Fix self-referential struct via function and array.
[gcc.git] / gcc / go / gofrontend / types.cc
1 // types.cc -- Go frontend types.
2
3 // Copyright 2009 The Go Authors. All rights reserved.
4 // Use of this source code is governed by a BSD-style
5 // license that can be found in the LICENSE file.
6
7 #include "go-system.h"
8
9 #include <gmp.h>
10
11 #ifndef ENABLE_BUILD_WITH_CXX
12 extern "C"
13 {
14 #endif
15
16 #include "toplev.h"
17 #include "intl.h"
18 #include "tree.h"
19 #include "gimple.h"
20 #include "real.h"
21 #include "convert.h"
22
23 #ifndef ENABLE_BUILD_WITH_CXX
24 }
25 #endif
26
27 #include "go-c.h"
28 #include "gogo.h"
29 #include "operator.h"
30 #include "expressions.h"
31 #include "statements.h"
32 #include "export.h"
33 #include "import.h"
34 #include "types.h"
35
36 // Class Type.
37
38 Type::Type(Type_classification classification)
39 : classification_(classification), tree_(NULL_TREE),
40 type_descriptor_decl_(NULL_TREE)
41 {
42 }
43
44 Type::~Type()
45 {
46 }
47
48 // Get the base type for a type--skip names and forward declarations.
49
50 Type*
51 Type::base()
52 {
53 switch (this->classification_)
54 {
55 case TYPE_NAMED:
56 return this->named_type()->named_base();
57 case TYPE_FORWARD:
58 return this->forward_declaration_type()->real_type()->base();
59 default:
60 return this;
61 }
62 }
63
64 const Type*
65 Type::base() const
66 {
67 switch (this->classification_)
68 {
69 case TYPE_NAMED:
70 return this->named_type()->named_base();
71 case TYPE_FORWARD:
72 return this->forward_declaration_type()->real_type()->base();
73 default:
74 return this;
75 }
76 }
77
78 // Skip defined forward declarations.
79
80 Type*
81 Type::forwarded()
82 {
83 Type* t = this;
84 Forward_declaration_type* ftype = t->forward_declaration_type();
85 while (ftype != NULL && ftype->is_defined())
86 {
87 t = ftype->real_type();
88 ftype = t->forward_declaration_type();
89 }
90 return t;
91 }
92
93 const Type*
94 Type::forwarded() const
95 {
96 const Type* t = this;
97 const Forward_declaration_type* ftype = t->forward_declaration_type();
98 while (ftype != NULL && ftype->is_defined())
99 {
100 t = ftype->real_type();
101 ftype = t->forward_declaration_type();
102 }
103 return t;
104 }
105
106 // If this is a named type, return it. Otherwise, return NULL.
107
108 Named_type*
109 Type::named_type()
110 {
111 return this->forwarded()->convert_no_base<Named_type, TYPE_NAMED>();
112 }
113
114 const Named_type*
115 Type::named_type() const
116 {
117 return this->forwarded()->convert_no_base<const Named_type, TYPE_NAMED>();
118 }
119
120 // Return true if this type is not defined.
121
122 bool
123 Type::is_undefined() const
124 {
125 return this->forwarded()->forward_declaration_type() != NULL;
126 }
127
128 // Return true if this is a basic type: a type which is not composed
129 // of other types, and is not void.
130
131 bool
132 Type::is_basic_type() const
133 {
134 switch (this->classification_)
135 {
136 case TYPE_INTEGER:
137 case TYPE_FLOAT:
138 case TYPE_COMPLEX:
139 case TYPE_BOOLEAN:
140 case TYPE_STRING:
141 case TYPE_NIL:
142 return true;
143
144 case TYPE_ERROR:
145 case TYPE_VOID:
146 case TYPE_FUNCTION:
147 case TYPE_POINTER:
148 case TYPE_STRUCT:
149 case TYPE_ARRAY:
150 case TYPE_MAP:
151 case TYPE_CHANNEL:
152 case TYPE_INTERFACE:
153 return false;
154
155 case TYPE_NAMED:
156 case TYPE_FORWARD:
157 return this->base()->is_basic_type();
158
159 default:
160 gcc_unreachable();
161 }
162 }
163
164 // Return true if this is an abstract type.
165
166 bool
167 Type::is_abstract() const
168 {
169 switch (this->classification())
170 {
171 case TYPE_INTEGER:
172 return this->integer_type()->is_abstract();
173 case TYPE_FLOAT:
174 return this->float_type()->is_abstract();
175 case TYPE_COMPLEX:
176 return this->complex_type()->is_abstract();
177 case TYPE_STRING:
178 return this->is_abstract_string_type();
179 case TYPE_BOOLEAN:
180 return this->is_abstract_boolean_type();
181 default:
182 return false;
183 }
184 }
185
186 // Return a non-abstract version of an abstract type.
187
188 Type*
189 Type::make_non_abstract_type()
190 {
191 gcc_assert(this->is_abstract());
192 switch (this->classification())
193 {
194 case TYPE_INTEGER:
195 return Type::lookup_integer_type("int");
196 case TYPE_FLOAT:
197 return Type::lookup_float_type("float64");
198 case TYPE_COMPLEX:
199 return Type::lookup_complex_type("complex128");
200 case TYPE_STRING:
201 return Type::lookup_string_type();
202 case TYPE_BOOLEAN:
203 return Type::lookup_bool_type();
204 default:
205 gcc_unreachable();
206 }
207 }
208
209 // Return true if this is an error type. Don't give an error if we
210 // try to dereference an undefined forwarding type, as this is called
211 // in the parser when the type may legitimately be undefined.
212
213 bool
214 Type::is_error_type() const
215 {
216 const Type* t = this->forwarded();
217 // Note that we return false for an undefined forward type.
218 switch (t->classification_)
219 {
220 case TYPE_ERROR:
221 return true;
222 case TYPE_NAMED:
223 return t->named_type()->is_named_error_type();
224 default:
225 return false;
226 }
227 }
228
229 // If this is a pointer type, return the type to which it points.
230 // Otherwise, return NULL.
231
232 Type*
233 Type::points_to() const
234 {
235 const Pointer_type* ptype = this->convert<const Pointer_type,
236 TYPE_POINTER>();
237 return ptype == NULL ? NULL : ptype->points_to();
238 }
239
240 // Return whether this is an open array type.
241
242 bool
243 Type::is_open_array_type() const
244 {
245 return this->array_type() != NULL && this->array_type()->length() == NULL;
246 }
247
248 // Return whether this is the predeclared constant nil being used as a
249 // type.
250
251 bool
252 Type::is_nil_constant_as_type() const
253 {
254 const Type* t = this->forwarded();
255 if (t->forward_declaration_type() != NULL)
256 {
257 const Named_object* no = t->forward_declaration_type()->named_object();
258 if (no->is_unknown())
259 no = no->unknown_value()->real_named_object();
260 if (no != NULL
261 && no->is_const()
262 && no->const_value()->expr()->is_nil_expression())
263 return true;
264 }
265 return false;
266 }
267
268 // Traverse a type.
269
270 int
271 Type::traverse(Type* type, Traverse* traverse)
272 {
273 gcc_assert((traverse->traverse_mask() & Traverse::traverse_types) != 0
274 || (traverse->traverse_mask()
275 & Traverse::traverse_expressions) != 0);
276 if (traverse->remember_type(type))
277 {
278 // We have already traversed this type.
279 return TRAVERSE_CONTINUE;
280 }
281 if ((traverse->traverse_mask() & Traverse::traverse_types) != 0)
282 {
283 int t = traverse->type(type);
284 if (t == TRAVERSE_EXIT)
285 return TRAVERSE_EXIT;
286 else if (t == TRAVERSE_SKIP_COMPONENTS)
287 return TRAVERSE_CONTINUE;
288 }
289 // An array type has an expression which we need to traverse if
290 // traverse_expressions is set.
291 if (type->do_traverse(traverse) == TRAVERSE_EXIT)
292 return TRAVERSE_EXIT;
293 return TRAVERSE_CONTINUE;
294 }
295
296 // Default implementation for do_traverse for child class.
297
298 int
299 Type::do_traverse(Traverse*)
300 {
301 return TRAVERSE_CONTINUE;
302 }
303
304 // Return whether two types are identical. If ERRORS_ARE_IDENTICAL,
305 // then return true for all erroneous types; this is used to avoid
306 // cascading errors. If REASON is not NULL, optionally set *REASON to
307 // the reason the types are not identical.
308
309 bool
310 Type::are_identical(const Type* t1, const Type* t2, bool errors_are_identical,
311 std::string* reason)
312 {
313 if (t1 == NULL || t2 == NULL)
314 {
315 // Something is wrong.
316 return errors_are_identical ? true : t1 == t2;
317 }
318
319 // Skip defined forward declarations.
320 t1 = t1->forwarded();
321 t2 = t2->forwarded();
322
323 if (t1 == t2)
324 return true;
325
326 // An undefined forward declaration is an error.
327 if (t1->forward_declaration_type() != NULL
328 || t2->forward_declaration_type() != NULL)
329 return errors_are_identical;
330
331 // Avoid cascading errors with error types.
332 if (t1->is_error_type() || t2->is_error_type())
333 {
334 if (errors_are_identical)
335 return true;
336 return t1->is_error_type() && t2->is_error_type();
337 }
338
339 // Get a good reason for the sink type. Note that the sink type on
340 // the left hand side of an assignment is handled in are_assignable.
341 if (t1->is_sink_type() || t2->is_sink_type())
342 {
343 if (reason != NULL)
344 *reason = "invalid use of _";
345 return false;
346 }
347
348 // A named type is only identical to itself.
349 if (t1->named_type() != NULL || t2->named_type() != NULL)
350 return false;
351
352 // Check type shapes.
353 if (t1->classification() != t2->classification())
354 return false;
355
356 switch (t1->classification())
357 {
358 case TYPE_VOID:
359 case TYPE_BOOLEAN:
360 case TYPE_STRING:
361 case TYPE_NIL:
362 // These types are always identical.
363 return true;
364
365 case TYPE_INTEGER:
366 return t1->integer_type()->is_identical(t2->integer_type());
367
368 case TYPE_FLOAT:
369 return t1->float_type()->is_identical(t2->float_type());
370
371 case TYPE_COMPLEX:
372 return t1->complex_type()->is_identical(t2->complex_type());
373
374 case TYPE_FUNCTION:
375 return t1->function_type()->is_identical(t2->function_type(),
376 false,
377 errors_are_identical,
378 reason);
379
380 case TYPE_POINTER:
381 return Type::are_identical(t1->points_to(), t2->points_to(),
382 errors_are_identical, reason);
383
384 case TYPE_STRUCT:
385 return t1->struct_type()->is_identical(t2->struct_type(),
386 errors_are_identical);
387
388 case TYPE_ARRAY:
389 return t1->array_type()->is_identical(t2->array_type(),
390 errors_are_identical);
391
392 case TYPE_MAP:
393 return t1->map_type()->is_identical(t2->map_type(),
394 errors_are_identical);
395
396 case TYPE_CHANNEL:
397 return t1->channel_type()->is_identical(t2->channel_type(),
398 errors_are_identical);
399
400 case TYPE_INTERFACE:
401 return t1->interface_type()->is_identical(t2->interface_type(),
402 errors_are_identical);
403
404 case TYPE_CALL_MULTIPLE_RESULT:
405 if (reason != NULL)
406 *reason = "invalid use of multiple value function call";
407 return false;
408
409 default:
410 gcc_unreachable();
411 }
412 }
413
414 // Return true if it's OK to have a binary operation with types LHS
415 // and RHS. This is not used for shifts or comparisons.
416
417 bool
418 Type::are_compatible_for_binop(const Type* lhs, const Type* rhs)
419 {
420 if (Type::are_identical(lhs, rhs, true, NULL))
421 return true;
422
423 // A constant of abstract bool type may be mixed with any bool type.
424 if ((rhs->is_abstract_boolean_type() && lhs->is_boolean_type())
425 || (lhs->is_abstract_boolean_type() && rhs->is_boolean_type()))
426 return true;
427
428 // A constant of abstract string type may be mixed with any string
429 // type.
430 if ((rhs->is_abstract_string_type() && lhs->is_string_type())
431 || (lhs->is_abstract_string_type() && rhs->is_string_type()))
432 return true;
433
434 lhs = lhs->base();
435 rhs = rhs->base();
436
437 // A constant of abstract integer, float, or complex type may be
438 // mixed with an integer, float, or complex type.
439 if ((rhs->is_abstract()
440 && (rhs->integer_type() != NULL
441 || rhs->float_type() != NULL
442 || rhs->complex_type() != NULL)
443 && (lhs->integer_type() != NULL
444 || lhs->float_type() != NULL
445 || lhs->complex_type() != NULL))
446 || (lhs->is_abstract()
447 && (lhs->integer_type() != NULL
448 || lhs->float_type() != NULL
449 || lhs->complex_type() != NULL)
450 && (rhs->integer_type() != NULL
451 || rhs->float_type() != NULL
452 || rhs->complex_type() != NULL)))
453 return true;
454
455 // The nil type may be compared to a pointer, an interface type, a
456 // slice type, a channel type, a map type, or a function type.
457 if (lhs->is_nil_type()
458 && (rhs->points_to() != NULL
459 || rhs->interface_type() != NULL
460 || rhs->is_open_array_type()
461 || rhs->map_type() != NULL
462 || rhs->channel_type() != NULL
463 || rhs->function_type() != NULL))
464 return true;
465 if (rhs->is_nil_type()
466 && (lhs->points_to() != NULL
467 || lhs->interface_type() != NULL
468 || lhs->is_open_array_type()
469 || lhs->map_type() != NULL
470 || lhs->channel_type() != NULL
471 || lhs->function_type() != NULL))
472 return true;
473
474 return false;
475 }
476
477 // Return true if a value with type RHS may be assigned to a variable
478 // with type LHS. If REASON is not NULL, set *REASON to the reason
479 // the types are not assignable.
480
481 bool
482 Type::are_assignable(const Type* lhs, const Type* rhs, std::string* reason)
483 {
484 // Do some checks first. Make sure the types are defined.
485 if (rhs != NULL
486 && rhs->forwarded()->forward_declaration_type() == NULL
487 && rhs->is_void_type())
488 {
489 if (reason != NULL)
490 *reason = "non-value used as value";
491 return false;
492 }
493
494 if (lhs != NULL && lhs->forwarded()->forward_declaration_type() == NULL)
495 {
496 // Any value may be assigned to the blank identifier.
497 if (lhs->is_sink_type())
498 return true;
499
500 // All fields of a struct must be exported, or the assignment
501 // must be in the same package.
502 if (rhs != NULL && rhs->forwarded()->forward_declaration_type() == NULL)
503 {
504 if (lhs->has_hidden_fields(NULL, reason)
505 || rhs->has_hidden_fields(NULL, reason))
506 return false;
507 }
508 }
509
510 // Identical types are assignable.
511 if (Type::are_identical(lhs, rhs, true, reason))
512 return true;
513
514 // The types are assignable if they have identical underlying types
515 // and either LHS or RHS is not a named type.
516 if (((lhs->named_type() != NULL && rhs->named_type() == NULL)
517 || (rhs->named_type() != NULL && lhs->named_type() == NULL))
518 && Type::are_identical(lhs->base(), rhs->base(), true, reason))
519 return true;
520
521 // The types are assignable if LHS is an interface type and RHS
522 // implements the required methods.
523 const Interface_type* lhs_interface_type = lhs->interface_type();
524 if (lhs_interface_type != NULL)
525 {
526 if (lhs_interface_type->implements_interface(rhs, reason))
527 return true;
528 const Interface_type* rhs_interface_type = rhs->interface_type();
529 if (rhs_interface_type != NULL
530 && lhs_interface_type->is_compatible_for_assign(rhs_interface_type,
531 reason))
532 return true;
533 }
534
535 // The type are assignable if RHS is a bidirectional channel type,
536 // LHS is a channel type, they have identical element types, and
537 // either LHS or RHS is not a named type.
538 if (lhs->channel_type() != NULL
539 && rhs->channel_type() != NULL
540 && rhs->channel_type()->may_send()
541 && rhs->channel_type()->may_receive()
542 && (lhs->named_type() == NULL || rhs->named_type() == NULL)
543 && Type::are_identical(lhs->channel_type()->element_type(),
544 rhs->channel_type()->element_type(),
545 true,
546 reason))
547 return true;
548
549 // The nil type may be assigned to a pointer, function, slice, map,
550 // channel, or interface type.
551 if (rhs->is_nil_type()
552 && (lhs->points_to() != NULL
553 || lhs->function_type() != NULL
554 || lhs->is_open_array_type()
555 || lhs->map_type() != NULL
556 || lhs->channel_type() != NULL
557 || lhs->interface_type() != NULL))
558 return true;
559
560 // An untyped numeric constant may be assigned to a numeric type if
561 // it is representable in that type.
562 if ((rhs->is_abstract()
563 && (rhs->integer_type() != NULL
564 || rhs->float_type() != NULL
565 || rhs->complex_type() != NULL))
566 && (lhs->integer_type() != NULL
567 || lhs->float_type() != NULL
568 || lhs->complex_type() != NULL))
569 return true;
570
571 // Give some better error messages.
572 if (reason != NULL && reason->empty())
573 {
574 if (rhs->interface_type() != NULL)
575 reason->assign(_("need explicit conversion"));
576 else if (rhs->is_call_multiple_result_type())
577 reason->assign(_("multiple value function call in "
578 "single value context"));
579 else if (lhs->named_type() != NULL && rhs->named_type() != NULL)
580 {
581 size_t len = (lhs->named_type()->name().length()
582 + rhs->named_type()->name().length()
583 + 100);
584 char* buf = new char[len];
585 snprintf(buf, len, _("cannot use type %s as type %s"),
586 rhs->named_type()->message_name().c_str(),
587 lhs->named_type()->message_name().c_str());
588 reason->assign(buf);
589 delete[] buf;
590 }
591 }
592
593 return false;
594 }
595
596 // Return true if a value with type RHS may be converted to type LHS.
597 // If REASON is not NULL, set *REASON to the reason the types are not
598 // convertible.
599
600 bool
601 Type::are_convertible(const Type* lhs, const Type* rhs, std::string* reason)
602 {
603 // The types are convertible if they are assignable.
604 if (Type::are_assignable(lhs, rhs, reason))
605 return true;
606
607 // The types are convertible if they have identical underlying
608 // types.
609 if ((lhs->named_type() != NULL || rhs->named_type() != NULL)
610 && Type::are_identical(lhs->base(), rhs->base(), true, reason))
611 return true;
612
613 // The types are convertible if they are both unnamed pointer types
614 // and their pointer base types have identical underlying types.
615 if (lhs->named_type() == NULL
616 && rhs->named_type() == NULL
617 && lhs->points_to() != NULL
618 && rhs->points_to() != NULL
619 && (lhs->points_to()->named_type() != NULL
620 || rhs->points_to()->named_type() != NULL)
621 && Type::are_identical(lhs->points_to()->base(),
622 rhs->points_to()->base(),
623 true,
624 reason))
625 return true;
626
627 // Integer and floating point types are convertible to each other.
628 if ((lhs->integer_type() != NULL || lhs->float_type() != NULL)
629 && (rhs->integer_type() != NULL || rhs->float_type() != NULL))
630 return true;
631
632 // Complex types are convertible to each other.
633 if (lhs->complex_type() != NULL && rhs->complex_type() != NULL)
634 return true;
635
636 // An integer, or []byte, or []int, may be converted to a string.
637 if (lhs->is_string_type())
638 {
639 if (rhs->integer_type() != NULL)
640 return true;
641 if (rhs->is_open_array_type() && rhs->named_type() == NULL)
642 {
643 const Type* e = rhs->array_type()->element_type()->forwarded();
644 if (e->integer_type() != NULL
645 && (e == Type::lookup_integer_type("uint8")
646 || e == Type::lookup_integer_type("int")))
647 return true;
648 }
649 }
650
651 // A string may be converted to []byte or []int.
652 if (rhs->is_string_type()
653 && lhs->is_open_array_type()
654 && lhs->named_type() == NULL)
655 {
656 const Type* e = lhs->array_type()->element_type()->forwarded();
657 if (e->integer_type() != NULL
658 && (e == Type::lookup_integer_type("uint8")
659 || e == Type::lookup_integer_type("int")))
660 return true;
661 }
662
663 // An unsafe.Pointer type may be converted to any pointer type or to
664 // uintptr, and vice-versa.
665 if (lhs->is_unsafe_pointer_type()
666 && (rhs->points_to() != NULL
667 || (rhs->integer_type() != NULL
668 && rhs->forwarded() == Type::lookup_integer_type("uintptr"))))
669 return true;
670 if (rhs->is_unsafe_pointer_type()
671 && (lhs->points_to() != NULL
672 || (lhs->integer_type() != NULL
673 && lhs->forwarded() == Type::lookup_integer_type("uintptr"))))
674 return true;
675
676 // Give a better error message.
677 if (reason != NULL)
678 {
679 if (reason->empty())
680 *reason = "invalid type conversion";
681 else
682 {
683 std::string s = "invalid type conversion (";
684 s += *reason;
685 s += ')';
686 *reason = s;
687 }
688 }
689
690 return false;
691 }
692
693 // Return whether this type has any hidden fields. This is only a
694 // possibility for a few types.
695
696 bool
697 Type::has_hidden_fields(const Named_type* within, std::string* reason) const
698 {
699 switch (this->forwarded()->classification_)
700 {
701 case TYPE_NAMED:
702 return this->named_type()->named_type_has_hidden_fields(reason);
703 case TYPE_STRUCT:
704 return this->struct_type()->struct_has_hidden_fields(within, reason);
705 case TYPE_ARRAY:
706 return this->array_type()->array_has_hidden_fields(within, reason);
707 default:
708 return false;
709 }
710 }
711
712 // Return a hash code for the type to be used for method lookup.
713
714 unsigned int
715 Type::hash_for_method(Gogo* gogo) const
716 {
717 unsigned int ret = 0;
718 if (this->classification_ != TYPE_FORWARD)
719 ret += this->classification_;
720 return ret + this->do_hash_for_method(gogo);
721 }
722
723 // Default implementation of do_hash_for_method. This is appropriate
724 // for types with no subfields.
725
726 unsigned int
727 Type::do_hash_for_method(Gogo*) const
728 {
729 return 0;
730 }
731
732 // Return a hash code for a string, given a starting hash.
733
734 unsigned int
735 Type::hash_string(const std::string& s, unsigned int h)
736 {
737 const char* p = s.data();
738 size_t len = s.length();
739 for (; len > 0; --len)
740 {
741 h ^= *p++;
742 h*= 16777619;
743 }
744 return h;
745 }
746
747 // Default check for the expression passed to make. Any type which
748 // may be used with make implements its own version of this.
749
750 bool
751 Type::do_check_make_expression(Expression_list*, source_location)
752 {
753 gcc_unreachable();
754 }
755
756 // Return whether an expression has an integer value. Report an error
757 // if not. This is used when handling calls to the predeclared make
758 // function.
759
760 bool
761 Type::check_int_value(Expression* e, const char* errmsg,
762 source_location location)
763 {
764 if (e->type()->integer_type() != NULL)
765 return true;
766
767 // Check for a floating point constant with integer value.
768 mpfr_t fval;
769 mpfr_init(fval);
770
771 Type* dummy;
772 if (e->float_constant_value(fval, &dummy))
773 {
774 mpz_t ival;
775 mpz_init(ival);
776
777 bool ok = false;
778
779 mpfr_clear_overflow();
780 mpfr_clear_erangeflag();
781 mpfr_get_z(ival, fval, GMP_RNDN);
782 if (!mpfr_overflow_p()
783 && !mpfr_erangeflag_p()
784 && mpz_sgn(ival) >= 0)
785 {
786 Named_type* ntype = Type::lookup_integer_type("int");
787 Integer_type* inttype = ntype->integer_type();
788 mpz_t max;
789 mpz_init_set_ui(max, 1);
790 mpz_mul_2exp(max, max, inttype->bits() - 1);
791 ok = mpz_cmp(ival, max) < 0;
792 mpz_clear(max);
793 }
794 mpz_clear(ival);
795
796 if (ok)
797 {
798 mpfr_clear(fval);
799 return true;
800 }
801 }
802
803 mpfr_clear(fval);
804
805 error_at(location, "%s", errmsg);
806 return false;
807 }
808
809 // A hash table mapping unnamed types to trees.
810
811 Type::Type_trees Type::type_trees;
812
813 // Return a tree representing this type.
814
815 tree
816 Type::get_tree(Gogo* gogo)
817 {
818 if (this->tree_ != NULL)
819 return this->tree_;
820
821 if (this->forward_declaration_type() != NULL
822 || this->named_type() != NULL)
823 return this->get_tree_without_hash(gogo);
824
825 if (this->is_error_type())
826 return error_mark_node;
827
828 // To avoid confusing GIMPLE, we need to translate all identical Go
829 // types to the same GIMPLE type. We use a hash table to do that.
830 // There is no need to use the hash table for named types, as named
831 // types are only identical to themselves.
832
833 std::pair<Type*, tree> val(this, NULL);
834 std::pair<Type_trees::iterator, bool> ins =
835 Type::type_trees.insert(val);
836 if (!ins.second && ins.first->second != NULL_TREE)
837 {
838 this->tree_ = ins.first->second;
839 return this->tree_;
840 }
841
842 tree t = this->get_tree_without_hash(gogo);
843
844 if (ins.first->second == NULL_TREE)
845 ins.first->second = t;
846 else
847 {
848 // We have already created a tree for this type. This can
849 // happen when an unnamed type is defined using a named type
850 // which in turns uses an identical unnamed type. Use the tree
851 // we created earlier and ignore the one we just built.
852 t = ins.first->second;
853 this->tree_ = t;
854 }
855
856 return t;
857 }
858
859 // Return a tree for a type without looking in the hash table for
860 // identical types. This is used for named types, since there is no
861 // point to looking in the hash table for them.
862
863 tree
864 Type::get_tree_without_hash(Gogo* gogo)
865 {
866 if (this->tree_ == NULL_TREE)
867 {
868 tree t = this->do_get_tree(gogo);
869
870 // For a recursive function or pointer type, we will temporarily
871 // return ptr_type_node during the recursion. We don't want to
872 // record that for a forwarding type, as it may confuse us
873 // later.
874 if (t == ptr_type_node && this->forward_declaration_type() != NULL)
875 return t;
876
877 this->tree_ = t;
878 go_preserve_from_gc(t);
879 }
880
881 return this->tree_;
882 }
883
884 // Return a tree representing a zero initialization for this type.
885
886 tree
887 Type::get_init_tree(Gogo* gogo, bool is_clear)
888 {
889 tree type_tree = this->get_tree(gogo);
890 if (type_tree == error_mark_node)
891 return error_mark_node;
892 return this->do_get_init_tree(gogo, type_tree, is_clear);
893 }
894
895 // Any type which supports the builtin make function must implement
896 // this.
897
898 tree
899 Type::do_make_expression_tree(Translate_context*, Expression_list*,
900 source_location)
901 {
902 gcc_unreachable();
903 }
904
905 // Return a pointer to the type descriptor for this type.
906
907 tree
908 Type::type_descriptor_pointer(Gogo* gogo)
909 {
910 Type* t = this->forwarded();
911 if (t->type_descriptor_decl_ == NULL_TREE)
912 {
913 Expression* e = t->do_type_descriptor(gogo, NULL);
914 gogo->build_type_descriptor_decl(t, e, &t->type_descriptor_decl_);
915 gcc_assert(t->type_descriptor_decl_ != NULL_TREE
916 && (t->type_descriptor_decl_ == error_mark_node
917 || DECL_P(t->type_descriptor_decl_)));
918 }
919 if (t->type_descriptor_decl_ == error_mark_node)
920 return error_mark_node;
921 return build_fold_addr_expr(t->type_descriptor_decl_);
922 }
923
924 // Return a composite literal for a type descriptor.
925
926 Expression*
927 Type::type_descriptor(Gogo* gogo, Type* type)
928 {
929 return type->do_type_descriptor(gogo, NULL);
930 }
931
932 // Return a composite literal for a type descriptor with a name.
933
934 Expression*
935 Type::named_type_descriptor(Gogo* gogo, Type* type, Named_type* name)
936 {
937 gcc_assert(name != NULL && type->named_type() != name);
938 return type->do_type_descriptor(gogo, name);
939 }
940
941 // Make a builtin struct type from a list of fields. The fields are
942 // pairs of a name and a type.
943
944 Struct_type*
945 Type::make_builtin_struct_type(int nfields, ...)
946 {
947 va_list ap;
948 va_start(ap, nfields);
949
950 source_location bloc = BUILTINS_LOCATION;
951 Struct_field_list* sfl = new Struct_field_list();
952 for (int i = 0; i < nfields; i++)
953 {
954 const char* field_name = va_arg(ap, const char *);
955 Type* type = va_arg(ap, Type*);
956 sfl->push_back(Struct_field(Typed_identifier(field_name, type, bloc)));
957 }
958
959 va_end(ap);
960
961 return Type::make_struct_type(sfl, bloc);
962 }
963
964 // Make a builtin named type.
965
966 Named_type*
967 Type::make_builtin_named_type(const char* name, Type* type)
968 {
969 source_location bloc = BUILTINS_LOCATION;
970 Named_object* no = Named_object::make_type(name, NULL, type, bloc);
971 return no->type_value();
972 }
973
974 // Return the type of a type descriptor. We should really tie this to
975 // runtime.Type rather than copying it. This must match commonType in
976 // libgo/go/runtime/type.go.
977
978 Type*
979 Type::make_type_descriptor_type()
980 {
981 static Type* ret;
982 if (ret == NULL)
983 {
984 source_location bloc = BUILTINS_LOCATION;
985
986 Type* uint8_type = Type::lookup_integer_type("uint8");
987 Type* uint32_type = Type::lookup_integer_type("uint32");
988 Type* uintptr_type = Type::lookup_integer_type("uintptr");
989 Type* string_type = Type::lookup_string_type();
990 Type* pointer_string_type = Type::make_pointer_type(string_type);
991
992 // This is an unnamed version of unsafe.Pointer. Perhaps we
993 // should use the named version instead, although that would
994 // require us to create the unsafe package if it has not been
995 // imported. It probably doesn't matter.
996 Type* void_type = Type::make_void_type();
997 Type* unsafe_pointer_type = Type::make_pointer_type(void_type);
998
999 // Forward declaration for the type descriptor type.
1000 Named_object* named_type_descriptor_type =
1001 Named_object::make_type_declaration("commonType", NULL, bloc);
1002 Type* ft = Type::make_forward_declaration(named_type_descriptor_type);
1003 Type* pointer_type_descriptor_type = Type::make_pointer_type(ft);
1004
1005 // The type of a method on a concrete type.
1006 Struct_type* method_type =
1007 Type::make_builtin_struct_type(5,
1008 "name", pointer_string_type,
1009 "pkgPath", pointer_string_type,
1010 "mtyp", pointer_type_descriptor_type,
1011 "typ", pointer_type_descriptor_type,
1012 "tfn", unsafe_pointer_type);
1013 Named_type* named_method_type =
1014 Type::make_builtin_named_type("method", method_type);
1015
1016 // Information for types with a name or methods.
1017 Type* slice_named_method_type =
1018 Type::make_array_type(named_method_type, NULL);
1019 Struct_type* uncommon_type =
1020 Type::make_builtin_struct_type(3,
1021 "name", pointer_string_type,
1022 "pkgPath", pointer_string_type,
1023 "methods", slice_named_method_type);
1024 Named_type* named_uncommon_type =
1025 Type::make_builtin_named_type("uncommonType", uncommon_type);
1026
1027 Type* pointer_uncommon_type =
1028 Type::make_pointer_type(named_uncommon_type);
1029
1030 // The type descriptor type.
1031
1032 Typed_identifier_list* params = new Typed_identifier_list();
1033 params->push_back(Typed_identifier("", unsafe_pointer_type, bloc));
1034 params->push_back(Typed_identifier("", uintptr_type, bloc));
1035
1036 Typed_identifier_list* results = new Typed_identifier_list();
1037 results->push_back(Typed_identifier("", uintptr_type, bloc));
1038
1039 Type* hashfn_type = Type::make_function_type(NULL, params, results, bloc);
1040
1041 params = new Typed_identifier_list();
1042 params->push_back(Typed_identifier("", unsafe_pointer_type, bloc));
1043 params->push_back(Typed_identifier("", unsafe_pointer_type, bloc));
1044 params->push_back(Typed_identifier("", uintptr_type, bloc));
1045
1046 results = new Typed_identifier_list();
1047 results->push_back(Typed_identifier("", Type::lookup_bool_type(), bloc));
1048
1049 Type* equalfn_type = Type::make_function_type(NULL, params, results,
1050 bloc);
1051
1052 Struct_type* type_descriptor_type =
1053 Type::make_builtin_struct_type(9,
1054 "Kind", uint8_type,
1055 "align", uint8_type,
1056 "fieldAlign", uint8_type,
1057 "size", uintptr_type,
1058 "hash", uint32_type,
1059 "hashfn", hashfn_type,
1060 "equalfn", equalfn_type,
1061 "string", pointer_string_type,
1062 "", pointer_uncommon_type);
1063
1064 Named_type* named = Type::make_builtin_named_type("commonType",
1065 type_descriptor_type);
1066
1067 named_type_descriptor_type->set_type_value(named);
1068
1069 ret = named;
1070 }
1071
1072 return ret;
1073 }
1074
1075 // Make the type of a pointer to a type descriptor as represented in
1076 // Go.
1077
1078 Type*
1079 Type::make_type_descriptor_ptr_type()
1080 {
1081 static Type* ret;
1082 if (ret == NULL)
1083 ret = Type::make_pointer_type(Type::make_type_descriptor_type());
1084 return ret;
1085 }
1086
1087 // Return the names of runtime functions which compute a hash code for
1088 // this type and which compare whether two values of this type are
1089 // equal.
1090
1091 void
1092 Type::type_functions(const char** hash_fn, const char** equal_fn) const
1093 {
1094 switch (this->base()->classification())
1095 {
1096 case Type::TYPE_ERROR:
1097 case Type::TYPE_VOID:
1098 case Type::TYPE_NIL:
1099 // These types can not be hashed or compared.
1100 *hash_fn = "__go_type_hash_error";
1101 *equal_fn = "__go_type_equal_error";
1102 break;
1103
1104 case Type::TYPE_BOOLEAN:
1105 case Type::TYPE_INTEGER:
1106 case Type::TYPE_FLOAT:
1107 case Type::TYPE_COMPLEX:
1108 case Type::TYPE_POINTER:
1109 case Type::TYPE_FUNCTION:
1110 case Type::TYPE_MAP:
1111 case Type::TYPE_CHANNEL:
1112 *hash_fn = "__go_type_hash_identity";
1113 *equal_fn = "__go_type_equal_identity";
1114 break;
1115
1116 case Type::TYPE_STRING:
1117 *hash_fn = "__go_type_hash_string";
1118 *equal_fn = "__go_type_equal_string";
1119 break;
1120
1121 case Type::TYPE_STRUCT:
1122 case Type::TYPE_ARRAY:
1123 // These types can not be hashed or compared.
1124 *hash_fn = "__go_type_hash_error";
1125 *equal_fn = "__go_type_equal_error";
1126 break;
1127
1128 case Type::TYPE_INTERFACE:
1129 if (this->interface_type()->is_empty())
1130 {
1131 *hash_fn = "__go_type_hash_empty_interface";
1132 *equal_fn = "__go_type_equal_empty_interface";
1133 }
1134 else
1135 {
1136 *hash_fn = "__go_type_hash_interface";
1137 *equal_fn = "__go_type_equal_interface";
1138 }
1139 break;
1140
1141 case Type::TYPE_NAMED:
1142 case Type::TYPE_FORWARD:
1143 gcc_unreachable();
1144
1145 default:
1146 gcc_unreachable();
1147 }
1148 }
1149
1150 // Return a composite literal for the type descriptor for a plain type
1151 // of kind RUNTIME_TYPE_KIND named NAME.
1152
1153 Expression*
1154 Type::type_descriptor_constructor(Gogo* gogo, int runtime_type_kind,
1155 Named_type* name, const Methods* methods,
1156 bool only_value_methods)
1157 {
1158 source_location bloc = BUILTINS_LOCATION;
1159
1160 Type* td_type = Type::make_type_descriptor_type();
1161 const Struct_field_list* fields = td_type->struct_type()->fields();
1162
1163 Expression_list* vals = new Expression_list();
1164 vals->reserve(9);
1165
1166 Struct_field_list::const_iterator p = fields->begin();
1167 gcc_assert(p->field_name() == "Kind");
1168 mpz_t iv;
1169 mpz_init_set_ui(iv, runtime_type_kind);
1170 vals->push_back(Expression::make_integer(&iv, p->type(), bloc));
1171
1172 ++p;
1173 gcc_assert(p->field_name() == "align");
1174 Expression::Type_info type_info = Expression::TYPE_INFO_ALIGNMENT;
1175 vals->push_back(Expression::make_type_info(this, type_info));
1176
1177 ++p;
1178 gcc_assert(p->field_name() == "fieldAlign");
1179 type_info = Expression::TYPE_INFO_FIELD_ALIGNMENT;
1180 vals->push_back(Expression::make_type_info(this, type_info));
1181
1182 ++p;
1183 gcc_assert(p->field_name() == "size");
1184 type_info = Expression::TYPE_INFO_SIZE;
1185 vals->push_back(Expression::make_type_info(this, type_info));
1186
1187 ++p;
1188 gcc_assert(p->field_name() == "hash");
1189 mpz_set_ui(iv, this->hash_for_method(gogo));
1190 vals->push_back(Expression::make_integer(&iv, p->type(), bloc));
1191
1192 const char* hash_fn;
1193 const char* equal_fn;
1194 this->type_functions(&hash_fn, &equal_fn);
1195
1196 ++p;
1197 gcc_assert(p->field_name() == "hashfn");
1198 Function_type* fntype = p->type()->function_type();
1199 Named_object* no = Named_object::make_function_declaration(hash_fn, NULL,
1200 fntype,
1201 bloc);
1202 no->func_declaration_value()->set_asm_name(hash_fn);
1203 vals->push_back(Expression::make_func_reference(no, NULL, bloc));
1204
1205 ++p;
1206 gcc_assert(p->field_name() == "equalfn");
1207 fntype = p->type()->function_type();
1208 no = Named_object::make_function_declaration(equal_fn, NULL, fntype, bloc);
1209 no->func_declaration_value()->set_asm_name(equal_fn);
1210 vals->push_back(Expression::make_func_reference(no, NULL, bloc));
1211
1212 ++p;
1213 gcc_assert(p->field_name() == "string");
1214 Expression* s = Expression::make_string((name != NULL
1215 ? name->reflection(gogo)
1216 : this->reflection(gogo)),
1217 bloc);
1218 vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
1219
1220 ++p;
1221 gcc_assert(p->field_name() == "uncommonType");
1222 if (name == NULL && methods == NULL)
1223 vals->push_back(Expression::make_nil(bloc));
1224 else
1225 {
1226 if (methods == NULL)
1227 methods = name->methods();
1228 vals->push_back(this->uncommon_type_constructor(gogo,
1229 p->type()->deref(),
1230 name, methods,
1231 only_value_methods));
1232 }
1233
1234 ++p;
1235 gcc_assert(p == fields->end());
1236
1237 mpz_clear(iv);
1238
1239 return Expression::make_struct_composite_literal(td_type, vals, bloc);
1240 }
1241
1242 // Return a composite literal for the uncommon type information for
1243 // this type. UNCOMMON_STRUCT_TYPE is the type of the uncommon type
1244 // struct. If name is not NULL, it is the name of the type. If
1245 // METHODS is not NULL, it is the list of methods. ONLY_VALUE_METHODS
1246 // is true if only value methods should be included. At least one of
1247 // NAME and METHODS must not be NULL.
1248
1249 Expression*
1250 Type::uncommon_type_constructor(Gogo* gogo, Type* uncommon_type,
1251 Named_type* name, const Methods* methods,
1252 bool only_value_methods) const
1253 {
1254 source_location bloc = BUILTINS_LOCATION;
1255
1256 const Struct_field_list* fields = uncommon_type->struct_type()->fields();
1257
1258 Expression_list* vals = new Expression_list();
1259 vals->reserve(3);
1260
1261 Struct_field_list::const_iterator p = fields->begin();
1262 gcc_assert(p->field_name() == "name");
1263
1264 ++p;
1265 gcc_assert(p->field_name() == "pkgPath");
1266
1267 if (name == NULL)
1268 {
1269 vals->push_back(Expression::make_nil(bloc));
1270 vals->push_back(Expression::make_nil(bloc));
1271 }
1272 else
1273 {
1274 Named_object* no = name->named_object();
1275 std::string n = Gogo::unpack_hidden_name(no->name());
1276 Expression* s = Expression::make_string(n, bloc);
1277 vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
1278
1279 if (name->is_builtin())
1280 vals->push_back(Expression::make_nil(bloc));
1281 else
1282 {
1283 const Package* package = no->package();
1284 const std::string& unique_prefix(package == NULL
1285 ? gogo->unique_prefix()
1286 : package->unique_prefix());
1287 const std::string& package_name(package == NULL
1288 ? gogo->package_name()
1289 : package->name());
1290 n.assign(unique_prefix);
1291 n.append(1, '.');
1292 n.append(package_name);
1293 if (name->in_function() != NULL)
1294 {
1295 n.append(1, '.');
1296 n.append(Gogo::unpack_hidden_name(name->in_function()->name()));
1297 }
1298 s = Expression::make_string(n, bloc);
1299 vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
1300 }
1301 }
1302
1303 ++p;
1304 gcc_assert(p->field_name() == "methods");
1305 vals->push_back(this->methods_constructor(gogo, p->type(), methods,
1306 only_value_methods));
1307
1308 ++p;
1309 gcc_assert(p == fields->end());
1310
1311 Expression* r = Expression::make_struct_composite_literal(uncommon_type,
1312 vals, bloc);
1313 return Expression::make_unary(OPERATOR_AND, r, bloc);
1314 }
1315
1316 // Sort methods by name.
1317
1318 class Sort_methods
1319 {
1320 public:
1321 bool
1322 operator()(const std::pair<std::string, const Method*>& m1,
1323 const std::pair<std::string, const Method*>& m2) const
1324 { return m1.first < m2.first; }
1325 };
1326
1327 // Return a composite literal for the type method table for this type.
1328 // METHODS_TYPE is the type of the table, and is a slice type.
1329 // METHODS is the list of methods. If ONLY_VALUE_METHODS is true,
1330 // then only value methods are used.
1331
1332 Expression*
1333 Type::methods_constructor(Gogo* gogo, Type* methods_type,
1334 const Methods* methods,
1335 bool only_value_methods) const
1336 {
1337 source_location bloc = BUILTINS_LOCATION;
1338
1339 std::vector<std::pair<std::string, const Method*> > smethods;
1340 if (methods != NULL)
1341 {
1342 smethods.reserve(methods->count());
1343 for (Methods::const_iterator p = methods->begin();
1344 p != methods->end();
1345 ++p)
1346 {
1347 if (p->second->is_ambiguous())
1348 continue;
1349 if (only_value_methods && !p->second->is_value_method())
1350 continue;
1351 smethods.push_back(std::make_pair(p->first, p->second));
1352 }
1353 }
1354
1355 if (smethods.empty())
1356 return Expression::make_slice_composite_literal(methods_type, NULL, bloc);
1357
1358 std::sort(smethods.begin(), smethods.end(), Sort_methods());
1359
1360 Type* method_type = methods_type->array_type()->element_type();
1361
1362 Expression_list* vals = new Expression_list();
1363 vals->reserve(smethods.size());
1364 for (std::vector<std::pair<std::string, const Method*> >::const_iterator p
1365 = smethods.begin();
1366 p != smethods.end();
1367 ++p)
1368 vals->push_back(this->method_constructor(gogo, method_type, p->first,
1369 p->second));
1370
1371 return Expression::make_slice_composite_literal(methods_type, vals, bloc);
1372 }
1373
1374 // Return a composite literal for a single method. METHOD_TYPE is the
1375 // type of the entry. METHOD_NAME is the name of the method and M is
1376 // the method information.
1377
1378 Expression*
1379 Type::method_constructor(Gogo*, Type* method_type,
1380 const std::string& method_name,
1381 const Method* m) const
1382 {
1383 source_location bloc = BUILTINS_LOCATION;
1384
1385 const Struct_field_list* fields = method_type->struct_type()->fields();
1386
1387 Expression_list* vals = new Expression_list();
1388 vals->reserve(5);
1389
1390 Struct_field_list::const_iterator p = fields->begin();
1391 gcc_assert(p->field_name() == "name");
1392 const std::string n = Gogo::unpack_hidden_name(method_name);
1393 Expression* s = Expression::make_string(n, bloc);
1394 vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
1395
1396 ++p;
1397 gcc_assert(p->field_name() == "pkgPath");
1398 if (!Gogo::is_hidden_name(method_name))
1399 vals->push_back(Expression::make_nil(bloc));
1400 else
1401 {
1402 s = Expression::make_string(Gogo::hidden_name_prefix(method_name), bloc);
1403 vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
1404 }
1405
1406 Named_object* no = (m->needs_stub_method()
1407 ? m->stub_object()
1408 : m->named_object());
1409
1410 Function_type* mtype;
1411 if (no->is_function())
1412 mtype = no->func_value()->type();
1413 else
1414 mtype = no->func_declaration_value()->type();
1415 gcc_assert(mtype->is_method());
1416 Type* nonmethod_type = mtype->copy_without_receiver();
1417
1418 ++p;
1419 gcc_assert(p->field_name() == "mtyp");
1420 vals->push_back(Expression::make_type_descriptor(nonmethod_type, bloc));
1421
1422 ++p;
1423 gcc_assert(p->field_name() == "typ");
1424 vals->push_back(Expression::make_type_descriptor(mtype, bloc));
1425
1426 ++p;
1427 gcc_assert(p->field_name() == "tfn");
1428 vals->push_back(Expression::make_func_reference(no, NULL, bloc));
1429
1430 ++p;
1431 gcc_assert(p == fields->end());
1432
1433 return Expression::make_struct_composite_literal(method_type, vals, bloc);
1434 }
1435
1436 // Return a composite literal for the type descriptor of a plain type.
1437 // RUNTIME_TYPE_KIND is the value of the kind field. If NAME is not
1438 // NULL, it is the name to use as well as the list of methods.
1439
1440 Expression*
1441 Type::plain_type_descriptor(Gogo* gogo, int runtime_type_kind,
1442 Named_type* name)
1443 {
1444 return this->type_descriptor_constructor(gogo, runtime_type_kind,
1445 name, NULL, true);
1446 }
1447
1448 // Return the type reflection string for this type.
1449
1450 std::string
1451 Type::reflection(Gogo* gogo) const
1452 {
1453 std::string ret;
1454
1455 // The do_reflection virtual function should set RET to the
1456 // reflection string.
1457 this->do_reflection(gogo, &ret);
1458
1459 return ret;
1460 }
1461
1462 // Return a mangled name for the type.
1463
1464 std::string
1465 Type::mangled_name(Gogo* gogo) const
1466 {
1467 std::string ret;
1468
1469 // The do_mangled_name virtual function should set RET to the
1470 // mangled name. For a composite type it should append a code for
1471 // the composition and then call do_mangled_name on the components.
1472 this->do_mangled_name(gogo, &ret);
1473
1474 return ret;
1475 }
1476
1477 // Default function to export a type.
1478
1479 void
1480 Type::do_export(Export*) const
1481 {
1482 gcc_unreachable();
1483 }
1484
1485 // Import a type.
1486
1487 Type*
1488 Type::import_type(Import* imp)
1489 {
1490 if (imp->match_c_string("("))
1491 return Function_type::do_import(imp);
1492 else if (imp->match_c_string("*"))
1493 return Pointer_type::do_import(imp);
1494 else if (imp->match_c_string("struct "))
1495 return Struct_type::do_import(imp);
1496 else if (imp->match_c_string("["))
1497 return Array_type::do_import(imp);
1498 else if (imp->match_c_string("map "))
1499 return Map_type::do_import(imp);
1500 else if (imp->match_c_string("chan "))
1501 return Channel_type::do_import(imp);
1502 else if (imp->match_c_string("interface"))
1503 return Interface_type::do_import(imp);
1504 else
1505 {
1506 error_at(imp->location(), "import error: expected type");
1507 return Type::make_error_type();
1508 }
1509 }
1510
1511 // A type used to indicate a parsing error. This exists to simplify
1512 // later error detection.
1513
1514 class Error_type : public Type
1515 {
1516 public:
1517 Error_type()
1518 : Type(TYPE_ERROR)
1519 { }
1520
1521 protected:
1522 tree
1523 do_get_tree(Gogo*)
1524 { return error_mark_node; }
1525
1526 tree
1527 do_get_init_tree(Gogo*, tree, bool)
1528 { return error_mark_node; }
1529
1530 Expression*
1531 do_type_descriptor(Gogo*, Named_type*)
1532 { return Expression::make_error(BUILTINS_LOCATION); }
1533
1534 void
1535 do_reflection(Gogo*, std::string*) const
1536 { gcc_assert(saw_errors()); }
1537
1538 void
1539 do_mangled_name(Gogo*, std::string* ret) const
1540 { ret->push_back('E'); }
1541 };
1542
1543 Type*
1544 Type::make_error_type()
1545 {
1546 static Error_type singleton_error_type;
1547 return &singleton_error_type;
1548 }
1549
1550 // The void type.
1551
1552 class Void_type : public Type
1553 {
1554 public:
1555 Void_type()
1556 : Type(TYPE_VOID)
1557 { }
1558
1559 protected:
1560 tree
1561 do_get_tree(Gogo*)
1562 { return void_type_node; }
1563
1564 tree
1565 do_get_init_tree(Gogo*, tree, bool)
1566 { gcc_unreachable(); }
1567
1568 Expression*
1569 do_type_descriptor(Gogo*, Named_type*)
1570 { gcc_unreachable(); }
1571
1572 void
1573 do_reflection(Gogo*, std::string*) const
1574 { }
1575
1576 void
1577 do_mangled_name(Gogo*, std::string* ret) const
1578 { ret->push_back('v'); }
1579 };
1580
1581 Type*
1582 Type::make_void_type()
1583 {
1584 static Void_type singleton_void_type;
1585 return &singleton_void_type;
1586 }
1587
1588 // The boolean type.
1589
1590 class Boolean_type : public Type
1591 {
1592 public:
1593 Boolean_type()
1594 : Type(TYPE_BOOLEAN)
1595 { }
1596
1597 protected:
1598 tree
1599 do_get_tree(Gogo*)
1600 { return boolean_type_node; }
1601
1602 tree
1603 do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
1604 { return is_clear ? NULL : fold_convert(type_tree, boolean_false_node); }
1605
1606 Expression*
1607 do_type_descriptor(Gogo*, Named_type* name);
1608
1609 // We should not be asked for the reflection string of a basic type.
1610 void
1611 do_reflection(Gogo*, std::string* ret) const
1612 { ret->append("bool"); }
1613
1614 void
1615 do_mangled_name(Gogo*, std::string* ret) const
1616 { ret->push_back('b'); }
1617 };
1618
1619 // Make the type descriptor.
1620
1621 Expression*
1622 Boolean_type::do_type_descriptor(Gogo* gogo, Named_type* name)
1623 {
1624 if (name != NULL)
1625 return this->plain_type_descriptor(gogo, RUNTIME_TYPE_KIND_BOOL, name);
1626 else
1627 {
1628 Named_object* no = gogo->lookup_global("bool");
1629 gcc_assert(no != NULL);
1630 return Type::type_descriptor(gogo, no->type_value());
1631 }
1632 }
1633
1634 Type*
1635 Type::make_boolean_type()
1636 {
1637 static Boolean_type boolean_type;
1638 return &boolean_type;
1639 }
1640
1641 // The named type "bool".
1642
1643 static Named_type* named_bool_type;
1644
1645 // Get the named type "bool".
1646
1647 Named_type*
1648 Type::lookup_bool_type()
1649 {
1650 return named_bool_type;
1651 }
1652
1653 // Make the named type "bool".
1654
1655 Named_type*
1656 Type::make_named_bool_type()
1657 {
1658 Type* bool_type = Type::make_boolean_type();
1659 Named_object* named_object = Named_object::make_type("bool", NULL,
1660 bool_type,
1661 BUILTINS_LOCATION);
1662 Named_type* named_type = named_object->type_value();
1663 named_bool_type = named_type;
1664 return named_type;
1665 }
1666
1667 // Class Integer_type.
1668
1669 Integer_type::Named_integer_types Integer_type::named_integer_types;
1670
1671 // Create a new integer type. Non-abstract integer types always have
1672 // names.
1673
1674 Named_type*
1675 Integer_type::create_integer_type(const char* name, bool is_unsigned,
1676 int bits, int runtime_type_kind)
1677 {
1678 Integer_type* integer_type = new Integer_type(false, is_unsigned, bits,
1679 runtime_type_kind);
1680 std::string sname(name);
1681 Named_object* named_object = Named_object::make_type(sname, NULL,
1682 integer_type,
1683 BUILTINS_LOCATION);
1684 Named_type* named_type = named_object->type_value();
1685 std::pair<Named_integer_types::iterator, bool> ins =
1686 Integer_type::named_integer_types.insert(std::make_pair(sname, named_type));
1687 gcc_assert(ins.second);
1688 return named_type;
1689 }
1690
1691 // Look up an existing integer type.
1692
1693 Named_type*
1694 Integer_type::lookup_integer_type(const char* name)
1695 {
1696 Named_integer_types::const_iterator p =
1697 Integer_type::named_integer_types.find(name);
1698 gcc_assert(p != Integer_type::named_integer_types.end());
1699 return p->second;
1700 }
1701
1702 // Create a new abstract integer type.
1703
1704 Integer_type*
1705 Integer_type::create_abstract_integer_type()
1706 {
1707 static Integer_type* abstract_type;
1708 if (abstract_type == NULL)
1709 abstract_type = new Integer_type(true, false, INT_TYPE_SIZE,
1710 RUNTIME_TYPE_KIND_INT);
1711 return abstract_type;
1712 }
1713
1714 // Integer type compatibility.
1715
1716 bool
1717 Integer_type::is_identical(const Integer_type* t) const
1718 {
1719 if (this->is_unsigned_ != t->is_unsigned_ || this->bits_ != t->bits_)
1720 return false;
1721 return this->is_abstract_ == t->is_abstract_;
1722 }
1723
1724 // Hash code.
1725
1726 unsigned int
1727 Integer_type::do_hash_for_method(Gogo*) const
1728 {
1729 return ((this->bits_ << 4)
1730 + ((this->is_unsigned_ ? 1 : 0) << 8)
1731 + ((this->is_abstract_ ? 1 : 0) << 9));
1732 }
1733
1734 // Get the tree for an Integer_type.
1735
1736 tree
1737 Integer_type::do_get_tree(Gogo*)
1738 {
1739 gcc_assert(!this->is_abstract_);
1740 if (this->is_unsigned_)
1741 {
1742 if (this->bits_ == INT_TYPE_SIZE)
1743 return unsigned_type_node;
1744 else if (this->bits_ == CHAR_TYPE_SIZE)
1745 return unsigned_char_type_node;
1746 else if (this->bits_ == SHORT_TYPE_SIZE)
1747 return short_unsigned_type_node;
1748 else if (this->bits_ == LONG_TYPE_SIZE)
1749 return long_unsigned_type_node;
1750 else if (this->bits_ == LONG_LONG_TYPE_SIZE)
1751 return long_long_unsigned_type_node;
1752 else
1753 return make_unsigned_type(this->bits_);
1754 }
1755 else
1756 {
1757 if (this->bits_ == INT_TYPE_SIZE)
1758 return integer_type_node;
1759 else if (this->bits_ == CHAR_TYPE_SIZE)
1760 return signed_char_type_node;
1761 else if (this->bits_ == SHORT_TYPE_SIZE)
1762 return short_integer_type_node;
1763 else if (this->bits_ == LONG_TYPE_SIZE)
1764 return long_integer_type_node;
1765 else if (this->bits_ == LONG_LONG_TYPE_SIZE)
1766 return long_long_integer_type_node;
1767 else
1768 return make_signed_type(this->bits_);
1769 }
1770 }
1771
1772 tree
1773 Integer_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
1774 {
1775 return is_clear ? NULL : build_int_cst(type_tree, 0);
1776 }
1777
1778 // The type descriptor for an integer type. Integer types are always
1779 // named.
1780
1781 Expression*
1782 Integer_type::do_type_descriptor(Gogo* gogo, Named_type* name)
1783 {
1784 gcc_assert(name != NULL);
1785 return this->plain_type_descriptor(gogo, this->runtime_type_kind_, name);
1786 }
1787
1788 // We should not be asked for the reflection string of a basic type.
1789
1790 void
1791 Integer_type::do_reflection(Gogo*, std::string*) const
1792 {
1793 gcc_unreachable();
1794 }
1795
1796 // Mangled name.
1797
1798 void
1799 Integer_type::do_mangled_name(Gogo*, std::string* ret) const
1800 {
1801 char buf[100];
1802 snprintf(buf, sizeof buf, "i%s%s%de",
1803 this->is_abstract_ ? "a" : "",
1804 this->is_unsigned_ ? "u" : "",
1805 this->bits_);
1806 ret->append(buf);
1807 }
1808
1809 // Make an integer type.
1810
1811 Named_type*
1812 Type::make_integer_type(const char* name, bool is_unsigned, int bits,
1813 int runtime_type_kind)
1814 {
1815 return Integer_type::create_integer_type(name, is_unsigned, bits,
1816 runtime_type_kind);
1817 }
1818
1819 // Make an abstract integer type.
1820
1821 Integer_type*
1822 Type::make_abstract_integer_type()
1823 {
1824 return Integer_type::create_abstract_integer_type();
1825 }
1826
1827 // Look up an integer type.
1828
1829 Named_type*
1830 Type::lookup_integer_type(const char* name)
1831 {
1832 return Integer_type::lookup_integer_type(name);
1833 }
1834
1835 // Class Float_type.
1836
1837 Float_type::Named_float_types Float_type::named_float_types;
1838
1839 // Create a new float type. Non-abstract float types always have
1840 // names.
1841
1842 Named_type*
1843 Float_type::create_float_type(const char* name, int bits,
1844 int runtime_type_kind)
1845 {
1846 Float_type* float_type = new Float_type(false, bits, runtime_type_kind);
1847 std::string sname(name);
1848 Named_object* named_object = Named_object::make_type(sname, NULL, float_type,
1849 BUILTINS_LOCATION);
1850 Named_type* named_type = named_object->type_value();
1851 std::pair<Named_float_types::iterator, bool> ins =
1852 Float_type::named_float_types.insert(std::make_pair(sname, named_type));
1853 gcc_assert(ins.second);
1854 return named_type;
1855 }
1856
1857 // Look up an existing float type.
1858
1859 Named_type*
1860 Float_type::lookup_float_type(const char* name)
1861 {
1862 Named_float_types::const_iterator p =
1863 Float_type::named_float_types.find(name);
1864 gcc_assert(p != Float_type::named_float_types.end());
1865 return p->second;
1866 }
1867
1868 // Create a new abstract float type.
1869
1870 Float_type*
1871 Float_type::create_abstract_float_type()
1872 {
1873 static Float_type* abstract_type;
1874 if (abstract_type == NULL)
1875 abstract_type = new Float_type(true, 64, RUNTIME_TYPE_KIND_FLOAT64);
1876 return abstract_type;
1877 }
1878
1879 // Whether this type is identical with T.
1880
1881 bool
1882 Float_type::is_identical(const Float_type* t) const
1883 {
1884 if (this->bits_ != t->bits_)
1885 return false;
1886 return this->is_abstract_ == t->is_abstract_;
1887 }
1888
1889 // Hash code.
1890
1891 unsigned int
1892 Float_type::do_hash_for_method(Gogo*) const
1893 {
1894 return (this->bits_ << 4) + ((this->is_abstract_ ? 1 : 0) << 8);
1895 }
1896
1897 // Get a tree without using a Gogo*.
1898
1899 tree
1900 Float_type::type_tree() const
1901 {
1902 if (this->bits_ == FLOAT_TYPE_SIZE)
1903 return float_type_node;
1904 else if (this->bits_ == DOUBLE_TYPE_SIZE)
1905 return double_type_node;
1906 else if (this->bits_ == LONG_DOUBLE_TYPE_SIZE)
1907 return long_double_type_node;
1908 else
1909 {
1910 tree ret = make_node(REAL_TYPE);
1911 TYPE_PRECISION(ret) = this->bits_;
1912 layout_type(ret);
1913 return ret;
1914 }
1915 }
1916
1917 // Get a tree.
1918
1919 tree
1920 Float_type::do_get_tree(Gogo*)
1921 {
1922 return this->type_tree();
1923 }
1924
1925 tree
1926 Float_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
1927 {
1928 if (is_clear)
1929 return NULL;
1930 REAL_VALUE_TYPE r;
1931 real_from_integer(&r, TYPE_MODE(type_tree), 0, 0, 0);
1932 return build_real(type_tree, r);
1933 }
1934
1935 // The type descriptor for a float type. Float types are always named.
1936
1937 Expression*
1938 Float_type::do_type_descriptor(Gogo* gogo, Named_type* name)
1939 {
1940 gcc_assert(name != NULL);
1941 return this->plain_type_descriptor(gogo, this->runtime_type_kind_, name);
1942 }
1943
1944 // We should not be asked for the reflection string of a basic type.
1945
1946 void
1947 Float_type::do_reflection(Gogo*, std::string*) const
1948 {
1949 gcc_unreachable();
1950 }
1951
1952 // Mangled name.
1953
1954 void
1955 Float_type::do_mangled_name(Gogo*, std::string* ret) const
1956 {
1957 char buf[100];
1958 snprintf(buf, sizeof buf, "f%s%de",
1959 this->is_abstract_ ? "a" : "",
1960 this->bits_);
1961 ret->append(buf);
1962 }
1963
1964 // Make a floating point type.
1965
1966 Named_type*
1967 Type::make_float_type(const char* name, int bits, int runtime_type_kind)
1968 {
1969 return Float_type::create_float_type(name, bits, runtime_type_kind);
1970 }
1971
1972 // Make an abstract float type.
1973
1974 Float_type*
1975 Type::make_abstract_float_type()
1976 {
1977 return Float_type::create_abstract_float_type();
1978 }
1979
1980 // Look up a float type.
1981
1982 Named_type*
1983 Type::lookup_float_type(const char* name)
1984 {
1985 return Float_type::lookup_float_type(name);
1986 }
1987
1988 // Class Complex_type.
1989
1990 Complex_type::Named_complex_types Complex_type::named_complex_types;
1991
1992 // Create a new complex type. Non-abstract complex types always have
1993 // names.
1994
1995 Named_type*
1996 Complex_type::create_complex_type(const char* name, int bits,
1997 int runtime_type_kind)
1998 {
1999 Complex_type* complex_type = new Complex_type(false, bits,
2000 runtime_type_kind);
2001 std::string sname(name);
2002 Named_object* named_object = Named_object::make_type(sname, NULL,
2003 complex_type,
2004 BUILTINS_LOCATION);
2005 Named_type* named_type = named_object->type_value();
2006 std::pair<Named_complex_types::iterator, bool> ins =
2007 Complex_type::named_complex_types.insert(std::make_pair(sname,
2008 named_type));
2009 gcc_assert(ins.second);
2010 return named_type;
2011 }
2012
2013 // Look up an existing complex type.
2014
2015 Named_type*
2016 Complex_type::lookup_complex_type(const char* name)
2017 {
2018 Named_complex_types::const_iterator p =
2019 Complex_type::named_complex_types.find(name);
2020 gcc_assert(p != Complex_type::named_complex_types.end());
2021 return p->second;
2022 }
2023
2024 // Create a new abstract complex type.
2025
2026 Complex_type*
2027 Complex_type::create_abstract_complex_type()
2028 {
2029 static Complex_type* abstract_type;
2030 if (abstract_type == NULL)
2031 abstract_type = new Complex_type(true, 128, RUNTIME_TYPE_KIND_COMPLEX128);
2032 return abstract_type;
2033 }
2034
2035 // Whether this type is identical with T.
2036
2037 bool
2038 Complex_type::is_identical(const Complex_type *t) const
2039 {
2040 if (this->bits_ != t->bits_)
2041 return false;
2042 return this->is_abstract_ == t->is_abstract_;
2043 }
2044
2045 // Hash code.
2046
2047 unsigned int
2048 Complex_type::do_hash_for_method(Gogo*) const
2049 {
2050 return (this->bits_ << 4) + ((this->is_abstract_ ? 1 : 0) << 8);
2051 }
2052
2053 // Get a tree without using a Gogo*.
2054
2055 tree
2056 Complex_type::type_tree() const
2057 {
2058 if (this->bits_ == FLOAT_TYPE_SIZE * 2)
2059 return complex_float_type_node;
2060 else if (this->bits_ == DOUBLE_TYPE_SIZE * 2)
2061 return complex_double_type_node;
2062 else if (this->bits_ == LONG_DOUBLE_TYPE_SIZE * 2)
2063 return complex_long_double_type_node;
2064 else
2065 {
2066 tree ret = make_node(REAL_TYPE);
2067 TYPE_PRECISION(ret) = this->bits_ / 2;
2068 layout_type(ret);
2069 return build_complex_type(ret);
2070 }
2071 }
2072
2073 // Get a tree.
2074
2075 tree
2076 Complex_type::do_get_tree(Gogo*)
2077 {
2078 return this->type_tree();
2079 }
2080
2081 // Zero initializer.
2082
2083 tree
2084 Complex_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
2085 {
2086 if (is_clear)
2087 return NULL;
2088 REAL_VALUE_TYPE r;
2089 real_from_integer(&r, TYPE_MODE(TREE_TYPE(type_tree)), 0, 0, 0);
2090 return build_complex(type_tree, build_real(TREE_TYPE(type_tree), r),
2091 build_real(TREE_TYPE(type_tree), r));
2092 }
2093
2094 // The type descriptor for a complex type. Complex types are always
2095 // named.
2096
2097 Expression*
2098 Complex_type::do_type_descriptor(Gogo* gogo, Named_type* name)
2099 {
2100 gcc_assert(name != NULL);
2101 return this->plain_type_descriptor(gogo, this->runtime_type_kind_, name);
2102 }
2103
2104 // We should not be asked for the reflection string of a basic type.
2105
2106 void
2107 Complex_type::do_reflection(Gogo*, std::string*) const
2108 {
2109 gcc_unreachable();
2110 }
2111
2112 // Mangled name.
2113
2114 void
2115 Complex_type::do_mangled_name(Gogo*, std::string* ret) const
2116 {
2117 char buf[100];
2118 snprintf(buf, sizeof buf, "c%s%de",
2119 this->is_abstract_ ? "a" : "",
2120 this->bits_);
2121 ret->append(buf);
2122 }
2123
2124 // Make a complex type.
2125
2126 Named_type*
2127 Type::make_complex_type(const char* name, int bits, int runtime_type_kind)
2128 {
2129 return Complex_type::create_complex_type(name, bits, runtime_type_kind);
2130 }
2131
2132 // Make an abstract complex type.
2133
2134 Complex_type*
2135 Type::make_abstract_complex_type()
2136 {
2137 return Complex_type::create_abstract_complex_type();
2138 }
2139
2140 // Look up a complex type.
2141
2142 Named_type*
2143 Type::lookup_complex_type(const char* name)
2144 {
2145 return Complex_type::lookup_complex_type(name);
2146 }
2147
2148 // Class String_type.
2149
2150 // Return the tree for String_type. A string is a struct with two
2151 // fields: a pointer to the characters and a length.
2152
2153 tree
2154 String_type::do_get_tree(Gogo*)
2155 {
2156 static tree struct_type;
2157 return Gogo::builtin_struct(&struct_type, "__go_string", NULL_TREE, 2,
2158 "__data",
2159 build_pointer_type(unsigned_char_type_node),
2160 "__length",
2161 integer_type_node);
2162 }
2163
2164 // Return a tree for the length of STRING.
2165
2166 tree
2167 String_type::length_tree(Gogo*, tree string)
2168 {
2169 tree string_type = TREE_TYPE(string);
2170 gcc_assert(TREE_CODE(string_type) == RECORD_TYPE);
2171 tree length_field = DECL_CHAIN(TYPE_FIELDS(string_type));
2172 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(length_field)),
2173 "__length") == 0);
2174 return fold_build3(COMPONENT_REF, integer_type_node, string,
2175 length_field, NULL_TREE);
2176 }
2177
2178 // Return a tree for a pointer to the bytes of STRING.
2179
2180 tree
2181 String_type::bytes_tree(Gogo*, tree string)
2182 {
2183 tree string_type = TREE_TYPE(string);
2184 gcc_assert(TREE_CODE(string_type) == RECORD_TYPE);
2185 tree bytes_field = TYPE_FIELDS(string_type);
2186 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(bytes_field)),
2187 "__data") == 0);
2188 return fold_build3(COMPONENT_REF, TREE_TYPE(bytes_field), string,
2189 bytes_field, NULL_TREE);
2190 }
2191
2192 // We initialize a string to { NULL, 0 }.
2193
2194 tree
2195 String_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
2196 {
2197 if (is_clear)
2198 return NULL_TREE;
2199
2200 gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
2201
2202 VEC(constructor_elt, gc)* init = VEC_alloc(constructor_elt, gc, 2);
2203
2204 for (tree field = TYPE_FIELDS(type_tree);
2205 field != NULL_TREE;
2206 field = DECL_CHAIN(field))
2207 {
2208 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
2209 elt->index = field;
2210 elt->value = fold_convert(TREE_TYPE(field), size_zero_node);
2211 }
2212
2213 tree ret = build_constructor(type_tree, init);
2214 TREE_CONSTANT(ret) = 1;
2215 return ret;
2216 }
2217
2218 // The type descriptor for the string type.
2219
2220 Expression*
2221 String_type::do_type_descriptor(Gogo* gogo, Named_type* name)
2222 {
2223 if (name != NULL)
2224 return this->plain_type_descriptor(gogo, RUNTIME_TYPE_KIND_STRING, name);
2225 else
2226 {
2227 Named_object* no = gogo->lookup_global("string");
2228 gcc_assert(no != NULL);
2229 return Type::type_descriptor(gogo, no->type_value());
2230 }
2231 }
2232
2233 // We should not be asked for the reflection string of a basic type.
2234
2235 void
2236 String_type::do_reflection(Gogo*, std::string* ret) const
2237 {
2238 ret->append("string");
2239 }
2240
2241 // Mangled name of a string type.
2242
2243 void
2244 String_type::do_mangled_name(Gogo*, std::string* ret) const
2245 {
2246 ret->push_back('z');
2247 }
2248
2249 // Make a string type.
2250
2251 Type*
2252 Type::make_string_type()
2253 {
2254 static String_type string_type;
2255 return &string_type;
2256 }
2257
2258 // The named type "string".
2259
2260 static Named_type* named_string_type;
2261
2262 // Get the named type "string".
2263
2264 Named_type*
2265 Type::lookup_string_type()
2266 {
2267 return named_string_type;
2268 }
2269
2270 // Make the named type string.
2271
2272 Named_type*
2273 Type::make_named_string_type()
2274 {
2275 Type* string_type = Type::make_string_type();
2276 Named_object* named_object = Named_object::make_type("string", NULL,
2277 string_type,
2278 BUILTINS_LOCATION);
2279 Named_type* named_type = named_object->type_value();
2280 named_string_type = named_type;
2281 return named_type;
2282 }
2283
2284 // The sink type. This is the type of the blank identifier _. Any
2285 // type may be assigned to it.
2286
2287 class Sink_type : public Type
2288 {
2289 public:
2290 Sink_type()
2291 : Type(TYPE_SINK)
2292 { }
2293
2294 protected:
2295 tree
2296 do_get_tree(Gogo*)
2297 { gcc_unreachable(); }
2298
2299 tree
2300 do_get_init_tree(Gogo*, tree, bool)
2301 { gcc_unreachable(); }
2302
2303 Expression*
2304 do_type_descriptor(Gogo*, Named_type*)
2305 { gcc_unreachable(); }
2306
2307 void
2308 do_reflection(Gogo*, std::string*) const
2309 { gcc_unreachable(); }
2310
2311 void
2312 do_mangled_name(Gogo*, std::string*) const
2313 { gcc_unreachable(); }
2314 };
2315
2316 // Make the sink type.
2317
2318 Type*
2319 Type::make_sink_type()
2320 {
2321 static Sink_type sink_type;
2322 return &sink_type;
2323 }
2324
2325 // Class Function_type.
2326
2327 // Traversal.
2328
2329 int
2330 Function_type::do_traverse(Traverse* traverse)
2331 {
2332 if (this->receiver_ != NULL
2333 && Type::traverse(this->receiver_->type(), traverse) == TRAVERSE_EXIT)
2334 return TRAVERSE_EXIT;
2335 if (this->parameters_ != NULL
2336 && this->parameters_->traverse(traverse) == TRAVERSE_EXIT)
2337 return TRAVERSE_EXIT;
2338 if (this->results_ != NULL
2339 && this->results_->traverse(traverse) == TRAVERSE_EXIT)
2340 return TRAVERSE_EXIT;
2341 return TRAVERSE_CONTINUE;
2342 }
2343
2344 // Returns whether T is a valid redeclaration of this type. If this
2345 // returns false, and REASON is not NULL, *REASON may be set to a
2346 // brief explanation of why it returned false.
2347
2348 bool
2349 Function_type::is_valid_redeclaration(const Function_type* t,
2350 std::string* reason) const
2351 {
2352 if (!this->is_identical(t, false, true, reason))
2353 return false;
2354
2355 // A redeclaration of a function is required to use the same names
2356 // for the receiver and parameters.
2357 if (this->receiver() != NULL
2358 && this->receiver()->name() != t->receiver()->name()
2359 && this->receiver()->name() != Import::import_marker
2360 && t->receiver()->name() != Import::import_marker)
2361 {
2362 if (reason != NULL)
2363 *reason = "receiver name changed";
2364 return false;
2365 }
2366
2367 const Typed_identifier_list* parms1 = this->parameters();
2368 const Typed_identifier_list* parms2 = t->parameters();
2369 if (parms1 != NULL)
2370 {
2371 Typed_identifier_list::const_iterator p1 = parms1->begin();
2372 for (Typed_identifier_list::const_iterator p2 = parms2->begin();
2373 p2 != parms2->end();
2374 ++p2, ++p1)
2375 {
2376 if (p1->name() != p2->name()
2377 && p1->name() != Import::import_marker
2378 && p2->name() != Import::import_marker)
2379 {
2380 if (reason != NULL)
2381 *reason = "parameter name changed";
2382 return false;
2383 }
2384
2385 // This is called at parse time, so we may have unknown
2386 // types.
2387 Type* t1 = p1->type()->forwarded();
2388 Type* t2 = p2->type()->forwarded();
2389 if (t1 != t2
2390 && t1->forward_declaration_type() != NULL
2391 && (t2->forward_declaration_type() == NULL
2392 || (t1->forward_declaration_type()->named_object()
2393 != t2->forward_declaration_type()->named_object())))
2394 return false;
2395 }
2396 }
2397
2398 const Typed_identifier_list* results1 = this->results();
2399 const Typed_identifier_list* results2 = t->results();
2400 if (results1 != NULL)
2401 {
2402 Typed_identifier_list::const_iterator res1 = results1->begin();
2403 for (Typed_identifier_list::const_iterator res2 = results2->begin();
2404 res2 != results2->end();
2405 ++res2, ++res1)
2406 {
2407 if (res1->name() != res2->name()
2408 && res1->name() != Import::import_marker
2409 && res2->name() != Import::import_marker)
2410 {
2411 if (reason != NULL)
2412 *reason = "result name changed";
2413 return false;
2414 }
2415
2416 // This is called at parse time, so we may have unknown
2417 // types.
2418 Type* t1 = res1->type()->forwarded();
2419 Type* t2 = res2->type()->forwarded();
2420 if (t1 != t2
2421 && t1->forward_declaration_type() != NULL
2422 && (t2->forward_declaration_type() == NULL
2423 || (t1->forward_declaration_type()->named_object()
2424 != t2->forward_declaration_type()->named_object())))
2425 return false;
2426 }
2427 }
2428
2429 return true;
2430 }
2431
2432 // Check whether T is the same as this type.
2433
2434 bool
2435 Function_type::is_identical(const Function_type* t, bool ignore_receiver,
2436 bool errors_are_identical,
2437 std::string* reason) const
2438 {
2439 if (!ignore_receiver)
2440 {
2441 const Typed_identifier* r1 = this->receiver();
2442 const Typed_identifier* r2 = t->receiver();
2443 if ((r1 != NULL) != (r2 != NULL))
2444 {
2445 if (reason != NULL)
2446 *reason = _("different receiver types");
2447 return false;
2448 }
2449 if (r1 != NULL)
2450 {
2451 if (!Type::are_identical(r1->type(), r2->type(), errors_are_identical,
2452 reason))
2453 {
2454 if (reason != NULL && !reason->empty())
2455 *reason = "receiver: " + *reason;
2456 return false;
2457 }
2458 }
2459 }
2460
2461 const Typed_identifier_list* parms1 = this->parameters();
2462 const Typed_identifier_list* parms2 = t->parameters();
2463 if ((parms1 != NULL) != (parms2 != NULL))
2464 {
2465 if (reason != NULL)
2466 *reason = _("different number of parameters");
2467 return false;
2468 }
2469 if (parms1 != NULL)
2470 {
2471 Typed_identifier_list::const_iterator p1 = parms1->begin();
2472 for (Typed_identifier_list::const_iterator p2 = parms2->begin();
2473 p2 != parms2->end();
2474 ++p2, ++p1)
2475 {
2476 if (p1 == parms1->end())
2477 {
2478 if (reason != NULL)
2479 *reason = _("different number of parameters");
2480 return false;
2481 }
2482
2483 if (!Type::are_identical(p1->type(), p2->type(),
2484 errors_are_identical, NULL))
2485 {
2486 if (reason != NULL)
2487 *reason = _("different parameter types");
2488 return false;
2489 }
2490 }
2491 if (p1 != parms1->end())
2492 {
2493 if (reason != NULL)
2494 *reason = _("different number of parameters");
2495 return false;
2496 }
2497 }
2498
2499 if (this->is_varargs() != t->is_varargs())
2500 {
2501 if (reason != NULL)
2502 *reason = _("different varargs");
2503 return false;
2504 }
2505
2506 const Typed_identifier_list* results1 = this->results();
2507 const Typed_identifier_list* results2 = t->results();
2508 if ((results1 != NULL) != (results2 != NULL))
2509 {
2510 if (reason != NULL)
2511 *reason = _("different number of results");
2512 return false;
2513 }
2514 if (results1 != NULL)
2515 {
2516 Typed_identifier_list::const_iterator res1 = results1->begin();
2517 for (Typed_identifier_list::const_iterator res2 = results2->begin();
2518 res2 != results2->end();
2519 ++res2, ++res1)
2520 {
2521 if (res1 == results1->end())
2522 {
2523 if (reason != NULL)
2524 *reason = _("different number of results");
2525 return false;
2526 }
2527
2528 if (!Type::are_identical(res1->type(), res2->type(),
2529 errors_are_identical, NULL))
2530 {
2531 if (reason != NULL)
2532 *reason = _("different result types");
2533 return false;
2534 }
2535 }
2536 if (res1 != results1->end())
2537 {
2538 if (reason != NULL)
2539 *reason = _("different number of results");
2540 return false;
2541 }
2542 }
2543
2544 return true;
2545 }
2546
2547 // Hash code.
2548
2549 unsigned int
2550 Function_type::do_hash_for_method(Gogo* gogo) const
2551 {
2552 unsigned int ret = 0;
2553 // We ignore the receiver type for hash codes, because we need to
2554 // get the same hash code for a method in an interface and a method
2555 // declared for a type. The former will not have a receiver.
2556 if (this->parameters_ != NULL)
2557 {
2558 int shift = 1;
2559 for (Typed_identifier_list::const_iterator p = this->parameters_->begin();
2560 p != this->parameters_->end();
2561 ++p, ++shift)
2562 ret += p->type()->hash_for_method(gogo) << shift;
2563 }
2564 if (this->results_ != NULL)
2565 {
2566 int shift = 2;
2567 for (Typed_identifier_list::const_iterator p = this->results_->begin();
2568 p != this->results_->end();
2569 ++p, ++shift)
2570 ret += p->type()->hash_for_method(gogo) << shift;
2571 }
2572 if (this->is_varargs_)
2573 ret += 1;
2574 ret <<= 4;
2575 return ret;
2576 }
2577
2578 // Get the tree for a function type.
2579
2580 tree
2581 Function_type::do_get_tree(Gogo* gogo)
2582 {
2583 tree args = NULL_TREE;
2584 tree* pp = &args;
2585
2586 if (this->receiver_ != NULL)
2587 {
2588 Type* rtype = this->receiver_->type();
2589 tree ptype = rtype->get_tree(gogo);
2590 if (ptype == error_mark_node)
2591 return error_mark_node;
2592
2593 // We always pass the address of the receiver parameter, in
2594 // order to make interface calls work with unknown types.
2595 if (rtype->points_to() == NULL)
2596 ptype = build_pointer_type(ptype);
2597
2598 *pp = tree_cons (NULL_TREE, ptype, NULL_TREE);
2599 pp = &TREE_CHAIN (*pp);
2600 }
2601
2602 if (this->parameters_ != NULL)
2603 {
2604 for (Typed_identifier_list::const_iterator p = this->parameters_->begin();
2605 p != this->parameters_->end();
2606 ++p)
2607 {
2608 tree ptype = p->type()->get_tree(gogo);
2609 if (ptype == error_mark_node)
2610 return error_mark_node;
2611 *pp = tree_cons (NULL_TREE, ptype, NULL_TREE);
2612 pp = &TREE_CHAIN (*pp);
2613 }
2614 }
2615
2616 // Varargs is handled entirely at the Go level. At the tree level,
2617 // functions are not varargs.
2618 *pp = void_list_node;
2619
2620 tree result;
2621 if (this->results_ == NULL)
2622 result = void_type_node;
2623 else if (this->results_->size() == 1)
2624 result = this->results_->begin()->type()->get_tree(gogo);
2625 else
2626 {
2627 result = make_node(RECORD_TYPE);
2628 tree field_trees = NULL_TREE;
2629 tree* pp = &field_trees;
2630 for (Typed_identifier_list::const_iterator p = this->results_->begin();
2631 p != this->results_->end();
2632 ++p)
2633 {
2634 const std::string name = (p->name().empty()
2635 ? "UNNAMED"
2636 : Gogo::unpack_hidden_name(p->name()));
2637 tree name_tree = get_identifier_with_length(name.data(),
2638 name.length());
2639 tree field_type_tree = p->type()->get_tree(gogo);
2640 if (field_type_tree == error_mark_node)
2641 return error_mark_node;
2642 tree field = build_decl(this->location_, FIELD_DECL, name_tree,
2643 field_type_tree);
2644 DECL_CONTEXT(field) = result;
2645 *pp = field;
2646 pp = &DECL_CHAIN(field);
2647 }
2648 TYPE_FIELDS(result) = field_trees;
2649 layout_type(result);
2650 }
2651
2652 if (result == error_mark_node)
2653 return error_mark_node;
2654
2655 tree fntype = build_function_type(result, args);
2656 if (fntype == error_mark_node)
2657 return fntype;
2658
2659 return build_pointer_type(fntype);
2660 }
2661
2662 // Functions are initialized to NULL.
2663
2664 tree
2665 Function_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
2666 {
2667 if (is_clear)
2668 return NULL;
2669 return fold_convert(type_tree, null_pointer_node);
2670 }
2671
2672 // The type of a function type descriptor.
2673
2674 Type*
2675 Function_type::make_function_type_descriptor_type()
2676 {
2677 static Type* ret;
2678 if (ret == NULL)
2679 {
2680 Type* tdt = Type::make_type_descriptor_type();
2681 Type* ptdt = Type::make_type_descriptor_ptr_type();
2682
2683 Type* bool_type = Type::lookup_bool_type();
2684
2685 Type* slice_type = Type::make_array_type(ptdt, NULL);
2686
2687 Struct_type* s = Type::make_builtin_struct_type(4,
2688 "", tdt,
2689 "dotdotdot", bool_type,
2690 "in", slice_type,
2691 "out", slice_type);
2692
2693 ret = Type::make_builtin_named_type("FuncType", s);
2694 }
2695
2696 return ret;
2697 }
2698
2699 // The type descriptor for a function type.
2700
2701 Expression*
2702 Function_type::do_type_descriptor(Gogo* gogo, Named_type* name)
2703 {
2704 source_location bloc = BUILTINS_LOCATION;
2705
2706 Type* ftdt = Function_type::make_function_type_descriptor_type();
2707
2708 const Struct_field_list* fields = ftdt->struct_type()->fields();
2709
2710 Expression_list* vals = new Expression_list();
2711 vals->reserve(4);
2712
2713 Struct_field_list::const_iterator p = fields->begin();
2714 gcc_assert(p->field_name() == "commonType");
2715 vals->push_back(this->type_descriptor_constructor(gogo,
2716 RUNTIME_TYPE_KIND_FUNC,
2717 name, NULL, true));
2718
2719 ++p;
2720 gcc_assert(p->field_name() == "dotdotdot");
2721 vals->push_back(Expression::make_boolean(this->is_varargs(), bloc));
2722
2723 ++p;
2724 gcc_assert(p->field_name() == "in");
2725 vals->push_back(this->type_descriptor_params(p->type(), this->receiver(),
2726 this->parameters()));
2727
2728 ++p;
2729 gcc_assert(p->field_name() == "out");
2730 vals->push_back(this->type_descriptor_params(p->type(), NULL,
2731 this->results()));
2732
2733 ++p;
2734 gcc_assert(p == fields->end());
2735
2736 return Expression::make_struct_composite_literal(ftdt, vals, bloc);
2737 }
2738
2739 // Return a composite literal for the parameters or results of a type
2740 // descriptor.
2741
2742 Expression*
2743 Function_type::type_descriptor_params(Type* params_type,
2744 const Typed_identifier* receiver,
2745 const Typed_identifier_list* params)
2746 {
2747 source_location bloc = BUILTINS_LOCATION;
2748
2749 if (receiver == NULL && params == NULL)
2750 return Expression::make_slice_composite_literal(params_type, NULL, bloc);
2751
2752 Expression_list* vals = new Expression_list();
2753 vals->reserve((params == NULL ? 0 : params->size())
2754 + (receiver != NULL ? 1 : 0));
2755
2756 if (receiver != NULL)
2757 {
2758 Type* rtype = receiver->type();
2759 // The receiver is always passed as a pointer. FIXME: Is this
2760 // right? Should that fact affect the type descriptor?
2761 if (rtype->points_to() == NULL)
2762 rtype = Type::make_pointer_type(rtype);
2763 vals->push_back(Expression::make_type_descriptor(rtype, bloc));
2764 }
2765
2766 if (params != NULL)
2767 {
2768 for (Typed_identifier_list::const_iterator p = params->begin();
2769 p != params->end();
2770 ++p)
2771 vals->push_back(Expression::make_type_descriptor(p->type(), bloc));
2772 }
2773
2774 return Expression::make_slice_composite_literal(params_type, vals, bloc);
2775 }
2776
2777 // The reflection string.
2778
2779 void
2780 Function_type::do_reflection(Gogo* gogo, std::string* ret) const
2781 {
2782 // FIXME: Turn this off until we straighten out the type of the
2783 // struct field used in a go statement which calls a method.
2784 // gcc_assert(this->receiver_ == NULL);
2785
2786 ret->append("func");
2787
2788 if (this->receiver_ != NULL)
2789 {
2790 ret->push_back('(');
2791 this->append_reflection(this->receiver_->type(), gogo, ret);
2792 ret->push_back(')');
2793 }
2794
2795 ret->push_back('(');
2796 const Typed_identifier_list* params = this->parameters();
2797 if (params != NULL)
2798 {
2799 bool is_varargs = this->is_varargs_;
2800 for (Typed_identifier_list::const_iterator p = params->begin();
2801 p != params->end();
2802 ++p)
2803 {
2804 if (p != params->begin())
2805 ret->append(", ");
2806 if (!is_varargs || p + 1 != params->end())
2807 this->append_reflection(p->type(), gogo, ret);
2808 else
2809 {
2810 ret->append("...");
2811 this->append_reflection(p->type()->array_type()->element_type(),
2812 gogo, ret);
2813 }
2814 }
2815 }
2816 ret->push_back(')');
2817
2818 const Typed_identifier_list* results = this->results();
2819 if (results != NULL && !results->empty())
2820 {
2821 if (results->size() == 1)
2822 ret->push_back(' ');
2823 else
2824 ret->append(" (");
2825 for (Typed_identifier_list::const_iterator p = results->begin();
2826 p != results->end();
2827 ++p)
2828 {
2829 if (p != results->begin())
2830 ret->append(", ");
2831 this->append_reflection(p->type(), gogo, ret);
2832 }
2833 if (results->size() > 1)
2834 ret->push_back(')');
2835 }
2836 }
2837
2838 // Mangled name.
2839
2840 void
2841 Function_type::do_mangled_name(Gogo* gogo, std::string* ret) const
2842 {
2843 ret->push_back('F');
2844
2845 if (this->receiver_ != NULL)
2846 {
2847 ret->push_back('m');
2848 this->append_mangled_name(this->receiver_->type(), gogo, ret);
2849 }
2850
2851 const Typed_identifier_list* params = this->parameters();
2852 if (params != NULL)
2853 {
2854 ret->push_back('p');
2855 for (Typed_identifier_list::const_iterator p = params->begin();
2856 p != params->end();
2857 ++p)
2858 this->append_mangled_name(p->type(), gogo, ret);
2859 if (this->is_varargs_)
2860 ret->push_back('V');
2861 ret->push_back('e');
2862 }
2863
2864 const Typed_identifier_list* results = this->results();
2865 if (results != NULL)
2866 {
2867 ret->push_back('r');
2868 for (Typed_identifier_list::const_iterator p = results->begin();
2869 p != results->end();
2870 ++p)
2871 this->append_mangled_name(p->type(), gogo, ret);
2872 ret->push_back('e');
2873 }
2874
2875 ret->push_back('e');
2876 }
2877
2878 // Export a function type.
2879
2880 void
2881 Function_type::do_export(Export* exp) const
2882 {
2883 // We don't write out the receiver. The only function types which
2884 // should have a receiver are the ones associated with explicitly
2885 // defined methods. For those the receiver type is written out by
2886 // Function::export_func.
2887
2888 exp->write_c_string("(");
2889 bool first = true;
2890 if (this->parameters_ != NULL)
2891 {
2892 bool is_varargs = this->is_varargs_;
2893 for (Typed_identifier_list::const_iterator p =
2894 this->parameters_->begin();
2895 p != this->parameters_->end();
2896 ++p)
2897 {
2898 if (first)
2899 first = false;
2900 else
2901 exp->write_c_string(", ");
2902 if (!is_varargs || p + 1 != this->parameters_->end())
2903 exp->write_type(p->type());
2904 else
2905 {
2906 exp->write_c_string("...");
2907 exp->write_type(p->type()->array_type()->element_type());
2908 }
2909 }
2910 }
2911 exp->write_c_string(")");
2912
2913 const Typed_identifier_list* results = this->results_;
2914 if (results != NULL)
2915 {
2916 exp->write_c_string(" ");
2917 if (results->size() == 1)
2918 exp->write_type(results->begin()->type());
2919 else
2920 {
2921 first = true;
2922 exp->write_c_string("(");
2923 for (Typed_identifier_list::const_iterator p = results->begin();
2924 p != results->end();
2925 ++p)
2926 {
2927 if (first)
2928 first = false;
2929 else
2930 exp->write_c_string(", ");
2931 exp->write_type(p->type());
2932 }
2933 exp->write_c_string(")");
2934 }
2935 }
2936 }
2937
2938 // Import a function type.
2939
2940 Function_type*
2941 Function_type::do_import(Import* imp)
2942 {
2943 imp->require_c_string("(");
2944 Typed_identifier_list* parameters;
2945 bool is_varargs = false;
2946 if (imp->peek_char() == ')')
2947 parameters = NULL;
2948 else
2949 {
2950 parameters = new Typed_identifier_list();
2951 while (true)
2952 {
2953 if (imp->match_c_string("..."))
2954 {
2955 imp->advance(3);
2956 is_varargs = true;
2957 }
2958
2959 Type* ptype = imp->read_type();
2960 if (is_varargs)
2961 ptype = Type::make_array_type(ptype, NULL);
2962 parameters->push_back(Typed_identifier(Import::import_marker,
2963 ptype, imp->location()));
2964 if (imp->peek_char() != ',')
2965 break;
2966 gcc_assert(!is_varargs);
2967 imp->require_c_string(", ");
2968 }
2969 }
2970 imp->require_c_string(")");
2971
2972 Typed_identifier_list* results;
2973 if (imp->peek_char() != ' ')
2974 results = NULL;
2975 else
2976 {
2977 imp->advance(1);
2978 results = new Typed_identifier_list;
2979 if (imp->peek_char() != '(')
2980 {
2981 Type* rtype = imp->read_type();
2982 results->push_back(Typed_identifier(Import::import_marker, rtype,
2983 imp->location()));
2984 }
2985 else
2986 {
2987 imp->advance(1);
2988 while (true)
2989 {
2990 Type* rtype = imp->read_type();
2991 results->push_back(Typed_identifier(Import::import_marker,
2992 rtype, imp->location()));
2993 if (imp->peek_char() != ',')
2994 break;
2995 imp->require_c_string(", ");
2996 }
2997 imp->require_c_string(")");
2998 }
2999 }
3000
3001 Function_type* ret = Type::make_function_type(NULL, parameters, results,
3002 imp->location());
3003 if (is_varargs)
3004 ret->set_is_varargs();
3005 return ret;
3006 }
3007
3008 // Make a copy of a function type without a receiver.
3009
3010 Function_type*
3011 Function_type::copy_without_receiver() const
3012 {
3013 gcc_assert(this->is_method());
3014 Function_type *ret = Type::make_function_type(NULL, this->parameters_,
3015 this->results_,
3016 this->location_);
3017 if (this->is_varargs())
3018 ret->set_is_varargs();
3019 if (this->is_builtin())
3020 ret->set_is_builtin();
3021 return ret;
3022 }
3023
3024 // Make a copy of a function type with a receiver.
3025
3026 Function_type*
3027 Function_type::copy_with_receiver(Type* receiver_type) const
3028 {
3029 gcc_assert(!this->is_method());
3030 Typed_identifier* receiver = new Typed_identifier("", receiver_type,
3031 this->location_);
3032 return Type::make_function_type(receiver, this->parameters_,
3033 this->results_, this->location_);
3034 }
3035
3036 // Make a function type.
3037
3038 Function_type*
3039 Type::make_function_type(Typed_identifier* receiver,
3040 Typed_identifier_list* parameters,
3041 Typed_identifier_list* results,
3042 source_location location)
3043 {
3044 return new Function_type(receiver, parameters, results, location);
3045 }
3046
3047 // Class Pointer_type.
3048
3049 // Traversal.
3050
3051 int
3052 Pointer_type::do_traverse(Traverse* traverse)
3053 {
3054 return Type::traverse(this->to_type_, traverse);
3055 }
3056
3057 // Hash code.
3058
3059 unsigned int
3060 Pointer_type::do_hash_for_method(Gogo* gogo) const
3061 {
3062 return this->to_type_->hash_for_method(gogo) << 4;
3063 }
3064
3065 // The tree for a pointer type.
3066
3067 tree
3068 Pointer_type::do_get_tree(Gogo* gogo)
3069 {
3070 return build_pointer_type(this->to_type_->get_tree(gogo));
3071 }
3072
3073 // Initialize a pointer type.
3074
3075 tree
3076 Pointer_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
3077 {
3078 if (is_clear)
3079 return NULL;
3080 return fold_convert(type_tree, null_pointer_node);
3081 }
3082
3083 // The type of a pointer type descriptor.
3084
3085 Type*
3086 Pointer_type::make_pointer_type_descriptor_type()
3087 {
3088 static Type* ret;
3089 if (ret == NULL)
3090 {
3091 Type* tdt = Type::make_type_descriptor_type();
3092 Type* ptdt = Type::make_type_descriptor_ptr_type();
3093
3094 Struct_type* s = Type::make_builtin_struct_type(2,
3095 "", tdt,
3096 "elem", ptdt);
3097
3098 ret = Type::make_builtin_named_type("PtrType", s);
3099 }
3100
3101 return ret;
3102 }
3103
3104 // The type descriptor for a pointer type.
3105
3106 Expression*
3107 Pointer_type::do_type_descriptor(Gogo* gogo, Named_type* name)
3108 {
3109 if (this->is_unsafe_pointer_type())
3110 {
3111 gcc_assert(name != NULL);
3112 return this->plain_type_descriptor(gogo,
3113 RUNTIME_TYPE_KIND_UNSAFE_POINTER,
3114 name);
3115 }
3116 else
3117 {
3118 source_location bloc = BUILTINS_LOCATION;
3119
3120 const Methods* methods;
3121 Type* deref = this->points_to();
3122 if (deref->named_type() != NULL)
3123 methods = deref->named_type()->methods();
3124 else if (deref->struct_type() != NULL)
3125 methods = deref->struct_type()->methods();
3126 else
3127 methods = NULL;
3128
3129 Type* ptr_tdt = Pointer_type::make_pointer_type_descriptor_type();
3130
3131 const Struct_field_list* fields = ptr_tdt->struct_type()->fields();
3132
3133 Expression_list* vals = new Expression_list();
3134 vals->reserve(2);
3135
3136 Struct_field_list::const_iterator p = fields->begin();
3137 gcc_assert(p->field_name() == "commonType");
3138 vals->push_back(this->type_descriptor_constructor(gogo,
3139 RUNTIME_TYPE_KIND_PTR,
3140 name, methods, false));
3141
3142 ++p;
3143 gcc_assert(p->field_name() == "elem");
3144 vals->push_back(Expression::make_type_descriptor(deref, bloc));
3145
3146 return Expression::make_struct_composite_literal(ptr_tdt, vals, bloc);
3147 }
3148 }
3149
3150 // Reflection string.
3151
3152 void
3153 Pointer_type::do_reflection(Gogo* gogo, std::string* ret) const
3154 {
3155 ret->push_back('*');
3156 this->append_reflection(this->to_type_, gogo, ret);
3157 }
3158
3159 // Mangled name.
3160
3161 void
3162 Pointer_type::do_mangled_name(Gogo* gogo, std::string* ret) const
3163 {
3164 ret->push_back('p');
3165 this->append_mangled_name(this->to_type_, gogo, ret);
3166 }
3167
3168 // Export.
3169
3170 void
3171 Pointer_type::do_export(Export* exp) const
3172 {
3173 exp->write_c_string("*");
3174 if (this->is_unsafe_pointer_type())
3175 exp->write_c_string("any");
3176 else
3177 exp->write_type(this->to_type_);
3178 }
3179
3180 // Import.
3181
3182 Pointer_type*
3183 Pointer_type::do_import(Import* imp)
3184 {
3185 imp->require_c_string("*");
3186 if (imp->match_c_string("any"))
3187 {
3188 imp->advance(3);
3189 return Type::make_pointer_type(Type::make_void_type());
3190 }
3191 Type* to = imp->read_type();
3192 return Type::make_pointer_type(to);
3193 }
3194
3195 // Make a pointer type.
3196
3197 Pointer_type*
3198 Type::make_pointer_type(Type* to_type)
3199 {
3200 typedef Unordered_map(Type*, Pointer_type*) Hashtable;
3201 static Hashtable pointer_types;
3202 Hashtable::const_iterator p = pointer_types.find(to_type);
3203 if (p != pointer_types.end())
3204 return p->second;
3205 Pointer_type* ret = new Pointer_type(to_type);
3206 pointer_types[to_type] = ret;
3207 return ret;
3208 }
3209
3210 // The nil type. We use a special type for nil because it is not the
3211 // same as any other type. In C term nil has type void*, but there is
3212 // no such type in Go.
3213
3214 class Nil_type : public Type
3215 {
3216 public:
3217 Nil_type()
3218 : Type(TYPE_NIL)
3219 { }
3220
3221 protected:
3222 tree
3223 do_get_tree(Gogo*)
3224 { return ptr_type_node; }
3225
3226 tree
3227 do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
3228 { return is_clear ? NULL : fold_convert(type_tree, null_pointer_node); }
3229
3230 Expression*
3231 do_type_descriptor(Gogo*, Named_type*)
3232 { gcc_unreachable(); }
3233
3234 void
3235 do_reflection(Gogo*, std::string*) const
3236 { gcc_unreachable(); }
3237
3238 void
3239 do_mangled_name(Gogo*, std::string* ret) const
3240 { ret->push_back('n'); }
3241 };
3242
3243 // Make the nil type.
3244
3245 Type*
3246 Type::make_nil_type()
3247 {
3248 static Nil_type singleton_nil_type;
3249 return &singleton_nil_type;
3250 }
3251
3252 // The type of a function call which returns multiple values. This is
3253 // really a struct, but we don't want to confuse a function call which
3254 // returns a struct with a function call which returns multiple
3255 // values.
3256
3257 class Call_multiple_result_type : public Type
3258 {
3259 public:
3260 Call_multiple_result_type(Call_expression* call)
3261 : Type(TYPE_CALL_MULTIPLE_RESULT),
3262 call_(call)
3263 { }
3264
3265 protected:
3266 bool
3267 do_has_pointer() const
3268 {
3269 gcc_assert(saw_errors());
3270 return false;
3271 }
3272
3273 tree
3274 do_get_tree(Gogo*);
3275
3276 tree
3277 do_get_init_tree(Gogo*, tree, bool)
3278 {
3279 gcc_assert(saw_errors());
3280 return error_mark_node;
3281 }
3282
3283 Expression*
3284 do_type_descriptor(Gogo*, Named_type*)
3285 {
3286 gcc_assert(saw_errors());
3287 return Expression::make_error(UNKNOWN_LOCATION);
3288 }
3289
3290 void
3291 do_reflection(Gogo*, std::string*) const
3292 { gcc_assert(saw_errors()); }
3293
3294 void
3295 do_mangled_name(Gogo*, std::string*) const
3296 { gcc_assert(saw_errors()); }
3297
3298 private:
3299 // The expression being called.
3300 Call_expression* call_;
3301 };
3302
3303 // Return the tree for a call result.
3304
3305 tree
3306 Call_multiple_result_type::do_get_tree(Gogo* gogo)
3307 {
3308 Function_type* fntype = this->call_->get_function_type();
3309 gcc_assert(fntype != NULL);
3310 const Typed_identifier_list* results = fntype->results();
3311 gcc_assert(results != NULL && results->size() > 1);
3312
3313 Struct_field_list* sfl = new Struct_field_list;
3314 for (Typed_identifier_list::const_iterator p = results->begin();
3315 p != results->end();
3316 ++p)
3317 {
3318 const std::string name = ((p->name().empty()
3319 || p->name() == Import::import_marker)
3320 ? "UNNAMED"
3321 : p->name());
3322 sfl->push_back(Struct_field(Typed_identifier(name, p->type(),
3323 this->call_->location())));
3324 }
3325 return Type::make_struct_type(sfl, this->call_->location())->get_tree(gogo);
3326 }
3327
3328 // Make a call result type.
3329
3330 Type*
3331 Type::make_call_multiple_result_type(Call_expression* call)
3332 {
3333 return new Call_multiple_result_type(call);
3334 }
3335
3336 // Class Struct_field.
3337
3338 // Get the name of a field.
3339
3340 const std::string&
3341 Struct_field::field_name() const
3342 {
3343 const std::string& name(this->typed_identifier_.name());
3344 if (!name.empty())
3345 return name;
3346 else
3347 {
3348 // This is called during parsing, before anything is lowered, so
3349 // we have to be pretty careful to avoid dereferencing an
3350 // unknown type name.
3351 Type* t = this->typed_identifier_.type();
3352 Type* dt = t;
3353 if (t->classification() == Type::TYPE_POINTER)
3354 {
3355 // Very ugly.
3356 Pointer_type* ptype = static_cast<Pointer_type*>(t);
3357 dt = ptype->points_to();
3358 }
3359 if (dt->forward_declaration_type() != NULL)
3360 return dt->forward_declaration_type()->name();
3361 else if (dt->named_type() != NULL)
3362 return dt->named_type()->name();
3363 else if (t->is_error_type() || dt->is_error_type())
3364 {
3365 static const std::string error_string = "*error*";
3366 return error_string;
3367 }
3368 else
3369 {
3370 // Avoid crashing in the erroneous case where T is named but
3371 // DT is not.
3372 gcc_assert(t != dt);
3373 if (t->forward_declaration_type() != NULL)
3374 return t->forward_declaration_type()->name();
3375 else if (t->named_type() != NULL)
3376 return t->named_type()->name();
3377 else
3378 gcc_unreachable();
3379 }
3380 }
3381 }
3382
3383 // Class Struct_type.
3384
3385 // Traversal.
3386
3387 int
3388 Struct_type::do_traverse(Traverse* traverse)
3389 {
3390 Struct_field_list* fields = this->fields_;
3391 if (fields != NULL)
3392 {
3393 for (Struct_field_list::iterator p = fields->begin();
3394 p != fields->end();
3395 ++p)
3396 {
3397 if (Type::traverse(p->type(), traverse) == TRAVERSE_EXIT)
3398 return TRAVERSE_EXIT;
3399 }
3400 }
3401 return TRAVERSE_CONTINUE;
3402 }
3403
3404 // Verify that the struct type is complete and valid.
3405
3406 bool
3407 Struct_type::do_verify()
3408 {
3409 Struct_field_list* fields = this->fields_;
3410 if (fields == NULL)
3411 return true;
3412 bool ret = true;
3413 for (Struct_field_list::iterator p = fields->begin();
3414 p != fields->end();
3415 ++p)
3416 {
3417 Type* t = p->type();
3418 if (t->is_undefined())
3419 {
3420 error_at(p->location(), "struct field type is incomplete");
3421 p->set_type(Type::make_error_type());
3422 ret = false;
3423 }
3424 else if (p->is_anonymous())
3425 {
3426 if (t->named_type() != NULL && t->points_to() != NULL)
3427 {
3428 error_at(p->location(), "embedded type may not be a pointer");
3429 p->set_type(Type::make_error_type());
3430 return false;
3431 }
3432 }
3433 }
3434 return ret;
3435 }
3436
3437 // Whether this contains a pointer.
3438
3439 bool
3440 Struct_type::do_has_pointer() const
3441 {
3442 const Struct_field_list* fields = this->fields();
3443 if (fields == NULL)
3444 return false;
3445 for (Struct_field_list::const_iterator p = fields->begin();
3446 p != fields->end();
3447 ++p)
3448 {
3449 if (p->type()->has_pointer())
3450 return true;
3451 }
3452 return false;
3453 }
3454
3455 // Whether this type is identical to T.
3456
3457 bool
3458 Struct_type::is_identical(const Struct_type* t,
3459 bool errors_are_identical) const
3460 {
3461 const Struct_field_list* fields1 = this->fields();
3462 const Struct_field_list* fields2 = t->fields();
3463 if (fields1 == NULL || fields2 == NULL)
3464 return fields1 == fields2;
3465 Struct_field_list::const_iterator pf2 = fields2->begin();
3466 for (Struct_field_list::const_iterator pf1 = fields1->begin();
3467 pf1 != fields1->end();
3468 ++pf1, ++pf2)
3469 {
3470 if (pf2 == fields2->end())
3471 return false;
3472 if (pf1->field_name() != pf2->field_name())
3473 return false;
3474 if (pf1->is_anonymous() != pf2->is_anonymous()
3475 || !Type::are_identical(pf1->type(), pf2->type(),
3476 errors_are_identical, NULL))
3477 return false;
3478 if (!pf1->has_tag())
3479 {
3480 if (pf2->has_tag())
3481 return false;
3482 }
3483 else
3484 {
3485 if (!pf2->has_tag())
3486 return false;
3487 if (pf1->tag() != pf2->tag())
3488 return false;
3489 }
3490 }
3491 if (pf2 != fields2->end())
3492 return false;
3493 return true;
3494 }
3495
3496 // Whether this struct type has any hidden fields.
3497
3498 bool
3499 Struct_type::struct_has_hidden_fields(const Named_type* within,
3500 std::string* reason) const
3501 {
3502 const Struct_field_list* fields = this->fields();
3503 if (fields == NULL)
3504 return false;
3505 const Package* within_package = (within == NULL
3506 ? NULL
3507 : within->named_object()->package());
3508 for (Struct_field_list::const_iterator pf = fields->begin();
3509 pf != fields->end();
3510 ++pf)
3511 {
3512 if (within_package != NULL
3513 && !pf->is_anonymous()
3514 && Gogo::is_hidden_name(pf->field_name()))
3515 {
3516 if (reason != NULL)
3517 {
3518 std::string within_name = within->named_object()->message_name();
3519 std::string name = Gogo::message_name(pf->field_name());
3520 size_t bufsize = 200 + within_name.length() + name.length();
3521 char* buf = new char[bufsize];
3522 snprintf(buf, bufsize,
3523 _("implicit assignment of %s%s%s hidden field %s%s%s"),
3524 open_quote, within_name.c_str(), close_quote,
3525 open_quote, name.c_str(), close_quote);
3526 reason->assign(buf);
3527 delete[] buf;
3528 }
3529 return true;
3530 }
3531
3532 if (pf->type()->has_hidden_fields(within, reason))
3533 return true;
3534 }
3535
3536 return false;
3537 }
3538
3539 // Hash code.
3540
3541 unsigned int
3542 Struct_type::do_hash_for_method(Gogo* gogo) const
3543 {
3544 unsigned int ret = 0;
3545 if (this->fields() != NULL)
3546 {
3547 for (Struct_field_list::const_iterator pf = this->fields()->begin();
3548 pf != this->fields()->end();
3549 ++pf)
3550 ret = (ret << 1) + pf->type()->hash_for_method(gogo);
3551 }
3552 return ret <<= 2;
3553 }
3554
3555 // Find the local field NAME.
3556
3557 const Struct_field*
3558 Struct_type::find_local_field(const std::string& name,
3559 unsigned int *pindex) const
3560 {
3561 const Struct_field_list* fields = this->fields_;
3562 if (fields == NULL)
3563 return NULL;
3564 unsigned int i = 0;
3565 for (Struct_field_list::const_iterator pf = fields->begin();
3566 pf != fields->end();
3567 ++pf, ++i)
3568 {
3569 if (pf->field_name() == name)
3570 {
3571 if (pindex != NULL)
3572 *pindex = i;
3573 return &*pf;
3574 }
3575 }
3576 return NULL;
3577 }
3578
3579 // Return an expression for field NAME in STRUCT_EXPR, or NULL.
3580
3581 Field_reference_expression*
3582 Struct_type::field_reference(Expression* struct_expr, const std::string& name,
3583 source_location location) const
3584 {
3585 unsigned int depth;
3586 return this->field_reference_depth(struct_expr, name, location, &depth);
3587 }
3588
3589 // Return an expression for a field, along with the depth at which it
3590 // was found.
3591
3592 Field_reference_expression*
3593 Struct_type::field_reference_depth(Expression* struct_expr,
3594 const std::string& name,
3595 source_location location,
3596 unsigned int* depth) const
3597 {
3598 const Struct_field_list* fields = this->fields_;
3599 if (fields == NULL)
3600 return NULL;
3601
3602 // Look for a field with this name.
3603 unsigned int i = 0;
3604 for (Struct_field_list::const_iterator pf = fields->begin();
3605 pf != fields->end();
3606 ++pf, ++i)
3607 {
3608 if (pf->field_name() == name)
3609 {
3610 *depth = 0;
3611 return Expression::make_field_reference(struct_expr, i, location);
3612 }
3613 }
3614
3615 // Look for an anonymous field which contains a field with this
3616 // name.
3617 unsigned int found_depth = 0;
3618 Field_reference_expression* ret = NULL;
3619 i = 0;
3620 for (Struct_field_list::const_iterator pf = fields->begin();
3621 pf != fields->end();
3622 ++pf, ++i)
3623 {
3624 if (!pf->is_anonymous())
3625 continue;
3626
3627 Struct_type* st = pf->type()->deref()->struct_type();
3628 if (st == NULL)
3629 continue;
3630
3631 // Look for a reference using a NULL struct expression. If we
3632 // find one, fill in the struct expression with a reference to
3633 // this field.
3634 unsigned int subdepth;
3635 Field_reference_expression* sub = st->field_reference_depth(NULL, name,
3636 location,
3637 &subdepth);
3638 if (sub == NULL)
3639 continue;
3640
3641 if (ret == NULL || subdepth < found_depth)
3642 {
3643 if (ret != NULL)
3644 delete ret;
3645 ret = sub;
3646 found_depth = subdepth;
3647 Expression* here = Expression::make_field_reference(struct_expr, i,
3648 location);
3649 if (pf->type()->points_to() != NULL)
3650 here = Expression::make_unary(OPERATOR_MULT, here, location);
3651 while (sub->expr() != NULL)
3652 {
3653 sub = sub->expr()->deref()->field_reference_expression();
3654 gcc_assert(sub != NULL);
3655 }
3656 sub->set_struct_expression(here);
3657 }
3658 else if (subdepth > found_depth)
3659 delete sub;
3660 else
3661 {
3662 // We do not handle ambiguity here--it should be handled by
3663 // Type::bind_field_or_method.
3664 delete sub;
3665 found_depth = 0;
3666 ret = NULL;
3667 }
3668 }
3669
3670 if (ret != NULL)
3671 *depth = found_depth + 1;
3672
3673 return ret;
3674 }
3675
3676 // Return the total number of fields, including embedded fields.
3677
3678 unsigned int
3679 Struct_type::total_field_count() const
3680 {
3681 if (this->fields_ == NULL)
3682 return 0;
3683 unsigned int ret = 0;
3684 for (Struct_field_list::const_iterator pf = this->fields_->begin();
3685 pf != this->fields_->end();
3686 ++pf)
3687 {
3688 if (!pf->is_anonymous() || pf->type()->deref()->struct_type() == NULL)
3689 ++ret;
3690 else
3691 ret += pf->type()->struct_type()->total_field_count();
3692 }
3693 return ret;
3694 }
3695
3696 // Return whether NAME is an unexported field, for better error reporting.
3697
3698 bool
3699 Struct_type::is_unexported_local_field(Gogo* gogo,
3700 const std::string& name) const
3701 {
3702 const Struct_field_list* fields = this->fields_;
3703 if (fields != NULL)
3704 {
3705 for (Struct_field_list::const_iterator pf = fields->begin();
3706 pf != fields->end();
3707 ++pf)
3708 {
3709 const std::string& field_name(pf->field_name());
3710 if (Gogo::is_hidden_name(field_name)
3711 && name == Gogo::unpack_hidden_name(field_name)
3712 && gogo->pack_hidden_name(name, false) != field_name)
3713 return true;
3714 }
3715 }
3716 return false;
3717 }
3718
3719 // Finalize the methods of an unnamed struct.
3720
3721 void
3722 Struct_type::finalize_methods(Gogo* gogo)
3723 {
3724 if (this->all_methods_ != NULL)
3725 return;
3726 Type::finalize_methods(gogo, this, this->location_, &this->all_methods_);
3727 }
3728
3729 // Return the method NAME, or NULL if there isn't one or if it is
3730 // ambiguous. Set *IS_AMBIGUOUS if the method exists but is
3731 // ambiguous.
3732
3733 Method*
3734 Struct_type::method_function(const std::string& name, bool* is_ambiguous) const
3735 {
3736 return Type::method_function(this->all_methods_, name, is_ambiguous);
3737 }
3738
3739 // Get the tree for a struct type.
3740
3741 tree
3742 Struct_type::do_get_tree(Gogo* gogo)
3743 {
3744 tree type = make_node(RECORD_TYPE);
3745 return this->fill_in_tree(gogo, type);
3746 }
3747
3748 // Fill in the fields for a struct type.
3749
3750 tree
3751 Struct_type::fill_in_tree(Gogo* gogo, tree type)
3752 {
3753 tree field_trees = NULL_TREE;
3754 tree* pp = &field_trees;
3755 bool has_pointer = false;
3756 for (Struct_field_list::const_iterator p = this->fields_->begin();
3757 p != this->fields_->end();
3758 ++p)
3759 {
3760 std::string name = Gogo::unpack_hidden_name(p->field_name());
3761 tree name_tree = get_identifier_with_length(name.data(), name.length());
3762
3763 // Don't follow pointers yet, so that we don't get confused by a
3764 // pointer to an array of this struct type.
3765 tree field_type_tree;
3766 if (p->type()->points_to() != NULL || p->type()->function_type() != NULL)
3767 {
3768 field_type_tree = ptr_type_node;
3769 has_pointer = true;
3770 }
3771 else
3772 {
3773 field_type_tree = p->type()->get_tree(gogo);
3774 if (field_type_tree == error_mark_node)
3775 return error_mark_node;
3776 }
3777
3778 tree field = build_decl(p->location(), FIELD_DECL, name_tree,
3779 field_type_tree);
3780 DECL_CONTEXT(field) = type;
3781 *pp = field;
3782 pp = &DECL_CHAIN(field);
3783 }
3784
3785 TYPE_FIELDS(type) = field_trees;
3786
3787 layout_type(type);
3788
3789 if (has_pointer)
3790 {
3791 tree field = field_trees;
3792 for (Struct_field_list::const_iterator p = this->fields_->begin();
3793 p != this->fields_->end();
3794 ++p, field = DECL_CHAIN(field))
3795 {
3796 if (p->type()->points_to() != NULL
3797 || p->type()->function_type() != NULL)
3798 TREE_TYPE(field) = p->type()->get_tree(gogo);
3799 }
3800 }
3801
3802 return type;
3803 }
3804
3805 // Make sure that all structs which must be converted to the backend
3806 // representation before this one are in fact converted.
3807
3808 void
3809 Struct_type::convert_prerequisites(Gogo* gogo)
3810 {
3811 for (std::vector<Named_type*>::const_iterator p
3812 = this->prerequisites_.begin();
3813 p != this->prerequisites_.end();
3814 ++p)
3815 (*p)->get_tree(gogo);
3816 }
3817
3818 // Initialize struct fields.
3819
3820 tree
3821 Struct_type::do_get_init_tree(Gogo* gogo, tree type_tree, bool is_clear)
3822 {
3823 if (this->fields_ == NULL || this->fields_->empty())
3824 {
3825 if (is_clear)
3826 return NULL;
3827 else
3828 {
3829 tree ret = build_constructor(type_tree,
3830 VEC_alloc(constructor_elt, gc, 0));
3831 TREE_CONSTANT(ret) = 1;
3832 return ret;
3833 }
3834 }
3835
3836 bool is_constant = true;
3837 bool any_fields_set = false;
3838 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc,
3839 this->fields_->size());
3840
3841 tree field = TYPE_FIELDS(type_tree);
3842 for (Struct_field_list::const_iterator p = this->fields_->begin();
3843 p != this->fields_->end();
3844 ++p, field = DECL_CHAIN(field))
3845 {
3846 tree value = p->type()->get_init_tree(gogo, is_clear);
3847 if (value == error_mark_node)
3848 return error_mark_node;
3849 gcc_assert(field != NULL_TREE);
3850 if (value != NULL)
3851 {
3852 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
3853 elt->index = field;
3854 elt->value = value;
3855 any_fields_set = true;
3856 if (!TREE_CONSTANT(value))
3857 is_constant = false;
3858 }
3859 }
3860 gcc_assert(field == NULL_TREE);
3861
3862 if (!any_fields_set)
3863 {
3864 gcc_assert(is_clear);
3865 VEC_free(constructor_elt, gc, init);
3866 return NULL;
3867 }
3868
3869 tree ret = build_constructor(type_tree, init);
3870 if (is_constant)
3871 TREE_CONSTANT(ret) = 1;
3872 return ret;
3873 }
3874
3875 // The type of a struct type descriptor.
3876
3877 Type*
3878 Struct_type::make_struct_type_descriptor_type()
3879 {
3880 static Type* ret;
3881 if (ret == NULL)
3882 {
3883 Type* tdt = Type::make_type_descriptor_type();
3884 Type* ptdt = Type::make_type_descriptor_ptr_type();
3885
3886 Type* uintptr_type = Type::lookup_integer_type("uintptr");
3887 Type* string_type = Type::lookup_string_type();
3888 Type* pointer_string_type = Type::make_pointer_type(string_type);
3889
3890 Struct_type* sf =
3891 Type::make_builtin_struct_type(5,
3892 "name", pointer_string_type,
3893 "pkgPath", pointer_string_type,
3894 "typ", ptdt,
3895 "tag", pointer_string_type,
3896 "offset", uintptr_type);
3897 Type* nsf = Type::make_builtin_named_type("structField", sf);
3898
3899 Type* slice_type = Type::make_array_type(nsf, NULL);
3900
3901 Struct_type* s = Type::make_builtin_struct_type(2,
3902 "", tdt,
3903 "fields", slice_type);
3904
3905 ret = Type::make_builtin_named_type("StructType", s);
3906 }
3907
3908 return ret;
3909 }
3910
3911 // Build a type descriptor for a struct type.
3912
3913 Expression*
3914 Struct_type::do_type_descriptor(Gogo* gogo, Named_type* name)
3915 {
3916 source_location bloc = BUILTINS_LOCATION;
3917
3918 Type* stdt = Struct_type::make_struct_type_descriptor_type();
3919
3920 const Struct_field_list* fields = stdt->struct_type()->fields();
3921
3922 Expression_list* vals = new Expression_list();
3923 vals->reserve(2);
3924
3925 const Methods* methods = this->methods();
3926 // A named struct should not have methods--the methods should attach
3927 // to the named type.
3928 gcc_assert(methods == NULL || name == NULL);
3929
3930 Struct_field_list::const_iterator ps = fields->begin();
3931 gcc_assert(ps->field_name() == "commonType");
3932 vals->push_back(this->type_descriptor_constructor(gogo,
3933 RUNTIME_TYPE_KIND_STRUCT,
3934 name, methods, true));
3935
3936 ++ps;
3937 gcc_assert(ps->field_name() == "fields");
3938
3939 Expression_list* elements = new Expression_list();
3940 elements->reserve(this->fields_->size());
3941 Type* element_type = ps->type()->array_type()->element_type();
3942 for (Struct_field_list::const_iterator pf = this->fields_->begin();
3943 pf != this->fields_->end();
3944 ++pf)
3945 {
3946 const Struct_field_list* f = element_type->struct_type()->fields();
3947
3948 Expression_list* fvals = new Expression_list();
3949 fvals->reserve(5);
3950
3951 Struct_field_list::const_iterator q = f->begin();
3952 gcc_assert(q->field_name() == "name");
3953 if (pf->is_anonymous())
3954 fvals->push_back(Expression::make_nil(bloc));
3955 else
3956 {
3957 std::string n = Gogo::unpack_hidden_name(pf->field_name());
3958 Expression* s = Expression::make_string(n, bloc);
3959 fvals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
3960 }
3961
3962 ++q;
3963 gcc_assert(q->field_name() == "pkgPath");
3964 if (!Gogo::is_hidden_name(pf->field_name()))
3965 fvals->push_back(Expression::make_nil(bloc));
3966 else
3967 {
3968 std::string n = Gogo::hidden_name_prefix(pf->field_name());
3969 Expression* s = Expression::make_string(n, bloc);
3970 fvals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
3971 }
3972
3973 ++q;
3974 gcc_assert(q->field_name() == "typ");
3975 fvals->push_back(Expression::make_type_descriptor(pf->type(), bloc));
3976
3977 ++q;
3978 gcc_assert(q->field_name() == "tag");
3979 if (!pf->has_tag())
3980 fvals->push_back(Expression::make_nil(bloc));
3981 else
3982 {
3983 Expression* s = Expression::make_string(pf->tag(), bloc);
3984 fvals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
3985 }
3986
3987 ++q;
3988 gcc_assert(q->field_name() == "offset");
3989 fvals->push_back(Expression::make_struct_field_offset(this, &*pf));
3990
3991 Expression* v = Expression::make_struct_composite_literal(element_type,
3992 fvals, bloc);
3993 elements->push_back(v);
3994 }
3995
3996 vals->push_back(Expression::make_slice_composite_literal(ps->type(),
3997 elements, bloc));
3998
3999 return Expression::make_struct_composite_literal(stdt, vals, bloc);
4000 }
4001
4002 // Reflection string.
4003
4004 void
4005 Struct_type::do_reflection(Gogo* gogo, std::string* ret) const
4006 {
4007 ret->append("struct { ");
4008
4009 for (Struct_field_list::const_iterator p = this->fields_->begin();
4010 p != this->fields_->end();
4011 ++p)
4012 {
4013 if (p != this->fields_->begin())
4014 ret->append("; ");
4015 if (p->is_anonymous())
4016 ret->push_back('?');
4017 else
4018 ret->append(Gogo::unpack_hidden_name(p->field_name()));
4019 ret->push_back(' ');
4020 this->append_reflection(p->type(), gogo, ret);
4021
4022 if (p->has_tag())
4023 {
4024 const std::string& tag(p->tag());
4025 ret->append(" \"");
4026 for (std::string::const_iterator p = tag.begin();
4027 p != tag.end();
4028 ++p)
4029 {
4030 if (*p == '\0')
4031 ret->append("\\x00");
4032 else if (*p == '\n')
4033 ret->append("\\n");
4034 else if (*p == '\t')
4035 ret->append("\\t");
4036 else if (*p == '"')
4037 ret->append("\\\"");
4038 else if (*p == '\\')
4039 ret->append("\\\\");
4040 else
4041 ret->push_back(*p);
4042 }
4043 ret->push_back('"');
4044 }
4045 }
4046
4047 ret->append(" }");
4048 }
4049
4050 // Mangled name.
4051
4052 void
4053 Struct_type::do_mangled_name(Gogo* gogo, std::string* ret) const
4054 {
4055 ret->push_back('S');
4056
4057 const Struct_field_list* fields = this->fields_;
4058 if (fields != NULL)
4059 {
4060 for (Struct_field_list::const_iterator p = fields->begin();
4061 p != fields->end();
4062 ++p)
4063 {
4064 if (p->is_anonymous())
4065 ret->append("0_");
4066 else
4067 {
4068 std::string n = Gogo::unpack_hidden_name(p->field_name());
4069 char buf[20];
4070 snprintf(buf, sizeof buf, "%u_",
4071 static_cast<unsigned int>(n.length()));
4072 ret->append(buf);
4073 ret->append(n);
4074 }
4075 this->append_mangled_name(p->type(), gogo, ret);
4076 if (p->has_tag())
4077 {
4078 const std::string& tag(p->tag());
4079 std::string out;
4080 for (std::string::const_iterator p = tag.begin();
4081 p != tag.end();
4082 ++p)
4083 {
4084 if (ISALNUM(*p) || *p == '_')
4085 out.push_back(*p);
4086 else
4087 {
4088 char buf[20];
4089 snprintf(buf, sizeof buf, ".%x.",
4090 static_cast<unsigned int>(*p));
4091 out.append(buf);
4092 }
4093 }
4094 char buf[20];
4095 snprintf(buf, sizeof buf, "T%u_",
4096 static_cast<unsigned int>(out.length()));
4097 ret->append(buf);
4098 ret->append(out);
4099 }
4100 }
4101 }
4102
4103 ret->push_back('e');
4104 }
4105
4106 // Export.
4107
4108 void
4109 Struct_type::do_export(Export* exp) const
4110 {
4111 exp->write_c_string("struct { ");
4112 const Struct_field_list* fields = this->fields_;
4113 gcc_assert(fields != NULL);
4114 for (Struct_field_list::const_iterator p = fields->begin();
4115 p != fields->end();
4116 ++p)
4117 {
4118 if (p->is_anonymous())
4119 exp->write_string("? ");
4120 else
4121 {
4122 exp->write_string(p->field_name());
4123 exp->write_c_string(" ");
4124 }
4125 exp->write_type(p->type());
4126
4127 if (p->has_tag())
4128 {
4129 exp->write_c_string(" ");
4130 Expression* expr = Expression::make_string(p->tag(),
4131 BUILTINS_LOCATION);
4132 expr->export_expression(exp);
4133 delete expr;
4134 }
4135
4136 exp->write_c_string("; ");
4137 }
4138 exp->write_c_string("}");
4139 }
4140
4141 // Import.
4142
4143 Struct_type*
4144 Struct_type::do_import(Import* imp)
4145 {
4146 imp->require_c_string("struct { ");
4147 Struct_field_list* fields = new Struct_field_list;
4148 if (imp->peek_char() != '}')
4149 {
4150 while (true)
4151 {
4152 std::string name;
4153 if (imp->match_c_string("? "))
4154 imp->advance(2);
4155 else
4156 {
4157 name = imp->read_identifier();
4158 imp->require_c_string(" ");
4159 }
4160 Type* ftype = imp->read_type();
4161
4162 Struct_field sf(Typed_identifier(name, ftype, imp->location()));
4163
4164 if (imp->peek_char() == ' ')
4165 {
4166 imp->advance(1);
4167 Expression* expr = Expression::import_expression(imp);
4168 String_expression* sexpr = expr->string_expression();
4169 gcc_assert(sexpr != NULL);
4170 sf.set_tag(sexpr->val());
4171 delete sexpr;
4172 }
4173
4174 imp->require_c_string("; ");
4175 fields->push_back(sf);
4176 if (imp->peek_char() == '}')
4177 break;
4178 }
4179 }
4180 imp->require_c_string("}");
4181
4182 return Type::make_struct_type(fields, imp->location());
4183 }
4184
4185 // Make a struct type.
4186
4187 Struct_type*
4188 Type::make_struct_type(Struct_field_list* fields,
4189 source_location location)
4190 {
4191 return new Struct_type(fields, location);
4192 }
4193
4194 // Class Array_type.
4195
4196 // Whether two array types are identical.
4197
4198 bool
4199 Array_type::is_identical(const Array_type* t, bool errors_are_identical) const
4200 {
4201 if (!Type::are_identical(this->element_type(), t->element_type(),
4202 errors_are_identical, NULL))
4203 return false;
4204
4205 Expression* l1 = this->length();
4206 Expression* l2 = t->length();
4207
4208 // Slices of the same element type are identical.
4209 if (l1 == NULL && l2 == NULL)
4210 return true;
4211
4212 // Arrays of the same element type are identical if they have the
4213 // same length.
4214 if (l1 != NULL && l2 != NULL)
4215 {
4216 if (l1 == l2)
4217 return true;
4218
4219 // Try to determine the lengths. If we can't, assume the arrays
4220 // are not identical.
4221 bool ret = false;
4222 mpz_t v1;
4223 mpz_init(v1);
4224 Type* type1;
4225 mpz_t v2;
4226 mpz_init(v2);
4227 Type* type2;
4228 if (l1->integer_constant_value(true, v1, &type1)
4229 && l2->integer_constant_value(true, v2, &type2))
4230 ret = mpz_cmp(v1, v2) == 0;
4231 mpz_clear(v1);
4232 mpz_clear(v2);
4233 return ret;
4234 }
4235
4236 // Otherwise the arrays are not identical.
4237 return false;
4238 }
4239
4240 // Traversal.
4241
4242 int
4243 Array_type::do_traverse(Traverse* traverse)
4244 {
4245 if (Type::traverse(this->element_type_, traverse) == TRAVERSE_EXIT)
4246 return TRAVERSE_EXIT;
4247 if (this->length_ != NULL
4248 && Expression::traverse(&this->length_, traverse) == TRAVERSE_EXIT)
4249 return TRAVERSE_EXIT;
4250 return TRAVERSE_CONTINUE;
4251 }
4252
4253 // Check that the length is valid.
4254
4255 bool
4256 Array_type::verify_length()
4257 {
4258 if (this->length_ == NULL)
4259 return true;
4260 if (!this->length_->is_constant())
4261 {
4262 error_at(this->length_->location(), "array bound is not constant");
4263 return false;
4264 }
4265
4266 mpz_t val;
4267
4268 Type* t = this->length_->type();
4269 if (t->integer_type() != NULL)
4270 {
4271 Type* vt;
4272 mpz_init(val);
4273 if (!this->length_->integer_constant_value(true, val, &vt))
4274 {
4275 error_at(this->length_->location(),
4276 "array bound is not constant");
4277 mpz_clear(val);
4278 return false;
4279 }
4280 }
4281 else if (t->float_type() != NULL)
4282 {
4283 Type* vt;
4284 mpfr_t fval;
4285 mpfr_init(fval);
4286 if (!this->length_->float_constant_value(fval, &vt))
4287 {
4288 error_at(this->length_->location(),
4289 "array bound is not constant");
4290 mpfr_clear(fval);
4291 return false;
4292 }
4293 if (!mpfr_integer_p(fval))
4294 {
4295 error_at(this->length_->location(),
4296 "array bound truncated to integer");
4297 mpfr_clear(fval);
4298 return false;
4299 }
4300 mpz_init(val);
4301 mpfr_get_z(val, fval, GMP_RNDN);
4302 mpfr_clear(fval);
4303 }
4304 else
4305 {
4306 if (!t->is_error_type())
4307 error_at(this->length_->location(), "array bound is not numeric");
4308 return false;
4309 }
4310
4311 if (mpz_sgn(val) < 0)
4312 {
4313 error_at(this->length_->location(), "negative array bound");
4314 mpz_clear(val);
4315 return false;
4316 }
4317
4318 Type* int_type = Type::lookup_integer_type("int");
4319 int tbits = int_type->integer_type()->bits();
4320 int vbits = mpz_sizeinbase(val, 2);
4321 if (vbits + 1 > tbits)
4322 {
4323 error_at(this->length_->location(), "array bound overflows");
4324 mpz_clear(val);
4325 return false;
4326 }
4327
4328 mpz_clear(val);
4329
4330 return true;
4331 }
4332
4333 // Verify the type.
4334
4335 bool
4336 Array_type::do_verify()
4337 {
4338 if (!this->verify_length())
4339 {
4340 this->length_ = Expression::make_error(this->length_->location());
4341 return false;
4342 }
4343 return true;
4344 }
4345
4346 // Array type hash code.
4347
4348 unsigned int
4349 Array_type::do_hash_for_method(Gogo* gogo) const
4350 {
4351 // There is no very convenient way to get a hash code for the
4352 // length.
4353 return this->element_type_->hash_for_method(gogo) + 1;
4354 }
4355
4356 // See if the expression passed to make is suitable. The first
4357 // argument is required, and gives the length. An optional second
4358 // argument is permitted for the capacity.
4359
4360 bool
4361 Array_type::do_check_make_expression(Expression_list* args,
4362 source_location location)
4363 {
4364 gcc_assert(this->length_ == NULL);
4365 if (args == NULL || args->empty())
4366 {
4367 error_at(location, "length required when allocating a slice");
4368 return false;
4369 }
4370 else if (args->size() > 2)
4371 {
4372 error_at(location, "too many expressions passed to make");
4373 return false;
4374 }
4375 else
4376 {
4377 if (!Type::check_int_value(args->front(),
4378 _("bad length when making slice"), location))
4379 return false;
4380
4381 if (args->size() > 1)
4382 {
4383 if (!Type::check_int_value(args->back(),
4384 _("bad capacity when making slice"),
4385 location))
4386 return false;
4387 }
4388
4389 return true;
4390 }
4391 }
4392
4393 // Get a tree for the length of a fixed array. The length may be
4394 // computed using a function call, so we must only evaluate it once.
4395
4396 tree
4397 Array_type::get_length_tree(Gogo* gogo)
4398 {
4399 gcc_assert(this->length_ != NULL);
4400 if (this->length_tree_ == NULL_TREE)
4401 {
4402 mpz_t val;
4403 mpz_init(val);
4404 Type* t;
4405 if (this->length_->integer_constant_value(true, val, &t))
4406 {
4407 if (t == NULL)
4408 t = Type::lookup_integer_type("int");
4409 else if (t->is_abstract())
4410 t = t->make_non_abstract_type();
4411 tree tt = t->get_tree(gogo);
4412 this->length_tree_ = Expression::integer_constant_tree(val, tt);
4413 mpz_clear(val);
4414 }
4415 else
4416 {
4417 mpz_clear(val);
4418
4419 // Make up a translation context for the array length
4420 // expression. FIXME: This won't work in general.
4421 Translate_context context(gogo, NULL, NULL, NULL_TREE);
4422 tree len = this->length_->get_tree(&context);
4423 if (len != error_mark_node)
4424 {
4425 len = convert_to_integer(integer_type_node, len);
4426 len = save_expr(len);
4427 }
4428 this->length_tree_ = len;
4429 }
4430 }
4431 return this->length_tree_;
4432 }
4433
4434 // Get a tree for the type of this array. A fixed array is simply
4435 // represented as ARRAY_TYPE with the appropriate index--i.e., it is
4436 // just like an array in C. An open array is a struct with three
4437 // fields: a data pointer, the length, and the capacity.
4438
4439 tree
4440 Array_type::do_get_tree(Gogo* gogo)
4441 {
4442 if (this->length_ == NULL)
4443 {
4444 tree struct_type = gogo->slice_type_tree(void_type_node);
4445 return this->fill_in_tree(gogo, struct_type);
4446 }
4447 else
4448 {
4449 tree element_type_tree = this->element_type_->get_tree(gogo);
4450 tree length_tree = this->get_length_tree(gogo);
4451 if (element_type_tree == error_mark_node
4452 || length_tree == error_mark_node)
4453 return error_mark_node;
4454
4455 length_tree = fold_convert(sizetype, length_tree);
4456
4457 // build_index_type takes the maximum index, which is one less
4458 // than the length.
4459 tree index_type = build_index_type(fold_build2(MINUS_EXPR, sizetype,
4460 length_tree,
4461 size_one_node));
4462
4463 return build_array_type(element_type_tree, index_type);
4464 }
4465 }
4466
4467 // Fill in the fields for a slice type. This is used for named slice
4468 // types.
4469
4470 tree
4471 Array_type::fill_in_tree(Gogo* gogo, tree struct_type)
4472 {
4473 gcc_assert(this->length_ == NULL);
4474
4475 tree element_type_tree = this->element_type_->get_tree(gogo);
4476 tree field = TYPE_FIELDS(struct_type);
4477 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
4478 gcc_assert(POINTER_TYPE_P(TREE_TYPE(field))
4479 && TREE_TYPE(TREE_TYPE(field)) == void_type_node);
4480 TREE_TYPE(field) = build_pointer_type(element_type_tree);
4481
4482 return struct_type;
4483 }
4484
4485 // Return an initializer for an array type.
4486
4487 tree
4488 Array_type::do_get_init_tree(Gogo* gogo, tree type_tree, bool is_clear)
4489 {
4490 if (this->length_ == NULL)
4491 {
4492 // Open array.
4493
4494 if (is_clear)
4495 return NULL;
4496
4497 gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
4498
4499 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
4500
4501 for (tree field = TYPE_FIELDS(type_tree);
4502 field != NULL_TREE;
4503 field = DECL_CHAIN(field))
4504 {
4505 constructor_elt* elt = VEC_quick_push(constructor_elt, init,
4506 NULL);
4507 elt->index = field;
4508 elt->value = fold_convert(TREE_TYPE(field), size_zero_node);
4509 }
4510
4511 tree ret = build_constructor(type_tree, init);
4512 TREE_CONSTANT(ret) = 1;
4513 return ret;
4514 }
4515 else
4516 {
4517 // Fixed array.
4518
4519 tree value = this->element_type_->get_init_tree(gogo, is_clear);
4520 if (value == NULL)
4521 return NULL;
4522 if (value == error_mark_node)
4523 return error_mark_node;
4524
4525 tree length_tree = this->get_length_tree(gogo);
4526 if (length_tree == error_mark_node)
4527 return error_mark_node;
4528
4529 length_tree = fold_convert(sizetype, length_tree);
4530 tree range = build2(RANGE_EXPR, sizetype, size_zero_node,
4531 fold_build2(MINUS_EXPR, sizetype,
4532 length_tree, size_one_node));
4533 tree ret = build_constructor_single(type_tree, range, value);
4534 if (TREE_CONSTANT(value))
4535 TREE_CONSTANT(ret) = 1;
4536 return ret;
4537 }
4538 }
4539
4540 // Handle the builtin make function for a slice.
4541
4542 tree
4543 Array_type::do_make_expression_tree(Translate_context* context,
4544 Expression_list* args,
4545 source_location location)
4546 {
4547 gcc_assert(this->length_ == NULL);
4548
4549 Gogo* gogo = context->gogo();
4550 tree type_tree = this->get_tree(gogo);
4551 if (type_tree == error_mark_node)
4552 return error_mark_node;
4553
4554 tree values_field = TYPE_FIELDS(type_tree);
4555 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(values_field)),
4556 "__values") == 0);
4557
4558 tree count_field = DECL_CHAIN(values_field);
4559 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(count_field)),
4560 "__count") == 0);
4561
4562 tree element_type_tree = this->element_type_->get_tree(gogo);
4563 if (element_type_tree == error_mark_node)
4564 return error_mark_node;
4565 tree element_size_tree = TYPE_SIZE_UNIT(element_type_tree);
4566
4567 tree value = this->element_type_->get_init_tree(gogo, true);
4568
4569 // The first argument is the number of elements, the optional second
4570 // argument is the capacity.
4571 gcc_assert(args != NULL && args->size() >= 1 && args->size() <= 2);
4572
4573 tree length_tree = args->front()->get_tree(context);
4574 if (length_tree == error_mark_node)
4575 return error_mark_node;
4576 if (!DECL_P(length_tree))
4577 length_tree = save_expr(length_tree);
4578 if (!INTEGRAL_TYPE_P(TREE_TYPE(length_tree)))
4579 length_tree = convert_to_integer(TREE_TYPE(count_field), length_tree);
4580
4581 tree bad_index = Expression::check_bounds(length_tree,
4582 TREE_TYPE(count_field),
4583 NULL_TREE, location);
4584
4585 length_tree = fold_convert_loc(location, TREE_TYPE(count_field), length_tree);
4586 tree capacity_tree;
4587 if (args->size() == 1)
4588 capacity_tree = length_tree;
4589 else
4590 {
4591 capacity_tree = args->back()->get_tree(context);
4592 if (capacity_tree == error_mark_node)
4593 return error_mark_node;
4594 if (!DECL_P(capacity_tree))
4595 capacity_tree = save_expr(capacity_tree);
4596 if (!INTEGRAL_TYPE_P(TREE_TYPE(capacity_tree)))
4597 capacity_tree = convert_to_integer(TREE_TYPE(count_field),
4598 capacity_tree);
4599
4600 bad_index = Expression::check_bounds(capacity_tree,
4601 TREE_TYPE(count_field),
4602 bad_index, location);
4603
4604 tree chktype = (((TYPE_SIZE(TREE_TYPE(capacity_tree))
4605 > TYPE_SIZE(TREE_TYPE(length_tree)))
4606 || ((TYPE_SIZE(TREE_TYPE(capacity_tree))
4607 == TYPE_SIZE(TREE_TYPE(length_tree)))
4608 && TYPE_UNSIGNED(TREE_TYPE(capacity_tree))))
4609 ? TREE_TYPE(capacity_tree)
4610 : TREE_TYPE(length_tree));
4611 tree chk = fold_build2_loc(location, LT_EXPR, boolean_type_node,
4612 fold_convert_loc(location, chktype,
4613 capacity_tree),
4614 fold_convert_loc(location, chktype,
4615 length_tree));
4616 if (bad_index == NULL_TREE)
4617 bad_index = chk;
4618 else
4619 bad_index = fold_build2_loc(location, TRUTH_OR_EXPR, boolean_type_node,
4620 bad_index, chk);
4621
4622 capacity_tree = fold_convert_loc(location, TREE_TYPE(count_field),
4623 capacity_tree);
4624 }
4625
4626 tree size_tree = fold_build2_loc(location, MULT_EXPR, sizetype,
4627 element_size_tree,
4628 fold_convert_loc(location, sizetype,
4629 capacity_tree));
4630
4631 tree chk = fold_build2_loc(location, TRUTH_AND_EXPR, boolean_type_node,
4632 fold_build2_loc(location, GT_EXPR,
4633 boolean_type_node,
4634 fold_convert_loc(location,
4635 sizetype,
4636 capacity_tree),
4637 size_zero_node),
4638 fold_build2_loc(location, LT_EXPR,
4639 boolean_type_node,
4640 size_tree, element_size_tree));
4641 if (bad_index == NULL_TREE)
4642 bad_index = chk;
4643 else
4644 bad_index = fold_build2_loc(location, TRUTH_OR_EXPR, boolean_type_node,
4645 bad_index, chk);
4646
4647 tree space = context->gogo()->allocate_memory(this->element_type_,
4648 size_tree, location);
4649
4650 if (value != NULL_TREE)
4651 space = save_expr(space);
4652
4653 space = fold_convert(TREE_TYPE(values_field), space);
4654
4655 if (bad_index != NULL_TREE && bad_index != boolean_false_node)
4656 {
4657 tree crash = Gogo::runtime_error(RUNTIME_ERROR_MAKE_SLICE_OUT_OF_BOUNDS,
4658 location);
4659 space = build2(COMPOUND_EXPR, TREE_TYPE(space),
4660 build3(COND_EXPR, void_type_node,
4661 bad_index, crash, NULL_TREE),
4662 space);
4663 }
4664
4665 tree constructor = gogo->slice_constructor(type_tree, space, length_tree,
4666 capacity_tree);
4667
4668 if (value == NULL_TREE)
4669 {
4670 // The array contents are zero initialized.
4671 return constructor;
4672 }
4673
4674 // The elements must be initialized.
4675
4676 tree max = fold_build2_loc(location, MINUS_EXPR, TREE_TYPE(count_field),
4677 capacity_tree,
4678 fold_convert_loc(location, TREE_TYPE(count_field),
4679 integer_one_node));
4680
4681 tree array_type = build_array_type(element_type_tree,
4682 build_index_type(max));
4683
4684 tree value_pointer = fold_convert_loc(location,
4685 build_pointer_type(array_type),
4686 space);
4687
4688 tree range = build2(RANGE_EXPR, sizetype, size_zero_node, max);
4689 tree space_init = build_constructor_single(array_type, range, value);
4690
4691 return build2(COMPOUND_EXPR, TREE_TYPE(space),
4692 build2(MODIFY_EXPR, void_type_node,
4693 build_fold_indirect_ref(value_pointer),
4694 space_init),
4695 constructor);
4696 }
4697
4698 // Return a tree for a pointer to the values in ARRAY.
4699
4700 tree
4701 Array_type::value_pointer_tree(Gogo*, tree array) const
4702 {
4703 tree ret;
4704 if (this->length() != NULL)
4705 {
4706 // Fixed array.
4707 ret = fold_convert(build_pointer_type(TREE_TYPE(TREE_TYPE(array))),
4708 build_fold_addr_expr(array));
4709 }
4710 else
4711 {
4712 // Open array.
4713 tree field = TYPE_FIELDS(TREE_TYPE(array));
4714 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
4715 "__values") == 0);
4716 ret = fold_build3(COMPONENT_REF, TREE_TYPE(field), array, field,
4717 NULL_TREE);
4718 }
4719 if (TREE_CONSTANT(array))
4720 TREE_CONSTANT(ret) = 1;
4721 return ret;
4722 }
4723
4724 // Return a tree for the length of the array ARRAY which has this
4725 // type.
4726
4727 tree
4728 Array_type::length_tree(Gogo* gogo, tree array)
4729 {
4730 if (this->length_ != NULL)
4731 {
4732 if (TREE_CODE(array) == SAVE_EXPR)
4733 return fold_convert(integer_type_node, this->get_length_tree(gogo));
4734 else
4735 return omit_one_operand(integer_type_node,
4736 this->get_length_tree(gogo), array);
4737 }
4738
4739 // This is an open array. We need to read the length field.
4740
4741 tree type = TREE_TYPE(array);
4742 gcc_assert(TREE_CODE(type) == RECORD_TYPE);
4743
4744 tree field = DECL_CHAIN(TYPE_FIELDS(type));
4745 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
4746
4747 tree ret = build3(COMPONENT_REF, TREE_TYPE(field), array, field, NULL_TREE);
4748 if (TREE_CONSTANT(array))
4749 TREE_CONSTANT(ret) = 1;
4750 return ret;
4751 }
4752
4753 // Return a tree for the capacity of the array ARRAY which has this
4754 // type.
4755
4756 tree
4757 Array_type::capacity_tree(Gogo* gogo, tree array)
4758 {
4759 if (this->length_ != NULL)
4760 return omit_one_operand(sizetype, this->get_length_tree(gogo), array);
4761
4762 // This is an open array. We need to read the capacity field.
4763
4764 tree type = TREE_TYPE(array);
4765 gcc_assert(TREE_CODE(type) == RECORD_TYPE);
4766
4767 tree field = DECL_CHAIN(DECL_CHAIN(TYPE_FIELDS(type)));
4768 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__capacity") == 0);
4769
4770 return build3(COMPONENT_REF, TREE_TYPE(field), array, field, NULL_TREE);
4771 }
4772
4773 // Export.
4774
4775 void
4776 Array_type::do_export(Export* exp) const
4777 {
4778 exp->write_c_string("[");
4779 if (this->length_ != NULL)
4780 this->length_->export_expression(exp);
4781 exp->write_c_string("] ");
4782 exp->write_type(this->element_type_);
4783 }
4784
4785 // Import.
4786
4787 Array_type*
4788 Array_type::do_import(Import* imp)
4789 {
4790 imp->require_c_string("[");
4791 Expression* length;
4792 if (imp->peek_char() == ']')
4793 length = NULL;
4794 else
4795 length = Expression::import_expression(imp);
4796 imp->require_c_string("] ");
4797 Type* element_type = imp->read_type();
4798 return Type::make_array_type(element_type, length);
4799 }
4800
4801 // The type of an array type descriptor.
4802
4803 Type*
4804 Array_type::make_array_type_descriptor_type()
4805 {
4806 static Type* ret;
4807 if (ret == NULL)
4808 {
4809 Type* tdt = Type::make_type_descriptor_type();
4810 Type* ptdt = Type::make_type_descriptor_ptr_type();
4811
4812 Type* uintptr_type = Type::lookup_integer_type("uintptr");
4813
4814 Struct_type* sf =
4815 Type::make_builtin_struct_type(3,
4816 "", tdt,
4817 "elem", ptdt,
4818 "len", uintptr_type);
4819
4820 ret = Type::make_builtin_named_type("ArrayType", sf);
4821 }
4822
4823 return ret;
4824 }
4825
4826 // The type of an slice type descriptor.
4827
4828 Type*
4829 Array_type::make_slice_type_descriptor_type()
4830 {
4831 static Type* ret;
4832 if (ret == NULL)
4833 {
4834 Type* tdt = Type::make_type_descriptor_type();
4835 Type* ptdt = Type::make_type_descriptor_ptr_type();
4836
4837 Struct_type* sf =
4838 Type::make_builtin_struct_type(2,
4839 "", tdt,
4840 "elem", ptdt);
4841
4842 ret = Type::make_builtin_named_type("SliceType", sf);
4843 }
4844
4845 return ret;
4846 }
4847
4848 // Build a type descriptor for an array/slice type.
4849
4850 Expression*
4851 Array_type::do_type_descriptor(Gogo* gogo, Named_type* name)
4852 {
4853 if (this->length_ != NULL)
4854 return this->array_type_descriptor(gogo, name);
4855 else
4856 return this->slice_type_descriptor(gogo, name);
4857 }
4858
4859 // Build a type descriptor for an array type.
4860
4861 Expression*
4862 Array_type::array_type_descriptor(Gogo* gogo, Named_type* name)
4863 {
4864 source_location bloc = BUILTINS_LOCATION;
4865
4866 Type* atdt = Array_type::make_array_type_descriptor_type();
4867
4868 const Struct_field_list* fields = atdt->struct_type()->fields();
4869
4870 Expression_list* vals = new Expression_list();
4871 vals->reserve(3);
4872
4873 Struct_field_list::const_iterator p = fields->begin();
4874 gcc_assert(p->field_name() == "commonType");
4875 vals->push_back(this->type_descriptor_constructor(gogo,
4876 RUNTIME_TYPE_KIND_ARRAY,
4877 name, NULL, true));
4878
4879 ++p;
4880 gcc_assert(p->field_name() == "elem");
4881 vals->push_back(Expression::make_type_descriptor(this->element_type_, bloc));
4882
4883 ++p;
4884 gcc_assert(p->field_name() == "len");
4885 vals->push_back(Expression::make_cast(p->type(), this->length_, bloc));
4886
4887 ++p;
4888 gcc_assert(p == fields->end());
4889
4890 return Expression::make_struct_composite_literal(atdt, vals, bloc);
4891 }
4892
4893 // Build a type descriptor for a slice type.
4894
4895 Expression*
4896 Array_type::slice_type_descriptor(Gogo* gogo, Named_type* name)
4897 {
4898 source_location bloc = BUILTINS_LOCATION;
4899
4900 Type* stdt = Array_type::make_slice_type_descriptor_type();
4901
4902 const Struct_field_list* fields = stdt->struct_type()->fields();
4903
4904 Expression_list* vals = new Expression_list();
4905 vals->reserve(2);
4906
4907 Struct_field_list::const_iterator p = fields->begin();
4908 gcc_assert(p->field_name() == "commonType");
4909 vals->push_back(this->type_descriptor_constructor(gogo,
4910 RUNTIME_TYPE_KIND_SLICE,
4911 name, NULL, true));
4912
4913 ++p;
4914 gcc_assert(p->field_name() == "elem");
4915 vals->push_back(Expression::make_type_descriptor(this->element_type_, bloc));
4916
4917 ++p;
4918 gcc_assert(p == fields->end());
4919
4920 return Expression::make_struct_composite_literal(stdt, vals, bloc);
4921 }
4922
4923 // Reflection string.
4924
4925 void
4926 Array_type::do_reflection(Gogo* gogo, std::string* ret) const
4927 {
4928 ret->push_back('[');
4929 if (this->length_ != NULL)
4930 {
4931 mpz_t val;
4932 mpz_init(val);
4933 Type* type;
4934 if (!this->length_->integer_constant_value(true, val, &type))
4935 error_at(this->length_->location(),
4936 "array length must be integer constant expression");
4937 else if (mpz_cmp_si(val, 0) < 0)
4938 error_at(this->length_->location(), "array length is negative");
4939 else if (mpz_cmp_ui(val, mpz_get_ui(val)) != 0)
4940 error_at(this->length_->location(), "array length is too large");
4941 else
4942 {
4943 char buf[50];
4944 snprintf(buf, sizeof buf, "%lu", mpz_get_ui(val));
4945 ret->append(buf);
4946 }
4947 mpz_clear(val);
4948 }
4949 ret->push_back(']');
4950
4951 this->append_reflection(this->element_type_, gogo, ret);
4952 }
4953
4954 // Mangled name.
4955
4956 void
4957 Array_type::do_mangled_name(Gogo* gogo, std::string* ret) const
4958 {
4959 ret->push_back('A');
4960 this->append_mangled_name(this->element_type_, gogo, ret);
4961 if (this->length_ != NULL)
4962 {
4963 mpz_t val;
4964 mpz_init(val);
4965 Type* type;
4966 if (!this->length_->integer_constant_value(true, val, &type))
4967 error_at(this->length_->location(),
4968 "array length must be integer constant expression");
4969 else if (mpz_cmp_si(val, 0) < 0)
4970 error_at(this->length_->location(), "array length is negative");
4971 else if (mpz_cmp_ui(val, mpz_get_ui(val)) != 0)
4972 error_at(this->length_->location(), "array size is too large");
4973 else
4974 {
4975 char buf[50];
4976 snprintf(buf, sizeof buf, "%lu", mpz_get_ui(val));
4977 ret->append(buf);
4978 }
4979 mpz_clear(val);
4980 }
4981 ret->push_back('e');
4982 }
4983
4984 // Make an array type.
4985
4986 Array_type*
4987 Type::make_array_type(Type* element_type, Expression* length)
4988 {
4989 return new Array_type(element_type, length);
4990 }
4991
4992 // Class Map_type.
4993
4994 // Traversal.
4995
4996 int
4997 Map_type::do_traverse(Traverse* traverse)
4998 {
4999 if (Type::traverse(this->key_type_, traverse) == TRAVERSE_EXIT
5000 || Type::traverse(this->val_type_, traverse) == TRAVERSE_EXIT)
5001 return TRAVERSE_EXIT;
5002 return TRAVERSE_CONTINUE;
5003 }
5004
5005 // Check that the map type is OK.
5006
5007 bool
5008 Map_type::do_verify()
5009 {
5010 if (this->key_type_->struct_type() != NULL
5011 || this->key_type_->array_type() != NULL)
5012 {
5013 error_at(this->location_, "invalid map key type");
5014 return false;
5015 }
5016 return true;
5017 }
5018
5019 // Whether two map types are identical.
5020
5021 bool
5022 Map_type::is_identical(const Map_type* t, bool errors_are_identical) const
5023 {
5024 return (Type::are_identical(this->key_type(), t->key_type(),
5025 errors_are_identical, NULL)
5026 && Type::are_identical(this->val_type(), t->val_type(),
5027 errors_are_identical, NULL));
5028 }
5029
5030 // Hash code.
5031
5032 unsigned int
5033 Map_type::do_hash_for_method(Gogo* gogo) const
5034 {
5035 return (this->key_type_->hash_for_method(gogo)
5036 + this->val_type_->hash_for_method(gogo)
5037 + 2);
5038 }
5039
5040 // Check that a call to the builtin make function is valid. For a map
5041 // the optional argument is the number of spaces to preallocate for
5042 // values.
5043
5044 bool
5045 Map_type::do_check_make_expression(Expression_list* args,
5046 source_location location)
5047 {
5048 if (args != NULL && !args->empty())
5049 {
5050 if (!Type::check_int_value(args->front(), _("bad size when making map"),
5051 location))
5052 return false;
5053 else if (args->size() > 1)
5054 {
5055 error_at(location, "too many arguments when making map");
5056 return false;
5057 }
5058 }
5059 return true;
5060 }
5061
5062 // Get a tree for a map type. A map type is represented as a pointer
5063 // to a struct. The struct is __go_map in libgo/map.h.
5064
5065 tree
5066 Map_type::do_get_tree(Gogo* gogo)
5067 {
5068 static tree type_tree;
5069 if (type_tree == NULL_TREE)
5070 {
5071 tree struct_type = make_node(RECORD_TYPE);
5072
5073 tree map_descriptor_type = gogo->map_descriptor_type();
5074 tree const_map_descriptor_type =
5075 build_qualified_type(map_descriptor_type, TYPE_QUAL_CONST);
5076 tree name = get_identifier("__descriptor");
5077 tree field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name,
5078 build_pointer_type(const_map_descriptor_type));
5079 DECL_CONTEXT(field) = struct_type;
5080 TYPE_FIELDS(struct_type) = field;
5081 tree last_field = field;
5082
5083 name = get_identifier("__element_count");
5084 field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name, sizetype);
5085 DECL_CONTEXT(field) = struct_type;
5086 DECL_CHAIN(last_field) = field;
5087 last_field = field;
5088
5089 name = get_identifier("__bucket_count");
5090 field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name, sizetype);
5091 DECL_CONTEXT(field) = struct_type;
5092 DECL_CHAIN(last_field) = field;
5093 last_field = field;
5094
5095 name = get_identifier("__buckets");
5096 field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name,
5097 build_pointer_type(ptr_type_node));
5098 DECL_CONTEXT(field) = struct_type;
5099 DECL_CHAIN(last_field) = field;
5100
5101 layout_type(struct_type);
5102
5103 // Give the struct a name for better debugging info.
5104 name = get_identifier("__go_map");
5105 tree type_decl = build_decl(BUILTINS_LOCATION, TYPE_DECL, name,
5106 struct_type);
5107 DECL_ARTIFICIAL(type_decl) = 1;
5108 TYPE_NAME(struct_type) = type_decl;
5109 go_preserve_from_gc(type_decl);
5110 rest_of_decl_compilation(type_decl, 1, 0);
5111
5112 type_tree = build_pointer_type(struct_type);
5113 go_preserve_from_gc(type_tree);
5114 }
5115
5116 return type_tree;
5117 }
5118
5119 // Initialize a map.
5120
5121 tree
5122 Map_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
5123 {
5124 if (is_clear)
5125 return NULL;
5126 return fold_convert(type_tree, null_pointer_node);
5127 }
5128
5129 // Return an expression for a newly allocated map.
5130
5131 tree
5132 Map_type::do_make_expression_tree(Translate_context* context,
5133 Expression_list* args,
5134 source_location location)
5135 {
5136 tree bad_index = NULL_TREE;
5137
5138 tree expr_tree;
5139 if (args == NULL || args->empty())
5140 expr_tree = size_zero_node;
5141 else
5142 {
5143 expr_tree = args->front()->get_tree(context);
5144 if (expr_tree == error_mark_node)
5145 return error_mark_node;
5146 if (!DECL_P(expr_tree))
5147 expr_tree = save_expr(expr_tree);
5148 if (!INTEGRAL_TYPE_P(TREE_TYPE(expr_tree)))
5149 expr_tree = convert_to_integer(sizetype, expr_tree);
5150 bad_index = Expression::check_bounds(expr_tree, sizetype, bad_index,
5151 location);
5152 }
5153
5154 tree map_type = this->get_tree(context->gogo());
5155
5156 static tree new_map_fndecl;
5157 tree ret = Gogo::call_builtin(&new_map_fndecl,
5158 location,
5159 "__go_new_map",
5160 2,
5161 map_type,
5162 TREE_TYPE(TYPE_FIELDS(TREE_TYPE(map_type))),
5163 context->gogo()->map_descriptor(this),
5164 sizetype,
5165 expr_tree);
5166 if (ret == error_mark_node)
5167 return error_mark_node;
5168 // This can panic if the capacity is out of range.
5169 TREE_NOTHROW(new_map_fndecl) = 0;
5170
5171 if (bad_index == NULL_TREE)
5172 return ret;
5173 else
5174 {
5175 tree crash = Gogo::runtime_error(RUNTIME_ERROR_MAKE_MAP_OUT_OF_BOUNDS,
5176 location);
5177 return build2(COMPOUND_EXPR, TREE_TYPE(ret),
5178 build3(COND_EXPR, void_type_node,
5179 bad_index, crash, NULL_TREE),
5180 ret);
5181 }
5182 }
5183
5184 // The type of a map type descriptor.
5185
5186 Type*
5187 Map_type::make_map_type_descriptor_type()
5188 {
5189 static Type* ret;
5190 if (ret == NULL)
5191 {
5192 Type* tdt = Type::make_type_descriptor_type();
5193 Type* ptdt = Type::make_type_descriptor_ptr_type();
5194
5195 Struct_type* sf =
5196 Type::make_builtin_struct_type(3,
5197 "", tdt,
5198 "key", ptdt,
5199 "elem", ptdt);
5200
5201 ret = Type::make_builtin_named_type("MapType", sf);
5202 }
5203
5204 return ret;
5205 }
5206
5207 // Build a type descriptor for a map type.
5208
5209 Expression*
5210 Map_type::do_type_descriptor(Gogo* gogo, Named_type* name)
5211 {
5212 source_location bloc = BUILTINS_LOCATION;
5213
5214 Type* mtdt = Map_type::make_map_type_descriptor_type();
5215
5216 const Struct_field_list* fields = mtdt->struct_type()->fields();
5217
5218 Expression_list* vals = new Expression_list();
5219 vals->reserve(3);
5220
5221 Struct_field_list::const_iterator p = fields->begin();
5222 gcc_assert(p->field_name() == "commonType");
5223 vals->push_back(this->type_descriptor_constructor(gogo,
5224 RUNTIME_TYPE_KIND_MAP,
5225 name, NULL, true));
5226
5227 ++p;
5228 gcc_assert(p->field_name() == "key");
5229 vals->push_back(Expression::make_type_descriptor(this->key_type_, bloc));
5230
5231 ++p;
5232 gcc_assert(p->field_name() == "elem");
5233 vals->push_back(Expression::make_type_descriptor(this->val_type_, bloc));
5234
5235 ++p;
5236 gcc_assert(p == fields->end());
5237
5238 return Expression::make_struct_composite_literal(mtdt, vals, bloc);
5239 }
5240
5241 // Reflection string for a map.
5242
5243 void
5244 Map_type::do_reflection(Gogo* gogo, std::string* ret) const
5245 {
5246 ret->append("map[");
5247 this->append_reflection(this->key_type_, gogo, ret);
5248 ret->append("] ");
5249 this->append_reflection(this->val_type_, gogo, ret);
5250 }
5251
5252 // Mangled name for a map.
5253
5254 void
5255 Map_type::do_mangled_name(Gogo* gogo, std::string* ret) const
5256 {
5257 ret->push_back('M');
5258 this->append_mangled_name(this->key_type_, gogo, ret);
5259 ret->append("__");
5260 this->append_mangled_name(this->val_type_, gogo, ret);
5261 }
5262
5263 // Export a map type.
5264
5265 void
5266 Map_type::do_export(Export* exp) const
5267 {
5268 exp->write_c_string("map [");
5269 exp->write_type(this->key_type_);
5270 exp->write_c_string("] ");
5271 exp->write_type(this->val_type_);
5272 }
5273
5274 // Import a map type.
5275
5276 Map_type*
5277 Map_type::do_import(Import* imp)
5278 {
5279 imp->require_c_string("map [");
5280 Type* key_type = imp->read_type();
5281 imp->require_c_string("] ");
5282 Type* val_type = imp->read_type();
5283 return Type::make_map_type(key_type, val_type, imp->location());
5284 }
5285
5286 // Make a map type.
5287
5288 Map_type*
5289 Type::make_map_type(Type* key_type, Type* val_type, source_location location)
5290 {
5291 return new Map_type(key_type, val_type, location);
5292 }
5293
5294 // Class Channel_type.
5295
5296 // Hash code.
5297
5298 unsigned int
5299 Channel_type::do_hash_for_method(Gogo* gogo) const
5300 {
5301 unsigned int ret = 0;
5302 if (this->may_send_)
5303 ret += 1;
5304 if (this->may_receive_)
5305 ret += 2;
5306 if (this->element_type_ != NULL)
5307 ret += this->element_type_->hash_for_method(gogo) << 2;
5308 return ret << 3;
5309 }
5310
5311 // Whether this type is the same as T.
5312
5313 bool
5314 Channel_type::is_identical(const Channel_type* t,
5315 bool errors_are_identical) const
5316 {
5317 if (!Type::are_identical(this->element_type(), t->element_type(),
5318 errors_are_identical, NULL))
5319 return false;
5320 return (this->may_send_ == t->may_send_
5321 && this->may_receive_ == t->may_receive_);
5322 }
5323
5324 // Check whether the parameters for a call to the builtin function
5325 // make are OK for a channel. A channel can take an optional single
5326 // parameter which is the buffer size.
5327
5328 bool
5329 Channel_type::do_check_make_expression(Expression_list* args,
5330 source_location location)
5331 {
5332 if (args != NULL && !args->empty())
5333 {
5334 if (!Type::check_int_value(args->front(),
5335 _("bad buffer size when making channel"),
5336 location))
5337 return false;
5338 else if (args->size() > 1)
5339 {
5340 error_at(location, "too many arguments when making channel");
5341 return false;
5342 }
5343 }
5344 return true;
5345 }
5346
5347 // Return the tree for a channel type. A channel is a pointer to a
5348 // __go_channel struct. The __go_channel struct is defined in
5349 // libgo/runtime/channel.h.
5350
5351 tree
5352 Channel_type::do_get_tree(Gogo*)
5353 {
5354 static tree type_tree;
5355 if (type_tree == NULL_TREE)
5356 {
5357 tree ret = make_node(RECORD_TYPE);
5358 TYPE_NAME(ret) = get_identifier("__go_channel");
5359 TYPE_STUB_DECL(ret) = build_decl(BUILTINS_LOCATION, TYPE_DECL, NULL_TREE,
5360 ret);
5361 type_tree = build_pointer_type(ret);
5362 go_preserve_from_gc(type_tree);
5363 }
5364 return type_tree;
5365 }
5366
5367 // Initialize a channel variable.
5368
5369 tree
5370 Channel_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
5371 {
5372 if (is_clear)
5373 return NULL;
5374 return fold_convert(type_tree, null_pointer_node);
5375 }
5376
5377 // Handle the builtin function make for a channel.
5378
5379 tree
5380 Channel_type::do_make_expression_tree(Translate_context* context,
5381 Expression_list* args,
5382 source_location location)
5383 {
5384 Gogo* gogo = context->gogo();
5385 tree channel_type = this->get_tree(gogo);
5386
5387 tree element_tree = this->element_type_->get_tree(gogo);
5388 tree element_size_tree = size_in_bytes(element_tree);
5389
5390 tree bad_index = NULL_TREE;
5391
5392 tree expr_tree;
5393 if (args == NULL || args->empty())
5394 expr_tree = size_zero_node;
5395 else
5396 {
5397 expr_tree = args->front()->get_tree(context);
5398 if (expr_tree == error_mark_node)
5399 return error_mark_node;
5400 if (!DECL_P(expr_tree))
5401 expr_tree = save_expr(expr_tree);
5402 if (!INTEGRAL_TYPE_P(TREE_TYPE(expr_tree)))
5403 expr_tree = convert_to_integer(sizetype, expr_tree);
5404 bad_index = Expression::check_bounds(expr_tree, sizetype, bad_index,
5405 location);
5406 }
5407
5408 static tree new_channel_fndecl;
5409 tree ret = Gogo::call_builtin(&new_channel_fndecl,
5410 location,
5411 "__go_new_channel",
5412 2,
5413 channel_type,
5414 sizetype,
5415 element_size_tree,
5416 sizetype,
5417 expr_tree);
5418 if (ret == error_mark_node)
5419 return error_mark_node;
5420 // This can panic if the capacity is out of range.
5421 TREE_NOTHROW(new_channel_fndecl) = 0;
5422
5423 if (bad_index == NULL_TREE)
5424 return ret;
5425 else
5426 {
5427 tree crash = Gogo::runtime_error(RUNTIME_ERROR_MAKE_CHAN_OUT_OF_BOUNDS,
5428 location);
5429 return build2(COMPOUND_EXPR, TREE_TYPE(ret),
5430 build3(COND_EXPR, void_type_node,
5431 bad_index, crash, NULL_TREE),
5432 ret);
5433 }
5434 }
5435
5436 // Build a type descriptor for a channel type.
5437
5438 Type*
5439 Channel_type::make_chan_type_descriptor_type()
5440 {
5441 static Type* ret;
5442 if (ret == NULL)
5443 {
5444 Type* tdt = Type::make_type_descriptor_type();
5445 Type* ptdt = Type::make_type_descriptor_ptr_type();
5446
5447 Type* uintptr_type = Type::lookup_integer_type("uintptr");
5448
5449 Struct_type* sf =
5450 Type::make_builtin_struct_type(3,
5451 "", tdt,
5452 "elem", ptdt,
5453 "dir", uintptr_type);
5454
5455 ret = Type::make_builtin_named_type("ChanType", sf);
5456 }
5457
5458 return ret;
5459 }
5460
5461 // Build a type descriptor for a map type.
5462
5463 Expression*
5464 Channel_type::do_type_descriptor(Gogo* gogo, Named_type* name)
5465 {
5466 source_location bloc = BUILTINS_LOCATION;
5467
5468 Type* ctdt = Channel_type::make_chan_type_descriptor_type();
5469
5470 const Struct_field_list* fields = ctdt->struct_type()->fields();
5471
5472 Expression_list* vals = new Expression_list();
5473 vals->reserve(3);
5474
5475 Struct_field_list::const_iterator p = fields->begin();
5476 gcc_assert(p->field_name() == "commonType");
5477 vals->push_back(this->type_descriptor_constructor(gogo,
5478 RUNTIME_TYPE_KIND_CHAN,
5479 name, NULL, true));
5480
5481 ++p;
5482 gcc_assert(p->field_name() == "elem");
5483 vals->push_back(Expression::make_type_descriptor(this->element_type_, bloc));
5484
5485 ++p;
5486 gcc_assert(p->field_name() == "dir");
5487 // These bits must match the ones in libgo/runtime/go-type.h.
5488 int val = 0;
5489 if (this->may_receive_)
5490 val |= 1;
5491 if (this->may_send_)
5492 val |= 2;
5493 mpz_t iv;
5494 mpz_init_set_ui(iv, val);
5495 vals->push_back(Expression::make_integer(&iv, p->type(), bloc));
5496 mpz_clear(iv);
5497
5498 ++p;
5499 gcc_assert(p == fields->end());
5500
5501 return Expression::make_struct_composite_literal(ctdt, vals, bloc);
5502 }
5503
5504 // Reflection string.
5505
5506 void
5507 Channel_type::do_reflection(Gogo* gogo, std::string* ret) const
5508 {
5509 if (!this->may_send_)
5510 ret->append("<-");
5511 ret->append("chan");
5512 if (!this->may_receive_)
5513 ret->append("<-");
5514 ret->push_back(' ');
5515 this->append_reflection(this->element_type_, gogo, ret);
5516 }
5517
5518 // Mangled name.
5519
5520 void
5521 Channel_type::do_mangled_name(Gogo* gogo, std::string* ret) const
5522 {
5523 ret->push_back('C');
5524 this->append_mangled_name(this->element_type_, gogo, ret);
5525 if (this->may_send_)
5526 ret->push_back('s');
5527 if (this->may_receive_)
5528 ret->push_back('r');
5529 ret->push_back('e');
5530 }
5531
5532 // Export.
5533
5534 void
5535 Channel_type::do_export(Export* exp) const
5536 {
5537 exp->write_c_string("chan ");
5538 if (this->may_send_ && !this->may_receive_)
5539 exp->write_c_string("-< ");
5540 else if (this->may_receive_ && !this->may_send_)
5541 exp->write_c_string("<- ");
5542 exp->write_type(this->element_type_);
5543 }
5544
5545 // Import.
5546
5547 Channel_type*
5548 Channel_type::do_import(Import* imp)
5549 {
5550 imp->require_c_string("chan ");
5551
5552 bool may_send;
5553 bool may_receive;
5554 if (imp->match_c_string("-< "))
5555 {
5556 imp->advance(3);
5557 may_send = true;
5558 may_receive = false;
5559 }
5560 else if (imp->match_c_string("<- "))
5561 {
5562 imp->advance(3);
5563 may_receive = true;
5564 may_send = false;
5565 }
5566 else
5567 {
5568 may_send = true;
5569 may_receive = true;
5570 }
5571
5572 Type* element_type = imp->read_type();
5573
5574 return Type::make_channel_type(may_send, may_receive, element_type);
5575 }
5576
5577 // Make a new channel type.
5578
5579 Channel_type*
5580 Type::make_channel_type(bool send, bool receive, Type* element_type)
5581 {
5582 return new Channel_type(send, receive, element_type);
5583 }
5584
5585 // Class Interface_type.
5586
5587 // Traversal.
5588
5589 int
5590 Interface_type::do_traverse(Traverse* traverse)
5591 {
5592 if (this->methods_ == NULL)
5593 return TRAVERSE_CONTINUE;
5594 return this->methods_->traverse(traverse);
5595 }
5596
5597 // Finalize the methods. This handles interface inheritance.
5598
5599 void
5600 Interface_type::finalize_methods()
5601 {
5602 if (this->methods_ == NULL)
5603 return;
5604 bool is_recursive = false;
5605 size_t from = 0;
5606 size_t to = 0;
5607 while (from < this->methods_->size())
5608 {
5609 const Typed_identifier* p = &this->methods_->at(from);
5610 if (!p->name().empty())
5611 {
5612 size_t i;
5613 for (i = 0; i < to; ++i)
5614 {
5615 if (this->methods_->at(i).name() == p->name())
5616 {
5617 error_at(p->location(), "duplicate method %qs",
5618 Gogo::message_name(p->name()).c_str());
5619 break;
5620 }
5621 }
5622 if (i == to)
5623 {
5624 if (from != to)
5625 this->methods_->set(to, *p);
5626 ++to;
5627 }
5628 ++from;
5629 continue;
5630 }
5631 Interface_type* it = p->type()->interface_type();
5632 if (it == NULL)
5633 {
5634 error_at(p->location(), "interface contains embedded non-interface");
5635 ++from;
5636 continue;
5637 }
5638 if (it == this)
5639 {
5640 if (!is_recursive)
5641 {
5642 error_at(p->location(), "invalid recursive interface");
5643 is_recursive = true;
5644 }
5645 ++from;
5646 continue;
5647 }
5648 const Typed_identifier_list* methods = it->methods();
5649 if (methods == NULL)
5650 {
5651 ++from;
5652 continue;
5653 }
5654 for (Typed_identifier_list::const_iterator q = methods->begin();
5655 q != methods->end();
5656 ++q)
5657 {
5658 if (q->name().empty())
5659 {
5660 if (q->type() == p->type())
5661 error_at(p->location(), "interface inheritance loop");
5662 else
5663 {
5664 size_t i;
5665 for (i = from + 1; i < this->methods_->size(); ++i)
5666 {
5667 const Typed_identifier* r = &this->methods_->at(i);
5668 if (r->name().empty() && r->type() == q->type())
5669 {
5670 error_at(p->location(),
5671 "inherited interface listed twice");
5672 break;
5673 }
5674 }
5675 if (i == this->methods_->size())
5676 this->methods_->push_back(Typed_identifier(q->name(),
5677 q->type(),
5678 p->location()));
5679 }
5680 }
5681 else if (this->find_method(q->name()) == NULL)
5682 this->methods_->push_back(Typed_identifier(q->name(), q->type(),
5683 p->location()));
5684 else
5685 {
5686 if (!is_recursive)
5687 error_at(p->location(), "inherited method %qs is ambiguous",
5688 Gogo::message_name(q->name()).c_str());
5689 }
5690 }
5691 ++from;
5692 }
5693 if (to == 0)
5694 {
5695 delete this->methods_;
5696 this->methods_ = NULL;
5697 }
5698 else
5699 {
5700 this->methods_->resize(to);
5701 this->methods_->sort_by_name();
5702 }
5703 }
5704
5705 // Return the method NAME, or NULL.
5706
5707 const Typed_identifier*
5708 Interface_type::find_method(const std::string& name) const
5709 {
5710 if (this->methods_ == NULL)
5711 return NULL;
5712 for (Typed_identifier_list::const_iterator p = this->methods_->begin();
5713 p != this->methods_->end();
5714 ++p)
5715 if (p->name() == name)
5716 return &*p;
5717 return NULL;
5718 }
5719
5720 // Return the method index.
5721
5722 size_t
5723 Interface_type::method_index(const std::string& name) const
5724 {
5725 gcc_assert(this->methods_ != NULL);
5726 size_t ret = 0;
5727 for (Typed_identifier_list::const_iterator p = this->methods_->begin();
5728 p != this->methods_->end();
5729 ++p, ++ret)
5730 if (p->name() == name)
5731 return ret;
5732 gcc_unreachable();
5733 }
5734
5735 // Return whether NAME is an unexported method, for better error
5736 // reporting.
5737
5738 bool
5739 Interface_type::is_unexported_method(Gogo* gogo, const std::string& name) const
5740 {
5741 if (this->methods_ == NULL)
5742 return false;
5743 for (Typed_identifier_list::const_iterator p = this->methods_->begin();
5744 p != this->methods_->end();
5745 ++p)
5746 {
5747 const std::string& method_name(p->name());
5748 if (Gogo::is_hidden_name(method_name)
5749 && name == Gogo::unpack_hidden_name(method_name)
5750 && gogo->pack_hidden_name(name, false) != method_name)
5751 return true;
5752 }
5753 return false;
5754 }
5755
5756 // Whether this type is identical with T.
5757
5758 bool
5759 Interface_type::is_identical(const Interface_type* t,
5760 bool errors_are_identical) const
5761 {
5762 // We require the same methods with the same types. The methods
5763 // have already been sorted.
5764 if (this->methods() == NULL || t->methods() == NULL)
5765 return this->methods() == t->methods();
5766
5767 Typed_identifier_list::const_iterator p1 = this->methods()->begin();
5768 for (Typed_identifier_list::const_iterator p2 = t->methods()->begin();
5769 p2 != t->methods()->end();
5770 ++p1, ++p2)
5771 {
5772 if (p1 == this->methods()->end())
5773 return false;
5774 if (p1->name() != p2->name()
5775 || !Type::are_identical(p1->type(), p2->type(),
5776 errors_are_identical, NULL))
5777 return false;
5778 }
5779 if (p1 != this->methods()->end())
5780 return false;
5781 return true;
5782 }
5783
5784 // Whether we can assign the interface type T to this type. The types
5785 // are known to not be identical. An interface assignment is only
5786 // permitted if T is known to implement all methods in THIS.
5787 // Otherwise a type guard is required.
5788
5789 bool
5790 Interface_type::is_compatible_for_assign(const Interface_type* t,
5791 std::string* reason) const
5792 {
5793 if (this->methods() == NULL)
5794 return true;
5795 for (Typed_identifier_list::const_iterator p = this->methods()->begin();
5796 p != this->methods()->end();
5797 ++p)
5798 {
5799 const Typed_identifier* m = t->find_method(p->name());
5800 if (m == NULL)
5801 {
5802 if (reason != NULL)
5803 {
5804 char buf[200];
5805 snprintf(buf, sizeof buf,
5806 _("need explicit conversion; missing method %s%s%s"),
5807 open_quote, Gogo::message_name(p->name()).c_str(),
5808 close_quote);
5809 reason->assign(buf);
5810 }
5811 return false;
5812 }
5813
5814 std::string subreason;
5815 if (!Type::are_identical(p->type(), m->type(), true, &subreason))
5816 {
5817 if (reason != NULL)
5818 {
5819 std::string n = Gogo::message_name(p->name());
5820 size_t len = 100 + n.length() + subreason.length();
5821 char* buf = new char[len];
5822 if (subreason.empty())
5823 snprintf(buf, len, _("incompatible type for method %s%s%s"),
5824 open_quote, n.c_str(), close_quote);
5825 else
5826 snprintf(buf, len,
5827 _("incompatible type for method %s%s%s (%s)"),
5828 open_quote, n.c_str(), close_quote,
5829 subreason.c_str());
5830 reason->assign(buf);
5831 delete[] buf;
5832 }
5833 return false;
5834 }
5835 }
5836
5837 return true;
5838 }
5839
5840 // Hash code.
5841
5842 unsigned int
5843 Interface_type::do_hash_for_method(Gogo* gogo) const
5844 {
5845 unsigned int ret = 0;
5846 if (this->methods_ != NULL)
5847 {
5848 for (Typed_identifier_list::const_iterator p = this->methods_->begin();
5849 p != this->methods_->end();
5850 ++p)
5851 {
5852 ret = Type::hash_string(p->name(), ret);
5853 ret += p->type()->hash_for_method(gogo);
5854 ret <<= 1;
5855 }
5856 }
5857 return ret;
5858 }
5859
5860 // Return true if T implements the interface. If it does not, and
5861 // REASON is not NULL, set *REASON to a useful error message.
5862
5863 bool
5864 Interface_type::implements_interface(const Type* t, std::string* reason) const
5865 {
5866 if (this->methods_ == NULL)
5867 return true;
5868
5869 bool is_pointer = false;
5870 const Named_type* nt = t->named_type();
5871 const Struct_type* st = t->struct_type();
5872 // If we start with a named type, we don't dereference it to find
5873 // methods.
5874 if (nt == NULL)
5875 {
5876 const Type* pt = t->points_to();
5877 if (pt != NULL)
5878 {
5879 // If T is a pointer to a named type, then we need to look at
5880 // the type to which it points.
5881 is_pointer = true;
5882 nt = pt->named_type();
5883 st = pt->struct_type();
5884 }
5885 }
5886
5887 // If we have a named type, get the methods from it rather than from
5888 // any struct type.
5889 if (nt != NULL)
5890 st = NULL;
5891
5892 // Only named and struct types have methods.
5893 if (nt == NULL && st == NULL)
5894 {
5895 if (reason != NULL)
5896 {
5897 if (t->points_to() != NULL
5898 && t->points_to()->interface_type() != NULL)
5899 reason->assign(_("pointer to interface type has no methods"));
5900 else
5901 reason->assign(_("type has no methods"));
5902 }
5903 return false;
5904 }
5905
5906 if (nt != NULL ? !nt->has_any_methods() : !st->has_any_methods())
5907 {
5908 if (reason != NULL)
5909 {
5910 if (t->points_to() != NULL
5911 && t->points_to()->interface_type() != NULL)
5912 reason->assign(_("pointer to interface type has no methods"));
5913 else
5914 reason->assign(_("type has no methods"));
5915 }
5916 return false;
5917 }
5918
5919 for (Typed_identifier_list::const_iterator p = this->methods_->begin();
5920 p != this->methods_->end();
5921 ++p)
5922 {
5923 bool is_ambiguous = false;
5924 Method* m = (nt != NULL
5925 ? nt->method_function(p->name(), &is_ambiguous)
5926 : st->method_function(p->name(), &is_ambiguous));
5927 if (m == NULL)
5928 {
5929 if (reason != NULL)
5930 {
5931 std::string n = Gogo::message_name(p->name());
5932 size_t len = n.length() + 100;
5933 char* buf = new char[len];
5934 if (is_ambiguous)
5935 snprintf(buf, len, _("ambiguous method %s%s%s"),
5936 open_quote, n.c_str(), close_quote);
5937 else
5938 snprintf(buf, len, _("missing method %s%s%s"),
5939 open_quote, n.c_str(), close_quote);
5940 reason->assign(buf);
5941 delete[] buf;
5942 }
5943 return false;
5944 }
5945
5946 Function_type *p_fn_type = p->type()->function_type();
5947 Function_type* m_fn_type = m->type()->function_type();
5948 gcc_assert(p_fn_type != NULL && m_fn_type != NULL);
5949 std::string subreason;
5950 if (!p_fn_type->is_identical(m_fn_type, true, true, &subreason))
5951 {
5952 if (reason != NULL)
5953 {
5954 std::string n = Gogo::message_name(p->name());
5955 size_t len = 100 + n.length() + subreason.length();
5956 char* buf = new char[len];
5957 if (subreason.empty())
5958 snprintf(buf, len, _("incompatible type for method %s%s%s"),
5959 open_quote, n.c_str(), close_quote);
5960 else
5961 snprintf(buf, len,
5962 _("incompatible type for method %s%s%s (%s)"),
5963 open_quote, n.c_str(), close_quote,
5964 subreason.c_str());
5965 reason->assign(buf);
5966 delete[] buf;
5967 }
5968 return false;
5969 }
5970
5971 if (!is_pointer && !m->is_value_method())
5972 {
5973 if (reason != NULL)
5974 {
5975 std::string n = Gogo::message_name(p->name());
5976 size_t len = 100 + n.length();
5977 char* buf = new char[len];
5978 snprintf(buf, len, _("method %s%s%s requires a pointer"),
5979 open_quote, n.c_str(), close_quote);
5980 reason->assign(buf);
5981 delete[] buf;
5982 }
5983 return false;
5984 }
5985 }
5986
5987 return true;
5988 }
5989
5990 // Return a tree for an interface type. An interface is a pointer to
5991 // a struct. The struct has three fields. The first field is a
5992 // pointer to the type descriptor for the dynamic type of the object.
5993 // The second field is a pointer to a table of methods for the
5994 // interface to be used with the object. The third field is the value
5995 // of the object itself.
5996
5997 tree
5998 Interface_type::do_get_tree(Gogo* gogo)
5999 {
6000 if (this->methods_ == NULL)
6001 {
6002 // At the tree level, use the same type for all empty
6003 // interfaces. This lets us assign them to each other directly
6004 // without triggering GIMPLE type errors.
6005 tree dtype = Type::make_type_descriptor_type()->get_tree(gogo);
6006 dtype = build_pointer_type(build_qualified_type(dtype, TYPE_QUAL_CONST));
6007 static tree empty_interface;
6008 return Gogo::builtin_struct(&empty_interface, "__go_empty_interface",
6009 NULL_TREE, 2,
6010 "__type_descriptor",
6011 dtype,
6012 "__object",
6013 ptr_type_node);
6014 }
6015
6016 return this->fill_in_tree(gogo, make_node(RECORD_TYPE));
6017 }
6018
6019 // Fill in the tree for an interface type. This is used for named
6020 // interface types.
6021
6022 tree
6023 Interface_type::fill_in_tree(Gogo* gogo, tree type)
6024 {
6025 gcc_assert(this->methods_ != NULL);
6026
6027 // Because the methods may refer to the interface type itself, we
6028 // need to build the interface type first, and then update the
6029 // method pointer later.
6030
6031 tree field_trees = NULL_TREE;
6032 tree* pp = &field_trees;
6033
6034 tree name_tree = get_identifier("__methods");
6035 tree methods_field = build_decl(this->location_, FIELD_DECL, name_tree,
6036 ptr_type_node);
6037 DECL_CONTEXT(methods_field) = type;
6038 *pp = methods_field;
6039 pp = &DECL_CHAIN(methods_field);
6040
6041 name_tree = get_identifier("__object");
6042 tree field = build_decl(this->location_, FIELD_DECL, name_tree,
6043 ptr_type_node);
6044 DECL_CONTEXT(field) = type;
6045 *pp = field;
6046
6047 TYPE_FIELDS(type) = field_trees;
6048
6049 layout_type(type);
6050
6051 // Build the type of the table of methods.
6052
6053 tree method_table = make_node(RECORD_TYPE);
6054
6055 // The first field is a pointer to the type descriptor.
6056 name_tree = get_identifier("__type_descriptor");
6057 tree dtype = Type::make_type_descriptor_type()->get_tree(gogo);
6058 dtype = build_pointer_type(build_qualified_type(dtype, TYPE_QUAL_CONST));
6059 field = build_decl(this->location_, FIELD_DECL, name_tree, dtype);
6060 DECL_CONTEXT(field) = method_table;
6061 TYPE_FIELDS(method_table) = field;
6062
6063 std::string last_name = "";
6064 pp = &DECL_CHAIN(field);
6065 for (Typed_identifier_list::const_iterator p = this->methods_->begin();
6066 p != this->methods_->end();
6067 ++p)
6068 {
6069 std::string name = Gogo::unpack_hidden_name(p->name());
6070 name_tree = get_identifier_with_length(name.data(), name.length());
6071 tree field_type = p->type()->get_tree(gogo);
6072 if (field_type == error_mark_node)
6073 return error_mark_node;
6074 field = build_decl(this->location_, FIELD_DECL, name_tree, field_type);
6075 DECL_CONTEXT(field) = method_table;
6076 *pp = field;
6077 pp = &DECL_CHAIN(field);
6078 // Sanity check: the names should be sorted.
6079 gcc_assert(p->name() > last_name);
6080 last_name = p->name();
6081 }
6082 layout_type(method_table);
6083
6084 // Update the type of the __methods field from a generic pointer to
6085 // a pointer to the method table.
6086 TREE_TYPE(methods_field) = build_pointer_type(method_table);
6087
6088 return type;
6089 }
6090
6091 // Initialization value.
6092
6093 tree
6094 Interface_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
6095 {
6096 if (is_clear)
6097 return NULL;
6098
6099 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
6100 for (tree field = TYPE_FIELDS(type_tree);
6101 field != NULL_TREE;
6102 field = DECL_CHAIN(field))
6103 {
6104 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
6105 elt->index = field;
6106 elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
6107 }
6108
6109 tree ret = build_constructor(type_tree, init);
6110 TREE_CONSTANT(ret) = 1;
6111 return ret;
6112 }
6113
6114 // The type of an interface type descriptor.
6115
6116 Type*
6117 Interface_type::make_interface_type_descriptor_type()
6118 {
6119 static Type* ret;
6120 if (ret == NULL)
6121 {
6122 Type* tdt = Type::make_type_descriptor_type();
6123 Type* ptdt = Type::make_type_descriptor_ptr_type();
6124
6125 Type* string_type = Type::lookup_string_type();
6126 Type* pointer_string_type = Type::make_pointer_type(string_type);
6127
6128 Struct_type* sm =
6129 Type::make_builtin_struct_type(3,
6130 "name", pointer_string_type,
6131 "pkgPath", pointer_string_type,
6132 "typ", ptdt);
6133
6134 Type* nsm = Type::make_builtin_named_type("imethod", sm);
6135
6136 Type* slice_nsm = Type::make_array_type(nsm, NULL);
6137
6138 Struct_type* s = Type::make_builtin_struct_type(2,
6139 "", tdt,
6140 "methods", slice_nsm);
6141
6142 ret = Type::make_builtin_named_type("InterfaceType", s);
6143 }
6144
6145 return ret;
6146 }
6147
6148 // Build a type descriptor for an interface type.
6149
6150 Expression*
6151 Interface_type::do_type_descriptor(Gogo* gogo, Named_type* name)
6152 {
6153 source_location bloc = BUILTINS_LOCATION;
6154
6155 Type* itdt = Interface_type::make_interface_type_descriptor_type();
6156
6157 const Struct_field_list* ifields = itdt->struct_type()->fields();
6158
6159 Expression_list* ivals = new Expression_list();
6160 ivals->reserve(2);
6161
6162 Struct_field_list::const_iterator pif = ifields->begin();
6163 gcc_assert(pif->field_name() == "commonType");
6164 ivals->push_back(this->type_descriptor_constructor(gogo,
6165 RUNTIME_TYPE_KIND_INTERFACE,
6166 name, NULL, true));
6167
6168 ++pif;
6169 gcc_assert(pif->field_name() == "methods");
6170
6171 Expression_list* methods = new Expression_list();
6172 if (this->methods_ != NULL && !this->methods_->empty())
6173 {
6174 Type* elemtype = pif->type()->array_type()->element_type();
6175
6176 methods->reserve(this->methods_->size());
6177 for (Typed_identifier_list::const_iterator pm = this->methods_->begin();
6178 pm != this->methods_->end();
6179 ++pm)
6180 {
6181 const Struct_field_list* mfields = elemtype->struct_type()->fields();
6182
6183 Expression_list* mvals = new Expression_list();
6184 mvals->reserve(3);
6185
6186 Struct_field_list::const_iterator pmf = mfields->begin();
6187 gcc_assert(pmf->field_name() == "name");
6188 std::string s = Gogo::unpack_hidden_name(pm->name());
6189 Expression* e = Expression::make_string(s, bloc);
6190 mvals->push_back(Expression::make_unary(OPERATOR_AND, e, bloc));
6191
6192 ++pmf;
6193 gcc_assert(pmf->field_name() == "pkgPath");
6194 if (!Gogo::is_hidden_name(pm->name()))
6195 mvals->push_back(Expression::make_nil(bloc));
6196 else
6197 {
6198 s = Gogo::hidden_name_prefix(pm->name());
6199 e = Expression::make_string(s, bloc);
6200 mvals->push_back(Expression::make_unary(OPERATOR_AND, e, bloc));
6201 }
6202
6203 ++pmf;
6204 gcc_assert(pmf->field_name() == "typ");
6205 mvals->push_back(Expression::make_type_descriptor(pm->type(), bloc));
6206
6207 ++pmf;
6208 gcc_assert(pmf == mfields->end());
6209
6210 e = Expression::make_struct_composite_literal(elemtype, mvals,
6211 bloc);
6212 methods->push_back(e);
6213 }
6214 }
6215
6216 ivals->push_back(Expression::make_slice_composite_literal(pif->type(),
6217 methods, bloc));
6218
6219 ++pif;
6220 gcc_assert(pif == ifields->end());
6221
6222 return Expression::make_struct_composite_literal(itdt, ivals, bloc);
6223 }
6224
6225 // Reflection string.
6226
6227 void
6228 Interface_type::do_reflection(Gogo* gogo, std::string* ret) const
6229 {
6230 ret->append("interface {");
6231 if (this->methods_ != NULL)
6232 {
6233 for (Typed_identifier_list::const_iterator p = this->methods_->begin();
6234 p != this->methods_->end();
6235 ++p)
6236 {
6237 if (p != this->methods_->begin())
6238 ret->append(";");
6239 ret->push_back(' ');
6240 ret->append(Gogo::unpack_hidden_name(p->name()));
6241 std::string sub = p->type()->reflection(gogo);
6242 gcc_assert(sub.compare(0, 4, "func") == 0);
6243 sub = sub.substr(4);
6244 ret->append(sub);
6245 }
6246 }
6247 ret->append(" }");
6248 }
6249
6250 // Mangled name.
6251
6252 void
6253 Interface_type::do_mangled_name(Gogo* gogo, std::string* ret) const
6254 {
6255 ret->push_back('I');
6256
6257 const Typed_identifier_list* methods = this->methods_;
6258 if (methods != NULL)
6259 {
6260 for (Typed_identifier_list::const_iterator p = methods->begin();
6261 p != methods->end();
6262 ++p)
6263 {
6264 std::string n = Gogo::unpack_hidden_name(p->name());
6265 char buf[20];
6266 snprintf(buf, sizeof buf, "%u_",
6267 static_cast<unsigned int>(n.length()));
6268 ret->append(buf);
6269 ret->append(n);
6270 this->append_mangled_name(p->type(), gogo, ret);
6271 }
6272 }
6273
6274 ret->push_back('e');
6275 }
6276
6277 // Export.
6278
6279 void
6280 Interface_type::do_export(Export* exp) const
6281 {
6282 exp->write_c_string("interface { ");
6283
6284 const Typed_identifier_list* methods = this->methods_;
6285 if (methods != NULL)
6286 {
6287 for (Typed_identifier_list::const_iterator pm = methods->begin();
6288 pm != methods->end();
6289 ++pm)
6290 {
6291 exp->write_string(pm->name());
6292 exp->write_c_string(" (");
6293
6294 const Function_type* fntype = pm->type()->function_type();
6295
6296 bool first = true;
6297 const Typed_identifier_list* parameters = fntype->parameters();
6298 if (parameters != NULL)
6299 {
6300 bool is_varargs = fntype->is_varargs();
6301 for (Typed_identifier_list::const_iterator pp =
6302 parameters->begin();
6303 pp != parameters->end();
6304 ++pp)
6305 {
6306 if (first)
6307 first = false;
6308 else
6309 exp->write_c_string(", ");
6310 if (!is_varargs || pp + 1 != parameters->end())
6311 exp->write_type(pp->type());
6312 else
6313 {
6314 exp->write_c_string("...");
6315 Type *pptype = pp->type();
6316 exp->write_type(pptype->array_type()->element_type());
6317 }
6318 }
6319 }
6320
6321 exp->write_c_string(")");
6322
6323 const Typed_identifier_list* results = fntype->results();
6324 if (results != NULL)
6325 {
6326 exp->write_c_string(" ");
6327 if (results->size() == 1)
6328 exp->write_type(results->begin()->type());
6329 else
6330 {
6331 first = true;
6332 exp->write_c_string("(");
6333 for (Typed_identifier_list::const_iterator p =
6334 results->begin();
6335 p != results->end();
6336 ++p)
6337 {
6338 if (first)
6339 first = false;
6340 else
6341 exp->write_c_string(", ");
6342 exp->write_type(p->type());
6343 }
6344 exp->write_c_string(")");
6345 }
6346 }
6347
6348 exp->write_c_string("; ");
6349 }
6350 }
6351
6352 exp->write_c_string("}");
6353 }
6354
6355 // Import an interface type.
6356
6357 Interface_type*
6358 Interface_type::do_import(Import* imp)
6359 {
6360 imp->require_c_string("interface { ");
6361
6362 Typed_identifier_list* methods = new Typed_identifier_list;
6363 while (imp->peek_char() != '}')
6364 {
6365 std::string name = imp->read_identifier();
6366 imp->require_c_string(" (");
6367
6368 Typed_identifier_list* parameters;
6369 bool is_varargs = false;
6370 if (imp->peek_char() == ')')
6371 parameters = NULL;
6372 else
6373 {
6374 parameters = new Typed_identifier_list;
6375 while (true)
6376 {
6377 if (imp->match_c_string("..."))
6378 {
6379 imp->advance(3);
6380 is_varargs = true;
6381 }
6382
6383 Type* ptype = imp->read_type();
6384 if (is_varargs)
6385 ptype = Type::make_array_type(ptype, NULL);
6386 parameters->push_back(Typed_identifier(Import::import_marker,
6387 ptype, imp->location()));
6388 if (imp->peek_char() != ',')
6389 break;
6390 gcc_assert(!is_varargs);
6391 imp->require_c_string(", ");
6392 }
6393 }
6394 imp->require_c_string(")");
6395
6396 Typed_identifier_list* results;
6397 if (imp->peek_char() != ' ')
6398 results = NULL;
6399 else
6400 {
6401 results = new Typed_identifier_list;
6402 imp->advance(1);
6403 if (imp->peek_char() != '(')
6404 {
6405 Type* rtype = imp->read_type();
6406 results->push_back(Typed_identifier(Import::import_marker,
6407 rtype, imp->location()));
6408 }
6409 else
6410 {
6411 imp->advance(1);
6412 while (true)
6413 {
6414 Type* rtype = imp->read_type();
6415 results->push_back(Typed_identifier(Import::import_marker,
6416 rtype, imp->location()));
6417 if (imp->peek_char() != ',')
6418 break;
6419 imp->require_c_string(", ");
6420 }
6421 imp->require_c_string(")");
6422 }
6423 }
6424
6425 Function_type* fntype = Type::make_function_type(NULL, parameters,
6426 results,
6427 imp->location());
6428 if (is_varargs)
6429 fntype->set_is_varargs();
6430 methods->push_back(Typed_identifier(name, fntype, imp->location()));
6431
6432 imp->require_c_string("; ");
6433 }
6434
6435 imp->require_c_string("}");
6436
6437 if (methods->empty())
6438 {
6439 delete methods;
6440 methods = NULL;
6441 }
6442
6443 return Type::make_interface_type(methods, imp->location());
6444 }
6445
6446 // Make an interface type.
6447
6448 Interface_type*
6449 Type::make_interface_type(Typed_identifier_list* methods,
6450 source_location location)
6451 {
6452 return new Interface_type(methods, location);
6453 }
6454
6455 // Class Method.
6456
6457 // Bind a method to an object.
6458
6459 Expression*
6460 Method::bind_method(Expression* expr, source_location location) const
6461 {
6462 if (this->stub_ == NULL)
6463 {
6464 // When there is no stub object, the binding is determined by
6465 // the child class.
6466 return this->do_bind_method(expr, location);
6467 }
6468
6469 Expression* func = Expression::make_func_reference(this->stub_, NULL,
6470 location);
6471 return Expression::make_bound_method(expr, func, location);
6472 }
6473
6474 // Return the named object associated with a method. This may only be
6475 // called after methods are finalized.
6476
6477 Named_object*
6478 Method::named_object() const
6479 {
6480 if (this->stub_ != NULL)
6481 return this->stub_;
6482 return this->do_named_object();
6483 }
6484
6485 // Class Named_method.
6486
6487 // The type of the method.
6488
6489 Function_type*
6490 Named_method::do_type() const
6491 {
6492 if (this->named_object_->is_function())
6493 return this->named_object_->func_value()->type();
6494 else if (this->named_object_->is_function_declaration())
6495 return this->named_object_->func_declaration_value()->type();
6496 else
6497 gcc_unreachable();
6498 }
6499
6500 // Return the location of the method receiver.
6501
6502 source_location
6503 Named_method::do_receiver_location() const
6504 {
6505 return this->do_type()->receiver()->location();
6506 }
6507
6508 // Bind a method to an object.
6509
6510 Expression*
6511 Named_method::do_bind_method(Expression* expr, source_location location) const
6512 {
6513 Expression* func = Expression::make_func_reference(this->named_object_, NULL,
6514 location);
6515 Bound_method_expression* bme = Expression::make_bound_method(expr, func,
6516 location);
6517 // If this is not a local method, and it does not use a stub, then
6518 // the real method expects a different type. We need to cast the
6519 // first argument.
6520 if (this->depth() > 0 && !this->needs_stub_method())
6521 {
6522 Function_type* ftype = this->do_type();
6523 gcc_assert(ftype->is_method());
6524 Type* frtype = ftype->receiver()->type();
6525 bme->set_first_argument_type(frtype);
6526 }
6527 return bme;
6528 }
6529
6530 // Class Interface_method.
6531
6532 // Bind a method to an object.
6533
6534 Expression*
6535 Interface_method::do_bind_method(Expression* expr,
6536 source_location location) const
6537 {
6538 return Expression::make_interface_field_reference(expr, this->name_,
6539 location);
6540 }
6541
6542 // Class Methods.
6543
6544 // Insert a new method. Return true if it was inserted, false
6545 // otherwise.
6546
6547 bool
6548 Methods::insert(const std::string& name, Method* m)
6549 {
6550 std::pair<Method_map::iterator, bool> ins =
6551 this->methods_.insert(std::make_pair(name, m));
6552 if (ins.second)
6553 return true;
6554 else
6555 {
6556 Method* old_method = ins.first->second;
6557 if (m->depth() < old_method->depth())
6558 {
6559 delete old_method;
6560 ins.first->second = m;
6561 return true;
6562 }
6563 else
6564 {
6565 if (m->depth() == old_method->depth())
6566 old_method->set_is_ambiguous();
6567 return false;
6568 }
6569 }
6570 }
6571
6572 // Return the number of unambiguous methods.
6573
6574 size_t
6575 Methods::count() const
6576 {
6577 size_t ret = 0;
6578 for (Method_map::const_iterator p = this->methods_.begin();
6579 p != this->methods_.end();
6580 ++p)
6581 if (!p->second->is_ambiguous())
6582 ++ret;
6583 return ret;
6584 }
6585
6586 // Class Named_type.
6587
6588 // Return the name of the type.
6589
6590 const std::string&
6591 Named_type::name() const
6592 {
6593 return this->named_object_->name();
6594 }
6595
6596 // Return the name of the type to use in an error message.
6597
6598 std::string
6599 Named_type::message_name() const
6600 {
6601 return this->named_object_->message_name();
6602 }
6603
6604 // Return the base type for this type. We have to be careful about
6605 // circular type definitions, which are invalid but may be seen here.
6606
6607 Type*
6608 Named_type::named_base()
6609 {
6610 if (this->seen_ > 0)
6611 return this;
6612 ++this->seen_;
6613 Type* ret = this->type_->base();
6614 --this->seen_;
6615 return ret;
6616 }
6617
6618 const Type*
6619 Named_type::named_base() const
6620 {
6621 if (this->seen_ > 0)
6622 return this;
6623 ++this->seen_;
6624 const Type* ret = this->type_->base();
6625 --this->seen_;
6626 return ret;
6627 }
6628
6629 // Return whether this is an error type. We have to be careful about
6630 // circular type definitions, which are invalid but may be seen here.
6631
6632 bool
6633 Named_type::is_named_error_type() const
6634 {
6635 if (this->seen_ > 0)
6636 return false;
6637 ++this->seen_;
6638 bool ret = this->type_->is_error_type();
6639 --this->seen_;
6640 return ret;
6641 }
6642
6643 // Add a method to this type.
6644
6645 Named_object*
6646 Named_type::add_method(const std::string& name, Function* function)
6647 {
6648 if (this->local_methods_ == NULL)
6649 this->local_methods_ = new Bindings(NULL);
6650 return this->local_methods_->add_function(name, NULL, function);
6651 }
6652
6653 // Add a method declaration to this type.
6654
6655 Named_object*
6656 Named_type::add_method_declaration(const std::string& name, Package* package,
6657 Function_type* type,
6658 source_location location)
6659 {
6660 if (this->local_methods_ == NULL)
6661 this->local_methods_ = new Bindings(NULL);
6662 return this->local_methods_->add_function_declaration(name, package, type,
6663 location);
6664 }
6665
6666 // Add an existing method to this type.
6667
6668 void
6669 Named_type::add_existing_method(Named_object* no)
6670 {
6671 if (this->local_methods_ == NULL)
6672 this->local_methods_ = new Bindings(NULL);
6673 this->local_methods_->add_named_object(no);
6674 }
6675
6676 // Look for a local method NAME, and returns its named object, or NULL
6677 // if not there.
6678
6679 Named_object*
6680 Named_type::find_local_method(const std::string& name) const
6681 {
6682 if (this->local_methods_ == NULL)
6683 return NULL;
6684 return this->local_methods_->lookup(name);
6685 }
6686
6687 // Return whether NAME is an unexported field or method, for better
6688 // error reporting.
6689
6690 bool
6691 Named_type::is_unexported_local_method(Gogo* gogo,
6692 const std::string& name) const
6693 {
6694 Bindings* methods = this->local_methods_;
6695 if (methods != NULL)
6696 {
6697 for (Bindings::const_declarations_iterator p =
6698 methods->begin_declarations();
6699 p != methods->end_declarations();
6700 ++p)
6701 {
6702 if (Gogo::is_hidden_name(p->first)
6703 && name == Gogo::unpack_hidden_name(p->first)
6704 && gogo->pack_hidden_name(name, false) != p->first)
6705 return true;
6706 }
6707 }
6708 return false;
6709 }
6710
6711 // Build the complete list of methods for this type, which means
6712 // recursively including all methods for anonymous fields. Create all
6713 // stub methods.
6714
6715 void
6716 Named_type::finalize_methods(Gogo* gogo)
6717 {
6718 if (this->all_methods_ != NULL)
6719 return;
6720
6721 if (this->local_methods_ != NULL
6722 && (this->points_to() != NULL || this->interface_type() != NULL))
6723 {
6724 const Bindings* lm = this->local_methods_;
6725 for (Bindings::const_declarations_iterator p = lm->begin_declarations();
6726 p != lm->end_declarations();
6727 ++p)
6728 error_at(p->second->location(),
6729 "invalid pointer or interface receiver type");
6730 delete this->local_methods_;
6731 this->local_methods_ = NULL;
6732 return;
6733 }
6734
6735 Type::finalize_methods(gogo, this, this->location_, &this->all_methods_);
6736 }
6737
6738 // Return the method NAME, or NULL if there isn't one or if it is
6739 // ambiguous. Set *IS_AMBIGUOUS if the method exists but is
6740 // ambiguous.
6741
6742 Method*
6743 Named_type::method_function(const std::string& name, bool* is_ambiguous) const
6744 {
6745 return Type::method_function(this->all_methods_, name, is_ambiguous);
6746 }
6747
6748 // Return a pointer to the interface method table for this type for
6749 // the interface INTERFACE. IS_POINTER is true if this is for a
6750 // pointer to THIS.
6751
6752 tree
6753 Named_type::interface_method_table(Gogo* gogo, const Interface_type* interface,
6754 bool is_pointer)
6755 {
6756 gcc_assert(!interface->is_empty());
6757
6758 Interface_method_tables** pimt = (is_pointer
6759 ? &this->interface_method_tables_
6760 : &this->pointer_interface_method_tables_);
6761
6762 if (*pimt == NULL)
6763 *pimt = new Interface_method_tables(5);
6764
6765 std::pair<const Interface_type*, tree> val(interface, NULL_TREE);
6766 std::pair<Interface_method_tables::iterator, bool> ins = (*pimt)->insert(val);
6767
6768 if (ins.second)
6769 {
6770 // This is a new entry in the hash table.
6771 gcc_assert(ins.first->second == NULL_TREE);
6772 ins.first->second = gogo->interface_method_table_for_type(interface,
6773 this,
6774 is_pointer);
6775 }
6776
6777 tree decl = ins.first->second;
6778 if (decl == error_mark_node)
6779 return error_mark_node;
6780 gcc_assert(decl != NULL_TREE && TREE_CODE(decl) == VAR_DECL);
6781 return build_fold_addr_expr(decl);
6782 }
6783
6784 // Return whether a named type has any hidden fields.
6785
6786 bool
6787 Named_type::named_type_has_hidden_fields(std::string* reason) const
6788 {
6789 if (this->seen_ > 0)
6790 return false;
6791 ++this->seen_;
6792 bool ret = this->type_->has_hidden_fields(this, reason);
6793 --this->seen_;
6794 return ret;
6795 }
6796
6797 // Look for a use of a complete type within another type. This is
6798 // used to check that we don't try to use a type within itself.
6799
6800 class Find_type_use : public Traverse
6801 {
6802 public:
6803 Find_type_use(Type* find_type)
6804 : Traverse(traverse_types),
6805 find_type_(find_type), found_(false)
6806 { }
6807
6808 // Whether we found the type.
6809 bool
6810 found() const
6811 { return this->found_; }
6812
6813 protected:
6814 int
6815 type(Type*);
6816
6817 private:
6818 // The type we are looking for.
6819 Type* find_type_;
6820 // Whether we found the type.
6821 bool found_;
6822 };
6823
6824 // Check for FIND_TYPE in TYPE.
6825
6826 int
6827 Find_type_use::type(Type* type)
6828 {
6829 if (this->find_type_ == type)
6830 {
6831 this->found_ = true;
6832 return TRAVERSE_EXIT;
6833 }
6834 // It's OK if we see a reference to the type in any type which is
6835 // essentially a pointer: a pointer, a slice, a function, a map, or
6836 // a channel.
6837 if (type->points_to() != NULL
6838 || type->is_open_array_type()
6839 || type->function_type() != NULL
6840 || type->map_type() != NULL
6841 || type->channel_type() != NULL)
6842 return TRAVERSE_SKIP_COMPONENTS;
6843
6844 // For an interface, a reference to the type in a method type should
6845 // be ignored, but we have to consider direct inheritance. When
6846 // this is called, there may be cases of direct inheritance
6847 // represented as a method with no name.
6848 if (type->interface_type() != NULL)
6849 {
6850 const Typed_identifier_list* methods = type->interface_type()->methods();
6851 if (methods != NULL)
6852 {
6853 for (Typed_identifier_list::const_iterator p = methods->begin();
6854 p != methods->end();
6855 ++p)
6856 {
6857 if (p->name().empty())
6858 {
6859 if (Type::traverse(p->type(), this) == TRAVERSE_EXIT)
6860 return TRAVERSE_EXIT;
6861 }
6862 }
6863 }
6864 return TRAVERSE_SKIP_COMPONENTS;
6865 }
6866
6867 return TRAVERSE_CONTINUE;
6868 }
6869
6870 // Verify that a named type does not refer to itself.
6871
6872 bool
6873 Named_type::do_verify()
6874 {
6875 Find_type_use find(this);
6876 Type::traverse(this->type_, &find);
6877 if (find.found())
6878 {
6879 error_at(this->location_, "invalid recursive type %qs",
6880 this->message_name().c_str());
6881 this->is_error_ = true;
6882 return false;
6883 }
6884
6885 // Check whether any of the local methods overloads an existing
6886 // struct field or interface method. We don't need to check the
6887 // list of methods against itself: that is handled by the Bindings
6888 // code.
6889 if (this->local_methods_ != NULL)
6890 {
6891 Struct_type* st = this->type_->struct_type();
6892 Interface_type* it = this->type_->interface_type();
6893 bool found_dup = false;
6894 if (st != NULL || it != NULL)
6895 {
6896 for (Bindings::const_declarations_iterator p =
6897 this->local_methods_->begin_declarations();
6898 p != this->local_methods_->end_declarations();
6899 ++p)
6900 {
6901 const std::string& name(p->first);
6902 if (st != NULL && st->find_local_field(name, NULL) != NULL)
6903 {
6904 error_at(p->second->location(),
6905 "method %qs redeclares struct field name",
6906 Gogo::message_name(name).c_str());
6907 found_dup = true;
6908 }
6909 if (it != NULL && it->find_method(name) != NULL)
6910 {
6911 error_at(p->second->location(),
6912 "method %qs redeclares interface method name",
6913 Gogo::message_name(name).c_str());
6914 found_dup = true;
6915 }
6916 }
6917 }
6918 if (found_dup)
6919 return false;
6920 }
6921
6922 // If this is a struct, then if any of the fields of the struct
6923 // themselves have struct type, then this struct must be converted
6924 // to the backend representation before the field's type is
6925 // converted. That may seem backward, but it works because if the
6926 // field's type refers to this one, e.g., via a pointer, then the
6927 // conversion process will pick up the half-built struct and do the
6928 // right thing.
6929 if (this->struct_type() != NULL)
6930 {
6931 const Struct_field_list* fields = this->struct_type()->fields();
6932 for (Struct_field_list::const_iterator p = fields->begin();
6933 p != fields->end();
6934 ++p)
6935 {
6936 Struct_type* st = p->type()->struct_type();
6937 if (st != NULL)
6938 st->add_prerequisite(this);
6939 }
6940 }
6941
6942 return true;
6943 }
6944
6945 // Return whether this type is or contains a pointer.
6946
6947 bool
6948 Named_type::do_has_pointer() const
6949 {
6950 if (this->seen_ > 0)
6951 return false;
6952 ++this->seen_;
6953 bool ret = this->type_->has_pointer();
6954 --this->seen_;
6955 return ret;
6956 }
6957
6958 // Return a hash code. This is used for method lookup. We simply
6959 // hash on the name itself.
6960
6961 unsigned int
6962 Named_type::do_hash_for_method(Gogo* gogo) const
6963 {
6964 const std::string& name(this->named_object()->name());
6965 unsigned int ret = Type::hash_string(name, 0);
6966
6967 // GOGO will be NULL here when called from Type_hash_identical.
6968 // That is OK because that is only used for internal hash tables
6969 // where we are going to be comparing named types for equality. In
6970 // other cases, which are cases where the runtime is going to
6971 // compare hash codes to see if the types are the same, we need to
6972 // include the package prefix and name in the hash.
6973 if (gogo != NULL && !Gogo::is_hidden_name(name) && !this->is_builtin())
6974 {
6975 const Package* package = this->named_object()->package();
6976 if (package == NULL)
6977 {
6978 ret = Type::hash_string(gogo->unique_prefix(), ret);
6979 ret = Type::hash_string(gogo->package_name(), ret);
6980 }
6981 else
6982 {
6983 ret = Type::hash_string(package->unique_prefix(), ret);
6984 ret = Type::hash_string(package->name(), ret);
6985 }
6986 }
6987
6988 return ret;
6989 }
6990
6991 // Get a tree for a named type.
6992
6993 tree
6994 Named_type::do_get_tree(Gogo* gogo)
6995 {
6996 if (this->is_error_)
6997 return error_mark_node;
6998
6999 // Go permits types to refer to themselves in various ways. Break
7000 // the recursion here.
7001 tree t;
7002 switch (this->type_->forwarded()->classification())
7003 {
7004 case TYPE_ERROR:
7005 return error_mark_node;
7006
7007 case TYPE_VOID:
7008 case TYPE_BOOLEAN:
7009 case TYPE_INTEGER:
7010 case TYPE_FLOAT:
7011 case TYPE_COMPLEX:
7012 case TYPE_STRING:
7013 case TYPE_NIL:
7014 // These types can not refer to themselves.
7015 case TYPE_MAP:
7016 case TYPE_CHANNEL:
7017 // All maps and channels have the same type in GENERIC.
7018 t = Type::get_named_type_tree(gogo, this->type_);
7019 if (t == error_mark_node)
7020 return error_mark_node;
7021 // Build a copy to set TYPE_NAME.
7022 t = build_variant_type_copy(t);
7023 break;
7024
7025 case TYPE_FUNCTION:
7026 // GENERIC can't handle a pointer to a function type whose
7027 // return type is a pointer to the function type itself. It
7028 // goes into an infinite loop when walking the types.
7029 if (this->seen_ > 0)
7030 {
7031 Function_type* fntype = this->type_->function_type();
7032 if (fntype->results() != NULL
7033 && fntype->results()->size() == 1
7034 && fntype->results()->front().type()->forwarded() == this)
7035 return ptr_type_node;
7036
7037 // We can legitimately see ourselves here twice when a named
7038 // type is defined using a struct which refers to the named
7039 // type. If we see ourselves too often we are in a loop.
7040 if (this->seen_ > 3)
7041 return ptr_type_node;
7042 }
7043 ++this->seen_;
7044 t = Type::get_named_type_tree(gogo, this->type_);
7045 --this->seen_;
7046 if (t == error_mark_node)
7047 return error_mark_node;
7048 t = build_variant_type_copy(t);
7049 break;
7050
7051 case TYPE_POINTER:
7052 // Don't recur infinitely if a pointer type refers to itself.
7053 // Ideally we would build a circular data structure here, but
7054 // GENERIC can't handle them.
7055 if (this->seen_ > 0)
7056 {
7057 if (this->type_->points_to()->forwarded() == this)
7058 return ptr_type_node;
7059
7060 if (this->seen_ > 3)
7061 return ptr_type_node;
7062 }
7063 ++this->seen_;
7064 t = Type::get_named_type_tree(gogo, this->type_);
7065 --this->seen_;
7066 if (t == error_mark_node)
7067 return error_mark_node;
7068 t = build_variant_type_copy(t);
7069 break;
7070
7071 case TYPE_STRUCT:
7072 // If there are structs which must be converted first, do them.
7073 if (this->seen_ == 0)
7074 {
7075 ++this->seen_;
7076 this->type_->struct_type()->convert_prerequisites(gogo);
7077 --this->seen_;
7078 }
7079
7080 if (this->named_tree_ != NULL_TREE)
7081 return this->named_tree_;
7082
7083 t = make_node(RECORD_TYPE);
7084 this->named_tree_ = t;
7085 t = this->type_->struct_type()->fill_in_tree(gogo, t);
7086 if (t == error_mark_node)
7087 {
7088 this->named_tree_ = error_mark_node;
7089 return error_mark_node;
7090 }
7091 break;
7092
7093 case TYPE_ARRAY:
7094 if (!this->is_open_array_type())
7095 t = Type::get_named_type_tree(gogo, this->type_);
7096 else
7097 {
7098 if (this->named_tree_ != NULL_TREE)
7099 return this->named_tree_;
7100 t = gogo->slice_type_tree(void_type_node);
7101 this->named_tree_ = t;
7102 t = this->type_->array_type()->fill_in_tree(gogo, t);
7103 }
7104 if (t == error_mark_node)
7105 return error_mark_node;
7106 t = build_variant_type_copy(t);
7107 break;
7108
7109 case TYPE_INTERFACE:
7110 if (this->type_->interface_type()->is_empty())
7111 {
7112 t = Type::get_named_type_tree(gogo, this->type_);
7113 if (t == error_mark_node)
7114 return error_mark_node;
7115 t = build_variant_type_copy(t);
7116 }
7117 else
7118 {
7119 if (this->named_tree_ != NULL_TREE)
7120 return this->named_tree_;
7121 t = make_node(RECORD_TYPE);
7122 this->named_tree_ = t;
7123 t = this->type_->interface_type()->fill_in_tree(gogo, t);
7124 if (t == error_mark_node)
7125 {
7126 this->named_tree_ = error_mark_node;
7127 return error_mark_node;
7128 }
7129 }
7130 break;
7131
7132 case TYPE_NAMED:
7133 {
7134 // When a named type T1 is defined as another named type T2,
7135 // the definition must simply be "type T1 T2". If the
7136 // definition of T2 may refer to T1, then we must simply
7137 // return the type for T2 here. It's not precisely correct,
7138 // but it's as close as we can get with GENERIC.
7139 ++this->seen_;
7140 t = Type::get_named_type_tree(gogo, this->type_);
7141 --this->seen_;
7142 if (this->seen_ > 0)
7143 return t;
7144 if (t == error_mark_node)
7145 return error_mark_node;
7146 t = build_variant_type_copy(t);
7147 }
7148 break;
7149
7150 case TYPE_FORWARD:
7151 // An undefined forwarding type. Make sure the error is
7152 // emitted.
7153 this->type_->forward_declaration_type()->real_type();
7154 return error_mark_node;
7155
7156 default:
7157 case TYPE_SINK:
7158 case TYPE_CALL_MULTIPLE_RESULT:
7159 gcc_unreachable();
7160 }
7161
7162 tree id = this->named_object_->get_id(gogo);
7163 tree decl = build_decl(this->location_, TYPE_DECL, id, t);
7164 TYPE_NAME(t) = decl;
7165
7166 return t;
7167 }
7168
7169 // Build a type descriptor for a named type.
7170
7171 Expression*
7172 Named_type::do_type_descriptor(Gogo* gogo, Named_type* name)
7173 {
7174 // If NAME is not NULL, then we don't really want the type
7175 // descriptor for this type; we want the descriptor for the
7176 // underlying type, giving it the name NAME.
7177 return this->named_type_descriptor(gogo, this->type_,
7178 name == NULL ? this : name);
7179 }
7180
7181 // Add to the reflection string. This is used mostly for the name of
7182 // the type used in a type descriptor, not for actual reflection
7183 // strings.
7184
7185 void
7186 Named_type::do_reflection(Gogo* gogo, std::string* ret) const
7187 {
7188 if (this->location() != BUILTINS_LOCATION)
7189 {
7190 const Package* package = this->named_object_->package();
7191 if (package != NULL)
7192 ret->append(package->name());
7193 else
7194 ret->append(gogo->package_name());
7195 ret->push_back('.');
7196 }
7197 if (this->in_function_ != NULL)
7198 {
7199 ret->append(Gogo::unpack_hidden_name(this->in_function_->name()));
7200 ret->push_back('$');
7201 }
7202 ret->append(Gogo::unpack_hidden_name(this->named_object_->name()));
7203 }
7204
7205 // Get the mangled name.
7206
7207 void
7208 Named_type::do_mangled_name(Gogo* gogo, std::string* ret) const
7209 {
7210 Named_object* no = this->named_object_;
7211 std::string name;
7212 if (this->location() == BUILTINS_LOCATION)
7213 gcc_assert(this->in_function_ == NULL);
7214 else
7215 {
7216 const std::string& unique_prefix(no->package() == NULL
7217 ? gogo->unique_prefix()
7218 : no->package()->unique_prefix());
7219 const std::string& package_name(no->package() == NULL
7220 ? gogo->package_name()
7221 : no->package()->name());
7222 name = unique_prefix;
7223 name.append(1, '.');
7224 name.append(package_name);
7225 name.append(1, '.');
7226 if (this->in_function_ != NULL)
7227 {
7228 name.append(Gogo::unpack_hidden_name(this->in_function_->name()));
7229 name.append(1, '$');
7230 }
7231 }
7232 name.append(Gogo::unpack_hidden_name(no->name()));
7233 char buf[20];
7234 snprintf(buf, sizeof buf, "N%u_", static_cast<unsigned int>(name.length()));
7235 ret->append(buf);
7236 ret->append(name);
7237 }
7238
7239 // Export the type. This is called to export a global type.
7240
7241 void
7242 Named_type::export_named_type(Export* exp, const std::string&) const
7243 {
7244 // We don't need to write the name of the type here, because it will
7245 // be written by Export::write_type anyhow.
7246 exp->write_c_string("type ");
7247 exp->write_type(this);
7248 exp->write_c_string(";\n");
7249 }
7250
7251 // Import a named type.
7252
7253 void
7254 Named_type::import_named_type(Import* imp, Named_type** ptype)
7255 {
7256 imp->require_c_string("type ");
7257 Type *type = imp->read_type();
7258 *ptype = type->named_type();
7259 gcc_assert(*ptype != NULL);
7260 imp->require_c_string(";\n");
7261 }
7262
7263 // Export the type when it is referenced by another type. In this
7264 // case Export::export_type will already have issued the name.
7265
7266 void
7267 Named_type::do_export(Export* exp) const
7268 {
7269 exp->write_type(this->type_);
7270
7271 // To save space, we only export the methods directly attached to
7272 // this type.
7273 Bindings* methods = this->local_methods_;
7274 if (methods == NULL)
7275 return;
7276
7277 exp->write_c_string("\n");
7278 for (Bindings::const_definitions_iterator p = methods->begin_definitions();
7279 p != methods->end_definitions();
7280 ++p)
7281 {
7282 exp->write_c_string(" ");
7283 (*p)->export_named_object(exp);
7284 }
7285
7286 for (Bindings::const_declarations_iterator p = methods->begin_declarations();
7287 p != methods->end_declarations();
7288 ++p)
7289 {
7290 if (p->second->is_function_declaration())
7291 {
7292 exp->write_c_string(" ");
7293 p->second->export_named_object(exp);
7294 }
7295 }
7296 }
7297
7298 // Make a named type.
7299
7300 Named_type*
7301 Type::make_named_type(Named_object* named_object, Type* type,
7302 source_location location)
7303 {
7304 return new Named_type(named_object, type, location);
7305 }
7306
7307 // Finalize the methods for TYPE. It will be a named type or a struct
7308 // type. This sets *ALL_METHODS to the list of methods, and builds
7309 // all required stubs.
7310
7311 void
7312 Type::finalize_methods(Gogo* gogo, const Type* type, source_location location,
7313 Methods** all_methods)
7314 {
7315 *all_methods = NULL;
7316 Types_seen types_seen;
7317 Type::add_methods_for_type(type, NULL, 0, false, false, &types_seen,
7318 all_methods);
7319 Type::build_stub_methods(gogo, type, *all_methods, location);
7320 }
7321
7322 // Add the methods for TYPE to *METHODS. FIELD_INDEXES is used to
7323 // build up the struct field indexes as we go. DEPTH is the depth of
7324 // the field within TYPE. IS_EMBEDDED_POINTER is true if we are
7325 // adding these methods for an anonymous field with pointer type.
7326 // NEEDS_STUB_METHOD is true if we need to use a stub method which
7327 // calls the real method. TYPES_SEEN is used to avoid infinite
7328 // recursion.
7329
7330 void
7331 Type::add_methods_for_type(const Type* type,
7332 const Method::Field_indexes* field_indexes,
7333 unsigned int depth,
7334 bool is_embedded_pointer,
7335 bool needs_stub_method,
7336 Types_seen* types_seen,
7337 Methods** methods)
7338 {
7339 // Pointer types may not have methods.
7340 if (type->points_to() != NULL)
7341 return;
7342
7343 const Named_type* nt = type->named_type();
7344 if (nt != NULL)
7345 {
7346 std::pair<Types_seen::iterator, bool> ins = types_seen->insert(nt);
7347 if (!ins.second)
7348 return;
7349 }
7350
7351 if (nt != NULL)
7352 Type::add_local_methods_for_type(nt, field_indexes, depth,
7353 is_embedded_pointer, needs_stub_method,
7354 methods);
7355
7356 Type::add_embedded_methods_for_type(type, field_indexes, depth,
7357 is_embedded_pointer, needs_stub_method,
7358 types_seen, methods);
7359
7360 // If we are called with depth > 0, then we are looking at an
7361 // anonymous field of a struct. If such a field has interface type,
7362 // then we need to add the interface methods. We don't want to add
7363 // them when depth == 0, because we will already handle them
7364 // following the usual rules for an interface type.
7365 if (depth > 0)
7366 Type::add_interface_methods_for_type(type, field_indexes, depth, methods);
7367 }
7368
7369 // Add the local methods for the named type NT to *METHODS. The
7370 // parameters are as for add_methods_to_type.
7371
7372 void
7373 Type::add_local_methods_for_type(const Named_type* nt,
7374 const Method::Field_indexes* field_indexes,
7375 unsigned int depth,
7376 bool is_embedded_pointer,
7377 bool needs_stub_method,
7378 Methods** methods)
7379 {
7380 const Bindings* local_methods = nt->local_methods();
7381 if (local_methods == NULL)
7382 return;
7383
7384 if (*methods == NULL)
7385 *methods = new Methods();
7386
7387 for (Bindings::const_declarations_iterator p =
7388 local_methods->begin_declarations();
7389 p != local_methods->end_declarations();
7390 ++p)
7391 {
7392 Named_object* no = p->second;
7393 bool is_value_method = (is_embedded_pointer
7394 || !Type::method_expects_pointer(no));
7395 Method* m = new Named_method(no, field_indexes, depth, is_value_method,
7396 (needs_stub_method
7397 || (depth > 0 && is_value_method)));
7398 if (!(*methods)->insert(no->name(), m))
7399 delete m;
7400 }
7401 }
7402
7403 // Add the embedded methods for TYPE to *METHODS. These are the
7404 // methods attached to anonymous fields. The parameters are as for
7405 // add_methods_to_type.
7406
7407 void
7408 Type::add_embedded_methods_for_type(const Type* type,
7409 const Method::Field_indexes* field_indexes,
7410 unsigned int depth,
7411 bool is_embedded_pointer,
7412 bool needs_stub_method,
7413 Types_seen* types_seen,
7414 Methods** methods)
7415 {
7416 // Look for anonymous fields in TYPE. TYPE has fields if it is a
7417 // struct.
7418 const Struct_type* st = type->struct_type();
7419 if (st == NULL)
7420 return;
7421
7422 const Struct_field_list* fields = st->fields();
7423 if (fields == NULL)
7424 return;
7425
7426 unsigned int i = 0;
7427 for (Struct_field_list::const_iterator pf = fields->begin();
7428 pf != fields->end();
7429 ++pf, ++i)
7430 {
7431 if (!pf->is_anonymous())
7432 continue;
7433
7434 Type* ftype = pf->type();
7435 bool is_pointer = false;
7436 if (ftype->points_to() != NULL)
7437 {
7438 ftype = ftype->points_to();
7439 is_pointer = true;
7440 }
7441 Named_type* fnt = ftype->named_type();
7442 if (fnt == NULL)
7443 {
7444 // This is an error, but it will be diagnosed elsewhere.
7445 continue;
7446 }
7447
7448 Method::Field_indexes* sub_field_indexes = new Method::Field_indexes();
7449 sub_field_indexes->next = field_indexes;
7450 sub_field_indexes->field_index = i;
7451
7452 Type::add_methods_for_type(fnt, sub_field_indexes, depth + 1,
7453 (is_embedded_pointer || is_pointer),
7454 (needs_stub_method
7455 || is_pointer
7456 || i > 0),
7457 types_seen,
7458 methods);
7459 }
7460 }
7461
7462 // If TYPE is an interface type, then add its method to *METHODS.
7463 // This is for interface methods attached to an anonymous field. The
7464 // parameters are as for add_methods_for_type.
7465
7466 void
7467 Type::add_interface_methods_for_type(const Type* type,
7468 const Method::Field_indexes* field_indexes,
7469 unsigned int depth,
7470 Methods** methods)
7471 {
7472 const Interface_type* it = type->interface_type();
7473 if (it == NULL)
7474 return;
7475
7476 const Typed_identifier_list* imethods = it->methods();
7477 if (imethods == NULL)
7478 return;
7479
7480 if (*methods == NULL)
7481 *methods = new Methods();
7482
7483 for (Typed_identifier_list::const_iterator pm = imethods->begin();
7484 pm != imethods->end();
7485 ++pm)
7486 {
7487 Function_type* fntype = pm->type()->function_type();
7488 gcc_assert(fntype != NULL && !fntype->is_method());
7489 fntype = fntype->copy_with_receiver(const_cast<Type*>(type));
7490 Method* m = new Interface_method(pm->name(), pm->location(), fntype,
7491 field_indexes, depth);
7492 if (!(*methods)->insert(pm->name(), m))
7493 delete m;
7494 }
7495 }
7496
7497 // Build stub methods for TYPE as needed. METHODS is the set of
7498 // methods for the type. A stub method may be needed when a type
7499 // inherits a method from an anonymous field. When we need the
7500 // address of the method, as in a type descriptor, we need to build a
7501 // little stub which does the required field dereferences and jumps to
7502 // the real method. LOCATION is the location of the type definition.
7503
7504 void
7505 Type::build_stub_methods(Gogo* gogo, const Type* type, const Methods* methods,
7506 source_location location)
7507 {
7508 if (methods == NULL)
7509 return;
7510 for (Methods::const_iterator p = methods->begin();
7511 p != methods->end();
7512 ++p)
7513 {
7514 Method* m = p->second;
7515 if (m->is_ambiguous() || !m->needs_stub_method())
7516 continue;
7517
7518 const std::string& name(p->first);
7519
7520 // Build a stub method.
7521
7522 const Function_type* fntype = m->type();
7523
7524 static unsigned int counter;
7525 char buf[100];
7526 snprintf(buf, sizeof buf, "$this%u", counter);
7527 ++counter;
7528
7529 Type* receiver_type = const_cast<Type*>(type);
7530 if (!m->is_value_method())
7531 receiver_type = Type::make_pointer_type(receiver_type);
7532 source_location receiver_location = m->receiver_location();
7533 Typed_identifier* receiver = new Typed_identifier(buf, receiver_type,
7534 receiver_location);
7535
7536 const Typed_identifier_list* fnparams = fntype->parameters();
7537 Typed_identifier_list* stub_params;
7538 if (fnparams == NULL || fnparams->empty())
7539 stub_params = NULL;
7540 else
7541 {
7542 // We give each stub parameter a unique name.
7543 stub_params = new Typed_identifier_list();
7544 for (Typed_identifier_list::const_iterator pp = fnparams->begin();
7545 pp != fnparams->end();
7546 ++pp)
7547 {
7548 char pbuf[100];
7549 snprintf(pbuf, sizeof pbuf, "$p%u", counter);
7550 stub_params->push_back(Typed_identifier(pbuf, pp->type(),
7551 pp->location()));
7552 ++counter;
7553 }
7554 }
7555
7556 const Typed_identifier_list* fnresults = fntype->results();
7557 Typed_identifier_list* stub_results;
7558 if (fnresults == NULL || fnresults->empty())
7559 stub_results = NULL;
7560 else
7561 {
7562 // We create the result parameters without any names, since
7563 // we won't refer to them.
7564 stub_results = new Typed_identifier_list();
7565 for (Typed_identifier_list::const_iterator pr = fnresults->begin();
7566 pr != fnresults->end();
7567 ++pr)
7568 stub_results->push_back(Typed_identifier("", pr->type(),
7569 pr->location()));
7570 }
7571
7572 Function_type* stub_type = Type::make_function_type(receiver,
7573 stub_params,
7574 stub_results,
7575 fntype->location());
7576 if (fntype->is_varargs())
7577 stub_type->set_is_varargs();
7578
7579 // We only create the function in the package which creates the
7580 // type.
7581 const Package* package;
7582 if (type->named_type() == NULL)
7583 package = NULL;
7584 else
7585 package = type->named_type()->named_object()->package();
7586 Named_object* stub;
7587 if (package != NULL)
7588 stub = Named_object::make_function_declaration(name, package,
7589 stub_type, location);
7590 else
7591 {
7592 stub = gogo->start_function(name, stub_type, false,
7593 fntype->location());
7594 Type::build_one_stub_method(gogo, m, buf, stub_params,
7595 fntype->is_varargs(), location);
7596 gogo->finish_function(fntype->location());
7597 }
7598
7599 m->set_stub_object(stub);
7600 }
7601 }
7602
7603 // Build a stub method which adjusts the receiver as required to call
7604 // METHOD. RECEIVER_NAME is the name we used for the receiver.
7605 // PARAMS is the list of function parameters.
7606
7607 void
7608 Type::build_one_stub_method(Gogo* gogo, Method* method,
7609 const char* receiver_name,
7610 const Typed_identifier_list* params,
7611 bool is_varargs,
7612 source_location location)
7613 {
7614 Named_object* receiver_object = gogo->lookup(receiver_name, NULL);
7615 gcc_assert(receiver_object != NULL);
7616
7617 Expression* expr = Expression::make_var_reference(receiver_object, location);
7618 expr = Type::apply_field_indexes(expr, method->field_indexes(), location);
7619 if (expr->type()->points_to() == NULL)
7620 expr = Expression::make_unary(OPERATOR_AND, expr, location);
7621
7622 Expression_list* arguments;
7623 if (params == NULL || params->empty())
7624 arguments = NULL;
7625 else
7626 {
7627 arguments = new Expression_list();
7628 for (Typed_identifier_list::const_iterator p = params->begin();
7629 p != params->end();
7630 ++p)
7631 {
7632 Named_object* param = gogo->lookup(p->name(), NULL);
7633 gcc_assert(param != NULL);
7634 Expression* param_ref = Expression::make_var_reference(param,
7635 location);
7636 arguments->push_back(param_ref);
7637 }
7638 }
7639
7640 Expression* func = method->bind_method(expr, location);
7641 gcc_assert(func != NULL);
7642 Call_expression* call = Expression::make_call(func, arguments, is_varargs,
7643 location);
7644 size_t count = call->result_count();
7645 if (count == 0)
7646 gogo->add_statement(Statement::make_statement(call));
7647 else
7648 {
7649 Expression_list* retvals = new Expression_list();
7650 if (count <= 1)
7651 retvals->push_back(call);
7652 else
7653 {
7654 for (size_t i = 0; i < count; ++i)
7655 retvals->push_back(Expression::make_call_result(call, i));
7656 }
7657 const Function* function = gogo->current_function()->func_value();
7658 const Typed_identifier_list* results = function->type()->results();
7659 Statement* retstat = Statement::make_return_statement(results, retvals,
7660 location);
7661 gogo->add_statement(retstat);
7662 }
7663 }
7664
7665 // Apply FIELD_INDEXES to EXPR. The field indexes have to be applied
7666 // in reverse order.
7667
7668 Expression*
7669 Type::apply_field_indexes(Expression* expr,
7670 const Method::Field_indexes* field_indexes,
7671 source_location location)
7672 {
7673 if (field_indexes == NULL)
7674 return expr;
7675 expr = Type::apply_field_indexes(expr, field_indexes->next, location);
7676 Struct_type* stype = expr->type()->deref()->struct_type();
7677 gcc_assert(stype != NULL
7678 && field_indexes->field_index < stype->field_count());
7679 if (expr->type()->struct_type() == NULL)
7680 {
7681 gcc_assert(expr->type()->points_to() != NULL);
7682 expr = Expression::make_unary(OPERATOR_MULT, expr, location);
7683 gcc_assert(expr->type()->struct_type() == stype);
7684 }
7685 return Expression::make_field_reference(expr, field_indexes->field_index,
7686 location);
7687 }
7688
7689 // Return whether NO is a method for which the receiver is a pointer.
7690
7691 bool
7692 Type::method_expects_pointer(const Named_object* no)
7693 {
7694 const Function_type *fntype;
7695 if (no->is_function())
7696 fntype = no->func_value()->type();
7697 else if (no->is_function_declaration())
7698 fntype = no->func_declaration_value()->type();
7699 else
7700 gcc_unreachable();
7701 return fntype->receiver()->type()->points_to() != NULL;
7702 }
7703
7704 // Given a set of methods for a type, METHODS, return the method NAME,
7705 // or NULL if there isn't one or if it is ambiguous. If IS_AMBIGUOUS
7706 // is not NULL, then set *IS_AMBIGUOUS to true if the method exists
7707 // but is ambiguous (and return NULL).
7708
7709 Method*
7710 Type::method_function(const Methods* methods, const std::string& name,
7711 bool* is_ambiguous)
7712 {
7713 if (is_ambiguous != NULL)
7714 *is_ambiguous = false;
7715 if (methods == NULL)
7716 return NULL;
7717 Methods::const_iterator p = methods->find(name);
7718 if (p == methods->end())
7719 return NULL;
7720 Method* m = p->second;
7721 if (m->is_ambiguous())
7722 {
7723 if (is_ambiguous != NULL)
7724 *is_ambiguous = true;
7725 return NULL;
7726 }
7727 return m;
7728 }
7729
7730 // Look for field or method NAME for TYPE. Return an Expression for
7731 // the field or method bound to EXPR. If there is no such field or
7732 // method, give an appropriate error and return an error expression.
7733
7734 Expression*
7735 Type::bind_field_or_method(Gogo* gogo, const Type* type, Expression* expr,
7736 const std::string& name,
7737 source_location location)
7738 {
7739 if (type->deref()->is_error_type())
7740 return Expression::make_error(location);
7741
7742 const Named_type* nt = type->named_type();
7743 if (nt == NULL)
7744 nt = type->deref()->named_type();
7745 const Struct_type* st = type->deref()->struct_type();
7746 const Interface_type* it = type->deref()->interface_type();
7747
7748 // If this is a pointer to a pointer, then it is possible that the
7749 // pointed-to type has methods.
7750 if (nt == NULL
7751 && st == NULL
7752 && it == NULL
7753 && type->points_to() != NULL
7754 && type->points_to()->points_to() != NULL)
7755 {
7756 expr = Expression::make_unary(OPERATOR_MULT, expr, location);
7757 type = type->points_to();
7758 nt = type->points_to()->named_type();
7759 st = type->points_to()->struct_type();
7760 it = type->points_to()->interface_type();
7761 }
7762
7763 bool receiver_can_be_pointer = (expr->type()->points_to() != NULL
7764 || expr->is_addressable());
7765 std::vector<const Named_type*> seen;
7766 bool is_method = false;
7767 bool found_pointer_method = false;
7768 std::string ambig1;
7769 std::string ambig2;
7770 if (Type::find_field_or_method(type, name, receiver_can_be_pointer,
7771 &seen, NULL, &is_method,
7772 &found_pointer_method, &ambig1, &ambig2))
7773 {
7774 Expression* ret;
7775 if (!is_method)
7776 {
7777 gcc_assert(st != NULL);
7778 if (type->struct_type() == NULL)
7779 {
7780 gcc_assert(type->points_to() != NULL);
7781 expr = Expression::make_unary(OPERATOR_MULT, expr,
7782 location);
7783 gcc_assert(expr->type()->struct_type() == st);
7784 }
7785 ret = st->field_reference(expr, name, location);
7786 }
7787 else if (it != NULL && it->find_method(name) != NULL)
7788 ret = Expression::make_interface_field_reference(expr, name,
7789 location);
7790 else
7791 {
7792 Method* m;
7793 if (nt != NULL)
7794 m = nt->method_function(name, NULL);
7795 else if (st != NULL)
7796 m = st->method_function(name, NULL);
7797 else
7798 gcc_unreachable();
7799 gcc_assert(m != NULL);
7800 if (!m->is_value_method() && expr->type()->points_to() == NULL)
7801 expr = Expression::make_unary(OPERATOR_AND, expr, location);
7802 ret = m->bind_method(expr, location);
7803 }
7804 gcc_assert(ret != NULL);
7805 return ret;
7806 }
7807 else
7808 {
7809 if (!ambig1.empty())
7810 error_at(location, "%qs is ambiguous via %qs and %qs",
7811 Gogo::message_name(name).c_str(),
7812 Gogo::message_name(ambig1).c_str(),
7813 Gogo::message_name(ambig2).c_str());
7814 else if (found_pointer_method)
7815 error_at(location, "method requires a pointer");
7816 else if (nt == NULL && st == NULL && it == NULL)
7817 error_at(location,
7818 ("reference to field %qs in object which "
7819 "has no fields or methods"),
7820 Gogo::message_name(name).c_str());
7821 else
7822 {
7823 bool is_unexported;
7824 if (!Gogo::is_hidden_name(name))
7825 is_unexported = false;
7826 else
7827 {
7828 std::string unpacked = Gogo::unpack_hidden_name(name);
7829 seen.clear();
7830 is_unexported = Type::is_unexported_field_or_method(gogo, type,
7831 unpacked,
7832 &seen);
7833 }
7834 if (is_unexported)
7835 error_at(location, "reference to unexported field or method %qs",
7836 Gogo::message_name(name).c_str());
7837 else
7838 error_at(location, "reference to undefined field or method %qs",
7839 Gogo::message_name(name).c_str());
7840 }
7841 return Expression::make_error(location);
7842 }
7843 }
7844
7845 // Look in TYPE for a field or method named NAME, return true if one
7846 // is found. This looks through embedded anonymous fields and handles
7847 // ambiguity. If a method is found, sets *IS_METHOD to true;
7848 // otherwise, if a field is found, set it to false. If
7849 // RECEIVER_CAN_BE_POINTER is false, then the receiver is a value
7850 // whose address can not be taken. SEEN is used to avoid infinite
7851 // recursion on invalid types.
7852
7853 // When returning false, this sets *FOUND_POINTER_METHOD if we found a
7854 // method we couldn't use because it requires a pointer. LEVEL is
7855 // used for recursive calls, and can be NULL for a non-recursive call.
7856 // When this function returns false because it finds that the name is
7857 // ambiguous, it will store a path to the ambiguous names in *AMBIG1
7858 // and *AMBIG2. If the name is not found at all, *AMBIG1 and *AMBIG2
7859 // will be unchanged.
7860
7861 // This function just returns whether or not there is a field or
7862 // method, and whether it is a field or method. It doesn't build an
7863 // expression to refer to it. If it is a method, we then look in the
7864 // list of all methods for the type. If it is a field, the search has
7865 // to be done again, looking only for fields, and building up the
7866 // expression as we go.
7867
7868 bool
7869 Type::find_field_or_method(const Type* type,
7870 const std::string& name,
7871 bool receiver_can_be_pointer,
7872 std::vector<const Named_type*>* seen,
7873 int* level,
7874 bool* is_method,
7875 bool* found_pointer_method,
7876 std::string* ambig1,
7877 std::string* ambig2)
7878 {
7879 // Named types can have locally defined methods.
7880 const Named_type* nt = type->named_type();
7881 if (nt == NULL && type->points_to() != NULL)
7882 nt = type->points_to()->named_type();
7883 if (nt != NULL)
7884 {
7885 Named_object* no = nt->find_local_method(name);
7886 if (no != NULL)
7887 {
7888 if (receiver_can_be_pointer || !Type::method_expects_pointer(no))
7889 {
7890 *is_method = true;
7891 return true;
7892 }
7893
7894 // Record that we have found a pointer method in order to
7895 // give a better error message if we don't find anything
7896 // else.
7897 *found_pointer_method = true;
7898 }
7899
7900 for (std::vector<const Named_type*>::const_iterator p = seen->begin();
7901 p != seen->end();
7902 ++p)
7903 {
7904 if (*p == nt)
7905 {
7906 // We've already seen this type when searching for methods.
7907 return false;
7908 }
7909 }
7910 }
7911
7912 // Interface types can have methods.
7913 const Interface_type* it = type->deref()->interface_type();
7914 if (it != NULL && it->find_method(name) != NULL)
7915 {
7916 *is_method = true;
7917 return true;
7918 }
7919
7920 // Struct types can have fields. They can also inherit fields and
7921 // methods from anonymous fields.
7922 const Struct_type* st = type->deref()->struct_type();
7923 if (st == NULL)
7924 return false;
7925 const Struct_field_list* fields = st->fields();
7926 if (fields == NULL)
7927 return false;
7928
7929 if (nt != NULL)
7930 seen->push_back(nt);
7931
7932 int found_level = 0;
7933 bool found_is_method = false;
7934 std::string found_ambig1;
7935 std::string found_ambig2;
7936 const Struct_field* found_parent = NULL;
7937 for (Struct_field_list::const_iterator pf = fields->begin();
7938 pf != fields->end();
7939 ++pf)
7940 {
7941 if (pf->field_name() == name)
7942 {
7943 *is_method = false;
7944 if (nt != NULL)
7945 seen->pop_back();
7946 return true;
7947 }
7948
7949 if (!pf->is_anonymous())
7950 continue;
7951
7952 if (pf->type()->deref()->is_error_type()
7953 || pf->type()->deref()->is_undefined())
7954 continue;
7955
7956 Named_type* fnt = pf->type()->named_type();
7957 if (fnt == NULL)
7958 fnt = pf->type()->deref()->named_type();
7959 gcc_assert(fnt != NULL);
7960
7961 int sublevel = level == NULL ? 1 : *level + 1;
7962 bool sub_is_method;
7963 std::string subambig1;
7964 std::string subambig2;
7965 bool subfound = Type::find_field_or_method(fnt,
7966 name,
7967 receiver_can_be_pointer,
7968 seen,
7969 &sublevel,
7970 &sub_is_method,
7971 found_pointer_method,
7972 &subambig1,
7973 &subambig2);
7974 if (!subfound)
7975 {
7976 if (!subambig1.empty())
7977 {
7978 // The name was found via this field, but is ambiguous.
7979 // if the ambiguity is lower or at the same level as
7980 // anything else we have already found, then we want to
7981 // pass the ambiguity back to the caller.
7982 if (found_level == 0 || sublevel <= found_level)
7983 {
7984 found_ambig1 = pf->field_name() + '.' + subambig1;
7985 found_ambig2 = pf->field_name() + '.' + subambig2;
7986 found_level = sublevel;
7987 }
7988 }
7989 }
7990 else
7991 {
7992 // The name was found via this field. Use the level to see
7993 // if we want to use this one, or whether it introduces an
7994 // ambiguity.
7995 if (found_level == 0 || sublevel < found_level)
7996 {
7997 found_level = sublevel;
7998 found_is_method = sub_is_method;
7999 found_ambig1.clear();
8000 found_ambig2.clear();
8001 found_parent = &*pf;
8002 }
8003 else if (sublevel > found_level)
8004 ;
8005 else if (found_ambig1.empty())
8006 {
8007 // We found an ambiguity.
8008 gcc_assert(found_parent != NULL);
8009 found_ambig1 = found_parent->field_name();
8010 found_ambig2 = pf->field_name();
8011 }
8012 else
8013 {
8014 // We found an ambiguity, but we already know of one.
8015 // Just report the earlier one.
8016 }
8017 }
8018 }
8019
8020 // Here if we didn't find anything FOUND_LEVEL is 0. If we found
8021 // something ambiguous, FOUND_LEVEL is not 0 and FOUND_AMBIG1 and
8022 // FOUND_AMBIG2 are not empty. If we found the field, FOUND_LEVEL
8023 // is not 0 and FOUND_AMBIG1 and FOUND_AMBIG2 are empty.
8024
8025 if (nt != NULL)
8026 seen->pop_back();
8027
8028 if (found_level == 0)
8029 return false;
8030 else if (!found_ambig1.empty())
8031 {
8032 gcc_assert(!found_ambig1.empty());
8033 ambig1->assign(found_ambig1);
8034 ambig2->assign(found_ambig2);
8035 if (level != NULL)
8036 *level = found_level;
8037 return false;
8038 }
8039 else
8040 {
8041 if (level != NULL)
8042 *level = found_level;
8043 *is_method = found_is_method;
8044 return true;
8045 }
8046 }
8047
8048 // Return whether NAME is an unexported field or method for TYPE.
8049
8050 bool
8051 Type::is_unexported_field_or_method(Gogo* gogo, const Type* type,
8052 const std::string& name,
8053 std::vector<const Named_type*>* seen)
8054 {
8055 type = type->deref();
8056
8057 const Named_type* nt = type->named_type();
8058 if (nt != NULL)
8059 {
8060 if (nt->is_unexported_local_method(gogo, name))
8061 return true;
8062
8063 for (std::vector<const Named_type*>::const_iterator p = seen->begin();
8064 p != seen->end();
8065 ++p)
8066 {
8067 if (*p == nt)
8068 {
8069 // We've already seen this type.
8070 return false;
8071 }
8072 }
8073 }
8074
8075 const Interface_type* it = type->interface_type();
8076 if (it != NULL && it->is_unexported_method(gogo, name))
8077 return true;
8078
8079 const Struct_type* st = type->struct_type();
8080 if (st != NULL && st->is_unexported_local_field(gogo, name))
8081 return true;
8082
8083 if (st == NULL)
8084 return false;
8085
8086 const Struct_field_list* fields = st->fields();
8087 if (fields == NULL)
8088 return false;
8089
8090 if (nt != NULL)
8091 seen->push_back(nt);
8092
8093 for (Struct_field_list::const_iterator pf = fields->begin();
8094 pf != fields->end();
8095 ++pf)
8096 {
8097 if (pf->is_anonymous()
8098 && (!pf->type()->deref()->is_error_type()
8099 && !pf->type()->deref()->is_undefined()))
8100 {
8101 Named_type* subtype = pf->type()->deref()->named_type();
8102 gcc_assert(subtype != NULL);
8103 if (Type::is_unexported_field_or_method(gogo, subtype, name, seen))
8104 {
8105 if (nt != NULL)
8106 seen->pop_back();
8107 return true;
8108 }
8109 }
8110 }
8111
8112 if (nt != NULL)
8113 seen->pop_back();
8114
8115 return false;
8116 }
8117
8118 // Class Forward_declaration.
8119
8120 Forward_declaration_type::Forward_declaration_type(Named_object* named_object)
8121 : Type(TYPE_FORWARD),
8122 named_object_(named_object->resolve()), warned_(false)
8123 {
8124 gcc_assert(this->named_object_->is_unknown()
8125 || this->named_object_->is_type_declaration());
8126 }
8127
8128 // Return the named object.
8129
8130 Named_object*
8131 Forward_declaration_type::named_object()
8132 {
8133 return this->named_object_->resolve();
8134 }
8135
8136 const Named_object*
8137 Forward_declaration_type::named_object() const
8138 {
8139 return this->named_object_->resolve();
8140 }
8141
8142 // Return the name of the forward declared type.
8143
8144 const std::string&
8145 Forward_declaration_type::name() const
8146 {
8147 return this->named_object()->name();
8148 }
8149
8150 // Warn about a use of a type which has been declared but not defined.
8151
8152 void
8153 Forward_declaration_type::warn() const
8154 {
8155 Named_object* no = this->named_object_->resolve();
8156 if (no->is_unknown())
8157 {
8158 // The name was not defined anywhere.
8159 if (!this->warned_)
8160 {
8161 error_at(this->named_object_->location(),
8162 "use of undefined type %qs",
8163 no->message_name().c_str());
8164 this->warned_ = true;
8165 }
8166 }
8167 else if (no->is_type_declaration())
8168 {
8169 // The name was seen as a type, but the type was never defined.
8170 if (no->type_declaration_value()->using_type())
8171 {
8172 error_at(this->named_object_->location(),
8173 "use of undefined type %qs",
8174 no->message_name().c_str());
8175 this->warned_ = true;
8176 }
8177 }
8178 else
8179 {
8180 // The name was defined, but not as a type.
8181 if (!this->warned_)
8182 {
8183 error_at(this->named_object_->location(), "expected type");
8184 this->warned_ = true;
8185 }
8186 }
8187 }
8188
8189 // Get the base type of a declaration. This gives an error if the
8190 // type has not yet been defined.
8191
8192 Type*
8193 Forward_declaration_type::real_type()
8194 {
8195 if (this->is_defined())
8196 return this->named_object()->type_value();
8197 else
8198 {
8199 this->warn();
8200 return Type::make_error_type();
8201 }
8202 }
8203
8204 const Type*
8205 Forward_declaration_type::real_type() const
8206 {
8207 if (this->is_defined())
8208 return this->named_object()->type_value();
8209 else
8210 {
8211 this->warn();
8212 return Type::make_error_type();
8213 }
8214 }
8215
8216 // Return whether the base type is defined.
8217
8218 bool
8219 Forward_declaration_type::is_defined() const
8220 {
8221 return this->named_object()->is_type();
8222 }
8223
8224 // Add a method. This is used when methods are defined before the
8225 // type.
8226
8227 Named_object*
8228 Forward_declaration_type::add_method(const std::string& name,
8229 Function* function)
8230 {
8231 Named_object* no = this->named_object();
8232 if (no->is_unknown())
8233 no->declare_as_type();
8234 return no->type_declaration_value()->add_method(name, function);
8235 }
8236
8237 // Add a method declaration. This is used when methods are declared
8238 // before the type.
8239
8240 Named_object*
8241 Forward_declaration_type::add_method_declaration(const std::string& name,
8242 Function_type* type,
8243 source_location location)
8244 {
8245 Named_object* no = this->named_object();
8246 if (no->is_unknown())
8247 no->declare_as_type();
8248 Type_declaration* td = no->type_declaration_value();
8249 return td->add_method_declaration(name, type, location);
8250 }
8251
8252 // Traversal.
8253
8254 int
8255 Forward_declaration_type::do_traverse(Traverse* traverse)
8256 {
8257 if (this->is_defined()
8258 && Type::traverse(this->real_type(), traverse) == TRAVERSE_EXIT)
8259 return TRAVERSE_EXIT;
8260 return TRAVERSE_CONTINUE;
8261 }
8262
8263 // Get a tree for the type.
8264
8265 tree
8266 Forward_declaration_type::do_get_tree(Gogo* gogo)
8267 {
8268 if (this->is_defined())
8269 return Type::get_named_type_tree(gogo, this->real_type());
8270
8271 if (this->warned_)
8272 return error_mark_node;
8273
8274 // We represent an undefined type as a struct with no fields. That
8275 // should work fine for the middle-end, since the same case can
8276 // arise in C.
8277 Named_object* no = this->named_object();
8278 tree type_tree = make_node(RECORD_TYPE);
8279 tree id = no->get_id(gogo);
8280 tree decl = build_decl(no->location(), TYPE_DECL, id, type_tree);
8281 TYPE_NAME(type_tree) = decl;
8282 layout_type(type_tree);
8283 return type_tree;
8284 }
8285
8286 // Build a type descriptor for a forwarded type.
8287
8288 Expression*
8289 Forward_declaration_type::do_type_descriptor(Gogo* gogo, Named_type* name)
8290 {
8291 if (!this->is_defined())
8292 return Expression::make_nil(BUILTINS_LOCATION);
8293 else
8294 {
8295 Type* t = this->real_type();
8296 if (name != NULL)
8297 return this->named_type_descriptor(gogo, t, name);
8298 else
8299 return Expression::make_type_descriptor(t, BUILTINS_LOCATION);
8300 }
8301 }
8302
8303 // The reflection string.
8304
8305 void
8306 Forward_declaration_type::do_reflection(Gogo* gogo, std::string* ret) const
8307 {
8308 this->append_reflection(this->real_type(), gogo, ret);
8309 }
8310
8311 // The mangled name.
8312
8313 void
8314 Forward_declaration_type::do_mangled_name(Gogo* gogo, std::string* ret) const
8315 {
8316 if (this->is_defined())
8317 this->append_mangled_name(this->real_type(), gogo, ret);
8318 else
8319 {
8320 const Named_object* no = this->named_object();
8321 std::string name;
8322 if (no->package() == NULL)
8323 name = gogo->package_name();
8324 else
8325 name = no->package()->name();
8326 name += '.';
8327 name += Gogo::unpack_hidden_name(no->name());
8328 char buf[20];
8329 snprintf(buf, sizeof buf, "N%u_",
8330 static_cast<unsigned int>(name.length()));
8331 ret->append(buf);
8332 ret->append(name);
8333 }
8334 }
8335
8336 // Export a forward declaration. This can happen when a defined type
8337 // refers to a type which is only declared (and is presumably defined
8338 // in some other file in the same package).
8339
8340 void
8341 Forward_declaration_type::do_export(Export*) const
8342 {
8343 // If there is a base type, that should be exported instead of this.
8344 gcc_assert(!this->is_defined());
8345
8346 // We don't output anything.
8347 }
8348
8349 // Make a forward declaration.
8350
8351 Type*
8352 Type::make_forward_declaration(Named_object* named_object)
8353 {
8354 return new Forward_declaration_type(named_object);
8355 }
8356
8357 // Class Typed_identifier_list.
8358
8359 // Sort the entries by name.
8360
8361 struct Typed_identifier_list_sort
8362 {
8363 public:
8364 bool
8365 operator()(const Typed_identifier& t1, const Typed_identifier& t2) const
8366 { return t1.name() < t2.name(); }
8367 };
8368
8369 void
8370 Typed_identifier_list::sort_by_name()
8371 {
8372 std::sort(this->entries_.begin(), this->entries_.end(),
8373 Typed_identifier_list_sort());
8374 }
8375
8376 // Traverse types.
8377
8378 int
8379 Typed_identifier_list::traverse(Traverse* traverse)
8380 {
8381 for (Typed_identifier_list::const_iterator p = this->begin();
8382 p != this->end();
8383 ++p)
8384 {
8385 if (Type::traverse(p->type(), traverse) == TRAVERSE_EXIT)
8386 return TRAVERSE_EXIT;
8387 }
8388 return TRAVERSE_CONTINUE;
8389 }
8390
8391 // Copy the list.
8392
8393 Typed_identifier_list*
8394 Typed_identifier_list::copy() const
8395 {
8396 Typed_identifier_list* ret = new Typed_identifier_list();
8397 for (Typed_identifier_list::const_iterator p = this->begin();
8398 p != this->end();
8399 ++p)
8400 ret->push_back(Typed_identifier(p->name(), p->type(), p->location()));
8401 return ret;
8402 }