Fix 435.gromacs miscompile.
[gcc.git] / gcc / graphite-clast-to-gimple.c
1 /* Translation of CLAST (CLooG AST) to Gimple.
2 Copyright (C) 2009, 2010 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <sebastian.pop@amd.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "ggc.h"
26 #include "tree.h"
27 #include "rtl.h"
28 #include "basic-block.h"
29 #include "diagnostic.h"
30 #include "tree-flow.h"
31 #include "toplev.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "cfgloop.h"
35 #include "tree-chrec.h"
36 #include "tree-data-ref.h"
37 #include "tree-scalar-evolution.h"
38 #include "tree-pass.h"
39 #include "domwalk.h"
40 #include "value-prof.h"
41 #include "pointer-set.h"
42 #include "gimple.h"
43 #include "langhooks.h"
44 #include "sese.h"
45
46 #ifdef HAVE_cloog
47 #include "cloog/cloog.h"
48 #include "ppl_c.h"
49 #include "graphite-cloog-util.h"
50 #include "graphite-ppl.h"
51 #include "graphite.h"
52 #include "graphite-poly.h"
53 #include "graphite-scop-detection.h"
54 #include "graphite-clast-to-gimple.h"
55 #include "graphite-dependences.h"
56 #include "graphite-cloog-compat.h"
57
58 /* This flag is set when an error occurred during the translation of
59 CLAST to Gimple. */
60 static bool gloog_error;
61
62 /* Verifies properties that GRAPHITE should maintain during translation. */
63
64 static inline void
65 graphite_verify (void)
66 {
67 #ifdef ENABLE_CHECKING
68 verify_loop_structure ();
69 verify_dominators (CDI_DOMINATORS);
70 verify_dominators (CDI_POST_DOMINATORS);
71 verify_loop_closed_ssa (true);
72 #endif
73 }
74
75 /* Stores the INDEX in a vector for a given clast NAME. */
76
77 typedef struct clast_name_index {
78 int index;
79 const char *name;
80 } *clast_name_index_p;
81
82 /* Returns a pointer to a new element of type clast_name_index_p built
83 from NAME and INDEX. */
84
85 static inline clast_name_index_p
86 new_clast_name_index (const char *name, int index)
87 {
88 clast_name_index_p res = XNEW (struct clast_name_index);
89
90 res->name = name;
91 res->index = index;
92 return res;
93 }
94
95 /* For a given clast NAME, returns -1 if it does not correspond to any
96 parameter, or otherwise, returns the index in the PARAMS or
97 SCATTERING_DIMENSIONS vector. */
98
99 static inline int
100 clast_name_to_index (clast_name_p name, htab_t index_table)
101 {
102 struct clast_name_index tmp;
103 PTR *slot;
104
105 #ifdef CLOOG_ORG
106 gcc_assert (name->type == clast_expr_name);
107 tmp.name = ((const struct clast_name*) name)->name;
108 #else
109 tmp.name = name;
110 #endif
111
112 slot = htab_find_slot (index_table, &tmp, NO_INSERT);
113
114 if (slot && *slot)
115 return ((struct clast_name_index *) *slot)->index;
116
117 return -1;
118 }
119
120 /* Records in INDEX_TABLE the INDEX for NAME. */
121
122 static inline void
123 save_clast_name_index (htab_t index_table, const char *name, int index)
124 {
125 struct clast_name_index tmp;
126 PTR *slot;
127
128 tmp.name = name;
129 slot = htab_find_slot (index_table, &tmp, INSERT);
130
131 if (slot)
132 {
133 if (*slot)
134 free (*slot);
135
136 *slot = new_clast_name_index (name, index);
137 }
138 }
139
140 /* Computes a hash function for database element ELT. */
141
142 static inline hashval_t
143 clast_name_index_elt_info (const void *elt)
144 {
145 return htab_hash_pointer (((const struct clast_name_index *) elt)->name);
146 }
147
148 /* Compares database elements E1 and E2. */
149
150 static inline int
151 eq_clast_name_indexes (const void *e1, const void *e2)
152 {
153 const struct clast_name_index *elt1 = (const struct clast_name_index *) e1;
154 const struct clast_name_index *elt2 = (const struct clast_name_index *) e2;
155
156 return (elt1->name == elt2->name);
157 }
158
159 /* For a given scattering dimension, return the new induction variable
160 associated to it. */
161
162 static inline tree
163 newivs_to_depth_to_newiv (VEC (tree, heap) *newivs, int depth)
164 {
165 return VEC_index (tree, newivs, depth);
166 }
167
168 \f
169
170 /* Returns the tree variable from the name NAME that was given in
171 Cloog representation. */
172
173 static tree
174 clast_name_to_gcc (clast_name_p name, sese region, VEC (tree, heap) *newivs,
175 htab_t newivs_index, htab_t params_index)
176 {
177 int index;
178 VEC (tree, heap) *params = SESE_PARAMS (region);
179
180 if (params && params_index)
181 {
182 index = clast_name_to_index (name, params_index);
183
184 if (index >= 0)
185 return VEC_index (tree, params, index);
186 }
187
188 gcc_assert (newivs && newivs_index);
189 index = clast_name_to_index (name, newivs_index);
190 gcc_assert (index >= 0);
191
192 return newivs_to_depth_to_newiv (newivs, index);
193 }
194
195 /* Returns the signed maximal precision type for expressions TYPE1 and TYPE2. */
196
197 static tree
198 max_signed_precision_type (tree type1, tree type2)
199 {
200 int p1 = TYPE_PRECISION (type1);
201 int p2 = TYPE_PRECISION (type2);
202 int precision;
203 tree type;
204 enum machine_mode mode;
205
206 if (p1 > p2)
207 precision = TYPE_UNSIGNED (type1) ? p1 * 2 : p1;
208 else
209 precision = TYPE_UNSIGNED (type2) ? p2 * 2 : p2;
210
211 if (precision > BITS_PER_WORD)
212 {
213 gloog_error = true;
214 return integer_type_node;
215 }
216
217 mode = smallest_mode_for_size (precision, MODE_INT);
218 precision = GET_MODE_PRECISION (mode);
219 type = build_nonstandard_integer_type (precision, false);
220
221 if (!type)
222 {
223 gloog_error = true;
224 return integer_type_node;
225 }
226
227 return type;
228 }
229
230 /* Returns the maximal precision type for expressions TYPE1 and TYPE2. */
231
232 static tree
233 max_precision_type (tree type1, tree type2)
234 {
235 if (POINTER_TYPE_P (type1))
236 return type1;
237
238 if (POINTER_TYPE_P (type2))
239 return type2;
240
241 if (!TYPE_UNSIGNED (type1)
242 || !TYPE_UNSIGNED (type2))
243 return max_signed_precision_type (type1, type2);
244
245 return TYPE_PRECISION (type1) > TYPE_PRECISION (type2) ? type1 : type2;
246 }
247
248 static tree
249 clast_to_gcc_expression (tree, struct clast_expr *, sese, VEC (tree, heap) *,
250 htab_t, htab_t);
251
252 /* Converts a Cloog reduction expression R with reduction operation OP
253 to a GCC expression tree of type TYPE. */
254
255 static tree
256 clast_to_gcc_expression_red (tree type, enum tree_code op,
257 struct clast_reduction *r,
258 sese region, VEC (tree, heap) *newivs,
259 htab_t newivs_index, htab_t params_index)
260 {
261 int i;
262 tree res = clast_to_gcc_expression (type, r->elts[0], region, newivs,
263 newivs_index, params_index);
264 tree operand_type = (op == POINTER_PLUS_EXPR) ? sizetype : type;
265
266 for (i = 1; i < r->n; i++)
267 {
268 tree t = clast_to_gcc_expression (operand_type, r->elts[i], region,
269 newivs, newivs_index, params_index);
270 res = fold_build2 (op, type, res, t);
271 }
272
273 return res;
274 }
275
276 /* Converts a Cloog AST expression E back to a GCC expression tree of
277 type TYPE. */
278
279 static tree
280 clast_to_gcc_expression (tree type, struct clast_expr *e,
281 sese region, VEC (tree, heap) *newivs,
282 htab_t newivs_index, htab_t params_index)
283 {
284 switch (e->type)
285 {
286 case clast_expr_term:
287 {
288 struct clast_term *t = (struct clast_term *) e;
289
290 if (t->var)
291 {
292 if (mpz_cmp_si (t->val, 1) == 0)
293 {
294 tree name = clast_name_to_gcc (t->var, region, newivs,
295 newivs_index, params_index);
296
297 if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type))
298 name = fold_convert (sizetype, name);
299
300 name = fold_convert (type, name);
301 return name;
302 }
303
304 else if (mpz_cmp_si (t->val, -1) == 0)
305 {
306 tree name = clast_name_to_gcc (t->var, region, newivs,
307 newivs_index, params_index);
308
309 if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type))
310 name = fold_convert (sizetype, name);
311
312 name = fold_convert (type, name);
313
314 return fold_build1 (NEGATE_EXPR, type, name);
315 }
316 else
317 {
318 tree name = clast_name_to_gcc (t->var, region, newivs,
319 newivs_index, params_index);
320 tree cst = gmp_cst_to_tree (type, t->val);
321
322 if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type))
323 name = fold_convert (sizetype, name);
324
325 name = fold_convert (type, name);
326
327 if (!POINTER_TYPE_P (type))
328 return fold_build2 (MULT_EXPR, type, cst, name);
329
330 gloog_error = true;
331 return cst;
332 }
333 }
334 else
335 return gmp_cst_to_tree (type, t->val);
336 }
337
338 case clast_expr_red:
339 {
340 struct clast_reduction *r = (struct clast_reduction *) e;
341
342 switch (r->type)
343 {
344 case clast_red_sum:
345 return clast_to_gcc_expression_red
346 (type, POINTER_TYPE_P (type) ? POINTER_PLUS_EXPR : PLUS_EXPR,
347 r, region, newivs, newivs_index, params_index);
348
349 case clast_red_min:
350 return clast_to_gcc_expression_red (type, MIN_EXPR, r, region,
351 newivs, newivs_index,
352 params_index);
353
354 case clast_red_max:
355 return clast_to_gcc_expression_red (type, MAX_EXPR, r, region,
356 newivs, newivs_index,
357 params_index);
358
359 default:
360 gcc_unreachable ();
361 }
362 break;
363 }
364
365 case clast_expr_bin:
366 {
367 struct clast_binary *b = (struct clast_binary *) e;
368 struct clast_expr *lhs = (struct clast_expr *) b->LHS;
369 tree tl = clast_to_gcc_expression (type, lhs, region, newivs,
370 newivs_index, params_index);
371 tree tr = gmp_cst_to_tree (type, b->RHS);
372
373 switch (b->type)
374 {
375 case clast_bin_fdiv:
376 return fold_build2 (FLOOR_DIV_EXPR, type, tl, tr);
377
378 case clast_bin_cdiv:
379 return fold_build2 (CEIL_DIV_EXPR, type, tl, tr);
380
381 case clast_bin_div:
382 return fold_build2 (EXACT_DIV_EXPR, type, tl, tr);
383
384 case clast_bin_mod:
385 return fold_build2 (TRUNC_MOD_EXPR, type, tl, tr);
386
387 default:
388 gcc_unreachable ();
389 }
390 }
391
392 default:
393 gcc_unreachable ();
394 }
395
396 return NULL_TREE;
397 }
398
399 /* Return the precision needed to represent the value VAL. */
400
401 static int
402 precision_for_value (mpz_t val)
403 {
404 mpz_t x, y, two;
405 int precision;
406
407 mpz_init (x);
408 mpz_init (y);
409 mpz_init (two);
410 mpz_set_si (x, 2);
411 mpz_set (y, val);
412 mpz_set_si (two, 2);
413 precision = 1;
414
415 if (mpz_sgn (y) < 0)
416 mpz_neg (y, y);
417
418 while (mpz_cmp (y, x) >= 0)
419 {
420 mpz_mul (x, x, two);
421 precision++;
422 }
423
424 mpz_clear (x);
425 mpz_clear (y);
426 mpz_clear (two);
427
428 return precision;
429 }
430
431 /* Return the precision needed to represent the values between LOW and
432 UP. */
433
434 static int
435 precision_for_interval (mpz_t low, mpz_t up)
436 {
437 mpz_t diff;
438 int precision;
439
440 gcc_assert (mpz_cmp (low, up) <= 0);
441
442 mpz_init (diff);
443 mpz_sub (diff, up, low);
444 precision = precision_for_value (diff);
445 mpz_clear (diff);
446
447 return precision;
448 }
449
450 /* Return a type that could represent the integer value VAL. */
451
452 static tree
453 gcc_type_for_interval (mpz_t low, mpz_t up)
454 {
455 bool unsigned_p = true;
456 int precision, prec_up, prec_int;
457 tree type;
458 enum machine_mode mode;
459
460 gcc_assert (mpz_cmp (low, up) <= 0);
461
462 prec_up = precision_for_value (up);
463 prec_int = precision_for_interval (low, up);
464 precision = MAX (prec_up, prec_int);
465
466 if (precision > BITS_PER_WORD)
467 {
468 gloog_error = true;
469 return integer_type_node;
470 }
471
472 if (mpz_sgn (low) <= 0)
473 unsigned_p = false;
474
475 else if (precision < BITS_PER_WORD)
476 {
477 unsigned_p = false;
478 precision++;
479 }
480
481 mode = smallest_mode_for_size (precision, MODE_INT);
482 precision = GET_MODE_PRECISION (mode);
483 type = build_nonstandard_integer_type (precision, unsigned_p);
484
485 if (!type)
486 {
487 gloog_error = true;
488 return integer_type_node;
489 }
490
491 return type;
492 }
493
494 /* Return a type that could represent the integer value VAL, or
495 otherwise return NULL_TREE. */
496
497 static tree
498 gcc_type_for_value (mpz_t val)
499 {
500 return gcc_type_for_interval (val, val);
501 }
502
503 /* Return the type for the clast_term T used in STMT. */
504
505 static tree
506 gcc_type_for_clast_term (struct clast_term *t,
507 sese region, VEC (tree, heap) *newivs,
508 htab_t newivs_index, htab_t params_index)
509 {
510 gcc_assert (t->expr.type == clast_expr_term);
511
512 if (!t->var)
513 return gcc_type_for_value (t->val);
514
515 return TREE_TYPE (clast_name_to_gcc (t->var, region, newivs,
516 newivs_index, params_index));
517 }
518
519 static tree
520 gcc_type_for_clast_expr (struct clast_expr *, sese,
521 VEC (tree, heap) *, htab_t, htab_t);
522
523 /* Return the type for the clast_reduction R used in STMT. */
524
525 static tree
526 gcc_type_for_clast_red (struct clast_reduction *r, sese region,
527 VEC (tree, heap) *newivs,
528 htab_t newivs_index, htab_t params_index)
529 {
530 int i;
531 tree type = NULL_TREE;
532
533 if (r->n == 1)
534 return gcc_type_for_clast_expr (r->elts[0], region, newivs,
535 newivs_index, params_index);
536
537 switch (r->type)
538 {
539 case clast_red_sum:
540 case clast_red_min:
541 case clast_red_max:
542 type = gcc_type_for_clast_expr (r->elts[0], region, newivs,
543 newivs_index, params_index);
544 for (i = 1; i < r->n; i++)
545 type = max_precision_type (type, gcc_type_for_clast_expr
546 (r->elts[i], region, newivs,
547 newivs_index, params_index));
548
549 return type;
550
551 default:
552 break;
553 }
554
555 gcc_unreachable ();
556 return NULL_TREE;
557 }
558
559 /* Return the type for the clast_binary B used in STMT. */
560
561 static tree
562 gcc_type_for_clast_bin (struct clast_binary *b,
563 sese region, VEC (tree, heap) *newivs,
564 htab_t newivs_index, htab_t params_index)
565 {
566 tree l = gcc_type_for_clast_expr ((struct clast_expr *) b->LHS, region,
567 newivs, newivs_index, params_index);
568 tree r = gcc_type_for_value (b->RHS);
569 return max_signed_precision_type (l, r);
570 }
571
572 /* Returns the type for the CLAST expression E when used in statement
573 STMT. */
574
575 static tree
576 gcc_type_for_clast_expr (struct clast_expr *e,
577 sese region, VEC (tree, heap) *newivs,
578 htab_t newivs_index, htab_t params_index)
579 {
580 switch (e->type)
581 {
582 case clast_expr_term:
583 return gcc_type_for_clast_term ((struct clast_term *) e, region,
584 newivs, newivs_index, params_index);
585
586 case clast_expr_red:
587 return gcc_type_for_clast_red ((struct clast_reduction *) e, region,
588 newivs, newivs_index, params_index);
589
590 case clast_expr_bin:
591 return gcc_type_for_clast_bin ((struct clast_binary *) e, region,
592 newivs, newivs_index, params_index);
593
594 default:
595 gcc_unreachable ();
596 }
597
598 return NULL_TREE;
599 }
600
601 /* Returns the type for the equation CLEQ. */
602
603 static tree
604 gcc_type_for_clast_eq (struct clast_equation *cleq,
605 sese region, VEC (tree, heap) *newivs,
606 htab_t newivs_index, htab_t params_index)
607 {
608 tree l = gcc_type_for_clast_expr (cleq->LHS, region, newivs,
609 newivs_index, params_index);
610 tree r = gcc_type_for_clast_expr (cleq->RHS, region, newivs,
611 newivs_index, params_index);
612 return max_precision_type (l, r);
613 }
614
615 /* Translates a clast equation CLEQ to a tree. */
616
617 static tree
618 graphite_translate_clast_equation (sese region,
619 struct clast_equation *cleq,
620 VEC (tree, heap) *newivs,
621 htab_t newivs_index, htab_t params_index)
622 {
623 enum tree_code comp;
624 tree type = gcc_type_for_clast_eq (cleq, region, newivs, newivs_index,
625 params_index);
626 tree lhs = clast_to_gcc_expression (type, cleq->LHS, region, newivs,
627 newivs_index, params_index);
628 tree rhs = clast_to_gcc_expression (type, cleq->RHS, region, newivs,
629 newivs_index, params_index);
630
631 if (cleq->sign == 0)
632 comp = EQ_EXPR;
633
634 else if (cleq->sign > 0)
635 comp = GE_EXPR;
636
637 else
638 comp = LE_EXPR;
639
640 return fold_build2 (comp, boolean_type_node, lhs, rhs);
641 }
642
643 /* Creates the test for the condition in STMT. */
644
645 static tree
646 graphite_create_guard_cond_expr (sese region, struct clast_guard *stmt,
647 VEC (tree, heap) *newivs,
648 htab_t newivs_index, htab_t params_index)
649 {
650 tree cond = NULL;
651 int i;
652
653 for (i = 0; i < stmt->n; i++)
654 {
655 tree eq = graphite_translate_clast_equation (region, &stmt->eq[i],
656 newivs, newivs_index,
657 params_index);
658
659 if (cond)
660 cond = fold_build2 (TRUTH_AND_EXPR, TREE_TYPE (eq), cond, eq);
661 else
662 cond = eq;
663 }
664
665 return cond;
666 }
667
668 /* Creates a new if region corresponding to Cloog's guard. */
669
670 static edge
671 graphite_create_new_guard (sese region, edge entry_edge,
672 struct clast_guard *stmt,
673 VEC (tree, heap) *newivs,
674 htab_t newivs_index, htab_t params_index)
675 {
676 tree cond_expr = graphite_create_guard_cond_expr (region, stmt, newivs,
677 newivs_index, params_index);
678 edge exit_edge = create_empty_if_region_on_edge (entry_edge, cond_expr);
679 return exit_edge;
680 }
681
682 /* Compute the lower bound LOW and upper bound UP for the induction
683 variable at LEVEL for the statement PBB, based on the transformed
684 scattering of PBB: T|I|G|Cst, with T the scattering transform, I
685 the iteration domain, and G the context parameters. */
686
687 static void
688 compute_bounds_for_level (poly_bb_p pbb, int level, mpz_t low, mpz_t up)
689 {
690 ppl_Pointset_Powerset_C_Polyhedron_t ps;
691 ppl_Linear_Expression_t le;
692
693 combine_context_id_scat (&ps, pbb, false);
694
695 /* Prepare the linear expression corresponding to the level that we
696 want to maximize/minimize. */
697 {
698 ppl_dimension_type dim = pbb_nb_scattering_transform (pbb)
699 + pbb_dim_iter_domain (pbb) + pbb_nb_params (pbb);
700
701 ppl_new_Linear_Expression_with_dimension (&le, dim);
702 ppl_set_coef (le, 2 * level + 1, 1);
703 }
704
705 ppl_max_for_le_pointset (ps, le, up);
706 ppl_min_for_le_pointset (ps, le, low);
707 }
708
709 /* Compute the type for the induction variable at LEVEL for the
710 statement PBB, based on the transformed schedule of PBB. */
711
712 static tree
713 compute_type_for_level (poly_bb_p pbb, int level)
714 {
715 mpz_t low, up;
716 tree type;
717
718 mpz_init (low);
719 mpz_init (up);
720
721 compute_bounds_for_level (pbb, level, low, up);
722 type = gcc_type_for_interval (low, up);
723
724 mpz_clear (low);
725 mpz_clear (up);
726 return type;
727 }
728
729 /* Walks a CLAST and returns the first statement in the body of a
730 loop. */
731
732 static struct clast_user_stmt *
733 clast_get_body_of_loop (struct clast_stmt *stmt)
734 {
735 if (!stmt
736 || CLAST_STMT_IS_A (stmt, stmt_user))
737 return (struct clast_user_stmt *) stmt;
738
739 if (CLAST_STMT_IS_A (stmt, stmt_for))
740 return clast_get_body_of_loop (((struct clast_for *) stmt)->body);
741
742 if (CLAST_STMT_IS_A (stmt, stmt_guard))
743 return clast_get_body_of_loop (((struct clast_guard *) stmt)->then);
744
745 if (CLAST_STMT_IS_A (stmt, stmt_block))
746 return clast_get_body_of_loop (((struct clast_block *) stmt)->body);
747
748 gcc_unreachable ();
749 }
750
751 /* Returns the type for the induction variable for the loop translated
752 from STMT_FOR. */
753
754 static tree
755 gcc_type_for_iv_of_clast_loop (struct clast_for *stmt_for, int level,
756 tree lb_type, tree ub_type)
757 {
758 struct clast_stmt *stmt = (struct clast_stmt *) stmt_for;
759 struct clast_user_stmt *body = clast_get_body_of_loop (stmt);
760 CloogStatement *cs = body->statement;
761 poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (cs);
762
763 return max_signed_precision_type (lb_type, max_precision_type
764 (ub_type, compute_type_for_level
765 (pbb, level - 1)));
766 }
767
768 /* Creates a new LOOP corresponding to Cloog's STMT. Inserts an
769 induction variable for the new LOOP. New LOOP is attached to CFG
770 starting at ENTRY_EDGE. LOOP is inserted into the loop tree and
771 becomes the child loop of the OUTER_LOOP. NEWIVS_INDEX binds
772 CLooG's scattering name to the induction variable created for the
773 loop of STMT. The new induction variable is inserted in the NEWIVS
774 vector. */
775
776 static struct loop *
777 graphite_create_new_loop (sese region, edge entry_edge,
778 struct clast_for *stmt,
779 loop_p outer, VEC (tree, heap) **newivs,
780 htab_t newivs_index, htab_t params_index, int level)
781 {
782 tree lb_type = gcc_type_for_clast_expr (stmt->LB, region, *newivs,
783 newivs_index, params_index);
784 tree ub_type = gcc_type_for_clast_expr (stmt->UB, region, *newivs,
785 newivs_index, params_index);
786 tree type = gcc_type_for_iv_of_clast_loop (stmt, level, lb_type, ub_type);
787 tree lb = clast_to_gcc_expression (type, stmt->LB, region, *newivs,
788 newivs_index, params_index);
789 tree ub = clast_to_gcc_expression (type, stmt->UB, region, *newivs,
790 newivs_index, params_index);
791 tree stride = gmp_cst_to_tree (type, stmt->stride);
792 tree ivvar = create_tmp_var (type, "graphite_IV");
793 tree iv, iv_after_increment;
794 loop_p loop = create_empty_loop_on_edge
795 (entry_edge, lb, stride, ub, ivvar, &iv, &iv_after_increment,
796 outer ? outer : entry_edge->src->loop_father);
797
798 add_referenced_var (ivvar);
799
800 save_clast_name_index (newivs_index, stmt->iterator,
801 VEC_length (tree, *newivs));
802 VEC_safe_push (tree, heap, *newivs, iv);
803 return loop;
804 }
805
806 /* Inserts in iv_map a tuple (OLD_LOOP->num, NEW_NAME) for the
807 induction variables of the loops around GBB in SESE. */
808
809 static void
810 build_iv_mapping (VEC (tree, heap) *iv_map, sese region,
811 VEC (tree, heap) *newivs, htab_t newivs_index,
812 struct clast_user_stmt *user_stmt,
813 htab_t params_index)
814 {
815 struct clast_stmt *t;
816 int depth = 0;
817 CloogStatement *cs = user_stmt->statement;
818 poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (cs);
819 gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
820
821 for (t = user_stmt->substitutions; t; t = t->next, depth++)
822 {
823 struct clast_expr *expr = (struct clast_expr *)
824 ((struct clast_assignment *)t)->RHS;
825 tree type = gcc_type_for_clast_expr (expr, region, newivs,
826 newivs_index, params_index);
827 tree new_name = clast_to_gcc_expression (type, expr, region, newivs,
828 newivs_index, params_index);
829 loop_p old_loop = gbb_loop_at_index (gbb, region, depth);
830
831 VEC_replace (tree, iv_map, old_loop->num, new_name);
832 }
833 }
834
835 /* Construct bb_pbb_def with BB and PBB. */
836
837 static bb_pbb_def *
838 new_bb_pbb_def (basic_block bb, poly_bb_p pbb)
839 {
840 bb_pbb_def *bb_pbb_p;
841
842 bb_pbb_p = XNEW (bb_pbb_def);
843 bb_pbb_p->bb = bb;
844 bb_pbb_p->pbb = pbb;
845
846 return bb_pbb_p;
847 }
848
849 /* Mark BB with it's relevant PBB via hashing table BB_PBB_MAPPING. */
850
851 static void
852 mark_bb_with_pbb (poly_bb_p pbb, basic_block bb, htab_t bb_pbb_mapping)
853 {
854 bb_pbb_def tmp;
855 PTR *x;
856
857 tmp.bb = bb;
858 x = htab_find_slot (bb_pbb_mapping, &tmp, INSERT);
859
860 if (x && !*x)
861 *x = new_bb_pbb_def (bb, pbb);
862 }
863
864 /* Find BB's related poly_bb_p in hash table BB_PBB_MAPPING. */
865
866 static poly_bb_p
867 find_pbb_via_hash (htab_t bb_pbb_mapping, basic_block bb)
868 {
869 bb_pbb_def tmp;
870 PTR *slot;
871
872 tmp.bb = bb;
873 slot = htab_find_slot (bb_pbb_mapping, &tmp, NO_INSERT);
874
875 if (slot && *slot)
876 return ((bb_pbb_def *) *slot)->pbb;
877
878 return NULL;
879 }
880
881 /* Check data dependency in LOOP at scattering level LEVEL.
882 BB_PBB_MAPPING is a basic_block and it's related poly_bb_p
883 mapping. */
884
885 static bool
886 dependency_in_loop_p (loop_p loop, htab_t bb_pbb_mapping, int level)
887 {
888 unsigned i,j;
889 basic_block *bbs = get_loop_body_in_dom_order (loop);
890
891 for (i = 0; i < loop->num_nodes; i++)
892 {
893 poly_bb_p pbb1 = find_pbb_via_hash (bb_pbb_mapping, bbs[i]);
894
895 if (pbb1 == NULL)
896 continue;
897
898 for (j = 0; j < loop->num_nodes; j++)
899 {
900 poly_bb_p pbb2 = find_pbb_via_hash (bb_pbb_mapping, bbs[j]);
901
902 if (pbb2 == NULL)
903 continue;
904
905 if (dependency_between_pbbs_p (pbb1, pbb2, level))
906 {
907 free (bbs);
908 return true;
909 }
910 }
911 }
912
913 free (bbs);
914
915 return false;
916 }
917
918 /* Translates a clast user statement STMT to gimple.
919
920 - REGION is the sese region we used to generate the scop.
921 - NEXT_E is the edge where new generated code should be attached.
922 - CONTEXT_LOOP is the loop in which the generated code will be placed
923 - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.
924 - PARAMS_INDEX connects the cloog parameters with the gimple parameters in
925 the sese region. */
926 static edge
927 translate_clast_user (sese region, struct clast_user_stmt *stmt, edge next_e,
928 VEC (tree, heap) **newivs,
929 htab_t newivs_index, htab_t bb_pbb_mapping,
930 htab_t params_index)
931 {
932 int i, nb_loops;
933 basic_block new_bb;
934 poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (stmt->statement);
935 gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
936 VEC (tree, heap) *iv_map;
937
938 if (GBB_BB (gbb) == ENTRY_BLOCK_PTR)
939 return next_e;
940
941 nb_loops = number_of_loops ();
942 iv_map = VEC_alloc (tree, heap, nb_loops);
943 for (i = 0; i < nb_loops; i++)
944 VEC_quick_push (tree, iv_map, NULL_TREE);
945
946 build_iv_mapping (iv_map, region, *newivs, newivs_index, stmt, params_index);
947 next_e = copy_bb_and_scalar_dependences (GBB_BB (gbb), region,
948 next_e, iv_map);
949 VEC_free (tree, heap, iv_map);
950
951 new_bb = next_e->src;
952 mark_bb_with_pbb (pbb, new_bb, bb_pbb_mapping);
953 update_ssa (TODO_update_ssa);
954
955 return next_e;
956 }
957
958 /* Creates a new if region protecting the loop to be executed, if the execution
959 count is zero (lb > ub). */
960
961 static edge
962 graphite_create_new_loop_guard (sese region, edge entry_edge,
963 struct clast_for *stmt,
964 VEC (tree, heap) *newivs,
965 htab_t newivs_index, htab_t params_index)
966 {
967 tree cond_expr;
968 edge exit_edge;
969 tree lb_type = gcc_type_for_clast_expr (stmt->LB, region, newivs,
970 newivs_index, params_index);
971 tree ub_type = gcc_type_for_clast_expr (stmt->UB, region, newivs,
972 newivs_index, params_index);
973 tree type = max_precision_type (lb_type, ub_type);
974 tree lb = clast_to_gcc_expression (type, stmt->LB, region, newivs,
975 newivs_index, params_index);
976 tree ub = clast_to_gcc_expression (type, stmt->UB, region, newivs,
977 newivs_index, params_index);
978 tree one = POINTER_TYPE_P (type) ? size_one_node
979 : fold_convert (type, integer_one_node);
980 /* Adding +1 and using LT_EXPR helps with loop latches that have a
981 loop iteration count of "PARAMETER - 1". For PARAMETER == 0 this becomes
982 2^{32|64}, and the condition lb <= ub is true, even if we do not want this.
983 However lb < ub + 1 is false, as expected. */
984 tree ub_one = fold_build2 (POINTER_TYPE_P (type) ? POINTER_PLUS_EXPR
985 : PLUS_EXPR, type, ub, one);
986
987 /* When ub + 1 wraps around, use lb <= ub. */
988 if (integer_zerop (ub_one))
989 cond_expr = fold_build2 (LE_EXPR, boolean_type_node, lb, ub);
990 else
991 cond_expr = fold_build2 (LT_EXPR, boolean_type_node, lb, ub_one);
992
993 exit_edge = create_empty_if_region_on_edge (entry_edge, cond_expr);
994
995 return exit_edge;
996 }
997
998 static edge
999 translate_clast (sese, loop_p, struct clast_stmt *, edge,
1000 VEC (tree, heap) **, htab_t, htab_t, int, htab_t);
1001
1002 /* Create the loop for a clast for statement.
1003
1004 - REGION is the sese region we used to generate the scop.
1005 - NEXT_E is the edge where new generated code should be attached.
1006 - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.
1007 - PARAMS_INDEX connects the cloog parameters with the gimple parameters in
1008 the sese region. */
1009 static edge
1010 translate_clast_for_loop (sese region, loop_p context_loop,
1011 struct clast_for *stmt, edge next_e,
1012 VEC (tree, heap) **newivs,
1013 htab_t newivs_index, htab_t bb_pbb_mapping,
1014 int level, htab_t params_index)
1015 {
1016 struct loop *loop = graphite_create_new_loop (region, next_e, stmt,
1017 context_loop, newivs,
1018 newivs_index, params_index,
1019 level);
1020 edge last_e = single_exit (loop);
1021 edge to_body = single_succ_edge (loop->header);
1022 basic_block after = to_body->dest;
1023
1024 /* Create a basic block for loop close phi nodes. */
1025 last_e = single_succ_edge (split_edge (last_e));
1026
1027 /* Translate the body of the loop. */
1028 next_e = translate_clast (region, loop, stmt->body, to_body,
1029 newivs, newivs_index, bb_pbb_mapping, level + 1,
1030 params_index);
1031 redirect_edge_succ_nodup (next_e, after);
1032 set_immediate_dominator (CDI_DOMINATORS, next_e->dest, next_e->src);
1033
1034 if (flag_loop_parallelize_all
1035 && !dependency_in_loop_p (loop, bb_pbb_mapping,
1036 get_scattering_level (level)))
1037 loop->can_be_parallel = true;
1038
1039 return last_e;
1040 }
1041
1042 /* Translates a clast for statement STMT to gimple. First a guard is created
1043 protecting the loop, if it is executed zero times. In this guard we create
1044 the real loop structure.
1045
1046 - REGION is the sese region we used to generate the scop.
1047 - NEXT_E is the edge where new generated code should be attached.
1048 - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.
1049 - PARAMS_INDEX connects the cloog parameters with the gimple parameters in
1050 the sese region. */
1051 static edge
1052 translate_clast_for (sese region, loop_p context_loop, struct clast_for *stmt,
1053 edge next_e, VEC (tree, heap) **newivs,
1054 htab_t newivs_index, htab_t bb_pbb_mapping, int level,
1055 htab_t params_index)
1056 {
1057 edge last_e = graphite_create_new_loop_guard (region, next_e, stmt, *newivs,
1058 newivs_index, params_index);
1059 edge true_e = get_true_edge_from_guard_bb (next_e->dest);
1060
1061 translate_clast_for_loop (region, context_loop, stmt, true_e, newivs,
1062 newivs_index, bb_pbb_mapping, level,
1063 params_index);
1064 return last_e;
1065 }
1066
1067 /* Translates a clast guard statement STMT to gimple.
1068
1069 - REGION is the sese region we used to generate the scop.
1070 - NEXT_E is the edge where new generated code should be attached.
1071 - CONTEXT_LOOP is the loop in which the generated code will be placed
1072 - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.
1073 - PARAMS_INDEX connects the cloog parameters with the gimple parameters in
1074 the sese region. */
1075 static edge
1076 translate_clast_guard (sese region, loop_p context_loop,
1077 struct clast_guard *stmt, edge next_e,
1078 VEC (tree, heap) **newivs,
1079 htab_t newivs_index, htab_t bb_pbb_mapping, int level,
1080 htab_t params_index)
1081 {
1082 edge last_e = graphite_create_new_guard (region, next_e, stmt, *newivs,
1083 newivs_index, params_index);
1084 edge true_e = get_true_edge_from_guard_bb (next_e->dest);
1085
1086 translate_clast (region, context_loop, stmt->then, true_e,
1087 newivs, newivs_index, bb_pbb_mapping,
1088 level, params_index);
1089 return last_e;
1090 }
1091
1092 /* Translates a CLAST statement STMT to GCC representation in the
1093 context of a SESE.
1094
1095 - NEXT_E is the edge where new generated code should be attached.
1096 - CONTEXT_LOOP is the loop in which the generated code will be placed
1097 - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */
1098 static edge
1099 translate_clast (sese region, loop_p context_loop, struct clast_stmt *stmt,
1100 edge next_e, VEC (tree, heap) **newivs,
1101 htab_t newivs_index, htab_t bb_pbb_mapping, int level,
1102 htab_t params_index)
1103 {
1104 if (!stmt)
1105 return next_e;
1106
1107 if (CLAST_STMT_IS_A (stmt, stmt_root))
1108 ; /* Do nothing. */
1109
1110 else if (CLAST_STMT_IS_A (stmt, stmt_user))
1111 next_e = translate_clast_user (region, (struct clast_user_stmt *) stmt,
1112 next_e, newivs, newivs_index,
1113 bb_pbb_mapping, params_index);
1114
1115 else if (CLAST_STMT_IS_A (stmt, stmt_for))
1116 next_e = translate_clast_for (region, context_loop,
1117 (struct clast_for *) stmt, next_e,
1118 newivs, newivs_index,
1119 bb_pbb_mapping, level, params_index);
1120
1121 else if (CLAST_STMT_IS_A (stmt, stmt_guard))
1122 next_e = translate_clast_guard (region, context_loop,
1123 (struct clast_guard *) stmt, next_e,
1124 newivs, newivs_index,
1125 bb_pbb_mapping, level, params_index);
1126
1127 else if (CLAST_STMT_IS_A (stmt, stmt_block))
1128 next_e = translate_clast (region, context_loop,
1129 ((struct clast_block *) stmt)->body,
1130 next_e, newivs, newivs_index,
1131 bb_pbb_mapping, level, params_index);
1132 else
1133 gcc_unreachable();
1134
1135 recompute_all_dominators ();
1136 graphite_verify ();
1137
1138 return translate_clast (region, context_loop, stmt->next, next_e,
1139 newivs, newivs_index,
1140 bb_pbb_mapping, level, params_index);
1141 }
1142
1143 /* Free the SCATTERING domain list. */
1144
1145 static void
1146 free_scattering (CloogScatteringList *scattering)
1147 {
1148 while (scattering)
1149 {
1150 CloogScattering *dom = cloog_scattering (scattering);
1151 CloogScatteringList *next = cloog_next_scattering (scattering);
1152
1153 cloog_scattering_free (dom);
1154 free (scattering);
1155 scattering = next;
1156 }
1157 }
1158
1159 /* Initialize Cloog's parameter names from the names used in GIMPLE.
1160 Initialize Cloog's iterator names, using 'graphite_iterator_%d'
1161 from 0 to scop_nb_loops (scop). */
1162
1163 static void
1164 initialize_cloog_names (scop_p scop, CloogProgram *prog)
1165 {
1166 sese region = SCOP_REGION (scop);
1167 int i;
1168 int nb_iterators = scop_max_loop_depth (scop);
1169 int nb_scattering = cloog_program_nb_scattdims (prog);
1170 int nb_parameters = VEC_length (tree, SESE_PARAMS (region));
1171 char **iterators = XNEWVEC (char *, nb_iterators * 2);
1172 char **scattering = XNEWVEC (char *, nb_scattering);
1173 char **parameters= XNEWVEC (char *, nb_parameters);
1174
1175 cloog_program_set_names (prog, cloog_names_malloc ());
1176
1177 for (i = 0; i < nb_parameters; i++)
1178 {
1179 tree param = VEC_index (tree, SESE_PARAMS(region), i);
1180 const char *name = get_name (param);
1181 int len;
1182
1183 if (!name)
1184 name = "T";
1185
1186 len = strlen (name);
1187 len += 17;
1188 parameters[i] = XNEWVEC (char, len + 1);
1189 snprintf (parameters[i], len, "%s_%d", name, SSA_NAME_VERSION (param));
1190 }
1191
1192 cloog_names_set_nb_parameters (cloog_program_names (prog), nb_parameters);
1193 cloog_names_set_parameters (cloog_program_names (prog), parameters);
1194
1195 for (i = 0; i < nb_iterators; i++)
1196 {
1197 int len = 4 + 16;
1198 iterators[i] = XNEWVEC (char, len);
1199 snprintf (iterators[i], len, "git_%d", i);
1200 }
1201
1202 cloog_names_set_nb_iterators (cloog_program_names (prog),
1203 nb_iterators);
1204 cloog_names_set_iterators (cloog_program_names (prog),
1205 iterators);
1206
1207 for (i = 0; i < nb_scattering; i++)
1208 {
1209 int len = 5 + 16;
1210 scattering[i] = XNEWVEC (char, len);
1211 snprintf (scattering[i], len, "scat_%d", i);
1212 }
1213
1214 cloog_names_set_nb_scattering (cloog_program_names (prog),
1215 nb_scattering);
1216 cloog_names_set_scattering (cloog_program_names (prog),
1217 scattering);
1218 }
1219
1220 /* Build cloog program for SCoP. */
1221
1222 static void
1223 build_cloog_prog (scop_p scop, CloogProgram *prog,
1224 CloogOptions *options, CloogState *state ATTRIBUTE_UNUSED)
1225 {
1226 int i;
1227 int max_nb_loops = scop_max_loop_depth (scop);
1228 poly_bb_p pbb;
1229 CloogLoop *loop_list = NULL;
1230 CloogBlockList *block_list = NULL;
1231 CloogScatteringList *scattering = NULL;
1232 int nbs = 2 * max_nb_loops + 1;
1233 int *scaldims;
1234
1235 cloog_program_set_context
1236 (prog, new_Cloog_Domain_from_ppl_Pointset_Powerset (SCOP_CONTEXT (scop),
1237 scop_nb_params (scop), state));
1238 nbs = unify_scattering_dimensions (scop);
1239 scaldims = (int *) xmalloc (nbs * (sizeof (int)));
1240 cloog_program_set_nb_scattdims (prog, nbs);
1241 initialize_cloog_names (scop, prog);
1242
1243 FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb)
1244 {
1245 CloogStatement *stmt;
1246 CloogBlock *block;
1247 CloogDomain *dom;
1248
1249 /* Dead code elimination: when the domain of a PBB is empty,
1250 don't generate code for the PBB. */
1251 if (ppl_Pointset_Powerset_C_Polyhedron_is_empty (PBB_DOMAIN (pbb)))
1252 continue;
1253
1254 /* Build the new statement and its block. */
1255 stmt = cloog_statement_alloc (state, pbb_index (pbb));
1256 dom = new_Cloog_Domain_from_ppl_Pointset_Powerset (PBB_DOMAIN (pbb),
1257 scop_nb_params (scop),
1258 state);
1259 block = cloog_block_alloc (stmt, 0, NULL, pbb_dim_iter_domain (pbb));
1260 cloog_statement_set_usr (stmt, pbb);
1261
1262 /* Build loop list. */
1263 {
1264 CloogLoop *new_loop_list = cloog_loop_malloc (state);
1265 cloog_loop_set_next (new_loop_list, loop_list);
1266 cloog_loop_set_domain (new_loop_list, dom);
1267 cloog_loop_set_block (new_loop_list, block);
1268 loop_list = new_loop_list;
1269 }
1270
1271 /* Build block list. */
1272 {
1273 CloogBlockList *new_block_list = cloog_block_list_malloc ();
1274
1275 cloog_block_list_set_next (new_block_list, block_list);
1276 cloog_block_list_set_block (new_block_list, block);
1277 block_list = new_block_list;
1278 }
1279
1280 /* Build scattering list. */
1281 {
1282 /* XXX: Replace with cloog_domain_list_alloc(), when available. */
1283 CloogScatteringList *new_scattering
1284 = (CloogScatteringList *) xmalloc (sizeof (CloogScatteringList));
1285 ppl_Polyhedron_t scat;
1286 CloogScattering *dom;
1287
1288 scat = PBB_TRANSFORMED_SCATTERING (pbb);
1289 dom = new_Cloog_Scattering_from_ppl_Polyhedron
1290 (scat, scop_nb_params (scop), pbb_nb_scattering_transform (pbb),
1291 state);
1292
1293 cloog_set_next_scattering (new_scattering, scattering);
1294 cloog_set_scattering (new_scattering, dom);
1295 scattering = new_scattering;
1296 }
1297 }
1298
1299 cloog_program_set_loop (prog, loop_list);
1300 cloog_program_set_blocklist (prog, block_list);
1301
1302 for (i = 0; i < nbs; i++)
1303 scaldims[i] = 0 ;
1304
1305 cloog_program_set_scaldims (prog, scaldims);
1306
1307 /* Extract scalar dimensions to simplify the code generation problem. */
1308 cloog_program_extract_scalars (prog, scattering, options);
1309
1310 /* Apply scattering. */
1311 cloog_program_scatter (prog, scattering, options);
1312 free_scattering (scattering);
1313
1314 /* Iterators corresponding to scalar dimensions have to be extracted. */
1315 cloog_names_scalarize (cloog_program_names (prog), nbs,
1316 cloog_program_scaldims (prog));
1317
1318 /* Free blocklist. */
1319 {
1320 CloogBlockList *next = cloog_program_blocklist (prog);
1321
1322 while (next)
1323 {
1324 CloogBlockList *toDelete = next;
1325 next = cloog_block_list_next (next);
1326 cloog_block_list_set_next (toDelete, NULL);
1327 cloog_block_list_set_block (toDelete, NULL);
1328 cloog_block_list_free (toDelete);
1329 }
1330 cloog_program_set_blocklist (prog, NULL);
1331 }
1332 }
1333
1334 /* Return the options that will be used in GLOOG. */
1335
1336 static CloogOptions *
1337 set_cloog_options (CloogState *state ATTRIBUTE_UNUSED)
1338 {
1339 CloogOptions *options = cloog_options_malloc (state);
1340
1341 /* Change cloog output language to C. If we do use FORTRAN instead, cloog
1342 will stop e.g. with "ERROR: unbounded loops not allowed in FORTRAN.", if
1343 we pass an incomplete program to cloog. */
1344 options->language = LANGUAGE_C;
1345
1346 /* Enable complex equality spreading: removes dummy statements
1347 (assignments) in the generated code which repeats the
1348 substitution equations for statements. This is useless for
1349 GLooG. */
1350 options->esp = 1;
1351
1352 #ifdef CLOOG_ORG
1353 /* Silence CLooG to avoid failing tests due to debug output to stderr. */
1354 options->quiet = 1;
1355 #else
1356 /* Enable C pretty-printing mode: normalizes the substitution
1357 equations for statements. */
1358 options->cpp = 1;
1359 #endif
1360
1361 /* Allow cloog to build strides with a stride width different to one.
1362 This example has stride = 4:
1363
1364 for (i = 0; i < 20; i += 4)
1365 A */
1366 options->strides = 1;
1367
1368 /* Disable optimizations and make cloog generate source code closer to the
1369 input. This is useful for debugging, but later we want the optimized
1370 code.
1371
1372 XXX: We can not disable optimizations, as loop blocking is not working
1373 without them. */
1374 if (0)
1375 {
1376 options->f = -1;
1377 options->l = INT_MAX;
1378 }
1379
1380 return options;
1381 }
1382
1383 /* Prints STMT to STDERR. */
1384
1385 void
1386 print_clast_stmt (FILE *file, struct clast_stmt *stmt)
1387 {
1388 CloogState *state = cloog_state_malloc ();
1389 CloogOptions *options = set_cloog_options (state);
1390
1391 clast_pprint (file, stmt, 0, options);
1392 cloog_options_free (options);
1393 cloog_state_free (state);
1394 }
1395
1396 /* Prints STMT to STDERR. */
1397
1398 DEBUG_FUNCTION void
1399 debug_clast_stmt (struct clast_stmt *stmt)
1400 {
1401 print_clast_stmt (stderr, stmt);
1402 }
1403
1404 /* Translate SCOP to a CLooG program and clast. These two
1405 representations should be freed together: a clast cannot be used
1406 without a program. */
1407
1408 cloog_prog_clast
1409 scop_to_clast (scop_p scop, CloogState *state)
1410 {
1411 CloogOptions *options = set_cloog_options (state);
1412 cloog_prog_clast pc;
1413
1414 /* Connect new cloog prog generation to graphite. */
1415 pc.prog = cloog_program_malloc ();
1416 build_cloog_prog (scop, pc.prog, options, state);
1417 pc.prog = cloog_program_generate (pc.prog, options);
1418 pc.stmt = cloog_clast_create (pc.prog, options);
1419
1420 cloog_options_free (options);
1421 return pc;
1422 }
1423
1424 /* Prints to FILE the code generated by CLooG for SCOP. */
1425
1426 void
1427 print_generated_program (FILE *file, scop_p scop)
1428 {
1429 CloogState *state = cloog_state_malloc ();
1430 CloogOptions *options = set_cloog_options (state);
1431
1432 cloog_prog_clast pc = scop_to_clast (scop, state);
1433
1434 fprintf (file, " (prog: \n");
1435 cloog_program_print (file, pc.prog);
1436 fprintf (file, " )\n");
1437
1438 fprintf (file, " (clast: \n");
1439 clast_pprint (file, pc.stmt, 0, options);
1440 fprintf (file, " )\n");
1441
1442 cloog_options_free (options);
1443 cloog_clast_free (pc.stmt);
1444 cloog_program_free (pc.prog);
1445 }
1446
1447 /* Prints to STDERR the code generated by CLooG for SCOP. */
1448
1449 DEBUG_FUNCTION void
1450 debug_generated_program (scop_p scop)
1451 {
1452 print_generated_program (stderr, scop);
1453 }
1454
1455 /* Add CLooG names to parameter index. The index is used to translate
1456 back from CLooG names to GCC trees. */
1457
1458 static void
1459 create_params_index (htab_t index_table, CloogProgram *prog) {
1460 CloogNames* names = cloog_program_names (prog);
1461 int nb_parameters = cloog_names_nb_parameters (names);
1462 char **parameters = cloog_names_parameters (names);
1463 int i;
1464
1465 for (i = 0; i < nb_parameters; i++)
1466 save_clast_name_index (index_table, parameters[i], i);
1467 }
1468
1469 /* GIMPLE Loop Generator: generates loops from STMT in GIMPLE form for
1470 the given SCOP. Return true if code generation succeeded.
1471 BB_PBB_MAPPING is a basic_block and it's related poly_bb_p mapping.
1472 */
1473
1474 bool
1475 gloog (scop_p scop, htab_t bb_pbb_mapping)
1476 {
1477 VEC (tree, heap) *newivs = VEC_alloc (tree, heap, 10);
1478 loop_p context_loop;
1479 sese region = SCOP_REGION (scop);
1480 ifsese if_region = NULL;
1481 htab_t newivs_index, params_index;
1482 cloog_prog_clast pc;
1483 CloogState *state;
1484
1485 state = cloog_state_malloc ();
1486 timevar_push (TV_GRAPHITE_CODE_GEN);
1487 gloog_error = false;
1488
1489 pc = scop_to_clast (scop, state);
1490
1491 if (dump_file && (dump_flags & TDF_DETAILS))
1492 {
1493 fprintf (dump_file, "\nCLAST generated by CLooG: \n");
1494 print_clast_stmt (dump_file, pc.stmt);
1495 fprintf (dump_file, "\n");
1496 }
1497
1498 recompute_all_dominators ();
1499 graphite_verify ();
1500
1501 if_region = move_sese_in_condition (region);
1502 sese_insert_phis_for_liveouts (region,
1503 if_region->region->exit->src,
1504 if_region->false_region->exit,
1505 if_region->true_region->exit);
1506 recompute_all_dominators ();
1507 graphite_verify ();
1508
1509 context_loop = SESE_ENTRY (region)->src->loop_father;
1510 newivs_index = htab_create (10, clast_name_index_elt_info,
1511 eq_clast_name_indexes, free);
1512 params_index = htab_create (10, clast_name_index_elt_info,
1513 eq_clast_name_indexes, free);
1514
1515 create_params_index (params_index, pc.prog);
1516
1517 translate_clast (region, context_loop, pc.stmt,
1518 if_region->true_region->entry,
1519 &newivs, newivs_index,
1520 bb_pbb_mapping, 1, params_index);
1521 graphite_verify ();
1522 scev_reset_htab ();
1523 recompute_all_dominators ();
1524 graphite_verify ();
1525
1526 if (gloog_error)
1527 set_ifsese_condition (if_region, integer_zero_node);
1528
1529 free (if_region->true_region);
1530 free (if_region->region);
1531 free (if_region);
1532
1533 htab_delete (newivs_index);
1534 htab_delete (params_index);
1535 VEC_free (tree, heap, newivs);
1536 cloog_clast_free (pc.stmt);
1537 cloog_program_free (pc.prog);
1538 timevar_pop (TV_GRAPHITE_CODE_GEN);
1539
1540 if (dump_file && (dump_flags & TDF_DETAILS))
1541 {
1542 loop_p loop;
1543 loop_iterator li;
1544 int num_no_dependency = 0;
1545
1546 FOR_EACH_LOOP (li, loop, 0)
1547 if (loop->can_be_parallel)
1548 num_no_dependency++;
1549
1550 fprintf (dump_file, "\n%d loops carried no dependency.\n",
1551 num_no_dependency);
1552 }
1553
1554 cloog_state_free (state);
1555
1556 return !gloog_error;
1557 }
1558 #endif