Correct handling of methods which call recover.
[gcc.git] / gcc / go / gofrontend / gogo.cc
1 // gogo.cc -- Go frontend parsed representation.
2
3 // Copyright 2009 The Go Authors. All rights reserved.
4 // Use of this source code is governed by a BSD-style
5 // license that can be found in the LICENSE file.
6
7 #include "go-system.h"
8
9 #include "go-c.h"
10 #include "go-dump.h"
11 #include "lex.h"
12 #include "types.h"
13 #include "statements.h"
14 #include "expressions.h"
15 #include "dataflow.h"
16 #include "import.h"
17 #include "export.h"
18 #include "gogo.h"
19
20 // Class Gogo.
21
22 Gogo::Gogo(int int_type_size, int float_type_size, int pointer_size)
23 : package_(NULL),
24 functions_(),
25 globals_(new Bindings(NULL)),
26 imports_(),
27 imported_unsafe_(false),
28 packages_(),
29 map_descriptors_(NULL),
30 type_descriptor_decls_(NULL),
31 init_functions_(),
32 need_init_fn_(false),
33 init_fn_name_(),
34 imported_init_fns_(),
35 unique_prefix_(),
36 interface_types_()
37 {
38 const source_location loc = BUILTINS_LOCATION;
39
40 Named_type* uint8_type = Type::make_integer_type("uint8", true, 8,
41 RUNTIME_TYPE_KIND_UINT8);
42 this->add_named_type(uint8_type);
43 this->add_named_type(Type::make_integer_type("uint16", true, 16,
44 RUNTIME_TYPE_KIND_UINT16));
45 this->add_named_type(Type::make_integer_type("uint32", true, 32,
46 RUNTIME_TYPE_KIND_UINT32));
47 this->add_named_type(Type::make_integer_type("uint64", true, 64,
48 RUNTIME_TYPE_KIND_UINT64));
49
50 this->add_named_type(Type::make_integer_type("int8", false, 8,
51 RUNTIME_TYPE_KIND_INT8));
52 this->add_named_type(Type::make_integer_type("int16", false, 16,
53 RUNTIME_TYPE_KIND_INT16));
54 this->add_named_type(Type::make_integer_type("int32", false, 32,
55 RUNTIME_TYPE_KIND_INT32));
56 this->add_named_type(Type::make_integer_type("int64", false, 64,
57 RUNTIME_TYPE_KIND_INT64));
58
59 this->add_named_type(Type::make_float_type("float32", 32,
60 RUNTIME_TYPE_KIND_FLOAT32));
61 this->add_named_type(Type::make_float_type("float64", 64,
62 RUNTIME_TYPE_KIND_FLOAT64));
63
64 this->add_named_type(Type::make_complex_type("complex64", 64,
65 RUNTIME_TYPE_KIND_COMPLEX64));
66 this->add_named_type(Type::make_complex_type("complex128", 128,
67 RUNTIME_TYPE_KIND_COMPLEX128));
68
69 if (int_type_size < 32)
70 int_type_size = 32;
71 this->add_named_type(Type::make_integer_type("uint", true,
72 int_type_size,
73 RUNTIME_TYPE_KIND_UINT));
74 Named_type* int_type = Type::make_integer_type("int", false, int_type_size,
75 RUNTIME_TYPE_KIND_INT);
76 this->add_named_type(int_type);
77
78 // "byte" is an alias for "uint8". Construct a Named_object which
79 // points to UINT8_TYPE. Note that this breaks the normal pairing
80 // in which a Named_object points to a Named_type which points back
81 // to the same Named_object.
82 Named_object* byte_type = this->declare_type("byte", loc);
83 byte_type->set_type_value(uint8_type);
84
85 this->add_named_type(Type::make_integer_type("uintptr", true,
86 pointer_size,
87 RUNTIME_TYPE_KIND_UINTPTR));
88
89 this->add_named_type(Type::make_float_type("float", float_type_size,
90 RUNTIME_TYPE_KIND_FLOAT));
91
92 this->add_named_type(Type::make_complex_type("complex", float_type_size * 2,
93 RUNTIME_TYPE_KIND_COMPLEX));
94
95 this->add_named_type(Type::make_named_bool_type());
96
97 this->add_named_type(Type::make_named_string_type());
98
99 this->globals_->add_constant(Typed_identifier("true",
100 Type::make_boolean_type(),
101 loc),
102 NULL,
103 Expression::make_boolean(true, loc),
104 0);
105 this->globals_->add_constant(Typed_identifier("false",
106 Type::make_boolean_type(),
107 loc),
108 NULL,
109 Expression::make_boolean(false, loc),
110 0);
111
112 this->globals_->add_constant(Typed_identifier("nil", Type::make_nil_type(),
113 loc),
114 NULL,
115 Expression::make_nil(loc),
116 0);
117
118 Type* abstract_int_type = Type::make_abstract_integer_type();
119 this->globals_->add_constant(Typed_identifier("iota", abstract_int_type,
120 loc),
121 NULL,
122 Expression::make_iota(),
123 0);
124
125 Function_type* new_type = Type::make_function_type(NULL, NULL, NULL, loc);
126 new_type->set_is_varargs();
127 new_type->set_is_builtin();
128 this->globals_->add_function_declaration("new", NULL, new_type, loc);
129
130 Function_type* make_type = Type::make_function_type(NULL, NULL, NULL, loc);
131 make_type->set_is_varargs();
132 make_type->set_is_builtin();
133 this->globals_->add_function_declaration("make", NULL, make_type, loc);
134
135 Typed_identifier_list* len_result = new Typed_identifier_list();
136 len_result->push_back(Typed_identifier("", int_type, loc));
137 Function_type* len_type = Type::make_function_type(NULL, NULL, len_result,
138 loc);
139 len_type->set_is_builtin();
140 this->globals_->add_function_declaration("len", NULL, len_type, loc);
141
142 Typed_identifier_list* cap_result = new Typed_identifier_list();
143 cap_result->push_back(Typed_identifier("", int_type, loc));
144 Function_type* cap_type = Type::make_function_type(NULL, NULL, len_result,
145 loc);
146 cap_type->set_is_builtin();
147 this->globals_->add_function_declaration("cap", NULL, cap_type, loc);
148
149 Function_type* print_type = Type::make_function_type(NULL, NULL, NULL, loc);
150 print_type->set_is_varargs();
151 print_type->set_is_builtin();
152 this->globals_->add_function_declaration("print", NULL, print_type, loc);
153
154 print_type = Type::make_function_type(NULL, NULL, NULL, loc);
155 print_type->set_is_varargs();
156 print_type->set_is_builtin();
157 this->globals_->add_function_declaration("println", NULL, print_type, loc);
158
159 Type *empty = Type::make_interface_type(NULL, loc);
160 Typed_identifier_list* panic_parms = new Typed_identifier_list();
161 panic_parms->push_back(Typed_identifier("e", empty, loc));
162 Function_type *panic_type = Type::make_function_type(NULL, panic_parms,
163 NULL, loc);
164 panic_type->set_is_builtin();
165 this->globals_->add_function_declaration("panic", NULL, panic_type, loc);
166
167 Typed_identifier_list* recover_result = new Typed_identifier_list();
168 recover_result->push_back(Typed_identifier("", empty, loc));
169 Function_type* recover_type = Type::make_function_type(NULL, NULL,
170 recover_result,
171 loc);
172 recover_type->set_is_builtin();
173 this->globals_->add_function_declaration("recover", NULL, recover_type, loc);
174
175 Function_type* close_type = Type::make_function_type(NULL, NULL, NULL, loc);
176 close_type->set_is_varargs();
177 close_type->set_is_builtin();
178 this->globals_->add_function_declaration("close", NULL, close_type, loc);
179
180 Typed_identifier_list* closed_result = new Typed_identifier_list();
181 closed_result->push_back(Typed_identifier("", Type::lookup_bool_type(),
182 loc));
183 Function_type* closed_type = Type::make_function_type(NULL, NULL,
184 closed_result, loc);
185 closed_type->set_is_varargs();
186 closed_type->set_is_builtin();
187 this->globals_->add_function_declaration("closed", NULL, closed_type, loc);
188
189 Typed_identifier_list* copy_result = new Typed_identifier_list();
190 copy_result->push_back(Typed_identifier("", int_type, loc));
191 Function_type* copy_type = Type::make_function_type(NULL, NULL,
192 copy_result, loc);
193 copy_type->set_is_varargs();
194 copy_type->set_is_builtin();
195 this->globals_->add_function_declaration("copy", NULL, copy_type, loc);
196
197 Function_type* append_type = Type::make_function_type(NULL, NULL, NULL, loc);
198 append_type->set_is_varargs();
199 append_type->set_is_builtin();
200 this->globals_->add_function_declaration("append", NULL, append_type, loc);
201
202 Function_type* cmplx_type = Type::make_function_type(NULL, NULL, NULL, loc);
203 cmplx_type->set_is_varargs();
204 cmplx_type->set_is_builtin();
205 this->globals_->add_function_declaration("cmplx", NULL, cmplx_type, loc);
206
207 Function_type* real_type = Type::make_function_type(NULL, NULL, NULL, loc);
208 real_type->set_is_varargs();
209 real_type->set_is_builtin();
210 this->globals_->add_function_declaration("real", NULL, real_type, loc);
211
212 Function_type* imag_type = Type::make_function_type(NULL, NULL, NULL, loc);
213 imag_type->set_is_varargs();
214 imag_type->set_is_builtin();
215 this->globals_->add_function_declaration("imag", NULL, cmplx_type, loc);
216
217 this->define_builtin_function_trees();
218
219 // Declare "init", to ensure that it is not defined with parameters
220 // or return values.
221 this->declare_function("init",
222 Type::make_function_type(NULL, NULL, NULL, loc),
223 loc);
224 }
225
226 // Munge name for use in an error message.
227
228 std::string
229 Gogo::message_name(const std::string& name)
230 {
231 return go_localize_identifier(Gogo::unpack_hidden_name(name).c_str());
232 }
233
234 // Get the package name.
235
236 const std::string&
237 Gogo::package_name() const
238 {
239 gcc_assert(this->package_ != NULL);
240 return this->package_->name();
241 }
242
243 // Set the package name.
244
245 void
246 Gogo::set_package_name(const std::string& package_name,
247 source_location location)
248 {
249 if (this->package_ != NULL && this->package_->name() != package_name)
250 {
251 error_at(location, "expected package %<%s%>",
252 Gogo::message_name(this->package_->name()).c_str());
253 return;
254 }
255
256 // If the user did not specify a unique prefix, we always use "go".
257 // This in effect requires that the package name be unique.
258 if (this->unique_prefix_.empty())
259 this->unique_prefix_ = "go";
260
261 this->package_ = this->register_package(package_name, this->unique_prefix_,
262 location);
263
264 // We used to permit people to qualify symbols with the current
265 // package name (e.g., P.x), but we no longer do.
266 // this->globals_->add_package(package_name, this->package_);
267
268 if (package_name == "main")
269 {
270 // Declare "main" as a function which takes no parameters and
271 // returns no value.
272 this->declare_function("main",
273 Type::make_function_type(NULL, NULL, NULL,
274 BUILTINS_LOCATION),
275 BUILTINS_LOCATION);
276 }
277 }
278
279 // Import a package.
280
281 void
282 Gogo::import_package(const std::string& filename,
283 const std::string& local_name,
284 bool is_local_name_exported,
285 source_location location)
286 {
287 if (filename == "unsafe")
288 {
289 this->import_unsafe(local_name, is_local_name_exported, location);
290 return;
291 }
292
293 Imports::const_iterator p = this->imports_.find(filename);
294 if (p != this->imports_.end())
295 {
296 Package* package = p->second;
297 package->set_location(location);
298 package->set_is_imported();
299 std::string ln = local_name;
300 bool is_ln_exported = is_local_name_exported;
301 if (ln.empty())
302 {
303 ln = package->name();
304 is_ln_exported = Lex::is_exported_name(ln);
305 }
306 if (ln != ".")
307 {
308 ln = this->pack_hidden_name(ln, is_ln_exported);
309 this->package_->bindings()->add_package(ln, package);
310 }
311 else
312 {
313 Bindings* bindings = package->bindings();
314 for (Bindings::const_declarations_iterator p =
315 bindings->begin_declarations();
316 p != bindings->end_declarations();
317 ++p)
318 this->add_named_object(p->second);
319 }
320 return;
321 }
322
323 Import::Stream* stream = Import::open_package(filename, location);
324 if (stream == NULL)
325 {
326 error_at(location, "import file %qs not found", filename.c_str());
327 return;
328 }
329
330 Import imp(stream, location);
331 imp.register_builtin_types(this);
332 Package* package = imp.import(this, local_name, is_local_name_exported);
333 this->imports_.insert(std::make_pair(filename, package));
334 package->set_is_imported();
335
336 delete stream;
337 }
338
339 // Add an import control function for an imported package to the list.
340
341 void
342 Gogo::add_import_init_fn(const std::string& package_name,
343 const std::string& init_name, int prio)
344 {
345 for (std::set<Import_init>::const_iterator p =
346 this->imported_init_fns_.begin();
347 p != this->imported_init_fns_.end();
348 ++p)
349 {
350 if (p->init_name() == init_name
351 && (p->package_name() != package_name || p->priority() != prio))
352 {
353 error("duplicate package initialization name %qs",
354 Gogo::message_name(init_name).c_str());
355 inform(UNKNOWN_LOCATION, "used by package %qs at priority %d",
356 Gogo::message_name(p->package_name()).c_str(),
357 p->priority());
358 inform(UNKNOWN_LOCATION, " and by package %qs at priority %d",
359 Gogo::message_name(package_name).c_str(), prio);
360 return;
361 }
362 }
363
364 this->imported_init_fns_.insert(Import_init(package_name, init_name,
365 prio));
366 }
367
368 // Return whether we are at the global binding level.
369
370 bool
371 Gogo::in_global_scope() const
372 {
373 return this->functions_.empty();
374 }
375
376 // Return the current binding contour.
377
378 Bindings*
379 Gogo::current_bindings()
380 {
381 if (!this->functions_.empty())
382 return this->functions_.back().blocks.back()->bindings();
383 else if (this->package_ != NULL)
384 return this->package_->bindings();
385 else
386 return this->globals_;
387 }
388
389 const Bindings*
390 Gogo::current_bindings() const
391 {
392 if (!this->functions_.empty())
393 return this->functions_.back().blocks.back()->bindings();
394 else if (this->package_ != NULL)
395 return this->package_->bindings();
396 else
397 return this->globals_;
398 }
399
400 // Return the current block.
401
402 Block*
403 Gogo::current_block()
404 {
405 if (this->functions_.empty())
406 return NULL;
407 else
408 return this->functions_.back().blocks.back();
409 }
410
411 // Look up a name in the current binding contour. If PFUNCTION is not
412 // NULL, set it to the function in which the name is defined, or NULL
413 // if the name is defined in global scope.
414
415 Named_object*
416 Gogo::lookup(const std::string& name, Named_object** pfunction) const
417 {
418 if (Gogo::is_sink_name(name))
419 return Named_object::make_sink();
420
421 for (Open_functions::const_reverse_iterator p = this->functions_.rbegin();
422 p != this->functions_.rend();
423 ++p)
424 {
425 Named_object* ret = p->blocks.back()->bindings()->lookup(name);
426 if (ret != NULL)
427 {
428 if (pfunction != NULL)
429 *pfunction = p->function;
430 return ret;
431 }
432 }
433
434 if (pfunction != NULL)
435 *pfunction = NULL;
436
437 if (this->package_ != NULL)
438 {
439 Named_object* ret = this->package_->bindings()->lookup(name);
440 if (ret != NULL)
441 {
442 if (ret->package() != NULL)
443 ret->package()->set_used();
444 return ret;
445 }
446 }
447
448 // We do not look in the global namespace. If we did, the global
449 // namespace would effectively hide names which were defined in
450 // package scope which we have not yet seen. Instead,
451 // define_global_names is called after parsing is over to connect
452 // undefined names at package scope with names defined at global
453 // scope.
454
455 return NULL;
456 }
457
458 // Look up a name in the current block, without searching enclosing
459 // blocks.
460
461 Named_object*
462 Gogo::lookup_in_block(const std::string& name) const
463 {
464 gcc_assert(!this->functions_.empty());
465 gcc_assert(!this->functions_.back().blocks.empty());
466 return this->functions_.back().blocks.back()->bindings()->lookup_local(name);
467 }
468
469 // Look up a name in the global namespace.
470
471 Named_object*
472 Gogo::lookup_global(const char* name) const
473 {
474 return this->globals_->lookup(name);
475 }
476
477 // Add an imported package.
478
479 Package*
480 Gogo::add_imported_package(const std::string& real_name,
481 const std::string& alias_arg,
482 bool is_alias_exported,
483 const std::string& unique_prefix,
484 source_location location,
485 bool* padd_to_globals)
486 {
487 // FIXME: Now that we compile packages as a whole, should we permit
488 // importing the current package?
489 if (this->package_name() == real_name
490 && this->unique_prefix() == unique_prefix)
491 {
492 *padd_to_globals = false;
493 if (!alias_arg.empty() && alias_arg != ".")
494 {
495 std::string alias = this->pack_hidden_name(alias_arg,
496 is_alias_exported);
497 this->package_->bindings()->add_package(alias, this->package_);
498 }
499 return this->package_;
500 }
501 else if (alias_arg == ".")
502 {
503 *padd_to_globals = true;
504 return this->register_package(real_name, unique_prefix, location);
505 }
506 else if (alias_arg == "_")
507 {
508 Package* ret = this->register_package(real_name, unique_prefix, location);
509 ret->set_uses_sink_alias();
510 return ret;
511 }
512 else
513 {
514 *padd_to_globals = false;
515 std::string alias = alias_arg;
516 if (alias.empty())
517 {
518 alias = real_name;
519 is_alias_exported = Lex::is_exported_name(alias);
520 }
521 alias = this->pack_hidden_name(alias, is_alias_exported);
522 Named_object* no = this->add_package(real_name, alias, unique_prefix,
523 location);
524 if (!no->is_package())
525 return NULL;
526 return no->package_value();
527 }
528 }
529
530 // Add a package.
531
532 Named_object*
533 Gogo::add_package(const std::string& real_name, const std::string& alias,
534 const std::string& unique_prefix, source_location location)
535 {
536 gcc_assert(this->in_global_scope());
537
538 // Register the package. Note that we might have already seen it in
539 // an earlier import.
540 Package* package = this->register_package(real_name, unique_prefix, location);
541
542 return this->package_->bindings()->add_package(alias, package);
543 }
544
545 // Register a package. This package may or may not be imported. This
546 // returns the Package structure for the package, creating if it
547 // necessary.
548
549 Package*
550 Gogo::register_package(const std::string& package_name,
551 const std::string& unique_prefix,
552 source_location location)
553 {
554 gcc_assert(!unique_prefix.empty() && !package_name.empty());
555 std::string name = unique_prefix + '.' + package_name;
556 Package* package = NULL;
557 std::pair<Packages::iterator, bool> ins =
558 this->packages_.insert(std::make_pair(name, package));
559 if (!ins.second)
560 {
561 // We have seen this package name before.
562 package = ins.first->second;
563 gcc_assert(package != NULL);
564 gcc_assert(package->name() == package_name
565 && package->unique_prefix() == unique_prefix);
566 if (package->location() == UNKNOWN_LOCATION)
567 package->set_location(location);
568 }
569 else
570 {
571 // First time we have seen this package name.
572 package = new Package(package_name, unique_prefix, location);
573 gcc_assert(ins.first->second == NULL);
574 ins.first->second = package;
575 }
576
577 return package;
578 }
579
580 // Start compiling a function.
581
582 Named_object*
583 Gogo::start_function(const std::string& name, Function_type* type,
584 bool add_method_to_type, source_location location)
585 {
586 bool at_top_level = this->functions_.empty();
587
588 Block* block = new Block(NULL, location);
589
590 Function* enclosing = (at_top_level
591 ? NULL
592 : this->functions_.back().function->func_value());
593
594 Function* function = new Function(type, enclosing, block, location);
595
596 if (type->is_method())
597 {
598 const Typed_identifier* receiver = type->receiver();
599 Variable* this_param = new Variable(receiver->type(), NULL, false,
600 true, true, location);
601 std::string name = receiver->name();
602 if (name.empty())
603 {
604 // We need to give receivers a name since they wind up in
605 // DECL_ARGUMENTS. FIXME.
606 static unsigned int count;
607 char buf[50];
608 snprintf(buf, sizeof buf, "r.%u", count);
609 ++count;
610 name = buf;
611 }
612 block->bindings()->add_variable(name, NULL, this_param);
613 }
614
615 const Typed_identifier_list* parameters = type->parameters();
616 bool is_varargs = type->is_varargs();
617 if (parameters != NULL)
618 {
619 for (Typed_identifier_list::const_iterator p = parameters->begin();
620 p != parameters->end();
621 ++p)
622 {
623 Variable* param = new Variable(p->type(), NULL, false, true, false,
624 location);
625 if (is_varargs && p + 1 == parameters->end())
626 param->set_is_varargs_parameter();
627
628 std::string name = p->name();
629 if (name.empty() || Gogo::is_sink_name(name))
630 {
631 // We need to give parameters a name since they wind up
632 // in DECL_ARGUMENTS. FIXME.
633 static unsigned int count;
634 char buf[50];
635 snprintf(buf, sizeof buf, "p.%u", count);
636 ++count;
637 name = buf;
638 }
639 block->bindings()->add_variable(name, NULL, param);
640 }
641 }
642
643 function->create_named_result_variables(this);
644
645 const std::string* pname;
646 std::string nested_name;
647 if (!name.empty())
648 pname = &name;
649 else
650 {
651 // Invent a name for a nested function.
652 static int nested_count;
653 char buf[30];
654 snprintf(buf, sizeof buf, ".$nested%d", nested_count);
655 ++nested_count;
656 nested_name = buf;
657 pname = &nested_name;
658 }
659
660 Named_object* ret;
661 if (Gogo::is_sink_name(*pname))
662 ret = Named_object::make_sink();
663 else if (!type->is_method())
664 {
665 ret = this->package_->bindings()->add_function(*pname, NULL, function);
666 if (!ret->is_function())
667 {
668 // Redefinition error.
669 ret = Named_object::make_function(name, NULL, function);
670 }
671 }
672 else
673 {
674 if (!add_method_to_type)
675 ret = Named_object::make_function(name, NULL, function);
676 else
677 {
678 gcc_assert(at_top_level);
679 Type* rtype = type->receiver()->type();
680
681 // We want to look through the pointer created by the
682 // parser, without getting an error if the type is not yet
683 // defined.
684 if (rtype->classification() == Type::TYPE_POINTER)
685 rtype = rtype->points_to();
686
687 if (rtype->is_error_type())
688 ret = Named_object::make_function(name, NULL, function);
689 else if (rtype->named_type() != NULL)
690 {
691 ret = rtype->named_type()->add_method(name, function);
692 if (!ret->is_function())
693 {
694 // Redefinition error.
695 ret = Named_object::make_function(name, NULL, function);
696 }
697 }
698 else if (rtype->forward_declaration_type() != NULL)
699 {
700 Named_object* type_no =
701 rtype->forward_declaration_type()->named_object();
702 if (type_no->is_unknown())
703 {
704 // If we are seeing methods it really must be a
705 // type. Declare it as such. An alternative would
706 // be to support lists of methods for unknown
707 // expressions. Either way the error messages if
708 // this is not a type are going to get confusing.
709 Named_object* declared =
710 this->declare_package_type(type_no->name(),
711 type_no->location());
712 gcc_assert(declared
713 == type_no->unknown_value()->real_named_object());
714 }
715 ret = rtype->forward_declaration_type()->add_method(name,
716 function);
717 }
718 else
719 gcc_unreachable();
720 }
721 this->package_->bindings()->add_method(ret);
722 }
723
724 this->functions_.resize(this->functions_.size() + 1);
725 Open_function& of(this->functions_.back());
726 of.function = ret;
727 of.blocks.push_back(block);
728
729 if (!type->is_method() && Gogo::unpack_hidden_name(name) == "init")
730 {
731 this->init_functions_.push_back(ret);
732 this->need_init_fn_ = true;
733 }
734
735 return ret;
736 }
737
738 // Finish compiling a function.
739
740 void
741 Gogo::finish_function(source_location location)
742 {
743 this->finish_block(location);
744 gcc_assert(this->functions_.back().blocks.empty());
745 this->functions_.pop_back();
746 }
747
748 // Return the current function.
749
750 Named_object*
751 Gogo::current_function() const
752 {
753 gcc_assert(!this->functions_.empty());
754 return this->functions_.back().function;
755 }
756
757 // Start a new block.
758
759 void
760 Gogo::start_block(source_location location)
761 {
762 gcc_assert(!this->functions_.empty());
763 Block* block = new Block(this->current_block(), location);
764 this->functions_.back().blocks.push_back(block);
765 }
766
767 // Finish a block.
768
769 Block*
770 Gogo::finish_block(source_location location)
771 {
772 gcc_assert(!this->functions_.empty());
773 gcc_assert(!this->functions_.back().blocks.empty());
774 Block* block = this->functions_.back().blocks.back();
775 this->functions_.back().blocks.pop_back();
776 block->set_end_location(location);
777 return block;
778 }
779
780 // Add an unknown name.
781
782 Named_object*
783 Gogo::add_unknown_name(const std::string& name, source_location location)
784 {
785 return this->package_->bindings()->add_unknown_name(name, location);
786 }
787
788 // Declare a function.
789
790 Named_object*
791 Gogo::declare_function(const std::string& name, Function_type* type,
792 source_location location)
793 {
794 if (!type->is_method())
795 return this->current_bindings()->add_function_declaration(name, NULL, type,
796 location);
797 else
798 {
799 // We don't bother to add this to the list of global
800 // declarations.
801 Type* rtype = type->receiver()->type();
802
803 // We want to look through the pointer created by the
804 // parser, without getting an error if the type is not yet
805 // defined.
806 if (rtype->classification() == Type::TYPE_POINTER)
807 rtype = rtype->points_to();
808
809 if (rtype->is_error_type())
810 return NULL;
811 else if (rtype->named_type() != NULL)
812 return rtype->named_type()->add_method_declaration(name, NULL, type,
813 location);
814 else if (rtype->forward_declaration_type() != NULL)
815 {
816 Forward_declaration_type* ftype = rtype->forward_declaration_type();
817 return ftype->add_method_declaration(name, type, location);
818 }
819 else
820 gcc_unreachable();
821 }
822 }
823
824 // Add a label definition.
825
826 Label*
827 Gogo::add_label_definition(const std::string& label_name,
828 source_location location)
829 {
830 gcc_assert(!this->functions_.empty());
831 Function* func = this->functions_.back().function->func_value();
832 Label* label = func->add_label_definition(label_name, location);
833 this->add_statement(Statement::make_label_statement(label, location));
834 return label;
835 }
836
837 // Add a label reference.
838
839 Label*
840 Gogo::add_label_reference(const std::string& label_name)
841 {
842 gcc_assert(!this->functions_.empty());
843 Function* func = this->functions_.back().function->func_value();
844 return func->add_label_reference(label_name);
845 }
846
847 // Add a statement.
848
849 void
850 Gogo::add_statement(Statement* statement)
851 {
852 gcc_assert(!this->functions_.empty()
853 && !this->functions_.back().blocks.empty());
854 this->functions_.back().blocks.back()->add_statement(statement);
855 }
856
857 // Add a block.
858
859 void
860 Gogo::add_block(Block* block, source_location location)
861 {
862 gcc_assert(!this->functions_.empty()
863 && !this->functions_.back().blocks.empty());
864 Statement* statement = Statement::make_block_statement(block, location);
865 this->functions_.back().blocks.back()->add_statement(statement);
866 }
867
868 // Add a constant.
869
870 Named_object*
871 Gogo::add_constant(const Typed_identifier& tid, Expression* expr,
872 int iota_value)
873 {
874 return this->current_bindings()->add_constant(tid, NULL, expr, iota_value);
875 }
876
877 // Add a type.
878
879 void
880 Gogo::add_type(const std::string& name, Type* type, source_location location)
881 {
882 Named_object* no = this->current_bindings()->add_type(name, NULL, type,
883 location);
884 if (!this->in_global_scope() && no->is_type())
885 no->type_value()->set_in_function(this->functions_.back().function);
886 }
887
888 // Add a named type.
889
890 void
891 Gogo::add_named_type(Named_type* type)
892 {
893 gcc_assert(this->in_global_scope());
894 this->current_bindings()->add_named_type(type);
895 }
896
897 // Declare a type.
898
899 Named_object*
900 Gogo::declare_type(const std::string& name, source_location location)
901 {
902 Bindings* bindings = this->current_bindings();
903 Named_object* no = bindings->add_type_declaration(name, NULL, location);
904 if (!this->in_global_scope() && no->is_type_declaration())
905 {
906 Named_object* f = this->functions_.back().function;
907 no->type_declaration_value()->set_in_function(f);
908 }
909 return no;
910 }
911
912 // Declare a type at the package level.
913
914 Named_object*
915 Gogo::declare_package_type(const std::string& name, source_location location)
916 {
917 return this->package_->bindings()->add_type_declaration(name, NULL, location);
918 }
919
920 // Define a type which was already declared.
921
922 void
923 Gogo::define_type(Named_object* no, Named_type* type)
924 {
925 this->current_bindings()->define_type(no, type);
926 }
927
928 // Add a variable.
929
930 Named_object*
931 Gogo::add_variable(const std::string& name, Variable* variable)
932 {
933 Named_object* no = this->current_bindings()->add_variable(name, NULL,
934 variable);
935
936 // In a function the middle-end wants to see a DECL_EXPR node.
937 if (no != NULL
938 && no->is_variable()
939 && !no->var_value()->is_parameter()
940 && !this->functions_.empty())
941 this->add_statement(Statement::make_variable_declaration(no));
942
943 return no;
944 }
945
946 // Add a sink--a reference to the blank identifier _.
947
948 Named_object*
949 Gogo::add_sink()
950 {
951 return Named_object::make_sink();
952 }
953
954 // Add a named object.
955
956 void
957 Gogo::add_named_object(Named_object* no)
958 {
959 this->current_bindings()->add_named_object(no);
960 }
961
962 // Record that we've seen an interface type.
963
964 void
965 Gogo::record_interface_type(Interface_type* itype)
966 {
967 this->interface_types_.push_back(itype);
968 }
969
970 // Return a name for a thunk object.
971
972 std::string
973 Gogo::thunk_name()
974 {
975 static int thunk_count;
976 char thunk_name[50];
977 snprintf(thunk_name, sizeof thunk_name, "$thunk%d", thunk_count);
978 ++thunk_count;
979 return thunk_name;
980 }
981
982 // Return whether a function is a thunk.
983
984 bool
985 Gogo::is_thunk(const Named_object* no)
986 {
987 return no->name().compare(0, 6, "$thunk") == 0;
988 }
989
990 // Define the global names. We do this only after parsing all the
991 // input files, because the program might define the global names
992 // itself.
993
994 void
995 Gogo::define_global_names()
996 {
997 for (Bindings::const_declarations_iterator p =
998 this->globals_->begin_declarations();
999 p != this->globals_->end_declarations();
1000 ++p)
1001 {
1002 Named_object* global_no = p->second;
1003 std::string name(Gogo::pack_hidden_name(global_no->name(), false));
1004 Named_object* no = this->package_->bindings()->lookup(name);
1005 if (no == NULL)
1006 continue;
1007 no = no->resolve();
1008 if (no->is_type_declaration())
1009 {
1010 if (global_no->is_type())
1011 {
1012 if (no->type_declaration_value()->has_methods())
1013 error_at(no->location(),
1014 "may not define methods for global type");
1015 no->set_type_value(global_no->type_value());
1016 }
1017 else
1018 {
1019 error_at(no->location(), "expected type");
1020 Type* errtype = Type::make_error_type();
1021 Named_object* err = Named_object::make_type("error", NULL,
1022 errtype,
1023 BUILTINS_LOCATION);
1024 no->set_type_value(err->type_value());
1025 }
1026 }
1027 else if (no->is_unknown())
1028 no->unknown_value()->set_real_named_object(global_no);
1029 }
1030 }
1031
1032 // Clear out names in file scope.
1033
1034 void
1035 Gogo::clear_file_scope()
1036 {
1037 this->package_->bindings()->clear_file_scope();
1038
1039 // Warn about packages which were imported but not used.
1040 for (Packages::iterator p = this->packages_.begin();
1041 p != this->packages_.end();
1042 ++p)
1043 {
1044 Package* package = p->second;
1045 if (package != this->package_
1046 && package->is_imported()
1047 && !package->used()
1048 && !package->uses_sink_alias()
1049 && !saw_errors())
1050 error_at(package->location(), "imported and not used: %s",
1051 Gogo::message_name(package->name()).c_str());
1052 package->clear_is_imported();
1053 package->clear_uses_sink_alias();
1054 package->clear_used();
1055 }
1056 }
1057
1058 // Traverse the tree.
1059
1060 void
1061 Gogo::traverse(Traverse* traverse)
1062 {
1063 // Traverse the current package first for consistency. The other
1064 // packages will only contain imported types, constants, and
1065 // declarations.
1066 if (this->package_->bindings()->traverse(traverse, true) == TRAVERSE_EXIT)
1067 return;
1068 for (Packages::const_iterator p = this->packages_.begin();
1069 p != this->packages_.end();
1070 ++p)
1071 {
1072 if (p->second != this->package_)
1073 {
1074 if (p->second->bindings()->traverse(traverse, true) == TRAVERSE_EXIT)
1075 break;
1076 }
1077 }
1078 }
1079
1080 // Traversal class used to verify types.
1081
1082 class Verify_types : public Traverse
1083 {
1084 public:
1085 Verify_types()
1086 : Traverse(traverse_types)
1087 { }
1088
1089 int
1090 type(Type*);
1091 };
1092
1093 // Verify that a type is correct.
1094
1095 int
1096 Verify_types::type(Type* t)
1097 {
1098 // Don't verify types defined in other packages.
1099 Named_type* nt = t->named_type();
1100 if (nt != NULL && nt->named_object()->package() != NULL)
1101 return TRAVERSE_SKIP_COMPONENTS;
1102
1103 if (!t->verify())
1104 return TRAVERSE_SKIP_COMPONENTS;
1105 return TRAVERSE_CONTINUE;
1106 }
1107
1108 // Verify that all types are correct.
1109
1110 void
1111 Gogo::verify_types()
1112 {
1113 Verify_types traverse;
1114 this->traverse(&traverse);
1115 }
1116
1117 // Traversal class used to lower parse tree.
1118
1119 class Lower_parse_tree : public Traverse
1120 {
1121 public:
1122 Lower_parse_tree(Gogo* gogo, Named_object* function)
1123 : Traverse(traverse_constants
1124 | traverse_functions
1125 | traverse_statements
1126 | traverse_expressions),
1127 gogo_(gogo), function_(function), iota_value_(-1)
1128 { }
1129
1130 int
1131 constant(Named_object*, bool);
1132
1133 int
1134 function(Named_object*);
1135
1136 int
1137 statement(Block*, size_t* pindex, Statement*);
1138
1139 int
1140 expression(Expression**);
1141
1142 private:
1143 // General IR.
1144 Gogo* gogo_;
1145 // The function we are traversing.
1146 Named_object* function_;
1147 // Value to use for the predeclared constant iota.
1148 int iota_value_;
1149 };
1150
1151 // Lower constants. We handle constants specially so that we can set
1152 // the right value for the predeclared constant iota. This works in
1153 // conjunction with the way we lower Const_expression objects.
1154
1155 int
1156 Lower_parse_tree::constant(Named_object* no, bool)
1157 {
1158 Named_constant* nc = no->const_value();
1159
1160 // We can recursively a constant if the initializer expression
1161 // manages to refer to itself.
1162 if (nc->lowering())
1163 return TRAVERSE_CONTINUE;
1164 nc->set_lowering();
1165
1166 gcc_assert(this->iota_value_ == -1);
1167 this->iota_value_ = nc->iota_value();
1168 nc->traverse_expression(this);
1169 this->iota_value_ = -1;
1170
1171 nc->clear_lowering();
1172
1173 // We will traverse the expression a second time, but that will be
1174 // fast.
1175
1176 return TRAVERSE_CONTINUE;
1177 }
1178
1179 // Lower function closure types. Record the function while lowering
1180 // it, so that we can pass it down when lowering an expression.
1181
1182 int
1183 Lower_parse_tree::function(Named_object* no)
1184 {
1185 no->func_value()->set_closure_type();
1186
1187 gcc_assert(this->function_ == NULL);
1188 this->function_ = no;
1189 int t = no->func_value()->traverse(this);
1190 this->function_ = NULL;
1191
1192 if (t == TRAVERSE_EXIT)
1193 return t;
1194 return TRAVERSE_SKIP_COMPONENTS;
1195 }
1196
1197 // Lower statement parse trees.
1198
1199 int
1200 Lower_parse_tree::statement(Block* block, size_t* pindex, Statement* sorig)
1201 {
1202 // Lower the expressions first.
1203 int t = sorig->traverse_contents(this);
1204 if (t == TRAVERSE_EXIT)
1205 return t;
1206
1207 // Keep lowering until nothing changes.
1208 Statement* s = sorig;
1209 while (true)
1210 {
1211 Statement* snew = s->lower(this->gogo_, block);
1212 if (snew == s)
1213 break;
1214 s = snew;
1215 t = s->traverse_contents(this);
1216 if (t == TRAVERSE_EXIT)
1217 return t;
1218 }
1219
1220 if (s != sorig)
1221 block->replace_statement(*pindex, s);
1222
1223 return TRAVERSE_SKIP_COMPONENTS;
1224 }
1225
1226 // Lower expression parse trees.
1227
1228 int
1229 Lower_parse_tree::expression(Expression** pexpr)
1230 {
1231 // We have to lower all subexpressions first, so that we can get
1232 // their type if necessary. This is awkward, because we don't have
1233 // a postorder traversal pass.
1234 if ((*pexpr)->traverse_subexpressions(this) == TRAVERSE_EXIT)
1235 return TRAVERSE_EXIT;
1236 // Keep lowering until nothing changes.
1237 while (true)
1238 {
1239 Expression* e = *pexpr;
1240 Expression* enew = e->lower(this->gogo_, this->function_,
1241 this->iota_value_);
1242 if (enew == e)
1243 break;
1244 *pexpr = enew;
1245 }
1246 return TRAVERSE_SKIP_COMPONENTS;
1247 }
1248
1249 // Lower the parse tree. This is called after the parse is complete,
1250 // when all names should be resolved.
1251
1252 void
1253 Gogo::lower_parse_tree()
1254 {
1255 Lower_parse_tree lower_parse_tree(this, NULL);
1256 this->traverse(&lower_parse_tree);
1257 }
1258
1259 // Lower an expression.
1260
1261 void
1262 Gogo::lower_expression(Named_object* function, Expression** pexpr)
1263 {
1264 Lower_parse_tree lower_parse_tree(this, function);
1265 lower_parse_tree.expression(pexpr);
1266 }
1267
1268 // Lower a constant. This is called when lowering a reference to a
1269 // constant. We have to make sure that the constant has already been
1270 // lowered.
1271
1272 void
1273 Gogo::lower_constant(Named_object* no)
1274 {
1275 gcc_assert(no->is_const());
1276 Lower_parse_tree lower(this, NULL);
1277 lower.constant(no, false);
1278 }
1279
1280 // Look for interface types to finalize methods of inherited
1281 // interfaces.
1282
1283 class Finalize_methods : public Traverse
1284 {
1285 public:
1286 Finalize_methods(Gogo* gogo)
1287 : Traverse(traverse_types),
1288 gogo_(gogo)
1289 { }
1290
1291 int
1292 type(Type*);
1293
1294 private:
1295 Gogo* gogo_;
1296 };
1297
1298 // Finalize the methods of an interface type.
1299
1300 int
1301 Finalize_methods::type(Type* t)
1302 {
1303 // Check the classification so that we don't finalize the methods
1304 // twice for a named interface type.
1305 switch (t->classification())
1306 {
1307 case Type::TYPE_INTERFACE:
1308 t->interface_type()->finalize_methods();
1309 break;
1310
1311 case Type::TYPE_NAMED:
1312 {
1313 // We have to finalize the methods of the real type first.
1314 // But if the real type is a struct type, then we only want to
1315 // finalize the methods of the field types, not of the struct
1316 // type itself. We don't want to add methods to the struct,
1317 // since it has a name.
1318 Type* rt = t->named_type()->real_type();
1319 if (rt->classification() != Type::TYPE_STRUCT)
1320 {
1321 if (Type::traverse(rt, this) == TRAVERSE_EXIT)
1322 return TRAVERSE_EXIT;
1323 }
1324 else
1325 {
1326 if (rt->struct_type()->traverse_field_types(this) == TRAVERSE_EXIT)
1327 return TRAVERSE_EXIT;
1328 }
1329
1330 t->named_type()->finalize_methods(this->gogo_);
1331
1332 return TRAVERSE_SKIP_COMPONENTS;
1333 }
1334
1335 case Type::TYPE_STRUCT:
1336 t->struct_type()->finalize_methods(this->gogo_);
1337 break;
1338
1339 default:
1340 break;
1341 }
1342
1343 return TRAVERSE_CONTINUE;
1344 }
1345
1346 // Finalize method lists and build stub methods for types.
1347
1348 void
1349 Gogo::finalize_methods()
1350 {
1351 Finalize_methods finalize(this);
1352 this->traverse(&finalize);
1353 }
1354
1355 // Set types for unspecified variables and constants.
1356
1357 void
1358 Gogo::determine_types()
1359 {
1360 Bindings* bindings = this->current_bindings();
1361 for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
1362 p != bindings->end_definitions();
1363 ++p)
1364 {
1365 if ((*p)->is_function())
1366 (*p)->func_value()->determine_types();
1367 else if ((*p)->is_variable())
1368 (*p)->var_value()->determine_type();
1369 else if ((*p)->is_const())
1370 (*p)->const_value()->determine_type();
1371
1372 // See if a variable requires us to build an initialization
1373 // function. We know that we will see all global variables
1374 // here.
1375 if (!this->need_init_fn_ && (*p)->is_variable())
1376 {
1377 Variable* variable = (*p)->var_value();
1378
1379 // If this is a global variable which requires runtime
1380 // initialization, we need an initialization function.
1381 if (!variable->is_global() || variable->init() == NULL)
1382 ;
1383 else if (variable->type()->interface_type() != NULL)
1384 this->need_init_fn_ = true;
1385 else if (variable->init()->is_constant())
1386 ;
1387 else if (!variable->init()->is_composite_literal())
1388 this->need_init_fn_ = true;
1389 else if (variable->init()->is_nonconstant_composite_literal())
1390 this->need_init_fn_ = true;
1391
1392 // If this is a global variable which holds a pointer value,
1393 // then we need an initialization function to register it as a
1394 // GC root.
1395 if (variable->is_global() && variable->type()->has_pointer())
1396 this->need_init_fn_ = true;
1397 }
1398 }
1399
1400 // Determine the types of constants in packages.
1401 for (Packages::const_iterator p = this->packages_.begin();
1402 p != this->packages_.end();
1403 ++p)
1404 p->second->determine_types();
1405 }
1406
1407 // Traversal class used for type checking.
1408
1409 class Check_types_traverse : public Traverse
1410 {
1411 public:
1412 Check_types_traverse(Gogo* gogo)
1413 : Traverse(traverse_variables
1414 | traverse_constants
1415 | traverse_statements
1416 | traverse_expressions),
1417 gogo_(gogo)
1418 { }
1419
1420 int
1421 variable(Named_object*);
1422
1423 int
1424 constant(Named_object*, bool);
1425
1426 int
1427 statement(Block*, size_t* pindex, Statement*);
1428
1429 int
1430 expression(Expression**);
1431
1432 private:
1433 // General IR.
1434 Gogo* gogo_;
1435 };
1436
1437 // Check that a variable initializer has the right type.
1438
1439 int
1440 Check_types_traverse::variable(Named_object* named_object)
1441 {
1442 if (named_object->is_variable())
1443 {
1444 Variable* var = named_object->var_value();
1445 Expression* init = var->init();
1446 std::string reason;
1447 if (init != NULL
1448 && !Type::are_assignable(var->type(), init->type(), &reason))
1449 {
1450 if (reason.empty())
1451 error_at(var->location(), "incompatible type in initialization");
1452 else
1453 error_at(var->location(),
1454 "incompatible type in initialization (%s)",
1455 reason.c_str());
1456 var->clear_init();
1457 }
1458 }
1459 return TRAVERSE_CONTINUE;
1460 }
1461
1462 // Check that a constant initializer has the right type.
1463
1464 int
1465 Check_types_traverse::constant(Named_object* named_object, bool)
1466 {
1467 Named_constant* constant = named_object->const_value();
1468 Type* ctype = constant->type();
1469 if (ctype->integer_type() == NULL
1470 && ctype->float_type() == NULL
1471 && ctype->complex_type() == NULL
1472 && !ctype->is_boolean_type()
1473 && !ctype->is_string_type())
1474 {
1475 if (!ctype->is_error_type())
1476 error_at(constant->location(), "invalid constant type");
1477 constant->set_error();
1478 }
1479 else if (!constant->expr()->is_constant())
1480 {
1481 error_at(constant->expr()->location(), "expression is not constant");
1482 constant->set_error();
1483 }
1484 else if (!Type::are_assignable(constant->type(), constant->expr()->type(),
1485 NULL))
1486 {
1487 error_at(constant->location(),
1488 "initialization expression has wrong type");
1489 constant->set_error();
1490 }
1491 return TRAVERSE_CONTINUE;
1492 }
1493
1494 // Check that types are valid in a statement.
1495
1496 int
1497 Check_types_traverse::statement(Block*, size_t*, Statement* s)
1498 {
1499 s->check_types(this->gogo_);
1500 return TRAVERSE_CONTINUE;
1501 }
1502
1503 // Check that types are valid in an expression.
1504
1505 int
1506 Check_types_traverse::expression(Expression** expr)
1507 {
1508 (*expr)->check_types(this->gogo_);
1509 return TRAVERSE_CONTINUE;
1510 }
1511
1512 // Check that types are valid.
1513
1514 void
1515 Gogo::check_types()
1516 {
1517 Check_types_traverse traverse(this);
1518 this->traverse(&traverse);
1519 }
1520
1521 // Check the types in a single block.
1522
1523 void
1524 Gogo::check_types_in_block(Block* block)
1525 {
1526 Check_types_traverse traverse(this);
1527 block->traverse(&traverse);
1528 }
1529
1530 // A traversal class used to find a single shortcut operator within an
1531 // expression.
1532
1533 class Find_shortcut : public Traverse
1534 {
1535 public:
1536 Find_shortcut()
1537 : Traverse(traverse_blocks
1538 | traverse_statements
1539 | traverse_expressions),
1540 found_(NULL)
1541 { }
1542
1543 // A pointer to the expression which was found, or NULL if none was
1544 // found.
1545 Expression**
1546 found() const
1547 { return this->found_; }
1548
1549 protected:
1550 int
1551 block(Block*)
1552 { return TRAVERSE_SKIP_COMPONENTS; }
1553
1554 int
1555 statement(Block*, size_t*, Statement*)
1556 { return TRAVERSE_SKIP_COMPONENTS; }
1557
1558 int
1559 expression(Expression**);
1560
1561 private:
1562 Expression** found_;
1563 };
1564
1565 // Find a shortcut expression.
1566
1567 int
1568 Find_shortcut::expression(Expression** pexpr)
1569 {
1570 Expression* expr = *pexpr;
1571 Binary_expression* be = expr->binary_expression();
1572 if (be == NULL)
1573 return TRAVERSE_CONTINUE;
1574 Operator op = be->op();
1575 if (op != OPERATOR_OROR && op != OPERATOR_ANDAND)
1576 return TRAVERSE_CONTINUE;
1577 gcc_assert(this->found_ == NULL);
1578 this->found_ = pexpr;
1579 return TRAVERSE_EXIT;
1580 }
1581
1582 // A traversal class used to turn shortcut operators into explicit if
1583 // statements.
1584
1585 class Shortcuts : public Traverse
1586 {
1587 public:
1588 Shortcuts()
1589 : Traverse(traverse_variables
1590 | traverse_statements)
1591 { }
1592
1593 protected:
1594 int
1595 variable(Named_object*);
1596
1597 int
1598 statement(Block*, size_t*, Statement*);
1599
1600 private:
1601 // Convert a shortcut operator.
1602 Statement*
1603 convert_shortcut(Block* enclosing, Expression** pshortcut);
1604 };
1605
1606 // Remove shortcut operators in a single statement.
1607
1608 int
1609 Shortcuts::statement(Block* block, size_t* pindex, Statement* s)
1610 {
1611 // FIXME: This approach doesn't work for switch statements, because
1612 // we add the new statements before the whole switch when we need to
1613 // instead add them just before the switch expression. The right
1614 // fix is probably to lower switch statements with nonconstant cases
1615 // to a series of conditionals.
1616 if (s->switch_statement() != NULL)
1617 return TRAVERSE_CONTINUE;
1618
1619 while (true)
1620 {
1621 Find_shortcut find_shortcut;
1622
1623 // If S is a variable declaration, then ordinary traversal won't
1624 // do anything. We want to explicitly traverse the
1625 // initialization expression if there is one.
1626 Variable_declaration_statement* vds = s->variable_declaration_statement();
1627 Expression* init = NULL;
1628 if (vds == NULL)
1629 s->traverse_contents(&find_shortcut);
1630 else
1631 {
1632 init = vds->var()->var_value()->init();
1633 if (init == NULL)
1634 return TRAVERSE_CONTINUE;
1635 init->traverse(&init, &find_shortcut);
1636 }
1637 Expression** pshortcut = find_shortcut.found();
1638 if (pshortcut == NULL)
1639 return TRAVERSE_CONTINUE;
1640
1641 Statement* snew = this->convert_shortcut(block, pshortcut);
1642 block->insert_statement_before(*pindex, snew);
1643 ++*pindex;
1644
1645 if (pshortcut == &init)
1646 vds->var()->var_value()->set_init(init);
1647 }
1648 }
1649
1650 // Remove shortcut operators in the initializer of a global variable.
1651
1652 int
1653 Shortcuts::variable(Named_object* no)
1654 {
1655 if (no->is_result_variable())
1656 return TRAVERSE_CONTINUE;
1657 Variable* var = no->var_value();
1658 Expression* init = var->init();
1659 if (!var->is_global() || init == NULL)
1660 return TRAVERSE_CONTINUE;
1661
1662 while (true)
1663 {
1664 Find_shortcut find_shortcut;
1665 init->traverse(&init, &find_shortcut);
1666 Expression** pshortcut = find_shortcut.found();
1667 if (pshortcut == NULL)
1668 return TRAVERSE_CONTINUE;
1669
1670 Statement* snew = this->convert_shortcut(NULL, pshortcut);
1671 var->add_preinit_statement(snew);
1672 if (pshortcut == &init)
1673 var->set_init(init);
1674 }
1675 }
1676
1677 // Given an expression which uses a shortcut operator, return a
1678 // statement which implements it, and update *PSHORTCUT accordingly.
1679
1680 Statement*
1681 Shortcuts::convert_shortcut(Block* enclosing, Expression** pshortcut)
1682 {
1683 Binary_expression* shortcut = (*pshortcut)->binary_expression();
1684 Expression* left = shortcut->left();
1685 Expression* right = shortcut->right();
1686 source_location loc = shortcut->location();
1687
1688 Block* retblock = new Block(enclosing, loc);
1689 retblock->set_end_location(loc);
1690
1691 Temporary_statement* ts = Statement::make_temporary(Type::make_boolean_type(),
1692 left, loc);
1693 retblock->add_statement(ts);
1694
1695 Block* block = new Block(retblock, loc);
1696 block->set_end_location(loc);
1697 Expression* tmpref = Expression::make_temporary_reference(ts, loc);
1698 Statement* assign = Statement::make_assignment(tmpref, right, loc);
1699 block->add_statement(assign);
1700
1701 Expression* cond = Expression::make_temporary_reference(ts, loc);
1702 if (shortcut->binary_expression()->op() == OPERATOR_OROR)
1703 cond = Expression::make_unary(OPERATOR_NOT, cond, loc);
1704
1705 Statement* if_statement = Statement::make_if_statement(cond, block, NULL,
1706 loc);
1707 retblock->add_statement(if_statement);
1708
1709 *pshortcut = Expression::make_temporary_reference(ts, loc);
1710
1711 delete shortcut;
1712
1713 // Now convert any shortcut operators in LEFT and RIGHT.
1714 Shortcuts shortcuts;
1715 retblock->traverse(&shortcuts);
1716
1717 return Statement::make_block_statement(retblock, loc);
1718 }
1719
1720 // Turn shortcut operators into explicit if statements. Doing this
1721 // considerably simplifies the order of evaluation rules.
1722
1723 void
1724 Gogo::remove_shortcuts()
1725 {
1726 Shortcuts shortcuts;
1727 this->traverse(&shortcuts);
1728 }
1729
1730 // A traversal class which finds all the expressions which must be
1731 // evaluated in order within a statement or larger expression. This
1732 // is used to implement the rules about order of evaluation.
1733
1734 class Find_eval_ordering : public Traverse
1735 {
1736 private:
1737 typedef std::vector<Expression**> Expression_pointers;
1738
1739 public:
1740 Find_eval_ordering()
1741 : Traverse(traverse_blocks
1742 | traverse_statements
1743 | traverse_expressions),
1744 exprs_()
1745 { }
1746
1747 size_t
1748 size() const
1749 { return this->exprs_.size(); }
1750
1751 typedef Expression_pointers::const_iterator const_iterator;
1752
1753 const_iterator
1754 begin() const
1755 { return this->exprs_.begin(); }
1756
1757 const_iterator
1758 end() const
1759 { return this->exprs_.end(); }
1760
1761 protected:
1762 int
1763 block(Block*)
1764 { return TRAVERSE_SKIP_COMPONENTS; }
1765
1766 int
1767 statement(Block*, size_t*, Statement*)
1768 { return TRAVERSE_SKIP_COMPONENTS; }
1769
1770 int
1771 expression(Expression**);
1772
1773 private:
1774 // A list of pointers to expressions with side-effects.
1775 Expression_pointers exprs_;
1776 };
1777
1778 // If an expression must be evaluated in order, put it on the list.
1779
1780 int
1781 Find_eval_ordering::expression(Expression** expression_pointer)
1782 {
1783 // We have to look at subexpressions before this one.
1784 if ((*expression_pointer)->traverse_subexpressions(this) == TRAVERSE_EXIT)
1785 return TRAVERSE_EXIT;
1786 if ((*expression_pointer)->must_eval_in_order())
1787 this->exprs_.push_back(expression_pointer);
1788 return TRAVERSE_SKIP_COMPONENTS;
1789 }
1790
1791 // A traversal class for ordering evaluations.
1792
1793 class Order_eval : public Traverse
1794 {
1795 public:
1796 Order_eval()
1797 : Traverse(traverse_variables
1798 | traverse_statements)
1799 { }
1800
1801 int
1802 variable(Named_object*);
1803
1804 int
1805 statement(Block*, size_t*, Statement*);
1806 };
1807
1808 // Implement the order of evaluation rules for a statement.
1809
1810 int
1811 Order_eval::statement(Block* block, size_t* pindex, Statement* s)
1812 {
1813 // FIXME: This approach doesn't work for switch statements, because
1814 // we add the new statements before the whole switch when we need to
1815 // instead add them just before the switch expression. The right
1816 // fix is probably to lower switch statements with nonconstant cases
1817 // to a series of conditionals.
1818 if (s->switch_statement() != NULL)
1819 return TRAVERSE_CONTINUE;
1820
1821 Find_eval_ordering find_eval_ordering;
1822
1823 // If S is a variable declaration, then ordinary traversal won't do
1824 // anything. We want to explicitly traverse the initialization
1825 // expression if there is one.
1826 Variable_declaration_statement* vds = s->variable_declaration_statement();
1827 Expression* init = NULL;
1828 Expression* orig_init = NULL;
1829 if (vds == NULL)
1830 s->traverse_contents(&find_eval_ordering);
1831 else
1832 {
1833 init = vds->var()->var_value()->init();
1834 if (init == NULL)
1835 return TRAVERSE_CONTINUE;
1836 orig_init = init;
1837
1838 // It might seem that this could be
1839 // init->traverse_subexpressions. Unfortunately that can fail
1840 // in a case like
1841 // var err os.Error
1842 // newvar, err := call(arg())
1843 // Here newvar will have an init of call result 0 of
1844 // call(arg()). If we only traverse subexpressions, we will
1845 // only find arg(), and we won't bother to move anything out.
1846 // Then we get to the assignment to err, we will traverse the
1847 // whole statement, and this time we will find both call() and
1848 // arg(), and so we will move them out. This will cause them to
1849 // be put into temporary variables before the assignment to err
1850 // but after the declaration of newvar. To avoid that problem,
1851 // we traverse the entire expression here.
1852 Expression::traverse(&init, &find_eval_ordering);
1853 }
1854
1855 if (find_eval_ordering.size() <= 1)
1856 {
1857 // If there is only one expression with a side-effect, we can
1858 // leave it in place.
1859 return TRAVERSE_CONTINUE;
1860 }
1861
1862 bool is_thunk = s->thunk_statement() != NULL;
1863 for (Find_eval_ordering::const_iterator p = find_eval_ordering.begin();
1864 p != find_eval_ordering.end();
1865 ++p)
1866 {
1867 Expression** pexpr = *p;
1868
1869 // If the last expression is a send or receive expression, we
1870 // may be ignoring the value; we don't want to evaluate it
1871 // early.
1872 if (p + 1 == find_eval_ordering.end()
1873 && ((*pexpr)->classification() == Expression::EXPRESSION_SEND
1874 || (*pexpr)->classification() == Expression::EXPRESSION_RECEIVE))
1875 break;
1876
1877 // The last expression in a thunk will be the call passed to go
1878 // or defer, which we must not evaluate early.
1879 if (is_thunk && p + 1 == find_eval_ordering.end())
1880 break;
1881
1882 source_location loc = (*pexpr)->location();
1883 Temporary_statement* ts = Statement::make_temporary(NULL, *pexpr, loc);
1884 block->insert_statement_before(*pindex, ts);
1885 ++*pindex;
1886
1887 *pexpr = Expression::make_temporary_reference(ts, loc);
1888 }
1889
1890 if (init != orig_init)
1891 vds->var()->var_value()->set_init(init);
1892
1893 return TRAVERSE_CONTINUE;
1894 }
1895
1896 // Implement the order of evaluation rules for the initializer of a
1897 // global variable.
1898
1899 int
1900 Order_eval::variable(Named_object* no)
1901 {
1902 if (no->is_result_variable())
1903 return TRAVERSE_CONTINUE;
1904 Variable* var = no->var_value();
1905 Expression* init = var->init();
1906 if (!var->is_global() || init == NULL)
1907 return TRAVERSE_CONTINUE;
1908
1909 Find_eval_ordering find_eval_ordering;
1910 init->traverse_subexpressions(&find_eval_ordering);
1911
1912 if (find_eval_ordering.size() <= 1)
1913 {
1914 // If there is only one expression with a side-effect, we can
1915 // leave it in place.
1916 return TRAVERSE_SKIP_COMPONENTS;
1917 }
1918
1919 for (Find_eval_ordering::const_iterator p = find_eval_ordering.begin();
1920 p != find_eval_ordering.end();
1921 ++p)
1922 {
1923 Expression** pexpr = *p;
1924 source_location loc = (*pexpr)->location();
1925 Temporary_statement* ts = Statement::make_temporary(NULL, *pexpr, loc);
1926 var->add_preinit_statement(ts);
1927 *pexpr = Expression::make_temporary_reference(ts, loc);
1928 }
1929
1930 return TRAVERSE_SKIP_COMPONENTS;
1931 }
1932
1933 // Use temporary variables to implement the order of evaluation rules.
1934
1935 void
1936 Gogo::order_evaluations()
1937 {
1938 Order_eval order_eval;
1939 this->traverse(&order_eval);
1940 }
1941
1942 // Traversal to convert calls to the predeclared recover function to
1943 // pass in an argument indicating whether it can recover from a panic
1944 // or not.
1945
1946 class Convert_recover : public Traverse
1947 {
1948 public:
1949 Convert_recover(Named_object* arg)
1950 : Traverse(traverse_expressions),
1951 arg_(arg)
1952 { }
1953
1954 protected:
1955 int
1956 expression(Expression**);
1957
1958 private:
1959 // The argument to pass to the function.
1960 Named_object* arg_;
1961 };
1962
1963 // Convert calls to recover.
1964
1965 int
1966 Convert_recover::expression(Expression** pp)
1967 {
1968 Call_expression* ce = (*pp)->call_expression();
1969 if (ce != NULL && ce->is_recover_call())
1970 ce->set_recover_arg(Expression::make_var_reference(this->arg_,
1971 ce->location()));
1972 return TRAVERSE_CONTINUE;
1973 }
1974
1975 // Traversal for build_recover_thunks.
1976
1977 class Build_recover_thunks : public Traverse
1978 {
1979 public:
1980 Build_recover_thunks(Gogo* gogo)
1981 : Traverse(traverse_functions),
1982 gogo_(gogo)
1983 { }
1984
1985 int
1986 function(Named_object*);
1987
1988 private:
1989 Expression*
1990 can_recover_arg(source_location);
1991
1992 // General IR.
1993 Gogo* gogo_;
1994 };
1995
1996 // If this function calls recover, turn it into a thunk.
1997
1998 int
1999 Build_recover_thunks::function(Named_object* orig_no)
2000 {
2001 Function* orig_func = orig_no->func_value();
2002 if (!orig_func->calls_recover()
2003 || orig_func->is_recover_thunk()
2004 || orig_func->has_recover_thunk())
2005 return TRAVERSE_CONTINUE;
2006
2007 Gogo* gogo = this->gogo_;
2008 source_location location = orig_func->location();
2009
2010 static int count;
2011 char buf[50];
2012
2013 Function_type* orig_fntype = orig_func->type();
2014 Typed_identifier_list* new_params = new Typed_identifier_list();
2015 std::string receiver_name;
2016 if (orig_fntype->is_method())
2017 {
2018 const Typed_identifier* receiver = orig_fntype->receiver();
2019 snprintf(buf, sizeof buf, "rt.%u", count);
2020 ++count;
2021 receiver_name = buf;
2022 new_params->push_back(Typed_identifier(receiver_name, receiver->type(),
2023 receiver->location()));
2024 }
2025 const Typed_identifier_list* orig_params = orig_fntype->parameters();
2026 if (orig_params != NULL && !orig_params->empty())
2027 {
2028 for (Typed_identifier_list::const_iterator p = orig_params->begin();
2029 p != orig_params->end();
2030 ++p)
2031 {
2032 snprintf(buf, sizeof buf, "pt.%u", count);
2033 ++count;
2034 new_params->push_back(Typed_identifier(buf, p->type(),
2035 p->location()));
2036 }
2037 }
2038 snprintf(buf, sizeof buf, "pr.%u", count);
2039 ++count;
2040 std::string can_recover_name = buf;
2041 new_params->push_back(Typed_identifier(can_recover_name,
2042 Type::make_boolean_type(),
2043 orig_fntype->location()));
2044
2045 const Typed_identifier_list* orig_results = orig_fntype->results();
2046 Typed_identifier_list* new_results;
2047 if (orig_results == NULL || orig_results->empty())
2048 new_results = NULL;
2049 else
2050 {
2051 new_results = new Typed_identifier_list();
2052 for (Typed_identifier_list::const_iterator p = orig_results->begin();
2053 p != orig_results->end();
2054 ++p)
2055 new_results->push_back(*p);
2056 }
2057
2058 Function_type *new_fntype = Type::make_function_type(NULL, new_params,
2059 new_results,
2060 orig_fntype->location());
2061 if (orig_fntype->is_varargs())
2062 new_fntype->set_is_varargs();
2063
2064 std::string name = orig_no->name() + "$recover";
2065 Named_object *new_no = gogo->start_function(name, new_fntype, false,
2066 location);
2067 Function *new_func = new_no->func_value();
2068 if (orig_func->enclosing() != NULL)
2069 new_func->set_enclosing(orig_func->enclosing());
2070
2071 // We build the code for the original function attached to the new
2072 // function, and then swap the original and new function bodies.
2073 // This means that existing references to the original function will
2074 // then refer to the new function. That makes this code a little
2075 // confusing, in that the reference to NEW_NO really refers to the
2076 // other function, not the one we are building.
2077
2078 Expression* closure = NULL;
2079 if (orig_func->needs_closure())
2080 {
2081 Named_object* orig_closure_no = orig_func->closure_var();
2082 Variable* orig_closure_var = orig_closure_no->var_value();
2083 Variable* new_var = new Variable(orig_closure_var->type(), NULL, false,
2084 true, false, location);
2085 snprintf(buf, sizeof buf, "closure.%u", count);
2086 ++count;
2087 Named_object* new_closure_no = Named_object::make_variable(buf, NULL,
2088 new_var);
2089 new_func->set_closure_var(new_closure_no);
2090 closure = Expression::make_var_reference(new_closure_no, location);
2091 }
2092
2093 Expression* fn = Expression::make_func_reference(new_no, closure, location);
2094
2095 Expression_list* args = new Expression_list();
2096 if (new_params != NULL)
2097 {
2098 // Note that we skip the last parameter, which is the boolean
2099 // indicating whether recover can succed.
2100 for (Typed_identifier_list::const_iterator p = new_params->begin();
2101 p + 1 != new_params->end();
2102 ++p)
2103 {
2104 Named_object* p_no = gogo->lookup(p->name(), NULL);
2105 gcc_assert(p_no != NULL
2106 && p_no->is_variable()
2107 && p_no->var_value()->is_parameter());
2108 args->push_back(Expression::make_var_reference(p_no, location));
2109 }
2110 }
2111 args->push_back(this->can_recover_arg(location));
2112
2113 Expression* call = Expression::make_call(fn, args, false, location);
2114
2115 Statement* s;
2116 if (orig_fntype->results() == NULL || orig_fntype->results()->empty())
2117 s = Statement::make_statement(call);
2118 else
2119 {
2120 Expression_list* vals = new Expression_list();
2121 vals->push_back(call);
2122 s = Statement::make_return_statement(new_func->type()->results(),
2123 vals, location);
2124 }
2125 s->determine_types();
2126 gogo->add_statement(s);
2127
2128 gogo->finish_function(location);
2129
2130 // Swap the function bodies and types.
2131 new_func->swap_for_recover(orig_func);
2132 orig_func->set_is_recover_thunk();
2133 new_func->set_calls_recover();
2134 new_func->set_has_recover_thunk();
2135
2136 Bindings* orig_bindings = orig_func->block()->bindings();
2137 Bindings* new_bindings = new_func->block()->bindings();
2138 if (orig_fntype->is_method())
2139 {
2140 // We changed the receiver to be a regular parameter. We have
2141 // to update the binding accordingly in both functions.
2142 Named_object* orig_rec_no = orig_bindings->lookup_local(receiver_name);
2143 gcc_assert(orig_rec_no != NULL
2144 && orig_rec_no->is_variable()
2145 && !orig_rec_no->var_value()->is_receiver());
2146 orig_rec_no->var_value()->set_is_receiver();
2147
2148 const std::string& new_receiver_name(orig_fntype->receiver()->name());
2149 Named_object* new_rec_no = new_bindings->lookup_local(new_receiver_name);
2150 gcc_assert(new_rec_no != NULL
2151 && new_rec_no->is_variable()
2152 && new_rec_no->var_value()->is_receiver());
2153 new_rec_no->var_value()->set_is_not_receiver();
2154 }
2155
2156 // Because we flipped blocks but not types, the can_recover
2157 // parameter appears in the (now) old bindings as a parameter.
2158 // Change it to a local variable, whereupon it will be discarded.
2159 Named_object* can_recover_no = orig_bindings->lookup_local(can_recover_name);
2160 gcc_assert(can_recover_no != NULL
2161 && can_recover_no->is_variable()
2162 && can_recover_no->var_value()->is_parameter());
2163 orig_bindings->remove_binding(can_recover_no);
2164
2165 // Add the can_recover argument to the (now) new bindings, and
2166 // attach it to any recover statements.
2167 Variable* can_recover_var = new Variable(Type::make_boolean_type(), NULL,
2168 false, true, false, location);
2169 can_recover_no = new_bindings->add_variable(can_recover_name, NULL,
2170 can_recover_var);
2171 Convert_recover convert_recover(can_recover_no);
2172 new_func->traverse(&convert_recover);
2173
2174 return TRAVERSE_CONTINUE;
2175 }
2176
2177 // Return the expression to pass for the .can_recover parameter to the
2178 // new function. This indicates whether a call to recover may return
2179 // non-nil. The expression is
2180 // __go_can_recover(__builtin_return_address()).
2181
2182 Expression*
2183 Build_recover_thunks::can_recover_arg(source_location location)
2184 {
2185 static Named_object* builtin_return_address;
2186 if (builtin_return_address == NULL)
2187 {
2188 const source_location bloc = BUILTINS_LOCATION;
2189
2190 Typed_identifier_list* param_types = new Typed_identifier_list();
2191 Type* uint_type = Type::lookup_integer_type("uint");
2192 param_types->push_back(Typed_identifier("l", uint_type, bloc));
2193
2194 Typed_identifier_list* return_types = new Typed_identifier_list();
2195 Type* voidptr_type = Type::make_pointer_type(Type::make_void_type());
2196 return_types->push_back(Typed_identifier("", voidptr_type, bloc));
2197
2198 Function_type* fntype = Type::make_function_type(NULL, param_types,
2199 return_types, bloc);
2200 builtin_return_address =
2201 Named_object::make_function_declaration("__builtin_return_address",
2202 NULL, fntype, bloc);
2203 const char* n = "__builtin_return_address";
2204 builtin_return_address->func_declaration_value()->set_asm_name(n);
2205 }
2206
2207 static Named_object* can_recover;
2208 if (can_recover == NULL)
2209 {
2210 const source_location bloc = BUILTINS_LOCATION;
2211 Typed_identifier_list* param_types = new Typed_identifier_list();
2212 Type* voidptr_type = Type::make_pointer_type(Type::make_void_type());
2213 param_types->push_back(Typed_identifier("a", voidptr_type, bloc));
2214 Type* boolean_type = Type::make_boolean_type();
2215 Typed_identifier_list* results = new Typed_identifier_list();
2216 results->push_back(Typed_identifier("", boolean_type, bloc));
2217 Function_type* fntype = Type::make_function_type(NULL, param_types,
2218 results, bloc);
2219 can_recover = Named_object::make_function_declaration("__go_can_recover",
2220 NULL, fntype,
2221 bloc);
2222 can_recover->func_declaration_value()->set_asm_name("__go_can_recover");
2223 }
2224
2225 Expression* fn = Expression::make_func_reference(builtin_return_address,
2226 NULL, location);
2227
2228 mpz_t zval;
2229 mpz_init_set_ui(zval, 0UL);
2230 Expression* zexpr = Expression::make_integer(&zval, NULL, location);
2231 mpz_clear(zval);
2232 Expression_list *args = new Expression_list();
2233 args->push_back(zexpr);
2234
2235 Expression* call = Expression::make_call(fn, args, false, location);
2236
2237 args = new Expression_list();
2238 args->push_back(call);
2239
2240 fn = Expression::make_func_reference(can_recover, NULL, location);
2241 return Expression::make_call(fn, args, false, location);
2242 }
2243
2244 // Build thunks for functions which call recover. We build a new
2245 // function with an extra parameter, which is whether a call to
2246 // recover can succeed. We then move the body of this function to
2247 // that one. We then turn this function into a thunk which calls the
2248 // new one, passing the value of
2249 // __go_can_recover(__builtin_return_address()). The function will be
2250 // marked as not splitting the stack. This will cooperate with the
2251 // implementation of defer to make recover do the right thing.
2252
2253 void
2254 Gogo::build_recover_thunks()
2255 {
2256 Build_recover_thunks build_recover_thunks(this);
2257 this->traverse(&build_recover_thunks);
2258 }
2259
2260 // Look for named types to see whether we need to create an interface
2261 // method table.
2262
2263 class Build_method_tables : public Traverse
2264 {
2265 public:
2266 Build_method_tables(Gogo* gogo,
2267 const std::vector<Interface_type*>& interfaces)
2268 : Traverse(traverse_types),
2269 gogo_(gogo), interfaces_(interfaces)
2270 { }
2271
2272 int
2273 type(Type*);
2274
2275 private:
2276 // The IR.
2277 Gogo* gogo_;
2278 // A list of locally defined interfaces which have hidden methods.
2279 const std::vector<Interface_type*>& interfaces_;
2280 };
2281
2282 // Build all required interface method tables for types. We need to
2283 // ensure that we have an interface method table for every interface
2284 // which has a hidden method, for every named type which implements
2285 // that interface. Normally we can just build interface method tables
2286 // as we need them. However, in some cases we can require an
2287 // interface method table for an interface defined in a different
2288 // package for a type defined in that package. If that interface and
2289 // type both use a hidden method, that is OK. However, we will not be
2290 // able to build that interface method table when we need it, because
2291 // the type's hidden method will be static. So we have to build it
2292 // here, and just refer it from other packages as needed.
2293
2294 void
2295 Gogo::build_interface_method_tables()
2296 {
2297 std::vector<Interface_type*> hidden_interfaces;
2298 hidden_interfaces.reserve(this->interface_types_.size());
2299 for (std::vector<Interface_type*>::const_iterator pi =
2300 this->interface_types_.begin();
2301 pi != this->interface_types_.end();
2302 ++pi)
2303 {
2304 const Typed_identifier_list* methods = (*pi)->methods();
2305 if (methods == NULL)
2306 continue;
2307 for (Typed_identifier_list::const_iterator pm = methods->begin();
2308 pm != methods->end();
2309 ++pm)
2310 {
2311 if (Gogo::is_hidden_name(pm->name()))
2312 {
2313 hidden_interfaces.push_back(*pi);
2314 break;
2315 }
2316 }
2317 }
2318
2319 if (!hidden_interfaces.empty())
2320 {
2321 // Now traverse the tree looking for all named types.
2322 Build_method_tables bmt(this, hidden_interfaces);
2323 this->traverse(&bmt);
2324 }
2325
2326 // We no longer need the list of interfaces.
2327
2328 this->interface_types_.clear();
2329 }
2330
2331 // This is called for each type. For a named type, for each of the
2332 // interfaces with hidden methods that it implements, create the
2333 // method table.
2334
2335 int
2336 Build_method_tables::type(Type* type)
2337 {
2338 Named_type* nt = type->named_type();
2339 if (nt != NULL)
2340 {
2341 for (std::vector<Interface_type*>::const_iterator p =
2342 this->interfaces_.begin();
2343 p != this->interfaces_.end();
2344 ++p)
2345 {
2346 // We ask whether a pointer to the named type implements the
2347 // interface, because a pointer can implement more methods
2348 // than a value.
2349 if ((*p)->implements_interface(Type::make_pointer_type(nt), NULL))
2350 {
2351 nt->interface_method_table(this->gogo_, *p, false);
2352 nt->interface_method_table(this->gogo_, *p, true);
2353 }
2354 }
2355 }
2356 return TRAVERSE_CONTINUE;
2357 }
2358
2359 // Traversal class used to check for return statements.
2360
2361 class Check_return_statements_traverse : public Traverse
2362 {
2363 public:
2364 Check_return_statements_traverse()
2365 : Traverse(traverse_functions)
2366 { }
2367
2368 int
2369 function(Named_object*);
2370 };
2371
2372 // Check that a function has a return statement if it needs one.
2373
2374 int
2375 Check_return_statements_traverse::function(Named_object* no)
2376 {
2377 Function* func = no->func_value();
2378 const Function_type* fntype = func->type();
2379 const Typed_identifier_list* results = fntype->results();
2380
2381 // We only need a return statement if there is a return value.
2382 if (results == NULL || results->empty())
2383 return TRAVERSE_CONTINUE;
2384
2385 if (func->block()->may_fall_through())
2386 error_at(func->location(), "control reaches end of non-void function");
2387
2388 return TRAVERSE_CONTINUE;
2389 }
2390
2391 // Check return statements.
2392
2393 void
2394 Gogo::check_return_statements()
2395 {
2396 Check_return_statements_traverse traverse;
2397 this->traverse(&traverse);
2398 }
2399
2400 // Get the unique prefix to use before all exported symbols. This
2401 // must be unique across the entire link.
2402
2403 const std::string&
2404 Gogo::unique_prefix() const
2405 {
2406 gcc_assert(!this->unique_prefix_.empty());
2407 return this->unique_prefix_;
2408 }
2409
2410 // Set the unique prefix to use before all exported symbols. This
2411 // comes from the command line option -fgo-prefix=XXX.
2412
2413 void
2414 Gogo::set_unique_prefix(const std::string& arg)
2415 {
2416 gcc_assert(this->unique_prefix_.empty());
2417 this->unique_prefix_ = arg;
2418 }
2419
2420 // Work out the package priority. It is one more than the maximum
2421 // priority of an imported package.
2422
2423 int
2424 Gogo::package_priority() const
2425 {
2426 int priority = 0;
2427 for (Packages::const_iterator p = this->packages_.begin();
2428 p != this->packages_.end();
2429 ++p)
2430 if (p->second->priority() > priority)
2431 priority = p->second->priority();
2432 return priority + 1;
2433 }
2434
2435 // Export identifiers as requested.
2436
2437 void
2438 Gogo::do_exports()
2439 {
2440 // For now we always stream to a section. Later we may want to
2441 // support streaming to a separate file.
2442 Stream_to_section stream;
2443
2444 Export exp(&stream);
2445 exp.register_builtin_types(this);
2446 exp.export_globals(this->package_name(),
2447 this->unique_prefix(),
2448 this->package_priority(),
2449 (this->need_init_fn_ && this->package_name() != "main"
2450 ? this->get_init_fn_name()
2451 : ""),
2452 this->imported_init_fns_,
2453 this->package_->bindings());
2454 }
2455
2456 // Class Function.
2457
2458 Function::Function(Function_type* type, Function* enclosing, Block* block,
2459 source_location location)
2460 : type_(type), enclosing_(enclosing), named_results_(NULL),
2461 closure_var_(NULL), block_(block), location_(location), fndecl_(NULL),
2462 defer_stack_(NULL), calls_recover_(false), is_recover_thunk_(false),
2463 has_recover_thunk_(false)
2464 {
2465 }
2466
2467 // Create the named result variables.
2468
2469 void
2470 Function::create_named_result_variables(Gogo* gogo)
2471 {
2472 const Typed_identifier_list* results = this->type_->results();
2473 if (results == NULL
2474 || results->empty()
2475 || results->front().name().empty())
2476 return;
2477
2478 this->named_results_ = new Named_results();
2479 this->named_results_->reserve(results->size());
2480
2481 Block* block = this->block_;
2482 int index = 0;
2483 for (Typed_identifier_list::const_iterator p = results->begin();
2484 p != results->end();
2485 ++p, ++index)
2486 {
2487 std::string name = p->name();
2488 if (Gogo::is_sink_name(name))
2489 {
2490 static int unnamed_result_counter;
2491 char buf[100];
2492 snprintf(buf, sizeof buf, "_$%d", unnamed_result_counter);
2493 ++unnamed_result_counter;
2494 name = gogo->pack_hidden_name(buf, false);
2495 }
2496 Result_variable* result = new Result_variable(p->type(), this, index);
2497 Named_object* no = block->bindings()->add_result_variable(name, result);
2498 this->named_results_->push_back(no);
2499 }
2500 }
2501
2502 // Return the closure variable, creating it if necessary.
2503
2504 Named_object*
2505 Function::closure_var()
2506 {
2507 if (this->closure_var_ == NULL)
2508 {
2509 // We don't know the type of the variable yet. We add fields as
2510 // we find them.
2511 source_location loc = this->type_->location();
2512 Struct_field_list* sfl = new Struct_field_list;
2513 Type* struct_type = Type::make_struct_type(sfl, loc);
2514 Variable* var = new Variable(Type::make_pointer_type(struct_type),
2515 NULL, false, true, false, loc);
2516 this->closure_var_ = Named_object::make_variable("closure", NULL, var);
2517 // Note that the new variable is not in any binding contour.
2518 }
2519 return this->closure_var_;
2520 }
2521
2522 // Set the type of the closure variable.
2523
2524 void
2525 Function::set_closure_type()
2526 {
2527 if (this->closure_var_ == NULL)
2528 return;
2529 Named_object* closure = this->closure_var_;
2530 Struct_type* st = closure->var_value()->type()->deref()->struct_type();
2531 unsigned int index = 0;
2532 for (Closure_fields::const_iterator p = this->closure_fields_.begin();
2533 p != this->closure_fields_.end();
2534 ++p, ++index)
2535 {
2536 Named_object* no = p->first;
2537 char buf[20];
2538 snprintf(buf, sizeof buf, "%u", index);
2539 std::string n = no->name() + buf;
2540 Type* var_type;
2541 if (no->is_variable())
2542 var_type = no->var_value()->type();
2543 else
2544 var_type = no->result_var_value()->type();
2545 Type* field_type = Type::make_pointer_type(var_type);
2546 st->push_field(Struct_field(Typed_identifier(n, field_type, p->second)));
2547 }
2548 }
2549
2550 // Return whether this function is a method.
2551
2552 bool
2553 Function::is_method() const
2554 {
2555 return this->type_->is_method();
2556 }
2557
2558 // Add a label definition.
2559
2560 Label*
2561 Function::add_label_definition(const std::string& label_name,
2562 source_location location)
2563 {
2564 Label* lnull = NULL;
2565 std::pair<Labels::iterator, bool> ins =
2566 this->labels_.insert(std::make_pair(label_name, lnull));
2567 if (ins.second)
2568 {
2569 // This is a new label.
2570 Label* label = new Label(label_name);
2571 label->define(location);
2572 ins.first->second = label;
2573 return label;
2574 }
2575 else
2576 {
2577 // The label was already in the hash table.
2578 Label* label = ins.first->second;
2579 if (!label->is_defined())
2580 {
2581 label->define(location);
2582 return label;
2583 }
2584 else
2585 {
2586 error_at(location, "redefinition of label %qs",
2587 Gogo::message_name(label_name).c_str());
2588 inform(label->location(), "previous definition of %qs was here",
2589 Gogo::message_name(label_name).c_str());
2590 return new Label(label_name);
2591 }
2592 }
2593 }
2594
2595 // Add a reference to a label.
2596
2597 Label*
2598 Function::add_label_reference(const std::string& label_name)
2599 {
2600 Label* lnull = NULL;
2601 std::pair<Labels::iterator, bool> ins =
2602 this->labels_.insert(std::make_pair(label_name, lnull));
2603 if (!ins.second)
2604 {
2605 // The label was already in the hash table.
2606 return ins.first->second;
2607 }
2608 else
2609 {
2610 gcc_assert(ins.first->second == NULL);
2611 Label* label = new Label(label_name);
2612 ins.first->second = label;
2613 return label;
2614 }
2615 }
2616
2617 // Swap one function with another. This is used when building the
2618 // thunk we use to call a function which calls recover. It may not
2619 // work for any other case.
2620
2621 void
2622 Function::swap_for_recover(Function *x)
2623 {
2624 gcc_assert(this->enclosing_ == x->enclosing_);
2625 gcc_assert(this->named_results_ == x->named_results_);
2626 std::swap(this->closure_var_, x->closure_var_);
2627 std::swap(this->block_, x->block_);
2628 gcc_assert(this->location_ == x->location_);
2629 gcc_assert(this->fndecl_ == NULL && x->fndecl_ == NULL);
2630 gcc_assert(this->defer_stack_ == NULL && x->defer_stack_ == NULL);
2631 }
2632
2633 // Traverse the tree.
2634
2635 int
2636 Function::traverse(Traverse* traverse)
2637 {
2638 unsigned int traverse_mask = traverse->traverse_mask();
2639
2640 if ((traverse_mask
2641 & (Traverse::traverse_types | Traverse::traverse_expressions))
2642 != 0)
2643 {
2644 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
2645 return TRAVERSE_EXIT;
2646 }
2647
2648 // FIXME: We should check traverse_functions here if nested
2649 // functions are stored in block bindings.
2650 if (this->block_ != NULL
2651 && (traverse_mask
2652 & (Traverse::traverse_variables
2653 | Traverse::traverse_constants
2654 | Traverse::traverse_blocks
2655 | Traverse::traverse_statements
2656 | Traverse::traverse_expressions
2657 | Traverse::traverse_types)) != 0)
2658 {
2659 if (this->block_->traverse(traverse) == TRAVERSE_EXIT)
2660 return TRAVERSE_EXIT;
2661 }
2662
2663 return TRAVERSE_CONTINUE;
2664 }
2665
2666 // Work out types for unspecified variables and constants.
2667
2668 void
2669 Function::determine_types()
2670 {
2671 if (this->block_ != NULL)
2672 this->block_->determine_types();
2673 }
2674
2675 // Export the function.
2676
2677 void
2678 Function::export_func(Export* exp, const std::string& name) const
2679 {
2680 Function::export_func_with_type(exp, name, this->type_);
2681 }
2682
2683 // Export a function with a type.
2684
2685 void
2686 Function::export_func_with_type(Export* exp, const std::string& name,
2687 const Function_type* fntype)
2688 {
2689 exp->write_c_string("func ");
2690
2691 if (fntype->is_method())
2692 {
2693 exp->write_c_string("(");
2694 exp->write_type(fntype->receiver()->type());
2695 exp->write_c_string(") ");
2696 }
2697
2698 exp->write_string(name);
2699
2700 exp->write_c_string(" (");
2701 const Typed_identifier_list* parameters = fntype->parameters();
2702 if (parameters != NULL)
2703 {
2704 bool is_varargs = fntype->is_varargs();
2705 bool first = true;
2706 for (Typed_identifier_list::const_iterator p = parameters->begin();
2707 p != parameters->end();
2708 ++p)
2709 {
2710 if (first)
2711 first = false;
2712 else
2713 exp->write_c_string(", ");
2714 if (!is_varargs || p + 1 != parameters->end())
2715 exp->write_type(p->type());
2716 else
2717 {
2718 exp->write_c_string("...");
2719 exp->write_type(p->type()->array_type()->element_type());
2720 }
2721 }
2722 }
2723 exp->write_c_string(")");
2724
2725 const Typed_identifier_list* results = fntype->results();
2726 if (results != NULL)
2727 {
2728 if (results->size() == 1)
2729 {
2730 exp->write_c_string(" ");
2731 exp->write_type(results->begin()->type());
2732 }
2733 else
2734 {
2735 exp->write_c_string(" (");
2736 bool first = true;
2737 for (Typed_identifier_list::const_iterator p = results->begin();
2738 p != results->end();
2739 ++p)
2740 {
2741 if (first)
2742 first = false;
2743 else
2744 exp->write_c_string(", ");
2745 exp->write_type(p->type());
2746 }
2747 exp->write_c_string(")");
2748 }
2749 }
2750 exp->write_c_string(";\n");
2751 }
2752
2753 // Import a function.
2754
2755 void
2756 Function::import_func(Import* imp, std::string* pname,
2757 Typed_identifier** preceiver,
2758 Typed_identifier_list** pparameters,
2759 Typed_identifier_list** presults,
2760 bool* is_varargs)
2761 {
2762 imp->require_c_string("func ");
2763
2764 *preceiver = NULL;
2765 if (imp->peek_char() == '(')
2766 {
2767 imp->require_c_string("(");
2768 Type* rtype = imp->read_type();
2769 *preceiver = new Typed_identifier(Import::import_marker, rtype,
2770 imp->location());
2771 imp->require_c_string(") ");
2772 }
2773
2774 *pname = imp->read_identifier();
2775
2776 Typed_identifier_list* parameters;
2777 *is_varargs = false;
2778 imp->require_c_string(" (");
2779 if (imp->peek_char() == ')')
2780 parameters = NULL;
2781 else
2782 {
2783 parameters = new Typed_identifier_list();
2784 while (true)
2785 {
2786 if (imp->match_c_string("..."))
2787 {
2788 imp->advance(3);
2789 *is_varargs = true;
2790 }
2791
2792 Type* ptype = imp->read_type();
2793 if (*is_varargs)
2794 ptype = Type::make_array_type(ptype, NULL);
2795 parameters->push_back(Typed_identifier(Import::import_marker,
2796 ptype, imp->location()));
2797 if (imp->peek_char() != ',')
2798 break;
2799 gcc_assert(!*is_varargs);
2800 imp->require_c_string(", ");
2801 }
2802 }
2803 imp->require_c_string(")");
2804 *pparameters = parameters;
2805
2806 Typed_identifier_list* results;
2807 if (imp->peek_char() != ' ')
2808 results = NULL;
2809 else
2810 {
2811 results = new Typed_identifier_list();
2812 imp->require_c_string(" ");
2813 if (imp->peek_char() != '(')
2814 {
2815 Type* rtype = imp->read_type();
2816 results->push_back(Typed_identifier(Import::import_marker, rtype,
2817 imp->location()));
2818 }
2819 else
2820 {
2821 imp->require_c_string("(");
2822 while (true)
2823 {
2824 Type* rtype = imp->read_type();
2825 results->push_back(Typed_identifier(Import::import_marker,
2826 rtype, imp->location()));
2827 if (imp->peek_char() != ',')
2828 break;
2829 imp->require_c_string(", ");
2830 }
2831 imp->require_c_string(")");
2832 }
2833 }
2834 imp->require_c_string(";\n");
2835 *presults = results;
2836 }
2837
2838 // Class Block.
2839
2840 Block::Block(Block* enclosing, source_location location)
2841 : enclosing_(enclosing), statements_(),
2842 bindings_(new Bindings(enclosing == NULL
2843 ? NULL
2844 : enclosing->bindings())),
2845 start_location_(location),
2846 end_location_(UNKNOWN_LOCATION)
2847 {
2848 }
2849
2850 // Add a statement to a block.
2851
2852 void
2853 Block::add_statement(Statement* statement)
2854 {
2855 this->statements_.push_back(statement);
2856 }
2857
2858 // Add a statement to the front of a block. This is slow but is only
2859 // used for reference counts of parameters.
2860
2861 void
2862 Block::add_statement_at_front(Statement* statement)
2863 {
2864 this->statements_.insert(this->statements_.begin(), statement);
2865 }
2866
2867 // Replace a statement in a block.
2868
2869 void
2870 Block::replace_statement(size_t index, Statement* s)
2871 {
2872 gcc_assert(index < this->statements_.size());
2873 this->statements_[index] = s;
2874 }
2875
2876 // Add a statement before another statement.
2877
2878 void
2879 Block::insert_statement_before(size_t index, Statement* s)
2880 {
2881 gcc_assert(index < this->statements_.size());
2882 this->statements_.insert(this->statements_.begin() + index, s);
2883 }
2884
2885 // Add a statement after another statement.
2886
2887 void
2888 Block::insert_statement_after(size_t index, Statement* s)
2889 {
2890 gcc_assert(index < this->statements_.size());
2891 this->statements_.insert(this->statements_.begin() + index + 1, s);
2892 }
2893
2894 // Traverse the tree.
2895
2896 int
2897 Block::traverse(Traverse* traverse)
2898 {
2899 unsigned int traverse_mask = traverse->traverse_mask();
2900
2901 if ((traverse_mask & Traverse::traverse_blocks) != 0)
2902 {
2903 int t = traverse->block(this);
2904 if (t == TRAVERSE_EXIT)
2905 return TRAVERSE_EXIT;
2906 else if (t == TRAVERSE_SKIP_COMPONENTS)
2907 return TRAVERSE_CONTINUE;
2908 }
2909
2910 if ((traverse_mask
2911 & (Traverse::traverse_variables
2912 | Traverse::traverse_constants
2913 | Traverse::traverse_expressions
2914 | Traverse::traverse_types)) != 0)
2915 {
2916 for (Bindings::const_definitions_iterator pb =
2917 this->bindings_->begin_definitions();
2918 pb != this->bindings_->end_definitions();
2919 ++pb)
2920 {
2921 switch ((*pb)->classification())
2922 {
2923 case Named_object::NAMED_OBJECT_CONST:
2924 if ((traverse_mask & Traverse::traverse_constants) != 0)
2925 {
2926 if (traverse->constant(*pb, false) == TRAVERSE_EXIT)
2927 return TRAVERSE_EXIT;
2928 }
2929 if ((traverse_mask & Traverse::traverse_types) != 0
2930 || (traverse_mask & Traverse::traverse_expressions) != 0)
2931 {
2932 Type* t = (*pb)->const_value()->type();
2933 if (t != NULL
2934 && Type::traverse(t, traverse) == TRAVERSE_EXIT)
2935 return TRAVERSE_EXIT;
2936 }
2937 if ((traverse_mask & Traverse::traverse_expressions) != 0
2938 || (traverse_mask & Traverse::traverse_types) != 0)
2939 {
2940 if ((*pb)->const_value()->traverse_expression(traverse)
2941 == TRAVERSE_EXIT)
2942 return TRAVERSE_EXIT;
2943 }
2944 break;
2945
2946 case Named_object::NAMED_OBJECT_VAR:
2947 case Named_object::NAMED_OBJECT_RESULT_VAR:
2948 if ((traverse_mask & Traverse::traverse_variables) != 0)
2949 {
2950 if (traverse->variable(*pb) == TRAVERSE_EXIT)
2951 return TRAVERSE_EXIT;
2952 }
2953 if (((traverse_mask & Traverse::traverse_types) != 0
2954 || (traverse_mask & Traverse::traverse_expressions) != 0)
2955 && ((*pb)->is_result_variable()
2956 || (*pb)->var_value()->has_type()))
2957 {
2958 Type* t = ((*pb)->is_variable()
2959 ? (*pb)->var_value()->type()
2960 : (*pb)->result_var_value()->type());
2961 if (t != NULL
2962 && Type::traverse(t, traverse) == TRAVERSE_EXIT)
2963 return TRAVERSE_EXIT;
2964 }
2965 if ((*pb)->is_variable()
2966 && ((traverse_mask & Traverse::traverse_expressions) != 0
2967 || (traverse_mask & Traverse::traverse_types) != 0))
2968 {
2969 if ((*pb)->var_value()->traverse_expression(traverse)
2970 == TRAVERSE_EXIT)
2971 return TRAVERSE_EXIT;
2972 }
2973 break;
2974
2975 case Named_object::NAMED_OBJECT_FUNC:
2976 case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
2977 // FIXME: Where will nested functions be found?
2978 gcc_unreachable();
2979
2980 case Named_object::NAMED_OBJECT_TYPE:
2981 if ((traverse_mask & Traverse::traverse_types) != 0
2982 || (traverse_mask & Traverse::traverse_expressions) != 0)
2983 {
2984 if (Type::traverse((*pb)->type_value(), traverse)
2985 == TRAVERSE_EXIT)
2986 return TRAVERSE_EXIT;
2987 }
2988 break;
2989
2990 case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
2991 case Named_object::NAMED_OBJECT_UNKNOWN:
2992 break;
2993
2994 case Named_object::NAMED_OBJECT_PACKAGE:
2995 case Named_object::NAMED_OBJECT_SINK:
2996 gcc_unreachable();
2997
2998 default:
2999 gcc_unreachable();
3000 }
3001 }
3002 }
3003
3004 // No point in checking traverse_mask here--if we got here we always
3005 // want to walk the statements. The traversal can insert new
3006 // statements before or after the current statement. Inserting
3007 // statements before the current statement requires updating I via
3008 // the pointer; those statements will not be traversed. Any new
3009 // statements inserted after the current statement will be traversed
3010 // in their turn.
3011 for (size_t i = 0; i < this->statements_.size(); ++i)
3012 {
3013 if (this->statements_[i]->traverse(this, &i, traverse) == TRAVERSE_EXIT)
3014 return TRAVERSE_EXIT;
3015 }
3016
3017 return TRAVERSE_CONTINUE;
3018 }
3019
3020 // Work out types for unspecified variables and constants.
3021
3022 void
3023 Block::determine_types()
3024 {
3025 for (Bindings::const_definitions_iterator pb =
3026 this->bindings_->begin_definitions();
3027 pb != this->bindings_->end_definitions();
3028 ++pb)
3029 {
3030 if ((*pb)->is_variable())
3031 (*pb)->var_value()->determine_type();
3032 else if ((*pb)->is_const())
3033 (*pb)->const_value()->determine_type();
3034 }
3035
3036 for (std::vector<Statement*>::const_iterator ps = this->statements_.begin();
3037 ps != this->statements_.end();
3038 ++ps)
3039 (*ps)->determine_types();
3040 }
3041
3042 // Return true if the statements in this block may fall through.
3043
3044 bool
3045 Block::may_fall_through() const
3046 {
3047 if (this->statements_.empty())
3048 return true;
3049 return this->statements_.back()->may_fall_through();
3050 }
3051
3052 // Class Variable.
3053
3054 Variable::Variable(Type* type, Expression* init, bool is_global,
3055 bool is_parameter, bool is_receiver,
3056 source_location location)
3057 : type_(type), init_(init), preinit_(NULL), location_(location),
3058 is_global_(is_global), is_parameter_(is_parameter),
3059 is_receiver_(is_receiver), is_varargs_parameter_(false),
3060 is_address_taken_(false), seen_(false), init_is_lowered_(false),
3061 type_from_init_tuple_(false), type_from_range_index_(false),
3062 type_from_range_value_(false), type_from_chan_element_(false),
3063 is_type_switch_var_(false)
3064 {
3065 gcc_assert(type != NULL || init != NULL);
3066 gcc_assert(!is_parameter || init == NULL);
3067 }
3068
3069 // Traverse the initializer expression.
3070
3071 int
3072 Variable::traverse_expression(Traverse* traverse)
3073 {
3074 if (this->preinit_ != NULL)
3075 {
3076 if (this->preinit_->traverse(traverse) == TRAVERSE_EXIT)
3077 return TRAVERSE_EXIT;
3078 }
3079 if (this->init_ != NULL)
3080 {
3081 if (Expression::traverse(&this->init_, traverse) == TRAVERSE_EXIT)
3082 return TRAVERSE_EXIT;
3083 }
3084 return TRAVERSE_CONTINUE;
3085 }
3086
3087 // Lower the initialization expression after parsing is complete.
3088
3089 void
3090 Variable::lower_init_expression(Gogo* gogo, Named_object* function)
3091 {
3092 if (this->init_ != NULL && !this->init_is_lowered_)
3093 {
3094 if (this->seen_)
3095 {
3096 // We will give an error elsewhere, this is just to prevent
3097 // an infinite loop.
3098 return;
3099 }
3100 this->seen_ = true;
3101
3102 gogo->lower_expression(function, &this->init_);
3103
3104 this->seen_ = false;
3105
3106 this->init_is_lowered_ = true;
3107 }
3108 }
3109
3110 // Get the preinit block.
3111
3112 Block*
3113 Variable::preinit_block()
3114 {
3115 gcc_assert(this->is_global_);
3116 if (this->preinit_ == NULL)
3117 this->preinit_ = new Block(NULL, this->location());
3118 return this->preinit_;
3119 }
3120
3121 // Add a statement to be run before the initialization expression.
3122
3123 void
3124 Variable::add_preinit_statement(Statement* s)
3125 {
3126 Block* b = this->preinit_block();
3127 b->add_statement(s);
3128 b->set_end_location(s->location());
3129 }
3130
3131 // In an assignment which sets a variable to a tuple of EXPR, return
3132 // the type of the first element of the tuple.
3133
3134 Type*
3135 Variable::type_from_tuple(Expression* expr, bool report_error) const
3136 {
3137 if (expr->map_index_expression() != NULL)
3138 return expr->map_index_expression()->get_map_type()->val_type();
3139 else if (expr->receive_expression() != NULL)
3140 {
3141 Expression* channel = expr->receive_expression()->channel();
3142 Type* channel_type = channel->type();
3143 if (channel_type->is_error_type())
3144 return Type::make_error_type();
3145 return channel_type->channel_type()->element_type();
3146 }
3147 else
3148 {
3149 if (report_error)
3150 error_at(this->location(), "invalid tuple definition");
3151 return Type::make_error_type();
3152 }
3153 }
3154
3155 // Given EXPR used in a range clause, return either the index type or
3156 // the value type of the range, depending upon GET_INDEX_TYPE.
3157
3158 Type*
3159 Variable::type_from_range(Expression* expr, bool get_index_type,
3160 bool report_error) const
3161 {
3162 Type* t = expr->type();
3163 if (t->array_type() != NULL
3164 || (t->points_to() != NULL
3165 && t->points_to()->array_type() != NULL
3166 && !t->points_to()->is_open_array_type()))
3167 {
3168 if (get_index_type)
3169 return Type::lookup_integer_type("int");
3170 else
3171 return t->deref()->array_type()->element_type();
3172 }
3173 else if (t->is_string_type())
3174 return Type::lookup_integer_type("int");
3175 else if (t->map_type() != NULL)
3176 {
3177 if (get_index_type)
3178 return t->map_type()->key_type();
3179 else
3180 return t->map_type()->val_type();
3181 }
3182 else if (t->channel_type() != NULL)
3183 {
3184 if (get_index_type)
3185 return t->channel_type()->element_type();
3186 else
3187 {
3188 if (report_error)
3189 error_at(this->location(),
3190 "invalid definition of value variable for channel range");
3191 return Type::make_error_type();
3192 }
3193 }
3194 else
3195 {
3196 if (report_error)
3197 error_at(this->location(), "invalid type for range clause");
3198 return Type::make_error_type();
3199 }
3200 }
3201
3202 // EXPR should be a channel. Return the channel's element type.
3203
3204 Type*
3205 Variable::type_from_chan_element(Expression* expr, bool report_error) const
3206 {
3207 Type* t = expr->type();
3208 if (t->channel_type() != NULL)
3209 return t->channel_type()->element_type();
3210 else
3211 {
3212 if (report_error)
3213 error_at(this->location(), "expected channel");
3214 return Type::make_error_type();
3215 }
3216 }
3217
3218 // Return the type of the Variable. This may be called before
3219 // Variable::determine_type is called, which means that we may need to
3220 // get the type from the initializer. FIXME: If we combine lowering
3221 // with type determination, then this should be unnecessary.
3222
3223 Type*
3224 Variable::type()
3225 {
3226 // A variable in a type switch with a nil case will have the wrong
3227 // type here. This gets fixed up in determine_type, below.
3228 Type* type = this->type_;
3229 Expression* init = this->init_;
3230 if (this->is_type_switch_var_
3231 && this->type_->is_nil_constant_as_type())
3232 {
3233 Type_guard_expression* tge = this->init_->type_guard_expression();
3234 gcc_assert(tge != NULL);
3235 init = tge->expr();
3236 type = NULL;
3237 }
3238
3239 if (this->seen_)
3240 {
3241 if (this->type_ == NULL || !this->type_->is_error_type())
3242 {
3243 error_at(this->location_, "variable initializer refers to itself");
3244 this->type_ = Type::make_error_type();
3245 }
3246 return this->type_;
3247 }
3248
3249 this->seen_ = true;
3250
3251 if (type != NULL)
3252 ;
3253 else if (this->type_from_init_tuple_)
3254 type = this->type_from_tuple(init, false);
3255 else if (this->type_from_range_index_ || this->type_from_range_value_)
3256 type = this->type_from_range(init, this->type_from_range_index_, false);
3257 else if (this->type_from_chan_element_)
3258 type = this->type_from_chan_element(init, false);
3259 else
3260 {
3261 gcc_assert(init != NULL);
3262 type = init->type();
3263 gcc_assert(type != NULL);
3264
3265 // Variables should not have abstract types.
3266 if (type->is_abstract())
3267 type = type->make_non_abstract_type();
3268
3269 if (type->is_void_type())
3270 type = Type::make_error_type();
3271 }
3272
3273 this->seen_ = false;
3274
3275 return type;
3276 }
3277
3278 // Fetch the type from a const pointer, in which case it should have
3279 // been set already.
3280
3281 Type*
3282 Variable::type() const
3283 {
3284 gcc_assert(this->type_ != NULL);
3285 return this->type_;
3286 }
3287
3288 // Set the type if necessary.
3289
3290 void
3291 Variable::determine_type()
3292 {
3293 // A variable in a type switch with a nil case will have the wrong
3294 // type here. It will have an initializer which is a type guard.
3295 // We want to initialize it to the value without the type guard, and
3296 // use the type of that value as well.
3297 if (this->is_type_switch_var_ && this->type_->is_nil_constant_as_type())
3298 {
3299 Type_guard_expression* tge = this->init_->type_guard_expression();
3300 gcc_assert(tge != NULL);
3301 this->type_ = NULL;
3302 this->init_ = tge->expr();
3303 }
3304
3305 if (this->init_ == NULL)
3306 gcc_assert(this->type_ != NULL && !this->type_->is_abstract());
3307 else if (this->type_from_init_tuple_)
3308 {
3309 Expression *init = this->init_;
3310 init->determine_type_no_context();
3311 this->type_ = this->type_from_tuple(init, true);
3312 this->init_ = NULL;
3313 }
3314 else if (this->type_from_range_index_ || this->type_from_range_value_)
3315 {
3316 Expression* init = this->init_;
3317 init->determine_type_no_context();
3318 this->type_ = this->type_from_range(init, this->type_from_range_index_,
3319 true);
3320 this->init_ = NULL;
3321 }
3322 else
3323 {
3324 // type_from_chan_element_ should have been cleared during
3325 // lowering.
3326 gcc_assert(!this->type_from_chan_element_);
3327
3328 Type_context context(this->type_, false);
3329 this->init_->determine_type(&context);
3330 if (this->type_ == NULL)
3331 {
3332 Type* type = this->init_->type();
3333 gcc_assert(type != NULL);
3334 if (type->is_abstract())
3335 type = type->make_non_abstract_type();
3336
3337 if (type->is_void_type())
3338 {
3339 error_at(this->location_, "variable has no type");
3340 type = Type::make_error_type();
3341 }
3342 else if (type->is_nil_type())
3343 {
3344 error_at(this->location_, "variable defined to nil type");
3345 type = Type::make_error_type();
3346 }
3347 else if (type->is_call_multiple_result_type())
3348 {
3349 error_at(this->location_,
3350 "single variable set to multiple value function call");
3351 type = Type::make_error_type();
3352 }
3353
3354 this->type_ = type;
3355 }
3356 }
3357 }
3358
3359 // Export the variable
3360
3361 void
3362 Variable::export_var(Export* exp, const std::string& name) const
3363 {
3364 gcc_assert(this->is_global_);
3365 exp->write_c_string("var ");
3366 exp->write_string(name);
3367 exp->write_c_string(" ");
3368 exp->write_type(this->type());
3369 exp->write_c_string(";\n");
3370 }
3371
3372 // Import a variable.
3373
3374 void
3375 Variable::import_var(Import* imp, std::string* pname, Type** ptype)
3376 {
3377 imp->require_c_string("var ");
3378 *pname = imp->read_identifier();
3379 imp->require_c_string(" ");
3380 *ptype = imp->read_type();
3381 imp->require_c_string(";\n");
3382 }
3383
3384 // Class Named_constant.
3385
3386 // Traverse the initializer expression.
3387
3388 int
3389 Named_constant::traverse_expression(Traverse* traverse)
3390 {
3391 return Expression::traverse(&this->expr_, traverse);
3392 }
3393
3394 // Determine the type of the constant.
3395
3396 void
3397 Named_constant::determine_type()
3398 {
3399 if (this->type_ != NULL)
3400 {
3401 Type_context context(this->type_, false);
3402 this->expr_->determine_type(&context);
3403 }
3404 else
3405 {
3406 // A constant may have an abstract type.
3407 Type_context context(NULL, true);
3408 this->expr_->determine_type(&context);
3409 this->type_ = this->expr_->type();
3410 gcc_assert(this->type_ != NULL);
3411 }
3412 }
3413
3414 // Indicate that we found and reported an error for this constant.
3415
3416 void
3417 Named_constant::set_error()
3418 {
3419 this->type_ = Type::make_error_type();
3420 this->expr_ = Expression::make_error(this->location_);
3421 }
3422
3423 // Export a constant.
3424
3425 void
3426 Named_constant::export_const(Export* exp, const std::string& name) const
3427 {
3428 exp->write_c_string("const ");
3429 exp->write_string(name);
3430 exp->write_c_string(" ");
3431 if (!this->type_->is_abstract())
3432 {
3433 exp->write_type(this->type_);
3434 exp->write_c_string(" ");
3435 }
3436 exp->write_c_string("= ");
3437 this->expr()->export_expression(exp);
3438 exp->write_c_string(";\n");
3439 }
3440
3441 // Import a constant.
3442
3443 void
3444 Named_constant::import_const(Import* imp, std::string* pname, Type** ptype,
3445 Expression** pexpr)
3446 {
3447 imp->require_c_string("const ");
3448 *pname = imp->read_identifier();
3449 imp->require_c_string(" ");
3450 if (imp->peek_char() == '=')
3451 *ptype = NULL;
3452 else
3453 {
3454 *ptype = imp->read_type();
3455 imp->require_c_string(" ");
3456 }
3457 imp->require_c_string("= ");
3458 *pexpr = Expression::import_expression(imp);
3459 imp->require_c_string(";\n");
3460 }
3461
3462 // Add a method.
3463
3464 Named_object*
3465 Type_declaration::add_method(const std::string& name, Function* function)
3466 {
3467 Named_object* ret = Named_object::make_function(name, NULL, function);
3468 this->methods_.push_back(ret);
3469 return ret;
3470 }
3471
3472 // Add a method declaration.
3473
3474 Named_object*
3475 Type_declaration::add_method_declaration(const std::string& name,
3476 Function_type* type,
3477 source_location location)
3478 {
3479 Named_object* ret = Named_object::make_function_declaration(name, NULL, type,
3480 location);
3481 this->methods_.push_back(ret);
3482 return ret;
3483 }
3484
3485 // Return whether any methods ere defined.
3486
3487 bool
3488 Type_declaration::has_methods() const
3489 {
3490 return !this->methods_.empty();
3491 }
3492
3493 // Define methods for the real type.
3494
3495 void
3496 Type_declaration::define_methods(Named_type* nt)
3497 {
3498 for (Methods::const_iterator p = this->methods_.begin();
3499 p != this->methods_.end();
3500 ++p)
3501 nt->add_existing_method(*p);
3502 }
3503
3504 // We are using the type. Return true if we should issue a warning.
3505
3506 bool
3507 Type_declaration::using_type()
3508 {
3509 bool ret = !this->issued_warning_;
3510 this->issued_warning_ = true;
3511 return ret;
3512 }
3513
3514 // Class Unknown_name.
3515
3516 // Set the real named object.
3517
3518 void
3519 Unknown_name::set_real_named_object(Named_object* no)
3520 {
3521 gcc_assert(this->real_named_object_ == NULL);
3522 gcc_assert(!no->is_unknown());
3523 this->real_named_object_ = no;
3524 }
3525
3526 // Class Named_object.
3527
3528 Named_object::Named_object(const std::string& name,
3529 const Package* package,
3530 Classification classification)
3531 : name_(name), package_(package), classification_(classification),
3532 tree_(NULL)
3533 {
3534 if (Gogo::is_sink_name(name))
3535 gcc_assert(classification == NAMED_OBJECT_SINK);
3536 }
3537
3538 // Make an unknown name. This is used by the parser. The name must
3539 // be resolved later. Unknown names are only added in the current
3540 // package.
3541
3542 Named_object*
3543 Named_object::make_unknown_name(const std::string& name,
3544 source_location location)
3545 {
3546 Named_object* named_object = new Named_object(name, NULL,
3547 NAMED_OBJECT_UNKNOWN);
3548 Unknown_name* value = new Unknown_name(location);
3549 named_object->u_.unknown_value = value;
3550 return named_object;
3551 }
3552
3553 // Make a constant.
3554
3555 Named_object*
3556 Named_object::make_constant(const Typed_identifier& tid,
3557 const Package* package, Expression* expr,
3558 int iota_value)
3559 {
3560 Named_object* named_object = new Named_object(tid.name(), package,
3561 NAMED_OBJECT_CONST);
3562 Named_constant* named_constant = new Named_constant(tid.type(), expr,
3563 iota_value,
3564 tid.location());
3565 named_object->u_.const_value = named_constant;
3566 return named_object;
3567 }
3568
3569 // Make a named type.
3570
3571 Named_object*
3572 Named_object::make_type(const std::string& name, const Package* package,
3573 Type* type, source_location location)
3574 {
3575 Named_object* named_object = new Named_object(name, package,
3576 NAMED_OBJECT_TYPE);
3577 Named_type* named_type = Type::make_named_type(named_object, type, location);
3578 named_object->u_.type_value = named_type;
3579 return named_object;
3580 }
3581
3582 // Make a type declaration.
3583
3584 Named_object*
3585 Named_object::make_type_declaration(const std::string& name,
3586 const Package* package,
3587 source_location location)
3588 {
3589 Named_object* named_object = new Named_object(name, package,
3590 NAMED_OBJECT_TYPE_DECLARATION);
3591 Type_declaration* type_declaration = new Type_declaration(location);
3592 named_object->u_.type_declaration = type_declaration;
3593 return named_object;
3594 }
3595
3596 // Make a variable.
3597
3598 Named_object*
3599 Named_object::make_variable(const std::string& name, const Package* package,
3600 Variable* variable)
3601 {
3602 Named_object* named_object = new Named_object(name, package,
3603 NAMED_OBJECT_VAR);
3604 named_object->u_.var_value = variable;
3605 return named_object;
3606 }
3607
3608 // Make a result variable.
3609
3610 Named_object*
3611 Named_object::make_result_variable(const std::string& name,
3612 Result_variable* result)
3613 {
3614 Named_object* named_object = new Named_object(name, NULL,
3615 NAMED_OBJECT_RESULT_VAR);
3616 named_object->u_.result_var_value = result;
3617 return named_object;
3618 }
3619
3620 // Make a sink. This is used for the special blank identifier _.
3621
3622 Named_object*
3623 Named_object::make_sink()
3624 {
3625 return new Named_object("_", NULL, NAMED_OBJECT_SINK);
3626 }
3627
3628 // Make a named function.
3629
3630 Named_object*
3631 Named_object::make_function(const std::string& name, const Package* package,
3632 Function* function)
3633 {
3634 Named_object* named_object = new Named_object(name, package,
3635 NAMED_OBJECT_FUNC);
3636 named_object->u_.func_value = function;
3637 return named_object;
3638 }
3639
3640 // Make a function declaration.
3641
3642 Named_object*
3643 Named_object::make_function_declaration(const std::string& name,
3644 const Package* package,
3645 Function_type* fntype,
3646 source_location location)
3647 {
3648 Named_object* named_object = new Named_object(name, package,
3649 NAMED_OBJECT_FUNC_DECLARATION);
3650 Function_declaration *func_decl = new Function_declaration(fntype, location);
3651 named_object->u_.func_declaration_value = func_decl;
3652 return named_object;
3653 }
3654
3655 // Make a package.
3656
3657 Named_object*
3658 Named_object::make_package(const std::string& alias, Package* package)
3659 {
3660 Named_object* named_object = new Named_object(alias, NULL,
3661 NAMED_OBJECT_PACKAGE);
3662 named_object->u_.package_value = package;
3663 return named_object;
3664 }
3665
3666 // Return the name to use in an error message.
3667
3668 std::string
3669 Named_object::message_name() const
3670 {
3671 if (this->package_ == NULL)
3672 return Gogo::message_name(this->name_);
3673 std::string ret = Gogo::message_name(this->package_->name());
3674 ret += '.';
3675 ret += Gogo::message_name(this->name_);
3676 return ret;
3677 }
3678
3679 // Set the type when a declaration is defined.
3680
3681 void
3682 Named_object::set_type_value(Named_type* named_type)
3683 {
3684 gcc_assert(this->classification_ == NAMED_OBJECT_TYPE_DECLARATION);
3685 Type_declaration* td = this->u_.type_declaration;
3686 td->define_methods(named_type);
3687 Named_object* in_function = td->in_function();
3688 if (in_function != NULL)
3689 named_type->set_in_function(in_function);
3690 delete td;
3691 this->classification_ = NAMED_OBJECT_TYPE;
3692 this->u_.type_value = named_type;
3693 }
3694
3695 // Define a function which was previously declared.
3696
3697 void
3698 Named_object::set_function_value(Function* function)
3699 {
3700 gcc_assert(this->classification_ == NAMED_OBJECT_FUNC_DECLARATION);
3701 this->classification_ = NAMED_OBJECT_FUNC;
3702 // FIXME: We should free the old value.
3703 this->u_.func_value = function;
3704 }
3705
3706 // Declare an unknown object as a type declaration.
3707
3708 void
3709 Named_object::declare_as_type()
3710 {
3711 gcc_assert(this->classification_ == NAMED_OBJECT_UNKNOWN);
3712 Unknown_name* unk = this->u_.unknown_value;
3713 this->classification_ = NAMED_OBJECT_TYPE_DECLARATION;
3714 this->u_.type_declaration = new Type_declaration(unk->location());
3715 delete unk;
3716 }
3717
3718 // Return the location of a named object.
3719
3720 source_location
3721 Named_object::location() const
3722 {
3723 switch (this->classification_)
3724 {
3725 default:
3726 case NAMED_OBJECT_UNINITIALIZED:
3727 gcc_unreachable();
3728
3729 case NAMED_OBJECT_UNKNOWN:
3730 return this->unknown_value()->location();
3731
3732 case NAMED_OBJECT_CONST:
3733 return this->const_value()->location();
3734
3735 case NAMED_OBJECT_TYPE:
3736 return this->type_value()->location();
3737
3738 case NAMED_OBJECT_TYPE_DECLARATION:
3739 return this->type_declaration_value()->location();
3740
3741 case NAMED_OBJECT_VAR:
3742 return this->var_value()->location();
3743
3744 case NAMED_OBJECT_RESULT_VAR:
3745 return this->result_var_value()->function()->location();
3746
3747 case NAMED_OBJECT_SINK:
3748 gcc_unreachable();
3749
3750 case NAMED_OBJECT_FUNC:
3751 return this->func_value()->location();
3752
3753 case NAMED_OBJECT_FUNC_DECLARATION:
3754 return this->func_declaration_value()->location();
3755
3756 case NAMED_OBJECT_PACKAGE:
3757 return this->package_value()->location();
3758 }
3759 }
3760
3761 // Export a named object.
3762
3763 void
3764 Named_object::export_named_object(Export* exp) const
3765 {
3766 switch (this->classification_)
3767 {
3768 default:
3769 case NAMED_OBJECT_UNINITIALIZED:
3770 case NAMED_OBJECT_UNKNOWN:
3771 gcc_unreachable();
3772
3773 case NAMED_OBJECT_CONST:
3774 this->const_value()->export_const(exp, this->name_);
3775 break;
3776
3777 case NAMED_OBJECT_TYPE:
3778 this->type_value()->export_named_type(exp, this->name_);
3779 break;
3780
3781 case NAMED_OBJECT_TYPE_DECLARATION:
3782 error_at(this->type_declaration_value()->location(),
3783 "attempt to export %<%s%> which was declared but not defined",
3784 this->message_name().c_str());
3785 break;
3786
3787 case NAMED_OBJECT_FUNC_DECLARATION:
3788 this->func_declaration_value()->export_func(exp, this->name_);
3789 break;
3790
3791 case NAMED_OBJECT_VAR:
3792 this->var_value()->export_var(exp, this->name_);
3793 break;
3794
3795 case NAMED_OBJECT_RESULT_VAR:
3796 case NAMED_OBJECT_SINK:
3797 gcc_unreachable();
3798
3799 case NAMED_OBJECT_FUNC:
3800 this->func_value()->export_func(exp, this->name_);
3801 break;
3802 }
3803 }
3804
3805 // Class Bindings.
3806
3807 Bindings::Bindings(Bindings* enclosing)
3808 : enclosing_(enclosing), named_objects_(), bindings_()
3809 {
3810 }
3811
3812 // Clear imports.
3813
3814 void
3815 Bindings::clear_file_scope()
3816 {
3817 Contour::iterator p = this->bindings_.begin();
3818 while (p != this->bindings_.end())
3819 {
3820 bool keep;
3821 if (p->second->package() != NULL)
3822 keep = false;
3823 else if (p->second->is_package())
3824 keep = false;
3825 else if (p->second->is_function()
3826 && !p->second->func_value()->type()->is_method()
3827 && Gogo::unpack_hidden_name(p->second->name()) == "init")
3828 keep = false;
3829 else
3830 keep = true;
3831
3832 if (keep)
3833 ++p;
3834 else
3835 p = this->bindings_.erase(p);
3836 }
3837 }
3838
3839 // Look up a symbol.
3840
3841 Named_object*
3842 Bindings::lookup(const std::string& name) const
3843 {
3844 Contour::const_iterator p = this->bindings_.find(name);
3845 if (p != this->bindings_.end())
3846 return p->second->resolve();
3847 else if (this->enclosing_ != NULL)
3848 return this->enclosing_->lookup(name);
3849 else
3850 return NULL;
3851 }
3852
3853 // Look up a symbol locally.
3854
3855 Named_object*
3856 Bindings::lookup_local(const std::string& name) const
3857 {
3858 Contour::const_iterator p = this->bindings_.find(name);
3859 if (p == this->bindings_.end())
3860 return NULL;
3861 return p->second;
3862 }
3863
3864 // Remove an object from a set of bindings. This is used for a
3865 // special case in thunks for functions which call recover.
3866
3867 void
3868 Bindings::remove_binding(Named_object* no)
3869 {
3870 Contour::iterator pb = this->bindings_.find(no->name());
3871 gcc_assert(pb != this->bindings_.end());
3872 this->bindings_.erase(pb);
3873 for (std::vector<Named_object*>::iterator pn = this->named_objects_.begin();
3874 pn != this->named_objects_.end();
3875 ++pn)
3876 {
3877 if (*pn == no)
3878 {
3879 this->named_objects_.erase(pn);
3880 return;
3881 }
3882 }
3883 gcc_unreachable();
3884 }
3885
3886 // Add a method to the list of objects. This is not added to the
3887 // lookup table. This is so that we have a single list of objects
3888 // declared at the top level, which we walk through when it's time to
3889 // convert to trees.
3890
3891 void
3892 Bindings::add_method(Named_object* method)
3893 {
3894 this->named_objects_.push_back(method);
3895 }
3896
3897 // Add a generic Named_object to a Contour.
3898
3899 Named_object*
3900 Bindings::add_named_object_to_contour(Contour* contour,
3901 Named_object* named_object)
3902 {
3903 gcc_assert(named_object == named_object->resolve());
3904 const std::string& name(named_object->name());
3905 gcc_assert(!Gogo::is_sink_name(name));
3906
3907 std::pair<Contour::iterator, bool> ins =
3908 contour->insert(std::make_pair(name, named_object));
3909 if (!ins.second)
3910 {
3911 // The name was already there.
3912 if (named_object->package() != NULL
3913 && ins.first->second->package() == named_object->package()
3914 && (ins.first->second->classification()
3915 == named_object->classification()))
3916 {
3917 // This is a second import of the same object.
3918 return ins.first->second;
3919 }
3920 ins.first->second = this->new_definition(ins.first->second,
3921 named_object);
3922 return ins.first->second;
3923 }
3924 else
3925 {
3926 // Don't push declarations on the list. We push them on when
3927 // and if we find the definitions. That way we genericize the
3928 // functions in order.
3929 if (!named_object->is_type_declaration()
3930 && !named_object->is_function_declaration()
3931 && !named_object->is_unknown())
3932 this->named_objects_.push_back(named_object);
3933 return named_object;
3934 }
3935 }
3936
3937 // We had an existing named object OLD_OBJECT, and we've seen a new
3938 // one NEW_OBJECT with the same name. FIXME: This does not free the
3939 // new object when we don't need it.
3940
3941 Named_object*
3942 Bindings::new_definition(Named_object* old_object, Named_object* new_object)
3943 {
3944 std::string reason;
3945 switch (old_object->classification())
3946 {
3947 default:
3948 case Named_object::NAMED_OBJECT_UNINITIALIZED:
3949 gcc_unreachable();
3950
3951 case Named_object::NAMED_OBJECT_UNKNOWN:
3952 {
3953 Named_object* real = old_object->unknown_value()->real_named_object();
3954 if (real != NULL)
3955 return this->new_definition(real, new_object);
3956 gcc_assert(!new_object->is_unknown());
3957 old_object->unknown_value()->set_real_named_object(new_object);
3958 if (!new_object->is_type_declaration()
3959 && !new_object->is_function_declaration())
3960 this->named_objects_.push_back(new_object);
3961 return new_object;
3962 }
3963
3964 case Named_object::NAMED_OBJECT_CONST:
3965 break;
3966
3967 case Named_object::NAMED_OBJECT_TYPE:
3968 if (new_object->is_type_declaration())
3969 return old_object;
3970 break;
3971
3972 case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
3973 if (new_object->is_type_declaration())
3974 return old_object;
3975 if (new_object->is_type())
3976 {
3977 old_object->set_type_value(new_object->type_value());
3978 new_object->type_value()->set_named_object(old_object);
3979 this->named_objects_.push_back(old_object);
3980 return old_object;
3981 }
3982 break;
3983
3984 case Named_object::NAMED_OBJECT_VAR:
3985 case Named_object::NAMED_OBJECT_RESULT_VAR:
3986 break;
3987
3988 case Named_object::NAMED_OBJECT_SINK:
3989 gcc_unreachable();
3990
3991 case Named_object::NAMED_OBJECT_FUNC:
3992 if (new_object->is_function_declaration())
3993 {
3994 if (!new_object->func_declaration_value()->asm_name().empty())
3995 sorry("__asm__ for function definitions");
3996 Function_type* old_type = old_object->func_value()->type();
3997 Function_type* new_type =
3998 new_object->func_declaration_value()->type();
3999 if (old_type->is_valid_redeclaration(new_type, &reason))
4000 return old_object;
4001 }
4002 break;
4003
4004 case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
4005 {
4006 Function_type* old_type = old_object->func_declaration_value()->type();
4007 if (new_object->is_function_declaration())
4008 {
4009 Function_type* new_type =
4010 new_object->func_declaration_value()->type();
4011 if (old_type->is_valid_redeclaration(new_type, &reason))
4012 return old_object;
4013 }
4014 if (new_object->is_function())
4015 {
4016 Function_type* new_type = new_object->func_value()->type();
4017 if (old_type->is_valid_redeclaration(new_type, &reason))
4018 {
4019 if (!old_object->func_declaration_value()->asm_name().empty())
4020 sorry("__asm__ for function definitions");
4021 old_object->set_function_value(new_object->func_value());
4022 this->named_objects_.push_back(old_object);
4023 return old_object;
4024 }
4025 }
4026 }
4027 break;
4028
4029 case Named_object::NAMED_OBJECT_PACKAGE:
4030 if (new_object->is_package()
4031 && (old_object->package_value()->name()
4032 == new_object->package_value()->name()))
4033 return old_object;
4034
4035 break;
4036 }
4037
4038 std::string n = old_object->message_name();
4039 if (reason.empty())
4040 error_at(new_object->location(), "redefinition of %qs", n.c_str());
4041 else
4042 error_at(new_object->location(), "redefinition of %qs: %s", n.c_str(),
4043 reason.c_str());
4044
4045 inform(old_object->location(), "previous definition of %qs was here",
4046 n.c_str());
4047
4048 return old_object;
4049 }
4050
4051 // Add a named type.
4052
4053 Named_object*
4054 Bindings::add_named_type(Named_type* named_type)
4055 {
4056 return this->add_named_object(named_type->named_object());
4057 }
4058
4059 // Add a function.
4060
4061 Named_object*
4062 Bindings::add_function(const std::string& name, const Package* package,
4063 Function* function)
4064 {
4065 return this->add_named_object(Named_object::make_function(name, package,
4066 function));
4067 }
4068
4069 // Add a function declaration.
4070
4071 Named_object*
4072 Bindings::add_function_declaration(const std::string& name,
4073 const Package* package,
4074 Function_type* type,
4075 source_location location)
4076 {
4077 Named_object* no = Named_object::make_function_declaration(name, package,
4078 type, location);
4079 return this->add_named_object(no);
4080 }
4081
4082 // Define a type which was previously declared.
4083
4084 void
4085 Bindings::define_type(Named_object* no, Named_type* type)
4086 {
4087 no->set_type_value(type);
4088 this->named_objects_.push_back(no);
4089 }
4090
4091 // Traverse bindings.
4092
4093 int
4094 Bindings::traverse(Traverse* traverse, bool is_global)
4095 {
4096 unsigned int traverse_mask = traverse->traverse_mask();
4097
4098 // We don't use an iterator because we permit the traversal to add
4099 // new global objects.
4100 for (size_t i = 0; i < this->named_objects_.size(); ++i)
4101 {
4102 Named_object* p = this->named_objects_[i];
4103 switch (p->classification())
4104 {
4105 case Named_object::NAMED_OBJECT_CONST:
4106 if ((traverse_mask & Traverse::traverse_constants) != 0)
4107 {
4108 if (traverse->constant(p, is_global) == TRAVERSE_EXIT)
4109 return TRAVERSE_EXIT;
4110 }
4111 if ((traverse_mask & Traverse::traverse_types) != 0
4112 || (traverse_mask & Traverse::traverse_expressions) != 0)
4113 {
4114 Type* t = p->const_value()->type();
4115 if (t != NULL
4116 && Type::traverse(t, traverse) == TRAVERSE_EXIT)
4117 return TRAVERSE_EXIT;
4118 }
4119 if ((traverse_mask & Traverse::traverse_expressions) != 0)
4120 {
4121 if (p->const_value()->traverse_expression(traverse)
4122 == TRAVERSE_EXIT)
4123 return TRAVERSE_EXIT;
4124 }
4125 break;
4126
4127 case Named_object::NAMED_OBJECT_VAR:
4128 case Named_object::NAMED_OBJECT_RESULT_VAR:
4129 if ((traverse_mask & Traverse::traverse_variables) != 0)
4130 {
4131 if (traverse->variable(p) == TRAVERSE_EXIT)
4132 return TRAVERSE_EXIT;
4133 }
4134 if (((traverse_mask & Traverse::traverse_types) != 0
4135 || (traverse_mask & Traverse::traverse_expressions) != 0)
4136 && (p->is_result_variable()
4137 || p->var_value()->has_type()))
4138 {
4139 Type* t = (p->is_variable()
4140 ? p->var_value()->type()
4141 : p->result_var_value()->type());
4142 if (t != NULL
4143 && Type::traverse(t, traverse) == TRAVERSE_EXIT)
4144 return TRAVERSE_EXIT;
4145 }
4146 if (p->is_variable()
4147 && (traverse_mask & Traverse::traverse_expressions) != 0)
4148 {
4149 if (p->var_value()->traverse_expression(traverse)
4150 == TRAVERSE_EXIT)
4151 return TRAVERSE_EXIT;
4152 }
4153 break;
4154
4155 case Named_object::NAMED_OBJECT_FUNC:
4156 if ((traverse_mask & Traverse::traverse_functions) != 0)
4157 {
4158 int t = traverse->function(p);
4159 if (t == TRAVERSE_EXIT)
4160 return TRAVERSE_EXIT;
4161 else if (t == TRAVERSE_SKIP_COMPONENTS)
4162 break;
4163 }
4164
4165 if ((traverse_mask
4166 & (Traverse::traverse_variables
4167 | Traverse::traverse_constants
4168 | Traverse::traverse_functions
4169 | Traverse::traverse_blocks
4170 | Traverse::traverse_statements
4171 | Traverse::traverse_expressions
4172 | Traverse::traverse_types)) != 0)
4173 {
4174 if (p->func_value()->traverse(traverse) == TRAVERSE_EXIT)
4175 return TRAVERSE_EXIT;
4176 }
4177 break;
4178
4179 case Named_object::NAMED_OBJECT_PACKAGE:
4180 // These are traversed in Gogo::traverse.
4181 gcc_assert(is_global);
4182 break;
4183
4184 case Named_object::NAMED_OBJECT_TYPE:
4185 if ((traverse_mask & Traverse::traverse_types) != 0
4186 || (traverse_mask & Traverse::traverse_expressions) != 0)
4187 {
4188 if (Type::traverse(p->type_value(), traverse) == TRAVERSE_EXIT)
4189 return TRAVERSE_EXIT;
4190 }
4191 break;
4192
4193 case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
4194 case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
4195 case Named_object::NAMED_OBJECT_UNKNOWN:
4196 break;
4197
4198 case Named_object::NAMED_OBJECT_SINK:
4199 default:
4200 gcc_unreachable();
4201 }
4202 }
4203
4204 return TRAVERSE_CONTINUE;
4205 }
4206
4207 // Class Package.
4208
4209 Package::Package(const std::string& name, const std::string& unique_prefix,
4210 source_location location)
4211 : name_(name), unique_prefix_(unique_prefix), bindings_(new Bindings(NULL)),
4212 priority_(0), location_(location), used_(false), is_imported_(false),
4213 uses_sink_alias_(false)
4214 {
4215 gcc_assert(!name.empty() && !unique_prefix.empty());
4216 }
4217
4218 // Set the priority. We may see multiple priorities for an imported
4219 // package; we want to use the largest one.
4220
4221 void
4222 Package::set_priority(int priority)
4223 {
4224 if (priority > this->priority_)
4225 this->priority_ = priority;
4226 }
4227
4228 // Determine types of constants. Everything else in a package
4229 // (variables, function declarations) should already have a fixed
4230 // type. Constants may have abstract types.
4231
4232 void
4233 Package::determine_types()
4234 {
4235 Bindings* bindings = this->bindings_;
4236 for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
4237 p != bindings->end_definitions();
4238 ++p)
4239 {
4240 if ((*p)->is_const())
4241 (*p)->const_value()->determine_type();
4242 }
4243 }
4244
4245 // Class Traverse.
4246
4247 // Destructor.
4248
4249 Traverse::~Traverse()
4250 {
4251 if (this->types_seen_ != NULL)
4252 delete this->types_seen_;
4253 if (this->expressions_seen_ != NULL)
4254 delete this->expressions_seen_;
4255 }
4256
4257 // Record that we are looking at a type, and return true if we have
4258 // already seen it.
4259
4260 bool
4261 Traverse::remember_type(const Type* type)
4262 {
4263 if (type->is_error_type())
4264 return true;
4265 gcc_assert((this->traverse_mask() & traverse_types) != 0
4266 || (this->traverse_mask() & traverse_expressions) != 0);
4267 // We only have to remember named types, as they are the only ones
4268 // we can see multiple times in a traversal.
4269 if (type->classification() != Type::TYPE_NAMED)
4270 return false;
4271 if (this->types_seen_ == NULL)
4272 this->types_seen_ = new Types_seen();
4273 std::pair<Types_seen::iterator, bool> ins = this->types_seen_->insert(type);
4274 return !ins.second;
4275 }
4276
4277 // Record that we are looking at an expression, and return true if we
4278 // have already seen it.
4279
4280 bool
4281 Traverse::remember_expression(const Expression* expression)
4282 {
4283 gcc_assert((this->traverse_mask() & traverse_types) != 0
4284 || (this->traverse_mask() & traverse_expressions) != 0);
4285 if (this->expressions_seen_ == NULL)
4286 this->expressions_seen_ = new Expressions_seen();
4287 std::pair<Expressions_seen::iterator, bool> ins =
4288 this->expressions_seen_->insert(expression);
4289 return !ins.second;
4290 }
4291
4292 // The default versions of these functions should never be called: the
4293 // traversal mask indicates which functions may be called.
4294
4295 int
4296 Traverse::variable(Named_object*)
4297 {
4298 gcc_unreachable();
4299 }
4300
4301 int
4302 Traverse::constant(Named_object*, bool)
4303 {
4304 gcc_unreachable();
4305 }
4306
4307 int
4308 Traverse::function(Named_object*)
4309 {
4310 gcc_unreachable();
4311 }
4312
4313 int
4314 Traverse::block(Block*)
4315 {
4316 gcc_unreachable();
4317 }
4318
4319 int
4320 Traverse::statement(Block*, size_t*, Statement*)
4321 {
4322 gcc_unreachable();
4323 }
4324
4325 int
4326 Traverse::expression(Expression**)
4327 {
4328 gcc_unreachable();
4329 }
4330
4331 int
4332 Traverse::type(Type*)
4333 {
4334 gcc_unreachable();
4335 }