Check for errors from Gogo::call_builtin.
[gcc.git] / gcc / go / gofrontend / types.cc
1 // types.cc -- Go frontend types.
2
3 // Copyright 2009 The Go Authors. All rights reserved.
4 // Use of this source code is governed by a BSD-style
5 // license that can be found in the LICENSE file.
6
7 #include "go-system.h"
8
9 #include <gmp.h>
10
11 #ifndef ENABLE_BUILD_WITH_CXX
12 extern "C"
13 {
14 #endif
15
16 #include "toplev.h"
17 #include "intl.h"
18 #include "tree.h"
19 #include "gimple.h"
20 #include "real.h"
21 #include "convert.h"
22
23 #ifndef ENABLE_BUILD_WITH_CXX
24 }
25 #endif
26
27 #include "go-c.h"
28 #include "gogo.h"
29 #include "operator.h"
30 #include "expressions.h"
31 #include "statements.h"
32 #include "export.h"
33 #include "import.h"
34 #include "types.h"
35
36 // Class Type.
37
38 Type::Type(Type_classification classification)
39 : classification_(classification), tree_(NULL_TREE),
40 type_descriptor_decl_(NULL_TREE)
41 {
42 }
43
44 Type::~Type()
45 {
46 }
47
48 // Get the base type for a type--skip names and forward declarations.
49
50 Type*
51 Type::base()
52 {
53 switch (this->classification_)
54 {
55 case TYPE_NAMED:
56 return this->named_type()->named_base();
57 case TYPE_FORWARD:
58 return this->forward_declaration_type()->real_type()->base();
59 default:
60 return this;
61 }
62 }
63
64 const Type*
65 Type::base() const
66 {
67 switch (this->classification_)
68 {
69 case TYPE_NAMED:
70 return this->named_type()->named_base();
71 case TYPE_FORWARD:
72 return this->forward_declaration_type()->real_type()->base();
73 default:
74 return this;
75 }
76 }
77
78 // Skip defined forward declarations.
79
80 Type*
81 Type::forwarded()
82 {
83 Type* t = this;
84 Forward_declaration_type* ftype = t->forward_declaration_type();
85 while (ftype != NULL && ftype->is_defined())
86 {
87 t = ftype->real_type();
88 ftype = t->forward_declaration_type();
89 }
90 return t;
91 }
92
93 const Type*
94 Type::forwarded() const
95 {
96 const Type* t = this;
97 const Forward_declaration_type* ftype = t->forward_declaration_type();
98 while (ftype != NULL && ftype->is_defined())
99 {
100 t = ftype->real_type();
101 ftype = t->forward_declaration_type();
102 }
103 return t;
104 }
105
106 // If this is a named type, return it. Otherwise, return NULL.
107
108 Named_type*
109 Type::named_type()
110 {
111 return this->forwarded()->convert_no_base<Named_type, TYPE_NAMED>();
112 }
113
114 const Named_type*
115 Type::named_type() const
116 {
117 return this->forwarded()->convert_no_base<const Named_type, TYPE_NAMED>();
118 }
119
120 // Return true if this type is not defined.
121
122 bool
123 Type::is_undefined() const
124 {
125 return this->forwarded()->forward_declaration_type() != NULL;
126 }
127
128 // Return true if this is a basic type: a type which is not composed
129 // of other types, and is not void.
130
131 bool
132 Type::is_basic_type() const
133 {
134 switch (this->classification_)
135 {
136 case TYPE_INTEGER:
137 case TYPE_FLOAT:
138 case TYPE_COMPLEX:
139 case TYPE_BOOLEAN:
140 case TYPE_STRING:
141 case TYPE_NIL:
142 return true;
143
144 case TYPE_ERROR:
145 case TYPE_VOID:
146 case TYPE_FUNCTION:
147 case TYPE_POINTER:
148 case TYPE_STRUCT:
149 case TYPE_ARRAY:
150 case TYPE_MAP:
151 case TYPE_CHANNEL:
152 case TYPE_INTERFACE:
153 return false;
154
155 case TYPE_NAMED:
156 case TYPE_FORWARD:
157 return this->base()->is_basic_type();
158
159 default:
160 gcc_unreachable();
161 }
162 }
163
164 // Return true if this is an abstract type.
165
166 bool
167 Type::is_abstract() const
168 {
169 switch (this->classification())
170 {
171 case TYPE_INTEGER:
172 return this->integer_type()->is_abstract();
173 case TYPE_FLOAT:
174 return this->float_type()->is_abstract();
175 case TYPE_COMPLEX:
176 return this->complex_type()->is_abstract();
177 case TYPE_STRING:
178 return this->is_abstract_string_type();
179 case TYPE_BOOLEAN:
180 return this->is_abstract_boolean_type();
181 default:
182 return false;
183 }
184 }
185
186 // Return a non-abstract version of an abstract type.
187
188 Type*
189 Type::make_non_abstract_type()
190 {
191 gcc_assert(this->is_abstract());
192 switch (this->classification())
193 {
194 case TYPE_INTEGER:
195 return Type::lookup_integer_type("int");
196 case TYPE_FLOAT:
197 return Type::lookup_float_type("float");
198 case TYPE_COMPLEX:
199 return Type::lookup_complex_type("complex");
200 case TYPE_STRING:
201 return Type::lookup_string_type();
202 case TYPE_BOOLEAN:
203 return Type::lookup_bool_type();
204 default:
205 gcc_unreachable();
206 }
207 }
208
209 // Return true if this is an error type. Don't give an error if we
210 // try to dereference an undefined forwarding type, as this is called
211 // in the parser when the type may legitimately be undefined.
212
213 bool
214 Type::is_error_type() const
215 {
216 const Type* t = this->forwarded();
217 // Note that we return false for an undefined forward type.
218 switch (t->classification_)
219 {
220 case TYPE_ERROR:
221 return true;
222 case TYPE_NAMED:
223 return t->named_type()->is_named_error_type();
224 default:
225 return false;
226 }
227 }
228
229 // If this is a pointer type, return the type to which it points.
230 // Otherwise, return NULL.
231
232 Type*
233 Type::points_to() const
234 {
235 const Pointer_type* ptype = this->convert<const Pointer_type,
236 TYPE_POINTER>();
237 return ptype == NULL ? NULL : ptype->points_to();
238 }
239
240 // Return whether this is an open array type.
241
242 bool
243 Type::is_open_array_type() const
244 {
245 return this->array_type() != NULL && this->array_type()->length() == NULL;
246 }
247
248 // Return whether this is the predeclared constant nil being used as a
249 // type.
250
251 bool
252 Type::is_nil_constant_as_type() const
253 {
254 const Type* t = this->forwarded();
255 if (t->forward_declaration_type() != NULL)
256 {
257 const Named_object* no = t->forward_declaration_type()->named_object();
258 if (no->is_unknown())
259 no = no->unknown_value()->real_named_object();
260 if (no != NULL
261 && no->is_const()
262 && no->const_value()->expr()->is_nil_expression())
263 return true;
264 }
265 return false;
266 }
267
268 // Traverse a type.
269
270 int
271 Type::traverse(Type* type, Traverse* traverse)
272 {
273 gcc_assert((traverse->traverse_mask() & Traverse::traverse_types) != 0
274 || (traverse->traverse_mask()
275 & Traverse::traverse_expressions) != 0);
276 if (traverse->remember_type(type))
277 {
278 // We have already traversed this type.
279 return TRAVERSE_CONTINUE;
280 }
281 if ((traverse->traverse_mask() & Traverse::traverse_types) != 0)
282 {
283 int t = traverse->type(type);
284 if (t == TRAVERSE_EXIT)
285 return TRAVERSE_EXIT;
286 else if (t == TRAVERSE_SKIP_COMPONENTS)
287 return TRAVERSE_CONTINUE;
288 }
289 // An array type has an expression which we need to traverse if
290 // traverse_expressions is set.
291 if (type->do_traverse(traverse) == TRAVERSE_EXIT)
292 return TRAVERSE_EXIT;
293 return TRAVERSE_CONTINUE;
294 }
295
296 // Default implementation for do_traverse for child class.
297
298 int
299 Type::do_traverse(Traverse*)
300 {
301 return TRAVERSE_CONTINUE;
302 }
303
304 // Return whether two types are identical. If ERRORS_ARE_IDENTICAL,
305 // then return true for all erroneous types; this is used to avoid
306 // cascading errors. If REASON is not NULL, optionally set *REASON to
307 // the reason the types are not identical.
308
309 bool
310 Type::are_identical(const Type* t1, const Type* t2, bool errors_are_identical,
311 std::string* reason)
312 {
313 if (t1 == NULL || t2 == NULL)
314 {
315 // Something is wrong.
316 return errors_are_identical ? true : t1 == t2;
317 }
318
319 // Skip defined forward declarations.
320 t1 = t1->forwarded();
321 t2 = t2->forwarded();
322
323 if (t1 == t2)
324 return true;
325
326 // An undefined forward declaration is an error.
327 if (t1->forward_declaration_type() != NULL
328 || t2->forward_declaration_type() != NULL)
329 return errors_are_identical;
330
331 // Avoid cascading errors with error types.
332 if (t1->is_error_type() || t2->is_error_type())
333 {
334 if (errors_are_identical)
335 return true;
336 return t1->is_error_type() && t2->is_error_type();
337 }
338
339 // Get a good reason for the sink type. Note that the sink type on
340 // the left hand side of an assignment is handled in are_assignable.
341 if (t1->is_sink_type() || t2->is_sink_type())
342 {
343 if (reason != NULL)
344 *reason = "invalid use of _";
345 return false;
346 }
347
348 // A named type is only identical to itself.
349 if (t1->named_type() != NULL || t2->named_type() != NULL)
350 return false;
351
352 // Check type shapes.
353 if (t1->classification() != t2->classification())
354 return false;
355
356 switch (t1->classification())
357 {
358 case TYPE_VOID:
359 case TYPE_BOOLEAN:
360 case TYPE_STRING:
361 case TYPE_NIL:
362 // These types are always identical.
363 return true;
364
365 case TYPE_INTEGER:
366 return t1->integer_type()->is_identical(t2->integer_type());
367
368 case TYPE_FLOAT:
369 return t1->float_type()->is_identical(t2->float_type());
370
371 case TYPE_COMPLEX:
372 return t1->complex_type()->is_identical(t2->complex_type());
373
374 case TYPE_FUNCTION:
375 return t1->function_type()->is_identical(t2->function_type(),
376 false,
377 errors_are_identical,
378 reason);
379
380 case TYPE_POINTER:
381 return Type::are_identical(t1->points_to(), t2->points_to(),
382 errors_are_identical, reason);
383
384 case TYPE_STRUCT:
385 return t1->struct_type()->is_identical(t2->struct_type(),
386 errors_are_identical);
387
388 case TYPE_ARRAY:
389 return t1->array_type()->is_identical(t2->array_type(),
390 errors_are_identical);
391
392 case TYPE_MAP:
393 return t1->map_type()->is_identical(t2->map_type(),
394 errors_are_identical);
395
396 case TYPE_CHANNEL:
397 return t1->channel_type()->is_identical(t2->channel_type(),
398 errors_are_identical);
399
400 case TYPE_INTERFACE:
401 return t1->interface_type()->is_identical(t2->interface_type(),
402 errors_are_identical);
403
404 default:
405 gcc_unreachable();
406 }
407 }
408
409 // Return true if it's OK to have a binary operation with types LHS
410 // and RHS. This is not used for shifts or comparisons.
411
412 bool
413 Type::are_compatible_for_binop(const Type* lhs, const Type* rhs)
414 {
415 if (Type::are_identical(lhs, rhs, true, NULL))
416 return true;
417
418 // A constant of abstract bool type may be mixed with any bool type.
419 if ((rhs->is_abstract_boolean_type() && lhs->is_boolean_type())
420 || (lhs->is_abstract_boolean_type() && rhs->is_boolean_type()))
421 return true;
422
423 // A constant of abstract string type may be mixed with any string
424 // type.
425 if ((rhs->is_abstract_string_type() && lhs->is_string_type())
426 || (lhs->is_abstract_string_type() && rhs->is_string_type()))
427 return true;
428
429 lhs = lhs->base();
430 rhs = rhs->base();
431
432 // A constant of abstract integer, float, or complex type may be
433 // mixed with an integer, float, or complex type.
434 if ((rhs->is_abstract()
435 && (rhs->integer_type() != NULL
436 || rhs->float_type() != NULL
437 || rhs->complex_type() != NULL)
438 && (lhs->integer_type() != NULL
439 || lhs->float_type() != NULL
440 || lhs->complex_type() != NULL))
441 || (lhs->is_abstract()
442 && (lhs->integer_type() != NULL
443 || lhs->float_type() != NULL
444 || lhs->complex_type() != NULL)
445 && (rhs->integer_type() != NULL
446 || rhs->float_type() != NULL
447 || rhs->complex_type() != NULL)))
448 return true;
449
450 // The nil type may be compared to a pointer, an interface type, a
451 // slice type, a channel type, a map type, or a function type.
452 if (lhs->is_nil_type()
453 && (rhs->points_to() != NULL
454 || rhs->interface_type() != NULL
455 || rhs->is_open_array_type()
456 || rhs->map_type() != NULL
457 || rhs->channel_type() != NULL
458 || rhs->function_type() != NULL))
459 return true;
460 if (rhs->is_nil_type()
461 && (lhs->points_to() != NULL
462 || lhs->interface_type() != NULL
463 || lhs->is_open_array_type()
464 || lhs->map_type() != NULL
465 || lhs->channel_type() != NULL
466 || lhs->function_type() != NULL))
467 return true;
468
469 return false;
470 }
471
472 // Return true if a value with type RHS may be assigned to a variable
473 // with type LHS. If REASON is not NULL, set *REASON to the reason
474 // the types are not assignable.
475
476 bool
477 Type::are_assignable(const Type* lhs, const Type* rhs, std::string* reason)
478 {
479 // Do some checks first. Make sure the types are defined.
480 if (lhs != NULL && lhs->forwarded()->forward_declaration_type() == NULL)
481 {
482 // Any value may be assigned to the blank identifier.
483 if (lhs->is_sink_type())
484 return true;
485
486 // All fields of a struct must be exported, or the assignment
487 // must be in the same package.
488 if (rhs != NULL && rhs->forwarded()->forward_declaration_type() == NULL)
489 {
490 if (lhs->has_hidden_fields(NULL, reason)
491 || rhs->has_hidden_fields(NULL, reason))
492 return false;
493 }
494 }
495
496 // Identical types are assignable.
497 if (Type::are_identical(lhs, rhs, true, reason))
498 return true;
499
500 // The types are assignable if they have identical underlying types
501 // and either LHS or RHS is not a named type.
502 if (((lhs->named_type() != NULL && rhs->named_type() == NULL)
503 || (rhs->named_type() != NULL && lhs->named_type() == NULL))
504 && Type::are_identical(lhs->base(), rhs->base(), true, reason))
505 return true;
506
507 // The types are assignable if LHS is an interface type and RHS
508 // implements the required methods.
509 const Interface_type* lhs_interface_type = lhs->interface_type();
510 if (lhs_interface_type != NULL)
511 {
512 if (lhs_interface_type->implements_interface(rhs, reason))
513 return true;
514 const Interface_type* rhs_interface_type = rhs->interface_type();
515 if (rhs_interface_type != NULL
516 && lhs_interface_type->is_compatible_for_assign(rhs_interface_type,
517 reason))
518 return true;
519 }
520
521 // The type are assignable if RHS is a bidirectional channel type,
522 // LHS is a channel type, they have identical element types, and
523 // either LHS or RHS is not a named type.
524 if (lhs->channel_type() != NULL
525 && rhs->channel_type() != NULL
526 && rhs->channel_type()->may_send()
527 && rhs->channel_type()->may_receive()
528 && (lhs->named_type() == NULL || rhs->named_type() == NULL)
529 && Type::are_identical(lhs->channel_type()->element_type(),
530 rhs->channel_type()->element_type(),
531 true,
532 reason))
533 return true;
534
535 // The nil type may be assigned to a pointer, function, slice, map,
536 // channel, or interface type.
537 if (rhs->is_nil_type()
538 && (lhs->points_to() != NULL
539 || lhs->function_type() != NULL
540 || lhs->is_open_array_type()
541 || lhs->map_type() != NULL
542 || lhs->channel_type() != NULL
543 || lhs->interface_type() != NULL))
544 return true;
545
546 // An untyped constant may be assigned to a numeric type if it is
547 // representable in that type.
548 if (rhs->is_abstract()
549 && (lhs->integer_type() != NULL
550 || lhs->float_type() != NULL
551 || lhs->complex_type() != NULL))
552 return true;
553
554
555 // Give some better error messages.
556 if (reason != NULL && reason->empty())
557 {
558 if (rhs->interface_type() != NULL)
559 reason->assign(_("need explicit conversion"));
560 else if (rhs->is_call_multiple_result_type())
561 reason->assign(_("multiple value function call in "
562 "single value context"));
563 else if (lhs->named_type() != NULL && rhs->named_type() != NULL)
564 {
565 size_t len = (lhs->named_type()->name().length()
566 + rhs->named_type()->name().length()
567 + 100);
568 char* buf = new char[len];
569 snprintf(buf, len, _("cannot use type %s as type %s"),
570 rhs->named_type()->message_name().c_str(),
571 lhs->named_type()->message_name().c_str());
572 reason->assign(buf);
573 delete[] buf;
574 }
575 }
576
577 return false;
578 }
579
580 // Return true if a value with type RHS may be converted to type LHS.
581 // If REASON is not NULL, set *REASON to the reason the types are not
582 // convertible.
583
584 bool
585 Type::are_convertible(const Type* lhs, const Type* rhs, std::string* reason)
586 {
587 // The types are convertible if they are assignable.
588 if (Type::are_assignable(lhs, rhs, reason))
589 return true;
590
591 // The types are convertible if they have identical underlying
592 // types.
593 if ((lhs->named_type() != NULL || rhs->named_type() != NULL)
594 && Type::are_identical(lhs->base(), rhs->base(), true, reason))
595 return true;
596
597 // The types are convertible if they are both unnamed pointer types
598 // and their pointer base types have identical underlying types.
599 if (lhs->named_type() == NULL
600 && rhs->named_type() == NULL
601 && lhs->points_to() != NULL
602 && rhs->points_to() != NULL
603 && (lhs->points_to()->named_type() != NULL
604 || rhs->points_to()->named_type() != NULL)
605 && Type::are_identical(lhs->points_to()->base(),
606 rhs->points_to()->base(),
607 true,
608 reason))
609 return true;
610
611 // Integer and floating point types are convertible to each other.
612 if ((lhs->integer_type() != NULL || lhs->float_type() != NULL)
613 && (rhs->integer_type() != NULL || rhs->float_type() != NULL))
614 return true;
615
616 // Complex types are convertible to each other.
617 if (lhs->complex_type() != NULL && rhs->complex_type() != NULL)
618 return true;
619
620 // An integer, or []byte, or []int, may be converted to a string.
621 if (lhs->is_string_type())
622 {
623 if (rhs->integer_type() != NULL)
624 return true;
625 if (rhs->is_open_array_type() && rhs->named_type() == NULL)
626 {
627 const Type* e = rhs->array_type()->element_type()->forwarded();
628 if (e->integer_type() != NULL
629 && (e == Type::lookup_integer_type("uint8")
630 || e == Type::lookup_integer_type("int")))
631 return true;
632 }
633 }
634
635 // A string may be converted to []byte or []int.
636 if (rhs->is_string_type()
637 && lhs->is_open_array_type()
638 && lhs->named_type() == NULL)
639 {
640 const Type* e = lhs->array_type()->element_type()->forwarded();
641 if (e->integer_type() != NULL
642 && (e == Type::lookup_integer_type("uint8")
643 || e == Type::lookup_integer_type("int")))
644 return true;
645 }
646
647 // An unsafe.Pointer type may be converted to any pointer type or to
648 // uintptr, and vice-versa.
649 if (lhs->is_unsafe_pointer_type()
650 && (rhs->points_to() != NULL
651 || (rhs->integer_type() != NULL
652 && rhs->forwarded() == Type::lookup_integer_type("uintptr"))))
653 return true;
654 if (rhs->is_unsafe_pointer_type()
655 && (lhs->points_to() != NULL
656 || (lhs->integer_type() != NULL
657 && lhs->forwarded() == Type::lookup_integer_type("uintptr"))))
658 return true;
659
660 // Give a better error message.
661 if (reason != NULL)
662 {
663 if (reason->empty())
664 *reason = "invalid type conversion";
665 else
666 {
667 std::string s = "invalid type conversion (";
668 s += *reason;
669 s += ')';
670 *reason = s;
671 }
672 }
673
674 return false;
675 }
676
677 // Return whether this type has any hidden fields. This is only a
678 // possibility for a few types.
679
680 bool
681 Type::has_hidden_fields(const Named_type* within, std::string* reason) const
682 {
683 switch (this->forwarded()->classification_)
684 {
685 case TYPE_NAMED:
686 return this->named_type()->named_type_has_hidden_fields(reason);
687 case TYPE_STRUCT:
688 return this->struct_type()->struct_has_hidden_fields(within, reason);
689 case TYPE_ARRAY:
690 return this->array_type()->array_has_hidden_fields(within, reason);
691 default:
692 return false;
693 }
694 }
695
696 // Return a hash code for the type to be used for method lookup.
697
698 unsigned int
699 Type::hash_for_method(Gogo* gogo) const
700 {
701 unsigned int ret = 0;
702 if (this->classification_ != TYPE_FORWARD)
703 ret += this->classification_;
704 return ret + this->do_hash_for_method(gogo);
705 }
706
707 // Default implementation of do_hash_for_method. This is appropriate
708 // for types with no subfields.
709
710 unsigned int
711 Type::do_hash_for_method(Gogo*) const
712 {
713 return 0;
714 }
715
716 // Return a hash code for a string, given a starting hash.
717
718 unsigned int
719 Type::hash_string(const std::string& s, unsigned int h)
720 {
721 const char* p = s.data();
722 size_t len = s.length();
723 for (; len > 0; --len)
724 {
725 h ^= *p++;
726 h*= 16777619;
727 }
728 return h;
729 }
730
731 // Default check for the expression passed to make. Any type which
732 // may be used with make implements its own version of this.
733
734 bool
735 Type::do_check_make_expression(Expression_list*, source_location)
736 {
737 gcc_unreachable();
738 }
739
740 // Return whether an expression has an integer value. Report an error
741 // if not. This is used when handling calls to the predeclared make
742 // function.
743
744 bool
745 Type::check_int_value(Expression* e, const char* errmsg,
746 source_location location)
747 {
748 if (e->type()->integer_type() != NULL)
749 return true;
750
751 // Check for a floating point constant with integer value.
752 mpfr_t fval;
753 mpfr_init(fval);
754
755 Type* dummy;
756 if (e->float_constant_value(fval, &dummy))
757 {
758 mpz_t ival;
759 mpz_init(ival);
760
761 bool ok = false;
762
763 mpfr_clear_overflow();
764 mpfr_clear_erangeflag();
765 mpfr_get_z(ival, fval, GMP_RNDN);
766 if (!mpfr_overflow_p()
767 && !mpfr_erangeflag_p()
768 && mpz_sgn(ival) >= 0)
769 {
770 Named_type* ntype = Type::lookup_integer_type("int");
771 Integer_type* inttype = ntype->integer_type();
772 mpz_t max;
773 mpz_init_set_ui(max, 1);
774 mpz_mul_2exp(max, max, inttype->bits() - 1);
775 ok = mpz_cmp(ival, max) < 0;
776 mpz_clear(max);
777 }
778 mpz_clear(ival);
779
780 if (ok)
781 {
782 mpfr_clear(fval);
783 return true;
784 }
785 }
786
787 mpfr_clear(fval);
788
789 error_at(location, "%s", errmsg);
790 return false;
791 }
792
793 // A hash table mapping unnamed types to trees.
794
795 Type::Type_trees Type::type_trees;
796
797 // Return a tree representing this type.
798
799 tree
800 Type::get_tree(Gogo* gogo)
801 {
802 if (this->tree_ != NULL)
803 return this->tree_;
804
805 if (this->forward_declaration_type() != NULL
806 || this->named_type() != NULL)
807 return this->get_tree_without_hash(gogo);
808
809 if (this->is_error_type())
810 return error_mark_node;
811
812 // To avoid confusing GIMPLE, we need to translate all identical Go
813 // types to the same GIMPLE type. We use a hash table to do that.
814 // There is no need to use the hash table for named types, as named
815 // types are only identical to themselves.
816
817 std::pair<Type*, tree> val(this, NULL);
818 std::pair<Type_trees::iterator, bool> ins =
819 Type::type_trees.insert(val);
820 if (!ins.second && ins.first->second != NULL_TREE)
821 {
822 this->tree_ = ins.first->second;
823 return this->tree_;
824 }
825
826 tree t = this->get_tree_without_hash(gogo);
827
828 if (ins.first->second == NULL_TREE)
829 ins.first->second = t;
830 else
831 {
832 // We have already created a tree for this type. This can
833 // happen when an unnamed type is defined using a named type
834 // which in turns uses an identical unnamed type. Use the tree
835 // we created earlier and ignore the one we just built.
836 t = ins.first->second;
837 this->tree_ = t;
838 }
839
840 return t;
841 }
842
843 // Return a tree for a type without looking in the hash table for
844 // identical types. This is used for named types, since there is no
845 // point to looking in the hash table for them.
846
847 tree
848 Type::get_tree_without_hash(Gogo* gogo)
849 {
850 if (this->tree_ == NULL_TREE)
851 {
852 tree t = this->do_get_tree(gogo);
853
854 // For a recursive function or pointer type, we will temporarily
855 // return ptr_type_node during the recursion. We don't want to
856 // record that for a forwarding type, as it may confuse us
857 // later.
858 if (t == ptr_type_node && this->forward_declaration_type() != NULL)
859 return t;
860
861 this->tree_ = t;
862 go_preserve_from_gc(t);
863 }
864
865 return this->tree_;
866 }
867
868 // Return a tree representing a zero initialization for this type.
869
870 tree
871 Type::get_init_tree(Gogo* gogo, bool is_clear)
872 {
873 tree type_tree = this->get_tree(gogo);
874 if (type_tree == error_mark_node)
875 return error_mark_node;
876 return this->do_get_init_tree(gogo, type_tree, is_clear);
877 }
878
879 // Any type which supports the builtin make function must implement
880 // this.
881
882 tree
883 Type::do_make_expression_tree(Translate_context*, Expression_list*,
884 source_location)
885 {
886 gcc_unreachable();
887 }
888
889 // Return a pointer to the type descriptor for this type.
890
891 tree
892 Type::type_descriptor_pointer(Gogo* gogo)
893 {
894 Type* t = this->forwarded();
895 if (t->type_descriptor_decl_ == NULL_TREE)
896 {
897 Expression* e = t->do_type_descriptor(gogo, NULL);
898 gogo->build_type_descriptor_decl(t, e, &t->type_descriptor_decl_);
899 gcc_assert(t->type_descriptor_decl_ != NULL_TREE
900 && (t->type_descriptor_decl_ == error_mark_node
901 || DECL_P(t->type_descriptor_decl_)));
902 }
903 if (t->type_descriptor_decl_ == error_mark_node)
904 return error_mark_node;
905 return build_fold_addr_expr(t->type_descriptor_decl_);
906 }
907
908 // Return a composite literal for a type descriptor.
909
910 Expression*
911 Type::type_descriptor(Gogo* gogo, Type* type)
912 {
913 return type->do_type_descriptor(gogo, NULL);
914 }
915
916 // Return a composite literal for a type descriptor with a name.
917
918 Expression*
919 Type::named_type_descriptor(Gogo* gogo, Type* type, Named_type* name)
920 {
921 gcc_assert(name != NULL && type->named_type() != name);
922 return type->do_type_descriptor(gogo, name);
923 }
924
925 // Make a builtin struct type from a list of fields. The fields are
926 // pairs of a name and a type.
927
928 Struct_type*
929 Type::make_builtin_struct_type(int nfields, ...)
930 {
931 va_list ap;
932 va_start(ap, nfields);
933
934 source_location bloc = BUILTINS_LOCATION;
935 Struct_field_list* sfl = new Struct_field_list();
936 for (int i = 0; i < nfields; i++)
937 {
938 const char* field_name = va_arg(ap, const char *);
939 Type* type = va_arg(ap, Type*);
940 sfl->push_back(Struct_field(Typed_identifier(field_name, type, bloc)));
941 }
942
943 va_end(ap);
944
945 return Type::make_struct_type(sfl, bloc);
946 }
947
948 // Make a builtin named type.
949
950 Named_type*
951 Type::make_builtin_named_type(const char* name, Type* type)
952 {
953 source_location bloc = BUILTINS_LOCATION;
954 Named_object* no = Named_object::make_type(name, NULL, type, bloc);
955 return no->type_value();
956 }
957
958 // Return the type of a type descriptor. We should really tie this to
959 // runtime.Type rather than copying it. This must match commonType in
960 // libgo/go/runtime/type.go.
961
962 Type*
963 Type::make_type_descriptor_type()
964 {
965 static Type* ret;
966 if (ret == NULL)
967 {
968 source_location bloc = BUILTINS_LOCATION;
969
970 Type* uint8_type = Type::lookup_integer_type("uint8");
971 Type* uint32_type = Type::lookup_integer_type("uint32");
972 Type* uintptr_type = Type::lookup_integer_type("uintptr");
973 Type* string_type = Type::lookup_string_type();
974 Type* pointer_string_type = Type::make_pointer_type(string_type);
975
976 // This is an unnamed version of unsafe.Pointer. Perhaps we
977 // should use the named version instead, although that would
978 // require us to create the unsafe package if it has not been
979 // imported. It probably doesn't matter.
980 Type* void_type = Type::make_void_type();
981 Type* unsafe_pointer_type = Type::make_pointer_type(void_type);
982
983 // Forward declaration for the type descriptor type.
984 Named_object* named_type_descriptor_type =
985 Named_object::make_type_declaration("commonType", NULL, bloc);
986 Type* ft = Type::make_forward_declaration(named_type_descriptor_type);
987 Type* pointer_type_descriptor_type = Type::make_pointer_type(ft);
988
989 // The type of a method on a concrete type.
990 Struct_type* method_type =
991 Type::make_builtin_struct_type(5,
992 "name", pointer_string_type,
993 "pkgPath", pointer_string_type,
994 "mtyp", pointer_type_descriptor_type,
995 "typ", pointer_type_descriptor_type,
996 "tfn", unsafe_pointer_type);
997 Named_type* named_method_type =
998 Type::make_builtin_named_type("method", method_type);
999
1000 // Information for types with a name or methods.
1001 Type* slice_named_method_type =
1002 Type::make_array_type(named_method_type, NULL);
1003 Struct_type* uncommon_type =
1004 Type::make_builtin_struct_type(3,
1005 "name", pointer_string_type,
1006 "pkgPath", pointer_string_type,
1007 "methods", slice_named_method_type);
1008 Named_type* named_uncommon_type =
1009 Type::make_builtin_named_type("uncommonType", uncommon_type);
1010
1011 Type* pointer_uncommon_type =
1012 Type::make_pointer_type(named_uncommon_type);
1013
1014 // The type descriptor type.
1015
1016 Typed_identifier_list* params = new Typed_identifier_list();
1017 params->push_back(Typed_identifier("", unsafe_pointer_type, bloc));
1018 params->push_back(Typed_identifier("", uintptr_type, bloc));
1019
1020 Typed_identifier_list* results = new Typed_identifier_list();
1021 results->push_back(Typed_identifier("", uintptr_type, bloc));
1022
1023 Type* hashfn_type = Type::make_function_type(NULL, params, results, bloc);
1024
1025 params = new Typed_identifier_list();
1026 params->push_back(Typed_identifier("", unsafe_pointer_type, bloc));
1027 params->push_back(Typed_identifier("", unsafe_pointer_type, bloc));
1028 params->push_back(Typed_identifier("", uintptr_type, bloc));
1029
1030 results = new Typed_identifier_list();
1031 results->push_back(Typed_identifier("", Type::lookup_bool_type(), bloc));
1032
1033 Type* equalfn_type = Type::make_function_type(NULL, params, results,
1034 bloc);
1035
1036 Struct_type* type_descriptor_type =
1037 Type::make_builtin_struct_type(9,
1038 "Kind", uint8_type,
1039 "align", uint8_type,
1040 "fieldAlign", uint8_type,
1041 "size", uintptr_type,
1042 "hash", uint32_type,
1043 "hashfn", hashfn_type,
1044 "equalfn", equalfn_type,
1045 "string", pointer_string_type,
1046 "", pointer_uncommon_type);
1047
1048 Named_type* named = Type::make_builtin_named_type("commonType",
1049 type_descriptor_type);
1050
1051 named_type_descriptor_type->set_type_value(named);
1052
1053 ret = named;
1054 }
1055
1056 return ret;
1057 }
1058
1059 // Make the type of a pointer to a type descriptor as represented in
1060 // Go.
1061
1062 Type*
1063 Type::make_type_descriptor_ptr_type()
1064 {
1065 static Type* ret;
1066 if (ret == NULL)
1067 ret = Type::make_pointer_type(Type::make_type_descriptor_type());
1068 return ret;
1069 }
1070
1071 // Return the names of runtime functions which compute a hash code for
1072 // this type and which compare whether two values of this type are
1073 // equal.
1074
1075 void
1076 Type::type_functions(const char** hash_fn, const char** equal_fn) const
1077 {
1078 switch (this->base()->classification())
1079 {
1080 case Type::TYPE_ERROR:
1081 case Type::TYPE_VOID:
1082 case Type::TYPE_NIL:
1083 // These types can not be hashed or compared.
1084 *hash_fn = "__go_type_hash_error";
1085 *equal_fn = "__go_type_equal_error";
1086 break;
1087
1088 case Type::TYPE_BOOLEAN:
1089 case Type::TYPE_INTEGER:
1090 case Type::TYPE_FLOAT:
1091 case Type::TYPE_COMPLEX:
1092 case Type::TYPE_POINTER:
1093 case Type::TYPE_FUNCTION:
1094 case Type::TYPE_MAP:
1095 case Type::TYPE_CHANNEL:
1096 *hash_fn = "__go_type_hash_identity";
1097 *equal_fn = "__go_type_equal_identity";
1098 break;
1099
1100 case Type::TYPE_STRING:
1101 *hash_fn = "__go_type_hash_string";
1102 *equal_fn = "__go_type_equal_string";
1103 break;
1104
1105 case Type::TYPE_STRUCT:
1106 case Type::TYPE_ARRAY:
1107 // These types can not be hashed or compared.
1108 *hash_fn = "__go_type_hash_error";
1109 *equal_fn = "__go_type_equal_error";
1110 break;
1111
1112 case Type::TYPE_INTERFACE:
1113 if (this->interface_type()->is_empty())
1114 {
1115 *hash_fn = "__go_type_hash_empty_interface";
1116 *equal_fn = "__go_type_equal_empty_interface";
1117 }
1118 else
1119 {
1120 *hash_fn = "__go_type_hash_interface";
1121 *equal_fn = "__go_type_equal_interface";
1122 }
1123 break;
1124
1125 case Type::TYPE_NAMED:
1126 case Type::TYPE_FORWARD:
1127 gcc_unreachable();
1128
1129 default:
1130 gcc_unreachable();
1131 }
1132 }
1133
1134 // Return a composite literal for the type descriptor for a plain type
1135 // of kind RUNTIME_TYPE_KIND named NAME.
1136
1137 Expression*
1138 Type::type_descriptor_constructor(Gogo* gogo, int runtime_type_kind,
1139 Named_type* name, const Methods* methods,
1140 bool only_value_methods)
1141 {
1142 source_location bloc = BUILTINS_LOCATION;
1143
1144 Type* td_type = Type::make_type_descriptor_type();
1145 const Struct_field_list* fields = td_type->struct_type()->fields();
1146
1147 Expression_list* vals = new Expression_list();
1148 vals->reserve(9);
1149
1150 Struct_field_list::const_iterator p = fields->begin();
1151 gcc_assert(p->field_name() == "Kind");
1152 mpz_t iv;
1153 mpz_init_set_ui(iv, runtime_type_kind);
1154 vals->push_back(Expression::make_integer(&iv, p->type(), bloc));
1155
1156 ++p;
1157 gcc_assert(p->field_name() == "align");
1158 Expression::Type_info type_info = Expression::TYPE_INFO_ALIGNMENT;
1159 vals->push_back(Expression::make_type_info(this, type_info));
1160
1161 ++p;
1162 gcc_assert(p->field_name() == "fieldAlign");
1163 type_info = Expression::TYPE_INFO_FIELD_ALIGNMENT;
1164 vals->push_back(Expression::make_type_info(this, type_info));
1165
1166 ++p;
1167 gcc_assert(p->field_name() == "size");
1168 type_info = Expression::TYPE_INFO_SIZE;
1169 vals->push_back(Expression::make_type_info(this, type_info));
1170
1171 ++p;
1172 gcc_assert(p->field_name() == "hash");
1173 mpz_set_ui(iv, this->hash_for_method(gogo));
1174 vals->push_back(Expression::make_integer(&iv, p->type(), bloc));
1175
1176 const char* hash_fn;
1177 const char* equal_fn;
1178 this->type_functions(&hash_fn, &equal_fn);
1179
1180 ++p;
1181 gcc_assert(p->field_name() == "hashfn");
1182 Function_type* fntype = p->type()->function_type();
1183 Named_object* no = Named_object::make_function_declaration(hash_fn, NULL,
1184 fntype,
1185 bloc);
1186 no->func_declaration_value()->set_asm_name(hash_fn);
1187 vals->push_back(Expression::make_func_reference(no, NULL, bloc));
1188
1189 ++p;
1190 gcc_assert(p->field_name() == "equalfn");
1191 fntype = p->type()->function_type();
1192 no = Named_object::make_function_declaration(equal_fn, NULL, fntype, bloc);
1193 no->func_declaration_value()->set_asm_name(equal_fn);
1194 vals->push_back(Expression::make_func_reference(no, NULL, bloc));
1195
1196 ++p;
1197 gcc_assert(p->field_name() == "string");
1198 Expression* s = Expression::make_string((name != NULL
1199 ? name->reflection(gogo)
1200 : this->reflection(gogo)),
1201 bloc);
1202 vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
1203
1204 ++p;
1205 gcc_assert(p->field_name() == "uncommonType");
1206 if (name == NULL && methods == NULL)
1207 vals->push_back(Expression::make_nil(bloc));
1208 else
1209 {
1210 if (methods == NULL)
1211 methods = name->methods();
1212 vals->push_back(this->uncommon_type_constructor(gogo,
1213 p->type()->deref(),
1214 name, methods,
1215 only_value_methods));
1216 }
1217
1218 ++p;
1219 gcc_assert(p == fields->end());
1220
1221 mpz_clear(iv);
1222
1223 return Expression::make_struct_composite_literal(td_type, vals, bloc);
1224 }
1225
1226 // Return a composite literal for the uncommon type information for
1227 // this type. UNCOMMON_STRUCT_TYPE is the type of the uncommon type
1228 // struct. If name is not NULL, it is the name of the type. If
1229 // METHODS is not NULL, it is the list of methods. ONLY_VALUE_METHODS
1230 // is true if only value methods should be included. At least one of
1231 // NAME and METHODS must not be NULL.
1232
1233 Expression*
1234 Type::uncommon_type_constructor(Gogo* gogo, Type* uncommon_type,
1235 Named_type* name, const Methods* methods,
1236 bool only_value_methods) const
1237 {
1238 source_location bloc = BUILTINS_LOCATION;
1239
1240 const Struct_field_list* fields = uncommon_type->struct_type()->fields();
1241
1242 Expression_list* vals = new Expression_list();
1243 vals->reserve(3);
1244
1245 Struct_field_list::const_iterator p = fields->begin();
1246 gcc_assert(p->field_name() == "name");
1247
1248 ++p;
1249 gcc_assert(p->field_name() == "pkgPath");
1250
1251 if (name == NULL)
1252 {
1253 vals->push_back(Expression::make_nil(bloc));
1254 vals->push_back(Expression::make_nil(bloc));
1255 }
1256 else
1257 {
1258 Named_object* no = name->named_object();
1259 std::string n = Gogo::unpack_hidden_name(no->name());
1260 Expression* s = Expression::make_string(n, bloc);
1261 vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
1262
1263 if (name->is_builtin())
1264 vals->push_back(Expression::make_nil(bloc));
1265 else
1266 {
1267 const Package* package = no->package();
1268 const std::string& unique_prefix(package == NULL
1269 ? gogo->unique_prefix()
1270 : package->unique_prefix());
1271 const std::string& package_name(package == NULL
1272 ? gogo->package_name()
1273 : package->name());
1274 n.assign(unique_prefix);
1275 n.append(1, '.');
1276 n.append(package_name);
1277 if (name->in_function() != NULL)
1278 {
1279 n.append(1, '.');
1280 n.append(Gogo::unpack_hidden_name(name->in_function()->name()));
1281 }
1282 s = Expression::make_string(n, bloc);
1283 vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
1284 }
1285 }
1286
1287 ++p;
1288 gcc_assert(p->field_name() == "methods");
1289 vals->push_back(this->methods_constructor(gogo, p->type(), methods,
1290 only_value_methods));
1291
1292 ++p;
1293 gcc_assert(p == fields->end());
1294
1295 Expression* r = Expression::make_struct_composite_literal(uncommon_type,
1296 vals, bloc);
1297 return Expression::make_unary(OPERATOR_AND, r, bloc);
1298 }
1299
1300 // Sort methods by name.
1301
1302 class Sort_methods
1303 {
1304 public:
1305 bool
1306 operator()(const std::pair<std::string, const Method*>& m1,
1307 const std::pair<std::string, const Method*>& m2) const
1308 { return m1.first < m2.first; }
1309 };
1310
1311 // Return a composite literal for the type method table for this type.
1312 // METHODS_TYPE is the type of the table, and is a slice type.
1313 // METHODS is the list of methods. If ONLY_VALUE_METHODS is true,
1314 // then only value methods are used.
1315
1316 Expression*
1317 Type::methods_constructor(Gogo* gogo, Type* methods_type,
1318 const Methods* methods,
1319 bool only_value_methods) const
1320 {
1321 source_location bloc = BUILTINS_LOCATION;
1322
1323 std::vector<std::pair<std::string, const Method*> > smethods;
1324 if (methods != NULL)
1325 {
1326 smethods.reserve(methods->count());
1327 for (Methods::const_iterator p = methods->begin();
1328 p != methods->end();
1329 ++p)
1330 {
1331 if (p->second->is_ambiguous())
1332 continue;
1333 if (only_value_methods && !p->second->is_value_method())
1334 continue;
1335 smethods.push_back(std::make_pair(p->first, p->second));
1336 }
1337 }
1338
1339 if (smethods.empty())
1340 return Expression::make_slice_composite_literal(methods_type, NULL, bloc);
1341
1342 std::sort(smethods.begin(), smethods.end(), Sort_methods());
1343
1344 Type* method_type = methods_type->array_type()->element_type();
1345
1346 Expression_list* vals = new Expression_list();
1347 vals->reserve(smethods.size());
1348 for (std::vector<std::pair<std::string, const Method*> >::const_iterator p
1349 = smethods.begin();
1350 p != smethods.end();
1351 ++p)
1352 vals->push_back(this->method_constructor(gogo, method_type, p->first,
1353 p->second));
1354
1355 return Expression::make_slice_composite_literal(methods_type, vals, bloc);
1356 }
1357
1358 // Return a composite literal for a single method. METHOD_TYPE is the
1359 // type of the entry. METHOD_NAME is the name of the method and M is
1360 // the method information.
1361
1362 Expression*
1363 Type::method_constructor(Gogo*, Type* method_type,
1364 const std::string& method_name,
1365 const Method* m) const
1366 {
1367 source_location bloc = BUILTINS_LOCATION;
1368
1369 const Struct_field_list* fields = method_type->struct_type()->fields();
1370
1371 Expression_list* vals = new Expression_list();
1372 vals->reserve(5);
1373
1374 Struct_field_list::const_iterator p = fields->begin();
1375 gcc_assert(p->field_name() == "name");
1376 const std::string n = Gogo::unpack_hidden_name(method_name);
1377 Expression* s = Expression::make_string(n, bloc);
1378 vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
1379
1380 ++p;
1381 gcc_assert(p->field_name() == "pkgPath");
1382 if (!Gogo::is_hidden_name(method_name))
1383 vals->push_back(Expression::make_nil(bloc));
1384 else
1385 {
1386 s = Expression::make_string(Gogo::hidden_name_prefix(method_name), bloc);
1387 vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
1388 }
1389
1390 Named_object* no = (m->needs_stub_method()
1391 ? m->stub_object()
1392 : m->named_object());
1393
1394 Function_type* mtype;
1395 if (no->is_function())
1396 mtype = no->func_value()->type();
1397 else
1398 mtype = no->func_declaration_value()->type();
1399 gcc_assert(mtype->is_method());
1400 Type* nonmethod_type = mtype->copy_without_receiver();
1401
1402 ++p;
1403 gcc_assert(p->field_name() == "mtyp");
1404 vals->push_back(Expression::make_type_descriptor(nonmethod_type, bloc));
1405
1406 ++p;
1407 gcc_assert(p->field_name() == "typ");
1408 vals->push_back(Expression::make_type_descriptor(mtype, bloc));
1409
1410 ++p;
1411 gcc_assert(p->field_name() == "tfn");
1412 vals->push_back(Expression::make_func_reference(no, NULL, bloc));
1413
1414 ++p;
1415 gcc_assert(p == fields->end());
1416
1417 return Expression::make_struct_composite_literal(method_type, vals, bloc);
1418 }
1419
1420 // Return a composite literal for the type descriptor of a plain type.
1421 // RUNTIME_TYPE_KIND is the value of the kind field. If NAME is not
1422 // NULL, it is the name to use as well as the list of methods.
1423
1424 Expression*
1425 Type::plain_type_descriptor(Gogo* gogo, int runtime_type_kind,
1426 Named_type* name)
1427 {
1428 return this->type_descriptor_constructor(gogo, runtime_type_kind,
1429 name, NULL, true);
1430 }
1431
1432 // Return the type reflection string for this type.
1433
1434 std::string
1435 Type::reflection(Gogo* gogo) const
1436 {
1437 std::string ret;
1438
1439 // The do_reflection virtual function should set RET to the
1440 // reflection string.
1441 this->do_reflection(gogo, &ret);
1442
1443 return ret;
1444 }
1445
1446 // Return a mangled name for the type.
1447
1448 std::string
1449 Type::mangled_name(Gogo* gogo) const
1450 {
1451 std::string ret;
1452
1453 // The do_mangled_name virtual function should set RET to the
1454 // mangled name. For a composite type it should append a code for
1455 // the composition and then call do_mangled_name on the components.
1456 this->do_mangled_name(gogo, &ret);
1457
1458 return ret;
1459 }
1460
1461 // Default function to export a type.
1462
1463 void
1464 Type::do_export(Export*) const
1465 {
1466 gcc_unreachable();
1467 }
1468
1469 // Import a type.
1470
1471 Type*
1472 Type::import_type(Import* imp)
1473 {
1474 if (imp->match_c_string("("))
1475 return Function_type::do_import(imp);
1476 else if (imp->match_c_string("*"))
1477 return Pointer_type::do_import(imp);
1478 else if (imp->match_c_string("struct "))
1479 return Struct_type::do_import(imp);
1480 else if (imp->match_c_string("["))
1481 return Array_type::do_import(imp);
1482 else if (imp->match_c_string("map "))
1483 return Map_type::do_import(imp);
1484 else if (imp->match_c_string("chan "))
1485 return Channel_type::do_import(imp);
1486 else if (imp->match_c_string("interface"))
1487 return Interface_type::do_import(imp);
1488 else
1489 {
1490 error_at(imp->location(), "import error: expected type");
1491 return Type::make_error_type();
1492 }
1493 }
1494
1495 // A type used to indicate a parsing error. This exists to simplify
1496 // later error detection.
1497
1498 class Error_type : public Type
1499 {
1500 public:
1501 Error_type()
1502 : Type(TYPE_ERROR)
1503 { }
1504
1505 protected:
1506 tree
1507 do_get_tree(Gogo*)
1508 { return error_mark_node; }
1509
1510 tree
1511 do_get_init_tree(Gogo*, tree, bool)
1512 { return error_mark_node; }
1513
1514 Expression*
1515 do_type_descriptor(Gogo*, Named_type*)
1516 { return Expression::make_error(BUILTINS_LOCATION); }
1517
1518 void
1519 do_reflection(Gogo*, std::string*) const
1520 { gcc_assert(saw_errors()); }
1521
1522 void
1523 do_mangled_name(Gogo*, std::string* ret) const
1524 { ret->push_back('E'); }
1525 };
1526
1527 Type*
1528 Type::make_error_type()
1529 {
1530 static Error_type singleton_error_type;
1531 return &singleton_error_type;
1532 }
1533
1534 // The void type.
1535
1536 class Void_type : public Type
1537 {
1538 public:
1539 Void_type()
1540 : Type(TYPE_VOID)
1541 { }
1542
1543 protected:
1544 tree
1545 do_get_tree(Gogo*)
1546 { return void_type_node; }
1547
1548 tree
1549 do_get_init_tree(Gogo*, tree, bool)
1550 { gcc_unreachable(); }
1551
1552 Expression*
1553 do_type_descriptor(Gogo*, Named_type*)
1554 { gcc_unreachable(); }
1555
1556 void
1557 do_reflection(Gogo*, std::string*) const
1558 { }
1559
1560 void
1561 do_mangled_name(Gogo*, std::string* ret) const
1562 { ret->push_back('v'); }
1563 };
1564
1565 Type*
1566 Type::make_void_type()
1567 {
1568 static Void_type singleton_void_type;
1569 return &singleton_void_type;
1570 }
1571
1572 // The boolean type.
1573
1574 class Boolean_type : public Type
1575 {
1576 public:
1577 Boolean_type()
1578 : Type(TYPE_BOOLEAN)
1579 { }
1580
1581 protected:
1582 tree
1583 do_get_tree(Gogo*)
1584 { return boolean_type_node; }
1585
1586 tree
1587 do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
1588 { return is_clear ? NULL : fold_convert(type_tree, boolean_false_node); }
1589
1590 Expression*
1591 do_type_descriptor(Gogo*, Named_type* name);
1592
1593 // We should not be asked for the reflection string of a basic type.
1594 void
1595 do_reflection(Gogo*, std::string* ret) const
1596 { ret->append("bool"); }
1597
1598 void
1599 do_mangled_name(Gogo*, std::string* ret) const
1600 { ret->push_back('b'); }
1601 };
1602
1603 // Make the type descriptor.
1604
1605 Expression*
1606 Boolean_type::do_type_descriptor(Gogo* gogo, Named_type* name)
1607 {
1608 if (name != NULL)
1609 return this->plain_type_descriptor(gogo, RUNTIME_TYPE_KIND_BOOL, name);
1610 else
1611 {
1612 Named_object* no = gogo->lookup_global("bool");
1613 gcc_assert(no != NULL);
1614 return Type::type_descriptor(gogo, no->type_value());
1615 }
1616 }
1617
1618 Type*
1619 Type::make_boolean_type()
1620 {
1621 static Boolean_type boolean_type;
1622 return &boolean_type;
1623 }
1624
1625 // The named type "bool".
1626
1627 static Named_type* named_bool_type;
1628
1629 // Get the named type "bool".
1630
1631 Named_type*
1632 Type::lookup_bool_type()
1633 {
1634 return named_bool_type;
1635 }
1636
1637 // Make the named type "bool".
1638
1639 Named_type*
1640 Type::make_named_bool_type()
1641 {
1642 Type* bool_type = Type::make_boolean_type();
1643 Named_object* named_object = Named_object::make_type("bool", NULL,
1644 bool_type,
1645 BUILTINS_LOCATION);
1646 Named_type* named_type = named_object->type_value();
1647 named_bool_type = named_type;
1648 return named_type;
1649 }
1650
1651 // Class Integer_type.
1652
1653 Integer_type::Named_integer_types Integer_type::named_integer_types;
1654
1655 // Create a new integer type. Non-abstract integer types always have
1656 // names.
1657
1658 Named_type*
1659 Integer_type::create_integer_type(const char* name, bool is_unsigned,
1660 int bits, int runtime_type_kind)
1661 {
1662 Integer_type* integer_type = new Integer_type(false, is_unsigned, bits,
1663 runtime_type_kind);
1664 std::string sname(name);
1665 Named_object* named_object = Named_object::make_type(sname, NULL,
1666 integer_type,
1667 BUILTINS_LOCATION);
1668 Named_type* named_type = named_object->type_value();
1669 std::pair<Named_integer_types::iterator, bool> ins =
1670 Integer_type::named_integer_types.insert(std::make_pair(sname, named_type));
1671 gcc_assert(ins.second);
1672 return named_type;
1673 }
1674
1675 // Look up an existing integer type.
1676
1677 Named_type*
1678 Integer_type::lookup_integer_type(const char* name)
1679 {
1680 Named_integer_types::const_iterator p =
1681 Integer_type::named_integer_types.find(name);
1682 gcc_assert(p != Integer_type::named_integer_types.end());
1683 return p->second;
1684 }
1685
1686 // Create a new abstract integer type.
1687
1688 Integer_type*
1689 Integer_type::create_abstract_integer_type()
1690 {
1691 static Integer_type* abstract_type;
1692 if (abstract_type == NULL)
1693 abstract_type = new Integer_type(true, false, INT_TYPE_SIZE,
1694 RUNTIME_TYPE_KIND_INT);
1695 return abstract_type;
1696 }
1697
1698 // Integer type compatibility.
1699
1700 bool
1701 Integer_type::is_identical(const Integer_type* t) const
1702 {
1703 if (this->is_unsigned_ != t->is_unsigned_ || this->bits_ != t->bits_)
1704 return false;
1705 return this->is_abstract_ == t->is_abstract_;
1706 }
1707
1708 // Hash code.
1709
1710 unsigned int
1711 Integer_type::do_hash_for_method(Gogo*) const
1712 {
1713 return ((this->bits_ << 4)
1714 + ((this->is_unsigned_ ? 1 : 0) << 8)
1715 + ((this->is_abstract_ ? 1 : 0) << 9));
1716 }
1717
1718 // Get the tree for an Integer_type.
1719
1720 tree
1721 Integer_type::do_get_tree(Gogo*)
1722 {
1723 gcc_assert(!this->is_abstract_);
1724 if (this->is_unsigned_)
1725 {
1726 if (this->bits_ == INT_TYPE_SIZE)
1727 return unsigned_type_node;
1728 else if (this->bits_ == CHAR_TYPE_SIZE)
1729 return unsigned_char_type_node;
1730 else if (this->bits_ == SHORT_TYPE_SIZE)
1731 return short_unsigned_type_node;
1732 else if (this->bits_ == LONG_TYPE_SIZE)
1733 return long_unsigned_type_node;
1734 else if (this->bits_ == LONG_LONG_TYPE_SIZE)
1735 return long_long_unsigned_type_node;
1736 else
1737 return make_unsigned_type(this->bits_);
1738 }
1739 else
1740 {
1741 if (this->bits_ == INT_TYPE_SIZE)
1742 return integer_type_node;
1743 else if (this->bits_ == CHAR_TYPE_SIZE)
1744 return signed_char_type_node;
1745 else if (this->bits_ == SHORT_TYPE_SIZE)
1746 return short_integer_type_node;
1747 else if (this->bits_ == LONG_TYPE_SIZE)
1748 return long_integer_type_node;
1749 else if (this->bits_ == LONG_LONG_TYPE_SIZE)
1750 return long_long_integer_type_node;
1751 else
1752 return make_signed_type(this->bits_);
1753 }
1754 }
1755
1756 tree
1757 Integer_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
1758 {
1759 return is_clear ? NULL : build_int_cst(type_tree, 0);
1760 }
1761
1762 // The type descriptor for an integer type. Integer types are always
1763 // named.
1764
1765 Expression*
1766 Integer_type::do_type_descriptor(Gogo* gogo, Named_type* name)
1767 {
1768 gcc_assert(name != NULL);
1769 return this->plain_type_descriptor(gogo, this->runtime_type_kind_, name);
1770 }
1771
1772 // We should not be asked for the reflection string of a basic type.
1773
1774 void
1775 Integer_type::do_reflection(Gogo*, std::string*) const
1776 {
1777 gcc_unreachable();
1778 }
1779
1780 // Mangled name.
1781
1782 void
1783 Integer_type::do_mangled_name(Gogo*, std::string* ret) const
1784 {
1785 char buf[100];
1786 snprintf(buf, sizeof buf, "i%s%s%de",
1787 this->is_abstract_ ? "a" : "",
1788 this->is_unsigned_ ? "u" : "",
1789 this->bits_);
1790 ret->append(buf);
1791 }
1792
1793 // Make an integer type.
1794
1795 Named_type*
1796 Type::make_integer_type(const char* name, bool is_unsigned, int bits,
1797 int runtime_type_kind)
1798 {
1799 return Integer_type::create_integer_type(name, is_unsigned, bits,
1800 runtime_type_kind);
1801 }
1802
1803 // Make an abstract integer type.
1804
1805 Integer_type*
1806 Type::make_abstract_integer_type()
1807 {
1808 return Integer_type::create_abstract_integer_type();
1809 }
1810
1811 // Look up an integer type.
1812
1813 Named_type*
1814 Type::lookup_integer_type(const char* name)
1815 {
1816 return Integer_type::lookup_integer_type(name);
1817 }
1818
1819 // Class Float_type.
1820
1821 Float_type::Named_float_types Float_type::named_float_types;
1822
1823 // Create a new float type. Non-abstract float types always have
1824 // names.
1825
1826 Named_type*
1827 Float_type::create_float_type(const char* name, int bits,
1828 int runtime_type_kind)
1829 {
1830 Float_type* float_type = new Float_type(false, bits, runtime_type_kind);
1831 std::string sname(name);
1832 Named_object* named_object = Named_object::make_type(sname, NULL, float_type,
1833 BUILTINS_LOCATION);
1834 Named_type* named_type = named_object->type_value();
1835 std::pair<Named_float_types::iterator, bool> ins =
1836 Float_type::named_float_types.insert(std::make_pair(sname, named_type));
1837 gcc_assert(ins.second);
1838 return named_type;
1839 }
1840
1841 // Look up an existing float type.
1842
1843 Named_type*
1844 Float_type::lookup_float_type(const char* name)
1845 {
1846 Named_float_types::const_iterator p =
1847 Float_type::named_float_types.find(name);
1848 gcc_assert(p != Float_type::named_float_types.end());
1849 return p->second;
1850 }
1851
1852 // Create a new abstract float type.
1853
1854 Float_type*
1855 Float_type::create_abstract_float_type()
1856 {
1857 static Float_type* abstract_type;
1858 if (abstract_type == NULL)
1859 abstract_type = new Float_type(true, FLOAT_TYPE_SIZE,
1860 RUNTIME_TYPE_KIND_FLOAT);
1861 return abstract_type;
1862 }
1863
1864 // Whether this type is identical with T.
1865
1866 bool
1867 Float_type::is_identical(const Float_type* t) const
1868 {
1869 if (this->bits_ != t->bits_)
1870 return false;
1871 return this->is_abstract_ == t->is_abstract_;
1872 }
1873
1874 // Hash code.
1875
1876 unsigned int
1877 Float_type::do_hash_for_method(Gogo*) const
1878 {
1879 return (this->bits_ << 4) + ((this->is_abstract_ ? 1 : 0) << 8);
1880 }
1881
1882 // Get a tree without using a Gogo*.
1883
1884 tree
1885 Float_type::type_tree() const
1886 {
1887 if (this->bits_ == FLOAT_TYPE_SIZE)
1888 return float_type_node;
1889 else if (this->bits_ == DOUBLE_TYPE_SIZE)
1890 return double_type_node;
1891 else if (this->bits_ == LONG_DOUBLE_TYPE_SIZE)
1892 return long_double_type_node;
1893 else
1894 {
1895 tree ret = make_node(REAL_TYPE);
1896 TYPE_PRECISION(ret) = this->bits_;
1897 layout_type(ret);
1898 return ret;
1899 }
1900 }
1901
1902 // Get a tree.
1903
1904 tree
1905 Float_type::do_get_tree(Gogo*)
1906 {
1907 return this->type_tree();
1908 }
1909
1910 tree
1911 Float_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
1912 {
1913 if (is_clear)
1914 return NULL;
1915 REAL_VALUE_TYPE r;
1916 real_from_integer(&r, TYPE_MODE(type_tree), 0, 0, 0);
1917 return build_real(type_tree, r);
1918 }
1919
1920 // The type descriptor for a float type. Float types are always named.
1921
1922 Expression*
1923 Float_type::do_type_descriptor(Gogo* gogo, Named_type* name)
1924 {
1925 gcc_assert(name != NULL);
1926 return this->plain_type_descriptor(gogo, this->runtime_type_kind_, name);
1927 }
1928
1929 // We should not be asked for the reflection string of a basic type.
1930
1931 void
1932 Float_type::do_reflection(Gogo*, std::string*) const
1933 {
1934 gcc_unreachable();
1935 }
1936
1937 // Mangled name.
1938
1939 void
1940 Float_type::do_mangled_name(Gogo*, std::string* ret) const
1941 {
1942 char buf[100];
1943 snprintf(buf, sizeof buf, "f%s%de",
1944 this->is_abstract_ ? "a" : "",
1945 this->bits_);
1946 ret->append(buf);
1947 }
1948
1949 // Make a floating point type.
1950
1951 Named_type*
1952 Type::make_float_type(const char* name, int bits, int runtime_type_kind)
1953 {
1954 return Float_type::create_float_type(name, bits, runtime_type_kind);
1955 }
1956
1957 // Make an abstract float type.
1958
1959 Float_type*
1960 Type::make_abstract_float_type()
1961 {
1962 return Float_type::create_abstract_float_type();
1963 }
1964
1965 // Look up a float type.
1966
1967 Named_type*
1968 Type::lookup_float_type(const char* name)
1969 {
1970 return Float_type::lookup_float_type(name);
1971 }
1972
1973 // Class Complex_type.
1974
1975 Complex_type::Named_complex_types Complex_type::named_complex_types;
1976
1977 // Create a new complex type. Non-abstract complex types always have
1978 // names.
1979
1980 Named_type*
1981 Complex_type::create_complex_type(const char* name, int bits,
1982 int runtime_type_kind)
1983 {
1984 Complex_type* complex_type = new Complex_type(false, bits,
1985 runtime_type_kind);
1986 std::string sname(name);
1987 Named_object* named_object = Named_object::make_type(sname, NULL,
1988 complex_type,
1989 BUILTINS_LOCATION);
1990 Named_type* named_type = named_object->type_value();
1991 std::pair<Named_complex_types::iterator, bool> ins =
1992 Complex_type::named_complex_types.insert(std::make_pair(sname,
1993 named_type));
1994 gcc_assert(ins.second);
1995 return named_type;
1996 }
1997
1998 // Look up an existing complex type.
1999
2000 Named_type*
2001 Complex_type::lookup_complex_type(const char* name)
2002 {
2003 Named_complex_types::const_iterator p =
2004 Complex_type::named_complex_types.find(name);
2005 gcc_assert(p != Complex_type::named_complex_types.end());
2006 return p->second;
2007 }
2008
2009 // Create a new abstract complex type.
2010
2011 Complex_type*
2012 Complex_type::create_abstract_complex_type()
2013 {
2014 static Complex_type* abstract_type;
2015 if (abstract_type == NULL)
2016 abstract_type = new Complex_type(true, FLOAT_TYPE_SIZE * 2,
2017 RUNTIME_TYPE_KIND_FLOAT);
2018 return abstract_type;
2019 }
2020
2021 // Whether this type is identical with T.
2022
2023 bool
2024 Complex_type::is_identical(const Complex_type *t) const
2025 {
2026 if (this->bits_ != t->bits_)
2027 return false;
2028 return this->is_abstract_ == t->is_abstract_;
2029 }
2030
2031 // Hash code.
2032
2033 unsigned int
2034 Complex_type::do_hash_for_method(Gogo*) const
2035 {
2036 return (this->bits_ << 4) + ((this->is_abstract_ ? 1 : 0) << 8);
2037 }
2038
2039 // Get a tree without using a Gogo*.
2040
2041 tree
2042 Complex_type::type_tree() const
2043 {
2044 if (this->bits_ == FLOAT_TYPE_SIZE * 2)
2045 return complex_float_type_node;
2046 else if (this->bits_ == DOUBLE_TYPE_SIZE * 2)
2047 return complex_double_type_node;
2048 else if (this->bits_ == LONG_DOUBLE_TYPE_SIZE * 2)
2049 return complex_long_double_type_node;
2050 else
2051 {
2052 tree ret = make_node(REAL_TYPE);
2053 TYPE_PRECISION(ret) = this->bits_ / 2;
2054 layout_type(ret);
2055 return build_complex_type(ret);
2056 }
2057 }
2058
2059 // Get a tree.
2060
2061 tree
2062 Complex_type::do_get_tree(Gogo*)
2063 {
2064 return this->type_tree();
2065 }
2066
2067 // Zero initializer.
2068
2069 tree
2070 Complex_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
2071 {
2072 if (is_clear)
2073 return NULL;
2074 REAL_VALUE_TYPE r;
2075 real_from_integer(&r, TYPE_MODE(TREE_TYPE(type_tree)), 0, 0, 0);
2076 return build_complex(type_tree, build_real(TREE_TYPE(type_tree), r),
2077 build_real(TREE_TYPE(type_tree), r));
2078 }
2079
2080 // The type descriptor for a complex type. Complex types are always
2081 // named.
2082
2083 Expression*
2084 Complex_type::do_type_descriptor(Gogo* gogo, Named_type* name)
2085 {
2086 gcc_assert(name != NULL);
2087 return this->plain_type_descriptor(gogo, this->runtime_type_kind_, name);
2088 }
2089
2090 // We should not be asked for the reflection string of a basic type.
2091
2092 void
2093 Complex_type::do_reflection(Gogo*, std::string*) const
2094 {
2095 gcc_unreachable();
2096 }
2097
2098 // Mangled name.
2099
2100 void
2101 Complex_type::do_mangled_name(Gogo*, std::string* ret) const
2102 {
2103 char buf[100];
2104 snprintf(buf, sizeof buf, "c%s%de",
2105 this->is_abstract_ ? "a" : "",
2106 this->bits_);
2107 ret->append(buf);
2108 }
2109
2110 // Make a complex type.
2111
2112 Named_type*
2113 Type::make_complex_type(const char* name, int bits, int runtime_type_kind)
2114 {
2115 return Complex_type::create_complex_type(name, bits, runtime_type_kind);
2116 }
2117
2118 // Make an abstract complex type.
2119
2120 Complex_type*
2121 Type::make_abstract_complex_type()
2122 {
2123 return Complex_type::create_abstract_complex_type();
2124 }
2125
2126 // Look up a complex type.
2127
2128 Named_type*
2129 Type::lookup_complex_type(const char* name)
2130 {
2131 return Complex_type::lookup_complex_type(name);
2132 }
2133
2134 // Class String_type.
2135
2136 // Return the tree for String_type. A string is a struct with two
2137 // fields: a pointer to the characters and a length.
2138
2139 tree
2140 String_type::do_get_tree(Gogo*)
2141 {
2142 static tree struct_type;
2143 return Gogo::builtin_struct(&struct_type, "__go_string", NULL_TREE, 2,
2144 "__data",
2145 build_pointer_type(unsigned_char_type_node),
2146 "__length",
2147 integer_type_node);
2148 }
2149
2150 // Return a tree for the length of STRING.
2151
2152 tree
2153 String_type::length_tree(Gogo*, tree string)
2154 {
2155 tree string_type = TREE_TYPE(string);
2156 gcc_assert(TREE_CODE(string_type) == RECORD_TYPE);
2157 tree length_field = DECL_CHAIN(TYPE_FIELDS(string_type));
2158 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(length_field)),
2159 "__length") == 0);
2160 return fold_build3(COMPONENT_REF, integer_type_node, string,
2161 length_field, NULL_TREE);
2162 }
2163
2164 // Return a tree for a pointer to the bytes of STRING.
2165
2166 tree
2167 String_type::bytes_tree(Gogo*, tree string)
2168 {
2169 tree string_type = TREE_TYPE(string);
2170 gcc_assert(TREE_CODE(string_type) == RECORD_TYPE);
2171 tree bytes_field = TYPE_FIELDS(string_type);
2172 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(bytes_field)),
2173 "__data") == 0);
2174 return fold_build3(COMPONENT_REF, TREE_TYPE(bytes_field), string,
2175 bytes_field, NULL_TREE);
2176 }
2177
2178 // We initialize a string to { NULL, 0 }.
2179
2180 tree
2181 String_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
2182 {
2183 if (is_clear)
2184 return NULL_TREE;
2185
2186 gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
2187
2188 VEC(constructor_elt, gc)* init = VEC_alloc(constructor_elt, gc, 2);
2189
2190 for (tree field = TYPE_FIELDS(type_tree);
2191 field != NULL_TREE;
2192 field = DECL_CHAIN(field))
2193 {
2194 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
2195 elt->index = field;
2196 elt->value = fold_convert(TREE_TYPE(field), size_zero_node);
2197 }
2198
2199 tree ret = build_constructor(type_tree, init);
2200 TREE_CONSTANT(ret) = 1;
2201 return ret;
2202 }
2203
2204 // The type descriptor for the string type.
2205
2206 Expression*
2207 String_type::do_type_descriptor(Gogo* gogo, Named_type* name)
2208 {
2209 if (name != NULL)
2210 return this->plain_type_descriptor(gogo, RUNTIME_TYPE_KIND_STRING, name);
2211 else
2212 {
2213 Named_object* no = gogo->lookup_global("string");
2214 gcc_assert(no != NULL);
2215 return Type::type_descriptor(gogo, no->type_value());
2216 }
2217 }
2218
2219 // We should not be asked for the reflection string of a basic type.
2220
2221 void
2222 String_type::do_reflection(Gogo*, std::string* ret) const
2223 {
2224 ret->append("string");
2225 }
2226
2227 // Mangled name of a string type.
2228
2229 void
2230 String_type::do_mangled_name(Gogo*, std::string* ret) const
2231 {
2232 ret->push_back('z');
2233 }
2234
2235 // Make a string type.
2236
2237 Type*
2238 Type::make_string_type()
2239 {
2240 static String_type string_type;
2241 return &string_type;
2242 }
2243
2244 // The named type "string".
2245
2246 static Named_type* named_string_type;
2247
2248 // Get the named type "string".
2249
2250 Named_type*
2251 Type::lookup_string_type()
2252 {
2253 return named_string_type;
2254 }
2255
2256 // Make the named type string.
2257
2258 Named_type*
2259 Type::make_named_string_type()
2260 {
2261 Type* string_type = Type::make_string_type();
2262 Named_object* named_object = Named_object::make_type("string", NULL,
2263 string_type,
2264 BUILTINS_LOCATION);
2265 Named_type* named_type = named_object->type_value();
2266 named_string_type = named_type;
2267 return named_type;
2268 }
2269
2270 // The sink type. This is the type of the blank identifier _. Any
2271 // type may be assigned to it.
2272
2273 class Sink_type : public Type
2274 {
2275 public:
2276 Sink_type()
2277 : Type(TYPE_SINK)
2278 { }
2279
2280 protected:
2281 tree
2282 do_get_tree(Gogo*)
2283 { gcc_unreachable(); }
2284
2285 tree
2286 do_get_init_tree(Gogo*, tree, bool)
2287 { gcc_unreachable(); }
2288
2289 Expression*
2290 do_type_descriptor(Gogo*, Named_type*)
2291 { gcc_unreachable(); }
2292
2293 void
2294 do_reflection(Gogo*, std::string*) const
2295 { gcc_unreachable(); }
2296
2297 void
2298 do_mangled_name(Gogo*, std::string*) const
2299 { gcc_unreachable(); }
2300 };
2301
2302 // Make the sink type.
2303
2304 Type*
2305 Type::make_sink_type()
2306 {
2307 static Sink_type sink_type;
2308 return &sink_type;
2309 }
2310
2311 // Class Function_type.
2312
2313 // Traversal.
2314
2315 int
2316 Function_type::do_traverse(Traverse* traverse)
2317 {
2318 if (this->receiver_ != NULL
2319 && Type::traverse(this->receiver_->type(), traverse) == TRAVERSE_EXIT)
2320 return TRAVERSE_EXIT;
2321 if (this->parameters_ != NULL
2322 && this->parameters_->traverse(traverse) == TRAVERSE_EXIT)
2323 return TRAVERSE_EXIT;
2324 if (this->results_ != NULL
2325 && this->results_->traverse(traverse) == TRAVERSE_EXIT)
2326 return TRAVERSE_EXIT;
2327 return TRAVERSE_CONTINUE;
2328 }
2329
2330 // Returns whether T is a valid redeclaration of this type. If this
2331 // returns false, and REASON is not NULL, *REASON may be set to a
2332 // brief explanation of why it returned false.
2333
2334 bool
2335 Function_type::is_valid_redeclaration(const Function_type* t,
2336 std::string* reason) const
2337 {
2338 if (!this->is_identical(t, false, true, reason))
2339 return false;
2340
2341 // A redeclaration of a function is required to use the same names
2342 // for the receiver and parameters.
2343 if (this->receiver() != NULL
2344 && this->receiver()->name() != t->receiver()->name()
2345 && this->receiver()->name() != Import::import_marker
2346 && t->receiver()->name() != Import::import_marker)
2347 {
2348 if (reason != NULL)
2349 *reason = "receiver name changed";
2350 return false;
2351 }
2352
2353 const Typed_identifier_list* parms1 = this->parameters();
2354 const Typed_identifier_list* parms2 = t->parameters();
2355 if (parms1 != NULL)
2356 {
2357 Typed_identifier_list::const_iterator p1 = parms1->begin();
2358 for (Typed_identifier_list::const_iterator p2 = parms2->begin();
2359 p2 != parms2->end();
2360 ++p2, ++p1)
2361 {
2362 if (p1->name() != p2->name()
2363 && p1->name() != Import::import_marker
2364 && p2->name() != Import::import_marker)
2365 {
2366 if (reason != NULL)
2367 *reason = "parameter name changed";
2368 return false;
2369 }
2370
2371 // This is called at parse time, so we may have unknown
2372 // types.
2373 Type* t1 = p1->type()->forwarded();
2374 Type* t2 = p2->type()->forwarded();
2375 if (t1 != t2
2376 && t1->forward_declaration_type() != NULL
2377 && (t2->forward_declaration_type() == NULL
2378 || (t1->forward_declaration_type()->named_object()
2379 != t2->forward_declaration_type()->named_object())))
2380 return false;
2381 }
2382 }
2383
2384 const Typed_identifier_list* results1 = this->results();
2385 const Typed_identifier_list* results2 = t->results();
2386 if (results1 != NULL)
2387 {
2388 Typed_identifier_list::const_iterator res1 = results1->begin();
2389 for (Typed_identifier_list::const_iterator res2 = results2->begin();
2390 res2 != results2->end();
2391 ++res2, ++res1)
2392 {
2393 if (res1->name() != res2->name()
2394 && res1->name() != Import::import_marker
2395 && res2->name() != Import::import_marker)
2396 {
2397 if (reason != NULL)
2398 *reason = "result name changed";
2399 return false;
2400 }
2401
2402 // This is called at parse time, so we may have unknown
2403 // types.
2404 Type* t1 = res1->type()->forwarded();
2405 Type* t2 = res2->type()->forwarded();
2406 if (t1 != t2
2407 && t1->forward_declaration_type() != NULL
2408 && (t2->forward_declaration_type() == NULL
2409 || (t1->forward_declaration_type()->named_object()
2410 != t2->forward_declaration_type()->named_object())))
2411 return false;
2412 }
2413 }
2414
2415 return true;
2416 }
2417
2418 // Check whether T is the same as this type.
2419
2420 bool
2421 Function_type::is_identical(const Function_type* t, bool ignore_receiver,
2422 bool errors_are_identical,
2423 std::string* reason) const
2424 {
2425 if (!ignore_receiver)
2426 {
2427 const Typed_identifier* r1 = this->receiver();
2428 const Typed_identifier* r2 = t->receiver();
2429 if ((r1 != NULL) != (r2 != NULL))
2430 {
2431 if (reason != NULL)
2432 *reason = _("different receiver types");
2433 return false;
2434 }
2435 if (r1 != NULL)
2436 {
2437 if (!Type::are_identical(r1->type(), r2->type(), errors_are_identical,
2438 reason))
2439 {
2440 if (reason != NULL && !reason->empty())
2441 *reason = "receiver: " + *reason;
2442 return false;
2443 }
2444 }
2445 }
2446
2447 const Typed_identifier_list* parms1 = this->parameters();
2448 const Typed_identifier_list* parms2 = t->parameters();
2449 if ((parms1 != NULL) != (parms2 != NULL))
2450 {
2451 if (reason != NULL)
2452 *reason = _("different number of parameters");
2453 return false;
2454 }
2455 if (parms1 != NULL)
2456 {
2457 Typed_identifier_list::const_iterator p1 = parms1->begin();
2458 for (Typed_identifier_list::const_iterator p2 = parms2->begin();
2459 p2 != parms2->end();
2460 ++p2, ++p1)
2461 {
2462 if (p1 == parms1->end())
2463 {
2464 if (reason != NULL)
2465 *reason = _("different number of parameters");
2466 return false;
2467 }
2468
2469 if (!Type::are_identical(p1->type(), p2->type(),
2470 errors_are_identical, NULL))
2471 {
2472 if (reason != NULL)
2473 *reason = _("different parameter types");
2474 return false;
2475 }
2476 }
2477 if (p1 != parms1->end())
2478 {
2479 if (reason != NULL)
2480 *reason = _("different number of parameters");
2481 return false;
2482 }
2483 }
2484
2485 if (this->is_varargs() != t->is_varargs())
2486 {
2487 if (reason != NULL)
2488 *reason = _("different varargs");
2489 return false;
2490 }
2491
2492 const Typed_identifier_list* results1 = this->results();
2493 const Typed_identifier_list* results2 = t->results();
2494 if ((results1 != NULL) != (results2 != NULL))
2495 {
2496 if (reason != NULL)
2497 *reason = _("different number of results");
2498 return false;
2499 }
2500 if (results1 != NULL)
2501 {
2502 Typed_identifier_list::const_iterator res1 = results1->begin();
2503 for (Typed_identifier_list::const_iterator res2 = results2->begin();
2504 res2 != results2->end();
2505 ++res2, ++res1)
2506 {
2507 if (res1 == results1->end())
2508 {
2509 if (reason != NULL)
2510 *reason = _("different number of results");
2511 return false;
2512 }
2513
2514 if (!Type::are_identical(res1->type(), res2->type(),
2515 errors_are_identical, NULL))
2516 {
2517 if (reason != NULL)
2518 *reason = _("different result types");
2519 return false;
2520 }
2521 }
2522 if (res1 != results1->end())
2523 {
2524 if (reason != NULL)
2525 *reason = _("different number of results");
2526 return false;
2527 }
2528 }
2529
2530 return true;
2531 }
2532
2533 // Hash code.
2534
2535 unsigned int
2536 Function_type::do_hash_for_method(Gogo* gogo) const
2537 {
2538 unsigned int ret = 0;
2539 // We ignore the receiver type for hash codes, because we need to
2540 // get the same hash code for a method in an interface and a method
2541 // declared for a type. The former will not have a receiver.
2542 if (this->parameters_ != NULL)
2543 {
2544 int shift = 1;
2545 for (Typed_identifier_list::const_iterator p = this->parameters_->begin();
2546 p != this->parameters_->end();
2547 ++p, ++shift)
2548 ret += p->type()->hash_for_method(gogo) << shift;
2549 }
2550 if (this->results_ != NULL)
2551 {
2552 int shift = 2;
2553 for (Typed_identifier_list::const_iterator p = this->results_->begin();
2554 p != this->results_->end();
2555 ++p, ++shift)
2556 ret += p->type()->hash_for_method(gogo) << shift;
2557 }
2558 if (this->is_varargs_)
2559 ret += 1;
2560 ret <<= 4;
2561 return ret;
2562 }
2563
2564 // Get the tree for a function type.
2565
2566 tree
2567 Function_type::do_get_tree(Gogo* gogo)
2568 {
2569 tree args = NULL_TREE;
2570 tree* pp = &args;
2571
2572 if (this->receiver_ != NULL)
2573 {
2574 Type* rtype = this->receiver_->type();
2575 tree ptype = rtype->get_tree(gogo);
2576 if (ptype == error_mark_node)
2577 return error_mark_node;
2578
2579 // We always pass the address of the receiver parameter, in
2580 // order to make interface calls work with unknown types.
2581 if (rtype->points_to() == NULL)
2582 ptype = build_pointer_type(ptype);
2583
2584 *pp = tree_cons (NULL_TREE, ptype, NULL_TREE);
2585 pp = &TREE_CHAIN (*pp);
2586 }
2587
2588 if (this->parameters_ != NULL)
2589 {
2590 for (Typed_identifier_list::const_iterator p = this->parameters_->begin();
2591 p != this->parameters_->end();
2592 ++p)
2593 {
2594 tree ptype = p->type()->get_tree(gogo);
2595 if (ptype == error_mark_node)
2596 return error_mark_node;
2597 *pp = tree_cons (NULL_TREE, ptype, NULL_TREE);
2598 pp = &TREE_CHAIN (*pp);
2599 }
2600 }
2601
2602 // Varargs is handled entirely at the Go level. At the tree level,
2603 // functions are not varargs.
2604 *pp = void_list_node;
2605
2606 tree result;
2607 if (this->results_ == NULL)
2608 result = void_type_node;
2609 else if (this->results_->size() == 1)
2610 result = this->results_->begin()->type()->get_tree(gogo);
2611 else
2612 {
2613 result = make_node(RECORD_TYPE);
2614 tree field_trees = NULL_TREE;
2615 tree* pp = &field_trees;
2616 for (Typed_identifier_list::const_iterator p = this->results_->begin();
2617 p != this->results_->end();
2618 ++p)
2619 {
2620 const std::string name = (p->name().empty()
2621 ? "UNNAMED"
2622 : Gogo::unpack_hidden_name(p->name()));
2623 tree name_tree = get_identifier_with_length(name.data(),
2624 name.length());
2625 tree field_type_tree = p->type()->get_tree(gogo);
2626 if (field_type_tree == error_mark_node)
2627 return error_mark_node;
2628 tree field = build_decl(this->location_, FIELD_DECL, name_tree,
2629 field_type_tree);
2630 DECL_CONTEXT(field) = result;
2631 *pp = field;
2632 pp = &DECL_CHAIN(field);
2633 }
2634 TYPE_FIELDS(result) = field_trees;
2635 layout_type(result);
2636 }
2637
2638 if (result == error_mark_node)
2639 return error_mark_node;
2640
2641 tree fntype = build_function_type(result, args);
2642 if (fntype == error_mark_node)
2643 return fntype;
2644
2645 return build_pointer_type(fntype);
2646 }
2647
2648 // Functions are initialized to NULL.
2649
2650 tree
2651 Function_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
2652 {
2653 if (is_clear)
2654 return NULL;
2655 return fold_convert(type_tree, null_pointer_node);
2656 }
2657
2658 // The type of a function type descriptor.
2659
2660 Type*
2661 Function_type::make_function_type_descriptor_type()
2662 {
2663 static Type* ret;
2664 if (ret == NULL)
2665 {
2666 Type* tdt = Type::make_type_descriptor_type();
2667 Type* ptdt = Type::make_type_descriptor_ptr_type();
2668
2669 Type* bool_type = Type::lookup_bool_type();
2670
2671 Type* slice_type = Type::make_array_type(ptdt, NULL);
2672
2673 Struct_type* s = Type::make_builtin_struct_type(4,
2674 "", tdt,
2675 "dotdotdot", bool_type,
2676 "in", slice_type,
2677 "out", slice_type);
2678
2679 ret = Type::make_builtin_named_type("FuncType", s);
2680 }
2681
2682 return ret;
2683 }
2684
2685 // The type descriptor for a function type.
2686
2687 Expression*
2688 Function_type::do_type_descriptor(Gogo* gogo, Named_type* name)
2689 {
2690 source_location bloc = BUILTINS_LOCATION;
2691
2692 Type* ftdt = Function_type::make_function_type_descriptor_type();
2693
2694 const Struct_field_list* fields = ftdt->struct_type()->fields();
2695
2696 Expression_list* vals = new Expression_list();
2697 vals->reserve(4);
2698
2699 Struct_field_list::const_iterator p = fields->begin();
2700 gcc_assert(p->field_name() == "commonType");
2701 vals->push_back(this->type_descriptor_constructor(gogo,
2702 RUNTIME_TYPE_KIND_FUNC,
2703 name, NULL, true));
2704
2705 ++p;
2706 gcc_assert(p->field_name() == "dotdotdot");
2707 vals->push_back(Expression::make_boolean(this->is_varargs(), bloc));
2708
2709 ++p;
2710 gcc_assert(p->field_name() == "in");
2711 vals->push_back(this->type_descriptor_params(p->type(), this->receiver(),
2712 this->parameters()));
2713
2714 ++p;
2715 gcc_assert(p->field_name() == "out");
2716 vals->push_back(this->type_descriptor_params(p->type(), NULL,
2717 this->results()));
2718
2719 ++p;
2720 gcc_assert(p == fields->end());
2721
2722 return Expression::make_struct_composite_literal(ftdt, vals, bloc);
2723 }
2724
2725 // Return a composite literal for the parameters or results of a type
2726 // descriptor.
2727
2728 Expression*
2729 Function_type::type_descriptor_params(Type* params_type,
2730 const Typed_identifier* receiver,
2731 const Typed_identifier_list* params)
2732 {
2733 source_location bloc = BUILTINS_LOCATION;
2734
2735 if (receiver == NULL && params == NULL)
2736 return Expression::make_slice_composite_literal(params_type, NULL, bloc);
2737
2738 Expression_list* vals = new Expression_list();
2739 vals->reserve((params == NULL ? 0 : params->size())
2740 + (receiver != NULL ? 1 : 0));
2741
2742 if (receiver != NULL)
2743 {
2744 Type* rtype = receiver->type();
2745 // The receiver is always passed as a pointer. FIXME: Is this
2746 // right? Should that fact affect the type descriptor?
2747 if (rtype->points_to() == NULL)
2748 rtype = Type::make_pointer_type(rtype);
2749 vals->push_back(Expression::make_type_descriptor(rtype, bloc));
2750 }
2751
2752 if (params != NULL)
2753 {
2754 for (Typed_identifier_list::const_iterator p = params->begin();
2755 p != params->end();
2756 ++p)
2757 vals->push_back(Expression::make_type_descriptor(p->type(), bloc));
2758 }
2759
2760 return Expression::make_slice_composite_literal(params_type, vals, bloc);
2761 }
2762
2763 // The reflection string.
2764
2765 void
2766 Function_type::do_reflection(Gogo* gogo, std::string* ret) const
2767 {
2768 // FIXME: Turn this off until we straighten out the type of the
2769 // struct field used in a go statement which calls a method.
2770 // gcc_assert(this->receiver_ == NULL);
2771
2772 ret->append("func");
2773
2774 if (this->receiver_ != NULL)
2775 {
2776 ret->push_back('(');
2777 this->append_reflection(this->receiver_->type(), gogo, ret);
2778 ret->push_back(')');
2779 }
2780
2781 ret->push_back('(');
2782 const Typed_identifier_list* params = this->parameters();
2783 if (params != NULL)
2784 {
2785 bool is_varargs = this->is_varargs_;
2786 for (Typed_identifier_list::const_iterator p = params->begin();
2787 p != params->end();
2788 ++p)
2789 {
2790 if (p != params->begin())
2791 ret->append(", ");
2792 if (!is_varargs || p + 1 != params->end())
2793 this->append_reflection(p->type(), gogo, ret);
2794 else
2795 {
2796 ret->append("...");
2797 this->append_reflection(p->type()->array_type()->element_type(),
2798 gogo, ret);
2799 }
2800 }
2801 }
2802 ret->push_back(')');
2803
2804 const Typed_identifier_list* results = this->results();
2805 if (results != NULL && !results->empty())
2806 {
2807 if (results->size() == 1)
2808 ret->push_back(' ');
2809 else
2810 ret->append(" (");
2811 for (Typed_identifier_list::const_iterator p = results->begin();
2812 p != results->end();
2813 ++p)
2814 {
2815 if (p != results->begin())
2816 ret->append(", ");
2817 this->append_reflection(p->type(), gogo, ret);
2818 }
2819 if (results->size() > 1)
2820 ret->push_back(')');
2821 }
2822 }
2823
2824 // Mangled name.
2825
2826 void
2827 Function_type::do_mangled_name(Gogo* gogo, std::string* ret) const
2828 {
2829 ret->push_back('F');
2830
2831 if (this->receiver_ != NULL)
2832 {
2833 ret->push_back('m');
2834 this->append_mangled_name(this->receiver_->type(), gogo, ret);
2835 }
2836
2837 const Typed_identifier_list* params = this->parameters();
2838 if (params != NULL)
2839 {
2840 ret->push_back('p');
2841 for (Typed_identifier_list::const_iterator p = params->begin();
2842 p != params->end();
2843 ++p)
2844 this->append_mangled_name(p->type(), gogo, ret);
2845 if (this->is_varargs_)
2846 ret->push_back('V');
2847 ret->push_back('e');
2848 }
2849
2850 const Typed_identifier_list* results = this->results();
2851 if (results != NULL)
2852 {
2853 ret->push_back('r');
2854 for (Typed_identifier_list::const_iterator p = results->begin();
2855 p != results->end();
2856 ++p)
2857 this->append_mangled_name(p->type(), gogo, ret);
2858 ret->push_back('e');
2859 }
2860
2861 ret->push_back('e');
2862 }
2863
2864 // Export a function type.
2865
2866 void
2867 Function_type::do_export(Export* exp) const
2868 {
2869 // We don't write out the receiver. The only function types which
2870 // should have a receiver are the ones associated with explicitly
2871 // defined methods. For those the receiver type is written out by
2872 // Function::export_func.
2873
2874 exp->write_c_string("(");
2875 bool first = true;
2876 if (this->parameters_ != NULL)
2877 {
2878 bool is_varargs = this->is_varargs_;
2879 for (Typed_identifier_list::const_iterator p =
2880 this->parameters_->begin();
2881 p != this->parameters_->end();
2882 ++p)
2883 {
2884 if (first)
2885 first = false;
2886 else
2887 exp->write_c_string(", ");
2888 if (!is_varargs || p + 1 != this->parameters_->end())
2889 exp->write_type(p->type());
2890 else
2891 {
2892 exp->write_c_string("...");
2893 exp->write_type(p->type()->array_type()->element_type());
2894 }
2895 }
2896 }
2897 exp->write_c_string(")");
2898
2899 const Typed_identifier_list* results = this->results_;
2900 if (results != NULL)
2901 {
2902 exp->write_c_string(" ");
2903 if (results->size() == 1)
2904 exp->write_type(results->begin()->type());
2905 else
2906 {
2907 first = true;
2908 exp->write_c_string("(");
2909 for (Typed_identifier_list::const_iterator p = results->begin();
2910 p != results->end();
2911 ++p)
2912 {
2913 if (first)
2914 first = false;
2915 else
2916 exp->write_c_string(", ");
2917 exp->write_type(p->type());
2918 }
2919 exp->write_c_string(")");
2920 }
2921 }
2922 }
2923
2924 // Import a function type.
2925
2926 Function_type*
2927 Function_type::do_import(Import* imp)
2928 {
2929 imp->require_c_string("(");
2930 Typed_identifier_list* parameters;
2931 bool is_varargs = false;
2932 if (imp->peek_char() == ')')
2933 parameters = NULL;
2934 else
2935 {
2936 parameters = new Typed_identifier_list();
2937 while (true)
2938 {
2939 if (imp->match_c_string("..."))
2940 {
2941 imp->advance(3);
2942 is_varargs = true;
2943 }
2944
2945 Type* ptype = imp->read_type();
2946 if (is_varargs)
2947 ptype = Type::make_array_type(ptype, NULL);
2948 parameters->push_back(Typed_identifier(Import::import_marker,
2949 ptype, imp->location()));
2950 if (imp->peek_char() != ',')
2951 break;
2952 gcc_assert(!is_varargs);
2953 imp->require_c_string(", ");
2954 }
2955 }
2956 imp->require_c_string(")");
2957
2958 Typed_identifier_list* results;
2959 if (imp->peek_char() != ' ')
2960 results = NULL;
2961 else
2962 {
2963 imp->advance(1);
2964 results = new Typed_identifier_list;
2965 if (imp->peek_char() != '(')
2966 {
2967 Type* rtype = imp->read_type();
2968 results->push_back(Typed_identifier(Import::import_marker, rtype,
2969 imp->location()));
2970 }
2971 else
2972 {
2973 imp->advance(1);
2974 while (true)
2975 {
2976 Type* rtype = imp->read_type();
2977 results->push_back(Typed_identifier(Import::import_marker,
2978 rtype, imp->location()));
2979 if (imp->peek_char() != ',')
2980 break;
2981 imp->require_c_string(", ");
2982 }
2983 imp->require_c_string(")");
2984 }
2985 }
2986
2987 Function_type* ret = Type::make_function_type(NULL, parameters, results,
2988 imp->location());
2989 if (is_varargs)
2990 ret->set_is_varargs();
2991 return ret;
2992 }
2993
2994 // Make a copy of a function type without a receiver.
2995
2996 Function_type*
2997 Function_type::copy_without_receiver() const
2998 {
2999 gcc_assert(this->is_method());
3000 Function_type *ret = Type::make_function_type(NULL, this->parameters_,
3001 this->results_,
3002 this->location_);
3003 if (this->is_varargs())
3004 ret->set_is_varargs();
3005 if (this->is_builtin())
3006 ret->set_is_builtin();
3007 return ret;
3008 }
3009
3010 // Make a copy of a function type with a receiver.
3011
3012 Function_type*
3013 Function_type::copy_with_receiver(Type* receiver_type) const
3014 {
3015 gcc_assert(!this->is_method());
3016 Typed_identifier* receiver = new Typed_identifier("", receiver_type,
3017 this->location_);
3018 return Type::make_function_type(receiver, this->parameters_,
3019 this->results_, this->location_);
3020 }
3021
3022 // Make a function type.
3023
3024 Function_type*
3025 Type::make_function_type(Typed_identifier* receiver,
3026 Typed_identifier_list* parameters,
3027 Typed_identifier_list* results,
3028 source_location location)
3029 {
3030 return new Function_type(receiver, parameters, results, location);
3031 }
3032
3033 // Class Pointer_type.
3034
3035 // Traversal.
3036
3037 int
3038 Pointer_type::do_traverse(Traverse* traverse)
3039 {
3040 return Type::traverse(this->to_type_, traverse);
3041 }
3042
3043 // Hash code.
3044
3045 unsigned int
3046 Pointer_type::do_hash_for_method(Gogo* gogo) const
3047 {
3048 return this->to_type_->hash_for_method(gogo) << 4;
3049 }
3050
3051 // The tree for a pointer type.
3052
3053 tree
3054 Pointer_type::do_get_tree(Gogo* gogo)
3055 {
3056 return build_pointer_type(this->to_type_->get_tree(gogo));
3057 }
3058
3059 // Initialize a pointer type.
3060
3061 tree
3062 Pointer_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
3063 {
3064 if (is_clear)
3065 return NULL;
3066 return fold_convert(type_tree, null_pointer_node);
3067 }
3068
3069 // The type of a pointer type descriptor.
3070
3071 Type*
3072 Pointer_type::make_pointer_type_descriptor_type()
3073 {
3074 static Type* ret;
3075 if (ret == NULL)
3076 {
3077 Type* tdt = Type::make_type_descriptor_type();
3078 Type* ptdt = Type::make_type_descriptor_ptr_type();
3079
3080 Struct_type* s = Type::make_builtin_struct_type(2,
3081 "", tdt,
3082 "elem", ptdt);
3083
3084 ret = Type::make_builtin_named_type("PtrType", s);
3085 }
3086
3087 return ret;
3088 }
3089
3090 // The type descriptor for a pointer type.
3091
3092 Expression*
3093 Pointer_type::do_type_descriptor(Gogo* gogo, Named_type* name)
3094 {
3095 if (this->is_unsafe_pointer_type())
3096 {
3097 gcc_assert(name != NULL);
3098 return this->plain_type_descriptor(gogo,
3099 RUNTIME_TYPE_KIND_UNSAFE_POINTER,
3100 name);
3101 }
3102 else
3103 {
3104 source_location bloc = BUILTINS_LOCATION;
3105
3106 const Methods* methods;
3107 Type* deref = this->points_to();
3108 if (deref->named_type() != NULL)
3109 methods = deref->named_type()->methods();
3110 else if (deref->struct_type() != NULL)
3111 methods = deref->struct_type()->methods();
3112 else
3113 methods = NULL;
3114
3115 Type* ptr_tdt = Pointer_type::make_pointer_type_descriptor_type();
3116
3117 const Struct_field_list* fields = ptr_tdt->struct_type()->fields();
3118
3119 Expression_list* vals = new Expression_list();
3120 vals->reserve(2);
3121
3122 Struct_field_list::const_iterator p = fields->begin();
3123 gcc_assert(p->field_name() == "commonType");
3124 vals->push_back(this->type_descriptor_constructor(gogo,
3125 RUNTIME_TYPE_KIND_PTR,
3126 name, methods, false));
3127
3128 ++p;
3129 gcc_assert(p->field_name() == "elem");
3130 vals->push_back(Expression::make_type_descriptor(deref, bloc));
3131
3132 return Expression::make_struct_composite_literal(ptr_tdt, vals, bloc);
3133 }
3134 }
3135
3136 // Reflection string.
3137
3138 void
3139 Pointer_type::do_reflection(Gogo* gogo, std::string* ret) const
3140 {
3141 ret->push_back('*');
3142 this->append_reflection(this->to_type_, gogo, ret);
3143 }
3144
3145 // Mangled name.
3146
3147 void
3148 Pointer_type::do_mangled_name(Gogo* gogo, std::string* ret) const
3149 {
3150 ret->push_back('p');
3151 this->append_mangled_name(this->to_type_, gogo, ret);
3152 }
3153
3154 // Export.
3155
3156 void
3157 Pointer_type::do_export(Export* exp) const
3158 {
3159 exp->write_c_string("*");
3160 if (this->is_unsafe_pointer_type())
3161 exp->write_c_string("any");
3162 else
3163 exp->write_type(this->to_type_);
3164 }
3165
3166 // Import.
3167
3168 Pointer_type*
3169 Pointer_type::do_import(Import* imp)
3170 {
3171 imp->require_c_string("*");
3172 if (imp->match_c_string("any"))
3173 {
3174 imp->advance(3);
3175 return Type::make_pointer_type(Type::make_void_type());
3176 }
3177 Type* to = imp->read_type();
3178 return Type::make_pointer_type(to);
3179 }
3180
3181 // Make a pointer type.
3182
3183 Pointer_type*
3184 Type::make_pointer_type(Type* to_type)
3185 {
3186 typedef Unordered_map(Type*, Pointer_type*) Hashtable;
3187 static Hashtable pointer_types;
3188 Hashtable::const_iterator p = pointer_types.find(to_type);
3189 if (p != pointer_types.end())
3190 return p->second;
3191 Pointer_type* ret = new Pointer_type(to_type);
3192 pointer_types[to_type] = ret;
3193 return ret;
3194 }
3195
3196 // The nil type. We use a special type for nil because it is not the
3197 // same as any other type. In C term nil has type void*, but there is
3198 // no such type in Go.
3199
3200 class Nil_type : public Type
3201 {
3202 public:
3203 Nil_type()
3204 : Type(TYPE_NIL)
3205 { }
3206
3207 protected:
3208 tree
3209 do_get_tree(Gogo*)
3210 { return ptr_type_node; }
3211
3212 tree
3213 do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
3214 { return is_clear ? NULL : fold_convert(type_tree, null_pointer_node); }
3215
3216 Expression*
3217 do_type_descriptor(Gogo*, Named_type*)
3218 { gcc_unreachable(); }
3219
3220 void
3221 do_reflection(Gogo*, std::string*) const
3222 { gcc_unreachable(); }
3223
3224 void
3225 do_mangled_name(Gogo*, std::string* ret) const
3226 { ret->push_back('n'); }
3227 };
3228
3229 // Make the nil type.
3230
3231 Type*
3232 Type::make_nil_type()
3233 {
3234 static Nil_type singleton_nil_type;
3235 return &singleton_nil_type;
3236 }
3237
3238 // The type of a function call which returns multiple values. This is
3239 // really a struct, but we don't want to confuse a function call which
3240 // returns a struct with a function call which returns multiple
3241 // values.
3242
3243 class Call_multiple_result_type : public Type
3244 {
3245 public:
3246 Call_multiple_result_type(Call_expression* call)
3247 : Type(TYPE_CALL_MULTIPLE_RESULT),
3248 call_(call)
3249 { }
3250
3251 protected:
3252 bool
3253 do_has_pointer() const
3254 { gcc_unreachable(); }
3255
3256 tree
3257 do_get_tree(Gogo*);
3258
3259 tree
3260 do_get_init_tree(Gogo*, tree, bool)
3261 { gcc_unreachable(); }
3262
3263 Expression*
3264 do_type_descriptor(Gogo*, Named_type*)
3265 { gcc_unreachable(); }
3266
3267 void
3268 do_reflection(Gogo*, std::string*) const
3269 { gcc_unreachable(); }
3270
3271 void
3272 do_mangled_name(Gogo*, std::string*) const
3273 { gcc_unreachable(); }
3274
3275 private:
3276 // The expression being called.
3277 Call_expression* call_;
3278 };
3279
3280 // Return the tree for a call result.
3281
3282 tree
3283 Call_multiple_result_type::do_get_tree(Gogo* gogo)
3284 {
3285 Function_type* fntype = this->call_->get_function_type();
3286 gcc_assert(fntype != NULL);
3287 const Typed_identifier_list* results = fntype->results();
3288 gcc_assert(results != NULL && results->size() > 1);
3289
3290 Struct_field_list* sfl = new Struct_field_list;
3291 for (Typed_identifier_list::const_iterator p = results->begin();
3292 p != results->end();
3293 ++p)
3294 {
3295 const std::string name = ((p->name().empty()
3296 || p->name() == Import::import_marker)
3297 ? "UNNAMED"
3298 : p->name());
3299 sfl->push_back(Struct_field(Typed_identifier(name, p->type(),
3300 this->call_->location())));
3301 }
3302 return Type::make_struct_type(sfl, this->call_->location())->get_tree(gogo);
3303 }
3304
3305 // Make a call result type.
3306
3307 Type*
3308 Type::make_call_multiple_result_type(Call_expression* call)
3309 {
3310 return new Call_multiple_result_type(call);
3311 }
3312
3313 // Class Struct_field.
3314
3315 // Get the name of a field.
3316
3317 const std::string&
3318 Struct_field::field_name() const
3319 {
3320 const std::string& name(this->typed_identifier_.name());
3321 if (!name.empty())
3322 return name;
3323 else
3324 {
3325 // This is called during parsing, before anything is lowered, so
3326 // we have to be pretty careful to avoid dereferencing an
3327 // unknown type name.
3328 Type* t = this->typed_identifier_.type();
3329 Type* dt = t;
3330 if (t->classification() == Type::TYPE_POINTER)
3331 {
3332 // Very ugly.
3333 Pointer_type* ptype = static_cast<Pointer_type*>(t);
3334 dt = ptype->points_to();
3335 }
3336 if (dt->forward_declaration_type() != NULL)
3337 return dt->forward_declaration_type()->name();
3338 else if (dt->named_type() != NULL)
3339 return dt->named_type()->name();
3340 else if (t->is_error_type() || dt->is_error_type())
3341 {
3342 static const std::string error_string = "*error*";
3343 return error_string;
3344 }
3345 else
3346 {
3347 // Avoid crashing in the erroneous case where T is named but
3348 // DT is not.
3349 gcc_assert(t != dt);
3350 if (t->forward_declaration_type() != NULL)
3351 return t->forward_declaration_type()->name();
3352 else if (t->named_type() != NULL)
3353 return t->named_type()->name();
3354 else
3355 gcc_unreachable();
3356 }
3357 }
3358 }
3359
3360 // Class Struct_type.
3361
3362 // Traversal.
3363
3364 int
3365 Struct_type::do_traverse(Traverse* traverse)
3366 {
3367 Struct_field_list* fields = this->fields_;
3368 if (fields != NULL)
3369 {
3370 for (Struct_field_list::iterator p = fields->begin();
3371 p != fields->end();
3372 ++p)
3373 {
3374 if (Type::traverse(p->type(), traverse) == TRAVERSE_EXIT)
3375 return TRAVERSE_EXIT;
3376 }
3377 }
3378 return TRAVERSE_CONTINUE;
3379 }
3380
3381 // Verify that the struct type is complete and valid.
3382
3383 bool
3384 Struct_type::do_verify()
3385 {
3386 Struct_field_list* fields = this->fields_;
3387 if (fields == NULL)
3388 return true;
3389 bool ret = true;
3390 for (Struct_field_list::iterator p = fields->begin();
3391 p != fields->end();
3392 ++p)
3393 {
3394 Type* t = p->type();
3395 if (t->is_undefined())
3396 {
3397 error_at(p->location(), "struct field type is incomplete");
3398 p->set_type(Type::make_error_type());
3399 ret = false;
3400 }
3401 else if (p->is_anonymous())
3402 {
3403 if (t->named_type() != NULL && t->points_to() != NULL)
3404 {
3405 error_at(p->location(), "embedded type may not be a pointer");
3406 p->set_type(Type::make_error_type());
3407 return false;
3408 }
3409 }
3410 }
3411 return ret;
3412 }
3413
3414 // Whether this contains a pointer.
3415
3416 bool
3417 Struct_type::do_has_pointer() const
3418 {
3419 const Struct_field_list* fields = this->fields();
3420 if (fields == NULL)
3421 return false;
3422 for (Struct_field_list::const_iterator p = fields->begin();
3423 p != fields->end();
3424 ++p)
3425 {
3426 if (p->type()->has_pointer())
3427 return true;
3428 }
3429 return false;
3430 }
3431
3432 // Whether this type is identical to T.
3433
3434 bool
3435 Struct_type::is_identical(const Struct_type* t,
3436 bool errors_are_identical) const
3437 {
3438 const Struct_field_list* fields1 = this->fields();
3439 const Struct_field_list* fields2 = t->fields();
3440 if (fields1 == NULL || fields2 == NULL)
3441 return fields1 == fields2;
3442 Struct_field_list::const_iterator pf2 = fields2->begin();
3443 for (Struct_field_list::const_iterator pf1 = fields1->begin();
3444 pf1 != fields1->end();
3445 ++pf1, ++pf2)
3446 {
3447 if (pf2 == fields2->end())
3448 return false;
3449 if (pf1->field_name() != pf2->field_name())
3450 return false;
3451 if (pf1->is_anonymous() != pf2->is_anonymous()
3452 || !Type::are_identical(pf1->type(), pf2->type(),
3453 errors_are_identical, NULL))
3454 return false;
3455 if (!pf1->has_tag())
3456 {
3457 if (pf2->has_tag())
3458 return false;
3459 }
3460 else
3461 {
3462 if (!pf2->has_tag())
3463 return false;
3464 if (pf1->tag() != pf2->tag())
3465 return false;
3466 }
3467 }
3468 if (pf2 != fields2->end())
3469 return false;
3470 return true;
3471 }
3472
3473 // Whether this struct type has any hidden fields.
3474
3475 bool
3476 Struct_type::struct_has_hidden_fields(const Named_type* within,
3477 std::string* reason) const
3478 {
3479 const Struct_field_list* fields = this->fields();
3480 if (fields == NULL)
3481 return false;
3482 const Package* within_package = (within == NULL
3483 ? NULL
3484 : within->named_object()->package());
3485 for (Struct_field_list::const_iterator pf = fields->begin();
3486 pf != fields->end();
3487 ++pf)
3488 {
3489 if (within_package != NULL
3490 && !pf->is_anonymous()
3491 && Gogo::is_hidden_name(pf->field_name()))
3492 {
3493 if (reason != NULL)
3494 {
3495 std::string within_name = within->named_object()->message_name();
3496 std::string name = Gogo::message_name(pf->field_name());
3497 size_t bufsize = 200 + within_name.length() + name.length();
3498 char* buf = new char[bufsize];
3499 snprintf(buf, bufsize,
3500 _("implicit assignment of %s%s%s hidden field %s%s%s"),
3501 open_quote, within_name.c_str(), close_quote,
3502 open_quote, name.c_str(), close_quote);
3503 reason->assign(buf);
3504 delete[] buf;
3505 }
3506 return true;
3507 }
3508
3509 if (pf->type()->has_hidden_fields(within, reason))
3510 return true;
3511 }
3512
3513 return false;
3514 }
3515
3516 // Hash code.
3517
3518 unsigned int
3519 Struct_type::do_hash_for_method(Gogo* gogo) const
3520 {
3521 unsigned int ret = 0;
3522 if (this->fields() != NULL)
3523 {
3524 for (Struct_field_list::const_iterator pf = this->fields()->begin();
3525 pf != this->fields()->end();
3526 ++pf)
3527 ret = (ret << 1) + pf->type()->hash_for_method(gogo);
3528 }
3529 return ret <<= 2;
3530 }
3531
3532 // Find the local field NAME.
3533
3534 const Struct_field*
3535 Struct_type::find_local_field(const std::string& name,
3536 unsigned int *pindex) const
3537 {
3538 const Struct_field_list* fields = this->fields_;
3539 if (fields == NULL)
3540 return NULL;
3541 unsigned int i = 0;
3542 for (Struct_field_list::const_iterator pf = fields->begin();
3543 pf != fields->end();
3544 ++pf, ++i)
3545 {
3546 if (pf->field_name() == name)
3547 {
3548 if (pindex != NULL)
3549 *pindex = i;
3550 return &*pf;
3551 }
3552 }
3553 return NULL;
3554 }
3555
3556 // Return an expression for field NAME in STRUCT_EXPR, or NULL.
3557
3558 Field_reference_expression*
3559 Struct_type::field_reference(Expression* struct_expr, const std::string& name,
3560 source_location location) const
3561 {
3562 unsigned int depth;
3563 return this->field_reference_depth(struct_expr, name, location, &depth);
3564 }
3565
3566 // Return an expression for a field, along with the depth at which it
3567 // was found.
3568
3569 Field_reference_expression*
3570 Struct_type::field_reference_depth(Expression* struct_expr,
3571 const std::string& name,
3572 source_location location,
3573 unsigned int* depth) const
3574 {
3575 const Struct_field_list* fields = this->fields_;
3576 if (fields == NULL)
3577 return NULL;
3578
3579 // Look for a field with this name.
3580 unsigned int i = 0;
3581 for (Struct_field_list::const_iterator pf = fields->begin();
3582 pf != fields->end();
3583 ++pf, ++i)
3584 {
3585 if (pf->field_name() == name)
3586 {
3587 *depth = 0;
3588 return Expression::make_field_reference(struct_expr, i, location);
3589 }
3590 }
3591
3592 // Look for an anonymous field which contains a field with this
3593 // name.
3594 unsigned int found_depth = 0;
3595 Field_reference_expression* ret = NULL;
3596 i = 0;
3597 for (Struct_field_list::const_iterator pf = fields->begin();
3598 pf != fields->end();
3599 ++pf, ++i)
3600 {
3601 if (!pf->is_anonymous())
3602 continue;
3603
3604 Struct_type* st = pf->type()->deref()->struct_type();
3605 if (st == NULL)
3606 continue;
3607
3608 // Look for a reference using a NULL struct expression. If we
3609 // find one, fill in the struct expression with a reference to
3610 // this field.
3611 unsigned int subdepth;
3612 Field_reference_expression* sub = st->field_reference_depth(NULL, name,
3613 location,
3614 &subdepth);
3615 if (sub == NULL)
3616 continue;
3617
3618 if (ret == NULL || subdepth < found_depth)
3619 {
3620 if (ret != NULL)
3621 delete ret;
3622 ret = sub;
3623 found_depth = subdepth;
3624 Expression* here = Expression::make_field_reference(struct_expr, i,
3625 location);
3626 if (pf->type()->points_to() != NULL)
3627 here = Expression::make_unary(OPERATOR_MULT, here, location);
3628 while (sub->expr() != NULL)
3629 {
3630 sub = sub->expr()->deref()->field_reference_expression();
3631 gcc_assert(sub != NULL);
3632 }
3633 sub->set_struct_expression(here);
3634 }
3635 else if (subdepth > found_depth)
3636 delete sub;
3637 else
3638 {
3639 // We do not handle ambiguity here--it should be handled by
3640 // Type::bind_field_or_method.
3641 delete sub;
3642 found_depth = 0;
3643 ret = NULL;
3644 }
3645 }
3646
3647 if (ret != NULL)
3648 *depth = found_depth + 1;
3649
3650 return ret;
3651 }
3652
3653 // Return the total number of fields, including embedded fields.
3654
3655 unsigned int
3656 Struct_type::total_field_count() const
3657 {
3658 if (this->fields_ == NULL)
3659 return 0;
3660 unsigned int ret = 0;
3661 for (Struct_field_list::const_iterator pf = this->fields_->begin();
3662 pf != this->fields_->end();
3663 ++pf)
3664 {
3665 if (!pf->is_anonymous() || pf->type()->deref()->struct_type() == NULL)
3666 ++ret;
3667 else
3668 ret += pf->type()->struct_type()->total_field_count();
3669 }
3670 return ret;
3671 }
3672
3673 // Return whether NAME is an unexported field, for better error reporting.
3674
3675 bool
3676 Struct_type::is_unexported_local_field(Gogo* gogo,
3677 const std::string& name) const
3678 {
3679 const Struct_field_list* fields = this->fields_;
3680 if (fields != NULL)
3681 {
3682 for (Struct_field_list::const_iterator pf = fields->begin();
3683 pf != fields->end();
3684 ++pf)
3685 {
3686 const std::string& field_name(pf->field_name());
3687 if (Gogo::is_hidden_name(field_name)
3688 && name == Gogo::unpack_hidden_name(field_name)
3689 && gogo->pack_hidden_name(name, false) != field_name)
3690 return true;
3691 }
3692 }
3693 return false;
3694 }
3695
3696 // Finalize the methods of an unnamed struct.
3697
3698 void
3699 Struct_type::finalize_methods(Gogo* gogo)
3700 {
3701 Type::finalize_methods(gogo, this, this->location_, &this->all_methods_);
3702 }
3703
3704 // Return the method NAME, or NULL if there isn't one or if it is
3705 // ambiguous. Set *IS_AMBIGUOUS if the method exists but is
3706 // ambiguous.
3707
3708 Method*
3709 Struct_type::method_function(const std::string& name, bool* is_ambiguous) const
3710 {
3711 return Type::method_function(this->all_methods_, name, is_ambiguous);
3712 }
3713
3714 // Get the tree for a struct type.
3715
3716 tree
3717 Struct_type::do_get_tree(Gogo* gogo)
3718 {
3719 tree type = make_node(RECORD_TYPE);
3720 return this->fill_in_tree(gogo, type);
3721 }
3722
3723 // Fill in the fields for a struct type.
3724
3725 tree
3726 Struct_type::fill_in_tree(Gogo* gogo, tree type)
3727 {
3728 tree field_trees = NULL_TREE;
3729 tree* pp = &field_trees;
3730 for (Struct_field_list::const_iterator p = this->fields_->begin();
3731 p != this->fields_->end();
3732 ++p)
3733 {
3734 std::string name = Gogo::unpack_hidden_name(p->field_name());
3735 tree name_tree = get_identifier_with_length(name.data(), name.length());
3736 tree field_type_tree = p->type()->get_tree(gogo);
3737 if (field_type_tree == error_mark_node)
3738 return error_mark_node;
3739 tree field = build_decl(p->location(), FIELD_DECL, name_tree,
3740 field_type_tree);
3741 DECL_CONTEXT(field) = type;
3742 *pp = field;
3743 pp = &DECL_CHAIN(field);
3744 }
3745
3746 TYPE_FIELDS(type) = field_trees;
3747
3748 layout_type(type);
3749
3750 return type;
3751 }
3752
3753 // Initialize struct fields.
3754
3755 tree
3756 Struct_type::do_get_init_tree(Gogo* gogo, tree type_tree, bool is_clear)
3757 {
3758 if (this->fields_ == NULL || this->fields_->empty())
3759 {
3760 if (is_clear)
3761 return NULL;
3762 else
3763 {
3764 tree ret = build_constructor(type_tree,
3765 VEC_alloc(constructor_elt, gc, 0));
3766 TREE_CONSTANT(ret) = 1;
3767 return ret;
3768 }
3769 }
3770
3771 bool is_constant = true;
3772 bool any_fields_set = false;
3773 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc,
3774 this->fields_->size());
3775
3776 tree field = TYPE_FIELDS(type_tree);
3777 for (Struct_field_list::const_iterator p = this->fields_->begin();
3778 p != this->fields_->end();
3779 ++p, field = DECL_CHAIN(field))
3780 {
3781 tree value = p->type()->get_init_tree(gogo, is_clear);
3782 if (value == error_mark_node)
3783 return error_mark_node;
3784 gcc_assert(field != NULL_TREE);
3785 if (value != NULL)
3786 {
3787 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
3788 elt->index = field;
3789 elt->value = value;
3790 any_fields_set = true;
3791 if (!TREE_CONSTANT(value))
3792 is_constant = false;
3793 }
3794 }
3795 gcc_assert(field == NULL_TREE);
3796
3797 if (!any_fields_set)
3798 {
3799 gcc_assert(is_clear);
3800 VEC_free(constructor_elt, gc, init);
3801 return NULL;
3802 }
3803
3804 tree ret = build_constructor(type_tree, init);
3805 if (is_constant)
3806 TREE_CONSTANT(ret) = 1;
3807 return ret;
3808 }
3809
3810 // The type of a struct type descriptor.
3811
3812 Type*
3813 Struct_type::make_struct_type_descriptor_type()
3814 {
3815 static Type* ret;
3816 if (ret == NULL)
3817 {
3818 Type* tdt = Type::make_type_descriptor_type();
3819 Type* ptdt = Type::make_type_descriptor_ptr_type();
3820
3821 Type* uintptr_type = Type::lookup_integer_type("uintptr");
3822 Type* string_type = Type::lookup_string_type();
3823 Type* pointer_string_type = Type::make_pointer_type(string_type);
3824
3825 Struct_type* sf =
3826 Type::make_builtin_struct_type(5,
3827 "name", pointer_string_type,
3828 "pkgPath", pointer_string_type,
3829 "typ", ptdt,
3830 "tag", pointer_string_type,
3831 "offset", uintptr_type);
3832 Type* nsf = Type::make_builtin_named_type("structField", sf);
3833
3834 Type* slice_type = Type::make_array_type(nsf, NULL);
3835
3836 Struct_type* s = Type::make_builtin_struct_type(2,
3837 "", tdt,
3838 "fields", slice_type);
3839
3840 ret = Type::make_builtin_named_type("StructType", s);
3841 }
3842
3843 return ret;
3844 }
3845
3846 // Build a type descriptor for a struct type.
3847
3848 Expression*
3849 Struct_type::do_type_descriptor(Gogo* gogo, Named_type* name)
3850 {
3851 source_location bloc = BUILTINS_LOCATION;
3852
3853 Type* stdt = Struct_type::make_struct_type_descriptor_type();
3854
3855 const Struct_field_list* fields = stdt->struct_type()->fields();
3856
3857 Expression_list* vals = new Expression_list();
3858 vals->reserve(2);
3859
3860 const Methods* methods = this->methods();
3861 // A named struct should not have methods--the methods should attach
3862 // to the named type.
3863 gcc_assert(methods == NULL || name == NULL);
3864
3865 Struct_field_list::const_iterator ps = fields->begin();
3866 gcc_assert(ps->field_name() == "commonType");
3867 vals->push_back(this->type_descriptor_constructor(gogo,
3868 RUNTIME_TYPE_KIND_STRUCT,
3869 name, methods, true));
3870
3871 ++ps;
3872 gcc_assert(ps->field_name() == "fields");
3873
3874 Expression_list* elements = new Expression_list();
3875 elements->reserve(this->fields_->size());
3876 Type* element_type = ps->type()->array_type()->element_type();
3877 for (Struct_field_list::const_iterator pf = this->fields_->begin();
3878 pf != this->fields_->end();
3879 ++pf)
3880 {
3881 const Struct_field_list* f = element_type->struct_type()->fields();
3882
3883 Expression_list* fvals = new Expression_list();
3884 fvals->reserve(5);
3885
3886 Struct_field_list::const_iterator q = f->begin();
3887 gcc_assert(q->field_name() == "name");
3888 if (pf->is_anonymous())
3889 fvals->push_back(Expression::make_nil(bloc));
3890 else
3891 {
3892 std::string n = Gogo::unpack_hidden_name(pf->field_name());
3893 Expression* s = Expression::make_string(n, bloc);
3894 fvals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
3895 }
3896
3897 ++q;
3898 gcc_assert(q->field_name() == "pkgPath");
3899 if (!Gogo::is_hidden_name(pf->field_name()))
3900 fvals->push_back(Expression::make_nil(bloc));
3901 else
3902 {
3903 std::string n = Gogo::hidden_name_prefix(pf->field_name());
3904 Expression* s = Expression::make_string(n, bloc);
3905 fvals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
3906 }
3907
3908 ++q;
3909 gcc_assert(q->field_name() == "typ");
3910 fvals->push_back(Expression::make_type_descriptor(pf->type(), bloc));
3911
3912 ++q;
3913 gcc_assert(q->field_name() == "tag");
3914 if (!pf->has_tag())
3915 fvals->push_back(Expression::make_nil(bloc));
3916 else
3917 {
3918 Expression* s = Expression::make_string(pf->tag(), bloc);
3919 fvals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
3920 }
3921
3922 ++q;
3923 gcc_assert(q->field_name() == "offset");
3924 fvals->push_back(Expression::make_struct_field_offset(this, &*pf));
3925
3926 Expression* v = Expression::make_struct_composite_literal(element_type,
3927 fvals, bloc);
3928 elements->push_back(v);
3929 }
3930
3931 vals->push_back(Expression::make_slice_composite_literal(ps->type(),
3932 elements, bloc));
3933
3934 return Expression::make_struct_composite_literal(stdt, vals, bloc);
3935 }
3936
3937 // Reflection string.
3938
3939 void
3940 Struct_type::do_reflection(Gogo* gogo, std::string* ret) const
3941 {
3942 ret->append("struct { ");
3943
3944 for (Struct_field_list::const_iterator p = this->fields_->begin();
3945 p != this->fields_->end();
3946 ++p)
3947 {
3948 if (p != this->fields_->begin())
3949 ret->append("; ");
3950 if (p->is_anonymous())
3951 ret->push_back('?');
3952 else
3953 ret->append(Gogo::unpack_hidden_name(p->field_name()));
3954 ret->push_back(' ');
3955 this->append_reflection(p->type(), gogo, ret);
3956
3957 if (p->has_tag())
3958 {
3959 const std::string& tag(p->tag());
3960 ret->append(" \"");
3961 for (std::string::const_iterator p = tag.begin();
3962 p != tag.end();
3963 ++p)
3964 {
3965 if (*p == '\0')
3966 ret->append("\\x00");
3967 else if (*p == '\n')
3968 ret->append("\\n");
3969 else if (*p == '\t')
3970 ret->append("\\t");
3971 else if (*p == '"')
3972 ret->append("\\\"");
3973 else if (*p == '\\')
3974 ret->append("\\\\");
3975 else
3976 ret->push_back(*p);
3977 }
3978 ret->push_back('"');
3979 }
3980 }
3981
3982 ret->append(" }");
3983 }
3984
3985 // Mangled name.
3986
3987 void
3988 Struct_type::do_mangled_name(Gogo* gogo, std::string* ret) const
3989 {
3990 ret->push_back('S');
3991
3992 const Struct_field_list* fields = this->fields_;
3993 if (fields != NULL)
3994 {
3995 for (Struct_field_list::const_iterator p = fields->begin();
3996 p != fields->end();
3997 ++p)
3998 {
3999 if (p->is_anonymous())
4000 ret->append("0_");
4001 else
4002 {
4003 std::string n = Gogo::unpack_hidden_name(p->field_name());
4004 char buf[20];
4005 snprintf(buf, sizeof buf, "%u_",
4006 static_cast<unsigned int>(n.length()));
4007 ret->append(buf);
4008 ret->append(n);
4009 }
4010 this->append_mangled_name(p->type(), gogo, ret);
4011 if (p->has_tag())
4012 {
4013 const std::string& tag(p->tag());
4014 std::string out;
4015 for (std::string::const_iterator p = tag.begin();
4016 p != tag.end();
4017 ++p)
4018 {
4019 if (ISALNUM(*p) || *p == '_')
4020 out.push_back(*p);
4021 else
4022 {
4023 char buf[20];
4024 snprintf(buf, sizeof buf, ".%x.",
4025 static_cast<unsigned int>(*p));
4026 out.append(buf);
4027 }
4028 }
4029 char buf[20];
4030 snprintf(buf, sizeof buf, "T%u_",
4031 static_cast<unsigned int>(out.length()));
4032 ret->append(buf);
4033 ret->append(out);
4034 }
4035 }
4036 }
4037
4038 ret->push_back('e');
4039 }
4040
4041 // Export.
4042
4043 void
4044 Struct_type::do_export(Export* exp) const
4045 {
4046 exp->write_c_string("struct { ");
4047 const Struct_field_list* fields = this->fields_;
4048 gcc_assert(fields != NULL);
4049 for (Struct_field_list::const_iterator p = fields->begin();
4050 p != fields->end();
4051 ++p)
4052 {
4053 if (p->is_anonymous())
4054 exp->write_string("? ");
4055 else
4056 {
4057 exp->write_string(p->field_name());
4058 exp->write_c_string(" ");
4059 }
4060 exp->write_type(p->type());
4061
4062 if (p->has_tag())
4063 {
4064 exp->write_c_string(" ");
4065 Expression* expr = Expression::make_string(p->tag(),
4066 BUILTINS_LOCATION);
4067 expr->export_expression(exp);
4068 delete expr;
4069 }
4070
4071 exp->write_c_string("; ");
4072 }
4073 exp->write_c_string("}");
4074 }
4075
4076 // Import.
4077
4078 Struct_type*
4079 Struct_type::do_import(Import* imp)
4080 {
4081 imp->require_c_string("struct { ");
4082 Struct_field_list* fields = new Struct_field_list;
4083 if (imp->peek_char() != '}')
4084 {
4085 while (true)
4086 {
4087 std::string name;
4088 if (imp->match_c_string("? "))
4089 imp->advance(2);
4090 else
4091 {
4092 name = imp->read_identifier();
4093 imp->require_c_string(" ");
4094 }
4095 Type* ftype = imp->read_type();
4096
4097 Struct_field sf(Typed_identifier(name, ftype, imp->location()));
4098
4099 if (imp->peek_char() == ' ')
4100 {
4101 imp->advance(1);
4102 Expression* expr = Expression::import_expression(imp);
4103 String_expression* sexpr = expr->string_expression();
4104 gcc_assert(sexpr != NULL);
4105 sf.set_tag(sexpr->val());
4106 delete sexpr;
4107 }
4108
4109 imp->require_c_string("; ");
4110 fields->push_back(sf);
4111 if (imp->peek_char() == '}')
4112 break;
4113 }
4114 }
4115 imp->require_c_string("}");
4116
4117 return Type::make_struct_type(fields, imp->location());
4118 }
4119
4120 // Make a struct type.
4121
4122 Struct_type*
4123 Type::make_struct_type(Struct_field_list* fields,
4124 source_location location)
4125 {
4126 return new Struct_type(fields, location);
4127 }
4128
4129 // Class Array_type.
4130
4131 // Whether two array types are identical.
4132
4133 bool
4134 Array_type::is_identical(const Array_type* t, bool errors_are_identical) const
4135 {
4136 if (!Type::are_identical(this->element_type(), t->element_type(),
4137 errors_are_identical, NULL))
4138 return false;
4139
4140 Expression* l1 = this->length();
4141 Expression* l2 = t->length();
4142
4143 // Slices of the same element type are identical.
4144 if (l1 == NULL && l2 == NULL)
4145 return true;
4146
4147 // Arrays of the same element type are identical if they have the
4148 // same length.
4149 if (l1 != NULL && l2 != NULL)
4150 {
4151 if (l1 == l2)
4152 return true;
4153
4154 // Try to determine the lengths. If we can't, assume the arrays
4155 // are not identical.
4156 bool ret = false;
4157 mpz_t v1;
4158 mpz_init(v1);
4159 Type* type1;
4160 mpz_t v2;
4161 mpz_init(v2);
4162 Type* type2;
4163 if (l1->integer_constant_value(true, v1, &type1)
4164 && l2->integer_constant_value(true, v2, &type2))
4165 ret = mpz_cmp(v1, v2) == 0;
4166 mpz_clear(v1);
4167 mpz_clear(v2);
4168 return ret;
4169 }
4170
4171 // Otherwise the arrays are not identical.
4172 return false;
4173 }
4174
4175 // Traversal.
4176
4177 int
4178 Array_type::do_traverse(Traverse* traverse)
4179 {
4180 if (Type::traverse(this->element_type_, traverse) == TRAVERSE_EXIT)
4181 return TRAVERSE_EXIT;
4182 if (this->length_ != NULL
4183 && Expression::traverse(&this->length_, traverse) == TRAVERSE_EXIT)
4184 return TRAVERSE_EXIT;
4185 return TRAVERSE_CONTINUE;
4186 }
4187
4188 // Check that the length is valid.
4189
4190 bool
4191 Array_type::verify_length()
4192 {
4193 if (this->length_ == NULL)
4194 return true;
4195 if (!this->length_->is_constant())
4196 {
4197 error_at(this->length_->location(), "array bound is not constant");
4198 return false;
4199 }
4200
4201 mpz_t val;
4202
4203 Type* t = this->length_->type();
4204 if (t->integer_type() != NULL)
4205 {
4206 Type* vt;
4207 mpz_init(val);
4208 if (!this->length_->integer_constant_value(true, val, &vt))
4209 {
4210 error_at(this->length_->location(),
4211 "array bound is not constant");
4212 mpz_clear(val);
4213 return false;
4214 }
4215 }
4216 else if (t->float_type() != NULL)
4217 {
4218 Type* vt;
4219 mpfr_t fval;
4220 mpfr_init(fval);
4221 if (!this->length_->float_constant_value(fval, &vt))
4222 {
4223 error_at(this->length_->location(),
4224 "array bound is not constant");
4225 mpfr_clear(fval);
4226 return false;
4227 }
4228 if (!mpfr_integer_p(fval))
4229 {
4230 error_at(this->length_->location(),
4231 "array bound truncated to integer");
4232 mpfr_clear(fval);
4233 return false;
4234 }
4235 mpz_init(val);
4236 mpfr_get_z(val, fval, GMP_RNDN);
4237 mpfr_clear(fval);
4238 }
4239 else
4240 {
4241 if (!t->is_error_type())
4242 error_at(this->length_->location(), "array bound is not numeric");
4243 return false;
4244 }
4245
4246 if (mpz_sgn(val) < 0)
4247 {
4248 error_at(this->length_->location(), "negative array bound");
4249 mpz_clear(val);
4250 return false;
4251 }
4252
4253 Type* int_type = Type::lookup_integer_type("int");
4254 int tbits = int_type->integer_type()->bits();
4255 int vbits = mpz_sizeinbase(val, 2);
4256 if (vbits + 1 > tbits)
4257 {
4258 error_at(this->length_->location(), "array bound overflows");
4259 mpz_clear(val);
4260 return false;
4261 }
4262
4263 mpz_clear(val);
4264
4265 return true;
4266 }
4267
4268 // Verify the type.
4269
4270 bool
4271 Array_type::do_verify()
4272 {
4273 if (!this->verify_length())
4274 {
4275 this->length_ = Expression::make_error(this->length_->location());
4276 return false;
4277 }
4278 return true;
4279 }
4280
4281 // Array type hash code.
4282
4283 unsigned int
4284 Array_type::do_hash_for_method(Gogo* gogo) const
4285 {
4286 // There is no very convenient way to get a hash code for the
4287 // length.
4288 return this->element_type_->hash_for_method(gogo) + 1;
4289 }
4290
4291 // See if the expression passed to make is suitable. The first
4292 // argument is required, and gives the length. An optional second
4293 // argument is permitted for the capacity.
4294
4295 bool
4296 Array_type::do_check_make_expression(Expression_list* args,
4297 source_location location)
4298 {
4299 gcc_assert(this->length_ == NULL);
4300 if (args == NULL || args->empty())
4301 {
4302 error_at(location, "length required when allocating a slice");
4303 return false;
4304 }
4305 else if (args->size() > 2)
4306 {
4307 error_at(location, "too many expressions passed to make");
4308 return false;
4309 }
4310 else
4311 {
4312 if (!Type::check_int_value(args->front(),
4313 _("bad length when making slice"), location))
4314 return false;
4315
4316 if (args->size() > 1)
4317 {
4318 if (!Type::check_int_value(args->back(),
4319 _("bad capacity when making slice"),
4320 location))
4321 return false;
4322 }
4323
4324 return true;
4325 }
4326 }
4327
4328 // Get a tree for the length of a fixed array. The length may be
4329 // computed using a function call, so we must only evaluate it once.
4330
4331 tree
4332 Array_type::get_length_tree(Gogo* gogo)
4333 {
4334 gcc_assert(this->length_ != NULL);
4335 if (this->length_tree_ == NULL_TREE)
4336 {
4337 mpz_t val;
4338 mpz_init(val);
4339 Type* t;
4340 if (this->length_->integer_constant_value(true, val, &t))
4341 {
4342 if (t == NULL)
4343 t = Type::lookup_integer_type("int");
4344 else if (t->is_abstract())
4345 t = t->make_non_abstract_type();
4346 tree tt = t->get_tree(gogo);
4347 this->length_tree_ = Expression::integer_constant_tree(val, tt);
4348 mpz_clear(val);
4349 }
4350 else
4351 {
4352 mpz_clear(val);
4353
4354 // Make up a translation context for the array length
4355 // expression. FIXME: This won't work in general.
4356 Translate_context context(gogo, NULL, NULL, NULL_TREE);
4357 tree len = this->length_->get_tree(&context);
4358 len = convert_to_integer(integer_type_node, len);
4359 this->length_tree_ = save_expr(len);
4360 }
4361 }
4362 return this->length_tree_;
4363 }
4364
4365 // Get a tree for the type of this array. A fixed array is simply
4366 // represented as ARRAY_TYPE with the appropriate index--i.e., it is
4367 // just like an array in C. An open array is a struct with three
4368 // fields: a data pointer, the length, and the capacity.
4369
4370 tree
4371 Array_type::do_get_tree(Gogo* gogo)
4372 {
4373 if (this->length_ == NULL)
4374 {
4375 tree struct_type = gogo->slice_type_tree(void_type_node);
4376 return this->fill_in_tree(gogo, struct_type);
4377 }
4378 else
4379 {
4380 tree element_type_tree = this->element_type_->get_tree(gogo);
4381 tree length_tree = this->get_length_tree(gogo);
4382 if (element_type_tree == error_mark_node
4383 || length_tree == error_mark_node)
4384 return error_mark_node;
4385
4386 length_tree = fold_convert(sizetype, length_tree);
4387
4388 // build_index_type takes the maximum index, which is one less
4389 // than the length.
4390 tree index_type = build_index_type(fold_build2(MINUS_EXPR, sizetype,
4391 length_tree,
4392 size_one_node));
4393
4394 return build_array_type(element_type_tree, index_type);
4395 }
4396 }
4397
4398 // Fill in the fields for a slice type. This is used for named slice
4399 // types.
4400
4401 tree
4402 Array_type::fill_in_tree(Gogo* gogo, tree struct_type)
4403 {
4404 gcc_assert(this->length_ == NULL);
4405
4406 tree element_type_tree = this->element_type_->get_tree(gogo);
4407 tree field = TYPE_FIELDS(struct_type);
4408 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
4409 gcc_assert(POINTER_TYPE_P(TREE_TYPE(field))
4410 && TREE_TYPE(TREE_TYPE(field)) == void_type_node);
4411 TREE_TYPE(field) = build_pointer_type(element_type_tree);
4412
4413 return struct_type;
4414 }
4415
4416 // Return an initializer for an array type.
4417
4418 tree
4419 Array_type::do_get_init_tree(Gogo* gogo, tree type_tree, bool is_clear)
4420 {
4421 if (this->length_ == NULL)
4422 {
4423 // Open array.
4424
4425 if (is_clear)
4426 return NULL;
4427
4428 gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
4429
4430 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
4431
4432 for (tree field = TYPE_FIELDS(type_tree);
4433 field != NULL_TREE;
4434 field = DECL_CHAIN(field))
4435 {
4436 constructor_elt* elt = VEC_quick_push(constructor_elt, init,
4437 NULL);
4438 elt->index = field;
4439 elt->value = fold_convert(TREE_TYPE(field), size_zero_node);
4440 }
4441
4442 tree ret = build_constructor(type_tree, init);
4443 TREE_CONSTANT(ret) = 1;
4444 return ret;
4445 }
4446 else
4447 {
4448 // Fixed array.
4449
4450 tree value = this->element_type_->get_init_tree(gogo, is_clear);
4451 if (value == NULL)
4452 return NULL;
4453 if (value == error_mark_node)
4454 return error_mark_node;
4455
4456 tree length_tree = this->get_length_tree(gogo);
4457 if (length_tree == error_mark_node)
4458 return error_mark_node;
4459
4460 length_tree = fold_convert(sizetype, length_tree);
4461 tree range = build2(RANGE_EXPR, sizetype, size_zero_node,
4462 fold_build2(MINUS_EXPR, sizetype,
4463 length_tree, size_one_node));
4464 tree ret = build_constructor_single(type_tree, range, value);
4465 if (TREE_CONSTANT(value))
4466 TREE_CONSTANT(ret) = 1;
4467 return ret;
4468 }
4469 }
4470
4471 // Handle the builtin make function for a slice.
4472
4473 tree
4474 Array_type::do_make_expression_tree(Translate_context* context,
4475 Expression_list* args,
4476 source_location location)
4477 {
4478 gcc_assert(this->length_ == NULL);
4479
4480 Gogo* gogo = context->gogo();
4481 tree type_tree = this->get_tree(gogo);
4482 if (type_tree == error_mark_node)
4483 return error_mark_node;
4484
4485 tree values_field = TYPE_FIELDS(type_tree);
4486 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(values_field)),
4487 "__values") == 0);
4488
4489 tree count_field = DECL_CHAIN(values_field);
4490 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(count_field)),
4491 "__count") == 0);
4492
4493 tree element_type_tree = this->element_type_->get_tree(gogo);
4494 if (element_type_tree == error_mark_node)
4495 return error_mark_node;
4496 tree element_size_tree = TYPE_SIZE_UNIT(element_type_tree);
4497
4498 tree value = this->element_type_->get_init_tree(gogo, true);
4499
4500 // The first argument is the number of elements, the optional second
4501 // argument is the capacity.
4502 gcc_assert(args != NULL && args->size() >= 1 && args->size() <= 2);
4503
4504 tree length_tree = args->front()->get_tree(context);
4505 if (length_tree == error_mark_node)
4506 return error_mark_node;
4507 if (!DECL_P(length_tree))
4508 length_tree = save_expr(length_tree);
4509 if (!INTEGRAL_TYPE_P(TREE_TYPE(length_tree)))
4510 length_tree = convert_to_integer(TREE_TYPE(count_field), length_tree);
4511
4512 tree bad_index = Expression::check_bounds(length_tree,
4513 TREE_TYPE(count_field),
4514 NULL_TREE, location);
4515
4516 length_tree = fold_convert_loc(location, TREE_TYPE(count_field), length_tree);
4517 tree capacity_tree;
4518 if (args->size() == 1)
4519 capacity_tree = length_tree;
4520 else
4521 {
4522 capacity_tree = args->back()->get_tree(context);
4523 if (capacity_tree == error_mark_node)
4524 return error_mark_node;
4525 if (!DECL_P(capacity_tree))
4526 capacity_tree = save_expr(capacity_tree);
4527 if (!INTEGRAL_TYPE_P(TREE_TYPE(capacity_tree)))
4528 capacity_tree = convert_to_integer(TREE_TYPE(count_field),
4529 capacity_tree);
4530
4531 bad_index = Expression::check_bounds(capacity_tree,
4532 TREE_TYPE(count_field),
4533 bad_index, location);
4534
4535 tree chktype = (((TYPE_SIZE(TREE_TYPE(capacity_tree))
4536 > TYPE_SIZE(TREE_TYPE(length_tree)))
4537 || ((TYPE_SIZE(TREE_TYPE(capacity_tree))
4538 == TYPE_SIZE(TREE_TYPE(length_tree)))
4539 && TYPE_UNSIGNED(TREE_TYPE(capacity_tree))))
4540 ? TREE_TYPE(capacity_tree)
4541 : TREE_TYPE(length_tree));
4542 tree chk = fold_build2_loc(location, LT_EXPR, boolean_type_node,
4543 fold_convert_loc(location, chktype,
4544 capacity_tree),
4545 fold_convert_loc(location, chktype,
4546 length_tree));
4547 if (bad_index == NULL_TREE)
4548 bad_index = chk;
4549 else
4550 bad_index = fold_build2_loc(location, TRUTH_OR_EXPR, boolean_type_node,
4551 bad_index, chk);
4552
4553 capacity_tree = fold_convert_loc(location, TREE_TYPE(count_field),
4554 capacity_tree);
4555 }
4556
4557 tree size_tree = fold_build2_loc(location, MULT_EXPR, sizetype,
4558 element_size_tree,
4559 fold_convert_loc(location, sizetype,
4560 capacity_tree));
4561
4562 tree chk = fold_build2_loc(location, TRUTH_AND_EXPR, boolean_type_node,
4563 fold_build2_loc(location, GT_EXPR,
4564 boolean_type_node,
4565 fold_convert_loc(location,
4566 sizetype,
4567 capacity_tree),
4568 size_zero_node),
4569 fold_build2_loc(location, LT_EXPR,
4570 boolean_type_node,
4571 size_tree, element_size_tree));
4572 if (bad_index == NULL_TREE)
4573 bad_index = chk;
4574 else
4575 bad_index = fold_build2_loc(location, TRUTH_OR_EXPR, boolean_type_node,
4576 bad_index, chk);
4577
4578 tree space = context->gogo()->allocate_memory(this->element_type_,
4579 size_tree, location);
4580
4581 if (value != NULL_TREE)
4582 space = save_expr(space);
4583
4584 space = fold_convert(TREE_TYPE(values_field), space);
4585
4586 if (bad_index != NULL_TREE && bad_index != boolean_false_node)
4587 {
4588 tree crash = Gogo::runtime_error(RUNTIME_ERROR_MAKE_SLICE_OUT_OF_BOUNDS,
4589 location);
4590 space = build2(COMPOUND_EXPR, TREE_TYPE(space),
4591 build3(COND_EXPR, void_type_node,
4592 bad_index, crash, NULL_TREE),
4593 space);
4594 }
4595
4596 tree constructor = gogo->slice_constructor(type_tree, space, length_tree,
4597 capacity_tree);
4598
4599 if (value == NULL_TREE)
4600 {
4601 // The array contents are zero initialized.
4602 return constructor;
4603 }
4604
4605 // The elements must be initialized.
4606
4607 tree max = fold_build2_loc(location, MINUS_EXPR, TREE_TYPE(count_field),
4608 capacity_tree,
4609 fold_convert_loc(location, TREE_TYPE(count_field),
4610 integer_one_node));
4611
4612 tree array_type = build_array_type(element_type_tree,
4613 build_index_type(max));
4614
4615 tree value_pointer = fold_convert_loc(location,
4616 build_pointer_type(array_type),
4617 space);
4618
4619 tree range = build2(RANGE_EXPR, sizetype, size_zero_node, max);
4620 tree space_init = build_constructor_single(array_type, range, value);
4621
4622 return build2(COMPOUND_EXPR, TREE_TYPE(space),
4623 build2(MODIFY_EXPR, void_type_node,
4624 build_fold_indirect_ref(value_pointer),
4625 space_init),
4626 constructor);
4627 }
4628
4629 // Return a tree for a pointer to the values in ARRAY.
4630
4631 tree
4632 Array_type::value_pointer_tree(Gogo*, tree array) const
4633 {
4634 tree ret;
4635 if (this->length() != NULL)
4636 {
4637 // Fixed array.
4638 ret = fold_convert(build_pointer_type(TREE_TYPE(TREE_TYPE(array))),
4639 build_fold_addr_expr(array));
4640 }
4641 else
4642 {
4643 // Open array.
4644 tree field = TYPE_FIELDS(TREE_TYPE(array));
4645 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
4646 "__values") == 0);
4647 ret = fold_build3(COMPONENT_REF, TREE_TYPE(field), array, field,
4648 NULL_TREE);
4649 }
4650 if (TREE_CONSTANT(array))
4651 TREE_CONSTANT(ret) = 1;
4652 return ret;
4653 }
4654
4655 // Return a tree for the length of the array ARRAY which has this
4656 // type.
4657
4658 tree
4659 Array_type::length_tree(Gogo* gogo, tree array)
4660 {
4661 if (this->length_ != NULL)
4662 {
4663 if (TREE_CODE(array) == SAVE_EXPR)
4664 return fold_convert(integer_type_node, this->get_length_tree(gogo));
4665 else
4666 return omit_one_operand(integer_type_node,
4667 this->get_length_tree(gogo), array);
4668 }
4669
4670 // This is an open array. We need to read the length field.
4671
4672 tree type = TREE_TYPE(array);
4673 gcc_assert(TREE_CODE(type) == RECORD_TYPE);
4674
4675 tree field = DECL_CHAIN(TYPE_FIELDS(type));
4676 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
4677
4678 tree ret = build3(COMPONENT_REF, TREE_TYPE(field), array, field, NULL_TREE);
4679 if (TREE_CONSTANT(array))
4680 TREE_CONSTANT(ret) = 1;
4681 return ret;
4682 }
4683
4684 // Return a tree for the capacity of the array ARRAY which has this
4685 // type.
4686
4687 tree
4688 Array_type::capacity_tree(Gogo* gogo, tree array)
4689 {
4690 if (this->length_ != NULL)
4691 return omit_one_operand(sizetype, this->get_length_tree(gogo), array);
4692
4693 // This is an open array. We need to read the capacity field.
4694
4695 tree type = TREE_TYPE(array);
4696 gcc_assert(TREE_CODE(type) == RECORD_TYPE);
4697
4698 tree field = DECL_CHAIN(DECL_CHAIN(TYPE_FIELDS(type)));
4699 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__capacity") == 0);
4700
4701 return build3(COMPONENT_REF, TREE_TYPE(field), array, field, NULL_TREE);
4702 }
4703
4704 // Export.
4705
4706 void
4707 Array_type::do_export(Export* exp) const
4708 {
4709 exp->write_c_string("[");
4710 if (this->length_ != NULL)
4711 this->length_->export_expression(exp);
4712 exp->write_c_string("] ");
4713 exp->write_type(this->element_type_);
4714 }
4715
4716 // Import.
4717
4718 Array_type*
4719 Array_type::do_import(Import* imp)
4720 {
4721 imp->require_c_string("[");
4722 Expression* length;
4723 if (imp->peek_char() == ']')
4724 length = NULL;
4725 else
4726 length = Expression::import_expression(imp);
4727 imp->require_c_string("] ");
4728 Type* element_type = imp->read_type();
4729 return Type::make_array_type(element_type, length);
4730 }
4731
4732 // The type of an array type descriptor.
4733
4734 Type*
4735 Array_type::make_array_type_descriptor_type()
4736 {
4737 static Type* ret;
4738 if (ret == NULL)
4739 {
4740 Type* tdt = Type::make_type_descriptor_type();
4741 Type* ptdt = Type::make_type_descriptor_ptr_type();
4742
4743 Type* uintptr_type = Type::lookup_integer_type("uintptr");
4744
4745 Struct_type* sf =
4746 Type::make_builtin_struct_type(3,
4747 "", tdt,
4748 "elem", ptdt,
4749 "len", uintptr_type);
4750
4751 ret = Type::make_builtin_named_type("ArrayType", sf);
4752 }
4753
4754 return ret;
4755 }
4756
4757 // The type of an slice type descriptor.
4758
4759 Type*
4760 Array_type::make_slice_type_descriptor_type()
4761 {
4762 static Type* ret;
4763 if (ret == NULL)
4764 {
4765 Type* tdt = Type::make_type_descriptor_type();
4766 Type* ptdt = Type::make_type_descriptor_ptr_type();
4767
4768 Struct_type* sf =
4769 Type::make_builtin_struct_type(2,
4770 "", tdt,
4771 "elem", ptdt);
4772
4773 ret = Type::make_builtin_named_type("SliceType", sf);
4774 }
4775
4776 return ret;
4777 }
4778
4779 // Build a type descriptor for an array/slice type.
4780
4781 Expression*
4782 Array_type::do_type_descriptor(Gogo* gogo, Named_type* name)
4783 {
4784 if (this->length_ != NULL)
4785 return this->array_type_descriptor(gogo, name);
4786 else
4787 return this->slice_type_descriptor(gogo, name);
4788 }
4789
4790 // Build a type descriptor for an array type.
4791
4792 Expression*
4793 Array_type::array_type_descriptor(Gogo* gogo, Named_type* name)
4794 {
4795 source_location bloc = BUILTINS_LOCATION;
4796
4797 Type* atdt = Array_type::make_array_type_descriptor_type();
4798
4799 const Struct_field_list* fields = atdt->struct_type()->fields();
4800
4801 Expression_list* vals = new Expression_list();
4802 vals->reserve(3);
4803
4804 Struct_field_list::const_iterator p = fields->begin();
4805 gcc_assert(p->field_name() == "commonType");
4806 vals->push_back(this->type_descriptor_constructor(gogo,
4807 RUNTIME_TYPE_KIND_ARRAY,
4808 name, NULL, true));
4809
4810 ++p;
4811 gcc_assert(p->field_name() == "elem");
4812 vals->push_back(Expression::make_type_descriptor(this->element_type_, bloc));
4813
4814 ++p;
4815 gcc_assert(p->field_name() == "len");
4816 vals->push_back(this->length_);
4817
4818 ++p;
4819 gcc_assert(p == fields->end());
4820
4821 return Expression::make_struct_composite_literal(atdt, vals, bloc);
4822 }
4823
4824 // Build a type descriptor for a slice type.
4825
4826 Expression*
4827 Array_type::slice_type_descriptor(Gogo* gogo, Named_type* name)
4828 {
4829 source_location bloc = BUILTINS_LOCATION;
4830
4831 Type* stdt = Array_type::make_slice_type_descriptor_type();
4832
4833 const Struct_field_list* fields = stdt->struct_type()->fields();
4834
4835 Expression_list* vals = new Expression_list();
4836 vals->reserve(2);
4837
4838 Struct_field_list::const_iterator p = fields->begin();
4839 gcc_assert(p->field_name() == "commonType");
4840 vals->push_back(this->type_descriptor_constructor(gogo,
4841 RUNTIME_TYPE_KIND_SLICE,
4842 name, NULL, true));
4843
4844 ++p;
4845 gcc_assert(p->field_name() == "elem");
4846 vals->push_back(Expression::make_type_descriptor(this->element_type_, bloc));
4847
4848 ++p;
4849 gcc_assert(p == fields->end());
4850
4851 return Expression::make_struct_composite_literal(stdt, vals, bloc);
4852 }
4853
4854 // Reflection string.
4855
4856 void
4857 Array_type::do_reflection(Gogo* gogo, std::string* ret) const
4858 {
4859 ret->push_back('[');
4860 if (this->length_ != NULL)
4861 {
4862 mpz_t val;
4863 mpz_init(val);
4864 Type* type;
4865 if (!this->length_->integer_constant_value(true, val, &type))
4866 error_at(this->length_->location(),
4867 "array length must be integer constant expression");
4868 else if (mpz_cmp_si(val, 0) < 0)
4869 error_at(this->length_->location(), "array length is negative");
4870 else if (mpz_cmp_ui(val, mpz_get_ui(val)) != 0)
4871 error_at(this->length_->location(), "array length is too large");
4872 else
4873 {
4874 char buf[50];
4875 snprintf(buf, sizeof buf, "%lu", mpz_get_ui(val));
4876 ret->append(buf);
4877 }
4878 mpz_clear(val);
4879 }
4880 ret->push_back(']');
4881
4882 this->append_reflection(this->element_type_, gogo, ret);
4883 }
4884
4885 // Mangled name.
4886
4887 void
4888 Array_type::do_mangled_name(Gogo* gogo, std::string* ret) const
4889 {
4890 ret->push_back('A');
4891 this->append_mangled_name(this->element_type_, gogo, ret);
4892 if (this->length_ != NULL)
4893 {
4894 mpz_t val;
4895 mpz_init(val);
4896 Type* type;
4897 if (!this->length_->integer_constant_value(true, val, &type))
4898 error_at(this->length_->location(),
4899 "array length must be integer constant expression");
4900 else if (mpz_cmp_si(val, 0) < 0)
4901 error_at(this->length_->location(), "array length is negative");
4902 else if (mpz_cmp_ui(val, mpz_get_ui(val)) != 0)
4903 error_at(this->length_->location(), "array size is too large");
4904 else
4905 {
4906 char buf[50];
4907 snprintf(buf, sizeof buf, "%lu", mpz_get_ui(val));
4908 ret->append(buf);
4909 }
4910 mpz_clear(val);
4911 }
4912 ret->push_back('e');
4913 }
4914
4915 // Make an array type.
4916
4917 Array_type*
4918 Type::make_array_type(Type* element_type, Expression* length)
4919 {
4920 return new Array_type(element_type, length);
4921 }
4922
4923 // Class Map_type.
4924
4925 // Traversal.
4926
4927 int
4928 Map_type::do_traverse(Traverse* traverse)
4929 {
4930 if (Type::traverse(this->key_type_, traverse) == TRAVERSE_EXIT
4931 || Type::traverse(this->val_type_, traverse) == TRAVERSE_EXIT)
4932 return TRAVERSE_EXIT;
4933 return TRAVERSE_CONTINUE;
4934 }
4935
4936 // Check that the map type is OK.
4937
4938 bool
4939 Map_type::do_verify()
4940 {
4941 if (this->key_type_->struct_type() != NULL
4942 || this->key_type_->array_type() != NULL)
4943 {
4944 error_at(this->location_, "invalid map key type");
4945 return false;
4946 }
4947 return true;
4948 }
4949
4950 // Whether two map types are identical.
4951
4952 bool
4953 Map_type::is_identical(const Map_type* t, bool errors_are_identical) const
4954 {
4955 return (Type::are_identical(this->key_type(), t->key_type(),
4956 errors_are_identical, NULL)
4957 && Type::are_identical(this->val_type(), t->val_type(),
4958 errors_are_identical, NULL));
4959 }
4960
4961 // Hash code.
4962
4963 unsigned int
4964 Map_type::do_hash_for_method(Gogo* gogo) const
4965 {
4966 return (this->key_type_->hash_for_method(gogo)
4967 + this->val_type_->hash_for_method(gogo)
4968 + 2);
4969 }
4970
4971 // Check that a call to the builtin make function is valid. For a map
4972 // the optional argument is the number of spaces to preallocate for
4973 // values.
4974
4975 bool
4976 Map_type::do_check_make_expression(Expression_list* args,
4977 source_location location)
4978 {
4979 if (args != NULL && !args->empty())
4980 {
4981 if (!Type::check_int_value(args->front(), _("bad size when making map"),
4982 location))
4983 return false;
4984 else if (args->size() > 1)
4985 {
4986 error_at(location, "too many arguments when making map");
4987 return false;
4988 }
4989 }
4990 return true;
4991 }
4992
4993 // Get a tree for a map type. A map type is represented as a pointer
4994 // to a struct. The struct is __go_map in libgo/map.h.
4995
4996 tree
4997 Map_type::do_get_tree(Gogo* gogo)
4998 {
4999 static tree type_tree;
5000 if (type_tree == NULL_TREE)
5001 {
5002 tree struct_type = make_node(RECORD_TYPE);
5003
5004 tree map_descriptor_type = gogo->map_descriptor_type();
5005 tree const_map_descriptor_type =
5006 build_qualified_type(map_descriptor_type, TYPE_QUAL_CONST);
5007 tree name = get_identifier("__descriptor");
5008 tree field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name,
5009 build_pointer_type(const_map_descriptor_type));
5010 DECL_CONTEXT(field) = struct_type;
5011 TYPE_FIELDS(struct_type) = field;
5012 tree last_field = field;
5013
5014 name = get_identifier("__element_count");
5015 field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name, sizetype);
5016 DECL_CONTEXT(field) = struct_type;
5017 DECL_CHAIN(last_field) = field;
5018 last_field = field;
5019
5020 name = get_identifier("__bucket_count");
5021 field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name, sizetype);
5022 DECL_CONTEXT(field) = struct_type;
5023 DECL_CHAIN(last_field) = field;
5024 last_field = field;
5025
5026 name = get_identifier("__buckets");
5027 field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name,
5028 build_pointer_type(ptr_type_node));
5029 DECL_CONTEXT(field) = struct_type;
5030 DECL_CHAIN(last_field) = field;
5031
5032 layout_type(struct_type);
5033
5034 // Give the struct a name for better debugging info.
5035 name = get_identifier("__go_map");
5036 tree type_decl = build_decl(BUILTINS_LOCATION, TYPE_DECL, name,
5037 struct_type);
5038 DECL_ARTIFICIAL(type_decl) = 1;
5039 TYPE_NAME(struct_type) = type_decl;
5040 go_preserve_from_gc(type_decl);
5041 rest_of_decl_compilation(type_decl, 1, 0);
5042
5043 type_tree = build_pointer_type(struct_type);
5044 go_preserve_from_gc(type_tree);
5045 }
5046
5047 return type_tree;
5048 }
5049
5050 // Initialize a map.
5051
5052 tree
5053 Map_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
5054 {
5055 if (is_clear)
5056 return NULL;
5057 return fold_convert(type_tree, null_pointer_node);
5058 }
5059
5060 // Return an expression for a newly allocated map.
5061
5062 tree
5063 Map_type::do_make_expression_tree(Translate_context* context,
5064 Expression_list* args,
5065 source_location location)
5066 {
5067 tree bad_index = NULL_TREE;
5068
5069 tree expr_tree;
5070 if (args == NULL || args->empty())
5071 expr_tree = size_zero_node;
5072 else
5073 {
5074 expr_tree = args->front()->get_tree(context);
5075 if (expr_tree == error_mark_node)
5076 return error_mark_node;
5077 if (!DECL_P(expr_tree))
5078 expr_tree = save_expr(expr_tree);
5079 if (!INTEGRAL_TYPE_P(TREE_TYPE(expr_tree)))
5080 expr_tree = convert_to_integer(sizetype, expr_tree);
5081 bad_index = Expression::check_bounds(expr_tree, sizetype, bad_index,
5082 location);
5083 }
5084
5085 tree map_type = this->get_tree(context->gogo());
5086
5087 static tree new_map_fndecl;
5088 tree ret = Gogo::call_builtin(&new_map_fndecl,
5089 location,
5090 "__go_new_map",
5091 2,
5092 map_type,
5093 TREE_TYPE(TYPE_FIELDS(TREE_TYPE(map_type))),
5094 context->gogo()->map_descriptor(this),
5095 sizetype,
5096 expr_tree);
5097 if (ret == error_mark_node)
5098 return error_mark_node;
5099 // This can panic if the capacity is out of range.
5100 TREE_NOTHROW(new_map_fndecl) = 0;
5101
5102 if (bad_index == NULL_TREE)
5103 return ret;
5104 else
5105 {
5106 tree crash = Gogo::runtime_error(RUNTIME_ERROR_MAKE_MAP_OUT_OF_BOUNDS,
5107 location);
5108 return build2(COMPOUND_EXPR, TREE_TYPE(ret),
5109 build3(COND_EXPR, void_type_node,
5110 bad_index, crash, NULL_TREE),
5111 ret);
5112 }
5113 }
5114
5115 // The type of a map type descriptor.
5116
5117 Type*
5118 Map_type::make_map_type_descriptor_type()
5119 {
5120 static Type* ret;
5121 if (ret == NULL)
5122 {
5123 Type* tdt = Type::make_type_descriptor_type();
5124 Type* ptdt = Type::make_type_descriptor_ptr_type();
5125
5126 Struct_type* sf =
5127 Type::make_builtin_struct_type(3,
5128 "", tdt,
5129 "key", ptdt,
5130 "elem", ptdt);
5131
5132 ret = Type::make_builtin_named_type("MapType", sf);
5133 }
5134
5135 return ret;
5136 }
5137
5138 // Build a type descriptor for a map type.
5139
5140 Expression*
5141 Map_type::do_type_descriptor(Gogo* gogo, Named_type* name)
5142 {
5143 source_location bloc = BUILTINS_LOCATION;
5144
5145 Type* mtdt = Map_type::make_map_type_descriptor_type();
5146
5147 const Struct_field_list* fields = mtdt->struct_type()->fields();
5148
5149 Expression_list* vals = new Expression_list();
5150 vals->reserve(3);
5151
5152 Struct_field_list::const_iterator p = fields->begin();
5153 gcc_assert(p->field_name() == "commonType");
5154 vals->push_back(this->type_descriptor_constructor(gogo,
5155 RUNTIME_TYPE_KIND_MAP,
5156 name, NULL, true));
5157
5158 ++p;
5159 gcc_assert(p->field_name() == "key");
5160 vals->push_back(Expression::make_type_descriptor(this->key_type_, bloc));
5161
5162 ++p;
5163 gcc_assert(p->field_name() == "elem");
5164 vals->push_back(Expression::make_type_descriptor(this->val_type_, bloc));
5165
5166 ++p;
5167 gcc_assert(p == fields->end());
5168
5169 return Expression::make_struct_composite_literal(mtdt, vals, bloc);
5170 }
5171
5172 // Reflection string for a map.
5173
5174 void
5175 Map_type::do_reflection(Gogo* gogo, std::string* ret) const
5176 {
5177 ret->append("map[");
5178 this->append_reflection(this->key_type_, gogo, ret);
5179 ret->append("] ");
5180 this->append_reflection(this->val_type_, gogo, ret);
5181 }
5182
5183 // Mangled name for a map.
5184
5185 void
5186 Map_type::do_mangled_name(Gogo* gogo, std::string* ret) const
5187 {
5188 ret->push_back('M');
5189 this->append_mangled_name(this->key_type_, gogo, ret);
5190 ret->append("__");
5191 this->append_mangled_name(this->val_type_, gogo, ret);
5192 }
5193
5194 // Export a map type.
5195
5196 void
5197 Map_type::do_export(Export* exp) const
5198 {
5199 exp->write_c_string("map [");
5200 exp->write_type(this->key_type_);
5201 exp->write_c_string("] ");
5202 exp->write_type(this->val_type_);
5203 }
5204
5205 // Import a map type.
5206
5207 Map_type*
5208 Map_type::do_import(Import* imp)
5209 {
5210 imp->require_c_string("map [");
5211 Type* key_type = imp->read_type();
5212 imp->require_c_string("] ");
5213 Type* val_type = imp->read_type();
5214 return Type::make_map_type(key_type, val_type, imp->location());
5215 }
5216
5217 // Make a map type.
5218
5219 Map_type*
5220 Type::make_map_type(Type* key_type, Type* val_type, source_location location)
5221 {
5222 return new Map_type(key_type, val_type, location);
5223 }
5224
5225 // Class Channel_type.
5226
5227 // Hash code.
5228
5229 unsigned int
5230 Channel_type::do_hash_for_method(Gogo* gogo) const
5231 {
5232 unsigned int ret = 0;
5233 if (this->may_send_)
5234 ret += 1;
5235 if (this->may_receive_)
5236 ret += 2;
5237 if (this->element_type_ != NULL)
5238 ret += this->element_type_->hash_for_method(gogo) << 2;
5239 return ret << 3;
5240 }
5241
5242 // Whether this type is the same as T.
5243
5244 bool
5245 Channel_type::is_identical(const Channel_type* t,
5246 bool errors_are_identical) const
5247 {
5248 if (!Type::are_identical(this->element_type(), t->element_type(),
5249 errors_are_identical, NULL))
5250 return false;
5251 return (this->may_send_ == t->may_send_
5252 && this->may_receive_ == t->may_receive_);
5253 }
5254
5255 // Check whether the parameters for a call to the builtin function
5256 // make are OK for a channel. A channel can take an optional single
5257 // parameter which is the buffer size.
5258
5259 bool
5260 Channel_type::do_check_make_expression(Expression_list* args,
5261 source_location location)
5262 {
5263 if (args != NULL && !args->empty())
5264 {
5265 if (!Type::check_int_value(args->front(),
5266 _("bad buffer size when making channel"),
5267 location))
5268 return false;
5269 else if (args->size() > 1)
5270 {
5271 error_at(location, "too many arguments when making channel");
5272 return false;
5273 }
5274 }
5275 return true;
5276 }
5277
5278 // Return the tree for a channel type. A channel is a pointer to a
5279 // __go_channel struct. The __go_channel struct is defined in
5280 // libgo/runtime/channel.h.
5281
5282 tree
5283 Channel_type::do_get_tree(Gogo*)
5284 {
5285 static tree type_tree;
5286 if (type_tree == NULL_TREE)
5287 {
5288 tree ret = make_node(RECORD_TYPE);
5289 TYPE_NAME(ret) = get_identifier("__go_channel");
5290 TYPE_STUB_DECL(ret) = build_decl(BUILTINS_LOCATION, TYPE_DECL, NULL_TREE,
5291 ret);
5292 type_tree = build_pointer_type(ret);
5293 go_preserve_from_gc(type_tree);
5294 }
5295 return type_tree;
5296 }
5297
5298 // Initialize a channel variable.
5299
5300 tree
5301 Channel_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
5302 {
5303 if (is_clear)
5304 return NULL;
5305 return fold_convert(type_tree, null_pointer_node);
5306 }
5307
5308 // Handle the builtin function make for a channel.
5309
5310 tree
5311 Channel_type::do_make_expression_tree(Translate_context* context,
5312 Expression_list* args,
5313 source_location location)
5314 {
5315 Gogo* gogo = context->gogo();
5316 tree channel_type = this->get_tree(gogo);
5317
5318 tree element_tree = this->element_type_->get_tree(gogo);
5319 tree element_size_tree = size_in_bytes(element_tree);
5320
5321 tree bad_index = NULL_TREE;
5322
5323 tree expr_tree;
5324 if (args == NULL || args->empty())
5325 expr_tree = size_zero_node;
5326 else
5327 {
5328 expr_tree = args->front()->get_tree(context);
5329 if (expr_tree == error_mark_node)
5330 return error_mark_node;
5331 if (!DECL_P(expr_tree))
5332 expr_tree = save_expr(expr_tree);
5333 if (!INTEGRAL_TYPE_P(TREE_TYPE(expr_tree)))
5334 expr_tree = convert_to_integer(sizetype, expr_tree);
5335 bad_index = Expression::check_bounds(expr_tree, sizetype, bad_index,
5336 location);
5337 }
5338
5339 static tree new_channel_fndecl;
5340 tree ret = Gogo::call_builtin(&new_channel_fndecl,
5341 location,
5342 "__go_new_channel",
5343 2,
5344 channel_type,
5345 sizetype,
5346 element_size_tree,
5347 sizetype,
5348 expr_tree);
5349 if (ret == error_mark_node)
5350 return error_mark_node;
5351 // This can panic if the capacity is out of range.
5352 TREE_NOTHROW(new_channel_fndecl) = 0;
5353
5354 if (bad_index == NULL_TREE)
5355 return ret;
5356 else
5357 {
5358 tree crash = Gogo::runtime_error(RUNTIME_ERROR_MAKE_CHAN_OUT_OF_BOUNDS,
5359 location);
5360 return build2(COMPOUND_EXPR, TREE_TYPE(ret),
5361 build3(COND_EXPR, void_type_node,
5362 bad_index, crash, NULL_TREE),
5363 ret);
5364 }
5365 }
5366
5367 // Build a type descriptor for a channel type.
5368
5369 Type*
5370 Channel_type::make_chan_type_descriptor_type()
5371 {
5372 static Type* ret;
5373 if (ret == NULL)
5374 {
5375 Type* tdt = Type::make_type_descriptor_type();
5376 Type* ptdt = Type::make_type_descriptor_ptr_type();
5377
5378 Type* uintptr_type = Type::lookup_integer_type("uintptr");
5379
5380 Struct_type* sf =
5381 Type::make_builtin_struct_type(3,
5382 "", tdt,
5383 "elem", ptdt,
5384 "dir", uintptr_type);
5385
5386 ret = Type::make_builtin_named_type("ChanType", sf);
5387 }
5388
5389 return ret;
5390 }
5391
5392 // Build a type descriptor for a map type.
5393
5394 Expression*
5395 Channel_type::do_type_descriptor(Gogo* gogo, Named_type* name)
5396 {
5397 source_location bloc = BUILTINS_LOCATION;
5398
5399 Type* ctdt = Channel_type::make_chan_type_descriptor_type();
5400
5401 const Struct_field_list* fields = ctdt->struct_type()->fields();
5402
5403 Expression_list* vals = new Expression_list();
5404 vals->reserve(3);
5405
5406 Struct_field_list::const_iterator p = fields->begin();
5407 gcc_assert(p->field_name() == "commonType");
5408 vals->push_back(this->type_descriptor_constructor(gogo,
5409 RUNTIME_TYPE_KIND_CHAN,
5410 name, NULL, true));
5411
5412 ++p;
5413 gcc_assert(p->field_name() == "elem");
5414 vals->push_back(Expression::make_type_descriptor(this->element_type_, bloc));
5415
5416 ++p;
5417 gcc_assert(p->field_name() == "dir");
5418 // These bits must match the ones in libgo/runtime/go-type.h.
5419 int val = 0;
5420 if (this->may_receive_)
5421 val |= 1;
5422 if (this->may_send_)
5423 val |= 2;
5424 mpz_t iv;
5425 mpz_init_set_ui(iv, val);
5426 vals->push_back(Expression::make_integer(&iv, p->type(), bloc));
5427 mpz_clear(iv);
5428
5429 ++p;
5430 gcc_assert(p == fields->end());
5431
5432 return Expression::make_struct_composite_literal(ctdt, vals, bloc);
5433 }
5434
5435 // Reflection string.
5436
5437 void
5438 Channel_type::do_reflection(Gogo* gogo, std::string* ret) const
5439 {
5440 if (!this->may_send_)
5441 ret->append("<-");
5442 ret->append("chan");
5443 if (!this->may_receive_)
5444 ret->append("<-");
5445 ret->push_back(' ');
5446 this->append_reflection(this->element_type_, gogo, ret);
5447 }
5448
5449 // Mangled name.
5450
5451 void
5452 Channel_type::do_mangled_name(Gogo* gogo, std::string* ret) const
5453 {
5454 ret->push_back('C');
5455 this->append_mangled_name(this->element_type_, gogo, ret);
5456 if (this->may_send_)
5457 ret->push_back('s');
5458 if (this->may_receive_)
5459 ret->push_back('r');
5460 ret->push_back('e');
5461 }
5462
5463 // Export.
5464
5465 void
5466 Channel_type::do_export(Export* exp) const
5467 {
5468 exp->write_c_string("chan ");
5469 if (this->may_send_ && !this->may_receive_)
5470 exp->write_c_string("-< ");
5471 else if (this->may_receive_ && !this->may_send_)
5472 exp->write_c_string("<- ");
5473 exp->write_type(this->element_type_);
5474 }
5475
5476 // Import.
5477
5478 Channel_type*
5479 Channel_type::do_import(Import* imp)
5480 {
5481 imp->require_c_string("chan ");
5482
5483 bool may_send;
5484 bool may_receive;
5485 if (imp->match_c_string("-< "))
5486 {
5487 imp->advance(3);
5488 may_send = true;
5489 may_receive = false;
5490 }
5491 else if (imp->match_c_string("<- "))
5492 {
5493 imp->advance(3);
5494 may_receive = true;
5495 may_send = false;
5496 }
5497 else
5498 {
5499 may_send = true;
5500 may_receive = true;
5501 }
5502
5503 Type* element_type = imp->read_type();
5504
5505 return Type::make_channel_type(may_send, may_receive, element_type);
5506 }
5507
5508 // Make a new channel type.
5509
5510 Channel_type*
5511 Type::make_channel_type(bool send, bool receive, Type* element_type)
5512 {
5513 return new Channel_type(send, receive, element_type);
5514 }
5515
5516 // Class Interface_type.
5517
5518 // Traversal.
5519
5520 int
5521 Interface_type::do_traverse(Traverse* traverse)
5522 {
5523 if (this->methods_ == NULL)
5524 return TRAVERSE_CONTINUE;
5525 return this->methods_->traverse(traverse);
5526 }
5527
5528 // Finalize the methods. This handles interface inheritance.
5529
5530 void
5531 Interface_type::finalize_methods()
5532 {
5533 if (this->methods_ == NULL)
5534 return;
5535 bool is_recursive = false;
5536 size_t from = 0;
5537 size_t to = 0;
5538 while (from < this->methods_->size())
5539 {
5540 const Typed_identifier* p = &this->methods_->at(from);
5541 if (!p->name().empty())
5542 {
5543 size_t i = 0;
5544 for (i = 0; i < to; ++i)
5545 {
5546 if (this->methods_->at(i).name() == p->name())
5547 {
5548 error_at(p->location(), "duplicate method %qs",
5549 Gogo::message_name(p->name()).c_str());
5550 break;
5551 }
5552 }
5553 if (i == to)
5554 {
5555 if (from != to)
5556 this->methods_->set(to, *p);
5557 ++to;
5558 }
5559 ++from;
5560 continue;
5561 }
5562 Interface_type* it = p->type()->interface_type();
5563 if (it == NULL)
5564 {
5565 error_at(p->location(), "interface contains embedded non-interface");
5566 ++from;
5567 continue;
5568 }
5569 if (it == this)
5570 {
5571 if (!is_recursive)
5572 {
5573 error_at(p->location(), "invalid recursive interface");
5574 is_recursive = true;
5575 }
5576 ++from;
5577 continue;
5578 }
5579 const Typed_identifier_list* methods = it->methods();
5580 if (methods == NULL)
5581 {
5582 ++from;
5583 continue;
5584 }
5585 for (Typed_identifier_list::const_iterator q = methods->begin();
5586 q != methods->end();
5587 ++q)
5588 {
5589 if (q->name().empty() || this->find_method(q->name()) == NULL)
5590 this->methods_->push_back(Typed_identifier(q->name(), q->type(),
5591 p->location()));
5592 else
5593 {
5594 if (!is_recursive)
5595 error_at(p->location(), "inherited method %qs is ambiguous",
5596 Gogo::message_name(q->name()).c_str());
5597 }
5598 }
5599 ++from;
5600 }
5601 if (to == 0)
5602 {
5603 delete this->methods_;
5604 this->methods_ = NULL;
5605 }
5606 else
5607 {
5608 this->methods_->resize(to);
5609 this->methods_->sort_by_name();
5610 }
5611 }
5612
5613 // Return the method NAME, or NULL.
5614
5615 const Typed_identifier*
5616 Interface_type::find_method(const std::string& name) const
5617 {
5618 if (this->methods_ == NULL)
5619 return NULL;
5620 for (Typed_identifier_list::const_iterator p = this->methods_->begin();
5621 p != this->methods_->end();
5622 ++p)
5623 if (p->name() == name)
5624 return &*p;
5625 return NULL;
5626 }
5627
5628 // Return the method index.
5629
5630 size_t
5631 Interface_type::method_index(const std::string& name) const
5632 {
5633 gcc_assert(this->methods_ != NULL);
5634 size_t ret = 0;
5635 for (Typed_identifier_list::const_iterator p = this->methods_->begin();
5636 p != this->methods_->end();
5637 ++p, ++ret)
5638 if (p->name() == name)
5639 return ret;
5640 gcc_unreachable();
5641 }
5642
5643 // Return whether NAME is an unexported method, for better error
5644 // reporting.
5645
5646 bool
5647 Interface_type::is_unexported_method(Gogo* gogo, const std::string& name) const
5648 {
5649 if (this->methods_ == NULL)
5650 return false;
5651 for (Typed_identifier_list::const_iterator p = this->methods_->begin();
5652 p != this->methods_->end();
5653 ++p)
5654 {
5655 const std::string& method_name(p->name());
5656 if (Gogo::is_hidden_name(method_name)
5657 && name == Gogo::unpack_hidden_name(method_name)
5658 && gogo->pack_hidden_name(name, false) != method_name)
5659 return true;
5660 }
5661 return false;
5662 }
5663
5664 // Whether this type is identical with T.
5665
5666 bool
5667 Interface_type::is_identical(const Interface_type* t,
5668 bool errors_are_identical) const
5669 {
5670 // We require the same methods with the same types. The methods
5671 // have already been sorted.
5672 if (this->methods() == NULL || t->methods() == NULL)
5673 return this->methods() == t->methods();
5674
5675 Typed_identifier_list::const_iterator p1 = this->methods()->begin();
5676 for (Typed_identifier_list::const_iterator p2 = t->methods()->begin();
5677 p2 != t->methods()->end();
5678 ++p1, ++p2)
5679 {
5680 if (p1 == this->methods()->end())
5681 return false;
5682 if (p1->name() != p2->name()
5683 || !Type::are_identical(p1->type(), p2->type(),
5684 errors_are_identical, NULL))
5685 return false;
5686 }
5687 if (p1 != this->methods()->end())
5688 return false;
5689 return true;
5690 }
5691
5692 // Whether we can assign the interface type T to this type. The types
5693 // are known to not be identical. An interface assignment is only
5694 // permitted if T is known to implement all methods in THIS.
5695 // Otherwise a type guard is required.
5696
5697 bool
5698 Interface_type::is_compatible_for_assign(const Interface_type* t,
5699 std::string* reason) const
5700 {
5701 if (this->methods() == NULL)
5702 return true;
5703 for (Typed_identifier_list::const_iterator p = this->methods()->begin();
5704 p != this->methods()->end();
5705 ++p)
5706 {
5707 const Typed_identifier* m = t->find_method(p->name());
5708 if (m == NULL)
5709 {
5710 if (reason != NULL)
5711 {
5712 char buf[200];
5713 snprintf(buf, sizeof buf,
5714 _("need explicit conversion; missing method %s%s%s"),
5715 open_quote, Gogo::message_name(p->name()).c_str(),
5716 close_quote);
5717 reason->assign(buf);
5718 }
5719 return false;
5720 }
5721
5722 std::string subreason;
5723 if (!Type::are_identical(p->type(), m->type(), true, &subreason))
5724 {
5725 if (reason != NULL)
5726 {
5727 std::string n = Gogo::message_name(p->name());
5728 size_t len = 100 + n.length() + subreason.length();
5729 char* buf = new char[len];
5730 if (subreason.empty())
5731 snprintf(buf, len, _("incompatible type for method %s%s%s"),
5732 open_quote, n.c_str(), close_quote);
5733 else
5734 snprintf(buf, len,
5735 _("incompatible type for method %s%s%s (%s)"),
5736 open_quote, n.c_str(), close_quote,
5737 subreason.c_str());
5738 reason->assign(buf);
5739 delete[] buf;
5740 }
5741 return false;
5742 }
5743 }
5744
5745 return true;
5746 }
5747
5748 // Hash code.
5749
5750 unsigned int
5751 Interface_type::do_hash_for_method(Gogo* gogo) const
5752 {
5753 unsigned int ret = 0;
5754 if (this->methods_ != NULL)
5755 {
5756 for (Typed_identifier_list::const_iterator p = this->methods_->begin();
5757 p != this->methods_->end();
5758 ++p)
5759 {
5760 ret = Type::hash_string(p->name(), ret);
5761 ret += p->type()->hash_for_method(gogo);
5762 ret <<= 1;
5763 }
5764 }
5765 return ret;
5766 }
5767
5768 // Return true if T implements the interface. If it does not, and
5769 // REASON is not NULL, set *REASON to a useful error message.
5770
5771 bool
5772 Interface_type::implements_interface(const Type* t, std::string* reason) const
5773 {
5774 if (this->methods_ == NULL)
5775 return true;
5776
5777 bool is_pointer = false;
5778 const Named_type* nt = t->named_type();
5779 const Struct_type* st = t->struct_type();
5780 // If we start with a named type, we don't dereference it to find
5781 // methods.
5782 if (nt == NULL)
5783 {
5784 const Type* pt = t->points_to();
5785 if (pt != NULL)
5786 {
5787 // If T is a pointer to a named type, then we need to look at
5788 // the type to which it points.
5789 is_pointer = true;
5790 nt = pt->named_type();
5791 st = pt->struct_type();
5792 }
5793 }
5794
5795 // If we have a named type, get the methods from it rather than from
5796 // any struct type.
5797 if (nt != NULL)
5798 st = NULL;
5799
5800 // Only named and struct types have methods.
5801 if (nt == NULL && st == NULL)
5802 {
5803 if (reason != NULL)
5804 {
5805 if (t->points_to() != NULL
5806 && t->points_to()->interface_type() != NULL)
5807 reason->assign(_("pointer to interface type has no methods"));
5808 else
5809 reason->assign(_("type has no methods"));
5810 }
5811 return false;
5812 }
5813
5814 if (nt != NULL ? !nt->has_any_methods() : !st->has_any_methods())
5815 {
5816 if (reason != NULL)
5817 {
5818 if (t->points_to() != NULL
5819 && t->points_to()->interface_type() != NULL)
5820 reason->assign(_("pointer to interface type has no methods"));
5821 else
5822 reason->assign(_("type has no methods"));
5823 }
5824 return false;
5825 }
5826
5827 for (Typed_identifier_list::const_iterator p = this->methods_->begin();
5828 p != this->methods_->end();
5829 ++p)
5830 {
5831 bool is_ambiguous = false;
5832 Method* m = (nt != NULL
5833 ? nt->method_function(p->name(), &is_ambiguous)
5834 : st->method_function(p->name(), &is_ambiguous));
5835 if (m == NULL)
5836 {
5837 if (reason != NULL)
5838 {
5839 std::string n = Gogo::message_name(p->name());
5840 size_t len = n.length() + 100;
5841 char* buf = new char[len];
5842 if (is_ambiguous)
5843 snprintf(buf, len, _("ambiguous method %s%s%s"),
5844 open_quote, n.c_str(), close_quote);
5845 else
5846 snprintf(buf, len, _("missing method %s%s%s"),
5847 open_quote, n.c_str(), close_quote);
5848 reason->assign(buf);
5849 delete[] buf;
5850 }
5851 return false;
5852 }
5853
5854 Function_type *p_fn_type = p->type()->function_type();
5855 Function_type* m_fn_type = m->type()->function_type();
5856 gcc_assert(p_fn_type != NULL && m_fn_type != NULL);
5857 std::string subreason;
5858 if (!p_fn_type->is_identical(m_fn_type, true, true, &subreason))
5859 {
5860 if (reason != NULL)
5861 {
5862 std::string n = Gogo::message_name(p->name());
5863 size_t len = 100 + n.length() + subreason.length();
5864 char* buf = new char[len];
5865 if (subreason.empty())
5866 snprintf(buf, len, _("incompatible type for method %s%s%s"),
5867 open_quote, n.c_str(), close_quote);
5868 else
5869 snprintf(buf, len,
5870 _("incompatible type for method %s%s%s (%s)"),
5871 open_quote, n.c_str(), close_quote,
5872 subreason.c_str());
5873 reason->assign(buf);
5874 delete[] buf;
5875 }
5876 return false;
5877 }
5878
5879 if (!is_pointer && !m->is_value_method())
5880 {
5881 if (reason != NULL)
5882 {
5883 std::string n = Gogo::message_name(p->name());
5884 size_t len = 100 + n.length();
5885 char* buf = new char[len];
5886 snprintf(buf, len, _("method %s%s%s requires a pointer"),
5887 open_quote, n.c_str(), close_quote);
5888 reason->assign(buf);
5889 delete[] buf;
5890 }
5891 return false;
5892 }
5893 }
5894
5895 return true;
5896 }
5897
5898 // Return a tree for an interface type. An interface is a pointer to
5899 // a struct. The struct has three fields. The first field is a
5900 // pointer to the type descriptor for the dynamic type of the object.
5901 // The second field is a pointer to a table of methods for the
5902 // interface to be used with the object. The third field is the value
5903 // of the object itself.
5904
5905 tree
5906 Interface_type::do_get_tree(Gogo* gogo)
5907 {
5908 if (this->methods_ == NULL)
5909 {
5910 // At the tree level, use the same type for all empty
5911 // interfaces. This lets us assign them to each other directly
5912 // without triggering GIMPLE type errors.
5913 tree dtype = Type::make_type_descriptor_type()->get_tree(gogo);
5914 dtype = build_pointer_type(build_qualified_type(dtype, TYPE_QUAL_CONST));
5915 static tree empty_interface;
5916 return Gogo::builtin_struct(&empty_interface, "__go_empty_interface",
5917 NULL_TREE, 2,
5918 "__type_descriptor",
5919 dtype,
5920 "__object",
5921 ptr_type_node);
5922 }
5923
5924 return this->fill_in_tree(gogo, make_node(RECORD_TYPE));
5925 }
5926
5927 // Fill in the tree for an interface type. This is used for named
5928 // interface types.
5929
5930 tree
5931 Interface_type::fill_in_tree(Gogo* gogo, tree type)
5932 {
5933 gcc_assert(this->methods_ != NULL);
5934
5935 // Build the type of the table of methods.
5936
5937 tree method_table = make_node(RECORD_TYPE);
5938
5939 // The first field is a pointer to the type descriptor.
5940 tree name_tree = get_identifier("__type_descriptor");
5941 tree dtype = Type::make_type_descriptor_type()->get_tree(gogo);
5942 dtype = build_pointer_type(build_qualified_type(dtype, TYPE_QUAL_CONST));
5943 tree field = build_decl(this->location_, FIELD_DECL, name_tree, dtype);
5944 DECL_CONTEXT(field) = method_table;
5945 TYPE_FIELDS(method_table) = field;
5946
5947 std::string last_name = "";
5948 tree* pp = &DECL_CHAIN(field);
5949 for (Typed_identifier_list::const_iterator p = this->methods_->begin();
5950 p != this->methods_->end();
5951 ++p)
5952 {
5953 std::string name = Gogo::unpack_hidden_name(p->name());
5954 name_tree = get_identifier_with_length(name.data(), name.length());
5955 tree field_type = p->type()->get_tree(gogo);
5956 if (field_type == error_mark_node)
5957 return error_mark_node;
5958 field = build_decl(this->location_, FIELD_DECL, name_tree, field_type);
5959 DECL_CONTEXT(field) = method_table;
5960 *pp = field;
5961 pp = &DECL_CHAIN(field);
5962 // Sanity check: the names should be sorted.
5963 gcc_assert(p->name() > last_name);
5964 last_name = p->name();
5965 }
5966 layout_type(method_table);
5967
5968 tree mtype = build_pointer_type(method_table);
5969
5970 tree field_trees = NULL_TREE;
5971 pp = &field_trees;
5972
5973 name_tree = get_identifier("__methods");
5974 field = build_decl(this->location_, FIELD_DECL, name_tree, mtype);
5975 DECL_CONTEXT(field) = type;
5976 *pp = field;
5977 pp = &DECL_CHAIN(field);
5978
5979 name_tree = get_identifier("__object");
5980 field = build_decl(this->location_, FIELD_DECL, name_tree, ptr_type_node);
5981 DECL_CONTEXT(field) = type;
5982 *pp = field;
5983
5984 TYPE_FIELDS(type) = field_trees;
5985
5986 layout_type(type);
5987
5988 return type;
5989 }
5990
5991 // Initialization value.
5992
5993 tree
5994 Interface_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
5995 {
5996 if (is_clear)
5997 return NULL;
5998
5999 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
6000 for (tree field = TYPE_FIELDS(type_tree);
6001 field != NULL_TREE;
6002 field = DECL_CHAIN(field))
6003 {
6004 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
6005 elt->index = field;
6006 elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
6007 }
6008
6009 tree ret = build_constructor(type_tree, init);
6010 TREE_CONSTANT(ret) = 1;
6011 return ret;
6012 }
6013
6014 // The type of an interface type descriptor.
6015
6016 Type*
6017 Interface_type::make_interface_type_descriptor_type()
6018 {
6019 static Type* ret;
6020 if (ret == NULL)
6021 {
6022 Type* tdt = Type::make_type_descriptor_type();
6023 Type* ptdt = Type::make_type_descriptor_ptr_type();
6024
6025 Type* string_type = Type::lookup_string_type();
6026 Type* pointer_string_type = Type::make_pointer_type(string_type);
6027
6028 Struct_type* sm =
6029 Type::make_builtin_struct_type(3,
6030 "name", pointer_string_type,
6031 "pkgPath", pointer_string_type,
6032 "typ", ptdt);
6033
6034 Type* nsm = Type::make_builtin_named_type("imethod", sm);
6035
6036 Type* slice_nsm = Type::make_array_type(nsm, NULL);
6037
6038 Struct_type* s = Type::make_builtin_struct_type(2,
6039 "", tdt,
6040 "methods", slice_nsm);
6041
6042 ret = Type::make_builtin_named_type("InterfaceType", s);
6043 }
6044
6045 return ret;
6046 }
6047
6048 // Build a type descriptor for an interface type.
6049
6050 Expression*
6051 Interface_type::do_type_descriptor(Gogo* gogo, Named_type* name)
6052 {
6053 source_location bloc = BUILTINS_LOCATION;
6054
6055 Type* itdt = Interface_type::make_interface_type_descriptor_type();
6056
6057 const Struct_field_list* ifields = itdt->struct_type()->fields();
6058
6059 Expression_list* ivals = new Expression_list();
6060 ivals->reserve(2);
6061
6062 Struct_field_list::const_iterator pif = ifields->begin();
6063 gcc_assert(pif->field_name() == "commonType");
6064 ivals->push_back(this->type_descriptor_constructor(gogo,
6065 RUNTIME_TYPE_KIND_INTERFACE,
6066 name, NULL, true));
6067
6068 ++pif;
6069 gcc_assert(pif->field_name() == "methods");
6070
6071 Expression_list* methods = new Expression_list();
6072 if (this->methods_ != NULL && !this->methods_->empty())
6073 {
6074 Type* elemtype = pif->type()->array_type()->element_type();
6075
6076 methods->reserve(this->methods_->size());
6077 for (Typed_identifier_list::const_iterator pm = this->methods_->begin();
6078 pm != this->methods_->end();
6079 ++pm)
6080 {
6081 const Struct_field_list* mfields = elemtype->struct_type()->fields();
6082
6083 Expression_list* mvals = new Expression_list();
6084 mvals->reserve(3);
6085
6086 Struct_field_list::const_iterator pmf = mfields->begin();
6087 gcc_assert(pmf->field_name() == "name");
6088 std::string s = Gogo::unpack_hidden_name(pm->name());
6089 Expression* e = Expression::make_string(s, bloc);
6090 mvals->push_back(Expression::make_unary(OPERATOR_AND, e, bloc));
6091
6092 ++pmf;
6093 gcc_assert(pmf->field_name() == "pkgPath");
6094 if (!Gogo::is_hidden_name(pm->name()))
6095 mvals->push_back(Expression::make_nil(bloc));
6096 else
6097 {
6098 s = Gogo::hidden_name_prefix(pm->name());
6099 e = Expression::make_string(s, bloc);
6100 mvals->push_back(Expression::make_unary(OPERATOR_AND, e, bloc));
6101 }
6102
6103 ++pmf;
6104 gcc_assert(pmf->field_name() == "typ");
6105 mvals->push_back(Expression::make_type_descriptor(pm->type(), bloc));
6106
6107 ++pmf;
6108 gcc_assert(pmf == mfields->end());
6109
6110 e = Expression::make_struct_composite_literal(elemtype, mvals,
6111 bloc);
6112 methods->push_back(e);
6113 }
6114 }
6115
6116 ivals->push_back(Expression::make_slice_composite_literal(pif->type(),
6117 methods, bloc));
6118
6119 ++pif;
6120 gcc_assert(pif == ifields->end());
6121
6122 return Expression::make_struct_composite_literal(itdt, ivals, bloc);
6123 }
6124
6125 // Reflection string.
6126
6127 void
6128 Interface_type::do_reflection(Gogo* gogo, std::string* ret) const
6129 {
6130 ret->append("interface {");
6131 if (this->methods_ != NULL)
6132 {
6133 for (Typed_identifier_list::const_iterator p = this->methods_->begin();
6134 p != this->methods_->end();
6135 ++p)
6136 {
6137 if (p != this->methods_->begin())
6138 ret->append(";");
6139 ret->push_back(' ');
6140 ret->append(Gogo::unpack_hidden_name(p->name()));
6141 std::string sub = p->type()->reflection(gogo);
6142 gcc_assert(sub.compare(0, 4, "func") == 0);
6143 sub = sub.substr(4);
6144 ret->append(sub);
6145 }
6146 }
6147 ret->append(" }");
6148 }
6149
6150 // Mangled name.
6151
6152 void
6153 Interface_type::do_mangled_name(Gogo* gogo, std::string* ret) const
6154 {
6155 ret->push_back('I');
6156
6157 const Typed_identifier_list* methods = this->methods_;
6158 if (methods != NULL)
6159 {
6160 for (Typed_identifier_list::const_iterator p = methods->begin();
6161 p != methods->end();
6162 ++p)
6163 {
6164 std::string n = Gogo::unpack_hidden_name(p->name());
6165 char buf[20];
6166 snprintf(buf, sizeof buf, "%u_",
6167 static_cast<unsigned int>(n.length()));
6168 ret->append(buf);
6169 ret->append(n);
6170 this->append_mangled_name(p->type(), gogo, ret);
6171 }
6172 }
6173
6174 ret->push_back('e');
6175 }
6176
6177 // Export.
6178
6179 void
6180 Interface_type::do_export(Export* exp) const
6181 {
6182 exp->write_c_string("interface { ");
6183
6184 const Typed_identifier_list* methods = this->methods_;
6185 if (methods != NULL)
6186 {
6187 for (Typed_identifier_list::const_iterator pm = methods->begin();
6188 pm != methods->end();
6189 ++pm)
6190 {
6191 exp->write_string(pm->name());
6192 exp->write_c_string(" (");
6193
6194 const Function_type* fntype = pm->type()->function_type();
6195
6196 bool first = true;
6197 const Typed_identifier_list* parameters = fntype->parameters();
6198 if (parameters != NULL)
6199 {
6200 bool is_varargs = fntype->is_varargs();
6201 for (Typed_identifier_list::const_iterator pp =
6202 parameters->begin();
6203 pp != parameters->end();
6204 ++pp)
6205 {
6206 if (first)
6207 first = false;
6208 else
6209 exp->write_c_string(", ");
6210 if (!is_varargs || pp + 1 != parameters->end())
6211 exp->write_type(pp->type());
6212 else
6213 {
6214 exp->write_c_string("...");
6215 Type *pptype = pp->type();
6216 exp->write_type(pptype->array_type()->element_type());
6217 }
6218 }
6219 }
6220
6221 exp->write_c_string(")");
6222
6223 const Typed_identifier_list* results = fntype->results();
6224 if (results != NULL)
6225 {
6226 exp->write_c_string(" ");
6227 if (results->size() == 1)
6228 exp->write_type(results->begin()->type());
6229 else
6230 {
6231 first = true;
6232 exp->write_c_string("(");
6233 for (Typed_identifier_list::const_iterator p =
6234 results->begin();
6235 p != results->end();
6236 ++p)
6237 {
6238 if (first)
6239 first = false;
6240 else
6241 exp->write_c_string(", ");
6242 exp->write_type(p->type());
6243 }
6244 exp->write_c_string(")");
6245 }
6246 }
6247
6248 exp->write_c_string("; ");
6249 }
6250 }
6251
6252 exp->write_c_string("}");
6253 }
6254
6255 // Import an interface type.
6256
6257 Interface_type*
6258 Interface_type::do_import(Import* imp)
6259 {
6260 imp->require_c_string("interface { ");
6261
6262 Typed_identifier_list* methods = new Typed_identifier_list;
6263 while (imp->peek_char() != '}')
6264 {
6265 std::string name = imp->read_identifier();
6266 imp->require_c_string(" (");
6267
6268 Typed_identifier_list* parameters;
6269 bool is_varargs = false;
6270 if (imp->peek_char() == ')')
6271 parameters = NULL;
6272 else
6273 {
6274 parameters = new Typed_identifier_list;
6275 while (true)
6276 {
6277 if (imp->match_c_string("..."))
6278 {
6279 imp->advance(3);
6280 is_varargs = true;
6281 }
6282
6283 Type* ptype = imp->read_type();
6284 if (is_varargs)
6285 ptype = Type::make_array_type(ptype, NULL);
6286 parameters->push_back(Typed_identifier(Import::import_marker,
6287 ptype, imp->location()));
6288 if (imp->peek_char() != ',')
6289 break;
6290 gcc_assert(!is_varargs);
6291 imp->require_c_string(", ");
6292 }
6293 }
6294 imp->require_c_string(")");
6295
6296 Typed_identifier_list* results;
6297 if (imp->peek_char() != ' ')
6298 results = NULL;
6299 else
6300 {
6301 results = new Typed_identifier_list;
6302 imp->advance(1);
6303 if (imp->peek_char() != '(')
6304 {
6305 Type* rtype = imp->read_type();
6306 results->push_back(Typed_identifier(Import::import_marker,
6307 rtype, imp->location()));
6308 }
6309 else
6310 {
6311 imp->advance(1);
6312 while (true)
6313 {
6314 Type* rtype = imp->read_type();
6315 results->push_back(Typed_identifier(Import::import_marker,
6316 rtype, imp->location()));
6317 if (imp->peek_char() != ',')
6318 break;
6319 imp->require_c_string(", ");
6320 }
6321 imp->require_c_string(")");
6322 }
6323 }
6324
6325 Function_type* fntype = Type::make_function_type(NULL, parameters,
6326 results,
6327 imp->location());
6328 if (is_varargs)
6329 fntype->set_is_varargs();
6330 methods->push_back(Typed_identifier(name, fntype, imp->location()));
6331
6332 imp->require_c_string("; ");
6333 }
6334
6335 imp->require_c_string("}");
6336
6337 if (methods->empty())
6338 {
6339 delete methods;
6340 methods = NULL;
6341 }
6342
6343 return Type::make_interface_type(methods, imp->location());
6344 }
6345
6346 // Make an interface type.
6347
6348 Interface_type*
6349 Type::make_interface_type(Typed_identifier_list* methods,
6350 source_location location)
6351 {
6352 return new Interface_type(methods, location);
6353 }
6354
6355 // Class Method.
6356
6357 // Bind a method to an object.
6358
6359 Expression*
6360 Method::bind_method(Expression* expr, source_location location) const
6361 {
6362 if (this->stub_ == NULL)
6363 {
6364 // When there is no stub object, the binding is determined by
6365 // the child class.
6366 return this->do_bind_method(expr, location);
6367 }
6368
6369 Expression* func = Expression::make_func_reference(this->stub_, NULL,
6370 location);
6371 return Expression::make_bound_method(expr, func, location);
6372 }
6373
6374 // Return the named object associated with a method. This may only be
6375 // called after methods are finalized.
6376
6377 Named_object*
6378 Method::named_object() const
6379 {
6380 if (this->stub_ != NULL)
6381 return this->stub_;
6382 return this->do_named_object();
6383 }
6384
6385 // Class Named_method.
6386
6387 // The type of the method.
6388
6389 Function_type*
6390 Named_method::do_type() const
6391 {
6392 if (this->named_object_->is_function())
6393 return this->named_object_->func_value()->type();
6394 else if (this->named_object_->is_function_declaration())
6395 return this->named_object_->func_declaration_value()->type();
6396 else
6397 gcc_unreachable();
6398 }
6399
6400 // Return the location of the method receiver.
6401
6402 source_location
6403 Named_method::do_receiver_location() const
6404 {
6405 return this->do_type()->receiver()->location();
6406 }
6407
6408 // Bind a method to an object.
6409
6410 Expression*
6411 Named_method::do_bind_method(Expression* expr, source_location location) const
6412 {
6413 Expression* func = Expression::make_func_reference(this->named_object_, NULL,
6414 location);
6415 Bound_method_expression* bme = Expression::make_bound_method(expr, func,
6416 location);
6417 // If this is not a local method, and it does not use a stub, then
6418 // the real method expects a different type. We need to cast the
6419 // first argument.
6420 if (this->depth() > 0 && !this->needs_stub_method())
6421 {
6422 Function_type* ftype = this->do_type();
6423 gcc_assert(ftype->is_method());
6424 Type* frtype = ftype->receiver()->type();
6425 bme->set_first_argument_type(frtype);
6426 }
6427 return bme;
6428 }
6429
6430 // Class Interface_method.
6431
6432 // Bind a method to an object.
6433
6434 Expression*
6435 Interface_method::do_bind_method(Expression* expr,
6436 source_location location) const
6437 {
6438 return Expression::make_interface_field_reference(expr, this->name_,
6439 location);
6440 }
6441
6442 // Class Methods.
6443
6444 // Insert a new method. Return true if it was inserted, false
6445 // otherwise.
6446
6447 bool
6448 Methods::insert(const std::string& name, Method* m)
6449 {
6450 std::pair<Method_map::iterator, bool> ins =
6451 this->methods_.insert(std::make_pair(name, m));
6452 if (ins.second)
6453 return true;
6454 else
6455 {
6456 Method* old_method = ins.first->second;
6457 if (m->depth() < old_method->depth())
6458 {
6459 delete old_method;
6460 ins.first->second = m;
6461 return true;
6462 }
6463 else
6464 {
6465 if (m->depth() == old_method->depth())
6466 old_method->set_is_ambiguous();
6467 return false;
6468 }
6469 }
6470 }
6471
6472 // Return the number of unambiguous methods.
6473
6474 size_t
6475 Methods::count() const
6476 {
6477 size_t ret = 0;
6478 for (Method_map::const_iterator p = this->methods_.begin();
6479 p != this->methods_.end();
6480 ++p)
6481 if (!p->second->is_ambiguous())
6482 ++ret;
6483 return ret;
6484 }
6485
6486 // Class Named_type.
6487
6488 // Return the name of the type.
6489
6490 const std::string&
6491 Named_type::name() const
6492 {
6493 return this->named_object_->name();
6494 }
6495
6496 // Return the name of the type to use in an error message.
6497
6498 std::string
6499 Named_type::message_name() const
6500 {
6501 return this->named_object_->message_name();
6502 }
6503
6504 // Return the base type for this type. We have to be careful about
6505 // circular type definitions, which are invalid but may be seen here.
6506
6507 Type*
6508 Named_type::named_base()
6509 {
6510 if (this->seen_)
6511 return this;
6512 this->seen_ = true;
6513 Type* ret = this->type_->base();
6514 this->seen_ = false;
6515 return ret;
6516 }
6517
6518 const Type*
6519 Named_type::named_base() const
6520 {
6521 if (this->seen_)
6522 return this;
6523 this->seen_ = true;
6524 const Type* ret = this->type_->base();
6525 this->seen_ = false;
6526 return ret;
6527 }
6528
6529 // Return whether this is an error type. We have to be careful about
6530 // circular type definitions, which are invalid but may be seen here.
6531
6532 bool
6533 Named_type::is_named_error_type() const
6534 {
6535 if (this->seen_)
6536 return false;
6537 this->seen_ = true;
6538 bool ret = this->type_->is_error_type();
6539 this->seen_ = false;
6540 return ret;
6541 }
6542
6543 // Add a method to this type.
6544
6545 Named_object*
6546 Named_type::add_method(const std::string& name, Function* function)
6547 {
6548 if (this->local_methods_ == NULL)
6549 this->local_methods_ = new Bindings(NULL);
6550 return this->local_methods_->add_function(name, NULL, function);
6551 }
6552
6553 // Add a method declaration to this type.
6554
6555 Named_object*
6556 Named_type::add_method_declaration(const std::string& name, Package* package,
6557 Function_type* type,
6558 source_location location)
6559 {
6560 if (this->local_methods_ == NULL)
6561 this->local_methods_ = new Bindings(NULL);
6562 return this->local_methods_->add_function_declaration(name, package, type,
6563 location);
6564 }
6565
6566 // Add an existing method to this type.
6567
6568 void
6569 Named_type::add_existing_method(Named_object* no)
6570 {
6571 if (this->local_methods_ == NULL)
6572 this->local_methods_ = new Bindings(NULL);
6573 this->local_methods_->add_named_object(no);
6574 }
6575
6576 // Look for a local method NAME, and returns its named object, or NULL
6577 // if not there.
6578
6579 Named_object*
6580 Named_type::find_local_method(const std::string& name) const
6581 {
6582 if (this->local_methods_ == NULL)
6583 return NULL;
6584 return this->local_methods_->lookup(name);
6585 }
6586
6587 // Return whether NAME is an unexported field or method, for better
6588 // error reporting.
6589
6590 bool
6591 Named_type::is_unexported_local_method(Gogo* gogo,
6592 const std::string& name) const
6593 {
6594 Bindings* methods = this->local_methods_;
6595 if (methods != NULL)
6596 {
6597 for (Bindings::const_declarations_iterator p =
6598 methods->begin_declarations();
6599 p != methods->end_declarations();
6600 ++p)
6601 {
6602 if (Gogo::is_hidden_name(p->first)
6603 && name == Gogo::unpack_hidden_name(p->first)
6604 && gogo->pack_hidden_name(name, false) != p->first)
6605 return true;
6606 }
6607 }
6608 return false;
6609 }
6610
6611 // Build the complete list of methods for this type, which means
6612 // recursively including all methods for anonymous fields. Create all
6613 // stub methods.
6614
6615 void
6616 Named_type::finalize_methods(Gogo* gogo)
6617 {
6618 if (this->local_methods_ != NULL
6619 && (this->points_to() != NULL || this->interface_type() != NULL))
6620 {
6621 const Bindings* lm = this->local_methods_;
6622 for (Bindings::const_declarations_iterator p = lm->begin_declarations();
6623 p != lm->end_declarations();
6624 ++p)
6625 error_at(p->second->location(),
6626 "invalid pointer or interface receiver type");
6627 delete this->local_methods_;
6628 this->local_methods_ = NULL;
6629 return;
6630 }
6631
6632 Type::finalize_methods(gogo, this, this->location_, &this->all_methods_);
6633 }
6634
6635 // Return the method NAME, or NULL if there isn't one or if it is
6636 // ambiguous. Set *IS_AMBIGUOUS if the method exists but is
6637 // ambiguous.
6638
6639 Method*
6640 Named_type::method_function(const std::string& name, bool* is_ambiguous) const
6641 {
6642 return Type::method_function(this->all_methods_, name, is_ambiguous);
6643 }
6644
6645 // Return a pointer to the interface method table for this type for
6646 // the interface INTERFACE. IS_POINTER is true if this is for a
6647 // pointer to THIS.
6648
6649 tree
6650 Named_type::interface_method_table(Gogo* gogo, const Interface_type* interface,
6651 bool is_pointer)
6652 {
6653 gcc_assert(!interface->is_empty());
6654
6655 Interface_method_tables** pimt = (is_pointer
6656 ? &this->interface_method_tables_
6657 : &this->pointer_interface_method_tables_);
6658
6659 if (*pimt == NULL)
6660 *pimt = new Interface_method_tables(5);
6661
6662 std::pair<const Interface_type*, tree> val(interface, NULL_TREE);
6663 std::pair<Interface_method_tables::iterator, bool> ins = (*pimt)->insert(val);
6664
6665 if (ins.second)
6666 {
6667 // This is a new entry in the hash table.
6668 gcc_assert(ins.first->second == NULL_TREE);
6669 ins.first->second = gogo->interface_method_table_for_type(interface,
6670 this,
6671 is_pointer);
6672 }
6673
6674 tree decl = ins.first->second;
6675 if (decl == error_mark_node)
6676 return error_mark_node;
6677 gcc_assert(decl != NULL_TREE && TREE_CODE(decl) == VAR_DECL);
6678 return build_fold_addr_expr(decl);
6679 }
6680
6681 // Return whether a named type has any hidden fields.
6682
6683 bool
6684 Named_type::named_type_has_hidden_fields(std::string* reason) const
6685 {
6686 if (this->seen_)
6687 return false;
6688 this->seen_ = true;
6689 bool ret = this->type_->has_hidden_fields(this, reason);
6690 this->seen_ = false;
6691 return ret;
6692 }
6693
6694 // Look for a use of a complete type within another type. This is
6695 // used to check that we don't try to use a type within itself.
6696
6697 class Find_type_use : public Traverse
6698 {
6699 public:
6700 Find_type_use(Type* find_type)
6701 : Traverse(traverse_types),
6702 find_type_(find_type), found_(false)
6703 { }
6704
6705 // Whether we found the type.
6706 bool
6707 found() const
6708 { return this->found_; }
6709
6710 protected:
6711 int
6712 type(Type*);
6713
6714 private:
6715 // The type we are looking for.
6716 Type* find_type_;
6717 // Whether we found the type.
6718 bool found_;
6719 };
6720
6721 // Check for FIND_TYPE in TYPE.
6722
6723 int
6724 Find_type_use::type(Type* type)
6725 {
6726 if (this->find_type_ == type)
6727 {
6728 this->found_ = true;
6729 return TRAVERSE_EXIT;
6730 }
6731 // It's OK if we see a reference to the type in any type which is
6732 // essentially a pointer: a pointer, a slice, a function, a map, or
6733 // a channel.
6734 if (type->points_to() != NULL
6735 || type->is_open_array_type()
6736 || type->function_type() != NULL
6737 || type->map_type() != NULL
6738 || type->channel_type() != NULL)
6739 return TRAVERSE_SKIP_COMPONENTS;
6740
6741 // For an interface, a reference to the type in a method type should
6742 // be ignored, but we have to consider direct inheritance. When
6743 // this is called, there may be cases of direct inheritance
6744 // represented as a method with no name.
6745 if (type->interface_type() != NULL)
6746 {
6747 const Typed_identifier_list* methods = type->interface_type()->methods();
6748 if (methods != NULL)
6749 {
6750 for (Typed_identifier_list::const_iterator p = methods->begin();
6751 p != methods->end();
6752 ++p)
6753 {
6754 if (p->name().empty())
6755 {
6756 if (Type::traverse(p->type(), this) == TRAVERSE_EXIT)
6757 return TRAVERSE_EXIT;
6758 }
6759 }
6760 }
6761 return TRAVERSE_SKIP_COMPONENTS;
6762 }
6763
6764 return TRAVERSE_CONTINUE;
6765 }
6766
6767 // Verify that a named type does not refer to itself.
6768
6769 bool
6770 Named_type::do_verify()
6771 {
6772 Find_type_use find(this);
6773 Type::traverse(this->type_, &find);
6774 if (find.found())
6775 {
6776 error_at(this->location_, "invalid recursive type %qs",
6777 this->message_name().c_str());
6778 this->is_error_ = true;
6779 return false;
6780 }
6781
6782 // Check whether any of the local methods overloads an existing
6783 // struct field or interface method. We don't need to check the
6784 // list of methods against itself: that is handled by the Bindings
6785 // code.
6786 if (this->local_methods_ != NULL)
6787 {
6788 Struct_type* st = this->type_->struct_type();
6789 Interface_type* it = this->type_->interface_type();
6790 bool found_dup = false;
6791 if (st != NULL || it != NULL)
6792 {
6793 for (Bindings::const_declarations_iterator p =
6794 this->local_methods_->begin_declarations();
6795 p != this->local_methods_->end_declarations();
6796 ++p)
6797 {
6798 const std::string& name(p->first);
6799 if (st != NULL && st->find_local_field(name, NULL) != NULL)
6800 {
6801 error_at(p->second->location(),
6802 "method %qs redeclares struct field name",
6803 Gogo::message_name(name).c_str());
6804 found_dup = true;
6805 }
6806 if (it != NULL && it->find_method(name) != NULL)
6807 {
6808 error_at(p->second->location(),
6809 "method %qs redeclares interface method name",
6810 Gogo::message_name(name).c_str());
6811 found_dup = true;
6812 }
6813 }
6814 }
6815 if (found_dup)
6816 return false;
6817 }
6818
6819 return true;
6820 }
6821
6822 // Return a hash code. This is used for method lookup. We simply
6823 // hash on the name itself.
6824
6825 unsigned int
6826 Named_type::do_hash_for_method(Gogo* gogo) const
6827 {
6828 const std::string& name(this->named_object()->name());
6829 unsigned int ret = Type::hash_string(name, 0);
6830
6831 // GOGO will be NULL here when called from Type_hash_identical.
6832 // That is OK because that is only used for internal hash tables
6833 // where we are going to be comparing named types for equality. In
6834 // other cases, which are cases where the runtime is going to
6835 // compare hash codes to see if the types are the same, we need to
6836 // include the package prefix and name in the hash.
6837 if (gogo != NULL && !Gogo::is_hidden_name(name) && !this->is_builtin())
6838 {
6839 const Package* package = this->named_object()->package();
6840 if (package == NULL)
6841 {
6842 ret = Type::hash_string(gogo->unique_prefix(), ret);
6843 ret = Type::hash_string(gogo->package_name(), ret);
6844 }
6845 else
6846 {
6847 ret = Type::hash_string(package->unique_prefix(), ret);
6848 ret = Type::hash_string(package->name(), ret);
6849 }
6850 }
6851
6852 return ret;
6853 }
6854
6855 // Get a tree for a named type.
6856
6857 tree
6858 Named_type::do_get_tree(Gogo* gogo)
6859 {
6860 if (this->is_error_)
6861 return error_mark_node;
6862
6863 // Go permits types to refer to themselves in various ways. Break
6864 // the recursion here.
6865 tree t;
6866 switch (this->type_->forwarded()->classification())
6867 {
6868 case TYPE_ERROR:
6869 return error_mark_node;
6870
6871 case TYPE_VOID:
6872 case TYPE_BOOLEAN:
6873 case TYPE_INTEGER:
6874 case TYPE_FLOAT:
6875 case TYPE_COMPLEX:
6876 case TYPE_STRING:
6877 case TYPE_NIL:
6878 // These types can not refer to themselves.
6879 case TYPE_MAP:
6880 case TYPE_CHANNEL:
6881 // All maps and channels have the same type in GENERIC.
6882 t = Type::get_named_type_tree(gogo, this->type_);
6883 if (t == error_mark_node)
6884 return error_mark_node;
6885 // Build a copy to set TYPE_NAME.
6886 t = build_variant_type_copy(t);
6887 break;
6888
6889 case TYPE_FUNCTION:
6890 // Don't recur infinitely if a function type refers to itself.
6891 // Ideally we would build a circular data structure here, but
6892 // GENERIC can't handle them.
6893 if (this->seen_)
6894 return ptr_type_node;
6895 this->seen_ = true;
6896 t = Type::get_named_type_tree(gogo, this->type_);
6897 this->seen_ = false;
6898 if (t == error_mark_node)
6899 return error_mark_node;
6900 t = build_variant_type_copy(t);
6901 break;
6902
6903 case TYPE_POINTER:
6904 // Don't recur infinitely if a pointer type refers to itself.
6905 // Ideally we would build a circular data structure here, but
6906 // GENERIC can't handle them.
6907 if (this->seen_)
6908 return ptr_type_node;
6909 this->seen_ = true;
6910 t = Type::get_named_type_tree(gogo, this->type_);
6911 this->seen_ = false;
6912 if (t == error_mark_node)
6913 return error_mark_node;
6914 t = build_variant_type_copy(t);
6915 break;
6916
6917 case TYPE_STRUCT:
6918 if (this->named_tree_ != NULL_TREE)
6919 return this->named_tree_;
6920 t = make_node(RECORD_TYPE);
6921 this->named_tree_ = t;
6922 t = this->type_->struct_type()->fill_in_tree(gogo, t);
6923 if (t == error_mark_node)
6924 return error_mark_node;
6925 break;
6926
6927 case TYPE_ARRAY:
6928 if (!this->is_open_array_type())
6929 t = Type::get_named_type_tree(gogo, this->type_);
6930 else
6931 {
6932 if (this->named_tree_ != NULL_TREE)
6933 return this->named_tree_;
6934 t = gogo->slice_type_tree(void_type_node);
6935 this->named_tree_ = t;
6936 t = this->type_->array_type()->fill_in_tree(gogo, t);
6937 }
6938 if (t == error_mark_node)
6939 return error_mark_node;
6940 t = build_variant_type_copy(t);
6941 break;
6942
6943 case TYPE_INTERFACE:
6944 if (this->type_->interface_type()->is_empty())
6945 {
6946 t = Type::get_named_type_tree(gogo, this->type_);
6947 if (t == error_mark_node)
6948 return error_mark_node;
6949 t = build_variant_type_copy(t);
6950 }
6951 else
6952 {
6953 if (this->named_tree_ != NULL_TREE)
6954 return this->named_tree_;
6955 t = make_node(RECORD_TYPE);
6956 this->named_tree_ = t;
6957 t = this->type_->interface_type()->fill_in_tree(gogo, t);
6958 if (t == error_mark_node)
6959 return error_mark_node;
6960 }
6961 break;
6962
6963 case TYPE_NAMED:
6964 {
6965 // When a named type T1 is defined as another named type T2,
6966 // the definition must simply be "type T1 T2". If the
6967 // definition of T2 may refer to T1, then we must simply
6968 // return the type for T2 here. It's not precisely correct,
6969 // but it's as close as we can get with GENERIC.
6970 bool was_seen = this->seen_;
6971 this->seen_ = true;
6972 t = Type::get_named_type_tree(gogo, this->type_);
6973 this->seen_ = was_seen;
6974 if (was_seen)
6975 return t;
6976 if (t == error_mark_node)
6977 return error_mark_node;
6978 t = build_variant_type_copy(t);
6979 }
6980 break;
6981
6982 case TYPE_FORWARD:
6983 // An undefined forwarding type. Make sure the error is
6984 // emitted.
6985 this->type_->forward_declaration_type()->real_type();
6986 return error_mark_node;
6987
6988 default:
6989 case TYPE_SINK:
6990 case TYPE_CALL_MULTIPLE_RESULT:
6991 gcc_unreachable();
6992 }
6993
6994 tree id = this->named_object_->get_id(gogo);
6995 tree decl = build_decl(this->location_, TYPE_DECL, id, t);
6996 TYPE_NAME(t) = decl;
6997
6998 return t;
6999 }
7000
7001 // Build a type descriptor for a named type.
7002
7003 Expression*
7004 Named_type::do_type_descriptor(Gogo* gogo, Named_type* name)
7005 {
7006 // If NAME is not NULL, then we don't really want the type
7007 // descriptor for this type; we want the descriptor for the
7008 // underlying type, giving it the name NAME.
7009 return this->named_type_descriptor(gogo, this->type_,
7010 name == NULL ? this : name);
7011 }
7012
7013 // Add to the reflection string. This is used mostly for the name of
7014 // the type used in a type descriptor, not for actual reflection
7015 // strings.
7016
7017 void
7018 Named_type::do_reflection(Gogo* gogo, std::string* ret) const
7019 {
7020 if (this->location() != BUILTINS_LOCATION)
7021 {
7022 const Package* package = this->named_object_->package();
7023 if (package != NULL)
7024 ret->append(package->name());
7025 else
7026 ret->append(gogo->package_name());
7027 ret->push_back('.');
7028 }
7029 if (this->in_function_ != NULL)
7030 {
7031 ret->append(Gogo::unpack_hidden_name(this->in_function_->name()));
7032 ret->push_back('$');
7033 }
7034 ret->append(Gogo::unpack_hidden_name(this->named_object_->name()));
7035 }
7036
7037 // Get the mangled name.
7038
7039 void
7040 Named_type::do_mangled_name(Gogo* gogo, std::string* ret) const
7041 {
7042 Named_object* no = this->named_object_;
7043 std::string name;
7044 if (this->location() == BUILTINS_LOCATION)
7045 gcc_assert(this->in_function_ == NULL);
7046 else
7047 {
7048 const std::string& unique_prefix(no->package() == NULL
7049 ? gogo->unique_prefix()
7050 : no->package()->unique_prefix());
7051 const std::string& package_name(no->package() == NULL
7052 ? gogo->package_name()
7053 : no->package()->name());
7054 name = unique_prefix;
7055 name.append(1, '.');
7056 name.append(package_name);
7057 name.append(1, '.');
7058 if (this->in_function_ != NULL)
7059 {
7060 name.append(Gogo::unpack_hidden_name(this->in_function_->name()));
7061 name.append(1, '$');
7062 }
7063 }
7064 name.append(Gogo::unpack_hidden_name(no->name()));
7065 char buf[20];
7066 snprintf(buf, sizeof buf, "N%u_", static_cast<unsigned int>(name.length()));
7067 ret->append(buf);
7068 ret->append(name);
7069 }
7070
7071 // Export the type. This is called to export a global type.
7072
7073 void
7074 Named_type::export_named_type(Export* exp, const std::string&) const
7075 {
7076 // We don't need to write the name of the type here, because it will
7077 // be written by Export::write_type anyhow.
7078 exp->write_c_string("type ");
7079 exp->write_type(this);
7080 exp->write_c_string(";\n");
7081 }
7082
7083 // Import a named type.
7084
7085 void
7086 Named_type::import_named_type(Import* imp, Named_type** ptype)
7087 {
7088 imp->require_c_string("type ");
7089 Type *type = imp->read_type();
7090 *ptype = type->named_type();
7091 gcc_assert(*ptype != NULL);
7092 imp->require_c_string(";\n");
7093 }
7094
7095 // Export the type when it is referenced by another type. In this
7096 // case Export::export_type will already have issued the name.
7097
7098 void
7099 Named_type::do_export(Export* exp) const
7100 {
7101 exp->write_type(this->type_);
7102
7103 // To save space, we only export the methods directly attached to
7104 // this type.
7105 Bindings* methods = this->local_methods_;
7106 if (methods == NULL)
7107 return;
7108
7109 exp->write_c_string("\n");
7110 for (Bindings::const_definitions_iterator p = methods->begin_definitions();
7111 p != methods->end_definitions();
7112 ++p)
7113 {
7114 exp->write_c_string(" ");
7115 (*p)->export_named_object(exp);
7116 }
7117
7118 for (Bindings::const_declarations_iterator p = methods->begin_declarations();
7119 p != methods->end_declarations();
7120 ++p)
7121 {
7122 if (p->second->is_function_declaration())
7123 {
7124 exp->write_c_string(" ");
7125 p->second->export_named_object(exp);
7126 }
7127 }
7128 }
7129
7130 // Make a named type.
7131
7132 Named_type*
7133 Type::make_named_type(Named_object* named_object, Type* type,
7134 source_location location)
7135 {
7136 return new Named_type(named_object, type, location);
7137 }
7138
7139 // Finalize the methods for TYPE. It will be a named type or a struct
7140 // type. This sets *ALL_METHODS to the list of methods, and builds
7141 // all required stubs.
7142
7143 void
7144 Type::finalize_methods(Gogo* gogo, const Type* type, source_location location,
7145 Methods** all_methods)
7146 {
7147 *all_methods = NULL;
7148 Types_seen types_seen;
7149 Type::add_methods_for_type(type, NULL, 0, false, false, &types_seen,
7150 all_methods);
7151 Type::build_stub_methods(gogo, type, *all_methods, location);
7152 }
7153
7154 // Add the methods for TYPE to *METHODS. FIELD_INDEXES is used to
7155 // build up the struct field indexes as we go. DEPTH is the depth of
7156 // the field within TYPE. IS_EMBEDDED_POINTER is true if we are
7157 // adding these methods for an anonymous field with pointer type.
7158 // NEEDS_STUB_METHOD is true if we need to use a stub method which
7159 // calls the real method. TYPES_SEEN is used to avoid infinite
7160 // recursion.
7161
7162 void
7163 Type::add_methods_for_type(const Type* type,
7164 const Method::Field_indexes* field_indexes,
7165 unsigned int depth,
7166 bool is_embedded_pointer,
7167 bool needs_stub_method,
7168 Types_seen* types_seen,
7169 Methods** methods)
7170 {
7171 // Pointer types may not have methods.
7172 if (type->points_to() != NULL)
7173 return;
7174
7175 const Named_type* nt = type->named_type();
7176 if (nt != NULL)
7177 {
7178 std::pair<Types_seen::iterator, bool> ins = types_seen->insert(nt);
7179 if (!ins.second)
7180 return;
7181 }
7182
7183 if (nt != NULL)
7184 Type::add_local_methods_for_type(nt, field_indexes, depth,
7185 is_embedded_pointer, needs_stub_method,
7186 methods);
7187
7188 Type::add_embedded_methods_for_type(type, field_indexes, depth,
7189 is_embedded_pointer, needs_stub_method,
7190 types_seen, methods);
7191
7192 // If we are called with depth > 0, then we are looking at an
7193 // anonymous field of a struct. If such a field has interface type,
7194 // then we need to add the interface methods. We don't want to add
7195 // them when depth == 0, because we will already handle them
7196 // following the usual rules for an interface type.
7197 if (depth > 0)
7198 Type::add_interface_methods_for_type(type, field_indexes, depth, methods);
7199 }
7200
7201 // Add the local methods for the named type NT to *METHODS. The
7202 // parameters are as for add_methods_to_type.
7203
7204 void
7205 Type::add_local_methods_for_type(const Named_type* nt,
7206 const Method::Field_indexes* field_indexes,
7207 unsigned int depth,
7208 bool is_embedded_pointer,
7209 bool needs_stub_method,
7210 Methods** methods)
7211 {
7212 const Bindings* local_methods = nt->local_methods();
7213 if (local_methods == NULL)
7214 return;
7215
7216 if (*methods == NULL)
7217 *methods = new Methods();
7218
7219 for (Bindings::const_declarations_iterator p =
7220 local_methods->begin_declarations();
7221 p != local_methods->end_declarations();
7222 ++p)
7223 {
7224 Named_object* no = p->second;
7225 bool is_value_method = (is_embedded_pointer
7226 || !Type::method_expects_pointer(no));
7227 Method* m = new Named_method(no, field_indexes, depth, is_value_method,
7228 (needs_stub_method
7229 || (depth > 0 && is_value_method)));
7230 if (!(*methods)->insert(no->name(), m))
7231 delete m;
7232 }
7233 }
7234
7235 // Add the embedded methods for TYPE to *METHODS. These are the
7236 // methods attached to anonymous fields. The parameters are as for
7237 // add_methods_to_type.
7238
7239 void
7240 Type::add_embedded_methods_for_type(const Type* type,
7241 const Method::Field_indexes* field_indexes,
7242 unsigned int depth,
7243 bool is_embedded_pointer,
7244 bool needs_stub_method,
7245 Types_seen* types_seen,
7246 Methods** methods)
7247 {
7248 // Look for anonymous fields in TYPE. TYPE has fields if it is a
7249 // struct.
7250 const Struct_type* st = type->struct_type();
7251 if (st == NULL)
7252 return;
7253
7254 const Struct_field_list* fields = st->fields();
7255 if (fields == NULL)
7256 return;
7257
7258 unsigned int i = 0;
7259 for (Struct_field_list::const_iterator pf = fields->begin();
7260 pf != fields->end();
7261 ++pf, ++i)
7262 {
7263 if (!pf->is_anonymous())
7264 continue;
7265
7266 Type* ftype = pf->type();
7267 bool is_pointer = false;
7268 if (ftype->points_to() != NULL)
7269 {
7270 ftype = ftype->points_to();
7271 is_pointer = true;
7272 }
7273 Named_type* fnt = ftype->named_type();
7274 if (fnt == NULL)
7275 {
7276 // This is an error, but it will be diagnosed elsewhere.
7277 continue;
7278 }
7279
7280 Method::Field_indexes* sub_field_indexes = new Method::Field_indexes();
7281 sub_field_indexes->next = field_indexes;
7282 sub_field_indexes->field_index = i;
7283
7284 Type::add_methods_for_type(fnt, sub_field_indexes, depth + 1,
7285 (is_embedded_pointer || is_pointer),
7286 (needs_stub_method
7287 || is_pointer
7288 || i > 0),
7289 types_seen,
7290 methods);
7291 }
7292 }
7293
7294 // If TYPE is an interface type, then add its method to *METHODS.
7295 // This is for interface methods attached to an anonymous field. The
7296 // parameters are as for add_methods_for_type.
7297
7298 void
7299 Type::add_interface_methods_for_type(const Type* type,
7300 const Method::Field_indexes* field_indexes,
7301 unsigned int depth,
7302 Methods** methods)
7303 {
7304 const Interface_type* it = type->interface_type();
7305 if (it == NULL)
7306 return;
7307
7308 const Typed_identifier_list* imethods = it->methods();
7309 if (imethods == NULL)
7310 return;
7311
7312 if (*methods == NULL)
7313 *methods = new Methods();
7314
7315 for (Typed_identifier_list::const_iterator pm = imethods->begin();
7316 pm != imethods->end();
7317 ++pm)
7318 {
7319 Function_type* fntype = pm->type()->function_type();
7320 gcc_assert(fntype != NULL && !fntype->is_method());
7321 fntype = fntype->copy_with_receiver(const_cast<Type*>(type));
7322 Method* m = new Interface_method(pm->name(), pm->location(), fntype,
7323 field_indexes, depth);
7324 if (!(*methods)->insert(pm->name(), m))
7325 delete m;
7326 }
7327 }
7328
7329 // Build stub methods for TYPE as needed. METHODS is the set of
7330 // methods for the type. A stub method may be needed when a type
7331 // inherits a method from an anonymous field. When we need the
7332 // address of the method, as in a type descriptor, we need to build a
7333 // little stub which does the required field dereferences and jumps to
7334 // the real method. LOCATION is the location of the type definition.
7335
7336 void
7337 Type::build_stub_methods(Gogo* gogo, const Type* type, const Methods* methods,
7338 source_location location)
7339 {
7340 if (methods == NULL)
7341 return;
7342 for (Methods::const_iterator p = methods->begin();
7343 p != methods->end();
7344 ++p)
7345 {
7346 Method* m = p->second;
7347 if (m->is_ambiguous() || !m->needs_stub_method())
7348 continue;
7349
7350 const std::string& name(p->first);
7351
7352 // Build a stub method.
7353
7354 const Function_type* fntype = m->type();
7355
7356 static unsigned int counter;
7357 char buf[100];
7358 snprintf(buf, sizeof buf, "$this%u", counter);
7359 ++counter;
7360
7361 Type* receiver_type = const_cast<Type*>(type);
7362 if (!m->is_value_method())
7363 receiver_type = Type::make_pointer_type(receiver_type);
7364 source_location receiver_location = m->receiver_location();
7365 Typed_identifier* receiver = new Typed_identifier(buf, receiver_type,
7366 receiver_location);
7367
7368 const Typed_identifier_list* fnparams = fntype->parameters();
7369 Typed_identifier_list* stub_params;
7370 if (fnparams == NULL || fnparams->empty())
7371 stub_params = NULL;
7372 else
7373 {
7374 // We give each stub parameter a unique name.
7375 stub_params = new Typed_identifier_list();
7376 for (Typed_identifier_list::const_iterator pp = fnparams->begin();
7377 pp != fnparams->end();
7378 ++pp)
7379 {
7380 char pbuf[100];
7381 snprintf(pbuf, sizeof pbuf, "$p%u", counter);
7382 stub_params->push_back(Typed_identifier(pbuf, pp->type(),
7383 pp->location()));
7384 ++counter;
7385 }
7386 }
7387
7388 const Typed_identifier_list* fnresults = fntype->results();
7389 Typed_identifier_list* stub_results;
7390 if (fnresults == NULL || fnresults->empty())
7391 stub_results = NULL;
7392 else
7393 {
7394 // We create the result parameters without any names, since
7395 // we won't refer to them.
7396 stub_results = new Typed_identifier_list();
7397 for (Typed_identifier_list::const_iterator pr = fnresults->begin();
7398 pr != fnresults->end();
7399 ++pr)
7400 stub_results->push_back(Typed_identifier("", pr->type(),
7401 pr->location()));
7402 }
7403
7404 Function_type* stub_type = Type::make_function_type(receiver,
7405 stub_params,
7406 stub_results,
7407 fntype->location());
7408 if (fntype->is_varargs())
7409 stub_type->set_is_varargs();
7410
7411 // We only create the function in the package which creates the
7412 // type.
7413 const Package* package;
7414 if (type->named_type() == NULL)
7415 package = NULL;
7416 else
7417 package = type->named_type()->named_object()->package();
7418 Named_object* stub;
7419 if (package != NULL)
7420 stub = Named_object::make_function_declaration(name, package,
7421 stub_type, location);
7422 else
7423 {
7424 stub = gogo->start_function(name, stub_type, false,
7425 fntype->location());
7426 Type::build_one_stub_method(gogo, m, buf, stub_params,
7427 fntype->is_varargs(), location);
7428 gogo->finish_function(fntype->location());
7429 }
7430
7431 m->set_stub_object(stub);
7432 }
7433 }
7434
7435 // Build a stub method which adjusts the receiver as required to call
7436 // METHOD. RECEIVER_NAME is the name we used for the receiver.
7437 // PARAMS is the list of function parameters.
7438
7439 void
7440 Type::build_one_stub_method(Gogo* gogo, Method* method,
7441 const char* receiver_name,
7442 const Typed_identifier_list* params,
7443 bool is_varargs,
7444 source_location location)
7445 {
7446 Named_object* receiver_object = gogo->lookup(receiver_name, NULL);
7447 gcc_assert(receiver_object != NULL);
7448
7449 Expression* expr = Expression::make_var_reference(receiver_object, location);
7450 expr = Type::apply_field_indexes(expr, method->field_indexes(), location);
7451 if (expr->type()->points_to() == NULL)
7452 expr = Expression::make_unary(OPERATOR_AND, expr, location);
7453
7454 Expression_list* arguments;
7455 if (params == NULL || params->empty())
7456 arguments = NULL;
7457 else
7458 {
7459 arguments = new Expression_list();
7460 for (Typed_identifier_list::const_iterator p = params->begin();
7461 p != params->end();
7462 ++p)
7463 {
7464 Named_object* param = gogo->lookup(p->name(), NULL);
7465 gcc_assert(param != NULL);
7466 Expression* param_ref = Expression::make_var_reference(param,
7467 location);
7468 arguments->push_back(param_ref);
7469 }
7470 }
7471
7472 Expression* func = method->bind_method(expr, location);
7473 gcc_assert(func != NULL);
7474 Call_expression* call = Expression::make_call(func, arguments, is_varargs,
7475 location);
7476 size_t count = call->result_count();
7477 if (count == 0)
7478 gogo->add_statement(Statement::make_statement(call));
7479 else
7480 {
7481 Expression_list* retvals = new Expression_list();
7482 if (count <= 1)
7483 retvals->push_back(call);
7484 else
7485 {
7486 for (size_t i = 0; i < count; ++i)
7487 retvals->push_back(Expression::make_call_result(call, i));
7488 }
7489 const Function* function = gogo->current_function()->func_value();
7490 const Typed_identifier_list* results = function->type()->results();
7491 Statement* retstat = Statement::make_return_statement(results, retvals,
7492 location);
7493 gogo->add_statement(retstat);
7494 }
7495 }
7496
7497 // Apply FIELD_INDEXES to EXPR. The field indexes have to be applied
7498 // in reverse order.
7499
7500 Expression*
7501 Type::apply_field_indexes(Expression* expr,
7502 const Method::Field_indexes* field_indexes,
7503 source_location location)
7504 {
7505 if (field_indexes == NULL)
7506 return expr;
7507 expr = Type::apply_field_indexes(expr, field_indexes->next, location);
7508 Struct_type* stype = expr->type()->deref()->struct_type();
7509 gcc_assert(stype != NULL
7510 && field_indexes->field_index < stype->field_count());
7511 if (expr->type()->struct_type() == NULL)
7512 {
7513 gcc_assert(expr->type()->points_to() != NULL);
7514 expr = Expression::make_unary(OPERATOR_MULT, expr, location);
7515 gcc_assert(expr->type()->struct_type() == stype);
7516 }
7517 return Expression::make_field_reference(expr, field_indexes->field_index,
7518 location);
7519 }
7520
7521 // Return whether NO is a method for which the receiver is a pointer.
7522
7523 bool
7524 Type::method_expects_pointer(const Named_object* no)
7525 {
7526 const Function_type *fntype;
7527 if (no->is_function())
7528 fntype = no->func_value()->type();
7529 else if (no->is_function_declaration())
7530 fntype = no->func_declaration_value()->type();
7531 else
7532 gcc_unreachable();
7533 return fntype->receiver()->type()->points_to() != NULL;
7534 }
7535
7536 // Given a set of methods for a type, METHODS, return the method NAME,
7537 // or NULL if there isn't one or if it is ambiguous. If IS_AMBIGUOUS
7538 // is not NULL, then set *IS_AMBIGUOUS to true if the method exists
7539 // but is ambiguous (and return NULL).
7540
7541 Method*
7542 Type::method_function(const Methods* methods, const std::string& name,
7543 bool* is_ambiguous)
7544 {
7545 if (is_ambiguous != NULL)
7546 *is_ambiguous = false;
7547 if (methods == NULL)
7548 return NULL;
7549 Methods::const_iterator p = methods->find(name);
7550 if (p == methods->end())
7551 return NULL;
7552 Method* m = p->second;
7553 if (m->is_ambiguous())
7554 {
7555 if (is_ambiguous != NULL)
7556 *is_ambiguous = true;
7557 return NULL;
7558 }
7559 return m;
7560 }
7561
7562 // Look for field or method NAME for TYPE. Return an Expression for
7563 // the field or method bound to EXPR. If there is no such field or
7564 // method, give an appropriate error and return an error expression.
7565
7566 Expression*
7567 Type::bind_field_or_method(Gogo* gogo, const Type* type, Expression* expr,
7568 const std::string& name,
7569 source_location location)
7570 {
7571 if (type->deref()->is_error_type())
7572 return Expression::make_error(location);
7573
7574 const Named_type* nt = type->named_type();
7575 if (nt == NULL)
7576 nt = type->deref()->named_type();
7577 const Struct_type* st = type->deref()->struct_type();
7578 const Interface_type* it = type->deref()->interface_type();
7579
7580 // If this is a pointer to a pointer, then it is possible that the
7581 // pointed-to type has methods.
7582 if (nt == NULL
7583 && st == NULL
7584 && it == NULL
7585 && type->points_to() != NULL
7586 && type->points_to()->points_to() != NULL)
7587 {
7588 expr = Expression::make_unary(OPERATOR_MULT, expr, location);
7589 type = type->points_to();
7590 nt = type->points_to()->named_type();
7591 st = type->points_to()->struct_type();
7592 it = type->points_to()->interface_type();
7593 }
7594
7595 bool receiver_can_be_pointer = (expr->type()->points_to() != NULL
7596 || expr->is_addressable());
7597 bool is_method = false;
7598 bool found_pointer_method = false;
7599 std::string ambig1;
7600 std::string ambig2;
7601 if (Type::find_field_or_method(type, name, receiver_can_be_pointer, NULL,
7602 &is_method, &found_pointer_method,
7603 &ambig1, &ambig2))
7604 {
7605 Expression* ret;
7606 if (!is_method)
7607 {
7608 gcc_assert(st != NULL);
7609 if (type->struct_type() == NULL)
7610 {
7611 gcc_assert(type->points_to() != NULL);
7612 expr = Expression::make_unary(OPERATOR_MULT, expr,
7613 location);
7614 gcc_assert(expr->type()->struct_type() == st);
7615 }
7616 ret = st->field_reference(expr, name, location);
7617 }
7618 else if (it != NULL && it->find_method(name) != NULL)
7619 ret = Expression::make_interface_field_reference(expr, name,
7620 location);
7621 else
7622 {
7623 Method* m;
7624 if (nt != NULL)
7625 m = nt->method_function(name, NULL);
7626 else if (st != NULL)
7627 m = st->method_function(name, NULL);
7628 else
7629 gcc_unreachable();
7630 gcc_assert(m != NULL);
7631 if (!m->is_value_method() && expr->type()->points_to() == NULL)
7632 expr = Expression::make_unary(OPERATOR_AND, expr, location);
7633 ret = m->bind_method(expr, location);
7634 }
7635 gcc_assert(ret != NULL);
7636 return ret;
7637 }
7638 else
7639 {
7640 if (!ambig1.empty())
7641 error_at(location, "%qs is ambiguous via %qs and %qs",
7642 Gogo::message_name(name).c_str(),
7643 Gogo::message_name(ambig1).c_str(),
7644 Gogo::message_name(ambig2).c_str());
7645 else if (found_pointer_method)
7646 error_at(location, "method requires a pointer");
7647 else if (nt == NULL && st == NULL && it == NULL)
7648 error_at(location,
7649 ("reference to field %qs in object which "
7650 "has no fields or methods"),
7651 Gogo::message_name(name).c_str());
7652 else
7653 {
7654 bool is_unexported;
7655 if (!Gogo::is_hidden_name(name))
7656 is_unexported = false;
7657 else
7658 {
7659 std::string unpacked = Gogo::unpack_hidden_name(name);
7660 is_unexported = Type::is_unexported_field_or_method(gogo, type,
7661 unpacked);
7662 }
7663 if (is_unexported)
7664 error_at(location, "reference to unexported field or method %qs",
7665 Gogo::message_name(name).c_str());
7666 else
7667 error_at(location, "reference to undefined field or method %qs",
7668 Gogo::message_name(name).c_str());
7669 }
7670 return Expression::make_error(location);
7671 }
7672 }
7673
7674 // Look in TYPE for a field or method named NAME, return true if one
7675 // is found. This looks through embedded anonymous fields and handles
7676 // ambiguity. If a method is found, sets *IS_METHOD to true;
7677 // otherwise, if a field is found, set it to false. If
7678 // RECEIVER_CAN_BE_POINTER is false, then the receiver is a value
7679 // whose address can not be taken. When returning false, this sets
7680 // *FOUND_POINTER_METHOD if we found a method we couldn't use because
7681 // it requires a pointer. LEVEL is used for recursive calls, and can
7682 // be NULL for a non-recursive call. When this function returns false
7683 // because it finds that the name is ambiguous, it will store a path
7684 // to the ambiguous names in *AMBIG1 and *AMBIG2. If the name is not
7685 // found at all, *AMBIG1 and *AMBIG2 will be unchanged.
7686
7687 // This function just returns whether or not there is a field or
7688 // method, and whether it is a field or method. It doesn't build an
7689 // expression to refer to it. If it is a method, we then look in the
7690 // list of all methods for the type. If it is a field, the search has
7691 // to be done again, looking only for fields, and building up the
7692 // expression as we go.
7693
7694 bool
7695 Type::find_field_or_method(const Type* type,
7696 const std::string& name,
7697 bool receiver_can_be_pointer,
7698 int* level,
7699 bool* is_method,
7700 bool* found_pointer_method,
7701 std::string* ambig1,
7702 std::string* ambig2)
7703 {
7704 // Named types can have locally defined methods.
7705 const Named_type* nt = type->named_type();
7706 if (nt == NULL && type->points_to() != NULL)
7707 nt = type->points_to()->named_type();
7708 if (nt != NULL)
7709 {
7710 Named_object* no = nt->find_local_method(name);
7711 if (no != NULL)
7712 {
7713 if (receiver_can_be_pointer || !Type::method_expects_pointer(no))
7714 {
7715 *is_method = true;
7716 return true;
7717 }
7718
7719 // Record that we have found a pointer method in order to
7720 // give a better error message if we don't find anything
7721 // else.
7722 *found_pointer_method = true;
7723 }
7724 }
7725
7726 // Interface types can have methods.
7727 const Interface_type* it = type->deref()->interface_type();
7728 if (it != NULL && it->find_method(name) != NULL)
7729 {
7730 *is_method = true;
7731 return true;
7732 }
7733
7734 // Struct types can have fields. They can also inherit fields and
7735 // methods from anonymous fields.
7736 const Struct_type* st = type->deref()->struct_type();
7737 if (st == NULL)
7738 return false;
7739 const Struct_field_list* fields = st->fields();
7740 if (fields == NULL)
7741 return false;
7742
7743 int found_level = 0;
7744 bool found_is_method = false;
7745 std::string found_ambig1;
7746 std::string found_ambig2;
7747 const Struct_field* found_parent = NULL;
7748 for (Struct_field_list::const_iterator pf = fields->begin();
7749 pf != fields->end();
7750 ++pf)
7751 {
7752 if (pf->field_name() == name)
7753 {
7754 *is_method = false;
7755 return true;
7756 }
7757
7758 if (!pf->is_anonymous())
7759 continue;
7760
7761 if (pf->type()->deref()->is_error_type()
7762 || pf->type()->deref()->is_undefined())
7763 continue;
7764
7765 Named_type* fnt = pf->type()->deref()->named_type();
7766 gcc_assert(fnt != NULL);
7767
7768 int sublevel = level == NULL ? 1 : *level + 1;
7769 bool sub_is_method;
7770 std::string subambig1;
7771 std::string subambig2;
7772 bool subfound = Type::find_field_or_method(fnt,
7773 name,
7774 receiver_can_be_pointer,
7775 &sublevel,
7776 &sub_is_method,
7777 found_pointer_method,
7778 &subambig1,
7779 &subambig2);
7780 if (!subfound)
7781 {
7782 if (!subambig1.empty())
7783 {
7784 // The name was found via this field, but is ambiguous.
7785 // if the ambiguity is lower or at the same level as
7786 // anything else we have already found, then we want to
7787 // pass the ambiguity back to the caller.
7788 if (found_level == 0 || sublevel <= found_level)
7789 {
7790 found_ambig1 = pf->field_name() + '.' + subambig1;
7791 found_ambig2 = pf->field_name() + '.' + subambig2;
7792 found_level = sublevel;
7793 }
7794 }
7795 }
7796 else
7797 {
7798 // The name was found via this field. Use the level to see
7799 // if we want to use this one, or whether it introduces an
7800 // ambiguity.
7801 if (found_level == 0 || sublevel < found_level)
7802 {
7803 found_level = sublevel;
7804 found_is_method = sub_is_method;
7805 found_ambig1.clear();
7806 found_ambig2.clear();
7807 found_parent = &*pf;
7808 }
7809 else if (sublevel > found_level)
7810 ;
7811 else if (found_ambig1.empty())
7812 {
7813 // We found an ambiguity.
7814 gcc_assert(found_parent != NULL);
7815 found_ambig1 = found_parent->field_name();
7816 found_ambig2 = pf->field_name();
7817 }
7818 else
7819 {
7820 // We found an ambiguity, but we already know of one.
7821 // Just report the earlier one.
7822 }
7823 }
7824 }
7825
7826 // Here if we didn't find anything FOUND_LEVEL is 0. If we found
7827 // something ambiguous, FOUND_LEVEL is not 0 and FOUND_AMBIG1 and
7828 // FOUND_AMBIG2 are not empty. If we found the field, FOUND_LEVEL
7829 // is not 0 and FOUND_AMBIG1 and FOUND_AMBIG2 are empty.
7830
7831 if (found_level == 0)
7832 return false;
7833 else if (!found_ambig1.empty())
7834 {
7835 gcc_assert(!found_ambig1.empty());
7836 ambig1->assign(found_ambig1);
7837 ambig2->assign(found_ambig2);
7838 if (level != NULL)
7839 *level = found_level;
7840 return false;
7841 }
7842 else
7843 {
7844 if (level != NULL)
7845 *level = found_level;
7846 *is_method = found_is_method;
7847 return true;
7848 }
7849 }
7850
7851 // Return whether NAME is an unexported field or method for TYPE.
7852
7853 bool
7854 Type::is_unexported_field_or_method(Gogo* gogo, const Type* type,
7855 const std::string& name)
7856 {
7857 type = type->deref();
7858
7859 const Named_type* nt = type->named_type();
7860 if (nt != NULL && nt->is_unexported_local_method(gogo, name))
7861 return true;
7862
7863 const Interface_type* it = type->interface_type();
7864 if (it != NULL && it->is_unexported_method(gogo, name))
7865 return true;
7866
7867 const Struct_type* st = type->struct_type();
7868 if (st != NULL && st->is_unexported_local_field(gogo, name))
7869 return true;
7870
7871 if (st == NULL)
7872 return false;
7873
7874 const Struct_field_list* fields = st->fields();
7875 if (fields == NULL)
7876 return false;
7877
7878 for (Struct_field_list::const_iterator pf = fields->begin();
7879 pf != fields->end();
7880 ++pf)
7881 {
7882 if (pf->is_anonymous()
7883 && (!pf->type()->deref()->is_error_type()
7884 && !pf->type()->deref()->is_undefined()))
7885 {
7886 Named_type* subtype = pf->type()->deref()->named_type();
7887 gcc_assert(subtype != NULL);
7888 if (Type::is_unexported_field_or_method(gogo, subtype, name))
7889 return true;
7890 }
7891 }
7892
7893 return false;
7894 }
7895
7896 // Class Forward_declaration.
7897
7898 Forward_declaration_type::Forward_declaration_type(Named_object* named_object)
7899 : Type(TYPE_FORWARD),
7900 named_object_(named_object->resolve()), warned_(false)
7901 {
7902 gcc_assert(this->named_object_->is_unknown()
7903 || this->named_object_->is_type_declaration());
7904 }
7905
7906 // Return the named object.
7907
7908 Named_object*
7909 Forward_declaration_type::named_object()
7910 {
7911 return this->named_object_->resolve();
7912 }
7913
7914 const Named_object*
7915 Forward_declaration_type::named_object() const
7916 {
7917 return this->named_object_->resolve();
7918 }
7919
7920 // Return the name of the forward declared type.
7921
7922 const std::string&
7923 Forward_declaration_type::name() const
7924 {
7925 return this->named_object()->name();
7926 }
7927
7928 // Warn about a use of a type which has been declared but not defined.
7929
7930 void
7931 Forward_declaration_type::warn() const
7932 {
7933 Named_object* no = this->named_object_->resolve();
7934 if (no->is_unknown())
7935 {
7936 // The name was not defined anywhere.
7937 if (!this->warned_)
7938 {
7939 error_at(this->named_object_->location(),
7940 "use of undefined type %qs",
7941 no->message_name().c_str());
7942 this->warned_ = true;
7943 }
7944 }
7945 else if (no->is_type_declaration())
7946 {
7947 // The name was seen as a type, but the type was never defined.
7948 if (no->type_declaration_value()->using_type())
7949 {
7950 error_at(this->named_object_->location(),
7951 "use of undefined type %qs",
7952 no->message_name().c_str());
7953 this->warned_ = true;
7954 }
7955 }
7956 else
7957 {
7958 // The name was defined, but not as a type.
7959 if (!this->warned_)
7960 {
7961 error_at(this->named_object_->location(), "expected type");
7962 this->warned_ = true;
7963 }
7964 }
7965 }
7966
7967 // Get the base type of a declaration. This gives an error if the
7968 // type has not yet been defined.
7969
7970 Type*
7971 Forward_declaration_type::real_type()
7972 {
7973 if (this->is_defined())
7974 return this->named_object()->type_value();
7975 else
7976 {
7977 this->warn();
7978 return Type::make_error_type();
7979 }
7980 }
7981
7982 const Type*
7983 Forward_declaration_type::real_type() const
7984 {
7985 if (this->is_defined())
7986 return this->named_object()->type_value();
7987 else
7988 {
7989 this->warn();
7990 return Type::make_error_type();
7991 }
7992 }
7993
7994 // Return whether the base type is defined.
7995
7996 bool
7997 Forward_declaration_type::is_defined() const
7998 {
7999 return this->named_object()->is_type();
8000 }
8001
8002 // Add a method. This is used when methods are defined before the
8003 // type.
8004
8005 Named_object*
8006 Forward_declaration_type::add_method(const std::string& name,
8007 Function* function)
8008 {
8009 Named_object* no = this->named_object();
8010 gcc_assert(no->is_type_declaration());
8011 return no->type_declaration_value()->add_method(name, function);
8012 }
8013
8014 // Add a method declaration. This is used when methods are declared
8015 // before the type.
8016
8017 Named_object*
8018 Forward_declaration_type::add_method_declaration(const std::string& name,
8019 Function_type* type,
8020 source_location location)
8021 {
8022 Named_object* no = this->named_object();
8023 gcc_assert(no->is_type_declaration());
8024 Type_declaration* td = no->type_declaration_value();
8025 return td->add_method_declaration(name, type, location);
8026 }
8027
8028 // Traversal.
8029
8030 int
8031 Forward_declaration_type::do_traverse(Traverse* traverse)
8032 {
8033 if (this->is_defined()
8034 && Type::traverse(this->real_type(), traverse) == TRAVERSE_EXIT)
8035 return TRAVERSE_EXIT;
8036 return TRAVERSE_CONTINUE;
8037 }
8038
8039 // Get a tree for the type.
8040
8041 tree
8042 Forward_declaration_type::do_get_tree(Gogo* gogo)
8043 {
8044 if (this->is_defined())
8045 return Type::get_named_type_tree(gogo, this->real_type());
8046
8047 if (this->warned_)
8048 return error_mark_node;
8049
8050 // We represent an undefined type as a struct with no fields. That
8051 // should work fine for the middle-end, since the same case can
8052 // arise in C.
8053 Named_object* no = this->named_object();
8054 tree type_tree = make_node(RECORD_TYPE);
8055 tree id = no->get_id(gogo);
8056 tree decl = build_decl(no->location(), TYPE_DECL, id, type_tree);
8057 TYPE_NAME(type_tree) = decl;
8058 return type_tree;
8059 }
8060
8061 // Build a type descriptor for a forwarded type.
8062
8063 Expression*
8064 Forward_declaration_type::do_type_descriptor(Gogo* gogo, Named_type* name)
8065 {
8066 if (!this->is_defined())
8067 return Expression::make_nil(BUILTINS_LOCATION);
8068 else
8069 {
8070 Type* t = this->real_type();
8071 if (name != NULL)
8072 return this->named_type_descriptor(gogo, t, name);
8073 else
8074 return Expression::make_type_descriptor(t, BUILTINS_LOCATION);
8075 }
8076 }
8077
8078 // The reflection string.
8079
8080 void
8081 Forward_declaration_type::do_reflection(Gogo* gogo, std::string* ret) const
8082 {
8083 this->append_reflection(this->real_type(), gogo, ret);
8084 }
8085
8086 // The mangled name.
8087
8088 void
8089 Forward_declaration_type::do_mangled_name(Gogo* gogo, std::string* ret) const
8090 {
8091 if (this->is_defined())
8092 this->append_mangled_name(this->real_type(), gogo, ret);
8093 else
8094 {
8095 const Named_object* no = this->named_object();
8096 std::string name;
8097 if (no->package() == NULL)
8098 name = gogo->package_name();
8099 else
8100 name = no->package()->name();
8101 name += '.';
8102 name += Gogo::unpack_hidden_name(no->name());
8103 char buf[20];
8104 snprintf(buf, sizeof buf, "N%u_",
8105 static_cast<unsigned int>(name.length()));
8106 ret->append(buf);
8107 ret->append(name);
8108 }
8109 }
8110
8111 // Export a forward declaration. This can happen when a defined type
8112 // refers to a type which is only declared (and is presumably defined
8113 // in some other file in the same package).
8114
8115 void
8116 Forward_declaration_type::do_export(Export*) const
8117 {
8118 // If there is a base type, that should be exported instead of this.
8119 gcc_assert(!this->is_defined());
8120
8121 // We don't output anything.
8122 }
8123
8124 // Make a forward declaration.
8125
8126 Type*
8127 Type::make_forward_declaration(Named_object* named_object)
8128 {
8129 return new Forward_declaration_type(named_object);
8130 }
8131
8132 // Class Typed_identifier_list.
8133
8134 // Sort the entries by name.
8135
8136 struct Typed_identifier_list_sort
8137 {
8138 public:
8139 bool
8140 operator()(const Typed_identifier& t1, const Typed_identifier& t2) const
8141 { return t1.name() < t2.name(); }
8142 };
8143
8144 void
8145 Typed_identifier_list::sort_by_name()
8146 {
8147 std::sort(this->entries_.begin(), this->entries_.end(),
8148 Typed_identifier_list_sort());
8149 }
8150
8151 // Traverse types.
8152
8153 int
8154 Typed_identifier_list::traverse(Traverse* traverse)
8155 {
8156 for (Typed_identifier_list::const_iterator p = this->begin();
8157 p != this->end();
8158 ++p)
8159 {
8160 if (Type::traverse(p->type(), traverse) == TRAVERSE_EXIT)
8161 return TRAVERSE_EXIT;
8162 }
8163 return TRAVERSE_CONTINUE;
8164 }
8165
8166 // Copy the list.
8167
8168 Typed_identifier_list*
8169 Typed_identifier_list::copy() const
8170 {
8171 Typed_identifier_list* ret = new Typed_identifier_list();
8172 for (Typed_identifier_list::const_iterator p = this->begin();
8173 p != this->end();
8174 ++p)
8175 ret->push_back(Typed_identifier(p->name(), p->type(), p->location()));
8176 return ret;
8177 }