Rewrite conversion of named types to backend representation.
[gcc.git] / gcc / go / gofrontend / gogo-tree.cc
1 // gogo-tree.cc -- convert Go frontend Gogo IR to gcc trees.
2
3 // Copyright 2009 The Go Authors. All rights reserved.
4 // Use of this source code is governed by a BSD-style
5 // license that can be found in the LICENSE file.
6
7 #include "go-system.h"
8
9 #include <gmp.h>
10
11 #ifndef ENABLE_BUILD_WITH_CXX
12 extern "C"
13 {
14 #endif
15
16 #include "toplev.h"
17 #include "tree.h"
18 #include "gimple.h"
19 #include "tree-iterator.h"
20 #include "cgraph.h"
21 #include "langhooks.h"
22 #include "convert.h"
23 #include "output.h"
24 #include "diagnostic.h"
25
26 #ifndef ENABLE_BUILD_WITH_CXX
27 }
28 #endif
29
30 #include "go-c.h"
31 #include "types.h"
32 #include "expressions.h"
33 #include "statements.h"
34 #include "gogo.h"
35
36 // Whether we have seen any errors.
37
38 bool
39 saw_errors()
40 {
41 return errorcount != 0 || sorrycount != 0;
42 }
43
44 // A helper function.
45
46 static inline tree
47 get_identifier_from_string(const std::string& str)
48 {
49 return get_identifier_with_length(str.data(), str.length());
50 }
51
52 // Builtin functions.
53
54 static std::map<std::string, tree> builtin_functions;
55
56 // Define a builtin function. BCODE is the builtin function code
57 // defined by builtins.def. NAME is the name of the builtin function.
58 // LIBNAME is the name of the corresponding library function, and is
59 // NULL if there isn't one. FNTYPE is the type of the function.
60 // CONST_P is true if the function has the const attribute.
61
62 static void
63 define_builtin(built_in_function bcode, const char* name, const char* libname,
64 tree fntype, bool const_p)
65 {
66 tree decl = add_builtin_function(name, fntype, bcode, BUILT_IN_NORMAL,
67 libname, NULL_TREE);
68 if (const_p)
69 TREE_READONLY(decl) = 1;
70 built_in_decls[bcode] = decl;
71 implicit_built_in_decls[bcode] = decl;
72 builtin_functions[name] = decl;
73 if (libname != NULL)
74 {
75 decl = add_builtin_function(libname, fntype, bcode, BUILT_IN_NORMAL,
76 NULL, NULL_TREE);
77 if (const_p)
78 TREE_READONLY(decl) = 1;
79 builtin_functions[libname] = decl;
80 }
81 }
82
83 // Create trees for implicit builtin functions.
84
85 void
86 Gogo::define_builtin_function_trees()
87 {
88 /* We need to define the fetch_and_add functions, since we use them
89 for ++ and --. */
90 tree t = go_type_for_size(BITS_PER_UNIT, 1);
91 tree p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
92 define_builtin(BUILT_IN_ADD_AND_FETCH_1, "__sync_fetch_and_add_1", NULL,
93 build_function_type_list(t, p, t, NULL_TREE), false);
94
95 t = go_type_for_size(BITS_PER_UNIT * 2, 1);
96 p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
97 define_builtin (BUILT_IN_ADD_AND_FETCH_2, "__sync_fetch_and_add_2", NULL,
98 build_function_type_list(t, p, t, NULL_TREE), false);
99
100 t = go_type_for_size(BITS_PER_UNIT * 4, 1);
101 p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
102 define_builtin(BUILT_IN_ADD_AND_FETCH_4, "__sync_fetch_and_add_4", NULL,
103 build_function_type_list(t, p, t, NULL_TREE), false);
104
105 t = go_type_for_size(BITS_PER_UNIT * 8, 1);
106 p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
107 define_builtin(BUILT_IN_ADD_AND_FETCH_8, "__sync_fetch_and_add_8", NULL,
108 build_function_type_list(t, p, t, NULL_TREE), false);
109
110 // We use __builtin_expect for magic import functions.
111 define_builtin(BUILT_IN_EXPECT, "__builtin_expect", NULL,
112 build_function_type_list(long_integer_type_node,
113 long_integer_type_node,
114 long_integer_type_node,
115 NULL_TREE),
116 true);
117
118 // We use __builtin_memmove for the predeclared copy function.
119 define_builtin(BUILT_IN_MEMMOVE, "__builtin_memmove", "memmove",
120 build_function_type_list(ptr_type_node,
121 ptr_type_node,
122 const_ptr_type_node,
123 size_type_node,
124 NULL_TREE),
125 false);
126
127 // We provide sqrt for the math library.
128 define_builtin(BUILT_IN_SQRT, "__builtin_sqrt", "sqrt",
129 build_function_type_list(double_type_node,
130 double_type_node,
131 NULL_TREE),
132 true);
133 define_builtin(BUILT_IN_SQRTL, "__builtin_sqrtl", "sqrtl",
134 build_function_type_list(long_double_type_node,
135 long_double_type_node,
136 NULL_TREE),
137 true);
138
139 // We use __builtin_return_address in the thunk we build for
140 // functions which call recover.
141 define_builtin(BUILT_IN_RETURN_ADDRESS, "__builtin_return_address", NULL,
142 build_function_type_list(ptr_type_node,
143 unsigned_type_node,
144 NULL_TREE),
145 false);
146
147 // The compiler uses __builtin_trap for some exception handling
148 // cases.
149 define_builtin(BUILT_IN_TRAP, "__builtin_trap", NULL,
150 build_function_type(void_type_node, void_list_node),
151 false);
152 }
153
154 // Get the name to use for the import control function. If there is a
155 // global function or variable, then we know that that name must be
156 // unique in the link, and we use it as the basis for our name.
157
158 const std::string&
159 Gogo::get_init_fn_name()
160 {
161 if (this->init_fn_name_.empty())
162 {
163 gcc_assert(this->package_ != NULL);
164 if (this->is_main_package())
165 {
166 // Use a name which the runtime knows.
167 this->init_fn_name_ = "__go_init_main";
168 }
169 else
170 {
171 std::string s = this->unique_prefix();
172 s.append(1, '.');
173 s.append(this->package_name());
174 s.append("..import");
175 this->init_fn_name_ = s;
176 }
177 }
178
179 return this->init_fn_name_;
180 }
181
182 // Add statements to INIT_STMT_LIST which run the initialization
183 // functions for imported packages. This is only used for the "main"
184 // package.
185
186 void
187 Gogo::init_imports(tree* init_stmt_list)
188 {
189 gcc_assert(this->is_main_package());
190
191 if (this->imported_init_fns_.empty())
192 return;
193
194 tree fntype = build_function_type(void_type_node, void_list_node);
195
196 // We must call them in increasing priority order.
197 std::vector<Import_init> v;
198 for (std::set<Import_init>::const_iterator p =
199 this->imported_init_fns_.begin();
200 p != this->imported_init_fns_.end();
201 ++p)
202 v.push_back(*p);
203 std::sort(v.begin(), v.end());
204
205 for (std::vector<Import_init>::const_iterator p = v.begin();
206 p != v.end();
207 ++p)
208 {
209 std::string user_name = p->package_name() + ".init";
210 tree decl = build_decl(UNKNOWN_LOCATION, FUNCTION_DECL,
211 get_identifier_from_string(user_name),
212 fntype);
213 const std::string& init_name(p->init_name());
214 SET_DECL_ASSEMBLER_NAME(decl, get_identifier_from_string(init_name));
215 TREE_PUBLIC(decl) = 1;
216 DECL_EXTERNAL(decl) = 1;
217 append_to_statement_list(build_call_expr(decl, 0), init_stmt_list);
218 }
219 }
220
221 // Register global variables with the garbage collector. We need to
222 // register all variables which can hold a pointer value. They become
223 // roots during the mark phase. We build a struct that is easy to
224 // hook into a list of roots.
225
226 // struct __go_gc_root_list
227 // {
228 // struct __go_gc_root_list* __next;
229 // struct __go_gc_root
230 // {
231 // void* __decl;
232 // size_t __size;
233 // } __roots[];
234 // };
235
236 // The last entry in the roots array has a NULL decl field.
237
238 void
239 Gogo::register_gc_vars(const std::vector<Named_object*>& var_gc,
240 tree* init_stmt_list)
241 {
242 if (var_gc.empty())
243 return;
244
245 size_t count = var_gc.size();
246
247 tree root_type = Gogo::builtin_struct(NULL, "__go_gc_root", NULL_TREE, 2,
248 "__next",
249 ptr_type_node,
250 "__size",
251 sizetype);
252
253 tree index_type = build_index_type(size_int(count));
254 tree array_type = build_array_type(root_type, index_type);
255
256 tree root_list_type = make_node(RECORD_TYPE);
257 root_list_type = Gogo::builtin_struct(NULL, "__go_gc_root_list",
258 root_list_type, 2,
259 "__next",
260 build_pointer_type(root_list_type),
261 "__roots",
262 array_type);
263
264 // Build an initialier for the __roots array.
265
266 VEC(constructor_elt,gc)* roots_init = VEC_alloc(constructor_elt, gc,
267 count + 1);
268
269 size_t i = 0;
270 for (std::vector<Named_object*>::const_iterator p = var_gc.begin();
271 p != var_gc.end();
272 ++p, ++i)
273 {
274 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
275
276 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
277 tree field = TYPE_FIELDS(root_type);
278 elt->index = field;
279 tree decl = (*p)->get_tree(this, NULL);
280 gcc_assert(TREE_CODE(decl) == VAR_DECL);
281 elt->value = build_fold_addr_expr(decl);
282
283 elt = VEC_quick_push(constructor_elt, init, NULL);
284 field = DECL_CHAIN(field);
285 elt->index = field;
286 elt->value = DECL_SIZE_UNIT(decl);
287
288 elt = VEC_quick_push(constructor_elt, roots_init, NULL);
289 elt->index = size_int(i);
290 elt->value = build_constructor(root_type, init);
291 }
292
293 // The list ends with a NULL entry.
294
295 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
296
297 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
298 tree field = TYPE_FIELDS(root_type);
299 elt->index = field;
300 elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
301
302 elt = VEC_quick_push(constructor_elt, init, NULL);
303 field = DECL_CHAIN(field);
304 elt->index = field;
305 elt->value = size_zero_node;
306
307 elt = VEC_quick_push(constructor_elt, roots_init, NULL);
308 elt->index = size_int(i);
309 elt->value = build_constructor(root_type, init);
310
311 // Build a constructor for the struct.
312
313 VEC(constructor_elt,gc*) root_list_init = VEC_alloc(constructor_elt, gc, 2);
314
315 elt = VEC_quick_push(constructor_elt, root_list_init, NULL);
316 field = TYPE_FIELDS(root_list_type);
317 elt->index = field;
318 elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
319
320 elt = VEC_quick_push(constructor_elt, root_list_init, NULL);
321 field = DECL_CHAIN(field);
322 elt->index = field;
323 elt->value = build_constructor(array_type, roots_init);
324
325 // Build a decl to register.
326
327 tree decl = build_decl(BUILTINS_LOCATION, VAR_DECL,
328 create_tmp_var_name("gc"), root_list_type);
329 DECL_EXTERNAL(decl) = 0;
330 TREE_PUBLIC(decl) = 0;
331 TREE_STATIC(decl) = 1;
332 DECL_ARTIFICIAL(decl) = 1;
333 DECL_INITIAL(decl) = build_constructor(root_list_type, root_list_init);
334 rest_of_decl_compilation(decl, 1, 0);
335
336 static tree register_gc_fndecl;
337 tree call = Gogo::call_builtin(&register_gc_fndecl, BUILTINS_LOCATION,
338 "__go_register_gc_roots",
339 1,
340 void_type_node,
341 build_pointer_type(root_list_type),
342 build_fold_addr_expr(decl));
343 if (call != error_mark_node)
344 append_to_statement_list(call, init_stmt_list);
345 }
346
347 // Build the decl for the initialization function.
348
349 tree
350 Gogo::initialization_function_decl()
351 {
352 // The tedious details of building your own function. There doesn't
353 // seem to be a helper function for this.
354 std::string name = this->package_name() + ".init";
355 tree fndecl = build_decl(BUILTINS_LOCATION, FUNCTION_DECL,
356 get_identifier_from_string(name),
357 build_function_type(void_type_node,
358 void_list_node));
359 const std::string& asm_name(this->get_init_fn_name());
360 SET_DECL_ASSEMBLER_NAME(fndecl, get_identifier_from_string(asm_name));
361
362 tree resdecl = build_decl(BUILTINS_LOCATION, RESULT_DECL, NULL_TREE,
363 void_type_node);
364 DECL_ARTIFICIAL(resdecl) = 1;
365 DECL_CONTEXT(resdecl) = fndecl;
366 DECL_RESULT(fndecl) = resdecl;
367
368 TREE_STATIC(fndecl) = 1;
369 TREE_USED(fndecl) = 1;
370 DECL_ARTIFICIAL(fndecl) = 1;
371 TREE_PUBLIC(fndecl) = 1;
372
373 DECL_INITIAL(fndecl) = make_node(BLOCK);
374 TREE_USED(DECL_INITIAL(fndecl)) = 1;
375
376 return fndecl;
377 }
378
379 // Create the magic initialization function. INIT_STMT_LIST is the
380 // code that it needs to run.
381
382 void
383 Gogo::write_initialization_function(tree fndecl, tree init_stmt_list)
384 {
385 // Make sure that we thought we needed an initialization function,
386 // as otherwise we will not have reported it in the export data.
387 gcc_assert(this->is_main_package() || this->need_init_fn_);
388
389 if (fndecl == NULL_TREE)
390 fndecl = this->initialization_function_decl();
391
392 DECL_SAVED_TREE(fndecl) = init_stmt_list;
393
394 current_function_decl = fndecl;
395 if (DECL_STRUCT_FUNCTION(fndecl) == NULL)
396 push_struct_function(fndecl);
397 else
398 push_cfun(DECL_STRUCT_FUNCTION(fndecl));
399 cfun->function_end_locus = BUILTINS_LOCATION;
400
401 gimplify_function_tree(fndecl);
402
403 cgraph_add_new_function(fndecl, false);
404 cgraph_mark_needed_node(cgraph_node(fndecl));
405
406 current_function_decl = NULL_TREE;
407 pop_cfun();
408 }
409
410 // Search for references to VAR in any statements or called functions.
411
412 class Find_var : public Traverse
413 {
414 public:
415 // A hash table we use to avoid looping. The index is the name of a
416 // named object. We only look through objects defined in this
417 // package.
418 typedef Unordered_set(std::string) Seen_objects;
419
420 Find_var(Named_object* var, Seen_objects* seen_objects)
421 : Traverse(traverse_expressions),
422 var_(var), seen_objects_(seen_objects), found_(false)
423 { }
424
425 // Whether the variable was found.
426 bool
427 found() const
428 { return this->found_; }
429
430 int
431 expression(Expression**);
432
433 private:
434 // The variable we are looking for.
435 Named_object* var_;
436 // Names of objects we have already seen.
437 Seen_objects* seen_objects_;
438 // True if the variable was found.
439 bool found_;
440 };
441
442 // See if EXPR refers to VAR, looking through function calls and
443 // variable initializations.
444
445 int
446 Find_var::expression(Expression** pexpr)
447 {
448 Expression* e = *pexpr;
449
450 Var_expression* ve = e->var_expression();
451 if (ve != NULL)
452 {
453 Named_object* v = ve->named_object();
454 if (v == this->var_)
455 {
456 this->found_ = true;
457 return TRAVERSE_EXIT;
458 }
459
460 if (v->is_variable() && v->package() == NULL)
461 {
462 Expression* init = v->var_value()->init();
463 if (init != NULL)
464 {
465 std::pair<Seen_objects::iterator, bool> ins =
466 this->seen_objects_->insert(v->name());
467 if (ins.second)
468 {
469 // This is the first time we have seen this name.
470 if (Expression::traverse(&init, this) == TRAVERSE_EXIT)
471 return TRAVERSE_EXIT;
472 }
473 }
474 }
475 }
476
477 // We traverse the code of any function we see. Note that this
478 // means that we will traverse the code of a function whose address
479 // is taken even if it is not called.
480 Func_expression* fe = e->func_expression();
481 if (fe != NULL)
482 {
483 const Named_object* f = fe->named_object();
484 if (f->is_function() && f->package() == NULL)
485 {
486 std::pair<Seen_objects::iterator, bool> ins =
487 this->seen_objects_->insert(f->name());
488 if (ins.second)
489 {
490 // This is the first time we have seen this name.
491 if (f->func_value()->block()->traverse(this) == TRAVERSE_EXIT)
492 return TRAVERSE_EXIT;
493 }
494 }
495 }
496
497 return TRAVERSE_CONTINUE;
498 }
499
500 // Return true if EXPR refers to VAR.
501
502 static bool
503 expression_requires(Expression* expr, Block* preinit, Named_object* var)
504 {
505 Find_var::Seen_objects seen_objects;
506 Find_var find_var(var, &seen_objects);
507 if (expr != NULL)
508 Expression::traverse(&expr, &find_var);
509 if (preinit != NULL)
510 preinit->traverse(&find_var);
511
512 return find_var.found();
513 }
514
515 // Sort variable initializations. If the initialization expression
516 // for variable A refers directly or indirectly to the initialization
517 // expression for variable B, then we must initialize B before A.
518
519 class Var_init
520 {
521 public:
522 Var_init()
523 : var_(NULL), init_(NULL_TREE), waiting_(0)
524 { }
525
526 Var_init(Named_object* var, tree init)
527 : var_(var), init_(init), waiting_(0)
528 { }
529
530 // Return the variable.
531 Named_object*
532 var() const
533 { return this->var_; }
534
535 // Return the initialization expression.
536 tree
537 init() const
538 { return this->init_; }
539
540 // Return the number of variables waiting for this one to be
541 // initialized.
542 size_t
543 waiting() const
544 { return this->waiting_; }
545
546 // Increment the number waiting.
547 void
548 increment_waiting()
549 { ++this->waiting_; }
550
551 private:
552 // The variable being initialized.
553 Named_object* var_;
554 // The initialization expression to run.
555 tree init_;
556 // The number of variables which are waiting for this one.
557 size_t waiting_;
558 };
559
560 typedef std::list<Var_init> Var_inits;
561
562 // Sort the variable initializations. The rule we follow is that we
563 // emit them in the order they appear in the array, except that if the
564 // initialization expression for a variable V1 depends upon another
565 // variable V2 then we initialize V1 after V2.
566
567 static void
568 sort_var_inits(Var_inits* var_inits)
569 {
570 Var_inits ready;
571 while (!var_inits->empty())
572 {
573 Var_inits::iterator p1 = var_inits->begin();
574 Named_object* var = p1->var();
575 Expression* init = var->var_value()->init();
576 Block* preinit = var->var_value()->preinit();
577
578 // Start walking through the list to see which variables VAR
579 // needs to wait for. We can skip P1->WAITING variables--that
580 // is the number we've already checked.
581 Var_inits::iterator p2 = p1;
582 ++p2;
583 for (size_t i = p1->waiting(); i > 0; --i)
584 ++p2;
585
586 for (; p2 != var_inits->end(); ++p2)
587 {
588 if (expression_requires(init, preinit, p2->var()))
589 {
590 // Check for cycles.
591 if (expression_requires(p2->var()->var_value()->init(),
592 p2->var()->var_value()->preinit(),
593 var))
594 {
595 error_at(var->location(),
596 ("initialization expressions for %qs and "
597 "%qs depend upon each other"),
598 var->message_name().c_str(),
599 p2->var()->message_name().c_str());
600 inform(p2->var()->location(), "%qs defined here",
601 p2->var()->message_name().c_str());
602 p2 = var_inits->end();
603 }
604 else
605 {
606 // We can't emit P1 until P2 is emitted. Move P1.
607 // Note that the WAITING loop always executes at
608 // least once, which is what we want.
609 p2->increment_waiting();
610 Var_inits::iterator p3 = p2;
611 for (size_t i = p2->waiting(); i > 0; --i)
612 ++p3;
613 var_inits->splice(p3, *var_inits, p1);
614 }
615 break;
616 }
617 }
618
619 if (p2 == var_inits->end())
620 {
621 // VAR does not depends upon any other initialization expressions.
622
623 // Check for a loop of VAR on itself. We only do this if
624 // INIT is not NULL; when INIT is NULL, it means that
625 // PREINIT sets VAR, which we will interpret as a loop.
626 if (init != NULL && expression_requires(init, preinit, var))
627 error_at(var->location(),
628 "initialization expression for %qs depends upon itself",
629 var->message_name().c_str());
630 ready.splice(ready.end(), *var_inits, p1);
631 }
632 }
633
634 // Now READY is the list in the desired initialization order.
635 var_inits->swap(ready);
636 }
637
638 // Write out the global definitions.
639
640 void
641 Gogo::write_globals()
642 {
643 this->convert_named_types();
644 this->build_interface_method_tables();
645
646 Bindings* bindings = this->current_bindings();
647 size_t count = bindings->size_definitions();
648
649 tree* vec = new tree[count];
650
651 tree init_fndecl = NULL_TREE;
652 tree init_stmt_list = NULL_TREE;
653
654 if (this->is_main_package())
655 this->init_imports(&init_stmt_list);
656
657 // A list of variable initializations.
658 Var_inits var_inits;
659
660 // A list of variables which need to be registered with the garbage
661 // collector.
662 std::vector<Named_object*> var_gc;
663 var_gc.reserve(count);
664
665 tree var_init_stmt_list = NULL_TREE;
666 size_t i = 0;
667 for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
668 p != bindings->end_definitions();
669 ++p, ++i)
670 {
671 Named_object* no = *p;
672
673 gcc_assert(!no->is_type_declaration() && !no->is_function_declaration());
674 // There is nothing to do for a package.
675 if (no->is_package())
676 {
677 --i;
678 --count;
679 continue;
680 }
681
682 // There is nothing to do for an object which was imported from
683 // a different package into the global scope.
684 if (no->package() != NULL)
685 {
686 --i;
687 --count;
688 continue;
689 }
690
691 // There is nothing useful we can output for constants which
692 // have ideal or non-integeral type.
693 if (no->is_const())
694 {
695 Type* type = no->const_value()->type();
696 if (type == NULL)
697 type = no->const_value()->expr()->type();
698 if (type->is_abstract() || type->integer_type() == NULL)
699 {
700 --i;
701 --count;
702 continue;
703 }
704 }
705
706 vec[i] = no->get_tree(this, NULL);
707
708 if (vec[i] == error_mark_node)
709 {
710 gcc_assert(saw_errors());
711 --i;
712 --count;
713 continue;
714 }
715
716 // If a variable is initialized to a non-constant value, do the
717 // initialization in an initialization function.
718 if (TREE_CODE(vec[i]) == VAR_DECL)
719 {
720 gcc_assert(no->is_variable());
721
722 // Check for a sink variable, which may be used to run
723 // an initializer purely for its side effects.
724 bool is_sink = no->name()[0] == '_' && no->name()[1] == '.';
725
726 tree var_init_tree = NULL_TREE;
727 if (!no->var_value()->has_pre_init())
728 {
729 tree init = no->var_value()->get_init_tree(this, NULL);
730 if (init == error_mark_node)
731 gcc_assert(saw_errors());
732 else if (init == NULL_TREE)
733 ;
734 else if (TREE_CONSTANT(init))
735 DECL_INITIAL(vec[i]) = init;
736 else if (is_sink)
737 var_init_tree = init;
738 else
739 var_init_tree = fold_build2_loc(no->location(), MODIFY_EXPR,
740 void_type_node, vec[i], init);
741 }
742 else
743 {
744 // We are going to create temporary variables which
745 // means that we need an fndecl.
746 if (init_fndecl == NULL_TREE)
747 init_fndecl = this->initialization_function_decl();
748 current_function_decl = init_fndecl;
749 if (DECL_STRUCT_FUNCTION(init_fndecl) == NULL)
750 push_struct_function(init_fndecl);
751 else
752 push_cfun(DECL_STRUCT_FUNCTION(init_fndecl));
753
754 tree var_decl = is_sink ? NULL_TREE : vec[i];
755 var_init_tree = no->var_value()->get_init_block(this, NULL,
756 var_decl);
757
758 current_function_decl = NULL_TREE;
759 pop_cfun();
760 }
761
762 if (var_init_tree != NULL_TREE && var_init_tree != error_mark_node)
763 {
764 if (no->var_value()->init() == NULL
765 && !no->var_value()->has_pre_init())
766 append_to_statement_list(var_init_tree, &var_init_stmt_list);
767 else
768 var_inits.push_back(Var_init(no, var_init_tree));
769 }
770
771 if (!is_sink && no->var_value()->type()->has_pointer())
772 var_gc.push_back(no);
773 }
774 }
775
776 // Register global variables with the garbage collector.
777 this->register_gc_vars(var_gc, &init_stmt_list);
778
779 // Simple variable initializations, after all variables are
780 // registered.
781 append_to_statement_list(var_init_stmt_list, &init_stmt_list);
782
783 // Complex variable initializations, first sorting them into a
784 // workable order.
785 if (!var_inits.empty())
786 {
787 sort_var_inits(&var_inits);
788 for (Var_inits::const_iterator p = var_inits.begin();
789 p != var_inits.end();
790 ++p)
791 append_to_statement_list(p->init(), &init_stmt_list);
792 }
793
794 // After all the variables are initialized, call the "init"
795 // functions if there are any.
796 for (std::vector<Named_object*>::const_iterator p =
797 this->init_functions_.begin();
798 p != this->init_functions_.end();
799 ++p)
800 {
801 tree decl = (*p)->get_tree(this, NULL);
802 tree call = build_call_expr(decl, 0);
803 append_to_statement_list(call, &init_stmt_list);
804 }
805
806 // Set up a magic function to do all the initialization actions.
807 // This will be called if this package is imported.
808 if (init_stmt_list != NULL_TREE
809 || this->need_init_fn_
810 || this->is_main_package())
811 this->write_initialization_function(init_fndecl, init_stmt_list);
812
813 // Pass everything back to the middle-end.
814
815 wrapup_global_declarations(vec, count);
816
817 cgraph_finalize_compilation_unit();
818
819 check_global_declarations(vec, count);
820 emit_debug_global_declarations(vec, count);
821
822 delete[] vec;
823 }
824
825 // Get a tree for the identifier for a named object.
826
827 tree
828 Named_object::get_id(Gogo* gogo)
829 {
830 std::string decl_name;
831 if (this->is_function_declaration()
832 && !this->func_declaration_value()->asm_name().empty())
833 decl_name = this->func_declaration_value()->asm_name();
834 else if ((this->is_variable() && !this->var_value()->is_global())
835 || (this->is_type()
836 && this->type_value()->location() == BUILTINS_LOCATION))
837 {
838 // We don't need the package name for local variables or builtin
839 // types.
840 decl_name = Gogo::unpack_hidden_name(this->name_);
841 }
842 else if (this->is_function()
843 && !this->func_value()->is_method()
844 && this->package_ == NULL
845 && Gogo::unpack_hidden_name(this->name_) == "init")
846 {
847 // A single package can have multiple "init" functions, which
848 // means that we need to give them different names.
849 static int init_index;
850 char buf[20];
851 snprintf(buf, sizeof buf, "%d", init_index);
852 ++init_index;
853 decl_name = gogo->package_name() + ".init." + buf;
854 }
855 else
856 {
857 std::string package_name;
858 if (this->package_ == NULL)
859 package_name = gogo->package_name();
860 else
861 package_name = this->package_->name();
862
863 decl_name = package_name + '.' + Gogo::unpack_hidden_name(this->name_);
864
865 Function_type* fntype;
866 if (this->is_function())
867 fntype = this->func_value()->type();
868 else if (this->is_function_declaration())
869 fntype = this->func_declaration_value()->type();
870 else
871 fntype = NULL;
872 if (fntype != NULL && fntype->is_method())
873 {
874 decl_name.push_back('.');
875 decl_name.append(fntype->receiver()->type()->mangled_name(gogo));
876 }
877 }
878 if (this->is_type())
879 {
880 const Named_object* in_function = this->type_value()->in_function();
881 if (in_function != NULL)
882 decl_name += '$' + in_function->name();
883 }
884 return get_identifier_from_string(decl_name);
885 }
886
887 // Get a tree for a named object.
888
889 tree
890 Named_object::get_tree(Gogo* gogo, Named_object* function)
891 {
892 if (this->tree_ != NULL_TREE)
893 {
894 // If this is a variable whose address is taken, we must rebuild
895 // the INDIRECT_REF each time to avoid invalid sharing.
896 tree ret = this->tree_;
897 if (((this->classification_ == NAMED_OBJECT_VAR
898 && this->var_value()->is_in_heap())
899 || (this->classification_ == NAMED_OBJECT_RESULT_VAR
900 && this->result_var_value()->is_in_heap()))
901 && ret != error_mark_node)
902 {
903 gcc_assert(TREE_CODE(ret) == INDIRECT_REF);
904 ret = build_fold_indirect_ref(TREE_OPERAND(ret, 0));
905 TREE_THIS_NOTRAP(ret) = 1;
906 }
907 return ret;
908 }
909
910 tree name;
911 if (this->classification_ == NAMED_OBJECT_TYPE)
912 name = NULL_TREE;
913 else
914 name = this->get_id(gogo);
915 tree decl;
916 switch (this->classification_)
917 {
918 case NAMED_OBJECT_CONST:
919 {
920 Named_constant* named_constant = this->u_.const_value;
921 Translate_context subcontext(gogo, function, NULL, NULL_TREE);
922 tree expr_tree = named_constant->expr()->get_tree(&subcontext);
923 if (expr_tree == error_mark_node)
924 decl = error_mark_node;
925 else
926 {
927 Type* type = named_constant->type();
928 if (type != NULL && !type->is_abstract())
929 expr_tree = fold_convert(type->get_tree(gogo), expr_tree);
930 if (expr_tree == error_mark_node)
931 decl = error_mark_node;
932 else if (INTEGRAL_TYPE_P(TREE_TYPE(expr_tree)))
933 {
934 decl = build_decl(named_constant->location(), CONST_DECL,
935 name, TREE_TYPE(expr_tree));
936 DECL_INITIAL(decl) = expr_tree;
937 TREE_CONSTANT(decl) = 1;
938 TREE_READONLY(decl) = 1;
939 }
940 else
941 {
942 // A CONST_DECL is only for an enum constant, so we
943 // shouldn't use for non-integral types. Instead we
944 // just return the constant itself, rather than a
945 // decl.
946 decl = expr_tree;
947 }
948 }
949 }
950 break;
951
952 case NAMED_OBJECT_TYPE:
953 {
954 Named_type* named_type = this->u_.type_value;
955 tree type_tree = named_type->get_tree(gogo);
956 if (type_tree == error_mark_node)
957 decl = error_mark_node;
958 else
959 {
960 decl = TYPE_NAME(type_tree);
961 gcc_assert(decl != NULL_TREE);
962
963 // We need to produce a type descriptor for every named
964 // type, and for a pointer to every named type, since
965 // other files or packages might refer to them. We need
966 // to do this even for hidden types, because they might
967 // still be returned by some function. Simply calling the
968 // type_descriptor method is enough to create the type
969 // descriptor, even though we don't do anything with it.
970 if (this->package_ == NULL)
971 {
972 named_type->type_descriptor_pointer(gogo);
973 Type* pn = Type::make_pointer_type(named_type);
974 pn->type_descriptor_pointer(gogo);
975 }
976 }
977 }
978 break;
979
980 case NAMED_OBJECT_TYPE_DECLARATION:
981 error("reference to undefined type %qs",
982 this->message_name().c_str());
983 return error_mark_node;
984
985 case NAMED_OBJECT_VAR:
986 {
987 Variable* var = this->u_.var_value;
988 Type* type = var->type();
989 if (type->is_error_type()
990 || (type->is_undefined()
991 && (!var->is_global() || this->package() == NULL)))
992 {
993 // Force the error for an undefined type, just in case.
994 type->base();
995 decl = error_mark_node;
996 }
997 else
998 {
999 tree var_type = type->get_tree(gogo);
1000 bool is_parameter = var->is_parameter();
1001 if (var->is_receiver() && type->points_to() == NULL)
1002 is_parameter = false;
1003 if (var->is_in_heap())
1004 {
1005 is_parameter = false;
1006 var_type = build_pointer_type(var_type);
1007 }
1008 decl = build_decl(var->location(),
1009 is_parameter ? PARM_DECL : VAR_DECL,
1010 name, var_type);
1011 if (!var->is_global())
1012 {
1013 tree fnid = function->get_id(gogo);
1014 tree fndecl = function->func_value()->get_or_make_decl(gogo,
1015 function,
1016 fnid);
1017 DECL_CONTEXT(decl) = fndecl;
1018 }
1019 if (is_parameter)
1020 DECL_ARG_TYPE(decl) = TREE_TYPE(decl);
1021
1022 if (var->is_global())
1023 {
1024 const Package* package = this->package();
1025 if (package == NULL)
1026 TREE_STATIC(decl) = 1;
1027 else
1028 DECL_EXTERNAL(decl) = 1;
1029 if (!Gogo::is_hidden_name(this->name_))
1030 {
1031 TREE_PUBLIC(decl) = 1;
1032 std::string asm_name = (package == NULL
1033 ? gogo->unique_prefix()
1034 : package->unique_prefix());
1035 asm_name.append(1, '.');
1036 asm_name.append(IDENTIFIER_POINTER(name),
1037 IDENTIFIER_LENGTH(name));
1038 tree asm_id = get_identifier_from_string(asm_name);
1039 SET_DECL_ASSEMBLER_NAME(decl, asm_id);
1040 }
1041 }
1042
1043 // FIXME: We should only set this for variables which are
1044 // actually used somewhere.
1045 TREE_USED(decl) = 1;
1046 }
1047 }
1048 break;
1049
1050 case NAMED_OBJECT_RESULT_VAR:
1051 {
1052 Result_variable* result = this->u_.result_var_value;
1053 Type* type = result->type();
1054 if (type->is_error_type() || type->is_undefined())
1055 {
1056 // Force the error.
1057 type->base();
1058 decl = error_mark_node;
1059 }
1060 else
1061 {
1062 gcc_assert(result->function() == function->func_value());
1063 source_location loc = function->location();
1064 tree result_type = type->get_tree(gogo);
1065 tree init;
1066 if (!result->is_in_heap())
1067 init = type->get_init_tree(gogo, false);
1068 else
1069 {
1070 tree space = gogo->allocate_memory(type,
1071 TYPE_SIZE_UNIT(result_type),
1072 loc);
1073 result_type = build_pointer_type(result_type);
1074 tree subinit = type->get_init_tree(gogo, true);
1075 if (subinit == NULL_TREE)
1076 init = fold_convert_loc(loc, result_type, space);
1077 else
1078 {
1079 space = save_expr(space);
1080 space = fold_convert_loc(loc, result_type, space);
1081 tree spaceref = build_fold_indirect_ref_loc(loc, space);
1082 TREE_THIS_NOTRAP(spaceref) = 1;
1083 tree set = fold_build2_loc(loc, MODIFY_EXPR, void_type_node,
1084 spaceref, subinit);
1085 init = fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(space),
1086 set, space);
1087 }
1088 }
1089 decl = build_decl(loc, VAR_DECL, name, result_type);
1090 tree fnid = function->get_id(gogo);
1091 tree fndecl = function->func_value()->get_or_make_decl(gogo,
1092 function,
1093 fnid);
1094 DECL_CONTEXT(decl) = fndecl;
1095 DECL_INITIAL(decl) = init;
1096 TREE_USED(decl) = 1;
1097 }
1098 }
1099 break;
1100
1101 case NAMED_OBJECT_SINK:
1102 gcc_unreachable();
1103
1104 case NAMED_OBJECT_FUNC:
1105 {
1106 Function* func = this->u_.func_value;
1107 decl = func->get_or_make_decl(gogo, this, name);
1108 if (decl != error_mark_node)
1109 {
1110 if (func->block() != NULL)
1111 {
1112 if (DECL_STRUCT_FUNCTION(decl) == NULL)
1113 push_struct_function(decl);
1114 else
1115 push_cfun(DECL_STRUCT_FUNCTION(decl));
1116
1117 cfun->function_end_locus = func->block()->end_location();
1118
1119 current_function_decl = decl;
1120
1121 func->build_tree(gogo, this);
1122
1123 gimplify_function_tree(decl);
1124
1125 cgraph_finalize_function(decl, true);
1126
1127 current_function_decl = NULL_TREE;
1128 pop_cfun();
1129 }
1130 }
1131 }
1132 break;
1133
1134 default:
1135 gcc_unreachable();
1136 }
1137
1138 if (TREE_TYPE(decl) == error_mark_node)
1139 decl = error_mark_node;
1140
1141 tree ret = decl;
1142
1143 // If this is a local variable whose address is taken, then we
1144 // actually store it in the heap. For uses of the variable we need
1145 // to return a reference to that heap location.
1146 if (((this->classification_ == NAMED_OBJECT_VAR
1147 && this->var_value()->is_in_heap())
1148 || (this->classification_ == NAMED_OBJECT_RESULT_VAR
1149 && this->result_var_value()->is_in_heap()))
1150 && ret != error_mark_node)
1151 {
1152 gcc_assert(POINTER_TYPE_P(TREE_TYPE(ret)));
1153 ret = build_fold_indirect_ref(ret);
1154 TREE_THIS_NOTRAP(ret) = 1;
1155 }
1156
1157 this->tree_ = ret;
1158
1159 if (ret != error_mark_node)
1160 go_preserve_from_gc(ret);
1161
1162 return ret;
1163 }
1164
1165 // Get the initial value of a variable as a tree. This does not
1166 // consider whether the variable is in the heap--it returns the
1167 // initial value as though it were always stored in the stack.
1168
1169 tree
1170 Variable::get_init_tree(Gogo* gogo, Named_object* function)
1171 {
1172 gcc_assert(this->preinit_ == NULL);
1173 if (this->init_ == NULL)
1174 {
1175 gcc_assert(!this->is_parameter_);
1176 return this->type_->get_init_tree(gogo, this->is_global_);
1177 }
1178 else
1179 {
1180 Translate_context context(gogo, function, NULL, NULL_TREE);
1181 tree rhs_tree = this->init_->get_tree(&context);
1182 return Expression::convert_for_assignment(&context, this->type(),
1183 this->init_->type(),
1184 rhs_tree, this->location());
1185 }
1186 }
1187
1188 // Get the initial value of a variable when a block is required.
1189 // VAR_DECL is the decl to set; it may be NULL for a sink variable.
1190
1191 tree
1192 Variable::get_init_block(Gogo* gogo, Named_object* function, tree var_decl)
1193 {
1194 gcc_assert(this->preinit_ != NULL);
1195
1196 // We want to add the variable assignment to the end of the preinit
1197 // block. The preinit block may have a TRY_FINALLY_EXPR and a
1198 // TRY_CATCH_EXPR; if it does, we want to add to the end of the
1199 // regular statements.
1200
1201 Translate_context context(gogo, function, NULL, NULL_TREE);
1202 tree block_tree = this->preinit_->get_tree(&context);
1203 if (block_tree == error_mark_node)
1204 return error_mark_node;
1205 gcc_assert(TREE_CODE(block_tree) == BIND_EXPR);
1206 tree statements = BIND_EXPR_BODY(block_tree);
1207 while (statements != NULL_TREE
1208 && (TREE_CODE(statements) == TRY_FINALLY_EXPR
1209 || TREE_CODE(statements) == TRY_CATCH_EXPR))
1210 statements = TREE_OPERAND(statements, 0);
1211
1212 // It's possible to have pre-init statements without an initializer
1213 // if the pre-init statements set the variable.
1214 if (this->init_ != NULL)
1215 {
1216 tree rhs_tree = this->init_->get_tree(&context);
1217 if (rhs_tree == error_mark_node)
1218 return error_mark_node;
1219 if (var_decl == NULL_TREE)
1220 append_to_statement_list(rhs_tree, &statements);
1221 else
1222 {
1223 tree val = Expression::convert_for_assignment(&context, this->type(),
1224 this->init_->type(),
1225 rhs_tree,
1226 this->location());
1227 if (val == error_mark_node)
1228 return error_mark_node;
1229 tree set = fold_build2_loc(this->location(), MODIFY_EXPR,
1230 void_type_node, var_decl, val);
1231 append_to_statement_list(set, &statements);
1232 }
1233 }
1234
1235 return block_tree;
1236 }
1237
1238 // Get a tree for a function decl.
1239
1240 tree
1241 Function::get_or_make_decl(Gogo* gogo, Named_object* no, tree id)
1242 {
1243 if (this->fndecl_ == NULL_TREE)
1244 {
1245 tree functype = this->type_->get_tree(gogo);
1246 if (functype == error_mark_node)
1247 this->fndecl_ = error_mark_node;
1248 else
1249 {
1250 // The type of a function comes back as a pointer, but we
1251 // want the real function type for a function declaration.
1252 gcc_assert(POINTER_TYPE_P(functype));
1253 functype = TREE_TYPE(functype);
1254 tree decl = build_decl(this->location(), FUNCTION_DECL, id, functype);
1255
1256 this->fndecl_ = decl;
1257
1258 if (no->package() != NULL)
1259 ;
1260 else if (this->enclosing_ != NULL || Gogo::is_thunk(no))
1261 ;
1262 else if (Gogo::unpack_hidden_name(no->name()) == "init"
1263 && !this->type_->is_method())
1264 ;
1265 else if (Gogo::unpack_hidden_name(no->name()) == "main"
1266 && gogo->is_main_package())
1267 TREE_PUBLIC(decl) = 1;
1268 // Methods have to be public even if they are hidden because
1269 // they can be pulled into type descriptors when using
1270 // anonymous fields.
1271 else if (!Gogo::is_hidden_name(no->name())
1272 || this->type_->is_method())
1273 {
1274 TREE_PUBLIC(decl) = 1;
1275 std::string asm_name = gogo->unique_prefix();
1276 asm_name.append(1, '.');
1277 asm_name.append(IDENTIFIER_POINTER(id), IDENTIFIER_LENGTH(id));
1278 SET_DECL_ASSEMBLER_NAME(decl,
1279 get_identifier_from_string(asm_name));
1280 }
1281
1282 // Why do we have to do this in the frontend?
1283 tree restype = TREE_TYPE(functype);
1284 tree resdecl = build_decl(this->location(), RESULT_DECL, NULL_TREE,
1285 restype);
1286 DECL_ARTIFICIAL(resdecl) = 1;
1287 DECL_IGNORED_P(resdecl) = 1;
1288 DECL_CONTEXT(resdecl) = decl;
1289 DECL_RESULT(decl) = resdecl;
1290
1291 if (this->enclosing_ != NULL)
1292 DECL_STATIC_CHAIN(decl) = 1;
1293
1294 // If a function calls the predeclared recover function, we
1295 // can't inline it, because recover behaves differently in a
1296 // function passed directly to defer.
1297 if (this->calls_recover_ && !this->is_recover_thunk_)
1298 DECL_UNINLINABLE(decl) = 1;
1299
1300 // If this is a thunk created to call a function which calls
1301 // the predeclared recover function, we need to disable
1302 // stack splitting for the thunk.
1303 if (this->is_recover_thunk_)
1304 {
1305 tree attr = get_identifier("__no_split_stack__");
1306 DECL_ATTRIBUTES(decl) = tree_cons(attr, NULL_TREE, NULL_TREE);
1307 }
1308
1309 go_preserve_from_gc(decl);
1310
1311 if (this->closure_var_ != NULL)
1312 {
1313 push_struct_function(decl);
1314
1315 tree closure_decl = this->closure_var_->get_tree(gogo, no);
1316 if (closure_decl == error_mark_node)
1317 this->fndecl_ = error_mark_node;
1318 else
1319 {
1320 DECL_ARTIFICIAL(closure_decl) = 1;
1321 DECL_IGNORED_P(closure_decl) = 1;
1322 TREE_USED(closure_decl) = 1;
1323 DECL_ARG_TYPE(closure_decl) = TREE_TYPE(closure_decl);
1324 TREE_READONLY(closure_decl) = 1;
1325
1326 DECL_STRUCT_FUNCTION(decl)->static_chain_decl = closure_decl;
1327 }
1328
1329 pop_cfun();
1330 }
1331 }
1332 }
1333 return this->fndecl_;
1334 }
1335
1336 // Get a tree for a function declaration.
1337
1338 tree
1339 Function_declaration::get_or_make_decl(Gogo* gogo, Named_object* no, tree id)
1340 {
1341 if (this->fndecl_ == NULL_TREE)
1342 {
1343 // Let Go code use an asm declaration to pick up a builtin
1344 // function.
1345 if (!this->asm_name_.empty())
1346 {
1347 std::map<std::string, tree>::const_iterator p =
1348 builtin_functions.find(this->asm_name_);
1349 if (p != builtin_functions.end())
1350 {
1351 this->fndecl_ = p->second;
1352 return this->fndecl_;
1353 }
1354 }
1355
1356 tree functype = this->fntype_->get_tree(gogo);
1357 tree decl;
1358 if (functype == error_mark_node)
1359 decl = error_mark_node;
1360 else
1361 {
1362 // The type of a function comes back as a pointer, but we
1363 // want the real function type for a function declaration.
1364 gcc_assert(POINTER_TYPE_P(functype));
1365 functype = TREE_TYPE(functype);
1366 decl = build_decl(this->location(), FUNCTION_DECL, id, functype);
1367 TREE_PUBLIC(decl) = 1;
1368 DECL_EXTERNAL(decl) = 1;
1369
1370 if (this->asm_name_.empty())
1371 {
1372 std::string asm_name = (no->package() == NULL
1373 ? gogo->unique_prefix()
1374 : no->package()->unique_prefix());
1375 asm_name.append(1, '.');
1376 asm_name.append(IDENTIFIER_POINTER(id), IDENTIFIER_LENGTH(id));
1377 SET_DECL_ASSEMBLER_NAME(decl,
1378 get_identifier_from_string(asm_name));
1379 }
1380 }
1381 this->fndecl_ = decl;
1382 go_preserve_from_gc(decl);
1383 }
1384 return this->fndecl_;
1385 }
1386
1387 // We always pass the receiver to a method as a pointer. If the
1388 // receiver is actually declared as a non-pointer type, then we copy
1389 // the value into a local variable, so that it has the right type. In
1390 // this function we create the real PARM_DECL to use, and set
1391 // DEC_INITIAL of the var_decl to be the value passed in.
1392
1393 tree
1394 Function::make_receiver_parm_decl(Gogo* gogo, Named_object* no, tree var_decl)
1395 {
1396 if (var_decl == error_mark_node)
1397 return error_mark_node;
1398 // If the function takes the address of a receiver which is passed
1399 // by value, then we will have an INDIRECT_REF here. We need to get
1400 // the real variable.
1401 bool is_in_heap = no->var_value()->is_in_heap();
1402 tree val_type;
1403 if (TREE_CODE(var_decl) != INDIRECT_REF)
1404 {
1405 gcc_assert(!is_in_heap);
1406 val_type = TREE_TYPE(var_decl);
1407 }
1408 else
1409 {
1410 gcc_assert(is_in_heap);
1411 var_decl = TREE_OPERAND(var_decl, 0);
1412 if (var_decl == error_mark_node)
1413 return error_mark_node;
1414 gcc_assert(POINTER_TYPE_P(TREE_TYPE(var_decl)));
1415 val_type = TREE_TYPE(TREE_TYPE(var_decl));
1416 }
1417 gcc_assert(TREE_CODE(var_decl) == VAR_DECL);
1418 source_location loc = DECL_SOURCE_LOCATION(var_decl);
1419 std::string name = IDENTIFIER_POINTER(DECL_NAME(var_decl));
1420 name += ".pointer";
1421 tree id = get_identifier_from_string(name);
1422 tree parm_decl = build_decl(loc, PARM_DECL, id, build_pointer_type(val_type));
1423 DECL_CONTEXT(parm_decl) = current_function_decl;
1424 DECL_ARG_TYPE(parm_decl) = TREE_TYPE(parm_decl);
1425
1426 gcc_assert(DECL_INITIAL(var_decl) == NULL_TREE);
1427 // The receiver might be passed as a null pointer.
1428 tree check = fold_build2_loc(loc, NE_EXPR, boolean_type_node, parm_decl,
1429 fold_convert_loc(loc, TREE_TYPE(parm_decl),
1430 null_pointer_node));
1431 tree ind = build_fold_indirect_ref_loc(loc, parm_decl);
1432 TREE_THIS_NOTRAP(ind) = 1;
1433 tree zero_init = no->var_value()->type()->get_init_tree(gogo, false);
1434 tree init = fold_build3_loc(loc, COND_EXPR, TREE_TYPE(ind),
1435 check, ind, zero_init);
1436
1437 if (is_in_heap)
1438 {
1439 tree size = TYPE_SIZE_UNIT(val_type);
1440 tree space = gogo->allocate_memory(no->var_value()->type(), size,
1441 no->location());
1442 space = save_expr(space);
1443 space = fold_convert(build_pointer_type(val_type), space);
1444 tree spaceref = build_fold_indirect_ref_loc(no->location(), space);
1445 TREE_THIS_NOTRAP(spaceref) = 1;
1446 tree check = fold_build2_loc(loc, NE_EXPR, boolean_type_node,
1447 parm_decl,
1448 fold_convert_loc(loc, TREE_TYPE(parm_decl),
1449 null_pointer_node));
1450 tree parmref = build_fold_indirect_ref_loc(no->location(), parm_decl);
1451 TREE_THIS_NOTRAP(parmref) = 1;
1452 tree set = fold_build2_loc(loc, MODIFY_EXPR, void_type_node,
1453 spaceref, parmref);
1454 init = fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(space),
1455 build3(COND_EXPR, void_type_node,
1456 check, set, NULL_TREE),
1457 space);
1458 }
1459
1460 DECL_INITIAL(var_decl) = init;
1461
1462 return parm_decl;
1463 }
1464
1465 // If we take the address of a parameter, then we need to copy it into
1466 // the heap. We will access it as a local variable via an
1467 // indirection.
1468
1469 tree
1470 Function::copy_parm_to_heap(Gogo* gogo, Named_object* no, tree ref)
1471 {
1472 if (ref == error_mark_node)
1473 return error_mark_node;
1474
1475 gcc_assert(TREE_CODE(ref) == INDIRECT_REF);
1476
1477 tree var_decl = TREE_OPERAND(ref, 0);
1478 if (var_decl == error_mark_node)
1479 return error_mark_node;
1480 gcc_assert(TREE_CODE(var_decl) == VAR_DECL);
1481 source_location loc = DECL_SOURCE_LOCATION(var_decl);
1482
1483 std::string name = IDENTIFIER_POINTER(DECL_NAME(var_decl));
1484 name += ".param";
1485 tree id = get_identifier_from_string(name);
1486
1487 tree type = TREE_TYPE(var_decl);
1488 gcc_assert(POINTER_TYPE_P(type));
1489 type = TREE_TYPE(type);
1490
1491 tree parm_decl = build_decl(loc, PARM_DECL, id, type);
1492 DECL_CONTEXT(parm_decl) = current_function_decl;
1493 DECL_ARG_TYPE(parm_decl) = type;
1494
1495 tree size = TYPE_SIZE_UNIT(type);
1496 tree space = gogo->allocate_memory(no->var_value()->type(), size, loc);
1497 space = save_expr(space);
1498 space = fold_convert(TREE_TYPE(var_decl), space);
1499 tree spaceref = build_fold_indirect_ref_loc(loc, space);
1500 TREE_THIS_NOTRAP(spaceref) = 1;
1501 tree init = build2(COMPOUND_EXPR, TREE_TYPE(space),
1502 build2(MODIFY_EXPR, void_type_node, spaceref, parm_decl),
1503 space);
1504 DECL_INITIAL(var_decl) = init;
1505
1506 return parm_decl;
1507 }
1508
1509 // Get a tree for function code.
1510
1511 void
1512 Function::build_tree(Gogo* gogo, Named_object* named_function)
1513 {
1514 tree fndecl = this->fndecl_;
1515 gcc_assert(fndecl != NULL_TREE);
1516
1517 tree params = NULL_TREE;
1518 tree* pp = &params;
1519
1520 tree declare_vars = NULL_TREE;
1521 for (Bindings::const_definitions_iterator p =
1522 this->block_->bindings()->begin_definitions();
1523 p != this->block_->bindings()->end_definitions();
1524 ++p)
1525 {
1526 if ((*p)->is_variable() && (*p)->var_value()->is_parameter())
1527 {
1528 *pp = (*p)->get_tree(gogo, named_function);
1529
1530 // We always pass the receiver to a method as a pointer. If
1531 // the receiver is declared as a non-pointer type, then we
1532 // copy the value into a local variable.
1533 if ((*p)->var_value()->is_receiver()
1534 && (*p)->var_value()->type()->points_to() == NULL)
1535 {
1536 tree parm_decl = this->make_receiver_parm_decl(gogo, *p, *pp);
1537 tree var = *pp;
1538 if (TREE_CODE(var) == INDIRECT_REF)
1539 var = TREE_OPERAND(var, 0);
1540 if (var != error_mark_node)
1541 {
1542 gcc_assert(TREE_CODE(var) == VAR_DECL);
1543 DECL_CHAIN(var) = declare_vars;
1544 declare_vars = var;
1545 }
1546 *pp = parm_decl;
1547 }
1548 else if ((*p)->var_value()->is_in_heap())
1549 {
1550 // If we take the address of a parameter, then we need
1551 // to copy it into the heap.
1552 tree parm_decl = this->copy_parm_to_heap(gogo, *p, *pp);
1553 if (*pp != error_mark_node)
1554 {
1555 gcc_assert(TREE_CODE(*pp) == INDIRECT_REF);
1556 tree var_decl = TREE_OPERAND(*pp, 0);
1557 if (var_decl != error_mark_node)
1558 {
1559 gcc_assert(TREE_CODE(var_decl) == VAR_DECL);
1560 DECL_CHAIN(var_decl) = declare_vars;
1561 declare_vars = var_decl;
1562 }
1563 }
1564 *pp = parm_decl;
1565 }
1566
1567 if (*pp != error_mark_node)
1568 {
1569 gcc_assert(TREE_CODE(*pp) == PARM_DECL);
1570 pp = &DECL_CHAIN(*pp);
1571 }
1572 }
1573 else if ((*p)->is_result_variable())
1574 {
1575 tree var_decl = (*p)->get_tree(gogo, named_function);
1576 if (var_decl != error_mark_node
1577 && (*p)->result_var_value()->is_in_heap())
1578 {
1579 gcc_assert(TREE_CODE(var_decl) == INDIRECT_REF);
1580 var_decl = TREE_OPERAND(var_decl, 0);
1581 }
1582 if (var_decl != error_mark_node)
1583 {
1584 gcc_assert(TREE_CODE(var_decl) == VAR_DECL);
1585 DECL_CHAIN(var_decl) = declare_vars;
1586 declare_vars = var_decl;
1587 }
1588 }
1589 }
1590 *pp = NULL_TREE;
1591
1592 DECL_ARGUMENTS(fndecl) = params;
1593
1594 if (this->block_ != NULL)
1595 {
1596 gcc_assert(DECL_INITIAL(fndecl) == NULL_TREE);
1597
1598 // Declare variables if necessary.
1599 tree bind = NULL_TREE;
1600 if (declare_vars != NULL_TREE)
1601 {
1602 tree block = make_node(BLOCK);
1603 BLOCK_SUPERCONTEXT(block) = fndecl;
1604 DECL_INITIAL(fndecl) = block;
1605 BLOCK_VARS(block) = declare_vars;
1606 TREE_USED(block) = 1;
1607 bind = build3(BIND_EXPR, void_type_node, BLOCK_VARS(block),
1608 NULL_TREE, block);
1609 TREE_SIDE_EFFECTS(bind) = 1;
1610 }
1611
1612 // Build the trees for all the statements in the function.
1613 Translate_context context(gogo, named_function, NULL, NULL_TREE);
1614 tree code = this->block_->get_tree(&context);
1615
1616 tree init = NULL_TREE;
1617 tree except = NULL_TREE;
1618 tree fini = NULL_TREE;
1619
1620 // Initialize variables if necessary.
1621 for (tree v = declare_vars; v != NULL_TREE; v = DECL_CHAIN(v))
1622 {
1623 tree dv = build1(DECL_EXPR, void_type_node, v);
1624 SET_EXPR_LOCATION(dv, DECL_SOURCE_LOCATION(v));
1625 append_to_statement_list(dv, &init);
1626 }
1627
1628 // If we have a defer stack, initialize it at the start of a
1629 // function.
1630 if (this->defer_stack_ != NULL_TREE)
1631 {
1632 tree defer_init = build1(DECL_EXPR, void_type_node,
1633 this->defer_stack_);
1634 SET_EXPR_LOCATION(defer_init, this->block_->start_location());
1635 append_to_statement_list(defer_init, &init);
1636
1637 // Clean up the defer stack when we leave the function.
1638 this->build_defer_wrapper(gogo, named_function, &except, &fini);
1639 }
1640
1641 if (code != NULL_TREE && code != error_mark_node)
1642 {
1643 if (init != NULL_TREE)
1644 code = build2(COMPOUND_EXPR, void_type_node, init, code);
1645 if (except != NULL_TREE)
1646 code = build2(TRY_CATCH_EXPR, void_type_node, code,
1647 build2(CATCH_EXPR, void_type_node, NULL, except));
1648 if (fini != NULL_TREE)
1649 code = build2(TRY_FINALLY_EXPR, void_type_node, code, fini);
1650 }
1651
1652 // Stick the code into the block we built for the receiver, if
1653 // we built on.
1654 if (bind != NULL_TREE && code != NULL_TREE && code != error_mark_node)
1655 {
1656 BIND_EXPR_BODY(bind) = code;
1657 code = bind;
1658 }
1659
1660 DECL_SAVED_TREE(fndecl) = code;
1661 }
1662 }
1663
1664 // Build the wrappers around function code needed if the function has
1665 // any defer statements. This sets *EXCEPT to an exception handler
1666 // and *FINI to a finally handler.
1667
1668 void
1669 Function::build_defer_wrapper(Gogo* gogo, Named_object* named_function,
1670 tree *except, tree *fini)
1671 {
1672 source_location end_loc = this->block_->end_location();
1673
1674 // Add an exception handler. This is used if a panic occurs. Its
1675 // purpose is to stop the stack unwinding if a deferred function
1676 // calls recover. There are more details in
1677 // libgo/runtime/go-unwind.c.
1678 tree stmt_list = NULL_TREE;
1679 static tree check_fndecl;
1680 tree call = Gogo::call_builtin(&check_fndecl,
1681 end_loc,
1682 "__go_check_defer",
1683 1,
1684 void_type_node,
1685 ptr_type_node,
1686 this->defer_stack(end_loc));
1687 if (call != error_mark_node)
1688 append_to_statement_list(call, &stmt_list);
1689
1690 tree retval = this->return_value(gogo, named_function, end_loc, &stmt_list);
1691 tree set;
1692 if (retval == NULL_TREE)
1693 set = NULL_TREE;
1694 else
1695 set = fold_build2_loc(end_loc, MODIFY_EXPR, void_type_node,
1696 DECL_RESULT(this->fndecl_), retval);
1697 tree ret_stmt = fold_build1_loc(end_loc, RETURN_EXPR, void_type_node, set);
1698 append_to_statement_list(ret_stmt, &stmt_list);
1699
1700 gcc_assert(*except == NULL_TREE);
1701 *except = stmt_list;
1702
1703 // Add some finally code to run the defer functions. This is used
1704 // both in the normal case, when no panic occurs, and also if a
1705 // panic occurs to run any further defer functions. Of course, it
1706 // is possible for a defer function to call panic which should be
1707 // caught by another defer function. To handle that we use a loop.
1708 // finish:
1709 // try { __go_undefer(); } catch { __go_check_defer(); goto finish; }
1710 // if (return values are named) return named_vals;
1711
1712 stmt_list = NULL;
1713
1714 tree label = create_artificial_label(end_loc);
1715 tree define_label = fold_build1_loc(end_loc, LABEL_EXPR, void_type_node,
1716 label);
1717 append_to_statement_list(define_label, &stmt_list);
1718
1719 static tree undefer_fndecl;
1720 tree undefer = Gogo::call_builtin(&undefer_fndecl,
1721 end_loc,
1722 "__go_undefer",
1723 1,
1724 void_type_node,
1725 ptr_type_node,
1726 this->defer_stack(end_loc));
1727 if (undefer_fndecl != NULL_TREE)
1728 TREE_NOTHROW(undefer_fndecl) = 0;
1729
1730 tree defer = Gogo::call_builtin(&check_fndecl,
1731 end_loc,
1732 "__go_check_defer",
1733 1,
1734 void_type_node,
1735 ptr_type_node,
1736 this->defer_stack(end_loc));
1737 tree jump = fold_build1_loc(end_loc, GOTO_EXPR, void_type_node, label);
1738 tree catch_body = build2(COMPOUND_EXPR, void_type_node, defer, jump);
1739 catch_body = build2(CATCH_EXPR, void_type_node, NULL, catch_body);
1740 tree try_catch = build2(TRY_CATCH_EXPR, void_type_node, undefer, catch_body);
1741
1742 append_to_statement_list(try_catch, &stmt_list);
1743
1744 if (this->type_->results() != NULL
1745 && !this->type_->results()->empty()
1746 && !this->type_->results()->front().name().empty())
1747 {
1748 // If the result variables are named, we need to return them
1749 // again, because they might have been changed by a defer
1750 // function.
1751 retval = this->return_value(gogo, named_function, end_loc,
1752 &stmt_list);
1753 set = fold_build2_loc(end_loc, MODIFY_EXPR, void_type_node,
1754 DECL_RESULT(this->fndecl_), retval);
1755 ret_stmt = fold_build1_loc(end_loc, RETURN_EXPR, void_type_node, set);
1756 append_to_statement_list(ret_stmt, &stmt_list);
1757 }
1758
1759 gcc_assert(*fini == NULL_TREE);
1760 *fini = stmt_list;
1761 }
1762
1763 // Return the value to assign to DECL_RESULT(this->fndecl_). This may
1764 // also add statements to STMT_LIST, which need to be executed before
1765 // the assignment. This is used for a return statement with no
1766 // explicit values.
1767
1768 tree
1769 Function::return_value(Gogo* gogo, Named_object* named_function,
1770 source_location location, tree* stmt_list) const
1771 {
1772 const Typed_identifier_list* results = this->type_->results();
1773 if (results == NULL || results->empty())
1774 return NULL_TREE;
1775
1776 // In the case of an exception handler created for functions with
1777 // defer statements, the result variables may be unnamed.
1778 bool is_named = !results->front().name().empty();
1779 if (is_named)
1780 gcc_assert(this->named_results_ != NULL
1781 && this->named_results_->size() == results->size());
1782
1783 tree retval;
1784 if (results->size() == 1)
1785 {
1786 if (is_named)
1787 return this->named_results_->front()->get_tree(gogo, named_function);
1788 else
1789 return results->front().type()->get_init_tree(gogo, false);
1790 }
1791 else
1792 {
1793 tree rettype = TREE_TYPE(DECL_RESULT(this->fndecl_));
1794 retval = create_tmp_var(rettype, "RESULT");
1795 tree field = TYPE_FIELDS(rettype);
1796 int index = 0;
1797 for (Typed_identifier_list::const_iterator pr = results->begin();
1798 pr != results->end();
1799 ++pr, ++index, field = DECL_CHAIN(field))
1800 {
1801 gcc_assert(field != NULL);
1802 tree val;
1803 if (is_named)
1804 val = (*this->named_results_)[index]->get_tree(gogo,
1805 named_function);
1806 else
1807 val = pr->type()->get_init_tree(gogo, false);
1808 tree set = fold_build2_loc(location, MODIFY_EXPR, void_type_node,
1809 build3(COMPONENT_REF, TREE_TYPE(field),
1810 retval, field, NULL_TREE),
1811 val);
1812 append_to_statement_list(set, stmt_list);
1813 }
1814 return retval;
1815 }
1816 }
1817
1818 // Get the tree for the variable holding the defer stack for this
1819 // function. At least at present, the value of this variable is not
1820 // used. However, a pointer to this variable is used as a marker for
1821 // the functions on the defer stack associated with this function.
1822 // Doing things this way permits inlining a function which uses defer.
1823
1824 tree
1825 Function::defer_stack(source_location location)
1826 {
1827 if (this->defer_stack_ == NULL_TREE)
1828 {
1829 tree var = create_tmp_var(ptr_type_node, "DEFER");
1830 DECL_INITIAL(var) = null_pointer_node;
1831 DECL_SOURCE_LOCATION(var) = location;
1832 TREE_ADDRESSABLE(var) = 1;
1833 this->defer_stack_ = var;
1834 }
1835 return fold_convert_loc(location, ptr_type_node,
1836 build_fold_addr_expr_loc(location,
1837 this->defer_stack_));
1838 }
1839
1840 // Get a tree for the statements in a block.
1841
1842 tree
1843 Block::get_tree(Translate_context* context)
1844 {
1845 Gogo* gogo = context->gogo();
1846
1847 tree block = make_node(BLOCK);
1848
1849 // Put the new block into the block tree.
1850
1851 if (context->block() == NULL)
1852 {
1853 tree fndecl;
1854 if (context->function() != NULL)
1855 fndecl = context->function()->func_value()->get_decl();
1856 else
1857 fndecl = current_function_decl;
1858 gcc_assert(fndecl != NULL_TREE);
1859
1860 // We may have already created a block for the receiver.
1861 if (DECL_INITIAL(fndecl) == NULL_TREE)
1862 {
1863 BLOCK_SUPERCONTEXT(block) = fndecl;
1864 DECL_INITIAL(fndecl) = block;
1865 }
1866 else
1867 {
1868 tree superblock_tree = DECL_INITIAL(fndecl);
1869 BLOCK_SUPERCONTEXT(block) = superblock_tree;
1870 gcc_assert(BLOCK_CHAIN(block) == NULL_TREE);
1871 BLOCK_CHAIN(block) = block;
1872 }
1873 }
1874 else
1875 {
1876 tree superblock_tree = context->block_tree();
1877 BLOCK_SUPERCONTEXT(block) = superblock_tree;
1878 tree* pp;
1879 for (pp = &BLOCK_SUBBLOCKS(superblock_tree);
1880 *pp != NULL_TREE;
1881 pp = &BLOCK_CHAIN(*pp))
1882 ;
1883 *pp = block;
1884 }
1885
1886 // Expand local variables in the block.
1887
1888 tree* pp = &BLOCK_VARS(block);
1889 for (Bindings::const_definitions_iterator pv =
1890 this->bindings_->begin_definitions();
1891 pv != this->bindings_->end_definitions();
1892 ++pv)
1893 {
1894 if ((!(*pv)->is_variable() || !(*pv)->var_value()->is_parameter())
1895 && !(*pv)->is_result_variable()
1896 && !(*pv)->is_const())
1897 {
1898 tree var = (*pv)->get_tree(gogo, context->function());
1899 if (var != error_mark_node && TREE_TYPE(var) != error_mark_node)
1900 {
1901 if ((*pv)->is_variable() && (*pv)->var_value()->is_in_heap())
1902 {
1903 gcc_assert(TREE_CODE(var) == INDIRECT_REF);
1904 var = TREE_OPERAND(var, 0);
1905 gcc_assert(TREE_CODE(var) == VAR_DECL);
1906 }
1907 *pp = var;
1908 pp = &DECL_CHAIN(*pp);
1909 }
1910 }
1911 }
1912 *pp = NULL_TREE;
1913
1914 Translate_context subcontext(context->gogo(), context->function(),
1915 this, block);
1916
1917 tree statements = NULL_TREE;
1918
1919 // Expand the statements.
1920
1921 for (std::vector<Statement*>::const_iterator p = this->statements_.begin();
1922 p != this->statements_.end();
1923 ++p)
1924 {
1925 tree statement = (*p)->get_tree(&subcontext);
1926 if (statement != error_mark_node)
1927 append_to_statement_list(statement, &statements);
1928 }
1929
1930 TREE_USED(block) = 1;
1931
1932 tree bind = build3(BIND_EXPR, void_type_node, BLOCK_VARS(block), statements,
1933 block);
1934 TREE_SIDE_EFFECTS(bind) = 1;
1935
1936 return bind;
1937 }
1938
1939 // Get the LABEL_DECL for a label.
1940
1941 tree
1942 Label::get_decl()
1943 {
1944 if (this->decl_ == NULL)
1945 {
1946 tree id = get_identifier_from_string(this->name_);
1947 this->decl_ = build_decl(this->location_, LABEL_DECL, id, void_type_node);
1948 DECL_CONTEXT(this->decl_) = current_function_decl;
1949 }
1950 return this->decl_;
1951 }
1952
1953 // Return an expression for the address of this label.
1954
1955 tree
1956 Label::get_addr(source_location location)
1957 {
1958 tree decl = this->get_decl();
1959 TREE_USED(decl) = 1;
1960 TREE_ADDRESSABLE(decl) = 1;
1961 return fold_convert_loc(location, ptr_type_node,
1962 build_fold_addr_expr_loc(location, decl));
1963 }
1964
1965 // Get the LABEL_DECL for an unnamed label.
1966
1967 tree
1968 Unnamed_label::get_decl()
1969 {
1970 if (this->decl_ == NULL)
1971 this->decl_ = create_artificial_label(this->location_);
1972 return this->decl_;
1973 }
1974
1975 // Get the LABEL_EXPR for an unnamed label.
1976
1977 tree
1978 Unnamed_label::get_definition()
1979 {
1980 tree t = build1(LABEL_EXPR, void_type_node, this->get_decl());
1981 SET_EXPR_LOCATION(t, this->location_);
1982 return t;
1983 }
1984
1985 // Return a goto to this label.
1986
1987 tree
1988 Unnamed_label::get_goto(source_location location)
1989 {
1990 tree t = build1(GOTO_EXPR, void_type_node, this->get_decl());
1991 SET_EXPR_LOCATION(t, location);
1992 return t;
1993 }
1994
1995 // Return the integer type to use for a size.
1996
1997 GO_EXTERN_C
1998 tree
1999 go_type_for_size(unsigned int bits, int unsignedp)
2000 {
2001 const char* name;
2002 switch (bits)
2003 {
2004 case 8:
2005 name = unsignedp ? "uint8" : "int8";
2006 break;
2007 case 16:
2008 name = unsignedp ? "uint16" : "int16";
2009 break;
2010 case 32:
2011 name = unsignedp ? "uint32" : "int32";
2012 break;
2013 case 64:
2014 name = unsignedp ? "uint64" : "int64";
2015 break;
2016 default:
2017 if (bits == POINTER_SIZE && unsignedp)
2018 name = "uintptr";
2019 else
2020 return NULL_TREE;
2021 }
2022 Type* type = Type::lookup_integer_type(name);
2023 return type->get_tree(go_get_gogo());
2024 }
2025
2026 // Return the type to use for a mode.
2027
2028 GO_EXTERN_C
2029 tree
2030 go_type_for_mode(enum machine_mode mode, int unsignedp)
2031 {
2032 // FIXME: This static_cast should be in machmode.h.
2033 enum mode_class mc = static_cast<enum mode_class>(GET_MODE_CLASS(mode));
2034 if (mc == MODE_INT)
2035 return go_type_for_size(GET_MODE_BITSIZE(mode), unsignedp);
2036 else if (mc == MODE_FLOAT)
2037 {
2038 Type* type;
2039 switch (GET_MODE_BITSIZE (mode))
2040 {
2041 case 32:
2042 type = Type::lookup_float_type("float32");
2043 break;
2044 case 64:
2045 type = Type::lookup_float_type("float64");
2046 break;
2047 default:
2048 // We have to check for long double in order to support
2049 // i386 excess precision.
2050 if (mode == TYPE_MODE(long_double_type_node))
2051 return long_double_type_node;
2052 return NULL_TREE;
2053 }
2054 return type->float_type()->type_tree();
2055 }
2056 else if (mc == MODE_COMPLEX_FLOAT)
2057 {
2058 Type *type;
2059 switch (GET_MODE_BITSIZE (mode))
2060 {
2061 case 64:
2062 type = Type::lookup_complex_type("complex64");
2063 break;
2064 case 128:
2065 type = Type::lookup_complex_type("complex128");
2066 break;
2067 default:
2068 // We have to check for long double in order to support
2069 // i386 excess precision.
2070 if (mode == TYPE_MODE(complex_long_double_type_node))
2071 return complex_long_double_type_node;
2072 return NULL_TREE;
2073 }
2074 return type->complex_type()->type_tree();
2075 }
2076 else
2077 return NULL_TREE;
2078 }
2079
2080 // Return a tree which allocates SIZE bytes which will holds value of
2081 // type TYPE.
2082
2083 tree
2084 Gogo::allocate_memory(Type* type, tree size, source_location location)
2085 {
2086 // If the package imports unsafe, then it may play games with
2087 // pointers that look like integers.
2088 if (this->imported_unsafe_ || type->has_pointer())
2089 {
2090 static tree new_fndecl;
2091 return Gogo::call_builtin(&new_fndecl,
2092 location,
2093 "__go_new",
2094 1,
2095 ptr_type_node,
2096 sizetype,
2097 size);
2098 }
2099 else
2100 {
2101 static tree new_nopointers_fndecl;
2102 return Gogo::call_builtin(&new_nopointers_fndecl,
2103 location,
2104 "__go_new_nopointers",
2105 1,
2106 ptr_type_node,
2107 sizetype,
2108 size);
2109 }
2110 }
2111
2112 // Build a builtin struct with a list of fields. The name is
2113 // STRUCT_NAME. STRUCT_TYPE is NULL_TREE or an empty RECORD_TYPE
2114 // node; this exists so that the struct can have fields which point to
2115 // itself. If PTYPE is not NULL, store the result in *PTYPE. There
2116 // are NFIELDS fields. Each field is a name (a const char*) followed
2117 // by a type (a tree).
2118
2119 tree
2120 Gogo::builtin_struct(tree* ptype, const char* struct_name, tree struct_type,
2121 int nfields, ...)
2122 {
2123 if (ptype != NULL && *ptype != NULL_TREE)
2124 return *ptype;
2125
2126 va_list ap;
2127 va_start(ap, nfields);
2128
2129 tree fields = NULL_TREE;
2130 for (int i = 0; i < nfields; ++i)
2131 {
2132 const char* field_name = va_arg(ap, const char*);
2133 tree type = va_arg(ap, tree);
2134 if (type == error_mark_node)
2135 {
2136 if (ptype != NULL)
2137 *ptype = error_mark_node;
2138 return error_mark_node;
2139 }
2140 tree field = build_decl(BUILTINS_LOCATION, FIELD_DECL,
2141 get_identifier(field_name), type);
2142 DECL_CHAIN(field) = fields;
2143 fields = field;
2144 }
2145
2146 va_end(ap);
2147
2148 if (struct_type == NULL_TREE)
2149 struct_type = make_node(RECORD_TYPE);
2150 finish_builtin_struct(struct_type, struct_name, fields, NULL_TREE);
2151
2152 if (ptype != NULL)
2153 {
2154 go_preserve_from_gc(struct_type);
2155 *ptype = struct_type;
2156 }
2157
2158 return struct_type;
2159 }
2160
2161 // Return a type to use for pointer to const char for a string.
2162
2163 tree
2164 Gogo::const_char_pointer_type_tree()
2165 {
2166 static tree type;
2167 if (type == NULL_TREE)
2168 {
2169 tree const_char_type = build_qualified_type(unsigned_char_type_node,
2170 TYPE_QUAL_CONST);
2171 type = build_pointer_type(const_char_type);
2172 go_preserve_from_gc(type);
2173 }
2174 return type;
2175 }
2176
2177 // Return a tree for a string constant.
2178
2179 tree
2180 Gogo::string_constant_tree(const std::string& val)
2181 {
2182 tree index_type = build_index_type(size_int(val.length()));
2183 tree const_char_type = build_qualified_type(unsigned_char_type_node,
2184 TYPE_QUAL_CONST);
2185 tree string_type = build_array_type(const_char_type, index_type);
2186 string_type = build_variant_type_copy(string_type);
2187 TYPE_STRING_FLAG(string_type) = 1;
2188 tree string_val = build_string(val.length(), val.data());
2189 TREE_TYPE(string_val) = string_type;
2190 return string_val;
2191 }
2192
2193 // Return a tree for a Go string constant.
2194
2195 tree
2196 Gogo::go_string_constant_tree(const std::string& val)
2197 {
2198 tree string_type = Type::make_string_type()->get_tree(this);
2199
2200 VEC(constructor_elt, gc)* init = VEC_alloc(constructor_elt, gc, 2);
2201
2202 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
2203 tree field = TYPE_FIELDS(string_type);
2204 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__data") == 0);
2205 elt->index = field;
2206 tree str = Gogo::string_constant_tree(val);
2207 elt->value = fold_convert(TREE_TYPE(field),
2208 build_fold_addr_expr(str));
2209
2210 elt = VEC_quick_push(constructor_elt, init, NULL);
2211 field = DECL_CHAIN(field);
2212 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__length") == 0);
2213 elt->index = field;
2214 elt->value = build_int_cst_type(TREE_TYPE(field), val.length());
2215
2216 tree constructor = build_constructor(string_type, init);
2217 TREE_READONLY(constructor) = 1;
2218 TREE_CONSTANT(constructor) = 1;
2219
2220 return constructor;
2221 }
2222
2223 // Return a tree for a pointer to a Go string constant. This is only
2224 // used for type descriptors, so we return a pointer to a constant
2225 // decl.
2226
2227 tree
2228 Gogo::ptr_go_string_constant_tree(const std::string& val)
2229 {
2230 tree pval = this->go_string_constant_tree(val);
2231
2232 tree decl = build_decl(UNKNOWN_LOCATION, VAR_DECL,
2233 create_tmp_var_name("SP"), TREE_TYPE(pval));
2234 DECL_EXTERNAL(decl) = 0;
2235 TREE_PUBLIC(decl) = 0;
2236 TREE_USED(decl) = 1;
2237 TREE_READONLY(decl) = 1;
2238 TREE_CONSTANT(decl) = 1;
2239 TREE_STATIC(decl) = 1;
2240 DECL_ARTIFICIAL(decl) = 1;
2241 DECL_INITIAL(decl) = pval;
2242 rest_of_decl_compilation(decl, 1, 0);
2243
2244 return build_fold_addr_expr(decl);
2245 }
2246
2247 // Build the type of the struct that holds a slice for the given
2248 // element type.
2249
2250 tree
2251 Gogo::slice_type_tree(tree element_type_tree)
2252 {
2253 // We use int for the count and capacity fields in a slice header.
2254 // This matches 6g. The language definition guarantees that we
2255 // can't allocate space of a size which does not fit in int
2256 // anyhow. FIXME: integer_type_node is the the C type "int" but is
2257 // not necessarily the Go type "int". They will differ when the C
2258 // type "int" has fewer than 32 bits.
2259 return Gogo::builtin_struct(NULL, "__go_slice", NULL_TREE, 3,
2260 "__values",
2261 build_pointer_type(element_type_tree),
2262 "__count",
2263 integer_type_node,
2264 "__capacity",
2265 integer_type_node);
2266 }
2267
2268 // Given the tree for a slice type, return the tree for the type of
2269 // the elements of the slice.
2270
2271 tree
2272 Gogo::slice_element_type_tree(tree slice_type_tree)
2273 {
2274 gcc_assert(TREE_CODE(slice_type_tree) == RECORD_TYPE
2275 && POINTER_TYPE_P(TREE_TYPE(TYPE_FIELDS(slice_type_tree))));
2276 return TREE_TYPE(TREE_TYPE(TYPE_FIELDS(slice_type_tree)));
2277 }
2278
2279 // Build a constructor for a slice. SLICE_TYPE_TREE is the type of
2280 // the slice. VALUES is the value pointer and COUNT is the number of
2281 // entries. If CAPACITY is not NULL, it is the capacity; otherwise
2282 // the capacity and the count are the same.
2283
2284 tree
2285 Gogo::slice_constructor(tree slice_type_tree, tree values, tree count,
2286 tree capacity)
2287 {
2288 gcc_assert(TREE_CODE(slice_type_tree) == RECORD_TYPE);
2289
2290 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
2291
2292 tree field = TYPE_FIELDS(slice_type_tree);
2293 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
2294 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
2295 elt->index = field;
2296 gcc_assert(TYPE_MAIN_VARIANT(TREE_TYPE(field))
2297 == TYPE_MAIN_VARIANT(TREE_TYPE(values)));
2298 elt->value = values;
2299
2300 count = fold_convert(sizetype, count);
2301 if (capacity == NULL_TREE)
2302 {
2303 count = save_expr(count);
2304 capacity = count;
2305 }
2306
2307 field = DECL_CHAIN(field);
2308 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
2309 elt = VEC_quick_push(constructor_elt, init, NULL);
2310 elt->index = field;
2311 elt->value = fold_convert(TREE_TYPE(field), count);
2312
2313 field = DECL_CHAIN(field);
2314 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__capacity") == 0);
2315 elt = VEC_quick_push(constructor_elt, init, NULL);
2316 elt->index = field;
2317 elt->value = fold_convert(TREE_TYPE(field), capacity);
2318
2319 return build_constructor(slice_type_tree, init);
2320 }
2321
2322 // Build a constructor for an empty slice.
2323
2324 tree
2325 Gogo::empty_slice_constructor(tree slice_type_tree)
2326 {
2327 tree element_field = TYPE_FIELDS(slice_type_tree);
2328 tree ret = Gogo::slice_constructor(slice_type_tree,
2329 fold_convert(TREE_TYPE(element_field),
2330 null_pointer_node),
2331 size_zero_node,
2332 size_zero_node);
2333 TREE_CONSTANT(ret) = 1;
2334 return ret;
2335 }
2336
2337 // Build a map descriptor for a map of type MAPTYPE.
2338
2339 tree
2340 Gogo::map_descriptor(Map_type* maptype)
2341 {
2342 if (this->map_descriptors_ == NULL)
2343 this->map_descriptors_ = new Map_descriptors(10);
2344
2345 std::pair<const Map_type*, tree> val(maptype, NULL);
2346 std::pair<Map_descriptors::iterator, bool> ins =
2347 this->map_descriptors_->insert(val);
2348 Map_descriptors::iterator p = ins.first;
2349 if (!ins.second)
2350 {
2351 if (p->second == error_mark_node)
2352 return error_mark_node;
2353 gcc_assert(p->second != NULL_TREE && DECL_P(p->second));
2354 return build_fold_addr_expr(p->second);
2355 }
2356
2357 Type* keytype = maptype->key_type();
2358 Type* valtype = maptype->val_type();
2359
2360 std::string mangled_name = ("__go_map_" + maptype->mangled_name(this));
2361
2362 tree id = get_identifier_from_string(mangled_name);
2363
2364 // Get the type of the map descriptor. This is __go_map_descriptor
2365 // in libgo/map.h.
2366
2367 tree struct_type = this->map_descriptor_type();
2368
2369 // The map entry type is a struct with three fields. This struct is
2370 // specific to MAPTYPE. Build it.
2371
2372 tree map_entry_type = make_node(RECORD_TYPE);
2373
2374 map_entry_type = Gogo::builtin_struct(NULL, "__map", map_entry_type, 3,
2375 "__next",
2376 build_pointer_type(map_entry_type),
2377 "__key",
2378 keytype->get_tree(this),
2379 "__val",
2380 valtype->get_tree(this));
2381 if (map_entry_type == error_mark_node)
2382 {
2383 p->second = error_mark_node;
2384 return error_mark_node;
2385 }
2386
2387 tree map_entry_key_field = DECL_CHAIN(TYPE_FIELDS(map_entry_type));
2388 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(map_entry_key_field)),
2389 "__key") == 0);
2390
2391 tree map_entry_val_field = DECL_CHAIN(map_entry_key_field);
2392 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(map_entry_val_field)),
2393 "__val") == 0);
2394
2395 // Initialize the entries.
2396
2397 tree map_descriptor_field = TYPE_FIELDS(struct_type);
2398 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(map_descriptor_field)),
2399 "__map_descriptor") == 0);
2400 tree entry_size_field = DECL_CHAIN(map_descriptor_field);
2401 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(entry_size_field)),
2402 "__entry_size") == 0);
2403 tree key_offset_field = DECL_CHAIN(entry_size_field);
2404 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(key_offset_field)),
2405 "__key_offset") == 0);
2406 tree val_offset_field = DECL_CHAIN(key_offset_field);
2407 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(val_offset_field)),
2408 "__val_offset") == 0);
2409
2410 VEC(constructor_elt, gc)* descriptor = VEC_alloc(constructor_elt, gc, 6);
2411
2412 constructor_elt* elt = VEC_quick_push(constructor_elt, descriptor, NULL);
2413 elt->index = map_descriptor_field;
2414 elt->value = maptype->type_descriptor_pointer(this);
2415
2416 elt = VEC_quick_push(constructor_elt, descriptor, NULL);
2417 elt->index = entry_size_field;
2418 elt->value = TYPE_SIZE_UNIT(map_entry_type);
2419
2420 elt = VEC_quick_push(constructor_elt, descriptor, NULL);
2421 elt->index = key_offset_field;
2422 elt->value = byte_position(map_entry_key_field);
2423
2424 elt = VEC_quick_push(constructor_elt, descriptor, NULL);
2425 elt->index = val_offset_field;
2426 elt->value = byte_position(map_entry_val_field);
2427
2428 tree constructor = build_constructor(struct_type, descriptor);
2429
2430 tree decl = build_decl(BUILTINS_LOCATION, VAR_DECL, id, struct_type);
2431 TREE_STATIC(decl) = 1;
2432 TREE_USED(decl) = 1;
2433 TREE_READONLY(decl) = 1;
2434 TREE_CONSTANT(decl) = 1;
2435 DECL_INITIAL(decl) = constructor;
2436 make_decl_one_only(decl, DECL_ASSEMBLER_NAME(decl));
2437 resolve_unique_section(decl, 1, 0);
2438
2439 rest_of_decl_compilation(decl, 1, 0);
2440
2441 go_preserve_from_gc(decl);
2442 p->second = decl;
2443
2444 return build_fold_addr_expr(decl);
2445 }
2446
2447 // Return a tree for the type of a map descriptor. This is struct
2448 // __go_map_descriptor in libgo/runtime/map.h. This is the same for
2449 // all map types.
2450
2451 tree
2452 Gogo::map_descriptor_type()
2453 {
2454 static tree struct_type;
2455 tree dtype = Type::make_type_descriptor_type()->get_tree(this);
2456 dtype = build_qualified_type(dtype, TYPE_QUAL_CONST);
2457 return Gogo::builtin_struct(&struct_type, "__go_map_descriptor", NULL_TREE,
2458 4,
2459 "__map_descriptor",
2460 build_pointer_type(dtype),
2461 "__entry_size",
2462 sizetype,
2463 "__key_offset",
2464 sizetype,
2465 "__val_offset",
2466 sizetype);
2467 }
2468
2469 // Return the name to use for a type descriptor decl for TYPE. This
2470 // is used when TYPE does not have a name.
2471
2472 std::string
2473 Gogo::unnamed_type_descriptor_decl_name(const Type* type)
2474 {
2475 return "__go_td_" + type->mangled_name(this);
2476 }
2477
2478 // Return the name to use for a type descriptor decl for a type named
2479 // NAME, defined in the function IN_FUNCTION. IN_FUNCTION will
2480 // normally be NULL.
2481
2482 std::string
2483 Gogo::type_descriptor_decl_name(const Named_object* no,
2484 const Named_object* in_function)
2485 {
2486 std::string ret = "__go_tdn_";
2487 if (no->type_value()->is_builtin())
2488 gcc_assert(in_function == NULL);
2489 else
2490 {
2491 const std::string& unique_prefix(no->package() == NULL
2492 ? this->unique_prefix()
2493 : no->package()->unique_prefix());
2494 const std::string& package_name(no->package() == NULL
2495 ? this->package_name()
2496 : no->package()->name());
2497 ret.append(unique_prefix);
2498 ret.append(1, '.');
2499 ret.append(package_name);
2500 ret.append(1, '.');
2501 if (in_function != NULL)
2502 {
2503 ret.append(Gogo::unpack_hidden_name(in_function->name()));
2504 ret.append(1, '.');
2505 }
2506 }
2507 ret.append(no->name());
2508 return ret;
2509 }
2510
2511 // Where a type descriptor decl should be defined.
2512
2513 Gogo::Type_descriptor_location
2514 Gogo::type_descriptor_location(const Type* type)
2515 {
2516 const Named_type* name = type->named_type();
2517 if (name != NULL)
2518 {
2519 if (name->named_object()->package() != NULL)
2520 {
2521 // This is a named type defined in a different package. The
2522 // descriptor should be defined in that package.
2523 return TYPE_DESCRIPTOR_UNDEFINED;
2524 }
2525 else if (name->is_builtin())
2526 {
2527 // We create the descriptor for a builtin type whenever we
2528 // need it.
2529 return TYPE_DESCRIPTOR_COMMON;
2530 }
2531 else
2532 {
2533 // This is a named type defined in this package. The
2534 // descriptor should be defined here.
2535 return TYPE_DESCRIPTOR_DEFINED;
2536 }
2537 }
2538 else
2539 {
2540 if (type->points_to() != NULL
2541 && type->points_to()->named_type() != NULL
2542 && type->points_to()->named_type()->named_object()->package() != NULL)
2543 {
2544 // This is an unnamed pointer to a named type defined in a
2545 // different package. The descriptor should be defined in
2546 // that package.
2547 return TYPE_DESCRIPTOR_UNDEFINED;
2548 }
2549 else
2550 {
2551 // This is an unnamed type. The descriptor could be defined
2552 // in any package where it is needed, and the linker will
2553 // pick one descriptor to keep.
2554 return TYPE_DESCRIPTOR_COMMON;
2555 }
2556 }
2557 }
2558
2559 // Build a type descriptor decl for TYPE. INITIALIZER is a struct
2560 // composite literal which initializers the type descriptor.
2561
2562 void
2563 Gogo::build_type_descriptor_decl(const Type* type, Expression* initializer,
2564 tree* pdecl)
2565 {
2566 const Named_type* name = type->named_type();
2567
2568 // We can have multiple instances of unnamed types, but we only want
2569 // to emit the type descriptor once. We use a hash table to handle
2570 // this. This is not necessary for named types, as they are unique,
2571 // and we store the type descriptor decl in the type itself.
2572 tree* phash = NULL;
2573 if (name == NULL)
2574 {
2575 if (this->type_descriptor_decls_ == NULL)
2576 this->type_descriptor_decls_ = new Type_descriptor_decls(10);
2577
2578 std::pair<Type_descriptor_decls::iterator, bool> ins =
2579 this->type_descriptor_decls_->insert(std::make_pair(type, NULL_TREE));
2580 if (!ins.second)
2581 {
2582 // We've already built a type descriptor for this type.
2583 *pdecl = ins.first->second;
2584 return;
2585 }
2586 phash = &ins.first->second;
2587 }
2588
2589 std::string decl_name;
2590 if (name == NULL)
2591 decl_name = this->unnamed_type_descriptor_decl_name(type);
2592 else
2593 decl_name = this->type_descriptor_decl_name(name->named_object(),
2594 name->in_function());
2595 tree id = get_identifier_from_string(decl_name);
2596 tree descriptor_type_tree = initializer->type()->get_tree(this);
2597 if (descriptor_type_tree == error_mark_node)
2598 {
2599 *pdecl = error_mark_node;
2600 return;
2601 }
2602 tree decl = build_decl(name == NULL ? BUILTINS_LOCATION : name->location(),
2603 VAR_DECL, id,
2604 build_qualified_type(descriptor_type_tree,
2605 TYPE_QUAL_CONST));
2606 TREE_READONLY(decl) = 1;
2607 TREE_CONSTANT(decl) = 1;
2608 DECL_ARTIFICIAL(decl) = 1;
2609
2610 go_preserve_from_gc(decl);
2611 if (phash != NULL)
2612 *phash = decl;
2613
2614 // We store the new DECL now because we may need to refer to it when
2615 // expanding INITIALIZER.
2616 *pdecl = decl;
2617
2618 // If appropriate, just refer to the exported type identifier.
2619 Gogo::Type_descriptor_location type_descriptor_location =
2620 this->type_descriptor_location(type);
2621 if (type_descriptor_location == TYPE_DESCRIPTOR_UNDEFINED)
2622 {
2623 TREE_PUBLIC(decl) = 1;
2624 DECL_EXTERNAL(decl) = 1;
2625 return;
2626 }
2627
2628 TREE_STATIC(decl) = 1;
2629 TREE_USED(decl) = 1;
2630
2631 Translate_context context(this, NULL, NULL, NULL);
2632 context.set_is_const();
2633 tree constructor = initializer->get_tree(&context);
2634
2635 if (constructor == error_mark_node)
2636 gcc_assert(saw_errors());
2637
2638 DECL_INITIAL(decl) = constructor;
2639
2640 if (type_descriptor_location == TYPE_DESCRIPTOR_DEFINED)
2641 TREE_PUBLIC(decl) = 1;
2642 else
2643 {
2644 gcc_assert(type_descriptor_location == TYPE_DESCRIPTOR_COMMON);
2645 make_decl_one_only(decl, DECL_ASSEMBLER_NAME(decl));
2646 resolve_unique_section(decl, 1, 0);
2647 }
2648
2649 rest_of_decl_compilation(decl, 1, 0);
2650 }
2651
2652 // Build an interface method table for a type: a list of function
2653 // pointers, one for each interface method. This is used for
2654 // interfaces.
2655
2656 tree
2657 Gogo::interface_method_table_for_type(const Interface_type* interface,
2658 Named_type* type,
2659 bool is_pointer)
2660 {
2661 const Typed_identifier_list* interface_methods = interface->methods();
2662 gcc_assert(!interface_methods->empty());
2663
2664 std::string mangled_name = ((is_pointer ? "__go_pimt__" : "__go_imt_")
2665 + interface->mangled_name(this)
2666 + "__"
2667 + type->mangled_name(this));
2668
2669 tree id = get_identifier_from_string(mangled_name);
2670
2671 // See whether this interface has any hidden methods.
2672 bool has_hidden_methods = false;
2673 for (Typed_identifier_list::const_iterator p = interface_methods->begin();
2674 p != interface_methods->end();
2675 ++p)
2676 {
2677 if (Gogo::is_hidden_name(p->name()))
2678 {
2679 has_hidden_methods = true;
2680 break;
2681 }
2682 }
2683
2684 // We already know that the named type is convertible to the
2685 // interface. If the interface has hidden methods, and the named
2686 // type is defined in a different package, then the interface
2687 // conversion table will be defined by that other package.
2688 if (has_hidden_methods && type->named_object()->package() != NULL)
2689 {
2690 tree array_type = build_array_type(const_ptr_type_node, NULL);
2691 tree decl = build_decl(BUILTINS_LOCATION, VAR_DECL, id, array_type);
2692 TREE_READONLY(decl) = 1;
2693 TREE_CONSTANT(decl) = 1;
2694 TREE_PUBLIC(decl) = 1;
2695 DECL_EXTERNAL(decl) = 1;
2696 go_preserve_from_gc(decl);
2697 return decl;
2698 }
2699
2700 size_t count = interface_methods->size();
2701 VEC(constructor_elt, gc)* pointers = VEC_alloc(constructor_elt, gc,
2702 count + 1);
2703
2704 // The first element is the type descriptor.
2705 constructor_elt* elt = VEC_quick_push(constructor_elt, pointers, NULL);
2706 elt->index = size_zero_node;
2707 Type* td_type;
2708 if (!is_pointer)
2709 td_type = type;
2710 else
2711 td_type = Type::make_pointer_type(type);
2712 elt->value = fold_convert(const_ptr_type_node,
2713 td_type->type_descriptor_pointer(this));
2714
2715 size_t i = 1;
2716 for (Typed_identifier_list::const_iterator p = interface_methods->begin();
2717 p != interface_methods->end();
2718 ++p, ++i)
2719 {
2720 bool is_ambiguous;
2721 Method* m = type->method_function(p->name(), &is_ambiguous);
2722 gcc_assert(m != NULL);
2723
2724 Named_object* no = m->named_object();
2725
2726 tree fnid = no->get_id(this);
2727
2728 tree fndecl;
2729 if (no->is_function())
2730 fndecl = no->func_value()->get_or_make_decl(this, no, fnid);
2731 else if (no->is_function_declaration())
2732 fndecl = no->func_declaration_value()->get_or_make_decl(this, no,
2733 fnid);
2734 else
2735 gcc_unreachable();
2736 fndecl = build_fold_addr_expr(fndecl);
2737
2738 elt = VEC_quick_push(constructor_elt, pointers, NULL);
2739 elt->index = size_int(i);
2740 elt->value = fold_convert(const_ptr_type_node, fndecl);
2741 }
2742 gcc_assert(i == count + 1);
2743
2744 tree array_type = build_array_type(const_ptr_type_node,
2745 build_index_type(size_int(count)));
2746 tree constructor = build_constructor(array_type, pointers);
2747
2748 tree decl = build_decl(BUILTINS_LOCATION, VAR_DECL, id, array_type);
2749 TREE_STATIC(decl) = 1;
2750 TREE_USED(decl) = 1;
2751 TREE_READONLY(decl) = 1;
2752 TREE_CONSTANT(decl) = 1;
2753 DECL_INITIAL(decl) = constructor;
2754
2755 // If the interface type has hidden methods, then this is the only
2756 // definition of the table. Otherwise it is a comdat table which
2757 // may be defined in multiple packages.
2758 if (has_hidden_methods)
2759 TREE_PUBLIC(decl) = 1;
2760 else
2761 {
2762 make_decl_one_only(decl, DECL_ASSEMBLER_NAME(decl));
2763 resolve_unique_section(decl, 1, 0);
2764 }
2765
2766 rest_of_decl_compilation(decl, 1, 0);
2767
2768 go_preserve_from_gc(decl);
2769
2770 return decl;
2771 }
2772
2773 // Mark a function as a builtin library function.
2774
2775 void
2776 Gogo::mark_fndecl_as_builtin_library(tree fndecl)
2777 {
2778 DECL_EXTERNAL(fndecl) = 1;
2779 TREE_PUBLIC(fndecl) = 1;
2780 DECL_ARTIFICIAL(fndecl) = 1;
2781 TREE_NOTHROW(fndecl) = 1;
2782 DECL_VISIBILITY(fndecl) = VISIBILITY_DEFAULT;
2783 DECL_VISIBILITY_SPECIFIED(fndecl) = 1;
2784 }
2785
2786 // Build a call to a builtin function.
2787
2788 tree
2789 Gogo::call_builtin(tree* pdecl, source_location location, const char* name,
2790 int nargs, tree rettype, ...)
2791 {
2792 if (rettype == error_mark_node)
2793 return error_mark_node;
2794
2795 tree* types = new tree[nargs];
2796 tree* args = new tree[nargs];
2797
2798 va_list ap;
2799 va_start(ap, rettype);
2800 for (int i = 0; i < nargs; ++i)
2801 {
2802 types[i] = va_arg(ap, tree);
2803 args[i] = va_arg(ap, tree);
2804 if (types[i] == error_mark_node || args[i] == error_mark_node)
2805 {
2806 delete[] types;
2807 delete[] args;
2808 return error_mark_node;
2809 }
2810 }
2811 va_end(ap);
2812
2813 if (*pdecl == NULL_TREE)
2814 {
2815 tree fnid = get_identifier(name);
2816
2817 tree argtypes = NULL_TREE;
2818 tree* pp = &argtypes;
2819 for (int i = 0; i < nargs; ++i)
2820 {
2821 *pp = tree_cons(NULL_TREE, types[i], NULL_TREE);
2822 pp = &TREE_CHAIN(*pp);
2823 }
2824 *pp = void_list_node;
2825
2826 tree fntype = build_function_type(rettype, argtypes);
2827
2828 *pdecl = build_decl(BUILTINS_LOCATION, FUNCTION_DECL, fnid, fntype);
2829 Gogo::mark_fndecl_as_builtin_library(*pdecl);
2830 go_preserve_from_gc(*pdecl);
2831 }
2832
2833 tree fnptr = build_fold_addr_expr(*pdecl);
2834 if (CAN_HAVE_LOCATION_P(fnptr))
2835 SET_EXPR_LOCATION(fnptr, location);
2836
2837 tree ret = build_call_array(rettype, fnptr, nargs, args);
2838 SET_EXPR_LOCATION(ret, location);
2839
2840 delete[] types;
2841 delete[] args;
2842
2843 return ret;
2844 }
2845
2846 // Build a call to the runtime error function.
2847
2848 tree
2849 Gogo::runtime_error(int code, source_location location)
2850 {
2851 static tree runtime_error_fndecl;
2852 tree ret = Gogo::call_builtin(&runtime_error_fndecl,
2853 location,
2854 "__go_runtime_error",
2855 1,
2856 void_type_node,
2857 integer_type_node,
2858 build_int_cst(integer_type_node, code));
2859 if (ret == error_mark_node)
2860 return error_mark_node;
2861 // The runtime error function panics and does not return.
2862 TREE_NOTHROW(runtime_error_fndecl) = 0;
2863 TREE_THIS_VOLATILE(runtime_error_fndecl) = 1;
2864 return ret;
2865 }
2866
2867 // Send VAL on CHANNEL. If BLOCKING is true, the resulting tree has a
2868 // void type. If BLOCKING is false, the resulting tree has a boolean
2869 // type, and it will evaluate as true if the value was sent. If
2870 // FOR_SELECT is true, this is being done because it was chosen in a
2871 // select statement.
2872
2873 tree
2874 Gogo::send_on_channel(tree channel, tree val, bool blocking, bool for_select,
2875 source_location location)
2876 {
2877 if (channel == error_mark_node || val == error_mark_node)
2878 return error_mark_node;
2879
2880 if (int_size_in_bytes(TREE_TYPE(val)) <= 8
2881 && !AGGREGATE_TYPE_P(TREE_TYPE(val))
2882 && !FLOAT_TYPE_P(TREE_TYPE(val)))
2883 {
2884 val = convert_to_integer(uint64_type_node, val);
2885 if (blocking)
2886 {
2887 static tree send_small_fndecl;
2888 tree ret = Gogo::call_builtin(&send_small_fndecl,
2889 location,
2890 "__go_send_small",
2891 3,
2892 void_type_node,
2893 ptr_type_node,
2894 channel,
2895 uint64_type_node,
2896 val,
2897 boolean_type_node,
2898 (for_select
2899 ? boolean_true_node
2900 : boolean_false_node));
2901 if (ret == error_mark_node)
2902 return error_mark_node;
2903 // This can panic if there are too many operations on a
2904 // closed channel.
2905 TREE_NOTHROW(send_small_fndecl) = 0;
2906 return ret;
2907 }
2908 else
2909 {
2910 gcc_assert(!for_select);
2911 static tree send_nonblocking_small_fndecl;
2912 tree ret = Gogo::call_builtin(&send_nonblocking_small_fndecl,
2913 location,
2914 "__go_send_nonblocking_small",
2915 2,
2916 boolean_type_node,
2917 ptr_type_node,
2918 channel,
2919 uint64_type_node,
2920 val);
2921 if (ret == error_mark_node)
2922 return error_mark_node;
2923 // This can panic if there are too many operations on a
2924 // closed channel.
2925 TREE_NOTHROW(send_nonblocking_small_fndecl) = 0;
2926 return ret;
2927 }
2928 }
2929 else
2930 {
2931 tree make_tmp;
2932 if (TREE_ADDRESSABLE(TREE_TYPE(val)) || TREE_CODE(val) == VAR_DECL)
2933 {
2934 make_tmp = NULL_TREE;
2935 val = build_fold_addr_expr(val);
2936 if (DECL_P(val))
2937 TREE_ADDRESSABLE(val) = 1;
2938 }
2939 else
2940 {
2941 tree tmp = create_tmp_var(TREE_TYPE(val), get_name(val));
2942 DECL_IGNORED_P(tmp) = 0;
2943 DECL_INITIAL(tmp) = val;
2944 TREE_ADDRESSABLE(tmp) = 1;
2945 make_tmp = build1(DECL_EXPR, void_type_node, tmp);
2946 SET_EXPR_LOCATION(make_tmp, location);
2947 val = build_fold_addr_expr(tmp);
2948 }
2949 val = fold_convert(ptr_type_node, val);
2950
2951 tree call;
2952 if (blocking)
2953 {
2954 static tree send_big_fndecl;
2955 call = Gogo::call_builtin(&send_big_fndecl,
2956 location,
2957 "__go_send_big",
2958 3,
2959 void_type_node,
2960 ptr_type_node,
2961 channel,
2962 ptr_type_node,
2963 val,
2964 boolean_type_node,
2965 (for_select
2966 ? boolean_true_node
2967 : boolean_false_node));
2968 if (call == error_mark_node)
2969 return error_mark_node;
2970 // This can panic if there are too many operations on a
2971 // closed channel.
2972 TREE_NOTHROW(send_big_fndecl) = 0;
2973 }
2974 else
2975 {
2976 gcc_assert(!for_select);
2977 static tree send_nonblocking_big_fndecl;
2978 call = Gogo::call_builtin(&send_nonblocking_big_fndecl,
2979 location,
2980 "__go_send_nonblocking_big",
2981 2,
2982 boolean_type_node,
2983 ptr_type_node,
2984 channel,
2985 ptr_type_node,
2986 val);
2987 if (call == error_mark_node)
2988 return error_mark_node;
2989 // This can panic if there are too many operations on a
2990 // closed channel.
2991 TREE_NOTHROW(send_nonblocking_big_fndecl) = 0;
2992 }
2993
2994 if (make_tmp == NULL_TREE)
2995 return call;
2996 else
2997 {
2998 tree ret = build2(COMPOUND_EXPR, TREE_TYPE(call), make_tmp, call);
2999 SET_EXPR_LOCATION(ret, location);
3000 return ret;
3001 }
3002 }
3003 }
3004
3005 // Return a tree for receiving a value of type TYPE_TREE on CHANNEL.
3006 // This does a blocking receive and returns the value read from the
3007 // channel. If FOR_SELECT is true, this is being done because it was
3008 // chosen in a select statement.
3009
3010 tree
3011 Gogo::receive_from_channel(tree type_tree, tree channel, bool for_select,
3012 source_location location)
3013 {
3014 if (type_tree == error_mark_node || channel == error_mark_node)
3015 return error_mark_node;
3016
3017 if (int_size_in_bytes(type_tree) <= 8
3018 && !AGGREGATE_TYPE_P(type_tree)
3019 && !FLOAT_TYPE_P(type_tree))
3020 {
3021 static tree receive_small_fndecl;
3022 tree call = Gogo::call_builtin(&receive_small_fndecl,
3023 location,
3024 "__go_receive_small",
3025 2,
3026 uint64_type_node,
3027 ptr_type_node,
3028 channel,
3029 boolean_type_node,
3030 (for_select
3031 ? boolean_true_node
3032 : boolean_false_node));
3033 if (call == error_mark_node)
3034 return error_mark_node;
3035 // This can panic if there are too many operations on a closed
3036 // channel.
3037 TREE_NOTHROW(receive_small_fndecl) = 0;
3038 int bitsize = GET_MODE_BITSIZE(TYPE_MODE(type_tree));
3039 tree int_type_tree = go_type_for_size(bitsize, 1);
3040 return fold_convert_loc(location, type_tree,
3041 fold_convert_loc(location, int_type_tree,
3042 call));
3043 }
3044 else
3045 {
3046 tree tmp = create_tmp_var(type_tree, get_name(type_tree));
3047 DECL_IGNORED_P(tmp) = 0;
3048 TREE_ADDRESSABLE(tmp) = 1;
3049 tree make_tmp = build1(DECL_EXPR, void_type_node, tmp);
3050 SET_EXPR_LOCATION(make_tmp, location);
3051 tree tmpaddr = build_fold_addr_expr(tmp);
3052 tmpaddr = fold_convert(ptr_type_node, tmpaddr);
3053 static tree receive_big_fndecl;
3054 tree call = Gogo::call_builtin(&receive_big_fndecl,
3055 location,
3056 "__go_receive_big",
3057 3,
3058 void_type_node,
3059 ptr_type_node,
3060 channel,
3061 ptr_type_node,
3062 tmpaddr,
3063 boolean_type_node,
3064 (for_select
3065 ? boolean_true_node
3066 : boolean_false_node));
3067 if (call == error_mark_node)
3068 return error_mark_node;
3069 // This can panic if there are too many operations on a closed
3070 // channel.
3071 TREE_NOTHROW(receive_big_fndecl) = 0;
3072 return build2(COMPOUND_EXPR, type_tree, make_tmp,
3073 build2(COMPOUND_EXPR, type_tree, call, tmp));
3074 }
3075 }
3076
3077 // Return the type of a function trampoline. This is like
3078 // get_trampoline_type in tree-nested.c.
3079
3080 tree
3081 Gogo::trampoline_type_tree()
3082 {
3083 static tree type_tree;
3084 if (type_tree == NULL_TREE)
3085 {
3086 unsigned int size;
3087 unsigned int align;
3088 go_trampoline_info(&size, &align);
3089 tree t = build_index_type(build_int_cst(integer_type_node, size - 1));
3090 t = build_array_type(char_type_node, t);
3091
3092 type_tree = Gogo::builtin_struct(NULL, "__go_trampoline", NULL_TREE, 1,
3093 "__data", t);
3094 t = TYPE_FIELDS(type_tree);
3095 DECL_ALIGN(t) = align;
3096 DECL_USER_ALIGN(t) = 1;
3097
3098 go_preserve_from_gc(type_tree);
3099 }
3100 return type_tree;
3101 }
3102
3103 // Make a trampoline which calls FNADDR passing CLOSURE.
3104
3105 tree
3106 Gogo::make_trampoline(tree fnaddr, tree closure, source_location location)
3107 {
3108 tree trampoline_type = Gogo::trampoline_type_tree();
3109 tree trampoline_size = TYPE_SIZE_UNIT(trampoline_type);
3110
3111 closure = save_expr(closure);
3112
3113 // We allocate the trampoline using a special function which will
3114 // mark it as executable.
3115 static tree trampoline_fndecl;
3116 tree x = Gogo::call_builtin(&trampoline_fndecl,
3117 location,
3118 "__go_allocate_trampoline",
3119 2,
3120 ptr_type_node,
3121 size_type_node,
3122 trampoline_size,
3123 ptr_type_node,
3124 fold_convert_loc(location, ptr_type_node,
3125 closure));
3126 if (x == error_mark_node)
3127 return error_mark_node;
3128
3129 x = save_expr(x);
3130
3131 // Initialize the trampoline.
3132 tree ini = build_call_expr(implicit_built_in_decls[BUILT_IN_INIT_TRAMPOLINE],
3133 3, x, fnaddr, closure);
3134
3135 // On some targets the trampoline address needs to be adjusted. For
3136 // example, when compiling in Thumb mode on the ARM, the address
3137 // needs to have the low bit set.
3138 x = build_call_expr(implicit_built_in_decls[BUILT_IN_ADJUST_TRAMPOLINE],
3139 1, x);
3140 x = fold_convert(TREE_TYPE(fnaddr), x);
3141
3142 return build2(COMPOUND_EXPR, TREE_TYPE(x), ini, x);
3143 }