Fix struct with array of struct with field that points to first struct.
[gcc.git] / gcc / go / gofrontend / types.cc
1 // types.cc -- Go frontend types.
2
3 // Copyright 2009 The Go Authors. All rights reserved.
4 // Use of this source code is governed by a BSD-style
5 // license that can be found in the LICENSE file.
6
7 #include "go-system.h"
8
9 #include <gmp.h>
10
11 #ifndef ENABLE_BUILD_WITH_CXX
12 extern "C"
13 {
14 #endif
15
16 #include "toplev.h"
17 #include "intl.h"
18 #include "tree.h"
19 #include "gimple.h"
20 #include "real.h"
21 #include "convert.h"
22
23 #ifndef ENABLE_BUILD_WITH_CXX
24 }
25 #endif
26
27 #include "go-c.h"
28 #include "gogo.h"
29 #include "operator.h"
30 #include "expressions.h"
31 #include "statements.h"
32 #include "export.h"
33 #include "import.h"
34 #include "types.h"
35
36 // Class Type.
37
38 Type::Type(Type_classification classification)
39 : classification_(classification), tree_(NULL_TREE),
40 type_descriptor_decl_(NULL_TREE)
41 {
42 }
43
44 Type::~Type()
45 {
46 }
47
48 // Get the base type for a type--skip names and forward declarations.
49
50 Type*
51 Type::base()
52 {
53 switch (this->classification_)
54 {
55 case TYPE_NAMED:
56 return this->named_type()->named_base();
57 case TYPE_FORWARD:
58 return this->forward_declaration_type()->real_type()->base();
59 default:
60 return this;
61 }
62 }
63
64 const Type*
65 Type::base() const
66 {
67 switch (this->classification_)
68 {
69 case TYPE_NAMED:
70 return this->named_type()->named_base();
71 case TYPE_FORWARD:
72 return this->forward_declaration_type()->real_type()->base();
73 default:
74 return this;
75 }
76 }
77
78 // Skip defined forward declarations.
79
80 Type*
81 Type::forwarded()
82 {
83 Type* t = this;
84 Forward_declaration_type* ftype = t->forward_declaration_type();
85 while (ftype != NULL && ftype->is_defined())
86 {
87 t = ftype->real_type();
88 ftype = t->forward_declaration_type();
89 }
90 return t;
91 }
92
93 const Type*
94 Type::forwarded() const
95 {
96 const Type* t = this;
97 const Forward_declaration_type* ftype = t->forward_declaration_type();
98 while (ftype != NULL && ftype->is_defined())
99 {
100 t = ftype->real_type();
101 ftype = t->forward_declaration_type();
102 }
103 return t;
104 }
105
106 // If this is a named type, return it. Otherwise, return NULL.
107
108 Named_type*
109 Type::named_type()
110 {
111 return this->forwarded()->convert_no_base<Named_type, TYPE_NAMED>();
112 }
113
114 const Named_type*
115 Type::named_type() const
116 {
117 return this->forwarded()->convert_no_base<const Named_type, TYPE_NAMED>();
118 }
119
120 // Return true if this type is not defined.
121
122 bool
123 Type::is_undefined() const
124 {
125 return this->forwarded()->forward_declaration_type() != NULL;
126 }
127
128 // Return true if this is a basic type: a type which is not composed
129 // of other types, and is not void.
130
131 bool
132 Type::is_basic_type() const
133 {
134 switch (this->classification_)
135 {
136 case TYPE_INTEGER:
137 case TYPE_FLOAT:
138 case TYPE_COMPLEX:
139 case TYPE_BOOLEAN:
140 case TYPE_STRING:
141 case TYPE_NIL:
142 return true;
143
144 case TYPE_ERROR:
145 case TYPE_VOID:
146 case TYPE_FUNCTION:
147 case TYPE_POINTER:
148 case TYPE_STRUCT:
149 case TYPE_ARRAY:
150 case TYPE_MAP:
151 case TYPE_CHANNEL:
152 case TYPE_INTERFACE:
153 return false;
154
155 case TYPE_NAMED:
156 case TYPE_FORWARD:
157 return this->base()->is_basic_type();
158
159 default:
160 gcc_unreachable();
161 }
162 }
163
164 // Return true if this is an abstract type.
165
166 bool
167 Type::is_abstract() const
168 {
169 switch (this->classification())
170 {
171 case TYPE_INTEGER:
172 return this->integer_type()->is_abstract();
173 case TYPE_FLOAT:
174 return this->float_type()->is_abstract();
175 case TYPE_COMPLEX:
176 return this->complex_type()->is_abstract();
177 case TYPE_STRING:
178 return this->is_abstract_string_type();
179 case TYPE_BOOLEAN:
180 return this->is_abstract_boolean_type();
181 default:
182 return false;
183 }
184 }
185
186 // Return a non-abstract version of an abstract type.
187
188 Type*
189 Type::make_non_abstract_type()
190 {
191 gcc_assert(this->is_abstract());
192 switch (this->classification())
193 {
194 case TYPE_INTEGER:
195 return Type::lookup_integer_type("int");
196 case TYPE_FLOAT:
197 return Type::lookup_float_type("float64");
198 case TYPE_COMPLEX:
199 return Type::lookup_complex_type("complex128");
200 case TYPE_STRING:
201 return Type::lookup_string_type();
202 case TYPE_BOOLEAN:
203 return Type::lookup_bool_type();
204 default:
205 gcc_unreachable();
206 }
207 }
208
209 // Return true if this is an error type. Don't give an error if we
210 // try to dereference an undefined forwarding type, as this is called
211 // in the parser when the type may legitimately be undefined.
212
213 bool
214 Type::is_error_type() const
215 {
216 const Type* t = this->forwarded();
217 // Note that we return false for an undefined forward type.
218 switch (t->classification_)
219 {
220 case TYPE_ERROR:
221 return true;
222 case TYPE_NAMED:
223 return t->named_type()->is_named_error_type();
224 default:
225 return false;
226 }
227 }
228
229 // If this is a pointer type, return the type to which it points.
230 // Otherwise, return NULL.
231
232 Type*
233 Type::points_to() const
234 {
235 const Pointer_type* ptype = this->convert<const Pointer_type,
236 TYPE_POINTER>();
237 return ptype == NULL ? NULL : ptype->points_to();
238 }
239
240 // Return whether this is an open array type.
241
242 bool
243 Type::is_open_array_type() const
244 {
245 return this->array_type() != NULL && this->array_type()->length() == NULL;
246 }
247
248 // Return whether this is the predeclared constant nil being used as a
249 // type.
250
251 bool
252 Type::is_nil_constant_as_type() const
253 {
254 const Type* t = this->forwarded();
255 if (t->forward_declaration_type() != NULL)
256 {
257 const Named_object* no = t->forward_declaration_type()->named_object();
258 if (no->is_unknown())
259 no = no->unknown_value()->real_named_object();
260 if (no != NULL
261 && no->is_const()
262 && no->const_value()->expr()->is_nil_expression())
263 return true;
264 }
265 return false;
266 }
267
268 // Traverse a type.
269
270 int
271 Type::traverse(Type* type, Traverse* traverse)
272 {
273 gcc_assert((traverse->traverse_mask() & Traverse::traverse_types) != 0
274 || (traverse->traverse_mask()
275 & Traverse::traverse_expressions) != 0);
276 if (traverse->remember_type(type))
277 {
278 // We have already traversed this type.
279 return TRAVERSE_CONTINUE;
280 }
281 if ((traverse->traverse_mask() & Traverse::traverse_types) != 0)
282 {
283 int t = traverse->type(type);
284 if (t == TRAVERSE_EXIT)
285 return TRAVERSE_EXIT;
286 else if (t == TRAVERSE_SKIP_COMPONENTS)
287 return TRAVERSE_CONTINUE;
288 }
289 // An array type has an expression which we need to traverse if
290 // traverse_expressions is set.
291 if (type->do_traverse(traverse) == TRAVERSE_EXIT)
292 return TRAVERSE_EXIT;
293 return TRAVERSE_CONTINUE;
294 }
295
296 // Default implementation for do_traverse for child class.
297
298 int
299 Type::do_traverse(Traverse*)
300 {
301 return TRAVERSE_CONTINUE;
302 }
303
304 // Return whether two types are identical. If ERRORS_ARE_IDENTICAL,
305 // then return true for all erroneous types; this is used to avoid
306 // cascading errors. If REASON is not NULL, optionally set *REASON to
307 // the reason the types are not identical.
308
309 bool
310 Type::are_identical(const Type* t1, const Type* t2, bool errors_are_identical,
311 std::string* reason)
312 {
313 if (t1 == NULL || t2 == NULL)
314 {
315 // Something is wrong.
316 return errors_are_identical ? true : t1 == t2;
317 }
318
319 // Skip defined forward declarations.
320 t1 = t1->forwarded();
321 t2 = t2->forwarded();
322
323 if (t1 == t2)
324 return true;
325
326 // An undefined forward declaration is an error.
327 if (t1->forward_declaration_type() != NULL
328 || t2->forward_declaration_type() != NULL)
329 return errors_are_identical;
330
331 // Avoid cascading errors with error types.
332 if (t1->is_error_type() || t2->is_error_type())
333 {
334 if (errors_are_identical)
335 return true;
336 return t1->is_error_type() && t2->is_error_type();
337 }
338
339 // Get a good reason for the sink type. Note that the sink type on
340 // the left hand side of an assignment is handled in are_assignable.
341 if (t1->is_sink_type() || t2->is_sink_type())
342 {
343 if (reason != NULL)
344 *reason = "invalid use of _";
345 return false;
346 }
347
348 // A named type is only identical to itself.
349 if (t1->named_type() != NULL || t2->named_type() != NULL)
350 return false;
351
352 // Check type shapes.
353 if (t1->classification() != t2->classification())
354 return false;
355
356 switch (t1->classification())
357 {
358 case TYPE_VOID:
359 case TYPE_BOOLEAN:
360 case TYPE_STRING:
361 case TYPE_NIL:
362 // These types are always identical.
363 return true;
364
365 case TYPE_INTEGER:
366 return t1->integer_type()->is_identical(t2->integer_type());
367
368 case TYPE_FLOAT:
369 return t1->float_type()->is_identical(t2->float_type());
370
371 case TYPE_COMPLEX:
372 return t1->complex_type()->is_identical(t2->complex_type());
373
374 case TYPE_FUNCTION:
375 return t1->function_type()->is_identical(t2->function_type(),
376 false,
377 errors_are_identical,
378 reason);
379
380 case TYPE_POINTER:
381 return Type::are_identical(t1->points_to(), t2->points_to(),
382 errors_are_identical, reason);
383
384 case TYPE_STRUCT:
385 return t1->struct_type()->is_identical(t2->struct_type(),
386 errors_are_identical);
387
388 case TYPE_ARRAY:
389 return t1->array_type()->is_identical(t2->array_type(),
390 errors_are_identical);
391
392 case TYPE_MAP:
393 return t1->map_type()->is_identical(t2->map_type(),
394 errors_are_identical);
395
396 case TYPE_CHANNEL:
397 return t1->channel_type()->is_identical(t2->channel_type(),
398 errors_are_identical);
399
400 case TYPE_INTERFACE:
401 return t1->interface_type()->is_identical(t2->interface_type(),
402 errors_are_identical);
403
404 case TYPE_CALL_MULTIPLE_RESULT:
405 if (reason != NULL)
406 *reason = "invalid use of multiple value function call";
407 return false;
408
409 default:
410 gcc_unreachable();
411 }
412 }
413
414 // Return true if it's OK to have a binary operation with types LHS
415 // and RHS. This is not used for shifts or comparisons.
416
417 bool
418 Type::are_compatible_for_binop(const Type* lhs, const Type* rhs)
419 {
420 if (Type::are_identical(lhs, rhs, true, NULL))
421 return true;
422
423 // A constant of abstract bool type may be mixed with any bool type.
424 if ((rhs->is_abstract_boolean_type() && lhs->is_boolean_type())
425 || (lhs->is_abstract_boolean_type() && rhs->is_boolean_type()))
426 return true;
427
428 // A constant of abstract string type may be mixed with any string
429 // type.
430 if ((rhs->is_abstract_string_type() && lhs->is_string_type())
431 || (lhs->is_abstract_string_type() && rhs->is_string_type()))
432 return true;
433
434 lhs = lhs->base();
435 rhs = rhs->base();
436
437 // A constant of abstract integer, float, or complex type may be
438 // mixed with an integer, float, or complex type.
439 if ((rhs->is_abstract()
440 && (rhs->integer_type() != NULL
441 || rhs->float_type() != NULL
442 || rhs->complex_type() != NULL)
443 && (lhs->integer_type() != NULL
444 || lhs->float_type() != NULL
445 || lhs->complex_type() != NULL))
446 || (lhs->is_abstract()
447 && (lhs->integer_type() != NULL
448 || lhs->float_type() != NULL
449 || lhs->complex_type() != NULL)
450 && (rhs->integer_type() != NULL
451 || rhs->float_type() != NULL
452 || rhs->complex_type() != NULL)))
453 return true;
454
455 // The nil type may be compared to a pointer, an interface type, a
456 // slice type, a channel type, a map type, or a function type.
457 if (lhs->is_nil_type()
458 && (rhs->points_to() != NULL
459 || rhs->interface_type() != NULL
460 || rhs->is_open_array_type()
461 || rhs->map_type() != NULL
462 || rhs->channel_type() != NULL
463 || rhs->function_type() != NULL))
464 return true;
465 if (rhs->is_nil_type()
466 && (lhs->points_to() != NULL
467 || lhs->interface_type() != NULL
468 || lhs->is_open_array_type()
469 || lhs->map_type() != NULL
470 || lhs->channel_type() != NULL
471 || lhs->function_type() != NULL))
472 return true;
473
474 return false;
475 }
476
477 // Return true if a value with type RHS may be assigned to a variable
478 // with type LHS. If REASON is not NULL, set *REASON to the reason
479 // the types are not assignable.
480
481 bool
482 Type::are_assignable(const Type* lhs, const Type* rhs, std::string* reason)
483 {
484 // Do some checks first. Make sure the types are defined.
485 if (rhs != NULL
486 && rhs->forwarded()->forward_declaration_type() == NULL
487 && rhs->is_void_type())
488 {
489 if (reason != NULL)
490 *reason = "non-value used as value";
491 return false;
492 }
493
494 if (lhs != NULL && lhs->forwarded()->forward_declaration_type() == NULL)
495 {
496 // Any value may be assigned to the blank identifier.
497 if (lhs->is_sink_type())
498 return true;
499
500 // All fields of a struct must be exported, or the assignment
501 // must be in the same package.
502 if (rhs != NULL && rhs->forwarded()->forward_declaration_type() == NULL)
503 {
504 if (lhs->has_hidden_fields(NULL, reason)
505 || rhs->has_hidden_fields(NULL, reason))
506 return false;
507 }
508 }
509
510 // Identical types are assignable.
511 if (Type::are_identical(lhs, rhs, true, reason))
512 return true;
513
514 // The types are assignable if they have identical underlying types
515 // and either LHS or RHS is not a named type.
516 if (((lhs->named_type() != NULL && rhs->named_type() == NULL)
517 || (rhs->named_type() != NULL && lhs->named_type() == NULL))
518 && Type::are_identical(lhs->base(), rhs->base(), true, reason))
519 return true;
520
521 // The types are assignable if LHS is an interface type and RHS
522 // implements the required methods.
523 const Interface_type* lhs_interface_type = lhs->interface_type();
524 if (lhs_interface_type != NULL)
525 {
526 if (lhs_interface_type->implements_interface(rhs, reason))
527 return true;
528 const Interface_type* rhs_interface_type = rhs->interface_type();
529 if (rhs_interface_type != NULL
530 && lhs_interface_type->is_compatible_for_assign(rhs_interface_type,
531 reason))
532 return true;
533 }
534
535 // The type are assignable if RHS is a bidirectional channel type,
536 // LHS is a channel type, they have identical element types, and
537 // either LHS or RHS is not a named type.
538 if (lhs->channel_type() != NULL
539 && rhs->channel_type() != NULL
540 && rhs->channel_type()->may_send()
541 && rhs->channel_type()->may_receive()
542 && (lhs->named_type() == NULL || rhs->named_type() == NULL)
543 && Type::are_identical(lhs->channel_type()->element_type(),
544 rhs->channel_type()->element_type(),
545 true,
546 reason))
547 return true;
548
549 // The nil type may be assigned to a pointer, function, slice, map,
550 // channel, or interface type.
551 if (rhs->is_nil_type()
552 && (lhs->points_to() != NULL
553 || lhs->function_type() != NULL
554 || lhs->is_open_array_type()
555 || lhs->map_type() != NULL
556 || lhs->channel_type() != NULL
557 || lhs->interface_type() != NULL))
558 return true;
559
560 // An untyped numeric constant may be assigned to a numeric type if
561 // it is representable in that type.
562 if ((rhs->is_abstract()
563 && (rhs->integer_type() != NULL
564 || rhs->float_type() != NULL
565 || rhs->complex_type() != NULL))
566 && (lhs->integer_type() != NULL
567 || lhs->float_type() != NULL
568 || lhs->complex_type() != NULL))
569 return true;
570
571 // Give some better error messages.
572 if (reason != NULL && reason->empty())
573 {
574 if (rhs->interface_type() != NULL)
575 reason->assign(_("need explicit conversion"));
576 else if (rhs->is_call_multiple_result_type())
577 reason->assign(_("multiple value function call in "
578 "single value context"));
579 else if (lhs->named_type() != NULL && rhs->named_type() != NULL)
580 {
581 size_t len = (lhs->named_type()->name().length()
582 + rhs->named_type()->name().length()
583 + 100);
584 char* buf = new char[len];
585 snprintf(buf, len, _("cannot use type %s as type %s"),
586 rhs->named_type()->message_name().c_str(),
587 lhs->named_type()->message_name().c_str());
588 reason->assign(buf);
589 delete[] buf;
590 }
591 }
592
593 return false;
594 }
595
596 // Return true if a value with type RHS may be converted to type LHS.
597 // If REASON is not NULL, set *REASON to the reason the types are not
598 // convertible.
599
600 bool
601 Type::are_convertible(const Type* lhs, const Type* rhs, std::string* reason)
602 {
603 // The types are convertible if they are assignable.
604 if (Type::are_assignable(lhs, rhs, reason))
605 return true;
606
607 // The types are convertible if they have identical underlying
608 // types.
609 if ((lhs->named_type() != NULL || rhs->named_type() != NULL)
610 && Type::are_identical(lhs->base(), rhs->base(), true, reason))
611 return true;
612
613 // The types are convertible if they are both unnamed pointer types
614 // and their pointer base types have identical underlying types.
615 if (lhs->named_type() == NULL
616 && rhs->named_type() == NULL
617 && lhs->points_to() != NULL
618 && rhs->points_to() != NULL
619 && (lhs->points_to()->named_type() != NULL
620 || rhs->points_to()->named_type() != NULL)
621 && Type::are_identical(lhs->points_to()->base(),
622 rhs->points_to()->base(),
623 true,
624 reason))
625 return true;
626
627 // Integer and floating point types are convertible to each other.
628 if ((lhs->integer_type() != NULL || lhs->float_type() != NULL)
629 && (rhs->integer_type() != NULL || rhs->float_type() != NULL))
630 return true;
631
632 // Complex types are convertible to each other.
633 if (lhs->complex_type() != NULL && rhs->complex_type() != NULL)
634 return true;
635
636 // An integer, or []byte, or []int, may be converted to a string.
637 if (lhs->is_string_type())
638 {
639 if (rhs->integer_type() != NULL)
640 return true;
641 if (rhs->is_open_array_type() && rhs->named_type() == NULL)
642 {
643 const Type* e = rhs->array_type()->element_type()->forwarded();
644 if (e->integer_type() != NULL
645 && (e == Type::lookup_integer_type("uint8")
646 || e == Type::lookup_integer_type("int")))
647 return true;
648 }
649 }
650
651 // A string may be converted to []byte or []int.
652 if (rhs->is_string_type()
653 && lhs->is_open_array_type()
654 && lhs->named_type() == NULL)
655 {
656 const Type* e = lhs->array_type()->element_type()->forwarded();
657 if (e->integer_type() != NULL
658 && (e == Type::lookup_integer_type("uint8")
659 || e == Type::lookup_integer_type("int")))
660 return true;
661 }
662
663 // An unsafe.Pointer type may be converted to any pointer type or to
664 // uintptr, and vice-versa.
665 if (lhs->is_unsafe_pointer_type()
666 && (rhs->points_to() != NULL
667 || (rhs->integer_type() != NULL
668 && rhs->forwarded() == Type::lookup_integer_type("uintptr"))))
669 return true;
670 if (rhs->is_unsafe_pointer_type()
671 && (lhs->points_to() != NULL
672 || (lhs->integer_type() != NULL
673 && lhs->forwarded() == Type::lookup_integer_type("uintptr"))))
674 return true;
675
676 // Give a better error message.
677 if (reason != NULL)
678 {
679 if (reason->empty())
680 *reason = "invalid type conversion";
681 else
682 {
683 std::string s = "invalid type conversion (";
684 s += *reason;
685 s += ')';
686 *reason = s;
687 }
688 }
689
690 return false;
691 }
692
693 // Return whether this type has any hidden fields. This is only a
694 // possibility for a few types.
695
696 bool
697 Type::has_hidden_fields(const Named_type* within, std::string* reason) const
698 {
699 switch (this->forwarded()->classification_)
700 {
701 case TYPE_NAMED:
702 return this->named_type()->named_type_has_hidden_fields(reason);
703 case TYPE_STRUCT:
704 return this->struct_type()->struct_has_hidden_fields(within, reason);
705 case TYPE_ARRAY:
706 return this->array_type()->array_has_hidden_fields(within, reason);
707 default:
708 return false;
709 }
710 }
711
712 // Return a hash code for the type to be used for method lookup.
713
714 unsigned int
715 Type::hash_for_method(Gogo* gogo) const
716 {
717 unsigned int ret = 0;
718 if (this->classification_ != TYPE_FORWARD)
719 ret += this->classification_;
720 return ret + this->do_hash_for_method(gogo);
721 }
722
723 // Default implementation of do_hash_for_method. This is appropriate
724 // for types with no subfields.
725
726 unsigned int
727 Type::do_hash_for_method(Gogo*) const
728 {
729 return 0;
730 }
731
732 // Return a hash code for a string, given a starting hash.
733
734 unsigned int
735 Type::hash_string(const std::string& s, unsigned int h)
736 {
737 const char* p = s.data();
738 size_t len = s.length();
739 for (; len > 0; --len)
740 {
741 h ^= *p++;
742 h*= 16777619;
743 }
744 return h;
745 }
746
747 // Default check for the expression passed to make. Any type which
748 // may be used with make implements its own version of this.
749
750 bool
751 Type::do_check_make_expression(Expression_list*, source_location)
752 {
753 gcc_unreachable();
754 }
755
756 // Return whether an expression has an integer value. Report an error
757 // if not. This is used when handling calls to the predeclared make
758 // function.
759
760 bool
761 Type::check_int_value(Expression* e, const char* errmsg,
762 source_location location)
763 {
764 if (e->type()->integer_type() != NULL)
765 return true;
766
767 // Check for a floating point constant with integer value.
768 mpfr_t fval;
769 mpfr_init(fval);
770
771 Type* dummy;
772 if (e->float_constant_value(fval, &dummy))
773 {
774 mpz_t ival;
775 mpz_init(ival);
776
777 bool ok = false;
778
779 mpfr_clear_overflow();
780 mpfr_clear_erangeflag();
781 mpfr_get_z(ival, fval, GMP_RNDN);
782 if (!mpfr_overflow_p()
783 && !mpfr_erangeflag_p()
784 && mpz_sgn(ival) >= 0)
785 {
786 Named_type* ntype = Type::lookup_integer_type("int");
787 Integer_type* inttype = ntype->integer_type();
788 mpz_t max;
789 mpz_init_set_ui(max, 1);
790 mpz_mul_2exp(max, max, inttype->bits() - 1);
791 ok = mpz_cmp(ival, max) < 0;
792 mpz_clear(max);
793 }
794 mpz_clear(ival);
795
796 if (ok)
797 {
798 mpfr_clear(fval);
799 return true;
800 }
801 }
802
803 mpfr_clear(fval);
804
805 error_at(location, "%s", errmsg);
806 return false;
807 }
808
809 // A hash table mapping unnamed types to trees.
810
811 Type::Type_trees Type::type_trees;
812
813 // Return a tree representing this type.
814
815 tree
816 Type::get_tree(Gogo* gogo)
817 {
818 if (this->tree_ != NULL)
819 return this->tree_;
820
821 if (this->forward_declaration_type() != NULL
822 || this->named_type() != NULL)
823 return this->get_tree_without_hash(gogo);
824
825 if (this->is_error_type())
826 return error_mark_node;
827
828 // To avoid confusing GIMPLE, we need to translate all identical Go
829 // types to the same GIMPLE type. We use a hash table to do that.
830 // There is no need to use the hash table for named types, as named
831 // types are only identical to themselves.
832
833 std::pair<Type*, tree> val(this, NULL);
834 std::pair<Type_trees::iterator, bool> ins =
835 Type::type_trees.insert(val);
836 if (!ins.second && ins.first->second != NULL_TREE)
837 {
838 this->tree_ = ins.first->second;
839 return this->tree_;
840 }
841
842 tree t = this->get_tree_without_hash(gogo);
843
844 if (ins.first->second == NULL_TREE)
845 ins.first->second = t;
846 else
847 {
848 // We have already created a tree for this type. This can
849 // happen when an unnamed type is defined using a named type
850 // which in turns uses an identical unnamed type. Use the tree
851 // we created earlier and ignore the one we just built.
852 t = ins.first->second;
853 this->tree_ = t;
854 }
855
856 return t;
857 }
858
859 // Return a tree for a type without looking in the hash table for
860 // identical types. This is used for named types, since there is no
861 // point to looking in the hash table for them.
862
863 tree
864 Type::get_tree_without_hash(Gogo* gogo)
865 {
866 if (this->tree_ == NULL_TREE)
867 {
868 tree t = this->do_get_tree(gogo);
869
870 // For a recursive function or pointer type, we will temporarily
871 // return ptr_type_node during the recursion. We don't want to
872 // record that for a forwarding type, as it may confuse us
873 // later.
874 if (t == ptr_type_node && this->forward_declaration_type() != NULL)
875 return t;
876
877 this->tree_ = t;
878 go_preserve_from_gc(t);
879 }
880
881 return this->tree_;
882 }
883
884 // Return a tree representing a zero initialization for this type.
885
886 tree
887 Type::get_init_tree(Gogo* gogo, bool is_clear)
888 {
889 tree type_tree = this->get_tree(gogo);
890 if (type_tree == error_mark_node)
891 return error_mark_node;
892 return this->do_get_init_tree(gogo, type_tree, is_clear);
893 }
894
895 // Any type which supports the builtin make function must implement
896 // this.
897
898 tree
899 Type::do_make_expression_tree(Translate_context*, Expression_list*,
900 source_location)
901 {
902 gcc_unreachable();
903 }
904
905 // Return a pointer to the type descriptor for this type.
906
907 tree
908 Type::type_descriptor_pointer(Gogo* gogo)
909 {
910 Type* t = this->forwarded();
911 if (t->type_descriptor_decl_ == NULL_TREE)
912 {
913 Expression* e = t->do_type_descriptor(gogo, NULL);
914 gogo->build_type_descriptor_decl(t, e, &t->type_descriptor_decl_);
915 gcc_assert(t->type_descriptor_decl_ != NULL_TREE
916 && (t->type_descriptor_decl_ == error_mark_node
917 || DECL_P(t->type_descriptor_decl_)));
918 }
919 if (t->type_descriptor_decl_ == error_mark_node)
920 return error_mark_node;
921 return build_fold_addr_expr(t->type_descriptor_decl_);
922 }
923
924 // Return a composite literal for a type descriptor.
925
926 Expression*
927 Type::type_descriptor(Gogo* gogo, Type* type)
928 {
929 return type->do_type_descriptor(gogo, NULL);
930 }
931
932 // Return a composite literal for a type descriptor with a name.
933
934 Expression*
935 Type::named_type_descriptor(Gogo* gogo, Type* type, Named_type* name)
936 {
937 gcc_assert(name != NULL && type->named_type() != name);
938 return type->do_type_descriptor(gogo, name);
939 }
940
941 // Make a builtin struct type from a list of fields. The fields are
942 // pairs of a name and a type.
943
944 Struct_type*
945 Type::make_builtin_struct_type(int nfields, ...)
946 {
947 va_list ap;
948 va_start(ap, nfields);
949
950 source_location bloc = BUILTINS_LOCATION;
951 Struct_field_list* sfl = new Struct_field_list();
952 for (int i = 0; i < nfields; i++)
953 {
954 const char* field_name = va_arg(ap, const char *);
955 Type* type = va_arg(ap, Type*);
956 sfl->push_back(Struct_field(Typed_identifier(field_name, type, bloc)));
957 }
958
959 va_end(ap);
960
961 return Type::make_struct_type(sfl, bloc);
962 }
963
964 // Make a builtin named type.
965
966 Named_type*
967 Type::make_builtin_named_type(const char* name, Type* type)
968 {
969 source_location bloc = BUILTINS_LOCATION;
970 Named_object* no = Named_object::make_type(name, NULL, type, bloc);
971 return no->type_value();
972 }
973
974 // Return the type of a type descriptor. We should really tie this to
975 // runtime.Type rather than copying it. This must match commonType in
976 // libgo/go/runtime/type.go.
977
978 Type*
979 Type::make_type_descriptor_type()
980 {
981 static Type* ret;
982 if (ret == NULL)
983 {
984 source_location bloc = BUILTINS_LOCATION;
985
986 Type* uint8_type = Type::lookup_integer_type("uint8");
987 Type* uint32_type = Type::lookup_integer_type("uint32");
988 Type* uintptr_type = Type::lookup_integer_type("uintptr");
989 Type* string_type = Type::lookup_string_type();
990 Type* pointer_string_type = Type::make_pointer_type(string_type);
991
992 // This is an unnamed version of unsafe.Pointer. Perhaps we
993 // should use the named version instead, although that would
994 // require us to create the unsafe package if it has not been
995 // imported. It probably doesn't matter.
996 Type* void_type = Type::make_void_type();
997 Type* unsafe_pointer_type = Type::make_pointer_type(void_type);
998
999 // Forward declaration for the type descriptor type.
1000 Named_object* named_type_descriptor_type =
1001 Named_object::make_type_declaration("commonType", NULL, bloc);
1002 Type* ft = Type::make_forward_declaration(named_type_descriptor_type);
1003 Type* pointer_type_descriptor_type = Type::make_pointer_type(ft);
1004
1005 // The type of a method on a concrete type.
1006 Struct_type* method_type =
1007 Type::make_builtin_struct_type(5,
1008 "name", pointer_string_type,
1009 "pkgPath", pointer_string_type,
1010 "mtyp", pointer_type_descriptor_type,
1011 "typ", pointer_type_descriptor_type,
1012 "tfn", unsafe_pointer_type);
1013 Named_type* named_method_type =
1014 Type::make_builtin_named_type("method", method_type);
1015
1016 // Information for types with a name or methods.
1017 Type* slice_named_method_type =
1018 Type::make_array_type(named_method_type, NULL);
1019 Struct_type* uncommon_type =
1020 Type::make_builtin_struct_type(3,
1021 "name", pointer_string_type,
1022 "pkgPath", pointer_string_type,
1023 "methods", slice_named_method_type);
1024 Named_type* named_uncommon_type =
1025 Type::make_builtin_named_type("uncommonType", uncommon_type);
1026
1027 Type* pointer_uncommon_type =
1028 Type::make_pointer_type(named_uncommon_type);
1029
1030 // The type descriptor type.
1031
1032 Typed_identifier_list* params = new Typed_identifier_list();
1033 params->push_back(Typed_identifier("", unsafe_pointer_type, bloc));
1034 params->push_back(Typed_identifier("", uintptr_type, bloc));
1035
1036 Typed_identifier_list* results = new Typed_identifier_list();
1037 results->push_back(Typed_identifier("", uintptr_type, bloc));
1038
1039 Type* hashfn_type = Type::make_function_type(NULL, params, results, bloc);
1040
1041 params = new Typed_identifier_list();
1042 params->push_back(Typed_identifier("", unsafe_pointer_type, bloc));
1043 params->push_back(Typed_identifier("", unsafe_pointer_type, bloc));
1044 params->push_back(Typed_identifier("", uintptr_type, bloc));
1045
1046 results = new Typed_identifier_list();
1047 results->push_back(Typed_identifier("", Type::lookup_bool_type(), bloc));
1048
1049 Type* equalfn_type = Type::make_function_type(NULL, params, results,
1050 bloc);
1051
1052 Struct_type* type_descriptor_type =
1053 Type::make_builtin_struct_type(9,
1054 "Kind", uint8_type,
1055 "align", uint8_type,
1056 "fieldAlign", uint8_type,
1057 "size", uintptr_type,
1058 "hash", uint32_type,
1059 "hashfn", hashfn_type,
1060 "equalfn", equalfn_type,
1061 "string", pointer_string_type,
1062 "", pointer_uncommon_type);
1063
1064 Named_type* named = Type::make_builtin_named_type("commonType",
1065 type_descriptor_type);
1066
1067 named_type_descriptor_type->set_type_value(named);
1068
1069 ret = named;
1070 }
1071
1072 return ret;
1073 }
1074
1075 // Make the type of a pointer to a type descriptor as represented in
1076 // Go.
1077
1078 Type*
1079 Type::make_type_descriptor_ptr_type()
1080 {
1081 static Type* ret;
1082 if (ret == NULL)
1083 ret = Type::make_pointer_type(Type::make_type_descriptor_type());
1084 return ret;
1085 }
1086
1087 // Return the names of runtime functions which compute a hash code for
1088 // this type and which compare whether two values of this type are
1089 // equal.
1090
1091 void
1092 Type::type_functions(const char** hash_fn, const char** equal_fn) const
1093 {
1094 switch (this->base()->classification())
1095 {
1096 case Type::TYPE_ERROR:
1097 case Type::TYPE_VOID:
1098 case Type::TYPE_NIL:
1099 // These types can not be hashed or compared.
1100 *hash_fn = "__go_type_hash_error";
1101 *equal_fn = "__go_type_equal_error";
1102 break;
1103
1104 case Type::TYPE_BOOLEAN:
1105 case Type::TYPE_INTEGER:
1106 case Type::TYPE_FLOAT:
1107 case Type::TYPE_COMPLEX:
1108 case Type::TYPE_POINTER:
1109 case Type::TYPE_FUNCTION:
1110 case Type::TYPE_MAP:
1111 case Type::TYPE_CHANNEL:
1112 *hash_fn = "__go_type_hash_identity";
1113 *equal_fn = "__go_type_equal_identity";
1114 break;
1115
1116 case Type::TYPE_STRING:
1117 *hash_fn = "__go_type_hash_string";
1118 *equal_fn = "__go_type_equal_string";
1119 break;
1120
1121 case Type::TYPE_STRUCT:
1122 case Type::TYPE_ARRAY:
1123 // These types can not be hashed or compared.
1124 *hash_fn = "__go_type_hash_error";
1125 *equal_fn = "__go_type_equal_error";
1126 break;
1127
1128 case Type::TYPE_INTERFACE:
1129 if (this->interface_type()->is_empty())
1130 {
1131 *hash_fn = "__go_type_hash_empty_interface";
1132 *equal_fn = "__go_type_equal_empty_interface";
1133 }
1134 else
1135 {
1136 *hash_fn = "__go_type_hash_interface";
1137 *equal_fn = "__go_type_equal_interface";
1138 }
1139 break;
1140
1141 case Type::TYPE_NAMED:
1142 case Type::TYPE_FORWARD:
1143 gcc_unreachable();
1144
1145 default:
1146 gcc_unreachable();
1147 }
1148 }
1149
1150 // Return a composite literal for the type descriptor for a plain type
1151 // of kind RUNTIME_TYPE_KIND named NAME.
1152
1153 Expression*
1154 Type::type_descriptor_constructor(Gogo* gogo, int runtime_type_kind,
1155 Named_type* name, const Methods* methods,
1156 bool only_value_methods)
1157 {
1158 source_location bloc = BUILTINS_LOCATION;
1159
1160 Type* td_type = Type::make_type_descriptor_type();
1161 const Struct_field_list* fields = td_type->struct_type()->fields();
1162
1163 Expression_list* vals = new Expression_list();
1164 vals->reserve(9);
1165
1166 Struct_field_list::const_iterator p = fields->begin();
1167 gcc_assert(p->field_name() == "Kind");
1168 mpz_t iv;
1169 mpz_init_set_ui(iv, runtime_type_kind);
1170 vals->push_back(Expression::make_integer(&iv, p->type(), bloc));
1171
1172 ++p;
1173 gcc_assert(p->field_name() == "align");
1174 Expression::Type_info type_info = Expression::TYPE_INFO_ALIGNMENT;
1175 vals->push_back(Expression::make_type_info(this, type_info));
1176
1177 ++p;
1178 gcc_assert(p->field_name() == "fieldAlign");
1179 type_info = Expression::TYPE_INFO_FIELD_ALIGNMENT;
1180 vals->push_back(Expression::make_type_info(this, type_info));
1181
1182 ++p;
1183 gcc_assert(p->field_name() == "size");
1184 type_info = Expression::TYPE_INFO_SIZE;
1185 vals->push_back(Expression::make_type_info(this, type_info));
1186
1187 ++p;
1188 gcc_assert(p->field_name() == "hash");
1189 mpz_set_ui(iv, this->hash_for_method(gogo));
1190 vals->push_back(Expression::make_integer(&iv, p->type(), bloc));
1191
1192 const char* hash_fn;
1193 const char* equal_fn;
1194 this->type_functions(&hash_fn, &equal_fn);
1195
1196 ++p;
1197 gcc_assert(p->field_name() == "hashfn");
1198 Function_type* fntype = p->type()->function_type();
1199 Named_object* no = Named_object::make_function_declaration(hash_fn, NULL,
1200 fntype,
1201 bloc);
1202 no->func_declaration_value()->set_asm_name(hash_fn);
1203 vals->push_back(Expression::make_func_reference(no, NULL, bloc));
1204
1205 ++p;
1206 gcc_assert(p->field_name() == "equalfn");
1207 fntype = p->type()->function_type();
1208 no = Named_object::make_function_declaration(equal_fn, NULL, fntype, bloc);
1209 no->func_declaration_value()->set_asm_name(equal_fn);
1210 vals->push_back(Expression::make_func_reference(no, NULL, bloc));
1211
1212 ++p;
1213 gcc_assert(p->field_name() == "string");
1214 Expression* s = Expression::make_string((name != NULL
1215 ? name->reflection(gogo)
1216 : this->reflection(gogo)),
1217 bloc);
1218 vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
1219
1220 ++p;
1221 gcc_assert(p->field_name() == "uncommonType");
1222 if (name == NULL && methods == NULL)
1223 vals->push_back(Expression::make_nil(bloc));
1224 else
1225 {
1226 if (methods == NULL)
1227 methods = name->methods();
1228 vals->push_back(this->uncommon_type_constructor(gogo,
1229 p->type()->deref(),
1230 name, methods,
1231 only_value_methods));
1232 }
1233
1234 ++p;
1235 gcc_assert(p == fields->end());
1236
1237 mpz_clear(iv);
1238
1239 return Expression::make_struct_composite_literal(td_type, vals, bloc);
1240 }
1241
1242 // Return a composite literal for the uncommon type information for
1243 // this type. UNCOMMON_STRUCT_TYPE is the type of the uncommon type
1244 // struct. If name is not NULL, it is the name of the type. If
1245 // METHODS is not NULL, it is the list of methods. ONLY_VALUE_METHODS
1246 // is true if only value methods should be included. At least one of
1247 // NAME and METHODS must not be NULL.
1248
1249 Expression*
1250 Type::uncommon_type_constructor(Gogo* gogo, Type* uncommon_type,
1251 Named_type* name, const Methods* methods,
1252 bool only_value_methods) const
1253 {
1254 source_location bloc = BUILTINS_LOCATION;
1255
1256 const Struct_field_list* fields = uncommon_type->struct_type()->fields();
1257
1258 Expression_list* vals = new Expression_list();
1259 vals->reserve(3);
1260
1261 Struct_field_list::const_iterator p = fields->begin();
1262 gcc_assert(p->field_name() == "name");
1263
1264 ++p;
1265 gcc_assert(p->field_name() == "pkgPath");
1266
1267 if (name == NULL)
1268 {
1269 vals->push_back(Expression::make_nil(bloc));
1270 vals->push_back(Expression::make_nil(bloc));
1271 }
1272 else
1273 {
1274 Named_object* no = name->named_object();
1275 std::string n = Gogo::unpack_hidden_name(no->name());
1276 Expression* s = Expression::make_string(n, bloc);
1277 vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
1278
1279 if (name->is_builtin())
1280 vals->push_back(Expression::make_nil(bloc));
1281 else
1282 {
1283 const Package* package = no->package();
1284 const std::string& unique_prefix(package == NULL
1285 ? gogo->unique_prefix()
1286 : package->unique_prefix());
1287 const std::string& package_name(package == NULL
1288 ? gogo->package_name()
1289 : package->name());
1290 n.assign(unique_prefix);
1291 n.append(1, '.');
1292 n.append(package_name);
1293 if (name->in_function() != NULL)
1294 {
1295 n.append(1, '.');
1296 n.append(Gogo::unpack_hidden_name(name->in_function()->name()));
1297 }
1298 s = Expression::make_string(n, bloc);
1299 vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
1300 }
1301 }
1302
1303 ++p;
1304 gcc_assert(p->field_name() == "methods");
1305 vals->push_back(this->methods_constructor(gogo, p->type(), methods,
1306 only_value_methods));
1307
1308 ++p;
1309 gcc_assert(p == fields->end());
1310
1311 Expression* r = Expression::make_struct_composite_literal(uncommon_type,
1312 vals, bloc);
1313 return Expression::make_unary(OPERATOR_AND, r, bloc);
1314 }
1315
1316 // Sort methods by name.
1317
1318 class Sort_methods
1319 {
1320 public:
1321 bool
1322 operator()(const std::pair<std::string, const Method*>& m1,
1323 const std::pair<std::string, const Method*>& m2) const
1324 { return m1.first < m2.first; }
1325 };
1326
1327 // Return a composite literal for the type method table for this type.
1328 // METHODS_TYPE is the type of the table, and is a slice type.
1329 // METHODS is the list of methods. If ONLY_VALUE_METHODS is true,
1330 // then only value methods are used.
1331
1332 Expression*
1333 Type::methods_constructor(Gogo* gogo, Type* methods_type,
1334 const Methods* methods,
1335 bool only_value_methods) const
1336 {
1337 source_location bloc = BUILTINS_LOCATION;
1338
1339 std::vector<std::pair<std::string, const Method*> > smethods;
1340 if (methods != NULL)
1341 {
1342 smethods.reserve(methods->count());
1343 for (Methods::const_iterator p = methods->begin();
1344 p != methods->end();
1345 ++p)
1346 {
1347 if (p->second->is_ambiguous())
1348 continue;
1349 if (only_value_methods && !p->second->is_value_method())
1350 continue;
1351 smethods.push_back(std::make_pair(p->first, p->second));
1352 }
1353 }
1354
1355 if (smethods.empty())
1356 return Expression::make_slice_composite_literal(methods_type, NULL, bloc);
1357
1358 std::sort(smethods.begin(), smethods.end(), Sort_methods());
1359
1360 Type* method_type = methods_type->array_type()->element_type();
1361
1362 Expression_list* vals = new Expression_list();
1363 vals->reserve(smethods.size());
1364 for (std::vector<std::pair<std::string, const Method*> >::const_iterator p
1365 = smethods.begin();
1366 p != smethods.end();
1367 ++p)
1368 vals->push_back(this->method_constructor(gogo, method_type, p->first,
1369 p->second));
1370
1371 return Expression::make_slice_composite_literal(methods_type, vals, bloc);
1372 }
1373
1374 // Return a composite literal for a single method. METHOD_TYPE is the
1375 // type of the entry. METHOD_NAME is the name of the method and M is
1376 // the method information.
1377
1378 Expression*
1379 Type::method_constructor(Gogo*, Type* method_type,
1380 const std::string& method_name,
1381 const Method* m) const
1382 {
1383 source_location bloc = BUILTINS_LOCATION;
1384
1385 const Struct_field_list* fields = method_type->struct_type()->fields();
1386
1387 Expression_list* vals = new Expression_list();
1388 vals->reserve(5);
1389
1390 Struct_field_list::const_iterator p = fields->begin();
1391 gcc_assert(p->field_name() == "name");
1392 const std::string n = Gogo::unpack_hidden_name(method_name);
1393 Expression* s = Expression::make_string(n, bloc);
1394 vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
1395
1396 ++p;
1397 gcc_assert(p->field_name() == "pkgPath");
1398 if (!Gogo::is_hidden_name(method_name))
1399 vals->push_back(Expression::make_nil(bloc));
1400 else
1401 {
1402 s = Expression::make_string(Gogo::hidden_name_prefix(method_name), bloc);
1403 vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
1404 }
1405
1406 Named_object* no = (m->needs_stub_method()
1407 ? m->stub_object()
1408 : m->named_object());
1409
1410 Function_type* mtype;
1411 if (no->is_function())
1412 mtype = no->func_value()->type();
1413 else
1414 mtype = no->func_declaration_value()->type();
1415 gcc_assert(mtype->is_method());
1416 Type* nonmethod_type = mtype->copy_without_receiver();
1417
1418 ++p;
1419 gcc_assert(p->field_name() == "mtyp");
1420 vals->push_back(Expression::make_type_descriptor(nonmethod_type, bloc));
1421
1422 ++p;
1423 gcc_assert(p->field_name() == "typ");
1424 vals->push_back(Expression::make_type_descriptor(mtype, bloc));
1425
1426 ++p;
1427 gcc_assert(p->field_name() == "tfn");
1428 vals->push_back(Expression::make_func_reference(no, NULL, bloc));
1429
1430 ++p;
1431 gcc_assert(p == fields->end());
1432
1433 return Expression::make_struct_composite_literal(method_type, vals, bloc);
1434 }
1435
1436 // Return a composite literal for the type descriptor of a plain type.
1437 // RUNTIME_TYPE_KIND is the value of the kind field. If NAME is not
1438 // NULL, it is the name to use as well as the list of methods.
1439
1440 Expression*
1441 Type::plain_type_descriptor(Gogo* gogo, int runtime_type_kind,
1442 Named_type* name)
1443 {
1444 return this->type_descriptor_constructor(gogo, runtime_type_kind,
1445 name, NULL, true);
1446 }
1447
1448 // Return the type reflection string for this type.
1449
1450 std::string
1451 Type::reflection(Gogo* gogo) const
1452 {
1453 std::string ret;
1454
1455 // The do_reflection virtual function should set RET to the
1456 // reflection string.
1457 this->do_reflection(gogo, &ret);
1458
1459 return ret;
1460 }
1461
1462 // Return a mangled name for the type.
1463
1464 std::string
1465 Type::mangled_name(Gogo* gogo) const
1466 {
1467 std::string ret;
1468
1469 // The do_mangled_name virtual function should set RET to the
1470 // mangled name. For a composite type it should append a code for
1471 // the composition and then call do_mangled_name on the components.
1472 this->do_mangled_name(gogo, &ret);
1473
1474 return ret;
1475 }
1476
1477 // Default function to export a type.
1478
1479 void
1480 Type::do_export(Export*) const
1481 {
1482 gcc_unreachable();
1483 }
1484
1485 // Import a type.
1486
1487 Type*
1488 Type::import_type(Import* imp)
1489 {
1490 if (imp->match_c_string("("))
1491 return Function_type::do_import(imp);
1492 else if (imp->match_c_string("*"))
1493 return Pointer_type::do_import(imp);
1494 else if (imp->match_c_string("struct "))
1495 return Struct_type::do_import(imp);
1496 else if (imp->match_c_string("["))
1497 return Array_type::do_import(imp);
1498 else if (imp->match_c_string("map "))
1499 return Map_type::do_import(imp);
1500 else if (imp->match_c_string("chan "))
1501 return Channel_type::do_import(imp);
1502 else if (imp->match_c_string("interface"))
1503 return Interface_type::do_import(imp);
1504 else
1505 {
1506 error_at(imp->location(), "import error: expected type");
1507 return Type::make_error_type();
1508 }
1509 }
1510
1511 // A type used to indicate a parsing error. This exists to simplify
1512 // later error detection.
1513
1514 class Error_type : public Type
1515 {
1516 public:
1517 Error_type()
1518 : Type(TYPE_ERROR)
1519 { }
1520
1521 protected:
1522 tree
1523 do_get_tree(Gogo*)
1524 { return error_mark_node; }
1525
1526 tree
1527 do_get_init_tree(Gogo*, tree, bool)
1528 { return error_mark_node; }
1529
1530 Expression*
1531 do_type_descriptor(Gogo*, Named_type*)
1532 { return Expression::make_error(BUILTINS_LOCATION); }
1533
1534 void
1535 do_reflection(Gogo*, std::string*) const
1536 { gcc_assert(saw_errors()); }
1537
1538 void
1539 do_mangled_name(Gogo*, std::string* ret) const
1540 { ret->push_back('E'); }
1541 };
1542
1543 Type*
1544 Type::make_error_type()
1545 {
1546 static Error_type singleton_error_type;
1547 return &singleton_error_type;
1548 }
1549
1550 // The void type.
1551
1552 class Void_type : public Type
1553 {
1554 public:
1555 Void_type()
1556 : Type(TYPE_VOID)
1557 { }
1558
1559 protected:
1560 tree
1561 do_get_tree(Gogo*)
1562 { return void_type_node; }
1563
1564 tree
1565 do_get_init_tree(Gogo*, tree, bool)
1566 { gcc_unreachable(); }
1567
1568 Expression*
1569 do_type_descriptor(Gogo*, Named_type*)
1570 { gcc_unreachable(); }
1571
1572 void
1573 do_reflection(Gogo*, std::string*) const
1574 { }
1575
1576 void
1577 do_mangled_name(Gogo*, std::string* ret) const
1578 { ret->push_back('v'); }
1579 };
1580
1581 Type*
1582 Type::make_void_type()
1583 {
1584 static Void_type singleton_void_type;
1585 return &singleton_void_type;
1586 }
1587
1588 // The boolean type.
1589
1590 class Boolean_type : public Type
1591 {
1592 public:
1593 Boolean_type()
1594 : Type(TYPE_BOOLEAN)
1595 { }
1596
1597 protected:
1598 tree
1599 do_get_tree(Gogo*)
1600 { return boolean_type_node; }
1601
1602 tree
1603 do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
1604 { return is_clear ? NULL : fold_convert(type_tree, boolean_false_node); }
1605
1606 Expression*
1607 do_type_descriptor(Gogo*, Named_type* name);
1608
1609 // We should not be asked for the reflection string of a basic type.
1610 void
1611 do_reflection(Gogo*, std::string* ret) const
1612 { ret->append("bool"); }
1613
1614 void
1615 do_mangled_name(Gogo*, std::string* ret) const
1616 { ret->push_back('b'); }
1617 };
1618
1619 // Make the type descriptor.
1620
1621 Expression*
1622 Boolean_type::do_type_descriptor(Gogo* gogo, Named_type* name)
1623 {
1624 if (name != NULL)
1625 return this->plain_type_descriptor(gogo, RUNTIME_TYPE_KIND_BOOL, name);
1626 else
1627 {
1628 Named_object* no = gogo->lookup_global("bool");
1629 gcc_assert(no != NULL);
1630 return Type::type_descriptor(gogo, no->type_value());
1631 }
1632 }
1633
1634 Type*
1635 Type::make_boolean_type()
1636 {
1637 static Boolean_type boolean_type;
1638 return &boolean_type;
1639 }
1640
1641 // The named type "bool".
1642
1643 static Named_type* named_bool_type;
1644
1645 // Get the named type "bool".
1646
1647 Named_type*
1648 Type::lookup_bool_type()
1649 {
1650 return named_bool_type;
1651 }
1652
1653 // Make the named type "bool".
1654
1655 Named_type*
1656 Type::make_named_bool_type()
1657 {
1658 Type* bool_type = Type::make_boolean_type();
1659 Named_object* named_object = Named_object::make_type("bool", NULL,
1660 bool_type,
1661 BUILTINS_LOCATION);
1662 Named_type* named_type = named_object->type_value();
1663 named_bool_type = named_type;
1664 return named_type;
1665 }
1666
1667 // Class Integer_type.
1668
1669 Integer_type::Named_integer_types Integer_type::named_integer_types;
1670
1671 // Create a new integer type. Non-abstract integer types always have
1672 // names.
1673
1674 Named_type*
1675 Integer_type::create_integer_type(const char* name, bool is_unsigned,
1676 int bits, int runtime_type_kind)
1677 {
1678 Integer_type* integer_type = new Integer_type(false, is_unsigned, bits,
1679 runtime_type_kind);
1680 std::string sname(name);
1681 Named_object* named_object = Named_object::make_type(sname, NULL,
1682 integer_type,
1683 BUILTINS_LOCATION);
1684 Named_type* named_type = named_object->type_value();
1685 std::pair<Named_integer_types::iterator, bool> ins =
1686 Integer_type::named_integer_types.insert(std::make_pair(sname, named_type));
1687 gcc_assert(ins.second);
1688 return named_type;
1689 }
1690
1691 // Look up an existing integer type.
1692
1693 Named_type*
1694 Integer_type::lookup_integer_type(const char* name)
1695 {
1696 Named_integer_types::const_iterator p =
1697 Integer_type::named_integer_types.find(name);
1698 gcc_assert(p != Integer_type::named_integer_types.end());
1699 return p->second;
1700 }
1701
1702 // Create a new abstract integer type.
1703
1704 Integer_type*
1705 Integer_type::create_abstract_integer_type()
1706 {
1707 static Integer_type* abstract_type;
1708 if (abstract_type == NULL)
1709 abstract_type = new Integer_type(true, false, INT_TYPE_SIZE,
1710 RUNTIME_TYPE_KIND_INT);
1711 return abstract_type;
1712 }
1713
1714 // Integer type compatibility.
1715
1716 bool
1717 Integer_type::is_identical(const Integer_type* t) const
1718 {
1719 if (this->is_unsigned_ != t->is_unsigned_ || this->bits_ != t->bits_)
1720 return false;
1721 return this->is_abstract_ == t->is_abstract_;
1722 }
1723
1724 // Hash code.
1725
1726 unsigned int
1727 Integer_type::do_hash_for_method(Gogo*) const
1728 {
1729 return ((this->bits_ << 4)
1730 + ((this->is_unsigned_ ? 1 : 0) << 8)
1731 + ((this->is_abstract_ ? 1 : 0) << 9));
1732 }
1733
1734 // Get the tree for an Integer_type.
1735
1736 tree
1737 Integer_type::do_get_tree(Gogo*)
1738 {
1739 gcc_assert(!this->is_abstract_);
1740 if (this->is_unsigned_)
1741 {
1742 if (this->bits_ == INT_TYPE_SIZE)
1743 return unsigned_type_node;
1744 else if (this->bits_ == CHAR_TYPE_SIZE)
1745 return unsigned_char_type_node;
1746 else if (this->bits_ == SHORT_TYPE_SIZE)
1747 return short_unsigned_type_node;
1748 else if (this->bits_ == LONG_TYPE_SIZE)
1749 return long_unsigned_type_node;
1750 else if (this->bits_ == LONG_LONG_TYPE_SIZE)
1751 return long_long_unsigned_type_node;
1752 else
1753 return make_unsigned_type(this->bits_);
1754 }
1755 else
1756 {
1757 if (this->bits_ == INT_TYPE_SIZE)
1758 return integer_type_node;
1759 else if (this->bits_ == CHAR_TYPE_SIZE)
1760 return signed_char_type_node;
1761 else if (this->bits_ == SHORT_TYPE_SIZE)
1762 return short_integer_type_node;
1763 else if (this->bits_ == LONG_TYPE_SIZE)
1764 return long_integer_type_node;
1765 else if (this->bits_ == LONG_LONG_TYPE_SIZE)
1766 return long_long_integer_type_node;
1767 else
1768 return make_signed_type(this->bits_);
1769 }
1770 }
1771
1772 tree
1773 Integer_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
1774 {
1775 return is_clear ? NULL : build_int_cst(type_tree, 0);
1776 }
1777
1778 // The type descriptor for an integer type. Integer types are always
1779 // named.
1780
1781 Expression*
1782 Integer_type::do_type_descriptor(Gogo* gogo, Named_type* name)
1783 {
1784 gcc_assert(name != NULL);
1785 return this->plain_type_descriptor(gogo, this->runtime_type_kind_, name);
1786 }
1787
1788 // We should not be asked for the reflection string of a basic type.
1789
1790 void
1791 Integer_type::do_reflection(Gogo*, std::string*) const
1792 {
1793 gcc_unreachable();
1794 }
1795
1796 // Mangled name.
1797
1798 void
1799 Integer_type::do_mangled_name(Gogo*, std::string* ret) const
1800 {
1801 char buf[100];
1802 snprintf(buf, sizeof buf, "i%s%s%de",
1803 this->is_abstract_ ? "a" : "",
1804 this->is_unsigned_ ? "u" : "",
1805 this->bits_);
1806 ret->append(buf);
1807 }
1808
1809 // Make an integer type.
1810
1811 Named_type*
1812 Type::make_integer_type(const char* name, bool is_unsigned, int bits,
1813 int runtime_type_kind)
1814 {
1815 return Integer_type::create_integer_type(name, is_unsigned, bits,
1816 runtime_type_kind);
1817 }
1818
1819 // Make an abstract integer type.
1820
1821 Integer_type*
1822 Type::make_abstract_integer_type()
1823 {
1824 return Integer_type::create_abstract_integer_type();
1825 }
1826
1827 // Look up an integer type.
1828
1829 Named_type*
1830 Type::lookup_integer_type(const char* name)
1831 {
1832 return Integer_type::lookup_integer_type(name);
1833 }
1834
1835 // Class Float_type.
1836
1837 Float_type::Named_float_types Float_type::named_float_types;
1838
1839 // Create a new float type. Non-abstract float types always have
1840 // names.
1841
1842 Named_type*
1843 Float_type::create_float_type(const char* name, int bits,
1844 int runtime_type_kind)
1845 {
1846 Float_type* float_type = new Float_type(false, bits, runtime_type_kind);
1847 std::string sname(name);
1848 Named_object* named_object = Named_object::make_type(sname, NULL, float_type,
1849 BUILTINS_LOCATION);
1850 Named_type* named_type = named_object->type_value();
1851 std::pair<Named_float_types::iterator, bool> ins =
1852 Float_type::named_float_types.insert(std::make_pair(sname, named_type));
1853 gcc_assert(ins.second);
1854 return named_type;
1855 }
1856
1857 // Look up an existing float type.
1858
1859 Named_type*
1860 Float_type::lookup_float_type(const char* name)
1861 {
1862 Named_float_types::const_iterator p =
1863 Float_type::named_float_types.find(name);
1864 gcc_assert(p != Float_type::named_float_types.end());
1865 return p->second;
1866 }
1867
1868 // Create a new abstract float type.
1869
1870 Float_type*
1871 Float_type::create_abstract_float_type()
1872 {
1873 static Float_type* abstract_type;
1874 if (abstract_type == NULL)
1875 abstract_type = new Float_type(true, 64, RUNTIME_TYPE_KIND_FLOAT64);
1876 return abstract_type;
1877 }
1878
1879 // Whether this type is identical with T.
1880
1881 bool
1882 Float_type::is_identical(const Float_type* t) const
1883 {
1884 if (this->bits_ != t->bits_)
1885 return false;
1886 return this->is_abstract_ == t->is_abstract_;
1887 }
1888
1889 // Hash code.
1890
1891 unsigned int
1892 Float_type::do_hash_for_method(Gogo*) const
1893 {
1894 return (this->bits_ << 4) + ((this->is_abstract_ ? 1 : 0) << 8);
1895 }
1896
1897 // Get a tree without using a Gogo*.
1898
1899 tree
1900 Float_type::type_tree() const
1901 {
1902 if (this->bits_ == FLOAT_TYPE_SIZE)
1903 return float_type_node;
1904 else if (this->bits_ == DOUBLE_TYPE_SIZE)
1905 return double_type_node;
1906 else if (this->bits_ == LONG_DOUBLE_TYPE_SIZE)
1907 return long_double_type_node;
1908 else
1909 {
1910 tree ret = make_node(REAL_TYPE);
1911 TYPE_PRECISION(ret) = this->bits_;
1912 layout_type(ret);
1913 return ret;
1914 }
1915 }
1916
1917 // Get a tree.
1918
1919 tree
1920 Float_type::do_get_tree(Gogo*)
1921 {
1922 return this->type_tree();
1923 }
1924
1925 tree
1926 Float_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
1927 {
1928 if (is_clear)
1929 return NULL;
1930 REAL_VALUE_TYPE r;
1931 real_from_integer(&r, TYPE_MODE(type_tree), 0, 0, 0);
1932 return build_real(type_tree, r);
1933 }
1934
1935 // The type descriptor for a float type. Float types are always named.
1936
1937 Expression*
1938 Float_type::do_type_descriptor(Gogo* gogo, Named_type* name)
1939 {
1940 gcc_assert(name != NULL);
1941 return this->plain_type_descriptor(gogo, this->runtime_type_kind_, name);
1942 }
1943
1944 // We should not be asked for the reflection string of a basic type.
1945
1946 void
1947 Float_type::do_reflection(Gogo*, std::string*) const
1948 {
1949 gcc_unreachable();
1950 }
1951
1952 // Mangled name.
1953
1954 void
1955 Float_type::do_mangled_name(Gogo*, std::string* ret) const
1956 {
1957 char buf[100];
1958 snprintf(buf, sizeof buf, "f%s%de",
1959 this->is_abstract_ ? "a" : "",
1960 this->bits_);
1961 ret->append(buf);
1962 }
1963
1964 // Make a floating point type.
1965
1966 Named_type*
1967 Type::make_float_type(const char* name, int bits, int runtime_type_kind)
1968 {
1969 return Float_type::create_float_type(name, bits, runtime_type_kind);
1970 }
1971
1972 // Make an abstract float type.
1973
1974 Float_type*
1975 Type::make_abstract_float_type()
1976 {
1977 return Float_type::create_abstract_float_type();
1978 }
1979
1980 // Look up a float type.
1981
1982 Named_type*
1983 Type::lookup_float_type(const char* name)
1984 {
1985 return Float_type::lookup_float_type(name);
1986 }
1987
1988 // Class Complex_type.
1989
1990 Complex_type::Named_complex_types Complex_type::named_complex_types;
1991
1992 // Create a new complex type. Non-abstract complex types always have
1993 // names.
1994
1995 Named_type*
1996 Complex_type::create_complex_type(const char* name, int bits,
1997 int runtime_type_kind)
1998 {
1999 Complex_type* complex_type = new Complex_type(false, bits,
2000 runtime_type_kind);
2001 std::string sname(name);
2002 Named_object* named_object = Named_object::make_type(sname, NULL,
2003 complex_type,
2004 BUILTINS_LOCATION);
2005 Named_type* named_type = named_object->type_value();
2006 std::pair<Named_complex_types::iterator, bool> ins =
2007 Complex_type::named_complex_types.insert(std::make_pair(sname,
2008 named_type));
2009 gcc_assert(ins.second);
2010 return named_type;
2011 }
2012
2013 // Look up an existing complex type.
2014
2015 Named_type*
2016 Complex_type::lookup_complex_type(const char* name)
2017 {
2018 Named_complex_types::const_iterator p =
2019 Complex_type::named_complex_types.find(name);
2020 gcc_assert(p != Complex_type::named_complex_types.end());
2021 return p->second;
2022 }
2023
2024 // Create a new abstract complex type.
2025
2026 Complex_type*
2027 Complex_type::create_abstract_complex_type()
2028 {
2029 static Complex_type* abstract_type;
2030 if (abstract_type == NULL)
2031 abstract_type = new Complex_type(true, 128, RUNTIME_TYPE_KIND_COMPLEX128);
2032 return abstract_type;
2033 }
2034
2035 // Whether this type is identical with T.
2036
2037 bool
2038 Complex_type::is_identical(const Complex_type *t) const
2039 {
2040 if (this->bits_ != t->bits_)
2041 return false;
2042 return this->is_abstract_ == t->is_abstract_;
2043 }
2044
2045 // Hash code.
2046
2047 unsigned int
2048 Complex_type::do_hash_for_method(Gogo*) const
2049 {
2050 return (this->bits_ << 4) + ((this->is_abstract_ ? 1 : 0) << 8);
2051 }
2052
2053 // Get a tree without using a Gogo*.
2054
2055 tree
2056 Complex_type::type_tree() const
2057 {
2058 if (this->bits_ == FLOAT_TYPE_SIZE * 2)
2059 return complex_float_type_node;
2060 else if (this->bits_ == DOUBLE_TYPE_SIZE * 2)
2061 return complex_double_type_node;
2062 else if (this->bits_ == LONG_DOUBLE_TYPE_SIZE * 2)
2063 return complex_long_double_type_node;
2064 else
2065 {
2066 tree ret = make_node(REAL_TYPE);
2067 TYPE_PRECISION(ret) = this->bits_ / 2;
2068 layout_type(ret);
2069 return build_complex_type(ret);
2070 }
2071 }
2072
2073 // Get a tree.
2074
2075 tree
2076 Complex_type::do_get_tree(Gogo*)
2077 {
2078 return this->type_tree();
2079 }
2080
2081 // Zero initializer.
2082
2083 tree
2084 Complex_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
2085 {
2086 if (is_clear)
2087 return NULL;
2088 REAL_VALUE_TYPE r;
2089 real_from_integer(&r, TYPE_MODE(TREE_TYPE(type_tree)), 0, 0, 0);
2090 return build_complex(type_tree, build_real(TREE_TYPE(type_tree), r),
2091 build_real(TREE_TYPE(type_tree), r));
2092 }
2093
2094 // The type descriptor for a complex type. Complex types are always
2095 // named.
2096
2097 Expression*
2098 Complex_type::do_type_descriptor(Gogo* gogo, Named_type* name)
2099 {
2100 gcc_assert(name != NULL);
2101 return this->plain_type_descriptor(gogo, this->runtime_type_kind_, name);
2102 }
2103
2104 // We should not be asked for the reflection string of a basic type.
2105
2106 void
2107 Complex_type::do_reflection(Gogo*, std::string*) const
2108 {
2109 gcc_unreachable();
2110 }
2111
2112 // Mangled name.
2113
2114 void
2115 Complex_type::do_mangled_name(Gogo*, std::string* ret) const
2116 {
2117 char buf[100];
2118 snprintf(buf, sizeof buf, "c%s%de",
2119 this->is_abstract_ ? "a" : "",
2120 this->bits_);
2121 ret->append(buf);
2122 }
2123
2124 // Make a complex type.
2125
2126 Named_type*
2127 Type::make_complex_type(const char* name, int bits, int runtime_type_kind)
2128 {
2129 return Complex_type::create_complex_type(name, bits, runtime_type_kind);
2130 }
2131
2132 // Make an abstract complex type.
2133
2134 Complex_type*
2135 Type::make_abstract_complex_type()
2136 {
2137 return Complex_type::create_abstract_complex_type();
2138 }
2139
2140 // Look up a complex type.
2141
2142 Named_type*
2143 Type::lookup_complex_type(const char* name)
2144 {
2145 return Complex_type::lookup_complex_type(name);
2146 }
2147
2148 // Class String_type.
2149
2150 // Return the tree for String_type. A string is a struct with two
2151 // fields: a pointer to the characters and a length.
2152
2153 tree
2154 String_type::do_get_tree(Gogo*)
2155 {
2156 static tree struct_type;
2157 return Gogo::builtin_struct(&struct_type, "__go_string", NULL_TREE, 2,
2158 "__data",
2159 build_pointer_type(unsigned_char_type_node),
2160 "__length",
2161 integer_type_node);
2162 }
2163
2164 // Return a tree for the length of STRING.
2165
2166 tree
2167 String_type::length_tree(Gogo*, tree string)
2168 {
2169 tree string_type = TREE_TYPE(string);
2170 gcc_assert(TREE_CODE(string_type) == RECORD_TYPE);
2171 tree length_field = DECL_CHAIN(TYPE_FIELDS(string_type));
2172 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(length_field)),
2173 "__length") == 0);
2174 return fold_build3(COMPONENT_REF, integer_type_node, string,
2175 length_field, NULL_TREE);
2176 }
2177
2178 // Return a tree for a pointer to the bytes of STRING.
2179
2180 tree
2181 String_type::bytes_tree(Gogo*, tree string)
2182 {
2183 tree string_type = TREE_TYPE(string);
2184 gcc_assert(TREE_CODE(string_type) == RECORD_TYPE);
2185 tree bytes_field = TYPE_FIELDS(string_type);
2186 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(bytes_field)),
2187 "__data") == 0);
2188 return fold_build3(COMPONENT_REF, TREE_TYPE(bytes_field), string,
2189 bytes_field, NULL_TREE);
2190 }
2191
2192 // We initialize a string to { NULL, 0 }.
2193
2194 tree
2195 String_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
2196 {
2197 if (is_clear)
2198 return NULL_TREE;
2199
2200 gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
2201
2202 VEC(constructor_elt, gc)* init = VEC_alloc(constructor_elt, gc, 2);
2203
2204 for (tree field = TYPE_FIELDS(type_tree);
2205 field != NULL_TREE;
2206 field = DECL_CHAIN(field))
2207 {
2208 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
2209 elt->index = field;
2210 elt->value = fold_convert(TREE_TYPE(field), size_zero_node);
2211 }
2212
2213 tree ret = build_constructor(type_tree, init);
2214 TREE_CONSTANT(ret) = 1;
2215 return ret;
2216 }
2217
2218 // The type descriptor for the string type.
2219
2220 Expression*
2221 String_type::do_type_descriptor(Gogo* gogo, Named_type* name)
2222 {
2223 if (name != NULL)
2224 return this->plain_type_descriptor(gogo, RUNTIME_TYPE_KIND_STRING, name);
2225 else
2226 {
2227 Named_object* no = gogo->lookup_global("string");
2228 gcc_assert(no != NULL);
2229 return Type::type_descriptor(gogo, no->type_value());
2230 }
2231 }
2232
2233 // We should not be asked for the reflection string of a basic type.
2234
2235 void
2236 String_type::do_reflection(Gogo*, std::string* ret) const
2237 {
2238 ret->append("string");
2239 }
2240
2241 // Mangled name of a string type.
2242
2243 void
2244 String_type::do_mangled_name(Gogo*, std::string* ret) const
2245 {
2246 ret->push_back('z');
2247 }
2248
2249 // Make a string type.
2250
2251 Type*
2252 Type::make_string_type()
2253 {
2254 static String_type string_type;
2255 return &string_type;
2256 }
2257
2258 // The named type "string".
2259
2260 static Named_type* named_string_type;
2261
2262 // Get the named type "string".
2263
2264 Named_type*
2265 Type::lookup_string_type()
2266 {
2267 return named_string_type;
2268 }
2269
2270 // Make the named type string.
2271
2272 Named_type*
2273 Type::make_named_string_type()
2274 {
2275 Type* string_type = Type::make_string_type();
2276 Named_object* named_object = Named_object::make_type("string", NULL,
2277 string_type,
2278 BUILTINS_LOCATION);
2279 Named_type* named_type = named_object->type_value();
2280 named_string_type = named_type;
2281 return named_type;
2282 }
2283
2284 // The sink type. This is the type of the blank identifier _. Any
2285 // type may be assigned to it.
2286
2287 class Sink_type : public Type
2288 {
2289 public:
2290 Sink_type()
2291 : Type(TYPE_SINK)
2292 { }
2293
2294 protected:
2295 tree
2296 do_get_tree(Gogo*)
2297 { gcc_unreachable(); }
2298
2299 tree
2300 do_get_init_tree(Gogo*, tree, bool)
2301 { gcc_unreachable(); }
2302
2303 Expression*
2304 do_type_descriptor(Gogo*, Named_type*)
2305 { gcc_unreachable(); }
2306
2307 void
2308 do_reflection(Gogo*, std::string*) const
2309 { gcc_unreachable(); }
2310
2311 void
2312 do_mangled_name(Gogo*, std::string*) const
2313 { gcc_unreachable(); }
2314 };
2315
2316 // Make the sink type.
2317
2318 Type*
2319 Type::make_sink_type()
2320 {
2321 static Sink_type sink_type;
2322 return &sink_type;
2323 }
2324
2325 // Class Function_type.
2326
2327 // Traversal.
2328
2329 int
2330 Function_type::do_traverse(Traverse* traverse)
2331 {
2332 if (this->receiver_ != NULL
2333 && Type::traverse(this->receiver_->type(), traverse) == TRAVERSE_EXIT)
2334 return TRAVERSE_EXIT;
2335 if (this->parameters_ != NULL
2336 && this->parameters_->traverse(traverse) == TRAVERSE_EXIT)
2337 return TRAVERSE_EXIT;
2338 if (this->results_ != NULL
2339 && this->results_->traverse(traverse) == TRAVERSE_EXIT)
2340 return TRAVERSE_EXIT;
2341 return TRAVERSE_CONTINUE;
2342 }
2343
2344 // Returns whether T is a valid redeclaration of this type. If this
2345 // returns false, and REASON is not NULL, *REASON may be set to a
2346 // brief explanation of why it returned false.
2347
2348 bool
2349 Function_type::is_valid_redeclaration(const Function_type* t,
2350 std::string* reason) const
2351 {
2352 if (!this->is_identical(t, false, true, reason))
2353 return false;
2354
2355 // A redeclaration of a function is required to use the same names
2356 // for the receiver and parameters.
2357 if (this->receiver() != NULL
2358 && this->receiver()->name() != t->receiver()->name()
2359 && this->receiver()->name() != Import::import_marker
2360 && t->receiver()->name() != Import::import_marker)
2361 {
2362 if (reason != NULL)
2363 *reason = "receiver name changed";
2364 return false;
2365 }
2366
2367 const Typed_identifier_list* parms1 = this->parameters();
2368 const Typed_identifier_list* parms2 = t->parameters();
2369 if (parms1 != NULL)
2370 {
2371 Typed_identifier_list::const_iterator p1 = parms1->begin();
2372 for (Typed_identifier_list::const_iterator p2 = parms2->begin();
2373 p2 != parms2->end();
2374 ++p2, ++p1)
2375 {
2376 if (p1->name() != p2->name()
2377 && p1->name() != Import::import_marker
2378 && p2->name() != Import::import_marker)
2379 {
2380 if (reason != NULL)
2381 *reason = "parameter name changed";
2382 return false;
2383 }
2384
2385 // This is called at parse time, so we may have unknown
2386 // types.
2387 Type* t1 = p1->type()->forwarded();
2388 Type* t2 = p2->type()->forwarded();
2389 if (t1 != t2
2390 && t1->forward_declaration_type() != NULL
2391 && (t2->forward_declaration_type() == NULL
2392 || (t1->forward_declaration_type()->named_object()
2393 != t2->forward_declaration_type()->named_object())))
2394 return false;
2395 }
2396 }
2397
2398 const Typed_identifier_list* results1 = this->results();
2399 const Typed_identifier_list* results2 = t->results();
2400 if (results1 != NULL)
2401 {
2402 Typed_identifier_list::const_iterator res1 = results1->begin();
2403 for (Typed_identifier_list::const_iterator res2 = results2->begin();
2404 res2 != results2->end();
2405 ++res2, ++res1)
2406 {
2407 if (res1->name() != res2->name()
2408 && res1->name() != Import::import_marker
2409 && res2->name() != Import::import_marker)
2410 {
2411 if (reason != NULL)
2412 *reason = "result name changed";
2413 return false;
2414 }
2415
2416 // This is called at parse time, so we may have unknown
2417 // types.
2418 Type* t1 = res1->type()->forwarded();
2419 Type* t2 = res2->type()->forwarded();
2420 if (t1 != t2
2421 && t1->forward_declaration_type() != NULL
2422 && (t2->forward_declaration_type() == NULL
2423 || (t1->forward_declaration_type()->named_object()
2424 != t2->forward_declaration_type()->named_object())))
2425 return false;
2426 }
2427 }
2428
2429 return true;
2430 }
2431
2432 // Check whether T is the same as this type.
2433
2434 bool
2435 Function_type::is_identical(const Function_type* t, bool ignore_receiver,
2436 bool errors_are_identical,
2437 std::string* reason) const
2438 {
2439 if (!ignore_receiver)
2440 {
2441 const Typed_identifier* r1 = this->receiver();
2442 const Typed_identifier* r2 = t->receiver();
2443 if ((r1 != NULL) != (r2 != NULL))
2444 {
2445 if (reason != NULL)
2446 *reason = _("different receiver types");
2447 return false;
2448 }
2449 if (r1 != NULL)
2450 {
2451 if (!Type::are_identical(r1->type(), r2->type(), errors_are_identical,
2452 reason))
2453 {
2454 if (reason != NULL && !reason->empty())
2455 *reason = "receiver: " + *reason;
2456 return false;
2457 }
2458 }
2459 }
2460
2461 const Typed_identifier_list* parms1 = this->parameters();
2462 const Typed_identifier_list* parms2 = t->parameters();
2463 if ((parms1 != NULL) != (parms2 != NULL))
2464 {
2465 if (reason != NULL)
2466 *reason = _("different number of parameters");
2467 return false;
2468 }
2469 if (parms1 != NULL)
2470 {
2471 Typed_identifier_list::const_iterator p1 = parms1->begin();
2472 for (Typed_identifier_list::const_iterator p2 = parms2->begin();
2473 p2 != parms2->end();
2474 ++p2, ++p1)
2475 {
2476 if (p1 == parms1->end())
2477 {
2478 if (reason != NULL)
2479 *reason = _("different number of parameters");
2480 return false;
2481 }
2482
2483 if (!Type::are_identical(p1->type(), p2->type(),
2484 errors_are_identical, NULL))
2485 {
2486 if (reason != NULL)
2487 *reason = _("different parameter types");
2488 return false;
2489 }
2490 }
2491 if (p1 != parms1->end())
2492 {
2493 if (reason != NULL)
2494 *reason = _("different number of parameters");
2495 return false;
2496 }
2497 }
2498
2499 if (this->is_varargs() != t->is_varargs())
2500 {
2501 if (reason != NULL)
2502 *reason = _("different varargs");
2503 return false;
2504 }
2505
2506 const Typed_identifier_list* results1 = this->results();
2507 const Typed_identifier_list* results2 = t->results();
2508 if ((results1 != NULL) != (results2 != NULL))
2509 {
2510 if (reason != NULL)
2511 *reason = _("different number of results");
2512 return false;
2513 }
2514 if (results1 != NULL)
2515 {
2516 Typed_identifier_list::const_iterator res1 = results1->begin();
2517 for (Typed_identifier_list::const_iterator res2 = results2->begin();
2518 res2 != results2->end();
2519 ++res2, ++res1)
2520 {
2521 if (res1 == results1->end())
2522 {
2523 if (reason != NULL)
2524 *reason = _("different number of results");
2525 return false;
2526 }
2527
2528 if (!Type::are_identical(res1->type(), res2->type(),
2529 errors_are_identical, NULL))
2530 {
2531 if (reason != NULL)
2532 *reason = _("different result types");
2533 return false;
2534 }
2535 }
2536 if (res1 != results1->end())
2537 {
2538 if (reason != NULL)
2539 *reason = _("different number of results");
2540 return false;
2541 }
2542 }
2543
2544 return true;
2545 }
2546
2547 // Hash code.
2548
2549 unsigned int
2550 Function_type::do_hash_for_method(Gogo* gogo) const
2551 {
2552 unsigned int ret = 0;
2553 // We ignore the receiver type for hash codes, because we need to
2554 // get the same hash code for a method in an interface and a method
2555 // declared for a type. The former will not have a receiver.
2556 if (this->parameters_ != NULL)
2557 {
2558 int shift = 1;
2559 for (Typed_identifier_list::const_iterator p = this->parameters_->begin();
2560 p != this->parameters_->end();
2561 ++p, ++shift)
2562 ret += p->type()->hash_for_method(gogo) << shift;
2563 }
2564 if (this->results_ != NULL)
2565 {
2566 int shift = 2;
2567 for (Typed_identifier_list::const_iterator p = this->results_->begin();
2568 p != this->results_->end();
2569 ++p, ++shift)
2570 ret += p->type()->hash_for_method(gogo) << shift;
2571 }
2572 if (this->is_varargs_)
2573 ret += 1;
2574 ret <<= 4;
2575 return ret;
2576 }
2577
2578 // Get the tree for a function type.
2579
2580 tree
2581 Function_type::do_get_tree(Gogo* gogo)
2582 {
2583 tree args = NULL_TREE;
2584 tree* pp = &args;
2585
2586 if (this->receiver_ != NULL)
2587 {
2588 Type* rtype = this->receiver_->type();
2589 tree ptype = rtype->get_tree(gogo);
2590 if (ptype == error_mark_node)
2591 return error_mark_node;
2592
2593 // We always pass the address of the receiver parameter, in
2594 // order to make interface calls work with unknown types.
2595 if (rtype->points_to() == NULL)
2596 ptype = build_pointer_type(ptype);
2597
2598 *pp = tree_cons (NULL_TREE, ptype, NULL_TREE);
2599 pp = &TREE_CHAIN (*pp);
2600 }
2601
2602 if (this->parameters_ != NULL)
2603 {
2604 for (Typed_identifier_list::const_iterator p = this->parameters_->begin();
2605 p != this->parameters_->end();
2606 ++p)
2607 {
2608 tree ptype = p->type()->get_tree(gogo);
2609 if (ptype == error_mark_node)
2610 return error_mark_node;
2611 *pp = tree_cons (NULL_TREE, ptype, NULL_TREE);
2612 pp = &TREE_CHAIN (*pp);
2613 }
2614 }
2615
2616 // Varargs is handled entirely at the Go level. At the tree level,
2617 // functions are not varargs.
2618 *pp = void_list_node;
2619
2620 tree result;
2621 if (this->results_ == NULL)
2622 result = void_type_node;
2623 else if (this->results_->size() == 1)
2624 result = this->results_->begin()->type()->get_tree(gogo);
2625 else
2626 {
2627 result = make_node(RECORD_TYPE);
2628 tree field_trees = NULL_TREE;
2629 tree* pp = &field_trees;
2630 for (Typed_identifier_list::const_iterator p = this->results_->begin();
2631 p != this->results_->end();
2632 ++p)
2633 {
2634 const std::string name = (p->name().empty()
2635 ? "UNNAMED"
2636 : Gogo::unpack_hidden_name(p->name()));
2637 tree name_tree = get_identifier_with_length(name.data(),
2638 name.length());
2639 tree field_type_tree = p->type()->get_tree(gogo);
2640 if (field_type_tree == error_mark_node)
2641 return error_mark_node;
2642 tree field = build_decl(this->location_, FIELD_DECL, name_tree,
2643 field_type_tree);
2644 DECL_CONTEXT(field) = result;
2645 *pp = field;
2646 pp = &DECL_CHAIN(field);
2647 }
2648 TYPE_FIELDS(result) = field_trees;
2649 layout_type(result);
2650 }
2651
2652 if (result == error_mark_node)
2653 return error_mark_node;
2654
2655 tree fntype = build_function_type(result, args);
2656 if (fntype == error_mark_node)
2657 return fntype;
2658
2659 return build_pointer_type(fntype);
2660 }
2661
2662 // Functions are initialized to NULL.
2663
2664 tree
2665 Function_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
2666 {
2667 if (is_clear)
2668 return NULL;
2669 return fold_convert(type_tree, null_pointer_node);
2670 }
2671
2672 // The type of a function type descriptor.
2673
2674 Type*
2675 Function_type::make_function_type_descriptor_type()
2676 {
2677 static Type* ret;
2678 if (ret == NULL)
2679 {
2680 Type* tdt = Type::make_type_descriptor_type();
2681 Type* ptdt = Type::make_type_descriptor_ptr_type();
2682
2683 Type* bool_type = Type::lookup_bool_type();
2684
2685 Type* slice_type = Type::make_array_type(ptdt, NULL);
2686
2687 Struct_type* s = Type::make_builtin_struct_type(4,
2688 "", tdt,
2689 "dotdotdot", bool_type,
2690 "in", slice_type,
2691 "out", slice_type);
2692
2693 ret = Type::make_builtin_named_type("FuncType", s);
2694 }
2695
2696 return ret;
2697 }
2698
2699 // The type descriptor for a function type.
2700
2701 Expression*
2702 Function_type::do_type_descriptor(Gogo* gogo, Named_type* name)
2703 {
2704 source_location bloc = BUILTINS_LOCATION;
2705
2706 Type* ftdt = Function_type::make_function_type_descriptor_type();
2707
2708 const Struct_field_list* fields = ftdt->struct_type()->fields();
2709
2710 Expression_list* vals = new Expression_list();
2711 vals->reserve(4);
2712
2713 Struct_field_list::const_iterator p = fields->begin();
2714 gcc_assert(p->field_name() == "commonType");
2715 vals->push_back(this->type_descriptor_constructor(gogo,
2716 RUNTIME_TYPE_KIND_FUNC,
2717 name, NULL, true));
2718
2719 ++p;
2720 gcc_assert(p->field_name() == "dotdotdot");
2721 vals->push_back(Expression::make_boolean(this->is_varargs(), bloc));
2722
2723 ++p;
2724 gcc_assert(p->field_name() == "in");
2725 vals->push_back(this->type_descriptor_params(p->type(), this->receiver(),
2726 this->parameters()));
2727
2728 ++p;
2729 gcc_assert(p->field_name() == "out");
2730 vals->push_back(this->type_descriptor_params(p->type(), NULL,
2731 this->results()));
2732
2733 ++p;
2734 gcc_assert(p == fields->end());
2735
2736 return Expression::make_struct_composite_literal(ftdt, vals, bloc);
2737 }
2738
2739 // Return a composite literal for the parameters or results of a type
2740 // descriptor.
2741
2742 Expression*
2743 Function_type::type_descriptor_params(Type* params_type,
2744 const Typed_identifier* receiver,
2745 const Typed_identifier_list* params)
2746 {
2747 source_location bloc = BUILTINS_LOCATION;
2748
2749 if (receiver == NULL && params == NULL)
2750 return Expression::make_slice_composite_literal(params_type, NULL, bloc);
2751
2752 Expression_list* vals = new Expression_list();
2753 vals->reserve((params == NULL ? 0 : params->size())
2754 + (receiver != NULL ? 1 : 0));
2755
2756 if (receiver != NULL)
2757 {
2758 Type* rtype = receiver->type();
2759 // The receiver is always passed as a pointer. FIXME: Is this
2760 // right? Should that fact affect the type descriptor?
2761 if (rtype->points_to() == NULL)
2762 rtype = Type::make_pointer_type(rtype);
2763 vals->push_back(Expression::make_type_descriptor(rtype, bloc));
2764 }
2765
2766 if (params != NULL)
2767 {
2768 for (Typed_identifier_list::const_iterator p = params->begin();
2769 p != params->end();
2770 ++p)
2771 vals->push_back(Expression::make_type_descriptor(p->type(), bloc));
2772 }
2773
2774 return Expression::make_slice_composite_literal(params_type, vals, bloc);
2775 }
2776
2777 // The reflection string.
2778
2779 void
2780 Function_type::do_reflection(Gogo* gogo, std::string* ret) const
2781 {
2782 // FIXME: Turn this off until we straighten out the type of the
2783 // struct field used in a go statement which calls a method.
2784 // gcc_assert(this->receiver_ == NULL);
2785
2786 ret->append("func");
2787
2788 if (this->receiver_ != NULL)
2789 {
2790 ret->push_back('(');
2791 this->append_reflection(this->receiver_->type(), gogo, ret);
2792 ret->push_back(')');
2793 }
2794
2795 ret->push_back('(');
2796 const Typed_identifier_list* params = this->parameters();
2797 if (params != NULL)
2798 {
2799 bool is_varargs = this->is_varargs_;
2800 for (Typed_identifier_list::const_iterator p = params->begin();
2801 p != params->end();
2802 ++p)
2803 {
2804 if (p != params->begin())
2805 ret->append(", ");
2806 if (!is_varargs || p + 1 != params->end())
2807 this->append_reflection(p->type(), gogo, ret);
2808 else
2809 {
2810 ret->append("...");
2811 this->append_reflection(p->type()->array_type()->element_type(),
2812 gogo, ret);
2813 }
2814 }
2815 }
2816 ret->push_back(')');
2817
2818 const Typed_identifier_list* results = this->results();
2819 if (results != NULL && !results->empty())
2820 {
2821 if (results->size() == 1)
2822 ret->push_back(' ');
2823 else
2824 ret->append(" (");
2825 for (Typed_identifier_list::const_iterator p = results->begin();
2826 p != results->end();
2827 ++p)
2828 {
2829 if (p != results->begin())
2830 ret->append(", ");
2831 this->append_reflection(p->type(), gogo, ret);
2832 }
2833 if (results->size() > 1)
2834 ret->push_back(')');
2835 }
2836 }
2837
2838 // Mangled name.
2839
2840 void
2841 Function_type::do_mangled_name(Gogo* gogo, std::string* ret) const
2842 {
2843 ret->push_back('F');
2844
2845 if (this->receiver_ != NULL)
2846 {
2847 ret->push_back('m');
2848 this->append_mangled_name(this->receiver_->type(), gogo, ret);
2849 }
2850
2851 const Typed_identifier_list* params = this->parameters();
2852 if (params != NULL)
2853 {
2854 ret->push_back('p');
2855 for (Typed_identifier_list::const_iterator p = params->begin();
2856 p != params->end();
2857 ++p)
2858 this->append_mangled_name(p->type(), gogo, ret);
2859 if (this->is_varargs_)
2860 ret->push_back('V');
2861 ret->push_back('e');
2862 }
2863
2864 const Typed_identifier_list* results = this->results();
2865 if (results != NULL)
2866 {
2867 ret->push_back('r');
2868 for (Typed_identifier_list::const_iterator p = results->begin();
2869 p != results->end();
2870 ++p)
2871 this->append_mangled_name(p->type(), gogo, ret);
2872 ret->push_back('e');
2873 }
2874
2875 ret->push_back('e');
2876 }
2877
2878 // Export a function type.
2879
2880 void
2881 Function_type::do_export(Export* exp) const
2882 {
2883 // We don't write out the receiver. The only function types which
2884 // should have a receiver are the ones associated with explicitly
2885 // defined methods. For those the receiver type is written out by
2886 // Function::export_func.
2887
2888 exp->write_c_string("(");
2889 bool first = true;
2890 if (this->parameters_ != NULL)
2891 {
2892 bool is_varargs = this->is_varargs_;
2893 for (Typed_identifier_list::const_iterator p =
2894 this->parameters_->begin();
2895 p != this->parameters_->end();
2896 ++p)
2897 {
2898 if (first)
2899 first = false;
2900 else
2901 exp->write_c_string(", ");
2902 if (!is_varargs || p + 1 != this->parameters_->end())
2903 exp->write_type(p->type());
2904 else
2905 {
2906 exp->write_c_string("...");
2907 exp->write_type(p->type()->array_type()->element_type());
2908 }
2909 }
2910 }
2911 exp->write_c_string(")");
2912
2913 const Typed_identifier_list* results = this->results_;
2914 if (results != NULL)
2915 {
2916 exp->write_c_string(" ");
2917 if (results->size() == 1)
2918 exp->write_type(results->begin()->type());
2919 else
2920 {
2921 first = true;
2922 exp->write_c_string("(");
2923 for (Typed_identifier_list::const_iterator p = results->begin();
2924 p != results->end();
2925 ++p)
2926 {
2927 if (first)
2928 first = false;
2929 else
2930 exp->write_c_string(", ");
2931 exp->write_type(p->type());
2932 }
2933 exp->write_c_string(")");
2934 }
2935 }
2936 }
2937
2938 // Import a function type.
2939
2940 Function_type*
2941 Function_type::do_import(Import* imp)
2942 {
2943 imp->require_c_string("(");
2944 Typed_identifier_list* parameters;
2945 bool is_varargs = false;
2946 if (imp->peek_char() == ')')
2947 parameters = NULL;
2948 else
2949 {
2950 parameters = new Typed_identifier_list();
2951 while (true)
2952 {
2953 if (imp->match_c_string("..."))
2954 {
2955 imp->advance(3);
2956 is_varargs = true;
2957 }
2958
2959 Type* ptype = imp->read_type();
2960 if (is_varargs)
2961 ptype = Type::make_array_type(ptype, NULL);
2962 parameters->push_back(Typed_identifier(Import::import_marker,
2963 ptype, imp->location()));
2964 if (imp->peek_char() != ',')
2965 break;
2966 gcc_assert(!is_varargs);
2967 imp->require_c_string(", ");
2968 }
2969 }
2970 imp->require_c_string(")");
2971
2972 Typed_identifier_list* results;
2973 if (imp->peek_char() != ' ')
2974 results = NULL;
2975 else
2976 {
2977 imp->advance(1);
2978 results = new Typed_identifier_list;
2979 if (imp->peek_char() != '(')
2980 {
2981 Type* rtype = imp->read_type();
2982 results->push_back(Typed_identifier(Import::import_marker, rtype,
2983 imp->location()));
2984 }
2985 else
2986 {
2987 imp->advance(1);
2988 while (true)
2989 {
2990 Type* rtype = imp->read_type();
2991 results->push_back(Typed_identifier(Import::import_marker,
2992 rtype, imp->location()));
2993 if (imp->peek_char() != ',')
2994 break;
2995 imp->require_c_string(", ");
2996 }
2997 imp->require_c_string(")");
2998 }
2999 }
3000
3001 Function_type* ret = Type::make_function_type(NULL, parameters, results,
3002 imp->location());
3003 if (is_varargs)
3004 ret->set_is_varargs();
3005 return ret;
3006 }
3007
3008 // Make a copy of a function type without a receiver.
3009
3010 Function_type*
3011 Function_type::copy_without_receiver() const
3012 {
3013 gcc_assert(this->is_method());
3014 Function_type *ret = Type::make_function_type(NULL, this->parameters_,
3015 this->results_,
3016 this->location_);
3017 if (this->is_varargs())
3018 ret->set_is_varargs();
3019 if (this->is_builtin())
3020 ret->set_is_builtin();
3021 return ret;
3022 }
3023
3024 // Make a copy of a function type with a receiver.
3025
3026 Function_type*
3027 Function_type::copy_with_receiver(Type* receiver_type) const
3028 {
3029 gcc_assert(!this->is_method());
3030 Typed_identifier* receiver = new Typed_identifier("", receiver_type,
3031 this->location_);
3032 return Type::make_function_type(receiver, this->parameters_,
3033 this->results_, this->location_);
3034 }
3035
3036 // Make a function type.
3037
3038 Function_type*
3039 Type::make_function_type(Typed_identifier* receiver,
3040 Typed_identifier_list* parameters,
3041 Typed_identifier_list* results,
3042 source_location location)
3043 {
3044 return new Function_type(receiver, parameters, results, location);
3045 }
3046
3047 // Class Pointer_type.
3048
3049 // Traversal.
3050
3051 int
3052 Pointer_type::do_traverse(Traverse* traverse)
3053 {
3054 return Type::traverse(this->to_type_, traverse);
3055 }
3056
3057 // Hash code.
3058
3059 unsigned int
3060 Pointer_type::do_hash_for_method(Gogo* gogo) const
3061 {
3062 return this->to_type_->hash_for_method(gogo) << 4;
3063 }
3064
3065 // The tree for a pointer type.
3066
3067 tree
3068 Pointer_type::do_get_tree(Gogo* gogo)
3069 {
3070 return build_pointer_type(this->to_type_->get_tree(gogo));
3071 }
3072
3073 // Initialize a pointer type.
3074
3075 tree
3076 Pointer_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
3077 {
3078 if (is_clear)
3079 return NULL;
3080 return fold_convert(type_tree, null_pointer_node);
3081 }
3082
3083 // The type of a pointer type descriptor.
3084
3085 Type*
3086 Pointer_type::make_pointer_type_descriptor_type()
3087 {
3088 static Type* ret;
3089 if (ret == NULL)
3090 {
3091 Type* tdt = Type::make_type_descriptor_type();
3092 Type* ptdt = Type::make_type_descriptor_ptr_type();
3093
3094 Struct_type* s = Type::make_builtin_struct_type(2,
3095 "", tdt,
3096 "elem", ptdt);
3097
3098 ret = Type::make_builtin_named_type("PtrType", s);
3099 }
3100
3101 return ret;
3102 }
3103
3104 // The type descriptor for a pointer type.
3105
3106 Expression*
3107 Pointer_type::do_type_descriptor(Gogo* gogo, Named_type* name)
3108 {
3109 if (this->is_unsafe_pointer_type())
3110 {
3111 gcc_assert(name != NULL);
3112 return this->plain_type_descriptor(gogo,
3113 RUNTIME_TYPE_KIND_UNSAFE_POINTER,
3114 name);
3115 }
3116 else
3117 {
3118 source_location bloc = BUILTINS_LOCATION;
3119
3120 const Methods* methods;
3121 Type* deref = this->points_to();
3122 if (deref->named_type() != NULL)
3123 methods = deref->named_type()->methods();
3124 else if (deref->struct_type() != NULL)
3125 methods = deref->struct_type()->methods();
3126 else
3127 methods = NULL;
3128
3129 Type* ptr_tdt = Pointer_type::make_pointer_type_descriptor_type();
3130
3131 const Struct_field_list* fields = ptr_tdt->struct_type()->fields();
3132
3133 Expression_list* vals = new Expression_list();
3134 vals->reserve(2);
3135
3136 Struct_field_list::const_iterator p = fields->begin();
3137 gcc_assert(p->field_name() == "commonType");
3138 vals->push_back(this->type_descriptor_constructor(gogo,
3139 RUNTIME_TYPE_KIND_PTR,
3140 name, methods, false));
3141
3142 ++p;
3143 gcc_assert(p->field_name() == "elem");
3144 vals->push_back(Expression::make_type_descriptor(deref, bloc));
3145
3146 return Expression::make_struct_composite_literal(ptr_tdt, vals, bloc);
3147 }
3148 }
3149
3150 // Reflection string.
3151
3152 void
3153 Pointer_type::do_reflection(Gogo* gogo, std::string* ret) const
3154 {
3155 ret->push_back('*');
3156 this->append_reflection(this->to_type_, gogo, ret);
3157 }
3158
3159 // Mangled name.
3160
3161 void
3162 Pointer_type::do_mangled_name(Gogo* gogo, std::string* ret) const
3163 {
3164 ret->push_back('p');
3165 this->append_mangled_name(this->to_type_, gogo, ret);
3166 }
3167
3168 // Export.
3169
3170 void
3171 Pointer_type::do_export(Export* exp) const
3172 {
3173 exp->write_c_string("*");
3174 if (this->is_unsafe_pointer_type())
3175 exp->write_c_string("any");
3176 else
3177 exp->write_type(this->to_type_);
3178 }
3179
3180 // Import.
3181
3182 Pointer_type*
3183 Pointer_type::do_import(Import* imp)
3184 {
3185 imp->require_c_string("*");
3186 if (imp->match_c_string("any"))
3187 {
3188 imp->advance(3);
3189 return Type::make_pointer_type(Type::make_void_type());
3190 }
3191 Type* to = imp->read_type();
3192 return Type::make_pointer_type(to);
3193 }
3194
3195 // Make a pointer type.
3196
3197 Pointer_type*
3198 Type::make_pointer_type(Type* to_type)
3199 {
3200 typedef Unordered_map(Type*, Pointer_type*) Hashtable;
3201 static Hashtable pointer_types;
3202 Hashtable::const_iterator p = pointer_types.find(to_type);
3203 if (p != pointer_types.end())
3204 return p->second;
3205 Pointer_type* ret = new Pointer_type(to_type);
3206 pointer_types[to_type] = ret;
3207 return ret;
3208 }
3209
3210 // The nil type. We use a special type for nil because it is not the
3211 // same as any other type. In C term nil has type void*, but there is
3212 // no such type in Go.
3213
3214 class Nil_type : public Type
3215 {
3216 public:
3217 Nil_type()
3218 : Type(TYPE_NIL)
3219 { }
3220
3221 protected:
3222 tree
3223 do_get_tree(Gogo*)
3224 { return ptr_type_node; }
3225
3226 tree
3227 do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
3228 { return is_clear ? NULL : fold_convert(type_tree, null_pointer_node); }
3229
3230 Expression*
3231 do_type_descriptor(Gogo*, Named_type*)
3232 { gcc_unreachable(); }
3233
3234 void
3235 do_reflection(Gogo*, std::string*) const
3236 { gcc_unreachable(); }
3237
3238 void
3239 do_mangled_name(Gogo*, std::string* ret) const
3240 { ret->push_back('n'); }
3241 };
3242
3243 // Make the nil type.
3244
3245 Type*
3246 Type::make_nil_type()
3247 {
3248 static Nil_type singleton_nil_type;
3249 return &singleton_nil_type;
3250 }
3251
3252 // The type of a function call which returns multiple values. This is
3253 // really a struct, but we don't want to confuse a function call which
3254 // returns a struct with a function call which returns multiple
3255 // values.
3256
3257 class Call_multiple_result_type : public Type
3258 {
3259 public:
3260 Call_multiple_result_type(Call_expression* call)
3261 : Type(TYPE_CALL_MULTIPLE_RESULT),
3262 call_(call)
3263 { }
3264
3265 protected:
3266 bool
3267 do_has_pointer() const
3268 {
3269 gcc_assert(saw_errors());
3270 return false;
3271 }
3272
3273 tree
3274 do_get_tree(Gogo*);
3275
3276 tree
3277 do_get_init_tree(Gogo*, tree, bool)
3278 {
3279 gcc_assert(saw_errors());
3280 return error_mark_node;
3281 }
3282
3283 Expression*
3284 do_type_descriptor(Gogo*, Named_type*)
3285 {
3286 gcc_assert(saw_errors());
3287 return Expression::make_error(UNKNOWN_LOCATION);
3288 }
3289
3290 void
3291 do_reflection(Gogo*, std::string*) const
3292 { gcc_assert(saw_errors()); }
3293
3294 void
3295 do_mangled_name(Gogo*, std::string*) const
3296 { gcc_assert(saw_errors()); }
3297
3298 private:
3299 // The expression being called.
3300 Call_expression* call_;
3301 };
3302
3303 // Return the tree for a call result.
3304
3305 tree
3306 Call_multiple_result_type::do_get_tree(Gogo* gogo)
3307 {
3308 Function_type* fntype = this->call_->get_function_type();
3309 gcc_assert(fntype != NULL);
3310 const Typed_identifier_list* results = fntype->results();
3311 gcc_assert(results != NULL && results->size() > 1);
3312
3313 Struct_field_list* sfl = new Struct_field_list;
3314 for (Typed_identifier_list::const_iterator p = results->begin();
3315 p != results->end();
3316 ++p)
3317 {
3318 const std::string name = ((p->name().empty()
3319 || p->name() == Import::import_marker)
3320 ? "UNNAMED"
3321 : p->name());
3322 sfl->push_back(Struct_field(Typed_identifier(name, p->type(),
3323 this->call_->location())));
3324 }
3325 return Type::make_struct_type(sfl, this->call_->location())->get_tree(gogo);
3326 }
3327
3328 // Make a call result type.
3329
3330 Type*
3331 Type::make_call_multiple_result_type(Call_expression* call)
3332 {
3333 return new Call_multiple_result_type(call);
3334 }
3335
3336 // Class Struct_field.
3337
3338 // Get the name of a field.
3339
3340 const std::string&
3341 Struct_field::field_name() const
3342 {
3343 const std::string& name(this->typed_identifier_.name());
3344 if (!name.empty())
3345 return name;
3346 else
3347 {
3348 // This is called during parsing, before anything is lowered, so
3349 // we have to be pretty careful to avoid dereferencing an
3350 // unknown type name.
3351 Type* t = this->typed_identifier_.type();
3352 Type* dt = t;
3353 if (t->classification() == Type::TYPE_POINTER)
3354 {
3355 // Very ugly.
3356 Pointer_type* ptype = static_cast<Pointer_type*>(t);
3357 dt = ptype->points_to();
3358 }
3359 if (dt->forward_declaration_type() != NULL)
3360 return dt->forward_declaration_type()->name();
3361 else if (dt->named_type() != NULL)
3362 return dt->named_type()->name();
3363 else if (t->is_error_type() || dt->is_error_type())
3364 {
3365 static const std::string error_string = "*error*";
3366 return error_string;
3367 }
3368 else
3369 {
3370 // Avoid crashing in the erroneous case where T is named but
3371 // DT is not.
3372 gcc_assert(t != dt);
3373 if (t->forward_declaration_type() != NULL)
3374 return t->forward_declaration_type()->name();
3375 else if (t->named_type() != NULL)
3376 return t->named_type()->name();
3377 else
3378 gcc_unreachable();
3379 }
3380 }
3381 }
3382
3383 // Class Struct_type.
3384
3385 // Traversal.
3386
3387 int
3388 Struct_type::do_traverse(Traverse* traverse)
3389 {
3390 Struct_field_list* fields = this->fields_;
3391 if (fields != NULL)
3392 {
3393 for (Struct_field_list::iterator p = fields->begin();
3394 p != fields->end();
3395 ++p)
3396 {
3397 if (Type::traverse(p->type(), traverse) == TRAVERSE_EXIT)
3398 return TRAVERSE_EXIT;
3399 }
3400 }
3401 return TRAVERSE_CONTINUE;
3402 }
3403
3404 // Verify that the struct type is complete and valid.
3405
3406 bool
3407 Struct_type::do_verify()
3408 {
3409 Struct_field_list* fields = this->fields_;
3410 if (fields == NULL)
3411 return true;
3412 bool ret = true;
3413 for (Struct_field_list::iterator p = fields->begin();
3414 p != fields->end();
3415 ++p)
3416 {
3417 Type* t = p->type();
3418 if (t->is_undefined())
3419 {
3420 error_at(p->location(), "struct field type is incomplete");
3421 p->set_type(Type::make_error_type());
3422 ret = false;
3423 }
3424 else if (p->is_anonymous())
3425 {
3426 if (t->named_type() != NULL && t->points_to() != NULL)
3427 {
3428 error_at(p->location(), "embedded type may not be a pointer");
3429 p->set_type(Type::make_error_type());
3430 return false;
3431 }
3432 }
3433 }
3434 return ret;
3435 }
3436
3437 // Whether this contains a pointer.
3438
3439 bool
3440 Struct_type::do_has_pointer() const
3441 {
3442 const Struct_field_list* fields = this->fields();
3443 if (fields == NULL)
3444 return false;
3445 for (Struct_field_list::const_iterator p = fields->begin();
3446 p != fields->end();
3447 ++p)
3448 {
3449 if (p->type()->has_pointer())
3450 return true;
3451 }
3452 return false;
3453 }
3454
3455 // Whether this type is identical to T.
3456
3457 bool
3458 Struct_type::is_identical(const Struct_type* t,
3459 bool errors_are_identical) const
3460 {
3461 const Struct_field_list* fields1 = this->fields();
3462 const Struct_field_list* fields2 = t->fields();
3463 if (fields1 == NULL || fields2 == NULL)
3464 return fields1 == fields2;
3465 Struct_field_list::const_iterator pf2 = fields2->begin();
3466 for (Struct_field_list::const_iterator pf1 = fields1->begin();
3467 pf1 != fields1->end();
3468 ++pf1, ++pf2)
3469 {
3470 if (pf2 == fields2->end())
3471 return false;
3472 if (pf1->field_name() != pf2->field_name())
3473 return false;
3474 if (pf1->is_anonymous() != pf2->is_anonymous()
3475 || !Type::are_identical(pf1->type(), pf2->type(),
3476 errors_are_identical, NULL))
3477 return false;
3478 if (!pf1->has_tag())
3479 {
3480 if (pf2->has_tag())
3481 return false;
3482 }
3483 else
3484 {
3485 if (!pf2->has_tag())
3486 return false;
3487 if (pf1->tag() != pf2->tag())
3488 return false;
3489 }
3490 }
3491 if (pf2 != fields2->end())
3492 return false;
3493 return true;
3494 }
3495
3496 // Whether this struct type has any hidden fields.
3497
3498 bool
3499 Struct_type::struct_has_hidden_fields(const Named_type* within,
3500 std::string* reason) const
3501 {
3502 const Struct_field_list* fields = this->fields();
3503 if (fields == NULL)
3504 return false;
3505 const Package* within_package = (within == NULL
3506 ? NULL
3507 : within->named_object()->package());
3508 for (Struct_field_list::const_iterator pf = fields->begin();
3509 pf != fields->end();
3510 ++pf)
3511 {
3512 if (within_package != NULL
3513 && !pf->is_anonymous()
3514 && Gogo::is_hidden_name(pf->field_name()))
3515 {
3516 if (reason != NULL)
3517 {
3518 std::string within_name = within->named_object()->message_name();
3519 std::string name = Gogo::message_name(pf->field_name());
3520 size_t bufsize = 200 + within_name.length() + name.length();
3521 char* buf = new char[bufsize];
3522 snprintf(buf, bufsize,
3523 _("implicit assignment of %s%s%s hidden field %s%s%s"),
3524 open_quote, within_name.c_str(), close_quote,
3525 open_quote, name.c_str(), close_quote);
3526 reason->assign(buf);
3527 delete[] buf;
3528 }
3529 return true;
3530 }
3531
3532 if (pf->type()->has_hidden_fields(within, reason))
3533 return true;
3534 }
3535
3536 return false;
3537 }
3538
3539 // Hash code.
3540
3541 unsigned int
3542 Struct_type::do_hash_for_method(Gogo* gogo) const
3543 {
3544 unsigned int ret = 0;
3545 if (this->fields() != NULL)
3546 {
3547 for (Struct_field_list::const_iterator pf = this->fields()->begin();
3548 pf != this->fields()->end();
3549 ++pf)
3550 ret = (ret << 1) + pf->type()->hash_for_method(gogo);
3551 }
3552 return ret <<= 2;
3553 }
3554
3555 // Find the local field NAME.
3556
3557 const Struct_field*
3558 Struct_type::find_local_field(const std::string& name,
3559 unsigned int *pindex) const
3560 {
3561 const Struct_field_list* fields = this->fields_;
3562 if (fields == NULL)
3563 return NULL;
3564 unsigned int i = 0;
3565 for (Struct_field_list::const_iterator pf = fields->begin();
3566 pf != fields->end();
3567 ++pf, ++i)
3568 {
3569 if (pf->field_name() == name)
3570 {
3571 if (pindex != NULL)
3572 *pindex = i;
3573 return &*pf;
3574 }
3575 }
3576 return NULL;
3577 }
3578
3579 // Return an expression for field NAME in STRUCT_EXPR, or NULL.
3580
3581 Field_reference_expression*
3582 Struct_type::field_reference(Expression* struct_expr, const std::string& name,
3583 source_location location) const
3584 {
3585 unsigned int depth;
3586 return this->field_reference_depth(struct_expr, name, location, &depth);
3587 }
3588
3589 // Return an expression for a field, along with the depth at which it
3590 // was found.
3591
3592 Field_reference_expression*
3593 Struct_type::field_reference_depth(Expression* struct_expr,
3594 const std::string& name,
3595 source_location location,
3596 unsigned int* depth) const
3597 {
3598 const Struct_field_list* fields = this->fields_;
3599 if (fields == NULL)
3600 return NULL;
3601
3602 // Look for a field with this name.
3603 unsigned int i = 0;
3604 for (Struct_field_list::const_iterator pf = fields->begin();
3605 pf != fields->end();
3606 ++pf, ++i)
3607 {
3608 if (pf->field_name() == name)
3609 {
3610 *depth = 0;
3611 return Expression::make_field_reference(struct_expr, i, location);
3612 }
3613 }
3614
3615 // Look for an anonymous field which contains a field with this
3616 // name.
3617 unsigned int found_depth = 0;
3618 Field_reference_expression* ret = NULL;
3619 i = 0;
3620 for (Struct_field_list::const_iterator pf = fields->begin();
3621 pf != fields->end();
3622 ++pf, ++i)
3623 {
3624 if (!pf->is_anonymous())
3625 continue;
3626
3627 Struct_type* st = pf->type()->deref()->struct_type();
3628 if (st == NULL)
3629 continue;
3630
3631 // Look for a reference using a NULL struct expression. If we
3632 // find one, fill in the struct expression with a reference to
3633 // this field.
3634 unsigned int subdepth;
3635 Field_reference_expression* sub = st->field_reference_depth(NULL, name,
3636 location,
3637 &subdepth);
3638 if (sub == NULL)
3639 continue;
3640
3641 if (ret == NULL || subdepth < found_depth)
3642 {
3643 if (ret != NULL)
3644 delete ret;
3645 ret = sub;
3646 found_depth = subdepth;
3647 Expression* here = Expression::make_field_reference(struct_expr, i,
3648 location);
3649 if (pf->type()->points_to() != NULL)
3650 here = Expression::make_unary(OPERATOR_MULT, here, location);
3651 while (sub->expr() != NULL)
3652 {
3653 sub = sub->expr()->deref()->field_reference_expression();
3654 gcc_assert(sub != NULL);
3655 }
3656 sub->set_struct_expression(here);
3657 }
3658 else if (subdepth > found_depth)
3659 delete sub;
3660 else
3661 {
3662 // We do not handle ambiguity here--it should be handled by
3663 // Type::bind_field_or_method.
3664 delete sub;
3665 found_depth = 0;
3666 ret = NULL;
3667 }
3668 }
3669
3670 if (ret != NULL)
3671 *depth = found_depth + 1;
3672
3673 return ret;
3674 }
3675
3676 // Return the total number of fields, including embedded fields.
3677
3678 unsigned int
3679 Struct_type::total_field_count() const
3680 {
3681 if (this->fields_ == NULL)
3682 return 0;
3683 unsigned int ret = 0;
3684 for (Struct_field_list::const_iterator pf = this->fields_->begin();
3685 pf != this->fields_->end();
3686 ++pf)
3687 {
3688 if (!pf->is_anonymous() || pf->type()->deref()->struct_type() == NULL)
3689 ++ret;
3690 else
3691 ret += pf->type()->struct_type()->total_field_count();
3692 }
3693 return ret;
3694 }
3695
3696 // Return whether NAME is an unexported field, for better error reporting.
3697
3698 bool
3699 Struct_type::is_unexported_local_field(Gogo* gogo,
3700 const std::string& name) const
3701 {
3702 const Struct_field_list* fields = this->fields_;
3703 if (fields != NULL)
3704 {
3705 for (Struct_field_list::const_iterator pf = fields->begin();
3706 pf != fields->end();
3707 ++pf)
3708 {
3709 const std::string& field_name(pf->field_name());
3710 if (Gogo::is_hidden_name(field_name)
3711 && name == Gogo::unpack_hidden_name(field_name)
3712 && gogo->pack_hidden_name(name, false) != field_name)
3713 return true;
3714 }
3715 }
3716 return false;
3717 }
3718
3719 // Finalize the methods of an unnamed struct.
3720
3721 void
3722 Struct_type::finalize_methods(Gogo* gogo)
3723 {
3724 if (this->all_methods_ != NULL)
3725 return;
3726 Type::finalize_methods(gogo, this, this->location_, &this->all_methods_);
3727 }
3728
3729 // Return the method NAME, or NULL if there isn't one or if it is
3730 // ambiguous. Set *IS_AMBIGUOUS if the method exists but is
3731 // ambiguous.
3732
3733 Method*
3734 Struct_type::method_function(const std::string& name, bool* is_ambiguous) const
3735 {
3736 return Type::method_function(this->all_methods_, name, is_ambiguous);
3737 }
3738
3739 // Get the tree for a struct type.
3740
3741 tree
3742 Struct_type::do_get_tree(Gogo* gogo)
3743 {
3744 tree type = make_node(RECORD_TYPE);
3745 return this->fill_in_tree(gogo, type);
3746 }
3747
3748 // Fill in the fields for a struct type.
3749
3750 tree
3751 Struct_type::fill_in_tree(Gogo* gogo, tree type)
3752 {
3753 tree field_trees = NULL_TREE;
3754 tree* pp = &field_trees;
3755 bool has_pointer = false;
3756 for (Struct_field_list::const_iterator p = this->fields_->begin();
3757 p != this->fields_->end();
3758 ++p)
3759 {
3760 std::string name = Gogo::unpack_hidden_name(p->field_name());
3761 tree name_tree = get_identifier_with_length(name.data(), name.length());
3762
3763 // Don't follow pointers yet, so that we don't get confused by a
3764 // pointer to an array of this struct type.
3765 tree field_type_tree;
3766 if (p->type()->points_to() != NULL || p->type()->function_type() != NULL)
3767 {
3768 field_type_tree = ptr_type_node;
3769 has_pointer = true;
3770 }
3771 else
3772 {
3773 field_type_tree = p->type()->get_tree(gogo);
3774 if (field_type_tree == error_mark_node)
3775 return error_mark_node;
3776 }
3777
3778 tree field = build_decl(p->location(), FIELD_DECL, name_tree,
3779 field_type_tree);
3780 DECL_CONTEXT(field) = type;
3781 *pp = field;
3782 pp = &DECL_CHAIN(field);
3783 }
3784
3785 TYPE_FIELDS(type) = field_trees;
3786
3787 layout_type(type);
3788
3789 if (has_pointer)
3790 {
3791 tree field = field_trees;
3792 for (Struct_field_list::const_iterator p = this->fields_->begin();
3793 p != this->fields_->end();
3794 ++p, field = DECL_CHAIN(field))
3795 {
3796 if (p->type()->points_to() != NULL
3797 || p->type()->function_type() != NULL)
3798 TREE_TYPE(field) = p->type()->get_tree(gogo);
3799 }
3800 }
3801
3802 return type;
3803 }
3804
3805 // Make sure that all structs which must be converted to the backend
3806 // representation before this one are in fact converted.
3807
3808 void
3809 Struct_type::convert_prerequisites(Gogo* gogo)
3810 {
3811 for (std::vector<Named_type*>::const_iterator p
3812 = this->prerequisites_.begin();
3813 p != this->prerequisites_.end();
3814 ++p)
3815 (*p)->get_tree(gogo);
3816 }
3817
3818 // Initialize struct fields.
3819
3820 tree
3821 Struct_type::do_get_init_tree(Gogo* gogo, tree type_tree, bool is_clear)
3822 {
3823 if (this->fields_ == NULL || this->fields_->empty())
3824 {
3825 if (is_clear)
3826 return NULL;
3827 else
3828 {
3829 tree ret = build_constructor(type_tree,
3830 VEC_alloc(constructor_elt, gc, 0));
3831 TREE_CONSTANT(ret) = 1;
3832 return ret;
3833 }
3834 }
3835
3836 bool is_constant = true;
3837 bool any_fields_set = false;
3838 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc,
3839 this->fields_->size());
3840
3841 tree field = TYPE_FIELDS(type_tree);
3842 for (Struct_field_list::const_iterator p = this->fields_->begin();
3843 p != this->fields_->end();
3844 ++p, field = DECL_CHAIN(field))
3845 {
3846 tree value = p->type()->get_init_tree(gogo, is_clear);
3847 if (value == error_mark_node)
3848 return error_mark_node;
3849 gcc_assert(field != NULL_TREE);
3850 if (value != NULL)
3851 {
3852 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
3853 elt->index = field;
3854 elt->value = value;
3855 any_fields_set = true;
3856 if (!TREE_CONSTANT(value))
3857 is_constant = false;
3858 }
3859 }
3860 gcc_assert(field == NULL_TREE);
3861
3862 if (!any_fields_set)
3863 {
3864 gcc_assert(is_clear);
3865 VEC_free(constructor_elt, gc, init);
3866 return NULL;
3867 }
3868
3869 tree ret = build_constructor(type_tree, init);
3870 if (is_constant)
3871 TREE_CONSTANT(ret) = 1;
3872 return ret;
3873 }
3874
3875 // The type of a struct type descriptor.
3876
3877 Type*
3878 Struct_type::make_struct_type_descriptor_type()
3879 {
3880 static Type* ret;
3881 if (ret == NULL)
3882 {
3883 Type* tdt = Type::make_type_descriptor_type();
3884 Type* ptdt = Type::make_type_descriptor_ptr_type();
3885
3886 Type* uintptr_type = Type::lookup_integer_type("uintptr");
3887 Type* string_type = Type::lookup_string_type();
3888 Type* pointer_string_type = Type::make_pointer_type(string_type);
3889
3890 Struct_type* sf =
3891 Type::make_builtin_struct_type(5,
3892 "name", pointer_string_type,
3893 "pkgPath", pointer_string_type,
3894 "typ", ptdt,
3895 "tag", pointer_string_type,
3896 "offset", uintptr_type);
3897 Type* nsf = Type::make_builtin_named_type("structField", sf);
3898
3899 Type* slice_type = Type::make_array_type(nsf, NULL);
3900
3901 Struct_type* s = Type::make_builtin_struct_type(2,
3902 "", tdt,
3903 "fields", slice_type);
3904
3905 ret = Type::make_builtin_named_type("StructType", s);
3906 }
3907
3908 return ret;
3909 }
3910
3911 // Build a type descriptor for a struct type.
3912
3913 Expression*
3914 Struct_type::do_type_descriptor(Gogo* gogo, Named_type* name)
3915 {
3916 source_location bloc = BUILTINS_LOCATION;
3917
3918 Type* stdt = Struct_type::make_struct_type_descriptor_type();
3919
3920 const Struct_field_list* fields = stdt->struct_type()->fields();
3921
3922 Expression_list* vals = new Expression_list();
3923 vals->reserve(2);
3924
3925 const Methods* methods = this->methods();
3926 // A named struct should not have methods--the methods should attach
3927 // to the named type.
3928 gcc_assert(methods == NULL || name == NULL);
3929
3930 Struct_field_list::const_iterator ps = fields->begin();
3931 gcc_assert(ps->field_name() == "commonType");
3932 vals->push_back(this->type_descriptor_constructor(gogo,
3933 RUNTIME_TYPE_KIND_STRUCT,
3934 name, methods, true));
3935
3936 ++ps;
3937 gcc_assert(ps->field_name() == "fields");
3938
3939 Expression_list* elements = new Expression_list();
3940 elements->reserve(this->fields_->size());
3941 Type* element_type = ps->type()->array_type()->element_type();
3942 for (Struct_field_list::const_iterator pf = this->fields_->begin();
3943 pf != this->fields_->end();
3944 ++pf)
3945 {
3946 const Struct_field_list* f = element_type->struct_type()->fields();
3947
3948 Expression_list* fvals = new Expression_list();
3949 fvals->reserve(5);
3950
3951 Struct_field_list::const_iterator q = f->begin();
3952 gcc_assert(q->field_name() == "name");
3953 if (pf->is_anonymous())
3954 fvals->push_back(Expression::make_nil(bloc));
3955 else
3956 {
3957 std::string n = Gogo::unpack_hidden_name(pf->field_name());
3958 Expression* s = Expression::make_string(n, bloc);
3959 fvals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
3960 }
3961
3962 ++q;
3963 gcc_assert(q->field_name() == "pkgPath");
3964 if (!Gogo::is_hidden_name(pf->field_name()))
3965 fvals->push_back(Expression::make_nil(bloc));
3966 else
3967 {
3968 std::string n = Gogo::hidden_name_prefix(pf->field_name());
3969 Expression* s = Expression::make_string(n, bloc);
3970 fvals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
3971 }
3972
3973 ++q;
3974 gcc_assert(q->field_name() == "typ");
3975 fvals->push_back(Expression::make_type_descriptor(pf->type(), bloc));
3976
3977 ++q;
3978 gcc_assert(q->field_name() == "tag");
3979 if (!pf->has_tag())
3980 fvals->push_back(Expression::make_nil(bloc));
3981 else
3982 {
3983 Expression* s = Expression::make_string(pf->tag(), bloc);
3984 fvals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
3985 }
3986
3987 ++q;
3988 gcc_assert(q->field_name() == "offset");
3989 fvals->push_back(Expression::make_struct_field_offset(this, &*pf));
3990
3991 Expression* v = Expression::make_struct_composite_literal(element_type,
3992 fvals, bloc);
3993 elements->push_back(v);
3994 }
3995
3996 vals->push_back(Expression::make_slice_composite_literal(ps->type(),
3997 elements, bloc));
3998
3999 return Expression::make_struct_composite_literal(stdt, vals, bloc);
4000 }
4001
4002 // Reflection string.
4003
4004 void
4005 Struct_type::do_reflection(Gogo* gogo, std::string* ret) const
4006 {
4007 ret->append("struct { ");
4008
4009 for (Struct_field_list::const_iterator p = this->fields_->begin();
4010 p != this->fields_->end();
4011 ++p)
4012 {
4013 if (p != this->fields_->begin())
4014 ret->append("; ");
4015 if (p->is_anonymous())
4016 ret->push_back('?');
4017 else
4018 ret->append(Gogo::unpack_hidden_name(p->field_name()));
4019 ret->push_back(' ');
4020 this->append_reflection(p->type(), gogo, ret);
4021
4022 if (p->has_tag())
4023 {
4024 const std::string& tag(p->tag());
4025 ret->append(" \"");
4026 for (std::string::const_iterator p = tag.begin();
4027 p != tag.end();
4028 ++p)
4029 {
4030 if (*p == '\0')
4031 ret->append("\\x00");
4032 else if (*p == '\n')
4033 ret->append("\\n");
4034 else if (*p == '\t')
4035 ret->append("\\t");
4036 else if (*p == '"')
4037 ret->append("\\\"");
4038 else if (*p == '\\')
4039 ret->append("\\\\");
4040 else
4041 ret->push_back(*p);
4042 }
4043 ret->push_back('"');
4044 }
4045 }
4046
4047 ret->append(" }");
4048 }
4049
4050 // Mangled name.
4051
4052 void
4053 Struct_type::do_mangled_name(Gogo* gogo, std::string* ret) const
4054 {
4055 ret->push_back('S');
4056
4057 const Struct_field_list* fields = this->fields_;
4058 if (fields != NULL)
4059 {
4060 for (Struct_field_list::const_iterator p = fields->begin();
4061 p != fields->end();
4062 ++p)
4063 {
4064 if (p->is_anonymous())
4065 ret->append("0_");
4066 else
4067 {
4068 std::string n = Gogo::unpack_hidden_name(p->field_name());
4069 char buf[20];
4070 snprintf(buf, sizeof buf, "%u_",
4071 static_cast<unsigned int>(n.length()));
4072 ret->append(buf);
4073 ret->append(n);
4074 }
4075 this->append_mangled_name(p->type(), gogo, ret);
4076 if (p->has_tag())
4077 {
4078 const std::string& tag(p->tag());
4079 std::string out;
4080 for (std::string::const_iterator p = tag.begin();
4081 p != tag.end();
4082 ++p)
4083 {
4084 if (ISALNUM(*p) || *p == '_')
4085 out.push_back(*p);
4086 else
4087 {
4088 char buf[20];
4089 snprintf(buf, sizeof buf, ".%x.",
4090 static_cast<unsigned int>(*p));
4091 out.append(buf);
4092 }
4093 }
4094 char buf[20];
4095 snprintf(buf, sizeof buf, "T%u_",
4096 static_cast<unsigned int>(out.length()));
4097 ret->append(buf);
4098 ret->append(out);
4099 }
4100 }
4101 }
4102
4103 ret->push_back('e');
4104 }
4105
4106 // Export.
4107
4108 void
4109 Struct_type::do_export(Export* exp) const
4110 {
4111 exp->write_c_string("struct { ");
4112 const Struct_field_list* fields = this->fields_;
4113 gcc_assert(fields != NULL);
4114 for (Struct_field_list::const_iterator p = fields->begin();
4115 p != fields->end();
4116 ++p)
4117 {
4118 if (p->is_anonymous())
4119 exp->write_string("? ");
4120 else
4121 {
4122 exp->write_string(p->field_name());
4123 exp->write_c_string(" ");
4124 }
4125 exp->write_type(p->type());
4126
4127 if (p->has_tag())
4128 {
4129 exp->write_c_string(" ");
4130 Expression* expr = Expression::make_string(p->tag(),
4131 BUILTINS_LOCATION);
4132 expr->export_expression(exp);
4133 delete expr;
4134 }
4135
4136 exp->write_c_string("; ");
4137 }
4138 exp->write_c_string("}");
4139 }
4140
4141 // Import.
4142
4143 Struct_type*
4144 Struct_type::do_import(Import* imp)
4145 {
4146 imp->require_c_string("struct { ");
4147 Struct_field_list* fields = new Struct_field_list;
4148 if (imp->peek_char() != '}')
4149 {
4150 while (true)
4151 {
4152 std::string name;
4153 if (imp->match_c_string("? "))
4154 imp->advance(2);
4155 else
4156 {
4157 name = imp->read_identifier();
4158 imp->require_c_string(" ");
4159 }
4160 Type* ftype = imp->read_type();
4161
4162 Struct_field sf(Typed_identifier(name, ftype, imp->location()));
4163
4164 if (imp->peek_char() == ' ')
4165 {
4166 imp->advance(1);
4167 Expression* expr = Expression::import_expression(imp);
4168 String_expression* sexpr = expr->string_expression();
4169 gcc_assert(sexpr != NULL);
4170 sf.set_tag(sexpr->val());
4171 delete sexpr;
4172 }
4173
4174 imp->require_c_string("; ");
4175 fields->push_back(sf);
4176 if (imp->peek_char() == '}')
4177 break;
4178 }
4179 }
4180 imp->require_c_string("}");
4181
4182 return Type::make_struct_type(fields, imp->location());
4183 }
4184
4185 // Make a struct type.
4186
4187 Struct_type*
4188 Type::make_struct_type(Struct_field_list* fields,
4189 source_location location)
4190 {
4191 return new Struct_type(fields, location);
4192 }
4193
4194 // Class Array_type.
4195
4196 // Whether two array types are identical.
4197
4198 bool
4199 Array_type::is_identical(const Array_type* t, bool errors_are_identical) const
4200 {
4201 if (!Type::are_identical(this->element_type(), t->element_type(),
4202 errors_are_identical, NULL))
4203 return false;
4204
4205 Expression* l1 = this->length();
4206 Expression* l2 = t->length();
4207
4208 // Slices of the same element type are identical.
4209 if (l1 == NULL && l2 == NULL)
4210 return true;
4211
4212 // Arrays of the same element type are identical if they have the
4213 // same length.
4214 if (l1 != NULL && l2 != NULL)
4215 {
4216 if (l1 == l2)
4217 return true;
4218
4219 // Try to determine the lengths. If we can't, assume the arrays
4220 // are not identical.
4221 bool ret = false;
4222 mpz_t v1;
4223 mpz_init(v1);
4224 Type* type1;
4225 mpz_t v2;
4226 mpz_init(v2);
4227 Type* type2;
4228 if (l1->integer_constant_value(true, v1, &type1)
4229 && l2->integer_constant_value(true, v2, &type2))
4230 ret = mpz_cmp(v1, v2) == 0;
4231 mpz_clear(v1);
4232 mpz_clear(v2);
4233 return ret;
4234 }
4235
4236 // Otherwise the arrays are not identical.
4237 return false;
4238 }
4239
4240 // Traversal.
4241
4242 int
4243 Array_type::do_traverse(Traverse* traverse)
4244 {
4245 if (Type::traverse(this->element_type_, traverse) == TRAVERSE_EXIT)
4246 return TRAVERSE_EXIT;
4247 if (this->length_ != NULL
4248 && Expression::traverse(&this->length_, traverse) == TRAVERSE_EXIT)
4249 return TRAVERSE_EXIT;
4250 return TRAVERSE_CONTINUE;
4251 }
4252
4253 // Check that the length is valid.
4254
4255 bool
4256 Array_type::verify_length()
4257 {
4258 if (this->length_ == NULL)
4259 return true;
4260 if (!this->length_->is_constant())
4261 {
4262 error_at(this->length_->location(), "array bound is not constant");
4263 return false;
4264 }
4265
4266 mpz_t val;
4267
4268 Type* t = this->length_->type();
4269 if (t->integer_type() != NULL)
4270 {
4271 Type* vt;
4272 mpz_init(val);
4273 if (!this->length_->integer_constant_value(true, val, &vt))
4274 {
4275 error_at(this->length_->location(),
4276 "array bound is not constant");
4277 mpz_clear(val);
4278 return false;
4279 }
4280 }
4281 else if (t->float_type() != NULL)
4282 {
4283 Type* vt;
4284 mpfr_t fval;
4285 mpfr_init(fval);
4286 if (!this->length_->float_constant_value(fval, &vt))
4287 {
4288 error_at(this->length_->location(),
4289 "array bound is not constant");
4290 mpfr_clear(fval);
4291 return false;
4292 }
4293 if (!mpfr_integer_p(fval))
4294 {
4295 error_at(this->length_->location(),
4296 "array bound truncated to integer");
4297 mpfr_clear(fval);
4298 return false;
4299 }
4300 mpz_init(val);
4301 mpfr_get_z(val, fval, GMP_RNDN);
4302 mpfr_clear(fval);
4303 }
4304 else
4305 {
4306 if (!t->is_error_type())
4307 error_at(this->length_->location(), "array bound is not numeric");
4308 return false;
4309 }
4310
4311 if (mpz_sgn(val) < 0)
4312 {
4313 error_at(this->length_->location(), "negative array bound");
4314 mpz_clear(val);
4315 return false;
4316 }
4317
4318 Type* int_type = Type::lookup_integer_type("int");
4319 int tbits = int_type->integer_type()->bits();
4320 int vbits = mpz_sizeinbase(val, 2);
4321 if (vbits + 1 > tbits)
4322 {
4323 error_at(this->length_->location(), "array bound overflows");
4324 mpz_clear(val);
4325 return false;
4326 }
4327
4328 mpz_clear(val);
4329
4330 return true;
4331 }
4332
4333 // Verify the type.
4334
4335 bool
4336 Array_type::do_verify()
4337 {
4338 if (!this->verify_length())
4339 {
4340 this->length_ = Expression::make_error(this->length_->location());
4341 return false;
4342 }
4343 return true;
4344 }
4345
4346 // Array type hash code.
4347
4348 unsigned int
4349 Array_type::do_hash_for_method(Gogo* gogo) const
4350 {
4351 // There is no very convenient way to get a hash code for the
4352 // length.
4353 return this->element_type_->hash_for_method(gogo) + 1;
4354 }
4355
4356 // See if the expression passed to make is suitable. The first
4357 // argument is required, and gives the length. An optional second
4358 // argument is permitted for the capacity.
4359
4360 bool
4361 Array_type::do_check_make_expression(Expression_list* args,
4362 source_location location)
4363 {
4364 gcc_assert(this->length_ == NULL);
4365 if (args == NULL || args->empty())
4366 {
4367 error_at(location, "length required when allocating a slice");
4368 return false;
4369 }
4370 else if (args->size() > 2)
4371 {
4372 error_at(location, "too many expressions passed to make");
4373 return false;
4374 }
4375 else
4376 {
4377 if (!Type::check_int_value(args->front(),
4378 _("bad length when making slice"), location))
4379 return false;
4380
4381 if (args->size() > 1)
4382 {
4383 if (!Type::check_int_value(args->back(),
4384 _("bad capacity when making slice"),
4385 location))
4386 return false;
4387 }
4388
4389 return true;
4390 }
4391 }
4392
4393 // Get a tree for the length of a fixed array. The length may be
4394 // computed using a function call, so we must only evaluate it once.
4395
4396 tree
4397 Array_type::get_length_tree(Gogo* gogo)
4398 {
4399 gcc_assert(this->length_ != NULL);
4400 if (this->length_tree_ == NULL_TREE)
4401 {
4402 mpz_t val;
4403 mpz_init(val);
4404 Type* t;
4405 if (this->length_->integer_constant_value(true, val, &t))
4406 {
4407 if (t == NULL)
4408 t = Type::lookup_integer_type("int");
4409 else if (t->is_abstract())
4410 t = t->make_non_abstract_type();
4411 tree tt = t->get_tree(gogo);
4412 this->length_tree_ = Expression::integer_constant_tree(val, tt);
4413 mpz_clear(val);
4414 }
4415 else
4416 {
4417 mpz_clear(val);
4418
4419 // Make up a translation context for the array length
4420 // expression. FIXME: This won't work in general.
4421 Translate_context context(gogo, NULL, NULL, NULL_TREE);
4422 tree len = this->length_->get_tree(&context);
4423 if (len != error_mark_node)
4424 {
4425 len = convert_to_integer(integer_type_node, len);
4426 len = save_expr(len);
4427 }
4428 this->length_tree_ = len;
4429 }
4430 }
4431 return this->length_tree_;
4432 }
4433
4434 // Get a tree for the type of this array. A fixed array is simply
4435 // represented as ARRAY_TYPE with the appropriate index--i.e., it is
4436 // just like an array in C. An open array is a struct with three
4437 // fields: a data pointer, the length, and the capacity.
4438
4439 tree
4440 Array_type::do_get_tree(Gogo* gogo)
4441 {
4442 if (this->length_ == NULL)
4443 {
4444 tree struct_type = gogo->slice_type_tree(void_type_node);
4445 return this->fill_in_tree(gogo, struct_type);
4446 }
4447 else
4448 {
4449 tree element_type_tree = this->element_type_->get_tree(gogo);
4450 tree length_tree = this->get_length_tree(gogo);
4451 if (element_type_tree == error_mark_node
4452 || length_tree == error_mark_node)
4453 return error_mark_node;
4454
4455 length_tree = fold_convert(sizetype, length_tree);
4456
4457 // build_index_type takes the maximum index, which is one less
4458 // than the length.
4459 tree index_type = build_index_type(fold_build2(MINUS_EXPR, sizetype,
4460 length_tree,
4461 size_one_node));
4462
4463 return build_array_type(element_type_tree, index_type);
4464 }
4465 }
4466
4467 // Fill in the fields for a slice type. This is used for named slice
4468 // types.
4469
4470 tree
4471 Array_type::fill_in_tree(Gogo* gogo, tree struct_type)
4472 {
4473 gcc_assert(this->length_ == NULL);
4474
4475 tree element_type_tree = this->element_type_->get_tree(gogo);
4476 if (element_type_tree == error_mark_node)
4477 return error_mark_node;
4478 tree field = TYPE_FIELDS(struct_type);
4479 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
4480 gcc_assert(POINTER_TYPE_P(TREE_TYPE(field))
4481 && TREE_TYPE(TREE_TYPE(field)) == void_type_node);
4482 TREE_TYPE(field) = build_pointer_type(element_type_tree);
4483
4484 return struct_type;
4485 }
4486
4487 // Return an initializer for an array type.
4488
4489 tree
4490 Array_type::do_get_init_tree(Gogo* gogo, tree type_tree, bool is_clear)
4491 {
4492 if (this->length_ == NULL)
4493 {
4494 // Open array.
4495
4496 if (is_clear)
4497 return NULL;
4498
4499 gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
4500
4501 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
4502
4503 for (tree field = TYPE_FIELDS(type_tree);
4504 field != NULL_TREE;
4505 field = DECL_CHAIN(field))
4506 {
4507 constructor_elt* elt = VEC_quick_push(constructor_elt, init,
4508 NULL);
4509 elt->index = field;
4510 elt->value = fold_convert(TREE_TYPE(field), size_zero_node);
4511 }
4512
4513 tree ret = build_constructor(type_tree, init);
4514 TREE_CONSTANT(ret) = 1;
4515 return ret;
4516 }
4517 else
4518 {
4519 // Fixed array.
4520
4521 tree value = this->element_type_->get_init_tree(gogo, is_clear);
4522 if (value == NULL)
4523 return NULL;
4524 if (value == error_mark_node)
4525 return error_mark_node;
4526
4527 tree length_tree = this->get_length_tree(gogo);
4528 if (length_tree == error_mark_node)
4529 return error_mark_node;
4530
4531 length_tree = fold_convert(sizetype, length_tree);
4532 tree range = build2(RANGE_EXPR, sizetype, size_zero_node,
4533 fold_build2(MINUS_EXPR, sizetype,
4534 length_tree, size_one_node));
4535 tree ret = build_constructor_single(type_tree, range, value);
4536 if (TREE_CONSTANT(value))
4537 TREE_CONSTANT(ret) = 1;
4538 return ret;
4539 }
4540 }
4541
4542 // Handle the builtin make function for a slice.
4543
4544 tree
4545 Array_type::do_make_expression_tree(Translate_context* context,
4546 Expression_list* args,
4547 source_location location)
4548 {
4549 gcc_assert(this->length_ == NULL);
4550
4551 Gogo* gogo = context->gogo();
4552 tree type_tree = this->get_tree(gogo);
4553 if (type_tree == error_mark_node)
4554 return error_mark_node;
4555
4556 tree values_field = TYPE_FIELDS(type_tree);
4557 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(values_field)),
4558 "__values") == 0);
4559
4560 tree count_field = DECL_CHAIN(values_field);
4561 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(count_field)),
4562 "__count") == 0);
4563
4564 tree element_type_tree = this->element_type_->get_tree(gogo);
4565 if (element_type_tree == error_mark_node)
4566 return error_mark_node;
4567 tree element_size_tree = TYPE_SIZE_UNIT(element_type_tree);
4568
4569 tree value = this->element_type_->get_init_tree(gogo, true);
4570 if (value == error_mark_node)
4571 return error_mark_node;
4572
4573 // The first argument is the number of elements, the optional second
4574 // argument is the capacity.
4575 gcc_assert(args != NULL && args->size() >= 1 && args->size() <= 2);
4576
4577 tree length_tree = args->front()->get_tree(context);
4578 if (length_tree == error_mark_node)
4579 return error_mark_node;
4580 if (!DECL_P(length_tree))
4581 length_tree = save_expr(length_tree);
4582 if (!INTEGRAL_TYPE_P(TREE_TYPE(length_tree)))
4583 length_tree = convert_to_integer(TREE_TYPE(count_field), length_tree);
4584
4585 tree bad_index = Expression::check_bounds(length_tree,
4586 TREE_TYPE(count_field),
4587 NULL_TREE, location);
4588
4589 length_tree = fold_convert_loc(location, TREE_TYPE(count_field), length_tree);
4590 tree capacity_tree;
4591 if (args->size() == 1)
4592 capacity_tree = length_tree;
4593 else
4594 {
4595 capacity_tree = args->back()->get_tree(context);
4596 if (capacity_tree == error_mark_node)
4597 return error_mark_node;
4598 if (!DECL_P(capacity_tree))
4599 capacity_tree = save_expr(capacity_tree);
4600 if (!INTEGRAL_TYPE_P(TREE_TYPE(capacity_tree)))
4601 capacity_tree = convert_to_integer(TREE_TYPE(count_field),
4602 capacity_tree);
4603
4604 bad_index = Expression::check_bounds(capacity_tree,
4605 TREE_TYPE(count_field),
4606 bad_index, location);
4607
4608 tree chktype = (((TYPE_SIZE(TREE_TYPE(capacity_tree))
4609 > TYPE_SIZE(TREE_TYPE(length_tree)))
4610 || ((TYPE_SIZE(TREE_TYPE(capacity_tree))
4611 == TYPE_SIZE(TREE_TYPE(length_tree)))
4612 && TYPE_UNSIGNED(TREE_TYPE(capacity_tree))))
4613 ? TREE_TYPE(capacity_tree)
4614 : TREE_TYPE(length_tree));
4615 tree chk = fold_build2_loc(location, LT_EXPR, boolean_type_node,
4616 fold_convert_loc(location, chktype,
4617 capacity_tree),
4618 fold_convert_loc(location, chktype,
4619 length_tree));
4620 if (bad_index == NULL_TREE)
4621 bad_index = chk;
4622 else
4623 bad_index = fold_build2_loc(location, TRUTH_OR_EXPR, boolean_type_node,
4624 bad_index, chk);
4625
4626 capacity_tree = fold_convert_loc(location, TREE_TYPE(count_field),
4627 capacity_tree);
4628 }
4629
4630 tree size_tree = fold_build2_loc(location, MULT_EXPR, sizetype,
4631 element_size_tree,
4632 fold_convert_loc(location, sizetype,
4633 capacity_tree));
4634
4635 tree chk = fold_build2_loc(location, TRUTH_AND_EXPR, boolean_type_node,
4636 fold_build2_loc(location, GT_EXPR,
4637 boolean_type_node,
4638 fold_convert_loc(location,
4639 sizetype,
4640 capacity_tree),
4641 size_zero_node),
4642 fold_build2_loc(location, LT_EXPR,
4643 boolean_type_node,
4644 size_tree, element_size_tree));
4645 if (bad_index == NULL_TREE)
4646 bad_index = chk;
4647 else
4648 bad_index = fold_build2_loc(location, TRUTH_OR_EXPR, boolean_type_node,
4649 bad_index, chk);
4650
4651 tree space = context->gogo()->allocate_memory(this->element_type_,
4652 size_tree, location);
4653
4654 if (value != NULL_TREE)
4655 space = save_expr(space);
4656
4657 space = fold_convert(TREE_TYPE(values_field), space);
4658
4659 if (bad_index != NULL_TREE && bad_index != boolean_false_node)
4660 {
4661 tree crash = Gogo::runtime_error(RUNTIME_ERROR_MAKE_SLICE_OUT_OF_BOUNDS,
4662 location);
4663 space = build2(COMPOUND_EXPR, TREE_TYPE(space),
4664 build3(COND_EXPR, void_type_node,
4665 bad_index, crash, NULL_TREE),
4666 space);
4667 }
4668
4669 tree constructor = gogo->slice_constructor(type_tree, space, length_tree,
4670 capacity_tree);
4671
4672 if (value == NULL_TREE)
4673 {
4674 // The array contents are zero initialized.
4675 return constructor;
4676 }
4677
4678 // The elements must be initialized.
4679
4680 tree max = fold_build2_loc(location, MINUS_EXPR, TREE_TYPE(count_field),
4681 capacity_tree,
4682 fold_convert_loc(location, TREE_TYPE(count_field),
4683 integer_one_node));
4684
4685 tree array_type = build_array_type(element_type_tree,
4686 build_index_type(max));
4687
4688 tree value_pointer = fold_convert_loc(location,
4689 build_pointer_type(array_type),
4690 space);
4691
4692 tree range = build2(RANGE_EXPR, sizetype, size_zero_node, max);
4693 tree space_init = build_constructor_single(array_type, range, value);
4694
4695 return build2(COMPOUND_EXPR, TREE_TYPE(constructor),
4696 build2(MODIFY_EXPR, void_type_node,
4697 build_fold_indirect_ref(value_pointer),
4698 space_init),
4699 constructor);
4700 }
4701
4702 // Return a tree for a pointer to the values in ARRAY.
4703
4704 tree
4705 Array_type::value_pointer_tree(Gogo*, tree array) const
4706 {
4707 tree ret;
4708 if (this->length() != NULL)
4709 {
4710 // Fixed array.
4711 ret = fold_convert(build_pointer_type(TREE_TYPE(TREE_TYPE(array))),
4712 build_fold_addr_expr(array));
4713 }
4714 else
4715 {
4716 // Open array.
4717 tree field = TYPE_FIELDS(TREE_TYPE(array));
4718 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
4719 "__values") == 0);
4720 ret = fold_build3(COMPONENT_REF, TREE_TYPE(field), array, field,
4721 NULL_TREE);
4722 }
4723 if (TREE_CONSTANT(array))
4724 TREE_CONSTANT(ret) = 1;
4725 return ret;
4726 }
4727
4728 // Return a tree for the length of the array ARRAY which has this
4729 // type.
4730
4731 tree
4732 Array_type::length_tree(Gogo* gogo, tree array)
4733 {
4734 if (this->length_ != NULL)
4735 {
4736 if (TREE_CODE(array) == SAVE_EXPR)
4737 return fold_convert(integer_type_node, this->get_length_tree(gogo));
4738 else
4739 return omit_one_operand(integer_type_node,
4740 this->get_length_tree(gogo), array);
4741 }
4742
4743 // This is an open array. We need to read the length field.
4744
4745 tree type = TREE_TYPE(array);
4746 gcc_assert(TREE_CODE(type) == RECORD_TYPE);
4747
4748 tree field = DECL_CHAIN(TYPE_FIELDS(type));
4749 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
4750
4751 tree ret = build3(COMPONENT_REF, TREE_TYPE(field), array, field, NULL_TREE);
4752 if (TREE_CONSTANT(array))
4753 TREE_CONSTANT(ret) = 1;
4754 return ret;
4755 }
4756
4757 // Return a tree for the capacity of the array ARRAY which has this
4758 // type.
4759
4760 tree
4761 Array_type::capacity_tree(Gogo* gogo, tree array)
4762 {
4763 if (this->length_ != NULL)
4764 return omit_one_operand(sizetype, this->get_length_tree(gogo), array);
4765
4766 // This is an open array. We need to read the capacity field.
4767
4768 tree type = TREE_TYPE(array);
4769 gcc_assert(TREE_CODE(type) == RECORD_TYPE);
4770
4771 tree field = DECL_CHAIN(DECL_CHAIN(TYPE_FIELDS(type)));
4772 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__capacity") == 0);
4773
4774 return build3(COMPONENT_REF, TREE_TYPE(field), array, field, NULL_TREE);
4775 }
4776
4777 // Export.
4778
4779 void
4780 Array_type::do_export(Export* exp) const
4781 {
4782 exp->write_c_string("[");
4783 if (this->length_ != NULL)
4784 this->length_->export_expression(exp);
4785 exp->write_c_string("] ");
4786 exp->write_type(this->element_type_);
4787 }
4788
4789 // Import.
4790
4791 Array_type*
4792 Array_type::do_import(Import* imp)
4793 {
4794 imp->require_c_string("[");
4795 Expression* length;
4796 if (imp->peek_char() == ']')
4797 length = NULL;
4798 else
4799 length = Expression::import_expression(imp);
4800 imp->require_c_string("] ");
4801 Type* element_type = imp->read_type();
4802 return Type::make_array_type(element_type, length);
4803 }
4804
4805 // The type of an array type descriptor.
4806
4807 Type*
4808 Array_type::make_array_type_descriptor_type()
4809 {
4810 static Type* ret;
4811 if (ret == NULL)
4812 {
4813 Type* tdt = Type::make_type_descriptor_type();
4814 Type* ptdt = Type::make_type_descriptor_ptr_type();
4815
4816 Type* uintptr_type = Type::lookup_integer_type("uintptr");
4817
4818 Struct_type* sf =
4819 Type::make_builtin_struct_type(3,
4820 "", tdt,
4821 "elem", ptdt,
4822 "len", uintptr_type);
4823
4824 ret = Type::make_builtin_named_type("ArrayType", sf);
4825 }
4826
4827 return ret;
4828 }
4829
4830 // The type of an slice type descriptor.
4831
4832 Type*
4833 Array_type::make_slice_type_descriptor_type()
4834 {
4835 static Type* ret;
4836 if (ret == NULL)
4837 {
4838 Type* tdt = Type::make_type_descriptor_type();
4839 Type* ptdt = Type::make_type_descriptor_ptr_type();
4840
4841 Struct_type* sf =
4842 Type::make_builtin_struct_type(2,
4843 "", tdt,
4844 "elem", ptdt);
4845
4846 ret = Type::make_builtin_named_type("SliceType", sf);
4847 }
4848
4849 return ret;
4850 }
4851
4852 // Build a type descriptor for an array/slice type.
4853
4854 Expression*
4855 Array_type::do_type_descriptor(Gogo* gogo, Named_type* name)
4856 {
4857 if (this->length_ != NULL)
4858 return this->array_type_descriptor(gogo, name);
4859 else
4860 return this->slice_type_descriptor(gogo, name);
4861 }
4862
4863 // Build a type descriptor for an array type.
4864
4865 Expression*
4866 Array_type::array_type_descriptor(Gogo* gogo, Named_type* name)
4867 {
4868 source_location bloc = BUILTINS_LOCATION;
4869
4870 Type* atdt = Array_type::make_array_type_descriptor_type();
4871
4872 const Struct_field_list* fields = atdt->struct_type()->fields();
4873
4874 Expression_list* vals = new Expression_list();
4875 vals->reserve(3);
4876
4877 Struct_field_list::const_iterator p = fields->begin();
4878 gcc_assert(p->field_name() == "commonType");
4879 vals->push_back(this->type_descriptor_constructor(gogo,
4880 RUNTIME_TYPE_KIND_ARRAY,
4881 name, NULL, true));
4882
4883 ++p;
4884 gcc_assert(p->field_name() == "elem");
4885 vals->push_back(Expression::make_type_descriptor(this->element_type_, bloc));
4886
4887 ++p;
4888 gcc_assert(p->field_name() == "len");
4889 vals->push_back(Expression::make_cast(p->type(), this->length_, bloc));
4890
4891 ++p;
4892 gcc_assert(p == fields->end());
4893
4894 return Expression::make_struct_composite_literal(atdt, vals, bloc);
4895 }
4896
4897 // Build a type descriptor for a slice type.
4898
4899 Expression*
4900 Array_type::slice_type_descriptor(Gogo* gogo, Named_type* name)
4901 {
4902 source_location bloc = BUILTINS_LOCATION;
4903
4904 Type* stdt = Array_type::make_slice_type_descriptor_type();
4905
4906 const Struct_field_list* fields = stdt->struct_type()->fields();
4907
4908 Expression_list* vals = new Expression_list();
4909 vals->reserve(2);
4910
4911 Struct_field_list::const_iterator p = fields->begin();
4912 gcc_assert(p->field_name() == "commonType");
4913 vals->push_back(this->type_descriptor_constructor(gogo,
4914 RUNTIME_TYPE_KIND_SLICE,
4915 name, NULL, true));
4916
4917 ++p;
4918 gcc_assert(p->field_name() == "elem");
4919 vals->push_back(Expression::make_type_descriptor(this->element_type_, bloc));
4920
4921 ++p;
4922 gcc_assert(p == fields->end());
4923
4924 return Expression::make_struct_composite_literal(stdt, vals, bloc);
4925 }
4926
4927 // Reflection string.
4928
4929 void
4930 Array_type::do_reflection(Gogo* gogo, std::string* ret) const
4931 {
4932 ret->push_back('[');
4933 if (this->length_ != NULL)
4934 {
4935 mpz_t val;
4936 mpz_init(val);
4937 Type* type;
4938 if (!this->length_->integer_constant_value(true, val, &type))
4939 error_at(this->length_->location(),
4940 "array length must be integer constant expression");
4941 else if (mpz_cmp_si(val, 0) < 0)
4942 error_at(this->length_->location(), "array length is negative");
4943 else if (mpz_cmp_ui(val, mpz_get_ui(val)) != 0)
4944 error_at(this->length_->location(), "array length is too large");
4945 else
4946 {
4947 char buf[50];
4948 snprintf(buf, sizeof buf, "%lu", mpz_get_ui(val));
4949 ret->append(buf);
4950 }
4951 mpz_clear(val);
4952 }
4953 ret->push_back(']');
4954
4955 this->append_reflection(this->element_type_, gogo, ret);
4956 }
4957
4958 // Mangled name.
4959
4960 void
4961 Array_type::do_mangled_name(Gogo* gogo, std::string* ret) const
4962 {
4963 ret->push_back('A');
4964 this->append_mangled_name(this->element_type_, gogo, ret);
4965 if (this->length_ != NULL)
4966 {
4967 mpz_t val;
4968 mpz_init(val);
4969 Type* type;
4970 if (!this->length_->integer_constant_value(true, val, &type))
4971 error_at(this->length_->location(),
4972 "array length must be integer constant expression");
4973 else if (mpz_cmp_si(val, 0) < 0)
4974 error_at(this->length_->location(), "array length is negative");
4975 else if (mpz_cmp_ui(val, mpz_get_ui(val)) != 0)
4976 error_at(this->length_->location(), "array size is too large");
4977 else
4978 {
4979 char buf[50];
4980 snprintf(buf, sizeof buf, "%lu", mpz_get_ui(val));
4981 ret->append(buf);
4982 }
4983 mpz_clear(val);
4984 }
4985 ret->push_back('e');
4986 }
4987
4988 // Make an array type.
4989
4990 Array_type*
4991 Type::make_array_type(Type* element_type, Expression* length)
4992 {
4993 return new Array_type(element_type, length);
4994 }
4995
4996 // Class Map_type.
4997
4998 // Traversal.
4999
5000 int
5001 Map_type::do_traverse(Traverse* traverse)
5002 {
5003 if (Type::traverse(this->key_type_, traverse) == TRAVERSE_EXIT
5004 || Type::traverse(this->val_type_, traverse) == TRAVERSE_EXIT)
5005 return TRAVERSE_EXIT;
5006 return TRAVERSE_CONTINUE;
5007 }
5008
5009 // Check that the map type is OK.
5010
5011 bool
5012 Map_type::do_verify()
5013 {
5014 if (this->key_type_->struct_type() != NULL
5015 || this->key_type_->array_type() != NULL)
5016 {
5017 error_at(this->location_, "invalid map key type");
5018 return false;
5019 }
5020 return true;
5021 }
5022
5023 // Whether two map types are identical.
5024
5025 bool
5026 Map_type::is_identical(const Map_type* t, bool errors_are_identical) const
5027 {
5028 return (Type::are_identical(this->key_type(), t->key_type(),
5029 errors_are_identical, NULL)
5030 && Type::are_identical(this->val_type(), t->val_type(),
5031 errors_are_identical, NULL));
5032 }
5033
5034 // Hash code.
5035
5036 unsigned int
5037 Map_type::do_hash_for_method(Gogo* gogo) const
5038 {
5039 return (this->key_type_->hash_for_method(gogo)
5040 + this->val_type_->hash_for_method(gogo)
5041 + 2);
5042 }
5043
5044 // Check that a call to the builtin make function is valid. For a map
5045 // the optional argument is the number of spaces to preallocate for
5046 // values.
5047
5048 bool
5049 Map_type::do_check_make_expression(Expression_list* args,
5050 source_location location)
5051 {
5052 if (args != NULL && !args->empty())
5053 {
5054 if (!Type::check_int_value(args->front(), _("bad size when making map"),
5055 location))
5056 return false;
5057 else if (args->size() > 1)
5058 {
5059 error_at(location, "too many arguments when making map");
5060 return false;
5061 }
5062 }
5063 return true;
5064 }
5065
5066 // Get a tree for a map type. A map type is represented as a pointer
5067 // to a struct. The struct is __go_map in libgo/map.h.
5068
5069 tree
5070 Map_type::do_get_tree(Gogo* gogo)
5071 {
5072 static tree type_tree;
5073 if (type_tree == NULL_TREE)
5074 {
5075 tree struct_type = make_node(RECORD_TYPE);
5076
5077 tree map_descriptor_type = gogo->map_descriptor_type();
5078 tree const_map_descriptor_type =
5079 build_qualified_type(map_descriptor_type, TYPE_QUAL_CONST);
5080 tree name = get_identifier("__descriptor");
5081 tree field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name,
5082 build_pointer_type(const_map_descriptor_type));
5083 DECL_CONTEXT(field) = struct_type;
5084 TYPE_FIELDS(struct_type) = field;
5085 tree last_field = field;
5086
5087 name = get_identifier("__element_count");
5088 field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name, sizetype);
5089 DECL_CONTEXT(field) = struct_type;
5090 DECL_CHAIN(last_field) = field;
5091 last_field = field;
5092
5093 name = get_identifier("__bucket_count");
5094 field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name, sizetype);
5095 DECL_CONTEXT(field) = struct_type;
5096 DECL_CHAIN(last_field) = field;
5097 last_field = field;
5098
5099 name = get_identifier("__buckets");
5100 field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name,
5101 build_pointer_type(ptr_type_node));
5102 DECL_CONTEXT(field) = struct_type;
5103 DECL_CHAIN(last_field) = field;
5104
5105 layout_type(struct_type);
5106
5107 // Give the struct a name for better debugging info.
5108 name = get_identifier("__go_map");
5109 tree type_decl = build_decl(BUILTINS_LOCATION, TYPE_DECL, name,
5110 struct_type);
5111 DECL_ARTIFICIAL(type_decl) = 1;
5112 TYPE_NAME(struct_type) = type_decl;
5113 go_preserve_from_gc(type_decl);
5114 rest_of_decl_compilation(type_decl, 1, 0);
5115
5116 type_tree = build_pointer_type(struct_type);
5117 go_preserve_from_gc(type_tree);
5118 }
5119
5120 return type_tree;
5121 }
5122
5123 // Initialize a map.
5124
5125 tree
5126 Map_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
5127 {
5128 if (is_clear)
5129 return NULL;
5130 return fold_convert(type_tree, null_pointer_node);
5131 }
5132
5133 // Return an expression for a newly allocated map.
5134
5135 tree
5136 Map_type::do_make_expression_tree(Translate_context* context,
5137 Expression_list* args,
5138 source_location location)
5139 {
5140 tree bad_index = NULL_TREE;
5141
5142 tree expr_tree;
5143 if (args == NULL || args->empty())
5144 expr_tree = size_zero_node;
5145 else
5146 {
5147 expr_tree = args->front()->get_tree(context);
5148 if (expr_tree == error_mark_node)
5149 return error_mark_node;
5150 if (!DECL_P(expr_tree))
5151 expr_tree = save_expr(expr_tree);
5152 if (!INTEGRAL_TYPE_P(TREE_TYPE(expr_tree)))
5153 expr_tree = convert_to_integer(sizetype, expr_tree);
5154 bad_index = Expression::check_bounds(expr_tree, sizetype, bad_index,
5155 location);
5156 }
5157
5158 tree map_type = this->get_tree(context->gogo());
5159
5160 static tree new_map_fndecl;
5161 tree ret = Gogo::call_builtin(&new_map_fndecl,
5162 location,
5163 "__go_new_map",
5164 2,
5165 map_type,
5166 TREE_TYPE(TYPE_FIELDS(TREE_TYPE(map_type))),
5167 context->gogo()->map_descriptor(this),
5168 sizetype,
5169 expr_tree);
5170 if (ret == error_mark_node)
5171 return error_mark_node;
5172 // This can panic if the capacity is out of range.
5173 TREE_NOTHROW(new_map_fndecl) = 0;
5174
5175 if (bad_index == NULL_TREE)
5176 return ret;
5177 else
5178 {
5179 tree crash = Gogo::runtime_error(RUNTIME_ERROR_MAKE_MAP_OUT_OF_BOUNDS,
5180 location);
5181 return build2(COMPOUND_EXPR, TREE_TYPE(ret),
5182 build3(COND_EXPR, void_type_node,
5183 bad_index, crash, NULL_TREE),
5184 ret);
5185 }
5186 }
5187
5188 // The type of a map type descriptor.
5189
5190 Type*
5191 Map_type::make_map_type_descriptor_type()
5192 {
5193 static Type* ret;
5194 if (ret == NULL)
5195 {
5196 Type* tdt = Type::make_type_descriptor_type();
5197 Type* ptdt = Type::make_type_descriptor_ptr_type();
5198
5199 Struct_type* sf =
5200 Type::make_builtin_struct_type(3,
5201 "", tdt,
5202 "key", ptdt,
5203 "elem", ptdt);
5204
5205 ret = Type::make_builtin_named_type("MapType", sf);
5206 }
5207
5208 return ret;
5209 }
5210
5211 // Build a type descriptor for a map type.
5212
5213 Expression*
5214 Map_type::do_type_descriptor(Gogo* gogo, Named_type* name)
5215 {
5216 source_location bloc = BUILTINS_LOCATION;
5217
5218 Type* mtdt = Map_type::make_map_type_descriptor_type();
5219
5220 const Struct_field_list* fields = mtdt->struct_type()->fields();
5221
5222 Expression_list* vals = new Expression_list();
5223 vals->reserve(3);
5224
5225 Struct_field_list::const_iterator p = fields->begin();
5226 gcc_assert(p->field_name() == "commonType");
5227 vals->push_back(this->type_descriptor_constructor(gogo,
5228 RUNTIME_TYPE_KIND_MAP,
5229 name, NULL, true));
5230
5231 ++p;
5232 gcc_assert(p->field_name() == "key");
5233 vals->push_back(Expression::make_type_descriptor(this->key_type_, bloc));
5234
5235 ++p;
5236 gcc_assert(p->field_name() == "elem");
5237 vals->push_back(Expression::make_type_descriptor(this->val_type_, bloc));
5238
5239 ++p;
5240 gcc_assert(p == fields->end());
5241
5242 return Expression::make_struct_composite_literal(mtdt, vals, bloc);
5243 }
5244
5245 // Reflection string for a map.
5246
5247 void
5248 Map_type::do_reflection(Gogo* gogo, std::string* ret) const
5249 {
5250 ret->append("map[");
5251 this->append_reflection(this->key_type_, gogo, ret);
5252 ret->append("] ");
5253 this->append_reflection(this->val_type_, gogo, ret);
5254 }
5255
5256 // Mangled name for a map.
5257
5258 void
5259 Map_type::do_mangled_name(Gogo* gogo, std::string* ret) const
5260 {
5261 ret->push_back('M');
5262 this->append_mangled_name(this->key_type_, gogo, ret);
5263 ret->append("__");
5264 this->append_mangled_name(this->val_type_, gogo, ret);
5265 }
5266
5267 // Export a map type.
5268
5269 void
5270 Map_type::do_export(Export* exp) const
5271 {
5272 exp->write_c_string("map [");
5273 exp->write_type(this->key_type_);
5274 exp->write_c_string("] ");
5275 exp->write_type(this->val_type_);
5276 }
5277
5278 // Import a map type.
5279
5280 Map_type*
5281 Map_type::do_import(Import* imp)
5282 {
5283 imp->require_c_string("map [");
5284 Type* key_type = imp->read_type();
5285 imp->require_c_string("] ");
5286 Type* val_type = imp->read_type();
5287 return Type::make_map_type(key_type, val_type, imp->location());
5288 }
5289
5290 // Make a map type.
5291
5292 Map_type*
5293 Type::make_map_type(Type* key_type, Type* val_type, source_location location)
5294 {
5295 return new Map_type(key_type, val_type, location);
5296 }
5297
5298 // Class Channel_type.
5299
5300 // Hash code.
5301
5302 unsigned int
5303 Channel_type::do_hash_for_method(Gogo* gogo) const
5304 {
5305 unsigned int ret = 0;
5306 if (this->may_send_)
5307 ret += 1;
5308 if (this->may_receive_)
5309 ret += 2;
5310 if (this->element_type_ != NULL)
5311 ret += this->element_type_->hash_for_method(gogo) << 2;
5312 return ret << 3;
5313 }
5314
5315 // Whether this type is the same as T.
5316
5317 bool
5318 Channel_type::is_identical(const Channel_type* t,
5319 bool errors_are_identical) const
5320 {
5321 if (!Type::are_identical(this->element_type(), t->element_type(),
5322 errors_are_identical, NULL))
5323 return false;
5324 return (this->may_send_ == t->may_send_
5325 && this->may_receive_ == t->may_receive_);
5326 }
5327
5328 // Check whether the parameters for a call to the builtin function
5329 // make are OK for a channel. A channel can take an optional single
5330 // parameter which is the buffer size.
5331
5332 bool
5333 Channel_type::do_check_make_expression(Expression_list* args,
5334 source_location location)
5335 {
5336 if (args != NULL && !args->empty())
5337 {
5338 if (!Type::check_int_value(args->front(),
5339 _("bad buffer size when making channel"),
5340 location))
5341 return false;
5342 else if (args->size() > 1)
5343 {
5344 error_at(location, "too many arguments when making channel");
5345 return false;
5346 }
5347 }
5348 return true;
5349 }
5350
5351 // Return the tree for a channel type. A channel is a pointer to a
5352 // __go_channel struct. The __go_channel struct is defined in
5353 // libgo/runtime/channel.h.
5354
5355 tree
5356 Channel_type::do_get_tree(Gogo*)
5357 {
5358 static tree type_tree;
5359 if (type_tree == NULL_TREE)
5360 {
5361 tree ret = make_node(RECORD_TYPE);
5362 TYPE_NAME(ret) = get_identifier("__go_channel");
5363 TYPE_STUB_DECL(ret) = build_decl(BUILTINS_LOCATION, TYPE_DECL, NULL_TREE,
5364 ret);
5365 type_tree = build_pointer_type(ret);
5366 go_preserve_from_gc(type_tree);
5367 }
5368 return type_tree;
5369 }
5370
5371 // Initialize a channel variable.
5372
5373 tree
5374 Channel_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
5375 {
5376 if (is_clear)
5377 return NULL;
5378 return fold_convert(type_tree, null_pointer_node);
5379 }
5380
5381 // Handle the builtin function make for a channel.
5382
5383 tree
5384 Channel_type::do_make_expression_tree(Translate_context* context,
5385 Expression_list* args,
5386 source_location location)
5387 {
5388 Gogo* gogo = context->gogo();
5389 tree channel_type = this->get_tree(gogo);
5390
5391 tree element_tree = this->element_type_->get_tree(gogo);
5392 tree element_size_tree = size_in_bytes(element_tree);
5393
5394 tree bad_index = NULL_TREE;
5395
5396 tree expr_tree;
5397 if (args == NULL || args->empty())
5398 expr_tree = size_zero_node;
5399 else
5400 {
5401 expr_tree = args->front()->get_tree(context);
5402 if (expr_tree == error_mark_node)
5403 return error_mark_node;
5404 if (!DECL_P(expr_tree))
5405 expr_tree = save_expr(expr_tree);
5406 if (!INTEGRAL_TYPE_P(TREE_TYPE(expr_tree)))
5407 expr_tree = convert_to_integer(sizetype, expr_tree);
5408 bad_index = Expression::check_bounds(expr_tree, sizetype, bad_index,
5409 location);
5410 }
5411
5412 static tree new_channel_fndecl;
5413 tree ret = Gogo::call_builtin(&new_channel_fndecl,
5414 location,
5415 "__go_new_channel",
5416 2,
5417 channel_type,
5418 sizetype,
5419 element_size_tree,
5420 sizetype,
5421 expr_tree);
5422 if (ret == error_mark_node)
5423 return error_mark_node;
5424 // This can panic if the capacity is out of range.
5425 TREE_NOTHROW(new_channel_fndecl) = 0;
5426
5427 if (bad_index == NULL_TREE)
5428 return ret;
5429 else
5430 {
5431 tree crash = Gogo::runtime_error(RUNTIME_ERROR_MAKE_CHAN_OUT_OF_BOUNDS,
5432 location);
5433 return build2(COMPOUND_EXPR, TREE_TYPE(ret),
5434 build3(COND_EXPR, void_type_node,
5435 bad_index, crash, NULL_TREE),
5436 ret);
5437 }
5438 }
5439
5440 // Build a type descriptor for a channel type.
5441
5442 Type*
5443 Channel_type::make_chan_type_descriptor_type()
5444 {
5445 static Type* ret;
5446 if (ret == NULL)
5447 {
5448 Type* tdt = Type::make_type_descriptor_type();
5449 Type* ptdt = Type::make_type_descriptor_ptr_type();
5450
5451 Type* uintptr_type = Type::lookup_integer_type("uintptr");
5452
5453 Struct_type* sf =
5454 Type::make_builtin_struct_type(3,
5455 "", tdt,
5456 "elem", ptdt,
5457 "dir", uintptr_type);
5458
5459 ret = Type::make_builtin_named_type("ChanType", sf);
5460 }
5461
5462 return ret;
5463 }
5464
5465 // Build a type descriptor for a map type.
5466
5467 Expression*
5468 Channel_type::do_type_descriptor(Gogo* gogo, Named_type* name)
5469 {
5470 source_location bloc = BUILTINS_LOCATION;
5471
5472 Type* ctdt = Channel_type::make_chan_type_descriptor_type();
5473
5474 const Struct_field_list* fields = ctdt->struct_type()->fields();
5475
5476 Expression_list* vals = new Expression_list();
5477 vals->reserve(3);
5478
5479 Struct_field_list::const_iterator p = fields->begin();
5480 gcc_assert(p->field_name() == "commonType");
5481 vals->push_back(this->type_descriptor_constructor(gogo,
5482 RUNTIME_TYPE_KIND_CHAN,
5483 name, NULL, true));
5484
5485 ++p;
5486 gcc_assert(p->field_name() == "elem");
5487 vals->push_back(Expression::make_type_descriptor(this->element_type_, bloc));
5488
5489 ++p;
5490 gcc_assert(p->field_name() == "dir");
5491 // These bits must match the ones in libgo/runtime/go-type.h.
5492 int val = 0;
5493 if (this->may_receive_)
5494 val |= 1;
5495 if (this->may_send_)
5496 val |= 2;
5497 mpz_t iv;
5498 mpz_init_set_ui(iv, val);
5499 vals->push_back(Expression::make_integer(&iv, p->type(), bloc));
5500 mpz_clear(iv);
5501
5502 ++p;
5503 gcc_assert(p == fields->end());
5504
5505 return Expression::make_struct_composite_literal(ctdt, vals, bloc);
5506 }
5507
5508 // Reflection string.
5509
5510 void
5511 Channel_type::do_reflection(Gogo* gogo, std::string* ret) const
5512 {
5513 if (!this->may_send_)
5514 ret->append("<-");
5515 ret->append("chan");
5516 if (!this->may_receive_)
5517 ret->append("<-");
5518 ret->push_back(' ');
5519 this->append_reflection(this->element_type_, gogo, ret);
5520 }
5521
5522 // Mangled name.
5523
5524 void
5525 Channel_type::do_mangled_name(Gogo* gogo, std::string* ret) const
5526 {
5527 ret->push_back('C');
5528 this->append_mangled_name(this->element_type_, gogo, ret);
5529 if (this->may_send_)
5530 ret->push_back('s');
5531 if (this->may_receive_)
5532 ret->push_back('r');
5533 ret->push_back('e');
5534 }
5535
5536 // Export.
5537
5538 void
5539 Channel_type::do_export(Export* exp) const
5540 {
5541 exp->write_c_string("chan ");
5542 if (this->may_send_ && !this->may_receive_)
5543 exp->write_c_string("-< ");
5544 else if (this->may_receive_ && !this->may_send_)
5545 exp->write_c_string("<- ");
5546 exp->write_type(this->element_type_);
5547 }
5548
5549 // Import.
5550
5551 Channel_type*
5552 Channel_type::do_import(Import* imp)
5553 {
5554 imp->require_c_string("chan ");
5555
5556 bool may_send;
5557 bool may_receive;
5558 if (imp->match_c_string("-< "))
5559 {
5560 imp->advance(3);
5561 may_send = true;
5562 may_receive = false;
5563 }
5564 else if (imp->match_c_string("<- "))
5565 {
5566 imp->advance(3);
5567 may_receive = true;
5568 may_send = false;
5569 }
5570 else
5571 {
5572 may_send = true;
5573 may_receive = true;
5574 }
5575
5576 Type* element_type = imp->read_type();
5577
5578 return Type::make_channel_type(may_send, may_receive, element_type);
5579 }
5580
5581 // Make a new channel type.
5582
5583 Channel_type*
5584 Type::make_channel_type(bool send, bool receive, Type* element_type)
5585 {
5586 return new Channel_type(send, receive, element_type);
5587 }
5588
5589 // Class Interface_type.
5590
5591 // Traversal.
5592
5593 int
5594 Interface_type::do_traverse(Traverse* traverse)
5595 {
5596 if (this->methods_ == NULL)
5597 return TRAVERSE_CONTINUE;
5598 return this->methods_->traverse(traverse);
5599 }
5600
5601 // Finalize the methods. This handles interface inheritance.
5602
5603 void
5604 Interface_type::finalize_methods()
5605 {
5606 if (this->methods_ == NULL)
5607 return;
5608 bool is_recursive = false;
5609 size_t from = 0;
5610 size_t to = 0;
5611 while (from < this->methods_->size())
5612 {
5613 const Typed_identifier* p = &this->methods_->at(from);
5614 if (!p->name().empty())
5615 {
5616 size_t i;
5617 for (i = 0; i < to; ++i)
5618 {
5619 if (this->methods_->at(i).name() == p->name())
5620 {
5621 error_at(p->location(), "duplicate method %qs",
5622 Gogo::message_name(p->name()).c_str());
5623 break;
5624 }
5625 }
5626 if (i == to)
5627 {
5628 if (from != to)
5629 this->methods_->set(to, *p);
5630 ++to;
5631 }
5632 ++from;
5633 continue;
5634 }
5635 Interface_type* it = p->type()->interface_type();
5636 if (it == NULL)
5637 {
5638 error_at(p->location(), "interface contains embedded non-interface");
5639 ++from;
5640 continue;
5641 }
5642 if (it == this)
5643 {
5644 if (!is_recursive)
5645 {
5646 error_at(p->location(), "invalid recursive interface");
5647 is_recursive = true;
5648 }
5649 ++from;
5650 continue;
5651 }
5652 const Typed_identifier_list* methods = it->methods();
5653 if (methods == NULL)
5654 {
5655 ++from;
5656 continue;
5657 }
5658 for (Typed_identifier_list::const_iterator q = methods->begin();
5659 q != methods->end();
5660 ++q)
5661 {
5662 if (q->name().empty())
5663 {
5664 if (q->type()->forwarded() == p->type()->forwarded())
5665 error_at(p->location(), "interface inheritance loop");
5666 else
5667 {
5668 size_t i;
5669 for (i = from + 1; i < this->methods_->size(); ++i)
5670 {
5671 const Typed_identifier* r = &this->methods_->at(i);
5672 if (r->name().empty()
5673 && r->type()->forwarded() == q->type()->forwarded())
5674 {
5675 error_at(p->location(),
5676 "inherited interface listed twice");
5677 break;
5678 }
5679 }
5680 if (i == this->methods_->size())
5681 this->methods_->push_back(Typed_identifier(q->name(),
5682 q->type(),
5683 p->location()));
5684 }
5685 }
5686 else if (this->find_method(q->name()) == NULL)
5687 this->methods_->push_back(Typed_identifier(q->name(), q->type(),
5688 p->location()));
5689 else
5690 {
5691 if (!is_recursive)
5692 error_at(p->location(), "inherited method %qs is ambiguous",
5693 Gogo::message_name(q->name()).c_str());
5694 }
5695 }
5696 ++from;
5697 }
5698 if (to == 0)
5699 {
5700 delete this->methods_;
5701 this->methods_ = NULL;
5702 }
5703 else
5704 {
5705 this->methods_->resize(to);
5706 this->methods_->sort_by_name();
5707 }
5708 }
5709
5710 // Return the method NAME, or NULL.
5711
5712 const Typed_identifier*
5713 Interface_type::find_method(const std::string& name) const
5714 {
5715 if (this->methods_ == NULL)
5716 return NULL;
5717 for (Typed_identifier_list::const_iterator p = this->methods_->begin();
5718 p != this->methods_->end();
5719 ++p)
5720 if (p->name() == name)
5721 return &*p;
5722 return NULL;
5723 }
5724
5725 // Return the method index.
5726
5727 size_t
5728 Interface_type::method_index(const std::string& name) const
5729 {
5730 gcc_assert(this->methods_ != NULL);
5731 size_t ret = 0;
5732 for (Typed_identifier_list::const_iterator p = this->methods_->begin();
5733 p != this->methods_->end();
5734 ++p, ++ret)
5735 if (p->name() == name)
5736 return ret;
5737 gcc_unreachable();
5738 }
5739
5740 // Return whether NAME is an unexported method, for better error
5741 // reporting.
5742
5743 bool
5744 Interface_type::is_unexported_method(Gogo* gogo, const std::string& name) const
5745 {
5746 if (this->methods_ == NULL)
5747 return false;
5748 for (Typed_identifier_list::const_iterator p = this->methods_->begin();
5749 p != this->methods_->end();
5750 ++p)
5751 {
5752 const std::string& method_name(p->name());
5753 if (Gogo::is_hidden_name(method_name)
5754 && name == Gogo::unpack_hidden_name(method_name)
5755 && gogo->pack_hidden_name(name, false) != method_name)
5756 return true;
5757 }
5758 return false;
5759 }
5760
5761 // Whether this type is identical with T.
5762
5763 bool
5764 Interface_type::is_identical(const Interface_type* t,
5765 bool errors_are_identical) const
5766 {
5767 // We require the same methods with the same types. The methods
5768 // have already been sorted.
5769 if (this->methods() == NULL || t->methods() == NULL)
5770 return this->methods() == t->methods();
5771
5772 Typed_identifier_list::const_iterator p1 = this->methods()->begin();
5773 for (Typed_identifier_list::const_iterator p2 = t->methods()->begin();
5774 p2 != t->methods()->end();
5775 ++p1, ++p2)
5776 {
5777 if (p1 == this->methods()->end())
5778 return false;
5779 if (p1->name() != p2->name()
5780 || !Type::are_identical(p1->type(), p2->type(),
5781 errors_are_identical, NULL))
5782 return false;
5783 }
5784 if (p1 != this->methods()->end())
5785 return false;
5786 return true;
5787 }
5788
5789 // Whether we can assign the interface type T to this type. The types
5790 // are known to not be identical. An interface assignment is only
5791 // permitted if T is known to implement all methods in THIS.
5792 // Otherwise a type guard is required.
5793
5794 bool
5795 Interface_type::is_compatible_for_assign(const Interface_type* t,
5796 std::string* reason) const
5797 {
5798 if (this->methods() == NULL)
5799 return true;
5800 for (Typed_identifier_list::const_iterator p = this->methods()->begin();
5801 p != this->methods()->end();
5802 ++p)
5803 {
5804 const Typed_identifier* m = t->find_method(p->name());
5805 if (m == NULL)
5806 {
5807 if (reason != NULL)
5808 {
5809 char buf[200];
5810 snprintf(buf, sizeof buf,
5811 _("need explicit conversion; missing method %s%s%s"),
5812 open_quote, Gogo::message_name(p->name()).c_str(),
5813 close_quote);
5814 reason->assign(buf);
5815 }
5816 return false;
5817 }
5818
5819 std::string subreason;
5820 if (!Type::are_identical(p->type(), m->type(), true, &subreason))
5821 {
5822 if (reason != NULL)
5823 {
5824 std::string n = Gogo::message_name(p->name());
5825 size_t len = 100 + n.length() + subreason.length();
5826 char* buf = new char[len];
5827 if (subreason.empty())
5828 snprintf(buf, len, _("incompatible type for method %s%s%s"),
5829 open_quote, n.c_str(), close_quote);
5830 else
5831 snprintf(buf, len,
5832 _("incompatible type for method %s%s%s (%s)"),
5833 open_quote, n.c_str(), close_quote,
5834 subreason.c_str());
5835 reason->assign(buf);
5836 delete[] buf;
5837 }
5838 return false;
5839 }
5840 }
5841
5842 return true;
5843 }
5844
5845 // Hash code.
5846
5847 unsigned int
5848 Interface_type::do_hash_for_method(Gogo* gogo) const
5849 {
5850 unsigned int ret = 0;
5851 if (this->methods_ != NULL)
5852 {
5853 for (Typed_identifier_list::const_iterator p = this->methods_->begin();
5854 p != this->methods_->end();
5855 ++p)
5856 {
5857 ret = Type::hash_string(p->name(), ret);
5858 ret += p->type()->hash_for_method(gogo);
5859 ret <<= 1;
5860 }
5861 }
5862 return ret;
5863 }
5864
5865 // Return true if T implements the interface. If it does not, and
5866 // REASON is not NULL, set *REASON to a useful error message.
5867
5868 bool
5869 Interface_type::implements_interface(const Type* t, std::string* reason) const
5870 {
5871 if (this->methods_ == NULL)
5872 return true;
5873
5874 bool is_pointer = false;
5875 const Named_type* nt = t->named_type();
5876 const Struct_type* st = t->struct_type();
5877 // If we start with a named type, we don't dereference it to find
5878 // methods.
5879 if (nt == NULL)
5880 {
5881 const Type* pt = t->points_to();
5882 if (pt != NULL)
5883 {
5884 // If T is a pointer to a named type, then we need to look at
5885 // the type to which it points.
5886 is_pointer = true;
5887 nt = pt->named_type();
5888 st = pt->struct_type();
5889 }
5890 }
5891
5892 // If we have a named type, get the methods from it rather than from
5893 // any struct type.
5894 if (nt != NULL)
5895 st = NULL;
5896
5897 // Only named and struct types have methods.
5898 if (nt == NULL && st == NULL)
5899 {
5900 if (reason != NULL)
5901 {
5902 if (t->points_to() != NULL
5903 && t->points_to()->interface_type() != NULL)
5904 reason->assign(_("pointer to interface type has no methods"));
5905 else
5906 reason->assign(_("type has no methods"));
5907 }
5908 return false;
5909 }
5910
5911 if (nt != NULL ? !nt->has_any_methods() : !st->has_any_methods())
5912 {
5913 if (reason != NULL)
5914 {
5915 if (t->points_to() != NULL
5916 && t->points_to()->interface_type() != NULL)
5917 reason->assign(_("pointer to interface type has no methods"));
5918 else
5919 reason->assign(_("type has no methods"));
5920 }
5921 return false;
5922 }
5923
5924 for (Typed_identifier_list::const_iterator p = this->methods_->begin();
5925 p != this->methods_->end();
5926 ++p)
5927 {
5928 bool is_ambiguous = false;
5929 Method* m = (nt != NULL
5930 ? nt->method_function(p->name(), &is_ambiguous)
5931 : st->method_function(p->name(), &is_ambiguous));
5932 if (m == NULL)
5933 {
5934 if (reason != NULL)
5935 {
5936 std::string n = Gogo::message_name(p->name());
5937 size_t len = n.length() + 100;
5938 char* buf = new char[len];
5939 if (is_ambiguous)
5940 snprintf(buf, len, _("ambiguous method %s%s%s"),
5941 open_quote, n.c_str(), close_quote);
5942 else
5943 snprintf(buf, len, _("missing method %s%s%s"),
5944 open_quote, n.c_str(), close_quote);
5945 reason->assign(buf);
5946 delete[] buf;
5947 }
5948 return false;
5949 }
5950
5951 Function_type *p_fn_type = p->type()->function_type();
5952 Function_type* m_fn_type = m->type()->function_type();
5953 gcc_assert(p_fn_type != NULL && m_fn_type != NULL);
5954 std::string subreason;
5955 if (!p_fn_type->is_identical(m_fn_type, true, true, &subreason))
5956 {
5957 if (reason != NULL)
5958 {
5959 std::string n = Gogo::message_name(p->name());
5960 size_t len = 100 + n.length() + subreason.length();
5961 char* buf = new char[len];
5962 if (subreason.empty())
5963 snprintf(buf, len, _("incompatible type for method %s%s%s"),
5964 open_quote, n.c_str(), close_quote);
5965 else
5966 snprintf(buf, len,
5967 _("incompatible type for method %s%s%s (%s)"),
5968 open_quote, n.c_str(), close_quote,
5969 subreason.c_str());
5970 reason->assign(buf);
5971 delete[] buf;
5972 }
5973 return false;
5974 }
5975
5976 if (!is_pointer && !m->is_value_method())
5977 {
5978 if (reason != NULL)
5979 {
5980 std::string n = Gogo::message_name(p->name());
5981 size_t len = 100 + n.length();
5982 char* buf = new char[len];
5983 snprintf(buf, len, _("method %s%s%s requires a pointer"),
5984 open_quote, n.c_str(), close_quote);
5985 reason->assign(buf);
5986 delete[] buf;
5987 }
5988 return false;
5989 }
5990 }
5991
5992 return true;
5993 }
5994
5995 // Return a tree for an interface type. An interface is a pointer to
5996 // a struct. The struct has three fields. The first field is a
5997 // pointer to the type descriptor for the dynamic type of the object.
5998 // The second field is a pointer to a table of methods for the
5999 // interface to be used with the object. The third field is the value
6000 // of the object itself.
6001
6002 tree
6003 Interface_type::do_get_tree(Gogo* gogo)
6004 {
6005 if (this->methods_ == NULL)
6006 {
6007 // At the tree level, use the same type for all empty
6008 // interfaces. This lets us assign them to each other directly
6009 // without triggering GIMPLE type errors.
6010 tree dtype = Type::make_type_descriptor_type()->get_tree(gogo);
6011 dtype = build_pointer_type(build_qualified_type(dtype, TYPE_QUAL_CONST));
6012 static tree empty_interface;
6013 return Gogo::builtin_struct(&empty_interface, "__go_empty_interface",
6014 NULL_TREE, 2,
6015 "__type_descriptor",
6016 dtype,
6017 "__object",
6018 ptr_type_node);
6019 }
6020
6021 return this->fill_in_tree(gogo, make_node(RECORD_TYPE));
6022 }
6023
6024 // Fill in the tree for an interface type. This is used for named
6025 // interface types.
6026
6027 tree
6028 Interface_type::fill_in_tree(Gogo* gogo, tree type)
6029 {
6030 gcc_assert(this->methods_ != NULL);
6031
6032 // Because the methods may refer to the interface type itself, we
6033 // need to build the interface type first, and then update the
6034 // method pointer later.
6035
6036 tree field_trees = NULL_TREE;
6037 tree* pp = &field_trees;
6038
6039 tree name_tree = get_identifier("__methods");
6040 tree methods_field = build_decl(this->location_, FIELD_DECL, name_tree,
6041 ptr_type_node);
6042 DECL_CONTEXT(methods_field) = type;
6043 *pp = methods_field;
6044 pp = &DECL_CHAIN(methods_field);
6045
6046 name_tree = get_identifier("__object");
6047 tree field = build_decl(this->location_, FIELD_DECL, name_tree,
6048 ptr_type_node);
6049 DECL_CONTEXT(field) = type;
6050 *pp = field;
6051
6052 TYPE_FIELDS(type) = field_trees;
6053
6054 layout_type(type);
6055
6056 // Build the type of the table of methods.
6057
6058 tree method_table = make_node(RECORD_TYPE);
6059
6060 // The first field is a pointer to the type descriptor.
6061 name_tree = get_identifier("__type_descriptor");
6062 tree dtype = Type::make_type_descriptor_type()->get_tree(gogo);
6063 dtype = build_pointer_type(build_qualified_type(dtype, TYPE_QUAL_CONST));
6064 field = build_decl(this->location_, FIELD_DECL, name_tree, dtype);
6065 DECL_CONTEXT(field) = method_table;
6066 TYPE_FIELDS(method_table) = field;
6067
6068 std::string last_name = "";
6069 pp = &DECL_CHAIN(field);
6070 for (Typed_identifier_list::const_iterator p = this->methods_->begin();
6071 p != this->methods_->end();
6072 ++p)
6073 {
6074 std::string name = Gogo::unpack_hidden_name(p->name());
6075 name_tree = get_identifier_with_length(name.data(), name.length());
6076 tree field_type = p->type()->get_tree(gogo);
6077 if (field_type == error_mark_node)
6078 return error_mark_node;
6079 field = build_decl(this->location_, FIELD_DECL, name_tree, field_type);
6080 DECL_CONTEXT(field) = method_table;
6081 *pp = field;
6082 pp = &DECL_CHAIN(field);
6083 // Sanity check: the names should be sorted.
6084 gcc_assert(p->name() > last_name);
6085 last_name = p->name();
6086 }
6087 layout_type(method_table);
6088
6089 // Update the type of the __methods field from a generic pointer to
6090 // a pointer to the method table.
6091 TREE_TYPE(methods_field) = build_pointer_type(method_table);
6092
6093 return type;
6094 }
6095
6096 // Initialization value.
6097
6098 tree
6099 Interface_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
6100 {
6101 if (is_clear)
6102 return NULL;
6103
6104 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
6105 for (tree field = TYPE_FIELDS(type_tree);
6106 field != NULL_TREE;
6107 field = DECL_CHAIN(field))
6108 {
6109 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
6110 elt->index = field;
6111 elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
6112 }
6113
6114 tree ret = build_constructor(type_tree, init);
6115 TREE_CONSTANT(ret) = 1;
6116 return ret;
6117 }
6118
6119 // The type of an interface type descriptor.
6120
6121 Type*
6122 Interface_type::make_interface_type_descriptor_type()
6123 {
6124 static Type* ret;
6125 if (ret == NULL)
6126 {
6127 Type* tdt = Type::make_type_descriptor_type();
6128 Type* ptdt = Type::make_type_descriptor_ptr_type();
6129
6130 Type* string_type = Type::lookup_string_type();
6131 Type* pointer_string_type = Type::make_pointer_type(string_type);
6132
6133 Struct_type* sm =
6134 Type::make_builtin_struct_type(3,
6135 "name", pointer_string_type,
6136 "pkgPath", pointer_string_type,
6137 "typ", ptdt);
6138
6139 Type* nsm = Type::make_builtin_named_type("imethod", sm);
6140
6141 Type* slice_nsm = Type::make_array_type(nsm, NULL);
6142
6143 Struct_type* s = Type::make_builtin_struct_type(2,
6144 "", tdt,
6145 "methods", slice_nsm);
6146
6147 ret = Type::make_builtin_named_type("InterfaceType", s);
6148 }
6149
6150 return ret;
6151 }
6152
6153 // Build a type descriptor for an interface type.
6154
6155 Expression*
6156 Interface_type::do_type_descriptor(Gogo* gogo, Named_type* name)
6157 {
6158 source_location bloc = BUILTINS_LOCATION;
6159
6160 Type* itdt = Interface_type::make_interface_type_descriptor_type();
6161
6162 const Struct_field_list* ifields = itdt->struct_type()->fields();
6163
6164 Expression_list* ivals = new Expression_list();
6165 ivals->reserve(2);
6166
6167 Struct_field_list::const_iterator pif = ifields->begin();
6168 gcc_assert(pif->field_name() == "commonType");
6169 ivals->push_back(this->type_descriptor_constructor(gogo,
6170 RUNTIME_TYPE_KIND_INTERFACE,
6171 name, NULL, true));
6172
6173 ++pif;
6174 gcc_assert(pif->field_name() == "methods");
6175
6176 Expression_list* methods = new Expression_list();
6177 if (this->methods_ != NULL && !this->methods_->empty())
6178 {
6179 Type* elemtype = pif->type()->array_type()->element_type();
6180
6181 methods->reserve(this->methods_->size());
6182 for (Typed_identifier_list::const_iterator pm = this->methods_->begin();
6183 pm != this->methods_->end();
6184 ++pm)
6185 {
6186 const Struct_field_list* mfields = elemtype->struct_type()->fields();
6187
6188 Expression_list* mvals = new Expression_list();
6189 mvals->reserve(3);
6190
6191 Struct_field_list::const_iterator pmf = mfields->begin();
6192 gcc_assert(pmf->field_name() == "name");
6193 std::string s = Gogo::unpack_hidden_name(pm->name());
6194 Expression* e = Expression::make_string(s, bloc);
6195 mvals->push_back(Expression::make_unary(OPERATOR_AND, e, bloc));
6196
6197 ++pmf;
6198 gcc_assert(pmf->field_name() == "pkgPath");
6199 if (!Gogo::is_hidden_name(pm->name()))
6200 mvals->push_back(Expression::make_nil(bloc));
6201 else
6202 {
6203 s = Gogo::hidden_name_prefix(pm->name());
6204 e = Expression::make_string(s, bloc);
6205 mvals->push_back(Expression::make_unary(OPERATOR_AND, e, bloc));
6206 }
6207
6208 ++pmf;
6209 gcc_assert(pmf->field_name() == "typ");
6210 mvals->push_back(Expression::make_type_descriptor(pm->type(), bloc));
6211
6212 ++pmf;
6213 gcc_assert(pmf == mfields->end());
6214
6215 e = Expression::make_struct_composite_literal(elemtype, mvals,
6216 bloc);
6217 methods->push_back(e);
6218 }
6219 }
6220
6221 ivals->push_back(Expression::make_slice_composite_literal(pif->type(),
6222 methods, bloc));
6223
6224 ++pif;
6225 gcc_assert(pif == ifields->end());
6226
6227 return Expression::make_struct_composite_literal(itdt, ivals, bloc);
6228 }
6229
6230 // Reflection string.
6231
6232 void
6233 Interface_type::do_reflection(Gogo* gogo, std::string* ret) const
6234 {
6235 ret->append("interface {");
6236 if (this->methods_ != NULL)
6237 {
6238 for (Typed_identifier_list::const_iterator p = this->methods_->begin();
6239 p != this->methods_->end();
6240 ++p)
6241 {
6242 if (p != this->methods_->begin())
6243 ret->append(";");
6244 ret->push_back(' ');
6245 ret->append(Gogo::unpack_hidden_name(p->name()));
6246 std::string sub = p->type()->reflection(gogo);
6247 gcc_assert(sub.compare(0, 4, "func") == 0);
6248 sub = sub.substr(4);
6249 ret->append(sub);
6250 }
6251 }
6252 ret->append(" }");
6253 }
6254
6255 // Mangled name.
6256
6257 void
6258 Interface_type::do_mangled_name(Gogo* gogo, std::string* ret) const
6259 {
6260 ret->push_back('I');
6261
6262 const Typed_identifier_list* methods = this->methods_;
6263 if (methods != NULL)
6264 {
6265 for (Typed_identifier_list::const_iterator p = methods->begin();
6266 p != methods->end();
6267 ++p)
6268 {
6269 std::string n = Gogo::unpack_hidden_name(p->name());
6270 char buf[20];
6271 snprintf(buf, sizeof buf, "%u_",
6272 static_cast<unsigned int>(n.length()));
6273 ret->append(buf);
6274 ret->append(n);
6275 this->append_mangled_name(p->type(), gogo, ret);
6276 }
6277 }
6278
6279 ret->push_back('e');
6280 }
6281
6282 // Export.
6283
6284 void
6285 Interface_type::do_export(Export* exp) const
6286 {
6287 exp->write_c_string("interface { ");
6288
6289 const Typed_identifier_list* methods = this->methods_;
6290 if (methods != NULL)
6291 {
6292 for (Typed_identifier_list::const_iterator pm = methods->begin();
6293 pm != methods->end();
6294 ++pm)
6295 {
6296 exp->write_string(pm->name());
6297 exp->write_c_string(" (");
6298
6299 const Function_type* fntype = pm->type()->function_type();
6300
6301 bool first = true;
6302 const Typed_identifier_list* parameters = fntype->parameters();
6303 if (parameters != NULL)
6304 {
6305 bool is_varargs = fntype->is_varargs();
6306 for (Typed_identifier_list::const_iterator pp =
6307 parameters->begin();
6308 pp != parameters->end();
6309 ++pp)
6310 {
6311 if (first)
6312 first = false;
6313 else
6314 exp->write_c_string(", ");
6315 if (!is_varargs || pp + 1 != parameters->end())
6316 exp->write_type(pp->type());
6317 else
6318 {
6319 exp->write_c_string("...");
6320 Type *pptype = pp->type();
6321 exp->write_type(pptype->array_type()->element_type());
6322 }
6323 }
6324 }
6325
6326 exp->write_c_string(")");
6327
6328 const Typed_identifier_list* results = fntype->results();
6329 if (results != NULL)
6330 {
6331 exp->write_c_string(" ");
6332 if (results->size() == 1)
6333 exp->write_type(results->begin()->type());
6334 else
6335 {
6336 first = true;
6337 exp->write_c_string("(");
6338 for (Typed_identifier_list::const_iterator p =
6339 results->begin();
6340 p != results->end();
6341 ++p)
6342 {
6343 if (first)
6344 first = false;
6345 else
6346 exp->write_c_string(", ");
6347 exp->write_type(p->type());
6348 }
6349 exp->write_c_string(")");
6350 }
6351 }
6352
6353 exp->write_c_string("; ");
6354 }
6355 }
6356
6357 exp->write_c_string("}");
6358 }
6359
6360 // Import an interface type.
6361
6362 Interface_type*
6363 Interface_type::do_import(Import* imp)
6364 {
6365 imp->require_c_string("interface { ");
6366
6367 Typed_identifier_list* methods = new Typed_identifier_list;
6368 while (imp->peek_char() != '}')
6369 {
6370 std::string name = imp->read_identifier();
6371 imp->require_c_string(" (");
6372
6373 Typed_identifier_list* parameters;
6374 bool is_varargs = false;
6375 if (imp->peek_char() == ')')
6376 parameters = NULL;
6377 else
6378 {
6379 parameters = new Typed_identifier_list;
6380 while (true)
6381 {
6382 if (imp->match_c_string("..."))
6383 {
6384 imp->advance(3);
6385 is_varargs = true;
6386 }
6387
6388 Type* ptype = imp->read_type();
6389 if (is_varargs)
6390 ptype = Type::make_array_type(ptype, NULL);
6391 parameters->push_back(Typed_identifier(Import::import_marker,
6392 ptype, imp->location()));
6393 if (imp->peek_char() != ',')
6394 break;
6395 gcc_assert(!is_varargs);
6396 imp->require_c_string(", ");
6397 }
6398 }
6399 imp->require_c_string(")");
6400
6401 Typed_identifier_list* results;
6402 if (imp->peek_char() != ' ')
6403 results = NULL;
6404 else
6405 {
6406 results = new Typed_identifier_list;
6407 imp->advance(1);
6408 if (imp->peek_char() != '(')
6409 {
6410 Type* rtype = imp->read_type();
6411 results->push_back(Typed_identifier(Import::import_marker,
6412 rtype, imp->location()));
6413 }
6414 else
6415 {
6416 imp->advance(1);
6417 while (true)
6418 {
6419 Type* rtype = imp->read_type();
6420 results->push_back(Typed_identifier(Import::import_marker,
6421 rtype, imp->location()));
6422 if (imp->peek_char() != ',')
6423 break;
6424 imp->require_c_string(", ");
6425 }
6426 imp->require_c_string(")");
6427 }
6428 }
6429
6430 Function_type* fntype = Type::make_function_type(NULL, parameters,
6431 results,
6432 imp->location());
6433 if (is_varargs)
6434 fntype->set_is_varargs();
6435 methods->push_back(Typed_identifier(name, fntype, imp->location()));
6436
6437 imp->require_c_string("; ");
6438 }
6439
6440 imp->require_c_string("}");
6441
6442 if (methods->empty())
6443 {
6444 delete methods;
6445 methods = NULL;
6446 }
6447
6448 return Type::make_interface_type(methods, imp->location());
6449 }
6450
6451 // Make an interface type.
6452
6453 Interface_type*
6454 Type::make_interface_type(Typed_identifier_list* methods,
6455 source_location location)
6456 {
6457 return new Interface_type(methods, location);
6458 }
6459
6460 // Class Method.
6461
6462 // Bind a method to an object.
6463
6464 Expression*
6465 Method::bind_method(Expression* expr, source_location location) const
6466 {
6467 if (this->stub_ == NULL)
6468 {
6469 // When there is no stub object, the binding is determined by
6470 // the child class.
6471 return this->do_bind_method(expr, location);
6472 }
6473
6474 Expression* func = Expression::make_func_reference(this->stub_, NULL,
6475 location);
6476 return Expression::make_bound_method(expr, func, location);
6477 }
6478
6479 // Return the named object associated with a method. This may only be
6480 // called after methods are finalized.
6481
6482 Named_object*
6483 Method::named_object() const
6484 {
6485 if (this->stub_ != NULL)
6486 return this->stub_;
6487 return this->do_named_object();
6488 }
6489
6490 // Class Named_method.
6491
6492 // The type of the method.
6493
6494 Function_type*
6495 Named_method::do_type() const
6496 {
6497 if (this->named_object_->is_function())
6498 return this->named_object_->func_value()->type();
6499 else if (this->named_object_->is_function_declaration())
6500 return this->named_object_->func_declaration_value()->type();
6501 else
6502 gcc_unreachable();
6503 }
6504
6505 // Return the location of the method receiver.
6506
6507 source_location
6508 Named_method::do_receiver_location() const
6509 {
6510 return this->do_type()->receiver()->location();
6511 }
6512
6513 // Bind a method to an object.
6514
6515 Expression*
6516 Named_method::do_bind_method(Expression* expr, source_location location) const
6517 {
6518 Expression* func = Expression::make_func_reference(this->named_object_, NULL,
6519 location);
6520 Bound_method_expression* bme = Expression::make_bound_method(expr, func,
6521 location);
6522 // If this is not a local method, and it does not use a stub, then
6523 // the real method expects a different type. We need to cast the
6524 // first argument.
6525 if (this->depth() > 0 && !this->needs_stub_method())
6526 {
6527 Function_type* ftype = this->do_type();
6528 gcc_assert(ftype->is_method());
6529 Type* frtype = ftype->receiver()->type();
6530 bme->set_first_argument_type(frtype);
6531 }
6532 return bme;
6533 }
6534
6535 // Class Interface_method.
6536
6537 // Bind a method to an object.
6538
6539 Expression*
6540 Interface_method::do_bind_method(Expression* expr,
6541 source_location location) const
6542 {
6543 return Expression::make_interface_field_reference(expr, this->name_,
6544 location);
6545 }
6546
6547 // Class Methods.
6548
6549 // Insert a new method. Return true if it was inserted, false
6550 // otherwise.
6551
6552 bool
6553 Methods::insert(const std::string& name, Method* m)
6554 {
6555 std::pair<Method_map::iterator, bool> ins =
6556 this->methods_.insert(std::make_pair(name, m));
6557 if (ins.second)
6558 return true;
6559 else
6560 {
6561 Method* old_method = ins.first->second;
6562 if (m->depth() < old_method->depth())
6563 {
6564 delete old_method;
6565 ins.first->second = m;
6566 return true;
6567 }
6568 else
6569 {
6570 if (m->depth() == old_method->depth())
6571 old_method->set_is_ambiguous();
6572 return false;
6573 }
6574 }
6575 }
6576
6577 // Return the number of unambiguous methods.
6578
6579 size_t
6580 Methods::count() const
6581 {
6582 size_t ret = 0;
6583 for (Method_map::const_iterator p = this->methods_.begin();
6584 p != this->methods_.end();
6585 ++p)
6586 if (!p->second->is_ambiguous())
6587 ++ret;
6588 return ret;
6589 }
6590
6591 // Class Named_type.
6592
6593 // Return the name of the type.
6594
6595 const std::string&
6596 Named_type::name() const
6597 {
6598 return this->named_object_->name();
6599 }
6600
6601 // Return the name of the type to use in an error message.
6602
6603 std::string
6604 Named_type::message_name() const
6605 {
6606 return this->named_object_->message_name();
6607 }
6608
6609 // Return the base type for this type. We have to be careful about
6610 // circular type definitions, which are invalid but may be seen here.
6611
6612 Type*
6613 Named_type::named_base()
6614 {
6615 if (this->seen_ > 0)
6616 return this;
6617 ++this->seen_;
6618 Type* ret = this->type_->base();
6619 --this->seen_;
6620 return ret;
6621 }
6622
6623 const Type*
6624 Named_type::named_base() const
6625 {
6626 if (this->seen_ > 0)
6627 return this;
6628 ++this->seen_;
6629 const Type* ret = this->type_->base();
6630 --this->seen_;
6631 return ret;
6632 }
6633
6634 // Return whether this is an error type. We have to be careful about
6635 // circular type definitions, which are invalid but may be seen here.
6636
6637 bool
6638 Named_type::is_named_error_type() const
6639 {
6640 if (this->seen_ > 0)
6641 return false;
6642 ++this->seen_;
6643 bool ret = this->type_->is_error_type();
6644 --this->seen_;
6645 return ret;
6646 }
6647
6648 // Add a method to this type.
6649
6650 Named_object*
6651 Named_type::add_method(const std::string& name, Function* function)
6652 {
6653 if (this->local_methods_ == NULL)
6654 this->local_methods_ = new Bindings(NULL);
6655 return this->local_methods_->add_function(name, NULL, function);
6656 }
6657
6658 // Add a method declaration to this type.
6659
6660 Named_object*
6661 Named_type::add_method_declaration(const std::string& name, Package* package,
6662 Function_type* type,
6663 source_location location)
6664 {
6665 if (this->local_methods_ == NULL)
6666 this->local_methods_ = new Bindings(NULL);
6667 return this->local_methods_->add_function_declaration(name, package, type,
6668 location);
6669 }
6670
6671 // Add an existing method to this type.
6672
6673 void
6674 Named_type::add_existing_method(Named_object* no)
6675 {
6676 if (this->local_methods_ == NULL)
6677 this->local_methods_ = new Bindings(NULL);
6678 this->local_methods_->add_named_object(no);
6679 }
6680
6681 // Look for a local method NAME, and returns its named object, or NULL
6682 // if not there.
6683
6684 Named_object*
6685 Named_type::find_local_method(const std::string& name) const
6686 {
6687 if (this->local_methods_ == NULL)
6688 return NULL;
6689 return this->local_methods_->lookup(name);
6690 }
6691
6692 // Return whether NAME is an unexported field or method, for better
6693 // error reporting.
6694
6695 bool
6696 Named_type::is_unexported_local_method(Gogo* gogo,
6697 const std::string& name) const
6698 {
6699 Bindings* methods = this->local_methods_;
6700 if (methods != NULL)
6701 {
6702 for (Bindings::const_declarations_iterator p =
6703 methods->begin_declarations();
6704 p != methods->end_declarations();
6705 ++p)
6706 {
6707 if (Gogo::is_hidden_name(p->first)
6708 && name == Gogo::unpack_hidden_name(p->first)
6709 && gogo->pack_hidden_name(name, false) != p->first)
6710 return true;
6711 }
6712 }
6713 return false;
6714 }
6715
6716 // Build the complete list of methods for this type, which means
6717 // recursively including all methods for anonymous fields. Create all
6718 // stub methods.
6719
6720 void
6721 Named_type::finalize_methods(Gogo* gogo)
6722 {
6723 if (this->all_methods_ != NULL)
6724 return;
6725
6726 if (this->local_methods_ != NULL
6727 && (this->points_to() != NULL || this->interface_type() != NULL))
6728 {
6729 const Bindings* lm = this->local_methods_;
6730 for (Bindings::const_declarations_iterator p = lm->begin_declarations();
6731 p != lm->end_declarations();
6732 ++p)
6733 error_at(p->second->location(),
6734 "invalid pointer or interface receiver type");
6735 delete this->local_methods_;
6736 this->local_methods_ = NULL;
6737 return;
6738 }
6739
6740 Type::finalize_methods(gogo, this, this->location_, &this->all_methods_);
6741 }
6742
6743 // Return the method NAME, or NULL if there isn't one or if it is
6744 // ambiguous. Set *IS_AMBIGUOUS if the method exists but is
6745 // ambiguous.
6746
6747 Method*
6748 Named_type::method_function(const std::string& name, bool* is_ambiguous) const
6749 {
6750 return Type::method_function(this->all_methods_, name, is_ambiguous);
6751 }
6752
6753 // Return a pointer to the interface method table for this type for
6754 // the interface INTERFACE. IS_POINTER is true if this is for a
6755 // pointer to THIS.
6756
6757 tree
6758 Named_type::interface_method_table(Gogo* gogo, const Interface_type* interface,
6759 bool is_pointer)
6760 {
6761 gcc_assert(!interface->is_empty());
6762
6763 Interface_method_tables** pimt = (is_pointer
6764 ? &this->interface_method_tables_
6765 : &this->pointer_interface_method_tables_);
6766
6767 if (*pimt == NULL)
6768 *pimt = new Interface_method_tables(5);
6769
6770 std::pair<const Interface_type*, tree> val(interface, NULL_TREE);
6771 std::pair<Interface_method_tables::iterator, bool> ins = (*pimt)->insert(val);
6772
6773 if (ins.second)
6774 {
6775 // This is a new entry in the hash table.
6776 gcc_assert(ins.first->second == NULL_TREE);
6777 ins.first->second = gogo->interface_method_table_for_type(interface,
6778 this,
6779 is_pointer);
6780 }
6781
6782 tree decl = ins.first->second;
6783 if (decl == error_mark_node)
6784 return error_mark_node;
6785 gcc_assert(decl != NULL_TREE && TREE_CODE(decl) == VAR_DECL);
6786 return build_fold_addr_expr(decl);
6787 }
6788
6789 // Return whether a named type has any hidden fields.
6790
6791 bool
6792 Named_type::named_type_has_hidden_fields(std::string* reason) const
6793 {
6794 if (this->seen_ > 0)
6795 return false;
6796 ++this->seen_;
6797 bool ret = this->type_->has_hidden_fields(this, reason);
6798 --this->seen_;
6799 return ret;
6800 }
6801
6802 // Look for a use of a complete type within another type. This is
6803 // used to check that we don't try to use a type within itself.
6804
6805 class Find_type_use : public Traverse
6806 {
6807 public:
6808 Find_type_use(Type* find_type)
6809 : Traverse(traverse_types),
6810 find_type_(find_type), found_(false)
6811 { }
6812
6813 // Whether we found the type.
6814 bool
6815 found() const
6816 { return this->found_; }
6817
6818 protected:
6819 int
6820 type(Type*);
6821
6822 private:
6823 // The type we are looking for.
6824 Type* find_type_;
6825 // Whether we found the type.
6826 bool found_;
6827 };
6828
6829 // Check for FIND_TYPE in TYPE.
6830
6831 int
6832 Find_type_use::type(Type* type)
6833 {
6834 if (this->find_type_ == type)
6835 {
6836 this->found_ = true;
6837 return TRAVERSE_EXIT;
6838 }
6839 // It's OK if we see a reference to the type in any type which is
6840 // essentially a pointer: a pointer, a slice, a function, a map, or
6841 // a channel.
6842 if (type->points_to() != NULL
6843 || type->is_open_array_type()
6844 || type->function_type() != NULL
6845 || type->map_type() != NULL
6846 || type->channel_type() != NULL)
6847 return TRAVERSE_SKIP_COMPONENTS;
6848
6849 // For an interface, a reference to the type in a method type should
6850 // be ignored, but we have to consider direct inheritance. When
6851 // this is called, there may be cases of direct inheritance
6852 // represented as a method with no name.
6853 if (type->interface_type() != NULL)
6854 {
6855 const Typed_identifier_list* methods = type->interface_type()->methods();
6856 if (methods != NULL)
6857 {
6858 for (Typed_identifier_list::const_iterator p = methods->begin();
6859 p != methods->end();
6860 ++p)
6861 {
6862 if (p->name().empty())
6863 {
6864 if (Type::traverse(p->type(), this) == TRAVERSE_EXIT)
6865 return TRAVERSE_EXIT;
6866 }
6867 }
6868 }
6869 return TRAVERSE_SKIP_COMPONENTS;
6870 }
6871
6872 return TRAVERSE_CONTINUE;
6873 }
6874
6875 // Verify that a named type does not refer to itself.
6876
6877 bool
6878 Named_type::do_verify()
6879 {
6880 Find_type_use find(this);
6881 Type::traverse(this->type_, &find);
6882 if (find.found())
6883 {
6884 error_at(this->location_, "invalid recursive type %qs",
6885 this->message_name().c_str());
6886 this->is_error_ = true;
6887 return false;
6888 }
6889
6890 // Check whether any of the local methods overloads an existing
6891 // struct field or interface method. We don't need to check the
6892 // list of methods against itself: that is handled by the Bindings
6893 // code.
6894 if (this->local_methods_ != NULL)
6895 {
6896 Struct_type* st = this->type_->struct_type();
6897 Interface_type* it = this->type_->interface_type();
6898 bool found_dup = false;
6899 if (st != NULL || it != NULL)
6900 {
6901 for (Bindings::const_declarations_iterator p =
6902 this->local_methods_->begin_declarations();
6903 p != this->local_methods_->end_declarations();
6904 ++p)
6905 {
6906 const std::string& name(p->first);
6907 if (st != NULL && st->find_local_field(name, NULL) != NULL)
6908 {
6909 error_at(p->second->location(),
6910 "method %qs redeclares struct field name",
6911 Gogo::message_name(name).c_str());
6912 found_dup = true;
6913 }
6914 if (it != NULL && it->find_method(name) != NULL)
6915 {
6916 error_at(p->second->location(),
6917 "method %qs redeclares interface method name",
6918 Gogo::message_name(name).c_str());
6919 found_dup = true;
6920 }
6921 }
6922 }
6923 if (found_dup)
6924 return false;
6925 }
6926
6927 // If this is a struct, then if any of the fields of the struct
6928 // themselves have struct type, or array of struct type, then this
6929 // struct must be converted to the backend representation before the
6930 // field's type is converted. That may seem backward, but it works
6931 // because if the field's type refers to this one, e.g., via a
6932 // pointer, then the conversion process will pick up the half-built
6933 // struct and do the right thing.
6934 if (this->struct_type() != NULL)
6935 {
6936 const Struct_field_list* fields = this->struct_type()->fields();
6937 for (Struct_field_list::const_iterator p = fields->begin();
6938 p != fields->end();
6939 ++p)
6940 {
6941 Struct_type* st = p->type()->struct_type();
6942 if (st != NULL)
6943 st->add_prerequisite(this);
6944 else
6945 {
6946 Array_type* at = p->type()->array_type();
6947 if (at != NULL && !at->is_open_array_type())
6948 {
6949 st = at->element_type()->struct_type();
6950 if (st != NULL)
6951 st->add_prerequisite(this);
6952 }
6953 }
6954 }
6955 }
6956
6957 return true;
6958 }
6959
6960 // Return whether this type is or contains a pointer.
6961
6962 bool
6963 Named_type::do_has_pointer() const
6964 {
6965 if (this->seen_ > 0)
6966 return false;
6967 ++this->seen_;
6968 bool ret = this->type_->has_pointer();
6969 --this->seen_;
6970 return ret;
6971 }
6972
6973 // Return a hash code. This is used for method lookup. We simply
6974 // hash on the name itself.
6975
6976 unsigned int
6977 Named_type::do_hash_for_method(Gogo* gogo) const
6978 {
6979 const std::string& name(this->named_object()->name());
6980 unsigned int ret = Type::hash_string(name, 0);
6981
6982 // GOGO will be NULL here when called from Type_hash_identical.
6983 // That is OK because that is only used for internal hash tables
6984 // where we are going to be comparing named types for equality. In
6985 // other cases, which are cases where the runtime is going to
6986 // compare hash codes to see if the types are the same, we need to
6987 // include the package prefix and name in the hash.
6988 if (gogo != NULL && !Gogo::is_hidden_name(name) && !this->is_builtin())
6989 {
6990 const Package* package = this->named_object()->package();
6991 if (package == NULL)
6992 {
6993 ret = Type::hash_string(gogo->unique_prefix(), ret);
6994 ret = Type::hash_string(gogo->package_name(), ret);
6995 }
6996 else
6997 {
6998 ret = Type::hash_string(package->unique_prefix(), ret);
6999 ret = Type::hash_string(package->name(), ret);
7000 }
7001 }
7002
7003 return ret;
7004 }
7005
7006 // Get a tree for a named type.
7007
7008 tree
7009 Named_type::do_get_tree(Gogo* gogo)
7010 {
7011 if (this->is_error_)
7012 return error_mark_node;
7013
7014 // Go permits types to refer to themselves in various ways. Break
7015 // the recursion here.
7016 tree t;
7017 switch (this->type_->forwarded()->classification())
7018 {
7019 case TYPE_ERROR:
7020 return error_mark_node;
7021
7022 case TYPE_VOID:
7023 case TYPE_BOOLEAN:
7024 case TYPE_INTEGER:
7025 case TYPE_FLOAT:
7026 case TYPE_COMPLEX:
7027 case TYPE_STRING:
7028 case TYPE_NIL:
7029 // These types can not refer to themselves.
7030 case TYPE_MAP:
7031 case TYPE_CHANNEL:
7032 // All maps and channels have the same type in GENERIC.
7033 t = Type::get_named_type_tree(gogo, this->type_);
7034 if (t == error_mark_node)
7035 return error_mark_node;
7036 // Build a copy to set TYPE_NAME.
7037 t = build_variant_type_copy(t);
7038 break;
7039
7040 case TYPE_FUNCTION:
7041 // GENERIC can't handle a pointer to a function type whose
7042 // return type is a pointer to the function type itself. It
7043 // goes into an infinite loop when walking the types.
7044 if (this->seen_ > 0)
7045 {
7046 Function_type* fntype = this->type_->function_type();
7047 if (fntype->results() != NULL
7048 && fntype->results()->size() == 1
7049 && fntype->results()->front().type()->forwarded() == this)
7050 return ptr_type_node;
7051
7052 // We can legitimately see ourselves here twice when a named
7053 // type is defined using a struct which refers to the named
7054 // type. If we see ourselves too often we are in a loop.
7055 if (this->seen_ > 3)
7056 return ptr_type_node;
7057 }
7058 ++this->seen_;
7059 t = Type::get_named_type_tree(gogo, this->type_);
7060 --this->seen_;
7061 if (t == error_mark_node)
7062 return error_mark_node;
7063 t = build_variant_type_copy(t);
7064 break;
7065
7066 case TYPE_POINTER:
7067 // Don't recur infinitely if a pointer type refers to itself.
7068 // Ideally we would build a circular data structure here, but
7069 // GENERIC can't handle them.
7070 if (this->seen_ > 0)
7071 {
7072 if (this->type_->points_to()->forwarded() == this)
7073 return ptr_type_node;
7074
7075 if (this->seen_ > 3)
7076 return ptr_type_node;
7077 }
7078 ++this->seen_;
7079 t = Type::get_named_type_tree(gogo, this->type_);
7080 --this->seen_;
7081 if (t == error_mark_node)
7082 return error_mark_node;
7083 t = build_variant_type_copy(t);
7084 break;
7085
7086 case TYPE_STRUCT:
7087 // If there are structs which must be converted first, do them.
7088 if (this->seen_ == 0)
7089 {
7090 ++this->seen_;
7091 this->type_->struct_type()->convert_prerequisites(gogo);
7092 --this->seen_;
7093 }
7094
7095 if (this->named_tree_ != NULL_TREE)
7096 return this->named_tree_;
7097
7098 t = make_node(RECORD_TYPE);
7099 this->named_tree_ = t;
7100 t = this->type_->struct_type()->fill_in_tree(gogo, t);
7101 if (t == error_mark_node)
7102 {
7103 this->named_tree_ = error_mark_node;
7104 return error_mark_node;
7105 }
7106 break;
7107
7108 case TYPE_ARRAY:
7109 if (!this->is_open_array_type())
7110 t = Type::get_named_type_tree(gogo, this->type_);
7111 else
7112 {
7113 if (this->named_tree_ != NULL_TREE)
7114 return this->named_tree_;
7115 t = gogo->slice_type_tree(void_type_node);
7116 this->named_tree_ = t;
7117 t = this->type_->array_type()->fill_in_tree(gogo, t);
7118 }
7119 if (t == error_mark_node)
7120 return error_mark_node;
7121 t = build_variant_type_copy(t);
7122 break;
7123
7124 case TYPE_INTERFACE:
7125 if (this->type_->interface_type()->is_empty())
7126 {
7127 t = Type::get_named_type_tree(gogo, this->type_);
7128 if (t == error_mark_node)
7129 return error_mark_node;
7130 t = build_variant_type_copy(t);
7131 }
7132 else
7133 {
7134 if (this->named_tree_ != NULL_TREE)
7135 return this->named_tree_;
7136 t = make_node(RECORD_TYPE);
7137 this->named_tree_ = t;
7138 t = this->type_->interface_type()->fill_in_tree(gogo, t);
7139 if (t == error_mark_node)
7140 {
7141 this->named_tree_ = error_mark_node;
7142 return error_mark_node;
7143 }
7144 }
7145 break;
7146
7147 case TYPE_NAMED:
7148 {
7149 // When a named type T1 is defined as another named type T2,
7150 // the definition must simply be "type T1 T2". If the
7151 // definition of T2 may refer to T1, then we must simply
7152 // return the type for T2 here. It's not precisely correct,
7153 // but it's as close as we can get with GENERIC.
7154 ++this->seen_;
7155 t = Type::get_named_type_tree(gogo, this->type_);
7156 --this->seen_;
7157 if (this->seen_ > 0)
7158 return t;
7159 if (t == error_mark_node)
7160 return error_mark_node;
7161 t = build_variant_type_copy(t);
7162 }
7163 break;
7164
7165 case TYPE_FORWARD:
7166 // An undefined forwarding type. Make sure the error is
7167 // emitted.
7168 this->type_->forward_declaration_type()->real_type();
7169 return error_mark_node;
7170
7171 default:
7172 case TYPE_SINK:
7173 case TYPE_CALL_MULTIPLE_RESULT:
7174 gcc_unreachable();
7175 }
7176
7177 tree id = this->named_object_->get_id(gogo);
7178 tree decl = build_decl(this->location_, TYPE_DECL, id, t);
7179 TYPE_NAME(t) = decl;
7180
7181 return t;
7182 }
7183
7184 // Build a type descriptor for a named type.
7185
7186 Expression*
7187 Named_type::do_type_descriptor(Gogo* gogo, Named_type* name)
7188 {
7189 // If NAME is not NULL, then we don't really want the type
7190 // descriptor for this type; we want the descriptor for the
7191 // underlying type, giving it the name NAME.
7192 return this->named_type_descriptor(gogo, this->type_,
7193 name == NULL ? this : name);
7194 }
7195
7196 // Add to the reflection string. This is used mostly for the name of
7197 // the type used in a type descriptor, not for actual reflection
7198 // strings.
7199
7200 void
7201 Named_type::do_reflection(Gogo* gogo, std::string* ret) const
7202 {
7203 if (this->location() != BUILTINS_LOCATION)
7204 {
7205 const Package* package = this->named_object_->package();
7206 if (package != NULL)
7207 ret->append(package->name());
7208 else
7209 ret->append(gogo->package_name());
7210 ret->push_back('.');
7211 }
7212 if (this->in_function_ != NULL)
7213 {
7214 ret->append(Gogo::unpack_hidden_name(this->in_function_->name()));
7215 ret->push_back('$');
7216 }
7217 ret->append(Gogo::unpack_hidden_name(this->named_object_->name()));
7218 }
7219
7220 // Get the mangled name.
7221
7222 void
7223 Named_type::do_mangled_name(Gogo* gogo, std::string* ret) const
7224 {
7225 Named_object* no = this->named_object_;
7226 std::string name;
7227 if (this->location() == BUILTINS_LOCATION)
7228 gcc_assert(this->in_function_ == NULL);
7229 else
7230 {
7231 const std::string& unique_prefix(no->package() == NULL
7232 ? gogo->unique_prefix()
7233 : no->package()->unique_prefix());
7234 const std::string& package_name(no->package() == NULL
7235 ? gogo->package_name()
7236 : no->package()->name());
7237 name = unique_prefix;
7238 name.append(1, '.');
7239 name.append(package_name);
7240 name.append(1, '.');
7241 if (this->in_function_ != NULL)
7242 {
7243 name.append(Gogo::unpack_hidden_name(this->in_function_->name()));
7244 name.append(1, '$');
7245 }
7246 }
7247 name.append(Gogo::unpack_hidden_name(no->name()));
7248 char buf[20];
7249 snprintf(buf, sizeof buf, "N%u_", static_cast<unsigned int>(name.length()));
7250 ret->append(buf);
7251 ret->append(name);
7252 }
7253
7254 // Export the type. This is called to export a global type.
7255
7256 void
7257 Named_type::export_named_type(Export* exp, const std::string&) const
7258 {
7259 // We don't need to write the name of the type here, because it will
7260 // be written by Export::write_type anyhow.
7261 exp->write_c_string("type ");
7262 exp->write_type(this);
7263 exp->write_c_string(";\n");
7264 }
7265
7266 // Import a named type.
7267
7268 void
7269 Named_type::import_named_type(Import* imp, Named_type** ptype)
7270 {
7271 imp->require_c_string("type ");
7272 Type *type = imp->read_type();
7273 *ptype = type->named_type();
7274 gcc_assert(*ptype != NULL);
7275 imp->require_c_string(";\n");
7276 }
7277
7278 // Export the type when it is referenced by another type. In this
7279 // case Export::export_type will already have issued the name.
7280
7281 void
7282 Named_type::do_export(Export* exp) const
7283 {
7284 exp->write_type(this->type_);
7285
7286 // To save space, we only export the methods directly attached to
7287 // this type.
7288 Bindings* methods = this->local_methods_;
7289 if (methods == NULL)
7290 return;
7291
7292 exp->write_c_string("\n");
7293 for (Bindings::const_definitions_iterator p = methods->begin_definitions();
7294 p != methods->end_definitions();
7295 ++p)
7296 {
7297 exp->write_c_string(" ");
7298 (*p)->export_named_object(exp);
7299 }
7300
7301 for (Bindings::const_declarations_iterator p = methods->begin_declarations();
7302 p != methods->end_declarations();
7303 ++p)
7304 {
7305 if (p->second->is_function_declaration())
7306 {
7307 exp->write_c_string(" ");
7308 p->second->export_named_object(exp);
7309 }
7310 }
7311 }
7312
7313 // Make a named type.
7314
7315 Named_type*
7316 Type::make_named_type(Named_object* named_object, Type* type,
7317 source_location location)
7318 {
7319 return new Named_type(named_object, type, location);
7320 }
7321
7322 // Finalize the methods for TYPE. It will be a named type or a struct
7323 // type. This sets *ALL_METHODS to the list of methods, and builds
7324 // all required stubs.
7325
7326 void
7327 Type::finalize_methods(Gogo* gogo, const Type* type, source_location location,
7328 Methods** all_methods)
7329 {
7330 *all_methods = NULL;
7331 Types_seen types_seen;
7332 Type::add_methods_for_type(type, NULL, 0, false, false, &types_seen,
7333 all_methods);
7334 Type::build_stub_methods(gogo, type, *all_methods, location);
7335 }
7336
7337 // Add the methods for TYPE to *METHODS. FIELD_INDEXES is used to
7338 // build up the struct field indexes as we go. DEPTH is the depth of
7339 // the field within TYPE. IS_EMBEDDED_POINTER is true if we are
7340 // adding these methods for an anonymous field with pointer type.
7341 // NEEDS_STUB_METHOD is true if we need to use a stub method which
7342 // calls the real method. TYPES_SEEN is used to avoid infinite
7343 // recursion.
7344
7345 void
7346 Type::add_methods_for_type(const Type* type,
7347 const Method::Field_indexes* field_indexes,
7348 unsigned int depth,
7349 bool is_embedded_pointer,
7350 bool needs_stub_method,
7351 Types_seen* types_seen,
7352 Methods** methods)
7353 {
7354 // Pointer types may not have methods.
7355 if (type->points_to() != NULL)
7356 return;
7357
7358 const Named_type* nt = type->named_type();
7359 if (nt != NULL)
7360 {
7361 std::pair<Types_seen::iterator, bool> ins = types_seen->insert(nt);
7362 if (!ins.second)
7363 return;
7364 }
7365
7366 if (nt != NULL)
7367 Type::add_local_methods_for_type(nt, field_indexes, depth,
7368 is_embedded_pointer, needs_stub_method,
7369 methods);
7370
7371 Type::add_embedded_methods_for_type(type, field_indexes, depth,
7372 is_embedded_pointer, needs_stub_method,
7373 types_seen, methods);
7374
7375 // If we are called with depth > 0, then we are looking at an
7376 // anonymous field of a struct. If such a field has interface type,
7377 // then we need to add the interface methods. We don't want to add
7378 // them when depth == 0, because we will already handle them
7379 // following the usual rules for an interface type.
7380 if (depth > 0)
7381 Type::add_interface_methods_for_type(type, field_indexes, depth, methods);
7382 }
7383
7384 // Add the local methods for the named type NT to *METHODS. The
7385 // parameters are as for add_methods_to_type.
7386
7387 void
7388 Type::add_local_methods_for_type(const Named_type* nt,
7389 const Method::Field_indexes* field_indexes,
7390 unsigned int depth,
7391 bool is_embedded_pointer,
7392 bool needs_stub_method,
7393 Methods** methods)
7394 {
7395 const Bindings* local_methods = nt->local_methods();
7396 if (local_methods == NULL)
7397 return;
7398
7399 if (*methods == NULL)
7400 *methods = new Methods();
7401
7402 for (Bindings::const_declarations_iterator p =
7403 local_methods->begin_declarations();
7404 p != local_methods->end_declarations();
7405 ++p)
7406 {
7407 Named_object* no = p->second;
7408 bool is_value_method = (is_embedded_pointer
7409 || !Type::method_expects_pointer(no));
7410 Method* m = new Named_method(no, field_indexes, depth, is_value_method,
7411 (needs_stub_method
7412 || (depth > 0 && is_value_method)));
7413 if (!(*methods)->insert(no->name(), m))
7414 delete m;
7415 }
7416 }
7417
7418 // Add the embedded methods for TYPE to *METHODS. These are the
7419 // methods attached to anonymous fields. The parameters are as for
7420 // add_methods_to_type.
7421
7422 void
7423 Type::add_embedded_methods_for_type(const Type* type,
7424 const Method::Field_indexes* field_indexes,
7425 unsigned int depth,
7426 bool is_embedded_pointer,
7427 bool needs_stub_method,
7428 Types_seen* types_seen,
7429 Methods** methods)
7430 {
7431 // Look for anonymous fields in TYPE. TYPE has fields if it is a
7432 // struct.
7433 const Struct_type* st = type->struct_type();
7434 if (st == NULL)
7435 return;
7436
7437 const Struct_field_list* fields = st->fields();
7438 if (fields == NULL)
7439 return;
7440
7441 unsigned int i = 0;
7442 for (Struct_field_list::const_iterator pf = fields->begin();
7443 pf != fields->end();
7444 ++pf, ++i)
7445 {
7446 if (!pf->is_anonymous())
7447 continue;
7448
7449 Type* ftype = pf->type();
7450 bool is_pointer = false;
7451 if (ftype->points_to() != NULL)
7452 {
7453 ftype = ftype->points_to();
7454 is_pointer = true;
7455 }
7456 Named_type* fnt = ftype->named_type();
7457 if (fnt == NULL)
7458 {
7459 // This is an error, but it will be diagnosed elsewhere.
7460 continue;
7461 }
7462
7463 Method::Field_indexes* sub_field_indexes = new Method::Field_indexes();
7464 sub_field_indexes->next = field_indexes;
7465 sub_field_indexes->field_index = i;
7466
7467 Type::add_methods_for_type(fnt, sub_field_indexes, depth + 1,
7468 (is_embedded_pointer || is_pointer),
7469 (needs_stub_method
7470 || is_pointer
7471 || i > 0),
7472 types_seen,
7473 methods);
7474 }
7475 }
7476
7477 // If TYPE is an interface type, then add its method to *METHODS.
7478 // This is for interface methods attached to an anonymous field. The
7479 // parameters are as for add_methods_for_type.
7480
7481 void
7482 Type::add_interface_methods_for_type(const Type* type,
7483 const Method::Field_indexes* field_indexes,
7484 unsigned int depth,
7485 Methods** methods)
7486 {
7487 const Interface_type* it = type->interface_type();
7488 if (it == NULL)
7489 return;
7490
7491 const Typed_identifier_list* imethods = it->methods();
7492 if (imethods == NULL)
7493 return;
7494
7495 if (*methods == NULL)
7496 *methods = new Methods();
7497
7498 for (Typed_identifier_list::const_iterator pm = imethods->begin();
7499 pm != imethods->end();
7500 ++pm)
7501 {
7502 Function_type* fntype = pm->type()->function_type();
7503 if (fntype == NULL)
7504 {
7505 // This is an error, but it should be reported elsewhere
7506 // when we look at the methods for IT.
7507 continue;
7508 }
7509 gcc_assert(!fntype->is_method());
7510 fntype = fntype->copy_with_receiver(const_cast<Type*>(type));
7511 Method* m = new Interface_method(pm->name(), pm->location(), fntype,
7512 field_indexes, depth);
7513 if (!(*methods)->insert(pm->name(), m))
7514 delete m;
7515 }
7516 }
7517
7518 // Build stub methods for TYPE as needed. METHODS is the set of
7519 // methods for the type. A stub method may be needed when a type
7520 // inherits a method from an anonymous field. When we need the
7521 // address of the method, as in a type descriptor, we need to build a
7522 // little stub which does the required field dereferences and jumps to
7523 // the real method. LOCATION is the location of the type definition.
7524
7525 void
7526 Type::build_stub_methods(Gogo* gogo, const Type* type, const Methods* methods,
7527 source_location location)
7528 {
7529 if (methods == NULL)
7530 return;
7531 for (Methods::const_iterator p = methods->begin();
7532 p != methods->end();
7533 ++p)
7534 {
7535 Method* m = p->second;
7536 if (m->is_ambiguous() || !m->needs_stub_method())
7537 continue;
7538
7539 const std::string& name(p->first);
7540
7541 // Build a stub method.
7542
7543 const Function_type* fntype = m->type();
7544
7545 static unsigned int counter;
7546 char buf[100];
7547 snprintf(buf, sizeof buf, "$this%u", counter);
7548 ++counter;
7549
7550 Type* receiver_type = const_cast<Type*>(type);
7551 if (!m->is_value_method())
7552 receiver_type = Type::make_pointer_type(receiver_type);
7553 source_location receiver_location = m->receiver_location();
7554 Typed_identifier* receiver = new Typed_identifier(buf, receiver_type,
7555 receiver_location);
7556
7557 const Typed_identifier_list* fnparams = fntype->parameters();
7558 Typed_identifier_list* stub_params;
7559 if (fnparams == NULL || fnparams->empty())
7560 stub_params = NULL;
7561 else
7562 {
7563 // We give each stub parameter a unique name.
7564 stub_params = new Typed_identifier_list();
7565 for (Typed_identifier_list::const_iterator pp = fnparams->begin();
7566 pp != fnparams->end();
7567 ++pp)
7568 {
7569 char pbuf[100];
7570 snprintf(pbuf, sizeof pbuf, "$p%u", counter);
7571 stub_params->push_back(Typed_identifier(pbuf, pp->type(),
7572 pp->location()));
7573 ++counter;
7574 }
7575 }
7576
7577 const Typed_identifier_list* fnresults = fntype->results();
7578 Typed_identifier_list* stub_results;
7579 if (fnresults == NULL || fnresults->empty())
7580 stub_results = NULL;
7581 else
7582 {
7583 // We create the result parameters without any names, since
7584 // we won't refer to them.
7585 stub_results = new Typed_identifier_list();
7586 for (Typed_identifier_list::const_iterator pr = fnresults->begin();
7587 pr != fnresults->end();
7588 ++pr)
7589 stub_results->push_back(Typed_identifier("", pr->type(),
7590 pr->location()));
7591 }
7592
7593 Function_type* stub_type = Type::make_function_type(receiver,
7594 stub_params,
7595 stub_results,
7596 fntype->location());
7597 if (fntype->is_varargs())
7598 stub_type->set_is_varargs();
7599
7600 // We only create the function in the package which creates the
7601 // type.
7602 const Package* package;
7603 if (type->named_type() == NULL)
7604 package = NULL;
7605 else
7606 package = type->named_type()->named_object()->package();
7607 Named_object* stub;
7608 if (package != NULL)
7609 stub = Named_object::make_function_declaration(name, package,
7610 stub_type, location);
7611 else
7612 {
7613 stub = gogo->start_function(name, stub_type, false,
7614 fntype->location());
7615 Type::build_one_stub_method(gogo, m, buf, stub_params,
7616 fntype->is_varargs(), location);
7617 gogo->finish_function(fntype->location());
7618 }
7619
7620 m->set_stub_object(stub);
7621 }
7622 }
7623
7624 // Build a stub method which adjusts the receiver as required to call
7625 // METHOD. RECEIVER_NAME is the name we used for the receiver.
7626 // PARAMS is the list of function parameters.
7627
7628 void
7629 Type::build_one_stub_method(Gogo* gogo, Method* method,
7630 const char* receiver_name,
7631 const Typed_identifier_list* params,
7632 bool is_varargs,
7633 source_location location)
7634 {
7635 Named_object* receiver_object = gogo->lookup(receiver_name, NULL);
7636 gcc_assert(receiver_object != NULL);
7637
7638 Expression* expr = Expression::make_var_reference(receiver_object, location);
7639 expr = Type::apply_field_indexes(expr, method->field_indexes(), location);
7640 if (expr->type()->points_to() == NULL)
7641 expr = Expression::make_unary(OPERATOR_AND, expr, location);
7642
7643 Expression_list* arguments;
7644 if (params == NULL || params->empty())
7645 arguments = NULL;
7646 else
7647 {
7648 arguments = new Expression_list();
7649 for (Typed_identifier_list::const_iterator p = params->begin();
7650 p != params->end();
7651 ++p)
7652 {
7653 Named_object* param = gogo->lookup(p->name(), NULL);
7654 gcc_assert(param != NULL);
7655 Expression* param_ref = Expression::make_var_reference(param,
7656 location);
7657 arguments->push_back(param_ref);
7658 }
7659 }
7660
7661 Expression* func = method->bind_method(expr, location);
7662 gcc_assert(func != NULL);
7663 Call_expression* call = Expression::make_call(func, arguments, is_varargs,
7664 location);
7665 size_t count = call->result_count();
7666 if (count == 0)
7667 gogo->add_statement(Statement::make_statement(call));
7668 else
7669 {
7670 Expression_list* retvals = new Expression_list();
7671 if (count <= 1)
7672 retvals->push_back(call);
7673 else
7674 {
7675 for (size_t i = 0; i < count; ++i)
7676 retvals->push_back(Expression::make_call_result(call, i));
7677 }
7678 const Function* function = gogo->current_function()->func_value();
7679 const Typed_identifier_list* results = function->type()->results();
7680 Statement* retstat = Statement::make_return_statement(results, retvals,
7681 location);
7682 gogo->add_statement(retstat);
7683 }
7684 }
7685
7686 // Apply FIELD_INDEXES to EXPR. The field indexes have to be applied
7687 // in reverse order.
7688
7689 Expression*
7690 Type::apply_field_indexes(Expression* expr,
7691 const Method::Field_indexes* field_indexes,
7692 source_location location)
7693 {
7694 if (field_indexes == NULL)
7695 return expr;
7696 expr = Type::apply_field_indexes(expr, field_indexes->next, location);
7697 Struct_type* stype = expr->type()->deref()->struct_type();
7698 gcc_assert(stype != NULL
7699 && field_indexes->field_index < stype->field_count());
7700 if (expr->type()->struct_type() == NULL)
7701 {
7702 gcc_assert(expr->type()->points_to() != NULL);
7703 expr = Expression::make_unary(OPERATOR_MULT, expr, location);
7704 gcc_assert(expr->type()->struct_type() == stype);
7705 }
7706 return Expression::make_field_reference(expr, field_indexes->field_index,
7707 location);
7708 }
7709
7710 // Return whether NO is a method for which the receiver is a pointer.
7711
7712 bool
7713 Type::method_expects_pointer(const Named_object* no)
7714 {
7715 const Function_type *fntype;
7716 if (no->is_function())
7717 fntype = no->func_value()->type();
7718 else if (no->is_function_declaration())
7719 fntype = no->func_declaration_value()->type();
7720 else
7721 gcc_unreachable();
7722 return fntype->receiver()->type()->points_to() != NULL;
7723 }
7724
7725 // Given a set of methods for a type, METHODS, return the method NAME,
7726 // or NULL if there isn't one or if it is ambiguous. If IS_AMBIGUOUS
7727 // is not NULL, then set *IS_AMBIGUOUS to true if the method exists
7728 // but is ambiguous (and return NULL).
7729
7730 Method*
7731 Type::method_function(const Methods* methods, const std::string& name,
7732 bool* is_ambiguous)
7733 {
7734 if (is_ambiguous != NULL)
7735 *is_ambiguous = false;
7736 if (methods == NULL)
7737 return NULL;
7738 Methods::const_iterator p = methods->find(name);
7739 if (p == methods->end())
7740 return NULL;
7741 Method* m = p->second;
7742 if (m->is_ambiguous())
7743 {
7744 if (is_ambiguous != NULL)
7745 *is_ambiguous = true;
7746 return NULL;
7747 }
7748 return m;
7749 }
7750
7751 // Look for field or method NAME for TYPE. Return an Expression for
7752 // the field or method bound to EXPR. If there is no such field or
7753 // method, give an appropriate error and return an error expression.
7754
7755 Expression*
7756 Type::bind_field_or_method(Gogo* gogo, const Type* type, Expression* expr,
7757 const std::string& name,
7758 source_location location)
7759 {
7760 if (type->deref()->is_error_type())
7761 return Expression::make_error(location);
7762
7763 const Named_type* nt = type->named_type();
7764 if (nt == NULL)
7765 nt = type->deref()->named_type();
7766 const Struct_type* st = type->deref()->struct_type();
7767 const Interface_type* it = type->deref()->interface_type();
7768
7769 // If this is a pointer to a pointer, then it is possible that the
7770 // pointed-to type has methods.
7771 if (nt == NULL
7772 && st == NULL
7773 && it == NULL
7774 && type->points_to() != NULL
7775 && type->points_to()->points_to() != NULL)
7776 {
7777 expr = Expression::make_unary(OPERATOR_MULT, expr, location);
7778 type = type->points_to();
7779 nt = type->points_to()->named_type();
7780 st = type->points_to()->struct_type();
7781 it = type->points_to()->interface_type();
7782 }
7783
7784 bool receiver_can_be_pointer = (expr->type()->points_to() != NULL
7785 || expr->is_addressable());
7786 std::vector<const Named_type*> seen;
7787 bool is_method = false;
7788 bool found_pointer_method = false;
7789 std::string ambig1;
7790 std::string ambig2;
7791 if (Type::find_field_or_method(type, name, receiver_can_be_pointer,
7792 &seen, NULL, &is_method,
7793 &found_pointer_method, &ambig1, &ambig2))
7794 {
7795 Expression* ret;
7796 if (!is_method)
7797 {
7798 gcc_assert(st != NULL);
7799 if (type->struct_type() == NULL)
7800 {
7801 gcc_assert(type->points_to() != NULL);
7802 expr = Expression::make_unary(OPERATOR_MULT, expr,
7803 location);
7804 gcc_assert(expr->type()->struct_type() == st);
7805 }
7806 ret = st->field_reference(expr, name, location);
7807 }
7808 else if (it != NULL && it->find_method(name) != NULL)
7809 ret = Expression::make_interface_field_reference(expr, name,
7810 location);
7811 else
7812 {
7813 Method* m;
7814 if (nt != NULL)
7815 m = nt->method_function(name, NULL);
7816 else if (st != NULL)
7817 m = st->method_function(name, NULL);
7818 else
7819 gcc_unreachable();
7820 gcc_assert(m != NULL);
7821 if (!m->is_value_method() && expr->type()->points_to() == NULL)
7822 expr = Expression::make_unary(OPERATOR_AND, expr, location);
7823 ret = m->bind_method(expr, location);
7824 }
7825 gcc_assert(ret != NULL);
7826 return ret;
7827 }
7828 else
7829 {
7830 if (!ambig1.empty())
7831 error_at(location, "%qs is ambiguous via %qs and %qs",
7832 Gogo::message_name(name).c_str(),
7833 Gogo::message_name(ambig1).c_str(),
7834 Gogo::message_name(ambig2).c_str());
7835 else if (found_pointer_method)
7836 error_at(location, "method requires a pointer");
7837 else if (nt == NULL && st == NULL && it == NULL)
7838 error_at(location,
7839 ("reference to field %qs in object which "
7840 "has no fields or methods"),
7841 Gogo::message_name(name).c_str());
7842 else
7843 {
7844 bool is_unexported;
7845 if (!Gogo::is_hidden_name(name))
7846 is_unexported = false;
7847 else
7848 {
7849 std::string unpacked = Gogo::unpack_hidden_name(name);
7850 seen.clear();
7851 is_unexported = Type::is_unexported_field_or_method(gogo, type,
7852 unpacked,
7853 &seen);
7854 }
7855 if (is_unexported)
7856 error_at(location, "reference to unexported field or method %qs",
7857 Gogo::message_name(name).c_str());
7858 else
7859 error_at(location, "reference to undefined field or method %qs",
7860 Gogo::message_name(name).c_str());
7861 }
7862 return Expression::make_error(location);
7863 }
7864 }
7865
7866 // Look in TYPE for a field or method named NAME, return true if one
7867 // is found. This looks through embedded anonymous fields and handles
7868 // ambiguity. If a method is found, sets *IS_METHOD to true;
7869 // otherwise, if a field is found, set it to false. If
7870 // RECEIVER_CAN_BE_POINTER is false, then the receiver is a value
7871 // whose address can not be taken. SEEN is used to avoid infinite
7872 // recursion on invalid types.
7873
7874 // When returning false, this sets *FOUND_POINTER_METHOD if we found a
7875 // method we couldn't use because it requires a pointer. LEVEL is
7876 // used for recursive calls, and can be NULL for a non-recursive call.
7877 // When this function returns false because it finds that the name is
7878 // ambiguous, it will store a path to the ambiguous names in *AMBIG1
7879 // and *AMBIG2. If the name is not found at all, *AMBIG1 and *AMBIG2
7880 // will be unchanged.
7881
7882 // This function just returns whether or not there is a field or
7883 // method, and whether it is a field or method. It doesn't build an
7884 // expression to refer to it. If it is a method, we then look in the
7885 // list of all methods for the type. If it is a field, the search has
7886 // to be done again, looking only for fields, and building up the
7887 // expression as we go.
7888
7889 bool
7890 Type::find_field_or_method(const Type* type,
7891 const std::string& name,
7892 bool receiver_can_be_pointer,
7893 std::vector<const Named_type*>* seen,
7894 int* level,
7895 bool* is_method,
7896 bool* found_pointer_method,
7897 std::string* ambig1,
7898 std::string* ambig2)
7899 {
7900 // Named types can have locally defined methods.
7901 const Named_type* nt = type->named_type();
7902 if (nt == NULL && type->points_to() != NULL)
7903 nt = type->points_to()->named_type();
7904 if (nt != NULL)
7905 {
7906 Named_object* no = nt->find_local_method(name);
7907 if (no != NULL)
7908 {
7909 if (receiver_can_be_pointer || !Type::method_expects_pointer(no))
7910 {
7911 *is_method = true;
7912 return true;
7913 }
7914
7915 // Record that we have found a pointer method in order to
7916 // give a better error message if we don't find anything
7917 // else.
7918 *found_pointer_method = true;
7919 }
7920
7921 for (std::vector<const Named_type*>::const_iterator p = seen->begin();
7922 p != seen->end();
7923 ++p)
7924 {
7925 if (*p == nt)
7926 {
7927 // We've already seen this type when searching for methods.
7928 return false;
7929 }
7930 }
7931 }
7932
7933 // Interface types can have methods.
7934 const Interface_type* it = type->deref()->interface_type();
7935 if (it != NULL && it->find_method(name) != NULL)
7936 {
7937 *is_method = true;
7938 return true;
7939 }
7940
7941 // Struct types can have fields. They can also inherit fields and
7942 // methods from anonymous fields.
7943 const Struct_type* st = type->deref()->struct_type();
7944 if (st == NULL)
7945 return false;
7946 const Struct_field_list* fields = st->fields();
7947 if (fields == NULL)
7948 return false;
7949
7950 if (nt != NULL)
7951 seen->push_back(nt);
7952
7953 int found_level = 0;
7954 bool found_is_method = false;
7955 std::string found_ambig1;
7956 std::string found_ambig2;
7957 const Struct_field* found_parent = NULL;
7958 for (Struct_field_list::const_iterator pf = fields->begin();
7959 pf != fields->end();
7960 ++pf)
7961 {
7962 if (pf->field_name() == name)
7963 {
7964 *is_method = false;
7965 if (nt != NULL)
7966 seen->pop_back();
7967 return true;
7968 }
7969
7970 if (!pf->is_anonymous())
7971 continue;
7972
7973 if (pf->type()->deref()->is_error_type()
7974 || pf->type()->deref()->is_undefined())
7975 continue;
7976
7977 Named_type* fnt = pf->type()->named_type();
7978 if (fnt == NULL)
7979 fnt = pf->type()->deref()->named_type();
7980 gcc_assert(fnt != NULL);
7981
7982 int sublevel = level == NULL ? 1 : *level + 1;
7983 bool sub_is_method;
7984 std::string subambig1;
7985 std::string subambig2;
7986 bool subfound = Type::find_field_or_method(fnt,
7987 name,
7988 receiver_can_be_pointer,
7989 seen,
7990 &sublevel,
7991 &sub_is_method,
7992 found_pointer_method,
7993 &subambig1,
7994 &subambig2);
7995 if (!subfound)
7996 {
7997 if (!subambig1.empty())
7998 {
7999 // The name was found via this field, but is ambiguous.
8000 // if the ambiguity is lower or at the same level as
8001 // anything else we have already found, then we want to
8002 // pass the ambiguity back to the caller.
8003 if (found_level == 0 || sublevel <= found_level)
8004 {
8005 found_ambig1 = pf->field_name() + '.' + subambig1;
8006 found_ambig2 = pf->field_name() + '.' + subambig2;
8007 found_level = sublevel;
8008 }
8009 }
8010 }
8011 else
8012 {
8013 // The name was found via this field. Use the level to see
8014 // if we want to use this one, or whether it introduces an
8015 // ambiguity.
8016 if (found_level == 0 || sublevel < found_level)
8017 {
8018 found_level = sublevel;
8019 found_is_method = sub_is_method;
8020 found_ambig1.clear();
8021 found_ambig2.clear();
8022 found_parent = &*pf;
8023 }
8024 else if (sublevel > found_level)
8025 ;
8026 else if (found_ambig1.empty())
8027 {
8028 // We found an ambiguity.
8029 gcc_assert(found_parent != NULL);
8030 found_ambig1 = found_parent->field_name();
8031 found_ambig2 = pf->field_name();
8032 }
8033 else
8034 {
8035 // We found an ambiguity, but we already know of one.
8036 // Just report the earlier one.
8037 }
8038 }
8039 }
8040
8041 // Here if we didn't find anything FOUND_LEVEL is 0. If we found
8042 // something ambiguous, FOUND_LEVEL is not 0 and FOUND_AMBIG1 and
8043 // FOUND_AMBIG2 are not empty. If we found the field, FOUND_LEVEL
8044 // is not 0 and FOUND_AMBIG1 and FOUND_AMBIG2 are empty.
8045
8046 if (nt != NULL)
8047 seen->pop_back();
8048
8049 if (found_level == 0)
8050 return false;
8051 else if (!found_ambig1.empty())
8052 {
8053 gcc_assert(!found_ambig1.empty());
8054 ambig1->assign(found_ambig1);
8055 ambig2->assign(found_ambig2);
8056 if (level != NULL)
8057 *level = found_level;
8058 return false;
8059 }
8060 else
8061 {
8062 if (level != NULL)
8063 *level = found_level;
8064 *is_method = found_is_method;
8065 return true;
8066 }
8067 }
8068
8069 // Return whether NAME is an unexported field or method for TYPE.
8070
8071 bool
8072 Type::is_unexported_field_or_method(Gogo* gogo, const Type* type,
8073 const std::string& name,
8074 std::vector<const Named_type*>* seen)
8075 {
8076 const Named_type* nt = type->named_type();
8077 if (nt == NULL)
8078 nt = type->deref()->named_type();
8079 if (nt != NULL)
8080 {
8081 if (nt->is_unexported_local_method(gogo, name))
8082 return true;
8083
8084 for (std::vector<const Named_type*>::const_iterator p = seen->begin();
8085 p != seen->end();
8086 ++p)
8087 {
8088 if (*p == nt)
8089 {
8090 // We've already seen this type.
8091 return false;
8092 }
8093 }
8094 }
8095
8096 type = type->deref();
8097
8098 const Interface_type* it = type->interface_type();
8099 if (it != NULL && it->is_unexported_method(gogo, name))
8100 return true;
8101
8102 const Struct_type* st = type->struct_type();
8103 if (st != NULL && st->is_unexported_local_field(gogo, name))
8104 return true;
8105
8106 if (st == NULL)
8107 return false;
8108
8109 const Struct_field_list* fields = st->fields();
8110 if (fields == NULL)
8111 return false;
8112
8113 if (nt != NULL)
8114 seen->push_back(nt);
8115
8116 for (Struct_field_list::const_iterator pf = fields->begin();
8117 pf != fields->end();
8118 ++pf)
8119 {
8120 if (pf->is_anonymous()
8121 && !pf->type()->deref()->is_error_type()
8122 && !pf->type()->deref()->is_undefined())
8123 {
8124 Named_type* subtype = pf->type()->named_type();
8125 if (subtype == NULL)
8126 subtype = pf->type()->deref()->named_type();
8127 if (subtype == NULL)
8128 {
8129 // This is an error, but it will be diagnosed elsewhere.
8130 continue;
8131 }
8132 if (Type::is_unexported_field_or_method(gogo, subtype, name, seen))
8133 {
8134 if (nt != NULL)
8135 seen->pop_back();
8136 return true;
8137 }
8138 }
8139 }
8140
8141 if (nt != NULL)
8142 seen->pop_back();
8143
8144 return false;
8145 }
8146
8147 // Class Forward_declaration.
8148
8149 Forward_declaration_type::Forward_declaration_type(Named_object* named_object)
8150 : Type(TYPE_FORWARD),
8151 named_object_(named_object->resolve()), warned_(false)
8152 {
8153 gcc_assert(this->named_object_->is_unknown()
8154 || this->named_object_->is_type_declaration());
8155 }
8156
8157 // Return the named object.
8158
8159 Named_object*
8160 Forward_declaration_type::named_object()
8161 {
8162 return this->named_object_->resolve();
8163 }
8164
8165 const Named_object*
8166 Forward_declaration_type::named_object() const
8167 {
8168 return this->named_object_->resolve();
8169 }
8170
8171 // Return the name of the forward declared type.
8172
8173 const std::string&
8174 Forward_declaration_type::name() const
8175 {
8176 return this->named_object()->name();
8177 }
8178
8179 // Warn about a use of a type which has been declared but not defined.
8180
8181 void
8182 Forward_declaration_type::warn() const
8183 {
8184 Named_object* no = this->named_object_->resolve();
8185 if (no->is_unknown())
8186 {
8187 // The name was not defined anywhere.
8188 if (!this->warned_)
8189 {
8190 error_at(this->named_object_->location(),
8191 "use of undefined type %qs",
8192 no->message_name().c_str());
8193 this->warned_ = true;
8194 }
8195 }
8196 else if (no->is_type_declaration())
8197 {
8198 // The name was seen as a type, but the type was never defined.
8199 if (no->type_declaration_value()->using_type())
8200 {
8201 error_at(this->named_object_->location(),
8202 "use of undefined type %qs",
8203 no->message_name().c_str());
8204 this->warned_ = true;
8205 }
8206 }
8207 else
8208 {
8209 // The name was defined, but not as a type.
8210 if (!this->warned_)
8211 {
8212 error_at(this->named_object_->location(), "expected type");
8213 this->warned_ = true;
8214 }
8215 }
8216 }
8217
8218 // Get the base type of a declaration. This gives an error if the
8219 // type has not yet been defined.
8220
8221 Type*
8222 Forward_declaration_type::real_type()
8223 {
8224 if (this->is_defined())
8225 return this->named_object()->type_value();
8226 else
8227 {
8228 this->warn();
8229 return Type::make_error_type();
8230 }
8231 }
8232
8233 const Type*
8234 Forward_declaration_type::real_type() const
8235 {
8236 if (this->is_defined())
8237 return this->named_object()->type_value();
8238 else
8239 {
8240 this->warn();
8241 return Type::make_error_type();
8242 }
8243 }
8244
8245 // Return whether the base type is defined.
8246
8247 bool
8248 Forward_declaration_type::is_defined() const
8249 {
8250 return this->named_object()->is_type();
8251 }
8252
8253 // Add a method. This is used when methods are defined before the
8254 // type.
8255
8256 Named_object*
8257 Forward_declaration_type::add_method(const std::string& name,
8258 Function* function)
8259 {
8260 Named_object* no = this->named_object();
8261 if (no->is_unknown())
8262 no->declare_as_type();
8263 return no->type_declaration_value()->add_method(name, function);
8264 }
8265
8266 // Add a method declaration. This is used when methods are declared
8267 // before the type.
8268
8269 Named_object*
8270 Forward_declaration_type::add_method_declaration(const std::string& name,
8271 Function_type* type,
8272 source_location location)
8273 {
8274 Named_object* no = this->named_object();
8275 if (no->is_unknown())
8276 no->declare_as_type();
8277 Type_declaration* td = no->type_declaration_value();
8278 return td->add_method_declaration(name, type, location);
8279 }
8280
8281 // Traversal.
8282
8283 int
8284 Forward_declaration_type::do_traverse(Traverse* traverse)
8285 {
8286 if (this->is_defined()
8287 && Type::traverse(this->real_type(), traverse) == TRAVERSE_EXIT)
8288 return TRAVERSE_EXIT;
8289 return TRAVERSE_CONTINUE;
8290 }
8291
8292 // Get a tree for the type.
8293
8294 tree
8295 Forward_declaration_type::do_get_tree(Gogo* gogo)
8296 {
8297 if (this->is_defined())
8298 return Type::get_named_type_tree(gogo, this->real_type());
8299
8300 if (this->warned_)
8301 return error_mark_node;
8302
8303 // We represent an undefined type as a struct with no fields. That
8304 // should work fine for the middle-end, since the same case can
8305 // arise in C.
8306 Named_object* no = this->named_object();
8307 tree type_tree = make_node(RECORD_TYPE);
8308 tree id = no->get_id(gogo);
8309 tree decl = build_decl(no->location(), TYPE_DECL, id, type_tree);
8310 TYPE_NAME(type_tree) = decl;
8311 layout_type(type_tree);
8312 return type_tree;
8313 }
8314
8315 // Build a type descriptor for a forwarded type.
8316
8317 Expression*
8318 Forward_declaration_type::do_type_descriptor(Gogo* gogo, Named_type* name)
8319 {
8320 if (!this->is_defined())
8321 return Expression::make_nil(BUILTINS_LOCATION);
8322 else
8323 {
8324 Type* t = this->real_type();
8325 if (name != NULL)
8326 return this->named_type_descriptor(gogo, t, name);
8327 else
8328 return Expression::make_type_descriptor(t, BUILTINS_LOCATION);
8329 }
8330 }
8331
8332 // The reflection string.
8333
8334 void
8335 Forward_declaration_type::do_reflection(Gogo* gogo, std::string* ret) const
8336 {
8337 this->append_reflection(this->real_type(), gogo, ret);
8338 }
8339
8340 // The mangled name.
8341
8342 void
8343 Forward_declaration_type::do_mangled_name(Gogo* gogo, std::string* ret) const
8344 {
8345 if (this->is_defined())
8346 this->append_mangled_name(this->real_type(), gogo, ret);
8347 else
8348 {
8349 const Named_object* no = this->named_object();
8350 std::string name;
8351 if (no->package() == NULL)
8352 name = gogo->package_name();
8353 else
8354 name = no->package()->name();
8355 name += '.';
8356 name += Gogo::unpack_hidden_name(no->name());
8357 char buf[20];
8358 snprintf(buf, sizeof buf, "N%u_",
8359 static_cast<unsigned int>(name.length()));
8360 ret->append(buf);
8361 ret->append(name);
8362 }
8363 }
8364
8365 // Export a forward declaration. This can happen when a defined type
8366 // refers to a type which is only declared (and is presumably defined
8367 // in some other file in the same package).
8368
8369 void
8370 Forward_declaration_type::do_export(Export*) const
8371 {
8372 // If there is a base type, that should be exported instead of this.
8373 gcc_assert(!this->is_defined());
8374
8375 // We don't output anything.
8376 }
8377
8378 // Make a forward declaration.
8379
8380 Type*
8381 Type::make_forward_declaration(Named_object* named_object)
8382 {
8383 return new Forward_declaration_type(named_object);
8384 }
8385
8386 // Class Typed_identifier_list.
8387
8388 // Sort the entries by name.
8389
8390 struct Typed_identifier_list_sort
8391 {
8392 public:
8393 bool
8394 operator()(const Typed_identifier& t1, const Typed_identifier& t2) const
8395 { return t1.name() < t2.name(); }
8396 };
8397
8398 void
8399 Typed_identifier_list::sort_by_name()
8400 {
8401 std::sort(this->entries_.begin(), this->entries_.end(),
8402 Typed_identifier_list_sort());
8403 }
8404
8405 // Traverse types.
8406
8407 int
8408 Typed_identifier_list::traverse(Traverse* traverse)
8409 {
8410 for (Typed_identifier_list::const_iterator p = this->begin();
8411 p != this->end();
8412 ++p)
8413 {
8414 if (Type::traverse(p->type(), traverse) == TRAVERSE_EXIT)
8415 return TRAVERSE_EXIT;
8416 }
8417 return TRAVERSE_CONTINUE;
8418 }
8419
8420 // Copy the list.
8421
8422 Typed_identifier_list*
8423 Typed_identifier_list::copy() const
8424 {
8425 Typed_identifier_list* ret = new Typed_identifier_list();
8426 for (Typed_identifier_list::const_iterator p = this->begin();
8427 p != this->end();
8428 ++p)
8429 ret->push_back(Typed_identifier(p->name(), p->type(), p->location()));
8430 return ret;
8431 }