Don't crash building initializer of invalid array.
[gcc.git] / gcc / go / gofrontend / types.cc
1 // types.cc -- Go frontend types.
2
3 // Copyright 2009 The Go Authors. All rights reserved.
4 // Use of this source code is governed by a BSD-style
5 // license that can be found in the LICENSE file.
6
7 #include "go-system.h"
8
9 #include <gmp.h>
10
11 #ifndef ENABLE_BUILD_WITH_CXX
12 extern "C"
13 {
14 #endif
15
16 #include "toplev.h"
17 #include "intl.h"
18 #include "tree.h"
19 #include "gimple.h"
20 #include "real.h"
21 #include "convert.h"
22
23 #ifndef ENABLE_BUILD_WITH_CXX
24 }
25 #endif
26
27 #include "go-c.h"
28 #include "gogo.h"
29 #include "operator.h"
30 #include "expressions.h"
31 #include "statements.h"
32 #include "export.h"
33 #include "import.h"
34 #include "types.h"
35
36 // Class Type.
37
38 Type::Type(Type_classification classification)
39 : classification_(classification), tree_(NULL_TREE),
40 type_descriptor_decl_(NULL_TREE)
41 {
42 }
43
44 Type::~Type()
45 {
46 }
47
48 // Get the base type for a type--skip names and forward declarations.
49
50 Type*
51 Type::base()
52 {
53 switch (this->classification_)
54 {
55 case TYPE_NAMED:
56 return this->named_type()->named_base();
57 case TYPE_FORWARD:
58 return this->forward_declaration_type()->real_type()->base();
59 default:
60 return this;
61 }
62 }
63
64 const Type*
65 Type::base() const
66 {
67 switch (this->classification_)
68 {
69 case TYPE_NAMED:
70 return this->named_type()->named_base();
71 case TYPE_FORWARD:
72 return this->forward_declaration_type()->real_type()->base();
73 default:
74 return this;
75 }
76 }
77
78 // Skip defined forward declarations.
79
80 Type*
81 Type::forwarded()
82 {
83 Type* t = this;
84 Forward_declaration_type* ftype = t->forward_declaration_type();
85 while (ftype != NULL && ftype->is_defined())
86 {
87 t = ftype->real_type();
88 ftype = t->forward_declaration_type();
89 }
90 return t;
91 }
92
93 const Type*
94 Type::forwarded() const
95 {
96 const Type* t = this;
97 const Forward_declaration_type* ftype = t->forward_declaration_type();
98 while (ftype != NULL && ftype->is_defined())
99 {
100 t = ftype->real_type();
101 ftype = t->forward_declaration_type();
102 }
103 return t;
104 }
105
106 // If this is a named type, return it. Otherwise, return NULL.
107
108 Named_type*
109 Type::named_type()
110 {
111 return this->forwarded()->convert_no_base<Named_type, TYPE_NAMED>();
112 }
113
114 const Named_type*
115 Type::named_type() const
116 {
117 return this->forwarded()->convert_no_base<const Named_type, TYPE_NAMED>();
118 }
119
120 // Return true if this type is not defined.
121
122 bool
123 Type::is_undefined() const
124 {
125 return this->forwarded()->forward_declaration_type() != NULL;
126 }
127
128 // Return true if this is a basic type: a type which is not composed
129 // of other types, and is not void.
130
131 bool
132 Type::is_basic_type() const
133 {
134 switch (this->classification_)
135 {
136 case TYPE_INTEGER:
137 case TYPE_FLOAT:
138 case TYPE_COMPLEX:
139 case TYPE_BOOLEAN:
140 case TYPE_STRING:
141 case TYPE_NIL:
142 return true;
143
144 case TYPE_ERROR:
145 case TYPE_VOID:
146 case TYPE_FUNCTION:
147 case TYPE_POINTER:
148 case TYPE_STRUCT:
149 case TYPE_ARRAY:
150 case TYPE_MAP:
151 case TYPE_CHANNEL:
152 case TYPE_INTERFACE:
153 return false;
154
155 case TYPE_NAMED:
156 case TYPE_FORWARD:
157 return this->base()->is_basic_type();
158
159 default:
160 gcc_unreachable();
161 }
162 }
163
164 // Return true if this is an abstract type.
165
166 bool
167 Type::is_abstract() const
168 {
169 switch (this->classification())
170 {
171 case TYPE_INTEGER:
172 return this->integer_type()->is_abstract();
173 case TYPE_FLOAT:
174 return this->float_type()->is_abstract();
175 case TYPE_COMPLEX:
176 return this->complex_type()->is_abstract();
177 case TYPE_STRING:
178 return this->is_abstract_string_type();
179 case TYPE_BOOLEAN:
180 return this->is_abstract_boolean_type();
181 default:
182 return false;
183 }
184 }
185
186 // Return a non-abstract version of an abstract type.
187
188 Type*
189 Type::make_non_abstract_type()
190 {
191 gcc_assert(this->is_abstract());
192 switch (this->classification())
193 {
194 case TYPE_INTEGER:
195 return Type::lookup_integer_type("int");
196 case TYPE_FLOAT:
197 return Type::lookup_float_type("float");
198 case TYPE_COMPLEX:
199 return Type::lookup_complex_type("complex");
200 case TYPE_STRING:
201 return Type::lookup_string_type();
202 case TYPE_BOOLEAN:
203 return Type::lookup_bool_type();
204 default:
205 gcc_unreachable();
206 }
207 }
208
209 // Return true if this is an error type. Don't give an error if we
210 // try to dereference an undefined forwarding type, as this is called
211 // in the parser when the type may legitimately be undefined.
212
213 bool
214 Type::is_error_type() const
215 {
216 const Type* t = this->forwarded();
217 // Note that we return false for an undefined forward type.
218 switch (t->classification_)
219 {
220 case TYPE_ERROR:
221 return true;
222 case TYPE_NAMED:
223 return t->named_type()->is_named_error_type();
224 default:
225 return false;
226 }
227 }
228
229 // If this is a pointer type, return the type to which it points.
230 // Otherwise, return NULL.
231
232 Type*
233 Type::points_to() const
234 {
235 const Pointer_type* ptype = this->convert<const Pointer_type,
236 TYPE_POINTER>();
237 return ptype == NULL ? NULL : ptype->points_to();
238 }
239
240 // Return whether this is an open array type.
241
242 bool
243 Type::is_open_array_type() const
244 {
245 return this->array_type() != NULL && this->array_type()->length() == NULL;
246 }
247
248 // Return whether this is the predeclared constant nil being used as a
249 // type.
250
251 bool
252 Type::is_nil_constant_as_type() const
253 {
254 const Type* t = this->forwarded();
255 if (t->forward_declaration_type() != NULL)
256 {
257 const Named_object* no = t->forward_declaration_type()->named_object();
258 if (no->is_unknown())
259 no = no->unknown_value()->real_named_object();
260 if (no != NULL
261 && no->is_const()
262 && no->const_value()->expr()->is_nil_expression())
263 return true;
264 }
265 return false;
266 }
267
268 // Traverse a type.
269
270 int
271 Type::traverse(Type* type, Traverse* traverse)
272 {
273 gcc_assert((traverse->traverse_mask() & Traverse::traverse_types) != 0
274 || (traverse->traverse_mask()
275 & Traverse::traverse_expressions) != 0);
276 if (traverse->remember_type(type))
277 {
278 // We have already traversed this type.
279 return TRAVERSE_CONTINUE;
280 }
281 if ((traverse->traverse_mask() & Traverse::traverse_types) != 0)
282 {
283 int t = traverse->type(type);
284 if (t == TRAVERSE_EXIT)
285 return TRAVERSE_EXIT;
286 else if (t == TRAVERSE_SKIP_COMPONENTS)
287 return TRAVERSE_CONTINUE;
288 }
289 // An array type has an expression which we need to traverse if
290 // traverse_expressions is set.
291 if (type->do_traverse(traverse) == TRAVERSE_EXIT)
292 return TRAVERSE_EXIT;
293 return TRAVERSE_CONTINUE;
294 }
295
296 // Default implementation for do_traverse for child class.
297
298 int
299 Type::do_traverse(Traverse*)
300 {
301 return TRAVERSE_CONTINUE;
302 }
303
304 // Return whether two types are identical. If REASON is not NULL,
305 // optionally set *REASON to the reason the types are not identical.
306
307 bool
308 Type::are_identical(const Type* t1, const Type* t2, std::string* reason)
309 {
310 if (t1 == NULL || t2 == NULL)
311 {
312 // Something is wrong. Return true to avoid cascading errors.
313 return true;
314 }
315
316 // Skip defined forward declarations.
317 t1 = t1->forwarded();
318 t2 = t2->forwarded();
319
320 if (t1 == t2)
321 return true;
322
323 // An undefined forward declaration is an error, so we return true
324 // to avoid cascading errors.
325 if (t1->forward_declaration_type() != NULL
326 || t2->forward_declaration_type() != NULL)
327 return true;
328
329 // Avoid cascading errors with error types.
330 if (t1->is_error_type() || t2->is_error_type())
331 return true;
332
333 // Get a good reason for the sink type. Note that the sink type on
334 // the left hand side of an assignment is handled in are_assignable.
335 if (t1->is_sink_type() || t2->is_sink_type())
336 {
337 if (reason != NULL)
338 *reason = "invalid use of _";
339 return false;
340 }
341
342 // A named type is only identical to itself.
343 if (t1->named_type() != NULL || t2->named_type() != NULL)
344 return false;
345
346 // Check type shapes.
347 if (t1->classification() != t2->classification())
348 return false;
349
350 switch (t1->classification())
351 {
352 case TYPE_VOID:
353 case TYPE_BOOLEAN:
354 case TYPE_STRING:
355 case TYPE_NIL:
356 // These types are always identical.
357 return true;
358
359 case TYPE_INTEGER:
360 return t1->integer_type()->is_identical(t2->integer_type());
361
362 case TYPE_FLOAT:
363 return t1->float_type()->is_identical(t2->float_type());
364
365 case TYPE_COMPLEX:
366 return t1->complex_type()->is_identical(t2->complex_type());
367
368 case TYPE_FUNCTION:
369 return t1->function_type()->is_identical(t2->function_type(),
370 false,
371 reason);
372
373 case TYPE_POINTER:
374 return Type::are_identical(t1->points_to(), t2->points_to(), reason);
375
376 case TYPE_STRUCT:
377 return t1->struct_type()->is_identical(t2->struct_type());
378
379 case TYPE_ARRAY:
380 return t1->array_type()->is_identical(t2->array_type());
381
382 case TYPE_MAP:
383 return t1->map_type()->is_identical(t2->map_type());
384
385 case TYPE_CHANNEL:
386 return t1->channel_type()->is_identical(t2->channel_type());
387
388 case TYPE_INTERFACE:
389 return t1->interface_type()->is_identical(t2->interface_type());
390
391 default:
392 gcc_unreachable();
393 }
394 }
395
396 // Return true if it's OK to have a binary operation with types LHS
397 // and RHS. This is not used for shifts or comparisons.
398
399 bool
400 Type::are_compatible_for_binop(const Type* lhs, const Type* rhs)
401 {
402 if (Type::are_identical(lhs, rhs, NULL))
403 return true;
404
405 // A constant of abstract bool type may be mixed with any bool type.
406 if ((rhs->is_abstract_boolean_type() && lhs->is_boolean_type())
407 || (lhs->is_abstract_boolean_type() && rhs->is_boolean_type()))
408 return true;
409
410 // A constant of abstract string type may be mixed with any string
411 // type.
412 if ((rhs->is_abstract_string_type() && lhs->is_string_type())
413 || (lhs->is_abstract_string_type() && rhs->is_string_type()))
414 return true;
415
416 lhs = lhs->base();
417 rhs = rhs->base();
418
419 // A constant of abstract integer, float, or complex type may be
420 // mixed with an integer, float, or complex type.
421 if ((rhs->is_abstract()
422 && (rhs->integer_type() != NULL
423 || rhs->float_type() != NULL
424 || rhs->complex_type() != NULL)
425 && (lhs->integer_type() != NULL
426 || lhs->float_type() != NULL
427 || lhs->complex_type() != NULL))
428 || (lhs->is_abstract()
429 && (lhs->integer_type() != NULL
430 || lhs->float_type() != NULL
431 || lhs->complex_type() != NULL)
432 && (rhs->integer_type() != NULL
433 || rhs->float_type() != NULL
434 || rhs->complex_type() != NULL)))
435 return true;
436
437 // The nil type may be compared to a pointer, an interface type, a
438 // slice type, a channel type, a map type, or a function type.
439 if (lhs->is_nil_type()
440 && (rhs->points_to() != NULL
441 || rhs->interface_type() != NULL
442 || rhs->is_open_array_type()
443 || rhs->map_type() != NULL
444 || rhs->channel_type() != NULL
445 || rhs->function_type() != NULL))
446 return true;
447 if (rhs->is_nil_type()
448 && (lhs->points_to() != NULL
449 || lhs->interface_type() != NULL
450 || lhs->is_open_array_type()
451 || lhs->map_type() != NULL
452 || lhs->channel_type() != NULL
453 || lhs->function_type() != NULL))
454 return true;
455
456 return false;
457 }
458
459 // Return true if a value with type RHS may be assigned to a variable
460 // with type LHS. If REASON is not NULL, set *REASON to the reason
461 // the types are not assignable.
462
463 bool
464 Type::are_assignable(const Type* lhs, const Type* rhs, std::string* reason)
465 {
466 // Do some checks first. Make sure the types are defined.
467 if (lhs != NULL && lhs->forwarded()->forward_declaration_type() == NULL)
468 {
469 // Any value may be assigned to the blank identifier.
470 if (lhs->is_sink_type())
471 return true;
472
473 // All fields of a struct must be exported, or the assignment
474 // must be in the same package.
475 if (rhs != NULL && rhs->forwarded()->forward_declaration_type() == NULL)
476 {
477 if (lhs->has_hidden_fields(NULL, reason)
478 || rhs->has_hidden_fields(NULL, reason))
479 return false;
480 }
481 }
482
483 // Identical types are assignable.
484 if (Type::are_identical(lhs, rhs, reason))
485 return true;
486
487 // The types are assignable if they have identical underlying types
488 // and either LHS or RHS is not a named type.
489 if (((lhs->named_type() != NULL && rhs->named_type() == NULL)
490 || (rhs->named_type() != NULL && lhs->named_type() == NULL))
491 && Type::are_identical(lhs->base(), rhs->base(), reason))
492 return true;
493
494 // The types are assignable if LHS is an interface type and RHS
495 // implements the required methods.
496 const Interface_type* lhs_interface_type = lhs->interface_type();
497 if (lhs_interface_type != NULL)
498 {
499 if (lhs_interface_type->implements_interface(rhs, reason))
500 return true;
501 const Interface_type* rhs_interface_type = rhs->interface_type();
502 if (rhs_interface_type != NULL
503 && lhs_interface_type->is_compatible_for_assign(rhs_interface_type,
504 reason))
505 return true;
506 }
507
508 // The type are assignable if RHS is a bidirectional channel type,
509 // LHS is a channel type, they have identical element types, and
510 // either LHS or RHS is not a named type.
511 if (lhs->channel_type() != NULL
512 && rhs->channel_type() != NULL
513 && rhs->channel_type()->may_send()
514 && rhs->channel_type()->may_receive()
515 && (lhs->named_type() == NULL || rhs->named_type() == NULL)
516 && Type::are_identical(lhs->channel_type()->element_type(),
517 rhs->channel_type()->element_type(),
518 reason))
519 return true;
520
521 // The nil type may be assigned to a pointer, function, slice, map,
522 // channel, or interface type.
523 if (rhs->is_nil_type()
524 && (lhs->points_to() != NULL
525 || lhs->function_type() != NULL
526 || lhs->is_open_array_type()
527 || lhs->map_type() != NULL
528 || lhs->channel_type() != NULL
529 || lhs->interface_type() != NULL))
530 return true;
531
532 // An untyped constant may be assigned to a numeric type if it is
533 // representable in that type.
534 if (rhs->is_abstract()
535 && (lhs->integer_type() != NULL
536 || lhs->float_type() != NULL
537 || lhs->complex_type() != NULL))
538 return true;
539
540
541 // Give some better error messages.
542 if (reason != NULL && reason->empty())
543 {
544 if (rhs->interface_type() != NULL)
545 reason->assign(_("need explicit conversion"));
546 else if (rhs->is_call_multiple_result_type())
547 reason->assign(_("multiple value function call in "
548 "single value context"));
549 else if (lhs->named_type() != NULL && rhs->named_type() != NULL)
550 {
551 size_t len = (lhs->named_type()->name().length()
552 + rhs->named_type()->name().length()
553 + 100);
554 char* buf = new char[len];
555 snprintf(buf, len, _("cannot use type %s as type %s"),
556 rhs->named_type()->message_name().c_str(),
557 lhs->named_type()->message_name().c_str());
558 reason->assign(buf);
559 delete[] buf;
560 }
561 }
562
563 return false;
564 }
565
566 // Return true if a value with type RHS may be converted to type LHS.
567 // If REASON is not NULL, set *REASON to the reason the types are not
568 // convertible.
569
570 bool
571 Type::are_convertible(const Type* lhs, const Type* rhs, std::string* reason)
572 {
573 // The types are convertible if they are assignable.
574 if (Type::are_assignable(lhs, rhs, reason))
575 return true;
576
577 // The types are convertible if they have identical underlying
578 // types.
579 if ((lhs->named_type() != NULL || rhs->named_type() != NULL)
580 && Type::are_identical(lhs->base(), rhs->base(), reason))
581 return true;
582
583 // The types are convertible if they are both unnamed pointer types
584 // and their pointer base types have identical underlying types.
585 if (lhs->named_type() == NULL
586 && rhs->named_type() == NULL
587 && lhs->points_to() != NULL
588 && rhs->points_to() != NULL
589 && (lhs->points_to()->named_type() != NULL
590 || rhs->points_to()->named_type() != NULL)
591 && Type::are_identical(lhs->points_to()->base(),
592 rhs->points_to()->base(),
593 reason))
594 return true;
595
596 // Integer and floating point types are convertible to each other.
597 if ((lhs->integer_type() != NULL || lhs->float_type() != NULL)
598 && (rhs->integer_type() != NULL || rhs->float_type() != NULL))
599 return true;
600
601 // Complex types are convertible to each other.
602 if (lhs->complex_type() != NULL && rhs->complex_type() != NULL)
603 return true;
604
605 // An integer, or []byte, or []int, may be converted to a string.
606 if (lhs->is_string_type())
607 {
608 if (rhs->integer_type() != NULL)
609 return true;
610 if (rhs->is_open_array_type() && rhs->named_type() == NULL)
611 {
612 const Type* e = rhs->array_type()->element_type()->forwarded();
613 if (e->integer_type() != NULL
614 && (e == Type::lookup_integer_type("uint8")
615 || e == Type::lookup_integer_type("int")))
616 return true;
617 }
618 }
619
620 // A string may be converted to []byte or []int.
621 if (rhs->is_string_type()
622 && lhs->is_open_array_type()
623 && lhs->named_type() == NULL)
624 {
625 const Type* e = lhs->array_type()->element_type()->forwarded();
626 if (e->integer_type() != NULL
627 && (e == Type::lookup_integer_type("uint8")
628 || e == Type::lookup_integer_type("int")))
629 return true;
630 }
631
632 // An unsafe.Pointer type may be converted to any pointer type or to
633 // uintptr, and vice-versa.
634 if (lhs->is_unsafe_pointer_type()
635 && (rhs->points_to() != NULL
636 || (rhs->integer_type() != NULL
637 && rhs->forwarded() == Type::lookup_integer_type("uintptr"))))
638 return true;
639 if (rhs->is_unsafe_pointer_type()
640 && (lhs->points_to() != NULL
641 || (lhs->integer_type() != NULL
642 && lhs->forwarded() == Type::lookup_integer_type("uintptr"))))
643 return true;
644
645 // Give a better error message.
646 if (reason != NULL)
647 {
648 if (reason->empty())
649 *reason = "invalid type conversion";
650 else
651 {
652 std::string s = "invalid type conversion (";
653 s += *reason;
654 s += ')';
655 *reason = s;
656 }
657 }
658
659 return false;
660 }
661
662 // Return whether this type has any hidden fields. This is only a
663 // possibility for a few types.
664
665 bool
666 Type::has_hidden_fields(const Named_type* within, std::string* reason) const
667 {
668 switch (this->forwarded()->classification_)
669 {
670 case TYPE_NAMED:
671 return this->named_type()->named_type_has_hidden_fields(reason);
672 case TYPE_STRUCT:
673 return this->struct_type()->struct_has_hidden_fields(within, reason);
674 case TYPE_ARRAY:
675 return this->array_type()->array_has_hidden_fields(within, reason);
676 default:
677 return false;
678 }
679 }
680
681 // Return a hash code for the type to be used for method lookup.
682
683 unsigned int
684 Type::hash_for_method(Gogo* gogo) const
685 {
686 unsigned int ret = 0;
687 if (this->classification_ != TYPE_FORWARD)
688 ret += this->classification_;
689 return ret + this->do_hash_for_method(gogo);
690 }
691
692 // Default implementation of do_hash_for_method. This is appropriate
693 // for types with no subfields.
694
695 unsigned int
696 Type::do_hash_for_method(Gogo*) const
697 {
698 return 0;
699 }
700
701 // Return a hash code for a string, given a starting hash.
702
703 unsigned int
704 Type::hash_string(const std::string& s, unsigned int h)
705 {
706 const char* p = s.data();
707 size_t len = s.length();
708 for (; len > 0; --len)
709 {
710 h ^= *p++;
711 h*= 16777619;
712 }
713 return h;
714 }
715
716 // Default check for the expression passed to make. Any type which
717 // may be used with make implements its own version of this.
718
719 bool
720 Type::do_check_make_expression(Expression_list*, source_location)
721 {
722 gcc_unreachable();
723 }
724
725 // Return whether an expression has an integer value. Report an error
726 // if not. This is used when handling calls to the predeclared make
727 // function.
728
729 bool
730 Type::check_int_value(Expression* e, const char* errmsg,
731 source_location location)
732 {
733 if (e->type()->integer_type() != NULL)
734 return true;
735
736 // Check for a floating point constant with integer value.
737 mpfr_t fval;
738 mpfr_init(fval);
739
740 Type* dummy;
741 if (e->float_constant_value(fval, &dummy))
742 {
743 mpz_t ival;
744 mpz_init(ival);
745
746 bool ok = false;
747
748 mpfr_clear_overflow();
749 mpfr_clear_erangeflag();
750 mpfr_get_z(ival, fval, GMP_RNDN);
751 if (!mpfr_overflow_p()
752 && !mpfr_erangeflag_p()
753 && mpz_sgn(ival) >= 0)
754 {
755 Named_type* ntype = Type::lookup_integer_type("int");
756 Integer_type* inttype = ntype->integer_type();
757 mpz_t max;
758 mpz_init_set_ui(max, 1);
759 mpz_mul_2exp(max, max, inttype->bits() - 1);
760 ok = mpz_cmp(ival, max) < 0;
761 mpz_clear(max);
762 }
763 mpz_clear(ival);
764
765 if (ok)
766 {
767 mpfr_clear(fval);
768 return true;
769 }
770 }
771
772 mpfr_clear(fval);
773
774 error_at(location, "%s", errmsg);
775 return false;
776 }
777
778 // A hash table mapping unnamed types to trees.
779
780 Type::Type_trees Type::type_trees;
781
782 // Return a tree representing this type.
783
784 tree
785 Type::get_tree(Gogo* gogo)
786 {
787 if (this->tree_ != NULL)
788 return this->tree_;
789
790 if (this->forward_declaration_type() != NULL
791 || this->named_type() != NULL)
792 return this->get_tree_without_hash(gogo);
793
794 // To avoid confusing GIMPLE, we need to translate all identical Go
795 // types to the same GIMPLE type. We use a hash table to do that.
796 // There is no need to use the hash table for named types, as named
797 // types are only identical to themselves.
798
799 std::pair<Type*, tree> val(this, NULL);
800 std::pair<Type_trees::iterator, bool> ins =
801 Type::type_trees.insert(val);
802 if (!ins.second && ins.first->second != NULL_TREE)
803 {
804 this->tree_ = ins.first->second;
805 return this->tree_;
806 }
807
808 tree t = this->get_tree_without_hash(gogo);
809
810 if (ins.first->second == NULL_TREE)
811 ins.first->second = t;
812 else
813 {
814 // We have already created a tree for this type. This can
815 // happen when an unnamed type is defined using a named type
816 // which in turns uses an identical unnamed type. Use the tree
817 // we created earlier and ignore the one we just built.
818 t = ins.first->second;
819 this->tree_ = t;
820 }
821
822 return t;
823 }
824
825 // Return a tree for a type without looking in the hash table for
826 // identical types. This is used for named types, since there is no
827 // point to looking in the hash table for them.
828
829 tree
830 Type::get_tree_without_hash(Gogo* gogo)
831 {
832 if (this->tree_ == NULL_TREE)
833 {
834 tree t = this->do_get_tree(gogo);
835
836 // For a recursive function or pointer type, we will temporarily
837 // return ptr_type_node during the recursion. We don't want to
838 // record that for a forwarding type, as it may confuse us
839 // later.
840 if (t == ptr_type_node && this->forward_declaration_type() != NULL)
841 return t;
842
843 this->tree_ = t;
844 go_preserve_from_gc(t);
845 }
846
847 return this->tree_;
848 }
849
850 // Return a tree representing a zero initialization for this type.
851
852 tree
853 Type::get_init_tree(Gogo* gogo, bool is_clear)
854 {
855 tree type_tree = this->get_tree(gogo);
856 if (type_tree == error_mark_node)
857 return error_mark_node;
858 return this->do_get_init_tree(gogo, type_tree, is_clear);
859 }
860
861 // Any type which supports the builtin make function must implement
862 // this.
863
864 tree
865 Type::do_make_expression_tree(Translate_context*, Expression_list*,
866 source_location)
867 {
868 gcc_unreachable();
869 }
870
871 // Return a pointer to the type descriptor for this type.
872
873 tree
874 Type::type_descriptor_pointer(Gogo* gogo)
875 {
876 Type* t = this->forwarded();
877 if (t->type_descriptor_decl_ == NULL_TREE)
878 {
879 Expression* e = t->do_type_descriptor(gogo, NULL);
880 gogo->build_type_descriptor_decl(t, e, &t->type_descriptor_decl_);
881 gcc_assert(t->type_descriptor_decl_ != NULL_TREE
882 && (t->type_descriptor_decl_ == error_mark_node
883 || DECL_P(t->type_descriptor_decl_)));
884 }
885 if (t->type_descriptor_decl_ == error_mark_node)
886 return error_mark_node;
887 return build_fold_addr_expr(t->type_descriptor_decl_);
888 }
889
890 // Return a composite literal for a type descriptor.
891
892 Expression*
893 Type::type_descriptor(Gogo* gogo, Type* type)
894 {
895 return type->do_type_descriptor(gogo, NULL);
896 }
897
898 // Return a composite literal for a type descriptor with a name.
899
900 Expression*
901 Type::named_type_descriptor(Gogo* gogo, Type* type, Named_type* name)
902 {
903 gcc_assert(name != NULL && type->named_type() != name);
904 return type->do_type_descriptor(gogo, name);
905 }
906
907 // Make a builtin struct type from a list of fields. The fields are
908 // pairs of a name and a type.
909
910 Struct_type*
911 Type::make_builtin_struct_type(int nfields, ...)
912 {
913 va_list ap;
914 va_start(ap, nfields);
915
916 source_location bloc = BUILTINS_LOCATION;
917 Struct_field_list* sfl = new Struct_field_list();
918 for (int i = 0; i < nfields; i++)
919 {
920 const char* field_name = va_arg(ap, const char *);
921 Type* type = va_arg(ap, Type*);
922 sfl->push_back(Struct_field(Typed_identifier(field_name, type, bloc)));
923 }
924
925 va_end(ap);
926
927 return Type::make_struct_type(sfl, bloc);
928 }
929
930 // Make a builtin named type.
931
932 Named_type*
933 Type::make_builtin_named_type(const char* name, Type* type)
934 {
935 source_location bloc = BUILTINS_LOCATION;
936 Named_object* no = Named_object::make_type(name, NULL, type, bloc);
937 return no->type_value();
938 }
939
940 // Return the type of a type descriptor. We should really tie this to
941 // runtime.Type rather than copying it. This must match commonType in
942 // libgo/go/runtime/type.go.
943
944 Type*
945 Type::make_type_descriptor_type()
946 {
947 static Type* ret;
948 if (ret == NULL)
949 {
950 source_location bloc = BUILTINS_LOCATION;
951
952 Type* uint8_type = Type::lookup_integer_type("uint8");
953 Type* uint32_type = Type::lookup_integer_type("uint32");
954 Type* uintptr_type = Type::lookup_integer_type("uintptr");
955 Type* string_type = Type::lookup_string_type();
956 Type* pointer_string_type = Type::make_pointer_type(string_type);
957
958 // This is an unnamed version of unsafe.Pointer. Perhaps we
959 // should use the named version instead, although that would
960 // require us to create the unsafe package if it has not been
961 // imported. It probably doesn't matter.
962 Type* void_type = Type::make_void_type();
963 Type* unsafe_pointer_type = Type::make_pointer_type(void_type);
964
965 // Forward declaration for the type descriptor type.
966 Named_object* named_type_descriptor_type =
967 Named_object::make_type_declaration("commonType", NULL, bloc);
968 Type* ft = Type::make_forward_declaration(named_type_descriptor_type);
969 Type* pointer_type_descriptor_type = Type::make_pointer_type(ft);
970
971 // The type of a method on a concrete type.
972 Struct_type* method_type =
973 Type::make_builtin_struct_type(5,
974 "name", pointer_string_type,
975 "pkgPath", pointer_string_type,
976 "mtyp", pointer_type_descriptor_type,
977 "typ", pointer_type_descriptor_type,
978 "tfn", unsafe_pointer_type);
979 Named_type* named_method_type =
980 Type::make_builtin_named_type("method", method_type);
981
982 // Information for types with a name or methods.
983 Type* slice_named_method_type =
984 Type::make_array_type(named_method_type, NULL);
985 Struct_type* uncommon_type =
986 Type::make_builtin_struct_type(3,
987 "name", pointer_string_type,
988 "pkgPath", pointer_string_type,
989 "methods", slice_named_method_type);
990 Named_type* named_uncommon_type =
991 Type::make_builtin_named_type("uncommonType", uncommon_type);
992
993 Type* pointer_uncommon_type =
994 Type::make_pointer_type(named_uncommon_type);
995
996 // The type descriptor type.
997
998 Typed_identifier_list* params = new Typed_identifier_list();
999 params->push_back(Typed_identifier("", unsafe_pointer_type, bloc));
1000 params->push_back(Typed_identifier("", uintptr_type, bloc));
1001
1002 Typed_identifier_list* results = new Typed_identifier_list();
1003 results->push_back(Typed_identifier("", uintptr_type, bloc));
1004
1005 Type* hashfn_type = Type::make_function_type(NULL, params, results, bloc);
1006
1007 params = new Typed_identifier_list();
1008 params->push_back(Typed_identifier("", unsafe_pointer_type, bloc));
1009 params->push_back(Typed_identifier("", unsafe_pointer_type, bloc));
1010 params->push_back(Typed_identifier("", uintptr_type, bloc));
1011
1012 results = new Typed_identifier_list();
1013 results->push_back(Typed_identifier("", Type::lookup_bool_type(), bloc));
1014
1015 Type* equalfn_type = Type::make_function_type(NULL, params, results,
1016 bloc);
1017
1018 Struct_type* type_descriptor_type =
1019 Type::make_builtin_struct_type(9,
1020 "Kind", uint8_type,
1021 "align", uint8_type,
1022 "fieldAlign", uint8_type,
1023 "size", uintptr_type,
1024 "hash", uint32_type,
1025 "hashfn", hashfn_type,
1026 "equalfn", equalfn_type,
1027 "string", pointer_string_type,
1028 "", pointer_uncommon_type);
1029
1030 Named_type* named = Type::make_builtin_named_type("commonType",
1031 type_descriptor_type);
1032
1033 named_type_descriptor_type->set_type_value(named);
1034
1035 ret = named;
1036 }
1037
1038 return ret;
1039 }
1040
1041 // Make the type of a pointer to a type descriptor as represented in
1042 // Go.
1043
1044 Type*
1045 Type::make_type_descriptor_ptr_type()
1046 {
1047 static Type* ret;
1048 if (ret == NULL)
1049 ret = Type::make_pointer_type(Type::make_type_descriptor_type());
1050 return ret;
1051 }
1052
1053 // Return the names of runtime functions which compute a hash code for
1054 // this type and which compare whether two values of this type are
1055 // equal.
1056
1057 void
1058 Type::type_functions(const char** hash_fn, const char** equal_fn) const
1059 {
1060 switch (this->base()->classification())
1061 {
1062 case Type::TYPE_ERROR:
1063 case Type::TYPE_VOID:
1064 case Type::TYPE_NIL:
1065 // These types can not be hashed or compared.
1066 *hash_fn = "__go_type_hash_error";
1067 *equal_fn = "__go_type_equal_error";
1068 break;
1069
1070 case Type::TYPE_BOOLEAN:
1071 case Type::TYPE_INTEGER:
1072 case Type::TYPE_FLOAT:
1073 case Type::TYPE_COMPLEX:
1074 case Type::TYPE_POINTER:
1075 case Type::TYPE_FUNCTION:
1076 case Type::TYPE_MAP:
1077 case Type::TYPE_CHANNEL:
1078 *hash_fn = "__go_type_hash_identity";
1079 *equal_fn = "__go_type_equal_identity";
1080 break;
1081
1082 case Type::TYPE_STRING:
1083 *hash_fn = "__go_type_hash_string";
1084 *equal_fn = "__go_type_equal_string";
1085 break;
1086
1087 case Type::TYPE_STRUCT:
1088 case Type::TYPE_ARRAY:
1089 // These types can not be hashed or compared.
1090 *hash_fn = "__go_type_hash_error";
1091 *equal_fn = "__go_type_equal_error";
1092 break;
1093
1094 case Type::TYPE_INTERFACE:
1095 if (this->interface_type()->is_empty())
1096 {
1097 *hash_fn = "__go_type_hash_empty_interface";
1098 *equal_fn = "__go_type_equal_empty_interface";
1099 }
1100 else
1101 {
1102 *hash_fn = "__go_type_hash_interface";
1103 *equal_fn = "__go_type_equal_interface";
1104 }
1105 break;
1106
1107 case Type::TYPE_NAMED:
1108 case Type::TYPE_FORWARD:
1109 gcc_unreachable();
1110
1111 default:
1112 gcc_unreachable();
1113 }
1114 }
1115
1116 // Return a composite literal for the type descriptor for a plain type
1117 // of kind RUNTIME_TYPE_KIND named NAME.
1118
1119 Expression*
1120 Type::type_descriptor_constructor(Gogo* gogo, int runtime_type_kind,
1121 Named_type* name, const Methods* methods,
1122 bool only_value_methods)
1123 {
1124 source_location bloc = BUILTINS_LOCATION;
1125
1126 Type* td_type = Type::make_type_descriptor_type();
1127 const Struct_field_list* fields = td_type->struct_type()->fields();
1128
1129 Expression_list* vals = new Expression_list();
1130 vals->reserve(9);
1131
1132 Struct_field_list::const_iterator p = fields->begin();
1133 gcc_assert(p->field_name() == "Kind");
1134 mpz_t iv;
1135 mpz_init_set_ui(iv, runtime_type_kind);
1136 vals->push_back(Expression::make_integer(&iv, p->type(), bloc));
1137
1138 ++p;
1139 gcc_assert(p->field_name() == "align");
1140 Expression::Type_info type_info = Expression::TYPE_INFO_ALIGNMENT;
1141 vals->push_back(Expression::make_type_info(this, type_info));
1142
1143 ++p;
1144 gcc_assert(p->field_name() == "fieldAlign");
1145 type_info = Expression::TYPE_INFO_FIELD_ALIGNMENT;
1146 vals->push_back(Expression::make_type_info(this, type_info));
1147
1148 ++p;
1149 gcc_assert(p->field_name() == "size");
1150 type_info = Expression::TYPE_INFO_SIZE;
1151 vals->push_back(Expression::make_type_info(this, type_info));
1152
1153 ++p;
1154 gcc_assert(p->field_name() == "hash");
1155 mpz_set_ui(iv, this->hash_for_method(gogo));
1156 vals->push_back(Expression::make_integer(&iv, p->type(), bloc));
1157
1158 const char* hash_fn;
1159 const char* equal_fn;
1160 this->type_functions(&hash_fn, &equal_fn);
1161
1162 ++p;
1163 gcc_assert(p->field_name() == "hashfn");
1164 Function_type* fntype = p->type()->function_type();
1165 Named_object* no = Named_object::make_function_declaration(hash_fn, NULL,
1166 fntype,
1167 bloc);
1168 no->func_declaration_value()->set_asm_name(hash_fn);
1169 vals->push_back(Expression::make_func_reference(no, NULL, bloc));
1170
1171 ++p;
1172 gcc_assert(p->field_name() == "equalfn");
1173 fntype = p->type()->function_type();
1174 no = Named_object::make_function_declaration(equal_fn, NULL, fntype, bloc);
1175 no->func_declaration_value()->set_asm_name(equal_fn);
1176 vals->push_back(Expression::make_func_reference(no, NULL, bloc));
1177
1178 ++p;
1179 gcc_assert(p->field_name() == "string");
1180 Expression* s = Expression::make_string((name != NULL
1181 ? name->reflection(gogo)
1182 : this->reflection(gogo)),
1183 bloc);
1184 vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
1185
1186 ++p;
1187 gcc_assert(p->field_name() == "uncommonType");
1188 if (name == NULL && methods == NULL)
1189 vals->push_back(Expression::make_nil(bloc));
1190 else
1191 {
1192 if (methods == NULL)
1193 methods = name->methods();
1194 vals->push_back(this->uncommon_type_constructor(gogo,
1195 p->type()->deref(),
1196 name, methods,
1197 only_value_methods));
1198 }
1199
1200 ++p;
1201 gcc_assert(p == fields->end());
1202
1203 mpz_clear(iv);
1204
1205 return Expression::make_struct_composite_literal(td_type, vals, bloc);
1206 }
1207
1208 // Return a composite literal for the uncommon type information for
1209 // this type. UNCOMMON_STRUCT_TYPE is the type of the uncommon type
1210 // struct. If name is not NULL, it is the name of the type. If
1211 // METHODS is not NULL, it is the list of methods. ONLY_VALUE_METHODS
1212 // is true if only value methods should be included. At least one of
1213 // NAME and METHODS must not be NULL.
1214
1215 Expression*
1216 Type::uncommon_type_constructor(Gogo* gogo, Type* uncommon_type,
1217 Named_type* name, const Methods* methods,
1218 bool only_value_methods) const
1219 {
1220 source_location bloc = BUILTINS_LOCATION;
1221
1222 const Struct_field_list* fields = uncommon_type->struct_type()->fields();
1223
1224 Expression_list* vals = new Expression_list();
1225 vals->reserve(3);
1226
1227 Struct_field_list::const_iterator p = fields->begin();
1228 gcc_assert(p->field_name() == "name");
1229
1230 ++p;
1231 gcc_assert(p->field_name() == "pkgPath");
1232
1233 if (name == NULL)
1234 {
1235 vals->push_back(Expression::make_nil(bloc));
1236 vals->push_back(Expression::make_nil(bloc));
1237 }
1238 else
1239 {
1240 Named_object* no = name->named_object();
1241 std::string n = Gogo::unpack_hidden_name(no->name());
1242 Expression* s = Expression::make_string(n, bloc);
1243 vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
1244
1245 if (name->is_builtin())
1246 vals->push_back(Expression::make_nil(bloc));
1247 else
1248 {
1249 const Package* package = no->package();
1250 const std::string& unique_prefix(package == NULL
1251 ? gogo->unique_prefix()
1252 : package->unique_prefix());
1253 const std::string& package_name(package == NULL
1254 ? gogo->package_name()
1255 : package->name());
1256 n.assign(unique_prefix);
1257 n.append(1, '.');
1258 n.append(package_name);
1259 if (name->in_function() != NULL)
1260 {
1261 n.append(1, '.');
1262 n.append(Gogo::unpack_hidden_name(name->in_function()->name()));
1263 }
1264 s = Expression::make_string(n, bloc);
1265 vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
1266 }
1267 }
1268
1269 ++p;
1270 gcc_assert(p->field_name() == "methods");
1271 vals->push_back(this->methods_constructor(gogo, p->type(), methods,
1272 only_value_methods));
1273
1274 ++p;
1275 gcc_assert(p == fields->end());
1276
1277 Expression* r = Expression::make_struct_composite_literal(uncommon_type,
1278 vals, bloc);
1279 return Expression::make_unary(OPERATOR_AND, r, bloc);
1280 }
1281
1282 // Sort methods by name.
1283
1284 class Sort_methods
1285 {
1286 public:
1287 bool
1288 operator()(const std::pair<std::string, const Method*>& m1,
1289 const std::pair<std::string, const Method*>& m2) const
1290 { return m1.first < m2.first; }
1291 };
1292
1293 // Return a composite literal for the type method table for this type.
1294 // METHODS_TYPE is the type of the table, and is a slice type.
1295 // METHODS is the list of methods. If ONLY_VALUE_METHODS is true,
1296 // then only value methods are used.
1297
1298 Expression*
1299 Type::methods_constructor(Gogo* gogo, Type* methods_type,
1300 const Methods* methods,
1301 bool only_value_methods) const
1302 {
1303 source_location bloc = BUILTINS_LOCATION;
1304
1305 std::vector<std::pair<std::string, const Method*> > smethods;
1306 if (methods != NULL)
1307 {
1308 smethods.reserve(methods->count());
1309 for (Methods::const_iterator p = methods->begin();
1310 p != methods->end();
1311 ++p)
1312 {
1313 if (p->second->is_ambiguous())
1314 continue;
1315 if (only_value_methods && !p->second->is_value_method())
1316 continue;
1317 smethods.push_back(std::make_pair(p->first, p->second));
1318 }
1319 }
1320
1321 if (smethods.empty())
1322 return Expression::make_slice_composite_literal(methods_type, NULL, bloc);
1323
1324 std::sort(smethods.begin(), smethods.end(), Sort_methods());
1325
1326 Type* method_type = methods_type->array_type()->element_type();
1327
1328 Expression_list* vals = new Expression_list();
1329 vals->reserve(smethods.size());
1330 for (std::vector<std::pair<std::string, const Method*> >::const_iterator p
1331 = smethods.begin();
1332 p != smethods.end();
1333 ++p)
1334 vals->push_back(this->method_constructor(gogo, method_type, p->first,
1335 p->second));
1336
1337 return Expression::make_slice_composite_literal(methods_type, vals, bloc);
1338 }
1339
1340 // Return a composite literal for a single method. METHOD_TYPE is the
1341 // type of the entry. METHOD_NAME is the name of the method and M is
1342 // the method information.
1343
1344 Expression*
1345 Type::method_constructor(Gogo*, Type* method_type,
1346 const std::string& method_name,
1347 const Method* m) const
1348 {
1349 source_location bloc = BUILTINS_LOCATION;
1350
1351 const Struct_field_list* fields = method_type->struct_type()->fields();
1352
1353 Expression_list* vals = new Expression_list();
1354 vals->reserve(5);
1355
1356 Struct_field_list::const_iterator p = fields->begin();
1357 gcc_assert(p->field_name() == "name");
1358 const std::string n = Gogo::unpack_hidden_name(method_name);
1359 Expression* s = Expression::make_string(n, bloc);
1360 vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
1361
1362 ++p;
1363 gcc_assert(p->field_name() == "pkgPath");
1364 if (!Gogo::is_hidden_name(method_name))
1365 vals->push_back(Expression::make_nil(bloc));
1366 else
1367 {
1368 s = Expression::make_string(Gogo::hidden_name_prefix(method_name), bloc);
1369 vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
1370 }
1371
1372 Named_object* no = (m->needs_stub_method()
1373 ? m->stub_object()
1374 : m->named_object());
1375
1376 Function_type* mtype;
1377 if (no->is_function())
1378 mtype = no->func_value()->type();
1379 else
1380 mtype = no->func_declaration_value()->type();
1381 gcc_assert(mtype->is_method());
1382 Type* nonmethod_type = mtype->copy_without_receiver();
1383
1384 ++p;
1385 gcc_assert(p->field_name() == "mtyp");
1386 vals->push_back(Expression::make_type_descriptor(nonmethod_type, bloc));
1387
1388 ++p;
1389 gcc_assert(p->field_name() == "typ");
1390 vals->push_back(Expression::make_type_descriptor(mtype, bloc));
1391
1392 ++p;
1393 gcc_assert(p->field_name() == "tfn");
1394 vals->push_back(Expression::make_func_reference(no, NULL, bloc));
1395
1396 ++p;
1397 gcc_assert(p == fields->end());
1398
1399 return Expression::make_struct_composite_literal(method_type, vals, bloc);
1400 }
1401
1402 // Return a composite literal for the type descriptor of a plain type.
1403 // RUNTIME_TYPE_KIND is the value of the kind field. If NAME is not
1404 // NULL, it is the name to use as well as the list of methods.
1405
1406 Expression*
1407 Type::plain_type_descriptor(Gogo* gogo, int runtime_type_kind,
1408 Named_type* name)
1409 {
1410 return this->type_descriptor_constructor(gogo, runtime_type_kind,
1411 name, NULL, true);
1412 }
1413
1414 // Return the type reflection string for this type.
1415
1416 std::string
1417 Type::reflection(Gogo* gogo) const
1418 {
1419 std::string ret;
1420
1421 // The do_reflection virtual function should set RET to the
1422 // reflection string.
1423 this->do_reflection(gogo, &ret);
1424
1425 return ret;
1426 }
1427
1428 // Return a mangled name for the type.
1429
1430 std::string
1431 Type::mangled_name(Gogo* gogo) const
1432 {
1433 std::string ret;
1434
1435 // The do_mangled_name virtual function should set RET to the
1436 // mangled name. For a composite type it should append a code for
1437 // the composition and then call do_mangled_name on the components.
1438 this->do_mangled_name(gogo, &ret);
1439
1440 return ret;
1441 }
1442
1443 // Default function to export a type.
1444
1445 void
1446 Type::do_export(Export*) const
1447 {
1448 gcc_unreachable();
1449 }
1450
1451 // Import a type.
1452
1453 Type*
1454 Type::import_type(Import* imp)
1455 {
1456 if (imp->match_c_string("("))
1457 return Function_type::do_import(imp);
1458 else if (imp->match_c_string("*"))
1459 return Pointer_type::do_import(imp);
1460 else if (imp->match_c_string("struct "))
1461 return Struct_type::do_import(imp);
1462 else if (imp->match_c_string("["))
1463 return Array_type::do_import(imp);
1464 else if (imp->match_c_string("map "))
1465 return Map_type::do_import(imp);
1466 else if (imp->match_c_string("chan "))
1467 return Channel_type::do_import(imp);
1468 else if (imp->match_c_string("interface"))
1469 return Interface_type::do_import(imp);
1470 else
1471 {
1472 error_at(imp->location(), "import error: expected type");
1473 return Type::make_error_type();
1474 }
1475 }
1476
1477 // A type used to indicate a parsing error. This exists to simplify
1478 // later error detection.
1479
1480 class Error_type : public Type
1481 {
1482 public:
1483 Error_type()
1484 : Type(TYPE_ERROR)
1485 { }
1486
1487 protected:
1488 tree
1489 do_get_tree(Gogo*)
1490 { return error_mark_node; }
1491
1492 tree
1493 do_get_init_tree(Gogo*, tree, bool)
1494 { return error_mark_node; }
1495
1496 Expression*
1497 do_type_descriptor(Gogo*, Named_type*)
1498 { return Expression::make_error(BUILTINS_LOCATION); }
1499
1500 void
1501 do_reflection(Gogo*, std::string*) const
1502 { gcc_assert(saw_errors()); }
1503
1504 void
1505 do_mangled_name(Gogo*, std::string* ret) const
1506 { ret->push_back('E'); }
1507 };
1508
1509 Type*
1510 Type::make_error_type()
1511 {
1512 static Error_type singleton_error_type;
1513 return &singleton_error_type;
1514 }
1515
1516 // The void type.
1517
1518 class Void_type : public Type
1519 {
1520 public:
1521 Void_type()
1522 : Type(TYPE_VOID)
1523 { }
1524
1525 protected:
1526 tree
1527 do_get_tree(Gogo*)
1528 { return void_type_node; }
1529
1530 tree
1531 do_get_init_tree(Gogo*, tree, bool)
1532 { gcc_unreachable(); }
1533
1534 Expression*
1535 do_type_descriptor(Gogo*, Named_type*)
1536 { gcc_unreachable(); }
1537
1538 void
1539 do_reflection(Gogo*, std::string*) const
1540 { }
1541
1542 void
1543 do_mangled_name(Gogo*, std::string* ret) const
1544 { ret->push_back('v'); }
1545 };
1546
1547 Type*
1548 Type::make_void_type()
1549 {
1550 static Void_type singleton_void_type;
1551 return &singleton_void_type;
1552 }
1553
1554 // The boolean type.
1555
1556 class Boolean_type : public Type
1557 {
1558 public:
1559 Boolean_type()
1560 : Type(TYPE_BOOLEAN)
1561 { }
1562
1563 protected:
1564 tree
1565 do_get_tree(Gogo*)
1566 { return boolean_type_node; }
1567
1568 tree
1569 do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
1570 { return is_clear ? NULL : fold_convert(type_tree, boolean_false_node); }
1571
1572 Expression*
1573 do_type_descriptor(Gogo*, Named_type* name);
1574
1575 // We should not be asked for the reflection string of a basic type.
1576 void
1577 do_reflection(Gogo*, std::string* ret) const
1578 { ret->append("bool"); }
1579
1580 void
1581 do_mangled_name(Gogo*, std::string* ret) const
1582 { ret->push_back('b'); }
1583 };
1584
1585 // Make the type descriptor.
1586
1587 Expression*
1588 Boolean_type::do_type_descriptor(Gogo* gogo, Named_type* name)
1589 {
1590 if (name != NULL)
1591 return this->plain_type_descriptor(gogo, RUNTIME_TYPE_KIND_BOOL, name);
1592 else
1593 {
1594 Named_object* no = gogo->lookup_global("bool");
1595 gcc_assert(no != NULL);
1596 return Type::type_descriptor(gogo, no->type_value());
1597 }
1598 }
1599
1600 Type*
1601 Type::make_boolean_type()
1602 {
1603 static Boolean_type boolean_type;
1604 return &boolean_type;
1605 }
1606
1607 // The named type "bool".
1608
1609 static Named_type* named_bool_type;
1610
1611 // Get the named type "bool".
1612
1613 Named_type*
1614 Type::lookup_bool_type()
1615 {
1616 return named_bool_type;
1617 }
1618
1619 // Make the named type "bool".
1620
1621 Named_type*
1622 Type::make_named_bool_type()
1623 {
1624 Type* bool_type = Type::make_boolean_type();
1625 Named_object* named_object = Named_object::make_type("bool", NULL,
1626 bool_type,
1627 BUILTINS_LOCATION);
1628 Named_type* named_type = named_object->type_value();
1629 named_bool_type = named_type;
1630 return named_type;
1631 }
1632
1633 // Class Integer_type.
1634
1635 Integer_type::Named_integer_types Integer_type::named_integer_types;
1636
1637 // Create a new integer type. Non-abstract integer types always have
1638 // names.
1639
1640 Named_type*
1641 Integer_type::create_integer_type(const char* name, bool is_unsigned,
1642 int bits, int runtime_type_kind)
1643 {
1644 Integer_type* integer_type = new Integer_type(false, is_unsigned, bits,
1645 runtime_type_kind);
1646 std::string sname(name);
1647 Named_object* named_object = Named_object::make_type(sname, NULL,
1648 integer_type,
1649 BUILTINS_LOCATION);
1650 Named_type* named_type = named_object->type_value();
1651 std::pair<Named_integer_types::iterator, bool> ins =
1652 Integer_type::named_integer_types.insert(std::make_pair(sname, named_type));
1653 gcc_assert(ins.second);
1654 return named_type;
1655 }
1656
1657 // Look up an existing integer type.
1658
1659 Named_type*
1660 Integer_type::lookup_integer_type(const char* name)
1661 {
1662 Named_integer_types::const_iterator p =
1663 Integer_type::named_integer_types.find(name);
1664 gcc_assert(p != Integer_type::named_integer_types.end());
1665 return p->second;
1666 }
1667
1668 // Create a new abstract integer type.
1669
1670 Integer_type*
1671 Integer_type::create_abstract_integer_type()
1672 {
1673 static Integer_type* abstract_type;
1674 if (abstract_type == NULL)
1675 abstract_type = new Integer_type(true, false, INT_TYPE_SIZE,
1676 RUNTIME_TYPE_KIND_INT);
1677 return abstract_type;
1678 }
1679
1680 // Integer type compatibility.
1681
1682 bool
1683 Integer_type::is_identical(const Integer_type* t) const
1684 {
1685 if (this->is_unsigned_ != t->is_unsigned_ || this->bits_ != t->bits_)
1686 return false;
1687 return this->is_abstract_ == t->is_abstract_;
1688 }
1689
1690 // Hash code.
1691
1692 unsigned int
1693 Integer_type::do_hash_for_method(Gogo*) const
1694 {
1695 return ((this->bits_ << 4)
1696 + ((this->is_unsigned_ ? 1 : 0) << 8)
1697 + ((this->is_abstract_ ? 1 : 0) << 9));
1698 }
1699
1700 // Get the tree for an Integer_type.
1701
1702 tree
1703 Integer_type::do_get_tree(Gogo*)
1704 {
1705 gcc_assert(!this->is_abstract_);
1706 if (this->is_unsigned_)
1707 {
1708 if (this->bits_ == INT_TYPE_SIZE)
1709 return unsigned_type_node;
1710 else if (this->bits_ == CHAR_TYPE_SIZE)
1711 return unsigned_char_type_node;
1712 else if (this->bits_ == SHORT_TYPE_SIZE)
1713 return short_unsigned_type_node;
1714 else if (this->bits_ == LONG_TYPE_SIZE)
1715 return long_unsigned_type_node;
1716 else if (this->bits_ == LONG_LONG_TYPE_SIZE)
1717 return long_long_unsigned_type_node;
1718 else
1719 return make_unsigned_type(this->bits_);
1720 }
1721 else
1722 {
1723 if (this->bits_ == INT_TYPE_SIZE)
1724 return integer_type_node;
1725 else if (this->bits_ == CHAR_TYPE_SIZE)
1726 return signed_char_type_node;
1727 else if (this->bits_ == SHORT_TYPE_SIZE)
1728 return short_integer_type_node;
1729 else if (this->bits_ == LONG_TYPE_SIZE)
1730 return long_integer_type_node;
1731 else if (this->bits_ == LONG_LONG_TYPE_SIZE)
1732 return long_long_integer_type_node;
1733 else
1734 return make_signed_type(this->bits_);
1735 }
1736 }
1737
1738 tree
1739 Integer_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
1740 {
1741 return is_clear ? NULL : build_int_cst(type_tree, 0);
1742 }
1743
1744 // The type descriptor for an integer type. Integer types are always
1745 // named.
1746
1747 Expression*
1748 Integer_type::do_type_descriptor(Gogo* gogo, Named_type* name)
1749 {
1750 gcc_assert(name != NULL);
1751 return this->plain_type_descriptor(gogo, this->runtime_type_kind_, name);
1752 }
1753
1754 // We should not be asked for the reflection string of a basic type.
1755
1756 void
1757 Integer_type::do_reflection(Gogo*, std::string*) const
1758 {
1759 gcc_unreachable();
1760 }
1761
1762 // Mangled name.
1763
1764 void
1765 Integer_type::do_mangled_name(Gogo*, std::string* ret) const
1766 {
1767 char buf[100];
1768 snprintf(buf, sizeof buf, "i%s%s%de",
1769 this->is_abstract_ ? "a" : "",
1770 this->is_unsigned_ ? "u" : "",
1771 this->bits_);
1772 ret->append(buf);
1773 }
1774
1775 // Make an integer type.
1776
1777 Named_type*
1778 Type::make_integer_type(const char* name, bool is_unsigned, int bits,
1779 int runtime_type_kind)
1780 {
1781 return Integer_type::create_integer_type(name, is_unsigned, bits,
1782 runtime_type_kind);
1783 }
1784
1785 // Make an abstract integer type.
1786
1787 Integer_type*
1788 Type::make_abstract_integer_type()
1789 {
1790 return Integer_type::create_abstract_integer_type();
1791 }
1792
1793 // Look up an integer type.
1794
1795 Named_type*
1796 Type::lookup_integer_type(const char* name)
1797 {
1798 return Integer_type::lookup_integer_type(name);
1799 }
1800
1801 // Class Float_type.
1802
1803 Float_type::Named_float_types Float_type::named_float_types;
1804
1805 // Create a new float type. Non-abstract float types always have
1806 // names.
1807
1808 Named_type*
1809 Float_type::create_float_type(const char* name, int bits,
1810 int runtime_type_kind)
1811 {
1812 Float_type* float_type = new Float_type(false, bits, runtime_type_kind);
1813 std::string sname(name);
1814 Named_object* named_object = Named_object::make_type(sname, NULL, float_type,
1815 BUILTINS_LOCATION);
1816 Named_type* named_type = named_object->type_value();
1817 std::pair<Named_float_types::iterator, bool> ins =
1818 Float_type::named_float_types.insert(std::make_pair(sname, named_type));
1819 gcc_assert(ins.second);
1820 return named_type;
1821 }
1822
1823 // Look up an existing float type.
1824
1825 Named_type*
1826 Float_type::lookup_float_type(const char* name)
1827 {
1828 Named_float_types::const_iterator p =
1829 Float_type::named_float_types.find(name);
1830 gcc_assert(p != Float_type::named_float_types.end());
1831 return p->second;
1832 }
1833
1834 // Create a new abstract float type.
1835
1836 Float_type*
1837 Float_type::create_abstract_float_type()
1838 {
1839 static Float_type* abstract_type;
1840 if (abstract_type == NULL)
1841 abstract_type = new Float_type(true, FLOAT_TYPE_SIZE,
1842 RUNTIME_TYPE_KIND_FLOAT);
1843 return abstract_type;
1844 }
1845
1846 // Whether this type is identical with T.
1847
1848 bool
1849 Float_type::is_identical(const Float_type* t) const
1850 {
1851 if (this->bits_ != t->bits_)
1852 return false;
1853 return this->is_abstract_ == t->is_abstract_;
1854 }
1855
1856 // Hash code.
1857
1858 unsigned int
1859 Float_type::do_hash_for_method(Gogo*) const
1860 {
1861 return (this->bits_ << 4) + ((this->is_abstract_ ? 1 : 0) << 8);
1862 }
1863
1864 // Get a tree without using a Gogo*.
1865
1866 tree
1867 Float_type::type_tree() const
1868 {
1869 if (this->bits_ == FLOAT_TYPE_SIZE)
1870 return float_type_node;
1871 else if (this->bits_ == DOUBLE_TYPE_SIZE)
1872 return double_type_node;
1873 else if (this->bits_ == LONG_DOUBLE_TYPE_SIZE)
1874 return long_double_type_node;
1875 else
1876 {
1877 tree ret = make_node(REAL_TYPE);
1878 TYPE_PRECISION(ret) = this->bits_;
1879 layout_type(ret);
1880 return ret;
1881 }
1882 }
1883
1884 // Get a tree.
1885
1886 tree
1887 Float_type::do_get_tree(Gogo*)
1888 {
1889 return this->type_tree();
1890 }
1891
1892 tree
1893 Float_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
1894 {
1895 if (is_clear)
1896 return NULL;
1897 REAL_VALUE_TYPE r;
1898 real_from_integer(&r, TYPE_MODE(type_tree), 0, 0, 0);
1899 return build_real(type_tree, r);
1900 }
1901
1902 // The type descriptor for a float type. Float types are always named.
1903
1904 Expression*
1905 Float_type::do_type_descriptor(Gogo* gogo, Named_type* name)
1906 {
1907 gcc_assert(name != NULL);
1908 return this->plain_type_descriptor(gogo, this->runtime_type_kind_, name);
1909 }
1910
1911 // We should not be asked for the reflection string of a basic type.
1912
1913 void
1914 Float_type::do_reflection(Gogo*, std::string*) const
1915 {
1916 gcc_unreachable();
1917 }
1918
1919 // Mangled name.
1920
1921 void
1922 Float_type::do_mangled_name(Gogo*, std::string* ret) const
1923 {
1924 char buf[100];
1925 snprintf(buf, sizeof buf, "f%s%de",
1926 this->is_abstract_ ? "a" : "",
1927 this->bits_);
1928 ret->append(buf);
1929 }
1930
1931 // Make a floating point type.
1932
1933 Named_type*
1934 Type::make_float_type(const char* name, int bits, int runtime_type_kind)
1935 {
1936 return Float_type::create_float_type(name, bits, runtime_type_kind);
1937 }
1938
1939 // Make an abstract float type.
1940
1941 Float_type*
1942 Type::make_abstract_float_type()
1943 {
1944 return Float_type::create_abstract_float_type();
1945 }
1946
1947 // Look up a float type.
1948
1949 Named_type*
1950 Type::lookup_float_type(const char* name)
1951 {
1952 return Float_type::lookup_float_type(name);
1953 }
1954
1955 // Class Complex_type.
1956
1957 Complex_type::Named_complex_types Complex_type::named_complex_types;
1958
1959 // Create a new complex type. Non-abstract complex types always have
1960 // names.
1961
1962 Named_type*
1963 Complex_type::create_complex_type(const char* name, int bits,
1964 int runtime_type_kind)
1965 {
1966 Complex_type* complex_type = new Complex_type(false, bits,
1967 runtime_type_kind);
1968 std::string sname(name);
1969 Named_object* named_object = Named_object::make_type(sname, NULL,
1970 complex_type,
1971 BUILTINS_LOCATION);
1972 Named_type* named_type = named_object->type_value();
1973 std::pair<Named_complex_types::iterator, bool> ins =
1974 Complex_type::named_complex_types.insert(std::make_pair(sname,
1975 named_type));
1976 gcc_assert(ins.second);
1977 return named_type;
1978 }
1979
1980 // Look up an existing complex type.
1981
1982 Named_type*
1983 Complex_type::lookup_complex_type(const char* name)
1984 {
1985 Named_complex_types::const_iterator p =
1986 Complex_type::named_complex_types.find(name);
1987 gcc_assert(p != Complex_type::named_complex_types.end());
1988 return p->second;
1989 }
1990
1991 // Create a new abstract complex type.
1992
1993 Complex_type*
1994 Complex_type::create_abstract_complex_type()
1995 {
1996 static Complex_type* abstract_type;
1997 if (abstract_type == NULL)
1998 abstract_type = new Complex_type(true, FLOAT_TYPE_SIZE * 2,
1999 RUNTIME_TYPE_KIND_FLOAT);
2000 return abstract_type;
2001 }
2002
2003 // Whether this type is identical with T.
2004
2005 bool
2006 Complex_type::is_identical(const Complex_type *t) const
2007 {
2008 if (this->bits_ != t->bits_)
2009 return false;
2010 return this->is_abstract_ == t->is_abstract_;
2011 }
2012
2013 // Hash code.
2014
2015 unsigned int
2016 Complex_type::do_hash_for_method(Gogo*) const
2017 {
2018 return (this->bits_ << 4) + ((this->is_abstract_ ? 1 : 0) << 8);
2019 }
2020
2021 // Get a tree without using a Gogo*.
2022
2023 tree
2024 Complex_type::type_tree() const
2025 {
2026 if (this->bits_ == FLOAT_TYPE_SIZE * 2)
2027 return complex_float_type_node;
2028 else if (this->bits_ == DOUBLE_TYPE_SIZE * 2)
2029 return complex_double_type_node;
2030 else if (this->bits_ == LONG_DOUBLE_TYPE_SIZE * 2)
2031 return complex_long_double_type_node;
2032 else
2033 {
2034 tree ret = make_node(REAL_TYPE);
2035 TYPE_PRECISION(ret) = this->bits_ / 2;
2036 layout_type(ret);
2037 return build_complex_type(ret);
2038 }
2039 }
2040
2041 // Get a tree.
2042
2043 tree
2044 Complex_type::do_get_tree(Gogo*)
2045 {
2046 return this->type_tree();
2047 }
2048
2049 // Zero initializer.
2050
2051 tree
2052 Complex_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
2053 {
2054 if (is_clear)
2055 return NULL;
2056 REAL_VALUE_TYPE r;
2057 real_from_integer(&r, TYPE_MODE(TREE_TYPE(type_tree)), 0, 0, 0);
2058 return build_complex(type_tree, build_real(TREE_TYPE(type_tree), r),
2059 build_real(TREE_TYPE(type_tree), r));
2060 }
2061
2062 // The type descriptor for a complex type. Complex types are always
2063 // named.
2064
2065 Expression*
2066 Complex_type::do_type_descriptor(Gogo* gogo, Named_type* name)
2067 {
2068 gcc_assert(name != NULL);
2069 return this->plain_type_descriptor(gogo, this->runtime_type_kind_, name);
2070 }
2071
2072 // We should not be asked for the reflection string of a basic type.
2073
2074 void
2075 Complex_type::do_reflection(Gogo*, std::string*) const
2076 {
2077 gcc_unreachable();
2078 }
2079
2080 // Mangled name.
2081
2082 void
2083 Complex_type::do_mangled_name(Gogo*, std::string* ret) const
2084 {
2085 char buf[100];
2086 snprintf(buf, sizeof buf, "c%s%de",
2087 this->is_abstract_ ? "a" : "",
2088 this->bits_);
2089 ret->append(buf);
2090 }
2091
2092 // Make a complex type.
2093
2094 Named_type*
2095 Type::make_complex_type(const char* name, int bits, int runtime_type_kind)
2096 {
2097 return Complex_type::create_complex_type(name, bits, runtime_type_kind);
2098 }
2099
2100 // Make an abstract complex type.
2101
2102 Complex_type*
2103 Type::make_abstract_complex_type()
2104 {
2105 return Complex_type::create_abstract_complex_type();
2106 }
2107
2108 // Look up a complex type.
2109
2110 Named_type*
2111 Type::lookup_complex_type(const char* name)
2112 {
2113 return Complex_type::lookup_complex_type(name);
2114 }
2115
2116 // Class String_type.
2117
2118 // Return the tree for String_type. A string is a struct with two
2119 // fields: a pointer to the characters and a length.
2120
2121 tree
2122 String_type::do_get_tree(Gogo*)
2123 {
2124 static tree struct_type;
2125 return Gogo::builtin_struct(&struct_type, "__go_string", NULL_TREE, 2,
2126 "__data",
2127 build_pointer_type(unsigned_char_type_node),
2128 "__length",
2129 integer_type_node);
2130 }
2131
2132 // Return a tree for the length of STRING.
2133
2134 tree
2135 String_type::length_tree(Gogo*, tree string)
2136 {
2137 tree string_type = TREE_TYPE(string);
2138 gcc_assert(TREE_CODE(string_type) == RECORD_TYPE);
2139 tree length_field = DECL_CHAIN(TYPE_FIELDS(string_type));
2140 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(length_field)),
2141 "__length") == 0);
2142 return fold_build3(COMPONENT_REF, integer_type_node, string,
2143 length_field, NULL_TREE);
2144 }
2145
2146 // Return a tree for a pointer to the bytes of STRING.
2147
2148 tree
2149 String_type::bytes_tree(Gogo*, tree string)
2150 {
2151 tree string_type = TREE_TYPE(string);
2152 gcc_assert(TREE_CODE(string_type) == RECORD_TYPE);
2153 tree bytes_field = TYPE_FIELDS(string_type);
2154 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(bytes_field)),
2155 "__data") == 0);
2156 return fold_build3(COMPONENT_REF, TREE_TYPE(bytes_field), string,
2157 bytes_field, NULL_TREE);
2158 }
2159
2160 // We initialize a string to { NULL, 0 }.
2161
2162 tree
2163 String_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
2164 {
2165 if (is_clear)
2166 return NULL_TREE;
2167
2168 gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
2169
2170 VEC(constructor_elt, gc)* init = VEC_alloc(constructor_elt, gc, 2);
2171
2172 for (tree field = TYPE_FIELDS(type_tree);
2173 field != NULL_TREE;
2174 field = DECL_CHAIN(field))
2175 {
2176 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
2177 elt->index = field;
2178 elt->value = fold_convert(TREE_TYPE(field), size_zero_node);
2179 }
2180
2181 tree ret = build_constructor(type_tree, init);
2182 TREE_CONSTANT(ret) = 1;
2183 return ret;
2184 }
2185
2186 // The type descriptor for the string type.
2187
2188 Expression*
2189 String_type::do_type_descriptor(Gogo* gogo, Named_type* name)
2190 {
2191 if (name != NULL)
2192 return this->plain_type_descriptor(gogo, RUNTIME_TYPE_KIND_STRING, name);
2193 else
2194 {
2195 Named_object* no = gogo->lookup_global("string");
2196 gcc_assert(no != NULL);
2197 return Type::type_descriptor(gogo, no->type_value());
2198 }
2199 }
2200
2201 // We should not be asked for the reflection string of a basic type.
2202
2203 void
2204 String_type::do_reflection(Gogo*, std::string* ret) const
2205 {
2206 ret->append("string");
2207 }
2208
2209 // Mangled name of a string type.
2210
2211 void
2212 String_type::do_mangled_name(Gogo*, std::string* ret) const
2213 {
2214 ret->push_back('z');
2215 }
2216
2217 // Make a string type.
2218
2219 Type*
2220 Type::make_string_type()
2221 {
2222 static String_type string_type;
2223 return &string_type;
2224 }
2225
2226 // The named type "string".
2227
2228 static Named_type* named_string_type;
2229
2230 // Get the named type "string".
2231
2232 Named_type*
2233 Type::lookup_string_type()
2234 {
2235 return named_string_type;
2236 }
2237
2238 // Make the named type string.
2239
2240 Named_type*
2241 Type::make_named_string_type()
2242 {
2243 Type* string_type = Type::make_string_type();
2244 Named_object* named_object = Named_object::make_type("string", NULL,
2245 string_type,
2246 BUILTINS_LOCATION);
2247 Named_type* named_type = named_object->type_value();
2248 named_string_type = named_type;
2249 return named_type;
2250 }
2251
2252 // The sink type. This is the type of the blank identifier _. Any
2253 // type may be assigned to it.
2254
2255 class Sink_type : public Type
2256 {
2257 public:
2258 Sink_type()
2259 : Type(TYPE_SINK)
2260 { }
2261
2262 protected:
2263 tree
2264 do_get_tree(Gogo*)
2265 { gcc_unreachable(); }
2266
2267 tree
2268 do_get_init_tree(Gogo*, tree, bool)
2269 { gcc_unreachable(); }
2270
2271 Expression*
2272 do_type_descriptor(Gogo*, Named_type*)
2273 { gcc_unreachable(); }
2274
2275 void
2276 do_reflection(Gogo*, std::string*) const
2277 { gcc_unreachable(); }
2278
2279 void
2280 do_mangled_name(Gogo*, std::string*) const
2281 { gcc_unreachable(); }
2282 };
2283
2284 // Make the sink type.
2285
2286 Type*
2287 Type::make_sink_type()
2288 {
2289 static Sink_type sink_type;
2290 return &sink_type;
2291 }
2292
2293 // Class Function_type.
2294
2295 // Traversal.
2296
2297 int
2298 Function_type::do_traverse(Traverse* traverse)
2299 {
2300 if (this->receiver_ != NULL
2301 && Type::traverse(this->receiver_->type(), traverse) == TRAVERSE_EXIT)
2302 return TRAVERSE_EXIT;
2303 if (this->parameters_ != NULL
2304 && this->parameters_->traverse(traverse) == TRAVERSE_EXIT)
2305 return TRAVERSE_EXIT;
2306 if (this->results_ != NULL
2307 && this->results_->traverse(traverse) == TRAVERSE_EXIT)
2308 return TRAVERSE_EXIT;
2309 return TRAVERSE_CONTINUE;
2310 }
2311
2312 // Returns whether T is a valid redeclaration of this type. If this
2313 // returns false, and REASON is not NULL, *REASON may be set to a
2314 // brief explanation of why it returned false.
2315
2316 bool
2317 Function_type::is_valid_redeclaration(const Function_type* t,
2318 std::string* reason) const
2319 {
2320 if (!this->is_identical(t, false, reason))
2321 return false;
2322
2323 // A redeclaration of a function is required to use the same names
2324 // for the receiver and parameters.
2325 if (this->receiver() != NULL
2326 && this->receiver()->name() != t->receiver()->name()
2327 && this->receiver()->name() != Import::import_marker
2328 && t->receiver()->name() != Import::import_marker)
2329 {
2330 if (reason != NULL)
2331 *reason = "receiver name changed";
2332 return false;
2333 }
2334
2335 const Typed_identifier_list* parms1 = this->parameters();
2336 const Typed_identifier_list* parms2 = t->parameters();
2337 if (parms1 != NULL)
2338 {
2339 Typed_identifier_list::const_iterator p1 = parms1->begin();
2340 for (Typed_identifier_list::const_iterator p2 = parms2->begin();
2341 p2 != parms2->end();
2342 ++p2, ++p1)
2343 {
2344 if (p1->name() != p2->name()
2345 && p1->name() != Import::import_marker
2346 && p2->name() != Import::import_marker)
2347 {
2348 if (reason != NULL)
2349 *reason = "parameter name changed";
2350 return false;
2351 }
2352
2353 // This is called at parse time, so we may have unknown
2354 // types.
2355 Type* t1 = p1->type()->forwarded();
2356 Type* t2 = p2->type()->forwarded();
2357 if (t1 != t2
2358 && t1->forward_declaration_type() != NULL
2359 && (t2->forward_declaration_type() == NULL
2360 || (t1->forward_declaration_type()->named_object()
2361 != t2->forward_declaration_type()->named_object())))
2362 return false;
2363 }
2364 }
2365
2366 const Typed_identifier_list* results1 = this->results();
2367 const Typed_identifier_list* results2 = t->results();
2368 if (results1 != NULL)
2369 {
2370 Typed_identifier_list::const_iterator res1 = results1->begin();
2371 for (Typed_identifier_list::const_iterator res2 = results2->begin();
2372 res2 != results2->end();
2373 ++res2, ++res1)
2374 {
2375 if (res1->name() != res2->name()
2376 && res1->name() != Import::import_marker
2377 && res2->name() != Import::import_marker)
2378 {
2379 if (reason != NULL)
2380 *reason = "result name changed";
2381 return false;
2382 }
2383
2384 // This is called at parse time, so we may have unknown
2385 // types.
2386 Type* t1 = res1->type()->forwarded();
2387 Type* t2 = res2->type()->forwarded();
2388 if (t1 != t2
2389 && t1->forward_declaration_type() != NULL
2390 && (t2->forward_declaration_type() == NULL
2391 || (t1->forward_declaration_type()->named_object()
2392 != t2->forward_declaration_type()->named_object())))
2393 return false;
2394 }
2395 }
2396
2397 return true;
2398 }
2399
2400 // Check whether T is the same as this type.
2401
2402 bool
2403 Function_type::is_identical(const Function_type* t, bool ignore_receiver,
2404 std::string* reason) const
2405 {
2406 if (!ignore_receiver)
2407 {
2408 const Typed_identifier* r1 = this->receiver();
2409 const Typed_identifier* r2 = t->receiver();
2410 if ((r1 != NULL) != (r2 != NULL))
2411 {
2412 if (reason != NULL)
2413 *reason = _("different receiver types");
2414 return false;
2415 }
2416 if (r1 != NULL)
2417 {
2418 if (!Type::are_identical(r1->type(), r2->type(), reason))
2419 {
2420 if (reason != NULL && !reason->empty())
2421 *reason = "receiver: " + *reason;
2422 return false;
2423 }
2424 }
2425 }
2426
2427 const Typed_identifier_list* parms1 = this->parameters();
2428 const Typed_identifier_list* parms2 = t->parameters();
2429 if ((parms1 != NULL) != (parms2 != NULL))
2430 {
2431 if (reason != NULL)
2432 *reason = _("different number of parameters");
2433 return false;
2434 }
2435 if (parms1 != NULL)
2436 {
2437 Typed_identifier_list::const_iterator p1 = parms1->begin();
2438 for (Typed_identifier_list::const_iterator p2 = parms2->begin();
2439 p2 != parms2->end();
2440 ++p2, ++p1)
2441 {
2442 if (p1 == parms1->end())
2443 {
2444 if (reason != NULL)
2445 *reason = _("different number of parameters");
2446 return false;
2447 }
2448
2449 if (!Type::are_identical(p1->type(), p2->type(), NULL))
2450 {
2451 if (reason != NULL)
2452 *reason = _("different parameter types");
2453 return false;
2454 }
2455 }
2456 if (p1 != parms1->end())
2457 {
2458 if (reason != NULL)
2459 *reason = _("different number of parameters");
2460 return false;
2461 }
2462 }
2463
2464 if (this->is_varargs() != t->is_varargs())
2465 {
2466 if (reason != NULL)
2467 *reason = _("different varargs");
2468 return false;
2469 }
2470
2471 const Typed_identifier_list* results1 = this->results();
2472 const Typed_identifier_list* results2 = t->results();
2473 if ((results1 != NULL) != (results2 != NULL))
2474 {
2475 if (reason != NULL)
2476 *reason = _("different number of results");
2477 return false;
2478 }
2479 if (results1 != NULL)
2480 {
2481 Typed_identifier_list::const_iterator res1 = results1->begin();
2482 for (Typed_identifier_list::const_iterator res2 = results2->begin();
2483 res2 != results2->end();
2484 ++res2, ++res1)
2485 {
2486 if (res1 == results1->end())
2487 {
2488 if (reason != NULL)
2489 *reason = _("different number of results");
2490 return false;
2491 }
2492
2493 if (!Type::are_identical(res1->type(), res2->type(), NULL))
2494 {
2495 if (reason != NULL)
2496 *reason = _("different result types");
2497 return false;
2498 }
2499 }
2500 if (res1 != results1->end())
2501 {
2502 if (reason != NULL)
2503 *reason = _("different number of results");
2504 return false;
2505 }
2506 }
2507
2508 return true;
2509 }
2510
2511 // Hash code.
2512
2513 unsigned int
2514 Function_type::do_hash_for_method(Gogo* gogo) const
2515 {
2516 unsigned int ret = 0;
2517 // We ignore the receiver type for hash codes, because we need to
2518 // get the same hash code for a method in an interface and a method
2519 // declared for a type. The former will not have a receiver.
2520 if (this->parameters_ != NULL)
2521 {
2522 int shift = 1;
2523 for (Typed_identifier_list::const_iterator p = this->parameters_->begin();
2524 p != this->parameters_->end();
2525 ++p, ++shift)
2526 ret += p->type()->hash_for_method(gogo) << shift;
2527 }
2528 if (this->results_ != NULL)
2529 {
2530 int shift = 2;
2531 for (Typed_identifier_list::const_iterator p = this->results_->begin();
2532 p != this->results_->end();
2533 ++p, ++shift)
2534 ret += p->type()->hash_for_method(gogo) << shift;
2535 }
2536 if (this->is_varargs_)
2537 ret += 1;
2538 ret <<= 4;
2539 return ret;
2540 }
2541
2542 // Get the tree for a function type.
2543
2544 tree
2545 Function_type::do_get_tree(Gogo* gogo)
2546 {
2547 tree args = NULL_TREE;
2548 tree* pp = &args;
2549
2550 if (this->receiver_ != NULL)
2551 {
2552 Type* rtype = this->receiver_->type();
2553 tree ptype = rtype->get_tree(gogo);
2554 if (ptype == error_mark_node)
2555 return error_mark_node;
2556
2557 // We always pass the address of the receiver parameter, in
2558 // order to make interface calls work with unknown types.
2559 if (rtype->points_to() == NULL)
2560 ptype = build_pointer_type(ptype);
2561
2562 *pp = tree_cons (NULL_TREE, ptype, NULL_TREE);
2563 pp = &TREE_CHAIN (*pp);
2564 }
2565
2566 if (this->parameters_ != NULL)
2567 {
2568 for (Typed_identifier_list::const_iterator p = this->parameters_->begin();
2569 p != this->parameters_->end();
2570 ++p)
2571 {
2572 tree ptype = p->type()->get_tree(gogo);
2573 if (ptype == error_mark_node)
2574 return error_mark_node;
2575 *pp = tree_cons (NULL_TREE, ptype, NULL_TREE);
2576 pp = &TREE_CHAIN (*pp);
2577 }
2578 }
2579
2580 // Varargs is handled entirely at the Go level. At the tree level,
2581 // functions are not varargs.
2582 *pp = void_list_node;
2583
2584 tree result;
2585 if (this->results_ == NULL)
2586 result = void_type_node;
2587 else if (this->results_->size() == 1)
2588 result = this->results_->begin()->type()->get_tree(gogo);
2589 else
2590 {
2591 result = make_node(RECORD_TYPE);
2592 tree field_trees = NULL_TREE;
2593 tree* pp = &field_trees;
2594 for (Typed_identifier_list::const_iterator p = this->results_->begin();
2595 p != this->results_->end();
2596 ++p)
2597 {
2598 const std::string name = (p->name().empty()
2599 ? "UNNAMED"
2600 : Gogo::unpack_hidden_name(p->name()));
2601 tree name_tree = get_identifier_with_length(name.data(),
2602 name.length());
2603 tree field_type_tree = p->type()->get_tree(gogo);
2604 if (field_type_tree == error_mark_node)
2605 return error_mark_node;
2606 tree field = build_decl(this->location_, FIELD_DECL, name_tree,
2607 field_type_tree);
2608 DECL_CONTEXT(field) = result;
2609 *pp = field;
2610 pp = &DECL_CHAIN(field);
2611 }
2612 TYPE_FIELDS(result) = field_trees;
2613 layout_type(result);
2614 }
2615
2616 if (result == error_mark_node)
2617 return error_mark_node;
2618
2619 tree fntype = build_function_type(result, args);
2620 if (fntype == error_mark_node)
2621 return fntype;
2622
2623 return build_pointer_type(fntype);
2624 }
2625
2626 // Functions are initialized to NULL.
2627
2628 tree
2629 Function_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
2630 {
2631 if (is_clear)
2632 return NULL;
2633 return fold_convert(type_tree, null_pointer_node);
2634 }
2635
2636 // The type of a function type descriptor.
2637
2638 Type*
2639 Function_type::make_function_type_descriptor_type()
2640 {
2641 static Type* ret;
2642 if (ret == NULL)
2643 {
2644 Type* tdt = Type::make_type_descriptor_type();
2645 Type* ptdt = Type::make_type_descriptor_ptr_type();
2646
2647 Type* bool_type = Type::lookup_bool_type();
2648
2649 Type* slice_type = Type::make_array_type(ptdt, NULL);
2650
2651 Struct_type* s = Type::make_builtin_struct_type(4,
2652 "", tdt,
2653 "dotdotdot", bool_type,
2654 "in", slice_type,
2655 "out", slice_type);
2656
2657 ret = Type::make_builtin_named_type("FuncType", s);
2658 }
2659
2660 return ret;
2661 }
2662
2663 // The type descriptor for a function type.
2664
2665 Expression*
2666 Function_type::do_type_descriptor(Gogo* gogo, Named_type* name)
2667 {
2668 source_location bloc = BUILTINS_LOCATION;
2669
2670 Type* ftdt = Function_type::make_function_type_descriptor_type();
2671
2672 const Struct_field_list* fields = ftdt->struct_type()->fields();
2673
2674 Expression_list* vals = new Expression_list();
2675 vals->reserve(4);
2676
2677 Struct_field_list::const_iterator p = fields->begin();
2678 gcc_assert(p->field_name() == "commonType");
2679 vals->push_back(this->type_descriptor_constructor(gogo,
2680 RUNTIME_TYPE_KIND_FUNC,
2681 name, NULL, true));
2682
2683 ++p;
2684 gcc_assert(p->field_name() == "dotdotdot");
2685 vals->push_back(Expression::make_boolean(this->is_varargs(), bloc));
2686
2687 ++p;
2688 gcc_assert(p->field_name() == "in");
2689 vals->push_back(this->type_descriptor_params(p->type(), this->receiver(),
2690 this->parameters()));
2691
2692 ++p;
2693 gcc_assert(p->field_name() == "out");
2694 vals->push_back(this->type_descriptor_params(p->type(), NULL,
2695 this->results()));
2696
2697 ++p;
2698 gcc_assert(p == fields->end());
2699
2700 return Expression::make_struct_composite_literal(ftdt, vals, bloc);
2701 }
2702
2703 // Return a composite literal for the parameters or results of a type
2704 // descriptor.
2705
2706 Expression*
2707 Function_type::type_descriptor_params(Type* params_type,
2708 const Typed_identifier* receiver,
2709 const Typed_identifier_list* params)
2710 {
2711 source_location bloc = BUILTINS_LOCATION;
2712
2713 if (receiver == NULL && params == NULL)
2714 return Expression::make_slice_composite_literal(params_type, NULL, bloc);
2715
2716 Expression_list* vals = new Expression_list();
2717 vals->reserve((params == NULL ? 0 : params->size())
2718 + (receiver != NULL ? 1 : 0));
2719
2720 if (receiver != NULL)
2721 {
2722 Type* rtype = receiver->type();
2723 // The receiver is always passed as a pointer. FIXME: Is this
2724 // right? Should that fact affect the type descriptor?
2725 if (rtype->points_to() == NULL)
2726 rtype = Type::make_pointer_type(rtype);
2727 vals->push_back(Expression::make_type_descriptor(rtype, bloc));
2728 }
2729
2730 if (params != NULL)
2731 {
2732 for (Typed_identifier_list::const_iterator p = params->begin();
2733 p != params->end();
2734 ++p)
2735 vals->push_back(Expression::make_type_descriptor(p->type(), bloc));
2736 }
2737
2738 return Expression::make_slice_composite_literal(params_type, vals, bloc);
2739 }
2740
2741 // The reflection string.
2742
2743 void
2744 Function_type::do_reflection(Gogo* gogo, std::string* ret) const
2745 {
2746 // FIXME: Turn this off until we straighten out the type of the
2747 // struct field used in a go statement which calls a method.
2748 // gcc_assert(this->receiver_ == NULL);
2749
2750 ret->append("func");
2751
2752 if (this->receiver_ != NULL)
2753 {
2754 ret->push_back('(');
2755 this->append_reflection(this->receiver_->type(), gogo, ret);
2756 ret->push_back(')');
2757 }
2758
2759 ret->push_back('(');
2760 const Typed_identifier_list* params = this->parameters();
2761 if (params != NULL)
2762 {
2763 bool is_varargs = this->is_varargs_;
2764 for (Typed_identifier_list::const_iterator p = params->begin();
2765 p != params->end();
2766 ++p)
2767 {
2768 if (p != params->begin())
2769 ret->append(", ");
2770 if (!is_varargs || p + 1 != params->end())
2771 this->append_reflection(p->type(), gogo, ret);
2772 else
2773 {
2774 ret->append("...");
2775 this->append_reflection(p->type()->array_type()->element_type(),
2776 gogo, ret);
2777 }
2778 }
2779 }
2780 ret->push_back(')');
2781
2782 const Typed_identifier_list* results = this->results();
2783 if (results != NULL && !results->empty())
2784 {
2785 if (results->size() == 1)
2786 ret->push_back(' ');
2787 else
2788 ret->append(" (");
2789 for (Typed_identifier_list::const_iterator p = results->begin();
2790 p != results->end();
2791 ++p)
2792 {
2793 if (p != results->begin())
2794 ret->append(", ");
2795 this->append_reflection(p->type(), gogo, ret);
2796 }
2797 if (results->size() > 1)
2798 ret->push_back(')');
2799 }
2800 }
2801
2802 // Mangled name.
2803
2804 void
2805 Function_type::do_mangled_name(Gogo* gogo, std::string* ret) const
2806 {
2807 ret->push_back('F');
2808
2809 if (this->receiver_ != NULL)
2810 {
2811 ret->push_back('m');
2812 this->append_mangled_name(this->receiver_->type(), gogo, ret);
2813 }
2814
2815 const Typed_identifier_list* params = this->parameters();
2816 if (params != NULL)
2817 {
2818 ret->push_back('p');
2819 for (Typed_identifier_list::const_iterator p = params->begin();
2820 p != params->end();
2821 ++p)
2822 this->append_mangled_name(p->type(), gogo, ret);
2823 if (this->is_varargs_)
2824 ret->push_back('V');
2825 ret->push_back('e');
2826 }
2827
2828 const Typed_identifier_list* results = this->results();
2829 if (results != NULL)
2830 {
2831 ret->push_back('r');
2832 for (Typed_identifier_list::const_iterator p = results->begin();
2833 p != results->end();
2834 ++p)
2835 this->append_mangled_name(p->type(), gogo, ret);
2836 ret->push_back('e');
2837 }
2838
2839 ret->push_back('e');
2840 }
2841
2842 // Export a function type.
2843
2844 void
2845 Function_type::do_export(Export* exp) const
2846 {
2847 // We don't write out the receiver. The only function types which
2848 // should have a receiver are the ones associated with explicitly
2849 // defined methods. For those the receiver type is written out by
2850 // Function::export_func.
2851
2852 exp->write_c_string("(");
2853 bool first = true;
2854 if (this->parameters_ != NULL)
2855 {
2856 bool is_varargs = this->is_varargs_;
2857 for (Typed_identifier_list::const_iterator p =
2858 this->parameters_->begin();
2859 p != this->parameters_->end();
2860 ++p)
2861 {
2862 if (first)
2863 first = false;
2864 else
2865 exp->write_c_string(", ");
2866 if (!is_varargs || p + 1 != this->parameters_->end())
2867 exp->write_type(p->type());
2868 else
2869 {
2870 exp->write_c_string("...");
2871 exp->write_type(p->type()->array_type()->element_type());
2872 }
2873 }
2874 }
2875 exp->write_c_string(")");
2876
2877 const Typed_identifier_list* results = this->results_;
2878 if (results != NULL)
2879 {
2880 exp->write_c_string(" ");
2881 if (results->size() == 1)
2882 exp->write_type(results->begin()->type());
2883 else
2884 {
2885 first = true;
2886 exp->write_c_string("(");
2887 for (Typed_identifier_list::const_iterator p = results->begin();
2888 p != results->end();
2889 ++p)
2890 {
2891 if (first)
2892 first = false;
2893 else
2894 exp->write_c_string(", ");
2895 exp->write_type(p->type());
2896 }
2897 exp->write_c_string(")");
2898 }
2899 }
2900 }
2901
2902 // Import a function type.
2903
2904 Function_type*
2905 Function_type::do_import(Import* imp)
2906 {
2907 imp->require_c_string("(");
2908 Typed_identifier_list* parameters;
2909 bool is_varargs = false;
2910 if (imp->peek_char() == ')')
2911 parameters = NULL;
2912 else
2913 {
2914 parameters = new Typed_identifier_list();
2915 while (true)
2916 {
2917 if (imp->match_c_string("..."))
2918 {
2919 imp->advance(3);
2920 is_varargs = true;
2921 }
2922
2923 Type* ptype = imp->read_type();
2924 if (is_varargs)
2925 ptype = Type::make_array_type(ptype, NULL);
2926 parameters->push_back(Typed_identifier(Import::import_marker,
2927 ptype, imp->location()));
2928 if (imp->peek_char() != ',')
2929 break;
2930 gcc_assert(!is_varargs);
2931 imp->require_c_string(", ");
2932 }
2933 }
2934 imp->require_c_string(")");
2935
2936 Typed_identifier_list* results;
2937 if (imp->peek_char() != ' ')
2938 results = NULL;
2939 else
2940 {
2941 imp->advance(1);
2942 results = new Typed_identifier_list;
2943 if (imp->peek_char() != '(')
2944 {
2945 Type* rtype = imp->read_type();
2946 results->push_back(Typed_identifier(Import::import_marker, rtype,
2947 imp->location()));
2948 }
2949 else
2950 {
2951 imp->advance(1);
2952 while (true)
2953 {
2954 Type* rtype = imp->read_type();
2955 results->push_back(Typed_identifier(Import::import_marker,
2956 rtype, imp->location()));
2957 if (imp->peek_char() != ',')
2958 break;
2959 imp->require_c_string(", ");
2960 }
2961 imp->require_c_string(")");
2962 }
2963 }
2964
2965 Function_type* ret = Type::make_function_type(NULL, parameters, results,
2966 imp->location());
2967 if (is_varargs)
2968 ret->set_is_varargs();
2969 return ret;
2970 }
2971
2972 // Make a copy of a function type without a receiver.
2973
2974 Function_type*
2975 Function_type::copy_without_receiver() const
2976 {
2977 gcc_assert(this->is_method());
2978 Function_type *ret = Type::make_function_type(NULL, this->parameters_,
2979 this->results_,
2980 this->location_);
2981 if (this->is_varargs())
2982 ret->set_is_varargs();
2983 if (this->is_builtin())
2984 ret->set_is_builtin();
2985 return ret;
2986 }
2987
2988 // Make a copy of a function type with a receiver.
2989
2990 Function_type*
2991 Function_type::copy_with_receiver(Type* receiver_type) const
2992 {
2993 gcc_assert(!this->is_method());
2994 Typed_identifier* receiver = new Typed_identifier("", receiver_type,
2995 this->location_);
2996 return Type::make_function_type(receiver, this->parameters_,
2997 this->results_, this->location_);
2998 }
2999
3000 // Make a function type.
3001
3002 Function_type*
3003 Type::make_function_type(Typed_identifier* receiver,
3004 Typed_identifier_list* parameters,
3005 Typed_identifier_list* results,
3006 source_location location)
3007 {
3008 return new Function_type(receiver, parameters, results, location);
3009 }
3010
3011 // Class Pointer_type.
3012
3013 // Traversal.
3014
3015 int
3016 Pointer_type::do_traverse(Traverse* traverse)
3017 {
3018 return Type::traverse(this->to_type_, traverse);
3019 }
3020
3021 // Hash code.
3022
3023 unsigned int
3024 Pointer_type::do_hash_for_method(Gogo* gogo) const
3025 {
3026 return this->to_type_->hash_for_method(gogo) << 4;
3027 }
3028
3029 // The tree for a pointer type.
3030
3031 tree
3032 Pointer_type::do_get_tree(Gogo* gogo)
3033 {
3034 return build_pointer_type(this->to_type_->get_tree(gogo));
3035 }
3036
3037 // Initialize a pointer type.
3038
3039 tree
3040 Pointer_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
3041 {
3042 if (is_clear)
3043 return NULL;
3044 return fold_convert(type_tree, null_pointer_node);
3045 }
3046
3047 // The type of a pointer type descriptor.
3048
3049 Type*
3050 Pointer_type::make_pointer_type_descriptor_type()
3051 {
3052 static Type* ret;
3053 if (ret == NULL)
3054 {
3055 Type* tdt = Type::make_type_descriptor_type();
3056 Type* ptdt = Type::make_type_descriptor_ptr_type();
3057
3058 Struct_type* s = Type::make_builtin_struct_type(2,
3059 "", tdt,
3060 "elem", ptdt);
3061
3062 ret = Type::make_builtin_named_type("PtrType", s);
3063 }
3064
3065 return ret;
3066 }
3067
3068 // The type descriptor for a pointer type.
3069
3070 Expression*
3071 Pointer_type::do_type_descriptor(Gogo* gogo, Named_type* name)
3072 {
3073 if (this->is_unsafe_pointer_type())
3074 {
3075 gcc_assert(name != NULL);
3076 return this->plain_type_descriptor(gogo,
3077 RUNTIME_TYPE_KIND_UNSAFE_POINTER,
3078 name);
3079 }
3080 else
3081 {
3082 source_location bloc = BUILTINS_LOCATION;
3083
3084 const Methods* methods;
3085 Type* deref = this->points_to();
3086 if (deref->named_type() != NULL)
3087 methods = deref->named_type()->methods();
3088 else if (deref->struct_type() != NULL)
3089 methods = deref->struct_type()->methods();
3090 else
3091 methods = NULL;
3092
3093 Type* ptr_tdt = Pointer_type::make_pointer_type_descriptor_type();
3094
3095 const Struct_field_list* fields = ptr_tdt->struct_type()->fields();
3096
3097 Expression_list* vals = new Expression_list();
3098 vals->reserve(2);
3099
3100 Struct_field_list::const_iterator p = fields->begin();
3101 gcc_assert(p->field_name() == "commonType");
3102 vals->push_back(this->type_descriptor_constructor(gogo,
3103 RUNTIME_TYPE_KIND_PTR,
3104 name, methods, false));
3105
3106 ++p;
3107 gcc_assert(p->field_name() == "elem");
3108 vals->push_back(Expression::make_type_descriptor(deref, bloc));
3109
3110 return Expression::make_struct_composite_literal(ptr_tdt, vals, bloc);
3111 }
3112 }
3113
3114 // Reflection string.
3115
3116 void
3117 Pointer_type::do_reflection(Gogo* gogo, std::string* ret) const
3118 {
3119 ret->push_back('*');
3120 this->append_reflection(this->to_type_, gogo, ret);
3121 }
3122
3123 // Mangled name.
3124
3125 void
3126 Pointer_type::do_mangled_name(Gogo* gogo, std::string* ret) const
3127 {
3128 ret->push_back('p');
3129 this->append_mangled_name(this->to_type_, gogo, ret);
3130 }
3131
3132 // Export.
3133
3134 void
3135 Pointer_type::do_export(Export* exp) const
3136 {
3137 exp->write_c_string("*");
3138 if (this->is_unsafe_pointer_type())
3139 exp->write_c_string("any");
3140 else
3141 exp->write_type(this->to_type_);
3142 }
3143
3144 // Import.
3145
3146 Pointer_type*
3147 Pointer_type::do_import(Import* imp)
3148 {
3149 imp->require_c_string("*");
3150 if (imp->match_c_string("any"))
3151 {
3152 imp->advance(3);
3153 return Type::make_pointer_type(Type::make_void_type());
3154 }
3155 Type* to = imp->read_type();
3156 return Type::make_pointer_type(to);
3157 }
3158
3159 // Make a pointer type.
3160
3161 Pointer_type*
3162 Type::make_pointer_type(Type* to_type)
3163 {
3164 typedef Unordered_map(Type*, Pointer_type*) Hashtable;
3165 static Hashtable pointer_types;
3166 Hashtable::const_iterator p = pointer_types.find(to_type);
3167 if (p != pointer_types.end())
3168 return p->second;
3169 Pointer_type* ret = new Pointer_type(to_type);
3170 pointer_types[to_type] = ret;
3171 return ret;
3172 }
3173
3174 // The nil type. We use a special type for nil because it is not the
3175 // same as any other type. In C term nil has type void*, but there is
3176 // no such type in Go.
3177
3178 class Nil_type : public Type
3179 {
3180 public:
3181 Nil_type()
3182 : Type(TYPE_NIL)
3183 { }
3184
3185 protected:
3186 tree
3187 do_get_tree(Gogo*)
3188 { return ptr_type_node; }
3189
3190 tree
3191 do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
3192 { return is_clear ? NULL : fold_convert(type_tree, null_pointer_node); }
3193
3194 Expression*
3195 do_type_descriptor(Gogo*, Named_type*)
3196 { gcc_unreachable(); }
3197
3198 void
3199 do_reflection(Gogo*, std::string*) const
3200 { gcc_unreachable(); }
3201
3202 void
3203 do_mangled_name(Gogo*, std::string* ret) const
3204 { ret->push_back('n'); }
3205 };
3206
3207 // Make the nil type.
3208
3209 Type*
3210 Type::make_nil_type()
3211 {
3212 static Nil_type singleton_nil_type;
3213 return &singleton_nil_type;
3214 }
3215
3216 // The type of a function call which returns multiple values. This is
3217 // really a struct, but we don't want to confuse a function call which
3218 // returns a struct with a function call which returns multiple
3219 // values.
3220
3221 class Call_multiple_result_type : public Type
3222 {
3223 public:
3224 Call_multiple_result_type(Call_expression* call)
3225 : Type(TYPE_CALL_MULTIPLE_RESULT),
3226 call_(call)
3227 { }
3228
3229 protected:
3230 bool
3231 do_has_pointer() const
3232 { gcc_unreachable(); }
3233
3234 tree
3235 do_get_tree(Gogo*);
3236
3237 tree
3238 do_get_init_tree(Gogo*, tree, bool)
3239 { gcc_unreachable(); }
3240
3241 Expression*
3242 do_type_descriptor(Gogo*, Named_type*)
3243 { gcc_unreachable(); }
3244
3245 void
3246 do_reflection(Gogo*, std::string*) const
3247 { gcc_unreachable(); }
3248
3249 void
3250 do_mangled_name(Gogo*, std::string*) const
3251 { gcc_unreachable(); }
3252
3253 private:
3254 // The expression being called.
3255 Call_expression* call_;
3256 };
3257
3258 // Return the tree for a call result.
3259
3260 tree
3261 Call_multiple_result_type::do_get_tree(Gogo* gogo)
3262 {
3263 Function_type* fntype = this->call_->get_function_type();
3264 gcc_assert(fntype != NULL);
3265 const Typed_identifier_list* results = fntype->results();
3266 gcc_assert(results != NULL && results->size() > 1);
3267
3268 Struct_field_list* sfl = new Struct_field_list;
3269 for (Typed_identifier_list::const_iterator p = results->begin();
3270 p != results->end();
3271 ++p)
3272 {
3273 const std::string name = ((p->name().empty()
3274 || p->name() == Import::import_marker)
3275 ? "UNNAMED"
3276 : p->name());
3277 sfl->push_back(Struct_field(Typed_identifier(name, p->type(),
3278 this->call_->location())));
3279 }
3280 return Type::make_struct_type(sfl, this->call_->location())->get_tree(gogo);
3281 }
3282
3283 // Make a call result type.
3284
3285 Type*
3286 Type::make_call_multiple_result_type(Call_expression* call)
3287 {
3288 return new Call_multiple_result_type(call);
3289 }
3290
3291 // Class Struct_field.
3292
3293 // Get the name of a field.
3294
3295 const std::string&
3296 Struct_field::field_name() const
3297 {
3298 const std::string& name(this->typed_identifier_.name());
3299 if (!name.empty())
3300 return name;
3301 else
3302 {
3303 // This is called during parsing, before anything is lowered, so
3304 // we have to be pretty careful to avoid dereferencing an
3305 // unknown type name.
3306 Type* t = this->typed_identifier_.type();
3307 Type* dt = t;
3308 if (t->classification() == Type::TYPE_POINTER)
3309 {
3310 // Very ugly.
3311 Pointer_type* ptype = static_cast<Pointer_type*>(t);
3312 dt = ptype->points_to();
3313 }
3314 if (dt->forward_declaration_type() != NULL)
3315 return dt->forward_declaration_type()->name();
3316 else if (dt->named_type() != NULL)
3317 return dt->named_type()->name();
3318 else if (t->is_error_type() || dt->is_error_type())
3319 {
3320 static const std::string error_string = "*error*";
3321 return error_string;
3322 }
3323 else
3324 {
3325 // Avoid crashing in the erroneous case where T is named but
3326 // DT is not.
3327 gcc_assert(t != dt);
3328 if (t->forward_declaration_type() != NULL)
3329 return t->forward_declaration_type()->name();
3330 else if (t->named_type() != NULL)
3331 return t->named_type()->name();
3332 else
3333 gcc_unreachable();
3334 }
3335 }
3336 }
3337
3338 // Class Struct_type.
3339
3340 // Traversal.
3341
3342 int
3343 Struct_type::do_traverse(Traverse* traverse)
3344 {
3345 Struct_field_list* fields = this->fields_;
3346 if (fields != NULL)
3347 {
3348 for (Struct_field_list::iterator p = fields->begin();
3349 p != fields->end();
3350 ++p)
3351 {
3352 if (Type::traverse(p->type(), traverse) == TRAVERSE_EXIT)
3353 return TRAVERSE_EXIT;
3354 }
3355 }
3356 return TRAVERSE_CONTINUE;
3357 }
3358
3359 // Verify that the struct type is complete and valid.
3360
3361 bool
3362 Struct_type::do_verify()
3363 {
3364 Struct_field_list* fields = this->fields_;
3365 if (fields == NULL)
3366 return true;
3367 for (Struct_field_list::iterator p = fields->begin();
3368 p != fields->end();
3369 ++p)
3370 {
3371 Type* t = p->type();
3372 if (t->is_undefined())
3373 {
3374 error_at(p->location(), "struct field type is incomplete");
3375 p->set_type(Type::make_error_type());
3376 return false;
3377 }
3378 else if (p->is_anonymous())
3379 {
3380 if (t->named_type() != NULL && t->points_to() != NULL)
3381 {
3382 error_at(p->location(), "embedded type may not be a pointer");
3383 p->set_type(Type::make_error_type());
3384 return false;
3385 }
3386 }
3387 }
3388 return true;
3389 }
3390
3391 // Whether this contains a pointer.
3392
3393 bool
3394 Struct_type::do_has_pointer() const
3395 {
3396 const Struct_field_list* fields = this->fields();
3397 if (fields == NULL)
3398 return false;
3399 for (Struct_field_list::const_iterator p = fields->begin();
3400 p != fields->end();
3401 ++p)
3402 {
3403 if (p->type()->has_pointer())
3404 return true;
3405 }
3406 return false;
3407 }
3408
3409 // Whether this type is identical to T.
3410
3411 bool
3412 Struct_type::is_identical(const Struct_type* t) const
3413 {
3414 const Struct_field_list* fields1 = this->fields();
3415 const Struct_field_list* fields2 = t->fields();
3416 if (fields1 == NULL || fields2 == NULL)
3417 return fields1 == fields2;
3418 Struct_field_list::const_iterator pf2 = fields2->begin();
3419 for (Struct_field_list::const_iterator pf1 = fields1->begin();
3420 pf1 != fields1->end();
3421 ++pf1, ++pf2)
3422 {
3423 if (pf2 == fields2->end())
3424 return false;
3425 if (pf1->field_name() != pf2->field_name())
3426 return false;
3427 if (pf1->is_anonymous() != pf2->is_anonymous()
3428 || !Type::are_identical(pf1->type(), pf2->type(), NULL))
3429 return false;
3430 if (!pf1->has_tag())
3431 {
3432 if (pf2->has_tag())
3433 return false;
3434 }
3435 else
3436 {
3437 if (!pf2->has_tag())
3438 return false;
3439 if (pf1->tag() != pf2->tag())
3440 return false;
3441 }
3442 }
3443 if (pf2 != fields2->end())
3444 return false;
3445 return true;
3446 }
3447
3448 // Whether this struct type has any hidden fields.
3449
3450 bool
3451 Struct_type::struct_has_hidden_fields(const Named_type* within,
3452 std::string* reason) const
3453 {
3454 const Struct_field_list* fields = this->fields();
3455 if (fields == NULL)
3456 return false;
3457 const Package* within_package = (within == NULL
3458 ? NULL
3459 : within->named_object()->package());
3460 for (Struct_field_list::const_iterator pf = fields->begin();
3461 pf != fields->end();
3462 ++pf)
3463 {
3464 if (within_package != NULL
3465 && !pf->is_anonymous()
3466 && Gogo::is_hidden_name(pf->field_name()))
3467 {
3468 if (reason != NULL)
3469 {
3470 std::string within_name = within->named_object()->message_name();
3471 std::string name = Gogo::message_name(pf->field_name());
3472 size_t bufsize = 200 + within_name.length() + name.length();
3473 char* buf = new char[bufsize];
3474 snprintf(buf, bufsize,
3475 _("implicit assignment of %s%s%s hidden field %s%s%s"),
3476 open_quote, within_name.c_str(), close_quote,
3477 open_quote, name.c_str(), close_quote);
3478 reason->assign(buf);
3479 delete[] buf;
3480 }
3481 return true;
3482 }
3483
3484 if (pf->type()->has_hidden_fields(within, reason))
3485 return true;
3486 }
3487
3488 return false;
3489 }
3490
3491 // Hash code.
3492
3493 unsigned int
3494 Struct_type::do_hash_for_method(Gogo* gogo) const
3495 {
3496 unsigned int ret = 0;
3497 if (this->fields() != NULL)
3498 {
3499 for (Struct_field_list::const_iterator pf = this->fields()->begin();
3500 pf != this->fields()->end();
3501 ++pf)
3502 ret = (ret << 1) + pf->type()->hash_for_method(gogo);
3503 }
3504 return ret <<= 2;
3505 }
3506
3507 // Find the local field NAME.
3508
3509 const Struct_field*
3510 Struct_type::find_local_field(const std::string& name,
3511 unsigned int *pindex) const
3512 {
3513 const Struct_field_list* fields = this->fields_;
3514 if (fields == NULL)
3515 return NULL;
3516 unsigned int i = 0;
3517 for (Struct_field_list::const_iterator pf = fields->begin();
3518 pf != fields->end();
3519 ++pf, ++i)
3520 {
3521 if (pf->field_name() == name)
3522 {
3523 if (pindex != NULL)
3524 *pindex = i;
3525 return &*pf;
3526 }
3527 }
3528 return NULL;
3529 }
3530
3531 // Return an expression for field NAME in STRUCT_EXPR, or NULL.
3532
3533 Field_reference_expression*
3534 Struct_type::field_reference(Expression* struct_expr, const std::string& name,
3535 source_location location) const
3536 {
3537 unsigned int depth;
3538 return this->field_reference_depth(struct_expr, name, location, &depth);
3539 }
3540
3541 // Return an expression for a field, along with the depth at which it
3542 // was found.
3543
3544 Field_reference_expression*
3545 Struct_type::field_reference_depth(Expression* struct_expr,
3546 const std::string& name,
3547 source_location location,
3548 unsigned int* depth) const
3549 {
3550 const Struct_field_list* fields = this->fields_;
3551 if (fields == NULL)
3552 return NULL;
3553
3554 // Look for a field with this name.
3555 unsigned int i = 0;
3556 for (Struct_field_list::const_iterator pf = fields->begin();
3557 pf != fields->end();
3558 ++pf, ++i)
3559 {
3560 if (pf->field_name() == name)
3561 {
3562 *depth = 0;
3563 return Expression::make_field_reference(struct_expr, i, location);
3564 }
3565 }
3566
3567 // Look for an anonymous field which contains a field with this
3568 // name.
3569 unsigned int found_depth = 0;
3570 Field_reference_expression* ret = NULL;
3571 i = 0;
3572 for (Struct_field_list::const_iterator pf = fields->begin();
3573 pf != fields->end();
3574 ++pf, ++i)
3575 {
3576 if (!pf->is_anonymous())
3577 continue;
3578
3579 Struct_type* st = pf->type()->deref()->struct_type();
3580 if (st == NULL)
3581 continue;
3582
3583 // Look for a reference using a NULL struct expression. If we
3584 // find one, fill in the struct expression with a reference to
3585 // this field.
3586 unsigned int subdepth;
3587 Field_reference_expression* sub = st->field_reference_depth(NULL, name,
3588 location,
3589 &subdepth);
3590 if (sub == NULL)
3591 continue;
3592
3593 if (ret == NULL || subdepth < found_depth)
3594 {
3595 if (ret != NULL)
3596 delete ret;
3597 ret = sub;
3598 found_depth = subdepth;
3599 Expression* here = Expression::make_field_reference(struct_expr, i,
3600 location);
3601 if (pf->type()->points_to() != NULL)
3602 here = Expression::make_unary(OPERATOR_MULT, here, location);
3603 while (sub->expr() != NULL)
3604 {
3605 sub = sub->expr()->deref()->field_reference_expression();
3606 gcc_assert(sub != NULL);
3607 }
3608 sub->set_struct_expression(here);
3609 }
3610 else if (subdepth > found_depth)
3611 delete sub;
3612 else
3613 {
3614 // We do not handle ambiguity here--it should be handled by
3615 // Type::bind_field_or_method.
3616 delete sub;
3617 found_depth = 0;
3618 ret = NULL;
3619 }
3620 }
3621
3622 if (ret != NULL)
3623 *depth = found_depth + 1;
3624
3625 return ret;
3626 }
3627
3628 // Return the total number of fields, including embedded fields.
3629
3630 unsigned int
3631 Struct_type::total_field_count() const
3632 {
3633 if (this->fields_ == NULL)
3634 return 0;
3635 unsigned int ret = 0;
3636 for (Struct_field_list::const_iterator pf = this->fields_->begin();
3637 pf != this->fields_->end();
3638 ++pf)
3639 {
3640 if (!pf->is_anonymous() || pf->type()->deref()->struct_type() == NULL)
3641 ++ret;
3642 else
3643 ret += pf->type()->struct_type()->total_field_count();
3644 }
3645 return ret;
3646 }
3647
3648 // Return whether NAME is an unexported field, for better error reporting.
3649
3650 bool
3651 Struct_type::is_unexported_local_field(Gogo* gogo,
3652 const std::string& name) const
3653 {
3654 const Struct_field_list* fields = this->fields_;
3655 if (fields != NULL)
3656 {
3657 for (Struct_field_list::const_iterator pf = fields->begin();
3658 pf != fields->end();
3659 ++pf)
3660 {
3661 const std::string& field_name(pf->field_name());
3662 if (Gogo::is_hidden_name(field_name)
3663 && name == Gogo::unpack_hidden_name(field_name)
3664 && gogo->pack_hidden_name(name, false) != field_name)
3665 return true;
3666 }
3667 }
3668 return false;
3669 }
3670
3671 // Finalize the methods of an unnamed struct.
3672
3673 void
3674 Struct_type::finalize_methods(Gogo* gogo)
3675 {
3676 Type::finalize_methods(gogo, this, this->location_, &this->all_methods_);
3677 }
3678
3679 // Return the method NAME, or NULL if there isn't one or if it is
3680 // ambiguous. Set *IS_AMBIGUOUS if the method exists but is
3681 // ambiguous.
3682
3683 Method*
3684 Struct_type::method_function(const std::string& name, bool* is_ambiguous) const
3685 {
3686 return Type::method_function(this->all_methods_, name, is_ambiguous);
3687 }
3688
3689 // Get the tree for a struct type.
3690
3691 tree
3692 Struct_type::do_get_tree(Gogo* gogo)
3693 {
3694 tree type = make_node(RECORD_TYPE);
3695 return this->fill_in_tree(gogo, type);
3696 }
3697
3698 // Fill in the fields for a struct type.
3699
3700 tree
3701 Struct_type::fill_in_tree(Gogo* gogo, tree type)
3702 {
3703 tree field_trees = NULL_TREE;
3704 tree* pp = &field_trees;
3705 for (Struct_field_list::const_iterator p = this->fields_->begin();
3706 p != this->fields_->end();
3707 ++p)
3708 {
3709 std::string name = Gogo::unpack_hidden_name(p->field_name());
3710 tree name_tree = get_identifier_with_length(name.data(), name.length());
3711 tree field_type_tree = p->type()->get_tree(gogo);
3712 if (field_type_tree == error_mark_node)
3713 return error_mark_node;
3714 tree field = build_decl(p->location(), FIELD_DECL, name_tree,
3715 field_type_tree);
3716 DECL_CONTEXT(field) = type;
3717 *pp = field;
3718 pp = &DECL_CHAIN(field);
3719 }
3720
3721 TYPE_FIELDS(type) = field_trees;
3722
3723 layout_type(type);
3724
3725 return type;
3726 }
3727
3728 // Initialize struct fields.
3729
3730 tree
3731 Struct_type::do_get_init_tree(Gogo* gogo, tree type_tree, bool is_clear)
3732 {
3733 if (this->fields_ == NULL || this->fields_->empty())
3734 {
3735 if (is_clear)
3736 return NULL;
3737 else
3738 {
3739 tree ret = build_constructor(type_tree,
3740 VEC_alloc(constructor_elt, gc, 0));
3741 TREE_CONSTANT(ret) = 1;
3742 return ret;
3743 }
3744 }
3745
3746 bool is_constant = true;
3747 bool any_fields_set = false;
3748 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc,
3749 this->fields_->size());
3750 Struct_field_list::const_iterator p = this->fields_->begin();
3751 for (tree field = TYPE_FIELDS(type_tree);
3752 field != NULL_TREE;
3753 field = DECL_CHAIN(field), ++p)
3754 {
3755 gcc_assert(p != this->fields_->end());
3756 tree value = p->type()->get_init_tree(gogo, is_clear);
3757 if (value != NULL)
3758 {
3759 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
3760 elt->index = field;
3761 elt->value = value;
3762 any_fields_set = true;
3763 if (!TREE_CONSTANT(value))
3764 is_constant = false;
3765 }
3766 }
3767 gcc_assert(p == this->fields_->end());
3768
3769 if (!any_fields_set)
3770 {
3771 gcc_assert(is_clear);
3772 VEC_free(constructor_elt, gc, init);
3773 return NULL;
3774 }
3775
3776 tree ret = build_constructor(type_tree, init);
3777 if (is_constant)
3778 TREE_CONSTANT(ret) = 1;
3779 return ret;
3780 }
3781
3782 // The type of a struct type descriptor.
3783
3784 Type*
3785 Struct_type::make_struct_type_descriptor_type()
3786 {
3787 static Type* ret;
3788 if (ret == NULL)
3789 {
3790 Type* tdt = Type::make_type_descriptor_type();
3791 Type* ptdt = Type::make_type_descriptor_ptr_type();
3792
3793 Type* uintptr_type = Type::lookup_integer_type("uintptr");
3794 Type* string_type = Type::lookup_string_type();
3795 Type* pointer_string_type = Type::make_pointer_type(string_type);
3796
3797 Struct_type* sf =
3798 Type::make_builtin_struct_type(5,
3799 "name", pointer_string_type,
3800 "pkgPath", pointer_string_type,
3801 "typ", ptdt,
3802 "tag", pointer_string_type,
3803 "offset", uintptr_type);
3804 Type* nsf = Type::make_builtin_named_type("structField", sf);
3805
3806 Type* slice_type = Type::make_array_type(nsf, NULL);
3807
3808 Struct_type* s = Type::make_builtin_struct_type(2,
3809 "", tdt,
3810 "fields", slice_type);
3811
3812 ret = Type::make_builtin_named_type("StructType", s);
3813 }
3814
3815 return ret;
3816 }
3817
3818 // Build a type descriptor for a struct type.
3819
3820 Expression*
3821 Struct_type::do_type_descriptor(Gogo* gogo, Named_type* name)
3822 {
3823 source_location bloc = BUILTINS_LOCATION;
3824
3825 Type* stdt = Struct_type::make_struct_type_descriptor_type();
3826
3827 const Struct_field_list* fields = stdt->struct_type()->fields();
3828
3829 Expression_list* vals = new Expression_list();
3830 vals->reserve(2);
3831
3832 const Methods* methods = this->methods();
3833 // A named struct should not have methods--the methods should attach
3834 // to the named type.
3835 gcc_assert(methods == NULL || name == NULL);
3836
3837 Struct_field_list::const_iterator ps = fields->begin();
3838 gcc_assert(ps->field_name() == "commonType");
3839 vals->push_back(this->type_descriptor_constructor(gogo,
3840 RUNTIME_TYPE_KIND_STRUCT,
3841 name, methods, true));
3842
3843 ++ps;
3844 gcc_assert(ps->field_name() == "fields");
3845
3846 Expression_list* elements = new Expression_list();
3847 elements->reserve(this->fields_->size());
3848 Type* element_type = ps->type()->array_type()->element_type();
3849 for (Struct_field_list::const_iterator pf = this->fields_->begin();
3850 pf != this->fields_->end();
3851 ++pf)
3852 {
3853 const Struct_field_list* f = element_type->struct_type()->fields();
3854
3855 Expression_list* fvals = new Expression_list();
3856 fvals->reserve(5);
3857
3858 Struct_field_list::const_iterator q = f->begin();
3859 gcc_assert(q->field_name() == "name");
3860 if (pf->is_anonymous())
3861 fvals->push_back(Expression::make_nil(bloc));
3862 else
3863 {
3864 std::string n = Gogo::unpack_hidden_name(pf->field_name());
3865 Expression* s = Expression::make_string(n, bloc);
3866 fvals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
3867 }
3868
3869 ++q;
3870 gcc_assert(q->field_name() == "pkgPath");
3871 if (!Gogo::is_hidden_name(pf->field_name()))
3872 fvals->push_back(Expression::make_nil(bloc));
3873 else
3874 {
3875 std::string n = Gogo::hidden_name_prefix(pf->field_name());
3876 Expression* s = Expression::make_string(n, bloc);
3877 fvals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
3878 }
3879
3880 ++q;
3881 gcc_assert(q->field_name() == "typ");
3882 fvals->push_back(Expression::make_type_descriptor(pf->type(), bloc));
3883
3884 ++q;
3885 gcc_assert(q->field_name() == "tag");
3886 if (!pf->has_tag())
3887 fvals->push_back(Expression::make_nil(bloc));
3888 else
3889 {
3890 Expression* s = Expression::make_string(pf->tag(), bloc);
3891 fvals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
3892 }
3893
3894 ++q;
3895 gcc_assert(q->field_name() == "offset");
3896 fvals->push_back(Expression::make_struct_field_offset(this, &*pf));
3897
3898 Expression* v = Expression::make_struct_composite_literal(element_type,
3899 fvals, bloc);
3900 elements->push_back(v);
3901 }
3902
3903 vals->push_back(Expression::make_slice_composite_literal(ps->type(),
3904 elements, bloc));
3905
3906 return Expression::make_struct_composite_literal(stdt, vals, bloc);
3907 }
3908
3909 // Reflection string.
3910
3911 void
3912 Struct_type::do_reflection(Gogo* gogo, std::string* ret) const
3913 {
3914 ret->append("struct { ");
3915
3916 for (Struct_field_list::const_iterator p = this->fields_->begin();
3917 p != this->fields_->end();
3918 ++p)
3919 {
3920 if (p != this->fields_->begin())
3921 ret->append("; ");
3922 if (p->is_anonymous())
3923 ret->push_back('?');
3924 else
3925 ret->append(Gogo::unpack_hidden_name(p->field_name()));
3926 ret->push_back(' ');
3927 this->append_reflection(p->type(), gogo, ret);
3928
3929 if (p->has_tag())
3930 {
3931 const std::string& tag(p->tag());
3932 ret->append(" \"");
3933 for (std::string::const_iterator p = tag.begin();
3934 p != tag.end();
3935 ++p)
3936 {
3937 if (*p == '\0')
3938 ret->append("\\x00");
3939 else if (*p == '\n')
3940 ret->append("\\n");
3941 else if (*p == '\t')
3942 ret->append("\\t");
3943 else if (*p == '"')
3944 ret->append("\\\"");
3945 else if (*p == '\\')
3946 ret->append("\\\\");
3947 else
3948 ret->push_back(*p);
3949 }
3950 ret->push_back('"');
3951 }
3952 }
3953
3954 ret->append(" }");
3955 }
3956
3957 // Mangled name.
3958
3959 void
3960 Struct_type::do_mangled_name(Gogo* gogo, std::string* ret) const
3961 {
3962 ret->push_back('S');
3963
3964 const Struct_field_list* fields = this->fields_;
3965 if (fields != NULL)
3966 {
3967 for (Struct_field_list::const_iterator p = fields->begin();
3968 p != fields->end();
3969 ++p)
3970 {
3971 if (p->is_anonymous())
3972 ret->append("0_");
3973 else
3974 {
3975 std::string n = Gogo::unpack_hidden_name(p->field_name());
3976 char buf[20];
3977 snprintf(buf, sizeof buf, "%u_",
3978 static_cast<unsigned int>(n.length()));
3979 ret->append(buf);
3980 ret->append(n);
3981 }
3982 this->append_mangled_name(p->type(), gogo, ret);
3983 if (p->has_tag())
3984 {
3985 const std::string& tag(p->tag());
3986 std::string out;
3987 for (std::string::const_iterator p = tag.begin();
3988 p != tag.end();
3989 ++p)
3990 {
3991 if (ISALNUM(*p) || *p == '_')
3992 out.push_back(*p);
3993 else
3994 {
3995 char buf[20];
3996 snprintf(buf, sizeof buf, ".%x.",
3997 static_cast<unsigned int>(*p));
3998 out.append(buf);
3999 }
4000 }
4001 char buf[20];
4002 snprintf(buf, sizeof buf, "T%u_",
4003 static_cast<unsigned int>(out.length()));
4004 ret->append(buf);
4005 ret->append(out);
4006 }
4007 }
4008 }
4009
4010 ret->push_back('e');
4011 }
4012
4013 // Export.
4014
4015 void
4016 Struct_type::do_export(Export* exp) const
4017 {
4018 exp->write_c_string("struct { ");
4019 const Struct_field_list* fields = this->fields_;
4020 gcc_assert(fields != NULL);
4021 for (Struct_field_list::const_iterator p = fields->begin();
4022 p != fields->end();
4023 ++p)
4024 {
4025 if (p->is_anonymous())
4026 exp->write_string("? ");
4027 else
4028 {
4029 exp->write_string(p->field_name());
4030 exp->write_c_string(" ");
4031 }
4032 exp->write_type(p->type());
4033
4034 if (p->has_tag())
4035 {
4036 exp->write_c_string(" ");
4037 Expression* expr = Expression::make_string(p->tag(),
4038 BUILTINS_LOCATION);
4039 expr->export_expression(exp);
4040 delete expr;
4041 }
4042
4043 exp->write_c_string("; ");
4044 }
4045 exp->write_c_string("}");
4046 }
4047
4048 // Import.
4049
4050 Struct_type*
4051 Struct_type::do_import(Import* imp)
4052 {
4053 imp->require_c_string("struct { ");
4054 Struct_field_list* fields = new Struct_field_list;
4055 if (imp->peek_char() != '}')
4056 {
4057 while (true)
4058 {
4059 std::string name;
4060 if (imp->match_c_string("? "))
4061 imp->advance(2);
4062 else
4063 {
4064 name = imp->read_identifier();
4065 imp->require_c_string(" ");
4066 }
4067 Type* ftype = imp->read_type();
4068
4069 Struct_field sf(Typed_identifier(name, ftype, imp->location()));
4070
4071 if (imp->peek_char() == ' ')
4072 {
4073 imp->advance(1);
4074 Expression* expr = Expression::import_expression(imp);
4075 String_expression* sexpr = expr->string_expression();
4076 gcc_assert(sexpr != NULL);
4077 sf.set_tag(sexpr->val());
4078 delete sexpr;
4079 }
4080
4081 imp->require_c_string("; ");
4082 fields->push_back(sf);
4083 if (imp->peek_char() == '}')
4084 break;
4085 }
4086 }
4087 imp->require_c_string("}");
4088
4089 return Type::make_struct_type(fields, imp->location());
4090 }
4091
4092 // Make a struct type.
4093
4094 Struct_type*
4095 Type::make_struct_type(Struct_field_list* fields,
4096 source_location location)
4097 {
4098 return new Struct_type(fields, location);
4099 }
4100
4101 // Class Array_type.
4102
4103 // Whether two array types are identical.
4104
4105 bool
4106 Array_type::is_identical(const Array_type* t) const
4107 {
4108 if (!Type::are_identical(this->element_type(), t->element_type(), NULL))
4109 return false;
4110
4111 Expression* l1 = this->length();
4112 Expression* l2 = t->length();
4113
4114 // Slices of the same element type are identical.
4115 if (l1 == NULL && l2 == NULL)
4116 return true;
4117
4118 // Arrays of the same element type are identical if they have the
4119 // same length.
4120 if (l1 != NULL && l2 != NULL)
4121 {
4122 if (l1 == l2)
4123 return true;
4124
4125 // Try to determine the lengths. If we can't, assume the arrays
4126 // are not identical.
4127 bool ret = false;
4128 mpz_t v1;
4129 mpz_init(v1);
4130 Type* type1;
4131 mpz_t v2;
4132 mpz_init(v2);
4133 Type* type2;
4134 if (l1->integer_constant_value(true, v1, &type1)
4135 && l2->integer_constant_value(true, v2, &type2))
4136 ret = mpz_cmp(v1, v2) == 0;
4137 mpz_clear(v1);
4138 mpz_clear(v2);
4139 return ret;
4140 }
4141
4142 // Otherwise the arrays are not identical.
4143 return false;
4144 }
4145
4146 // Traversal.
4147
4148 int
4149 Array_type::do_traverse(Traverse* traverse)
4150 {
4151 if (Type::traverse(this->element_type_, traverse) == TRAVERSE_EXIT)
4152 return TRAVERSE_EXIT;
4153 if (this->length_ != NULL
4154 && Expression::traverse(&this->length_, traverse) == TRAVERSE_EXIT)
4155 return TRAVERSE_EXIT;
4156 return TRAVERSE_CONTINUE;
4157 }
4158
4159 // Check that the length is valid.
4160
4161 bool
4162 Array_type::verify_length()
4163 {
4164 if (this->length_ == NULL)
4165 return true;
4166 if (!this->length_->is_constant())
4167 {
4168 error_at(this->length_->location(), "array bound is not constant");
4169 return false;
4170 }
4171
4172 mpz_t val;
4173
4174 Type* t = this->length_->type();
4175 if (t->integer_type() != NULL)
4176 {
4177 Type* vt;
4178 mpz_init(val);
4179 if (!this->length_->integer_constant_value(true, val, &vt))
4180 {
4181 error_at(this->length_->location(),
4182 "array bound is not constant");
4183 mpz_clear(val);
4184 return false;
4185 }
4186 }
4187 else if (t->float_type() != NULL)
4188 {
4189 Type* vt;
4190 mpfr_t fval;
4191 mpfr_init(fval);
4192 if (!this->length_->float_constant_value(fval, &vt))
4193 {
4194 error_at(this->length_->location(),
4195 "array bound is not constant");
4196 mpfr_clear(fval);
4197 return false;
4198 }
4199 if (!mpfr_integer_p(fval))
4200 {
4201 error_at(this->length_->location(),
4202 "array bound truncated to integer");
4203 mpfr_clear(fval);
4204 return false;
4205 }
4206 mpz_init(val);
4207 mpfr_get_z(val, fval, GMP_RNDN);
4208 mpfr_clear(fval);
4209 }
4210 else
4211 {
4212 if (!t->is_error_type())
4213 error_at(this->length_->location(), "array bound is not numeric");
4214 return false;
4215 }
4216
4217 if (mpz_sgn(val) < 0)
4218 {
4219 error_at(this->length_->location(), "negative array bound");
4220 mpz_clear(val);
4221 return false;
4222 }
4223
4224 Type* int_type = Type::lookup_integer_type("int");
4225 int tbits = int_type->integer_type()->bits();
4226 int vbits = mpz_sizeinbase(val, 2);
4227 if (vbits + 1 > tbits)
4228 {
4229 error_at(this->length_->location(), "array bound overflows");
4230 mpz_clear(val);
4231 return false;
4232 }
4233
4234 mpz_clear(val);
4235
4236 return true;
4237 }
4238
4239 // Verify the type.
4240
4241 bool
4242 Array_type::do_verify()
4243 {
4244 if (!this->verify_length())
4245 {
4246 this->length_ = Expression::make_error(this->length_->location());
4247 return false;
4248 }
4249 return true;
4250 }
4251
4252 // Array type hash code.
4253
4254 unsigned int
4255 Array_type::do_hash_for_method(Gogo* gogo) const
4256 {
4257 // There is no very convenient way to get a hash code for the
4258 // length.
4259 return this->element_type_->hash_for_method(gogo) + 1;
4260 }
4261
4262 // See if the expression passed to make is suitable. The first
4263 // argument is required, and gives the length. An optional second
4264 // argument is permitted for the capacity.
4265
4266 bool
4267 Array_type::do_check_make_expression(Expression_list* args,
4268 source_location location)
4269 {
4270 gcc_assert(this->length_ == NULL);
4271 if (args == NULL || args->empty())
4272 {
4273 error_at(location, "length required when allocating a slice");
4274 return false;
4275 }
4276 else if (args->size() > 2)
4277 {
4278 error_at(location, "too many expressions passed to make");
4279 return false;
4280 }
4281 else
4282 {
4283 if (!Type::check_int_value(args->front(),
4284 _("bad length when making slice"), location))
4285 return false;
4286
4287 if (args->size() > 1)
4288 {
4289 if (!Type::check_int_value(args->back(),
4290 _("bad capacity when making slice"),
4291 location))
4292 return false;
4293 }
4294
4295 return true;
4296 }
4297 }
4298
4299 // Get a tree for the length of a fixed array. The length may be
4300 // computed using a function call, so we must only evaluate it once.
4301
4302 tree
4303 Array_type::get_length_tree(Gogo* gogo)
4304 {
4305 gcc_assert(this->length_ != NULL);
4306 if (this->length_tree_ == NULL_TREE)
4307 {
4308 mpz_t val;
4309 mpz_init(val);
4310 Type* t;
4311 if (this->length_->integer_constant_value(true, val, &t))
4312 {
4313 if (t == NULL)
4314 t = Type::lookup_integer_type("int");
4315 else if (t->is_abstract())
4316 t = t->make_non_abstract_type();
4317 tree tt = t->get_tree(gogo);
4318 this->length_tree_ = Expression::integer_constant_tree(val, tt);
4319 mpz_clear(val);
4320 }
4321 else
4322 {
4323 mpz_clear(val);
4324
4325 // Make up a translation context for the array length
4326 // expression. FIXME: This won't work in general.
4327 Translate_context context(gogo, NULL, NULL, NULL_TREE);
4328 tree len = this->length_->get_tree(&context);
4329 len = convert_to_integer(integer_type_node, len);
4330 this->length_tree_ = save_expr(len);
4331 }
4332 }
4333 return this->length_tree_;
4334 }
4335
4336 // Get a tree for the type of this array. A fixed array is simply
4337 // represented as ARRAY_TYPE with the appropriate index--i.e., it is
4338 // just like an array in C. An open array is a struct with three
4339 // fields: a data pointer, the length, and the capacity.
4340
4341 tree
4342 Array_type::do_get_tree(Gogo* gogo)
4343 {
4344 if (this->length_ == NULL)
4345 {
4346 tree struct_type = gogo->slice_type_tree(void_type_node);
4347 return this->fill_in_tree(gogo, struct_type);
4348 }
4349 else
4350 {
4351 tree element_type_tree = this->element_type_->get_tree(gogo);
4352 tree length_tree = this->get_length_tree(gogo);
4353 if (element_type_tree == error_mark_node
4354 || length_tree == error_mark_node)
4355 return error_mark_node;
4356
4357 length_tree = fold_convert(sizetype, length_tree);
4358
4359 // build_index_type takes the maximum index, which is one less
4360 // than the length.
4361 tree index_type = build_index_type(fold_build2(MINUS_EXPR, sizetype,
4362 length_tree,
4363 size_one_node));
4364
4365 return build_array_type(element_type_tree, index_type);
4366 }
4367 }
4368
4369 // Fill in the fields for a slice type. This is used for named slice
4370 // types.
4371
4372 tree
4373 Array_type::fill_in_tree(Gogo* gogo, tree struct_type)
4374 {
4375 gcc_assert(this->length_ == NULL);
4376
4377 tree element_type_tree = this->element_type_->get_tree(gogo);
4378 tree field = TYPE_FIELDS(struct_type);
4379 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
4380 gcc_assert(POINTER_TYPE_P(TREE_TYPE(field))
4381 && TREE_TYPE(TREE_TYPE(field)) == void_type_node);
4382 TREE_TYPE(field) = build_pointer_type(element_type_tree);
4383
4384 return struct_type;
4385 }
4386
4387 // Return an initializer for an array type.
4388
4389 tree
4390 Array_type::do_get_init_tree(Gogo* gogo, tree type_tree, bool is_clear)
4391 {
4392 if (this->length_ == NULL)
4393 {
4394 // Open array.
4395
4396 if (is_clear)
4397 return NULL;
4398
4399 gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
4400
4401 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
4402
4403 for (tree field = TYPE_FIELDS(type_tree);
4404 field != NULL_TREE;
4405 field = DECL_CHAIN(field))
4406 {
4407 constructor_elt* elt = VEC_quick_push(constructor_elt, init,
4408 NULL);
4409 elt->index = field;
4410 elt->value = fold_convert(TREE_TYPE(field), size_zero_node);
4411 }
4412
4413 tree ret = build_constructor(type_tree, init);
4414 TREE_CONSTANT(ret) = 1;
4415 return ret;
4416 }
4417 else
4418 {
4419 // Fixed array.
4420
4421 tree value = this->element_type_->get_init_tree(gogo, is_clear);
4422 if (value == NULL)
4423 return NULL;
4424 if (value == error_mark_node)
4425 return error_mark_node;
4426
4427 tree length_tree = this->get_length_tree(gogo);
4428 if (length_tree == error_mark_node)
4429 return error_mark_node;
4430
4431 length_tree = fold_convert(sizetype, length_tree);
4432 tree range = build2(RANGE_EXPR, sizetype, size_zero_node,
4433 fold_build2(MINUS_EXPR, sizetype,
4434 length_tree, size_one_node));
4435 tree ret = build_constructor_single(type_tree, range, value);
4436 if (TREE_CONSTANT(value))
4437 TREE_CONSTANT(ret) = 1;
4438 return ret;
4439 }
4440 }
4441
4442 // Handle the builtin make function for a slice.
4443
4444 tree
4445 Array_type::do_make_expression_tree(Translate_context* context,
4446 Expression_list* args,
4447 source_location location)
4448 {
4449 gcc_assert(this->length_ == NULL);
4450
4451 Gogo* gogo = context->gogo();
4452 tree type_tree = this->get_tree(gogo);
4453 if (type_tree == error_mark_node)
4454 return error_mark_node;
4455
4456 tree values_field = TYPE_FIELDS(type_tree);
4457 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(values_field)),
4458 "__values") == 0);
4459
4460 tree count_field = DECL_CHAIN(values_field);
4461 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(count_field)),
4462 "__count") == 0);
4463
4464 tree element_type_tree = this->element_type_->get_tree(gogo);
4465 if (element_type_tree == error_mark_node)
4466 return error_mark_node;
4467 tree element_size_tree = TYPE_SIZE_UNIT(element_type_tree);
4468
4469 tree value = this->element_type_->get_init_tree(gogo, true);
4470
4471 // The first argument is the number of elements, the optional second
4472 // argument is the capacity.
4473 gcc_assert(args != NULL && args->size() >= 1 && args->size() <= 2);
4474
4475 tree length_tree = args->front()->get_tree(context);
4476 if (length_tree == error_mark_node)
4477 return error_mark_node;
4478 if (!DECL_P(length_tree))
4479 length_tree = save_expr(length_tree);
4480 if (!INTEGRAL_TYPE_P(TREE_TYPE(length_tree)))
4481 length_tree = convert_to_integer(TREE_TYPE(count_field), length_tree);
4482
4483 tree bad_index = Expression::check_bounds(length_tree,
4484 TREE_TYPE(count_field),
4485 NULL_TREE, location);
4486
4487 length_tree = fold_convert_loc(location, TREE_TYPE(count_field), length_tree);
4488 tree capacity_tree;
4489 if (args->size() == 1)
4490 capacity_tree = length_tree;
4491 else
4492 {
4493 capacity_tree = args->back()->get_tree(context);
4494 if (capacity_tree == error_mark_node)
4495 return error_mark_node;
4496 if (!DECL_P(capacity_tree))
4497 capacity_tree = save_expr(capacity_tree);
4498 if (!INTEGRAL_TYPE_P(TREE_TYPE(capacity_tree)))
4499 capacity_tree = convert_to_integer(TREE_TYPE(count_field),
4500 capacity_tree);
4501
4502 bad_index = Expression::check_bounds(capacity_tree,
4503 TREE_TYPE(count_field),
4504 bad_index, location);
4505
4506 tree chktype = (((TYPE_SIZE(TREE_TYPE(capacity_tree))
4507 > TYPE_SIZE(TREE_TYPE(length_tree)))
4508 || ((TYPE_SIZE(TREE_TYPE(capacity_tree))
4509 == TYPE_SIZE(TREE_TYPE(length_tree)))
4510 && TYPE_UNSIGNED(TREE_TYPE(capacity_tree))))
4511 ? TREE_TYPE(capacity_tree)
4512 : TREE_TYPE(length_tree));
4513 tree chk = fold_build2_loc(location, LT_EXPR, boolean_type_node,
4514 fold_convert_loc(location, chktype,
4515 capacity_tree),
4516 fold_convert_loc(location, chktype,
4517 length_tree));
4518 if (bad_index == NULL_TREE)
4519 bad_index = chk;
4520 else
4521 bad_index = fold_build2_loc(location, TRUTH_OR_EXPR, boolean_type_node,
4522 bad_index, chk);
4523
4524 capacity_tree = fold_convert_loc(location, TREE_TYPE(count_field),
4525 capacity_tree);
4526 }
4527
4528 tree size_tree = fold_build2_loc(location, MULT_EXPR, sizetype,
4529 element_size_tree,
4530 fold_convert_loc(location, sizetype,
4531 capacity_tree));
4532
4533 tree chk = fold_build2_loc(location, TRUTH_AND_EXPR, boolean_type_node,
4534 fold_build2_loc(location, GT_EXPR,
4535 boolean_type_node,
4536 fold_convert_loc(location,
4537 sizetype,
4538 capacity_tree),
4539 size_zero_node),
4540 fold_build2_loc(location, LT_EXPR,
4541 boolean_type_node,
4542 size_tree, element_size_tree));
4543 if (bad_index == NULL_TREE)
4544 bad_index = chk;
4545 else
4546 bad_index = fold_build2_loc(location, TRUTH_OR_EXPR, boolean_type_node,
4547 bad_index, chk);
4548
4549 tree space = context->gogo()->allocate_memory(this->element_type_,
4550 size_tree, location);
4551
4552 if (value != NULL_TREE)
4553 space = save_expr(space);
4554
4555 space = fold_convert(TREE_TYPE(values_field), space);
4556
4557 if (bad_index != NULL_TREE && bad_index != boolean_false_node)
4558 {
4559 tree crash = Gogo::runtime_error(RUNTIME_ERROR_MAKE_SLICE_OUT_OF_BOUNDS,
4560 location);
4561 space = build2(COMPOUND_EXPR, TREE_TYPE(space),
4562 build3(COND_EXPR, void_type_node,
4563 bad_index, crash, NULL_TREE),
4564 space);
4565 }
4566
4567 tree constructor = gogo->slice_constructor(type_tree, space, length_tree,
4568 capacity_tree);
4569
4570 if (value == NULL_TREE)
4571 {
4572 // The array contents are zero initialized.
4573 return constructor;
4574 }
4575
4576 // The elements must be initialized.
4577
4578 tree max = fold_build2_loc(location, MINUS_EXPR, TREE_TYPE(count_field),
4579 capacity_tree,
4580 fold_convert_loc(location, TREE_TYPE(count_field),
4581 integer_one_node));
4582
4583 tree array_type = build_array_type(element_type_tree,
4584 build_index_type(max));
4585
4586 tree value_pointer = fold_convert_loc(location,
4587 build_pointer_type(array_type),
4588 space);
4589
4590 tree range = build2(RANGE_EXPR, sizetype, size_zero_node, max);
4591 tree space_init = build_constructor_single(array_type, range, value);
4592
4593 return build2(COMPOUND_EXPR, TREE_TYPE(space),
4594 build2(MODIFY_EXPR, void_type_node,
4595 build_fold_indirect_ref(value_pointer),
4596 space_init),
4597 constructor);
4598 }
4599
4600 // Return a tree for a pointer to the values in ARRAY.
4601
4602 tree
4603 Array_type::value_pointer_tree(Gogo*, tree array) const
4604 {
4605 tree ret;
4606 if (this->length() != NULL)
4607 {
4608 // Fixed array.
4609 ret = fold_convert(build_pointer_type(TREE_TYPE(TREE_TYPE(array))),
4610 build_fold_addr_expr(array));
4611 }
4612 else
4613 {
4614 // Open array.
4615 tree field = TYPE_FIELDS(TREE_TYPE(array));
4616 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
4617 "__values") == 0);
4618 ret = fold_build3(COMPONENT_REF, TREE_TYPE(field), array, field,
4619 NULL_TREE);
4620 }
4621 if (TREE_CONSTANT(array))
4622 TREE_CONSTANT(ret) = 1;
4623 return ret;
4624 }
4625
4626 // Return a tree for the length of the array ARRAY which has this
4627 // type.
4628
4629 tree
4630 Array_type::length_tree(Gogo* gogo, tree array)
4631 {
4632 if (this->length_ != NULL)
4633 {
4634 if (TREE_CODE(array) == SAVE_EXPR)
4635 return fold_convert(integer_type_node, this->get_length_tree(gogo));
4636 else
4637 return omit_one_operand(integer_type_node,
4638 this->get_length_tree(gogo), array);
4639 }
4640
4641 // This is an open array. We need to read the length field.
4642
4643 tree type = TREE_TYPE(array);
4644 gcc_assert(TREE_CODE(type) == RECORD_TYPE);
4645
4646 tree field = DECL_CHAIN(TYPE_FIELDS(type));
4647 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
4648
4649 tree ret = build3(COMPONENT_REF, TREE_TYPE(field), array, field, NULL_TREE);
4650 if (TREE_CONSTANT(array))
4651 TREE_CONSTANT(ret) = 1;
4652 return ret;
4653 }
4654
4655 // Return a tree for the capacity of the array ARRAY which has this
4656 // type.
4657
4658 tree
4659 Array_type::capacity_tree(Gogo* gogo, tree array)
4660 {
4661 if (this->length_ != NULL)
4662 return omit_one_operand(sizetype, this->get_length_tree(gogo), array);
4663
4664 // This is an open array. We need to read the capacity field.
4665
4666 tree type = TREE_TYPE(array);
4667 gcc_assert(TREE_CODE(type) == RECORD_TYPE);
4668
4669 tree field = DECL_CHAIN(DECL_CHAIN(TYPE_FIELDS(type)));
4670 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__capacity") == 0);
4671
4672 return build3(COMPONENT_REF, TREE_TYPE(field), array, field, NULL_TREE);
4673 }
4674
4675 // Export.
4676
4677 void
4678 Array_type::do_export(Export* exp) const
4679 {
4680 exp->write_c_string("[");
4681 if (this->length_ != NULL)
4682 this->length_->export_expression(exp);
4683 exp->write_c_string("] ");
4684 exp->write_type(this->element_type_);
4685 }
4686
4687 // Import.
4688
4689 Array_type*
4690 Array_type::do_import(Import* imp)
4691 {
4692 imp->require_c_string("[");
4693 Expression* length;
4694 if (imp->peek_char() == ']')
4695 length = NULL;
4696 else
4697 length = Expression::import_expression(imp);
4698 imp->require_c_string("] ");
4699 Type* element_type = imp->read_type();
4700 return Type::make_array_type(element_type, length);
4701 }
4702
4703 // The type of an array type descriptor.
4704
4705 Type*
4706 Array_type::make_array_type_descriptor_type()
4707 {
4708 static Type* ret;
4709 if (ret == NULL)
4710 {
4711 Type* tdt = Type::make_type_descriptor_type();
4712 Type* ptdt = Type::make_type_descriptor_ptr_type();
4713
4714 Type* uintptr_type = Type::lookup_integer_type("uintptr");
4715
4716 Struct_type* sf =
4717 Type::make_builtin_struct_type(3,
4718 "", tdt,
4719 "elem", ptdt,
4720 "len", uintptr_type);
4721
4722 ret = Type::make_builtin_named_type("ArrayType", sf);
4723 }
4724
4725 return ret;
4726 }
4727
4728 // The type of an slice type descriptor.
4729
4730 Type*
4731 Array_type::make_slice_type_descriptor_type()
4732 {
4733 static Type* ret;
4734 if (ret == NULL)
4735 {
4736 Type* tdt = Type::make_type_descriptor_type();
4737 Type* ptdt = Type::make_type_descriptor_ptr_type();
4738
4739 Struct_type* sf =
4740 Type::make_builtin_struct_type(2,
4741 "", tdt,
4742 "elem", ptdt);
4743
4744 ret = Type::make_builtin_named_type("SliceType", sf);
4745 }
4746
4747 return ret;
4748 }
4749
4750 // Build a type descriptor for an array/slice type.
4751
4752 Expression*
4753 Array_type::do_type_descriptor(Gogo* gogo, Named_type* name)
4754 {
4755 if (this->length_ != NULL)
4756 return this->array_type_descriptor(gogo, name);
4757 else
4758 return this->slice_type_descriptor(gogo, name);
4759 }
4760
4761 // Build a type descriptor for an array type.
4762
4763 Expression*
4764 Array_type::array_type_descriptor(Gogo* gogo, Named_type* name)
4765 {
4766 source_location bloc = BUILTINS_LOCATION;
4767
4768 Type* atdt = Array_type::make_array_type_descriptor_type();
4769
4770 const Struct_field_list* fields = atdt->struct_type()->fields();
4771
4772 Expression_list* vals = new Expression_list();
4773 vals->reserve(3);
4774
4775 Struct_field_list::const_iterator p = fields->begin();
4776 gcc_assert(p->field_name() == "commonType");
4777 vals->push_back(this->type_descriptor_constructor(gogo,
4778 RUNTIME_TYPE_KIND_ARRAY,
4779 name, NULL, true));
4780
4781 ++p;
4782 gcc_assert(p->field_name() == "elem");
4783 vals->push_back(Expression::make_type_descriptor(this->element_type_, bloc));
4784
4785 ++p;
4786 gcc_assert(p->field_name() == "len");
4787 vals->push_back(this->length_);
4788
4789 ++p;
4790 gcc_assert(p == fields->end());
4791
4792 return Expression::make_struct_composite_literal(atdt, vals, bloc);
4793 }
4794
4795 // Build a type descriptor for a slice type.
4796
4797 Expression*
4798 Array_type::slice_type_descriptor(Gogo* gogo, Named_type* name)
4799 {
4800 source_location bloc = BUILTINS_LOCATION;
4801
4802 Type* stdt = Array_type::make_slice_type_descriptor_type();
4803
4804 const Struct_field_list* fields = stdt->struct_type()->fields();
4805
4806 Expression_list* vals = new Expression_list();
4807 vals->reserve(2);
4808
4809 Struct_field_list::const_iterator p = fields->begin();
4810 gcc_assert(p->field_name() == "commonType");
4811 vals->push_back(this->type_descriptor_constructor(gogo,
4812 RUNTIME_TYPE_KIND_SLICE,
4813 name, NULL, true));
4814
4815 ++p;
4816 gcc_assert(p->field_name() == "elem");
4817 vals->push_back(Expression::make_type_descriptor(this->element_type_, bloc));
4818
4819 ++p;
4820 gcc_assert(p == fields->end());
4821
4822 return Expression::make_struct_composite_literal(stdt, vals, bloc);
4823 }
4824
4825 // Reflection string.
4826
4827 void
4828 Array_type::do_reflection(Gogo* gogo, std::string* ret) const
4829 {
4830 ret->push_back('[');
4831 if (this->length_ != NULL)
4832 {
4833 mpz_t val;
4834 mpz_init(val);
4835 Type* type;
4836 if (!this->length_->integer_constant_value(true, val, &type))
4837 error_at(this->length_->location(),
4838 "array length must be integer constant expression");
4839 else if (mpz_cmp_si(val, 0) < 0)
4840 error_at(this->length_->location(), "array length is negative");
4841 else if (mpz_cmp_ui(val, mpz_get_ui(val)) != 0)
4842 error_at(this->length_->location(), "array length is too large");
4843 else
4844 {
4845 char buf[50];
4846 snprintf(buf, sizeof buf, "%lu", mpz_get_ui(val));
4847 ret->append(buf);
4848 }
4849 mpz_clear(val);
4850 }
4851 ret->push_back(']');
4852
4853 this->append_reflection(this->element_type_, gogo, ret);
4854 }
4855
4856 // Mangled name.
4857
4858 void
4859 Array_type::do_mangled_name(Gogo* gogo, std::string* ret) const
4860 {
4861 ret->push_back('A');
4862 this->append_mangled_name(this->element_type_, gogo, ret);
4863 if (this->length_ != NULL)
4864 {
4865 mpz_t val;
4866 mpz_init(val);
4867 Type* type;
4868 if (!this->length_->integer_constant_value(true, val, &type))
4869 error_at(this->length_->location(),
4870 "array length must be integer constant expression");
4871 else if (mpz_cmp_si(val, 0) < 0)
4872 error_at(this->length_->location(), "array length is negative");
4873 else if (mpz_cmp_ui(val, mpz_get_ui(val)) != 0)
4874 error_at(this->length_->location(), "array size is too large");
4875 else
4876 {
4877 char buf[50];
4878 snprintf(buf, sizeof buf, "%lu", mpz_get_ui(val));
4879 ret->append(buf);
4880 }
4881 mpz_clear(val);
4882 }
4883 ret->push_back('e');
4884 }
4885
4886 // Make an array type.
4887
4888 Array_type*
4889 Type::make_array_type(Type* element_type, Expression* length)
4890 {
4891 return new Array_type(element_type, length);
4892 }
4893
4894 // Class Map_type.
4895
4896 // Traversal.
4897
4898 int
4899 Map_type::do_traverse(Traverse* traverse)
4900 {
4901 if (Type::traverse(this->key_type_, traverse) == TRAVERSE_EXIT
4902 || Type::traverse(this->val_type_, traverse) == TRAVERSE_EXIT)
4903 return TRAVERSE_EXIT;
4904 return TRAVERSE_CONTINUE;
4905 }
4906
4907 // Check that the map type is OK.
4908
4909 bool
4910 Map_type::do_verify()
4911 {
4912 if (this->key_type_->struct_type() != NULL
4913 || this->key_type_->array_type() != NULL)
4914 {
4915 error_at(this->location_, "invalid map key type");
4916 return false;
4917 }
4918 return true;
4919 }
4920
4921 // Whether two map types are identical.
4922
4923 bool
4924 Map_type::is_identical(const Map_type* t) const
4925 {
4926 return (Type::are_identical(this->key_type(), t->key_type(), NULL)
4927 && Type::are_identical(this->val_type(), t->val_type(), NULL));
4928 }
4929
4930 // Hash code.
4931
4932 unsigned int
4933 Map_type::do_hash_for_method(Gogo* gogo) const
4934 {
4935 return (this->key_type_->hash_for_method(gogo)
4936 + this->val_type_->hash_for_method(gogo)
4937 + 2);
4938 }
4939
4940 // Check that a call to the builtin make function is valid. For a map
4941 // the optional argument is the number of spaces to preallocate for
4942 // values.
4943
4944 bool
4945 Map_type::do_check_make_expression(Expression_list* args,
4946 source_location location)
4947 {
4948 if (args != NULL && !args->empty())
4949 {
4950 if (!Type::check_int_value(args->front(), _("bad size when making map"),
4951 location))
4952 return false;
4953 else if (args->size() > 1)
4954 {
4955 error_at(location, "too many arguments when making map");
4956 return false;
4957 }
4958 }
4959 return true;
4960 }
4961
4962 // Get a tree for a map type. A map type is represented as a pointer
4963 // to a struct. The struct is __go_map in libgo/map.h.
4964
4965 tree
4966 Map_type::do_get_tree(Gogo* gogo)
4967 {
4968 static tree type_tree;
4969 if (type_tree == NULL_TREE)
4970 {
4971 tree struct_type = make_node(RECORD_TYPE);
4972
4973 tree map_descriptor_type = gogo->map_descriptor_type();
4974 tree const_map_descriptor_type =
4975 build_qualified_type(map_descriptor_type, TYPE_QUAL_CONST);
4976 tree name = get_identifier("__descriptor");
4977 tree field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name,
4978 build_pointer_type(const_map_descriptor_type));
4979 DECL_CONTEXT(field) = struct_type;
4980 TYPE_FIELDS(struct_type) = field;
4981 tree last_field = field;
4982
4983 name = get_identifier("__element_count");
4984 field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name, sizetype);
4985 DECL_CONTEXT(field) = struct_type;
4986 DECL_CHAIN(last_field) = field;
4987 last_field = field;
4988
4989 name = get_identifier("__bucket_count");
4990 field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name, sizetype);
4991 DECL_CONTEXT(field) = struct_type;
4992 DECL_CHAIN(last_field) = field;
4993 last_field = field;
4994
4995 name = get_identifier("__buckets");
4996 field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name,
4997 build_pointer_type(ptr_type_node));
4998 DECL_CONTEXT(field) = struct_type;
4999 DECL_CHAIN(last_field) = field;
5000
5001 layout_type(struct_type);
5002
5003 // Give the struct a name for better debugging info.
5004 name = get_identifier("__go_map");
5005 tree type_decl = build_decl(BUILTINS_LOCATION, TYPE_DECL, name,
5006 struct_type);
5007 DECL_ARTIFICIAL(type_decl) = 1;
5008 TYPE_NAME(struct_type) = type_decl;
5009 go_preserve_from_gc(type_decl);
5010 rest_of_decl_compilation(type_decl, 1, 0);
5011
5012 type_tree = build_pointer_type(struct_type);
5013 go_preserve_from_gc(type_tree);
5014 }
5015
5016 return type_tree;
5017 }
5018
5019 // Initialize a map.
5020
5021 tree
5022 Map_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
5023 {
5024 if (is_clear)
5025 return NULL;
5026 return fold_convert(type_tree, null_pointer_node);
5027 }
5028
5029 // Return an expression for a newly allocated map.
5030
5031 tree
5032 Map_type::do_make_expression_tree(Translate_context* context,
5033 Expression_list* args,
5034 source_location location)
5035 {
5036 tree bad_index = NULL_TREE;
5037
5038 tree expr_tree;
5039 if (args == NULL || args->empty())
5040 expr_tree = size_zero_node;
5041 else
5042 {
5043 expr_tree = args->front()->get_tree(context);
5044 if (expr_tree == error_mark_node)
5045 return error_mark_node;
5046 if (!DECL_P(expr_tree))
5047 expr_tree = save_expr(expr_tree);
5048 if (!INTEGRAL_TYPE_P(TREE_TYPE(expr_tree)))
5049 expr_tree = convert_to_integer(sizetype, expr_tree);
5050 bad_index = Expression::check_bounds(expr_tree, sizetype, bad_index,
5051 location);
5052 }
5053
5054 tree map_type = this->get_tree(context->gogo());
5055
5056 static tree new_map_fndecl;
5057 tree ret = Gogo::call_builtin(&new_map_fndecl,
5058 location,
5059 "__go_new_map",
5060 2,
5061 map_type,
5062 TREE_TYPE(TYPE_FIELDS(TREE_TYPE(map_type))),
5063 context->gogo()->map_descriptor(this),
5064 sizetype,
5065 expr_tree);
5066 // This can panic if the capacity is out of range.
5067 TREE_NOTHROW(new_map_fndecl) = 0;
5068
5069 if (bad_index == NULL_TREE)
5070 return ret;
5071 else
5072 {
5073 tree crash = Gogo::runtime_error(RUNTIME_ERROR_MAKE_MAP_OUT_OF_BOUNDS,
5074 location);
5075 return build2(COMPOUND_EXPR, TREE_TYPE(ret),
5076 build3(COND_EXPR, void_type_node,
5077 bad_index, crash, NULL_TREE),
5078 ret);
5079 }
5080 }
5081
5082 // The type of a map type descriptor.
5083
5084 Type*
5085 Map_type::make_map_type_descriptor_type()
5086 {
5087 static Type* ret;
5088 if (ret == NULL)
5089 {
5090 Type* tdt = Type::make_type_descriptor_type();
5091 Type* ptdt = Type::make_type_descriptor_ptr_type();
5092
5093 Struct_type* sf =
5094 Type::make_builtin_struct_type(3,
5095 "", tdt,
5096 "key", ptdt,
5097 "elem", ptdt);
5098
5099 ret = Type::make_builtin_named_type("MapType", sf);
5100 }
5101
5102 return ret;
5103 }
5104
5105 // Build a type descriptor for a map type.
5106
5107 Expression*
5108 Map_type::do_type_descriptor(Gogo* gogo, Named_type* name)
5109 {
5110 source_location bloc = BUILTINS_LOCATION;
5111
5112 Type* mtdt = Map_type::make_map_type_descriptor_type();
5113
5114 const Struct_field_list* fields = mtdt->struct_type()->fields();
5115
5116 Expression_list* vals = new Expression_list();
5117 vals->reserve(3);
5118
5119 Struct_field_list::const_iterator p = fields->begin();
5120 gcc_assert(p->field_name() == "commonType");
5121 vals->push_back(this->type_descriptor_constructor(gogo,
5122 RUNTIME_TYPE_KIND_MAP,
5123 name, NULL, true));
5124
5125 ++p;
5126 gcc_assert(p->field_name() == "key");
5127 vals->push_back(Expression::make_type_descriptor(this->key_type_, bloc));
5128
5129 ++p;
5130 gcc_assert(p->field_name() == "elem");
5131 vals->push_back(Expression::make_type_descriptor(this->val_type_, bloc));
5132
5133 ++p;
5134 gcc_assert(p == fields->end());
5135
5136 return Expression::make_struct_composite_literal(mtdt, vals, bloc);
5137 }
5138
5139 // Reflection string for a map.
5140
5141 void
5142 Map_type::do_reflection(Gogo* gogo, std::string* ret) const
5143 {
5144 ret->append("map[");
5145 this->append_reflection(this->key_type_, gogo, ret);
5146 ret->append("] ");
5147 this->append_reflection(this->val_type_, gogo, ret);
5148 }
5149
5150 // Mangled name for a map.
5151
5152 void
5153 Map_type::do_mangled_name(Gogo* gogo, std::string* ret) const
5154 {
5155 ret->push_back('M');
5156 this->append_mangled_name(this->key_type_, gogo, ret);
5157 ret->append("__");
5158 this->append_mangled_name(this->val_type_, gogo, ret);
5159 }
5160
5161 // Export a map type.
5162
5163 void
5164 Map_type::do_export(Export* exp) const
5165 {
5166 exp->write_c_string("map [");
5167 exp->write_type(this->key_type_);
5168 exp->write_c_string("] ");
5169 exp->write_type(this->val_type_);
5170 }
5171
5172 // Import a map type.
5173
5174 Map_type*
5175 Map_type::do_import(Import* imp)
5176 {
5177 imp->require_c_string("map [");
5178 Type* key_type = imp->read_type();
5179 imp->require_c_string("] ");
5180 Type* val_type = imp->read_type();
5181 return Type::make_map_type(key_type, val_type, imp->location());
5182 }
5183
5184 // Make a map type.
5185
5186 Map_type*
5187 Type::make_map_type(Type* key_type, Type* val_type, source_location location)
5188 {
5189 return new Map_type(key_type, val_type, location);
5190 }
5191
5192 // Class Channel_type.
5193
5194 // Hash code.
5195
5196 unsigned int
5197 Channel_type::do_hash_for_method(Gogo* gogo) const
5198 {
5199 unsigned int ret = 0;
5200 if (this->may_send_)
5201 ret += 1;
5202 if (this->may_receive_)
5203 ret += 2;
5204 if (this->element_type_ != NULL)
5205 ret += this->element_type_->hash_for_method(gogo) << 2;
5206 return ret << 3;
5207 }
5208
5209 // Whether this type is the same as T.
5210
5211 bool
5212 Channel_type::is_identical(const Channel_type* t) const
5213 {
5214 if (!Type::are_identical(this->element_type(), t->element_type(), NULL))
5215 return false;
5216 return (this->may_send_ == t->may_send_
5217 && this->may_receive_ == t->may_receive_);
5218 }
5219
5220 // Check whether the parameters for a call to the builtin function
5221 // make are OK for a channel. A channel can take an optional single
5222 // parameter which is the buffer size.
5223
5224 bool
5225 Channel_type::do_check_make_expression(Expression_list* args,
5226 source_location location)
5227 {
5228 if (args != NULL && !args->empty())
5229 {
5230 if (!Type::check_int_value(args->front(),
5231 _("bad buffer size when making channel"),
5232 location))
5233 return false;
5234 else if (args->size() > 1)
5235 {
5236 error_at(location, "too many arguments when making channel");
5237 return false;
5238 }
5239 }
5240 return true;
5241 }
5242
5243 // Return the tree for a channel type. A channel is a pointer to a
5244 // __go_channel struct. The __go_channel struct is defined in
5245 // libgo/runtime/channel.h.
5246
5247 tree
5248 Channel_type::do_get_tree(Gogo*)
5249 {
5250 static tree type_tree;
5251 if (type_tree == NULL_TREE)
5252 {
5253 tree ret = make_node(RECORD_TYPE);
5254 TYPE_NAME(ret) = get_identifier("__go_channel");
5255 TYPE_STUB_DECL(ret) = build_decl(BUILTINS_LOCATION, TYPE_DECL, NULL_TREE,
5256 ret);
5257 type_tree = build_pointer_type(ret);
5258 go_preserve_from_gc(type_tree);
5259 }
5260 return type_tree;
5261 }
5262
5263 // Initialize a channel variable.
5264
5265 tree
5266 Channel_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
5267 {
5268 if (is_clear)
5269 return NULL;
5270 return fold_convert(type_tree, null_pointer_node);
5271 }
5272
5273 // Handle the builtin function make for a channel.
5274
5275 tree
5276 Channel_type::do_make_expression_tree(Translate_context* context,
5277 Expression_list* args,
5278 source_location location)
5279 {
5280 Gogo* gogo = context->gogo();
5281 tree channel_type = this->get_tree(gogo);
5282
5283 tree element_tree = this->element_type_->get_tree(gogo);
5284 tree element_size_tree = size_in_bytes(element_tree);
5285
5286 tree bad_index = NULL_TREE;
5287
5288 tree expr_tree;
5289 if (args == NULL || args->empty())
5290 expr_tree = size_zero_node;
5291 else
5292 {
5293 expr_tree = args->front()->get_tree(context);
5294 if (expr_tree == error_mark_node)
5295 return error_mark_node;
5296 if (!DECL_P(expr_tree))
5297 expr_tree = save_expr(expr_tree);
5298 if (!INTEGRAL_TYPE_P(TREE_TYPE(expr_tree)))
5299 expr_tree = convert_to_integer(sizetype, expr_tree);
5300 bad_index = Expression::check_bounds(expr_tree, sizetype, bad_index,
5301 location);
5302 }
5303
5304 static tree new_channel_fndecl;
5305 tree ret = Gogo::call_builtin(&new_channel_fndecl,
5306 location,
5307 "__go_new_channel",
5308 2,
5309 channel_type,
5310 sizetype,
5311 element_size_tree,
5312 sizetype,
5313 expr_tree);
5314 // This can panic if the capacity is out of range.
5315 TREE_NOTHROW(new_channel_fndecl) = 0;
5316
5317 if (bad_index == NULL_TREE)
5318 return ret;
5319 else
5320 {
5321 tree crash = Gogo::runtime_error(RUNTIME_ERROR_MAKE_CHAN_OUT_OF_BOUNDS,
5322 location);
5323 return build2(COMPOUND_EXPR, TREE_TYPE(ret),
5324 build3(COND_EXPR, void_type_node,
5325 bad_index, crash, NULL_TREE),
5326 ret);
5327 }
5328 }
5329
5330 // Build a type descriptor for a channel type.
5331
5332 Type*
5333 Channel_type::make_chan_type_descriptor_type()
5334 {
5335 static Type* ret;
5336 if (ret == NULL)
5337 {
5338 Type* tdt = Type::make_type_descriptor_type();
5339 Type* ptdt = Type::make_type_descriptor_ptr_type();
5340
5341 Type* uintptr_type = Type::lookup_integer_type("uintptr");
5342
5343 Struct_type* sf =
5344 Type::make_builtin_struct_type(3,
5345 "", tdt,
5346 "elem", ptdt,
5347 "dir", uintptr_type);
5348
5349 ret = Type::make_builtin_named_type("ChanType", sf);
5350 }
5351
5352 return ret;
5353 }
5354
5355 // Build a type descriptor for a map type.
5356
5357 Expression*
5358 Channel_type::do_type_descriptor(Gogo* gogo, Named_type* name)
5359 {
5360 source_location bloc = BUILTINS_LOCATION;
5361
5362 Type* ctdt = Channel_type::make_chan_type_descriptor_type();
5363
5364 const Struct_field_list* fields = ctdt->struct_type()->fields();
5365
5366 Expression_list* vals = new Expression_list();
5367 vals->reserve(3);
5368
5369 Struct_field_list::const_iterator p = fields->begin();
5370 gcc_assert(p->field_name() == "commonType");
5371 vals->push_back(this->type_descriptor_constructor(gogo,
5372 RUNTIME_TYPE_KIND_CHAN,
5373 name, NULL, true));
5374
5375 ++p;
5376 gcc_assert(p->field_name() == "elem");
5377 vals->push_back(Expression::make_type_descriptor(this->element_type_, bloc));
5378
5379 ++p;
5380 gcc_assert(p->field_name() == "dir");
5381 // These bits must match the ones in libgo/runtime/go-type.h.
5382 int val = 0;
5383 if (this->may_receive_)
5384 val |= 1;
5385 if (this->may_send_)
5386 val |= 2;
5387 mpz_t iv;
5388 mpz_init_set_ui(iv, val);
5389 vals->push_back(Expression::make_integer(&iv, p->type(), bloc));
5390 mpz_clear(iv);
5391
5392 ++p;
5393 gcc_assert(p == fields->end());
5394
5395 return Expression::make_struct_composite_literal(ctdt, vals, bloc);
5396 }
5397
5398 // Reflection string.
5399
5400 void
5401 Channel_type::do_reflection(Gogo* gogo, std::string* ret) const
5402 {
5403 if (!this->may_send_)
5404 ret->append("<-");
5405 ret->append("chan");
5406 if (!this->may_receive_)
5407 ret->append("<-");
5408 ret->push_back(' ');
5409 this->append_reflection(this->element_type_, gogo, ret);
5410 }
5411
5412 // Mangled name.
5413
5414 void
5415 Channel_type::do_mangled_name(Gogo* gogo, std::string* ret) const
5416 {
5417 ret->push_back('C');
5418 this->append_mangled_name(this->element_type_, gogo, ret);
5419 if (this->may_send_)
5420 ret->push_back('s');
5421 if (this->may_receive_)
5422 ret->push_back('r');
5423 ret->push_back('e');
5424 }
5425
5426 // Export.
5427
5428 void
5429 Channel_type::do_export(Export* exp) const
5430 {
5431 exp->write_c_string("chan ");
5432 if (this->may_send_ && !this->may_receive_)
5433 exp->write_c_string("-< ");
5434 else if (this->may_receive_ && !this->may_send_)
5435 exp->write_c_string("<- ");
5436 exp->write_type(this->element_type_);
5437 }
5438
5439 // Import.
5440
5441 Channel_type*
5442 Channel_type::do_import(Import* imp)
5443 {
5444 imp->require_c_string("chan ");
5445
5446 bool may_send;
5447 bool may_receive;
5448 if (imp->match_c_string("-< "))
5449 {
5450 imp->advance(3);
5451 may_send = true;
5452 may_receive = false;
5453 }
5454 else if (imp->match_c_string("<- "))
5455 {
5456 imp->advance(3);
5457 may_receive = true;
5458 may_send = false;
5459 }
5460 else
5461 {
5462 may_send = true;
5463 may_receive = true;
5464 }
5465
5466 Type* element_type = imp->read_type();
5467
5468 return Type::make_channel_type(may_send, may_receive, element_type);
5469 }
5470
5471 // Make a new channel type.
5472
5473 Channel_type*
5474 Type::make_channel_type(bool send, bool receive, Type* element_type)
5475 {
5476 return new Channel_type(send, receive, element_type);
5477 }
5478
5479 // Class Interface_type.
5480
5481 // Traversal.
5482
5483 int
5484 Interface_type::do_traverse(Traverse* traverse)
5485 {
5486 if (this->methods_ == NULL)
5487 return TRAVERSE_CONTINUE;
5488 return this->methods_->traverse(traverse);
5489 }
5490
5491 // Finalize the methods. This handles interface inheritance.
5492
5493 void
5494 Interface_type::finalize_methods()
5495 {
5496 if (this->methods_ == NULL)
5497 return;
5498 bool is_recursive = false;
5499 size_t from = 0;
5500 size_t to = 0;
5501 while (from < this->methods_->size())
5502 {
5503 const Typed_identifier* p = &this->methods_->at(from);
5504 if (!p->name().empty())
5505 {
5506 size_t i = 0;
5507 for (i = 0; i < to; ++i)
5508 {
5509 if (this->methods_->at(i).name() == p->name())
5510 {
5511 error_at(p->location(), "duplicate method %qs",
5512 Gogo::message_name(p->name()).c_str());
5513 break;
5514 }
5515 }
5516 if (i == to)
5517 {
5518 if (from != to)
5519 this->methods_->set(to, *p);
5520 ++to;
5521 }
5522 ++from;
5523 continue;
5524 }
5525 Interface_type* it = p->type()->interface_type();
5526 if (it == NULL)
5527 {
5528 error_at(p->location(), "interface contains embedded non-interface");
5529 ++from;
5530 continue;
5531 }
5532 if (it == this)
5533 {
5534 if (!is_recursive)
5535 {
5536 error_at(p->location(), "invalid recursive interface");
5537 is_recursive = true;
5538 }
5539 ++from;
5540 continue;
5541 }
5542 const Typed_identifier_list* methods = it->methods();
5543 if (methods == NULL)
5544 {
5545 ++from;
5546 continue;
5547 }
5548 for (Typed_identifier_list::const_iterator q = methods->begin();
5549 q != methods->end();
5550 ++q)
5551 {
5552 if (q->name().empty() || this->find_method(q->name()) == NULL)
5553 this->methods_->push_back(Typed_identifier(q->name(), q->type(),
5554 p->location()));
5555 else
5556 {
5557 if (!is_recursive)
5558 error_at(p->location(), "inherited method %qs is ambiguous",
5559 Gogo::message_name(q->name()).c_str());
5560 }
5561 }
5562 ++from;
5563 }
5564 if (to == 0)
5565 {
5566 delete this->methods_;
5567 this->methods_ = NULL;
5568 }
5569 else
5570 {
5571 this->methods_->resize(to);
5572 this->methods_->sort_by_name();
5573 }
5574 }
5575
5576 // Return the method NAME, or NULL.
5577
5578 const Typed_identifier*
5579 Interface_type::find_method(const std::string& name) const
5580 {
5581 if (this->methods_ == NULL)
5582 return NULL;
5583 for (Typed_identifier_list::const_iterator p = this->methods_->begin();
5584 p != this->methods_->end();
5585 ++p)
5586 if (p->name() == name)
5587 return &*p;
5588 return NULL;
5589 }
5590
5591 // Return the method index.
5592
5593 size_t
5594 Interface_type::method_index(const std::string& name) const
5595 {
5596 gcc_assert(this->methods_ != NULL);
5597 size_t ret = 0;
5598 for (Typed_identifier_list::const_iterator p = this->methods_->begin();
5599 p != this->methods_->end();
5600 ++p, ++ret)
5601 if (p->name() == name)
5602 return ret;
5603 gcc_unreachable();
5604 }
5605
5606 // Return whether NAME is an unexported method, for better error
5607 // reporting.
5608
5609 bool
5610 Interface_type::is_unexported_method(Gogo* gogo, const std::string& name) const
5611 {
5612 if (this->methods_ == NULL)
5613 return false;
5614 for (Typed_identifier_list::const_iterator p = this->methods_->begin();
5615 p != this->methods_->end();
5616 ++p)
5617 {
5618 const std::string& method_name(p->name());
5619 if (Gogo::is_hidden_name(method_name)
5620 && name == Gogo::unpack_hidden_name(method_name)
5621 && gogo->pack_hidden_name(name, false) != method_name)
5622 return true;
5623 }
5624 return false;
5625 }
5626
5627 // Whether this type is identical with T.
5628
5629 bool
5630 Interface_type::is_identical(const Interface_type* t) const
5631 {
5632 // We require the same methods with the same types. The methods
5633 // have already been sorted.
5634 if (this->methods() == NULL || t->methods() == NULL)
5635 return this->methods() == t->methods();
5636
5637 Typed_identifier_list::const_iterator p1 = this->methods()->begin();
5638 for (Typed_identifier_list::const_iterator p2 = t->methods()->begin();
5639 p2 != t->methods()->end();
5640 ++p1, ++p2)
5641 {
5642 if (p1 == this->methods()->end())
5643 return false;
5644 if (p1->name() != p2->name()
5645 || !Type::are_identical(p1->type(), p2->type(), NULL))
5646 return false;
5647 }
5648 if (p1 != this->methods()->end())
5649 return false;
5650 return true;
5651 }
5652
5653 // Whether we can assign the interface type T to this type. The types
5654 // are known to not be identical. An interface assignment is only
5655 // permitted if T is known to implement all methods in THIS.
5656 // Otherwise a type guard is required.
5657
5658 bool
5659 Interface_type::is_compatible_for_assign(const Interface_type* t,
5660 std::string* reason) const
5661 {
5662 if (this->methods() == NULL)
5663 return true;
5664 for (Typed_identifier_list::const_iterator p = this->methods()->begin();
5665 p != this->methods()->end();
5666 ++p)
5667 {
5668 const Typed_identifier* m = t->find_method(p->name());
5669 if (m == NULL)
5670 {
5671 if (reason != NULL)
5672 {
5673 char buf[200];
5674 snprintf(buf, sizeof buf,
5675 _("need explicit conversion; missing method %s%s%s"),
5676 open_quote, Gogo::message_name(p->name()).c_str(),
5677 close_quote);
5678 reason->assign(buf);
5679 }
5680 return false;
5681 }
5682
5683 std::string subreason;
5684 if (!Type::are_identical(p->type(), m->type(), &subreason))
5685 {
5686 if (reason != NULL)
5687 {
5688 std::string n = Gogo::message_name(p->name());
5689 size_t len = 100 + n.length() + subreason.length();
5690 char* buf = new char[len];
5691 if (subreason.empty())
5692 snprintf(buf, len, _("incompatible type for method %s%s%s"),
5693 open_quote, n.c_str(), close_quote);
5694 else
5695 snprintf(buf, len,
5696 _("incompatible type for method %s%s%s (%s)"),
5697 open_quote, n.c_str(), close_quote,
5698 subreason.c_str());
5699 reason->assign(buf);
5700 delete[] buf;
5701 }
5702 return false;
5703 }
5704 }
5705
5706 return true;
5707 }
5708
5709 // Hash code.
5710
5711 unsigned int
5712 Interface_type::do_hash_for_method(Gogo* gogo) const
5713 {
5714 unsigned int ret = 0;
5715 if (this->methods_ != NULL)
5716 {
5717 for (Typed_identifier_list::const_iterator p = this->methods_->begin();
5718 p != this->methods_->end();
5719 ++p)
5720 {
5721 ret = Type::hash_string(p->name(), ret);
5722 ret += p->type()->hash_for_method(gogo);
5723 ret <<= 1;
5724 }
5725 }
5726 return ret;
5727 }
5728
5729 // Return true if T implements the interface. If it does not, and
5730 // REASON is not NULL, set *REASON to a useful error message.
5731
5732 bool
5733 Interface_type::implements_interface(const Type* t, std::string* reason) const
5734 {
5735 if (this->methods_ == NULL)
5736 return true;
5737
5738 bool is_pointer = false;
5739 const Named_type* nt = t->named_type();
5740 const Struct_type* st = t->struct_type();
5741 // If we start with a named type, we don't dereference it to find
5742 // methods.
5743 if (nt == NULL)
5744 {
5745 const Type* pt = t->points_to();
5746 if (pt != NULL)
5747 {
5748 // If T is a pointer to a named type, then we need to look at
5749 // the type to which it points.
5750 is_pointer = true;
5751 nt = pt->named_type();
5752 st = pt->struct_type();
5753 }
5754 }
5755
5756 // If we have a named type, get the methods from it rather than from
5757 // any struct type.
5758 if (nt != NULL)
5759 st = NULL;
5760
5761 // Only named and struct types have methods.
5762 if (nt == NULL && st == NULL)
5763 {
5764 if (reason != NULL)
5765 {
5766 if (t->points_to() != NULL
5767 && t->points_to()->interface_type() != NULL)
5768 reason->assign(_("pointer to interface type has no methods"));
5769 else
5770 reason->assign(_("type has no methods"));
5771 }
5772 return false;
5773 }
5774
5775 if (nt != NULL ? !nt->has_any_methods() : !st->has_any_methods())
5776 {
5777 if (reason != NULL)
5778 {
5779 if (t->points_to() != NULL
5780 && t->points_to()->interface_type() != NULL)
5781 reason->assign(_("pointer to interface type has no methods"));
5782 else
5783 reason->assign(_("type has no methods"));
5784 }
5785 return false;
5786 }
5787
5788 for (Typed_identifier_list::const_iterator p = this->methods_->begin();
5789 p != this->methods_->end();
5790 ++p)
5791 {
5792 bool is_ambiguous = false;
5793 Method* m = (nt != NULL
5794 ? nt->method_function(p->name(), &is_ambiguous)
5795 : st->method_function(p->name(), &is_ambiguous));
5796 if (m == NULL)
5797 {
5798 if (reason != NULL)
5799 {
5800 std::string n = Gogo::message_name(p->name());
5801 size_t len = n.length() + 100;
5802 char* buf = new char[len];
5803 if (is_ambiguous)
5804 snprintf(buf, len, _("ambiguous method %s%s%s"),
5805 open_quote, n.c_str(), close_quote);
5806 else
5807 snprintf(buf, len, _("missing method %s%s%s"),
5808 open_quote, n.c_str(), close_quote);
5809 reason->assign(buf);
5810 delete[] buf;
5811 }
5812 return false;
5813 }
5814
5815 Function_type *p_fn_type = p->type()->function_type();
5816 Function_type* m_fn_type = m->type()->function_type();
5817 gcc_assert(p_fn_type != NULL && m_fn_type != NULL);
5818 std::string subreason;
5819 if (!p_fn_type->is_identical(m_fn_type, true, &subreason))
5820 {
5821 if (reason != NULL)
5822 {
5823 std::string n = Gogo::message_name(p->name());
5824 size_t len = 100 + n.length() + subreason.length();
5825 char* buf = new char[len];
5826 if (subreason.empty())
5827 snprintf(buf, len, _("incompatible type for method %s%s%s"),
5828 open_quote, n.c_str(), close_quote);
5829 else
5830 snprintf(buf, len,
5831 _("incompatible type for method %s%s%s (%s)"),
5832 open_quote, n.c_str(), close_quote,
5833 subreason.c_str());
5834 reason->assign(buf);
5835 delete[] buf;
5836 }
5837 return false;
5838 }
5839
5840 if (!is_pointer && !m->is_value_method())
5841 {
5842 if (reason != NULL)
5843 {
5844 std::string n = Gogo::message_name(p->name());
5845 size_t len = 100 + n.length();
5846 char* buf = new char[len];
5847 snprintf(buf, len, _("method %s%s%s requires a pointer"),
5848 open_quote, n.c_str(), close_quote);
5849 reason->assign(buf);
5850 delete[] buf;
5851 }
5852 return false;
5853 }
5854 }
5855
5856 return true;
5857 }
5858
5859 // Return a tree for an interface type. An interface is a pointer to
5860 // a struct. The struct has three fields. The first field is a
5861 // pointer to the type descriptor for the dynamic type of the object.
5862 // The second field is a pointer to a table of methods for the
5863 // interface to be used with the object. The third field is the value
5864 // of the object itself.
5865
5866 tree
5867 Interface_type::do_get_tree(Gogo* gogo)
5868 {
5869 if (this->methods_ == NULL)
5870 {
5871 // At the tree level, use the same type for all empty
5872 // interfaces. This lets us assign them to each other directly
5873 // without triggering GIMPLE type errors.
5874 tree dtype = Type::make_type_descriptor_type()->get_tree(gogo);
5875 dtype = build_pointer_type(build_qualified_type(dtype, TYPE_QUAL_CONST));
5876 static tree empty_interface;
5877 return Gogo::builtin_struct(&empty_interface, "__go_empty_interface",
5878 NULL_TREE, 2,
5879 "__type_descriptor",
5880 dtype,
5881 "__object",
5882 ptr_type_node);
5883 }
5884
5885 return this->fill_in_tree(gogo, make_node(RECORD_TYPE));
5886 }
5887
5888 // Fill in the tree for an interface type. This is used for named
5889 // interface types.
5890
5891 tree
5892 Interface_type::fill_in_tree(Gogo* gogo, tree type)
5893 {
5894 gcc_assert(this->methods_ != NULL);
5895
5896 // Build the type of the table of methods.
5897
5898 tree method_table = make_node(RECORD_TYPE);
5899
5900 // The first field is a pointer to the type descriptor.
5901 tree name_tree = get_identifier("__type_descriptor");
5902 tree dtype = Type::make_type_descriptor_type()->get_tree(gogo);
5903 dtype = build_pointer_type(build_qualified_type(dtype, TYPE_QUAL_CONST));
5904 tree field = build_decl(this->location_, FIELD_DECL, name_tree, dtype);
5905 DECL_CONTEXT(field) = method_table;
5906 TYPE_FIELDS(method_table) = field;
5907
5908 std::string last_name = "";
5909 tree* pp = &DECL_CHAIN(field);
5910 for (Typed_identifier_list::const_iterator p = this->methods_->begin();
5911 p != this->methods_->end();
5912 ++p)
5913 {
5914 std::string name = Gogo::unpack_hidden_name(p->name());
5915 name_tree = get_identifier_with_length(name.data(), name.length());
5916 tree field_type = p->type()->get_tree(gogo);
5917 if (field_type == error_mark_node)
5918 return error_mark_node;
5919 field = build_decl(this->location_, FIELD_DECL, name_tree, field_type);
5920 DECL_CONTEXT(field) = method_table;
5921 *pp = field;
5922 pp = &DECL_CHAIN(field);
5923 // Sanity check: the names should be sorted.
5924 gcc_assert(p->name() > last_name);
5925 last_name = p->name();
5926 }
5927 layout_type(method_table);
5928
5929 tree mtype = build_pointer_type(method_table);
5930
5931 tree field_trees = NULL_TREE;
5932 pp = &field_trees;
5933
5934 name_tree = get_identifier("__methods");
5935 field = build_decl(this->location_, FIELD_DECL, name_tree, mtype);
5936 DECL_CONTEXT(field) = type;
5937 *pp = field;
5938 pp = &DECL_CHAIN(field);
5939
5940 name_tree = get_identifier("__object");
5941 field = build_decl(this->location_, FIELD_DECL, name_tree, ptr_type_node);
5942 DECL_CONTEXT(field) = type;
5943 *pp = field;
5944
5945 TYPE_FIELDS(type) = field_trees;
5946
5947 layout_type(type);
5948
5949 return type;
5950 }
5951
5952 // Initialization value.
5953
5954 tree
5955 Interface_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
5956 {
5957 if (is_clear)
5958 return NULL;
5959
5960 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
5961 for (tree field = TYPE_FIELDS(type_tree);
5962 field != NULL_TREE;
5963 field = DECL_CHAIN(field))
5964 {
5965 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
5966 elt->index = field;
5967 elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
5968 }
5969
5970 tree ret = build_constructor(type_tree, init);
5971 TREE_CONSTANT(ret) = 1;
5972 return ret;
5973 }
5974
5975 // The type of an interface type descriptor.
5976
5977 Type*
5978 Interface_type::make_interface_type_descriptor_type()
5979 {
5980 static Type* ret;
5981 if (ret == NULL)
5982 {
5983 Type* tdt = Type::make_type_descriptor_type();
5984 Type* ptdt = Type::make_type_descriptor_ptr_type();
5985
5986 Type* string_type = Type::lookup_string_type();
5987 Type* pointer_string_type = Type::make_pointer_type(string_type);
5988
5989 Struct_type* sm =
5990 Type::make_builtin_struct_type(3,
5991 "name", pointer_string_type,
5992 "pkgPath", pointer_string_type,
5993 "typ", ptdt);
5994
5995 Type* nsm = Type::make_builtin_named_type("imethod", sm);
5996
5997 Type* slice_nsm = Type::make_array_type(nsm, NULL);
5998
5999 Struct_type* s = Type::make_builtin_struct_type(2,
6000 "", tdt,
6001 "methods", slice_nsm);
6002
6003 ret = Type::make_builtin_named_type("InterfaceType", s);
6004 }
6005
6006 return ret;
6007 }
6008
6009 // Build a type descriptor for an interface type.
6010
6011 Expression*
6012 Interface_type::do_type_descriptor(Gogo* gogo, Named_type* name)
6013 {
6014 source_location bloc = BUILTINS_LOCATION;
6015
6016 Type* itdt = Interface_type::make_interface_type_descriptor_type();
6017
6018 const Struct_field_list* ifields = itdt->struct_type()->fields();
6019
6020 Expression_list* ivals = new Expression_list();
6021 ivals->reserve(2);
6022
6023 Struct_field_list::const_iterator pif = ifields->begin();
6024 gcc_assert(pif->field_name() == "commonType");
6025 ivals->push_back(this->type_descriptor_constructor(gogo,
6026 RUNTIME_TYPE_KIND_INTERFACE,
6027 name, NULL, true));
6028
6029 ++pif;
6030 gcc_assert(pif->field_name() == "methods");
6031
6032 Expression_list* methods = new Expression_list();
6033 if (this->methods_ != NULL && !this->methods_->empty())
6034 {
6035 Type* elemtype = pif->type()->array_type()->element_type();
6036
6037 methods->reserve(this->methods_->size());
6038 for (Typed_identifier_list::const_iterator pm = this->methods_->begin();
6039 pm != this->methods_->end();
6040 ++pm)
6041 {
6042 const Struct_field_list* mfields = elemtype->struct_type()->fields();
6043
6044 Expression_list* mvals = new Expression_list();
6045 mvals->reserve(3);
6046
6047 Struct_field_list::const_iterator pmf = mfields->begin();
6048 gcc_assert(pmf->field_name() == "name");
6049 std::string s = Gogo::unpack_hidden_name(pm->name());
6050 Expression* e = Expression::make_string(s, bloc);
6051 mvals->push_back(Expression::make_unary(OPERATOR_AND, e, bloc));
6052
6053 ++pmf;
6054 gcc_assert(pmf->field_name() == "pkgPath");
6055 if (!Gogo::is_hidden_name(pm->name()))
6056 mvals->push_back(Expression::make_nil(bloc));
6057 else
6058 {
6059 s = Gogo::hidden_name_prefix(pm->name());
6060 e = Expression::make_string(s, bloc);
6061 mvals->push_back(Expression::make_unary(OPERATOR_AND, e, bloc));
6062 }
6063
6064 ++pmf;
6065 gcc_assert(pmf->field_name() == "typ");
6066 mvals->push_back(Expression::make_type_descriptor(pm->type(), bloc));
6067
6068 ++pmf;
6069 gcc_assert(pmf == mfields->end());
6070
6071 e = Expression::make_struct_composite_literal(elemtype, mvals,
6072 bloc);
6073 methods->push_back(e);
6074 }
6075 }
6076
6077 ivals->push_back(Expression::make_slice_composite_literal(pif->type(),
6078 methods, bloc));
6079
6080 ++pif;
6081 gcc_assert(pif == ifields->end());
6082
6083 return Expression::make_struct_composite_literal(itdt, ivals, bloc);
6084 }
6085
6086 // Reflection string.
6087
6088 void
6089 Interface_type::do_reflection(Gogo* gogo, std::string* ret) const
6090 {
6091 ret->append("interface {");
6092 if (this->methods_ != NULL)
6093 {
6094 for (Typed_identifier_list::const_iterator p = this->methods_->begin();
6095 p != this->methods_->end();
6096 ++p)
6097 {
6098 if (p != this->methods_->begin())
6099 ret->append(";");
6100 ret->push_back(' ');
6101 ret->append(Gogo::unpack_hidden_name(p->name()));
6102 std::string sub = p->type()->reflection(gogo);
6103 gcc_assert(sub.compare(0, 4, "func") == 0);
6104 sub = sub.substr(4);
6105 ret->append(sub);
6106 }
6107 }
6108 ret->append(" }");
6109 }
6110
6111 // Mangled name.
6112
6113 void
6114 Interface_type::do_mangled_name(Gogo* gogo, std::string* ret) const
6115 {
6116 ret->push_back('I');
6117
6118 const Typed_identifier_list* methods = this->methods_;
6119 if (methods != NULL)
6120 {
6121 for (Typed_identifier_list::const_iterator p = methods->begin();
6122 p != methods->end();
6123 ++p)
6124 {
6125 std::string n = Gogo::unpack_hidden_name(p->name());
6126 char buf[20];
6127 snprintf(buf, sizeof buf, "%u_",
6128 static_cast<unsigned int>(n.length()));
6129 ret->append(buf);
6130 ret->append(n);
6131 this->append_mangled_name(p->type(), gogo, ret);
6132 }
6133 }
6134
6135 ret->push_back('e');
6136 }
6137
6138 // Export.
6139
6140 void
6141 Interface_type::do_export(Export* exp) const
6142 {
6143 exp->write_c_string("interface { ");
6144
6145 const Typed_identifier_list* methods = this->methods_;
6146 if (methods != NULL)
6147 {
6148 for (Typed_identifier_list::const_iterator pm = methods->begin();
6149 pm != methods->end();
6150 ++pm)
6151 {
6152 exp->write_string(pm->name());
6153 exp->write_c_string(" (");
6154
6155 const Function_type* fntype = pm->type()->function_type();
6156
6157 bool first = true;
6158 const Typed_identifier_list* parameters = fntype->parameters();
6159 if (parameters != NULL)
6160 {
6161 bool is_varargs = fntype->is_varargs();
6162 for (Typed_identifier_list::const_iterator pp =
6163 parameters->begin();
6164 pp != parameters->end();
6165 ++pp)
6166 {
6167 if (first)
6168 first = false;
6169 else
6170 exp->write_c_string(", ");
6171 if (!is_varargs || pp + 1 != parameters->end())
6172 exp->write_type(pp->type());
6173 else
6174 {
6175 exp->write_c_string("...");
6176 Type *pptype = pp->type();
6177 exp->write_type(pptype->array_type()->element_type());
6178 }
6179 }
6180 }
6181
6182 exp->write_c_string(")");
6183
6184 const Typed_identifier_list* results = fntype->results();
6185 if (results != NULL)
6186 {
6187 exp->write_c_string(" ");
6188 if (results->size() == 1)
6189 exp->write_type(results->begin()->type());
6190 else
6191 {
6192 first = true;
6193 exp->write_c_string("(");
6194 for (Typed_identifier_list::const_iterator p =
6195 results->begin();
6196 p != results->end();
6197 ++p)
6198 {
6199 if (first)
6200 first = false;
6201 else
6202 exp->write_c_string(", ");
6203 exp->write_type(p->type());
6204 }
6205 exp->write_c_string(")");
6206 }
6207 }
6208
6209 exp->write_c_string("; ");
6210 }
6211 }
6212
6213 exp->write_c_string("}");
6214 }
6215
6216 // Import an interface type.
6217
6218 Interface_type*
6219 Interface_type::do_import(Import* imp)
6220 {
6221 imp->require_c_string("interface { ");
6222
6223 Typed_identifier_list* methods = new Typed_identifier_list;
6224 while (imp->peek_char() != '}')
6225 {
6226 std::string name = imp->read_identifier();
6227 imp->require_c_string(" (");
6228
6229 Typed_identifier_list* parameters;
6230 bool is_varargs = false;
6231 if (imp->peek_char() == ')')
6232 parameters = NULL;
6233 else
6234 {
6235 parameters = new Typed_identifier_list;
6236 while (true)
6237 {
6238 if (imp->match_c_string("..."))
6239 {
6240 imp->advance(3);
6241 is_varargs = true;
6242 }
6243
6244 Type* ptype = imp->read_type();
6245 if (is_varargs)
6246 ptype = Type::make_array_type(ptype, NULL);
6247 parameters->push_back(Typed_identifier(Import::import_marker,
6248 ptype, imp->location()));
6249 if (imp->peek_char() != ',')
6250 break;
6251 gcc_assert(!is_varargs);
6252 imp->require_c_string(", ");
6253 }
6254 }
6255 imp->require_c_string(")");
6256
6257 Typed_identifier_list* results;
6258 if (imp->peek_char() != ' ')
6259 results = NULL;
6260 else
6261 {
6262 results = new Typed_identifier_list;
6263 imp->advance(1);
6264 if (imp->peek_char() != '(')
6265 {
6266 Type* rtype = imp->read_type();
6267 results->push_back(Typed_identifier(Import::import_marker,
6268 rtype, imp->location()));
6269 }
6270 else
6271 {
6272 imp->advance(1);
6273 while (true)
6274 {
6275 Type* rtype = imp->read_type();
6276 results->push_back(Typed_identifier(Import::import_marker,
6277 rtype, imp->location()));
6278 if (imp->peek_char() != ',')
6279 break;
6280 imp->require_c_string(", ");
6281 }
6282 imp->require_c_string(")");
6283 }
6284 }
6285
6286 Function_type* fntype = Type::make_function_type(NULL, parameters,
6287 results,
6288 imp->location());
6289 if (is_varargs)
6290 fntype->set_is_varargs();
6291 methods->push_back(Typed_identifier(name, fntype, imp->location()));
6292
6293 imp->require_c_string("; ");
6294 }
6295
6296 imp->require_c_string("}");
6297
6298 if (methods->empty())
6299 {
6300 delete methods;
6301 methods = NULL;
6302 }
6303
6304 return Type::make_interface_type(methods, imp->location());
6305 }
6306
6307 // Make an interface type.
6308
6309 Interface_type*
6310 Type::make_interface_type(Typed_identifier_list* methods,
6311 source_location location)
6312 {
6313 return new Interface_type(methods, location);
6314 }
6315
6316 // Class Method.
6317
6318 // Bind a method to an object.
6319
6320 Expression*
6321 Method::bind_method(Expression* expr, source_location location) const
6322 {
6323 if (this->stub_ == NULL)
6324 {
6325 // When there is no stub object, the binding is determined by
6326 // the child class.
6327 return this->do_bind_method(expr, location);
6328 }
6329
6330 Expression* func = Expression::make_func_reference(this->stub_, NULL,
6331 location);
6332 return Expression::make_bound_method(expr, func, location);
6333 }
6334
6335 // Return the named object associated with a method. This may only be
6336 // called after methods are finalized.
6337
6338 Named_object*
6339 Method::named_object() const
6340 {
6341 if (this->stub_ != NULL)
6342 return this->stub_;
6343 return this->do_named_object();
6344 }
6345
6346 // Class Named_method.
6347
6348 // The type of the method.
6349
6350 Function_type*
6351 Named_method::do_type() const
6352 {
6353 if (this->named_object_->is_function())
6354 return this->named_object_->func_value()->type();
6355 else if (this->named_object_->is_function_declaration())
6356 return this->named_object_->func_declaration_value()->type();
6357 else
6358 gcc_unreachable();
6359 }
6360
6361 // Return the location of the method receiver.
6362
6363 source_location
6364 Named_method::do_receiver_location() const
6365 {
6366 return this->do_type()->receiver()->location();
6367 }
6368
6369 // Bind a method to an object.
6370
6371 Expression*
6372 Named_method::do_bind_method(Expression* expr, source_location location) const
6373 {
6374 Expression* func = Expression::make_func_reference(this->named_object_, NULL,
6375 location);
6376 Bound_method_expression* bme = Expression::make_bound_method(expr, func,
6377 location);
6378 // If this is not a local method, and it does not use a stub, then
6379 // the real method expects a different type. We need to cast the
6380 // first argument.
6381 if (this->depth() > 0 && !this->needs_stub_method())
6382 {
6383 Function_type* ftype = this->do_type();
6384 gcc_assert(ftype->is_method());
6385 Type* frtype = ftype->receiver()->type();
6386 bme->set_first_argument_type(frtype);
6387 }
6388 return bme;
6389 }
6390
6391 // Class Interface_method.
6392
6393 // Bind a method to an object.
6394
6395 Expression*
6396 Interface_method::do_bind_method(Expression* expr,
6397 source_location location) const
6398 {
6399 return Expression::make_interface_field_reference(expr, this->name_,
6400 location);
6401 }
6402
6403 // Class Methods.
6404
6405 // Insert a new method. Return true if it was inserted, false
6406 // otherwise.
6407
6408 bool
6409 Methods::insert(const std::string& name, Method* m)
6410 {
6411 std::pair<Method_map::iterator, bool> ins =
6412 this->methods_.insert(std::make_pair(name, m));
6413 if (ins.second)
6414 return true;
6415 else
6416 {
6417 Method* old_method = ins.first->second;
6418 if (m->depth() < old_method->depth())
6419 {
6420 delete old_method;
6421 ins.first->second = m;
6422 return true;
6423 }
6424 else
6425 {
6426 if (m->depth() == old_method->depth())
6427 old_method->set_is_ambiguous();
6428 return false;
6429 }
6430 }
6431 }
6432
6433 // Return the number of unambiguous methods.
6434
6435 size_t
6436 Methods::count() const
6437 {
6438 size_t ret = 0;
6439 for (Method_map::const_iterator p = this->methods_.begin();
6440 p != this->methods_.end();
6441 ++p)
6442 if (!p->second->is_ambiguous())
6443 ++ret;
6444 return ret;
6445 }
6446
6447 // Class Named_type.
6448
6449 // Return the name of the type.
6450
6451 const std::string&
6452 Named_type::name() const
6453 {
6454 return this->named_object_->name();
6455 }
6456
6457 // Return the name of the type to use in an error message.
6458
6459 std::string
6460 Named_type::message_name() const
6461 {
6462 return this->named_object_->message_name();
6463 }
6464
6465 // Return the base type for this type. We have to be careful about
6466 // circular type definitions, which are invalid but may be seen here.
6467
6468 Type*
6469 Named_type::named_base()
6470 {
6471 if (this->seen_)
6472 return this;
6473 this->seen_ = true;
6474 Type* ret = this->type_->base();
6475 this->seen_ = false;
6476 return ret;
6477 }
6478
6479 const Type*
6480 Named_type::named_base() const
6481 {
6482 if (this->seen_)
6483 return this;
6484 this->seen_ = true;
6485 const Type* ret = this->type_->base();
6486 this->seen_ = false;
6487 return ret;
6488 }
6489
6490 // Return whether this is an error type. We have to be careful about
6491 // circular type definitions, which are invalid but may be seen here.
6492
6493 bool
6494 Named_type::is_named_error_type() const
6495 {
6496 if (this->seen_)
6497 return false;
6498 this->seen_ = true;
6499 bool ret = this->type_->is_error_type();
6500 this->seen_ = false;
6501 return ret;
6502 }
6503
6504 // Add a method to this type.
6505
6506 Named_object*
6507 Named_type::add_method(const std::string& name, Function* function)
6508 {
6509 if (this->local_methods_ == NULL)
6510 this->local_methods_ = new Bindings(NULL);
6511 return this->local_methods_->add_function(name, NULL, function);
6512 }
6513
6514 // Add a method declaration to this type.
6515
6516 Named_object*
6517 Named_type::add_method_declaration(const std::string& name, Package* package,
6518 Function_type* type,
6519 source_location location)
6520 {
6521 if (this->local_methods_ == NULL)
6522 this->local_methods_ = new Bindings(NULL);
6523 return this->local_methods_->add_function_declaration(name, package, type,
6524 location);
6525 }
6526
6527 // Add an existing method to this type.
6528
6529 void
6530 Named_type::add_existing_method(Named_object* no)
6531 {
6532 if (this->local_methods_ == NULL)
6533 this->local_methods_ = new Bindings(NULL);
6534 this->local_methods_->add_named_object(no);
6535 }
6536
6537 // Look for a local method NAME, and returns its named object, or NULL
6538 // if not there.
6539
6540 Named_object*
6541 Named_type::find_local_method(const std::string& name) const
6542 {
6543 if (this->local_methods_ == NULL)
6544 return NULL;
6545 return this->local_methods_->lookup(name);
6546 }
6547
6548 // Return whether NAME is an unexported field or method, for better
6549 // error reporting.
6550
6551 bool
6552 Named_type::is_unexported_local_method(Gogo* gogo,
6553 const std::string& name) const
6554 {
6555 Bindings* methods = this->local_methods_;
6556 if (methods != NULL)
6557 {
6558 for (Bindings::const_declarations_iterator p =
6559 methods->begin_declarations();
6560 p != methods->end_declarations();
6561 ++p)
6562 {
6563 if (Gogo::is_hidden_name(p->first)
6564 && name == Gogo::unpack_hidden_name(p->first)
6565 && gogo->pack_hidden_name(name, false) != p->first)
6566 return true;
6567 }
6568 }
6569 return false;
6570 }
6571
6572 // Build the complete list of methods for this type, which means
6573 // recursively including all methods for anonymous fields. Create all
6574 // stub methods.
6575
6576 void
6577 Named_type::finalize_methods(Gogo* gogo)
6578 {
6579 if (this->local_methods_ != NULL
6580 && (this->points_to() != NULL || this->interface_type() != NULL))
6581 {
6582 const Bindings* lm = this->local_methods_;
6583 for (Bindings::const_declarations_iterator p = lm->begin_declarations();
6584 p != lm->end_declarations();
6585 ++p)
6586 error_at(p->second->location(),
6587 "invalid pointer or interface receiver type");
6588 delete this->local_methods_;
6589 this->local_methods_ = NULL;
6590 return;
6591 }
6592
6593 Type::finalize_methods(gogo, this, this->location_, &this->all_methods_);
6594 }
6595
6596 // Return the method NAME, or NULL if there isn't one or if it is
6597 // ambiguous. Set *IS_AMBIGUOUS if the method exists but is
6598 // ambiguous.
6599
6600 Method*
6601 Named_type::method_function(const std::string& name, bool* is_ambiguous) const
6602 {
6603 return Type::method_function(this->all_methods_, name, is_ambiguous);
6604 }
6605
6606 // Return a pointer to the interface method table for this type for
6607 // the interface INTERFACE. IS_POINTER is true if this is for a
6608 // pointer to THIS.
6609
6610 tree
6611 Named_type::interface_method_table(Gogo* gogo, const Interface_type* interface,
6612 bool is_pointer)
6613 {
6614 gcc_assert(!interface->is_empty());
6615
6616 Interface_method_tables** pimt = (is_pointer
6617 ? &this->interface_method_tables_
6618 : &this->pointer_interface_method_tables_);
6619
6620 if (*pimt == NULL)
6621 *pimt = new Interface_method_tables(5);
6622
6623 std::pair<const Interface_type*, tree> val(interface, NULL_TREE);
6624 std::pair<Interface_method_tables::iterator, bool> ins = (*pimt)->insert(val);
6625
6626 if (ins.second)
6627 {
6628 // This is a new entry in the hash table.
6629 gcc_assert(ins.first->second == NULL_TREE);
6630 ins.first->second = gogo->interface_method_table_for_type(interface,
6631 this,
6632 is_pointer);
6633 }
6634
6635 tree decl = ins.first->second;
6636 if (decl == error_mark_node)
6637 return error_mark_node;
6638 gcc_assert(decl != NULL_TREE && TREE_CODE(decl) == VAR_DECL);
6639 return build_fold_addr_expr(decl);
6640 }
6641
6642 // Return whether a named type has any hidden fields.
6643
6644 bool
6645 Named_type::named_type_has_hidden_fields(std::string* reason) const
6646 {
6647 if (this->seen_)
6648 return false;
6649 this->seen_ = true;
6650 bool ret = this->type_->has_hidden_fields(this, reason);
6651 this->seen_ = false;
6652 return ret;
6653 }
6654
6655 // Look for a use of a complete type within another type. This is
6656 // used to check that we don't try to use a type within itself.
6657
6658 class Find_type_use : public Traverse
6659 {
6660 public:
6661 Find_type_use(Type* find_type)
6662 : Traverse(traverse_types),
6663 find_type_(find_type), found_(false)
6664 { }
6665
6666 // Whether we found the type.
6667 bool
6668 found() const
6669 { return this->found_; }
6670
6671 protected:
6672 int
6673 type(Type*);
6674
6675 private:
6676 // The type we are looking for.
6677 Type* find_type_;
6678 // Whether we found the type.
6679 bool found_;
6680 };
6681
6682 // Check for FIND_TYPE in TYPE.
6683
6684 int
6685 Find_type_use::type(Type* type)
6686 {
6687 if (this->find_type_ == type)
6688 {
6689 this->found_ = true;
6690 return TRAVERSE_EXIT;
6691 }
6692 // It's OK if we see a reference to the type in any type which is
6693 // essentially a pointer: a pointer, a slice, a function, a map, or
6694 // a channel.
6695 if (type->points_to() != NULL
6696 || type->is_open_array_type()
6697 || type->function_type() != NULL
6698 || type->map_type() != NULL
6699 || type->channel_type() != NULL)
6700 return TRAVERSE_SKIP_COMPONENTS;
6701
6702 // For an interface, a reference to the type in a method type should
6703 // be ignored, but we have to consider direct inheritance. When
6704 // this is called, there may be cases of direct inheritance
6705 // represented as a method with no name.
6706 if (type->interface_type() != NULL)
6707 {
6708 const Typed_identifier_list* methods = type->interface_type()->methods();
6709 if (methods != NULL)
6710 {
6711 for (Typed_identifier_list::const_iterator p = methods->begin();
6712 p != methods->end();
6713 ++p)
6714 {
6715 if (p->name().empty())
6716 {
6717 if (Type::traverse(p->type(), this) == TRAVERSE_EXIT)
6718 return TRAVERSE_EXIT;
6719 }
6720 }
6721 }
6722 return TRAVERSE_SKIP_COMPONENTS;
6723 }
6724
6725 return TRAVERSE_CONTINUE;
6726 }
6727
6728 // Verify that a named type does not refer to itself.
6729
6730 bool
6731 Named_type::do_verify()
6732 {
6733 Find_type_use find(this);
6734 Type::traverse(this->type_, &find);
6735 if (find.found())
6736 {
6737 error_at(this->location_, "invalid recursive type %qs",
6738 this->message_name().c_str());
6739 this->is_error_ = true;
6740 return false;
6741 }
6742
6743 // Check whether any of the local methods overloads an existing
6744 // struct field or interface method. We don't need to check the
6745 // list of methods against itself: that is handled by the Bindings
6746 // code.
6747 if (this->local_methods_ != NULL)
6748 {
6749 Struct_type* st = this->type_->struct_type();
6750 Interface_type* it = this->type_->interface_type();
6751 bool found_dup = false;
6752 if (st != NULL || it != NULL)
6753 {
6754 for (Bindings::const_declarations_iterator p =
6755 this->local_methods_->begin_declarations();
6756 p != this->local_methods_->end_declarations();
6757 ++p)
6758 {
6759 const std::string& name(p->first);
6760 if (st != NULL && st->find_local_field(name, NULL) != NULL)
6761 {
6762 error_at(p->second->location(),
6763 "method %qs redeclares struct field name",
6764 Gogo::message_name(name).c_str());
6765 found_dup = true;
6766 }
6767 if (it != NULL && it->find_method(name) != NULL)
6768 {
6769 error_at(p->second->location(),
6770 "method %qs redeclares interface method name",
6771 Gogo::message_name(name).c_str());
6772 found_dup = true;
6773 }
6774 }
6775 }
6776 if (found_dup)
6777 return false;
6778 }
6779
6780 return true;
6781 }
6782
6783 // Return a hash code. This is used for method lookup. We simply
6784 // hash on the name itself.
6785
6786 unsigned int
6787 Named_type::do_hash_for_method(Gogo* gogo) const
6788 {
6789 const std::string& name(this->named_object()->name());
6790 unsigned int ret = Type::hash_string(name, 0);
6791
6792 // GOGO will be NULL here when called from Type_hash_identical.
6793 // That is OK because that is only used for internal hash tables
6794 // where we are going to be comparing named types for equality. In
6795 // other cases, which are cases where the runtime is going to
6796 // compare hash codes to see if the types are the same, we need to
6797 // include the package prefix and name in the hash.
6798 if (gogo != NULL && !Gogo::is_hidden_name(name) && !this->is_builtin())
6799 {
6800 const Package* package = this->named_object()->package();
6801 if (package == NULL)
6802 {
6803 ret = Type::hash_string(gogo->unique_prefix(), ret);
6804 ret = Type::hash_string(gogo->package_name(), ret);
6805 }
6806 else
6807 {
6808 ret = Type::hash_string(package->unique_prefix(), ret);
6809 ret = Type::hash_string(package->name(), ret);
6810 }
6811 }
6812
6813 return ret;
6814 }
6815
6816 // Get a tree for a named type.
6817
6818 tree
6819 Named_type::do_get_tree(Gogo* gogo)
6820 {
6821 if (this->is_error_)
6822 return error_mark_node;
6823
6824 // Go permits types to refer to themselves in various ways. Break
6825 // the recursion here.
6826 tree t;
6827 switch (this->type_->forwarded()->classification())
6828 {
6829 case TYPE_ERROR:
6830 return error_mark_node;
6831
6832 case TYPE_VOID:
6833 case TYPE_BOOLEAN:
6834 case TYPE_INTEGER:
6835 case TYPE_FLOAT:
6836 case TYPE_COMPLEX:
6837 case TYPE_STRING:
6838 case TYPE_NIL:
6839 // These types can not refer to themselves.
6840 case TYPE_MAP:
6841 case TYPE_CHANNEL:
6842 // All maps and channels have the same type in GENERIC.
6843 t = Type::get_named_type_tree(gogo, this->type_);
6844 if (t == error_mark_node)
6845 return error_mark_node;
6846 // Build a copy to set TYPE_NAME.
6847 t = build_variant_type_copy(t);
6848 break;
6849
6850 case TYPE_FUNCTION:
6851 // Don't recur infinitely if a function type refers to itself.
6852 // Ideally we would build a circular data structure here, but
6853 // GENERIC can't handle them.
6854 if (this->seen_)
6855 return ptr_type_node;
6856 this->seen_ = true;
6857 t = Type::get_named_type_tree(gogo, this->type_);
6858 this->seen_ = false;
6859 if (t == error_mark_node)
6860 return error_mark_node;
6861 t = build_variant_type_copy(t);
6862 break;
6863
6864 case TYPE_POINTER:
6865 // Don't recur infinitely if a pointer type refers to itself.
6866 // Ideally we would build a circular data structure here, but
6867 // GENERIC can't handle them.
6868 if (this->seen_)
6869 return ptr_type_node;
6870 this->seen_ = true;
6871 t = Type::get_named_type_tree(gogo, this->type_);
6872 this->seen_ = false;
6873 if (t == error_mark_node)
6874 return error_mark_node;
6875 t = build_variant_type_copy(t);
6876 break;
6877
6878 case TYPE_STRUCT:
6879 if (this->named_tree_ != NULL_TREE)
6880 return this->named_tree_;
6881 t = make_node(RECORD_TYPE);
6882 this->named_tree_ = t;
6883 this->type_->struct_type()->fill_in_tree(gogo, t);
6884 break;
6885
6886 case TYPE_ARRAY:
6887 if (!this->is_open_array_type())
6888 t = Type::get_named_type_tree(gogo, this->type_);
6889 else
6890 {
6891 if (this->named_tree_ != NULL_TREE)
6892 return this->named_tree_;
6893 t = gogo->slice_type_tree(void_type_node);
6894 this->named_tree_ = t;
6895 t = this->type_->array_type()->fill_in_tree(gogo, t);
6896 }
6897 if (t == error_mark_node)
6898 return error_mark_node;
6899 t = build_variant_type_copy(t);
6900 break;
6901
6902 case TYPE_INTERFACE:
6903 if (this->type_->interface_type()->is_empty())
6904 {
6905 t = Type::get_named_type_tree(gogo, this->type_);
6906 if (t == error_mark_node)
6907 return error_mark_node;
6908 t = build_variant_type_copy(t);
6909 }
6910 else
6911 {
6912 if (this->named_tree_ != NULL_TREE)
6913 return this->named_tree_;
6914 t = make_node(RECORD_TYPE);
6915 this->named_tree_ = t;
6916 t = this->type_->interface_type()->fill_in_tree(gogo, t);
6917 if (t == error_mark_node)
6918 return error_mark_node;
6919 }
6920 break;
6921
6922 case TYPE_NAMED:
6923 {
6924 // When a named type T1 is defined as another named type T2,
6925 // the definition must simply be "type T1 T2". If the
6926 // definition of T2 may refer to T1, then we must simply
6927 // return the type for T2 here. It's not precisely correct,
6928 // but it's as close as we can get with GENERIC.
6929 bool was_seen = this->seen_;
6930 this->seen_ = true;
6931 t = Type::get_named_type_tree(gogo, this->type_);
6932 this->seen_ = was_seen;
6933 if (was_seen)
6934 return t;
6935 if (t == error_mark_node)
6936 return error_mark_node;
6937 t = build_variant_type_copy(t);
6938 }
6939 break;
6940
6941 case TYPE_FORWARD:
6942 // An undefined forwarding type. Make sure the error is
6943 // emitted.
6944 this->type_->forward_declaration_type()->real_type();
6945 return error_mark_node;
6946
6947 default:
6948 case TYPE_SINK:
6949 case TYPE_CALL_MULTIPLE_RESULT:
6950 gcc_unreachable();
6951 }
6952
6953 tree id = this->named_object_->get_id(gogo);
6954 tree decl = build_decl(this->location_, TYPE_DECL, id, t);
6955 TYPE_NAME(t) = decl;
6956
6957 return t;
6958 }
6959
6960 // Build a type descriptor for a named type.
6961
6962 Expression*
6963 Named_type::do_type_descriptor(Gogo* gogo, Named_type* name)
6964 {
6965 // If NAME is not NULL, then we don't really want the type
6966 // descriptor for this type; we want the descriptor for the
6967 // underlying type, giving it the name NAME.
6968 return this->named_type_descriptor(gogo, this->type_,
6969 name == NULL ? this : name);
6970 }
6971
6972 // Add to the reflection string. This is used mostly for the name of
6973 // the type used in a type descriptor, not for actual reflection
6974 // strings.
6975
6976 void
6977 Named_type::do_reflection(Gogo* gogo, std::string* ret) const
6978 {
6979 if (this->location() != BUILTINS_LOCATION)
6980 {
6981 const Package* package = this->named_object_->package();
6982 if (package != NULL)
6983 ret->append(package->name());
6984 else
6985 ret->append(gogo->package_name());
6986 ret->push_back('.');
6987 }
6988 if (this->in_function_ != NULL)
6989 {
6990 ret->append(Gogo::unpack_hidden_name(this->in_function_->name()));
6991 ret->push_back('$');
6992 }
6993 ret->append(Gogo::unpack_hidden_name(this->named_object_->name()));
6994 }
6995
6996 // Get the mangled name.
6997
6998 void
6999 Named_type::do_mangled_name(Gogo* gogo, std::string* ret) const
7000 {
7001 Named_object* no = this->named_object_;
7002 std::string name;
7003 if (this->location() == BUILTINS_LOCATION)
7004 gcc_assert(this->in_function_ == NULL);
7005 else
7006 {
7007 const std::string& unique_prefix(no->package() == NULL
7008 ? gogo->unique_prefix()
7009 : no->package()->unique_prefix());
7010 const std::string& package_name(no->package() == NULL
7011 ? gogo->package_name()
7012 : no->package()->name());
7013 name = unique_prefix;
7014 name.append(1, '.');
7015 name.append(package_name);
7016 name.append(1, '.');
7017 if (this->in_function_ != NULL)
7018 {
7019 name.append(Gogo::unpack_hidden_name(this->in_function_->name()));
7020 name.append(1, '$');
7021 }
7022 }
7023 name.append(Gogo::unpack_hidden_name(no->name()));
7024 char buf[20];
7025 snprintf(buf, sizeof buf, "N%u_", static_cast<unsigned int>(name.length()));
7026 ret->append(buf);
7027 ret->append(name);
7028 }
7029
7030 // Export the type. This is called to export a global type.
7031
7032 void
7033 Named_type::export_named_type(Export* exp, const std::string&) const
7034 {
7035 // We don't need to write the name of the type here, because it will
7036 // be written by Export::write_type anyhow.
7037 exp->write_c_string("type ");
7038 exp->write_type(this);
7039 exp->write_c_string(";\n");
7040 }
7041
7042 // Import a named type.
7043
7044 void
7045 Named_type::import_named_type(Import* imp, Named_type** ptype)
7046 {
7047 imp->require_c_string("type ");
7048 Type *type = imp->read_type();
7049 *ptype = type->named_type();
7050 gcc_assert(*ptype != NULL);
7051 imp->require_c_string(";\n");
7052 }
7053
7054 // Export the type when it is referenced by another type. In this
7055 // case Export::export_type will already have issued the name.
7056
7057 void
7058 Named_type::do_export(Export* exp) const
7059 {
7060 exp->write_type(this->type_);
7061
7062 // To save space, we only export the methods directly attached to
7063 // this type.
7064 Bindings* methods = this->local_methods_;
7065 if (methods == NULL)
7066 return;
7067
7068 exp->write_c_string("\n");
7069 for (Bindings::const_definitions_iterator p = methods->begin_definitions();
7070 p != methods->end_definitions();
7071 ++p)
7072 {
7073 exp->write_c_string(" ");
7074 (*p)->export_named_object(exp);
7075 }
7076
7077 for (Bindings::const_declarations_iterator p = methods->begin_declarations();
7078 p != methods->end_declarations();
7079 ++p)
7080 {
7081 if (p->second->is_function_declaration())
7082 {
7083 exp->write_c_string(" ");
7084 p->second->export_named_object(exp);
7085 }
7086 }
7087 }
7088
7089 // Make a named type.
7090
7091 Named_type*
7092 Type::make_named_type(Named_object* named_object, Type* type,
7093 source_location location)
7094 {
7095 return new Named_type(named_object, type, location);
7096 }
7097
7098 // Finalize the methods for TYPE. It will be a named type or a struct
7099 // type. This sets *ALL_METHODS to the list of methods, and builds
7100 // all required stubs.
7101
7102 void
7103 Type::finalize_methods(Gogo* gogo, const Type* type, source_location location,
7104 Methods** all_methods)
7105 {
7106 *all_methods = NULL;
7107 Types_seen types_seen;
7108 Type::add_methods_for_type(type, NULL, 0, false, false, &types_seen,
7109 all_methods);
7110 Type::build_stub_methods(gogo, type, *all_methods, location);
7111 }
7112
7113 // Add the methods for TYPE to *METHODS. FIELD_INDEXES is used to
7114 // build up the struct field indexes as we go. DEPTH is the depth of
7115 // the field within TYPE. IS_EMBEDDED_POINTER is true if we are
7116 // adding these methods for an anonymous field with pointer type.
7117 // NEEDS_STUB_METHOD is true if we need to use a stub method which
7118 // calls the real method. TYPES_SEEN is used to avoid infinite
7119 // recursion.
7120
7121 void
7122 Type::add_methods_for_type(const Type* type,
7123 const Method::Field_indexes* field_indexes,
7124 unsigned int depth,
7125 bool is_embedded_pointer,
7126 bool needs_stub_method,
7127 Types_seen* types_seen,
7128 Methods** methods)
7129 {
7130 // Pointer types may not have methods.
7131 if (type->points_to() != NULL)
7132 return;
7133
7134 const Named_type* nt = type->named_type();
7135 if (nt != NULL)
7136 {
7137 std::pair<Types_seen::iterator, bool> ins = types_seen->insert(nt);
7138 if (!ins.second)
7139 return;
7140 }
7141
7142 if (nt != NULL)
7143 Type::add_local_methods_for_type(nt, field_indexes, depth,
7144 is_embedded_pointer, needs_stub_method,
7145 methods);
7146
7147 Type::add_embedded_methods_for_type(type, field_indexes, depth,
7148 is_embedded_pointer, needs_stub_method,
7149 types_seen, methods);
7150
7151 // If we are called with depth > 0, then we are looking at an
7152 // anonymous field of a struct. If such a field has interface type,
7153 // then we need to add the interface methods. We don't want to add
7154 // them when depth == 0, because we will already handle them
7155 // following the usual rules for an interface type.
7156 if (depth > 0)
7157 Type::add_interface_methods_for_type(type, field_indexes, depth, methods);
7158 }
7159
7160 // Add the local methods for the named type NT to *METHODS. The
7161 // parameters are as for add_methods_to_type.
7162
7163 void
7164 Type::add_local_methods_for_type(const Named_type* nt,
7165 const Method::Field_indexes* field_indexes,
7166 unsigned int depth,
7167 bool is_embedded_pointer,
7168 bool needs_stub_method,
7169 Methods** methods)
7170 {
7171 const Bindings* local_methods = nt->local_methods();
7172 if (local_methods == NULL)
7173 return;
7174
7175 if (*methods == NULL)
7176 *methods = new Methods();
7177
7178 for (Bindings::const_declarations_iterator p =
7179 local_methods->begin_declarations();
7180 p != local_methods->end_declarations();
7181 ++p)
7182 {
7183 Named_object* no = p->second;
7184 bool is_value_method = (is_embedded_pointer
7185 || !Type::method_expects_pointer(no));
7186 Method* m = new Named_method(no, field_indexes, depth, is_value_method,
7187 (needs_stub_method
7188 || (depth > 0 && is_value_method)));
7189 if (!(*methods)->insert(no->name(), m))
7190 delete m;
7191 }
7192 }
7193
7194 // Add the embedded methods for TYPE to *METHODS. These are the
7195 // methods attached to anonymous fields. The parameters are as for
7196 // add_methods_to_type.
7197
7198 void
7199 Type::add_embedded_methods_for_type(const Type* type,
7200 const Method::Field_indexes* field_indexes,
7201 unsigned int depth,
7202 bool is_embedded_pointer,
7203 bool needs_stub_method,
7204 Types_seen* types_seen,
7205 Methods** methods)
7206 {
7207 // Look for anonymous fields in TYPE. TYPE has fields if it is a
7208 // struct.
7209 const Struct_type* st = type->struct_type();
7210 if (st == NULL)
7211 return;
7212
7213 const Struct_field_list* fields = st->fields();
7214 if (fields == NULL)
7215 return;
7216
7217 unsigned int i = 0;
7218 for (Struct_field_list::const_iterator pf = fields->begin();
7219 pf != fields->end();
7220 ++pf, ++i)
7221 {
7222 if (!pf->is_anonymous())
7223 continue;
7224
7225 Type* ftype = pf->type();
7226 bool is_pointer = false;
7227 if (ftype->points_to() != NULL)
7228 {
7229 ftype = ftype->points_to();
7230 is_pointer = true;
7231 }
7232 Named_type* fnt = ftype->named_type();
7233 if (fnt == NULL)
7234 {
7235 // This is an error, but it will be diagnosed elsewhere.
7236 continue;
7237 }
7238
7239 Method::Field_indexes* sub_field_indexes = new Method::Field_indexes();
7240 sub_field_indexes->next = field_indexes;
7241 sub_field_indexes->field_index = i;
7242
7243 Type::add_methods_for_type(fnt, sub_field_indexes, depth + 1,
7244 (is_embedded_pointer || is_pointer),
7245 (needs_stub_method
7246 || is_pointer
7247 || i > 0),
7248 types_seen,
7249 methods);
7250 }
7251 }
7252
7253 // If TYPE is an interface type, then add its method to *METHODS.
7254 // This is for interface methods attached to an anonymous field. The
7255 // parameters are as for add_methods_for_type.
7256
7257 void
7258 Type::add_interface_methods_for_type(const Type* type,
7259 const Method::Field_indexes* field_indexes,
7260 unsigned int depth,
7261 Methods** methods)
7262 {
7263 const Interface_type* it = type->interface_type();
7264 if (it == NULL)
7265 return;
7266
7267 const Typed_identifier_list* imethods = it->methods();
7268 if (imethods == NULL)
7269 return;
7270
7271 if (*methods == NULL)
7272 *methods = new Methods();
7273
7274 for (Typed_identifier_list::const_iterator pm = imethods->begin();
7275 pm != imethods->end();
7276 ++pm)
7277 {
7278 Function_type* fntype = pm->type()->function_type();
7279 gcc_assert(fntype != NULL && !fntype->is_method());
7280 fntype = fntype->copy_with_receiver(const_cast<Type*>(type));
7281 Method* m = new Interface_method(pm->name(), pm->location(), fntype,
7282 field_indexes, depth);
7283 if (!(*methods)->insert(pm->name(), m))
7284 delete m;
7285 }
7286 }
7287
7288 // Build stub methods for TYPE as needed. METHODS is the set of
7289 // methods for the type. A stub method may be needed when a type
7290 // inherits a method from an anonymous field. When we need the
7291 // address of the method, as in a type descriptor, we need to build a
7292 // little stub which does the required field dereferences and jumps to
7293 // the real method. LOCATION is the location of the type definition.
7294
7295 void
7296 Type::build_stub_methods(Gogo* gogo, const Type* type, const Methods* methods,
7297 source_location location)
7298 {
7299 if (methods == NULL)
7300 return;
7301 for (Methods::const_iterator p = methods->begin();
7302 p != methods->end();
7303 ++p)
7304 {
7305 Method* m = p->second;
7306 if (m->is_ambiguous() || !m->needs_stub_method())
7307 continue;
7308
7309 const std::string& name(p->first);
7310
7311 // Build a stub method.
7312
7313 const Function_type* fntype = m->type();
7314
7315 static unsigned int counter;
7316 char buf[100];
7317 snprintf(buf, sizeof buf, "$this%u", counter);
7318 ++counter;
7319
7320 Type* receiver_type = const_cast<Type*>(type);
7321 if (!m->is_value_method())
7322 receiver_type = Type::make_pointer_type(receiver_type);
7323 source_location receiver_location = m->receiver_location();
7324 Typed_identifier* receiver = new Typed_identifier(buf, receiver_type,
7325 receiver_location);
7326
7327 const Typed_identifier_list* fnparams = fntype->parameters();
7328 Typed_identifier_list* stub_params;
7329 if (fnparams == NULL || fnparams->empty())
7330 stub_params = NULL;
7331 else
7332 {
7333 // We give each stub parameter a unique name.
7334 stub_params = new Typed_identifier_list();
7335 for (Typed_identifier_list::const_iterator pp = fnparams->begin();
7336 pp != fnparams->end();
7337 ++pp)
7338 {
7339 char pbuf[100];
7340 snprintf(pbuf, sizeof pbuf, "$p%u", counter);
7341 stub_params->push_back(Typed_identifier(pbuf, pp->type(),
7342 pp->location()));
7343 ++counter;
7344 }
7345 }
7346
7347 const Typed_identifier_list* fnresults = fntype->results();
7348 Typed_identifier_list* stub_results;
7349 if (fnresults == NULL || fnresults->empty())
7350 stub_results = NULL;
7351 else
7352 {
7353 // We create the result parameters without any names, since
7354 // we won't refer to them.
7355 stub_results = new Typed_identifier_list();
7356 for (Typed_identifier_list::const_iterator pr = fnresults->begin();
7357 pr != fnresults->end();
7358 ++pr)
7359 stub_results->push_back(Typed_identifier("", pr->type(),
7360 pr->location()));
7361 }
7362
7363 Function_type* stub_type = Type::make_function_type(receiver,
7364 stub_params,
7365 stub_results,
7366 fntype->location());
7367 if (fntype->is_varargs())
7368 stub_type->set_is_varargs();
7369
7370 // We only create the function in the package which creates the
7371 // type.
7372 const Package* package;
7373 if (type->named_type() == NULL)
7374 package = NULL;
7375 else
7376 package = type->named_type()->named_object()->package();
7377 Named_object* stub;
7378 if (package != NULL)
7379 stub = Named_object::make_function_declaration(name, package,
7380 stub_type, location);
7381 else
7382 {
7383 stub = gogo->start_function(name, stub_type, false,
7384 fntype->location());
7385 Type::build_one_stub_method(gogo, m, buf, stub_params,
7386 fntype->is_varargs(), location);
7387 gogo->finish_function(fntype->location());
7388 }
7389
7390 m->set_stub_object(stub);
7391 }
7392 }
7393
7394 // Build a stub method which adjusts the receiver as required to call
7395 // METHOD. RECEIVER_NAME is the name we used for the receiver.
7396 // PARAMS is the list of function parameters.
7397
7398 void
7399 Type::build_one_stub_method(Gogo* gogo, Method* method,
7400 const char* receiver_name,
7401 const Typed_identifier_list* params,
7402 bool is_varargs,
7403 source_location location)
7404 {
7405 Named_object* receiver_object = gogo->lookup(receiver_name, NULL);
7406 gcc_assert(receiver_object != NULL);
7407
7408 Expression* expr = Expression::make_var_reference(receiver_object, location);
7409 expr = Type::apply_field_indexes(expr, method->field_indexes(), location);
7410 if (expr->type()->points_to() == NULL)
7411 expr = Expression::make_unary(OPERATOR_AND, expr, location);
7412
7413 Expression_list* arguments;
7414 if (params == NULL || params->empty())
7415 arguments = NULL;
7416 else
7417 {
7418 arguments = new Expression_list();
7419 for (Typed_identifier_list::const_iterator p = params->begin();
7420 p != params->end();
7421 ++p)
7422 {
7423 Named_object* param = gogo->lookup(p->name(), NULL);
7424 gcc_assert(param != NULL);
7425 Expression* param_ref = Expression::make_var_reference(param,
7426 location);
7427 arguments->push_back(param_ref);
7428 }
7429 }
7430
7431 Expression* func = method->bind_method(expr, location);
7432 gcc_assert(func != NULL);
7433 Call_expression* call = Expression::make_call(func, arguments, is_varargs,
7434 location);
7435 size_t count = call->result_count();
7436 if (count == 0)
7437 gogo->add_statement(Statement::make_statement(call));
7438 else
7439 {
7440 Expression_list* retvals = new Expression_list();
7441 if (count <= 1)
7442 retvals->push_back(call);
7443 else
7444 {
7445 for (size_t i = 0; i < count; ++i)
7446 retvals->push_back(Expression::make_call_result(call, i));
7447 }
7448 const Function* function = gogo->current_function()->func_value();
7449 const Typed_identifier_list* results = function->type()->results();
7450 Statement* retstat = Statement::make_return_statement(results, retvals,
7451 location);
7452 gogo->add_statement(retstat);
7453 }
7454 }
7455
7456 // Apply FIELD_INDEXES to EXPR. The field indexes have to be applied
7457 // in reverse order.
7458
7459 Expression*
7460 Type::apply_field_indexes(Expression* expr,
7461 const Method::Field_indexes* field_indexes,
7462 source_location location)
7463 {
7464 if (field_indexes == NULL)
7465 return expr;
7466 expr = Type::apply_field_indexes(expr, field_indexes->next, location);
7467 Struct_type* stype = expr->type()->deref()->struct_type();
7468 gcc_assert(stype != NULL
7469 && field_indexes->field_index < stype->field_count());
7470 if (expr->type()->struct_type() == NULL)
7471 {
7472 gcc_assert(expr->type()->points_to() != NULL);
7473 expr = Expression::make_unary(OPERATOR_MULT, expr, location);
7474 gcc_assert(expr->type()->struct_type() == stype);
7475 }
7476 return Expression::make_field_reference(expr, field_indexes->field_index,
7477 location);
7478 }
7479
7480 // Return whether NO is a method for which the receiver is a pointer.
7481
7482 bool
7483 Type::method_expects_pointer(const Named_object* no)
7484 {
7485 const Function_type *fntype;
7486 if (no->is_function())
7487 fntype = no->func_value()->type();
7488 else if (no->is_function_declaration())
7489 fntype = no->func_declaration_value()->type();
7490 else
7491 gcc_unreachable();
7492 return fntype->receiver()->type()->points_to() != NULL;
7493 }
7494
7495 // Given a set of methods for a type, METHODS, return the method NAME,
7496 // or NULL if there isn't one or if it is ambiguous. If IS_AMBIGUOUS
7497 // is not NULL, then set *IS_AMBIGUOUS to true if the method exists
7498 // but is ambiguous (and return NULL).
7499
7500 Method*
7501 Type::method_function(const Methods* methods, const std::string& name,
7502 bool* is_ambiguous)
7503 {
7504 if (is_ambiguous != NULL)
7505 *is_ambiguous = false;
7506 if (methods == NULL)
7507 return NULL;
7508 Methods::const_iterator p = methods->find(name);
7509 if (p == methods->end())
7510 return NULL;
7511 Method* m = p->second;
7512 if (m->is_ambiguous())
7513 {
7514 if (is_ambiguous != NULL)
7515 *is_ambiguous = true;
7516 return NULL;
7517 }
7518 return m;
7519 }
7520
7521 // Look for field or method NAME for TYPE. Return an Expression for
7522 // the field or method bound to EXPR. If there is no such field or
7523 // method, give an appropriate error and return an error expression.
7524
7525 Expression*
7526 Type::bind_field_or_method(Gogo* gogo, const Type* type, Expression* expr,
7527 const std::string& name,
7528 source_location location)
7529 {
7530 if (type->is_error_type())
7531 return Expression::make_error(location);
7532
7533 const Named_type* nt = type->named_type();
7534 if (nt == NULL)
7535 nt = type->deref()->named_type();
7536 const Struct_type* st = type->deref()->struct_type();
7537 const Interface_type* it = type->deref()->interface_type();
7538
7539 // If this is a pointer to a pointer, then it is possible that the
7540 // pointed-to type has methods.
7541 if (nt == NULL
7542 && st == NULL
7543 && it == NULL
7544 && type->points_to() != NULL
7545 && type->points_to()->points_to() != NULL)
7546 {
7547 expr = Expression::make_unary(OPERATOR_MULT, expr, location);
7548 type = type->points_to();
7549 nt = type->points_to()->named_type();
7550 st = type->points_to()->struct_type();
7551 it = type->points_to()->interface_type();
7552 }
7553
7554 bool receiver_can_be_pointer = (expr->type()->points_to() != NULL
7555 || expr->is_addressable());
7556 bool is_method = false;
7557 bool found_pointer_method = false;
7558 std::string ambig1;
7559 std::string ambig2;
7560 if (Type::find_field_or_method(type, name, receiver_can_be_pointer, NULL,
7561 &is_method, &found_pointer_method,
7562 &ambig1, &ambig2))
7563 {
7564 Expression* ret;
7565 if (!is_method)
7566 {
7567 gcc_assert(st != NULL);
7568 if (type->struct_type() == NULL)
7569 {
7570 gcc_assert(type->points_to() != NULL);
7571 expr = Expression::make_unary(OPERATOR_MULT, expr,
7572 location);
7573 gcc_assert(expr->type()->struct_type() == st);
7574 }
7575 ret = st->field_reference(expr, name, location);
7576 }
7577 else if (it != NULL && it->find_method(name) != NULL)
7578 ret = Expression::make_interface_field_reference(expr, name,
7579 location);
7580 else
7581 {
7582 Method* m;
7583 if (nt != NULL)
7584 m = nt->method_function(name, NULL);
7585 else if (st != NULL)
7586 m = st->method_function(name, NULL);
7587 else
7588 gcc_unreachable();
7589 gcc_assert(m != NULL);
7590 if (!m->is_value_method() && expr->type()->points_to() == NULL)
7591 expr = Expression::make_unary(OPERATOR_AND, expr, location);
7592 ret = m->bind_method(expr, location);
7593 }
7594 gcc_assert(ret != NULL);
7595 return ret;
7596 }
7597 else
7598 {
7599 if (!ambig1.empty())
7600 error_at(location, "%qs is ambiguous via %qs and %qs",
7601 Gogo::message_name(name).c_str(),
7602 Gogo::message_name(ambig1).c_str(),
7603 Gogo::message_name(ambig2).c_str());
7604 else if (found_pointer_method)
7605 error_at(location, "method requires a pointer");
7606 else if (nt == NULL && st == NULL && it == NULL)
7607 error_at(location,
7608 ("reference to field %qs in object which "
7609 "has no fields or methods"),
7610 Gogo::message_name(name).c_str());
7611 else
7612 {
7613 bool is_unexported;
7614 if (!Gogo::is_hidden_name(name))
7615 is_unexported = false;
7616 else
7617 {
7618 std::string unpacked = Gogo::unpack_hidden_name(name);
7619 is_unexported = Type::is_unexported_field_or_method(gogo, type,
7620 unpacked);
7621 }
7622 if (is_unexported)
7623 error_at(location, "reference to unexported field or method %qs",
7624 Gogo::message_name(name).c_str());
7625 else
7626 error_at(location, "reference to undefined field or method %qs",
7627 Gogo::message_name(name).c_str());
7628 }
7629 return Expression::make_error(location);
7630 }
7631 }
7632
7633 // Look in TYPE for a field or method named NAME, return true if one
7634 // is found. This looks through embedded anonymous fields and handles
7635 // ambiguity. If a method is found, sets *IS_METHOD to true;
7636 // otherwise, if a field is found, set it to false. If
7637 // RECEIVER_CAN_BE_POINTER is false, then the receiver is a value
7638 // whose address can not be taken. When returning false, this sets
7639 // *FOUND_POINTER_METHOD if we found a method we couldn't use because
7640 // it requires a pointer. LEVEL is used for recursive calls, and can
7641 // be NULL for a non-recursive call. When this function returns false
7642 // because it finds that the name is ambiguous, it will store a path
7643 // to the ambiguous names in *AMBIG1 and *AMBIG2. If the name is not
7644 // found at all, *AMBIG1 and *AMBIG2 will be unchanged.
7645
7646 // This function just returns whether or not there is a field or
7647 // method, and whether it is a field or method. It doesn't build an
7648 // expression to refer to it. If it is a method, we then look in the
7649 // list of all methods for the type. If it is a field, the search has
7650 // to be done again, looking only for fields, and building up the
7651 // expression as we go.
7652
7653 bool
7654 Type::find_field_or_method(const Type* type,
7655 const std::string& name,
7656 bool receiver_can_be_pointer,
7657 int* level,
7658 bool* is_method,
7659 bool* found_pointer_method,
7660 std::string* ambig1,
7661 std::string* ambig2)
7662 {
7663 // Named types can have locally defined methods.
7664 const Named_type* nt = type->named_type();
7665 if (nt == NULL && type->points_to() != NULL)
7666 nt = type->points_to()->named_type();
7667 if (nt != NULL)
7668 {
7669 Named_object* no = nt->find_local_method(name);
7670 if (no != NULL)
7671 {
7672 if (receiver_can_be_pointer || !Type::method_expects_pointer(no))
7673 {
7674 *is_method = true;
7675 return true;
7676 }
7677
7678 // Record that we have found a pointer method in order to
7679 // give a better error message if we don't find anything
7680 // else.
7681 *found_pointer_method = true;
7682 }
7683 }
7684
7685 // Interface types can have methods.
7686 const Interface_type* it = type->deref()->interface_type();
7687 if (it != NULL && it->find_method(name) != NULL)
7688 {
7689 *is_method = true;
7690 return true;
7691 }
7692
7693 // Struct types can have fields. They can also inherit fields and
7694 // methods from anonymous fields.
7695 const Struct_type* st = type->deref()->struct_type();
7696 if (st == NULL)
7697 return false;
7698 const Struct_field_list* fields = st->fields();
7699 if (fields == NULL)
7700 return false;
7701
7702 int found_level = 0;
7703 bool found_is_method = false;
7704 std::string found_ambig1;
7705 std::string found_ambig2;
7706 const Struct_field* found_parent = NULL;
7707 for (Struct_field_list::const_iterator pf = fields->begin();
7708 pf != fields->end();
7709 ++pf)
7710 {
7711 if (pf->field_name() == name)
7712 {
7713 *is_method = false;
7714 return true;
7715 }
7716
7717 if (!pf->is_anonymous())
7718 continue;
7719
7720 Named_type* fnt = pf->type()->deref()->named_type();
7721 gcc_assert(fnt != NULL);
7722
7723 int sublevel = level == NULL ? 1 : *level + 1;
7724 bool sub_is_method;
7725 std::string subambig1;
7726 std::string subambig2;
7727 bool subfound = Type::find_field_or_method(fnt,
7728 name,
7729 receiver_can_be_pointer,
7730 &sublevel,
7731 &sub_is_method,
7732 found_pointer_method,
7733 &subambig1,
7734 &subambig2);
7735 if (!subfound)
7736 {
7737 if (!subambig1.empty())
7738 {
7739 // The name was found via this field, but is ambiguous.
7740 // if the ambiguity is lower or at the same level as
7741 // anything else we have already found, then we want to
7742 // pass the ambiguity back to the caller.
7743 if (found_level == 0 || sublevel <= found_level)
7744 {
7745 found_ambig1 = pf->field_name() + '.' + subambig1;
7746 found_ambig2 = pf->field_name() + '.' + subambig2;
7747 found_level = sublevel;
7748 }
7749 }
7750 }
7751 else
7752 {
7753 // The name was found via this field. Use the level to see
7754 // if we want to use this one, or whether it introduces an
7755 // ambiguity.
7756 if (found_level == 0 || sublevel < found_level)
7757 {
7758 found_level = sublevel;
7759 found_is_method = sub_is_method;
7760 found_ambig1.clear();
7761 found_ambig2.clear();
7762 found_parent = &*pf;
7763 }
7764 else if (sublevel > found_level)
7765 ;
7766 else if (found_ambig1.empty())
7767 {
7768 // We found an ambiguity.
7769 gcc_assert(found_parent != NULL);
7770 found_ambig1 = found_parent->field_name();
7771 found_ambig2 = pf->field_name();
7772 }
7773 else
7774 {
7775 // We found an ambiguity, but we already know of one.
7776 // Just report the earlier one.
7777 }
7778 }
7779 }
7780
7781 // Here if we didn't find anything FOUND_LEVEL is 0. If we found
7782 // something ambiguous, FOUND_LEVEL is not 0 and FOUND_AMBIG1 and
7783 // FOUND_AMBIG2 are not empty. If we found the field, FOUND_LEVEL
7784 // is not 0 and FOUND_AMBIG1 and FOUND_AMBIG2 are empty.
7785
7786 if (found_level == 0)
7787 return false;
7788 else if (!found_ambig1.empty())
7789 {
7790 gcc_assert(!found_ambig1.empty());
7791 ambig1->assign(found_ambig1);
7792 ambig2->assign(found_ambig2);
7793 if (level != NULL)
7794 *level = found_level;
7795 return false;
7796 }
7797 else
7798 {
7799 if (level != NULL)
7800 *level = found_level;
7801 *is_method = found_is_method;
7802 return true;
7803 }
7804 }
7805
7806 // Return whether NAME is an unexported field or method for TYPE.
7807
7808 bool
7809 Type::is_unexported_field_or_method(Gogo* gogo, const Type* type,
7810 const std::string& name)
7811 {
7812 type = type->deref();
7813
7814 const Named_type* nt = type->named_type();
7815 if (nt != NULL && nt->is_unexported_local_method(gogo, name))
7816 return true;
7817
7818 const Interface_type* it = type->interface_type();
7819 if (it != NULL && it->is_unexported_method(gogo, name))
7820 return true;
7821
7822 const Struct_type* st = type->struct_type();
7823 if (st != NULL && st->is_unexported_local_field(gogo, name))
7824 return true;
7825
7826 if (st == NULL)
7827 return false;
7828
7829 const Struct_field_list* fields = st->fields();
7830 if (fields == NULL)
7831 return false;
7832
7833 for (Struct_field_list::const_iterator pf = fields->begin();
7834 pf != fields->end();
7835 ++pf)
7836 {
7837 if (pf->is_anonymous())
7838 {
7839 Named_type* subtype = pf->type()->deref()->named_type();
7840 gcc_assert(subtype != NULL);
7841 if (Type::is_unexported_field_or_method(gogo, subtype, name))
7842 return true;
7843 }
7844 }
7845
7846 return false;
7847 }
7848
7849 // Class Forward_declaration.
7850
7851 Forward_declaration_type::Forward_declaration_type(Named_object* named_object)
7852 : Type(TYPE_FORWARD),
7853 named_object_(named_object->resolve()), warned_(false)
7854 {
7855 gcc_assert(this->named_object_->is_unknown()
7856 || this->named_object_->is_type_declaration());
7857 }
7858
7859 // Return the named object.
7860
7861 Named_object*
7862 Forward_declaration_type::named_object()
7863 {
7864 return this->named_object_->resolve();
7865 }
7866
7867 const Named_object*
7868 Forward_declaration_type::named_object() const
7869 {
7870 return this->named_object_->resolve();
7871 }
7872
7873 // Return the name of the forward declared type.
7874
7875 const std::string&
7876 Forward_declaration_type::name() const
7877 {
7878 return this->named_object()->name();
7879 }
7880
7881 // Warn about a use of a type which has been declared but not defined.
7882
7883 void
7884 Forward_declaration_type::warn() const
7885 {
7886 Named_object* no = this->named_object_->resolve();
7887 if (no->is_unknown())
7888 {
7889 // The name was not defined anywhere.
7890 if (!this->warned_)
7891 {
7892 error_at(this->named_object_->location(),
7893 "use of undefined type %qs",
7894 no->message_name().c_str());
7895 this->warned_ = true;
7896 }
7897 }
7898 else if (no->is_type_declaration())
7899 {
7900 // The name was seen as a type, but the type was never defined.
7901 if (no->type_declaration_value()->using_type())
7902 {
7903 error_at(this->named_object_->location(),
7904 "use of undefined type %qs",
7905 no->message_name().c_str());
7906 this->warned_ = true;
7907 }
7908 }
7909 else
7910 {
7911 // The name was defined, but not as a type.
7912 if (!this->warned_)
7913 {
7914 error_at(this->named_object_->location(), "expected type");
7915 this->warned_ = true;
7916 }
7917 }
7918 }
7919
7920 // Get the base type of a declaration. This gives an error if the
7921 // type has not yet been defined.
7922
7923 Type*
7924 Forward_declaration_type::real_type()
7925 {
7926 if (this->is_defined())
7927 return this->named_object()->type_value();
7928 else
7929 {
7930 this->warn();
7931 return Type::make_error_type();
7932 }
7933 }
7934
7935 const Type*
7936 Forward_declaration_type::real_type() const
7937 {
7938 if (this->is_defined())
7939 return this->named_object()->type_value();
7940 else
7941 {
7942 this->warn();
7943 return Type::make_error_type();
7944 }
7945 }
7946
7947 // Return whether the base type is defined.
7948
7949 bool
7950 Forward_declaration_type::is_defined() const
7951 {
7952 return this->named_object()->is_type();
7953 }
7954
7955 // Add a method. This is used when methods are defined before the
7956 // type.
7957
7958 Named_object*
7959 Forward_declaration_type::add_method(const std::string& name,
7960 Function* function)
7961 {
7962 Named_object* no = this->named_object();
7963 gcc_assert(no->is_type_declaration());
7964 return no->type_declaration_value()->add_method(name, function);
7965 }
7966
7967 // Add a method declaration. This is used when methods are declared
7968 // before the type.
7969
7970 Named_object*
7971 Forward_declaration_type::add_method_declaration(const std::string& name,
7972 Function_type* type,
7973 source_location location)
7974 {
7975 Named_object* no = this->named_object();
7976 gcc_assert(no->is_type_declaration());
7977 Type_declaration* td = no->type_declaration_value();
7978 return td->add_method_declaration(name, type, location);
7979 }
7980
7981 // Traversal.
7982
7983 int
7984 Forward_declaration_type::do_traverse(Traverse* traverse)
7985 {
7986 if (this->is_defined()
7987 && Type::traverse(this->real_type(), traverse) == TRAVERSE_EXIT)
7988 return TRAVERSE_EXIT;
7989 return TRAVERSE_CONTINUE;
7990 }
7991
7992 // Get a tree for the type.
7993
7994 tree
7995 Forward_declaration_type::do_get_tree(Gogo* gogo)
7996 {
7997 if (this->is_defined())
7998 return Type::get_named_type_tree(gogo, this->real_type());
7999
8000 if (this->warned_)
8001 return error_mark_node;
8002
8003 // We represent an undefined type as a struct with no fields. That
8004 // should work fine for the middle-end, since the same case can
8005 // arise in C.
8006 Named_object* no = this->named_object();
8007 tree type_tree = make_node(RECORD_TYPE);
8008 tree id = no->get_id(gogo);
8009 tree decl = build_decl(no->location(), TYPE_DECL, id, type_tree);
8010 TYPE_NAME(type_tree) = decl;
8011 return type_tree;
8012 }
8013
8014 // Build a type descriptor for a forwarded type.
8015
8016 Expression*
8017 Forward_declaration_type::do_type_descriptor(Gogo* gogo, Named_type* name)
8018 {
8019 if (!this->is_defined())
8020 return Expression::make_nil(BUILTINS_LOCATION);
8021 else
8022 {
8023 Type* t = this->real_type();
8024 if (name != NULL)
8025 return this->named_type_descriptor(gogo, t, name);
8026 else
8027 return Expression::make_type_descriptor(t, BUILTINS_LOCATION);
8028 }
8029 }
8030
8031 // The reflection string.
8032
8033 void
8034 Forward_declaration_type::do_reflection(Gogo* gogo, std::string* ret) const
8035 {
8036 this->append_reflection(this->real_type(), gogo, ret);
8037 }
8038
8039 // The mangled name.
8040
8041 void
8042 Forward_declaration_type::do_mangled_name(Gogo* gogo, std::string* ret) const
8043 {
8044 if (this->is_defined())
8045 this->append_mangled_name(this->real_type(), gogo, ret);
8046 else
8047 {
8048 const Named_object* no = this->named_object();
8049 std::string name;
8050 if (no->package() == NULL)
8051 name = gogo->package_name();
8052 else
8053 name = no->package()->name();
8054 name += '.';
8055 name += Gogo::unpack_hidden_name(no->name());
8056 char buf[20];
8057 snprintf(buf, sizeof buf, "N%u_",
8058 static_cast<unsigned int>(name.length()));
8059 ret->append(buf);
8060 ret->append(name);
8061 }
8062 }
8063
8064 // Export a forward declaration. This can happen when a defined type
8065 // refers to a type which is only declared (and is presumably defined
8066 // in some other file in the same package).
8067
8068 void
8069 Forward_declaration_type::do_export(Export*) const
8070 {
8071 // If there is a base type, that should be exported instead of this.
8072 gcc_assert(!this->is_defined());
8073
8074 // We don't output anything.
8075 }
8076
8077 // Make a forward declaration.
8078
8079 Type*
8080 Type::make_forward_declaration(Named_object* named_object)
8081 {
8082 return new Forward_declaration_type(named_object);
8083 }
8084
8085 // Class Typed_identifier_list.
8086
8087 // Sort the entries by name.
8088
8089 struct Typed_identifier_list_sort
8090 {
8091 public:
8092 bool
8093 operator()(const Typed_identifier& t1, const Typed_identifier& t2) const
8094 { return t1.name() < t2.name(); }
8095 };
8096
8097 void
8098 Typed_identifier_list::sort_by_name()
8099 {
8100 std::sort(this->entries_.begin(), this->entries_.end(),
8101 Typed_identifier_list_sort());
8102 }
8103
8104 // Traverse types.
8105
8106 int
8107 Typed_identifier_list::traverse(Traverse* traverse)
8108 {
8109 for (Typed_identifier_list::const_iterator p = this->begin();
8110 p != this->end();
8111 ++p)
8112 {
8113 if (Type::traverse(p->type(), traverse) == TRAVERSE_EXIT)
8114 return TRAVERSE_EXIT;
8115 }
8116 return TRAVERSE_CONTINUE;
8117 }
8118
8119 // Copy the list.
8120
8121 Typed_identifier_list*
8122 Typed_identifier_list::copy() const
8123 {
8124 Typed_identifier_list* ret = new Typed_identifier_list();
8125 for (Typed_identifier_list::const_iterator p = this->begin();
8126 p != this->end();
8127 ++p)
8128 ret->push_back(Typed_identifier(p->name(), p->type(), p->location()));
8129 return ret;
8130 }