULL_TREE);
2819 pp = &TREE_CHAIN(*pp);
2820 }
2821 *pp = void_list_node;
2822
2823 tree fntype = build_function_type(rettype, argtypes);
2824
2825 *pdecl = build_decl(BUILTINS_LOCATION, FUNCTION_DECL, fnid, fntype);
2826 Gogo::mark_fndecl_as_builtin_library(*pdecl);
2827 go_preserve_from_gc(*pdecl);
2828 }
2829
2830 tree fnptr = build_fold_addr_expr(*pdecl);
2831 if (CAN_HAVE_LOCATION_P(fnptr))
2832 SET_EXPR_LOCATION(fnptr, location);
2833
2834 tree ret = build_call_array(rettype, fnptr, nargs, args);
2835 SET_EXPR_LOCATION(ret, location);
2836
2837 delete[] types;
2838 delete[] args;
2839
2840 return ret;
2841 }
2842
2843 // Build a call to the runtime error function.
2844
2845 tree
2846 Gogo::runtime_error(int code, source_location location)
2847 {
2848 static tree runtime_error_fndecl;
2849 tree ret = Gogo::call_builtin(&runtime_error_fndecl,
2850 location,
2851 "__go_runtime_error",
2852 1,
2853 void_type_node,
2854 integer_type_node,
2855 build_int_cst(integer_type_node, code));
2856 if (ret == error_mark_node)
2857 return error_mark_node;
2858 // The runtime error function panics and does not return.
2859 TREE_NOTHROW(runtime_error_fndecl) = 0;
2860 TREE_THIS_VOLATILE(runtime_error_fndecl) = 1;
2861 return ret;
2862 }
2863
2864 // Send VAL on CHANNEL. If BLOCKING is true, the resulting tree has a
2865 // void type. If BLOCKING is false, the resulting tree has a boolean
2866 // type, and it will evaluate as true if the value was sent. If
2867 // FOR_SELECT is true, this is being done because it was chosen in a
2868 // select statement.
2869
2870 tree
2871 Gogo::send_on_channel(tree channel, tree val, bool blocking, bool for_select,
2872 source_location location)
2873 {
2874 if (channel == error_mark_node || val == error_mark_node)
2875 return error_mark_node;
2876
2877 if (int_size_in_bytes(TREE_TYPE(val)) <= 8
2878 && !AGGREGATE_TYPE_P(TREE_TYPE(val))
2879 && !FLOAT_TYPE_P(TREE_TYPE(val)))
2880 {
2881 val = convert_to_integer(uint64_type_node, val);
2882 if (blocking)
2883 {
2884 static tree send_small_fndecl;
2885 tree ret = Gogo::call_builtin(&send_small_fndecl,
2886 location,
2887 "__go_send_small",
2888 3,
2889 void_type_node,
2890 ptr_type_node,
2891 channel,
2892 uint64_type_node,
2893 val,
2894 boolean_type_node,
2895 (for_select
2896 ? boolean_true_node
2897 : boolean_false_node));
2898 if (ret == error_mark_node)
2899 return error_mark_node;
2900 // This can panic if there are too many operations on a
2901 // closed channel.
2902 TREE_NOTHROW(send_small_fndecl) = 0;
2903 return ret;
2904 }
2905 else
2906 {
2907 gcc_assert(!for_select);
2908 static tree send_nonblocking_small_fndecl;
2909 tree ret = Gogo::call_builtin(&send_nonblocking_small_fndecl,
2910 location,
2911 "__go_send_nonblocking_small",
2912 2,
2913 boolean_type_node,
2914 ptr_type_node,
2915 channel,
2916 uint64_type_node,
2917 val);
2918 if (ret == error_mark_node)
2919 return error_mark_node;
2920 // This can panic if there are too many operations on a
2921 // closed channel.
2922 TREE_NOTHROW(send_nonblocking_small_fndecl) = 0;
2923 return ret;
2924 }
2925 }
2926 else
2927 {
2928 tree make_tmp;
2929 if (TREE_ADDRESSABLE(TREE_TYPE(val)) || TREE_CODE(val) == VAR_DECL)
2930 {
2931 make_tmp = NULL_TREE;
2932 val = build_fold_addr_expr(val);
2933 if (DECL_P(val))
2934 TREE_ADDRESSABLE(val) = 1;
2935 }
2936 else
2937 {
2938 tree tmp = create_tmp_var(TREE_TYPE(val), get_name(val));
2939 DECL_IGNORED_P(tmp) = 0;
2940 DECL_INITIAL(tmp) = val;
2941 TREE_ADDRESSABLE(tmp) = 1;
2942 make_tmp = build1(DECL_EXPR, void_type_node, tmp);
2943 SET_EXPR_LOCATION(make_tmp, location);
2944 val = build_fold_addr_expr(tmp);
2945 }
2946 val = fold_convert(ptr_type_node, val);
2947
2948 tree call;
2949 if (blocking)
2950 {
2951 static tree send_big_fndecl;
2952 call = Gogo::call_builtin(&send_big_fndecl,
2953 location,
2954 "__go_send_big",
2955 3,
2956 void_type_node,
2957 ptr_type_node,
2958 channel,
2959 ptr_type_node,
2960 val,
2961 boolean_type_node,
2962 (for_select
2963 ? boolean_true_node
2964 : boolean_false_node));
2965 if (call == error_mark_node)
2966 return error_mark_node;
2967 // This can panic if there are too many operations on a
2968 // closed channel.
2969 TREE_NOTHROW(send_big_fndecl) = 0;
2970 }
2971 else
2972 {
2973 gcc_assert(!for_select);
2974 static tree send_nonblocking_big_fndecl;
2975 call = Gogo::call_builtin(&send_nonblocking_big_fndecl,
2976 location,
2977 "__go_send_nonblocking_big",
2978 2,
2979 boolean_type_node,
2980 ptr_type_node,
2981 channel,
2982 ptr_type_node,
2983 val);
2984 if (call == error_mark_node)
2985 return error_mark_node;
2986 // This can panic if there are too many operations on a
2987 // closed channel.
2988 TREE_NOTHROW(send_nonblocking_big_fndecl) = 0;
2989 }
2990
2991 if (make_tmp == NULL_TREE)
2992 return call;
2993 else
2994 {
2995 tree ret = build2(COMPOUND_EXPR, TREE_TYPE(call), make_tmp, call);
2996 SET_EXPR_LOCATION(ret, location);
2997 return ret;
2998 }
2999 }
3000 }
3001
3002 // Return a tree for receiving a value of type TYPE_TREE on CHANNEL.
3003 // This does a blocking receive and returns the value read from the
3004 // channel. If FOR_SELECT is true, this is being done because it was
3005 // chosen in a select statement.
3006
3007 tree
3008 Gogo::receive_from_channel(tree type_tree, tree channel, bool for_select,
3009 source_location location)
3010 {
3011 if (type_tree == error_mark_node || channel == error_mark_node)
3012 return error_mark_node;
3013
3014 if (int_size_in_bytes(type_tree) <= 8
3015 && !AGGREGATE_TYPE_P(type_tree)
3016 && !FLOAT_TYPE_P(type_tree))
3017 {
3018 static tree receive_small_fndecl;
3019 tree call = Gogo::call_builtin(&receive_small_fndecl,
3020 location,
3021 "__go_receive_small",
3022 2,
3023 uint64_type_node,
3024 ptr_type_node,
3025 channel,
3026 boolean_type_node,
3027 (for_select
3028 ? boolean_true_node
3029 : boolean_false_node));
3030 if (call == error_mark_node)
3031 return error_mark_node;
3032 // This can panic if there are too many operations on a closed
3033 // channel.
3034 TREE_NOTHROW(receive_small_fndecl) = 0;
3035 int bitsize = GET_MODE_BITSIZE(TYPE_MODE(type_tree));
3036 tree int_type_tree = go_type_for_size(bitsize, 1);
3037 return fold_convert_loc(location, type_tree,
3038 fold_convert_loc(location, int_type_tree,
3039 call));
3040 }
3041 else
3042 {
3043 tree tmp = create_tmp_var(type_tree, get_name(type_tree));
3044 DECL_IGNORED_P(tmp) = 0;
3045 TREE_ADDRESSABLE(tmp) = 1;
3046 tree make_tmp = build1(DECL_EXPR, void_type_node, tmp);
3047 SET_EXPR_LOCATION(make_tmp, location);
3048 tree tmpaddr = build_fold_addr_expr(tmp);
3049 tmpaddr = fold_convert(ptr_type_node, tmpaddr);
3050 static tree receive_big_fndecl;
3051 tree call = Gogo::call_builtin(&receive_big_fndecl,
3052 location,
3053 "__go_receive_big",
3054 3,
3055 void_type_node,
3056 ptr_type_node,
3057 channel,
3058 ptr_type_node,
3059 tmpaddr,
3060 boolean_type_node,
3061 (for_select
3062 ? boolean_true_node
3063 : boolean_false_node));
3064 if (call == error_mark_node)
3065 return error_mark_node;
3066 // This can panic if there are too many operations on a closed
3067 // channel.
3068 TREE_NOTHROW(receive_big_fndecl) = 0;
3069 return build2(COMPOUND_EXPR, type_tree, make_tmp,
3070 build2(COMPOUND_EXPR, type_tree, call, tmp));
3071 }
3072 }
3073
3074 // Return the type of a function trampoline. This is like
3075 // get_trampoline_type in tree-nested.c.
3076
3077 tree
3078 Gogo::trampoline_type_tree()
3079 {
3080 static tree type_tree;
3081 if (type_tree == NULL_TREE)
3082 {
3083 unsigned int size;
3084 unsigned int align;
3085 go_trampoline_info(&size, &align);
3086 tree t = build_index_type(build_int_cst(integer_type_node, size - 1));
3087 t = build_array_type(char_type_node, t);
3088
3089 type_tree = Gogo::builtin_struct(NULL, "__go_trampoline", NULL_TREE, 1,
3090 "__data", t);
3091 t = TYPE_FIELDS(type_tree);
3092 DECL_ALIGN(t) = align;
3093 DECL_USER_ALIGN(t) = 1;
3094
3095 go_preserve_from_gc(type_tree);
3096 }
3097 return type_tree;
3098 }
3099
3100 // Make a trampoline which calls FNADDR passing CLOSURE.
3101
3102 tree
3103 Gogo::make_trampoline(tree fnaddr, tree closure, source_location location)
3104 {
3105 tree trampoline_type = Gogo::trampoline_type_tree();
3106 tree trampoline_size = TYPE_SIZE_UNIT(trampoline_type);
3107
3108 closure = save_expr(closure);
3109
3110 // We allocate the trampoline using a special function which will
3111 // mark it as executable.
3112 static tree trampoline_fndecl;
3113 tree x = Gogo::call_builtin(&trampoline_fndecl,
3114 location,
3115 "__go_allocate_trampoline",
3116 2,
3117 ptr_type_node,
3118 size_type_node,
3119 trampoline_size,
3120 ptr_type_node,
3121 fold_convert_loc(location, ptr_type_node,
3122 closure));
3123 if (x == error_mark_node)
3124 return error_mark_node;
3125
3126 x = save_expr(x);
3127
3128 // Initialize the trampoline.
3129 tree ini = build_call_expr(implicit_built_in_decls[BUILT_IN_INIT_TRAMPOLINE],
3130 3, x, fnaddr, closure);
3131
3132 // On some targets the trampoline address needs to be adjusted. For
3133 // example, when compiling in Thumb mode on the ARM, the address
3134 // needs to have the low bit set.
3135 x = build_call_expr(implicit_built_in_decls[BUILT_IN_ADJUST_TRAMPOLINE],
3136 1, x);
3137 x = fold_convert(TREE_TYPE(fnaddr), x);
3138
3139 return build2(COMPOUND_EXPR, TREE_TYPE(x), ini, x);
3140 }