Don't crash on recursive variables and typed consts.
[gcc.git] / gcc / go / gofrontend / gogo.cc
1 // gogo.cc -- Go frontend parsed representation.
2
3 // Copyright 2009 The Go Authors. All rights reserved.
4 // Use of this source code is governed by a BSD-style
5 // license that can be found in the LICENSE file.
6
7 #include "go-system.h"
8
9 #include "go-c.h"
10 #include "go-dump.h"
11 #include "lex.h"
12 #include "types.h"
13 #include "statements.h"
14 #include "expressions.h"
15 #include "dataflow.h"
16 #include "import.h"
17 #include "export.h"
18 #include "gogo.h"
19
20 // Class Gogo.
21
22 Gogo::Gogo(int int_type_size, int float_type_size, int pointer_size)
23 : package_(NULL),
24 functions_(),
25 globals_(new Bindings(NULL)),
26 imports_(),
27 imported_unsafe_(false),
28 packages_(),
29 map_descriptors_(NULL),
30 type_descriptor_decls_(NULL),
31 init_functions_(),
32 need_init_fn_(false),
33 init_fn_name_(),
34 imported_init_fns_(),
35 unique_prefix_(),
36 interface_types_()
37 {
38 const source_location loc = BUILTINS_LOCATION;
39
40 Named_type* uint8_type = Type::make_integer_type("uint8", true, 8,
41 RUNTIME_TYPE_KIND_UINT8);
42 this->add_named_type(uint8_type);
43 this->add_named_type(Type::make_integer_type("uint16", true, 16,
44 RUNTIME_TYPE_KIND_UINT16));
45 this->add_named_type(Type::make_integer_type("uint32", true, 32,
46 RUNTIME_TYPE_KIND_UINT32));
47 this->add_named_type(Type::make_integer_type("uint64", true, 64,
48 RUNTIME_TYPE_KIND_UINT64));
49
50 this->add_named_type(Type::make_integer_type("int8", false, 8,
51 RUNTIME_TYPE_KIND_INT8));
52 this->add_named_type(Type::make_integer_type("int16", false, 16,
53 RUNTIME_TYPE_KIND_INT16));
54 this->add_named_type(Type::make_integer_type("int32", false, 32,
55 RUNTIME_TYPE_KIND_INT32));
56 this->add_named_type(Type::make_integer_type("int64", false, 64,
57 RUNTIME_TYPE_KIND_INT64));
58
59 this->add_named_type(Type::make_float_type("float32", 32,
60 RUNTIME_TYPE_KIND_FLOAT32));
61 this->add_named_type(Type::make_float_type("float64", 64,
62 RUNTIME_TYPE_KIND_FLOAT64));
63
64 this->add_named_type(Type::make_complex_type("complex64", 64,
65 RUNTIME_TYPE_KIND_COMPLEX64));
66 this->add_named_type(Type::make_complex_type("complex128", 128,
67 RUNTIME_TYPE_KIND_COMPLEX128));
68
69 if (int_type_size < 32)
70 int_type_size = 32;
71 this->add_named_type(Type::make_integer_type("uint", true,
72 int_type_size,
73 RUNTIME_TYPE_KIND_UINT));
74 Named_type* int_type = Type::make_integer_type("int", false, int_type_size,
75 RUNTIME_TYPE_KIND_INT);
76 this->add_named_type(int_type);
77
78 // "byte" is an alias for "uint8". Construct a Named_object which
79 // points to UINT8_TYPE. Note that this breaks the normal pairing
80 // in which a Named_object points to a Named_type which points back
81 // to the same Named_object.
82 Named_object* byte_type = this->declare_type("byte", loc);
83 byte_type->set_type_value(uint8_type);
84
85 this->add_named_type(Type::make_integer_type("uintptr", true,
86 pointer_size,
87 RUNTIME_TYPE_KIND_UINTPTR));
88
89 this->add_named_type(Type::make_float_type("float", float_type_size,
90 RUNTIME_TYPE_KIND_FLOAT));
91
92 this->add_named_type(Type::make_complex_type("complex", float_type_size * 2,
93 RUNTIME_TYPE_KIND_COMPLEX));
94
95 this->add_named_type(Type::make_named_bool_type());
96
97 this->add_named_type(Type::make_named_string_type());
98
99 this->globals_->add_constant(Typed_identifier("true",
100 Type::make_boolean_type(),
101 loc),
102 NULL,
103 Expression::make_boolean(true, loc),
104 0);
105 this->globals_->add_constant(Typed_identifier("false",
106 Type::make_boolean_type(),
107 loc),
108 NULL,
109 Expression::make_boolean(false, loc),
110 0);
111
112 this->globals_->add_constant(Typed_identifier("nil", Type::make_nil_type(),
113 loc),
114 NULL,
115 Expression::make_nil(loc),
116 0);
117
118 Type* abstract_int_type = Type::make_abstract_integer_type();
119 this->globals_->add_constant(Typed_identifier("iota", abstract_int_type,
120 loc),
121 NULL,
122 Expression::make_iota(),
123 0);
124
125 Function_type* new_type = Type::make_function_type(NULL, NULL, NULL, loc);
126 new_type->set_is_varargs();
127 new_type->set_is_builtin();
128 this->globals_->add_function_declaration("new", NULL, new_type, loc);
129
130 Function_type* make_type = Type::make_function_type(NULL, NULL, NULL, loc);
131 make_type->set_is_varargs();
132 make_type->set_is_builtin();
133 this->globals_->add_function_declaration("make", NULL, make_type, loc);
134
135 Typed_identifier_list* len_result = new Typed_identifier_list();
136 len_result->push_back(Typed_identifier("", int_type, loc));
137 Function_type* len_type = Type::make_function_type(NULL, NULL, len_result,
138 loc);
139 len_type->set_is_builtin();
140 this->globals_->add_function_declaration("len", NULL, len_type, loc);
141
142 Typed_identifier_list* cap_result = new Typed_identifier_list();
143 cap_result->push_back(Typed_identifier("", int_type, loc));
144 Function_type* cap_type = Type::make_function_type(NULL, NULL, len_result,
145 loc);
146 cap_type->set_is_builtin();
147 this->globals_->add_function_declaration("cap", NULL, cap_type, loc);
148
149 Function_type* print_type = Type::make_function_type(NULL, NULL, NULL, loc);
150 print_type->set_is_varargs();
151 print_type->set_is_builtin();
152 this->globals_->add_function_declaration("print", NULL, print_type, loc);
153
154 print_type = Type::make_function_type(NULL, NULL, NULL, loc);
155 print_type->set_is_varargs();
156 print_type->set_is_builtin();
157 this->globals_->add_function_declaration("println", NULL, print_type, loc);
158
159 Type *empty = Type::make_interface_type(NULL, loc);
160 Typed_identifier_list* panic_parms = new Typed_identifier_list();
161 panic_parms->push_back(Typed_identifier("e", empty, loc));
162 Function_type *panic_type = Type::make_function_type(NULL, panic_parms,
163 NULL, loc);
164 panic_type->set_is_builtin();
165 this->globals_->add_function_declaration("panic", NULL, panic_type, loc);
166
167 Typed_identifier_list* recover_result = new Typed_identifier_list();
168 recover_result->push_back(Typed_identifier("", empty, loc));
169 Function_type* recover_type = Type::make_function_type(NULL, NULL,
170 recover_result,
171 loc);
172 recover_type->set_is_builtin();
173 this->globals_->add_function_declaration("recover", NULL, recover_type, loc);
174
175 Function_type* close_type = Type::make_function_type(NULL, NULL, NULL, loc);
176 close_type->set_is_varargs();
177 close_type->set_is_builtin();
178 this->globals_->add_function_declaration("close", NULL, close_type, loc);
179
180 Typed_identifier_list* closed_result = new Typed_identifier_list();
181 closed_result->push_back(Typed_identifier("", Type::lookup_bool_type(),
182 loc));
183 Function_type* closed_type = Type::make_function_type(NULL, NULL,
184 closed_result, loc);
185 closed_type->set_is_varargs();
186 closed_type->set_is_builtin();
187 this->globals_->add_function_declaration("closed", NULL, closed_type, loc);
188
189 Typed_identifier_list* copy_result = new Typed_identifier_list();
190 copy_result->push_back(Typed_identifier("", int_type, loc));
191 Function_type* copy_type = Type::make_function_type(NULL, NULL,
192 copy_result, loc);
193 copy_type->set_is_varargs();
194 copy_type->set_is_builtin();
195 this->globals_->add_function_declaration("copy", NULL, copy_type, loc);
196
197 Function_type* append_type = Type::make_function_type(NULL, NULL, NULL, loc);
198 append_type->set_is_varargs();
199 append_type->set_is_builtin();
200 this->globals_->add_function_declaration("append", NULL, append_type, loc);
201
202 Function_type* cmplx_type = Type::make_function_type(NULL, NULL, NULL, loc);
203 cmplx_type->set_is_varargs();
204 cmplx_type->set_is_builtin();
205 this->globals_->add_function_declaration("cmplx", NULL, cmplx_type, loc);
206
207 Function_type* real_type = Type::make_function_type(NULL, NULL, NULL, loc);
208 real_type->set_is_varargs();
209 real_type->set_is_builtin();
210 this->globals_->add_function_declaration("real", NULL, real_type, loc);
211
212 Function_type* imag_type = Type::make_function_type(NULL, NULL, NULL, loc);
213 imag_type->set_is_varargs();
214 imag_type->set_is_builtin();
215 this->globals_->add_function_declaration("imag", NULL, cmplx_type, loc);
216
217 this->define_builtin_function_trees();
218
219 // Declare "init", to ensure that it is not defined with parameters
220 // or return values.
221 this->declare_function("init",
222 Type::make_function_type(NULL, NULL, NULL, loc),
223 loc);
224 }
225
226 // Munge name for use in an error message.
227
228 std::string
229 Gogo::message_name(const std::string& name)
230 {
231 return go_localize_identifier(Gogo::unpack_hidden_name(name).c_str());
232 }
233
234 // Get the package name.
235
236 const std::string&
237 Gogo::package_name() const
238 {
239 gcc_assert(this->package_ != NULL);
240 return this->package_->name();
241 }
242
243 // Set the package name.
244
245 void
246 Gogo::set_package_name(const std::string& package_name,
247 source_location location)
248 {
249 if (this->package_ != NULL && this->package_->name() != package_name)
250 {
251 error_at(location, "expected package %<%s%>",
252 Gogo::message_name(this->package_->name()).c_str());
253 return;
254 }
255
256 // If the user did not specify a unique prefix, we always use "go".
257 // This in effect requires that the package name be unique.
258 if (this->unique_prefix_.empty())
259 this->unique_prefix_ = "go";
260
261 this->package_ = this->register_package(package_name, this->unique_prefix_,
262 location);
263
264 // We used to permit people to qualify symbols with the current
265 // package name (e.g., P.x), but we no longer do.
266 // this->globals_->add_package(package_name, this->package_);
267
268 if (package_name == "main")
269 {
270 // Declare "main" as a function which takes no parameters and
271 // returns no value.
272 this->declare_function("main",
273 Type::make_function_type(NULL, NULL, NULL,
274 BUILTINS_LOCATION),
275 BUILTINS_LOCATION);
276 }
277 }
278
279 // Import a package.
280
281 void
282 Gogo::import_package(const std::string& filename,
283 const std::string& local_name,
284 bool is_local_name_exported,
285 source_location location)
286 {
287 if (filename == "unsafe")
288 {
289 this->import_unsafe(local_name, is_local_name_exported, location);
290 return;
291 }
292
293 Imports::const_iterator p = this->imports_.find(filename);
294 if (p != this->imports_.end())
295 {
296 Package* package = p->second;
297 package->set_location(location);
298 package->set_is_imported();
299 std::string ln = local_name;
300 bool is_ln_exported = is_local_name_exported;
301 if (ln.empty())
302 {
303 ln = package->name();
304 is_ln_exported = Lex::is_exported_name(ln);
305 }
306 if (ln != ".")
307 {
308 ln = this->pack_hidden_name(ln, is_ln_exported);
309 this->package_->bindings()->add_package(ln, package);
310 }
311 else
312 {
313 Bindings* bindings = package->bindings();
314 for (Bindings::const_declarations_iterator p =
315 bindings->begin_declarations();
316 p != bindings->end_declarations();
317 ++p)
318 this->add_named_object(p->second);
319 }
320 return;
321 }
322
323 Import::Stream* stream = Import::open_package(filename, location);
324 if (stream == NULL)
325 {
326 error_at(location, "import file %qs not found", filename.c_str());
327 return;
328 }
329
330 Import imp(stream, location);
331 imp.register_builtin_types(this);
332 Package* package = imp.import(this, local_name, is_local_name_exported);
333 this->imports_.insert(std::make_pair(filename, package));
334 package->set_is_imported();
335
336 delete stream;
337 }
338
339 // Add an import control function for an imported package to the list.
340
341 void
342 Gogo::add_import_init_fn(const std::string& package_name,
343 const std::string& init_name, int prio)
344 {
345 for (std::set<Import_init>::const_iterator p =
346 this->imported_init_fns_.begin();
347 p != this->imported_init_fns_.end();
348 ++p)
349 {
350 if (p->init_name() == init_name
351 && (p->package_name() != package_name || p->priority() != prio))
352 {
353 error("duplicate package initialization name %qs",
354 Gogo::message_name(init_name).c_str());
355 inform(UNKNOWN_LOCATION, "used by package %qs at priority %d",
356 Gogo::message_name(p->package_name()).c_str(),
357 p->priority());
358 inform(UNKNOWN_LOCATION, " and by package %qs at priority %d",
359 Gogo::message_name(package_name).c_str(), prio);
360 return;
361 }
362 }
363
364 this->imported_init_fns_.insert(Import_init(package_name, init_name,
365 prio));
366 }
367
368 // Return whether we are at the global binding level.
369
370 bool
371 Gogo::in_global_scope() const
372 {
373 return this->functions_.empty();
374 }
375
376 // Return the current binding contour.
377
378 Bindings*
379 Gogo::current_bindings()
380 {
381 if (!this->functions_.empty())
382 return this->functions_.back().blocks.back()->bindings();
383 else if (this->package_ != NULL)
384 return this->package_->bindings();
385 else
386 return this->globals_;
387 }
388
389 const Bindings*
390 Gogo::current_bindings() const
391 {
392 if (!this->functions_.empty())
393 return this->functions_.back().blocks.back()->bindings();
394 else if (this->package_ != NULL)
395 return this->package_->bindings();
396 else
397 return this->globals_;
398 }
399
400 // Return the current block.
401
402 Block*
403 Gogo::current_block()
404 {
405 if (this->functions_.empty())
406 return NULL;
407 else
408 return this->functions_.back().blocks.back();
409 }
410
411 // Look up a name in the current binding contour. If PFUNCTION is not
412 // NULL, set it to the function in which the name is defined, or NULL
413 // if the name is defined in global scope.
414
415 Named_object*
416 Gogo::lookup(const std::string& name, Named_object** pfunction) const
417 {
418 if (Gogo::is_sink_name(name))
419 return Named_object::make_sink();
420
421 for (Open_functions::const_reverse_iterator p = this->functions_.rbegin();
422 p != this->functions_.rend();
423 ++p)
424 {
425 Named_object* ret = p->blocks.back()->bindings()->lookup(name);
426 if (ret != NULL)
427 {
428 if (pfunction != NULL)
429 *pfunction = p->function;
430 return ret;
431 }
432 }
433
434 if (pfunction != NULL)
435 *pfunction = NULL;
436
437 if (this->package_ != NULL)
438 {
439 Named_object* ret = this->package_->bindings()->lookup(name);
440 if (ret != NULL)
441 {
442 if (ret->package() != NULL)
443 ret->package()->set_used();
444 return ret;
445 }
446 }
447
448 // We do not look in the global namespace. If we did, the global
449 // namespace would effectively hide names which were defined in
450 // package scope which we have not yet seen. Instead,
451 // define_global_names is called after parsing is over to connect
452 // undefined names at package scope with names defined at global
453 // scope.
454
455 return NULL;
456 }
457
458 // Look up a name in the current block, without searching enclosing
459 // blocks.
460
461 Named_object*
462 Gogo::lookup_in_block(const std::string& name) const
463 {
464 gcc_assert(!this->functions_.empty());
465 gcc_assert(!this->functions_.back().blocks.empty());
466 return this->functions_.back().blocks.back()->bindings()->lookup_local(name);
467 }
468
469 // Look up a name in the global namespace.
470
471 Named_object*
472 Gogo::lookup_global(const char* name) const
473 {
474 return this->globals_->lookup(name);
475 }
476
477 // Add an imported package.
478
479 Package*
480 Gogo::add_imported_package(const std::string& real_name,
481 const std::string& alias_arg,
482 bool is_alias_exported,
483 const std::string& unique_prefix,
484 source_location location,
485 bool* padd_to_globals)
486 {
487 // FIXME: Now that we compile packages as a whole, should we permit
488 // importing the current package?
489 if (this->package_name() == real_name
490 && this->unique_prefix() == unique_prefix)
491 {
492 *padd_to_globals = false;
493 if (!alias_arg.empty() && alias_arg != ".")
494 {
495 std::string alias = this->pack_hidden_name(alias_arg,
496 is_alias_exported);
497 this->package_->bindings()->add_package(alias, this->package_);
498 }
499 return this->package_;
500 }
501 else if (alias_arg == ".")
502 {
503 *padd_to_globals = true;
504 return this->register_package(real_name, unique_prefix, location);
505 }
506 else if (alias_arg == "_")
507 {
508 Package* ret = this->register_package(real_name, unique_prefix, location);
509 ret->set_uses_sink_alias();
510 return ret;
511 }
512 else
513 {
514 *padd_to_globals = false;
515 std::string alias = alias_arg;
516 if (alias.empty())
517 {
518 alias = real_name;
519 is_alias_exported = Lex::is_exported_name(alias);
520 }
521 alias = this->pack_hidden_name(alias, is_alias_exported);
522 Named_object* no = this->add_package(real_name, alias, unique_prefix,
523 location);
524 if (!no->is_package())
525 return NULL;
526 return no->package_value();
527 }
528 }
529
530 // Add a package.
531
532 Named_object*
533 Gogo::add_package(const std::string& real_name, const std::string& alias,
534 const std::string& unique_prefix, source_location location)
535 {
536 gcc_assert(this->in_global_scope());
537
538 // Register the package. Note that we might have already seen it in
539 // an earlier import.
540 Package* package = this->register_package(real_name, unique_prefix, location);
541
542 return this->package_->bindings()->add_package(alias, package);
543 }
544
545 // Register a package. This package may or may not be imported. This
546 // returns the Package structure for the package, creating if it
547 // necessary.
548
549 Package*
550 Gogo::register_package(const std::string& package_name,
551 const std::string& unique_prefix,
552 source_location location)
553 {
554 gcc_assert(!unique_prefix.empty() && !package_name.empty());
555 std::string name = unique_prefix + '.' + package_name;
556 Package* package = NULL;
557 std::pair<Packages::iterator, bool> ins =
558 this->packages_.insert(std::make_pair(name, package));
559 if (!ins.second)
560 {
561 // We have seen this package name before.
562 package = ins.first->second;
563 gcc_assert(package != NULL);
564 gcc_assert(package->name() == package_name
565 && package->unique_prefix() == unique_prefix);
566 if (package->location() == UNKNOWN_LOCATION)
567 package->set_location(location);
568 }
569 else
570 {
571 // First time we have seen this package name.
572 package = new Package(package_name, unique_prefix, location);
573 gcc_assert(ins.first->second == NULL);
574 ins.first->second = package;
575 }
576
577 return package;
578 }
579
580 // Start compiling a function.
581
582 Named_object*
583 Gogo::start_function(const std::string& name, Function_type* type,
584 bool add_method_to_type, source_location location)
585 {
586 bool at_top_level = this->functions_.empty();
587
588 Block* block = new Block(NULL, location);
589
590 Function* enclosing = (at_top_level
591 ? NULL
592 : this->functions_.back().function->func_value());
593
594 Function* function = new Function(type, enclosing, block, location);
595
596 if (type->is_method())
597 {
598 const Typed_identifier* receiver = type->receiver();
599 Variable* this_param = new Variable(receiver->type(), NULL, false,
600 true, true, location);
601 std::string name = receiver->name();
602 if (name.empty())
603 {
604 // We need to give receivers a name since they wind up in
605 // DECL_ARGUMENTS. FIXME.
606 static unsigned int count;
607 char buf[50];
608 snprintf(buf, sizeof buf, "r.%u", count);
609 ++count;
610 name = buf;
611 }
612 block->bindings()->add_variable(name, NULL, this_param);
613 }
614
615 const Typed_identifier_list* parameters = type->parameters();
616 bool is_varargs = type->is_varargs();
617 if (parameters != NULL)
618 {
619 for (Typed_identifier_list::const_iterator p = parameters->begin();
620 p != parameters->end();
621 ++p)
622 {
623 Variable* param = new Variable(p->type(), NULL, false, true, false,
624 location);
625 if (is_varargs && p + 1 == parameters->end())
626 param->set_is_varargs_parameter();
627
628 std::string name = p->name();
629 if (name.empty() || Gogo::is_sink_name(name))
630 {
631 // We need to give parameters a name since they wind up
632 // in DECL_ARGUMENTS. FIXME.
633 static unsigned int count;
634 char buf[50];
635 snprintf(buf, sizeof buf, "p.%u", count);
636 ++count;
637 name = buf;
638 }
639 block->bindings()->add_variable(name, NULL, param);
640 }
641 }
642
643 function->create_named_result_variables(this);
644
645 const std::string* pname;
646 std::string nested_name;
647 if (!name.empty())
648 pname = &name;
649 else
650 {
651 // Invent a name for a nested function.
652 static int nested_count;
653 char buf[30];
654 snprintf(buf, sizeof buf, ".$nested%d", nested_count);
655 ++nested_count;
656 nested_name = buf;
657 pname = &nested_name;
658 }
659
660 Named_object* ret;
661 if (Gogo::is_sink_name(*pname))
662 ret = Named_object::make_sink();
663 else if (!type->is_method())
664 {
665 ret = this->package_->bindings()->add_function(*pname, NULL, function);
666 if (!ret->is_function())
667 {
668 // Redefinition error.
669 ret = Named_object::make_function(name, NULL, function);
670 }
671 }
672 else
673 {
674 if (!add_method_to_type)
675 ret = Named_object::make_function(name, NULL, function);
676 else
677 {
678 gcc_assert(at_top_level);
679 Type* rtype = type->receiver()->type();
680
681 // We want to look through the pointer created by the
682 // parser, without getting an error if the type is not yet
683 // defined.
684 if (rtype->classification() == Type::TYPE_POINTER)
685 rtype = rtype->points_to();
686
687 if (rtype->is_error_type())
688 ret = Named_object::make_function(name, NULL, function);
689 else if (rtype->named_type() != NULL)
690 {
691 ret = rtype->named_type()->add_method(name, function);
692 if (!ret->is_function())
693 {
694 // Redefinition error.
695 ret = Named_object::make_function(name, NULL, function);
696 }
697 }
698 else if (rtype->forward_declaration_type() != NULL)
699 {
700 Named_object* type_no =
701 rtype->forward_declaration_type()->named_object();
702 if (type_no->is_unknown())
703 {
704 // If we are seeing methods it really must be a
705 // type. Declare it as such. An alternative would
706 // be to support lists of methods for unknown
707 // expressions. Either way the error messages if
708 // this is not a type are going to get confusing.
709 Named_object* declared =
710 this->declare_package_type(type_no->name(),
711 type_no->location());
712 gcc_assert(declared
713 == type_no->unknown_value()->real_named_object());
714 }
715 ret = rtype->forward_declaration_type()->add_method(name,
716 function);
717 }
718 else
719 gcc_unreachable();
720 }
721 this->package_->bindings()->add_method(ret);
722 }
723
724 this->functions_.resize(this->functions_.size() + 1);
725 Open_function& of(this->functions_.back());
726 of.function = ret;
727 of.blocks.push_back(block);
728
729 if (!type->is_method() && Gogo::unpack_hidden_name(name) == "init")
730 {
731 this->init_functions_.push_back(ret);
732 this->need_init_fn_ = true;
733 }
734
735 return ret;
736 }
737
738 // Finish compiling a function.
739
740 void
741 Gogo::finish_function(source_location location)
742 {
743 this->finish_block(location);
744 gcc_assert(this->functions_.back().blocks.empty());
745 this->functions_.pop_back();
746 }
747
748 // Return the current function.
749
750 Named_object*
751 Gogo::current_function() const
752 {
753 gcc_assert(!this->functions_.empty());
754 return this->functions_.back().function;
755 }
756
757 // Start a new block.
758
759 void
760 Gogo::start_block(source_location location)
761 {
762 gcc_assert(!this->functions_.empty());
763 Block* block = new Block(this->current_block(), location);
764 this->functions_.back().blocks.push_back(block);
765 }
766
767 // Finish a block.
768
769 Block*
770 Gogo::finish_block(source_location location)
771 {
772 gcc_assert(!this->functions_.empty());
773 gcc_assert(!this->functions_.back().blocks.empty());
774 Block* block = this->functions_.back().blocks.back();
775 this->functions_.back().blocks.pop_back();
776 block->set_end_location(location);
777 return block;
778 }
779
780 // Add an unknown name.
781
782 Named_object*
783 Gogo::add_unknown_name(const std::string& name, source_location location)
784 {
785 return this->package_->bindings()->add_unknown_name(name, location);
786 }
787
788 // Declare a function.
789
790 Named_object*
791 Gogo::declare_function(const std::string& name, Function_type* type,
792 source_location location)
793 {
794 if (!type->is_method())
795 return this->current_bindings()->add_function_declaration(name, NULL, type,
796 location);
797 else
798 {
799 // We don't bother to add this to the list of global
800 // declarations.
801 Type* rtype = type->receiver()->type();
802
803 // We want to look through the pointer created by the
804 // parser, without getting an error if the type is not yet
805 // defined.
806 if (rtype->classification() == Type::TYPE_POINTER)
807 rtype = rtype->points_to();
808
809 if (rtype->is_error_type())
810 return NULL;
811 else if (rtype->named_type() != NULL)
812 return rtype->named_type()->add_method_declaration(name, NULL, type,
813 location);
814 else if (rtype->forward_declaration_type() != NULL)
815 {
816 Forward_declaration_type* ftype = rtype->forward_declaration_type();
817 return ftype->add_method_declaration(name, type, location);
818 }
819 else
820 gcc_unreachable();
821 }
822 }
823
824 // Add a label definition.
825
826 Label*
827 Gogo::add_label_definition(const std::string& label_name,
828 source_location location)
829 {
830 gcc_assert(!this->functions_.empty());
831 Function* func = this->functions_.back().function->func_value();
832 Label* label = func->add_label_definition(label_name, location);
833 this->add_statement(Statement::make_label_statement(label, location));
834 return label;
835 }
836
837 // Add a label reference.
838
839 Label*
840 Gogo::add_label_reference(const std::string& label_name)
841 {
842 gcc_assert(!this->functions_.empty());
843 Function* func = this->functions_.back().function->func_value();
844 return func->add_label_reference(label_name);
845 }
846
847 // Add a statement.
848
849 void
850 Gogo::add_statement(Statement* statement)
851 {
852 gcc_assert(!this->functions_.empty()
853 && !this->functions_.back().blocks.empty());
854 this->functions_.back().blocks.back()->add_statement(statement);
855 }
856
857 // Add a block.
858
859 void
860 Gogo::add_block(Block* block, source_location location)
861 {
862 gcc_assert(!this->functions_.empty()
863 && !this->functions_.back().blocks.empty());
864 Statement* statement = Statement::make_block_statement(block, location);
865 this->functions_.back().blocks.back()->add_statement(statement);
866 }
867
868 // Add a constant.
869
870 Named_object*
871 Gogo::add_constant(const Typed_identifier& tid, Expression* expr,
872 int iota_value)
873 {
874 return this->current_bindings()->add_constant(tid, NULL, expr, iota_value);
875 }
876
877 // Add a type.
878
879 void
880 Gogo::add_type(const std::string& name, Type* type, source_location location)
881 {
882 Named_object* no = this->current_bindings()->add_type(name, NULL, type,
883 location);
884 if (!this->in_global_scope())
885 no->type_value()->set_in_function(this->functions_.back().function);
886 }
887
888 // Add a named type.
889
890 void
891 Gogo::add_named_type(Named_type* type)
892 {
893 gcc_assert(this->in_global_scope());
894 this->current_bindings()->add_named_type(type);
895 }
896
897 // Declare a type.
898
899 Named_object*
900 Gogo::declare_type(const std::string& name, source_location location)
901 {
902 Bindings* bindings = this->current_bindings();
903 Named_object* no = bindings->add_type_declaration(name, NULL, location);
904 if (!this->in_global_scope())
905 {
906 Named_object* f = this->functions_.back().function;
907 no->type_declaration_value()->set_in_function(f);
908 }
909 return no;
910 }
911
912 // Declare a type at the package level.
913
914 Named_object*
915 Gogo::declare_package_type(const std::string& name, source_location location)
916 {
917 return this->package_->bindings()->add_type_declaration(name, NULL, location);
918 }
919
920 // Define a type which was already declared.
921
922 void
923 Gogo::define_type(Named_object* no, Named_type* type)
924 {
925 this->current_bindings()->define_type(no, type);
926 }
927
928 // Add a variable.
929
930 Named_object*
931 Gogo::add_variable(const std::string& name, Variable* variable)
932 {
933 Named_object* no = this->current_bindings()->add_variable(name, NULL,
934 variable);
935
936 // In a function the middle-end wants to see a DECL_EXPR node.
937 if (no != NULL
938 && no->is_variable()
939 && !no->var_value()->is_parameter()
940 && !this->functions_.empty())
941 this->add_statement(Statement::make_variable_declaration(no));
942
943 return no;
944 }
945
946 // Add a sink--a reference to the blank identifier _.
947
948 Named_object*
949 Gogo::add_sink()
950 {
951 return Named_object::make_sink();
952 }
953
954 // Add a named object.
955
956 void
957 Gogo::add_named_object(Named_object* no)
958 {
959 this->current_bindings()->add_named_object(no);
960 }
961
962 // Record that we've seen an interface type.
963
964 void
965 Gogo::record_interface_type(Interface_type* itype)
966 {
967 this->interface_types_.push_back(itype);
968 }
969
970 // Return a name for a thunk object.
971
972 std::string
973 Gogo::thunk_name()
974 {
975 static int thunk_count;
976 char thunk_name[50];
977 snprintf(thunk_name, sizeof thunk_name, "$thunk%d", thunk_count);
978 ++thunk_count;
979 return thunk_name;
980 }
981
982 // Return whether a function is a thunk.
983
984 bool
985 Gogo::is_thunk(const Named_object* no)
986 {
987 return no->name().compare(0, 6, "$thunk") == 0;
988 }
989
990 // Define the global names. We do this only after parsing all the
991 // input files, because the program might define the global names
992 // itself.
993
994 void
995 Gogo::define_global_names()
996 {
997 for (Bindings::const_declarations_iterator p =
998 this->globals_->begin_declarations();
999 p != this->globals_->end_declarations();
1000 ++p)
1001 {
1002 Named_object* global_no = p->second;
1003 std::string name(Gogo::pack_hidden_name(global_no->name(), false));
1004 Named_object* no = this->package_->bindings()->lookup(name);
1005 if (no == NULL)
1006 continue;
1007 no = no->resolve();
1008 if (no->is_type_declaration())
1009 {
1010 if (global_no->is_type())
1011 {
1012 if (no->type_declaration_value()->has_methods())
1013 error_at(no->location(),
1014 "may not define methods for global type");
1015 no->set_type_value(global_no->type_value());
1016 }
1017 else
1018 {
1019 error_at(no->location(), "expected type");
1020 Type* errtype = Type::make_error_type();
1021 Named_object* err = Named_object::make_type("error", NULL,
1022 errtype,
1023 BUILTINS_LOCATION);
1024 no->set_type_value(err->type_value());
1025 }
1026 }
1027 else if (no->is_unknown())
1028 no->unknown_value()->set_real_named_object(global_no);
1029 }
1030 }
1031
1032 // Clear out names in file scope.
1033
1034 void
1035 Gogo::clear_file_scope()
1036 {
1037 this->package_->bindings()->clear_file_scope();
1038
1039 // Warn about packages which were imported but not used.
1040 for (Packages::iterator p = this->packages_.begin();
1041 p != this->packages_.end();
1042 ++p)
1043 {
1044 Package* package = p->second;
1045 if (package != this->package_
1046 && package->is_imported()
1047 && !package->used()
1048 && !package->uses_sink_alias()
1049 && !saw_errors())
1050 error_at(package->location(), "imported and not used: %s",
1051 Gogo::message_name(package->name()).c_str());
1052 package->clear_is_imported();
1053 package->clear_uses_sink_alias();
1054 package->clear_used();
1055 }
1056 }
1057
1058 // Traverse the tree.
1059
1060 void
1061 Gogo::traverse(Traverse* traverse)
1062 {
1063 // Traverse the current package first for consistency. The other
1064 // packages will only contain imported types, constants, and
1065 // declarations.
1066 if (this->package_->bindings()->traverse(traverse, true) == TRAVERSE_EXIT)
1067 return;
1068 for (Packages::const_iterator p = this->packages_.begin();
1069 p != this->packages_.end();
1070 ++p)
1071 {
1072 if (p->second != this->package_)
1073 {
1074 if (p->second->bindings()->traverse(traverse, true) == TRAVERSE_EXIT)
1075 break;
1076 }
1077 }
1078 }
1079
1080 // Traversal class used to verify types.
1081
1082 class Verify_types : public Traverse
1083 {
1084 public:
1085 Verify_types()
1086 : Traverse(traverse_types)
1087 { }
1088
1089 int
1090 type(Type*);
1091 };
1092
1093 // Verify that a type is correct.
1094
1095 int
1096 Verify_types::type(Type* t)
1097 {
1098 // Don't verify types defined in other packages.
1099 Named_type* nt = t->named_type();
1100 if (nt != NULL && nt->named_object()->package() != NULL)
1101 return TRAVERSE_SKIP_COMPONENTS;
1102
1103 if (!t->verify())
1104 return TRAVERSE_SKIP_COMPONENTS;
1105 return TRAVERSE_CONTINUE;
1106 }
1107
1108 // Verify that all types are correct.
1109
1110 void
1111 Gogo::verify_types()
1112 {
1113 Verify_types traverse;
1114 this->traverse(&traverse);
1115 }
1116
1117 // Traversal class used to lower parse tree.
1118
1119 class Lower_parse_tree : public Traverse
1120 {
1121 public:
1122 Lower_parse_tree(Gogo* gogo, Named_object* function)
1123 : Traverse(traverse_constants
1124 | traverse_functions
1125 | traverse_statements
1126 | traverse_expressions),
1127 gogo_(gogo), function_(function), iota_value_(-1)
1128 { }
1129
1130 int
1131 constant(Named_object*, bool);
1132
1133 int
1134 function(Named_object*);
1135
1136 int
1137 statement(Block*, size_t* pindex, Statement*);
1138
1139 int
1140 expression(Expression**);
1141
1142 private:
1143 // General IR.
1144 Gogo* gogo_;
1145 // The function we are traversing.
1146 Named_object* function_;
1147 // Value to use for the predeclared constant iota.
1148 int iota_value_;
1149 };
1150
1151 // Lower constants. We handle constants specially so that we can set
1152 // the right value for the predeclared constant iota. This works in
1153 // conjunction with the way we lower Const_expression objects.
1154
1155 int
1156 Lower_parse_tree::constant(Named_object* no, bool)
1157 {
1158 Named_constant* nc = no->const_value();
1159
1160 // We can recursively a constant if the initializer expression
1161 // manages to refer to itself.
1162 if (nc->lowering())
1163 return TRAVERSE_CONTINUE;
1164 nc->set_lowering();
1165
1166 gcc_assert(this->iota_value_ == -1);
1167 this->iota_value_ = nc->iota_value();
1168 nc->traverse_expression(this);
1169 this->iota_value_ = -1;
1170
1171 nc->clear_lowering();
1172
1173 // We will traverse the expression a second time, but that will be
1174 // fast.
1175
1176 return TRAVERSE_CONTINUE;
1177 }
1178
1179 // Lower function closure types. Record the function while lowering
1180 // it, so that we can pass it down when lowering an expression.
1181
1182 int
1183 Lower_parse_tree::function(Named_object* no)
1184 {
1185 no->func_value()->set_closure_type();
1186
1187 gcc_assert(this->function_ == NULL);
1188 this->function_ = no;
1189 int t = no->func_value()->traverse(this);
1190 this->function_ = NULL;
1191
1192 if (t == TRAVERSE_EXIT)
1193 return t;
1194 return TRAVERSE_SKIP_COMPONENTS;
1195 }
1196
1197 // Lower statement parse trees.
1198
1199 int
1200 Lower_parse_tree::statement(Block* block, size_t* pindex, Statement* sorig)
1201 {
1202 // Lower the expressions first.
1203 int t = sorig->traverse_contents(this);
1204 if (t == TRAVERSE_EXIT)
1205 return t;
1206
1207 // Keep lowering until nothing changes.
1208 Statement* s = sorig;
1209 while (true)
1210 {
1211 Statement* snew = s->lower(this->gogo_, block);
1212 if (snew == s)
1213 break;
1214 s = snew;
1215 t = s->traverse_contents(this);
1216 if (t == TRAVERSE_EXIT)
1217 return t;
1218 }
1219
1220 if (s != sorig)
1221 block->replace_statement(*pindex, s);
1222
1223 return TRAVERSE_SKIP_COMPONENTS;
1224 }
1225
1226 // Lower expression parse trees.
1227
1228 int
1229 Lower_parse_tree::expression(Expression** pexpr)
1230 {
1231 // We have to lower all subexpressions first, so that we can get
1232 // their type if necessary. This is awkward, because we don't have
1233 // a postorder traversal pass.
1234 if ((*pexpr)->traverse_subexpressions(this) == TRAVERSE_EXIT)
1235 return TRAVERSE_EXIT;
1236 // Keep lowering until nothing changes.
1237 while (true)
1238 {
1239 Expression* e = *pexpr;
1240 Expression* enew = e->lower(this->gogo_, this->function_,
1241 this->iota_value_);
1242 if (enew == e)
1243 break;
1244 *pexpr = enew;
1245 }
1246 return TRAVERSE_SKIP_COMPONENTS;
1247 }
1248
1249 // Lower the parse tree. This is called after the parse is complete,
1250 // when all names should be resolved.
1251
1252 void
1253 Gogo::lower_parse_tree()
1254 {
1255 Lower_parse_tree lower_parse_tree(this, NULL);
1256 this->traverse(&lower_parse_tree);
1257 }
1258
1259 // Lower an expression.
1260
1261 void
1262 Gogo::lower_expression(Named_object* function, Expression** pexpr)
1263 {
1264 Lower_parse_tree lower_parse_tree(this, function);
1265 lower_parse_tree.expression(pexpr);
1266 }
1267
1268 // Lower a constant. This is called when lowering a reference to a
1269 // constant. We have to make sure that the constant has already been
1270 // lowered.
1271
1272 void
1273 Gogo::lower_constant(Named_object* no)
1274 {
1275 gcc_assert(no->is_const());
1276 Lower_parse_tree lower(this, NULL);
1277 lower.constant(no, false);
1278 }
1279
1280 // Look for interface types to finalize methods of inherited
1281 // interfaces.
1282
1283 class Finalize_methods : public Traverse
1284 {
1285 public:
1286 Finalize_methods(Gogo* gogo)
1287 : Traverse(traverse_types),
1288 gogo_(gogo)
1289 { }
1290
1291 int
1292 type(Type*);
1293
1294 private:
1295 Gogo* gogo_;
1296 };
1297
1298 // Finalize the methods of an interface type.
1299
1300 int
1301 Finalize_methods::type(Type* t)
1302 {
1303 // Check the classification so that we don't finalize the methods
1304 // twice for a named interface type.
1305 switch (t->classification())
1306 {
1307 case Type::TYPE_INTERFACE:
1308 t->interface_type()->finalize_methods();
1309 break;
1310
1311 case Type::TYPE_NAMED:
1312 {
1313 // We have to finalize the methods of the real type first.
1314 // But if the real type is a struct type, then we only want to
1315 // finalize the methods of the field types, not of the struct
1316 // type itself. We don't want to add methods to the struct,
1317 // since it has a name.
1318 Type* rt = t->named_type()->real_type();
1319 if (rt->classification() != Type::TYPE_STRUCT)
1320 {
1321 if (Type::traverse(rt, this) == TRAVERSE_EXIT)
1322 return TRAVERSE_EXIT;
1323 }
1324 else
1325 {
1326 if (rt->struct_type()->traverse_field_types(this) == TRAVERSE_EXIT)
1327 return TRAVERSE_EXIT;
1328 }
1329
1330 t->named_type()->finalize_methods(this->gogo_);
1331
1332 return TRAVERSE_SKIP_COMPONENTS;
1333 }
1334
1335 case Type::TYPE_STRUCT:
1336 t->struct_type()->finalize_methods(this->gogo_);
1337 break;
1338
1339 default:
1340 break;
1341 }
1342
1343 return TRAVERSE_CONTINUE;
1344 }
1345
1346 // Finalize method lists and build stub methods for types.
1347
1348 void
1349 Gogo::finalize_methods()
1350 {
1351 Finalize_methods finalize(this);
1352 this->traverse(&finalize);
1353 }
1354
1355 // Set types for unspecified variables and constants.
1356
1357 void
1358 Gogo::determine_types()
1359 {
1360 Bindings* bindings = this->current_bindings();
1361 for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
1362 p != bindings->end_definitions();
1363 ++p)
1364 {
1365 if ((*p)->is_function())
1366 (*p)->func_value()->determine_types();
1367 else if ((*p)->is_variable())
1368 (*p)->var_value()->determine_type();
1369 else if ((*p)->is_const())
1370 (*p)->const_value()->determine_type();
1371
1372 // See if a variable requires us to build an initialization
1373 // function. We know that we will see all global variables
1374 // here.
1375 if (!this->need_init_fn_ && (*p)->is_variable())
1376 {
1377 Variable* variable = (*p)->var_value();
1378
1379 // If this is a global variable which requires runtime
1380 // initialization, we need an initialization function.
1381 if (!variable->is_global() || variable->init() == NULL)
1382 ;
1383 else if (variable->type()->interface_type() != NULL)
1384 this->need_init_fn_ = true;
1385 else if (variable->init()->is_constant())
1386 ;
1387 else if (!variable->init()->is_composite_literal())
1388 this->need_init_fn_ = true;
1389 else if (variable->init()->is_nonconstant_composite_literal())
1390 this->need_init_fn_ = true;
1391
1392 // If this is a global variable which holds a pointer value,
1393 // then we need an initialization function to register it as a
1394 // GC root.
1395 if (variable->is_global() && variable->type()->has_pointer())
1396 this->need_init_fn_ = true;
1397 }
1398 }
1399
1400 // Determine the types of constants in packages.
1401 for (Packages::const_iterator p = this->packages_.begin();
1402 p != this->packages_.end();
1403 ++p)
1404 p->second->determine_types();
1405 }
1406
1407 // Traversal class used for type checking.
1408
1409 class Check_types_traverse : public Traverse
1410 {
1411 public:
1412 Check_types_traverse(Gogo* gogo)
1413 : Traverse(traverse_variables
1414 | traverse_constants
1415 | traverse_statements
1416 | traverse_expressions),
1417 gogo_(gogo)
1418 { }
1419
1420 int
1421 variable(Named_object*);
1422
1423 int
1424 constant(Named_object*, bool);
1425
1426 int
1427 statement(Block*, size_t* pindex, Statement*);
1428
1429 int
1430 expression(Expression**);
1431
1432 private:
1433 // General IR.
1434 Gogo* gogo_;
1435 };
1436
1437 // Check that a variable initializer has the right type.
1438
1439 int
1440 Check_types_traverse::variable(Named_object* named_object)
1441 {
1442 if (named_object->is_variable())
1443 {
1444 Variable* var = named_object->var_value();
1445 Expression* init = var->init();
1446 std::string reason;
1447 if (init != NULL
1448 && !Type::are_assignable(var->type(), init->type(), &reason))
1449 {
1450 if (reason.empty())
1451 error_at(var->location(), "incompatible type in initialization");
1452 else
1453 error_at(var->location(),
1454 "incompatible type in initialization (%s)",
1455 reason.c_str());
1456 var->clear_init();
1457 }
1458 }
1459 return TRAVERSE_CONTINUE;
1460 }
1461
1462 // Check that a constant initializer has the right type.
1463
1464 int
1465 Check_types_traverse::constant(Named_object* named_object, bool)
1466 {
1467 Named_constant* constant = named_object->const_value();
1468 Type* ctype = constant->type();
1469 if (ctype->integer_type() == NULL
1470 && ctype->float_type() == NULL
1471 && ctype->complex_type() == NULL
1472 && !ctype->is_boolean_type()
1473 && !ctype->is_string_type())
1474 {
1475 if (!ctype->is_error_type())
1476 error_at(constant->location(), "invalid constant type");
1477 constant->set_error();
1478 }
1479 else if (!constant->expr()->is_constant())
1480 {
1481 error_at(constant->expr()->location(), "expression is not constant");
1482 constant->set_error();
1483 }
1484 else if (!Type::are_assignable(constant->type(), constant->expr()->type(),
1485 NULL))
1486 {
1487 error_at(constant->location(),
1488 "initialization expression has wrong type");
1489 constant->set_error();
1490 }
1491 return TRAVERSE_CONTINUE;
1492 }
1493
1494 // Check that types are valid in a statement.
1495
1496 int
1497 Check_types_traverse::statement(Block*, size_t*, Statement* s)
1498 {
1499 s->check_types(this->gogo_);
1500 return TRAVERSE_CONTINUE;
1501 }
1502
1503 // Check that types are valid in an expression.
1504
1505 int
1506 Check_types_traverse::expression(Expression** expr)
1507 {
1508 (*expr)->check_types(this->gogo_);
1509 return TRAVERSE_CONTINUE;
1510 }
1511
1512 // Check that types are valid.
1513
1514 void
1515 Gogo::check_types()
1516 {
1517 Check_types_traverse traverse(this);
1518 this->traverse(&traverse);
1519 }
1520
1521 // Check the types in a single block.
1522
1523 void
1524 Gogo::check_types_in_block(Block* block)
1525 {
1526 Check_types_traverse traverse(this);
1527 block->traverse(&traverse);
1528 }
1529
1530 // A traversal class used to find a single shortcut operator within an
1531 // expression.
1532
1533 class Find_shortcut : public Traverse
1534 {
1535 public:
1536 Find_shortcut()
1537 : Traverse(traverse_blocks
1538 | traverse_statements
1539 | traverse_expressions),
1540 found_(NULL)
1541 { }
1542
1543 // A pointer to the expression which was found, or NULL if none was
1544 // found.
1545 Expression**
1546 found() const
1547 { return this->found_; }
1548
1549 protected:
1550 int
1551 block(Block*)
1552 { return TRAVERSE_SKIP_COMPONENTS; }
1553
1554 int
1555 statement(Block*, size_t*, Statement*)
1556 { return TRAVERSE_SKIP_COMPONENTS; }
1557
1558 int
1559 expression(Expression**);
1560
1561 private:
1562 Expression** found_;
1563 };
1564
1565 // Find a shortcut expression.
1566
1567 int
1568 Find_shortcut::expression(Expression** pexpr)
1569 {
1570 Expression* expr = *pexpr;
1571 Binary_expression* be = expr->binary_expression();
1572 if (be == NULL)
1573 return TRAVERSE_CONTINUE;
1574 Operator op = be->op();
1575 if (op != OPERATOR_OROR && op != OPERATOR_ANDAND)
1576 return TRAVERSE_CONTINUE;
1577 gcc_assert(this->found_ == NULL);
1578 this->found_ = pexpr;
1579 return TRAVERSE_EXIT;
1580 }
1581
1582 // A traversal class used to turn shortcut operators into explicit if
1583 // statements.
1584
1585 class Shortcuts : public Traverse
1586 {
1587 public:
1588 Shortcuts()
1589 : Traverse(traverse_variables
1590 | traverse_statements)
1591 { }
1592
1593 protected:
1594 int
1595 variable(Named_object*);
1596
1597 int
1598 statement(Block*, size_t*, Statement*);
1599
1600 private:
1601 // Convert a shortcut operator.
1602 Statement*
1603 convert_shortcut(Block* enclosing, Expression** pshortcut);
1604 };
1605
1606 // Remove shortcut operators in a single statement.
1607
1608 int
1609 Shortcuts::statement(Block* block, size_t* pindex, Statement* s)
1610 {
1611 // FIXME: This approach doesn't work for switch statements, because
1612 // we add the new statements before the whole switch when we need to
1613 // instead add them just before the switch expression. The right
1614 // fix is probably to lower switch statements with nonconstant cases
1615 // to a series of conditionals.
1616 if (s->switch_statement() != NULL)
1617 return TRAVERSE_CONTINUE;
1618
1619 while (true)
1620 {
1621 Find_shortcut find_shortcut;
1622
1623 // If S is a variable declaration, then ordinary traversal won't
1624 // do anything. We want to explicitly traverse the
1625 // initialization expression if there is one.
1626 Variable_declaration_statement* vds = s->variable_declaration_statement();
1627 Expression* init = NULL;
1628 if (vds == NULL)
1629 s->traverse_contents(&find_shortcut);
1630 else
1631 {
1632 init = vds->var()->var_value()->init();
1633 if (init == NULL)
1634 return TRAVERSE_CONTINUE;
1635 init->traverse(&init, &find_shortcut);
1636 }
1637 Expression** pshortcut = find_shortcut.found();
1638 if (pshortcut == NULL)
1639 return TRAVERSE_CONTINUE;
1640
1641 Statement* snew = this->convert_shortcut(block, pshortcut);
1642 block->insert_statement_before(*pindex, snew);
1643 ++*pindex;
1644
1645 if (pshortcut == &init)
1646 vds->var()->var_value()->set_init(init);
1647 }
1648 }
1649
1650 // Remove shortcut operators in the initializer of a global variable.
1651
1652 int
1653 Shortcuts::variable(Named_object* no)
1654 {
1655 if (no->is_result_variable())
1656 return TRAVERSE_CONTINUE;
1657 Variable* var = no->var_value();
1658 Expression* init = var->init();
1659 if (!var->is_global() || init == NULL)
1660 return TRAVERSE_CONTINUE;
1661
1662 while (true)
1663 {
1664 Find_shortcut find_shortcut;
1665 init->traverse(&init, &find_shortcut);
1666 Expression** pshortcut = find_shortcut.found();
1667 if (pshortcut == NULL)
1668 return TRAVERSE_CONTINUE;
1669
1670 Statement* snew = this->convert_shortcut(NULL, pshortcut);
1671 var->add_preinit_statement(snew);
1672 if (pshortcut == &init)
1673 var->set_init(init);
1674 }
1675 }
1676
1677 // Given an expression which uses a shortcut operator, return a
1678 // statement which implements it, and update *PSHORTCUT accordingly.
1679
1680 Statement*
1681 Shortcuts::convert_shortcut(Block* enclosing, Expression** pshortcut)
1682 {
1683 Binary_expression* shortcut = (*pshortcut)->binary_expression();
1684 Expression* left = shortcut->left();
1685 Expression* right = shortcut->right();
1686 source_location loc = shortcut->location();
1687
1688 Block* retblock = new Block(enclosing, loc);
1689 retblock->set_end_location(loc);
1690
1691 Temporary_statement* ts = Statement::make_temporary(Type::make_boolean_type(),
1692 left, loc);
1693 retblock->add_statement(ts);
1694
1695 Block* block = new Block(retblock, loc);
1696 block->set_end_location(loc);
1697 Expression* tmpref = Expression::make_temporary_reference(ts, loc);
1698 Statement* assign = Statement::make_assignment(tmpref, right, loc);
1699 block->add_statement(assign);
1700
1701 Expression* cond = Expression::make_temporary_reference(ts, loc);
1702 if (shortcut->binary_expression()->op() == OPERATOR_OROR)
1703 cond = Expression::make_unary(OPERATOR_NOT, cond, loc);
1704
1705 Statement* if_statement = Statement::make_if_statement(cond, block, NULL,
1706 loc);
1707 retblock->add_statement(if_statement);
1708
1709 *pshortcut = Expression::make_temporary_reference(ts, loc);
1710
1711 delete shortcut;
1712
1713 // Now convert any shortcut operators in LEFT and RIGHT.
1714 Shortcuts shortcuts;
1715 retblock->traverse(&shortcuts);
1716
1717 return Statement::make_block_statement(retblock, loc);
1718 }
1719
1720 // Turn shortcut operators into explicit if statements. Doing this
1721 // considerably simplifies the order of evaluation rules.
1722
1723 void
1724 Gogo::remove_shortcuts()
1725 {
1726 Shortcuts shortcuts;
1727 this->traverse(&shortcuts);
1728 }
1729
1730 // A traversal class which finds all the expressions which must be
1731 // evaluated in order within a statement or larger expression. This
1732 // is used to implement the rules about order of evaluation.
1733
1734 class Find_eval_ordering : public Traverse
1735 {
1736 private:
1737 typedef std::vector<Expression**> Expression_pointers;
1738
1739 public:
1740 Find_eval_ordering()
1741 : Traverse(traverse_blocks
1742 | traverse_statements
1743 | traverse_expressions),
1744 exprs_()
1745 { }
1746
1747 size_t
1748 size() const
1749 { return this->exprs_.size(); }
1750
1751 typedef Expression_pointers::const_iterator const_iterator;
1752
1753 const_iterator
1754 begin() const
1755 { return this->exprs_.begin(); }
1756
1757 const_iterator
1758 end() const
1759 { return this->exprs_.end(); }
1760
1761 protected:
1762 int
1763 block(Block*)
1764 { return TRAVERSE_SKIP_COMPONENTS; }
1765
1766 int
1767 statement(Block*, size_t*, Statement*)
1768 { return TRAVERSE_SKIP_COMPONENTS; }
1769
1770 int
1771 expression(Expression**);
1772
1773 private:
1774 // A list of pointers to expressions with side-effects.
1775 Expression_pointers exprs_;
1776 };
1777
1778 // If an expression must be evaluated in order, put it on the list.
1779
1780 int
1781 Find_eval_ordering::expression(Expression** expression_pointer)
1782 {
1783 // We have to look at subexpressions before this one.
1784 if ((*expression_pointer)->traverse_subexpressions(this) == TRAVERSE_EXIT)
1785 return TRAVERSE_EXIT;
1786 if ((*expression_pointer)->must_eval_in_order())
1787 this->exprs_.push_back(expression_pointer);
1788 return TRAVERSE_SKIP_COMPONENTS;
1789 }
1790
1791 // A traversal class for ordering evaluations.
1792
1793 class Order_eval : public Traverse
1794 {
1795 public:
1796 Order_eval()
1797 : Traverse(traverse_variables
1798 | traverse_statements)
1799 { }
1800
1801 int
1802 variable(Named_object*);
1803
1804 int
1805 statement(Block*, size_t*, Statement*);
1806 };
1807
1808 // Implement the order of evaluation rules for a statement.
1809
1810 int
1811 Order_eval::statement(Block* block, size_t* pindex, Statement* s)
1812 {
1813 // FIXME: This approach doesn't work for switch statements, because
1814 // we add the new statements before the whole switch when we need to
1815 // instead add them just before the switch expression. The right
1816 // fix is probably to lower switch statements with nonconstant cases
1817 // to a series of conditionals.
1818 if (s->switch_statement() != NULL)
1819 return TRAVERSE_CONTINUE;
1820
1821 Find_eval_ordering find_eval_ordering;
1822
1823 // If S is a variable declaration, then ordinary traversal won't do
1824 // anything. We want to explicitly traverse the initialization
1825 // expression if there is one.
1826 Variable_declaration_statement* vds = s->variable_declaration_statement();
1827 Expression* init = NULL;
1828 Expression* orig_init = NULL;
1829 if (vds == NULL)
1830 s->traverse_contents(&find_eval_ordering);
1831 else
1832 {
1833 init = vds->var()->var_value()->init();
1834 if (init == NULL)
1835 return TRAVERSE_CONTINUE;
1836 orig_init = init;
1837
1838 // It might seem that this could be
1839 // init->traverse_subexpressions. Unfortunately that can fail
1840 // in a case like
1841 // var err os.Error
1842 // newvar, err := call(arg())
1843 // Here newvar will have an init of call result 0 of
1844 // call(arg()). If we only traverse subexpressions, we will
1845 // only find arg(), and we won't bother to move anything out.
1846 // Then we get to the assignment to err, we will traverse the
1847 // whole statement, and this time we will find both call() and
1848 // arg(), and so we will move them out. This will cause them to
1849 // be put into temporary variables before the assignment to err
1850 // but after the declaration of newvar. To avoid that problem,
1851 // we traverse the entire expression here.
1852 Expression::traverse(&init, &find_eval_ordering);
1853 }
1854
1855 if (find_eval_ordering.size() <= 1)
1856 {
1857 // If there is only one expression with a side-effect, we can
1858 // leave it in place.
1859 return TRAVERSE_CONTINUE;
1860 }
1861
1862 bool is_thunk = s->thunk_statement() != NULL;
1863 for (Find_eval_ordering::const_iterator p = find_eval_ordering.begin();
1864 p != find_eval_ordering.end();
1865 ++p)
1866 {
1867 Expression** pexpr = *p;
1868
1869 // If the last expression is a send or receive expression, we
1870 // may be ignoring the value; we don't want to evaluate it
1871 // early.
1872 if (p + 1 == find_eval_ordering.end()
1873 && ((*pexpr)->classification() == Expression::EXPRESSION_SEND
1874 || (*pexpr)->classification() == Expression::EXPRESSION_RECEIVE))
1875 break;
1876
1877 // The last expression in a thunk will be the call passed to go
1878 // or defer, which we must not evaluate early.
1879 if (is_thunk && p + 1 == find_eval_ordering.end())
1880 break;
1881
1882 source_location loc = (*pexpr)->location();
1883 Temporary_statement* ts = Statement::make_temporary(NULL, *pexpr, loc);
1884 block->insert_statement_before(*pindex, ts);
1885 ++*pindex;
1886
1887 *pexpr = Expression::make_temporary_reference(ts, loc);
1888 }
1889
1890 if (init != orig_init)
1891 vds->var()->var_value()->set_init(init);
1892
1893 return TRAVERSE_CONTINUE;
1894 }
1895
1896 // Implement the order of evaluation rules for the initializer of a
1897 // global variable.
1898
1899 int
1900 Order_eval::variable(Named_object* no)
1901 {
1902 if (no->is_result_variable())
1903 return TRAVERSE_CONTINUE;
1904 Variable* var = no->var_value();
1905 Expression* init = var->init();
1906 if (!var->is_global() || init == NULL)
1907 return TRAVERSE_CONTINUE;
1908
1909 Find_eval_ordering find_eval_ordering;
1910 init->traverse_subexpressions(&find_eval_ordering);
1911
1912 if (find_eval_ordering.size() <= 1)
1913 {
1914 // If there is only one expression with a side-effect, we can
1915 // leave it in place.
1916 return TRAVERSE_SKIP_COMPONENTS;
1917 }
1918
1919 for (Find_eval_ordering::const_iterator p = find_eval_ordering.begin();
1920 p != find_eval_ordering.end();
1921 ++p)
1922 {
1923 Expression** pexpr = *p;
1924 source_location loc = (*pexpr)->location();
1925 Temporary_statement* ts = Statement::make_temporary(NULL, *pexpr, loc);
1926 var->add_preinit_statement(ts);
1927 *pexpr = Expression::make_temporary_reference(ts, loc);
1928 }
1929
1930 return TRAVERSE_SKIP_COMPONENTS;
1931 }
1932
1933 // Use temporary variables to implement the order of evaluation rules.
1934
1935 void
1936 Gogo::order_evaluations()
1937 {
1938 Order_eval order_eval;
1939 this->traverse(&order_eval);
1940 }
1941
1942 // Traversal to convert calls to the predeclared recover function to
1943 // pass in an argument indicating whether it can recover from a panic
1944 // or not.
1945
1946 class Convert_recover : public Traverse
1947 {
1948 public:
1949 Convert_recover(Named_object* arg)
1950 : Traverse(traverse_expressions),
1951 arg_(arg)
1952 { }
1953
1954 protected:
1955 int
1956 expression(Expression**);
1957
1958 private:
1959 // The argument to pass to the function.
1960 Named_object* arg_;
1961 };
1962
1963 // Convert calls to recover.
1964
1965 int
1966 Convert_recover::expression(Expression** pp)
1967 {
1968 Call_expression* ce = (*pp)->call_expression();
1969 if (ce != NULL && ce->is_recover_call())
1970 ce->set_recover_arg(Expression::make_var_reference(this->arg_,
1971 ce->location()));
1972 return TRAVERSE_CONTINUE;
1973 }
1974
1975 // Traversal for build_recover_thunks.
1976
1977 class Build_recover_thunks : public Traverse
1978 {
1979 public:
1980 Build_recover_thunks(Gogo* gogo)
1981 : Traverse(traverse_functions),
1982 gogo_(gogo)
1983 { }
1984
1985 int
1986 function(Named_object*);
1987
1988 private:
1989 Expression*
1990 can_recover_arg(source_location);
1991
1992 // General IR.
1993 Gogo* gogo_;
1994 };
1995
1996 // If this function calls recover, turn it into a thunk.
1997
1998 int
1999 Build_recover_thunks::function(Named_object* orig_no)
2000 {
2001 Function* orig_func = orig_no->func_value();
2002 if (!orig_func->calls_recover()
2003 || orig_func->is_recover_thunk()
2004 || orig_func->has_recover_thunk())
2005 return TRAVERSE_CONTINUE;
2006
2007 Gogo* gogo = this->gogo_;
2008 source_location location = orig_func->location();
2009
2010 static int count;
2011 char buf[50];
2012
2013 Function_type* orig_fntype = orig_func->type();
2014 Typed_identifier_list* new_params = new Typed_identifier_list();
2015 std::string receiver_name;
2016 if (orig_fntype->is_method())
2017 {
2018 const Typed_identifier* receiver = orig_fntype->receiver();
2019 snprintf(buf, sizeof buf, "rt.%u", count);
2020 ++count;
2021 receiver_name = buf;
2022 new_params->push_back(Typed_identifier(receiver_name, receiver->type(),
2023 receiver->location()));
2024 }
2025 const Typed_identifier_list* orig_params = orig_fntype->parameters();
2026 if (orig_params != NULL && !orig_params->empty())
2027 {
2028 for (Typed_identifier_list::const_iterator p = orig_params->begin();
2029 p != orig_params->end();
2030 ++p)
2031 {
2032 snprintf(buf, sizeof buf, "pt.%u", count);
2033 ++count;
2034 new_params->push_back(Typed_identifier(buf, p->type(),
2035 p->location()));
2036 }
2037 }
2038 snprintf(buf, sizeof buf, "pr.%u", count);
2039 ++count;
2040 std::string can_recover_name = buf;
2041 new_params->push_back(Typed_identifier(can_recover_name,
2042 Type::make_boolean_type(),
2043 orig_fntype->location()));
2044
2045 const Typed_identifier_list* orig_results = orig_fntype->results();
2046 Typed_identifier_list* new_results;
2047 if (orig_results == NULL || orig_results->empty())
2048 new_results = NULL;
2049 else
2050 {
2051 new_results = new Typed_identifier_list();
2052 for (Typed_identifier_list::const_iterator p = orig_results->begin();
2053 p != orig_results->end();
2054 ++p)
2055 new_results->push_back(*p);
2056 }
2057
2058 Function_type *new_fntype = Type::make_function_type(NULL, new_params,
2059 new_results,
2060 orig_fntype->location());
2061 if (orig_fntype->is_varargs())
2062 new_fntype->set_is_varargs();
2063
2064 std::string name = orig_no->name() + "$recover";
2065 Named_object *new_no = gogo->start_function(name, new_fntype, false,
2066 location);
2067 Function *new_func = new_no->func_value();
2068 if (orig_func->enclosing() != NULL)
2069 new_func->set_enclosing(orig_func->enclosing());
2070
2071 // We build the code for the original function attached to the new
2072 // function, and then swap the original and new function bodies.
2073 // This means that existing references to the original function will
2074 // then refer to the new function. That makes this code a little
2075 // confusing, in that the reference to NEW_NO really refers to the
2076 // other function, not the one we are building.
2077
2078 Expression* closure = NULL;
2079 if (orig_func->needs_closure())
2080 {
2081 Named_object* orig_closure_no = orig_func->closure_var();
2082 Variable* orig_closure_var = orig_closure_no->var_value();
2083 Variable* new_var = new Variable(orig_closure_var->type(), NULL, false,
2084 true, false, location);
2085 snprintf(buf, sizeof buf, "closure.%u", count);
2086 ++count;
2087 Named_object* new_closure_no = Named_object::make_variable(buf, NULL,
2088 new_var);
2089 new_func->set_closure_var(new_closure_no);
2090 closure = Expression::make_var_reference(new_closure_no, location);
2091 }
2092
2093 Expression* fn = Expression::make_func_reference(new_no, closure, location);
2094
2095 Expression_list* args = new Expression_list();
2096 if (orig_fntype->is_method())
2097 {
2098 Named_object* rec_no = gogo->lookup(receiver_name, NULL);
2099 gcc_assert(rec_no != NULL
2100 && rec_no->is_variable()
2101 && rec_no->var_value()->is_parameter());
2102 args->push_back(Expression::make_var_reference(rec_no, location));
2103 }
2104 if (new_params != NULL)
2105 {
2106 // Note that we skip the last parameter, which is the boolean
2107 // indicating whether recover can succed.
2108 for (Typed_identifier_list::const_iterator p = new_params->begin();
2109 p + 1 != new_params->end();
2110 ++p)
2111 {
2112 Named_object* p_no = gogo->lookup(p->name(), NULL);
2113 gcc_assert(p_no != NULL
2114 && p_no->is_variable()
2115 && p_no->var_value()->is_parameter());
2116 args->push_back(Expression::make_var_reference(p_no, location));
2117 }
2118 }
2119 args->push_back(this->can_recover_arg(location));
2120
2121 Expression* call = Expression::make_call(fn, args, false, location);
2122
2123 Statement* s;
2124 if (orig_fntype->results() == NULL || orig_fntype->results()->empty())
2125 s = Statement::make_statement(call);
2126 else
2127 {
2128 Expression_list* vals = new Expression_list();
2129 vals->push_back(call);
2130 s = Statement::make_return_statement(new_func->type()->results(),
2131 vals, location);
2132 }
2133 s->determine_types();
2134 gogo->add_statement(s);
2135
2136 gogo->finish_function(location);
2137
2138 // Swap the function bodies and types.
2139 new_func->swap_for_recover(orig_func);
2140 orig_func->set_is_recover_thunk();
2141 new_func->set_calls_recover();
2142 new_func->set_has_recover_thunk();
2143
2144 Bindings* orig_bindings = orig_func->block()->bindings();
2145 Bindings* new_bindings = new_func->block()->bindings();
2146 if (orig_fntype->is_method())
2147 {
2148 // We changed the receiver to be a regular parameter. We have
2149 // to update the binding accordingly in both functions.
2150 Named_object* orig_rec_no = orig_bindings->lookup_local(receiver_name);
2151 gcc_assert(orig_rec_no != NULL
2152 && orig_rec_no->is_variable()
2153 && !orig_rec_no->var_value()->is_receiver());
2154 orig_rec_no->var_value()->set_is_receiver();
2155
2156 Named_object* new_rec_no = new_bindings->lookup_local(receiver_name);
2157 gcc_assert(new_rec_no != NULL
2158 && new_rec_no->is_variable()
2159 && !new_rec_no->var_value()->is_receiver());
2160 new_rec_no->var_value()->set_is_not_receiver();
2161 }
2162
2163 // Because we flipped blocks but not types, the can_recover
2164 // parameter appears in the (now) old bindings as a parameter.
2165 // Change it to a local variable, whereupon it will be discarded.
2166 Named_object* can_recover_no = orig_bindings->lookup_local(can_recover_name);
2167 gcc_assert(can_recover_no != NULL
2168 && can_recover_no->is_variable()
2169 && can_recover_no->var_value()->is_parameter());
2170 orig_bindings->remove_binding(can_recover_no);
2171
2172 // Add the can_recover argument to the (now) new bindings, and
2173 // attach it to any recover statements.
2174 Variable* can_recover_var = new Variable(Type::make_boolean_type(), NULL,
2175 false, true, false, location);
2176 can_recover_no = new_bindings->add_variable(can_recover_name, NULL,
2177 can_recover_var);
2178 Convert_recover convert_recover(can_recover_no);
2179 new_func->traverse(&convert_recover);
2180
2181 return TRAVERSE_CONTINUE;
2182 }
2183
2184 // Return the expression to pass for the .can_recover parameter to the
2185 // new function. This indicates whether a call to recover may return
2186 // non-nil. The expression is
2187 // __go_can_recover(__builtin_return_address()).
2188
2189 Expression*
2190 Build_recover_thunks::can_recover_arg(source_location location)
2191 {
2192 static Named_object* builtin_return_address;
2193 if (builtin_return_address == NULL)
2194 {
2195 const source_location bloc = BUILTINS_LOCATION;
2196
2197 Typed_identifier_list* param_types = new Typed_identifier_list();
2198 Type* uint_type = Type::lookup_integer_type("uint");
2199 param_types->push_back(Typed_identifier("l", uint_type, bloc));
2200
2201 Typed_identifier_list* return_types = new Typed_identifier_list();
2202 Type* voidptr_type = Type::make_pointer_type(Type::make_void_type());
2203 return_types->push_back(Typed_identifier("", voidptr_type, bloc));
2204
2205 Function_type* fntype = Type::make_function_type(NULL, param_types,
2206 return_types, bloc);
2207 builtin_return_address =
2208 Named_object::make_function_declaration("__builtin_return_address",
2209 NULL, fntype, bloc);
2210 const char* n = "__builtin_return_address";
2211 builtin_return_address->func_declaration_value()->set_asm_name(n);
2212 }
2213
2214 static Named_object* can_recover;
2215 if (can_recover == NULL)
2216 {
2217 const source_location bloc = BUILTINS_LOCATION;
2218 Typed_identifier_list* param_types = new Typed_identifier_list();
2219 Type* voidptr_type = Type::make_pointer_type(Type::make_void_type());
2220 param_types->push_back(Typed_identifier("a", voidptr_type, bloc));
2221 Type* boolean_type = Type::make_boolean_type();
2222 Typed_identifier_list* results = new Typed_identifier_list();
2223 results->push_back(Typed_identifier("", boolean_type, bloc));
2224 Function_type* fntype = Type::make_function_type(NULL, param_types,
2225 results, bloc);
2226 can_recover = Named_object::make_function_declaration("__go_can_recover",
2227 NULL, fntype,
2228 bloc);
2229 can_recover->func_declaration_value()->set_asm_name("__go_can_recover");
2230 }
2231
2232 Expression* fn = Expression::make_func_reference(builtin_return_address,
2233 NULL, location);
2234
2235 mpz_t zval;
2236 mpz_init_set_ui(zval, 0UL);
2237 Expression* zexpr = Expression::make_integer(&zval, NULL, location);
2238 mpz_clear(zval);
2239 Expression_list *args = new Expression_list();
2240 args->push_back(zexpr);
2241
2242 Expression* call = Expression::make_call(fn, args, false, location);
2243
2244 args = new Expression_list();
2245 args->push_back(call);
2246
2247 fn = Expression::make_func_reference(can_recover, NULL, location);
2248 return Expression::make_call(fn, args, false, location);
2249 }
2250
2251 // Build thunks for functions which call recover. We build a new
2252 // function with an extra parameter, which is whether a call to
2253 // recover can succeed. We then move the body of this function to
2254 // that one. We then turn this function into a thunk which calls the
2255 // new one, passing the value of
2256 // __go_can_recover(__builtin_return_address()). The function will be
2257 // marked as not splitting the stack. This will cooperate with the
2258 // implementation of defer to make recover do the right thing.
2259
2260 void
2261 Gogo::build_recover_thunks()
2262 {
2263 Build_recover_thunks build_recover_thunks(this);
2264 this->traverse(&build_recover_thunks);
2265 }
2266
2267 // Look for named types to see whether we need to create an interface
2268 // method table.
2269
2270 class Build_method_tables : public Traverse
2271 {
2272 public:
2273 Build_method_tables(Gogo* gogo,
2274 const std::vector<Interface_type*>& interfaces)
2275 : Traverse(traverse_types),
2276 gogo_(gogo), interfaces_(interfaces)
2277 { }
2278
2279 int
2280 type(Type*);
2281
2282 private:
2283 // The IR.
2284 Gogo* gogo_;
2285 // A list of locally defined interfaces which have hidden methods.
2286 const std::vector<Interface_type*>& interfaces_;
2287 };
2288
2289 // Build all required interface method tables for types. We need to
2290 // ensure that we have an interface method table for every interface
2291 // which has a hidden method, for every named type which implements
2292 // that interface. Normally we can just build interface method tables
2293 // as we need them. However, in some cases we can require an
2294 // interface method table for an interface defined in a different
2295 // package for a type defined in that package. If that interface and
2296 // type both use a hidden method, that is OK. However, we will not be
2297 // able to build that interface method table when we need it, because
2298 // the type's hidden method will be static. So we have to build it
2299 // here, and just refer it from other packages as needed.
2300
2301 void
2302 Gogo::build_interface_method_tables()
2303 {
2304 std::vector<Interface_type*> hidden_interfaces;
2305 hidden_interfaces.reserve(this->interface_types_.size());
2306 for (std::vector<Interface_type*>::const_iterator pi =
2307 this->interface_types_.begin();
2308 pi != this->interface_types_.end();
2309 ++pi)
2310 {
2311 const Typed_identifier_list* methods = (*pi)->methods();
2312 if (methods == NULL)
2313 continue;
2314 for (Typed_identifier_list::const_iterator pm = methods->begin();
2315 pm != methods->end();
2316 ++pm)
2317 {
2318 if (Gogo::is_hidden_name(pm->name()))
2319 {
2320 hidden_interfaces.push_back(*pi);
2321 break;
2322 }
2323 }
2324 }
2325
2326 if (!hidden_interfaces.empty())
2327 {
2328 // Now traverse the tree looking for all named types.
2329 Build_method_tables bmt(this, hidden_interfaces);
2330 this->traverse(&bmt);
2331 }
2332
2333 // We no longer need the list of interfaces.
2334
2335 this->interface_types_.clear();
2336 }
2337
2338 // This is called for each type. For a named type, for each of the
2339 // interfaces with hidden methods that it implements, create the
2340 // method table.
2341
2342 int
2343 Build_method_tables::type(Type* type)
2344 {
2345 Named_type* nt = type->named_type();
2346 if (nt != NULL)
2347 {
2348 for (std::vector<Interface_type*>::const_iterator p =
2349 this->interfaces_.begin();
2350 p != this->interfaces_.end();
2351 ++p)
2352 {
2353 // We ask whether a pointer to the named type implements the
2354 // interface, because a pointer can implement more methods
2355 // than a value.
2356 if ((*p)->implements_interface(Type::make_pointer_type(nt), NULL))
2357 {
2358 nt->interface_method_table(this->gogo_, *p, false);
2359 nt->interface_method_table(this->gogo_, *p, true);
2360 }
2361 }
2362 }
2363 return TRAVERSE_CONTINUE;
2364 }
2365
2366 // Traversal class used to check for return statements.
2367
2368 class Check_return_statements_traverse : public Traverse
2369 {
2370 public:
2371 Check_return_statements_traverse()
2372 : Traverse(traverse_functions)
2373 { }
2374
2375 int
2376 function(Named_object*);
2377 };
2378
2379 // Check that a function has a return statement if it needs one.
2380
2381 int
2382 Check_return_statements_traverse::function(Named_object* no)
2383 {
2384 Function* func = no->func_value();
2385 const Function_type* fntype = func->type();
2386 const Typed_identifier_list* results = fntype->results();
2387
2388 // We only need a return statement if there is a return value.
2389 if (results == NULL || results->empty())
2390 return TRAVERSE_CONTINUE;
2391
2392 if (func->block()->may_fall_through())
2393 error_at(func->location(), "control reaches end of non-void function");
2394
2395 return TRAVERSE_CONTINUE;
2396 }
2397
2398 // Check return statements.
2399
2400 void
2401 Gogo::check_return_statements()
2402 {
2403 Check_return_statements_traverse traverse;
2404 this->traverse(&traverse);
2405 }
2406
2407 // Get the unique prefix to use before all exported symbols. This
2408 // must be unique across the entire link.
2409
2410 const std::string&
2411 Gogo::unique_prefix() const
2412 {
2413 gcc_assert(!this->unique_prefix_.empty());
2414 return this->unique_prefix_;
2415 }
2416
2417 // Set the unique prefix to use before all exported symbols. This
2418 // comes from the command line option -fgo-prefix=XXX.
2419
2420 void
2421 Gogo::set_unique_prefix(const std::string& arg)
2422 {
2423 gcc_assert(this->unique_prefix_.empty());
2424 this->unique_prefix_ = arg;
2425 }
2426
2427 // Work out the package priority. It is one more than the maximum
2428 // priority of an imported package.
2429
2430 int
2431 Gogo::package_priority() const
2432 {
2433 int priority = 0;
2434 for (Packages::const_iterator p = this->packages_.begin();
2435 p != this->packages_.end();
2436 ++p)
2437 if (p->second->priority() > priority)
2438 priority = p->second->priority();
2439 return priority + 1;
2440 }
2441
2442 // Export identifiers as requested.
2443
2444 void
2445 Gogo::do_exports()
2446 {
2447 // For now we always stream to a section. Later we may want to
2448 // support streaming to a separate file.
2449 Stream_to_section stream;
2450
2451 Export exp(&stream);
2452 exp.register_builtin_types(this);
2453 exp.export_globals(this->package_name(),
2454 this->unique_prefix(),
2455 this->package_priority(),
2456 (this->need_init_fn_ && this->package_name() != "main"
2457 ? this->get_init_fn_name()
2458 : ""),
2459 this->imported_init_fns_,
2460 this->package_->bindings());
2461 }
2462
2463 // Class Function.
2464
2465 Function::Function(Function_type* type, Function* enclosing, Block* block,
2466 source_location location)
2467 : type_(type), enclosing_(enclosing), named_results_(NULL),
2468 closure_var_(NULL), block_(block), location_(location), fndecl_(NULL),
2469 defer_stack_(NULL), calls_recover_(false), is_recover_thunk_(false),
2470 has_recover_thunk_(false)
2471 {
2472 }
2473
2474 // Create the named result variables.
2475
2476 void
2477 Function::create_named_result_variables(Gogo* gogo)
2478 {
2479 const Typed_identifier_list* results = this->type_->results();
2480 if (results == NULL
2481 || results->empty()
2482 || results->front().name().empty())
2483 return;
2484
2485 this->named_results_ = new Named_results();
2486 this->named_results_->reserve(results->size());
2487
2488 Block* block = this->block_;
2489 int index = 0;
2490 for (Typed_identifier_list::const_iterator p = results->begin();
2491 p != results->end();
2492 ++p, ++index)
2493 {
2494 std::string name = p->name();
2495 if (Gogo::is_sink_name(name))
2496 {
2497 static int unnamed_result_counter;
2498 char buf[100];
2499 snprintf(buf, sizeof buf, "_$%d", unnamed_result_counter);
2500 ++unnamed_result_counter;
2501 name = gogo->pack_hidden_name(buf, false);
2502 }
2503 Result_variable* result = new Result_variable(p->type(), this, index);
2504 Named_object* no = block->bindings()->add_result_variable(name, result);
2505 this->named_results_->push_back(no);
2506 }
2507 }
2508
2509 // Return the closure variable, creating it if necessary.
2510
2511 Named_object*
2512 Function::closure_var()
2513 {
2514 if (this->closure_var_ == NULL)
2515 {
2516 // We don't know the type of the variable yet. We add fields as
2517 // we find them.
2518 source_location loc = this->type_->location();
2519 Struct_field_list* sfl = new Struct_field_list;
2520 Type* struct_type = Type::make_struct_type(sfl, loc);
2521 Variable* var = new Variable(Type::make_pointer_type(struct_type),
2522 NULL, false, true, false, loc);
2523 this->closure_var_ = Named_object::make_variable("closure", NULL, var);
2524 // Note that the new variable is not in any binding contour.
2525 }
2526 return this->closure_var_;
2527 }
2528
2529 // Set the type of the closure variable.
2530
2531 void
2532 Function::set_closure_type()
2533 {
2534 if (this->closure_var_ == NULL)
2535 return;
2536 Named_object* closure = this->closure_var_;
2537 Struct_type* st = closure->var_value()->type()->deref()->struct_type();
2538 unsigned int index = 0;
2539 for (Closure_fields::const_iterator p = this->closure_fields_.begin();
2540 p != this->closure_fields_.end();
2541 ++p, ++index)
2542 {
2543 Named_object* no = p->first;
2544 char buf[20];
2545 snprintf(buf, sizeof buf, "%u", index);
2546 std::string n = no->name() + buf;
2547 Type* var_type;
2548 if (no->is_variable())
2549 var_type = no->var_value()->type();
2550 else
2551 var_type = no->result_var_value()->type();
2552 Type* field_type = Type::make_pointer_type(var_type);
2553 st->push_field(Struct_field(Typed_identifier(n, field_type, p->second)));
2554 }
2555 }
2556
2557 // Return whether this function is a method.
2558
2559 bool
2560 Function::is_method() const
2561 {
2562 return this->type_->is_method();
2563 }
2564
2565 // Add a label definition.
2566
2567 Label*
2568 Function::add_label_definition(const std::string& label_name,
2569 source_location location)
2570 {
2571 Label* lnull = NULL;
2572 std::pair<Labels::iterator, bool> ins =
2573 this->labels_.insert(std::make_pair(label_name, lnull));
2574 if (ins.second)
2575 {
2576 // This is a new label.
2577 Label* label = new Label(label_name);
2578 label->define(location);
2579 ins.first->second = label;
2580 return label;
2581 }
2582 else
2583 {
2584 // The label was already in the hash table.
2585 Label* label = ins.first->second;
2586 if (!label->is_defined())
2587 {
2588 label->define(location);
2589 return label;
2590 }
2591 else
2592 {
2593 error_at(location, "redefinition of label %qs",
2594 Gogo::message_name(label_name).c_str());
2595 inform(label->location(), "previous definition of %qs was here",
2596 Gogo::message_name(label_name).c_str());
2597 return new Label(label_name);
2598 }
2599 }
2600 }
2601
2602 // Add a reference to a label.
2603
2604 Label*
2605 Function::add_label_reference(const std::string& label_name)
2606 {
2607 Label* lnull = NULL;
2608 std::pair<Labels::iterator, bool> ins =
2609 this->labels_.insert(std::make_pair(label_name, lnull));
2610 if (!ins.second)
2611 {
2612 // The label was already in the hash table.
2613 return ins.first->second;
2614 }
2615 else
2616 {
2617 gcc_assert(ins.first->second == NULL);
2618 Label* label = new Label(label_name);
2619 ins.first->second = label;
2620 return label;
2621 }
2622 }
2623
2624 // Swap one function with another. This is used when building the
2625 // thunk we use to call a function which calls recover. It may not
2626 // work for any other case.
2627
2628 void
2629 Function::swap_for_recover(Function *x)
2630 {
2631 gcc_assert(this->enclosing_ == x->enclosing_);
2632 gcc_assert(this->named_results_ == x->named_results_);
2633 std::swap(this->closure_var_, x->closure_var_);
2634 std::swap(this->block_, x->block_);
2635 gcc_assert(this->location_ == x->location_);
2636 gcc_assert(this->fndecl_ == NULL && x->fndecl_ == NULL);
2637 gcc_assert(this->defer_stack_ == NULL && x->defer_stack_ == NULL);
2638 }
2639
2640 // Traverse the tree.
2641
2642 int
2643 Function::traverse(Traverse* traverse)
2644 {
2645 unsigned int traverse_mask = traverse->traverse_mask();
2646
2647 // FIXME: We should check traverse_functions here if nested
2648 // functions are stored in block bindings.
2649 if (this->block_ != NULL
2650 && (traverse_mask
2651 & (Traverse::traverse_variables
2652 | Traverse::traverse_constants
2653 | Traverse::traverse_blocks
2654 | Traverse::traverse_statements
2655 | Traverse::traverse_expressions
2656 | Traverse::traverse_types)) != 0)
2657 {
2658 if (this->block_->traverse(traverse) == TRAVERSE_EXIT)
2659 return TRAVERSE_EXIT;
2660 }
2661
2662 return TRAVERSE_CONTINUE;
2663 }
2664
2665 // Work out types for unspecified variables and constants.
2666
2667 void
2668 Function::determine_types()
2669 {
2670 if (this->block_ != NULL)
2671 this->block_->determine_types();
2672 }
2673
2674 // Export the function.
2675
2676 void
2677 Function::export_func(Export* exp, const std::string& name) const
2678 {
2679 Function::export_func_with_type(exp, name, this->type_);
2680 }
2681
2682 // Export a function with a type.
2683
2684 void
2685 Function::export_func_with_type(Export* exp, const std::string& name,
2686 const Function_type* fntype)
2687 {
2688 exp->write_c_string("func ");
2689
2690 if (fntype->is_method())
2691 {
2692 exp->write_c_string("(");
2693 exp->write_type(fntype->receiver()->type());
2694 exp->write_c_string(") ");
2695 }
2696
2697 exp->write_string(name);
2698
2699 exp->write_c_string(" (");
2700 const Typed_identifier_list* parameters = fntype->parameters();
2701 if (parameters != NULL)
2702 {
2703 bool is_varargs = fntype->is_varargs();
2704 bool first = true;
2705 for (Typed_identifier_list::const_iterator p = parameters->begin();
2706 p != parameters->end();
2707 ++p)
2708 {
2709 if (first)
2710 first = false;
2711 else
2712 exp->write_c_string(", ");
2713 if (!is_varargs || p + 1 != parameters->end())
2714 exp->write_type(p->type());
2715 else
2716 {
2717 exp->write_c_string("...");
2718 exp->write_type(p->type()->array_type()->element_type());
2719 }
2720 }
2721 }
2722 exp->write_c_string(")");
2723
2724 const Typed_identifier_list* results = fntype->results();
2725 if (results != NULL)
2726 {
2727 if (results->size() == 1)
2728 {
2729 exp->write_c_string(" ");
2730 exp->write_type(results->begin()->type());
2731 }
2732 else
2733 {
2734 exp->write_c_string(" (");
2735 bool first = true;
2736 for (Typed_identifier_list::const_iterator p = results->begin();
2737 p != results->end();
2738 ++p)
2739 {
2740 if (first)
2741 first = false;
2742 else
2743 exp->write_c_string(", ");
2744 exp->write_type(p->type());
2745 }
2746 exp->write_c_string(")");
2747 }
2748 }
2749 exp->write_c_string(";\n");
2750 }
2751
2752 // Import a function.
2753
2754 void
2755 Function::import_func(Import* imp, std::string* pname,
2756 Typed_identifier** preceiver,
2757 Typed_identifier_list** pparameters,
2758 Typed_identifier_list** presults,
2759 bool* is_varargs)
2760 {
2761 imp->require_c_string("func ");
2762
2763 *preceiver = NULL;
2764 if (imp->peek_char() == '(')
2765 {
2766 imp->require_c_string("(");
2767 Type* rtype = imp->read_type();
2768 *preceiver = new Typed_identifier(Import::import_marker, rtype,
2769 imp->location());
2770 imp->require_c_string(") ");
2771 }
2772
2773 *pname = imp->read_identifier();
2774
2775 Typed_identifier_list* parameters;
2776 *is_varargs = false;
2777 imp->require_c_string(" (");
2778 if (imp->peek_char() == ')')
2779 parameters = NULL;
2780 else
2781 {
2782 parameters = new Typed_identifier_list();
2783 while (true)
2784 {
2785 if (imp->match_c_string("..."))
2786 {
2787 imp->advance(3);
2788 *is_varargs = true;
2789 }
2790
2791 Type* ptype = imp->read_type();
2792 if (*is_varargs)
2793 ptype = Type::make_array_type(ptype, NULL);
2794 parameters->push_back(Typed_identifier(Import::import_marker,
2795 ptype, imp->location()));
2796 if (imp->peek_char() != ',')
2797 break;
2798 gcc_assert(!*is_varargs);
2799 imp->require_c_string(", ");
2800 }
2801 }
2802 imp->require_c_string(")");
2803 *pparameters = parameters;
2804
2805 Typed_identifier_list* results;
2806 if (imp->peek_char() != ' ')
2807 results = NULL;
2808 else
2809 {
2810 results = new Typed_identifier_list();
2811 imp->require_c_string(" ");
2812 if (imp->peek_char() != '(')
2813 {
2814 Type* rtype = imp->read_type();
2815 results->push_back(Typed_identifier(Import::import_marker, rtype,
2816 imp->location()));
2817 }
2818 else
2819 {
2820 imp->require_c_string("(");
2821 while (true)
2822 {
2823 Type* rtype = imp->read_type();
2824 results->push_back(Typed_identifier(Import::import_marker,
2825 rtype, imp->location()));
2826 if (imp->peek_char() != ',')
2827 break;
2828 imp->require_c_string(", ");
2829 }
2830 imp->require_c_string(")");
2831 }
2832 }
2833 imp->require_c_string(";\n");
2834 *presults = results;
2835 }
2836
2837 // Class Block.
2838
2839 Block::Block(Block* enclosing, source_location location)
2840 : enclosing_(enclosing), statements_(),
2841 bindings_(new Bindings(enclosing == NULL
2842 ? NULL
2843 : enclosing->bindings())),
2844 start_location_(location),
2845 end_location_(UNKNOWN_LOCATION)
2846 {
2847 }
2848
2849 // Add a statement to a block.
2850
2851 void
2852 Block::add_statement(Statement* statement)
2853 {
2854 this->statements_.push_back(statement);
2855 }
2856
2857 // Add a statement to the front of a block. This is slow but is only
2858 // used for reference counts of parameters.
2859
2860 void
2861 Block::add_statement_at_front(Statement* statement)
2862 {
2863 this->statements_.insert(this->statements_.begin(), statement);
2864 }
2865
2866 // Replace a statement in a block.
2867
2868 void
2869 Block::replace_statement(size_t index, Statement* s)
2870 {
2871 gcc_assert(index < this->statements_.size());
2872 this->statements_[index] = s;
2873 }
2874
2875 // Add a statement before another statement.
2876
2877 void
2878 Block::insert_statement_before(size_t index, Statement* s)
2879 {
2880 gcc_assert(index < this->statements_.size());
2881 this->statements_.insert(this->statements_.begin() + index, s);
2882 }
2883
2884 // Add a statement after another statement.
2885
2886 void
2887 Block::insert_statement_after(size_t index, Statement* s)
2888 {
2889 gcc_assert(index < this->statements_.size());
2890 this->statements_.insert(this->statements_.begin() + index + 1, s);
2891 }
2892
2893 // Traverse the tree.
2894
2895 int
2896 Block::traverse(Traverse* traverse)
2897 {
2898 unsigned int traverse_mask = traverse->traverse_mask();
2899
2900 if ((traverse_mask & Traverse::traverse_blocks) != 0)
2901 {
2902 int t = traverse->block(this);
2903 if (t == TRAVERSE_EXIT)
2904 return TRAVERSE_EXIT;
2905 else if (t == TRAVERSE_SKIP_COMPONENTS)
2906 return TRAVERSE_CONTINUE;
2907 }
2908
2909 if ((traverse_mask
2910 & (Traverse::traverse_variables
2911 | Traverse::traverse_constants
2912 | Traverse::traverse_expressions
2913 | Traverse::traverse_types)) != 0)
2914 {
2915 for (Bindings::const_definitions_iterator pb =
2916 this->bindings_->begin_definitions();
2917 pb != this->bindings_->end_definitions();
2918 ++pb)
2919 {
2920 switch ((*pb)->classification())
2921 {
2922 case Named_object::NAMED_OBJECT_CONST:
2923 if ((traverse_mask & Traverse::traverse_constants) != 0)
2924 {
2925 if (traverse->constant(*pb, false) == TRAVERSE_EXIT)
2926 return TRAVERSE_EXIT;
2927 }
2928 if ((traverse_mask & Traverse::traverse_types) != 0
2929 || (traverse_mask & Traverse::traverse_expressions) != 0)
2930 {
2931 Type* t = (*pb)->const_value()->type();
2932 if (t != NULL
2933 && Type::traverse(t, traverse) == TRAVERSE_EXIT)
2934 return TRAVERSE_EXIT;
2935 }
2936 if ((traverse_mask & Traverse::traverse_expressions) != 0
2937 || (traverse_mask & Traverse::traverse_types) != 0)
2938 {
2939 if ((*pb)->const_value()->traverse_expression(traverse)
2940 == TRAVERSE_EXIT)
2941 return TRAVERSE_EXIT;
2942 }
2943 break;
2944
2945 case Named_object::NAMED_OBJECT_VAR:
2946 case Named_object::NAMED_OBJECT_RESULT_VAR:
2947 if ((traverse_mask & Traverse::traverse_variables) != 0)
2948 {
2949 if (traverse->variable(*pb) == TRAVERSE_EXIT)
2950 return TRAVERSE_EXIT;
2951 }
2952 if (((traverse_mask & Traverse::traverse_types) != 0
2953 || (traverse_mask & Traverse::traverse_expressions) != 0)
2954 && ((*pb)->is_result_variable()
2955 || (*pb)->var_value()->has_type()))
2956 {
2957 Type* t = ((*pb)->is_variable()
2958 ? (*pb)->var_value()->type()
2959 : (*pb)->result_var_value()->type());
2960 if (t != NULL
2961 && Type::traverse(t, traverse) == TRAVERSE_EXIT)
2962 return TRAVERSE_EXIT;
2963 }
2964 if ((*pb)->is_variable()
2965 && ((traverse_mask & Traverse::traverse_expressions) != 0
2966 || (traverse_mask & Traverse::traverse_types) != 0))
2967 {
2968 if ((*pb)->var_value()->traverse_expression(traverse)
2969 == TRAVERSE_EXIT)
2970 return TRAVERSE_EXIT;
2971 }
2972 break;
2973
2974 case Named_object::NAMED_OBJECT_FUNC:
2975 case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
2976 // FIXME: Where will nested functions be found?
2977 gcc_unreachable();
2978
2979 case Named_object::NAMED_OBJECT_TYPE:
2980 if ((traverse_mask & Traverse::traverse_types) != 0
2981 || (traverse_mask & Traverse::traverse_expressions) != 0)
2982 {
2983 if (Type::traverse((*pb)->type_value(), traverse)
2984 == TRAVERSE_EXIT)
2985 return TRAVERSE_EXIT;
2986 }
2987 break;
2988
2989 case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
2990 case Named_object::NAMED_OBJECT_UNKNOWN:
2991 break;
2992
2993 case Named_object::NAMED_OBJECT_PACKAGE:
2994 case Named_object::NAMED_OBJECT_SINK:
2995 gcc_unreachable();
2996
2997 default:
2998 gcc_unreachable();
2999 }
3000 }
3001 }
3002
3003 // No point in checking traverse_mask here--if we got here we always
3004 // want to walk the statements. The traversal can insert new
3005 // statements before or after the current statement. Inserting
3006 // statements before the current statement requires updating I via
3007 // the pointer; those statements will not be traversed. Any new
3008 // statements inserted after the current statement will be traversed
3009 // in their turn.
3010 for (size_t i = 0; i < this->statements_.size(); ++i)
3011 {
3012 if (this->statements_[i]->traverse(this, &i, traverse) == TRAVERSE_EXIT)
3013 return TRAVERSE_EXIT;
3014 }
3015
3016 return TRAVERSE_CONTINUE;
3017 }
3018
3019 // Work out types for unspecified variables and constants.
3020
3021 void
3022 Block::determine_types()
3023 {
3024 for (Bindings::const_definitions_iterator pb =
3025 this->bindings_->begin_definitions();
3026 pb != this->bindings_->end_definitions();
3027 ++pb)
3028 {
3029 if ((*pb)->is_variable())
3030 (*pb)->var_value()->determine_type();
3031 else if ((*pb)->is_const())
3032 (*pb)->const_value()->determine_type();
3033 }
3034
3035 for (std::vector<Statement*>::const_iterator ps = this->statements_.begin();
3036 ps != this->statements_.end();
3037 ++ps)
3038 (*ps)->determine_types();
3039 }
3040
3041 // Return true if the statements in this block may fall through.
3042
3043 bool
3044 Block::may_fall_through() const
3045 {
3046 if (this->statements_.empty())
3047 return true;
3048 return this->statements_.back()->may_fall_through();
3049 }
3050
3051 // Class Variable.
3052
3053 Variable::Variable(Type* type, Expression* init, bool is_global,
3054 bool is_parameter, bool is_receiver,
3055 source_location location)
3056 : type_(type), init_(init), preinit_(NULL), location_(location),
3057 is_global_(is_global), is_parameter_(is_parameter),
3058 is_receiver_(is_receiver), is_varargs_parameter_(false),
3059 is_address_taken_(false), seen_(false), init_is_lowered_(false),
3060 type_from_init_tuple_(false), type_from_range_index_(false),
3061 type_from_range_value_(false), type_from_chan_element_(false),
3062 is_type_switch_var_(false)
3063 {
3064 gcc_assert(type != NULL || init != NULL);
3065 gcc_assert(!is_parameter || init == NULL);
3066 }
3067
3068 // Traverse the initializer expression.
3069
3070 int
3071 Variable::traverse_expression(Traverse* traverse)
3072 {
3073 if (this->preinit_ != NULL)
3074 {
3075 if (this->preinit_->traverse(traverse) == TRAVERSE_EXIT)
3076 return TRAVERSE_EXIT;
3077 }
3078 if (this->init_ != NULL)
3079 {
3080 if (Expression::traverse(&this->init_, traverse) == TRAVERSE_EXIT)
3081 return TRAVERSE_EXIT;
3082 }
3083 return TRAVERSE_CONTINUE;
3084 }
3085
3086 // Lower the initialization expression after parsing is complete.
3087
3088 void
3089 Variable::lower_init_expression(Gogo* gogo, Named_object* function)
3090 {
3091 if (this->init_ != NULL && !this->init_is_lowered_)
3092 {
3093 if (this->seen_)
3094 {
3095 // We will give an error elsewhere, this is just to prevent
3096 // an infinite loop.
3097 return;
3098 }
3099 this->seen_ = true;
3100
3101 gogo->lower_expression(function, &this->init_);
3102
3103 this->seen_ = false;
3104
3105 this->init_is_lowered_ = true;
3106 }
3107 }
3108
3109 // Get the preinit block.
3110
3111 Block*
3112 Variable::preinit_block()
3113 {
3114 gcc_assert(this->is_global_);
3115 if (this->preinit_ == NULL)
3116 this->preinit_ = new Block(NULL, this->location());
3117 return this->preinit_;
3118 }
3119
3120 // Add a statement to be run before the initialization expression.
3121
3122 void
3123 Variable::add_preinit_statement(Statement* s)
3124 {
3125 Block* b = this->preinit_block();
3126 b->add_statement(s);
3127 b->set_end_location(s->location());
3128 }
3129
3130 // In an assignment which sets a variable to a tuple of EXPR, return
3131 // the type of the first element of the tuple.
3132
3133 Type*
3134 Variable::type_from_tuple(Expression* expr, bool report_error) const
3135 {
3136 if (expr->map_index_expression() != NULL)
3137 return expr->map_index_expression()->get_map_type()->val_type();
3138 else if (expr->receive_expression() != NULL)
3139 {
3140 Expression* channel = expr->receive_expression()->channel();
3141 Type* channel_type = channel->type();
3142 if (channel_type->is_error_type())
3143 return Type::make_error_type();
3144 return channel_type->channel_type()->element_type();
3145 }
3146 else
3147 {
3148 if (report_error)
3149 error_at(this->location(), "invalid tuple definition");
3150 return Type::make_error_type();
3151 }
3152 }
3153
3154 // Given EXPR used in a range clause, return either the index type or
3155 // the value type of the range, depending upon GET_INDEX_TYPE.
3156
3157 Type*
3158 Variable::type_from_range(Expression* expr, bool get_index_type,
3159 bool report_error) const
3160 {
3161 Type* t = expr->type();
3162 if (t->array_type() != NULL
3163 || (t->points_to() != NULL
3164 && t->points_to()->array_type() != NULL
3165 && !t->points_to()->is_open_array_type()))
3166 {
3167 if (get_index_type)
3168 return Type::lookup_integer_type("int");
3169 else
3170 return t->deref()->array_type()->element_type();
3171 }
3172 else if (t->is_string_type())
3173 return Type::lookup_integer_type("int");
3174 else if (t->map_type() != NULL)
3175 {
3176 if (get_index_type)
3177 return t->map_type()->key_type();
3178 else
3179 return t->map_type()->val_type();
3180 }
3181 else if (t->channel_type() != NULL)
3182 {
3183 if (get_index_type)
3184 return t->channel_type()->element_type();
3185 else
3186 {
3187 if (report_error)
3188 error_at(this->location(),
3189 "invalid definition of value variable for channel range");
3190 return Type::make_error_type();
3191 }
3192 }
3193 else
3194 {
3195 if (report_error)
3196 error_at(this->location(), "invalid type for range clause");
3197 return Type::make_error_type();
3198 }
3199 }
3200
3201 // EXPR should be a channel. Return the channel's element type.
3202
3203 Type*
3204 Variable::type_from_chan_element(Expression* expr, bool report_error) const
3205 {
3206 Type* t = expr->type();
3207 if (t->channel_type() != NULL)
3208 return t->channel_type()->element_type();
3209 else
3210 {
3211 if (report_error)
3212 error_at(this->location(), "expected channel");
3213 return Type::make_error_type();
3214 }
3215 }
3216
3217 // Return the type of the Variable. This may be called before
3218 // Variable::determine_type is called, which means that we may need to
3219 // get the type from the initializer. FIXME: If we combine lowering
3220 // with type determination, then this should be unnecessary.
3221
3222 Type*
3223 Variable::type()
3224 {
3225 // A variable in a type switch with a nil case will have the wrong
3226 // type here. This gets fixed up in determine_type, below.
3227 Type* type = this->type_;
3228 Expression* init = this->init_;
3229 if (this->is_type_switch_var_
3230 && this->type_->is_nil_constant_as_type())
3231 {
3232 Type_guard_expression* tge = this->init_->type_guard_expression();
3233 gcc_assert(tge != NULL);
3234 init = tge->expr();
3235 type = NULL;
3236 }
3237
3238 if (this->seen_)
3239 {
3240 if (this->type_ == NULL || !this->type_->is_error_type())
3241 {
3242 error_at(this->location_, "variable initializer refers to itself");
3243 this->type_ = Type::make_error_type();
3244 }
3245 return this->type_;
3246 }
3247
3248 this->seen_ = true;
3249
3250 if (type != NULL)
3251 ;
3252 else if (this->type_from_init_tuple_)
3253 type = this->type_from_tuple(init, false);
3254 else if (this->type_from_range_index_ || this->type_from_range_value_)
3255 type = this->type_from_range(init, this->type_from_range_index_, false);
3256 else if (this->type_from_chan_element_)
3257 type = this->type_from_chan_element(init, false);
3258 else
3259 {
3260 gcc_assert(init != NULL);
3261 type = init->type();
3262 gcc_assert(type != NULL);
3263
3264 // Variables should not have abstract types.
3265 if (type->is_abstract())
3266 type = type->make_non_abstract_type();
3267
3268 if (type->is_void_type())
3269 type = Type::make_error_type();
3270 }
3271
3272 this->seen_ = false;
3273
3274 return type;
3275 }
3276
3277 // Fetch the type from a const pointer, in which case it should have
3278 // been set already.
3279
3280 Type*
3281 Variable::type() const
3282 {
3283 gcc_assert(this->type_ != NULL);
3284 return this->type_;
3285 }
3286
3287 // Set the type if necessary.
3288
3289 void
3290 Variable::determine_type()
3291 {
3292 // A variable in a type switch with a nil case will have the wrong
3293 // type here. It will have an initializer which is a type guard.
3294 // We want to initialize it to the value without the type guard, and
3295 // use the type of that value as well.
3296 if (this->is_type_switch_var_ && this->type_->is_nil_constant_as_type())
3297 {
3298 Type_guard_expression* tge = this->init_->type_guard_expression();
3299 gcc_assert(tge != NULL);
3300 this->type_ = NULL;
3301 this->init_ = tge->expr();
3302 }
3303
3304 if (this->init_ == NULL)
3305 gcc_assert(this->type_ != NULL && !this->type_->is_abstract());
3306 else if (this->type_from_init_tuple_)
3307 {
3308 Expression *init = this->init_;
3309 init->determine_type_no_context();
3310 this->type_ = this->type_from_tuple(init, true);
3311 this->init_ = NULL;
3312 }
3313 else if (this->type_from_range_index_ || this->type_from_range_value_)
3314 {
3315 Expression* init = this->init_;
3316 init->determine_type_no_context();
3317 this->type_ = this->type_from_range(init, this->type_from_range_index_,
3318 true);
3319 this->init_ = NULL;
3320 }
3321 else
3322 {
3323 // type_from_chan_element_ should have been cleared during
3324 // lowering.
3325 gcc_assert(!this->type_from_chan_element_);
3326
3327 Type_context context(this->type_, false);
3328 this->init_->determine_type(&context);
3329 if (this->type_ == NULL)
3330 {
3331 Type* type = this->init_->type();
3332 gcc_assert(type != NULL);
3333 if (type->is_abstract())
3334 type = type->make_non_abstract_type();
3335
3336 if (type->is_void_type())
3337 {
3338 error_at(this->location_, "variable has no type");
3339 type = Type::make_error_type();
3340 }
3341 else if (type->is_nil_type())
3342 {
3343 error_at(this->location_, "variable defined to nil type");
3344 type = Type::make_error_type();
3345 }
3346 else if (type->is_call_multiple_result_type())
3347 {
3348 error_at(this->location_,
3349 "single variable set to multiple value function call");
3350 type = Type::make_error_type();
3351 }
3352
3353 this->type_ = type;
3354 }
3355 }
3356 }
3357
3358 // Export the variable
3359
3360 void
3361 Variable::export_var(Export* exp, const std::string& name) const
3362 {
3363 gcc_assert(this->is_global_);
3364 exp->write_c_string("var ");
3365 exp->write_string(name);
3366 exp->write_c_string(" ");
3367 exp->write_type(this->type());
3368 exp->write_c_string(";\n");
3369 }
3370
3371 // Import a variable.
3372
3373 void
3374 Variable::import_var(Import* imp, std::string* pname, Type** ptype)
3375 {
3376 imp->require_c_string("var ");
3377 *pname = imp->read_identifier();
3378 imp->require_c_string(" ");
3379 *ptype = imp->read_type();
3380 imp->require_c_string(";\n");
3381 }
3382
3383 // Class Named_constant.
3384
3385 // Traverse the initializer expression.
3386
3387 int
3388 Named_constant::traverse_expression(Traverse* traverse)
3389 {
3390 return Expression::traverse(&this->expr_, traverse);
3391 }
3392
3393 // Determine the type of the constant.
3394
3395 void
3396 Named_constant::determine_type()
3397 {
3398 if (this->type_ != NULL)
3399 {
3400 Type_context context(this->type_, false);
3401 this->expr_->determine_type(&context);
3402 }
3403 else
3404 {
3405 // A constant may have an abstract type.
3406 Type_context context(NULL, true);
3407 this->expr_->determine_type(&context);
3408 this->type_ = this->expr_->type();
3409 gcc_assert(this->type_ != NULL);
3410 }
3411 }
3412
3413 // Indicate that we found and reported an error for this constant.
3414
3415 void
3416 Named_constant::set_error()
3417 {
3418 this->type_ = Type::make_error_type();
3419 this->expr_ = Expression::make_error(this->location_);
3420 }
3421
3422 // Export a constant.
3423
3424 void
3425 Named_constant::export_const(Export* exp, const std::string& name) const
3426 {
3427 exp->write_c_string("const ");
3428 exp->write_string(name);
3429 exp->write_c_string(" ");
3430 if (!this->type_->is_abstract())
3431 {
3432 exp->write_type(this->type_);
3433 exp->write_c_string(" ");
3434 }
3435 exp->write_c_string("= ");
3436 this->expr()->export_expression(exp);
3437 exp->write_c_string(";\n");
3438 }
3439
3440 // Import a constant.
3441
3442 void
3443 Named_constant::import_const(Import* imp, std::string* pname, Type** ptype,
3444 Expression** pexpr)
3445 {
3446 imp->require_c_string("const ");
3447 *pname = imp->read_identifier();
3448 imp->require_c_string(" ");
3449 if (imp->peek_char() == '=')
3450 *ptype = NULL;
3451 else
3452 {
3453 *ptype = imp->read_type();
3454 imp->require_c_string(" ");
3455 }
3456 imp->require_c_string("= ");
3457 *pexpr = Expression::import_expression(imp);
3458 imp->require_c_string(";\n");
3459 }
3460
3461 // Add a method.
3462
3463 Named_object*
3464 Type_declaration::add_method(const std::string& name, Function* function)
3465 {
3466 Named_object* ret = Named_object::make_function(name, NULL, function);
3467 this->methods_.push_back(ret);
3468 return ret;
3469 }
3470
3471 // Add a method declaration.
3472
3473 Named_object*
3474 Type_declaration::add_method_declaration(const std::string& name,
3475 Function_type* type,
3476 source_location location)
3477 {
3478 Named_object* ret = Named_object::make_function_declaration(name, NULL, type,
3479 location);
3480 this->methods_.push_back(ret);
3481 return ret;
3482 }
3483
3484 // Return whether any methods ere defined.
3485
3486 bool
3487 Type_declaration::has_methods() const
3488 {
3489 return !this->methods_.empty();
3490 }
3491
3492 // Define methods for the real type.
3493
3494 void
3495 Type_declaration::define_methods(Named_type* nt)
3496 {
3497 for (Methods::const_iterator p = this->methods_.begin();
3498 p != this->methods_.end();
3499 ++p)
3500 nt->add_existing_method(*p);
3501 }
3502
3503 // We are using the type. Return true if we should issue a warning.
3504
3505 bool
3506 Type_declaration::using_type()
3507 {
3508 bool ret = !this->issued_warning_;
3509 this->issued_warning_ = true;
3510 return ret;
3511 }
3512
3513 // Class Unknown_name.
3514
3515 // Set the real named object.
3516
3517 void
3518 Unknown_name::set_real_named_object(Named_object* no)
3519 {
3520 gcc_assert(this->real_named_object_ == NULL);
3521 gcc_assert(!no->is_unknown());
3522 this->real_named_object_ = no;
3523 }
3524
3525 // Class Named_object.
3526
3527 Named_object::Named_object(const std::string& name,
3528 const Package* package,
3529 Classification classification)
3530 : name_(name), package_(package), classification_(classification),
3531 tree_(NULL)
3532 {
3533 if (Gogo::is_sink_name(name))
3534 gcc_assert(classification == NAMED_OBJECT_SINK);
3535 }
3536
3537 // Make an unknown name. This is used by the parser. The name must
3538 // be resolved later. Unknown names are only added in the current
3539 // package.
3540
3541 Named_object*
3542 Named_object::make_unknown_name(const std::string& name,
3543 source_location location)
3544 {
3545 Named_object* named_object = new Named_object(name, NULL,
3546 NAMED_OBJECT_UNKNOWN);
3547 Unknown_name* value = new Unknown_name(location);
3548 named_object->u_.unknown_value = value;
3549 return named_object;
3550 }
3551
3552 // Make a constant.
3553
3554 Named_object*
3555 Named_object::make_constant(const Typed_identifier& tid,
3556 const Package* package, Expression* expr,
3557 int iota_value)
3558 {
3559 Named_object* named_object = new Named_object(tid.name(), package,
3560 NAMED_OBJECT_CONST);
3561 Named_constant* named_constant = new Named_constant(tid.type(), expr,
3562 iota_value,
3563 tid.location());
3564 named_object->u_.const_value = named_constant;
3565 return named_object;
3566 }
3567
3568 // Make a named type.
3569
3570 Named_object*
3571 Named_object::make_type(const std::string& name, const Package* package,
3572 Type* type, source_location location)
3573 {
3574 Named_object* named_object = new Named_object(name, package,
3575 NAMED_OBJECT_TYPE);
3576 Named_type* named_type = Type::make_named_type(named_object, type, location);
3577 named_object->u_.type_value = named_type;
3578 return named_object;
3579 }
3580
3581 // Make a type declaration.
3582
3583 Named_object*
3584 Named_object::make_type_declaration(const std::string& name,
3585 const Package* package,
3586 source_location location)
3587 {
3588 Named_object* named_object = new Named_object(name, package,
3589 NAMED_OBJECT_TYPE_DECLARATION);
3590 Type_declaration* type_declaration = new Type_declaration(location);
3591 named_object->u_.type_declaration = type_declaration;
3592 return named_object;
3593 }
3594
3595 // Make a variable.
3596
3597 Named_object*
3598 Named_object::make_variable(const std::string& name, const Package* package,
3599 Variable* variable)
3600 {
3601 Named_object* named_object = new Named_object(name, package,
3602 NAMED_OBJECT_VAR);
3603 named_object->u_.var_value = variable;
3604 return named_object;
3605 }
3606
3607 // Make a result variable.
3608
3609 Named_object*
3610 Named_object::make_result_variable(const std::string& name,
3611 Result_variable* result)
3612 {
3613 Named_object* named_object = new Named_object(name, NULL,
3614 NAMED_OBJECT_RESULT_VAR);
3615 named_object->u_.result_var_value = result;
3616 return named_object;
3617 }
3618
3619 // Make a sink. This is used for the special blank identifier _.
3620
3621 Named_object*
3622 Named_object::make_sink()
3623 {
3624 return new Named_object("_", NULL, NAMED_OBJECT_SINK);
3625 }
3626
3627 // Make a named function.
3628
3629 Named_object*
3630 Named_object::make_function(const std::string& name, const Package* package,
3631 Function* function)
3632 {
3633 Named_object* named_object = new Named_object(name, package,
3634 NAMED_OBJECT_FUNC);
3635 named_object->u_.func_value = function;
3636 return named_object;
3637 }
3638
3639 // Make a function declaration.
3640
3641 Named_object*
3642 Named_object::make_function_declaration(const std::string& name,
3643 const Package* package,
3644 Function_type* fntype,
3645 source_location location)
3646 {
3647 Named_object* named_object = new Named_object(name, package,
3648 NAMED_OBJECT_FUNC_DECLARATION);
3649 Function_declaration *func_decl = new Function_declaration(fntype, location);
3650 named_object->u_.func_declaration_value = func_decl;
3651 return named_object;
3652 }
3653
3654 // Make a package.
3655
3656 Named_object*
3657 Named_object::make_package(const std::string& alias, Package* package)
3658 {
3659 Named_object* named_object = new Named_object(alias, NULL,
3660 NAMED_OBJECT_PACKAGE);
3661 named_object->u_.package_value = package;
3662 return named_object;
3663 }
3664
3665 // Return the name to use in an error message.
3666
3667 std::string
3668 Named_object::message_name() const
3669 {
3670 if (this->package_ == NULL)
3671 return Gogo::message_name(this->name_);
3672 std::string ret = Gogo::message_name(this->package_->name());
3673 ret += '.';
3674 ret += Gogo::message_name(this->name_);
3675 return ret;
3676 }
3677
3678 // Set the type when a declaration is defined.
3679
3680 void
3681 Named_object::set_type_value(Named_type* named_type)
3682 {
3683 gcc_assert(this->classification_ == NAMED_OBJECT_TYPE_DECLARATION);
3684 Type_declaration* td = this->u_.type_declaration;
3685 td->define_methods(named_type);
3686 Named_object* in_function = td->in_function();
3687 if (in_function != NULL)
3688 named_type->set_in_function(in_function);
3689 delete td;
3690 this->classification_ = NAMED_OBJECT_TYPE;
3691 this->u_.type_value = named_type;
3692 }
3693
3694 // Define a function which was previously declared.
3695
3696 void
3697 Named_object::set_function_value(Function* function)
3698 {
3699 gcc_assert(this->classification_ == NAMED_OBJECT_FUNC_DECLARATION);
3700 this->classification_ = NAMED_OBJECT_FUNC;
3701 // FIXME: We should free the old value.
3702 this->u_.func_value = function;
3703 }
3704
3705 // Return the location of a named object.
3706
3707 source_location
3708 Named_object::location() const
3709 {
3710 switch (this->classification_)
3711 {
3712 default:
3713 case NAMED_OBJECT_UNINITIALIZED:
3714 gcc_unreachable();
3715
3716 case NAMED_OBJECT_UNKNOWN:
3717 return this->unknown_value()->location();
3718
3719 case NAMED_OBJECT_CONST:
3720 return this->const_value()->location();
3721
3722 case NAMED_OBJECT_TYPE:
3723 return this->type_value()->location();
3724
3725 case NAMED_OBJECT_TYPE_DECLARATION:
3726 return this->type_declaration_value()->location();
3727
3728 case NAMED_OBJECT_VAR:
3729 return this->var_value()->location();
3730
3731 case NAMED_OBJECT_RESULT_VAR:
3732 return this->result_var_value()->function()->location();
3733
3734 case NAMED_OBJECT_SINK:
3735 gcc_unreachable();
3736
3737 case NAMED_OBJECT_FUNC:
3738 return this->func_value()->location();
3739
3740 case NAMED_OBJECT_FUNC_DECLARATION:
3741 return this->func_declaration_value()->location();
3742
3743 case NAMED_OBJECT_PACKAGE:
3744 return this->package_value()->location();
3745 }
3746 }
3747
3748 // Export a named object.
3749
3750 void
3751 Named_object::export_named_object(Export* exp) const
3752 {
3753 switch (this->classification_)
3754 {
3755 default:
3756 case NAMED_OBJECT_UNINITIALIZED:
3757 case NAMED_OBJECT_UNKNOWN:
3758 gcc_unreachable();
3759
3760 case NAMED_OBJECT_CONST:
3761 this->const_value()->export_const(exp, this->name_);
3762 break;
3763
3764 case NAMED_OBJECT_TYPE:
3765 this->type_value()->export_named_type(exp, this->name_);
3766 break;
3767
3768 case NAMED_OBJECT_TYPE_DECLARATION:
3769 error_at(this->type_declaration_value()->location(),
3770 "attempt to export %<%s%> which was declared but not defined",
3771 this->message_name().c_str());
3772 break;
3773
3774 case NAMED_OBJECT_FUNC_DECLARATION:
3775 this->func_declaration_value()->export_func(exp, this->name_);
3776 break;
3777
3778 case NAMED_OBJECT_VAR:
3779 this->var_value()->export_var(exp, this->name_);
3780 break;
3781
3782 case NAMED_OBJECT_RESULT_VAR:
3783 case NAMED_OBJECT_SINK:
3784 gcc_unreachable();
3785
3786 case NAMED_OBJECT_FUNC:
3787 this->func_value()->export_func(exp, this->name_);
3788 break;
3789 }
3790 }
3791
3792 // Class Bindings.
3793
3794 Bindings::Bindings(Bindings* enclosing)
3795 : enclosing_(enclosing), named_objects_(), bindings_()
3796 {
3797 }
3798
3799 // Clear imports.
3800
3801 void
3802 Bindings::clear_file_scope()
3803 {
3804 Contour::iterator p = this->bindings_.begin();
3805 while (p != this->bindings_.end())
3806 {
3807 bool keep;
3808 if (p->second->package() != NULL)
3809 keep = false;
3810 else if (p->second->is_package())
3811 keep = false;
3812 else if (p->second->is_function()
3813 && !p->second->func_value()->type()->is_method()
3814 && Gogo::unpack_hidden_name(p->second->name()) == "init")
3815 keep = false;
3816 else
3817 keep = true;
3818
3819 if (keep)
3820 ++p;
3821 else
3822 p = this->bindings_.erase(p);
3823 }
3824 }
3825
3826 // Look up a symbol.
3827
3828 Named_object*
3829 Bindings::lookup(const std::string& name) const
3830 {
3831 Contour::const_iterator p = this->bindings_.find(name);
3832 if (p != this->bindings_.end())
3833 return p->second->resolve();
3834 else if (this->enclosing_ != NULL)
3835 return this->enclosing_->lookup(name);
3836 else
3837 return NULL;
3838 }
3839
3840 // Look up a symbol locally.
3841
3842 Named_object*
3843 Bindings::lookup_local(const std::string& name) const
3844 {
3845 Contour::const_iterator p = this->bindings_.find(name);
3846 if (p == this->bindings_.end())
3847 return NULL;
3848 return p->second;
3849 }
3850
3851 // Remove an object from a set of bindings. This is used for a
3852 // special case in thunks for functions which call recover.
3853
3854 void
3855 Bindings::remove_binding(Named_object* no)
3856 {
3857 Contour::iterator pb = this->bindings_.find(no->name());
3858 gcc_assert(pb != this->bindings_.end());
3859 this->bindings_.erase(pb);
3860 for (std::vector<Named_object*>::iterator pn = this->named_objects_.begin();
3861 pn != this->named_objects_.end();
3862 ++pn)
3863 {
3864 if (*pn == no)
3865 {
3866 this->named_objects_.erase(pn);
3867 return;
3868 }
3869 }
3870 gcc_unreachable();
3871 }
3872
3873 // Add a method to the list of objects. This is not added to the
3874 // lookup table. This is so that we have a single list of objects
3875 // declared at the top level, which we walk through when it's time to
3876 // convert to trees.
3877
3878 void
3879 Bindings::add_method(Named_object* method)
3880 {
3881 this->named_objects_.push_back(method);
3882 }
3883
3884 // Add a generic Named_object to a Contour.
3885
3886 Named_object*
3887 Bindings::add_named_object_to_contour(Contour* contour,
3888 Named_object* named_object)
3889 {
3890 gcc_assert(named_object == named_object->resolve());
3891 const std::string& name(named_object->name());
3892 gcc_assert(!Gogo::is_sink_name(name));
3893
3894 std::pair<Contour::iterator, bool> ins =
3895 contour->insert(std::make_pair(name, named_object));
3896 if (!ins.second)
3897 {
3898 // The name was already there.
3899 if (named_object->package() != NULL
3900 && ins.first->second->package() == named_object->package()
3901 && (ins.first->second->classification()
3902 == named_object->classification()))
3903 {
3904 // This is a second import of the same object.
3905 return ins.first->second;
3906 }
3907 ins.first->second = this->new_definition(ins.first->second,
3908 named_object);
3909 return ins.first->second;
3910 }
3911 else
3912 {
3913 // Don't push declarations on the list. We push them on when
3914 // and if we find the definitions. That way we genericize the
3915 // functions in order.
3916 if (!named_object->is_type_declaration()
3917 && !named_object->is_function_declaration()
3918 && !named_object->is_unknown())
3919 this->named_objects_.push_back(named_object);
3920 return named_object;
3921 }
3922 }
3923
3924 // We had an existing named object OLD_OBJECT, and we've seen a new
3925 // one NEW_OBJECT with the same name. FIXME: This does not free the
3926 // new object when we don't need it.
3927
3928 Named_object*
3929 Bindings::new_definition(Named_object* old_object, Named_object* new_object)
3930 {
3931 std::string reason;
3932 switch (old_object->classification())
3933 {
3934 default:
3935 case Named_object::NAMED_OBJECT_UNINITIALIZED:
3936 gcc_unreachable();
3937
3938 case Named_object::NAMED_OBJECT_UNKNOWN:
3939 {
3940 Named_object* real = old_object->unknown_value()->real_named_object();
3941 if (real != NULL)
3942 return this->new_definition(real, new_object);
3943 gcc_assert(!new_object->is_unknown());
3944 old_object->unknown_value()->set_real_named_object(new_object);
3945 if (!new_object->is_type_declaration()
3946 && !new_object->is_function_declaration())
3947 this->named_objects_.push_back(new_object);
3948 return new_object;
3949 }
3950
3951 case Named_object::NAMED_OBJECT_CONST:
3952 break;
3953
3954 case Named_object::NAMED_OBJECT_TYPE:
3955 if (new_object->is_type_declaration())
3956 return old_object;
3957 break;
3958
3959 case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
3960 if (new_object->is_type_declaration())
3961 return old_object;
3962 if (new_object->is_type())
3963 {
3964 old_object->set_type_value(new_object->type_value());
3965 new_object->type_value()->set_named_object(old_object);
3966 this->named_objects_.push_back(old_object);
3967 return old_object;
3968 }
3969 break;
3970
3971 case Named_object::NAMED_OBJECT_VAR:
3972 case Named_object::NAMED_OBJECT_RESULT_VAR:
3973 break;
3974
3975 case Named_object::NAMED_OBJECT_SINK:
3976 gcc_unreachable();
3977
3978 case Named_object::NAMED_OBJECT_FUNC:
3979 if (new_object->is_function_declaration())
3980 {
3981 if (!new_object->func_declaration_value()->asm_name().empty())
3982 sorry("__asm__ for function definitions");
3983 Function_type* old_type = old_object->func_value()->type();
3984 Function_type* new_type =
3985 new_object->func_declaration_value()->type();
3986 if (old_type->is_valid_redeclaration(new_type, &reason))
3987 return old_object;
3988 }
3989 break;
3990
3991 case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
3992 {
3993 Function_type* old_type = old_object->func_declaration_value()->type();
3994 if (new_object->is_function_declaration())
3995 {
3996 Function_type* new_type =
3997 new_object->func_declaration_value()->type();
3998 if (old_type->is_valid_redeclaration(new_type, &reason))
3999 return old_object;
4000 }
4001 if (new_object->is_function())
4002 {
4003 Function_type* new_type = new_object->func_value()->type();
4004 if (old_type->is_valid_redeclaration(new_type, &reason))
4005 {
4006 if (!old_object->func_declaration_value()->asm_name().empty())
4007 sorry("__asm__ for function definitions");
4008 old_object->set_function_value(new_object->func_value());
4009 this->named_objects_.push_back(old_object);
4010 return old_object;
4011 }
4012 }
4013 }
4014 break;
4015
4016 case Named_object::NAMED_OBJECT_PACKAGE:
4017 if (new_object->is_package()
4018 && (old_object->package_value()->name()
4019 == new_object->package_value()->name()))
4020 return old_object;
4021
4022 break;
4023 }
4024
4025 std::string n = old_object->message_name();
4026 if (reason.empty())
4027 error_at(new_object->location(), "redefinition of %qs", n.c_str());
4028 else
4029 error_at(new_object->location(), "redefinition of %qs: %s", n.c_str(),
4030 reason.c_str());
4031
4032 inform(old_object->location(), "previous definition of %qs was here",
4033 n.c_str());
4034
4035 return old_object;
4036 }
4037
4038 // Add a named type.
4039
4040 Named_object*
4041 Bindings::add_named_type(Named_type* named_type)
4042 {
4043 return this->add_named_object(named_type->named_object());
4044 }
4045
4046 // Add a function.
4047
4048 Named_object*
4049 Bindings::add_function(const std::string& name, const Package* package,
4050 Function* function)
4051 {
4052 return this->add_named_object(Named_object::make_function(name, package,
4053 function));
4054 }
4055
4056 // Add a function declaration.
4057
4058 Named_object*
4059 Bindings::add_function_declaration(const std::string& name,
4060 const Package* package,
4061 Function_type* type,
4062 source_location location)
4063 {
4064 Named_object* no = Named_object::make_function_declaration(name, package,
4065 type, location);
4066 return this->add_named_object(no);
4067 }
4068
4069 // Define a type which was previously declared.
4070
4071 void
4072 Bindings::define_type(Named_object* no, Named_type* type)
4073 {
4074 no->set_type_value(type);
4075 this->named_objects_.push_back(no);
4076 }
4077
4078 // Traverse bindings.
4079
4080 int
4081 Bindings::traverse(Traverse* traverse, bool is_global)
4082 {
4083 unsigned int traverse_mask = traverse->traverse_mask();
4084
4085 // We don't use an iterator because we permit the traversal to add
4086 // new global objects.
4087 for (size_t i = 0; i < this->named_objects_.size(); ++i)
4088 {
4089 Named_object* p = this->named_objects_[i];
4090 switch (p->classification())
4091 {
4092 case Named_object::NAMED_OBJECT_CONST:
4093 if ((traverse_mask & Traverse::traverse_constants) != 0)
4094 {
4095 if (traverse->constant(p, is_global) == TRAVERSE_EXIT)
4096 return TRAVERSE_EXIT;
4097 }
4098 if ((traverse_mask & Traverse::traverse_types) != 0
4099 || (traverse_mask & Traverse::traverse_expressions) != 0)
4100 {
4101 Type* t = p->const_value()->type();
4102 if (t != NULL
4103 && Type::traverse(t, traverse) == TRAVERSE_EXIT)
4104 return TRAVERSE_EXIT;
4105 }
4106 if ((traverse_mask & Traverse::traverse_expressions) != 0)
4107 {
4108 if (p->const_value()->traverse_expression(traverse)
4109 == TRAVERSE_EXIT)
4110 return TRAVERSE_EXIT;
4111 }
4112 break;
4113
4114 case Named_object::NAMED_OBJECT_VAR:
4115 case Named_object::NAMED_OBJECT_RESULT_VAR:
4116 if ((traverse_mask & Traverse::traverse_variables) != 0)
4117 {
4118 if (traverse->variable(p) == TRAVERSE_EXIT)
4119 return TRAVERSE_EXIT;
4120 }
4121 if (((traverse_mask & Traverse::traverse_types) != 0
4122 || (traverse_mask & Traverse::traverse_expressions) != 0)
4123 && (p->is_result_variable()
4124 || p->var_value()->has_type()))
4125 {
4126 Type* t = (p->is_variable()
4127 ? p->var_value()->type()
4128 : p->result_var_value()->type());
4129 if (t != NULL
4130 && Type::traverse(t, traverse) == TRAVERSE_EXIT)
4131 return TRAVERSE_EXIT;
4132 }
4133 if (p->is_variable()
4134 && (traverse_mask & Traverse::traverse_expressions) != 0)
4135 {
4136 if (p->var_value()->traverse_expression(traverse)
4137 == TRAVERSE_EXIT)
4138 return TRAVERSE_EXIT;
4139 }
4140 break;
4141
4142 case Named_object::NAMED_OBJECT_FUNC:
4143 if ((traverse_mask & Traverse::traverse_functions) != 0)
4144 {
4145 int t = traverse->function(p);
4146 if (t == TRAVERSE_EXIT)
4147 return TRAVERSE_EXIT;
4148 else if (t == TRAVERSE_SKIP_COMPONENTS)
4149 break;
4150 }
4151
4152 if ((traverse_mask
4153 & (Traverse::traverse_variables
4154 | Traverse::traverse_constants
4155 | Traverse::traverse_functions
4156 | Traverse::traverse_blocks
4157 | Traverse::traverse_statements
4158 | Traverse::traverse_expressions
4159 | Traverse::traverse_types)) != 0)
4160 {
4161 if (p->func_value()->traverse(traverse) == TRAVERSE_EXIT)
4162 return TRAVERSE_EXIT;
4163 }
4164 break;
4165
4166 case Named_object::NAMED_OBJECT_PACKAGE:
4167 // These are traversed in Gogo::traverse.
4168 gcc_assert(is_global);
4169 break;
4170
4171 case Named_object::NAMED_OBJECT_TYPE:
4172 if ((traverse_mask & Traverse::traverse_types) != 0
4173 || (traverse_mask & Traverse::traverse_expressions) != 0)
4174 {
4175 if (Type::traverse(p->type_value(), traverse) == TRAVERSE_EXIT)
4176 return TRAVERSE_EXIT;
4177 }
4178 break;
4179
4180 case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
4181 case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
4182 case Named_object::NAMED_OBJECT_UNKNOWN:
4183 break;
4184
4185 case Named_object::NAMED_OBJECT_SINK:
4186 default:
4187 gcc_unreachable();
4188 }
4189 }
4190
4191 return TRAVERSE_CONTINUE;
4192 }
4193
4194 // Class Package.
4195
4196 Package::Package(const std::string& name, const std::string& unique_prefix,
4197 source_location location)
4198 : name_(name), unique_prefix_(unique_prefix), bindings_(new Bindings(NULL)),
4199 priority_(0), location_(location), used_(false), is_imported_(false),
4200 uses_sink_alias_(false)
4201 {
4202 gcc_assert(!name.empty() && !unique_prefix.empty());
4203 }
4204
4205 // Set the priority. We may see multiple priorities for an imported
4206 // package; we want to use the largest one.
4207
4208 void
4209 Package::set_priority(int priority)
4210 {
4211 if (priority > this->priority_)
4212 this->priority_ = priority;
4213 }
4214
4215 // Determine types of constants. Everything else in a package
4216 // (variables, function declarations) should already have a fixed
4217 // type. Constants may have abstract types.
4218
4219 void
4220 Package::determine_types()
4221 {
4222 Bindings* bindings = this->bindings_;
4223 for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
4224 p != bindings->end_definitions();
4225 ++p)
4226 {
4227 if ((*p)->is_const())
4228 (*p)->const_value()->determine_type();
4229 }
4230 }
4231
4232 // Class Traverse.
4233
4234 // Destructor.
4235
4236 Traverse::~Traverse()
4237 {
4238 if (this->types_seen_ != NULL)
4239 delete this->types_seen_;
4240 if (this->expressions_seen_ != NULL)
4241 delete this->expressions_seen_;
4242 }
4243
4244 // Record that we are looking at a type, and return true if we have
4245 // already seen it.
4246
4247 bool
4248 Traverse::remember_type(const Type* type)
4249 {
4250 if (type->is_error_type())
4251 return true;
4252 gcc_assert((this->traverse_mask() & traverse_types) != 0
4253 || (this->traverse_mask() & traverse_expressions) != 0);
4254 // We only have to remember named types, as they are the only ones
4255 // we can see multiple times in a traversal.
4256 if (type->classification() != Type::TYPE_NAMED)
4257 return false;
4258 if (this->types_seen_ == NULL)
4259 this->types_seen_ = new Types_seen();
4260 std::pair<Types_seen::iterator, bool> ins = this->types_seen_->insert(type);
4261 return !ins.second;
4262 }
4263
4264 // Record that we are looking at an expression, and return true if we
4265 // have already seen it.
4266
4267 bool
4268 Traverse::remember_expression(const Expression* expression)
4269 {
4270 gcc_assert((this->traverse_mask() & traverse_types) != 0
4271 || (this->traverse_mask() & traverse_expressions) != 0);
4272 if (this->expressions_seen_ == NULL)
4273 this->expressions_seen_ = new Expressions_seen();
4274 std::pair<Expressions_seen::iterator, bool> ins =
4275 this->expressions_seen_->insert(expression);
4276 return !ins.second;
4277 }
4278
4279 // The default versions of these functions should never be called: the
4280 // traversal mask indicates which functions may be called.
4281
4282 int
4283 Traverse::variable(Named_object*)
4284 {
4285 gcc_unreachable();
4286 }
4287
4288 int
4289 Traverse::constant(Named_object*, bool)
4290 {
4291 gcc_unreachable();
4292 }
4293
4294 int
4295 Traverse::function(Named_object*)
4296 {
4297 gcc_unreachable();
4298 }
4299
4300 int
4301 Traverse::block(Block*)
4302 {
4303 gcc_unreachable();
4304 }
4305
4306 int
4307 Traverse::statement(Block*, size_t*, Statement*)
4308 {
4309 gcc_unreachable();
4310 }
4311
4312 int
4313 Traverse::expression(Expression**)
4314 {
4315 gcc_unreachable();
4316 }
4317
4318 int
4319 Traverse::type(Type*)
4320 {
4321 gcc_unreachable();
4322 }