* g++.dg/cpp0x/nullptr21.c: Remove printfs, make self-checking.
[gcc.git] / gcc / graphite-interchange.c
1 /* Interchange heuristics and transform for loop interchange on
2 polyhedral representation.
3
4 Copyright (C) 2009, 2010, 2011 Free Software Foundation, Inc.
5 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
6 Harsha Jagasia <harsha.jagasia@amd.com>.
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 #include "config.h"
25
26 #ifdef HAVE_cloog
27 #include <isl/aff.h>
28 #include <isl/set.h>
29 #include <isl/map.h>
30 #include <isl/union_map.h>
31 #include <isl/ilp.h>
32 #include <cloog/cloog.h>
33 #include <cloog/isl/domain.h>
34 #endif
35
36 #include "system.h"
37 #include "coretypes.h"
38 #include "tree-flow.h"
39 #include "dumpfile.h"
40 #include "cfgloop.h"
41 #include "tree-chrec.h"
42 #include "tree-data-ref.h"
43 #include "tree-scalar-evolution.h"
44 #include "sese.h"
45
46 #ifdef HAVE_cloog
47 #include "graphite-poly.h"
48
49 /* XXX isl rewrite following comment */
50 /* Builds a linear expression, of dimension DIM, representing PDR's
51 memory access:
52
53 L = r_{n}*r_{n-1}*...*r_{1}*s_{0} + ... + r_{n}*s_{n-1} + s_{n}.
54
55 For an array A[10][20] with two subscript locations s0 and s1, the
56 linear memory access is 20 * s0 + s1: a stride of 1 in subscript s0
57 corresponds to a memory stride of 20.
58
59 OFFSET is a number of dimensions to prepend before the
60 subscript dimensions: s_0, s_1, ..., s_n.
61
62 Thus, the final linear expression has the following format:
63 0 .. 0_{offset} | 0 .. 0_{nit} | 0 .. 0_{gd} | 0 | c_0 c_1 ... c_n
64 where the expression itself is:
65 c_0 * s_0 + c_1 * s_1 + ... c_n * s_n. */
66
67 static isl_constraint *
68 build_linearized_memory_access (isl_map *map, poly_dr_p pdr)
69 {
70 isl_constraint *res;
71 isl_local_space *ls = isl_local_space_from_space (isl_map_get_space (map));
72 unsigned offset, nsubs;
73 int i;
74 isl_int size, subsize;
75
76 res = isl_equality_alloc (ls);
77 isl_int_init (size);
78 isl_int_set_ui (size, 1);
79 isl_int_init (subsize);
80 isl_int_set_ui (subsize, 1);
81
82 nsubs = isl_set_dim (pdr->extent, isl_dim_set);
83 /* -1 for the already included L dimension. */
84 offset = isl_map_dim (map, isl_dim_out) - 1 - nsubs;
85 res = isl_constraint_set_coefficient_si (res, isl_dim_out, offset + nsubs, -1);
86 /* Go through all subscripts from last to first. First dimension
87 is the alias set, ignore it. */
88 for (i = nsubs - 1; i >= 1; i--)
89 {
90 isl_space *dc;
91 isl_aff *aff;
92
93 res = isl_constraint_set_coefficient (res, isl_dim_out, offset + i, size);
94
95 dc = isl_set_get_space (pdr->extent);
96 aff = isl_aff_zero_on_domain (isl_local_space_from_space (dc));
97 aff = isl_aff_set_coefficient_si (aff, isl_dim_in, i, 1);
98 isl_set_max (pdr->extent, aff, &subsize);
99 isl_aff_free (aff);
100 isl_int_mul (size, size, subsize);
101 }
102
103 isl_int_clear (subsize);
104 isl_int_clear (size);
105
106 return res;
107 }
108
109 /* Set STRIDE to the stride of PDR in memory by advancing by one in
110 the loop at DEPTH. */
111
112 static void
113 pdr_stride_in_loop (mpz_t stride, graphite_dim_t depth, poly_dr_p pdr)
114 {
115 poly_bb_p pbb = PDR_PBB (pdr);
116 isl_map *map;
117 isl_set *set;
118 isl_aff *aff;
119 isl_space *dc;
120 isl_constraint *lma, *c;
121 isl_int islstride;
122 graphite_dim_t time_depth;
123 unsigned offset, nt;
124 unsigned i;
125 /* XXX isl rewrite following comments. */
126 /* Builds a partial difference equations and inserts them
127 into pointset powerset polyhedron P. Polyhedron is assumed
128 to have the format: T|I|T'|I'|G|S|S'|l1|l2.
129
130 TIME_DEPTH is the time dimension w.r.t. which we are
131 differentiating.
132 OFFSET represents the number of dimensions between
133 columns t_{time_depth} and t'_{time_depth}.
134 DIM_SCTR is the number of scattering dimensions. It is
135 essentially the dimensionality of the T vector.
136
137 The following equations are inserted into the polyhedron P:
138 | t_1 = t_1'
139 | ...
140 | t_{time_depth-1} = t'_{time_depth-1}
141 | t_{time_depth} = t'_{time_depth} + 1
142 | t_{time_depth+1} = t'_{time_depth + 1}
143 | ...
144 | t_{dim_sctr} = t'_{dim_sctr}. */
145
146 /* Add the equality: t_{time_depth} = t'_{time_depth} + 1.
147 This is the core part of this alogrithm, since this
148 constraint asks for the memory access stride (difference)
149 between two consecutive points in time dimensions. */
150
151 /* Add equalities:
152 | t1 = t1'
153 | ...
154 | t_{time_depth-1} = t'_{time_depth-1}
155 | t_{time_depth+1} = t'_{time_depth+1}
156 | ...
157 | t_{dim_sctr} = t'_{dim_sctr}
158
159 This means that all the time dimensions are equal except for
160 time_depth, where the constraint is t_{depth} = t'_{depth} + 1
161 step. More to this: we should be careful not to add equalities
162 to the 'coupled' dimensions, which happens when the one dimension
163 is stripmined dimension, and the other dimension corresponds
164 to the point loop inside stripmined dimension. */
165
166 /* pdr->accesses: [P1..nb_param,I1..nb_domain]->[a,S1..nb_subscript]
167 ??? [P] not used for PDRs?
168 pdr->extent: [a,S1..nb_subscript]
169 pbb->domain: [P1..nb_param,I1..nb_domain]
170 pbb->transformed: [P1..nb_param,I1..nb_domain]->[T1..Tnb_sctr]
171 [T] includes local vars (currently unused)
172
173 First we create [P,I] -> [T,a,S]. */
174
175 map = isl_map_flat_range_product (isl_map_copy (pbb->transformed),
176 isl_map_copy (pdr->accesses));
177 /* Add a dimension for L: [P,I] -> [T,a,S,L].*/
178 map = isl_map_add_dims (map, isl_dim_out, 1);
179 /* Build a constraint for "lma[S] - L == 0", effectively calculating
180 L in terms of subscripts. */
181 lma = build_linearized_memory_access (map, pdr);
182 /* And add it to the map, so we now have:
183 [P,I] -> [T,a,S,L] : lma([S]) == L. */
184 map = isl_map_add_constraint (map, lma);
185
186 /* Then we create [P,I,P',I'] -> [T,a,S,L,T',a',S',L']. */
187 map = isl_map_flat_product (map, isl_map_copy (map));
188
189 /* Now add the equality T[time_depth] == T'[time_depth]+1. This will
190 force L' to be the linear address at T[time_depth] + 1. */
191 time_depth = psct_dynamic_dim (pbb, depth);
192 /* Length of [a,S] plus [L] ... */
193 offset = 1 + isl_map_dim (pdr->accesses, isl_dim_out);
194 /* ... plus [T]. */
195 offset += isl_map_dim (pbb->transformed, isl_dim_out);
196
197 c = isl_equality_alloc (isl_local_space_from_space (isl_map_get_space (map)));
198 c = isl_constraint_set_coefficient_si (c, isl_dim_out, time_depth, 1);
199 c = isl_constraint_set_coefficient_si (c, isl_dim_out,
200 offset + time_depth, -1);
201 c = isl_constraint_set_constant_si (c, 1);
202 map = isl_map_add_constraint (map, c);
203
204 /* Now we equate most of the T/T' elements (making PITaSL nearly
205 the same is (PITaSL)', except for one dimension, namely for 'depth'
206 (an index into [I]), after translating to index into [T]. Take care
207 to not produce an empty map, which indicates we wanted to equate
208 two dimensions that are already coupled via the above time_depth
209 dimension. Happens with strip mining where several scatter dimension
210 are interdependend. */
211 /* Length of [T]. */
212 nt = pbb_nb_scattering_transform (pbb) + pbb_nb_local_vars (pbb);
213 for (i = 0; i < nt; i++)
214 if (i != time_depth)
215 {
216 isl_map *temp = isl_map_equate (isl_map_copy (map),
217 isl_dim_out, i,
218 isl_dim_out, offset + i);
219 if (isl_map_is_empty (temp))
220 isl_map_free (temp);
221 else
222 {
223 isl_map_free (map);
224 map = temp;
225 }
226 }
227
228 /* Now maximize the expression L' - L. */
229 set = isl_map_range (map);
230 dc = isl_set_get_space (set);
231 aff = isl_aff_zero_on_domain (isl_local_space_from_space (dc));
232 aff = isl_aff_set_coefficient_si (aff, isl_dim_in, offset - 1, -1);
233 aff = isl_aff_set_coefficient_si (aff, isl_dim_in, offset + offset - 1, 1);
234 isl_int_init (islstride);
235 isl_set_max (set, aff, &islstride);
236 isl_int_get_gmp (islstride, stride);
237 isl_int_clear (islstride);
238 isl_aff_free (aff);
239 isl_set_free (set);
240
241 if (dump_file && (dump_flags & TDF_DETAILS))
242 {
243 char *str;
244 void (*gmp_free) (void *, size_t);
245
246 fprintf (dump_file, "\nStride in BB_%d, DR_%d, depth %d:",
247 pbb_index (pbb), PDR_ID (pdr), (int) depth);
248 str = mpz_get_str (0, 10, stride);
249 fprintf (dump_file, " %s ", str);
250 mp_get_memory_functions (NULL, NULL, &gmp_free);
251 (*gmp_free) (str, strlen (str) + 1);
252 }
253 }
254
255 /* Sets STRIDES to the sum of all the strides of the data references
256 accessed in LOOP at DEPTH. */
257
258 static void
259 memory_strides_in_loop_1 (lst_p loop, graphite_dim_t depth, mpz_t strides)
260 {
261 int i, j;
262 lst_p l;
263 poly_dr_p pdr;
264 mpz_t s, n;
265
266 mpz_init (s);
267 mpz_init (n);
268
269 FOR_EACH_VEC_ELT (lst_p, LST_SEQ (loop), j, l)
270 if (LST_LOOP_P (l))
271 memory_strides_in_loop_1 (l, depth, strides);
272 else
273 FOR_EACH_VEC_ELT (poly_dr_p, PBB_DRS (LST_PBB (l)), i, pdr)
274 {
275 pdr_stride_in_loop (s, depth, pdr);
276 mpz_set_si (n, PDR_NB_REFS (pdr));
277 mpz_mul (s, s, n);
278 mpz_add (strides, strides, s);
279 }
280
281 mpz_clear (s);
282 mpz_clear (n);
283 }
284
285 /* Sets STRIDES to the sum of all the strides of the data references
286 accessed in LOOP at DEPTH. */
287
288 static void
289 memory_strides_in_loop (lst_p loop, graphite_dim_t depth, mpz_t strides)
290 {
291 if (mpz_cmp_si (loop->memory_strides, -1) == 0)
292 {
293 mpz_set_si (strides, 0);
294 memory_strides_in_loop_1 (loop, depth, strides);
295 }
296 else
297 mpz_set (strides, loop->memory_strides);
298 }
299
300 /* Return true when the interchange of loops LOOP1 and LOOP2 is
301 profitable.
302
303 Example:
304
305 | int a[100][100];
306 |
307 | int
308 | foo (int N)
309 | {
310 | int j;
311 | int i;
312 |
313 | for (i = 0; i < N; i++)
314 | for (j = 0; j < N; j++)
315 | a[j][2 * i] += 1;
316 |
317 | return a[N][12];
318 | }
319
320 The data access A[j][i] is described like this:
321
322 | i j N a s0 s1 1
323 | 0 0 0 1 0 0 -5 = 0
324 | 0 -1 0 0 1 0 0 = 0
325 |-2 0 0 0 0 1 0 = 0
326 | 0 0 0 0 1 0 0 >= 0
327 | 0 0 0 0 0 1 0 >= 0
328 | 0 0 0 0 -1 0 100 >= 0
329 | 0 0 0 0 0 -1 100 >= 0
330
331 The linearized memory access L to A[100][100] is:
332
333 | i j N a s0 s1 1
334 | 0 0 0 0 100 1 0
335
336 TODO: the shown format is not valid as it does not show the fact
337 that the iteration domain "i j" is transformed using the scattering.
338
339 Next, to measure the impact of iterating once in loop "i", we build
340 a maximization problem: first, we add to DR accesses the dimensions
341 k, s2, s3, L1 = 100 * s0 + s1, L2, and D1: this is the polyhedron P1.
342 L1 and L2 are the linearized memory access functions.
343
344 | i j N a s0 s1 k s2 s3 L1 L2 D1 1
345 | 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
346 | 0 -1 0 0 1 0 0 0 0 0 0 0 0 = 0 s0 = j
347 |-2 0 0 0 0 1 0 0 0 0 0 0 0 = 0 s1 = 2 * i
348 | 0 0 0 0 1 0 0 0 0 0 0 0 0 >= 0
349 | 0 0 0 0 0 1 0 0 0 0 0 0 0 >= 0
350 | 0 0 0 0 -1 0 0 0 0 0 0 0 100 >= 0
351 | 0 0 0 0 0 -1 0 0 0 0 0 0 100 >= 0
352 | 0 0 0 0 100 1 0 0 0 -1 0 0 0 = 0 L1 = 100 * s0 + s1
353
354 Then, we generate the polyhedron P2 by interchanging the dimensions
355 (s0, s2), (s1, s3), (L1, L2), (k, i)
356
357 | i j N a s0 s1 k s2 s3 L1 L2 D1 1
358 | 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
359 | 0 -1 0 0 0 0 0 1 0 0 0 0 0 = 0 s2 = j
360 | 0 0 0 0 0 0 -2 0 1 0 0 0 0 = 0 s3 = 2 * k
361 | 0 0 0 0 0 0 0 1 0 0 0 0 0 >= 0
362 | 0 0 0 0 0 0 0 0 1 0 0 0 0 >= 0
363 | 0 0 0 0 0 0 0 -1 0 0 0 0 100 >= 0
364 | 0 0 0 0 0 0 0 0 -1 0 0 0 100 >= 0
365 | 0 0 0 0 0 0 0 100 1 0 -1 0 0 = 0 L2 = 100 * s2 + s3
366
367 then we add to P2 the equality k = i + 1:
368
369 |-1 0 0 0 0 0 1 0 0 0 0 0 -1 = 0 k = i + 1
370
371 and finally we maximize the expression "D1 = max (P1 inter P2, L2 - L1)".
372
373 Similarly, to determine the impact of one iteration on loop "j", we
374 interchange (k, j), we add "k = j + 1", and we compute D2 the
375 maximal value of the difference.
376
377 Finally, the profitability test is D1 < D2: if in the outer loop
378 the strides are smaller than in the inner loop, then it is
379 profitable to interchange the loops at DEPTH1 and DEPTH2. */
380
381 static bool
382 lst_interchange_profitable_p (lst_p nest, int depth1, int depth2)
383 {
384 mpz_t d1, d2;
385 bool res;
386
387 gcc_assert (depth1 < depth2);
388
389 mpz_init (d1);
390 mpz_init (d2);
391
392 memory_strides_in_loop (nest, depth1, d1);
393 memory_strides_in_loop (nest, depth2, d2);
394
395 res = mpz_cmp (d1, d2) < 0;
396
397 mpz_clear (d1);
398 mpz_clear (d2);
399
400 return res;
401 }
402
403 /* Interchanges the loops at DEPTH1 and DEPTH2 of the original
404 scattering and assigns the resulting polyhedron to the transformed
405 scattering. */
406
407 static void
408 pbb_interchange_loop_depths (graphite_dim_t depth1, graphite_dim_t depth2,
409 poly_bb_p pbb)
410 {
411 unsigned i;
412 unsigned dim1 = psct_dynamic_dim (pbb, depth1);
413 unsigned dim2 = psct_dynamic_dim (pbb, depth2);
414 isl_space *d = isl_map_get_space (pbb->transformed);
415 isl_space *d1 = isl_space_range (d);
416 unsigned n = isl_space_dim (d1, isl_dim_out);
417 isl_space *d2 = isl_space_add_dims (d1, isl_dim_in, n);
418 isl_map *x = isl_map_universe (d2);
419
420 x = isl_map_equate (x, isl_dim_in, dim1, isl_dim_out, dim2);
421 x = isl_map_equate (x, isl_dim_in, dim2, isl_dim_out, dim1);
422
423 for (i = 0; i < n; i++)
424 if (i != dim1 && i != dim2)
425 x = isl_map_equate (x, isl_dim_in, i, isl_dim_out, i);
426
427 pbb->transformed = isl_map_apply_range (pbb->transformed, x);
428 }
429
430 /* Apply the interchange of loops at depths DEPTH1 and DEPTH2 to all
431 the statements below LST. */
432
433 static void
434 lst_apply_interchange (lst_p lst, int depth1, int depth2)
435 {
436 if (!lst)
437 return;
438
439 if (LST_LOOP_P (lst))
440 {
441 int i;
442 lst_p l;
443
444 FOR_EACH_VEC_ELT (lst_p, LST_SEQ (lst), i, l)
445 lst_apply_interchange (l, depth1, depth2);
446 }
447 else
448 pbb_interchange_loop_depths (depth1, depth2, LST_PBB (lst));
449 }
450
451 /* Return true when the nest starting at LOOP1 and ending on LOOP2 is
452 perfect: i.e. there are no sequence of statements. */
453
454 static bool
455 lst_perfectly_nested_p (lst_p loop1, lst_p loop2)
456 {
457 if (loop1 == loop2)
458 return true;
459
460 if (!LST_LOOP_P (loop1))
461 return false;
462
463 return VEC_length (lst_p, LST_SEQ (loop1)) == 1
464 && lst_perfectly_nested_p (VEC_index (lst_p, LST_SEQ (loop1), 0), loop2);
465 }
466
467 /* Transform the loop nest between LOOP1 and LOOP2 into a perfect
468 nest. To continue the naming tradition, this function is called
469 after perfect_nestify. NEST is set to the perfectly nested loop
470 that is created. BEFORE/AFTER are set to the loops distributed
471 before/after the loop NEST. */
472
473 static void
474 lst_perfect_nestify (lst_p loop1, lst_p loop2, lst_p *before,
475 lst_p *nest, lst_p *after)
476 {
477 poly_bb_p first, last;
478
479 gcc_assert (loop1 && loop2
480 && loop1 != loop2
481 && LST_LOOP_P (loop1) && LST_LOOP_P (loop2));
482
483 first = LST_PBB (lst_find_first_pbb (loop2));
484 last = LST_PBB (lst_find_last_pbb (loop2));
485
486 *before = copy_lst (loop1);
487 *nest = copy_lst (loop1);
488 *after = copy_lst (loop1);
489
490 lst_remove_all_before_including_pbb (*before, first, false);
491 lst_remove_all_before_including_pbb (*after, last, true);
492
493 lst_remove_all_before_excluding_pbb (*nest, first, true);
494 lst_remove_all_before_excluding_pbb (*nest, last, false);
495
496 if (lst_empty_p (*before))
497 {
498 free_lst (*before);
499 *before = NULL;
500 }
501 if (lst_empty_p (*after))
502 {
503 free_lst (*after);
504 *after = NULL;
505 }
506 if (lst_empty_p (*nest))
507 {
508 free_lst (*nest);
509 *nest = NULL;
510 }
511 }
512
513 /* Try to interchange LOOP1 with LOOP2 for all the statements of the
514 body of LOOP2. LOOP1 contains LOOP2. Return true if it did the
515 interchange. */
516
517 static bool
518 lst_try_interchange_loops (scop_p scop, lst_p loop1, lst_p loop2)
519 {
520 int depth1 = lst_depth (loop1);
521 int depth2 = lst_depth (loop2);
522 lst_p transformed;
523
524 lst_p before = NULL, nest = NULL, after = NULL;
525
526 if (!lst_perfectly_nested_p (loop1, loop2))
527 lst_perfect_nestify (loop1, loop2, &before, &nest, &after);
528
529 if (!lst_interchange_profitable_p (loop2, depth1, depth2))
530 return false;
531
532 lst_apply_interchange (loop2, depth1, depth2);
533
534 /* Sync the transformed LST information and the PBB scatterings
535 before using the scatterings in the data dependence analysis. */
536 if (before || nest || after)
537 {
538 transformed = lst_substitute_3 (SCOP_TRANSFORMED_SCHEDULE (scop), loop1,
539 before, nest, after);
540 lst_update_scattering (transformed);
541 free_lst (transformed);
542 }
543
544 if (graphite_legal_transform (scop))
545 {
546 if (dump_file && (dump_flags & TDF_DETAILS))
547 fprintf (dump_file,
548 "Loops at depths %d and %d will be interchanged.\n",
549 depth1, depth2);
550
551 /* Transform the SCOP_TRANSFORMED_SCHEDULE of the SCOP. */
552 lst_insert_in_sequence (before, loop1, true);
553 lst_insert_in_sequence (after, loop1, false);
554
555 if (nest)
556 {
557 lst_replace (loop1, nest);
558 free_lst (loop1);
559 }
560
561 return true;
562 }
563
564 /* Undo the transform. */
565 free_lst (before);
566 free_lst (nest);
567 free_lst (after);
568 lst_apply_interchange (loop2, depth2, depth1);
569 return false;
570 }
571
572 /* Selects the inner loop in LST_SEQ (INNER_FATHER) to be interchanged
573 with the loop OUTER in LST_SEQ (OUTER_FATHER). */
574
575 static bool
576 lst_interchange_select_inner (scop_p scop, lst_p outer_father, int outer,
577 lst_p inner_father)
578 {
579 int inner;
580 lst_p loop1, loop2;
581
582 gcc_assert (outer_father
583 && LST_LOOP_P (outer_father)
584 && LST_LOOP_P (VEC_index (lst_p, LST_SEQ (outer_father), outer))
585 && inner_father
586 && LST_LOOP_P (inner_father));
587
588 loop1 = VEC_index (lst_p, LST_SEQ (outer_father), outer);
589
590 FOR_EACH_VEC_ELT (lst_p, LST_SEQ (inner_father), inner, loop2)
591 if (LST_LOOP_P (loop2)
592 && (lst_try_interchange_loops (scop, loop1, loop2)
593 || lst_interchange_select_inner (scop, outer_father, outer, loop2)))
594 return true;
595
596 return false;
597 }
598
599 /* Interchanges all the loops of LOOP and the loops of its body that
600 are considered profitable to interchange. Return the number of
601 interchanged loops. OUTER is the index in LST_SEQ (LOOP) that
602 points to the next outer loop to be considered for interchange. */
603
604 static int
605 lst_interchange_select_outer (scop_p scop, lst_p loop, int outer)
606 {
607 lst_p l;
608 int res = 0;
609 int i = 0;
610 lst_p father;
611
612 if (!loop || !LST_LOOP_P (loop))
613 return 0;
614
615 father = LST_LOOP_FATHER (loop);
616 if (father)
617 {
618 while (lst_interchange_select_inner (scop, father, outer, loop))
619 {
620 res++;
621 loop = VEC_index (lst_p, LST_SEQ (father), outer);
622 }
623 }
624
625 if (LST_LOOP_P (loop))
626 FOR_EACH_VEC_ELT (lst_p, LST_SEQ (loop), i, l)
627 if (LST_LOOP_P (l))
628 res += lst_interchange_select_outer (scop, l, i);
629
630 return res;
631 }
632
633 /* Interchanges all the loop depths that are considered profitable for
634 SCOP. Return the number of interchanged loops. */
635
636 int
637 scop_do_interchange (scop_p scop)
638 {
639 int res = lst_interchange_select_outer
640 (scop, SCOP_TRANSFORMED_SCHEDULE (scop), 0);
641
642 lst_update_scattering (SCOP_TRANSFORMED_SCHEDULE (scop));
643
644 return res;
645 }
646
647
648 #endif
649