Fix computation of precision.
[gcc.git] / gcc / graphite-clast-to-gimple.c
1 /* Translation of CLAST (CLooG AST) to Gimple.
2 Copyright (C) 2009, 2010 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <sebastian.pop@amd.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "diagnostic-core.h"
25 #include "tree-flow.h"
26 #include "tree-dump.h"
27 #include "cfgloop.h"
28 #include "tree-chrec.h"
29 #include "tree-data-ref.h"
30 #include "tree-scalar-evolution.h"
31 #include "sese.h"
32
33 #ifdef HAVE_cloog
34 #include "cloog/cloog.h"
35 #include "ppl_c.h"
36 #include "graphite-cloog-util.h"
37 #include "graphite-ppl.h"
38 #include "graphite-poly.h"
39 #include "graphite-clast-to-gimple.h"
40 #include "graphite-dependences.h"
41 #include "graphite-cloog-compat.h"
42
43 /* This flag is set when an error occurred during the translation of
44 CLAST to Gimple. */
45 static bool gloog_error;
46
47 /* Verifies properties that GRAPHITE should maintain during translation. */
48
49 static inline void
50 graphite_verify (void)
51 {
52 #ifdef ENABLE_CHECKING
53 verify_loop_structure ();
54 verify_dominators (CDI_DOMINATORS);
55 verify_loop_closed_ssa (true);
56 #endif
57 }
58
59 /* Stores the INDEX in a vector for a given clast NAME. */
60
61 typedef struct clast_name_index {
62 int index;
63 const char *name;
64 } *clast_name_index_p;
65
66 /* Returns a pointer to a new element of type clast_name_index_p built
67 from NAME and INDEX. */
68
69 static inline clast_name_index_p
70 new_clast_name_index (const char *name, int index)
71 {
72 clast_name_index_p res = XNEW (struct clast_name_index);
73
74 res->name = name;
75 res->index = index;
76 return res;
77 }
78
79 /* For a given clast NAME, returns -1 if it does not correspond to any
80 parameter, or otherwise, returns the index in the PARAMS or
81 SCATTERING_DIMENSIONS vector. */
82
83 static inline int
84 clast_name_to_index (clast_name_p name, htab_t index_table)
85 {
86 struct clast_name_index tmp;
87 PTR *slot;
88
89 #ifdef CLOOG_ORG
90 gcc_assert (name->type == clast_expr_name);
91 tmp.name = ((const struct clast_name *) name)->name;
92 #else
93 tmp.name = name;
94 #endif
95
96 slot = htab_find_slot (index_table, &tmp, NO_INSERT);
97
98 if (slot && *slot)
99 return ((struct clast_name_index *) *slot)->index;
100
101 return -1;
102 }
103
104 /* Records in INDEX_TABLE the INDEX for NAME. */
105
106 static inline void
107 save_clast_name_index (htab_t index_table, const char *name, int index)
108 {
109 struct clast_name_index tmp;
110 PTR *slot;
111
112 tmp.name = name;
113 slot = htab_find_slot (index_table, &tmp, INSERT);
114
115 if (slot)
116 {
117 free (*slot);
118
119 *slot = new_clast_name_index (name, index);
120 }
121 }
122
123 /* Computes a hash function for database element ELT. */
124
125 static inline hashval_t
126 clast_name_index_elt_info (const void *elt)
127 {
128 return htab_hash_pointer (((const struct clast_name_index *) elt)->name);
129 }
130
131 /* Compares database elements E1 and E2. */
132
133 static inline int
134 eq_clast_name_indexes (const void *e1, const void *e2)
135 {
136 const struct clast_name_index *elt1 = (const struct clast_name_index *) e1;
137 const struct clast_name_index *elt2 = (const struct clast_name_index *) e2;
138
139 return (elt1->name == elt2->name);
140 }
141
142 /* For a given scattering dimension, return the new induction variable
143 associated to it. */
144
145 static inline tree
146 newivs_to_depth_to_newiv (VEC (tree, heap) *newivs, int depth)
147 {
148 return VEC_index (tree, newivs, depth);
149 }
150
151 \f
152
153 /* Returns the tree variable from the name NAME that was given in
154 Cloog representation. */
155
156 static tree
157 clast_name_to_gcc (clast_name_p name, sese region, VEC (tree, heap) *newivs,
158 htab_t newivs_index, htab_t params_index)
159 {
160 int index;
161 VEC (tree, heap) *params = SESE_PARAMS (region);
162
163 if (params && params_index)
164 {
165 index = clast_name_to_index (name, params_index);
166
167 if (index >= 0)
168 return VEC_index (tree, params, index);
169 }
170
171 gcc_assert (newivs && newivs_index);
172 index = clast_name_to_index (name, newivs_index);
173 gcc_assert (index >= 0);
174
175 return newivs_to_depth_to_newiv (newivs, index);
176 }
177
178 /* Returns the signed maximal precision type for expressions TYPE1 and TYPE2. */
179
180 static tree
181 max_signed_precision_type (tree type1, tree type2)
182 {
183 int p1 = TYPE_PRECISION (type1);
184 int p2 = TYPE_PRECISION (type2);
185 int precision;
186 tree type;
187 enum machine_mode mode;
188
189 if (p1 > p2)
190 precision = TYPE_UNSIGNED (type1) ? p1 * 2 : p1;
191 else
192 precision = TYPE_UNSIGNED (type2) ? p2 * 2 : p2;
193
194 if (precision > BITS_PER_WORD)
195 {
196 gloog_error = true;
197 return integer_type_node;
198 }
199
200 mode = smallest_mode_for_size (precision, MODE_INT);
201 precision = GET_MODE_PRECISION (mode);
202 type = build_nonstandard_integer_type (precision, false);
203
204 if (!type)
205 {
206 gloog_error = true;
207 return integer_type_node;
208 }
209
210 return type;
211 }
212
213 /* Returns the maximal precision type for expressions TYPE1 and TYPE2. */
214
215 static tree
216 max_precision_type (tree type1, tree type2)
217 {
218 if (POINTER_TYPE_P (type1))
219 return type1;
220
221 if (POINTER_TYPE_P (type2))
222 return type2;
223
224 if (!TYPE_UNSIGNED (type1)
225 || !TYPE_UNSIGNED (type2))
226 return max_signed_precision_type (type1, type2);
227
228 return TYPE_PRECISION (type1) > TYPE_PRECISION (type2) ? type1 : type2;
229 }
230
231 static tree
232 clast_to_gcc_expression (tree, struct clast_expr *, sese, VEC (tree, heap) *,
233 htab_t, htab_t);
234
235 /* Converts a Cloog reduction expression R with reduction operation OP
236 to a GCC expression tree of type TYPE. */
237
238 static tree
239 clast_to_gcc_expression_red (tree type, enum tree_code op,
240 struct clast_reduction *r,
241 sese region, VEC (tree, heap) *newivs,
242 htab_t newivs_index, htab_t params_index)
243 {
244 int i;
245 tree res = clast_to_gcc_expression (type, r->elts[0], region, newivs,
246 newivs_index, params_index);
247 tree operand_type = (op == POINTER_PLUS_EXPR) ? sizetype : type;
248
249 for (i = 1; i < r->n; i++)
250 {
251 tree t = clast_to_gcc_expression (operand_type, r->elts[i], region,
252 newivs, newivs_index, params_index);
253 res = fold_build2 (op, type, res, t);
254 }
255
256 return res;
257 }
258
259 /* Converts a Cloog AST expression E back to a GCC expression tree of
260 type TYPE. */
261
262 static tree
263 clast_to_gcc_expression (tree type, struct clast_expr *e,
264 sese region, VEC (tree, heap) *newivs,
265 htab_t newivs_index, htab_t params_index)
266 {
267 switch (e->type)
268 {
269 case clast_expr_term:
270 {
271 struct clast_term *t = (struct clast_term *) e;
272
273 if (t->var)
274 {
275 if (mpz_cmp_si (t->val, 1) == 0)
276 {
277 tree name = clast_name_to_gcc (t->var, region, newivs,
278 newivs_index, params_index);
279
280 if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type))
281 name = fold_convert (sizetype, name);
282
283 name = fold_convert (type, name);
284 return name;
285 }
286
287 else if (mpz_cmp_si (t->val, -1) == 0)
288 {
289 tree name = clast_name_to_gcc (t->var, region, newivs,
290 newivs_index, params_index);
291
292 if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type))
293 name = fold_convert (sizetype, name);
294
295 name = fold_convert (type, name);
296
297 return fold_build1 (NEGATE_EXPR, type, name);
298 }
299 else
300 {
301 tree name = clast_name_to_gcc (t->var, region, newivs,
302 newivs_index, params_index);
303 tree cst = gmp_cst_to_tree (type, t->val);
304
305 if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type))
306 name = fold_convert (sizetype, name);
307
308 name = fold_convert (type, name);
309
310 if (!POINTER_TYPE_P (type))
311 return fold_build2 (MULT_EXPR, type, cst, name);
312
313 gloog_error = true;
314 return cst;
315 }
316 }
317 else
318 return gmp_cst_to_tree (type, t->val);
319 }
320
321 case clast_expr_red:
322 {
323 struct clast_reduction *r = (struct clast_reduction *) e;
324
325 switch (r->type)
326 {
327 case clast_red_sum:
328 return clast_to_gcc_expression_red
329 (type, POINTER_TYPE_P (type) ? POINTER_PLUS_EXPR : PLUS_EXPR,
330 r, region, newivs, newivs_index, params_index);
331
332 case clast_red_min:
333 return clast_to_gcc_expression_red (type, MIN_EXPR, r, region,
334 newivs, newivs_index,
335 params_index);
336
337 case clast_red_max:
338 return clast_to_gcc_expression_red (type, MAX_EXPR, r, region,
339 newivs, newivs_index,
340 params_index);
341
342 default:
343 gcc_unreachable ();
344 }
345 break;
346 }
347
348 case clast_expr_bin:
349 {
350 struct clast_binary *b = (struct clast_binary *) e;
351 struct clast_expr *lhs = (struct clast_expr *) b->LHS;
352 tree tl = clast_to_gcc_expression (type, lhs, region, newivs,
353 newivs_index, params_index);
354 tree tr = gmp_cst_to_tree (type, b->RHS);
355
356 switch (b->type)
357 {
358 case clast_bin_fdiv:
359 return fold_build2 (FLOOR_DIV_EXPR, type, tl, tr);
360
361 case clast_bin_cdiv:
362 return fold_build2 (CEIL_DIV_EXPR, type, tl, tr);
363
364 case clast_bin_div:
365 return fold_build2 (EXACT_DIV_EXPR, type, tl, tr);
366
367 case clast_bin_mod:
368 return fold_build2 (TRUNC_MOD_EXPR, type, tl, tr);
369
370 default:
371 gcc_unreachable ();
372 }
373 }
374
375 default:
376 gcc_unreachable ();
377 }
378
379 return NULL_TREE;
380 }
381
382 /* Return a type that could represent the values between V1 and V2. */
383
384 static tree
385 gcc_type_for_interval (mpz_t v1, mpz_t v2)
386 {
387 bool unsigned_p;
388 tree type;
389 enum machine_mode mode;
390 int precision = MAX (mpz_sizeinbase (v1, 2),
391 mpz_sizeinbase (v2, 2));
392
393 if (precision > BITS_PER_WORD)
394 {
395 gloog_error = true;
396 return integer_type_node;
397 }
398
399 if (mpz_cmp (v1, v2) <= 0)
400 unsigned_p = (mpz_sgn (v1) >= 0);
401 else
402 unsigned_p = (mpz_sgn (v2) >= 0);
403
404 mode = smallest_mode_for_size (precision, MODE_INT);
405 precision = GET_MODE_PRECISION (mode);
406 type = build_nonstandard_integer_type (precision, unsigned_p);
407
408 if (!type)
409 {
410 gloog_error = true;
411 return integer_type_node;
412 }
413
414 return type;
415 }
416
417 /* Return a type that could represent the integer value VAL, or
418 otherwise return NULL_TREE. */
419
420 static tree
421 gcc_type_for_value (mpz_t val)
422 {
423 return gcc_type_for_interval (val, val);
424 }
425
426 /* Return the type for the clast_term T used in STMT. */
427
428 static tree
429 gcc_type_for_clast_term (struct clast_term *t,
430 sese region, VEC (tree, heap) *newivs,
431 htab_t newivs_index, htab_t params_index)
432 {
433 gcc_assert (t->expr.type == clast_expr_term);
434
435 if (!t->var)
436 return gcc_type_for_value (t->val);
437
438 return TREE_TYPE (clast_name_to_gcc (t->var, region, newivs,
439 newivs_index, params_index));
440 }
441
442 static tree
443 gcc_type_for_clast_expr (struct clast_expr *, sese,
444 VEC (tree, heap) *, htab_t, htab_t);
445
446 /* Return the type for the clast_reduction R used in STMT. */
447
448 static tree
449 gcc_type_for_clast_red (struct clast_reduction *r, sese region,
450 VEC (tree, heap) *newivs,
451 htab_t newivs_index, htab_t params_index)
452 {
453 int i;
454 tree type = NULL_TREE;
455
456 if (r->n == 1)
457 return gcc_type_for_clast_expr (r->elts[0], region, newivs,
458 newivs_index, params_index);
459
460 switch (r->type)
461 {
462 case clast_red_sum:
463 case clast_red_min:
464 case clast_red_max:
465 type = gcc_type_for_clast_expr (r->elts[0], region, newivs,
466 newivs_index, params_index);
467 for (i = 1; i < r->n; i++)
468 type = max_precision_type (type, gcc_type_for_clast_expr
469 (r->elts[i], region, newivs,
470 newivs_index, params_index));
471
472 return type;
473
474 default:
475 break;
476 }
477
478 gcc_unreachable ();
479 return NULL_TREE;
480 }
481
482 /* Return the type for the clast_binary B used in STMT. */
483
484 static tree
485 gcc_type_for_clast_bin (struct clast_binary *b,
486 sese region, VEC (tree, heap) *newivs,
487 htab_t newivs_index, htab_t params_index)
488 {
489 tree l = gcc_type_for_clast_expr ((struct clast_expr *) b->LHS, region,
490 newivs, newivs_index, params_index);
491 tree r = gcc_type_for_value (b->RHS);
492 return max_signed_precision_type (l, r);
493 }
494
495 /* Returns the type for the CLAST expression E when used in statement
496 STMT. */
497
498 static tree
499 gcc_type_for_clast_expr (struct clast_expr *e,
500 sese region, VEC (tree, heap) *newivs,
501 htab_t newivs_index, htab_t params_index)
502 {
503 switch (e->type)
504 {
505 case clast_expr_term:
506 return gcc_type_for_clast_term ((struct clast_term *) e, region,
507 newivs, newivs_index, params_index);
508
509 case clast_expr_red:
510 return gcc_type_for_clast_red ((struct clast_reduction *) e, region,
511 newivs, newivs_index, params_index);
512
513 case clast_expr_bin:
514 return gcc_type_for_clast_bin ((struct clast_binary *) e, region,
515 newivs, newivs_index, params_index);
516
517 default:
518 gcc_unreachable ();
519 }
520
521 return NULL_TREE;
522 }
523
524 /* Returns the type for the equation CLEQ. */
525
526 static tree
527 gcc_type_for_clast_eq (struct clast_equation *cleq,
528 sese region, VEC (tree, heap) *newivs,
529 htab_t newivs_index, htab_t params_index)
530 {
531 tree l = gcc_type_for_clast_expr (cleq->LHS, region, newivs,
532 newivs_index, params_index);
533 tree r = gcc_type_for_clast_expr (cleq->RHS, region, newivs,
534 newivs_index, params_index);
535 return max_precision_type (l, r);
536 }
537
538 /* Translates a clast equation CLEQ to a tree. */
539
540 static tree
541 graphite_translate_clast_equation (sese region,
542 struct clast_equation *cleq,
543 VEC (tree, heap) *newivs,
544 htab_t newivs_index, htab_t params_index)
545 {
546 enum tree_code comp;
547 tree type = gcc_type_for_clast_eq (cleq, region, newivs, newivs_index,
548 params_index);
549 tree lhs = clast_to_gcc_expression (type, cleq->LHS, region, newivs,
550 newivs_index, params_index);
551 tree rhs = clast_to_gcc_expression (type, cleq->RHS, region, newivs,
552 newivs_index, params_index);
553
554 if (cleq->sign == 0)
555 comp = EQ_EXPR;
556
557 else if (cleq->sign > 0)
558 comp = GE_EXPR;
559
560 else
561 comp = LE_EXPR;
562
563 return fold_build2 (comp, boolean_type_node, lhs, rhs);
564 }
565
566 /* Creates the test for the condition in STMT. */
567
568 static tree
569 graphite_create_guard_cond_expr (sese region, struct clast_guard *stmt,
570 VEC (tree, heap) *newivs,
571 htab_t newivs_index, htab_t params_index)
572 {
573 tree cond = NULL;
574 int i;
575
576 for (i = 0; i < stmt->n; i++)
577 {
578 tree eq = graphite_translate_clast_equation (region, &stmt->eq[i],
579 newivs, newivs_index,
580 params_index);
581
582 if (cond)
583 cond = fold_build2 (TRUTH_AND_EXPR, TREE_TYPE (eq), cond, eq);
584 else
585 cond = eq;
586 }
587
588 return cond;
589 }
590
591 /* Creates a new if region corresponding to Cloog's guard. */
592
593 static edge
594 graphite_create_new_guard (sese region, edge entry_edge,
595 struct clast_guard *stmt,
596 VEC (tree, heap) *newivs,
597 htab_t newivs_index, htab_t params_index)
598 {
599 tree cond_expr = graphite_create_guard_cond_expr (region, stmt, newivs,
600 newivs_index, params_index);
601 edge exit_edge = create_empty_if_region_on_edge (entry_edge, cond_expr);
602 return exit_edge;
603 }
604
605 /* Compute the lower bound LOW and upper bound UP for the induction
606 variable at LEVEL for the statement PBB, based on the transformed
607 scattering of PBB: T|I|G|Cst, with T the scattering transform, I
608 the iteration domain, and G the context parameters. */
609
610 static void
611 compute_bounds_for_level (poly_bb_p pbb, int level, mpz_t low, mpz_t up)
612 {
613 ppl_Pointset_Powerset_C_Polyhedron_t ps;
614 ppl_Linear_Expression_t le;
615
616 combine_context_id_scat (&ps, pbb, false);
617
618 /* Prepare the linear expression corresponding to the level that we
619 want to maximize/minimize. */
620 {
621 ppl_dimension_type dim = pbb_nb_scattering_transform (pbb)
622 + pbb_dim_iter_domain (pbb) + pbb_nb_params (pbb);
623
624 ppl_new_Linear_Expression_with_dimension (&le, dim);
625 ppl_set_coef (le, 2 * level + 1, 1);
626 }
627
628 ppl_max_for_le_pointset (ps, le, up);
629 ppl_min_for_le_pointset (ps, le, low);
630 ppl_delete_Linear_Expression (le);
631 ppl_delete_Pointset_Powerset_C_Polyhedron (ps);
632 }
633
634 /* Compute the type for the induction variable at LEVEL for the
635 statement PBB, based on the transformed schedule of PBB. */
636
637 static tree
638 compute_type_for_level (poly_bb_p pbb, int level)
639 {
640 mpz_t low, up;
641 tree type;
642
643 mpz_init (low);
644 mpz_init (up);
645
646 compute_bounds_for_level (pbb, level, low, up);
647 type = gcc_type_for_interval (low, up);
648
649 mpz_clear (low);
650 mpz_clear (up);
651 return type;
652 }
653
654 /* Walks a CLAST and returns the first statement in the body of a
655 loop. */
656
657 static struct clast_user_stmt *
658 clast_get_body_of_loop (struct clast_stmt *stmt)
659 {
660 if (!stmt
661 || CLAST_STMT_IS_A (stmt, stmt_user))
662 return (struct clast_user_stmt *) stmt;
663
664 if (CLAST_STMT_IS_A (stmt, stmt_for))
665 return clast_get_body_of_loop (((struct clast_for *) stmt)->body);
666
667 if (CLAST_STMT_IS_A (stmt, stmt_guard))
668 return clast_get_body_of_loop (((struct clast_guard *) stmt)->then);
669
670 if (CLAST_STMT_IS_A (stmt, stmt_block))
671 return clast_get_body_of_loop (((struct clast_block *) stmt)->body);
672
673 gcc_unreachable ();
674 }
675
676 /* Returns the type for the induction variable for the loop translated
677 from STMT_FOR. */
678
679 static tree
680 gcc_type_for_iv_of_clast_loop (struct clast_for *stmt_for, int level,
681 tree lb_type, tree ub_type)
682 {
683 struct clast_stmt *stmt = (struct clast_stmt *) stmt_for;
684 struct clast_user_stmt *body = clast_get_body_of_loop (stmt);
685 CloogStatement *cs = body->statement;
686 poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (cs);
687
688 return max_signed_precision_type (lb_type, max_precision_type
689 (ub_type, compute_type_for_level
690 (pbb, level - 1)));
691 }
692
693 /* Creates a new LOOP corresponding to Cloog's STMT. Inserts an
694 induction variable for the new LOOP. New LOOP is attached to CFG
695 starting at ENTRY_EDGE. LOOP is inserted into the loop tree and
696 becomes the child loop of the OUTER_LOOP. NEWIVS_INDEX binds
697 CLooG's scattering name to the induction variable created for the
698 loop of STMT. The new induction variable is inserted in the NEWIVS
699 vector. */
700
701 static struct loop *
702 graphite_create_new_loop (sese region, edge entry_edge,
703 struct clast_for *stmt,
704 loop_p outer, VEC (tree, heap) **newivs,
705 htab_t newivs_index, htab_t params_index, int level)
706 {
707 tree lb_type = gcc_type_for_clast_expr (stmt->LB, region, *newivs,
708 newivs_index, params_index);
709 tree ub_type = gcc_type_for_clast_expr (stmt->UB, region, *newivs,
710 newivs_index, params_index);
711 tree type = gcc_type_for_iv_of_clast_loop (stmt, level, lb_type, ub_type);
712 tree lb = clast_to_gcc_expression (type, stmt->LB, region, *newivs,
713 newivs_index, params_index);
714 tree ub = clast_to_gcc_expression (type, stmt->UB, region, *newivs,
715 newivs_index, params_index);
716 tree stride = gmp_cst_to_tree (type, stmt->stride);
717 tree ivvar = create_tmp_var (type, "graphite_IV");
718 tree iv, iv_after_increment;
719 loop_p loop = create_empty_loop_on_edge
720 (entry_edge, lb, stride, ub, ivvar, &iv, &iv_after_increment,
721 outer ? outer : entry_edge->src->loop_father);
722
723 add_referenced_var (ivvar);
724
725 save_clast_name_index (newivs_index, stmt->iterator,
726 VEC_length (tree, *newivs));
727 VEC_safe_push (tree, heap, *newivs, iv);
728 return loop;
729 }
730
731 /* Inserts in iv_map a tuple (OLD_LOOP->num, NEW_NAME) for the
732 induction variables of the loops around GBB in SESE. */
733
734 static void
735 build_iv_mapping (VEC (tree, heap) *iv_map, sese region,
736 VEC (tree, heap) *newivs, htab_t newivs_index,
737 struct clast_user_stmt *user_stmt,
738 htab_t params_index)
739 {
740 struct clast_stmt *t;
741 int depth = 0;
742 CloogStatement *cs = user_stmt->statement;
743 poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (cs);
744 gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
745
746 for (t = user_stmt->substitutions; t; t = t->next, depth++)
747 {
748 struct clast_expr *expr = (struct clast_expr *)
749 ((struct clast_assignment *)t)->RHS;
750 tree type = gcc_type_for_clast_expr (expr, region, newivs,
751 newivs_index, params_index);
752 tree new_name = clast_to_gcc_expression (type, expr, region, newivs,
753 newivs_index, params_index);
754 loop_p old_loop = gbb_loop_at_index (gbb, region, depth);
755
756 VEC_replace (tree, iv_map, old_loop->num, new_name);
757 }
758 }
759
760 /* Construct bb_pbb_def with BB and PBB. */
761
762 static bb_pbb_def *
763 new_bb_pbb_def (basic_block bb, poly_bb_p pbb)
764 {
765 bb_pbb_def *bb_pbb_p;
766
767 bb_pbb_p = XNEW (bb_pbb_def);
768 bb_pbb_p->bb = bb;
769 bb_pbb_p->pbb = pbb;
770
771 return bb_pbb_p;
772 }
773
774 /* Mark BB with it's relevant PBB via hashing table BB_PBB_MAPPING. */
775
776 static void
777 mark_bb_with_pbb (poly_bb_p pbb, basic_block bb, htab_t bb_pbb_mapping)
778 {
779 bb_pbb_def tmp;
780 PTR *x;
781
782 tmp.bb = bb;
783 x = htab_find_slot (bb_pbb_mapping, &tmp, INSERT);
784
785 if (x && !*x)
786 *x = new_bb_pbb_def (bb, pbb);
787 }
788
789 /* Find BB's related poly_bb_p in hash table BB_PBB_MAPPING. */
790
791 static poly_bb_p
792 find_pbb_via_hash (htab_t bb_pbb_mapping, basic_block bb)
793 {
794 bb_pbb_def tmp;
795 PTR *slot;
796
797 tmp.bb = bb;
798 slot = htab_find_slot (bb_pbb_mapping, &tmp, NO_INSERT);
799
800 if (slot && *slot)
801 return ((bb_pbb_def *) *slot)->pbb;
802
803 return NULL;
804 }
805
806 /* Check data dependency in LOOP at scattering level LEVEL.
807 BB_PBB_MAPPING is a basic_block and it's related poly_bb_p
808 mapping. */
809
810 static bool
811 dependency_in_loop_p (loop_p loop, htab_t bb_pbb_mapping, int level)
812 {
813 unsigned i,j;
814 basic_block *bbs = get_loop_body_in_dom_order (loop);
815
816 for (i = 0; i < loop->num_nodes; i++)
817 {
818 poly_bb_p pbb1 = find_pbb_via_hash (bb_pbb_mapping, bbs[i]);
819
820 if (pbb1 == NULL)
821 continue;
822
823 for (j = 0; j < loop->num_nodes; j++)
824 {
825 poly_bb_p pbb2 = find_pbb_via_hash (bb_pbb_mapping, bbs[j]);
826
827 if (pbb2 == NULL)
828 continue;
829
830 if (dependency_between_pbbs_p (pbb1, pbb2, level))
831 {
832 free (bbs);
833 return true;
834 }
835 }
836 }
837
838 free (bbs);
839
840 return false;
841 }
842
843 /* Translates a clast user statement STMT to gimple.
844
845 - REGION is the sese region we used to generate the scop.
846 - NEXT_E is the edge where new generated code should be attached.
847 - CONTEXT_LOOP is the loop in which the generated code will be placed
848 - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.
849 - PARAMS_INDEX connects the cloog parameters with the gimple parameters in
850 the sese region. */
851 static edge
852 translate_clast_user (sese region, struct clast_user_stmt *stmt, edge next_e,
853 VEC (tree, heap) **newivs,
854 htab_t newivs_index, htab_t bb_pbb_mapping,
855 htab_t params_index)
856 {
857 int i, nb_loops;
858 basic_block new_bb;
859 poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (stmt->statement);
860 gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
861 VEC (tree, heap) *iv_map;
862
863 if (GBB_BB (gbb) == ENTRY_BLOCK_PTR)
864 return next_e;
865
866 nb_loops = number_of_loops ();
867 iv_map = VEC_alloc (tree, heap, nb_loops);
868 for (i = 0; i < nb_loops; i++)
869 VEC_quick_push (tree, iv_map, NULL_TREE);
870
871 build_iv_mapping (iv_map, region, *newivs, newivs_index, stmt, params_index);
872 next_e = copy_bb_and_scalar_dependences (GBB_BB (gbb), region,
873 next_e, iv_map);
874 VEC_free (tree, heap, iv_map);
875
876 new_bb = next_e->src;
877 mark_bb_with_pbb (pbb, new_bb, bb_pbb_mapping);
878 update_ssa (TODO_update_ssa);
879
880 return next_e;
881 }
882
883 /* Creates a new if region protecting the loop to be executed, if the execution
884 count is zero (lb > ub). */
885
886 static edge
887 graphite_create_new_loop_guard (sese region, edge entry_edge,
888 struct clast_for *stmt,
889 VEC (tree, heap) *newivs,
890 htab_t newivs_index, htab_t params_index)
891 {
892 tree cond_expr;
893 edge exit_edge;
894 tree lb_type = gcc_type_for_clast_expr (stmt->LB, region, newivs,
895 newivs_index, params_index);
896 tree ub_type = gcc_type_for_clast_expr (stmt->UB, region, newivs,
897 newivs_index, params_index);
898 tree type = max_precision_type (lb_type, ub_type);
899 tree lb = clast_to_gcc_expression (type, stmt->LB, region, newivs,
900 newivs_index, params_index);
901 tree ub = clast_to_gcc_expression (type, stmt->UB, region, newivs,
902 newivs_index, params_index);
903 /* When ub is simply a constant or a parameter, use lb <= ub. */
904 if (TREE_CODE (ub) == INTEGER_CST || TREE_CODE (ub) == SSA_NAME)
905 cond_expr = fold_build2 (LE_EXPR, boolean_type_node, lb, ub);
906 else
907 {
908 tree one = (POINTER_TYPE_P (type)
909 ? size_one_node
910 : fold_convert (type, integer_one_node));
911 /* Adding +1 and using LT_EXPR helps with loop latches that have a
912 loop iteration count of "PARAMETER - 1". For PARAMETER == 0 this becomes
913 2^k-1 due to integer overflow, and the condition lb <= ub is true,
914 even if we do not want this. However lb < ub + 1 is false, as
915 expected. */
916 tree ub_one = fold_build2 (POINTER_TYPE_P (type) ? POINTER_PLUS_EXPR
917 : PLUS_EXPR, type, ub, one);
918
919 cond_expr = fold_build2 (LT_EXPR, boolean_type_node, lb, ub_one);
920 }
921
922 exit_edge = create_empty_if_region_on_edge (entry_edge, cond_expr);
923
924 return exit_edge;
925 }
926
927 static edge
928 translate_clast (sese, loop_p, struct clast_stmt *, edge,
929 VEC (tree, heap) **, htab_t, htab_t, int, htab_t);
930
931 /* Create the loop for a clast for statement.
932
933 - REGION is the sese region we used to generate the scop.
934 - NEXT_E is the edge where new generated code should be attached.
935 - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.
936 - PARAMS_INDEX connects the cloog parameters with the gimple parameters in
937 the sese region. */
938 static edge
939 translate_clast_for_loop (sese region, loop_p context_loop,
940 struct clast_for *stmt, edge next_e,
941 VEC (tree, heap) **newivs,
942 htab_t newivs_index, htab_t bb_pbb_mapping,
943 int level, htab_t params_index)
944 {
945 struct loop *loop = graphite_create_new_loop (region, next_e, stmt,
946 context_loop, newivs,
947 newivs_index, params_index,
948 level);
949 edge last_e = single_exit (loop);
950 edge to_body = single_succ_edge (loop->header);
951 basic_block after = to_body->dest;
952
953 /* Create a basic block for loop close phi nodes. */
954 last_e = single_succ_edge (split_edge (last_e));
955
956 /* Translate the body of the loop. */
957 next_e = translate_clast (region, loop, stmt->body, to_body,
958 newivs, newivs_index, bb_pbb_mapping, level + 1,
959 params_index);
960 redirect_edge_succ_nodup (next_e, after);
961 set_immediate_dominator (CDI_DOMINATORS, next_e->dest, next_e->src);
962
963 if (flag_loop_parallelize_all
964 && !dependency_in_loop_p (loop, bb_pbb_mapping,
965 get_scattering_level (level)))
966 loop->can_be_parallel = true;
967
968 return last_e;
969 }
970
971 /* Translates a clast for statement STMT to gimple. First a guard is created
972 protecting the loop, if it is executed zero times. In this guard we create
973 the real loop structure.
974
975 - REGION is the sese region we used to generate the scop.
976 - NEXT_E is the edge where new generated code should be attached.
977 - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.
978 - PARAMS_INDEX connects the cloog parameters with the gimple parameters in
979 the sese region. */
980 static edge
981 translate_clast_for (sese region, loop_p context_loop, struct clast_for *stmt,
982 edge next_e, VEC (tree, heap) **newivs,
983 htab_t newivs_index, htab_t bb_pbb_mapping, int level,
984 htab_t params_index)
985 {
986 edge last_e = graphite_create_new_loop_guard (region, next_e, stmt, *newivs,
987 newivs_index, params_index);
988 edge true_e = get_true_edge_from_guard_bb (next_e->dest);
989
990 translate_clast_for_loop (region, context_loop, stmt, true_e, newivs,
991 newivs_index, bb_pbb_mapping, level,
992 params_index);
993 return last_e;
994 }
995
996 /* Translates a clast guard statement STMT to gimple.
997
998 - REGION is the sese region we used to generate the scop.
999 - NEXT_E is the edge where new generated code should be attached.
1000 - CONTEXT_LOOP is the loop in which the generated code will be placed
1001 - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.
1002 - PARAMS_INDEX connects the cloog parameters with the gimple parameters in
1003 the sese region. */
1004 static edge
1005 translate_clast_guard (sese region, loop_p context_loop,
1006 struct clast_guard *stmt, edge next_e,
1007 VEC (tree, heap) **newivs,
1008 htab_t newivs_index, htab_t bb_pbb_mapping, int level,
1009 htab_t params_index)
1010 {
1011 edge last_e = graphite_create_new_guard (region, next_e, stmt, *newivs,
1012 newivs_index, params_index);
1013 edge true_e = get_true_edge_from_guard_bb (next_e->dest);
1014
1015 translate_clast (region, context_loop, stmt->then, true_e,
1016 newivs, newivs_index, bb_pbb_mapping,
1017 level, params_index);
1018 return last_e;
1019 }
1020
1021 /* Translates a CLAST statement STMT to GCC representation in the
1022 context of a SESE.
1023
1024 - NEXT_E is the edge where new generated code should be attached.
1025 - CONTEXT_LOOP is the loop in which the generated code will be placed
1026 - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */
1027 static edge
1028 translate_clast (sese region, loop_p context_loop, struct clast_stmt *stmt,
1029 edge next_e, VEC (tree, heap) **newivs,
1030 htab_t newivs_index, htab_t bb_pbb_mapping, int level,
1031 htab_t params_index)
1032 {
1033 if (!stmt)
1034 return next_e;
1035
1036 if (CLAST_STMT_IS_A (stmt, stmt_root))
1037 ; /* Do nothing. */
1038
1039 else if (CLAST_STMT_IS_A (stmt, stmt_user))
1040 next_e = translate_clast_user (region, (struct clast_user_stmt *) stmt,
1041 next_e, newivs, newivs_index,
1042 bb_pbb_mapping, params_index);
1043
1044 else if (CLAST_STMT_IS_A (stmt, stmt_for))
1045 next_e = translate_clast_for (region, context_loop,
1046 (struct clast_for *) stmt, next_e,
1047 newivs, newivs_index,
1048 bb_pbb_mapping, level, params_index);
1049
1050 else if (CLAST_STMT_IS_A (stmt, stmt_guard))
1051 next_e = translate_clast_guard (region, context_loop,
1052 (struct clast_guard *) stmt, next_e,
1053 newivs, newivs_index,
1054 bb_pbb_mapping, level, params_index);
1055
1056 else if (CLAST_STMT_IS_A (stmt, stmt_block))
1057 next_e = translate_clast (region, context_loop,
1058 ((struct clast_block *) stmt)->body,
1059 next_e, newivs, newivs_index,
1060 bb_pbb_mapping, level, params_index);
1061 else
1062 gcc_unreachable();
1063
1064 recompute_all_dominators ();
1065 graphite_verify ();
1066
1067 return translate_clast (region, context_loop, stmt->next, next_e,
1068 newivs, newivs_index,
1069 bb_pbb_mapping, level, params_index);
1070 }
1071
1072 /* Free the SCATTERING domain list. */
1073
1074 static void
1075 free_scattering (CloogScatteringList *scattering)
1076 {
1077 while (scattering)
1078 {
1079 CloogScattering *dom = cloog_scattering (scattering);
1080 CloogScatteringList *next = cloog_next_scattering (scattering);
1081
1082 cloog_scattering_free (dom);
1083 free (scattering);
1084 scattering = next;
1085 }
1086 }
1087
1088 /* Initialize Cloog's parameter names from the names used in GIMPLE.
1089 Initialize Cloog's iterator names, using 'graphite_iterator_%d'
1090 from 0 to scop_nb_loops (scop). */
1091
1092 static void
1093 initialize_cloog_names (scop_p scop, CloogProgram *prog)
1094 {
1095 sese region = SCOP_REGION (scop);
1096 int i;
1097 int nb_iterators = scop_max_loop_depth (scop);
1098 int nb_scattering = cloog_program_nb_scattdims (prog);
1099 int nb_parameters = VEC_length (tree, SESE_PARAMS (region));
1100 char **iterators = XNEWVEC (char *, nb_iterators * 2);
1101 char **scattering = XNEWVEC (char *, nb_scattering);
1102 char **parameters= XNEWVEC (char *, nb_parameters);
1103
1104 cloog_program_set_names (prog, cloog_names_malloc ());
1105
1106 for (i = 0; i < nb_parameters; i++)
1107 {
1108 tree param = VEC_index (tree, SESE_PARAMS(region), i);
1109 const char *name = get_name (param);
1110 int len;
1111
1112 if (!name)
1113 name = "T";
1114
1115 len = strlen (name);
1116 len += 17;
1117 parameters[i] = XNEWVEC (char, len + 1);
1118 snprintf (parameters[i], len, "%s_%d", name, SSA_NAME_VERSION (param));
1119 }
1120
1121 cloog_names_set_nb_parameters (cloog_program_names (prog), nb_parameters);
1122 cloog_names_set_parameters (cloog_program_names (prog), parameters);
1123
1124 for (i = 0; i < nb_iterators; i++)
1125 {
1126 int len = 4 + 16;
1127 iterators[i] = XNEWVEC (char, len);
1128 snprintf (iterators[i], len, "git_%d", i);
1129 }
1130
1131 cloog_names_set_nb_iterators (cloog_program_names (prog),
1132 nb_iterators);
1133 cloog_names_set_iterators (cloog_program_names (prog),
1134 iterators);
1135
1136 for (i = 0; i < nb_scattering; i++)
1137 {
1138 int len = 5 + 16;
1139 scattering[i] = XNEWVEC (char, len);
1140 snprintf (scattering[i], len, "scat_%d", i);
1141 }
1142
1143 cloog_names_set_nb_scattering (cloog_program_names (prog),
1144 nb_scattering);
1145 cloog_names_set_scattering (cloog_program_names (prog),
1146 scattering);
1147 }
1148
1149 /* Initialize a CLooG input file. */
1150
1151 static FILE *
1152 init_cloog_input_file (int scop_number)
1153 {
1154 FILE *graphite_out_file;
1155 int len = strlen (dump_base_name);
1156 char *dumpname = XNEWVEC (char, len + 25);
1157 char *s_scop_number = XNEWVEC (char, 15);
1158
1159 memcpy (dumpname, dump_base_name, len + 1);
1160 strip_off_ending (dumpname, len);
1161 sprintf (s_scop_number, ".%d", scop_number);
1162 strcat (dumpname, s_scop_number);
1163 strcat (dumpname, ".cloog");
1164 graphite_out_file = fopen (dumpname, "w+b");
1165
1166 if (graphite_out_file == 0)
1167 fatal_error ("can%'t open %s for writing: %m", dumpname);
1168
1169 free (dumpname);
1170
1171 return graphite_out_file;
1172 }
1173
1174 /* Build cloog program for SCoP. */
1175
1176 static void
1177 build_cloog_prog (scop_p scop, CloogProgram *prog,
1178 CloogOptions *options)
1179 {
1180 int i;
1181 int max_nb_loops = scop_max_loop_depth (scop);
1182 poly_bb_p pbb;
1183 CloogLoop *loop_list = NULL;
1184 CloogBlockList *block_list = NULL;
1185 CloogScatteringList *scattering = NULL;
1186 int nbs = 2 * max_nb_loops + 1;
1187 int *scaldims;
1188
1189 cloog_program_set_context
1190 (prog, new_Cloog_Domain_from_ppl_Pointset_Powerset (SCOP_CONTEXT (scop),
1191 scop_nb_params (scop), cloog_state));
1192 nbs = unify_scattering_dimensions (scop);
1193 scaldims = (int *) xmalloc (nbs * (sizeof (int)));
1194 cloog_program_set_nb_scattdims (prog, nbs);
1195 initialize_cloog_names (scop, prog);
1196
1197 FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb)
1198 {
1199 CloogStatement *stmt;
1200 CloogBlock *block;
1201 CloogDomain *dom;
1202
1203 /* Dead code elimination: when the domain of a PBB is empty,
1204 don't generate code for the PBB. */
1205 if (ppl_Pointset_Powerset_C_Polyhedron_is_empty (PBB_DOMAIN (pbb)))
1206 continue;
1207
1208 /* Build the new statement and its block. */
1209 stmt = cloog_statement_alloc (cloog_state, pbb_index (pbb));
1210 dom = new_Cloog_Domain_from_ppl_Pointset_Powerset (PBB_DOMAIN (pbb),
1211 scop_nb_params (scop),
1212 cloog_state);
1213 block = cloog_block_alloc (stmt, 0, NULL, pbb_dim_iter_domain (pbb));
1214 cloog_statement_set_usr (stmt, pbb);
1215
1216 /* Build loop list. */
1217 {
1218 CloogLoop *new_loop_list = cloog_loop_malloc (cloog_state);
1219 cloog_loop_set_next (new_loop_list, loop_list);
1220 cloog_loop_set_domain (new_loop_list, dom);
1221 cloog_loop_set_block (new_loop_list, block);
1222 loop_list = new_loop_list;
1223 }
1224
1225 /* Build block list. */
1226 {
1227 CloogBlockList *new_block_list = cloog_block_list_malloc ();
1228
1229 cloog_block_list_set_next (new_block_list, block_list);
1230 cloog_block_list_set_block (new_block_list, block);
1231 block_list = new_block_list;
1232 }
1233
1234 /* Build scattering list. */
1235 {
1236 /* XXX: Replace with cloog_domain_list_alloc(), when available. */
1237 CloogScatteringList *new_scattering
1238 = (CloogScatteringList *) xmalloc (sizeof (CloogScatteringList));
1239 ppl_Polyhedron_t scat;
1240 CloogScattering *dom;
1241
1242 scat = PBB_TRANSFORMED_SCATTERING (pbb);
1243 dom = new_Cloog_Scattering_from_ppl_Polyhedron
1244 (scat, scop_nb_params (scop), pbb_nb_scattering_transform (pbb),
1245 cloog_state);
1246
1247 cloog_set_next_scattering (new_scattering, scattering);
1248 cloog_set_scattering (new_scattering, dom);
1249 scattering = new_scattering;
1250 }
1251 }
1252
1253 cloog_program_set_loop (prog, loop_list);
1254 cloog_program_set_blocklist (prog, block_list);
1255
1256 for (i = 0; i < nbs; i++)
1257 scaldims[i] = 0 ;
1258
1259 cloog_program_set_scaldims (prog, scaldims);
1260
1261 /* Extract scalar dimensions to simplify the code generation problem. */
1262 cloog_program_extract_scalars (prog, scattering, options);
1263
1264 /* Dump a .cloog input file, if requested. This feature is only
1265 enabled in the Graphite branch. */
1266 if (0)
1267 {
1268 static size_t file_scop_number = 0;
1269 FILE *cloog_file = init_cloog_input_file (file_scop_number);
1270
1271 cloog_program_dump_cloog (cloog_file, prog, scattering);
1272 ++file_scop_number;
1273 }
1274
1275 /* Apply scattering. */
1276 cloog_program_scatter (prog, scattering, options);
1277 free_scattering (scattering);
1278
1279 /* Iterators corresponding to scalar dimensions have to be extracted. */
1280 cloog_names_scalarize (cloog_program_names (prog), nbs,
1281 cloog_program_scaldims (prog));
1282
1283 /* Free blocklist. */
1284 {
1285 CloogBlockList *next = cloog_program_blocklist (prog);
1286
1287 while (next)
1288 {
1289 CloogBlockList *toDelete = next;
1290 next = cloog_block_list_next (next);
1291 cloog_block_list_set_next (toDelete, NULL);
1292 cloog_block_list_set_block (toDelete, NULL);
1293 cloog_block_list_free (toDelete);
1294 }
1295 cloog_program_set_blocklist (prog, NULL);
1296 }
1297 }
1298
1299 /* Return the options that will be used in GLOOG. */
1300
1301 static CloogOptions *
1302 set_cloog_options (void)
1303 {
1304 CloogOptions *options = cloog_options_malloc (cloog_state);
1305
1306 /* Change cloog output language to C. If we do use FORTRAN instead, cloog
1307 will stop e.g. with "ERROR: unbounded loops not allowed in FORTRAN.", if
1308 we pass an incomplete program to cloog. */
1309 options->language = LANGUAGE_C;
1310
1311 /* Enable complex equality spreading: removes dummy statements
1312 (assignments) in the generated code which repeats the
1313 substitution equations for statements. This is useless for
1314 GLooG. */
1315 options->esp = 1;
1316
1317 #ifdef CLOOG_ORG
1318 /* Silence CLooG to avoid failing tests due to debug output to stderr. */
1319 options->quiet = 1;
1320 #else
1321 /* Enable C pretty-printing mode: normalizes the substitution
1322 equations for statements. */
1323 options->cpp = 1;
1324 #endif
1325
1326 /* Allow cloog to build strides with a stride width different to one.
1327 This example has stride = 4:
1328
1329 for (i = 0; i < 20; i += 4)
1330 A */
1331 options->strides = 1;
1332
1333 /* Disable optimizations and make cloog generate source code closer to the
1334 input. This is useful for debugging, but later we want the optimized
1335 code.
1336
1337 XXX: We can not disable optimizations, as loop blocking is not working
1338 without them. */
1339 if (0)
1340 {
1341 options->f = -1;
1342 options->l = INT_MAX;
1343 }
1344
1345 return options;
1346 }
1347
1348 /* Prints STMT to STDERR. */
1349
1350 void
1351 print_clast_stmt (FILE *file, struct clast_stmt *stmt)
1352 {
1353 CloogOptions *options = set_cloog_options ();
1354
1355 clast_pprint (file, stmt, 0, options);
1356 cloog_options_free (options);
1357 }
1358
1359 /* Prints STMT to STDERR. */
1360
1361 DEBUG_FUNCTION void
1362 debug_clast_stmt (struct clast_stmt *stmt)
1363 {
1364 print_clast_stmt (stderr, stmt);
1365 }
1366
1367 /* Translate SCOP to a CLooG program and clast. These two
1368 representations should be freed together: a clast cannot be used
1369 without a program. */
1370
1371 cloog_prog_clast
1372 scop_to_clast (scop_p scop)
1373 {
1374 CloogOptions *options = set_cloog_options ();
1375 cloog_prog_clast pc;
1376
1377 /* Connect new cloog prog generation to graphite. */
1378 pc.prog = cloog_program_malloc ();
1379 build_cloog_prog (scop, pc.prog, options);
1380 pc.prog = cloog_program_generate (pc.prog, options);
1381 pc.stmt = cloog_clast_create (pc.prog, options);
1382
1383 cloog_options_free (options);
1384 return pc;
1385 }
1386
1387 /* Prints to FILE the code generated by CLooG for SCOP. */
1388
1389 void
1390 print_generated_program (FILE *file, scop_p scop)
1391 {
1392 CloogOptions *options = set_cloog_options ();
1393
1394 cloog_prog_clast pc = scop_to_clast (scop);
1395
1396 fprintf (file, " (prog: \n");
1397 cloog_program_print (file, pc.prog);
1398 fprintf (file, " )\n");
1399
1400 fprintf (file, " (clast: \n");
1401 clast_pprint (file, pc.stmt, 0, options);
1402 fprintf (file, " )\n");
1403
1404 cloog_options_free (options);
1405 cloog_clast_free (pc.stmt);
1406 cloog_program_free (pc.prog);
1407 }
1408
1409 /* Prints to STDERR the code generated by CLooG for SCOP. */
1410
1411 DEBUG_FUNCTION void
1412 debug_generated_program (scop_p scop)
1413 {
1414 print_generated_program (stderr, scop);
1415 }
1416
1417 /* Add CLooG names to parameter index. The index is used to translate
1418 back from CLooG names to GCC trees. */
1419
1420 static void
1421 create_params_index (htab_t index_table, CloogProgram *prog) {
1422 CloogNames* names = cloog_program_names (prog);
1423 int nb_parameters = cloog_names_nb_parameters (names);
1424 char **parameters = cloog_names_parameters (names);
1425 int i;
1426
1427 for (i = 0; i < nb_parameters; i++)
1428 save_clast_name_index (index_table, parameters[i], i);
1429 }
1430
1431 /* GIMPLE Loop Generator: generates loops from STMT in GIMPLE form for
1432 the given SCOP. Return true if code generation succeeded.
1433 BB_PBB_MAPPING is a basic_block and it's related poly_bb_p mapping.
1434 */
1435
1436 bool
1437 gloog (scop_p scop, htab_t bb_pbb_mapping)
1438 {
1439 VEC (tree, heap) *newivs = VEC_alloc (tree, heap, 10);
1440 loop_p context_loop;
1441 sese region = SCOP_REGION (scop);
1442 ifsese if_region = NULL;
1443 htab_t newivs_index, params_index;
1444 cloog_prog_clast pc;
1445
1446 timevar_push (TV_GRAPHITE_CODE_GEN);
1447 gloog_error = false;
1448
1449 pc = scop_to_clast (scop);
1450
1451 if (dump_file && (dump_flags & TDF_DETAILS))
1452 {
1453 fprintf (dump_file, "\nCLAST generated by CLooG: \n");
1454 print_clast_stmt (dump_file, pc.stmt);
1455 fprintf (dump_file, "\n");
1456 }
1457
1458 recompute_all_dominators ();
1459 graphite_verify ();
1460
1461 if_region = move_sese_in_condition (region);
1462 sese_insert_phis_for_liveouts (region,
1463 if_region->region->exit->src,
1464 if_region->false_region->exit,
1465 if_region->true_region->exit);
1466 recompute_all_dominators ();
1467 graphite_verify ();
1468
1469 context_loop = SESE_ENTRY (region)->src->loop_father;
1470 newivs_index = htab_create (10, clast_name_index_elt_info,
1471 eq_clast_name_indexes, free);
1472 params_index = htab_create (10, clast_name_index_elt_info,
1473 eq_clast_name_indexes, free);
1474
1475 create_params_index (params_index, pc.prog);
1476
1477 translate_clast (region, context_loop, pc.stmt,
1478 if_region->true_region->entry,
1479 &newivs, newivs_index,
1480 bb_pbb_mapping, 1, params_index);
1481 graphite_verify ();
1482 scev_reset ();
1483 recompute_all_dominators ();
1484 graphite_verify ();
1485
1486 if (gloog_error)
1487 set_ifsese_condition (if_region, integer_zero_node);
1488
1489 free (if_region->true_region);
1490 free (if_region->region);
1491 free (if_region);
1492
1493 htab_delete (newivs_index);
1494 htab_delete (params_index);
1495 VEC_free (tree, heap, newivs);
1496 cloog_clast_free (pc.stmt);
1497 cloog_program_free (pc.prog);
1498 timevar_pop (TV_GRAPHITE_CODE_GEN);
1499
1500 if (dump_file && (dump_flags & TDF_DETAILS))
1501 {
1502 loop_p loop;
1503 loop_iterator li;
1504 int num_no_dependency = 0;
1505
1506 FOR_EACH_LOOP (li, loop, 0)
1507 if (loop->can_be_parallel)
1508 num_no_dependency++;
1509
1510 fprintf (dump_file, "\n%d loops carried no dependency.\n",
1511 num_no_dependency);
1512 }
1513
1514 return !gloog_error;
1515 }
1516 #endif