Check for pointer to error type when looking for method.
[gcc.git] / gcc / go / gofrontend / types.cc
1 // types.cc -- Go frontend types.
2
3 // Copyright 2009 The Go Authors. All rights reserved.
4 // Use of this source code is governed by a BSD-style
5 // license that can be found in the LICENSE file.
6
7 #include "go-system.h"
8
9 #include <gmp.h>
10
11 #ifndef ENABLE_BUILD_WITH_CXX
12 extern "C"
13 {
14 #endif
15
16 #include "toplev.h"
17 #include "intl.h"
18 #include "tree.h"
19 #include "gimple.h"
20 #include "real.h"
21 #include "convert.h"
22
23 #ifndef ENABLE_BUILD_WITH_CXX
24 }
25 #endif
26
27 #include "go-c.h"
28 #include "gogo.h"
29 #include "operator.h"
30 #include "expressions.h"
31 #include "statements.h"
32 #include "export.h"
33 #include "import.h"
34 #include "types.h"
35
36 // Class Type.
37
38 Type::Type(Type_classification classification)
39 : classification_(classification), tree_(NULL_TREE),
40 type_descriptor_decl_(NULL_TREE)
41 {
42 }
43
44 Type::~Type()
45 {
46 }
47
48 // Get the base type for a type--skip names and forward declarations.
49
50 Type*
51 Type::base()
52 {
53 switch (this->classification_)
54 {
55 case TYPE_NAMED:
56 return this->named_type()->named_base();
57 case TYPE_FORWARD:
58 return this->forward_declaration_type()->real_type()->base();
59 default:
60 return this;
61 }
62 }
63
64 const Type*
65 Type::base() const
66 {
67 switch (this->classification_)
68 {
69 case TYPE_NAMED:
70 return this->named_type()->named_base();
71 case TYPE_FORWARD:
72 return this->forward_declaration_type()->real_type()->base();
73 default:
74 return this;
75 }
76 }
77
78 // Skip defined forward declarations.
79
80 Type*
81 Type::forwarded()
82 {
83 Type* t = this;
84 Forward_declaration_type* ftype = t->forward_declaration_type();
85 while (ftype != NULL && ftype->is_defined())
86 {
87 t = ftype->real_type();
88 ftype = t->forward_declaration_type();
89 }
90 return t;
91 }
92
93 const Type*
94 Type::forwarded() const
95 {
96 const Type* t = this;
97 const Forward_declaration_type* ftype = t->forward_declaration_type();
98 while (ftype != NULL && ftype->is_defined())
99 {
100 t = ftype->real_type();
101 ftype = t->forward_declaration_type();
102 }
103 return t;
104 }
105
106 // If this is a named type, return it. Otherwise, return NULL.
107
108 Named_type*
109 Type::named_type()
110 {
111 return this->forwarded()->convert_no_base<Named_type, TYPE_NAMED>();
112 }
113
114 const Named_type*
115 Type::named_type() const
116 {
117 return this->forwarded()->convert_no_base<const Named_type, TYPE_NAMED>();
118 }
119
120 // Return true if this type is not defined.
121
122 bool
123 Type::is_undefined() const
124 {
125 return this->forwarded()->forward_declaration_type() != NULL;
126 }
127
128 // Return true if this is a basic type: a type which is not composed
129 // of other types, and is not void.
130
131 bool
132 Type::is_basic_type() const
133 {
134 switch (this->classification_)
135 {
136 case TYPE_INTEGER:
137 case TYPE_FLOAT:
138 case TYPE_COMPLEX:
139 case TYPE_BOOLEAN:
140 case TYPE_STRING:
141 case TYPE_NIL:
142 return true;
143
144 case TYPE_ERROR:
145 case TYPE_VOID:
146 case TYPE_FUNCTION:
147 case TYPE_POINTER:
148 case TYPE_STRUCT:
149 case TYPE_ARRAY:
150 case TYPE_MAP:
151 case TYPE_CHANNEL:
152 case TYPE_INTERFACE:
153 return false;
154
155 case TYPE_NAMED:
156 case TYPE_FORWARD:
157 return this->base()->is_basic_type();
158
159 default:
160 gcc_unreachable();
161 }
162 }
163
164 // Return true if this is an abstract type.
165
166 bool
167 Type::is_abstract() const
168 {
169 switch (this->classification())
170 {
171 case TYPE_INTEGER:
172 return this->integer_type()->is_abstract();
173 case TYPE_FLOAT:
174 return this->float_type()->is_abstract();
175 case TYPE_COMPLEX:
176 return this->complex_type()->is_abstract();
177 case TYPE_STRING:
178 return this->is_abstract_string_type();
179 case TYPE_BOOLEAN:
180 return this->is_abstract_boolean_type();
181 default:
182 return false;
183 }
184 }
185
186 // Return a non-abstract version of an abstract type.
187
188 Type*
189 Type::make_non_abstract_type()
190 {
191 gcc_assert(this->is_abstract());
192 switch (this->classification())
193 {
194 case TYPE_INTEGER:
195 return Type::lookup_integer_type("int");
196 case TYPE_FLOAT:
197 return Type::lookup_float_type("float");
198 case TYPE_COMPLEX:
199 return Type::lookup_complex_type("complex");
200 case TYPE_STRING:
201 return Type::lookup_string_type();
202 case TYPE_BOOLEAN:
203 return Type::lookup_bool_type();
204 default:
205 gcc_unreachable();
206 }
207 }
208
209 // Return true if this is an error type. Don't give an error if we
210 // try to dereference an undefined forwarding type, as this is called
211 // in the parser when the type may legitimately be undefined.
212
213 bool
214 Type::is_error_type() const
215 {
216 const Type* t = this->forwarded();
217 // Note that we return false for an undefined forward type.
218 switch (t->classification_)
219 {
220 case TYPE_ERROR:
221 return true;
222 case TYPE_NAMED:
223 return t->named_type()->is_named_error_type();
224 default:
225 return false;
226 }
227 }
228
229 // If this is a pointer type, return the type to which it points.
230 // Otherwise, return NULL.
231
232 Type*
233 Type::points_to() const
234 {
235 const Pointer_type* ptype = this->convert<const Pointer_type,
236 TYPE_POINTER>();
237 return ptype == NULL ? NULL : ptype->points_to();
238 }
239
240 // Return whether this is an open array type.
241
242 bool
243 Type::is_open_array_type() const
244 {
245 return this->array_type() != NULL && this->array_type()->length() == NULL;
246 }
247
248 // Return whether this is the predeclared constant nil being used as a
249 // type.
250
251 bool
252 Type::is_nil_constant_as_type() const
253 {
254 const Type* t = this->forwarded();
255 if (t->forward_declaration_type() != NULL)
256 {
257 const Named_object* no = t->forward_declaration_type()->named_object();
258 if (no->is_unknown())
259 no = no->unknown_value()->real_named_object();
260 if (no != NULL
261 && no->is_const()
262 && no->const_value()->expr()->is_nil_expression())
263 return true;
264 }
265 return false;
266 }
267
268 // Traverse a type.
269
270 int
271 Type::traverse(Type* type, Traverse* traverse)
272 {
273 gcc_assert((traverse->traverse_mask() & Traverse::traverse_types) != 0
274 || (traverse->traverse_mask()
275 & Traverse::traverse_expressions) != 0);
276 if (traverse->remember_type(type))
277 {
278 // We have already traversed this type.
279 return TRAVERSE_CONTINUE;
280 }
281 if ((traverse->traverse_mask() & Traverse::traverse_types) != 0)
282 {
283 int t = traverse->type(type);
284 if (t == TRAVERSE_EXIT)
285 return TRAVERSE_EXIT;
286 else if (t == TRAVERSE_SKIP_COMPONENTS)
287 return TRAVERSE_CONTINUE;
288 }
289 // An array type has an expression which we need to traverse if
290 // traverse_expressions is set.
291 if (type->do_traverse(traverse) == TRAVERSE_EXIT)
292 return TRAVERSE_EXIT;
293 return TRAVERSE_CONTINUE;
294 }
295
296 // Default implementation for do_traverse for child class.
297
298 int
299 Type::do_traverse(Traverse*)
300 {
301 return TRAVERSE_CONTINUE;
302 }
303
304 // Return whether two types are identical. If ERRORS_ARE_IDENTICAL,
305 // then return true for all erroneous types; this is used to avoid
306 // cascading errors. If REASON is not NULL, optionally set *REASON to
307 // the reason the types are not identical.
308
309 bool
310 Type::are_identical(const Type* t1, const Type* t2, bool errors_are_identical,
311 std::string* reason)
312 {
313 if (t1 == NULL || t2 == NULL)
314 {
315 // Something is wrong.
316 return errors_are_identical ? true : t1 == t2;
317 }
318
319 // Skip defined forward declarations.
320 t1 = t1->forwarded();
321 t2 = t2->forwarded();
322
323 if (t1 == t2)
324 return true;
325
326 // An undefined forward declaration is an error.
327 if (t1->forward_declaration_type() != NULL
328 || t2->forward_declaration_type() != NULL)
329 return errors_are_identical;
330
331 // Avoid cascading errors with error types.
332 if (t1->is_error_type() || t2->is_error_type())
333 {
334 if (errors_are_identical)
335 return true;
336 return t1->is_error_type() && t2->is_error_type();
337 }
338
339 // Get a good reason for the sink type. Note that the sink type on
340 // the left hand side of an assignment is handled in are_assignable.
341 if (t1->is_sink_type() || t2->is_sink_type())
342 {
343 if (reason != NULL)
344 *reason = "invalid use of _";
345 return false;
346 }
347
348 // A named type is only identical to itself.
349 if (t1->named_type() != NULL || t2->named_type() != NULL)
350 return false;
351
352 // Check type shapes.
353 if (t1->classification() != t2->classification())
354 return false;
355
356 switch (t1->classification())
357 {
358 case TYPE_VOID:
359 case TYPE_BOOLEAN:
360 case TYPE_STRING:
361 case TYPE_NIL:
362 // These types are always identical.
363 return true;
364
365 case TYPE_INTEGER:
366 return t1->integer_type()->is_identical(t2->integer_type());
367
368 case TYPE_FLOAT:
369 return t1->float_type()->is_identical(t2->float_type());
370
371 case TYPE_COMPLEX:
372 return t1->complex_type()->is_identical(t2->complex_type());
373
374 case TYPE_FUNCTION:
375 return t1->function_type()->is_identical(t2->function_type(),
376 false,
377 errors_are_identical,
378 reason);
379
380 case TYPE_POINTER:
381 return Type::are_identical(t1->points_to(), t2->points_to(),
382 errors_are_identical, reason);
383
384 case TYPE_STRUCT:
385 return t1->struct_type()->is_identical(t2->struct_type(),
386 errors_are_identical);
387
388 case TYPE_ARRAY:
389 return t1->array_type()->is_identical(t2->array_type(),
390 errors_are_identical);
391
392 case TYPE_MAP:
393 return t1->map_type()->is_identical(t2->map_type(),
394 errors_are_identical);
395
396 case TYPE_CHANNEL:
397 return t1->channel_type()->is_identical(t2->channel_type(),
398 errors_are_identical);
399
400 case TYPE_INTERFACE:
401 return t1->interface_type()->is_identical(t2->interface_type(),
402 errors_are_identical);
403
404 default:
405 gcc_unreachable();
406 }
407 }
408
409 // Return true if it's OK to have a binary operation with types LHS
410 // and RHS. This is not used for shifts or comparisons.
411
412 bool
413 Type::are_compatible_for_binop(const Type* lhs, const Type* rhs)
414 {
415 if (Type::are_identical(lhs, rhs, true, NULL))
416 return true;
417
418 // A constant of abstract bool type may be mixed with any bool type.
419 if ((rhs->is_abstract_boolean_type() && lhs->is_boolean_type())
420 || (lhs->is_abstract_boolean_type() && rhs->is_boolean_type()))
421 return true;
422
423 // A constant of abstract string type may be mixed with any string
424 // type.
425 if ((rhs->is_abstract_string_type() && lhs->is_string_type())
426 || (lhs->is_abstract_string_type() && rhs->is_string_type()))
427 return true;
428
429 lhs = lhs->base();
430 rhs = rhs->base();
431
432 // A constant of abstract integer, float, or complex type may be
433 // mixed with an integer, float, or complex type.
434 if ((rhs->is_abstract()
435 && (rhs->integer_type() != NULL
436 || rhs->float_type() != NULL
437 || rhs->complex_type() != NULL)
438 && (lhs->integer_type() != NULL
439 || lhs->float_type() != NULL
440 || lhs->complex_type() != NULL))
441 || (lhs->is_abstract()
442 && (lhs->integer_type() != NULL
443 || lhs->float_type() != NULL
444 || lhs->complex_type() != NULL)
445 && (rhs->integer_type() != NULL
446 || rhs->float_type() != NULL
447 || rhs->complex_type() != NULL)))
448 return true;
449
450 // The nil type may be compared to a pointer, an interface type, a
451 // slice type, a channel type, a map type, or a function type.
452 if (lhs->is_nil_type()
453 && (rhs->points_to() != NULL
454 || rhs->interface_type() != NULL
455 || rhs->is_open_array_type()
456 || rhs->map_type() != NULL
457 || rhs->channel_type() != NULL
458 || rhs->function_type() != NULL))
459 return true;
460 if (rhs->is_nil_type()
461 && (lhs->points_to() != NULL
462 || lhs->interface_type() != NULL
463 || lhs->is_open_array_type()
464 || lhs->map_type() != NULL
465 || lhs->channel_type() != NULL
466 || lhs->function_type() != NULL))
467 return true;
468
469 return false;
470 }
471
472 // Return true if a value with type RHS may be assigned to a variable
473 // with type LHS. If REASON is not NULL, set *REASON to the reason
474 // the types are not assignable.
475
476 bool
477 Type::are_assignable(const Type* lhs, const Type* rhs, std::string* reason)
478 {
479 // Do some checks first. Make sure the types are defined.
480 if (lhs != NULL && lhs->forwarded()->forward_declaration_type() == NULL)
481 {
482 // Any value may be assigned to the blank identifier.
483 if (lhs->is_sink_type())
484 return true;
485
486 // All fields of a struct must be exported, or the assignment
487 // must be in the same package.
488 if (rhs != NULL && rhs->forwarded()->forward_declaration_type() == NULL)
489 {
490 if (lhs->has_hidden_fields(NULL, reason)
491 || rhs->has_hidden_fields(NULL, reason))
492 return false;
493 }
494 }
495
496 // Identical types are assignable.
497 if (Type::are_identical(lhs, rhs, true, reason))
498 return true;
499
500 // The types are assignable if they have identical underlying types
501 // and either LHS or RHS is not a named type.
502 if (((lhs->named_type() != NULL && rhs->named_type() == NULL)
503 || (rhs->named_type() != NULL && lhs->named_type() == NULL))
504 && Type::are_identical(lhs->base(), rhs->base(), true, reason))
505 return true;
506
507 // The types are assignable if LHS is an interface type and RHS
508 // implements the required methods.
509 const Interface_type* lhs_interface_type = lhs->interface_type();
510 if (lhs_interface_type != NULL)
511 {
512 if (lhs_interface_type->implements_interface(rhs, reason))
513 return true;
514 const Interface_type* rhs_interface_type = rhs->interface_type();
515 if (rhs_interface_type != NULL
516 && lhs_interface_type->is_compatible_for_assign(rhs_interface_type,
517 reason))
518 return true;
519 }
520
521 // The type are assignable if RHS is a bidirectional channel type,
522 // LHS is a channel type, they have identical element types, and
523 // either LHS or RHS is not a named type.
524 if (lhs->channel_type() != NULL
525 && rhs->channel_type() != NULL
526 && rhs->channel_type()->may_send()
527 && rhs->channel_type()->may_receive()
528 && (lhs->named_type() == NULL || rhs->named_type() == NULL)
529 && Type::are_identical(lhs->channel_type()->element_type(),
530 rhs->channel_type()->element_type(),
531 true,
532 reason))
533 return true;
534
535 // The nil type may be assigned to a pointer, function, slice, map,
536 // channel, or interface type.
537 if (rhs->is_nil_type()
538 && (lhs->points_to() != NULL
539 || lhs->function_type() != NULL
540 || lhs->is_open_array_type()
541 || lhs->map_type() != NULL
542 || lhs->channel_type() != NULL
543 || lhs->interface_type() != NULL))
544 return true;
545
546 // An untyped constant may be assigned to a numeric type if it is
547 // representable in that type.
548 if (rhs->is_abstract()
549 && (lhs->integer_type() != NULL
550 || lhs->float_type() != NULL
551 || lhs->complex_type() != NULL))
552 return true;
553
554
555 // Give some better error messages.
556 if (reason != NULL && reason->empty())
557 {
558 if (rhs->interface_type() != NULL)
559 reason->assign(_("need explicit conversion"));
560 else if (rhs->is_call_multiple_result_type())
561 reason->assign(_("multiple value function call in "
562 "single value context"));
563 else if (lhs->named_type() != NULL && rhs->named_type() != NULL)
564 {
565 size_t len = (lhs->named_type()->name().length()
566 + rhs->named_type()->name().length()
567 + 100);
568 char* buf = new char[len];
569 snprintf(buf, len, _("cannot use type %s as type %s"),
570 rhs->named_type()->message_name().c_str(),
571 lhs->named_type()->message_name().c_str());
572 reason->assign(buf);
573 delete[] buf;
574 }
575 }
576
577 return false;
578 }
579
580 // Return true if a value with type RHS may be converted to type LHS.
581 // If REASON is not NULL, set *REASON to the reason the types are not
582 // convertible.
583
584 bool
585 Type::are_convertible(const Type* lhs, const Type* rhs, std::string* reason)
586 {
587 // The types are convertible if they are assignable.
588 if (Type::are_assignable(lhs, rhs, reason))
589 return true;
590
591 // The types are convertible if they have identical underlying
592 // types.
593 if ((lhs->named_type() != NULL || rhs->named_type() != NULL)
594 && Type::are_identical(lhs->base(), rhs->base(), true, reason))
595 return true;
596
597 // The types are convertible if they are both unnamed pointer types
598 // and their pointer base types have identical underlying types.
599 if (lhs->named_type() == NULL
600 && rhs->named_type() == NULL
601 && lhs->points_to() != NULL
602 && rhs->points_to() != NULL
603 && (lhs->points_to()->named_type() != NULL
604 || rhs->points_to()->named_type() != NULL)
605 && Type::are_identical(lhs->points_to()->base(),
606 rhs->points_to()->base(),
607 true,
608 reason))
609 return true;
610
611 // Integer and floating point types are convertible to each other.
612 if ((lhs->integer_type() != NULL || lhs->float_type() != NULL)
613 && (rhs->integer_type() != NULL || rhs->float_type() != NULL))
614 return true;
615
616 // Complex types are convertible to each other.
617 if (lhs->complex_type() != NULL && rhs->complex_type() != NULL)
618 return true;
619
620 // An integer, or []byte, or []int, may be converted to a string.
621 if (lhs->is_string_type())
622 {
623 if (rhs->integer_type() != NULL)
624 return true;
625 if (rhs->is_open_array_type() && rhs->named_type() == NULL)
626 {
627 const Type* e = rhs->array_type()->element_type()->forwarded();
628 if (e->integer_type() != NULL
629 && (e == Type::lookup_integer_type("uint8")
630 || e == Type::lookup_integer_type("int")))
631 return true;
632 }
633 }
634
635 // A string may be converted to []byte or []int.
636 if (rhs->is_string_type()
637 && lhs->is_open_array_type()
638 && lhs->named_type() == NULL)
639 {
640 const Type* e = lhs->array_type()->element_type()->forwarded();
641 if (e->integer_type() != NULL
642 && (e == Type::lookup_integer_type("uint8")
643 || e == Type::lookup_integer_type("int")))
644 return true;
645 }
646
647 // An unsafe.Pointer type may be converted to any pointer type or to
648 // uintptr, and vice-versa.
649 if (lhs->is_unsafe_pointer_type()
650 && (rhs->points_to() != NULL
651 || (rhs->integer_type() != NULL
652 && rhs->forwarded() == Type::lookup_integer_type("uintptr"))))
653 return true;
654 if (rhs->is_unsafe_pointer_type()
655 && (lhs->points_to() != NULL
656 || (lhs->integer_type() != NULL
657 && lhs->forwarded() == Type::lookup_integer_type("uintptr"))))
658 return true;
659
660 // Give a better error message.
661 if (reason != NULL)
662 {
663 if (reason->empty())
664 *reason = "invalid type conversion";
665 else
666 {
667 std::string s = "invalid type conversion (";
668 s += *reason;
669 s += ')';
670 *reason = s;
671 }
672 }
673
674 return false;
675 }
676
677 // Return whether this type has any hidden fields. This is only a
678 // possibility for a few types.
679
680 bool
681 Type::has_hidden_fields(const Named_type* within, std::string* reason) const
682 {
683 switch (this->forwarded()->classification_)
684 {
685 case TYPE_NAMED:
686 return this->named_type()->named_type_has_hidden_fields(reason);
687 case TYPE_STRUCT:
688 return this->struct_type()->struct_has_hidden_fields(within, reason);
689 case TYPE_ARRAY:
690 return this->array_type()->array_has_hidden_fields(within, reason);
691 default:
692 return false;
693 }
694 }
695
696 // Return a hash code for the type to be used for method lookup.
697
698 unsigned int
699 Type::hash_for_method(Gogo* gogo) const
700 {
701 unsigned int ret = 0;
702 if (this->classification_ != TYPE_FORWARD)
703 ret += this->classification_;
704 return ret + this->do_hash_for_method(gogo);
705 }
706
707 // Default implementation of do_hash_for_method. This is appropriate
708 // for types with no subfields.
709
710 unsigned int
711 Type::do_hash_for_method(Gogo*) const
712 {
713 return 0;
714 }
715
716 // Return a hash code for a string, given a starting hash.
717
718 unsigned int
719 Type::hash_string(const std::string& s, unsigned int h)
720 {
721 const char* p = s.data();
722 size_t len = s.length();
723 for (; len > 0; --len)
724 {
725 h ^= *p++;
726 h*= 16777619;
727 }
728 return h;
729 }
730
731 // Default check for the expression passed to make. Any type which
732 // may be used with make implements its own version of this.
733
734 bool
735 Type::do_check_make_expression(Expression_list*, source_location)
736 {
737 gcc_unreachable();
738 }
739
740 // Return whether an expression has an integer value. Report an error
741 // if not. This is used when handling calls to the predeclared make
742 // function.
743
744 bool
745 Type::check_int_value(Expression* e, const char* errmsg,
746 source_location location)
747 {
748 if (e->type()->integer_type() != NULL)
749 return true;
750
751 // Check for a floating point constant with integer value.
752 mpfr_t fval;
753 mpfr_init(fval);
754
755 Type* dummy;
756 if (e->float_constant_value(fval, &dummy))
757 {
758 mpz_t ival;
759 mpz_init(ival);
760
761 bool ok = false;
762
763 mpfr_clear_overflow();
764 mpfr_clear_erangeflag();
765 mpfr_get_z(ival, fval, GMP_RNDN);
766 if (!mpfr_overflow_p()
767 && !mpfr_erangeflag_p()
768 && mpz_sgn(ival) >= 0)
769 {
770 Named_type* ntype = Type::lookup_integer_type("int");
771 Integer_type* inttype = ntype->integer_type();
772 mpz_t max;
773 mpz_init_set_ui(max, 1);
774 mpz_mul_2exp(max, max, inttype->bits() - 1);
775 ok = mpz_cmp(ival, max) < 0;
776 mpz_clear(max);
777 }
778 mpz_clear(ival);
779
780 if (ok)
781 {
782 mpfr_clear(fval);
783 return true;
784 }
785 }
786
787 mpfr_clear(fval);
788
789 error_at(location, "%s", errmsg);
790 return false;
791 }
792
793 // A hash table mapping unnamed types to trees.
794
795 Type::Type_trees Type::type_trees;
796
797 // Return a tree representing this type.
798
799 tree
800 Type::get_tree(Gogo* gogo)
801 {
802 if (this->tree_ != NULL)
803 return this->tree_;
804
805 if (this->forward_declaration_type() != NULL
806 || this->named_type() != NULL)
807 return this->get_tree_without_hash(gogo);
808
809 if (this->is_error_type())
810 return error_mark_node;
811
812 // To avoid confusing GIMPLE, we need to translate all identical Go
813 // types to the same GIMPLE type. We use a hash table to do that.
814 // There is no need to use the hash table for named types, as named
815 // types are only identical to themselves.
816
817 std::pair<Type*, tree> val(this, NULL);
818 std::pair<Type_trees::iterator, bool> ins =
819 Type::type_trees.insert(val);
820 if (!ins.second && ins.first->second != NULL_TREE)
821 {
822 this->tree_ = ins.first->second;
823 return this->tree_;
824 }
825
826 tree t = this->get_tree_without_hash(gogo);
827
828 if (ins.first->second == NULL_TREE)
829 ins.first->second = t;
830 else
831 {
832 // We have already created a tree for this type. This can
833 // happen when an unnamed type is defined using a named type
834 // which in turns uses an identical unnamed type. Use the tree
835 // we created earlier and ignore the one we just built.
836 t = ins.first->second;
837 this->tree_ = t;
838 }
839
840 return t;
841 }
842
843 // Return a tree for a type without looking in the hash table for
844 // identical types. This is used for named types, since there is no
845 // point to looking in the hash table for them.
846
847 tree
848 Type::get_tree_without_hash(Gogo* gogo)
849 {
850 if (this->tree_ == NULL_TREE)
851 {
852 tree t = this->do_get_tree(gogo);
853
854 // For a recursive function or pointer type, we will temporarily
855 // return ptr_type_node during the recursion. We don't want to
856 // record that for a forwarding type, as it may confuse us
857 // later.
858 if (t == ptr_type_node && this->forward_declaration_type() != NULL)
859 return t;
860
861 this->tree_ = t;
862 go_preserve_from_gc(t);
863 }
864
865 return this->tree_;
866 }
867
868 // Return a tree representing a zero initialization for this type.
869
870 tree
871 Type::get_init_tree(Gogo* gogo, bool is_clear)
872 {
873 tree type_tree = this->get_tree(gogo);
874 if (type_tree == error_mark_node)
875 return error_mark_node;
876 return this->do_get_init_tree(gogo, type_tree, is_clear);
877 }
878
879 // Any type which supports the builtin make function must implement
880 // this.
881
882 tree
883 Type::do_make_expression_tree(Translate_context*, Expression_list*,
884 source_location)
885 {
886 gcc_unreachable();
887 }
888
889 // Return a pointer to the type descriptor for this type.
890
891 tree
892 Type::type_descriptor_pointer(Gogo* gogo)
893 {
894 Type* t = this->forwarded();
895 if (t->type_descriptor_decl_ == NULL_TREE)
896 {
897 Expression* e = t->do_type_descriptor(gogo, NULL);
898 gogo->build_type_descriptor_decl(t, e, &t->type_descriptor_decl_);
899 gcc_assert(t->type_descriptor_decl_ != NULL_TREE
900 && (t->type_descriptor_decl_ == error_mark_node
901 || DECL_P(t->type_descriptor_decl_)));
902 }
903 if (t->type_descriptor_decl_ == error_mark_node)
904 return error_mark_node;
905 return build_fold_addr_expr(t->type_descriptor_decl_);
906 }
907
908 // Return a composite literal for a type descriptor.
909
910 Expression*
911 Type::type_descriptor(Gogo* gogo, Type* type)
912 {
913 return type->do_type_descriptor(gogo, NULL);
914 }
915
916 // Return a composite literal for a type descriptor with a name.
917
918 Expression*
919 Type::named_type_descriptor(Gogo* gogo, Type* type, Named_type* name)
920 {
921 gcc_assert(name != NULL && type->named_type() != name);
922 return type->do_type_descriptor(gogo, name);
923 }
924
925 // Make a builtin struct type from a list of fields. The fields are
926 // pairs of a name and a type.
927
928 Struct_type*
929 Type::make_builtin_struct_type(int nfields, ...)
930 {
931 va_list ap;
932 va_start(ap, nfields);
933
934 source_location bloc = BUILTINS_LOCATION;
935 Struct_field_list* sfl = new Struct_field_list();
936 for (int i = 0; i < nfields; i++)
937 {
938 const char* field_name = va_arg(ap, const char *);
939 Type* type = va_arg(ap, Type*);
940 sfl->push_back(Struct_field(Typed_identifier(field_name, type, bloc)));
941 }
942
943 va_end(ap);
944
945 return Type::make_struct_type(sfl, bloc);
946 }
947
948 // Make a builtin named type.
949
950 Named_type*
951 Type::make_builtin_named_type(const char* name, Type* type)
952 {
953 source_location bloc = BUILTINS_LOCATION;
954 Named_object* no = Named_object::make_type(name, NULL, type, bloc);
955 return no->type_value();
956 }
957
958 // Return the type of a type descriptor. We should really tie this to
959 // runtime.Type rather than copying it. This must match commonType in
960 // libgo/go/runtime/type.go.
961
962 Type*
963 Type::make_type_descriptor_type()
964 {
965 static Type* ret;
966 if (ret == NULL)
967 {
968 source_location bloc = BUILTINS_LOCATION;
969
970 Type* uint8_type = Type::lookup_integer_type("uint8");
971 Type* uint32_type = Type::lookup_integer_type("uint32");
972 Type* uintptr_type = Type::lookup_integer_type("uintptr");
973 Type* string_type = Type::lookup_string_type();
974 Type* pointer_string_type = Type::make_pointer_type(string_type);
975
976 // This is an unnamed version of unsafe.Pointer. Perhaps we
977 // should use the named version instead, although that would
978 // require us to create the unsafe package if it has not been
979 // imported. It probably doesn't matter.
980 Type* void_type = Type::make_void_type();
981 Type* unsafe_pointer_type = Type::make_pointer_type(void_type);
982
983 // Forward declaration for the type descriptor type.
984 Named_object* named_type_descriptor_type =
985 Named_object::make_type_declaration("commonType", NULL, bloc);
986 Type* ft = Type::make_forward_declaration(named_type_descriptor_type);
987 Type* pointer_type_descriptor_type = Type::make_pointer_type(ft);
988
989 // The type of a method on a concrete type.
990 Struct_type* method_type =
991 Type::make_builtin_struct_type(5,
992 "name", pointer_string_type,
993 "pkgPath", pointer_string_type,
994 "mtyp", pointer_type_descriptor_type,
995 "typ", pointer_type_descriptor_type,
996 "tfn", unsafe_pointer_type);
997 Named_type* named_method_type =
998 Type::make_builtin_named_type("method", method_type);
999
1000 // Information for types with a name or methods.
1001 Type* slice_named_method_type =
1002 Type::make_array_type(named_method_type, NULL);
1003 Struct_type* uncommon_type =
1004 Type::make_builtin_struct_type(3,
1005 "name", pointer_string_type,
1006 "pkgPath", pointer_string_type,
1007 "methods", slice_named_method_type);
1008 Named_type* named_uncommon_type =
1009 Type::make_builtin_named_type("uncommonType", uncommon_type);
1010
1011 Type* pointer_uncommon_type =
1012 Type::make_pointer_type(named_uncommon_type);
1013
1014 // The type descriptor type.
1015
1016 Typed_identifier_list* params = new Typed_identifier_list();
1017 params->push_back(Typed_identifier("", unsafe_pointer_type, bloc));
1018 params->push_back(Typed_identifier("", uintptr_type, bloc));
1019
1020 Typed_identifier_list* results = new Typed_identifier_list();
1021 results->push_back(Typed_identifier("", uintptr_type, bloc));
1022
1023 Type* hashfn_type = Type::make_function_type(NULL, params, results, bloc);
1024
1025 params = new Typed_identifier_list();
1026 params->push_back(Typed_identifier("", unsafe_pointer_type, bloc));
1027 params->push_back(Typed_identifier("", unsafe_pointer_type, bloc));
1028 params->push_back(Typed_identifier("", uintptr_type, bloc));
1029
1030 results = new Typed_identifier_list();
1031 results->push_back(Typed_identifier("", Type::lookup_bool_type(), bloc));
1032
1033 Type* equalfn_type = Type::make_function_type(NULL, params, results,
1034 bloc);
1035
1036 Struct_type* type_descriptor_type =
1037 Type::make_builtin_struct_type(9,
1038 "Kind", uint8_type,
1039 "align", uint8_type,
1040 "fieldAlign", uint8_type,
1041 "size", uintptr_type,
1042 "hash", uint32_type,
1043 "hashfn", hashfn_type,
1044 "equalfn", equalfn_type,
1045 "string", pointer_string_type,
1046 "", pointer_uncommon_type);
1047
1048 Named_type* named = Type::make_builtin_named_type("commonType",
1049 type_descriptor_type);
1050
1051 named_type_descriptor_type->set_type_value(named);
1052
1053 ret = named;
1054 }
1055
1056 return ret;
1057 }
1058
1059 // Make the type of a pointer to a type descriptor as represented in
1060 // Go.
1061
1062 Type*
1063 Type::make_type_descriptor_ptr_type()
1064 {
1065 static Type* ret;
1066 if (ret == NULL)
1067 ret = Type::make_pointer_type(Type::make_type_descriptor_type());
1068 return ret;
1069 }
1070
1071 // Return the names of runtime functions which compute a hash code for
1072 // this type and which compare whether two values of this type are
1073 // equal.
1074
1075 void
1076 Type::type_functions(const char** hash_fn, const char** equal_fn) const
1077 {
1078 switch (this->base()->classification())
1079 {
1080 case Type::TYPE_ERROR:
1081 case Type::TYPE_VOID:
1082 case Type::TYPE_NIL:
1083 // These types can not be hashed or compared.
1084 *hash_fn = "__go_type_hash_error";
1085 *equal_fn = "__go_type_equal_error";
1086 break;
1087
1088 case Type::TYPE_BOOLEAN:
1089 case Type::TYPE_INTEGER:
1090 case Type::TYPE_FLOAT:
1091 case Type::TYPE_COMPLEX:
1092 case Type::TYPE_POINTER:
1093 case Type::TYPE_FUNCTION:
1094 case Type::TYPE_MAP:
1095 case Type::TYPE_CHANNEL:
1096 *hash_fn = "__go_type_hash_identity";
1097 *equal_fn = "__go_type_equal_identity";
1098 break;
1099
1100 case Type::TYPE_STRING:
1101 *hash_fn = "__go_type_hash_string";
1102 *equal_fn = "__go_type_equal_string";
1103 break;
1104
1105 case Type::TYPE_STRUCT:
1106 case Type::TYPE_ARRAY:
1107 // These types can not be hashed or compared.
1108 *hash_fn = "__go_type_hash_error";
1109 *equal_fn = "__go_type_equal_error";
1110 break;
1111
1112 case Type::TYPE_INTERFACE:
1113 if (this->interface_type()->is_empty())
1114 {
1115 *hash_fn = "__go_type_hash_empty_interface";
1116 *equal_fn = "__go_type_equal_empty_interface";
1117 }
1118 else
1119 {
1120 *hash_fn = "__go_type_hash_interface";
1121 *equal_fn = "__go_type_equal_interface";
1122 }
1123 break;
1124
1125 case Type::TYPE_NAMED:
1126 case Type::TYPE_FORWARD:
1127 gcc_unreachable();
1128
1129 default:
1130 gcc_unreachable();
1131 }
1132 }
1133
1134 // Return a composite literal for the type descriptor for a plain type
1135 // of kind RUNTIME_TYPE_KIND named NAME.
1136
1137 Expression*
1138 Type::type_descriptor_constructor(Gogo* gogo, int runtime_type_kind,
1139 Named_type* name, const Methods* methods,
1140 bool only_value_methods)
1141 {
1142 source_location bloc = BUILTINS_LOCATION;
1143
1144 Type* td_type = Type::make_type_descriptor_type();
1145 const Struct_field_list* fields = td_type->struct_type()->fields();
1146
1147 Expression_list* vals = new Expression_list();
1148 vals->reserve(9);
1149
1150 Struct_field_list::const_iterator p = fields->begin();
1151 gcc_assert(p->field_name() == "Kind");
1152 mpz_t iv;
1153 mpz_init_set_ui(iv, runtime_type_kind);
1154 vals->push_back(Expression::make_integer(&iv, p->type(), bloc));
1155
1156 ++p;
1157 gcc_assert(p->field_name() == "align");
1158 Expression::Type_info type_info = Expression::TYPE_INFO_ALIGNMENT;
1159 vals->push_back(Expression::make_type_info(this, type_info));
1160
1161 ++p;
1162 gcc_assert(p->field_name() == "fieldAlign");
1163 type_info = Expression::TYPE_INFO_FIELD_ALIGNMENT;
1164 vals->push_back(Expression::make_type_info(this, type_info));
1165
1166 ++p;
1167 gcc_assert(p->field_name() == "size");
1168 type_info = Expression::TYPE_INFO_SIZE;
1169 vals->push_back(Expression::make_type_info(this, type_info));
1170
1171 ++p;
1172 gcc_assert(p->field_name() == "hash");
1173 mpz_set_ui(iv, this->hash_for_method(gogo));
1174 vals->push_back(Expression::make_integer(&iv, p->type(), bloc));
1175
1176 const char* hash_fn;
1177 const char* equal_fn;
1178 this->type_functions(&hash_fn, &equal_fn);
1179
1180 ++p;
1181 gcc_assert(p->field_name() == "hashfn");
1182 Function_type* fntype = p->type()->function_type();
1183 Named_object* no = Named_object::make_function_declaration(hash_fn, NULL,
1184 fntype,
1185 bloc);
1186 no->func_declaration_value()->set_asm_name(hash_fn);
1187 vals->push_back(Expression::make_func_reference(no, NULL, bloc));
1188
1189 ++p;
1190 gcc_assert(p->field_name() == "equalfn");
1191 fntype = p->type()->function_type();
1192 no = Named_object::make_function_declaration(equal_fn, NULL, fntype, bloc);
1193 no->func_declaration_value()->set_asm_name(equal_fn);
1194 vals->push_back(Expression::make_func_reference(no, NULL, bloc));
1195
1196 ++p;
1197 gcc_assert(p->field_name() == "string");
1198 Expression* s = Expression::make_string((name != NULL
1199 ? name->reflection(gogo)
1200 : this->reflection(gogo)),
1201 bloc);
1202 vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
1203
1204 ++p;
1205 gcc_assert(p->field_name() == "uncommonType");
1206 if (name == NULL && methods == NULL)
1207 vals->push_back(Expression::make_nil(bloc));
1208 else
1209 {
1210 if (methods == NULL)
1211 methods = name->methods();
1212 vals->push_back(this->uncommon_type_constructor(gogo,
1213 p->type()->deref(),
1214 name, methods,
1215 only_value_methods));
1216 }
1217
1218 ++p;
1219 gcc_assert(p == fields->end());
1220
1221 mpz_clear(iv);
1222
1223 return Expression::make_struct_composite_literal(td_type, vals, bloc);
1224 }
1225
1226 // Return a composite literal for the uncommon type information for
1227 // this type. UNCOMMON_STRUCT_TYPE is the type of the uncommon type
1228 // struct. If name is not NULL, it is the name of the type. If
1229 // METHODS is not NULL, it is the list of methods. ONLY_VALUE_METHODS
1230 // is true if only value methods should be included. At least one of
1231 // NAME and METHODS must not be NULL.
1232
1233 Expression*
1234 Type::uncommon_type_constructor(Gogo* gogo, Type* uncommon_type,
1235 Named_type* name, const Methods* methods,
1236 bool only_value_methods) const
1237 {
1238 source_location bloc = BUILTINS_LOCATION;
1239
1240 const Struct_field_list* fields = uncommon_type->struct_type()->fields();
1241
1242 Expression_list* vals = new Expression_list();
1243 vals->reserve(3);
1244
1245 Struct_field_list::const_iterator p = fields->begin();
1246 gcc_assert(p->field_name() == "name");
1247
1248 ++p;
1249 gcc_assert(p->field_name() == "pkgPath");
1250
1251 if (name == NULL)
1252 {
1253 vals->push_back(Expression::make_nil(bloc));
1254 vals->push_back(Expression::make_nil(bloc));
1255 }
1256 else
1257 {
1258 Named_object* no = name->named_object();
1259 std::string n = Gogo::unpack_hidden_name(no->name());
1260 Expression* s = Expression::make_string(n, bloc);
1261 vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
1262
1263 if (name->is_builtin())
1264 vals->push_back(Expression::make_nil(bloc));
1265 else
1266 {
1267 const Package* package = no->package();
1268 const std::string& unique_prefix(package == NULL
1269 ? gogo->unique_prefix()
1270 : package->unique_prefix());
1271 const std::string& package_name(package == NULL
1272 ? gogo->package_name()
1273 : package->name());
1274 n.assign(unique_prefix);
1275 n.append(1, '.');
1276 n.append(package_name);
1277 if (name->in_function() != NULL)
1278 {
1279 n.append(1, '.');
1280 n.append(Gogo::unpack_hidden_name(name->in_function()->name()));
1281 }
1282 s = Expression::make_string(n, bloc);
1283 vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
1284 }
1285 }
1286
1287 ++p;
1288 gcc_assert(p->field_name() == "methods");
1289 vals->push_back(this->methods_constructor(gogo, p->type(), methods,
1290 only_value_methods));
1291
1292 ++p;
1293 gcc_assert(p == fields->end());
1294
1295 Expression* r = Expression::make_struct_composite_literal(uncommon_type,
1296 vals, bloc);
1297 return Expression::make_unary(OPERATOR_AND, r, bloc);
1298 }
1299
1300 // Sort methods by name.
1301
1302 class Sort_methods
1303 {
1304 public:
1305 bool
1306 operator()(const std::pair<std::string, const Method*>& m1,
1307 const std::pair<std::string, const Method*>& m2) const
1308 { return m1.first < m2.first; }
1309 };
1310
1311 // Return a composite literal for the type method table for this type.
1312 // METHODS_TYPE is the type of the table, and is a slice type.
1313 // METHODS is the list of methods. If ONLY_VALUE_METHODS is true,
1314 // then only value methods are used.
1315
1316 Expression*
1317 Type::methods_constructor(Gogo* gogo, Type* methods_type,
1318 const Methods* methods,
1319 bool only_value_methods) const
1320 {
1321 source_location bloc = BUILTINS_LOCATION;
1322
1323 std::vector<std::pair<std::string, const Method*> > smethods;
1324 if (methods != NULL)
1325 {
1326 smethods.reserve(methods->count());
1327 for (Methods::const_iterator p = methods->begin();
1328 p != methods->end();
1329 ++p)
1330 {
1331 if (p->second->is_ambiguous())
1332 continue;
1333 if (only_value_methods && !p->second->is_value_method())
1334 continue;
1335 smethods.push_back(std::make_pair(p->first, p->second));
1336 }
1337 }
1338
1339 if (smethods.empty())
1340 return Expression::make_slice_composite_literal(methods_type, NULL, bloc);
1341
1342 std::sort(smethods.begin(), smethods.end(), Sort_methods());
1343
1344 Type* method_type = methods_type->array_type()->element_type();
1345
1346 Expression_list* vals = new Expression_list();
1347 vals->reserve(smethods.size());
1348 for (std::vector<std::pair<std::string, const Method*> >::const_iterator p
1349 = smethods.begin();
1350 p != smethods.end();
1351 ++p)
1352 vals->push_back(this->method_constructor(gogo, method_type, p->first,
1353 p->second));
1354
1355 return Expression::make_slice_composite_literal(methods_type, vals, bloc);
1356 }
1357
1358 // Return a composite literal for a single method. METHOD_TYPE is the
1359 // type of the entry. METHOD_NAME is the name of the method and M is
1360 // the method information.
1361
1362 Expression*
1363 Type::method_constructor(Gogo*, Type* method_type,
1364 const std::string& method_name,
1365 const Method* m) const
1366 {
1367 source_location bloc = BUILTINS_LOCATION;
1368
1369 const Struct_field_list* fields = method_type->struct_type()->fields();
1370
1371 Expression_list* vals = new Expression_list();
1372 vals->reserve(5);
1373
1374 Struct_field_list::const_iterator p = fields->begin();
1375 gcc_assert(p->field_name() == "name");
1376 const std::string n = Gogo::unpack_hidden_name(method_name);
1377 Expression* s = Expression::make_string(n, bloc);
1378 vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
1379
1380 ++p;
1381 gcc_assert(p->field_name() == "pkgPath");
1382 if (!Gogo::is_hidden_name(method_name))
1383 vals->push_back(Expression::make_nil(bloc));
1384 else
1385 {
1386 s = Expression::make_string(Gogo::hidden_name_prefix(method_name), bloc);
1387 vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
1388 }
1389
1390 Named_object* no = (m->needs_stub_method()
1391 ? m->stub_object()
1392 : m->named_object());
1393
1394 Function_type* mtype;
1395 if (no->is_function())
1396 mtype = no->func_value()->type();
1397 else
1398 mtype = no->func_declaration_value()->type();
1399 gcc_assert(mtype->is_method());
1400 Type* nonmethod_type = mtype->copy_without_receiver();
1401
1402 ++p;
1403 gcc_assert(p->field_name() == "mtyp");
1404 vals->push_back(Expression::make_type_descriptor(nonmethod_type, bloc));
1405
1406 ++p;
1407 gcc_assert(p->field_name() == "typ");
1408 vals->push_back(Expression::make_type_descriptor(mtype, bloc));
1409
1410 ++p;
1411 gcc_assert(p->field_name() == "tfn");
1412 vals->push_back(Expression::make_func_reference(no, NULL, bloc));
1413
1414 ++p;
1415 gcc_assert(p == fields->end());
1416
1417 return Expression::make_struct_composite_literal(method_type, vals, bloc);
1418 }
1419
1420 // Return a composite literal for the type descriptor of a plain type.
1421 // RUNTIME_TYPE_KIND is the value of the kind field. If NAME is not
1422 // NULL, it is the name to use as well as the list of methods.
1423
1424 Expression*
1425 Type::plain_type_descriptor(Gogo* gogo, int runtime_type_kind,
1426 Named_type* name)
1427 {
1428 return this->type_descriptor_constructor(gogo, runtime_type_kind,
1429 name, NULL, true);
1430 }
1431
1432 // Return the type reflection string for this type.
1433
1434 std::string
1435 Type::reflection(Gogo* gogo) const
1436 {
1437 std::string ret;
1438
1439 // The do_reflection virtual function should set RET to the
1440 // reflection string.
1441 this->do_reflection(gogo, &ret);
1442
1443 return ret;
1444 }
1445
1446 // Return a mangled name for the type.
1447
1448 std::string
1449 Type::mangled_name(Gogo* gogo) const
1450 {
1451 std::string ret;
1452
1453 // The do_mangled_name virtual function should set RET to the
1454 // mangled name. For a composite type it should append a code for
1455 // the composition and then call do_mangled_name on the components.
1456 this->do_mangled_name(gogo, &ret);
1457
1458 return ret;
1459 }
1460
1461 // Default function to export a type.
1462
1463 void
1464 Type::do_export(Export*) const
1465 {
1466 gcc_unreachable();
1467 }
1468
1469 // Import a type.
1470
1471 Type*
1472 Type::import_type(Import* imp)
1473 {
1474 if (imp->match_c_string("("))
1475 return Function_type::do_import(imp);
1476 else if (imp->match_c_string("*"))
1477 return Pointer_type::do_import(imp);
1478 else if (imp->match_c_string("struct "))
1479 return Struct_type::do_import(imp);
1480 else if (imp->match_c_string("["))
1481 return Array_type::do_import(imp);
1482 else if (imp->match_c_string("map "))
1483 return Map_type::do_import(imp);
1484 else if (imp->match_c_string("chan "))
1485 return Channel_type::do_import(imp);
1486 else if (imp->match_c_string("interface"))
1487 return Interface_type::do_import(imp);
1488 else
1489 {
1490 error_at(imp->location(), "import error: expected type");
1491 return Type::make_error_type();
1492 }
1493 }
1494
1495 // A type used to indicate a parsing error. This exists to simplify
1496 // later error detection.
1497
1498 class Error_type : public Type
1499 {
1500 public:
1501 Error_type()
1502 : Type(TYPE_ERROR)
1503 { }
1504
1505 protected:
1506 tree
1507 do_get_tree(Gogo*)
1508 { return error_mark_node; }
1509
1510 tree
1511 do_get_init_tree(Gogo*, tree, bool)
1512 { return error_mark_node; }
1513
1514 Expression*
1515 do_type_descriptor(Gogo*, Named_type*)
1516 { return Expression::make_error(BUILTINS_LOCATION); }
1517
1518 void
1519 do_reflection(Gogo*, std::string*) const
1520 { gcc_assert(saw_errors()); }
1521
1522 void
1523 do_mangled_name(Gogo*, std::string* ret) const
1524 { ret->push_back('E'); }
1525 };
1526
1527 Type*
1528 Type::make_error_type()
1529 {
1530 static Error_type singleton_error_type;
1531 return &singleton_error_type;
1532 }
1533
1534 // The void type.
1535
1536 class Void_type : public Type
1537 {
1538 public:
1539 Void_type()
1540 : Type(TYPE_VOID)
1541 { }
1542
1543 protected:
1544 tree
1545 do_get_tree(Gogo*)
1546 { return void_type_node; }
1547
1548 tree
1549 do_get_init_tree(Gogo*, tree, bool)
1550 { gcc_unreachable(); }
1551
1552 Expression*
1553 do_type_descriptor(Gogo*, Named_type*)
1554 { gcc_unreachable(); }
1555
1556 void
1557 do_reflection(Gogo*, std::string*) const
1558 { }
1559
1560 void
1561 do_mangled_name(Gogo*, std::string* ret) const
1562 { ret->push_back('v'); }
1563 };
1564
1565 Type*
1566 Type::make_void_type()
1567 {
1568 static Void_type singleton_void_type;
1569 return &singleton_void_type;
1570 }
1571
1572 // The boolean type.
1573
1574 class Boolean_type : public Type
1575 {
1576 public:
1577 Boolean_type()
1578 : Type(TYPE_BOOLEAN)
1579 { }
1580
1581 protected:
1582 tree
1583 do_get_tree(Gogo*)
1584 { return boolean_type_node; }
1585
1586 tree
1587 do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
1588 { return is_clear ? NULL : fold_convert(type_tree, boolean_false_node); }
1589
1590 Expression*
1591 do_type_descriptor(Gogo*, Named_type* name);
1592
1593 // We should not be asked for the reflection string of a basic type.
1594 void
1595 do_reflection(Gogo*, std::string* ret) const
1596 { ret->append("bool"); }
1597
1598 void
1599 do_mangled_name(Gogo*, std::string* ret) const
1600 { ret->push_back('b'); }
1601 };
1602
1603 // Make the type descriptor.
1604
1605 Expression*
1606 Boolean_type::do_type_descriptor(Gogo* gogo, Named_type* name)
1607 {
1608 if (name != NULL)
1609 return this->plain_type_descriptor(gogo, RUNTIME_TYPE_KIND_BOOL, name);
1610 else
1611 {
1612 Named_object* no = gogo->lookup_global("bool");
1613 gcc_assert(no != NULL);
1614 return Type::type_descriptor(gogo, no->type_value());
1615 }
1616 }
1617
1618 Type*
1619 Type::make_boolean_type()
1620 {
1621 static Boolean_type boolean_type;
1622 return &boolean_type;
1623 }
1624
1625 // The named type "bool".
1626
1627 static Named_type* named_bool_type;
1628
1629 // Get the named type "bool".
1630
1631 Named_type*
1632 Type::lookup_bool_type()
1633 {
1634 return named_bool_type;
1635 }
1636
1637 // Make the named type "bool".
1638
1639 Named_type*
1640 Type::make_named_bool_type()
1641 {
1642 Type* bool_type = Type::make_boolean_type();
1643 Named_object* named_object = Named_object::make_type("bool", NULL,
1644 bool_type,
1645 BUILTINS_LOCATION);
1646 Named_type* named_type = named_object->type_value();
1647 named_bool_type = named_type;
1648 return named_type;
1649 }
1650
1651 // Class Integer_type.
1652
1653 Integer_type::Named_integer_types Integer_type::named_integer_types;
1654
1655 // Create a new integer type. Non-abstract integer types always have
1656 // names.
1657
1658 Named_type*
1659 Integer_type::create_integer_type(const char* name, bool is_unsigned,
1660 int bits, int runtime_type_kind)
1661 {
1662 Integer_type* integer_type = new Integer_type(false, is_unsigned, bits,
1663 runtime_type_kind);
1664 std::string sname(name);
1665 Named_object* named_object = Named_object::make_type(sname, NULL,
1666 integer_type,
1667 BUILTINS_LOCATION);
1668 Named_type* named_type = named_object->type_value();
1669 std::pair<Named_integer_types::iterator, bool> ins =
1670 Integer_type::named_integer_types.insert(std::make_pair(sname, named_type));
1671 gcc_assert(ins.second);
1672 return named_type;
1673 }
1674
1675 // Look up an existing integer type.
1676
1677 Named_type*
1678 Integer_type::lookup_integer_type(const char* name)
1679 {
1680 Named_integer_types::const_iterator p =
1681 Integer_type::named_integer_types.find(name);
1682 gcc_assert(p != Integer_type::named_integer_types.end());
1683 return p->second;
1684 }
1685
1686 // Create a new abstract integer type.
1687
1688 Integer_type*
1689 Integer_type::create_abstract_integer_type()
1690 {
1691 static Integer_type* abstract_type;
1692 if (abstract_type == NULL)
1693 abstract_type = new Integer_type(true, false, INT_TYPE_SIZE,
1694 RUNTIME_TYPE_KIND_INT);
1695 return abstract_type;
1696 }
1697
1698 // Integer type compatibility.
1699
1700 bool
1701 Integer_type::is_identical(const Integer_type* t) const
1702 {
1703 if (this->is_unsigned_ != t->is_unsigned_ || this->bits_ != t->bits_)
1704 return false;
1705 return this->is_abstract_ == t->is_abstract_;
1706 }
1707
1708 // Hash code.
1709
1710 unsigned int
1711 Integer_type::do_hash_for_method(Gogo*) const
1712 {
1713 return ((this->bits_ << 4)
1714 + ((this->is_unsigned_ ? 1 : 0) << 8)
1715 + ((this->is_abstract_ ? 1 : 0) << 9));
1716 }
1717
1718 // Get the tree for an Integer_type.
1719
1720 tree
1721 Integer_type::do_get_tree(Gogo*)
1722 {
1723 gcc_assert(!this->is_abstract_);
1724 if (this->is_unsigned_)
1725 {
1726 if (this->bits_ == INT_TYPE_SIZE)
1727 return unsigned_type_node;
1728 else if (this->bits_ == CHAR_TYPE_SIZE)
1729 return unsigned_char_type_node;
1730 else if (this->bits_ == SHORT_TYPE_SIZE)
1731 return short_unsigned_type_node;
1732 else if (this->bits_ == LONG_TYPE_SIZE)
1733 return long_unsigned_type_node;
1734 else if (this->bits_ == LONG_LONG_TYPE_SIZE)
1735 return long_long_unsigned_type_node;
1736 else
1737 return make_unsigned_type(this->bits_);
1738 }
1739 else
1740 {
1741 if (this->bits_ == INT_TYPE_SIZE)
1742 return integer_type_node;
1743 else if (this->bits_ == CHAR_TYPE_SIZE)
1744 return signed_char_type_node;
1745 else if (this->bits_ == SHORT_TYPE_SIZE)
1746 return short_integer_type_node;
1747 else if (this->bits_ == LONG_TYPE_SIZE)
1748 return long_integer_type_node;
1749 else if (this->bits_ == LONG_LONG_TYPE_SIZE)
1750 return long_long_integer_type_node;
1751 else
1752 return make_signed_type(this->bits_);
1753 }
1754 }
1755
1756 tree
1757 Integer_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
1758 {
1759 return is_clear ? NULL : build_int_cst(type_tree, 0);
1760 }
1761
1762 // The type descriptor for an integer type. Integer types are always
1763 // named.
1764
1765 Expression*
1766 Integer_type::do_type_descriptor(Gogo* gogo, Named_type* name)
1767 {
1768 gcc_assert(name != NULL);
1769 return this->plain_type_descriptor(gogo, this->runtime_type_kind_, name);
1770 }
1771
1772 // We should not be asked for the reflection string of a basic type.
1773
1774 void
1775 Integer_type::do_reflection(Gogo*, std::string*) const
1776 {
1777 gcc_unreachable();
1778 }
1779
1780 // Mangled name.
1781
1782 void
1783 Integer_type::do_mangled_name(Gogo*, std::string* ret) const
1784 {
1785 char buf[100];
1786 snprintf(buf, sizeof buf, "i%s%s%de",
1787 this->is_abstract_ ? "a" : "",
1788 this->is_unsigned_ ? "u" : "",
1789 this->bits_);
1790 ret->append(buf);
1791 }
1792
1793 // Make an integer type.
1794
1795 Named_type*
1796 Type::make_integer_type(const char* name, bool is_unsigned, int bits,
1797 int runtime_type_kind)
1798 {
1799 return Integer_type::create_integer_type(name, is_unsigned, bits,
1800 runtime_type_kind);
1801 }
1802
1803 // Make an abstract integer type.
1804
1805 Integer_type*
1806 Type::make_abstract_integer_type()
1807 {
1808 return Integer_type::create_abstract_integer_type();
1809 }
1810
1811 // Look up an integer type.
1812
1813 Named_type*
1814 Type::lookup_integer_type(const char* name)
1815 {
1816 return Integer_type::lookup_integer_type(name);
1817 }
1818
1819 // Class Float_type.
1820
1821 Float_type::Named_float_types Float_type::named_float_types;
1822
1823 // Create a new float type. Non-abstract float types always have
1824 // names.
1825
1826 Named_type*
1827 Float_type::create_float_type(const char* name, int bits,
1828 int runtime_type_kind)
1829 {
1830 Float_type* float_type = new Float_type(false, bits, runtime_type_kind);
1831 std::string sname(name);
1832 Named_object* named_object = Named_object::make_type(sname, NULL, float_type,
1833 BUILTINS_LOCATION);
1834 Named_type* named_type = named_object->type_value();
1835 std::pair<Named_float_types::iterator, bool> ins =
1836 Float_type::named_float_types.insert(std::make_pair(sname, named_type));
1837 gcc_assert(ins.second);
1838 return named_type;
1839 }
1840
1841 // Look up an existing float type.
1842
1843 Named_type*
1844 Float_type::lookup_float_type(const char* name)
1845 {
1846 Named_float_types::const_iterator p =
1847 Float_type::named_float_types.find(name);
1848 gcc_assert(p != Float_type::named_float_types.end());
1849 return p->second;
1850 }
1851
1852 // Create a new abstract float type.
1853
1854 Float_type*
1855 Float_type::create_abstract_float_type()
1856 {
1857 static Float_type* abstract_type;
1858 if (abstract_type == NULL)
1859 abstract_type = new Float_type(true, FLOAT_TYPE_SIZE,
1860 RUNTIME_TYPE_KIND_FLOAT);
1861 return abstract_type;
1862 }
1863
1864 // Whether this type is identical with T.
1865
1866 bool
1867 Float_type::is_identical(const Float_type* t) const
1868 {
1869 if (this->bits_ != t->bits_)
1870 return false;
1871 return this->is_abstract_ == t->is_abstract_;
1872 }
1873
1874 // Hash code.
1875
1876 unsigned int
1877 Float_type::do_hash_for_method(Gogo*) const
1878 {
1879 return (this->bits_ << 4) + ((this->is_abstract_ ? 1 : 0) << 8);
1880 }
1881
1882 // Get a tree without using a Gogo*.
1883
1884 tree
1885 Float_type::type_tree() const
1886 {
1887 if (this->bits_ == FLOAT_TYPE_SIZE)
1888 return float_type_node;
1889 else if (this->bits_ == DOUBLE_TYPE_SIZE)
1890 return double_type_node;
1891 else if (this->bits_ == LONG_DOUBLE_TYPE_SIZE)
1892 return long_double_type_node;
1893 else
1894 {
1895 tree ret = make_node(REAL_TYPE);
1896 TYPE_PRECISION(ret) = this->bits_;
1897 layout_type(ret);
1898 return ret;
1899 }
1900 }
1901
1902 // Get a tree.
1903
1904 tree
1905 Float_type::do_get_tree(Gogo*)
1906 {
1907 return this->type_tree();
1908 }
1909
1910 tree
1911 Float_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
1912 {
1913 if (is_clear)
1914 return NULL;
1915 REAL_VALUE_TYPE r;
1916 real_from_integer(&r, TYPE_MODE(type_tree), 0, 0, 0);
1917 return build_real(type_tree, r);
1918 }
1919
1920 // The type descriptor for a float type. Float types are always named.
1921
1922 Expression*
1923 Float_type::do_type_descriptor(Gogo* gogo, Named_type* name)
1924 {
1925 gcc_assert(name != NULL);
1926 return this->plain_type_descriptor(gogo, this->runtime_type_kind_, name);
1927 }
1928
1929 // We should not be asked for the reflection string of a basic type.
1930
1931 void
1932 Float_type::do_reflection(Gogo*, std::string*) const
1933 {
1934 gcc_unreachable();
1935 }
1936
1937 // Mangled name.
1938
1939 void
1940 Float_type::do_mangled_name(Gogo*, std::string* ret) const
1941 {
1942 char buf[100];
1943 snprintf(buf, sizeof buf, "f%s%de",
1944 this->is_abstract_ ? "a" : "",
1945 this->bits_);
1946 ret->append(buf);
1947 }
1948
1949 // Make a floating point type.
1950
1951 Named_type*
1952 Type::make_float_type(const char* name, int bits, int runtime_type_kind)
1953 {
1954 return Float_type::create_float_type(name, bits, runtime_type_kind);
1955 }
1956
1957 // Make an abstract float type.
1958
1959 Float_type*
1960 Type::make_abstract_float_type()
1961 {
1962 return Float_type::create_abstract_float_type();
1963 }
1964
1965 // Look up a float type.
1966
1967 Named_type*
1968 Type::lookup_float_type(const char* name)
1969 {
1970 return Float_type::lookup_float_type(name);
1971 }
1972
1973 // Class Complex_type.
1974
1975 Complex_type::Named_complex_types Complex_type::named_complex_types;
1976
1977 // Create a new complex type. Non-abstract complex types always have
1978 // names.
1979
1980 Named_type*
1981 Complex_type::create_complex_type(const char* name, int bits,
1982 int runtime_type_kind)
1983 {
1984 Complex_type* complex_type = new Complex_type(false, bits,
1985 runtime_type_kind);
1986 std::string sname(name);
1987 Named_object* named_object = Named_object::make_type(sname, NULL,
1988 complex_type,
1989 BUILTINS_LOCATION);
1990 Named_type* named_type = named_object->type_value();
1991 std::pair<Named_complex_types::iterator, bool> ins =
1992 Complex_type::named_complex_types.insert(std::make_pair(sname,
1993 named_type));
1994 gcc_assert(ins.second);
1995 return named_type;
1996 }
1997
1998 // Look up an existing complex type.
1999
2000 Named_type*
2001 Complex_type::lookup_complex_type(const char* name)
2002 {
2003 Named_complex_types::const_iterator p =
2004 Complex_type::named_complex_types.find(name);
2005 gcc_assert(p != Complex_type::named_complex_types.end());
2006 return p->second;
2007 }
2008
2009 // Create a new abstract complex type.
2010
2011 Complex_type*
2012 Complex_type::create_abstract_complex_type()
2013 {
2014 static Complex_type* abstract_type;
2015 if (abstract_type == NULL)
2016 abstract_type = new Complex_type(true, FLOAT_TYPE_SIZE * 2,
2017 RUNTIME_TYPE_KIND_FLOAT);
2018 return abstract_type;
2019 }
2020
2021 // Whether this type is identical with T.
2022
2023 bool
2024 Complex_type::is_identical(const Complex_type *t) const
2025 {
2026 if (this->bits_ != t->bits_)
2027 return false;
2028 return this->is_abstract_ == t->is_abstract_;
2029 }
2030
2031 // Hash code.
2032
2033 unsigned int
2034 Complex_type::do_hash_for_method(Gogo*) const
2035 {
2036 return (this->bits_ << 4) + ((this->is_abstract_ ? 1 : 0) << 8);
2037 }
2038
2039 // Get a tree without using a Gogo*.
2040
2041 tree
2042 Complex_type::type_tree() const
2043 {
2044 if (this->bits_ == FLOAT_TYPE_SIZE * 2)
2045 return complex_float_type_node;
2046 else if (this->bits_ == DOUBLE_TYPE_SIZE * 2)
2047 return complex_double_type_node;
2048 else if (this->bits_ == LONG_DOUBLE_TYPE_SIZE * 2)
2049 return complex_long_double_type_node;
2050 else
2051 {
2052 tree ret = make_node(REAL_TYPE);
2053 TYPE_PRECISION(ret) = this->bits_ / 2;
2054 layout_type(ret);
2055 return build_complex_type(ret);
2056 }
2057 }
2058
2059 // Get a tree.
2060
2061 tree
2062 Complex_type::do_get_tree(Gogo*)
2063 {
2064 return this->type_tree();
2065 }
2066
2067 // Zero initializer.
2068
2069 tree
2070 Complex_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
2071 {
2072 if (is_clear)
2073 return NULL;
2074 REAL_VALUE_TYPE r;
2075 real_from_integer(&r, TYPE_MODE(TREE_TYPE(type_tree)), 0, 0, 0);
2076 return build_complex(type_tree, build_real(TREE_TYPE(type_tree), r),
2077 build_real(TREE_TYPE(type_tree), r));
2078 }
2079
2080 // The type descriptor for a complex type. Complex types are always
2081 // named.
2082
2083 Expression*
2084 Complex_type::do_type_descriptor(Gogo* gogo, Named_type* name)
2085 {
2086 gcc_assert(name != NULL);
2087 return this->plain_type_descriptor(gogo, this->runtime_type_kind_, name);
2088 }
2089
2090 // We should not be asked for the reflection string of a basic type.
2091
2092 void
2093 Complex_type::do_reflection(Gogo*, std::string*) const
2094 {
2095 gcc_unreachable();
2096 }
2097
2098 // Mangled name.
2099
2100 void
2101 Complex_type::do_mangled_name(Gogo*, std::string* ret) const
2102 {
2103 char buf[100];
2104 snprintf(buf, sizeof buf, "c%s%de",
2105 this->is_abstract_ ? "a" : "",
2106 this->bits_);
2107 ret->append(buf);
2108 }
2109
2110 // Make a complex type.
2111
2112 Named_type*
2113 Type::make_complex_type(const char* name, int bits, int runtime_type_kind)
2114 {
2115 return Complex_type::create_complex_type(name, bits, runtime_type_kind);
2116 }
2117
2118 // Make an abstract complex type.
2119
2120 Complex_type*
2121 Type::make_abstract_complex_type()
2122 {
2123 return Complex_type::create_abstract_complex_type();
2124 }
2125
2126 // Look up a complex type.
2127
2128 Named_type*
2129 Type::lookup_complex_type(const char* name)
2130 {
2131 return Complex_type::lookup_complex_type(name);
2132 }
2133
2134 // Class String_type.
2135
2136 // Return the tree for String_type. A string is a struct with two
2137 // fields: a pointer to the characters and a length.
2138
2139 tree
2140 String_type::do_get_tree(Gogo*)
2141 {
2142 static tree struct_type;
2143 return Gogo::builtin_struct(&struct_type, "__go_string", NULL_TREE, 2,
2144 "__data",
2145 build_pointer_type(unsigned_char_type_node),
2146 "__length",
2147 integer_type_node);
2148 }
2149
2150 // Return a tree for the length of STRING.
2151
2152 tree
2153 String_type::length_tree(Gogo*, tree string)
2154 {
2155 tree string_type = TREE_TYPE(string);
2156 gcc_assert(TREE_CODE(string_type) == RECORD_TYPE);
2157 tree length_field = DECL_CHAIN(TYPE_FIELDS(string_type));
2158 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(length_field)),
2159 "__length") == 0);
2160 return fold_build3(COMPONENT_REF, integer_type_node, string,
2161 length_field, NULL_TREE);
2162 }
2163
2164 // Return a tree for a pointer to the bytes of STRING.
2165
2166 tree
2167 String_type::bytes_tree(Gogo*, tree string)
2168 {
2169 tree string_type = TREE_TYPE(string);
2170 gcc_assert(TREE_CODE(string_type) == RECORD_TYPE);
2171 tree bytes_field = TYPE_FIELDS(string_type);
2172 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(bytes_field)),
2173 "__data") == 0);
2174 return fold_build3(COMPONENT_REF, TREE_TYPE(bytes_field), string,
2175 bytes_field, NULL_TREE);
2176 }
2177
2178 // We initialize a string to { NULL, 0 }.
2179
2180 tree
2181 String_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
2182 {
2183 if (is_clear)
2184 return NULL_TREE;
2185
2186 gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
2187
2188 VEC(constructor_elt, gc)* init = VEC_alloc(constructor_elt, gc, 2);
2189
2190 for (tree field = TYPE_FIELDS(type_tree);
2191 field != NULL_TREE;
2192 field = DECL_CHAIN(field))
2193 {
2194 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
2195 elt->index = field;
2196 elt->value = fold_convert(TREE_TYPE(field), size_zero_node);
2197 }
2198
2199 tree ret = build_constructor(type_tree, init);
2200 TREE_CONSTANT(ret) = 1;
2201 return ret;
2202 }
2203
2204 // The type descriptor for the string type.
2205
2206 Expression*
2207 String_type::do_type_descriptor(Gogo* gogo, Named_type* name)
2208 {
2209 if (name != NULL)
2210 return this->plain_type_descriptor(gogo, RUNTIME_TYPE_KIND_STRING, name);
2211 else
2212 {
2213 Named_object* no = gogo->lookup_global("string");
2214 gcc_assert(no != NULL);
2215 return Type::type_descriptor(gogo, no->type_value());
2216 }
2217 }
2218
2219 // We should not be asked for the reflection string of a basic type.
2220
2221 void
2222 String_type::do_reflection(Gogo*, std::string* ret) const
2223 {
2224 ret->append("string");
2225 }
2226
2227 // Mangled name of a string type.
2228
2229 void
2230 String_type::do_mangled_name(Gogo*, std::string* ret) const
2231 {
2232 ret->push_back('z');
2233 }
2234
2235 // Make a string type.
2236
2237 Type*
2238 Type::make_string_type()
2239 {
2240 static String_type string_type;
2241 return &string_type;
2242 }
2243
2244 // The named type "string".
2245
2246 static Named_type* named_string_type;
2247
2248 // Get the named type "string".
2249
2250 Named_type*
2251 Type::lookup_string_type()
2252 {
2253 return named_string_type;
2254 }
2255
2256 // Make the named type string.
2257
2258 Named_type*
2259 Type::make_named_string_type()
2260 {
2261 Type* string_type = Type::make_string_type();
2262 Named_object* named_object = Named_object::make_type("string", NULL,
2263 string_type,
2264 BUILTINS_LOCATION);
2265 Named_type* named_type = named_object->type_value();
2266 named_string_type = named_type;
2267 return named_type;
2268 }
2269
2270 // The sink type. This is the type of the blank identifier _. Any
2271 // type may be assigned to it.
2272
2273 class Sink_type : public Type
2274 {
2275 public:
2276 Sink_type()
2277 : Type(TYPE_SINK)
2278 { }
2279
2280 protected:
2281 tree
2282 do_get_tree(Gogo*)
2283 { gcc_unreachable(); }
2284
2285 tree
2286 do_get_init_tree(Gogo*, tree, bool)
2287 { gcc_unreachable(); }
2288
2289 Expression*
2290 do_type_descriptor(Gogo*, Named_type*)
2291 { gcc_unreachable(); }
2292
2293 void
2294 do_reflection(Gogo*, std::string*) const
2295 { gcc_unreachable(); }
2296
2297 void
2298 do_mangled_name(Gogo*, std::string*) const
2299 { gcc_unreachable(); }
2300 };
2301
2302 // Make the sink type.
2303
2304 Type*
2305 Type::make_sink_type()
2306 {
2307 static Sink_type sink_type;
2308 return &sink_type;
2309 }
2310
2311 // Class Function_type.
2312
2313 // Traversal.
2314
2315 int
2316 Function_type::do_traverse(Traverse* traverse)
2317 {
2318 if (this->receiver_ != NULL
2319 && Type::traverse(this->receiver_->type(), traverse) == TRAVERSE_EXIT)
2320 return TRAVERSE_EXIT;
2321 if (this->parameters_ != NULL
2322 && this->parameters_->traverse(traverse) == TRAVERSE_EXIT)
2323 return TRAVERSE_EXIT;
2324 if (this->results_ != NULL
2325 && this->results_->traverse(traverse) == TRAVERSE_EXIT)
2326 return TRAVERSE_EXIT;
2327 return TRAVERSE_CONTINUE;
2328 }
2329
2330 // Returns whether T is a valid redeclaration of this type. If this
2331 // returns false, and REASON is not NULL, *REASON may be set to a
2332 // brief explanation of why it returned false.
2333
2334 bool
2335 Function_type::is_valid_redeclaration(const Function_type* t,
2336 std::string* reason) const
2337 {
2338 if (!this->is_identical(t, false, true, reason))
2339 return false;
2340
2341 // A redeclaration of a function is required to use the same names
2342 // for the receiver and parameters.
2343 if (this->receiver() != NULL
2344 && this->receiver()->name() != t->receiver()->name()
2345 && this->receiver()->name() != Import::import_marker
2346 && t->receiver()->name() != Import::import_marker)
2347 {
2348 if (reason != NULL)
2349 *reason = "receiver name changed";
2350 return false;
2351 }
2352
2353 const Typed_identifier_list* parms1 = this->parameters();
2354 const Typed_identifier_list* parms2 = t->parameters();
2355 if (parms1 != NULL)
2356 {
2357 Typed_identifier_list::const_iterator p1 = parms1->begin();
2358 for (Typed_identifier_list::const_iterator p2 = parms2->begin();
2359 p2 != parms2->end();
2360 ++p2, ++p1)
2361 {
2362 if (p1->name() != p2->name()
2363 && p1->name() != Import::import_marker
2364 && p2->name() != Import::import_marker)
2365 {
2366 if (reason != NULL)
2367 *reason = "parameter name changed";
2368 return false;
2369 }
2370
2371 // This is called at parse time, so we may have unknown
2372 // types.
2373 Type* t1 = p1->type()->forwarded();
2374 Type* t2 = p2->type()->forwarded();
2375 if (t1 != t2
2376 && t1->forward_declaration_type() != NULL
2377 && (t2->forward_declaration_type() == NULL
2378 || (t1->forward_declaration_type()->named_object()
2379 != t2->forward_declaration_type()->named_object())))
2380 return false;
2381 }
2382 }
2383
2384 const Typed_identifier_list* results1 = this->results();
2385 const Typed_identifier_list* results2 = t->results();
2386 if (results1 != NULL)
2387 {
2388 Typed_identifier_list::const_iterator res1 = results1->begin();
2389 for (Typed_identifier_list::const_iterator res2 = results2->begin();
2390 res2 != results2->end();
2391 ++res2, ++res1)
2392 {
2393 if (res1->name() != res2->name()
2394 && res1->name() != Import::import_marker
2395 && res2->name() != Import::import_marker)
2396 {
2397 if (reason != NULL)
2398 *reason = "result name changed";
2399 return false;
2400 }
2401
2402 // This is called at parse time, so we may have unknown
2403 // types.
2404 Type* t1 = res1->type()->forwarded();
2405 Type* t2 = res2->type()->forwarded();
2406 if (t1 != t2
2407 && t1->forward_declaration_type() != NULL
2408 && (t2->forward_declaration_type() == NULL
2409 || (t1->forward_declaration_type()->named_object()
2410 != t2->forward_declaration_type()->named_object())))
2411 return false;
2412 }
2413 }
2414
2415 return true;
2416 }
2417
2418 // Check whether T is the same as this type.
2419
2420 bool
2421 Function_type::is_identical(const Function_type* t, bool ignore_receiver,
2422 bool errors_are_identical,
2423 std::string* reason) const
2424 {
2425 if (!ignore_receiver)
2426 {
2427 const Typed_identifier* r1 = this->receiver();
2428 const Typed_identifier* r2 = t->receiver();
2429 if ((r1 != NULL) != (r2 != NULL))
2430 {
2431 if (reason != NULL)
2432 *reason = _("different receiver types");
2433 return false;
2434 }
2435 if (r1 != NULL)
2436 {
2437 if (!Type::are_identical(r1->type(), r2->type(), errors_are_identical,
2438 reason))
2439 {
2440 if (reason != NULL && !reason->empty())
2441 *reason = "receiver: " + *reason;
2442 return false;
2443 }
2444 }
2445 }
2446
2447 const Typed_identifier_list* parms1 = this->parameters();
2448 const Typed_identifier_list* parms2 = t->parameters();
2449 if ((parms1 != NULL) != (parms2 != NULL))
2450 {
2451 if (reason != NULL)
2452 *reason = _("different number of parameters");
2453 return false;
2454 }
2455 if (parms1 != NULL)
2456 {
2457 Typed_identifier_list::const_iterator p1 = parms1->begin();
2458 for (Typed_identifier_list::const_iterator p2 = parms2->begin();
2459 p2 != parms2->end();
2460 ++p2, ++p1)
2461 {
2462 if (p1 == parms1->end())
2463 {
2464 if (reason != NULL)
2465 *reason = _("different number of parameters");
2466 return false;
2467 }
2468
2469 if (!Type::are_identical(p1->type(), p2->type(),
2470 errors_are_identical, NULL))
2471 {
2472 if (reason != NULL)
2473 *reason = _("different parameter types");
2474 return false;
2475 }
2476 }
2477 if (p1 != parms1->end())
2478 {
2479 if (reason != NULL)
2480 *reason = _("different number of parameters");
2481 return false;
2482 }
2483 }
2484
2485 if (this->is_varargs() != t->is_varargs())
2486 {
2487 if (reason != NULL)
2488 *reason = _("different varargs");
2489 return false;
2490 }
2491
2492 const Typed_identifier_list* results1 = this->results();
2493 const Typed_identifier_list* results2 = t->results();
2494 if ((results1 != NULL) != (results2 != NULL))
2495 {
2496 if (reason != NULL)
2497 *reason = _("different number of results");
2498 return false;
2499 }
2500 if (results1 != NULL)
2501 {
2502 Typed_identifier_list::const_iterator res1 = results1->begin();
2503 for (Typed_identifier_list::const_iterator res2 = results2->begin();
2504 res2 != results2->end();
2505 ++res2, ++res1)
2506 {
2507 if (res1 == results1->end())
2508 {
2509 if (reason != NULL)
2510 *reason = _("different number of results");
2511 return false;
2512 }
2513
2514 if (!Type::are_identical(res1->type(), res2->type(),
2515 errors_are_identical, NULL))
2516 {
2517 if (reason != NULL)
2518 *reason = _("different result types");
2519 return false;
2520 }
2521 }
2522 if (res1 != results1->end())
2523 {
2524 if (reason != NULL)
2525 *reason = _("different number of results");
2526 return false;
2527 }
2528 }
2529
2530 return true;
2531 }
2532
2533 // Hash code.
2534
2535 unsigned int
2536 Function_type::do_hash_for_method(Gogo* gogo) const
2537 {
2538 unsigned int ret = 0;
2539 // We ignore the receiver type for hash codes, because we need to
2540 // get the same hash code for a method in an interface and a method
2541 // declared for a type. The former will not have a receiver.
2542 if (this->parameters_ != NULL)
2543 {
2544 int shift = 1;
2545 for (Typed_identifier_list::const_iterator p = this->parameters_->begin();
2546 p != this->parameters_->end();
2547 ++p, ++shift)
2548 ret += p->type()->hash_for_method(gogo) << shift;
2549 }
2550 if (this->results_ != NULL)
2551 {
2552 int shift = 2;
2553 for (Typed_identifier_list::const_iterator p = this->results_->begin();
2554 p != this->results_->end();
2555 ++p, ++shift)
2556 ret += p->type()->hash_for_method(gogo) << shift;
2557 }
2558 if (this->is_varargs_)
2559 ret += 1;
2560 ret <<= 4;
2561 return ret;
2562 }
2563
2564 // Get the tree for a function type.
2565
2566 tree
2567 Function_type::do_get_tree(Gogo* gogo)
2568 {
2569 tree args = NULL_TREE;
2570 tree* pp = &args;
2571
2572 if (this->receiver_ != NULL)
2573 {
2574 Type* rtype = this->receiver_->type();
2575 tree ptype = rtype->get_tree(gogo);
2576 if (ptype == error_mark_node)
2577 return error_mark_node;
2578
2579 // We always pass the address of the receiver parameter, in
2580 // order to make interface calls work with unknown types.
2581 if (rtype->points_to() == NULL)
2582 ptype = build_pointer_type(ptype);
2583
2584 *pp = tree_cons (NULL_TREE, ptype, NULL_TREE);
2585 pp = &TREE_CHAIN (*pp);
2586 }
2587
2588 if (this->parameters_ != NULL)
2589 {
2590 for (Typed_identifier_list::const_iterator p = this->parameters_->begin();
2591 p != this->parameters_->end();
2592 ++p)
2593 {
2594 tree ptype = p->type()->get_tree(gogo);
2595 if (ptype == error_mark_node)
2596 return error_mark_node;
2597 *pp = tree_cons (NULL_TREE, ptype, NULL_TREE);
2598 pp = &TREE_CHAIN (*pp);
2599 }
2600 }
2601
2602 // Varargs is handled entirely at the Go level. At the tree level,
2603 // functions are not varargs.
2604 *pp = void_list_node;
2605
2606 tree result;
2607 if (this->results_ == NULL)
2608 result = void_type_node;
2609 else if (this->results_->size() == 1)
2610 result = this->results_->begin()->type()->get_tree(gogo);
2611 else
2612 {
2613 result = make_node(RECORD_TYPE);
2614 tree field_trees = NULL_TREE;
2615 tree* pp = &field_trees;
2616 for (Typed_identifier_list::const_iterator p = this->results_->begin();
2617 p != this->results_->end();
2618 ++p)
2619 {
2620 const std::string name = (p->name().empty()
2621 ? "UNNAMED"
2622 : Gogo::unpack_hidden_name(p->name()));
2623 tree name_tree = get_identifier_with_length(name.data(),
2624 name.length());
2625 tree field_type_tree = p->type()->get_tree(gogo);
2626 if (field_type_tree == error_mark_node)
2627 return error_mark_node;
2628 tree field = build_decl(this->location_, FIELD_DECL, name_tree,
2629 field_type_tree);
2630 DECL_CONTEXT(field) = result;
2631 *pp = field;
2632 pp = &DECL_CHAIN(field);
2633 }
2634 TYPE_FIELDS(result) = field_trees;
2635 layout_type(result);
2636 }
2637
2638 if (result == error_mark_node)
2639 return error_mark_node;
2640
2641 tree fntype = build_function_type(result, args);
2642 if (fntype == error_mark_node)
2643 return fntype;
2644
2645 return build_pointer_type(fntype);
2646 }
2647
2648 // Functions are initialized to NULL.
2649
2650 tree
2651 Function_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
2652 {
2653 if (is_clear)
2654 return NULL;
2655 return fold_convert(type_tree, null_pointer_node);
2656 }
2657
2658 // The type of a function type descriptor.
2659
2660 Type*
2661 Function_type::make_function_type_descriptor_type()
2662 {
2663 static Type* ret;
2664 if (ret == NULL)
2665 {
2666 Type* tdt = Type::make_type_descriptor_type();
2667 Type* ptdt = Type::make_type_descriptor_ptr_type();
2668
2669 Type* bool_type = Type::lookup_bool_type();
2670
2671 Type* slice_type = Type::make_array_type(ptdt, NULL);
2672
2673 Struct_type* s = Type::make_builtin_struct_type(4,
2674 "", tdt,
2675 "dotdotdot", bool_type,
2676 "in", slice_type,
2677 "out", slice_type);
2678
2679 ret = Type::make_builtin_named_type("FuncType", s);
2680 }
2681
2682 return ret;
2683 }
2684
2685 // The type descriptor for a function type.
2686
2687 Expression*
2688 Function_type::do_type_descriptor(Gogo* gogo, Named_type* name)
2689 {
2690 source_location bloc = BUILTINS_LOCATION;
2691
2692 Type* ftdt = Function_type::make_function_type_descriptor_type();
2693
2694 const Struct_field_list* fields = ftdt->struct_type()->fields();
2695
2696 Expression_list* vals = new Expression_list();
2697 vals->reserve(4);
2698
2699 Struct_field_list::const_iterator p = fields->begin();
2700 gcc_assert(p->field_name() == "commonType");
2701 vals->push_back(this->type_descriptor_constructor(gogo,
2702 RUNTIME_TYPE_KIND_FUNC,
2703 name, NULL, true));
2704
2705 ++p;
2706 gcc_assert(p->field_name() == "dotdotdot");
2707 vals->push_back(Expression::make_boolean(this->is_varargs(), bloc));
2708
2709 ++p;
2710 gcc_assert(p->field_name() == "in");
2711 vals->push_back(this->type_descriptor_params(p->type(), this->receiver(),
2712 this->parameters()));
2713
2714 ++p;
2715 gcc_assert(p->field_name() == "out");
2716 vals->push_back(this->type_descriptor_params(p->type(), NULL,
2717 this->results()));
2718
2719 ++p;
2720 gcc_assert(p == fields->end());
2721
2722 return Expression::make_struct_composite_literal(ftdt, vals, bloc);
2723 }
2724
2725 // Return a composite literal for the parameters or results of a type
2726 // descriptor.
2727
2728 Expression*
2729 Function_type::type_descriptor_params(Type* params_type,
2730 const Typed_identifier* receiver,
2731 const Typed_identifier_list* params)
2732 {
2733 source_location bloc = BUILTINS_LOCATION;
2734
2735 if (receiver == NULL && params == NULL)
2736 return Expression::make_slice_composite_literal(params_type, NULL, bloc);
2737
2738 Expression_list* vals = new Expression_list();
2739 vals->reserve((params == NULL ? 0 : params->size())
2740 + (receiver != NULL ? 1 : 0));
2741
2742 if (receiver != NULL)
2743 {
2744 Type* rtype = receiver->type();
2745 // The receiver is always passed as a pointer. FIXME: Is this
2746 // right? Should that fact affect the type descriptor?
2747 if (rtype->points_to() == NULL)
2748 rtype = Type::make_pointer_type(rtype);
2749 vals->push_back(Expression::make_type_descriptor(rtype, bloc));
2750 }
2751
2752 if (params != NULL)
2753 {
2754 for (Typed_identifier_list::const_iterator p = params->begin();
2755 p != params->end();
2756 ++p)
2757 vals->push_back(Expression::make_type_descriptor(p->type(), bloc));
2758 }
2759
2760 return Expression::make_slice_composite_literal(params_type, vals, bloc);
2761 }
2762
2763 // The reflection string.
2764
2765 void
2766 Function_type::do_reflection(Gogo* gogo, std::string* ret) const
2767 {
2768 // FIXME: Turn this off until we straighten out the type of the
2769 // struct field used in a go statement which calls a method.
2770 // gcc_assert(this->receiver_ == NULL);
2771
2772 ret->append("func");
2773
2774 if (this->receiver_ != NULL)
2775 {
2776 ret->push_back('(');
2777 this->append_reflection(this->receiver_->type(), gogo, ret);
2778 ret->push_back(')');
2779 }
2780
2781 ret->push_back('(');
2782 const Typed_identifier_list* params = this->parameters();
2783 if (params != NULL)
2784 {
2785 bool is_varargs = this->is_varargs_;
2786 for (Typed_identifier_list::const_iterator p = params->begin();
2787 p != params->end();
2788 ++p)
2789 {
2790 if (p != params->begin())
2791 ret->append(", ");
2792 if (!is_varargs || p + 1 != params->end())
2793 this->append_reflection(p->type(), gogo, ret);
2794 else
2795 {
2796 ret->append("...");
2797 this->append_reflection(p->type()->array_type()->element_type(),
2798 gogo, ret);
2799 }
2800 }
2801 }
2802 ret->push_back(')');
2803
2804 const Typed_identifier_list* results = this->results();
2805 if (results != NULL && !results->empty())
2806 {
2807 if (results->size() == 1)
2808 ret->push_back(' ');
2809 else
2810 ret->append(" (");
2811 for (Typed_identifier_list::const_iterator p = results->begin();
2812 p != results->end();
2813 ++p)
2814 {
2815 if (p != results->begin())
2816 ret->append(", ");
2817 this->append_reflection(p->type(), gogo, ret);
2818 }
2819 if (results->size() > 1)
2820 ret->push_back(')');
2821 }
2822 }
2823
2824 // Mangled name.
2825
2826 void
2827 Function_type::do_mangled_name(Gogo* gogo, std::string* ret) const
2828 {
2829 ret->push_back('F');
2830
2831 if (this->receiver_ != NULL)
2832 {
2833 ret->push_back('m');
2834 this->append_mangled_name(this->receiver_->type(), gogo, ret);
2835 }
2836
2837 const Typed_identifier_list* params = this->parameters();
2838 if (params != NULL)
2839 {
2840 ret->push_back('p');
2841 for (Typed_identifier_list::const_iterator p = params->begin();
2842 p != params->end();
2843 ++p)
2844 this->append_mangled_name(p->type(), gogo, ret);
2845 if (this->is_varargs_)
2846 ret->push_back('V');
2847 ret->push_back('e');
2848 }
2849
2850 const Typed_identifier_list* results = this->results();
2851 if (results != NULL)
2852 {
2853 ret->push_back('r');
2854 for (Typed_identifier_list::const_iterator p = results->begin();
2855 p != results->end();
2856 ++p)
2857 this->append_mangled_name(p->type(), gogo, ret);
2858 ret->push_back('e');
2859 }
2860
2861 ret->push_back('e');
2862 }
2863
2864 // Export a function type.
2865
2866 void
2867 Function_type::do_export(Export* exp) const
2868 {
2869 // We don't write out the receiver. The only function types which
2870 // should have a receiver are the ones associated with explicitly
2871 // defined methods. For those the receiver type is written out by
2872 // Function::export_func.
2873
2874 exp->write_c_string("(");
2875 bool first = true;
2876 if (this->parameters_ != NULL)
2877 {
2878 bool is_varargs = this->is_varargs_;
2879 for (Typed_identifier_list::const_iterator p =
2880 this->parameters_->begin();
2881 p != this->parameters_->end();
2882 ++p)
2883 {
2884 if (first)
2885 first = false;
2886 else
2887 exp->write_c_string(", ");
2888 if (!is_varargs || p + 1 != this->parameters_->end())
2889 exp->write_type(p->type());
2890 else
2891 {
2892 exp->write_c_string("...");
2893 exp->write_type(p->type()->array_type()->element_type());
2894 }
2895 }
2896 }
2897 exp->write_c_string(")");
2898
2899 const Typed_identifier_list* results = this->results_;
2900 if (results != NULL)
2901 {
2902 exp->write_c_string(" ");
2903 if (results->size() == 1)
2904 exp->write_type(results->begin()->type());
2905 else
2906 {
2907 first = true;
2908 exp->write_c_string("(");
2909 for (Typed_identifier_list::const_iterator p = results->begin();
2910 p != results->end();
2911 ++p)
2912 {
2913 if (first)
2914 first = false;
2915 else
2916 exp->write_c_string(", ");
2917 exp->write_type(p->type());
2918 }
2919 exp->write_c_string(")");
2920 }
2921 }
2922 }
2923
2924 // Import a function type.
2925
2926 Function_type*
2927 Function_type::do_import(Import* imp)
2928 {
2929 imp->require_c_string("(");
2930 Typed_identifier_list* parameters;
2931 bool is_varargs = false;
2932 if (imp->peek_char() == ')')
2933 parameters = NULL;
2934 else
2935 {
2936 parameters = new Typed_identifier_list();
2937 while (true)
2938 {
2939 if (imp->match_c_string("..."))
2940 {
2941 imp->advance(3);
2942 is_varargs = true;
2943 }
2944
2945 Type* ptype = imp->read_type();
2946 if (is_varargs)
2947 ptype = Type::make_array_type(ptype, NULL);
2948 parameters->push_back(Typed_identifier(Import::import_marker,
2949 ptype, imp->location()));
2950 if (imp->peek_char() != ',')
2951 break;
2952 gcc_assert(!is_varargs);
2953 imp->require_c_string(", ");
2954 }
2955 }
2956 imp->require_c_string(")");
2957
2958 Typed_identifier_list* results;
2959 if (imp->peek_char() != ' ')
2960 results = NULL;
2961 else
2962 {
2963 imp->advance(1);
2964 results = new Typed_identifier_list;
2965 if (imp->peek_char() != '(')
2966 {
2967 Type* rtype = imp->read_type();
2968 results->push_back(Typed_identifier(Import::import_marker, rtype,
2969 imp->location()));
2970 }
2971 else
2972 {
2973 imp->advance(1);
2974 while (true)
2975 {
2976 Type* rtype = imp->read_type();
2977 results->push_back(Typed_identifier(Import::import_marker,
2978 rtype, imp->location()));
2979 if (imp->peek_char() != ',')
2980 break;
2981 imp->require_c_string(", ");
2982 }
2983 imp->require_c_string(")");
2984 }
2985 }
2986
2987 Function_type* ret = Type::make_function_type(NULL, parameters, results,
2988 imp->location());
2989 if (is_varargs)
2990 ret->set_is_varargs();
2991 return ret;
2992 }
2993
2994 // Make a copy of a function type without a receiver.
2995
2996 Function_type*
2997 Function_type::copy_without_receiver() const
2998 {
2999 gcc_assert(this->is_method());
3000 Function_type *ret = Type::make_function_type(NULL, this->parameters_,
3001 this->results_,
3002 this->location_);
3003 if (this->is_varargs())
3004 ret->set_is_varargs();
3005 if (this->is_builtin())
3006 ret->set_is_builtin();
3007 return ret;
3008 }
3009
3010 // Make a copy of a function type with a receiver.
3011
3012 Function_type*
3013 Function_type::copy_with_receiver(Type* receiver_type) const
3014 {
3015 gcc_assert(!this->is_method());
3016 Typed_identifier* receiver = new Typed_identifier("", receiver_type,
3017 this->location_);
3018 return Type::make_function_type(receiver, this->parameters_,
3019 this->results_, this->location_);
3020 }
3021
3022 // Make a function type.
3023
3024 Function_type*
3025 Type::make_function_type(Typed_identifier* receiver,
3026 Typed_identifier_list* parameters,
3027 Typed_identifier_list* results,
3028 source_location location)
3029 {
3030 return new Function_type(receiver, parameters, results, location);
3031 }
3032
3033 // Class Pointer_type.
3034
3035 // Traversal.
3036
3037 int
3038 Pointer_type::do_traverse(Traverse* traverse)
3039 {
3040 return Type::traverse(this->to_type_, traverse);
3041 }
3042
3043 // Hash code.
3044
3045 unsigned int
3046 Pointer_type::do_hash_for_method(Gogo* gogo) const
3047 {
3048 return this->to_type_->hash_for_method(gogo) << 4;
3049 }
3050
3051 // The tree for a pointer type.
3052
3053 tree
3054 Pointer_type::do_get_tree(Gogo* gogo)
3055 {
3056 return build_pointer_type(this->to_type_->get_tree(gogo));
3057 }
3058
3059 // Initialize a pointer type.
3060
3061 tree
3062 Pointer_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
3063 {
3064 if (is_clear)
3065 return NULL;
3066 return fold_convert(type_tree, null_pointer_node);
3067 }
3068
3069 // The type of a pointer type descriptor.
3070
3071 Type*
3072 Pointer_type::make_pointer_type_descriptor_type()
3073 {
3074 static Type* ret;
3075 if (ret == NULL)
3076 {
3077 Type* tdt = Type::make_type_descriptor_type();
3078 Type* ptdt = Type::make_type_descriptor_ptr_type();
3079
3080 Struct_type* s = Type::make_builtin_struct_type(2,
3081 "", tdt,
3082 "elem", ptdt);
3083
3084 ret = Type::make_builtin_named_type("PtrType", s);
3085 }
3086
3087 return ret;
3088 }
3089
3090 // The type descriptor for a pointer type.
3091
3092 Expression*
3093 Pointer_type::do_type_descriptor(Gogo* gogo, Named_type* name)
3094 {
3095 if (this->is_unsafe_pointer_type())
3096 {
3097 gcc_assert(name != NULL);
3098 return this->plain_type_descriptor(gogo,
3099 RUNTIME_TYPE_KIND_UNSAFE_POINTER,
3100 name);
3101 }
3102 else
3103 {
3104 source_location bloc = BUILTINS_LOCATION;
3105
3106 const Methods* methods;
3107 Type* deref = this->points_to();
3108 if (deref->named_type() != NULL)
3109 methods = deref->named_type()->methods();
3110 else if (deref->struct_type() != NULL)
3111 methods = deref->struct_type()->methods();
3112 else
3113 methods = NULL;
3114
3115 Type* ptr_tdt = Pointer_type::make_pointer_type_descriptor_type();
3116
3117 const Struct_field_list* fields = ptr_tdt->struct_type()->fields();
3118
3119 Expression_list* vals = new Expression_list();
3120 vals->reserve(2);
3121
3122 Struct_field_list::const_iterator p = fields->begin();
3123 gcc_assert(p->field_name() == "commonType");
3124 vals->push_back(this->type_descriptor_constructor(gogo,
3125 RUNTIME_TYPE_KIND_PTR,
3126 name, methods, false));
3127
3128 ++p;
3129 gcc_assert(p->field_name() == "elem");
3130 vals->push_back(Expression::make_type_descriptor(deref, bloc));
3131
3132 return Expression::make_struct_composite_literal(ptr_tdt, vals, bloc);
3133 }
3134 }
3135
3136 // Reflection string.
3137
3138 void
3139 Pointer_type::do_reflection(Gogo* gogo, std::string* ret) const
3140 {
3141 ret->push_back('*');
3142 this->append_reflection(this->to_type_, gogo, ret);
3143 }
3144
3145 // Mangled name.
3146
3147 void
3148 Pointer_type::do_mangled_name(Gogo* gogo, std::string* ret) const
3149 {
3150 ret->push_back('p');
3151 this->append_mangled_name(this->to_type_, gogo, ret);
3152 }
3153
3154 // Export.
3155
3156 void
3157 Pointer_type::do_export(Export* exp) const
3158 {
3159 exp->write_c_string("*");
3160 if (this->is_unsafe_pointer_type())
3161 exp->write_c_string("any");
3162 else
3163 exp->write_type(this->to_type_);
3164 }
3165
3166 // Import.
3167
3168 Pointer_type*
3169 Pointer_type::do_import(Import* imp)
3170 {
3171 imp->require_c_string("*");
3172 if (imp->match_c_string("any"))
3173 {
3174 imp->advance(3);
3175 return Type::make_pointer_type(Type::make_void_type());
3176 }
3177 Type* to = imp->read_type();
3178 return Type::make_pointer_type(to);
3179 }
3180
3181 // Make a pointer type.
3182
3183 Pointer_type*
3184 Type::make_pointer_type(Type* to_type)
3185 {
3186 typedef Unordered_map(Type*, Pointer_type*) Hashtable;
3187 static Hashtable pointer_types;
3188 Hashtable::const_iterator p = pointer_types.find(to_type);
3189 if (p != pointer_types.end())
3190 return p->second;
3191 Pointer_type* ret = new Pointer_type(to_type);
3192 pointer_types[to_type] = ret;
3193 return ret;
3194 }
3195
3196 // The nil type. We use a special type for nil because it is not the
3197 // same as any other type. In C term nil has type void*, but there is
3198 // no such type in Go.
3199
3200 class Nil_type : public Type
3201 {
3202 public:
3203 Nil_type()
3204 : Type(TYPE_NIL)
3205 { }
3206
3207 protected:
3208 tree
3209 do_get_tree(Gogo*)
3210 { return ptr_type_node; }
3211
3212 tree
3213 do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
3214 { return is_clear ? NULL : fold_convert(type_tree, null_pointer_node); }
3215
3216 Expression*
3217 do_type_descriptor(Gogo*, Named_type*)
3218 { gcc_unreachable(); }
3219
3220 void
3221 do_reflection(Gogo*, std::string*) const
3222 { gcc_unreachable(); }
3223
3224 void
3225 do_mangled_name(Gogo*, std::string* ret) const
3226 { ret->push_back('n'); }
3227 };
3228
3229 // Make the nil type.
3230
3231 Type*
3232 Type::make_nil_type()
3233 {
3234 static Nil_type singleton_nil_type;
3235 return &singleton_nil_type;
3236 }
3237
3238 // The type of a function call which returns multiple values. This is
3239 // really a struct, but we don't want to confuse a function call which
3240 // returns a struct with a function call which returns multiple
3241 // values.
3242
3243 class Call_multiple_result_type : public Type
3244 {
3245 public:
3246 Call_multiple_result_type(Call_expression* call)
3247 : Type(TYPE_CALL_MULTIPLE_RESULT),
3248 call_(call)
3249 { }
3250
3251 protected:
3252 bool
3253 do_has_pointer() const
3254 { gcc_unreachable(); }
3255
3256 tree
3257 do_get_tree(Gogo*);
3258
3259 tree
3260 do_get_init_tree(Gogo*, tree, bool)
3261 { gcc_unreachable(); }
3262
3263 Expression*
3264 do_type_descriptor(Gogo*, Named_type*)
3265 { gcc_unreachable(); }
3266
3267 void
3268 do_reflection(Gogo*, std::string*) const
3269 { gcc_unreachable(); }
3270
3271 void
3272 do_mangled_name(Gogo*, std::string*) const
3273 { gcc_unreachable(); }
3274
3275 private:
3276 // The expression being called.
3277 Call_expression* call_;
3278 };
3279
3280 // Return the tree for a call result.
3281
3282 tree
3283 Call_multiple_result_type::do_get_tree(Gogo* gogo)
3284 {
3285 Function_type* fntype = this->call_->get_function_type();
3286 gcc_assert(fntype != NULL);
3287 const Typed_identifier_list* results = fntype->results();
3288 gcc_assert(results != NULL && results->size() > 1);
3289
3290 Struct_field_list* sfl = new Struct_field_list;
3291 for (Typed_identifier_list::const_iterator p = results->begin();
3292 p != results->end();
3293 ++p)
3294 {
3295 const std::string name = ((p->name().empty()
3296 || p->name() == Import::import_marker)
3297 ? "UNNAMED"
3298 : p->name());
3299 sfl->push_back(Struct_field(Typed_identifier(name, p->type(),
3300 this->call_->location())));
3301 }
3302 return Type::make_struct_type(sfl, this->call_->location())->get_tree(gogo);
3303 }
3304
3305 // Make a call result type.
3306
3307 Type*
3308 Type::make_call_multiple_result_type(Call_expression* call)
3309 {
3310 return new Call_multiple_result_type(call);
3311 }
3312
3313 // Class Struct_field.
3314
3315 // Get the name of a field.
3316
3317 const std::string&
3318 Struct_field::field_name() const
3319 {
3320 const std::string& name(this->typed_identifier_.name());
3321 if (!name.empty())
3322 return name;
3323 else
3324 {
3325 // This is called during parsing, before anything is lowered, so
3326 // we have to be pretty careful to avoid dereferencing an
3327 // unknown type name.
3328 Type* t = this->typed_identifier_.type();
3329 Type* dt = t;
3330 if (t->classification() == Type::TYPE_POINTER)
3331 {
3332 // Very ugly.
3333 Pointer_type* ptype = static_cast<Pointer_type*>(t);
3334 dt = ptype->points_to();
3335 }
3336 if (dt->forward_declaration_type() != NULL)
3337 return dt->forward_declaration_type()->name();
3338 else if (dt->named_type() != NULL)
3339 return dt->named_type()->name();
3340 else if (t->is_error_type() || dt->is_error_type())
3341 {
3342 static const std::string error_string = "*error*";
3343 return error_string;
3344 }
3345 else
3346 {
3347 // Avoid crashing in the erroneous case where T is named but
3348 // DT is not.
3349 gcc_assert(t != dt);
3350 if (t->forward_declaration_type() != NULL)
3351 return t->forward_declaration_type()->name();
3352 else if (t->named_type() != NULL)
3353 return t->named_type()->name();
3354 else
3355 gcc_unreachable();
3356 }
3357 }
3358 }
3359
3360 // Class Struct_type.
3361
3362 // Traversal.
3363
3364 int
3365 Struct_type::do_traverse(Traverse* traverse)
3366 {
3367 Struct_field_list* fields = this->fields_;
3368 if (fields != NULL)
3369 {
3370 for (Struct_field_list::iterator p = fields->begin();
3371 p != fields->end();
3372 ++p)
3373 {
3374 if (Type::traverse(p->type(), traverse) == TRAVERSE_EXIT)
3375 return TRAVERSE_EXIT;
3376 }
3377 }
3378 return TRAVERSE_CONTINUE;
3379 }
3380
3381 // Verify that the struct type is complete and valid.
3382
3383 bool
3384 Struct_type::do_verify()
3385 {
3386 Struct_field_list* fields = this->fields_;
3387 if (fields == NULL)
3388 return true;
3389 bool ret = true;
3390 for (Struct_field_list::iterator p = fields->begin();
3391 p != fields->end();
3392 ++p)
3393 {
3394 Type* t = p->type();
3395 if (t->is_undefined())
3396 {
3397 error_at(p->location(), "struct field type is incomplete");
3398 p->set_type(Type::make_error_type());
3399 ret = false;
3400 }
3401 else if (p->is_anonymous())
3402 {
3403 if (t->named_type() != NULL && t->points_to() != NULL)
3404 {
3405 error_at(p->location(), "embedded type may not be a pointer");
3406 p->set_type(Type::make_error_type());
3407 return false;
3408 }
3409 }
3410 }
3411 return ret;
3412 }
3413
3414 // Whether this contains a pointer.
3415
3416 bool
3417 Struct_type::do_has_pointer() const
3418 {
3419 const Struct_field_list* fields = this->fields();
3420 if (fields == NULL)
3421 return false;
3422 for (Struct_field_list::const_iterator p = fields->begin();
3423 p != fields->end();
3424 ++p)
3425 {
3426 if (p->type()->has_pointer())
3427 return true;
3428 }
3429 return false;
3430 }
3431
3432 // Whether this type is identical to T.
3433
3434 bool
3435 Struct_type::is_identical(const Struct_type* t,
3436 bool errors_are_identical) const
3437 {
3438 const Struct_field_list* fields1 = this->fields();
3439 const Struct_field_list* fields2 = t->fields();
3440 if (fields1 == NULL || fields2 == NULL)
3441 return fields1 == fields2;
3442 Struct_field_list::const_iterator pf2 = fields2->begin();
3443 for (Struct_field_list::const_iterator pf1 = fields1->begin();
3444 pf1 != fields1->end();
3445 ++pf1, ++pf2)
3446 {
3447 if (pf2 == fields2->end())
3448 return false;
3449 if (pf1->field_name() != pf2->field_name())
3450 return false;
3451 if (pf1->is_anonymous() != pf2->is_anonymous()
3452 || !Type::are_identical(pf1->type(), pf2->type(),
3453 errors_are_identical, NULL))
3454 return false;
3455 if (!pf1->has_tag())
3456 {
3457 if (pf2->has_tag())
3458 return false;
3459 }
3460 else
3461 {
3462 if (!pf2->has_tag())
3463 return false;
3464 if (pf1->tag() != pf2->tag())
3465 return false;
3466 }
3467 }
3468 if (pf2 != fields2->end())
3469 return false;
3470 return true;
3471 }
3472
3473 // Whether this struct type has any hidden fields.
3474
3475 bool
3476 Struct_type::struct_has_hidden_fields(const Named_type* within,
3477 std::string* reason) const
3478 {
3479 const Struct_field_list* fields = this->fields();
3480 if (fields == NULL)
3481 return false;
3482 const Package* within_package = (within == NULL
3483 ? NULL
3484 : within->named_object()->package());
3485 for (Struct_field_list::const_iterator pf = fields->begin();
3486 pf != fields->end();
3487 ++pf)
3488 {
3489 if (within_package != NULL
3490 && !pf->is_anonymous()
3491 && Gogo::is_hidden_name(pf->field_name()))
3492 {
3493 if (reason != NULL)
3494 {
3495 std::string within_name = within->named_object()->message_name();
3496 std::string name = Gogo::message_name(pf->field_name());
3497 size_t bufsize = 200 + within_name.length() + name.length();
3498 char* buf = new char[bufsize];
3499 snprintf(buf, bufsize,
3500 _("implicit assignment of %s%s%s hidden field %s%s%s"),
3501 open_quote, within_name.c_str(), close_quote,
3502 open_quote, name.c_str(), close_quote);
3503 reason->assign(buf);
3504 delete[] buf;
3505 }
3506 return true;
3507 }
3508
3509 if (pf->type()->has_hidden_fields(within, reason))
3510 return true;
3511 }
3512
3513 return false;
3514 }
3515
3516 // Hash code.
3517
3518 unsigned int
3519 Struct_type::do_hash_for_method(Gogo* gogo) const
3520 {
3521 unsigned int ret = 0;
3522 if (this->fields() != NULL)
3523 {
3524 for (Struct_field_list::const_iterator pf = this->fields()->begin();
3525 pf != this->fields()->end();
3526 ++pf)
3527 ret = (ret << 1) + pf->type()->hash_for_method(gogo);
3528 }
3529 return ret <<= 2;
3530 }
3531
3532 // Find the local field NAME.
3533
3534 const Struct_field*
3535 Struct_type::find_local_field(const std::string& name,
3536 unsigned int *pindex) const
3537 {
3538 const Struct_field_list* fields = this->fields_;
3539 if (fields == NULL)
3540 return NULL;
3541 unsigned int i = 0;
3542 for (Struct_field_list::const_iterator pf = fields->begin();
3543 pf != fields->end();
3544 ++pf, ++i)
3545 {
3546 if (pf->field_name() == name)
3547 {
3548 if (pindex != NULL)
3549 *pindex = i;
3550 return &*pf;
3551 }
3552 }
3553 return NULL;
3554 }
3555
3556 // Return an expression for field NAME in STRUCT_EXPR, or NULL.
3557
3558 Field_reference_expression*
3559 Struct_type::field_reference(Expression* struct_expr, const std::string& name,
3560 source_location location) const
3561 {
3562 unsigned int depth;
3563 return this->field_reference_depth(struct_expr, name, location, &depth);
3564 }
3565
3566 // Return an expression for a field, along with the depth at which it
3567 // was found.
3568
3569 Field_reference_expression*
3570 Struct_type::field_reference_depth(Expression* struct_expr,
3571 const std::string& name,
3572 source_location location,
3573 unsigned int* depth) const
3574 {
3575 const Struct_field_list* fields = this->fields_;
3576 if (fields == NULL)
3577 return NULL;
3578
3579 // Look for a field with this name.
3580 unsigned int i = 0;
3581 for (Struct_field_list::const_iterator pf = fields->begin();
3582 pf != fields->end();
3583 ++pf, ++i)
3584 {
3585 if (pf->field_name() == name)
3586 {
3587 *depth = 0;
3588 return Expression::make_field_reference(struct_expr, i, location);
3589 }
3590 }
3591
3592 // Look for an anonymous field which contains a field with this
3593 // name.
3594 unsigned int found_depth = 0;
3595 Field_reference_expression* ret = NULL;
3596 i = 0;
3597 for (Struct_field_list::const_iterator pf = fields->begin();
3598 pf != fields->end();
3599 ++pf, ++i)
3600 {
3601 if (!pf->is_anonymous())
3602 continue;
3603
3604 Struct_type* st = pf->type()->deref()->struct_type();
3605 if (st == NULL)
3606 continue;
3607
3608 // Look for a reference using a NULL struct expression. If we
3609 // find one, fill in the struct expression with a reference to
3610 // this field.
3611 unsigned int subdepth;
3612 Field_reference_expression* sub = st->field_reference_depth(NULL, name,
3613 location,
3614 &subdepth);
3615 if (sub == NULL)
3616 continue;
3617
3618 if (ret == NULL || subdepth < found_depth)
3619 {
3620 if (ret != NULL)
3621 delete ret;
3622 ret = sub;
3623 found_depth = subdepth;
3624 Expression* here = Expression::make_field_reference(struct_expr, i,
3625 location);
3626 if (pf->type()->points_to() != NULL)
3627 here = Expression::make_unary(OPERATOR_MULT, here, location);
3628 while (sub->expr() != NULL)
3629 {
3630 sub = sub->expr()->deref()->field_reference_expression();
3631 gcc_assert(sub != NULL);
3632 }
3633 sub->set_struct_expression(here);
3634 }
3635 else if (subdepth > found_depth)
3636 delete sub;
3637 else
3638 {
3639 // We do not handle ambiguity here--it should be handled by
3640 // Type::bind_field_or_method.
3641 delete sub;
3642 found_depth = 0;
3643 ret = NULL;
3644 }
3645 }
3646
3647 if (ret != NULL)
3648 *depth = found_depth + 1;
3649
3650 return ret;
3651 }
3652
3653 // Return the total number of fields, including embedded fields.
3654
3655 unsigned int
3656 Struct_type::total_field_count() const
3657 {
3658 if (this->fields_ == NULL)
3659 return 0;
3660 unsigned int ret = 0;
3661 for (Struct_field_list::const_iterator pf = this->fields_->begin();
3662 pf != this->fields_->end();
3663 ++pf)
3664 {
3665 if (!pf->is_anonymous() || pf->type()->deref()->struct_type() == NULL)
3666 ++ret;
3667 else
3668 ret += pf->type()->struct_type()->total_field_count();
3669 }
3670 return ret;
3671 }
3672
3673 // Return whether NAME is an unexported field, for better error reporting.
3674
3675 bool
3676 Struct_type::is_unexported_local_field(Gogo* gogo,
3677 const std::string& name) const
3678 {
3679 const Struct_field_list* fields = this->fields_;
3680 if (fields != NULL)
3681 {
3682 for (Struct_field_list::const_iterator pf = fields->begin();
3683 pf != fields->end();
3684 ++pf)
3685 {
3686 const std::string& field_name(pf->field_name());
3687 if (Gogo::is_hidden_name(field_name)
3688 && name == Gogo::unpack_hidden_name(field_name)
3689 && gogo->pack_hidden_name(name, false) != field_name)
3690 return true;
3691 }
3692 }
3693 return false;
3694 }
3695
3696 // Finalize the methods of an unnamed struct.
3697
3698 void
3699 Struct_type::finalize_methods(Gogo* gogo)
3700 {
3701 Type::finalize_methods(gogo, this, this->location_, &this->all_methods_);
3702 }
3703
3704 // Return the method NAME, or NULL if there isn't one or if it is
3705 // ambiguous. Set *IS_AMBIGUOUS if the method exists but is
3706 // ambiguous.
3707
3708 Method*
3709 Struct_type::method_function(const std::string& name, bool* is_ambiguous) const
3710 {
3711 return Type::method_function(this->all_methods_, name, is_ambiguous);
3712 }
3713
3714 // Get the tree for a struct type.
3715
3716 tree
3717 Struct_type::do_get_tree(Gogo* gogo)
3718 {
3719 tree type = make_node(RECORD_TYPE);
3720 return this->fill_in_tree(gogo, type);
3721 }
3722
3723 // Fill in the fields for a struct type.
3724
3725 tree
3726 Struct_type::fill_in_tree(Gogo* gogo, tree type)
3727 {
3728 tree field_trees = NULL_TREE;
3729 tree* pp = &field_trees;
3730 for (Struct_field_list::const_iterator p = this->fields_->begin();
3731 p != this->fields_->end();
3732 ++p)
3733 {
3734 std::string name = Gogo::unpack_hidden_name(p->field_name());
3735 tree name_tree = get_identifier_with_length(name.data(), name.length());
3736 tree field_type_tree = p->type()->get_tree(gogo);
3737 if (field_type_tree == error_mark_node)
3738 return error_mark_node;
3739 tree field = build_decl(p->location(), FIELD_DECL, name_tree,
3740 field_type_tree);
3741 DECL_CONTEXT(field) = type;
3742 *pp = field;
3743 pp = &DECL_CHAIN(field);
3744 }
3745
3746 TYPE_FIELDS(type) = field_trees;
3747
3748 layout_type(type);
3749
3750 return type;
3751 }
3752
3753 // Initialize struct fields.
3754
3755 tree
3756 Struct_type::do_get_init_tree(Gogo* gogo, tree type_tree, bool is_clear)
3757 {
3758 if (this->fields_ == NULL || this->fields_->empty())
3759 {
3760 if (is_clear)
3761 return NULL;
3762 else
3763 {
3764 tree ret = build_constructor(type_tree,
3765 VEC_alloc(constructor_elt, gc, 0));
3766 TREE_CONSTANT(ret) = 1;
3767 return ret;
3768 }
3769 }
3770
3771 bool is_constant = true;
3772 bool any_fields_set = false;
3773 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc,
3774 this->fields_->size());
3775
3776 tree field = TYPE_FIELDS(type_tree);
3777 for (Struct_field_list::const_iterator p = this->fields_->begin();
3778 p != this->fields_->end();
3779 ++p, field = DECL_CHAIN(field))
3780 {
3781 tree value = p->type()->get_init_tree(gogo, is_clear);
3782 if (value == error_mark_node)
3783 return error_mark_node;
3784 gcc_assert(field != NULL_TREE);
3785 if (value != NULL)
3786 {
3787 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
3788 elt->index = field;
3789 elt->value = value;
3790 any_fields_set = true;
3791 if (!TREE_CONSTANT(value))
3792 is_constant = false;
3793 }
3794 }
3795 gcc_assert(field == NULL_TREE);
3796
3797 if (!any_fields_set)
3798 {
3799 gcc_assert(is_clear);
3800 VEC_free(constructor_elt, gc, init);
3801 return NULL;
3802 }
3803
3804 tree ret = build_constructor(type_tree, init);
3805 if (is_constant)
3806 TREE_CONSTANT(ret) = 1;
3807 return ret;
3808 }
3809
3810 // The type of a struct type descriptor.
3811
3812 Type*
3813 Struct_type::make_struct_type_descriptor_type()
3814 {
3815 static Type* ret;
3816 if (ret == NULL)
3817 {
3818 Type* tdt = Type::make_type_descriptor_type();
3819 Type* ptdt = Type::make_type_descriptor_ptr_type();
3820
3821 Type* uintptr_type = Type::lookup_integer_type("uintptr");
3822 Type* string_type = Type::lookup_string_type();
3823 Type* pointer_string_type = Type::make_pointer_type(string_type);
3824
3825 Struct_type* sf =
3826 Type::make_builtin_struct_type(5,
3827 "name", pointer_string_type,
3828 "pkgPath", pointer_string_type,
3829 "typ", ptdt,
3830 "tag", pointer_string_type,
3831 "offset", uintptr_type);
3832 Type* nsf = Type::make_builtin_named_type("structField", sf);
3833
3834 Type* slice_type = Type::make_array_type(nsf, NULL);
3835
3836 Struct_type* s = Type::make_builtin_struct_type(2,
3837 "", tdt,
3838 "fields", slice_type);
3839
3840 ret = Type::make_builtin_named_type("StructType", s);
3841 }
3842
3843 return ret;
3844 }
3845
3846 // Build a type descriptor for a struct type.
3847
3848 Expression*
3849 Struct_type::do_type_descriptor(Gogo* gogo, Named_type* name)
3850 {
3851 source_location bloc = BUILTINS_LOCATION;
3852
3853 Type* stdt = Struct_type::make_struct_type_descriptor_type();
3854
3855 const Struct_field_list* fields = stdt->struct_type()->fields();
3856
3857 Expression_list* vals = new Expression_list();
3858 vals->reserve(2);
3859
3860 const Methods* methods = this->methods();
3861 // A named struct should not have methods--the methods should attach
3862 // to the named type.
3863 gcc_assert(methods == NULL || name == NULL);
3864
3865 Struct_field_list::const_iterator ps = fields->begin();
3866 gcc_assert(ps->field_name() == "commonType");
3867 vals->push_back(this->type_descriptor_constructor(gogo,
3868 RUNTIME_TYPE_KIND_STRUCT,
3869 name, methods, true));
3870
3871 ++ps;
3872 gcc_assert(ps->field_name() == "fields");
3873
3874 Expression_list* elements = new Expression_list();
3875 elements->reserve(this->fields_->size());
3876 Type* element_type = ps->type()->array_type()->element_type();
3877 for (Struct_field_list::const_iterator pf = this->fields_->begin();
3878 pf != this->fields_->end();
3879 ++pf)
3880 {
3881 const Struct_field_list* f = element_type->struct_type()->fields();
3882
3883 Expression_list* fvals = new Expression_list();
3884 fvals->reserve(5);
3885
3886 Struct_field_list::const_iterator q = f->begin();
3887 gcc_assert(q->field_name() == "name");
3888 if (pf->is_anonymous())
3889 fvals->push_back(Expression::make_nil(bloc));
3890 else
3891 {
3892 std::string n = Gogo::unpack_hidden_name(pf->field_name());
3893 Expression* s = Expression::make_string(n, bloc);
3894 fvals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
3895 }
3896
3897 ++q;
3898 gcc_assert(q->field_name() == "pkgPath");
3899 if (!Gogo::is_hidden_name(pf->field_name()))
3900 fvals->push_back(Expression::make_nil(bloc));
3901 else
3902 {
3903 std::string n = Gogo::hidden_name_prefix(pf->field_name());
3904 Expression* s = Expression::make_string(n, bloc);
3905 fvals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
3906 }
3907
3908 ++q;
3909 gcc_assert(q->field_name() == "typ");
3910 fvals->push_back(Expression::make_type_descriptor(pf->type(), bloc));
3911
3912 ++q;
3913 gcc_assert(q->field_name() == "tag");
3914 if (!pf->has_tag())
3915 fvals->push_back(Expression::make_nil(bloc));
3916 else
3917 {
3918 Expression* s = Expression::make_string(pf->tag(), bloc);
3919 fvals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
3920 }
3921
3922 ++q;
3923 gcc_assert(q->field_name() == "offset");
3924 fvals->push_back(Expression::make_struct_field_offset(this, &*pf));
3925
3926 Expression* v = Expression::make_struct_composite_literal(element_type,
3927 fvals, bloc);
3928 elements->push_back(v);
3929 }
3930
3931 vals->push_back(Expression::make_slice_composite_literal(ps->type(),
3932 elements, bloc));
3933
3934 return Expression::make_struct_composite_literal(stdt, vals, bloc);
3935 }
3936
3937 // Reflection string.
3938
3939 void
3940 Struct_type::do_reflection(Gogo* gogo, std::string* ret) const
3941 {
3942 ret->append("struct { ");
3943
3944 for (Struct_field_list::const_iterator p = this->fields_->begin();
3945 p != this->fields_->end();
3946 ++p)
3947 {
3948 if (p != this->fields_->begin())
3949 ret->append("; ");
3950 if (p->is_anonymous())
3951 ret->push_back('?');
3952 else
3953 ret->append(Gogo::unpack_hidden_name(p->field_name()));
3954 ret->push_back(' ');
3955 this->append_reflection(p->type(), gogo, ret);
3956
3957 if (p->has_tag())
3958 {
3959 const std::string& tag(p->tag());
3960 ret->append(" \"");
3961 for (std::string::const_iterator p = tag.begin();
3962 p != tag.end();
3963 ++p)
3964 {
3965 if (*p == '\0')
3966 ret->append("\\x00");
3967 else if (*p == '\n')
3968 ret->append("\\n");
3969 else if (*p == '\t')
3970 ret->append("\\t");
3971 else if (*p == '"')
3972 ret->append("\\\"");
3973 else if (*p == '\\')
3974 ret->append("\\\\");
3975 else
3976 ret->push_back(*p);
3977 }
3978 ret->push_back('"');
3979 }
3980 }
3981
3982 ret->append(" }");
3983 }
3984
3985 // Mangled name.
3986
3987 void
3988 Struct_type::do_mangled_name(Gogo* gogo, std::string* ret) const
3989 {
3990 ret->push_back('S');
3991
3992 const Struct_field_list* fields = this->fields_;
3993 if (fields != NULL)
3994 {
3995 for (Struct_field_list::const_iterator p = fields->begin();
3996 p != fields->end();
3997 ++p)
3998 {
3999 if (p->is_anonymous())
4000 ret->append("0_");
4001 else
4002 {
4003 std::string n = Gogo::unpack_hidden_name(p->field_name());
4004 char buf[20];
4005 snprintf(buf, sizeof buf, "%u_",
4006 static_cast<unsigned int>(n.length()));
4007 ret->append(buf);
4008 ret->append(n);
4009 }
4010 this->append_mangled_name(p->type(), gogo, ret);
4011 if (p->has_tag())
4012 {
4013 const std::string& tag(p->tag());
4014 std::string out;
4015 for (std::string::const_iterator p = tag.begin();
4016 p != tag.end();
4017 ++p)
4018 {
4019 if (ISALNUM(*p) || *p == '_')
4020 out.push_back(*p);
4021 else
4022 {
4023 char buf[20];
4024 snprintf(buf, sizeof buf, ".%x.",
4025 static_cast<unsigned int>(*p));
4026 out.append(buf);
4027 }
4028 }
4029 char buf[20];
4030 snprintf(buf, sizeof buf, "T%u_",
4031 static_cast<unsigned int>(out.length()));
4032 ret->append(buf);
4033 ret->append(out);
4034 }
4035 }
4036 }
4037
4038 ret->push_back('e');
4039 }
4040
4041 // Export.
4042
4043 void
4044 Struct_type::do_export(Export* exp) const
4045 {
4046 exp->write_c_string("struct { ");
4047 const Struct_field_list* fields = this->fields_;
4048 gcc_assert(fields != NULL);
4049 for (Struct_field_list::const_iterator p = fields->begin();
4050 p != fields->end();
4051 ++p)
4052 {
4053 if (p->is_anonymous())
4054 exp->write_string("? ");
4055 else
4056 {
4057 exp->write_string(p->field_name());
4058 exp->write_c_string(" ");
4059 }
4060 exp->write_type(p->type());
4061
4062 if (p->has_tag())
4063 {
4064 exp->write_c_string(" ");
4065 Expression* expr = Expression::make_string(p->tag(),
4066 BUILTINS_LOCATION);
4067 expr->export_expression(exp);
4068 delete expr;
4069 }
4070
4071 exp->write_c_string("; ");
4072 }
4073 exp->write_c_string("}");
4074 }
4075
4076 // Import.
4077
4078 Struct_type*
4079 Struct_type::do_import(Import* imp)
4080 {
4081 imp->require_c_string("struct { ");
4082 Struct_field_list* fields = new Struct_field_list;
4083 if (imp->peek_char() != '}')
4084 {
4085 while (true)
4086 {
4087 std::string name;
4088 if (imp->match_c_string("? "))
4089 imp->advance(2);
4090 else
4091 {
4092 name = imp->read_identifier();
4093 imp->require_c_string(" ");
4094 }
4095 Type* ftype = imp->read_type();
4096
4097 Struct_field sf(Typed_identifier(name, ftype, imp->location()));
4098
4099 if (imp->peek_char() == ' ')
4100 {
4101 imp->advance(1);
4102 Expression* expr = Expression::import_expression(imp);
4103 String_expression* sexpr = expr->string_expression();
4104 gcc_assert(sexpr != NULL);
4105 sf.set_tag(sexpr->val());
4106 delete sexpr;
4107 }
4108
4109 imp->require_c_string("; ");
4110 fields->push_back(sf);
4111 if (imp->peek_char() == '}')
4112 break;
4113 }
4114 }
4115 imp->require_c_string("}");
4116
4117 return Type::make_struct_type(fields, imp->location());
4118 }
4119
4120 // Make a struct type.
4121
4122 Struct_type*
4123 Type::make_struct_type(Struct_field_list* fields,
4124 source_location location)
4125 {
4126 return new Struct_type(fields, location);
4127 }
4128
4129 // Class Array_type.
4130
4131 // Whether two array types are identical.
4132
4133 bool
4134 Array_type::is_identical(const Array_type* t, bool errors_are_identical) const
4135 {
4136 if (!Type::are_identical(this->element_type(), t->element_type(),
4137 errors_are_identical, NULL))
4138 return false;
4139
4140 Expression* l1 = this->length();
4141 Expression* l2 = t->length();
4142
4143 // Slices of the same element type are identical.
4144 if (l1 == NULL && l2 == NULL)
4145 return true;
4146
4147 // Arrays of the same element type are identical if they have the
4148 // same length.
4149 if (l1 != NULL && l2 != NULL)
4150 {
4151 if (l1 == l2)
4152 return true;
4153
4154 // Try to determine the lengths. If we can't, assume the arrays
4155 // are not identical.
4156 bool ret = false;
4157 mpz_t v1;
4158 mpz_init(v1);
4159 Type* type1;
4160 mpz_t v2;
4161 mpz_init(v2);
4162 Type* type2;
4163 if (l1->integer_constant_value(true, v1, &type1)
4164 && l2->integer_constant_value(true, v2, &type2))
4165 ret = mpz_cmp(v1, v2) == 0;
4166 mpz_clear(v1);
4167 mpz_clear(v2);
4168 return ret;
4169 }
4170
4171 // Otherwise the arrays are not identical.
4172 return false;
4173 }
4174
4175 // Traversal.
4176
4177 int
4178 Array_type::do_traverse(Traverse* traverse)
4179 {
4180 if (Type::traverse(this->element_type_, traverse) == TRAVERSE_EXIT)
4181 return TRAVERSE_EXIT;
4182 if (this->length_ != NULL
4183 && Expression::traverse(&this->length_, traverse) == TRAVERSE_EXIT)
4184 return TRAVERSE_EXIT;
4185 return TRAVERSE_CONTINUE;
4186 }
4187
4188 // Check that the length is valid.
4189
4190 bool
4191 Array_type::verify_length()
4192 {
4193 if (this->length_ == NULL)
4194 return true;
4195 if (!this->length_->is_constant())
4196 {
4197 error_at(this->length_->location(), "array bound is not constant");
4198 return false;
4199 }
4200
4201 mpz_t val;
4202
4203 Type* t = this->length_->type();
4204 if (t->integer_type() != NULL)
4205 {
4206 Type* vt;
4207 mpz_init(val);
4208 if (!this->length_->integer_constant_value(true, val, &vt))
4209 {
4210 error_at(this->length_->location(),
4211 "array bound is not constant");
4212 mpz_clear(val);
4213 return false;
4214 }
4215 }
4216 else if (t->float_type() != NULL)
4217 {
4218 Type* vt;
4219 mpfr_t fval;
4220 mpfr_init(fval);
4221 if (!this->length_->float_constant_value(fval, &vt))
4222 {
4223 error_at(this->length_->location(),
4224 "array bound is not constant");
4225 mpfr_clear(fval);
4226 return false;
4227 }
4228 if (!mpfr_integer_p(fval))
4229 {
4230 error_at(this->length_->location(),
4231 "array bound truncated to integer");
4232 mpfr_clear(fval);
4233 return false;
4234 }
4235 mpz_init(val);
4236 mpfr_get_z(val, fval, GMP_RNDN);
4237 mpfr_clear(fval);
4238 }
4239 else
4240 {
4241 if (!t->is_error_type())
4242 error_at(this->length_->location(), "array bound is not numeric");
4243 return false;
4244 }
4245
4246 if (mpz_sgn(val) < 0)
4247 {
4248 error_at(this->length_->location(), "negative array bound");
4249 mpz_clear(val);
4250 return false;
4251 }
4252
4253 Type* int_type = Type::lookup_integer_type("int");
4254 int tbits = int_type->integer_type()->bits();
4255 int vbits = mpz_sizeinbase(val, 2);
4256 if (vbits + 1 > tbits)
4257 {
4258 error_at(this->length_->location(), "array bound overflows");
4259 mpz_clear(val);
4260 return false;
4261 }
4262
4263 mpz_clear(val);
4264
4265 return true;
4266 }
4267
4268 // Verify the type.
4269
4270 bool
4271 Array_type::do_verify()
4272 {
4273 if (!this->verify_length())
4274 {
4275 this->length_ = Expression::make_error(this->length_->location());
4276 return false;
4277 }
4278 return true;
4279 }
4280
4281 // Array type hash code.
4282
4283 unsigned int
4284 Array_type::do_hash_for_method(Gogo* gogo) const
4285 {
4286 // There is no very convenient way to get a hash code for the
4287 // length.
4288 return this->element_type_->hash_for_method(gogo) + 1;
4289 }
4290
4291 // See if the expression passed to make is suitable. The first
4292 // argument is required, and gives the length. An optional second
4293 // argument is permitted for the capacity.
4294
4295 bool
4296 Array_type::do_check_make_expression(Expression_list* args,
4297 source_location location)
4298 {
4299 gcc_assert(this->length_ == NULL);
4300 if (args == NULL || args->empty())
4301 {
4302 error_at(location, "length required when allocating a slice");
4303 return false;
4304 }
4305 else if (args->size() > 2)
4306 {
4307 error_at(location, "too many expressions passed to make");
4308 return false;
4309 }
4310 else
4311 {
4312 if (!Type::check_int_value(args->front(),
4313 _("bad length when making slice"), location))
4314 return false;
4315
4316 if (args->size() > 1)
4317 {
4318 if (!Type::check_int_value(args->back(),
4319 _("bad capacity when making slice"),
4320 location))
4321 return false;
4322 }
4323
4324 return true;
4325 }
4326 }
4327
4328 // Get a tree for the length of a fixed array. The length may be
4329 // computed using a function call, so we must only evaluate it once.
4330
4331 tree
4332 Array_type::get_length_tree(Gogo* gogo)
4333 {
4334 gcc_assert(this->length_ != NULL);
4335 if (this->length_tree_ == NULL_TREE)
4336 {
4337 mpz_t val;
4338 mpz_init(val);
4339 Type* t;
4340 if (this->length_->integer_constant_value(true, val, &t))
4341 {
4342 if (t == NULL)
4343 t = Type::lookup_integer_type("int");
4344 else if (t->is_abstract())
4345 t = t->make_non_abstract_type();
4346 tree tt = t->get_tree(gogo);
4347 this->length_tree_ = Expression::integer_constant_tree(val, tt);
4348 mpz_clear(val);
4349 }
4350 else
4351 {
4352 mpz_clear(val);
4353
4354 // Make up a translation context for the array length
4355 // expression. FIXME: This won't work in general.
4356 Translate_context context(gogo, NULL, NULL, NULL_TREE);
4357 tree len = this->length_->get_tree(&context);
4358 len = convert_to_integer(integer_type_node, len);
4359 this->length_tree_ = save_expr(len);
4360 }
4361 }
4362 return this->length_tree_;
4363 }
4364
4365 // Get a tree for the type of this array. A fixed array is simply
4366 // represented as ARRAY_TYPE with the appropriate index--i.e., it is
4367 // just like an array in C. An open array is a struct with three
4368 // fields: a data pointer, the length, and the capacity.
4369
4370 tree
4371 Array_type::do_get_tree(Gogo* gogo)
4372 {
4373 if (this->length_ == NULL)
4374 {
4375 tree struct_type = gogo->slice_type_tree(void_type_node);
4376 return this->fill_in_tree(gogo, struct_type);
4377 }
4378 else
4379 {
4380 tree element_type_tree = this->element_type_->get_tree(gogo);
4381 tree length_tree = this->get_length_tree(gogo);
4382 if (element_type_tree == error_mark_node
4383 || length_tree == error_mark_node)
4384 return error_mark_node;
4385
4386 length_tree = fold_convert(sizetype, length_tree);
4387
4388 // build_index_type takes the maximum index, which is one less
4389 // than the length.
4390 tree index_type = build_index_type(fold_build2(MINUS_EXPR, sizetype,
4391 length_tree,
4392 size_one_node));
4393
4394 return build_array_type(element_type_tree, index_type);
4395 }
4396 }
4397
4398 // Fill in the fields for a slice type. This is used for named slice
4399 // types.
4400
4401 tree
4402 Array_type::fill_in_tree(Gogo* gogo, tree struct_type)
4403 {
4404 gcc_assert(this->length_ == NULL);
4405
4406 tree element_type_tree = this->element_type_->get_tree(gogo);
4407 tree field = TYPE_FIELDS(struct_type);
4408 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
4409 gcc_assert(POINTER_TYPE_P(TREE_TYPE(field))
4410 && TREE_TYPE(TREE_TYPE(field)) == void_type_node);
4411 TREE_TYPE(field) = build_pointer_type(element_type_tree);
4412
4413 return struct_type;
4414 }
4415
4416 // Return an initializer for an array type.
4417
4418 tree
4419 Array_type::do_get_init_tree(Gogo* gogo, tree type_tree, bool is_clear)
4420 {
4421 if (this->length_ == NULL)
4422 {
4423 // Open array.
4424
4425 if (is_clear)
4426 return NULL;
4427
4428 gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
4429
4430 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
4431
4432 for (tree field = TYPE_FIELDS(type_tree);
4433 field != NULL_TREE;
4434 field = DECL_CHAIN(field))
4435 {
4436 constructor_elt* elt = VEC_quick_push(constructor_elt, init,
4437 NULL);
4438 elt->index = field;
4439 elt->value = fold_convert(TREE_TYPE(field), size_zero_node);
4440 }
4441
4442 tree ret = build_constructor(type_tree, init);
4443 TREE_CONSTANT(ret) = 1;
4444 return ret;
4445 }
4446 else
4447 {
4448 // Fixed array.
4449
4450 tree value = this->element_type_->get_init_tree(gogo, is_clear);
4451 if (value == NULL)
4452 return NULL;
4453 if (value == error_mark_node)
4454 return error_mark_node;
4455
4456 tree length_tree = this->get_length_tree(gogo);
4457 if (length_tree == error_mark_node)
4458 return error_mark_node;
4459
4460 length_tree = fold_convert(sizetype, length_tree);
4461 tree range = build2(RANGE_EXPR, sizetype, size_zero_node,
4462 fold_build2(MINUS_EXPR, sizetype,
4463 length_tree, size_one_node));
4464 tree ret = build_constructor_single(type_tree, range, value);
4465 if (TREE_CONSTANT(value))
4466 TREE_CONSTANT(ret) = 1;
4467 return ret;
4468 }
4469 }
4470
4471 // Handle the builtin make function for a slice.
4472
4473 tree
4474 Array_type::do_make_expression_tree(Translate_context* context,
4475 Expression_list* args,
4476 source_location location)
4477 {
4478 gcc_assert(this->length_ == NULL);
4479
4480 Gogo* gogo = context->gogo();
4481 tree type_tree = this->get_tree(gogo);
4482 if (type_tree == error_mark_node)
4483 return error_mark_node;
4484
4485 tree values_field = TYPE_FIELDS(type_tree);
4486 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(values_field)),
4487 "__values") == 0);
4488
4489 tree count_field = DECL_CHAIN(values_field);
4490 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(count_field)),
4491 "__count") == 0);
4492
4493 tree element_type_tree = this->element_type_->get_tree(gogo);
4494 if (element_type_tree == error_mark_node)
4495 return error_mark_node;
4496 tree element_size_tree = TYPE_SIZE_UNIT(element_type_tree);
4497
4498 tree value = this->element_type_->get_init_tree(gogo, true);
4499
4500 // The first argument is the number of elements, the optional second
4501 // argument is the capacity.
4502 gcc_assert(args != NULL && args->size() >= 1 && args->size() <= 2);
4503
4504 tree length_tree = args->front()->get_tree(context);
4505 if (length_tree == error_mark_node)
4506 return error_mark_node;
4507 if (!DECL_P(length_tree))
4508 length_tree = save_expr(length_tree);
4509 if (!INTEGRAL_TYPE_P(TREE_TYPE(length_tree)))
4510 length_tree = convert_to_integer(TREE_TYPE(count_field), length_tree);
4511
4512 tree bad_index = Expression::check_bounds(length_tree,
4513 TREE_TYPE(count_field),
4514 NULL_TREE, location);
4515
4516 length_tree = fold_convert_loc(location, TREE_TYPE(count_field), length_tree);
4517 tree capacity_tree;
4518 if (args->size() == 1)
4519 capacity_tree = length_tree;
4520 else
4521 {
4522 capacity_tree = args->back()->get_tree(context);
4523 if (capacity_tree == error_mark_node)
4524 return error_mark_node;
4525 if (!DECL_P(capacity_tree))
4526 capacity_tree = save_expr(capacity_tree);
4527 if (!INTEGRAL_TYPE_P(TREE_TYPE(capacity_tree)))
4528 capacity_tree = convert_to_integer(TREE_TYPE(count_field),
4529 capacity_tree);
4530
4531 bad_index = Expression::check_bounds(capacity_tree,
4532 TREE_TYPE(count_field),
4533 bad_index, location);
4534
4535 tree chktype = (((TYPE_SIZE(TREE_TYPE(capacity_tree))
4536 > TYPE_SIZE(TREE_TYPE(length_tree)))
4537 || ((TYPE_SIZE(TREE_TYPE(capacity_tree))
4538 == TYPE_SIZE(TREE_TYPE(length_tree)))
4539 && TYPE_UNSIGNED(TREE_TYPE(capacity_tree))))
4540 ? TREE_TYPE(capacity_tree)
4541 : TREE_TYPE(length_tree));
4542 tree chk = fold_build2_loc(location, LT_EXPR, boolean_type_node,
4543 fold_convert_loc(location, chktype,
4544 capacity_tree),
4545 fold_convert_loc(location, chktype,
4546 length_tree));
4547 if (bad_index == NULL_TREE)
4548 bad_index = chk;
4549 else
4550 bad_index = fold_build2_loc(location, TRUTH_OR_EXPR, boolean_type_node,
4551 bad_index, chk);
4552
4553 capacity_tree = fold_convert_loc(location, TREE_TYPE(count_field),
4554 capacity_tree);
4555 }
4556
4557 tree size_tree = fold_build2_loc(location, MULT_EXPR, sizetype,
4558 element_size_tree,
4559 fold_convert_loc(location, sizetype,
4560 capacity_tree));
4561
4562 tree chk = fold_build2_loc(location, TRUTH_AND_EXPR, boolean_type_node,
4563 fold_build2_loc(location, GT_EXPR,
4564 boolean_type_node,
4565 fold_convert_loc(location,
4566 sizetype,
4567 capacity_tree),
4568 size_zero_node),
4569 fold_build2_loc(location, LT_EXPR,
4570 boolean_type_node,
4571 size_tree, element_size_tree));
4572 if (bad_index == NULL_TREE)
4573 bad_index = chk;
4574 else
4575 bad_index = fold_build2_loc(location, TRUTH_OR_EXPR, boolean_type_node,
4576 bad_index, chk);
4577
4578 tree space = context->gogo()->allocate_memory(this->element_type_,
4579 size_tree, location);
4580
4581 if (value != NULL_TREE)
4582 space = save_expr(space);
4583
4584 space = fold_convert(TREE_TYPE(values_field), space);
4585
4586 if (bad_index != NULL_TREE && bad_index != boolean_false_node)
4587 {
4588 tree crash = Gogo::runtime_error(RUNTIME_ERROR_MAKE_SLICE_OUT_OF_BOUNDS,
4589 location);
4590 space = build2(COMPOUND_EXPR, TREE_TYPE(space),
4591 build3(COND_EXPR, void_type_node,
4592 bad_index, crash, NULL_TREE),
4593 space);
4594 }
4595
4596 tree constructor = gogo->slice_constructor(type_tree, space, length_tree,
4597 capacity_tree);
4598
4599 if (value == NULL_TREE)
4600 {
4601 // The array contents are zero initialized.
4602 return constructor;
4603 }
4604
4605 // The elements must be initialized.
4606
4607 tree max = fold_build2_loc(location, MINUS_EXPR, TREE_TYPE(count_field),
4608 capacity_tree,
4609 fold_convert_loc(location, TREE_TYPE(count_field),
4610 integer_one_node));
4611
4612 tree array_type = build_array_type(element_type_tree,
4613 build_index_type(max));
4614
4615 tree value_pointer = fold_convert_loc(location,
4616 build_pointer_type(array_type),
4617 space);
4618
4619 tree range = build2(RANGE_EXPR, sizetype, size_zero_node, max);
4620 tree space_init = build_constructor_single(array_type, range, value);
4621
4622 return build2(COMPOUND_EXPR, TREE_TYPE(space),
4623 build2(MODIFY_EXPR, void_type_node,
4624 build_fold_indirect_ref(value_pointer),
4625 space_init),
4626 constructor);
4627 }
4628
4629 // Return a tree for a pointer to the values in ARRAY.
4630
4631 tree
4632 Array_type::value_pointer_tree(Gogo*, tree array) const
4633 {
4634 tree ret;
4635 if (this->length() != NULL)
4636 {
4637 // Fixed array.
4638 ret = fold_convert(build_pointer_type(TREE_TYPE(TREE_TYPE(array))),
4639 build_fold_addr_expr(array));
4640 }
4641 else
4642 {
4643 // Open array.
4644 tree field = TYPE_FIELDS(TREE_TYPE(array));
4645 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
4646 "__values") == 0);
4647 ret = fold_build3(COMPONENT_REF, TREE_TYPE(field), array, field,
4648 NULL_TREE);
4649 }
4650 if (TREE_CONSTANT(array))
4651 TREE_CONSTANT(ret) = 1;
4652 return ret;
4653 }
4654
4655 // Return a tree for the length of the array ARRAY which has this
4656 // type.
4657
4658 tree
4659 Array_type::length_tree(Gogo* gogo, tree array)
4660 {
4661 if (this->length_ != NULL)
4662 {
4663 if (TREE_CODE(array) == SAVE_EXPR)
4664 return fold_convert(integer_type_node, this->get_length_tree(gogo));
4665 else
4666 return omit_one_operand(integer_type_node,
4667 this->get_length_tree(gogo), array);
4668 }
4669
4670 // This is an open array. We need to read the length field.
4671
4672 tree type = TREE_TYPE(array);
4673 gcc_assert(TREE_CODE(type) == RECORD_TYPE);
4674
4675 tree field = DECL_CHAIN(TYPE_FIELDS(type));
4676 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
4677
4678 tree ret = build3(COMPONENT_REF, TREE_TYPE(field), array, field, NULL_TREE);
4679 if (TREE_CONSTANT(array))
4680 TREE_CONSTANT(ret) = 1;
4681 return ret;
4682 }
4683
4684 // Return a tree for the capacity of the array ARRAY which has this
4685 // type.
4686
4687 tree
4688 Array_type::capacity_tree(Gogo* gogo, tree array)
4689 {
4690 if (this->length_ != NULL)
4691 return omit_one_operand(sizetype, this->get_length_tree(gogo), array);
4692
4693 // This is an open array. We need to read the capacity field.
4694
4695 tree type = TREE_TYPE(array);
4696 gcc_assert(TREE_CODE(type) == RECORD_TYPE);
4697
4698 tree field = DECL_CHAIN(DECL_CHAIN(TYPE_FIELDS(type)));
4699 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__capacity") == 0);
4700
4701 return build3(COMPONENT_REF, TREE_TYPE(field), array, field, NULL_TREE);
4702 }
4703
4704 // Export.
4705
4706 void
4707 Array_type::do_export(Export* exp) const
4708 {
4709 exp->write_c_string("[");
4710 if (this->length_ != NULL)
4711 this->length_->export_expression(exp);
4712 exp->write_c_string("] ");
4713 exp->write_type(this->element_type_);
4714 }
4715
4716 // Import.
4717
4718 Array_type*
4719 Array_type::do_import(Import* imp)
4720 {
4721 imp->require_c_string("[");
4722 Expression* length;
4723 if (imp->peek_char() == ']')
4724 length = NULL;
4725 else
4726 length = Expression::import_expression(imp);
4727 imp->require_c_string("] ");
4728 Type* element_type = imp->read_type();
4729 return Type::make_array_type(element_type, length);
4730 }
4731
4732 // The type of an array type descriptor.
4733
4734 Type*
4735 Array_type::make_array_type_descriptor_type()
4736 {
4737 static Type* ret;
4738 if (ret == NULL)
4739 {
4740 Type* tdt = Type::make_type_descriptor_type();
4741 Type* ptdt = Type::make_type_descriptor_ptr_type();
4742
4743 Type* uintptr_type = Type::lookup_integer_type("uintptr");
4744
4745 Struct_type* sf =
4746 Type::make_builtin_struct_type(3,
4747 "", tdt,
4748 "elem", ptdt,
4749 "len", uintptr_type);
4750
4751 ret = Type::make_builtin_named_type("ArrayType", sf);
4752 }
4753
4754 return ret;
4755 }
4756
4757 // The type of an slice type descriptor.
4758
4759 Type*
4760 Array_type::make_slice_type_descriptor_type()
4761 {
4762 static Type* ret;
4763 if (ret == NULL)
4764 {
4765 Type* tdt = Type::make_type_descriptor_type();
4766 Type* ptdt = Type::make_type_descriptor_ptr_type();
4767
4768 Struct_type* sf =
4769 Type::make_builtin_struct_type(2,
4770 "", tdt,
4771 "elem", ptdt);
4772
4773 ret = Type::make_builtin_named_type("SliceType", sf);
4774 }
4775
4776 return ret;
4777 }
4778
4779 // Build a type descriptor for an array/slice type.
4780
4781 Expression*
4782 Array_type::do_type_descriptor(Gogo* gogo, Named_type* name)
4783 {
4784 if (this->length_ != NULL)
4785 return this->array_type_descriptor(gogo, name);
4786 else
4787 return this->slice_type_descriptor(gogo, name);
4788 }
4789
4790 // Build a type descriptor for an array type.
4791
4792 Expression*
4793 Array_type::array_type_descriptor(Gogo* gogo, Named_type* name)
4794 {
4795 source_location bloc = BUILTINS_LOCATION;
4796
4797 Type* atdt = Array_type::make_array_type_descriptor_type();
4798
4799 const Struct_field_list* fields = atdt->struct_type()->fields();
4800
4801 Expression_list* vals = new Expression_list();
4802 vals->reserve(3);
4803
4804 Struct_field_list::const_iterator p = fields->begin();
4805 gcc_assert(p->field_name() == "commonType");
4806 vals->push_back(this->type_descriptor_constructor(gogo,
4807 RUNTIME_TYPE_KIND_ARRAY,
4808 name, NULL, true));
4809
4810 ++p;
4811 gcc_assert(p->field_name() == "elem");
4812 vals->push_back(Expression::make_type_descriptor(this->element_type_, bloc));
4813
4814 ++p;
4815 gcc_assert(p->field_name() == "len");
4816 vals->push_back(this->length_);
4817
4818 ++p;
4819 gcc_assert(p == fields->end());
4820
4821 return Expression::make_struct_composite_literal(atdt, vals, bloc);
4822 }
4823
4824 // Build a type descriptor for a slice type.
4825
4826 Expression*
4827 Array_type::slice_type_descriptor(Gogo* gogo, Named_type* name)
4828 {
4829 source_location bloc = BUILTINS_LOCATION;
4830
4831 Type* stdt = Array_type::make_slice_type_descriptor_type();
4832
4833 const Struct_field_list* fields = stdt->struct_type()->fields();
4834
4835 Expression_list* vals = new Expression_list();
4836 vals->reserve(2);
4837
4838 Struct_field_list::const_iterator p = fields->begin();
4839 gcc_assert(p->field_name() == "commonType");
4840 vals->push_back(this->type_descriptor_constructor(gogo,
4841 RUNTIME_TYPE_KIND_SLICE,
4842 name, NULL, true));
4843
4844 ++p;
4845 gcc_assert(p->field_name() == "elem");
4846 vals->push_back(Expression::make_type_descriptor(this->element_type_, bloc));
4847
4848 ++p;
4849 gcc_assert(p == fields->end());
4850
4851 return Expression::make_struct_composite_literal(stdt, vals, bloc);
4852 }
4853
4854 // Reflection string.
4855
4856 void
4857 Array_type::do_reflection(Gogo* gogo, std::string* ret) const
4858 {
4859 ret->push_back('[');
4860 if (this->length_ != NULL)
4861 {
4862 mpz_t val;
4863 mpz_init(val);
4864 Type* type;
4865 if (!this->length_->integer_constant_value(true, val, &type))
4866 error_at(this->length_->location(),
4867 "array length must be integer constant expression");
4868 else if (mpz_cmp_si(val, 0) < 0)
4869 error_at(this->length_->location(), "array length is negative");
4870 else if (mpz_cmp_ui(val, mpz_get_ui(val)) != 0)
4871 error_at(this->length_->location(), "array length is too large");
4872 else
4873 {
4874 char buf[50];
4875 snprintf(buf, sizeof buf, "%lu", mpz_get_ui(val));
4876 ret->append(buf);
4877 }
4878 mpz_clear(val);
4879 }
4880 ret->push_back(']');
4881
4882 this->append_reflection(this->element_type_, gogo, ret);
4883 }
4884
4885 // Mangled name.
4886
4887 void
4888 Array_type::do_mangled_name(Gogo* gogo, std::string* ret) const
4889 {
4890 ret->push_back('A');
4891 this->append_mangled_name(this->element_type_, gogo, ret);
4892 if (this->length_ != NULL)
4893 {
4894 mpz_t val;
4895 mpz_init(val);
4896 Type* type;
4897 if (!this->length_->integer_constant_value(true, val, &type))
4898 error_at(this->length_->location(),
4899 "array length must be integer constant expression");
4900 else if (mpz_cmp_si(val, 0) < 0)
4901 error_at(this->length_->location(), "array length is negative");
4902 else if (mpz_cmp_ui(val, mpz_get_ui(val)) != 0)
4903 error_at(this->length_->location(), "array size is too large");
4904 else
4905 {
4906 char buf[50];
4907 snprintf(buf, sizeof buf, "%lu", mpz_get_ui(val));
4908 ret->append(buf);
4909 }
4910 mpz_clear(val);
4911 }
4912 ret->push_back('e');
4913 }
4914
4915 // Make an array type.
4916
4917 Array_type*
4918 Type::make_array_type(Type* element_type, Expression* length)
4919 {
4920 return new Array_type(element_type, length);
4921 }
4922
4923 // Class Map_type.
4924
4925 // Traversal.
4926
4927 int
4928 Map_type::do_traverse(Traverse* traverse)
4929 {
4930 if (Type::traverse(this->key_type_, traverse) == TRAVERSE_EXIT
4931 || Type::traverse(this->val_type_, traverse) == TRAVERSE_EXIT)
4932 return TRAVERSE_EXIT;
4933 return TRAVERSE_CONTINUE;
4934 }
4935
4936 // Check that the map type is OK.
4937
4938 bool
4939 Map_type::do_verify()
4940 {
4941 if (this->key_type_->struct_type() != NULL
4942 || this->key_type_->array_type() != NULL)
4943 {
4944 error_at(this->location_, "invalid map key type");
4945 return false;
4946 }
4947 return true;
4948 }
4949
4950 // Whether two map types are identical.
4951
4952 bool
4953 Map_type::is_identical(const Map_type* t, bool errors_are_identical) const
4954 {
4955 return (Type::are_identical(this->key_type(), t->key_type(),
4956 errors_are_identical, NULL)
4957 && Type::are_identical(this->val_type(), t->val_type(),
4958 errors_are_identical, NULL));
4959 }
4960
4961 // Hash code.
4962
4963 unsigned int
4964 Map_type::do_hash_for_method(Gogo* gogo) const
4965 {
4966 return (this->key_type_->hash_for_method(gogo)
4967 + this->val_type_->hash_for_method(gogo)
4968 + 2);
4969 }
4970
4971 // Check that a call to the builtin make function is valid. For a map
4972 // the optional argument is the number of spaces to preallocate for
4973 // values.
4974
4975 bool
4976 Map_type::do_check_make_expression(Expression_list* args,
4977 source_location location)
4978 {
4979 if (args != NULL && !args->empty())
4980 {
4981 if (!Type::check_int_value(args->front(), _("bad size when making map"),
4982 location))
4983 return false;
4984 else if (args->size() > 1)
4985 {
4986 error_at(location, "too many arguments when making map");
4987 return false;
4988 }
4989 }
4990 return true;
4991 }
4992
4993 // Get a tree for a map type. A map type is represented as a pointer
4994 // to a struct. The struct is __go_map in libgo/map.h.
4995
4996 tree
4997 Map_type::do_get_tree(Gogo* gogo)
4998 {
4999 static tree type_tree;
5000 if (type_tree == NULL_TREE)
5001 {
5002 tree struct_type = make_node(RECORD_TYPE);
5003
5004 tree map_descriptor_type = gogo->map_descriptor_type();
5005 tree const_map_descriptor_type =
5006 build_qualified_type(map_descriptor_type, TYPE_QUAL_CONST);
5007 tree name = get_identifier("__descriptor");
5008 tree field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name,
5009 build_pointer_type(const_map_descriptor_type));
5010 DECL_CONTEXT(field) = struct_type;
5011 TYPE_FIELDS(struct_type) = field;
5012 tree last_field = field;
5013
5014 name = get_identifier("__element_count");
5015 field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name, sizetype);
5016 DECL_CONTEXT(field) = struct_type;
5017 DECL_CHAIN(last_field) = field;
5018 last_field = field;
5019
5020 name = get_identifier("__bucket_count");
5021 field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name, sizetype);
5022 DECL_CONTEXT(field) = struct_type;
5023 DECL_CHAIN(last_field) = field;
5024 last_field = field;
5025
5026 name = get_identifier("__buckets");
5027 field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name,
5028 build_pointer_type(ptr_type_node));
5029 DECL_CONTEXT(field) = struct_type;
5030 DECL_CHAIN(last_field) = field;
5031
5032 layout_type(struct_type);
5033
5034 // Give the struct a name for better debugging info.
5035 name = get_identifier("__go_map");
5036 tree type_decl = build_decl(BUILTINS_LOCATION, TYPE_DECL, name,
5037 struct_type);
5038 DECL_ARTIFICIAL(type_decl) = 1;
5039 TYPE_NAME(struct_type) = type_decl;
5040 go_preserve_from_gc(type_decl);
5041 rest_of_decl_compilation(type_decl, 1, 0);
5042
5043 type_tree = build_pointer_type(struct_type);
5044 go_preserve_from_gc(type_tree);
5045 }
5046
5047 return type_tree;
5048 }
5049
5050 // Initialize a map.
5051
5052 tree
5053 Map_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
5054 {
5055 if (is_clear)
5056 return NULL;
5057 return fold_convert(type_tree, null_pointer_node);
5058 }
5059
5060 // Return an expression for a newly allocated map.
5061
5062 tree
5063 Map_type::do_make_expression_tree(Translate_context* context,
5064 Expression_list* args,
5065 source_location location)
5066 {
5067 tree bad_index = NULL_TREE;
5068
5069 tree expr_tree;
5070 if (args == NULL || args->empty())
5071 expr_tree = size_zero_node;
5072 else
5073 {
5074 expr_tree = args->front()->get_tree(context);
5075 if (expr_tree == error_mark_node)
5076 return error_mark_node;
5077 if (!DECL_P(expr_tree))
5078 expr_tree = save_expr(expr_tree);
5079 if (!INTEGRAL_TYPE_P(TREE_TYPE(expr_tree)))
5080 expr_tree = convert_to_integer(sizetype, expr_tree);
5081 bad_index = Expression::check_bounds(expr_tree, sizetype, bad_index,
5082 location);
5083 }
5084
5085 tree map_type = this->get_tree(context->gogo());
5086
5087 static tree new_map_fndecl;
5088 tree ret = Gogo::call_builtin(&new_map_fndecl,
5089 location,
5090 "__go_new_map",
5091 2,
5092 map_type,
5093 TREE_TYPE(TYPE_FIELDS(TREE_TYPE(map_type))),
5094 context->gogo()->map_descriptor(this),
5095 sizetype,
5096 expr_tree);
5097 // This can panic if the capacity is out of range.
5098 TREE_NOTHROW(new_map_fndecl) = 0;
5099
5100 if (bad_index == NULL_TREE)
5101 return ret;
5102 else
5103 {
5104 tree crash = Gogo::runtime_error(RUNTIME_ERROR_MAKE_MAP_OUT_OF_BOUNDS,
5105 location);
5106 return build2(COMPOUND_EXPR, TREE_TYPE(ret),
5107 build3(COND_EXPR, void_type_node,
5108 bad_index, crash, NULL_TREE),
5109 ret);
5110 }
5111 }
5112
5113 // The type of a map type descriptor.
5114
5115 Type*
5116 Map_type::make_map_type_descriptor_type()
5117 {
5118 static Type* ret;
5119 if (ret == NULL)
5120 {
5121 Type* tdt = Type::make_type_descriptor_type();
5122 Type* ptdt = Type::make_type_descriptor_ptr_type();
5123
5124 Struct_type* sf =
5125 Type::make_builtin_struct_type(3,
5126 "", tdt,
5127 "key", ptdt,
5128 "elem", ptdt);
5129
5130 ret = Type::make_builtin_named_type("MapType", sf);
5131 }
5132
5133 return ret;
5134 }
5135
5136 // Build a type descriptor for a map type.
5137
5138 Expression*
5139 Map_type::do_type_descriptor(Gogo* gogo, Named_type* name)
5140 {
5141 source_location bloc = BUILTINS_LOCATION;
5142
5143 Type* mtdt = Map_type::make_map_type_descriptor_type();
5144
5145 const Struct_field_list* fields = mtdt->struct_type()->fields();
5146
5147 Expression_list* vals = new Expression_list();
5148 vals->reserve(3);
5149
5150 Struct_field_list::const_iterator p = fields->begin();
5151 gcc_assert(p->field_name() == "commonType");
5152 vals->push_back(this->type_descriptor_constructor(gogo,
5153 RUNTIME_TYPE_KIND_MAP,
5154 name, NULL, true));
5155
5156 ++p;
5157 gcc_assert(p->field_name() == "key");
5158 vals->push_back(Expression::make_type_descriptor(this->key_type_, bloc));
5159
5160 ++p;
5161 gcc_assert(p->field_name() == "elem");
5162 vals->push_back(Expression::make_type_descriptor(this->val_type_, bloc));
5163
5164 ++p;
5165 gcc_assert(p == fields->end());
5166
5167 return Expression::make_struct_composite_literal(mtdt, vals, bloc);
5168 }
5169
5170 // Reflection string for a map.
5171
5172 void
5173 Map_type::do_reflection(Gogo* gogo, std::string* ret) const
5174 {
5175 ret->append("map[");
5176 this->append_reflection(this->key_type_, gogo, ret);
5177 ret->append("] ");
5178 this->append_reflection(this->val_type_, gogo, ret);
5179 }
5180
5181 // Mangled name for a map.
5182
5183 void
5184 Map_type::do_mangled_name(Gogo* gogo, std::string* ret) const
5185 {
5186 ret->push_back('M');
5187 this->append_mangled_name(this->key_type_, gogo, ret);
5188 ret->append("__");
5189 this->append_mangled_name(this->val_type_, gogo, ret);
5190 }
5191
5192 // Export a map type.
5193
5194 void
5195 Map_type::do_export(Export* exp) const
5196 {
5197 exp->write_c_string("map [");
5198 exp->write_type(this->key_type_);
5199 exp->write_c_string("] ");
5200 exp->write_type(this->val_type_);
5201 }
5202
5203 // Import a map type.
5204
5205 Map_type*
5206 Map_type::do_import(Import* imp)
5207 {
5208 imp->require_c_string("map [");
5209 Type* key_type = imp->read_type();
5210 imp->require_c_string("] ");
5211 Type* val_type = imp->read_type();
5212 return Type::make_map_type(key_type, val_type, imp->location());
5213 }
5214
5215 // Make a map type.
5216
5217 Map_type*
5218 Type::make_map_type(Type* key_type, Type* val_type, source_location location)
5219 {
5220 return new Map_type(key_type, val_type, location);
5221 }
5222
5223 // Class Channel_type.
5224
5225 // Hash code.
5226
5227 unsigned int
5228 Channel_type::do_hash_for_method(Gogo* gogo) const
5229 {
5230 unsigned int ret = 0;
5231 if (this->may_send_)
5232 ret += 1;
5233 if (this->may_receive_)
5234 ret += 2;
5235 if (this->element_type_ != NULL)
5236 ret += this->element_type_->hash_for_method(gogo) << 2;
5237 return ret << 3;
5238 }
5239
5240 // Whether this type is the same as T.
5241
5242 bool
5243 Channel_type::is_identical(const Channel_type* t,
5244 bool errors_are_identical) const
5245 {
5246 if (!Type::are_identical(this->element_type(), t->element_type(),
5247 errors_are_identical, NULL))
5248 return false;
5249 return (this->may_send_ == t->may_send_
5250 && this->may_receive_ == t->may_receive_);
5251 }
5252
5253 // Check whether the parameters for a call to the builtin function
5254 // make are OK for a channel. A channel can take an optional single
5255 // parameter which is the buffer size.
5256
5257 bool
5258 Channel_type::do_check_make_expression(Expression_list* args,
5259 source_location location)
5260 {
5261 if (args != NULL && !args->empty())
5262 {
5263 if (!Type::check_int_value(args->front(),
5264 _("bad buffer size when making channel"),
5265 location))
5266 return false;
5267 else if (args->size() > 1)
5268 {
5269 error_at(location, "too many arguments when making channel");
5270 return false;
5271 }
5272 }
5273 return true;
5274 }
5275
5276 // Return the tree for a channel type. A channel is a pointer to a
5277 // __go_channel struct. The __go_channel struct is defined in
5278 // libgo/runtime/channel.h.
5279
5280 tree
5281 Channel_type::do_get_tree(Gogo*)
5282 {
5283 static tree type_tree;
5284 if (type_tree == NULL_TREE)
5285 {
5286 tree ret = make_node(RECORD_TYPE);
5287 TYPE_NAME(ret) = get_identifier("__go_channel");
5288 TYPE_STUB_DECL(ret) = build_decl(BUILTINS_LOCATION, TYPE_DECL, NULL_TREE,
5289 ret);
5290 type_tree = build_pointer_type(ret);
5291 go_preserve_from_gc(type_tree);
5292 }
5293 return type_tree;
5294 }
5295
5296 // Initialize a channel variable.
5297
5298 tree
5299 Channel_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
5300 {
5301 if (is_clear)
5302 return NULL;
5303 return fold_convert(type_tree, null_pointer_node);
5304 }
5305
5306 // Handle the builtin function make for a channel.
5307
5308 tree
5309 Channel_type::do_make_expression_tree(Translate_context* context,
5310 Expression_list* args,
5311 source_location location)
5312 {
5313 Gogo* gogo = context->gogo();
5314 tree channel_type = this->get_tree(gogo);
5315
5316 tree element_tree = this->element_type_->get_tree(gogo);
5317 tree element_size_tree = size_in_bytes(element_tree);
5318
5319 tree bad_index = NULL_TREE;
5320
5321 tree expr_tree;
5322 if (args == NULL || args->empty())
5323 expr_tree = size_zero_node;
5324 else
5325 {
5326 expr_tree = args->front()->get_tree(context);
5327 if (expr_tree == error_mark_node)
5328 return error_mark_node;
5329 if (!DECL_P(expr_tree))
5330 expr_tree = save_expr(expr_tree);
5331 if (!INTEGRAL_TYPE_P(TREE_TYPE(expr_tree)))
5332 expr_tree = convert_to_integer(sizetype, expr_tree);
5333 bad_index = Expression::check_bounds(expr_tree, sizetype, bad_index,
5334 location);
5335 }
5336
5337 static tree new_channel_fndecl;
5338 tree ret = Gogo::call_builtin(&new_channel_fndecl,
5339 location,
5340 "__go_new_channel",
5341 2,
5342 channel_type,
5343 sizetype,
5344 element_size_tree,
5345 sizetype,
5346 expr_tree);
5347 // This can panic if the capacity is out of range.
5348 TREE_NOTHROW(new_channel_fndecl) = 0;
5349
5350 if (bad_index == NULL_TREE)
5351 return ret;
5352 else
5353 {
5354 tree crash = Gogo::runtime_error(RUNTIME_ERROR_MAKE_CHAN_OUT_OF_BOUNDS,
5355 location);
5356 return build2(COMPOUND_EXPR, TREE_TYPE(ret),
5357 build3(COND_EXPR, void_type_node,
5358 bad_index, crash, NULL_TREE),
5359 ret);
5360 }
5361 }
5362
5363 // Build a type descriptor for a channel type.
5364
5365 Type*
5366 Channel_type::make_chan_type_descriptor_type()
5367 {
5368 static Type* ret;
5369 if (ret == NULL)
5370 {
5371 Type* tdt = Type::make_type_descriptor_type();
5372 Type* ptdt = Type::make_type_descriptor_ptr_type();
5373
5374 Type* uintptr_type = Type::lookup_integer_type("uintptr");
5375
5376 Struct_type* sf =
5377 Type::make_builtin_struct_type(3,
5378 "", tdt,
5379 "elem", ptdt,
5380 "dir", uintptr_type);
5381
5382 ret = Type::make_builtin_named_type("ChanType", sf);
5383 }
5384
5385 return ret;
5386 }
5387
5388 // Build a type descriptor for a map type.
5389
5390 Expression*
5391 Channel_type::do_type_descriptor(Gogo* gogo, Named_type* name)
5392 {
5393 source_location bloc = BUILTINS_LOCATION;
5394
5395 Type* ctdt = Channel_type::make_chan_type_descriptor_type();
5396
5397 const Struct_field_list* fields = ctdt->struct_type()->fields();
5398
5399 Expression_list* vals = new Expression_list();
5400 vals->reserve(3);
5401
5402 Struct_field_list::const_iterator p = fields->begin();
5403 gcc_assert(p->field_name() == "commonType");
5404 vals->push_back(this->type_descriptor_constructor(gogo,
5405 RUNTIME_TYPE_KIND_CHAN,
5406 name, NULL, true));
5407
5408 ++p;
5409 gcc_assert(p->field_name() == "elem");
5410 vals->push_back(Expression::make_type_descriptor(this->element_type_, bloc));
5411
5412 ++p;
5413 gcc_assert(p->field_name() == "dir");
5414 // These bits must match the ones in libgo/runtime/go-type.h.
5415 int val = 0;
5416 if (this->may_receive_)
5417 val |= 1;
5418 if (this->may_send_)
5419 val |= 2;
5420 mpz_t iv;
5421 mpz_init_set_ui(iv, val);
5422 vals->push_back(Expression::make_integer(&iv, p->type(), bloc));
5423 mpz_clear(iv);
5424
5425 ++p;
5426 gcc_assert(p == fields->end());
5427
5428 return Expression::make_struct_composite_literal(ctdt, vals, bloc);
5429 }
5430
5431 // Reflection string.
5432
5433 void
5434 Channel_type::do_reflection(Gogo* gogo, std::string* ret) const
5435 {
5436 if (!this->may_send_)
5437 ret->append("<-");
5438 ret->append("chan");
5439 if (!this->may_receive_)
5440 ret->append("<-");
5441 ret->push_back(' ');
5442 this->append_reflection(this->element_type_, gogo, ret);
5443 }
5444
5445 // Mangled name.
5446
5447 void
5448 Channel_type::do_mangled_name(Gogo* gogo, std::string* ret) const
5449 {
5450 ret->push_back('C');
5451 this->append_mangled_name(this->element_type_, gogo, ret);
5452 if (this->may_send_)
5453 ret->push_back('s');
5454 if (this->may_receive_)
5455 ret->push_back('r');
5456 ret->push_back('e');
5457 }
5458
5459 // Export.
5460
5461 void
5462 Channel_type::do_export(Export* exp) const
5463 {
5464 exp->write_c_string("chan ");
5465 if (this->may_send_ && !this->may_receive_)
5466 exp->write_c_string("-< ");
5467 else if (this->may_receive_ && !this->may_send_)
5468 exp->write_c_string("<- ");
5469 exp->write_type(this->element_type_);
5470 }
5471
5472 // Import.
5473
5474 Channel_type*
5475 Channel_type::do_import(Import* imp)
5476 {
5477 imp->require_c_string("chan ");
5478
5479 bool may_send;
5480 bool may_receive;
5481 if (imp->match_c_string("-< "))
5482 {
5483 imp->advance(3);
5484 may_send = true;
5485 may_receive = false;
5486 }
5487 else if (imp->match_c_string("<- "))
5488 {
5489 imp->advance(3);
5490 may_receive = true;
5491 may_send = false;
5492 }
5493 else
5494 {
5495 may_send = true;
5496 may_receive = true;
5497 }
5498
5499 Type* element_type = imp->read_type();
5500
5501 return Type::make_channel_type(may_send, may_receive, element_type);
5502 }
5503
5504 // Make a new channel type.
5505
5506 Channel_type*
5507 Type::make_channel_type(bool send, bool receive, Type* element_type)
5508 {
5509 return new Channel_type(send, receive, element_type);
5510 }
5511
5512 // Class Interface_type.
5513
5514 // Traversal.
5515
5516 int
5517 Interface_type::do_traverse(Traverse* traverse)
5518 {
5519 if (this->methods_ == NULL)
5520 return TRAVERSE_CONTINUE;
5521 return this->methods_->traverse(traverse);
5522 }
5523
5524 // Finalize the methods. This handles interface inheritance.
5525
5526 void
5527 Interface_type::finalize_methods()
5528 {
5529 if (this->methods_ == NULL)
5530 return;
5531 bool is_recursive = false;
5532 size_t from = 0;
5533 size_t to = 0;
5534 while (from < this->methods_->size())
5535 {
5536 const Typed_identifier* p = &this->methods_->at(from);
5537 if (!p->name().empty())
5538 {
5539 size_t i = 0;
5540 for (i = 0; i < to; ++i)
5541 {
5542 if (this->methods_->at(i).name() == p->name())
5543 {
5544 error_at(p->location(), "duplicate method %qs",
5545 Gogo::message_name(p->name()).c_str());
5546 break;
5547 }
5548 }
5549 if (i == to)
5550 {
5551 if (from != to)
5552 this->methods_->set(to, *p);
5553 ++to;
5554 }
5555 ++from;
5556 continue;
5557 }
5558 Interface_type* it = p->type()->interface_type();
5559 if (it == NULL)
5560 {
5561 error_at(p->location(), "interface contains embedded non-interface");
5562 ++from;
5563 continue;
5564 }
5565 if (it == this)
5566 {
5567 if (!is_recursive)
5568 {
5569 error_at(p->location(), "invalid recursive interface");
5570 is_recursive = true;
5571 }
5572 ++from;
5573 continue;
5574 }
5575 const Typed_identifier_list* methods = it->methods();
5576 if (methods == NULL)
5577 {
5578 ++from;
5579 continue;
5580 }
5581 for (Typed_identifier_list::const_iterator q = methods->begin();
5582 q != methods->end();
5583 ++q)
5584 {
5585 if (q->name().empty() || this->find_method(q->name()) == NULL)
5586 this->methods_->push_back(Typed_identifier(q->name(), q->type(),
5587 p->location()));
5588 else
5589 {
5590 if (!is_recursive)
5591 error_at(p->location(), "inherited method %qs is ambiguous",
5592 Gogo::message_name(q->name()).c_str());
5593 }
5594 }
5595 ++from;
5596 }
5597 if (to == 0)
5598 {
5599 delete this->methods_;
5600 this->methods_ = NULL;
5601 }
5602 else
5603 {
5604 this->methods_->resize(to);
5605 this->methods_->sort_by_name();
5606 }
5607 }
5608
5609 // Return the method NAME, or NULL.
5610
5611 const Typed_identifier*
5612 Interface_type::find_method(const std::string& name) const
5613 {
5614 if (this->methods_ == NULL)
5615 return NULL;
5616 for (Typed_identifier_list::const_iterator p = this->methods_->begin();
5617 p != this->methods_->end();
5618 ++p)
5619 if (p->name() == name)
5620 return &*p;
5621 return NULL;
5622 }
5623
5624 // Return the method index.
5625
5626 size_t
5627 Interface_type::method_index(const std::string& name) const
5628 {
5629 gcc_assert(this->methods_ != NULL);
5630 size_t ret = 0;
5631 for (Typed_identifier_list::const_iterator p = this->methods_->begin();
5632 p != this->methods_->end();
5633 ++p, ++ret)
5634 if (p->name() == name)
5635 return ret;
5636 gcc_unreachable();
5637 }
5638
5639 // Return whether NAME is an unexported method, for better error
5640 // reporting.
5641
5642 bool
5643 Interface_type::is_unexported_method(Gogo* gogo, const std::string& name) const
5644 {
5645 if (this->methods_ == NULL)
5646 return false;
5647 for (Typed_identifier_list::const_iterator p = this->methods_->begin();
5648 p != this->methods_->end();
5649 ++p)
5650 {
5651 const std::string& method_name(p->name());
5652 if (Gogo::is_hidden_name(method_name)
5653 && name == Gogo::unpack_hidden_name(method_name)
5654 && gogo->pack_hidden_name(name, false) != method_name)
5655 return true;
5656 }
5657 return false;
5658 }
5659
5660 // Whether this type is identical with T.
5661
5662 bool
5663 Interface_type::is_identical(const Interface_type* t,
5664 bool errors_are_identical) const
5665 {
5666 // We require the same methods with the same types. The methods
5667 // have already been sorted.
5668 if (this->methods() == NULL || t->methods() == NULL)
5669 return this->methods() == t->methods();
5670
5671 Typed_identifier_list::const_iterator p1 = this->methods()->begin();
5672 for (Typed_identifier_list::const_iterator p2 = t->methods()->begin();
5673 p2 != t->methods()->end();
5674 ++p1, ++p2)
5675 {
5676 if (p1 == this->methods()->end())
5677 return false;
5678 if (p1->name() != p2->name()
5679 || !Type::are_identical(p1->type(), p2->type(),
5680 errors_are_identical, NULL))
5681 return false;
5682 }
5683 if (p1 != this->methods()->end())
5684 return false;
5685 return true;
5686 }
5687
5688 // Whether we can assign the interface type T to this type. The types
5689 // are known to not be identical. An interface assignment is only
5690 // permitted if T is known to implement all methods in THIS.
5691 // Otherwise a type guard is required.
5692
5693 bool
5694 Interface_type::is_compatible_for_assign(const Interface_type* t,
5695 std::string* reason) const
5696 {
5697 if (this->methods() == NULL)
5698 return true;
5699 for (Typed_identifier_list::const_iterator p = this->methods()->begin();
5700 p != this->methods()->end();
5701 ++p)
5702 {
5703 const Typed_identifier* m = t->find_method(p->name());
5704 if (m == NULL)
5705 {
5706 if (reason != NULL)
5707 {
5708 char buf[200];
5709 snprintf(buf, sizeof buf,
5710 _("need explicit conversion; missing method %s%s%s"),
5711 open_quote, Gogo::message_name(p->name()).c_str(),
5712 close_quote);
5713 reason->assign(buf);
5714 }
5715 return false;
5716 }
5717
5718 std::string subreason;
5719 if (!Type::are_identical(p->type(), m->type(), true, &subreason))
5720 {
5721 if (reason != NULL)
5722 {
5723 std::string n = Gogo::message_name(p->name());
5724 size_t len = 100 + n.length() + subreason.length();
5725 char* buf = new char[len];
5726 if (subreason.empty())
5727 snprintf(buf, len, _("incompatible type for method %s%s%s"),
5728 open_quote, n.c_str(), close_quote);
5729 else
5730 snprintf(buf, len,
5731 _("incompatible type for method %s%s%s (%s)"),
5732 open_quote, n.c_str(), close_quote,
5733 subreason.c_str());
5734 reason->assign(buf);
5735 delete[] buf;
5736 }
5737 return false;
5738 }
5739 }
5740
5741 return true;
5742 }
5743
5744 // Hash code.
5745
5746 unsigned int
5747 Interface_type::do_hash_for_method(Gogo* gogo) const
5748 {
5749 unsigned int ret = 0;
5750 if (this->methods_ != NULL)
5751 {
5752 for (Typed_identifier_list::const_iterator p = this->methods_->begin();
5753 p != this->methods_->end();
5754 ++p)
5755 {
5756 ret = Type::hash_string(p->name(), ret);
5757 ret += p->type()->hash_for_method(gogo);
5758 ret <<= 1;
5759 }
5760 }
5761 return ret;
5762 }
5763
5764 // Return true if T implements the interface. If it does not, and
5765 // REASON is not NULL, set *REASON to a useful error message.
5766
5767 bool
5768 Interface_type::implements_interface(const Type* t, std::string* reason) const
5769 {
5770 if (this->methods_ == NULL)
5771 return true;
5772
5773 bool is_pointer = false;
5774 const Named_type* nt = t->named_type();
5775 const Struct_type* st = t->struct_type();
5776 // If we start with a named type, we don't dereference it to find
5777 // methods.
5778 if (nt == NULL)
5779 {
5780 const Type* pt = t->points_to();
5781 if (pt != NULL)
5782 {
5783 // If T is a pointer to a named type, then we need to look at
5784 // the type to which it points.
5785 is_pointer = true;
5786 nt = pt->named_type();
5787 st = pt->struct_type();
5788 }
5789 }
5790
5791 // If we have a named type, get the methods from it rather than from
5792 // any struct type.
5793 if (nt != NULL)
5794 st = NULL;
5795
5796 // Only named and struct types have methods.
5797 if (nt == NULL && st == NULL)
5798 {
5799 if (reason != NULL)
5800 {
5801 if (t->points_to() != NULL
5802 && t->points_to()->interface_type() != NULL)
5803 reason->assign(_("pointer to interface type has no methods"));
5804 else
5805 reason->assign(_("type has no methods"));
5806 }
5807 return false;
5808 }
5809
5810 if (nt != NULL ? !nt->has_any_methods() : !st->has_any_methods())
5811 {
5812 if (reason != NULL)
5813 {
5814 if (t->points_to() != NULL
5815 && t->points_to()->interface_type() != NULL)
5816 reason->assign(_("pointer to interface type has no methods"));
5817 else
5818 reason->assign(_("type has no methods"));
5819 }
5820 return false;
5821 }
5822
5823 for (Typed_identifier_list::const_iterator p = this->methods_->begin();
5824 p != this->methods_->end();
5825 ++p)
5826 {
5827 bool is_ambiguous = false;
5828 Method* m = (nt != NULL
5829 ? nt->method_function(p->name(), &is_ambiguous)
5830 : st->method_function(p->name(), &is_ambiguous));
5831 if (m == NULL)
5832 {
5833 if (reason != NULL)
5834 {
5835 std::string n = Gogo::message_name(p->name());
5836 size_t len = n.length() + 100;
5837 char* buf = new char[len];
5838 if (is_ambiguous)
5839 snprintf(buf, len, _("ambiguous method %s%s%s"),
5840 open_quote, n.c_str(), close_quote);
5841 else
5842 snprintf(buf, len, _("missing method %s%s%s"),
5843 open_quote, n.c_str(), close_quote);
5844 reason->assign(buf);
5845 delete[] buf;
5846 }
5847 return false;
5848 }
5849
5850 Function_type *p_fn_type = p->type()->function_type();
5851 Function_type* m_fn_type = m->type()->function_type();
5852 gcc_assert(p_fn_type != NULL && m_fn_type != NULL);
5853 std::string subreason;
5854 if (!p_fn_type->is_identical(m_fn_type, true, true, &subreason))
5855 {
5856 if (reason != NULL)
5857 {
5858 std::string n = Gogo::message_name(p->name());
5859 size_t len = 100 + n.length() + subreason.length();
5860 char* buf = new char[len];
5861 if (subreason.empty())
5862 snprintf(buf, len, _("incompatible type for method %s%s%s"),
5863 open_quote, n.c_str(), close_quote);
5864 else
5865 snprintf(buf, len,
5866 _("incompatible type for method %s%s%s (%s)"),
5867 open_quote, n.c_str(), close_quote,
5868 subreason.c_str());
5869 reason->assign(buf);
5870 delete[] buf;
5871 }
5872 return false;
5873 }
5874
5875 if (!is_pointer && !m->is_value_method())
5876 {
5877 if (reason != NULL)
5878 {
5879 std::string n = Gogo::message_name(p->name());
5880 size_t len = 100 + n.length();
5881 char* buf = new char[len];
5882 snprintf(buf, len, _("method %s%s%s requires a pointer"),
5883 open_quote, n.c_str(), close_quote);
5884 reason->assign(buf);
5885 delete[] buf;
5886 }
5887 return false;
5888 }
5889 }
5890
5891 return true;
5892 }
5893
5894 // Return a tree for an interface type. An interface is a pointer to
5895 // a struct. The struct has three fields. The first field is a
5896 // pointer to the type descriptor for the dynamic type of the object.
5897 // The second field is a pointer to a table of methods for the
5898 // interface to be used with the object. The third field is the value
5899 // of the object itself.
5900
5901 tree
5902 Interface_type::do_get_tree(Gogo* gogo)
5903 {
5904 if (this->methods_ == NULL)
5905 {
5906 // At the tree level, use the same type for all empty
5907 // interfaces. This lets us assign them to each other directly
5908 // without triggering GIMPLE type errors.
5909 tree dtype = Type::make_type_descriptor_type()->get_tree(gogo);
5910 dtype = build_pointer_type(build_qualified_type(dtype, TYPE_QUAL_CONST));
5911 static tree empty_interface;
5912 return Gogo::builtin_struct(&empty_interface, "__go_empty_interface",
5913 NULL_TREE, 2,
5914 "__type_descriptor",
5915 dtype,
5916 "__object",
5917 ptr_type_node);
5918 }
5919
5920 return this->fill_in_tree(gogo, make_node(RECORD_TYPE));
5921 }
5922
5923 // Fill in the tree for an interface type. This is used for named
5924 // interface types.
5925
5926 tree
5927 Interface_type::fill_in_tree(Gogo* gogo, tree type)
5928 {
5929 gcc_assert(this->methods_ != NULL);
5930
5931 // Build the type of the table of methods.
5932
5933 tree method_table = make_node(RECORD_TYPE);
5934
5935 // The first field is a pointer to the type descriptor.
5936 tree name_tree = get_identifier("__type_descriptor");
5937 tree dtype = Type::make_type_descriptor_type()->get_tree(gogo);
5938 dtype = build_pointer_type(build_qualified_type(dtype, TYPE_QUAL_CONST));
5939 tree field = build_decl(this->location_, FIELD_DECL, name_tree, dtype);
5940 DECL_CONTEXT(field) = method_table;
5941 TYPE_FIELDS(method_table) = field;
5942
5943 std::string last_name = "";
5944 tree* pp = &DECL_CHAIN(field);
5945 for (Typed_identifier_list::const_iterator p = this->methods_->begin();
5946 p != this->methods_->end();
5947 ++p)
5948 {
5949 std::string name = Gogo::unpack_hidden_name(p->name());
5950 name_tree = get_identifier_with_length(name.data(), name.length());
5951 tree field_type = p->type()->get_tree(gogo);
5952 if (field_type == error_mark_node)
5953 return error_mark_node;
5954 field = build_decl(this->location_, FIELD_DECL, name_tree, field_type);
5955 DECL_CONTEXT(field) = method_table;
5956 *pp = field;
5957 pp = &DECL_CHAIN(field);
5958 // Sanity check: the names should be sorted.
5959 gcc_assert(p->name() > last_name);
5960 last_name = p->name();
5961 }
5962 layout_type(method_table);
5963
5964 tree mtype = build_pointer_type(method_table);
5965
5966 tree field_trees = NULL_TREE;
5967 pp = &field_trees;
5968
5969 name_tree = get_identifier("__methods");
5970 field = build_decl(this->location_, FIELD_DECL, name_tree, mtype);
5971 DECL_CONTEXT(field) = type;
5972 *pp = field;
5973 pp = &DECL_CHAIN(field);
5974
5975 name_tree = get_identifier("__object");
5976 field = build_decl(this->location_, FIELD_DECL, name_tree, ptr_type_node);
5977 DECL_CONTEXT(field) = type;
5978 *pp = field;
5979
5980 TYPE_FIELDS(type) = field_trees;
5981
5982 layout_type(type);
5983
5984 return type;
5985 }
5986
5987 // Initialization value.
5988
5989 tree
5990 Interface_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
5991 {
5992 if (is_clear)
5993 return NULL;
5994
5995 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
5996 for (tree field = TYPE_FIELDS(type_tree);
5997 field != NULL_TREE;
5998 field = DECL_CHAIN(field))
5999 {
6000 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
6001 elt->index = field;
6002 elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
6003 }
6004
6005 tree ret = build_constructor(type_tree, init);
6006 TREE_CONSTANT(ret) = 1;
6007 return ret;
6008 }
6009
6010 // The type of an interface type descriptor.
6011
6012 Type*
6013 Interface_type::make_interface_type_descriptor_type()
6014 {
6015 static Type* ret;
6016 if (ret == NULL)
6017 {
6018 Type* tdt = Type::make_type_descriptor_type();
6019 Type* ptdt = Type::make_type_descriptor_ptr_type();
6020
6021 Type* string_type = Type::lookup_string_type();
6022 Type* pointer_string_type = Type::make_pointer_type(string_type);
6023
6024 Struct_type* sm =
6025 Type::make_builtin_struct_type(3,
6026 "name", pointer_string_type,
6027 "pkgPath", pointer_string_type,
6028 "typ", ptdt);
6029
6030 Type* nsm = Type::make_builtin_named_type("imethod", sm);
6031
6032 Type* slice_nsm = Type::make_array_type(nsm, NULL);
6033
6034 Struct_type* s = Type::make_builtin_struct_type(2,
6035 "", tdt,
6036 "methods", slice_nsm);
6037
6038 ret = Type::make_builtin_named_type("InterfaceType", s);
6039 }
6040
6041 return ret;
6042 }
6043
6044 // Build a type descriptor for an interface type.
6045
6046 Expression*
6047 Interface_type::do_type_descriptor(Gogo* gogo, Named_type* name)
6048 {
6049 source_location bloc = BUILTINS_LOCATION;
6050
6051 Type* itdt = Interface_type::make_interface_type_descriptor_type();
6052
6053 const Struct_field_list* ifields = itdt->struct_type()->fields();
6054
6055 Expression_list* ivals = new Expression_list();
6056 ivals->reserve(2);
6057
6058 Struct_field_list::const_iterator pif = ifields->begin();
6059 gcc_assert(pif->field_name() == "commonType");
6060 ivals->push_back(this->type_descriptor_constructor(gogo,
6061 RUNTIME_TYPE_KIND_INTERFACE,
6062 name, NULL, true));
6063
6064 ++pif;
6065 gcc_assert(pif->field_name() == "methods");
6066
6067 Expression_list* methods = new Expression_list();
6068 if (this->methods_ != NULL && !this->methods_->empty())
6069 {
6070 Type* elemtype = pif->type()->array_type()->element_type();
6071
6072 methods->reserve(this->methods_->size());
6073 for (Typed_identifier_list::const_iterator pm = this->methods_->begin();
6074 pm != this->methods_->end();
6075 ++pm)
6076 {
6077 const Struct_field_list* mfields = elemtype->struct_type()->fields();
6078
6079 Expression_list* mvals = new Expression_list();
6080 mvals->reserve(3);
6081
6082 Struct_field_list::const_iterator pmf = mfields->begin();
6083 gcc_assert(pmf->field_name() == "name");
6084 std::string s = Gogo::unpack_hidden_name(pm->name());
6085 Expression* e = Expression::make_string(s, bloc);
6086 mvals->push_back(Expression::make_unary(OPERATOR_AND, e, bloc));
6087
6088 ++pmf;
6089 gcc_assert(pmf->field_name() == "pkgPath");
6090 if (!Gogo::is_hidden_name(pm->name()))
6091 mvals->push_back(Expression::make_nil(bloc));
6092 else
6093 {
6094 s = Gogo::hidden_name_prefix(pm->name());
6095 e = Expression::make_string(s, bloc);
6096 mvals->push_back(Expression::make_unary(OPERATOR_AND, e, bloc));
6097 }
6098
6099 ++pmf;
6100 gcc_assert(pmf->field_name() == "typ");
6101 mvals->push_back(Expression::make_type_descriptor(pm->type(), bloc));
6102
6103 ++pmf;
6104 gcc_assert(pmf == mfields->end());
6105
6106 e = Expression::make_struct_composite_literal(elemtype, mvals,
6107 bloc);
6108 methods->push_back(e);
6109 }
6110 }
6111
6112 ivals->push_back(Expression::make_slice_composite_literal(pif->type(),
6113 methods, bloc));
6114
6115 ++pif;
6116 gcc_assert(pif == ifields->end());
6117
6118 return Expression::make_struct_composite_literal(itdt, ivals, bloc);
6119 }
6120
6121 // Reflection string.
6122
6123 void
6124 Interface_type::do_reflection(Gogo* gogo, std::string* ret) const
6125 {
6126 ret->append("interface {");
6127 if (this->methods_ != NULL)
6128 {
6129 for (Typed_identifier_list::const_iterator p = this->methods_->begin();
6130 p != this->methods_->end();
6131 ++p)
6132 {
6133 if (p != this->methods_->begin())
6134 ret->append(";");
6135 ret->push_back(' ');
6136 ret->append(Gogo::unpack_hidden_name(p->name()));
6137 std::string sub = p->type()->reflection(gogo);
6138 gcc_assert(sub.compare(0, 4, "func") == 0);
6139 sub = sub.substr(4);
6140 ret->append(sub);
6141 }
6142 }
6143 ret->append(" }");
6144 }
6145
6146 // Mangled name.
6147
6148 void
6149 Interface_type::do_mangled_name(Gogo* gogo, std::string* ret) const
6150 {
6151 ret->push_back('I');
6152
6153 const Typed_identifier_list* methods = this->methods_;
6154 if (methods != NULL)
6155 {
6156 for (Typed_identifier_list::const_iterator p = methods->begin();
6157 p != methods->end();
6158 ++p)
6159 {
6160 std::string n = Gogo::unpack_hidden_name(p->name());
6161 char buf[20];
6162 snprintf(buf, sizeof buf, "%u_",
6163 static_cast<unsigned int>(n.length()));
6164 ret->append(buf);
6165 ret->append(n);
6166 this->append_mangled_name(p->type(), gogo, ret);
6167 }
6168 }
6169
6170 ret->push_back('e');
6171 }
6172
6173 // Export.
6174
6175 void
6176 Interface_type::do_export(Export* exp) const
6177 {
6178 exp->write_c_string("interface { ");
6179
6180 const Typed_identifier_list* methods = this->methods_;
6181 if (methods != NULL)
6182 {
6183 for (Typed_identifier_list::const_iterator pm = methods->begin();
6184 pm != methods->end();
6185 ++pm)
6186 {
6187 exp->write_string(pm->name());
6188 exp->write_c_string(" (");
6189
6190 const Function_type* fntype = pm->type()->function_type();
6191
6192 bool first = true;
6193 const Typed_identifier_list* parameters = fntype->parameters();
6194 if (parameters != NULL)
6195 {
6196 bool is_varargs = fntype->is_varargs();
6197 for (Typed_identifier_list::const_iterator pp =
6198 parameters->begin();
6199 pp != parameters->end();
6200 ++pp)
6201 {
6202 if (first)
6203 first = false;
6204 else
6205 exp->write_c_string(", ");
6206 if (!is_varargs || pp + 1 != parameters->end())
6207 exp->write_type(pp->type());
6208 else
6209 {
6210 exp->write_c_string("...");
6211 Type *pptype = pp->type();
6212 exp->write_type(pptype->array_type()->element_type());
6213 }
6214 }
6215 }
6216
6217 exp->write_c_string(")");
6218
6219 const Typed_identifier_list* results = fntype->results();
6220 if (results != NULL)
6221 {
6222 exp->write_c_string(" ");
6223 if (results->size() == 1)
6224 exp->write_type(results->begin()->type());
6225 else
6226 {
6227 first = true;
6228 exp->write_c_string("(");
6229 for (Typed_identifier_list::const_iterator p =
6230 results->begin();
6231 p != results->end();
6232 ++p)
6233 {
6234 if (first)
6235 first = false;
6236 else
6237 exp->write_c_string(", ");
6238 exp->write_type(p->type());
6239 }
6240 exp->write_c_string(")");
6241 }
6242 }
6243
6244 exp->write_c_string("; ");
6245 }
6246 }
6247
6248 exp->write_c_string("}");
6249 }
6250
6251 // Import an interface type.
6252
6253 Interface_type*
6254 Interface_type::do_import(Import* imp)
6255 {
6256 imp->require_c_string("interface { ");
6257
6258 Typed_identifier_list* methods = new Typed_identifier_list;
6259 while (imp->peek_char() != '}')
6260 {
6261 std::string name = imp->read_identifier();
6262 imp->require_c_string(" (");
6263
6264 Typed_identifier_list* parameters;
6265 bool is_varargs = false;
6266 if (imp->peek_char() == ')')
6267 parameters = NULL;
6268 else
6269 {
6270 parameters = new Typed_identifier_list;
6271 while (true)
6272 {
6273 if (imp->match_c_string("..."))
6274 {
6275 imp->advance(3);
6276 is_varargs = true;
6277 }
6278
6279 Type* ptype = imp->read_type();
6280 if (is_varargs)
6281 ptype = Type::make_array_type(ptype, NULL);
6282 parameters->push_back(Typed_identifier(Import::import_marker,
6283 ptype, imp->location()));
6284 if (imp->peek_char() != ',')
6285 break;
6286 gcc_assert(!is_varargs);
6287 imp->require_c_string(", ");
6288 }
6289 }
6290 imp->require_c_string(")");
6291
6292 Typed_identifier_list* results;
6293 if (imp->peek_char() != ' ')
6294 results = NULL;
6295 else
6296 {
6297 results = new Typed_identifier_list;
6298 imp->advance(1);
6299 if (imp->peek_char() != '(')
6300 {
6301 Type* rtype = imp->read_type();
6302 results->push_back(Typed_identifier(Import::import_marker,
6303 rtype, imp->location()));
6304 }
6305 else
6306 {
6307 imp->advance(1);
6308 while (true)
6309 {
6310 Type* rtype = imp->read_type();
6311 results->push_back(Typed_identifier(Import::import_marker,
6312 rtype, imp->location()));
6313 if (imp->peek_char() != ',')
6314 break;
6315 imp->require_c_string(", ");
6316 }
6317 imp->require_c_string(")");
6318 }
6319 }
6320
6321 Function_type* fntype = Type::make_function_type(NULL, parameters,
6322 results,
6323 imp->location());
6324 if (is_varargs)
6325 fntype->set_is_varargs();
6326 methods->push_back(Typed_identifier(name, fntype, imp->location()));
6327
6328 imp->require_c_string("; ");
6329 }
6330
6331 imp->require_c_string("}");
6332
6333 if (methods->empty())
6334 {
6335 delete methods;
6336 methods = NULL;
6337 }
6338
6339 return Type::make_interface_type(methods, imp->location());
6340 }
6341
6342 // Make an interface type.
6343
6344 Interface_type*
6345 Type::make_interface_type(Typed_identifier_list* methods,
6346 source_location location)
6347 {
6348 return new Interface_type(methods, location);
6349 }
6350
6351 // Class Method.
6352
6353 // Bind a method to an object.
6354
6355 Expression*
6356 Method::bind_method(Expression* expr, source_location location) const
6357 {
6358 if (this->stub_ == NULL)
6359 {
6360 // When there is no stub object, the binding is determined by
6361 // the child class.
6362 return this->do_bind_method(expr, location);
6363 }
6364
6365 Expression* func = Expression::make_func_reference(this->stub_, NULL,
6366 location);
6367 return Expression::make_bound_method(expr, func, location);
6368 }
6369
6370 // Return the named object associated with a method. This may only be
6371 // called after methods are finalized.
6372
6373 Named_object*
6374 Method::named_object() const
6375 {
6376 if (this->stub_ != NULL)
6377 return this->stub_;
6378 return this->do_named_object();
6379 }
6380
6381 // Class Named_method.
6382
6383 // The type of the method.
6384
6385 Function_type*
6386 Named_method::do_type() const
6387 {
6388 if (this->named_object_->is_function())
6389 return this->named_object_->func_value()->type();
6390 else if (this->named_object_->is_function_declaration())
6391 return this->named_object_->func_declaration_value()->type();
6392 else
6393 gcc_unreachable();
6394 }
6395
6396 // Return the location of the method receiver.
6397
6398 source_location
6399 Named_method::do_receiver_location() const
6400 {
6401 return this->do_type()->receiver()->location();
6402 }
6403
6404 // Bind a method to an object.
6405
6406 Expression*
6407 Named_method::do_bind_method(Expression* expr, source_location location) const
6408 {
6409 Expression* func = Expression::make_func_reference(this->named_object_, NULL,
6410 location);
6411 Bound_method_expression* bme = Expression::make_bound_method(expr, func,
6412 location);
6413 // If this is not a local method, and it does not use a stub, then
6414 // the real method expects a different type. We need to cast the
6415 // first argument.
6416 if (this->depth() > 0 && !this->needs_stub_method())
6417 {
6418 Function_type* ftype = this->do_type();
6419 gcc_assert(ftype->is_method());
6420 Type* frtype = ftype->receiver()->type();
6421 bme->set_first_argument_type(frtype);
6422 }
6423 return bme;
6424 }
6425
6426 // Class Interface_method.
6427
6428 // Bind a method to an object.
6429
6430 Expression*
6431 Interface_method::do_bind_method(Expression* expr,
6432 source_location location) const
6433 {
6434 return Expression::make_interface_field_reference(expr, this->name_,
6435 location);
6436 }
6437
6438 // Class Methods.
6439
6440 // Insert a new method. Return true if it was inserted, false
6441 // otherwise.
6442
6443 bool
6444 Methods::insert(const std::string& name, Method* m)
6445 {
6446 std::pair<Method_map::iterator, bool> ins =
6447 this->methods_.insert(std::make_pair(name, m));
6448 if (ins.second)
6449 return true;
6450 else
6451 {
6452 Method* old_method = ins.first->second;
6453 if (m->depth() < old_method->depth())
6454 {
6455 delete old_method;
6456 ins.first->second = m;
6457 return true;
6458 }
6459 else
6460 {
6461 if (m->depth() == old_method->depth())
6462 old_method->set_is_ambiguous();
6463 return false;
6464 }
6465 }
6466 }
6467
6468 // Return the number of unambiguous methods.
6469
6470 size_t
6471 Methods::count() const
6472 {
6473 size_t ret = 0;
6474 for (Method_map::const_iterator p = this->methods_.begin();
6475 p != this->methods_.end();
6476 ++p)
6477 if (!p->second->is_ambiguous())
6478 ++ret;
6479 return ret;
6480 }
6481
6482 // Class Named_type.
6483
6484 // Return the name of the type.
6485
6486 const std::string&
6487 Named_type::name() const
6488 {
6489 return this->named_object_->name();
6490 }
6491
6492 // Return the name of the type to use in an error message.
6493
6494 std::string
6495 Named_type::message_name() const
6496 {
6497 return this->named_object_->message_name();
6498 }
6499
6500 // Return the base type for this type. We have to be careful about
6501 // circular type definitions, which are invalid but may be seen here.
6502
6503 Type*
6504 Named_type::named_base()
6505 {
6506 if (this->seen_)
6507 return this;
6508 this->seen_ = true;
6509 Type* ret = this->type_->base();
6510 this->seen_ = false;
6511 return ret;
6512 }
6513
6514 const Type*
6515 Named_type::named_base() const
6516 {
6517 if (this->seen_)
6518 return this;
6519 this->seen_ = true;
6520 const Type* ret = this->type_->base();
6521 this->seen_ = false;
6522 return ret;
6523 }
6524
6525 // Return whether this is an error type. We have to be careful about
6526 // circular type definitions, which are invalid but may be seen here.
6527
6528 bool
6529 Named_type::is_named_error_type() const
6530 {
6531 if (this->seen_)
6532 return false;
6533 this->seen_ = true;
6534 bool ret = this->type_->is_error_type();
6535 this->seen_ = false;
6536 return ret;
6537 }
6538
6539 // Add a method to this type.
6540
6541 Named_object*
6542 Named_type::add_method(const std::string& name, Function* function)
6543 {
6544 if (this->local_methods_ == NULL)
6545 this->local_methods_ = new Bindings(NULL);
6546 return this->local_methods_->add_function(name, NULL, function);
6547 }
6548
6549 // Add a method declaration to this type.
6550
6551 Named_object*
6552 Named_type::add_method_declaration(const std::string& name, Package* package,
6553 Function_type* type,
6554 source_location location)
6555 {
6556 if (this->local_methods_ == NULL)
6557 this->local_methods_ = new Bindings(NULL);
6558 return this->local_methods_->add_function_declaration(name, package, type,
6559 location);
6560 }
6561
6562 // Add an existing method to this type.
6563
6564 void
6565 Named_type::add_existing_method(Named_object* no)
6566 {
6567 if (this->local_methods_ == NULL)
6568 this->local_methods_ = new Bindings(NULL);
6569 this->local_methods_->add_named_object(no);
6570 }
6571
6572 // Look for a local method NAME, and returns its named object, or NULL
6573 // if not there.
6574
6575 Named_object*
6576 Named_type::find_local_method(const std::string& name) const
6577 {
6578 if (this->local_methods_ == NULL)
6579 return NULL;
6580 return this->local_methods_->lookup(name);
6581 }
6582
6583 // Return whether NAME is an unexported field or method, for better
6584 // error reporting.
6585
6586 bool
6587 Named_type::is_unexported_local_method(Gogo* gogo,
6588 const std::string& name) const
6589 {
6590 Bindings* methods = this->local_methods_;
6591 if (methods != NULL)
6592 {
6593 for (Bindings::const_declarations_iterator p =
6594 methods->begin_declarations();
6595 p != methods->end_declarations();
6596 ++p)
6597 {
6598 if (Gogo::is_hidden_name(p->first)
6599 && name == Gogo::unpack_hidden_name(p->first)
6600 && gogo->pack_hidden_name(name, false) != p->first)
6601 return true;
6602 }
6603 }
6604 return false;
6605 }
6606
6607 // Build the complete list of methods for this type, which means
6608 // recursively including all methods for anonymous fields. Create all
6609 // stub methods.
6610
6611 void
6612 Named_type::finalize_methods(Gogo* gogo)
6613 {
6614 if (this->local_methods_ != NULL
6615 && (this->points_to() != NULL || this->interface_type() != NULL))
6616 {
6617 const Bindings* lm = this->local_methods_;
6618 for (Bindings::const_declarations_iterator p = lm->begin_declarations();
6619 p != lm->end_declarations();
6620 ++p)
6621 error_at(p->second->location(),
6622 "invalid pointer or interface receiver type");
6623 delete this->local_methods_;
6624 this->local_methods_ = NULL;
6625 return;
6626 }
6627
6628 Type::finalize_methods(gogo, this, this->location_, &this->all_methods_);
6629 }
6630
6631 // Return the method NAME, or NULL if there isn't one or if it is
6632 // ambiguous. Set *IS_AMBIGUOUS if the method exists but is
6633 // ambiguous.
6634
6635 Method*
6636 Named_type::method_function(const std::string& name, bool* is_ambiguous) const
6637 {
6638 return Type::method_function(this->all_methods_, name, is_ambiguous);
6639 }
6640
6641 // Return a pointer to the interface method table for this type for
6642 // the interface INTERFACE. IS_POINTER is true if this is for a
6643 // pointer to THIS.
6644
6645 tree
6646 Named_type::interface_method_table(Gogo* gogo, const Interface_type* interface,
6647 bool is_pointer)
6648 {
6649 gcc_assert(!interface->is_empty());
6650
6651 Interface_method_tables** pimt = (is_pointer
6652 ? &this->interface_method_tables_
6653 : &this->pointer_interface_method_tables_);
6654
6655 if (*pimt == NULL)
6656 *pimt = new Interface_method_tables(5);
6657
6658 std::pair<const Interface_type*, tree> val(interface, NULL_TREE);
6659 std::pair<Interface_method_tables::iterator, bool> ins = (*pimt)->insert(val);
6660
6661 if (ins.second)
6662 {
6663 // This is a new entry in the hash table.
6664 gcc_assert(ins.first->second == NULL_TREE);
6665 ins.first->second = gogo->interface_method_table_for_type(interface,
6666 this,
6667 is_pointer);
6668 }
6669
6670 tree decl = ins.first->second;
6671 if (decl == error_mark_node)
6672 return error_mark_node;
6673 gcc_assert(decl != NULL_TREE && TREE_CODE(decl) == VAR_DECL);
6674 return build_fold_addr_expr(decl);
6675 }
6676
6677 // Return whether a named type has any hidden fields.
6678
6679 bool
6680 Named_type::named_type_has_hidden_fields(std::string* reason) const
6681 {
6682 if (this->seen_)
6683 return false;
6684 this->seen_ = true;
6685 bool ret = this->type_->has_hidden_fields(this, reason);
6686 this->seen_ = false;
6687 return ret;
6688 }
6689
6690 // Look for a use of a complete type within another type. This is
6691 // used to check that we don't try to use a type within itself.
6692
6693 class Find_type_use : public Traverse
6694 {
6695 public:
6696 Find_type_use(Type* find_type)
6697 : Traverse(traverse_types),
6698 find_type_(find_type), found_(false)
6699 { }
6700
6701 // Whether we found the type.
6702 bool
6703 found() const
6704 { return this->found_; }
6705
6706 protected:
6707 int
6708 type(Type*);
6709
6710 private:
6711 // The type we are looking for.
6712 Type* find_type_;
6713 // Whether we found the type.
6714 bool found_;
6715 };
6716
6717 // Check for FIND_TYPE in TYPE.
6718
6719 int
6720 Find_type_use::type(Type* type)
6721 {
6722 if (this->find_type_ == type)
6723 {
6724 this->found_ = true;
6725 return TRAVERSE_EXIT;
6726 }
6727 // It's OK if we see a reference to the type in any type which is
6728 // essentially a pointer: a pointer, a slice, a function, a map, or
6729 // a channel.
6730 if (type->points_to() != NULL
6731 || type->is_open_array_type()
6732 || type->function_type() != NULL
6733 || type->map_type() != NULL
6734 || type->channel_type() != NULL)
6735 return TRAVERSE_SKIP_COMPONENTS;
6736
6737 // For an interface, a reference to the type in a method type should
6738 // be ignored, but we have to consider direct inheritance. When
6739 // this is called, there may be cases of direct inheritance
6740 // represented as a method with no name.
6741 if (type->interface_type() != NULL)
6742 {
6743 const Typed_identifier_list* methods = type->interface_type()->methods();
6744 if (methods != NULL)
6745 {
6746 for (Typed_identifier_list::const_iterator p = methods->begin();
6747 p != methods->end();
6748 ++p)
6749 {
6750 if (p->name().empty())
6751 {
6752 if (Type::traverse(p->type(), this) == TRAVERSE_EXIT)
6753 return TRAVERSE_EXIT;
6754 }
6755 }
6756 }
6757 return TRAVERSE_SKIP_COMPONENTS;
6758 }
6759
6760 return TRAVERSE_CONTINUE;
6761 }
6762
6763 // Verify that a named type does not refer to itself.
6764
6765 bool
6766 Named_type::do_verify()
6767 {
6768 Find_type_use find(this);
6769 Type::traverse(this->type_, &find);
6770 if (find.found())
6771 {
6772 error_at(this->location_, "invalid recursive type %qs",
6773 this->message_name().c_str());
6774 this->is_error_ = true;
6775 return false;
6776 }
6777
6778 // Check whether any of the local methods overloads an existing
6779 // struct field or interface method. We don't need to check the
6780 // list of methods against itself: that is handled by the Bindings
6781 // code.
6782 if (this->local_methods_ != NULL)
6783 {
6784 Struct_type* st = this->type_->struct_type();
6785 Interface_type* it = this->type_->interface_type();
6786 bool found_dup = false;
6787 if (st != NULL || it != NULL)
6788 {
6789 for (Bindings::const_declarations_iterator p =
6790 this->local_methods_->begin_declarations();
6791 p != this->local_methods_->end_declarations();
6792 ++p)
6793 {
6794 const std::string& name(p->first);
6795 if (st != NULL && st->find_local_field(name, NULL) != NULL)
6796 {
6797 error_at(p->second->location(),
6798 "method %qs redeclares struct field name",
6799 Gogo::message_name(name).c_str());
6800 found_dup = true;
6801 }
6802 if (it != NULL && it->find_method(name) != NULL)
6803 {
6804 error_at(p->second->location(),
6805 "method %qs redeclares interface method name",
6806 Gogo::message_name(name).c_str());
6807 found_dup = true;
6808 }
6809 }
6810 }
6811 if (found_dup)
6812 return false;
6813 }
6814
6815 return true;
6816 }
6817
6818 // Return a hash code. This is used for method lookup. We simply
6819 // hash on the name itself.
6820
6821 unsigned int
6822 Named_type::do_hash_for_method(Gogo* gogo) const
6823 {
6824 const std::string& name(this->named_object()->name());
6825 unsigned int ret = Type::hash_string(name, 0);
6826
6827 // GOGO will be NULL here when called from Type_hash_identical.
6828 // That is OK because that is only used for internal hash tables
6829 // where we are going to be comparing named types for equality. In
6830 // other cases, which are cases where the runtime is going to
6831 // compare hash codes to see if the types are the same, we need to
6832 // include the package prefix and name in the hash.
6833 if (gogo != NULL && !Gogo::is_hidden_name(name) && !this->is_builtin())
6834 {
6835 const Package* package = this->named_object()->package();
6836 if (package == NULL)
6837 {
6838 ret = Type::hash_string(gogo->unique_prefix(), ret);
6839 ret = Type::hash_string(gogo->package_name(), ret);
6840 }
6841 else
6842 {
6843 ret = Type::hash_string(package->unique_prefix(), ret);
6844 ret = Type::hash_string(package->name(), ret);
6845 }
6846 }
6847
6848 return ret;
6849 }
6850
6851 // Get a tree for a named type.
6852
6853 tree
6854 Named_type::do_get_tree(Gogo* gogo)
6855 {
6856 if (this->is_error_)
6857 return error_mark_node;
6858
6859 // Go permits types to refer to themselves in various ways. Break
6860 // the recursion here.
6861 tree t;
6862 switch (this->type_->forwarded()->classification())
6863 {
6864 case TYPE_ERROR:
6865 return error_mark_node;
6866
6867 case TYPE_VOID:
6868 case TYPE_BOOLEAN:
6869 case TYPE_INTEGER:
6870 case TYPE_FLOAT:
6871 case TYPE_COMPLEX:
6872 case TYPE_STRING:
6873 case TYPE_NIL:
6874 // These types can not refer to themselves.
6875 case TYPE_MAP:
6876 case TYPE_CHANNEL:
6877 // All maps and channels have the same type in GENERIC.
6878 t = Type::get_named_type_tree(gogo, this->type_);
6879 if (t == error_mark_node)
6880 return error_mark_node;
6881 // Build a copy to set TYPE_NAME.
6882 t = build_variant_type_copy(t);
6883 break;
6884
6885 case TYPE_FUNCTION:
6886 // Don't recur infinitely if a function type refers to itself.
6887 // Ideally we would build a circular data structure here, but
6888 // GENERIC can't handle them.
6889 if (this->seen_)
6890 return ptr_type_node;
6891 this->seen_ = true;
6892 t = Type::get_named_type_tree(gogo, this->type_);
6893 this->seen_ = false;
6894 if (t == error_mark_node)
6895 return error_mark_node;
6896 t = build_variant_type_copy(t);
6897 break;
6898
6899 case TYPE_POINTER:
6900 // Don't recur infinitely if a pointer type refers to itself.
6901 // Ideally we would build a circular data structure here, but
6902 // GENERIC can't handle them.
6903 if (this->seen_)
6904 return ptr_type_node;
6905 this->seen_ = true;
6906 t = Type::get_named_type_tree(gogo, this->type_);
6907 this->seen_ = false;
6908 if (t == error_mark_node)
6909 return error_mark_node;
6910 t = build_variant_type_copy(t);
6911 break;
6912
6913 case TYPE_STRUCT:
6914 if (this->named_tree_ != NULL_TREE)
6915 return this->named_tree_;
6916 t = make_node(RECORD_TYPE);
6917 this->named_tree_ = t;
6918 t = this->type_->struct_type()->fill_in_tree(gogo, t);
6919 if (t == error_mark_node)
6920 return error_mark_node;
6921 break;
6922
6923 case TYPE_ARRAY:
6924 if (!this->is_open_array_type())
6925 t = Type::get_named_type_tree(gogo, this->type_);
6926 else
6927 {
6928 if (this->named_tree_ != NULL_TREE)
6929 return this->named_tree_;
6930 t = gogo->slice_type_tree(void_type_node);
6931 this->named_tree_ = t;
6932 t = this->type_->array_type()->fill_in_tree(gogo, t);
6933 }
6934 if (t == error_mark_node)
6935 return error_mark_node;
6936 t = build_variant_type_copy(t);
6937 break;
6938
6939 case TYPE_INTERFACE:
6940 if (this->type_->interface_type()->is_empty())
6941 {
6942 t = Type::get_named_type_tree(gogo, this->type_);
6943 if (t == error_mark_node)
6944 return error_mark_node;
6945 t = build_variant_type_copy(t);
6946 }
6947 else
6948 {
6949 if (this->named_tree_ != NULL_TREE)
6950 return this->named_tree_;
6951 t = make_node(RECORD_TYPE);
6952 this->named_tree_ = t;
6953 t = this->type_->interface_type()->fill_in_tree(gogo, t);
6954 if (t == error_mark_node)
6955 return error_mark_node;
6956 }
6957 break;
6958
6959 case TYPE_NAMED:
6960 {
6961 // When a named type T1 is defined as another named type T2,
6962 // the definition must simply be "type T1 T2". If the
6963 // definition of T2 may refer to T1, then we must simply
6964 // return the type for T2 here. It's not precisely correct,
6965 // but it's as close as we can get with GENERIC.
6966 bool was_seen = this->seen_;
6967 this->seen_ = true;
6968 t = Type::get_named_type_tree(gogo, this->type_);
6969 this->seen_ = was_seen;
6970 if (was_seen)
6971 return t;
6972 if (t == error_mark_node)
6973 return error_mark_node;
6974 t = build_variant_type_copy(t);
6975 }
6976 break;
6977
6978 case TYPE_FORWARD:
6979 // An undefined forwarding type. Make sure the error is
6980 // emitted.
6981 this->type_->forward_declaration_type()->real_type();
6982 return error_mark_node;
6983
6984 default:
6985 case TYPE_SINK:
6986 case TYPE_CALL_MULTIPLE_RESULT:
6987 gcc_unreachable();
6988 }
6989
6990 tree id = this->named_object_->get_id(gogo);
6991 tree decl = build_decl(this->location_, TYPE_DECL, id, t);
6992 TYPE_NAME(t) = decl;
6993
6994 return t;
6995 }
6996
6997 // Build a type descriptor for a named type.
6998
6999 Expression*
7000 Named_type::do_type_descriptor(Gogo* gogo, Named_type* name)
7001 {
7002 // If NAME is not NULL, then we don't really want the type
7003 // descriptor for this type; we want the descriptor for the
7004 // underlying type, giving it the name NAME.
7005 return this->named_type_descriptor(gogo, this->type_,
7006 name == NULL ? this : name);
7007 }
7008
7009 // Add to the reflection string. This is used mostly for the name of
7010 // the type used in a type descriptor, not for actual reflection
7011 // strings.
7012
7013 void
7014 Named_type::do_reflection(Gogo* gogo, std::string* ret) const
7015 {
7016 if (this->location() != BUILTINS_LOCATION)
7017 {
7018 const Package* package = this->named_object_->package();
7019 if (package != NULL)
7020 ret->append(package->name());
7021 else
7022 ret->append(gogo->package_name());
7023 ret->push_back('.');
7024 }
7025 if (this->in_function_ != NULL)
7026 {
7027 ret->append(Gogo::unpack_hidden_name(this->in_function_->name()));
7028 ret->push_back('$');
7029 }
7030 ret->append(Gogo::unpack_hidden_name(this->named_object_->name()));
7031 }
7032
7033 // Get the mangled name.
7034
7035 void
7036 Named_type::do_mangled_name(Gogo* gogo, std::string* ret) const
7037 {
7038 Named_object* no = this->named_object_;
7039 std::string name;
7040 if (this->location() == BUILTINS_LOCATION)
7041 gcc_assert(this->in_function_ == NULL);
7042 else
7043 {
7044 const std::string& unique_prefix(no->package() == NULL
7045 ? gogo->unique_prefix()
7046 : no->package()->unique_prefix());
7047 const std::string& package_name(no->package() == NULL
7048 ? gogo->package_name()
7049 : no->package()->name());
7050 name = unique_prefix;
7051 name.append(1, '.');
7052 name.append(package_name);
7053 name.append(1, '.');
7054 if (this->in_function_ != NULL)
7055 {
7056 name.append(Gogo::unpack_hidden_name(this->in_function_->name()));
7057 name.append(1, '$');
7058 }
7059 }
7060 name.append(Gogo::unpack_hidden_name(no->name()));
7061 char buf[20];
7062 snprintf(buf, sizeof buf, "N%u_", static_cast<unsigned int>(name.length()));
7063 ret->append(buf);
7064 ret->append(name);
7065 }
7066
7067 // Export the type. This is called to export a global type.
7068
7069 void
7070 Named_type::export_named_type(Export* exp, const std::string&) const
7071 {
7072 // We don't need to write the name of the type here, because it will
7073 // be written by Export::write_type anyhow.
7074 exp->write_c_string("type ");
7075 exp->write_type(this);
7076 exp->write_c_string(";\n");
7077 }
7078
7079 // Import a named type.
7080
7081 void
7082 Named_type::import_named_type(Import* imp, Named_type** ptype)
7083 {
7084 imp->require_c_string("type ");
7085 Type *type = imp->read_type();
7086 *ptype = type->named_type();
7087 gcc_assert(*ptype != NULL);
7088 imp->require_c_string(";\n");
7089 }
7090
7091 // Export the type when it is referenced by another type. In this
7092 // case Export::export_type will already have issued the name.
7093
7094 void
7095 Named_type::do_export(Export* exp) const
7096 {
7097 exp->write_type(this->type_);
7098
7099 // To save space, we only export the methods directly attached to
7100 // this type.
7101 Bindings* methods = this->local_methods_;
7102 if (methods == NULL)
7103 return;
7104
7105 exp->write_c_string("\n");
7106 for (Bindings::const_definitions_iterator p = methods->begin_definitions();
7107 p != methods->end_definitions();
7108 ++p)
7109 {
7110 exp->write_c_string(" ");
7111 (*p)->export_named_object(exp);
7112 }
7113
7114 for (Bindings::const_declarations_iterator p = methods->begin_declarations();
7115 p != methods->end_declarations();
7116 ++p)
7117 {
7118 if (p->second->is_function_declaration())
7119 {
7120 exp->write_c_string(" ");
7121 p->second->export_named_object(exp);
7122 }
7123 }
7124 }
7125
7126 // Make a named type.
7127
7128 Named_type*
7129 Type::make_named_type(Named_object* named_object, Type* type,
7130 source_location location)
7131 {
7132 return new Named_type(named_object, type, location);
7133 }
7134
7135 // Finalize the methods for TYPE. It will be a named type or a struct
7136 // type. This sets *ALL_METHODS to the list of methods, and builds
7137 // all required stubs.
7138
7139 void
7140 Type::finalize_methods(Gogo* gogo, const Type* type, source_location location,
7141 Methods** all_methods)
7142 {
7143 *all_methods = NULL;
7144 Types_seen types_seen;
7145 Type::add_methods_for_type(type, NULL, 0, false, false, &types_seen,
7146 all_methods);
7147 Type::build_stub_methods(gogo, type, *all_methods, location);
7148 }
7149
7150 // Add the methods for TYPE to *METHODS. FIELD_INDEXES is used to
7151 // build up the struct field indexes as we go. DEPTH is the depth of
7152 // the field within TYPE. IS_EMBEDDED_POINTER is true if we are
7153 // adding these methods for an anonymous field with pointer type.
7154 // NEEDS_STUB_METHOD is true if we need to use a stub method which
7155 // calls the real method. TYPES_SEEN is used to avoid infinite
7156 // recursion.
7157
7158 void
7159 Type::add_methods_for_type(const Type* type,
7160 const Method::Field_indexes* field_indexes,
7161 unsigned int depth,
7162 bool is_embedded_pointer,
7163 bool needs_stub_method,
7164 Types_seen* types_seen,
7165 Methods** methods)
7166 {
7167 // Pointer types may not have methods.
7168 if (type->points_to() != NULL)
7169 return;
7170
7171 const Named_type* nt = type->named_type();
7172 if (nt != NULL)
7173 {
7174 std::pair<Types_seen::iterator, bool> ins = types_seen->insert(nt);
7175 if (!ins.second)
7176 return;
7177 }
7178
7179 if (nt != NULL)
7180 Type::add_local_methods_for_type(nt, field_indexes, depth,
7181 is_embedded_pointer, needs_stub_method,
7182 methods);
7183
7184 Type::add_embedded_methods_for_type(type, field_indexes, depth,
7185 is_embedded_pointer, needs_stub_method,
7186 types_seen, methods);
7187
7188 // If we are called with depth > 0, then we are looking at an
7189 // anonymous field of a struct. If such a field has interface type,
7190 // then we need to add the interface methods. We don't want to add
7191 // them when depth == 0, because we will already handle them
7192 // following the usual rules for an interface type.
7193 if (depth > 0)
7194 Type::add_interface_methods_for_type(type, field_indexes, depth, methods);
7195 }
7196
7197 // Add the local methods for the named type NT to *METHODS. The
7198 // parameters are as for add_methods_to_type.
7199
7200 void
7201 Type::add_local_methods_for_type(const Named_type* nt,
7202 const Method::Field_indexes* field_indexes,
7203 unsigned int depth,
7204 bool is_embedded_pointer,
7205 bool needs_stub_method,
7206 Methods** methods)
7207 {
7208 const Bindings* local_methods = nt->local_methods();
7209 if (local_methods == NULL)
7210 return;
7211
7212 if (*methods == NULL)
7213 *methods = new Methods();
7214
7215 for (Bindings::const_declarations_iterator p =
7216 local_methods->begin_declarations();
7217 p != local_methods->end_declarations();
7218 ++p)
7219 {
7220 Named_object* no = p->second;
7221 bool is_value_method = (is_embedded_pointer
7222 || !Type::method_expects_pointer(no));
7223 Method* m = new Named_method(no, field_indexes, depth, is_value_method,
7224 (needs_stub_method
7225 || (depth > 0 && is_value_method)));
7226 if (!(*methods)->insert(no->name(), m))
7227 delete m;
7228 }
7229 }
7230
7231 // Add the embedded methods for TYPE to *METHODS. These are the
7232 // methods attached to anonymous fields. The parameters are as for
7233 // add_methods_to_type.
7234
7235 void
7236 Type::add_embedded_methods_for_type(const Type* type,
7237 const Method::Field_indexes* field_indexes,
7238 unsigned int depth,
7239 bool is_embedded_pointer,
7240 bool needs_stub_method,
7241 Types_seen* types_seen,
7242 Methods** methods)
7243 {
7244 // Look for anonymous fields in TYPE. TYPE has fields if it is a
7245 // struct.
7246 const Struct_type* st = type->struct_type();
7247 if (st == NULL)
7248 return;
7249
7250 const Struct_field_list* fields = st->fields();
7251 if (fields == NULL)
7252 return;
7253
7254 unsigned int i = 0;
7255 for (Struct_field_list::const_iterator pf = fields->begin();
7256 pf != fields->end();
7257 ++pf, ++i)
7258 {
7259 if (!pf->is_anonymous())
7260 continue;
7261
7262 Type* ftype = pf->type();
7263 bool is_pointer = false;
7264 if (ftype->points_to() != NULL)
7265 {
7266 ftype = ftype->points_to();
7267 is_pointer = true;
7268 }
7269 Named_type* fnt = ftype->named_type();
7270 if (fnt == NULL)
7271 {
7272 // This is an error, but it will be diagnosed elsewhere.
7273 continue;
7274 }
7275
7276 Method::Field_indexes* sub_field_indexes = new Method::Field_indexes();
7277 sub_field_indexes->next = field_indexes;
7278 sub_field_indexes->field_index = i;
7279
7280 Type::add_methods_for_type(fnt, sub_field_indexes, depth + 1,
7281 (is_embedded_pointer || is_pointer),
7282 (needs_stub_method
7283 || is_pointer
7284 || i > 0),
7285 types_seen,
7286 methods);
7287 }
7288 }
7289
7290 // If TYPE is an interface type, then add its method to *METHODS.
7291 // This is for interface methods attached to an anonymous field. The
7292 // parameters are as for add_methods_for_type.
7293
7294 void
7295 Type::add_interface_methods_for_type(const Type* type,
7296 const Method::Field_indexes* field_indexes,
7297 unsigned int depth,
7298 Methods** methods)
7299 {
7300 const Interface_type* it = type->interface_type();
7301 if (it == NULL)
7302 return;
7303
7304 const Typed_identifier_list* imethods = it->methods();
7305 if (imethods == NULL)
7306 return;
7307
7308 if (*methods == NULL)
7309 *methods = new Methods();
7310
7311 for (Typed_identifier_list::const_iterator pm = imethods->begin();
7312 pm != imethods->end();
7313 ++pm)
7314 {
7315 Function_type* fntype = pm->type()->function_type();
7316 gcc_assert(fntype != NULL && !fntype->is_method());
7317 fntype = fntype->copy_with_receiver(const_cast<Type*>(type));
7318 Method* m = new Interface_method(pm->name(), pm->location(), fntype,
7319 field_indexes, depth);
7320 if (!(*methods)->insert(pm->name(), m))
7321 delete m;
7322 }
7323 }
7324
7325 // Build stub methods for TYPE as needed. METHODS is the set of
7326 // methods for the type. A stub method may be needed when a type
7327 // inherits a method from an anonymous field. When we need the
7328 // address of the method, as in a type descriptor, we need to build a
7329 // little stub which does the required field dereferences and jumps to
7330 // the real method. LOCATION is the location of the type definition.
7331
7332 void
7333 Type::build_stub_methods(Gogo* gogo, const Type* type, const Methods* methods,
7334 source_location location)
7335 {
7336 if (methods == NULL)
7337 return;
7338 for (Methods::const_iterator p = methods->begin();
7339 p != methods->end();
7340 ++p)
7341 {
7342 Method* m = p->second;
7343 if (m->is_ambiguous() || !m->needs_stub_method())
7344 continue;
7345
7346 const std::string& name(p->first);
7347
7348 // Build a stub method.
7349
7350 const Function_type* fntype = m->type();
7351
7352 static unsigned int counter;
7353 char buf[100];
7354 snprintf(buf, sizeof buf, "$this%u", counter);
7355 ++counter;
7356
7357 Type* receiver_type = const_cast<Type*>(type);
7358 if (!m->is_value_method())
7359 receiver_type = Type::make_pointer_type(receiver_type);
7360 source_location receiver_location = m->receiver_location();
7361 Typed_identifier* receiver = new Typed_identifier(buf, receiver_type,
7362 receiver_location);
7363
7364 const Typed_identifier_list* fnparams = fntype->parameters();
7365 Typed_identifier_list* stub_params;
7366 if (fnparams == NULL || fnparams->empty())
7367 stub_params = NULL;
7368 else
7369 {
7370 // We give each stub parameter a unique name.
7371 stub_params = new Typed_identifier_list();
7372 for (Typed_identifier_list::const_iterator pp = fnparams->begin();
7373 pp != fnparams->end();
7374 ++pp)
7375 {
7376 char pbuf[100];
7377 snprintf(pbuf, sizeof pbuf, "$p%u", counter);
7378 stub_params->push_back(Typed_identifier(pbuf, pp->type(),
7379 pp->location()));
7380 ++counter;
7381 }
7382 }
7383
7384 const Typed_identifier_list* fnresults = fntype->results();
7385 Typed_identifier_list* stub_results;
7386 if (fnresults == NULL || fnresults->empty())
7387 stub_results = NULL;
7388 else
7389 {
7390 // We create the result parameters without any names, since
7391 // we won't refer to them.
7392 stub_results = new Typed_identifier_list();
7393 for (Typed_identifier_list::const_iterator pr = fnresults->begin();
7394 pr != fnresults->end();
7395 ++pr)
7396 stub_results->push_back(Typed_identifier("", pr->type(),
7397 pr->location()));
7398 }
7399
7400 Function_type* stub_type = Type::make_function_type(receiver,
7401 stub_params,
7402 stub_results,
7403 fntype->location());
7404 if (fntype->is_varargs())
7405 stub_type->set_is_varargs();
7406
7407 // We only create the function in the package which creates the
7408 // type.
7409 const Package* package;
7410 if (type->named_type() == NULL)
7411 package = NULL;
7412 else
7413 package = type->named_type()->named_object()->package();
7414 Named_object* stub;
7415 if (package != NULL)
7416 stub = Named_object::make_function_declaration(name, package,
7417 stub_type, location);
7418 else
7419 {
7420 stub = gogo->start_function(name, stub_type, false,
7421 fntype->location());
7422 Type::build_one_stub_method(gogo, m, buf, stub_params,
7423 fntype->is_varargs(), location);
7424 gogo->finish_function(fntype->location());
7425 }
7426
7427 m->set_stub_object(stub);
7428 }
7429 }
7430
7431 // Build a stub method which adjusts the receiver as required to call
7432 // METHOD. RECEIVER_NAME is the name we used for the receiver.
7433 // PARAMS is the list of function parameters.
7434
7435 void
7436 Type::build_one_stub_method(Gogo* gogo, Method* method,
7437 const char* receiver_name,
7438 const Typed_identifier_list* params,
7439 bool is_varargs,
7440 source_location location)
7441 {
7442 Named_object* receiver_object = gogo->lookup(receiver_name, NULL);
7443 gcc_assert(receiver_object != NULL);
7444
7445 Expression* expr = Expression::make_var_reference(receiver_object, location);
7446 expr = Type::apply_field_indexes(expr, method->field_indexes(), location);
7447 if (expr->type()->points_to() == NULL)
7448 expr = Expression::make_unary(OPERATOR_AND, expr, location);
7449
7450 Expression_list* arguments;
7451 if (params == NULL || params->empty())
7452 arguments = NULL;
7453 else
7454 {
7455 arguments = new Expression_list();
7456 for (Typed_identifier_list::const_iterator p = params->begin();
7457 p != params->end();
7458 ++p)
7459 {
7460 Named_object* param = gogo->lookup(p->name(), NULL);
7461 gcc_assert(param != NULL);
7462 Expression* param_ref = Expression::make_var_reference(param,
7463 location);
7464 arguments->push_back(param_ref);
7465 }
7466 }
7467
7468 Expression* func = method->bind_method(expr, location);
7469 gcc_assert(func != NULL);
7470 Call_expression* call = Expression::make_call(func, arguments, is_varargs,
7471 location);
7472 size_t count = call->result_count();
7473 if (count == 0)
7474 gogo->add_statement(Statement::make_statement(call));
7475 else
7476 {
7477 Expression_list* retvals = new Expression_list();
7478 if (count <= 1)
7479 retvals->push_back(call);
7480 else
7481 {
7482 for (size_t i = 0; i < count; ++i)
7483 retvals->push_back(Expression::make_call_result(call, i));
7484 }
7485 const Function* function = gogo->current_function()->func_value();
7486 const Typed_identifier_list* results = function->type()->results();
7487 Statement* retstat = Statement::make_return_statement(results, retvals,
7488 location);
7489 gogo->add_statement(retstat);
7490 }
7491 }
7492
7493 // Apply FIELD_INDEXES to EXPR. The field indexes have to be applied
7494 // in reverse order.
7495
7496 Expression*
7497 Type::apply_field_indexes(Expression* expr,
7498 const Method::Field_indexes* field_indexes,
7499 source_location location)
7500 {
7501 if (field_indexes == NULL)
7502 return expr;
7503 expr = Type::apply_field_indexes(expr, field_indexes->next, location);
7504 Struct_type* stype = expr->type()->deref()->struct_type();
7505 gcc_assert(stype != NULL
7506 && field_indexes->field_index < stype->field_count());
7507 if (expr->type()->struct_type() == NULL)
7508 {
7509 gcc_assert(expr->type()->points_to() != NULL);
7510 expr = Expression::make_unary(OPERATOR_MULT, expr, location);
7511 gcc_assert(expr->type()->struct_type() == stype);
7512 }
7513 return Expression::make_field_reference(expr, field_indexes->field_index,
7514 location);
7515 }
7516
7517 // Return whether NO is a method for which the receiver is a pointer.
7518
7519 bool
7520 Type::method_expects_pointer(const Named_object* no)
7521 {
7522 const Function_type *fntype;
7523 if (no->is_function())
7524 fntype = no->func_value()->type();
7525 else if (no->is_function_declaration())
7526 fntype = no->func_declaration_value()->type();
7527 else
7528 gcc_unreachable();
7529 return fntype->receiver()->type()->points_to() != NULL;
7530 }
7531
7532 // Given a set of methods for a type, METHODS, return the method NAME,
7533 // or NULL if there isn't one or if it is ambiguous. If IS_AMBIGUOUS
7534 // is not NULL, then set *IS_AMBIGUOUS to true if the method exists
7535 // but is ambiguous (and return NULL).
7536
7537 Method*
7538 Type::method_function(const Methods* methods, const std::string& name,
7539 bool* is_ambiguous)
7540 {
7541 if (is_ambiguous != NULL)
7542 *is_ambiguous = false;
7543 if (methods == NULL)
7544 return NULL;
7545 Methods::const_iterator p = methods->find(name);
7546 if (p == methods->end())
7547 return NULL;
7548 Method* m = p->second;
7549 if (m->is_ambiguous())
7550 {
7551 if (is_ambiguous != NULL)
7552 *is_ambiguous = true;
7553 return NULL;
7554 }
7555 return m;
7556 }
7557
7558 // Look for field or method NAME for TYPE. Return an Expression for
7559 // the field or method bound to EXPR. If there is no such field or
7560 // method, give an appropriate error and return an error expression.
7561
7562 Expression*
7563 Type::bind_field_or_method(Gogo* gogo, const Type* type, Expression* expr,
7564 const std::string& name,
7565 source_location location)
7566 {
7567 if (type->deref()->is_error_type())
7568 return Expression::make_error(location);
7569
7570 const Named_type* nt = type->named_type();
7571 if (nt == NULL)
7572 nt = type->deref()->named_type();
7573 const Struct_type* st = type->deref()->struct_type();
7574 const Interface_type* it = type->deref()->interface_type();
7575
7576 // If this is a pointer to a pointer, then it is possible that the
7577 // pointed-to type has methods.
7578 if (nt == NULL
7579 && st == NULL
7580 && it == NULL
7581 && type->points_to() != NULL
7582 && type->points_to()->points_to() != NULL)
7583 {
7584 expr = Expression::make_unary(OPERATOR_MULT, expr, location);
7585 type = type->points_to();
7586 nt = type->points_to()->named_type();
7587 st = type->points_to()->struct_type();
7588 it = type->points_to()->interface_type();
7589 }
7590
7591 bool receiver_can_be_pointer = (expr->type()->points_to() != NULL
7592 || expr->is_addressable());
7593 bool is_method = false;
7594 bool found_pointer_method = false;
7595 std::string ambig1;
7596 std::string ambig2;
7597 if (Type::find_field_or_method(type, name, receiver_can_be_pointer, NULL,
7598 &is_method, &found_pointer_method,
7599 &ambig1, &ambig2))
7600 {
7601 Expression* ret;
7602 if (!is_method)
7603 {
7604 gcc_assert(st != NULL);
7605 if (type->struct_type() == NULL)
7606 {
7607 gcc_assert(type->points_to() != NULL);
7608 expr = Expression::make_unary(OPERATOR_MULT, expr,
7609 location);
7610 gcc_assert(expr->type()->struct_type() == st);
7611 }
7612 ret = st->field_reference(expr, name, location);
7613 }
7614 else if (it != NULL && it->find_method(name) != NULL)
7615 ret = Expression::make_interface_field_reference(expr, name,
7616 location);
7617 else
7618 {
7619 Method* m;
7620 if (nt != NULL)
7621 m = nt->method_function(name, NULL);
7622 else if (st != NULL)
7623 m = st->method_function(name, NULL);
7624 else
7625 gcc_unreachable();
7626 gcc_assert(m != NULL);
7627 if (!m->is_value_method() && expr->type()->points_to() == NULL)
7628 expr = Expression::make_unary(OPERATOR_AND, expr, location);
7629 ret = m->bind_method(expr, location);
7630 }
7631 gcc_assert(ret != NULL);
7632 return ret;
7633 }
7634 else
7635 {
7636 if (!ambig1.empty())
7637 error_at(location, "%qs is ambiguous via %qs and %qs",
7638 Gogo::message_name(name).c_str(),
7639 Gogo::message_name(ambig1).c_str(),
7640 Gogo::message_name(ambig2).c_str());
7641 else if (found_pointer_method)
7642 error_at(location, "method requires a pointer");
7643 else if (nt == NULL && st == NULL && it == NULL)
7644 error_at(location,
7645 ("reference to field %qs in object which "
7646 "has no fields or methods"),
7647 Gogo::message_name(name).c_str());
7648 else
7649 {
7650 bool is_unexported;
7651 if (!Gogo::is_hidden_name(name))
7652 is_unexported = false;
7653 else
7654 {
7655 std::string unpacked = Gogo::unpack_hidden_name(name);
7656 is_unexported = Type::is_unexported_field_or_method(gogo, type,
7657 unpacked);
7658 }
7659 if (is_unexported)
7660 error_at(location, "reference to unexported field or method %qs",
7661 Gogo::message_name(name).c_str());
7662 else
7663 error_at(location, "reference to undefined field or method %qs",
7664 Gogo::message_name(name).c_str());
7665 }
7666 return Expression::make_error(location);
7667 }
7668 }
7669
7670 // Look in TYPE for a field or method named NAME, return true if one
7671 // is found. This looks through embedded anonymous fields and handles
7672 // ambiguity. If a method is found, sets *IS_METHOD to true;
7673 // otherwise, if a field is found, set it to false. If
7674 // RECEIVER_CAN_BE_POINTER is false, then the receiver is a value
7675 // whose address can not be taken. When returning false, this sets
7676 // *FOUND_POINTER_METHOD if we found a method we couldn't use because
7677 // it requires a pointer. LEVEL is used for recursive calls, and can
7678 // be NULL for a non-recursive call. When this function returns false
7679 // because it finds that the name is ambiguous, it will store a path
7680 // to the ambiguous names in *AMBIG1 and *AMBIG2. If the name is not
7681 // found at all, *AMBIG1 and *AMBIG2 will be unchanged.
7682
7683 // This function just returns whether or not there is a field or
7684 // method, and whether it is a field or method. It doesn't build an
7685 // expression to refer to it. If it is a method, we then look in the
7686 // list of all methods for the type. If it is a field, the search has
7687 // to be done again, looking only for fields, and building up the
7688 // expression as we go.
7689
7690 bool
7691 Type::find_field_or_method(const Type* type,
7692 const std::string& name,
7693 bool receiver_can_be_pointer,
7694 int* level,
7695 bool* is_method,
7696 bool* found_pointer_method,
7697 std::string* ambig1,
7698 std::string* ambig2)
7699 {
7700 // Named types can have locally defined methods.
7701 const Named_type* nt = type->named_type();
7702 if (nt == NULL && type->points_to() != NULL)
7703 nt = type->points_to()->named_type();
7704 if (nt != NULL)
7705 {
7706 Named_object* no = nt->find_local_method(name);
7707 if (no != NULL)
7708 {
7709 if (receiver_can_be_pointer || !Type::method_expects_pointer(no))
7710 {
7711 *is_method = true;
7712 return true;
7713 }
7714
7715 // Record that we have found a pointer method in order to
7716 // give a better error message if we don't find anything
7717 // else.
7718 *found_pointer_method = true;
7719 }
7720 }
7721
7722 // Interface types can have methods.
7723 const Interface_type* it = type->deref()->interface_type();
7724 if (it != NULL && it->find_method(name) != NULL)
7725 {
7726 *is_method = true;
7727 return true;
7728 }
7729
7730 // Struct types can have fields. They can also inherit fields and
7731 // methods from anonymous fields.
7732 const Struct_type* st = type->deref()->struct_type();
7733 if (st == NULL)
7734 return false;
7735 const Struct_field_list* fields = st->fields();
7736 if (fields == NULL)
7737 return false;
7738
7739 int found_level = 0;
7740 bool found_is_method = false;
7741 std::string found_ambig1;
7742 std::string found_ambig2;
7743 const Struct_field* found_parent = NULL;
7744 for (Struct_field_list::const_iterator pf = fields->begin();
7745 pf != fields->end();
7746 ++pf)
7747 {
7748 if (pf->field_name() == name)
7749 {
7750 *is_method = false;
7751 return true;
7752 }
7753
7754 if (!pf->is_anonymous())
7755 continue;
7756
7757 if (pf->type()->deref()->is_error_type()
7758 || pf->type()->deref()->is_undefined())
7759 continue;
7760
7761 Named_type* fnt = pf->type()->deref()->named_type();
7762 gcc_assert(fnt != NULL);
7763
7764 int sublevel = level == NULL ? 1 : *level + 1;
7765 bool sub_is_method;
7766 std::string subambig1;
7767 std::string subambig2;
7768 bool subfound = Type::find_field_or_method(fnt,
7769 name,
7770 receiver_can_be_pointer,
7771 &sublevel,
7772 &sub_is_method,
7773 found_pointer_method,
7774 &subambig1,
7775 &subambig2);
7776 if (!subfound)
7777 {
7778 if (!subambig1.empty())
7779 {
7780 // The name was found via this field, but is ambiguous.
7781 // if the ambiguity is lower or at the same level as
7782 // anything else we have already found, then we want to
7783 // pass the ambiguity back to the caller.
7784 if (found_level == 0 || sublevel <= found_level)
7785 {
7786 found_ambig1 = pf->field_name() + '.' + subambig1;
7787 found_ambig2 = pf->field_name() + '.' + subambig2;
7788 found_level = sublevel;
7789 }
7790 }
7791 }
7792 else
7793 {
7794 // The name was found via this field. Use the level to see
7795 // if we want to use this one, or whether it introduces an
7796 // ambiguity.
7797 if (found_level == 0 || sublevel < found_level)
7798 {
7799 found_level = sublevel;
7800 found_is_method = sub_is_method;
7801 found_ambig1.clear();
7802 found_ambig2.clear();
7803 found_parent = &*pf;
7804 }
7805 else if (sublevel > found_level)
7806 ;
7807 else if (found_ambig1.empty())
7808 {
7809 // We found an ambiguity.
7810 gcc_assert(found_parent != NULL);
7811 found_ambig1 = found_parent->field_name();
7812 found_ambig2 = pf->field_name();
7813 }
7814 else
7815 {
7816 // We found an ambiguity, but we already know of one.
7817 // Just report the earlier one.
7818 }
7819 }
7820 }
7821
7822 // Here if we didn't find anything FOUND_LEVEL is 0. If we found
7823 // something ambiguous, FOUND_LEVEL is not 0 and FOUND_AMBIG1 and
7824 // FOUND_AMBIG2 are not empty. If we found the field, FOUND_LEVEL
7825 // is not 0 and FOUND_AMBIG1 and FOUND_AMBIG2 are empty.
7826
7827 if (found_level == 0)
7828 return false;
7829 else if (!found_ambig1.empty())
7830 {
7831 gcc_assert(!found_ambig1.empty());
7832 ambig1->assign(found_ambig1);
7833 ambig2->assign(found_ambig2);
7834 if (level != NULL)
7835 *level = found_level;
7836 return false;
7837 }
7838 else
7839 {
7840 if (level != NULL)
7841 *level = found_level;
7842 *is_method = found_is_method;
7843 return true;
7844 }
7845 }
7846
7847 // Return whether NAME is an unexported field or method for TYPE.
7848
7849 bool
7850 Type::is_unexported_field_or_method(Gogo* gogo, const Type* type,
7851 const std::string& name)
7852 {
7853 type = type->deref();
7854
7855 const Named_type* nt = type->named_type();
7856 if (nt != NULL && nt->is_unexported_local_method(gogo, name))
7857 return true;
7858
7859 const Interface_type* it = type->interface_type();
7860 if (it != NULL && it->is_unexported_method(gogo, name))
7861 return true;
7862
7863 const Struct_type* st = type->struct_type();
7864 if (st != NULL && st->is_unexported_local_field(gogo, name))
7865 return true;
7866
7867 if (st == NULL)
7868 return false;
7869
7870 const Struct_field_list* fields = st->fields();
7871 if (fields == NULL)
7872 return false;
7873
7874 for (Struct_field_list::const_iterator pf = fields->begin();
7875 pf != fields->end();
7876 ++pf)
7877 {
7878 if (pf->is_anonymous()
7879 && (!pf->type()->deref()->is_error_type()
7880 && !pf->type()->deref()->is_undefined()))
7881 {
7882 Named_type* subtype = pf->type()->deref()->named_type();
7883 gcc_assert(subtype != NULL);
7884 if (Type::is_unexported_field_or_method(gogo, subtype, name))
7885 return true;
7886 }
7887 }
7888
7889 return false;
7890 }
7891
7892 // Class Forward_declaration.
7893
7894 Forward_declaration_type::Forward_declaration_type(Named_object* named_object)
7895 : Type(TYPE_FORWARD),
7896 named_object_(named_object->resolve()), warned_(false)
7897 {
7898 gcc_assert(this->named_object_->is_unknown()
7899 || this->named_object_->is_type_declaration());
7900 }
7901
7902 // Return the named object.
7903
7904 Named_object*
7905 Forward_declaration_type::named_object()
7906 {
7907 return this->named_object_->resolve();
7908 }
7909
7910 const Named_object*
7911 Forward_declaration_type::named_object() const
7912 {
7913 return this->named_object_->resolve();
7914 }
7915
7916 // Return the name of the forward declared type.
7917
7918 const std::string&
7919 Forward_declaration_type::name() const
7920 {
7921 return this->named_object()->name();
7922 }
7923
7924 // Warn about a use of a type which has been declared but not defined.
7925
7926 void
7927 Forward_declaration_type::warn() const
7928 {
7929 Named_object* no = this->named_object_->resolve();
7930 if (no->is_unknown())
7931 {
7932 // The name was not defined anywhere.
7933 if (!this->warned_)
7934 {
7935 error_at(this->named_object_->location(),
7936 "use of undefined type %qs",
7937 no->message_name().c_str());
7938 this->warned_ = true;
7939 }
7940 }
7941 else if (no->is_type_declaration())
7942 {
7943 // The name was seen as a type, but the type was never defined.
7944 if (no->type_declaration_value()->using_type())
7945 {
7946 error_at(this->named_object_->location(),
7947 "use of undefined type %qs",
7948 no->message_name().c_str());
7949 this->warned_ = true;
7950 }
7951 }
7952 else
7953 {
7954 // The name was defined, but not as a type.
7955 if (!this->warned_)
7956 {
7957 error_at(this->named_object_->location(), "expected type");
7958 this->warned_ = true;
7959 }
7960 }
7961 }
7962
7963 // Get the base type of a declaration. This gives an error if the
7964 // type has not yet been defined.
7965
7966 Type*
7967 Forward_declaration_type::real_type()
7968 {
7969 if (this->is_defined())
7970 return this->named_object()->type_value();
7971 else
7972 {
7973 this->warn();
7974 return Type::make_error_type();
7975 }
7976 }
7977
7978 const Type*
7979 Forward_declaration_type::real_type() const
7980 {
7981 if (this->is_defined())
7982 return this->named_object()->type_value();
7983 else
7984 {
7985 this->warn();
7986 return Type::make_error_type();
7987 }
7988 }
7989
7990 // Return whether the base type is defined.
7991
7992 bool
7993 Forward_declaration_type::is_defined() const
7994 {
7995 return this->named_object()->is_type();
7996 }
7997
7998 // Add a method. This is used when methods are defined before the
7999 // type.
8000
8001 Named_object*
8002 Forward_declaration_type::add_method(const std::string& name,
8003 Function* function)
8004 {
8005 Named_object* no = this->named_object();
8006 gcc_assert(no->is_type_declaration());
8007 return no->type_declaration_value()->add_method(name, function);
8008 }
8009
8010 // Add a method declaration. This is used when methods are declared
8011 // before the type.
8012
8013 Named_object*
8014 Forward_declaration_type::add_method_declaration(const std::string& name,
8015 Function_type* type,
8016 source_location location)
8017 {
8018 Named_object* no = this->named_object();
8019 gcc_assert(no->is_type_declaration());
8020 Type_declaration* td = no->type_declaration_value();
8021 return td->add_method_declaration(name, type, location);
8022 }
8023
8024 // Traversal.
8025
8026 int
8027 Forward_declaration_type::do_traverse(Traverse* traverse)
8028 {
8029 if (this->is_defined()
8030 && Type::traverse(this->real_type(), traverse) == TRAVERSE_EXIT)
8031 return TRAVERSE_EXIT;
8032 return TRAVERSE_CONTINUE;
8033 }
8034
8035 // Get a tree for the type.
8036
8037 tree
8038 Forward_declaration_type::do_get_tree(Gogo* gogo)
8039 {
8040 if (this->is_defined())
8041 return Type::get_named_type_tree(gogo, this->real_type());
8042
8043 if (this->warned_)
8044 return error_mark_node;
8045
8046 // We represent an undefined type as a struct with no fields. That
8047 // should work fine for the middle-end, since the same case can
8048 // arise in C.
8049 Named_object* no = this->named_object();
8050 tree type_tree = make_node(RECORD_TYPE);
8051 tree id = no->get_id(gogo);
8052 tree decl = build_decl(no->location(), TYPE_DECL, id, type_tree);
8053 TYPE_NAME(type_tree) = decl;
8054 return type_tree;
8055 }
8056
8057 // Build a type descriptor for a forwarded type.
8058
8059 Expression*
8060 Forward_declaration_type::do_type_descriptor(Gogo* gogo, Named_type* name)
8061 {
8062 if (!this->is_defined())
8063 return Expression::make_nil(BUILTINS_LOCATION);
8064 else
8065 {
8066 Type* t = this->real_type();
8067 if (name != NULL)
8068 return this->named_type_descriptor(gogo, t, name);
8069 else
8070 return Expression::make_type_descriptor(t, BUILTINS_LOCATION);
8071 }
8072 }
8073
8074 // The reflection string.
8075
8076 void
8077 Forward_declaration_type::do_reflection(Gogo* gogo, std::string* ret) const
8078 {
8079 this->append_reflection(this->real_type(), gogo, ret);
8080 }
8081
8082 // The mangled name.
8083
8084 void
8085 Forward_declaration_type::do_mangled_name(Gogo* gogo, std::string* ret) const
8086 {
8087 if (this->is_defined())
8088 this->append_mangled_name(this->real_type(), gogo, ret);
8089 else
8090 {
8091 const Named_object* no = this->named_object();
8092 std::string name;
8093 if (no->package() == NULL)
8094 name = gogo->package_name();
8095 else
8096 name = no->package()->name();
8097 name += '.';
8098 name += Gogo::unpack_hidden_name(no->name());
8099 char buf[20];
8100 snprintf(buf, sizeof buf, "N%u_",
8101 static_cast<unsigned int>(name.length()));
8102 ret->append(buf);
8103 ret->append(name);
8104 }
8105 }
8106
8107 // Export a forward declaration. This can happen when a defined type
8108 // refers to a type which is only declared (and is presumably defined
8109 // in some other file in the same package).
8110
8111 void
8112 Forward_declaration_type::do_export(Export*) const
8113 {
8114 // If there is a base type, that should be exported instead of this.
8115 gcc_assert(!this->is_defined());
8116
8117 // We don't output anything.
8118 }
8119
8120 // Make a forward declaration.
8121
8122 Type*
8123 Type::make_forward_declaration(Named_object* named_object)
8124 {
8125 return new Forward_declaration_type(named_object);
8126 }
8127
8128 // Class Typed_identifier_list.
8129
8130 // Sort the entries by name.
8131
8132 struct Typed_identifier_list_sort
8133 {
8134 public:
8135 bool
8136 operator()(const Typed_identifier& t1, const Typed_identifier& t2) const
8137 { return t1.name() < t2.name(); }
8138 };
8139
8140 void
8141 Typed_identifier_list::sort_by_name()
8142 {
8143 std::sort(this->entries_.begin(), this->entries_.end(),
8144 Typed_identifier_list_sort());
8145 }
8146
8147 // Traverse types.
8148
8149 int
8150 Typed_identifier_list::traverse(Traverse* traverse)
8151 {
8152 for (Typed_identifier_list::const_iterator p = this->begin();
8153 p != this->end();
8154 ++p)
8155 {
8156 if (Type::traverse(p->type(), traverse) == TRAVERSE_EXIT)
8157 return TRAVERSE_EXIT;
8158 }
8159 return TRAVERSE_CONTINUE;
8160 }
8161
8162 // Copy the list.
8163
8164 Typed_identifier_list*
8165 Typed_identifier_list::copy() const
8166 {
8167 Typed_identifier_list* ret = new Typed_identifier_list();
8168 for (Typed_identifier_list::const_iterator p = this->begin();
8169 p != this->end();
8170 ++p)
8171 ret->push_back(Typed_identifier(p->name(), p->type(), p->location()));
8172 return ret;
8173 }