Don't crash when declaring methods on unknown name.
[gcc.git] / gcc / go / gofrontend / gogo.cc
1 // gogo.cc -- Go frontend parsed representation.
2
3 // Copyright 2009 The Go Authors. All rights reserved.
4 // Use of this source code is governed by a BSD-style
5 // license that can be found in the LICENSE file.
6
7 #include "go-system.h"
8
9 #include "go-c.h"
10 #include "go-dump.h"
11 #include "lex.h"
12 #include "types.h"
13 #include "statements.h"
14 #include "expressions.h"
15 #include "dataflow.h"
16 #include "import.h"
17 #include "export.h"
18 #include "gogo.h"
19
20 // Class Gogo.
21
22 Gogo::Gogo(int int_type_size, int float_type_size, int pointer_size)
23 : package_(NULL),
24 functions_(),
25 globals_(new Bindings(NULL)),
26 imports_(),
27 imported_unsafe_(false),
28 packages_(),
29 map_descriptors_(NULL),
30 type_descriptor_decls_(NULL),
31 init_functions_(),
32 need_init_fn_(false),
33 init_fn_name_(),
34 imported_init_fns_(),
35 unique_prefix_(),
36 interface_types_()
37 {
38 const source_location loc = BUILTINS_LOCATION;
39
40 Named_type* uint8_type = Type::make_integer_type("uint8", true, 8,
41 RUNTIME_TYPE_KIND_UINT8);
42 this->add_named_type(uint8_type);
43 this->add_named_type(Type::make_integer_type("uint16", true, 16,
44 RUNTIME_TYPE_KIND_UINT16));
45 this->add_named_type(Type::make_integer_type("uint32", true, 32,
46 RUNTIME_TYPE_KIND_UINT32));
47 this->add_named_type(Type::make_integer_type("uint64", true, 64,
48 RUNTIME_TYPE_KIND_UINT64));
49
50 this->add_named_type(Type::make_integer_type("int8", false, 8,
51 RUNTIME_TYPE_KIND_INT8));
52 this->add_named_type(Type::make_integer_type("int16", false, 16,
53 RUNTIME_TYPE_KIND_INT16));
54 this->add_named_type(Type::make_integer_type("int32", false, 32,
55 RUNTIME_TYPE_KIND_INT32));
56 this->add_named_type(Type::make_integer_type("int64", false, 64,
57 RUNTIME_TYPE_KIND_INT64));
58
59 this->add_named_type(Type::make_float_type("float32", 32,
60 RUNTIME_TYPE_KIND_FLOAT32));
61 this->add_named_type(Type::make_float_type("float64", 64,
62 RUNTIME_TYPE_KIND_FLOAT64));
63
64 this->add_named_type(Type::make_complex_type("complex64", 64,
65 RUNTIME_TYPE_KIND_COMPLEX64));
66 this->add_named_type(Type::make_complex_type("complex128", 128,
67 RUNTIME_TYPE_KIND_COMPLEX128));
68
69 if (int_type_size < 32)
70 int_type_size = 32;
71 this->add_named_type(Type::make_integer_type("uint", true,
72 int_type_size,
73 RUNTIME_TYPE_KIND_UINT));
74 Named_type* int_type = Type::make_integer_type("int", false, int_type_size,
75 RUNTIME_TYPE_KIND_INT);
76 this->add_named_type(int_type);
77
78 // "byte" is an alias for "uint8". Construct a Named_object which
79 // points to UINT8_TYPE. Note that this breaks the normal pairing
80 // in which a Named_object points to a Named_type which points back
81 // to the same Named_object.
82 Named_object* byte_type = this->declare_type("byte", loc);
83 byte_type->set_type_value(uint8_type);
84
85 this->add_named_type(Type::make_integer_type("uintptr", true,
86 pointer_size,
87 RUNTIME_TYPE_KIND_UINTPTR));
88
89 this->add_named_type(Type::make_float_type("float", float_type_size,
90 RUNTIME_TYPE_KIND_FLOAT));
91
92 this->add_named_type(Type::make_complex_type("complex", float_type_size * 2,
93 RUNTIME_TYPE_KIND_COMPLEX));
94
95 this->add_named_type(Type::make_named_bool_type());
96
97 this->add_named_type(Type::make_named_string_type());
98
99 this->globals_->add_constant(Typed_identifier("true",
100 Type::make_boolean_type(),
101 loc),
102 NULL,
103 Expression::make_boolean(true, loc),
104 0);
105 this->globals_->add_constant(Typed_identifier("false",
106 Type::make_boolean_type(),
107 loc),
108 NULL,
109 Expression::make_boolean(false, loc),
110 0);
111
112 this->globals_->add_constant(Typed_identifier("nil", Type::make_nil_type(),
113 loc),
114 NULL,
115 Expression::make_nil(loc),
116 0);
117
118 Type* abstract_int_type = Type::make_abstract_integer_type();
119 this->globals_->add_constant(Typed_identifier("iota", abstract_int_type,
120 loc),
121 NULL,
122 Expression::make_iota(),
123 0);
124
125 Function_type* new_type = Type::make_function_type(NULL, NULL, NULL, loc);
126 new_type->set_is_varargs();
127 new_type->set_is_builtin();
128 this->globals_->add_function_declaration("new", NULL, new_type, loc);
129
130 Function_type* make_type = Type::make_function_type(NULL, NULL, NULL, loc);
131 make_type->set_is_varargs();
132 make_type->set_is_builtin();
133 this->globals_->add_function_declaration("make", NULL, make_type, loc);
134
135 Typed_identifier_list* len_result = new Typed_identifier_list();
136 len_result->push_back(Typed_identifier("", int_type, loc));
137 Function_type* len_type = Type::make_function_type(NULL, NULL, len_result,
138 loc);
139 len_type->set_is_builtin();
140 this->globals_->add_function_declaration("len", NULL, len_type, loc);
141
142 Typed_identifier_list* cap_result = new Typed_identifier_list();
143 cap_result->push_back(Typed_identifier("", int_type, loc));
144 Function_type* cap_type = Type::make_function_type(NULL, NULL, len_result,
145 loc);
146 cap_type->set_is_builtin();
147 this->globals_->add_function_declaration("cap", NULL, cap_type, loc);
148
149 Function_type* print_type = Type::make_function_type(NULL, NULL, NULL, loc);
150 print_type->set_is_varargs();
151 print_type->set_is_builtin();
152 this->globals_->add_function_declaration("print", NULL, print_type, loc);
153
154 print_type = Type::make_function_type(NULL, NULL, NULL, loc);
155 print_type->set_is_varargs();
156 print_type->set_is_builtin();
157 this->globals_->add_function_declaration("println", NULL, print_type, loc);
158
159 Type *empty = Type::make_interface_type(NULL, loc);
160 Typed_identifier_list* panic_parms = new Typed_identifier_list();
161 panic_parms->push_back(Typed_identifier("e", empty, loc));
162 Function_type *panic_type = Type::make_function_type(NULL, panic_parms,
163 NULL, loc);
164 panic_type->set_is_builtin();
165 this->globals_->add_function_declaration("panic", NULL, panic_type, loc);
166
167 Typed_identifier_list* recover_result = new Typed_identifier_list();
168 recover_result->push_back(Typed_identifier("", empty, loc));
169 Function_type* recover_type = Type::make_function_type(NULL, NULL,
170 recover_result,
171 loc);
172 recover_type->set_is_builtin();
173 this->globals_->add_function_declaration("recover", NULL, recover_type, loc);
174
175 Function_type* close_type = Type::make_function_type(NULL, NULL, NULL, loc);
176 close_type->set_is_varargs();
177 close_type->set_is_builtin();
178 this->globals_->add_function_declaration("close", NULL, close_type, loc);
179
180 Typed_identifier_list* closed_result = new Typed_identifier_list();
181 closed_result->push_back(Typed_identifier("", Type::lookup_bool_type(),
182 loc));
183 Function_type* closed_type = Type::make_function_type(NULL, NULL,
184 closed_result, loc);
185 closed_type->set_is_varargs();
186 closed_type->set_is_builtin();
187 this->globals_->add_function_declaration("closed", NULL, closed_type, loc);
188
189 Typed_identifier_list* copy_result = new Typed_identifier_list();
190 copy_result->push_back(Typed_identifier("", int_type, loc));
191 Function_type* copy_type = Type::make_function_type(NULL, NULL,
192 copy_result, loc);
193 copy_type->set_is_varargs();
194 copy_type->set_is_builtin();
195 this->globals_->add_function_declaration("copy", NULL, copy_type, loc);
196
197 Function_type* append_type = Type::make_function_type(NULL, NULL, NULL, loc);
198 append_type->set_is_varargs();
199 append_type->set_is_builtin();
200 this->globals_->add_function_declaration("append", NULL, append_type, loc);
201
202 Function_type* cmplx_type = Type::make_function_type(NULL, NULL, NULL, loc);
203 cmplx_type->set_is_varargs();
204 cmplx_type->set_is_builtin();
205 this->globals_->add_function_declaration("cmplx", NULL, cmplx_type, loc);
206
207 Function_type* real_type = Type::make_function_type(NULL, NULL, NULL, loc);
208 real_type->set_is_varargs();
209 real_type->set_is_builtin();
210 this->globals_->add_function_declaration("real", NULL, real_type, loc);
211
212 Function_type* imag_type = Type::make_function_type(NULL, NULL, NULL, loc);
213 imag_type->set_is_varargs();
214 imag_type->set_is_builtin();
215 this->globals_->add_function_declaration("imag", NULL, cmplx_type, loc);
216
217 this->define_builtin_function_trees();
218
219 // Declare "init", to ensure that it is not defined with parameters
220 // or return values.
221 this->declare_function("init",
222 Type::make_function_type(NULL, NULL, NULL, loc),
223 loc);
224 }
225
226 // Munge name for use in an error message.
227
228 std::string
229 Gogo::message_name(const std::string& name)
230 {
231 return go_localize_identifier(Gogo::unpack_hidden_name(name).c_str());
232 }
233
234 // Get the package name.
235
236 const std::string&
237 Gogo::package_name() const
238 {
239 gcc_assert(this->package_ != NULL);
240 return this->package_->name();
241 }
242
243 // Set the package name.
244
245 void
246 Gogo::set_package_name(const std::string& package_name,
247 source_location location)
248 {
249 if (this->package_ != NULL && this->package_->name() != package_name)
250 {
251 error_at(location, "expected package %<%s%>",
252 Gogo::message_name(this->package_->name()).c_str());
253 return;
254 }
255
256 // If the user did not specify a unique prefix, we always use "go".
257 // This in effect requires that the package name be unique.
258 if (this->unique_prefix_.empty())
259 this->unique_prefix_ = "go";
260
261 this->package_ = this->register_package(package_name, this->unique_prefix_,
262 location);
263
264 // We used to permit people to qualify symbols with the current
265 // package name (e.g., P.x), but we no longer do.
266 // this->globals_->add_package(package_name, this->package_);
267
268 if (package_name == "main")
269 {
270 // Declare "main" as a function which takes no parameters and
271 // returns no value.
272 this->declare_function("main",
273 Type::make_function_type(NULL, NULL, NULL,
274 BUILTINS_LOCATION),
275 BUILTINS_LOCATION);
276 }
277 }
278
279 // Import a package.
280
281 void
282 Gogo::import_package(const std::string& filename,
283 const std::string& local_name,
284 bool is_local_name_exported,
285 source_location location)
286 {
287 if (filename == "unsafe")
288 {
289 this->import_unsafe(local_name, is_local_name_exported, location);
290 return;
291 }
292
293 Imports::const_iterator p = this->imports_.find(filename);
294 if (p != this->imports_.end())
295 {
296 Package* package = p->second;
297 package->set_location(location);
298 package->set_is_imported();
299 std::string ln = local_name;
300 bool is_ln_exported = is_local_name_exported;
301 if (ln.empty())
302 {
303 ln = package->name();
304 is_ln_exported = Lex::is_exported_name(ln);
305 }
306 if (ln != ".")
307 {
308 ln = this->pack_hidden_name(ln, is_ln_exported);
309 this->package_->bindings()->add_package(ln, package);
310 }
311 else
312 {
313 Bindings* bindings = package->bindings();
314 for (Bindings::const_declarations_iterator p =
315 bindings->begin_declarations();
316 p != bindings->end_declarations();
317 ++p)
318 this->add_named_object(p->second);
319 }
320 return;
321 }
322
323 Import::Stream* stream = Import::open_package(filename, location);
324 if (stream == NULL)
325 {
326 error_at(location, "import file %qs not found", filename.c_str());
327 return;
328 }
329
330 Import imp(stream, location);
331 imp.register_builtin_types(this);
332 Package* package = imp.import(this, local_name, is_local_name_exported);
333 this->imports_.insert(std::make_pair(filename, package));
334 package->set_is_imported();
335
336 delete stream;
337 }
338
339 // Add an import control function for an imported package to the list.
340
341 void
342 Gogo::add_import_init_fn(const std::string& package_name,
343 const std::string& init_name, int prio)
344 {
345 for (std::set<Import_init>::const_iterator p =
346 this->imported_init_fns_.begin();
347 p != this->imported_init_fns_.end();
348 ++p)
349 {
350 if (p->init_name() == init_name
351 && (p->package_name() != package_name || p->priority() != prio))
352 {
353 error("duplicate package initialization name %qs",
354 Gogo::message_name(init_name).c_str());
355 inform(UNKNOWN_LOCATION, "used by package %qs at priority %d",
356 Gogo::message_name(p->package_name()).c_str(),
357 p->priority());
358 inform(UNKNOWN_LOCATION, " and by package %qs at priority %d",
359 Gogo::message_name(package_name).c_str(), prio);
360 return;
361 }
362 }
363
364 this->imported_init_fns_.insert(Import_init(package_name, init_name,
365 prio));
366 }
367
368 // Return whether we are at the global binding level.
369
370 bool
371 Gogo::in_global_scope() const
372 {
373 return this->functions_.empty();
374 }
375
376 // Return the current binding contour.
377
378 Bindings*
379 Gogo::current_bindings()
380 {
381 if (!this->functions_.empty())
382 return this->functions_.back().blocks.back()->bindings();
383 else if (this->package_ != NULL)
384 return this->package_->bindings();
385 else
386 return this->globals_;
387 }
388
389 const Bindings*
390 Gogo::current_bindings() const
391 {
392 if (!this->functions_.empty())
393 return this->functions_.back().blocks.back()->bindings();
394 else if (this->package_ != NULL)
395 return this->package_->bindings();
396 else
397 return this->globals_;
398 }
399
400 // Return the current block.
401
402 Block*
403 Gogo::current_block()
404 {
405 if (this->functions_.empty())
406 return NULL;
407 else
408 return this->functions_.back().blocks.back();
409 }
410
411 // Look up a name in the current binding contour. If PFUNCTION is not
412 // NULL, set it to the function in which the name is defined, or NULL
413 // if the name is defined in global scope.
414
415 Named_object*
416 Gogo::lookup(const std::string& name, Named_object** pfunction) const
417 {
418 if (Gogo::is_sink_name(name))
419 return Named_object::make_sink();
420
421 for (Open_functions::const_reverse_iterator p = this->functions_.rbegin();
422 p != this->functions_.rend();
423 ++p)
424 {
425 Named_object* ret = p->blocks.back()->bindings()->lookup(name);
426 if (ret != NULL)
427 {
428 if (pfunction != NULL)
429 *pfunction = p->function;
430 return ret;
431 }
432 }
433
434 if (pfunction != NULL)
435 *pfunction = NULL;
436
437 if (this->package_ != NULL)
438 {
439 Named_object* ret = this->package_->bindings()->lookup(name);
440 if (ret != NULL)
441 {
442 if (ret->package() != NULL)
443 ret->package()->set_used();
444 return ret;
445 }
446 }
447
448 // We do not look in the global namespace. If we did, the global
449 // namespace would effectively hide names which were defined in
450 // package scope which we have not yet seen. Instead,
451 // define_global_names is called after parsing is over to connect
452 // undefined names at package scope with names defined at global
453 // scope.
454
455 return NULL;
456 }
457
458 // Look up a name in the current block, without searching enclosing
459 // blocks.
460
461 Named_object*
462 Gogo::lookup_in_block(const std::string& name) const
463 {
464 gcc_assert(!this->functions_.empty());
465 gcc_assert(!this->functions_.back().blocks.empty());
466 return this->functions_.back().blocks.back()->bindings()->lookup_local(name);
467 }
468
469 // Look up a name in the global namespace.
470
471 Named_object*
472 Gogo::lookup_global(const char* name) const
473 {
474 return this->globals_->lookup(name);
475 }
476
477 // Add an imported package.
478
479 Package*
480 Gogo::add_imported_package(const std::string& real_name,
481 const std::string& alias_arg,
482 bool is_alias_exported,
483 const std::string& unique_prefix,
484 source_location location,
485 bool* padd_to_globals)
486 {
487 // FIXME: Now that we compile packages as a whole, should we permit
488 // importing the current package?
489 if (this->package_name() == real_name
490 && this->unique_prefix() == unique_prefix)
491 {
492 *padd_to_globals = false;
493 if (!alias_arg.empty() && alias_arg != ".")
494 {
495 std::string alias = this->pack_hidden_name(alias_arg,
496 is_alias_exported);
497 this->package_->bindings()->add_package(alias, this->package_);
498 }
499 return this->package_;
500 }
501 else if (alias_arg == ".")
502 {
503 *padd_to_globals = true;
504 return this->register_package(real_name, unique_prefix, location);
505 }
506 else if (alias_arg == "_")
507 {
508 Package* ret = this->register_package(real_name, unique_prefix, location);
509 ret->set_uses_sink_alias();
510 return ret;
511 }
512 else
513 {
514 *padd_to_globals = false;
515 std::string alias = alias_arg;
516 if (alias.empty())
517 {
518 alias = real_name;
519 is_alias_exported = Lex::is_exported_name(alias);
520 }
521 alias = this->pack_hidden_name(alias, is_alias_exported);
522 Named_object* no = this->add_package(real_name, alias, unique_prefix,
523 location);
524 if (!no->is_package())
525 return NULL;
526 return no->package_value();
527 }
528 }
529
530 // Add a package.
531
532 Named_object*
533 Gogo::add_package(const std::string& real_name, const std::string& alias,
534 const std::string& unique_prefix, source_location location)
535 {
536 gcc_assert(this->in_global_scope());
537
538 // Register the package. Note that we might have already seen it in
539 // an earlier import.
540 Package* package = this->register_package(real_name, unique_prefix, location);
541
542 return this->package_->bindings()->add_package(alias, package);
543 }
544
545 // Register a package. This package may or may not be imported. This
546 // returns the Package structure for the package, creating if it
547 // necessary.
548
549 Package*
550 Gogo::register_package(const std::string& package_name,
551 const std::string& unique_prefix,
552 source_location location)
553 {
554 gcc_assert(!unique_prefix.empty() && !package_name.empty());
555 std::string name = unique_prefix + '.' + package_name;
556 Package* package = NULL;
557 std::pair<Packages::iterator, bool> ins =
558 this->packages_.insert(std::make_pair(name, package));
559 if (!ins.second)
560 {
561 // We have seen this package name before.
562 package = ins.first->second;
563 gcc_assert(package != NULL);
564 gcc_assert(package->name() == package_name
565 && package->unique_prefix() == unique_prefix);
566 if (package->location() == UNKNOWN_LOCATION)
567 package->set_location(location);
568 }
569 else
570 {
571 // First time we have seen this package name.
572 package = new Package(package_name, unique_prefix, location);
573 gcc_assert(ins.first->second == NULL);
574 ins.first->second = package;
575 }
576
577 return package;
578 }
579
580 // Start compiling a function.
581
582 Named_object*
583 Gogo::start_function(const std::string& name, Function_type* type,
584 bool add_method_to_type, source_location location)
585 {
586 bool at_top_level = this->functions_.empty();
587
588 Block* block = new Block(NULL, location);
589
590 Function* enclosing = (at_top_level
591 ? NULL
592 : this->functions_.back().function->func_value());
593
594 Function* function = new Function(type, enclosing, block, location);
595
596 if (type->is_method())
597 {
598 const Typed_identifier* receiver = type->receiver();
599 Variable* this_param = new Variable(receiver->type(), NULL, false,
600 true, true, location);
601 std::string name = receiver->name();
602 if (name.empty())
603 {
604 // We need to give receivers a name since they wind up in
605 // DECL_ARGUMENTS. FIXME.
606 static unsigned int count;
607 char buf[50];
608 snprintf(buf, sizeof buf, "r.%u", count);
609 ++count;
610 name = buf;
611 }
612 block->bindings()->add_variable(name, NULL, this_param);
613 }
614
615 const Typed_identifier_list* parameters = type->parameters();
616 bool is_varargs = type->is_varargs();
617 if (parameters != NULL)
618 {
619 for (Typed_identifier_list::const_iterator p = parameters->begin();
620 p != parameters->end();
621 ++p)
622 {
623 Variable* param = new Variable(p->type(), NULL, false, true, false,
624 location);
625 if (is_varargs && p + 1 == parameters->end())
626 param->set_is_varargs_parameter();
627
628 std::string name = p->name();
629 if (name.empty() || Gogo::is_sink_name(name))
630 {
631 // We need to give parameters a name since they wind up
632 // in DECL_ARGUMENTS. FIXME.
633 static unsigned int count;
634 char buf[50];
635 snprintf(buf, sizeof buf, "p.%u", count);
636 ++count;
637 name = buf;
638 }
639 block->bindings()->add_variable(name, NULL, param);
640 }
641 }
642
643 function->create_named_result_variables(this);
644
645 const std::string* pname;
646 std::string nested_name;
647 if (!name.empty())
648 pname = &name;
649 else
650 {
651 // Invent a name for a nested function.
652 static int nested_count;
653 char buf[30];
654 snprintf(buf, sizeof buf, ".$nested%d", nested_count);
655 ++nested_count;
656 nested_name = buf;
657 pname = &nested_name;
658 }
659
660 Named_object* ret;
661 if (Gogo::is_sink_name(*pname))
662 ret = Named_object::make_sink();
663 else if (!type->is_method())
664 {
665 ret = this->package_->bindings()->add_function(*pname, NULL, function);
666 if (!ret->is_function())
667 {
668 // Redefinition error.
669 ret = Named_object::make_function(name, NULL, function);
670 }
671 }
672 else
673 {
674 if (!add_method_to_type)
675 ret = Named_object::make_function(name, NULL, function);
676 else
677 {
678 gcc_assert(at_top_level);
679 Type* rtype = type->receiver()->type();
680
681 // We want to look through the pointer created by the
682 // parser, without getting an error if the type is not yet
683 // defined.
684 if (rtype->classification() == Type::TYPE_POINTER)
685 rtype = rtype->points_to();
686
687 if (rtype->is_error_type())
688 ret = Named_object::make_function(name, NULL, function);
689 else if (rtype->named_type() != NULL)
690 {
691 ret = rtype->named_type()->add_method(name, function);
692 if (!ret->is_function())
693 {
694 // Redefinition error.
695 ret = Named_object::make_function(name, NULL, function);
696 }
697 }
698 else if (rtype->forward_declaration_type() != NULL)
699 {
700 Named_object* type_no =
701 rtype->forward_declaration_type()->named_object();
702 if (type_no->is_unknown())
703 {
704 // If we are seeing methods it really must be a
705 // type. Declare it as such. An alternative would
706 // be to support lists of methods for unknown
707 // expressions. Either way the error messages if
708 // this is not a type are going to get confusing.
709 Named_object* declared =
710 this->declare_package_type(type_no->name(),
711 type_no->location());
712 gcc_assert(declared
713 == type_no->unknown_value()->real_named_object());
714 }
715 ret = rtype->forward_declaration_type()->add_method(name,
716 function);
717 }
718 else
719 gcc_unreachable();
720 }
721 this->package_->bindings()->add_method(ret);
722 }
723
724 this->functions_.resize(this->functions_.size() + 1);
725 Open_function& of(this->functions_.back());
726 of.function = ret;
727 of.blocks.push_back(block);
728
729 if (!type->is_method() && Gogo::unpack_hidden_name(name) == "init")
730 {
731 this->init_functions_.push_back(ret);
732 this->need_init_fn_ = true;
733 }
734
735 return ret;
736 }
737
738 // Finish compiling a function.
739
740 void
741 Gogo::finish_function(source_location location)
742 {
743 this->finish_block(location);
744 gcc_assert(this->functions_.back().blocks.empty());
745 this->functions_.pop_back();
746 }
747
748 // Return the current function.
749
750 Named_object*
751 Gogo::current_function() const
752 {
753 gcc_assert(!this->functions_.empty());
754 return this->functions_.back().function;
755 }
756
757 // Start a new block.
758
759 void
760 Gogo::start_block(source_location location)
761 {
762 gcc_assert(!this->functions_.empty());
763 Block* block = new Block(this->current_block(), location);
764 this->functions_.back().blocks.push_back(block);
765 }
766
767 // Finish a block.
768
769 Block*
770 Gogo::finish_block(source_location location)
771 {
772 gcc_assert(!this->functions_.empty());
773 gcc_assert(!this->functions_.back().blocks.empty());
774 Block* block = this->functions_.back().blocks.back();
775 this->functions_.back().blocks.pop_back();
776 block->set_end_location(location);
777 return block;
778 }
779
780 // Add an unknown name.
781
782 Named_object*
783 Gogo::add_unknown_name(const std::string& name, source_location location)
784 {
785 return this->package_->bindings()->add_unknown_name(name, location);
786 }
787
788 // Declare a function.
789
790 Named_object*
791 Gogo::declare_function(const std::string& name, Function_type* type,
792 source_location location)
793 {
794 if (!type->is_method())
795 return this->current_bindings()->add_function_declaration(name, NULL, type,
796 location);
797 else
798 {
799 // We don't bother to add this to the list of global
800 // declarations.
801 Type* rtype = type->receiver()->type();
802
803 // We want to look through the pointer created by the
804 // parser, without getting an error if the type is not yet
805 // defined.
806 if (rtype->classification() == Type::TYPE_POINTER)
807 rtype = rtype->points_to();
808
809 if (rtype->is_error_type())
810 return NULL;
811 else if (rtype->named_type() != NULL)
812 return rtype->named_type()->add_method_declaration(name, NULL, type,
813 location);
814 else if (rtype->forward_declaration_type() != NULL)
815 {
816 Forward_declaration_type* ftype = rtype->forward_declaration_type();
817 return ftype->add_method_declaration(name, type, location);
818 }
819 else
820 gcc_unreachable();
821 }
822 }
823
824 // Add a label definition.
825
826 Label*
827 Gogo::add_label_definition(const std::string& label_name,
828 source_location location)
829 {
830 gcc_assert(!this->functions_.empty());
831 Function* func = this->functions_.back().function->func_value();
832 Label* label = func->add_label_definition(label_name, location);
833 this->add_statement(Statement::make_label_statement(label, location));
834 return label;
835 }
836
837 // Add a label reference.
838
839 Label*
840 Gogo::add_label_reference(const std::string& label_name)
841 {
842 gcc_assert(!this->functions_.empty());
843 Function* func = this->functions_.back().function->func_value();
844 return func->add_label_reference(label_name);
845 }
846
847 // Add a statement.
848
849 void
850 Gogo::add_statement(Statement* statement)
851 {
852 gcc_assert(!this->functions_.empty()
853 && !this->functions_.back().blocks.empty());
854 this->functions_.back().blocks.back()->add_statement(statement);
855 }
856
857 // Add a block.
858
859 void
860 Gogo::add_block(Block* block, source_location location)
861 {
862 gcc_assert(!this->functions_.empty()
863 && !this->functions_.back().blocks.empty());
864 Statement* statement = Statement::make_block_statement(block, location);
865 this->functions_.back().blocks.back()->add_statement(statement);
866 }
867
868 // Add a constant.
869
870 Named_object*
871 Gogo::add_constant(const Typed_identifier& tid, Expression* expr,
872 int iota_value)
873 {
874 return this->current_bindings()->add_constant(tid, NULL, expr, iota_value);
875 }
876
877 // Add a type.
878
879 void
880 Gogo::add_type(const std::string& name, Type* type, source_location location)
881 {
882 Named_object* no = this->current_bindings()->add_type(name, NULL, type,
883 location);
884 if (!this->in_global_scope() && no->is_type())
885 no->type_value()->set_in_function(this->functions_.back().function);
886 }
887
888 // Add a named type.
889
890 void
891 Gogo::add_named_type(Named_type* type)
892 {
893 gcc_assert(this->in_global_scope());
894 this->current_bindings()->add_named_type(type);
895 }
896
897 // Declare a type.
898
899 Named_object*
900 Gogo::declare_type(const std::string& name, source_location location)
901 {
902 Bindings* bindings = this->current_bindings();
903 Named_object* no = bindings->add_type_declaration(name, NULL, location);
904 if (!this->in_global_scope() && no->is_type_declaration())
905 {
906 Named_object* f = this->functions_.back().function;
907 no->type_declaration_value()->set_in_function(f);
908 }
909 return no;
910 }
911
912 // Declare a type at the package level.
913
914 Named_object*
915 Gogo::declare_package_type(const std::string& name, source_location location)
916 {
917 return this->package_->bindings()->add_type_declaration(name, NULL, location);
918 }
919
920 // Define a type which was already declared.
921
922 void
923 Gogo::define_type(Named_object* no, Named_type* type)
924 {
925 this->current_bindings()->define_type(no, type);
926 }
927
928 // Add a variable.
929
930 Named_object*
931 Gogo::add_variable(const std::string& name, Variable* variable)
932 {
933 Named_object* no = this->current_bindings()->add_variable(name, NULL,
934 variable);
935
936 // In a function the middle-end wants to see a DECL_EXPR node.
937 if (no != NULL
938 && no->is_variable()
939 && !no->var_value()->is_parameter()
940 && !this->functions_.empty())
941 this->add_statement(Statement::make_variable_declaration(no));
942
943 return no;
944 }
945
946 // Add a sink--a reference to the blank identifier _.
947
948 Named_object*
949 Gogo::add_sink()
950 {
951 return Named_object::make_sink();
952 }
953
954 // Add a named object.
955
956 void
957 Gogo::add_named_object(Named_object* no)
958 {
959 this->current_bindings()->add_named_object(no);
960 }
961
962 // Record that we've seen an interface type.
963
964 void
965 Gogo::record_interface_type(Interface_type* itype)
966 {
967 this->interface_types_.push_back(itype);
968 }
969
970 // Return a name for a thunk object.
971
972 std::string
973 Gogo::thunk_name()
974 {
975 static int thunk_count;
976 char thunk_name[50];
977 snprintf(thunk_name, sizeof thunk_name, "$thunk%d", thunk_count);
978 ++thunk_count;
979 return thunk_name;
980 }
981
982 // Return whether a function is a thunk.
983
984 bool
985 Gogo::is_thunk(const Named_object* no)
986 {
987 return no->name().compare(0, 6, "$thunk") == 0;
988 }
989
990 // Define the global names. We do this only after parsing all the
991 // input files, because the program might define the global names
992 // itself.
993
994 void
995 Gogo::define_global_names()
996 {
997 for (Bindings::const_declarations_iterator p =
998 this->globals_->begin_declarations();
999 p != this->globals_->end_declarations();
1000 ++p)
1001 {
1002 Named_object* global_no = p->second;
1003 std::string name(Gogo::pack_hidden_name(global_no->name(), false));
1004 Named_object* no = this->package_->bindings()->lookup(name);
1005 if (no == NULL)
1006 continue;
1007 no = no->resolve();
1008 if (no->is_type_declaration())
1009 {
1010 if (global_no->is_type())
1011 {
1012 if (no->type_declaration_value()->has_methods())
1013 error_at(no->location(),
1014 "may not define methods for global type");
1015 no->set_type_value(global_no->type_value());
1016 }
1017 else
1018 {
1019 error_at(no->location(), "expected type");
1020 Type* errtype = Type::make_error_type();
1021 Named_object* err = Named_object::make_type("error", NULL,
1022 errtype,
1023 BUILTINS_LOCATION);
1024 no->set_type_value(err->type_value());
1025 }
1026 }
1027 else if (no->is_unknown())
1028 no->unknown_value()->set_real_named_object(global_no);
1029 }
1030 }
1031
1032 // Clear out names in file scope.
1033
1034 void
1035 Gogo::clear_file_scope()
1036 {
1037 this->package_->bindings()->clear_file_scope();
1038
1039 // Warn about packages which were imported but not used.
1040 for (Packages::iterator p = this->packages_.begin();
1041 p != this->packages_.end();
1042 ++p)
1043 {
1044 Package* package = p->second;
1045 if (package != this->package_
1046 && package->is_imported()
1047 && !package->used()
1048 && !package->uses_sink_alias()
1049 && !saw_errors())
1050 error_at(package->location(), "imported and not used: %s",
1051 Gogo::message_name(package->name()).c_str());
1052 package->clear_is_imported();
1053 package->clear_uses_sink_alias();
1054 package->clear_used();
1055 }
1056 }
1057
1058 // Traverse the tree.
1059
1060 void
1061 Gogo::traverse(Traverse* traverse)
1062 {
1063 // Traverse the current package first for consistency. The other
1064 // packages will only contain imported types, constants, and
1065 // declarations.
1066 if (this->package_->bindings()->traverse(traverse, true) == TRAVERSE_EXIT)
1067 return;
1068 for (Packages::const_iterator p = this->packages_.begin();
1069 p != this->packages_.end();
1070 ++p)
1071 {
1072 if (p->second != this->package_)
1073 {
1074 if (p->second->bindings()->traverse(traverse, true) == TRAVERSE_EXIT)
1075 break;
1076 }
1077 }
1078 }
1079
1080 // Traversal class used to verify types.
1081
1082 class Verify_types : public Traverse
1083 {
1084 public:
1085 Verify_types()
1086 : Traverse(traverse_types)
1087 { }
1088
1089 int
1090 type(Type*);
1091 };
1092
1093 // Verify that a type is correct.
1094
1095 int
1096 Verify_types::type(Type* t)
1097 {
1098 // Don't verify types defined in other packages.
1099 Named_type* nt = t->named_type();
1100 if (nt != NULL && nt->named_object()->package() != NULL)
1101 return TRAVERSE_SKIP_COMPONENTS;
1102
1103 if (!t->verify())
1104 return TRAVERSE_SKIP_COMPONENTS;
1105 return TRAVERSE_CONTINUE;
1106 }
1107
1108 // Verify that all types are correct.
1109
1110 void
1111 Gogo::verify_types()
1112 {
1113 Verify_types traverse;
1114 this->traverse(&traverse);
1115 }
1116
1117 // Traversal class used to lower parse tree.
1118
1119 class Lower_parse_tree : public Traverse
1120 {
1121 public:
1122 Lower_parse_tree(Gogo* gogo, Named_object* function)
1123 : Traverse(traverse_constants
1124 | traverse_functions
1125 | traverse_statements
1126 | traverse_expressions),
1127 gogo_(gogo), function_(function), iota_value_(-1)
1128 { }
1129
1130 int
1131 constant(Named_object*, bool);
1132
1133 int
1134 function(Named_object*);
1135
1136 int
1137 statement(Block*, size_t* pindex, Statement*);
1138
1139 int
1140 expression(Expression**);
1141
1142 private:
1143 // General IR.
1144 Gogo* gogo_;
1145 // The function we are traversing.
1146 Named_object* function_;
1147 // Value to use for the predeclared constant iota.
1148 int iota_value_;
1149 };
1150
1151 // Lower constants. We handle constants specially so that we can set
1152 // the right value for the predeclared constant iota. This works in
1153 // conjunction with the way we lower Const_expression objects.
1154
1155 int
1156 Lower_parse_tree::constant(Named_object* no, bool)
1157 {
1158 Named_constant* nc = no->const_value();
1159
1160 // We can recursively a constant if the initializer expression
1161 // manages to refer to itself.
1162 if (nc->lowering())
1163 return TRAVERSE_CONTINUE;
1164 nc->set_lowering();
1165
1166 gcc_assert(this->iota_value_ == -1);
1167 this->iota_value_ = nc->iota_value();
1168 nc->traverse_expression(this);
1169 this->iota_value_ = -1;
1170
1171 nc->clear_lowering();
1172
1173 // We will traverse the expression a second time, but that will be
1174 // fast.
1175
1176 return TRAVERSE_CONTINUE;
1177 }
1178
1179 // Lower function closure types. Record the function while lowering
1180 // it, so that we can pass it down when lowering an expression.
1181
1182 int
1183 Lower_parse_tree::function(Named_object* no)
1184 {
1185 no->func_value()->set_closure_type();
1186
1187 gcc_assert(this->function_ == NULL);
1188 this->function_ = no;
1189 int t = no->func_value()->traverse(this);
1190 this->function_ = NULL;
1191
1192 if (t == TRAVERSE_EXIT)
1193 return t;
1194 return TRAVERSE_SKIP_COMPONENTS;
1195 }
1196
1197 // Lower statement parse trees.
1198
1199 int
1200 Lower_parse_tree::statement(Block* block, size_t* pindex, Statement* sorig)
1201 {
1202 // Lower the expressions first.
1203 int t = sorig->traverse_contents(this);
1204 if (t == TRAVERSE_EXIT)
1205 return t;
1206
1207 // Keep lowering until nothing changes.
1208 Statement* s = sorig;
1209 while (true)
1210 {
1211 Statement* snew = s->lower(this->gogo_, block);
1212 if (snew == s)
1213 break;
1214 s = snew;
1215 t = s->traverse_contents(this);
1216 if (t == TRAVERSE_EXIT)
1217 return t;
1218 }
1219
1220 if (s != sorig)
1221 block->replace_statement(*pindex, s);
1222
1223 return TRAVERSE_SKIP_COMPONENTS;
1224 }
1225
1226 // Lower expression parse trees.
1227
1228 int
1229 Lower_parse_tree::expression(Expression** pexpr)
1230 {
1231 // We have to lower all subexpressions first, so that we can get
1232 // their type if necessary. This is awkward, because we don't have
1233 // a postorder traversal pass.
1234 if ((*pexpr)->traverse_subexpressions(this) == TRAVERSE_EXIT)
1235 return TRAVERSE_EXIT;
1236 // Keep lowering until nothing changes.
1237 while (true)
1238 {
1239 Expression* e = *pexpr;
1240 Expression* enew = e->lower(this->gogo_, this->function_,
1241 this->iota_value_);
1242 if (enew == e)
1243 break;
1244 *pexpr = enew;
1245 }
1246 return TRAVERSE_SKIP_COMPONENTS;
1247 }
1248
1249 // Lower the parse tree. This is called after the parse is complete,
1250 // when all names should be resolved.
1251
1252 void
1253 Gogo::lower_parse_tree()
1254 {
1255 Lower_parse_tree lower_parse_tree(this, NULL);
1256 this->traverse(&lower_parse_tree);
1257 }
1258
1259 // Lower an expression.
1260
1261 void
1262 Gogo::lower_expression(Named_object* function, Expression** pexpr)
1263 {
1264 Lower_parse_tree lower_parse_tree(this, function);
1265 lower_parse_tree.expression(pexpr);
1266 }
1267
1268 // Lower a constant. This is called when lowering a reference to a
1269 // constant. We have to make sure that the constant has already been
1270 // lowered.
1271
1272 void
1273 Gogo::lower_constant(Named_object* no)
1274 {
1275 gcc_assert(no->is_const());
1276 Lower_parse_tree lower(this, NULL);
1277 lower.constant(no, false);
1278 }
1279
1280 // Look for interface types to finalize methods of inherited
1281 // interfaces.
1282
1283 class Finalize_methods : public Traverse
1284 {
1285 public:
1286 Finalize_methods(Gogo* gogo)
1287 : Traverse(traverse_types),
1288 gogo_(gogo)
1289 { }
1290
1291 int
1292 type(Type*);
1293
1294 private:
1295 Gogo* gogo_;
1296 };
1297
1298 // Finalize the methods of an interface type.
1299
1300 int
1301 Finalize_methods::type(Type* t)
1302 {
1303 // Check the classification so that we don't finalize the methods
1304 // twice for a named interface type.
1305 switch (t->classification())
1306 {
1307 case Type::TYPE_INTERFACE:
1308 t->interface_type()->finalize_methods();
1309 break;
1310
1311 case Type::TYPE_NAMED:
1312 {
1313 // We have to finalize the methods of the real type first.
1314 // But if the real type is a struct type, then we only want to
1315 // finalize the methods of the field types, not of the struct
1316 // type itself. We don't want to add methods to the struct,
1317 // since it has a name.
1318 Type* rt = t->named_type()->real_type();
1319 if (rt->classification() != Type::TYPE_STRUCT)
1320 {
1321 if (Type::traverse(rt, this) == TRAVERSE_EXIT)
1322 return TRAVERSE_EXIT;
1323 }
1324 else
1325 {
1326 if (rt->struct_type()->traverse_field_types(this) == TRAVERSE_EXIT)
1327 return TRAVERSE_EXIT;
1328 }
1329
1330 t->named_type()->finalize_methods(this->gogo_);
1331
1332 return TRAVERSE_SKIP_COMPONENTS;
1333 }
1334
1335 case Type::TYPE_STRUCT:
1336 t->struct_type()->finalize_methods(this->gogo_);
1337 break;
1338
1339 default:
1340 break;
1341 }
1342
1343 return TRAVERSE_CONTINUE;
1344 }
1345
1346 // Finalize method lists and build stub methods for types.
1347
1348 void
1349 Gogo::finalize_methods()
1350 {
1351 Finalize_methods finalize(this);
1352 this->traverse(&finalize);
1353 }
1354
1355 // Set types for unspecified variables and constants.
1356
1357 void
1358 Gogo::determine_types()
1359 {
1360 Bindings* bindings = this->current_bindings();
1361 for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
1362 p != bindings->end_definitions();
1363 ++p)
1364 {
1365 if ((*p)->is_function())
1366 (*p)->func_value()->determine_types();
1367 else if ((*p)->is_variable())
1368 (*p)->var_value()->determine_type();
1369 else if ((*p)->is_const())
1370 (*p)->const_value()->determine_type();
1371
1372 // See if a variable requires us to build an initialization
1373 // function. We know that we will see all global variables
1374 // here.
1375 if (!this->need_init_fn_ && (*p)->is_variable())
1376 {
1377 Variable* variable = (*p)->var_value();
1378
1379 // If this is a global variable which requires runtime
1380 // initialization, we need an initialization function.
1381 if (!variable->is_global() || variable->init() == NULL)
1382 ;
1383 else if (variable->type()->interface_type() != NULL)
1384 this->need_init_fn_ = true;
1385 else if (variable->init()->is_constant())
1386 ;
1387 else if (!variable->init()->is_composite_literal())
1388 this->need_init_fn_ = true;
1389 else if (variable->init()->is_nonconstant_composite_literal())
1390 this->need_init_fn_ = true;
1391
1392 // If this is a global variable which holds a pointer value,
1393 // then we need an initialization function to register it as a
1394 // GC root.
1395 if (variable->is_global() && variable->type()->has_pointer())
1396 this->need_init_fn_ = true;
1397 }
1398 }
1399
1400 // Determine the types of constants in packages.
1401 for (Packages::const_iterator p = this->packages_.begin();
1402 p != this->packages_.end();
1403 ++p)
1404 p->second->determine_types();
1405 }
1406
1407 // Traversal class used for type checking.
1408
1409 class Check_types_traverse : public Traverse
1410 {
1411 public:
1412 Check_types_traverse(Gogo* gogo)
1413 : Traverse(traverse_variables
1414 | traverse_constants
1415 | traverse_statements
1416 | traverse_expressions),
1417 gogo_(gogo)
1418 { }
1419
1420 int
1421 variable(Named_object*);
1422
1423 int
1424 constant(Named_object*, bool);
1425
1426 int
1427 statement(Block*, size_t* pindex, Statement*);
1428
1429 int
1430 expression(Expression**);
1431
1432 private:
1433 // General IR.
1434 Gogo* gogo_;
1435 };
1436
1437 // Check that a variable initializer has the right type.
1438
1439 int
1440 Check_types_traverse::variable(Named_object* named_object)
1441 {
1442 if (named_object->is_variable())
1443 {
1444 Variable* var = named_object->var_value();
1445 Expression* init = var->init();
1446 std::string reason;
1447 if (init != NULL
1448 && !Type::are_assignable(var->type(), init->type(), &reason))
1449 {
1450 if (reason.empty())
1451 error_at(var->location(), "incompatible type in initialization");
1452 else
1453 error_at(var->location(),
1454 "incompatible type in initialization (%s)",
1455 reason.c_str());
1456 var->clear_init();
1457 }
1458 }
1459 return TRAVERSE_CONTINUE;
1460 }
1461
1462 // Check that a constant initializer has the right type.
1463
1464 int
1465 Check_types_traverse::constant(Named_object* named_object, bool)
1466 {
1467 Named_constant* constant = named_object->const_value();
1468 Type* ctype = constant->type();
1469 if (ctype->integer_type() == NULL
1470 && ctype->float_type() == NULL
1471 && ctype->complex_type() == NULL
1472 && !ctype->is_boolean_type()
1473 && !ctype->is_string_type())
1474 {
1475 if (!ctype->is_error_type())
1476 error_at(constant->location(), "invalid constant type");
1477 constant->set_error();
1478 }
1479 else if (!constant->expr()->is_constant())
1480 {
1481 error_at(constant->expr()->location(), "expression is not constant");
1482 constant->set_error();
1483 }
1484 else if (!Type::are_assignable(constant->type(), constant->expr()->type(),
1485 NULL))
1486 {
1487 error_at(constant->location(),
1488 "initialization expression has wrong type");
1489 constant->set_error();
1490 }
1491 return TRAVERSE_CONTINUE;
1492 }
1493
1494 // Check that types are valid in a statement.
1495
1496 int
1497 Check_types_traverse::statement(Block*, size_t*, Statement* s)
1498 {
1499 s->check_types(this->gogo_);
1500 return TRAVERSE_CONTINUE;
1501 }
1502
1503 // Check that types are valid in an expression.
1504
1505 int
1506 Check_types_traverse::expression(Expression** expr)
1507 {
1508 (*expr)->check_types(this->gogo_);
1509 return TRAVERSE_CONTINUE;
1510 }
1511
1512 // Check that types are valid.
1513
1514 void
1515 Gogo::check_types()
1516 {
1517 Check_types_traverse traverse(this);
1518 this->traverse(&traverse);
1519 }
1520
1521 // Check the types in a single block.
1522
1523 void
1524 Gogo::check_types_in_block(Block* block)
1525 {
1526 Check_types_traverse traverse(this);
1527 block->traverse(&traverse);
1528 }
1529
1530 // A traversal class used to find a single shortcut operator within an
1531 // expression.
1532
1533 class Find_shortcut : public Traverse
1534 {
1535 public:
1536 Find_shortcut()
1537 : Traverse(traverse_blocks
1538 | traverse_statements
1539 | traverse_expressions),
1540 found_(NULL)
1541 { }
1542
1543 // A pointer to the expression which was found, or NULL if none was
1544 // found.
1545 Expression**
1546 found() const
1547 { return this->found_; }
1548
1549 protected:
1550 int
1551 block(Block*)
1552 { return TRAVERSE_SKIP_COMPONENTS; }
1553
1554 int
1555 statement(Block*, size_t*, Statement*)
1556 { return TRAVERSE_SKIP_COMPONENTS; }
1557
1558 int
1559 expression(Expression**);
1560
1561 private:
1562 Expression** found_;
1563 };
1564
1565 // Find a shortcut expression.
1566
1567 int
1568 Find_shortcut::expression(Expression** pexpr)
1569 {
1570 Expression* expr = *pexpr;
1571 Binary_expression* be = expr->binary_expression();
1572 if (be == NULL)
1573 return TRAVERSE_CONTINUE;
1574 Operator op = be->op();
1575 if (op != OPERATOR_OROR && op != OPERATOR_ANDAND)
1576 return TRAVERSE_CONTINUE;
1577 gcc_assert(this->found_ == NULL);
1578 this->found_ = pexpr;
1579 return TRAVERSE_EXIT;
1580 }
1581
1582 // A traversal class used to turn shortcut operators into explicit if
1583 // statements.
1584
1585 class Shortcuts : public Traverse
1586 {
1587 public:
1588 Shortcuts()
1589 : Traverse(traverse_variables
1590 | traverse_statements)
1591 { }
1592
1593 protected:
1594 int
1595 variable(Named_object*);
1596
1597 int
1598 statement(Block*, size_t*, Statement*);
1599
1600 private:
1601 // Convert a shortcut operator.
1602 Statement*
1603 convert_shortcut(Block* enclosing, Expression** pshortcut);
1604 };
1605
1606 // Remove shortcut operators in a single statement.
1607
1608 int
1609 Shortcuts::statement(Block* block, size_t* pindex, Statement* s)
1610 {
1611 // FIXME: This approach doesn't work for switch statements, because
1612 // we add the new statements before the whole switch when we need to
1613 // instead add them just before the switch expression. The right
1614 // fix is probably to lower switch statements with nonconstant cases
1615 // to a series of conditionals.
1616 if (s->switch_statement() != NULL)
1617 return TRAVERSE_CONTINUE;
1618
1619 while (true)
1620 {
1621 Find_shortcut find_shortcut;
1622
1623 // If S is a variable declaration, then ordinary traversal won't
1624 // do anything. We want to explicitly traverse the
1625 // initialization expression if there is one.
1626 Variable_declaration_statement* vds = s->variable_declaration_statement();
1627 Expression* init = NULL;
1628 if (vds == NULL)
1629 s->traverse_contents(&find_shortcut);
1630 else
1631 {
1632 init = vds->var()->var_value()->init();
1633 if (init == NULL)
1634 return TRAVERSE_CONTINUE;
1635 init->traverse(&init, &find_shortcut);
1636 }
1637 Expression** pshortcut = find_shortcut.found();
1638 if (pshortcut == NULL)
1639 return TRAVERSE_CONTINUE;
1640
1641 Statement* snew = this->convert_shortcut(block, pshortcut);
1642 block->insert_statement_before(*pindex, snew);
1643 ++*pindex;
1644
1645 if (pshortcut == &init)
1646 vds->var()->var_value()->set_init(init);
1647 }
1648 }
1649
1650 // Remove shortcut operators in the initializer of a global variable.
1651
1652 int
1653 Shortcuts::variable(Named_object* no)
1654 {
1655 if (no->is_result_variable())
1656 return TRAVERSE_CONTINUE;
1657 Variable* var = no->var_value();
1658 Expression* init = var->init();
1659 if (!var->is_global() || init == NULL)
1660 return TRAVERSE_CONTINUE;
1661
1662 while (true)
1663 {
1664 Find_shortcut find_shortcut;
1665 init->traverse(&init, &find_shortcut);
1666 Expression** pshortcut = find_shortcut.found();
1667 if (pshortcut == NULL)
1668 return TRAVERSE_CONTINUE;
1669
1670 Statement* snew = this->convert_shortcut(NULL, pshortcut);
1671 var->add_preinit_statement(snew);
1672 if (pshortcut == &init)
1673 var->set_init(init);
1674 }
1675 }
1676
1677 // Given an expression which uses a shortcut operator, return a
1678 // statement which implements it, and update *PSHORTCUT accordingly.
1679
1680 Statement*
1681 Shortcuts::convert_shortcut(Block* enclosing, Expression** pshortcut)
1682 {
1683 Binary_expression* shortcut = (*pshortcut)->binary_expression();
1684 Expression* left = shortcut->left();
1685 Expression* right = shortcut->right();
1686 source_location loc = shortcut->location();
1687
1688 Block* retblock = new Block(enclosing, loc);
1689 retblock->set_end_location(loc);
1690
1691 Temporary_statement* ts = Statement::make_temporary(Type::make_boolean_type(),
1692 left, loc);
1693 retblock->add_statement(ts);
1694
1695 Block* block = new Block(retblock, loc);
1696 block->set_end_location(loc);
1697 Expression* tmpref = Expression::make_temporary_reference(ts, loc);
1698 Statement* assign = Statement::make_assignment(tmpref, right, loc);
1699 block->add_statement(assign);
1700
1701 Expression* cond = Expression::make_temporary_reference(ts, loc);
1702 if (shortcut->binary_expression()->op() == OPERATOR_OROR)
1703 cond = Expression::make_unary(OPERATOR_NOT, cond, loc);
1704
1705 Statement* if_statement = Statement::make_if_statement(cond, block, NULL,
1706 loc);
1707 retblock->add_statement(if_statement);
1708
1709 *pshortcut = Expression::make_temporary_reference(ts, loc);
1710
1711 delete shortcut;
1712
1713 // Now convert any shortcut operators in LEFT and RIGHT.
1714 Shortcuts shortcuts;
1715 retblock->traverse(&shortcuts);
1716
1717 return Statement::make_block_statement(retblock, loc);
1718 }
1719
1720 // Turn shortcut operators into explicit if statements. Doing this
1721 // considerably simplifies the order of evaluation rules.
1722
1723 void
1724 Gogo::remove_shortcuts()
1725 {
1726 Shortcuts shortcuts;
1727 this->traverse(&shortcuts);
1728 }
1729
1730 // A traversal class which finds all the expressions which must be
1731 // evaluated in order within a statement or larger expression. This
1732 // is used to implement the rules about order of evaluation.
1733
1734 class Find_eval_ordering : public Traverse
1735 {
1736 private:
1737 typedef std::vector<Expression**> Expression_pointers;
1738
1739 public:
1740 Find_eval_ordering()
1741 : Traverse(traverse_blocks
1742 | traverse_statements
1743 | traverse_expressions),
1744 exprs_()
1745 { }
1746
1747 size_t
1748 size() const
1749 { return this->exprs_.size(); }
1750
1751 typedef Expression_pointers::const_iterator const_iterator;
1752
1753 const_iterator
1754 begin() const
1755 { return this->exprs_.begin(); }
1756
1757 const_iterator
1758 end() const
1759 { return this->exprs_.end(); }
1760
1761 protected:
1762 int
1763 block(Block*)
1764 { return TRAVERSE_SKIP_COMPONENTS; }
1765
1766 int
1767 statement(Block*, size_t*, Statement*)
1768 { return TRAVERSE_SKIP_COMPONENTS; }
1769
1770 int
1771 expression(Expression**);
1772
1773 private:
1774 // A list of pointers to expressions with side-effects.
1775 Expression_pointers exprs_;
1776 };
1777
1778 // If an expression must be evaluated in order, put it on the list.
1779
1780 int
1781 Find_eval_ordering::expression(Expression** expression_pointer)
1782 {
1783 // We have to look at subexpressions before this one.
1784 if ((*expression_pointer)->traverse_subexpressions(this) == TRAVERSE_EXIT)
1785 return TRAVERSE_EXIT;
1786 if ((*expression_pointer)->must_eval_in_order())
1787 this->exprs_.push_back(expression_pointer);
1788 return TRAVERSE_SKIP_COMPONENTS;
1789 }
1790
1791 // A traversal class for ordering evaluations.
1792
1793 class Order_eval : public Traverse
1794 {
1795 public:
1796 Order_eval()
1797 : Traverse(traverse_variables
1798 | traverse_statements)
1799 { }
1800
1801 int
1802 variable(Named_object*);
1803
1804 int
1805 statement(Block*, size_t*, Statement*);
1806 };
1807
1808 // Implement the order of evaluation rules for a statement.
1809
1810 int
1811 Order_eval::statement(Block* block, size_t* pindex, Statement* s)
1812 {
1813 // FIXME: This approach doesn't work for switch statements, because
1814 // we add the new statements before the whole switch when we need to
1815 // instead add them just before the switch expression. The right
1816 // fix is probably to lower switch statements with nonconstant cases
1817 // to a series of conditionals.
1818 if (s->switch_statement() != NULL)
1819 return TRAVERSE_CONTINUE;
1820
1821 Find_eval_ordering find_eval_ordering;
1822
1823 // If S is a variable declaration, then ordinary traversal won't do
1824 // anything. We want to explicitly traverse the initialization
1825 // expression if there is one.
1826 Variable_declaration_statement* vds = s->variable_declaration_statement();
1827 Expression* init = NULL;
1828 Expression* orig_init = NULL;
1829 if (vds == NULL)
1830 s->traverse_contents(&find_eval_ordering);
1831 else
1832 {
1833 init = vds->var()->var_value()->init();
1834 if (init == NULL)
1835 return TRAVERSE_CONTINUE;
1836 orig_init = init;
1837
1838 // It might seem that this could be
1839 // init->traverse_subexpressions. Unfortunately that can fail
1840 // in a case like
1841 // var err os.Error
1842 // newvar, err := call(arg())
1843 // Here newvar will have an init of call result 0 of
1844 // call(arg()). If we only traverse subexpressions, we will
1845 // only find arg(), and we won't bother to move anything out.
1846 // Then we get to the assignment to err, we will traverse the
1847 // whole statement, and this time we will find both call() and
1848 // arg(), and so we will move them out. This will cause them to
1849 // be put into temporary variables before the assignment to err
1850 // but after the declaration of newvar. To avoid that problem,
1851 // we traverse the entire expression here.
1852 Expression::traverse(&init, &find_eval_ordering);
1853 }
1854
1855 if (find_eval_ordering.size() <= 1)
1856 {
1857 // If there is only one expression with a side-effect, we can
1858 // leave it in place.
1859 return TRAVERSE_CONTINUE;
1860 }
1861
1862 bool is_thunk = s->thunk_statement() != NULL;
1863 for (Find_eval_ordering::const_iterator p = find_eval_ordering.begin();
1864 p != find_eval_ordering.end();
1865 ++p)
1866 {
1867 Expression** pexpr = *p;
1868
1869 // If the last expression is a send or receive expression, we
1870 // may be ignoring the value; we don't want to evaluate it
1871 // early.
1872 if (p + 1 == find_eval_ordering.end()
1873 && ((*pexpr)->classification() == Expression::EXPRESSION_SEND
1874 || (*pexpr)->classification() == Expression::EXPRESSION_RECEIVE))
1875 break;
1876
1877 // The last expression in a thunk will be the call passed to go
1878 // or defer, which we must not evaluate early.
1879 if (is_thunk && p + 1 == find_eval_ordering.end())
1880 break;
1881
1882 source_location loc = (*pexpr)->location();
1883 Temporary_statement* ts = Statement::make_temporary(NULL, *pexpr, loc);
1884 block->insert_statement_before(*pindex, ts);
1885 ++*pindex;
1886
1887 *pexpr = Expression::make_temporary_reference(ts, loc);
1888 }
1889
1890 if (init != orig_init)
1891 vds->var()->var_value()->set_init(init);
1892
1893 return TRAVERSE_CONTINUE;
1894 }
1895
1896 // Implement the order of evaluation rules for the initializer of a
1897 // global variable.
1898
1899 int
1900 Order_eval::variable(Named_object* no)
1901 {
1902 if (no->is_result_variable())
1903 return TRAVERSE_CONTINUE;
1904 Variable* var = no->var_value();
1905 Expression* init = var->init();
1906 if (!var->is_global() || init == NULL)
1907 return TRAVERSE_CONTINUE;
1908
1909 Find_eval_ordering find_eval_ordering;
1910 init->traverse_subexpressions(&find_eval_ordering);
1911
1912 if (find_eval_ordering.size() <= 1)
1913 {
1914 // If there is only one expression with a side-effect, we can
1915 // leave it in place.
1916 return TRAVERSE_SKIP_COMPONENTS;
1917 }
1918
1919 for (Find_eval_ordering::const_iterator p = find_eval_ordering.begin();
1920 p != find_eval_ordering.end();
1921 ++p)
1922 {
1923 Expression** pexpr = *p;
1924 source_location loc = (*pexpr)->location();
1925 Temporary_statement* ts = Statement::make_temporary(NULL, *pexpr, loc);
1926 var->add_preinit_statement(ts);
1927 *pexpr = Expression::make_temporary_reference(ts, loc);
1928 }
1929
1930 return TRAVERSE_SKIP_COMPONENTS;
1931 }
1932
1933 // Use temporary variables to implement the order of evaluation rules.
1934
1935 void
1936 Gogo::order_evaluations()
1937 {
1938 Order_eval order_eval;
1939 this->traverse(&order_eval);
1940 }
1941
1942 // Traversal to convert calls to the predeclared recover function to
1943 // pass in an argument indicating whether it can recover from a panic
1944 // or not.
1945
1946 class Convert_recover : public Traverse
1947 {
1948 public:
1949 Convert_recover(Named_object* arg)
1950 : Traverse(traverse_expressions),
1951 arg_(arg)
1952 { }
1953
1954 protected:
1955 int
1956 expression(Expression**);
1957
1958 private:
1959 // The argument to pass to the function.
1960 Named_object* arg_;
1961 };
1962
1963 // Convert calls to recover.
1964
1965 int
1966 Convert_recover::expression(Expression** pp)
1967 {
1968 Call_expression* ce = (*pp)->call_expression();
1969 if (ce != NULL && ce->is_recover_call())
1970 ce->set_recover_arg(Expression::make_var_reference(this->arg_,
1971 ce->location()));
1972 return TRAVERSE_CONTINUE;
1973 }
1974
1975 // Traversal for build_recover_thunks.
1976
1977 class Build_recover_thunks : public Traverse
1978 {
1979 public:
1980 Build_recover_thunks(Gogo* gogo)
1981 : Traverse(traverse_functions),
1982 gogo_(gogo)
1983 { }
1984
1985 int
1986 function(Named_object*);
1987
1988 private:
1989 Expression*
1990 can_recover_arg(source_location);
1991
1992 // General IR.
1993 Gogo* gogo_;
1994 };
1995
1996 // If this function calls recover, turn it into a thunk.
1997
1998 int
1999 Build_recover_thunks::function(Named_object* orig_no)
2000 {
2001 Function* orig_func = orig_no->func_value();
2002 if (!orig_func->calls_recover()
2003 || orig_func->is_recover_thunk()
2004 || orig_func->has_recover_thunk())
2005 return TRAVERSE_CONTINUE;
2006
2007 Gogo* gogo = this->gogo_;
2008 source_location location = orig_func->location();
2009
2010 static int count;
2011 char buf[50];
2012
2013 Function_type* orig_fntype = orig_func->type();
2014 Typed_identifier_list* new_params = new Typed_identifier_list();
2015 std::string receiver_name;
2016 if (orig_fntype->is_method())
2017 {
2018 const Typed_identifier* receiver = orig_fntype->receiver();
2019 snprintf(buf, sizeof buf, "rt.%u", count);
2020 ++count;
2021 receiver_name = buf;
2022 new_params->push_back(Typed_identifier(receiver_name, receiver->type(),
2023 receiver->location()));
2024 }
2025 const Typed_identifier_list* orig_params = orig_fntype->parameters();
2026 if (orig_params != NULL && !orig_params->empty())
2027 {
2028 for (Typed_identifier_list::const_iterator p = orig_params->begin();
2029 p != orig_params->end();
2030 ++p)
2031 {
2032 snprintf(buf, sizeof buf, "pt.%u", count);
2033 ++count;
2034 new_params->push_back(Typed_identifier(buf, p->type(),
2035 p->location()));
2036 }
2037 }
2038 snprintf(buf, sizeof buf, "pr.%u", count);
2039 ++count;
2040 std::string can_recover_name = buf;
2041 new_params->push_back(Typed_identifier(can_recover_name,
2042 Type::make_boolean_type(),
2043 orig_fntype->location()));
2044
2045 const Typed_identifier_list* orig_results = orig_fntype->results();
2046 Typed_identifier_list* new_results;
2047 if (orig_results == NULL || orig_results->empty())
2048 new_results = NULL;
2049 else
2050 {
2051 new_results = new Typed_identifier_list();
2052 for (Typed_identifier_list::const_iterator p = orig_results->begin();
2053 p != orig_results->end();
2054 ++p)
2055 new_results->push_back(*p);
2056 }
2057
2058 Function_type *new_fntype = Type::make_function_type(NULL, new_params,
2059 new_results,
2060 orig_fntype->location());
2061 if (orig_fntype->is_varargs())
2062 new_fntype->set_is_varargs();
2063
2064 std::string name = orig_no->name() + "$recover";
2065 Named_object *new_no = gogo->start_function(name, new_fntype, false,
2066 location);
2067 Function *new_func = new_no->func_value();
2068 if (orig_func->enclosing() != NULL)
2069 new_func->set_enclosing(orig_func->enclosing());
2070
2071 // We build the code for the original function attached to the new
2072 // function, and then swap the original and new function bodies.
2073 // This means that existing references to the original function will
2074 // then refer to the new function. That makes this code a little
2075 // confusing, in that the reference to NEW_NO really refers to the
2076 // other function, not the one we are building.
2077
2078 Expression* closure = NULL;
2079 if (orig_func->needs_closure())
2080 {
2081 Named_object* orig_closure_no = orig_func->closure_var();
2082 Variable* orig_closure_var = orig_closure_no->var_value();
2083 Variable* new_var = new Variable(orig_closure_var->type(), NULL, false,
2084 true, false, location);
2085 snprintf(buf, sizeof buf, "closure.%u", count);
2086 ++count;
2087 Named_object* new_closure_no = Named_object::make_variable(buf, NULL,
2088 new_var);
2089 new_func->set_closure_var(new_closure_no);
2090 closure = Expression::make_var_reference(new_closure_no, location);
2091 }
2092
2093 Expression* fn = Expression::make_func_reference(new_no, closure, location);
2094
2095 Expression_list* args = new Expression_list();
2096 if (orig_fntype->is_method())
2097 {
2098 Named_object* rec_no = gogo->lookup(receiver_name, NULL);
2099 gcc_assert(rec_no != NULL
2100 && rec_no->is_variable()
2101 && rec_no->var_value()->is_parameter());
2102 args->push_back(Expression::make_var_reference(rec_no, location));
2103 }
2104 if (new_params != NULL)
2105 {
2106 // Note that we skip the last parameter, which is the boolean
2107 // indicating whether recover can succed.
2108 for (Typed_identifier_list::const_iterator p = new_params->begin();
2109 p + 1 != new_params->end();
2110 ++p)
2111 {
2112 Named_object* p_no = gogo->lookup(p->name(), NULL);
2113 gcc_assert(p_no != NULL
2114 && p_no->is_variable()
2115 && p_no->var_value()->is_parameter());
2116 args->push_back(Expression::make_var_reference(p_no, location));
2117 }
2118 }
2119 args->push_back(this->can_recover_arg(location));
2120
2121 Expression* call = Expression::make_call(fn, args, false, location);
2122
2123 Statement* s;
2124 if (orig_fntype->results() == NULL || orig_fntype->results()->empty())
2125 s = Statement::make_statement(call);
2126 else
2127 {
2128 Expression_list* vals = new Expression_list();
2129 vals->push_back(call);
2130 s = Statement::make_return_statement(new_func->type()->results(),
2131 vals, location);
2132 }
2133 s->determine_types();
2134 gogo->add_statement(s);
2135
2136 gogo->finish_function(location);
2137
2138 // Swap the function bodies and types.
2139 new_func->swap_for_recover(orig_func);
2140 orig_func->set_is_recover_thunk();
2141 new_func->set_calls_recover();
2142 new_func->set_has_recover_thunk();
2143
2144 Bindings* orig_bindings = orig_func->block()->bindings();
2145 Bindings* new_bindings = new_func->block()->bindings();
2146 if (orig_fntype->is_method())
2147 {
2148 // We changed the receiver to be a regular parameter. We have
2149 // to update the binding accordingly in both functions.
2150 Named_object* orig_rec_no = orig_bindings->lookup_local(receiver_name);
2151 gcc_assert(orig_rec_no != NULL
2152 && orig_rec_no->is_variable()
2153 && !orig_rec_no->var_value()->is_receiver());
2154 orig_rec_no->var_value()->set_is_receiver();
2155
2156 Named_object* new_rec_no = new_bindings->lookup_local(receiver_name);
2157 gcc_assert(new_rec_no != NULL
2158 && new_rec_no->is_variable()
2159 && !new_rec_no->var_value()->is_receiver());
2160 new_rec_no->var_value()->set_is_not_receiver();
2161 }
2162
2163 // Because we flipped blocks but not types, the can_recover
2164 // parameter appears in the (now) old bindings as a parameter.
2165 // Change it to a local variable, whereupon it will be discarded.
2166 Named_object* can_recover_no = orig_bindings->lookup_local(can_recover_name);
2167 gcc_assert(can_recover_no != NULL
2168 && can_recover_no->is_variable()
2169 && can_recover_no->var_value()->is_parameter());
2170 orig_bindings->remove_binding(can_recover_no);
2171
2172 // Add the can_recover argument to the (now) new bindings, and
2173 // attach it to any recover statements.
2174 Variable* can_recover_var = new Variable(Type::make_boolean_type(), NULL,
2175 false, true, false, location);
2176 can_recover_no = new_bindings->add_variable(can_recover_name, NULL,
2177 can_recover_var);
2178 Convert_recover convert_recover(can_recover_no);
2179 new_func->traverse(&convert_recover);
2180
2181 return TRAVERSE_CONTINUE;
2182 }
2183
2184 // Return the expression to pass for the .can_recover parameter to the
2185 // new function. This indicates whether a call to recover may return
2186 // non-nil. The expression is
2187 // __go_can_recover(__builtin_return_address()).
2188
2189 Expression*
2190 Build_recover_thunks::can_recover_arg(source_location location)
2191 {
2192 static Named_object* builtin_return_address;
2193 if (builtin_return_address == NULL)
2194 {
2195 const source_location bloc = BUILTINS_LOCATION;
2196
2197 Typed_identifier_list* param_types = new Typed_identifier_list();
2198 Type* uint_type = Type::lookup_integer_type("uint");
2199 param_types->push_back(Typed_identifier("l", uint_type, bloc));
2200
2201 Typed_identifier_list* return_types = new Typed_identifier_list();
2202 Type* voidptr_type = Type::make_pointer_type(Type::make_void_type());
2203 return_types->push_back(Typed_identifier("", voidptr_type, bloc));
2204
2205 Function_type* fntype = Type::make_function_type(NULL, param_types,
2206 return_types, bloc);
2207 builtin_return_address =
2208 Named_object::make_function_declaration("__builtin_return_address",
2209 NULL, fntype, bloc);
2210 const char* n = "__builtin_return_address";
2211 builtin_return_address->func_declaration_value()->set_asm_name(n);
2212 }
2213
2214 static Named_object* can_recover;
2215 if (can_recover == NULL)
2216 {
2217 const source_location bloc = BUILTINS_LOCATION;
2218 Typed_identifier_list* param_types = new Typed_identifier_list();
2219 Type* voidptr_type = Type::make_pointer_type(Type::make_void_type());
2220 param_types->push_back(Typed_identifier("a", voidptr_type, bloc));
2221 Type* boolean_type = Type::make_boolean_type();
2222 Typed_identifier_list* results = new Typed_identifier_list();
2223 results->push_back(Typed_identifier("", boolean_type, bloc));
2224 Function_type* fntype = Type::make_function_type(NULL, param_types,
2225 results, bloc);
2226 can_recover = Named_object::make_function_declaration("__go_can_recover",
2227 NULL, fntype,
2228 bloc);
2229 can_recover->func_declaration_value()->set_asm_name("__go_can_recover");
2230 }
2231
2232 Expression* fn = Expression::make_func_reference(builtin_return_address,
2233 NULL, location);
2234
2235 mpz_t zval;
2236 mpz_init_set_ui(zval, 0UL);
2237 Expression* zexpr = Expression::make_integer(&zval, NULL, location);
2238 mpz_clear(zval);
2239 Expression_list *args = new Expression_list();
2240 args->push_back(zexpr);
2241
2242 Expression* call = Expression::make_call(fn, args, false, location);
2243
2244 args = new Expression_list();
2245 args->push_back(call);
2246
2247 fn = Expression::make_func_reference(can_recover, NULL, location);
2248 return Expression::make_call(fn, args, false, location);
2249 }
2250
2251 // Build thunks for functions which call recover. We build a new
2252 // function with an extra parameter, which is whether a call to
2253 // recover can succeed. We then move the body of this function to
2254 // that one. We then turn this function into a thunk which calls the
2255 // new one, passing the value of
2256 // __go_can_recover(__builtin_return_address()). The function will be
2257 // marked as not splitting the stack. This will cooperate with the
2258 // implementation of defer to make recover do the right thing.
2259
2260 void
2261 Gogo::build_recover_thunks()
2262 {
2263 Build_recover_thunks build_recover_thunks(this);
2264 this->traverse(&build_recover_thunks);
2265 }
2266
2267 // Look for named types to see whether we need to create an interface
2268 // method table.
2269
2270 class Build_method_tables : public Traverse
2271 {
2272 public:
2273 Build_method_tables(Gogo* gogo,
2274 const std::vector<Interface_type*>& interfaces)
2275 : Traverse(traverse_types),
2276 gogo_(gogo), interfaces_(interfaces)
2277 { }
2278
2279 int
2280 type(Type*);
2281
2282 private:
2283 // The IR.
2284 Gogo* gogo_;
2285 // A list of locally defined interfaces which have hidden methods.
2286 const std::vector<Interface_type*>& interfaces_;
2287 };
2288
2289 // Build all required interface method tables for types. We need to
2290 // ensure that we have an interface method table for every interface
2291 // which has a hidden method, for every named type which implements
2292 // that interface. Normally we can just build interface method tables
2293 // as we need them. However, in some cases we can require an
2294 // interface method table for an interface defined in a different
2295 // package for a type defined in that package. If that interface and
2296 // type both use a hidden method, that is OK. However, we will not be
2297 // able to build that interface method table when we need it, because
2298 // the type's hidden method will be static. So we have to build it
2299 // here, and just refer it from other packages as needed.
2300
2301 void
2302 Gogo::build_interface_method_tables()
2303 {
2304 std::vector<Interface_type*> hidden_interfaces;
2305 hidden_interfaces.reserve(this->interface_types_.size());
2306 for (std::vector<Interface_type*>::const_iterator pi =
2307 this->interface_types_.begin();
2308 pi != this->interface_types_.end();
2309 ++pi)
2310 {
2311 const Typed_identifier_list* methods = (*pi)->methods();
2312 if (methods == NULL)
2313 continue;
2314 for (Typed_identifier_list::const_iterator pm = methods->begin();
2315 pm != methods->end();
2316 ++pm)
2317 {
2318 if (Gogo::is_hidden_name(pm->name()))
2319 {
2320 hidden_interfaces.push_back(*pi);
2321 break;
2322 }
2323 }
2324 }
2325
2326 if (!hidden_interfaces.empty())
2327 {
2328 // Now traverse the tree looking for all named types.
2329 Build_method_tables bmt(this, hidden_interfaces);
2330 this->traverse(&bmt);
2331 }
2332
2333 // We no longer need the list of interfaces.
2334
2335 this->interface_types_.clear();
2336 }
2337
2338 // This is called for each type. For a named type, for each of the
2339 // interfaces with hidden methods that it implements, create the
2340 // method table.
2341
2342 int
2343 Build_method_tables::type(Type* type)
2344 {
2345 Named_type* nt = type->named_type();
2346 if (nt != NULL)
2347 {
2348 for (std::vector<Interface_type*>::const_iterator p =
2349 this->interfaces_.begin();
2350 p != this->interfaces_.end();
2351 ++p)
2352 {
2353 // We ask whether a pointer to the named type implements the
2354 // interface, because a pointer can implement more methods
2355 // than a value.
2356 if ((*p)->implements_interface(Type::make_pointer_type(nt), NULL))
2357 {
2358 nt->interface_method_table(this->gogo_, *p, false);
2359 nt->interface_method_table(this->gogo_, *p, true);
2360 }
2361 }
2362 }
2363 return TRAVERSE_CONTINUE;
2364 }
2365
2366 // Traversal class used to check for return statements.
2367
2368 class Check_return_statements_traverse : public Traverse
2369 {
2370 public:
2371 Check_return_statements_traverse()
2372 : Traverse(traverse_functions)
2373 { }
2374
2375 int
2376 function(Named_object*);
2377 };
2378
2379 // Check that a function has a return statement if it needs one.
2380
2381 int
2382 Check_return_statements_traverse::function(Named_object* no)
2383 {
2384 Function* func = no->func_value();
2385 const Function_type* fntype = func->type();
2386 const Typed_identifier_list* results = fntype->results();
2387
2388 // We only need a return statement if there is a return value.
2389 if (results == NULL || results->empty())
2390 return TRAVERSE_CONTINUE;
2391
2392 if (func->block()->may_fall_through())
2393 error_at(func->location(), "control reaches end of non-void function");
2394
2395 return TRAVERSE_CONTINUE;
2396 }
2397
2398 // Check return statements.
2399
2400 void
2401 Gogo::check_return_statements()
2402 {
2403 Check_return_statements_traverse traverse;
2404 this->traverse(&traverse);
2405 }
2406
2407 // Get the unique prefix to use before all exported symbols. This
2408 // must be unique across the entire link.
2409
2410 const std::string&
2411 Gogo::unique_prefix() const
2412 {
2413 gcc_assert(!this->unique_prefix_.empty());
2414 return this->unique_prefix_;
2415 }
2416
2417 // Set the unique prefix to use before all exported symbols. This
2418 // comes from the command line option -fgo-prefix=XXX.
2419
2420 void
2421 Gogo::set_unique_prefix(const std::string& arg)
2422 {
2423 gcc_assert(this->unique_prefix_.empty());
2424 this->unique_prefix_ = arg;
2425 }
2426
2427 // Work out the package priority. It is one more than the maximum
2428 // priority of an imported package.
2429
2430 int
2431 Gogo::package_priority() const
2432 {
2433 int priority = 0;
2434 for (Packages::const_iterator p = this->packages_.begin();
2435 p != this->packages_.end();
2436 ++p)
2437 if (p->second->priority() > priority)
2438 priority = p->second->priority();
2439 return priority + 1;
2440 }
2441
2442 // Export identifiers as requested.
2443
2444 void
2445 Gogo::do_exports()
2446 {
2447 // For now we always stream to a section. Later we may want to
2448 // support streaming to a separate file.
2449 Stream_to_section stream;
2450
2451 Export exp(&stream);
2452 exp.register_builtin_types(this);
2453 exp.export_globals(this->package_name(),
2454 this->unique_prefix(),
2455 this->package_priority(),
2456 (this->need_init_fn_ && this->package_name() != "main"
2457 ? this->get_init_fn_name()
2458 : ""),
2459 this->imported_init_fns_,
2460 this->package_->bindings());
2461 }
2462
2463 // Class Function.
2464
2465 Function::Function(Function_type* type, Function* enclosing, Block* block,
2466 source_location location)
2467 : type_(type), enclosing_(enclosing), named_results_(NULL),
2468 closure_var_(NULL), block_(block), location_(location), fndecl_(NULL),
2469 defer_stack_(NULL), calls_recover_(false), is_recover_thunk_(false),
2470 has_recover_thunk_(false)
2471 {
2472 }
2473
2474 // Create the named result variables.
2475
2476 void
2477 Function::create_named_result_variables(Gogo* gogo)
2478 {
2479 const Typed_identifier_list* results = this->type_->results();
2480 if (results == NULL
2481 || results->empty()
2482 || results->front().name().empty())
2483 return;
2484
2485 this->named_results_ = new Named_results();
2486 this->named_results_->reserve(results->size());
2487
2488 Block* block = this->block_;
2489 int index = 0;
2490 for (Typed_identifier_list::const_iterator p = results->begin();
2491 p != results->end();
2492 ++p, ++index)
2493 {
2494 std::string name = p->name();
2495 if (Gogo::is_sink_name(name))
2496 {
2497 static int unnamed_result_counter;
2498 char buf[100];
2499 snprintf(buf, sizeof buf, "_$%d", unnamed_result_counter);
2500 ++unnamed_result_counter;
2501 name = gogo->pack_hidden_name(buf, false);
2502 }
2503 Result_variable* result = new Result_variable(p->type(), this, index);
2504 Named_object* no = block->bindings()->add_result_variable(name, result);
2505 this->named_results_->push_back(no);
2506 }
2507 }
2508
2509 // Return the closure variable, creating it if necessary.
2510
2511 Named_object*
2512 Function::closure_var()
2513 {
2514 if (this->closure_var_ == NULL)
2515 {
2516 // We don't know the type of the variable yet. We add fields as
2517 // we find them.
2518 source_location loc = this->type_->location();
2519 Struct_field_list* sfl = new Struct_field_list;
2520 Type* struct_type = Type::make_struct_type(sfl, loc);
2521 Variable* var = new Variable(Type::make_pointer_type(struct_type),
2522 NULL, false, true, false, loc);
2523 this->closure_var_ = Named_object::make_variable("closure", NULL, var);
2524 // Note that the new variable is not in any binding contour.
2525 }
2526 return this->closure_var_;
2527 }
2528
2529 // Set the type of the closure variable.
2530
2531 void
2532 Function::set_closure_type()
2533 {
2534 if (this->closure_var_ == NULL)
2535 return;
2536 Named_object* closure = this->closure_var_;
2537 Struct_type* st = closure->var_value()->type()->deref()->struct_type();
2538 unsigned int index = 0;
2539 for (Closure_fields::const_iterator p = this->closure_fields_.begin();
2540 p != this->closure_fields_.end();
2541 ++p, ++index)
2542 {
2543 Named_object* no = p->first;
2544 char buf[20];
2545 snprintf(buf, sizeof buf, "%u", index);
2546 std::string n = no->name() + buf;
2547 Type* var_type;
2548 if (no->is_variable())
2549 var_type = no->var_value()->type();
2550 else
2551 var_type = no->result_var_value()->type();
2552 Type* field_type = Type::make_pointer_type(var_type);
2553 st->push_field(Struct_field(Typed_identifier(n, field_type, p->second)));
2554 }
2555 }
2556
2557 // Return whether this function is a method.
2558
2559 bool
2560 Function::is_method() const
2561 {
2562 return this->type_->is_method();
2563 }
2564
2565 // Add a label definition.
2566
2567 Label*
2568 Function::add_label_definition(const std::string& label_name,
2569 source_location location)
2570 {
2571 Label* lnull = NULL;
2572 std::pair<Labels::iterator, bool> ins =
2573 this->labels_.insert(std::make_pair(label_name, lnull));
2574 if (ins.second)
2575 {
2576 // This is a new label.
2577 Label* label = new Label(label_name);
2578 label->define(location);
2579 ins.first->second = label;
2580 return label;
2581 }
2582 else
2583 {
2584 // The label was already in the hash table.
2585 Label* label = ins.first->second;
2586 if (!label->is_defined())
2587 {
2588 label->define(location);
2589 return label;
2590 }
2591 else
2592 {
2593 error_at(location, "redefinition of label %qs",
2594 Gogo::message_name(label_name).c_str());
2595 inform(label->location(), "previous definition of %qs was here",
2596 Gogo::message_name(label_name).c_str());
2597 return new Label(label_name);
2598 }
2599 }
2600 }
2601
2602 // Add a reference to a label.
2603
2604 Label*
2605 Function::add_label_reference(const std::string& label_name)
2606 {
2607 Label* lnull = NULL;
2608 std::pair<Labels::iterator, bool> ins =
2609 this->labels_.insert(std::make_pair(label_name, lnull));
2610 if (!ins.second)
2611 {
2612 // The label was already in the hash table.
2613 return ins.first->second;
2614 }
2615 else
2616 {
2617 gcc_assert(ins.first->second == NULL);
2618 Label* label = new Label(label_name);
2619 ins.first->second = label;
2620 return label;
2621 }
2622 }
2623
2624 // Swap one function with another. This is used when building the
2625 // thunk we use to call a function which calls recover. It may not
2626 // work for any other case.
2627
2628 void
2629 Function::swap_for_recover(Function *x)
2630 {
2631 gcc_assert(this->enclosing_ == x->enclosing_);
2632 gcc_assert(this->named_results_ == x->named_results_);
2633 std::swap(this->closure_var_, x->closure_var_);
2634 std::swap(this->block_, x->block_);
2635 gcc_assert(this->location_ == x->location_);
2636 gcc_assert(this->fndecl_ == NULL && x->fndecl_ == NULL);
2637 gcc_assert(this->defer_stack_ == NULL && x->defer_stack_ == NULL);
2638 }
2639
2640 // Traverse the tree.
2641
2642 int
2643 Function::traverse(Traverse* traverse)
2644 {
2645 unsigned int traverse_mask = traverse->traverse_mask();
2646
2647 if ((traverse_mask
2648 & (Traverse::traverse_types | Traverse::traverse_expressions))
2649 != 0)
2650 {
2651 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
2652 return TRAVERSE_EXIT;
2653 }
2654
2655 // FIXME: We should check traverse_functions here if nested
2656 // functions are stored in block bindings.
2657 if (this->block_ != NULL
2658 && (traverse_mask
2659 & (Traverse::traverse_variables
2660 | Traverse::traverse_constants
2661 | Traverse::traverse_blocks
2662 | Traverse::traverse_statements
2663 | Traverse::traverse_expressions
2664 | Traverse::traverse_types)) != 0)
2665 {
2666 if (this->block_->traverse(traverse) == TRAVERSE_EXIT)
2667 return TRAVERSE_EXIT;
2668 }
2669
2670 return TRAVERSE_CONTINUE;
2671 }
2672
2673 // Work out types for unspecified variables and constants.
2674
2675 void
2676 Function::determine_types()
2677 {
2678 if (this->block_ != NULL)
2679 this->block_->determine_types();
2680 }
2681
2682 // Export the function.
2683
2684 void
2685 Function::export_func(Export* exp, const std::string& name) const
2686 {
2687 Function::export_func_with_type(exp, name, this->type_);
2688 }
2689
2690 // Export a function with a type.
2691
2692 void
2693 Function::export_func_with_type(Export* exp, const std::string& name,
2694 const Function_type* fntype)
2695 {
2696 exp->write_c_string("func ");
2697
2698 if (fntype->is_method())
2699 {
2700 exp->write_c_string("(");
2701 exp->write_type(fntype->receiver()->type());
2702 exp->write_c_string(") ");
2703 }
2704
2705 exp->write_string(name);
2706
2707 exp->write_c_string(" (");
2708 const Typed_identifier_list* parameters = fntype->parameters();
2709 if (parameters != NULL)
2710 {
2711 bool is_varargs = fntype->is_varargs();
2712 bool first = true;
2713 for (Typed_identifier_list::const_iterator p = parameters->begin();
2714 p != parameters->end();
2715 ++p)
2716 {
2717 if (first)
2718 first = false;
2719 else
2720 exp->write_c_string(", ");
2721 if (!is_varargs || p + 1 != parameters->end())
2722 exp->write_type(p->type());
2723 else
2724 {
2725 exp->write_c_string("...");
2726 exp->write_type(p->type()->array_type()->element_type());
2727 }
2728 }
2729 }
2730 exp->write_c_string(")");
2731
2732 const Typed_identifier_list* results = fntype->results();
2733 if (results != NULL)
2734 {
2735 if (results->size() == 1)
2736 {
2737 exp->write_c_string(" ");
2738 exp->write_type(results->begin()->type());
2739 }
2740 else
2741 {
2742 exp->write_c_string(" (");
2743 bool first = true;
2744 for (Typed_identifier_list::const_iterator p = results->begin();
2745 p != results->end();
2746 ++p)
2747 {
2748 if (first)
2749 first = false;
2750 else
2751 exp->write_c_string(", ");
2752 exp->write_type(p->type());
2753 }
2754 exp->write_c_string(")");
2755 }
2756 }
2757 exp->write_c_string(";\n");
2758 }
2759
2760 // Import a function.
2761
2762 void
2763 Function::import_func(Import* imp, std::string* pname,
2764 Typed_identifier** preceiver,
2765 Typed_identifier_list** pparameters,
2766 Typed_identifier_list** presults,
2767 bool* is_varargs)
2768 {
2769 imp->require_c_string("func ");
2770
2771 *preceiver = NULL;
2772 if (imp->peek_char() == '(')
2773 {
2774 imp->require_c_string("(");
2775 Type* rtype = imp->read_type();
2776 *preceiver = new Typed_identifier(Import::import_marker, rtype,
2777 imp->location());
2778 imp->require_c_string(") ");
2779 }
2780
2781 *pname = imp->read_identifier();
2782
2783 Typed_identifier_list* parameters;
2784 *is_varargs = false;
2785 imp->require_c_string(" (");
2786 if (imp->peek_char() == ')')
2787 parameters = NULL;
2788 else
2789 {
2790 parameters = new Typed_identifier_list();
2791 while (true)
2792 {
2793 if (imp->match_c_string("..."))
2794 {
2795 imp->advance(3);
2796 *is_varargs = true;
2797 }
2798
2799 Type* ptype = imp->read_type();
2800 if (*is_varargs)
2801 ptype = Type::make_array_type(ptype, NULL);
2802 parameters->push_back(Typed_identifier(Import::import_marker,
2803 ptype, imp->location()));
2804 if (imp->peek_char() != ',')
2805 break;
2806 gcc_assert(!*is_varargs);
2807 imp->require_c_string(", ");
2808 }
2809 }
2810 imp->require_c_string(")");
2811 *pparameters = parameters;
2812
2813 Typed_identifier_list* results;
2814 if (imp->peek_char() != ' ')
2815 results = NULL;
2816 else
2817 {
2818 results = new Typed_identifier_list();
2819 imp->require_c_string(" ");
2820 if (imp->peek_char() != '(')
2821 {
2822 Type* rtype = imp->read_type();
2823 results->push_back(Typed_identifier(Import::import_marker, rtype,
2824 imp->location()));
2825 }
2826 else
2827 {
2828 imp->require_c_string("(");
2829 while (true)
2830 {
2831 Type* rtype = imp->read_type();
2832 results->push_back(Typed_identifier(Import::import_marker,
2833 rtype, imp->location()));
2834 if (imp->peek_char() != ',')
2835 break;
2836 imp->require_c_string(", ");
2837 }
2838 imp->require_c_string(")");
2839 }
2840 }
2841 imp->require_c_string(";\n");
2842 *presults = results;
2843 }
2844
2845 // Class Block.
2846
2847 Block::Block(Block* enclosing, source_location location)
2848 : enclosing_(enclosing), statements_(),
2849 bindings_(new Bindings(enclosing == NULL
2850 ? NULL
2851 : enclosing->bindings())),
2852 start_location_(location),
2853 end_location_(UNKNOWN_LOCATION)
2854 {
2855 }
2856
2857 // Add a statement to a block.
2858
2859 void
2860 Block::add_statement(Statement* statement)
2861 {
2862 this->statements_.push_back(statement);
2863 }
2864
2865 // Add a statement to the front of a block. This is slow but is only
2866 // used for reference counts of parameters.
2867
2868 void
2869 Block::add_statement_at_front(Statement* statement)
2870 {
2871 this->statements_.insert(this->statements_.begin(), statement);
2872 }
2873
2874 // Replace a statement in a block.
2875
2876 void
2877 Block::replace_statement(size_t index, Statement* s)
2878 {
2879 gcc_assert(index < this->statements_.size());
2880 this->statements_[index] = s;
2881 }
2882
2883 // Add a statement before another statement.
2884
2885 void
2886 Block::insert_statement_before(size_t index, Statement* s)
2887 {
2888 gcc_assert(index < this->statements_.size());
2889 this->statements_.insert(this->statements_.begin() + index, s);
2890 }
2891
2892 // Add a statement after another statement.
2893
2894 void
2895 Block::insert_statement_after(size_t index, Statement* s)
2896 {
2897 gcc_assert(index < this->statements_.size());
2898 this->statements_.insert(this->statements_.begin() + index + 1, s);
2899 }
2900
2901 // Traverse the tree.
2902
2903 int
2904 Block::traverse(Traverse* traverse)
2905 {
2906 unsigned int traverse_mask = traverse->traverse_mask();
2907
2908 if ((traverse_mask & Traverse::traverse_blocks) != 0)
2909 {
2910 int t = traverse->block(this);
2911 if (t == TRAVERSE_EXIT)
2912 return TRAVERSE_EXIT;
2913 else if (t == TRAVERSE_SKIP_COMPONENTS)
2914 return TRAVERSE_CONTINUE;
2915 }
2916
2917 if ((traverse_mask
2918 & (Traverse::traverse_variables
2919 | Traverse::traverse_constants
2920 | Traverse::traverse_expressions
2921 | Traverse::traverse_types)) != 0)
2922 {
2923 for (Bindings::const_definitions_iterator pb =
2924 this->bindings_->begin_definitions();
2925 pb != this->bindings_->end_definitions();
2926 ++pb)
2927 {
2928 switch ((*pb)->classification())
2929 {
2930 case Named_object::NAMED_OBJECT_CONST:
2931 if ((traverse_mask & Traverse::traverse_constants) != 0)
2932 {
2933 if (traverse->constant(*pb, false) == TRAVERSE_EXIT)
2934 return TRAVERSE_EXIT;
2935 }
2936 if ((traverse_mask & Traverse::traverse_types) != 0
2937 || (traverse_mask & Traverse::traverse_expressions) != 0)
2938 {
2939 Type* t = (*pb)->const_value()->type();
2940 if (t != NULL
2941 && Type::traverse(t, traverse) == TRAVERSE_EXIT)
2942 return TRAVERSE_EXIT;
2943 }
2944 if ((traverse_mask & Traverse::traverse_expressions) != 0
2945 || (traverse_mask & Traverse::traverse_types) != 0)
2946 {
2947 if ((*pb)->const_value()->traverse_expression(traverse)
2948 == TRAVERSE_EXIT)
2949 return TRAVERSE_EXIT;
2950 }
2951 break;
2952
2953 case Named_object::NAMED_OBJECT_VAR:
2954 case Named_object::NAMED_OBJECT_RESULT_VAR:
2955 if ((traverse_mask & Traverse::traverse_variables) != 0)
2956 {
2957 if (traverse->variable(*pb) == TRAVERSE_EXIT)
2958 return TRAVERSE_EXIT;
2959 }
2960 if (((traverse_mask & Traverse::traverse_types) != 0
2961 || (traverse_mask & Traverse::traverse_expressions) != 0)
2962 && ((*pb)->is_result_variable()
2963 || (*pb)->var_value()->has_type()))
2964 {
2965 Type* t = ((*pb)->is_variable()
2966 ? (*pb)->var_value()->type()
2967 : (*pb)->result_var_value()->type());
2968 if (t != NULL
2969 && Type::traverse(t, traverse) == TRAVERSE_EXIT)
2970 return TRAVERSE_EXIT;
2971 }
2972 if ((*pb)->is_variable()
2973 && ((traverse_mask & Traverse::traverse_expressions) != 0
2974 || (traverse_mask & Traverse::traverse_types) != 0))
2975 {
2976 if ((*pb)->var_value()->traverse_expression(traverse)
2977 == TRAVERSE_EXIT)
2978 return TRAVERSE_EXIT;
2979 }
2980 break;
2981
2982 case Named_object::NAMED_OBJECT_FUNC:
2983 case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
2984 // FIXME: Where will nested functions be found?
2985 gcc_unreachable();
2986
2987 case Named_object::NAMED_OBJECT_TYPE:
2988 if ((traverse_mask & Traverse::traverse_types) != 0
2989 || (traverse_mask & Traverse::traverse_expressions) != 0)
2990 {
2991 if (Type::traverse((*pb)->type_value(), traverse)
2992 == TRAVERSE_EXIT)
2993 return TRAVERSE_EXIT;
2994 }
2995 break;
2996
2997 case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
2998 case Named_object::NAMED_OBJECT_UNKNOWN:
2999 break;
3000
3001 case Named_object::NAMED_OBJECT_PACKAGE:
3002 case Named_object::NAMED_OBJECT_SINK:
3003 gcc_unreachable();
3004
3005 default:
3006 gcc_unreachable();
3007 }
3008 }
3009 }
3010
3011 // No point in checking traverse_mask here--if we got here we always
3012 // want to walk the statements. The traversal can insert new
3013 // statements before or after the current statement. Inserting
3014 // statements before the current statement requires updating I via
3015 // the pointer; those statements will not be traversed. Any new
3016 // statements inserted after the current statement will be traversed
3017 // in their turn.
3018 for (size_t i = 0; i < this->statements_.size(); ++i)
3019 {
3020 if (this->statements_[i]->traverse(this, &i, traverse) == TRAVERSE_EXIT)
3021 return TRAVERSE_EXIT;
3022 }
3023
3024 return TRAVERSE_CONTINUE;
3025 }
3026
3027 // Work out types for unspecified variables and constants.
3028
3029 void
3030 Block::determine_types()
3031 {
3032 for (Bindings::const_definitions_iterator pb =
3033 this->bindings_->begin_definitions();
3034 pb != this->bindings_->end_definitions();
3035 ++pb)
3036 {
3037 if ((*pb)->is_variable())
3038 (*pb)->var_value()->determine_type();
3039 else if ((*pb)->is_const())
3040 (*pb)->const_value()->determine_type();
3041 }
3042
3043 for (std::vector<Statement*>::const_iterator ps = this->statements_.begin();
3044 ps != this->statements_.end();
3045 ++ps)
3046 (*ps)->determine_types();
3047 }
3048
3049 // Return true if the statements in this block may fall through.
3050
3051 bool
3052 Block::may_fall_through() const
3053 {
3054 if (this->statements_.empty())
3055 return true;
3056 return this->statements_.back()->may_fall_through();
3057 }
3058
3059 // Class Variable.
3060
3061 Variable::Variable(Type* type, Expression* init, bool is_global,
3062 bool is_parameter, bool is_receiver,
3063 source_location location)
3064 : type_(type), init_(init), preinit_(NULL), location_(location),
3065 is_global_(is_global), is_parameter_(is_parameter),
3066 is_receiver_(is_receiver), is_varargs_parameter_(false),
3067 is_address_taken_(false), seen_(false), init_is_lowered_(false),
3068 type_from_init_tuple_(false), type_from_range_index_(false),
3069 type_from_range_value_(false), type_from_chan_element_(false),
3070 is_type_switch_var_(false)
3071 {
3072 gcc_assert(type != NULL || init != NULL);
3073 gcc_assert(!is_parameter || init == NULL);
3074 }
3075
3076 // Traverse the initializer expression.
3077
3078 int
3079 Variable::traverse_expression(Traverse* traverse)
3080 {
3081 if (this->preinit_ != NULL)
3082 {
3083 if (this->preinit_->traverse(traverse) == TRAVERSE_EXIT)
3084 return TRAVERSE_EXIT;
3085 }
3086 if (this->init_ != NULL)
3087 {
3088 if (Expression::traverse(&this->init_, traverse) == TRAVERSE_EXIT)
3089 return TRAVERSE_EXIT;
3090 }
3091 return TRAVERSE_CONTINUE;
3092 }
3093
3094 // Lower the initialization expression after parsing is complete.
3095
3096 void
3097 Variable::lower_init_expression(Gogo* gogo, Named_object* function)
3098 {
3099 if (this->init_ != NULL && !this->init_is_lowered_)
3100 {
3101 if (this->seen_)
3102 {
3103 // We will give an error elsewhere, this is just to prevent
3104 // an infinite loop.
3105 return;
3106 }
3107 this->seen_ = true;
3108
3109 gogo->lower_expression(function, &this->init_);
3110
3111 this->seen_ = false;
3112
3113 this->init_is_lowered_ = true;
3114 }
3115 }
3116
3117 // Get the preinit block.
3118
3119 Block*
3120 Variable::preinit_block()
3121 {
3122 gcc_assert(this->is_global_);
3123 if (this->preinit_ == NULL)
3124 this->preinit_ = new Block(NULL, this->location());
3125 return this->preinit_;
3126 }
3127
3128 // Add a statement to be run before the initialization expression.
3129
3130 void
3131 Variable::add_preinit_statement(Statement* s)
3132 {
3133 Block* b = this->preinit_block();
3134 b->add_statement(s);
3135 b->set_end_location(s->location());
3136 }
3137
3138 // In an assignment which sets a variable to a tuple of EXPR, return
3139 // the type of the first element of the tuple.
3140
3141 Type*
3142 Variable::type_from_tuple(Expression* expr, bool report_error) const
3143 {
3144 if (expr->map_index_expression() != NULL)
3145 return expr->map_index_expression()->get_map_type()->val_type();
3146 else if (expr->receive_expression() != NULL)
3147 {
3148 Expression* channel = expr->receive_expression()->channel();
3149 Type* channel_type = channel->type();
3150 if (channel_type->is_error_type())
3151 return Type::make_error_type();
3152 return channel_type->channel_type()->element_type();
3153 }
3154 else
3155 {
3156 if (report_error)
3157 error_at(this->location(), "invalid tuple definition");
3158 return Type::make_error_type();
3159 }
3160 }
3161
3162 // Given EXPR used in a range clause, return either the index type or
3163 // the value type of the range, depending upon GET_INDEX_TYPE.
3164
3165 Type*
3166 Variable::type_from_range(Expression* expr, bool get_index_type,
3167 bool report_error) const
3168 {
3169 Type* t = expr->type();
3170 if (t->array_type() != NULL
3171 || (t->points_to() != NULL
3172 && t->points_to()->array_type() != NULL
3173 && !t->points_to()->is_open_array_type()))
3174 {
3175 if (get_index_type)
3176 return Type::lookup_integer_type("int");
3177 else
3178 return t->deref()->array_type()->element_type();
3179 }
3180 else if (t->is_string_type())
3181 return Type::lookup_integer_type("int");
3182 else if (t->map_type() != NULL)
3183 {
3184 if (get_index_type)
3185 return t->map_type()->key_type();
3186 else
3187 return t->map_type()->val_type();
3188 }
3189 else if (t->channel_type() != NULL)
3190 {
3191 if (get_index_type)
3192 return t->channel_type()->element_type();
3193 else
3194 {
3195 if (report_error)
3196 error_at(this->location(),
3197 "invalid definition of value variable for channel range");
3198 return Type::make_error_type();
3199 }
3200 }
3201 else
3202 {
3203 if (report_error)
3204 error_at(this->location(), "invalid type for range clause");
3205 return Type::make_error_type();
3206 }
3207 }
3208
3209 // EXPR should be a channel. Return the channel's element type.
3210
3211 Type*
3212 Variable::type_from_chan_element(Expression* expr, bool report_error) const
3213 {
3214 Type* t = expr->type();
3215 if (t->channel_type() != NULL)
3216 return t->channel_type()->element_type();
3217 else
3218 {
3219 if (report_error)
3220 error_at(this->location(), "expected channel");
3221 return Type::make_error_type();
3222 }
3223 }
3224
3225 // Return the type of the Variable. This may be called before
3226 // Variable::determine_type is called, which means that we may need to
3227 // get the type from the initializer. FIXME: If we combine lowering
3228 // with type determination, then this should be unnecessary.
3229
3230 Type*
3231 Variable::type()
3232 {
3233 // A variable in a type switch with a nil case will have the wrong
3234 // type here. This gets fixed up in determine_type, below.
3235 Type* type = this->type_;
3236 Expression* init = this->init_;
3237 if (this->is_type_switch_var_
3238 && this->type_->is_nil_constant_as_type())
3239 {
3240 Type_guard_expression* tge = this->init_->type_guard_expression();
3241 gcc_assert(tge != NULL);
3242 init = tge->expr();
3243 type = NULL;
3244 }
3245
3246 if (this->seen_)
3247 {
3248 if (this->type_ == NULL || !this->type_->is_error_type())
3249 {
3250 error_at(this->location_, "variable initializer refers to itself");
3251 this->type_ = Type::make_error_type();
3252 }
3253 return this->type_;
3254 }
3255
3256 this->seen_ = true;
3257
3258 if (type != NULL)
3259 ;
3260 else if (this->type_from_init_tuple_)
3261 type = this->type_from_tuple(init, false);
3262 else if (this->type_from_range_index_ || this->type_from_range_value_)
3263 type = this->type_from_range(init, this->type_from_range_index_, false);
3264 else if (this->type_from_chan_element_)
3265 type = this->type_from_chan_element(init, false);
3266 else
3267 {
3268 gcc_assert(init != NULL);
3269 type = init->type();
3270 gcc_assert(type != NULL);
3271
3272 // Variables should not have abstract types.
3273 if (type->is_abstract())
3274 type = type->make_non_abstract_type();
3275
3276 if (type->is_void_type())
3277 type = Type::make_error_type();
3278 }
3279
3280 this->seen_ = false;
3281
3282 return type;
3283 }
3284
3285 // Fetch the type from a const pointer, in which case it should have
3286 // been set already.
3287
3288 Type*
3289 Variable::type() const
3290 {
3291 gcc_assert(this->type_ != NULL);
3292 return this->type_;
3293 }
3294
3295 // Set the type if necessary.
3296
3297 void
3298 Variable::determine_type()
3299 {
3300 // A variable in a type switch with a nil case will have the wrong
3301 // type here. It will have an initializer which is a type guard.
3302 // We want to initialize it to the value without the type guard, and
3303 // use the type of that value as well.
3304 if (this->is_type_switch_var_ && this->type_->is_nil_constant_as_type())
3305 {
3306 Type_guard_expression* tge = this->init_->type_guard_expression();
3307 gcc_assert(tge != NULL);
3308 this->type_ = NULL;
3309 this->init_ = tge->expr();
3310 }
3311
3312 if (this->init_ == NULL)
3313 gcc_assert(this->type_ != NULL && !this->type_->is_abstract());
3314 else if (this->type_from_init_tuple_)
3315 {
3316 Expression *init = this->init_;
3317 init->determine_type_no_context();
3318 this->type_ = this->type_from_tuple(init, true);
3319 this->init_ = NULL;
3320 }
3321 else if (this->type_from_range_index_ || this->type_from_range_value_)
3322 {
3323 Expression* init = this->init_;
3324 init->determine_type_no_context();
3325 this->type_ = this->type_from_range(init, this->type_from_range_index_,
3326 true);
3327 this->init_ = NULL;
3328 }
3329 else
3330 {
3331 // type_from_chan_element_ should have been cleared during
3332 // lowering.
3333 gcc_assert(!this->type_from_chan_element_);
3334
3335 Type_context context(this->type_, false);
3336 this->init_->determine_type(&context);
3337 if (this->type_ == NULL)
3338 {
3339 Type* type = this->init_->type();
3340 gcc_assert(type != NULL);
3341 if (type->is_abstract())
3342 type = type->make_non_abstract_type();
3343
3344 if (type->is_void_type())
3345 {
3346 error_at(this->location_, "variable has no type");
3347 type = Type::make_error_type();
3348 }
3349 else if (type->is_nil_type())
3350 {
3351 error_at(this->location_, "variable defined to nil type");
3352 type = Type::make_error_type();
3353 }
3354 else if (type->is_call_multiple_result_type())
3355 {
3356 error_at(this->location_,
3357 "single variable set to multiple value function call");
3358 type = Type::make_error_type();
3359 }
3360
3361 this->type_ = type;
3362 }
3363 }
3364 }
3365
3366 // Export the variable
3367
3368 void
3369 Variable::export_var(Export* exp, const std::string& name) const
3370 {
3371 gcc_assert(this->is_global_);
3372 exp->write_c_string("var ");
3373 exp->write_string(name);
3374 exp->write_c_string(" ");
3375 exp->write_type(this->type());
3376 exp->write_c_string(";\n");
3377 }
3378
3379 // Import a variable.
3380
3381 void
3382 Variable::import_var(Import* imp, std::string* pname, Type** ptype)
3383 {
3384 imp->require_c_string("var ");
3385 *pname = imp->read_identifier();
3386 imp->require_c_string(" ");
3387 *ptype = imp->read_type();
3388 imp->require_c_string(";\n");
3389 }
3390
3391 // Class Named_constant.
3392
3393 // Traverse the initializer expression.
3394
3395 int
3396 Named_constant::traverse_expression(Traverse* traverse)
3397 {
3398 return Expression::traverse(&this->expr_, traverse);
3399 }
3400
3401 // Determine the type of the constant.
3402
3403 void
3404 Named_constant::determine_type()
3405 {
3406 if (this->type_ != NULL)
3407 {
3408 Type_context context(this->type_, false);
3409 this->expr_->determine_type(&context);
3410 }
3411 else
3412 {
3413 // A constant may have an abstract type.
3414 Type_context context(NULL, true);
3415 this->expr_->determine_type(&context);
3416 this->type_ = this->expr_->type();
3417 gcc_assert(this->type_ != NULL);
3418 }
3419 }
3420
3421 // Indicate that we found and reported an error for this constant.
3422
3423 void
3424 Named_constant::set_error()
3425 {
3426 this->type_ = Type::make_error_type();
3427 this->expr_ = Expression::make_error(this->location_);
3428 }
3429
3430 // Export a constant.
3431
3432 void
3433 Named_constant::export_const(Export* exp, const std::string& name) const
3434 {
3435 exp->write_c_string("const ");
3436 exp->write_string(name);
3437 exp->write_c_string(" ");
3438 if (!this->type_->is_abstract())
3439 {
3440 exp->write_type(this->type_);
3441 exp->write_c_string(" ");
3442 }
3443 exp->write_c_string("= ");
3444 this->expr()->export_expression(exp);
3445 exp->write_c_string(";\n");
3446 }
3447
3448 // Import a constant.
3449
3450 void
3451 Named_constant::import_const(Import* imp, std::string* pname, Type** ptype,
3452 Expression** pexpr)
3453 {
3454 imp->require_c_string("const ");
3455 *pname = imp->read_identifier();
3456 imp->require_c_string(" ");
3457 if (imp->peek_char() == '=')
3458 *ptype = NULL;
3459 else
3460 {
3461 *ptype = imp->read_type();
3462 imp->require_c_string(" ");
3463 }
3464 imp->require_c_string("= ");
3465 *pexpr = Expression::import_expression(imp);
3466 imp->require_c_string(";\n");
3467 }
3468
3469 // Add a method.
3470
3471 Named_object*
3472 Type_declaration::add_method(const std::string& name, Function* function)
3473 {
3474 Named_object* ret = Named_object::make_function(name, NULL, function);
3475 this->methods_.push_back(ret);
3476 return ret;
3477 }
3478
3479 // Add a method declaration.
3480
3481 Named_object*
3482 Type_declaration::add_method_declaration(const std::string& name,
3483 Function_type* type,
3484 source_location location)
3485 {
3486 Named_object* ret = Named_object::make_function_declaration(name, NULL, type,
3487 location);
3488 this->methods_.push_back(ret);
3489 return ret;
3490 }
3491
3492 // Return whether any methods ere defined.
3493
3494 bool
3495 Type_declaration::has_methods() const
3496 {
3497 return !this->methods_.empty();
3498 }
3499
3500 // Define methods for the real type.
3501
3502 void
3503 Type_declaration::define_methods(Named_type* nt)
3504 {
3505 for (Methods::const_iterator p = this->methods_.begin();
3506 p != this->methods_.end();
3507 ++p)
3508 nt->add_existing_method(*p);
3509 }
3510
3511 // We are using the type. Return true if we should issue a warning.
3512
3513 bool
3514 Type_declaration::using_type()
3515 {
3516 bool ret = !this->issued_warning_;
3517 this->issued_warning_ = true;
3518 return ret;
3519 }
3520
3521 // Class Unknown_name.
3522
3523 // Set the real named object.
3524
3525 void
3526 Unknown_name::set_real_named_object(Named_object* no)
3527 {
3528 gcc_assert(this->real_named_object_ == NULL);
3529 gcc_assert(!no->is_unknown());
3530 this->real_named_object_ = no;
3531 }
3532
3533 // Class Named_object.
3534
3535 Named_object::Named_object(const std::string& name,
3536 const Package* package,
3537 Classification classification)
3538 : name_(name), package_(package), classification_(classification),
3539 tree_(NULL)
3540 {
3541 if (Gogo::is_sink_name(name))
3542 gcc_assert(classification == NAMED_OBJECT_SINK);
3543 }
3544
3545 // Make an unknown name. This is used by the parser. The name must
3546 // be resolved later. Unknown names are only added in the current
3547 // package.
3548
3549 Named_object*
3550 Named_object::make_unknown_name(const std::string& name,
3551 source_location location)
3552 {
3553 Named_object* named_object = new Named_object(name, NULL,
3554 NAMED_OBJECT_UNKNOWN);
3555 Unknown_name* value = new Unknown_name(location);
3556 named_object->u_.unknown_value = value;
3557 return named_object;
3558 }
3559
3560 // Make a constant.
3561
3562 Named_object*
3563 Named_object::make_constant(const Typed_identifier& tid,
3564 const Package* package, Expression* expr,
3565 int iota_value)
3566 {
3567 Named_object* named_object = new Named_object(tid.name(), package,
3568 NAMED_OBJECT_CONST);
3569 Named_constant* named_constant = new Named_constant(tid.type(), expr,
3570 iota_value,
3571 tid.location());
3572 named_object->u_.const_value = named_constant;
3573 return named_object;
3574 }
3575
3576 // Make a named type.
3577
3578 Named_object*
3579 Named_object::make_type(const std::string& name, const Package* package,
3580 Type* type, source_location location)
3581 {
3582 Named_object* named_object = new Named_object(name, package,
3583 NAMED_OBJECT_TYPE);
3584 Named_type* named_type = Type::make_named_type(named_object, type, location);
3585 named_object->u_.type_value = named_type;
3586 return named_object;
3587 }
3588
3589 // Make a type declaration.
3590
3591 Named_object*
3592 Named_object::make_type_declaration(const std::string& name,
3593 const Package* package,
3594 source_location location)
3595 {
3596 Named_object* named_object = new Named_object(name, package,
3597 NAMED_OBJECT_TYPE_DECLARATION);
3598 Type_declaration* type_declaration = new Type_declaration(location);
3599 named_object->u_.type_declaration = type_declaration;
3600 return named_object;
3601 }
3602
3603 // Make a variable.
3604
3605 Named_object*
3606 Named_object::make_variable(const std::string& name, const Package* package,
3607 Variable* variable)
3608 {
3609 Named_object* named_object = new Named_object(name, package,
3610 NAMED_OBJECT_VAR);
3611 named_object->u_.var_value = variable;
3612 return named_object;
3613 }
3614
3615 // Make a result variable.
3616
3617 Named_object*
3618 Named_object::make_result_variable(const std::string& name,
3619 Result_variable* result)
3620 {
3621 Named_object* named_object = new Named_object(name, NULL,
3622 NAMED_OBJECT_RESULT_VAR);
3623 named_object->u_.result_var_value = result;
3624 return named_object;
3625 }
3626
3627 // Make a sink. This is used for the special blank identifier _.
3628
3629 Named_object*
3630 Named_object::make_sink()
3631 {
3632 return new Named_object("_", NULL, NAMED_OBJECT_SINK);
3633 }
3634
3635 // Make a named function.
3636
3637 Named_object*
3638 Named_object::make_function(const std::string& name, const Package* package,
3639 Function* function)
3640 {
3641 Named_object* named_object = new Named_object(name, package,
3642 NAMED_OBJECT_FUNC);
3643 named_object->u_.func_value = function;
3644 return named_object;
3645 }
3646
3647 // Make a function declaration.
3648
3649 Named_object*
3650 Named_object::make_function_declaration(const std::string& name,
3651 const Package* package,
3652 Function_type* fntype,
3653 source_location location)
3654 {
3655 Named_object* named_object = new Named_object(name, package,
3656 NAMED_OBJECT_FUNC_DECLARATION);
3657 Function_declaration *func_decl = new Function_declaration(fntype, location);
3658 named_object->u_.func_declaration_value = func_decl;
3659 return named_object;
3660 }
3661
3662 // Make a package.
3663
3664 Named_object*
3665 Named_object::make_package(const std::string& alias, Package* package)
3666 {
3667 Named_object* named_object = new Named_object(alias, NULL,
3668 NAMED_OBJECT_PACKAGE);
3669 named_object->u_.package_value = package;
3670 return named_object;
3671 }
3672
3673 // Return the name to use in an error message.
3674
3675 std::string
3676 Named_object::message_name() const
3677 {
3678 if (this->package_ == NULL)
3679 return Gogo::message_name(this->name_);
3680 std::string ret = Gogo::message_name(this->package_->name());
3681 ret += '.';
3682 ret += Gogo::message_name(this->name_);
3683 return ret;
3684 }
3685
3686 // Set the type when a declaration is defined.
3687
3688 void
3689 Named_object::set_type_value(Named_type* named_type)
3690 {
3691 gcc_assert(this->classification_ == NAMED_OBJECT_TYPE_DECLARATION);
3692 Type_declaration* td = this->u_.type_declaration;
3693 td->define_methods(named_type);
3694 Named_object* in_function = td->in_function();
3695 if (in_function != NULL)
3696 named_type->set_in_function(in_function);
3697 delete td;
3698 this->classification_ = NAMED_OBJECT_TYPE;
3699 this->u_.type_value = named_type;
3700 }
3701
3702 // Define a function which was previously declared.
3703
3704 void
3705 Named_object::set_function_value(Function* function)
3706 {
3707 gcc_assert(this->classification_ == NAMED_OBJECT_FUNC_DECLARATION);
3708 this->classification_ = NAMED_OBJECT_FUNC;
3709 // FIXME: We should free the old value.
3710 this->u_.func_value = function;
3711 }
3712
3713 // Declare an unknown object as a type declaration.
3714
3715 void
3716 Named_object::declare_as_type()
3717 {
3718 gcc_assert(this->classification_ == NAMED_OBJECT_UNKNOWN);
3719 Unknown_name* unk = this->u_.unknown_value;
3720 this->classification_ = NAMED_OBJECT_TYPE_DECLARATION;
3721 this->u_.type_declaration = new Type_declaration(unk->location());
3722 delete unk;
3723 }
3724
3725 // Return the location of a named object.
3726
3727 source_location
3728 Named_object::location() const
3729 {
3730 switch (this->classification_)
3731 {
3732 default:
3733 case NAMED_OBJECT_UNINITIALIZED:
3734 gcc_unreachable();
3735
3736 case NAMED_OBJECT_UNKNOWN:
3737 return this->unknown_value()->location();
3738
3739 case NAMED_OBJECT_CONST:
3740 return this->const_value()->location();
3741
3742 case NAMED_OBJECT_TYPE:
3743 return this->type_value()->location();
3744
3745 case NAMED_OBJECT_TYPE_DECLARATION:
3746 return this->type_declaration_value()->location();
3747
3748 case NAMED_OBJECT_VAR:
3749 return this->var_value()->location();
3750
3751 case NAMED_OBJECT_RESULT_VAR:
3752 return this->result_var_value()->function()->location();
3753
3754 case NAMED_OBJECT_SINK:
3755 gcc_unreachable();
3756
3757 case NAMED_OBJECT_FUNC:
3758 return this->func_value()->location();
3759
3760 case NAMED_OBJECT_FUNC_DECLARATION:
3761 return this->func_declaration_value()->location();
3762
3763 case NAMED_OBJECT_PACKAGE:
3764 return this->package_value()->location();
3765 }
3766 }
3767
3768 // Export a named object.
3769
3770 void
3771 Named_object::export_named_object(Export* exp) const
3772 {
3773 switch (this->classification_)
3774 {
3775 default:
3776 case NAMED_OBJECT_UNINITIALIZED:
3777 case NAMED_OBJECT_UNKNOWN:
3778 gcc_unreachable();
3779
3780 case NAMED_OBJECT_CONST:
3781 this->const_value()->export_const(exp, this->name_);
3782 break;
3783
3784 case NAMED_OBJECT_TYPE:
3785 this->type_value()->export_named_type(exp, this->name_);
3786 break;
3787
3788 case NAMED_OBJECT_TYPE_DECLARATION:
3789 error_at(this->type_declaration_value()->location(),
3790 "attempt to export %<%s%> which was declared but not defined",
3791 this->message_name().c_str());
3792 break;
3793
3794 case NAMED_OBJECT_FUNC_DECLARATION:
3795 this->func_declaration_value()->export_func(exp, this->name_);
3796 break;
3797
3798 case NAMED_OBJECT_VAR:
3799 this->var_value()->export_var(exp, this->name_);
3800 break;
3801
3802 case NAMED_OBJECT_RESULT_VAR:
3803 case NAMED_OBJECT_SINK:
3804 gcc_unreachable();
3805
3806 case NAMED_OBJECT_FUNC:
3807 this->func_value()->export_func(exp, this->name_);
3808 break;
3809 }
3810 }
3811
3812 // Class Bindings.
3813
3814 Bindings::Bindings(Bindings* enclosing)
3815 : enclosing_(enclosing), named_objects_(), bindings_()
3816 {
3817 }
3818
3819 // Clear imports.
3820
3821 void
3822 Bindings::clear_file_scope()
3823 {
3824 Contour::iterator p = this->bindings_.begin();
3825 while (p != this->bindings_.end())
3826 {
3827 bool keep;
3828 if (p->second->package() != NULL)
3829 keep = false;
3830 else if (p->second->is_package())
3831 keep = false;
3832 else if (p->second->is_function()
3833 && !p->second->func_value()->type()->is_method()
3834 && Gogo::unpack_hidden_name(p->second->name()) == "init")
3835 keep = false;
3836 else
3837 keep = true;
3838
3839 if (keep)
3840 ++p;
3841 else
3842 p = this->bindings_.erase(p);
3843 }
3844 }
3845
3846 // Look up a symbol.
3847
3848 Named_object*
3849 Bindings::lookup(const std::string& name) const
3850 {
3851 Contour::const_iterator p = this->bindings_.find(name);
3852 if (p != this->bindings_.end())
3853 return p->second->resolve();
3854 else if (this->enclosing_ != NULL)
3855 return this->enclosing_->lookup(name);
3856 else
3857 return NULL;
3858 }
3859
3860 // Look up a symbol locally.
3861
3862 Named_object*
3863 Bindings::lookup_local(const std::string& name) const
3864 {
3865 Contour::const_iterator p = this->bindings_.find(name);
3866 if (p == this->bindings_.end())
3867 return NULL;
3868 return p->second;
3869 }
3870
3871 // Remove an object from a set of bindings. This is used for a
3872 // special case in thunks for functions which call recover.
3873
3874 void
3875 Bindings::remove_binding(Named_object* no)
3876 {
3877 Contour::iterator pb = this->bindings_.find(no->name());
3878 gcc_assert(pb != this->bindings_.end());
3879 this->bindings_.erase(pb);
3880 for (std::vector<Named_object*>::iterator pn = this->named_objects_.begin();
3881 pn != this->named_objects_.end();
3882 ++pn)
3883 {
3884 if (*pn == no)
3885 {
3886 this->named_objects_.erase(pn);
3887 return;
3888 }
3889 }
3890 gcc_unreachable();
3891 }
3892
3893 // Add a method to the list of objects. This is not added to the
3894 // lookup table. This is so that we have a single list of objects
3895 // declared at the top level, which we walk through when it's time to
3896 // convert to trees.
3897
3898 void
3899 Bindings::add_method(Named_object* method)
3900 {
3901 this->named_objects_.push_back(method);
3902 }
3903
3904 // Add a generic Named_object to a Contour.
3905
3906 Named_object*
3907 Bindings::add_named_object_to_contour(Contour* contour,
3908 Named_object* named_object)
3909 {
3910 gcc_assert(named_object == named_object->resolve());
3911 const std::string& name(named_object->name());
3912 gcc_assert(!Gogo::is_sink_name(name));
3913
3914 std::pair<Contour::iterator, bool> ins =
3915 contour->insert(std::make_pair(name, named_object));
3916 if (!ins.second)
3917 {
3918 // The name was already there.
3919 if (named_object->package() != NULL
3920 && ins.first->second->package() == named_object->package()
3921 && (ins.first->second->classification()
3922 == named_object->classification()))
3923 {
3924 // This is a second import of the same object.
3925 return ins.first->second;
3926 }
3927 ins.first->second = this->new_definition(ins.first->second,
3928 named_object);
3929 return ins.first->second;
3930 }
3931 else
3932 {
3933 // Don't push declarations on the list. We push them on when
3934 // and if we find the definitions. That way we genericize the
3935 // functions in order.
3936 if (!named_object->is_type_declaration()
3937 && !named_object->is_function_declaration()
3938 && !named_object->is_unknown())
3939 this->named_objects_.push_back(named_object);
3940 return named_object;
3941 }
3942 }
3943
3944 // We had an existing named object OLD_OBJECT, and we've seen a new
3945 // one NEW_OBJECT with the same name. FIXME: This does not free the
3946 // new object when we don't need it.
3947
3948 Named_object*
3949 Bindings::new_definition(Named_object* old_object, Named_object* new_object)
3950 {
3951 std::string reason;
3952 switch (old_object->classification())
3953 {
3954 default:
3955 case Named_object::NAMED_OBJECT_UNINITIALIZED:
3956 gcc_unreachable();
3957
3958 case Named_object::NAMED_OBJECT_UNKNOWN:
3959 {
3960 Named_object* real = old_object->unknown_value()->real_named_object();
3961 if (real != NULL)
3962 return this->new_definition(real, new_object);
3963 gcc_assert(!new_object->is_unknown());
3964 old_object->unknown_value()->set_real_named_object(new_object);
3965 if (!new_object->is_type_declaration()
3966 && !new_object->is_function_declaration())
3967 this->named_objects_.push_back(new_object);
3968 return new_object;
3969 }
3970
3971 case Named_object::NAMED_OBJECT_CONST:
3972 break;
3973
3974 case Named_object::NAMED_OBJECT_TYPE:
3975 if (new_object->is_type_declaration())
3976 return old_object;
3977 break;
3978
3979 case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
3980 if (new_object->is_type_declaration())
3981 return old_object;
3982 if (new_object->is_type())
3983 {
3984 old_object->set_type_value(new_object->type_value());
3985 new_object->type_value()->set_named_object(old_object);
3986 this->named_objects_.push_back(old_object);
3987 return old_object;
3988 }
3989 break;
3990
3991 case Named_object::NAMED_OBJECT_VAR:
3992 case Named_object::NAMED_OBJECT_RESULT_VAR:
3993 break;
3994
3995 case Named_object::NAMED_OBJECT_SINK:
3996 gcc_unreachable();
3997
3998 case Named_object::NAMED_OBJECT_FUNC:
3999 if (new_object->is_function_declaration())
4000 {
4001 if (!new_object->func_declaration_value()->asm_name().empty())
4002 sorry("__asm__ for function definitions");
4003 Function_type* old_type = old_object->func_value()->type();
4004 Function_type* new_type =
4005 new_object->func_declaration_value()->type();
4006 if (old_type->is_valid_redeclaration(new_type, &reason))
4007 return old_object;
4008 }
4009 break;
4010
4011 case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
4012 {
4013 Function_type* old_type = old_object->func_declaration_value()->type();
4014 if (new_object->is_function_declaration())
4015 {
4016 Function_type* new_type =
4017 new_object->func_declaration_value()->type();
4018 if (old_type->is_valid_redeclaration(new_type, &reason))
4019 return old_object;
4020 }
4021 if (new_object->is_function())
4022 {
4023 Function_type* new_type = new_object->func_value()->type();
4024 if (old_type->is_valid_redeclaration(new_type, &reason))
4025 {
4026 if (!old_object->func_declaration_value()->asm_name().empty())
4027 sorry("__asm__ for function definitions");
4028 old_object->set_function_value(new_object->func_value());
4029 this->named_objects_.push_back(old_object);
4030 return old_object;
4031 }
4032 }
4033 }
4034 break;
4035
4036 case Named_object::NAMED_OBJECT_PACKAGE:
4037 if (new_object->is_package()
4038 && (old_object->package_value()->name()
4039 == new_object->package_value()->name()))
4040 return old_object;
4041
4042 break;
4043 }
4044
4045 std::string n = old_object->message_name();
4046 if (reason.empty())
4047 error_at(new_object->location(), "redefinition of %qs", n.c_str());
4048 else
4049 error_at(new_object->location(), "redefinition of %qs: %s", n.c_str(),
4050 reason.c_str());
4051
4052 inform(old_object->location(), "previous definition of %qs was here",
4053 n.c_str());
4054
4055 return old_object;
4056 }
4057
4058 // Add a named type.
4059
4060 Named_object*
4061 Bindings::add_named_type(Named_type* named_type)
4062 {
4063 return this->add_named_object(named_type->named_object());
4064 }
4065
4066 // Add a function.
4067
4068 Named_object*
4069 Bindings::add_function(const std::string& name, const Package* package,
4070 Function* function)
4071 {
4072 return this->add_named_object(Named_object::make_function(name, package,
4073 function));
4074 }
4075
4076 // Add a function declaration.
4077
4078 Named_object*
4079 Bindings::add_function_declaration(const std::string& name,
4080 const Package* package,
4081 Function_type* type,
4082 source_location location)
4083 {
4084 Named_object* no = Named_object::make_function_declaration(name, package,
4085 type, location);
4086 return this->add_named_object(no);
4087 }
4088
4089 // Define a type which was previously declared.
4090
4091 void
4092 Bindings::define_type(Named_object* no, Named_type* type)
4093 {
4094 no->set_type_value(type);
4095 this->named_objects_.push_back(no);
4096 }
4097
4098 // Traverse bindings.
4099
4100 int
4101 Bindings::traverse(Traverse* traverse, bool is_global)
4102 {
4103 unsigned int traverse_mask = traverse->traverse_mask();
4104
4105 // We don't use an iterator because we permit the traversal to add
4106 // new global objects.
4107 for (size_t i = 0; i < this->named_objects_.size(); ++i)
4108 {
4109 Named_object* p = this->named_objects_[i];
4110 switch (p->classification())
4111 {
4112 case Named_object::NAMED_OBJECT_CONST:
4113 if ((traverse_mask & Traverse::traverse_constants) != 0)
4114 {
4115 if (traverse->constant(p, is_global) == TRAVERSE_EXIT)
4116 return TRAVERSE_EXIT;
4117 }
4118 if ((traverse_mask & Traverse::traverse_types) != 0
4119 || (traverse_mask & Traverse::traverse_expressions) != 0)
4120 {
4121 Type* t = p->const_value()->type();
4122 if (t != NULL
4123 && Type::traverse(t, traverse) == TRAVERSE_EXIT)
4124 return TRAVERSE_EXIT;
4125 }
4126 if ((traverse_mask & Traverse::traverse_expressions) != 0)
4127 {
4128 if (p->const_value()->traverse_expression(traverse)
4129 == TRAVERSE_EXIT)
4130 return TRAVERSE_EXIT;
4131 }
4132 break;
4133
4134 case Named_object::NAMED_OBJECT_VAR:
4135 case Named_object::NAMED_OBJECT_RESULT_VAR:
4136 if ((traverse_mask & Traverse::traverse_variables) != 0)
4137 {
4138 if (traverse->variable(p) == TRAVERSE_EXIT)
4139 return TRAVERSE_EXIT;
4140 }
4141 if (((traverse_mask & Traverse::traverse_types) != 0
4142 || (traverse_mask & Traverse::traverse_expressions) != 0)
4143 && (p->is_result_variable()
4144 || p->var_value()->has_type()))
4145 {
4146 Type* t = (p->is_variable()
4147 ? p->var_value()->type()
4148 : p->result_var_value()->type());
4149 if (t != NULL
4150 && Type::traverse(t, traverse) == TRAVERSE_EXIT)
4151 return TRAVERSE_EXIT;
4152 }
4153 if (p->is_variable()
4154 && (traverse_mask & Traverse::traverse_expressions) != 0)
4155 {
4156 if (p->var_value()->traverse_expression(traverse)
4157 == TRAVERSE_EXIT)
4158 return TRAVERSE_EXIT;
4159 }
4160 break;
4161
4162 case Named_object::NAMED_OBJECT_FUNC:
4163 if ((traverse_mask & Traverse::traverse_functions) != 0)
4164 {
4165 int t = traverse->function(p);
4166 if (t == TRAVERSE_EXIT)
4167 return TRAVERSE_EXIT;
4168 else if (t == TRAVERSE_SKIP_COMPONENTS)
4169 break;
4170 }
4171
4172 if ((traverse_mask
4173 & (Traverse::traverse_variables
4174 | Traverse::traverse_constants
4175 | Traverse::traverse_functions
4176 | Traverse::traverse_blocks
4177 | Traverse::traverse_statements
4178 | Traverse::traverse_expressions
4179 | Traverse::traverse_types)) != 0)
4180 {
4181 if (p->func_value()->traverse(traverse) == TRAVERSE_EXIT)
4182 return TRAVERSE_EXIT;
4183 }
4184 break;
4185
4186 case Named_object::NAMED_OBJECT_PACKAGE:
4187 // These are traversed in Gogo::traverse.
4188 gcc_assert(is_global);
4189 break;
4190
4191 case Named_object::NAMED_OBJECT_TYPE:
4192 if ((traverse_mask & Traverse::traverse_types) != 0
4193 || (traverse_mask & Traverse::traverse_expressions) != 0)
4194 {
4195 if (Type::traverse(p->type_value(), traverse) == TRAVERSE_EXIT)
4196 return TRAVERSE_EXIT;
4197 }
4198 break;
4199
4200 case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
4201 case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
4202 case Named_object::NAMED_OBJECT_UNKNOWN:
4203 break;
4204
4205 case Named_object::NAMED_OBJECT_SINK:
4206 default:
4207 gcc_unreachable();
4208 }
4209 }
4210
4211 return TRAVERSE_CONTINUE;
4212 }
4213
4214 // Class Package.
4215
4216 Package::Package(const std::string& name, const std::string& unique_prefix,
4217 source_location location)
4218 : name_(name), unique_prefix_(unique_prefix), bindings_(new Bindings(NULL)),
4219 priority_(0), location_(location), used_(false), is_imported_(false),
4220 uses_sink_alias_(false)
4221 {
4222 gcc_assert(!name.empty() && !unique_prefix.empty());
4223 }
4224
4225 // Set the priority. We may see multiple priorities for an imported
4226 // package; we want to use the largest one.
4227
4228 void
4229 Package::set_priority(int priority)
4230 {
4231 if (priority > this->priority_)
4232 this->priority_ = priority;
4233 }
4234
4235 // Determine types of constants. Everything else in a package
4236 // (variables, function declarations) should already have a fixed
4237 // type. Constants may have abstract types.
4238
4239 void
4240 Package::determine_types()
4241 {
4242 Bindings* bindings = this->bindings_;
4243 for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
4244 p != bindings->end_definitions();
4245 ++p)
4246 {
4247 if ((*p)->is_const())
4248 (*p)->const_value()->determine_type();
4249 }
4250 }
4251
4252 // Class Traverse.
4253
4254 // Destructor.
4255
4256 Traverse::~Traverse()
4257 {
4258 if (this->types_seen_ != NULL)
4259 delete this->types_seen_;
4260 if (this->expressions_seen_ != NULL)
4261 delete this->expressions_seen_;
4262 }
4263
4264 // Record that we are looking at a type, and return true if we have
4265 // already seen it.
4266
4267 bool
4268 Traverse::remember_type(const Type* type)
4269 {
4270 if (type->is_error_type())
4271 return true;
4272 gcc_assert((this->traverse_mask() & traverse_types) != 0
4273 || (this->traverse_mask() & traverse_expressions) != 0);
4274 // We only have to remember named types, as they are the only ones
4275 // we can see multiple times in a traversal.
4276 if (type->classification() != Type::TYPE_NAMED)
4277 return false;
4278 if (this->types_seen_ == NULL)
4279 this->types_seen_ = new Types_seen();
4280 std::pair<Types_seen::iterator, bool> ins = this->types_seen_->insert(type);
4281 return !ins.second;
4282 }
4283
4284 // Record that we are looking at an expression, and return true if we
4285 // have already seen it.
4286
4287 bool
4288 Traverse::remember_expression(const Expression* expression)
4289 {
4290 gcc_assert((this->traverse_mask() & traverse_types) != 0
4291 || (this->traverse_mask() & traverse_expressions) != 0);
4292 if (this->expressions_seen_ == NULL)
4293 this->expressions_seen_ = new Expressions_seen();
4294 std::pair<Expressions_seen::iterator, bool> ins =
4295 this->expressions_seen_->insert(expression);
4296 return !ins.second;
4297 }
4298
4299 // The default versions of these functions should never be called: the
4300 // traversal mask indicates which functions may be called.
4301
4302 int
4303 Traverse::variable(Named_object*)
4304 {
4305 gcc_unreachable();
4306 }
4307
4308 int
4309 Traverse::constant(Named_object*, bool)
4310 {
4311 gcc_unreachable();
4312 }
4313
4314 int
4315 Traverse::function(Named_object*)
4316 {
4317 gcc_unreachable();
4318 }
4319
4320 int
4321 Traverse::block(Block*)
4322 {
4323 gcc_unreachable();
4324 }
4325
4326 int
4327 Traverse::statement(Block*, size_t*, Statement*)
4328 {
4329 gcc_unreachable();
4330 }
4331
4332 int
4333 Traverse::expression(Expression**)
4334 {
4335 gcc_unreachable();
4336 }
4337
4338 int
4339 Traverse::type(Type*)
4340 {
4341 gcc_unreachable();
4342 }