calls.c (store_one_arg): Remove incorrect const qualification on the type of the...
[gcc.git] / gcc / graphite-interchange.c
1 /* Interchange heuristics and transform for loop interchange on
2 polyhedral representation.
3
4 Copyright (C) 2009-2014 Free Software Foundation, Inc.
5 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
6 Harsha Jagasia <harsha.jagasia@amd.com>.
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 #include "config.h"
25
26 #ifdef HAVE_cloog
27 #include <isl/aff.h>
28 #include <isl/set.h>
29 #include <isl/map.h>
30 #include <isl/union_map.h>
31 #include <isl/ilp.h>
32 #include <cloog/cloog.h>
33 #include <cloog/isl/domain.h>
34 #endif
35
36 #include "system.h"
37 #include "coretypes.h"
38 #include "tree.h"
39 #include "basic-block.h"
40 #include "tree-ssa-alias.h"
41 #include "internal-fn.h"
42 #include "gimple-expr.h"
43 #include "is-a.h"
44 #include "gimple.h"
45 #include "gimple-iterator.h"
46 #include "tree-ssa-loop.h"
47 #include "dumpfile.h"
48 #include "cfgloop.h"
49 #include "tree-chrec.h"
50 #include "tree-data-ref.h"
51 #include "tree-scalar-evolution.h"
52 #include "sese.h"
53
54 #ifdef HAVE_cloog
55 #include "graphite-poly.h"
56
57 /* XXX isl rewrite following comment */
58 /* Builds a linear expression, of dimension DIM, representing PDR's
59 memory access:
60
61 L = r_{n}*r_{n-1}*...*r_{1}*s_{0} + ... + r_{n}*s_{n-1} + s_{n}.
62
63 For an array A[10][20] with two subscript locations s0 and s1, the
64 linear memory access is 20 * s0 + s1: a stride of 1 in subscript s0
65 corresponds to a memory stride of 20.
66
67 OFFSET is a number of dimensions to prepend before the
68 subscript dimensions: s_0, s_1, ..., s_n.
69
70 Thus, the final linear expression has the following format:
71 0 .. 0_{offset} | 0 .. 0_{nit} | 0 .. 0_{gd} | 0 | c_0 c_1 ... c_n
72 where the expression itself is:
73 c_0 * s_0 + c_1 * s_1 + ... c_n * s_n. */
74
75 static isl_constraint *
76 build_linearized_memory_access (isl_map *map, poly_dr_p pdr)
77 {
78 isl_constraint *res;
79 isl_local_space *ls = isl_local_space_from_space (isl_map_get_space (map));
80 unsigned offset, nsubs;
81 int i;
82 isl_int size, subsize;
83
84 res = isl_equality_alloc (ls);
85 isl_int_init (size);
86 isl_int_set_ui (size, 1);
87 isl_int_init (subsize);
88 isl_int_set_ui (subsize, 1);
89
90 nsubs = isl_set_dim (pdr->extent, isl_dim_set);
91 /* -1 for the already included L dimension. */
92 offset = isl_map_dim (map, isl_dim_out) - 1 - nsubs;
93 res = isl_constraint_set_coefficient_si (res, isl_dim_out, offset + nsubs, -1);
94 /* Go through all subscripts from last to first. First dimension
95 is the alias set, ignore it. */
96 for (i = nsubs - 1; i >= 1; i--)
97 {
98 isl_space *dc;
99 isl_aff *aff;
100
101 res = isl_constraint_set_coefficient (res, isl_dim_out, offset + i, size);
102
103 dc = isl_set_get_space (pdr->extent);
104 aff = isl_aff_zero_on_domain (isl_local_space_from_space (dc));
105 aff = isl_aff_set_coefficient_si (aff, isl_dim_in, i, 1);
106 isl_set_max (pdr->extent, aff, &subsize);
107 isl_aff_free (aff);
108 isl_int_mul (size, size, subsize);
109 }
110
111 isl_int_clear (subsize);
112 isl_int_clear (size);
113
114 return res;
115 }
116
117 /* Set STRIDE to the stride of PDR in memory by advancing by one in
118 the loop at DEPTH. */
119
120 static void
121 pdr_stride_in_loop (mpz_t stride, graphite_dim_t depth, poly_dr_p pdr)
122 {
123 poly_bb_p pbb = PDR_PBB (pdr);
124 isl_map *map;
125 isl_set *set;
126 isl_aff *aff;
127 isl_space *dc;
128 isl_constraint *lma, *c;
129 isl_int islstride;
130 graphite_dim_t time_depth;
131 unsigned offset, nt;
132 unsigned i;
133 /* XXX isl rewrite following comments. */
134 /* Builds a partial difference equations and inserts them
135 into pointset powerset polyhedron P. Polyhedron is assumed
136 to have the format: T|I|T'|I'|G|S|S'|l1|l2.
137
138 TIME_DEPTH is the time dimension w.r.t. which we are
139 differentiating.
140 OFFSET represents the number of dimensions between
141 columns t_{time_depth} and t'_{time_depth}.
142 DIM_SCTR is the number of scattering dimensions. It is
143 essentially the dimensionality of the T vector.
144
145 The following equations are inserted into the polyhedron P:
146 | t_1 = t_1'
147 | ...
148 | t_{time_depth-1} = t'_{time_depth-1}
149 | t_{time_depth} = t'_{time_depth} + 1
150 | t_{time_depth+1} = t'_{time_depth + 1}
151 | ...
152 | t_{dim_sctr} = t'_{dim_sctr}. */
153
154 /* Add the equality: t_{time_depth} = t'_{time_depth} + 1.
155 This is the core part of this alogrithm, since this
156 constraint asks for the memory access stride (difference)
157 between two consecutive points in time dimensions. */
158
159 /* Add equalities:
160 | t1 = t1'
161 | ...
162 | t_{time_depth-1} = t'_{time_depth-1}
163 | t_{time_depth+1} = t'_{time_depth+1}
164 | ...
165 | t_{dim_sctr} = t'_{dim_sctr}
166
167 This means that all the time dimensions are equal except for
168 time_depth, where the constraint is t_{depth} = t'_{depth} + 1
169 step. More to this: we should be careful not to add equalities
170 to the 'coupled' dimensions, which happens when the one dimension
171 is stripmined dimension, and the other dimension corresponds
172 to the point loop inside stripmined dimension. */
173
174 /* pdr->accesses: [P1..nb_param,I1..nb_domain]->[a,S1..nb_subscript]
175 ??? [P] not used for PDRs?
176 pdr->extent: [a,S1..nb_subscript]
177 pbb->domain: [P1..nb_param,I1..nb_domain]
178 pbb->transformed: [P1..nb_param,I1..nb_domain]->[T1..Tnb_sctr]
179 [T] includes local vars (currently unused)
180
181 First we create [P,I] -> [T,a,S]. */
182
183 map = isl_map_flat_range_product (isl_map_copy (pbb->transformed),
184 isl_map_copy (pdr->accesses));
185 /* Add a dimension for L: [P,I] -> [T,a,S,L].*/
186 map = isl_map_add_dims (map, isl_dim_out, 1);
187 /* Build a constraint for "lma[S] - L == 0", effectively calculating
188 L in terms of subscripts. */
189 lma = build_linearized_memory_access (map, pdr);
190 /* And add it to the map, so we now have:
191 [P,I] -> [T,a,S,L] : lma([S]) == L. */
192 map = isl_map_add_constraint (map, lma);
193
194 /* Then we create [P,I,P',I'] -> [T,a,S,L,T',a',S',L']. */
195 map = isl_map_flat_product (map, isl_map_copy (map));
196
197 /* Now add the equality T[time_depth] == T'[time_depth]+1. This will
198 force L' to be the linear address at T[time_depth] + 1. */
199 time_depth = psct_dynamic_dim (pbb, depth);
200 /* Length of [a,S] plus [L] ... */
201 offset = 1 + isl_map_dim (pdr->accesses, isl_dim_out);
202 /* ... plus [T]. */
203 offset += isl_map_dim (pbb->transformed, isl_dim_out);
204
205 c = isl_equality_alloc (isl_local_space_from_space (isl_map_get_space (map)));
206 c = isl_constraint_set_coefficient_si (c, isl_dim_out, time_depth, 1);
207 c = isl_constraint_set_coefficient_si (c, isl_dim_out,
208 offset + time_depth, -1);
209 c = isl_constraint_set_constant_si (c, 1);
210 map = isl_map_add_constraint (map, c);
211
212 /* Now we equate most of the T/T' elements (making PITaSL nearly
213 the same is (PITaSL)', except for one dimension, namely for 'depth'
214 (an index into [I]), after translating to index into [T]. Take care
215 to not produce an empty map, which indicates we wanted to equate
216 two dimensions that are already coupled via the above time_depth
217 dimension. Happens with strip mining where several scatter dimension
218 are interdependend. */
219 /* Length of [T]. */
220 nt = pbb_nb_scattering_transform (pbb) + pbb_nb_local_vars (pbb);
221 for (i = 0; i < nt; i++)
222 if (i != time_depth)
223 {
224 isl_map *temp = isl_map_equate (isl_map_copy (map),
225 isl_dim_out, i,
226 isl_dim_out, offset + i);
227 if (isl_map_is_empty (temp))
228 isl_map_free (temp);
229 else
230 {
231 isl_map_free (map);
232 map = temp;
233 }
234 }
235
236 /* Now maximize the expression L' - L. */
237 set = isl_map_range (map);
238 dc = isl_set_get_space (set);
239 aff = isl_aff_zero_on_domain (isl_local_space_from_space (dc));
240 aff = isl_aff_set_coefficient_si (aff, isl_dim_in, offset - 1, -1);
241 aff = isl_aff_set_coefficient_si (aff, isl_dim_in, offset + offset - 1, 1);
242 isl_int_init (islstride);
243 isl_set_max (set, aff, &islstride);
244 isl_int_get_gmp (islstride, stride);
245 isl_int_clear (islstride);
246 isl_aff_free (aff);
247 isl_set_free (set);
248
249 if (dump_file && (dump_flags & TDF_DETAILS))
250 {
251 gmp_fprintf (dump_file, "\nStride in BB_%d, DR_%d, depth %d: %Zd ",
252 pbb_index (pbb), PDR_ID (pdr), (int) depth, stride);
253 }
254 }
255
256 /* Sets STRIDES to the sum of all the strides of the data references
257 accessed in LOOP at DEPTH. */
258
259 static void
260 memory_strides_in_loop_1 (lst_p loop, graphite_dim_t depth, mpz_t strides)
261 {
262 int i, j;
263 lst_p l;
264 poly_dr_p pdr;
265 mpz_t s, n;
266
267 mpz_init (s);
268 mpz_init (n);
269
270 FOR_EACH_VEC_ELT (LST_SEQ (loop), j, l)
271 if (LST_LOOP_P (l))
272 memory_strides_in_loop_1 (l, depth, strides);
273 else
274 FOR_EACH_VEC_ELT (PBB_DRS (LST_PBB (l)), i, pdr)
275 {
276 pdr_stride_in_loop (s, depth, pdr);
277 mpz_set_si (n, PDR_NB_REFS (pdr));
278 mpz_mul (s, s, n);
279 mpz_add (strides, strides, s);
280 }
281
282 mpz_clear (s);
283 mpz_clear (n);
284 }
285
286 /* Sets STRIDES to the sum of all the strides of the data references
287 accessed in LOOP at DEPTH. */
288
289 static void
290 memory_strides_in_loop (lst_p loop, graphite_dim_t depth, mpz_t strides)
291 {
292 if (mpz_cmp_si (loop->memory_strides, -1) == 0)
293 {
294 mpz_set_si (strides, 0);
295 memory_strides_in_loop_1 (loop, depth, strides);
296 }
297 else
298 mpz_set (strides, loop->memory_strides);
299 }
300
301 /* Return true when the interchange of loops LOOP1 and LOOP2 is
302 profitable.
303
304 Example:
305
306 | int a[100][100];
307 |
308 | int
309 | foo (int N)
310 | {
311 | int j;
312 | int i;
313 |
314 | for (i = 0; i < N; i++)
315 | for (j = 0; j < N; j++)
316 | a[j][2 * i] += 1;
317 |
318 | return a[N][12];
319 | }
320
321 The data access A[j][i] is described like this:
322
323 | i j N a s0 s1 1
324 | 0 0 0 1 0 0 -5 = 0
325 | 0 -1 0 0 1 0 0 = 0
326 |-2 0 0 0 0 1 0 = 0
327 | 0 0 0 0 1 0 0 >= 0
328 | 0 0 0 0 0 1 0 >= 0
329 | 0 0 0 0 -1 0 100 >= 0
330 | 0 0 0 0 0 -1 100 >= 0
331
332 The linearized memory access L to A[100][100] is:
333
334 | i j N a s0 s1 1
335 | 0 0 0 0 100 1 0
336
337 TODO: the shown format is not valid as it does not show the fact
338 that the iteration domain "i j" is transformed using the scattering.
339
340 Next, to measure the impact of iterating once in loop "i", we build
341 a maximization problem: first, we add to DR accesses the dimensions
342 k, s2, s3, L1 = 100 * s0 + s1, L2, and D1: this is the polyhedron P1.
343 L1 and L2 are the linearized memory access functions.
344
345 | i j N a s0 s1 k s2 s3 L1 L2 D1 1
346 | 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
347 | 0 -1 0 0 1 0 0 0 0 0 0 0 0 = 0 s0 = j
348 |-2 0 0 0 0 1 0 0 0 0 0 0 0 = 0 s1 = 2 * i
349 | 0 0 0 0 1 0 0 0 0 0 0 0 0 >= 0
350 | 0 0 0 0 0 1 0 0 0 0 0 0 0 >= 0
351 | 0 0 0 0 -1 0 0 0 0 0 0 0 100 >= 0
352 | 0 0 0 0 0 -1 0 0 0 0 0 0 100 >= 0
353 | 0 0 0 0 100 1 0 0 0 -1 0 0 0 = 0 L1 = 100 * s0 + s1
354
355 Then, we generate the polyhedron P2 by interchanging the dimensions
356 (s0, s2), (s1, s3), (L1, L2), (k, i)
357
358 | i j N a s0 s1 k s2 s3 L1 L2 D1 1
359 | 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
360 | 0 -1 0 0 0 0 0 1 0 0 0 0 0 = 0 s2 = j
361 | 0 0 0 0 0 0 -2 0 1 0 0 0 0 = 0 s3 = 2 * k
362 | 0 0 0 0 0 0 0 1 0 0 0 0 0 >= 0
363 | 0 0 0 0 0 0 0 0 1 0 0 0 0 >= 0
364 | 0 0 0 0 0 0 0 -1 0 0 0 0 100 >= 0
365 | 0 0 0 0 0 0 0 0 -1 0 0 0 100 >= 0
366 | 0 0 0 0 0 0 0 100 1 0 -1 0 0 = 0 L2 = 100 * s2 + s3
367
368 then we add to P2 the equality k = i + 1:
369
370 |-1 0 0 0 0 0 1 0 0 0 0 0 -1 = 0 k = i + 1
371
372 and finally we maximize the expression "D1 = max (P1 inter P2, L2 - L1)".
373
374 Similarly, to determine the impact of one iteration on loop "j", we
375 interchange (k, j), we add "k = j + 1", and we compute D2 the
376 maximal value of the difference.
377
378 Finally, the profitability test is D1 < D2: if in the outer loop
379 the strides are smaller than in the inner loop, then it is
380 profitable to interchange the loops at DEPTH1 and DEPTH2. */
381
382 static bool
383 lst_interchange_profitable_p (lst_p nest, int depth1, int depth2)
384 {
385 mpz_t d1, d2;
386 bool res;
387
388 gcc_assert (depth1 < depth2);
389
390 mpz_init (d1);
391 mpz_init (d2);
392
393 memory_strides_in_loop (nest, depth1, d1);
394 memory_strides_in_loop (nest, depth2, d2);
395
396 res = mpz_cmp (d1, d2) < 0;
397
398 mpz_clear (d1);
399 mpz_clear (d2);
400
401 return res;
402 }
403
404 /* Interchanges the loops at DEPTH1 and DEPTH2 of the original
405 scattering and assigns the resulting polyhedron to the transformed
406 scattering. */
407
408 static void
409 pbb_interchange_loop_depths (graphite_dim_t depth1, graphite_dim_t depth2,
410 poly_bb_p pbb)
411 {
412 unsigned i;
413 unsigned dim1 = psct_dynamic_dim (pbb, depth1);
414 unsigned dim2 = psct_dynamic_dim (pbb, depth2);
415 isl_space *d = isl_map_get_space (pbb->transformed);
416 isl_space *d1 = isl_space_range (d);
417 unsigned n = isl_space_dim (d1, isl_dim_out);
418 isl_space *d2 = isl_space_add_dims (d1, isl_dim_in, n);
419 isl_map *x = isl_map_universe (d2);
420
421 x = isl_map_equate (x, isl_dim_in, dim1, isl_dim_out, dim2);
422 x = isl_map_equate (x, isl_dim_in, dim2, isl_dim_out, dim1);
423
424 for (i = 0; i < n; i++)
425 if (i != dim1 && i != dim2)
426 x = isl_map_equate (x, isl_dim_in, i, isl_dim_out, i);
427
428 pbb->transformed = isl_map_apply_range (pbb->transformed, x);
429 }
430
431 /* Apply the interchange of loops at depths DEPTH1 and DEPTH2 to all
432 the statements below LST. */
433
434 static void
435 lst_apply_interchange (lst_p lst, int depth1, int depth2)
436 {
437 if (!lst)
438 return;
439
440 if (LST_LOOP_P (lst))
441 {
442 int i;
443 lst_p l;
444
445 FOR_EACH_VEC_ELT (LST_SEQ (lst), i, l)
446 lst_apply_interchange (l, depth1, depth2);
447 }
448 else
449 pbb_interchange_loop_depths (depth1, depth2, LST_PBB (lst));
450 }
451
452 /* Return true when the nest starting at LOOP1 and ending on LOOP2 is
453 perfect: i.e. there are no sequence of statements. */
454
455 static bool
456 lst_perfectly_nested_p (lst_p loop1, lst_p loop2)
457 {
458 if (loop1 == loop2)
459 return true;
460
461 if (!LST_LOOP_P (loop1))
462 return false;
463
464 return LST_SEQ (loop1).length () == 1
465 && lst_perfectly_nested_p (LST_SEQ (loop1)[0], loop2);
466 }
467
468 /* Transform the loop nest between LOOP1 and LOOP2 into a perfect
469 nest. To continue the naming tradition, this function is called
470 after perfect_nestify. NEST is set to the perfectly nested loop
471 that is created. BEFORE/AFTER are set to the loops distributed
472 before/after the loop NEST. */
473
474 static void
475 lst_perfect_nestify (lst_p loop1, lst_p loop2, lst_p *before,
476 lst_p *nest, lst_p *after)
477 {
478 poly_bb_p first, last;
479
480 gcc_assert (loop1 && loop2
481 && loop1 != loop2
482 && LST_LOOP_P (loop1) && LST_LOOP_P (loop2));
483
484 first = LST_PBB (lst_find_first_pbb (loop2));
485 last = LST_PBB (lst_find_last_pbb (loop2));
486
487 *before = copy_lst (loop1);
488 *nest = copy_lst (loop1);
489 *after = copy_lst (loop1);
490
491 lst_remove_all_before_including_pbb (*before, first, false);
492 lst_remove_all_before_including_pbb (*after, last, true);
493
494 lst_remove_all_before_excluding_pbb (*nest, first, true);
495 lst_remove_all_before_excluding_pbb (*nest, last, false);
496
497 if (lst_empty_p (*before))
498 {
499 free_lst (*before);
500 *before = NULL;
501 }
502 if (lst_empty_p (*after))
503 {
504 free_lst (*after);
505 *after = NULL;
506 }
507 if (lst_empty_p (*nest))
508 {
509 free_lst (*nest);
510 *nest = NULL;
511 }
512 }
513
514 /* Try to interchange LOOP1 with LOOP2 for all the statements of the
515 body of LOOP2. LOOP1 contains LOOP2. Return true if it did the
516 interchange. */
517
518 static bool
519 lst_try_interchange_loops (scop_p scop, lst_p loop1, lst_p loop2)
520 {
521 int depth1 = lst_depth (loop1);
522 int depth2 = lst_depth (loop2);
523 lst_p transformed;
524
525 lst_p before = NULL, nest = NULL, after = NULL;
526
527 if (!lst_perfectly_nested_p (loop1, loop2))
528 lst_perfect_nestify (loop1, loop2, &before, &nest, &after);
529
530 if (!lst_interchange_profitable_p (loop2, depth1, depth2))
531 return false;
532
533 lst_apply_interchange (loop2, depth1, depth2);
534
535 /* Sync the transformed LST information and the PBB scatterings
536 before using the scatterings in the data dependence analysis. */
537 if (before || nest || after)
538 {
539 transformed = lst_substitute_3 (SCOP_TRANSFORMED_SCHEDULE (scop), loop1,
540 before, nest, after);
541 lst_update_scattering (transformed);
542 free_lst (transformed);
543 }
544
545 if (graphite_legal_transform (scop))
546 {
547 if (dump_file && (dump_flags & TDF_DETAILS))
548 fprintf (dump_file,
549 "Loops at depths %d and %d will be interchanged.\n",
550 depth1, depth2);
551
552 /* Transform the SCOP_TRANSFORMED_SCHEDULE of the SCOP. */
553 lst_insert_in_sequence (before, loop1, true);
554 lst_insert_in_sequence (after, loop1, false);
555
556 if (nest)
557 {
558 lst_replace (loop1, nest);
559 free_lst (loop1);
560 }
561
562 return true;
563 }
564
565 /* Undo the transform. */
566 free_lst (before);
567 free_lst (nest);
568 free_lst (after);
569 lst_apply_interchange (loop2, depth2, depth1);
570 return false;
571 }
572
573 /* Selects the inner loop in LST_SEQ (INNER_FATHER) to be interchanged
574 with the loop OUTER in LST_SEQ (OUTER_FATHER). */
575
576 static bool
577 lst_interchange_select_inner (scop_p scop, lst_p outer_father, int outer,
578 lst_p inner_father)
579 {
580 int inner;
581 lst_p loop1, loop2;
582
583 gcc_assert (outer_father
584 && LST_LOOP_P (outer_father)
585 && LST_LOOP_P (LST_SEQ (outer_father)[outer])
586 && inner_father
587 && LST_LOOP_P (inner_father));
588
589 loop1 = LST_SEQ (outer_father)[outer];
590
591 FOR_EACH_VEC_ELT (LST_SEQ (inner_father), inner, loop2)
592 if (LST_LOOP_P (loop2)
593 && (lst_try_interchange_loops (scop, loop1, loop2)
594 || lst_interchange_select_inner (scop, outer_father, outer, loop2)))
595 return true;
596
597 return false;
598 }
599
600 /* Interchanges all the loops of LOOP and the loops of its body that
601 are considered profitable to interchange. Return the number of
602 interchanged loops. OUTER is the index in LST_SEQ (LOOP) that
603 points to the next outer loop to be considered for interchange. */
604
605 static int
606 lst_interchange_select_outer (scop_p scop, lst_p loop, int outer)
607 {
608 lst_p l;
609 int res = 0;
610 int i = 0;
611 lst_p father;
612
613 if (!loop || !LST_LOOP_P (loop))
614 return 0;
615
616 father = LST_LOOP_FATHER (loop);
617 if (father)
618 {
619 while (lst_interchange_select_inner (scop, father, outer, loop))
620 {
621 res++;
622 loop = LST_SEQ (father)[outer];
623 }
624 }
625
626 if (LST_LOOP_P (loop))
627 FOR_EACH_VEC_ELT (LST_SEQ (loop), i, l)
628 if (LST_LOOP_P (l))
629 res += lst_interchange_select_outer (scop, l, i);
630
631 return res;
632 }
633
634 /* Interchanges all the loop depths that are considered profitable for
635 SCOP. Return the number of interchanged loops. */
636
637 int
638 scop_do_interchange (scop_p scop)
639 {
640 int res = lst_interchange_select_outer
641 (scop, SCOP_TRANSFORMED_SCHEDULE (scop), 0);
642
643 lst_update_scattering (SCOP_TRANSFORMED_SCHEDULE (scop));
644
645 return res;
646 }
647
648
649 #endif
650