More tweaking of recursive name types when converting to GENERIC.
[gcc.git] / gcc / go / gofrontend / types.cc
1 // types.cc -- Go frontend types.
2
3 // Copyright 2009 The Go Authors. All rights reserved.
4 // Use of this source code is governed by a BSD-style
5 // license that can be found in the LICENSE file.
6
7 #include "go-system.h"
8
9 #include <gmp.h>
10
11 #ifndef ENABLE_BUILD_WITH_CXX
12 extern "C"
13 {
14 #endif
15
16 #include "toplev.h"
17 #include "intl.h"
18 #include "tree.h"
19 #include "gimple.h"
20 #include "real.h"
21 #include "convert.h"
22
23 #ifndef ENABLE_BUILD_WITH_CXX
24 }
25 #endif
26
27 #include "go-c.h"
28 #include "gogo.h"
29 #include "operator.h"
30 #include "expressions.h"
31 #include "statements.h"
32 #include "export.h"
33 #include "import.h"
34 #include "types.h"
35
36 // Class Type.
37
38 Type::Type(Type_classification classification)
39 : classification_(classification), tree_(NULL_TREE),
40 type_descriptor_decl_(NULL_TREE)
41 {
42 }
43
44 Type::~Type()
45 {
46 }
47
48 // Get the base type for a type--skip names and forward declarations.
49
50 Type*
51 Type::base()
52 {
53 switch (this->classification_)
54 {
55 case TYPE_NAMED:
56 return this->named_type()->named_base();
57 case TYPE_FORWARD:
58 return this->forward_declaration_type()->real_type()->base();
59 default:
60 return this;
61 }
62 }
63
64 const Type*
65 Type::base() const
66 {
67 switch (this->classification_)
68 {
69 case TYPE_NAMED:
70 return this->named_type()->named_base();
71 case TYPE_FORWARD:
72 return this->forward_declaration_type()->real_type()->base();
73 default:
74 return this;
75 }
76 }
77
78 // Skip defined forward declarations.
79
80 Type*
81 Type::forwarded()
82 {
83 Type* t = this;
84 Forward_declaration_type* ftype = t->forward_declaration_type();
85 while (ftype != NULL && ftype->is_defined())
86 {
87 t = ftype->real_type();
88 ftype = t->forward_declaration_type();
89 }
90 return t;
91 }
92
93 const Type*
94 Type::forwarded() const
95 {
96 const Type* t = this;
97 const Forward_declaration_type* ftype = t->forward_declaration_type();
98 while (ftype != NULL && ftype->is_defined())
99 {
100 t = ftype->real_type();
101 ftype = t->forward_declaration_type();
102 }
103 return t;
104 }
105
106 // If this is a named type, return it. Otherwise, return NULL.
107
108 Named_type*
109 Type::named_type()
110 {
111 return this->forwarded()->convert_no_base<Named_type, TYPE_NAMED>();
112 }
113
114 const Named_type*
115 Type::named_type() const
116 {
117 return this->forwarded()->convert_no_base<const Named_type, TYPE_NAMED>();
118 }
119
120 // Return true if this type is not defined.
121
122 bool
123 Type::is_undefined() const
124 {
125 return this->forwarded()->forward_declaration_type() != NULL;
126 }
127
128 // Return true if this is a basic type: a type which is not composed
129 // of other types, and is not void.
130
131 bool
132 Type::is_basic_type() const
133 {
134 switch (this->classification_)
135 {
136 case TYPE_INTEGER:
137 case TYPE_FLOAT:
138 case TYPE_COMPLEX:
139 case TYPE_BOOLEAN:
140 case TYPE_STRING:
141 case TYPE_NIL:
142 return true;
143
144 case TYPE_ERROR:
145 case TYPE_VOID:
146 case TYPE_FUNCTION:
147 case TYPE_POINTER:
148 case TYPE_STRUCT:
149 case TYPE_ARRAY:
150 case TYPE_MAP:
151 case TYPE_CHANNEL:
152 case TYPE_INTERFACE:
153 return false;
154
155 case TYPE_NAMED:
156 case TYPE_FORWARD:
157 return this->base()->is_basic_type();
158
159 default:
160 gcc_unreachable();
161 }
162 }
163
164 // Return true if this is an abstract type.
165
166 bool
167 Type::is_abstract() const
168 {
169 switch (this->classification())
170 {
171 case TYPE_INTEGER:
172 return this->integer_type()->is_abstract();
173 case TYPE_FLOAT:
174 return this->float_type()->is_abstract();
175 case TYPE_COMPLEX:
176 return this->complex_type()->is_abstract();
177 case TYPE_STRING:
178 return this->is_abstract_string_type();
179 case TYPE_BOOLEAN:
180 return this->is_abstract_boolean_type();
181 default:
182 return false;
183 }
184 }
185
186 // Return a non-abstract version of an abstract type.
187
188 Type*
189 Type::make_non_abstract_type()
190 {
191 gcc_assert(this->is_abstract());
192 switch (this->classification())
193 {
194 case TYPE_INTEGER:
195 return Type::lookup_integer_type("int");
196 case TYPE_FLOAT:
197 return Type::lookup_float_type("float");
198 case TYPE_COMPLEX:
199 return Type::lookup_complex_type("complex");
200 case TYPE_STRING:
201 return Type::lookup_string_type();
202 case TYPE_BOOLEAN:
203 return Type::lookup_bool_type();
204 default:
205 gcc_unreachable();
206 }
207 }
208
209 // Return true if this is an error type. Don't give an error if we
210 // try to dereference an undefined forwarding type, as this is called
211 // in the parser when the type may legitimately be undefined.
212
213 bool
214 Type::is_error_type() const
215 {
216 const Type* t = this->forwarded();
217 // Note that we return false for an undefined forward type.
218 switch (t->classification_)
219 {
220 case TYPE_ERROR:
221 return true;
222 case TYPE_NAMED:
223 return t->named_type()->is_named_error_type();
224 default:
225 return false;
226 }
227 }
228
229 // If this is a pointer type, return the type to which it points.
230 // Otherwise, return NULL.
231
232 Type*
233 Type::points_to() const
234 {
235 const Pointer_type* ptype = this->convert<const Pointer_type,
236 TYPE_POINTER>();
237 return ptype == NULL ? NULL : ptype->points_to();
238 }
239
240 // Return whether this is an open array type.
241
242 bool
243 Type::is_open_array_type() const
244 {
245 return this->array_type() != NULL && this->array_type()->length() == NULL;
246 }
247
248 // Return whether this is the predeclared constant nil being used as a
249 // type.
250
251 bool
252 Type::is_nil_constant_as_type() const
253 {
254 const Type* t = this->forwarded();
255 if (t->forward_declaration_type() != NULL)
256 {
257 const Named_object* no = t->forward_declaration_type()->named_object();
258 if (no->is_unknown())
259 no = no->unknown_value()->real_named_object();
260 if (no != NULL
261 && no->is_const()
262 && no->const_value()->expr()->is_nil_expression())
263 return true;
264 }
265 return false;
266 }
267
268 // Traverse a type.
269
270 int
271 Type::traverse(Type* type, Traverse* traverse)
272 {
273 gcc_assert((traverse->traverse_mask() & Traverse::traverse_types) != 0
274 || (traverse->traverse_mask()
275 & Traverse::traverse_expressions) != 0);
276 if (traverse->remember_type(type))
277 {
278 // We have already traversed this type.
279 return TRAVERSE_CONTINUE;
280 }
281 if ((traverse->traverse_mask() & Traverse::traverse_types) != 0)
282 {
283 int t = traverse->type(type);
284 if (t == TRAVERSE_EXIT)
285 return TRAVERSE_EXIT;
286 else if (t == TRAVERSE_SKIP_COMPONENTS)
287 return TRAVERSE_CONTINUE;
288 }
289 // An array type has an expression which we need to traverse if
290 // traverse_expressions is set.
291 if (type->do_traverse(traverse) == TRAVERSE_EXIT)
292 return TRAVERSE_EXIT;
293 return TRAVERSE_CONTINUE;
294 }
295
296 // Default implementation for do_traverse for child class.
297
298 int
299 Type::do_traverse(Traverse*)
300 {
301 return TRAVERSE_CONTINUE;
302 }
303
304 // Return whether two types are identical. If ERRORS_ARE_IDENTICAL,
305 // then return true for all erroneous types; this is used to avoid
306 // cascading errors. If REASON is not NULL, optionally set *REASON to
307 // the reason the types are not identical.
308
309 bool
310 Type::are_identical(const Type* t1, const Type* t2, bool errors_are_identical,
311 std::string* reason)
312 {
313 if (t1 == NULL || t2 == NULL)
314 {
315 // Something is wrong.
316 return errors_are_identical ? true : t1 == t2;
317 }
318
319 // Skip defined forward declarations.
320 t1 = t1->forwarded();
321 t2 = t2->forwarded();
322
323 if (t1 == t2)
324 return true;
325
326 // An undefined forward declaration is an error.
327 if (t1->forward_declaration_type() != NULL
328 || t2->forward_declaration_type() != NULL)
329 return errors_are_identical;
330
331 // Avoid cascading errors with error types.
332 if (t1->is_error_type() || t2->is_error_type())
333 {
334 if (errors_are_identical)
335 return true;
336 return t1->is_error_type() && t2->is_error_type();
337 }
338
339 // Get a good reason for the sink type. Note that the sink type on
340 // the left hand side of an assignment is handled in are_assignable.
341 if (t1->is_sink_type() || t2->is_sink_type())
342 {
343 if (reason != NULL)
344 *reason = "invalid use of _";
345 return false;
346 }
347
348 // A named type is only identical to itself.
349 if (t1->named_type() != NULL || t2->named_type() != NULL)
350 return false;
351
352 // Check type shapes.
353 if (t1->classification() != t2->classification())
354 return false;
355
356 switch (t1->classification())
357 {
358 case TYPE_VOID:
359 case TYPE_BOOLEAN:
360 case TYPE_STRING:
361 case TYPE_NIL:
362 // These types are always identical.
363 return true;
364
365 case TYPE_INTEGER:
366 return t1->integer_type()->is_identical(t2->integer_type());
367
368 case TYPE_FLOAT:
369 return t1->float_type()->is_identical(t2->float_type());
370
371 case TYPE_COMPLEX:
372 return t1->complex_type()->is_identical(t2->complex_type());
373
374 case TYPE_FUNCTION:
375 return t1->function_type()->is_identical(t2->function_type(),
376 false,
377 errors_are_identical,
378 reason);
379
380 case TYPE_POINTER:
381 return Type::are_identical(t1->points_to(), t2->points_to(),
382 errors_are_identical, reason);
383
384 case TYPE_STRUCT:
385 return t1->struct_type()->is_identical(t2->struct_type(),
386 errors_are_identical);
387
388 case TYPE_ARRAY:
389 return t1->array_type()->is_identical(t2->array_type(),
390 errors_are_identical);
391
392 case TYPE_MAP:
393 return t1->map_type()->is_identical(t2->map_type(),
394 errors_are_identical);
395
396 case TYPE_CHANNEL:
397 return t1->channel_type()->is_identical(t2->channel_type(),
398 errors_are_identical);
399
400 case TYPE_INTERFACE:
401 return t1->interface_type()->is_identical(t2->interface_type(),
402 errors_are_identical);
403
404 default:
405 gcc_unreachable();
406 }
407 }
408
409 // Return true if it's OK to have a binary operation with types LHS
410 // and RHS. This is not used for shifts or comparisons.
411
412 bool
413 Type::are_compatible_for_binop(const Type* lhs, const Type* rhs)
414 {
415 if (Type::are_identical(lhs, rhs, true, NULL))
416 return true;
417
418 // A constant of abstract bool type may be mixed with any bool type.
419 if ((rhs->is_abstract_boolean_type() && lhs->is_boolean_type())
420 || (lhs->is_abstract_boolean_type() && rhs->is_boolean_type()))
421 return true;
422
423 // A constant of abstract string type may be mixed with any string
424 // type.
425 if ((rhs->is_abstract_string_type() && lhs->is_string_type())
426 || (lhs->is_abstract_string_type() && rhs->is_string_type()))
427 return true;
428
429 lhs = lhs->base();
430 rhs = rhs->base();
431
432 // A constant of abstract integer, float, or complex type may be
433 // mixed with an integer, float, or complex type.
434 if ((rhs->is_abstract()
435 && (rhs->integer_type() != NULL
436 || rhs->float_type() != NULL
437 || rhs->complex_type() != NULL)
438 && (lhs->integer_type() != NULL
439 || lhs->float_type() != NULL
440 || lhs->complex_type() != NULL))
441 || (lhs->is_abstract()
442 && (lhs->integer_type() != NULL
443 || lhs->float_type() != NULL
444 || lhs->complex_type() != NULL)
445 && (rhs->integer_type() != NULL
446 || rhs->float_type() != NULL
447 || rhs->complex_type() != NULL)))
448 return true;
449
450 // The nil type may be compared to a pointer, an interface type, a
451 // slice type, a channel type, a map type, or a function type.
452 if (lhs->is_nil_type()
453 && (rhs->points_to() != NULL
454 || rhs->interface_type() != NULL
455 || rhs->is_open_array_type()
456 || rhs->map_type() != NULL
457 || rhs->channel_type() != NULL
458 || rhs->function_type() != NULL))
459 return true;
460 if (rhs->is_nil_type()
461 && (lhs->points_to() != NULL
462 || lhs->interface_type() != NULL
463 || lhs->is_open_array_type()
464 || lhs->map_type() != NULL
465 || lhs->channel_type() != NULL
466 || lhs->function_type() != NULL))
467 return true;
468
469 return false;
470 }
471
472 // Return true if a value with type RHS may be assigned to a variable
473 // with type LHS. If REASON is not NULL, set *REASON to the reason
474 // the types are not assignable.
475
476 bool
477 Type::are_assignable(const Type* lhs, const Type* rhs, std::string* reason)
478 {
479 // Do some checks first. Make sure the types are defined.
480 if (lhs != NULL && lhs->forwarded()->forward_declaration_type() == NULL)
481 {
482 // Any value may be assigned to the blank identifier.
483 if (lhs->is_sink_type())
484 return true;
485
486 // All fields of a struct must be exported, or the assignment
487 // must be in the same package.
488 if (rhs != NULL && rhs->forwarded()->forward_declaration_type() == NULL)
489 {
490 if (lhs->has_hidden_fields(NULL, reason)
491 || rhs->has_hidden_fields(NULL, reason))
492 return false;
493 }
494 }
495
496 // Identical types are assignable.
497 if (Type::are_identical(lhs, rhs, true, reason))
498 return true;
499
500 // The types are assignable if they have identical underlying types
501 // and either LHS or RHS is not a named type.
502 if (((lhs->named_type() != NULL && rhs->named_type() == NULL)
503 || (rhs->named_type() != NULL && lhs->named_type() == NULL))
504 && Type::are_identical(lhs->base(), rhs->base(), true, reason))
505 return true;
506
507 // The types are assignable if LHS is an interface type and RHS
508 // implements the required methods.
509 const Interface_type* lhs_interface_type = lhs->interface_type();
510 if (lhs_interface_type != NULL)
511 {
512 if (lhs_interface_type->implements_interface(rhs, reason))
513 return true;
514 const Interface_type* rhs_interface_type = rhs->interface_type();
515 if (rhs_interface_type != NULL
516 && lhs_interface_type->is_compatible_for_assign(rhs_interface_type,
517 reason))
518 return true;
519 }
520
521 // The type are assignable if RHS is a bidirectional channel type,
522 // LHS is a channel type, they have identical element types, and
523 // either LHS or RHS is not a named type.
524 if (lhs->channel_type() != NULL
525 && rhs->channel_type() != NULL
526 && rhs->channel_type()->may_send()
527 && rhs->channel_type()->may_receive()
528 && (lhs->named_type() == NULL || rhs->named_type() == NULL)
529 && Type::are_identical(lhs->channel_type()->element_type(),
530 rhs->channel_type()->element_type(),
531 true,
532 reason))
533 return true;
534
535 // The nil type may be assigned to a pointer, function, slice, map,
536 // channel, or interface type.
537 if (rhs->is_nil_type()
538 && (lhs->points_to() != NULL
539 || lhs->function_type() != NULL
540 || lhs->is_open_array_type()
541 || lhs->map_type() != NULL
542 || lhs->channel_type() != NULL
543 || lhs->interface_type() != NULL))
544 return true;
545
546 // An untyped numeric constant may be assigned to a numeric type if
547 // it is representable in that type.
548 if ((rhs->is_abstract()
549 && (rhs->integer_type() != NULL
550 || rhs->float_type() != NULL
551 || rhs->complex_type() != NULL))
552 && (lhs->integer_type() != NULL
553 || lhs->float_type() != NULL
554 || lhs->complex_type() != NULL))
555 return true;
556
557 // Give some better error messages.
558 if (reason != NULL && reason->empty())
559 {
560 if (rhs->interface_type() != NULL)
561 reason->assign(_("need explicit conversion"));
562 else if (rhs->is_call_multiple_result_type())
563 reason->assign(_("multiple value function call in "
564 "single value context"));
565 else if (lhs->named_type() != NULL && rhs->named_type() != NULL)
566 {
567 size_t len = (lhs->named_type()->name().length()
568 + rhs->named_type()->name().length()
569 + 100);
570 char* buf = new char[len];
571 snprintf(buf, len, _("cannot use type %s as type %s"),
572 rhs->named_type()->message_name().c_str(),
573 lhs->named_type()->message_name().c_str());
574 reason->assign(buf);
575 delete[] buf;
576 }
577 }
578
579 return false;
580 }
581
582 // Return true if a value with type RHS may be converted to type LHS.
583 // If REASON is not NULL, set *REASON to the reason the types are not
584 // convertible.
585
586 bool
587 Type::are_convertible(const Type* lhs, const Type* rhs, std::string* reason)
588 {
589 // The types are convertible if they are assignable.
590 if (Type::are_assignable(lhs, rhs, reason))
591 return true;
592
593 // The types are convertible if they have identical underlying
594 // types.
595 if ((lhs->named_type() != NULL || rhs->named_type() != NULL)
596 && Type::are_identical(lhs->base(), rhs->base(), true, reason))
597 return true;
598
599 // The types are convertible if they are both unnamed pointer types
600 // and their pointer base types have identical underlying types.
601 if (lhs->named_type() == NULL
602 && rhs->named_type() == NULL
603 && lhs->points_to() != NULL
604 && rhs->points_to() != NULL
605 && (lhs->points_to()->named_type() != NULL
606 || rhs->points_to()->named_type() != NULL)
607 && Type::are_identical(lhs->points_to()->base(),
608 rhs->points_to()->base(),
609 true,
610 reason))
611 return true;
612
613 // Integer and floating point types are convertible to each other.
614 if ((lhs->integer_type() != NULL || lhs->float_type() != NULL)
615 && (rhs->integer_type() != NULL || rhs->float_type() != NULL))
616 return true;
617
618 // Complex types are convertible to each other.
619 if (lhs->complex_type() != NULL && rhs->complex_type() != NULL)
620 return true;
621
622 // An integer, or []byte, or []int, may be converted to a string.
623 if (lhs->is_string_type())
624 {
625 if (rhs->integer_type() != NULL)
626 return true;
627 if (rhs->is_open_array_type() && rhs->named_type() == NULL)
628 {
629 const Type* e = rhs->array_type()->element_type()->forwarded();
630 if (e->integer_type() != NULL
631 && (e == Type::lookup_integer_type("uint8")
632 || e == Type::lookup_integer_type("int")))
633 return true;
634 }
635 }
636
637 // A string may be converted to []byte or []int.
638 if (rhs->is_string_type()
639 && lhs->is_open_array_type()
640 && lhs->named_type() == NULL)
641 {
642 const Type* e = lhs->array_type()->element_type()->forwarded();
643 if (e->integer_type() != NULL
644 && (e == Type::lookup_integer_type("uint8")
645 || e == Type::lookup_integer_type("int")))
646 return true;
647 }
648
649 // An unsafe.Pointer type may be converted to any pointer type or to
650 // uintptr, and vice-versa.
651 if (lhs->is_unsafe_pointer_type()
652 && (rhs->points_to() != NULL
653 || (rhs->integer_type() != NULL
654 && rhs->forwarded() == Type::lookup_integer_type("uintptr"))))
655 return true;
656 if (rhs->is_unsafe_pointer_type()
657 && (lhs->points_to() != NULL
658 || (lhs->integer_type() != NULL
659 && lhs->forwarded() == Type::lookup_integer_type("uintptr"))))
660 return true;
661
662 // Give a better error message.
663 if (reason != NULL)
664 {
665 if (reason->empty())
666 *reason = "invalid type conversion";
667 else
668 {
669 std::string s = "invalid type conversion (";
670 s += *reason;
671 s += ')';
672 *reason = s;
673 }
674 }
675
676 return false;
677 }
678
679 // Return whether this type has any hidden fields. This is only a
680 // possibility for a few types.
681
682 bool
683 Type::has_hidden_fields(const Named_type* within, std::string* reason) const
684 {
685 switch (this->forwarded()->classification_)
686 {
687 case TYPE_NAMED:
688 return this->named_type()->named_type_has_hidden_fields(reason);
689 case TYPE_STRUCT:
690 return this->struct_type()->struct_has_hidden_fields(within, reason);
691 case TYPE_ARRAY:
692 return this->array_type()->array_has_hidden_fields(within, reason);
693 default:
694 return false;
695 }
696 }
697
698 // Return a hash code for the type to be used for method lookup.
699
700 unsigned int
701 Type::hash_for_method(Gogo* gogo) const
702 {
703 unsigned int ret = 0;
704 if (this->classification_ != TYPE_FORWARD)
705 ret += this->classification_;
706 return ret + this->do_hash_for_method(gogo);
707 }
708
709 // Default implementation of do_hash_for_method. This is appropriate
710 // for types with no subfields.
711
712 unsigned int
713 Type::do_hash_for_method(Gogo*) const
714 {
715 return 0;
716 }
717
718 // Return a hash code for a string, given a starting hash.
719
720 unsigned int
721 Type::hash_string(const std::string& s, unsigned int h)
722 {
723 const char* p = s.data();
724 size_t len = s.length();
725 for (; len > 0; --len)
726 {
727 h ^= *p++;
728 h*= 16777619;
729 }
730 return h;
731 }
732
733 // Default check for the expression passed to make. Any type which
734 // may be used with make implements its own version of this.
735
736 bool
737 Type::do_check_make_expression(Expression_list*, source_location)
738 {
739 gcc_unreachable();
740 }
741
742 // Return whether an expression has an integer value. Report an error
743 // if not. This is used when handling calls to the predeclared make
744 // function.
745
746 bool
747 Type::check_int_value(Expression* e, const char* errmsg,
748 source_location location)
749 {
750 if (e->type()->integer_type() != NULL)
751 return true;
752
753 // Check for a floating point constant with integer value.
754 mpfr_t fval;
755 mpfr_init(fval);
756
757 Type* dummy;
758 if (e->float_constant_value(fval, &dummy))
759 {
760 mpz_t ival;
761 mpz_init(ival);
762
763 bool ok = false;
764
765 mpfr_clear_overflow();
766 mpfr_clear_erangeflag();
767 mpfr_get_z(ival, fval, GMP_RNDN);
768 if (!mpfr_overflow_p()
769 && !mpfr_erangeflag_p()
770 && mpz_sgn(ival) >= 0)
771 {
772 Named_type* ntype = Type::lookup_integer_type("int");
773 Integer_type* inttype = ntype->integer_type();
774 mpz_t max;
775 mpz_init_set_ui(max, 1);
776 mpz_mul_2exp(max, max, inttype->bits() - 1);
777 ok = mpz_cmp(ival, max) < 0;
778 mpz_clear(max);
779 }
780 mpz_clear(ival);
781
782 if (ok)
783 {
784 mpfr_clear(fval);
785 return true;
786 }
787 }
788
789 mpfr_clear(fval);
790
791 error_at(location, "%s", errmsg);
792 return false;
793 }
794
795 // A hash table mapping unnamed types to trees.
796
797 Type::Type_trees Type::type_trees;
798
799 // Return a tree representing this type.
800
801 tree
802 Type::get_tree(Gogo* gogo)
803 {
804 if (this->tree_ != NULL)
805 return this->tree_;
806
807 if (this->forward_declaration_type() != NULL
808 || this->named_type() != NULL)
809 return this->get_tree_without_hash(gogo);
810
811 if (this->is_error_type())
812 return error_mark_node;
813
814 // To avoid confusing GIMPLE, we need to translate all identical Go
815 // types to the same GIMPLE type. We use a hash table to do that.
816 // There is no need to use the hash table for named types, as named
817 // types are only identical to themselves.
818
819 std::pair<Type*, tree> val(this, NULL);
820 std::pair<Type_trees::iterator, bool> ins =
821 Type::type_trees.insert(val);
822 if (!ins.second && ins.first->second != NULL_TREE)
823 {
824 this->tree_ = ins.first->second;
825 return this->tree_;
826 }
827
828 tree t = this->get_tree_without_hash(gogo);
829
830 if (ins.first->second == NULL_TREE)
831 ins.first->second = t;
832 else
833 {
834 // We have already created a tree for this type. This can
835 // happen when an unnamed type is defined using a named type
836 // which in turns uses an identical unnamed type. Use the tree
837 // we created earlier and ignore the one we just built.
838 t = ins.first->second;
839 this->tree_ = t;
840 }
841
842 return t;
843 }
844
845 // Return a tree for a type without looking in the hash table for
846 // identical types. This is used for named types, since there is no
847 // point to looking in the hash table for them.
848
849 tree
850 Type::get_tree_without_hash(Gogo* gogo)
851 {
852 if (this->tree_ == NULL_TREE)
853 {
854 tree t = this->do_get_tree(gogo);
855
856 // For a recursive function or pointer type, we will temporarily
857 // return ptr_type_node during the recursion. We don't want to
858 // record that for a forwarding type, as it may confuse us
859 // later.
860 if (t == ptr_type_node && this->forward_declaration_type() != NULL)
861 return t;
862
863 this->tree_ = t;
864 go_preserve_from_gc(t);
865 }
866
867 return this->tree_;
868 }
869
870 // Return a tree representing a zero initialization for this type.
871
872 tree
873 Type::get_init_tree(Gogo* gogo, bool is_clear)
874 {
875 tree type_tree = this->get_tree(gogo);
876 if (type_tree == error_mark_node)
877 return error_mark_node;
878 return this->do_get_init_tree(gogo, type_tree, is_clear);
879 }
880
881 // Any type which supports the builtin make function must implement
882 // this.
883
884 tree
885 Type::do_make_expression_tree(Translate_context*, Expression_list*,
886 source_location)
887 {
888 gcc_unreachable();
889 }
890
891 // Return a pointer to the type descriptor for this type.
892
893 tree
894 Type::type_descriptor_pointer(Gogo* gogo)
895 {
896 Type* t = this->forwarded();
897 if (t->type_descriptor_decl_ == NULL_TREE)
898 {
899 Expression* e = t->do_type_descriptor(gogo, NULL);
900 gogo->build_type_descriptor_decl(t, e, &t->type_descriptor_decl_);
901 gcc_assert(t->type_descriptor_decl_ != NULL_TREE
902 && (t->type_descriptor_decl_ == error_mark_node
903 || DECL_P(t->type_descriptor_decl_)));
904 }
905 if (t->type_descriptor_decl_ == error_mark_node)
906 return error_mark_node;
907 return build_fold_addr_expr(t->type_descriptor_decl_);
908 }
909
910 // Return a composite literal for a type descriptor.
911
912 Expression*
913 Type::type_descriptor(Gogo* gogo, Type* type)
914 {
915 return type->do_type_descriptor(gogo, NULL);
916 }
917
918 // Return a composite literal for a type descriptor with a name.
919
920 Expression*
921 Type::named_type_descriptor(Gogo* gogo, Type* type, Named_type* name)
922 {
923 gcc_assert(name != NULL && type->named_type() != name);
924 return type->do_type_descriptor(gogo, name);
925 }
926
927 // Make a builtin struct type from a list of fields. The fields are
928 // pairs of a name and a type.
929
930 Struct_type*
931 Type::make_builtin_struct_type(int nfields, ...)
932 {
933 va_list ap;
934 va_start(ap, nfields);
935
936 source_location bloc = BUILTINS_LOCATION;
937 Struct_field_list* sfl = new Struct_field_list();
938 for (int i = 0; i < nfields; i++)
939 {
940 const char* field_name = va_arg(ap, const char *);
941 Type* type = va_arg(ap, Type*);
942 sfl->push_back(Struct_field(Typed_identifier(field_name, type, bloc)));
943 }
944
945 va_end(ap);
946
947 return Type::make_struct_type(sfl, bloc);
948 }
949
950 // Make a builtin named type.
951
952 Named_type*
953 Type::make_builtin_named_type(const char* name, Type* type)
954 {
955 source_location bloc = BUILTINS_LOCATION;
956 Named_object* no = Named_object::make_type(name, NULL, type, bloc);
957 return no->type_value();
958 }
959
960 // Return the type of a type descriptor. We should really tie this to
961 // runtime.Type rather than copying it. This must match commonType in
962 // libgo/go/runtime/type.go.
963
964 Type*
965 Type::make_type_descriptor_type()
966 {
967 static Type* ret;
968 if (ret == NULL)
969 {
970 source_location bloc = BUILTINS_LOCATION;
971
972 Type* uint8_type = Type::lookup_integer_type("uint8");
973 Type* uint32_type = Type::lookup_integer_type("uint32");
974 Type* uintptr_type = Type::lookup_integer_type("uintptr");
975 Type* string_type = Type::lookup_string_type();
976 Type* pointer_string_type = Type::make_pointer_type(string_type);
977
978 // This is an unnamed version of unsafe.Pointer. Perhaps we
979 // should use the named version instead, although that would
980 // require us to create the unsafe package if it has not been
981 // imported. It probably doesn't matter.
982 Type* void_type = Type::make_void_type();
983 Type* unsafe_pointer_type = Type::make_pointer_type(void_type);
984
985 // Forward declaration for the type descriptor type.
986 Named_object* named_type_descriptor_type =
987 Named_object::make_type_declaration("commonType", NULL, bloc);
988 Type* ft = Type::make_forward_declaration(named_type_descriptor_type);
989 Type* pointer_type_descriptor_type = Type::make_pointer_type(ft);
990
991 // The type of a method on a concrete type.
992 Struct_type* method_type =
993 Type::make_builtin_struct_type(5,
994 "name", pointer_string_type,
995 "pkgPath", pointer_string_type,
996 "mtyp", pointer_type_descriptor_type,
997 "typ", pointer_type_descriptor_type,
998 "tfn", unsafe_pointer_type);
999 Named_type* named_method_type =
1000 Type::make_builtin_named_type("method", method_type);
1001
1002 // Information for types with a name or methods.
1003 Type* slice_named_method_type =
1004 Type::make_array_type(named_method_type, NULL);
1005 Struct_type* uncommon_type =
1006 Type::make_builtin_struct_type(3,
1007 "name", pointer_string_type,
1008 "pkgPath", pointer_string_type,
1009 "methods", slice_named_method_type);
1010 Named_type* named_uncommon_type =
1011 Type::make_builtin_named_type("uncommonType", uncommon_type);
1012
1013 Type* pointer_uncommon_type =
1014 Type::make_pointer_type(named_uncommon_type);
1015
1016 // The type descriptor type.
1017
1018 Typed_identifier_list* params = new Typed_identifier_list();
1019 params->push_back(Typed_identifier("", unsafe_pointer_type, bloc));
1020 params->push_back(Typed_identifier("", uintptr_type, bloc));
1021
1022 Typed_identifier_list* results = new Typed_identifier_list();
1023 results->push_back(Typed_identifier("", uintptr_type, bloc));
1024
1025 Type* hashfn_type = Type::make_function_type(NULL, params, results, bloc);
1026
1027 params = new Typed_identifier_list();
1028 params->push_back(Typed_identifier("", unsafe_pointer_type, bloc));
1029 params->push_back(Typed_identifier("", unsafe_pointer_type, bloc));
1030 params->push_back(Typed_identifier("", uintptr_type, bloc));
1031
1032 results = new Typed_identifier_list();
1033 results->push_back(Typed_identifier("", Type::lookup_bool_type(), bloc));
1034
1035 Type* equalfn_type = Type::make_function_type(NULL, params, results,
1036 bloc);
1037
1038 Struct_type* type_descriptor_type =
1039 Type::make_builtin_struct_type(9,
1040 "Kind", uint8_type,
1041 "align", uint8_type,
1042 "fieldAlign", uint8_type,
1043 "size", uintptr_type,
1044 "hash", uint32_type,
1045 "hashfn", hashfn_type,
1046 "equalfn", equalfn_type,
1047 "string", pointer_string_type,
1048 "", pointer_uncommon_type);
1049
1050 Named_type* named = Type::make_builtin_named_type("commonType",
1051 type_descriptor_type);
1052
1053 named_type_descriptor_type->set_type_value(named);
1054
1055 ret = named;
1056 }
1057
1058 return ret;
1059 }
1060
1061 // Make the type of a pointer to a type descriptor as represented in
1062 // Go.
1063
1064 Type*
1065 Type::make_type_descriptor_ptr_type()
1066 {
1067 static Type* ret;
1068 if (ret == NULL)
1069 ret = Type::make_pointer_type(Type::make_type_descriptor_type());
1070 return ret;
1071 }
1072
1073 // Return the names of runtime functions which compute a hash code for
1074 // this type and which compare whether two values of this type are
1075 // equal.
1076
1077 void
1078 Type::type_functions(const char** hash_fn, const char** equal_fn) const
1079 {
1080 switch (this->base()->classification())
1081 {
1082 case Type::TYPE_ERROR:
1083 case Type::TYPE_VOID:
1084 case Type::TYPE_NIL:
1085 // These types can not be hashed or compared.
1086 *hash_fn = "__go_type_hash_error";
1087 *equal_fn = "__go_type_equal_error";
1088 break;
1089
1090 case Type::TYPE_BOOLEAN:
1091 case Type::TYPE_INTEGER:
1092 case Type::TYPE_FLOAT:
1093 case Type::TYPE_COMPLEX:
1094 case Type::TYPE_POINTER:
1095 case Type::TYPE_FUNCTION:
1096 case Type::TYPE_MAP:
1097 case Type::TYPE_CHANNEL:
1098 *hash_fn = "__go_type_hash_identity";
1099 *equal_fn = "__go_type_equal_identity";
1100 break;
1101
1102 case Type::TYPE_STRING:
1103 *hash_fn = "__go_type_hash_string";
1104 *equal_fn = "__go_type_equal_string";
1105 break;
1106
1107 case Type::TYPE_STRUCT:
1108 case Type::TYPE_ARRAY:
1109 // These types can not be hashed or compared.
1110 *hash_fn = "__go_type_hash_error";
1111 *equal_fn = "__go_type_equal_error";
1112 break;
1113
1114 case Type::TYPE_INTERFACE:
1115 if (this->interface_type()->is_empty())
1116 {
1117 *hash_fn = "__go_type_hash_empty_interface";
1118 *equal_fn = "__go_type_equal_empty_interface";
1119 }
1120 else
1121 {
1122 *hash_fn = "__go_type_hash_interface";
1123 *equal_fn = "__go_type_equal_interface";
1124 }
1125 break;
1126
1127 case Type::TYPE_NAMED:
1128 case Type::TYPE_FORWARD:
1129 gcc_unreachable();
1130
1131 default:
1132 gcc_unreachable();
1133 }
1134 }
1135
1136 // Return a composite literal for the type descriptor for a plain type
1137 // of kind RUNTIME_TYPE_KIND named NAME.
1138
1139 Expression*
1140 Type::type_descriptor_constructor(Gogo* gogo, int runtime_type_kind,
1141 Named_type* name, const Methods* methods,
1142 bool only_value_methods)
1143 {
1144 source_location bloc = BUILTINS_LOCATION;
1145
1146 Type* td_type = Type::make_type_descriptor_type();
1147 const Struct_field_list* fields = td_type->struct_type()->fields();
1148
1149 Expression_list* vals = new Expression_list();
1150 vals->reserve(9);
1151
1152 Struct_field_list::const_iterator p = fields->begin();
1153 gcc_assert(p->field_name() == "Kind");
1154 mpz_t iv;
1155 mpz_init_set_ui(iv, runtime_type_kind);
1156 vals->push_back(Expression::make_integer(&iv, p->type(), bloc));
1157
1158 ++p;
1159 gcc_assert(p->field_name() == "align");
1160 Expression::Type_info type_info = Expression::TYPE_INFO_ALIGNMENT;
1161 vals->push_back(Expression::make_type_info(this, type_info));
1162
1163 ++p;
1164 gcc_assert(p->field_name() == "fieldAlign");
1165 type_info = Expression::TYPE_INFO_FIELD_ALIGNMENT;
1166 vals->push_back(Expression::make_type_info(this, type_info));
1167
1168 ++p;
1169 gcc_assert(p->field_name() == "size");
1170 type_info = Expression::TYPE_INFO_SIZE;
1171 vals->push_back(Expression::make_type_info(this, type_info));
1172
1173 ++p;
1174 gcc_assert(p->field_name() == "hash");
1175 mpz_set_ui(iv, this->hash_for_method(gogo));
1176 vals->push_back(Expression::make_integer(&iv, p->type(), bloc));
1177
1178 const char* hash_fn;
1179 const char* equal_fn;
1180 this->type_functions(&hash_fn, &equal_fn);
1181
1182 ++p;
1183 gcc_assert(p->field_name() == "hashfn");
1184 Function_type* fntype = p->type()->function_type();
1185 Named_object* no = Named_object::make_function_declaration(hash_fn, NULL,
1186 fntype,
1187 bloc);
1188 no->func_declaration_value()->set_asm_name(hash_fn);
1189 vals->push_back(Expression::make_func_reference(no, NULL, bloc));
1190
1191 ++p;
1192 gcc_assert(p->field_name() == "equalfn");
1193 fntype = p->type()->function_type();
1194 no = Named_object::make_function_declaration(equal_fn, NULL, fntype, bloc);
1195 no->func_declaration_value()->set_asm_name(equal_fn);
1196 vals->push_back(Expression::make_func_reference(no, NULL, bloc));
1197
1198 ++p;
1199 gcc_assert(p->field_name() == "string");
1200 Expression* s = Expression::make_string((name != NULL
1201 ? name->reflection(gogo)
1202 : this->reflection(gogo)),
1203 bloc);
1204 vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
1205
1206 ++p;
1207 gcc_assert(p->field_name() == "uncommonType");
1208 if (name == NULL && methods == NULL)
1209 vals->push_back(Expression::make_nil(bloc));
1210 else
1211 {
1212 if (methods == NULL)
1213 methods = name->methods();
1214 vals->push_back(this->uncommon_type_constructor(gogo,
1215 p->type()->deref(),
1216 name, methods,
1217 only_value_methods));
1218 }
1219
1220 ++p;
1221 gcc_assert(p == fields->end());
1222
1223 mpz_clear(iv);
1224
1225 return Expression::make_struct_composite_literal(td_type, vals, bloc);
1226 }
1227
1228 // Return a composite literal for the uncommon type information for
1229 // this type. UNCOMMON_STRUCT_TYPE is the type of the uncommon type
1230 // struct. If name is not NULL, it is the name of the type. If
1231 // METHODS is not NULL, it is the list of methods. ONLY_VALUE_METHODS
1232 // is true if only value methods should be included. At least one of
1233 // NAME and METHODS must not be NULL.
1234
1235 Expression*
1236 Type::uncommon_type_constructor(Gogo* gogo, Type* uncommon_type,
1237 Named_type* name, const Methods* methods,
1238 bool only_value_methods) const
1239 {
1240 source_location bloc = BUILTINS_LOCATION;
1241
1242 const Struct_field_list* fields = uncommon_type->struct_type()->fields();
1243
1244 Expression_list* vals = new Expression_list();
1245 vals->reserve(3);
1246
1247 Struct_field_list::const_iterator p = fields->begin();
1248 gcc_assert(p->field_name() == "name");
1249
1250 ++p;
1251 gcc_assert(p->field_name() == "pkgPath");
1252
1253 if (name == NULL)
1254 {
1255 vals->push_back(Expression::make_nil(bloc));
1256 vals->push_back(Expression::make_nil(bloc));
1257 }
1258 else
1259 {
1260 Named_object* no = name->named_object();
1261 std::string n = Gogo::unpack_hidden_name(no->name());
1262 Expression* s = Expression::make_string(n, bloc);
1263 vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
1264
1265 if (name->is_builtin())
1266 vals->push_back(Expression::make_nil(bloc));
1267 else
1268 {
1269 const Package* package = no->package();
1270 const std::string& unique_prefix(package == NULL
1271 ? gogo->unique_prefix()
1272 : package->unique_prefix());
1273 const std::string& package_name(package == NULL
1274 ? gogo->package_name()
1275 : package->name());
1276 n.assign(unique_prefix);
1277 n.append(1, '.');
1278 n.append(package_name);
1279 if (name->in_function() != NULL)
1280 {
1281 n.append(1, '.');
1282 n.append(Gogo::unpack_hidden_name(name->in_function()->name()));
1283 }
1284 s = Expression::make_string(n, bloc);
1285 vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
1286 }
1287 }
1288
1289 ++p;
1290 gcc_assert(p->field_name() == "methods");
1291 vals->push_back(this->methods_constructor(gogo, p->type(), methods,
1292 only_value_methods));
1293
1294 ++p;
1295 gcc_assert(p == fields->end());
1296
1297 Expression* r = Expression::make_struct_composite_literal(uncommon_type,
1298 vals, bloc);
1299 return Expression::make_unary(OPERATOR_AND, r, bloc);
1300 }
1301
1302 // Sort methods by name.
1303
1304 class Sort_methods
1305 {
1306 public:
1307 bool
1308 operator()(const std::pair<std::string, const Method*>& m1,
1309 const std::pair<std::string, const Method*>& m2) const
1310 { return m1.first < m2.first; }
1311 };
1312
1313 // Return a composite literal for the type method table for this type.
1314 // METHODS_TYPE is the type of the table, and is a slice type.
1315 // METHODS is the list of methods. If ONLY_VALUE_METHODS is true,
1316 // then only value methods are used.
1317
1318 Expression*
1319 Type::methods_constructor(Gogo* gogo, Type* methods_type,
1320 const Methods* methods,
1321 bool only_value_methods) const
1322 {
1323 source_location bloc = BUILTINS_LOCATION;
1324
1325 std::vector<std::pair<std::string, const Method*> > smethods;
1326 if (methods != NULL)
1327 {
1328 smethods.reserve(methods->count());
1329 for (Methods::const_iterator p = methods->begin();
1330 p != methods->end();
1331 ++p)
1332 {
1333 if (p->second->is_ambiguous())
1334 continue;
1335 if (only_value_methods && !p->second->is_value_method())
1336 continue;
1337 smethods.push_back(std::make_pair(p->first, p->second));
1338 }
1339 }
1340
1341 if (smethods.empty())
1342 return Expression::make_slice_composite_literal(methods_type, NULL, bloc);
1343
1344 std::sort(smethods.begin(), smethods.end(), Sort_methods());
1345
1346 Type* method_type = methods_type->array_type()->element_type();
1347
1348 Expression_list* vals = new Expression_list();
1349 vals->reserve(smethods.size());
1350 for (std::vector<std::pair<std::string, const Method*> >::const_iterator p
1351 = smethods.begin();
1352 p != smethods.end();
1353 ++p)
1354 vals->push_back(this->method_constructor(gogo, method_type, p->first,
1355 p->second));
1356
1357 return Expression::make_slice_composite_literal(methods_type, vals, bloc);
1358 }
1359
1360 // Return a composite literal for a single method. METHOD_TYPE is the
1361 // type of the entry. METHOD_NAME is the name of the method and M is
1362 // the method information.
1363
1364 Expression*
1365 Type::method_constructor(Gogo*, Type* method_type,
1366 const std::string& method_name,
1367 const Method* m) const
1368 {
1369 source_location bloc = BUILTINS_LOCATION;
1370
1371 const Struct_field_list* fields = method_type->struct_type()->fields();
1372
1373 Expression_list* vals = new Expression_list();
1374 vals->reserve(5);
1375
1376 Struct_field_list::const_iterator p = fields->begin();
1377 gcc_assert(p->field_name() == "name");
1378 const std::string n = Gogo::unpack_hidden_name(method_name);
1379 Expression* s = Expression::make_string(n, bloc);
1380 vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
1381
1382 ++p;
1383 gcc_assert(p->field_name() == "pkgPath");
1384 if (!Gogo::is_hidden_name(method_name))
1385 vals->push_back(Expression::make_nil(bloc));
1386 else
1387 {
1388 s = Expression::make_string(Gogo::hidden_name_prefix(method_name), bloc);
1389 vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
1390 }
1391
1392 Named_object* no = (m->needs_stub_method()
1393 ? m->stub_object()
1394 : m->named_object());
1395
1396 Function_type* mtype;
1397 if (no->is_function())
1398 mtype = no->func_value()->type();
1399 else
1400 mtype = no->func_declaration_value()->type();
1401 gcc_assert(mtype->is_method());
1402 Type* nonmethod_type = mtype->copy_without_receiver();
1403
1404 ++p;
1405 gcc_assert(p->field_name() == "mtyp");
1406 vals->push_back(Expression::make_type_descriptor(nonmethod_type, bloc));
1407
1408 ++p;
1409 gcc_assert(p->field_name() == "typ");
1410 vals->push_back(Expression::make_type_descriptor(mtype, bloc));
1411
1412 ++p;
1413 gcc_assert(p->field_name() == "tfn");
1414 vals->push_back(Expression::make_func_reference(no, NULL, bloc));
1415
1416 ++p;
1417 gcc_assert(p == fields->end());
1418
1419 return Expression::make_struct_composite_literal(method_type, vals, bloc);
1420 }
1421
1422 // Return a composite literal for the type descriptor of a plain type.
1423 // RUNTIME_TYPE_KIND is the value of the kind field. If NAME is not
1424 // NULL, it is the name to use as well as the list of methods.
1425
1426 Expression*
1427 Type::plain_type_descriptor(Gogo* gogo, int runtime_type_kind,
1428 Named_type* name)
1429 {
1430 return this->type_descriptor_constructor(gogo, runtime_type_kind,
1431 name, NULL, true);
1432 }
1433
1434 // Return the type reflection string for this type.
1435
1436 std::string
1437 Type::reflection(Gogo* gogo) const
1438 {
1439 std::string ret;
1440
1441 // The do_reflection virtual function should set RET to the
1442 // reflection string.
1443 this->do_reflection(gogo, &ret);
1444
1445 return ret;
1446 }
1447
1448 // Return a mangled name for the type.
1449
1450 std::string
1451 Type::mangled_name(Gogo* gogo) const
1452 {
1453 std::string ret;
1454
1455 // The do_mangled_name virtual function should set RET to the
1456 // mangled name. For a composite type it should append a code for
1457 // the composition and then call do_mangled_name on the components.
1458 this->do_mangled_name(gogo, &ret);
1459
1460 return ret;
1461 }
1462
1463 // Default function to export a type.
1464
1465 void
1466 Type::do_export(Export*) const
1467 {
1468 gcc_unreachable();
1469 }
1470
1471 // Import a type.
1472
1473 Type*
1474 Type::import_type(Import* imp)
1475 {
1476 if (imp->match_c_string("("))
1477 return Function_type::do_import(imp);
1478 else if (imp->match_c_string("*"))
1479 return Pointer_type::do_import(imp);
1480 else if (imp->match_c_string("struct "))
1481 return Struct_type::do_import(imp);
1482 else if (imp->match_c_string("["))
1483 return Array_type::do_import(imp);
1484 else if (imp->match_c_string("map "))
1485 return Map_type::do_import(imp);
1486 else if (imp->match_c_string("chan "))
1487 return Channel_type::do_import(imp);
1488 else if (imp->match_c_string("interface"))
1489 return Interface_type::do_import(imp);
1490 else
1491 {
1492 error_at(imp->location(), "import error: expected type");
1493 return Type::make_error_type();
1494 }
1495 }
1496
1497 // A type used to indicate a parsing error. This exists to simplify
1498 // later error detection.
1499
1500 class Error_type : public Type
1501 {
1502 public:
1503 Error_type()
1504 : Type(TYPE_ERROR)
1505 { }
1506
1507 protected:
1508 tree
1509 do_get_tree(Gogo*)
1510 { return error_mark_node; }
1511
1512 tree
1513 do_get_init_tree(Gogo*, tree, bool)
1514 { return error_mark_node; }
1515
1516 Expression*
1517 do_type_descriptor(Gogo*, Named_type*)
1518 { return Expression::make_error(BUILTINS_LOCATION); }
1519
1520 void
1521 do_reflection(Gogo*, std::string*) const
1522 { gcc_assert(saw_errors()); }
1523
1524 void
1525 do_mangled_name(Gogo*, std::string* ret) const
1526 { ret->push_back('E'); }
1527 };
1528
1529 Type*
1530 Type::make_error_type()
1531 {
1532 static Error_type singleton_error_type;
1533 return &singleton_error_type;
1534 }
1535
1536 // The void type.
1537
1538 class Void_type : public Type
1539 {
1540 public:
1541 Void_type()
1542 : Type(TYPE_VOID)
1543 { }
1544
1545 protected:
1546 tree
1547 do_get_tree(Gogo*)
1548 { return void_type_node; }
1549
1550 tree
1551 do_get_init_tree(Gogo*, tree, bool)
1552 { gcc_unreachable(); }
1553
1554 Expression*
1555 do_type_descriptor(Gogo*, Named_type*)
1556 { gcc_unreachable(); }
1557
1558 void
1559 do_reflection(Gogo*, std::string*) const
1560 { }
1561
1562 void
1563 do_mangled_name(Gogo*, std::string* ret) const
1564 { ret->push_back('v'); }
1565 };
1566
1567 Type*
1568 Type::make_void_type()
1569 {
1570 static Void_type singleton_void_type;
1571 return &singleton_void_type;
1572 }
1573
1574 // The boolean type.
1575
1576 class Boolean_type : public Type
1577 {
1578 public:
1579 Boolean_type()
1580 : Type(TYPE_BOOLEAN)
1581 { }
1582
1583 protected:
1584 tree
1585 do_get_tree(Gogo*)
1586 { return boolean_type_node; }
1587
1588 tree
1589 do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
1590 { return is_clear ? NULL : fold_convert(type_tree, boolean_false_node); }
1591
1592 Expression*
1593 do_type_descriptor(Gogo*, Named_type* name);
1594
1595 // We should not be asked for the reflection string of a basic type.
1596 void
1597 do_reflection(Gogo*, std::string* ret) const
1598 { ret->append("bool"); }
1599
1600 void
1601 do_mangled_name(Gogo*, std::string* ret) const
1602 { ret->push_back('b'); }
1603 };
1604
1605 // Make the type descriptor.
1606
1607 Expression*
1608 Boolean_type::do_type_descriptor(Gogo* gogo, Named_type* name)
1609 {
1610 if (name != NULL)
1611 return this->plain_type_descriptor(gogo, RUNTIME_TYPE_KIND_BOOL, name);
1612 else
1613 {
1614 Named_object* no = gogo->lookup_global("bool");
1615 gcc_assert(no != NULL);
1616 return Type::type_descriptor(gogo, no->type_value());
1617 }
1618 }
1619
1620 Type*
1621 Type::make_boolean_type()
1622 {
1623 static Boolean_type boolean_type;
1624 return &boolean_type;
1625 }
1626
1627 // The named type "bool".
1628
1629 static Named_type* named_bool_type;
1630
1631 // Get the named type "bool".
1632
1633 Named_type*
1634 Type::lookup_bool_type()
1635 {
1636 return named_bool_type;
1637 }
1638
1639 // Make the named type "bool".
1640
1641 Named_type*
1642 Type::make_named_bool_type()
1643 {
1644 Type* bool_type = Type::make_boolean_type();
1645 Named_object* named_object = Named_object::make_type("bool", NULL,
1646 bool_type,
1647 BUILTINS_LOCATION);
1648 Named_type* named_type = named_object->type_value();
1649 named_bool_type = named_type;
1650 return named_type;
1651 }
1652
1653 // Class Integer_type.
1654
1655 Integer_type::Named_integer_types Integer_type::named_integer_types;
1656
1657 // Create a new integer type. Non-abstract integer types always have
1658 // names.
1659
1660 Named_type*
1661 Integer_type::create_integer_type(const char* name, bool is_unsigned,
1662 int bits, int runtime_type_kind)
1663 {
1664 Integer_type* integer_type = new Integer_type(false, is_unsigned, bits,
1665 runtime_type_kind);
1666 std::string sname(name);
1667 Named_object* named_object = Named_object::make_type(sname, NULL,
1668 integer_type,
1669 BUILTINS_LOCATION);
1670 Named_type* named_type = named_object->type_value();
1671 std::pair<Named_integer_types::iterator, bool> ins =
1672 Integer_type::named_integer_types.insert(std::make_pair(sname, named_type));
1673 gcc_assert(ins.second);
1674 return named_type;
1675 }
1676
1677 // Look up an existing integer type.
1678
1679 Named_type*
1680 Integer_type::lookup_integer_type(const char* name)
1681 {
1682 Named_integer_types::const_iterator p =
1683 Integer_type::named_integer_types.find(name);
1684 gcc_assert(p != Integer_type::named_integer_types.end());
1685 return p->second;
1686 }
1687
1688 // Create a new abstract integer type.
1689
1690 Integer_type*
1691 Integer_type::create_abstract_integer_type()
1692 {
1693 static Integer_type* abstract_type;
1694 if (abstract_type == NULL)
1695 abstract_type = new Integer_type(true, false, INT_TYPE_SIZE,
1696 RUNTIME_TYPE_KIND_INT);
1697 return abstract_type;
1698 }
1699
1700 // Integer type compatibility.
1701
1702 bool
1703 Integer_type::is_identical(const Integer_type* t) const
1704 {
1705 if (this->is_unsigned_ != t->is_unsigned_ || this->bits_ != t->bits_)
1706 return false;
1707 return this->is_abstract_ == t->is_abstract_;
1708 }
1709
1710 // Hash code.
1711
1712 unsigned int
1713 Integer_type::do_hash_for_method(Gogo*) const
1714 {
1715 return ((this->bits_ << 4)
1716 + ((this->is_unsigned_ ? 1 : 0) << 8)
1717 + ((this->is_abstract_ ? 1 : 0) << 9));
1718 }
1719
1720 // Get the tree for an Integer_type.
1721
1722 tree
1723 Integer_type::do_get_tree(Gogo*)
1724 {
1725 gcc_assert(!this->is_abstract_);
1726 if (this->is_unsigned_)
1727 {
1728 if (this->bits_ == INT_TYPE_SIZE)
1729 return unsigned_type_node;
1730 else if (this->bits_ == CHAR_TYPE_SIZE)
1731 return unsigned_char_type_node;
1732 else if (this->bits_ == SHORT_TYPE_SIZE)
1733 return short_unsigned_type_node;
1734 else if (this->bits_ == LONG_TYPE_SIZE)
1735 return long_unsigned_type_node;
1736 else if (this->bits_ == LONG_LONG_TYPE_SIZE)
1737 return long_long_unsigned_type_node;
1738 else
1739 return make_unsigned_type(this->bits_);
1740 }
1741 else
1742 {
1743 if (this->bits_ == INT_TYPE_SIZE)
1744 return integer_type_node;
1745 else if (this->bits_ == CHAR_TYPE_SIZE)
1746 return signed_char_type_node;
1747 else if (this->bits_ == SHORT_TYPE_SIZE)
1748 return short_integer_type_node;
1749 else if (this->bits_ == LONG_TYPE_SIZE)
1750 return long_integer_type_node;
1751 else if (this->bits_ == LONG_LONG_TYPE_SIZE)
1752 return long_long_integer_type_node;
1753 else
1754 return make_signed_type(this->bits_);
1755 }
1756 }
1757
1758 tree
1759 Integer_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
1760 {
1761 return is_clear ? NULL : build_int_cst(type_tree, 0);
1762 }
1763
1764 // The type descriptor for an integer type. Integer types are always
1765 // named.
1766
1767 Expression*
1768 Integer_type::do_type_descriptor(Gogo* gogo, Named_type* name)
1769 {
1770 gcc_assert(name != NULL);
1771 return this->plain_type_descriptor(gogo, this->runtime_type_kind_, name);
1772 }
1773
1774 // We should not be asked for the reflection string of a basic type.
1775
1776 void
1777 Integer_type::do_reflection(Gogo*, std::string*) const
1778 {
1779 gcc_unreachable();
1780 }
1781
1782 // Mangled name.
1783
1784 void
1785 Integer_type::do_mangled_name(Gogo*, std::string* ret) const
1786 {
1787 char buf[100];
1788 snprintf(buf, sizeof buf, "i%s%s%de",
1789 this->is_abstract_ ? "a" : "",
1790 this->is_unsigned_ ? "u" : "",
1791 this->bits_);
1792 ret->append(buf);
1793 }
1794
1795 // Make an integer type.
1796
1797 Named_type*
1798 Type::make_integer_type(const char* name, bool is_unsigned, int bits,
1799 int runtime_type_kind)
1800 {
1801 return Integer_type::create_integer_type(name, is_unsigned, bits,
1802 runtime_type_kind);
1803 }
1804
1805 // Make an abstract integer type.
1806
1807 Integer_type*
1808 Type::make_abstract_integer_type()
1809 {
1810 return Integer_type::create_abstract_integer_type();
1811 }
1812
1813 // Look up an integer type.
1814
1815 Named_type*
1816 Type::lookup_integer_type(const char* name)
1817 {
1818 return Integer_type::lookup_integer_type(name);
1819 }
1820
1821 // Class Float_type.
1822
1823 Float_type::Named_float_types Float_type::named_float_types;
1824
1825 // Create a new float type. Non-abstract float types always have
1826 // names.
1827
1828 Named_type*
1829 Float_type::create_float_type(const char* name, int bits,
1830 int runtime_type_kind)
1831 {
1832 Float_type* float_type = new Float_type(false, bits, runtime_type_kind);
1833 std::string sname(name);
1834 Named_object* named_object = Named_object::make_type(sname, NULL, float_type,
1835 BUILTINS_LOCATION);
1836 Named_type* named_type = named_object->type_value();
1837 std::pair<Named_float_types::iterator, bool> ins =
1838 Float_type::named_float_types.insert(std::make_pair(sname, named_type));
1839 gcc_assert(ins.second);
1840 return named_type;
1841 }
1842
1843 // Look up an existing float type.
1844
1845 Named_type*
1846 Float_type::lookup_float_type(const char* name)
1847 {
1848 Named_float_types::const_iterator p =
1849 Float_type::named_float_types.find(name);
1850 gcc_assert(p != Float_type::named_float_types.end());
1851 return p->second;
1852 }
1853
1854 // Create a new abstract float type.
1855
1856 Float_type*
1857 Float_type::create_abstract_float_type()
1858 {
1859 static Float_type* abstract_type;
1860 if (abstract_type == NULL)
1861 abstract_type = new Float_type(true, FLOAT_TYPE_SIZE,
1862 RUNTIME_TYPE_KIND_FLOAT);
1863 return abstract_type;
1864 }
1865
1866 // Whether this type is identical with T.
1867
1868 bool
1869 Float_type::is_identical(const Float_type* t) const
1870 {
1871 if (this->bits_ != t->bits_)
1872 return false;
1873 return this->is_abstract_ == t->is_abstract_;
1874 }
1875
1876 // Hash code.
1877
1878 unsigned int
1879 Float_type::do_hash_for_method(Gogo*) const
1880 {
1881 return (this->bits_ << 4) + ((this->is_abstract_ ? 1 : 0) << 8);
1882 }
1883
1884 // Get a tree without using a Gogo*.
1885
1886 tree
1887 Float_type::type_tree() const
1888 {
1889 if (this->bits_ == FLOAT_TYPE_SIZE)
1890 return float_type_node;
1891 else if (this->bits_ == DOUBLE_TYPE_SIZE)
1892 return double_type_node;
1893 else if (this->bits_ == LONG_DOUBLE_TYPE_SIZE)
1894 return long_double_type_node;
1895 else
1896 {
1897 tree ret = make_node(REAL_TYPE);
1898 TYPE_PRECISION(ret) = this->bits_;
1899 layout_type(ret);
1900 return ret;
1901 }
1902 }
1903
1904 // Get a tree.
1905
1906 tree
1907 Float_type::do_get_tree(Gogo*)
1908 {
1909 return this->type_tree();
1910 }
1911
1912 tree
1913 Float_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
1914 {
1915 if (is_clear)
1916 return NULL;
1917 REAL_VALUE_TYPE r;
1918 real_from_integer(&r, TYPE_MODE(type_tree), 0, 0, 0);
1919 return build_real(type_tree, r);
1920 }
1921
1922 // The type descriptor for a float type. Float types are always named.
1923
1924 Expression*
1925 Float_type::do_type_descriptor(Gogo* gogo, Named_type* name)
1926 {
1927 gcc_assert(name != NULL);
1928 return this->plain_type_descriptor(gogo, this->runtime_type_kind_, name);
1929 }
1930
1931 // We should not be asked for the reflection string of a basic type.
1932
1933 void
1934 Float_type::do_reflection(Gogo*, std::string*) const
1935 {
1936 gcc_unreachable();
1937 }
1938
1939 // Mangled name.
1940
1941 void
1942 Float_type::do_mangled_name(Gogo*, std::string* ret) const
1943 {
1944 char buf[100];
1945 snprintf(buf, sizeof buf, "f%s%de",
1946 this->is_abstract_ ? "a" : "",
1947 this->bits_);
1948 ret->append(buf);
1949 }
1950
1951 // Make a floating point type.
1952
1953 Named_type*
1954 Type::make_float_type(const char* name, int bits, int runtime_type_kind)
1955 {
1956 return Float_type::create_float_type(name, bits, runtime_type_kind);
1957 }
1958
1959 // Make an abstract float type.
1960
1961 Float_type*
1962 Type::make_abstract_float_type()
1963 {
1964 return Float_type::create_abstract_float_type();
1965 }
1966
1967 // Look up a float type.
1968
1969 Named_type*
1970 Type::lookup_float_type(const char* name)
1971 {
1972 return Float_type::lookup_float_type(name);
1973 }
1974
1975 // Class Complex_type.
1976
1977 Complex_type::Named_complex_types Complex_type::named_complex_types;
1978
1979 // Create a new complex type. Non-abstract complex types always have
1980 // names.
1981
1982 Named_type*
1983 Complex_type::create_complex_type(const char* name, int bits,
1984 int runtime_type_kind)
1985 {
1986 Complex_type* complex_type = new Complex_type(false, bits,
1987 runtime_type_kind);
1988 std::string sname(name);
1989 Named_object* named_object = Named_object::make_type(sname, NULL,
1990 complex_type,
1991 BUILTINS_LOCATION);
1992 Named_type* named_type = named_object->type_value();
1993 std::pair<Named_complex_types::iterator, bool> ins =
1994 Complex_type::named_complex_types.insert(std::make_pair(sname,
1995 named_type));
1996 gcc_assert(ins.second);
1997 return named_type;
1998 }
1999
2000 // Look up an existing complex type.
2001
2002 Named_type*
2003 Complex_type::lookup_complex_type(const char* name)
2004 {
2005 Named_complex_types::const_iterator p =
2006 Complex_type::named_complex_types.find(name);
2007 gcc_assert(p != Complex_type::named_complex_types.end());
2008 return p->second;
2009 }
2010
2011 // Create a new abstract complex type.
2012
2013 Complex_type*
2014 Complex_type::create_abstract_complex_type()
2015 {
2016 static Complex_type* abstract_type;
2017 if (abstract_type == NULL)
2018 abstract_type = new Complex_type(true, FLOAT_TYPE_SIZE * 2,
2019 RUNTIME_TYPE_KIND_FLOAT);
2020 return abstract_type;
2021 }
2022
2023 // Whether this type is identical with T.
2024
2025 bool
2026 Complex_type::is_identical(const Complex_type *t) const
2027 {
2028 if (this->bits_ != t->bits_)
2029 return false;
2030 return this->is_abstract_ == t->is_abstract_;
2031 }
2032
2033 // Hash code.
2034
2035 unsigned int
2036 Complex_type::do_hash_for_method(Gogo*) const
2037 {
2038 return (this->bits_ << 4) + ((this->is_abstract_ ? 1 : 0) << 8);
2039 }
2040
2041 // Get a tree without using a Gogo*.
2042
2043 tree
2044 Complex_type::type_tree() const
2045 {
2046 if (this->bits_ == FLOAT_TYPE_SIZE * 2)
2047 return complex_float_type_node;
2048 else if (this->bits_ == DOUBLE_TYPE_SIZE * 2)
2049 return complex_double_type_node;
2050 else if (this->bits_ == LONG_DOUBLE_TYPE_SIZE * 2)
2051 return complex_long_double_type_node;
2052 else
2053 {
2054 tree ret = make_node(REAL_TYPE);
2055 TYPE_PRECISION(ret) = this->bits_ / 2;
2056 layout_type(ret);
2057 return build_complex_type(ret);
2058 }
2059 }
2060
2061 // Get a tree.
2062
2063 tree
2064 Complex_type::do_get_tree(Gogo*)
2065 {
2066 return this->type_tree();
2067 }
2068
2069 // Zero initializer.
2070
2071 tree
2072 Complex_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
2073 {
2074 if (is_clear)
2075 return NULL;
2076 REAL_VALUE_TYPE r;
2077 real_from_integer(&r, TYPE_MODE(TREE_TYPE(type_tree)), 0, 0, 0);
2078 return build_complex(type_tree, build_real(TREE_TYPE(type_tree), r),
2079 build_real(TREE_TYPE(type_tree), r));
2080 }
2081
2082 // The type descriptor for a complex type. Complex types are always
2083 // named.
2084
2085 Expression*
2086 Complex_type::do_type_descriptor(Gogo* gogo, Named_type* name)
2087 {
2088 gcc_assert(name != NULL);
2089 return this->plain_type_descriptor(gogo, this->runtime_type_kind_, name);
2090 }
2091
2092 // We should not be asked for the reflection string of a basic type.
2093
2094 void
2095 Complex_type::do_reflection(Gogo*, std::string*) const
2096 {
2097 gcc_unreachable();
2098 }
2099
2100 // Mangled name.
2101
2102 void
2103 Complex_type::do_mangled_name(Gogo*, std::string* ret) const
2104 {
2105 char buf[100];
2106 snprintf(buf, sizeof buf, "c%s%de",
2107 this->is_abstract_ ? "a" : "",
2108 this->bits_);
2109 ret->append(buf);
2110 }
2111
2112 // Make a complex type.
2113
2114 Named_type*
2115 Type::make_complex_type(const char* name, int bits, int runtime_type_kind)
2116 {
2117 return Complex_type::create_complex_type(name, bits, runtime_type_kind);
2118 }
2119
2120 // Make an abstract complex type.
2121
2122 Complex_type*
2123 Type::make_abstract_complex_type()
2124 {
2125 return Complex_type::create_abstract_complex_type();
2126 }
2127
2128 // Look up a complex type.
2129
2130 Named_type*
2131 Type::lookup_complex_type(const char* name)
2132 {
2133 return Complex_type::lookup_complex_type(name);
2134 }
2135
2136 // Class String_type.
2137
2138 // Return the tree for String_type. A string is a struct with two
2139 // fields: a pointer to the characters and a length.
2140
2141 tree
2142 String_type::do_get_tree(Gogo*)
2143 {
2144 static tree struct_type;
2145 return Gogo::builtin_struct(&struct_type, "__go_string", NULL_TREE, 2,
2146 "__data",
2147 build_pointer_type(unsigned_char_type_node),
2148 "__length",
2149 integer_type_node);
2150 }
2151
2152 // Return a tree for the length of STRING.
2153
2154 tree
2155 String_type::length_tree(Gogo*, tree string)
2156 {
2157 tree string_type = TREE_TYPE(string);
2158 gcc_assert(TREE_CODE(string_type) == RECORD_TYPE);
2159 tree length_field = DECL_CHAIN(TYPE_FIELDS(string_type));
2160 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(length_field)),
2161 "__length") == 0);
2162 return fold_build3(COMPONENT_REF, integer_type_node, string,
2163 length_field, NULL_TREE);
2164 }
2165
2166 // Return a tree for a pointer to the bytes of STRING.
2167
2168 tree
2169 String_type::bytes_tree(Gogo*, tree string)
2170 {
2171 tree string_type = TREE_TYPE(string);
2172 gcc_assert(TREE_CODE(string_type) == RECORD_TYPE);
2173 tree bytes_field = TYPE_FIELDS(string_type);
2174 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(bytes_field)),
2175 "__data") == 0);
2176 return fold_build3(COMPONENT_REF, TREE_TYPE(bytes_field), string,
2177 bytes_field, NULL_TREE);
2178 }
2179
2180 // We initialize a string to { NULL, 0 }.
2181
2182 tree
2183 String_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
2184 {
2185 if (is_clear)
2186 return NULL_TREE;
2187
2188 gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
2189
2190 VEC(constructor_elt, gc)* init = VEC_alloc(constructor_elt, gc, 2);
2191
2192 for (tree field = TYPE_FIELDS(type_tree);
2193 field != NULL_TREE;
2194 field = DECL_CHAIN(field))
2195 {
2196 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
2197 elt->index = field;
2198 elt->value = fold_convert(TREE_TYPE(field), size_zero_node);
2199 }
2200
2201 tree ret = build_constructor(type_tree, init);
2202 TREE_CONSTANT(ret) = 1;
2203 return ret;
2204 }
2205
2206 // The type descriptor for the string type.
2207
2208 Expression*
2209 String_type::do_type_descriptor(Gogo* gogo, Named_type* name)
2210 {
2211 if (name != NULL)
2212 return this->plain_type_descriptor(gogo, RUNTIME_TYPE_KIND_STRING, name);
2213 else
2214 {
2215 Named_object* no = gogo->lookup_global("string");
2216 gcc_assert(no != NULL);
2217 return Type::type_descriptor(gogo, no->type_value());
2218 }
2219 }
2220
2221 // We should not be asked for the reflection string of a basic type.
2222
2223 void
2224 String_type::do_reflection(Gogo*, std::string* ret) const
2225 {
2226 ret->append("string");
2227 }
2228
2229 // Mangled name of a string type.
2230
2231 void
2232 String_type::do_mangled_name(Gogo*, std::string* ret) const
2233 {
2234 ret->push_back('z');
2235 }
2236
2237 // Make a string type.
2238
2239 Type*
2240 Type::make_string_type()
2241 {
2242 static String_type string_type;
2243 return &string_type;
2244 }
2245
2246 // The named type "string".
2247
2248 static Named_type* named_string_type;
2249
2250 // Get the named type "string".
2251
2252 Named_type*
2253 Type::lookup_string_type()
2254 {
2255 return named_string_type;
2256 }
2257
2258 // Make the named type string.
2259
2260 Named_type*
2261 Type::make_named_string_type()
2262 {
2263 Type* string_type = Type::make_string_type();
2264 Named_object* named_object = Named_object::make_type("string", NULL,
2265 string_type,
2266 BUILTINS_LOCATION);
2267 Named_type* named_type = named_object->type_value();
2268 named_string_type = named_type;
2269 return named_type;
2270 }
2271
2272 // The sink type. This is the type of the blank identifier _. Any
2273 // type may be assigned to it.
2274
2275 class Sink_type : public Type
2276 {
2277 public:
2278 Sink_type()
2279 : Type(TYPE_SINK)
2280 { }
2281
2282 protected:
2283 tree
2284 do_get_tree(Gogo*)
2285 { gcc_unreachable(); }
2286
2287 tree
2288 do_get_init_tree(Gogo*, tree, bool)
2289 { gcc_unreachable(); }
2290
2291 Expression*
2292 do_type_descriptor(Gogo*, Named_type*)
2293 { gcc_unreachable(); }
2294
2295 void
2296 do_reflection(Gogo*, std::string*) const
2297 { gcc_unreachable(); }
2298
2299 void
2300 do_mangled_name(Gogo*, std::string*) const
2301 { gcc_unreachable(); }
2302 };
2303
2304 // Make the sink type.
2305
2306 Type*
2307 Type::make_sink_type()
2308 {
2309 static Sink_type sink_type;
2310 return &sink_type;
2311 }
2312
2313 // Class Function_type.
2314
2315 // Traversal.
2316
2317 int
2318 Function_type::do_traverse(Traverse* traverse)
2319 {
2320 if (this->receiver_ != NULL
2321 && Type::traverse(this->receiver_->type(), traverse) == TRAVERSE_EXIT)
2322 return TRAVERSE_EXIT;
2323 if (this->parameters_ != NULL
2324 && this->parameters_->traverse(traverse) == TRAVERSE_EXIT)
2325 return TRAVERSE_EXIT;
2326 if (this->results_ != NULL
2327 && this->results_->traverse(traverse) == TRAVERSE_EXIT)
2328 return TRAVERSE_EXIT;
2329 return TRAVERSE_CONTINUE;
2330 }
2331
2332 // Returns whether T is a valid redeclaration of this type. If this
2333 // returns false, and REASON is not NULL, *REASON may be set to a
2334 // brief explanation of why it returned false.
2335
2336 bool
2337 Function_type::is_valid_redeclaration(const Function_type* t,
2338 std::string* reason) const
2339 {
2340 if (!this->is_identical(t, false, true, reason))
2341 return false;
2342
2343 // A redeclaration of a function is required to use the same names
2344 // for the receiver and parameters.
2345 if (this->receiver() != NULL
2346 && this->receiver()->name() != t->receiver()->name()
2347 && this->receiver()->name() != Import::import_marker
2348 && t->receiver()->name() != Import::import_marker)
2349 {
2350 if (reason != NULL)
2351 *reason = "receiver name changed";
2352 return false;
2353 }
2354
2355 const Typed_identifier_list* parms1 = this->parameters();
2356 const Typed_identifier_list* parms2 = t->parameters();
2357 if (parms1 != NULL)
2358 {
2359 Typed_identifier_list::const_iterator p1 = parms1->begin();
2360 for (Typed_identifier_list::const_iterator p2 = parms2->begin();
2361 p2 != parms2->end();
2362 ++p2, ++p1)
2363 {
2364 if (p1->name() != p2->name()
2365 && p1->name() != Import::import_marker
2366 && p2->name() != Import::import_marker)
2367 {
2368 if (reason != NULL)
2369 *reason = "parameter name changed";
2370 return false;
2371 }
2372
2373 // This is called at parse time, so we may have unknown
2374 // types.
2375 Type* t1 = p1->type()->forwarded();
2376 Type* t2 = p2->type()->forwarded();
2377 if (t1 != t2
2378 && t1->forward_declaration_type() != NULL
2379 && (t2->forward_declaration_type() == NULL
2380 || (t1->forward_declaration_type()->named_object()
2381 != t2->forward_declaration_type()->named_object())))
2382 return false;
2383 }
2384 }
2385
2386 const Typed_identifier_list* results1 = this->results();
2387 const Typed_identifier_list* results2 = t->results();
2388 if (results1 != NULL)
2389 {
2390 Typed_identifier_list::const_iterator res1 = results1->begin();
2391 for (Typed_identifier_list::const_iterator res2 = results2->begin();
2392 res2 != results2->end();
2393 ++res2, ++res1)
2394 {
2395 if (res1->name() != res2->name()
2396 && res1->name() != Import::import_marker
2397 && res2->name() != Import::import_marker)
2398 {
2399 if (reason != NULL)
2400 *reason = "result name changed";
2401 return false;
2402 }
2403
2404 // This is called at parse time, so we may have unknown
2405 // types.
2406 Type* t1 = res1->type()->forwarded();
2407 Type* t2 = res2->type()->forwarded();
2408 if (t1 != t2
2409 && t1->forward_declaration_type() != NULL
2410 && (t2->forward_declaration_type() == NULL
2411 || (t1->forward_declaration_type()->named_object()
2412 != t2->forward_declaration_type()->named_object())))
2413 return false;
2414 }
2415 }
2416
2417 return true;
2418 }
2419
2420 // Check whether T is the same as this type.
2421
2422 bool
2423 Function_type::is_identical(const Function_type* t, bool ignore_receiver,
2424 bool errors_are_identical,
2425 std::string* reason) const
2426 {
2427 if (!ignore_receiver)
2428 {
2429 const Typed_identifier* r1 = this->receiver();
2430 const Typed_identifier* r2 = t->receiver();
2431 if ((r1 != NULL) != (r2 != NULL))
2432 {
2433 if (reason != NULL)
2434 *reason = _("different receiver types");
2435 return false;
2436 }
2437 if (r1 != NULL)
2438 {
2439 if (!Type::are_identical(r1->type(), r2->type(), errors_are_identical,
2440 reason))
2441 {
2442 if (reason != NULL && !reason->empty())
2443 *reason = "receiver: " + *reason;
2444 return false;
2445 }
2446 }
2447 }
2448
2449 const Typed_identifier_list* parms1 = this->parameters();
2450 const Typed_identifier_list* parms2 = t->parameters();
2451 if ((parms1 != NULL) != (parms2 != NULL))
2452 {
2453 if (reason != NULL)
2454 *reason = _("different number of parameters");
2455 return false;
2456 }
2457 if (parms1 != NULL)
2458 {
2459 Typed_identifier_list::const_iterator p1 = parms1->begin();
2460 for (Typed_identifier_list::const_iterator p2 = parms2->begin();
2461 p2 != parms2->end();
2462 ++p2, ++p1)
2463 {
2464 if (p1 == parms1->end())
2465 {
2466 if (reason != NULL)
2467 *reason = _("different number of parameters");
2468 return false;
2469 }
2470
2471 if (!Type::are_identical(p1->type(), p2->type(),
2472 errors_are_identical, NULL))
2473 {
2474 if (reason != NULL)
2475 *reason = _("different parameter types");
2476 return false;
2477 }
2478 }
2479 if (p1 != parms1->end())
2480 {
2481 if (reason != NULL)
2482 *reason = _("different number of parameters");
2483 return false;
2484 }
2485 }
2486
2487 if (this->is_varargs() != t->is_varargs())
2488 {
2489 if (reason != NULL)
2490 *reason = _("different varargs");
2491 return false;
2492 }
2493
2494 const Typed_identifier_list* results1 = this->results();
2495 const Typed_identifier_list* results2 = t->results();
2496 if ((results1 != NULL) != (results2 != NULL))
2497 {
2498 if (reason != NULL)
2499 *reason = _("different number of results");
2500 return false;
2501 }
2502 if (results1 != NULL)
2503 {
2504 Typed_identifier_list::const_iterator res1 = results1->begin();
2505 for (Typed_identifier_list::const_iterator res2 = results2->begin();
2506 res2 != results2->end();
2507 ++res2, ++res1)
2508 {
2509 if (res1 == results1->end())
2510 {
2511 if (reason != NULL)
2512 *reason = _("different number of results");
2513 return false;
2514 }
2515
2516 if (!Type::are_identical(res1->type(), res2->type(),
2517 errors_are_identical, NULL))
2518 {
2519 if (reason != NULL)
2520 *reason = _("different result types");
2521 return false;
2522 }
2523 }
2524 if (res1 != results1->end())
2525 {
2526 if (reason != NULL)
2527 *reason = _("different number of results");
2528 return false;
2529 }
2530 }
2531
2532 return true;
2533 }
2534
2535 // Hash code.
2536
2537 unsigned int
2538 Function_type::do_hash_for_method(Gogo* gogo) const
2539 {
2540 unsigned int ret = 0;
2541 // We ignore the receiver type for hash codes, because we need to
2542 // get the same hash code for a method in an interface and a method
2543 // declared for a type. The former will not have a receiver.
2544 if (this->parameters_ != NULL)
2545 {
2546 int shift = 1;
2547 for (Typed_identifier_list::const_iterator p = this->parameters_->begin();
2548 p != this->parameters_->end();
2549 ++p, ++shift)
2550 ret += p->type()->hash_for_method(gogo) << shift;
2551 }
2552 if (this->results_ != NULL)
2553 {
2554 int shift = 2;
2555 for (Typed_identifier_list::const_iterator p = this->results_->begin();
2556 p != this->results_->end();
2557 ++p, ++shift)
2558 ret += p->type()->hash_for_method(gogo) << shift;
2559 }
2560 if (this->is_varargs_)
2561 ret += 1;
2562 ret <<= 4;
2563 return ret;
2564 }
2565
2566 // Get the tree for a function type.
2567
2568 tree
2569 Function_type::do_get_tree(Gogo* gogo)
2570 {
2571 tree args = NULL_TREE;
2572 tree* pp = &args;
2573
2574 if (this->receiver_ != NULL)
2575 {
2576 Type* rtype = this->receiver_->type();
2577 tree ptype = rtype->get_tree(gogo);
2578 if (ptype == error_mark_node)
2579 return error_mark_node;
2580
2581 // We always pass the address of the receiver parameter, in
2582 // order to make interface calls work with unknown types.
2583 if (rtype->points_to() == NULL)
2584 ptype = build_pointer_type(ptype);
2585
2586 *pp = tree_cons (NULL_TREE, ptype, NULL_TREE);
2587 pp = &TREE_CHAIN (*pp);
2588 }
2589
2590 if (this->parameters_ != NULL)
2591 {
2592 for (Typed_identifier_list::const_iterator p = this->parameters_->begin();
2593 p != this->parameters_->end();
2594 ++p)
2595 {
2596 tree ptype = p->type()->get_tree(gogo);
2597 if (ptype == error_mark_node)
2598 return error_mark_node;
2599 *pp = tree_cons (NULL_TREE, ptype, NULL_TREE);
2600 pp = &TREE_CHAIN (*pp);
2601 }
2602 }
2603
2604 // Varargs is handled entirely at the Go level. At the tree level,
2605 // functions are not varargs.
2606 *pp = void_list_node;
2607
2608 tree result;
2609 if (this->results_ == NULL)
2610 result = void_type_node;
2611 else if (this->results_->size() == 1)
2612 result = this->results_->begin()->type()->get_tree(gogo);
2613 else
2614 {
2615 result = make_node(RECORD_TYPE);
2616 tree field_trees = NULL_TREE;
2617 tree* pp = &field_trees;
2618 for (Typed_identifier_list::const_iterator p = this->results_->begin();
2619 p != this->results_->end();
2620 ++p)
2621 {
2622 const std::string name = (p->name().empty()
2623 ? "UNNAMED"
2624 : Gogo::unpack_hidden_name(p->name()));
2625 tree name_tree = get_identifier_with_length(name.data(),
2626 name.length());
2627 tree field_type_tree = p->type()->get_tree(gogo);
2628 if (field_type_tree == error_mark_node)
2629 return error_mark_node;
2630 tree field = build_decl(this->location_, FIELD_DECL, name_tree,
2631 field_type_tree);
2632 DECL_CONTEXT(field) = result;
2633 *pp = field;
2634 pp = &DECL_CHAIN(field);
2635 }
2636 TYPE_FIELDS(result) = field_trees;
2637 layout_type(result);
2638 }
2639
2640 if (result == error_mark_node)
2641 return error_mark_node;
2642
2643 tree fntype = build_function_type(result, args);
2644 if (fntype == error_mark_node)
2645 return fntype;
2646
2647 return build_pointer_type(fntype);
2648 }
2649
2650 // Functions are initialized to NULL.
2651
2652 tree
2653 Function_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
2654 {
2655 if (is_clear)
2656 return NULL;
2657 return fold_convert(type_tree, null_pointer_node);
2658 }
2659
2660 // The type of a function type descriptor.
2661
2662 Type*
2663 Function_type::make_function_type_descriptor_type()
2664 {
2665 static Type* ret;
2666 if (ret == NULL)
2667 {
2668 Type* tdt = Type::make_type_descriptor_type();
2669 Type* ptdt = Type::make_type_descriptor_ptr_type();
2670
2671 Type* bool_type = Type::lookup_bool_type();
2672
2673 Type* slice_type = Type::make_array_type(ptdt, NULL);
2674
2675 Struct_type* s = Type::make_builtin_struct_type(4,
2676 "", tdt,
2677 "dotdotdot", bool_type,
2678 "in", slice_type,
2679 "out", slice_type);
2680
2681 ret = Type::make_builtin_named_type("FuncType", s);
2682 }
2683
2684 return ret;
2685 }
2686
2687 // The type descriptor for a function type.
2688
2689 Expression*
2690 Function_type::do_type_descriptor(Gogo* gogo, Named_type* name)
2691 {
2692 source_location bloc = BUILTINS_LOCATION;
2693
2694 Type* ftdt = Function_type::make_function_type_descriptor_type();
2695
2696 const Struct_field_list* fields = ftdt->struct_type()->fields();
2697
2698 Expression_list* vals = new Expression_list();
2699 vals->reserve(4);
2700
2701 Struct_field_list::const_iterator p = fields->begin();
2702 gcc_assert(p->field_name() == "commonType");
2703 vals->push_back(this->type_descriptor_constructor(gogo,
2704 RUNTIME_TYPE_KIND_FUNC,
2705 name, NULL, true));
2706
2707 ++p;
2708 gcc_assert(p->field_name() == "dotdotdot");
2709 vals->push_back(Expression::make_boolean(this->is_varargs(), bloc));
2710
2711 ++p;
2712 gcc_assert(p->field_name() == "in");
2713 vals->push_back(this->type_descriptor_params(p->type(), this->receiver(),
2714 this->parameters()));
2715
2716 ++p;
2717 gcc_assert(p->field_name() == "out");
2718 vals->push_back(this->type_descriptor_params(p->type(), NULL,
2719 this->results()));
2720
2721 ++p;
2722 gcc_assert(p == fields->end());
2723
2724 return Expression::make_struct_composite_literal(ftdt, vals, bloc);
2725 }
2726
2727 // Return a composite literal for the parameters or results of a type
2728 // descriptor.
2729
2730 Expression*
2731 Function_type::type_descriptor_params(Type* params_type,
2732 const Typed_identifier* receiver,
2733 const Typed_identifier_list* params)
2734 {
2735 source_location bloc = BUILTINS_LOCATION;
2736
2737 if (receiver == NULL && params == NULL)
2738 return Expression::make_slice_composite_literal(params_type, NULL, bloc);
2739
2740 Expression_list* vals = new Expression_list();
2741 vals->reserve((params == NULL ? 0 : params->size())
2742 + (receiver != NULL ? 1 : 0));
2743
2744 if (receiver != NULL)
2745 {
2746 Type* rtype = receiver->type();
2747 // The receiver is always passed as a pointer. FIXME: Is this
2748 // right? Should that fact affect the type descriptor?
2749 if (rtype->points_to() == NULL)
2750 rtype = Type::make_pointer_type(rtype);
2751 vals->push_back(Expression::make_type_descriptor(rtype, bloc));
2752 }
2753
2754 if (params != NULL)
2755 {
2756 for (Typed_identifier_list::const_iterator p = params->begin();
2757 p != params->end();
2758 ++p)
2759 vals->push_back(Expression::make_type_descriptor(p->type(), bloc));
2760 }
2761
2762 return Expression::make_slice_composite_literal(params_type, vals, bloc);
2763 }
2764
2765 // The reflection string.
2766
2767 void
2768 Function_type::do_reflection(Gogo* gogo, std::string* ret) const
2769 {
2770 // FIXME: Turn this off until we straighten out the type of the
2771 // struct field used in a go statement which calls a method.
2772 // gcc_assert(this->receiver_ == NULL);
2773
2774 ret->append("func");
2775
2776 if (this->receiver_ != NULL)
2777 {
2778 ret->push_back('(');
2779 this->append_reflection(this->receiver_->type(), gogo, ret);
2780 ret->push_back(')');
2781 }
2782
2783 ret->push_back('(');
2784 const Typed_identifier_list* params = this->parameters();
2785 if (params != NULL)
2786 {
2787 bool is_varargs = this->is_varargs_;
2788 for (Typed_identifier_list::const_iterator p = params->begin();
2789 p != params->end();
2790 ++p)
2791 {
2792 if (p != params->begin())
2793 ret->append(", ");
2794 if (!is_varargs || p + 1 != params->end())
2795 this->append_reflection(p->type(), gogo, ret);
2796 else
2797 {
2798 ret->append("...");
2799 this->append_reflection(p->type()->array_type()->element_type(),
2800 gogo, ret);
2801 }
2802 }
2803 }
2804 ret->push_back(')');
2805
2806 const Typed_identifier_list* results = this->results();
2807 if (results != NULL && !results->empty())
2808 {
2809 if (results->size() == 1)
2810 ret->push_back(' ');
2811 else
2812 ret->append(" (");
2813 for (Typed_identifier_list::const_iterator p = results->begin();
2814 p != results->end();
2815 ++p)
2816 {
2817 if (p != results->begin())
2818 ret->append(", ");
2819 this->append_reflection(p->type(), gogo, ret);
2820 }
2821 if (results->size() > 1)
2822 ret->push_back(')');
2823 }
2824 }
2825
2826 // Mangled name.
2827
2828 void
2829 Function_type::do_mangled_name(Gogo* gogo, std::string* ret) const
2830 {
2831 ret->push_back('F');
2832
2833 if (this->receiver_ != NULL)
2834 {
2835 ret->push_back('m');
2836 this->append_mangled_name(this->receiver_->type(), gogo, ret);
2837 }
2838
2839 const Typed_identifier_list* params = this->parameters();
2840 if (params != NULL)
2841 {
2842 ret->push_back('p');
2843 for (Typed_identifier_list::const_iterator p = params->begin();
2844 p != params->end();
2845 ++p)
2846 this->append_mangled_name(p->type(), gogo, ret);
2847 if (this->is_varargs_)
2848 ret->push_back('V');
2849 ret->push_back('e');
2850 }
2851
2852 const Typed_identifier_list* results = this->results();
2853 if (results != NULL)
2854 {
2855 ret->push_back('r');
2856 for (Typed_identifier_list::const_iterator p = results->begin();
2857 p != results->end();
2858 ++p)
2859 this->append_mangled_name(p->type(), gogo, ret);
2860 ret->push_back('e');
2861 }
2862
2863 ret->push_back('e');
2864 }
2865
2866 // Export a function type.
2867
2868 void
2869 Function_type::do_export(Export* exp) const
2870 {
2871 // We don't write out the receiver. The only function types which
2872 // should have a receiver are the ones associated with explicitly
2873 // defined methods. For those the receiver type is written out by
2874 // Function::export_func.
2875
2876 exp->write_c_string("(");
2877 bool first = true;
2878 if (this->parameters_ != NULL)
2879 {
2880 bool is_varargs = this->is_varargs_;
2881 for (Typed_identifier_list::const_iterator p =
2882 this->parameters_->begin();
2883 p != this->parameters_->end();
2884 ++p)
2885 {
2886 if (first)
2887 first = false;
2888 else
2889 exp->write_c_string(", ");
2890 if (!is_varargs || p + 1 != this->parameters_->end())
2891 exp->write_type(p->type());
2892 else
2893 {
2894 exp->write_c_string("...");
2895 exp->write_type(p->type()->array_type()->element_type());
2896 }
2897 }
2898 }
2899 exp->write_c_string(")");
2900
2901 const Typed_identifier_list* results = this->results_;
2902 if (results != NULL)
2903 {
2904 exp->write_c_string(" ");
2905 if (results->size() == 1)
2906 exp->write_type(results->begin()->type());
2907 else
2908 {
2909 first = true;
2910 exp->write_c_string("(");
2911 for (Typed_identifier_list::const_iterator p = results->begin();
2912 p != results->end();
2913 ++p)
2914 {
2915 if (first)
2916 first = false;
2917 else
2918 exp->write_c_string(", ");
2919 exp->write_type(p->type());
2920 }
2921 exp->write_c_string(")");
2922 }
2923 }
2924 }
2925
2926 // Import a function type.
2927
2928 Function_type*
2929 Function_type::do_import(Import* imp)
2930 {
2931 imp->require_c_string("(");
2932 Typed_identifier_list* parameters;
2933 bool is_varargs = false;
2934 if (imp->peek_char() == ')')
2935 parameters = NULL;
2936 else
2937 {
2938 parameters = new Typed_identifier_list();
2939 while (true)
2940 {
2941 if (imp->match_c_string("..."))
2942 {
2943 imp->advance(3);
2944 is_varargs = true;
2945 }
2946
2947 Type* ptype = imp->read_type();
2948 if (is_varargs)
2949 ptype = Type::make_array_type(ptype, NULL);
2950 parameters->push_back(Typed_identifier(Import::import_marker,
2951 ptype, imp->location()));
2952 if (imp->peek_char() != ',')
2953 break;
2954 gcc_assert(!is_varargs);
2955 imp->require_c_string(", ");
2956 }
2957 }
2958 imp->require_c_string(")");
2959
2960 Typed_identifier_list* results;
2961 if (imp->peek_char() != ' ')
2962 results = NULL;
2963 else
2964 {
2965 imp->advance(1);
2966 results = new Typed_identifier_list;
2967 if (imp->peek_char() != '(')
2968 {
2969 Type* rtype = imp->read_type();
2970 results->push_back(Typed_identifier(Import::import_marker, rtype,
2971 imp->location()));
2972 }
2973 else
2974 {
2975 imp->advance(1);
2976 while (true)
2977 {
2978 Type* rtype = imp->read_type();
2979 results->push_back(Typed_identifier(Import::import_marker,
2980 rtype, imp->location()));
2981 if (imp->peek_char() != ',')
2982 break;
2983 imp->require_c_string(", ");
2984 }
2985 imp->require_c_string(")");
2986 }
2987 }
2988
2989 Function_type* ret = Type::make_function_type(NULL, parameters, results,
2990 imp->location());
2991 if (is_varargs)
2992 ret->set_is_varargs();
2993 return ret;
2994 }
2995
2996 // Make a copy of a function type without a receiver.
2997
2998 Function_type*
2999 Function_type::copy_without_receiver() const
3000 {
3001 gcc_assert(this->is_method());
3002 Function_type *ret = Type::make_function_type(NULL, this->parameters_,
3003 this->results_,
3004 this->location_);
3005 if (this->is_varargs())
3006 ret->set_is_varargs();
3007 if (this->is_builtin())
3008 ret->set_is_builtin();
3009 return ret;
3010 }
3011
3012 // Make a copy of a function type with a receiver.
3013
3014 Function_type*
3015 Function_type::copy_with_receiver(Type* receiver_type) const
3016 {
3017 gcc_assert(!this->is_method());
3018 Typed_identifier* receiver = new Typed_identifier("", receiver_type,
3019 this->location_);
3020 return Type::make_function_type(receiver, this->parameters_,
3021 this->results_, this->location_);
3022 }
3023
3024 // Make a function type.
3025
3026 Function_type*
3027 Type::make_function_type(Typed_identifier* receiver,
3028 Typed_identifier_list* parameters,
3029 Typed_identifier_list* results,
3030 source_location location)
3031 {
3032 return new Function_type(receiver, parameters, results, location);
3033 }
3034
3035 // Class Pointer_type.
3036
3037 // Traversal.
3038
3039 int
3040 Pointer_type::do_traverse(Traverse* traverse)
3041 {
3042 return Type::traverse(this->to_type_, traverse);
3043 }
3044
3045 // Hash code.
3046
3047 unsigned int
3048 Pointer_type::do_hash_for_method(Gogo* gogo) const
3049 {
3050 return this->to_type_->hash_for_method(gogo) << 4;
3051 }
3052
3053 // The tree for a pointer type.
3054
3055 tree
3056 Pointer_type::do_get_tree(Gogo* gogo)
3057 {
3058 return build_pointer_type(this->to_type_->get_tree(gogo));
3059 }
3060
3061 // Initialize a pointer type.
3062
3063 tree
3064 Pointer_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
3065 {
3066 if (is_clear)
3067 return NULL;
3068 return fold_convert(type_tree, null_pointer_node);
3069 }
3070
3071 // The type of a pointer type descriptor.
3072
3073 Type*
3074 Pointer_type::make_pointer_type_descriptor_type()
3075 {
3076 static Type* ret;
3077 if (ret == NULL)
3078 {
3079 Type* tdt = Type::make_type_descriptor_type();
3080 Type* ptdt = Type::make_type_descriptor_ptr_type();
3081
3082 Struct_type* s = Type::make_builtin_struct_type(2,
3083 "", tdt,
3084 "elem", ptdt);
3085
3086 ret = Type::make_builtin_named_type("PtrType", s);
3087 }
3088
3089 return ret;
3090 }
3091
3092 // The type descriptor for a pointer type.
3093
3094 Expression*
3095 Pointer_type::do_type_descriptor(Gogo* gogo, Named_type* name)
3096 {
3097 if (this->is_unsafe_pointer_type())
3098 {
3099 gcc_assert(name != NULL);
3100 return this->plain_type_descriptor(gogo,
3101 RUNTIME_TYPE_KIND_UNSAFE_POINTER,
3102 name);
3103 }
3104 else
3105 {
3106 source_location bloc = BUILTINS_LOCATION;
3107
3108 const Methods* methods;
3109 Type* deref = this->points_to();
3110 if (deref->named_type() != NULL)
3111 methods = deref->named_type()->methods();
3112 else if (deref->struct_type() != NULL)
3113 methods = deref->struct_type()->methods();
3114 else
3115 methods = NULL;
3116
3117 Type* ptr_tdt = Pointer_type::make_pointer_type_descriptor_type();
3118
3119 const Struct_field_list* fields = ptr_tdt->struct_type()->fields();
3120
3121 Expression_list* vals = new Expression_list();
3122 vals->reserve(2);
3123
3124 Struct_field_list::const_iterator p = fields->begin();
3125 gcc_assert(p->field_name() == "commonType");
3126 vals->push_back(this->type_descriptor_constructor(gogo,
3127 RUNTIME_TYPE_KIND_PTR,
3128 name, methods, false));
3129
3130 ++p;
3131 gcc_assert(p->field_name() == "elem");
3132 vals->push_back(Expression::make_type_descriptor(deref, bloc));
3133
3134 return Expression::make_struct_composite_literal(ptr_tdt, vals, bloc);
3135 }
3136 }
3137
3138 // Reflection string.
3139
3140 void
3141 Pointer_type::do_reflection(Gogo* gogo, std::string* ret) const
3142 {
3143 ret->push_back('*');
3144 this->append_reflection(this->to_type_, gogo, ret);
3145 }
3146
3147 // Mangled name.
3148
3149 void
3150 Pointer_type::do_mangled_name(Gogo* gogo, std::string* ret) const
3151 {
3152 ret->push_back('p');
3153 this->append_mangled_name(this->to_type_, gogo, ret);
3154 }
3155
3156 // Export.
3157
3158 void
3159 Pointer_type::do_export(Export* exp) const
3160 {
3161 exp->write_c_string("*");
3162 if (this->is_unsafe_pointer_type())
3163 exp->write_c_string("any");
3164 else
3165 exp->write_type(this->to_type_);
3166 }
3167
3168 // Import.
3169
3170 Pointer_type*
3171 Pointer_type::do_import(Import* imp)
3172 {
3173 imp->require_c_string("*");
3174 if (imp->match_c_string("any"))
3175 {
3176 imp->advance(3);
3177 return Type::make_pointer_type(Type::make_void_type());
3178 }
3179 Type* to = imp->read_type();
3180 return Type::make_pointer_type(to);
3181 }
3182
3183 // Make a pointer type.
3184
3185 Pointer_type*
3186 Type::make_pointer_type(Type* to_type)
3187 {
3188 typedef Unordered_map(Type*, Pointer_type*) Hashtable;
3189 static Hashtable pointer_types;
3190 Hashtable::const_iterator p = pointer_types.find(to_type);
3191 if (p != pointer_types.end())
3192 return p->second;
3193 Pointer_type* ret = new Pointer_type(to_type);
3194 pointer_types[to_type] = ret;
3195 return ret;
3196 }
3197
3198 // The nil type. We use a special type for nil because it is not the
3199 // same as any other type. In C term nil has type void*, but there is
3200 // no such type in Go.
3201
3202 class Nil_type : public Type
3203 {
3204 public:
3205 Nil_type()
3206 : Type(TYPE_NIL)
3207 { }
3208
3209 protected:
3210 tree
3211 do_get_tree(Gogo*)
3212 { return ptr_type_node; }
3213
3214 tree
3215 do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
3216 { return is_clear ? NULL : fold_convert(type_tree, null_pointer_node); }
3217
3218 Expression*
3219 do_type_descriptor(Gogo*, Named_type*)
3220 { gcc_unreachable(); }
3221
3222 void
3223 do_reflection(Gogo*, std::string*) const
3224 { gcc_unreachable(); }
3225
3226 void
3227 do_mangled_name(Gogo*, std::string* ret) const
3228 { ret->push_back('n'); }
3229 };
3230
3231 // Make the nil type.
3232
3233 Type*
3234 Type::make_nil_type()
3235 {
3236 static Nil_type singleton_nil_type;
3237 return &singleton_nil_type;
3238 }
3239
3240 // The type of a function call which returns multiple values. This is
3241 // really a struct, but we don't want to confuse a function call which
3242 // returns a struct with a function call which returns multiple
3243 // values.
3244
3245 class Call_multiple_result_type : public Type
3246 {
3247 public:
3248 Call_multiple_result_type(Call_expression* call)
3249 : Type(TYPE_CALL_MULTIPLE_RESULT),
3250 call_(call)
3251 { }
3252
3253 protected:
3254 bool
3255 do_has_pointer() const
3256 { gcc_unreachable(); }
3257
3258 tree
3259 do_get_tree(Gogo*);
3260
3261 tree
3262 do_get_init_tree(Gogo*, tree, bool)
3263 { gcc_unreachable(); }
3264
3265 Expression*
3266 do_type_descriptor(Gogo*, Named_type*)
3267 { gcc_unreachable(); }
3268
3269 void
3270 do_reflection(Gogo*, std::string*) const
3271 { gcc_unreachable(); }
3272
3273 void
3274 do_mangled_name(Gogo*, std::string*) const
3275 { gcc_unreachable(); }
3276
3277 private:
3278 // The expression being called.
3279 Call_expression* call_;
3280 };
3281
3282 // Return the tree for a call result.
3283
3284 tree
3285 Call_multiple_result_type::do_get_tree(Gogo* gogo)
3286 {
3287 Function_type* fntype = this->call_->get_function_type();
3288 gcc_assert(fntype != NULL);
3289 const Typed_identifier_list* results = fntype->results();
3290 gcc_assert(results != NULL && results->size() > 1);
3291
3292 Struct_field_list* sfl = new Struct_field_list;
3293 for (Typed_identifier_list::const_iterator p = results->begin();
3294 p != results->end();
3295 ++p)
3296 {
3297 const std::string name = ((p->name().empty()
3298 || p->name() == Import::import_marker)
3299 ? "UNNAMED"
3300 : p->name());
3301 sfl->push_back(Struct_field(Typed_identifier(name, p->type(),
3302 this->call_->location())));
3303 }
3304 return Type::make_struct_type(sfl, this->call_->location())->get_tree(gogo);
3305 }
3306
3307 // Make a call result type.
3308
3309 Type*
3310 Type::make_call_multiple_result_type(Call_expression* call)
3311 {
3312 return new Call_multiple_result_type(call);
3313 }
3314
3315 // Class Struct_field.
3316
3317 // Get the name of a field.
3318
3319 const std::string&
3320 Struct_field::field_name() const
3321 {
3322 const std::string& name(this->typed_identifier_.name());
3323 if (!name.empty())
3324 return name;
3325 else
3326 {
3327 // This is called during parsing, before anything is lowered, so
3328 // we have to be pretty careful to avoid dereferencing an
3329 // unknown type name.
3330 Type* t = this->typed_identifier_.type();
3331 Type* dt = t;
3332 if (t->classification() == Type::TYPE_POINTER)
3333 {
3334 // Very ugly.
3335 Pointer_type* ptype = static_cast<Pointer_type*>(t);
3336 dt = ptype->points_to();
3337 }
3338 if (dt->forward_declaration_type() != NULL)
3339 return dt->forward_declaration_type()->name();
3340 else if (dt->named_type() != NULL)
3341 return dt->named_type()->name();
3342 else if (t->is_error_type() || dt->is_error_type())
3343 {
3344 static const std::string error_string = "*error*";
3345 return error_string;
3346 }
3347 else
3348 {
3349 // Avoid crashing in the erroneous case where T is named but
3350 // DT is not.
3351 gcc_assert(t != dt);
3352 if (t->forward_declaration_type() != NULL)
3353 return t->forward_declaration_type()->name();
3354 else if (t->named_type() != NULL)
3355 return t->named_type()->name();
3356 else
3357 gcc_unreachable();
3358 }
3359 }
3360 }
3361
3362 // Class Struct_type.
3363
3364 // Traversal.
3365
3366 int
3367 Struct_type::do_traverse(Traverse* traverse)
3368 {
3369 Struct_field_list* fields = this->fields_;
3370 if (fields != NULL)
3371 {
3372 for (Struct_field_list::iterator p = fields->begin();
3373 p != fields->end();
3374 ++p)
3375 {
3376 if (Type::traverse(p->type(), traverse) == TRAVERSE_EXIT)
3377 return TRAVERSE_EXIT;
3378 }
3379 }
3380 return TRAVERSE_CONTINUE;
3381 }
3382
3383 // Verify that the struct type is complete and valid.
3384
3385 bool
3386 Struct_type::do_verify()
3387 {
3388 Struct_field_list* fields = this->fields_;
3389 if (fields == NULL)
3390 return true;
3391 bool ret = true;
3392 for (Struct_field_list::iterator p = fields->begin();
3393 p != fields->end();
3394 ++p)
3395 {
3396 Type* t = p->type();
3397 if (t->is_undefined())
3398 {
3399 error_at(p->location(), "struct field type is incomplete");
3400 p->set_type(Type::make_error_type());
3401 ret = false;
3402 }
3403 else if (p->is_anonymous())
3404 {
3405 if (t->named_type() != NULL && t->points_to() != NULL)
3406 {
3407 error_at(p->location(), "embedded type may not be a pointer");
3408 p->set_type(Type::make_error_type());
3409 return false;
3410 }
3411 }
3412 }
3413 return ret;
3414 }
3415
3416 // Whether this contains a pointer.
3417
3418 bool
3419 Struct_type::do_has_pointer() const
3420 {
3421 const Struct_field_list* fields = this->fields();
3422 if (fields == NULL)
3423 return false;
3424 for (Struct_field_list::const_iterator p = fields->begin();
3425 p != fields->end();
3426 ++p)
3427 {
3428 if (p->type()->has_pointer())
3429 return true;
3430 }
3431 return false;
3432 }
3433
3434 // Whether this type is identical to T.
3435
3436 bool
3437 Struct_type::is_identical(const Struct_type* t,
3438 bool errors_are_identical) const
3439 {
3440 const Struct_field_list* fields1 = this->fields();
3441 const Struct_field_list* fields2 = t->fields();
3442 if (fields1 == NULL || fields2 == NULL)
3443 return fields1 == fields2;
3444 Struct_field_list::const_iterator pf2 = fields2->begin();
3445 for (Struct_field_list::const_iterator pf1 = fields1->begin();
3446 pf1 != fields1->end();
3447 ++pf1, ++pf2)
3448 {
3449 if (pf2 == fields2->end())
3450 return false;
3451 if (pf1->field_name() != pf2->field_name())
3452 return false;
3453 if (pf1->is_anonymous() != pf2->is_anonymous()
3454 || !Type::are_identical(pf1->type(), pf2->type(),
3455 errors_are_identical, NULL))
3456 return false;
3457 if (!pf1->has_tag())
3458 {
3459 if (pf2->has_tag())
3460 return false;
3461 }
3462 else
3463 {
3464 if (!pf2->has_tag())
3465 return false;
3466 if (pf1->tag() != pf2->tag())
3467 return false;
3468 }
3469 }
3470 if (pf2 != fields2->end())
3471 return false;
3472 return true;
3473 }
3474
3475 // Whether this struct type has any hidden fields.
3476
3477 bool
3478 Struct_type::struct_has_hidden_fields(const Named_type* within,
3479 std::string* reason) const
3480 {
3481 const Struct_field_list* fields = this->fields();
3482 if (fields == NULL)
3483 return false;
3484 const Package* within_package = (within == NULL
3485 ? NULL
3486 : within->named_object()->package());
3487 for (Struct_field_list::const_iterator pf = fields->begin();
3488 pf != fields->end();
3489 ++pf)
3490 {
3491 if (within_package != NULL
3492 && !pf->is_anonymous()
3493 && Gogo::is_hidden_name(pf->field_name()))
3494 {
3495 if (reason != NULL)
3496 {
3497 std::string within_name = within->named_object()->message_name();
3498 std::string name = Gogo::message_name(pf->field_name());
3499 size_t bufsize = 200 + within_name.length() + name.length();
3500 char* buf = new char[bufsize];
3501 snprintf(buf, bufsize,
3502 _("implicit assignment of %s%s%s hidden field %s%s%s"),
3503 open_quote, within_name.c_str(), close_quote,
3504 open_quote, name.c_str(), close_quote);
3505 reason->assign(buf);
3506 delete[] buf;
3507 }
3508 return true;
3509 }
3510
3511 if (pf->type()->has_hidden_fields(within, reason))
3512 return true;
3513 }
3514
3515 return false;
3516 }
3517
3518 // Hash code.
3519
3520 unsigned int
3521 Struct_type::do_hash_for_method(Gogo* gogo) const
3522 {
3523 unsigned int ret = 0;
3524 if (this->fields() != NULL)
3525 {
3526 for (Struct_field_list::const_iterator pf = this->fields()->begin();
3527 pf != this->fields()->end();
3528 ++pf)
3529 ret = (ret << 1) + pf->type()->hash_for_method(gogo);
3530 }
3531 return ret <<= 2;
3532 }
3533
3534 // Find the local field NAME.
3535
3536 const Struct_field*
3537 Struct_type::find_local_field(const std::string& name,
3538 unsigned int *pindex) const
3539 {
3540 const Struct_field_list* fields = this->fields_;
3541 if (fields == NULL)
3542 return NULL;
3543 unsigned int i = 0;
3544 for (Struct_field_list::const_iterator pf = fields->begin();
3545 pf != fields->end();
3546 ++pf, ++i)
3547 {
3548 if (pf->field_name() == name)
3549 {
3550 if (pindex != NULL)
3551 *pindex = i;
3552 return &*pf;
3553 }
3554 }
3555 return NULL;
3556 }
3557
3558 // Return an expression for field NAME in STRUCT_EXPR, or NULL.
3559
3560 Field_reference_expression*
3561 Struct_type::field_reference(Expression* struct_expr, const std::string& name,
3562 source_location location) const
3563 {
3564 unsigned int depth;
3565 return this->field_reference_depth(struct_expr, name, location, &depth);
3566 }
3567
3568 // Return an expression for a field, along with the depth at which it
3569 // was found.
3570
3571 Field_reference_expression*
3572 Struct_type::field_reference_depth(Expression* struct_expr,
3573 const std::string& name,
3574 source_location location,
3575 unsigned int* depth) const
3576 {
3577 const Struct_field_list* fields = this->fields_;
3578 if (fields == NULL)
3579 return NULL;
3580
3581 // Look for a field with this name.
3582 unsigned int i = 0;
3583 for (Struct_field_list::const_iterator pf = fields->begin();
3584 pf != fields->end();
3585 ++pf, ++i)
3586 {
3587 if (pf->field_name() == name)
3588 {
3589 *depth = 0;
3590 return Expression::make_field_reference(struct_expr, i, location);
3591 }
3592 }
3593
3594 // Look for an anonymous field which contains a field with this
3595 // name.
3596 unsigned int found_depth = 0;
3597 Field_reference_expression* ret = NULL;
3598 i = 0;
3599 for (Struct_field_list::const_iterator pf = fields->begin();
3600 pf != fields->end();
3601 ++pf, ++i)
3602 {
3603 if (!pf->is_anonymous())
3604 continue;
3605
3606 Struct_type* st = pf->type()->deref()->struct_type();
3607 if (st == NULL)
3608 continue;
3609
3610 // Look for a reference using a NULL struct expression. If we
3611 // find one, fill in the struct expression with a reference to
3612 // this field.
3613 unsigned int subdepth;
3614 Field_reference_expression* sub = st->field_reference_depth(NULL, name,
3615 location,
3616 &subdepth);
3617 if (sub == NULL)
3618 continue;
3619
3620 if (ret == NULL || subdepth < found_depth)
3621 {
3622 if (ret != NULL)
3623 delete ret;
3624 ret = sub;
3625 found_depth = subdepth;
3626 Expression* here = Expression::make_field_reference(struct_expr, i,
3627 location);
3628 if (pf->type()->points_to() != NULL)
3629 here = Expression::make_unary(OPERATOR_MULT, here, location);
3630 while (sub->expr() != NULL)
3631 {
3632 sub = sub->expr()->deref()->field_reference_expression();
3633 gcc_assert(sub != NULL);
3634 }
3635 sub->set_struct_expression(here);
3636 }
3637 else if (subdepth > found_depth)
3638 delete sub;
3639 else
3640 {
3641 // We do not handle ambiguity here--it should be handled by
3642 // Type::bind_field_or_method.
3643 delete sub;
3644 found_depth = 0;
3645 ret = NULL;
3646 }
3647 }
3648
3649 if (ret != NULL)
3650 *depth = found_depth + 1;
3651
3652 return ret;
3653 }
3654
3655 // Return the total number of fields, including embedded fields.
3656
3657 unsigned int
3658 Struct_type::total_field_count() const
3659 {
3660 if (this->fields_ == NULL)
3661 return 0;
3662 unsigned int ret = 0;
3663 for (Struct_field_list::const_iterator pf = this->fields_->begin();
3664 pf != this->fields_->end();
3665 ++pf)
3666 {
3667 if (!pf->is_anonymous() || pf->type()->deref()->struct_type() == NULL)
3668 ++ret;
3669 else
3670 ret += pf->type()->struct_type()->total_field_count();
3671 }
3672 return ret;
3673 }
3674
3675 // Return whether NAME is an unexported field, for better error reporting.
3676
3677 bool
3678 Struct_type::is_unexported_local_field(Gogo* gogo,
3679 const std::string& name) const
3680 {
3681 const Struct_field_list* fields = this->fields_;
3682 if (fields != NULL)
3683 {
3684 for (Struct_field_list::const_iterator pf = fields->begin();
3685 pf != fields->end();
3686 ++pf)
3687 {
3688 const std::string& field_name(pf->field_name());
3689 if (Gogo::is_hidden_name(field_name)
3690 && name == Gogo::unpack_hidden_name(field_name)
3691 && gogo->pack_hidden_name(name, false) != field_name)
3692 return true;
3693 }
3694 }
3695 return false;
3696 }
3697
3698 // Finalize the methods of an unnamed struct.
3699
3700 void
3701 Struct_type::finalize_methods(Gogo* gogo)
3702 {
3703 if (this->all_methods_ != NULL)
3704 return;
3705 Type::finalize_methods(gogo, this, this->location_, &this->all_methods_);
3706 }
3707
3708 // Return the method NAME, or NULL if there isn't one or if it is
3709 // ambiguous. Set *IS_AMBIGUOUS if the method exists but is
3710 // ambiguous.
3711
3712 Method*
3713 Struct_type::method_function(const std::string& name, bool* is_ambiguous) const
3714 {
3715 return Type::method_function(this->all_methods_, name, is_ambiguous);
3716 }
3717
3718 // Get the tree for a struct type.
3719
3720 tree
3721 Struct_type::do_get_tree(Gogo* gogo)
3722 {
3723 tree type = make_node(RECORD_TYPE);
3724 return this->fill_in_tree(gogo, type);
3725 }
3726
3727 // Fill in the fields for a struct type.
3728
3729 tree
3730 Struct_type::fill_in_tree(Gogo* gogo, tree type)
3731 {
3732 tree field_trees = NULL_TREE;
3733 tree* pp = &field_trees;
3734 for (Struct_field_list::const_iterator p = this->fields_->begin();
3735 p != this->fields_->end();
3736 ++p)
3737 {
3738 std::string name = Gogo::unpack_hidden_name(p->field_name());
3739 tree name_tree = get_identifier_with_length(name.data(), name.length());
3740 tree field_type_tree = p->type()->get_tree(gogo);
3741 if (field_type_tree == error_mark_node)
3742 return error_mark_node;
3743 tree field = build_decl(p->location(), FIELD_DECL, name_tree,
3744 field_type_tree);
3745 DECL_CONTEXT(field) = type;
3746 *pp = field;
3747 pp = &DECL_CHAIN(field);
3748 }
3749
3750 TYPE_FIELDS(type) = field_trees;
3751
3752 layout_type(type);
3753
3754 return type;
3755 }
3756
3757 // Initialize struct fields.
3758
3759 tree
3760 Struct_type::do_get_init_tree(Gogo* gogo, tree type_tree, bool is_clear)
3761 {
3762 if (this->fields_ == NULL || this->fields_->empty())
3763 {
3764 if (is_clear)
3765 return NULL;
3766 else
3767 {
3768 tree ret = build_constructor(type_tree,
3769 VEC_alloc(constructor_elt, gc, 0));
3770 TREE_CONSTANT(ret) = 1;
3771 return ret;
3772 }
3773 }
3774
3775 bool is_constant = true;
3776 bool any_fields_set = false;
3777 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc,
3778 this->fields_->size());
3779
3780 tree field = TYPE_FIELDS(type_tree);
3781 for (Struct_field_list::const_iterator p = this->fields_->begin();
3782 p != this->fields_->end();
3783 ++p, field = DECL_CHAIN(field))
3784 {
3785 tree value = p->type()->get_init_tree(gogo, is_clear);
3786 if (value == error_mark_node)
3787 return error_mark_node;
3788 gcc_assert(field != NULL_TREE);
3789 if (value != NULL)
3790 {
3791 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
3792 elt->index = field;
3793 elt->value = value;
3794 any_fields_set = true;
3795 if (!TREE_CONSTANT(value))
3796 is_constant = false;
3797 }
3798 }
3799 gcc_assert(field == NULL_TREE);
3800
3801 if (!any_fields_set)
3802 {
3803 gcc_assert(is_clear);
3804 VEC_free(constructor_elt, gc, init);
3805 return NULL;
3806 }
3807
3808 tree ret = build_constructor(type_tree, init);
3809 if (is_constant)
3810 TREE_CONSTANT(ret) = 1;
3811 return ret;
3812 }
3813
3814 // The type of a struct type descriptor.
3815
3816 Type*
3817 Struct_type::make_struct_type_descriptor_type()
3818 {
3819 static Type* ret;
3820 if (ret == NULL)
3821 {
3822 Type* tdt = Type::make_type_descriptor_type();
3823 Type* ptdt = Type::make_type_descriptor_ptr_type();
3824
3825 Type* uintptr_type = Type::lookup_integer_type("uintptr");
3826 Type* string_type = Type::lookup_string_type();
3827 Type* pointer_string_type = Type::make_pointer_type(string_type);
3828
3829 Struct_type* sf =
3830 Type::make_builtin_struct_type(5,
3831 "name", pointer_string_type,
3832 "pkgPath", pointer_string_type,
3833 "typ", ptdt,
3834 "tag", pointer_string_type,
3835 "offset", uintptr_type);
3836 Type* nsf = Type::make_builtin_named_type("structField", sf);
3837
3838 Type* slice_type = Type::make_array_type(nsf, NULL);
3839
3840 Struct_type* s = Type::make_builtin_struct_type(2,
3841 "", tdt,
3842 "fields", slice_type);
3843
3844 ret = Type::make_builtin_named_type("StructType", s);
3845 }
3846
3847 return ret;
3848 }
3849
3850 // Build a type descriptor for a struct type.
3851
3852 Expression*
3853 Struct_type::do_type_descriptor(Gogo* gogo, Named_type* name)
3854 {
3855 source_location bloc = BUILTINS_LOCATION;
3856
3857 Type* stdt = Struct_type::make_struct_type_descriptor_type();
3858
3859 const Struct_field_list* fields = stdt->struct_type()->fields();
3860
3861 Expression_list* vals = new Expression_list();
3862 vals->reserve(2);
3863
3864 const Methods* methods = this->methods();
3865 // A named struct should not have methods--the methods should attach
3866 // to the named type.
3867 gcc_assert(methods == NULL || name == NULL);
3868
3869 Struct_field_list::const_iterator ps = fields->begin();
3870 gcc_assert(ps->field_name() == "commonType");
3871 vals->push_back(this->type_descriptor_constructor(gogo,
3872 RUNTIME_TYPE_KIND_STRUCT,
3873 name, methods, true));
3874
3875 ++ps;
3876 gcc_assert(ps->field_name() == "fields");
3877
3878 Expression_list* elements = new Expression_list();
3879 elements->reserve(this->fields_->size());
3880 Type* element_type = ps->type()->array_type()->element_type();
3881 for (Struct_field_list::const_iterator pf = this->fields_->begin();
3882 pf != this->fields_->end();
3883 ++pf)
3884 {
3885 const Struct_field_list* f = element_type->struct_type()->fields();
3886
3887 Expression_list* fvals = new Expression_list();
3888 fvals->reserve(5);
3889
3890 Struct_field_list::const_iterator q = f->begin();
3891 gcc_assert(q->field_name() == "name");
3892 if (pf->is_anonymous())
3893 fvals->push_back(Expression::make_nil(bloc));
3894 else
3895 {
3896 std::string n = Gogo::unpack_hidden_name(pf->field_name());
3897 Expression* s = Expression::make_string(n, bloc);
3898 fvals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
3899 }
3900
3901 ++q;
3902 gcc_assert(q->field_name() == "pkgPath");
3903 if (!Gogo::is_hidden_name(pf->field_name()))
3904 fvals->push_back(Expression::make_nil(bloc));
3905 else
3906 {
3907 std::string n = Gogo::hidden_name_prefix(pf->field_name());
3908 Expression* s = Expression::make_string(n, bloc);
3909 fvals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
3910 }
3911
3912 ++q;
3913 gcc_assert(q->field_name() == "typ");
3914 fvals->push_back(Expression::make_type_descriptor(pf->type(), bloc));
3915
3916 ++q;
3917 gcc_assert(q->field_name() == "tag");
3918 if (!pf->has_tag())
3919 fvals->push_back(Expression::make_nil(bloc));
3920 else
3921 {
3922 Expression* s = Expression::make_string(pf->tag(), bloc);
3923 fvals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
3924 }
3925
3926 ++q;
3927 gcc_assert(q->field_name() == "offset");
3928 fvals->push_back(Expression::make_struct_field_offset(this, &*pf));
3929
3930 Expression* v = Expression::make_struct_composite_literal(element_type,
3931 fvals, bloc);
3932 elements->push_back(v);
3933 }
3934
3935 vals->push_back(Expression::make_slice_composite_literal(ps->type(),
3936 elements, bloc));
3937
3938 return Expression::make_struct_composite_literal(stdt, vals, bloc);
3939 }
3940
3941 // Reflection string.
3942
3943 void
3944 Struct_type::do_reflection(Gogo* gogo, std::string* ret) const
3945 {
3946 ret->append("struct { ");
3947
3948 for (Struct_field_list::const_iterator p = this->fields_->begin();
3949 p != this->fields_->end();
3950 ++p)
3951 {
3952 if (p != this->fields_->begin())
3953 ret->append("; ");
3954 if (p->is_anonymous())
3955 ret->push_back('?');
3956 else
3957 ret->append(Gogo::unpack_hidden_name(p->field_name()));
3958 ret->push_back(' ');
3959 this->append_reflection(p->type(), gogo, ret);
3960
3961 if (p->has_tag())
3962 {
3963 const std::string& tag(p->tag());
3964 ret->append(" \"");
3965 for (std::string::const_iterator p = tag.begin();
3966 p != tag.end();
3967 ++p)
3968 {
3969 if (*p == '\0')
3970 ret->append("\\x00");
3971 else if (*p == '\n')
3972 ret->append("\\n");
3973 else if (*p == '\t')
3974 ret->append("\\t");
3975 else if (*p == '"')
3976 ret->append("\\\"");
3977 else if (*p == '\\')
3978 ret->append("\\\\");
3979 else
3980 ret->push_back(*p);
3981 }
3982 ret->push_back('"');
3983 }
3984 }
3985
3986 ret->append(" }");
3987 }
3988
3989 // Mangled name.
3990
3991 void
3992 Struct_type::do_mangled_name(Gogo* gogo, std::string* ret) const
3993 {
3994 ret->push_back('S');
3995
3996 const Struct_field_list* fields = this->fields_;
3997 if (fields != NULL)
3998 {
3999 for (Struct_field_list::const_iterator p = fields->begin();
4000 p != fields->end();
4001 ++p)
4002 {
4003 if (p->is_anonymous())
4004 ret->append("0_");
4005 else
4006 {
4007 std::string n = Gogo::unpack_hidden_name(p->field_name());
4008 char buf[20];
4009 snprintf(buf, sizeof buf, "%u_",
4010 static_cast<unsigned int>(n.length()));
4011 ret->append(buf);
4012 ret->append(n);
4013 }
4014 this->append_mangled_name(p->type(), gogo, ret);
4015 if (p->has_tag())
4016 {
4017 const std::string& tag(p->tag());
4018 std::string out;
4019 for (std::string::const_iterator p = tag.begin();
4020 p != tag.end();
4021 ++p)
4022 {
4023 if (ISALNUM(*p) || *p == '_')
4024 out.push_back(*p);
4025 else
4026 {
4027 char buf[20];
4028 snprintf(buf, sizeof buf, ".%x.",
4029 static_cast<unsigned int>(*p));
4030 out.append(buf);
4031 }
4032 }
4033 char buf[20];
4034 snprintf(buf, sizeof buf, "T%u_",
4035 static_cast<unsigned int>(out.length()));
4036 ret->append(buf);
4037 ret->append(out);
4038 }
4039 }
4040 }
4041
4042 ret->push_back('e');
4043 }
4044
4045 // Export.
4046
4047 void
4048 Struct_type::do_export(Export* exp) const
4049 {
4050 exp->write_c_string("struct { ");
4051 const Struct_field_list* fields = this->fields_;
4052 gcc_assert(fields != NULL);
4053 for (Struct_field_list::const_iterator p = fields->begin();
4054 p != fields->end();
4055 ++p)
4056 {
4057 if (p->is_anonymous())
4058 exp->write_string("? ");
4059 else
4060 {
4061 exp->write_string(p->field_name());
4062 exp->write_c_string(" ");
4063 }
4064 exp->write_type(p->type());
4065
4066 if (p->has_tag())
4067 {
4068 exp->write_c_string(" ");
4069 Expression* expr = Expression::make_string(p->tag(),
4070 BUILTINS_LOCATION);
4071 expr->export_expression(exp);
4072 delete expr;
4073 }
4074
4075 exp->write_c_string("; ");
4076 }
4077 exp->write_c_string("}");
4078 }
4079
4080 // Import.
4081
4082 Struct_type*
4083 Struct_type::do_import(Import* imp)
4084 {
4085 imp->require_c_string("struct { ");
4086 Struct_field_list* fields = new Struct_field_list;
4087 if (imp->peek_char() != '}')
4088 {
4089 while (true)
4090 {
4091 std::string name;
4092 if (imp->match_c_string("? "))
4093 imp->advance(2);
4094 else
4095 {
4096 name = imp->read_identifier();
4097 imp->require_c_string(" ");
4098 }
4099 Type* ftype = imp->read_type();
4100
4101 Struct_field sf(Typed_identifier(name, ftype, imp->location()));
4102
4103 if (imp->peek_char() == ' ')
4104 {
4105 imp->advance(1);
4106 Expression* expr = Expression::import_expression(imp);
4107 String_expression* sexpr = expr->string_expression();
4108 gcc_assert(sexpr != NULL);
4109 sf.set_tag(sexpr->val());
4110 delete sexpr;
4111 }
4112
4113 imp->require_c_string("; ");
4114 fields->push_back(sf);
4115 if (imp->peek_char() == '}')
4116 break;
4117 }
4118 }
4119 imp->require_c_string("}");
4120
4121 return Type::make_struct_type(fields, imp->location());
4122 }
4123
4124 // Make a struct type.
4125
4126 Struct_type*
4127 Type::make_struct_type(Struct_field_list* fields,
4128 source_location location)
4129 {
4130 return new Struct_type(fields, location);
4131 }
4132
4133 // Class Array_type.
4134
4135 // Whether two array types are identical.
4136
4137 bool
4138 Array_type::is_identical(const Array_type* t, bool errors_are_identical) const
4139 {
4140 if (!Type::are_identical(this->element_type(), t->element_type(),
4141 errors_are_identical, NULL))
4142 return false;
4143
4144 Expression* l1 = this->length();
4145 Expression* l2 = t->length();
4146
4147 // Slices of the same element type are identical.
4148 if (l1 == NULL && l2 == NULL)
4149 return true;
4150
4151 // Arrays of the same element type are identical if they have the
4152 // same length.
4153 if (l1 != NULL && l2 != NULL)
4154 {
4155 if (l1 == l2)
4156 return true;
4157
4158 // Try to determine the lengths. If we can't, assume the arrays
4159 // are not identical.
4160 bool ret = false;
4161 mpz_t v1;
4162 mpz_init(v1);
4163 Type* type1;
4164 mpz_t v2;
4165 mpz_init(v2);
4166 Type* type2;
4167 if (l1->integer_constant_value(true, v1, &type1)
4168 && l2->integer_constant_value(true, v2, &type2))
4169 ret = mpz_cmp(v1, v2) == 0;
4170 mpz_clear(v1);
4171 mpz_clear(v2);
4172 return ret;
4173 }
4174
4175 // Otherwise the arrays are not identical.
4176 return false;
4177 }
4178
4179 // Traversal.
4180
4181 int
4182 Array_type::do_traverse(Traverse* traverse)
4183 {
4184 if (Type::traverse(this->element_type_, traverse) == TRAVERSE_EXIT)
4185 return TRAVERSE_EXIT;
4186 if (this->length_ != NULL
4187 && Expression::traverse(&this->length_, traverse) == TRAVERSE_EXIT)
4188 return TRAVERSE_EXIT;
4189 return TRAVERSE_CONTINUE;
4190 }
4191
4192 // Check that the length is valid.
4193
4194 bool
4195 Array_type::verify_length()
4196 {
4197 if (this->length_ == NULL)
4198 return true;
4199 if (!this->length_->is_constant())
4200 {
4201 error_at(this->length_->location(), "array bound is not constant");
4202 return false;
4203 }
4204
4205 mpz_t val;
4206
4207 Type* t = this->length_->type();
4208 if (t->integer_type() != NULL)
4209 {
4210 Type* vt;
4211 mpz_init(val);
4212 if (!this->length_->integer_constant_value(true, val, &vt))
4213 {
4214 error_at(this->length_->location(),
4215 "array bound is not constant");
4216 mpz_clear(val);
4217 return false;
4218 }
4219 }
4220 else if (t->float_type() != NULL)
4221 {
4222 Type* vt;
4223 mpfr_t fval;
4224 mpfr_init(fval);
4225 if (!this->length_->float_constant_value(fval, &vt))
4226 {
4227 error_at(this->length_->location(),
4228 "array bound is not constant");
4229 mpfr_clear(fval);
4230 return false;
4231 }
4232 if (!mpfr_integer_p(fval))
4233 {
4234 error_at(this->length_->location(),
4235 "array bound truncated to integer");
4236 mpfr_clear(fval);
4237 return false;
4238 }
4239 mpz_init(val);
4240 mpfr_get_z(val, fval, GMP_RNDN);
4241 mpfr_clear(fval);
4242 }
4243 else
4244 {
4245 if (!t->is_error_type())
4246 error_at(this->length_->location(), "array bound is not numeric");
4247 return false;
4248 }
4249
4250 if (mpz_sgn(val) < 0)
4251 {
4252 error_at(this->length_->location(), "negative array bound");
4253 mpz_clear(val);
4254 return false;
4255 }
4256
4257 Type* int_type = Type::lookup_integer_type("int");
4258 int tbits = int_type->integer_type()->bits();
4259 int vbits = mpz_sizeinbase(val, 2);
4260 if (vbits + 1 > tbits)
4261 {
4262 error_at(this->length_->location(), "array bound overflows");
4263 mpz_clear(val);
4264 return false;
4265 }
4266
4267 mpz_clear(val);
4268
4269 return true;
4270 }
4271
4272 // Verify the type.
4273
4274 bool
4275 Array_type::do_verify()
4276 {
4277 if (!this->verify_length())
4278 {
4279 this->length_ = Expression::make_error(this->length_->location());
4280 return false;
4281 }
4282 return true;
4283 }
4284
4285 // Array type hash code.
4286
4287 unsigned int
4288 Array_type::do_hash_for_method(Gogo* gogo) const
4289 {
4290 // There is no very convenient way to get a hash code for the
4291 // length.
4292 return this->element_type_->hash_for_method(gogo) + 1;
4293 }
4294
4295 // See if the expression passed to make is suitable. The first
4296 // argument is required, and gives the length. An optional second
4297 // argument is permitted for the capacity.
4298
4299 bool
4300 Array_type::do_check_make_expression(Expression_list* args,
4301 source_location location)
4302 {
4303 gcc_assert(this->length_ == NULL);
4304 if (args == NULL || args->empty())
4305 {
4306 error_at(location, "length required when allocating a slice");
4307 return false;
4308 }
4309 else if (args->size() > 2)
4310 {
4311 error_at(location, "too many expressions passed to make");
4312 return false;
4313 }
4314 else
4315 {
4316 if (!Type::check_int_value(args->front(),
4317 _("bad length when making slice"), location))
4318 return false;
4319
4320 if (args->size() > 1)
4321 {
4322 if (!Type::check_int_value(args->back(),
4323 _("bad capacity when making slice"),
4324 location))
4325 return false;
4326 }
4327
4328 return true;
4329 }
4330 }
4331
4332 // Get a tree for the length of a fixed array. The length may be
4333 // computed using a function call, so we must only evaluate it once.
4334
4335 tree
4336 Array_type::get_length_tree(Gogo* gogo)
4337 {
4338 gcc_assert(this->length_ != NULL);
4339 if (this->length_tree_ == NULL_TREE)
4340 {
4341 mpz_t val;
4342 mpz_init(val);
4343 Type* t;
4344 if (this->length_->integer_constant_value(true, val, &t))
4345 {
4346 if (t == NULL)
4347 t = Type::lookup_integer_type("int");
4348 else if (t->is_abstract())
4349 t = t->make_non_abstract_type();
4350 tree tt = t->get_tree(gogo);
4351 this->length_tree_ = Expression::integer_constant_tree(val, tt);
4352 mpz_clear(val);
4353 }
4354 else
4355 {
4356 mpz_clear(val);
4357
4358 // Make up a translation context for the array length
4359 // expression. FIXME: This won't work in general.
4360 Translate_context context(gogo, NULL, NULL, NULL_TREE);
4361 tree len = this->length_->get_tree(&context);
4362 len = convert_to_integer(integer_type_node, len);
4363 this->length_tree_ = save_expr(len);
4364 }
4365 }
4366 return this->length_tree_;
4367 }
4368
4369 // Get a tree for the type of this array. A fixed array is simply
4370 // represented as ARRAY_TYPE with the appropriate index--i.e., it is
4371 // just like an array in C. An open array is a struct with three
4372 // fields: a data pointer, the length, and the capacity.
4373
4374 tree
4375 Array_type::do_get_tree(Gogo* gogo)
4376 {
4377 if (this->length_ == NULL)
4378 {
4379 tree struct_type = gogo->slice_type_tree(void_type_node);
4380 return this->fill_in_tree(gogo, struct_type);
4381 }
4382 else
4383 {
4384 tree element_type_tree = this->element_type_->get_tree(gogo);
4385 tree length_tree = this->get_length_tree(gogo);
4386 if (element_type_tree == error_mark_node
4387 || length_tree == error_mark_node)
4388 return error_mark_node;
4389
4390 length_tree = fold_convert(sizetype, length_tree);
4391
4392 // build_index_type takes the maximum index, which is one less
4393 // than the length.
4394 tree index_type = build_index_type(fold_build2(MINUS_EXPR, sizetype,
4395 length_tree,
4396 size_one_node));
4397
4398 return build_array_type(element_type_tree, index_type);
4399 }
4400 }
4401
4402 // Fill in the fields for a slice type. This is used for named slice
4403 // types.
4404
4405 tree
4406 Array_type::fill_in_tree(Gogo* gogo, tree struct_type)
4407 {
4408 gcc_assert(this->length_ == NULL);
4409
4410 tree element_type_tree = this->element_type_->get_tree(gogo);
4411 tree field = TYPE_FIELDS(struct_type);
4412 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
4413 gcc_assert(POINTER_TYPE_P(TREE_TYPE(field))
4414 && TREE_TYPE(TREE_TYPE(field)) == void_type_node);
4415 TREE_TYPE(field) = build_pointer_type(element_type_tree);
4416
4417 return struct_type;
4418 }
4419
4420 // Return an initializer for an array type.
4421
4422 tree
4423 Array_type::do_get_init_tree(Gogo* gogo, tree type_tree, bool is_clear)
4424 {
4425 if (this->length_ == NULL)
4426 {
4427 // Open array.
4428
4429 if (is_clear)
4430 return NULL;
4431
4432 gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
4433
4434 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
4435
4436 for (tree field = TYPE_FIELDS(type_tree);
4437 field != NULL_TREE;
4438 field = DECL_CHAIN(field))
4439 {
4440 constructor_elt* elt = VEC_quick_push(constructor_elt, init,
4441 NULL);
4442 elt->index = field;
4443 elt->value = fold_convert(TREE_TYPE(field), size_zero_node);
4444 }
4445
4446 tree ret = build_constructor(type_tree, init);
4447 TREE_CONSTANT(ret) = 1;
4448 return ret;
4449 }
4450 else
4451 {
4452 // Fixed array.
4453
4454 tree value = this->element_type_->get_init_tree(gogo, is_clear);
4455 if (value == NULL)
4456 return NULL;
4457 if (value == error_mark_node)
4458 return error_mark_node;
4459
4460 tree length_tree = this->get_length_tree(gogo);
4461 if (length_tree == error_mark_node)
4462 return error_mark_node;
4463
4464 length_tree = fold_convert(sizetype, length_tree);
4465 tree range = build2(RANGE_EXPR, sizetype, size_zero_node,
4466 fold_build2(MINUS_EXPR, sizetype,
4467 length_tree, size_one_node));
4468 tree ret = build_constructor_single(type_tree, range, value);
4469 if (TREE_CONSTANT(value))
4470 TREE_CONSTANT(ret) = 1;
4471 return ret;
4472 }
4473 }
4474
4475 // Handle the builtin make function for a slice.
4476
4477 tree
4478 Array_type::do_make_expression_tree(Translate_context* context,
4479 Expression_list* args,
4480 source_location location)
4481 {
4482 gcc_assert(this->length_ == NULL);
4483
4484 Gogo* gogo = context->gogo();
4485 tree type_tree = this->get_tree(gogo);
4486 if (type_tree == error_mark_node)
4487 return error_mark_node;
4488
4489 tree values_field = TYPE_FIELDS(type_tree);
4490 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(values_field)),
4491 "__values") == 0);
4492
4493 tree count_field = DECL_CHAIN(values_field);
4494 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(count_field)),
4495 "__count") == 0);
4496
4497 tree element_type_tree = this->element_type_->get_tree(gogo);
4498 if (element_type_tree == error_mark_node)
4499 return error_mark_node;
4500 tree element_size_tree = TYPE_SIZE_UNIT(element_type_tree);
4501
4502 tree value = this->element_type_->get_init_tree(gogo, true);
4503
4504 // The first argument is the number of elements, the optional second
4505 // argument is the capacity.
4506 gcc_assert(args != NULL && args->size() >= 1 && args->size() <= 2);
4507
4508 tree length_tree = args->front()->get_tree(context);
4509 if (length_tree == error_mark_node)
4510 return error_mark_node;
4511 if (!DECL_P(length_tree))
4512 length_tree = save_expr(length_tree);
4513 if (!INTEGRAL_TYPE_P(TREE_TYPE(length_tree)))
4514 length_tree = convert_to_integer(TREE_TYPE(count_field), length_tree);
4515
4516 tree bad_index = Expression::check_bounds(length_tree,
4517 TREE_TYPE(count_field),
4518 NULL_TREE, location);
4519
4520 length_tree = fold_convert_loc(location, TREE_TYPE(count_field), length_tree);
4521 tree capacity_tree;
4522 if (args->size() == 1)
4523 capacity_tree = length_tree;
4524 else
4525 {
4526 capacity_tree = args->back()->get_tree(context);
4527 if (capacity_tree == error_mark_node)
4528 return error_mark_node;
4529 if (!DECL_P(capacity_tree))
4530 capacity_tree = save_expr(capacity_tree);
4531 if (!INTEGRAL_TYPE_P(TREE_TYPE(capacity_tree)))
4532 capacity_tree = convert_to_integer(TREE_TYPE(count_field),
4533 capacity_tree);
4534
4535 bad_index = Expression::check_bounds(capacity_tree,
4536 TREE_TYPE(count_field),
4537 bad_index, location);
4538
4539 tree chktype = (((TYPE_SIZE(TREE_TYPE(capacity_tree))
4540 > TYPE_SIZE(TREE_TYPE(length_tree)))
4541 || ((TYPE_SIZE(TREE_TYPE(capacity_tree))
4542 == TYPE_SIZE(TREE_TYPE(length_tree)))
4543 && TYPE_UNSIGNED(TREE_TYPE(capacity_tree))))
4544 ? TREE_TYPE(capacity_tree)
4545 : TREE_TYPE(length_tree));
4546 tree chk = fold_build2_loc(location, LT_EXPR, boolean_type_node,
4547 fold_convert_loc(location, chktype,
4548 capacity_tree),
4549 fold_convert_loc(location, chktype,
4550 length_tree));
4551 if (bad_index == NULL_TREE)
4552 bad_index = chk;
4553 else
4554 bad_index = fold_build2_loc(location, TRUTH_OR_EXPR, boolean_type_node,
4555 bad_index, chk);
4556
4557 capacity_tree = fold_convert_loc(location, TREE_TYPE(count_field),
4558 capacity_tree);
4559 }
4560
4561 tree size_tree = fold_build2_loc(location, MULT_EXPR, sizetype,
4562 element_size_tree,
4563 fold_convert_loc(location, sizetype,
4564 capacity_tree));
4565
4566 tree chk = fold_build2_loc(location, TRUTH_AND_EXPR, boolean_type_node,
4567 fold_build2_loc(location, GT_EXPR,
4568 boolean_type_node,
4569 fold_convert_loc(location,
4570 sizetype,
4571 capacity_tree),
4572 size_zero_node),
4573 fold_build2_loc(location, LT_EXPR,
4574 boolean_type_node,
4575 size_tree, element_size_tree));
4576 if (bad_index == NULL_TREE)
4577 bad_index = chk;
4578 else
4579 bad_index = fold_build2_loc(location, TRUTH_OR_EXPR, boolean_type_node,
4580 bad_index, chk);
4581
4582 tree space = context->gogo()->allocate_memory(this->element_type_,
4583 size_tree, location);
4584
4585 if (value != NULL_TREE)
4586 space = save_expr(space);
4587
4588 space = fold_convert(TREE_TYPE(values_field), space);
4589
4590 if (bad_index != NULL_TREE && bad_index != boolean_false_node)
4591 {
4592 tree crash = Gogo::runtime_error(RUNTIME_ERROR_MAKE_SLICE_OUT_OF_BOUNDS,
4593 location);
4594 space = build2(COMPOUND_EXPR, TREE_TYPE(space),
4595 build3(COND_EXPR, void_type_node,
4596 bad_index, crash, NULL_TREE),
4597 space);
4598 }
4599
4600 tree constructor = gogo->slice_constructor(type_tree, space, length_tree,
4601 capacity_tree);
4602
4603 if (value == NULL_TREE)
4604 {
4605 // The array contents are zero initialized.
4606 return constructor;
4607 }
4608
4609 // The elements must be initialized.
4610
4611 tree max = fold_build2_loc(location, MINUS_EXPR, TREE_TYPE(count_field),
4612 capacity_tree,
4613 fold_convert_loc(location, TREE_TYPE(count_field),
4614 integer_one_node));
4615
4616 tree array_type = build_array_type(element_type_tree,
4617 build_index_type(max));
4618
4619 tree value_pointer = fold_convert_loc(location,
4620 build_pointer_type(array_type),
4621 space);
4622
4623 tree range = build2(RANGE_EXPR, sizetype, size_zero_node, max);
4624 tree space_init = build_constructor_single(array_type, range, value);
4625
4626 return build2(COMPOUND_EXPR, TREE_TYPE(space),
4627 build2(MODIFY_EXPR, void_type_node,
4628 build_fold_indirect_ref(value_pointer),
4629 space_init),
4630 constructor);
4631 }
4632
4633 // Return a tree for a pointer to the values in ARRAY.
4634
4635 tree
4636 Array_type::value_pointer_tree(Gogo*, tree array) const
4637 {
4638 tree ret;
4639 if (this->length() != NULL)
4640 {
4641 // Fixed array.
4642 ret = fold_convert(build_pointer_type(TREE_TYPE(TREE_TYPE(array))),
4643 build_fold_addr_expr(array));
4644 }
4645 else
4646 {
4647 // Open array.
4648 tree field = TYPE_FIELDS(TREE_TYPE(array));
4649 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
4650 "__values") == 0);
4651 ret = fold_build3(COMPONENT_REF, TREE_TYPE(field), array, field,
4652 NULL_TREE);
4653 }
4654 if (TREE_CONSTANT(array))
4655 TREE_CONSTANT(ret) = 1;
4656 return ret;
4657 }
4658
4659 // Return a tree for the length of the array ARRAY which has this
4660 // type.
4661
4662 tree
4663 Array_type::length_tree(Gogo* gogo, tree array)
4664 {
4665 if (this->length_ != NULL)
4666 {
4667 if (TREE_CODE(array) == SAVE_EXPR)
4668 return fold_convert(integer_type_node, this->get_length_tree(gogo));
4669 else
4670 return omit_one_operand(integer_type_node,
4671 this->get_length_tree(gogo), array);
4672 }
4673
4674 // This is an open array. We need to read the length field.
4675
4676 tree type = TREE_TYPE(array);
4677 gcc_assert(TREE_CODE(type) == RECORD_TYPE);
4678
4679 tree field = DECL_CHAIN(TYPE_FIELDS(type));
4680 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
4681
4682 tree ret = build3(COMPONENT_REF, TREE_TYPE(field), array, field, NULL_TREE);
4683 if (TREE_CONSTANT(array))
4684 TREE_CONSTANT(ret) = 1;
4685 return ret;
4686 }
4687
4688 // Return a tree for the capacity of the array ARRAY which has this
4689 // type.
4690
4691 tree
4692 Array_type::capacity_tree(Gogo* gogo, tree array)
4693 {
4694 if (this->length_ != NULL)
4695 return omit_one_operand(sizetype, this->get_length_tree(gogo), array);
4696
4697 // This is an open array. We need to read the capacity field.
4698
4699 tree type = TREE_TYPE(array);
4700 gcc_assert(TREE_CODE(type) == RECORD_TYPE);
4701
4702 tree field = DECL_CHAIN(DECL_CHAIN(TYPE_FIELDS(type)));
4703 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__capacity") == 0);
4704
4705 return build3(COMPONENT_REF, TREE_TYPE(field), array, field, NULL_TREE);
4706 }
4707
4708 // Export.
4709
4710 void
4711 Array_type::do_export(Export* exp) const
4712 {
4713 exp->write_c_string("[");
4714 if (this->length_ != NULL)
4715 this->length_->export_expression(exp);
4716 exp->write_c_string("] ");
4717 exp->write_type(this->element_type_);
4718 }
4719
4720 // Import.
4721
4722 Array_type*
4723 Array_type::do_import(Import* imp)
4724 {
4725 imp->require_c_string("[");
4726 Expression* length;
4727 if (imp->peek_char() == ']')
4728 length = NULL;
4729 else
4730 length = Expression::import_expression(imp);
4731 imp->require_c_string("] ");
4732 Type* element_type = imp->read_type();
4733 return Type::make_array_type(element_type, length);
4734 }
4735
4736 // The type of an array type descriptor.
4737
4738 Type*
4739 Array_type::make_array_type_descriptor_type()
4740 {
4741 static Type* ret;
4742 if (ret == NULL)
4743 {
4744 Type* tdt = Type::make_type_descriptor_type();
4745 Type* ptdt = Type::make_type_descriptor_ptr_type();
4746
4747 Type* uintptr_type = Type::lookup_integer_type("uintptr");
4748
4749 Struct_type* sf =
4750 Type::make_builtin_struct_type(3,
4751 "", tdt,
4752 "elem", ptdt,
4753 "len", uintptr_type);
4754
4755 ret = Type::make_builtin_named_type("ArrayType", sf);
4756 }
4757
4758 return ret;
4759 }
4760
4761 // The type of an slice type descriptor.
4762
4763 Type*
4764 Array_type::make_slice_type_descriptor_type()
4765 {
4766 static Type* ret;
4767 if (ret == NULL)
4768 {
4769 Type* tdt = Type::make_type_descriptor_type();
4770 Type* ptdt = Type::make_type_descriptor_ptr_type();
4771
4772 Struct_type* sf =
4773 Type::make_builtin_struct_type(2,
4774 "", tdt,
4775 "elem", ptdt);
4776
4777 ret = Type::make_builtin_named_type("SliceType", sf);
4778 }
4779
4780 return ret;
4781 }
4782
4783 // Build a type descriptor for an array/slice type.
4784
4785 Expression*
4786 Array_type::do_type_descriptor(Gogo* gogo, Named_type* name)
4787 {
4788 if (this->length_ != NULL)
4789 return this->array_type_descriptor(gogo, name);
4790 else
4791 return this->slice_type_descriptor(gogo, name);
4792 }
4793
4794 // Build a type descriptor for an array type.
4795
4796 Expression*
4797 Array_type::array_type_descriptor(Gogo* gogo, Named_type* name)
4798 {
4799 source_location bloc = BUILTINS_LOCATION;
4800
4801 Type* atdt = Array_type::make_array_type_descriptor_type();
4802
4803 const Struct_field_list* fields = atdt->struct_type()->fields();
4804
4805 Expression_list* vals = new Expression_list();
4806 vals->reserve(3);
4807
4808 Struct_field_list::const_iterator p = fields->begin();
4809 gcc_assert(p->field_name() == "commonType");
4810 vals->push_back(this->type_descriptor_constructor(gogo,
4811 RUNTIME_TYPE_KIND_ARRAY,
4812 name, NULL, true));
4813
4814 ++p;
4815 gcc_assert(p->field_name() == "elem");
4816 vals->push_back(Expression::make_type_descriptor(this->element_type_, bloc));
4817
4818 ++p;
4819 gcc_assert(p->field_name() == "len");
4820 vals->push_back(this->length_);
4821
4822 ++p;
4823 gcc_assert(p == fields->end());
4824
4825 return Expression::make_struct_composite_literal(atdt, vals, bloc);
4826 }
4827
4828 // Build a type descriptor for a slice type.
4829
4830 Expression*
4831 Array_type::slice_type_descriptor(Gogo* gogo, Named_type* name)
4832 {
4833 source_location bloc = BUILTINS_LOCATION;
4834
4835 Type* stdt = Array_type::make_slice_type_descriptor_type();
4836
4837 const Struct_field_list* fields = stdt->struct_type()->fields();
4838
4839 Expression_list* vals = new Expression_list();
4840 vals->reserve(2);
4841
4842 Struct_field_list::const_iterator p = fields->begin();
4843 gcc_assert(p->field_name() == "commonType");
4844 vals->push_back(this->type_descriptor_constructor(gogo,
4845 RUNTIME_TYPE_KIND_SLICE,
4846 name, NULL, true));
4847
4848 ++p;
4849 gcc_assert(p->field_name() == "elem");
4850 vals->push_back(Expression::make_type_descriptor(this->element_type_, bloc));
4851
4852 ++p;
4853 gcc_assert(p == fields->end());
4854
4855 return Expression::make_struct_composite_literal(stdt, vals, bloc);
4856 }
4857
4858 // Reflection string.
4859
4860 void
4861 Array_type::do_reflection(Gogo* gogo, std::string* ret) const
4862 {
4863 ret->push_back('[');
4864 if (this->length_ != NULL)
4865 {
4866 mpz_t val;
4867 mpz_init(val);
4868 Type* type;
4869 if (!this->length_->integer_constant_value(true, val, &type))
4870 error_at(this->length_->location(),
4871 "array length must be integer constant expression");
4872 else if (mpz_cmp_si(val, 0) < 0)
4873 error_at(this->length_->location(), "array length is negative");
4874 else if (mpz_cmp_ui(val, mpz_get_ui(val)) != 0)
4875 error_at(this->length_->location(), "array length is too large");
4876 else
4877 {
4878 char buf[50];
4879 snprintf(buf, sizeof buf, "%lu", mpz_get_ui(val));
4880 ret->append(buf);
4881 }
4882 mpz_clear(val);
4883 }
4884 ret->push_back(']');
4885
4886 this->append_reflection(this->element_type_, gogo, ret);
4887 }
4888
4889 // Mangled name.
4890
4891 void
4892 Array_type::do_mangled_name(Gogo* gogo, std::string* ret) const
4893 {
4894 ret->push_back('A');
4895 this->append_mangled_name(this->element_type_, gogo, ret);
4896 if (this->length_ != NULL)
4897 {
4898 mpz_t val;
4899 mpz_init(val);
4900 Type* type;
4901 if (!this->length_->integer_constant_value(true, val, &type))
4902 error_at(this->length_->location(),
4903 "array length must be integer constant expression");
4904 else if (mpz_cmp_si(val, 0) < 0)
4905 error_at(this->length_->location(), "array length is negative");
4906 else if (mpz_cmp_ui(val, mpz_get_ui(val)) != 0)
4907 error_at(this->length_->location(), "array size is too large");
4908 else
4909 {
4910 char buf[50];
4911 snprintf(buf, sizeof buf, "%lu", mpz_get_ui(val));
4912 ret->append(buf);
4913 }
4914 mpz_clear(val);
4915 }
4916 ret->push_back('e');
4917 }
4918
4919 // Make an array type.
4920
4921 Array_type*
4922 Type::make_array_type(Type* element_type, Expression* length)
4923 {
4924 return new Array_type(element_type, length);
4925 }
4926
4927 // Class Map_type.
4928
4929 // Traversal.
4930
4931 int
4932 Map_type::do_traverse(Traverse* traverse)
4933 {
4934 if (Type::traverse(this->key_type_, traverse) == TRAVERSE_EXIT
4935 || Type::traverse(this->val_type_, traverse) == TRAVERSE_EXIT)
4936 return TRAVERSE_EXIT;
4937 return TRAVERSE_CONTINUE;
4938 }
4939
4940 // Check that the map type is OK.
4941
4942 bool
4943 Map_type::do_verify()
4944 {
4945 if (this->key_type_->struct_type() != NULL
4946 || this->key_type_->array_type() != NULL)
4947 {
4948 error_at(this->location_, "invalid map key type");
4949 return false;
4950 }
4951 return true;
4952 }
4953
4954 // Whether two map types are identical.
4955
4956 bool
4957 Map_type::is_identical(const Map_type* t, bool errors_are_identical) const
4958 {
4959 return (Type::are_identical(this->key_type(), t->key_type(),
4960 errors_are_identical, NULL)
4961 && Type::are_identical(this->val_type(), t->val_type(),
4962 errors_are_identical, NULL));
4963 }
4964
4965 // Hash code.
4966
4967 unsigned int
4968 Map_type::do_hash_for_method(Gogo* gogo) const
4969 {
4970 return (this->key_type_->hash_for_method(gogo)
4971 + this->val_type_->hash_for_method(gogo)
4972 + 2);
4973 }
4974
4975 // Check that a call to the builtin make function is valid. For a map
4976 // the optional argument is the number of spaces to preallocate for
4977 // values.
4978
4979 bool
4980 Map_type::do_check_make_expression(Expression_list* args,
4981 source_location location)
4982 {
4983 if (args != NULL && !args->empty())
4984 {
4985 if (!Type::check_int_value(args->front(), _("bad size when making map"),
4986 location))
4987 return false;
4988 else if (args->size() > 1)
4989 {
4990 error_at(location, "too many arguments when making map");
4991 return false;
4992 }
4993 }
4994 return true;
4995 }
4996
4997 // Get a tree for a map type. A map type is represented as a pointer
4998 // to a struct. The struct is __go_map in libgo/map.h.
4999
5000 tree
5001 Map_type::do_get_tree(Gogo* gogo)
5002 {
5003 static tree type_tree;
5004 if (type_tree == NULL_TREE)
5005 {
5006 tree struct_type = make_node(RECORD_TYPE);
5007
5008 tree map_descriptor_type = gogo->map_descriptor_type();
5009 tree const_map_descriptor_type =
5010 build_qualified_type(map_descriptor_type, TYPE_QUAL_CONST);
5011 tree name = get_identifier("__descriptor");
5012 tree field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name,
5013 build_pointer_type(const_map_descriptor_type));
5014 DECL_CONTEXT(field) = struct_type;
5015 TYPE_FIELDS(struct_type) = field;
5016 tree last_field = field;
5017
5018 name = get_identifier("__element_count");
5019 field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name, sizetype);
5020 DECL_CONTEXT(field) = struct_type;
5021 DECL_CHAIN(last_field) = field;
5022 last_field = field;
5023
5024 name = get_identifier("__bucket_count");
5025 field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name, sizetype);
5026 DECL_CONTEXT(field) = struct_type;
5027 DECL_CHAIN(last_field) = field;
5028 last_field = field;
5029
5030 name = get_identifier("__buckets");
5031 field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name,
5032 build_pointer_type(ptr_type_node));
5033 DECL_CONTEXT(field) = struct_type;
5034 DECL_CHAIN(last_field) = field;
5035
5036 layout_type(struct_type);
5037
5038 // Give the struct a name for better debugging info.
5039 name = get_identifier("__go_map");
5040 tree type_decl = build_decl(BUILTINS_LOCATION, TYPE_DECL, name,
5041 struct_type);
5042 DECL_ARTIFICIAL(type_decl) = 1;
5043 TYPE_NAME(struct_type) = type_decl;
5044 go_preserve_from_gc(type_decl);
5045 rest_of_decl_compilation(type_decl, 1, 0);
5046
5047 type_tree = build_pointer_type(struct_type);
5048 go_preserve_from_gc(type_tree);
5049 }
5050
5051 return type_tree;
5052 }
5053
5054 // Initialize a map.
5055
5056 tree
5057 Map_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
5058 {
5059 if (is_clear)
5060 return NULL;
5061 return fold_convert(type_tree, null_pointer_node);
5062 }
5063
5064 // Return an expression for a newly allocated map.
5065
5066 tree
5067 Map_type::do_make_expression_tree(Translate_context* context,
5068 Expression_list* args,
5069 source_location location)
5070 {
5071 tree bad_index = NULL_TREE;
5072
5073 tree expr_tree;
5074 if (args == NULL || args->empty())
5075 expr_tree = size_zero_node;
5076 else
5077 {
5078 expr_tree = args->front()->get_tree(context);
5079 if (expr_tree == error_mark_node)
5080 return error_mark_node;
5081 if (!DECL_P(expr_tree))
5082 expr_tree = save_expr(expr_tree);
5083 if (!INTEGRAL_TYPE_P(TREE_TYPE(expr_tree)))
5084 expr_tree = convert_to_integer(sizetype, expr_tree);
5085 bad_index = Expression::check_bounds(expr_tree, sizetype, bad_index,
5086 location);
5087 }
5088
5089 tree map_type = this->get_tree(context->gogo());
5090
5091 static tree new_map_fndecl;
5092 tree ret = Gogo::call_builtin(&new_map_fndecl,
5093 location,
5094 "__go_new_map",
5095 2,
5096 map_type,
5097 TREE_TYPE(TYPE_FIELDS(TREE_TYPE(map_type))),
5098 context->gogo()->map_descriptor(this),
5099 sizetype,
5100 expr_tree);
5101 if (ret == error_mark_node)
5102 return error_mark_node;
5103 // This can panic if the capacity is out of range.
5104 TREE_NOTHROW(new_map_fndecl) = 0;
5105
5106 if (bad_index == NULL_TREE)
5107 return ret;
5108 else
5109 {
5110 tree crash = Gogo::runtime_error(RUNTIME_ERROR_MAKE_MAP_OUT_OF_BOUNDS,
5111 location);
5112 return build2(COMPOUND_EXPR, TREE_TYPE(ret),
5113 build3(COND_EXPR, void_type_node,
5114 bad_index, crash, NULL_TREE),
5115 ret);
5116 }
5117 }
5118
5119 // The type of a map type descriptor.
5120
5121 Type*
5122 Map_type::make_map_type_descriptor_type()
5123 {
5124 static Type* ret;
5125 if (ret == NULL)
5126 {
5127 Type* tdt = Type::make_type_descriptor_type();
5128 Type* ptdt = Type::make_type_descriptor_ptr_type();
5129
5130 Struct_type* sf =
5131 Type::make_builtin_struct_type(3,
5132 "", tdt,
5133 "key", ptdt,
5134 "elem", ptdt);
5135
5136 ret = Type::make_builtin_named_type("MapType", sf);
5137 }
5138
5139 return ret;
5140 }
5141
5142 // Build a type descriptor for a map type.
5143
5144 Expression*
5145 Map_type::do_type_descriptor(Gogo* gogo, Named_type* name)
5146 {
5147 source_location bloc = BUILTINS_LOCATION;
5148
5149 Type* mtdt = Map_type::make_map_type_descriptor_type();
5150
5151 const Struct_field_list* fields = mtdt->struct_type()->fields();
5152
5153 Expression_list* vals = new Expression_list();
5154 vals->reserve(3);
5155
5156 Struct_field_list::const_iterator p = fields->begin();
5157 gcc_assert(p->field_name() == "commonType");
5158 vals->push_back(this->type_descriptor_constructor(gogo,
5159 RUNTIME_TYPE_KIND_MAP,
5160 name, NULL, true));
5161
5162 ++p;
5163 gcc_assert(p->field_name() == "key");
5164 vals->push_back(Expression::make_type_descriptor(this->key_type_, bloc));
5165
5166 ++p;
5167 gcc_assert(p->field_name() == "elem");
5168 vals->push_back(Expression::make_type_descriptor(this->val_type_, bloc));
5169
5170 ++p;
5171 gcc_assert(p == fields->end());
5172
5173 return Expression::make_struct_composite_literal(mtdt, vals, bloc);
5174 }
5175
5176 // Reflection string for a map.
5177
5178 void
5179 Map_type::do_reflection(Gogo* gogo, std::string* ret) const
5180 {
5181 ret->append("map[");
5182 this->append_reflection(this->key_type_, gogo, ret);
5183 ret->append("] ");
5184 this->append_reflection(this->val_type_, gogo, ret);
5185 }
5186
5187 // Mangled name for a map.
5188
5189 void
5190 Map_type::do_mangled_name(Gogo* gogo, std::string* ret) const
5191 {
5192 ret->push_back('M');
5193 this->append_mangled_name(this->key_type_, gogo, ret);
5194 ret->append("__");
5195 this->append_mangled_name(this->val_type_, gogo, ret);
5196 }
5197
5198 // Export a map type.
5199
5200 void
5201 Map_type::do_export(Export* exp) const
5202 {
5203 exp->write_c_string("map [");
5204 exp->write_type(this->key_type_);
5205 exp->write_c_string("] ");
5206 exp->write_type(this->val_type_);
5207 }
5208
5209 // Import a map type.
5210
5211 Map_type*
5212 Map_type::do_import(Import* imp)
5213 {
5214 imp->require_c_string("map [");
5215 Type* key_type = imp->read_type();
5216 imp->require_c_string("] ");
5217 Type* val_type = imp->read_type();
5218 return Type::make_map_type(key_type, val_type, imp->location());
5219 }
5220
5221 // Make a map type.
5222
5223 Map_type*
5224 Type::make_map_type(Type* key_type, Type* val_type, source_location location)
5225 {
5226 return new Map_type(key_type, val_type, location);
5227 }
5228
5229 // Class Channel_type.
5230
5231 // Hash code.
5232
5233 unsigned int
5234 Channel_type::do_hash_for_method(Gogo* gogo) const
5235 {
5236 unsigned int ret = 0;
5237 if (this->may_send_)
5238 ret += 1;
5239 if (this->may_receive_)
5240 ret += 2;
5241 if (this->element_type_ != NULL)
5242 ret += this->element_type_->hash_for_method(gogo) << 2;
5243 return ret << 3;
5244 }
5245
5246 // Whether this type is the same as T.
5247
5248 bool
5249 Channel_type::is_identical(const Channel_type* t,
5250 bool errors_are_identical) const
5251 {
5252 if (!Type::are_identical(this->element_type(), t->element_type(),
5253 errors_are_identical, NULL))
5254 return false;
5255 return (this->may_send_ == t->may_send_
5256 && this->may_receive_ == t->may_receive_);
5257 }
5258
5259 // Check whether the parameters for a call to the builtin function
5260 // make are OK for a channel. A channel can take an optional single
5261 // parameter which is the buffer size.
5262
5263 bool
5264 Channel_type::do_check_make_expression(Expression_list* args,
5265 source_location location)
5266 {
5267 if (args != NULL && !args->empty())
5268 {
5269 if (!Type::check_int_value(args->front(),
5270 _("bad buffer size when making channel"),
5271 location))
5272 return false;
5273 else if (args->size() > 1)
5274 {
5275 error_at(location, "too many arguments when making channel");
5276 return false;
5277 }
5278 }
5279 return true;
5280 }
5281
5282 // Return the tree for a channel type. A channel is a pointer to a
5283 // __go_channel struct. The __go_channel struct is defined in
5284 // libgo/runtime/channel.h.
5285
5286 tree
5287 Channel_type::do_get_tree(Gogo*)
5288 {
5289 static tree type_tree;
5290 if (type_tree == NULL_TREE)
5291 {
5292 tree ret = make_node(RECORD_TYPE);
5293 TYPE_NAME(ret) = get_identifier("__go_channel");
5294 TYPE_STUB_DECL(ret) = build_decl(BUILTINS_LOCATION, TYPE_DECL, NULL_TREE,
5295 ret);
5296 type_tree = build_pointer_type(ret);
5297 go_preserve_from_gc(type_tree);
5298 }
5299 return type_tree;
5300 }
5301
5302 // Initialize a channel variable.
5303
5304 tree
5305 Channel_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
5306 {
5307 if (is_clear)
5308 return NULL;
5309 return fold_convert(type_tree, null_pointer_node);
5310 }
5311
5312 // Handle the builtin function make for a channel.
5313
5314 tree
5315 Channel_type::do_make_expression_tree(Translate_context* context,
5316 Expression_list* args,
5317 source_location location)
5318 {
5319 Gogo* gogo = context->gogo();
5320 tree channel_type = this->get_tree(gogo);
5321
5322 tree element_tree = this->element_type_->get_tree(gogo);
5323 tree element_size_tree = size_in_bytes(element_tree);
5324
5325 tree bad_index = NULL_TREE;
5326
5327 tree expr_tree;
5328 if (args == NULL || args->empty())
5329 expr_tree = size_zero_node;
5330 else
5331 {
5332 expr_tree = args->front()->get_tree(context);
5333 if (expr_tree == error_mark_node)
5334 return error_mark_node;
5335 if (!DECL_P(expr_tree))
5336 expr_tree = save_expr(expr_tree);
5337 if (!INTEGRAL_TYPE_P(TREE_TYPE(expr_tree)))
5338 expr_tree = convert_to_integer(sizetype, expr_tree);
5339 bad_index = Expression::check_bounds(expr_tree, sizetype, bad_index,
5340 location);
5341 }
5342
5343 static tree new_channel_fndecl;
5344 tree ret = Gogo::call_builtin(&new_channel_fndecl,
5345 location,
5346 "__go_new_channel",
5347 2,
5348 channel_type,
5349 sizetype,
5350 element_size_tree,
5351 sizetype,
5352 expr_tree);
5353 if (ret == error_mark_node)
5354 return error_mark_node;
5355 // This can panic if the capacity is out of range.
5356 TREE_NOTHROW(new_channel_fndecl) = 0;
5357
5358 if (bad_index == NULL_TREE)
5359 return ret;
5360 else
5361 {
5362 tree crash = Gogo::runtime_error(RUNTIME_ERROR_MAKE_CHAN_OUT_OF_BOUNDS,
5363 location);
5364 return build2(COMPOUND_EXPR, TREE_TYPE(ret),
5365 build3(COND_EXPR, void_type_node,
5366 bad_index, crash, NULL_TREE),
5367 ret);
5368 }
5369 }
5370
5371 // Build a type descriptor for a channel type.
5372
5373 Type*
5374 Channel_type::make_chan_type_descriptor_type()
5375 {
5376 static Type* ret;
5377 if (ret == NULL)
5378 {
5379 Type* tdt = Type::make_type_descriptor_type();
5380 Type* ptdt = Type::make_type_descriptor_ptr_type();
5381
5382 Type* uintptr_type = Type::lookup_integer_type("uintptr");
5383
5384 Struct_type* sf =
5385 Type::make_builtin_struct_type(3,
5386 "", tdt,
5387 "elem", ptdt,
5388 "dir", uintptr_type);
5389
5390 ret = Type::make_builtin_named_type("ChanType", sf);
5391 }
5392
5393 return ret;
5394 }
5395
5396 // Build a type descriptor for a map type.
5397
5398 Expression*
5399 Channel_type::do_type_descriptor(Gogo* gogo, Named_type* name)
5400 {
5401 source_location bloc = BUILTINS_LOCATION;
5402
5403 Type* ctdt = Channel_type::make_chan_type_descriptor_type();
5404
5405 const Struct_field_list* fields = ctdt->struct_type()->fields();
5406
5407 Expression_list* vals = new Expression_list();
5408 vals->reserve(3);
5409
5410 Struct_field_list::const_iterator p = fields->begin();
5411 gcc_assert(p->field_name() == "commonType");
5412 vals->push_back(this->type_descriptor_constructor(gogo,
5413 RUNTIME_TYPE_KIND_CHAN,
5414 name, NULL, true));
5415
5416 ++p;
5417 gcc_assert(p->field_name() == "elem");
5418 vals->push_back(Expression::make_type_descriptor(this->element_type_, bloc));
5419
5420 ++p;
5421 gcc_assert(p->field_name() == "dir");
5422 // These bits must match the ones in libgo/runtime/go-type.h.
5423 int val = 0;
5424 if (this->may_receive_)
5425 val |= 1;
5426 if (this->may_send_)
5427 val |= 2;
5428 mpz_t iv;
5429 mpz_init_set_ui(iv, val);
5430 vals->push_back(Expression::make_integer(&iv, p->type(), bloc));
5431 mpz_clear(iv);
5432
5433 ++p;
5434 gcc_assert(p == fields->end());
5435
5436 return Expression::make_struct_composite_literal(ctdt, vals, bloc);
5437 }
5438
5439 // Reflection string.
5440
5441 void
5442 Channel_type::do_reflection(Gogo* gogo, std::string* ret) const
5443 {
5444 if (!this->may_send_)
5445 ret->append("<-");
5446 ret->append("chan");
5447 if (!this->may_receive_)
5448 ret->append("<-");
5449 ret->push_back(' ');
5450 this->append_reflection(this->element_type_, gogo, ret);
5451 }
5452
5453 // Mangled name.
5454
5455 void
5456 Channel_type::do_mangled_name(Gogo* gogo, std::string* ret) const
5457 {
5458 ret->push_back('C');
5459 this->append_mangled_name(this->element_type_, gogo, ret);
5460 if (this->may_send_)
5461 ret->push_back('s');
5462 if (this->may_receive_)
5463 ret->push_back('r');
5464 ret->push_back('e');
5465 }
5466
5467 // Export.
5468
5469 void
5470 Channel_type::do_export(Export* exp) const
5471 {
5472 exp->write_c_string("chan ");
5473 if (this->may_send_ && !this->may_receive_)
5474 exp->write_c_string("-< ");
5475 else if (this->may_receive_ && !this->may_send_)
5476 exp->write_c_string("<- ");
5477 exp->write_type(this->element_type_);
5478 }
5479
5480 // Import.
5481
5482 Channel_type*
5483 Channel_type::do_import(Import* imp)
5484 {
5485 imp->require_c_string("chan ");
5486
5487 bool may_send;
5488 bool may_receive;
5489 if (imp->match_c_string("-< "))
5490 {
5491 imp->advance(3);
5492 may_send = true;
5493 may_receive = false;
5494 }
5495 else if (imp->match_c_string("<- "))
5496 {
5497 imp->advance(3);
5498 may_receive = true;
5499 may_send = false;
5500 }
5501 else
5502 {
5503 may_send = true;
5504 may_receive = true;
5505 }
5506
5507 Type* element_type = imp->read_type();
5508
5509 return Type::make_channel_type(may_send, may_receive, element_type);
5510 }
5511
5512 // Make a new channel type.
5513
5514 Channel_type*
5515 Type::make_channel_type(bool send, bool receive, Type* element_type)
5516 {
5517 return new Channel_type(send, receive, element_type);
5518 }
5519
5520 // Class Interface_type.
5521
5522 // Traversal.
5523
5524 int
5525 Interface_type::do_traverse(Traverse* traverse)
5526 {
5527 if (this->methods_ == NULL)
5528 return TRAVERSE_CONTINUE;
5529 return this->methods_->traverse(traverse);
5530 }
5531
5532 // Finalize the methods. This handles interface inheritance.
5533
5534 void
5535 Interface_type::finalize_methods()
5536 {
5537 if (this->methods_ == NULL)
5538 return;
5539 bool is_recursive = false;
5540 size_t from = 0;
5541 size_t to = 0;
5542 while (from < this->methods_->size())
5543 {
5544 const Typed_identifier* p = &this->methods_->at(from);
5545 if (!p->name().empty())
5546 {
5547 size_t i = 0;
5548 for (i = 0; i < to; ++i)
5549 {
5550 if (this->methods_->at(i).name() == p->name())
5551 {
5552 error_at(p->location(), "duplicate method %qs",
5553 Gogo::message_name(p->name()).c_str());
5554 break;
5555 }
5556 }
5557 if (i == to)
5558 {
5559 if (from != to)
5560 this->methods_->set(to, *p);
5561 ++to;
5562 }
5563 ++from;
5564 continue;
5565 }
5566 Interface_type* it = p->type()->interface_type();
5567 if (it == NULL)
5568 {
5569 error_at(p->location(), "interface contains embedded non-interface");
5570 ++from;
5571 continue;
5572 }
5573 if (it == this)
5574 {
5575 if (!is_recursive)
5576 {
5577 error_at(p->location(), "invalid recursive interface");
5578 is_recursive = true;
5579 }
5580 ++from;
5581 continue;
5582 }
5583 const Typed_identifier_list* methods = it->methods();
5584 if (methods == NULL)
5585 {
5586 ++from;
5587 continue;
5588 }
5589 for (Typed_identifier_list::const_iterator q = methods->begin();
5590 q != methods->end();
5591 ++q)
5592 {
5593 if (q->name().empty() || this->find_method(q->name()) == NULL)
5594 this->methods_->push_back(Typed_identifier(q->name(), q->type(),
5595 p->location()));
5596 else
5597 {
5598 if (!is_recursive)
5599 error_at(p->location(), "inherited method %qs is ambiguous",
5600 Gogo::message_name(q->name()).c_str());
5601 }
5602 }
5603 ++from;
5604 }
5605 if (to == 0)
5606 {
5607 delete this->methods_;
5608 this->methods_ = NULL;
5609 }
5610 else
5611 {
5612 this->methods_->resize(to);
5613 this->methods_->sort_by_name();
5614 }
5615 }
5616
5617 // Return the method NAME, or NULL.
5618
5619 const Typed_identifier*
5620 Interface_type::find_method(const std::string& name) const
5621 {
5622 if (this->methods_ == NULL)
5623 return NULL;
5624 for (Typed_identifier_list::const_iterator p = this->methods_->begin();
5625 p != this->methods_->end();
5626 ++p)
5627 if (p->name() == name)
5628 return &*p;
5629 return NULL;
5630 }
5631
5632 // Return the method index.
5633
5634 size_t
5635 Interface_type::method_index(const std::string& name) const
5636 {
5637 gcc_assert(this->methods_ != NULL);
5638 size_t ret = 0;
5639 for (Typed_identifier_list::const_iterator p = this->methods_->begin();
5640 p != this->methods_->end();
5641 ++p, ++ret)
5642 if (p->name() == name)
5643 return ret;
5644 gcc_unreachable();
5645 }
5646
5647 // Return whether NAME is an unexported method, for better error
5648 // reporting.
5649
5650 bool
5651 Interface_type::is_unexported_method(Gogo* gogo, const std::string& name) const
5652 {
5653 if (this->methods_ == NULL)
5654 return false;
5655 for (Typed_identifier_list::const_iterator p = this->methods_->begin();
5656 p != this->methods_->end();
5657 ++p)
5658 {
5659 const std::string& method_name(p->name());
5660 if (Gogo::is_hidden_name(method_name)
5661 && name == Gogo::unpack_hidden_name(method_name)
5662 && gogo->pack_hidden_name(name, false) != method_name)
5663 return true;
5664 }
5665 return false;
5666 }
5667
5668 // Whether this type is identical with T.
5669
5670 bool
5671 Interface_type::is_identical(const Interface_type* t,
5672 bool errors_are_identical) const
5673 {
5674 // We require the same methods with the same types. The methods
5675 // have already been sorted.
5676 if (this->methods() == NULL || t->methods() == NULL)
5677 return this->methods() == t->methods();
5678
5679 Typed_identifier_list::const_iterator p1 = this->methods()->begin();
5680 for (Typed_identifier_list::const_iterator p2 = t->methods()->begin();
5681 p2 != t->methods()->end();
5682 ++p1, ++p2)
5683 {
5684 if (p1 == this->methods()->end())
5685 return false;
5686 if (p1->name() != p2->name()
5687 || !Type::are_identical(p1->type(), p2->type(),
5688 errors_are_identical, NULL))
5689 return false;
5690 }
5691 if (p1 != this->methods()->end())
5692 return false;
5693 return true;
5694 }
5695
5696 // Whether we can assign the interface type T to this type. The types
5697 // are known to not be identical. An interface assignment is only
5698 // permitted if T is known to implement all methods in THIS.
5699 // Otherwise a type guard is required.
5700
5701 bool
5702 Interface_type::is_compatible_for_assign(const Interface_type* t,
5703 std::string* reason) const
5704 {
5705 if (this->methods() == NULL)
5706 return true;
5707 for (Typed_identifier_list::const_iterator p = this->methods()->begin();
5708 p != this->methods()->end();
5709 ++p)
5710 {
5711 const Typed_identifier* m = t->find_method(p->name());
5712 if (m == NULL)
5713 {
5714 if (reason != NULL)
5715 {
5716 char buf[200];
5717 snprintf(buf, sizeof buf,
5718 _("need explicit conversion; missing method %s%s%s"),
5719 open_quote, Gogo::message_name(p->name()).c_str(),
5720 close_quote);
5721 reason->assign(buf);
5722 }
5723 return false;
5724 }
5725
5726 std::string subreason;
5727 if (!Type::are_identical(p->type(), m->type(), true, &subreason))
5728 {
5729 if (reason != NULL)
5730 {
5731 std::string n = Gogo::message_name(p->name());
5732 size_t len = 100 + n.length() + subreason.length();
5733 char* buf = new char[len];
5734 if (subreason.empty())
5735 snprintf(buf, len, _("incompatible type for method %s%s%s"),
5736 open_quote, n.c_str(), close_quote);
5737 else
5738 snprintf(buf, len,
5739 _("incompatible type for method %s%s%s (%s)"),
5740 open_quote, n.c_str(), close_quote,
5741 subreason.c_str());
5742 reason->assign(buf);
5743 delete[] buf;
5744 }
5745 return false;
5746 }
5747 }
5748
5749 return true;
5750 }
5751
5752 // Hash code.
5753
5754 unsigned int
5755 Interface_type::do_hash_for_method(Gogo* gogo) const
5756 {
5757 unsigned int ret = 0;
5758 if (this->methods_ != NULL)
5759 {
5760 for (Typed_identifier_list::const_iterator p = this->methods_->begin();
5761 p != this->methods_->end();
5762 ++p)
5763 {
5764 ret = Type::hash_string(p->name(), ret);
5765 ret += p->type()->hash_for_method(gogo);
5766 ret <<= 1;
5767 }
5768 }
5769 return ret;
5770 }
5771
5772 // Return true if T implements the interface. If it does not, and
5773 // REASON is not NULL, set *REASON to a useful error message.
5774
5775 bool
5776 Interface_type::implements_interface(const Type* t, std::string* reason) const
5777 {
5778 if (this->methods_ == NULL)
5779 return true;
5780
5781 bool is_pointer = false;
5782 const Named_type* nt = t->named_type();
5783 const Struct_type* st = t->struct_type();
5784 // If we start with a named type, we don't dereference it to find
5785 // methods.
5786 if (nt == NULL)
5787 {
5788 const Type* pt = t->points_to();
5789 if (pt != NULL)
5790 {
5791 // If T is a pointer to a named type, then we need to look at
5792 // the type to which it points.
5793 is_pointer = true;
5794 nt = pt->named_type();
5795 st = pt->struct_type();
5796 }
5797 }
5798
5799 // If we have a named type, get the methods from it rather than from
5800 // any struct type.
5801 if (nt != NULL)
5802 st = NULL;
5803
5804 // Only named and struct types have methods.
5805 if (nt == NULL && st == NULL)
5806 {
5807 if (reason != NULL)
5808 {
5809 if (t->points_to() != NULL
5810 && t->points_to()->interface_type() != NULL)
5811 reason->assign(_("pointer to interface type has no methods"));
5812 else
5813 reason->assign(_("type has no methods"));
5814 }
5815 return false;
5816 }
5817
5818 if (nt != NULL ? !nt->has_any_methods() : !st->has_any_methods())
5819 {
5820 if (reason != NULL)
5821 {
5822 if (t->points_to() != NULL
5823 && t->points_to()->interface_type() != NULL)
5824 reason->assign(_("pointer to interface type has no methods"));
5825 else
5826 reason->assign(_("type has no methods"));
5827 }
5828 return false;
5829 }
5830
5831 for (Typed_identifier_list::const_iterator p = this->methods_->begin();
5832 p != this->methods_->end();
5833 ++p)
5834 {
5835 bool is_ambiguous = false;
5836 Method* m = (nt != NULL
5837 ? nt->method_function(p->name(), &is_ambiguous)
5838 : st->method_function(p->name(), &is_ambiguous));
5839 if (m == NULL)
5840 {
5841 if (reason != NULL)
5842 {
5843 std::string n = Gogo::message_name(p->name());
5844 size_t len = n.length() + 100;
5845 char* buf = new char[len];
5846 if (is_ambiguous)
5847 snprintf(buf, len, _("ambiguous method %s%s%s"),
5848 open_quote, n.c_str(), close_quote);
5849 else
5850 snprintf(buf, len, _("missing method %s%s%s"),
5851 open_quote, n.c_str(), close_quote);
5852 reason->assign(buf);
5853 delete[] buf;
5854 }
5855 return false;
5856 }
5857
5858 Function_type *p_fn_type = p->type()->function_type();
5859 Function_type* m_fn_type = m->type()->function_type();
5860 gcc_assert(p_fn_type != NULL && m_fn_type != NULL);
5861 std::string subreason;
5862 if (!p_fn_type->is_identical(m_fn_type, true, true, &subreason))
5863 {
5864 if (reason != NULL)
5865 {
5866 std::string n = Gogo::message_name(p->name());
5867 size_t len = 100 + n.length() + subreason.length();
5868 char* buf = new char[len];
5869 if (subreason.empty())
5870 snprintf(buf, len, _("incompatible type for method %s%s%s"),
5871 open_quote, n.c_str(), close_quote);
5872 else
5873 snprintf(buf, len,
5874 _("incompatible type for method %s%s%s (%s)"),
5875 open_quote, n.c_str(), close_quote,
5876 subreason.c_str());
5877 reason->assign(buf);
5878 delete[] buf;
5879 }
5880 return false;
5881 }
5882
5883 if (!is_pointer && !m->is_value_method())
5884 {
5885 if (reason != NULL)
5886 {
5887 std::string n = Gogo::message_name(p->name());
5888 size_t len = 100 + n.length();
5889 char* buf = new char[len];
5890 snprintf(buf, len, _("method %s%s%s requires a pointer"),
5891 open_quote, n.c_str(), close_quote);
5892 reason->assign(buf);
5893 delete[] buf;
5894 }
5895 return false;
5896 }
5897 }
5898
5899 return true;
5900 }
5901
5902 // Return a tree for an interface type. An interface is a pointer to
5903 // a struct. The struct has three fields. The first field is a
5904 // pointer to the type descriptor for the dynamic type of the object.
5905 // The second field is a pointer to a table of methods for the
5906 // interface to be used with the object. The third field is the value
5907 // of the object itself.
5908
5909 tree
5910 Interface_type::do_get_tree(Gogo* gogo)
5911 {
5912 if (this->methods_ == NULL)
5913 {
5914 // At the tree level, use the same type for all empty
5915 // interfaces. This lets us assign them to each other directly
5916 // without triggering GIMPLE type errors.
5917 tree dtype = Type::make_type_descriptor_type()->get_tree(gogo);
5918 dtype = build_pointer_type(build_qualified_type(dtype, TYPE_QUAL_CONST));
5919 static tree empty_interface;
5920 return Gogo::builtin_struct(&empty_interface, "__go_empty_interface",
5921 NULL_TREE, 2,
5922 "__type_descriptor",
5923 dtype,
5924 "__object",
5925 ptr_type_node);
5926 }
5927
5928 return this->fill_in_tree(gogo, make_node(RECORD_TYPE));
5929 }
5930
5931 // Fill in the tree for an interface type. This is used for named
5932 // interface types.
5933
5934 tree
5935 Interface_type::fill_in_tree(Gogo* gogo, tree type)
5936 {
5937 gcc_assert(this->methods_ != NULL);
5938
5939 // Build the type of the table of methods.
5940
5941 tree method_table = make_node(RECORD_TYPE);
5942
5943 // The first field is a pointer to the type descriptor.
5944 tree name_tree = get_identifier("__type_descriptor");
5945 tree dtype = Type::make_type_descriptor_type()->get_tree(gogo);
5946 dtype = build_pointer_type(build_qualified_type(dtype, TYPE_QUAL_CONST));
5947 tree field = build_decl(this->location_, FIELD_DECL, name_tree, dtype);
5948 DECL_CONTEXT(field) = method_table;
5949 TYPE_FIELDS(method_table) = field;
5950
5951 std::string last_name = "";
5952 tree* pp = &DECL_CHAIN(field);
5953 for (Typed_identifier_list::const_iterator p = this->methods_->begin();
5954 p != this->methods_->end();
5955 ++p)
5956 {
5957 std::string name = Gogo::unpack_hidden_name(p->name());
5958 name_tree = get_identifier_with_length(name.data(), name.length());
5959 tree field_type = p->type()->get_tree(gogo);
5960 if (field_type == error_mark_node)
5961 return error_mark_node;
5962 field = build_decl(this->location_, FIELD_DECL, name_tree, field_type);
5963 DECL_CONTEXT(field) = method_table;
5964 *pp = field;
5965 pp = &DECL_CHAIN(field);
5966 // Sanity check: the names should be sorted.
5967 gcc_assert(p->name() > last_name);
5968 last_name = p->name();
5969 }
5970 layout_type(method_table);
5971
5972 tree mtype = build_pointer_type(method_table);
5973
5974 tree field_trees = NULL_TREE;
5975 pp = &field_trees;
5976
5977 name_tree = get_identifier("__methods");
5978 field = build_decl(this->location_, FIELD_DECL, name_tree, mtype);
5979 DECL_CONTEXT(field) = type;
5980 *pp = field;
5981 pp = &DECL_CHAIN(field);
5982
5983 name_tree = get_identifier("__object");
5984 field = build_decl(this->location_, FIELD_DECL, name_tree, ptr_type_node);
5985 DECL_CONTEXT(field) = type;
5986 *pp = field;
5987
5988 TYPE_FIELDS(type) = field_trees;
5989
5990 layout_type(type);
5991
5992 return type;
5993 }
5994
5995 // Initialization value.
5996
5997 tree
5998 Interface_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
5999 {
6000 if (is_clear)
6001 return NULL;
6002
6003 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
6004 for (tree field = TYPE_FIELDS(type_tree);
6005 field != NULL_TREE;
6006 field = DECL_CHAIN(field))
6007 {
6008 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
6009 elt->index = field;
6010 elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
6011 }
6012
6013 tree ret = build_constructor(type_tree, init);
6014 TREE_CONSTANT(ret) = 1;
6015 return ret;
6016 }
6017
6018 // The type of an interface type descriptor.
6019
6020 Type*
6021 Interface_type::make_interface_type_descriptor_type()
6022 {
6023 static Type* ret;
6024 if (ret == NULL)
6025 {
6026 Type* tdt = Type::make_type_descriptor_type();
6027 Type* ptdt = Type::make_type_descriptor_ptr_type();
6028
6029 Type* string_type = Type::lookup_string_type();
6030 Type* pointer_string_type = Type::make_pointer_type(string_type);
6031
6032 Struct_type* sm =
6033 Type::make_builtin_struct_type(3,
6034 "name", pointer_string_type,
6035 "pkgPath", pointer_string_type,
6036 "typ", ptdt);
6037
6038 Type* nsm = Type::make_builtin_named_type("imethod", sm);
6039
6040 Type* slice_nsm = Type::make_array_type(nsm, NULL);
6041
6042 Struct_type* s = Type::make_builtin_struct_type(2,
6043 "", tdt,
6044 "methods", slice_nsm);
6045
6046 ret = Type::make_builtin_named_type("InterfaceType", s);
6047 }
6048
6049 return ret;
6050 }
6051
6052 // Build a type descriptor for an interface type.
6053
6054 Expression*
6055 Interface_type::do_type_descriptor(Gogo* gogo, Named_type* name)
6056 {
6057 source_location bloc = BUILTINS_LOCATION;
6058
6059 Type* itdt = Interface_type::make_interface_type_descriptor_type();
6060
6061 const Struct_field_list* ifields = itdt->struct_type()->fields();
6062
6063 Expression_list* ivals = new Expression_list();
6064 ivals->reserve(2);
6065
6066 Struct_field_list::const_iterator pif = ifields->begin();
6067 gcc_assert(pif->field_name() == "commonType");
6068 ivals->push_back(this->type_descriptor_constructor(gogo,
6069 RUNTIME_TYPE_KIND_INTERFACE,
6070 name, NULL, true));
6071
6072 ++pif;
6073 gcc_assert(pif->field_name() == "methods");
6074
6075 Expression_list* methods = new Expression_list();
6076 if (this->methods_ != NULL && !this->methods_->empty())
6077 {
6078 Type* elemtype = pif->type()->array_type()->element_type();
6079
6080 methods->reserve(this->methods_->size());
6081 for (Typed_identifier_list::const_iterator pm = this->methods_->begin();
6082 pm != this->methods_->end();
6083 ++pm)
6084 {
6085 const Struct_field_list* mfields = elemtype->struct_type()->fields();
6086
6087 Expression_list* mvals = new Expression_list();
6088 mvals->reserve(3);
6089
6090 Struct_field_list::const_iterator pmf = mfields->begin();
6091 gcc_assert(pmf->field_name() == "name");
6092 std::string s = Gogo::unpack_hidden_name(pm->name());
6093 Expression* e = Expression::make_string(s, bloc);
6094 mvals->push_back(Expression::make_unary(OPERATOR_AND, e, bloc));
6095
6096 ++pmf;
6097 gcc_assert(pmf->field_name() == "pkgPath");
6098 if (!Gogo::is_hidden_name(pm->name()))
6099 mvals->push_back(Expression::make_nil(bloc));
6100 else
6101 {
6102 s = Gogo::hidden_name_prefix(pm->name());
6103 e = Expression::make_string(s, bloc);
6104 mvals->push_back(Expression::make_unary(OPERATOR_AND, e, bloc));
6105 }
6106
6107 ++pmf;
6108 gcc_assert(pmf->field_name() == "typ");
6109 mvals->push_back(Expression::make_type_descriptor(pm->type(), bloc));
6110
6111 ++pmf;
6112 gcc_assert(pmf == mfields->end());
6113
6114 e = Expression::make_struct_composite_literal(elemtype, mvals,
6115 bloc);
6116 methods->push_back(e);
6117 }
6118 }
6119
6120 ivals->push_back(Expression::make_slice_composite_literal(pif->type(),
6121 methods, bloc));
6122
6123 ++pif;
6124 gcc_assert(pif == ifields->end());
6125
6126 return Expression::make_struct_composite_literal(itdt, ivals, bloc);
6127 }
6128
6129 // Reflection string.
6130
6131 void
6132 Interface_type::do_reflection(Gogo* gogo, std::string* ret) const
6133 {
6134 ret->append("interface {");
6135 if (this->methods_ != NULL)
6136 {
6137 for (Typed_identifier_list::const_iterator p = this->methods_->begin();
6138 p != this->methods_->end();
6139 ++p)
6140 {
6141 if (p != this->methods_->begin())
6142 ret->append(";");
6143 ret->push_back(' ');
6144 ret->append(Gogo::unpack_hidden_name(p->name()));
6145 std::string sub = p->type()->reflection(gogo);
6146 gcc_assert(sub.compare(0, 4, "func") == 0);
6147 sub = sub.substr(4);
6148 ret->append(sub);
6149 }
6150 }
6151 ret->append(" }");
6152 }
6153
6154 // Mangled name.
6155
6156 void
6157 Interface_type::do_mangled_name(Gogo* gogo, std::string* ret) const
6158 {
6159 ret->push_back('I');
6160
6161 const Typed_identifier_list* methods = this->methods_;
6162 if (methods != NULL)
6163 {
6164 for (Typed_identifier_list::const_iterator p = methods->begin();
6165 p != methods->end();
6166 ++p)
6167 {
6168 std::string n = Gogo::unpack_hidden_name(p->name());
6169 char buf[20];
6170 snprintf(buf, sizeof buf, "%u_",
6171 static_cast<unsigned int>(n.length()));
6172 ret->append(buf);
6173 ret->append(n);
6174 this->append_mangled_name(p->type(), gogo, ret);
6175 }
6176 }
6177
6178 ret->push_back('e');
6179 }
6180
6181 // Export.
6182
6183 void
6184 Interface_type::do_export(Export* exp) const
6185 {
6186 exp->write_c_string("interface { ");
6187
6188 const Typed_identifier_list* methods = this->methods_;
6189 if (methods != NULL)
6190 {
6191 for (Typed_identifier_list::const_iterator pm = methods->begin();
6192 pm != methods->end();
6193 ++pm)
6194 {
6195 exp->write_string(pm->name());
6196 exp->write_c_string(" (");
6197
6198 const Function_type* fntype = pm->type()->function_type();
6199
6200 bool first = true;
6201 const Typed_identifier_list* parameters = fntype->parameters();
6202 if (parameters != NULL)
6203 {
6204 bool is_varargs = fntype->is_varargs();
6205 for (Typed_identifier_list::const_iterator pp =
6206 parameters->begin();
6207 pp != parameters->end();
6208 ++pp)
6209 {
6210 if (first)
6211 first = false;
6212 else
6213 exp->write_c_string(", ");
6214 if (!is_varargs || pp + 1 != parameters->end())
6215 exp->write_type(pp->type());
6216 else
6217 {
6218 exp->write_c_string("...");
6219 Type *pptype = pp->type();
6220 exp->write_type(pptype->array_type()->element_type());
6221 }
6222 }
6223 }
6224
6225 exp->write_c_string(")");
6226
6227 const Typed_identifier_list* results = fntype->results();
6228 if (results != NULL)
6229 {
6230 exp->write_c_string(" ");
6231 if (results->size() == 1)
6232 exp->write_type(results->begin()->type());
6233 else
6234 {
6235 first = true;
6236 exp->write_c_string("(");
6237 for (Typed_identifier_list::const_iterator p =
6238 results->begin();
6239 p != results->end();
6240 ++p)
6241 {
6242 if (first)
6243 first = false;
6244 else
6245 exp->write_c_string(", ");
6246 exp->write_type(p->type());
6247 }
6248 exp->write_c_string(")");
6249 }
6250 }
6251
6252 exp->write_c_string("; ");
6253 }
6254 }
6255
6256 exp->write_c_string("}");
6257 }
6258
6259 // Import an interface type.
6260
6261 Interface_type*
6262 Interface_type::do_import(Import* imp)
6263 {
6264 imp->require_c_string("interface { ");
6265
6266 Typed_identifier_list* methods = new Typed_identifier_list;
6267 while (imp->peek_char() != '}')
6268 {
6269 std::string name = imp->read_identifier();
6270 imp->require_c_string(" (");
6271
6272 Typed_identifier_list* parameters;
6273 bool is_varargs = false;
6274 if (imp->peek_char() == ')')
6275 parameters = NULL;
6276 else
6277 {
6278 parameters = new Typed_identifier_list;
6279 while (true)
6280 {
6281 if (imp->match_c_string("..."))
6282 {
6283 imp->advance(3);
6284 is_varargs = true;
6285 }
6286
6287 Type* ptype = imp->read_type();
6288 if (is_varargs)
6289 ptype = Type::make_array_type(ptype, NULL);
6290 parameters->push_back(Typed_identifier(Import::import_marker,
6291 ptype, imp->location()));
6292 if (imp->peek_char() != ',')
6293 break;
6294 gcc_assert(!is_varargs);
6295 imp->require_c_string(", ");
6296 }
6297 }
6298 imp->require_c_string(")");
6299
6300 Typed_identifier_list* results;
6301 if (imp->peek_char() != ' ')
6302 results = NULL;
6303 else
6304 {
6305 results = new Typed_identifier_list;
6306 imp->advance(1);
6307 if (imp->peek_char() != '(')
6308 {
6309 Type* rtype = imp->read_type();
6310 results->push_back(Typed_identifier(Import::import_marker,
6311 rtype, imp->location()));
6312 }
6313 else
6314 {
6315 imp->advance(1);
6316 while (true)
6317 {
6318 Type* rtype = imp->read_type();
6319 results->push_back(Typed_identifier(Import::import_marker,
6320 rtype, imp->location()));
6321 if (imp->peek_char() != ',')
6322 break;
6323 imp->require_c_string(", ");
6324 }
6325 imp->require_c_string(")");
6326 }
6327 }
6328
6329 Function_type* fntype = Type::make_function_type(NULL, parameters,
6330 results,
6331 imp->location());
6332 if (is_varargs)
6333 fntype->set_is_varargs();
6334 methods->push_back(Typed_identifier(name, fntype, imp->location()));
6335
6336 imp->require_c_string("; ");
6337 }
6338
6339 imp->require_c_string("}");
6340
6341 if (methods->empty())
6342 {
6343 delete methods;
6344 methods = NULL;
6345 }
6346
6347 return Type::make_interface_type(methods, imp->location());
6348 }
6349
6350 // Make an interface type.
6351
6352 Interface_type*
6353 Type::make_interface_type(Typed_identifier_list* methods,
6354 source_location location)
6355 {
6356 return new Interface_type(methods, location);
6357 }
6358
6359 // Class Method.
6360
6361 // Bind a method to an object.
6362
6363 Expression*
6364 Method::bind_method(Expression* expr, source_location location) const
6365 {
6366 if (this->stub_ == NULL)
6367 {
6368 // When there is no stub object, the binding is determined by
6369 // the child class.
6370 return this->do_bind_method(expr, location);
6371 }
6372
6373 Expression* func = Expression::make_func_reference(this->stub_, NULL,
6374 location);
6375 return Expression::make_bound_method(expr, func, location);
6376 }
6377
6378 // Return the named object associated with a method. This may only be
6379 // called after methods are finalized.
6380
6381 Named_object*
6382 Method::named_object() const
6383 {
6384 if (this->stub_ != NULL)
6385 return this->stub_;
6386 return this->do_named_object();
6387 }
6388
6389 // Class Named_method.
6390
6391 // The type of the method.
6392
6393 Function_type*
6394 Named_method::do_type() const
6395 {
6396 if (this->named_object_->is_function())
6397 return this->named_object_->func_value()->type();
6398 else if (this->named_object_->is_function_declaration())
6399 return this->named_object_->func_declaration_value()->type();
6400 else
6401 gcc_unreachable();
6402 }
6403
6404 // Return the location of the method receiver.
6405
6406 source_location
6407 Named_method::do_receiver_location() const
6408 {
6409 return this->do_type()->receiver()->location();
6410 }
6411
6412 // Bind a method to an object.
6413
6414 Expression*
6415 Named_method::do_bind_method(Expression* expr, source_location location) const
6416 {
6417 Expression* func = Expression::make_func_reference(this->named_object_, NULL,
6418 location);
6419 Bound_method_expression* bme = Expression::make_bound_method(expr, func,
6420 location);
6421 // If this is not a local method, and it does not use a stub, then
6422 // the real method expects a different type. We need to cast the
6423 // first argument.
6424 if (this->depth() > 0 && !this->needs_stub_method())
6425 {
6426 Function_type* ftype = this->do_type();
6427 gcc_assert(ftype->is_method());
6428 Type* frtype = ftype->receiver()->type();
6429 bme->set_first_argument_type(frtype);
6430 }
6431 return bme;
6432 }
6433
6434 // Class Interface_method.
6435
6436 // Bind a method to an object.
6437
6438 Expression*
6439 Interface_method::do_bind_method(Expression* expr,
6440 source_location location) const
6441 {
6442 return Expression::make_interface_field_reference(expr, this->name_,
6443 location);
6444 }
6445
6446 // Class Methods.
6447
6448 // Insert a new method. Return true if it was inserted, false
6449 // otherwise.
6450
6451 bool
6452 Methods::insert(const std::string& name, Method* m)
6453 {
6454 std::pair<Method_map::iterator, bool> ins =
6455 this->methods_.insert(std::make_pair(name, m));
6456 if (ins.second)
6457 return true;
6458 else
6459 {
6460 Method* old_method = ins.first->second;
6461 if (m->depth() < old_method->depth())
6462 {
6463 delete old_method;
6464 ins.first->second = m;
6465 return true;
6466 }
6467 else
6468 {
6469 if (m->depth() == old_method->depth())
6470 old_method->set_is_ambiguous();
6471 return false;
6472 }
6473 }
6474 }
6475
6476 // Return the number of unambiguous methods.
6477
6478 size_t
6479 Methods::count() const
6480 {
6481 size_t ret = 0;
6482 for (Method_map::const_iterator p = this->methods_.begin();
6483 p != this->methods_.end();
6484 ++p)
6485 if (!p->second->is_ambiguous())
6486 ++ret;
6487 return ret;
6488 }
6489
6490 // Class Named_type.
6491
6492 // Return the name of the type.
6493
6494 const std::string&
6495 Named_type::name() const
6496 {
6497 return this->named_object_->name();
6498 }
6499
6500 // Return the name of the type to use in an error message.
6501
6502 std::string
6503 Named_type::message_name() const
6504 {
6505 return this->named_object_->message_name();
6506 }
6507
6508 // Return the base type for this type. We have to be careful about
6509 // circular type definitions, which are invalid but may be seen here.
6510
6511 Type*
6512 Named_type::named_base()
6513 {
6514 if (this->seen_ > 0)
6515 return this;
6516 ++this->seen_;
6517 Type* ret = this->type_->base();
6518 --this->seen_;
6519 return ret;
6520 }
6521
6522 const Type*
6523 Named_type::named_base() const
6524 {
6525 if (this->seen_ > 0)
6526 return this;
6527 ++this->seen_;
6528 const Type* ret = this->type_->base();
6529 --this->seen_;
6530 return ret;
6531 }
6532
6533 // Return whether this is an error type. We have to be careful about
6534 // circular type definitions, which are invalid but may be seen here.
6535
6536 bool
6537 Named_type::is_named_error_type() const
6538 {
6539 if (this->seen_ > 0)
6540 return false;
6541 ++this->seen_;
6542 bool ret = this->type_->is_error_type();
6543 --this->seen_;
6544 return ret;
6545 }
6546
6547 // Add a method to this type.
6548
6549 Named_object*
6550 Named_type::add_method(const std::string& name, Function* function)
6551 {
6552 if (this->local_methods_ == NULL)
6553 this->local_methods_ = new Bindings(NULL);
6554 return this->local_methods_->add_function(name, NULL, function);
6555 }
6556
6557 // Add a method declaration to this type.
6558
6559 Named_object*
6560 Named_type::add_method_declaration(const std::string& name, Package* package,
6561 Function_type* type,
6562 source_location location)
6563 {
6564 if (this->local_methods_ == NULL)
6565 this->local_methods_ = new Bindings(NULL);
6566 return this->local_methods_->add_function_declaration(name, package, type,
6567 location);
6568 }
6569
6570 // Add an existing method to this type.
6571
6572 void
6573 Named_type::add_existing_method(Named_object* no)
6574 {
6575 if (this->local_methods_ == NULL)
6576 this->local_methods_ = new Bindings(NULL);
6577 this->local_methods_->add_named_object(no);
6578 }
6579
6580 // Look for a local method NAME, and returns its named object, or NULL
6581 // if not there.
6582
6583 Named_object*
6584 Named_type::find_local_method(const std::string& name) const
6585 {
6586 if (this->local_methods_ == NULL)
6587 return NULL;
6588 return this->local_methods_->lookup(name);
6589 }
6590
6591 // Return whether NAME is an unexported field or method, for better
6592 // error reporting.
6593
6594 bool
6595 Named_type::is_unexported_local_method(Gogo* gogo,
6596 const std::string& name) const
6597 {
6598 Bindings* methods = this->local_methods_;
6599 if (methods != NULL)
6600 {
6601 for (Bindings::const_declarations_iterator p =
6602 methods->begin_declarations();
6603 p != methods->end_declarations();
6604 ++p)
6605 {
6606 if (Gogo::is_hidden_name(p->first)
6607 && name == Gogo::unpack_hidden_name(p->first)
6608 && gogo->pack_hidden_name(name, false) != p->first)
6609 return true;
6610 }
6611 }
6612 return false;
6613 }
6614
6615 // Build the complete list of methods for this type, which means
6616 // recursively including all methods for anonymous fields. Create all
6617 // stub methods.
6618
6619 void
6620 Named_type::finalize_methods(Gogo* gogo)
6621 {
6622 if (this->all_methods_ != NULL)
6623 return;
6624
6625 if (this->local_methods_ != NULL
6626 && (this->points_to() != NULL || this->interface_type() != NULL))
6627 {
6628 const Bindings* lm = this->local_methods_;
6629 for (Bindings::const_declarations_iterator p = lm->begin_declarations();
6630 p != lm->end_declarations();
6631 ++p)
6632 error_at(p->second->location(),
6633 "invalid pointer or interface receiver type");
6634 delete this->local_methods_;
6635 this->local_methods_ = NULL;
6636 return;
6637 }
6638
6639 Type::finalize_methods(gogo, this, this->location_, &this->all_methods_);
6640 }
6641
6642 // Return the method NAME, or NULL if there isn't one or if it is
6643 // ambiguous. Set *IS_AMBIGUOUS if the method exists but is
6644 // ambiguous.
6645
6646 Method*
6647 Named_type::method_function(const std::string& name, bool* is_ambiguous) const
6648 {
6649 return Type::method_function(this->all_methods_, name, is_ambiguous);
6650 }
6651
6652 // Return a pointer to the interface method table for this type for
6653 // the interface INTERFACE. IS_POINTER is true if this is for a
6654 // pointer to THIS.
6655
6656 tree
6657 Named_type::interface_method_table(Gogo* gogo, const Interface_type* interface,
6658 bool is_pointer)
6659 {
6660 gcc_assert(!interface->is_empty());
6661
6662 Interface_method_tables** pimt = (is_pointer
6663 ? &this->interface_method_tables_
6664 : &this->pointer_interface_method_tables_);
6665
6666 if (*pimt == NULL)
6667 *pimt = new Interface_method_tables(5);
6668
6669 std::pair<const Interface_type*, tree> val(interface, NULL_TREE);
6670 std::pair<Interface_method_tables::iterator, bool> ins = (*pimt)->insert(val);
6671
6672 if (ins.second)
6673 {
6674 // This is a new entry in the hash table.
6675 gcc_assert(ins.first->second == NULL_TREE);
6676 ins.first->second = gogo->interface_method_table_for_type(interface,
6677 this,
6678 is_pointer);
6679 }
6680
6681 tree decl = ins.first->second;
6682 if (decl == error_mark_node)
6683 return error_mark_node;
6684 gcc_assert(decl != NULL_TREE && TREE_CODE(decl) == VAR_DECL);
6685 return build_fold_addr_expr(decl);
6686 }
6687
6688 // Return whether a named type has any hidden fields.
6689
6690 bool
6691 Named_type::named_type_has_hidden_fields(std::string* reason) const
6692 {
6693 if (this->seen_ > 0)
6694 return false;
6695 ++this->seen_;
6696 bool ret = this->type_->has_hidden_fields(this, reason);
6697 --this->seen_;
6698 return ret;
6699 }
6700
6701 // Look for a use of a complete type within another type. This is
6702 // used to check that we don't try to use a type within itself.
6703
6704 class Find_type_use : public Traverse
6705 {
6706 public:
6707 Find_type_use(Type* find_type)
6708 : Traverse(traverse_types),
6709 find_type_(find_type), found_(false)
6710 { }
6711
6712 // Whether we found the type.
6713 bool
6714 found() const
6715 { return this->found_; }
6716
6717 protected:
6718 int
6719 type(Type*);
6720
6721 private:
6722 // The type we are looking for.
6723 Type* find_type_;
6724 // Whether we found the type.
6725 bool found_;
6726 };
6727
6728 // Check for FIND_TYPE in TYPE.
6729
6730 int
6731 Find_type_use::type(Type* type)
6732 {
6733 if (this->find_type_ == type)
6734 {
6735 this->found_ = true;
6736 return TRAVERSE_EXIT;
6737 }
6738 // It's OK if we see a reference to the type in any type which is
6739 // essentially a pointer: a pointer, a slice, a function, a map, or
6740 // a channel.
6741 if (type->points_to() != NULL
6742 || type->is_open_array_type()
6743 || type->function_type() != NULL
6744 || type->map_type() != NULL
6745 || type->channel_type() != NULL)
6746 return TRAVERSE_SKIP_COMPONENTS;
6747
6748 // For an interface, a reference to the type in a method type should
6749 // be ignored, but we have to consider direct inheritance. When
6750 // this is called, there may be cases of direct inheritance
6751 // represented as a method with no name.
6752 if (type->interface_type() != NULL)
6753 {
6754 const Typed_identifier_list* methods = type->interface_type()->methods();
6755 if (methods != NULL)
6756 {
6757 for (Typed_identifier_list::const_iterator p = methods->begin();
6758 p != methods->end();
6759 ++p)
6760 {
6761 if (p->name().empty())
6762 {
6763 if (Type::traverse(p->type(), this) == TRAVERSE_EXIT)
6764 return TRAVERSE_EXIT;
6765 }
6766 }
6767 }
6768 return TRAVERSE_SKIP_COMPONENTS;
6769 }
6770
6771 return TRAVERSE_CONTINUE;
6772 }
6773
6774 // Verify that a named type does not refer to itself.
6775
6776 bool
6777 Named_type::do_verify()
6778 {
6779 Find_type_use find(this);
6780 Type::traverse(this->type_, &find);
6781 if (find.found())
6782 {
6783 error_at(this->location_, "invalid recursive type %qs",
6784 this->message_name().c_str());
6785 this->is_error_ = true;
6786 return false;
6787 }
6788
6789 // Check whether any of the local methods overloads an existing
6790 // struct field or interface method. We don't need to check the
6791 // list of methods against itself: that is handled by the Bindings
6792 // code.
6793 if (this->local_methods_ != NULL)
6794 {
6795 Struct_type* st = this->type_->struct_type();
6796 Interface_type* it = this->type_->interface_type();
6797 bool found_dup = false;
6798 if (st != NULL || it != NULL)
6799 {
6800 for (Bindings::const_declarations_iterator p =
6801 this->local_methods_->begin_declarations();
6802 p != this->local_methods_->end_declarations();
6803 ++p)
6804 {
6805 const std::string& name(p->first);
6806 if (st != NULL && st->find_local_field(name, NULL) != NULL)
6807 {
6808 error_at(p->second->location(),
6809 "method %qs redeclares struct field name",
6810 Gogo::message_name(name).c_str());
6811 found_dup = true;
6812 }
6813 if (it != NULL && it->find_method(name) != NULL)
6814 {
6815 error_at(p->second->location(),
6816 "method %qs redeclares interface method name",
6817 Gogo::message_name(name).c_str());
6818 found_dup = true;
6819 }
6820 }
6821 }
6822 if (found_dup)
6823 return false;
6824 }
6825
6826 return true;
6827 }
6828
6829 // Return a hash code. This is used for method lookup. We simply
6830 // hash on the name itself.
6831
6832 unsigned int
6833 Named_type::do_hash_for_method(Gogo* gogo) const
6834 {
6835 const std::string& name(this->named_object()->name());
6836 unsigned int ret = Type::hash_string(name, 0);
6837
6838 // GOGO will be NULL here when called from Type_hash_identical.
6839 // That is OK because that is only used for internal hash tables
6840 // where we are going to be comparing named types for equality. In
6841 // other cases, which are cases where the runtime is going to
6842 // compare hash codes to see if the types are the same, we need to
6843 // include the package prefix and name in the hash.
6844 if (gogo != NULL && !Gogo::is_hidden_name(name) && !this->is_builtin())
6845 {
6846 const Package* package = this->named_object()->package();
6847 if (package == NULL)
6848 {
6849 ret = Type::hash_string(gogo->unique_prefix(), ret);
6850 ret = Type::hash_string(gogo->package_name(), ret);
6851 }
6852 else
6853 {
6854 ret = Type::hash_string(package->unique_prefix(), ret);
6855 ret = Type::hash_string(package->name(), ret);
6856 }
6857 }
6858
6859 return ret;
6860 }
6861
6862 // Get a tree for a named type.
6863
6864 tree
6865 Named_type::do_get_tree(Gogo* gogo)
6866 {
6867 if (this->is_error_)
6868 return error_mark_node;
6869
6870 // Go permits types to refer to themselves in various ways. Break
6871 // the recursion here.
6872 tree t;
6873 switch (this->type_->forwarded()->classification())
6874 {
6875 case TYPE_ERROR:
6876 return error_mark_node;
6877
6878 case TYPE_VOID:
6879 case TYPE_BOOLEAN:
6880 case TYPE_INTEGER:
6881 case TYPE_FLOAT:
6882 case TYPE_COMPLEX:
6883 case TYPE_STRING:
6884 case TYPE_NIL:
6885 // These types can not refer to themselves.
6886 case TYPE_MAP:
6887 case TYPE_CHANNEL:
6888 // All maps and channels have the same type in GENERIC.
6889 t = Type::get_named_type_tree(gogo, this->type_);
6890 if (t == error_mark_node)
6891 return error_mark_node;
6892 // Build a copy to set TYPE_NAME.
6893 t = build_variant_type_copy(t);
6894 break;
6895
6896 case TYPE_FUNCTION:
6897 // GENERIC can't handle a pointer to a function type whose
6898 // return type is a pointer to the function type itself. It
6899 // goes into an infinite loop when walking the types.
6900 if (this->seen_ > 0)
6901 {
6902 Function_type* fntype = this->type_->function_type();
6903 if (fntype->results() != NULL
6904 && fntype->results()->size() == 1
6905 && fntype->results()->front().type()->forwarded() == this)
6906 return ptr_type_node;
6907
6908 // We can legitimately see ourselves here twice when a named
6909 // type is defined using a struct which refers to the named
6910 // type. If we see ourselves too often we are in a loop.
6911 if (this->seen_ > 3)
6912 return ptr_type_node;
6913 }
6914 ++this->seen_;
6915 t = Type::get_named_type_tree(gogo, this->type_);
6916 --this->seen_;
6917 if (t == error_mark_node)
6918 return error_mark_node;
6919 t = build_variant_type_copy(t);
6920 break;
6921
6922 case TYPE_POINTER:
6923 // Don't recur infinitely if a pointer type refers to itself.
6924 // Ideally we would build a circular data structure here, but
6925 // GENERIC can't handle them.
6926 if (this->seen_ > 0)
6927 {
6928 if (this->type_->points_to()->forwarded() == this)
6929 return ptr_type_node;
6930
6931 if (this->seen_ > 3)
6932 return ptr_type_node;
6933 }
6934 ++this->seen_;
6935 t = Type::get_named_type_tree(gogo, this->type_);
6936 --this->seen_;
6937 if (t == error_mark_node)
6938 return error_mark_node;
6939 t = build_variant_type_copy(t);
6940 break;
6941
6942 case TYPE_STRUCT:
6943 if (this->named_tree_ != NULL_TREE)
6944 return this->named_tree_;
6945 t = make_node(RECORD_TYPE);
6946 this->named_tree_ = t;
6947 t = this->type_->struct_type()->fill_in_tree(gogo, t);
6948 if (t == error_mark_node)
6949 return error_mark_node;
6950 break;
6951
6952 case TYPE_ARRAY:
6953 if (!this->is_open_array_type())
6954 t = Type::get_named_type_tree(gogo, this->type_);
6955 else
6956 {
6957 if (this->named_tree_ != NULL_TREE)
6958 return this->named_tree_;
6959 t = gogo->slice_type_tree(void_type_node);
6960 this->named_tree_ = t;
6961 t = this->type_->array_type()->fill_in_tree(gogo, t);
6962 }
6963 if (t == error_mark_node)
6964 return error_mark_node;
6965 t = build_variant_type_copy(t);
6966 break;
6967
6968 case TYPE_INTERFACE:
6969 if (this->type_->interface_type()->is_empty())
6970 {
6971 t = Type::get_named_type_tree(gogo, this->type_);
6972 if (t == error_mark_node)
6973 return error_mark_node;
6974 t = build_variant_type_copy(t);
6975 }
6976 else
6977 {
6978 if (this->named_tree_ != NULL_TREE)
6979 return this->named_tree_;
6980 t = make_node(RECORD_TYPE);
6981 this->named_tree_ = t;
6982 t = this->type_->interface_type()->fill_in_tree(gogo, t);
6983 if (t == error_mark_node)
6984 return error_mark_node;
6985 }
6986 break;
6987
6988 case TYPE_NAMED:
6989 {
6990 // When a named type T1 is defined as another named type T2,
6991 // the definition must simply be "type T1 T2". If the
6992 // definition of T2 may refer to T1, then we must simply
6993 // return the type for T2 here. It's not precisely correct,
6994 // but it's as close as we can get with GENERIC.
6995 ++this->seen_;
6996 t = Type::get_named_type_tree(gogo, this->type_);
6997 --this->seen_;
6998 if (this->seen_ > 0)
6999 return t;
7000 if (t == error_mark_node)
7001 return error_mark_node;
7002 t = build_variant_type_copy(t);
7003 }
7004 break;
7005
7006 case TYPE_FORWARD:
7007 // An undefined forwarding type. Make sure the error is
7008 // emitted.
7009 this->type_->forward_declaration_type()->real_type();
7010 return error_mark_node;
7011
7012 default:
7013 case TYPE_SINK:
7014 case TYPE_CALL_MULTIPLE_RESULT:
7015 gcc_unreachable();
7016 }
7017
7018 tree id = this->named_object_->get_id(gogo);
7019 tree decl = build_decl(this->location_, TYPE_DECL, id, t);
7020 TYPE_NAME(t) = decl;
7021
7022 return t;
7023 }
7024
7025 // Build a type descriptor for a named type.
7026
7027 Expression*
7028 Named_type::do_type_descriptor(Gogo* gogo, Named_type* name)
7029 {
7030 // If NAME is not NULL, then we don't really want the type
7031 // descriptor for this type; we want the descriptor for the
7032 // underlying type, giving it the name NAME.
7033 return this->named_type_descriptor(gogo, this->type_,
7034 name == NULL ? this : name);
7035 }
7036
7037 // Add to the reflection string. This is used mostly for the name of
7038 // the type used in a type descriptor, not for actual reflection
7039 // strings.
7040
7041 void
7042 Named_type::do_reflection(Gogo* gogo, std::string* ret) const
7043 {
7044 if (this->location() != BUILTINS_LOCATION)
7045 {
7046 const Package* package = this->named_object_->package();
7047 if (package != NULL)
7048 ret->append(package->name());
7049 else
7050 ret->append(gogo->package_name());
7051 ret->push_back('.');
7052 }
7053 if (this->in_function_ != NULL)
7054 {
7055 ret->append(Gogo::unpack_hidden_name(this->in_function_->name()));
7056 ret->push_back('$');
7057 }
7058 ret->append(Gogo::unpack_hidden_name(this->named_object_->name()));
7059 }
7060
7061 // Get the mangled name.
7062
7063 void
7064 Named_type::do_mangled_name(Gogo* gogo, std::string* ret) const
7065 {
7066 Named_object* no = this->named_object_;
7067 std::string name;
7068 if (this->location() == BUILTINS_LOCATION)
7069 gcc_assert(this->in_function_ == NULL);
7070 else
7071 {
7072 const std::string& unique_prefix(no->package() == NULL
7073 ? gogo->unique_prefix()
7074 : no->package()->unique_prefix());
7075 const std::string& package_name(no->package() == NULL
7076 ? gogo->package_name()
7077 : no->package()->name());
7078 name = unique_prefix;
7079 name.append(1, '.');
7080 name.append(package_name);
7081 name.append(1, '.');
7082 if (this->in_function_ != NULL)
7083 {
7084 name.append(Gogo::unpack_hidden_name(this->in_function_->name()));
7085 name.append(1, '$');
7086 }
7087 }
7088 name.append(Gogo::unpack_hidden_name(no->name()));
7089 char buf[20];
7090 snprintf(buf, sizeof buf, "N%u_", static_cast<unsigned int>(name.length()));
7091 ret->append(buf);
7092 ret->append(name);
7093 }
7094
7095 // Export the type. This is called to export a global type.
7096
7097 void
7098 Named_type::export_named_type(Export* exp, const std::string&) const
7099 {
7100 // We don't need to write the name of the type here, because it will
7101 // be written by Export::write_type anyhow.
7102 exp->write_c_string("type ");
7103 exp->write_type(this);
7104 exp->write_c_string(";\n");
7105 }
7106
7107 // Import a named type.
7108
7109 void
7110 Named_type::import_named_type(Import* imp, Named_type** ptype)
7111 {
7112 imp->require_c_string("type ");
7113 Type *type = imp->read_type();
7114 *ptype = type->named_type();
7115 gcc_assert(*ptype != NULL);
7116 imp->require_c_string(";\n");
7117 }
7118
7119 // Export the type when it is referenced by another type. In this
7120 // case Export::export_type will already have issued the name.
7121
7122 void
7123 Named_type::do_export(Export* exp) const
7124 {
7125 exp->write_type(this->type_);
7126
7127 // To save space, we only export the methods directly attached to
7128 // this type.
7129 Bindings* methods = this->local_methods_;
7130 if (methods == NULL)
7131 return;
7132
7133 exp->write_c_string("\n");
7134 for (Bindings::const_definitions_iterator p = methods->begin_definitions();
7135 p != methods->end_definitions();
7136 ++p)
7137 {
7138 exp->write_c_string(" ");
7139 (*p)->export_named_object(exp);
7140 }
7141
7142 for (Bindings::const_declarations_iterator p = methods->begin_declarations();
7143 p != methods->end_declarations();
7144 ++p)
7145 {
7146 if (p->second->is_function_declaration())
7147 {
7148 exp->write_c_string(" ");
7149 p->second->export_named_object(exp);
7150 }
7151 }
7152 }
7153
7154 // Make a named type.
7155
7156 Named_type*
7157 Type::make_named_type(Named_object* named_object, Type* type,
7158 source_location location)
7159 {
7160 return new Named_type(named_object, type, location);
7161 }
7162
7163 // Finalize the methods for TYPE. It will be a named type or a struct
7164 // type. This sets *ALL_METHODS to the list of methods, and builds
7165 // all required stubs.
7166
7167 void
7168 Type::finalize_methods(Gogo* gogo, const Type* type, source_location location,
7169 Methods** all_methods)
7170 {
7171 *all_methods = NULL;
7172 Types_seen types_seen;
7173 Type::add_methods_for_type(type, NULL, 0, false, false, &types_seen,
7174 all_methods);
7175 Type::build_stub_methods(gogo, type, *all_methods, location);
7176 }
7177
7178 // Add the methods for TYPE to *METHODS. FIELD_INDEXES is used to
7179 // build up the struct field indexes as we go. DEPTH is the depth of
7180 // the field within TYPE. IS_EMBEDDED_POINTER is true if we are
7181 // adding these methods for an anonymous field with pointer type.
7182 // NEEDS_STUB_METHOD is true if we need to use a stub method which
7183 // calls the real method. TYPES_SEEN is used to avoid infinite
7184 // recursion.
7185
7186 void
7187 Type::add_methods_for_type(const Type* type,
7188 const Method::Field_indexes* field_indexes,
7189 unsigned int depth,
7190 bool is_embedded_pointer,
7191 bool needs_stub_method,
7192 Types_seen* types_seen,
7193 Methods** methods)
7194 {
7195 // Pointer types may not have methods.
7196 if (type->points_to() != NULL)
7197 return;
7198
7199 const Named_type* nt = type->named_type();
7200 if (nt != NULL)
7201 {
7202 std::pair<Types_seen::iterator, bool> ins = types_seen->insert(nt);
7203 if (!ins.second)
7204 return;
7205 }
7206
7207 if (nt != NULL)
7208 Type::add_local_methods_for_type(nt, field_indexes, depth,
7209 is_embedded_pointer, needs_stub_method,
7210 methods);
7211
7212 Type::add_embedded_methods_for_type(type, field_indexes, depth,
7213 is_embedded_pointer, needs_stub_method,
7214 types_seen, methods);
7215
7216 // If we are called with depth > 0, then we are looking at an
7217 // anonymous field of a struct. If such a field has interface type,
7218 // then we need to add the interface methods. We don't want to add
7219 // them when depth == 0, because we will already handle them
7220 // following the usual rules for an interface type.
7221 if (depth > 0)
7222 Type::add_interface_methods_for_type(type, field_indexes, depth, methods);
7223 }
7224
7225 // Add the local methods for the named type NT to *METHODS. The
7226 // parameters are as for add_methods_to_type.
7227
7228 void
7229 Type::add_local_methods_for_type(const Named_type* nt,
7230 const Method::Field_indexes* field_indexes,
7231 unsigned int depth,
7232 bool is_embedded_pointer,
7233 bool needs_stub_method,
7234 Methods** methods)
7235 {
7236 const Bindings* local_methods = nt->local_methods();
7237 if (local_methods == NULL)
7238 return;
7239
7240 if (*methods == NULL)
7241 *methods = new Methods();
7242
7243 for (Bindings::const_declarations_iterator p =
7244 local_methods->begin_declarations();
7245 p != local_methods->end_declarations();
7246 ++p)
7247 {
7248 Named_object* no = p->second;
7249 bool is_value_method = (is_embedded_pointer
7250 || !Type::method_expects_pointer(no));
7251 Method* m = new Named_method(no, field_indexes, depth, is_value_method,
7252 (needs_stub_method
7253 || (depth > 0 && is_value_method)));
7254 if (!(*methods)->insert(no->name(), m))
7255 delete m;
7256 }
7257 }
7258
7259 // Add the embedded methods for TYPE to *METHODS. These are the
7260 // methods attached to anonymous fields. The parameters are as for
7261 // add_methods_to_type.
7262
7263 void
7264 Type::add_embedded_methods_for_type(const Type* type,
7265 const Method::Field_indexes* field_indexes,
7266 unsigned int depth,
7267 bool is_embedded_pointer,
7268 bool needs_stub_method,
7269 Types_seen* types_seen,
7270 Methods** methods)
7271 {
7272 // Look for anonymous fields in TYPE. TYPE has fields if it is a
7273 // struct.
7274 const Struct_type* st = type->struct_type();
7275 if (st == NULL)
7276 return;
7277
7278 const Struct_field_list* fields = st->fields();
7279 if (fields == NULL)
7280 return;
7281
7282 unsigned int i = 0;
7283 for (Struct_field_list::const_iterator pf = fields->begin();
7284 pf != fields->end();
7285 ++pf, ++i)
7286 {
7287 if (!pf->is_anonymous())
7288 continue;
7289
7290 Type* ftype = pf->type();
7291 bool is_pointer = false;
7292 if (ftype->points_to() != NULL)
7293 {
7294 ftype = ftype->points_to();
7295 is_pointer = true;
7296 }
7297 Named_type* fnt = ftype->named_type();
7298 if (fnt == NULL)
7299 {
7300 // This is an error, but it will be diagnosed elsewhere.
7301 continue;
7302 }
7303
7304 Method::Field_indexes* sub_field_indexes = new Method::Field_indexes();
7305 sub_field_indexes->next = field_indexes;
7306 sub_field_indexes->field_index = i;
7307
7308 Type::add_methods_for_type(fnt, sub_field_indexes, depth + 1,
7309 (is_embedded_pointer || is_pointer),
7310 (needs_stub_method
7311 || is_pointer
7312 || i > 0),
7313 types_seen,
7314 methods);
7315 }
7316 }
7317
7318 // If TYPE is an interface type, then add its method to *METHODS.
7319 // This is for interface methods attached to an anonymous field. The
7320 // parameters are as for add_methods_for_type.
7321
7322 void
7323 Type::add_interface_methods_for_type(const Type* type,
7324 const Method::Field_indexes* field_indexes,
7325 unsigned int depth,
7326 Methods** methods)
7327 {
7328 const Interface_type* it = type->interface_type();
7329 if (it == NULL)
7330 return;
7331
7332 const Typed_identifier_list* imethods = it->methods();
7333 if (imethods == NULL)
7334 return;
7335
7336 if (*methods == NULL)
7337 *methods = new Methods();
7338
7339 for (Typed_identifier_list::const_iterator pm = imethods->begin();
7340 pm != imethods->end();
7341 ++pm)
7342 {
7343 Function_type* fntype = pm->type()->function_type();
7344 gcc_assert(fntype != NULL && !fntype->is_method());
7345 fntype = fntype->copy_with_receiver(const_cast<Type*>(type));
7346 Method* m = new Interface_method(pm->name(), pm->location(), fntype,
7347 field_indexes, depth);
7348 if (!(*methods)->insert(pm->name(), m))
7349 delete m;
7350 }
7351 }
7352
7353 // Build stub methods for TYPE as needed. METHODS is the set of
7354 // methods for the type. A stub method may be needed when a type
7355 // inherits a method from an anonymous field. When we need the
7356 // address of the method, as in a type descriptor, we need to build a
7357 // little stub which does the required field dereferences and jumps to
7358 // the real method. LOCATION is the location of the type definition.
7359
7360 void
7361 Type::build_stub_methods(Gogo* gogo, const Type* type, const Methods* methods,
7362 source_location location)
7363 {
7364 if (methods == NULL)
7365 return;
7366 for (Methods::const_iterator p = methods->begin();
7367 p != methods->end();
7368 ++p)
7369 {
7370 Method* m = p->second;
7371 if (m->is_ambiguous() || !m->needs_stub_method())
7372 continue;
7373
7374 const std::string& name(p->first);
7375
7376 // Build a stub method.
7377
7378 const Function_type* fntype = m->type();
7379
7380 static unsigned int counter;
7381 char buf[100];
7382 snprintf(buf, sizeof buf, "$this%u", counter);
7383 ++counter;
7384
7385 Type* receiver_type = const_cast<Type*>(type);
7386 if (!m->is_value_method())
7387 receiver_type = Type::make_pointer_type(receiver_type);
7388 source_location receiver_location = m->receiver_location();
7389 Typed_identifier* receiver = new Typed_identifier(buf, receiver_type,
7390 receiver_location);
7391
7392 const Typed_identifier_list* fnparams = fntype->parameters();
7393 Typed_identifier_list* stub_params;
7394 if (fnparams == NULL || fnparams->empty())
7395 stub_params = NULL;
7396 else
7397 {
7398 // We give each stub parameter a unique name.
7399 stub_params = new Typed_identifier_list();
7400 for (Typed_identifier_list::const_iterator pp = fnparams->begin();
7401 pp != fnparams->end();
7402 ++pp)
7403 {
7404 char pbuf[100];
7405 snprintf(pbuf, sizeof pbuf, "$p%u", counter);
7406 stub_params->push_back(Typed_identifier(pbuf, pp->type(),
7407 pp->location()));
7408 ++counter;
7409 }
7410 }
7411
7412 const Typed_identifier_list* fnresults = fntype->results();
7413 Typed_identifier_list* stub_results;
7414 if (fnresults == NULL || fnresults->empty())
7415 stub_results = NULL;
7416 else
7417 {
7418 // We create the result parameters without any names, since
7419 // we won't refer to them.
7420 stub_results = new Typed_identifier_list();
7421 for (Typed_identifier_list::const_iterator pr = fnresults->begin();
7422 pr != fnresults->end();
7423 ++pr)
7424 stub_results->push_back(Typed_identifier("", pr->type(),
7425 pr->location()));
7426 }
7427
7428 Function_type* stub_type = Type::make_function_type(receiver,
7429 stub_params,
7430 stub_results,
7431 fntype->location());
7432 if (fntype->is_varargs())
7433 stub_type->set_is_varargs();
7434
7435 // We only create the function in the package which creates the
7436 // type.
7437 const Package* package;
7438 if (type->named_type() == NULL)
7439 package = NULL;
7440 else
7441 package = type->named_type()->named_object()->package();
7442 Named_object* stub;
7443 if (package != NULL)
7444 stub = Named_object::make_function_declaration(name, package,
7445 stub_type, location);
7446 else
7447 {
7448 stub = gogo->start_function(name, stub_type, false,
7449 fntype->location());
7450 Type::build_one_stub_method(gogo, m, buf, stub_params,
7451 fntype->is_varargs(), location);
7452 gogo->finish_function(fntype->location());
7453 }
7454
7455 m->set_stub_object(stub);
7456 }
7457 }
7458
7459 // Build a stub method which adjusts the receiver as required to call
7460 // METHOD. RECEIVER_NAME is the name we used for the receiver.
7461 // PARAMS is the list of function parameters.
7462
7463 void
7464 Type::build_one_stub_method(Gogo* gogo, Method* method,
7465 const char* receiver_name,
7466 const Typed_identifier_list* params,
7467 bool is_varargs,
7468 source_location location)
7469 {
7470 Named_object* receiver_object = gogo->lookup(receiver_name, NULL);
7471 gcc_assert(receiver_object != NULL);
7472
7473 Expression* expr = Expression::make_var_reference(receiver_object, location);
7474 expr = Type::apply_field_indexes(expr, method->field_indexes(), location);
7475 if (expr->type()->points_to() == NULL)
7476 expr = Expression::make_unary(OPERATOR_AND, expr, location);
7477
7478 Expression_list* arguments;
7479 if (params == NULL || params->empty())
7480 arguments = NULL;
7481 else
7482 {
7483 arguments = new Expression_list();
7484 for (Typed_identifier_list::const_iterator p = params->begin();
7485 p != params->end();
7486 ++p)
7487 {
7488 Named_object* param = gogo->lookup(p->name(), NULL);
7489 gcc_assert(param != NULL);
7490 Expression* param_ref = Expression::make_var_reference(param,
7491 location);
7492 arguments->push_back(param_ref);
7493 }
7494 }
7495
7496 Expression* func = method->bind_method(expr, location);
7497 gcc_assert(func != NULL);
7498 Call_expression* call = Expression::make_call(func, arguments, is_varargs,
7499 location);
7500 size_t count = call->result_count();
7501 if (count == 0)
7502 gogo->add_statement(Statement::make_statement(call));
7503 else
7504 {
7505 Expression_list* retvals = new Expression_list();
7506 if (count <= 1)
7507 retvals->push_back(call);
7508 else
7509 {
7510 for (size_t i = 0; i < count; ++i)
7511 retvals->push_back(Expression::make_call_result(call, i));
7512 }
7513 const Function* function = gogo->current_function()->func_value();
7514 const Typed_identifier_list* results = function->type()->results();
7515 Statement* retstat = Statement::make_return_statement(results, retvals,
7516 location);
7517 gogo->add_statement(retstat);
7518 }
7519 }
7520
7521 // Apply FIELD_INDEXES to EXPR. The field indexes have to be applied
7522 // in reverse order.
7523
7524 Expression*
7525 Type::apply_field_indexes(Expression* expr,
7526 const Method::Field_indexes* field_indexes,
7527 source_location location)
7528 {
7529 if (field_indexes == NULL)
7530 return expr;
7531 expr = Type::apply_field_indexes(expr, field_indexes->next, location);
7532 Struct_type* stype = expr->type()->deref()->struct_type();
7533 gcc_assert(stype != NULL
7534 && field_indexes->field_index < stype->field_count());
7535 if (expr->type()->struct_type() == NULL)
7536 {
7537 gcc_assert(expr->type()->points_to() != NULL);
7538 expr = Expression::make_unary(OPERATOR_MULT, expr, location);
7539 gcc_assert(expr->type()->struct_type() == stype);
7540 }
7541 return Expression::make_field_reference(expr, field_indexes->field_index,
7542 location);
7543 }
7544
7545 // Return whether NO is a method for which the receiver is a pointer.
7546
7547 bool
7548 Type::method_expects_pointer(const Named_object* no)
7549 {
7550 const Function_type *fntype;
7551 if (no->is_function())
7552 fntype = no->func_value()->type();
7553 else if (no->is_function_declaration())
7554 fntype = no->func_declaration_value()->type();
7555 else
7556 gcc_unreachable();
7557 return fntype->receiver()->type()->points_to() != NULL;
7558 }
7559
7560 // Given a set of methods for a type, METHODS, return the method NAME,
7561 // or NULL if there isn't one or if it is ambiguous. If IS_AMBIGUOUS
7562 // is not NULL, then set *IS_AMBIGUOUS to true if the method exists
7563 // but is ambiguous (and return NULL).
7564
7565 Method*
7566 Type::method_function(const Methods* methods, const std::string& name,
7567 bool* is_ambiguous)
7568 {
7569 if (is_ambiguous != NULL)
7570 *is_ambiguous = false;
7571 if (methods == NULL)
7572 return NULL;
7573 Methods::const_iterator p = methods->find(name);
7574 if (p == methods->end())
7575 return NULL;
7576 Method* m = p->second;
7577 if (m->is_ambiguous())
7578 {
7579 if (is_ambiguous != NULL)
7580 *is_ambiguous = true;
7581 return NULL;
7582 }
7583 return m;
7584 }
7585
7586 // Look for field or method NAME for TYPE. Return an Expression for
7587 // the field or method bound to EXPR. If there is no such field or
7588 // method, give an appropriate error and return an error expression.
7589
7590 Expression*
7591 Type::bind_field_or_method(Gogo* gogo, const Type* type, Expression* expr,
7592 const std::string& name,
7593 source_location location)
7594 {
7595 if (type->deref()->is_error_type())
7596 return Expression::make_error(location);
7597
7598 const Named_type* nt = type->named_type();
7599 if (nt == NULL)
7600 nt = type->deref()->named_type();
7601 const Struct_type* st = type->deref()->struct_type();
7602 const Interface_type* it = type->deref()->interface_type();
7603
7604 // If this is a pointer to a pointer, then it is possible that the
7605 // pointed-to type has methods.
7606 if (nt == NULL
7607 && st == NULL
7608 && it == NULL
7609 && type->points_to() != NULL
7610 && type->points_to()->points_to() != NULL)
7611 {
7612 expr = Expression::make_unary(OPERATOR_MULT, expr, location);
7613 type = type->points_to();
7614 nt = type->points_to()->named_type();
7615 st = type->points_to()->struct_type();
7616 it = type->points_to()->interface_type();
7617 }
7618
7619 bool receiver_can_be_pointer = (expr->type()->points_to() != NULL
7620 || expr->is_addressable());
7621 bool is_method = false;
7622 bool found_pointer_method = false;
7623 std::string ambig1;
7624 std::string ambig2;
7625 if (Type::find_field_or_method(type, name, receiver_can_be_pointer, NULL,
7626 &is_method, &found_pointer_method,
7627 &ambig1, &ambig2))
7628 {
7629 Expression* ret;
7630 if (!is_method)
7631 {
7632 gcc_assert(st != NULL);
7633 if (type->struct_type() == NULL)
7634 {
7635 gcc_assert(type->points_to() != NULL);
7636 expr = Expression::make_unary(OPERATOR_MULT, expr,
7637 location);
7638 gcc_assert(expr->type()->struct_type() == st);
7639 }
7640 ret = st->field_reference(expr, name, location);
7641 }
7642 else if (it != NULL && it->find_method(name) != NULL)
7643 ret = Expression::make_interface_field_reference(expr, name,
7644 location);
7645 else
7646 {
7647 Method* m;
7648 if (nt != NULL)
7649 m = nt->method_function(name, NULL);
7650 else if (st != NULL)
7651 m = st->method_function(name, NULL);
7652 else
7653 gcc_unreachable();
7654 gcc_assert(m != NULL);
7655 if (!m->is_value_method() && expr->type()->points_to() == NULL)
7656 expr = Expression::make_unary(OPERATOR_AND, expr, location);
7657 ret = m->bind_method(expr, location);
7658 }
7659 gcc_assert(ret != NULL);
7660 return ret;
7661 }
7662 else
7663 {
7664 if (!ambig1.empty())
7665 error_at(location, "%qs is ambiguous via %qs and %qs",
7666 Gogo::message_name(name).c_str(),
7667 Gogo::message_name(ambig1).c_str(),
7668 Gogo::message_name(ambig2).c_str());
7669 else if (found_pointer_method)
7670 error_at(location, "method requires a pointer");
7671 else if (nt == NULL && st == NULL && it == NULL)
7672 error_at(location,
7673 ("reference to field %qs in object which "
7674 "has no fields or methods"),
7675 Gogo::message_name(name).c_str());
7676 else
7677 {
7678 bool is_unexported;
7679 if (!Gogo::is_hidden_name(name))
7680 is_unexported = false;
7681 else
7682 {
7683 std::string unpacked = Gogo::unpack_hidden_name(name);
7684 is_unexported = Type::is_unexported_field_or_method(gogo, type,
7685 unpacked);
7686 }
7687 if (is_unexported)
7688 error_at(location, "reference to unexported field or method %qs",
7689 Gogo::message_name(name).c_str());
7690 else
7691 error_at(location, "reference to undefined field or method %qs",
7692 Gogo::message_name(name).c_str());
7693 }
7694 return Expression::make_error(location);
7695 }
7696 }
7697
7698 // Look in TYPE for a field or method named NAME, return true if one
7699 // is found. This looks through embedded anonymous fields and handles
7700 // ambiguity. If a method is found, sets *IS_METHOD to true;
7701 // otherwise, if a field is found, set it to false. If
7702 // RECEIVER_CAN_BE_POINTER is false, then the receiver is a value
7703 // whose address can not be taken. When returning false, this sets
7704 // *FOUND_POINTER_METHOD if we found a method we couldn't use because
7705 // it requires a pointer. LEVEL is used for recursive calls, and can
7706 // be NULL for a non-recursive call. When this function returns false
7707 // because it finds that the name is ambiguous, it will store a path
7708 // to the ambiguous names in *AMBIG1 and *AMBIG2. If the name is not
7709 // found at all, *AMBIG1 and *AMBIG2 will be unchanged.
7710
7711 // This function just returns whether or not there is a field or
7712 // method, and whether it is a field or method. It doesn't build an
7713 // expression to refer to it. If it is a method, we then look in the
7714 // list of all methods for the type. If it is a field, the search has
7715 // to be done again, looking only for fields, and building up the
7716 // expression as we go.
7717
7718 bool
7719 Type::find_field_or_method(const Type* type,
7720 const std::string& name,
7721 bool receiver_can_be_pointer,
7722 int* level,
7723 bool* is_method,
7724 bool* found_pointer_method,
7725 std::string* ambig1,
7726 std::string* ambig2)
7727 {
7728 // Named types can have locally defined methods.
7729 const Named_type* nt = type->named_type();
7730 if (nt == NULL && type->points_to() != NULL)
7731 nt = type->points_to()->named_type();
7732 if (nt != NULL)
7733 {
7734 Named_object* no = nt->find_local_method(name);
7735 if (no != NULL)
7736 {
7737 if (receiver_can_be_pointer || !Type::method_expects_pointer(no))
7738 {
7739 *is_method = true;
7740 return true;
7741 }
7742
7743 // Record that we have found a pointer method in order to
7744 // give a better error message if we don't find anything
7745 // else.
7746 *found_pointer_method = true;
7747 }
7748 }
7749
7750 // Interface types can have methods.
7751 const Interface_type* it = type->deref()->interface_type();
7752 if (it != NULL && it->find_method(name) != NULL)
7753 {
7754 *is_method = true;
7755 return true;
7756 }
7757
7758 // Struct types can have fields. They can also inherit fields and
7759 // methods from anonymous fields.
7760 const Struct_type* st = type->deref()->struct_type();
7761 if (st == NULL)
7762 return false;
7763 const Struct_field_list* fields = st->fields();
7764 if (fields == NULL)
7765 return false;
7766
7767 int found_level = 0;
7768 bool found_is_method = false;
7769 std::string found_ambig1;
7770 std::string found_ambig2;
7771 const Struct_field* found_parent = NULL;
7772 for (Struct_field_list::const_iterator pf = fields->begin();
7773 pf != fields->end();
7774 ++pf)
7775 {
7776 if (pf->field_name() == name)
7777 {
7778 *is_method = false;
7779 return true;
7780 }
7781
7782 if (!pf->is_anonymous())
7783 continue;
7784
7785 if (pf->type()->deref()->is_error_type()
7786 || pf->type()->deref()->is_undefined())
7787 continue;
7788
7789 Named_type* fnt = pf->type()->deref()->named_type();
7790 gcc_assert(fnt != NULL);
7791
7792 int sublevel = level == NULL ? 1 : *level + 1;
7793 bool sub_is_method;
7794 std::string subambig1;
7795 std::string subambig2;
7796 bool subfound = Type::find_field_or_method(fnt,
7797 name,
7798 receiver_can_be_pointer,
7799 &sublevel,
7800 &sub_is_method,
7801 found_pointer_method,
7802 &subambig1,
7803 &subambig2);
7804 if (!subfound)
7805 {
7806 if (!subambig1.empty())
7807 {
7808 // The name was found via this field, but is ambiguous.
7809 // if the ambiguity is lower or at the same level as
7810 // anything else we have already found, then we want to
7811 // pass the ambiguity back to the caller.
7812 if (found_level == 0 || sublevel <= found_level)
7813 {
7814 found_ambig1 = pf->field_name() + '.' + subambig1;
7815 found_ambig2 = pf->field_name() + '.' + subambig2;
7816 found_level = sublevel;
7817 }
7818 }
7819 }
7820 else
7821 {
7822 // The name was found via this field. Use the level to see
7823 // if we want to use this one, or whether it introduces an
7824 // ambiguity.
7825 if (found_level == 0 || sublevel < found_level)
7826 {
7827 found_level = sublevel;
7828 found_is_method = sub_is_method;
7829 found_ambig1.clear();
7830 found_ambig2.clear();
7831 found_parent = &*pf;
7832 }
7833 else if (sublevel > found_level)
7834 ;
7835 else if (found_ambig1.empty())
7836 {
7837 // We found an ambiguity.
7838 gcc_assert(found_parent != NULL);
7839 found_ambig1 = found_parent->field_name();
7840 found_ambig2 = pf->field_name();
7841 }
7842 else
7843 {
7844 // We found an ambiguity, but we already know of one.
7845 // Just report the earlier one.
7846 }
7847 }
7848 }
7849
7850 // Here if we didn't find anything FOUND_LEVEL is 0. If we found
7851 // something ambiguous, FOUND_LEVEL is not 0 and FOUND_AMBIG1 and
7852 // FOUND_AMBIG2 are not empty. If we found the field, FOUND_LEVEL
7853 // is not 0 and FOUND_AMBIG1 and FOUND_AMBIG2 are empty.
7854
7855 if (found_level == 0)
7856 return false;
7857 else if (!found_ambig1.empty())
7858 {
7859 gcc_assert(!found_ambig1.empty());
7860 ambig1->assign(found_ambig1);
7861 ambig2->assign(found_ambig2);
7862 if (level != NULL)
7863 *level = found_level;
7864 return false;
7865 }
7866 else
7867 {
7868 if (level != NULL)
7869 *level = found_level;
7870 *is_method = found_is_method;
7871 return true;
7872 }
7873 }
7874
7875 // Return whether NAME is an unexported field or method for TYPE.
7876
7877 bool
7878 Type::is_unexported_field_or_method(Gogo* gogo, const Type* type,
7879 const std::string& name)
7880 {
7881 type = type->deref();
7882
7883 const Named_type* nt = type->named_type();
7884 if (nt != NULL && nt->is_unexported_local_method(gogo, name))
7885 return true;
7886
7887 const Interface_type* it = type->interface_type();
7888 if (it != NULL && it->is_unexported_method(gogo, name))
7889 return true;
7890
7891 const Struct_type* st = type->struct_type();
7892 if (st != NULL && st->is_unexported_local_field(gogo, name))
7893 return true;
7894
7895 if (st == NULL)
7896 return false;
7897
7898 const Struct_field_list* fields = st->fields();
7899 if (fields == NULL)
7900 return false;
7901
7902 for (Struct_field_list::const_iterator pf = fields->begin();
7903 pf != fields->end();
7904 ++pf)
7905 {
7906 if (pf->is_anonymous()
7907 && (!pf->type()->deref()->is_error_type()
7908 && !pf->type()->deref()->is_undefined()))
7909 {
7910 Named_type* subtype = pf->type()->deref()->named_type();
7911 gcc_assert(subtype != NULL);
7912 if (Type::is_unexported_field_or_method(gogo, subtype, name))
7913 return true;
7914 }
7915 }
7916
7917 return false;
7918 }
7919
7920 // Class Forward_declaration.
7921
7922 Forward_declaration_type::Forward_declaration_type(Named_object* named_object)
7923 : Type(TYPE_FORWARD),
7924 named_object_(named_object->resolve()), warned_(false)
7925 {
7926 gcc_assert(this->named_object_->is_unknown()
7927 || this->named_object_->is_type_declaration());
7928 }
7929
7930 // Return the named object.
7931
7932 Named_object*
7933 Forward_declaration_type::named_object()
7934 {
7935 return this->named_object_->resolve();
7936 }
7937
7938 const Named_object*
7939 Forward_declaration_type::named_object() const
7940 {
7941 return this->named_object_->resolve();
7942 }
7943
7944 // Return the name of the forward declared type.
7945
7946 const std::string&
7947 Forward_declaration_type::name() const
7948 {
7949 return this->named_object()->name();
7950 }
7951
7952 // Warn about a use of a type which has been declared but not defined.
7953
7954 void
7955 Forward_declaration_type::warn() const
7956 {
7957 Named_object* no = this->named_object_->resolve();
7958 if (no->is_unknown())
7959 {
7960 // The name was not defined anywhere.
7961 if (!this->warned_)
7962 {
7963 error_at(this->named_object_->location(),
7964 "use of undefined type %qs",
7965 no->message_name().c_str());
7966 this->warned_ = true;
7967 }
7968 }
7969 else if (no->is_type_declaration())
7970 {
7971 // The name was seen as a type, but the type was never defined.
7972 if (no->type_declaration_value()->using_type())
7973 {
7974 error_at(this->named_object_->location(),
7975 "use of undefined type %qs",
7976 no->message_name().c_str());
7977 this->warned_ = true;
7978 }
7979 }
7980 else
7981 {
7982 // The name was defined, but not as a type.
7983 if (!this->warned_)
7984 {
7985 error_at(this->named_object_->location(), "expected type");
7986 this->warned_ = true;
7987 }
7988 }
7989 }
7990
7991 // Get the base type of a declaration. This gives an error if the
7992 // type has not yet been defined.
7993
7994 Type*
7995 Forward_declaration_type::real_type()
7996 {
7997 if (this->is_defined())
7998 return this->named_object()->type_value();
7999 else
8000 {
8001 this->warn();
8002 return Type::make_error_type();
8003 }
8004 }
8005
8006 const Type*
8007 Forward_declaration_type::real_type() const
8008 {
8009 if (this->is_defined())
8010 return this->named_object()->type_value();
8011 else
8012 {
8013 this->warn();
8014 return Type::make_error_type();
8015 }
8016 }
8017
8018 // Return whether the base type is defined.
8019
8020 bool
8021 Forward_declaration_type::is_defined() const
8022 {
8023 return this->named_object()->is_type();
8024 }
8025
8026 // Add a method. This is used when methods are defined before the
8027 // type.
8028
8029 Named_object*
8030 Forward_declaration_type::add_method(const std::string& name,
8031 Function* function)
8032 {
8033 Named_object* no = this->named_object();
8034 if (no->is_unknown())
8035 no->declare_as_type();
8036 return no->type_declaration_value()->add_method(name, function);
8037 }
8038
8039 // Add a method declaration. This is used when methods are declared
8040 // before the type.
8041
8042 Named_object*
8043 Forward_declaration_type::add_method_declaration(const std::string& name,
8044 Function_type* type,
8045 source_location location)
8046 {
8047 Named_object* no = this->named_object();
8048 if (no->is_unknown())
8049 no->declare_as_type();
8050 Type_declaration* td = no->type_declaration_value();
8051 return td->add_method_declaration(name, type, location);
8052 }
8053
8054 // Traversal.
8055
8056 int
8057 Forward_declaration_type::do_traverse(Traverse* traverse)
8058 {
8059 if (this->is_defined()
8060 && Type::traverse(this->real_type(), traverse) == TRAVERSE_EXIT)
8061 return TRAVERSE_EXIT;
8062 return TRAVERSE_CONTINUE;
8063 }
8064
8065 // Get a tree for the type.
8066
8067 tree
8068 Forward_declaration_type::do_get_tree(Gogo* gogo)
8069 {
8070 if (this->is_defined())
8071 return Type::get_named_type_tree(gogo, this->real_type());
8072
8073 if (this->warned_)
8074 return error_mark_node;
8075
8076 // We represent an undefined type as a struct with no fields. That
8077 // should work fine for the middle-end, since the same case can
8078 // arise in C.
8079 Named_object* no = this->named_object();
8080 tree type_tree = make_node(RECORD_TYPE);
8081 tree id = no->get_id(gogo);
8082 tree decl = build_decl(no->location(), TYPE_DECL, id, type_tree);
8083 TYPE_NAME(type_tree) = decl;
8084 layout_type(type_tree);
8085 return type_tree;
8086 }
8087
8088 // Build a type descriptor for a forwarded type.
8089
8090 Expression*
8091 Forward_declaration_type::do_type_descriptor(Gogo* gogo, Named_type* name)
8092 {
8093 if (!this->is_defined())
8094 return Expression::make_nil(BUILTINS_LOCATION);
8095 else
8096 {
8097 Type* t = this->real_type();
8098 if (name != NULL)
8099 return this->named_type_descriptor(gogo, t, name);
8100 else
8101 return Expression::make_type_descriptor(t, BUILTINS_LOCATION);
8102 }
8103 }
8104
8105 // The reflection string.
8106
8107 void
8108 Forward_declaration_type::do_reflection(Gogo* gogo, std::string* ret) const
8109 {
8110 this->append_reflection(this->real_type(), gogo, ret);
8111 }
8112
8113 // The mangled name.
8114
8115 void
8116 Forward_declaration_type::do_mangled_name(Gogo* gogo, std::string* ret) const
8117 {
8118 if (this->is_defined())
8119 this->append_mangled_name(this->real_type(), gogo, ret);
8120 else
8121 {
8122 const Named_object* no = this->named_object();
8123 std::string name;
8124 if (no->package() == NULL)
8125 name = gogo->package_name();
8126 else
8127 name = no->package()->name();
8128 name += '.';
8129 name += Gogo::unpack_hidden_name(no->name());
8130 char buf[20];
8131 snprintf(buf, sizeof buf, "N%u_",
8132 static_cast<unsigned int>(name.length()));
8133 ret->append(buf);
8134 ret->append(name);
8135 }
8136 }
8137
8138 // Export a forward declaration. This can happen when a defined type
8139 // refers to a type which is only declared (and is presumably defined
8140 // in some other file in the same package).
8141
8142 void
8143 Forward_declaration_type::do_export(Export*) const
8144 {
8145 // If there is a base type, that should be exported instead of this.
8146 gcc_assert(!this->is_defined());
8147
8148 // We don't output anything.
8149 }
8150
8151 // Make a forward declaration.
8152
8153 Type*
8154 Type::make_forward_declaration(Named_object* named_object)
8155 {
8156 return new Forward_declaration_type(named_object);
8157 }
8158
8159 // Class Typed_identifier_list.
8160
8161 // Sort the entries by name.
8162
8163 struct Typed_identifier_list_sort
8164 {
8165 public:
8166 bool
8167 operator()(const Typed_identifier& t1, const Typed_identifier& t2) const
8168 { return t1.name() < t2.name(); }
8169 };
8170
8171 void
8172 Typed_identifier_list::sort_by_name()
8173 {
8174 std::sort(this->entries_.begin(), this->entries_.end(),
8175 Typed_identifier_list_sort());
8176 }
8177
8178 // Traverse types.
8179
8180 int
8181 Typed_identifier_list::traverse(Traverse* traverse)
8182 {
8183 for (Typed_identifier_list::const_iterator p = this->begin();
8184 p != this->end();
8185 ++p)
8186 {
8187 if (Type::traverse(p->type(), traverse) == TRAVERSE_EXIT)
8188 return TRAVERSE_EXIT;
8189 }
8190 return TRAVERSE_CONTINUE;
8191 }
8192
8193 // Copy the list.
8194
8195 Typed_identifier_list*
8196 Typed_identifier_list::copy() const
8197 {
8198 Typed_identifier_list* ret = new Typed_identifier_list();
8199 for (Typed_identifier_list::const_iterator p = this->begin();
8200 p != this->end();
8201 ++p)
8202 ret->push_back(Typed_identifier(p->name(), p->type(), p->location()));
8203 return ret;
8204 }