3e149b93734d58ebc84ccc7949f16f07ef49bf5e
[gcc.git] / gcc / go / gofrontend / types.cc
1 // types.cc -- Go frontend types.
2
3 // Copyright 2009 The Go Authors. All rights reserved.
4 // Use of this source code is governed by a BSD-style
5 // license that can be found in the LICENSE file.
6
7 #include "go-system.h"
8
9 #include <gmp.h>
10
11 #ifndef ENABLE_BUILD_WITH_CXX
12 extern "C"
13 {
14 #endif
15
16 #include "toplev.h"
17 #include "intl.h"
18 #include "tree.h"
19 #include "gimple.h"
20 #include "real.h"
21 #include "convert.h"
22
23 #ifndef ENABLE_BUILD_WITH_CXX
24 }
25 #endif
26
27 #include "go-c.h"
28 #include "gogo.h"
29 #include "operator.h"
30 #include "expressions.h"
31 #include "statements.h"
32 #include "export.h"
33 #include "import.h"
34 #include "types.h"
35
36 // Class Type.
37
38 Type::Type(Type_classification classification)
39 : classification_(classification), tree_(NULL_TREE),
40 type_descriptor_decl_(NULL_TREE)
41 {
42 }
43
44 Type::~Type()
45 {
46 }
47
48 // Get the base type for a type--skip names and forward declarations.
49
50 Type*
51 Type::base()
52 {
53 switch (this->classification_)
54 {
55 case TYPE_NAMED:
56 return this->named_type()->named_base();
57 case TYPE_FORWARD:
58 return this->forward_declaration_type()->real_type()->base();
59 default:
60 return this;
61 }
62 }
63
64 const Type*
65 Type::base() const
66 {
67 switch (this->classification_)
68 {
69 case TYPE_NAMED:
70 return this->named_type()->named_base();
71 case TYPE_FORWARD:
72 return this->forward_declaration_type()->real_type()->base();
73 default:
74 return this;
75 }
76 }
77
78 // Skip defined forward declarations.
79
80 Type*
81 Type::forwarded()
82 {
83 Type* t = this;
84 Forward_declaration_type* ftype = t->forward_declaration_type();
85 while (ftype != NULL && ftype->is_defined())
86 {
87 t = ftype->real_type();
88 ftype = t->forward_declaration_type();
89 }
90 return t;
91 }
92
93 const Type*
94 Type::forwarded() const
95 {
96 const Type* t = this;
97 const Forward_declaration_type* ftype = t->forward_declaration_type();
98 while (ftype != NULL && ftype->is_defined())
99 {
100 t = ftype->real_type();
101 ftype = t->forward_declaration_type();
102 }
103 return t;
104 }
105
106 // If this is a named type, return it. Otherwise, return NULL.
107
108 Named_type*
109 Type::named_type()
110 {
111 return this->forwarded()->convert_no_base<Named_type, TYPE_NAMED>();
112 }
113
114 const Named_type*
115 Type::named_type() const
116 {
117 return this->forwarded()->convert_no_base<const Named_type, TYPE_NAMED>();
118 }
119
120 // Return true if this type is not defined.
121
122 bool
123 Type::is_undefined() const
124 {
125 return this->forwarded()->forward_declaration_type() != NULL;
126 }
127
128 // Return true if this is a basic type: a type which is not composed
129 // of other types, and is not void.
130
131 bool
132 Type::is_basic_type() const
133 {
134 switch (this->classification_)
135 {
136 case TYPE_INTEGER:
137 case TYPE_FLOAT:
138 case TYPE_COMPLEX:
139 case TYPE_BOOLEAN:
140 case TYPE_STRING:
141 case TYPE_NIL:
142 return true;
143
144 case TYPE_ERROR:
145 case TYPE_VOID:
146 case TYPE_FUNCTION:
147 case TYPE_POINTER:
148 case TYPE_STRUCT:
149 case TYPE_ARRAY:
150 case TYPE_MAP:
151 case TYPE_CHANNEL:
152 case TYPE_INTERFACE:
153 return false;
154
155 case TYPE_NAMED:
156 case TYPE_FORWARD:
157 return this->base()->is_basic_type();
158
159 default:
160 gcc_unreachable();
161 }
162 }
163
164 // Return true if this is an abstract type.
165
166 bool
167 Type::is_abstract() const
168 {
169 switch (this->classification())
170 {
171 case TYPE_INTEGER:
172 return this->integer_type()->is_abstract();
173 case TYPE_FLOAT:
174 return this->float_type()->is_abstract();
175 case TYPE_COMPLEX:
176 return this->complex_type()->is_abstract();
177 case TYPE_STRING:
178 return this->is_abstract_string_type();
179 case TYPE_BOOLEAN:
180 return this->is_abstract_boolean_type();
181 default:
182 return false;
183 }
184 }
185
186 // Return a non-abstract version of an abstract type.
187
188 Type*
189 Type::make_non_abstract_type()
190 {
191 gcc_assert(this->is_abstract());
192 switch (this->classification())
193 {
194 case TYPE_INTEGER:
195 return Type::lookup_integer_type("int");
196 case TYPE_FLOAT:
197 return Type::lookup_float_type("float64");
198 case TYPE_COMPLEX:
199 return Type::lookup_complex_type("complex128");
200 case TYPE_STRING:
201 return Type::lookup_string_type();
202 case TYPE_BOOLEAN:
203 return Type::lookup_bool_type();
204 default:
205 gcc_unreachable();
206 }
207 }
208
209 // Return true if this is an error type. Don't give an error if we
210 // try to dereference an undefined forwarding type, as this is called
211 // in the parser when the type may legitimately be undefined.
212
213 bool
214 Type::is_error_type() const
215 {
216 const Type* t = this->forwarded();
217 // Note that we return false for an undefined forward type.
218 switch (t->classification_)
219 {
220 case TYPE_ERROR:
221 return true;
222 case TYPE_NAMED:
223 return t->named_type()->is_named_error_type();
224 default:
225 return false;
226 }
227 }
228
229 // If this is a pointer type, return the type to which it points.
230 // Otherwise, return NULL.
231
232 Type*
233 Type::points_to() const
234 {
235 const Pointer_type* ptype = this->convert<const Pointer_type,
236 TYPE_POINTER>();
237 return ptype == NULL ? NULL : ptype->points_to();
238 }
239
240 // Return whether this is an open array type.
241
242 bool
243 Type::is_open_array_type() const
244 {
245 return this->array_type() != NULL && this->array_type()->length() == NULL;
246 }
247
248 // Return whether this is the predeclared constant nil being used as a
249 // type.
250
251 bool
252 Type::is_nil_constant_as_type() const
253 {
254 const Type* t = this->forwarded();
255 if (t->forward_declaration_type() != NULL)
256 {
257 const Named_object* no = t->forward_declaration_type()->named_object();
258 if (no->is_unknown())
259 no = no->unknown_value()->real_named_object();
260 if (no != NULL
261 && no->is_const()
262 && no->const_value()->expr()->is_nil_expression())
263 return true;
264 }
265 return false;
266 }
267
268 // Traverse a type.
269
270 int
271 Type::traverse(Type* type, Traverse* traverse)
272 {
273 gcc_assert((traverse->traverse_mask() & Traverse::traverse_types) != 0
274 || (traverse->traverse_mask()
275 & Traverse::traverse_expressions) != 0);
276 if (traverse->remember_type(type))
277 {
278 // We have already traversed this type.
279 return TRAVERSE_CONTINUE;
280 }
281 if ((traverse->traverse_mask() & Traverse::traverse_types) != 0)
282 {
283 int t = traverse->type(type);
284 if (t == TRAVERSE_EXIT)
285 return TRAVERSE_EXIT;
286 else if (t == TRAVERSE_SKIP_COMPONENTS)
287 return TRAVERSE_CONTINUE;
288 }
289 // An array type has an expression which we need to traverse if
290 // traverse_expressions is set.
291 if (type->do_traverse(traverse) == TRAVERSE_EXIT)
292 return TRAVERSE_EXIT;
293 return TRAVERSE_CONTINUE;
294 }
295
296 // Default implementation for do_traverse for child class.
297
298 int
299 Type::do_traverse(Traverse*)
300 {
301 return TRAVERSE_CONTINUE;
302 }
303
304 // Return whether two types are identical. If ERRORS_ARE_IDENTICAL,
305 // then return true for all erroneous types; this is used to avoid
306 // cascading errors. If REASON is not NULL, optionally set *REASON to
307 // the reason the types are not identical.
308
309 bool
310 Type::are_identical(const Type* t1, const Type* t2, bool errors_are_identical,
311 std::string* reason)
312 {
313 if (t1 == NULL || t2 == NULL)
314 {
315 // Something is wrong.
316 return errors_are_identical ? true : t1 == t2;
317 }
318
319 // Skip defined forward declarations.
320 t1 = t1->forwarded();
321 t2 = t2->forwarded();
322
323 if (t1 == t2)
324 return true;
325
326 // An undefined forward declaration is an error.
327 if (t1->forward_declaration_type() != NULL
328 || t2->forward_declaration_type() != NULL)
329 return errors_are_identical;
330
331 // Avoid cascading errors with error types.
332 if (t1->is_error_type() || t2->is_error_type())
333 {
334 if (errors_are_identical)
335 return true;
336 return t1->is_error_type() && t2->is_error_type();
337 }
338
339 // Get a good reason for the sink type. Note that the sink type on
340 // the left hand side of an assignment is handled in are_assignable.
341 if (t1->is_sink_type() || t2->is_sink_type())
342 {
343 if (reason != NULL)
344 *reason = "invalid use of _";
345 return false;
346 }
347
348 // A named type is only identical to itself.
349 if (t1->named_type() != NULL || t2->named_type() != NULL)
350 return false;
351
352 // Check type shapes.
353 if (t1->classification() != t2->classification())
354 return false;
355
356 switch (t1->classification())
357 {
358 case TYPE_VOID:
359 case TYPE_BOOLEAN:
360 case TYPE_STRING:
361 case TYPE_NIL:
362 // These types are always identical.
363 return true;
364
365 case TYPE_INTEGER:
366 return t1->integer_type()->is_identical(t2->integer_type());
367
368 case TYPE_FLOAT:
369 return t1->float_type()->is_identical(t2->float_type());
370
371 case TYPE_COMPLEX:
372 return t1->complex_type()->is_identical(t2->complex_type());
373
374 case TYPE_FUNCTION:
375 return t1->function_type()->is_identical(t2->function_type(),
376 false,
377 errors_are_identical,
378 reason);
379
380 case TYPE_POINTER:
381 return Type::are_identical(t1->points_to(), t2->points_to(),
382 errors_are_identical, reason);
383
384 case TYPE_STRUCT:
385 return t1->struct_type()->is_identical(t2->struct_type(),
386 errors_are_identical);
387
388 case TYPE_ARRAY:
389 return t1->array_type()->is_identical(t2->array_type(),
390 errors_are_identical);
391
392 case TYPE_MAP:
393 return t1->map_type()->is_identical(t2->map_type(),
394 errors_are_identical);
395
396 case TYPE_CHANNEL:
397 return t1->channel_type()->is_identical(t2->channel_type(),
398 errors_are_identical);
399
400 case TYPE_INTERFACE:
401 return t1->interface_type()->is_identical(t2->interface_type(),
402 errors_are_identical);
403
404 case TYPE_CALL_MULTIPLE_RESULT:
405 if (reason != NULL)
406 *reason = "invalid use of multiple value function call";
407 return false;
408
409 default:
410 gcc_unreachable();
411 }
412 }
413
414 // Return true if it's OK to have a binary operation with types LHS
415 // and RHS. This is not used for shifts or comparisons.
416
417 bool
418 Type::are_compatible_for_binop(const Type* lhs, const Type* rhs)
419 {
420 if (Type::are_identical(lhs, rhs, true, NULL))
421 return true;
422
423 // A constant of abstract bool type may be mixed with any bool type.
424 if ((rhs->is_abstract_boolean_type() && lhs->is_boolean_type())
425 || (lhs->is_abstract_boolean_type() && rhs->is_boolean_type()))
426 return true;
427
428 // A constant of abstract string type may be mixed with any string
429 // type.
430 if ((rhs->is_abstract_string_type() && lhs->is_string_type())
431 || (lhs->is_abstract_string_type() && rhs->is_string_type()))
432 return true;
433
434 lhs = lhs->base();
435 rhs = rhs->base();
436
437 // A constant of abstract integer, float, or complex type may be
438 // mixed with an integer, float, or complex type.
439 if ((rhs->is_abstract()
440 && (rhs->integer_type() != NULL
441 || rhs->float_type() != NULL
442 || rhs->complex_type() != NULL)
443 && (lhs->integer_type() != NULL
444 || lhs->float_type() != NULL
445 || lhs->complex_type() != NULL))
446 || (lhs->is_abstract()
447 && (lhs->integer_type() != NULL
448 || lhs->float_type() != NULL
449 || lhs->complex_type() != NULL)
450 && (rhs->integer_type() != NULL
451 || rhs->float_type() != NULL
452 || rhs->complex_type() != NULL)))
453 return true;
454
455 // The nil type may be compared to a pointer, an interface type, a
456 // slice type, a channel type, a map type, or a function type.
457 if (lhs->is_nil_type()
458 && (rhs->points_to() != NULL
459 || rhs->interface_type() != NULL
460 || rhs->is_open_array_type()
461 || rhs->map_type() != NULL
462 || rhs->channel_type() != NULL
463 || rhs->function_type() != NULL))
464 return true;
465 if (rhs->is_nil_type()
466 && (lhs->points_to() != NULL
467 || lhs->interface_type() != NULL
468 || lhs->is_open_array_type()
469 || lhs->map_type() != NULL
470 || lhs->channel_type() != NULL
471 || lhs->function_type() != NULL))
472 return true;
473
474 return false;
475 }
476
477 // Return true if a value with type RHS may be assigned to a variable
478 // with type LHS. If REASON is not NULL, set *REASON to the reason
479 // the types are not assignable.
480
481 bool
482 Type::are_assignable(const Type* lhs, const Type* rhs, std::string* reason)
483 {
484 // Do some checks first. Make sure the types are defined.
485 if (rhs != NULL
486 && rhs->forwarded()->forward_declaration_type() == NULL
487 && rhs->is_void_type())
488 {
489 if (reason != NULL)
490 *reason = "non-value used as value";
491 return false;
492 }
493
494 if (lhs != NULL && lhs->forwarded()->forward_declaration_type() == NULL)
495 {
496 // Any value may be assigned to the blank identifier.
497 if (lhs->is_sink_type())
498 return true;
499
500 // All fields of a struct must be exported, or the assignment
501 // must be in the same package.
502 if (rhs != NULL && rhs->forwarded()->forward_declaration_type() == NULL)
503 {
504 if (lhs->has_hidden_fields(NULL, reason)
505 || rhs->has_hidden_fields(NULL, reason))
506 return false;
507 }
508 }
509
510 // Identical types are assignable.
511 if (Type::are_identical(lhs, rhs, true, reason))
512 return true;
513
514 // The types are assignable if they have identical underlying types
515 // and either LHS or RHS is not a named type.
516 if (((lhs->named_type() != NULL && rhs->named_type() == NULL)
517 || (rhs->named_type() != NULL && lhs->named_type() == NULL))
518 && Type::are_identical(lhs->base(), rhs->base(), true, reason))
519 return true;
520
521 // The types are assignable if LHS is an interface type and RHS
522 // implements the required methods.
523 const Interface_type* lhs_interface_type = lhs->interface_type();
524 if (lhs_interface_type != NULL)
525 {
526 if (lhs_interface_type->implements_interface(rhs, reason))
527 return true;
528 const Interface_type* rhs_interface_type = rhs->interface_type();
529 if (rhs_interface_type != NULL
530 && lhs_interface_type->is_compatible_for_assign(rhs_interface_type,
531 reason))
532 return true;
533 }
534
535 // The type are assignable if RHS is a bidirectional channel type,
536 // LHS is a channel type, they have identical element types, and
537 // either LHS or RHS is not a named type.
538 if (lhs->channel_type() != NULL
539 && rhs->channel_type() != NULL
540 && rhs->channel_type()->may_send()
541 && rhs->channel_type()->may_receive()
542 && (lhs->named_type() == NULL || rhs->named_type() == NULL)
543 && Type::are_identical(lhs->channel_type()->element_type(),
544 rhs->channel_type()->element_type(),
545 true,
546 reason))
547 return true;
548
549 // The nil type may be assigned to a pointer, function, slice, map,
550 // channel, or interface type.
551 if (rhs->is_nil_type()
552 && (lhs->points_to() != NULL
553 || lhs->function_type() != NULL
554 || lhs->is_open_array_type()
555 || lhs->map_type() != NULL
556 || lhs->channel_type() != NULL
557 || lhs->interface_type() != NULL))
558 return true;
559
560 // An untyped numeric constant may be assigned to a numeric type if
561 // it is representable in that type.
562 if ((rhs->is_abstract()
563 && (rhs->integer_type() != NULL
564 || rhs->float_type() != NULL
565 || rhs->complex_type() != NULL))
566 && (lhs->integer_type() != NULL
567 || lhs->float_type() != NULL
568 || lhs->complex_type() != NULL))
569 return true;
570
571 // Give some better error messages.
572 if (reason != NULL && reason->empty())
573 {
574 if (rhs->interface_type() != NULL)
575 reason->assign(_("need explicit conversion"));
576 else if (rhs->is_call_multiple_result_type())
577 reason->assign(_("multiple value function call in "
578 "single value context"));
579 else if (lhs->named_type() != NULL && rhs->named_type() != NULL)
580 {
581 size_t len = (lhs->named_type()->name().length()
582 + rhs->named_type()->name().length()
583 + 100);
584 char* buf = new char[len];
585 snprintf(buf, len, _("cannot use type %s as type %s"),
586 rhs->named_type()->message_name().c_str(),
587 lhs->named_type()->message_name().c_str());
588 reason->assign(buf);
589 delete[] buf;
590 }
591 }
592
593 return false;
594 }
595
596 // Return true if a value with type RHS may be converted to type LHS.
597 // If REASON is not NULL, set *REASON to the reason the types are not
598 // convertible.
599
600 bool
601 Type::are_convertible(const Type* lhs, const Type* rhs, std::string* reason)
602 {
603 // The types are convertible if they are assignable.
604 if (Type::are_assignable(lhs, rhs, reason))
605 return true;
606
607 // The types are convertible if they have identical underlying
608 // types.
609 if ((lhs->named_type() != NULL || rhs->named_type() != NULL)
610 && Type::are_identical(lhs->base(), rhs->base(), true, reason))
611 return true;
612
613 // The types are convertible if they are both unnamed pointer types
614 // and their pointer base types have identical underlying types.
615 if (lhs->named_type() == NULL
616 && rhs->named_type() == NULL
617 && lhs->points_to() != NULL
618 && rhs->points_to() != NULL
619 && (lhs->points_to()->named_type() != NULL
620 || rhs->points_to()->named_type() != NULL)
621 && Type::are_identical(lhs->points_to()->base(),
622 rhs->points_to()->base(),
623 true,
624 reason))
625 return true;
626
627 // Integer and floating point types are convertible to each other.
628 if ((lhs->integer_type() != NULL || lhs->float_type() != NULL)
629 && (rhs->integer_type() != NULL || rhs->float_type() != NULL))
630 return true;
631
632 // Complex types are convertible to each other.
633 if (lhs->complex_type() != NULL && rhs->complex_type() != NULL)
634 return true;
635
636 // An integer, or []byte, or []int, may be converted to a string.
637 if (lhs->is_string_type())
638 {
639 if (rhs->integer_type() != NULL)
640 return true;
641 if (rhs->is_open_array_type() && rhs->named_type() == NULL)
642 {
643 const Type* e = rhs->array_type()->element_type()->forwarded();
644 if (e->integer_type() != NULL
645 && (e == Type::lookup_integer_type("uint8")
646 || e == Type::lookup_integer_type("int")))
647 return true;
648 }
649 }
650
651 // A string may be converted to []byte or []int.
652 if (rhs->is_string_type()
653 && lhs->is_open_array_type()
654 && lhs->named_type() == NULL)
655 {
656 const Type* e = lhs->array_type()->element_type()->forwarded();
657 if (e->integer_type() != NULL
658 && (e == Type::lookup_integer_type("uint8")
659 || e == Type::lookup_integer_type("int")))
660 return true;
661 }
662
663 // An unsafe.Pointer type may be converted to any pointer type or to
664 // uintptr, and vice-versa.
665 if (lhs->is_unsafe_pointer_type()
666 && (rhs->points_to() != NULL
667 || (rhs->integer_type() != NULL
668 && rhs->forwarded() == Type::lookup_integer_type("uintptr"))))
669 return true;
670 if (rhs->is_unsafe_pointer_type()
671 && (lhs->points_to() != NULL
672 || (lhs->integer_type() != NULL
673 && lhs->forwarded() == Type::lookup_integer_type("uintptr"))))
674 return true;
675
676 // Give a better error message.
677 if (reason != NULL)
678 {
679 if (reason->empty())
680 *reason = "invalid type conversion";
681 else
682 {
683 std::string s = "invalid type conversion (";
684 s += *reason;
685 s += ')';
686 *reason = s;
687 }
688 }
689
690 return false;
691 }
692
693 // Return whether this type has any hidden fields. This is only a
694 // possibility for a few types.
695
696 bool
697 Type::has_hidden_fields(const Named_type* within, std::string* reason) const
698 {
699 switch (this->forwarded()->classification_)
700 {
701 case TYPE_NAMED:
702 return this->named_type()->named_type_has_hidden_fields(reason);
703 case TYPE_STRUCT:
704 return this->struct_type()->struct_has_hidden_fields(within, reason);
705 case TYPE_ARRAY:
706 return this->array_type()->array_has_hidden_fields(within, reason);
707 default:
708 return false;
709 }
710 }
711
712 // Return a hash code for the type to be used for method lookup.
713
714 unsigned int
715 Type::hash_for_method(Gogo* gogo) const
716 {
717 unsigned int ret = 0;
718 if (this->classification_ != TYPE_FORWARD)
719 ret += this->classification_;
720 return ret + this->do_hash_for_method(gogo);
721 }
722
723 // Default implementation of do_hash_for_method. This is appropriate
724 // for types with no subfields.
725
726 unsigned int
727 Type::do_hash_for_method(Gogo*) const
728 {
729 return 0;
730 }
731
732 // Return a hash code for a string, given a starting hash.
733
734 unsigned int
735 Type::hash_string(const std::string& s, unsigned int h)
736 {
737 const char* p = s.data();
738 size_t len = s.length();
739 for (; len > 0; --len)
740 {
741 h ^= *p++;
742 h*= 16777619;
743 }
744 return h;
745 }
746
747 // Default check for the expression passed to make. Any type which
748 // may be used with make implements its own version of this.
749
750 bool
751 Type::do_check_make_expression(Expression_list*, source_location)
752 {
753 gcc_unreachable();
754 }
755
756 // Return whether an expression has an integer value. Report an error
757 // if not. This is used when handling calls to the predeclared make
758 // function.
759
760 bool
761 Type::check_int_value(Expression* e, const char* errmsg,
762 source_location location)
763 {
764 if (e->type()->integer_type() != NULL)
765 return true;
766
767 // Check for a floating point constant with integer value.
768 mpfr_t fval;
769 mpfr_init(fval);
770
771 Type* dummy;
772 if (e->float_constant_value(fval, &dummy))
773 {
774 mpz_t ival;
775 mpz_init(ival);
776
777 bool ok = false;
778
779 mpfr_clear_overflow();
780 mpfr_clear_erangeflag();
781 mpfr_get_z(ival, fval, GMP_RNDN);
782 if (!mpfr_overflow_p()
783 && !mpfr_erangeflag_p()
784 && mpz_sgn(ival) >= 0)
785 {
786 Named_type* ntype = Type::lookup_integer_type("int");
787 Integer_type* inttype = ntype->integer_type();
788 mpz_t max;
789 mpz_init_set_ui(max, 1);
790 mpz_mul_2exp(max, max, inttype->bits() - 1);
791 ok = mpz_cmp(ival, max) < 0;
792 mpz_clear(max);
793 }
794 mpz_clear(ival);
795
796 if (ok)
797 {
798 mpfr_clear(fval);
799 return true;
800 }
801 }
802
803 mpfr_clear(fval);
804
805 error_at(location, "%s", errmsg);
806 return false;
807 }
808
809 // A hash table mapping unnamed types to trees.
810
811 Type::Type_trees Type::type_trees;
812
813 // Return a tree representing this type.
814
815 tree
816 Type::get_tree(Gogo* gogo)
817 {
818 if (this->tree_ != NULL)
819 return this->tree_;
820
821 if (this->forward_declaration_type() != NULL
822 || this->named_type() != NULL)
823 return this->get_tree_without_hash(gogo);
824
825 if (this->is_error_type())
826 return error_mark_node;
827
828 // To avoid confusing GIMPLE, we need to translate all identical Go
829 // types to the same GIMPLE type. We use a hash table to do that.
830 // There is no need to use the hash table for named types, as named
831 // types are only identical to themselves.
832
833 std::pair<Type*, tree> val(this, NULL);
834 std::pair<Type_trees::iterator, bool> ins =
835 Type::type_trees.insert(val);
836 if (!ins.second && ins.first->second != NULL_TREE)
837 {
838 this->tree_ = ins.first->second;
839 return this->tree_;
840 }
841
842 tree t = this->get_tree_without_hash(gogo);
843
844 if (ins.first->second == NULL_TREE)
845 ins.first->second = t;
846 else
847 {
848 // We have already created a tree for this type. This can
849 // happen when an unnamed type is defined using a named type
850 // which in turns uses an identical unnamed type. Use the tree
851 // we created earlier and ignore the one we just built.
852 t = ins.first->second;
853 this->tree_ = t;
854 }
855
856 return t;
857 }
858
859 // Return a tree for a type without looking in the hash table for
860 // identical types. This is used for named types, since there is no
861 // point to looking in the hash table for them.
862
863 tree
864 Type::get_tree_without_hash(Gogo* gogo)
865 {
866 if (this->tree_ == NULL_TREE)
867 {
868 tree t = this->do_get_tree(gogo);
869
870 // For a recursive function or pointer type, we will temporarily
871 // return ptr_type_node during the recursion. We don't want to
872 // record that for a forwarding type, as it may confuse us
873 // later.
874 if (t == ptr_type_node && this->forward_declaration_type() != NULL)
875 return t;
876
877 this->tree_ = t;
878 go_preserve_from_gc(t);
879 }
880
881 return this->tree_;
882 }
883
884 // Return a tree representing a zero initialization for this type.
885
886 tree
887 Type::get_init_tree(Gogo* gogo, bool is_clear)
888 {
889 tree type_tree = this->get_tree(gogo);
890 if (type_tree == error_mark_node)
891 return error_mark_node;
892 return this->do_get_init_tree(gogo, type_tree, is_clear);
893 }
894
895 // Any type which supports the builtin make function must implement
896 // this.
897
898 tree
899 Type::do_make_expression_tree(Translate_context*, Expression_list*,
900 source_location)
901 {
902 gcc_unreachable();
903 }
904
905 // Return a pointer to the type descriptor for this type.
906
907 tree
908 Type::type_descriptor_pointer(Gogo* gogo)
909 {
910 Type* t = this->forwarded();
911 if (t->type_descriptor_decl_ == NULL_TREE)
912 {
913 Expression* e = t->do_type_descriptor(gogo, NULL);
914 gogo->build_type_descriptor_decl(t, e, &t->type_descriptor_decl_);
915 gcc_assert(t->type_descriptor_decl_ != NULL_TREE
916 && (t->type_descriptor_decl_ == error_mark_node
917 || DECL_P(t->type_descriptor_decl_)));
918 }
919 if (t->type_descriptor_decl_ == error_mark_node)
920 return error_mark_node;
921 return build_fold_addr_expr(t->type_descriptor_decl_);
922 }
923
924 // Return a composite literal for a type descriptor.
925
926 Expression*
927 Type::type_descriptor(Gogo* gogo, Type* type)
928 {
929 return type->do_type_descriptor(gogo, NULL);
930 }
931
932 // Return a composite literal for a type descriptor with a name.
933
934 Expression*
935 Type::named_type_descriptor(Gogo* gogo, Type* type, Named_type* name)
936 {
937 gcc_assert(name != NULL && type->named_type() != name);
938 return type->do_type_descriptor(gogo, name);
939 }
940
941 // Make a builtin struct type from a list of fields. The fields are
942 // pairs of a name and a type.
943
944 Struct_type*
945 Type::make_builtin_struct_type(int nfields, ...)
946 {
947 va_list ap;
948 va_start(ap, nfields);
949
950 source_location bloc = BUILTINS_LOCATION;
951 Struct_field_list* sfl = new Struct_field_list();
952 for (int i = 0; i < nfields; i++)
953 {
954 const char* field_name = va_arg(ap, const char *);
955 Type* type = va_arg(ap, Type*);
956 sfl->push_back(Struct_field(Typed_identifier(field_name, type, bloc)));
957 }
958
959 va_end(ap);
960
961 return Type::make_struct_type(sfl, bloc);
962 }
963
964 // Make a builtin named type.
965
966 Named_type*
967 Type::make_builtin_named_type(const char* name, Type* type)
968 {
969 source_location bloc = BUILTINS_LOCATION;
970 Named_object* no = Named_object::make_type(name, NULL, type, bloc);
971 return no->type_value();
972 }
973
974 // Return the type of a type descriptor. We should really tie this to
975 // runtime.Type rather than copying it. This must match commonType in
976 // libgo/go/runtime/type.go.
977
978 Type*
979 Type::make_type_descriptor_type()
980 {
981 static Type* ret;
982 if (ret == NULL)
983 {
984 source_location bloc = BUILTINS_LOCATION;
985
986 Type* uint8_type = Type::lookup_integer_type("uint8");
987 Type* uint32_type = Type::lookup_integer_type("uint32");
988 Type* uintptr_type = Type::lookup_integer_type("uintptr");
989 Type* string_type = Type::lookup_string_type();
990 Type* pointer_string_type = Type::make_pointer_type(string_type);
991
992 // This is an unnamed version of unsafe.Pointer. Perhaps we
993 // should use the named version instead, although that would
994 // require us to create the unsafe package if it has not been
995 // imported. It probably doesn't matter.
996 Type* void_type = Type::make_void_type();
997 Type* unsafe_pointer_type = Type::make_pointer_type(void_type);
998
999 // Forward declaration for the type descriptor type.
1000 Named_object* named_type_descriptor_type =
1001 Named_object::make_type_declaration("commonType", NULL, bloc);
1002 Type* ft = Type::make_forward_declaration(named_type_descriptor_type);
1003 Type* pointer_type_descriptor_type = Type::make_pointer_type(ft);
1004
1005 // The type of a method on a concrete type.
1006 Struct_type* method_type =
1007 Type::make_builtin_struct_type(5,
1008 "name", pointer_string_type,
1009 "pkgPath", pointer_string_type,
1010 "mtyp", pointer_type_descriptor_type,
1011 "typ", pointer_type_descriptor_type,
1012 "tfn", unsafe_pointer_type);
1013 Named_type* named_method_type =
1014 Type::make_builtin_named_type("method", method_type);
1015
1016 // Information for types with a name or methods.
1017 Type* slice_named_method_type =
1018 Type::make_array_type(named_method_type, NULL);
1019 Struct_type* uncommon_type =
1020 Type::make_builtin_struct_type(3,
1021 "name", pointer_string_type,
1022 "pkgPath", pointer_string_type,
1023 "methods", slice_named_method_type);
1024 Named_type* named_uncommon_type =
1025 Type::make_builtin_named_type("uncommonType", uncommon_type);
1026
1027 Type* pointer_uncommon_type =
1028 Type::make_pointer_type(named_uncommon_type);
1029
1030 // The type descriptor type.
1031
1032 Typed_identifier_list* params = new Typed_identifier_list();
1033 params->push_back(Typed_identifier("", unsafe_pointer_type, bloc));
1034 params->push_back(Typed_identifier("", uintptr_type, bloc));
1035
1036 Typed_identifier_list* results = new Typed_identifier_list();
1037 results->push_back(Typed_identifier("", uintptr_type, bloc));
1038
1039 Type* hashfn_type = Type::make_function_type(NULL, params, results, bloc);
1040
1041 params = new Typed_identifier_list();
1042 params->push_back(Typed_identifier("", unsafe_pointer_type, bloc));
1043 params->push_back(Typed_identifier("", unsafe_pointer_type, bloc));
1044 params->push_back(Typed_identifier("", uintptr_type, bloc));
1045
1046 results = new Typed_identifier_list();
1047 results->push_back(Typed_identifier("", Type::lookup_bool_type(), bloc));
1048
1049 Type* equalfn_type = Type::make_function_type(NULL, params, results,
1050 bloc);
1051
1052 Struct_type* type_descriptor_type =
1053 Type::make_builtin_struct_type(9,
1054 "Kind", uint8_type,
1055 "align", uint8_type,
1056 "fieldAlign", uint8_type,
1057 "size", uintptr_type,
1058 "hash", uint32_type,
1059 "hashfn", hashfn_type,
1060 "equalfn", equalfn_type,
1061 "string", pointer_string_type,
1062 "", pointer_uncommon_type);
1063
1064 Named_type* named = Type::make_builtin_named_type("commonType",
1065 type_descriptor_type);
1066
1067 named_type_descriptor_type->set_type_value(named);
1068
1069 ret = named;
1070 }
1071
1072 return ret;
1073 }
1074
1075 // Make the type of a pointer to a type descriptor as represented in
1076 // Go.
1077
1078 Type*
1079 Type::make_type_descriptor_ptr_type()
1080 {
1081 static Type* ret;
1082 if (ret == NULL)
1083 ret = Type::make_pointer_type(Type::make_type_descriptor_type());
1084 return ret;
1085 }
1086
1087 // Return the names of runtime functions which compute a hash code for
1088 // this type and which compare whether two values of this type are
1089 // equal.
1090
1091 void
1092 Type::type_functions(const char** hash_fn, const char** equal_fn) const
1093 {
1094 switch (this->base()->classification())
1095 {
1096 case Type::TYPE_ERROR:
1097 case Type::TYPE_VOID:
1098 case Type::TYPE_NIL:
1099 // These types can not be hashed or compared.
1100 *hash_fn = "__go_type_hash_error";
1101 *equal_fn = "__go_type_equal_error";
1102 break;
1103
1104 case Type::TYPE_BOOLEAN:
1105 case Type::TYPE_INTEGER:
1106 case Type::TYPE_FLOAT:
1107 case Type::TYPE_COMPLEX:
1108 case Type::TYPE_POINTER:
1109 case Type::TYPE_FUNCTION:
1110 case Type::TYPE_MAP:
1111 case Type::TYPE_CHANNEL:
1112 *hash_fn = "__go_type_hash_identity";
1113 *equal_fn = "__go_type_equal_identity";
1114 break;
1115
1116 case Type::TYPE_STRING:
1117 *hash_fn = "__go_type_hash_string";
1118 *equal_fn = "__go_type_equal_string";
1119 break;
1120
1121 case Type::TYPE_STRUCT:
1122 case Type::TYPE_ARRAY:
1123 // These types can not be hashed or compared.
1124 *hash_fn = "__go_type_hash_error";
1125 *equal_fn = "__go_type_equal_error";
1126 break;
1127
1128 case Type::TYPE_INTERFACE:
1129 if (this->interface_type()->is_empty())
1130 {
1131 *hash_fn = "__go_type_hash_empty_interface";
1132 *equal_fn = "__go_type_equal_empty_interface";
1133 }
1134 else
1135 {
1136 *hash_fn = "__go_type_hash_interface";
1137 *equal_fn = "__go_type_equal_interface";
1138 }
1139 break;
1140
1141 case Type::TYPE_NAMED:
1142 case Type::TYPE_FORWARD:
1143 gcc_unreachable();
1144
1145 default:
1146 gcc_unreachable();
1147 }
1148 }
1149
1150 // Return a composite literal for the type descriptor for a plain type
1151 // of kind RUNTIME_TYPE_KIND named NAME.
1152
1153 Expression*
1154 Type::type_descriptor_constructor(Gogo* gogo, int runtime_type_kind,
1155 Named_type* name, const Methods* methods,
1156 bool only_value_methods)
1157 {
1158 source_location bloc = BUILTINS_LOCATION;
1159
1160 Type* td_type = Type::make_type_descriptor_type();
1161 const Struct_field_list* fields = td_type->struct_type()->fields();
1162
1163 Expression_list* vals = new Expression_list();
1164 vals->reserve(9);
1165
1166 Struct_field_list::const_iterator p = fields->begin();
1167 gcc_assert(p->field_name() == "Kind");
1168 mpz_t iv;
1169 mpz_init_set_ui(iv, runtime_type_kind);
1170 vals->push_back(Expression::make_integer(&iv, p->type(), bloc));
1171
1172 ++p;
1173 gcc_assert(p->field_name() == "align");
1174 Expression::Type_info type_info = Expression::TYPE_INFO_ALIGNMENT;
1175 vals->push_back(Expression::make_type_info(this, type_info));
1176
1177 ++p;
1178 gcc_assert(p->field_name() == "fieldAlign");
1179 type_info = Expression::TYPE_INFO_FIELD_ALIGNMENT;
1180 vals->push_back(Expression::make_type_info(this, type_info));
1181
1182 ++p;
1183 gcc_assert(p->field_name() == "size");
1184 type_info = Expression::TYPE_INFO_SIZE;
1185 vals->push_back(Expression::make_type_info(this, type_info));
1186
1187 ++p;
1188 gcc_assert(p->field_name() == "hash");
1189 mpz_set_ui(iv, this->hash_for_method(gogo));
1190 vals->push_back(Expression::make_integer(&iv, p->type(), bloc));
1191
1192 const char* hash_fn;
1193 const char* equal_fn;
1194 this->type_functions(&hash_fn, &equal_fn);
1195
1196 ++p;
1197 gcc_assert(p->field_name() == "hashfn");
1198 Function_type* fntype = p->type()->function_type();
1199 Named_object* no = Named_object::make_function_declaration(hash_fn, NULL,
1200 fntype,
1201 bloc);
1202 no->func_declaration_value()->set_asm_name(hash_fn);
1203 vals->push_back(Expression::make_func_reference(no, NULL, bloc));
1204
1205 ++p;
1206 gcc_assert(p->field_name() == "equalfn");
1207 fntype = p->type()->function_type();
1208 no = Named_object::make_function_declaration(equal_fn, NULL, fntype, bloc);
1209 no->func_declaration_value()->set_asm_name(equal_fn);
1210 vals->push_back(Expression::make_func_reference(no, NULL, bloc));
1211
1212 ++p;
1213 gcc_assert(p->field_name() == "string");
1214 Expression* s = Expression::make_string((name != NULL
1215 ? name->reflection(gogo)
1216 : this->reflection(gogo)),
1217 bloc);
1218 vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
1219
1220 ++p;
1221 gcc_assert(p->field_name() == "uncommonType");
1222 if (name == NULL && methods == NULL)
1223 vals->push_back(Expression::make_nil(bloc));
1224 else
1225 {
1226 if (methods == NULL)
1227 methods = name->methods();
1228 vals->push_back(this->uncommon_type_constructor(gogo,
1229 p->type()->deref(),
1230 name, methods,
1231 only_value_methods));
1232 }
1233
1234 ++p;
1235 gcc_assert(p == fields->end());
1236
1237 mpz_clear(iv);
1238
1239 return Expression::make_struct_composite_literal(td_type, vals, bloc);
1240 }
1241
1242 // Return a composite literal for the uncommon type information for
1243 // this type. UNCOMMON_STRUCT_TYPE is the type of the uncommon type
1244 // struct. If name is not NULL, it is the name of the type. If
1245 // METHODS is not NULL, it is the list of methods. ONLY_VALUE_METHODS
1246 // is true if only value methods should be included. At least one of
1247 // NAME and METHODS must not be NULL.
1248
1249 Expression*
1250 Type::uncommon_type_constructor(Gogo* gogo, Type* uncommon_type,
1251 Named_type* name, const Methods* methods,
1252 bool only_value_methods) const
1253 {
1254 source_location bloc = BUILTINS_LOCATION;
1255
1256 const Struct_field_list* fields = uncommon_type->struct_type()->fields();
1257
1258 Expression_list* vals = new Expression_list();
1259 vals->reserve(3);
1260
1261 Struct_field_list::const_iterator p = fields->begin();
1262 gcc_assert(p->field_name() == "name");
1263
1264 ++p;
1265 gcc_assert(p->field_name() == "pkgPath");
1266
1267 if (name == NULL)
1268 {
1269 vals->push_back(Expression::make_nil(bloc));
1270 vals->push_back(Expression::make_nil(bloc));
1271 }
1272 else
1273 {
1274 Named_object* no = name->named_object();
1275 std::string n = Gogo::unpack_hidden_name(no->name());
1276 Expression* s = Expression::make_string(n, bloc);
1277 vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
1278
1279 if (name->is_builtin())
1280 vals->push_back(Expression::make_nil(bloc));
1281 else
1282 {
1283 const Package* package = no->package();
1284 const std::string& unique_prefix(package == NULL
1285 ? gogo->unique_prefix()
1286 : package->unique_prefix());
1287 const std::string& package_name(package == NULL
1288 ? gogo->package_name()
1289 : package->name());
1290 n.assign(unique_prefix);
1291 n.append(1, '.');
1292 n.append(package_name);
1293 if (name->in_function() != NULL)
1294 {
1295 n.append(1, '.');
1296 n.append(Gogo::unpack_hidden_name(name->in_function()->name()));
1297 }
1298 s = Expression::make_string(n, bloc);
1299 vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
1300 }
1301 }
1302
1303 ++p;
1304 gcc_assert(p->field_name() == "methods");
1305 vals->push_back(this->methods_constructor(gogo, p->type(), methods,
1306 only_value_methods));
1307
1308 ++p;
1309 gcc_assert(p == fields->end());
1310
1311 Expression* r = Expression::make_struct_composite_literal(uncommon_type,
1312 vals, bloc);
1313 return Expression::make_unary(OPERATOR_AND, r, bloc);
1314 }
1315
1316 // Sort methods by name.
1317
1318 class Sort_methods
1319 {
1320 public:
1321 bool
1322 operator()(const std::pair<std::string, const Method*>& m1,
1323 const std::pair<std::string, const Method*>& m2) const
1324 { return m1.first < m2.first; }
1325 };
1326
1327 // Return a composite literal for the type method table for this type.
1328 // METHODS_TYPE is the type of the table, and is a slice type.
1329 // METHODS is the list of methods. If ONLY_VALUE_METHODS is true,
1330 // then only value methods are used.
1331
1332 Expression*
1333 Type::methods_constructor(Gogo* gogo, Type* methods_type,
1334 const Methods* methods,
1335 bool only_value_methods) const
1336 {
1337 source_location bloc = BUILTINS_LOCATION;
1338
1339 std::vector<std::pair<std::string, const Method*> > smethods;
1340 if (methods != NULL)
1341 {
1342 smethods.reserve(methods->count());
1343 for (Methods::const_iterator p = methods->begin();
1344 p != methods->end();
1345 ++p)
1346 {
1347 if (p->second->is_ambiguous())
1348 continue;
1349 if (only_value_methods && !p->second->is_value_method())
1350 continue;
1351 smethods.push_back(std::make_pair(p->first, p->second));
1352 }
1353 }
1354
1355 if (smethods.empty())
1356 return Expression::make_slice_composite_literal(methods_type, NULL, bloc);
1357
1358 std::sort(smethods.begin(), smethods.end(), Sort_methods());
1359
1360 Type* method_type = methods_type->array_type()->element_type();
1361
1362 Expression_list* vals = new Expression_list();
1363 vals->reserve(smethods.size());
1364 for (std::vector<std::pair<std::string, const Method*> >::const_iterator p
1365 = smethods.begin();
1366 p != smethods.end();
1367 ++p)
1368 vals->push_back(this->method_constructor(gogo, method_type, p->first,
1369 p->second));
1370
1371 return Expression::make_slice_composite_literal(methods_type, vals, bloc);
1372 }
1373
1374 // Return a composite literal for a single method. METHOD_TYPE is the
1375 // type of the entry. METHOD_NAME is the name of the method and M is
1376 // the method information.
1377
1378 Expression*
1379 Type::method_constructor(Gogo*, Type* method_type,
1380 const std::string& method_name,
1381 const Method* m) const
1382 {
1383 source_location bloc = BUILTINS_LOCATION;
1384
1385 const Struct_field_list* fields = method_type->struct_type()->fields();
1386
1387 Expression_list* vals = new Expression_list();
1388 vals->reserve(5);
1389
1390 Struct_field_list::const_iterator p = fields->begin();
1391 gcc_assert(p->field_name() == "name");
1392 const std::string n = Gogo::unpack_hidden_name(method_name);
1393 Expression* s = Expression::make_string(n, bloc);
1394 vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
1395
1396 ++p;
1397 gcc_assert(p->field_name() == "pkgPath");
1398 if (!Gogo::is_hidden_name(method_name))
1399 vals->push_back(Expression::make_nil(bloc));
1400 else
1401 {
1402 s = Expression::make_string(Gogo::hidden_name_prefix(method_name), bloc);
1403 vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
1404 }
1405
1406 Named_object* no = (m->needs_stub_method()
1407 ? m->stub_object()
1408 : m->named_object());
1409
1410 Function_type* mtype;
1411 if (no->is_function())
1412 mtype = no->func_value()->type();
1413 else
1414 mtype = no->func_declaration_value()->type();
1415 gcc_assert(mtype->is_method());
1416 Type* nonmethod_type = mtype->copy_without_receiver();
1417
1418 ++p;
1419 gcc_assert(p->field_name() == "mtyp");
1420 vals->push_back(Expression::make_type_descriptor(nonmethod_type, bloc));
1421
1422 ++p;
1423 gcc_assert(p->field_name() == "typ");
1424 vals->push_back(Expression::make_type_descriptor(mtype, bloc));
1425
1426 ++p;
1427 gcc_assert(p->field_name() == "tfn");
1428 vals->push_back(Expression::make_func_reference(no, NULL, bloc));
1429
1430 ++p;
1431 gcc_assert(p == fields->end());
1432
1433 return Expression::make_struct_composite_literal(method_type, vals, bloc);
1434 }
1435
1436 // Return a composite literal for the type descriptor of a plain type.
1437 // RUNTIME_TYPE_KIND is the value of the kind field. If NAME is not
1438 // NULL, it is the name to use as well as the list of methods.
1439
1440 Expression*
1441 Type::plain_type_descriptor(Gogo* gogo, int runtime_type_kind,
1442 Named_type* name)
1443 {
1444 return this->type_descriptor_constructor(gogo, runtime_type_kind,
1445 name, NULL, true);
1446 }
1447
1448 // Return the type reflection string for this type.
1449
1450 std::string
1451 Type::reflection(Gogo* gogo) const
1452 {
1453 std::string ret;
1454
1455 // The do_reflection virtual function should set RET to the
1456 // reflection string.
1457 this->do_reflection(gogo, &ret);
1458
1459 return ret;
1460 }
1461
1462 // Return a mangled name for the type.
1463
1464 std::string
1465 Type::mangled_name(Gogo* gogo) const
1466 {
1467 std::string ret;
1468
1469 // The do_mangled_name virtual function should set RET to the
1470 // mangled name. For a composite type it should append a code for
1471 // the composition and then call do_mangled_name on the components.
1472 this->do_mangled_name(gogo, &ret);
1473
1474 return ret;
1475 }
1476
1477 // Default function to export a type.
1478
1479 void
1480 Type::do_export(Export*) const
1481 {
1482 gcc_unreachable();
1483 }
1484
1485 // Import a type.
1486
1487 Type*
1488 Type::import_type(Import* imp)
1489 {
1490 if (imp->match_c_string("("))
1491 return Function_type::do_import(imp);
1492 else if (imp->match_c_string("*"))
1493 return Pointer_type::do_import(imp);
1494 else if (imp->match_c_string("struct "))
1495 return Struct_type::do_import(imp);
1496 else if (imp->match_c_string("["))
1497 return Array_type::do_import(imp);
1498 else if (imp->match_c_string("map "))
1499 return Map_type::do_import(imp);
1500 else if (imp->match_c_string("chan "))
1501 return Channel_type::do_import(imp);
1502 else if (imp->match_c_string("interface"))
1503 return Interface_type::do_import(imp);
1504 else
1505 {
1506 error_at(imp->location(), "import error: expected type");
1507 return Type::make_error_type();
1508 }
1509 }
1510
1511 // A type used to indicate a parsing error. This exists to simplify
1512 // later error detection.
1513
1514 class Error_type : public Type
1515 {
1516 public:
1517 Error_type()
1518 : Type(TYPE_ERROR)
1519 { }
1520
1521 protected:
1522 tree
1523 do_get_tree(Gogo*)
1524 { return error_mark_node; }
1525
1526 tree
1527 do_get_init_tree(Gogo*, tree, bool)
1528 { return error_mark_node; }
1529
1530 Expression*
1531 do_type_descriptor(Gogo*, Named_type*)
1532 { return Expression::make_error(BUILTINS_LOCATION); }
1533
1534 void
1535 do_reflection(Gogo*, std::string*) const
1536 { gcc_assert(saw_errors()); }
1537
1538 void
1539 do_mangled_name(Gogo*, std::string* ret) const
1540 { ret->push_back('E'); }
1541 };
1542
1543 Type*
1544 Type::make_error_type()
1545 {
1546 static Error_type singleton_error_type;
1547 return &singleton_error_type;
1548 }
1549
1550 // The void type.
1551
1552 class Void_type : public Type
1553 {
1554 public:
1555 Void_type()
1556 : Type(TYPE_VOID)
1557 { }
1558
1559 protected:
1560 tree
1561 do_get_tree(Gogo*)
1562 { return void_type_node; }
1563
1564 tree
1565 do_get_init_tree(Gogo*, tree, bool)
1566 { gcc_unreachable(); }
1567
1568 Expression*
1569 do_type_descriptor(Gogo*, Named_type*)
1570 { gcc_unreachable(); }
1571
1572 void
1573 do_reflection(Gogo*, std::string*) const
1574 { }
1575
1576 void
1577 do_mangled_name(Gogo*, std::string* ret) const
1578 { ret->push_back('v'); }
1579 };
1580
1581 Type*
1582 Type::make_void_type()
1583 {
1584 static Void_type singleton_void_type;
1585 return &singleton_void_type;
1586 }
1587
1588 // The boolean type.
1589
1590 class Boolean_type : public Type
1591 {
1592 public:
1593 Boolean_type()
1594 : Type(TYPE_BOOLEAN)
1595 { }
1596
1597 protected:
1598 tree
1599 do_get_tree(Gogo*)
1600 { return boolean_type_node; }
1601
1602 tree
1603 do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
1604 { return is_clear ? NULL : fold_convert(type_tree, boolean_false_node); }
1605
1606 Expression*
1607 do_type_descriptor(Gogo*, Named_type* name);
1608
1609 // We should not be asked for the reflection string of a basic type.
1610 void
1611 do_reflection(Gogo*, std::string* ret) const
1612 { ret->append("bool"); }
1613
1614 void
1615 do_mangled_name(Gogo*, std::string* ret) const
1616 { ret->push_back('b'); }
1617 };
1618
1619 // Make the type descriptor.
1620
1621 Expression*
1622 Boolean_type::do_type_descriptor(Gogo* gogo, Named_type* name)
1623 {
1624 if (name != NULL)
1625 return this->plain_type_descriptor(gogo, RUNTIME_TYPE_KIND_BOOL, name);
1626 else
1627 {
1628 Named_object* no = gogo->lookup_global("bool");
1629 gcc_assert(no != NULL);
1630 return Type::type_descriptor(gogo, no->type_value());
1631 }
1632 }
1633
1634 Type*
1635 Type::make_boolean_type()
1636 {
1637 static Boolean_type boolean_type;
1638 return &boolean_type;
1639 }
1640
1641 // The named type "bool".
1642
1643 static Named_type* named_bool_type;
1644
1645 // Get the named type "bool".
1646
1647 Named_type*
1648 Type::lookup_bool_type()
1649 {
1650 return named_bool_type;
1651 }
1652
1653 // Make the named type "bool".
1654
1655 Named_type*
1656 Type::make_named_bool_type()
1657 {
1658 Type* bool_type = Type::make_boolean_type();
1659 Named_object* named_object = Named_object::make_type("bool", NULL,
1660 bool_type,
1661 BUILTINS_LOCATION);
1662 Named_type* named_type = named_object->type_value();
1663 named_bool_type = named_type;
1664 return named_type;
1665 }
1666
1667 // Class Integer_type.
1668
1669 Integer_type::Named_integer_types Integer_type::named_integer_types;
1670
1671 // Create a new integer type. Non-abstract integer types always have
1672 // names.
1673
1674 Named_type*
1675 Integer_type::create_integer_type(const char* name, bool is_unsigned,
1676 int bits, int runtime_type_kind)
1677 {
1678 Integer_type* integer_type = new Integer_type(false, is_unsigned, bits,
1679 runtime_type_kind);
1680 std::string sname(name);
1681 Named_object* named_object = Named_object::make_type(sname, NULL,
1682 integer_type,
1683 BUILTINS_LOCATION);
1684 Named_type* named_type = named_object->type_value();
1685 std::pair<Named_integer_types::iterator, bool> ins =
1686 Integer_type::named_integer_types.insert(std::make_pair(sname, named_type));
1687 gcc_assert(ins.second);
1688 return named_type;
1689 }
1690
1691 // Look up an existing integer type.
1692
1693 Named_type*
1694 Integer_type::lookup_integer_type(const char* name)
1695 {
1696 Named_integer_types::const_iterator p =
1697 Integer_type::named_integer_types.find(name);
1698 gcc_assert(p != Integer_type::named_integer_types.end());
1699 return p->second;
1700 }
1701
1702 // Create a new abstract integer type.
1703
1704 Integer_type*
1705 Integer_type::create_abstract_integer_type()
1706 {
1707 static Integer_type* abstract_type;
1708 if (abstract_type == NULL)
1709 abstract_type = new Integer_type(true, false, INT_TYPE_SIZE,
1710 RUNTIME_TYPE_KIND_INT);
1711 return abstract_type;
1712 }
1713
1714 // Integer type compatibility.
1715
1716 bool
1717 Integer_type::is_identical(const Integer_type* t) const
1718 {
1719 if (this->is_unsigned_ != t->is_unsigned_ || this->bits_ != t->bits_)
1720 return false;
1721 return this->is_abstract_ == t->is_abstract_;
1722 }
1723
1724 // Hash code.
1725
1726 unsigned int
1727 Integer_type::do_hash_for_method(Gogo*) const
1728 {
1729 return ((this->bits_ << 4)
1730 + ((this->is_unsigned_ ? 1 : 0) << 8)
1731 + ((this->is_abstract_ ? 1 : 0) << 9));
1732 }
1733
1734 // Get the tree for an Integer_type.
1735
1736 tree
1737 Integer_type::do_get_tree(Gogo*)
1738 {
1739 gcc_assert(!this->is_abstract_);
1740 if (this->is_unsigned_)
1741 {
1742 if (this->bits_ == INT_TYPE_SIZE)
1743 return unsigned_type_node;
1744 else if (this->bits_ == CHAR_TYPE_SIZE)
1745 return unsigned_char_type_node;
1746 else if (this->bits_ == SHORT_TYPE_SIZE)
1747 return short_unsigned_type_node;
1748 else if (this->bits_ == LONG_TYPE_SIZE)
1749 return long_unsigned_type_node;
1750 else if (this->bits_ == LONG_LONG_TYPE_SIZE)
1751 return long_long_unsigned_type_node;
1752 else
1753 return make_unsigned_type(this->bits_);
1754 }
1755 else
1756 {
1757 if (this->bits_ == INT_TYPE_SIZE)
1758 return integer_type_node;
1759 else if (this->bits_ == CHAR_TYPE_SIZE)
1760 return signed_char_type_node;
1761 else if (this->bits_ == SHORT_TYPE_SIZE)
1762 return short_integer_type_node;
1763 else if (this->bits_ == LONG_TYPE_SIZE)
1764 return long_integer_type_node;
1765 else if (this->bits_ == LONG_LONG_TYPE_SIZE)
1766 return long_long_integer_type_node;
1767 else
1768 return make_signed_type(this->bits_);
1769 }
1770 }
1771
1772 tree
1773 Integer_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
1774 {
1775 return is_clear ? NULL : build_int_cst(type_tree, 0);
1776 }
1777
1778 // The type descriptor for an integer type. Integer types are always
1779 // named.
1780
1781 Expression*
1782 Integer_type::do_type_descriptor(Gogo* gogo, Named_type* name)
1783 {
1784 gcc_assert(name != NULL);
1785 return this->plain_type_descriptor(gogo, this->runtime_type_kind_, name);
1786 }
1787
1788 // We should not be asked for the reflection string of a basic type.
1789
1790 void
1791 Integer_type::do_reflection(Gogo*, std::string*) const
1792 {
1793 gcc_unreachable();
1794 }
1795
1796 // Mangled name.
1797
1798 void
1799 Integer_type::do_mangled_name(Gogo*, std::string* ret) const
1800 {
1801 char buf[100];
1802 snprintf(buf, sizeof buf, "i%s%s%de",
1803 this->is_abstract_ ? "a" : "",
1804 this->is_unsigned_ ? "u" : "",
1805 this->bits_);
1806 ret->append(buf);
1807 }
1808
1809 // Make an integer type.
1810
1811 Named_type*
1812 Type::make_integer_type(const char* name, bool is_unsigned, int bits,
1813 int runtime_type_kind)
1814 {
1815 return Integer_type::create_integer_type(name, is_unsigned, bits,
1816 runtime_type_kind);
1817 }
1818
1819 // Make an abstract integer type.
1820
1821 Integer_type*
1822 Type::make_abstract_integer_type()
1823 {
1824 return Integer_type::create_abstract_integer_type();
1825 }
1826
1827 // Look up an integer type.
1828
1829 Named_type*
1830 Type::lookup_integer_type(const char* name)
1831 {
1832 return Integer_type::lookup_integer_type(name);
1833 }
1834
1835 // Class Float_type.
1836
1837 Float_type::Named_float_types Float_type::named_float_types;
1838
1839 // Create a new float type. Non-abstract float types always have
1840 // names.
1841
1842 Named_type*
1843 Float_type::create_float_type(const char* name, int bits,
1844 int runtime_type_kind)
1845 {
1846 Float_type* float_type = new Float_type(false, bits, runtime_type_kind);
1847 std::string sname(name);
1848 Named_object* named_object = Named_object::make_type(sname, NULL, float_type,
1849 BUILTINS_LOCATION);
1850 Named_type* named_type = named_object->type_value();
1851 std::pair<Named_float_types::iterator, bool> ins =
1852 Float_type::named_float_types.insert(std::make_pair(sname, named_type));
1853 gcc_assert(ins.second);
1854 return named_type;
1855 }
1856
1857 // Look up an existing float type.
1858
1859 Named_type*
1860 Float_type::lookup_float_type(const char* name)
1861 {
1862 Named_float_types::const_iterator p =
1863 Float_type::named_float_types.find(name);
1864 gcc_assert(p != Float_type::named_float_types.end());
1865 return p->second;
1866 }
1867
1868 // Create a new abstract float type.
1869
1870 Float_type*
1871 Float_type::create_abstract_float_type()
1872 {
1873 static Float_type* abstract_type;
1874 if (abstract_type == NULL)
1875 abstract_type = new Float_type(true, 64, RUNTIME_TYPE_KIND_FLOAT64);
1876 return abstract_type;
1877 }
1878
1879 // Whether this type is identical with T.
1880
1881 bool
1882 Float_type::is_identical(const Float_type* t) const
1883 {
1884 if (this->bits_ != t->bits_)
1885 return false;
1886 return this->is_abstract_ == t->is_abstract_;
1887 }
1888
1889 // Hash code.
1890
1891 unsigned int
1892 Float_type::do_hash_for_method(Gogo*) const
1893 {
1894 return (this->bits_ << 4) + ((this->is_abstract_ ? 1 : 0) << 8);
1895 }
1896
1897 // Get a tree without using a Gogo*.
1898
1899 tree
1900 Float_type::type_tree() const
1901 {
1902 if (this->bits_ == FLOAT_TYPE_SIZE)
1903 return float_type_node;
1904 else if (this->bits_ == DOUBLE_TYPE_SIZE)
1905 return double_type_node;
1906 else if (this->bits_ == LONG_DOUBLE_TYPE_SIZE)
1907 return long_double_type_node;
1908 else
1909 {
1910 tree ret = make_node(REAL_TYPE);
1911 TYPE_PRECISION(ret) = this->bits_;
1912 layout_type(ret);
1913 return ret;
1914 }
1915 }
1916
1917 // Get a tree.
1918
1919 tree
1920 Float_type::do_get_tree(Gogo*)
1921 {
1922 return this->type_tree();
1923 }
1924
1925 tree
1926 Float_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
1927 {
1928 if (is_clear)
1929 return NULL;
1930 REAL_VALUE_TYPE r;
1931 real_from_integer(&r, TYPE_MODE(type_tree), 0, 0, 0);
1932 return build_real(type_tree, r);
1933 }
1934
1935 // The type descriptor for a float type. Float types are always named.
1936
1937 Expression*
1938 Float_type::do_type_descriptor(Gogo* gogo, Named_type* name)
1939 {
1940 gcc_assert(name != NULL);
1941 return this->plain_type_descriptor(gogo, this->runtime_type_kind_, name);
1942 }
1943
1944 // We should not be asked for the reflection string of a basic type.
1945
1946 void
1947 Float_type::do_reflection(Gogo*, std::string*) const
1948 {
1949 gcc_unreachable();
1950 }
1951
1952 // Mangled name.
1953
1954 void
1955 Float_type::do_mangled_name(Gogo*, std::string* ret) const
1956 {
1957 char buf[100];
1958 snprintf(buf, sizeof buf, "f%s%de",
1959 this->is_abstract_ ? "a" : "",
1960 this->bits_);
1961 ret->append(buf);
1962 }
1963
1964 // Make a floating point type.
1965
1966 Named_type*
1967 Type::make_float_type(const char* name, int bits, int runtime_type_kind)
1968 {
1969 return Float_type::create_float_type(name, bits, runtime_type_kind);
1970 }
1971
1972 // Make an abstract float type.
1973
1974 Float_type*
1975 Type::make_abstract_float_type()
1976 {
1977 return Float_type::create_abstract_float_type();
1978 }
1979
1980 // Look up a float type.
1981
1982 Named_type*
1983 Type::lookup_float_type(const char* name)
1984 {
1985 return Float_type::lookup_float_type(name);
1986 }
1987
1988 // Class Complex_type.
1989
1990 Complex_type::Named_complex_types Complex_type::named_complex_types;
1991
1992 // Create a new complex type. Non-abstract complex types always have
1993 // names.
1994
1995 Named_type*
1996 Complex_type::create_complex_type(const char* name, int bits,
1997 int runtime_type_kind)
1998 {
1999 Complex_type* complex_type = new Complex_type(false, bits,
2000 runtime_type_kind);
2001 std::string sname(name);
2002 Named_object* named_object = Named_object::make_type(sname, NULL,
2003 complex_type,
2004 BUILTINS_LOCATION);
2005 Named_type* named_type = named_object->type_value();
2006 std::pair<Named_complex_types::iterator, bool> ins =
2007 Complex_type::named_complex_types.insert(std::make_pair(sname,
2008 named_type));
2009 gcc_assert(ins.second);
2010 return named_type;
2011 }
2012
2013 // Look up an existing complex type.
2014
2015 Named_type*
2016 Complex_type::lookup_complex_type(const char* name)
2017 {
2018 Named_complex_types::const_iterator p =
2019 Complex_type::named_complex_types.find(name);
2020 gcc_assert(p != Complex_type::named_complex_types.end());
2021 return p->second;
2022 }
2023
2024 // Create a new abstract complex type.
2025
2026 Complex_type*
2027 Complex_type::create_abstract_complex_type()
2028 {
2029 static Complex_type* abstract_type;
2030 if (abstract_type == NULL)
2031 abstract_type = new Complex_type(true, 128, RUNTIME_TYPE_KIND_COMPLEX128);
2032 return abstract_type;
2033 }
2034
2035 // Whether this type is identical with T.
2036
2037 bool
2038 Complex_type::is_identical(const Complex_type *t) const
2039 {
2040 if (this->bits_ != t->bits_)
2041 return false;
2042 return this->is_abstract_ == t->is_abstract_;
2043 }
2044
2045 // Hash code.
2046
2047 unsigned int
2048 Complex_type::do_hash_for_method(Gogo*) const
2049 {
2050 return (this->bits_ << 4) + ((this->is_abstract_ ? 1 : 0) << 8);
2051 }
2052
2053 // Get a tree without using a Gogo*.
2054
2055 tree
2056 Complex_type::type_tree() const
2057 {
2058 if (this->bits_ == FLOAT_TYPE_SIZE * 2)
2059 return complex_float_type_node;
2060 else if (this->bits_ == DOUBLE_TYPE_SIZE * 2)
2061 return complex_double_type_node;
2062 else if (this->bits_ == LONG_DOUBLE_TYPE_SIZE * 2)
2063 return complex_long_double_type_node;
2064 else
2065 {
2066 tree ret = make_node(REAL_TYPE);
2067 TYPE_PRECISION(ret) = this->bits_ / 2;
2068 layout_type(ret);
2069 return build_complex_type(ret);
2070 }
2071 }
2072
2073 // Get a tree.
2074
2075 tree
2076 Complex_type::do_get_tree(Gogo*)
2077 {
2078 return this->type_tree();
2079 }
2080
2081 // Zero initializer.
2082
2083 tree
2084 Complex_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
2085 {
2086 if (is_clear)
2087 return NULL;
2088 REAL_VALUE_TYPE r;
2089 real_from_integer(&r, TYPE_MODE(TREE_TYPE(type_tree)), 0, 0, 0);
2090 return build_complex(type_tree, build_real(TREE_TYPE(type_tree), r),
2091 build_real(TREE_TYPE(type_tree), r));
2092 }
2093
2094 // The type descriptor for a complex type. Complex types are always
2095 // named.
2096
2097 Expression*
2098 Complex_type::do_type_descriptor(Gogo* gogo, Named_type* name)
2099 {
2100 gcc_assert(name != NULL);
2101 return this->plain_type_descriptor(gogo, this->runtime_type_kind_, name);
2102 }
2103
2104 // We should not be asked for the reflection string of a basic type.
2105
2106 void
2107 Complex_type::do_reflection(Gogo*, std::string*) const
2108 {
2109 gcc_unreachable();
2110 }
2111
2112 // Mangled name.
2113
2114 void
2115 Complex_type::do_mangled_name(Gogo*, std::string* ret) const
2116 {
2117 char buf[100];
2118 snprintf(buf, sizeof buf, "c%s%de",
2119 this->is_abstract_ ? "a" : "",
2120 this->bits_);
2121 ret->append(buf);
2122 }
2123
2124 // Make a complex type.
2125
2126 Named_type*
2127 Type::make_complex_type(const char* name, int bits, int runtime_type_kind)
2128 {
2129 return Complex_type::create_complex_type(name, bits, runtime_type_kind);
2130 }
2131
2132 // Make an abstract complex type.
2133
2134 Complex_type*
2135 Type::make_abstract_complex_type()
2136 {
2137 return Complex_type::create_abstract_complex_type();
2138 }
2139
2140 // Look up a complex type.
2141
2142 Named_type*
2143 Type::lookup_complex_type(const char* name)
2144 {
2145 return Complex_type::lookup_complex_type(name);
2146 }
2147
2148 // Class String_type.
2149
2150 // Return the tree for String_type. A string is a struct with two
2151 // fields: a pointer to the characters and a length.
2152
2153 tree
2154 String_type::do_get_tree(Gogo*)
2155 {
2156 static tree struct_type;
2157 return Gogo::builtin_struct(&struct_type, "__go_string", NULL_TREE, 2,
2158 "__data",
2159 build_pointer_type(unsigned_char_type_node),
2160 "__length",
2161 integer_type_node);
2162 }
2163
2164 // Return a tree for the length of STRING.
2165
2166 tree
2167 String_type::length_tree(Gogo*, tree string)
2168 {
2169 tree string_type = TREE_TYPE(string);
2170 gcc_assert(TREE_CODE(string_type) == RECORD_TYPE);
2171 tree length_field = DECL_CHAIN(TYPE_FIELDS(string_type));
2172 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(length_field)),
2173 "__length") == 0);
2174 return fold_build3(COMPONENT_REF, integer_type_node, string,
2175 length_field, NULL_TREE);
2176 }
2177
2178 // Return a tree for a pointer to the bytes of STRING.
2179
2180 tree
2181 String_type::bytes_tree(Gogo*, tree string)
2182 {
2183 tree string_type = TREE_TYPE(string);
2184 gcc_assert(TREE_CODE(string_type) == RECORD_TYPE);
2185 tree bytes_field = TYPE_FIELDS(string_type);
2186 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(bytes_field)),
2187 "__data") == 0);
2188 return fold_build3(COMPONENT_REF, TREE_TYPE(bytes_field), string,
2189 bytes_field, NULL_TREE);
2190 }
2191
2192 // We initialize a string to { NULL, 0 }.
2193
2194 tree
2195 String_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
2196 {
2197 if (is_clear)
2198 return NULL_TREE;
2199
2200 gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
2201
2202 VEC(constructor_elt, gc)* init = VEC_alloc(constructor_elt, gc, 2);
2203
2204 for (tree field = TYPE_FIELDS(type_tree);
2205 field != NULL_TREE;
2206 field = DECL_CHAIN(field))
2207 {
2208 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
2209 elt->index = field;
2210 elt->value = fold_convert(TREE_TYPE(field), size_zero_node);
2211 }
2212
2213 tree ret = build_constructor(type_tree, init);
2214 TREE_CONSTANT(ret) = 1;
2215 return ret;
2216 }
2217
2218 // The type descriptor for the string type.
2219
2220 Expression*
2221 String_type::do_type_descriptor(Gogo* gogo, Named_type* name)
2222 {
2223 if (name != NULL)
2224 return this->plain_type_descriptor(gogo, RUNTIME_TYPE_KIND_STRING, name);
2225 else
2226 {
2227 Named_object* no = gogo->lookup_global("string");
2228 gcc_assert(no != NULL);
2229 return Type::type_descriptor(gogo, no->type_value());
2230 }
2231 }
2232
2233 // We should not be asked for the reflection string of a basic type.
2234
2235 void
2236 String_type::do_reflection(Gogo*, std::string* ret) const
2237 {
2238 ret->append("string");
2239 }
2240
2241 // Mangled name of a string type.
2242
2243 void
2244 String_type::do_mangled_name(Gogo*, std::string* ret) const
2245 {
2246 ret->push_back('z');
2247 }
2248
2249 // Make a string type.
2250
2251 Type*
2252 Type::make_string_type()
2253 {
2254 static String_type string_type;
2255 return &string_type;
2256 }
2257
2258 // The named type "string".
2259
2260 static Named_type* named_string_type;
2261
2262 // Get the named type "string".
2263
2264 Named_type*
2265 Type::lookup_string_type()
2266 {
2267 return named_string_type;
2268 }
2269
2270 // Make the named type string.
2271
2272 Named_type*
2273 Type::make_named_string_type()
2274 {
2275 Type* string_type = Type::make_string_type();
2276 Named_object* named_object = Named_object::make_type("string", NULL,
2277 string_type,
2278 BUILTINS_LOCATION);
2279 Named_type* named_type = named_object->type_value();
2280 named_string_type = named_type;
2281 return named_type;
2282 }
2283
2284 // The sink type. This is the type of the blank identifier _. Any
2285 // type may be assigned to it.
2286
2287 class Sink_type : public Type
2288 {
2289 public:
2290 Sink_type()
2291 : Type(TYPE_SINK)
2292 { }
2293
2294 protected:
2295 tree
2296 do_get_tree(Gogo*)
2297 { gcc_unreachable(); }
2298
2299 tree
2300 do_get_init_tree(Gogo*, tree, bool)
2301 { gcc_unreachable(); }
2302
2303 Expression*
2304 do_type_descriptor(Gogo*, Named_type*)
2305 { gcc_unreachable(); }
2306
2307 void
2308 do_reflection(Gogo*, std::string*) const
2309 { gcc_unreachable(); }
2310
2311 void
2312 do_mangled_name(Gogo*, std::string*) const
2313 { gcc_unreachable(); }
2314 };
2315
2316 // Make the sink type.
2317
2318 Type*
2319 Type::make_sink_type()
2320 {
2321 static Sink_type sink_type;
2322 return &sink_type;
2323 }
2324
2325 // Class Function_type.
2326
2327 // Traversal.
2328
2329 int
2330 Function_type::do_traverse(Traverse* traverse)
2331 {
2332 if (this->receiver_ != NULL
2333 && Type::traverse(this->receiver_->type(), traverse) == TRAVERSE_EXIT)
2334 return TRAVERSE_EXIT;
2335 if (this->parameters_ != NULL
2336 && this->parameters_->traverse(traverse) == TRAVERSE_EXIT)
2337 return TRAVERSE_EXIT;
2338 if (this->results_ != NULL
2339 && this->results_->traverse(traverse) == TRAVERSE_EXIT)
2340 return TRAVERSE_EXIT;
2341 return TRAVERSE_CONTINUE;
2342 }
2343
2344 // Returns whether T is a valid redeclaration of this type. If this
2345 // returns false, and REASON is not NULL, *REASON may be set to a
2346 // brief explanation of why it returned false.
2347
2348 bool
2349 Function_type::is_valid_redeclaration(const Function_type* t,
2350 std::string* reason) const
2351 {
2352 if (!this->is_identical(t, false, true, reason))
2353 return false;
2354
2355 // A redeclaration of a function is required to use the same names
2356 // for the receiver and parameters.
2357 if (this->receiver() != NULL
2358 && this->receiver()->name() != t->receiver()->name()
2359 && this->receiver()->name() != Import::import_marker
2360 && t->receiver()->name() != Import::import_marker)
2361 {
2362 if (reason != NULL)
2363 *reason = "receiver name changed";
2364 return false;
2365 }
2366
2367 const Typed_identifier_list* parms1 = this->parameters();
2368 const Typed_identifier_list* parms2 = t->parameters();
2369 if (parms1 != NULL)
2370 {
2371 Typed_identifier_list::const_iterator p1 = parms1->begin();
2372 for (Typed_identifier_list::const_iterator p2 = parms2->begin();
2373 p2 != parms2->end();
2374 ++p2, ++p1)
2375 {
2376 if (p1->name() != p2->name()
2377 && p1->name() != Import::import_marker
2378 && p2->name() != Import::import_marker)
2379 {
2380 if (reason != NULL)
2381 *reason = "parameter name changed";
2382 return false;
2383 }
2384
2385 // This is called at parse time, so we may have unknown
2386 // types.
2387 Type* t1 = p1->type()->forwarded();
2388 Type* t2 = p2->type()->forwarded();
2389 if (t1 != t2
2390 && t1->forward_declaration_type() != NULL
2391 && (t2->forward_declaration_type() == NULL
2392 || (t1->forward_declaration_type()->named_object()
2393 != t2->forward_declaration_type()->named_object())))
2394 return false;
2395 }
2396 }
2397
2398 const Typed_identifier_list* results1 = this->results();
2399 const Typed_identifier_list* results2 = t->results();
2400 if (results1 != NULL)
2401 {
2402 Typed_identifier_list::const_iterator res1 = results1->begin();
2403 for (Typed_identifier_list::const_iterator res2 = results2->begin();
2404 res2 != results2->end();
2405 ++res2, ++res1)
2406 {
2407 if (res1->name() != res2->name()
2408 && res1->name() != Import::import_marker
2409 && res2->name() != Import::import_marker)
2410 {
2411 if (reason != NULL)
2412 *reason = "result name changed";
2413 return false;
2414 }
2415
2416 // This is called at parse time, so we may have unknown
2417 // types.
2418 Type* t1 = res1->type()->forwarded();
2419 Type* t2 = res2->type()->forwarded();
2420 if (t1 != t2
2421 && t1->forward_declaration_type() != NULL
2422 && (t2->forward_declaration_type() == NULL
2423 || (t1->forward_declaration_type()->named_object()
2424 != t2->forward_declaration_type()->named_object())))
2425 return false;
2426 }
2427 }
2428
2429 return true;
2430 }
2431
2432 // Check whether T is the same as this type.
2433
2434 bool
2435 Function_type::is_identical(const Function_type* t, bool ignore_receiver,
2436 bool errors_are_identical,
2437 std::string* reason) const
2438 {
2439 if (!ignore_receiver)
2440 {
2441 const Typed_identifier* r1 = this->receiver();
2442 const Typed_identifier* r2 = t->receiver();
2443 if ((r1 != NULL) != (r2 != NULL))
2444 {
2445 if (reason != NULL)
2446 *reason = _("different receiver types");
2447 return false;
2448 }
2449 if (r1 != NULL)
2450 {
2451 if (!Type::are_identical(r1->type(), r2->type(), errors_are_identical,
2452 reason))
2453 {
2454 if (reason != NULL && !reason->empty())
2455 *reason = "receiver: " + *reason;
2456 return false;
2457 }
2458 }
2459 }
2460
2461 const Typed_identifier_list* parms1 = this->parameters();
2462 const Typed_identifier_list* parms2 = t->parameters();
2463 if ((parms1 != NULL) != (parms2 != NULL))
2464 {
2465 if (reason != NULL)
2466 *reason = _("different number of parameters");
2467 return false;
2468 }
2469 if (parms1 != NULL)
2470 {
2471 Typed_identifier_list::const_iterator p1 = parms1->begin();
2472 for (Typed_identifier_list::const_iterator p2 = parms2->begin();
2473 p2 != parms2->end();
2474 ++p2, ++p1)
2475 {
2476 if (p1 == parms1->end())
2477 {
2478 if (reason != NULL)
2479 *reason = _("different number of parameters");
2480 return false;
2481 }
2482
2483 if (!Type::are_identical(p1->type(), p2->type(),
2484 errors_are_identical, NULL))
2485 {
2486 if (reason != NULL)
2487 *reason = _("different parameter types");
2488 return false;
2489 }
2490 }
2491 if (p1 != parms1->end())
2492 {
2493 if (reason != NULL)
2494 *reason = _("different number of parameters");
2495 return false;
2496 }
2497 }
2498
2499 if (this->is_varargs() != t->is_varargs())
2500 {
2501 if (reason != NULL)
2502 *reason = _("different varargs");
2503 return false;
2504 }
2505
2506 const Typed_identifier_list* results1 = this->results();
2507 const Typed_identifier_list* results2 = t->results();
2508 if ((results1 != NULL) != (results2 != NULL))
2509 {
2510 if (reason != NULL)
2511 *reason = _("different number of results");
2512 return false;
2513 }
2514 if (results1 != NULL)
2515 {
2516 Typed_identifier_list::const_iterator res1 = results1->begin();
2517 for (Typed_identifier_list::const_iterator res2 = results2->begin();
2518 res2 != results2->end();
2519 ++res2, ++res1)
2520 {
2521 if (res1 == results1->end())
2522 {
2523 if (reason != NULL)
2524 *reason = _("different number of results");
2525 return false;
2526 }
2527
2528 if (!Type::are_identical(res1->type(), res2->type(),
2529 errors_are_identical, NULL))
2530 {
2531 if (reason != NULL)
2532 *reason = _("different result types");
2533 return false;
2534 }
2535 }
2536 if (res1 != results1->end())
2537 {
2538 if (reason != NULL)
2539 *reason = _("different number of results");
2540 return false;
2541 }
2542 }
2543
2544 return true;
2545 }
2546
2547 // Hash code.
2548
2549 unsigned int
2550 Function_type::do_hash_for_method(Gogo* gogo) const
2551 {
2552 unsigned int ret = 0;
2553 // We ignore the receiver type for hash codes, because we need to
2554 // get the same hash code for a method in an interface and a method
2555 // declared for a type. The former will not have a receiver.
2556 if (this->parameters_ != NULL)
2557 {
2558 int shift = 1;
2559 for (Typed_identifier_list::const_iterator p = this->parameters_->begin();
2560 p != this->parameters_->end();
2561 ++p, ++shift)
2562 ret += p->type()->hash_for_method(gogo) << shift;
2563 }
2564 if (this->results_ != NULL)
2565 {
2566 int shift = 2;
2567 for (Typed_identifier_list::const_iterator p = this->results_->begin();
2568 p != this->results_->end();
2569 ++p, ++shift)
2570 ret += p->type()->hash_for_method(gogo) << shift;
2571 }
2572 if (this->is_varargs_)
2573 ret += 1;
2574 ret <<= 4;
2575 return ret;
2576 }
2577
2578 // Get the tree for a function type.
2579
2580 tree
2581 Function_type::do_get_tree(Gogo* gogo)
2582 {
2583 tree args = NULL_TREE;
2584 tree* pp = &args;
2585
2586 if (this->receiver_ != NULL)
2587 {
2588 Type* rtype = this->receiver_->type();
2589 tree ptype = rtype->get_tree(gogo);
2590 if (ptype == error_mark_node)
2591 return error_mark_node;
2592
2593 // We always pass the address of the receiver parameter, in
2594 // order to make interface calls work with unknown types.
2595 if (rtype->points_to() == NULL)
2596 ptype = build_pointer_type(ptype);
2597
2598 *pp = tree_cons (NULL_TREE, ptype, NULL_TREE);
2599 pp = &TREE_CHAIN (*pp);
2600 }
2601
2602 if (this->parameters_ != NULL)
2603 {
2604 for (Typed_identifier_list::const_iterator p = this->parameters_->begin();
2605 p != this->parameters_->end();
2606 ++p)
2607 {
2608 tree ptype = p->type()->get_tree(gogo);
2609 if (ptype == error_mark_node)
2610 return error_mark_node;
2611 *pp = tree_cons (NULL_TREE, ptype, NULL_TREE);
2612 pp = &TREE_CHAIN (*pp);
2613 }
2614 }
2615
2616 // Varargs is handled entirely at the Go level. At the tree level,
2617 // functions are not varargs.
2618 *pp = void_list_node;
2619
2620 tree result;
2621 if (this->results_ == NULL)
2622 result = void_type_node;
2623 else if (this->results_->size() == 1)
2624 result = this->results_->begin()->type()->get_tree(gogo);
2625 else
2626 {
2627 result = make_node(RECORD_TYPE);
2628 tree field_trees = NULL_TREE;
2629 tree* pp = &field_trees;
2630 for (Typed_identifier_list::const_iterator p = this->results_->begin();
2631 p != this->results_->end();
2632 ++p)
2633 {
2634 const std::string name = (p->name().empty()
2635 ? "UNNAMED"
2636 : Gogo::unpack_hidden_name(p->name()));
2637 tree name_tree = get_identifier_with_length(name.data(),
2638 name.length());
2639 tree field_type_tree = p->type()->get_tree(gogo);
2640 if (field_type_tree == error_mark_node)
2641 return error_mark_node;
2642 tree field = build_decl(this->location_, FIELD_DECL, name_tree,
2643 field_type_tree);
2644 DECL_CONTEXT(field) = result;
2645 *pp = field;
2646 pp = &DECL_CHAIN(field);
2647 }
2648 TYPE_FIELDS(result) = field_trees;
2649 layout_type(result);
2650 }
2651
2652 if (result == error_mark_node)
2653 return error_mark_node;
2654
2655 tree fntype = build_function_type(result, args);
2656 if (fntype == error_mark_node)
2657 return fntype;
2658
2659 return build_pointer_type(fntype);
2660 }
2661
2662 // Functions are initialized to NULL.
2663
2664 tree
2665 Function_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
2666 {
2667 if (is_clear)
2668 return NULL;
2669 return fold_convert(type_tree, null_pointer_node);
2670 }
2671
2672 // The type of a function type descriptor.
2673
2674 Type*
2675 Function_type::make_function_type_descriptor_type()
2676 {
2677 static Type* ret;
2678 if (ret == NULL)
2679 {
2680 Type* tdt = Type::make_type_descriptor_type();
2681 Type* ptdt = Type::make_type_descriptor_ptr_type();
2682
2683 Type* bool_type = Type::lookup_bool_type();
2684
2685 Type* slice_type = Type::make_array_type(ptdt, NULL);
2686
2687 Struct_type* s = Type::make_builtin_struct_type(4,
2688 "", tdt,
2689 "dotdotdot", bool_type,
2690 "in", slice_type,
2691 "out", slice_type);
2692
2693 ret = Type::make_builtin_named_type("FuncType", s);
2694 }
2695
2696 return ret;
2697 }
2698
2699 // The type descriptor for a function type.
2700
2701 Expression*
2702 Function_type::do_type_descriptor(Gogo* gogo, Named_type* name)
2703 {
2704 source_location bloc = BUILTINS_LOCATION;
2705
2706 Type* ftdt = Function_type::make_function_type_descriptor_type();
2707
2708 const Struct_field_list* fields = ftdt->struct_type()->fields();
2709
2710 Expression_list* vals = new Expression_list();
2711 vals->reserve(4);
2712
2713 Struct_field_list::const_iterator p = fields->begin();
2714 gcc_assert(p->field_name() == "commonType");
2715 vals->push_back(this->type_descriptor_constructor(gogo,
2716 RUNTIME_TYPE_KIND_FUNC,
2717 name, NULL, true));
2718
2719 ++p;
2720 gcc_assert(p->field_name() == "dotdotdot");
2721 vals->push_back(Expression::make_boolean(this->is_varargs(), bloc));
2722
2723 ++p;
2724 gcc_assert(p->field_name() == "in");
2725 vals->push_back(this->type_descriptor_params(p->type(), this->receiver(),
2726 this->parameters()));
2727
2728 ++p;
2729 gcc_assert(p->field_name() == "out");
2730 vals->push_back(this->type_descriptor_params(p->type(), NULL,
2731 this->results()));
2732
2733 ++p;
2734 gcc_assert(p == fields->end());
2735
2736 return Expression::make_struct_composite_literal(ftdt, vals, bloc);
2737 }
2738
2739 // Return a composite literal for the parameters or results of a type
2740 // descriptor.
2741
2742 Expression*
2743 Function_type::type_descriptor_params(Type* params_type,
2744 const Typed_identifier* receiver,
2745 const Typed_identifier_list* params)
2746 {
2747 source_location bloc = BUILTINS_LOCATION;
2748
2749 if (receiver == NULL && params == NULL)
2750 return Expression::make_slice_composite_literal(params_type, NULL, bloc);
2751
2752 Expression_list* vals = new Expression_list();
2753 vals->reserve((params == NULL ? 0 : params->size())
2754 + (receiver != NULL ? 1 : 0));
2755
2756 if (receiver != NULL)
2757 {
2758 Type* rtype = receiver->type();
2759 // The receiver is always passed as a pointer. FIXME: Is this
2760 // right? Should that fact affect the type descriptor?
2761 if (rtype->points_to() == NULL)
2762 rtype = Type::make_pointer_type(rtype);
2763 vals->push_back(Expression::make_type_descriptor(rtype, bloc));
2764 }
2765
2766 if (params != NULL)
2767 {
2768 for (Typed_identifier_list::const_iterator p = params->begin();
2769 p != params->end();
2770 ++p)
2771 vals->push_back(Expression::make_type_descriptor(p->type(), bloc));
2772 }
2773
2774 return Expression::make_slice_composite_literal(params_type, vals, bloc);
2775 }
2776
2777 // The reflection string.
2778
2779 void
2780 Function_type::do_reflection(Gogo* gogo, std::string* ret) const
2781 {
2782 // FIXME: Turn this off until we straighten out the type of the
2783 // struct field used in a go statement which calls a method.
2784 // gcc_assert(this->receiver_ == NULL);
2785
2786 ret->append("func");
2787
2788 if (this->receiver_ != NULL)
2789 {
2790 ret->push_back('(');
2791 this->append_reflection(this->receiver_->type(), gogo, ret);
2792 ret->push_back(')');
2793 }
2794
2795 ret->push_back('(');
2796 const Typed_identifier_list* params = this->parameters();
2797 if (params != NULL)
2798 {
2799 bool is_varargs = this->is_varargs_;
2800 for (Typed_identifier_list::const_iterator p = params->begin();
2801 p != params->end();
2802 ++p)
2803 {
2804 if (p != params->begin())
2805 ret->append(", ");
2806 if (!is_varargs || p + 1 != params->end())
2807 this->append_reflection(p->type(), gogo, ret);
2808 else
2809 {
2810 ret->append("...");
2811 this->append_reflection(p->type()->array_type()->element_type(),
2812 gogo, ret);
2813 }
2814 }
2815 }
2816 ret->push_back(')');
2817
2818 const Typed_identifier_list* results = this->results();
2819 if (results != NULL && !results->empty())
2820 {
2821 if (results->size() == 1)
2822 ret->push_back(' ');
2823 else
2824 ret->append(" (");
2825 for (Typed_identifier_list::const_iterator p = results->begin();
2826 p != results->end();
2827 ++p)
2828 {
2829 if (p != results->begin())
2830 ret->append(", ");
2831 this->append_reflection(p->type(), gogo, ret);
2832 }
2833 if (results->size() > 1)
2834 ret->push_back(')');
2835 }
2836 }
2837
2838 // Mangled name.
2839
2840 void
2841 Function_type::do_mangled_name(Gogo* gogo, std::string* ret) const
2842 {
2843 ret->push_back('F');
2844
2845 if (this->receiver_ != NULL)
2846 {
2847 ret->push_back('m');
2848 this->append_mangled_name(this->receiver_->type(), gogo, ret);
2849 }
2850
2851 const Typed_identifier_list* params = this->parameters();
2852 if (params != NULL)
2853 {
2854 ret->push_back('p');
2855 for (Typed_identifier_list::const_iterator p = params->begin();
2856 p != params->end();
2857 ++p)
2858 this->append_mangled_name(p->type(), gogo, ret);
2859 if (this->is_varargs_)
2860 ret->push_back('V');
2861 ret->push_back('e');
2862 }
2863
2864 const Typed_identifier_list* results = this->results();
2865 if (results != NULL)
2866 {
2867 ret->push_back('r');
2868 for (Typed_identifier_list::const_iterator p = results->begin();
2869 p != results->end();
2870 ++p)
2871 this->append_mangled_name(p->type(), gogo, ret);
2872 ret->push_back('e');
2873 }
2874
2875 ret->push_back('e');
2876 }
2877
2878 // Export a function type.
2879
2880 void
2881 Function_type::do_export(Export* exp) const
2882 {
2883 // We don't write out the receiver. The only function types which
2884 // should have a receiver are the ones associated with explicitly
2885 // defined methods. For those the receiver type is written out by
2886 // Function::export_func.
2887
2888 exp->write_c_string("(");
2889 bool first = true;
2890 if (this->parameters_ != NULL)
2891 {
2892 bool is_varargs = this->is_varargs_;
2893 for (Typed_identifier_list::const_iterator p =
2894 this->parameters_->begin();
2895 p != this->parameters_->end();
2896 ++p)
2897 {
2898 if (first)
2899 first = false;
2900 else
2901 exp->write_c_string(", ");
2902 if (!is_varargs || p + 1 != this->parameters_->end())
2903 exp->write_type(p->type());
2904 else
2905 {
2906 exp->write_c_string("...");
2907 exp->write_type(p->type()->array_type()->element_type());
2908 }
2909 }
2910 }
2911 exp->write_c_string(")");
2912
2913 const Typed_identifier_list* results = this->results_;
2914 if (results != NULL)
2915 {
2916 exp->write_c_string(" ");
2917 if (results->size() == 1)
2918 exp->write_type(results->begin()->type());
2919 else
2920 {
2921 first = true;
2922 exp->write_c_string("(");
2923 for (Typed_identifier_list::const_iterator p = results->begin();
2924 p != results->end();
2925 ++p)
2926 {
2927 if (first)
2928 first = false;
2929 else
2930 exp->write_c_string(", ");
2931 exp->write_type(p->type());
2932 }
2933 exp->write_c_string(")");
2934 }
2935 }
2936 }
2937
2938 // Import a function type.
2939
2940 Function_type*
2941 Function_type::do_import(Import* imp)
2942 {
2943 imp->require_c_string("(");
2944 Typed_identifier_list* parameters;
2945 bool is_varargs = false;
2946 if (imp->peek_char() == ')')
2947 parameters = NULL;
2948 else
2949 {
2950 parameters = new Typed_identifier_list();
2951 while (true)
2952 {
2953 if (imp->match_c_string("..."))
2954 {
2955 imp->advance(3);
2956 is_varargs = true;
2957 }
2958
2959 Type* ptype = imp->read_type();
2960 if (is_varargs)
2961 ptype = Type::make_array_type(ptype, NULL);
2962 parameters->push_back(Typed_identifier(Import::import_marker,
2963 ptype, imp->location()));
2964 if (imp->peek_char() != ',')
2965 break;
2966 gcc_assert(!is_varargs);
2967 imp->require_c_string(", ");
2968 }
2969 }
2970 imp->require_c_string(")");
2971
2972 Typed_identifier_list* results;
2973 if (imp->peek_char() != ' ')
2974 results = NULL;
2975 else
2976 {
2977 imp->advance(1);
2978 results = new Typed_identifier_list;
2979 if (imp->peek_char() != '(')
2980 {
2981 Type* rtype = imp->read_type();
2982 results->push_back(Typed_identifier(Import::import_marker, rtype,
2983 imp->location()));
2984 }
2985 else
2986 {
2987 imp->advance(1);
2988 while (true)
2989 {
2990 Type* rtype = imp->read_type();
2991 results->push_back(Typed_identifier(Import::import_marker,
2992 rtype, imp->location()));
2993 if (imp->peek_char() != ',')
2994 break;
2995 imp->require_c_string(", ");
2996 }
2997 imp->require_c_string(")");
2998 }
2999 }
3000
3001 Function_type* ret = Type::make_function_type(NULL, parameters, results,
3002 imp->location());
3003 if (is_varargs)
3004 ret->set_is_varargs();
3005 return ret;
3006 }
3007
3008 // Make a copy of a function type without a receiver.
3009
3010 Function_type*
3011 Function_type::copy_without_receiver() const
3012 {
3013 gcc_assert(this->is_method());
3014 Function_type *ret = Type::make_function_type(NULL, this->parameters_,
3015 this->results_,
3016 this->location_);
3017 if (this->is_varargs())
3018 ret->set_is_varargs();
3019 if (this->is_builtin())
3020 ret->set_is_builtin();
3021 return ret;
3022 }
3023
3024 // Make a copy of a function type with a receiver.
3025
3026 Function_type*
3027 Function_type::copy_with_receiver(Type* receiver_type) const
3028 {
3029 gcc_assert(!this->is_method());
3030 Typed_identifier* receiver = new Typed_identifier("", receiver_type,
3031 this->location_);
3032 return Type::make_function_type(receiver, this->parameters_,
3033 this->results_, this->location_);
3034 }
3035
3036 // Make a function type.
3037
3038 Function_type*
3039 Type::make_function_type(Typed_identifier* receiver,
3040 Typed_identifier_list* parameters,
3041 Typed_identifier_list* results,
3042 source_location location)
3043 {
3044 return new Function_type(receiver, parameters, results, location);
3045 }
3046
3047 // Class Pointer_type.
3048
3049 // Traversal.
3050
3051 int
3052 Pointer_type::do_traverse(Traverse* traverse)
3053 {
3054 return Type::traverse(this->to_type_, traverse);
3055 }
3056
3057 // Hash code.
3058
3059 unsigned int
3060 Pointer_type::do_hash_for_method(Gogo* gogo) const
3061 {
3062 return this->to_type_->hash_for_method(gogo) << 4;
3063 }
3064
3065 // The tree for a pointer type.
3066
3067 tree
3068 Pointer_type::do_get_tree(Gogo* gogo)
3069 {
3070 return build_pointer_type(this->to_type_->get_tree(gogo));
3071 }
3072
3073 // Initialize a pointer type.
3074
3075 tree
3076 Pointer_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
3077 {
3078 if (is_clear)
3079 return NULL;
3080 return fold_convert(type_tree, null_pointer_node);
3081 }
3082
3083 // The type of a pointer type descriptor.
3084
3085 Type*
3086 Pointer_type::make_pointer_type_descriptor_type()
3087 {
3088 static Type* ret;
3089 if (ret == NULL)
3090 {
3091 Type* tdt = Type::make_type_descriptor_type();
3092 Type* ptdt = Type::make_type_descriptor_ptr_type();
3093
3094 Struct_type* s = Type::make_builtin_struct_type(2,
3095 "", tdt,
3096 "elem", ptdt);
3097
3098 ret = Type::make_builtin_named_type("PtrType", s);
3099 }
3100
3101 return ret;
3102 }
3103
3104 // The type descriptor for a pointer type.
3105
3106 Expression*
3107 Pointer_type::do_type_descriptor(Gogo* gogo, Named_type* name)
3108 {
3109 if (this->is_unsafe_pointer_type())
3110 {
3111 gcc_assert(name != NULL);
3112 return this->plain_type_descriptor(gogo,
3113 RUNTIME_TYPE_KIND_UNSAFE_POINTER,
3114 name);
3115 }
3116 else
3117 {
3118 source_location bloc = BUILTINS_LOCATION;
3119
3120 const Methods* methods;
3121 Type* deref = this->points_to();
3122 if (deref->named_type() != NULL)
3123 methods = deref->named_type()->methods();
3124 else if (deref->struct_type() != NULL)
3125 methods = deref->struct_type()->methods();
3126 else
3127 methods = NULL;
3128
3129 Type* ptr_tdt = Pointer_type::make_pointer_type_descriptor_type();
3130
3131 const Struct_field_list* fields = ptr_tdt->struct_type()->fields();
3132
3133 Expression_list* vals = new Expression_list();
3134 vals->reserve(2);
3135
3136 Struct_field_list::const_iterator p = fields->begin();
3137 gcc_assert(p->field_name() == "commonType");
3138 vals->push_back(this->type_descriptor_constructor(gogo,
3139 RUNTIME_TYPE_KIND_PTR,
3140 name, methods, false));
3141
3142 ++p;
3143 gcc_assert(p->field_name() == "elem");
3144 vals->push_back(Expression::make_type_descriptor(deref, bloc));
3145
3146 return Expression::make_struct_composite_literal(ptr_tdt, vals, bloc);
3147 }
3148 }
3149
3150 // Reflection string.
3151
3152 void
3153 Pointer_type::do_reflection(Gogo* gogo, std::string* ret) const
3154 {
3155 ret->push_back('*');
3156 this->append_reflection(this->to_type_, gogo, ret);
3157 }
3158
3159 // Mangled name.
3160
3161 void
3162 Pointer_type::do_mangled_name(Gogo* gogo, std::string* ret) const
3163 {
3164 ret->push_back('p');
3165 this->append_mangled_name(this->to_type_, gogo, ret);
3166 }
3167
3168 // Export.
3169
3170 void
3171 Pointer_type::do_export(Export* exp) const
3172 {
3173 exp->write_c_string("*");
3174 if (this->is_unsafe_pointer_type())
3175 exp->write_c_string("any");
3176 else
3177 exp->write_type(this->to_type_);
3178 }
3179
3180 // Import.
3181
3182 Pointer_type*
3183 Pointer_type::do_import(Import* imp)
3184 {
3185 imp->require_c_string("*");
3186 if (imp->match_c_string("any"))
3187 {
3188 imp->advance(3);
3189 return Type::make_pointer_type(Type::make_void_type());
3190 }
3191 Type* to = imp->read_type();
3192 return Type::make_pointer_type(to);
3193 }
3194
3195 // Make a pointer type.
3196
3197 Pointer_type*
3198 Type::make_pointer_type(Type* to_type)
3199 {
3200 typedef Unordered_map(Type*, Pointer_type*) Hashtable;
3201 static Hashtable pointer_types;
3202 Hashtable::const_iterator p = pointer_types.find(to_type);
3203 if (p != pointer_types.end())
3204 return p->second;
3205 Pointer_type* ret = new Pointer_type(to_type);
3206 pointer_types[to_type] = ret;
3207 return ret;
3208 }
3209
3210 // The nil type. We use a special type for nil because it is not the
3211 // same as any other type. In C term nil has type void*, but there is
3212 // no such type in Go.
3213
3214 class Nil_type : public Type
3215 {
3216 public:
3217 Nil_type()
3218 : Type(TYPE_NIL)
3219 { }
3220
3221 protected:
3222 tree
3223 do_get_tree(Gogo*)
3224 { return ptr_type_node; }
3225
3226 tree
3227 do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
3228 { return is_clear ? NULL : fold_convert(type_tree, null_pointer_node); }
3229
3230 Expression*
3231 do_type_descriptor(Gogo*, Named_type*)
3232 { gcc_unreachable(); }
3233
3234 void
3235 do_reflection(Gogo*, std::string*) const
3236 { gcc_unreachable(); }
3237
3238 void
3239 do_mangled_name(Gogo*, std::string* ret) const
3240 { ret->push_back('n'); }
3241 };
3242
3243 // Make the nil type.
3244
3245 Type*
3246 Type::make_nil_type()
3247 {
3248 static Nil_type singleton_nil_type;
3249 return &singleton_nil_type;
3250 }
3251
3252 // The type of a function call which returns multiple values. This is
3253 // really a struct, but we don't want to confuse a function call which
3254 // returns a struct with a function call which returns multiple
3255 // values.
3256
3257 class Call_multiple_result_type : public Type
3258 {
3259 public:
3260 Call_multiple_result_type(Call_expression* call)
3261 : Type(TYPE_CALL_MULTIPLE_RESULT),
3262 call_(call)
3263 { }
3264
3265 protected:
3266 bool
3267 do_has_pointer() const
3268 {
3269 gcc_assert(saw_errors());
3270 return false;
3271 }
3272
3273 tree
3274 do_get_tree(Gogo*);
3275
3276 tree
3277 do_get_init_tree(Gogo*, tree, bool)
3278 {
3279 gcc_assert(saw_errors());
3280 return error_mark_node;
3281 }
3282
3283 Expression*
3284 do_type_descriptor(Gogo*, Named_type*)
3285 {
3286 gcc_assert(saw_errors());
3287 return Expression::make_error(UNKNOWN_LOCATION);
3288 }
3289
3290 void
3291 do_reflection(Gogo*, std::string*) const
3292 { gcc_assert(saw_errors()); }
3293
3294 void
3295 do_mangled_name(Gogo*, std::string*) const
3296 { gcc_assert(saw_errors()); }
3297
3298 private:
3299 // The expression being called.
3300 Call_expression* call_;
3301 };
3302
3303 // Return the tree for a call result.
3304
3305 tree
3306 Call_multiple_result_type::do_get_tree(Gogo* gogo)
3307 {
3308 Function_type* fntype = this->call_->get_function_type();
3309 gcc_assert(fntype != NULL);
3310 const Typed_identifier_list* results = fntype->results();
3311 gcc_assert(results != NULL && results->size() > 1);
3312
3313 Struct_field_list* sfl = new Struct_field_list;
3314 for (Typed_identifier_list::const_iterator p = results->begin();
3315 p != results->end();
3316 ++p)
3317 {
3318 const std::string name = ((p->name().empty()
3319 || p->name() == Import::import_marker)
3320 ? "UNNAMED"
3321 : p->name());
3322 sfl->push_back(Struct_field(Typed_identifier(name, p->type(),
3323 this->call_->location())));
3324 }
3325 return Type::make_struct_type(sfl, this->call_->location())->get_tree(gogo);
3326 }
3327
3328 // Make a call result type.
3329
3330 Type*
3331 Type::make_call_multiple_result_type(Call_expression* call)
3332 {
3333 return new Call_multiple_result_type(call);
3334 }
3335
3336 // Class Struct_field.
3337
3338 // Get the name of a field.
3339
3340 const std::string&
3341 Struct_field::field_name() const
3342 {
3343 const std::string& name(this->typed_identifier_.name());
3344 if (!name.empty())
3345 return name;
3346 else
3347 {
3348 // This is called during parsing, before anything is lowered, so
3349 // we have to be pretty careful to avoid dereferencing an
3350 // unknown type name.
3351 Type* t = this->typed_identifier_.type();
3352 Type* dt = t;
3353 if (t->classification() == Type::TYPE_POINTER)
3354 {
3355 // Very ugly.
3356 Pointer_type* ptype = static_cast<Pointer_type*>(t);
3357 dt = ptype->points_to();
3358 }
3359 if (dt->forward_declaration_type() != NULL)
3360 return dt->forward_declaration_type()->name();
3361 else if (dt->named_type() != NULL)
3362 return dt->named_type()->name();
3363 else if (t->is_error_type() || dt->is_error_type())
3364 {
3365 static const std::string error_string = "*error*";
3366 return error_string;
3367 }
3368 else
3369 {
3370 // Avoid crashing in the erroneous case where T is named but
3371 // DT is not.
3372 gcc_assert(t != dt);
3373 if (t->forward_declaration_type() != NULL)
3374 return t->forward_declaration_type()->name();
3375 else if (t->named_type() != NULL)
3376 return t->named_type()->name();
3377 else
3378 gcc_unreachable();
3379 }
3380 }
3381 }
3382
3383 // Class Struct_type.
3384
3385 // Traversal.
3386
3387 int
3388 Struct_type::do_traverse(Traverse* traverse)
3389 {
3390 Struct_field_list* fields = this->fields_;
3391 if (fields != NULL)
3392 {
3393 for (Struct_field_list::iterator p = fields->begin();
3394 p != fields->end();
3395 ++p)
3396 {
3397 if (Type::traverse(p->type(), traverse) == TRAVERSE_EXIT)
3398 return TRAVERSE_EXIT;
3399 }
3400 }
3401 return TRAVERSE_CONTINUE;
3402 }
3403
3404 // Verify that the struct type is complete and valid.
3405
3406 bool
3407 Struct_type::do_verify()
3408 {
3409 Struct_field_list* fields = this->fields_;
3410 if (fields == NULL)
3411 return true;
3412 bool ret = true;
3413 for (Struct_field_list::iterator p = fields->begin();
3414 p != fields->end();
3415 ++p)
3416 {
3417 Type* t = p->type();
3418 if (t->is_undefined())
3419 {
3420 error_at(p->location(), "struct field type is incomplete");
3421 p->set_type(Type::make_error_type());
3422 ret = false;
3423 }
3424 else if (p->is_anonymous())
3425 {
3426 if (t->named_type() != NULL && t->points_to() != NULL)
3427 {
3428 error_at(p->location(), "embedded type may not be a pointer");
3429 p->set_type(Type::make_error_type());
3430 return false;
3431 }
3432 }
3433 }
3434 return ret;
3435 }
3436
3437 // Whether this contains a pointer.
3438
3439 bool
3440 Struct_type::do_has_pointer() const
3441 {
3442 const Struct_field_list* fields = this->fields();
3443 if (fields == NULL)
3444 return false;
3445 for (Struct_field_list::const_iterator p = fields->begin();
3446 p != fields->end();
3447 ++p)
3448 {
3449 if (p->type()->has_pointer())
3450 return true;
3451 }
3452 return false;
3453 }
3454
3455 // Whether this type is identical to T.
3456
3457 bool
3458 Struct_type::is_identical(const Struct_type* t,
3459 bool errors_are_identical) const
3460 {
3461 const Struct_field_list* fields1 = this->fields();
3462 const Struct_field_list* fields2 = t->fields();
3463 if (fields1 == NULL || fields2 == NULL)
3464 return fields1 == fields2;
3465 Struct_field_list::const_iterator pf2 = fields2->begin();
3466 for (Struct_field_list::const_iterator pf1 = fields1->begin();
3467 pf1 != fields1->end();
3468 ++pf1, ++pf2)
3469 {
3470 if (pf2 == fields2->end())
3471 return false;
3472 if (pf1->field_name() != pf2->field_name())
3473 return false;
3474 if (pf1->is_anonymous() != pf2->is_anonymous()
3475 || !Type::are_identical(pf1->type(), pf2->type(),
3476 errors_are_identical, NULL))
3477 return false;
3478 if (!pf1->has_tag())
3479 {
3480 if (pf2->has_tag())
3481 return false;
3482 }
3483 else
3484 {
3485 if (!pf2->has_tag())
3486 return false;
3487 if (pf1->tag() != pf2->tag())
3488 return false;
3489 }
3490 }
3491 if (pf2 != fields2->end())
3492 return false;
3493 return true;
3494 }
3495
3496 // Whether this struct type has any hidden fields.
3497
3498 bool
3499 Struct_type::struct_has_hidden_fields(const Named_type* within,
3500 std::string* reason) const
3501 {
3502 const Struct_field_list* fields = this->fields();
3503 if (fields == NULL)
3504 return false;
3505 const Package* within_package = (within == NULL
3506 ? NULL
3507 : within->named_object()->package());
3508 for (Struct_field_list::const_iterator pf = fields->begin();
3509 pf != fields->end();
3510 ++pf)
3511 {
3512 if (within_package != NULL
3513 && !pf->is_anonymous()
3514 && Gogo::is_hidden_name(pf->field_name()))
3515 {
3516 if (reason != NULL)
3517 {
3518 std::string within_name = within->named_object()->message_name();
3519 std::string name = Gogo::message_name(pf->field_name());
3520 size_t bufsize = 200 + within_name.length() + name.length();
3521 char* buf = new char[bufsize];
3522 snprintf(buf, bufsize,
3523 _("implicit assignment of %s%s%s hidden field %s%s%s"),
3524 open_quote, within_name.c_str(), close_quote,
3525 open_quote, name.c_str(), close_quote);
3526 reason->assign(buf);
3527 delete[] buf;
3528 }
3529 return true;
3530 }
3531
3532 if (pf->type()->has_hidden_fields(within, reason))
3533 return true;
3534 }
3535
3536 return false;
3537 }
3538
3539 // Hash code.
3540
3541 unsigned int
3542 Struct_type::do_hash_for_method(Gogo* gogo) const
3543 {
3544 unsigned int ret = 0;
3545 if (this->fields() != NULL)
3546 {
3547 for (Struct_field_list::const_iterator pf = this->fields()->begin();
3548 pf != this->fields()->end();
3549 ++pf)
3550 ret = (ret << 1) + pf->type()->hash_for_method(gogo);
3551 }
3552 return ret <<= 2;
3553 }
3554
3555 // Find the local field NAME.
3556
3557 const Struct_field*
3558 Struct_type::find_local_field(const std::string& name,
3559 unsigned int *pindex) const
3560 {
3561 const Struct_field_list* fields = this->fields_;
3562 if (fields == NULL)
3563 return NULL;
3564 unsigned int i = 0;
3565 for (Struct_field_list::const_iterator pf = fields->begin();
3566 pf != fields->end();
3567 ++pf, ++i)
3568 {
3569 if (pf->field_name() == name)
3570 {
3571 if (pindex != NULL)
3572 *pindex = i;
3573 return &*pf;
3574 }
3575 }
3576 return NULL;
3577 }
3578
3579 // Return an expression for field NAME in STRUCT_EXPR, or NULL.
3580
3581 Field_reference_expression*
3582 Struct_type::field_reference(Expression* struct_expr, const std::string& name,
3583 source_location location) const
3584 {
3585 unsigned int depth;
3586 return this->field_reference_depth(struct_expr, name, location, NULL,
3587 &depth);
3588 }
3589
3590 // Return an expression for a field, along with the depth at which it
3591 // was found.
3592
3593 Field_reference_expression*
3594 Struct_type::field_reference_depth(Expression* struct_expr,
3595 const std::string& name,
3596 source_location location,
3597 Saw_named_type* saw,
3598 unsigned int* depth) const
3599 {
3600 const Struct_field_list* fields = this->fields_;
3601 if (fields == NULL)
3602 return NULL;
3603
3604 // Look for a field with this name.
3605 unsigned int i = 0;
3606 for (Struct_field_list::const_iterator pf = fields->begin();
3607 pf != fields->end();
3608 ++pf, ++i)
3609 {
3610 if (pf->field_name() == name)
3611 {
3612 *depth = 0;
3613 return Expression::make_field_reference(struct_expr, i, location);
3614 }
3615 }
3616
3617 // Look for an anonymous field which contains a field with this
3618 // name.
3619 unsigned int found_depth = 0;
3620 Field_reference_expression* ret = NULL;
3621 i = 0;
3622 for (Struct_field_list::const_iterator pf = fields->begin();
3623 pf != fields->end();
3624 ++pf, ++i)
3625 {
3626 if (!pf->is_anonymous())
3627 continue;
3628
3629 Struct_type* st = pf->type()->deref()->struct_type();
3630 if (st == NULL)
3631 continue;
3632
3633 Saw_named_type* hold_saw = saw;
3634 Saw_named_type saw_here;
3635 Named_type* nt = pf->type()->named_type();
3636 if (nt == NULL)
3637 nt = pf->type()->deref()->named_type();
3638 if (nt != NULL)
3639 {
3640 Saw_named_type* q;
3641 for (q = saw; q != NULL; q = q->next)
3642 {
3643 if (q->nt == nt)
3644 {
3645 // If this is an error, it will be reported
3646 // elsewhere.
3647 break;
3648 }
3649 }
3650 if (q != NULL)
3651 continue;
3652 saw_here.next = saw;
3653 saw_here.nt = nt;
3654 saw = &saw_here;
3655 }
3656
3657 // Look for a reference using a NULL struct expression. If we
3658 // find one, fill in the struct expression with a reference to
3659 // this field.
3660 unsigned int subdepth;
3661 Field_reference_expression* sub = st->field_reference_depth(NULL, name,
3662 location,
3663 saw,
3664 &subdepth);
3665
3666 saw = hold_saw;
3667
3668 if (sub == NULL)
3669 continue;
3670
3671 if (ret == NULL || subdepth < found_depth)
3672 {
3673 if (ret != NULL)
3674 delete ret;
3675 ret = sub;
3676 found_depth = subdepth;
3677 Expression* here = Expression::make_field_reference(struct_expr, i,
3678 location);
3679 if (pf->type()->points_to() != NULL)
3680 here = Expression::make_unary(OPERATOR_MULT, here, location);
3681 while (sub->expr() != NULL)
3682 {
3683 sub = sub->expr()->deref()->field_reference_expression();
3684 gcc_assert(sub != NULL);
3685 }
3686 sub->set_struct_expression(here);
3687 }
3688 else if (subdepth > found_depth)
3689 delete sub;
3690 else
3691 {
3692 // We do not handle ambiguity here--it should be handled by
3693 // Type::bind_field_or_method.
3694 delete sub;
3695 found_depth = 0;
3696 ret = NULL;
3697 }
3698 }
3699
3700 if (ret != NULL)
3701 *depth = found_depth + 1;
3702
3703 return ret;
3704 }
3705
3706 // Return the total number of fields, including embedded fields.
3707
3708 unsigned int
3709 Struct_type::total_field_count() const
3710 {
3711 if (this->fields_ == NULL)
3712 return 0;
3713 unsigned int ret = 0;
3714 for (Struct_field_list::const_iterator pf = this->fields_->begin();
3715 pf != this->fields_->end();
3716 ++pf)
3717 {
3718 if (!pf->is_anonymous() || pf->type()->deref()->struct_type() == NULL)
3719 ++ret;
3720 else
3721 ret += pf->type()->struct_type()->total_field_count();
3722 }
3723 return ret;
3724 }
3725
3726 // Return whether NAME is an unexported field, for better error reporting.
3727
3728 bool
3729 Struct_type::is_unexported_local_field(Gogo* gogo,
3730 const std::string& name) const
3731 {
3732 const Struct_field_list* fields = this->fields_;
3733 if (fields != NULL)
3734 {
3735 for (Struct_field_list::const_iterator pf = fields->begin();
3736 pf != fields->end();
3737 ++pf)
3738 {
3739 const std::string& field_name(pf->field_name());
3740 if (Gogo::is_hidden_name(field_name)
3741 && name == Gogo::unpack_hidden_name(field_name)
3742 && gogo->pack_hidden_name(name, false) != field_name)
3743 return true;
3744 }
3745 }
3746 return false;
3747 }
3748
3749 // Finalize the methods of an unnamed struct.
3750
3751 void
3752 Struct_type::finalize_methods(Gogo* gogo)
3753 {
3754 if (this->all_methods_ != NULL)
3755 return;
3756 Type::finalize_methods(gogo, this, this->location_, &this->all_methods_);
3757 }
3758
3759 // Return the method NAME, or NULL if there isn't one or if it is
3760 // ambiguous. Set *IS_AMBIGUOUS if the method exists but is
3761 // ambiguous.
3762
3763 Method*
3764 Struct_type::method_function(const std::string& name, bool* is_ambiguous) const
3765 {
3766 return Type::method_function(this->all_methods_, name, is_ambiguous);
3767 }
3768
3769 // Get the tree for a struct type.
3770
3771 tree
3772 Struct_type::do_get_tree(Gogo* gogo)
3773 {
3774 tree type = make_node(RECORD_TYPE);
3775 return this->fill_in_tree(gogo, type);
3776 }
3777
3778 // Fill in the fields for a struct type.
3779
3780 tree
3781 Struct_type::fill_in_tree(Gogo* gogo, tree type)
3782 {
3783 tree field_trees = NULL_TREE;
3784 tree* pp = &field_trees;
3785 bool has_pointer = false;
3786 for (Struct_field_list::const_iterator p = this->fields_->begin();
3787 p != this->fields_->end();
3788 ++p)
3789 {
3790 std::string name = Gogo::unpack_hidden_name(p->field_name());
3791 tree name_tree = get_identifier_with_length(name.data(), name.length());
3792
3793 // Don't follow pointers yet, so that we don't get confused by a
3794 // pointer to an array of this struct type.
3795 tree field_type_tree;
3796 if (p->type()->points_to() != NULL || p->type()->function_type() != NULL)
3797 {
3798 field_type_tree = ptr_type_node;
3799 has_pointer = true;
3800 }
3801 else
3802 {
3803 field_type_tree = p->type()->get_tree(gogo);
3804 if (field_type_tree == error_mark_node)
3805 return error_mark_node;
3806 }
3807
3808 tree field = build_decl(p->location(), FIELD_DECL, name_tree,
3809 field_type_tree);
3810 DECL_CONTEXT(field) = type;
3811 *pp = field;
3812 pp = &DECL_CHAIN(field);
3813 }
3814
3815 TYPE_FIELDS(type) = field_trees;
3816
3817 layout_type(type);
3818
3819 if (has_pointer)
3820 {
3821 tree field = field_trees;
3822 for (Struct_field_list::const_iterator p = this->fields_->begin();
3823 p != this->fields_->end();
3824 ++p, field = DECL_CHAIN(field))
3825 {
3826 if (p->type()->points_to() != NULL
3827 || p->type()->function_type() != NULL)
3828 TREE_TYPE(field) = p->type()->get_tree(gogo);
3829 }
3830 }
3831
3832 return type;
3833 }
3834
3835 // Make sure that all structs which must be converted to the backend
3836 // representation before this one are in fact converted.
3837
3838 void
3839 Struct_type::convert_prerequisites(Gogo* gogo)
3840 {
3841 for (std::vector<Named_type*>::const_iterator p
3842 = this->prerequisites_.begin();
3843 p != this->prerequisites_.end();
3844 ++p)
3845 (*p)->get_tree(gogo);
3846 }
3847
3848 // Initialize struct fields.
3849
3850 tree
3851 Struct_type::do_get_init_tree(Gogo* gogo, tree type_tree, bool is_clear)
3852 {
3853 if (this->fields_ == NULL || this->fields_->empty())
3854 {
3855 if (is_clear)
3856 return NULL;
3857 else
3858 {
3859 tree ret = build_constructor(type_tree,
3860 VEC_alloc(constructor_elt, gc, 0));
3861 TREE_CONSTANT(ret) = 1;
3862 return ret;
3863 }
3864 }
3865
3866 bool is_constant = true;
3867 bool any_fields_set = false;
3868 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc,
3869 this->fields_->size());
3870
3871 tree field = TYPE_FIELDS(type_tree);
3872 for (Struct_field_list::const_iterator p = this->fields_->begin();
3873 p != this->fields_->end();
3874 ++p, field = DECL_CHAIN(field))
3875 {
3876 tree value = p->type()->get_init_tree(gogo, is_clear);
3877 if (value == error_mark_node)
3878 return error_mark_node;
3879 gcc_assert(field != NULL_TREE);
3880 if (value != NULL)
3881 {
3882 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
3883 elt->index = field;
3884 elt->value = value;
3885 any_fields_set = true;
3886 if (!TREE_CONSTANT(value))
3887 is_constant = false;
3888 }
3889 }
3890 gcc_assert(field == NULL_TREE);
3891
3892 if (!any_fields_set)
3893 {
3894 gcc_assert(is_clear);
3895 VEC_free(constructor_elt, gc, init);
3896 return NULL;
3897 }
3898
3899 tree ret = build_constructor(type_tree, init);
3900 if (is_constant)
3901 TREE_CONSTANT(ret) = 1;
3902 return ret;
3903 }
3904
3905 // The type of a struct type descriptor.
3906
3907 Type*
3908 Struct_type::make_struct_type_descriptor_type()
3909 {
3910 static Type* ret;
3911 if (ret == NULL)
3912 {
3913 Type* tdt = Type::make_type_descriptor_type();
3914 Type* ptdt = Type::make_type_descriptor_ptr_type();
3915
3916 Type* uintptr_type = Type::lookup_integer_type("uintptr");
3917 Type* string_type = Type::lookup_string_type();
3918 Type* pointer_string_type = Type::make_pointer_type(string_type);
3919
3920 Struct_type* sf =
3921 Type::make_builtin_struct_type(5,
3922 "name", pointer_string_type,
3923 "pkgPath", pointer_string_type,
3924 "typ", ptdt,
3925 "tag", pointer_string_type,
3926 "offset", uintptr_type);
3927 Type* nsf = Type::make_builtin_named_type("structField", sf);
3928
3929 Type* slice_type = Type::make_array_type(nsf, NULL);
3930
3931 Struct_type* s = Type::make_builtin_struct_type(2,
3932 "", tdt,
3933 "fields", slice_type);
3934
3935 ret = Type::make_builtin_named_type("StructType", s);
3936 }
3937
3938 return ret;
3939 }
3940
3941 // Build a type descriptor for a struct type.
3942
3943 Expression*
3944 Struct_type::do_type_descriptor(Gogo* gogo, Named_type* name)
3945 {
3946 source_location bloc = BUILTINS_LOCATION;
3947
3948 Type* stdt = Struct_type::make_struct_type_descriptor_type();
3949
3950 const Struct_field_list* fields = stdt->struct_type()->fields();
3951
3952 Expression_list* vals = new Expression_list();
3953 vals->reserve(2);
3954
3955 const Methods* methods = this->methods();
3956 // A named struct should not have methods--the methods should attach
3957 // to the named type.
3958 gcc_assert(methods == NULL || name == NULL);
3959
3960 Struct_field_list::const_iterator ps = fields->begin();
3961 gcc_assert(ps->field_name() == "commonType");
3962 vals->push_back(this->type_descriptor_constructor(gogo,
3963 RUNTIME_TYPE_KIND_STRUCT,
3964 name, methods, true));
3965
3966 ++ps;
3967 gcc_assert(ps->field_name() == "fields");
3968
3969 Expression_list* elements = new Expression_list();
3970 elements->reserve(this->fields_->size());
3971 Type* element_type = ps->type()->array_type()->element_type();
3972 for (Struct_field_list::const_iterator pf = this->fields_->begin();
3973 pf != this->fields_->end();
3974 ++pf)
3975 {
3976 const Struct_field_list* f = element_type->struct_type()->fields();
3977
3978 Expression_list* fvals = new Expression_list();
3979 fvals->reserve(5);
3980
3981 Struct_field_list::const_iterator q = f->begin();
3982 gcc_assert(q->field_name() == "name");
3983 if (pf->is_anonymous())
3984 fvals->push_back(Expression::make_nil(bloc));
3985 else
3986 {
3987 std::string n = Gogo::unpack_hidden_name(pf->field_name());
3988 Expression* s = Expression::make_string(n, bloc);
3989 fvals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
3990 }
3991
3992 ++q;
3993 gcc_assert(q->field_name() == "pkgPath");
3994 if (!Gogo::is_hidden_name(pf->field_name()))
3995 fvals->push_back(Expression::make_nil(bloc));
3996 else
3997 {
3998 std::string n = Gogo::hidden_name_prefix(pf->field_name());
3999 Expression* s = Expression::make_string(n, bloc);
4000 fvals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
4001 }
4002
4003 ++q;
4004 gcc_assert(q->field_name() == "typ");
4005 fvals->push_back(Expression::make_type_descriptor(pf->type(), bloc));
4006
4007 ++q;
4008 gcc_assert(q->field_name() == "tag");
4009 if (!pf->has_tag())
4010 fvals->push_back(Expression::make_nil(bloc));
4011 else
4012 {
4013 Expression* s = Expression::make_string(pf->tag(), bloc);
4014 fvals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
4015 }
4016
4017 ++q;
4018 gcc_assert(q->field_name() == "offset");
4019 fvals->push_back(Expression::make_struct_field_offset(this, &*pf));
4020
4021 Expression* v = Expression::make_struct_composite_literal(element_type,
4022 fvals, bloc);
4023 elements->push_back(v);
4024 }
4025
4026 vals->push_back(Expression::make_slice_composite_literal(ps->type(),
4027 elements, bloc));
4028
4029 return Expression::make_struct_composite_literal(stdt, vals, bloc);
4030 }
4031
4032 // Reflection string.
4033
4034 void
4035 Struct_type::do_reflection(Gogo* gogo, std::string* ret) const
4036 {
4037 ret->append("struct { ");
4038
4039 for (Struct_field_list::const_iterator p = this->fields_->begin();
4040 p != this->fields_->end();
4041 ++p)
4042 {
4043 if (p != this->fields_->begin())
4044 ret->append("; ");
4045 if (p->is_anonymous())
4046 ret->push_back('?');
4047 else
4048 ret->append(Gogo::unpack_hidden_name(p->field_name()));
4049 ret->push_back(' ');
4050 this->append_reflection(p->type(), gogo, ret);
4051
4052 if (p->has_tag())
4053 {
4054 const std::string& tag(p->tag());
4055 ret->append(" \"");
4056 for (std::string::const_iterator p = tag.begin();
4057 p != tag.end();
4058 ++p)
4059 {
4060 if (*p == '\0')
4061 ret->append("\\x00");
4062 else if (*p == '\n')
4063 ret->append("\\n");
4064 else if (*p == '\t')
4065 ret->append("\\t");
4066 else if (*p == '"')
4067 ret->append("\\\"");
4068 else if (*p == '\\')
4069 ret->append("\\\\");
4070 else
4071 ret->push_back(*p);
4072 }
4073 ret->push_back('"');
4074 }
4075 }
4076
4077 ret->append(" }");
4078 }
4079
4080 // Mangled name.
4081
4082 void
4083 Struct_type::do_mangled_name(Gogo* gogo, std::string* ret) const
4084 {
4085 ret->push_back('S');
4086
4087 const Struct_field_list* fields = this->fields_;
4088 if (fields != NULL)
4089 {
4090 for (Struct_field_list::const_iterator p = fields->begin();
4091 p != fields->end();
4092 ++p)
4093 {
4094 if (p->is_anonymous())
4095 ret->append("0_");
4096 else
4097 {
4098 std::string n = Gogo::unpack_hidden_name(p->field_name());
4099 char buf[20];
4100 snprintf(buf, sizeof buf, "%u_",
4101 static_cast<unsigned int>(n.length()));
4102 ret->append(buf);
4103 ret->append(n);
4104 }
4105 this->append_mangled_name(p->type(), gogo, ret);
4106 if (p->has_tag())
4107 {
4108 const std::string& tag(p->tag());
4109 std::string out;
4110 for (std::string::const_iterator p = tag.begin();
4111 p != tag.end();
4112 ++p)
4113 {
4114 if (ISALNUM(*p) || *p == '_')
4115 out.push_back(*p);
4116 else
4117 {
4118 char buf[20];
4119 snprintf(buf, sizeof buf, ".%x.",
4120 static_cast<unsigned int>(*p));
4121 out.append(buf);
4122 }
4123 }
4124 char buf[20];
4125 snprintf(buf, sizeof buf, "T%u_",
4126 static_cast<unsigned int>(out.length()));
4127 ret->append(buf);
4128 ret->append(out);
4129 }
4130 }
4131 }
4132
4133 ret->push_back('e');
4134 }
4135
4136 // Export.
4137
4138 void
4139 Struct_type::do_export(Export* exp) const
4140 {
4141 exp->write_c_string("struct { ");
4142 const Struct_field_list* fields = this->fields_;
4143 gcc_assert(fields != NULL);
4144 for (Struct_field_list::const_iterator p = fields->begin();
4145 p != fields->end();
4146 ++p)
4147 {
4148 if (p->is_anonymous())
4149 exp->write_string("? ");
4150 else
4151 {
4152 exp->write_string(p->field_name());
4153 exp->write_c_string(" ");
4154 }
4155 exp->write_type(p->type());
4156
4157 if (p->has_tag())
4158 {
4159 exp->write_c_string(" ");
4160 Expression* expr = Expression::make_string(p->tag(),
4161 BUILTINS_LOCATION);
4162 expr->export_expression(exp);
4163 delete expr;
4164 }
4165
4166 exp->write_c_string("; ");
4167 }
4168 exp->write_c_string("}");
4169 }
4170
4171 // Import.
4172
4173 Struct_type*
4174 Struct_type::do_import(Import* imp)
4175 {
4176 imp->require_c_string("struct { ");
4177 Struct_field_list* fields = new Struct_field_list;
4178 if (imp->peek_char() != '}')
4179 {
4180 while (true)
4181 {
4182 std::string name;
4183 if (imp->match_c_string("? "))
4184 imp->advance(2);
4185 else
4186 {
4187 name = imp->read_identifier();
4188 imp->require_c_string(" ");
4189 }
4190 Type* ftype = imp->read_type();
4191
4192 Struct_field sf(Typed_identifier(name, ftype, imp->location()));
4193
4194 if (imp->peek_char() == ' ')
4195 {
4196 imp->advance(1);
4197 Expression* expr = Expression::import_expression(imp);
4198 String_expression* sexpr = expr->string_expression();
4199 gcc_assert(sexpr != NULL);
4200 sf.set_tag(sexpr->val());
4201 delete sexpr;
4202 }
4203
4204 imp->require_c_string("; ");
4205 fields->push_back(sf);
4206 if (imp->peek_char() == '}')
4207 break;
4208 }
4209 }
4210 imp->require_c_string("}");
4211
4212 return Type::make_struct_type(fields, imp->location());
4213 }
4214
4215 // Make a struct type.
4216
4217 Struct_type*
4218 Type::make_struct_type(Struct_field_list* fields,
4219 source_location location)
4220 {
4221 return new Struct_type(fields, location);
4222 }
4223
4224 // Class Array_type.
4225
4226 // Whether two array types are identical.
4227
4228 bool
4229 Array_type::is_identical(const Array_type* t, bool errors_are_identical) const
4230 {
4231 if (!Type::are_identical(this->element_type(), t->element_type(),
4232 errors_are_identical, NULL))
4233 return false;
4234
4235 Expression* l1 = this->length();
4236 Expression* l2 = t->length();
4237
4238 // Slices of the same element type are identical.
4239 if (l1 == NULL && l2 == NULL)
4240 return true;
4241
4242 // Arrays of the same element type are identical if they have the
4243 // same length.
4244 if (l1 != NULL && l2 != NULL)
4245 {
4246 if (l1 == l2)
4247 return true;
4248
4249 // Try to determine the lengths. If we can't, assume the arrays
4250 // are not identical.
4251 bool ret = false;
4252 mpz_t v1;
4253 mpz_init(v1);
4254 Type* type1;
4255 mpz_t v2;
4256 mpz_init(v2);
4257 Type* type2;
4258 if (l1->integer_constant_value(true, v1, &type1)
4259 && l2->integer_constant_value(true, v2, &type2))
4260 ret = mpz_cmp(v1, v2) == 0;
4261 mpz_clear(v1);
4262 mpz_clear(v2);
4263 return ret;
4264 }
4265
4266 // Otherwise the arrays are not identical.
4267 return false;
4268 }
4269
4270 // Traversal.
4271
4272 int
4273 Array_type::do_traverse(Traverse* traverse)
4274 {
4275 if (Type::traverse(this->element_type_, traverse) == TRAVERSE_EXIT)
4276 return TRAVERSE_EXIT;
4277 if (this->length_ != NULL
4278 && Expression::traverse(&this->length_, traverse) == TRAVERSE_EXIT)
4279 return TRAVERSE_EXIT;
4280 return TRAVERSE_CONTINUE;
4281 }
4282
4283 // Check that the length is valid.
4284
4285 bool
4286 Array_type::verify_length()
4287 {
4288 if (this->length_ == NULL)
4289 return true;
4290
4291 Type_context context(Type::lookup_integer_type("int"), false);
4292 this->length_->determine_type(&context);
4293
4294 if (!this->length_->is_constant())
4295 {
4296 error_at(this->length_->location(), "array bound is not constant");
4297 return false;
4298 }
4299
4300 mpz_t val;
4301 mpz_init(val);
4302 Type* vt;
4303 if (!this->length_->integer_constant_value(true, val, &vt))
4304 {
4305 mpfr_t fval;
4306 mpfr_init(fval);
4307 if (!this->length_->float_constant_value(fval, &vt))
4308 {
4309 if (this->length_->type()->integer_type() != NULL
4310 || this->length_->type()->float_type() != NULL)
4311 error_at(this->length_->location(),
4312 "array bound is not constant");
4313 else
4314 error_at(this->length_->location(),
4315 "array bound is not numeric");
4316 mpfr_clear(fval);
4317 mpz_clear(val);
4318 return false;
4319 }
4320 if (!mpfr_integer_p(fval))
4321 {
4322 error_at(this->length_->location(),
4323 "array bound truncated to integer");
4324 mpfr_clear(fval);
4325 mpz_clear(val);
4326 return false;
4327 }
4328 mpz_init(val);
4329 mpfr_get_z(val, fval, GMP_RNDN);
4330 mpfr_clear(fval);
4331 }
4332
4333 if (mpz_sgn(val) < 0)
4334 {
4335 error_at(this->length_->location(), "negative array bound");
4336 mpz_clear(val);
4337 return false;
4338 }
4339
4340 Type* int_type = Type::lookup_integer_type("int");
4341 int tbits = int_type->integer_type()->bits();
4342 int vbits = mpz_sizeinbase(val, 2);
4343 if (vbits + 1 > tbits)
4344 {
4345 error_at(this->length_->location(), "array bound overflows");
4346 mpz_clear(val);
4347 return false;
4348 }
4349
4350 mpz_clear(val);
4351
4352 return true;
4353 }
4354
4355 // Verify the type.
4356
4357 bool
4358 Array_type::do_verify()
4359 {
4360 if (!this->verify_length())
4361 {
4362 this->length_ = Expression::make_error(this->length_->location());
4363 return false;
4364 }
4365 return true;
4366 }
4367
4368 // Array type hash code.
4369
4370 unsigned int
4371 Array_type::do_hash_for_method(Gogo* gogo) const
4372 {
4373 // There is no very convenient way to get a hash code for the
4374 // length.
4375 return this->element_type_->hash_for_method(gogo) + 1;
4376 }
4377
4378 // See if the expression passed to make is suitable. The first
4379 // argument is required, and gives the length. An optional second
4380 // argument is permitted for the capacity.
4381
4382 bool
4383 Array_type::do_check_make_expression(Expression_list* args,
4384 source_location location)
4385 {
4386 gcc_assert(this->length_ == NULL);
4387 if (args == NULL || args->empty())
4388 {
4389 error_at(location, "length required when allocating a slice");
4390 return false;
4391 }
4392 else if (args->size() > 2)
4393 {
4394 error_at(location, "too many expressions passed to make");
4395 return false;
4396 }
4397 else
4398 {
4399 if (!Type::check_int_value(args->front(),
4400 _("bad length when making slice"), location))
4401 return false;
4402
4403 if (args->size() > 1)
4404 {
4405 if (!Type::check_int_value(args->back(),
4406 _("bad capacity when making slice"),
4407 location))
4408 return false;
4409 }
4410
4411 return true;
4412 }
4413 }
4414
4415 // Get a tree for the length of a fixed array. The length may be
4416 // computed using a function call, so we must only evaluate it once.
4417
4418 tree
4419 Array_type::get_length_tree(Gogo* gogo)
4420 {
4421 gcc_assert(this->length_ != NULL);
4422 if (this->length_tree_ == NULL_TREE)
4423 {
4424 mpz_t val;
4425 mpz_init(val);
4426 Type* t;
4427 if (this->length_->integer_constant_value(true, val, &t))
4428 {
4429 if (t == NULL)
4430 t = Type::lookup_integer_type("int");
4431 else if (t->is_abstract())
4432 t = t->make_non_abstract_type();
4433 tree tt = t->get_tree(gogo);
4434 this->length_tree_ = Expression::integer_constant_tree(val, tt);
4435 mpz_clear(val);
4436 }
4437 else
4438 {
4439 mpz_clear(val);
4440
4441 // Make up a translation context for the array length
4442 // expression. FIXME: This won't work in general.
4443 Translate_context context(gogo, NULL, NULL, NULL_TREE);
4444 tree len = this->length_->get_tree(&context);
4445 if (len != error_mark_node)
4446 {
4447 len = convert_to_integer(integer_type_node, len);
4448 len = save_expr(len);
4449 }
4450 this->length_tree_ = len;
4451 }
4452 }
4453 return this->length_tree_;
4454 }
4455
4456 // Get a tree for the type of this array. A fixed array is simply
4457 // represented as ARRAY_TYPE with the appropriate index--i.e., it is
4458 // just like an array in C. An open array is a struct with three
4459 // fields: a data pointer, the length, and the capacity.
4460
4461 tree
4462 Array_type::do_get_tree(Gogo* gogo)
4463 {
4464 if (this->length_ == NULL)
4465 {
4466 tree struct_type = gogo->slice_type_tree(void_type_node);
4467 return this->fill_in_slice_tree(gogo, struct_type);
4468 }
4469 else
4470 {
4471 tree array_type = make_node(ARRAY_TYPE);
4472 return this->fill_in_array_tree(gogo, array_type);
4473 }
4474 }
4475
4476 // Fill in the fields for an array type. This is used for named array
4477 // types.
4478
4479 tree
4480 Array_type::fill_in_array_tree(Gogo* gogo, tree array_type)
4481 {
4482 gcc_assert(this->length_ != NULL);
4483
4484 tree element_type_tree = this->element_type_->get_tree(gogo);
4485 tree length_tree = this->get_length_tree(gogo);
4486 if (element_type_tree == error_mark_node
4487 || length_tree == error_mark_node)
4488 return error_mark_node;
4489
4490 length_tree = fold_convert(sizetype, length_tree);
4491
4492 // build_index_type takes the maximum index, which is one less than
4493 // the length.
4494 tree index_type = build_index_type(fold_build2(MINUS_EXPR, sizetype,
4495 length_tree,
4496 size_one_node));
4497
4498 TREE_TYPE(array_type) = element_type_tree;
4499 TYPE_DOMAIN(array_type) = index_type;
4500 TYPE_ADDR_SPACE(array_type) = TYPE_ADDR_SPACE(element_type_tree);
4501 layout_type(array_type);
4502
4503 if (TYPE_STRUCTURAL_EQUALITY_P(element_type_tree)
4504 || TYPE_STRUCTURAL_EQUALITY_P(index_type))
4505 SET_TYPE_STRUCTURAL_EQUALITY(array_type);
4506 else if (TYPE_CANONICAL(element_type_tree) != element_type_tree
4507 || TYPE_CANONICAL(index_type) != index_type)
4508 TYPE_CANONICAL(array_type) =
4509 build_array_type(TYPE_CANONICAL(element_type_tree),
4510 TYPE_CANONICAL(index_type));
4511
4512 return array_type;
4513 }
4514
4515 // Fill in the fields for a slice type. This is used for named slice
4516 // types.
4517
4518 tree
4519 Array_type::fill_in_slice_tree(Gogo* gogo, tree struct_type)
4520 {
4521 gcc_assert(this->length_ == NULL);
4522
4523 tree element_type_tree = this->element_type_->get_tree(gogo);
4524 if (element_type_tree == error_mark_node)
4525 return error_mark_node;
4526 tree field = TYPE_FIELDS(struct_type);
4527 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
4528 gcc_assert(POINTER_TYPE_P(TREE_TYPE(field))
4529 && TREE_TYPE(TREE_TYPE(field)) == void_type_node);
4530 TREE_TYPE(field) = build_pointer_type(element_type_tree);
4531
4532 return struct_type;
4533 }
4534
4535 // Return an initializer for an array type.
4536
4537 tree
4538 Array_type::do_get_init_tree(Gogo* gogo, tree type_tree, bool is_clear)
4539 {
4540 if (this->length_ == NULL)
4541 {
4542 // Open array.
4543
4544 if (is_clear)
4545 return NULL;
4546
4547 gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
4548
4549 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
4550
4551 for (tree field = TYPE_FIELDS(type_tree);
4552 field != NULL_TREE;
4553 field = DECL_CHAIN(field))
4554 {
4555 constructor_elt* elt = VEC_quick_push(constructor_elt, init,
4556 NULL);
4557 elt->index = field;
4558 elt->value = fold_convert(TREE_TYPE(field), size_zero_node);
4559 }
4560
4561 tree ret = build_constructor(type_tree, init);
4562 TREE_CONSTANT(ret) = 1;
4563 return ret;
4564 }
4565 else
4566 {
4567 // Fixed array.
4568
4569 tree value = this->element_type_->get_init_tree(gogo, is_clear);
4570 if (value == NULL)
4571 return NULL;
4572 if (value == error_mark_node)
4573 return error_mark_node;
4574
4575 tree length_tree = this->get_length_tree(gogo);
4576 if (length_tree == error_mark_node)
4577 return error_mark_node;
4578
4579 length_tree = fold_convert(sizetype, length_tree);
4580 tree range = build2(RANGE_EXPR, sizetype, size_zero_node,
4581 fold_build2(MINUS_EXPR, sizetype,
4582 length_tree, size_one_node));
4583 tree ret = build_constructor_single(type_tree, range, value);
4584 if (TREE_CONSTANT(value))
4585 TREE_CONSTANT(ret) = 1;
4586 return ret;
4587 }
4588 }
4589
4590 // Handle the builtin make function for a slice.
4591
4592 tree
4593 Array_type::do_make_expression_tree(Translate_context* context,
4594 Expression_list* args,
4595 source_location location)
4596 {
4597 gcc_assert(this->length_ == NULL);
4598
4599 Gogo* gogo = context->gogo();
4600 tree type_tree = this->get_tree(gogo);
4601 if (type_tree == error_mark_node)
4602 return error_mark_node;
4603
4604 tree values_field = TYPE_FIELDS(type_tree);
4605 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(values_field)),
4606 "__values") == 0);
4607
4608 tree count_field = DECL_CHAIN(values_field);
4609 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(count_field)),
4610 "__count") == 0);
4611
4612 tree element_type_tree = this->element_type_->get_tree(gogo);
4613 if (element_type_tree == error_mark_node)
4614 return error_mark_node;
4615 tree element_size_tree = TYPE_SIZE_UNIT(element_type_tree);
4616
4617 tree value = this->element_type_->get_init_tree(gogo, true);
4618 if (value == error_mark_node)
4619 return error_mark_node;
4620
4621 // The first argument is the number of elements, the optional second
4622 // argument is the capacity.
4623 gcc_assert(args != NULL && args->size() >= 1 && args->size() <= 2);
4624
4625 tree length_tree = args->front()->get_tree(context);
4626 if (length_tree == error_mark_node)
4627 return error_mark_node;
4628 if (!DECL_P(length_tree))
4629 length_tree = save_expr(length_tree);
4630 if (!INTEGRAL_TYPE_P(TREE_TYPE(length_tree)))
4631 length_tree = convert_to_integer(TREE_TYPE(count_field), length_tree);
4632
4633 tree bad_index = Expression::check_bounds(length_tree,
4634 TREE_TYPE(count_field),
4635 NULL_TREE, location);
4636
4637 length_tree = fold_convert_loc(location, TREE_TYPE(count_field), length_tree);
4638 tree capacity_tree;
4639 if (args->size() == 1)
4640 capacity_tree = length_tree;
4641 else
4642 {
4643 capacity_tree = args->back()->get_tree(context);
4644 if (capacity_tree == error_mark_node)
4645 return error_mark_node;
4646 if (!DECL_P(capacity_tree))
4647 capacity_tree = save_expr(capacity_tree);
4648 if (!INTEGRAL_TYPE_P(TREE_TYPE(capacity_tree)))
4649 capacity_tree = convert_to_integer(TREE_TYPE(count_field),
4650 capacity_tree);
4651
4652 bad_index = Expression::check_bounds(capacity_tree,
4653 TREE_TYPE(count_field),
4654 bad_index, location);
4655
4656 tree chktype = (((TYPE_SIZE(TREE_TYPE(capacity_tree))
4657 > TYPE_SIZE(TREE_TYPE(length_tree)))
4658 || ((TYPE_SIZE(TREE_TYPE(capacity_tree))
4659 == TYPE_SIZE(TREE_TYPE(length_tree)))
4660 && TYPE_UNSIGNED(TREE_TYPE(capacity_tree))))
4661 ? TREE_TYPE(capacity_tree)
4662 : TREE_TYPE(length_tree));
4663 tree chk = fold_build2_loc(location, LT_EXPR, boolean_type_node,
4664 fold_convert_loc(location, chktype,
4665 capacity_tree),
4666 fold_convert_loc(location, chktype,
4667 length_tree));
4668 if (bad_index == NULL_TREE)
4669 bad_index = chk;
4670 else
4671 bad_index = fold_build2_loc(location, TRUTH_OR_EXPR, boolean_type_node,
4672 bad_index, chk);
4673
4674 capacity_tree = fold_convert_loc(location, TREE_TYPE(count_field),
4675 capacity_tree);
4676 }
4677
4678 tree size_tree = fold_build2_loc(location, MULT_EXPR, sizetype,
4679 element_size_tree,
4680 fold_convert_loc(location, sizetype,
4681 capacity_tree));
4682
4683 tree chk = fold_build2_loc(location, TRUTH_AND_EXPR, boolean_type_node,
4684 fold_build2_loc(location, GT_EXPR,
4685 boolean_type_node,
4686 fold_convert_loc(location,
4687 sizetype,
4688 capacity_tree),
4689 size_zero_node),
4690 fold_build2_loc(location, LT_EXPR,
4691 boolean_type_node,
4692 size_tree, element_size_tree));
4693 if (bad_index == NULL_TREE)
4694 bad_index = chk;
4695 else
4696 bad_index = fold_build2_loc(location, TRUTH_OR_EXPR, boolean_type_node,
4697 bad_index, chk);
4698
4699 tree space = context->gogo()->allocate_memory(this->element_type_,
4700 size_tree, location);
4701
4702 if (value != NULL_TREE)
4703 space = save_expr(space);
4704
4705 space = fold_convert(TREE_TYPE(values_field), space);
4706
4707 if (bad_index != NULL_TREE && bad_index != boolean_false_node)
4708 {
4709 tree crash = Gogo::runtime_error(RUNTIME_ERROR_MAKE_SLICE_OUT_OF_BOUNDS,
4710 location);
4711 space = build2(COMPOUND_EXPR, TREE_TYPE(space),
4712 build3(COND_EXPR, void_type_node,
4713 bad_index, crash, NULL_TREE),
4714 space);
4715 }
4716
4717 tree constructor = gogo->slice_constructor(type_tree, space, length_tree,
4718 capacity_tree);
4719
4720 if (value == NULL_TREE)
4721 {
4722 // The array contents are zero initialized.
4723 return constructor;
4724 }
4725
4726 // The elements must be initialized.
4727
4728 tree max = fold_build2_loc(location, MINUS_EXPR, TREE_TYPE(count_field),
4729 capacity_tree,
4730 fold_convert_loc(location, TREE_TYPE(count_field),
4731 integer_one_node));
4732
4733 tree array_type = build_array_type(element_type_tree,
4734 build_index_type(max));
4735
4736 tree value_pointer = fold_convert_loc(location,
4737 build_pointer_type(array_type),
4738 space);
4739
4740 tree range = build2(RANGE_EXPR, sizetype, size_zero_node, max);
4741 tree space_init = build_constructor_single(array_type, range, value);
4742
4743 return build2(COMPOUND_EXPR, TREE_TYPE(constructor),
4744 build2(MODIFY_EXPR, void_type_node,
4745 build_fold_indirect_ref(value_pointer),
4746 space_init),
4747 constructor);
4748 }
4749
4750 // Return a tree for a pointer to the values in ARRAY.
4751
4752 tree
4753 Array_type::value_pointer_tree(Gogo*, tree array) const
4754 {
4755 tree ret;
4756 if (this->length() != NULL)
4757 {
4758 // Fixed array.
4759 ret = fold_convert(build_pointer_type(TREE_TYPE(TREE_TYPE(array))),
4760 build_fold_addr_expr(array));
4761 }
4762 else
4763 {
4764 // Open array.
4765 tree field = TYPE_FIELDS(TREE_TYPE(array));
4766 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
4767 "__values") == 0);
4768 ret = fold_build3(COMPONENT_REF, TREE_TYPE(field), array, field,
4769 NULL_TREE);
4770 }
4771 if (TREE_CONSTANT(array))
4772 TREE_CONSTANT(ret) = 1;
4773 return ret;
4774 }
4775
4776 // Return a tree for the length of the array ARRAY which has this
4777 // type.
4778
4779 tree
4780 Array_type::length_tree(Gogo* gogo, tree array)
4781 {
4782 if (this->length_ != NULL)
4783 {
4784 if (TREE_CODE(array) == SAVE_EXPR)
4785 return fold_convert(integer_type_node, this->get_length_tree(gogo));
4786 else
4787 return omit_one_operand(integer_type_node,
4788 this->get_length_tree(gogo), array);
4789 }
4790
4791 // This is an open array. We need to read the length field.
4792
4793 tree type = TREE_TYPE(array);
4794 gcc_assert(TREE_CODE(type) == RECORD_TYPE);
4795
4796 tree field = DECL_CHAIN(TYPE_FIELDS(type));
4797 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
4798
4799 tree ret = build3(COMPONENT_REF, TREE_TYPE(field), array, field, NULL_TREE);
4800 if (TREE_CONSTANT(array))
4801 TREE_CONSTANT(ret) = 1;
4802 return ret;
4803 }
4804
4805 // Return a tree for the capacity of the array ARRAY which has this
4806 // type.
4807
4808 tree
4809 Array_type::capacity_tree(Gogo* gogo, tree array)
4810 {
4811 if (this->length_ != NULL)
4812 return omit_one_operand(sizetype, this->get_length_tree(gogo), array);
4813
4814 // This is an open array. We need to read the capacity field.
4815
4816 tree type = TREE_TYPE(array);
4817 gcc_assert(TREE_CODE(type) == RECORD_TYPE);
4818
4819 tree field = DECL_CHAIN(DECL_CHAIN(TYPE_FIELDS(type)));
4820 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__capacity") == 0);
4821
4822 return build3(COMPONENT_REF, TREE_TYPE(field), array, field, NULL_TREE);
4823 }
4824
4825 // Export.
4826
4827 void
4828 Array_type::do_export(Export* exp) const
4829 {
4830 exp->write_c_string("[");
4831 if (this->length_ != NULL)
4832 this->length_->export_expression(exp);
4833 exp->write_c_string("] ");
4834 exp->write_type(this->element_type_);
4835 }
4836
4837 // Import.
4838
4839 Array_type*
4840 Array_type::do_import(Import* imp)
4841 {
4842 imp->require_c_string("[");
4843 Expression* length;
4844 if (imp->peek_char() == ']')
4845 length = NULL;
4846 else
4847 length = Expression::import_expression(imp);
4848 imp->require_c_string("] ");
4849 Type* element_type = imp->read_type();
4850 return Type::make_array_type(element_type, length);
4851 }
4852
4853 // The type of an array type descriptor.
4854
4855 Type*
4856 Array_type::make_array_type_descriptor_type()
4857 {
4858 static Type* ret;
4859 if (ret == NULL)
4860 {
4861 Type* tdt = Type::make_type_descriptor_type();
4862 Type* ptdt = Type::make_type_descriptor_ptr_type();
4863
4864 Type* uintptr_type = Type::lookup_integer_type("uintptr");
4865
4866 Struct_type* sf =
4867 Type::make_builtin_struct_type(3,
4868 "", tdt,
4869 "elem", ptdt,
4870 "len", uintptr_type);
4871
4872 ret = Type::make_builtin_named_type("ArrayType", sf);
4873 }
4874
4875 return ret;
4876 }
4877
4878 // The type of an slice type descriptor.
4879
4880 Type*
4881 Array_type::make_slice_type_descriptor_type()
4882 {
4883 static Type* ret;
4884 if (ret == NULL)
4885 {
4886 Type* tdt = Type::make_type_descriptor_type();
4887 Type* ptdt = Type::make_type_descriptor_ptr_type();
4888
4889 Struct_type* sf =
4890 Type::make_builtin_struct_type(2,
4891 "", tdt,
4892 "elem", ptdt);
4893
4894 ret = Type::make_builtin_named_type("SliceType", sf);
4895 }
4896
4897 return ret;
4898 }
4899
4900 // Build a type descriptor for an array/slice type.
4901
4902 Expression*
4903 Array_type::do_type_descriptor(Gogo* gogo, Named_type* name)
4904 {
4905 if (this->length_ != NULL)
4906 return this->array_type_descriptor(gogo, name);
4907 else
4908 return this->slice_type_descriptor(gogo, name);
4909 }
4910
4911 // Build a type descriptor for an array type.
4912
4913 Expression*
4914 Array_type::array_type_descriptor(Gogo* gogo, Named_type* name)
4915 {
4916 source_location bloc = BUILTINS_LOCATION;
4917
4918 Type* atdt = Array_type::make_array_type_descriptor_type();
4919
4920 const Struct_field_list* fields = atdt->struct_type()->fields();
4921
4922 Expression_list* vals = new Expression_list();
4923 vals->reserve(3);
4924
4925 Struct_field_list::const_iterator p = fields->begin();
4926 gcc_assert(p->field_name() == "commonType");
4927 vals->push_back(this->type_descriptor_constructor(gogo,
4928 RUNTIME_TYPE_KIND_ARRAY,
4929 name, NULL, true));
4930
4931 ++p;
4932 gcc_assert(p->field_name() == "elem");
4933 vals->push_back(Expression::make_type_descriptor(this->element_type_, bloc));
4934
4935 ++p;
4936 gcc_assert(p->field_name() == "len");
4937 vals->push_back(Expression::make_cast(p->type(), this->length_, bloc));
4938
4939 ++p;
4940 gcc_assert(p == fields->end());
4941
4942 return Expression::make_struct_composite_literal(atdt, vals, bloc);
4943 }
4944
4945 // Build a type descriptor for a slice type.
4946
4947 Expression*
4948 Array_type::slice_type_descriptor(Gogo* gogo, Named_type* name)
4949 {
4950 source_location bloc = BUILTINS_LOCATION;
4951
4952 Type* stdt = Array_type::make_slice_type_descriptor_type();
4953
4954 const Struct_field_list* fields = stdt->struct_type()->fields();
4955
4956 Expression_list* vals = new Expression_list();
4957 vals->reserve(2);
4958
4959 Struct_field_list::const_iterator p = fields->begin();
4960 gcc_assert(p->field_name() == "commonType");
4961 vals->push_back(this->type_descriptor_constructor(gogo,
4962 RUNTIME_TYPE_KIND_SLICE,
4963 name, NULL, true));
4964
4965 ++p;
4966 gcc_assert(p->field_name() == "elem");
4967 vals->push_back(Expression::make_type_descriptor(this->element_type_, bloc));
4968
4969 ++p;
4970 gcc_assert(p == fields->end());
4971
4972 return Expression::make_struct_composite_literal(stdt, vals, bloc);
4973 }
4974
4975 // Reflection string.
4976
4977 void
4978 Array_type::do_reflection(Gogo* gogo, std::string* ret) const
4979 {
4980 ret->push_back('[');
4981 if (this->length_ != NULL)
4982 {
4983 mpz_t val;
4984 mpz_init(val);
4985 Type* type;
4986 if (!this->length_->integer_constant_value(true, val, &type))
4987 error_at(this->length_->location(),
4988 "array length must be integer constant expression");
4989 else if (mpz_cmp_si(val, 0) < 0)
4990 error_at(this->length_->location(), "array length is negative");
4991 else if (mpz_cmp_ui(val, mpz_get_ui(val)) != 0)
4992 error_at(this->length_->location(), "array length is too large");
4993 else
4994 {
4995 char buf[50];
4996 snprintf(buf, sizeof buf, "%lu", mpz_get_ui(val));
4997 ret->append(buf);
4998 }
4999 mpz_clear(val);
5000 }
5001 ret->push_back(']');
5002
5003 this->append_reflection(this->element_type_, gogo, ret);
5004 }
5005
5006 // Mangled name.
5007
5008 void
5009 Array_type::do_mangled_name(Gogo* gogo, std::string* ret) const
5010 {
5011 ret->push_back('A');
5012 this->append_mangled_name(this->element_type_, gogo, ret);
5013 if (this->length_ != NULL)
5014 {
5015 mpz_t val;
5016 mpz_init(val);
5017 Type* type;
5018 if (!this->length_->integer_constant_value(true, val, &type))
5019 error_at(this->length_->location(),
5020 "array length must be integer constant expression");
5021 else if (mpz_cmp_si(val, 0) < 0)
5022 error_at(this->length_->location(), "array length is negative");
5023 else if (mpz_cmp_ui(val, mpz_get_ui(val)) != 0)
5024 error_at(this->length_->location(), "array size is too large");
5025 else
5026 {
5027 char buf[50];
5028 snprintf(buf, sizeof buf, "%lu", mpz_get_ui(val));
5029 ret->append(buf);
5030 }
5031 mpz_clear(val);
5032 }
5033 ret->push_back('e');
5034 }
5035
5036 // Make an array type.
5037
5038 Array_type*
5039 Type::make_array_type(Type* element_type, Expression* length)
5040 {
5041 return new Array_type(element_type, length);
5042 }
5043
5044 // Class Map_type.
5045
5046 // Traversal.
5047
5048 int
5049 Map_type::do_traverse(Traverse* traverse)
5050 {
5051 if (Type::traverse(this->key_type_, traverse) == TRAVERSE_EXIT
5052 || Type::traverse(this->val_type_, traverse) == TRAVERSE_EXIT)
5053 return TRAVERSE_EXIT;
5054 return TRAVERSE_CONTINUE;
5055 }
5056
5057 // Check that the map type is OK.
5058
5059 bool
5060 Map_type::do_verify()
5061 {
5062 if (this->key_type_->struct_type() != NULL
5063 || this->key_type_->array_type() != NULL)
5064 {
5065 error_at(this->location_, "invalid map key type");
5066 return false;
5067 }
5068 return true;
5069 }
5070
5071 // Whether two map types are identical.
5072
5073 bool
5074 Map_type::is_identical(const Map_type* t, bool errors_are_identical) const
5075 {
5076 return (Type::are_identical(this->key_type(), t->key_type(),
5077 errors_are_identical, NULL)
5078 && Type::are_identical(this->val_type(), t->val_type(),
5079 errors_are_identical, NULL));
5080 }
5081
5082 // Hash code.
5083
5084 unsigned int
5085 Map_type::do_hash_for_method(Gogo* gogo) const
5086 {
5087 return (this->key_type_->hash_for_method(gogo)
5088 + this->val_type_->hash_for_method(gogo)
5089 + 2);
5090 }
5091
5092 // Check that a call to the builtin make function is valid. For a map
5093 // the optional argument is the number of spaces to preallocate for
5094 // values.
5095
5096 bool
5097 Map_type::do_check_make_expression(Expression_list* args,
5098 source_location location)
5099 {
5100 if (args != NULL && !args->empty())
5101 {
5102 if (!Type::check_int_value(args->front(), _("bad size when making map"),
5103 location))
5104 return false;
5105 else if (args->size() > 1)
5106 {
5107 error_at(location, "too many arguments when making map");
5108 return false;
5109 }
5110 }
5111 return true;
5112 }
5113
5114 // Get a tree for a map type. A map type is represented as a pointer
5115 // to a struct. The struct is __go_map in libgo/map.h.
5116
5117 tree
5118 Map_type::do_get_tree(Gogo* gogo)
5119 {
5120 static tree type_tree;
5121 if (type_tree == NULL_TREE)
5122 {
5123 tree struct_type = make_node(RECORD_TYPE);
5124
5125 tree map_descriptor_type = gogo->map_descriptor_type();
5126 tree const_map_descriptor_type =
5127 build_qualified_type(map_descriptor_type, TYPE_QUAL_CONST);
5128 tree name = get_identifier("__descriptor");
5129 tree field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name,
5130 build_pointer_type(const_map_descriptor_type));
5131 DECL_CONTEXT(field) = struct_type;
5132 TYPE_FIELDS(struct_type) = field;
5133 tree last_field = field;
5134
5135 name = get_identifier("__element_count");
5136 field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name, sizetype);
5137 DECL_CONTEXT(field) = struct_type;
5138 DECL_CHAIN(last_field) = field;
5139 last_field = field;
5140
5141 name = get_identifier("__bucket_count");
5142 field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name, sizetype);
5143 DECL_CONTEXT(field) = struct_type;
5144 DECL_CHAIN(last_field) = field;
5145 last_field = field;
5146
5147 name = get_identifier("__buckets");
5148 field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name,
5149 build_pointer_type(ptr_type_node));
5150 DECL_CONTEXT(field) = struct_type;
5151 DECL_CHAIN(last_field) = field;
5152
5153 layout_type(struct_type);
5154
5155 // Give the struct a name for better debugging info.
5156 name = get_identifier("__go_map");
5157 tree type_decl = build_decl(BUILTINS_LOCATION, TYPE_DECL, name,
5158 struct_type);
5159 DECL_ARTIFICIAL(type_decl) = 1;
5160 TYPE_NAME(struct_type) = type_decl;
5161 go_preserve_from_gc(type_decl);
5162 rest_of_decl_compilation(type_decl, 1, 0);
5163
5164 type_tree = build_pointer_type(struct_type);
5165 go_preserve_from_gc(type_tree);
5166 }
5167
5168 return type_tree;
5169 }
5170
5171 // Initialize a map.
5172
5173 tree
5174 Map_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
5175 {
5176 if (is_clear)
5177 return NULL;
5178 return fold_convert(type_tree, null_pointer_node);
5179 }
5180
5181 // Return an expression for a newly allocated map.
5182
5183 tree
5184 Map_type::do_make_expression_tree(Translate_context* context,
5185 Expression_list* args,
5186 source_location location)
5187 {
5188 tree bad_index = NULL_TREE;
5189
5190 tree expr_tree;
5191 if (args == NULL || args->empty())
5192 expr_tree = size_zero_node;
5193 else
5194 {
5195 expr_tree = args->front()->get_tree(context);
5196 if (expr_tree == error_mark_node)
5197 return error_mark_node;
5198 if (!DECL_P(expr_tree))
5199 expr_tree = save_expr(expr_tree);
5200 if (!INTEGRAL_TYPE_P(TREE_TYPE(expr_tree)))
5201 expr_tree = convert_to_integer(sizetype, expr_tree);
5202 bad_index = Expression::check_bounds(expr_tree, sizetype, bad_index,
5203 location);
5204 }
5205
5206 tree map_type = this->get_tree(context->gogo());
5207
5208 static tree new_map_fndecl;
5209 tree ret = Gogo::call_builtin(&new_map_fndecl,
5210 location,
5211 "__go_new_map",
5212 2,
5213 map_type,
5214 TREE_TYPE(TYPE_FIELDS(TREE_TYPE(map_type))),
5215 context->gogo()->map_descriptor(this),
5216 sizetype,
5217 expr_tree);
5218 if (ret == error_mark_node)
5219 return error_mark_node;
5220 // This can panic if the capacity is out of range.
5221 TREE_NOTHROW(new_map_fndecl) = 0;
5222
5223 if (bad_index == NULL_TREE)
5224 return ret;
5225 else
5226 {
5227 tree crash = Gogo::runtime_error(RUNTIME_ERROR_MAKE_MAP_OUT_OF_BOUNDS,
5228 location);
5229 return build2(COMPOUND_EXPR, TREE_TYPE(ret),
5230 build3(COND_EXPR, void_type_node,
5231 bad_index, crash, NULL_TREE),
5232 ret);
5233 }
5234 }
5235
5236 // The type of a map type descriptor.
5237
5238 Type*
5239 Map_type::make_map_type_descriptor_type()
5240 {
5241 static Type* ret;
5242 if (ret == NULL)
5243 {
5244 Type* tdt = Type::make_type_descriptor_type();
5245 Type* ptdt = Type::make_type_descriptor_ptr_type();
5246
5247 Struct_type* sf =
5248 Type::make_builtin_struct_type(3,
5249 "", tdt,
5250 "key", ptdt,
5251 "elem", ptdt);
5252
5253 ret = Type::make_builtin_named_type("MapType", sf);
5254 }
5255
5256 return ret;
5257 }
5258
5259 // Build a type descriptor for a map type.
5260
5261 Expression*
5262 Map_type::do_type_descriptor(Gogo* gogo, Named_type* name)
5263 {
5264 source_location bloc = BUILTINS_LOCATION;
5265
5266 Type* mtdt = Map_type::make_map_type_descriptor_type();
5267
5268 const Struct_field_list* fields = mtdt->struct_type()->fields();
5269
5270 Expression_list* vals = new Expression_list();
5271 vals->reserve(3);
5272
5273 Struct_field_list::const_iterator p = fields->begin();
5274 gcc_assert(p->field_name() == "commonType");
5275 vals->push_back(this->type_descriptor_constructor(gogo,
5276 RUNTIME_TYPE_KIND_MAP,
5277 name, NULL, true));
5278
5279 ++p;
5280 gcc_assert(p->field_name() == "key");
5281 vals->push_back(Expression::make_type_descriptor(this->key_type_, bloc));
5282
5283 ++p;
5284 gcc_assert(p->field_name() == "elem");
5285 vals->push_back(Expression::make_type_descriptor(this->val_type_, bloc));
5286
5287 ++p;
5288 gcc_assert(p == fields->end());
5289
5290 return Expression::make_struct_composite_literal(mtdt, vals, bloc);
5291 }
5292
5293 // Reflection string for a map.
5294
5295 void
5296 Map_type::do_reflection(Gogo* gogo, std::string* ret) const
5297 {
5298 ret->append("map[");
5299 this->append_reflection(this->key_type_, gogo, ret);
5300 ret->append("] ");
5301 this->append_reflection(this->val_type_, gogo, ret);
5302 }
5303
5304 // Mangled name for a map.
5305
5306 void
5307 Map_type::do_mangled_name(Gogo* gogo, std::string* ret) const
5308 {
5309 ret->push_back('M');
5310 this->append_mangled_name(this->key_type_, gogo, ret);
5311 ret->append("__");
5312 this->append_mangled_name(this->val_type_, gogo, ret);
5313 }
5314
5315 // Export a map type.
5316
5317 void
5318 Map_type::do_export(Export* exp) const
5319 {
5320 exp->write_c_string("map [");
5321 exp->write_type(this->key_type_);
5322 exp->write_c_string("] ");
5323 exp->write_type(this->val_type_);
5324 }
5325
5326 // Import a map type.
5327
5328 Map_type*
5329 Map_type::do_import(Import* imp)
5330 {
5331 imp->require_c_string("map [");
5332 Type* key_type = imp->read_type();
5333 imp->require_c_string("] ");
5334 Type* val_type = imp->read_type();
5335 return Type::make_map_type(key_type, val_type, imp->location());
5336 }
5337
5338 // Make a map type.
5339
5340 Map_type*
5341 Type::make_map_type(Type* key_type, Type* val_type, source_location location)
5342 {
5343 return new Map_type(key_type, val_type, location);
5344 }
5345
5346 // Class Channel_type.
5347
5348 // Hash code.
5349
5350 unsigned int
5351 Channel_type::do_hash_for_method(Gogo* gogo) const
5352 {
5353 unsigned int ret = 0;
5354 if (this->may_send_)
5355 ret += 1;
5356 if (this->may_receive_)
5357 ret += 2;
5358 if (this->element_type_ != NULL)
5359 ret += this->element_type_->hash_for_method(gogo) << 2;
5360 return ret << 3;
5361 }
5362
5363 // Whether this type is the same as T.
5364
5365 bool
5366 Channel_type::is_identical(const Channel_type* t,
5367 bool errors_are_identical) const
5368 {
5369 if (!Type::are_identical(this->element_type(), t->element_type(),
5370 errors_are_identical, NULL))
5371 return false;
5372 return (this->may_send_ == t->may_send_
5373 && this->may_receive_ == t->may_receive_);
5374 }
5375
5376 // Check whether the parameters for a call to the builtin function
5377 // make are OK for a channel. A channel can take an optional single
5378 // parameter which is the buffer size.
5379
5380 bool
5381 Channel_type::do_check_make_expression(Expression_list* args,
5382 source_location location)
5383 {
5384 if (args != NULL && !args->empty())
5385 {
5386 if (!Type::check_int_value(args->front(),
5387 _("bad buffer size when making channel"),
5388 location))
5389 return false;
5390 else if (args->size() > 1)
5391 {
5392 error_at(location, "too many arguments when making channel");
5393 return false;
5394 }
5395 }
5396 return true;
5397 }
5398
5399 // Return the tree for a channel type. A channel is a pointer to a
5400 // __go_channel struct. The __go_channel struct is defined in
5401 // libgo/runtime/channel.h.
5402
5403 tree
5404 Channel_type::do_get_tree(Gogo*)
5405 {
5406 static tree type_tree;
5407 if (type_tree == NULL_TREE)
5408 {
5409 tree ret = make_node(RECORD_TYPE);
5410 TYPE_NAME(ret) = get_identifier("__go_channel");
5411 TYPE_STUB_DECL(ret) = build_decl(BUILTINS_LOCATION, TYPE_DECL, NULL_TREE,
5412 ret);
5413 type_tree = build_pointer_type(ret);
5414 go_preserve_from_gc(type_tree);
5415 }
5416 return type_tree;
5417 }
5418
5419 // Initialize a channel variable.
5420
5421 tree
5422 Channel_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
5423 {
5424 if (is_clear)
5425 return NULL;
5426 return fold_convert(type_tree, null_pointer_node);
5427 }
5428
5429 // Handle the builtin function make for a channel.
5430
5431 tree
5432 Channel_type::do_make_expression_tree(Translate_context* context,
5433 Expression_list* args,
5434 source_location location)
5435 {
5436 Gogo* gogo = context->gogo();
5437 tree channel_type = this->get_tree(gogo);
5438
5439 tree element_tree = this->element_type_->get_tree(gogo);
5440 tree element_size_tree = size_in_bytes(element_tree);
5441
5442 tree bad_index = NULL_TREE;
5443
5444 tree expr_tree;
5445 if (args == NULL || args->empty())
5446 expr_tree = size_zero_node;
5447 else
5448 {
5449 expr_tree = args->front()->get_tree(context);
5450 if (expr_tree == error_mark_node)
5451 return error_mark_node;
5452 if (!DECL_P(expr_tree))
5453 expr_tree = save_expr(expr_tree);
5454 if (!INTEGRAL_TYPE_P(TREE_TYPE(expr_tree)))
5455 expr_tree = convert_to_integer(sizetype, expr_tree);
5456 bad_index = Expression::check_bounds(expr_tree, sizetype, bad_index,
5457 location);
5458 }
5459
5460 static tree new_channel_fndecl;
5461 tree ret = Gogo::call_builtin(&new_channel_fndecl,
5462 location,
5463 "__go_new_channel",
5464 2,
5465 channel_type,
5466 sizetype,
5467 element_size_tree,
5468 sizetype,
5469 expr_tree);
5470 if (ret == error_mark_node)
5471 return error_mark_node;
5472 // This can panic if the capacity is out of range.
5473 TREE_NOTHROW(new_channel_fndecl) = 0;
5474
5475 if (bad_index == NULL_TREE)
5476 return ret;
5477 else
5478 {
5479 tree crash = Gogo::runtime_error(RUNTIME_ERROR_MAKE_CHAN_OUT_OF_BOUNDS,
5480 location);
5481 return build2(COMPOUND_EXPR, TREE_TYPE(ret),
5482 build3(COND_EXPR, void_type_node,
5483 bad_index, crash, NULL_TREE),
5484 ret);
5485 }
5486 }
5487
5488 // Build a type descriptor for a channel type.
5489
5490 Type*
5491 Channel_type::make_chan_type_descriptor_type()
5492 {
5493 static Type* ret;
5494 if (ret == NULL)
5495 {
5496 Type* tdt = Type::make_type_descriptor_type();
5497 Type* ptdt = Type::make_type_descriptor_ptr_type();
5498
5499 Type* uintptr_type = Type::lookup_integer_type("uintptr");
5500
5501 Struct_type* sf =
5502 Type::make_builtin_struct_type(3,
5503 "", tdt,
5504 "elem", ptdt,
5505 "dir", uintptr_type);
5506
5507 ret = Type::make_builtin_named_type("ChanType", sf);
5508 }
5509
5510 return ret;
5511 }
5512
5513 // Build a type descriptor for a map type.
5514
5515 Expression*
5516 Channel_type::do_type_descriptor(Gogo* gogo, Named_type* name)
5517 {
5518 source_location bloc = BUILTINS_LOCATION;
5519
5520 Type* ctdt = Channel_type::make_chan_type_descriptor_type();
5521
5522 const Struct_field_list* fields = ctdt->struct_type()->fields();
5523
5524 Expression_list* vals = new Expression_list();
5525 vals->reserve(3);
5526
5527 Struct_field_list::const_iterator p = fields->begin();
5528 gcc_assert(p->field_name() == "commonType");
5529 vals->push_back(this->type_descriptor_constructor(gogo,
5530 RUNTIME_TYPE_KIND_CHAN,
5531 name, NULL, true));
5532
5533 ++p;
5534 gcc_assert(p->field_name() == "elem");
5535 vals->push_back(Expression::make_type_descriptor(this->element_type_, bloc));
5536
5537 ++p;
5538 gcc_assert(p->field_name() == "dir");
5539 // These bits must match the ones in libgo/runtime/go-type.h.
5540 int val = 0;
5541 if (this->may_receive_)
5542 val |= 1;
5543 if (this->may_send_)
5544 val |= 2;
5545 mpz_t iv;
5546 mpz_init_set_ui(iv, val);
5547 vals->push_back(Expression::make_integer(&iv, p->type(), bloc));
5548 mpz_clear(iv);
5549
5550 ++p;
5551 gcc_assert(p == fields->end());
5552
5553 return Expression::make_struct_composite_literal(ctdt, vals, bloc);
5554 }
5555
5556 // Reflection string.
5557
5558 void
5559 Channel_type::do_reflection(Gogo* gogo, std::string* ret) const
5560 {
5561 if (!this->may_send_)
5562 ret->append("<-");
5563 ret->append("chan");
5564 if (!this->may_receive_)
5565 ret->append("<-");
5566 ret->push_back(' ');
5567 this->append_reflection(this->element_type_, gogo, ret);
5568 }
5569
5570 // Mangled name.
5571
5572 void
5573 Channel_type::do_mangled_name(Gogo* gogo, std::string* ret) const
5574 {
5575 ret->push_back('C');
5576 this->append_mangled_name(this->element_type_, gogo, ret);
5577 if (this->may_send_)
5578 ret->push_back('s');
5579 if (this->may_receive_)
5580 ret->push_back('r');
5581 ret->push_back('e');
5582 }
5583
5584 // Export.
5585
5586 void
5587 Channel_type::do_export(Export* exp) const
5588 {
5589 exp->write_c_string("chan ");
5590 if (this->may_send_ && !this->may_receive_)
5591 exp->write_c_string("-< ");
5592 else if (this->may_receive_ && !this->may_send_)
5593 exp->write_c_string("<- ");
5594 exp->write_type(this->element_type_);
5595 }
5596
5597 // Import.
5598
5599 Channel_type*
5600 Channel_type::do_import(Import* imp)
5601 {
5602 imp->require_c_string("chan ");
5603
5604 bool may_send;
5605 bool may_receive;
5606 if (imp->match_c_string("-< "))
5607 {
5608 imp->advance(3);
5609 may_send = true;
5610 may_receive = false;
5611 }
5612 else if (imp->match_c_string("<- "))
5613 {
5614 imp->advance(3);
5615 may_receive = true;
5616 may_send = false;
5617 }
5618 else
5619 {
5620 may_send = true;
5621 may_receive = true;
5622 }
5623
5624 Type* element_type = imp->read_type();
5625
5626 return Type::make_channel_type(may_send, may_receive, element_type);
5627 }
5628
5629 // Make a new channel type.
5630
5631 Channel_type*
5632 Type::make_channel_type(bool send, bool receive, Type* element_type)
5633 {
5634 return new Channel_type(send, receive, element_type);
5635 }
5636
5637 // Class Interface_type.
5638
5639 // Traversal.
5640
5641 int
5642 Interface_type::do_traverse(Traverse* traverse)
5643 {
5644 if (this->methods_ == NULL)
5645 return TRAVERSE_CONTINUE;
5646 return this->methods_->traverse(traverse);
5647 }
5648
5649 // Finalize the methods. This handles interface inheritance.
5650
5651 void
5652 Interface_type::finalize_methods()
5653 {
5654 if (this->methods_ == NULL)
5655 return;
5656 std::vector<Named_type*> seen;
5657 bool is_recursive = false;
5658 size_t from = 0;
5659 size_t to = 0;
5660 while (from < this->methods_->size())
5661 {
5662 const Typed_identifier* p = &this->methods_->at(from);
5663 if (!p->name().empty())
5664 {
5665 size_t i;
5666 for (i = 0; i < to; ++i)
5667 {
5668 if (this->methods_->at(i).name() == p->name())
5669 {
5670 error_at(p->location(), "duplicate method %qs",
5671 Gogo::message_name(p->name()).c_str());
5672 break;
5673 }
5674 }
5675 if (i == to)
5676 {
5677 if (from != to)
5678 this->methods_->set(to, *p);
5679 ++to;
5680 }
5681 ++from;
5682 continue;
5683 }
5684
5685 Interface_type* it = p->type()->interface_type();
5686 if (it == NULL)
5687 {
5688 error_at(p->location(), "interface contains embedded non-interface");
5689 ++from;
5690 continue;
5691 }
5692 if (it == this)
5693 {
5694 if (!is_recursive)
5695 {
5696 error_at(p->location(), "invalid recursive interface");
5697 is_recursive = true;
5698 }
5699 ++from;
5700 continue;
5701 }
5702
5703 Named_type* nt = p->type()->named_type();
5704 if (nt != NULL)
5705 {
5706 std::vector<Named_type*>::const_iterator q;
5707 for (q = seen.begin(); q != seen.end(); ++q)
5708 {
5709 if (*q == nt)
5710 {
5711 error_at(p->location(), "inherited interface loop");
5712 break;
5713 }
5714 }
5715 if (q != seen.end())
5716 {
5717 ++from;
5718 continue;
5719 }
5720 seen.push_back(nt);
5721 }
5722
5723 const Typed_identifier_list* methods = it->methods();
5724 if (methods == NULL)
5725 {
5726 ++from;
5727 continue;
5728 }
5729 for (Typed_identifier_list::const_iterator q = methods->begin();
5730 q != methods->end();
5731 ++q)
5732 {
5733 if (q->name().empty())
5734 {
5735 if (q->type()->forwarded() == p->type()->forwarded())
5736 error_at(p->location(), "interface inheritance loop");
5737 else
5738 {
5739 size_t i;
5740 for (i = from + 1; i < this->methods_->size(); ++i)
5741 {
5742 const Typed_identifier* r = &this->methods_->at(i);
5743 if (r->name().empty()
5744 && r->type()->forwarded() == q->type()->forwarded())
5745 {
5746 error_at(p->location(),
5747 "inherited interface listed twice");
5748 break;
5749 }
5750 }
5751 if (i == this->methods_->size())
5752 this->methods_->push_back(Typed_identifier(q->name(),
5753 q->type(),
5754 p->location()));
5755 }
5756 }
5757 else if (this->find_method(q->name()) == NULL)
5758 this->methods_->push_back(Typed_identifier(q->name(), q->type(),
5759 p->location()));
5760 else
5761 {
5762 if (!is_recursive)
5763 error_at(p->location(), "inherited method %qs is ambiguous",
5764 Gogo::message_name(q->name()).c_str());
5765 }
5766 }
5767 ++from;
5768 }
5769 if (to == 0)
5770 {
5771 delete this->methods_;
5772 this->methods_ = NULL;
5773 }
5774 else
5775 {
5776 this->methods_->resize(to);
5777 this->methods_->sort_by_name();
5778 }
5779 }
5780
5781 // Return the method NAME, or NULL.
5782
5783 const Typed_identifier*
5784 Interface_type::find_method(const std::string& name) const
5785 {
5786 if (this->methods_ == NULL)
5787 return NULL;
5788 for (Typed_identifier_list::const_iterator p = this->methods_->begin();
5789 p != this->methods_->end();
5790 ++p)
5791 if (p->name() == name)
5792 return &*p;
5793 return NULL;
5794 }
5795
5796 // Return the method index.
5797
5798 size_t
5799 Interface_type::method_index(const std::string& name) const
5800 {
5801 gcc_assert(this->methods_ != NULL);
5802 size_t ret = 0;
5803 for (Typed_identifier_list::const_iterator p = this->methods_->begin();
5804 p != this->methods_->end();
5805 ++p, ++ret)
5806 if (p->name() == name)
5807 return ret;
5808 gcc_unreachable();
5809 }
5810
5811 // Return whether NAME is an unexported method, for better error
5812 // reporting.
5813
5814 bool
5815 Interface_type::is_unexported_method(Gogo* gogo, const std::string& name) const
5816 {
5817 if (this->methods_ == NULL)
5818 return false;
5819 for (Typed_identifier_list::const_iterator p = this->methods_->begin();
5820 p != this->methods_->end();
5821 ++p)
5822 {
5823 const std::string& method_name(p->name());
5824 if (Gogo::is_hidden_name(method_name)
5825 && name == Gogo::unpack_hidden_name(method_name)
5826 && gogo->pack_hidden_name(name, false) != method_name)
5827 return true;
5828 }
5829 return false;
5830 }
5831
5832 // Whether this type is identical with T.
5833
5834 bool
5835 Interface_type::is_identical(const Interface_type* t,
5836 bool errors_are_identical) const
5837 {
5838 // We require the same methods with the same types. The methods
5839 // have already been sorted.
5840 if (this->methods() == NULL || t->methods() == NULL)
5841 return this->methods() == t->methods();
5842
5843 Typed_identifier_list::const_iterator p1 = this->methods()->begin();
5844 for (Typed_identifier_list::const_iterator p2 = t->methods()->begin();
5845 p2 != t->methods()->end();
5846 ++p1, ++p2)
5847 {
5848 if (p1 == this->methods()->end())
5849 return false;
5850 if (p1->name() != p2->name()
5851 || !Type::are_identical(p1->type(), p2->type(),
5852 errors_are_identical, NULL))
5853 return false;
5854 }
5855 if (p1 != this->methods()->end())
5856 return false;
5857 return true;
5858 }
5859
5860 // Whether we can assign the interface type T to this type. The types
5861 // are known to not be identical. An interface assignment is only
5862 // permitted if T is known to implement all methods in THIS.
5863 // Otherwise a type guard is required.
5864
5865 bool
5866 Interface_type::is_compatible_for_assign(const Interface_type* t,
5867 std::string* reason) const
5868 {
5869 if (this->methods() == NULL)
5870 return true;
5871 for (Typed_identifier_list::const_iterator p = this->methods()->begin();
5872 p != this->methods()->end();
5873 ++p)
5874 {
5875 const Typed_identifier* m = t->find_method(p->name());
5876 if (m == NULL)
5877 {
5878 if (reason != NULL)
5879 {
5880 char buf[200];
5881 snprintf(buf, sizeof buf,
5882 _("need explicit conversion; missing method %s%s%s"),
5883 open_quote, Gogo::message_name(p->name()).c_str(),
5884 close_quote);
5885 reason->assign(buf);
5886 }
5887 return false;
5888 }
5889
5890 std::string subreason;
5891 if (!Type::are_identical(p->type(), m->type(), true, &subreason))
5892 {
5893 if (reason != NULL)
5894 {
5895 std::string n = Gogo::message_name(p->name());
5896 size_t len = 100 + n.length() + subreason.length();
5897 char* buf = new char[len];
5898 if (subreason.empty())
5899 snprintf(buf, len, _("incompatible type for method %s%s%s"),
5900 open_quote, n.c_str(), close_quote);
5901 else
5902 snprintf(buf, len,
5903 _("incompatible type for method %s%s%s (%s)"),
5904 open_quote, n.c_str(), close_quote,
5905 subreason.c_str());
5906 reason->assign(buf);
5907 delete[] buf;
5908 }
5909 return false;
5910 }
5911 }
5912
5913 return true;
5914 }
5915
5916 // Hash code.
5917
5918 unsigned int
5919 Interface_type::do_hash_for_method(Gogo* gogo) const
5920 {
5921 unsigned int ret = 0;
5922 if (this->methods_ != NULL)
5923 {
5924 for (Typed_identifier_list::const_iterator p = this->methods_->begin();
5925 p != this->methods_->end();
5926 ++p)
5927 {
5928 ret = Type::hash_string(p->name(), ret);
5929 ret += p->type()->hash_for_method(gogo);
5930 ret <<= 1;
5931 }
5932 }
5933 return ret;
5934 }
5935
5936 // Return true if T implements the interface. If it does not, and
5937 // REASON is not NULL, set *REASON to a useful error message.
5938
5939 bool
5940 Interface_type::implements_interface(const Type* t, std::string* reason) const
5941 {
5942 if (this->methods_ == NULL)
5943 return true;
5944
5945 bool is_pointer = false;
5946 const Named_type* nt = t->named_type();
5947 const Struct_type* st = t->struct_type();
5948 // If we start with a named type, we don't dereference it to find
5949 // methods.
5950 if (nt == NULL)
5951 {
5952 const Type* pt = t->points_to();
5953 if (pt != NULL)
5954 {
5955 // If T is a pointer to a named type, then we need to look at
5956 // the type to which it points.
5957 is_pointer = true;
5958 nt = pt->named_type();
5959 st = pt->struct_type();
5960 }
5961 }
5962
5963 // If we have a named type, get the methods from it rather than from
5964 // any struct type.
5965 if (nt != NULL)
5966 st = NULL;
5967
5968 // Only named and struct types have methods.
5969 if (nt == NULL && st == NULL)
5970 {
5971 if (reason != NULL)
5972 {
5973 if (t->points_to() != NULL
5974 && t->points_to()->interface_type() != NULL)
5975 reason->assign(_("pointer to interface type has no methods"));
5976 else
5977 reason->assign(_("type has no methods"));
5978 }
5979 return false;
5980 }
5981
5982 if (nt != NULL ? !nt->has_any_methods() : !st->has_any_methods())
5983 {
5984 if (reason != NULL)
5985 {
5986 if (t->points_to() != NULL
5987 && t->points_to()->interface_type() != NULL)
5988 reason->assign(_("pointer to interface type has no methods"));
5989 else
5990 reason->assign(_("type has no methods"));
5991 }
5992 return false;
5993 }
5994
5995 for (Typed_identifier_list::const_iterator p = this->methods_->begin();
5996 p != this->methods_->end();
5997 ++p)
5998 {
5999 bool is_ambiguous = false;
6000 Method* m = (nt != NULL
6001 ? nt->method_function(p->name(), &is_ambiguous)
6002 : st->method_function(p->name(), &is_ambiguous));
6003 if (m == NULL)
6004 {
6005 if (reason != NULL)
6006 {
6007 std::string n = Gogo::message_name(p->name());
6008 size_t len = n.length() + 100;
6009 char* buf = new char[len];
6010 if (is_ambiguous)
6011 snprintf(buf, len, _("ambiguous method %s%s%s"),
6012 open_quote, n.c_str(), close_quote);
6013 else
6014 snprintf(buf, len, _("missing method %s%s%s"),
6015 open_quote, n.c_str(), close_quote);
6016 reason->assign(buf);
6017 delete[] buf;
6018 }
6019 return false;
6020 }
6021
6022 Function_type *p_fn_type = p->type()->function_type();
6023 Function_type* m_fn_type = m->type()->function_type();
6024 gcc_assert(p_fn_type != NULL && m_fn_type != NULL);
6025 std::string subreason;
6026 if (!p_fn_type->is_identical(m_fn_type, true, true, &subreason))
6027 {
6028 if (reason != NULL)
6029 {
6030 std::string n = Gogo::message_name(p->name());
6031 size_t len = 100 + n.length() + subreason.length();
6032 char* buf = new char[len];
6033 if (subreason.empty())
6034 snprintf(buf, len, _("incompatible type for method %s%s%s"),
6035 open_quote, n.c_str(), close_quote);
6036 else
6037 snprintf(buf, len,
6038 _("incompatible type for method %s%s%s (%s)"),
6039 open_quote, n.c_str(), close_quote,
6040 subreason.c_str());
6041 reason->assign(buf);
6042 delete[] buf;
6043 }
6044 return false;
6045 }
6046
6047 if (!is_pointer && !m->is_value_method())
6048 {
6049 if (reason != NULL)
6050 {
6051 std::string n = Gogo::message_name(p->name());
6052 size_t len = 100 + n.length();
6053 char* buf = new char[len];
6054 snprintf(buf, len, _("method %s%s%s requires a pointer"),
6055 open_quote, n.c_str(), close_quote);
6056 reason->assign(buf);
6057 delete[] buf;
6058 }
6059 return false;
6060 }
6061 }
6062
6063 return true;
6064 }
6065
6066 // Return a tree for an interface type. An interface is a pointer to
6067 // a struct. The struct has three fields. The first field is a
6068 // pointer to the type descriptor for the dynamic type of the object.
6069 // The second field is a pointer to a table of methods for the
6070 // interface to be used with the object. The third field is the value
6071 // of the object itself.
6072
6073 tree
6074 Interface_type::do_get_tree(Gogo* gogo)
6075 {
6076 if (this->methods_ == NULL)
6077 {
6078 // At the tree level, use the same type for all empty
6079 // interfaces. This lets us assign them to each other directly
6080 // without triggering GIMPLE type errors.
6081 tree dtype = Type::make_type_descriptor_type()->get_tree(gogo);
6082 dtype = build_pointer_type(build_qualified_type(dtype, TYPE_QUAL_CONST));
6083 static tree empty_interface;
6084 return Gogo::builtin_struct(&empty_interface, "__go_empty_interface",
6085 NULL_TREE, 2,
6086 "__type_descriptor",
6087 dtype,
6088 "__object",
6089 ptr_type_node);
6090 }
6091
6092 return this->fill_in_tree(gogo, make_node(RECORD_TYPE));
6093 }
6094
6095 // Fill in the tree for an interface type. This is used for named
6096 // interface types.
6097
6098 tree
6099 Interface_type::fill_in_tree(Gogo* gogo, tree type)
6100 {
6101 gcc_assert(this->methods_ != NULL);
6102
6103 // Because the methods may refer to the interface type itself, we
6104 // need to build the interface type first, and then update the
6105 // method pointer later.
6106
6107 tree field_trees = NULL_TREE;
6108 tree* pp = &field_trees;
6109
6110 tree name_tree = get_identifier("__methods");
6111 tree methods_field = build_decl(this->location_, FIELD_DECL, name_tree,
6112 ptr_type_node);
6113 DECL_CONTEXT(methods_field) = type;
6114 *pp = methods_field;
6115 pp = &DECL_CHAIN(methods_field);
6116
6117 name_tree = get_identifier("__object");
6118 tree field = build_decl(this->location_, FIELD_DECL, name_tree,
6119 ptr_type_node);
6120 DECL_CONTEXT(field) = type;
6121 *pp = field;
6122
6123 TYPE_FIELDS(type) = field_trees;
6124
6125 layout_type(type);
6126
6127 // Build the type of the table of methods.
6128
6129 tree method_table = make_node(RECORD_TYPE);
6130
6131 // The first field is a pointer to the type descriptor.
6132 name_tree = get_identifier("__type_descriptor");
6133 tree dtype = Type::make_type_descriptor_type()->get_tree(gogo);
6134 dtype = build_pointer_type(build_qualified_type(dtype, TYPE_QUAL_CONST));
6135 field = build_decl(this->location_, FIELD_DECL, name_tree, dtype);
6136 DECL_CONTEXT(field) = method_table;
6137 TYPE_FIELDS(method_table) = field;
6138
6139 std::string last_name = "";
6140 pp = &DECL_CHAIN(field);
6141 for (Typed_identifier_list::const_iterator p = this->methods_->begin();
6142 p != this->methods_->end();
6143 ++p)
6144 {
6145 std::string name = Gogo::unpack_hidden_name(p->name());
6146 name_tree = get_identifier_with_length(name.data(), name.length());
6147 tree field_type = p->type()->get_tree(gogo);
6148 if (field_type == error_mark_node)
6149 return error_mark_node;
6150 field = build_decl(this->location_, FIELD_DECL, name_tree, field_type);
6151 DECL_CONTEXT(field) = method_table;
6152 *pp = field;
6153 pp = &DECL_CHAIN(field);
6154 // Sanity check: the names should be sorted.
6155 gcc_assert(p->name() > last_name);
6156 last_name = p->name();
6157 }
6158 layout_type(method_table);
6159
6160 // Update the type of the __methods field from a generic pointer to
6161 // a pointer to the method table.
6162 TREE_TYPE(methods_field) = build_pointer_type(method_table);
6163
6164 return type;
6165 }
6166
6167 // Initialization value.
6168
6169 tree
6170 Interface_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
6171 {
6172 if (is_clear)
6173 return NULL;
6174
6175 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
6176 for (tree field = TYPE_FIELDS(type_tree);
6177 field != NULL_TREE;
6178 field = DECL_CHAIN(field))
6179 {
6180 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
6181 elt->index = field;
6182 elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
6183 }
6184
6185 tree ret = build_constructor(type_tree, init);
6186 TREE_CONSTANT(ret) = 1;
6187 return ret;
6188 }
6189
6190 // The type of an interface type descriptor.
6191
6192 Type*
6193 Interface_type::make_interface_type_descriptor_type()
6194 {
6195 static Type* ret;
6196 if (ret == NULL)
6197 {
6198 Type* tdt = Type::make_type_descriptor_type();
6199 Type* ptdt = Type::make_type_descriptor_ptr_type();
6200
6201 Type* string_type = Type::lookup_string_type();
6202 Type* pointer_string_type = Type::make_pointer_type(string_type);
6203
6204 Struct_type* sm =
6205 Type::make_builtin_struct_type(3,
6206 "name", pointer_string_type,
6207 "pkgPath", pointer_string_type,
6208 "typ", ptdt);
6209
6210 Type* nsm = Type::make_builtin_named_type("imethod", sm);
6211
6212 Type* slice_nsm = Type::make_array_type(nsm, NULL);
6213
6214 Struct_type* s = Type::make_builtin_struct_type(2,
6215 "", tdt,
6216 "methods", slice_nsm);
6217
6218 ret = Type::make_builtin_named_type("InterfaceType", s);
6219 }
6220
6221 return ret;
6222 }
6223
6224 // Build a type descriptor for an interface type.
6225
6226 Expression*
6227 Interface_type::do_type_descriptor(Gogo* gogo, Named_type* name)
6228 {
6229 source_location bloc = BUILTINS_LOCATION;
6230
6231 Type* itdt = Interface_type::make_interface_type_descriptor_type();
6232
6233 const Struct_field_list* ifields = itdt->struct_type()->fields();
6234
6235 Expression_list* ivals = new Expression_list();
6236 ivals->reserve(2);
6237
6238 Struct_field_list::const_iterator pif = ifields->begin();
6239 gcc_assert(pif->field_name() == "commonType");
6240 ivals->push_back(this->type_descriptor_constructor(gogo,
6241 RUNTIME_TYPE_KIND_INTERFACE,
6242 name, NULL, true));
6243
6244 ++pif;
6245 gcc_assert(pif->field_name() == "methods");
6246
6247 Expression_list* methods = new Expression_list();
6248 if (this->methods_ != NULL && !this->methods_->empty())
6249 {
6250 Type* elemtype = pif->type()->array_type()->element_type();
6251
6252 methods->reserve(this->methods_->size());
6253 for (Typed_identifier_list::const_iterator pm = this->methods_->begin();
6254 pm != this->methods_->end();
6255 ++pm)
6256 {
6257 const Struct_field_list* mfields = elemtype->struct_type()->fields();
6258
6259 Expression_list* mvals = new Expression_list();
6260 mvals->reserve(3);
6261
6262 Struct_field_list::const_iterator pmf = mfields->begin();
6263 gcc_assert(pmf->field_name() == "name");
6264 std::string s = Gogo::unpack_hidden_name(pm->name());
6265 Expression* e = Expression::make_string(s, bloc);
6266 mvals->push_back(Expression::make_unary(OPERATOR_AND, e, bloc));
6267
6268 ++pmf;
6269 gcc_assert(pmf->field_name() == "pkgPath");
6270 if (!Gogo::is_hidden_name(pm->name()))
6271 mvals->push_back(Expression::make_nil(bloc));
6272 else
6273 {
6274 s = Gogo::hidden_name_prefix(pm->name());
6275 e = Expression::make_string(s, bloc);
6276 mvals->push_back(Expression::make_unary(OPERATOR_AND, e, bloc));
6277 }
6278
6279 ++pmf;
6280 gcc_assert(pmf->field_name() == "typ");
6281 mvals->push_back(Expression::make_type_descriptor(pm->type(), bloc));
6282
6283 ++pmf;
6284 gcc_assert(pmf == mfields->end());
6285
6286 e = Expression::make_struct_composite_literal(elemtype, mvals,
6287 bloc);
6288 methods->push_back(e);
6289 }
6290 }
6291
6292 ivals->push_back(Expression::make_slice_composite_literal(pif->type(),
6293 methods, bloc));
6294
6295 ++pif;
6296 gcc_assert(pif == ifields->end());
6297
6298 return Expression::make_struct_composite_literal(itdt, ivals, bloc);
6299 }
6300
6301 // Reflection string.
6302
6303 void
6304 Interface_type::do_reflection(Gogo* gogo, std::string* ret) const
6305 {
6306 ret->append("interface {");
6307 if (this->methods_ != NULL)
6308 {
6309 for (Typed_identifier_list::const_iterator p = this->methods_->begin();
6310 p != this->methods_->end();
6311 ++p)
6312 {
6313 if (p != this->methods_->begin())
6314 ret->append(";");
6315 ret->push_back(' ');
6316 ret->append(Gogo::unpack_hidden_name(p->name()));
6317 std::string sub = p->type()->reflection(gogo);
6318 gcc_assert(sub.compare(0, 4, "func") == 0);
6319 sub = sub.substr(4);
6320 ret->append(sub);
6321 }
6322 }
6323 ret->append(" }");
6324 }
6325
6326 // Mangled name.
6327
6328 void
6329 Interface_type::do_mangled_name(Gogo* gogo, std::string* ret) const
6330 {
6331 ret->push_back('I');
6332
6333 const Typed_identifier_list* methods = this->methods_;
6334 if (methods != NULL)
6335 {
6336 for (Typed_identifier_list::const_iterator p = methods->begin();
6337 p != methods->end();
6338 ++p)
6339 {
6340 std::string n = Gogo::unpack_hidden_name(p->name());
6341 char buf[20];
6342 snprintf(buf, sizeof buf, "%u_",
6343 static_cast<unsigned int>(n.length()));
6344 ret->append(buf);
6345 ret->append(n);
6346 this->append_mangled_name(p->type(), gogo, ret);
6347 }
6348 }
6349
6350 ret->push_back('e');
6351 }
6352
6353 // Export.
6354
6355 void
6356 Interface_type::do_export(Export* exp) const
6357 {
6358 exp->write_c_string("interface { ");
6359
6360 const Typed_identifier_list* methods = this->methods_;
6361 if (methods != NULL)
6362 {
6363 for (Typed_identifier_list::const_iterator pm = methods->begin();
6364 pm != methods->end();
6365 ++pm)
6366 {
6367 exp->write_string(pm->name());
6368 exp->write_c_string(" (");
6369
6370 const Function_type* fntype = pm->type()->function_type();
6371
6372 bool first = true;
6373 const Typed_identifier_list* parameters = fntype->parameters();
6374 if (parameters != NULL)
6375 {
6376 bool is_varargs = fntype->is_varargs();
6377 for (Typed_identifier_list::const_iterator pp =
6378 parameters->begin();
6379 pp != parameters->end();
6380 ++pp)
6381 {
6382 if (first)
6383 first = false;
6384 else
6385 exp->write_c_string(", ");
6386 if (!is_varargs || pp + 1 != parameters->end())
6387 exp->write_type(pp->type());
6388 else
6389 {
6390 exp->write_c_string("...");
6391 Type *pptype = pp->type();
6392 exp->write_type(pptype->array_type()->element_type());
6393 }
6394 }
6395 }
6396
6397 exp->write_c_string(")");
6398
6399 const Typed_identifier_list* results = fntype->results();
6400 if (results != NULL)
6401 {
6402 exp->write_c_string(" ");
6403 if (results->size() == 1)
6404 exp->write_type(results->begin()->type());
6405 else
6406 {
6407 first = true;
6408 exp->write_c_string("(");
6409 for (Typed_identifier_list::const_iterator p =
6410 results->begin();
6411 p != results->end();
6412 ++p)
6413 {
6414 if (first)
6415 first = false;
6416 else
6417 exp->write_c_string(", ");
6418 exp->write_type(p->type());
6419 }
6420 exp->write_c_string(")");
6421 }
6422 }
6423
6424 exp->write_c_string("; ");
6425 }
6426 }
6427
6428 exp->write_c_string("}");
6429 }
6430
6431 // Import an interface type.
6432
6433 Interface_type*
6434 Interface_type::do_import(Import* imp)
6435 {
6436 imp->require_c_string("interface { ");
6437
6438 Typed_identifier_list* methods = new Typed_identifier_list;
6439 while (imp->peek_char() != '}')
6440 {
6441 std::string name = imp->read_identifier();
6442 imp->require_c_string(" (");
6443
6444 Typed_identifier_list* parameters;
6445 bool is_varargs = false;
6446 if (imp->peek_char() == ')')
6447 parameters = NULL;
6448 else
6449 {
6450 parameters = new Typed_identifier_list;
6451 while (true)
6452 {
6453 if (imp->match_c_string("..."))
6454 {
6455 imp->advance(3);
6456 is_varargs = true;
6457 }
6458
6459 Type* ptype = imp->read_type();
6460 if (is_varargs)
6461 ptype = Type::make_array_type(ptype, NULL);
6462 parameters->push_back(Typed_identifier(Import::import_marker,
6463 ptype, imp->location()));
6464 if (imp->peek_char() != ',')
6465 break;
6466 gcc_assert(!is_varargs);
6467 imp->require_c_string(", ");
6468 }
6469 }
6470 imp->require_c_string(")");
6471
6472 Typed_identifier_list* results;
6473 if (imp->peek_char() != ' ')
6474 results = NULL;
6475 else
6476 {
6477 results = new Typed_identifier_list;
6478 imp->advance(1);
6479 if (imp->peek_char() != '(')
6480 {
6481 Type* rtype = imp->read_type();
6482 results->push_back(Typed_identifier(Import::import_marker,
6483 rtype, imp->location()));
6484 }
6485 else
6486 {
6487 imp->advance(1);
6488 while (true)
6489 {
6490 Type* rtype = imp->read_type();
6491 results->push_back(Typed_identifier(Import::import_marker,
6492 rtype, imp->location()));
6493 if (imp->peek_char() != ',')
6494 break;
6495 imp->require_c_string(", ");
6496 }
6497 imp->require_c_string(")");
6498 }
6499 }
6500
6501 Function_type* fntype = Type::make_function_type(NULL, parameters,
6502 results,
6503 imp->location());
6504 if (is_varargs)
6505 fntype->set_is_varargs();
6506 methods->push_back(Typed_identifier(name, fntype, imp->location()));
6507
6508 imp->require_c_string("; ");
6509 }
6510
6511 imp->require_c_string("}");
6512
6513 if (methods->empty())
6514 {
6515 delete methods;
6516 methods = NULL;
6517 }
6518
6519 return Type::make_interface_type(methods, imp->location());
6520 }
6521
6522 // Make an interface type.
6523
6524 Interface_type*
6525 Type::make_interface_type(Typed_identifier_list* methods,
6526 source_location location)
6527 {
6528 return new Interface_type(methods, location);
6529 }
6530
6531 // Class Method.
6532
6533 // Bind a method to an object.
6534
6535 Expression*
6536 Method::bind_method(Expression* expr, source_location location) const
6537 {
6538 if (this->stub_ == NULL)
6539 {
6540 // When there is no stub object, the binding is determined by
6541 // the child class.
6542 return this->do_bind_method(expr, location);
6543 }
6544
6545 Expression* func = Expression::make_func_reference(this->stub_, NULL,
6546 location);
6547 return Expression::make_bound_method(expr, func, location);
6548 }
6549
6550 // Return the named object associated with a method. This may only be
6551 // called after methods are finalized.
6552
6553 Named_object*
6554 Method::named_object() const
6555 {
6556 if (this->stub_ != NULL)
6557 return this->stub_;
6558 return this->do_named_object();
6559 }
6560
6561 // Class Named_method.
6562
6563 // The type of the method.
6564
6565 Function_type*
6566 Named_method::do_type() const
6567 {
6568 if (this->named_object_->is_function())
6569 return this->named_object_->func_value()->type();
6570 else if (this->named_object_->is_function_declaration())
6571 return this->named_object_->func_declaration_value()->type();
6572 else
6573 gcc_unreachable();
6574 }
6575
6576 // Return the location of the method receiver.
6577
6578 source_location
6579 Named_method::do_receiver_location() const
6580 {
6581 return this->do_type()->receiver()->location();
6582 }
6583
6584 // Bind a method to an object.
6585
6586 Expression*
6587 Named_method::do_bind_method(Expression* expr, source_location location) const
6588 {
6589 Expression* func = Expression::make_func_reference(this->named_object_, NULL,
6590 location);
6591 Bound_method_expression* bme = Expression::make_bound_method(expr, func,
6592 location);
6593 // If this is not a local method, and it does not use a stub, then
6594 // the real method expects a different type. We need to cast the
6595 // first argument.
6596 if (this->depth() > 0 && !this->needs_stub_method())
6597 {
6598 Function_type* ftype = this->do_type();
6599 gcc_assert(ftype->is_method());
6600 Type* frtype = ftype->receiver()->type();
6601 bme->set_first_argument_type(frtype);
6602 }
6603 return bme;
6604 }
6605
6606 // Class Interface_method.
6607
6608 // Bind a method to an object.
6609
6610 Expression*
6611 Interface_method::do_bind_method(Expression* expr,
6612 source_location location) const
6613 {
6614 return Expression::make_interface_field_reference(expr, this->name_,
6615 location);
6616 }
6617
6618 // Class Methods.
6619
6620 // Insert a new method. Return true if it was inserted, false
6621 // otherwise.
6622
6623 bool
6624 Methods::insert(const std::string& name, Method* m)
6625 {
6626 std::pair<Method_map::iterator, bool> ins =
6627 this->methods_.insert(std::make_pair(name, m));
6628 if (ins.second)
6629 return true;
6630 else
6631 {
6632 Method* old_method = ins.first->second;
6633 if (m->depth() < old_method->depth())
6634 {
6635 delete old_method;
6636 ins.first->second = m;
6637 return true;
6638 }
6639 else
6640 {
6641 if (m->depth() == old_method->depth())
6642 old_method->set_is_ambiguous();
6643 return false;
6644 }
6645 }
6646 }
6647
6648 // Return the number of unambiguous methods.
6649
6650 size_t
6651 Methods::count() const
6652 {
6653 size_t ret = 0;
6654 for (Method_map::const_iterator p = this->methods_.begin();
6655 p != this->methods_.end();
6656 ++p)
6657 if (!p->second->is_ambiguous())
6658 ++ret;
6659 return ret;
6660 }
6661
6662 // Class Named_type.
6663
6664 // Return the name of the type.
6665
6666 const std::string&
6667 Named_type::name() const
6668 {
6669 return this->named_object_->name();
6670 }
6671
6672 // Return the name of the type to use in an error message.
6673
6674 std::string
6675 Named_type::message_name() const
6676 {
6677 return this->named_object_->message_name();
6678 }
6679
6680 // Return the base type for this type. We have to be careful about
6681 // circular type definitions, which are invalid but may be seen here.
6682
6683 Type*
6684 Named_type::named_base()
6685 {
6686 if (this->seen_ > 0)
6687 return this;
6688 ++this->seen_;
6689 Type* ret = this->type_->base();
6690 --this->seen_;
6691 return ret;
6692 }
6693
6694 const Type*
6695 Named_type::named_base() const
6696 {
6697 if (this->seen_ > 0)
6698 return this;
6699 ++this->seen_;
6700 const Type* ret = this->type_->base();
6701 --this->seen_;
6702 return ret;
6703 }
6704
6705 // Return whether this is an error type. We have to be careful about
6706 // circular type definitions, which are invalid but may be seen here.
6707
6708 bool
6709 Named_type::is_named_error_type() const
6710 {
6711 if (this->seen_ > 0)
6712 return false;
6713 ++this->seen_;
6714 bool ret = this->type_->is_error_type();
6715 --this->seen_;
6716 return ret;
6717 }
6718
6719 // Add a method to this type.
6720
6721 Named_object*
6722 Named_type::add_method(const std::string& name, Function* function)
6723 {
6724 if (this->local_methods_ == NULL)
6725 this->local_methods_ = new Bindings(NULL);
6726 return this->local_methods_->add_function(name, NULL, function);
6727 }
6728
6729 // Add a method declaration to this type.
6730
6731 Named_object*
6732 Named_type::add_method_declaration(const std::string& name, Package* package,
6733 Function_type* type,
6734 source_location location)
6735 {
6736 if (this->local_methods_ == NULL)
6737 this->local_methods_ = new Bindings(NULL);
6738 return this->local_methods_->add_function_declaration(name, package, type,
6739 location);
6740 }
6741
6742 // Add an existing method to this type.
6743
6744 void
6745 Named_type::add_existing_method(Named_object* no)
6746 {
6747 if (this->local_methods_ == NULL)
6748 this->local_methods_ = new Bindings(NULL);
6749 this->local_methods_->add_named_object(no);
6750 }
6751
6752 // Look for a local method NAME, and returns its named object, or NULL
6753 // if not there.
6754
6755 Named_object*
6756 Named_type::find_local_method(const std::string& name) const
6757 {
6758 if (this->local_methods_ == NULL)
6759 return NULL;
6760 return this->local_methods_->lookup(name);
6761 }
6762
6763 // Return whether NAME is an unexported field or method, for better
6764 // error reporting.
6765
6766 bool
6767 Named_type::is_unexported_local_method(Gogo* gogo,
6768 const std::string& name) const
6769 {
6770 Bindings* methods = this->local_methods_;
6771 if (methods != NULL)
6772 {
6773 for (Bindings::const_declarations_iterator p =
6774 methods->begin_declarations();
6775 p != methods->end_declarations();
6776 ++p)
6777 {
6778 if (Gogo::is_hidden_name(p->first)
6779 && name == Gogo::unpack_hidden_name(p->first)
6780 && gogo->pack_hidden_name(name, false) != p->first)
6781 return true;
6782 }
6783 }
6784 return false;
6785 }
6786
6787 // Build the complete list of methods for this type, which means
6788 // recursively including all methods for anonymous fields. Create all
6789 // stub methods.
6790
6791 void
6792 Named_type::finalize_methods(Gogo* gogo)
6793 {
6794 if (this->all_methods_ != NULL)
6795 return;
6796
6797 if (this->local_methods_ != NULL
6798 && (this->points_to() != NULL || this->interface_type() != NULL))
6799 {
6800 const Bindings* lm = this->local_methods_;
6801 for (Bindings::const_declarations_iterator p = lm->begin_declarations();
6802 p != lm->end_declarations();
6803 ++p)
6804 error_at(p->second->location(),
6805 "invalid pointer or interface receiver type");
6806 delete this->local_methods_;
6807 this->local_methods_ = NULL;
6808 return;
6809 }
6810
6811 Type::finalize_methods(gogo, this, this->location_, &this->all_methods_);
6812 }
6813
6814 // Return the method NAME, or NULL if there isn't one or if it is
6815 // ambiguous. Set *IS_AMBIGUOUS if the method exists but is
6816 // ambiguous.
6817
6818 Method*
6819 Named_type::method_function(const std::string& name, bool* is_ambiguous) const
6820 {
6821 return Type::method_function(this->all_methods_, name, is_ambiguous);
6822 }
6823
6824 // Return a pointer to the interface method table for this type for
6825 // the interface INTERFACE. IS_POINTER is true if this is for a
6826 // pointer to THIS.
6827
6828 tree
6829 Named_type::interface_method_table(Gogo* gogo, const Interface_type* interface,
6830 bool is_pointer)
6831 {
6832 gcc_assert(!interface->is_empty());
6833
6834 Interface_method_tables** pimt = (is_pointer
6835 ? &this->interface_method_tables_
6836 : &this->pointer_interface_method_tables_);
6837
6838 if (*pimt == NULL)
6839 *pimt = new Interface_method_tables(5);
6840
6841 std::pair<const Interface_type*, tree> val(interface, NULL_TREE);
6842 std::pair<Interface_method_tables::iterator, bool> ins = (*pimt)->insert(val);
6843
6844 if (ins.second)
6845 {
6846 // This is a new entry in the hash table.
6847 gcc_assert(ins.first->second == NULL_TREE);
6848 ins.first->second = gogo->interface_method_table_for_type(interface,
6849 this,
6850 is_pointer);
6851 }
6852
6853 tree decl = ins.first->second;
6854 if (decl == error_mark_node)
6855 return error_mark_node;
6856 gcc_assert(decl != NULL_TREE && TREE_CODE(decl) == VAR_DECL);
6857 return build_fold_addr_expr(decl);
6858 }
6859
6860 // Return whether a named type has any hidden fields.
6861
6862 bool
6863 Named_type::named_type_has_hidden_fields(std::string* reason) const
6864 {
6865 if (this->seen_ > 0)
6866 return false;
6867 ++this->seen_;
6868 bool ret = this->type_->has_hidden_fields(this, reason);
6869 --this->seen_;
6870 return ret;
6871 }
6872
6873 // Look for a use of a complete type within another type. This is
6874 // used to check that we don't try to use a type within itself.
6875
6876 class Find_type_use : public Traverse
6877 {
6878 public:
6879 Find_type_use(Type* find_type)
6880 : Traverse(traverse_types),
6881 find_type_(find_type), found_(false)
6882 { }
6883
6884 // Whether we found the type.
6885 bool
6886 found() const
6887 { return this->found_; }
6888
6889 protected:
6890 int
6891 type(Type*);
6892
6893 private:
6894 // The type we are looking for.
6895 Type* find_type_;
6896 // Whether we found the type.
6897 bool found_;
6898 };
6899
6900 // Check for FIND_TYPE in TYPE.
6901
6902 int
6903 Find_type_use::type(Type* type)
6904 {
6905 if (this->find_type_ == type)
6906 {
6907 this->found_ = true;
6908 return TRAVERSE_EXIT;
6909 }
6910 // It's OK if we see a reference to the type in any type which is
6911 // essentially a pointer: a pointer, a slice, a function, a map, or
6912 // a channel.
6913 if (type->points_to() != NULL
6914 || type->is_open_array_type()
6915 || type->function_type() != NULL
6916 || type->map_type() != NULL
6917 || type->channel_type() != NULL)
6918 return TRAVERSE_SKIP_COMPONENTS;
6919
6920 // For an interface, a reference to the type in a method type should
6921 // be ignored, but we have to consider direct inheritance. When
6922 // this is called, there may be cases of direct inheritance
6923 // represented as a method with no name.
6924 if (type->interface_type() != NULL)
6925 {
6926 const Typed_identifier_list* methods = type->interface_type()->methods();
6927 if (methods != NULL)
6928 {
6929 for (Typed_identifier_list::const_iterator p = methods->begin();
6930 p != methods->end();
6931 ++p)
6932 {
6933 if (p->name().empty())
6934 {
6935 if (Type::traverse(p->type(), this) == TRAVERSE_EXIT)
6936 return TRAVERSE_EXIT;
6937 }
6938 }
6939 }
6940 return TRAVERSE_SKIP_COMPONENTS;
6941 }
6942
6943 return TRAVERSE_CONTINUE;
6944 }
6945
6946 // Verify that a named type does not refer to itself.
6947
6948 bool
6949 Named_type::do_verify()
6950 {
6951 Find_type_use find(this);
6952 Type::traverse(this->type_, &find);
6953 if (find.found())
6954 {
6955 error_at(this->location_, "invalid recursive type %qs",
6956 this->message_name().c_str());
6957 this->is_error_ = true;
6958 return false;
6959 }
6960
6961 // Check whether any of the local methods overloads an existing
6962 // struct field or interface method. We don't need to check the
6963 // list of methods against itself: that is handled by the Bindings
6964 // code.
6965 if (this->local_methods_ != NULL)
6966 {
6967 Struct_type* st = this->type_->struct_type();
6968 Interface_type* it = this->type_->interface_type();
6969 bool found_dup = false;
6970 if (st != NULL || it != NULL)
6971 {
6972 for (Bindings::const_declarations_iterator p =
6973 this->local_methods_->begin_declarations();
6974 p != this->local_methods_->end_declarations();
6975 ++p)
6976 {
6977 const std::string& name(p->first);
6978 if (st != NULL && st->find_local_field(name, NULL) != NULL)
6979 {
6980 error_at(p->second->location(),
6981 "method %qs redeclares struct field name",
6982 Gogo::message_name(name).c_str());
6983 found_dup = true;
6984 }
6985 if (it != NULL && it->find_method(name) != NULL)
6986 {
6987 error_at(p->second->location(),
6988 "method %qs redeclares interface method name",
6989 Gogo::message_name(name).c_str());
6990 found_dup = true;
6991 }
6992 }
6993 }
6994 if (found_dup)
6995 return false;
6996 }
6997
6998 // If this is a struct, then if any of the fields of the struct
6999 // themselves have struct type, or array of struct type, then this
7000 // struct must be converted to the backend representation before the
7001 // field's type is converted. That may seem backward, but it works
7002 // because if the field's type refers to this one, e.g., via a
7003 // pointer, then the conversion process will pick up the half-built
7004 // struct and do the right thing.
7005 if (this->struct_type() != NULL)
7006 {
7007 const Struct_field_list* fields = this->struct_type()->fields();
7008 for (Struct_field_list::const_iterator p = fields->begin();
7009 p != fields->end();
7010 ++p)
7011 {
7012 Struct_type* st = p->type()->struct_type();
7013 if (st != NULL)
7014 st->add_prerequisite(this);
7015 else
7016 {
7017 Array_type* at = p->type()->array_type();
7018 if (at != NULL && !at->is_open_array_type())
7019 {
7020 st = at->element_type()->struct_type();
7021 if (st != NULL)
7022 st->add_prerequisite(this);
7023 }
7024 }
7025 }
7026 }
7027
7028 return true;
7029 }
7030
7031 // Return whether this type is or contains a pointer.
7032
7033 bool
7034 Named_type::do_has_pointer() const
7035 {
7036 if (this->seen_ > 0)
7037 return false;
7038 ++this->seen_;
7039 bool ret = this->type_->has_pointer();
7040 --this->seen_;
7041 return ret;
7042 }
7043
7044 // Return a hash code. This is used for method lookup. We simply
7045 // hash on the name itself.
7046
7047 unsigned int
7048 Named_type::do_hash_for_method(Gogo* gogo) const
7049 {
7050 const std::string& name(this->named_object()->name());
7051 unsigned int ret = Type::hash_string(name, 0);
7052
7053 // GOGO will be NULL here when called from Type_hash_identical.
7054 // That is OK because that is only used for internal hash tables
7055 // where we are going to be comparing named types for equality. In
7056 // other cases, which are cases where the runtime is going to
7057 // compare hash codes to see if the types are the same, we need to
7058 // include the package prefix and name in the hash.
7059 if (gogo != NULL && !Gogo::is_hidden_name(name) && !this->is_builtin())
7060 {
7061 const Package* package = this->named_object()->package();
7062 if (package == NULL)
7063 {
7064 ret = Type::hash_string(gogo->unique_prefix(), ret);
7065 ret = Type::hash_string(gogo->package_name(), ret);
7066 }
7067 else
7068 {
7069 ret = Type::hash_string(package->unique_prefix(), ret);
7070 ret = Type::hash_string(package->name(), ret);
7071 }
7072 }
7073
7074 return ret;
7075 }
7076
7077 // Get a tree for a named type.
7078
7079 tree
7080 Named_type::do_get_tree(Gogo* gogo)
7081 {
7082 if (this->is_error_)
7083 return error_mark_node;
7084
7085 // Go permits types to refer to themselves in various ways. Break
7086 // the recursion here.
7087 tree t;
7088 switch (this->type_->forwarded()->classification())
7089 {
7090 case TYPE_ERROR:
7091 return error_mark_node;
7092
7093 case TYPE_VOID:
7094 case TYPE_BOOLEAN:
7095 case TYPE_INTEGER:
7096 case TYPE_FLOAT:
7097 case TYPE_COMPLEX:
7098 case TYPE_STRING:
7099 case TYPE_NIL:
7100 // These types can not refer to themselves.
7101 case TYPE_MAP:
7102 case TYPE_CHANNEL:
7103 // All maps and channels have the same type in GENERIC.
7104 t = Type::get_named_type_tree(gogo, this->type_);
7105 if (t == error_mark_node)
7106 return error_mark_node;
7107 // Build a copy to set TYPE_NAME.
7108 t = build_variant_type_copy(t);
7109 break;
7110
7111 case TYPE_FUNCTION:
7112 // GENERIC can't handle a pointer to a function type whose
7113 // return type is a pointer to the function type itself. It
7114 // goes into an infinite loop when walking the types.
7115 if (this->seen_ > 0)
7116 {
7117 Function_type* fntype = this->type_->function_type();
7118 if (fntype->results() != NULL
7119 && fntype->results()->size() == 1
7120 && fntype->results()->front().type()->forwarded() == this)
7121 return ptr_type_node;
7122
7123 // We can legitimately see ourselves here twice when a named
7124 // type is defined using a struct which refers to the named
7125 // type. If we see ourselves too often we are in a loop.
7126 if (this->seen_ > 3)
7127 return ptr_type_node;
7128 }
7129 ++this->seen_;
7130 t = Type::get_named_type_tree(gogo, this->type_);
7131 --this->seen_;
7132 if (t == error_mark_node)
7133 return error_mark_node;
7134 t = build_variant_type_copy(t);
7135 break;
7136
7137 case TYPE_POINTER:
7138 // Don't recur infinitely if a pointer type refers to itself.
7139 // Ideally we would build a circular data structure here, but
7140 // GENERIC can't handle them.
7141 if (this->seen_ > 0)
7142 {
7143 if (this->type_->points_to()->forwarded() == this)
7144 return ptr_type_node;
7145
7146 if (this->seen_ > 3)
7147 return ptr_type_node;
7148 }
7149 ++this->seen_;
7150 t = Type::get_named_type_tree(gogo, this->type_);
7151 --this->seen_;
7152 if (t == error_mark_node)
7153 return error_mark_node;
7154 t = build_variant_type_copy(t);
7155 break;
7156
7157 case TYPE_STRUCT:
7158 // If there are structs which must be converted first, do them.
7159 if (this->seen_ == 0)
7160 {
7161 ++this->seen_;
7162 this->type_->struct_type()->convert_prerequisites(gogo);
7163 --this->seen_;
7164 }
7165
7166 if (this->named_tree_ != NULL_TREE)
7167 return this->named_tree_;
7168
7169 t = make_node(RECORD_TYPE);
7170 this->named_tree_ = t;
7171 t = this->type_->struct_type()->fill_in_tree(gogo, t);
7172 if (t == error_mark_node)
7173 {
7174 this->named_tree_ = error_mark_node;
7175 return error_mark_node;
7176 }
7177 break;
7178
7179 case TYPE_ARRAY:
7180 if (this->named_tree_ != NULL_TREE)
7181 return this->named_tree_;
7182 if (!this->is_open_array_type())
7183 {
7184 t = make_node(ARRAY_TYPE);
7185 this->named_tree_ = t;
7186 t = this->type_->array_type()->fill_in_array_tree(gogo, t);
7187 }
7188 else
7189 {
7190 t = gogo->slice_type_tree(void_type_node);
7191 this->named_tree_ = t;
7192 t = this->type_->array_type()->fill_in_slice_tree(gogo, t);
7193 }
7194 if (t == error_mark_node)
7195 return error_mark_node;
7196 t = build_variant_type_copy(t);
7197 break;
7198
7199 case TYPE_INTERFACE:
7200 if (this->type_->interface_type()->is_empty())
7201 {
7202 t = Type::get_named_type_tree(gogo, this->type_);
7203 if (t == error_mark_node)
7204 return error_mark_node;
7205 t = build_variant_type_copy(t);
7206 }
7207 else
7208 {
7209 if (this->named_tree_ != NULL_TREE)
7210 return this->named_tree_;
7211 t = make_node(RECORD_TYPE);
7212 this->named_tree_ = t;
7213 t = this->type_->interface_type()->fill_in_tree(gogo, t);
7214 if (t == error_mark_node)
7215 {
7216 this->named_tree_ = error_mark_node;
7217 return error_mark_node;
7218 }
7219 }
7220 break;
7221
7222 case TYPE_NAMED:
7223 {
7224 // When a named type T1 is defined as another named type T2,
7225 // the definition must simply be "type T1 T2". If the
7226 // definition of T2 may refer to T1, then we must simply
7227 // return the type for T2 here. It's not precisely correct,
7228 // but it's as close as we can get with GENERIC.
7229 ++this->seen_;
7230 t = Type::get_named_type_tree(gogo, this->type_);
7231 --this->seen_;
7232 if (this->seen_ > 0)
7233 return t;
7234 if (t == error_mark_node)
7235 return error_mark_node;
7236 t = build_variant_type_copy(t);
7237 }
7238 break;
7239
7240 case TYPE_FORWARD:
7241 // An undefined forwarding type. Make sure the error is
7242 // emitted.
7243 this->type_->forward_declaration_type()->real_type();
7244 return error_mark_node;
7245
7246 default:
7247 case TYPE_SINK:
7248 case TYPE_CALL_MULTIPLE_RESULT:
7249 gcc_unreachable();
7250 }
7251
7252 tree id = this->named_object_->get_id(gogo);
7253 tree decl = build_decl(this->location_, TYPE_DECL, id, t);
7254 TYPE_NAME(t) = decl;
7255
7256 return t;
7257 }
7258
7259 // Build a type descriptor for a named type.
7260
7261 Expression*
7262 Named_type::do_type_descriptor(Gogo* gogo, Named_type* name)
7263 {
7264 // If NAME is not NULL, then we don't really want the type
7265 // descriptor for this type; we want the descriptor for the
7266 // underlying type, giving it the name NAME.
7267 return this->named_type_descriptor(gogo, this->type_,
7268 name == NULL ? this : name);
7269 }
7270
7271 // Add to the reflection string. This is used mostly for the name of
7272 // the type used in a type descriptor, not for actual reflection
7273 // strings.
7274
7275 void
7276 Named_type::do_reflection(Gogo* gogo, std::string* ret) const
7277 {
7278 if (this->location() != BUILTINS_LOCATION)
7279 {
7280 const Package* package = this->named_object_->package();
7281 if (package != NULL)
7282 ret->append(package->name());
7283 else
7284 ret->append(gogo->package_name());
7285 ret->push_back('.');
7286 }
7287 if (this->in_function_ != NULL)
7288 {
7289 ret->append(Gogo::unpack_hidden_name(this->in_function_->name()));
7290 ret->push_back('$');
7291 }
7292 ret->append(Gogo::unpack_hidden_name(this->named_object_->name()));
7293 }
7294
7295 // Get the mangled name.
7296
7297 void
7298 Named_type::do_mangled_name(Gogo* gogo, std::string* ret) const
7299 {
7300 Named_object* no = this->named_object_;
7301 std::string name;
7302 if (this->location() == BUILTINS_LOCATION)
7303 gcc_assert(this->in_function_ == NULL);
7304 else
7305 {
7306 const std::string& unique_prefix(no->package() == NULL
7307 ? gogo->unique_prefix()
7308 : no->package()->unique_prefix());
7309 const std::string& package_name(no->package() == NULL
7310 ? gogo->package_name()
7311 : no->package()->name());
7312 name = unique_prefix;
7313 name.append(1, '.');
7314 name.append(package_name);
7315 name.append(1, '.');
7316 if (this->in_function_ != NULL)
7317 {
7318 name.append(Gogo::unpack_hidden_name(this->in_function_->name()));
7319 name.append(1, '$');
7320 }
7321 }
7322 name.append(Gogo::unpack_hidden_name(no->name()));
7323 char buf[20];
7324 snprintf(buf, sizeof buf, "N%u_", static_cast<unsigned int>(name.length()));
7325 ret->append(buf);
7326 ret->append(name);
7327 }
7328
7329 // Export the type. This is called to export a global type.
7330
7331 void
7332 Named_type::export_named_type(Export* exp, const std::string&) const
7333 {
7334 // We don't need to write the name of the type here, because it will
7335 // be written by Export::write_type anyhow.
7336 exp->write_c_string("type ");
7337 exp->write_type(this);
7338 exp->write_c_string(";\n");
7339 }
7340
7341 // Import a named type.
7342
7343 void
7344 Named_type::import_named_type(Import* imp, Named_type** ptype)
7345 {
7346 imp->require_c_string("type ");
7347 Type *type = imp->read_type();
7348 *ptype = type->named_type();
7349 gcc_assert(*ptype != NULL);
7350 imp->require_c_string(";\n");
7351 }
7352
7353 // Export the type when it is referenced by another type. In this
7354 // case Export::export_type will already have issued the name.
7355
7356 void
7357 Named_type::do_export(Export* exp) const
7358 {
7359 exp->write_type(this->type_);
7360
7361 // To save space, we only export the methods directly attached to
7362 // this type.
7363 Bindings* methods = this->local_methods_;
7364 if (methods == NULL)
7365 return;
7366
7367 exp->write_c_string("\n");
7368 for (Bindings::const_definitions_iterator p = methods->begin_definitions();
7369 p != methods->end_definitions();
7370 ++p)
7371 {
7372 exp->write_c_string(" ");
7373 (*p)->export_named_object(exp);
7374 }
7375
7376 for (Bindings::const_declarations_iterator p = methods->begin_declarations();
7377 p != methods->end_declarations();
7378 ++p)
7379 {
7380 if (p->second->is_function_declaration())
7381 {
7382 exp->write_c_string(" ");
7383 p->second->export_named_object(exp);
7384 }
7385 }
7386 }
7387
7388 // Make a named type.
7389
7390 Named_type*
7391 Type::make_named_type(Named_object* named_object, Type* type,
7392 source_location location)
7393 {
7394 return new Named_type(named_object, type, location);
7395 }
7396
7397 // Finalize the methods for TYPE. It will be a named type or a struct
7398 // type. This sets *ALL_METHODS to the list of methods, and builds
7399 // all required stubs.
7400
7401 void
7402 Type::finalize_methods(Gogo* gogo, const Type* type, source_location location,
7403 Methods** all_methods)
7404 {
7405 *all_methods = NULL;
7406 Types_seen types_seen;
7407 Type::add_methods_for_type(type, NULL, 0, false, false, &types_seen,
7408 all_methods);
7409 Type::build_stub_methods(gogo, type, *all_methods, location);
7410 }
7411
7412 // Add the methods for TYPE to *METHODS. FIELD_INDEXES is used to
7413 // build up the struct field indexes as we go. DEPTH is the depth of
7414 // the field within TYPE. IS_EMBEDDED_POINTER is true if we are
7415 // adding these methods for an anonymous field with pointer type.
7416 // NEEDS_STUB_METHOD is true if we need to use a stub method which
7417 // calls the real method. TYPES_SEEN is used to avoid infinite
7418 // recursion.
7419
7420 void
7421 Type::add_methods_for_type(const Type* type,
7422 const Method::Field_indexes* field_indexes,
7423 unsigned int depth,
7424 bool is_embedded_pointer,
7425 bool needs_stub_method,
7426 Types_seen* types_seen,
7427 Methods** methods)
7428 {
7429 // Pointer types may not have methods.
7430 if (type->points_to() != NULL)
7431 return;
7432
7433 const Named_type* nt = type->named_type();
7434 if (nt != NULL)
7435 {
7436 std::pair<Types_seen::iterator, bool> ins = types_seen->insert(nt);
7437 if (!ins.second)
7438 return;
7439 }
7440
7441 if (nt != NULL)
7442 Type::add_local_methods_for_type(nt, field_indexes, depth,
7443 is_embedded_pointer, needs_stub_method,
7444 methods);
7445
7446 Type::add_embedded_methods_for_type(type, field_indexes, depth,
7447 is_embedded_pointer, needs_stub_method,
7448 types_seen, methods);
7449
7450 // If we are called with depth > 0, then we are looking at an
7451 // anonymous field of a struct. If such a field has interface type,
7452 // then we need to add the interface methods. We don't want to add
7453 // them when depth == 0, because we will already handle them
7454 // following the usual rules for an interface type.
7455 if (depth > 0)
7456 Type::add_interface_methods_for_type(type, field_indexes, depth, methods);
7457 }
7458
7459 // Add the local methods for the named type NT to *METHODS. The
7460 // parameters are as for add_methods_to_type.
7461
7462 void
7463 Type::add_local_methods_for_type(const Named_type* nt,
7464 const Method::Field_indexes* field_indexes,
7465 unsigned int depth,
7466 bool is_embedded_pointer,
7467 bool needs_stub_method,
7468 Methods** methods)
7469 {
7470 const Bindings* local_methods = nt->local_methods();
7471 if (local_methods == NULL)
7472 return;
7473
7474 if (*methods == NULL)
7475 *methods = new Methods();
7476
7477 for (Bindings::const_declarations_iterator p =
7478 local_methods->begin_declarations();
7479 p != local_methods->end_declarations();
7480 ++p)
7481 {
7482 Named_object* no = p->second;
7483 bool is_value_method = (is_embedded_pointer
7484 || !Type::method_expects_pointer(no));
7485 Method* m = new Named_method(no, field_indexes, depth, is_value_method,
7486 (needs_stub_method
7487 || (depth > 0 && is_value_method)));
7488 if (!(*methods)->insert(no->name(), m))
7489 delete m;
7490 }
7491 }
7492
7493 // Add the embedded methods for TYPE to *METHODS. These are the
7494 // methods attached to anonymous fields. The parameters are as for
7495 // add_methods_to_type.
7496
7497 void
7498 Type::add_embedded_methods_for_type(const Type* type,
7499 const Method::Field_indexes* field_indexes,
7500 unsigned int depth,
7501 bool is_embedded_pointer,
7502 bool needs_stub_method,
7503 Types_seen* types_seen,
7504 Methods** methods)
7505 {
7506 // Look for anonymous fields in TYPE. TYPE has fields if it is a
7507 // struct.
7508 const Struct_type* st = type->struct_type();
7509 if (st == NULL)
7510 return;
7511
7512 const Struct_field_list* fields = st->fields();
7513 if (fields == NULL)
7514 return;
7515
7516 unsigned int i = 0;
7517 for (Struct_field_list::const_iterator pf = fields->begin();
7518 pf != fields->end();
7519 ++pf, ++i)
7520 {
7521 if (!pf->is_anonymous())
7522 continue;
7523
7524 Type* ftype = pf->type();
7525 bool is_pointer = false;
7526 if (ftype->points_to() != NULL)
7527 {
7528 ftype = ftype->points_to();
7529 is_pointer = true;
7530 }
7531 Named_type* fnt = ftype->named_type();
7532 if (fnt == NULL)
7533 {
7534 // This is an error, but it will be diagnosed elsewhere.
7535 continue;
7536 }
7537
7538 Method::Field_indexes* sub_field_indexes = new Method::Field_indexes();
7539 sub_field_indexes->next = field_indexes;
7540 sub_field_indexes->field_index = i;
7541
7542 Type::add_methods_for_type(fnt, sub_field_indexes, depth + 1,
7543 (is_embedded_pointer || is_pointer),
7544 (needs_stub_method
7545 || is_pointer
7546 || i > 0),
7547 types_seen,
7548 methods);
7549 }
7550 }
7551
7552 // If TYPE is an interface type, then add its method to *METHODS.
7553 // This is for interface methods attached to an anonymous field. The
7554 // parameters are as for add_methods_for_type.
7555
7556 void
7557 Type::add_interface_methods_for_type(const Type* type,
7558 const Method::Field_indexes* field_indexes,
7559 unsigned int depth,
7560 Methods** methods)
7561 {
7562 const Interface_type* it = type->interface_type();
7563 if (it == NULL)
7564 return;
7565
7566 const Typed_identifier_list* imethods = it->methods();
7567 if (imethods == NULL)
7568 return;
7569
7570 if (*methods == NULL)
7571 *methods = new Methods();
7572
7573 for (Typed_identifier_list::const_iterator pm = imethods->begin();
7574 pm != imethods->end();
7575 ++pm)
7576 {
7577 Function_type* fntype = pm->type()->function_type();
7578 if (fntype == NULL)
7579 {
7580 // This is an error, but it should be reported elsewhere
7581 // when we look at the methods for IT.
7582 continue;
7583 }
7584 gcc_assert(!fntype->is_method());
7585 fntype = fntype->copy_with_receiver(const_cast<Type*>(type));
7586 Method* m = new Interface_method(pm->name(), pm->location(), fntype,
7587 field_indexes, depth);
7588 if (!(*methods)->insert(pm->name(), m))
7589 delete m;
7590 }
7591 }
7592
7593 // Build stub methods for TYPE as needed. METHODS is the set of
7594 // methods for the type. A stub method may be needed when a type
7595 // inherits a method from an anonymous field. When we need the
7596 // address of the method, as in a type descriptor, we need to build a
7597 // little stub which does the required field dereferences and jumps to
7598 // the real method. LOCATION is the location of the type definition.
7599
7600 void
7601 Type::build_stub_methods(Gogo* gogo, const Type* type, const Methods* methods,
7602 source_location location)
7603 {
7604 if (methods == NULL)
7605 return;
7606 for (Methods::const_iterator p = methods->begin();
7607 p != methods->end();
7608 ++p)
7609 {
7610 Method* m = p->second;
7611 if (m->is_ambiguous() || !m->needs_stub_method())
7612 continue;
7613
7614 const std::string& name(p->first);
7615
7616 // Build a stub method.
7617
7618 const Function_type* fntype = m->type();
7619
7620 static unsigned int counter;
7621 char buf[100];
7622 snprintf(buf, sizeof buf, "$this%u", counter);
7623 ++counter;
7624
7625 Type* receiver_type = const_cast<Type*>(type);
7626 if (!m->is_value_method())
7627 receiver_type = Type::make_pointer_type(receiver_type);
7628 source_location receiver_location = m->receiver_location();
7629 Typed_identifier* receiver = new Typed_identifier(buf, receiver_type,
7630 receiver_location);
7631
7632 const Typed_identifier_list* fnparams = fntype->parameters();
7633 Typed_identifier_list* stub_params;
7634 if (fnparams == NULL || fnparams->empty())
7635 stub_params = NULL;
7636 else
7637 {
7638 // We give each stub parameter a unique name.
7639 stub_params = new Typed_identifier_list();
7640 for (Typed_identifier_list::const_iterator pp = fnparams->begin();
7641 pp != fnparams->end();
7642 ++pp)
7643 {
7644 char pbuf[100];
7645 snprintf(pbuf, sizeof pbuf, "$p%u", counter);
7646 stub_params->push_back(Typed_identifier(pbuf, pp->type(),
7647 pp->location()));
7648 ++counter;
7649 }
7650 }
7651
7652 const Typed_identifier_list* fnresults = fntype->results();
7653 Typed_identifier_list* stub_results;
7654 if (fnresults == NULL || fnresults->empty())
7655 stub_results = NULL;
7656 else
7657 {
7658 // We create the result parameters without any names, since
7659 // we won't refer to them.
7660 stub_results = new Typed_identifier_list();
7661 for (Typed_identifier_list::const_iterator pr = fnresults->begin();
7662 pr != fnresults->end();
7663 ++pr)
7664 stub_results->push_back(Typed_identifier("", pr->type(),
7665 pr->location()));
7666 }
7667
7668 Function_type* stub_type = Type::make_function_type(receiver,
7669 stub_params,
7670 stub_results,
7671 fntype->location());
7672 if (fntype->is_varargs())
7673 stub_type->set_is_varargs();
7674
7675 // We only create the function in the package which creates the
7676 // type.
7677 const Package* package;
7678 if (type->named_type() == NULL)
7679 package = NULL;
7680 else
7681 package = type->named_type()->named_object()->package();
7682 Named_object* stub;
7683 if (package != NULL)
7684 stub = Named_object::make_function_declaration(name, package,
7685 stub_type, location);
7686 else
7687 {
7688 stub = gogo->start_function(name, stub_type, false,
7689 fntype->location());
7690 Type::build_one_stub_method(gogo, m, buf, stub_params,
7691 fntype->is_varargs(), location);
7692 gogo->finish_function(fntype->location());
7693 }
7694
7695 m->set_stub_object(stub);
7696 }
7697 }
7698
7699 // Build a stub method which adjusts the receiver as required to call
7700 // METHOD. RECEIVER_NAME is the name we used for the receiver.
7701 // PARAMS is the list of function parameters.
7702
7703 void
7704 Type::build_one_stub_method(Gogo* gogo, Method* method,
7705 const char* receiver_name,
7706 const Typed_identifier_list* params,
7707 bool is_varargs,
7708 source_location location)
7709 {
7710 Named_object* receiver_object = gogo->lookup(receiver_name, NULL);
7711 gcc_assert(receiver_object != NULL);
7712
7713 Expression* expr = Expression::make_var_reference(receiver_object, location);
7714 expr = Type::apply_field_indexes(expr, method->field_indexes(), location);
7715 if (expr->type()->points_to() == NULL)
7716 expr = Expression::make_unary(OPERATOR_AND, expr, location);
7717
7718 Expression_list* arguments;
7719 if (params == NULL || params->empty())
7720 arguments = NULL;
7721 else
7722 {
7723 arguments = new Expression_list();
7724 for (Typed_identifier_list::const_iterator p = params->begin();
7725 p != params->end();
7726 ++p)
7727 {
7728 Named_object* param = gogo->lookup(p->name(), NULL);
7729 gcc_assert(param != NULL);
7730 Expression* param_ref = Expression::make_var_reference(param,
7731 location);
7732 arguments->push_back(param_ref);
7733 }
7734 }
7735
7736 Expression* func = method->bind_method(expr, location);
7737 gcc_assert(func != NULL);
7738 Call_expression* call = Expression::make_call(func, arguments, is_varargs,
7739 location);
7740 size_t count = call->result_count();
7741 if (count == 0)
7742 gogo->add_statement(Statement::make_statement(call));
7743 else
7744 {
7745 Expression_list* retvals = new Expression_list();
7746 if (count <= 1)
7747 retvals->push_back(call);
7748 else
7749 {
7750 for (size_t i = 0; i < count; ++i)
7751 retvals->push_back(Expression::make_call_result(call, i));
7752 }
7753 const Function* function = gogo->current_function()->func_value();
7754 const Typed_identifier_list* results = function->type()->results();
7755 Statement* retstat = Statement::make_return_statement(results, retvals,
7756 location);
7757 gogo->add_statement(retstat);
7758 }
7759 }
7760
7761 // Apply FIELD_INDEXES to EXPR. The field indexes have to be applied
7762 // in reverse order.
7763
7764 Expression*
7765 Type::apply_field_indexes(Expression* expr,
7766 const Method::Field_indexes* field_indexes,
7767 source_location location)
7768 {
7769 if (field_indexes == NULL)
7770 return expr;
7771 expr = Type::apply_field_indexes(expr, field_indexes->next, location);
7772 Struct_type* stype = expr->type()->deref()->struct_type();
7773 gcc_assert(stype != NULL
7774 && field_indexes->field_index < stype->field_count());
7775 if (expr->type()->struct_type() == NULL)
7776 {
7777 gcc_assert(expr->type()->points_to() != NULL);
7778 expr = Expression::make_unary(OPERATOR_MULT, expr, location);
7779 gcc_assert(expr->type()->struct_type() == stype);
7780 }
7781 return Expression::make_field_reference(expr, field_indexes->field_index,
7782 location);
7783 }
7784
7785 // Return whether NO is a method for which the receiver is a pointer.
7786
7787 bool
7788 Type::method_expects_pointer(const Named_object* no)
7789 {
7790 const Function_type *fntype;
7791 if (no->is_function())
7792 fntype = no->func_value()->type();
7793 else if (no->is_function_declaration())
7794 fntype = no->func_declaration_value()->type();
7795 else
7796 gcc_unreachable();
7797 return fntype->receiver()->type()->points_to() != NULL;
7798 }
7799
7800 // Given a set of methods for a type, METHODS, return the method NAME,
7801 // or NULL if there isn't one or if it is ambiguous. If IS_AMBIGUOUS
7802 // is not NULL, then set *IS_AMBIGUOUS to true if the method exists
7803 // but is ambiguous (and return NULL).
7804
7805 Method*
7806 Type::method_function(const Methods* methods, const std::string& name,
7807 bool* is_ambiguous)
7808 {
7809 if (is_ambiguous != NULL)
7810 *is_ambiguous = false;
7811 if (methods == NULL)
7812 return NULL;
7813 Methods::const_iterator p = methods->find(name);
7814 if (p == methods->end())
7815 return NULL;
7816 Method* m = p->second;
7817 if (m->is_ambiguous())
7818 {
7819 if (is_ambiguous != NULL)
7820 *is_ambiguous = true;
7821 return NULL;
7822 }
7823 return m;
7824 }
7825
7826 // Look for field or method NAME for TYPE. Return an Expression for
7827 // the field or method bound to EXPR. If there is no such field or
7828 // method, give an appropriate error and return an error expression.
7829
7830 Expression*
7831 Type::bind_field_or_method(Gogo* gogo, const Type* type, Expression* expr,
7832 const std::string& name,
7833 source_location location)
7834 {
7835 if (type->deref()->is_error_type())
7836 return Expression::make_error(location);
7837
7838 const Named_type* nt = type->named_type();
7839 if (nt == NULL)
7840 nt = type->deref()->named_type();
7841 const Struct_type* st = type->deref()->struct_type();
7842 const Interface_type* it = type->deref()->interface_type();
7843
7844 // If this is a pointer to a pointer, then it is possible that the
7845 // pointed-to type has methods.
7846 if (nt == NULL
7847 && st == NULL
7848 && it == NULL
7849 && type->points_to() != NULL
7850 && type->points_to()->points_to() != NULL)
7851 {
7852 expr = Expression::make_unary(OPERATOR_MULT, expr, location);
7853 type = type->points_to();
7854 if (type->deref()->is_error_type())
7855 return Expression::make_error(location);
7856 nt = type->points_to()->named_type();
7857 st = type->points_to()->struct_type();
7858 it = type->points_to()->interface_type();
7859 }
7860
7861 bool receiver_can_be_pointer = (expr->type()->points_to() != NULL
7862 || expr->is_addressable());
7863 std::vector<const Named_type*> seen;
7864 bool is_method = false;
7865 bool found_pointer_method = false;
7866 std::string ambig1;
7867 std::string ambig2;
7868 if (Type::find_field_or_method(type, name, receiver_can_be_pointer,
7869 &seen, NULL, &is_method,
7870 &found_pointer_method, &ambig1, &ambig2))
7871 {
7872 Expression* ret;
7873 if (!is_method)
7874 {
7875 gcc_assert(st != NULL);
7876 if (type->struct_type() == NULL)
7877 {
7878 gcc_assert(type->points_to() != NULL);
7879 expr = Expression::make_unary(OPERATOR_MULT, expr,
7880 location);
7881 gcc_assert(expr->type()->struct_type() == st);
7882 }
7883 ret = st->field_reference(expr, name, location);
7884 }
7885 else if (it != NULL && it->find_method(name) != NULL)
7886 ret = Expression::make_interface_field_reference(expr, name,
7887 location);
7888 else
7889 {
7890 Method* m;
7891 if (nt != NULL)
7892 m = nt->method_function(name, NULL);
7893 else if (st != NULL)
7894 m = st->method_function(name, NULL);
7895 else
7896 gcc_unreachable();
7897 gcc_assert(m != NULL);
7898 if (!m->is_value_method() && expr->type()->points_to() == NULL)
7899 expr = Expression::make_unary(OPERATOR_AND, expr, location);
7900 ret = m->bind_method(expr, location);
7901 }
7902 gcc_assert(ret != NULL);
7903 return ret;
7904 }
7905 else
7906 {
7907 if (!ambig1.empty())
7908 error_at(location, "%qs is ambiguous via %qs and %qs",
7909 Gogo::message_name(name).c_str(),
7910 Gogo::message_name(ambig1).c_str(),
7911 Gogo::message_name(ambig2).c_str());
7912 else if (found_pointer_method)
7913 error_at(location, "method requires a pointer");
7914 else if (nt == NULL && st == NULL && it == NULL)
7915 error_at(location,
7916 ("reference to field %qs in object which "
7917 "has no fields or methods"),
7918 Gogo::message_name(name).c_str());
7919 else
7920 {
7921 bool is_unexported;
7922 if (!Gogo::is_hidden_name(name))
7923 is_unexported = false;
7924 else
7925 {
7926 std::string unpacked = Gogo::unpack_hidden_name(name);
7927 seen.clear();
7928 is_unexported = Type::is_unexported_field_or_method(gogo, type,
7929 unpacked,
7930 &seen);
7931 }
7932 if (is_unexported)
7933 error_at(location, "reference to unexported field or method %qs",
7934 Gogo::message_name(name).c_str());
7935 else
7936 error_at(location, "reference to undefined field or method %qs",
7937 Gogo::message_name(name).c_str());
7938 }
7939 return Expression::make_error(location);
7940 }
7941 }
7942
7943 // Look in TYPE for a field or method named NAME, return true if one
7944 // is found. This looks through embedded anonymous fields and handles
7945 // ambiguity. If a method is found, sets *IS_METHOD to true;
7946 // otherwise, if a field is found, set it to false. If
7947 // RECEIVER_CAN_BE_POINTER is false, then the receiver is a value
7948 // whose address can not be taken. SEEN is used to avoid infinite
7949 // recursion on invalid types.
7950
7951 // When returning false, this sets *FOUND_POINTER_METHOD if we found a
7952 // method we couldn't use because it requires a pointer. LEVEL is
7953 // used for recursive calls, and can be NULL for a non-recursive call.
7954 // When this function returns false because it finds that the name is
7955 // ambiguous, it will store a path to the ambiguous names in *AMBIG1
7956 // and *AMBIG2. If the name is not found at all, *AMBIG1 and *AMBIG2
7957 // will be unchanged.
7958
7959 // This function just returns whether or not there is a field or
7960 // method, and whether it is a field or method. It doesn't build an
7961 // expression to refer to it. If it is a method, we then look in the
7962 // list of all methods for the type. If it is a field, the search has
7963 // to be done again, looking only for fields, and building up the
7964 // expression as we go.
7965
7966 bool
7967 Type::find_field_or_method(const Type* type,
7968 const std::string& name,
7969 bool receiver_can_be_pointer,
7970 std::vector<const Named_type*>* seen,
7971 int* level,
7972 bool* is_method,
7973 bool* found_pointer_method,
7974 std::string* ambig1,
7975 std::string* ambig2)
7976 {
7977 // Named types can have locally defined methods.
7978 const Named_type* nt = type->named_type();
7979 if (nt == NULL && type->points_to() != NULL)
7980 nt = type->points_to()->named_type();
7981 if (nt != NULL)
7982 {
7983 Named_object* no = nt->find_local_method(name);
7984 if (no != NULL)
7985 {
7986 if (receiver_can_be_pointer || !Type::method_expects_pointer(no))
7987 {
7988 *is_method = true;
7989 return true;
7990 }
7991
7992 // Record that we have found a pointer method in order to
7993 // give a better error message if we don't find anything
7994 // else.
7995 *found_pointer_method = true;
7996 }
7997
7998 for (std::vector<const Named_type*>::const_iterator p = seen->begin();
7999 p != seen->end();
8000 ++p)
8001 {
8002 if (*p == nt)
8003 {
8004 // We've already seen this type when searching for methods.
8005 return false;
8006 }
8007 }
8008 }
8009
8010 // Interface types can have methods.
8011 const Interface_type* it = type->deref()->interface_type();
8012 if (it != NULL && it->find_method(name) != NULL)
8013 {
8014 *is_method = true;
8015 return true;
8016 }
8017
8018 // Struct types can have fields. They can also inherit fields and
8019 // methods from anonymous fields.
8020 const Struct_type* st = type->deref()->struct_type();
8021 if (st == NULL)
8022 return false;
8023 const Struct_field_list* fields = st->fields();
8024 if (fields == NULL)
8025 return false;
8026
8027 if (nt != NULL)
8028 seen->push_back(nt);
8029
8030 int found_level = 0;
8031 bool found_is_method = false;
8032 std::string found_ambig1;
8033 std::string found_ambig2;
8034 const Struct_field* found_parent = NULL;
8035 for (Struct_field_list::const_iterator pf = fields->begin();
8036 pf != fields->end();
8037 ++pf)
8038 {
8039 if (pf->field_name() == name)
8040 {
8041 *is_method = false;
8042 if (nt != NULL)
8043 seen->pop_back();
8044 return true;
8045 }
8046
8047 if (!pf->is_anonymous())
8048 continue;
8049
8050 if (pf->type()->deref()->is_error_type()
8051 || pf->type()->deref()->is_undefined())
8052 continue;
8053
8054 Named_type* fnt = pf->type()->named_type();
8055 if (fnt == NULL)
8056 fnt = pf->type()->deref()->named_type();
8057 gcc_assert(fnt != NULL);
8058
8059 int sublevel = level == NULL ? 1 : *level + 1;
8060 bool sub_is_method;
8061 std::string subambig1;
8062 std::string subambig2;
8063 bool subfound = Type::find_field_or_method(fnt,
8064 name,
8065 receiver_can_be_pointer,
8066 seen,
8067 &sublevel,
8068 &sub_is_method,
8069 found_pointer_method,
8070 &subambig1,
8071 &subambig2);
8072 if (!subfound)
8073 {
8074 if (!subambig1.empty())
8075 {
8076 // The name was found via this field, but is ambiguous.
8077 // if the ambiguity is lower or at the same level as
8078 // anything else we have already found, then we want to
8079 // pass the ambiguity back to the caller.
8080 if (found_level == 0 || sublevel <= found_level)
8081 {
8082 found_ambig1 = pf->field_name() + '.' + subambig1;
8083 found_ambig2 = pf->field_name() + '.' + subambig2;
8084 found_level = sublevel;
8085 }
8086 }
8087 }
8088 else
8089 {
8090 // The name was found via this field. Use the level to see
8091 // if we want to use this one, or whether it introduces an
8092 // ambiguity.
8093 if (found_level == 0 || sublevel < found_level)
8094 {
8095 found_level = sublevel;
8096 found_is_method = sub_is_method;
8097 found_ambig1.clear();
8098 found_ambig2.clear();
8099 found_parent = &*pf;
8100 }
8101 else if (sublevel > found_level)
8102 ;
8103 else if (found_ambig1.empty())
8104 {
8105 // We found an ambiguity.
8106 gcc_assert(found_parent != NULL);
8107 found_ambig1 = found_parent->field_name();
8108 found_ambig2 = pf->field_name();
8109 }
8110 else
8111 {
8112 // We found an ambiguity, but we already know of one.
8113 // Just report the earlier one.
8114 }
8115 }
8116 }
8117
8118 // Here if we didn't find anything FOUND_LEVEL is 0. If we found
8119 // something ambiguous, FOUND_LEVEL is not 0 and FOUND_AMBIG1 and
8120 // FOUND_AMBIG2 are not empty. If we found the field, FOUND_LEVEL
8121 // is not 0 and FOUND_AMBIG1 and FOUND_AMBIG2 are empty.
8122
8123 if (nt != NULL)
8124 seen->pop_back();
8125
8126 if (found_level == 0)
8127 return false;
8128 else if (!found_ambig1.empty())
8129 {
8130 gcc_assert(!found_ambig1.empty());
8131 ambig1->assign(found_ambig1);
8132 ambig2->assign(found_ambig2);
8133 if (level != NULL)
8134 *level = found_level;
8135 return false;
8136 }
8137 else
8138 {
8139 if (level != NULL)
8140 *level = found_level;
8141 *is_method = found_is_method;
8142 return true;
8143 }
8144 }
8145
8146 // Return whether NAME is an unexported field or method for TYPE.
8147
8148 bool
8149 Type::is_unexported_field_or_method(Gogo* gogo, const Type* type,
8150 const std::string& name,
8151 std::vector<const Named_type*>* seen)
8152 {
8153 const Named_type* nt = type->named_type();
8154 if (nt == NULL)
8155 nt = type->deref()->named_type();
8156 if (nt != NULL)
8157 {
8158 if (nt->is_unexported_local_method(gogo, name))
8159 return true;
8160
8161 for (std::vector<const Named_type*>::const_iterator p = seen->begin();
8162 p != seen->end();
8163 ++p)
8164 {
8165 if (*p == nt)
8166 {
8167 // We've already seen this type.
8168 return false;
8169 }
8170 }
8171 }
8172
8173 type = type->deref();
8174
8175 const Interface_type* it = type->interface_type();
8176 if (it != NULL && it->is_unexported_method(gogo, name))
8177 return true;
8178
8179 const Struct_type* st = type->struct_type();
8180 if (st != NULL && st->is_unexported_local_field(gogo, name))
8181 return true;
8182
8183 if (st == NULL)
8184 return false;
8185
8186 const Struct_field_list* fields = st->fields();
8187 if (fields == NULL)
8188 return false;
8189
8190 if (nt != NULL)
8191 seen->push_back(nt);
8192
8193 for (Struct_field_list::const_iterator pf = fields->begin();
8194 pf != fields->end();
8195 ++pf)
8196 {
8197 if (pf->is_anonymous()
8198 && !pf->type()->deref()->is_error_type()
8199 && !pf->type()->deref()->is_undefined())
8200 {
8201 Named_type* subtype = pf->type()->named_type();
8202 if (subtype == NULL)
8203 subtype = pf->type()->deref()->named_type();
8204 if (subtype == NULL)
8205 {
8206 // This is an error, but it will be diagnosed elsewhere.
8207 continue;
8208 }
8209 if (Type::is_unexported_field_or_method(gogo, subtype, name, seen))
8210 {
8211 if (nt != NULL)
8212 seen->pop_back();
8213 return true;
8214 }
8215 }
8216 }
8217
8218 if (nt != NULL)
8219 seen->pop_back();
8220
8221 return false;
8222 }
8223
8224 // Class Forward_declaration.
8225
8226 Forward_declaration_type::Forward_declaration_type(Named_object* named_object)
8227 : Type(TYPE_FORWARD),
8228 named_object_(named_object->resolve()), warned_(false)
8229 {
8230 gcc_assert(this->named_object_->is_unknown()
8231 || this->named_object_->is_type_declaration());
8232 }
8233
8234 // Return the named object.
8235
8236 Named_object*
8237 Forward_declaration_type::named_object()
8238 {
8239 return this->named_object_->resolve();
8240 }
8241
8242 const Named_object*
8243 Forward_declaration_type::named_object() const
8244 {
8245 return this->named_object_->resolve();
8246 }
8247
8248 // Return the name of the forward declared type.
8249
8250 const std::string&
8251 Forward_declaration_type::name() const
8252 {
8253 return this->named_object()->name();
8254 }
8255
8256 // Warn about a use of a type which has been declared but not defined.
8257
8258 void
8259 Forward_declaration_type::warn() const
8260 {
8261 Named_object* no = this->named_object_->resolve();
8262 if (no->is_unknown())
8263 {
8264 // The name was not defined anywhere.
8265 if (!this->warned_)
8266 {
8267 error_at(this->named_object_->location(),
8268 "use of undefined type %qs",
8269 no->message_name().c_str());
8270 this->warned_ = true;
8271 }
8272 }
8273 else if (no->is_type_declaration())
8274 {
8275 // The name was seen as a type, but the type was never defined.
8276 if (no->type_declaration_value()->using_type())
8277 {
8278 error_at(this->named_object_->location(),
8279 "use of undefined type %qs",
8280 no->message_name().c_str());
8281 this->warned_ = true;
8282 }
8283 }
8284 else
8285 {
8286 // The name was defined, but not as a type.
8287 if (!this->warned_)
8288 {
8289 error_at(this->named_object_->location(), "expected type");
8290 this->warned_ = true;
8291 }
8292 }
8293 }
8294
8295 // Get the base type of a declaration. This gives an error if the
8296 // type has not yet been defined.
8297
8298 Type*
8299 Forward_declaration_type::real_type()
8300 {
8301 if (this->is_defined())
8302 return this->named_object()->type_value();
8303 else
8304 {
8305 this->warn();
8306 return Type::make_error_type();
8307 }
8308 }
8309
8310 const Type*
8311 Forward_declaration_type::real_type() const
8312 {
8313 if (this->is_defined())
8314 return this->named_object()->type_value();
8315 else
8316 {
8317 this->warn();
8318 return Type::make_error_type();
8319 }
8320 }
8321
8322 // Return whether the base type is defined.
8323
8324 bool
8325 Forward_declaration_type::is_defined() const
8326 {
8327 return this->named_object()->is_type();
8328 }
8329
8330 // Add a method. This is used when methods are defined before the
8331 // type.
8332
8333 Named_object*
8334 Forward_declaration_type::add_method(const std::string& name,
8335 Function* function)
8336 {
8337 Named_object* no = this->named_object();
8338 if (no->is_unknown())
8339 no->declare_as_type();
8340 return no->type_declaration_value()->add_method(name, function);
8341 }
8342
8343 // Add a method declaration. This is used when methods are declared
8344 // before the type.
8345
8346 Named_object*
8347 Forward_declaration_type::add_method_declaration(const std::string& name,
8348 Function_type* type,
8349 source_location location)
8350 {
8351 Named_object* no = this->named_object();
8352 if (no->is_unknown())
8353 no->declare_as_type();
8354 Type_declaration* td = no->type_declaration_value();
8355 return td->add_method_declaration(name, type, location);
8356 }
8357
8358 // Traversal.
8359
8360 int
8361 Forward_declaration_type::do_traverse(Traverse* traverse)
8362 {
8363 if (this->is_defined()
8364 && Type::traverse(this->real_type(), traverse) == TRAVERSE_EXIT)
8365 return TRAVERSE_EXIT;
8366 return TRAVERSE_CONTINUE;
8367 }
8368
8369 // Get a tree for the type.
8370
8371 tree
8372 Forward_declaration_type::do_get_tree(Gogo* gogo)
8373 {
8374 if (this->is_defined())
8375 return Type::get_named_type_tree(gogo, this->real_type());
8376
8377 if (this->warned_)
8378 return error_mark_node;
8379
8380 // We represent an undefined type as a struct with no fields. That
8381 // should work fine for the middle-end, since the same case can
8382 // arise in C.
8383 Named_object* no = this->named_object();
8384 tree type_tree = make_node(RECORD_TYPE);
8385 tree id = no->get_id(gogo);
8386 tree decl = build_decl(no->location(), TYPE_DECL, id, type_tree);
8387 TYPE_NAME(type_tree) = decl;
8388 layout_type(type_tree);
8389 return type_tree;
8390 }
8391
8392 // Build a type descriptor for a forwarded type.
8393
8394 Expression*
8395 Forward_declaration_type::do_type_descriptor(Gogo* gogo, Named_type* name)
8396 {
8397 if (!this->is_defined())
8398 return Expression::make_nil(BUILTINS_LOCATION);
8399 else
8400 {
8401 Type* t = this->real_type();
8402 if (name != NULL)
8403 return this->named_type_descriptor(gogo, t, name);
8404 else
8405 return Expression::make_type_descriptor(t, BUILTINS_LOCATION);
8406 }
8407 }
8408
8409 // The reflection string.
8410
8411 void
8412 Forward_declaration_type::do_reflection(Gogo* gogo, std::string* ret) const
8413 {
8414 this->append_reflection(this->real_type(), gogo, ret);
8415 }
8416
8417 // The mangled name.
8418
8419 void
8420 Forward_declaration_type::do_mangled_name(Gogo* gogo, std::string* ret) const
8421 {
8422 if (this->is_defined())
8423 this->append_mangled_name(this->real_type(), gogo, ret);
8424 else
8425 {
8426 const Named_object* no = this->named_object();
8427 std::string name;
8428 if (no->package() == NULL)
8429 name = gogo->package_name();
8430 else
8431 name = no->package()->name();
8432 name += '.';
8433 name += Gogo::unpack_hidden_name(no->name());
8434 char buf[20];
8435 snprintf(buf, sizeof buf, "N%u_",
8436 static_cast<unsigned int>(name.length()));
8437 ret->append(buf);
8438 ret->append(name);
8439 }
8440 }
8441
8442 // Export a forward declaration. This can happen when a defined type
8443 // refers to a type which is only declared (and is presumably defined
8444 // in some other file in the same package).
8445
8446 void
8447 Forward_declaration_type::do_export(Export*) const
8448 {
8449 // If there is a base type, that should be exported instead of this.
8450 gcc_assert(!this->is_defined());
8451
8452 // We don't output anything.
8453 }
8454
8455 // Make a forward declaration.
8456
8457 Type*
8458 Type::make_forward_declaration(Named_object* named_object)
8459 {
8460 return new Forward_declaration_type(named_object);
8461 }
8462
8463 // Class Typed_identifier_list.
8464
8465 // Sort the entries by name.
8466
8467 struct Typed_identifier_list_sort
8468 {
8469 public:
8470 bool
8471 operator()(const Typed_identifier& t1, const Typed_identifier& t2) const
8472 { return t1.name() < t2.name(); }
8473 };
8474
8475 void
8476 Typed_identifier_list::sort_by_name()
8477 {
8478 std::sort(this->entries_.begin(), this->entries_.end(),
8479 Typed_identifier_list_sort());
8480 }
8481
8482 // Traverse types.
8483
8484 int
8485 Typed_identifier_list::traverse(Traverse* traverse)
8486 {
8487 for (Typed_identifier_list::const_iterator p = this->begin();
8488 p != this->end();
8489 ++p)
8490 {
8491 if (Type::traverse(p->type(), traverse) == TRAVERSE_EXIT)
8492 return TRAVERSE_EXIT;
8493 }
8494 return TRAVERSE_CONTINUE;
8495 }
8496
8497 // Copy the list.
8498
8499 Typed_identifier_list*
8500 Typed_identifier_list::copy() const
8501 {
8502 Typed_identifier_list* ret = new Typed_identifier_list();
8503 for (Typed_identifier_list::const_iterator p = this->begin();
8504 p != this->end();
8505 ++p)
8506 ret->push_back(Typed_identifier(p->name(), p->type(), p->location()));
8507 return ret;
8508 }